

Pro OpenSolaris
A New Open Source OS for Linux
Developers and Administrators

Harry J. Foxwell, PhD
and Christine Tran

Pro OpenSolaris: A New Open Source OS for Linux Developers and Administrators

Copyright © 2009 by Harry J. Foxwell and Christine Tran

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1891-3

ISBN-13 (electronic): 978-1-4302-1892-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Michelle Lowman, Frank Pohlmann
Technical Reviewer: Sam Nicholson
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Richard Ables
Compositor: Diana Van Winkle, Van Winkle Design Group
Proofreader: Nancy Sixsmith
Indexer: Becky Hornyak
Interior Designer: Diana Van Winkle, Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail , or
visit .

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail or visit

.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at .

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at .

To my sons, Andrew, Michael, and Edward, as inspiration and example,
and to my wife, Eileen, for making it all possible.

—Harry J. Foxwell

This book is dedicated to my parents. You are the mountain and the spring;
you made everything possible.

And to Steve, who kept the lights on every night I came home late.
—Christine Tran

v

Contents at a Glance

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 Getting Started
CHAPTER 1 Introducing OpenSolaris . 3

CHAPTER 2 The Advantages of Developing with OpenSolaris 17

CHAPTER 3 Getting and Installing OpenSolaris . 27

CHAPTER 4 A Familiar User and Developer Environment and More 51

PART 2 Working with OpenSolaris
CHAPTER 5 SMF: The Service Management Facility . 69

CHAPTER 6 The ZFS File System . 89

CHAPTER 7 OpenSolaris and Virtualization . 111

PART 3 Exploiting OpenSolaris’s
 Unique Features

CHAPTER 8 A Development Environment on OpenSolaris . 153

CHAPTER 9 Innovative OpenSolaris Features . 205

PART 4 Appendixes
APPENDIX A Recommended Reading and Viewing . 233

APPENDIX B OpenSolaris 2009.06 . 239

INDEX . 243

vii

Contents

About the Authors . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 Getting Started

CHAPTER 1 Introducing OpenSolaris . 3

The True Name of Open Source Software . 5

What You’ll Find and Learn in This Book . 7

The Origin of OpenSolaris. 9

Goals and Future Directions . 10

That Troublesome CDDL License . 11

The OpenSolaris Community: OpenSolaris.org . 12

Essential URLs . 15

Summary . 15

CHAPTER 2 The Advantages of Developing with OpenSolaris 17

OpenSolaris Qualities . 17

OpenSolaris Is Free . 18

OpenSolaris Is Open Source . 19

OpenSolaris Runs on “Commodity” Hardware Platforms 20

OpenSolaris Runs High- Quality Application Software 22

You Can Get a Software Support Subscription for OpenSolaris 22

CONTENTSviii

OK, It’s Like Linux. So What? . 23

Scalability . 23

Service Management . 23

ZFS . 24

DTrace . 24

Virtualization . 25

Security . 25

Summary . 26

CHAPTER 3 Getting and Installing OpenSolaris . 27

Installation Choices . 29

Checking Your System . 30

Live CD Booting . 34

Direct “Bare- Metal” Installation . 36

Multiboot Installation . 36

Installing OpenSolaris as a Guest VM (Recommended) 37

Are We There Yet? . 47

Summary . 50

CHAPTER 4 A Familiar User and Developer Environment and More . . . 51

At Home with GNOME . 51

The CLI, for the GUI- averse . 55

To su, or Not to sudo? . 56

Boot and Reboot. 57

Updating Your Kernel Build . 59

Other Administrative Tasks . 62

Adding New Users . 62

Printing . 64

Summary . 65

CONTENTS ix

PART 2 Working with OpenSolaris

CHAPTER 5 SMF: The Service Management Facility 69

What’s a Service? . 70

A Bit About Milestones . 74

More About Services . 74

Creating Your Own Services . 81

Summary . 88

CHAPTER 6 The ZFS File System . 89

Exploring the Basic ZFS Features . 91

Creating and Managing ZFS Storage Pools . 94

Creating a ZFS Pool . 95

Managing Boot Environments with ZFS . 108

Summary . 110

CHAPTER 7 OpenSolaris and Virtualization . 111

Zones and Containers . 118

Creating a Zone . 120

Global and Local Zone Environments . 124

Cloning a Zone . 127

Managing Zones . 128

Using the Zone . 129

Managing Zone Resources . 130

More OpenSolaris Virtualization . 133

VirtualBox . 134

The xVM Hypervisor . 136

Installing the OpenSolaris 2008.11 xVM Hypervisor 138

BrandZ . 145

LDoms . 148

Summary . 150

CONTENTSx

PART 3 Exploiting OpenSolaris’s
 Unique Features

CHAPTER 8 A Development Environment on OpenSolaris 153

Introducing the Web Stack and AMP . 154

Getting the AMP Stack . 154

Taking a Tour of the Command- Line Package Manager 156

Making a Case for Containers . 162

Building Applications for a Container Environment 163

Introducing Zones and Discrete Privileges . 163

Qualifying Your Application for Zones . 164

Installing Tomcat in a Container . 165

Installing MySQL . 172

Taking a Quick Tour of NetBeans IDE . 175

Using Subversion . 179

Creating the Repository and Managing Files 179

Using the Manage Access Control Method . 183

Integrating NetBeans with Other Products . 191

Integrating with Tomcat . 191

Integrating with Subversion . 193

Putting It All Together with IPS . 200

Summary . 204

CHAPTER 9 Innovative OpenSolaris Features . 205

DTrace . 205

Probes . 207

Providers . 208

DTrace Scripts . 208

A Simple Example . 209

DTrace Aggregations . 210

DTrace Community Contributions . 212

DTrace and Java . 218

CONTENTS xi

The Tracker Utility: Where’s That File? . 219

The OpenSolaris Distro Constructor . 220

The Device Driver Utility . 222

And Now for a Little Entertainment . 223

OpenSolaris Educational Resources . 226

The OpenSolaris Curriculum Development Resources 226

OpenSolaris Learning Cloud Service . 227

Summary . 229

PART 4 Appendixes

APPENDIX A Recommended Reading and Viewing . 233

Books . 233

Blogs and Wikis . 234

Developer Resources . 234

Learning and Training . 235

Linux to OpenSolaris Translation . 235

Newsletter . 235

User Groups . 236

Videos . 236

Web Sites . 236

White Papers . 237

APPENDIX B OpenSolaris 2009.06 . 239

SPARC Support . 239

Project Crossbow . 240

Encrypted ZFS File System . 240

CUPS Printing . 241

Other Anticipated Features . 241

INDEX . 243

xiii

About the Authors

HARRY J. FOXWELL is a senior system engineer and OS ambassador for
Sun Microsystems Federal, Inc., in the Washington, D.C., area, where
he is responsible for solutions consulting and customer education on
Solaris, OpenSolaris, Linux, open source software, and virtualization
technologies.

Harry has worked for Sun Microsystems since 1995; he also
authors Sun’s internal web site of Linux technical information and
has been a Linux user since 1995. He has been influential in develop-

ing and promoting Sun’s Linux and open source strategies and messages. He is coauthor
of two Sun BluePrints: “Slicing and Dicing Servers: A Guide to Virtualization and Con-
tainment Technologies” (Sun BluePrints Online, 2005) and “The Sun BluePrints Guide
to Solaris Containers: Virtualization in the Solaris Operating System” (Sun BluePrints
Online, 2006).

Harry received his doctorate in Information Technology in 2003 from George Mason
University (in Fairfax, Virginia) and has since taught graduate-level computer science
courses at GMU about operating systems and electronic commerce. His students use
OpenSolaris, VirtualBox, MySQL, and other open source software from Sun in their
course assignments and projects.

CHRISTINE TRAN is a software developer for Assured Decisions, LLC. Before that, she
spent ten years at Sun Microsystems as a solutions architect and OS Ambassador, guiding
customers through all aspects of working on the Solaris platform. She is the author of the
online OpenSolaris Service Management Facility FAQ.

Christine is working on shipping her first product, built on Solaris 10 and Trusted
Extensions. She has recently gone through First Customer Shipment (FCS) and finds the
experience exhilarating and crushingly stressful at the same time, much like writing this
book. She hopes to survive the support phase.

Christine holds a BSE in Electrical and Computer Engineering from Johns Hopkins
University in Baltimore, Maryland.

xv

About the Technical Reviewer

SAM NICHOLSON began his Solaris trip as a SunOS system administrator in the late 1980s,
just in time to work on the conversion to 3.5.1. He has been an adherent ever since. He
has earned his keep by writing file system bits, SCSI device drivers, and network manage-
ment apps for Solaris and other Unixen. He has consulted in the fields of network services
and information security. Having ridden two waves (the telecom and mortgage booms)
to shore, he is now combining his experiences to design and deploy a nationwide satellite
content delivery system. He’s still enjoying the ride.

xvii

Acknowledgments

Writing a technical book in a short few months about a new and rapidly changing oper-
ating system like OpenSolaris is a challenge, but with the help of a great Apress team we
were able to meet it.

Thanks to Frank Pohlmann, editorial director for Linux, for agreeing to the need for
this book; to open source editor Michelle Lowman for her guidance and for giving us
the freedom to write our own occasionally not-so-humble opinions; and to technical
reviewer Sam Nicholson for keeping us from getting too carried away with our enthusi-
asm for this still evolving OS and yet-to-be perfected development environment. Special
thanks to Apress project manager Kylie Johnston for her good-natured but insistent nag-
ging that kept us (approximately) on schedule, and to copy editor Kim Wimpsett for her
diligent efforts to make our perfect sentences even perfecter. J

The value of this book owes much to Christine Tran, for enthusiastically sharing
her time to write on a difficult schedule and for sharing her extensive development
experience. I don’t think she knew what she was signing up for when we asked her to
contribute, but I couldn’t have found a better coauthor, and I sincerely thank her for her
valuable work on this book.

We both wrote Pro OpenSolaris in our “spare time,” and this book is not sponsored
or supported in any way by Sun Microsystems other than agreeing to let me write it. Sun
does, however, provide very useful and interesting technologies to write about!

And thanks most of all to my family for patiently (most of the time) tolerating my
many “spare time” hours writing at the computer.

Harry J. Foxwell

I got an email in late December 2008 from Harry, asking me whether I would like to
contribute a chapter to a book about OpenSolaris. I nonchalantly wrote Harry back say-
ing, “Sure, whatever I can do to help,” at the time thinking it would occupy, at most, one
weekend banging out stuff I’d already known and written about. Besides, the project
was probably not going to happen anyway. Little did I know it would explode to at least
eight weekends and two all-nighters of writing, revisions, rewrites, one dead laptop,
and more espresso and anxiety than is medically advisable. Now that our project is a
reality, I couldn’t be happier that Harry asked me and that I decided to do it, against all
inclinations to make excuses and run away. Thanks, Harry! I’m honored to make a small
contribution to this book.

xviii ACKNOWLEDGMENTS

There are no good writers, only good editors, project managers, and proofers. I could
not have done this without Michelle Lowman, Kylie Johnston, and Kim Wimpsett, the Apress
team who kept us on schedule and smoothed our way with their mastery of the production
process. Thank you, publishing goddesses!

Finally, I thank my employer, Assured Decisions, and the MDeX team for their support
of this project. I couldn’t wish for a better crew.

Christine Tran

xix

Introduction

If you’re familiar with the UNIX operating system, perhaps you wonder what it will look
like in the future given its long and varied history. We think it will look a lot like OpenSolaris,
which is heavily influenced by the open source developer communities, especially by Linux
developers.

In 2005, Sun Microsystems released the source code for one of its “crown jewels,”
Solaris 10, under an OSI-approved open source license and created the OpenSolaris.org
community. Since that time, the numbers of OpenSolaris end users, user groups, appli-
cation developers, and contributing kernel engineers have grown worldwide to several
hundred thousand participants, and the number continues to increase.

We recognized that although there are myriad documents, tutorials, and software
examples about OpenSolaris and its special features on the Web, a book on this “new”
operating system was needed that would give readers an important perspective and orga-
nization of what’s familiar and what’s innovative about this software. So, we begin this
book with a gentle reminder of what open source software is really about—community
development—and then introduce you to the most recent version of OpenSolaris, the
2008.11 release. The next release is expected to be 2009.06.

OpenSolaris’s roots are in Sun’s Solaris 10 operating system. It therefore inherits
decades of OS advances by Sun engineers, now enhanced and extended by the broader
development community. It includes advanced features like the ZFS file system, OS virtu-
alization, and DTrace, while providing an open source–based development environment
that should be familiar to Linux users.

We hope you will do more than just satisfy your curiosity about OpenSolaris and that
you will begin to use it as a foundation for your open source–based solutions.

Who This Book Is For
We assume that you are a professional system administrator or developer of an open
source software environment based on Linux or on Solaris and that your learning style
needs only an orientation and an indication of what should be learned first in order to
take advantage of OpenSolaris. This is not an introductory book on how to replace Win-
dows with OpenSolaris. We don’t cover all the basics of GNOME, networking, and shell
use, only indicating important concepts and details you will need to get started. We do
give you detailed examples of key OpenSolaris technologies in order to illustrate their

INTRODUCTIONxx

power and utility, and we give you helpful web references for further study. Both of us
have extensive experience teaching and presenting Solaris and OpenSolaris, and our
approach is to introduce you to OpenSolaris based on what you already know about
similar operating systems.

How This Book Is Structured
Pro OpenSolaris is divided into three major sections. In the first part, “Getting Started”
(Chapters 1 through 4), we describe the philosophy and origins of OpenSolaris and dis-
cuss the advantages of its unique features. We show you where to get the software, we
review several methods of installing it on your systems, and we give you a tour of the
OpenSolaris environment, highlighting its similarities to many Linux distributions.

In Part 2, “Working with OpenSolaris” (Chapters 5 through 7), we present details on
how to use OpenSolaris’s unique features, including the Service Management Facility
(Chapter 5), the ZFS file system (Chapter 6), and virtualization (Chapter 7).

In Part 3, “Exploiting OpenSolaris’s Unique Features” (Chapters 8 and 9), we present
practical examples and innovative OpenSolaris technologies that enhance and extend
your development environment. The extensive Chapter 8 brings all of these technolo-
gies together and shows you how to use OpenSolaris’s development tools and familiar
open source applications to build your AMP stack solutions. The final chapter highlights
a number of innovative OpenSolaris features and includes a brief introduction to the
DTrace observability tool, gives an overview of the Distribution Constructor, and directs
you to some online resources to help you learn more about OpenSolaris.

Prerequisites
You should be familiar with downloading and installing software on your laptop, work-
station, or server, and you should be generally familiar with the GNOME-based user
environment found on most Linux distributions, as well as with basic network tools for
such systems.

This book is based on the OpenSolaris 2008.11 release of the operating system; you
should obtain and install the latest release as described in Chapter 3 from

 and then use it to work through the book’s examples. No
programming experience is required, but the ultimate goal of the book is to get you to use
OpenSolaris for your open source programming and administration projects.

INTRODUCTION xxi

Downloading the Code
The source code for this book is available to readers in the Source Code section at

. Please feel free to visit the Apress web site and download all the code
there. You can also check for errata and find related books from Apress.

Contacting the Authors
If you have comments, corrections, or questions about Pro OpenSolaris, please visit the
book’s web site at . You can email Harry J. Foxwell
at , and you can email Christine Tran at .

P A R T 1

Getting Started

OpenSolaris is a community- developed and community- supported operating system

platform you can use to host your open source applications and web solutions. Although its

look and feel is purposely designed to appeal to Linux developers, OpenSolaris has unique

features that make it an attractive alternative. In this part of the book, you’ll learn about

these features and the growing community that supports this new operating system.

3

C H A P T E R 1

Introducing OpenSolaris

To change this rock into a jewel, you must change its true name.

—Kurremkarmerruk, the Master Namer, in A Wizard of Earthsea, by Ursula Le Guin

Welcome, open source solution developers! If you’ve purchased and are reading this
book (thanks!) or if you’re scanning it in the bookstore (please keep reading!), you prob-
ably think of yourself as a “Solaris developer” or a “Linux developer.” You Solaris users,
administrators, and developers may already know that as Sun Microsystems’ commercial
version of Solaris continues to evolve, it will look more and more like today’s OpenSolaris,
so it’s great that you’ve chosen this book to learn more about it.

But if you call yourself a “Linux developer,” is that your true name? Are you really
among the less than 1 percent of all Linux users who download the kernel source code,
change it or add to it, recompile it, and use the result for highly specialized purposes? Or
are you truly an open source solutions developer who just happens to use one of the popu-
lar Linux operating system kernel distributions as the foundation for your work? If you’re
among the latter, why have you chosen Linux (if, in fact, you were the one who made the
choice)?

The typical answers that we hear when we ask this question is that Linux distributions:

Well, so do other open source operating systems and their associated user and devel-
opment environments. This book is about another such operating system with these
characteristics, OpenSolaris.

CHAPTER 1 INTRODUCING OPENSOLARIS4

If you’re an open source solutions developer, you should realize that the true name of
your development environment is not limited to Linux and that there is generally no such
thing as a “Linux application.” Rather, you’re likely using a packaged distribution of open
source user interface tools and developer tools that have been compiled for the Linux kernel.
Red Hat’s Enterprise Linux, Novell’s SUSE Linux Enterprise, and Ubuntu Linux are among
the most popular of such distributions. So- called Linux applications are really “open source
applications” that happen to have been compiled and distributed with the Linux kernel;
they could just as easily have been compiled for other kernels, as indeed many of them have.
Some of these applications and tools have even been compiled for so- called proprietary
environments such as Microsoft Windows. Indeed, calling an open source application like
the Apache web server a “Linux application” actually limits its consideration for use on other
platforms. There’s even a term for this view of the typical collection of web software technolo-
gies that Linux developers use—the LAMP stack, comprising Linux, Apache, MySQL, and
PHP—and there are many books on this specific combination of software. In this book, we’ll
be showing you that there are some advantages to substituting something else for that L.

To make it clear what we’re emphasizing, look at the typical open source stack of
software you’re probably using in Table 1-1. The Linux kernel can provide the operating
system foundation for the stack, but it’s not required; other commercial or community
operating systems such as AIX, HP- UX, Solaris 10, OS X, FreeBSD, or OpenSolaris are
widely used as well, since virtually all the “standard” open source tools in the stack are
available for these systems. So, it’s useful to examine the relative advantages of the avail-
able operating system kernels.

 Table 1-1. A Typical Open Source User and Developer Stack

Stack Component Tools and Utilities

User and developer tools Firefox browser, Thunderbird email, OpenOffice, and Java
 compilers; Perl, Ruby, other languages; IDEs, vi/vim and emacs, bash
 and csh shells

Desktop environment GNOME and/or KDE Desktop tools

Window system X Window System and tools

Services and utilities UNIX and GNU programs, services, and utilities, web servers,
 application servers, databases, Apache, JBoss, GlassFish, MySQL

APIs and system libraries POSIX libraries and extensions, language libraries

Operating system kernel Process scheduling, security, network, resource management,
and services virtualization support; Linux, FreeBSD, OS X, or OpenSolaris

System hardware Multicore, multithreaded processors; Intel, AMD, SPARC, PowerPC

CHAPTER 1 INTRODUCING OPENSOLARIS 5

Clearly, what you are most concerned with when designing and creating your open
source solutions is the availability of a familiar, productive, efficient, and comprehensive
user and development environment. This is provided by the open source components
that have been compiled for and integrated with the underlying operating system ker-
nel. And of course you’ll want the operating system to provide high- quality services for
performance, scalability, and security; special features such as virtualization support,
debugging aids, and resource management would be a bonus. The various open source
operating system kernels, along with their “distribution” tools and accessories, each have
specific advantages for open source development and deployment. This book focuses on
the advantages of using the OpenSolaris distribution for such work.

The True Name of Open Source Software
While we’re discussing open source software, let’s call it by its true name. The term open
source software is often misunderstood to mean Linux software, free software, shareware,
or other terms that emphasize the method of acquiring the programs or the fact that you
can obtain and inspect the programs’ source code.

The names we give to concepts can either enhance understanding or confuse practi-
tioners and users. The term virtualization, for example, includes some technologies that
have no true virtualization components; we prefer workload containment, which includes
true virtualization but also includes other concepts.

Open source is another somewhat misused and misunderstood term that focuses
on the wrong component of modern software development. A better phrase to use is
 community- developed software, which focuses on the true methodology (yes, you obvi-
ously can’t have community development without access to the source code, but the
source code itself should not be the main focus...Microsoft could publish the entire Vista
source and still severely restrict its sharing and use!). We’ll have more on the community
aspect of OpenSolaris later.

We also avoid the term free and prefer using freely sharable or some other words that
focus on the community rather than on the object of the community’s activity. Then we
can emphasize the distinction between community- supported software and commer-
cially supported software, regardless of the software’s origin (community developers
and/or commercial developers).

When you think about it, much of what so- called open source businesses such as Red
Hat, Novell, Sun, HP, IBM, and others are selling is commercially supported community
software. It’s not as pretty sounding as open source software, but it’s more accurate never-
theless. However, we do not expect businesses or developers to change their vocabulary
simply for the sake of accuracy.

CHAPTER 1 INTRODUCING OPENSOLARIS6

Speaking of the commercial software developers, it’s very interesting to observe the
recent trend of such companies acquiring the trademarks, distribution rights, and sup-
port rights to popular and mature community- developed tools. For example:

These vendors and others are also taking advantage of the community development
model for their own internally originated software in order to expand their user bases
and to obtain the hoped- for benefits of community support. Sun, notably, has released
much of its own as well as its acquired software under various OSI- approved open source
licenses, including the following, to name just a few:

You should therefore anticipate a future open source development environment with
a variety of support and distribution models, from the traditional “totally free” approach
to the multitier approach that provides both “community” and “enterprise” editions
and support levels for open source software on a wide selection of hardware and operat-
ing system platforms. Sun Microsystems does provide subscription support services for
OpenSolaris (see), and these services are
still evolving as Sun enhances its operating system offerings from Solaris 10 to OpenSolaris.
In the meantime, we’ll concentrate on describing the features and benefits of this new,
 community- developed operating system.

CHAPTER 1 INTRODUCING OPENSOLARIS 7

What You’ll Find and Learn in This Book
Pro OpenSolaris assumes you’re already generally familiar with either Linux or Solaris 10 as
an end user, software developer, or system administrator. It explains the origin and intent
of Sun Microsystems’ effort to move from the internally developed Solaris 10 operating
system to the community- developed OpenSolaris. Later in this chapter, we’ll detail the
projects and activities of the OpenSolaris community and will encourage you to become

development platform, including advanced technologies such as the DTrace observability
tool, the ZFS file system, virtualization with zones, and Service Management, all typically

-
ous options for installing OpenSolaris, and we’ll review the common features that both
Linux and Solaris users will find familiar, such as the GNOME user environment shown in
 Figure 1-1. Then we’ll get to work, showing you how to exploit OpenSolaris’s unique tech-
nologies such as containers, including how to set up and use the AMP software stack for
 OpenSolaris- hosted web solutions.

 Figure 1-1. A typical OpenSolaris user session

CHAPTER 1 INTRODUCING OPENSOLARIS8

We won’t be digging into the internals of the OpenSolaris source code or covering
how to write OpenSolaris device drivers, because this book focuses on using OpenSolaris
rather than its design or development. Readers interested in those topics can go directly
to the source at and
or to the OpenSolaris device drivers community at

. If you’re willing and able to contribute new features or bug
fixes to the OpenSolaris community, there is an active contributor community FAQ on

 Figure 1-2. The OpenSolaris contributing developers FAQ

Don’t forget to check out the other references in Appendix A for topics not covered here.

CHAPTER 1 INTRODUCING OPENSOLARIS 9

The Origin of OpenSolaris
OpenSolaris has a long and rather unique history as an open source operating system,
and its origins go all the way back to the early days of UNIX, which, ironically, was one
of the first major open source projects. We don’t need to review all of its detailed history
except to highlight some key events relevant to today’s OpenSolaris:

1965–1972: Ken Thompson and Dennis Ritchie develop UNIX at AT&T’s Bell Labo-
ratories; AT&T distributes UNIX source code to universities and industry users.

1976–1979: Bill Joy at UC Berkeley enhances UNIX memory management; AT&T
continues UNIX technical development.

1982–1983: AT&T releases commercial UNIX System V; Sun Microsystems founded
and releases UNIX- based SunOS.

1984–1987: AT&T releases additional versions of UNIX System V.

1988–1992: AT&T works with Sun on UNIX development; Open Software Foundation
and UNIX International formed; Novell purchases AT&T’s UNIX Software Lab; Sun
acquires rights to UNIX SVR4 code for distribution of source, binaries, and derivatives.

1991: Linus Torvalds releases the first implementation of Linux.

1994–1995: First Red Hat Linux distribution released; Red Hat Software founded,
first SuSE Linux distribution released.

1999: Sun Microsystems announces intent to release Solaris under open source
license.

2001: National Security Agency (NSA) releases Linux- based SELinux.

2002 -
tion, and later decides to OEM and support Red Hat and SuSE Linux.

2004: Novell acquires SuSE Linux.

2005: Solaris 10 is released, which is the first release of Solaris source code under
the OSI- approved CDDL license; OpenSolaris.org founded.

2007: Sun Microsystems hires Debian developer Ian Murdock to guide the OpenSolaris
project.

2008: First OpenSolaris binary is release, with source code; IDC reports Sun rises to
-

munity to integrate mandatory access control (MAC), based on the Flux Advanced
Security Kernel (Flask) architecture into OpenSolaris.

CHAPTER 1 INTRODUCING OPENSOLARIS10

Being derived from the first UNIX, OpenSolaris has evolved from one of the original
collaborations between the industry and the general software development community,
passing through a period of commercial ownership with restricted access to the source
code and arriving today as an enterprise- quality open source operating system that is
developed, distributed, and supported by Sun, by other technology vendors, and by
a growing community of users and developers.

Why did Sun start down this open source path with its highly regarded core operating
system technology? In part, the answer has to do with you, the developer. In recent years,
the two largest groups of developers have been for Windows and for Linux. And although
today’s Solaris 10 arguably has compelling advantages as an open source deployment
platform, one of its target developer groups—Linux users and programmers—found its
user interface and tools to be unfamiliar and sometimes lacking when compared to what
they were accustomed to in modern Linux distributions.

Sun has now started what might be called the “Linuxification” of Solaris. Future ver-
sions of Solaris will look more like today’s OpenSolaris, and that’s good news for Linux
users and developers because they now have a powerful yet familiar alternative environ-
ment on which to host their open source solutions. Obviously, Sun’s strategy is to attract
more developers to OpenSolaris, and that appears to be working considering the rapid
growth of the OpenSolaris.org community.

Goals and Future Directions
Having finally released a stable, well- designed binary distribution of OpenSolaris, what’s
next? Sun would certainly like to preserve the high quality and popularity of Solaris 10
while transforming it into the preferred community- developed operating system. It
wants to keep Solaris’s scalability, stability, and binary compatibility features; develop
a profitable product support model; and continue to expand OpenSolaris’s user base. It
also wants to continually add to the operating system’s list of useful features, both those
unique to OpenSolaris and those popular in Linux distributions.

According to the public road maps for Solaris 10 and OpenSolaris on
 and on , you’ll eventually see the expansion of Sun’s

OpenSolaris support subscription offerings, support for SPARC platforms (especially for
the new multicore chips), a growing base of ISVs supporting their applications on Open-
Solaris, and encouragement of contributing community software developers. Sun is also
increasing its focus on the academic research and student communities. There is already
a comprehensive OpenSolaris- based curriculum for university computer science courses
that some schools have started to use, and hundreds of thousands of students and com-
puter science faculty from around the world have downloaded OpenSolaris for their
research and coursework.

New builds of OpenSolaris will be posted on the web site every two weeks. As with
Solaris, these builds include bug fixes, new features, and support for newly released

CHAPTER 1 INTRODUCING OPENSOLARIS 11

for each release. Also on the road map are enhancements of the OpenSolaris application
software repositories’ content and features, including specialized repositories for sup-
ported, experimental, and ISV packages.

Note There have been several Solaris- related binary release downloads available: Solaris 10 for x86 and
SPARC, the Solaris Express Community and Developer Edition releases, and the OpenSolaris releases. The
Solaris Express releases, which gave periodic snapshots of future Solaris 10 technologies, will be replaced
by the OpenSolaris distributions for x86 and SPARC.

That Troublesome CDDL License
Nothing seems to arouse the passions of open source developers more than discussions
of how source code is licensed. Whole books, thousands of web pages, and innumerable
blogs argue the merits and deficiencies of the various “open source” or “free software”
licenses. The Open Source Initiative (OSI) organization, which works with community
software developers, is the caretaker of the official definition of open source and has

licenses, the GNU General Public License (GPL) and the Common Development and
Distribution License (CDDL), are the focus of much of the controversy over how Sun has
released the code for OpenSolaris.

It is important to understand how community- developed source code is licensed if
you use such code to build new programs. To put it as briefly as possible, the GPL’s goal
is to encourage the broadest sharing of community- developed software; all projects using
 GPL- licensed code, including derived works, require the public sharing of any changes or
enhancements to the code.

After more than 5 years of legal review and documentation effort, Sun released the
nearly 10 million lines of source code for OpenSolaris under the file- based CDDL, which
essentially requires that source files derived from common files must be shared but that
executables of derived works may use other licenses, including those that permit protec-
tion of software patents, which many GPL proponents consider “evil.”

Under the CDDL, you can combine your program files with those covered by other
licenses, you can release your code under more than one license, you’re not required to
release the source of your “proprietary” value- added code, and you can distribute and sell
binaries derived from OpenSolaris source files.

The controversy will no doubt continue, and the CDDL might be reexamined for new
OpenSolaris components in light of new business requirements and community needs
and the development of new licenses such as the GPLv3, which attempts to address some
of the concerns about the commercialization of open source software.

CHAPTER 1 INTRODUCING OPENSOLARIS12

The OpenSolaris Community: OpenSolaris.org
No open source project survives for long without a large, actively contributing community

150,000 registered community members, more than 300 discussion groups with more than

half of the visitors to the OpenSolaris web site, shown in Figure 1-3, are from outside the
United States, including many from Germany, the United Kingdom, Japan, India, China,
and South America.

