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Preface

The objectives of this book are twofold: (1) for the student, to show how the
fundamental principles underlying the behavior of fluids (with emphasis on
one-dimensional macroscopic balances) can be applied in an organized and
systematic manner to the solution of practical engineering problems, and (2)
for the practicing engineer, to provide a ready reference of current informa-
tion and basic methods for the analysis of a variety of problems encountered
in practical engineering situations.

The scope of coverage includes internal flows of Newtonian and non-
Newtonian incompressible fluids, adiabatic and isothermal compressible
flows (up to sonic or choking conditions), two-phase (gas–liquid, solid–
liquid, and gas–solid) flows, external flows (e.g., drag), and flow in porous
media. Applications include dimensional analysis and scale-up, piping sys-
tems with fittings for Newtonian and non-Newtonian fluids (for unknown
driving force, unknown flow rate, unknown diameter, or most economical
diameter), compressible pipe flows up to choked flow, flow measurement
and control, pumps, compressors, fluid-particle separation methods (e.g.,
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centrifugal, sedimentation, filtration), packed columns, fluidized beds, sedi-
mentation, solids transport in slurry and pneumatic flow, and frozen and
flashing two-phase gas–liquid flows. The treatment is from the viewpoint of
the process engineer, who is concerned with equipment operation, perfor-
mance, sizing, and selection, as opposed to the details of mechanical design
or the details of flow patterns in such situations.

For the student, this is a basic text for a first-level course in process
engineering fluid mechanics, which emphasizes the systematic application of
fundamental principles (e.g., macroscopic mass, energy, and momentum
balances and economics) to the analysis of a variety of fluid problems of
a practical nature. Methods of analysis of many of these operations have
been taken from the recent technical literature, and have not previously been
available in textbooks. This book includes numerous problems that illus-
trate these applications at the end of each chapter.

For the practicing engineer, this book serves as a useful reference for
the working equations that govern many applications of practical interest,
as well as a source for basic principles needed to analyze other fluid systems
not covered explicitly in the book. The objective here is not to provide a
mindless set of recipes for rote application, however, but to demonstrate an
organized approach to problem analysis beginning with basic principles and
ending with results of very practical applicability.

Chemical Engineering Fluid Mechanics is based on notes that I have
complied and continually revised while teaching the junior-level fluid
mechanics course for chemical engineering students at Texas A&M
University over the last 30 years. It has been my experience that, when
being introduced to a new subject, students learn best by starting with
simple special cases that they can easily relate to physically, and then pro-
gressing to more generalized formulations and more complex problems.
That is the philosophy adopted in this book. It will certainly be criticized
by some, since it is contrary to the usual procedure followed by most text-
books, in which the basic principles are presented first in the most general
and mathematical form (e.g., the divergence theorem, Reynolds transport
theorem, Navier Stokes equations, etc.), and the special cases are then
derived from these. Esoterically, it is very appealing to progress from the
general to the specific, rather than vice versa. However, having taught from
both perspectives, it is my observation that most beginning students do not
gain an appreciation or understanding from the very general, mathemati-
cally complex, theoretical vector expressions until they have gained a certain
physical feel for how fluids behave, and the laws governing their behavior, in
special situations to which they can easily relate. They also understand and
appreciate the principles much better if they see how they can be applied to
the analysis of practical and useful situations, with results that actually work
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in practice. That is why the multi-dimensional vector generalizations of
the basic conservations laws have been eschewed in favor of the simpler
component and one-dimensional form of these laws.

It is also important to maintain a balanced perspective between funda-
mental, or theoretical, and empirical information, for the practicing
engineer must use both to be effective. It has been said that all the tools
of mathematics and physics in the world are not sufficient to calculate how
much water will flow in a given time from a kitchen tap when it is opened.
However, by proper formulation and utilization of certain experimental
observations, this is a routine problem for the engineer. The engineer
must be able to solve certain problems by direct application of theoretical
principles only (e.g., laminar flow in uniform conduits), others by utilizing
hypothetical models that account for a limited understanding of the basic
flow phenomena by incorporation of empirical parameters (e.g., :turbulent
flow in conduits and fittings), and still other problems in which important
information is purely empirical (e.g., pump efficiencies, two-phase flow in
packed columns). In many of these problems (of all types), application of
dimensional analysis (or the principle of ‘‘conservation of dimensions’’) for
generalizing the results of specific analysis, guiding experimental design, and
scaling up both theoretical and experimental results can be a very powerful
tool.

This second edition of the book includes a new chapter on two-phase
flow, which deals with solid–liquid, solid–gas, and frozen and flashing
liquid–gas systems, as well as revised, updated, and extended material
throughout each chapter. For example, the method for selecting the proper
control valve trim to use with a given piping configuration is presented and
illustrated by example in Chapter 10. The section on cyclone separators has
been completely revised and updated, and new material has been incorpo-
rated in a revision of the material on particles in non-Newtonian fluids.
Changes have made throughout the book in an attempt to improve the
clarity and utility of the presentation wherever possible. For example, the
equations for compressible flow in pipes have been reformulated in terms of
variables that are easier to evaluate and represent in dimensionless form.

It is the aim of this book to provide a useful introduction to the
simplified form of basic governing equations and an illustration of a con-
sistent method of applying these to the analysis of a variety of practical flow
problems. Hopefully, the reader will use this as a starting point to delve
more deeply into the limitless expanse of the world of fluid mechanics.

Ron Darby
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1

Basic Concepts

I. FUNDAMENTALS

A. Basic Laws

The fundamental principles that apply to the analysis of fluid flows are few
and can be described by the ‘‘conservation laws’’:

1. Conservation of mass
2. Conservation of energy (first law of thermodynamics)
3. Conservation of momentum (Newton’s second law)

To these may also be added:

4. The second law of thermodynamics
5. Conservation of dimensions (‘‘fruit salad’’ law)
6. Conservation of dollars (economics)

These conservation laws are basic and, along with appropriate rate or trans-
port models (discussed below), are the starting point for the solution of every
problem.

Although the second law of thermodynamics is not a ‘‘conservation
law,’’ it states that a process can occur spontaneously only if it goes from a
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state of higher energy to one of lower energy. In practical terms, this means
that energy is dissipated (i.e., transformed from useful mechanical energy to
low-level thermal energy) by any system that is in a dynamic (nonequili-
brium) state. In other words, useful (mechanical) energy associated with
resistance to motion, or ‘‘friction,’’ is always ‘‘lost’’ or transformed to a
less useful form of (thermal) energy. In more mundane terms, this law
tells us that, for example, water will run downhill spontaneously but cannot
run uphill unless it is ‘‘pushed’’ (i.e., unless mechanical energy is supplied to
the fluid from an exterior source).

B. Experience

Engineering is much more than just applied science and math. Although
science and math are important tools of the trade, it is the engineer’s ability
to use these tools (and others) along with considerable judgment and experi-
ment to ‘‘make things work’’—i.e., make it possible to get reasoable answers
to real problems with (sometimes) limited or incomplete information. A key
aspect of ‘‘judgment and experience’’ is the ability to organize and utilize
information obtained from one system and apply it to analyze or design
similar systems on a different scale. The conservation of dimensions (or
‘‘fruit salad’’) law enables us to design experiments and to acquire and
organize data (i.e., experience) obtained in a lab test or model ssytem in
the most efficient and general form and apply it to the solution of problems
in similar systems that may involve different properties on a different scale.
Because the vast majority of problems in fluid mechanics cannot be solved
without resort to experience (i.e., empirical knowledge), this is a very impor-
tant principle, and it will be used extensively.

II. OBJECTIVE

It is the intent of this book to show how these basic laws can be applied,
along with pertinent knowledge of system properties, operating conditions,
and suitable assumptions (e.g., judgment), to the analysis of a wide variety
of practical problems involving the flow of fluids. It is the author’s belief
that engineers are much more versatile, valuable, and capable if they
approach the problem-solving process from a basic perspective, starting
from first principles to develop a solution rather than looking for a
‘‘similar’’ problem (that may or may not be applicable) as an example to
follow. It is this philosophy along with the objective of arriving at workable
solutions to practical problems upon which this work is based.
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III. PHENOMENOLOGICAL RATE OR TRANSPORT LAWS

In addition to the conservation laws for mass, energy, momentum, etc.,
there are additional laws that govern the rate at which these quantities are
transported from one region to another in a continuous medium. These
are called phenomenological laws because they are based upon observable
phenomena and logic but they cannot be derived from more fundamental
principles. These rate or ‘‘transport’’models can be written for all conserved
quantities (mass, energy, momentum, electric charge, etc.) and can be
expressed in the general form as

Rate of transport ¼ Driving force

Resistance
¼ Conductance�Driving force

ð1-1Þ
This expression applies to the transport of any conserved quantity Q, e.g.,
mass, energy, momentum, or charge. The rate of transport of Q per unit
area normal to the direction of transport is called the flux of Q. This trans-
port equation can be applied on a microscopic or molecular scale to a
stationary medium or a fluid in laminar flow, in which the mechanism for
the transport of Q is the intermolecular forces of attraction between mole-
cules or groups of molecules. It also applies to fluids in turbulent flow, on a
‘‘turbulent convective’’ scale, in which the mechanism for transport is the
result of the motion of turbulent eddies in the fluid that move in three
directions and carry Q with them.

On the microscopic or molecular level (e.g., stationary media or lami-
nar flow), the ‘‘driving force’’ for the transport is the negative of the gradient
(with respect to the direction of transport) of the concentration of Q. That
is, Q flows ‘‘downhill,’’ from a region of high concentration to a region of
low concentration, at a rate proportional to the magnitude of the change in
concentration divided by the distance over which it changes. This can be
expressed in the form

Flux of Q in the y direction ¼ KT � dðConc. of Q

dy

� �
ð1-2Þ

where KT is the transport coefficient for the quantity Q. For microscopic
(molecular) transport, KT is a property only of the medium (i.e., the
material). It is assumed that the medium is a continuum, i.e., all relevant
physical properties can be defined at any point within the medium. This
means that the smallest region of practical interest is very large relative to
the size of the molecules (or distance between them) or any substructure of
the medium (such as suspended particles, drops, or bubbles). It is further
assumed that these properties are homogeneous and isotropic. For macro-
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scopic systems involving turbulent convective transport, the driving force is
a representative difference in the concentration of Q. In this case, the trans-
port coefficient includes the effective distance over which this difference
occurs and consequently is a function of flow conditions as well as the
properties of the medium (this will be discussed later).

Example 1-1: What are the dimensions of the transport coefficient, KT?

Solution. If we denote the dimensions of a quantity by brackets, i.e.,
[x] represents ‘‘the dimensions of x,’’ a dimensional equation corresponding
to Eq. (1-2) can be written as follows:

½Flux of Q� ¼ ½KT�
½Q�

½volume�½y�
Since ½flux of Q� ¼ ½Q�=L2t, ½volume� ¼ L3, and ½y� ¼ L, where L and t are
the dimensifons of length and time, respectively, we see that [Q] cancels out
from the equation, so that

½KT� ¼
L2

t

That is, the dimensions of the transport coefficient are independent of the
specific quantity that is being transported.

A. Fourier’s Law of Heat Conduction

As an example, Fig. 1-1 illustrates two horizontal parallel plates with a
‘‘medium’’ (either solid or fluid) between them. If the top plate is kept at
a temperature T1 that is higher than the temperature T0 of the bottom plate,
there will be a transport of thermal energy (heat) from the upper plate to the
lower plate through the medium, in the �y direction. If the flux of heat in
the y direction is denoted by qy, then our transport law can be written

qy ¼ ��T
dð�cvTÞ

dy
ð1-3Þ

where �T is called the thermal diffusion coefficient and ð�cvTÞ is the ‘‘con-
centration of heat.’’ Because the density (�) and heat capacity ðcvÞ are
assumed to be independent of position, this equation can be written in the
simpler form

qy ¼ �k
dT

dy
ð1-4Þ
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where k ¼ �T�cv is the thermal conductivity of the medium. This law was
formalized by Fourier in 1822 and is known as Fourier’s law of heat con-
duction. This law applies to stationary solids or fluids and to fluids moving
in the x direction with straight streamlines (e.g., laminar flow).

B. Fick’s Law of Diffusion

An analogous situation can be envisioned if the medium is stationary (or
a fluid in laminar flow in the x direction) and the temperature difference
ðT1 � T0Þ is replaced by the concentration difference ðC1 � C0Þ of some
species that is soluble in the fluid (e.g., a top plate of pure salt in contact
with water). If the soluble species (e.g., the salt) is A, it will diffuse through
the medium (B) from high concentration ðC1Þ to low concentration ðC0Þ. If
the flux of A in the y direction is denoted by nAy, then the transport law is
given by

nAy ¼ �DAB

dCA

dy
ð1-5Þ

where DAB is the molecular diffusivity of the species A in the medium B.
Here nAy is negative, because species A is diffusing in the �y direction.
Equation (1-5) is known as Fick’s law of diffusion (even though it is the
same as Fourier’s law, with the symbols changed) and was formulated in
1855.

C. Ohm’s Law of Electrical Conductivity

The same transport law can be written for electric charge (which is another
conserved quantity). In this case, the top plate is at a potential e1 and the
bottom plate is at potential e0 (electric potential is the ‘‘concentration of
charge’’). The resulting ‘‘charge flux’’ (i.e., current density) from the top
plate to the bottom is iy (which is negative, because transport is in the �y

Basic Concepts 5
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direction). The corresponding expression for this situation is known as
Ohm’s law (1827) and is given by

iy ¼ �ke
de

dy
ð1-6Þ

where ke is the ‘‘electrical conductivity’’ of the medium between the plates.

D. Newton’s Law of Viscosity

Momentum is also a conserved quantity, and we can write an equivalent
expression for the transport of momentum. We must be careful here, how-
ever, because velocity and momentum are vectors, in contrast to mass,
energy, and charge, which are scalars. Hence, even though we may draw
some analogies between the one-dimensional transport of these quantities,
these analogies do not generally hold in multidimensional systems or for
complex geometries. Here we consider the top plate to be subject to a force
in the x direction that causes it to move with a velocity V1, and the lower
plate is stationary ðV0 ¼ 0Þ. Since ‘‘x-momentum’’ at any point where the
local velocity is vx is mvx, the concentration of momentum must be �vx. If
we denote the flux of x-momentum in the y direction by ð�yxÞmf , the trans-
port equation is

ð�yxÞmf ¼ �� dð�vxÞ
dy

ð1-7Þ

where � is called the kinematic viscosity. It should be evident that ð�yxÞmf is
negative, because the faster fluid (at the top) drags the slower fluid (below)
along with it, so that ‘‘x-momentum’’ is being transported in the �y direc-
tion by virtue of this drag. Because the density is assumed to be independent
of position, this can also be written

ð�yxÞmf ¼ �� dvx
dy

ð1-8Þ

where � ¼ �� is the viscosity (or sometimes the dynamic viscosity). Equation
(1-8) applies for laminar flow in the x direction and is known as Newton’s
law of viscosity. Newton formulated this law in 1687! It applies directly to a
class of (common) fluids called Newtonian fluids, which we shall discuss in
detail subsequently.

1. Momentum Flux and Shear Stress

Newton’s law of viscosity and the conservation of momentum are also
related to Newton’s second law of motion, which is commonly written
Fx ¼ max ¼ dðmvxÞ=dt. For a steady-flow system, this is equivalent to
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Fx ¼ _mmvx, where _mm ¼ dm=dt is the mass flow rate. If Fx is the force acting in
the x direction on the top plate in Fig. 1. to make it move, it is also the
‘‘driving force’’ for the rate of transport of x-momentum ð _mmvxÞ which flows
from the faster to the slowerfluid (in the �y direction). Thus the force Fx

acting on a unit area of surface Ay is equivalent to a ‘‘flux of x-momentum’’
in the �y direction [e.g., �ð�yxÞmf ]. [Note that þAy is the area of the surface
bounding the fluid volume of interest (the ‘‘system’’), which has an outward
normal vector in the þy direction.] Fx=Ay is also the ‘‘shear stress,’’ �yx,
which acts on the fluid—that is, the force þFx (in the þx direction) that acts
on the area Ay of the þy surface. It follows that a positive shear stress is
equivalent to a negative momentum flux, i.e., �yx ¼ �ð�yxÞmf . [In Chapter 3,
we define the rheological (mechanical) properties of materials in terms that
are common to the field of mechanics, i.e., by relationships between the
stresses that act upon the material and the resulting material deformation.]
It follows that an equivalent form of Newton’s law of viscosity can be
written in terms of the shear stress instead of the momentum flux:

�yx ¼ �
dvx
dy

ð1-9Þ

It is important to distinguish between the momentum flux and the shear
stress because of the difference in sign. Some references define viscosity (i.e.,
Newton’s law of viscosity) by Eq. (1-8), whereas others use Eq. (1-9) (which
we shall follow). It should be evident that these definitions are equvialent,
because �yx ¼ �ð�yxÞmf .

2. Vectors Versus Dyads

All of the preceding transport laws are described by the same equation (in
one dimension), with different symbols (i.e., the same game, with different
colored jerseys on the players). However, there are some unique features to
Newton’s law of viscosity that distinguish it from the other laws and are
very important when it is being applied. First of all, as pointed out earlier,
momentum is fundamentally different from the other conserved quantities.
This is because mass, energy, and electric charge are all scalar quantities
with no directional properties, whereas momentum is a vector with direc-
tional character. Since the gradient (i.e., the ‘‘directional derivative’’ dq=dy
or, more generally, rq) is a vector, it follows that the gradient of a scalar
(e.g., concentration of heat, mass, charge) is a vector. Likewise, the flux of
mass, energy, and charge are vectors. However, Newton’s law of viscosity
involves the gradient of a vector (e.g., velocity or momentum), which implies
two directions: the direction of the vector quantity (momentum or velocity)
and the direction in which it varies (the gradient direction). Such quantities
are called dyads or second-order tensors. Hence, momentum flux is a dyad,
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with the direction of the momentum (e.g., x) as well as the direction in which
this momentum is transported (e.g., �y). It is also evident that the equiva-
lent shear stress ð�yxÞ has two directions, corresponding to the direction in
which the force acts ðxÞ and the direction (i.e., ‘‘orientation’’) of the surface
upon which it acts ðyÞ. [Note that all ‘‘surfaces’’ are vectors because of their
orientation, the direction of the surface being defined by the (outward)
vector that is normal to the surface that bounds the fluid volume of interest.]
This is very significant when it comes to generalizing these one-dimensional
laws to two or three dimensions, in which case much of the analogy between
Newton’s law and the other transport laws is lost.

3. Newtonian Versus Non-Newtonian Fluids

It is also evident that this ‘‘phenomenological’’ approach to transport pro-
cesses leads to the conclusion that fluids should behave in the fashion that
we have called Newtonian, which does not account for the occurrence of
‘‘non-Newtonian’’ behavior, which is quite common. This is because the
phenomenological laws inherently assume that the molecular ‘‘transport
coefficients’’ depend only upon the thermodyamic state of the material
(i.e., temperature, pressure, and density) but not upon its ‘‘dynamic
state,’’ i.e., the state of stress or deformation. This assumption is not valid
for fluids of complex structure, e.g., non-Newtonian fluids, as we shall
illustrate in subsequent chapters.

The flow and deformation properties of various materials are dis-
cussed in Chapter 3, although a completely general description of the flow
and deformation (e.g., rheological) properties of both Newtonian and non-
Newtonian fluids is beyond the scope of this book, and the reader is referred
to the more advanced literature for details. However, quite a bit can be
learned, and many problems of a practical nature solved, by considering
relatively simple models for the fluid viscosity, even for fluids with complex
properties, provided the complexities of elastic behavior can be avoided.
These properties can be measured in the laboratory, with proper attention
to data interpretation, and can be represented by any of several relatively
simple mathematical expressions. We will not attempt to delve in detail into
the molecular or structural origins of complex fluid properties but will make
use of information that can be readily obtained through routine measure-
ments and simple modeling. Hence, we will consider non-Newtonian fluids
along with, and in parallel with, Newtonian fluids in many of the flow
situations that we analyze.
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IV. THE ‘‘SYSTEM’’

The basic conservation laws, as well as the transport models, are applied to
a ‘‘system’’ (sometimes called a ‘‘control volume’’). The system is not actu-
ally the volume itself but the material within a defined region. For flow
problems, there may be one or more streams entering and/or leaving the
system, each of which carries the conserved quantity (e.g., Q) into and out of
the system at a defined rate (Fig. 1-2). Q may also be transported into or out
of the system through the system boundaries by other means in addition to
being carried by the in and out streams. Thus, the conservation law for a
flow problem with respect to any conserved quantity Q can be written as
follows:

Rate of Q

into the system
� Rate of Q

out of the system
¼ Rate of accumulation of Q

within the system

ð1-10Þ

If Q can be produced or consumed within the system (e.g., through chemical
or nuclear reaction, speeds approaching the speed of light, etc.), then a
‘‘rate of generation’’ term may be included on the left of Eq. (1-10).
However, these effects will not be present in the systems with which we
are concerned. For example, the system in Fig. 1-1 is the material contained
between the two plates. There are no streams entering or leaving this system,
but the conserved quantity is transported into the system by microscopic
(molecular) interactions through the upper boundary of the system (these
and related concepts will be expanded upon in Chapter 5 and succeeding
chapters).
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V. TURBULENT MACROSCOPIC (CONVECTIVE)
TRANSPORT MODELS

The preceding transport laws describe the rate of transfer of heat, mass,
charge, or momentum from one region of a continuum to another by virtue
of molecular interactions only. That is, there is no actual bulk motion of
material in the transport direction ðyÞ, which means that the medium must
be stationary or moving only in the direction ðxÞ normal to the transport
direction. This means that the flow (if any) must be ‘‘laminar’’; i.e., all fluid
elements move in straight, smooth streamlines in the x direction. This occurs
if the velocity is sufficiently low and is dominated by stabilizing viscous
forces. However, as the velocity increases, destabilizing inertial forces even-
tually overcome the viscous forces and the flow becomes turbulent. Under
turbulent conditions, a three-dimensional fluctuating flow field develops that
results in a high degree of mixing or ‘‘convection’’ due to the bulk motion of
the turbulent eddies. As a result, the flow is highly mixed, except for a region
near solid boundaries that is called the boundary layer (�). The fluid velocity
approaches zero at a stationary boundary, and thus there is a region in the
immediate vicinity of the wall that is laminar. Consequently, the major
resistance to transport in turbulent (convective) flow is within this boundary
layer, the size of which depends upon the dynamic state of the flow field as
well as fluid properties but in turbulent flows is typically quite small relative
to the dimensions of the total flow area (see Chapter 6, Sec. III.B.).

The general transport models for the turbulent convective transport of
heat and mass can be expressed as follows:

Heat flux: qy ¼ ke
�T

�
¼ h�T ð1-11Þ

Mass flux: nAy ¼ De

�CA

�
¼ Km �CA ð1-12Þ

where ke is a turbulent or ‘‘eddy’’ thermal conductivity, De is a turbulent or
‘‘eddy’’ diffusivity, and � is the boundary layer thickness. Since ke, De, and
all depend on the dynamic state of low as well as the fluid properties, they
are combined with � into the terms h, the heat transfer coefficient, and Km,
the mass transfer coefficient, respectively, which are the convective (turblent)
transport coefficients for heat and mass.

The situation with regard to convective (turbulent) momentum trans-
port is somewhat more complex because of the tensor (dyadic) character of
momentum flux. As we have seen, Newton’s second law provides a corre-
spondence between a force in the x direction, Fx, and the rate of transport
of x-momentum. For continuous steady flow in the x direction at a bulk
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velocity Vx in a conduit of cross-sectional area Ax, there is a transport of x-
momentum in the x direction given by

Fx ¼ dðmVxÞ=dt ¼ _mmVx ¼ ð�VxAxÞVx ¼ �V2
xAx ð1-13Þ

The corresponding flux of x-momentum in the x direction is Fx=Ax ¼ �V2
x .

This x-momentum is also the driving force for convective transport of x-
momentum in the �y direction (toward the wall), i.e., �yx ¼ Fx=Ay.
Therefore, the convective flux of x-momentum from the fluid to the wall
(or the stress exerted by the fluid on the wall) can be expressed as

Momentum flux: ð�yxÞwall ¼ �w ¼ f

2
�V2

x ð1-14Þ

where f is called the Fanning friction factor (other definitions of the friction
factor are also used, which differ by a factor of 2 or 4 from the Fanning
friction factor). Although Eq. (1-14) is the counterpart of the turbulent flux
expressions for heat and mass, the form of this equation appears somewhat
different because of the correspondence between force and rate of momen-
tum and the dyadic nature of the momentum flux and stress. Like the heat
and mass transfer coefficients, the friction factor depends upon dynamic
flow conditions as well as upon fluid properties. It should be evident from
Eq. (1-9) that laminar flows are dominated by the fluid viscosity (which is
stabilizing), whereas Eq. (1-14) indicates that turbulent flows are dominated
by the fluid density (i.e., inertial forces), which is destabilizing. The proper
definition of f and its dependence on flow conditions and fluid properties, is
consistent for either laminar or turbulent flow (as explained in Chapters 5
and 6).

PROBLEMS

1. Write equations that define each of the following laws: Fick’s, Fourier’s,

Newton’s, and Ohm’s. What is the conserved quantity in each of these laws?

Can you represent all of these laws by one general expression? If so, does this

mean that all of the processes represented by these laws are always analogous?

If they aren’t, why not?

2. The general conservation law for any conserved quantity Q can be written in the

form of Eq. (1-10). We have said that this law can also be applied to ‘‘dollars’’

as the conserved quantity Q. If the ‘‘system’’ is your bank account,

(a) Identify specific ‘‘rate in,’’ ‘‘rate out,’’ and ‘‘rate of accumulation’’ terms in

this equation relative to the system (i.e., each term corresponds to the rate at

which dollars are moving into or out of your account).

(b) Identify one or more ‘‘driving force’’ effects that are responsible for the

magnitude of each of these rate terms, i.e., things that influence how fast

the dollars go in or out. Use this to define corresponding ‘‘transport con-
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stants’’ for each ‘‘in’’ and ‘‘out’’ term relative to the appropriate ‘‘driving

force’’ for each term.

3. A dimensionless group called the Reynolds number is defined for flow in a

pipe or tube

NRe ¼
DV�

�
¼ �V2

�V=D

where V is the average velocity in the pipe, � is the fluid density, � is the

fluid viscosity, D is the tube diameter. The second form of the group indi-

cates that it is a ratio of the convective (turbulent) momentum flux to the

molecular (viscous) momentum flux, or the ratio of inertial forces (which

are destabilizing) to viscous forces (which are stabilizing). When viscous

forces dominate over inertial forces, the flow is laminar and fluid elements

flow in smooth, straight streamlines, whereas when inertial forces dominate,

the flow is unstable and the flow pattern break up into random fluctuating

eddies. It is found that laminar flow in a pipe occurs as long as the value of

the Reynolds number is less than 2000.

Calculate the maximum velocity and the corresponding flow rate (in

cm3/s) at which laminar flow of water is possible in tubes with the following

diameters:

D ¼ 0:25; 0:5; 1:0; 2:0; 4:0; 6:0; 10:0 in:

4. A layer of water is flowing down a flat plate that is inclined at an angle of 208 to
the vertical. If the depth of the layer is 1/4 in., what is the shear stress exerted by

the plate on the water? (Remember: Stress is a dyad.)

5. A slider bearing consists of a sleeve surrounding a cylindrical shaft that is free

to move axially within the sleeve. A lubricant (e.g., grease) is in the gap between

the sleeve and the shaft to isolate the metal surfaces and support the stress

resulting from the shaft motion. The diameter of the shaft is 1 in., and the sleeve

has an inside diameter of 1.02 in. and a length of 2 in.

(a) If you want to limit the total force on the sleeve to less than 0.5 lbf when the

shaft is moving at a velocity of 20 ft/s, what should the viscosity of the

grease be? What is the magnitude of the flux of momentum in the gap,

and which direction is the momentum being transported?

(b) If the lubricant is a grease with a viscosity of 400 cP (centipoise), what is the

force exerted on the sleeve when the shaft is moving at 20 ft/s?

(c) The sleeve is cooled to a temperature of 1508F, and it is desired to keep the

shaft temperature below 2008F. What is the cooling rate (i.e., the rate at

which heat must be removed by the coolant), in Btu/hr, to achieve this?

Properties of the grease may be assumed to be: specific heat ¼ 0:5Btu/
(lbm8F); SG (specific gravity) ¼ 0:85; thermal conductivity ¼ 0:06 Btu/

(hr ft 8F).
(d) If the grease becomes contaminated, it could be corrosive to the shaft metal.

Assume that this occurs and the surface of the shaft starts to corrode at a

rate of 0.1mm/yr. If this corrosion rate is constant, determine the maximum
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concentration of metal ions in the grease when the ions from the shaft just

reach the sleeve. Properties of the shaft metal may be assumed to be

MW ¼ 65; SG ¼ 8:5; diffusivity of metal ions in grease ¼ 8:5� 10�5 cm2=s.
6. By making use of the analogies between the molecular transport of the various

conserved quantities, describe how you would set up an experiment to solve

each of the following problems by making electrical measurements (e.g.,

describe the design of the experiment, how and where you would measure

voltage and current, and how the measured quantities are related to the desired

quantities).

(a) Determine the rate of heat transfer from a long cylinder to a fluid flowing

normal to the cylinder axis if the surface of the cylinder is at temperature T0

and the fluid far away from the cylinder is at temperature T1. Also deter-

mine the temprature distribution within the fluid and the cylinder.

(b) Determine the rate at which a (spherical) mothball evaporates when it is

immersed in stagnant air, and also the concentration distribution of the

evaporating compound in the air.

(c) Determine the local stress as a function of position on the surface of a

wedge-shaped body immersed in a fluid stream that is flowing slowly par-

allel to the surface. Also, determine the local velocity distribution in the

fluid as a function of position in the fluid.

NOTATION*

CA concentration of species A, [M/L3]

cv specific heat at constant volume, [H/MT]

DAB diffusivity of species A in medium B, [L/t2]

e concentration of charge (electrical potential), [C/L2]

iy current density, or flux of charge, in the y direction, [C/L2t]

k thermal conductivity, [H/LTt]

L dimension of length

nAy flux of species A in the y direction, [M/L2t]

Q ‘‘generic’’ notation for any conserved (transported) quantity

qy flux (i.e., rate of transport per unit area normal to direction of

transport) of heat in the y direction, [H/L2t]

t time, [t]

T temperature, [K or 8R]

vx local or point velocity in the x direction, [L/t]

V spatial average velocity or velocity at boundary

y coordinate direction, [L]

�T thermal diffusivity (¼ �cvTÞ, [L2/t]

� density, [M/L3]
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� viscosity, [M/Lt]

ð�yxÞmf flux of x-momentum in the y direction ð¼ ��yxÞ, [M/Lt2]

�yx shear stress [¼ ðforce in x directionÞ=ðarea of y surfaceÞ ¼ �ð�yxÞmf ],

[M/Lt2]

� kinematic viscosity ð¼ �=�Þ, [L2/t]



2

Dimensional Analysis and Scale-up

I. INTRODUCTION

In this chapter we consider the concepts of dimensions and units and the
various systems in use for describing these quantities. In particular, the
distinction between scientific and engineering systems of dimensions is
explained, and the various metric and English units used in each system
are discussed. It is important that the engineer be familiar with these
systems, as they are all in common use in various fields of engineering
and will continue to be for the indefinite future. It is common to encounter
a variety of units in different systems during the analysis of a given problem,
and the engineer must be adept at dealing with all of them.

The concept of ‘‘conservation of dimensions’’ will then be applied to
the dimensional analysis and scale-up of engineering systems. It will be
shown how these principles are used in the design and interpretation of
laboratory experiments on ‘‘model’’ systems to predict the behavior of
large-scale (‘‘field’’) systems (this is also known as similitude). These con-
cepts are presented early on, because we shall make frequent use of them in
describing the results of both theoretical and experimental analyses of
engineering systems in a form that is the most concise, general, and useful.
These methods can also provide guidance in choosing the best approach to
take in the solution of many complex problems.
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II. UNITS AND DIMENSIONS

A. Dimensions

The dimensions of a quantity identify the physical charcter of that quantity,
e.g., force (F), mass (M), length (L), time (t), temperature (T), electric
charge (e), etc. On the other hand, ‘‘units’’ identify the reference scale by
which the magnitude of the respective physical quantity is measured. Many
different reference scales (units) can be defined for a given dimension; for
example, the dimension of length can be measured in units of miles, centi-
meters, inches, meters, yards, angstroms, furlongs, light years, kilometers,
etc.

Dimensions can be classified as either fundamental or derived.
Fundamental dimensions cannot be expressed in terms of other dimensions
and include length (L), time (t), temperature (T), mass (M), and/or force (F)
(depending upon the system of dimensions used). Derived dimensions can be
expressed in terms of fundamental dimensions, for example, area ð½A� ¼ L2Þ,
volume ð½V � ¼ L3Þ, energy ð½E� ¼ FL ¼ ML2=t2Þ, power ð½HP� ¼ FL=t ¼
ML2=t3Þ, viscosity ð½�� ¼ Ft=L2 ¼ M=LtÞ, etc.*

There are two systems of fundamental dimensions in use (with their
associated units), which are referred to as scientific and engineering systems.
These systems differ basically in the manner in which the dimensions of
force is defined. In both systems, mass, length, and time are fundamental
dimensions. Furthermore, Newton’s second law provides a relation between
the dimensions of force, mass, length, and time:

Force ¼ Mass�Acceleration

i.e.,

F ¼ ma ð2-1Þ
or

½F � ¼ ½ma� ¼ ML=t2

In scientific systems, this is accepted as the definition of force; that is, force is
a derived dimension, being identical to ML/t2.

In engineering systems, however, force is considered in a more prac-
tical or ‘‘pragmatic’’ context as well. This is because the mass of a body is
not usually measured directly but is instead determined by its ‘‘weight’’ ðWÞ,
i.e., the gravitational force resulting from the mutual attraction between two
bodies of mass m1 and m2:

W ¼ Gðm1m2=r
2Þ ð2-2Þ
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G is a constant having a value of 6:67� 10�11 Nm2=kg2, and r is the dis-
tance between the centers of m1 and m2. If m2 is the mass of the earth and r
is its radius at a certain location on earth, thenW is the ‘‘weight’’ of mass m1

at that location:

W ¼ m1g ð2-3Þ
The quantity g is called the acceleration due to gravity and is equal to
m2G=r

2. At sea level and 458 latitude on the Earth (i.e., the condition for
‘‘standard gravity,’’ gstd) the value of g is 32.174 ft/s2 or 9.806m/s2. The
value of g is obviously different on the moon (different r and m2) and varies
slightly over the surface of the earth as well (since the radius of the earth
varies with both elevation and latitude).

Since the mass of a body is determined indirectly by its weight (i.e., the
gravitational force acting on the mass) under specified gravitational condi-
tions, engineers decided that it would be more practical and convenient if
a system of dimensions were defined in which ‘‘what you see is what you
get’’; that is, the numerical magnitudes of mass and weight are equal under
standard conditions. This must not violate Newton’s laws, however, so both
Eqs. (2-1) and (2-3) are valid. Since the value of g is not unity when
expressed in common units of length and time, the only way to have the
numerical values of weight and mass be the same under any conditions is to
introduce a ‘‘conversion factor’’ that forces this equivalence. This factor is
designated gc and is incorporated into Newton’s second law for engineering
systems (sometimes referred to as ‘‘gravitational systems’’) as follows:

F ¼ ma

gc
; W ¼ mg

gc
ð2-4Þ

This additional definition of force is equvialent to treating F as a funda-
mental dimension, the redundancy being accounted for by the conversion
factor gc. Thus, if a unit for the weight of mass m is defined so that the
numerical values of F and m are identical under standard gravity conditions
(i.e., a ¼ gstd), it follows that the numerical magnitude of gc must be iden-
tical to that of gstd. However, it is important to distinguish between g and gc,
because they are fundamentally different quantities. As explained above, g is
not a constant; it is a variable that depends on both m2 and r [Eq. (2-2)].
However, gc is a constant because it is merely a conversion factor that is
defined by the value of standard gravity. Note that these two quantities are
also physically different, because they have different dimensions:

½g� ¼ L

t2
; ½gc� ¼

ML

Ft2
ð2-5Þ

The factor gc is the conversion factor that relates equivalent force and mass
ðML=t2Þ units in engineering systems. In these systems both force and mass
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can be considered fundamental dimensions, because they are related by
two separate (but compatible) definitions: Newton’s second law and the
engineering definition of weight. The conversion factor gc thus accounts
for the redundancy in these two definitions.

B. Units

Several different sets of units are used in both scientific and engineering
systems of dimensions. These can be classified as either metric (SI and
cgs) or English (fps). Although the internationally accepted standard is
the SI scientific system, English engineering units are still very common
and will probably remain so for the foreseeable future. Therefore, the reader
should at least master these two systems and become adept at converting
between them. These systems are illustrated in Table 2-1. Note that there are
two different English scientific systems, one in which M, L, and t are funda-
mental and F is derived, and another in which F, L, and t are fundamental
and M is derived. In one system, mass (with the unit ‘‘slug’’) is fundamental;
in the other, force (with the unit ‘‘poundal’’) is fundamental. However, these
systems are archaic and rarely used in practice. Also, the metric engineering
systems with units of kgf and gf have generally been replaced by the SI
system, although they are still in use in some places. The most common
systems in general use are the scientific metric (e.g., SI) and English
engineering systems.

Since Newton’s second law is satisfied identically in scientific units
with no conversion factor (i.e., gc ¼ 1), the following identities hold:

gc ¼ 1
kgm

Ns2
¼ 1

g cm

dyn s2
¼ 1

slug ft

lbf s
2
¼ 1

lbm ft

poundal s2
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TABLE 2-1 Systems of Dimensions/Units

Scientific Engineering

L M F gc L M F gc

English ft lbm poundal 1 ft lbm lbf 32.2
ft slug lbf 1

Metric (SI) m kg N 1 m kgm kgf 9.8
(cgs) cm g dyn 1 cm gm gf 980

Conversion factors: gc[ML/Ft2], F¼ma/gc
gc¼ 32:174 lbm ft=ðlbfs2Þ ¼ 9:806 ðkgm m=ðkgfs2Þ ¼ 980:6 gm cm=ðgfs2Þ
¼ 1 kg s2 m=ðNs2Þ ¼ 1 g cm=ðdyn s2Þ ¼ 1 slug ft=ðlbf s2Þ ¼ 1 lbm ft=ðpoundal s2Þ
¼ 12 in:=ft ¼ 60 s=min ¼ 30:48 cm=ft ¼ 778 ft lbf=BtuÞ ¼ � � � ¼ 1½0�



In summary, for engineering systems both F and M can be considered
fundamental because of the engineering definition of weight in addition to
Newton’s second law. However, this results in a redundancy, which needs to
be recified by the conversion factor gc. The value of this conversion factor in
the various engineering units provides the following identities:

gc ¼ 9:806
kgm m

kgf s
2
¼ 980:6

gm cm

gf s
2

¼ 32:174
lbm ft

lbf s
2

C. Conversion Factors

Conversion factors relate the magnitudes of different units with common
dimensions and are actually identities; that is, 1 ft is identical to 12 in., 1 Btu
is identical to 778 ft lbf , etc. Because any identity can be expressed as a ratio
with a magnitude but no dimensions, the same holds for any conversion
factor, i.e.,

12
in:

ft
¼ 778

ft; lbf
Btu

¼ 30:48
cm

ft
¼ 14:7

psi

atm
¼ 105

dyn

N
¼ 1ð0Þ; etc:

A table of commonly encountered conversion factors is included at the front
of the book. The value of any quantity expressed in a given set of units can
be converted to any other equivalent set of units by multiplying or dividing
by the appropriate conversion factor to cancel the unwanted units.

Example 2-1: To convert a quantity X measured in feet to the equivalent
in miles:

X ft

5280 ft=mi
¼ X

5280
mi

Note that the conversion factor relating mass units in scientific systems to
those in engineering systems can be obtained by equating the appropriate gc
values from the two systems, e.g.,

gc ¼ 1
slug ft

lbf s
2
¼ 32:174

lbm ft

lbf s
2

Thus, after canceling common units, the conversion factor relating slugs to
lbm is 32.174 lbm/slug.
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III. CONSERVATION OF DIMENSIONS

Physical laws, theories, empirical relations, etc., are normally expressed by
equations relating the significant variables and parameters. These equations
usually contain a number of terms. For example, the relation between the
vertical elevation ðzÞ and the horizontal distance ðxÞ at any time for a
projectile fired from a gun can be expressed in the form

z ¼ axþ bx2 ð2-6Þ
This equation can be derived from the laws of physics, in which case the
parameteers a and b can be related to such factors as the muzzle velocity,
projectile mass, angle of inclination of the gun, and wind resistance. The
equation may also be empirical if measured values of z versus x are related
by an equation of this form, with no reference to the laws of physics.

For any equation to be valid, every term in the equation must have the
same physical character, i.e., the same net dimensifons (and consequently
the same units in any consistent system of units). This is known as the law of
conservation of dimensions (otherwise known as the ‘‘fruit salad law’’—‘‘you
can’t add apples and oranges, unless you are making fruit salad’’). Let us
look further at Eq. (2-6). Since both z and x have dimensifons of length, e.g.,
½x� ¼ L, ½z� ¼ L, it follows from the fruit salad law that the dimensions of a
and b must be

½a� ¼ 0; ½b� ¼ 1=L

(i.e., a has no dimensions—it is dimensionless, and the dimensions of b are
1/length, or length�1). For the sake of argument, let us assume that x and z
are measured in feet and that the values of a and b in the equation are 5 and
10 ft�1, respectively. Thus if x ¼ 1 ft,

z ¼ ð5Þð1 ftÞ þ ð10 ft�1Þð1 ftÞ2 ¼ 15 ft

On the other hand, if we choose to measure x and z in inches, the value of z
for x ¼ 1 in. is

z ¼ ð5Þð1 in:Þ þ ð10 ft�1Þ 1

12 in:=ft

� �
ð1 in:Þ2 ¼ 5:83 in:

This is still in the form of Eq. (2-6), i.e.,

z ¼ axþ bx2

but now a ¼ 5 and b ¼ 10=12 ¼ 0:833 in:�1. Thus the magnitude of a has
not changed, but the magnitude of b has changed. This simple example
illustrates two important principles:
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1. Conservation of dimensions (‘‘fruit salad’’ law). All terms in a
given equation must have the same net dimensions (and units)
for the equation to be valid.

2. Scaling. The fact that the value of the dimensionless parameter a is
the same regardless of the units (e.g., scale) used in the problem
illustrates the universal nature of dimensionless quantities. That
is, the magnitude of any dimensionless quantity will always be inde-
pendent of the scale of the problem or the system of (consistent)
units used. This is the basis for the application of dimensional
analysis, which permits information and relationships determined
in a small-scale system (e.g., a ‘‘model’’) to be applied directly to a
similar system of a different size if the system variables are expressed
in dimensionless form. This process is known as scale-up.

The universality of certain dimensionless quantities is often taken for
granted. For example, the exponent 2 in the last term of Eq. (2-6) has no
dimensions and hence has the same magnitude regardless of the scale or
units used for measurement. Likewise, the kinetic energy per unit mass of a
body moving with a velocity v is given by

ke ¼ 1
2
v2

Both of the numerical quantities in this equation, 1/2 and 2, are dimension-
less, so they always have the same magnitude regardless of the units used to
measure v.

A. Numerical Values

Ordinarily, any numerical quantities that appear in equations that have a
theoretical basis (such as that for ke above) are dimensionless and hence
‘‘universal.’’ However, many valuable engineering relations have an empiri-
cal rather than a theoretical basis, in which case this conclusion does not
always hold. For example, a very useful expression for the (dimensionless)
friction loss coefficient (Kf ) for valves and fittings is

Kf ¼
K1

NRe

þ Ki 1þ Kd

ID

� �

Here, NRe is the Reynolds number,* which is dimensionless, as are Kf and
the constants K1 and Ki. However, the term ID is the internal diameter of
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the fitting, with dimensions of length. By the ‘‘fruit salad’’ law, the constant
Kd in the term Kd=ID must also have dimensions of length and so is not
independent of scale, i.e., its magnitude is defined only in specific units. In
fact, its value is normally given in units of in., so ID must also be measured
in inches for this value to be valid. If ID were to be measured in centimeters,
for example, the value of Kd would be 2.54 times as large, because
(1 in.)(2.54 cm/in.) ¼ 2:54 cm.

