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1 Introduction and Results

A finite family of random variables {Xi; 1 ≤ i ≤ n} is said to be negatively associated (NA) if,
for every pair of disjoint subsets A and B of {1, 2, . . . , n},

Cov(f(Xi; i ∈ A), g(Xj; j ∈ B)) ≤ 0 (1.1)
whenever f and g are coordinate-wise nondecreasing and the above covariance exists. An infinite
family is negatively associated if every finite subfamily is negatively associated. The concept of
the negative association was introduced by Alam and Saxena [1] and Joag-Dev and Proschan
[2]. As proved by Joag-Dev and Proschan [2], some well-known multivariate distributions have
the NA property. The NA property has found important and wide applications in areas such
as multivariate statistics and reliability theory. In the past few decades, a lot of effort was
dedicated to proving the limit theorems of NA random variables. We refer to Joag-Dev and
Proschan [2] for fundamental properties, Newman [3] for the central limit theorem, Su, et al. [4]
for the moment inequality and functional central limit theorem, Pan and Lu [5] for the uniform
convergence rate in the central limit theorem and Shao and Su [6] for the law of the iterated
logarithm.

We first define notations and introduce an asymptotically negatively association assumption
that will be used throughout the paper. Let Φ(x) denote the standard normal distribution
function and log x = ln(x ∨ e). For any real number x, let [x] denote the integer part of x,
x+ = max(0, x) and x− = max(0,−x) (except for the definition of ρ−(·)). Let a∧b = min(a, b),
a∨ b = max(a, b) and C denote a positive constant, which may take different values in different
expressions.
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Definition 1.1 A sequence of random variables {Xn; n ≥ 1} is said to be asymptotically
negatively associated (ANA), if

ρ−(r) := sup{ρ−(S, T ) : S, T ∈ N, dist(S, T ) ≥ r} → 0 (r → ∞),

where

ρ−(S, T ) := 0 ∨ sup
{

Cov(f(Xi; i ∈ S), g(Xj; j ∈ T ))
(Varf(Xi; i ∈ S))1/2 · (Var g(Xj ; j ∈ T ))1/2

: f, g ∈ F

}
,

F = {f = f(x1, . . . , xp) : f is coordinatewise increasing; p ≥ 1}.
The above definition was introduced by Zhang [7, 8]. An NA sequence is obviously an ANA

sequence with ρ−(1) = 0. Compared to NA, ANA defines a strictly larger class of random
variables (for detail examples, see Zhang [7]). Consequently, the study of the limit theorems for
ANA sequences is of much interest. Zhang [8] established the central limit theorem. Wang and
Lu [9] established the moment inequality and the functional central limit theorem. The main
purpose of this paper is to establish a uniform error bound of the Berry–Esseen type in normal
approximation and a law of the iterated logarithm for ANA random variables. Let {Xn; n ≥ 1}
be a sequence of random variables; denote Sn =

∑n
j=1 Xj , σ2

n = Var(Sn).

Theorem 1.1 Let θ > 2 and {Xn; n ≥ 1} be an ANA sequence of random variables with
EXn = 0, and supj∈N E|Xj |2+δ < ∞ for some 0 < δ ≤ 1. Assume

(C1) u(r) := supj∈N

∑
k:|k−j|≥r |Cov(Xj , Xk)| = O(r−θ1), θ1 > max(1, δ

1+δ (θ − 1));

(C2) ρ−(r) = O(r−θ2), θ2 > θ − 1;
and,

(C3) infn∈N σ2
n/n > 0.

Then there exists a positive constant C such that

sup
x

∣∣∣∣P
(

Sn

σn
< x

)
− Φ(x)

∣∣∣∣ ≤ C(n−β1 + n−β2 + n−β3), (1.2)

where β1 = 1
θ (θ1 − δ

1+δ (θ − 1)), β2 = 1
θ (θ2 − (θ − 1)) and β3 = δ(1−2/θ)

2(1+δ) .

Remark 1.1 We provide a uniform convergence rate in the central limit theorem under a
power decay of the covariance of an ANA sequence. Let δ = 1 and θ be sufficiently large. Then
θ1, θ2 are sufficiently large and the maximum convergence rate of (1.2) is close to O(n−1/4).
Pan and Lu [5] [resp. Birkel [10]] obtained a convergence rate O(n−1/2 log n) for NA [resp. PA]
sequences if u(r) decreases exponentially to 0. However, it seems that the method of Birkel
[10], and Pan and Lu [5] cannot work for ANA sequences.