OpenSolaris community members support the development and deployment of
the operating system and tools by participating in online help forums and mailing lists,
promoting and explaining the project and its activities to the press and to developer
communities, creating and contributing marketing materials, and of course writing and
debugging kernel components and user applications and tools. In addition to the Sun
kernel development engineers who now work on Solaris and OpenSolaris almost exclu-
sively through the public web sites, hundreds of contributors who do not work for Sun are
refining and adding to this project.

You might wonder, who decides what goes into OpenSolaris? Like with Linux, Java,
JBoss, Xen, MySQL, and other open source software, it’s the owner of the trademark who
has the final say of what that trademark means. Linus Torvalds is the owner of the Linux
trademark and is therefore the “benevolent dictator” for what goes into the Linux kernel.
Sun Microsystems, advised by members of the Java Community Process (JCP, at

), does the same for open source Java. Similarly, Sun currently is the final
arbiter of OpenSolaris content and features, with significant input from the OpenSolaris
Community Advisory Board (CAB) and community members, whose charter is “...the
collaborative production of open source software related to the OpenSolaris family of
operating systems and committed to fostering the evolution and adoption of the Open-
Solaris code base.” The CAB has a community- developed governance charter and open
elections, along with well- defined roles and responsibilities of board members, regular
members, and technical contributors to projects.

OpenSolaris users, developers, and contributors have gathered for tutorials, techni-
cal presentations, and BoF sessions at many of the traditional Linux and annual open
source conferences and workshops such as JavaOne, OSCON, ApacheCon, Community-
One, and Usenix, as well as at Tech Days sponsored around the world by Sun in Europe,
India, China, the United States, and Japan. As the OpenSolaris community grows, active
users are posting wikis and blogs to share what they’ve learned. One of the most popular
blogs is the OpenSolaris Observatory at , which includes

CHAPTER 1 INTRODUCING OPENSOLARIS 13

 Figure 1-3. The OpenSolaris community web page

 Figure 1-4. The OpenSolaris Observatory blog

CHAPTER 1 INTRODUCING OPENSOLARIS14

If you’re interested in becoming a contributor to the OpenSolaris project, there
is ample opportunity and encouragement to participate in any of the nearly 50
 special- interest communities focused on issues such as accessibility, documentation,
games, high- performance computing, performance, security, and virtualization, to name
but a few. The process and web sites for submitting bug fixes and code changes is well
defined (Figure 1-5) and includes many suggested requests for enhancement (RFEs)
that developers can choose from if they’re interested in becoming involved in improving
OpenSolaris.

 Figure 1-5. The OpenSolaris bug- tracking and RFE site

CHAPTER 1 INTRODUCING OPENSOLARIS 15

Essential URLs
Be sure to visit these web sites frequently to learn what’s going on in the OpenSolaris
communities and to learn about new software features, bug fixes, and opportunities to
participate:

Summary
OpenSolaris is already a successful open source project because of its historical roots in
Sun’s Solaris operating system and its large and active development community. You can
participate as an end user and application developer or as a contributor to OpenSolaris to
improve its features, documentation, or usage. Next, you’ll learn about some of the tech-
nologies that make OpenSolaris a good choice for open source development.

17

C H A P T E R 2

The Advantages of Developing
with OpenSolaris

When people say they want Linux, they want the user environment that the various
distributors have built around the Linux kernel. It’s the GNU utilities, the GNU Desk-
top environment, the compiler tool chain, Apache, MySQL, Ruby on Rails, and so on.

—Ian Murdock, now at Sun Microsystems, founder of the Debian Linux distribution

Netscape founder Marc Andreessen somewhat famously remarked in 2006 that “Solaris is
a better Linux than Linux.” That comment raised a bit of ire from many Linux proponents,
but what he was referring to at the time was Solaris 10’s excellent reputation for code qual-
ity, reliability, performance, and scalability. OpenSolaris inherits those characteristics.

Note Some of the OpenSolaris documents and web sites you’ll find on the Internet refer to Solaris 10
information on Sun web sites. Sun is continually updating these sites, and, in most cases, technical details
listed for Solaris 10 are applicable to OpenSolaris.

OpenSolaris Qualities
We mentioned in Chapter 1 that Linux distributions are widely used today because they:

OpenSolaris has all these qualities and more. Let’s look at each of these key points.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS18

OpenSolaris Is Free

As
downloaded, shared and redistributed, and deployed in your projects and IT infrastruc-
ture without charge. You can use it to study how it works, and you can fix things you think

and binaries at (see Figure 2-1).

 Figure 2-1. Where to get OpenSolaris binaries

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS 19

OpenSolaris Is Open Source

It’s
is distributed under the CDDL license that lets you share, use, integrate, change, and add

-
ties with OpenSolaris as you do with Linux distributions. OpenSolaris’s Source Code web
site at , shown in Figure 2-2, is the place to go for all code
related information; it includes a source code search and browser tool (Figure 2-3) that
you can use to find the sections of the code that you need

 Figure 2-2. Where to get the OpenSolaris source code

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS20

 Figure 2-3. The OpenSolaris online source code browser

OpenSolaris Runs on “Commodity” Hardware Platforms

For some reason, one of the best- kept secrets about OpenSolaris is where it can run.
Longtime Sun customers might recall the early days of Solaris, which ran only on Sun’s
SPARC processors. And although Sun had a few early missteps bringing Solaris to the x86
world (AMD and Intel), since 2004 the code base for Solaris, and now for OpenSolaris, has
been essentially the same for x86 as for SPARC with the exception of platform- specific

and components from hundreds of manufacturers such as IBM, HP, and Dell, not just

-

lagged a bit because the boot process for such systems needed to be changed to use ZFS
like the x86 systems do.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS 21

If you’re not sure whether OpenSolaris will run on your laptop, workstation, or
Sun’s Hardware Compatibility List at

 (see Figure 2-4).

 Figure 2-4. The OpenSolaris Hardware Compatibility List

Sun and Toshiba recently announced that laptops with OpenSolaris preinstalled will

There
 to determine whether OpenSolaris can run on your

specific system. You can use this tool on AMD and Intel systems running Solaris, Windows,

We’ll show you how to use this tool in the next chapter.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS22

OpenSolaris Runs High- Quality Application Software

For many years Solaris has been distributed with both supported and unsupported open
source tools such as Apache, Perl, Postgres, Webmin, MySQL, and many others, and it has

Now that Solaris is transforming into OpenSolaris, those same applications, and

for these enhancements has been contributed back to the community.
So, and this is the main point of this book, you can build highly capable applications

about this in Chapter 8.
These are

GNOME Desktop and tools GNU compiler and tools GNU utilities

MySQL database NetBeans IDE OpenOffice

Perl PHP Postgres database

StarOffice Sun Studio IDE Thunderbird email client

You Can Get a Software Support Subscription for OpenSolaris

The
get immediate support when you deploy it on mission- critical systems. In today’s busi-

like other open source businesses, they make money through support subscriptions.

. You can get 24/7 production use and escalation support
from Sun at prices comparable to those for Linux distributions, as well as lower- tier email

6 months and is supported for 18 months. Longer- term support cycles will emerge as Sun

for Solaris.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS 23

OK, It’s Like Linux. So What?

exploit these benefits in later chapters.

Scalability

Because

on traditional SMP systems, on the new generation of CMP/CMT SPARC processors, and

-
sors are also supported.

In general, the OpenSolaris kernel, like Solaris, scales and performs more stably

results.

 64- bit processors from Intel, AMD, and SPARC; 32- bit mode and applications are sup-

memory systems.

Service Management

It’s -
ware failure. Because of the 24/7 global use of your systems, there are no more “windows”

-

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS24

ad hoc scripts is insufficient for

fails.

ZFS

The -

updates using ZFS, allowing you to try patches and upgrades and to back them out if nec-

file system compression and encryption options. It allows both end users and system
administrators to take instant and periodic point-in- time snapshots, to roll back to earlier

-

and little- endian bit order.
ZFS is one of the “foundation” technologies of OpenSolaris; it supports booting the

root file system, safe and easy upgrading and patching using file system snapshots, and

ZFS recently won InfoWorld’s 2008 Storage Technology of the Year Award, and
because, again, it’s an open source community project, it’s now included in FreeBSD and

distributions.

DTrace

If you can’t see it, you can’t fix it. The OpenSolaris kernel is fully instrumented for full

calls all the way down the software and hardware stack to hardware interrupts, using one

which in turn means it’s ideal if you want to use it to diagnose application and operating
system issues on your production systems. It’s like an MRI for OpenSolaris instead of brain
surgery—it won’t hurt.

help you use DTrace, including an open source DTrace GUI, the DLight tool integrated

contributed by OpenSolaris.org members.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS 25

Wall Street Journal

larger community of DTrace experts with which to share ideas.

Virtualization

OpenSolaris

Single-kernel mode: On both SPARC and x86 systems in the form of containers

Multikernel modes

-

run Linux applications in a container without requiring a full Linux kernel. You’ll learn
more about this in Chapter 7.

-

-
tual machine in the next chapter.

Security

OpenSolaris includes modern security capabilities such as role- based access control

few applications really need to run as , OpenSolaris enables administrators to config-

-

.

 on- chip crypto stream processors. OpenSolaris also supports digitally signed executables,
disabling stack execution, and secure by default installation. Of course, your familiar

 are also included.

CHAPTER 2 THE ADVANTAGES OF DEVELOPING WITH OPENSOLARIS26

A o- like utility,

National Security Agency (NSA) has worked with open source
communities to enhance operating system and application security. For example, its

Fedora and Red Hat Enterprise Linux. The NSA also started working in March 2008 with

OpenSolaris adds a unique feature called Trusted Extensions, which supports the

profile. OpenSolaris implements this through the use of labeled containers. Solaris 10

-
Solaris inherits Solaris 10’s security technologies, which you can use to enhance data

-

You’ll read more about containers’ security features in Chapter 7 and more about
Chapter 8.

Summary
OpenSolaris is not “just another open source operating system.” Although it is indeed

foundation for your web infrastructure projects. Because it descends directly from Sun’s

not found in other operating systems. Try it. We think you’ll like

27

C H A P T E R 3

Getting and Installing
OpenSolaris

I was dumbfounded to discover that installing Linux was easy. Why? Well, the
world has changed.

—John Schwartz, Washington Post, December 2000

Linux has a justifiably good reputation for being easy to install, and that process has
become even easier and with more useful options since Schwartz’s report so long ago.
On the other hand, Sun’s Solaris for x86 systems has had a reputation, also somewhat
deserved, of being difficult to install and configure, along with doubts as to whether it
would run at all on any randomly chosen “commodity” laptop, workstation, or server. But
the world has indeed changed. As we pointed out in Chapter 2, Solaris and OpenSolaris
run on thousands of differently configured Intel and AMD systems; installation of Solaris
and now OpenSolaris has been steadily improving using the same boot technologies and
methods found in Linux distributions. Yes, now OpenSolaris is also easy to install.

The primary web site for getting OpenSolaris is
(Figure 3-1), although additional download mirrors such as are
becoming available worldwide; several open source magazines and books are even now
including the OpenSolaris CD. On the web site, you will find two choices: downloading
the current version’s file to your system so that you can make your own CD or regis-
tering with the Sun Developer Network so they can send you a current OpenSolaris CD.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS28

 Figure 3-1. Where to download the OpenSolaris CD file

Note Unlike Solaris 10, which requires a full installation DVD to hold all its files and programs in addition
to a companion DVD of precompiled open source tools, OpenSolaris is distributed on a CD containing only the
basic operating system, the GNOME environment, and some general user and administration programs. As
with Ubuntu Linux, you get the rest of what you need for OpenSolaris development by updating your newly
installed OS environment over the Internet from remote repositories.

In addition to the resources available through the OpenSolaris developer community
web sites, a wealth of Solaris 10 information is available on the Sun Developer Network
(SDN) that is directly relevant to OpenSolaris (Figure 3-2). Joining the SDN is free and
gives you access to online forums, developer tools, and notification of technical events.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 29

 Figure 3-2. The Sun Developer Network

Installation Choices
Not so long ago, the only choice you had for installing an operating system was to put
it on the “bare metal”—installing it directly, and exclusively, on the system hardware.
Microsoft’s aggressive tactics led to its virtual ownership of the laptop and PC markets so
that you could not even purchase such systems without Microsoft Windows preinstalled.
You could overwrite Windows with Linux or another operating system, but you would
lose the ability to run Windows software if you really needed it. Open source community
developers wanting to run Linux eventually created several tools such as LILO (Linux
Loader) and GRUB (Grand Unified Bootloader) that supported “multiboot” systems,
allowing users to select which OS their system would boot. This method, however handy,
permitted the user to run only one operating system kernel at a time on their system—
switching operating systems required a reboot. But two additional technologies have
evolved that don’t require rebooting or overwriting the system’s original OS: Live CDs
and virtualization.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS30

Many Linux distributions such as Ubuntu and the innumerable customized Linux
kernel projects come packaged as Live CDs. These CDs allow you to boot an operating
system on your computer from that media without overwriting or changing your installed
OS. Essentially, the Live CD process creates a memory- resident operating system and file
system that you can use to explore the distribution, trying it out before deciding to install
it. This boot technique has been expanded recently to include “live” boot from USB flash
memory drives (also called memory sticks or thumb drives). The advantage of this boot
technique is that, unlike the read- only CD, USB drives are writable so that you can actu-
ally carry around a complete working OS and file system on a tiny portable device and
boot it on almost any system without disturbing that system’s files. There is a derivative
distribution of OpenSolaris called MilaX () that supports a multi-
boot environment from USBs, memory cards, and other devices.

Virtualization software, such as VMware’s Workstation and Fusion products, Paral-
lels, Sun’s VirtualBox, and the open source Xen and KVM projects, now easily allows
testing and exploring new operating systems as “guests” that you can install as virtual
machines on a wide range of host operating systems and processors.

Tip Installing an OS as a virtual machine is the easiest and least risky method of trying new operating systems
such as OpenSolaris. We’ll describe the other methods, but we strongly recommend the VM approach.

The good news about OpenSolaris is that you can use any of these techniques to load,
test, learn about, and install it: Live CD, bare- metal install, multiboot install, and virtual
machine guest install. But first you need to answer a key question: how do you know that
OpenSolaris will run on your system?

Checking Your System
The “typical” laptop, workstation, or server you’ll probably select for installing Open-
Solaris will have a 64- bit Intel family processor such as the Intel Xeon, the Core 2, or
a similar 64- bit AMD family processor such as the Athlon or Opteron, although many
other 32- bit and 64- bit x86/x64 processors are also supported. For best performance,
these processors should have a least a 1GHz clock rate. OpenSolaris will run in 512MB of
memory, but 1GB or more of RAM is recommended, especially if you plan to use the sys-
tem for any form of virtualization. You should have at least 10GB of disk space available,
either in a disk partition or reserved in a virtual disk file. Of course, you will also need
either Ethernet or wireless network devices for network access.

Note The active OpenSolaris community at
focuses on laptop issues. They work on and contribute solutions to wireless communications, power man-
agement, and other issues specific to running OpenSolaris on the myriad laptops that are available.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 31

Although many first- time OpenSolaris users successfully install it without problems,
you might want to see what others have experienced with your specific system. The
OpenSolaris Hardware Compatibility List (HCL) displays a growing collection of systems
and components where OpenSolaris has been successfully installed and run: hundreds of
AMD and Intel servers, laptops, workstations, and motherboards; and thousands of com-
ponent devices (see Figure 3-3). For the commercial Solaris 10, there are three general
categories on its HCL:

Sun Microsystems certified: Sun has tested and certified that the system or compo-
nent will run Solaris 10, for example, Sun’s own x86 servers and workstations.

Hardware vendor certified: Using the available Hardware Certification Test Suite,
the vendor has tested and certified that its system or component will run on
Solaris 10.

Reported to work: Users who have successfully installed Solaris 10 on their system
can register and report their success.

 Figure 3-3. The OpenSolaris Hardware Compatibility List

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS32

Currently, the only official category for OpenSolaris is the “Reported to Work” cat-
egory, although it includes many of the systems and components listed for Solaris 10 in
the other two categories. The OpenSolaris HCL web site reports that Sun plans to provide
an OpenSolaris hardware certification program.

For a more specific test of what components are supported on your particular sys-
tem, you can download and run the Sun Device Detection Tool if your component is
not listed in the HCL. This tool is a Java program that runs on Windows, Linux, and
other operating systems; it will probe your hardware and let you know whether there are
already device drivers for your system components included with OpenSolaris. The pro-
gram generates a report that indicates the driver support status of each of your system’s
devices:

bundled with OpenSolaris.

available for your component but not included with your
OpenSolaris installation.

under development and possibly available.

No known driver for your component.

To run this tool, simply click Start Sun Device Detection Tool 2.1 on the tool’s
web site. When you accept the license, a Java Network Launch Protocol (JNLP) file will
automatically download and launch the tool’s GUI using Java Web Start, as shown in
 Figure 3-4. Then select the current OpenSolaris version as the target operating system,
and click the Start button. The detection tool will probe your system hardware, search its
current supported device database for each device found, and then display a list of all the
devices along with their driver support status, as in Figure 3-5.

The Figure 3-5 example was run on an Acer Ferrari 3400 laptop, and you can see that
all the key device drivers for this system’s network, graphics, audio, and storage were
found with the exception of the AC97 modem controller. This means you can expect
OpenSolaris to install and run on this laptop, but you would need to find a driver for the
 built- in modem if you needed to use dial- up networking. That’s probably not a big issue
today for most users, and a search of the OpenSolaris community web projects might
even turn up a usable driver or workaround.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 33

 Figure 3-4. The Sun Device Detection Tool

 Figure 3-5. The Sun Device Detection Tool sample output

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS34

OK, are you ready to get started? Let’s review your installation choices:

disk. No preparation is required.

system (also called a single- boot installation). If you are installing on a new system
or purposely overwriting a previously installed operating system, no preparation is
required.

one of the available OSs that your system can boot. For this type of installation,
you will need to prepare an OpenSolaris boot partition on your disk and perhaps
modify the boot and data partitions used by your other operating systems. This is
not recommended unless you are experienced with multiboot configuration!

and then install OpenSolaris as a guest operating system virtual machine. After
installing the virtualization software, you will use it to configure and install one or
more OpenSolaris VMs. This is the recommended installation method.

After a few initial differences, several of these choices follow essentially the same
installation and configuration steps. Let’s look at each of these choices in more detail.

Live CD Booting
Assuming that you have an OpenSolaris CD from Sun or that you have created one of
your own from a downloaded file, you’re now ready to start exploring and install-
ing it. Simply insert the CD into your system’s CD/DVD drive and reboot (be sure that
your system BIOS’s boot order is set to attempt a CD/DVD boot before booting from
your hard disk or from the network). Your system will boot from the CD, creating
a memory- resident OS image and file system without changing anything on your local
disk. If your system is connected to a network, OpenSolaris will also attempt to initialize
a connection. You’ll see a fully functional GNOME desktop, including icons and menus
for Firefox and Thunderbird, an icon for the Getting Started With OpenSolaris guide, and
an Install OpenSolaris icon, like the screen shown in Figure 3-6.

At this point, you can start exploring OpenSolaris’s navigation menus and directo-
ries, preference settings, and system administration tools, including selections for all the
default software included on the CD. I’ll describe them in detail in the next chapter. For
now, you can double- click the Install OpenSolaris icon to start the installation process,
and you’ll see a screen like the one in Figure 3-7.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 35

 Figure 3-6. The OpenSolaris Live CD screen (booted in VirtualBox)

 Figure 3-7. The OpenSolaris Installer Welcome screen

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS36

Now you’re ready to install the operating system on your system. But let’s stop
here and examine the other paths to this point in the installation process, because
once you reach this installation screen from any method, nearly all the subsequent
steps are the same.

Direct “Bare- Metal” Installation
Boot the Live CD, and immediately click the Install OpenSolaris icon. Be sure that this is
what you intend to do, since you will now have the opportunity to wipe out any other OS
and data partitions on your disk! Additionally, you should know what hardware your sys-
tem has and have at least a rough idea of how you want to allocate your disk resources.
For example, you may want to plan for multiple data partitions or to configure a large
root partition. Later in the installation process, you’ll have a chance to organize your disk
the way you want. In any case, when you boot from the CD with the intention of install-
ing only OpenSolaris, you’ll still arrive at the same Installer Welcome screen shown in
 Figure 3-7.

Multiboot Installation
This installation scenario requires the most planning and understanding of your disk
drive configuration. The first important step is to back up your data, programs, and oper-
ating system configuration parameters, since a failure of the disk repartitioning software
could wipe out your entire disk. If you have important or irreplaceable data on your sys-
tem, back it up to another system or to separate storage media. You’ve probably backed it
up already, right?

If you have a desktop workstation or a laptop with only Windows installed on it, the
basic steps for repartitioning it in preparation for your OpenSolaris install are as follows:

 1. Run a Windows disk defragmentation program to move all the current disk data
to the beginning of the disk. This will leave a large block of unused space after the
Windows data. Some of the commercial and community- developed disk partition-
ing tools will do this defragmentation preparation for you.

 2. Decide how much extra disk space to allocate for your continuing Windows work,
and observe how much remains for your OpenSolaris installation; at least 10GB
should be available for this. If you don’t have enough, consider deleting unneeded
programs and files from the Windows partition and rerunning the defragmenta-
tion program.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 37

 3. Use the Windows program, a third- party commercial disk utility such as
Symantec’s PartitionMagic, or the community- developed program to
truncate the Windows partition at a convenient location that will still leave some
additional working space and create a new “Solaris partition” for OpenSolaris.

 4. Reboot your system from the OpenSolaris Live CD, click the Install OpenSolaris
icon, and arrive at the installation screen. If you’ve previously set up your system
for multiboot with Windows, Linux, or other operating systems, ensure that you
have an appropriately sized free disk partition for your installation.

Having outlined this multiboot installation procedure, we should mention that this
method of installing multiple operating systems on a single machine is rapidly becoming
obsolete because of the introduction of virtualization software. With multiboot configu-
rations, you can run only one operating system at a time, and you must reboot each time
you want to change OSs. With virtualization software, described next, you can install
additional guest operating systems such as OpenSolaris without worrying about disk
repartitioning, you can run multiple operating systems simultaneously without reboot-
ing, and you can easily and instantly switch among them with a simple key sequence or
mouse click. Additionally, as emphasized earlier, there is less risk of endangering your
currently installed OS and data when installing OpenSolaris as a virtual machine.

Installing OpenSolaris as a Guest VM (Recommended)
Because there are now so many choices for virtualization software, we’ll briefly review
just a few of the currently available ones here and then show you how to use one of them
to install OpenSolaris as a guest operating system.

We’ll explain more about the various types of virtualization in Chapter 7, but for now
you need to understand that there are two types of virtualization software, called hypervi-
sors, which can serve as hosts for other operating systems. A Type 1 hypervisor is installed
directly on your system’s hardware and supports the installation of multiple guest operat-
ing systems. This type of hypervisor must be the first software installed on your system;
it’s essentially a special operating system kernel designed to abstract, that is, virtualize,
access to your system’s devices by other operating system guests. A Type 2 hypervisor
runs as an application within a host operating system that has already been installed as
the primary OS on your system. Type 2 hypervisors also support the installation of multi-
ple guest operating systems. You can find and install Type 2 hypervisors for any of today’s
popular x86 operating systems.

OpenSolaris can be installed as a guest VM on any one of the virtualization platforms
listed in Table 3-1.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS38

 Table 3-1. Some Virtualization Software for Running OpenSolaris as a Guest VM

Virtualization Software Hypervisor Type Source and Support Description

VMware ESX, ESXi 1 Commercial Server-based virtualization on
 Intel and AMD systems

VMware Workstation 2 Commercial For Intel and AMD laptops and
 desktops; runs on Windows
 and Linux

VMware Fusion 2 Commercial Runs on Apple systems with
 Intel processors

Microsoft Virtual 2 Commercial Runs on Windows Server 2003
Server 2005 and XP Professional

Microsoft Hyper- V 1 Commercial Enhanced version of Windows
 Server 2008

Parallels Workstation 2 Commercial Available for Windows
 and Linux

Parallels Desktop 2 Commercial Runs on Apple systems with
for Mac Intel processors

Xen 1 Commercial and Commercial availability from
 community Citrix, community from Xen.org

Linux KVM 1 Commercial and Supports wide variety of guests,
 community Windows, Linux, BSD, Solaris,
 OpenSolaris, and others

Sun Microsystems 1 Commercial and Supports Windows, Linux,
xVM Server community and Solaris/OpenSolaris guests

Sun Microsystems 2 Commercial and Free, open source tool
VirtualBox community for desktop and laptop
 virtualization; supports
 Solaris, OpenSolaris,
 Windows, Macintosh OS X,
 and Linux hosts; Solaris,
 OpenSolaris, Windows, and
 Linux guests

Let’s take a look at one of these, VirtualBox. We recommend this because it is free,
open source, and easy to install and configure. Installing OpenSolaris as a guest VM on any
of the other virtualization platforms requires generally similar configuration decisions, so
you can use VirtualBox as a model. Early in 2008, Sun Microsystems acquired the German
company Innotek GmbH, developer of this popular desktop virtualization software; shortly
thereafter, Sun released the VirtualBox source code under the GPL. Available versions of
this Type 2 hypervisor run on Linux, OS X, Windows XP and Vista, Solaris, and OpenSolaris.
Supported guest operating systems include nearly the entire Windows family (Vista, 2000,
XP, Server 2003, and NT), many of the popular Linux distributions (Ubuntu, Debian, SUSE,

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 39

Fedora, and Red Hat), FreeBSD, Solaris 10, OpenSolaris, and even DOS and OS/2. You
can download and install the current version of VirtualBox for your Intel or AMD system
and your choice of operating system from . When you start the
VirtualBox program, you’ll see a Registration dialog box, followed by a welcome screen like
the one in Figure 3-8.

 Figure 3-8. The VirtualBox welcome screen

Click the New button to start the installation process. Most of the installation screens
are self- explanatory, so we’ll review only the key configuration options. First, of course, you
need to assign a name to the VM and to select OpenSolaris as its type, as in Figure 3-9.

The next screen asks you to allocate memory for the VM. The minimum is 512MB,
and more is better while leaving enough for the host operating system; 1GB is a good
starting point for general VM use, assuming you have sufficient total memory on your
system. Then you need to allocate a new virtual disk and specify its size. In most cases,
selecting a dynamically expanding virtual disk is preferable, as shown in Figure 3-10.

VirtualBox will then display a summary screen, like the one in Figure 3-11. At this
point, you have two important specifications to make: where OpenSolaris will boot from
(CD or file) and the type of networking your VM will use (NAT or host).

If you have an OpenSolaris CD, ensure that it’s mounted and ready; if you’re using
a downloaded file, specify its location. To connect your VM to the external network,
select Network Address Translation (NAT) or host- based addressing.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS40

 Figure 3-9. VirtualBox installation: VM name and type

 Figure 3-10. VirtualBox installation: virtual disk type selection

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 41

 Figure 3-11. VirtualBox installation: boot device and network configuration

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS42

Now you’re ready to go. Click the Start button, and VirtualBox will bring you to the
OpenSolaris boot screen like the one in Figure 3-12.

 Figure 3-12. The Live CD’s GRUB boot screen

This screen should look familiar to Linux users—it’s the standard GRUB screen for
selecting a boot option. Now the real installation begins!

Note The decisions you made in this example using VirtualBox—VM memory size, virtual disk size
and type, boot device or file, and network addressing mode—are basically the same ones you must make
for other virtualization software; only the screen layouts, configuration order, and some additional options
are different.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 43

Select the first OpenSolaris 2008.11 menu item and hit Return; the installation boot
process will begin. You’ll be asked to choose the keyboard layout and desktop language,
and if all goes well, you’ll see the same OpenSolaris screen you saw with the Live CD boot.
Basically all you’ve really done up to this point is boot the Live CD in a VM. And if you
now double- click the Install OpenSolaris icon, you’ll start the actual OS install using the
memory and disk parameters you specified in your VirtualBox VM configuration session;
you should see the OpenSolaris Installer Welcome screen (Figure 3-13).

 Figure 3-13. The OpenSolaris Installer Welcome screen

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS44

Click the Next button, and you will see the installer’s Disk configuration screen
(Figure 3-14). If you’re installing OpenSolaris using VirtualBox or other virtualization
software, you can select the “whole disk,” which is really the virtual disk you defined ear-
lier. Otherwise, you should select one of the true disk partitions, again remembering that
OpenSolaris needs at least 10GB for a usable installation. You can modify the disk layout
and partition sizes to suit your needs at this point if you anticipate needing a larger root
partition or a separate data partition. Click the Next button; select your location, time
zone, date and time, locale, and language; and then click Next again.

 Figure 3-14. The OpenSolaris Disk configuration screen

The last screen of the operating system installation process is for entering the root
password and for defining a Primary Administrator user who becomes the default

 administrator (Figure 3-15). Be sure to record the passwords for these accounts.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 45

 Figure 3-15. The OpenSolaris and user account setup screen

Click the Next button, and go get a cup of coffee and something to read; OpenSolaris
will start copying its files from the CD or file onto the virtual or real disk. When it’s
finished, it will ask you to reboot, and you’ll be the proud owner of your very own Open-
Solaris installation (Figure 3-16).

Tip VirtualBox (and most other virtualization software) includes a feature that lets you copy, or clone,
a virtual machine to create a new image with the same characteristics without having to go through all the
usual OS installation steps; you can then quickly customize this copy. As you explore OpenSolaris, use your
virtualization software’s snapshot or cloning features to create different configurations; you can also use the
OpenSolaris boot environment tools described in Chapter 5 to accomplish the same thing.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS46

 Figure 3-16. The OpenSolaris login screen

Now try to log in as . Even when you enter the correct password, you can’t log
in, and OpenSolaris will politely inform you that “Roles can only be assumed by autho-
rized users.” This is a security feature; the root role can be used only after you log in as
the Primary Administrator user and then to root. This enables the system to track who
becomes and to track and record their actions. You’ll have to log in as the Primary
Administrator user you defined earlier. Log in and double- click the Start Here icon, and
you’ll see a window containing links to OpenSolaris news, customization instructions,
community participation information, and marketing/support information from Sun
(Figure 3-17).

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 47

 Figure 3-17. The OpenSolaris Start Here with OpenSolaris page

Are We There Yet?
You now have access to all the software and tools that were copied from the CD or
image. In the next chapter, we’ll explore these tools in more detail, but now you need to
know how to update your newly installed operating system and how to add software using
OpenSolaris’s Image Packaging System (IPS). But first, a few words about build numbers.