B. Consistent Units

The conclusion that dimensionless numerical values are universal is valid
only if a consistent system of units is used for all quantities in a given
equation. If such is not the case, then the numerical quantities may include
conversion factors relating the different units. For example, the velocity (V)
of a fluid flowing in a pipe can be related to the volumetric flow rate ðQÞ and
the internal pipe diameter ðDÞ by any of the following equations:

V ¼ 183:3Q=D2 ð2-7Þ
V ¼ 0:408Q=D2 ð2-8Þ
V ¼ 0:286Q=D2 ð2-9Þ
V ¼ 4Q=�D2 ð2-10Þ

although the dimensions of V (i.e., L/t) are the same as those for Q=D2 (i.e.,
L3=tL2 ¼ L=t), it is evident that the numerical coefficient is not universal
despite the fact that it must be dimensionless. This is because a consistent
system of units is not used except in Eq. (2–10). In each equation, the units
of V are ft/s. However, in Eq. (2-7), Q is in ft3/s, whereas in Eq. (2-8), Q is in
gallons per minute (gpm), and in Eq. (2-9) it is in barrels per hour (bbl/hr),
with D in inches in each case. Thus, although the dimensions are consistent,
the units are not, and thus the numerical coefficients include unit conversion
factors. Only in Eq. (2-10) are all the units assumed to be from the same
consistent system (i.e., Q in ft3/s and D in ft) so that the factor 4=� is both
dimensionless and unitless and is thus universal. It is always advisable to
write equations in a universally valid from to avoid confusion; i.e., all
quantities should be expressed in consistent units.

IV. DIMENSIONAL ANALYSIS

The law of conservation of dimensions can be applied to arrange the vari-
ables or parameters that are important in a given problem into a set of
dimensionless groups. The original set of (dimensional) variables can then
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be replaced by the resulting set of dimensionless groups, and these can be used
to completely define the system behavior. That is, any valid relationship
(theoretical or empirical) between the original variables can be expressed
in terms of these dimensionless groups. This has two important advantages:

1. Dimensionless quantities are universal (as we have seen), so any
relationship involving dimensionless variables is independent of
the size or scale of the system. Consequently, information
obtained from a model (small-scale) system that is represented
in dimensionless form can be applied directly to geometrically
and dynamically similar systems of any size or scale. This allows
us to translate information directly from laboratory models to
large-scale equipment or plant operations (scale-up).
Geometrical similarity requires that the two systems have the
same shape (geometry), and dynamical similarity requries them
to be operating in the same dynamic regime (i.e., both must be
either laminar or turbulent). This will be expanded upon later.

2. The number of dimensionless groups is invariably less than the
number of original variables involved in the problem. Thus the
relations that define the behavior of a given system are much
simpler when expressed in terms of the dimensionless variables,
because fewer variables are required. In other words, the amount
of effort required to represent a relationship between the dimen-
sionless groups is much less than that required to relate each of the
variables independently, and the resulting relation will thus be
simpler in form. For example, a relation between two variables
(x vs. y) requires two dimensions, whereas a relation between three
variables (x vs. y vs z) requires three dimensions, or a family of
two-dimensional ‘‘curves’’ (e.g., a set of x vs. y curves, each curve
for a different z). This is equivalent to the difference between one
page and a book of many pages. Relating four variables would
obviously require many books or volumes. Thus, reducing the
number of variables from, say, four to two would dramatically
simplify any problem involving these variables.

It is important to realize that the process of dimensional analysis only
replaces the set of original (dimensional) variables with an equivalent
(smaller) set of dimensionless variables (i.e., the dimensionless groups). It
does not tell how these variables are related—the relationship must be
determined either theoretically by application of basic scientific principles
or empirically by measurements and data analysis. However, dimensional
analysis is a very powerful tool in that it can rovide a direct guide for
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experimental design and scale-up and for expressing operating relationships
in the most general and useful form.

There are a number of different approaches to dimensional analysis.
The classical method is the ‘‘Buckingham � Theorem’’, so-called because
Buckingham used the symbol � to represent the dimensionless groups.
Another classic approach, which involves a more direct application of the
law of conservation of dimensions, is attributed to Lord Rayleigh.
Numerous variations on these methods have also been presented in the
literature. The one thing all of these methods have in common is that
they require a knowledge of the variables and parameters that are important
in the problem as a starting point. This can be determined through common
sense, logic, intuition, experience, or physical reasoning or by asking some-
one who is more experienced or knowledgeable. They can also be deter-
mined from a knowledge of the physical principles that govern the system
(e.g., the conservation of mass, energy, momentum, etc., as written for the
specific system to be analyzed) along with the fundamental equations that
describe these principles. These equations may be macroscopic or micro-
scopic (e.g., coupled sets of partial differential equations, along with their
boundary conditions). However, this knowledge often requires as much (or
more) insight, intuition, and/or experience as is required to compose the
list of variables from logical deduction or intuition. The analysis of any
engineering problem requires key assumptions to distinguish those factors
that are important in the problem from those that are insignificant. [This can
be referred to as the ‘‘bathwater’’ rule—it is necessary to separate the
‘‘baby’’ from the ‘‘bathwater’’ in any problem, i.e., to retain the significant
elements (the ‘‘baby’’) and discard the insignificant ones (the ‘‘bathwater’’),
and not vice versa!] The talent required to do this depends much more upon
sound understanding of fundamentals and the exercise of good judgment
than upon mathematical facility, and the best engineer is often the one who
is able to make the most appropriate assumptions to simplify a problem
(i.e., to discard the ‘‘bathwater’’ and retain the ‘‘baby’’). Many problem
statements, as well as solutions, involve assumptions that are implied but
not stated. One should always be on the lookout for such implicit assump-
tions and try to identify them wherever possible, since they set correspond-
ing limits on the applicability of the results.

The method we will use to illustrate the dimensional analysis process is
one that involves a minimum of manipulations. It does require an initial
knowledge of the variables (and parameters) that are important in the
system and the dimensions of these variables. The objective of the process
is to determine an appropriate set of dimensionless groups of these variables
that can then be used in place of the original individual variables for the
purpose of describing the behavior of the system. The process will be
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explained by means of an example, and the results will be used to illustrate
the application of dimensional analysis to experimental design and scale-up.

A. PIPELINE ANALYSIS

The procedure for performing a dimensional analysis will be illustrated by
means of an example concerning the flow of a liquid through a circular pipe.
In this example we will determine an appropriate set of dimensionless
groups that can be used to represent the relationship between the flow
rate of an incompressible fluid in a pipeline, the properties of the fluid,
the dimensions of the pipeline, and the driving force for moving the fluid,
as illustrated in Fig. 2-1. The procedure is as follows.

Step 1: Identify the important variables in the system. Most of the
important fundamental variables in this system should be obvious. The flow
rate can be represented by either the total volumetric flow rate (Q) or the
average velocity in the pipeline (V). However, these are related by the defini-
tionQ ¼ �D2V=4, so ifD is chosen as an important variable, then eitherV or
Q can be chosen to represent the flow rate, but not both. We shall choose V.
The driving force can be represented by �P, the difference between the pres-
sure at the upstream end of the pipe (P1) and that at the downstream end (P2)
(�P ¼ P1 � P2). The pipe dimensions are the diameter (D) and length (L), and
the fluid properties are the density (�) and viscosity (�). It is also possible that
the ‘‘texture’’ of the pipe wall (i.e., the surface roughness ") is important. This
identification of the pertinent variables is the most important step in the
process and can be done by using experience, judgment, brainstorming, and
intuition or by examining the basic equations that describe the fundamental
physical principles governing the system along with appropriate boundary
conditions. It is also important to include only those ‘‘fundamental’’ variables,
i.e., those that are not derivable from others through basic definitions. For
example, as pointed out above, the fluid velocity (V), the pipe diameter (D),
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and the volumetric flow rate (Q) are related by the definition Q ¼ �D2V=4.
Thus these three variables are not independent, since any one of them can be
derived from the other twoby this definition, it would therefore be necessary to
include only two of the three.

Step 2: List all the problem variables and parameters, along with their
dimensions. The procedure is simplest if the most fundamental dimensions
in a scientific system (i.e., M, L, t) are used (e.g., energy should be converted
to FL¼ML2/t2, etc.):

Variable Dimensions

V L/t
�P F/L2¼M/Lt2

D L
L L
" L
� M/L3

� M/Lt

7 3

The number of dimensionless groups that will be obtained is equal to the
number of variables less the minimum number of fundamental dimensions
involved in these variables (7-3=4 groups in this problem).

Step 3: Choose a set of reference variables. The choice of variables
is arbitrary, except that the following criteria must be satisfied:

1. The number of reference variables must be equal to the minimum
number of fundamental dimensions in the problem (in this case,
three).

2. No two reference variables should have exactly the same dimen-
sions.

3. All the dimensions that appear in the problem variables must also
appear somewhere in the dimensions of the reference variables.

In general, the procedure is easiest if the reference variables chosen have the
simplest combination of dimensions, consistent with the preceding criteria.
In this problem we have three dimensions (M, L, t), so we need three
reference variables. The variables D, ", and L all have the dimension of
length, so we can choose only one of these. We will choose D (arbitrarily) as
one reference variable:

½D� ¼ L
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The dimension t appears in V, �P, and �, but V has the simplest combina-
tion of dimensions, so we choose it as our second reference variable:

½V � ¼ L=t

We also need a reference variable containing the dimension M, which could
be either � or �. Since � has the simplest dimensions, we choose it for the
third reference variable:

½�� ¼ M=L3

Our three reference variables are therefore D, V, and �.

Step 4: Solve the foregoing ‘‘dimensional equations’’ for the dimen-
sions (L, t, M) in terms of the reference variables (D, V, q), i.e.,

L ¼ ½D�; t ¼ ½D=V �; M ¼ ½�D3�

Step 5: Write the dimensional equations for each of the remaining
variables. Then substitute the results of step 4 for the dimensions in
terms of the reference variables:

½"� ¼ L ¼ ½D�
½L� ¼ L ¼ ½D�

½�� ¼ M

Lt
¼ �D3

DðD=VÞ

" #
¼ ½�VD�

½�P� ¼ M

Lt2
¼ �D3

DðD=VÞ2
" #

¼ ½�V2�

Step 6: These equations are each a dimensional identity, so dividing
one side by the other results in one dimensionless group from each equation:

N1 ¼
"

D
or

D

"

N2 ¼
L

D
or

D

L

N3 ¼
�

DV�
or

DV�

�

N4 ¼
�P

�V2
or

�V2

�P

These four dimensionless groups can now be used as the primary variables
to define the system behavior in place of the original seven variables.
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B. Uniqueness

The results of the foregoing procedure are not unique, because the recipro-
cal of each group is just as valid as the initial group. In fact, any combina-
tion of these groups will be dimensionless and will be just as valid as any
other combination as long as all of the original variables are represented
among the groups. Thus these four groups can be replaced by any other four
groups formed by a combination of these groups, and, indeed, a different set
of groups would have resulted if we had used a different set of reference
variables. However, any set of groups derived by forming a suitable combi-
nation of any other set would be just as valid. As we shall see, which set of
groups is the most appropriate will depend on the particular problem to be
solved, i.e., which of the variables are known (independent) and which are
unknown (dependent). Specifically, it is most appropriate to arrange the
groups so that the unknown variables each appear in only one group, if
possible. It should be noted that the variables that were not chosen as the
reference variables will each appear in only one group.

C. Dimensionless Variables

The original seven variables in this problem can now be replaced by an
equivalent set of four dimensionless groups of variables. For example, if it
is desired to determine the driving force required to transport a given fluid at
a given rate through a given pipe, the relation could be represented as

�P ¼ fnðV;D;L; "; �; �Þ
or, in terms of the equivalent dimensionless variables (groups),

N4 ¼ fnðN1;N2;N3Þ
Note that the number of variables has been reduced from the original seven
to four (groups). Furthermore, the relationship between these dimensionless
variables or groups is independent of scale. That is, any two similar systems
will be exactly equivalent, regardless of size or scale, if the values of all
dimensionless variables or groups are the same in each. By ‘‘similar’’ we
mean that both systems must have the same geometry or shape (which is
actually another dimensionless variable), and both must be operating under
comparable dynamic conditions (e.g., either laminar or turbulent—this will
be expanded on later). Also, the fluids must be rheologically similar (e.g.,
Newtonian). The difference between Newtonian and non-Newtonian fluids
will be discussed in Chapter 3. For the present, a Newtonian fluid is one that
requires only one rheological property, the viscosity (�), to determine
flow behavior, whereas a non-Newtonian fluid requires a rheological ‘‘func-
tion’’ that contains two or more parameters. Each of these parameters is a
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rheological property, so in place of the viscosity for a Newtonian fluid, the
non-Newtonian fluid would require two or more ‘‘rheological properties,’’
depending upon the specific model that describes the fluid, with a cor-
responding increase in the number of dimensionless groups.

D. Problem Solution

It should be emphasized that the specific relationship between the variables
or groups that is implied in the foregoing discussion is not determined by
dimensional analysis. It must be determined from theoretical or experimen-
tal analysis. Dimensional analysis gives only an appropriate set of dimen-
sionless groups that can be used as generalized variables in these
relationships. However, because of the universal generality of the dimen-
sionless groups, any functional relationship between them that is valid in
any system must also be valid in any other similar system.

E. Alternative Groups

The preceding set of dimensionless groups is convenient for representing the
behavior of a pipeline if it is desired to determine the driving force (�P)
required to move a given fluid at a given rate through a given pipeline,
because the unknown quantity (�P) appears in only one group (N4),
which can be considered the ‘‘dependent’’ group. However, the same
variables apply to the case where the driving force is known and it is desired
to determine the flow rate (Q or V) that would result for a given fluid
through a given pipe. In this case, V is the dependent (unknown) variable,
but it appears in more than one group (N3 and N4). Therefore, there is no
single dependent group. However, this set of groups is not unique, so we can
rearrange the groups into another equivalent set in which the unknown
velocity appears in only one group. This can easily be done, for example,
by combining groups N3 and N4 to form a group that does not contain V:

N5 ¼ ðN3Þ2N4 ¼
DV�

�

� �2 �P

�V2

� �
¼ �PD2�

�2

This new group can then be used in place of either N3 or N4, along with N1

and N2, to complete the required set of four groups in which the unknown V
appears in only one group. If we replace N4 by N5, the implied relation can
be expressed as

N3 ¼ fnðN1;N2;N5Þ or
DV�

�
¼ fn

"

D
;
L

D
;
�PD2�

�2

 !

in which the unknown (V) appears only in the group on the left.

Dimensional Analysis and Scale-up 29



Let us reexamine our original problem for a moment. If the pipeline is
relatively long and is operating at steady state and the fluid is incompres-
sible, then the conditions over any given length of the pipe will be the same
as along any other segment of the same length, except for the regions very
near the entrance and exit. If these regions are small relative to the rest of
the pipe (e.g., L � D), their effect is negligible and the pressure drop per
unit length of pipe should be the same over any given segment of the pipe.
Thus the only significance of the pipe length is to spread the total pressure
drop over the entire length, so that the two variables �P and L are not
independent and can therefore be combined into one: the pressure gradient,
�P=L. This reduces the total number of variables from seven to six and the
number of groups from four to three. These three groups can be derived by
following the original procedure. However, because �P and L each appear
in only one of the original groups (N2 and N4, respectively), dividing one of
these by the other will automatically produce a group with the desired
variable in the resulting group, which will then replace N2 and N4:

N6 ¼
N4

N2

¼ D�P=L

�V2

The three groups are now N1, N3, and N6:

N1 ¼
"

D
; N3 ¼

DV�

�
; N6 ¼

D�P=L

�V2

Group N6 (or some multiple thereof ) is also known as a friction factor ( f ),
because the driving force (�P) is required to overcome ‘‘friction’’ (i.e., the
energy dissipated) in the pipeline (assuming it to be horizontal), and N3 is
known as the Reynolds number (NRe). There are various definitions of the
pipe friction factor, each of which is some multiple of N6; e.g., the Fanning
friction factor is N6=2, and the Darcy friction factor is 2N6. The group N4 is
also known as the Euler number.

V. SCALE-UP

We have stated that dimensional analysis results in an appropriate set of
groups that can be used to describe the behavior of a system, but it does not
tell how these groups are related. In fact, dimensional analysis does not
result in any numbers related to the groups (except for exponents on the
variables). The relationship between the groups that represents the system
behavior must be determined by either theoretical analysis or experimenta-
tion. Even when theoretical results are possible, however, it is often
necessary to obtain data to evaluate or confirm the adequacy of the theory.
Because relationships between dimensionless variables are independent of
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scale, the groups also provide a guide for the proper design of an experiment
that is intended to simulate another (larger scale) similar system and for
scaling up the results of model measurements to the full-scale system. For
example, the operation of our pipeline can be described by a functional
relationship of the form

N6 ¼ fnðN1;N3Þ
or

D�P=L

�V2
¼ fn

"

D
;
DV�

�

� �

This is valid for any Newtonian fluid in any (circular) pipe of any size (scale)
under given dynamic conditions (e.g., laminar or turbulent). Thus, if the
values of N3 (i.e., the Reynolds number NRe) and N1 ("=D) for an experi-
mental model are identical to the values for a full-scale system, it follows
that the value of N6 (the friction factor) must also be the same in the two
systems. In such a case the model is said to be dynamically similar to the
full-scale (field) system, and measurements of the variables in N6 can be
translated (scaled) directly from the model to the field system. In other
words, the equality between the groups N3 (NRe) and N1 ("=D) in the
model and in the field is a necessary condition for the dynamic similarity
of the two systems.

Example 2-2: Laminar Flow of a Newtonian Fluid in a Pipe. It turns out
(for reasons that will be explained later) that if the Reynolds number in pipe
flow has a value less than about 2000, the fluid elements follow a smooth,
straight pattern called laminar flow. In this case, the ‘‘friction loss’’ (i.e., the
pressure drop) does not depend upon the pipe wall roughness (") or the
density (�) (the reason for this will become clear when we examine the
mechanism of pipe flow in Chapter 6). With two fewer variables we
would have two fewer groups, so that for a ‘‘long’’ pipe (L � D) the system
can be described completely by only one group (that does not contain either
" or �). The form of this group can be determined by repeating the dimen-
sional analysis procedure or simply by eliminating these two variables from
the original three groups. This is easily done by multiplying the friction
factor ( f ) by the Reynolds number (NRe) to get the required group, i.e.,

N7 ¼ fNRe ¼
�PD2

L�V
¼ const:

Because this is the only ‘‘variable’’ that is needed to describe this system, it
follows that the value of this group must be the same, i.e., a constant, for the
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laminar flow of any Newtonian fluid at any flow rate in any pipe. This is in
contrast to turbulent pipe flow (which occurs for NRe > 4000) in long pipes,
which can be described completely only by three groups (e.g., f, NRe, and
"=D). That is, turbulent flow in two different pipes must satisfy the same
functional relationship between these three groups even though the actual
values of the individual groups may be quite different. However, for laminar
pipe flow, since only one group ( fNRe) is required, the value of that group
must be the same in all laminar pipe flows of Newtonian fluids, regardless of
the values of the individual variables. The numerical value of this group will
be derived theoretically in Chapter 6.

As an example of the application of dimensional analysis to experi-
mental design and scale-up, consider the following example.

Example 2-3: Scale-Up of Pipe Flow. We would like to know the total
pressure driving force (�P) required to pump oil (� ¼ 30 cP,
� ¼ 0:85 g=cm3) through a horizontal pipeline with a diameter (D) of
48 in. and a length (L) of 700 mi, at a flow rate (Q) of 1 million barrels
per day. The pipe is to be of commercial steel, which has an equivalent
roughness (") of 0.0018 in. To get this information, we want to design a
laboratory experiment in which the laboratory model (m) and the full-scale
field pipeline (f ) are operating under dynamically similar conditions so
that measurements of �P in the model can be scaled up directly to find �P
in the field. The necessary conditions for dynamic similarity for this system
are

ðN3Þm ¼ ðN3Þf or
DV�

�

� �
m

¼ DV�

�

� �
f

and

ðN1Þm ¼ ðN1Þf or

�
"

D

�
m

¼
�

"

D

�
f

from which it follows that

ðN6Þm ¼ ðN6Þf or
�PD

L�V2

� �
m

¼ �PD

L�V2

� �
f

where the subscript m represents the experimental model and f represents
the full-scale field system. Since the volumetric flow rate (Q) is specified
instead of the velocity (V), we can make the substitution V ¼ 4Q=�D2 to
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get the following equivalent groups:�
"

D

�
m

¼
�

"

D

�
f

ð2-11Þ
�
4Q�

�D�

�
m

¼
�
4Q�

�D�

�
f

ð2-12Þ
�
�2 �PD5

16L�Q2

�
m

¼
�
�2 �PD5

16L�Q2

�
f

ð2-13Þ

Note that all the numerical coefficients cancel out. By substituting the
known values for the pipeline variables into Eq. (2-12), we find that the
value of the Reynolds number for this flow is 5:4� 104, which is turbulent.
Thus all three of these groups are important.

We now identify the knowns and unknowns in the problem. The
knowns obviously include all of the field variables except (�P)f. Because
we will measure the pressure drop in the lab model ð�PÞm after specifying
the lab test conditions that simulate the field conditions, this will also be
known. This value of ð�PÞm will then be scaled up to find the unknown
pressure drop in the field, ð�PÞf . Thus,

Knowns ð7Þ: ðD;L; ";Q; �; �Þf ; ð�PÞm
Unknowns ð7Þ: ðD;L; ";Q; �; �Þm; ð�PÞf

There are seven unknowns but only three equations that relate these quan-
tities. Therefore, four of the unknowns can be chosen ‘‘arbitrarily.’’ This
process is not really arbitrary, however, because we are constrained by
certain practical considerations such as a lab model that must be smaller
than the field pipeline, and test materials that are convenient, inexpensive,
and readily available. For example, the diameter of the pipe to be used in the
model could, in principle, be chosen arbitrarily. However, it is related to the
field pipe diameter by Eq. (2-11):

Dm ¼ Df

�
"m
"f

�

Thus, if we were to use the same pipe material (commercial steel) for the
model as in the field, we would also have to use the same diameter (48 in.).
This is obviously not practical, but a smaller diameter for the model would
obviously require a much smoother material in the lab (because Dm � Df

requires "m � "f ). The smoothest material we can find would be glass or
plastic or smooth drawn tubing such as copper or stainless steel, all of which
have equivalent roughness values of the order of 0.00006 in. (see Table 6-1).
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If we choose one of these (e.g., plastic), then the required lab diameter is set
by Eq. (2-11):

Dm ¼ Df

�
"m
"f

�
¼ ð48 in:Þ

�
0:00006

0:0018

�
¼ 1:6 in:

Since the roughness values are only approximate, so is this value of Dm.
Thus we could choose a convenient size pipe for the model with a diameter
of the order of 1.6 in. (for example, from Appendix F, we see that a Schedule
40, 11

2
in. pipe has a diameter of 1.61 in., which is fortuitous).
We now have five remaining unknowns—Qm, �m, �m, Lm and ð�PÞf—

and only two remaining equations, so we still have three ‘‘arbitrary’’
choices. Of course, we will choose a pipe length for the model that is
much less than the 700 miles in the field, but it only has to be much longer
than its diameter to avoid end effects. Thus we can choose any convenient
length that will fit into the lab (say 50 ft), which still leaves two ‘‘arbitrary’’
unknowns to specify. Since there are two fluid properties to specify (� and
�), this means that we can choose (arbitrarily) any (Newtonian) fluid for the
lab test. Water is the most convenient, available, and inexpensive fluid, and
if we use it (� ¼ 1 cP, � ¼ 1 g/cm3) we will have used up all our ‘‘arbitrary’’
choices. The remaining two unknowns, Qm and ð�PÞf , are determined by
the two remaining equations. From Eq. (2-12),

Qm ¼ Qf

�
�f
�m

��
Dm

Df

��
mm
mf

�
¼
�
106

bbl

day

��
0:85

1:0

��
1:6

48

��
1:0

30

�

¼ 944 bbl=day

or

Qm ¼
�
994 bbl

day

��
42 gal

bbl

��
1

1440 min =day

�
¼ 27:5 gal=min ðgpmÞ

Note that if the same units are used for the variables in both the model
and the field, no conversion factors are needed, because only ratios are
involved.

Now our experiment has been designed: We will use plastic pipe with
an inside diameter of 1.6 in. and length of 50 ft and pump water through it at
a rate of 27.5 gpm. Then we measure the pressure drop through this pipe and
use our final equation to scaleup this value to find the field pressure drop. If
the measured pressure drop with this system in the lab is, say, 1.2 psi, then
the pressure drop in the field pipeline, from Eq. (2-13), would be
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ð�PÞf ¼ ð�PÞm
�
Dm

Df

�5�
Lf

Lm

��
�r
�m

��
Qf

Qm

�2

¼ ð1:2 psiÞ
�
1:6

48

�5�
700mi� 5280 ft=mi

50 ft

��
0:85

1:0

��
106

944

�2

¼ 3480 psi

This total pressure driving force would probably not be produced by a single
pump but would be apportioned among several pumps spaced along the
pipeline.

This example illustrates the power of dimensional analysis as an aid in
experimental design and the scale-up of lab measurements to field condi-
tions. We have actually determined the pumping requirements for a large
pipeline by applying the results of dimensional analysis to select laboratory
conditions and design a laboratory test model that simulates the field pipe-
line, making one measurement in the lab and scaling up this value to deter-
mine the field performance. We have not used any scientific principles or
engineering correlations other than the principle of conservation of dimen-
sions and the exercise of logic and judgment. However, we shall see later
that information is available to us, based upon similar experiments that
have been conducted by others (and presented in dimensionless form),
that we can use to solve this and similar problems without conducting
any additional experiments.

VI. DIMENSIONLESS GROUPS IN FLUID MECHANICS

Table 2-2 lists some dimensionless groups that are commonly encountered
in fluid mechanics problems. The name of the group, and its symbol, defini-
tion, significance, and most common area of application are given in the
table. Wherever feasible, it is desirable to express basic relations (either
theoretical or empirical) in dimensionless form, with the variables being
dimensionless groups, because this represents the most general way of
presenting results and is independent of scale or specific system properties.
We shall follow this guideline as far as is practical in this book.

VII. ACCURACY AND PRECISION

At this point, we digress slightly to make some observations about the
accuracy and precision of experimental data. Since we, as engineers, con-
tinuously make use of data that represent measurements of various
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quantities, it is important that we understand and appreciate which of the
numbers we deal with are useful and which are not.

First of all, we should make a clear distinction between accuracy and
precision. Accuracy is a measure of how close a given value is to the ‘‘true’’
value, whereas precision is a measure of the uncertainty in the value or how
‘‘reproducible’’ the value is. For example, if we were to measure the width of
a standard piece of paper using a ruler, we might find that it is 21.5 cm, give
or take 0.1 cm. The ‘‘give or take’’ (i.e., the uncertainty) value of 0.1 cm is
the precision of the measurement, which is determined by how close we are
able to reproduce the measurement with the ruler. However, it is possible
that when the ruler is compared with a ‘‘standard’’ unit of measure it is
found to be in error by, say, 0.2 cm. Thus the ‘‘accuracy’’ of the ruler is
limited, which contributes to the uncertainty of the measurement, although
we may not know what this limitation is unless we can compare our ‘‘instru-
ment’’ to one we know to be true.

Thus, the accuracy of a given value may be difficult to determine, but
the precision of a measurement can be determined by the evaluation of
reproducibility if multiple repetitions of the measurement are made.
Unfortunately, when using values or data provided by others from hand-
books, textbooks, journals, and so on, we do not usually have access to
either the ‘‘true’’ value or information on the reproducibility of the
measured values. However, we can make use of both common sense (i.e.,
reasonable judgment) and convention to estimate the implied precision of a
given value. The number of decimal places when the value is represented in
scientific notation, or the number of digits, should be indicative of its
precision. For example, if the distance from Dallas to Houston is stated
as being 250 miles and we drive at 60 miles/hr, should we say that it would
take us 4.166667 (¼250/60) hours for the trip? This number implies that we
can determine the answer to a precision of 0.0000005 hr, which is one part in
107, or less than 2 milliseconds! This is obviously ludicrous, because the
mileage value is nowhere near that precise (is it �1 mile, �5 miles?—exactly
where did we start and end?), nor can we expect to drive at a speed having
this degree of precision (e.g., 60� 0:000005mph, or about �20 mm/s!). It is
conventional to assume that the precision of a given number is comparable
to the magnitude of the last digit to the right in that number. That is, we
assume that the value of 250 miles implies 250� 1 mile (or perhaps � 0.5
mile). However, unless the numbers are always given in scientific notation,
so that the least significant digit can be associated with a specific decimal
place, there will be some uncertainty, in which case common sense ( judg-
ment) should prevail.

For example, if the diameter of a tank is specified to be 10.32 ft, we
could assume that this value has a precision (or uncertainty) of about
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0.005 ft (or 0.06 in., or 1.5mm). However, if the diameter is said to be 10 ft,
the number of digits cannot provide an accurate guide to the precision of the
number. It is unlikely that a tank of that size would be constructed to the
precision of 1.5 mm, so we would probably assume (optimistically!) that the
uncertainty is about 0.5 in or that the measurement is ‘‘roughly 10.0 ft.’’
However, if I say that I have five fingers on my hand, this means exactly five,
no more, no less (i.e., an ‘‘infinite’’ number of ‘‘significant digits’’).

In general, the number of decimal digits that are included in reported
data, or the precision to which values can be read from graphs or plots,
should be consistent with the precision of the data. Therefore, answers
calculated from data with limited precision will likewise be limited in pre-
cision (computer people have an acronym for this—‘‘GIGO,’’ which stands
for ‘‘garbage in, garbage out’’). When the actual precision of data or other
information is uncertain, a general rule of thumb is to report numbers to no
more than three ‘‘significant digits,’’ this corresponds to an uncertainty of
somewhere between 0.05% and 0.5 % (which is actually much greater
precision than can be justified by most engineering data). Inclusion of
more that three digits in your answer implies a greater precision than this
and should be justified. Those who report values with a large number of
digits that cannot be justified are usually making the implied statement ‘‘I
just wrote down the numbers—I really didn’t think about it.’’ This is most
unfortunate, because if these people don’t think about the numbers they
write down, how can we be sure that they are thinking about other critical
aspects of the problem?

Example 2-4: Our vacation time accrues by the hour, a certain number of
hours of vacation time being credited per month worked. When we request
leave or vacation, we are likewise expected to report it in increments of 1 hr.
We received a statement from the accountants that we have accrued ‘‘128.00
hours of vacation time.’’ What is the precision of this number?

The precision is implied by half of the digit furtherest to the right of
the decimal point, i.e., 0.005 hr, or 18 s. Does this imply that we must report
leave taken to the closest 18 s? (We think not. It takes at least a minute to
fill out the leave request form—would this time be charged against our
accrued leave? The accountant just ‘‘wasn’t thinking’’ when the numbers
were reported.)

When combining values, each of which has a finite precision or uncer-
tainty, it is important to be able to estimate the corresponding uncertainty of
the result. Although there are various ‘‘rigorous’’ ways of doing this, a very
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simple method that gives good results as long as the relative uncertainty is a
small fraction of the value is to use the approximation (which is really just
the first term of a Taylor series expansion)

Að1� aÞx ffi Að1� xaþ � � �Þ
which is valid for any value of x if a < 0:1 (about). This assumes that the
relative uncertainty of each quantity is expressed as a fraction of the given
value, e.g., the fractional uncertainty in the value A is a or, equivalently, the
percentage error in A is 100a.

Example 2-5: Suppose we wish to calculate the shear stress on the bob
surface in a cup-and-bob viscometer from a measured value of the torque or
moment on the bob. The equation for this is

�r� ¼
T

2�R2
i L

If the torque (T) can be measured to �5%, the bob radius (Ri) is known to
�1%, and the length (L) is known to �3%, the corresponding uncertainty
in the shear stress can be determined as follows:

�r� ¼
Tð1� 0:05Þ

2�R2
i ð1� 0:01Þ2Lð1� 0:03Þ

¼ T

2�R2
i L

½1� ð0:05Þ � ð2Þð0:01Þ � ð0:03Þ�

¼ T

2�R2
i L

ð1� 0:1Þ

That is, there would be a 10% error, or uncertainty, in the answer. Note that
even though terms in the denominator have a negative exponent, the
maximum error due to these terms is still cumulative, because a given
error may be either positive or negative; i.e., errors may either accumulate
(giving rise to the maximum possible error) or cancel out (we should be so
lucky!).

PROBLEMS

Units and Dimensions

1. Determine the weight of 1 g mass at sea level in units of (a) dynes; (b) lbf; (c) gf;

(d) poundals.
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2. One cubic foot of water weighs 62.4 lbf under conditions of standard gravity.

(a) What is its weight in dynes, poundals, and gf?

(b) What is its density in lbm/ft
3 and slugs/ft3?

(c) What is its weight on the moon (g ¼ 5:4 ft2) in lbf?

(d) What is its density on the moon?

3. The acceleration due to gravity on the moon is about 5.4 ft/s2. If your weight is

150 lbf on earth:

(a) What is your mass on the moon, in slugs?

(b) What is your weight on the moon, in SI units?

(c) What is your weight on earth, in poundals?

4. You weigh a body with a mass m on an electronic scale, which is calibrated with

a known mass.

(a) What does the scale actually measure, and what are its dimensions?

(b) If the scale is calibrated in the appropriate system of units, what would

the scale reading be if the mass of m is (1) 1 slug; (2) 1 lbm (in scientific

units); (3) 1 lbm (in engineering units); (3) 1 gm (in scientific units); (4) 1 gm
(in engineering units).

5. Explain why the gravitational ‘‘constant’’ (g) is different at Reykjavik, Iceland,

than it is at La Paz, Bolivia. At which location is it greater, and why? If you

could measure the value of g at these two locations, what would this tell you

about the earth?

6. You have purchased a 5 oz. bar of gold (100% pure), at a cost of $400/oz.

Because the bar was weighed in air, you conclude that you got a bargain,

because its true mass is greater than 5 oz due to the buoyancy of air. If the

true density of the gold is 1.9000 g/cm3, what is the actual value of the bar based

upon its true mass?

7. You purchased 5 oz of gold in Quito, Ecuador (g ¼ 977:110 cm/s2), for $400/oz.

You then took the gold and the same spring scale on which you weighed it in

Quito to Reykjavik Iceland (G ¼ 983:06 cm/s2), where you weighed it again and

sold it for $400/oz. How much money did you make or lose, or did you break

even?

8. Calculate the pressure at a depth of 2 miles below the surface of the ocean.

Explain and justify any assumptions you make. The physical principle that

applies to this problem can be described by the equation

� ¼ constant

where � ¼ Pþ �gz and z is the vertical distance measured upward from

any horizontal reference plane. Express your answer in units of (a) atm,

(b) psi, (c) Pa, (d) poundal/ft2, (e) dyn/cm2.

9. (a) Use the principle in Problem 8 to calculate the pressure at a depth of 1000 ft

below the surface of the ocean (in psi, Pa, and atm). Assume that the ocean

water density is 64 lbm/ft
3.

(b) If this ocean were on the moon, what would be the answer to (a)?. Use the

following information to solve this problem: The diameter of the moon is

2160 mi, the diameter of the earth is 8000 mi, and the density of the earth is

1.6 times that of the moon.
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10. The following formula for the pressure drop through a valve was found in a

design manual:

hL ¼ 522Kq2

d4

where hl ¼ the ‘‘head loss’’ in feet of fluid flowing through the valve,

K ¼ dimensionless resistance coefficient for the valve, q ¼ flow rate through

the valve, in ft3/s, and d ¼ diameter of the valve, in inches.

(a) Can this equation be used without changing anything if SI units are used for

the variables? Explain.

(b) What are the dimensions of ‘‘522’’ in this equation? What are its units?

(c) Determine the pressure drop through a 2-in. valve with a K of 4 for water at

208C flowing at a rate of 50 gpm (gal/min), in units of (1) feet of water,

(2) psi, (3) atm, (4) Pa, (5) dyn/cm2, and (6) inches of mercury.

11. When the energy balance on the fluid in a stream tube is written in the following

form, it is known as Bernoulli’s equation:

P2 � P1

�
þ gðz2 � z1Þ þ

�

2
ðV2

2 � V2
1 Þ þ ef þ w ¼ 0

where �w is the work done on a unit mass of fluid, ef is the energy dissipated by

friction in the fluid per unit mass, including all thermal energy effects due to

heat transfer or internal generation, and � is equal to either 1 or 2 for turbulent

or laminar flow, respectively. If P1 ¼ 25 psig, P2 ¼ 10 psig, z1 ¼ 5m, z2 ¼ 8m,

V1 ¼ 20 ft/s, V2 ¼ 5 ft/s, � ¼ 62:4 lbm/ft
3, � ¼ 1, and w ¼ 0, calculate the value

of ef in each of the following systems of units:

(a) SI

(b) mks engineering (e.g., metric engineering)

(c) English engineering

(d) English scientific (with M as a fundamental dimension)

(e) English thermal units (e.g., Btu)

(f ) Metric thermal units (e.g., calories)

Conversion Factors, Precision

12. Determine the value of the gas constant R in units of ft3 atm/lbmol 8R), starting

with the value of the standard molar volume of a perfect gas.

13. Calculate the value of the Reynolds number for sodium flowing at a rate of

50 gpm through a 1/2 in. ID tube at 4008F.
14. The conditions at two different positions along a pipeline (at points 1 and 2) are

related by the Bernoulli equation (see Problem 11). For flow in a pipe,

ef ¼
�
4 fL

D

��
V2

2

�

where D is the pipe diameter and L is the pipe length between points 1 and 2. If

the flow is laminar (NRe < 2000), the value of � is 2 and f ¼ 16=NRe, but for
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turbulent flow in a smooth pipe � ¼ 1 and f ¼ 0:0791=N1=4
Re . The work done by

a pump on the fluid (�w) is related to the power delivered to the fluid (HP) and

the mass flow rate of the fluid ( _mm) by HP ¼ �w _mm. Consider water (� ¼ 1 g/cm3,

� ¼ 1 cP) being pumped at a rate of 150 gpm (gal/min) through a 2000 ft long,

3 in. diameter pipe. The water is transported from a reservoir (z ¼ 0) at atmo-

spheric pressure to a condenser at the top of a column that is at an elevation of

30 ft and a pressure of 5 psig. Determine:

(a) The value of the Reynolds number in the pipe

(b) The value of the friction factor in the pipe (assuming that it is smooth)

(c) The power that the pump must deliver to the water, in horsepower (hp)

15. The Peclet number (PPe) is defined as

NPe ¼ NReNPr ¼
�
DV�

�

��
cp�

k

�
¼ DGcp

k
:

where D ¼ pipe diameter, G ¼ mass flux ¼ �V , cp ¼ specific heat, k ¼ thermal

conductivity, � ¼ viscosity. Calculate the value of NPe for water at 608F flowing

through a 1 cm diameter tube at a rate of 100 lbm/hr. (Use the most accurate

data you can find, and state your answer in the appropriate number of digits

consistent with the data you use.)

16. The heat transfer coefficient (h) for a vapor bubble rising through a boiling

liquid is given by

h ¼ A

�
kV�cp

d

�1=2
where V ¼

�
�� g	

�2v

�1=4

where h ¼ heat transfer coefficient [e.g., Btu/(hr 8F ft2)], cp ¼ liquid heat capacity

[e.g., cal/(g 8C)], k ¼ liquid thermal conductivity [e.g., J/(sKm)], � ¼ liquid/vapor

surface tension [e.g., dyn/cm], �� ¼ �liquid � �vapor ¼ �1 � �v, d ¼ bubble dia-

meter, and g ¼ acceleration due to gravity.

(a) What are the fundamental dimensions of V and A?

(b) If the value of h is 1000 Btu/(hr ft2 8F) for a 5mm diameter steam bubble

rising in boiling water at atmospheric pressure, determine the corresponding

values of V and A in SI units. You must look up values for the other

quantities you need; be sure to cite the sources you use for these data.

17. Determine the value of the Reynolds number for SAE 10 lube oil at 1008F
flowing at a rate of 2000 gpm through a 10 in. Schedule 40 pipe. The oil SG

is 0.92, and its viscosity can be found in Appendix A. If the pipe is made of

commercial steel (" ¼ 0:0018 in.), use the Moody diagram (see Fig. 6-4) to

determine the friction factor f for this system. Estimate the precision of your

answer, based upon the information and procedure you used to determine it

(i.e., tell what the reasonable upper and lower bounds, or the corresponding

percentage variation, should be for the value of f based on the information you

used).

18. Determine the value of the Reynolds number for water flowing at a rate of

0.5 gpm through a 1 in. ID pipe. If the diameter of the pipe is doubled at the

same flow rate, how much will each of the following change:
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(a) The Reynolds number

(b) The pressure drop

(c) The friction factor

19. The pressure drop for a fluid with a viscosity of 5 cP and a density of 0.8 g/cm3,

flowing at a rate of 30 g/s in a 50 ft long 1/4 in. diameter pipe is 10 psi. Use this

information to determine the pressure drop for water at 608F flowing at 0.5 gpm

in a 2 in. diameter pipe. What is the value of the Reynolds number for each of

these cases?

Dimensional Analysis and Scale-Up

20. In the steady flow of a Newtonian fluid through a long uniform circular tube, if

NRe < 2000 the flow is laminar and the fluid elements move in smooth straight

parallel lines. Under these conditions, it is known that the relationship between

the flow rate and the pressure drop in the pipe does not depend upon the fluid

density or the pipe wall material.

(a) Perform a dimensional analysis of this system to determine the dimension-

less groups that apply. Express your result in a form in which the Reynolds

number can be identified.

(b) If water is flowing at a rate of 0.5 gpm through a pipe with an ID of 1 in.,

what is the value of the Reynolds number? If the diameter is doubled at the

same flow rate, what will be the effect on the Reynolds number and on the

pressure drop?

21. Perform a dimensional analysis to determine the groups relating the variables

that are important in determining the settling rate of very small solid particles

falling in a liquid. Note that the driving force for moving the particles is gravity

and the corresponding net weight of the particle. At very slow settling velocities,

it is known that the velocity is independent of the fluid density. Show that this

also requires that the velocity be inversely proportional to the fluid viscosity.

22. A simple pendulum consists of a small, heavy ball of mass m on the end of a

long string of length L. The period of the pendulum should depend on these

factors, as well as on gravity, which is the driving force for making it move.

What information can you get about the relationship between these variables

from a consideration of their dimensions? Suppose you measured the period,

T1, of a pendulum with mass m1 and length L1. How could you use this to

determine the period of a different pendulum with a different mass and length?

What would be the ratio of the pendulum period on the moon to that on the

earth? How could you use the pendulum to determine the variation of g on the

earth’s surface?

23. An ethylene storage tank in your plant explodes. The distance that the blast

wave travels from the blast site (R) depends upon the energy released in the

blast (E), the density of the air (�), and time (t). Use dimensional analysis to

determine:

(a) The dimensionless group(s) that can be used to describe the relationship

between the variables in the problem
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(b) The ratio of the velocity of the blast wave at a distance of 2000 ft from the

blast site to the velocity at a distance of 500 ft from the site

The pressure difference across the blast wave (�P) also depends upon the

blast energy (E), the air density (�), and time (t). Use this information to

determine:

(c) The ratio of the blast pressure at a distance of 500 ft from the blast site to

that at a distance of 2000 ft from the site

24. It is known that the power required to drive a fan depends upon the impeller

diameter (D), the impeller rotational speed (!), the fluid density (�), and the

volume flow rate (Q). (Note that the fluid viscosity is not important for gases

under normal conditions.)

(a) What is the minimum number of fundamental dimensions required to define

all of these variables?

(b) How many dimensionless groups are required to determine the relationship

between the power and all the other variables? Find these groups by dimen-

sional analysis, and arrange the results so that the power and the flow rate

each appear in only one group.