Remark 1.2 If conditions (C1) and (C2) are replaced by weaker conditions:
(C1)′ u(n) = O((log n)−3(1+τ)) for some τ > 0;

and,
(C2)′ ρ−(n) = O((log n)−(3+2/δ)(1+τ)),

then

sup
x

∣∣∣∣P
(

Sn

σn
< x

)
− Φ(x)

∣∣∣∣ ≤ O((log n)−1−τ ).

The proof is similar to the one of Theorem 1.1.

Theorem 1.2 Let {Xn; n ≥ 1} be a weakly stationary ANA sequence of random vari-
ables with EXn = 0, and supj∈N E|Xj |2+δ < ∞ for some δ > 0. Denote σ2 = Var(X1) +
2

∑∞
j=2 Cov(X1, Xj). Assume (C1)′, (C2)′ and
(C3)′ VarX1 − 2

∑∞
j=2 Cov(X1, Xj)− > 0.

Then

lim sup
n→∞

Sn

(2σ2n log log n)1/2
= 1 a.s. (1.3)
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Remark 1.3 It is easy to see that conditions (C1)′ and (C3)′ imply 0 < σ2 < ∞. In the
stationary case, condition (C3)′ implies (C3). In fact,

σ2
n

n
= Var(X1) + 2n−1

n∑
j=2

(n + 1 − j)Cov(X1, Xj)

≥ Var(X1) − 2n−1
n∑

j=2

(n + 1 − j)Cov(X1, Xj)−

≥ Var(X1) − 2
n∑

j=2

Cov(X1, Xj)−.

Thus

inf
n∈N

σ2
n/n ≥ Var(X1) − 2

∞∑
j=2

Cov(X1, Xj)− > 0.

2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 (Lin [11]) Suppose f1(t) and f2(t) are the characteristic functions corresponding
to distribution functions F1(x) and F2(x), respectively. Then ∀ T > 0, b > 1

2π ,

sup
x

|F1(x) − F2(x)| ≤ b max
k=1,2

sup
x

∣∣∣∣
∫ T

−T

f1(t) − f2(t)
it

hk(t)e−itxdt

∣∣∣∣
+ bT sup

x

∫
|y|≤C(b)/T

|F2(x + y) − F2(x)|dy, (2.1)

where

h1(t) =

{
(1 − |t|

T )eita/T , |t| < T,

0, |t| ≥ T,
h2(t) =

{
(1 − |t|

T )e−ita/T , |t| < T,

0, |t| ≥ T.

Here the constants C(b) and a depend only on b. Furthermore, we have

sup
x

∣∣∣∣
∫ T

−T

f1(t) − f2(t)
it

hk(t)e−itxdt

∣∣∣∣ ≤ sup
x

|F1(x) − F2(x)| (k = 1, 2). (2.2)

Lemma 2.2 (Zhang [7]) Suppose that {Xn; n ≥ 1} is an ANA sequence of random variables
with finite variance. Then, for any real λ1, . . . , λn,∣∣∣∣E exp

(
i

n∑
k=1

λkXk

)
−

n∏
k=1

E exp(iλkXk)
∣∣∣∣

≤ 4
∑

1≤j �=k≤n

|λk||λj |{−Cov(Xk, Xj) + 8ρ−(1)||Xj ||2,1||Xk||2,1},

where ||X||2,1 =
∫ ∞
0

P 1/2(|X| ≥ x)dx.

Lemma 2.3 (Wang and Lu [9]) Let {Xn; n ≥ 1} be an ANA sequence of random variables
with EXn = 0, and E|Xn|p < ∞ for some p ≥ 2. Assume that ρ−(N) ≤ r for N ≥ 1,
0 < r < ( 1

6p )p/2. Then there exists a positive constant D such that

E max
1≤k≤n

∣∣∣∣
k∑

i=1

Xi

∣∣∣∣
p

≤ D

{ n∑
i=1

E|Xi|p +
( n∑

i=1

EX2
i

)p/2}
.