Earlier we mentioned that new binary versions of OpenSolaris become available every
two weeks. Each of these new compilations, called builds, has a sequence number. You’ll read
discussions in the OpenSolaris online community forums referring to a particular build num-
ber—comments like “This bug is fixed in build 101” or “That feature will be included in build
104.” So, your first question should be “How do I find out my build number?” As with almost
every UNIX and Linux system, use the command in a terminal window:

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS48

Note the — is an abbreviation for Solaris Next Version, and is the build
number. More specific information about your build is contained in the file:

 means Release Candidate 3, a designation for a near- final compilation expected
to be posted soon on for general distribution. Whenever you
post a question or comment about your specific OpenSolaris installation, it’s helpful to
mention its build number.

Now if you’re a developer, one of the first things you’ll probably look for is the
compiler, but you won’t find it or many of the other programming tools you’ll need.
That’s because only basic user programs are included with the files copied from the CD.
To get additional programs, you’ll need to download them from software repositories
(community members call these repos) on the Internet, and that brings us to IPS. In later
chapters, we’ll use IPS to install additional software such as the AMP stack components,
but first let’s look at a brief example.

From the System menu at the top of your screen, select Administration Package
Manager. This will bring up the IPS GUI (Figure 3-18) that you will use to add and update
software to your installation.

Note that this tool lists several categories of available software packages, their cur-
rent versions and whether they are already installed, and the repository to be used; in this
example, it’s OpenSolaris.org. In the Search text box, enter gcc; IPS will query its database
and list the available version of the development package (Figure 3-19).

Check the selections you need, and click the Install/Update icon to start the installa-
tion. IPS will identify any additional packages needed for your choice and then download
and install the program and its dependencies. It will also add selections for the new soft-
ware to your desktop’s menus if that’s appropriate. IPS can also download and install
groups of related software, such as the AMP stack group that you’ll read about in Chapter 8.

Now would be a good time to explore the package repository and decide what addi-
tional software you’ll need for your work. For example, you will probably want to install
OpenOffice (in the Office package group) on your system. You’ll find a growing number of
online software repositories for OpenSolaris users and developers; Table 3-2 lists some
of them, and more are being added by Sun, ISVs, and the user community.

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS 49

 Figure 3-18. The Image Packaging System GUI

 Figure 3-19. Installing using the Package Manager GUI

CHAPTER 3 GETTING AND INSTALLING OPENSOLARIS50

 Table 3-2. OpenSolaris Software Repositories*

Repository Description

 New releases of OpenSolaris milestone builds
 (every six months), bug fixes, security updates, and
 new software packages.

 Software contributed by community members; not
 yet reviewed for inclusion in the release repository.

 Developer repository for next OpenSolaris release;
 updated biweekly.

 Software that is not licensed for initial redistri-
 bution on the OpenSolaris CD but can be freely
 downloaded and used. VirtualBox and the Flash
 plug- in for Firefox are examples.

 For Sun customers with an OpenSolaris support
 subscription; includes software and bug fixes
 covered in the support contract.

* Select the Settings Edit Repositories menu in the Package Manager GUI to change repositories.

You can now use the Image Packaging System’s GUI or its command- line tool
to review OpenSolaris’s preinstalled software, to add new software, and to keep your
installed software up to date. Additionally, you can update the kernel image whenever
you learn of the availability of new builds; Chapter 4 will show you how to do this.

Summary
It’s easy to start your exploration of OpenSolaris; use the Live CD or, as recommended,
install it in a VM using VirtualBox. After you’ve learned more and are ready to create
a more permanent installation, you can do a bare- metal install or configure VMs that
reflect your specific development needs. OpenSolaris’s Package Manager lets you conve-
niently add and update other open source tools using Internet repositories.

51

C H A P T E R 4

A Familiar User and Developer
Environment and More

It’s like déjà vu all over again.

—Yogi Berra, U.S. baseball player, coach, and manager

At Home with GNOME

Long before Sun Microsystems even thought about OpenSolaris, it recognized the bene-
fits of community- developed desktop environments such as KDE and GNOME, especially
since many Sun engineers contributed extensively to these systems. GNOME was selected
as the default Solaris desktop, replacing the Common Desktop Environment (CDE)
originally developed by the corporate consortium comprising IBM, Digital Equipment
Corporation (DEC), Novell, and Sun. GNOME is now standard on most UNIX and Linux
systems, and GNOME 2.24 is the current default desktop for OpenSolaris (Figure 4-1).

Since we’re assuming you’re already generally familiar with how GNOME menus,
icons, and windows work, we’ll focus on the application components included with
OpenSolaris’s desktop environment.

The first thing you’ll notice when you log in if your system’s network interface is
active is an alert that your network interface has been configured by , the Network
 Auto- Magic Daemon. Such network autoconfiguration is standard behavior on most
laptops and workstations, and it connects you using your predefined or DHCP- assigned
IP address. Although this is very convenient, you can manually set up your network inter-
faces by selecting System Administration Network and then selecting the Manual
item from the page that appears.

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE52

 Figure 4-1. The OpenSolaris GNOME desktop

Under the Applications menu, you will see a list of programs typically distributed
with systems such as Ubuntu Linux:

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 53

You’ll note that
installed OpenSolaris from a CD that has limited capacity and that you’ll want to down-
load additional programs from the network repositories discussed in Chapter 3. You’ll
learn more about that in a moment. This approach—distributing the operating system on

 file needed to get started with OpenSolaris and also allows you to download and cus-
tomize your installation with only the software you need.

The System Preferences menu lists the functionality you will use to customize your
system and desktop behaviors such as screen resolution, GNOME themes, laptop power
management, and many other settings (Figure 4-2). Again, there’s nothing unusual here
since these are the same kinds of working environment personalizations you find in
Linux distributions; in fact, many of them are simply ports of open source configuration
tools to OpenSolaris.

 Figure 4-2. The OpenSolaris System Preferences menu

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE54

The System Administration menu is where you’ll see some familiar system configu-
ration tasks along with some that are unique to OpenSolaris, as shown in Table 4-1.

 Table 4-1. OpenSolaris System Administration Menu

Menu Item Description

Keyring Manager The GNOME keyring manager used to store security credentials such as
 names and passwords

Network Configures and activates network interfaces, host names, and DNS
 information, manually or using

Package Manager GUI for the Image Packaging System (IPS); installs and updates
 application and system software; also includes Boot Environment
 Management

Print Manager Manages local and network printers and queues, OpenSolaris version

Services GUI for the Service Management Facility (SMF); starts and stops system
 and network services

Shared Folders Specifies NFS shared directories

Solaris LP Print Manager Selects naming service for local and network printers; adds, modifies,
 removes printers; Solaris version

Time and Date Sets your system time zone, time, and date manually or using a
 specified NTP server

Time Slider Setup ZFS-based automatic data backup service similar to Apple OS X Time
 Machine

Update Manager IPS notification service for application updates

Users and Groups Adds, deletes, and manages user and group accounts, profiles, and

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 55

The CLI, for the GUI- averse
Linux users who’ve tried Solaris have criticized it for a number of annoyances, in particu-
lar for the lack of a modern and familiar default shell for users and for , as well as for

utilities. Solaris has actually included a directory of GNU programs for several releases,
but you had to know its location and alter your environment variable to use it. Open-
Solaris addresses these complaints.

The default shell for and users is now
Shell, , is now implemented with KSH93. Developers often have very strong
preferences for UNIX or Linux shells, and we won’t argue the advantages and differences
among all the choices here. OpenSolaris uses because of its ubiquity among Linux
developers and its advantages over older shell implementations such as command- line
editing, shell history, and file name completion. If you prefer other shells, such as the
C Shell () or the Korn Shell (), they are also included. You can
change your default shell using the System Administration Users and Groups menu.

Your default path starts with the directory, which contains links to the
GNU versions of the typical UNIX tools (Figure 4-3). Many of the programs in the
directory have also been replaced with their GNU or community- developed equivalents,
including the venerable , which is now a link to the editor. GNU emacs can
be easily added using the Package Manager GUI from the Text Tools group. The Open-
Solaris terminal shell also enables cursor- driven command- line history and editing, and
file name completion by default, a capability that Linux has had forever and that Solaris
probably should have included by default long ago.

 Figure 4-3. The directory

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE56

As
and find that they work in the expected manner. However, some programs are unique to
OpenSolaris because of their Solaris heritage, and some familiar programs behave differ-

the differences for ZFS in Chapter 6 and for virtualization in Chapter 7. Table 4-2 shows
some of the OpenSolaris- specific programs and their approximate Linux equivalents.

 Table 4-2. OpenSolaris Administrator Tools

Tool Program/Command Line Linux Distribution Equivalents

Examine Network Packets or

Manage Boot Images
 GNOME Grub Conf

, ,

Manage Service Daemons , , ,

Manage ZFS Pools , (None)

Modify Process Privs

Show Processor Info ,

Show System Hardware

Trace System Calls , , , SystemTap

, , ,
Software Packages

To su, or Not to sudo?
Since you were summarily rejected from logging in as after your initial OpenSolaris
installation and you had to log in using the apparently unprivileged user you first config-
ured, we assume the next thing you want to know is how to get to the account, how
to execute privileged programs, and how to reconfigure your system as generations of

simply execute the command, and enter the password you specified at installa-
tion; then you can happily roam around your system at will. But there is another way.

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 57

Because the ID has traditionally been so powerful, it’s been the target of hack-
ers and system abusers and the enabler of catastrophic user errors. Modern systems now
restrict the privileges of and administrator accounts, assigning limited privilege
sets to specific users (including), granting only what’s needed to perform each task.
This restricted permission approach is called role- based access control
programs also permit execution of privileged tasks by nonadministrator users. The most
common such program is the venerable , ported years ago to Linux; it’s also delivered
with the OpenSolaris CD, and it works as expected, allowing you or designated users to
run t- privileged programs and to log their actions.

Although OpenSolaris includes
users’ roles. The first non user you defined when installing OpenSolaris has the
Primary Administrator role, similar to the administrator accounts on Apple’s OS X and

equivalent to on OpenSolaris is the pro-
gram; commands run by the Primary Administrator using run with root privileges
without requiring you to enter the password. These privileges are defined (and there-
fore controlled) by this user’s entry in the file and its associated role and
privileges in the file; you alter the administrator and other users’
privileges using the command or the user administration GUI.

Boot and Reboot
OK, you’ve installed and explored your first OpenSolaris, downloaded and modified
software, reconfigured system parameters, and deleted unwanted files; now that you’ve
familiarized yourself with your new environment, you’re ready to go back and start all
over and set up the system the way you really want it. Here’s where ZFS comes to your
rescue. Because OpenSolaris installs and boots from a ZFS file system, you get all the

more to say about ZFS in Chapter 6, but for now look at what the capability of taking
unlimited root file system snapshots buys you. At any point after your initial installation,
you can take a ZFS snapshot of the root file system, make any additions and changes you
want, and easily revert to your earlier snapshot if you’re unhappy with your changes.
OpenSolaris makes this process extraordinarily easy by providing a tool to manage these
snapshots: .

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE58

The program lets you quickly create a named snapshot of your existing boot
environment and files. For example, the following command:

creates a ZFS snapshot of the currently active root file system and adds an appropriate
 (Figure 4-4). Note that

your current boot image remains the default; has simply added a new image named

 Figure 4-4. The new GRUB file created by

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 59

You can activate any of the images in the file using or the File Boot
Environment Manager selection from the Package Manager GUI discussed earlier
(Figure 4-5).

 Figure 4-5. The Boot Environment Management GUI

Updating Your Kernel Build

As you work with OpenSolaris, you may want to update your OS kernel image to the most
recent development builds that are posted to the online repository every two weeks. You
don’t have to worry about a painful upgrade process, however. From the Primary Admin-
istrator account, enter the following:

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE60

The IPS will update your package database and then begin the process of updating
your OpenSolaris build image. This process will take several minutes as IPS downloads

you that your new build image is ready (Figure 4-6).

 Figure 4-6. The OpenSolaris image- update process

IPS has not simply updated your system kernel. First it took a ZFS snapshot of your cur-
rent system, and then it performed the update of all the kernel and related application files.
Next it created a new boot image, appended the new image’s configuration details to your

 file, and set that image as your default boot environment (Figure 4-7). It also

menu (Figure 4-8). Of course, you can alter this by editing the file directly or by
using the Boot Environment Management GUI discussed earlier.

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 61

 Figure 4-7. The updated GRUB file for the new kernel image

 Figure 4-8. The updated GRUB boot menu listing your new kernel image

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE62

Other Administrative Tasks
In this book we’ve assumed you’re familiar with many of the typical tasks required to set
up a laptop, workstation, or server and get it ready for use. There are a few common tasks,
however, that are worth reviewing here in their OpenSolaris versions.

Adding New Users

The first user you configured upon installing OpenSolaris by default is the privileged
Primary Administrator for your system. To create additional users and configure their
profiles and privileges, select the System Administration Users and Groups menu
(Figure 4-9). Add each user’s “real” name, enter the user (login) name, and set their
password.

 Figure 4-9. Adding a new user

You can then select and modify the user’s properties, such as their group member-
ships, shell, and home directory (Figure 4-10); their permissions to execute administrative
tasks (Figure 4-11); and the administrative roles they may become to perform special
tasks such as taking ZFS snapshots (Figure 4-12).

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 63

 Figure 4-10. Advanced user settings

 Figure 4-11. Setting a user’s permission profile

 Figure 4-12. Assigning a user’s roles

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE64

Printing

There is an active OpenSolaris community at
 devoted to developing and enhancing the user interface for managing print-

ers and to adding support for a wide variety of printers. One goal is to autodetect printer
hardware when it is attached and to allow the system administrator to customize the
printer configuration. Although this goal has been only partially met, it does cover many
common brands of printers. Figure 4-13 shows the setup windows for one such brand,
Lexmark. The printer’s USB cable was attached, and for this model OpenSolaris auto-
matically detected it and selected an appropriate driver. The Print Manager lets you
select and test the brand, model, and driver for more than 50 manufacturers and
hundreds of models.

 Figure 4-13. Configuring a printer

CHAPTER 4 A FAMIL IAR USER AND DEVELOPER ENVIRONMENT AND MORE 65

Summary
You’ve installed OpenSolaris, explored some of its similarities to familiar Linux environ-
ments as well as its differences, learned how to add software packages to it, and learned
how to keep your OS and applications up to date using the Image Packaging System. Now
you’re ready to start using OpenSolaris and its special features to host your web applica-
tions and other software.

P A R T 2

Working with
OpenSolaris

Three foundation technologies give the OpenSolaris operating system its great flexibility

and power for your applications, especially those for the Web: the Service Management

Facility (SMF), the ZFS file system, and several types of virtualization. These are covered in

detail in this part of the book.

69

C H A P T E R 5

SMF: The Service
Management Facility

I get knocked down, but I get up again, ’cause you’re never gonna keep me down.

—From the song Tubthumping by Chumbawamba

Much of modern computer hardware is self- monitoring and self- correcting. It tests
itself and reports real and impending errors so that preemptive maintenance can be
performed, often in the form of “hot swap” components that can be replaced without
interrupting system activity. What would a similar approach to system software look like?
It would need a framework for identifying and classifying services and their dependen-
cies, for monitoring and reporting their status, and for some form of autorecovery. UNIX
has historically lacked such a framework, relying instead on ad hoc solutions to deter-
mine which services are running, which services are not running that should be and why,
and which potential services are available.

Think about how you have typically configured service programs in early versions of
UNIX and Linux. You created a shell script in one of the directories, prefixed
the script name with an S or a K to identify it as a start or kill script, and gave the script
a number that determines when it is run. Thus, the script
starts the service when the system enters run level 5. It starts up after the
service specified in . So, does depend on the service
being ready before it starts? You can’t tell from the scripts! An error in the name or loca-
tion of your service script can prevent it from running; locating such errors has also been
difficult. Administrators usually resort to searching the system log files and process tables
using ; such a simplistic approach often results in incomplete information about the
nature of the problem:

processes.

when services should run.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 70

dependencies; if two services
have no interdependencies, they can’t start in parallel, saving boot time.

restarting services.

each with its own format and syntax rules.

To address these issues, OpenSolaris includes the Service Management Facility
(SMF), which defines a framework and administrative tools for configuring and monitor-
ing system services.

What’s a Service?
You already know what a service is; it’s a persistently running application, usually started
at system boot time and generally not associated with an interactive user’s login ses-
sion. Programs such as the Apache web server, the MySQL database, NFS file servers, the

 email daemon, firewalls, DNS servers, and the login daemon are all typical
examples of services started when you boot your system. Services listen for and respond
to requests for some action such as opening and sending a file with NFS, queuing and
printing files, delivering and forwarding email, or responding to database queries.

SMF provides a framework to assign OpenSolaris services a standard state model,
naming standards, dependency assignments, and restarter methods, all under control
of a service daemon (), which is notified of service outages and recovers them
according to your specifications. You can install OpenSolaris and use it to develop and
run applications without using its special features such as containers and DTrace, but
because SMF replaces the familiar files and methods for managing services, this
is one new feature of OpenSolaris that you shouldn’t ignore.

Note Your custom service scripts and those installed by certain ISV application software will still work;
they are executed within their assigned run level after SMF- managed services are started. You just won’t
be able to manage these services with SMF until you prepare and register a service manifest that calls your
script.

To understand OpenSolaris services, you need to learn how to refer to them by their
true names. Services are referenced using a Fault Managed Resource Identifier (FMRI),
which is a character string that looks a lot like a URL. For example, the service dae-
mon’s full FMRI on your local system is .

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 71

FMRIs have the following components:

scheme, which indicates the type of service, either for an SMF- managed service
or for a legacy script–managed service.

location, which indicates the host name where the service is running. Usually this
will be , but later versions of SMF will allow other locations for dependency
purposes.

functional category, which indicates the type of service. Some types of service are
as follows:

description, which names the service.

instance, which is used to indicate services that may have multiple copies run-
ning, such as NFS service daemons.

So, the FMRI for the service daemon, , indi-
cates that is an SMF- managed network service running with one default instance on
the local system.

When you need to refer to a service using any of the SMF programs, you often don’t
need to give its full FMRI. Like with OpenSolaris’s path conventions for file names, you
can use the FMRI’s absolute or relative name depending on where you are or what pro-
gram you are using. So, when referring to the FRMI of the service, you could use any
one of the following:

Now that you’ve seen how to refer to services by their names, you can start using the
SMF tools shown in Table 5-1 to monitor and manage services.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 72

 Table 5-1. Service Management Tools*

Program Name Description

 Reports service status information, dependencies, instances, and error diagnostics

 Administers individual service instances, enables, disables, and restarts

 Configures service parameters and data files

 Reports service properties and privileges

* and are in , and and are in ; set your path appropriately.

Every service has a state that indicates its current functional activity. Services move
from one state to another because of system events (such as run- level changes), error
conditions, or administrator actions. A service might not be able to move to a desired
state because of unfulfilled dependencies or other conditions. Table 5-2 shows the pos-
sible states for OpenSolaris services.

 Table 5-2. Possible Service States

State Description

 This is the starting state for all services before moves the service to
 a new state.

 The service has been disabled by the administrator.

 The service is enabled but not yet online, usually because it’s waiting for a depen-
 dency to be satisfied.

 The service has been enabled and has successfully started; all its dependencies
 have been satisfied.

 The service is enabled and running but with a level of degraded performance that
 is specified in the service’s configuration.

 The service cannot be started by because of an error or unsatisfied
 dependency and must be manually administered to clear the fault conditions.

You can now explore the services on your OpenSolaris system using the SMF tools
and observe their states. We’ll show some examples next to get you started. First, list the
services on your system using the command; use the flag to list all the registered
services. Figure 5-1 shows typical output from this command (some output lines have
been deleted to shorten the list for printing).

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 73

 Figure 5-1. Sample output (abbreviated) from the command

Notice the variety of service types and their states. The point-to- point network
protocol daemon, for example, which is started by the script, is listed as
an , or legacy , service. Remember that this is all you can learn from SMF about such
services—the fact that they are running and the time that they were started—because
only services are managed by SMF. Also note that some services are in the disabled
state, while some are running, that is, in the online state.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 74

A Bit About Milestones

You’ll notice in the output listed in Figure 5-1 that there are several milestone services
listed. Milestones group services for administrative and end user availability. These
groups shown in Table 5-3.

 Table 5-3. OpenSolaris Boot Milestones (Run Levels)

SVR4 Run Level SMF Milestone

 ; no services are enabled, and only the kernel is running

, ; traditional single- user mode for administrative purposes

If you need to put your system into mode, for example, you can still use
the groupings of
services, so it provides specific FMRIs for each run level. Thus, the “SMF way” of going to

 mode is as follows:

and the command to return to run level 3 would be as follows:

The following command will enable all services dependent on the
milestone:

More About Services

Let’s examine the service in more detail. The old ways of stopping this service would
be to kill its process or to run its script with the parameter, something like this:

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 75

If you kill the OpenSolaris process, as shown in Figure 5-2, and then check to see
whether it’s been stopped, you see that it’s still there but running with a new process ID!
How did that happen? It was restarted by the SMF service daemon, .

 Figure 5-2. Automatic restart of by SMF

So, how do you stop the service? You use the command- line program, as
shown in Figure 5-3, or use the System Administration Services menu and uncheck
the SSH

 Figure 5-3. Disabling the service using the command

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 76

Note that in Figure 5-3 we first used both the command and the com-
mand to show that the service was running. We then disabled the service with
and verified that it was indeed disabled and that its process was gone. Also note that we
did not need to give the full FMRI for the service since there was only one local instance;
recall that this is like using absolute or relative path names for files.

 Figure 5-4. Using the Services GUI to select and disable the service

You use the command for typical service administration tasks by using the

 Table 5-4. Service Management Action Flags

Action Flag Description

 Sets the service as enabled and starts it if all of its dependencies are satisfied

 Sets the service as disabled; stops it and doesn’t restart it

 Stops and restarts the service, assuming its dependencies are satisfied

 Reloads the service’s configuration files and restarts the service

 Removes the “maintenance” state after a repair; if the service was previously
 set as enabled, restarts it

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 77

When you disable a service, it stays disabled even after a system reboot unless you
indicate that the service is being disabled only for the current boot session. For example,
the following command will disable the service, and it will not restart at the next
reboot:

If you intended to disable for only the current boot session, you would use the
 (temporary) flag so that normally enabled services will start again at the next system

reboot:

The power of SMF is really revealed in your ability to define and manage interservice
dependencies in the service’s manifest file; if a service is not working, you need to know
whether something is amiss with the service program itself or with some file or process
that the service needs in order to function. SMF’s program lets you display a service’s
dependency relationships along with critical state information. Figure 5-5 shows a series
of example commands.

 Figure 5-5. State and dependency details for the service

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 78

The first command, , simply displays the current state and start time of the
default instance of the service. More detail is shown in the “long” listing using

; this listing provides a wealth of information about the service. Table 5-5 briefly
explains this output. Later in this chapter you’ll see where all this configuration detail is
defined.

 Table 5-5. Example State and Dependency Detail for the Service

Field Description

 The registered FMRI of the service

 The name given to the service by the writer of the service definition

 The current state of the service

 Indicator of whether the service is transitioning from one state to another, the
 next state

 The time the service entered its current state

 The location of the log file used by the service

 The name of the service used to restart; this can be the default system restarter or
 a custom procedure

 The registration number of the service

 Listing of services and files needed to be online and available in order for the
 service to start

its own log file and restarter process, making it much easier to diagnose service startup
errors. Additionally, all of the services needed to support a service are easy to determine.
It’s almost always the case that services fail because some dependency is not met. Let’s
see how that works by creating an artificial missing dependency example.

You may already know that needs the file to configure
itself before starting up. Suppose this file is missing. What can SMF tell you when you dis-
cover that is not running? Figure 5-6 shows this scenario. The administrator notices
that is offline and tries unsuccessfully to enable it. The flag of the program pro-
vides an explanation.

The command reveals that the reason the service is offline is the
missing configuration file. Additionally, it refers you to the man page for the service
daemon and its log file, along with a URL that provides an online interpretation of the
error condition (Figure 5-7). On other UNIX and Linux systems, depending on your sys-
tem and logging configuration, information about the missing file might not even be
logged by in . SMF identifies the exact problem for you.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 79

 Figure 5-6. Detail on why the service is not running

 Figure 5-7. The SMF URL that suggests a reason for the service’s failure to start

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 80

The URL lists details about the error, its impact on the system, and suggestions for
administrator action. In fact, any system error will generate and log a message ID that you

 to get an
explanation of the error condition. Admittedly, some of the explanations and suggested
actions at this site can be somewhat generic, but even that is far more helpful than silent
service failures or indecipherable error codes.

Occasionally, simply fixing a dependency is not enough to restart a service; it will
remain in an offline or maintenance state until all the error conditions are eliminated and
all dependencies are met. After you have diagnosed the problems and taken appropri-
ate administrative actions, you can clear the maintenance state and restart the service.
 Figure 5-8 shows you such a scenario.

 Figure 5-8. Clearing the maintenance state of a service

Say the administrator notices that the service for storing private encryption
keys is not running and is in the maintenance state. Checking the man page, she discov-
ers that the daemon won’t start if the system has no domain name, so she assigns
one. She then attempts to restart the service, but it stubbornly remains in a main-
tenance state. But she soon remembers that this state must be explicitly cleared using the

 command, after which the service enters the online state.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 81

Tip If a service has multiple dependencies that are not yet enabled, you can enable them all recursively at
one time using the flag of the command: .

If you take another look at Figure 5-5, you’ll note that the service has a .
A contract defines a relationship (dependency) between a service process and another
resource managed by the kernel, such as processors, memory, devices, or other service

the kernel will notify the owner of the contract for that resource. SMF services are con-
tracted to the daemon so that if they fail or exit, then the appropriate restarter
action can be taken. The default restarter will try to restart a service if any of the service’s
contract members fail.

You can examine and monitor service contract relationship activities using the
 and commands; they provide a means to get detailed information on

failing services.

Creating Your Own Services
You’ve seen that existing OpenSolaris services have their own FMRIs, service names, log
files, restarters, and dependencies. Where are these characteristics defined? And, more
importantly, how can you define your own services?

Each OpenSolaris service is configured using a manifest file that defines the service’s
name, start and stop methods, restart conditions, and dependencies. Manifests are XML
files that reside in the directory tree; each service functional category
has its own subdirectory for its manifest files. For example, the manifest file for the
service that we have been examining is .

Tip Before you decide to create your own service manifest, remember that you are part of the
OpenSolaris developer community and that there are other users who may have already created one that
you can use. You can find sample manifest files for many types of services at

 and at .

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 82

Service manifests can be easily created by copying and modifying existing manifests
or by using generic manifest templates such as the one at

ml, shown in Figure 5-9 (note the loca-
tions in this template; that’s where you define the service name, timeout values, and
other characteristics of your service).

 Figure 5-9. A sample generic service manifest template

These are the key manifest components you need to define:

Service name: The service name includes the functional category and a character
string that names the service, such as or .

Start/stop methods: These are shell scripts, typically residing in the
directory, which call the service programs. These scripts are very much like the
familiar scripts.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 83

Dependencies: Identifying dependencies is often the most difficult part of creating
service manifests, and it’s a good idea to examine existing OpenSolaris manifests
to see how other services define them. You need to know what your service needs
in order to function, such as network services, file systems, crypto services, or local
device availability.

Dependents: Are you creating a service that is needed by some other service? For
example, if your service starts a firewall program, additional network services can be
listed that depend on your service (without modifying those services’ manifests).

Milestone (run level): Your service may need to start within a particular milestone
because other services depend on it; that milestone will not complete until your
service and all the other services for that milestone have started.

Other manifest components include the number of service instances, service model,
fault response, and reference documentation. Let’s continue examining the manifest,

, to see how each of these components have been
defined; because the file is rather long, we’ll show only the relevant sections of the manifest
and highlight the key components in bold.

The service name tag also includes a version number for change documentation
purposes:

The service is dependent on other services such as the local file system, network,
and crypto services. It’s also dependent on the presence of the file and is
started within the milestone; in turn, that milestone is defined to be
dependent on the service and will not complete until the service is online.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 84

The service’s and methods reference shell scripts in the
directory that accept the parameters or as input and execute the dae-
mon. The method executes a on the service’s process, as you would expect. All
of these actions, however, are performed under the control of the SMF daemon to pro-
vide and manage the service’s states and transitions.

You can also specify online documentation references for the service; this assists
administrators when error reports are logged:

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 85

After you have copied or created your service’s manifest file, move it to the appropri-
ate functional category directory. You can verify that your file is valid using the
command since it has a built- in XML validator. The following command will validate your
file and register it with the SMF service daemon:

You will then be able to see that your service is available (using the command),
and if you’ve specified your dependencies correctly, you can use the command to
enable your service and the command to examine its state.

Service manifests can be complicated, but you can create some that are quite basic,
such as this simple example for starting the MySQL database (after downloading and
installing using Package Manager). Create a file, , containing the following:

Note the service name, ; its dependency on the local file system service
; the and methods that call the

 executable; and the documentation pointer to the man page.

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 86

Copy the file into the directory, activate it by
running , and then enable the service using .

Editing manifest files can be tedious, and it’s easy to introduce XML syntax errors as
well as SMF errors. Fortunately, there are tools to assist you in creating and managing these
files. One such tool is the Java- based
OpenSolaris Community Innovation Awards contest; download it at

. Another tool that we’ve mentioned in earlier
chapters is Webmin, a community- developed system management tool for Linux and UNIX
systems, including OpenSolaris (see). Webmin is also in the OpenSolaris
software repository’s Administration and Configuration collection, so you can download
and install it using Package Manager. After it’s installed, you access it with your browser at

, as shown in Figure 5-10.

 Figure 5-10. The Webmin login page

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 87

Webmin includes interfaces to most OpenSolaris system management and configu-
ration tasks (Figure 5-11) including the creation and activation of SMF services, which
creates the service manifest files for you (Figure 5-12).

 Figure 5-11. Webmin administrative task menu

CHAPTER 5 SMF: THE SERVICE MANAGEMENT FACIL ITY 88

 Figure 5-12. The Webmin SMF page

Summary
OpenSolaris’s Service Management Facility is designed to provide better control over

scripts. It’s the one “different” OpenSolaris feature you shouldn’t ignore. Even though
your legacy script methods still work, you will benefit from converting these scripts
to SMF- managed services.