25. A centrifugal pump with an 8 in. diameter impeller operating at a rotational

speed of 1150 rpm requires 1.5 hp to deliver water at a rate of 100 gpm and a

pressure of 15 psi. Another pump for water, which is geometrically similar but

has an impeller diameter of 13 in., operates at a speed of 1750 rpm. Estimate the

pump pressure, flow capacity, and power requirements of this second pump.

(Under these conditions, the performance of both pumps is independent of the

fluid viscosity.)

26. A gas bubble of diameter d rises with velocity V in a liquid of density � and

viscosity �.
(a) Determine the dimensionless groups that include the effects of all the

significant variables, in such a form that the liquid viscosity appears in

only one group. Note that the driving force for the bubble motion is buoy-

ancy, which is equal to the weight of the displaced fluid.

(b) You want to know how fast a 5 mm diameter air bubble will rise in a liquid

with a viscosity of 20 cP and a density of 0.85 g/cm3. You want to simulate

this system in the laboratory using water (� ¼ 1 cP, � ¼ 1 g/cm3) and air

bubbles. What size air bubble should you use?

(c) You perform the experiment, and measure the velocity of the air bubble in

water (Vm). What is the ratio of the velocity of the 5 mm bubble in the field

liquid (Vf ) to that in the lab (Vm)?

27. You must predict the performance of a large industrial mixer under various

operating conditions. To obtain the necessary data, you decide to run a

laboratory test on a small-scale model of the unit. You have deduced that

the power (P) required to operate the mixer depends upon the following

variables:

Tank diameter D Impeller diameter d

Impeller rotational speed N Fluid density �
Fluid viscosity �
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(a) Determine the minimum number of fundamental dimensions involved in

these variables and the number of dimensionless groups that can be defined

by them.

(b) Find an appropriate set of dimensionless groups such that D and N each

appear in only one group. If possible, identify one or more of the groups

with groups commonly encountered in other systems.

(c) You want to know how much power would be required to run a mixer in a

large tank 6 ft in diameter, using an impeller with a diameter of 3 ft

operating at a speed of 10 rpm, when the tank contains a fluid with a

viscosity of 25 cP and a specific gravity of 0.85. To do this, you run a lab

test on a model of the system, using a scale model of the impeller that is

10 in. in diameter. The only appropriate fluid you have in the lab has a

viscosity of 15 cP and a specific gravity of 0.75. Can this fluid be used for the

test? Explain.

(d) If the preceding lab fluid is used, what size tank should be used in the lab,

and how fast should the lab impeller be rotated?

(e) With the lab test properly designed and the proper operating conditions

chosen, you run the test and find that it takes 150W to operate the lab test

model. How much power would be required to operate the larger field mixer

under the plant operating conditions?

28. When an open tank with a free surface is stirred with an impeller, a vortex will

form around the shaft. It is important to prevent this vortex from reaching the

impeller, because entrainment of air in the liquid tends to cause foaming. The

shape of the free surface depends upon (among other things) the fluid proper-

ties, the speed and size of the impeller, the size of the tank, and the depth of the

impeller below the free surface.

(a) Perform a dimensional analysis of this system to determine an appropriate

set of dimensionless groups that can be used to describe the system perfor-

mance. Arrange the groups so that the impeller speed appears in only one

group.

(b) In your plant you have a 10 ft diameter tank containing a liquid that is 8 ft

deep. The tank is stirred by an impeller that is 6 ft in diameter and is located

1 ft from the tank bottom. The liquid has a viscosity of 100 cP and a specific

gravity of 1.5. You need to know the maximum speed at which the impeller

can be rotated without entraining the vortex. To find this out, you design a

laboratory test using a scale model of the impeller that is 8 in. in diameter.

What, if any, limitations are there on your freedom to select a fluid for use

in the lab test?
(c) Select an appropriate fluid for the lab test and determine how large the tank

used in the lab should be andwhere in the tank the impeller should be located.

(d) The lab impeller is run at such a speed that the vortex just reaches the

impeller. What is the relation between this speed and that at which entrain-

ment would occur in the tank in the plant?
29. The variables involved in the performance of a centrifugal pump include the

fluid properties (� and �), the impeller diameter (d), the casing diameter (D), the

impeller rotational speed (N), the volumetric flow rate of the fluid (Q), the head
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(H) developed by the pump (�P ¼ �gH), and the power required to drive the

pump (HP).

(a) Perform a dimensional analysis of this system to determine an appropriate

set of dimensionless groups that would be appropriate to characterize the

pump. Arrange the groups so that the fluid viscosity and the pump power

each appear in only one group.

(b) You want to know what pressure a pump will develop with a liquid that has

a specific gravity of 1.4 and a viscosity of 10 cP, at a flow rate of 300 gpm.

The pump has an impeller with a diameter of 12 in., which is driven by a

motor running at 1100 rpm. (It is known that the pump performance is

independent of fluid viscosity unless the viscosity is greater than about

50 cP.) You want to run a lab test that simulates the operation of the larger

field pump using a similar (scaled) pump with an impeller that has a dia-

meter of 6 in. and a 3600 rpm motor,. Should you use the same liquid in the

lab as in the field, or can you use a different liquid? Why?

(c) If you use the same liquid, what flow rate should be used in the lab to

simulate the operating conditions of the field pump?

(d) If the lab pump develops a pressure of 150 psi at the proper flow rate, what

pressure will the field pump develop with the field fluid?

(e) What pressure would the field pump develop with water at a flow rate of 300

gpm?
30. The purpose of a centrifugal pump is to increase the pressure of a liquid in order

to move it through a piping system. The pump is driven by a motor, which

must provide sufficient power to operate the pump at the desired conditions.

You wish to find the pressure developed by a pump operating at a flow rate of

300 gpm with an oil having a specific gravity (SG) of 0.8 and a viscosity of 20 cP,

and the required horsepower for the motor to drive the pump. The pump has an

impeller diameter of 10 in., and the motor runs at 1200 rpm.

(a) Determine the dimensionless groups that would be needed to completely

describe the performance of the pump.
(b) You want to determine the pump pressure and motor horsepower by

measuring these quantities in the lab on a smaller scale model of the

pump that has a 3 in. diameter impeller and a 1800 rpm motor, using

water as the test fluid. Under the operating conditions for both the lab

model and the field pump, the value of the Reynolds number is very

high, and it is known that the pump performance is independent of the

fluid viscosity under these conditions. Determine the proper flow rate at

which the lab pump should be tested and the ratio of the pressure developed

by the field pump to that of the lab pump operating at this flow rate as well

as the ratio of the required motor power in the field to that in the lab.

(c) The pump efficiency (	e) is the ratio of the power delivered by the pump to

the fluid (as determined by the pump pressure and flow rate) to the power

delivered to the pump by the motor. Because this is a dimensionless

number, it should also have the same value for both the lab and field

pumps when they are operating under equivalent conditions. Is this condi-

tion satisfied?

Dimensional Analysis and Scale-up 47



31. When a ship moves through the water, it causes waves. The energy and momen-

tum in these waves must come from the ship, which is manifested as a ‘‘wave

drag’’ force on the ship. It is known that this drag force (F) depends upon the

ship speed (V), the fluid properties (�; �), the length of the waterline (L), and

the beam width (W ) as well as the shape of the hull, among other things. (There

is at least one important ‘‘other thing’’ that relates to the ‘‘wave drag,’’ i.e., the

energy required to create and sustain the waves from the bow and the wake.

What is this additional variable?) Note that ‘‘shape’’ is a dimensionless para-

meter, which is implied by the requirement of geometrical similarity. If two

geometries have the same shape, the ratio of each corresponding dimension

of the two will also be the same.

(a) Perform a dimensional analysis of this system to determine a suitable set

of dimensionless groups that could be used to describe the relationship

between all the variables. Arrange the groups such that viscous and grav-

itational parameters each appear in separate groups.

(b) It is assumed that ‘‘wave drag’’ is independent of viscosity and that ‘‘hull

drag’’ is independent of gravity. You wish to determine the drag on a ship

having a 500 ft long waterline moving at 30mph through seawater

(SG¼ 1.1). You can make measurements on a scale model of the ship,

3 ft long; in a towing tank containing fresh water. What speed should be

used for the model to simulate the wave drag and the hull drag?

32. You want to find the force exerted on an undersea pipeline by a 10 mph current

flowing normal to the axis of the pipe. The pipe is 30 in. in diameter; the density

of seawater is 64 lbm/ft
3 and its viscosity is 1.5 cP. To determine this, you test a

11
2
¨ in. diameter model of the pipe in a wind tunnel at 608F. What velocity should

you use in the wind tunnel to scale the measured force to the conditions in the

sea? What is the ratio of the force on the pipeline in the sea to that on the model

measured in the wind tunnel?

33. You want to determine the thickness of the film when a Newtonian fluid flows

uniformly down an inclined plane at an angle 
 with the horizontal at a specified

flow rate. To do this, you design a laboratory experiment from which you can

scale up measured values to any other Newtonian fluid under corresponding

conditions.
(a) List all the independent variables that are important in this problem, with

their dimensions. If there are any variables that are not independent but act

only in conjunction with one another, list only the net combination that is

important.

(b) Determine an appropriate set of dimensionless groups for this system, in

such a way that the fluid viscosity and the plate inclination each appear in

only one group.

(c) Decide what variables you would choose for convenience, what variables

would be specified by the analysis, and what you would measure in the

lab.
34. You would like to know the thickness of a syrup film as it drains at a rate of

1 gpm down a flat surface that is 6 in. wide and is inclined at an angle of 308
from the vertical. The syrup has a viscosity of 100 cP and an SG of 0.9. In the
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laboratory, you have a fluid with a viscosity of 70 cP and an SG of 1.0 and a 1 ft

wide plane inclined at an angle of 458 from the vertical.

(a) At what flow rate, in gpm, would the laboratory conditions simulate the

specified conditions?

(b) If the thickness of the film in the laboratory is 3 mm at the proper flow rate,

what would the thickness of the film be for the 100 cP fluid at the specified

conditions?

35. The size of liquid droplets produced by a spray nozzle depends upon the nozzle

diameter, the fluid velocity, and the fluid properties (which may, under some

circumstances, include surface tension).

(a) Determine an appropriate set of dimensionless groups for this system.

(b) You want to know what size droplets will be generated by a fuel oil nozzle

with a diameter of 0.5mm at an oil velocity of 10 m/s. The oil has a viscosity

of 10 cP, an SG of 0.82, and a surface tension of 35 dyn/cm. You have a

nozzle in the lab with a nozzle diameter of 0.2 mm that you want to use in a

lab experiment to find the answer. Can you use the same fuel oil in the lab

test as in the field? If not, why not?

(c) If the only fluid you have is water, tell how you would design the lab

experiment. Note: Water has a viscosity of 1 cP and an SG of 1, but its

surface tension can be varied by adding small amounts of surfactant, which

does not affect the viscosity or density.
(d) Determine what conditions you would use in the lab, what you would

measure, and the relationship between the measured and the unknown

droplet diameters.

36. Small solid particles of diameter d and density �s are carried horizontally by an

air stream moving at velocity V. The particles are initially at a distance h above

the ground, and you want to know how far they will be carried horizontally

before they settle to the ground. To find this out, you decide to conduct a lab

experiment using water as the test fluid.

(a) Determine what variables you must set in the lab and how the value of each

of these variables is related to the corresponding variable in the air system.

You should note that two forces act on the particle: the drag force due to

the moving fluid, which depends on the fluid and solid properties, the size of

the particle, and the relative velocity; and the gravitational force, which is

directly related to the densities of both the solid and the fluid in a known

manner.
(b) Is there any reason why this experiment might not be feasible in

practice?

37. You want to find the wind drag on a new automobile design at various speeds.

To do this, you test a 1/30 scale model of the car in the lab. You must design an

experiment whereby the drag force measured in the lab can be scaled up directly

to find the force on the full-scale car at a given speed.

(a) What is the minimum number of (dimensionless) variables required to

completely define the relationship between all the important variables in

the problem? Determine the appropriate variables (e.g., the dimensionless

groups).
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(b) The only fluids you have available in the lab are air and water. Could you

use either one of these, if you wanted to? Why (or why not)?

(c) Tell which of these fluids you would use in the lab, and then determine what

the velocity of this fluid past the model car would have to be so that the

experiment would simulate the drag on the full-scale car at 40 mph. If you

decide that it is possible to use either fluid, determine the answer for each of

them.

(d) What is the relationship between the measured drag force on the model and

the drag force on the full scale car? If possible, determine this relationship

for the other fluid as well. Repeat this for a speed of 70 mph.

(e) It turns out that for very high values of the Reynolds number, the drag force

is independent of the fluid viscosity. Under these conditions, if the speed of

the car doubles, by what factor does the power required to overcome wind

drag change?

38. The power required to drive a centrifugal pump and the pressure that the pump

will develop depend upon the size (diameter) and speed (angular velocity) of the

impeller, the volumetric flow rate through the pump, and the fluid properties.

However, if the fluid is not too viscous (e.g. less than about 100 cP), the pump

performance is essentially independent of the fluid viscosity. Under these

conditions:

(a) Perform a dimensional analysis to determine the dimensionless groups that

would be required to define the pump performance. Arrange the groups so

that the power and pump pressure each appear in only one group.

You have a pump with an 8 in. diameter impeller that develops a pressure of

15 psi and requires 1.5 hp to operate when running at 1150 rpm with water at a

flow rate of 100 gpm. You also have a similar pump with a 13 in. diameter

impeller, driven by a 1750 rpm motor, and you would like to know what

pressure this pump would develop with water and what power would be

required to drive it.

(b) If the second pump is to be operated under equivalent (similar) conditions

to the first one, what should the flow rate be?
(c) If this pump is operated at the proper flow rate, what pressure will it

develop, and what power will be required to drive it when pumping water?

39. In a distillation column, vapor is bubbled through the liquid to provide good

contact between the two phases. The bubbles are formed when the vapor passes

upward through a hole (orifice) in a plate (tray) that is in contact with the

liquid. The size of the bubbles depends upon the diameter of the orifice, the

velocity of the vapor through the orifice, the viscosity and density of the liquid,

and the surface tension between the vapor and the liquid.
(a) Determine the dimensionless groups required to completely describe this

system, in such a manner that the bubble diameter and the surface tension

do not appear in the same group.

(b) You want to find out what size bubbles would be formed by a hydrocarbon

vapor passing through a 1/4 in. orifice at a velocity of 2 ft/s, in contact with

a liquid having a viscosity of 4 cP and a density of 0.95 g/cm3 (the surface

tension is 30 dyn/cm). To do this, you run a lab experiment using air and
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water (surface tension 60 dyn/cm). (1) What size orifice should you use, and

what should the air velocity through the orifice be? (2) You design and run

this experiment and find that the air bubbles are 0.1 in. in diameter. What

size would the vapor bubbles be in the organic fluid above the 1/4 in. orifice?

40. A flag will flutter in the wind at a frequency that depends upon the wind speed,

the air density, the size of the flag (length and width), gravity, and the ‘‘area

density’’ of the cloth (i.e. the mass per unit area). You have a very large flag

(40 ft long and 30 ft wide) which weighs 240 lb, and you want to find the

frequency at which it will flutter in a wind of 20 mph.

(a) Perform a dimensional analysis to determine an appropriate set of dimen-

sionless groups that could be used to describe this problem.

(b) To find the flutter frequency you run a test in a wind tunnel (at normal

atmospheric temperature and pressure) using a flag made from a cloth that

weighs 0.05 lb/ft2. Determine (1) the size of the flag and the wind speed that

you should use in the wind tunnel and (2) the ratio of the flutter frequency

of the big flag to that which you observe for the model flag in the wind

tunnel.
41. If the viscosity of the liquid is not too high (e.g., less than about 100 cP), the

performance of many centrifugal pumps is not very sensitive to the fluid

viscosity. You have a pump with an 8 in. diameter impeller that develops a

pressure of 15 psi and consumes 1.5 hp when running at 1150 rpm pumping

water at a rate of 100 gpm. You also have a similar pump with a 13 in. diameter

impeller driven by a 1750 rpm motor, and you would like to know what pres-

sure that pump would develop with water and how much power it would take to

drive it.
(a) If the second pump is to be operated under conditions similar to that of the

first, what should the flow rate be?

(b) When operated at this flow rate with water, (1) what pressure should it

develop and (2) what power would be required to drive it?
42. The pressure developed by a centrifugal pump depends on the fluid density, the

diameter of the pump impeller, the rotational speed of the impeller, and the

volumetric flow rate through the pump (centrifugal pumps are not recom-

mended for highly viscous fluids, so viscosity is not commonly an important

variable). Furthermore, the pressure developed by the pump is commonly

expressed as the ‘‘pump head,’’ which is the height of a column of the fluid

in the pump that exerts the same pressure as the pump pressure.

(a) Perform a dimensional analysis to determine the minimum number of

variables required to represent the pump performance characteristic in the

most general (dimensionless) form.

(b) The power delivered to the fluid by the pump is also important. Should this

be included in the list of important variables, or can it be determined from

the original set of variables? Explain.

You have a pump in the field that has a 1.5 ft diameter impeller that is driven by

a motor operating at 750 rpm. You want to determine what head the pump will

develop when pumping a liquid with a density of 50 lbm/ft
3 at a rate of 1000

gpm. You do this by running a test in the lab on a scale model of the pump that
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has a 0.5 ft diameter impeller using water (at 708F) and a motor that runs at

1200 rpm.

(c) At what flow rate of water (in gpm) should the lab pump be operated?

(d) If the lab pump develops a head of 85 ft at this flow rate, what head would

the pump in the field develop with the operating fluid at the specified flow

rate?

(e) How much power (in horsepower) is transferred to the fluid in both the lab

and the field cases?

(f ) The pump efficiency is defined as the ratio of the power delivered to the fluid

to the power of the motor that drives the pump. If the lab pump is driven by

a 2 hp motor, what is the efficiency of the lab pump? If the efficiency of the

field pump is the same as that of the lab pump, what power motor (horse-

power) would be required to drive it?

NOTATION

D diameter, [L]

f friction factor, [—]

F dimension of force

G gravitational constant 6:67� 10�11 N m2/kg2, Eq. (2-2),

[FL2/M2]¼ [L3/Mt2]

g acceleration due to gravity, [L/t2]

gc conversion factor, [ML/(Ft2]

ID inside diameter of pipe, [L]

K1 loss parameter (see Chapter 7), [—]

Kd loss parameter (see Chapter 7), [—]

Kf loss coefficient (see Chapter 7), [—]

Ki loss parameter (see Chapter 7), [—]

ke kinetic energy/mass, [FL/M¼L2/t2]

L dimension of length

L length, [L]

M dimension of mass

m mass, [M]

NRe Reynolds number, [—]

Nx dimensionless group x [—]

P pressure, [F/L2¼M/Lt2]

Q volume flow rate, [L3/t]

R radius, [L]

T torque, [FL¼ML2/t2]

t dimension of time

V spatial average velocity, [L/t]

v local velocity, [L/t]

W weight, [F = ML/t2]

x coordinate direction, [L]

z coordinate direction (measured upward), [L]
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" roughness, [L]

� viscosity, [M/Lt]

� density, [M/L3]

�yx shear stress, force in x direction on y surface, [F/L2¼ML/t2]

Subscripts

1 reference point 1

2 reference point 2

m model

f field

x, y, r, 
 coordinate directions
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3

Fluid Properties in Perspective

I. CLASSIFICATION OF MATERIALS AND FLUID
PROPERTIES

What is a fluid? It isn’t a solid, but what is a solid? Perhaps it is easier to
define these materials in terms of how they respond (i.e., deform or flow)
when subjected to an applied force in a specific situation such as the simple
shear situation illustrated in Fig. 3-1 (which is virtually identical to Fig. 1-1).
We envision the material contained between two infinite parallel plates, the
bottom one being fixed and the top one subject to an applied force parallel
to the plate, which is free to move in its plane. The material is assumed to
adhere to the plates, and its properties can be classified by the way the top
plate responds when the force is applied.

The mechanical behavior of a material, and its corresponding mechan-
ical or rheological* properties, can be defined in terms of how the shear
stress (�yx) (force per unit area) and the shear strain (�yx) (which is a relative
displacement) are related. These are defined, respectively, in terms of the
total force (Fx) acting on area Ay of the plate and the displacement (Ux) of
the plate:

�yx ¼ Fx=Ay ð3-1Þ
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and

�yx ¼ Ux

hy
¼ dux

dy
ð3-2Þ

The manner in which the shear strain responds to the shear stress (or vice
versa) in this situation defines the mechanical or rheological classification of
the material. The parameters in any quantitative functional relation between
the stress and strain are the rheological properties of the material. It is noted
that the shear stress has dimensions of force per unit area (with units of, e.g.,
Pa, dyn/cm2, lbf/ft

2) and that shear strain is dimensionless (it has no units).
For example, if the material between the plates is a perfectly rigid solid

(e.g., a brick), it will not move at all no matter how much force is applied
(unless it breaks). Thus, the quantitative relation that defines the behavior of
this material is

�yx ¼ 0 ð3-3Þ
However, if the top plate moves a distance which is in proportion to the
applied force and then stops, the material is called a linear elastic (Hookean)
solid (e.g., rubber). The quantitative relation that defines such a material is

�yx ¼ G�yx ð3-4Þ
where G is a constant called the shear modulus. Note also that if the force
(stress) is removed, the strain (displacement) also goes to zero, i.e., the
material reverts to its original undeformed state. Such an ideal elastic
material is thus said to have a ‘‘perfect memory.’’

On the other hand, if the top plate moves but its displacement is not
directly proportional to the applied force (it may be either more or less than
proportional to the force), the material is said to be a nonlinear (i.e., non-
Hookean) elastic solid. It can be represented by an equation of the form

G ¼ �yx=�yx ¼ fnð� or �Þ ð3-5Þ

56 Chapter 3

FIGURE 3-1 Simple shear.



Here G is still the shear modulus, but it is no longer a constant. It is, instead,
a function of either how far the plate moves (�yx) or the magnitude of the
applied force (�yx), i.e., G(�) or G(�). The particular form of the function will
depend upon the specific nature of the material. Note, however, that such a
material still exhibits a ‘‘perfect memory,’’ because it returns to its unde-
formed state when the force (stress) is removed.

At the other extreme, if the molecules of the material are so far apart
that they exhibit negligible attraction for each other (e.g., a gas under very
low pressure), the plate can be moved by the application of a negligible
force. The equation that describes this material is

�yx ¼ 0 ð3-6Þ
Such an ideal material is called an inviscid (Pascalian) fluid. However, if the
molecules do exhibit a significant mutual attraction such that the force (e.g.,
the shear stress) is proportional to the relative rate of movement (i.e., the
velocity gradient), the material is known as a Newtonian fluid. The equation
that describes this behavior is

�yx ¼ � _��yx ð3-7Þ
where _��yx is the rate of shear strain or shear rate:

_��yx ¼ d�yx
dt

¼ dvx
dy

¼ Vx

hy
ð3-8Þ

and � is the fluid viscosity. Note that Eq. (3-7) defines the viscosity, i.e.,
� � �yx= _��yx, which has dimensions of Ft/L2 [with units of Pa s, dyn s/cm2 ¼
g/(cm s)¼ poise, lbf s/ft

2, etc.]. Note that when the stress is removed from
this fluid, the shear rate goes to zero, i.e., the motion stops, but there is no
‘‘memory’’ or tendency to return to any past state.

If the properties of the fluid are such that the shear stress and shear
rate are not directly proportional but are instead related by some more
complex function, the fluid is said to be non-Newtonian. For such fluids
the viscosity may still be defined as �yx= _��yx, but it is no longer a constant.
It is, instead, a function of either the shear rate or shear stress. This is called
the apparent viscosity (function) and is designated by 	:

	 ¼ �yx
_��yx

¼ fnð� or _��Þ ð3-9Þ

The actual mathematical form of this function will depend upon the nature
(i.e., the ‘‘constitution’’) of the particular material. Most common fluids of
simple structure water, air, glycerine, oils, etc.) are Newtonian. However,
fluids with complex structure (polymer melts or solutions, suspensions,
emulsions, foams, etc.) are generally non-Newtonian. Some very common
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examples of non-Newtonian fluids are mud, paint, ink, mayonnaise, shaving
cream, dough, mustard, toothpaste, and sludge.

Actually, some fluids and solids have both elastic (solid) properties
and viscous (fluid) properties. These are said to be viscoelastic and are
most notably materials composed of high polymers. The complete descrip-
tion of the rheological properties of these materials may involve a function
relating the stress and strain as well as derivatives or integrals of these with
respect to time. Because the elastic properties of these materials (both fluids
and solids) impart ‘‘memory’’ to the material (as described previously),
which results in a tendency to recover to a preferred state upon the removal
of the force (stress), they are often termed ‘‘memory materials’’ and exhibit
time-dependent properties.

This classification of material behavior is summarized in Table 3-1
(in which the subscripts have been omitted for simplicity). Since we are
concerned with fluids, we will concentrate primarily on the flow behavior
of Newtonian and non-Newtonian fluids. However, we will also illustrate
some of the unique characteristics of viscoelastic fluids, such as the ability of
solutions of certain high polymers to flow through pipes in turbulent flow
with much less energy expenditure than the solvent alone.

II. DETERMINATION OF FLUID VISCOUS (RHEOLOGICAL)
PROPERTIES

As previously discussed, the flow behavior of fluids is determined by their
rheological properties, which govern the relationship between shear stress
and shear rate. In principle these properties could be determined by
measurements in a ‘‘simple shear’’ test as illustrated in Fig. 3-1. One
would put the ‘‘unknown’’ fluid in the gap between the plates, subject the
upper plate to a specified velocity (V), and measure the required force (F)
(or vice versa). The shear stress (�) would be determined by F/A, the shear
rate ( _��) is given by V=h, and the viscosity (	) by �= _��. The experiment is
repeated for different combinations of V and F to determine the viscosity
at various shear rates (or shear stresses). However, this geometry is not
convenient to work with, because it is hard to keep the fluid in the gap
with no confining walls, and correction for the effect of the walls is not
simple. However, there are more convenient geometries for measuring
viscous properties. The working equations used to obtain viscosity from
measured quantities will be given here, although the development of these
equations will be delayed until after the appropriate fundamental principles
have been discussed.
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A. Cup-and-Bob (Couette) Viscometer

As the name implies, the cup-and-bob viscometer consists of two concentric
cylinders, the outer ‘‘cup’’ and the inner ‘‘bob,’’ with the test fluid in the
annular gap (see Fig. 3-2). One cylinder (preferably the cup) is rotated at a
fixed angular velocity (�). The force is transmitted to the sample, causing it
to deform, and is then transferred by the fluid to the other cylinder (i.e., the
bob). This force results in a torque (T) that can be measured by a torsion
spring, for example. Thus, the known quantities are the radii of the inner
bob (Ri) and the outer cup (Ro), the length of surface in contact with the
sample (L), and the measured angular velocity (�) and torque (T). From
these quantities, we must determine the corresponding shear stress and shear
rate to find the fluid viscosity. The shear stress is determined by a balance of
moments on a cylindrical surface within the sample (at a distance r from the
center), and the torsion spring:

T ¼ Force� Lever arm ¼ Shear stress � Surface area�Radius

or

T ¼ �r
ð2�rLÞðrÞ
where the subscripts on the shear stress (r; 
) represent the force in the 

direction acting on the r surface (the cylindrical surface perpendicular to r).
Solving for the shear stress, we have

�r
 ¼
T

2�r2L
¼ � ð3-10Þ

Setting r ¼ Ri gives the stress on the bob surface ð�iÞ, and r ¼ Ro gives the
stress on the cup ð�oÞ. If the gap is small [i.e., ðRo � RiÞ=Ri � 0:02], the
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FIGURE 3-2 Cup-and-bob (Couette) viscometer.



curvature can be neglected and the flow in the gap is equivalent to flow
between parallel plates. In this case, an average shear stress should be used
[i.e., ð�i þ �oÞ=2], and the average shear rate is given by

_�� ¼ dv

dr

ffi �V

�r
¼ Vo � Vi

Ro � Ri

¼ Ro�

Ro � Ri

¼ �

1� Ri=Ro

or

_��r
 ¼
dv

dr

¼ �

1� � ¼ _�� ð3-11Þ

where � ¼ Ri=Ro. However, if the gap is not small, the shear rate must be
corrected for the curvature in the velocity profile. This can be done by
applying the following approximate expression for the shear rate at the
bob [which is accurate to 	1% for most conditions and is better than
	5% for the worst case; see, e.g., Darby (1985)]:

_��i ¼
2�

n 0ð1� �2=n 0 Þ ð3-12Þ

where

n 0 ¼ dðlogTÞ
dðlog�Þ ð3-13Þ

is the point slope of the plot of log T versus log �, at the value of � (or T) in
Eq. (3-12). Thus a series of data points of T versus � must be obtained in
order to determine the value of the slope (n 0) at each point, which is needed
to determine the corresponding values of the shear rate. If n 0 ¼ 1 (i.e,
T / �), the fluid is Newtonian. The viscosity at each shear rate (or shear
stress) is then determined by dividing the shear stress at the bob [Eq. (3-10)
with r ¼ Ri] by the shear rate at the bob [Eq. (3-12)], for each data point.

Example 3-1: The following data were taken in a cup-and-bob viscometer
with a bob radius of 2 cm, a cup radius of 2.05 cm, and a bob length of
15 cm. Determine the viscosity of the sample and the equation for the model
that best represents this viscosity.

Torque Speed
(dyn cm) (rpm)

2,000 2
3,500 4
7,200 10

12,500 20
20,000 40
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The viscosity is the shear stress at the bob, as given by Eq. (3-10), divided by
the shear rate at the bob, as given by Eq. (3-12). The value of n 0 in Eq. (3-12)
is determined from the point slope of the log T versus log rpm plot at each
data point. Such a plot is shown Fig. 3-3a. The line through the data is the
best fit of all data points by linear least squares (this is easily found by using
a spreadsheet) and has a slope of 0.77 (with r2 ¼ 0:999). In general, if the
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FIGURE 3-3 Examples of (a) cup-and-bob viscosity (torque vs. speed) and
(b) viscosity versus shear rate. (Lines are least-mean-square fit.)



data do not fall on a straight line on this plot, the point slope (tangent) must
be determined at each data point, giving a different value of n 0 for each data
point. Using 0.77 for n 0 in Eq. (3-12) for the shear rate and Eq. (3-10) for the
shear stress, gives the following values:

Shear stress at bob Shear rate at bob
(dyn/cm2) (1/s) Viscosity (poise)

5.31 8.74 0.61
9.28 17.5 0.53

19.1 43.7 0.43
33.2 87.4 0.37
53.1 175 0.31

The plot of viscosity versus shear rate is shown in Fig. 3-3b, in which the line
represents Eq. (3-24), with n ¼ 0:77 and m ¼ 1:01 dyn sn/cm2 (or ‘‘poise’’).
In this case the power law model represents the data quite well over the
entire range of shear rate, so that n ¼ n 0 is the same for each data point. If
this were not the case, the local slope of log T versus log rpm would deter-
mine a different value of n 0 for each data point, and the power law model
would not give the best fit over the entire range of shear rate. The shear rate
and viscosity would still be determined as above (using the local value of n 0

for each data point), but the viscosity curve could probably be best fit by
some other model, depending upon the trend of the data (see Section III).

B. Tube Flow (Poiseuille) Viscometer

Another common method of determining viscosity is by measuring the total
pressure drop (�� ¼ �Pþ �g �z) and flow rate (Q) in steady laminar flow
through a uniform circular tube of length L and diameter D (this is called
Poiseuille flow). This can be done by using pressure taps through the tube
wall to measure the pressure difference directly or by measuring the total
pressure drop from a reservoir to the end of the tube, as illustrated in Fig. 3-4.
The latter is more common, because tubes of very small diameter are usually
used, but this arrangement requires that correction factors be applied for the
static head of the fluid in the reservoir and the pressure loss from the
reservoir to the tube.

As will be shown later, a momentum (force) balance on the fluid in the
tube provides a relationships between the shear stress at the tube wall (�w)
and the measured pressure drop:

�w ¼ ���

4L=D
ð3-14Þ
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The corresponding shear rate at the tube wall ( _��w) is given by

_��w ¼ �
3n 0 þ 1

4n 0

� �
ð3-15Þ

where

� ¼ 32Q

�D3
¼ 8V

D
ð3-16Þ

is the wall shear rate for a Newtonian (n 0 ¼ 1) fluid, and

n 0 ¼ d log �w
d log�

¼ d logð���Þ
d logQ

ð3-17Þ

is the point slope of the log-log plot of �� versus Q, evaluated at each data
point. This n 0 is the same as that determined from the cup-and-bob visc-
ometer for a given fluid. As before, if n 0 ¼ 1 (i.e., �� / Q), the fluid is
Newtonian. The viscosity is given by 	 ¼ �w= _��w.

III. TYPES OF OBSERVED FLUID BEHAVIOR

When the measured values of shear stress or viscosity are plotted versus
shear rate, various types of behavior may be observed depending upon the
fluid properties, as shown in Figs. 3-5 and 3-6. It should be noted that the
shear stress and shear rate can both be either positive or negative, depending
upon the direction of motion or the applied force, the reference frame, etc.
(however, by our convention they are always the same sign). Because the
viscosity must always be positive, the shear rate (or shear stress) argument in
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FIGURE 3-4 Tube flow (Poiseuille) viscometer.



the viscosity function for a non-Newtonian fluid should be the absolute
magnitude regardless of the actual sign of the shear rate and shear stress.

A. Newtonian Fluid

If the shear stress versus shear rate plot is a straight line through the origin
(or a straight line with a slope of unity on a log-log plot), the fluid is
Newtonian:

Newtonian: � ¼ � _�� ð3-18Þ
where � is the viscosity.

B. Bingham Plastic Model

If the data appear to be linear but do not extrapolate through the origin,
intersecting the � axis instead at a shear stress value of �o, the material is
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FIGURE 3-5 Shear stress versus shear rate for various fluids.

FIGURE 3-6 Viscosity versus shear rate for fluids in Fig. 3-5.



called a Bingham plastic:

Bingham plastic: For j�j > �o; � ¼ 	�o þ �1 _�� ð3-19Þ
The yield stress, �o, and the high shear limiting (or plastic) viscosity, �1, are
the two rheological properties required to determine the flow behavior of a
Bingham plastic. The positive sign is used when � and _�� are positive, and the
negative sign when they are negative. The viscosity function for the
Bingham plastic is

	ð _��Þ ¼ �o
j _��j þ �1 ð3-20Þ

or

	ð�Þ ¼ �1
1� �o=j�j

ð3-21Þ

Because this material will not flow unless the shear stress exceeds the yield
stress, these equations apply only when j�j > �o. For smaller values of the
shear stress, the material behaves as a rigid solid, i.e.,

For j�j < �o: _�� ¼ 0 ð3-22Þ
As is evident from Eq. (3-20) or (3-21), the Bingham plastic exhibits a shear
thinning viscosity; i.e., the larger the shear stress or shear rate, the lower the
viscosity. This behavior is typical of many concentrated slurries and suspen-
sions such as muds, paints, foams, emulsions (e.g., mayonnaise), ketchup, or
blood.

C. Power Law Model

If the data (either shear stress or viscosity) exhibit a straight line on a log-log
plot, the fluid is said to follow the power law model, which can be repre-
sented as

Power law: � ¼ mj _��jn�1 _�� ð3-23Þ
or

� ¼ m _��n if � and _�� are ðþÞ
� ¼ �mð� _��Þn if � and _�� are ð�Þ

The two viscous rheological properties are m, the consistency coefficient, and
n, the flow index. The apparent viscosity function for the power law model in
terms of shear rate is

	ð _��Þ ¼ mj _��jn�1 ð3-24Þ
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or, in terms of shear stress,

	ð�Þ ¼ m1=nj�jðn�1Þ=n ð3-25Þ
Note that n is dimensionless but m has dimensions of Ftn/L2. However, m is
also equal to the viscosity of the fluid at a shear rate of 1 s�1, so it is a
‘‘viscosity’’ parameter with equivalent units. It is evident that if n ¼ 1 the
power law model reduces to a Newtonian fluid with m ¼ �. If n < 1, the
fluid is shear thinning (or pseudoplastic); and if n > 1, the model represents
shear thickening (or dilatant) behavior, as illustrated in Figs. 3-5 and 3-6.
Most non-Newtonian fluids are shear thinning, whereas shear thickening
behavior is relatively rare, being observed primarily for some concentrated
suspensions of very small particles (e.g., starch suspensions) and some unusual
polymeric fluids. The power law model is very popular for curve fitting
viscosity data for many fluids over one to three decades of shear rate.
However, it is dangerous to extrapolate beyond the range of measurements
using this model, because (for n < 1) it predicts a viscosity that increases
without bound as the shear rate decreases and a viscosity that decreases
without bound as the shear rate increases, both of which are physically un-
realistic.

D. Structural Viscosity Models

The typical viscous behavior for many non-Newtonian fluids (e.g., poly-
meric fluids, flocculated suspensions, colloids, foams, gels) is illustrated by
the curves labeled ‘‘structural’’ in Figs. 3-5 and 3-6. These fluids exhibit
Newtonian behavior at very low and very high shear rates, with shear thin-
ning or pseudoplastic behavior at intermediate shear rates. In some materi-
als this can be attributed to a reversible ‘‘structure’’ or network that forms in
the ‘‘rest’’ or equilibrium state. When the material is sheared, the structure
breaks down, resulting in a shear-dependent (shear thinning) behavior.
Some real examples of this type of behavior are shown in Fig. 3-7. These
show that structural viscosity behavior is exhibited by fluids as diverse as
polymer solutions, blood, latex emulsions, and mud (sediment). Equations
(i.e., models) that represent this type of behavior are described below.

1. Carreau Model

The Carreau model (Carreau, 1972) is very useful for describing the viscosity
of structural fluids:

Carreau: 	ð _��Þ ¼ 	1 þ 	0 � 	1
½1þ ð
2 _��2Þ�p ð3-26Þ
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This model contains four rheological parameters: the low shear limiting
viscosity (	0), the high shear limiting viscosity (	1), a time constant (
),
and the shear thinning index ( p). This is a very general viscosity model,
and it can represent the viscosity function for a wide variety of materials.
However, it may require data over a range of six to eight decades of shear
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FIGURE 3-7 Some examples of structural viscosity behavior.



rate to completely define the shape of the curve (and hence to determine all
four parameters). As an example, Fig. 3-8 shows viscosity data for several
polyacrylamide solutions over a range of about 106 in shear rate, with the
curves through the data showing the Carreau model fit of the data. The
corresponding values of the Carreau parameters for each of the curves are
given in Table 3-2. In fact, over certain ranges of shear rate, the Carreau
model reduces to various other popular models as special cases (including
the Bingham plastic and power law models), as shown below.
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TABLE 3-2 Values of Carreau Parameters for Model Fit in Fig. 3-8

Solution �0½ðPa sÞ � 10� �(s) p �1½ðPa sÞ � 1000�
100 mg/kg (fresh) 1.113 11.89 0.266 1.30
250 mg/kg (fresh) 1.714 6.67 0.270 1.40
500 mg/kg (fresh) 3.017 3.53 0.300 1.70
100 mg/kg (sheared) 0.098 0.258 0.251 1.30
250 mg/kg (sheared) 0.169 0.167 0.270 1.40
500 mg/kg (sheared) 0.397 0.125 0.295 1.70

Source: Darby and Pivsa-Art (1991).

FIGURE 3-8 Viscosity data and Carreau model fit of polyacrylamide solutions.
(From Darby and Pivsa-Art, 1991.)



a. Low to Intermediate Shear Rate Range
If 	1 
 ð	; 	0Þ, the Carreau model reduces to a three-parameter

model (	0; 
, and p) that is equivalent to a power law model with a low
shear limiting viscosity, also known as the Ellis model:

Ellis: 	ð _��Þ ¼ 	0
½1þ 
2 _��2�p ð3-27Þ

b. Intermediate to High Shear Rate Range
If 	0 � ð	; 	1Þ and ð
 _��Þ2 � 1, the Carreau model reduces to the

equivalent of a power law model with a high shear limiting viscosity, called
the Sisko model:

Sisko: 	ð _��Þ ¼ 	1 þ 	0
ð
2 _��2Þp ð3-28Þ

Although this appears to have four parameters, it is really a three-parameter
model, because the combination 	0=


2p is a single parameter, along with the
two parameters p and 	1.

c. Intermediate Shear Rate Behavior
For 	1 
 	
 	0 and ð
 _��Þ2 � 1, the Carreau model reduces to the

power law model:

Power law: 	ð _��Þ ¼ 	0
ð
2 _��2Þp ð3-29Þ

where the power law parameters m and n are equivalent to the following
combinations of Carreau parameters:

m ¼ 	0

2p

; n ¼ 1� 2p ð3-30Þ

d. Bingham Plastic Behavior
If the value of p is set equal to 1/2 in the Sisko model, the result is

equivalent to the Bingham plastic model:

Bingham: 	ð _��Þ ¼ 	1 þ 	0

j _��j ð3-31Þ

where the yield stress �o is equivalent to 	0=
, and 	1 is the limiting (high
shear) viscosity.

2. Other Models

A variety of more complex models have been proposed to fit a wider range
and variety of viscosity data. Three of these are presented here.
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a. Meter Model
A stress-dependent viscosity model, which has the same general

characteristics as the Carreau model, is the Meter model (Meter, 1964):

Meter: 	ð�Þ þ 	1 þ 	0 � 	1
1þ �2=�2Þa ð3-32Þ

where � is a characteristic stress parameter and a is the shear thinning index.

b. Yasuda Model
The Yasuda model (Yasuda et al., 1981) is a modification of the

Carreau model with one additional parameter a (a total of five parameters):

Yasuda: 	 ¼ 	1 þ 	0 � 	1
½1þ ð
2 _��2Þa�p=a ð3-33Þ

which reduces to the Carreau model for a ¼ 1. (This is also sometimes called
the Carreau–Yasuda model). This model is particularly useful for represent-
ing melt viscosity data for polymers with a broad molecular weight distribu-
tion, for which the zero-shear viscosity is approached very gradually. Both
of these models reduce to Newtonian behavior at very low and very high
shear rates and to power law behavior at intermediate shear rates.

IV. TEMPERATURE DEPENDENCE OF VISCOSITY

All fluid properties are dependent upon temperature. For most fluids the
viscosity is the property that is most sensitive to temperature changes.

A. Liquids

For liquids, as the temperature increases, the degree of molecular motion
increases, reducing the short-range attractive forces between molecules and
lowering the viscosity. The viscosity of various liquids is shown as a function
of temperature in Appendix A. For many liquids, this temperature depen-
dence can be represented reasonably well by the Arrhenius equation:

� ¼ A expðB=TÞ ð3-34Þ
where T is the absolute temperature. If the viscosity of a liquid is known at
two different temperatures, this information can be used to evaluate the
parameters A and B, which then permits the calculation of the viscosity at
any other temperature. If the viscosity is known at only one temperature,
this value can be used as a reference point to establish the temperature scale
for Fig. A-2 of Appendix A, which can then be used to estimate the viscosity
at any other temperature. Viscosity data for 355 liquids have been fit by
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Yaws et al. (1994) by the equation

log10 � ¼ Aþ B=T þ CT þDT2 ð3-35Þ
where T is in kelvin and the viscosity � is in centipoise. The values of
the correlation parameters A, B, C, and D are tabulated by Yaws et al.
(1994).

For non-Newtonian fluids, any model parameter with the dimensions
or physical significance of viscosity (e.g., the power law consistency, m, or
the Carreau parameters 	1 and 	0) will depend on temperature in a manner
similar to the viscosity of a Newtonian fluid [e.g., Eq. (3-34)].

B. Gases

In contrast to the behavior of liquids, the viscosity of a gas increases with
increasing temperature. This is because gas molecules are much farther
apart, so the short-range attractive forces are very small. However, as the
temperature is increased, the molecular kinetic energy increases, resulting
in a greater exchange of momentum between the molecules and conse-
quently a higher viscosity. The viscosity of gases is not as sensitive to tem-
perature as that of liquids, however, and can often be represented by the
equation

� ¼ aTb ð3-36Þ
The parameters a and b can be evaluated from a knowledge of the viscosity
at two different temperatures, and the equation can then be used to calculate
the viscosity at any other temperature. The value of the parameter b is often
close to 1.5. In fact, if the viscosity (�1) of a gas is known at only one
temperature (T1), the following equation can be used to estimate the
viscosity at any other temperature:

� ¼ �1

T

T1

� �3=2
T1 þ 1:47TB

T þ 1:47TB

� �
ð3-37Þ

where the temperatures are in degrees Rankine and TB is the boiling point
of the gas.