Proof of Theorem 1.1 The basic approach of this proof is based on Wood [12] but the details
are quite different. Without loss of generality, we can assume that n ≥ 8. For given θ > 2
and 0 < δ ≤ 1, let {p = p(n)} and {q = q(n)} be two arrays of positive integers such that
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p = [n(δ+1/θ)/(1+δ)] and q = [n1/θ]. Define {k = k(n)} such that k = [ n
p+q ]. It is not difficult to

observe that k ≥ 1 if n is large enough. Define
A(j) = {i ∈ N : (j − 1)(p + q) < i ≤ j(p + q) − q}, j = 1, . . . , k,

B(j) = {i ∈ N : j(p + q) − q < i ≤ j(p + q)}, j = 1, . . . , k − 1,

B(k) = {i ∈ N : k(p + q) − q < i ≤ n},
Wj =

∑
i∈A(j)

Xi, Vj =
∑

i∈B(j)

Xi, j = 1, . . . , k,

Sn1 =
k∑

j=1

Wj and Sn2 =
k∑

j=1

Vj .

For an > 0, using the fact that Sn = Sn1 + Sn2 and that |Φ(x + an) − Φ(x)| ≤ (2π)−1/2an, we
have

sup
x

∣∣∣∣P
(

Sn

σn
< x

)
−Φ(x)

∣∣∣∣ ≤ sup
x

∣∣∣∣P
(

Sn1

σn
< x

)
−Φ(x)

∣∣∣∣+(2π)−1/2an +P (|Sn2| ≥ anσn). (2.3)

Let X̄i = anσn ∧ (Xi ∨ (−anσn)), ¯Sn2 =
∑k

j=1

∑
i∈B(j) X̄i. By the Markov inequality and

supj E|Xj|2+δ < ∞, we have

P (|Sn2| ≥ anσn) ≤ P (| ¯Sn2| ≥ anσn) +
k∑

j=1

∑
i∈B(j)

P (|Xi| > anσn)

≤ P (| ¯Sn2| ≥ anσn) + Ckq/(anσn)2+δ. (2.4)
Note that X̄1, X̄2, . . . , are also ANA random variables. Using the Markov inequality, Lemma 2.3
and supj E|Xj |2+δ < ∞, for γ ≥ 2 + δ, we have

P (| ¯Sn2| ≥ anσn) ≤ C(anσn)−γ

{ k∑
j=1

∑
i∈B(j)

E|X̄i|γ +
( k∑

j=1

∑
i∈B(j)

EX̄i
2
)γ/2

+
( k∑

j=1

∑
i∈B(j)

E|Xi|2+δ/(anσn)1+δ

)γ}

≤ C{kq/(anσn)2+δ + (kq/(anσn)2)γ/2}. (2.5)
Combining (2.4) and (2.5), by condition (C3) we have

P (|Sn2| ≥ anσn) ≤ C{kq/(a2+δ
n n1+δ/2) + (kq/(a2

nn))γ/2}. (2.6)
Let {W ′

j ; 1 ≤ j ≤ k} be a sequence of independent random variables such that W
′
j and Wj have

the same distribution for each j = 1, . . . , k. Then applying the triangle inequality to Lemma 2.1
(2.1) we get

sup
x

∣∣∣∣P
(

Sn1

σn
< x

)
− Φ(x)

∣∣∣∣
≤ b max

ν=1,2
sup

x

∣∣∣∣
∫ T

−T

E exp(it
∑k

j=1 Wj/σn) − E exp(it
∑k

j=1 W
′
j/σn)

it
hν(t)e−itxdt

∣∣∣∣
+ b max

ν=1,2
sup

x

∣∣∣∣
∫ T

−T

E exp(it
∑k

j=1 W
′
j/σn) − E exp(it

∑k
j=1 W

′
j/σn1)

it
hν(t)e−itxdt

∣∣∣∣
+ b max

ν=1,2
sup

x

∣∣∣∣
∫ T

−T

E exp(it
∑k

j=1 W
′
j/σn1) − exp(−t2/2)
it

hν(t)e−itxdt

∣∣∣∣ +
bC2(b)√

2πT

:= I1 + I2 + I3 +
bC2(b)√

2πT
, (2.7)

where σ2
n1 =

∑k
j=1 Var(Wj).
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From Lemma 2.2, it follows that