89

C H A P T E R 6

The ZFS File System

There are places I’ll remember all my life, though some have changed.

—From the song In My Life by the Beatles

Stored data must be remembered perfectly. Many computer technologies have been
invented in an attempt to achieve perfect data recall in the presence of electronic,
mechanical, and human errors. RAID disk technologies, tape backup systems, error cor-
recting memory, remote data replication, and other techniques are used today to ensure
that when data is written it can be quickly and reliably retrieved even after much time has
elapsed, perhaps years.

There are numerous commercially developed and community- developed disk file
systems; Wikipedia lists almost 100 at

. Nearly all file systems have a common functional goal: to provide reliable and
secure storage and recall of data organized into files and directories using standard-
ized data object naming conventions. Some file systems are specifically designed for
 high- performance access to large numbers of disks (open source Lustre), for distributed
write access by multiple hosts (Sun Microsystems’ QFS), or for hierarchical storage man-
agement of online disk and offline tape data (IBM’s HFS). The standard file system for
UNIX systems, UNIX File System (UFS), originated in the early 1980s and has continued
to evolve with new features such as journaling, performance, and scalability enhance-
ments. Linux file systems have also progressed since that OS’s introduction in 1991. The
Linux Extended File System (ext) was introduced in 1992 and was limited to 2GB; later
enhancements included increasing the supported file system size to 4TB but kept the 2GB
maximum file size (ext2), journaling (ReiserFS and ext3), size increases (ext3, supporting
up to 2TB files and 16TB file systems), and journal checksumming (ext4).

CHAPTER 6 THE ZFS F ILE SYSTEM90

INTERNATIONAL SYSTEM OF UNITS PREFIXES

For reference, here are the standard prefixes for commonly used decimal multiples of bytes for describ-
ing data storage quantities:

3, kilo- : Thousands

6, mega- : Millions

9, giga- : Billions

, tera- : Trillions

Significant problems can occur with disk- based file systems when there is an operating
system crash, a hardware failure, or a sudden power outage. The OS may not have completed
all the operations needed to write the data to the disk, leaving the data in an inconsistent or
corrupted state. The failure of a disk drive or controller can have a similar effect. Restoring
data to its correct state and retrieving it successfully can be done somewhat transparently by
using RAID techniques such as mirroring or manually using file system repair tools such as

, but even these methods sometimes can’t retrieve all lost data.
The ZFS file system was initially developed at Sun Microsystems in 2004 and was

released as an OpenSolaris project in 2005. ZFS is now the default file system for
OpenSolaris. Its primary design goals include the following:

ZFS has earned an incredible amount of attention, including InfoWorld’s 2008 Storage
Technology of the Year Award. Numerous web sites and blogs are devoted to its features,
even more so because of its open source base; ZFS is now available in early access in
 read- only mode for Apple’s current OS X operating system release and is planned for full
read/write access in its next release. ZFS is also available in other OSs as well, including
FreeBSD ().

Full details on ZFS could fill an entire book or more, but in this chapter we’ll review
the basics you need in order to understand ZFS and to use it for general storage man-
agement. We won’t include details on ZFS’s internal design or specialized performance
tuning; for that you may want to browse the ZFS wiki at

. But ZFS is a critical component of OpenSolaris’s
operation for users and system administrators, and there’s still a lot to learn, so we’ll
include information on the following:

, peta- : Quadrillions

, exa- : Quintillions

, zetta- : Sextillions

, yotta- : Septillions

CHAPTER 6 THE ZFS F ILE SYSTEM 91

As with all OpenSolaris technologies, you’ll find a large community of ZFS users and
contributing developers at , as well as a wealth of information on the
Sun Microsystems’ web sites. To keep up with the latest news on ZFS, visit the following:

, Sun Microsystems’
ZFS Learning Center

, the OpenSolaris ZFS community

, the OpenSolaris ZFS FAQ

Exploring the Basic ZFS Features
When you add RAM memory to a system, you almost never care about which DIMM
device on which your applications are running. And you generally don’t worry about
memory boundaries; all you really care about is the total pool of memory available to your
operating system and to your applications. When you need more memory, you physi-
cally install another module, and the OS takes care of adding it to the memory pool and
presents you with a single memory resource. You can think of ZFS in similar terms. With
earlier file systems, you needed to recognize, configure, and manage individual disk
devices and their partitions, and your resulting storage was fragmented and often lim-
ited in capacity because of the individual size limits of each device. You had to know and
to care exactly where your data was located. With ZFS, you simply add a disk device to
a pool of disks, and as with RAM, you see a total pool of storage not limited by individual
device characteristics (Figure 6-1).

CHAPTER 6 THE ZFS F ILE SYSTEM92

 Figure 6-1. File systems with and without ZFS

Instead of creating file systems on each disk or partition whose sizes are constrained
by the hardware, you create virtual file systems inside the ZFS storage pool. If the size of
your file system exceeds that of a partition or disk, ZFS takes care of that for you. As with
RAM, if you need more space in the pool, just add another storage device to expand the
available size of the pool (and you can do that without shutting down your system). And
because of ZFS’s 128- bit addressing capability, storage pools can be enormous, encom-
passing billions of terabytes (Table 6-1); multiple file systems of any size up to 16 exabytes
can be created on a ZFS pool.

CHAPTER 6 THE ZFS F ILE SYSTEM 93

 Table 6-1. File System Capacities

File System Max File Size* Max Volume Size*

UFS Up to 32 petabytes Up to 1 yottabyte

ext3 Up to 2 terabytes Up to 32 terabytes

ext4 Up to 16 terabytes Up to 1 exabyte

FAT32 4 gigabytes Up to 8 terabytes

NTFS 16 exabytes 16 exabytes

ZFS 16 exabytes 218 exabytes

* The max file and volume sizes listed are implementation dependent and vary according to vendor, operat-
ing system, and supported disk hardware.

In addition to using a storage pool approach to hosting file systems, ZFS includes
active data integrity checking of all I/O operations. Data is never overwritten on the disk;
ZFS uses a Copy On Write (COW) model for storing new data. This method allocates new
disk blocks for the data, writes the new data to them, and then updates the file system
metadata blocks using the same method. Multiple writes are grouped and cached into an
intent log to improve performance and to provide a record of transactions in the event
that some form of recovery is needed. All write requests use new disk blocks, and both
data and metadata blocks are verified using a 256- bit checksum that can detect and cor-
rect data corruption caused by disk surface errors, DMA and cache memory errors, data
path errors, and even device driver bugs. This process also enables active “self- healing”
of disk data. When an application tries to read a block of data and the checksum indicates
invalid data, ZFS finds good copies of the block (on the same disk or on a mirror disk),
returns good data to the application, and repairs or replaces the invalid data block.

ZFS improves on RAID- based disk arrays that can still silently lose or corrupt data if
the parity block write fails because of a hardware failure or power outage. ZFS includes
 RAID- Z, similar to the popular RAID- 5 that uses data striping across multiple disks along
with parity check data. RAID- Z writes in checksummed variable- length stripe blocks that
don’t overwrite live data; an enhanced version, RAID- Z2, includes double- parity checking
so that even two ZFS pool disks can fail without loss of data.

Once you create a ZFS pool, you manage the total storage pool space with a few
simple commands, as you’ll see in the next section. You can easily set file system and
user directory characteristics such as quotas or data compression. You manage space, not
disks or partitions. ZFS lets you create file system snapshots and clones that you can use
to back up and restore data; OpenSolaris uses these ZFS features to manage multiple boot
images and updates. The Time Slider file manager tool uses automatic ZFS file system
snapshots that let you retrieve deleted files. In short, ZFS is the foundation for allocating
and managing OpenSolaris disk space for system administration and for end users. Let’s
see how this all works.

CHAPTER 6 THE ZFS F ILE SYSTEM94

Note At the time of publication of this book, there was no ZFS GUI distributed with OpenSolaris. Sun

.

Creating and Managing ZFS Storage Pools
There are two general tasks you must perform when managing storage with ZFS: the first
is creating a pool and setting its characteristics using the command, and
the second is creating and configuring file systems on the pool using the
command. A ZFS pool is an aggregate of storage locations, called virtual devices (hard
disks, flash memory, USB memory sticks, or even preallocated files) that provides space
for ZFS datasets; all datasets within the pool share the same total space. Virtual device
options are categorized according to their performance and data integrity features.
 Table 6-2 shows the options for storage locations.

 Table 6-2. ZFS Virtual Devices

Device Type Description

 A disk block device or partition; using an entire disk is recommended

 A file; intended for temporary or experimental work

 A replicate of a virtual device; data is copied identically to a device and
 its mirror

, , A virtual device with striping and parity features

 A virtual device to be used if an allocated device fails

 A virtual device for temporarily stacking multiple ZFS write requests

 A virtual device for intermediate caching of ZFS data; typically set to
 flash memory or solid state disks for performance enhancement

CHAPTER 6 THE ZFS F ILE SYSTEM 95

Creating a ZFS Pool

The command has several key options, shown in Table 6-3.

 Table 6-3. Pool Management Options for the Command*

Option Brief Description

 Creates a new ZFS pool using the specified virtual devices and properties

 Destroys a ZFS pool (removes all virtual devices from a pool); does not erase device data

 Adds a virtual device to a pool

 Removes a virtual device from a pool; does not erase device data

 Lists all defined pools

 Lists I/O statistics for a pool including capacity, R/W operations, and effective bandwidth

 Displays the state of a pool

 Sets the pool state to

 Sets the pool state to

 Attaches a new device to an existing pool

 Detaches a device from a pool

 Replaces a device in a pool with another device; equivalent to followed by

 Verifies all pool checksums; repairs any bad data

 Lists the history of all actions taken on a pool

 Retrieves and lists the properties of a pool

 Sets one or more properties of a pool

* By default device names referenced by the zpool command are assumed to be in the directory.
Device name references to this directory can omit the directory name; otherwise, the full device path name
is required. For example, you can use device name c0t0d0 for .

CHAPTER 6 THE ZFS F ILE SYSTEM96

Some Examples Using the zpool Command

In the following examples, we use the pseudo devices (files) through in
the directory. On your system, you can discover your system’s device names by
using the command, which will list attached hardware device names
and partitions as in Figure 6-2, which shows the device name of for the
primary system disk. If there were more disks available on the system, they would also be
listed; the listed device names on your system will vary according to the number and type
of disk drives installed. You must be aware of the available drives and partitions on your
system before assigning them to a ZFS pool.

 Figure 6-2. Use the command to list device names.

CHAPTER 6 THE ZFS F ILE SYSTEM 97

 Figure 6-3 shows a sequence of commands. The first, , simply lists
the existing ZFS pools on your system; there’s only one, (the root pool; you’ll learn
more about that one later).

 Figure 6-3. Creating a ZFS mirrored pool with a spare

Next you create a mirrored pool named along with a spare disk:

CHAPTER 6 THE ZFS F ILE SYSTEM98

It’s that simple; you’ve created a storage disk with a mirror, and you’ve created
a spare that will be used automatically if half of the mirror pair fails. The subsequent

 and commands display and verify what you’ve created. Note
that if you use to show current disk space usage, you see the root pool along with
the new pool, and notice that only half of the apparent pool capacity is available
because the other half is used for the mirror; ZFS has automatically created, initialized,
and mounted the pool and defined a default file system on it. Creating a RAID- Z
pool is just as easy: . So is destroy-
ing it: . Destroying a pool disassociates its devices from the pool but
does not destroy the data on the device. Devices are easily removed from a pool or added
to the pool as in Figure 6-4, where we’ve removed the spare device from and
added a new pair of mirrored devices to the pool to increase its capacity.

Caution
 set; you must add a full set of

Some Examples Using the zfs Command

After you have created a pool, you could use its default file system and directory to store
files, but it’s obviously best to create and manage separate file systems. You use the

 command to do this. Table 6-4 shows only a few of the many options for this
command.

 Table 6-4. Key Options for the Command

Option Brief Description

 Creates a file system

 Destroys a file system

 Takes a snapshot of a file system

 Restores a file system from a snapshot

 Makes a copy of a file system

 Creates a full file system from a clone

 Lists the characteristics of a file system

 Sets the value for a file system characteristic

 Retrieves the value for a file system characteristic

CHAPTER 6 THE ZFS F ILE SYSTEM 99

 Figure 6-4. Removing and adding devices in a ZFS pool

CHAPTER 6 THE ZFS F ILE SYSTEM100

In Figure 6-5, we’ve created a home directory file system using the
 command and then recursively list the file systems in the

pool using .

Tip When referring to a pool name with the command, there is no leading slash for the pool name;
you will probably frequently make this typing error!

 Figure 6-5. Creating a ZFS file system using the command

ZFS file systems have a large number of configurable properties, including com-
pression, user quotas and reservations, mountpoints, NFS sharing, case sensitivity, and
writability, to name a few. Figure 6-6 lists all the properties of the file
system using the command .

To set any of these properties, use the command with the option. For
example, turns on transparent file system
compression to save disk space; exports the

 file system for NFS sharing (note that you do not add NFS entries for ZFS file
system sharing to the file). You can set a disk quota for user by speci-
fying his home directory: . Or, because file
system properties are hierarchically inherited, you could set the quota for all users of the

 file system: .
If a user anticipates that she will need extra space for a project, you can preassign, or

reserve, that space: . This ensures that
other users of the file system can’t exhaust the storage beyond what has been previously
reserved for that user.

CHAPTER 6 THE ZFS F ILE SYSTEM 101

 Figure 6-6. Properties of a ZFS file system

Using ZFS

For all its special features, ZFS is “just a file system” for your OpenSolaris users and
applications. This means it functions like any other type of file system in that it provides
a place to store data in files and directories; applications do not need to “know” that their
files are being stored on ZFS. Standard read and write APIs are used. End users will not
see any difference in how they access their files and directories.

CHAPTER 6 THE ZFS F ILE SYSTEM102

One question about ZFS that does come up, however, is about performance: how
does ZFS performance compare to other file systems, particularly for databases?

ZFS has evolved significantly since its introduction in 2005. Its initial priorities were
to provide an easily administered pooled storage model with virtually no size or scal-
ability restrictions and near absolute data integrity. Performance was also a high priority,
and ZFS continues to advance in that area; ZFS performance has been shown to be equal
to or better than UFS and ext3 for many application types, although some tuning may be
required. Performance will depend on the reads-to- writes ratio, sequential vs. random
reads and writes, write block size, and the amount of memory in your system. Some early
comparisons of ZFS performance on Solaris 10 are listed in Table 6-5. They confirm com-
parable or better ZFS performance in many cases when compared to ext3 and Veritas file
systems, and significantly better when compared to NTFS.

 Table 6-5. Some ZFS Performance Reports

Report URL

ZFS vs. ext3

ZFS vs. VxFS

ZFS vs. NTFS

One interesting recent ZFS- related development is the availability of storage appliances
based on OpenSolaris and ZFS. Such appliances consist of disks and controllers along with
an OS modified to provide network file services. It turns out that OpenSolaris and ZFS are
ideal for these devices, especially when they also exploit flash memory caches resulting in
dramatic performance improvements. Commercial storage products based on OpenSolaris
and ZFS are starting to appear on the market, such as Nexenta () and
Sun’s Storage 7000 product line.

Note The ZFS Best Practices Guide (

OpenSolaris ZFS community at .

CHAPTER 6 THE ZFS F ILE SYSTEM 103

Taking Snapshots

Probably one of the most important ZFS features is its ability to create nearly unlimited
and instantaneous file system snapshots, which are effectively read- only copies of a ZFS
file system at a selected point in time. Such snapshots are used to enhance OpenSolaris’s
boot environment management as well as to assist end users and administrators to
back up and restore changeable file systems. A file system snapshot initially takes up no
additional space in a pool; as the original active file system image changes, however, the
snapshot grows to keep track of the changes. Creating a snapshot using the command
is trivially easy; just specify the full pool/file system name and a user- specified snapshot
name:

or

After taking your file system snapshot, continue working. If you decide later that
you need to return to an earlier state of your file system or to recover an accidentally
erased file, you can restore, or roll back, the file system to its earlier state. Let’s see how
this works. In Figure 6-7 we first created a file , and then we took a snapshot
named . Oops! Then we accidentally erased the file.
But we can roll back the directory to its previous state, and the file is recovered.

 Figure 6-7. Recovering a file by rolling back to a snapshot

CHAPTER 6 THE ZFS F ILE SYSTEM104

Where do these snapshots hide? In each file system directory, snapshots reside in
a subdirectory (that’s “dot zfs,” a hidden directory).

Tip The flag, will not list the directory. You need to use the
 command, which will list all snapshots including those created by Time Slider. Some

users create links to their directories to access them more directly.

If you to that directory, as in Figure 6-8, you’ll see the read- only copy of your file
system (along with your missing file!).

 Figure 6-8. The snapshot directory

You could simply copy any missing files from the snapshot directory to your active
directory. Fortunately, as easy as this seems, it’s even easier using OpenSolaris’s Time
Slider file manager feature, as you’ll see in the next section.

Using Time Slider

Time Slider is a ZFS- based GUI tool for scheduling automatic snapshots of your file sys-
tems. It can be enabled for the system administrator or for individual users using the
System Administration Time Slider Setup menu (Figure 6-9).

The setup GUI lets you specify which file systems are to be regularly backed up using
periodic ZFS snapshots. You can see and access these snapshots in your file system’s
directory, as shown in Figure 6-10.

CHAPTER 6 THE ZFS F ILE SYSTEM 105

 Figure 6-9. The Time Slider Setup GUI

 Figure 6-10. The periodic snapshots reside in your file system’s directory.

CHAPTER 6 THE ZFS F ILE SYSTEM106

After you enable Time Slider, a new icon that looks like a small clock appears on the
navigation bar of any file browser window, as shown in Figure 6-11.

 Figure 6-11. The Time Slider icon

Now suppose you remove the ZFSdemo directory and the file shown in
 Figure 6-11 and even empty the folder. Simply click the Time Slider icon, and you
will see a slider bar with Now at the right end and Time Slider’s start date and time at the
left end (Figure 6-12).

Simply use the slider to move back through time to the snapshot that contains your
erased files, as shown in Figure 6-13. Remember that snapshots are read- only, so you can
simply read the erased file in place if that’s all you need, or you can recover it back to your
desktop with a simple drag and drop (note that our directory and file
are now shown in the snapshot view).

CHAPTER 6 THE ZFS F ILE SYSTEM 107

 Figure 6-12. The Time Slider’s slider bar, showing Time Slider’s start time and date, the
name of your file system, and the number of available snapshots

 Figure 6-13. Displaying the contents of past snapshots using Time Slider

CHAPTER 6 THE ZFS F ILE SYSTEM108

Managing Boot Environments with ZFS

As you update your OpenSolaris installation, you will install new software, change con-
figuration files, and update your kernel builds. ZFS assists you in managing snapshots
of your updated environments. First, ZFS creates a snapshot of your initial install so
that you can always roll back to that point if necessary; that initial snapshot, named

, resides in the directory. As we mentioned briefly in Chapter 3,
the command can be used to create and activate new boot environments.
 Table 6-6 shows some of the key options for this command.

 Table 6-6. The Utility for Managing Boot Environments

Option Description

 Creates a new boot environment snapshot and GRUB entry

 Destroys a boot environment and deletes the GRUB entry

 Lists available boot environments

 Activates a boot environment by setting it as the default in the GRUB configuration
 file,

To create a new boot environment—that is, to create a bootable ZFS snapshot of
your current environment named , for example—execute the command

, as shown in Figure 6-14. You can then list the currently available boot
environments.

You can, of course, simply select the new boot environment from the GRUB menu
upon reboot of your system, but to make the new environment the default, use the

 option (for example,), and that selection will be set
as the default in the GRUB file, as shown in Figure 6-15. Note that the boot

 has been set to 2, the third entry (counting from 0).

CHAPTER 6 THE ZFS F ILE SYSTEM 109

 Figure 6-14. Creating and activating a new OpenSolaris boot environment using

CHAPTER 6 THE ZFS F ILE SYSTEM110

 Figure 6-15. The changes to the GRUB file

Summary
In this chapter, we have only scratched the surface of how ZFS helps you manage your
system’s storage. It provides a simple view of any number of disk devices as a single
block of available space that can be allocated as mirrored or RAID- Z storage. It lets users
snapshot their file systems and revert to previous snapshots or recover individual files
and directories using the Time Slider GUI. OpenSolaris boots from a ZFS file system and
thus can be configured to boot from snapshots; this allows rollback to earlier boot envi-
ronments after updates, patches, and software modifications. ZFS also helps support
OpenSolaris’s virtualization features described in the next chapter.

111

C H A P T E R 7

OpenSolaris and Virtualization

If you can see it and it’s there it’s real; if you can’t see it and it’s there it’s transparent;
if you can see it and it’s not there it’s virtual.

—Jeff Savit, Sun system engineer

Virtualization is a very broad and somewhat overused term that now encompasses
a great number of different technologies. The basic ideas and implementations date back
to the early days of mainframe computers in the 1960s when such systems were large,
expensive, and scarce resources. In order to efficiently use these systems for multiple
simultaneous computational tasks, techniques were developed to provide separate exe-
cution environments for individual workloads, including support for different operating
systems. These execution environments provided performance and security boundar-
ies through both hardware and software containment methods. To do this in software,
indirect abstractions were created for access to system resources such as CPUs, memory,
disks, and network interfaces. These abstractions are called virtual resources, which is
where the term virtualization originates.

Note Hardware partitioning techniques used on mainframe class systems are often referred to as forms
of virtualization, but such partitioning does not always use virtualized system components. Such techniques
are forms of the more general concept of workload containment. Hardware partitioning allocates real server
resources to each operating system and generally requires specialized server hardware.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION112

Unfortunately, computers have become much smaller, faster, and cheaper! Unfortu-
nately, because this led to the practice of giving nearly every application its own hardware
system, some large organizations now have thousands of individual hardware servers
that use enormous amounts of space and electrical power and that require complex and
expensive environmental cooling. Many of these servers are extremely overpowered for
the applications they host; average utilization rates for most servers today are around
5 percent or even lower. And in many data centers today, more than half of the power
consumption goes to cooling and infrastructure, not to computational power.

Fortunately, computers continue to grow smaller yet more powerful, and mod-
ern servers are capable of handling dozens or hundreds of simultaneous application
workloads. That’s where virtualization reappears, and there are now numerous
 community- developed and commercially developed virtualization solutions for nearly
every operating system and processor family, including OpenSolaris on AMD, Intel, and
SPARC. Virtualization technologies are a critical component of the new “Cloud Comput-
ing” products offered by Google, Amazon, Sun Microsystems, and others. These products
provide computational, network, and storage services as utilities, much like the electric
and water distribution companies.

A single operating system’s primary tasks are to efficiently schedule user applica-
tion work on available CPU and memory hardware and to efficiently handle and route
interrupts for data I/O from disks, network interfaces, and other devices. Server virtual-
ization techniques allow operating systems and their applications to share the underlying
hardware in a way that gives each OS the impression that it is still running directly on
the server hardware when in fact it is sharing it with other OS/application environments.
Deploying applications in this manner allows IT architects and system administrators to
do the following:

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 113

One important way to categorize virtualization techniques is according to the num-
ber of operating system kernels involved. Some techniques support multiple different
guest operating system kernels running simultaneously on a hardware server, under the
control of a program called a hypervisor or virtual machine monitor
its applications can have the appearance of being an independent server.

Note Although you normally think of a “server” as a hardware system, all it really provides is a name for
the host environment, an IP address for network access, and a restricted space in which to execute the OS
and its assigned applications. This can be accomplished with hardware or, using virtualization, with software.

There are several kinds of virtualization to consider:

Hardware emulation: Permits operating systems developed for one processor
architecture to run on a different processor architecture.

Full or native OS virtualization: Allows unmodified OS guests to run under
a hypervisor.

Paravirtualization: Guest operating systems run under a hypervisor and are modi-
fied to use virtualization APIs to assist performance.

OS virtualization (sometimes called lightweight virtualization or containers):
Presents to an application environment the appearance of running in a dedicated
server and OS but without duplicating the entire kernel environment; in this case,
your system’s OS plays the role of the hypervisor.

Application virtualization: Provides application portability across different
operating systems and processor architectures; the Java Virtual Machine is the
 best- known example.

Resource virtualization: I/O and network hardware can be separately virtualized to
emulate other hardware or to partition such hardware into multiple virtual devices
that can be dedicated to individual VMs or containers (see the Crossbow technol-
ogy discussed at for an example).

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION114

 Table 7-1 summarizes just a few of the various virtualization technologies that are
available.

 Table 7-1. Some Available Virtualization Technologies

Technology Type Description URL

User Mode Linux
(UML)

Paravirtualization Runs Linux VMs
within Linux host

KVM Full and
paravirtualization

In-kernel hypervisor
for Linux; provides
three execution
modes: kernel, user,
and guest

Xen Full and
paravirtualization

Multiplatform
hypervisor

 and

Hardware
emulation

Multiplatform
processor emulator

VirtualBox Full Desktop virtualization
of OS guests

VMware Server Full Fast server hypervisor

V-Server OS virtualization Runs multiple Linux
containers

Zones OS virtualization Solaris and
OpenSolaris
containers

 and

Parallels Full Desktop virtualization
for Mac, Windows,
and other OSs

xVM Server Full and
paravirtualization

Xen-based hypervisor

xVM Hypervisor Full and
paravirtualization

Xen-based hypervisor

LDoms Paravirtualization Hypervisor for
UltraSPARC Sun4v
processors

Microsoft Hyper- V Paravirtualization Hypervisor for
Windows Server 2008

Note Most current paravirtualization implementations on the x86 architecture now require processors
that support Intel VT or AMD- V features, such as the Core 2 Duo or Opteron.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 115

OpenSolaris can operate as a guest operating system, as we discussed in Chapter 3;
platforms for this mode of operation include the following:

But OpenSolaris can be a host for a variety of virtual environments as well, and the
criteria for choosing which type of virtualization solution you need depends on your
performance requirements, the number and kind of guest operating systems you need to
host, and the overall infrastructure of real and virtual systems you need to manage.

Figures 7- 1 through 7- 3 will help you visualize the differences among the virtualiza-
tion technologies we’ve just outlined and how they are implemented with OpenSolaris.

 Figure 7-1 shows how a Type 1 hypervisor, installed “natively” or on “bare metal,”
provides virtualization services to guest virtual machines. It generally uses a small,
privileged kernel called the control domain or Domain 0 that communicates with the
hypervisor and manages the creation and resource allocations of guests. Generally used
for server virtualization, it provides good performance especially when using paravirtual-
ization and processor features such as Intel- VT or AMD- V.

Some discussions of Type 1 hypervisors classify them further into two types. Thin
hypervisors, like the Xen kernel, contain only the minimum needed for booting and creat-
ing guest VMs; the remaining functionality, such as device drivers, is provided by a more
traditional operating system kernel in the control domain. Thick hypervisor kernels, such

-
ers, and resource management.

Note that when using hypervisor- based virtualization each guest VM must be a fully
installed, configured, and possibly licensed OS kernel, such as Windows, Linux, Solaris, or
OpenSolaris. Sun’s commercial xVM Server is an example of this virtualization architec-
ture, as is the xVM Hypervisor implementation in OpenSolaris, both based on the work of
the Xen community. You can see the details of this project at

.
 Figure 7-2 shows a Type 2, or hosted, hypervisor, which is essentially just another

application running in your OS. It still provides a control interface for creating and
managing guest VMs, along with device virtualization services that link with the host
OS’s device drivers. Because of this extra level of indirection, performance of the guest
VMs can suffer, but this architecture provides a convenient method for adding guest OS
support to workstations or laptops. VirtualBox, VMware Workstation, and Parallels are

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION116

examples of this type; VirtualBox is available for OpenSolaris, so it can serve as both
a host for OpenSolaris and as a platform for hosting other operating systems on
OpenSolaris. Note again that each guest is a fully installed OS kernel.

OS virtualization, shown in Figure 7-3, does not implement guests as full OS kernels
and does not use a hypervisor. Rather, it provides performance, resource, and security
boundaries around application process environments generally known as containers.
Containers have the appearance of a full kernel but they more directly use the kernel
resources and device drivers of the host OS. Because of this, they can be very fast and
efficient; however, this approach limits the kinds of virtual guests that can be supported
since guests are in a sense just subsets of the host OS environment. Solaris 10 and Open-
Solaris have built- in support for container virtualization.

Let’s start by exploring OpenSolaris containers, since we’ll be using them in the next
chapter to host web applications.

 Figure 7-1. The Type 1 hypervisor architecture

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 117

 Figure 7-2. The Type 2 hypervisor architecture

 Figure 7-3. The OS virtualization, or container architecture

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION118

Zones and Containers
In this section, we’ll present more detail on what zones and containers are, how to create
and manage them, and what they can and can’t do.

But before we start, let’s clear up a vocabulary problem. Much of the documentation
and articles about OS virtualization in Solaris 10 and OpenSolaris refer to both contain-

of the Sun documentation is ambiguous about the definitions. Zone is a term specific to
Solaris 10 and to OpenSolaris, and it refers to the bounded, virtualized OS environment
created using the program, defined by an XML file in the directory,
managed with the program, and monitored by SMF’s service. Container
is a more general term that is also used in other contexts such as Java Servlet Contain-
ers and in earlier versions of Solaris when referring to resource management features.
A container in Solaris 10 or in OpenSolaris is a zone whose performance and scale are
controlled using the OS’s resource management facilities for allocating CPUs, execution
threads, memory, and I/O. Briefly, an OpenSolaris container is a resource- managed zone.
To add to the confusion, nearly all of the tools used to create and manage containers, and
their documentation, use the term zone. In the remainder of this chapter, we’ll use zone
until we start discussing how to allocate resources for these virtualized OS environments.

A zone is not a virtual machine. With this form of OpenSolaris virtualization, there is
only one OS kernel running; it’s called the global zone. Virtualized OS environments cre-
ated within the global zone are called nonglobal or local zones. They provide a restricted
environment in which to deploy applications. In fact, that’s the recommended way to
host applications on Solaris 10 and OpenSolaris servers. Applications that are designed to
run on Solaris 10 and on OpenSolaris will in general run in a local zone with the exception
of programs and services that require privileged access to hardware or kernel services,
such as firewalls or NFS servers. Installing applications in local zones is almost identical
to installing them in the global zone, although you must create the zone with the writable
directories expected by the application.