V. DENSITY

In contrast to viscosity, the density of both liquids and gases decreases with
increasing temperature, and the density of gases is much more sensitive to
temperature than that of liquids. If the density of a liquid and its vapor are
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known at 608F, the density at any other temperature can be estimated with
the equation

ð�� �vÞT
ð�� �vÞ608F

¼ Tc � T

T0 � 519:67

� �1=N

ð3-38Þ

where the temperatures are in degrees Rankine and Tc is the critical tem-
perature. The value of N is given in Table 3-3 for various liquids.

The specific gravity of hydrocarbon liquids at 608F is also often repre-
sented by the API gravity:

SG
608F ¼ 141:5

131:5þ 8API
ð3-39Þ

For gases, if the temperature is well above the critical temperature and
the pressure is below the critical pressure, the ideal gas law usually applies:

� ¼ PM

RT
¼ M

~VVm

Tref

T

� �
P

Pref

� �
ð3-40Þ

where M is the gas molecular weight, temperatures and pressures are abso-
lute, and ~VVm is the ‘‘standard molar volume’’ [22.4m3/(kg mol) at 273K and
1 atm, 359 ft3/(lb mol) at 4928R and 1 atm, or 379.4 ft3/(lb mol) at 5208R
(608F) and 1 atm]. The notation SCF (which stands for ‘‘standard cubic
feet’’) is often used for hydrocarbon gases to represent the volume in ft3 that
would be occupied by the gas at 608F and 1 atm pressure which is really a
measure of the mass of the gas.

For other methods of predicting fluid properties and their temperature
dependence, the reader is referred to the book by Reid et al. (1977).

PROBLEMS

Rheological Properties

1. (a) Using tabulated data for the viscosity of water and SAE 10 lube oil as a

function of temperature, plot the data in a form that is consistent with each

of the following equations: (1) 
 ¼ A exp ðB=TÞ; (2) � ¼ aTb,
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TABLE 3-3 Parameter N in Eq. (3-38)

Liquid N

Water and alcohols 4
Hydrocarbons and ethers 3.45
Organics 3.23
Inorganics 3.03



(b) Arrange the equations in (a) in such a form that you can use linear regres-

sion analysis to determine the values of A, B and a, b that give the best fit to

the data for each fluid (a spreadsheet is useful for this). (Note that T is

absolute temperature.)

2. The viscosity of a fluid sample is measured in a cup-and-bob viscometer. The

bob is 15 cm long with a diameter of 9.8 cm, and the cup has a diameter of

10 cm. The cup rotates, and the torque is measured on the bob. The following

data were obtained:

� (rpm) T (dyn cm)

2 3:6� 105

4 3:8� 105

10 4:4� 105

20 5:4� 105

40 7:4� 105

(a) Determine the viscosity of the sample.

(b) What viscosity model equation would be the most appropriate for describ-

ing the viscosity of this sample? Convert the data to corresponding values of

viscosity versus shear rate, and plot them on appropriate axes consistent

with the data and your equation. Use linear regression analysis in a form

that is consistent with the plot to determine the values of each of the para-

meters in your equation.

(c) What is the viscosity of this sample at a cup speed of 100 rpm in the

viscometer?

3. A fluid sample is contained between two parallel plates separated by a distance

of 2	 0:1mm. The area of the plates is 100	 0:01 cm2. The bottom plate is

stationary, and the top plate moves with a velocity of 1 cm/s when a force of

315	 25 dyn is applied to it, and at 5 cm/s when the force is 1650	 25 dyn.

(a) Is the fluid Newtonian?

(b) What is its viscosity?

(c) What is the range of uncertainty to your answer to (b)?

4. The following materials exhibit flow properties that can be described by models

that include a yield stress (e.g., Bingham plastic): (a) catsup; (b) toothpaste;

(c) paint; (d) coal slurries; (e) printing ink. In terms of typical applications of

these materials, describe how the yield stress is beneficial to their behavior, in

contrast to how they would behave if they were Newtonian.

5. Consider each of the fluids for which the viscosity is shown in Fig. 3-7, all of

which exhibit a ‘‘structural viscosity’’ characteristic. Explain how the ‘‘struc-

ture’’ of each of these fluids influences the nature of the viscosity curve for that

fluid.

6. Starting with the equations for � ¼ fnð _��Þ that define the power law and

Bingham plastic fluids, derive the equations for the viscosity functions for

these models as a function of shear stress, i.e., 	 ¼ fnð�Þ.
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7. A paint sample is tested in a Couette (cup-and-bob) viscometer that has an

outer radius of 5 cm, an inner radius of 4.9 cm, and a bob length of 10 cm. When

the outer cylinder is rotated at a speed of 4 rpm, the torque on the bob is

0.0151Nm, and at a speed of 20 rpm the torque is 0.0226Nm.

(a) What are the corresponding values of shear stress and shear rate for these

two data points (in cgs units)?

(b) What can you conclude about the viscous properties of the paint sample?

(c) Which of the following models could be used to describe the paint: (1)

Newtonian; (2) Bingham plastic; (3) power law? Explain why.

(d) Determine the values of the fluid properties (i.e., parameters) of the models

in (c) that could be used.

(e) What would the viscosity of the paint be at a shear rate of 500 s�1 (in poise)?

8. The quantities that are measured in a cup-and-bob viscometer are the rotation

rate of the cup (rpm) and the corresponding torque transmitted to the bob.

These quantities are then converted to corresponding values of shear rate ( _��)
and shear stress (�), which in turn can be converted to corresponding values of

viscosity (	).
(a) Show what a log-log plot of � vs. _�� and 	 vs. _�� would look like for materials

that follow the following models: (1) Newtonian; (2) power law (shear

thinning); (3) power law (shear thickening); (4) Bingham plastic; (5) struc-

tural.
(b) Show how the values of the parameters for each of the models listed in (a)

can be evaluated from the respective plot of 	 vs. _��. That is, relate each

model parameter to some characteristic or combination of characteristics of

the plot such as the slope, specific values read from the plot, or intersection

of tangent lines, etc.

9. What is the difference between shear stress and momentum flux? How are they

related? Illustrate each one in terms of the angular flow in the gap in a cup-and-

bob viscometer, in which the outer cylinder (cup) is rotated and the torque is

measured at the stationary inner cylinder (bob).

10. A fluid is contained in the annulus in a cup-and-bob viscometer. The bob has a

radius of 50 mm and a length of 10 cm and is made to rotate inside the cup by

application of a torque on a shaft attached to the bob. If the cup’s inside radius

is 52 mm and the applied torque is 0.03 ft lbf , what is the shear stress in the fluid

at the bob surface and at the cup surface? If the fluid is Newtonian with a

viscosity of 50 cP, how fast will the bob rotate (in rpm) with this applied torque?
11. You measure the viscosity of a fluid sample in a cup-and-bob viscometer. The

radius of the cup is 2 in. and that of the bob is 1.75 in., and the length of the bob

is 3 in. At a speed of 10 rpm, the measured torque is 500 dyn cm, and at 50 rpm

it is 1200 dyn cm. What is the viscosity of the fluid? What can you deduce about

the properties of the fluid?

12. A sample of a coal slurry is tested in a Couette (cup-and-bob) viscometer. The

bob has a diameter of 10.0 cm and a length of 8.0 cm, and the cup has a

diameter of 10.2 cm. When the cup is rotated at a rate of 2 rpm, the torque

on the bob is 6:75� 104 dyn cm, and at a rate of 50 rpm it is 2:44� 106 dyn cm.

If the slurry follows the power law model, what are the values of the flow index
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and consistency coefficient? If the slurry follows the Bingham plastic model,

what are the values of the yield stress and the limiting viscosity? What would the

viscosity of this slurry be at a shear rate of 500 s�1 as predicted by each of these

models? Which number would you be more likely to believe, and why?

13. You must analyze the viscous properties of blood. Its measured viscosity is

6.49 cP at a shear rate of 10 s�1 and 4.66 cP at a shear rate of 80 s�1.

(a) How would you describe these viscous properties?

(b) If the blood is subjected to a shear stress of 50 dyn/cm2, what would its

viscosity be if it is described by: (1) the power law model? (2) the Bingham

plastic model? Which answer do you think would be better, and why?

14. The following data were measured for the viscosity of a 500 ppm polyacryla-

mide solution in distilled water:

Shear rate Viscosity Shear rate Viscosity

(s�1) (cP) (s�1) (cP)

0.015 300 15 30

0.02 290 40 22

0.05 270 80 15

0.08 270 120 11

0.12 260 200 8

0.3 200 350 6

0.4 190 700 5

0.8 180 2,000 3.3

2 100 4,500 2.2

3.5 80 7,000 2.1

8 50 20,000 2

Find the model that best represents these data, and determine the values of the

model parameters by fitting the model to the data. (This can be done most easily

by trial and error, using a spreadsheet.)

15. What viscosity model best represents the following data? Determine the values

of the parameters in the model. Show a plot of the data together with the line

that represents the model, to show how well the model works. (Hint: The easiest

way to do this is by trial and error, fitting the model equation to the data using a

spreadsheet.)

Shear rate Viscosity Shear rate Viscosity

(s�1) (poise) (s�1) (poise)

0.007 7,745 20 270

0.01 7,690 50 164

0.02 7,399 100 113

0.05 6,187 200 77.9

0.07 5,488 500 48.1

0.1 4,705 700 40.4

0.2 3,329 1,000 33.6
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Shear rate Viscosity Shear rate Viscosity

(s�1) (poise) (s�1) (poise)

0.5 2,033 2,000 23.8

0.7 1,692 5,000 15.3

1 1,392 7,000 13.2

2 952 10,000 11.3

5 576 20,000 8.5

7 479 50,000 6.1

10 394 70,000 5.5

16. You would like to determine the pressure drop in a slurry pipeline. To do this,

you need to know the rheological properties of the slurry. To evaluate these

properties, you test the slurry by pumping it through a 1
8
in. ID tube that is 10 ft

long. You find that it takes a 5 psi pressure drop to produce a flow rate of

100 cm3/s in the tube and that a pressure drop of 10 psi results in a flow rate of

300 cm3/s. What can you deduce about the rheological characteristics of the

slurry from these data? If it is assumed that the slurry can be adequately

described by the power law model, what would be the values of the appropriate

fluid properties (i.e., the flow index and consistency parameter) for the

slurry?

17. A film of paint, 3mm thick, is applied to a flat surface that is inclined to the

horizontal by an angle 
. If the paint is a Bingham plastic, with a yield stress of

150 dyn/cm2, a limiting viscosity of 65 cP, and an SG of 1.3, how large would

the angle 
 have to be before the paint would start to run? At this angle, what

would the shear rate be if the paint follows the power law model instead, with a

flow index of 0.6 and a consistency coefficient of 215 (in cgs units)?

18. A thick suspension is tested in a Couette (cup-and-bob) viscometer that has

having a cup radius of 2.05 cm, a bob radius of 2.00 cm, and a bob length of

15 cm. The following data are obtained:

Cup speed (rpm) Torque on bob (dyn cm)

2 2,000

4 6,000

10 19,000

20 50,000

50 150,000

What can you deduce about (a) the viscous properties of this material and

(b) the best model to use to represent these data?

19. You have obtained data for a viscous fluid in a cup-and-bob viscometer that

has the following dimensions: cup radius¼ 2 cm, bob radius¼ 1.5 cm, bob

length¼ 3 cm. The data are tabulated below, where n is the point slope of the

log T versus log N curve.
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N (rpm) T (dyn cm) n N (rpm) T (dyn cm) n

1 1:13� 104 0.01 100 1:25� 104 0.6

2 1:13� 104 0.02 200 1:42� 104 0.7

5 1:13� 104 0.05 500 1:93� 104 0.8

10 1:13� 104 0.1 1000 2:73� 104 0.9

20 1:14� 104 0.2 2000 4:31� 104 1.0

50 1:16� 104 0.5

(a) Determine the viscosity of the fluid. How would you describe its viscosity?

(b) What kind of viscous model (equation) would be appropriate to describe

this fluid?

(c) Use the data to determine the values of the fluid properties that are defined

by the model.

20. A sample of a viscous fluid is tested in a cup-and-bob viscometer that has a cup

radius of 2.1 cm, a bob radius of 2.0 cm, and a bob length of 5 cm. When the cup

is rotated at 10 rpm, the torque measured at the bob is 6000 dyn cm, and at

100 rpm the torque is 15,000 dyn cm.

(a) What is the viscosity of this sample?

(b) What can you conclude about the viscous properties of the sample?

(c) If the cup is rotated at 500 rpm, what will be the torque on the bob and the

fluid viscosity? Clearly explain any assumptions you make to answer this

question, and tell how you might check the validity of these assumptions.

21. You have a sample of a sediment that is non-Newtonian. You measure its

viscosity in a cup-and-bob viscometer that has a cup radius of 3.0 cm, a bob

radius of 2.5 cm, and a length of 5 cm. At a rotational speed of 10 rpm the

torque transmitted to the bob is 700 dyn cm, and at 100 rpm the torque is

2500 dyn cm.

(a) What is the viscosity of the sample?

(b) Determine the values of the model parameters that represent the sediment

viscous properties if it is represented by (1) the power law model or (2) the

Bingham plastic model.

(c) What would the flow rate of the sediment be (in cm3/s) in a 2 cm diameter

tube, 50m long, that is subjected to a differential pressure driving force of

25 psi (1) assuming that the power law model applies? (2) assuming that the

Bingham plastic model applies? Which of these two answers do you think is

best, and why?

22. The Bingham plastic model can describe acrylic latex paint, with a yield stress of

112 dyn/cm2, a limiting viscosity of 80 cP, and a density of 0.95 g/cm3. What is

the maximum thickness of this paint that can be applied to a vertical wall

without running?

23. Santa Claus and his loaded sleigh are sitting on your roof, which is covered with

snow. The sled’s two runners each have a length L and width W, and the roof

is inclined at an angle 
 to the horizontal. The thickness of the snow between the

runners and the roof is H. If the snow has properties of a Bingham plastic,

derive an expression for the total mass (m) of the loaded sleigh at which it will
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just start to slide on the roof if it is pointed straight downhill. If the actual mass

is twice this minimum mass, determine an expression for the speed at which the

sled will slide. (Note: Snow does not actually behave as a Bingham plastic!)

24. You must design a piping system to handle a sludge waste product. However,

you don’t know the properties of the sludge, so you test it in a cup-and-bob

viscometer with a cup diameter of 10 cm, a bob diameter of 9.8 cm, and a bob

length of 8 cm. When the cup is rotated at 2 rpm, the torque on the bob is 2:4�
104 dyn cm, and at 20 rpm, it is 6:5� 104 dyn cm.

(a) If you use the power law model to describe the sludge, what are the values

of the flow index and consistency?

(b) If you use the Bingham plastic model instead, what are the values of the

yield stress and limiting viscosity?

25. A fluid sample is tested in a cup-and-bob viscometer that has a cup diameter of

2.25 in., a bob diameter of 2 in., and length of 3 in. The following data are

obtained:

Rotation rate (rpm) Torque (dyn cm)

20 2,500

50 5,000

100 8,000

200 10,000

(a) Determine the viscosity of this sample.

(b) What model would provide the best representation of this viscosity func-

tion, and why?

26. You test a sample in a cup-and-bob viscometer to determine the viscosity. The

diameter of the cup is 55 mm, that of the bob is 50 mm, and the length is 65 mm.

The cup is rotated, and the torque on the bob is measured, giving the following

data:

Cup speed (rpm) Torque on bob (dyn cm)

2 3,000

4 6,000

10 11,800

20 14,500

40 17,800

(a) Determine the viscosity of this sample.

(b) How would you describe the viscosity of this material?

(c) What model would be the most appropriate to represent this viscosity?

(d) Determine the values of the parameters in the model that fit the model to

the data.

27. Consider each of the fluids for which the viscosity is shown in Fig. 3-7, all of

which exhibit a typical ‘‘structural viscosity’’ characteristic. Explain why this is
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a logical consequence of the composition or ‘‘structural makeup’’ for each of

these fluids.
28. You are asked to measure the viscosity of an emulsion, so you use a tube flow

viscometer similar to that illustrated in Fig. 3-4, with the container open to the

atmosphere. The length of the tube is 10 cm, its diameter is 2mm, and the

diameter of the container is 3 in. When the level of the sample is 10 cm above

the bottom of the container the emulsion drains through the tube at a rate of

12 cm3/min, and when the level is 20 cm the flow rate is 30 cm3/min. The

emulsion density is 1.3 g/cm3.

(a) What can you tell from the data about the viscous properties of the

emulsion?

(b) Determine the viscosity of the emulsion.

(c) What would the sample viscosity be at a shear rate of 500 s�1?

29. You must determine the horsepower required to pump a coal slurry through

an 18 in. diameter pipeline, 300 mi long, at a rate of 5 million tons/yr. The

slurry can be described by the Bingham plastic model, with a yield stress of 75

dyn/cm2, a limiting viscosity of 40 cP, and a density of 1.4 g/cm3. For non-

Newtonian fluids, the flow is not sensitive to the wall roughness.

(a) Determine the dimensionless groups that characterize this system. You

want to use these to design a lab experiment from which you can scale up

measurements to find the desired horsepower.

(b) Can you use the same slurry in the lab as in the pipeline?

(c) If you use a slurry in the lab that has a yield stress of 150 dyn/cm2, a limiting

viscosity of 20 cP, and a density of 1.5 g/cm3, what size pipe and what flow

rate (in gpm) should you use in the lab?

(d) If you run the lab system as designed and measure a pressure drop �P (psi)

over a 100 ft length of pipe, show how you would use this information to

determine the required horsepower for the pipeline.

30. You want to determine how fast a rock will settle in mud, which behaves like a

Bingham plastic. The first step is to perform a dimensional analysis of the

system.

(a) List the important variables that have an influence on this problem, with

their dimensions (give careful attention to the factors that cause the rock to

fall when listing these variables), and determine the appropriate dimension-

less groups.
(b) Design an experiment in which you measure the velocity of a solid sphere

falling in a Bingham plastic in the lab, and use the dimensionless variables

to scale the answer to find the velocity of a 2 in. diameter rock, with a

density of 3.5 g/cm3, falling in a mud with a yield stress of 300 dyn/cm2, a

limiting viscosity of 80 cP, and a density of 1.6 g/cm3. Should you use

this same mud in the lab, or can you use a different material that is

also a Bingham plastic but with a different yield stress and limiting

viscosity?

(c) If you use a suspension in the lab with a yield stress of 150 dyn/cm2, a

limiting viscosity of 30 cP, and a density of 1.3 g/cm3 and a solid sphere,

how big should the sphere be, and how much should it weigh?
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(d) If the sphere in the lab falls at a rate of 4 cm/s, how fast will the 2 in.

diameter rock fall in the other mud?

31. A pipeline has been proposed to transport a coal slurry 1200 mi from Wyoming

to Texas, at a rate of 50 million tons/yr, through a 36 in. diameter pipeline. The

coal slurry has the properties of a Bingham plastic, with a yield stress of

150 dyn/cm2, a limiting viscosity of 40 cP, and an SG of 1.5. You must conduct

a lab experiment in which the measured pressure gradient can be used to deter-

mine the total pressure drop in the pipeline.

(a) Perform a dimensional analysis of the system to determine an appropriate

set of dimensionless groups to use (you may neglect the effect of wall rough-

ness for this fluid).

(b) For the lab test fluid, you have available a sample of the above coal slurry

and three different muds with the following properties:

Yield stress (dyn/cm2) Limiting viscosity (cP) Density (g/cm3)

Mud 1 50 80 1.8

Mud 2 100 20 1.2

Mud 3 250 10 1.4

Which of these would be the best to use in the lab, and why?

(c) What size pipe and what flow rate (in lbm/min) should you use in the lab?

(d) If the measured pressure gradient in the lab is 0.016 psi/ft, what is the total

pressure drop in the pipeline?

32. A fluid sample is subjected to a ‘‘sliding plate’’ (simple shear) test. The area of

the plates is 100	 0:01 cm2, and the spacing between them is 2	 0:1mm. When

the moving plate travels at a speed of 0.5 cm/s, the force required to move it is

measured to be 150 dyn, and at a speed of 3 cm/s the force is 1100 dyn. The

force transducer has a sensitivity of 50 dyn. What can you deduce about the

viscous properties of the sample?

33. You want to predict how fast a glacier that is 200 ft thick will flow down a slope

inclined 258 to the horizontal. Assume that the glacier ice can be described by

the Bingham plastic model with a yield stress of 50 psi, a limiting viscosity of

840 poise, and an SG of 0.98. The following materials are available to you in the

lab, which also may be described by the Bingham plastic model:

Yield stress Limiting viscosity

(dyn/cm2) (cP) SG

Mayonnaise 300 130 0.91

Shaving cream 175 15 0.32

Catsup 130 150 1.2

Paint 87 95 1.35
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You want to set up a lab experiment to measure the velocity at which the model

fluid flows down an inclined plane and scale this value to find the velocity of the

glacier.

(a) Determine the appropriate set of dimensionless groups.

(b) Which of the above materials would be the best to use in the lab? Why?

(c) What is the film thickness that you should use in the lab, and at what angle

should the plane be inclined?

(d) What would be the scale factor between the measured velocity in the lab and

the glacier velocity?

(e) What problems might you encounter when conducting this experiment?

34. Your boss gives you a sample of ‘‘gunk’’ and asks you to measure its viscosity.

You do this in a cup-and-bob viscometer that has an outer (cup) diameter of

2 in., an inner (bob) diameter of 1.75 in., and a bob length of 4 in. You run the

viscometer at three speeds, and record the following data:

Rotational velocity � (rpm) Torque on bob T (dyn cm)

1 10,500

10 50,000

100 240,000

(a) How would you classify the viscous properties of this material?

(b) Calculate the viscosity of the sample in cP.

(c) What viscosity model best represents these data, and what are the values of

the viscous properties (i.e., the model parameters) for the model?

35. The dimensions and measured quantities in the viscometer in Problem 34 are

known to the following precision:

T : � 1% of full scale ðfull scale ¼ 500; 000 dyn cmÞ
�: � 1% of reading

Do;Di; and L: � 0:002 in:

Estimate the maximum percentage uncertainty in the measured viscosity of

the sample for each of the three data points.

36. A concentrated slurry is prepared in an open 8 ft diameter mixing tank, using an

impeller with a diameter of 6 ft located 3 ft below the surface. The slurry is non-

Newtonian and can be described as a Bingham plastic with a yield stress of

50 dyn/cm2, a limiting viscosity of 20 cP, and a density of 1.5 g/cm3. A vortex is

formed above the impeller, and if the speed is too high the vortex can reach the

blades of the impeller, entraining air and causing problems. Since this condition

is to be avoided, you need to know how fast the impeller can be rotated without

entraining the vortex. To do this, you conduct a lab experiment using a scale

model of the impeller that is 1 ft in diameter. You must design the experiment so
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that the critical impeller speed can be measured in the lab and scaled up to

determine the critical speed in the larger mixer.

(a) List all the variables that are important in this system, and determine an

appropriate set of dimensionless groups.

(b) Determine the diameter of the tank that should be used in the lab and the

depth below the surface at which the impeller should be located.

(c) Should you use the same slurry in the lab model as in the field? If not, what

properties should the lab slurry have?

(d) If the critical speed of the impeller in the lab system is ! (rpm), what is the

critical speed of the impeller in the large tank?

37. You would like to know the thickness of a paint film as it drains at a rate of

1 gpm down a flat surface that is 6 in. wide and is inclined at an angle of 308 to
the vertical. The paint is non-Newtonian and can be described as a Bingham

plastic with a limiting viscosity of 100 cP, a yield stress of 60 dyn/cm2, and a

density of 0.9 g/cm3. You have data from the laboratory for the film thickness

of a Bingham plastic that has a limiting viscosity of 70 cP, a yield stress of

40 dyn/cm2, and a density of 1 g/cm3 flowing down a plane 1 ft wide inclined

at an angle of 458 to the vertical, at various flow rates.

(a) At what flow rate (in gpm) will the laboratory system correspond to the

conditions of the other system?

(b) If the film thickness of the laboratory fluid is 3 mm at these conditions, what

would the film thickness be for the other system?

NOTATION

Ay area whose outward normal vector is in the y direction, [L2]

Fx force component in the x direction, [F ¼ ML=t2]
fnð Þ a function of whatever is in the ( )

G shear modulus, [F/L2¼M/Lt2]

g acceleration due to gravity, [L/t2]

hy distance between plates in the y direction, [L]

L length, [L]

m power law consistency parameter, [M/Lt2�a]

n power law flow index, [—]

n 0 variable defined by Eq. (3-13) or (3-17), [—]

P pressure, [F/L2¼M/Lt2]

p parameter in Carreau model, [—]

Q volumetric flow rate, [L3/t]

R radius, [L]

r radial coordinate, [L]

SG specific gravity, [—]

T temperature, [T]

T torque or moment, [FL¼ML2/t2]

Ux displacement of boundary in the x direction, [L]

ux local displacement in the x direction, [L]

Fluid Properties 83



V bulk or average velocity, [L/t]

z vertical direction measured upward, [L]

� ð¼ Ri=RoÞ ratio of inner to outer radius [—]

� shear rate at tube wall for Newtonian fluid, Eq. (3-16), [1/t]

�yx gradient of x displacement in the y direction (shear strain, or �), [—]
_��yx gradient of x velocity in the y direction (shear rate, or �), [1/t]
�ð Þ value of ( )2 — ( )1

 fluid time constant parameter, [t]

� viscosity (constant), [M/Lt]

�1 Bingham limiting viscosity [M/Lt]

	 viscosity (function), [M/Lt]

� density, [M/L3]

�o yield stress, [F/L2¼M/Lt2]

�yx force in the x direction on y surface (shear stress, or �), [F/L2¼M/Lt2]

� potential ð¼ Pþ �gzÞ, [F/L2¼M/Lt2]

� angular velocity of cylinder, [1/t]

Subscripts

1 reference point 1

2 reference point 2

0 zero shear rate parameter

i inner

o outer

w value at wall

x, y, r, 
 coordinate directions

1 high shear limiting parameter
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4

Fluid Statics

I. STRESS AND PRESSURE

The forces that exist within a fluid at any point may arise from various
sources. These include gravity, or the ‘‘weight’’ of the fluid, an external
driving force such as a pump or compressor, and the internal resistance to
relative motion between fluid elements or inertial effects resulting from
variation in local velocity and the mass of the fluid (e.g., the transport or
rate of change of momentum).

Any or all of these forces may result in local stresses within the fluid.
‘‘Stress’’ can be thought of as a (local) ‘‘concentration of force,’’ or the force
per unit area that bounds an infinitesimal volume of the fluid. Now both
force and area are vectors, the direction of the area being defined by the
normal vector that points outward relative to the volume bounded by the
surface. Thus, each stress component has a magnitude and two directions
associated with it, which are the characteristics of a ‘‘second-order tensor’’
or ‘‘dyad.’’ If the direction in which the local force acts is designated by
subscript j (e.g., j ¼ x, y, or z in Cartesian coordinates) and the orientation
(normal) of the local area element upon which it acts is designated by sub-
script i, then the corresponding stress component (�ij) is given by

�ij ¼
Fj

Ai

; i; j ¼ 1; 2; or 3 ðe:g:; x; y; or zÞ ð4-1Þ
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Note that since i and j each represent any of three possible directions, there
are a total of nine possible components of the stress tensor (at any given
point in a fluid). However, it can readily be shown that the stress tensor is
symmetrical (i.e., the ij components are the same as the ji components), so
there are at most six independent stress components.

Because of the various origins of these forces, as mentioned above,
there are different ‘‘types’’ of stresses. For example, the only stress that can
exist in a fluid at rest is pressure, which can result from gravity (e.g., hydro-
static head) or various other forces acting on the fluid. Although pressure is
a stress (e.g., a force per unit area), it is isotropic, that is, the force acts
uniformly in all directions normal to any local surface at a given point in the
fluid. Such a stress has no directional character and is thus a scalar. (Any
isotropic tensor is, by definition, a scalar, because it has magnitude only and
no direction.) However, the stress components that arise from the fluid
motion do have directional characteristics, which are determined by the
relative motion in the fluid. These stresses are associated with the local
resistance to motion due to viscous or inertial properties and are anisotropic
because of their directional character. We shall designate them by �ij, where
the i and j have the same significance as in Eq. (4-1).

Thus the total stress, �ij , at any point within a fluid is composed of
both the isotropic pressure and anisotropic stress components, as follows:

�ij ¼ �P�ij þ �ij ð4-2Þ
where P is the (isotropic) pressure. By convention, pressure is considered a
‘‘negative’’ stress because it is compressive, whereas tensile stresses are
positive (i.e., a positive Fj acting on a positive Ai or a negative Fj on a
negative Ai). The term �ij in Eq. (4-2) is a ‘‘unit tensor’’ (or Kronecker
delta), which has a value of zero if i 6¼ j and a value of unity if i ¼ j. This
is required, because the isotropic pressure acts only in the normal direction
(e.g., i ¼ j ) and has only one component. As mentioned above, the aniso-
tropic shear stress components �ij in a fluid are associated with relative
motion within the fluid and are therefore zero in any fluid at rest. It follows
that the only stress that can exist in a fluid at rest or in a state of uniform
motion in which there is no relative motion between fluid elements is pres-
sure. (This is a major distinction between a fluid and a solid, as solids can
support a shear stress in a state of rest.) It is this situation with which we will
be concerned in this chapter.

II. THE BASIC EQUATION OF FLUID STATICS

Consider a cylindrical region of arbitrary size and shape within a fluid, as
shown in Fig. 4-1. We will apply a momentum balance to a ‘‘slice’’ of the
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fluid that has a ‘‘z area’’ Az and a thickness �z and is located a vertical
distance z above some horizontal reference plane. The density of the fluid in
the slice is �, and the force of gravity (g) acts in the �z direction. A momen-
tum balance on a ‘‘closed’’ system (e.g., the slice) is equivalent to Newton’s
second law of motion, i.e.,X

Fz ¼ maz ð4-3Þ
Because this is a vector equation, we apply it to the z vector components.P

Fz is the sum of all of the forces acting on the system (the ‘‘slice’’) in the z
direction, m is the mass of the system, and az is the acceleration in the z
direction. Because the fluid is not moving, az ¼ 0, and the momentum
balance reduces to a force balance. The z forces acting on the system include
the (�) pressure on the bottom (at z) times the (�) z area, the (�) pressure
on the top (at zþ�z) times the (þ) z area, and the z component of gravity,
i.e., the ‘‘weight’’ of the fluid (��gA�z). The first force is positive, and the
latter two are negative because they act in the �z direction. The momentum
(force) balance thus becomes

ðAzPÞz � ðAzPÞzþ�z � �gAz�z ¼ 0 ð4-4Þ
If we divide through by Az�z, then take the limit as the slice shrinks to zero
(�z ! 0), the result is

dP

dz
¼ ��g ð4-5Þ

which is the basic equation of fluid statics. This equation states that at any
point within a given fluid the pressure decreases as the elevation (z)
increases, at a local rate that is equal to the product of the fluid density
and the gravitational acceleration at that point. This equation is valid at all
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points within any given static fluid regardless of the nature of the fluid. We
shall now show how the equation can be applied to various special situa-
tions.

A. Constant Density Fluids

If density (�) is constant, the fluid is referred to as ‘‘isochoric’’ (i.e., a given
mass occupies a constant volume), although the somewhat more restrictive
term ‘‘incompressible’’ is commonly used for this property (liquids are nor-
mally considered to be incompressible or isochoric fluids). If gravity (g) is
also constant, the only variables in Eq. (4-5) are pressure and elevation,
which can then be integrated between any two points (1 and 2) in a given
fluid to give

P1 � P2 ¼ �gðz2 � z1Þ ð4-6Þ
This can also be written

�1 ¼ �2 ¼ constant ð4-7Þ
where

� ¼ Pþ �gz
This says that the sum of the local pressure (P) and static head (�gz), which
we call the potential (�), is constant at all points within a given isochoric
(incompressible) fluid. This is an important result for such fluids, and it can
be applied directly to determine how the pressure varies with elevation in a
static liquid, as illustrated by the following example.

Example 4-1: Manometer. The pressure difference between two points in
a fluid (flowing or static) can be measured by using a manometer. The
manometer contains an incompressible liquid (density �m) that is immiscible
with the fluid flowing in the pipe (density �f ). The legs of the manometer are
connected to taps on the pipe where the pressure difference is desired (see
Fig. 4-2). By applying Eq. (4-7) to any two points within either one of the
fluids within the manometer, we see that

ð�1 ¼ �3;�2 ¼ �4Þf ; ð�3 ¼ �4Þm ð4-8Þ
or

P1 þ �fgz1 ¼ P3 þ �fgz3
P3 þ �mgz3 ¼ P4 þ �mgz4 ð4-9Þ
P4 þ �fgz4 ¼ P2 þ �fgz2
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When these three equations are added, P3 and P4 cancel out. The remaining
terms can be collected to give

�� ¼ ��� g �h ð4-10Þ
where � ¼ Pþ �gz and �� ¼ �2 ��1, �� ¼ �m � �f , �h ¼ z4 � z3.
Equation (4-10) is the basic manometer equation and can be applied to a
manometer in any orientation. Note that the manometer reading (�h) is a
direct measure of the potential difference (�2 ��1), which is identical to the
pressure difference (P2 � P1) only if the pipe is horizontal (i.e., z2 ¼ z1). It
should be noted that these static fluid equations cannot be applied within the
pipe, since the fluid in the pipe is not static.

B. Ideal Gas—Isothermal

If the fluid can be described by the ideal gas law (e.g., air, under normal
atmospheric conditions), then

� ¼ PM

RT
ð4-11Þ

and Eq. (4-5) becomes

dP

dz
¼ �PMg

RT
ð4-12Þ
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Now if the temperature is constant for all z (i.e., isothermal conditions), Eq.
(4-12) can be integrated from (P1, z1) to (P2, z2) to give the pressure as a
function of elevation:

P2 ¼ P1 exp �Mg�z

RT

� �
ð4-13Þ

where �z ¼ z2 � z1. Note that in this case the pressure drops exponentially
as the elevation increases instead of linearly as for the incompressible fluid.

C. Ideal Gas—Isentropic

If there is no heat transfer or energy dissipated in the gas when going from
state 1 to state 2, the process is adiabatic and reversible, i.e., isentropic. For
an ideal gas under these conditions,

P

�k
¼ constant ¼ P1

�k1
ð4-14Þ

where k ¼ cp=cv is the specific heat ratio for the gas (for an ideal gas,
cp ¼ cv þ R=M). If the density is eliminated from Eqs. (4-14) and (4-11),
the result is

T

T1

¼ P

P1

� �ðk�1Þ=k
ð4-15Þ

which relates the temperature and pressure at any two points in an isentro-
pic ideal gas. If Eq. (4-15) is used to eliminate T from Eq. (4-12), the latter
can be integrated to give the pressure as a function of elevation:

P2 ¼ P1 1� k� 1

k

� �
gM�z

RT1

� �� �k=ðk�1Þ
ð4-16Þ

which is a nonlinear relationship between pressure and elevation. Equation
(4-15) can be used to eliminate P2=P1 from this equation to give an expres-
sion for the temperature as a function of elevation under isentropic condi-
tions:

T2 ¼ T1 1� k� 1

k

� �
gM�z

RT1

� �� �
ð4-17Þ

That is, the temperature drops linearly as the elevation increases.

D. The Standard Atmosphere

Neither Eq. (4-13) nor Eq. (4-16) would be expected to provide a very good
representation of the pressure and temperature in the real atmosphere,
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which is neither isothermal nor isentropic. Thus, we must resort to the use of
observations (i.e., empiricism) to describe the real atmosphere. In fact,
atmospheric conditions vary considerably from time to time and from
place to place over the earth. However, a reasonable representation of atmo-
spheric conditions ‘‘averaged’’ over the year and over the earth based on
observations results in the following:

For 0 < z < 11 km:
dT

dz
¼ �6:58C=km ¼ �G

For z > 11 km: T ¼ �56:58C
ð4-18Þ

where the average temperature at ground level (z ¼ 0) is assumed to be 158C
(288K). These equations describe what is known as the ‘‘standard atmo-
sphere,’’ which represents an average state. Using Eq. (4-18) for the tem-
perature as a function of elevation and incorporating this into Eq. (4-12)
gives

dP

dz
¼ PMg

RðT0 � GzÞ ð4-19Þ

where T0 ¼ 288K and G ¼ 6:58C/km. Integrating Eq. (4-19) assuming that
g is constant gives the pressure as a function of elevation:

P2 ¼ P1 1� G�z

T0 � Gz1

� �Mg=RG

ð4-20Þ

which applies for 0 < z < 11 km.

III. MOVING SYSTEMS

We have stated that the only stress that can exist in a fluid at rest is pressure,
because the shear stresses (which resist motion) are zero when the fluid is at
rest. This also applies to fluids in motion provided there is no relative
motion within the fluid (because the shear stresses are determined by the
velocity gradients, e.g., the shear rate). However, if the motion involves an
acceleration, this can contribute an additional component to the pressure, as
illustrated by the examples in this section.

A. Vertical Acceleration

Consider the vertical column of fluid illustrated in Fig. 4-1, but now imagine
it to be on an elevator that is accelerating upward with an acceleration of az,
as illustrated in Fig. 4-3. Application of the momentum balance to the
‘‘slice’’ of fluid, as before, givesX

Fz ¼ maz ð4-21Þ
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which is the same as Eq. (4-3), except that now az 6¼ 0. The same procedure
that led to Eq. (4-5) now gives

dP

dz
¼ ��ðgþ azÞ ð4-22Þ

which shows that the effect of a superimposed vertical acceleration is
equivalent to increasing the gravitational acceleration by an amount az
(which is why you feel ‘‘heavier’’ on a rapidly accelerating elevator). In
fact, this result may be generalized to any direction; an acceleration in the
i direction will result in a pressure gradient within the fluid in the �i direc-
tion, of magnitude �aa:

@P

@xi
¼ ��ai ð4-23Þ

Two applications of this are illustrated next.

B. Horizontally Accelerating Free Surface

Consider a pool of water in the bed of your pickup truck. If you accelerate
from rest, the water will slosh toward the rear, and you want to know how
fast you can accelerate (ax) without spilling the water out of the back of the
truck (see Fig. 4-4). That is, you must determine the slope (tan 
) of the
water surface as a function of the rate of acceleration (ax). Now at any
point within the liquid there is a vertical pressure gradient due to gravity
[Eq. (4-5)] and a horizontal pressure gradient due to the acceleration ax [Eq.
(4-23)]. Thus at any location within the liquid the total differential pressure
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dP between two points separated by dx in the horizontal direction and dz in
the vertical direction is given by

dP ¼ @P

@x
dxþ @P

@z
dz

¼ ��ax dx� �g dz
ð4-24Þ

Since the surface of the water is open to the atmosphere, where P ¼ constant
(1 atm),

ðdPÞs ¼ 0 ¼ ��gðdzÞs � �axðdxÞs ð4-25Þ
or

dz

dx

� �
s

¼ � ax
g
¼ tan 
 ð4-26Þ

which is the slope of the surface and is seen to be independent of fluid
properties. A knowledge of the initial position of the surface plus the surface
slope determines the elevation at the rear of the truck bed and hence whether
or not the water will spill out.

C. Rotating Fluid

Consider an open bucket of water resting on a turntable that is rotating at
an angular velocity ! (see Fig. 4-5). The (inward) radial acceleration due to
the rotation is !2r, which results in a corresponding radial pressure gradient
at all points in the fluid, in addition to the vertical pressure gradient due to
gravity. Thus the pressure differential between any two points within the
fluid separated by dr and dz is

dP ¼ @P

@z

� �
dzþ @P

@r

� �
dr ¼ �ð�g dzþ !2r drÞ ð4-27Þ

Just like the accelerating tank, the shape of the free surface can be
determined from the fact that the pressure is constant at the surface, i.e.,

ðdPÞs ¼ 0 ¼ �gðdzÞs þ !2rðdrÞs ð4-28Þ
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This can be integrated to give an equation for the shape of the surface:

z ¼ z0 þ
!2r2

2g
ð4-29Þ

which shows that the shape of the rotating surface is parabolic.

IV. BUOYANCY

As a consequence of Archimedes’ principle, the buoyant force exerted on a
submerged body is equal to the weight of the displaced fluid and acts in a
direction opposite to the acceleration vector. Thus the ‘‘effective net weight’’
of a submerged body is its actual weight less the weight of an equal volume
of the fluid. The result is equivalent to replacing the density of the body (�s)
in the expression for the weight (�sg ~VVs, where ~VVs is the volume of the body)
by the difference between the density of the body and that of the fluid (i.e.,
�� g ~VVs, where �� ¼ �s � �f ).

This also applies to a body submerged in a fluid that is subject to any
acceleration. For example, a solid particle of volume ~VVs submerged in a fluid
within a centrifuge at a point r where the angular velocity is ! is subjected to
a net radial force equal to �� !2r ~VVs. Thus, the effect of buoyancy is to
effectively reduce the density of the body by an amount equal to the density
of the surrounding fluid.

V. STATIC FORCES ON SOLID BOUNDARIES

The force exerted on a solid boundary by a static pressure is given by

~FF ¼
ð
A

P d ~AA ð4-30Þ

94 Chapter 4

FIGURE 4-5 Rotating fluid.



Note that both force and area are vectors, whereas pressure is a scalar.
Hence the directional character of the force is determined by the orientation
of the surface on which the pressure acts. That is, the component of force
acting in a given direction on a surface is the integral of the pressure over the
projected component area of the surface, where the surface vector (normal to
the surface component) is parallel to the direction of the force [recall that
pressure is a negative isotropic stress and the outward normal to the (fluid)
system boundary represents a positive area]. Also, from Newton’s third law
(‘‘action equals reaction’’), the force exerted on the fluid system boundary is
of opposite sign to the force exerted by the system on the solid boundary.

Example 4-2: Consider the force within the wall of a pipe resulting from the
pressure of the fluid inside the pipe, as illustrated in Fig. 4-6. The pressure P
acts equally in all directions on the inside wall of the pipe. The resulting force
exerted within the pipe wall normal to a plane through the pipe axis is
simply the product of the pressure and the projected area of the wall on
this plane, e.g., Fx ¼ PAx ¼ 2PRL. This force acts to pull the metal in the
wall apart and is resisted by the internal stress within the metal holding it
together. This is the effective working stress, �, of the particular material of
which the pipe is made. If we assume a thin-walled pipe (i.e., we neglect the
radial variation of the stress from point to point within the wall), a force
balance between the ‘‘disruptive’’ pressure force and the ‘‘restorative’’ force
due to the internal stress in the metal gives

2PRL ¼ 2�tL ð4-31Þ
or

t

R
ffi P

�
ð4-32Þ

This relation determines the pipe wall thickness required to withstand a fluid
pressure P in a pipe of radius R made of a material with a working stress �.
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The dimensionless pipe wall thickness (times 1000) is known as the Schedule
number of the pipe:

Schedule No: ffi 1000t

R
¼ 1000P

�
ð4-33Þ

This expression is only approximate, as it does not make any allowance for
the effects of such things as pipe threads, corrosion, or wall damage. To
compensate for these factors, an additional allowance is made for the wall
thickness in the working definition of the ‘‘schedule thickness,’’ ts:

Schedule No: ¼ 1000P

�
¼ 1750ts � 200

Do

ð4-34Þ

where both ts and Do (the pipe outside diameter) are measured in inches.
This relation between schedule number and pipe dimensions can be com-
pared with the actual dimensions of commercial pipe for various schedule
pipe sizes, as tabulated in Appendix F.

PROBLEMS

Statics

1. The manometer equation is �� ¼ ���g�h, where �� is the difference in the

total pressure plus static head (Pþ �gz) between the two points to which the

manometer is connected, �� is the difference in the densities of the two fluids in

the manometer, �h is the manometer reading, and g is the acceleration due to

gravity. If �� is 12.6 g/cm3 and �h is 6 in. for a manometer connected to two

points on a horizontal pipe, calculate the value of �P in the following units:

(a) dyn/cm2; (b) psi; (c) pascals; (d) atmospheres.