I1 ≤
∫ T

−T

∣∣∣∣E exp(it
∑k

j=1 Wj/σn) − ∏k
j=1 E exp(itWj/σn)

t

∣∣∣∣dt

≤ 4T 2

σ2
n

∑
1≤i�=j≤k

{−Cov(Wi, Wj) + 8ρ−(q)||Wi||2,1||Wj ||2,1}

≤ 4T 2

σ2
n

{ ∑
1≤i�=j≤k

{−Cov(Wi, Wj)} + Cρ−(q)
∑

1≤i�=j≤k

(E|Wi|2+δE|Wj |2+δ)1/(2+δ)

}

:=
4T 2

σ2
n

{I11 + I12}, (2.8)

where the inequality ||X||2,1 ≤ ( 2+δ
δ )(E|X|2+δ)1/(2+δ) (cf. Ledoux and Talagrand [13, p. 251])

is used. By (C1), it follows that

I11 ≤
∑

i,j≤n:|i−j|≥q+1

|Cov(Xi, Xj)| ≤ Cnu(q + 1) ≤ Cnq−θ1 . (2.9)

By Theorem 3.1 of Zhang [7] and (C2), it follows that
I12 ≤ Cρ−(q)k2p(sup

j
E|Xj |2+δ)2/(2+δ) ≤ Cnkq−θ2 . (2.10)

Combining (2.8)–(2.10), by (C3) we get
I1 ≤ C{q−θ1 + kq−θ2}T 2. (2.11)

By Taylor’s theorem and the independence of {W ′
j} we get

I2 ≤ 2TE

∣∣∣∣
∑k

j=1 W
′
j

σn
−

∑k
j=1 W

′
j

σn1

∣∣∣∣
≤ 2T

∣∣∣∣σn1

σn
− 1

∣∣∣∣
[
E

( k∑
j=1

W
′
j/σn1

)2]1/2

≤ 2Tσ−2
n |σ2

n1 − σ2
n|. (2.12)

Using σ2
n = Var(

∑k
j=1(Wj + Vj)) and Theorem 3.1 of Zhang [7] we get

|σ2
n1 − σ2

n|

≤
∣∣∣∣

k∑
j=1

Var(Vj)
∣∣∣∣ + 2

∣∣∣∣
k∑

j=1

Cov(Wj , Vj)
∣∣∣∣ +

∣∣∣∣
k∑

j=1

Var(Wj + Vj) − Var
( k∑

j=1

(Wj + Vj)
)∣∣∣∣

≤ Ckq sup
j

EX2
j + 2

∣∣∣∣
k∑

j=1

Cov(Wj , Vj)
∣∣∣∣ +

∣∣∣∣
∑

1≤i�=j≤k

Cov(Wj + Vj , Wi + Vi)
∣∣∣∣. (2.13)

By (C1), ∣∣∣∣
k∑

j=1

Cov(Wj , Vj)
∣∣∣∣ ≤ k

min(p,q)∑
i=1

u(i) ≤ Ck, (2.14)

and ∣∣∣∣
∑

1≤i�=j≤k

Cov(Wj + Vj , Wi + Vi)
∣∣∣∣ = 2

∣∣∣∣
k−1∑
j=1

Cov
(

Wj + Vj ,

k∑
i=j+1

(Wi + Vi)
)∣∣∣∣

≤ 2(k − 1)
p+q∑
i=1

u(i) ≤ Ck. (2.15)

Thus, by (2.12)–(2.15) and (C3) we get

I2 ≤ C(kq + k)n−1T ≤ C
q

p
T. (2.16)



132 Wang J. F. and Zhang L. X.

Now we estimate I3. Using Lemma 2.1 (2.2) we have

I3 ≤ b sup
x

∣∣∣∣P
( ¯Sn1

σn1
< x

)
− Φ(x)

∣∣∣∣,
where ¯Sn1 =

∑k
j=1 W

′
j . Note that W

′
1, . . . , W

′
k are independent random variables, EW

′
j = 0,

j = 1, . . . , k. Thus applying the Berry–Esseen inequality for independent random variables
(see, Petrov [14]), we have

I3 ≤ C

σ2+δ
n1

k∑
j=1

E|W ′
j |2+δ.