To end users, applications, developers, and administrators, the view from inside
a local zone looks as if they are running on a full implementation of OpenSolaris, with
some notable exceptions that we’ll see shortly. A local zone has the equivalent of a host
name, an IP address, and nearly all the system files an administrator would expect to see.

access to global zone file systems or writable file systems dedicated to that zone. A local
zone has its own administrator who can “reboot” the zone. Startup of a zone looks
and acts similar to a boot process, including startup of local zone services by SMF and by

 scripts. But because a zone is not a full virtual machine kernel and is essentially just
a collection of restricted processes and files, “rebooting” a local zone equates to shutting
down those processes in an orderly manner and then restarting them, and that can hap-
pen very quickly; local zones can be “rebooted” in just a few seconds! Also, because zones
are not full OS kernels, they are “lightweight” and have little additional impact on the

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 119

global zone beyond the applications running in them. The theoretical maximum number
of local zones on a single OpenSolaris instance is more than 8000, although you would
certainly never attempt to configure that many. But modern x86 and SPARC servers can
comfortably handle dozens or even hundreds of zones depending on the size of the sys-
tem and the kind of applications being run within the zones.

Because a local zone is simply a bounded area within the global OpenSolaris
OS, it can run only those applications compiled for that OS (there are a few excep-
tions such as Linux branded zones that we’ll discuss later). So, unlike VMware or other
 hypervisor- based virtualization, you can’t run Windows, Linux, or other virtualized OS
kernels within a zone. Nevertheless, you can still do a lot of interesting things with this
type of virtualization.

 Figure 7-4 shows a sample scenario of an OpenSolaris server hosting three local zones.

 Figure 7-4. Example configuration of OpenSolaris zones

In this scenario, OpenSolaris is installed on a server providing web services for
healthprovider.com. Three separate zones are configured for patients, doctors, and pub-

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION120

and application versions, and they can communicate only with each other using standard
TCP/IP protocols.

Tip Zones on the same system communicate using TCP/IP, but intra- zone networking runs at memory
bus speed, not Ethernet controller/wire speed. This means that you have very high bandwidth with low
latency for network applications that can run in difference zones on the same server, such as an application
server communicating with a database.

Users of one zone cannot see the processes of the other zones; they can only observe
processes in their own zone. Only the global zone administrator can observe all local
zone processes. As you will see later, you can also subdivide and allocate available mem-
ory, CPU, and other global resources among the local zones. This helps you ensure that
one local zone’s processes do not impact the performance of another local zone or of the
entire system.

Creating a Zone

There are several key programs you will need to use zones:

: Creates zones and defines their characteristics

: Manages zones after their creation

: Logs in to a zone for zone administrators

: Displays the name of the current zone

The and programs have many subcommands; we’ll illustrate those
most commonly used in the following examples. First, let’s create a sample local zone
and then examine what it looks like from within the zone and from the global zone. We’ll
use the command- line method to illustrate this process. Several GUIs, such as Webmin,
could also be used, but they call the zone commands, so it’s useful to examine these first.
Also, you can write shell scripts containing these zone commands to make zone manage-
ment easier. In fact, many such scripts have been posted on the OpenSolaris.org web site
(for example,).

In Figure 7-5, we’ve become the administrator and created a zone named
myfirstzone using the command.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 121

 Figure 7-5. Defining a zone using zonecfg

Notice the syntax: attempts to reference that zone name, but
it’s not defined yet, so tells you to create it. Like a normal OS, a zone needs a root
file system. In this example, we’ve specified a path for its directory, .
For now, ensure that has sufficient disk space for the zone’s files, about 300MB.
We’ve also specified an IP address for the zone along with the name of the physical net-
work device we want the zone to use. Some systems will have multiple network interface
cards (NICs), and their names might differ from the device name in this example (use
the command to display your system’s NICs and addresses). The
remaining subcommands the configuration subcommands, the syntax
of the parameter definitions, the configuration to disk, and then the
program.

All that has happened at this point is that zone myfirstzone has been defined. Its
configuration file, as are those of all local zones you will define on your system, is an XML
file in the directory. Let’s examine the contents of that directory and
the file (Figure 7-6).

 Figure 7-6. The zone configuration files directory,

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION122

The directory has several default definition files (and ,
for example) that you can copy and use as templates when you create new zones; you can
preconfigure devices, IP addresses, zone paths, and other parameters in your template
file using the syntax . The XML Document Type
Definition (DTD) file is referenced in the first two lines of each zone file.

Note Heed the “DO NOT EDIT THIS FILE” warnings in this and other OpenSolaris configuration files; use
the recommended program! If you introduce errors by directly editing such files (as many UNIX/Linux admins
are inclined to do), unpredictable erroneous behaviors can occur.

The file that was created by contains the parameter defini-
tions shown in Table 7-2.

 Table 7-2. Configuration Parameters in File

Parameter Description

The name of the zone, not the zone’s host name, although
many users make them the same.

The directory of the zone’s root file system.

Set this to if you want the zone to boot when the global
zone boots.

There are several “brands” of zones: , , (Linux),
 (Solaris 8 on SPARC), and (Solaris 9 on SPARC).

The zone’s IP address. Currently must be set as a static address.

The physical NIC used by the zone; can be dedicated or shared.

You can use the program to list the zones that are available on your system
(Figure 7-7). The flag shows a listing of all configured zones in verbose mode.

 Figure 7-7. Listing the zones on your system

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 123

Zones can have several states, as listed in Table 7-3. Notice in Figure 7-7 that the
global zone’s state is (of course!) and that myfirstzone is only .

 Table 7-3. Possible Zone States

State Description

The zone has been defined; it has a configuration file in .

The zone’s root file system () has been copied and the zone registered
with the global zone.

The zone is in the process of being installed or uninstalled and its files are being
copied or deleted.

The zone is properly configured and installed, but no zone processes are running
(the zone has not been “booted”).

The zone has successfully “booted” and its processes are running.

The zone is in the process of being halted.

The zone is not running and is stuck possibly because the failure of one of its
applications to properly shut down.

The next step is to install your zone (Figure 7-8). Depending on the speed of your
system, this process will take several minutes; this example took less than two minutes.
Take special note of the output: a ZFS file system was created for the zone; we will take
advantage of that later. Note also that necessary packages were downloaded from the
OpenSolaris repository.

 Figure 7-8. Installing a zone

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION124

Following the directions given by when it’s finished installing your zone,
you’re ready to boot the zone:

Then log into the zone console using the password you assigned earlier:

The first time you log in to a zone console after its creation and first boot, you will see
a series of instructions similar to those for installing a full OpenSolaris operating system.
You will be asked to select a terminal type to use; select , , or whatever type you
prefer depending on what terminal program you are running (the default terminal type
setting when you open a terminal session in OpenSolaris is).

Note Your keyboard’s function keys will almost certainly not work during this final configuration process;
the installation terminal will emulate those keys with #, where is the number of your function key (so

 emulates the F2 key).

The zone configuration process will next ask you to assign a host name, which could
be the same as the zone name but that’s not required. Next you’ll be asked whether you
want to enable Kerberos, what name service you want to use (NIS, DNS, LDAP, none),
what time zone you want to use (which can be different from that of the global zone!),
and finally the root password for the zone. After all of this you can log in to your zone.

Global and Local Zone Environments

At this point, it’s important for you to understand the difference between the global zone
administrator environment and that for a local zone, especially if you are simultaneously
logged in as on both types of zones.

Caution It’s a good idea to set your shell prompt in your login profile for both global and local zone work
to include the zone name to help you recall which zone you’re working in. Executing the command
in a local zone will simply reboot that zone in a few seconds. Mistakenly executing in the global zone
will reboot the entire system and terminate any user processes running in local zones.

For the shell in each zone, the following will set your prompt to include both the zone name and your
current working directory:

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 125

System administrators are familiar with several tools to monitor the state of their
system and the processes running on it; Linux users will often use the command.
OpenSolaris 2008.11 includes (Figure 7-9).

 Figure 7-9. Running on OpenSolaris

However, the program for OpenSolaris has not yet been modified to work in
a local zone or to identify local zone–related processes when called from the global zone.
Instead, use the command, which has been enhanced with two extra flags, and

. The command alone will report data on all processes regardless of which zone
they run in, sorted by descending CPU usage. That’s somewhat useful for the global
zone administrator, but , run from the global zone, will report additional data
on local zones (Figure 7-10).

Tip You will notice several services, such as , are configured by default to start in local zones.
You should disable unnecessary services using the command from within the local zone.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION126

 Figure 7-10. running in the global zone

Local zone administrators can run or , but they will only get details on pro-
cesses running in their own zone; they cannot see any process information for other zones
or the global zone. The global zone administrator can view process details for specific
zones using the flag with or with , giving the desired zone name. For example,
the command displays process data for the myfirstzone zone
(Figure 7-11).

 Figure 7-11. running in the global zone

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 127

The global zone administrator can monitor local zone activity using a variety of
tools; some of these are familiar programs that have been modified to understand zones.
 Table 7-4 describes these tools.

 Table 7-4. Tools for Monitoring Local Zone Resources from the Global Zone*

Command Description

Lists every running process in all local zones and global
zone

Lists every running process in the specified zone name

Monitors all process activity in all zones

Monitors all process activity in the specified zone name

Finds the (the process ID) of process in the
specified zone name

Lists the process tree for in the specified zone name

Runs in the specified zone name
and displays the output on the global zone

* Other commonly used option flags can still be used with these programs.

Caution Interpreting statistics such as CPU utilization, I/O data, and memory usage for processes run-
ning in local zones can be a bit difficult. Traditional tools such as and were not originally
designed for virtualized environments. Fortunately, the OpenSolaris developer community is starting to
contribute solutions to this problem; for example, the tool for developing a better understanding
of resource consumption and resource controls of zones and their workloads. Read about this project at

.

Cloning a Zone

Before we go further, let’s create another zone. Here’s where ZFS again helps us; it takes
a snapshot of the source zone’s root file system and uses it for the new zone, saving the
time of creating and copying the zone files. The source zone must be halted before it
can be cloned, however. Figure 7-12 shows the sequence of commands needed to clone
myfirstzone. First the source zone is halted; then exports the myfirstzone con-
figuration into a temporary work file. You must then edit that file to specify a new zone
path and IP address for the new zone (since two zones can’t share the same zone path
or IP address). You then use to configure the new zone using the modified file,
and finally you use to create the clone. When it’s all finished,
confirms that the new zone is ready to go; use the same initial boot procedure you did for
myfirstzone.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION128

 Figure 7-12. Cloning a zone

Managing Zones

If all this seems like a lot of command line work, you can again rely on OpenSolaris
community software for help; zone management scripts are available such as the
tool at . Or, you can use the browser- based
Webmin tool discussed in Chapter 5; it has a basic Zone Management GUI that lets you
create and configure zones on your system from anywhere on your network (Figure 7-13).

 Figure 7-13. The Webmin zone management GUI

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 129

Using the Zone

Okay, you’ve got zones! Now what? Recall that a local zone is very much like a server
implemented in software: it has a host name and an IP address, and you can communi-
cate with it using standard TCP/IP programs and protocols just as you do with traditional
hardware servers. From the point of view of end users, application developers, and
system administrators, working in a local zone is similar to working in an independent
OS environment running on a hardware server, but with some very important restric-
tions. From inside a local zone, you can’t “see out” into the global zone or see anything
belonging to other local zones, even if you are the local zone root user. Also, you don’t
have direct access to system hardware; only the global zone administrator can configure
hardware resources such as file system disks and network interfaces. And in general, user
applications that are designed to run on Solaris and OpenSolaris in the global zone will
run fine in a properly configured local zone. However, some programs or services that
need privileged access to hardware or to kernel services, such as NFS servers (disks) or
NTP servers (system clock), can be run from only the global zone.

Note There are numerous detailed answers about how OpenSolaris zones work (and their limitations) in
the Zones and Containers FAQ at .

One of the most common use cases for local zone deployment is for hosting web
servers. In general, applications such as Apache are not resource intensive, and you can
therefore host a large number of web servers on a single hardware server running Open-
Solaris using zones virtualization. Because each zone has its own IP stack, address, and
port list, web servers running in local zones look the same to the outside world as those
running on separate hardware servers. Moreover, you can configure your system to
restrict access to your web content by placing the content files in a zone writable only by
global zone users while mounting the content directories in read- only mode for access
by the web server. In this way, you can prevent defacement of your web site content even

 for details). You
can of course run multiple web servers on your system, each in their own protected local
zone. You could also use Apache’s Virtual Hosts to do this, but confining each web server
to a local zone allows you to better allocate system resources to it, and if a local zone is
compromised, the other zones are still protected.

Installing the web server software in a local zone uses the command- line interface to
the Image Packaging System described in previous chapters. Using the Package Manager
GUI from your global zone desktop, you search for and find that the necessary package
for the Apache 2 web server is called SUNWapch22. Then, from a terminal command line
in the local zone, install Apache using this command: . IPS

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION130

will install Apache; you then enable it with SMF using , and you’re
ready to access web content by pointing your browser to the host name or IP address of
the local zone.

Tip On OpenSolaris, Apache’s configuration file resides in the directory;
the default and web content files reside in the directory.

In the next chapter, you’ll learn more about deploying the OpenSolaris web stack in
zones.

Managing Zone Resources

One of the concerns about hosting multiple virtual environments on a single server is
competition among the environments for resources. This is true for hypervisor- based vir-
tualization (Xen, VMware, Microsoft Hyper- V) as well as for OS virtualization models such
as OpenSolaris zones. Virtualization models must not only provide security boundaries for
their environments but must also provide configurable resource allocation for them.

Operating systems can allocate resources to applications using different process
scheduling algorithms (rules) depending on how you want processes to be prioritized.
OpenSolaris can use any of the following scheduling classes:

, the real- time class, for predictable latency environments

, the time- sharing class, for guaranteeing all threads some CPU time

, the interactive class, which prioritizes active window processes

, the fixed- priority class, for scheduled batch processes

, the fair- share class, which allocates CPU time according to assigned shares

By default, the OpenSolaris global zone uses the TS and IA classes. You can change
the default on your server to be the FSS class so that you can later reserve a specified pro-
portion of CPU resources to each local zone. To enable the FSS scheduling class, use the

 program:

This sets the default scheduler class listed in the file to FSS; you
must reboot your global zone for this change to take effect. After you have made this
change, you need to decide how to allocate shares to each local zone.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 131

Tip It’s best to test your zone configuration first under the default TS class and observe how it performs;
OpenSolaris is already pretty good at allocating resources to processes and to local zones. If you later
observe the need to give more resources to a local zone (for example, one running a database), you can
enable FSS and adjust that zone’s relative resource allocation.

Shares are an arbitrary number that can be divided into whatever proportions you
want to assign to each local zone. You can assign 40 shares to local zone myfirstzone and
10 shares to mysecondzone, and these zones will get 80 percent and 20 percent, respec-
tively, of available CPU time from the process scheduler. Or you can assign four shares
and one share to each and get the same result. The proportion of the total shares assigned
is used; the total number of shares is irrelevant.

To assign shares to each of your local zones, use the command as follows:

This sequence sets the relative shares for each of these local zones. The
parameter specifies what is to be done if the zone requests more resources than have
been allocated; indicates that no additional resources are to be allocated even if
available. In this way, an application environment running in a local zone can be limited.

In some cases, it’s advisable to also limit hardware resources used by local zones,
either for performance purposes or for software licensing requirements. On a multicore
or multi- CPU system, you can confine a local zone to run on a restricted number of CPUs.
To do this, you need create a resource pool consisting of a set of CPUs (a processor set, or
pset) and then assign the zone to use that pool.

First, enable resource pools using the command:

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION132

Assuming you have multiple CPUs available on your system, you create a processor
set of some number of CPUs using the command, for example:

This sequence of commands creates a processor set named with
a minimum of one CPU and a maximum of four CPUs, creates a resource pool named

 linked to the processor set, and then activates the new configuration
and updates the configuration file. Lastly, you need to tell the zone to
use your newly created resource pool:

You now have your local zone bound to a maximum of four CPUs on your system; it
cannot use more than you have allocated.

Note Depending on the processor family you are using, OpenSolaris will recognize hardware threads or
cores as individual CPUs. A quad- core Intel Xeon processor will present as 4 CPUs; an 8- core CMT SPARC
processor will present as 64 CPUs.

Remember, the term container is used when you constrain and control a zone’s
resources. So, in the previous discussion, it’s now more appropriate to call myfirstzone
and mysecondzone OpenSolaris containers. In addition to shares and pool CPUs we just
discussed, there are additional system resources that you can allocate to local zones, as
shown in Table 7-5. See the man page for for additional details.

The reason for using such configurable zone resource controls is to contain applica-
tions running in local zones so that they do not interfere with other zones. A runaway
process in one local zone can consume global system resources needed by the other local
zones. Limiting a local zone’s resources can prevent problems such as memory leaks or
network based denial-of- service attacks from spreading outside the zone. You can find
more details on zone/container resource allocation at

 and
.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 133

 Table 7-5. Configurable Zone Resources

Resource Description

 Maximum CPU time allowed for the zone

 Number of FSS shares allocated to the zone

 Maximum physical memory allowed for the zone

 Maximum number of lightweight processes (roughly, kernel threads)

 Maximum shared memory segment for the zone

 Maximum swap space allocated to the zone

More OpenSolaris Virtualization

OS virtualization in the form of OpenSolaris zones is just one method of virtualized
environment containment. Although zones are very efficient and easy to create, they are
limited in the type of application environments they can provide. Table 7-6 shows other
OpenSolaris virtualization projects and features.

 Table 7-6. OpenSolaris Virtualization Technologies

Technology Description URL

VirtualBox An open source Type 2 virtualization
application. Runs on OpenSolaris
on Intel and on AMD systems and
supports a variety of guest operat-
ing systems including Solaris, Linux
distributions, OpenSolaris, and
Windows.

xVM A Type 1 hypervisor based on the
work of the Xen community; will be
productized by Sun as xVM Server,
a virtualization appliance and avail-
able as an OpenSolaris community
project.

and

BrandZ Also called Solaris Containers for
Linux Applications; allows Linux
binary applications to run in a
Solaris 10 for x86 zone; does not
require a full Linux kernel, so it is
not a full Linux VM.

and

LDoms Logical Domains

Chip- based virtualization for Sun’s
UltraSPARC CMT/CMP processors.
SPARC support for OpenSolaris will
start to appear in the 2009.06 release.

and

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION134

VirtualBox

If you want to use OpenSolaris as a base OS for running guest operating systems,
VirtualBox is a good candidate. Since it was acquired in 2008 by Sun Microsystems,

cost binary copies are downloadable at

, along with a platform- independent
Software Development Kit (SDK) of APIs and command- line tools that let you create
scripts and services to manage VMs. VirtualBox supports dozens of different operating
systems, although not all features work for some VMs; a list of OSs and their support/bug
status is at .

Download a copy of VirtualBox for your system, but carefully note whether your
system’s processor is 32- bit or 64- bit, because 64- bit guest VMs will not work on 32- bit
OpenSolaris systems. You can check your processor’s instruction set and type using the

 and commands, as shown in the example output in Figure 7-14.

 Figure 7-14. Checking your processor capabilities using and

The VirtualBox executable and support files for OpenSolaris download is a gzipped
tar file that you unzip and unarchive into any directory of your choice. Note that this is an
application not installed using IPS. After installing VirtualBox, download the image
of your preferred guest OS (or obtain a CD/DVD). When you start up VirtualBox (located
in), you can choose to add new guests as in Figure 7-15, selecting the
name, OS type, and version.

After selecting the OS type and version, specify the memory and file sizes you need
for your VM. Select the CD/DVD- ROM item from the GUI, and mount either the physical
CD or the boot file for your VM, as in Figure 7-16.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 135

 Figure 7-15. Installing a new guest VM in VirtualBox

 Figure 7-16. Select and mount your guest VM’s CD, DVD, or file.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION136

At this point, you need to follow the installation instructions for your guest VM. After
your guest(s) are installed, VirtualBox lets you start and stop them, take VM snapshots,
and run guest- specific applications. By default, VirtualBox configures the guest’s network
interfaces using NAT so you will be able to connect to your local network from within the
guests. VirtualBox also supports “not attached” mode (no network) and “host interface”
mode (direct access to your host system’s NIC).

 Figure 7-17 shows two example guest VMs running on OpenSolaris, Windows XP Pro-
fessional, and Ubuntu 8.

 Figure 7-17. Running Windows XP and Ubuntu 8 guest VMs on OpenSolaris using VirtualBox

The xVM Hypervisor

The xVM hypervisor, based on OpenSolaris and Xen 3.1.4, is a Type 1 (“bare- metal”)
hypervisor that supports guest operating systems on Intel and AMD servers. This hyper-
visor has been enhanced with patches from Xen and from Sun for additional security,
hardware support, stability, and DTrace probes. Sun is productizing this technology as
an appliance called xVM Server, which will support Linux, Solaris, and Windows as full

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 137

or paravirtualized guest VMs including support for hardware assisted virtualization. The
xVM Server appliance product includes a browser- based user interface (BUI) for creating
and managing guest VMs; the underlying OS and hypervisor will not be directly acces-
sible. See for the productized
version that will include hardware and software support subscriptions, and see

 for a comprehensive FAQ list about
the product.

But there’s a full community developed base for the OpenSolaris xVM hypervisor at
. It implements OpenSolaris as the privileged

control domain, or Dom0, as the first VM booted by the hypervisor. You log into Dom0 to
administer your virtualization environment. Commands issued from within Dom0 are used
to create and manage guest operating system VMs known as user domains, or DomUs, which
can be Linux, Windows, or UNIX kernels. Figure 7-18 shows the general layout of the Open-
Solaris xVM environment.

 Figure 7-18. The OpenSolaris xVM hypervisor

Currently, installing and configuring the OpenSolaris xVM hypervisor is a some-
what tedious manual process; future releases of OpenSolaris are expected to include
 community- developed xVM Hypervisor setup and management tools similar to those
planned for Sun’s xVM Server product.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION138

Installing the OpenSolaris 2008.11 xVM Hypervisor

Using the Package Manager, install the xVM virtualization files and drivers shown in
 Figure 7-19.

 Figure 7-19. Installing OpenSolaris xVM components using the Package Manager GUI

Create a symbolic link from to :

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 139

then add the following to the end of the file:

Reboot your system, choosing the OpenSolaris 2008.11 xVM GRUB menu option.
Log in again, and use the SMF command to enable the xVM services, as listed in
 Table 7-7.

 Table 7-7. SMF Commands to Enable xVM services

Command Meaning

 Creates a database to store domain configuration data

 Daemon used by xVM admin tools to control hypervisor

 Starts/stops guest domain on boot/shutdown of Dom0

 Daemon used by DomU guests to communicate with hypervisor

Verify that these services are running using the command (Figure 7-20).

 Figure 7-20. Verifying the OpenSolaris xVM services

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION140

At this point, it becomes a bit easier, because you can now use the virt- manager GUI
tool to create and manage guest VMs. This tool lets you monitor existing remote and local
DomU VMs, including Dom0, and steps you through the process of creating new DomUs
(Figures 7- 21 and 7- 22).

 Figure 7-21. Starting the virt- manager GUI

 Figure 7-22. The virt- manager GUI for creating and monitoring VMs

The next series of figures outline the process for using virt- manager to add a new
guest VM to the OpenSolaris Dom0.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 141

In Figure 7-23, you select a name for your VM. Note that this name is used by the
hypervisor to identify individual VMs; it is not necessarily the host name assigned to the
VM, although you can use the same name if you want.

In Figure 7-24, you select a virtualization method. Currently, OpenSolaris is supported
only as a paravirtualized guest.

 Figure 7-23. Naming your virtual system

 Figure 7-24. Choosing a virtualization method

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION142

 Figure 7-25 shows how to indicate the location of your installation media. This loca-
tion can be a locally mounted boot image or DVD (mounted in Dom0), or it can be a URL
pointing to a boot image or to a kickstart file.

 Figure 7-25. Locating the install media

You can choose to use either an existing disk partition or a disk image file as shown
in Figure 7-26. You need to specify the size of the file you need for your VM’s OS and
applications. Note that it’s a good idea while you are just experimenting to save space and
don’t allocate the entire virtual disk; later, when you have a better idea of your VM storage
needs, you can preallocate needed space.

The next step shown in Figure 7-27 selects the network method and host NIC you
want your VM to use. If you have more than one VM and more than one NIC on your
system, it may be useful to spread VM network traffic over multiple NICs.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 143

 Figure 7-26. Assigning storage space

 Figure 7-27. Selecting your VM’s network device

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION144

In Figure 7-28 you allocate memory to your VM. Be sure to leave sufficient memory
for your host domain (Dom0). If your host system has multiple CPUs (or cores), you can
allocate multiple virtual CPUs for better multithread performance of your VM.

 Figure 7-28. Allocating memory and CPU

You are now ready to install and start your DomU VM (Figure 7-29); virt- manager
then allows you to start, stop, and monitor DomU VMs (Figure 7-30).

 Figure 7-29. Ready to begin DomU VM installation

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 145

 Figure 7-30. Monitoring the new DomU with virt- manager

At this point (Figure 7-29), you are ready to install the guest VM. The installation
steps for the guest OS are the same as we discussed earlier, configuring the OS, host
name, network address, user, and root accounts in the usual manner. The virt- manager
tool then lets you start, stop, and monitor your newly installed VM.

BrandZ

Users of Solaris 10 and OpenSolaris often ask whether there’s anything else besides
Solaris environments that can be run in zones. Recalling that zones are not full virtual
machine kernels and that they are really named and highly restricted containment areas
for applications that merely look like VMs, it would appear at first that the answer is no.
But it turns out that not all application environments need a full kernel to support them.
They need system libraries and APIs that in theory can be provided by a different kernel
than the application was compiled for. This is the basic idea behind branded zones, which
allow non- native operating environments to run within an OpenSolaris zone. When an
application in such a zone makes a system call, the call is intercepted and redirected to
a user module from the foreign operating system. This avoids the requirement of a full
VM environment to run the application.

Branded zones are now implemented in both the x86 and SPARC versions of Solaris
10. You can create a Linux, or lx, zone on x86 systems running Solaris 10 or OpenSolaris
that lets you run many Linux binaries within that kind of zone. This can be useful for
running applications compiled for Linux that have not yet been ported to run on Open-
Solaris.

Note A Linux branded zone is not a full Linux kernel, so it cannot support Linux kernel modules, and
it cannot create and use Linux- specific file systems or device drivers. This feature should be considered
interesting but still experimental. Nevertheless, several useful Linux binaries have been successfully run on
OpenSolaris lx zones, such as Maple and MATLAB. A list of runnable binaries that have been shown to work
is here: .

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION146

Another kind of branded zone, which we’ll mention only briefly, is for Sun’s UltraSPARC
Sun4v processors. This allows Solaris 8 and Solaris 9 applications to run in a Solaris 10 zone
and is called the Solaris 8 (or 9) Migration Assistant. Because the new UltraSPARC Sun4v pro-
cessors run only Solaris 10, users of Solaris 8 and Solaris 9 could not upgrade their hardware
to the new processor. So, Sun created a nominally temporary solution using branded zones,
with the intent of helping users finish their migration to Solaris 10. But let’s get back to Linux
zones.

The OpenSolaris implementation of lx zones is still somewhat limited. It currently
only supports the CentOS 3 Linux distribution in 32- bit mode; a copy of the required
installation instructions and CentOS image is available on the OpenSolaris web site at

. Creating an lx zone is
similar to creating a native zone:

Then download and install the CentOS image:

Boot the zone, and log in:

The results of this process are shown in Figure 7-31. You are now in a Linux zone, and
you can load and run almost any user application that runs on CentOS 3.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 147

 Figure 7-31. Installing a Linux (lx) zone on OpenSolaris

One long- missing application from Solaris 10 and OpenSolaris for Intel/AMD is
Adobe’s PDF reader, . A blog on Adobe’s web site reported in March 2008 that
the reader will be available for Solaris and OpenSolaris some time in 2009. It is available
for Linux, however, and if you don’t like running OpenSolaris’s PDF reader, you
can download for Linux and run it in an lx- branded zone. Like any other zone,
you access it with TCP/IP communication tools. In the previous example, you can log in
to the zone (using its IP address, or using its host name if you’ve added it to your global
hosts file) using and X11 forwarding, as shown in Figure 7-32. Note that upon login to
lzone1, we verified that we were in a Linux environment (using) and then ran the
Linux version of to view a local PDF file (). You can run
other applications in this manner, including of course any of the X11 applications (such
as in the example) on the installed version of Linux. Also note (in the smaller ter-
minal window) that the global zone has access to the local zone’s file system and that the
global zone administrator could copy files into any local zone directory. This is not advis-
able, however, and a better practice is to create a sharable global zone file system that can
be mounted by the local zone.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION148

 Figure 7-32. Running the Linux versions of and in an lx- branded zone and
displaying on the global zone desktop using X11 forwarding

LDoms

With the coming release of OpenSolaris 2009.06 you will begin to see support for Open-
Solaris on SPARC processors. This will be a significant development when there is full
support for the UltraSPARC Sun4v processor family. These processors have multiple CPU
cores with multiple independently executable threads per core. For example, the Ultra-
SPARC T2 processor chip 2/) has 8 cores
with 8 threads per core; Solaris 10 now and OpenSolaris in future releases see the equiva-
lent of 64 CPUs when running on these chips. Sun has created a virtualization technology
for these “CoolThreads” processors called LDoms (for logical domains). In brief, this
includes a SPARC- based hypervisor, not unlike the Xen architecture, that allows Solaris or
OpenSolaris VMs to be created on groups of processor threads.

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION 149

There is already an active LDom developer community at
 that is studying and contributing to the open source LDoms code base

for Solaris 10 (Figure 7-33). Watch this site for more news about LDoms support in Open-
Solaris.

 Figure 7-33. The OpenSolaris LDoms community web site

CHAPTER 7 OPENSOLARIS AND V IRTUALIZATION150

Summary
OpenSolaris provides a number of choices for virtualized environments, including zones,
branded zones (Linux), desktop OS virtualization (VirtualBox), and server virtualization
(xVM Hypervisor), with more to look forward to in future releases (LDoms for SPARC).
Your choice depends on the number and type of virtual environments you need and on
the number of such environments your system can support. OpenSolaris containers are
lightweight and efficient but are somewhat limited in the variety of application/OS com-
binations they can support. If you need to run more than one type of kernel, a hypervisor
approach is more appropriate.