2. A manometer containing an oil with a specific gravity (SG) of 0.92 is connected

across an orifice plate in a horizontal pipeline carrying seawater (SG¼ 1.1). If

the manometer reading is 16.8 cm, what is the pressure drop across the orifice in

psi? What is it in inches of water?

3. A mercury manometer is used to measure the pressure drop across an orifice

that is mounted in a vertical pipe. A liquid with a density of 0.87 g/cm3 is

flowing upward through the pipe and the orifice. The distance between the

manometer taps is 1 ft. If the pressure in the pipe at the upper tap is 30 psig,

and the manometer reading is 15 cm, what is the pressure in the pipe at the

lower manometer tap in psig?

4. A mercury manometer is connected between two points in a piping system that

contains water. The downstream tap is 6 ft higher than the upstream tap, and

the manometer reading is 16 in. If a pressure gage in the pipe at the upstream

tap reads 40 psia, what would a pressure gage at the downstream tap read in

(a) psia, (b) dyn/cm2; (c) Pa; (d) kgf /m
2?
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5. An inclined tube manometer with a reservoir is used to measure the pressure

gradient in a large pipe carrying oil (SG¼ 0.91) (see Fig. 4-P5). The pipe is

inclined at an angle of 608 to the horizontal, and flow is uphill. The manometer

tube is inclined at an angle of 208 to the horizontal, and the pressure taps on the

pipe are 5 in. apart. The manometer reservoir diameter is eight times as large as

the manometer tube diameter, and the manometer fluid is water. If the man-

ometer reading (L) is 3 in. and the displacement of the interface in the reservoir

is neglected, what is the pressure drop in the pipe in (a) psi; (b) Pa; (c) in. H2O?

What is the percentage error introduced by neglecting the change in elevation of

the interface in the reservoir?

6. Water is flowing downhill in a pipe that is inclined 308 to the horizontal. A

mercury manometer is attached to pressure taps 5 cm apart on the pipe. The

interface in the downstream manometer leg is 2 cm higher than the interface in

the upstream leg. What is the pressure gradient (�P=L) in the pipe in (a) Pa/m,

(b) dyn/cm3, in. (c) H2O/ft, (d) psi/mi?

7. Repeat Problem 6 for the case in which the water in the pipe is flowing uphill

instead of downhill, all other conditions remaining the same.

8. Two horizontal pipelines are parallel, with one carrying salt water (� ¼ 1.988

slugs/ft3) and the other carrying fresh water (� ¼ 1.937 slugs/ft3). An inverted

manometer using linseed oil (� ¼ 1.828 slugs/ft3) as the manometer fluid is

connected between the two pipelines. The interface between the oil and the

fresh water in the manometer is 38 in. above the centerline of the freshwater

pipeline, and the oil/salt water interface in the manometer is 20 in. above the

centerline of the salt water pipeline. If the manometer reading is 8 in., determine

the difference in the pressures between the pipelines (a) in Pa and (b) in psi.

9. Two identical tanks are 3 ft in diameter and 3 ft high, and they are both vented

to the atmosphere. The top of tank B is level with the bottom of tank A, and

they are connected by a line from the bottom of A to the top of B with a valve in

it. Initially A is full of water and B is empty. The valve is opened for a short
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time, letting some of the water drain into B. An inverted manometer having an

oil with SG¼ 0.7 is connected between taps on the bottom of each tank. The

manometer reading is 6 in., and the oil/water interface in the leg connected to

tank A is higher. What is the water level in each of the tanks?

10. An inclined tube manometer is used to measure the pressure drop in an elbow

through which water is flowing (see Fig. 4-P10). The manometer fluid is an oil

with SG¼ 1.15. The distance L is the distance along the inclined tube that the

interface has moved from its equilibrium (no pressure differential) position. If

h ¼ 6 in., L ¼ 3 in., 
 ¼ 308, the reservoir diameter is 2 in., and the tubing dia-

meter is 0.25 in., calculate the pressure drop (P1 � P2) in (a) atm; (b) Pa; (c) cm

H2O; (d) dyn/cm2. What would be the percentage error in pressure difference as

read by the manometer if the change in level in the reservoir were neglected?

11. The three-fluid manometer illustrated in Fig. 4-P11 is used to measure a very

small pressure difference (P1 � P2). The cross-sectional area of each of the

reservoirs is A, and that of the manometer legs is a. The three fluids have

densities �a, �b, and �c, and the difference in elevation of the interfaces in the

reservoir is x. Derive the equation that relates the manometer reading h to the

pressure difference P1 � P2. How would the relation be simplified if A � a?
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12. A tank that is vented to the atmosphere contains a liquid with a density of

0.9 g/cm3. A dip tube inserted into the top of the tank extends to a point 1 ft

from the bottom of the tank. Air is bubbled slowly through the dip tube, and

the air pressure in the tube is measured with a mercury (SG¼ 13.6) manometer.

One leg of the manometer is connected to the air line feeding the dip tube, and

the other leg is open to the atmosphere. If the manometer reading is 5 in., what

is the depth of the liquid in the tank?

13. An inclined manometer is used to measure the pressure drop between two taps

on a pipe carrying water, as shown in Fig. 4-P13. The manometer fluid is an oil

with SG¼ 0.92, and the manometer reading (L) is 8 in. The manometer reser-

voir is 4 in. in diameter, the tubing is 1
4
in. in diameter, and the manometer tube

is inclined at an angle of 308 to the horizontal. The pipe is inclined at 208 to the

horizontal, and the pressure taps are 40 in. apart.

(a) What is the pressure difference between the two pipe taps that would be

indicated by the difference in readings of two pressure gages attached to the

taps, in (1) psi, (2) Pa, and (3) in. H2O?

(b) Which way is the water flowing?

(c) What would the manometer reading be if the valve were closed?

14. The pressure gradient required to force water through a straight horizontal 1
4
in.

ID tube at a rate of 2 gpm is 1.2 psi/ft. Consider this same tubing coiled in an

expanding helix with a vertical axis. Water enters the bottom of the coil and

flows upward at a rate of 2 gpm. A mercury manometer is connected between

two pressure taps on the coil, one near the bottom where the coil radius is 6 in.,

and the other near the top where the coil radius is 12 in. The taps are 2 ft apart

in the vertical direction, and there is a total of 5 ft of tubing between the two

taps. Determine the manometer reading, in cm.

15. It is possible to achieve a weightless condition for a limited time in an airplane

by flying in a circular arc above the earth (like a rainbow). If the plane flies at

650 mph, what should the radius of the flight path be (in miles) to achieve

weightlessness?
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16. Water is flowing in a horizontal pipe bend at a velocity of 10 ft/s. The radius of

curvature of the inside of the bend is 4 in., and the pipe ID is 2 in. A mercury

manometer is connected to taps located radically opposite each other on the

inside and outside of the bend. Assuming that the water velocity is uniform over

the pipe cross section, what would be the manometer reading in centimeters?

What would it be if the water velocity were 5 ft/s? Convert the manometer

reading to equivalent pressure difference in psi and Pa.

17. Calculate the atmospheric pressure at an elevation of 3000 m, assuming (a) air

is incompressible, at a temperature of 598F; (b) air is isothermal at 598F and

an ideal gas; (c) the pressure distribution follows the model of the standard

atmosphere, with a temperature of 598F at the surface of the earth.

18. One pound mass of air (MW¼ 29) at sea level and 708F is contained in a

balloon, which is then carried to an elevation of 10,000 ft in the atmosphere.

If the balloon offers no resistance to expansion of the gas, what is its volume at

this elevation?

19. A gas well contains hydrocarbon gases with an average molecular weight of 24,

which can be assumed to be an ideal gas with a specific heat ratio of 1.3. The

pressure and temperature at the top of the well are 250 psig and 708F, respec-
tively. The gas is being produced at a slow rate, so conditions in the well can be

considered to be isentropic.

(a) What are the pressure and temperature at a depth of 10,000 ft?

(b) What would the pressure be at this depth if the gas were isothermal?

(c) What would the pressure be at this depth if the gas were incompressible?

20. The adiabatic atmosphere obeys the equation

P=�k ¼ constant

where k is a constant and � is density. If the temperature decreases 0.38C for

every 100 ft increase in altitude, what is the value of k? [Note: Air is an ideal

gas; g ¼ 32.2 ft/s2; R ¼ 1544 ft lbf /(8R lbmol)].

21. Using the actual dimensions of commercial steel pipe from Appendix F, plot the

pipe wall thickness versus the pipe diameter for both Schedule 40 and Schedule

80 pipe, and fit the plot with a straight line by linear regression analysis.

Rearrange your equation for the line in a form consistent with the given equa-

tion for the schedule number as a function of wall thickness and diameter:

Schedule No ¼ ð1750ts � 200Þ=D

and use the results of the regression to calculate values corresponding to the

1750 and 200 in this equation. Do this using (for D) (a) the nominal pipe

diameter and (b) the outside pipe diameter. Explain any discrepancies or dif-

ferences in the numerical values determined from the data fit compared to those

in the equation.

22. The ‘‘yield stress’’ for carbon steel is 35,000 psi, and the ‘‘working stress’’ is one-

half of this value. What schedule number would you recommend for a pipe

carrying ethylene at a pressure of 2500 psi if the pipeline design calls for a pipe
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of 2 in. ID? Give the dimensions of the pipe that you would recommend. What

would be a safe maximum pressure to recommend for this pipe?

23. Consider a 908 elbow in a 2 in. pipe (all of which is in the horizontal plane). A

pipe tap is drilled through the wall of the elbow on the inside curve of the elbow,

and another through the outer wall of the elbow directly across from the inside

tap. The radius of curvature of the inside of the bend is 2 in., and that of the

outside of the bend is 4 in. The pipe is carrying water, and a manometer con-

taining an immiscible oil with SG of 0.90 is connected across the two taps on the

elbow. If the reading of the manometer is 7 in., what is the average velocity of

the water in the pipe, assuming that the flow is uniform across the pipe inside

the elbow?

24. A pipe carrying water is inclined at an angle of 458 to the horizontal. A man-

ometer containing a fluid with an SG of 1.2 is attached to taps on the pipe,

which are 1 ft apart. If the liquid interface in the manometer leg that is attached

to the lower tap is 3 in. below the interface in the other leg, what is the pressure

gradient in the pipe (�P=L), in units of (a) psi/ft and (b) Pa/m? Which direction

is the water flowing?

25. A tank contains a liquid of unknown density (see the Fig. 4-P25). Two dip tubes

are inserted into the tank, each to a different level in the tank, through which air

is bubbled very slowly through the liquid. A manometer is used to measure the

difference in pressure between the two dip tubes. If the difference in level of the

ends of the dip tubes (H) is 1 ft, and the manometer reads 1.5 ft (h) with water as

the manometer fluid, what is the density of the liquid in the tank?

26. The tank shown in the Fig. 4-P26 has a partition that separates two immiscible

liquids. Most of the tank contains water, and oil is floating above the water on

the right of the partition. The height of the water in the standpipe (h) is 10 cm,

and the interface between the oil and water is 20 cm below the top of the tank

and 25 cm above the bottom of the tank. If the specific gravity of the oil is 0.82,

what is the height of the oil in the standpipe (H)?

27. A manometer that is open to the atmosphere contains water, with a layer of oil

floating on the water in one leg (see Fig. 4-P27). If the level of the water in the

left leg is 1 cm above the center of the leg, the interface between the water and

oil is 1 cm below the center in the right leg, and the oil layer on the right extends

2 cm above the center, what is the density of the oil?
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28. An open cylindrical drum, with a diameter of 2 ft and a length of 4 ft, is turned

upside down in the atmosphere and then submerged in a liquid so that it floats

partially submerged upside down, with air trapped inside. If the drum weighs

150 lbf , and it floats with 1 ft extending above the surface of the liquid, what is

the density of the liquid? How much additional weight must be added to the

drum to make it sink to the point where it floats just level with the liquid?

29. A solid spherical particle with a radius of 1mm and a density of 1.3 g/cm3 is

immersed in water in a centrifuge. If the particle is 10 cm from the axis of the

centrifuge, which is rotating at a rate of 100 rpm, what direction will the particle

be traveling relative to a horizontal plane?

30. A manometer with mercury as the manometer fluid is attached to the wall of a

closed tank containing water (see Fig. 4-P30). The entire system is rotating

about the axis of the tank at N rpm. The radius of the tank is r1, the distances

from the tank centerline to the manometer legs are r2 and r3 (as shown), and the

manometer reading is h. If N ¼ 30 rpm, r1 ¼ 12 cm, r2 ¼ 15 cm, r3 ¼ 18 cm, and

h ¼ 2 cm, determine the gauge pressure at the wall of the tank and also at the

centerline at the elevation of the pressure tap on the tank.
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31. With reference to the figure for Prob. 30, the manometer contains water as the

manometer fluid and is attached to a tank that is empty and open to the atmo-

sphere. When the tank is stationary, the water level is the same in both legs of

the manometer. If the entire system is rotated about the centerline of the tank at

a rate of N (rpm):

(a) What happens to the water levels in the legs of the manometer?

(b) Derive an equation for the difference in elevation of the levels (h) in the legs

of the manometer as a function of known quantities.

32. You want to measure the specific gravity of a liquid. To do this, you first weigh

a beaker of the liquid on a scale (WLo). You then attach a string to a solid body

that is heavier than the liquid, and while holding the string you immerse the

solid body in the liquid and measure the weight of the beaker containing the

liquid with the solid submerged (WLs). You then repeat the procedure using the

same weight but with water instead of the ‘‘unknown’’ liquid. The correspond-

ing weight of the water without the weight submerged isWwo, and with the solid

submerged it is Wws. Show how the specific gravity of the ‘‘unknown’’ liquid

can be determined from these four weights, and show that the result is in-

dependent of the size, shape, or weight of the solid body used (provided, of

course, that it is heavier than the liquids and is large enough that the difference

in the weights can be measured precisely).

33. A vertical U-tube manometer is open to the atmosphere and contains a liquid

that has an SG of 0.87 and a vapor pressure of 450 mmHg at the operating

temperature. The vertical tubes are 4 in. apart, and the level of the liquid in

the tubes is 6 in. above the bottom of the manometer. The manometer is then

rotated about a vertical axis through its centerline. Determine what the rotation

rate would have to be (in rpm) for the liquid to start to boil.

34. A spherical particle with SG¼ 2.5 and a diameter of 2 mm is immersed in water

in a cylindrical centrifuge with has a diameter of 20 cm. If the particle is initially

8 cm above the bottom of the centrifuge and 1 cm from the centerline, what is

the speed of the centrifuge (in rpm) if this particle strikes the wall of the

centrifuge just before it hits the bottom?
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NOTATION

A area, [L2]

Ai area with outward normal in the i direction, [L2]

az acceleration in the z direction, [L/t2]

Do pipe diameter (outer), [L]

Fj force in the j direction, [F ¼ ML/t2]

G atmospheric temperature gradient (¼ 6:58C/km), [T/L]

g acceleration due to gravity, [L/t2]

h vertical displacement of manometer interface, [L]

k isentropic exponent (¼ cp=cv) for ideal gas, [—]

M molecular weight [M/mol]

P pressure, [F/L2¼M/Lt2]

R gas constant, [FL/(mol T)¼ML2 (mol t2T)]

r radial direction, [L]

T temperature [T]

t pipe thickness, [L]
~VV volume [L3]

z vertical direction, measured upward, [L]

�( ) difference of two values [¼( )2 — ( )1]

� density, [M/L3]

� potential ð¼ Pþ �gzÞ, [F/L2¼M/Lt2]

� working stress of metal, [F/L2¼M/Lt2]

�ij ij total stress component, force in j direction on i surface,

[F/L2¼M/Lt2]

! angular velocity, [1/t]

Subscripts

1 reference point 1

2 reference point 2

i, j, x, y, z coordinate directions

o outer
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5

Conservation Principles

I. THE SYSTEM

As discussed in Chapter 1, the basic principles that apply to the analysis
and solution of flow problems include the conservation of mass, energy, and
momentum in addition to appropriate transport relations for these con-
served quantities. For flow problems, these conservation laws are applied
to a system, which is defined as any clearly specified region or volume of
fluid with either macroscopic or microscopic dimensions (this is also some-
times referred to as a ‘‘control volume’’), as illustrated in Fig. 5-1. The
general conservation law is

Rate of X

into the system
� Rate of X

out of the system
¼ Rate of accumulation

of X in the system

where X is the conserved quantity, i.e., mass, energy, or momentum. In the
case of momentum, because a ‘‘rate of momentum’’ is equivalent to a force
(by Newton’s second law), the ‘‘rate in’’ term must also include any (net)
forces acting on the system. It is emphasized that the system is not the
‘‘containing vessel’’ (e.g., a pipe, tank, or pump) but is the fluid contained
within the designated boundary. We will show how this generic expression is
applied for each of the these conserved quantities.
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II. CONSERVATION OF MASS

A. Macroscopic Balance

For a given system (e.g., Fig. 5-1), each entering stream (subscript i) will
carry mass into the system (at rate _mmi), and each exiting stream (subscript o)
carries mass out of the system (at rate _mmo). Hence, the conservation of mass,
or ‘‘continuity,’’ equation for the system isX

in

_mmi �
X
out

_mmo ¼ dms

dt
ð5-1Þ

where ms is the mass of the system. For each stream,

_mm ¼
ð
A

d _mm ¼
ð
A

�~vv � d ~AA ¼ � ~VV � ~AA ð5-2Þ

that is, the total mass flow rate through a given area for any stream is the
integrated value of the local mass flow rate over that area. Note that mass
flow rate is a scalar, whereas velocity and area are vectors. Thus it is the
scalar (or dot) product of the velocity and area vectors that is required. (The
‘‘direction’’ or orientation of the area is that of the unit vector that is normal
to the area.) The corresponding definition of the average velocity through
the conduit is

V ¼ 1

A

ð
~vv � d ~AA ¼ Q

A
ð5-3Þ

where Q ¼ _mm=� is the volumetric flow rate and the area A is the projected
component of ~AA that is normal to ~VV (i.e., the component of ~AAwhose normal is
in the same direction as ~VV). For a system at steady state, Eq. (5-1) reduces toX

in

_mmi ¼
X
out

_mmo ð5-4Þ
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or X
in

ð�VAÞi ¼
X
out

ð�VAÞo ð5-5Þ

B. Microscopic Balance

The conservation of mass can be applied to an arbitrarily small fluid element
to derive the ‘‘microscopic continuity’’ equation, which must be satisfied at
all points within any continuous fluid. This can be done by considering an
arbitrary (cubical) differential element of dimensions dx, dy, dz, with mass

Example 5-1: Water is flowing at a velocity of 7 ft/s in both 1 in. and 2 in.
ID pipes, which are joined together and feed into a 3 in. ID pipe, as shown
in Fig. 5-2. Determine the water velocity in the 3 in. pipe.

Solution. Because the system is at steady state, Eq. (5-5) applies:

ð�VAÞ1 þ ð�VAÞ2 ¼ ð�VAÞ3
For constant density, this can be solved for V3:

V3 ¼ V1

A1

A3

þ V2

A2

A3

Since A ¼ �D2=4, this gives

V3 ¼ 7
ft

s

� �
1

9
þ 4

9

� �
¼ 3:89 ft=s
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flow components into or out of each surface, e.g.,

_mmout � _mmin ¼ dy dz½ð�vxÞxþdx � ð�vxÞx�
þ dx dz½ð�vyÞyþdy � ð�vyÞy� þ dx dy½ð�vzÞzþdz � ð�vzÞz�

¼ � @�
@t

dx dy dz ð5-6Þ

Dividing by the volume of the element (dx dy dz) and taking the limit as the
size of the element shrinks to zero gives

@ð�vxÞ
@x

þ @ð�vyÞ
@y

þ @ð�vzÞ
@z

¼ � @�
@t

ð5-7Þ

This is the microscopic (local) continuity equation and must be satisfied
at all points within any flowing fluid. If the fluid is incompressible (i.e.,
constant �), Eq. (5-7) reduces to

@vx
@x

þ @vy
@y

þ @vz
@z

¼ 0 ð5-8Þ

We will make use of this equation in subsequent chapters.

III. CONSERVATION OF ENERGY

Energy can take a wide variety of forms, such as internal (thermal), mechan-
ical, work, kinetic, potential, surface, electrostatic, electromagnetic, and
nuclear energy. Also, for nuclear reactions or velocities approaching the
speed of light, the interconversion of mass and energy can be significant.
However, we will not be concerned with situations involving nuclear reac-
tions or velocities near that of light, and some other possible forms of energy
will usually be negligible as well. Our purposes will be adequately served if
we consider only internal (thermal), kinetic, potential (due to gravity),
mechanical (work), and heat forms of energy. For the system illustrated
in Fig. 5-1, a unit mass of fluid in each inlet and outlet stream may contain
a certain amount of internal energy (u) by virtue of its temperature, kinetic
energy (V2=2) by virtue of its velocity, potential energy (gz) due to its
position in a (gravitational) potential field, and ‘‘pressure’’ energy (P=�).
The ‘‘pressure’’ energy is sometimes called the ‘‘flow work,’’ because it is
associated with the amount of work or energy required to ‘‘inject’’ a unit
mass of fluid into the system or ‘‘eject’’ it out of the system at the appro-
priate pressure. In addition, energy can cross the boundaries of the system
other than with the flow streams, in the form of heat (Q) resulting from a
temperature difference and ‘‘shaft work’’ (W ). Shaft work is so named
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because it is normally associated with work transmitted to or from the
system by a shaft, such as that of a pump, compressor, mixer, or turbine.

The sign conventions for heat (Q) and work (W ) are arbitrary and
consequently vary from one authority to another. Heat is usually taken to
be positive when it is added to the system, so it would seem to be consistent
to use this same convention for work (which is the convention in most
‘‘scientific’’ references). However, engineers, being pragmatic, use a sign
convention that is directly associated with ‘‘value.’’ That is, if work can
be extracted from the system (e.g., to drive a turbine) then it is positive,
because a positive asset can be sold to produce revenue. However, if work
must be put into the system (such as from a pump), then it is negative,
because it must be purchased (a negative asset). This convention is also
more consistent with the ‘‘driving force’’ interpretation of the terms in the
energy balance, as will be shown later.

With this introduction, we can write the rate form of the conservation
of energy equation for any system as follows:

X
in

hþ gzþ V2

2

 !
i

_mmi �
X
out

hþ gzþ V2

2

 !
o

_mmo þ _QQ� _WW

¼ d

dt
uþ gzþ V2

2

 !
m

" #
sys

ð5-9Þ

Here, h ¼ uþ P=� is the enthalpy per unit mass of fluid. Note that the inlet
and exit streams include enthalpy (i.e., both internal energy, u, and flow
work, P=�), whereas the ‘‘system energy’’ includes only the internal energy
but no P=� flow work (for obvious reasons). If there are only one inlet
stream and one exit stream ( _mmi ¼ _mmo ¼ _mm) and the system is at steady
state, the energy balance becomes

�hþ g�zþ 1
2
�V2 ¼ q� w ð5-10Þ

where � ¼ (‘‘out’’) — (‘‘in’’), and q ¼ _QQ= _mm, w ¼ _WW= _mm are the heat added
to the system and work done by the system, respectively, per unit mass of
fluid. This expression also applies to a system comprising the fluid between
any two points along a streamline (a ‘‘stream tube’’) within a flow field.
Specifically, if these two points are only an infinitesimal distance apart, the
result is the differential form of the energy balance:

dhþ g dzþ v dv ¼ �q� �w ð5-11Þ
where dh ¼ duþ dðP=�Þ. The d( ) notation represents a total or ‘‘exact’’
differential and applies to those quantities that are determined only by the
state (T,P) of the system and are thus ‘‘point’’ properties. The �( ) notation
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represents quantities that are inexact differentials and depend upon the path
taken from one point to another.

Note that the energy balance contains several different forms of
energy, which may be generally classified as either mechanical energy,
associated with motion or position, or thermal energy, associated with
temperature. Mechanical energy is ‘‘useful,’’ in that it can be converted
directly into useful work, and includes potential energy, kinetic energy,
‘‘flow work,’’ and shaft work. The thermal energy terms, i.e., internal energy
and heat, are not directly available to do useful work unless they are trans-
formed into mechanical energy, in which case it is the mechanical energy
that does the work.

In fact, the total amount of energy represented by a relatively small
temperature change is equivalent to a relatively large amount of ‘‘mechan-
ical energy.’’ For example, 1 Btu of thermal energy is equivalent to 778 ft lbf
of mechanical energy. This means that the amount of energy required to
raise the temperature of 1 lb of water by 18F (the definition of the Btu) is
equivalent to the amount of energy required to raise the elevation of that
same pound of water by 778 ft (e.g., an 80 story building!). Thus, for systems
that involve significant temperature changes, the mechanical energy terms
(e.g., pressure, potential and kinetic energy, and work) may be negligible
compared with the thermal energy terms (e.g., heat transfer, internal
energy). In such cases the energy balance equation reduces to a ‘‘heat
balance,’’ i.e., �h ¼ q. However, the reader should be warned that ‘‘heat’’
is not a conserved quantity and that the inherent assumption that other
forms of energy are negligible when a ‘‘heat balance’’ is being written should
always be confirmed.

Before proceeding further, we will take a closer look at the significance
of enthalpy and internal energy, because these cannot be measured directly
but are determined indirectly by measuring other properties such as tem-
perature and pressure.

A. Internal Energy

An infinitesimal change in internal energy is an exact differential and is a
unique function of temperature and pressure (for a given composition).
Since the density of a given material is also uniquely determined by tem-
perature and pressure (e.g., by an equation of state for the material), the
internal energy may be expressed as a function of any two of the three terms
T, P, or � (or � ¼ 1=�). Hence, we may write:

du ¼ @u

@T

� �
�

dT þ @u

@�

� �
T

d� ð5-12Þ
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By making use of classical thermodynamic identities, this is found to be
equivalent to

du ¼ cvdT þ T
@P

@T

� �
�

�P

� �
d� ð5-13Þ

where

cv ¼
@u

@T

� �
�

ð5-14Þ

is the specific heat at constant volume (e.g., constant density). We will now
consider several special cases for various materials.

1. Ideal Gas

For an ideal gas,

� ¼ PM

RT
so that T

@P

@T

� �
�

¼ P ð5-15Þ

Thus Eq. (5-13) reduces to

du ¼ cv dT or �u ¼
ðT2

T1

cv dT ¼ �ccvðT2 � T1Þ ð5-16Þ

which shows that the internal energy for an ideal gas is a function of
temperature only.

2. Non-Ideal Gas

For a non-ideal gas, Eq. (5-15) is not valid, so

T
@P

@T

� �
�

6¼ P ð5-17Þ

Consequently, the last term in Eq. (5-13) does not cancel as it did for the
ideal gas, which means that

�u ¼ fnðT;PÞ ð5-18Þ
The form of the implied function, fn(T,P), may be analytical if the material
is described by a non-ideal equation of state, or it could be empirical such as
for steam, for which the properties are expressed as data tabulated in steam
tables.
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3. Solids and Liquids

For solids and liquids, � � constant (or d� ¼ 0), so

du ¼ cv dT or �u ¼
ðT2

T1

cv dT ¼ �ccvðT2 � T1Þ ð5-19Þ

This shows that the internal energy depends upon temperature only ( just as
for the ideal gas, but for an entirely different reason).

B. Enthalpy

The enthalpy can be expressed as a function of temperature and pressure:

dh ¼ @h

@T

� �
P

dT þ @h

@P

� �
T

dP ð5-20Þ

which, from thermodynamic identities, is equivalent to

dh ¼ cp dT þ �� T
@�

@T

� �
P

� �
dP ð5-21Þ

Here

cp ¼
@h

@T

� �
P

ð5-22Þ

is the specific heat of the material at constant pressure. We again consider
some special cases.

1. Ideal Gas

For an ideal gas,

T
@�

@T

� �
P

¼ � and cp ¼ cv þ
R

M
ð5-23Þ

Thus Eq. (5-21) for the enthalpy becomes

dh ¼ cp dT or �h ¼
ðT2

T1

cp dT ¼ �ccpðT2 � T1Þ ð5-24Þ

which shows that the enthalpy for an ideal gas is a function of temperature
only (as is the internal energy).

2. Non-Ideal Gas

For a non-ideal gas,

T
@�

@T

� �
P

6¼ � so that �h ¼ fnðT;PÞ ð5-25Þ
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which, like �u, may be either an analytical or an empirical function. All
gases can be described as ideal gases under appropriate conditions (i.e., far
enough from the critical point) and become more nonideal as the critical
point is approached. That is, under conditions that are sufficiently far from
the critical point that the enthalpy at constant temperature is essentially
independent of pressure, the gas should be adequately described by the
ideal gas law.

3. Solids and Liquids

For solids and liquids, � ¼ 1=� � constant, so that ð@�=@TÞp ¼ 0 and
cp � cv. Therefore,

dh ¼ cp dT þ � dP ð5-26Þ
or

�h ¼
ðT2

T1

cp dT þ
ðP2

P1

dP

�
¼ �ccpðT2 � T1Þ þ

P2 � P1

�
ð5-27Þ

This shows that for solids and liquids the enthalpy depends upon both
temperature and pressure. This is in contrast to the internal energy, which
depends upon temperature only. Note that for solids and liquids cp ¼ cv.

The thermodynamic properties of a number of compounds are shown
in Appendix D as pressure–enthalpy diagrams with lines of constant tem-
perature, entropy, and specific volume. The vapor, liquid, and two-phase
regions are clearly evident on these plots. The conditions under which each
compound may exhibit ideal gas properties are identified by the region on
the plot where the enthalpy is independent of pressure at a given tempera-
ture (i.e., the lower the pressure and the higher the temperature relative to
the critical conditions, the more nearly the properties can be described by
the ideal gas law).

IV. IRREVERSIBLE EFFECTS

We have noted that if there is a significant change in temperature, the
thermal energy terms (i.e., q and u) may represent much more energy than
the mechanical terms (i.e., pressure, potential and kinetic energy, and work).
On the other hand, if the temperature difference between the system and its
surroundings is very small, the only source of ‘‘heat’’ (thermal energy) is the
internal (irreversible) dissipation of mechanical energy into thermal energy,
or ‘‘friction.’’ The origin of this ‘‘friction loss’’ is the irreversible work
required to overcome intermolecular forces, i.e., the attractive forces
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between the ‘‘fluid elements,’’ under dynamic (nonequilibrium) conditions.
This can be quantified as follows.

For a system at equilibrium (i.e., in a reversible or ‘‘static’’ state),
thermodynamics tells us that

du ¼ T ds� P dð1=�Þ and T ds ¼ �q ð5-28Þ
That is, the total increase in entropy (which is a measure of ‘‘disorder’’)
comes from heat transferred across the system boundary (�q). However, a
flowing fluid is in a ‘‘dynamic,’’ or irreversible, state. Because entropy is
proportional to the degree of departure from the most stable (equilibrium)
conditions, this means that the further the system is from equilibrium, the
greater the entropy, so for a dynamic (flow) system

T ds > �q or T ds ¼ �qþ �ef ð5-29Þ
i.e.,

du ¼ �qþ �ef � P dð1=�Þ ð5-30Þ
where �ef represents the ‘‘irreversible energy’’ associated with the departure
of the system from equilibrium, which is extracted from mechanical energy
and transformed (or ‘‘dissipated’’) into thermal energy. The farther from
equilibrium (e.g., the faster the motion), the greater this irreversible energy.
The origin of this energy (or ‘‘extra entropy’’) is the mechanical energy that
drives the system and is thus reduced by ef . This energy ultimately appears as
an increase in the temperature of the system (�u), heat transferred from the
system (�q), and/or expansion energy ½P dð1=�Þ� (if the fluid is compressible).
This mechanism of transfer of useful mechanical energy to low grade (non-
useful) thermal energy is referred to as ‘‘energy dissipation.’’ Although ef is
often referred to as the friction loss, it is evident that this energy is not really
lost, but is transformed (dissipated) from useful high level mechanical energy
to non-useful low grade thermal energy. It should be clear that ef must always
be positive, because energy can be transformed spontaneously only from a
higher state (mechanical) to a lower state (thermal) and not in the reverse
direction, as a consequence of the second law of thermodynamics.

When Eq. (5-30) is introduced into the definition of enthalpy, we get

dh ¼ duþ d
P

�

� �
¼ �qþ �ef þ

dP

�
ð5-31Þ

Substituting this for the enthalpy in the differential energy balance, Eq.
(5-11), gives

dP

�
þ g dzþ V dV þ �wþ �ef ¼ 0 ð5-32Þ
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This can be integrated along a streamline from the inlet to the outlet of the
system to giveðPo

Pi

dP

�
þ gðzo � ziÞ þ

1

2
ðV2

o � V2
i Þ þ ef þ w ¼ 0 ð5-33Þ

where, from Eq. (5-30),

ef ¼ ðuo � uiÞ � qþ
ð�o
�i

P d
1

�

� �
ð5-34Þ

Equations (5-33) and (5-34) are simply rearrangements of the steady-state
energy balance equation [Eq. (5-10)], but are in much more useful forms.
Without the friction loss (ef ) term (which includes all of the thermal energy
effects), Eq. (5-33) represents a mechanical energy balance, although
mechanical energy is not a conserved quantity. Equation (5-33) is referred
to as the engineering Bernoulli equation or simply the Bernoulli equation.
Along with Eq. (5-34), it accounts for all of the possible thermal and
mechanical energy effects and is the form of the energy balance that is
most convenient when mechanical energy dominates and thermal effects
are minor. It should be stressed that the first three terms in Eq. (5-33) are
point functions—they depend only on conditions at the inlet and outlet of
the system—whereas the w and ef terms are path functions, which depend on
what is happening to the system between the inlet and outlet points (i.e.,
these are rate-dependent and can be determined from an appropriate rate or
transport model).

If the fluid is incompressible (constant density), Eq. (5-33) can be
written

��

�
þ 1

2
�ðV2Þ þ ef þ w ¼ 0 ð5-35Þ

where � ¼ Pþ �gz. For a fluid at rest, ef ¼ V ¼ w ¼ 0, and Eq. (5-35)
reduces to the basic equation of fluid statics for an incompressible fluid
(i.e., � ¼ const.), Eq. (4-7). For any static fluid, Eq. (5-32) reduces to the
more general basic equation of fluid statics, Eq. (4-5). For gases, if the
pressure change is such that the density does not change more than about
30%, the incompressible equation can be applied with reasonable accuracy
by assuming the density to be constant at a value equal to the average
density in the system (a general consideration of compressible fluids is
given in Chapter 9).

Note that if each term of Eq. (5-35) is divided by g, then all terms will
have the dimension of length. The result is called the ‘‘head’’ form of the
Bernoulli equation, and each term then represents the equivalent amount of
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potential energy in a static column of the system fluid of the specified height.
For example, the pressure term becomes the ‘‘pressure head (��P=�g ¼
Hp),’’ the potential energy term becomes the ‘‘static head (��z ¼ Hz),’’
the kinetic energy term becomes the ‘‘velocity head (�V2=2g ¼ Hv),’’ the
friction loss becomes the ‘‘head loss (ef=g ¼ Hf ),’’ and the work term is,
typically, the ‘‘work (or pump) head (�w=g ¼ Hw).’’

A. Kinetic Energy Correction

In the foregoing equations, we assumed that the fluid velocity (V) at a given
point in the system (e.g., in a tube) is the same for all fluid elements at a
given cross section of the flow stream. However, this is not true in conduits,
because the fluid velocity is zero at a stationary boundary or wall and thus
increases with the distance from the wall. The total rate at which kinetic
energy is transported by a fluid element moving with local velocity ~vv at a
mass flow rate d _mm through a differential area d ~AA is (v2 d _mm=2), where
d _mm ¼ �~vv � d ~AA. Thus, the total rate of transport of kinetic energy through
the cross section A isð

1

2
v2 d _mm ¼ �

2

ð
v3 dA ð5-36Þ

If the fluid velocity is uniform over the cross section at a value equal
to the average velocity V (i.e., ‘‘plug flow’’), then the rate at which kinetic
energy is transported would be

1
2
�V3A ð5-37Þ

Therefore, a kinetic energy correction factor, �, can be defined as the ratio of
the true rate of kinetic energy transport relative to that which would occur if
the fluid velocity is everywhere equal to the average (plug flow) velocity, e.g.,

� ¼ True KE transport rate

Plug flow KE transport rate
¼ 1

A

ð
A

�
v

V

�3

dA ð5-38Þ

The Bernoulli equation should therefore include this kinetic energy correc-
tion factor, i.e.,

��

�
þ 1

2
�ð�V2Þ þ ef þ w ¼ 0 ð5-39Þ

As will be shown later, the velocity profile for a Newtonian fluid in laminar
flow in a circular tube is parabolic. When this is introduced into Eq. (5-38),
the result is � ¼ 2. For highly turbulent flow, the profile is much flatter
and � � 1:06, although for practical applications it is usually assumed
that � ¼ 1 for turbulent flow.
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Example 5-2: Kinetic Energy Correction Factor for Laminar Flow of a
Newtonian Fluid. We will show later that the velocity profile for the lami-
nar flow of a Newtonian fluid in fully developed flow in a circular tube is
parabolic. Because the velocity is zero at the wall of the tube and maximum
in the center, the equation for the profile is

vðrÞ ¼ Vmax 1� r2

R2

 !

This can be used to calculate the kinetic energy correction factor from Eq.
(5-38) as follows. First we must calculate the average velocity, V, using
Eq. (5-3):

V ¼ 1

�R2

ðR
0

vðrÞ2�r dr

¼ 2Vmax

ð1
0

ð1� x2Þx dx ¼ Vmax

2

which shows that the average velocity is simply one-half of the maximum
(centerline) velocity. Thus, replacing V in Eq. (5-38) by Vmax/2 and then
integrating the cube of the parabolic velocity profile over the tube cross
section gives � ¼ 2. (The details of the manipulation are left as an exercise
for the reader.)

Example 5-3: Diffuser. A diffuser is a section in a conduit over which the
flow area increases gradually from upstream to downstream, as illustrated in
Fig. 5-3. If the inlet and outlet areas (A1 and A2) are known, and the
upstream pressure and velocity (P1 and V1) are given, we would like to
find the downstream pressure and velocity (P2 and V2). If the fluid is incom-
pressible, the continuity equation gives V2:

ð�VAÞ1 ¼ ð�VAÞ2 or V2 ¼ V1

A1

A2
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The pressure P2 is determined by Bernoulli’s equation. If the diffuser is
horizontal, there is no work done between the inlet and outlet, and the
friction loss is small (which is a good assumption for a well designed
diffuser), the Bernoulli equation gives

P2 ¼ P1 þ
�

2
ðV2

1 � V2
2 Þ � �ef ffi P1 þ

�V2
1

2
1� A2

1

A2
2

 !

Because A1 < A2 and the losses are small, this shows that P2 > P1, i.e., the
pressure increases downstream. This occurs because the decrease in kinetic
energy is transformed into an increase in ‘‘pressure energy.’’ The diffuser is
said to have a ‘‘high pressure recovery.’’

Example 5-4: Sudden Expansion. We now consider an incompressible
fluid flowing from a small conduit through a sudden expansion into a larger
conduit, as illustrated in Fig. 5-4. The objective, as in the previous example,
is to determine the exit pressure and velocity (P2 and V2), given the
upstream conditions and the dimensions of the ducts. The conditions are
all identical to those of the above diffuser example, so the continuity and
Bernoulli equations are also identical. The major difference is that the
friction loss is not as small as for the diffuser. Because of inertia, the fluid
cannot follow the sudden 908 change in direction of the boundary, so con-
siderable turbulence is generated after the fluid leaves the small duct and
before it can expand to fill the large duct, resulting in much greater friction
loss. The equation for P2 is the same as before:

P2 ¼ P1 þ
�V2

1

2
1� A2

1

A2
2

 !
� �ef

The ‘‘pressure recovery’’ is reduced by the friction loss, which is relatively
high for the sudden expansion. The pressure recovery is therefore relatively
low.
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Example 5-5: The Toricelli Problem. Consider an open vessel with dia-
meter D1 containing a fluid at a depth h that is draining out of a hole of
diameter D2 in the bottom of the tank. We would like to determine the
velocity of the fluid flowing out of the hole in the bottom. As a first approx-
imation, we neglect the friction loss in the tank and through the hole. Point
1 is taken at the surface of the fluid in the tank, and point 2 is taken at the
exit from the hole, because the pressure is known to be atmospheric at both
points. The velocity in the tank is related to that through the hole by the
continuity equation

ð�VAÞ1 ¼ ð�VAÞ2 or V1 ¼ V2

A2

A1

¼ V2�
2

where � ¼ D2=D1. The Bernoulli equation for an incompressible fluid
between points 1 and 2 is

P2 � P1

�
þ gðz2 � z1Þ þ

1

2
ð�2V2

2 � �1V2
1 Þ þ wþ ef ¼ 0

Because points 1 and 2 are both at atmospheric pressure, P2 ¼ P1. We
assume that w ¼ 0, � ¼ 1, and we neglect friction, so ef ¼ 0 (actually a
very poor assumption in many cases). Setting z2 � z1 ¼ �h, eliminating V1

from these two equations, and solving for V2 gives

V2 ¼
2gh

1� �4
� �1=2

This is known as the Toricelli equation. We now consider what happens as
the hole gets larger. Specifically, as D2 ! D1 (i.e., as �! 1), the equation
says that V2 ! 1! This is obviously an unrealistic limit, so there must be

Conservation Principles 119

FIGURE 5-5 Draining tank. The Toricelli problem.



something wrong. Of course, our assumption that friction is negligible may
be valid at low velocities, but as the velocity increases it becomes less valid
and is obviously invalid long before this condition is reached.

Upon examining the equation for V2, we see that it is independent of
the properties of the fluid in the tank. We might suspect that this is not
accurate, because if the tank were to be filled with CO2 we intuitively expect
that it would drain more slowly than if it were filled with water. So, what is
wrong? In this case, it is our assumption that P2 ¼ P1. Of course, the pres-
sure is atmospheric at both points 1 and 2, but we have neglected the static
head of air between these points, which is the actual difference in the pres-
sure. This results in a buoyant force due to the air and can have a significant
effect on the drainage of CO2 although it will be negligible for water. Thus,
if we account for the static head of air, i.e., P2 � P1 ¼ �agh, in the Bernoulli
equation and then solve for V2, we get

V2 ¼
2ghð1� �a=�Þ

1� �4
� �1=2

where � is the density of the fluid in the tank. This also shows that as
�! �a, the velocity goes to zero, as we would expect.

These examples illustrate the importance of knowing what can and
cannot be neglected in a given problem and the necessity for matching the
appropriate assumptions to the specific problem conditions in order to
arrive at a valid solution. They also illustrate the importance of understand-
ing what is happening within the system as well as knowing the inlet and
outlet conditions.

V. CONSERVATION OF MOMENTUM

A macroscopic momentum balance for a flow system must include all
equivalent forms of momentum. In addition to the rate of momentum con-
vected into and out of the system by the entering and leaving streams, the
sum of all the forces that act on the system (the system being defined as a
specified volume of fluid ) must be included. This follows from Newton’s
second law, which provides an equivalence between force and the rate of
momentum. The resulting macroscopic conservation of momentum thus
becomesX

on system

~FF þ
X
in

ð _mm ~VVÞi �
X
out

ð _mm ~VVÞo ¼
d

dt
ðm ~VVÞsys ð5-40Þ
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Note that because momentum is a vector, this equation represents three
component equations, one for each direction in three-dimensional space.
If there is only one entering and one leaving stream, then _mmi ¼ _mmo ¼ _mm. If
the system is also at steady state, the momentum balance becomesX

on fluid

~FF ¼ _mm
X
out

~VVo �
X
in

~VVi

� �
ð5-41Þ

Note that the vector (directional) character of the ‘‘convected’’ momentum
terms (i.e., _mm ~VV ) is that of the velocity, because _mm is a scalar (i.e., _mm ¼ � ~VV � ~AA
is a scalar product).