By Theorem 3.1 of Zhang [7] and condition (C3) we get

E|W ′
j |2+δ = E|Wj |2+δ ≤ Cp(2+δ)/2 sup

j
E|Xj |2+δ ≤ Cp(2+δ)/2, j = 1, . . . , k,

and
σn1 ≥ C

√
kp.

Thus
I3 ≤ Ck−δ/2. (2.17)

Now, associated with (2.3), (2.6), (2.7), (2.11), (2.16) and (2.17), we have

sup
x

∣∣∣∣P
(

Sn

σn
< x

)
− Φ(x)

∣∣∣∣ ≤ C

{
q−θ1T 2 + kq−θ2T 2 +

q

p
T +

1
T

+ k−δ/2

+ an + kq/(a2+δ
n n1+δ/2) + (kq/(a2

nn))γ/2

}
. (2.18)

Finally, we choose
T = (q/p)−1/2 and an = n− δ(1−2/θ)

2(1+δ) .

Substitute p, q, k, T and an into (2.18). Let γ ≥ max(θ − 2, 2 + δ). We immediately obtain the
result.

3 Proof of Theorem 1.2
In order to prove Theorem 1.2, the following lemmas are required.
Lemma 3.1 Under the assumption of Theorem 1.2, if {nk; k ≥ 1} is a nondecreasing sequence
of positive integers such that

∑∞
k=1(log nk)−1−τ < ∞, then

∞∑
k=1

sup
x

∣∣∣∣P
(

Snk

n
1/2
k σ

< x

)
− Φ(x)

∣∣∣∣ < ∞.

Proof
∞∑

k=1

sup
x

∣∣∣∣P
(

Snk

n
1/2
k σ

< x

)
− Φ(x)

∣∣∣∣

≤
∞∑

k=1

sup
x

∣∣∣∣P
(

Snk

σnk

<
n

1/2
k σ

σnk

x

)
− Φ

(
n

1/2
k σ

σnk

x

)∣∣∣∣ +
∞∑

k=1

sup
x

|Φ
(

n
1/2
k σ

σnk

x

)
− Φ(x)

∣∣∣∣
:= K1 + K2. (3.1)

Then, by Remark 1.2, we get

K1 ≤ C

∞∑
k=1

(log nk)−1−τ < ∞. (3.2)

By Theorem 3.1 of Zhang [7] and Remark 1.3, we have

n
1/2
k σ

σnk

≥ n
1/2
k σ

Cn
1/2
k

> C, for k ∈ N.
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Thus, by Petrov [14, p. 114], Remark 1.3, (C1)′ and the property of being stationary, we have

K2 ≤ (2πe)−1/2
∞∑

k=1

∣∣∣∣n
1/2
k σ

σnk

− 1
∣∣∣∣ ≤ C

∞∑
k=1

σ−2
nk

|nkσ2 − σ2
nk
|

≤ C

∞∑
k=1

∣∣∣∣2
∞∑

j=nk+1

Cov(X1, Xj) +
2
nk

nk∑
j=2

(j − 1)Cov(X1, Xj)
∣∣∣∣

≤ C

∞∑
k=1

u(nk) + C

∞∑
k=1

n−1
k

nk∑
j=1

u(j)

≤ C
∞∑

k=1

(log nk)−3−3τ < ∞. (3.3)

Combining (3.1)–(3.3), we immediately obtain the result.
Lemma 3.2 Let {Xn} and {nk} be sequences satisfying the conditions of Lemma 3.1, and
{g(n)} be a nondecreasing sequence of positive numbers. Then the following statements are
equivalent :

(A)
∑∞

k=1 P (|Snk
| > g(nk)n1/2

k σ) < ∞;
and,

(B)
∑∞

k=1 g−1(nk) exp(−1
2g2(nk)) < ∞.