We’ve now completed our introduction and review of OpenSolaris’s special features.
In Chapter 8, we’ll put them all together for some practical web development examples.

P A R T 3

Exploiting OpenSolaris’s
Unique Features

Now that you have learned about SMF, ZFS, and zones, it’s time to take advantage of

these features for your applications. The final two chapters present practical examples

and innovative OpenSolaris technologies that enhance and extend your development envi-

ronment and show you where to learn more about this innovative operating system.

153

C H A P T E R 8

A Development Environment
on OpenSolaris

Developer, n: an organism that turns coffee into software.

—Author Unknown

Not terribly long ago, if a developer had wanted to load a development environment on
her laptop, she could count on spending half a day building the operating system and
another half a day getting and loading her tools, compilers, scripting languages, and data-
base. If she were a casual tinkerer or a beginner, add another day for figuring out where
all the knobs are and reading the manuals. By the time she’s ready to get down to busi-
ness, her flash of inspiration may well have smoldered down to embers, or worse, the idea
of having to go through with the build is so wearying that our budding developer chucks
it all in disgust.

Tools that are accessible get used most often—in fact, that’s the first rule of the wood
shop. OpenSolaris has made itself extremely accessible to the developer, whether you are
developing in C, developing in Java, or building web infrastructures and database appli-
cations. You can have a full- featured developer’s “wood shop” in about 90 minutes.

Note It helps to provide a little perspective: we remember loading Solaris (the progenitor of OpenSolaris);
 b- splitting device drivers and schlepping them onto the hard drive via thumb drives; and downloading
and updated versions of Perl, , and gtk+. All of that and more was done manually over a very long week-
end. With OpenSolaris, there are fewer war stories.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 154

Introducing the Web Stack and AMP
Web development used to mean many things, from graphics design and layout to the
actual coding of the engine behind the web page. The end result is a construct that fol-
lows this pattern: a browsable, interactive front end; a database back end to store the
input; and a programming- logic middle to manage the data. For example, you might
issue a database query for audio files that match a certain characteristic, sort them,
generate a web page for them to appear on, and stream them in a certain format.

Regardless of the web application and other technology factors, anything that does
something useful via a browser loosely follows this design pattern. In fact, web commerce
in its heyday was described as using a three- tier architecture, and most web development
was geared toward developing an e- commerce site. This design pattern is now more
familiarly known as the web stack.

The web stack comprises three parts: the web server front end, the
 programming- logic middle, and the database back end. The tools dominating each niche
are Apache, Perl, PHP (or any other popular scripting language), and MySQL. Thus, it’s
called AMP—or LAMP if the operating system underneath it all is Linux. The web stack
has undergone hybridization as it is being used; AMP is no longer strictly limited to its
eponymous part. That is, PostgreSQL can stand in for MySQL, and Ruby can stand in for
PHP; you may even have seen references to the LAMR stack.

Getting the AMP Stack
On your OpenSolaris desktop, open the Package Manager (IPS) GUI. The plain- vanilla
AMP stack is called, not so surprisingly, . Your other choice is the stack.
Select the box next to the package, and click the Install/Update icon; or, select
Package Install/Update from the drop- down menu, as shown in Figure 8-1.

You will be asked to confirm this action, as shown in Figure 8-2.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 155

 Figure 8-1. Selecting the package for installation

 Figure 8-2. Confirming installation of the package

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 156

Taking a Tour of the Command- Line Package Manager

For the inveterate command- line user, the command behind the IPS GUI is . Here’s an
example of searching for a package from a remote image repository:

 is an example of a Fault Management Resource Identifier
(FMRI), which you encountered in Chapter 5. Incidentally, FMRI is also used to identify
hardware components in the Fault Management Architecture, part of OpenSolaris.
is the scheme. What follows up to the sign is the name of the package and then the
component version, build number (which matches the output of), and branch
number. The last of these is the timestamp. You will see multiple, and seemingly identi-
cal, returns from ; in fact, these are all different packages with their FMRIs
abridged. For the full FMRI, run this:

The package version returned is always the most recent package. You should not
have to interpret what these numbers really mean, because the FMRI uniquely identifies
the package for the purposes of repair and update. You can also search the IPS repository
at .

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 157

You may be curious as to what the difference is between the two packages and
ev. They are both metapackages, or package clusters. This means they contain only

other packages. Installing a metapackage installs the packages on which they depend.
You can leverage this knowledge and look at their dependencies to see which other pack-
ages constitute and ev. Here are the contents:

Running the same command for the package shows that it has only the basic
Apache, MySQL, and PHP packages, with a few Apache plug- ins. provides all of
this, as well as Tomcat, NetBeans, the Squid proxy, CVS, Mercurial version control, and
much more.

The CLI command equal to the action you’ve taken with the Package Manager GUI is
as follows:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 158

Next, you need to initialize your web stack for your workspace. You are logged in
as the RBAC profile Primary Administrator, and you have assigned as a role. You
must modify some t- owned files’ attributes to enable you to work with them. The
RBAC profiles and authorization tokens for these new services also have to be added.
The initialization also adds items under the Developer Tools Web Stack Admin menu
 drop- down. You can see this in Figure 8-3.

 Figure 8-3. Initializing the web stack

You will see the web stack initialization in a terminal window, as shown in Figure 8-4.
 Figure 8-5 shows the new menu after initialization.

Note ZFS implements extended ACL, sometimes called NFSv4- style ACL but more precisely described as
ACL based on the Posix- draft specification. does not work; you need to view extended
ACL. Be careful, and check your path. If you take the default login environment without making any modifi-
cations, most likely will be ahead of and you are using GNU . The GNU
switch does something entirely different from the Solaris switch, which is located in .

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 159

 Figure 8-4. Script initializing web stack

You can see the difference in the following example:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 160

 Figure 8-5. New menus after web stack initialization

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 161

Note You are installing a development environment, which is quite different from a production environ-
ment in aspects of security, manageability, customization, and so on. Typically, production- environment
Apache runs as the UNIX user or group, and MySQL runs as the UNIX user . It
has not been good practice to run these services as for a long time. You will need to develop your own
method for deploying your newly minted web application onto a production server. For a production server,
we do not advise you to use to give a number of users rights to modify it, as our example
here showed.

At this point, you can start up your Apache and MySQL servers by selecting from the
 drop- down menu. Alternatively, you can issue the following commands:

Even though the full FMRI is and
, SMF operates on the first unique match principle, so

and are OK (however, is not, because there is an instance of).
You can view the process ID (PID) and contract ID (CTID) of these services by

running this:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 162

At this point, you have a vanilla AMP environment on which you can begin building
your web app. Beginners and tinkerers can choose to create and load a very simple AMP
example, built with PHP, jMaki, and MySQL, under the Sample App menu.

Making a Case for Containers
Before you open the valves and steam full- speed ahead with the AMP stack you’ve just
loaded, perhaps you want to build your application inside an OpenSolaris container. You
can refer to Chapter 7 for discussions on zones and virtualization. Here are the reasons
why you should consider running your application inside a zone:

Fault and resource isolation: Zones are designed to be logically isolated from other
zones, and software faults in one zone have no impact on any other zone. If you
impose zone resource control, you also limit the impact of a resource- hogging
application on other applications. You can also allocate separate storage space
to each zone and not worry about which application is overusing its allotment.

Security isolation: Zones are execution environments bounded by a reduced set
of privileges. A process executing in a zone cannot escalate its privileges to access
data in any other zone. For example, say a security vulnerability is discovered in
an application. If the application is run in the global zone, the exploit will affect
the entire system. If the application is run in a nonglobal zone, any effect from the
exploit is limited to the nonglobal zone only.

Caution There are cases when a zone is delegated an entire physical device such as tape, disk, or
 CD- ROM drive, as opposed to giving the zone limited access to an LOFS file system. This will present oppor-
tunities for faults incurred by the device to affect the entire platform. In general, we don’t recommend this
practice. We prefer delegating file systems instead of raw devices. If you’ve ever wondered what the zone
configuration directive is for, the mount option stops the zone
from opening any device node present on the mount.

Delegation: You can delegate the administrative and management function of an
application running in a zone to a set of administrators with superuser privileges
in the zone but not the entire system.

Scalability: While you’re building your application on a desktop or laptop plat-
form, you may not yet be thinking of the day when your brainchild becomes
a breakaway success and it’s no longer feasible to run everything on a single
platform. If you compartmentalize your web stack and build within a container,
you will be able to horizontally scale your application. Anywhere you are able
to deploy a zone, you will be able to run your application. Recently, a federated

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 163

database model, sometimes referred to as data sharding, has been employed with
some success. The idea behind data sharding is to separate, or “shard,” the data
into many parallel databases, called silos. Each connection will be directed to the
silo containing the data it needs, instead of to a single database server or a number
of replicated database servers containing all data. A zone is a very good solution
for this architecture without incurring an additional hardware cost.

Portability: Zones can be quickly built and torn down without much administra-
tive overhead. If you take steps to ensure your web stack can run within a zone,
your application will run anywhere you can export or rebuild the zone. NAS and
SAN storage have been used creatively to provision zones and applications on the
fly. For example, build a zone on a NAS or SAN that is accessible by multiple hosts.
The zone can be detached from one host and attached to another, and within min-
utes the application can be provisioned on a different host. For the same reason,
zones make efficient test and staging environments to pilot new applications or
test code changes.

Building Applications for a Container Environment
We said that zones are virtual OS instances with a reduced set of privileges. For this rea-
son, some actions possible in the global zone will not be permitted in a nonglobal zone.
Let’s examine how this works to come to a better understanding about why things behave
the way they do in a zone.

Introducing Zones and Discrete Privileges

The OpenSolaris access control model differs from traditional Solaris (up to SunOS 5.9) in
that Solaris used the UID to determine who has the privilege to do what. Processes run-
ning with UID 0 have unlimited privileges to the system. Processes running with UID not
equal to 0 have privileges to their own files and directories, as well as files and directories
accessible by their GIDs. This was the reason why the SUID bit was so dangerous. Open-
Solaris breaks the omnipotent root powers down to 74 discrete privileges, enforceable
by the kernel at runtime. Formally, this is referred to as process rights management. Note
the word process. The privileges are enforced not at the user level but at the process level.
We’ll talk more about this in the “Installing Tomcat in a Container” section.

You can read the man page for the description of all the available privi-
leges. Take, for example, the privilege . A process running with this
privilege is able to read directories and files it doesn’t own; more precisely, a user running
a process with can read files that user doesn’t own. Enforcement on
reading files is no longer “Is UID == 0?” Rather, it is “Does the process have the correct
privilege?”

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 164

You can view all available privileges with this:

To view privileges in a zone, log in to the zone, and run this:

To view the description of a privilege, such as , run this:

Note the difference between the number of privileges between the global zone and
the nonglobal zone. Privileges for nonglobal zones—more precisely, privileges for pro-
cesses running in a nonglobal zone—are restricted to maintain isolation between zones
as well as to prevent an action in a zone from having a system- wide impact. An upper
limit is set for these privileges to prevent zones from escalating their own privileges.

You will read about DTrace in the next chapter, but for now, notice that no DTrace
privileges appear in the zone list of privileges. By default, you cannot use DTrace in
a zone; however, you can change this provided you add a couple of privileges. They are

 and . Add the following to the zone using , and
reboot the zone:

It’s not just a matter of picking out privileges to grant to a zone, cafeteria- style. There
are privileges that a zone will never be able to assert, such as . A zone
that can read kernel- level data would violate every principle of containment and isolation.

Qualifying Your Application for Zones

So, what does all this mean for the web app you’re building? There are things that your
application should take care not to do. At one time, there was a dependable list of
privileges not available in a nonglobal zone, such as , which allows
a zone to directly access the network layer. That limitation went away when a zone of
 ip- type “exclusive” was integrated. At one time it was not possible for a zone to assert

 to change the system clock; now it’s a usage example in the OpenSolaris

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 165

documentation. With future versions of OpenSolaris, even more restrictions may be
lifted, with caveats. Although there is no hard rule about this, here are a couple of things
to keep in mind:

device, plumb interfaces, modify routing tables, use , or modify attributes of
.

 or load or unload kernel modules.

-
form configuration.

of the same NFS server.

This is a swiftly moving area, and the thing to keep in mind is this: will the action of
my application have an unexpected and deleterious effect on another nonglobal zone or
the system? When in doubt, be conservative.

A tool called can help you determine whether what you want to run in a zone
will work. It scans the source code for API calls that are not permitted in a zone. This tool
is somewhat dated, and given how quickly things can change on OpenSolaris, use it with
caution.

You can get the Solaris Ready Test Suite 1.2 here:

You will find a guide for and examples at
.

Installing Tomcat in a Container
Create and install a zone. Refer to Chapter 7 for how to do this. Remember that
OpenSolaris implements ZFS for the root file system, so create a ZFS file system for
the zone first:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 166

Note If you’re familiar with zones on Solaris 10, you may notice that the zone brand is not type
and that the zone installation actually pulls packages from instead of copy-
ing them locally. - branded zones are independent of the global zone, and packages you’ve pulled for the
global zone will not be installed in - branded zones. This is why, if you’ve already installed into
your global zone, it will not be automatically installed in any nonglobal zone you create.

For identification purposes, we’re installing Tomcat into a zone called . Log in,
and install the IPS package SUNWtcat. You may have to tweak the network configura-
tion inside the zone; for example, modify and to add
name service for your network. Needless to say, the network connection inside your zone
must be a working one so you can access the OpenSolaris package repository.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 167

Tomcat 5.5.27 runs on J2SE 5.0 or newer. If you just want to run Tomcat, you need
only the JRE. If you plan on developing with Java, you’ll want to install the entire JDK.
A search of the package repository turns up only SUNWj6rt, so we’ll install that along with
SUNWtcat.

There exists a reserved UID:GID, , traditionally used to run Apache.
You can run Tomcat under this UID. If you are concerned about the separation of admin-
istrative functions in case you want to run another instance of Apache, create another user
to run Tomcat. We like to keep a tidy file, so we use the existing account and
change the home directory to . Then we need to set some Tomcat environment
variables.

If you have worked with Tomcat in a single directory hierarchy such as
, you will find that the Tomcat version distributed by Sun follows the Filesystem

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 168

Hierarchy Standard (which can be found at). SUNWtcat splits
the and directories under and .

Note Shells and UNIX flavors are funny things. Sometimes a big headache can be relieved (or be brought
on) by a subtle distinction. The UNIX user account is marked as in . If you want
this user to be able to run cron jobs, change to . is sourced for login shells, while

 is sourced for nonlogin shells. You need because Tomcat will be started from a nonlogin
shell by SMF, not a login shell. This will apply only if you are using bash; if you’re using another shell, know
how that shell sources profiles and sets environment variables.

You may want to enable SSL for Tomcat. This process is similar to how it’s done on
other UNIX platforms. If you have elected to use a directory such as or

 as the home for the user , you need to modify the directory to enable
 and put a file there.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 169

Modify to uncomment the SLL connector port.
You can add an ACL for to be able to modify if you are editing files as

. You can comment out the non- SSL connector on port 8080 if you want.

If you want to start Tomcat as user , you need to do this:

Referring to the discussion on privileges (in the “Introducing Zones and Discrete
Privileges” section), you are assigning an additional privilege to user , named

. You can see this change in . To get a description of the
privilege , run:

 Although we have configured Tomcat to listen on 8080 and 8443 for non- SSL and
SSL connections, respectively, it’s a good idea to give this privilege to in case you
decide to add other web server instances or user different ports later. It will save head
scratching should you decide to fire up an instance of Apache 2 on port 80.

Note Although we add or take away privileges from the user, they are enforced on the process. This is
a subtle but important distinction. The user does not have privileges; the processes the user starts inherit
their privileges from their privilege profile. You can also add or take away privileges from a process itself,
but this method is only good for that process and for the duration of that process.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 170

At the time of this writing, SUNWtcat does not come with an SMF manifest. You can
find a basic Tomcat manifest, , along with all the source code on this book’s
page on the Apress web site (). A few things from that file deserve
more attention.

Typically, HTTP services put their manifests in , and their
service names are under the network functional category. For example:

The Apress manifest puts the service into , and the name of
the service will be . This is done with this line in the file:

We do this to prevent the possible collision of the manifest with future manifests for
Tomcat 5, should the OpenSolaris community decide to bundle one with the next version
of the SUNWtcat package.

The start method includes a block to add the privilege, but not the stop
method. That’s because when Tomcat shuts down, it does not need to bind to a privileged
port. SMF starts Tomcat as the user ; but with privileges explicitly assigned, you
can run as if you want. Still, if the sight of a slew of processes running as
gives you heart palpitations before remembering that it’s all done with discrete privileges
now, run as to be consistent with current practices. The following code snippet
shows the start and stop methods for Tomcat 5:

Every time a spawned process exits, is sent to the parent process.
 SMF interprets any external signal sent to a service as an error and restarts the service.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 171

Likewise, if a process core dumps, SMF will restart the service. The following snippet tells
SMF to ignore these conditions and not to restart Tomcat:

Before importing your SMF manifest, you should start Tomcat manually to ensure
that it works on its own before sending it off to SMF. Start it as the user , and
also remember that will need permission to write into to create
and write logs. You can do this with ZFS ACL. If you’ve gone through the key- generating
step, you’ve done this already.

There should be a process listening on port 8080:

Now, from another computer (which could even be the global zone), open a browser
and point to . You should be greeted with the Apache Tomcat/5.5.27 wel-
come page. Success!

Get the file from this book’s home page on the Apress web site. Put it in
the directory, and import it. Before working with this manifest,
remember to manually shut down the Tomcat process you just started. You will have to
do the following as , in the zone :

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 172

Now you have an imported service in the disabled state:

Enable the service, and the switch shows the contract ID as well as the process ID
of any process running within the service. Here, the PID 12301 is the Java process running
under the Tomcat service:

Installing MySQL
MySQL installs in and . You’ll find sample config files and in

. The user and group have already been created and own the data
directory in l. It installs with an SMF manifest and method. This must come as
a refreshing breath of fresh air to DBAs turned reluctant systems administrators who have
had to install MySQL, make the data directories, modify config files, add users, and grant
privileges—and that’s before any real database administration!

Still, there are a few things to be done. The default is copied from
nf. You’ll need to change this if your database is large and your system

memory allows for more than 64MB.
Common and accepted practice suggests that you have created the data, administra-

tion, binary log, and backup directory. Some directories are implicit. For example, the
data directory for this installation is , but the variable is not
set in . We make it a habit to spell out everything, even when unnecessary. The vari-
ables serve as comments in the config file and save us time in hunting down the location
of our directories. Add the following lines to , under the MySQL server block:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 173

You need to create the and directories. The query log is optional. Use
caution when you turn query logging on; it’s not recommended for a production environ-
ment. Logs grow without bounds unless you explicitly tell MySQL to stop logging queries.
If you forget to turn this off on an active database server, you can run out of disk space
and into trouble very quickly.

Note Runtime options to invoked at start time override the variables set in . For example,
had you set , it would not have taken effect, because the MySQL method
invokes with E}, where happens to be

.

Enable MySQL. The SMF manifest starts as the user and group .
Check that the database is functioning and answering queries:

Set a password for . Here we are setting the password for the user at localhost:

Alternatively, you can run this:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 174

To log into MySQL to secure it, you’ll need the current password for the user. If
you’ve just installed MySQL and you haven’t set the root password yet, the password will
be blank, so you should just press Enter here:

Setting the password ensures that nobody can act as the MySQL user with-
out the proper authorization.

You already have a password set, so you can safely answer with an .

All done! If you’ve completed all the previous steps, your MySQL installation should
now be secure.

To see the current user list for MySQL, run this:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 175

In the previous example, you are UNIX user , connecting to the database as user
. The prompts you for a password. Checking the user list, you can see that the only

user allowed access to the database is user at localhost. You can commence adding
users and adding tables to the database, either by using SQL or by using the Java Data-
base Connector (JDBC) driver Connector/J. The Connector/J driver sits between a Java
application and MySQL database and provides the API for the application to manipulate
the database.

Taking a Quick Tour of NetBeans IDE
The NetBeans integrated development environment (IDE) installs as part of the
package. Open it by selecting Applications Developer Tools NetBeans IDE. You can
see the start screen of NetBeans in Figure 8-6.

 Figure 8-6. NetBeans IDE start screen

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 176

Clicking the Quick Start Tutorial link launches a Firefox browser with
 loaded. The Projects tab on the left should be

empty. To start a new project, select File New Project. You’ll see a dialog box like the
one shown in Figure 8-7.

 Figure 8-7. NetBeans New Project dialog box

Assuming you want to test- drive NetBeans with a new Java project, choose Java
under Categories and then Java Application under Projects. Click Next. You’ll be asked
for the name of your project and where you want it stored. Our example is everybody’s
favorite programming primer, HelloWorld. Enter the project name. The default location
to store your projects is in your home directory, under the directory,
which will be created for you, as shown in Figure 8-8. Click Finish.

A new Java application template will be created for you. Change the following:

to this:

 Figure 8-9 shows you the code body from your HelloWorld project.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 177

 Figure 8-8. NetBeans new Java project screen

 Figure 8-9. New Java application template and code

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 178

On the Files tab, which was previously empty, you will find the directory hierarchy
of your code source. To build your application, click the Run button (the hammer icon)
on the toolbar at the top. You can also build from the Run menu. You can see the build
progress in the window below the code. When your build finishes successfully, you will
also see a small line of text at the bottom left of your window saying “Finished building
HelloWorld (jar).”

Click the Run button on the toolbar, or choose Run from the Run drop- down menu.
Your code runs in the output window shown at the bottom of Figure 8-10.

 Figure 8-10. Building and running your Java application

You can find extensive documentation for NetBeans at
.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 179

Using Subversion
Subversion is a version manager; it manages the recording, storing, cataloging, and
retrieving of different versions of a file. If you are a developer, version control is essential
to managing source code, scripts, and whatever else a developer needs to build. It enables
many developers to access and modify one file, and it manages the storing of that file so
all the modifications to the files are tracked and committed.

 includes the SUNWsvn package, which is Subversion 1.4.3. You need to set up
Subversion first, before NetBeans can integrate with it. Specifically, you need to set up the
repository, import your working files, and manage the access method.

Creating the Repository and Managing Files

To set up the repository, run this:

FSFS is a file system implementation from the folks who created Subversion. It is the
alternative to storing your information in the BerkeleyDB database format. We use FSFS
for small to medium- size projects. To read about the pros and cons of FSFS, see

.
You need to create the Subversion group and add any users who would need access

to the repository to that group:

 the file, and add your user to the group. Or make the group the default
group for the user.

Modify the ACL to allow group access to :

You probably have some files that you’d like to put under Subversion control. For our
example, we’ll use files under the directory :

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 180

Import your files into the repository. In this example, we are importing the files from
 into a folder called :

Show what’s in the repository:

 means make your own workspace a copy of what’s currently in the reposi-
tory. Note that we’re doing this now as a non user. makes a directory in our
current directory called , mirroring what’s in the repository:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 181

Start working in your workspace. Using and signals Subversion
that you want these files deleted and added from the repository itself, when you commit
the changes:

Modify and save your .

This is the same as an . We’ll use and as an example:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 182

The plus sign in the status output indicates that the item isn’t merely scheduled for
addition but scheduled for addition “with history.”

You can show the difference between the working and base copies using :

 checks your current workspace against the latest revision in the reposi-
tory. If other people have committed new changes to the repository since you checked
out your files, you will be notified that a conflict has occurred. This is so that you do not
overwrite other people’s recent changes by committing your changes wholesale. In this
example, there are no conflicts. Subversion is telling you that you are at revision 1, like
the repository:

Committing your changes updates the repository and imprints a +1 revision number:

If you get this message, check that the user who is doing the has access
permission to the repository:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 183

Using the Manage Access Control Method

We will now show how to set up a Subversion server that provides access to the reposi-
tory over TCP/IP. This is the scheme. You can also tunnel under , which is the

 scheme for better security, if you have an environment where you need to enable
developers’ laptops to connect to the Subversion server from the Internet, for example.

Simple svn Remote Access

Starting the Subversion server is very simple:

The switch tells to run as a daemon, and the switch specifies the full
path to the repository. runs on port 3690. You can see this by running on
the process ; look at the sockets it has opened and the port number in the follow-
ing code snippet:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 184

To set Subversion for simple client remote access, modify the file
.

Anonymous users get no access, and authenticated users get read/write access (read
is implicit when you grant write). This is further refined to who can write to which direc-
tory in the file :

Uncomment the following two lines:

Modify the file . This is where you set up users to access the
repository:

Keep in mind that this user and password roster pertains to Subversion only. This
is not the UNIX user or user in the file. In fact, there is no such
UNIX user on the system.

Modify the file . This is where you set up fine- grained privi-
leges of who can read and write to which directory under the repository. This is called
 path- based authorization, and you can opt to skip this step if your development group
is small or if you trust all authorized users to know what they are doing and not commit
changes where they ought not.

In the previous code snippet, the code block says to create two groups,
and , and assign users to each group. In the next block, the directory location
(the root of the repository, not the root directory of the system) is readable and writable
by group ; everybody else gets read- only access. As projects grow, you can grant read
and write permissions to other groups, such as other directories, for example:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 185

This is all you need for simple access. From another host, you can check out
a workspace, make modifications, and publish your changes. In the following example,
UNIX user from host is checking out a workspace as Subversion user .

 is prompted for a password, which is , which was what we set for user
in .

The previous actions will allow you to access your Subversion repository remotely,
as long as you are working in a private and safe network environment. If you are working
remotely, you will need to set up your Subversion server to use + .

Note Make sure the firewall protecting your Subversion server allows access.

More Secure svn+ssh Access

The simple access depends on an server listening for connections from the
 client and authenticating using a user and password file defined in . The

 scheme does not use at all; authentication is done by . A remote user
accesses the repository with her own UNIX credential, over the SSH connection. What is
actually happening is that the user is spawning her own process, more precisely,

 for tunnel mode. This process is created and terminated for every invocation
of Access control is via the permission on the repository. It is as if a user on the
Subversion server is reading files locally.

To minimize having to create 20 different UNIX users on the Subversion server, you
can create a single user and use that as a shared account for all remote users. You may
wonder whether this will make it seem like every commit to the repository looks like it
comes from user . The answer is, yes, it will, but there’s a trick around that. Read on.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 186

First, create the user on the Subversion server, which is host in our case:

From a remote server, access the repository. In our example, we are logged in on host
 as UNIX user . We use user to avoid any confusion about SSH and

privileges:

You should note a few things about the previous command. The UNIX user on
host is accessing the repository on host as user . Nothing special needs to be
done on host , except to make sure that has a valid password and has read access
to the repository on . All that user needs is the password. Pay attention
to the two slashes () and , because frequent mistakes are forgetting the two
forward slashes and forgetting to put in the notation. You access the repository
with the absolute path, not the relative path starting from the repository.

Every time you invoke , you will be prompted for a password. Actually,
every time the client makes a connection to the daemon, there is an authen-
tication challenge. You don’t notice this, because the client caches the password for you.
With , there is no caching going on.

To get around this problem, set up public/private keys for user to be automati-
cally authenticated.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 187

Note The following section is a short detour into the murky waters of SSH key generation. There are
many vendor implementations of SSH on the market, each of them slightly different. There are SSHv1,
SSHv2, RSA1, RSA, DSA keys. Putting them together in the right combination could possibly cause a normal
person to tear his hair out. We’ll describe the method to generate keys between two Solaris servers. If you
are using a non- SUN platform for your remote client, read that vendor’s SSH documentation carefully,
and make sure you understand it before embarking.

Generating the Public/Private Key Pair

Our remote client is . Our Subversion server is . We need to generate keys for
user , keep the private key in , and give the public key

 to . Here’s how we do that.
Generate the private and public key pair, and put them into the files and

 in your home’s directory:

You may have read elsewhere that in order to have a challenge- free login, you should
use an empty passphrase. That’s because you will be prompted for your passphrase (not
your login password) when you initiate an SSH connection. An empty passphrase is an
invitation for trouble. Go the extra step and do it right. We will show you another trick to
overcome the passphrase challenge.

Keep the private key safe. Copy the public key to ’s directory on .

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 188

Now, try to from to and log in as user :

You are prompted for the passphrase you entered when you made the keys. Note
that the passphrase is not the same thing as your UNIX password. To bypass this step,
start a shell with nt, and use to add the key to nt. You will be
prompted for a passphrase only once.

From the bash shell, from now on everything is smooth sailing. Notice you get no
challenge of any kind:

Log out of . Try it with :

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 189

Modifying files, updating from the repository, and publishing and committing
changes at this point are the same as with the simple remote client, except that you
are tunneled under the safety of SSH.

But wait, did we not say there was a trick so not every commit looks like it came from
user ? Yes. And you implement that trick by making one more change to ’s

 file. Right now, the content of that file looks like this:

Modify this line to look like this:

The directive tells to run what’s in the double quotes, instead of default-
ing to . The switch tells to take action as the named
user, instead of user . Do not be mistaken—you are not connecting with the daemon

. You are actually launching your own in tunnel mode. So, ’s
 file could look like this:

Of course, user and everyone else who wants to use this method must gener-
ate their own public/private key pair, and the file has to include a line to
identify the user and their public key.

Caution You’ve modified the files for user to start every time
authenticates you. This will impair your ability to into host as user normally. You won’t be
able to launch a shell; instead, you’ll be greeted with something like this:

(success (1 2 (ANONYMOUS EXTERNAL) (edit- pipeline svndiff1 absent- entries)))

You are seeing the output from . In fact, you would see the same text if you open your browser to
 if the daemon were running and accepting connections on 3690. So, don’t

 to do any shell work.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 190

Note When working with SSH, it helps to have logging turned on. logging is not on by default. You
need to modify your to add this line:

Be careful editing this file. Tabs and whitespace matter:

Restart :

 logs to . You might need the package SUNWspnego to resolve the problem you will
see in . Basically, is complaining that it’s missing a GSS- API library, as you see
from the following snippet from :

You will find a Subversion SMF manifest, , along with all the
source code on this book’s page on the Apress web site. Put the manifest in

, import it, and start it. The following code block shows how to import the
Subversion manifest, enable Subversion (make Subversion run as a daemon), and check
the Subversion process ID and contract ID:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 191

This was by no means a comprehensive or advanced treatment of Subversion, which
a rich and flexible tool that allows complex manipulation of the code base. You can find
an excellent comprehensive guide, written by the Subversion developers and community,
at m/.