A. One-Dimensional Flow in a Tube

We will apply the steady state momentum balance to a fluid in plug flow in a
tube, as illustrated in Fig. 5-6. (The ‘‘stream tube’’ may be bounded by either
solid or imaginary boundaries; the only condition is that no fluid crosses the
boundaries other that through the ‘‘inlet’’ and ‘‘outlet’’ planes.) The shape
of the cross section does not have to be circular; it can be any shape. The
fluid element in the ‘‘slice’’ of thickness dx is our system, and the momentum
balance equation on this system isX

on fluid

Fx þ _mmVx � _mmðVx þ dVxÞ ¼
X

on fluid

Fx � _mm dVx

¼ d

dt
ð�VxA dxÞ ¼ 0 ð5-42Þ

The forces acting on the fluid result from pressure (dFP), gravity (dFg), wall
drag (dFw), and external ‘‘shaft’’ work (�W ¼ �Fext dx, not shown inFig. 5-6):X

on fluid

Fx ¼ dFp þ dFg þ Fext þ dFw ð5-43Þ
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where

dFp ¼ Ax½P� ðPþ dPÞ� ¼ �Ax dP

dFg ¼ �gxAx dx ¼ ��Ax dx g cos 
 ¼ ��gAx dx

dFw ¼ ��w dAw ¼ ��wWp dx

��W ¼ Fext dx or Fext ¼ � �W
dx

Here, �w is the stress exerted by the fluid on the wall (the reaction to the
stress exerted on the fluid by the wall), and Wp is the perimeter of the wall
in the cross section that is wetted by the fluid (the ‘‘wetted perimeter’’).
After substituting the expressions for the forces from Eq. (5-43) into the
momentum balance equation, Eq. (5-42), and dividing the result by ��A,
where A ¼ Ax, the result is

dP

�
þ g dzþ �wWp

�A
dxþ �wþ V dV ¼ � dV

dt
dx ð5-44Þ

where �w ¼ �W=ð�A dxÞ is the work done per unit mass of fluid. Integrating
this expression from the inlet (i) to the outlet (o) and assuming steady state
gives ðPo

Pi

dP

�
þ gðzo � ziÞ þ

1

2
ðV2

o � V2
i Þ þ

ð
L

�wWp

�A
dxþ w ¼ 0 ð5-45Þ

Comparing this with the Bernoulli equation [Eq. (5-33)] shows that they are
identical, provided

ef ¼
ð
L

�wWp

�A

� �
dx ð5-46Þ

or, for steady flow in a uniform conduit

ef ffi
�wWpL

�A
¼ �w
�

4L

Dh

� �
ð5-47Þ

where

Dh ¼ 4
A

Wp

ð5-48Þ

is called the hydraulic diameter. Note that this result applies to a conduit of
any cross-sectional shape. For a circular tube, for example, Dh is identical to
the tube diameter D.

We see that there are several ways of interpreting the term ef . From
the Bernoulli equation, it represents the ‘‘lost’’ (i.e., dissipated) energy
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associated with irreversible effects. From the momentum balance, ef is also
seen to be directly related to the stress between the fluid and the tube wall
(�w), i.e., it can be interpreted as the work required to overcome the resis-
tance to flow in the conduit. These interpretations are both correct and are
equivalent.

Although the energy and momentum balances lead to equivalent
results for this special case of one-dimensional fully developed flow in a
straight uniform tube, this is an exception and not the rule. In general,
the momentum balance gives additional information relative to the forces
exerted on and/or by the fluid in the system through the boundaries, which
is not given by the energy balance or Bernoulli equation. This will be
illustrated shortly.

B. The Loss Coefficient

Looking at the Bernoulli equation, we see that the friction loss (ef ) can be
made dimensionless by dividing it by the kinetic energy per unit mass of
fluid. The result is the dimensionless loss coefficient, Kf :

Kf �
ef

V2=2
ð5-49Þ

A loss coefficient can be defined for any element that offers resistance to
flow (i.e., in which energy is dissipated), such as a length of conduit, a valve,
a pipe fitting, a contraction, or an expansion. The total friction loss can thus
be expressed in terms of the sum of the losses in each element, i.e.,
ef ¼

P
i ðKf iV

2
i =2Þ. This will be discussed further in Chapter 6.

As can be determined from Eqs. (5-47) and (5-49), the pipe wall stress
can also be made dimensionless by dividing by the kinetic energy per unit
volume of fluid. The result is known as the pipe Fanning friction factor, f:

f ¼ �w
�V2=2

ð5-50Þ

Although �V2=2 represents kinetic energy per unit volume, �V2 is also the
flux of momentum carried by the fluid along the conduit. The latter inter-
pretation is more logical in Eq. (5-50), because �w is also a flux of momen-
tum from the fluid to the tube wall. However, the conventional definition
includes the (arbitrary) factor 1

2
. Other definitions of the pipe friction factor

are in use that are some multiple of the Fanning friction factor. For exam-
ple, the Darcy friction factor, which is equal to 4f , is used frequently by
mechanical and civil engineers. Thus, it is important to know which
definition is implied when data for friction factors are used.
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Because the friction loss and wall stress are related by Eq. (5-47), the
loss coefficient for pipe flow is related to the pipe Fanning friction factor as
follows:

Kf ¼
4 fL

Dh

ðpipeÞ ð5-51Þ

Example 5-6: Friction Loss in a Sudden Expansion. Figure 5-7 shows the
flow in a sudden expansion from a small conduit to a larger one. We assume
that the conditions upstream of the expansion (point 1) are known, as well
as the areas A1 and A2. We desire to find the velocity and pressure down-
stream of the expansion (V2 and P2) and the loss coefficient, Kf . As before,
V2 is determined from the mass balance (continuity equation) applied to the
system (the fluid in the shaded area). Assuming constant density,

V2 ¼ V1

A1

A2

For plug flow, the Bernoulli equation for this system is

P2 � P1

�
þ 1

2
ðV2

2 � V2
1 Þ þ ef ¼ 0

which contains two unknowns, P2 and ef . Thus, we need another equation,
the steady-state momentum balance:X

Fx ¼ _mmðV2x � V1xÞ
where V1x ¼ V1 and V2x ¼ V2, because all velocities are in the x direction.
Accounting for all the forces that can act on the system through each section
of the boundary, this becomes

P1A1 þ P1aðA2 � A1Þ � P2A2 þ Fwall ¼ �V1A1ðV2 � V1Þ
where P1a is the pressure on the left-hand boundary of the system (i.e., the
‘‘washer-shaped’’ surface), and Fwall is the force due to the drag of the wall
on the fluid at the horizontal boundary of the system. The fluid pressure
cannot change discontinuously, so P1a ’ P1. Also, because the contact area
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with the wall bounding the system is relatively small, we can neglect Fwall

with no serious consequences. The result is

ðP1 � P2ÞA2 ¼ �V2
1A1

A1

A2

� 1

� �

This can be solved for ðP2 � P1Þ, which, when inserted into the Bernoulli
equation, allows us to solve for ef :

ef ¼
V2

1

2
1� A1

A2

� �2

¼ KfV
2
1

2

Thus,

Kf ¼ 1� A1

A2

� �2

¼ ð1� �2Þ2

where � ¼ D1=D2.
The loss coefficient is seen to be a function only of the geometry of the

system (note that the assumption of plug flow implies that the flow is highly
turbulent). For most systems (i.e., flow in valves, fittings, etc.), the loss
coefficient cannot be determined accurately from simple theoretical concepts
(as in this case) but must be determined empirically. For example, the
friction loss in a sudden contraction cannot be calculated by this simple
method due to the occurrence of the vena contracta just downstream of
the contraction (see Table 7-5 in Chapter 7 and the discussion in Section
IV of Chapter 10). For a sharp 908 contraction, the contraction loss
coefficient is given by

Kf ¼ 0:5ð1� �2Þ

where � is the ratio of the small to the large tube diameter.

Example 5-7: Flange Forces on a Pipe Bend. Consider an incompressible
fluid flowing through a pipe bend, as illustrated in Fig. 5-8. We would like to
determine the forces in the bolts in the flanges that hold the bend in the pipe,
knowing the geometry of the bend, the flow rate through the bend, and the
exit pressure (P2) from the bend. Taking the system to be the fluid within the
pipe bend, a steady-state ‘‘x-momentum’’ balance isX

ðFxÞon sys ¼ _mmðV2x � V1xÞ
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Various factors contribute to the forces on the left-hand side of this
equation:X

ðFxÞon sys ¼ P1A1x þ P2A2x � ðFxÞonwall by fluid
¼ P1A1 � P2A2 cos 
 � ðFxÞonbolts

[The sign of the force resulting from the pressure acting on any area element
is intuitive, because pressure acts on any system boundary from the outside,
i.e., pressure on the left-hand boundary acts to the right on the system, and
vice versa. This is also consistent with previous definitions, because the sign
of a surface element corresponds to the direction of the normal vector that
points outward from the bounded volume, and pressure is a compressive
(negative) stress. Thus P1Ax1 is (þ) because it is a negative stress acting on a
negative area, and P2Ax2 is (�) because it is a negative stress acting on a
positive area. These signs have been accounted for intuitively in the equa-
tion.]

The right-side of the momentum balance reduces to

_mmðV2x � V1xÞ ¼ _mmðV2 cos 
 � V1Þ
Equating these two expressions and solving for ðFxÞonwall gives

ðFxÞonwall ¼ ðFxÞonbolts ¼ P1A1 � P2A2 cos 
 � _mmðV2 cos 
 � V1Þ
Similarly, the ‘‘y-momentum’’ balance isX

ðFyÞon sys ¼ _mmðV2y � V1yÞ
which becomes

ðFyÞonwall ¼ ðFyÞonbolts ¼ �P2A2 sin 
 � _mmV2 sin 


This assumes that the xy plane is horizontal. If the y direction is vertical, the
total weight of the bend, including the fluid inside, could be included as an
additional (negative) force component due to gravity. The magnitude and
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direction of the net force are

�FF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þ F2

y

q
; ’ ¼ tan�1 Fy

Fx

� �

where ’ is the direction of the net force vector measured counterclockwise
from the þx direction. Note that either P1 or P2 must be known, but the
other is determined by the Bernoulli equation if the loss coefficient is known:

P2 � P1

�
þ gðz2 � z1Þ þ

1

2
ðV2

2 � V2
1 Þ þ ef ¼ 0

where

ef ¼ 1
2
KfV

2
1

Methods for evaluating the loss coefficient Kf will be discussed in
Chapter 6.

It should be noted that in evaluating the forces acting on the system,
the effect of the external pressure transmitted through the boundaries to the
system from the surrounding atmosphere was not included. Although this
pressure does result in forces that act on the system, these forces all cancel
out, so the pressure that appears in the momentum balance equation is the
net pressure in excess of atmospheric, e.g., gage pressure.

C. Conservation of Angular Momentum

In addition to linear momentum, angular momentum (or the moment of
momentum) may be conserved. For a fixed mass (m) moving in the x direc-
tion with a velocity Vx, the linear x-momentum (Mx) is mVx. Likewise, a
mass m rotating counterclockwise about a center of rotation at an angular
velocity ! ¼ d
=dt has an angular momentum (L
) equal to mV
R ¼ m!R2,
where R is the distance from the center of rotation to m. Note that the
angular momentum has dimensions of ‘‘length times momentum,’’ and is
thus also referred to as the ‘‘moment of momentum.’’ If the mass is not a
point but a rigid distributed mass (M) rotating at a uniform angular
velocity, the total angular momentum is given by

L
 ¼
ð
M

!r2 dm ¼ !

ð
M

r2 dm ¼ !I ð5-52Þ

where I is the moment of inertia of the body with respect to the center of
rotation.
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For a fixed mass, the conservation of linear momentum is equivalent
to Newton’s second law:

X
~FF ¼ m~aa ¼ dðm ~VVÞ

dt
¼ m

d ~VV

dt
ð5-53Þ

The corresponding expression for the conservation of angular momentum isX
�
 ¼

X
F
R ¼ dðI!Þ

dt
¼ I

d!

dt
¼ I� ð5-54Þ

where �
 is the moment (torque) acting on the system and d!=dt ¼ � is the
angular acceleration.

For a flow system, streams with curved streamlines may carry angular
momentum into and/or out of the system by convection. To account for
this, the general macroscopic angular momentum balance applies:X

in

ð _mmRV
Þi �
X
out

ð _mmRV
Þo þ
X

�
 ¼
dðI!Þ
dt

¼ I� ð5-55Þ

For a steady-state system with only one inlet and one outlet stream, this
becomesX

�
 ¼ _mm½ðRV
Þo � ðRV
Þi� ¼ _mm½ðR2!Þo � ðR2!Þi� ð5-56Þ
This is known as the Euler turbine equation, because it applies directly to
turbines and all rotating fluid machinery. We will find it useful later in the
analysis of the performance of centrifugal pumps.

D. Moving Boundary Systems and Relative Motion

We sometimes encounter a system that is in contact with a moving
boundary, such that the fluid that composes the system is carried along
with the boundary while streams carrying momentum and/or energy may
flow into and/or out of the system. Examples of this include the flow
impinging on a turbine blade (with the system being the fluid in contact
with the moving blade) and the flow of exhaust gases from a moving
rocket motor. In such cases, we often have direct information concerning
the velocity of the fluid relative to the moving boundary (i.e., relative to
the system), Vr, and so we must also consider the velocity of the system,
Vs, to determine the absolute velocity of the fluid that is required for the
conservation equations.

For example, consider a system that is moving in the x direction with a
velocity Vs a fluid stream entering the system with a velocity in the x direc-
tion relative to the system of Vri, and a stream leaving the system with a
velocity Vro relative to the system. The absolute stream velocity in the x
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direction Vx is related to the relative velocity Vrx and the system velocity Vsx

by

Vx ¼ Vsx þ Vrx ð5-57Þ
The linear momentum balance equation becomes

X
~FF ¼ _mmo

~VVo � _mmi
~VVi þ

dðm ~VVsÞ
dt

¼ _mmoð ~VVro þ ~VVsÞ � _mmið ~VVri þ ~VVsÞ þ
dðm ~VVsÞ

dt
ð5-58Þ

Example 5-8: Turbine Blade. Consider a fluid stream impinging on a
turbine blade that is moving with a velocity Vs. We would like to know
what the velocity of the impinging stream should be in order to transfer the
maximum amount of energy to the blade. The system is the fluid in contact
with the blade, which is moving at velocity Vs. The impinging stream
velocity is Vi, and the stream leaves the blade at velocity Vo. Since Vo ¼
Vro þ Vs and Vi ¼ Vri þ Vs, the system velocity cancels out of the momen-
tum equation:

Fx ¼ _mmðVo � ViÞ ¼ _mmðVro � VriÞ
If the friction loss is negligible, the energy balance (Bernoulli’s equation)
becomes

w ¼ 1
2
ðV2

i � V2
oÞ

which shows that the maximum energy or work transferred from the fluid to
the blade occurs when Vo ¼ 0. Now from continuity at steady state, recog-
nizing that Vi and Vs are of opposite sign

jVij ¼ jVoj or Vri ¼ �Vro
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That is,

Vi � Vs ¼ �ðVo � VsÞ
Rearranging this for Vs gives

Vs ¼ 1
2
ðVi þ VoÞ

Since the maximum energy is transferred when Vo ¼ 0, this reduces to

Vs ¼ 1
2
Vi

That is, the maximum efficiency for energy transfer from the fluid to the
blade occurs when the velocity of the impinging fluid is twice that of the
moving blade.

E. Microscopic Momentum Balance

The conservation of momentum principle can be applied to a system compris-
ing the fluid within an arbitrary (differential) cubical volume within any flow
field. This is done by accounting for convection of momentum through all six
surfaces of the cube, all possible stress components acting on each of the six
surfaces, and any body forces (e.g., gravity) acting on the mass as a whole.
Dividing the result by the volumeof the cube and taking the limit as the volume
shrinks to zero results in a general microscopic form of the momentum equa-
tion that is valid at all points within any fluid. This is done in amanner similar
to the earlier derivation of the microscopic mass balance (continuity) equa-
tion, Eq. (5-7), for each of the three vector components of momentum. The
result can be expressed in general vector notation as

�
@~vv

@t
þ ~vv � ~r~vv

� �
¼ � ~rPþ ~r � ~�� þ �~gg ð5-59Þ

The three components of this momentum equation, expressed in Cartesian,
cylindrical, and spherical coordinates, are given in detail in Appendix E.
Note that Eq. (5-59) is simply a microscopic (‘‘local’’) expression of the
conservation of momentum, e.g., Eq. (5-40), and it applies locally at any
and all points in any flowing stream.

Note that there are 11 dependent variables, or ‘‘unknowns’’ in these
equations (three vi’s, six �ij’s, P, and �), all of which may depend on space
and time. (For an incompressible fluid, � is constant so there are only 10
‘‘unknowns.’’) There are four conservation equations involving these
unknowns (the three momentum equations plus the conservation of mass
or continuity equation), which means that we still need six more equations
(seven, if the fluid is compressible). These additional equations are the ‘‘con-
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stitutive’’ equations that relate the local stress components to the flow or
deformation of the particular fluid in laminar flow (i.e., these are determined
by the constitution or structure of the material) or equations for the local
turbulent stress components (the ‘‘Reynolds stresses’’ see Chapter 6). These
equations describe the deformation or flow properties of the specific fluid of
interest and relate the six shear stress components (�ij) to the deformation
rate (i.e., the velocity gradient components). [Note there are only six inde-
pendent components of the shear stress tensor (�ij) because it is symmetrical,
i.e., �ij ¼ �ji, which is a result of the conservation of angular momentum.]
For a compressible fluid, the density is related to the pressure through an
appropriate equation of state. When the equations for the six �ij components
are coupled with the four conservation equations, the result is a set of
differential equations for the 10 (or 11) unknowns that can be solved (in
principle) with appropriate boundary conditions for the velocity components
as a function of time and space. In laminar flows, the constitutive equation
gives the shear stress components as a unique function of the velocity gradient
components. For example, the constitutive equation for a Newtonian fluid,
generalized from the one dimensional form (i.e., � ¼ � _��), is

s ¼ �½ð ~r~vvþ ð ~r~vvÞt� ð5-60Þ

where ð ~r~vvÞt represents the transpose of the matrix of the ~r~vv components.
The component forms of this equation are also given in Appendix E for
Cartesian, cylindrical, and spherical coordinate systems. If these equations
are used to eliminate the stress components from the momentum equations,
the result is called the Navier–Stokes equations, which apply to the laminar
flow of any Newtonian fluid in any system and are the starting point for the
detailed solution of many fluid flow problems. Similar equations can be
developed for non-Newtonian fluids, based upon the appropriate rheologi-
cal (constitutive) model for the fluid. For turbulent flows, additional equa-
tions are required to describe the momentum transported by the fluctuating
(‘‘eddy’’) components of the flow (see Chapter 6). However, the number of
flow problems for which closed analytical solutions are possible is rather
limited, so numerical computer techniques are required for many problems
of practical interest. These procedures are beyond the scope of this book,
but we will illustrate the application of the momentum equations to the
solution of an example problem.

Example 5-9: Flow Down an Inclined Plane. Consider the steady laminar
flow of a thin layer or film of liquid down a flat plate that is inclined at an
angle 
 to the vertical, as illustrated in Fig. 5-10. The width of the plate is W
(normal to the plane of the figure). Flow is only in the x direction (parallel to
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the surface), and the velocity varies only in the y direction (normal to the
surface). These prescribed conditions constitute the definition of the
problem to be solved. The objective is to determine the film thickness, �,
as a function of the flow rate per unit width of plate (Q=W), the fluid
properties (�; �), and other parameters in the problem. Since vy ¼ vz ¼ 0,
the microscopic mass balance (continuity equation) reduces to

@vx
@x

¼ 0

which tells us that the velocity vx must be independent of x. Hence, the only
independent variable is y. Considering the x component of the momentum
equation (see Appendix E), and discarding all y and z velocity and stress
components and all derivatives except those with respect to the y direction,
the result is

0 ¼ @�yx
@y

þ �g cos 


The pressure gradient term has been discarded, because the system is open
to the atmosphere and thus the pressure is constant (or, at most, hydro-
static) everywhere. The above equation can be integrated to give the shear
stress distribution in the film:

�yx ¼ ��gy cos 

where the constant of integration is zero, because there is zero (negligible)
stress at the free surface of the film (y ¼ 0). Note that this result is valid
for any fluid (Newtonian or non-Newtonian) under any flow conditions
(laminar or turbulent), because it is simply a statement of the conservation
of momentum. If the fluid is Newtonian fluid and the flow is laminar, the
shear stress is

�yx ¼ �
@vx
@y
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Eliminating the stress between the last two equations gives a differential
equation for vxðyÞ that can be integrated to give the velocity distribution:

vx ¼ �g�2 cos 


2�

�
1� y2

�2

�

where the boundary condition that vx ¼ 0 at y ¼ � (the wall) has been used
to evaluate the constant of integration.

The volumetric flow rate can now be determined from

Q ¼ W

ð�
0

vx dy ¼ W�g�3 cos 


3�

The film thickness is seen to be proportional to the cube root of the flow rate
and the fluid viscosity. The shear stress exerted on the plate is

�w ¼ ð��yxÞy¼� ¼ �g� cos 


which is just the component of the weight of the fluid on the plate acting
parallel to the plate.

It is also informative to express these results in dimensionless form,
i.e., in terms of appropriate dimensionless groups. Because this is a
noncircular conduit, the appropriate flow ‘‘length’’ parameter is the hy-
draulic diameter defined by Eq. (5.48):

Dh ¼ 4
xA

Wp

¼ 4W�

W
¼ 4�

The appropriate form for the Reynolds number is thus

NRe ¼
DhV�

�
¼ 4�V�

�
¼ 4�Q=W

�

because V ¼ Q=A ¼ Q=W�. The wall stress can also be expressed in terms
of the Fanning friction factor [Eq. (5-50)]:

�w ¼ f
�V2

2
¼ �g� cos 


Substituting V ¼ Q=W� and eliminating �g cos 
 from the solution for Q
gives

f
�

2

Q

W�

� �2

¼ Q

W

� �
3�

�2

� �
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or

f ¼ 24

NRe

i.e., fNRe ¼ 24 ¼ constant.
This can be compared with the results of the dimensional analysis for

the laminar flow of a Newtonian fluid in a pipe (Chapter 2, Section V), for
which we deduced that fNRe ¼ constant. In this case, we have determined
the value of the constant analytically, using first principles rather than by
experiment.

The foregoing procedure can be used to solve a variety of steady, fully
developed laminar flow problems, such as flow in a tube or in a slit between
parallel walls, for Newtonian or non-Newtonian fluids. However, if the flow
is turbulent, the turbulent eddies transport momentum in three dimensions
within the flow field, which contributes additional momentum flux compo-
nents to the shear stress terms in the momentum equation. The resulting
equations cannot be solved exactly for such flows, and methods for treating
turbulent flows will be considered in Chapter 6.

PROBLEMS

Conservation of Mass and Energy

1. Water is flowing into the top of a tank at a rate of 200 gpm. The tank is 18 in. in

diameter and has a 3 in. diameter hole in the bottom, through which the water

flows out. If the inflow rate is adjusted to match the outflow rate, what will the

height of the water be in the tank if friction is negligible?

2. A vacuum pump operates at a constant volumetric flow rate of 10 liters/

min (l/min) based upon pump inlet conditions. How long will it take to pump

down a 100L tank containing air from 1 atm to 0.01 atm, assuming that the

temperature is constant?

3. Air is flowing at a constant mass flow rate into a tank that has a volume of 3 ft3.

The temperature of both the tank and the air is constant at 708F. If the pressure
in the tank is observed to increase at a rate of 5 psi/min, what is the flow rate of

air into the tank?

4. A tank contains water initially at a depth of 3 ft. The water flows out of a hole in

the bottom of the tank, and air at a constant pressure of 10 psig is admitted to

the top of the tank. If the water flow rate is directly proportional to the square

root of the gage pressure inside the bottom of the tank, derive expressions for

the water flow rate and air flow rate as a function of time. Be sure to define all

symbols you use in your equations.
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5. The flow rate of a hot coal/oil slurry in a pipeline is measured by injecting a

small side stream of cool oil and measuring the resulting temperature change

downstream in the pipeline. The slurry is initially at 3008F and has a density of

1.2 g/cm3 and a specific heat of 0.7 Btu/(lbm 8F). With no side stream injected,

the temperature downstream of the mixing point is 2988F. With a side stream at

608F and a flow rate of 1 lbm/s, the temperature at this point is 2958F. The side
stream has a density of 0.8 g/cm3 and a cp of 0.6 Btu/(lbm 8F). What is the mass

flow rate of the slurry?
6. A gas enters a horizontal 3 in. Schedule 40 pipe at a constant rate of 0.5 lbm/s,

with temperature of 708F, and pressure of 1.15 atm. The pipe is wrapped with a

20 kW heating coil covered with a thick layer of insulation. At the point where

the gas is discharged, the pressure is 1.05 atm. What is the gas temperature at

the discharge point, assuming it to be ideal with a MW of 29 and a cp of 0.24

Btu/(lbm 8F)?
7. Water is flowing into the top of an open cylindrical tank (diameter D) at a

volume flow rate of Qi and out of a hole in the bottom at a rate of Qo. The tank

is made of wood that is very porous, and the water is leaking out through the

wall uniformly at a rate of q per unit of wetted surface area. The initial depth of

water in the tank is Z1. Derive an equation for the depth of water in the tank at

any time. If Qi ¼ 10 gpm, Qo ¼ 5 gpm, D ¼ 5 ft, q ¼ 0:1 gpm/ft2, and Z1 ¼ 3 ft,

is the level in the tank rising or falling?

8. Air is flowing steadily through a horizontal tube at a constant temperature of

328C and a mass flow rate of 1 kg/s. At one point upstream where the tube

diameter is 50mm, the pressure is 345 kPa. At another point downstream the

diameter is 75 mm and the pressure is 359 kPa. What is the value of the friction

loss (ef ) between these two points? [cp ¼ 1005 J/(kg K).]

9. Steam is flowing through a horizontal nozzle. At the inlet the velocity is

1000 ft/s and the enthalpy is 1320Btu/lbm. At the outlet the enthalpy is

1200Btu/lbm. If heat is lost through the nozzle at a rate of 5 Btu/lbm of

steam, what is the outlet velocity?
10. Oil is being pumped from a large storage tank, where the temperature is 708F,

through a 6 in. ID pipeline. The oil level in the tank is 30 ft above the pipe exit.

If a 25 hp pump is required to pump the oil at a rate of 600 gpm through the

pipeline, what would the temperature of the oil at the exit be if no heat is

transferred across the pipe wall? State any assumptions that you make. Oil

properties: SG¼ 0:92, � ¼ 35 cP, cp ¼ 0:5 Btu/(lbm 8F).
11. Freon 12 enters a 1 in. Schedule (sch) 80 pipe at 1708F and 100 psia and a

velocity of 10 ft/s. At a point somewhere downstream, the temperature has

dropped to 1408F and the pressure to 15 psia. Calculate the velocity at the

downstream conditions and the Reynolds number at both the upstream and

downstream conditions.

12. Number 3 fuel oil (308 API) is transferred from a storage tank at 608F to a feed

tank in a power plant at a rate of 2000 bbl/day. Both tanks are open to the

atmosphere, and they are connected by a pipeline containing 1200 ft equivalent

length of 1 1
2
in. sch 40 steel pipe and fittings. The level in the feed tank is 20 ft

higher than that in the storage tank, and the transfer pump is 60% efficient.
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The Fanning friction factor is given by f ¼ 0:0791=N1=4
Re .

(a) What horsepower motor is required to drive the pump?

(b) If the specific heat of the oil is 0.5 Btu/(lbm 8F) and the pump and transfer

line are perfectly insulated, what is the temperature of the oil entering the

feed tank?

13. Oil with a viscosity of 35 cP, SG of 0.9, and a specific heat of 0.5 Btu/(lbm 8F) is
flowing through a straight pipe at a rate of 100 gpm. The pipe is 1 in. sch 40,

100 ft long, and the Fanning friction factor is given by f ¼ 0:0791=N1=4
Re . If the

temperature of the oil entering the pipe is 1508F, determine:

(a) The Reynolds number.

(b) The pressure drop in the pipe, assuming that it is horizontal.

(c) The temperature of the oil at the end of the pipe, assuming the pipe to be

perfectly insulated.

(d) The rate at which heat must be removed from the oil (in Btu/hr) to maintain

it at a constant temperature if there is no insulation on the pipe.

14. Water is pumped at a rate of 90 gpm by a centrifugal pump driven by a 10 hp

motor. The water enters the pump through a 3 in. sch 40 pipe at 608F and

10 psig and leaves through a 2 in. sch 40 pipe at 100 psig. If the water loses 0.1

Btu/lbm while passing through the pump, what is the water temperature leaving

the pump?

15. A pump driven by a 7.5 hp motor, takes water in at 758F and 5 psig and dis-

charges it at 60 psig, at a flow rate of 600 lbm/min. If no heat is transferred to or

from the water while it is in the pump, what will the temperature of the water be

leaving the pump?

16. A high pressure pump takes water in at 708F, 1 atm, through a 1 in. ID suction

line and discharges it at 1000 psig through a 1/8 in. ID line. The pump is driven

by a 20 hp motor and is 65% efficient. If the flow rate is 500 g/s and the

temperature of the discharge is 738F, how much heat is transferred between

the pump casing and the water, per pound of water? Does the heat go into or

out of the water?

Bernoulli’s Equation

17. Water is flowing fromone large tank to another through a 1 in. diameter pipe. The

level in tank A is 40 ft above the level in tank B. The pressure above the water in

tank A is 5 psig, and in tank B it is 20 psig. Which direction is the water flowing?

18. A pump that is driven by a 7.5 hp motor takes water in at 758F and 5 psig and

discharges it at 60 psig at a flow rate of 600 lbm/min. If no heat is transferred

between the water in the pump and the surroundings, what will be the tempera-

ture of the water leaving the pump?

19. A 90% efficient pump driven by a 50 hp motor is used to transfer water at 708F
from a cooling pond to a heat exchanger through a 6 in. sch 40 pipeline. The

heat exchanger is located 25 ft above the level of the cooling pond, and the

water pressure at the discharge end of the pipeline is 40 psig. With all valves in

the line wide open, the water flow rate is 650 gpm. What is the rate of energy

dissipation (friction loss) in the pipeline, in kilowatts (kW)?
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20. A pump takes water from the bottom of a large tank where the pressure is

50 psig and delivers it through a hose to a nozzle that is 50 ft above the bottom

of the tank at a rate of 100 lbm/s. The water exits the nozzle into the atmosphere

at a velocity of 70 ft/s. If a 10 hp motor is required to drive the pump, which is

75% efficient, find:

(a) The friction loss in the pump

(b) The friction loss in the rest of the system

Express your answer in units of ft lbf/lbm.
21. You have purchased a centrifugal pump to transport water at a maximum rate

of 1000 gpm from one reservoir to another through an 8 in. sch 40 pipeline. The

total pressure drop through the pipeline is 50 psi. If the pump has an efficiency

of 65% at maximum flow conditions and there is no heat transferred across the

pipe wall or the pump casing, calculate:

(a) The temperature change of the water through the pump

(b) The horsepower of the motor that would be required to drive the pump

22. The hydraulic turbines at Boulder Dam power plant are rated at 86,000 kW

when water is supplied at a rate of 66.3m3/s. The water enters at a head of

145m at 208C and leaves through a 6 m diameter duct.

(a) Determine the efficiency of the turbines.

(b) What would be the rating of these turbines if the dam power plant was on

Jupiter (g ¼ 26m/s2)?

23. Water is draining from an open conical funnel at the same rate at which it is

entering at the top. The diameter of the funnel is 1 cm at the top and 0.5 cm at

the bottom, and it is 5 cm high. The friction loss in the funnel per unit mass of

fluid is given by 0.4V2, where V is the velocity leaving the funnel. What is (a) the

volumetric flow rate of the water and (b) the value of the Reynolds number

entering and leaving the funnel?

24. Water is being transferred by pump between two open tanks (from A to B) at a

rate of 100 gpm. The pump receives the water from the bottom of tank A

through a 3 in. sch 40 pipe and discharges it into the top of tank B through

a 2 in. sch 40 pipe. The point of discharge into B is 75 ft higher than the surface

of the water in A. The friction loss in the piping system is 8 psi, and both tanks

are 50 ft in diameter. What is the head (in feet) which must be delivered by the

pump to move the water at the desired rate? If the pump is 70% efficient, what

horsepower motor is required to drive the pump?
25. A 4 in. diameter open can has a 1/4 in. diameter hole in the bottom. The can is

immersed bottom down in a pool of water, to a point where the bottom is 6 in.

below the water surface and is held there while the water flows through the hole

into the can. How long will it take for the water in the can to rise to the same

level as that outside the can? Neglect friction, and assume a ‘‘pseudo steady

state,’’ i.e., time changes are so slow that at any instant the steady state

Bernoulli equation applies.

26. Carbon tetrachloride (SG ¼ 1:6) is pumped at a rate of 2 gpm through a pipe

that is inclined upward at an angle of 308. An inclined tube manometer (with a

108 angle of inclination) using mercury as the manometer fluid (SG ¼ 13:6) is
connected between two taps on the pipe that are 2 ft apart. The manometer
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reading is 6 in. If no heat is lost through the tube wall, what is the temperature

rise of the CCl4 over a 100 ft length of the tube?

27. A pump that is taking water at 508F from an open tank at a rate of 500 gpm is

located directly over the tank. The suction line entering the pump is a nominal

6 in. sch 40 straight pipe 10 ft long and extends 6 ft below the surface of the

water in the tank. If friction in the suction line is neglected, what is the pressure

at the pump inlet (in psi)?
28. A pump is transferring water from tank A to tank B, both of which are open to

the atmosphere, at a rate of 200 gpm. The surface of the water in tank A is 10 ft

above ground level, and that in tank B is 45 ft above ground level. The pump is

located at ground level, and the discharge line that enters tank B is 50 ft above

ground level at its highest point. All piping is 2 in. ID, and the tanks are 20 ft in

diameter. If friction is neglected, what would be the required pump head rating

for this application (in ft), and what size motor (horsepower) would be needed

to drive the pump if it is 60% efficient? (Assume the temperature is constant at

778F.)
29. A surface effect (air cushion) vehicle measures 10 ft by 20 ft and weighs 6000 lbf.

The air is supplied by a blower mounted on top of the vehicle, which must

supply sufficient power to lift the vehicle 1 in. off the ground. Calculate the

required blower capacity in scfm (standard cubic feet per minute), and the

horsepower of the motor required to drive the blower if it is 80% efficient.

Neglect friction, and assume that the air is an ideal gas at 808F with properties

evaluated at an average pressure.

30. The air cushion car in Problem 29 is equipped with a 2 hp blower that is 70%

efficient.

(a) What is the clearance between the skirt of the car and the ground?

(b) What is the air flow rate, in scfm?

31. An ejector pump operates by injecting a high speed fluid stream into a slower

stream to increase its pressure. Consider water flowing at a rate of 50 gpm

through a 908 elbow in a 2 in. ID pipe. A stream of water is injected at a

rate of 10 gpm through a 1/2 in. ID pipe through the center of the elbow in a

direction parallel to the downstream flow in the larger pipe. If both streams are

at 708F, determine the increase in pressure in the larger pipe at the point where

the two streams mix.
32. A large tank containing water has a 51 mm diameter hole in the bottom.

When the depth of the water is 15 m above the hole, the flow rate through

the hole is found to be 0.0324 m3/s. What is the head loss due to friction in the

hole?

33. Water at 688F is pumped through a 1000 ft length of 6 in. sch 40 pipe. The

discharge end of the pipe is 100 ft above the suction end. The pump is 90%

efficient, and it is driven by a 25 hp motor. If the friction loss in the pipe is

70 ft lbf/lbm, what is the flow rate through the pipe in gpm? (Pin ¼ Pout ¼
1 atm.)

34. You want to siphon water out of a large tank using a 5/8 in. ID hose. The

highest point of the hose is 10 ft above the water surface in the tank, and

the hose exit outside the tank is 5 ft below the inside surface level. If friction
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is neglected, (a) what would be the flow rate through the hose (in gpm), and

(b) what is the minimum pressure in the hose (in psi)?

35. It is desired to siphon a volatile liquid out of a deep open tank. If the liquid has

a vapor pressure of 200 mmHg and a density of 45 lbm/ft
3 and the surface of the

liquid is 30 ft below the top of the tank, is it possible to siphon the liquid? If so,

what would the velocity be through a frictionless siphon, 1/2 in. in diameter, if

the exit of the siphon tube is 3 ft below the level in the tank?

36. The propeller of a speedboat is 1 ft in diameter and 1 ft below the surface of the

water. At what speed (rpm) will cavitation occur? The vapor pressure of the

water is 18.65 mmHg at 708F.
37. A conical funnel is full of liquid. The diameter of the top (mouth) is D1, that of

the bottom (spout) is D2 (where D2 
 D1), and the depth of the fluid above the

bottom is H0. Derive an expression for the time required for the fluid to drain

by gravity to a level of H0=2, assuming frictionless flow.

38. An open cylindrical tank of diameter D contains a liquid of density � at a depth

H. The liquid drains through a hole of diameter d in the bottom of the tank.

The velocity of the liquid through the hole is C
ffiffiffi
h

p
, where h is the depth of the

liquid at any time t. Derive an equation for the time required for 90% of the

liquid to drain out of the tank.

39. An open cylindrical tank that is 2 ft in diameter and 4 ft high is full of water. If

the tank has a 2 in. diameter hole in the bottom, how long will it take for half of

the water to drain out, if friction is neglected?
40. A large tank has a 5.1mm diameter hole in the bottom. When the depth of

liquid in the tank is 1.5 m above the hole, the flow rate through the hole is found

to be 324 cm3/s. What is the head loss due to friction in the hole (in ft)?

41. A window is left slightly open while the air conditioning system is running. The

air conditioning blower develops a pressure of 2 in.H2O (gage) inside the house,

and the window opening measures 1/8 in.� 20 in. Neglecting friction, what is

the flow rate of air through the opening, in scfm (ft3/min at 608F, 1 atm)? How

much horsepower is required to move this air?

42. Water at 688F is pumped through a 1000 ft length of 6 in. sch 40 pipe. The

discharge end of the pipe is 100 ft above the suction end. The pump is

90% efficient and is driven by a 25 hp motor. If the friction loss in the pipe is

70 ft lbf/lbm, what is the flow rate through the pipe (in gpm)?

43. The plumbing in your house is 3/4 in. sch 40 galvanized pipe, and it is connected

to an 8 in. sch 80 water main in which the pressure is 15 psig. When you turn on

a faucet in your bathroom (which is 12 ft higher than the water main), the water

flows out at a rate of 20 gpm.

(a) How much energy is lost due to friction in the plumbing?

(b) If the water temperature in the water main is 608F, and the pipes are well

insulated, what would the temperature of the water be leaving the faucet?

(c) If there were no friction loss in the plumbing, what would the flow rate be

(in gpm)?

44. A 60% efficient pump driven by a 10 hp motor is used to transfer bunker C fuel

oil from a storage tank to a boiler through a well-insulated line. The pressure in

the tank is 1 atm, and the temperature is 1008F. The pressure at the burner in
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the boiler is 100 psig, and it is 100 ft above the level in the tank. If the tempera-

ture of the oil entering the burner is 1028F, what is the oil flow rate, in gpm?

[Oil properties: SG¼ 0.8, cp ¼ 0:5 Btu/(lbm 8F).]

Fluid Forces, Momentum Transfer

45. You have probably noticed that when you turn on the garden hose it will whip

about uncontrollably if it is not restrained. This is because of the unbalanced

forces developed by the change of momentum in the tube. If a 1/2 in. ID hose

carries water at a rate of 50 gpm, and the open end of the hose is bent at an

angle of 308 to the rest of the hose, calculate the components of the force

(magnitude and direction) exerted by the water on the bend in the hose.

Assume that the loss coefficient in the hose is 0.25.

46. Repeat Problem 46, for the case in which a nozzle is attached to the end of the

hose and the water exits the nozzle through a 1/4 in. opening. The loss coeffi-

cient for the nozzle is 0.3 based on the velocity through the nozzle.

47. You are watering your garden with a hose that has a 3/4 in. ID, and the water is

flowing at a rate of 10 gpm. A nozzle attached to the end of the hose has an ID

of 1/4 in. The loss coefficient for the nozzle is 20 based on the velocity in the

hose. Determine the force (magnitude and direction) that you must apply to the

nozzle in order to deflect the free end of the hose (nozzle) by an angle of 308
relative to the straight hose.

48. A 4 in. ID fire hose discharges water at a rate of 1500 gpm through a nozzle that

has a 2 in. ID exit. The nozzle is conical and converges through a total included

angle of 308. What is the total force transmitted to the bolts in the flange where

the nozzle is attached to the hose? Assume the loss coefficient in the nozzle is 3.0

based on the velocity in the hose.

49. A 908 horizontal reducing bend has an inlet diameter of 4 in. and an outlet

diameter of 2 in. If water enters the bend at a pressure of 40 psig and a flow rate

of 500 gpm, calculate the force (net magnitude and direction) exerted on the

supports that hold the bend in place. The loss coefficient for the bend may be

assumed to be 0.75 based on the highest velocity in the bend.

50. A fireman is holding the nozzle of a fire hose that he is using to put out a fire.

The hose is 3 in. in diameter, and the nozzle is 1 in. in diameter. The water flow

rate is 200 gpm, and the loss coefficient for the nozzle is 0.25 (based on the exit

velocity). How much force must the fireman use to restrain the nozzle? Must he

push or pull on the nozzle to apply the force? What is the pressure at the end of

the hose where the water enters the nozzle?

51. Water flows through a 308 pipe bend at a rate of 200 gpm. The diameter of the

entrance to the bend is 2.5 in., and that of the exit is 3 in. The pressure in the

pipe is 30 psig, and the pressure drop in the bend is negligible. What is the total

force (magnitude and direction) exerted by the fluid on the pipe bend?

52. A nozzle with a 1 in. ID outlet is attached to a 3 in. ID fire hose. Water pressure

inside the hose is 100 psig, and the flow rate is 100 gpm. Calculate the force

(magnitude and direction) required to hold the nozzle at an angle of 458 relative
to the axis of the hose. (Neglect friction in the nozzle.)
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53. Water flows through a 458 expansion pipe bend at a rate of 200 gpm, exiting

into the atmosphere. The inlet to the bend is 2 in. ID, the exit is 3 in. ID, and the

loss coefficient for the bend is 0.3 based on the inlet velocity. Calculate the force

(magnitude and direction) exerted by the fluid on the bend relative to the

direction of the entering stream.
54. A patrol boat is powered by a water jet engine, which takes water in at the bow

through a 1 ft diameter duct and pumps it out the stern through a 3 in. diameter

exhaust jet. If the water is pumped at a rate of 5000 gpm, determine:

(a) The thrust rating of the engine

(b) The maximum speed of the boat, if the drag coefficient is 0.5 based on an

underwater area of 600 ft2

(c) the horsepower required to operate the motor (neglecting friction in the

motor, pump, and ducts)

55. A patrol boat is powered by a water jet pump engine. The engine takes water

in through a 3 ft. diameter duct in the bow and discharges it through a 1 ft.

diameter duct in the stern. The drag coefficient of the boat has a value of 0.1

based on a total underwater area of 1500 ft2. Calculate the pump capacity in

gpm and the engine horsepower required to achieve a speed of 35 mph, neglect-

ing friction in the pump and ducts.

56. Water is flowing through a 458 pipe bend at a rate of 200 gpm and exits into the

atmosphere. The inlet to the bend is 11
2
in. inside diameter, and the exit is 1 in. in

diameter. The friction loss in the bend can be characterized by a loss coefficient

of 0.3 (based on the inlet velocity). Calculate the net force (magnitude and

direction) transmitted to the flange holding the pipe section in place.

57. The arms of a lawn sprinkler are 8 in. long and 3/8 in. ID. Nozzles at the end of

each arm direct the water in a direction that is 458 from the arms. If the total

flow rate is 10 gpm, determine:

(a) The moment developed by the sprinkler if it is held stationary and not

allowed to rotate.
(b) The angular velocity (in rpm) of the sprinkler if there is no friction in the

bearings.

(c) The trajectory of the water from the end of the rotating sprinkler (i.e., the

radial and angular velocity components)

58. A water sprinkler contains two 1/4 in. ID jets at the ends of a rotating hollow

(3/8 in. ID) tube, which direct the water 908 to the axis of the tube. If the

water leaves at 20 ft/s, what torque would be necessary to hold the sprinkler

in place?