Proof By Lemma 3.1, the proof follows easily from the proof of Lemma 9 of Petrov [14, p.
311].
Proof of Theorem 1.2 Without loss of generality we may suppose that σ2 = 1. It suffices to
show that ∀ ε > 0

lim sup
n→∞

|Sn|
h(n)

≤ 1 + ε a.s. (3.4)

and
lim sup

n→∞
Sn

h(n)
≥ 1 − ε a.s., (3.5)

where h(n) = (2n log log n)1/2.
To prove (3.4), let nk = [ekα

], 0 < α < 1. We write g(n) = (2 log log n)1/2, then

g−1(nk) exp
(
− 1

2
(1 + ε)2g2(nk)

)
≤ Ck−α(1+ε)2 ,

for sufficiently large k. Fixing ε > 0, we have 0 < α < 1 such that α(1 + ε)2 > 1, then
∞∑

k=1

g−1(nk) exp
(
− 1

2
(1 + ε)2g2(nk)

)
< ∞.

By Lemma 3.2 and the Borel–Cantelli lemma we get

lim sup
k→∞

|Snk
|

h(nk)
≤ 1 + ε a.s.

Let
Mk = max

nk≤n<nk+1
|Sn − Snk

|/h(nk),

for k ≥ 1. For each k ≥ 1,
|Sn|/h(n) ≤ |Snk

|/h(nk) + Mk,

for nk ≤ n < nk+1. Thus it suffices to show that
Mk → 0 a.s. (3.6)

Define
X̄i = i1/2I(Xi > i1/2) + XiI(|Xi| ≤ i1/2) − i1/2I(Xi < −i1/2), for i ∈ N,
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and

S̄n =
n∑

i=1

X̄i, for n ∈ N.

We have
∞∑

k=1

P (Mk > ε) =
∞∑

k=1

P ( max
nk≤n<nk+1

|Sn − Snk
| > ε(2nk log log nk)1/2)

≤
∞∑

k=1

P

( ⋃
nk≤i<nk+1

{|Xi| > i1/2}
)

+
∞∑

k=1

P ( max
nk≤n<nk+1

|S̄n − ¯Snk
| > ε(2nk log log nk)1/2)

:= H1 + H2. (3.7)

First, for some 0 < δ ≤ 1, by condition supj E|Xj|2+δ < ∞, we have

H1 ≤
∞∑

k=1

nk+1−1∑
i=nk

P (|Xi| > i1/2) ≤
∞∑

i=1

i−(2+δ)/2 sup
j

E|Xj |2+δ < ∞. (3.8)

By conditions EXn = 0 and supj E|Xj |2+δ < ∞, it is easy to show that, ∀ ε > 0,

max
nk≤n<nk+1

|E(S̄n − ¯Snk
)| ≤ ε

2
(2nk log log nk)1/2, k → ∞.

Thus

H2 ≤
∞∑

k=1

P
(

max
nk≤n<nk+1

|S̄n − ¯Snk
− E(S̄n − ¯Snk

)| >
ε

2
(2nk log log nk)1/2

)
.

By definition of ANA, X̄nk
− EX̄nk

, . . . , X̄nk+1−1 − EX̄nk+1−1 are also ANA random variables
with E(X̄i − EX̄i) = 0, i = nk, . . . , nk+1 − 1. Thus, by the Markov inequality, Lemma 2.3 and
supj E|Xj|2+δ < ∞, we have, for some p > max(2 + δ, 2

1−α ),

H2 ≤ C

∞∑
k=1

(nk log log nk)−p/2E max
nk≤n<nk+1

|S̄n − ¯Snk
− E(S̄n − ¯Snk

)|p

≤ C
∞∑

k=1

(nk log log nk)−p/2

{ nk+1−1∑
i=nk

E|X̄i|p +
( nk+1−1∑

i=nk

EX̄i
2
)p/2}

≤ C

∞∑
k=1

(nk log log nk)−p/2

nk+1−1∑
i=nk

ip/2P (|Xi| > i1/2)

+ C

∞∑
k=1

(nk log log nk)−p/2

nk+1−1∑
i=nk

E|Xi|pI(|Xi| ≤ i1/2) + C

∞∑
k=1

(
nk+1 − nk

nk log log nk

)p/2

:= H21 + H22 + H23, (3.9)

where

H21 ≤ C

∞∑
k=1

(nk log log nk)−p/2

nk+1−1∑
i=nk

i(p−2−δ)/2 sup
j

E|Xj|2+δ

≤ C

∞∑
k=1

e−
δ
2 (k+1)α

< ∞, (3.10)
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H22 ≤ C
∞∑

k=1

(nk log log nk)−p/2

nk+1−1∑
i=nk

i(p−2−δ)/2 sup
j

E|Xj |2+δ < ∞, (3.11)

H23 ≤ C
∞∑

k=1

k− (1−α)p
2 (log k)−p/2 < ∞. (3.12)

From (3.7)–(3.12), we have
∑∞

k=1 P (Mk > ε) < ∞, ∀ ε > 0. Hence Mk → 0 a.s. as desired.
We proceed to prove (3.5). Fix N > 9 and 0 < r < 1, let

Ck = {SNk − SNk−1+Nk/2 > (1 − r)h(Nk − Nk−1 − Nk/2)}, k ∈ N.