Integrating NetBeans with Other Products
The following sections cover how to integrate NetBeans with Tomcat and Subversion.

Integrating with Tomcat

You may find it convenient to integrate your Tomcat server into the NetBeans IDE. This
allows you to add Java application projects directly to Tomcat after debugging and run-
ning the project, in addition to stopping, starting, and debugging your Tomcat server
from NetBeans.

In the example given in this chapter, you’ve configured Tomcat in a container. If
you’ve followed the steps to start NetBeans on your desktop or laptop, your IDE is loaded
in the global zone. As of this writing, there is no way to integrate NetBeans with a remote
instance of Tomcat, running on a different server, even if that server is a nonglobal zone
sharing the disk space with NetBeans. The reason for this is that the integration allows
you to start and stop Tomcat from NetBeans; NetBeans runs in the global zone and will
have no view into the process space of any other zone. Even if NetBeans can access the
zone’s and directories, there’s no way NetBeans
can launch a process that belongs to the zone itself. So, for the examples to follow,
you will need to repeat the steps to start Tomcat in the global zone. That is, you’ll need
to modify the user profile for the user and make sure that user has access per-
mission to and the right privilege. Then you’ll need to modify ,
generate keys for SSL connection, and import the Tomcat manifest. You’ll be working
with the NetBeans IDE and Tomcat server running in the global zone.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 192

Start the NetBeans IDE. On the left column, select the Services tab. Right- click the
Server icon, and select Add Server from the drop- down menu. Choose the Tomcat 5.5
server, add a descriptive name, and click Next, as shown in Figure 8-11.

 Figure 8-11. Adding a Tomcat server instance in NetBeans

Recall that the SUNWtcat package splits the and directories between
 and . is , but NetBeans

expects to be able to write into the conf directory as well. You need to make a symbolic
link, linking the directory under . You’ve already made everything
under writable by when you set up Tomcat:

Specify as . For , any directory writable
by NetBeans will do; we keep ours in our home directory. Select the box Create User If It
Does Not Exist, as shown in Figure 8-12. Then click Finish. After this, you will see a Tom-
cat 5 instance on the left side of the IDE screen, under Server.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 193

 Figure 8-12. Specifying Tomcat directory locations

Integrating with Subversion

So, you’ve worked very hard to create a working Subversion repository, accessible with
two schemas, and . You are tired from schlepping files back and forth.
You’d rather check out and commit your code from within your IDE. The good news is
you can do that, and it’s a simple process. The bad news is that because of bug 6192335
(at the time of this writing), a file critical to the public/private key exchange for GUI tools
is missing.

Note You can view, and file, bugs against OpenSolaris at . Develop-
ers of OpenSolaris consider the OpenSolaris code base distinct from its predecessor, Solaris 10. Bugs against
Solaris 10 can be viewed and filed at . This bug is actually filed against
the Solaris 10 code. It hasn’t made it to the OpenSolaris defect tracker yet. You can see bug 6192335 at

.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 194

For secure remote access from the IDE, you’ll have to set up Subversion to run over
HTTPS, which will not be covered in this chapter. For simple access, you can specify
this from the IDE.

In the NetBeans main window, select Versioning Subversion Checkout. Remem-
ber that the schema relies on the daemon running, and authentication
is done with users and passwords specified in the files in . Figure 8-13
shows a checkout from the repository on host .

 Figure 8-13. Specifying the location of the Subversion repository and logging in

You’ll get a screen prompting you for the repository folder. Click the Browse button,
and select . Figure 8-14 shows this. Click OK to return to the previous screen.

Choose the local folder where you want to put your new directory. In this example,
 will be created under the directory. Check the box Scan for

NetBeans Project After Checkout, as shown in Figure 8-15, and then click Finish.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 195

 Figure 8-14. Selecting the directory to check out

 Figure 8-15. Specifying the local directory and checking out

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 196

You will get a box asking whether you want to create a new project from the code you
have just checked out, as shown in Figure 8-16. Click Create Project.

 Figure 8-16. Creating a new project from code you’ve checked out

You’ll come to a New Project dialog box, as shown in Figure 8-17. Select Java and Java
Project with Existing Sources. Click Next.

 Figure 8-17. Choosing Java Project with Existing Sources

Select the location of your project; in our case, it’s . Recall that you
checked out under your home directory’s directory (see
 Figure 8-18). Click OK.

NetBeans will create a new project for you, called . You will find it on the
Projects tab. Now you can start working with your local copy of files inside
NetBeans. You can see your new project and its files on the left side of Figure 8-19.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 197

 Figure 8-18. Selecting the location of files for your new project

 Figure 8-19. Selecting the location of files for your new project

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 198

You can go through similar steps to import local projects in NetBeans to the Sub-
version repository. Keep in mind that makes changes to the local copy, and

 makes changes to the repository. Import requires you to add a text memo. In
 Figure 8-20 we’re importing our HelloWorld project, which I wrote in my introduction to
NetBeans. Click Next.

 Figure 8-20. Importing a new project into Subversion

On the next screen, shown in Figure 8-21, you are asked to confirm that you want to
import (or commit) these files to the repository and how they will be created, meaning as
directory or text. Click Finish.

When you have modified your local copy of the files, you can select Versioning
Subversion Update, before you choose to commit. Note that you need to have the
files underneath the project highlighted, before NetBeans will give you a menu choice of
Update.

Under the Window menu, you can select Output Version Output to view the text
output of your actions, as shown on the bottom of Figure 8-22.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 199

 Figure 8-21. Verifying the files you want to import

 Figure 8-22. Text in the output window

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 200

Putting It All Together with IPS
IPS is the OpenSolaris packaging system. You connect to an IPS server (the default is

) to install packages, check for updates, and get the latest
version. IPS resolves dependencies on other packages and fetches them for you. You’ve
built a web app, and it’s a success. Now it’s time for you to package it into IPS and make it
available for other developers.

Note The process of getting a package into the OpenSolaris repository is governed by the OpenSolaris
advocacy group. The following example demonstrates how to generate such a package and publish it into
your own local package server. But in order to make a package available from

, you need to check with the advocacy group. You can run your own IPS repository and make your pack-
age available there.

First, you need to make your own local repository. You have an IPS server loaded on
OpenSolaris, and you just need to specify the port number and the location of the reposi-
tory and fire up the service. Here’s the SMF service for the IPS server:

Use to interact directly with the SMF repository. We know, it’s confusing.
There’s the SMF repository that holds all the SMF manifests, the Subversion repository
that holds your versioned code, and now the IPS repository that holds packages. Reposi-
tory is a word overloaded with meanings, so you need to pay attention to the context.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 201

In the previous code snippet, lists the property group, and the com-
mands set the port to 8000 and the location of the IPS repository to .

Commit your changes, and start the IPS package server, as shown here:

Start a package:

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 202

You are getting the error because the command gets back a
variable, . You need to include this ID with the rest of the and

 commands to tell the repository that you mean to add it to a package you’ve just
opened, identified by the publication transaction ID . The way to do
this is with the built- in shell command . Note the backticks.

Now, add files. Note that the path value is relative to your current path:

Add a description and close the package:

You can see the packages you’ve published to your local repository by opening your
browser to , as shown in Figure 8-23.

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 203

 Figure 8-23. Viewing the IPS packages you’ve just published

But now you’ve made a mistake, and you want to modify or delete one of the pack-
ages you’ve recently published to your local IPS server. Unfortunately, there are no tools
to do that as yet. If you want, you can muck around in the repository,
as we’ve specified it. You’ll have to edit the catalog and index files, plus everything else
that’s been written there. This area is not well documented, so play here with caution. The
tools to better manage your package are coming soon in a future release of OpenSolaris, or so
we’re told. Watch the IPS development space at .

CHAPTER 8 A DEVELOPMENT ENVIRONMENT ON OPENSOLARIS 204

Summary
You’ve been on a brief tour of the web stack on OpenSolaris. Besides some minor quirks,
we hope you’ve found it easy to install, configure, and use. The toolset is only one part
of the story. The underlying platform can also contribute to the success and failure of
a project. The tools can be good, but if the platform is unstable, hard to manage, hard to
upgrade, and hard to patch, the project will not last long on that platform because of hos-
tility from the people who will have to use and manage it.

OpenSolaris comes with the Fault Management Architecture. On particular hard-
ware, FMA has the ability to detect CPU and memory error and may be able to remove
them from service without taking down the entire platform. SMF monitors and manages
your application as a service, which obviates the need to run a process checker. Basic
Auditing and Reporting Tools (BART) is a simple but effective file integrity checker, which
you can script around to detect changes in file content and attributes. IPFilter is an inte-
grated firewall with simple, readable rules in . Pluggable Authentication Module
(PAM), Basic Security Module (PAM), and Role- Based Access Control (RBAC) are three
more toolsets that authenticate, audit, and enforce privileges for users. Containers and
resource control enforce security and resource consumption per application, if you run
them in a container. As you’ll read in the next chapter, DTrace allows you to find perfor-
mance bottlenecks and diagnose problems in real time in a production environment,
without risking safety or adding more load. OpenSolaris offers binary compatibility and
source code compatibility. This means if your application sticks to using the published,
documented OpenSolaris API, your code is guaranteed to run on all future releases of
OpenSolaris; and if your application compiles and runs on x86 or AMD, it’ll compile and
run SPARC, and vice versa. This gives you a choice of hardware platform and OpenSolaris
release on which to deploy your application.

These are just the tips of the iceberg, but perhaps it’s enough for you to consider not
just developing on OpenSolaris but making it your production environment as well.

205

C H A P T E R 9

Innovative OpenSolaris
Features

Code that has been honed sharp with decades of diligence by scientists and engi-
neers will now be open to both industry and individuals...Open to the teacher. Open
to the student. Every serious scientist or engineer will want to stand on the shoulder
of this giant. OpenSolaris is the cure for the common computer.

—Dennis Clarke, Director, Blastwave

In the previous chapters, we covered much of the basics of installing and configuring
OpenSolaris and using its unique features to develop AMP stack–based web applications.
But there is so much more to explore. In this chapter, we’ll introduce you to the DTrace
observability tool for monitoring and discovering application and OS behavior. Then
we’ll wrap up with a look at a selection of other OpenSolaris features such as the Distri-
bution Constructor, Tracker, Device Driver Utility, SongBird, and some key educational
resources.

DTrace
DTrace (for Dynamic Trace) is perhaps one of the most prominent and talked- about
features of Solaris 10 and OpenSolaris. It was introduced in Solaris 10 and was the first
OS component to be released under an open source license in the OpenSolaris project
in 2005. It’s now an integral part of other operating systems as well, notably Apple’s OS
X Leopard (10.5) release. Because of its great utility and extensibility, DTrace has been
extended to support development tools such as Java, Ruby, Python, and Perl, and data-
base programs such as PostgreSQL and MySQL. This section gives you very brief overview
of DTrace, with just enough to get you started. But remember that DTrace is only one tool
for discovering and diagnosing system problems; you should still familiarize yourself,
if you’re not already, with more traditional tools such as , , and .
The Solaris Performance and Tools book by McDougall, Mauro, and Gregg listed in

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 206

Appendix A is a great reference for this. These tools help you identify a general problem
area; DTrace then helps you to quickly narrow and identify the specific issue.

DTrace refers to both the observability hooks in the OpenSolaris kernel and to the
scripting language used to interface with those kernel hooks. The OS kernel must be
instrumented for total observability, and there must be a programming interface to that
instrumentation accessible to the system administrator. The goals of such a technology
should include the following:

 Integration into the OS kernel, with no installation or activation required

 Real-time visibility of all OS actions, including application execution and hard-
ware interface

 Usability on production systems without performance impact

 Safety when in use; no change of data and no risk of halting or crashing system

 No effect when not in use

In production server environments, diagnosing application or OS performance issues
is often limited by a reluctance to interrupt processing. Administrators therefore resort to
potentially incomplete or ineffective methods of discovering problems; Table 9-1 shows
some of these methods and their drawbacks.

 Table 9-1. Diagnosing Problems on Production Systems

Method Drawbacks

Building a duplicate hardware/software
environment to reproduce problem

Expensive, time- consuming, may not duplicate
the problem

Installing a debug version of kernel or
application

Requires processing interruption, potentially
changes behavior of what’s being observed

Monitoring OS or application directly with
kernel or application debugger tool

Potential for corrupting data or crashing OS
and/or application

Because DTrace is already integrated into your production OpenSolaris kernel, you
don’t have to install or change anything to use it.

The DTrace architecture consists of the DTrace Virtual Machine embedded within
the OpenSolaris kernel; several sets of providers that make kernel probes and data avail-
able to the DTrace VM; and several consumers that collect, aggregate, and present data
on kernel and application actions and events. Figure 9-1 shows the general structure of
DTrace within the OpenSolaris kernel.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 207

 Figure 9-1. The DTrace architecture

You access data about your kernel and applications using a high- level, C- like script-
ing language called D (but commonly referred to as DTrace). This language lets you
access the kernel variables made visible through the DTrace kernel probes; you can create
your own user variables, define character strings, define and populate arrays, and sum-
marize and aggregate probe data. In the later examples, you’ll see how to use DTrace to
characterize the behavior of your system.

Probes

A probe is a point of instrumentation in the kernel. OpenSolaris currently has more than
60,000 such points that are made available by the many providers (the command
will list all probes for your system). Every probe has a four- part structured character string
that indicates its provider, kernel module, functional purpose, and unique identifier
(probes also have unique identifying numbers):

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 208

For example, is the full name for the probe that instruments the
entry into the function (part of the kernel module) and is enabled by the
(Function Boundary Trace) provider. An empty field in the probe, as in , acts
as a wildcard matching all possible values of the field.

Providers

There is a large and growing number of DTrace providers—those that were originally
included in the initial DTrace implementation and many currently under development
by the OpenSolaris community at that are
being added to instrument development tools such as Java, MySQL, xVM, Ruby, TCP,
JavaScript, and Perl. Table 9-2 lists the standard providers.

 Table 9-2. Some DTrace Providers

Provider Name Description

 Function Boundary Trace, instruments entry point and return point of every
 kernel function

 System Call, instruments all system call entry and return

 Instruments interrupts for collecting data over time intervals

 Instruments kernel memory actions

 Instruments application’s function entry and return via its process ID

 Instruments process and LWP creation and termination

 Instruments disk I/O events

 Instruments kernel statistics

 Instruments CPU scheduling

 Instruments user synchronization events

 Instruments kernel synchronization events; used to monitor lock contention

DTrace Scripts

As you’ll see later, you can activate full DTrace probes from the command line using
a single line of DTrace interpreter code. But first let’s look at the structure of typical
DTrace scripts.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 209

Note There is a collection of example DTrace scripts in the OpenSolaris directory;
these are the example scripts discussed in the Solaris Dynamic Tracing Guide at

23. Also note that DTrace is essentially the same on OpenSolaris as on Solaris 10,
so the Solaris documentation is fully relevant.

Each DTrace script usually consists of the following:

 DTrace interpreter path:

 pragma: Used to control DTrace execution; for example, quieting unwanted output
or controlling the script’s output buffer size

 probe name: The name of the probe to activate

 predicate: Defines conditions for actions, such as specifying counter variable test
values or selecting process IDs or process names

 action: If the predicate is satisfied, the probe collects and records monitored data
in the consumer’s buffer and then formats and reports output according to speci-
fied syntax.

Note DTrace is intended for use by the system administrator and by system performance professionals,
not by unprivileged end users. As such, it requires privileges (more specifically, it requires

, , and privileges). Also note that by default DTrace cannot be used in
a local zone, even by root, unless these privileges are enabled. Even then DTrace’s scope is limited to the
local zone.

A Simple Example

Here’s a simple example of a DTrace script, :

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 210

Note the extension, which is not required but is helpful to indicate the nature of the
file. This script accesses the function call probe to list any processes that may
be writing to the local ZFS file system during the execution of the script. Note the C syntax
for the comment. When executed as shown in Figure 9-2, DTrace activates the probe and
watches for any entries to the function. For the first run (terminated with a
after waiting a few seconds), no such writes were reported. For the second run, in another
terminal on the system we saved a file we were editing with and then copied it to
another directory; the DTrace script reports that the probe has “fired” (that is, it detected
an entry into the function), and it lists the two program names () that
called : and . Even such a simple script can be used to identify processes
that periodically wake up and write data to the file system.

 Figure 9-2. A simple DTrace example

DTrace Aggregations

DTrace includes language features for automatically creating and populating counter
arrays, called aggregations. A simple example, , taken from the

 directory, illustrates this:

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 211

This script watches all entries to the system call, classifies and counts them
according to the processes that made the calls, and accumulates the number of calls for
each process in the array. Figure 9-3 shows the result of a sample run of this script
over a period of a few seconds. It reveals the processes that write to the file system and
how many times they’ve done so while the script was running (recall that you terminate
this script with at which point it outputs the formatted contents of the array).

 Figure 9-3. A DTrace aggregation example

Note that in this example the executable is quite busy writing to the file
system, presumably writing to its cache or downloading content. Such activity might be
worth investigating further if your system or application is experiencing performance
problems.

It’s worth reviewing the other sample scripts in the demo directory; they illustrate
how to get average, minimum, and maximum values for aggregations. When investigat-
ing system problems using these techniques, you need to watch for outliers or extreme
behaviors of your OS or your applications such as excessive CPU usage, I/O activity, con-
text switches, and so on.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 212

Another use of DTrace’s aggregation features uses its quantize function to create a
frequency graph of the data collected (Figure 9-4). In this example, adapted from a DTrace
 one- liner, the sizes of the writes performed by are tabulated. We see that dur-
ing the brief few seconds during which we ran the script, had quite a bit of write
activity, including more than 100 4Kb writes and a similar number of 1- byte writes. It’s
worth asking what it’s doing! Notice that this tabulation automatically generates
 “power-of- two” frequency categories by default, where each category value is double that
of the previous category value; you can, of course, specify your own lower and upper cat-
egory range and step values using the function instead.

 Figure 9-4. Using the DTrace function

DTrace Community Contributions

The OpenSolaris community, especially active developers such as Brendan Gregg
(), has contributed a large collection of highly useful tools
for exploiting DTrace. In particular, the DTrace Toolkit and the DTrace OneLiners
(Figure 9-5,) provide great examples for both
learning and day-to- day system monitoring.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 213

 Figure 9-5. The DTrace one- liner scripts

The DTrace Toolkit, written by Brendan Gregg and licensed under the CDDL,
includes more than 200 DTrace scripts and shell scripts that call DTrace. There are scripts
for monitoring CPU events, disk I/O events, and network events; as well as scripts for
observing function calls in programming languages such as Java, JavaScript, Perl, PHP,
Python, Ruby, Tcl, and UNIX shells.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 214

Interestingly, you will find that the output of several traditional monitoring programs
such as and has been duplicated using DTrace, providing more accurate or
more detailed information on system activity. For example, the functionality of the
tool has been duplicated as shown in Figure 9-6.

 Figure 9-6. The DTrace version of

To use the script, simply execute it (as), wait a while, and terminate it using , as
shown in Figure 9-7.

Wow. Something on our system is doing a lot of system calls and context switching!
We can find that out by running the script, as shown in Figure 9-8.

We can see from this script that (the X Window System) is churning away at
something, and there’s an awful lot of and activity, possibly a user searching the
entire system. In fact, we’ve been running the Java 2D demo in another window in addi-
tion to searching for files; the DTrace script has identified the program names for us. You
can use the script to identify these programs’ process ID numbers.

DTrace is a scripting language that must be learned, practiced, and used along with
other monitoring tools. Once you become familiar with it, you will have a powerful utility
for discovering application and OS performance issues.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 215

 Figure 9-7. Output of the DTrace script

 Figure 9-8. Output of the script

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 216

The Chime GUI for DTrace

One of the graphical DTrace tools, developed to illustrate DTrace’s Java providers, is
Chime e/). This program lets you select
and run preconfigured DTrace scripts and has the ability to graph their output as time
series; it also includes many of the scripts in the DTrace Toolkit. You must download and
install Chime directly from the OpenSolaris web site since it is not yet available in any of
the package repositories. Chime installs itself in the directory; you then
run the shell script to start the program and display its GUI
(Figure 9-9).

 Figure 9-9. The Chime GUI for DTrace

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 217

Chime’s built- in graphical displays let you display real- time plots of system statistics
that you can use to identify “hot spots” or imbalances in your configuration. For example,
you can monitor interrupts on CPUs, NICs, and USB devices (Figure 9-10). You can also
use Chime as a DTrace learning tool since it can categorize and list available probes
(Figure 9-11) for the OS and for applications such as Apache.

 Figure 9-10. Monitoring device interrupts using Chime

 Figure 9-11. Using Chime to list available probes

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 218

DTrace and Java

For Java developers, DTrace includes numerous probes for monitoring actions of the
Java 6 JVM. This allows you to watch object creation and garbage collection, to display
the method call hierarchy, and to observe the time spent within methods. Here’s a very
simple script that prints a stack trace each time the JVM makes the system call:

 Figure 9-12 shows a portion of the output of this script while (a Java program
itself) is running; it shows a portion of the stack trace that can be used to follow code
paths through your Java programs.

 Figure 9-12. Displaying the stack trace of a Java program using DTrace

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 219

The Java directory on OpenSolaris contains more examples of how to use DTrace’s
JVM probes in , and of course there
are many community- developed examples such as those at

 and
i/.

The Tracker Utility: Where’s That File?
Tracker extracts and stores information (metadata) about the contents of the files on your
system so that they can be searched easily and quickly, similar to Apple OS X’s Spotlight
program.

Using Tracker you locate a file by searching for a word that’s in it. Tracker can search
many document and media formats such as programs, PDF files, OpenOffice documents,
saved emails and web pages, and even music files. For example, in Figure 9-13, we used
Tracker to search our system for files containing the word apache. Tracker not only found
all such files, including OpenOffice, PDF, Java, and even music files, but it listed the con-
text of the search term in each file, displayed available information about the file, and lets
you click the file to display or run it using the appropriate application.

 Figure 9-13. The Tracker search utility

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 220

The OpenSolaris Distro Constructor
You may want to create a collection of OpenSolaris packages including the kernel and
use it to provision other systems or even to distribute your own customized version of
the OS. The Distribution Constructor (

) is a tool you can use to build redistributable, bootable Open-
Solaris images. Using an XML manifest file as input, you specify and build an ISO or USB
image much like the Live CD image you used to install OpenSolaris 2008.11. You can
define in the manifest file the packages you want to include in the distribution, thereby
creating a custom OpenSolaris initial installation environment. The manifest file is an
XML document that includes the following information:

 Distribution name: A name for your distribution, such as ProOpenSolaris or
MyDistro

 Default package repository: Where the constructor will obtain its packages, usually

 Packages: A list of packages to be included in the distribution

 Build area: A temporary directory for copying the distribution files

You can copy and modify the sample manifest file from
 to define your own distribution’s

contents. Then you run the command as shown in Figure 9-14.
Because this process downloads all its files over the network from the OpenSolaris

package repositories, it takes a long time to finish. This example, which simply duplicated
the manifest and files for the OpenSolaris 2008.11 CD, took nearly two hours to complete.
The net result is shown in Figure 9-15; created bootable and files in
the default Distro Constructor output directory, .

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 221

 Figure 9-14. Creating your distribution using

 Figure 9-15. The output and files of

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 222

The Device Driver Utility
A handy program in OpenSolaris is the Device Driver Utility. When you select and run
it from the Applications menu, it will list all the installed device drivers on your system
(Figure 9-16) and warn you about devices without drivers.

 Figure 9-16. The Device Driver Utility

The Device Driver Utility not only lets you use the Image Packaging System reposi-
tories to search the device drivers on your system to find devices that do not have drivers
attached to them, but it also lets you share your working configuration details on the

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 223

OpenSolaris OS Hardware Compatibility List (HCL) so that others can see “Reported to
Work” information for systems like yours (Figure 9-17).

 Figure 9-17. Reporting your configuration to the OpenSolaris HCL

And Now for a Little Entertainment
Like most Linux distributions, OpenSolaris includes a number of multimedia programs
including the popular Sound Juicer, which is a CD ripper; Rhythmbox, a music player;
and Totem, a movie player. You can use Sound Juicer to extract tracks from your music
CDs (Figure 9-18) into your directory and to play them on your
laptop or workstation; many audio devices already have drivers included in OpenSolaris
to support this.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 224

 Figure 9-18. Playing music CDs with Sound Juicer

But OpenSolaris includes an application called Songbird that is very much like
Apple’s iTunes (Figure 9-19). It lets you import online music, listen to Internet radio, and
create playlists for your MP3 players (although the iPod is not yet a supported device).

One disappointing omission from OpenSolaris 2008.11 is its lack of support for an
open source DVD player with required codecs. In part, this is because of Sun’s strict
adherence to restrictions against providing unlicensed codecs even though some Linux
distributions, notably Ubuntu, seem to have no problem allowing you to download and
install such “restricted software.” The Totem movie player is included with OpenSolaris,
but it’s not configured by default to play your DVDs and none of the repositories includes
the needed codecs. Sun’s current solution to this problem is to point you to a distributor
of licensed codecs, Fluendo (, Figure 9-20). Of course, you have
to buy this software for 28 euros (about $35 USD as of this writing), which may go against
the philosophy of many open source purists. But that’s the current solution.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 225

 Figure 9-19. The Songbird music player

 Figure 9-20. Fluendo makes new codecs available for OpenSolaris.

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 226

OpenSolaris Educational Resources
In this book we have only scratched the surface of all that’s available concerning Open-
Solaris. Additional resources are available to you if you want to learn more about
operating system concepts, and a new online service lets you try OpenSolaris without
having to install anything.

The OpenSolaris Curriculum Development Resources

If you’re a computer science educator teaching about operating systems, there’s an entire
curriculum based on OpenSolaris developed by the Academic and Research community
at . The curriculum includes instructor and stu-
dent guides (Figure 9-21) and covers general operating system concepts such as process
scheduling, memory management, and synchronization; as well as OpenSolaris- specific
topics such as zones, ZFS, and DTrace.

 Figure 9-21. The OpenSolaris curriculum development resources web site

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 227

OpenSolaris Learning Cloud Service

If you want to try OpenSolaris online without installing anything on your own system,
there is a Learning Cloud Service that you can register for and then start a Java- based
remote display of a complete OpenSolaris session. Figure 9-22 shows the registration
and login instruction web site.

 Figure 9-22. The OpenSolaris Learning Cloud Service web site

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 228

After you log in and click Start Lab, a Java applet will start, as shown in Figure 9-23.

 Figure 9-23. The initial Lab Session applet

After a brief wait, an OpenSolaris login screen will appear. Log in using the name and
password shown on the Learning Cloud web site (currently and , respectively),
and you will have a complete OpenSolaris environment at your disposal, as shown in
 Figure 9-24. The performance of this service is less than ideal, but you can use it to explore
almost all the features we’ve introduced in this book.

 Figure 9-24. An OpenSolaris Learning Cloud Lab session

CHAPTER 9 INNOVATIVE OPENSOLARIS FEATURES 229

Summary
OpenSolaris contains a rich and growing collection of community- developed programs,
information sources, and educational resources for assisting your application develop-
ment, general productivity, daily Internet activities, and multimedia entertainment. This
chapter has mentioned just a few of these; you’ll have fun exploring the rest!

P A R T 4

Appendixes

233

A P P E N D I X A

Recommended Reading
and Viewing

In this book we have emphasized the key features of OpenSolaris and have organized the
chapters in a way that builds up to the practical examples in Chapter 8. But you can use
numerous additional resources to enhance and extend what you’ve learned here. In this
appendix we list some valuable documents, videos, and communities that are part of the
growing body of OpenSolaris knowledge.

Books
Although there are as yet very few books devoted exclusively to OpenSolaris, there are
some that cover both Solaris and OpenSolaris including these by McDougal, Mauro, and
Gregg. For readers interested in the internal architecture and source code of OpenSolaris,
the Solaris Internals book is very instructive. For those interested in performance tools,
especially in DTrace, the Solaris Performance and Tools book is required reading:

Richard McDougall and Jim Mauro. Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture, 2nd ed., Upper Saddle River, NJ: Prentice Hall, 2007.

Richard McDougall, Jim Mauro, and Brendan Gregg. Solaris Performance and Tools:
DTrace and MDB Techniques for Solaris 10 and OpenSolaris. Upper Saddle River, NJ:
Prentice Hall, 2007.

Software developers will find much value in publications for Solaris, since OpenSolaris
has many features identical to or derived from those in Solaris 10. Daryl Gove’s book can
give readers a head start learning about programming in this new environment, especially
for the new multicore, multithread processors:

Gove, Darryl. Solaris Application Programming. Upper Saddle River, NJ: Prentice
Hall, 2008.

APPENDIX A RECOMMENDED READING AND V IEWING 234

Blogs and Wikis
Sun engineers and OpenSolaris community member regularly blog about new OS fea-
tures, new tools and techniques, and the future of OpenSolaris. You can participate in
their discussions and can often get your technical questions answered by the original
designers of the software. Here are a few representative blogs worth reading regularly:

Jeff Bonwick’s blog, . ZFS wisdom from one of its
designers.

Darryl Gove’s blog, . Darryl is a Sun compiler engineer
specializing in SPARC programming.

Jim Grisanzio’s blog, . Jim is Program Manager for
OpenSolaris development. He travels the world promoting OpenSolaris communities.

Brian Leonard’s OpenSolaris blog, called the Observatory,
. Brian is a senior software engineer for Sun Microsystems; he blogs

about software and web stack development on OpenSolaris.

OpenSolaris wiki, . A collab-
orative web site of OpenSolaris news, events, documentation, and ideas.

Developer Resources
Sun has extensive online resources focused primarily on Solaris development, but more
OpenSolaris material is being included for new open source developers:

OpenSolaris Subscription Service, . Paid
subscription support for OpenSolaris production users.

Sun Developer Network, . A free community for Sun
developers, including an OpenSolaris group.