59. An open container 8 in. high with an inside diameter of 4 in. weighs 5 lbf when

empty. The container is placed on a scale, and water flows into the top of the

container through a 1 in. diameter tube at a rate of 40 gpm. The water flows

horizontally out into the atmosphere through two 1/2 in. holes on opposite sides

of the container. Under steady conditions, the height of the water in the tank

is 7 in.

(a) Determine the reading on the scale.

(b) Determine how far the holes in the sides of the container should be from the

bottom so that the level in the container will be constant.
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60. A boat is tied to a dock by a line from the stern of the boat to the dock. A pump

inside the boat takes water in through the bow and discharges it out the stern at

the rate of 3 ft3/s through a pipe running through the hull. The pipe inside area

is 0.25 ft2 at the bow and 0.15 ft2 at the stern. Calculate the tension on the line,

assuming inlet and outlet pressures are equal.

61. A jet ejector pump is shown in Fig. 5-P61. A high speed stream (QA) is injected

at a rate of 50 gpm through a small tube 1 in. in diameter into a stream (QB) in a

larger, 3 in. diameter, tube. The energy and momentum are transferred from the

small stream to the larger stream, which increases the pressure in the pump. The

fluids come in contact at the end of the small tube and become perfectly mixed a

short distance downstream (the flow is turbulent). The energy dissipated in the

system is significant, but the wall force between the end of the small tube and

the point where mixing is complete can be neglected. If both streams are water

at 608F, and QB ¼ 100 gpm, calculate the pressure rise in the pump.

62. Figure 5-P62 illustrates two relief valves. The valve disk is designed to lift when

the upstream pressure in the vessel (P1) reaches the valve set pressure. Valve A

has a disk that diverts the fluid leaving the valve by 908 (i.e., to the horizontal

direction), whereas the disk in valve B diverts the fluid to a direction that is 608
downward from the horizontal. The diameter of the valve nozzle is 3 in., and
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the clearance between the end of the nozzle and the disk is 1 in., for both

valves. If the fluid is water at 2008F, P1 ¼ 100 psig, and the discharge pressure

is atmospheric, determine the force exerted on the disk for both cases A and B.

The loss coefficient for the valve in both cases is 2.4 based on the velocity in the

nozzle.

63. A relief valve is mounted on the top of a large vessel containing hot water. The

inlet diameter to the valve is 4 in., and the outlet diameter is 6 in. The valve is set

to open when the pressure in the vessel reaches 100 psig, which happens when

the water is at 2008F. The liquid flows through the open valve and exits to the

atmosphere on the side of the valve, 908 from the entering direction. The loss

coefficient for the valve has a value of 5, based on the exit velocity from the

valve.
(a) Determine the net force (magnitude and direction) acting on the valve.

(b) You want to attach a cable to the valve to brace it such that the tensile force

in the cable balances the net force on the valve. Show exactly where you

would attach the cable at both ends.

64. A relief valve is installed on the bottom of a pressure vessel. The entrance to the

valve is 4.5 in. diameter, and the exit (which discharges in the horizontal direc-

tion, 908 from the entrance) is 5 in. in diameter. The loss coefficient for the valve

is 4.5 based on the inlet velocity. The fluid in the tank is a liquid with a density

of 0.8 g/cm3. If the valve opens when the pressure at the valve reaches 150 psig,

determine:
(a) The mass flow rate through the valve, in lbm/s

(b) The net force (magnitude and direction) exerted on the valve

(c) Determine the location (orientation) of a cable that is to be attached to the

valve to balance the net force. (Note that a cable can support only a tensile

force.)

65. An emergency relief valve is installed on a reactor to relieve excess pressure

in case of a runaway reaction. The lines upstream and downstream of the

valve are 6 in. sch 40 pipe. The valve is designed to open when the tank

pressure reaches 100 psig, and the vent exhausts to the atmosphere at 908 to

the direction entering the valve. The fluid can be assumed to be incompressible,

with an SG of 0.95, a viscosity of 3.5 cP, and a specific heat of 0.5 Btu/(lbm 8F).
If the sum of the loss coefficients for the valve and the vent line is 6.5,

determine:

(a) The mass flow rate of the fluid through the valve in lbm/s and the value of

the Reynolds number in the pipe when the valve opens.

(b) The rise in temperature of the fluid from the tank to the vent exit, if the heat

transferred through the walls of the system is negligible.

(c) The force exerted on the valve supports by the fluid flowing through the

system. If you could install only one support cable to balance this force,

show where you would put it.

66. Consider the ‘‘tank on wheels’’ shown in Fig. 5-P66. Water is draining out of a

hole in the side of the open tank, at a rate of 10 gpm. If the tank diameter is 2 ft

and the diameter of the hole is 2 in., determine the magnitude and direction of

the force transmitted from the water to the tank.
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67. The tank in Problem 66 is 6 in. in diameter and contains water at a depth of 3 ft.

On the side of the tank near the bottom is a 1.5 in. ID outlet to which is

attached a ball valve, which has a loss coefficient of 1.2. When the valve is

opened, the water flows out in a horizontal stream. Calculate:

(a) The flow rate of the water (in gpm)

(b) The thrust exerted on the tank by the escaping water, and the direction that

the tank will move. If the diameter of the outlet and valve are increased, will

the thrust on the tank increase or decrease? Why?

Laminar Flow

68. Use the microscopic equations of motion in Appendix E as a starting point to

derive a relationship between the volumetric flow rate and the pressure gradient

for a Newtonian fluid in a pipe that is valid for any orientation of the pipe axis.

(Hint: The critical starting point requires that you identify which velocity and

velocity gradients are nonzero, and hence the corresponding nonzero stress

components, for this problem. This allows you to tailor the differential equa-

tions to suit the problem, and the resulting equations can be integrated, with

appropriate boundary conditions, to get the answer.)

69. A viscous molten polymer is pumped through a thin slit between two flat

surfaces. The slit has a depth H, width W, and length L and is inclined upward

at an angle 
 to the horizontal (H 
 W). The flow is laminar, and the polymer

is non-Newtonian, with properties that can be represented by the power law

model.

(a) Derive an equation relating the volume flow rate of the polymer (Q) to the

applied pressure difference along the slit, the slit dimensions, and the fluid

properties.

(b) Using the definition of the Fanning friction factor ( f ), solve your equation

for f in terms of the remaining quantities. The corresponding solution for a

Newtonian fluid can be written f ¼ 24=NRe. Use your solution to obtain

an equivalent expression for the power law Reynolds number (i.e.,

NRePL ¼ 24= f ). Use the hydraulic diameter as the length scale in the

Reynolds number. (Note: It is easiest to take the origin of your coordinates

at the center of the slit, then calculate the flow rate for one-half the slit and

double this to get the answer. Why is this the easiest way?)
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70. Acrylic latex paint can be described as a Bingham plastic with a yield stress of

200 dyn/cm2, a limiting viscosity of 50 cP, and a density of 0.95 g/cm3.

(a) What is the maximum thickness at which a film of this paint could be spread

on a vertical wall without running?

(b) If the power law model were used to describe this paint, such that the

apparent viscosity predicted by both the power law and Bingham plastic

models is the same at shear rates of 1 and 100 s�1, what would the flow rate

of the film be if it has the thickness predicted in (a)?

71. A vertical belt is moving upward continuously through a liquid bath, at a

velocity V. A film of the liquid adheres to the belt, which tends to drain down-

ward due to gravity. The equilibrium thickness of the film is determined by the

steady-state condition at which the downward drainage velocity of the surface

of the film is exactly equal to the upward velocity of the belt. Derive an equation

for the film thickness if the fluid is (a) Newtonian; (b) a Bingham plastic.

72. Water at 708F is draining by gravity down the outside of a 4 in. OD vertical

tube at a rate of 1 gpm. Determine the thickness of the film. Is the flow laminar

or turbulent?

73. For laminar flow of a Newtonian fluid in a tube:

(a) Show that the average velocity over the cross section is half the maximum

velocity in the tube.

(b) Derive the kinetic energy correction factor for laminar flow of a Newtonian

fluid in a tube (i.e., � ¼ 2).

74. A slider bearing can be described as one plate moving with a velocity V parallel

to a stationary plate, with a viscous lubricant in between the plates. The force

applied to the moving plate is F, and the distance between the plates is H. If the

lubricant is a grease with properties that can be described by the power law

model, derive an equation relating the velocity V to the applied force F and the

gap clearance H, starting with the general microscopic continuity and momen-

tum equations. If the area of the plate is doubled, with everything else staying

the same, how will the velocity V change?

75. Consider a fluid flowing in a conical section, as illustrated in Fig. 5-P75.

The mass flow rate is the same going in (through point 1) as it is coming out

(point 2), but the velocity changes because the area changes. They are related by

ð�VAÞ1 ¼ ð�VAÞ2
where � is the fluid density (assumed to be constant here). Because the velocity

changes, the transport of momentum will be different going in than going out,

which results in a net force in the fluid.
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(a) Derive an expression for the magnitude of this force associated with the

change in momentum.

(b) Which direction will the force transmitted from the fluid to the cone act.

NOTATION

A cross sectional area, [L2]

Aw area of wall, [L2]

cv specific heat at constant volume, [FL/MT¼L2/Mt2]

cp specific heat at constant pressure, [FL/MT¼L2/Mt2]

d diameter, [L]

D diameter, [L]

Dh hydraulic diameter, [L]

f Fanning friction factor, [—]

g acceleration due to gravity, [L/t2]

ef energy dissipated per unit mass of fluid, [FL/M¼L2/t2]

Fx force component in the x direction, [F¼ML/t2]

h enthalpy per unit mass, [FL/M¼L2/t2]

Hf friction loss head, [L]

Hp pressure head, [L]

Hw work (pump) head, [L]

Hv velocity head, [L]

Hz static head, [L]

I moment of inertia, [FLt2¼ML2]

Kf loss coefficient, [—]

L
 angular momentum in the 
 direction, [ML2/t]

M molecular weight, [M/mol]

m mass, [M]
_mm mass flow rate, [M/t]

P pressure, [F/L2¼M/Lt2]

Q volumetric flow rate, [L3/t]
_QQ rate of heat transfer into the system, [FL/t¼ML2/t3]

q heat transferred into the system per unit mass of fluid, [FL/M¼L2/t2]

R gas constant, [FL/(mol T)¼ML2 (mol t2T)]

R radius, [L]

s entropy per unit mass, [FL/M¼L2/t2]

T temperature, [T]

t time, [t]

u internal energy per unit mass, [FL/M¼L2/t2]

v local velocity, [L/t]

V spatial average velocity, [L/t]

W width of plate, [L]
_WW rate of work done by fluid system, [FL/t¼ML2/t3]

Wp wetted perimeter, [L]
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w work done by fluid system per unit mass of fluid, [FL/M¼L2/t2]

x, y, z coordinate directions, [L]

� kinetic energy correction factor, [—]

� the ratio d=D, where d < D, [—]

� moment or torque, [FL¼ML2/t2]

�( ) ( )2 — ( )1
~r gradient vector operator, [1/L]

� film thickness, [L]

� viscosity (constant), [M/Lt]

� specific volume [L3/M]

� potential (¼Pþ �gzÞ, [F/L2¼M/Lt2]

� density, [M/L3]

�yx shear stress component, force in x direction on y area component,

[F/L2¼M/Lt2]

s shear stress tensor, [F/L2¼M/Lt2]

�w stress exerted on wall by fluid, [F/L2¼M/Lt2]

! angular velocity, [1/t]

Subscripts

1 reference point 1

2 reference point 2

i input

o output

s system

x, y, z coordinate directions, [L]
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6
Pipe Flow

I. FLOW REGIMES

In 1883, Osborn Reynolds conducted a classical experiment, illustrated in
Fig. 6-1, in which he measured the pressure drop as a function of flow rate
for water in a tube. He found that at low flow rates the pressure drop was
directly proportional to the flow rate, but as the flow rate was increased a
point was reached where the relation was no longer linear and the ‘‘noise’’ or
scatter in the data increased considerably. At still higher flow rates the data
became more reproducible, but the relationship between pressure drop and
flow rate became almost quadratic instead of linear.

To investigate this phenomenon further, Reynolds introduced a trace
of dye into the flow to observe what was happening. At the low flow rates
where the linear relationship was observed, the dye was seen to remain a
coherent, rather smooth thread throughout most of the tube. However,
where the data scatter occurred, the dye trace was seen to be rather unstable,
and it broke up after a short distance. At still higher flow rates, where the
quadratic relationship was observed, the dye dispersed almost immediately
into a uniform ‘‘cloud’’ throughout the tube. The stable flow observed
initially was termed laminar flow, because it was observed that the fluid
elements moved in smooth layers or ‘‘lamella’’ relative to each other with
no mixing. The unstable flow pattern, characterized by a high degree of
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mixing between the fluid elements, was termed turbulent flow. Although the
transition from laminar to turbulent flow occurs rather abruptly, there is
nevertheless a transition region where the flow is unstable but not thoroughly
mixed.

Careful study of various fluids in tubes of different sizes has indicated
that laminar flow in a tube persists up to a point where the value of the
Reynolds number (NRe ¼ DV�=�) is about 2000, and turbulent flow occurs
when NRe is greater than about 4000, with a transition region in between.
Actually, unstable flow (turbulence) occurs when disturbances to the flow
are amplified, whereas laminar flow occurs when these disturbances are
damped out. Because turbulent flow cannot occur unless there are distur-
bances, studies have been conducted on systems in which extreme care has
been taken to eliminate any disturbances due to irregularities in the bound-
ary surfaces, sudden changes in direction, vibrations, etc. Under these con-
ditions, it has been possible to sustain laminar flow in a tube to a Reynolds
number of the order of 100,000 or more. However, under all but the most
unusual conditions there are sufficient natural disturbances in all practical
systems that turbulence begins in a pipe at a Reynolds number of about
2000.

The physical significance of the Reynolds number can be appreciated
better if it is rearranged as

NRe ¼
DV�

�
¼ �V2

�V=D
ð6-1Þ
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The numerator is the flux of ‘‘inertial’’ momentum carried by the fluid along
the tube in the axial direction. The denominator is proportional to the
viscous shear stress in the tube, which is equivalent to the flux of ‘‘viscous’’
momentum normal to the flow direction, i.e., in the radial direction. Thus,
the Reynolds number is a ratio of the inertial momentum flux in the flow
direction to the viscous momentum flux in the transverse direction. Because
viscous forces are a manifestation of intermolecular attractive forces, they
are stabilizing, whereas inertial forces tend to pull the fluid elements apart
and are therefore destabilizing. It is thus quite logical that stable (laminar)
flow should occur at low Reynolds numbers where viscous forces dominate,
whereas unstable (turbulent) flow occurs at high Reynolds numbers where
inertial forces dominate. Also, laminar flows are dominated by viscosity and
are independent of the fluid density, whereas fully turbulent flows are domi-
nated by the fluid density and are independent of the fluid viscosity at high
turbulence levels. For fluids flowing near solid boundaries (e.g., inside
conduits), viscous forces dominate in the immediate vicinity of the bound-
ary, whereas for turbulent flows (high Reynolds numbers) inertial forces
dominate in the region far from the boundary. We will consider both the
laminar and turbulent flow of Newtonian and non-Newtonian fluids in pipes
in this chapter.

II. GENERAL RELATIONS FOR PIPE FLOWS

For steady, uniform, fully developed flow in a pipe (or any conduit), the
conservation of mass, energy, and momentum equations can be arranged in
specific forms that are most useful for the analysis of such problems. These
general expressions are valid for both Newtonian and non-Newtonian fluids
in either laminar or turbulent flow.

A. Energy Balance

Consider a section of uniform cylindrical pipe of length L and radius R,
inclined upward at an angle 
 to the horizontal, as shown in Fig. 6-2. The
steady-state energy balance (or Bernoulli equation) applied to an incom-
pressible fluid flowing in a uniform pipe can be written

���

�
¼ ef ¼ Kf

V2

2
ð6-2Þ

where � ¼ Pþ �gz, Kf ¼ 4 fL=D, and f is the Fanning friction factor.
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B. Momentum Balance

We can write a momentum balance on a cylindrical volume of fluid of radius
r, length L, centered on the pipe centerline (see Fig. 6-2) as follows:X

Fx ¼ ðP1 � P2Þ�r2 � �r2L�g sin 
 þ 2�rL�rx ¼ 0 ð6-3Þ

where �rx is the force in the x direction acting on the r surface of the fluid
system. Solving Eq. (6-3) for �rx gives

�rx ¼ ��r

2L
¼ ��w

r

R
ð6-4Þ

where �� ¼ �Pþ �gL sin 
 ¼ �Pþ �g �z, and �w is the stress exerted by
the fluid on the tube wall [i.e., �w ¼ ð��rxÞr¼R]. Note that Eq. (6-4) also
follows directly from integrating the axial component of the microscopic
momentum equation of motion in cylindrical coordinates (i.e., the z-com-
ponent equation in Appendix E).

Equation (6-4) is equivalent to Eq. (6-2), because

f ¼ �w
1
2
�V2

¼ Kf

4L=D
¼ ef

ð4L=DÞðV2=2Þ ð6-5Þ

Note that from Eq. (6-4) the shear stress is negative (i.e., the fluid
outside the cylindrical system of radius r is moving more slowly than that
inside the system and hence exerts a force in the �x direction on the fluid in
the system, which is bounded by the r surface). However, the stress at the
wall (�w) is defined as the force exerted in the þx direction by the fluid on the
wall (which is positive).
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C. Continuity

Continuity provides a relationship between the volumetric flow rate (Q)
passing through a given cross section in the pipe and the local velocity
(vx), i.e.,

�Q ¼ ��
X1

1
3

1

3

ð
A

vx2 dA ¼ �

ðR
0

2rvx dr ¼ �

ð
A

vx dr2 ð6-6Þ

This can be integrated by parts, as follows:

Q ¼ �

ð
A

vx dðr2Þ ¼ ��
ð
A

r2 dvx ¼ ��
ðR
0

r2
dvx
dr

dr ð6-7Þ

Thus, if the radial dependence of the shear rate (dvx=dr) is known or can be
found, the flow rate can be determined directly from Eq. (6-7). Application
of this is shown below.

D. Energy Dissipation

A different, but related, approach to pipe flow that provides additional
insight involves consideration of the rate at which energy is dissipated
per unit volume of fluid. In general, the rate of energy (or power) expended
in a system subjected to a force ~FF and moving at a velocity ~VV is simply
~FF � ~VV . With reference to the ‘‘simple shear’’ deformation shown in Fig. 3-1,
the corresponding rate of energy dissipation per unit volume of
fluid is ~FF � ~VV=Ah ¼ � dvx=dy. This can be generalized for any system as
follows:

_eef ¼ ef _mm ¼ ef�Q ¼
ð
vol

s : r~vv d ~VV ð6-8Þ

where s was defined in Eq. (5-60) and ~VV is the volume of the fluid in the pipe.
The ‘‘ : ’’ operator represents the scalar product of two dyads. Thus, inte-
gration of the local rate of energy dissipation throughout the flow volume,
along with the Bernoulli equation, which relates the energy dissipated per
unit mass (ef ) to the driving force (��), can be used to determine the flow
rate. All of the equations to this point are general, because they apply to
any fluid (Newtonian or non-Newtonian) in any type of flow (laminar or
turbulent) in steady, fully developed flow in a uniform cylindrical tube with
any orientation. The following section will illustrate the application of these
relations to laminar flow in a pipe.
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III. NEWTONIAN FLUIDS

A. Laminar Flow

For a Newtonian fluid in laminar flow,

�rx ¼ �
dvx
dr

or
dvx
dr

¼ �rx
�

ð6-9Þ

When the velocity gradient from Eq. (6-9) is substituted into Eq. (6-7), and
Eq. (6-4) is used to eliminate the shear stress, Eq. (6-7) becomes

Q ¼ ��
ðR
0

r2
dvx
dr

dr ¼ � �
�

ðR
0

r2�rx dr ¼ ��w
�R

ðR
0

r3 dr ð6-10Þ
or

Q ¼ ��wR
3

4�
¼ ����R4

8�L
¼ ����D4

128�L
ð6-11Þ

Equation (6-11) is known as the Hagen–Poiseuille equation.
This result can also be derived by equating the shear stress for a

Newtonian fluid, Eq. (6-9), to the expression obtained from the momentum
balance for tube flow, Eq. (6-4), and integrating to obtain the velocity
profile:

vxðrÞ ¼
�wR

2�

�
1� r2

R2

�
ð6-12Þ

Inserting this into Eq. (6-6) and integrating over the tube cross section gives
Eq. (6-11) for the volumetric flow rate.

Another approach is to use the Bernoulli equation [Eq. (6-2)] and Eq.
(6-8) for the friction loss term ef . The integral in the latter equation is
evaluated in a manner similar to that leading to Eq. (6-10) as follows.
Eliminating ef between Eq. (6-8) and the Bernoulli equation [Eq. (6-2),
i.e., �ef ¼ ���] leads directly to

_eef ¼ �Qef ¼ ���Q ¼
ð
vol

s:r~vv d ~VV ¼ L

ðR
0

�
dv

dr
2�r dr

¼ 2�L

�

ðR
0

�2r dr ¼ 2��2w
�R2

ðR
0

r3 dr ¼ �LR2�2w
2�

¼ �ð���Þ2D4

128�L
ð6-13Þ

which is, again, the Hagen–Poiseuille equation [Eq. (6-11)].
If the wall stress (�w) in Eq. (6-11) is expressed in terms of the Fanning

friction factor (i.e., �w ¼ f �V2=2) and the result solved for f, the dimension-
less form of the Hagen–Poiseuille equation results:

f ¼ 4�D�

Q�
¼ 16�

DV�
¼ 16

NRe

ð6-14Þ
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It may be recalled that application of dimensional analysis (Chapter 2)
showed that the steady fully developed laminar flow of a Newtonian
fluid in a cylindrical tube can be characterized by a single dimensionless
group that is equivalent to the product fNRe (note that this group is inde-
pendent of the fluid density, which cancels out). Since there is only one
dimensionless variable, it follows that this group must be the same (i.e.,
constant) for all such flows, regardless of the fluid viscosity or density, the
size of the tube, the flow rate, etc. Although the magnitude of this constant
could not be obtained from dimensional analysis, we have shown from basic
principles that this value is 16, which is also in agreement with experimental
observations. Equation (6-14) is valid for NRe < 2000, as previously
discussed.

It should be emphasized that these results are applicable only to ‘‘fully
developed’’ flow. However, if the fluid enters a pipe with a uniform (‘‘plug’’)
velocity distribution, a minimum hydrodynamic entry length (Le) is required
for the parabolic velocity flow profile to develop and the pressure gradient to
become uniform. It can be shown that this (dimensionless) ‘‘hydrodynamic
entry length’’ is approximately Le=D ¼ NRe=20.

B. Turbulent Flow

As previously noted, if the Reynolds number in the tube is larger than about
2000, the flow will no longer be laminar. Because fluid elements in contact
with a stationary solid boundary are also stationary (i.e., the fluid sticks to
the wall), the velocity increases from zero at the boundary to a maximum
value at some distance from the boundary. For uniform flow in a symme-
trical duct, the maximum velocity occurs at the centerline of the duct. The
region of flow over which the velocity varies with the distance from the
boundary is called the boundary layer and is illustrated in Fig. 6-3.

1. The Boundary Layer

Because the fluid velocity at the boundary is zero, there will always be a
region adjacent to the wall that is laminar. This is called the laminar sub-
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FIGURE 6-3 The boundary layer.



layer and is designated �L in Fig. 6-3. Note that for tube flow if NRe < 2000
the entire flow is laminar and �L ¼ R. The turbulent boundary layer (�T)
includes the region in the vicinity of the wall in which the flow is turbulent
and in which the velocity varies with the distance from the wall (y). Beyond
this region the fluid is almost completely mixed in what is often called the
turbulent core, and the velocity is independent of y. The transition from the
laminar sublayer to the turbulent boundary layer is gradual, not abrupt, and
the transition region is called the buffer zone.

2. Turbulent Momentum Flux

The velocity field in turbulent flow can be described by a local ‘‘mean’’
(or time-average) velocity, upon which is superimposed a time-dependent
fluctuating component or ‘‘eddy.’’ Even in ‘‘one-dimensional’’ flow, in
which the overall average velocity has only one directional component (as
illustrated in Fig. 6-3), the turbulent eddies have a three-dimensional struc-
ture. Thus, for the flow illustrated in Fig. 6-3, the local velocity components
are

vxðy; tÞ ¼ �vvxðyÞ þ v 0
xðy; tÞ

vyðy; tÞ ¼ 0þ v 0
yðy; tÞ ð6-15Þ

vzðy; tÞ ¼ 0þ v 0
zðy; tÞ

The time-average velocity ( �vv) obviously has zero components in the y and z
directions, but the eddy velocity components are nonzero in all three
directions. The time-average velocity is defined as

�vvx ¼ 1

T

ðT
0

vx dt ð6-16aÞ

so ðT
0

v 0
v dt ¼ 0 ð6-16bÞ

The average in Eq. (6-16a) is taken over a time T that is long compared to
the period of the eddy fluctuation.

Now the eddies transport momentum and the corresponding momen-
tum flux components are equivalent to (negative) shear stress components:

� 0xx ¼ ��ðv 0
xÞ2;

� 0yx ¼ � 0xy
� 0zx ¼ � 0xz

� 0xy ¼ ��v 0
xv

0
y

� 0yy ¼ ��ðv 0
yÞ2

� 0zy ¼ � 0yz

� 0xz ¼ ��v 0
xv

0
z

� 0yz ¼ ��v 0
yv

0
z

� 0zz ¼ ��ðv 0
zÞ2

ð6-17Þ
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These ‘‘turbulent momentum flux components’’ are also called Reynolds
stresses. Thus, the total stress in a Newtonian fluid in turbulent flow is
composed of both viscous and turbulent (Reynolds) stresses:

�ij ¼ �
@ �vvi
@xj

þ @ �vvj
@xi

� �
� �v 0

i v
0
j ð6-18Þ

Although Eq. (6-18) can be used to eliminate the stress components from the
general microscopic equations of motion, a solution for the turbulent flow
field still cannot be obtained unless some information about the spatial
dependence and structure of the eddy velocities or turbulent (Reynolds)
stresses is known. A classical (simplified) model for the turbulent stresses,
attributed to Prandtl, is outlined in the following subsection.

3. Mixing Length Theory

Turbulent eddies (with velocity components v 0
x, v 0

y, v 0
z) are continuously

being generated, growing and dying out. During this process, there is an
exchange of momentum between the eddies and the mean flow. Considering
a two-dimensional turbulent field near a smooth wall, Prandtl assumed that
v 0
x � v 0

y (a gross approximation) so that

� 0yx ¼ ��v 0
xv

0
y ffi ��ðv 0

xÞ2 ð6-19Þ
He also assumed that each eddy moves a distance l (the ‘‘mixing length’’)
during the time it takes to exchange its momentum with the mean flow,
i.e.,

v 0
x

l
ffi d �vvx

dy
ð6-20Þ

Using Eq. (6-20) to eliminate the eddy velocity from Eq. (6-19) gives

� 0yx ¼ �e

d �vvx
dy

ð6-21Þ

where �e,

�e ¼ �l2
d �vvx
dy

����
���� ð6-22Þ

is called the eddy viscosity. Note that the eddy viscosity is not a fluid prop-
erty; it is a function of the eddy characteristics (e.g., the mixing length or the
degree of turbulence) and the mean velocity gradient. The only fluid prop-
erty involved is the density, because turbulent momentum transport is an
inertial (i.e., mass-dominated) effect. Since turbulence (and all motion) is
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zero at the wall, Prandtl further assumed that the mixing length should be
proportional to the distance from the wall, i.e.,

l ¼ �y ð6-23Þ
Because these relations apply only in the vicinity of the wall, Prandtl also
assumed that the eddy (Reynolds) stress must be of the same order as the
wall stress, i.e.,

� 0yx ffi �w ¼ ��2y2
�
d �vvx
dy

�2

ð6-24Þ

Integrating Eq. (6-24) over the turbulent boundary layer (from y1, the edge
of the buffer layer, to y) gives

�vvx ¼ 1

�

�
�w
�

�1=2

ln yþ C1 ð6-25Þ

This equation is called the von Karman equation (or, sometimes, the ‘‘law of
the wall’’), and can be written in the following dimensionless form

vþ ¼ 1

�
ln yþ þ A ð6-26Þ

where

vþ ¼ �vvx
v�

¼ �vvx
V

ffiffiffiffiffiffi
2

f

s
; yþ ¼ yv��

�
¼ yV�

�

ffiffiffiffiffiffi
f

2

r
ð6-27Þ

The term

v� ¼
ffiffiffiffiffi
�w
�

r
¼ V

ffiffiffiffiffiffi
f

2

r
ð6-28Þ

is called the friction velocity, because it is a wall stress parameter with
dimensions of velocity. The parameters � and A in the von Karman equation
have been determined from experimental data on Newtonian fluids in
smooth pipes to be � ¼ 0:4 and A ¼ 5:5. Equation (6-26) applies only within
the turbulent boundary layer (outside the buffer region), which has been
found empirically to correspond to yþ 
 26.

Within the laminar sublayer the turbulent eddies are negligible, so

�yx ffi �w ¼ �
d �vv

dy
ð6-29Þ
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The corresponding dimensionless form of this equation is

dvþ

dyþ
¼ 1 ð6-30Þ

or
vþ ¼ yþ ð6-31Þ

Equation (6-31) applies to the laminar sublayer region in a Newtonian fluid,
which has been found to correspond to 0 � yþ � 5. The intermediate region,
or ‘‘buffer zone,’’ between the laminar sublayer and the turbulent boundary
layer can be represented by the empirical equation

vþ ¼ �3:05þ 5:0 ln yþ ð6-32Þ
which applies for 5 < yþ < 26.

4. Friction Loss in Smooth Pipe

For a Newtonian fluid in a smooth pipe, these equations can be integrated
over the pipe cross section to give the average fluid velocity, e.g.,

V ¼ 2

R2

ðR
0

�vvxr dr ¼ 2v�

ð1
0

vþð1� xÞ dx ð6-33Þ

where x ¼ y=R ¼ 1� r=R. If the von Karman equation [Eq. (6-26)] for vþ is
introduced into this equation and the laminar sublayer and buffer zones are
neglected, the integral can be evaluated and the result solved for 1=

ffiffiffi
f

p
to

give
1ffiffiffi
f

p ¼ 4:1 logðNRe

ffiffiffi
f

p
Þ � 0:60 ð6-34Þ

The constants in this equation were modified by Nikuradse from observed
data taken in smooth pipes as follows:

1ffiffiffi
f

p ¼ 4:0 logðNRe

ffiffiffi
f

p
Þ � 0:40 ð6-35Þ

Equation (6-35) is also known as the von Karman–Nikuradse equation and
agrees well with observations for friction loss in smooth pipe over the range
5� 103 < NRe < 5� 106.

An alternative equation for smooth tubes was derived by Blasius based
on observations that the mean velocity profile in the tube could be repre-
sented approximately by

�vvx ¼ vmax

�
1� r

R

�1=7

ð6-36Þ
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A corresponding expression for the friction factor can be obtained by writ-
ing this expression in dimensionless form and substituting the result into Eq.
(6-33). Evaluating the integral and solving for f gives

f ¼ 0:0791

N1=4
Re

ð6-37Þ

Equation (6-37) represents the friction factor for Newtonian fluids in
smooth tubes quite well over a range of Reynolds numbers from about
5000 to 105. The Prandtl mixing length theory and the von Karman and
Blasius equations are referred to as ‘‘semiempirical’’ models. That is, even
though these models result from a process of logical reasoning, the results
cannot be deduced solely from first principles, because they require the intro-
duction of certain parameters that can be evaluated only experimentally.

5. Friction Loss in Rough Tubes

All models for turbulent flows are semiempirical in nature, so it is necessary
to rely upon empirical observations (e.g., data) for a quantitative description
of friction loss in such flows. For Newtonian fluids in long tubes, we have
shown from dimensional analysis that the friction factor should be a unique
function of the Reynolds number and the relative roughness of the tube
wall. This result has been used to correlate a wide range of measurements
for a range of tube sizes, with a variety of fluids, and for a wide range of flow
rates in terms of a generalized plot of f versus NRe, with "=D as a parameter.
This correlation, shown in Fig. 6-4, is called a Moody diagram.

The laminar region (for NRe < 2000) is described by the theoretical
Hagen–Poiseuille equation [Eq. (6-14)], which is plotted in Fig. 6-4. In this
region, the only fluid property that influences friction loss is the viscosity
(because the density cancels out). Furthermore, the roughness has a negli-
gible effect in laminar flow, as will be explained shortly. The ‘‘critical zone’’
is the range of transition from laminar to turbulent flow, which corresponds
to values of NRe from about 2000 to 4000. Data are not very reproducible in
this range, and correlations are unreliable. The so-called transition zone in
Fig. 6-4 is the region where the friction factor depends strongly on both the
Reynolds number and relative roughness. The region in the upper right of
the diagram where the lines of constant roughness are horizontal is called
‘‘complete turbulence, rough pipes’’ or ‘‘fully turbulent.’’ In this region the
friction factor is independent of Reynolds number (i.e., independent of
viscosity) and is a function only of the relative roughness.

For turbulent flow in smooth tubes, the semiempirical Prandtl–von
Karman/Nikuradse or Blasius models represent the friction factor quite
well. Whether a tube is hydraulically ‘‘smooth’’ or ‘‘rough’’ depends upon
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the size of the wall roughness elements relative to the thickness of the
laminar sublayer. Because laminar flow is stable, if the flow perturbations
due to the roughness elements lie entirely within the laminar region the
disturbances will be damped out and will not affect the rest of the flow
field. However, if the roughness elements protrude through the laminar
sublayer into the turbulent region, which is unstable, the disturbance will
grow, thus enhancing the Reynolds stresses and consequently the energy
dissipation or friction loss. Because the thickness of the laminar sublayer
decreases as the Reynolds number increases, a tube with a given roughness
may be hydraulically smooth at a low Reynolds number but hydraulically
rough at a high Reynolds number.

For rough tubes in turbulent flow (NRe > 4000), the von Karman
equation was modified empirically by Colebrook to include the effect of
wall roughness, as follows:

1ffiffiffi
f

p ¼ �4 log

�
"=D

3:7
þ 1:255

NRe

ffiffiffi
f

p �
ð6-38Þ

The term NRe

ffiffiffi
f

p
is, by definition,

NRe

ffiffiffi
f

p
¼
�
efD

3�2

2L�2

�1=2

ð6-39Þ

which is independent of velocity or flow rate. Thus the dimensionless groups
in the Colebrook equation are in a form that is convenient if the flow rate is
to be found and the allowable friction loss (e.g., driving force), tube size, and
fluid properties are known.

In the ‘‘fully turbulent’’ region, f is independent of NRe, so the
Colebrook equation reduces to

f ¼
�

1

4 log½3:7=ð"=DÞ�
�2

ð6-40Þ

Just as for laminar flow, a minimum hydrodynamic entry length (Le) is
required for the flow profile to become fully developed in turbulent flow.
This length depends on the exact nature of the flow conditions at the tube
entrance but has been shown to be on the order of Le=D ¼ 0:623N0:25

Re . For
example, if NRe ¼ 50,000 then Le=D ¼ 10 (approximately).

6. Wall Roughness

The actual size of the roughness elements on the conduit wall obviously
varies from one material to another, with age and usage, and with the
amount of dirt, scale, etc. Characteristic values of wall roughness have
been determined for various materials, as shown in Table 6-1. The most
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common pipe material—clean, new commercial steel or wrought iron—has
been found to have an effective roughness of about 0.0018 in. (0.045mm).
Other surfaces, such as concrete, may vary by as much as several orders of
magnitude, depending upon the nature of the surface finish. These rough-
ness values are not measured directly but have been determined indirectly.
Conduit surfaces artificially roughened by sand grains of various sizes were
studied initially by Nikuradse, and measurements of f and NRe were plotted
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TABLE 6–1 Equivalent Roughness of Various Surfaces

Material Condition Roughness range Recommended

Drawn brass, New 0.01–0.0015 mm 0.002 mm
copper, stainless (0.0004–0.00006 in.) (0.00008 in.)

Commercial steel New 0.1–0.02 mm 0.045 mm
(0.004–0.0008 in.) (0.0018 in.)

Light rust 1.0–0.15 mm 0.3 mm
(0.04–0.006 in.) (0.015 in.)

General rust 3.0–1.0 mm 2.0 mm
(0.1–0.04 in.) (0.08 in.)

Iron Wrought, new 0.045 mm 0.045 mm
(0.002 in.) (0.002 in.)

Cast, new 1.0–0.25 mm 0.30 mm
(0.04–0.01 in.) (0.025 in.)

Galvanized 0.15–0.025 mm 0.15 mm
(0.006–0.001 in.) (0.006 in.)

Asphalt-coated 1.0–0.1 mm 0.15 mm
(0.04–0.004 in.) (0.006 in.)

Sheet metal Ducts 0.1–0.02 mm 0.03 mm
Smooth joints (0.004–0.0008 in.) (0.0012 in.)

Concrete Very smooth 0.18–0.025 mm 0.04 mm
(0.007–0.001 in.) (0.0016 in.)

Wood floated, 0.8–0.2 mm 0.3 mm
brushed (0.03–0.007 in.) (0.012 in.)

Rough, visible 2.5–0.8 mm 2.0 mm
form marks (0.1–0.03 in.) (0.08 in.)

Wood Stave, used 1.0–0.25 mm 0.5 mm
(0.035–0.01 in.) (0.02 in.)

Glass or plastic Drawn tubing 0.01–0.0015 mm 0.002 mm
(0.0004–0.00006 in.) (0.00008 in.)

Rubber Smooth tubing 0.07–0.006 mm 0.01 mm
(0.003–0.00025 in.) (0.0004 in.)

Wire-reinforced 4.0–0.3 mm 1.0 mm
(0.15–0.01 in.) (0.04 in.)



to establish the reference curves for various known values of "=D for these
surfaces, as shown on the Moody diagram. The equivalent roughness factors
for other materials are determined from similar measurements in conduits
made of the material, by plotting the data on the Moody diagram and
comparing the results with the reference curves (or by using the
Colebrook equation). For this reason, such roughness values are sometimes
termed the equivalent sand grain roughness.

C. All Flow Regimes

The expressions for the friction factor in both laminar and turbulent flow
were combined into a single expression by Churchill (1977) as follows:

f ¼ 2

��
8

NRe

�12

þ 1

ðAþ BÞ3=2
�1=12

ð6-41Þ

where

A ¼ 2:457 ln
1

ð7=NReÞ0:9 þ 0:27"=D

� �� �16
and

B ¼ 37,530

NRe

� �16

Equation (6-41) adequately represents the Fanning friction factor over the
entire range of Reynolds numbers within the accuracy of the data used to
construct the Moody diagram, including a reasonable estimate for the inter-
mediate or transition region between laminar and turbulent flow. Note that
it is explicit in f.

IV. POWER LAW FLUIDS

Corresponding expressions for the friction loss in laminar and turbulent
flow for non-Newtonian fluids in pipes, for the two simplest (two-
parameter) models—the power law and Bingham plastic—can be evaluated
in a similar manner. The power law model is very popular for representing
the viscosity of a wide variety of non-Newtonian fluids because of its
simplicity and versatility. However, extreme care should be exercised in its
application, because any application involving extrapolation beyond the
range of shear stress (or shear rate) represented by the data used to deter-
mine the model parameters can lead to misleading or erroneous results.
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Both laminar and turbulent pipe flow of highly loaded slurries of fine par-
ticles, for example, can often be adequately represented by either of these
two models over an appreciable shear rate range, as shown by Darby et al.
(1992).

A. Laminar Flow

Because the shear stress and shear rate are negative in pipe flow, the appro-
priate form of the power law model for laminar pipe flow is

�rx ¼ m _��nrx ¼ �m � dvx
dr

� �n

ð6-42Þ

By equating the shear stress from Eqs. (6-42) and (6-4), solving for the
velocity gradient, and introducing the result into Eq. (6-7) (as was done
for the Newtonian fluid), the flow rate is found to be

Q ¼ �

�
�w
mR

�1=n ðR
0

r2þ1=n dr ¼ �

�
�w
mr

�1=n�
n

3nþ 1

�
Rð3nþ1Þ=n ð6-43Þ

This is the power law equivalent of the Hagen–Poiseuille equation. It can be
written in dimensionless form by expressing the wall stress in terms of the
friction factor using Eq. (6-5), solving for f, and equating the result to 16=
NRe (i.e., the form of the Newtonian result). The result is an expression that
is identical to the dimensionless Hagen–Poiseuille equation:

fNRe;pl ¼ 16 ð6-44Þ
if the Reynolds number for the power law fluid is defined as

NRe;pl ¼
8DnV2�n�

m½2ð3nþ 1Þ=n�n ð6-45Þ

It should be noted that a dimensional analysis of this problem results in one
more dimensionless group than for the Newtonian fluid, because there is one
more fluid rheological property (e.g., m and n for the power law fluid, versus
� for the Newtonian fluid). However, the parameter n is itself dimensionless
and thus constitutes the additional ‘‘dimensionless group,’’ even though it is
integrated into the Reynolds number as it has been defined. Note also that
because n is an empirical parameter and can take on any value, the units in
expressions for power law fluids can be complex. Thus, the calculations are
simplified if a scientific system of dimensional units is used (e.g., SI or cgs),
which avoids the necessity of introducing the conversion factor gc. In fact,
the evaluation of most dimensionless groups is usually simplified by the use
of such units.
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B. Turbulent Flow

Dodge and Metzner (1959) modified the von Karman equation to apply to
power law fluids, with the following result:

1ffiffiffi
f

p ¼ 4

n0:75
log½NRe;pl f

1�n=2� � 0:4

n1:2
ð6-46Þ

Like the von Karman equation, this equation is implicit in f. Equation (6-46)
can be applied to any non-Newtonian fluid if the parameter n is interpreted
to be the point slope of the shear stress versus shear rate plot from (laminar)
viscosity measurements, at the wall shear stress (or shear rate) correspond-
ing to the conditions of interest in turbulent flow. However, it is not a simple
matter to acquire the needed data over the appropriate range or to solve the
equation for f for a given flow rate and pipe diameter, in turbulent flow.

Note that there is no effect of pipe wall roughness in Eq. (6-46), in
contrast to the case for Newtonian fluids. There are insufficient data in the
literature to provide a reliable estimate of the effect of roughness on friction
loss for non-Newtonian fluids in turbulent flow. However, the evidence that
does exist suggests that the roughness is not as significant for non-
Newtonian fluids as for Newtonian fluids. This is partly due to the fact
that the majority of non-Newtonian turbulent flows lie in the low
Reynolds number range and partly due to the fact that the laminar bound-
ary layer tends to be thicker for non-Newtonian fluids than for Newtonian
fluids (i.e., the flows are generally in the ‘‘hydraulically smooth’’ range for
common pipe materials).

C. All Flow Regimes

An expression that represents the friction factor for the power law fluid over
the entire range of Reynolds numbers (laminar through turbulent) and
encompasses Eqs. (6-44) and (6-46) has been given by Darby et al. (1992):

f ¼ ð1� �Þ fL þ �

½ f �8
T þ f �8

Tr �1=8
ð6-47Þ

where

fL ¼ 16

NRe;pl

ð6-48Þ

fT ¼ 0:0682n�1=2

N
1=ð1:87þ2:39nÞ
Re;pl

ð6-49Þ

fTr ¼ 1:79� 10�4 exp½�5:24n�N0:414þ0:757n
Re;pl ð6-50Þ
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The parameter � is given by

� ¼ 1

1þ 4��
ð6-51Þ

where

� ¼ NRe;pl �NRe;plc ð6-52Þ
and NRe;plc is the critical power law Reynolds number at which laminar flow
ceases:

NRe;plc ¼ 2100þ 875ð1� nÞ ð6-53Þ
Equation (6-48) applies for NRe;pl < NRe;plc, Eq. (6-49) applies for
4000 < NRe;pl < 105, Eq. (6-50) applies for NRe;plc < NRe;pl < 4000, and all
are encompassed by Eq. (6-47) for all NRe;pl.