The first thing we need to show is that
∞∑

k=1

P (Ck) = ∞. (3.13)

We will use the inequality
P (Ck) ≥ P (SNk > (1 − r/2)h(Nk − Nk−1 − Nk/2))

− P

(
SNk−1+Nk/2 ≥ r

2
h(Nk − Nk−1 − Nk/2)

)
. (3.14)

Note that, for sufficiently large k,(
N − 1

2

)1/2

(Nk−1 + Nk/2)1/2g(Nk−1 + Nk/2)

≤ h(Nk − Nk−1 − Nk/2) ≤ (Nk)1/2g(Nk), (3.15)

g−1(Nk−1 + Nk/2) exp
(
− 1

2

(
r

2

)2(
N − 1

2

)
g2(Nk−1 + Nk/2)

)
≤ Ck−r2(N−1)/8 (3.16)

and

g−1(Nk) exp
(
− 1

2

(
1 − r

2

)2

g2(Nk)
)

≥ C(log k)−1/2k−(1− r
2 )2 . (3.17)

Choose positive constants N , r, such that r2(N − 1)/8 > 1. Then, by (3.15)–(3.17) and
Lemma 3.2, we get

∞∑
k=1

P

(
SNk−1+Nk/2 ≥ r

2
h(Nk − Nk−1 − Nk/2)

)
< ∞, (3.18)

∞∑
k=1

P (SNk > (1 − r/2)h(Nk − Nk−1 − Nk/2)) = ∞. (3.19)

Hence (3.13) follows immediately from (3.14), (3.18) and (3.19).
Let ξk be the indicator function of Ck. Then

P

( ∞∑
k=1

ξk ≤ 1
2

n∑
k=1

P (Ck)
)

≤ P

( n∑
k=1

ξk ≤ 1
2

n∑
k=1

P (Ck)
)

≤ P

(∣∣∣∣
n∑

k=1

ξk −
n∑

k=1

P (Ck)
∣∣∣∣ ≥ 1

2

n∑
k=1

P (Ck)
)

≤ 4Var(
∑n

k=1 ξk)
(
∑n

k=1 P (Ck))2
. (3.20)

By (C2)′, we have

Var
( n∑

k=1

ξk

)
=

n∑
k=1

Var(ξk) + 2
n−1∑
k=1

n−k∑
j=1

Cov(ξk, ξk+j)
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≤
n∑

k=1

P (Ck) + 2
∞∑

k=1

∞∑
j=1

ρ−(Nk+j−1 + N (k+j)/2 − Nk)

≤
n∑

k=1

P (Ck) + C

∞∑
k=1

∞∑
j=1

(log N (k+j)/2)−(3+2/δ)(1+τ)

=
n∑

k=1

P (Ck) + C. (3.21)

Since
∑∞

k=1 P (Ck) = ∞, letting n → ∞ in (3.20) and (3.21) gives P (
∑∞

k=1 ξk < ∞) = 0. Hence
P (Ck i.o.) = 1. (3.22)

Let
Bk = {SNk−1+Nk/2 > −2h(Nk−1 + Nk/2)}, k ∈ N.

Using the conclusion of the first half of the proof, we have P (Bk

⋂
Ck i.o.) = 1. It is straight-

forward to notice that choosing N sufficiently large implies, for arbitrary ε > r > 0, that
P (SNk > (1 − ε)h(Nk) i.o.)

≥ P (SNk > (1 − r)h(Nk − Nk−1 − Nk/2) − 2h(Nk−1 + Nk/2) i.o.)
≥ P (Bk ∩ Ck i.o.) = 1. (3.23)

Therefore (3.5) is proved by (3.23).
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