APPENDIX A RECOMMENDED READING AND V IEWING 235

Learning and Training
The OpenSolaris community encourages academic and commercial educators to teach
OpenSolaris and to use it as a platform for learning about open source operating system
and application development. Free training and curriculum resources are available:

OpenSolaris Curriculum Development Resources,
. Resources for computer science educators teaching OS

concepts using OpenSolaris.

OpenSolaris Learning Cloud Service, .
Try out new features of OpenSolaris for free without downloading, installing, or config-
uring it; just log in and learn.

OpenSolaris Technical Essentials Guide,
. A free web course on installing, using, administering, and

distributing OpenSolaris.

Linux to OpenSolaris Translation
One of the most useful online documents for UNIX and Linux administrators is Bruce
Hamilton’s Rosetta Stone for UNIX, at . It lists dozens
of commands and their equivalents for Linux and for all of the major UNIX implementa-
tions. It includes a feature that lets you generate a table that lists typical OpenSolaris tasks
and programs and their Linux counterparts.

Newsletter
The monthly newsletter OpenSolaris Ignite,

, is by, for, and about the OpenSolaris community, featuring news, how-to articles,
tech tips, and reviews.

APPENDIX A RECOMMENDED READING AND V IEWING 236

User Groups
Participating in user groups is one of the best ways to learn about new technologies, to
share ideas, and to grow the community. More than 110 OpenSolaris user groups are
currently active; details on how to start a user group are also included here:

Join or start an OpenSolaris user group, . You
can see a map of user groups in almost every continent on the planet (none yet in
Antarctica!).

Videos
Educational videos about OpenSolaris features are a good way to learn from community
experts. Here are a few such videos, and you can find more on Sun and YouTube:

A 10-minute video about partitioning your hard drive if you have multiple boot
partitions,

, January 2009. How to install OpenSolaris
in a multiboot configuration.

A 10-minute video about using the Package Manager GUI for installing packages,
, January 2009. Learn

how to use the OpenSolaris Package Manager.

OpenSolaris & Intel Xeon Processors, ,
April 2008. Intel Open Source Technology Engineer talks about OpenSolaris.

CSI: Munich—How to Save the World with ZFS and 12 USB Sticks,
, March 2007. An amusing but

educational demo of key ZFS features using UFS memory sticks.

Web Sites
Here are some additional web sites for OpenSolaris developers, administrators, and
end users:

OpenSolaris Communities, . Developers and
users of all the evolving OpenSolaris features.

OpenSolaris Projects, . Collaborative work on
new and problem areas of OpenSolaris.

APPENDIX A RECOMMENDED READING AND V IEWING 237

Resource Collection: OpenSolaris,
. OpenSolaris tips and tools for administrators.

Solaris Information Center—Community: OpenSolaris,
. The OpenSolaris community at Sun’s

BigAdmin site for system administrators.

Solaris Information Center—How To: OpenSolaris Installation and Image Packaging
System,

, January 2009.

Solaris Internals and Performance FAQ,
.

Towards Running Trusted Extensions with OpenSolaris 2008.11, by Christoph Schuba,
,

September 2008.

White Papers
More detail on the security features of zones; references Solaris 10 but fully applicable to
zones on OpenSolaris:

“Security Advantages of the Solaris Zones Software,” by Christoph Schuba,
,

December 2008.

“Understanding the Security Capabilities of Solaris Zones Software,” by Glenn
Brunette and Jeff Victor,

, December 2008.

239

A P P E N D I X B

OpenSolaris 2009.06

The OpenSolaris update cycle plans for new stable binary releases approximately every
six months. At the time of this book’s publication, the next such release is expected to be
OpenSolaris 2009.06. This appendix covers some of the new features anticipated in this
release.

SPARC Support
The first two releases of OpenSolaris (2008.05 and the current 2008.11) were for Intel and
AMD processors only. Now that the boot process for SPARC processors has been updated
to recognize ZFS file systems, OpenSolaris 2009.06 will be installable on these systems,
although support for Logical Domains (LDoms on the UltraSPARC Sun4v architecture)
is planned for a later release. The repository has already
been updated to include SPARC packages for this build. At this time, however, you need
to use the OpenSolaris Automated Installer (AI;

) for SPARC systems; detailed instructions for this installation method
are at

.
We look forward to this release so that the OpenSolaris community will have access

to a SPARC development platform and can learn to exploit the parallelism of multicore/
multithread SPARC processors.

APPENDIX B OPENSOLARIS 2009.06240

Project Crossbow
As a complement to virtualization technologies for OS environments, network virtualiza-
tion techniques are now being developed and will begin to appear in OpenSolaris 2009.06.
The OpenSolaris Crossbow Project () provides
tools for virtualizing the entire network software and hardware stack and for managing the
resource allocations for specific protocols. The project page says this:

Each virtual stack can be assigned its own priority and bandwidth on a shared
NIC without causing any performance degradation. The architecture dynamically
manages priority and bandwidth resources, and can provide better defense against
denial-of-service attacks directed at a particular service or virtual machine by iso-
lating the impact just to that entity. The virtual stacks are separated by means of
H/W classification engine such that traffic for one stack does not impact other vir-
tual stacks.

Crossbow tools will allow you to create and configure multiple virtual NIC devices
(VNICs) per hardware NIC, assigning a VNIC to each VM or zone, and to set bandwidth
and priority limits for services and protocols assigned to each VNIC. Crossbow will also
allow you to model and simulate complex networks within your OpenSolaris system. You
can download and try early access builds of the Crossbow software at

.

Encrypted ZFS File System
This project () implements on-disk
encryption of ZFS file systems in the OpenSolaris kernel, enabling data security on any
ZFS file system from laptops through enterprise servers. This feature will provide encryp-
tion of the ZFS I/O data stream and will include key management for ZFS file systems.
All dataset data, metadata, and properties will be encrypted. File system encryption is
becoming a requirement in many government agencies and in organizations that require
encryption to guarantee client data privacy. It’s also becoming essential for protecting
data on laptops in the event of theft. OpenSolaris with encrypted ZFS will provide this
level of data security.

APPENDIX B OPENSOLARIS 2009.06 241

CUPS Printing
Although you can manually install the CUPS printing service on OpenSolaris 2008.11,
full support for this service is planned for OpenSolaris 2009.06 (

). CUPS is an open source, IPP-protocol
system for managing local and network printers and print queues. It lets you discover and
install new printers through a web browser interface.

Other Anticipated Features
According to the announcements and developer discussions on the OpenSolaris web site,
there will be continued improvements in the 2009.06 release for current features such as
network automagic, package management, automated install, and a host of new software
in the network package repositories. Watch the web site for
news about new OpenSolaris releases and features.

243

Index

Symbols
.d file extension, 210
/etc/release file, 48
/usr/bin/bash, as default shell, 55
/usr/gnu/bin directory, 55–56

A
access control model, 163
accessing root account, 56–57
acroread PDF reader, 147–148
action flags, service administration

tasks, 76
Administration menu, 54
administrative tasks

new users, adding, 62–64
printing, 64–65

administrator tools with Linux
distribution equivalents, 56

advantages of OpenSolaris
DTrace, 24–25
scalability, 23
security features, 25–26
service management, 23–24
support for virtualization, 25
ZFS file system, 24

aggregations (DTrace), 210–212
allocating memory to VM, 144
AMP (Apache, Perl, PHP, MySql) stack

getting, 154
pkg command and, 156–162

amp-dev package
amp package compared to, 157
contents of, 157
installing, 154
NetBeans IDE and, 175–178
Subversion and, 179

amp package, amp-dev package
compared to, 157

Andreessen, Marc, 17

Apache
httpd.conf file, 130
server, starting, 161

Apache 2 web server, installing, 129
application components included with

desktop environment, 51–54
applications

OpenSolaris as running high-quality, 22
qualifying for zones, 164–165

Applications menu, 52, 175
application virtualization, 113
assigning storage space for VM, 142

B
bash shell, choice of, 55
beadm command

file system snapshots and, 57
for managing boot environments, 108

binary versions, 47
blogs, recommended, 234
books, recommended, 233
Boot Environment Manager GUI, 59
boot environments, managing with ZFS,

108–110
booting, 30, 57–59
boot milestones, 74
boot techniques

Live CD, 30, 34–36
multiboot installation, 36–37

branded zones, 145
BrandZ, 145–148
browser tool, online source code, 19
bugs, viewing and filing against

OpenSolaris, 193
build number, 47

C
CAB (Community Advisory Board), 12
CD distribution of OpenSolaris, 28, 53

INDEX244

CDDL (Common Development and
Distribution License), 11

CDE (Common Desktop Environment), 51
checkout (Subversion), 180
Chime GUI for DTrace, 216–218
Clarke, Dennis, 205
CLI (command line interface), for the

GUI-averse, 55–56
cloning feature (VirtualBox), 45
cloning zones, 127–128
Cloud Computing products, 112
commands

beadm, 57, 108
ctstat, 81
ctwatch, 81
format, 96
isainfo, 134
pkg, 156–158
pooladm, 131
poolcfg, 132
prstat, 125
psrinfo, 134
su, 56–57
Subversion

svn add, 181
svn commit, 182
svn delete, 181
svn diff, 182
svn move, 181
svn update, 182

svcadm, 71, 75–76, 139
svcadm clear, 80
svccfg

description of, 71
SMF repository, interacting with, 200
verifying file is valid using, 85

svcprop, 71
svcs, 71, 139
svcs -a, 72
svcs ssh, 78
svcs -x, 78
svcs -x ssh, 78
top, 125
uname, 47

zfs
description of, 94
examples using, 98–100
snapshot, creating with, 103

zpool
description of, 94
examples using, 96–98
options for, 95

Common Desktop Environment (CDE), 51
Common Development and Distribution

License (CDDL), 11
communities

device drivers, 8
DTrace, 212–214
laptop Issues, 30
LDom developer, 149
printing, 64
Xen, 115

Community Advisory Board (CAB), 12
community contributions (DTrace),

212–214
community-developed software

vendors releasing, 6
configurable zone resources, 132
configuring printer, 64–65
container architecture, 116
container environment

discrete privileges and, 163–164
qualifying application for zones,

164–165
containers

building application inside, 162–163
description of, 113, 132
installing Tomcat in, 165–172
zones compared to, 118–120

contract ID, viewing, 161
contributing developers FAQ, 8
Copy on Write model, 93
Crossbow Project, 113, 240
C Shell, 55
ctstat command, 81
ctwatch command, 81
CUPS printing service, 241
curriculum development resources, 226

INDEX 245

D
.d file extension, 210
data sharding, 163
data storage

prefixes for decimal multiples of bytes,
90

techniques for, 89
default shell, changing, 55
delegation, zones and, 162
desktop environment

application components included with,
51–54

CLI, for the GUI-averse, 55–56
GNOME as default, 51
su command, 56–57

developer resources, 234
developer tools included with

OpenSolaris, 22
development environment

AMP stack
getting, 154
pkg command and, 156–162

containers and, 162–163
overview of, 154
production environment compared to,

161
Device Detection Tool (Sun), 21, 32
device drivers, resources on, 8
Device Driver utility, 222–223
device interrupts, monitoring, 217
direct bare-metal installation, 36
disabling ssh service

for current boot session only, 77
and not restarting, 77
using Services GUI, 76
using svcadm command, 75

discrete privileges, zones and, 163–164
Distribution (Distro) Constructor, 220–222
DomUs, 137
DomU VM, installing, 144
downloading

OpenSolaris, 27
programs from software repositories,

48–50

DTrace
aggregations, 210–212
architecture of, 206
Chime GUI, 216–218
community contributions, 212–214
description of, 24–25
Java and, 218–219
kernel probes, 207–208
overview of, 205
privileges and, 164
production environment and, 206
providers, 208
OneLiners, 212
root privileges, 209
script example, 209–210
scripts, 208–209
syscallbyproc.d script, 214
Toolkit, 213
vmstat and, 214

E
editing service manifest file, 86–88
educational resources, 226–228
enabling

Apache and MySQL servers, 161
MySQL, 173
sshd logging, 190
SSL for Tomcat, 168
Subversion, 190
tomcat5.xml, 172

/etc/release file, 48
evince PDF reader, 147
extended ACL, viewing, 158

F
FAQ, for contributing developers, 8
fault isolation, zones and, 162
Fault Managed Resource Identifiers

(FMRIs), 70–71, 156
file extensions, .d, 210
files

See also Time Slider file manager
Apache httpd.conf, 130
/etc/release, 48
my.cnf, 172
Subversion, managing, 179–180

INDEX246

Filesystem Hierarchy Standard, 168
file systems

See also ZFS file system
disk-based, problems with, 90
goal of, 89

file system snapshots, advantages of, 57
File menu, Boot Environment Manager, 59
flash memory drive, booting from, 30
Fluendo, 224
FMRIs (Fault Managed Resource

Identifiers), 70–71, 156
format command, 96
freely sharable software, 5
full OS virtualization, 113

G
gcc compiler, installing, 48
global zone, 118
global zone environment, 124–127
GNOME user environment

as default desktop, 51
typical user session in, 7

GNU General Public License (GPL), 11
Gregg, Brendan, 212, 213
GRUB boot screen, 42
guest operating system, platforms for, 115
guest VM, installing as, 37–47

H
Hardware Compatibility List (HCL), 21,

31, 222
hardware emulation, 113
hardware partitioning techniques, 111
hardware platform, OpenSolaris as

running on commodity, 20–21
history of OpenSolaris, 9–10
hosted hypervisor, 115
hosting web servers with local zones, 129
hypervisor

description of, 37, 113
Type 1 architecture, 115
Type 2 architecture, 115

xVM
installing, 138–145
overview of, 136–137

I
IDE. See NetBeans IDE
Image Packaging System (IPS), adding

software using, 47–50
image-update process, 59–60
initializing web stack, 158–161
installation

choices for, 29–30, 34
direct bare-metal, 36
as guest VM, 37–47
Live CD booting, 34–36
multiboot, 36–37
system requirements, 30–34

Installer Welcome screen, 34, 43
installing

amp-dev package, 154
Apache 2 web server, 129
DomU VM, 144
gcc compiler, 48
lx zones, 146
MySQL, 172–175
SUNWtcat package, 166
Tomcat in container, 165–172
xVM hypervisor, 138–145

intent log, 93
IPS (Package Manager) GUI

adding software using, 47–50
description of, 200
opening, 154
overview of, 156–162
packaging web app into, 200–203

isainfo command, 134

J
Java, and DTrace, 218–219
Java Community Process (JCP), 12
Joy, Bill, 9

K
kernel build, updating, 59–60
Korn Shell, 55

INDEX 247

L
LAMP stack, 4
laptop issues, community for, 30
LDoms, 148
Learning Cloud Service, 227–229
licensing of source code, 11
lightweight virtualization, 113
Linux

history of, 9
OpenSolaris programs with Linux

distribution equivalents, 56
reputation of, 27
trademark owner, 12

Linux applications, open source
applications as, 4

Linux developer, 3
Linux Extended File System, 89
Linux to OpenSolaris translation, 235
Live CD booting, 30, 34–36
local zone

description of, 118
DTrace and, 209
using, 129–130

local zone environment, 124–127
locating install media, 142
login screen, 45
lx zones, 145–146

M
maintenance state of service, clearing, 80
manage access control method

(Subversion)
public/private key pair, generating,

187–191
simple svn remote access, 183–185
svn + ssh access, 185–186

managing
boot environments with ZFS, 108–110
zones, 128–129

manifest files for services, 81
memory, allocating to VM, 144
metadata blocks, 93
metapackages, 157
MilaX distribution, 30

milestones, Service Management Facility,
74

mirrored pool with spare (ZFS), creating,
97

monitoring
device interrupts, 217
local zone resources from global zone,

127
multiboot installation, 36–37
multimedia programs, 223–224
Murdock, Ian, 9, 17
my.cnf file, 172
MySQL database, starting, service

manifest example for, 85–86
MySQL server

installing, 172–175
starting, 161

N
naming VM, 141
National Security Agency (NSA), security

features and, 26
native OS virtualization, 113
NetBeans IDE

description of, 175–178
integrating

with Subversion, 193–200
with Tomcat, 191–193

Network Auto-Magic Daemon (nwamd),
51

network device, selecting for VM, 142
network interfaces, manually setting up,

51
New Java Project screen (NetBeans IDE),

176
New Project dialog box

NetBeans IDE, 176
Subversion, 196

newsletter, monthly, 235
Nexenta storage products, 102
nonglobal zone. See local zone
NSA (National Security Agency), security

features and, 26
nwamd (Network Auto-Magic Daemon), 51

INDEX248

O
online source code browser, 19
opening NetBeans IDE, 175–178
Open Software Initiative (OSI), 11
OpenSolaris

See also advantages of OpenSolaris;
OpenSolaris.org

CD distribution of, 28
Community Advisory Board, 12
contributing developers FAQ, 8
goals and future directions for, 10–11
origin of, 9–10
qualities of

free, 18
open source, 19
runs high-quality application

software, 22
runs on commodity hardware

platforms, 20–21
software support subscription, 22
typical user session, 7
user and developer tools included with,

22
OpenSolaris 2009.06, anticipated features,

239–241
OpenSolaris.org

bug-tracking and RFE page, 14
community web page, 12
device drivers community, 8
LDom developer community, 149
Observatory blog, 12
public road maps, 10
Source Code, 19
Zones and Containers FAQ, 129

open source software
description of, 5–7
Linux applications as, 4

open source solutions developer, 3
open source user and developer stack,

typical, 4
operating system (OS), installing as virtual

machine, 30. See also Linux
OSI (Open Software Initiative), 11
OS virtualization, 113, 116

P
Package Manager (IPS) GUI

adding software using, 47–50
description of, 48, 200
opening, 154
overview of, 156–162
packaging web app into, 200–203

Package menu, Install/Update, 154
packages

amp, 157
amp-dev

amp package compared to, 157
contents of, 157
installing, 154
NetBeans IDE and, 175–178
Subversion and, 179

SUNWspnego, 190
SUNWtcat, 166, 192
viewing published IPS, 202

paravirtualization, 113
passphrase, empty, 187
password, setting for mysqld, 173
path-based authorization, 184
PDF reader (acroread), 147–148
performance of ZFS, 101–102
permission profile, setting for user, 62
pfexec program, 57
pkg command, 156–158
platforms, OpenSolaris as running on

commodity hardware, 20–21
pooladm command, 131
poolcfg command, 132
portability, zones and, 163
Preferences menu, 53
Primary Administrator role, 44, 57
printer, configuring, 64–65
Print Manager, 64
PRIV_FILE_DAC_READ privilege, 163
privileges

processes and, 169
qualifying application for zones and,

164–165
zones and, 163–164

PRIV_NET_RAWACCESS privilege, 164
PRIV_SYS_TIME privilege, 164
probes (DTrace), 207–208

INDEX 249

processes, privileges and, 169
process ID, viewing, 161
process rights management, 163
production environment

development environment compared
to, 161

diagnosing application or OS
performance issues in, 206

query logging and, 173
projects, starting in NetBeans IDE, 176
providers (DTrace), 208
prstat command, 125
psrinfo command, 134
public/private key generation, 187–191

Q
qualifying application for zones, 164–165
quantize function (DTrace), 212
query logging, 173

R
RAID-Z, ZFS and, 93
RBAC (role-based access control), 57
rc service scripts, 70
rebooting, 57–59
removing devices from storage pool, 98
reporting configuration to OpenSolaris

HCL, 222
repos (software repositories), down-

loading programs from, 48–50
resource isolation, zones and, 162
resource management, zones and,

130–132
resources

See also web sites
blogs and wikis, 234
books, 233
for developers, 234
device drivers, 8
educational, 226–228
learning and training, 235
Linux to OpenSolaris translation, 235
newsletter, 235
source code, 8
user groups, 236
videos, 236
white papers, 237

resource virtualization, 113
Ritchie, Dennis, 9
role, assigning for user, 62
role-based access control (RBAC), 57
rolling back file system to earlier state, 103
root account/administrator

accessing, 56–57
default shell for, 55
local zones and, 118
MySQL and, 174

root and user account setup screen, 44
root privileges, DTrace and, 209
run levels, 74

S
scalability

of OpenSolaris, 23
zones and, 162

scheduling classes, 130
scripts (DTrace), 208–210
SDN (Solaris Developer Network), 28
security features, 25–26
security isolation, zones and, 162
server, 113
service

definition of, 70
states of, 72, 80

Service Management Facility (SMF)
action flags, 76
creating services, 81–85
description of, 23–24
editing services, 86–88
Fault Managed Resource Identifiers

and, 70–71
milestones, 74
overview of, 70
ssh service example, 74–81
tools, 71
using, 72–73

service manifest
components of, 82–84
creating, 81
editing, 86–88
example for starting MySQL database,

85–86
online documentation references, 84
template for, 82
validating, 85

INDEX250

service programs, challenges of, 69
shares, assigning to local zones, 131
shell, choice of, 55
silos, 163
SMF manifest

Subversion, 190
Tomcat, 170–171

SMF Manifest Creator, 86
SMF service for IPS server, 200
SMF (Service Management Facility)

action flags, 76
creating services, 81–85
description of, 23–24
editing services, 86–88
Fault Managed Resource Identifiers

and, 70–71
milestones, 74
overview of, 70
ssh service example, 74–81
tools, 71
using, 72–73

snapshots
file system, advantages of, 57
taking (ZFS), 103–104

software
See also hypervisor; tools
community-developed, 5–6
freely sharable, 5
open source, 4, 5–7
OpenSolaris as running high-quality, 22

software repositories, downloading
programs from, 48–50

software support subscription, 22
Solaris Developer Network (SDN), 28
Solaris Dynamic Tracing Guide, 209
Solaris for x86 systems, reputation of, 27
Solaris Performance and Tools

(McDougall, Mauro, and Gregg),
205

Solaris 10
DVD distribution of, 28
goals and future directions for, 10–11
Linux criticisms of, 55
Linuxification of, 10
reputation of, 17

Songbird, 224
Sound Juicer, 223

source code
licensing of, 11
resources on, 8
web site for, 19

SPARC support, 20, 239
srcheck tool, 165
sshd logging, enabling, 190
sshd service daemon, 70–71
SSH key generation, 187
ssh service

contract_id, 81
dependencies, 83–84
disabling, 75–77
example of, 74
manifest file for, 81
missing dependency example, 78
name tag, 83
offline or maintenance state of, 80
state and dependence details for, 77–78
URL with error details, 80

SSL, enabling for Tomcat, 168
stack trace of Java program, displaying,

218
Start Here with OpenSolaris page, 46
starting

MySQL database, service manifest
example for, 85–86

Subversion server, 183
Tomcat manually, 171

start method (Tomcat), 170
states of services

list of, 72
maintenance, clearing, 80

stop method (Tomcat), 170
stopping sshd, 75
storage appliances based on OpenSolaris

and ZFS, 102
storage of data

prefixes for decimal multiples of bytes,
90

techniques for, 89
storage pools

creating
zfs command and, 98–100
zpool command and, 96–98
zpool command options, 95

overview of, 91–94

INDEX 251

Storage 7000 product (Sun Microsystems),
102

storage space for VM, assigning, 142
subscription support services (Sun

Microsystems), 6
Subversion

files, managing, 179–182
importing project into, 198
integrating NetBeans IDE with, 193–200
manage access control method

public/private key pair, generating,
187–191

simple svn remote access, 183–185
svn + ssh access, 185–186

new project, creating, 196
output window, 198
repository, creating, 179
selecting directory to check out, 194
selecting location of files for project,

196
specifying local directory, and checking

out, 194
specifying location of repository, and

logging in, 194
su command, 56–57
sudo program, 57
Sun Microsystems

Device Detection Tool, 21, 32
Hardware Compatibility List, 21, 31, 222
history of, 9
Linuxification of Solaris by, 10
Storage 7000 product, 102
subscription support services, 6

SUNWspnego package, 190
SUNWtcat package

installing, 166
NetBeans IDE and, 192

svcadm clear command, 80
svcadm command, 71, 75–76, 139
svccfg command

description of, 71
SMF repository, interacting with, 200
verifying file is valid using, 85

svcprop command, 71
svcs -a command, 72
svcs command, 71, 139
svcs ssh command, 78

svc.startd, automatic restarts by, 75
svcs -x command, 78
svcs -x ssh command, 78
svn add (Subversion), 181
svn commit (Subversion), 182
svn delete (Subversion), 181
svn diff (Subversion), 182
svn move (Subversion), 181
svn update (Subversion), 182
syscallbyproc.d script, 214
system requirements for installation,

30–34
System menu

Administration submenu, 54
Applications submenu, 52
Preferences submenu, 53
Users and Groups submenu, 62

T
TCP/IP, zones and, 120
terminology overview, 5–6
testing zone configuration, 131
thick hypervisor, 115
thin hypervisor, 115
Thompson, Ken, 9
Time Slider file manager

description of, 93
enabling, 104
icon for, 106
slider bar, 106

Tomcat
installing in container, 165–172
integrating NetBeans IDE with, 191–193

Tomcat manifest (tomcat5.xml), 170–171
tools

developer, included with OpenSolaris,
22

Device Detection, 21, 32
Device Driver utility, 222–223
Distribution Constructor, 220–222
for monitoring local zone resources

from global zone, 127
online source code browser, 19
in Service Management Facility, 71
srcheck, 165
Tracker search utility, 219–220
virt-manager GUI, 140, 145

INDEX252

tools (continued)
Webmin, 86–88, 128
zonemgr, 128
zonestat, 127

top command, 125
Torvalds, Linus, 9, 12
total pool of memory or storage, 91
Totem movie player, 224
Tracker search utility, 219–220
training resources, 235
Trusted Extensions, 26
tunnel mode, launching svnserve in, 189
Type 1 and Type 2 hypervisors, 37, 115

U
Ubuntu 8, running as guest VM, 136
UltraSPARC T2 processor chip, 148
uname command, 47
UNIX

history of, 9
service management and, 69

UNIX File System, 89
updating kernel build, 59–60
USB flash memory drive, booting from, 30
user domains, 137
user groups, recommended, 236
user list for MySQL, viewing, 174
users

adding new, 62–64
default shell for, 55
Primary Administrator role, 57

Users and Groups menu, 62
user tools included with OpenSolaris, 22
/usr/bin/bash, as default shell, 55
/usr/gnu/bin directory, 55–56

V
variables, setting for Tomcat, 167
videos, recommended, 236
viewing

bugs, 193
extended ACL, 158
privileges, 164
process ID and contract ID of services,

161

published IPS packages, 202
user list for MySQL, 174

virt-manager GUI tool, 140, 145
VirtualBox

boot device and network configuration,
39

cloning feature, 45
description of, 38
installing new guest VM in, 134
running guest VM on OpenSolaris

using, 136
selecting and mounting guest VM CD,

DVD, or .iso file, 134
virtual disk type selection, 39
welcome screen, 39

virtual devices, 94
virtualization

choosing type of, 115–116
Cloud Computing products and, 112
definition of, 5
installation and, 30
overview of, 112
support for, 25
technologies for

BrandZ, 145–148
LDoms, 148
overview of, 133
VirtualBox, 134–136
xVM hypervisor, 136–145

types of, 113–115
zones

cloning, 127–128
containers compared to, 118
creating, 120–124
example configuration of, 120
global and local environments,

124–127
managing, 128–129
resources, managing, 130–132
using, 129–130

virtual machine monitor, 113. See also
hypervisor

virtual machine (VM)
installing as guest, 37–47
installing operating system as, 30

vmstat, DTrace version of, 214

INDEX 253

W
Webmin tool, 86–88, 128
webservd (user)

assigning privilege to, 169
starting Tomcat as, 169
starting Tomcat manually as, 171

webservd:webservd UID, 167
web servers, hosting with local zones, 129
web sites

Chime GUI for DTrace, 216
Crossbow technology, 113
curriculum development resources, 226
device drivers, 8
for downloading OpenSolaris, 27
essential, 15
Fluendo, 224
Gregg, Brendan, 212
lapto issues, community for, 30
Learning Cloud Service, 227–229
manifest files for services, 81
OpenSolaris .org

bug-tracking and RFE site, 14
community web page, 12
device drivers community, 8
LDom developer community, 149
Observatory blog, 12
public road maps, 10
Source Code, 19
Zones and Containers FAQ, 129

recommended, 236
service manifest template, 82
SMF Manifest Creator, 86
software repositories, 48
Solaris

Developer Network, 28
Dynamic Tracing Guide, 209
error conditions, 80
public road maps, 10

source code, 8
Subversion information, 191
Sun Microsystems

Device Detection Tool, 21
Hardware Compatibility List, 21

VirtualBox, 39, 134
virtualization technologies, 114, 133

Webmin tool, 86–88
Xen community, 115
xVM Server, 137
ZFS file system, 90–91, 102
zonemgr tool, 128
zone or container resource allocation,

132
zonestat tool, 127

web stack
description of, 154
initializing, 158–161

white papers, recommended, 237
wikis, recommended, 234
Windows XP, running as guest VM, 136
workload containment, 5, 111

X
Xen community, 115
xVM hypervisor

installing, 138–145
overview of, 136–137

xVM Server, 115, 136

Z
zfs command

description of, 94
examples using, 98–100
snapshot, creating with, 103

ZFS file system
booting and rebooting from, 57–59
description of, 24
development and design goals of, 90
extended ACL and, 158
features of, 91–93
managing boot environments, 108–110
on-disk encryption of, 240
performance of, 101–102
snapshots, taking, 103–104
storage pools

creating, 95
overview of, 94
zfs command and, 98–100
zpool command and, 96–98

Time Slider, 104–106
virtual devices, 94
web sites related to, 90–91, 102

INDEX254

zlogin program, 120
zoneadm program, 120, 122–124
zonecfg program, 120–122
zonemgr tool, 128
zonename program, 120
zones

branded, 145
cloning, 127–128
containers compared to, 118
creating

configuration files directory, 121
overview of, 120
zoneadm program, 122–124
zonecfg command, 121

discrete privileges and, 163–164
example configuration of, 120
global and local environments, 124–127

local
description of, 118
DTrace and, 209
using, 129–130

lx, 145–146
managing, 128–129
overview of, 163
qualifying application for, 164–165
resources, managing, 130– 132
running application inside, 162–163
using, 129–130

Zones and Containers FAQ, 129
zonestat tool, 127
zpool command

description of, 94
examples using, 96–98
options for, 95

	cover-large.JPG
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_003_2.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_006_2.pdf
	fulltext_007.pdf
	fulltext_008.pdf
	back-matter.pdf