V. BINGHAM PLASTICS

The Bingham plastic model usually provides a good representation for the
viscosity of concentrated slurries, suspensions, emulsions, foams, etc. Such
materials often exhibit a yield stress that must be exceeded before the mate-
rial will flow at a significant rate. Other examples include paint, shaving
cream, and mayonnaise. There are also many fluids, such as blood, that may
have a yield stress that is not as pronounced.

It is recalled that a ‘‘plastic’’ is really two materials. At low stresses
below the critical or yield stress (�o) the material behaves as a solid, whereas
for stresses above the yield stress the material behaves as a fluid. The
Bingham model for this behavior is

For j�j < �o: _�� ¼ 0

For j�j > �o: � ¼ 	�o þ �1 _��
ð6:54Þ

Because the shear stress and shear rate can be either positive or negative, the
plus/minus sign in Eq. (6-54) is plus in the former case and minus in the
latter. For tube flow, because the shear stress and shear rate are both nega-
tive, the appropriate form of the model is

For j�rxj < �o:
dvx
dr

¼ 0

For j�rxj > �o: �rx ¼ ��o þ �1
dvx
dr

ð6-55Þ
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A. Laminar Flow

Because the shear stress is always zero at the centerline in pipe flow and
increases linearly with distance from the center toward the wall [Eq. (6-4)],
there will be a finite distance from the center over which the stress is always
less than the yield stress. In this region, the material has solid-like properties
and does not yield but moves as a rigid plug. The radius of this plug (ro) is,
from Eq. (6-4),

ro ¼ R
�o
�w

ð6-56Þ

Because the stress outside of this plug region exceeds the yield stress, the
material will deform or flow as a fluid between the plug and the wall. The
flow rate must thus be determined by combining the flow rate of the ‘‘plug’’
with that of the ‘‘fluid’’ region:

Q ¼
ðA

vx dA ¼ Qplug þ �
ðR2

r2o

vx dr2 ð6-57Þ

Evaluating the integral by parts and noting that the Qplug term cancels with
�r2oVplug from the lower limit, the result is

Q ¼ ��
ðR
ro

r2 _�� dr ð6-58Þ

When Eq. (6-55) is used for the shear rate in terms of the shear stress and
Eq. (6-4) is used for the shear stress as a function of r, the integral can be
evaluated to give

Q ¼ �R3�w
4�1

�
1� 4

3

�
�o
�w

�
þ 1

3

�
�o
�w

�4�
ð6-59Þ

This equation is known as the Buckingham–Reiner equation. It can be cast in
dimensionless form and rearranged as follows:

fL ¼ 16

NRe

1þ 1

6

 
NHe

NRe

!
� 1

3

N4
He

f 3N7
Re

 !" #
ð6-60Þ

where the Reynolds number is given by

NRe ¼ DV�=�1 ð6-61Þ
and

NHe ¼ D2��o=�
2
1 ð6-62Þ
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is the Hedstrom number. Note that the Bingham plastic reduces to a
Newtonian fluid if �o ¼ 0 ¼ NHe. In this case Eq. (6-60) reduces to the
Newtonian result, i.e., f ¼ 16=NRe [see Eq. (6-14)]. Note that there are
actually only two independent dimensionless groups in Eq. (6-60) (consis-
tent with the results of dimensional analysis for a fluid with two rheological
properties, �o and �1), which are the combined groups fNRe and NHe=NRe.
The ratio NHe=NRe is also called the Bingham number, NBi ¼ D�o=�1V .
Equation (6-60) is implicit in f, so it must be solved by iteration for
known values of NRe and NHe. This is not difficult, however, because the
last term in Eq. (6-60) is usually much smaller than the other terms, in which
case neglecting this term provides a good first estimate for f. Inserting this
first estimate into the neglected term to revise f and repeating the procedure
usually results in rapid convergence.

B. Turbulent Flow

For the Bingham plastic, there is no abrupt transition from laminar to
turbulent flow as is observed for Newtonian fluids. Instead, there is a
gradual deviation from purely laminar flow to fully turbulent flow. For
turbulent flow, the friction factor can be represented by the empirical
expression of Darby and Melson (1981) [as modified by Darby et al. (1992)]:

fT ¼ 10a=N0:193
Re ð6-63Þ

where

a ¼ �1:47½1þ 0:146 expð�2:9� 10�5NHeÞ� ð6-64Þ

C. All Reynolds Numbers

The friction factor for a Bingham plastic can be calculated for any Reynolds
number, from laminar through turbulent, from the equation

f ¼ ð f mL þ f mT Þ1=m ð6-65Þ
where

m ¼ 1:7þ 40,000

NRe

ð6-66Þ

In Eq. (6-65), fT is given by Eq. (6-63) and fL is given by Eq. (6-60).

VI. PIPE FLOW PROBLEMS

There are three typical problems encountered in pipe flows, depending upon
what is known and what is to be found. These are the ‘‘unknown driving
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force,’’ ‘‘unknown flow rate,’’ and ‘‘unknown diameter’’ problems, and we
will outline here the procedure for the solution of each of these for both
Newtonian and non-Newtonian (power law and Bingham plastic) fluids. A
fourth problem, perhaps of even more practical interest for piping system
design, is the ‘‘most economical diameter’’ problem, which will be consid-
ered in Chapter 7.

We note first that the Bernoulli equation can be written

DF ¼ ef þ 1
2
ð�2V2

2 � �1V2
1 Þ ð6-67Þ

where

ef ¼
�
4fL

d

��
V2

2

�
¼ 32fLQ2

�2D2
ð6-68Þ

and

DF ¼ � ��

�
þ w

� �
ð6-69Þ

DF represents the net energy input into the fluid per unit mass (or the net
‘‘driving force’’) and is the combination of static head, pressure difference,
and pump work. When any of the terms in Eq. (6-69) are negative, they
represent a positive ‘‘driving force’’ for moving the fluid through the pipe
(positive terms represent forces resisting the flow, e.g., an increase in eleva-
tion, pressure, etc. and correspond to a negative driving force). In many
applications the kinetic energy terms are negligible or cancel out, although
this should be verified for each situation.

We will use the Bernoulli equation in the form of Eq. (6-67) for
analyzing pipe flows, and we will use the total volumetric flow rate (Q) as
the flow variable instead of the velocity, because this is the usual measure of
capacity in a pipeline. For Newtonian fluids, the problem thus reduces to a
relation between the three dimensionless variables:

NRe ¼
4Q�

�D�
; f ¼ ef�

2D5

32LQ2
;

"

D
ð6-70Þ

A. Unknown Driving Force

For this problem, we want to know the net driving force (DF) that is
required to move a given fluid (�; �) at a specified rate (Q) through a
specified pipe (D, L, "). The Bernoulli equation in the form DF ¼ ef
applies.
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1. Newtonian Fluid

The ‘‘knowns’’ and ‘‘unknowns’’ in this case are

Given: Q; �; �;D;L; " Find: DF

All the relevant variables and parameters are uniquely related through the
three dimensionless variables f, NRe, and "=D by the Moody diagram or the
Churchill equation. Furthermore, the unknown (DF ¼ ef ) appears in only
one of these groups ( f ). The procedure is thus straightforward:

1. Calculate the Reynolds number from Eq. (6-70).
2. Calculate "=D.
3. Determine f from the Moody diagram or Churchill equation [Eq.

(6-41)]; (if NRe < 2000, use f ¼ 16=NRe).
4. Calculate ef (hence DF) from the Bernoulli Equation, Eq. (6-68).

From the resulting value of DF, the required pump head (�w=g) can be
determined, for example, from a knowledge of the upstream and down-
stream pressures and elevations using Eq. (6-69).

2. Power Law Fluid

The equivalent problem statement is

Given: Q;m; n; �;D;L Find: DF

Note that we have an additional fluid property (m and n instead of �), but
we also assume that pipe roughness has a negligible effect, so the total
number of variables is the same. The corresponding dimensionless variables
are f, NRe;pl, and n [which are related by Eq. (6-47)], and the unknown
(DF ¼ ef ) appears in only one group ( f ). The procedure just followed
for a Newtonian fluid can thus also be applied to a power law fluid if the
appropriate equations are used, as follows.

1. Calculate the Reynolds number (NRe;pl), using Eq. (6-45) and the
volumetric flow rate instead of the velocity, i.e.,

NRe;pl ¼
27�3n�Q2�n

m�2�nD4�3n

n

3nþ 1

� �n

ð6-71Þ

2. Calculate f from Eq. (6-47).
3. Calculate ef (hence DF) from Eq. (6-68).

3. Bingham Plastic

The problem statement is

Given: Q; �1; �o; �;D;L Find: DF

Pipe Flow 171



The number of variables is the same as in the foregoing problems; hence the
number of groups relating these variables is the same. For the Bingham
plastic, these are f, NRe, and NHe, which are related by Eq. (6-65) [along
with Eqs. (6-60) and (6-63)]. The unknown (DF ¼ ef ) appears only in f, as
before. The solution procedure is similar to that followed for Newtonian
and power law fluids.

1. Calculate the Reynolds number.

NRe ¼
4Q�

�D�1
ð6-72Þ

2. Calculate the Hedstrom number:

NHe ¼
D2��o
�21

ð6-73Þ

3. Determine f from Eqs. (6-65), (6-63), and (6-60). [Note that an
iteration is required to determine fL from Eq. (6-60).]

4. Calculate ef , hence DF, from Eq. (6-68).

B. Unknown Flow Rate

In this case, the flow rate is to be determined when a given fluid is trans-
ported in a given pipe with a known net driving force (e.g., pump head,
pressure head, and/or hydrostatic head). The same total variables are
involved, and hence the dimensionless variables are the same and are related
in the same way as for the unknown driving force problems. The main
difference is that now the unknown (Q) appears in two of the dimensionless
variables ( f and NRe), which requires a different solution strategy.

1. Newtonian Fluid

The problem statement is

Given: DF;D;L; "; �; � Find: Q

The strategy is to redefine the relevant dimensionless variables by combining
the original groups in such a way that the unknown variable appears in one
group. For example, f and NRe can be combined to cancel the unknown
(Q) as follows:

fN2
Re ¼

DF �2D5

32LQ2

 ! 
4Q�

�D�

!2

¼ DF �2D3

2L�2
ð6-74Þ
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Thus, if we work with the three dimensionless variables fN2
Re, NRe, and "=D,

the unknown (Q) appears in only NRe, which then becomes the unknown
(dimensionless) variable.

There are various approaches that we can take to solve this problem.
Since the Reynolds number is unknown, an explicit solution is not possible
using the established relations between the friction factor and Reynolds
number (e.g., the Moody diagram or Churchill equation). We can, however
proceed by a trial-and-error method that requires an initial guess for an
unknown variable, use the basic relations to solve for this variable, revise
the guess accordingly, and repeat the process (iterating) until agreement
between calculated and guessed values is achieved.

Note that in this context, either f or NRe can be considered the
unknown dimensionless variable, because they both involve the unknown
Q. As an aid in making the choice between these, a glance at the Moody
diagram shows that the practical range of possible values of f is approxi-
mately one order of magnitude, whereas the corresponding possible range of
NRe is over five orders of magnitude! Thus, the chances of our initial guess
being close to the final answer are greatly enhanced if we choose to iterate
on f instead of NRe. Using this approach, the procedure is as follows.

1. A reasonable guess might be based on the assumption that the
flow conditions are turbulent, for which the Colebrook equation,
Eq. (6-38), applies.

2. Calculate the value of fN2
Re from given values.

3. Calculate f using the Colebrook equation, Eq. (6-38).
4. Calculate NRe ¼ ð fN2

Re=f Þ1=2, using f from step 3.
5. Using the NRe value from step 4 and the known value of "=D,

determine f from the Moody diagram or Churchill equation (if
NRe < 2000, use f ¼ 16=NRe).

6. If this value of f does not agree with that from step 3, insert the
value of f from step 5 into step 4 to get a revised value of NRe.

7. Repeat steps 5 and 6 until f no longer changes.
8. Calculate Q ¼ �D�NRe=4�.

2. Power Law Fluid

The problem statement is

Given: DF;D;L;m; n; � Find: Q

The simplest approach for this problem is also an iteration procedure based
on an assumed value of f :

1. A reasonable starting value for f is 0.005, based on a ‘‘dart throw’’
at the (equivalent) Moody diagram.
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2. Calculate Q from Eq. (6-68), i.e.,

Q ¼ �
D5 DF

32fL

 !1=2

ð6-75Þ

3. Calculate the Reynolds number from Eq. (6-71), i.e.,

NRe;pl ¼
27�3n�Q2�n

m�2�nD4�3n

n

3nþ 1

� �n

ð6-76Þ

4. Calculate f from Eq. (6-47).
5. Compare the values of f from step 4 and step 1. If they do not

agree, use the result of step 4 in step 2 and repeat steps 2–5 until
agreement is reached. Convergence usually requires only two or
three trials at most, unless very unusual conditions are encoun-
tered.

3. Bingham Plastic

The procedure is very similar to the one above.

Given: DF;D;L; �1; �o; � Find: Q

1. Assume f ¼ 0:005.
2. Calculate Q from Eq. (6-75).
3. Calculate the Reynolds and Hedstrom numbers:

NRe ¼
4Q�

�D�1
; NHe ¼

D2��o
�21

ð6-77Þ

4. Calculate f from Eq. (6-65).
5. Compare the value of f from step 4 with the assumed value in step

1. If they do not agree, use the value of f from step 4 in step 2
and repeat steps 2–5 until they agree. Note that an iteration is
required to determine fL in Eq. (6-65), but this procedure normally
converges rapidly unless unusual conditions are encountered.

C. Unknown Diameter

In this problem, it is desired to determine the size of the pipe (D) that will
transport a given fluid (Newtonian or non-Newtonian) at a given flow rate
(Q) over a given distance (L) with a given driving force (DF). Because the
unknown (D) appears in each of the dimensionless variables, it is appro-
priate to regroup these variables in a more convenient form for this
problem.
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1. Newtonian Fluid

The problem statement is

Given: DF;Q;L; "; �; � Find: D

We can eliminate the unknown (D) from two of the three basic groups
(NRe, "=D, and f ) as follows:

fN5
Re ¼

DF �2D5

32LQ2

 ! 
4Q�

�D�

!5

¼ 32 DF �5Q3

�3L�5
ð6-78Þ

NR ¼ NRe

"=D
¼ 4Q�

��"
ð6-79Þ

Thus, the three basic groups for this problem are fN5
Re, NR, and NRe, with

NRe being the dimensionless ‘‘unknown’’ (because it is now the only group
containing the unknown D). D is unknown, so no initial estimate for f can
be obtained from the equations, because "=D is also unknown. Thus the
following procedure is recommended for this problem:

1. Calculate fN5
Re from known quantities using Eq. (6-78).

2. Assume f ¼ 0:005.
3. Calculate NRe:

NRe ¼
fN5

Re

0:005

 !1=5

ð6-80Þ

4. Calculate D from NRe:

D ¼ 4Q�

��NRe

ð6-81Þ

5. Calculate "=D.
6. Determine f from the Moody diagram or Churchill equation using

the above values of NRe and "=D (if NRe < 2000, use f ¼ 16=NRe).
7. Compare the value of f from step 6 with the assumed value in step

2. If they do not agree, use the result of step 6 for f in step 3 in
place of 0.005 and repeat steps 3–7 until they agree.

2. Power Law Fluid

The problem statement is

Given: DF;Q;m; n; �;L Find: D
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The procedure is analogous to that for the Newtonian fluid. In this case,
the combined group fN

5=ð4�3nÞ
Re;pl (which we shall call K, for convenience) is

independent of D:

fN
5=ð4�3nÞ
Re;pl ¼ �2DF

32LQ2

 !
27�3nQ2�n

m�2�n

 
n

3nþ 1

!n" #5=ð4�3nÞ

¼ K ð6-82Þ

The following procedure can be used to find D:

1. Calculate K from Eq. (6-82).
2. Assume f ¼ 0.005:
3. Calculate NRe;pl from

NRe;pl ¼
K

f

� �ð4�3nÞ=5
ð6-83Þ

4. Calculate f from Eq. (6-47), using the value of NRe;pl from step 3.
5. Compare the result of step 4 with the assumed value in step 2. If

they do not agree, use the value of f from step 4 in step 3, and
repeat steps 3–5 until they agree.

The diameter D is obtained from the last value of NRe;pl from step 3:

D ¼ 27�3n�Q2�n

m�2�nNRe;pl

 
n

3nþ 1

!n" #1=ð4�3nÞ

ð6-84Þ

3. Bingham Plastic

The problem variables are

Given: DF;Q; �1�o; �;L Find: D

The combined group that is independent of D is equivalent to Eq. (6-78),
i.e.,

fN5
Re ¼

�2 DF

32LQ2

 ! 
4Q�

��1

!5

¼ 32 DF Q3�5

�3L�51

 !
ð6-85Þ

The procedure is

1. Calculate fN5
Re from Eq. (6-85).

2. Assume f ¼ 0:01.
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3. Calculate NRe from

NRe ¼
fN5

Re

0:01

 !1=5

ð6-86Þ

4. Calculate D from

D ¼ 4Q�

��1NRe

ð6-87Þ

5. Calculate NHe from

NHe ¼
D2��o
�21

ð6-88Þ

6. Calculate f from Eq. (6-65) using the values of NRe and NHe from
steps 3 and 5.

7. Compare the value of f from step 6 with the assumed value in step
2. If they do not agree, insert the result of step 6 for f into step 3 in
place of 0.01, and repeat Steps 3–7 until they agree.

The resulting value of D is determined in step 4.

D. Use of Tables

The relationship between flow rate, pressure drop, and pipe diameter for
water flowing at 608F in Schedule 40 horizontal pipe is tabulated in
Appendix G over a range of pipe velocities that cover the most likely con-
ditions. For this special case, no iteration or other calculation procedures
are required for any of the unknown driving force, unknown flow rate, or
unknown diameter problems (although interpolation in the table is usually
necessary). Note that the friction loss is tabulated in this table as pressure
drop (in psi) per 100 ft of pipe, which is equivalent to 100�ef=144L in
Bernoulli’s equation, where � is in lbm/ft

3, ef is in ft lbf/lbm, and L is in ft.

VII. TUBE FLOW (POISEUILLE) VISCOMETER

In Section II.B of Chapter 3, the tube flow viscometer was described in
which the viscosity of any fluid with unknown viscous properties could be
determined from measurements of the total pressure gradient (���=L) and
the volumetric flow rate (Q) in a tube of known dimensions. The viscosity is
given by

	 ¼ �w
_��w

ð6-89Þ
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where �w follows directly from the pressure gradient and Eq. (6-4), and the
wall shear rate is given by

_��w ¼ �
3n 0 þ 1

4n 0

� �
ð6-90Þ

where � ¼ 4Q=�R3 ¼ 8V=D and

n 0 ¼ d log �w
d log�

¼ d log ð���Þ
d logQ

ð6-91Þ

is the point slope of ��� versus Q at each measured value of Q. Equation
(6-90) is completely independent of the specific fluid viscous properties and
can be dreived from Eq. (6-7) as follows. By using Eq. (6-4), the independent
variable in Eq. (6-7) can be changed from r to �rx, i.e.,

Q ¼ ��
ðR
0

r2 _�� dr ¼ �R3

�3w

ð�w
0

�2rx _�� d�rx ð6-92Þ

This can be solved for the shear rate at the tube wall ð _��wÞ by first differ-
entiating Eq. (6-92) with respect to the parameter �w by application of
Leibnitz’ rule* to give

dð��3wÞ
d�w

¼ 4�2w _��w ð6-93Þ

where � ¼ 4Q=�R3. Thus,

_��w ¼ 1

4�2w

dð��3wÞ
d�w

¼ �w
4

d�

d�w
þ 3

�

�w

� �
¼ �

3n 0 þ 1

4n 0

� �
ð6-94Þ

where n 0 ¼ dðlog �wÞ=dðlog�Þ is the local slope of the log-log plot of �w
versus �, (or ��� versus Q), at each measured value of Q.

VIII. TURBULENT DRAG REDUCTION

A very remarkable effect was observed by Toms during World War II when
pumping Napalm (a ‘‘jellied’’ solution of a polymer in gasoline). He found
that the polymer solution could be pumped through pipes in turbulent flow
with considerably lower friction loss than exhibited by the gasoline at the
same flow rate in the same pipe without the polymer. This phenomenon,
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ðBðxÞ
AðxÞ

Iðx; yÞ dy ¼
ðBðxÞ
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� Iðx;AÞ @A
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known as turbulent drag reduction (or the Toms effect), has been observed
for solutions (mostly aqueous) of a variety of very high polymers (e.g.,
molecular weights on the order of 106) and has been the subject of a large
amount of research. The effect is very significant, because as much as 85%
less energy is required to pump solutions of some high polymers at concen-
trations of 100 ppm or less through pipes than is required to pump the
solvent alone at the same flow rate through the same pipe. This is illustrated
in Fig. 6-5, which shows some of Chang’s data (Darby and Chang, 1984) for
the Fanning friction factor versus (solvent) Reynolds number for fresh
and ‘‘degraded’’ polyacrylamide solutions of concentrations from 100 to
500 ppm, in a 2mm diameter tube. Note that the friction factor at low
Reynolds numbers (laminar flow) is much larger than that for the
(Newtonian) solvent, whereas it is much lower at high (turbulent)
Reynolds numbers. The non-Newtonian viscosity of these solutions is
shown in Fig. 3-7 in Chapter 3.

Although the exact mechanism is debatable, Darby and Chang (1984)
and Darby and Pivsa-Art (1991) have presented a model for turbulent drag
reduction based on the fact that solutions of very high polymers are visco-
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Reynolds number based on the solvent properties.) MDR is Virks’ maximum
drag reduction assymptote (Virk, 1985). (From Darby and Chang, 1984).



elastic and the concept that in any unsteady deformation (such as turbulent
flow) elastic properties will store energy that would otherwise be dissipated
in a purely viscous fluid. Since energy that is dissipated (i.e., the ‘‘friction
loss’’) must be made up by adding energy (e.g., by a pump) to sustain the
flow, that portion of the energy that is stored by elastic deformations
remains in the flow and does not have to be made up by external energy
sources. Thus, less energy must be supplied externally to sustain the flow,
i.e., the drag is reduced. This concept is analogous to that of bouncing an
elastic ball. If there is no viscosity (i.e., internal friction) to dissipate the
energy, the ball will continue to bounce indefinitely with no external energy
input needed. However, a viscous ball will not bounce at all, because all of
the energy is dissipated by viscous deformation and is transformed to
‘‘heat.’’ Thus, the greater the fluid elasticity in proportion to the viscosity,
the less the energy that must be added to replace that which is dissipated by
the turbulent motion of the flow.

The model for turbulent drag reduction developed by Darby and
Chang (1984) and later modified by Darby and Pivsa-Art (1991) shows
that for smooth tubes the friction factor versus Reynolds number relation-
ship for Newtonian fluids (e.g., the Colebrook or Churchill equation) may
also be used for drag-reducing flows, provided (1) the Reynolds number is
defined with respect to the properties (e.g., viscosity) of the Newtonian
solvent and (3) the Fanning friction factor is modified as follows:

fp ¼ fsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þN2

De

q ð6-95Þ

Here, fs is the solvent (Newtonian) Fanning friction factor, as predicted for a
Newtonian fluid with the viscosity of the solvent using the (Newtonian)
Reynolds number, fp is a ‘‘generalized’’ Fanning friction factor that applies
to (drag-reducing) polymer solutions as well as Newtonian fluids, and NDe is
the dimensionlessDeborah number, which depends upon the fluid viscoelastic
properties and accounts for the storage of energy by the elastic deformations
(for Newtonian fluids, NDe ¼ 0 so that fp ¼ fs). Figure 6-6 shows the data
from Fig. 6-5 (and many other data sets, as well) replotted in terms of this
generalized friction factor. The data are well represented by the classic
Colebrook equation (for Newtonian fluids in smooth tubes) on this plot.

The complete expression for NDe is given by Darby and Pivsa-Art
(1991) as a function of the viscoelastic fluid properties of the fluid (i.e.,
the Carreau parameters 	0, 
, and p). This expression is

NDe ¼
0:0163N�N

0:338
Re;s ð�s=	oÞ0:5

½1=N0:75
Re;s þ 0:00476N2

� ð�s=	oÞ0:75�0:318
ð6-96Þ
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where

N� ¼ ½ð1þN2

Þp � 1�0:5 ð6-97Þ

and

N
 ¼
8V


D
ð6-98Þ

NRe;s is the Reynolds number based on the solvent properties, �s is the
solvent viscosity, D is the pipe diameter, V is the velocity in the pipe, and

 is the fluid time constant (from the Carreau model fit of the viscosity
curve).

Inasmuch as the rheological properties are very difficult to measure
for very dilute solutions (100 ppm or less), a simplified expression was
developed by Darby and Pivsa-Art (1991) in which these rheological para-
meters are contained within two ‘‘constants,’’ k1 and k2:

NDe ¼ k2
8�sNRe;s

�D2

� �k1

N0:34
Re;s ð6-99Þ

where k1 and k2 depend only on the specific polymer solution and its con-
centration. Darby and Pivsa-Art (1991) examined a variety of drag-reducing
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data sets from the literature for various polymer solutions in various size
pipes and determined the corresponding values of k1 and k2 that fit the
model to the data. These values are given in Table 6-2. For any drag-
reducing solution, k1 and k2 can be determined experimentally from two
data points in the laboratory at two different flow rates (Reynolds numbers)
in turbulent flow in any size pipe. The resulting values can be used with the
model to predict friction loss for that solution at any Reynolds number in
any size pipe. If the Colebrook equation for smooth tubes is used, the
appropriate generalized expression for the friction factor is

f ¼ 0:41

½lnðNRe;s=7Þ�2
1

ð1þN2
DeÞ1=2

ð6-100Þ

Example 6-1: Friction Loss in Drag-Reducing Solutions. Determine the
percentage reduction in the power required to pump water through a 3 in.
ID smooth pipe at 300 gpm by adding 100wppm of ‘‘degraded’’ Separan
AP-30.

Solution. We first calculate the Reynolds number for the solvent
(water) under the given flow conditions, using a viscosity of 0.01 poise
and a density of 1 g/cm3.

NRe;s ¼
4Q�

�D�
¼ 4ð300 gpmÞ½63:1 cm3=ðs gpmÞ�ð1 g=cm3Þ

�ð3 in:Þð2:54 cm=in:Þ½0:01 g=ðcm sÞ� ¼ 3:15� 105

Then calculate the Deborah number from Eq. (6-99), using k1 ¼ 0:088 and
k2 ¼ 0:0431 from Table 6-2:

NDe ¼ k2
8�sNRe;s

�D2

� �k1

N0:34
Re;s ¼ 5:45

These values can now be used to calculate the smooth pipe friction factor
from Eq. (6-100). Excluding the NDe term gives the friction factor for the
Newtonian solvent ( fs), and including the NDe term gives the friction factor
for the polymer solution ( fp) under the same flow conditions:

fs ¼
0:41

½lnðNRe;s=7Þ�2
¼ 0:00357

fp ¼ 0:41

½lnðNRe;s=7Þ�2
1

ð1þN2
DeÞ1=2

 !
¼ 0:000645

The power (HP) required to pump the fluid is given by ��P Q. Because
��P is proportional to fQ2 and Q is the same with and without the
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TABLE 6-2 Parameters for Eq. (6-93) for Various Polymer Solutions

Polymer Conc. Dia. k2
(mg/kg) (cm) k1 (sk1) Reference

Guar gum 20 1.27 0.05 0.009 Wang (1972)
(Jaguar A-20-D) 50 0.06 0.014

200 0.07 0.022
500 0.10 0.029

1000 0.16 0.028
Guar gum 30 0.05 0.008

60 0.06 0.010
240 0.08 0.016
480 0.11 0.018

Polyacrylamide 100 0.176– 0.093 0.0342 Darby and
Separan AP-30, 250 1.021 0.095 0.0293 Pivsa-Art (1991)
fresh 500 0.105 0.0244
Separan AP-30, 100 0.088 0.0431
degraded 250 0.095 0.0360

500 0.103 0.0280
AP-273 10 1.090 0.12 0.0420 White and Gordon
PAM E198 10 0.945 0.21 0.0074 (1975)

280 0.0078 Virk and Baher
PAA 300 2.0, 3.0 0.40 0.0050 (1970)

700 0.53 0.0049 Hoffmann (1978)
ET-597 125 0.69, 0.47 0.00037 Astarita et al. (1969)

250 1,1 2.05 0.39 0.0013
500 0.30 0.0061

Hydroxyethyl 100 2.54 0.10 0.0074 Wang (1972)
cellulose 200 0.16 0.0072
(OP-100M) 500 0.24 0.0068

1000 0.35 0.0063
(HEC) 2860 4.8, 1.1, 0.02 0.0310 Savins (1969)

2.05

Polyethylene oxide
WSR 301 10 5.08 0.22 0.017 Goren and Norbury

20 0.21 0.016 (1967)
50 0.19 0.014

W205 10 0.945 0.31 0.0022 Virk and Baher
105 0.26 0.0080 (1970)

Xanthan gum 1000 0.52 0.02 0.046 Bewersdorff (1988)
(Rhodopol 23)

Source: Darby and Pivsa-Art (1991).



polymer, the fractional reduction in power is given by

DR ¼ HPs �HPp

HPs

¼ fs � fp

fs
¼ 0:82

That is adding the polymer results in an 82% reduction in the power
required to overcome drag!

PROBLEMS

Pipe Flows

1. Show how the Hagen–Poiseuille equation for the steady laminar flow of a

Newtonian fluid in a uniform cylindrical tube can be derived starting from

the general microscopic equations of motion (e.g., the continuity and momen-

tum equations).

2. The Hagen–Poiseuille equation [Eq. (6-11)] describes the laminar flow of a

Newtonian fluid in a tube. Since a Newtonian fluid is defined by the relation

� ¼ � _��, rearrange the Hagen–Poiseuille equation to show that the shear rate at

the tube wall for a Newtonian fluid is given by _��w ¼ 4Q=�R3 ¼ 8V=D.

3. Derive the relation between the friction factor and Reynolds number in turbu-

lent flow for smooth pipe [Eq. (6-34)], starting with the von Karman equation

for the velocity distribution in the turbulent boundary layer [Eq. (6-26)].

4. Evaluate the kinetic energy correction factor � in Bernoulli’s equation for tur-

bulent flow assuming that the 1/7 power law velocity profile [Eq. (6-36)] is valid.

Repeat this for laminar flow of a Newtonian fluid in a tube, for which the

velocity profile is parabolic.

5. A Newtonian fluid with SG¼ 0.8 is forced through a capillary tube at a rate of

5 cm3/min. The tube has a downward slope of 308 to the horizontal, and the

pressure drop is measured between two taps located 40 cm apart on the tube

using a mercury manometer, which reads 3 cm. When water is forced through

the tube at a rate of 10 cm3/min, the manometer reading is 2 cm.

(a) What is the viscosity of the unknown Newtonian fluid?

(b) What is the Reynolds number of the flow for each fluid?

(c) If two separate pressure transducers, which read the total pressure directly

in psig, were used to measure the pressure at each of the pressure taps

directly instead of using the manometer, what would be the difference in

the transducer readings?

6. A liquid is draining from a cylindrical vessel through a tube in the bottom of the

vessel, as illustrated in Fig. 6-P6. If the liquid has a specific gravity of 0.85 and

drains out at a rate of 1 cm3/s, what is the viscosity of the liquid? The entrance

loss coefficient from the tank to the tube is 0.4, and the system has the following

dimensions:

D ¼ 2 in: d ¼ 2 mm

L ¼ 10 cm h ¼ 5 cm
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7. You are given a liquid and are asked to find its viscosity. Its density is known

to be 0.97 g/cm3. You place the fluid in an open vessel to which a 20 cm long

vertical tube with an inside diameter of 2 mm, is attached to the bottom. When

the depth of the liquid in the container is 6 cm, you find that it drains out

through the tube at a rate of 2.5 cm3/s. If the diameter of the open vessel is

much larger than that of the tube and friction loss from the vessel to the tube is

negligible, what is the fluid viscosity?

8. Repeat Problem 7 accounting for the friction loss from the vessel to the tube,

assuming a loss coefficient of 0.50 for the contraction.

9. You must measure the viscosity of an oil that has an SG of 0.92. To do this, you

put the oil into a large container to the bottom of which a small vertical tube,

25 cm long, has been attached, through which the oil can drain by gravity.

When the level of the oil in the container is 6 in. above the container bottom,

you find that the flow rate through the tube is 50 cm3/min. You run the same

experiment with water instead of oil and find that under the same conditions the

water drains out at a rate of 156 cm3/min. If the loss coefficient for the energy

dissipated in the contraction from the container to the tube is 0.5, what is the

viscosity of the oil?

10. You want to transfer No. 3 fuel oil (308API)from a storage tank to a power

plant at a rate of 2000 bbl/day. The diameter of the pipeline is 1 1
2
in. sch 40, with

a length of 1200 ft. The discharge of the line is 20 ft higher than the suction

end, and both ends are at 1 atm pressure. The inlet temperature of the oil is

608F, and the transfer pump is 60% efficient. If the specific heat of the oil is 0.5

Btu/(lbm 8F) and the pipeline is perfectly insulated, determine:

(a) The horsepower of the motor required to drive the pump

(b) The temperature of the oil leaving the pipeline

11. You must specify a pump to deliver 800 bbl/day of a 358API distillate at 908F
from a distillation column to a storage tank in a refinery. If the level in the tank

is 20 ft above that in the column, the total equivalent length of pipe is 900 ft, and

both the column and tank are at atmospheric pressure, what horsepower would
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be needed if you use 1 1
2 in. sch 40 pipe? What power would be needed if you use

1 in. sch 40 pipe?

12. Water is flowing at a rate of 700 gpm through a horizontal 6 in. sch 80 com-

mercial steel pipe at 908F. If the pressure drops by 2.23 psi over a 100 ft length

of pipe:

(a) What is the value of the Reynolds number?

(b) What is the magnitude of the pipe wall roughness?

(c) How much driving force (i.e., pressure difference) would be required to

move the water at this flow rate through 10mi of pipe if it were made of

commercial steel?
(d) What size commercial steel pipe would be required to transport the water at

the same flow rate over the same distance if the driving force is the static

head in a water tower 175 ft above the pipe?

13. A 358API distillate at 608F is to be pumped a distance of 2000 ft through a 4 in.

sch 40 horizontal pipeline at a flow rate of 500 gpm. What power must the pump

deliver to the fluid if the pipeline is made of: (a) drawn tubing; (b) commercial

steel; (c) galvanized iron; (d) PVC plastic?

14. The Moody diagram illustrates the effect of roughness on the friction factor in

turbulent flow but indicates no effect of roughness in laminar flow. Explain why

this is so. Are there any restrictions or limitations that should be placed on this

conclusion? Explain.

15. You have a large supply of very rusty 2 in. sch 40 steel pipe, which you want to

use for a pipeline. Because rusty metal is rougher than clean metal, you want to

know its effective roughness before laying the pipeline. To do this, you pump

water at a rate of 100 gpm through a 100 ft long section of the pipe and find that

the pressure drops by 15 psi over this length. What is the effective pipe rough-

ness, in inches?
16. A 32 hp pump (100% efficient) is required to pump water through a 2 in. sch 40

pipeline, 6000 ft long, at a rate of 100 gpm.

(a) What is the equivalent roughness of the pipe?

(b) If the pipeline is replaced by new commercial steel 2 in. sch 40 pipe, what

power would be required to pump water at a rate of 100 gpm through this

pipe? What would be the percentage saving in power compared to the old

pipe?

17. You have a piping system in your plant that has gotten old and rusty. The pipe

is 2 in. sch 40 steel, 6000 ft long. You find that it takes 35 hp to pump water

through the system at a rate of 100 gpm.

(a) What is the equivalent roughness of the pipe?

(b) If you replace the pipe with the same size new commercial steel pipe, what

percentage savings in the required power would you expect at a flow rate of

100 gpm?

18. Water enters a horizontal tube through a flexible vertical rubber hose that can

support no forces. If the tube is 1/8 in. sch. 40, 10 ft long, and the water flow

rate is 2 gpm, what force (magnitude and direction) must be applied to the tube

to keep it stationary? Neglect the weight of the tube and the water in it. The

hose ID is the same as that of the tube.
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19. A water tower that is 90 ft high provides water to a residential subdivision. The

water main from the tower to the subdivision is 6 in. sch 40 steel, 3 miles long. If

each house uses a maximum of 50 gal/hr (at peak demand) and the pressure in

the water main is not to be less than 30 psig at any point, how many homes can

be served by the water main?

20. A heavy oil (� ¼ 100 cP, SG¼ 0.85) is draining from a large tank through a 1/8

in. sch 40 tube into an open bucket. The level in the tank is 3 ft above the tube

inlet, and the pressure in the tank is 10 psig. The tube is 30 ft long, and it is

inclined downward at an angle of 458 to the horizontal. What is the flow rate of

the oil, in gpm? What is the value of the Reynolds number in this problem?

21. SAE 10 lube oil (SG¼ 0.93) is being pumped upward through a straight 1/4 in.

sch 80 pipe that is oriented at a 458 angle to the horizontal. The two legs of a

manometer using water as the manometer fluid are attached to taps in the pipe

wall that are 2 ft apart. If the manometer reads 15 in., what is the oil flow rate,

in gal/hr?

22. Cooling water is fed by gravity from an open storage tank 20 ft above ground,

through 100 ft of 1 1
2
in. ID steel pipe, to a heat exchanger at ground level. If the

pressure entering the heat exchanger must be 5 psig for it to operate properly,

what is the water flow rate through the pipe?

23. A water main is to be laid to supply water to a subdivision located 2 miles from

a water tower. The water in the tower is 150 ft above ground, and the subdivi-

sion consumes a maximum of 10,000 gpm of water. What size pipe should be

used for the water main? Assume Schedule 40 commercial steel pipe. The pres-

sure above the water is 1 atm in the tank and is 30 psig at the subdivision.

24. A water main is to be laid from a water tower to a subdivision that is 2 mi away.

The water level in the tower is 150 ft above the ground. The main must supply a

maximum of 1000 gpm with a minimum of 5 psig at the discharge end, at a

temperature of 658F. What size commercial steel sch 40 pipe should be used for

the water main? If plastic pipe (which is hydraulically smooth) were used

instead, would this alter the result? If so, what diameter of plastic pipe should

be used?
25. The water level in a water tower is 110 ft above ground level. The tower supplies

water to a subdivision 3 mi away, through an 8 in. sch 40 steel water main. If the

minimum water pressure entering the residential water lines at the houses must

be 15 psig, what is the capacity of the water main (in gpm)? If there are 100

houses in the subdivision and each consumes water at a peak rate of 20 gpm,

how big should the water main be?

26. A hydraulic press is powered by a remote high pressure pump. The gage pres-

sure at the pump is 20 MPa, and the pressure required to operate the press is

19MPa (gage) at a flow rate of 0.032 m3/min. The press and pump are to be

connected by 50 m of drawn stainless steel tubing. The fluid properties are those

of SAE 10 lube oil at 408C. What is the minimum tubing diameter that can be

used?
27. Water is to be pumped at a rate of 100 gpm from a well that is 100 ft deep,

through 2 mi of horizontal 4 in. sch 40 steel pipe, to a water tower that is 150 ft

high.
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(a) Neglecting fitting losses, what horsepower will the pump require if it is 60%

efficient?

(b) If the elbow in the pipe at ground level below the tower breaks off, how fast

will the water drain out of the tower?

(c) How fast would it drain out if the elbow at the top of the well gave way

instead?

(d) What size pipe would you have to run from the water tower to the ground in

order to drain it at a rate of 10 gpm?

28. A concrete pipe storm sewer, 4 ft in diameter, drops 3 ft in elevation per mile of

length. What is the maximum capacity of the sewer (in gpm) when it is flowing

full?

29. You want to siphon water from an open tank using a 1/4 in. diameter hose. The

discharge end of the hose is 10 ft below the water level in the tank, and the

siphon will not operate if the pressure falls below 1 psia anywhere in the hose. If

you want to siphon the water at a rate of 1 gpm, what is the maximum height

above the water level in the tank that the hose can extend and still operate?

Non-Newtonian Pipe Flows

30. Equation (6-43) describes the laminar flow of a power law fluid in a tube. Since

a power law fluid is defined by the relation � ¼ m _��n, rearrange Eq. (6-43) to

show that the shear rate at the tube wall for a power law fluid is given by _��w ¼
ð8V=DÞð3nþ 1Þ=4n where 8V=D is the wall shear rate for a Newtronian fluid.

31. A large tank contains SAE 10 lube oil at a temperature of 608F and a pressure

of 2 psig. The oil is 2 ft deep in the tank and drains out through a vertical tube

in the bottom. The tube is 10 ft long and discharges the oil at atmospheric

pressure. Assuming the oil to be Newtonian and neglecting the friction loss

from the tank to the tube, how fast will it drain through the tube? If the oil

is not Newtonian, but instead can be described as a power law fluid with a flow

index of 0.4 and an apparent viscosity of 80 cP at a shear rate of 1 s�1, how

would this affect your answer? The tube diameter is 1/2 in.

32. A polymer solution is to be pumped at a rate of 3 gpm through a 1 in. diameter

pipe. The solution behaves as a power law fluid with a flow index of 0.5, an

apparent viscosity of 400 cP at a shear rate of 1 s�1, and a density of 60 lbm/ft
3.

(a) What is the pressure gradient in psi/ft?

(b) What is the shear rate at the pipe wall and the apparent viscosity of the fluid

at this shear rate?

(c) If the fluid were Newtonian, with a viscosity equal to the apparent viscosity

from (b) above, what would the pressure gradient be?

(d) Calculate the Reynolds numbers for the polymer solution and for the above

Newtonian fluid.

33. A coal slurry that is characterized as a power law fluid has a flow index of 0.4

and an apparent viscosity of 200 cP at a shear rate of 1 s�1. If the coal has a

specific gravity of 2.5 and the slurry is 50% coal by weight in water, what pump

horsepower will be required to transport 25 million tons of coal per year

through a 36 in. ID, 1000mi long pipeline? Assume that the entrance and exit
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of the pipeline are at the same pressure and elevation and that the pumps are

60% efficient.
34. A coal slurry is found to behave as a power law fluid, with a flow index of 0.3, a

specific gravity of 1.5. and an apparent viscosity of 70 cP at a shear rate of

100 s�1. What volumetric flow rate of this fluid would be required to reach

turbulent flow in a 1/2 in. ID smooth pipe that is 15 ft long? What is the

pressure drop in the pipe (in psi) under these conditions?

35. A coal slurry is to be transported by pipeline. It has been determined that the

slurry may be described by the power law model, with a flow index of 0.4, an

apparent viscosity of 50 cP at a shear rate of 100 s�1, and a density of 90 lbm/ft
3.

What horsepower would be required to pump the slurry at a rate of 900 gpm

through an 8 in. sch 40 pipe that is 50 mi long?

36. A sewage sludge is to be transported a distance of 3 mi through a 12 in. ID

pipeline at a rate of 2000 gpm. The sludge is a Bingham plastic with a yield

stress of 35 dyn/cm2, a limiting viscosity of 80 cP, and a specific gravity of 1.2.

What size motor (in horsepower) would be required to drive the pump if it is

50% efficient?
37. A coal suspension is found to behave as a power law fluid, with a flow index of

0.4, a specific gravity of 1.5, and an apparent viscosity of 90 cP at a shear rate of

100 s�1. What would the volumetric flow rate of this suspension be in a 15 ft

long, 5/8 in. ID smooth tube, with a driving force of 60 psi across the tube?

What is the Reynolds number for the flow under these conditions?

38. A coal–water slurry containing 65% (by weight) coal is pumped from a storage

tank at a rate of 15 gpm through a 50 m long 1/2 in. sch 40 pipeline to a boiler,

where it is burned. The storage tank is at 1 atm pressure and 808F, and the

slurry must be fed to the burner at 20 psig. The specific gravity of coal is 2.5,

and it has a heat capacity of 0.5 Btu/(lbm8F).
(a) What power must the pump deliver to the slurry if it is assumed to be

Newtonian with a viscosity of 200 cP?

(b) In reality the slurry is non-Newtonian and can best be described as a

Bingham plastic with a yield stress of 800 dyn/cm2 and a limiting viscosity

of 200 cP. Accounting for these properties, what would the required pump-

ing power be?

(c) If the pipeline is well insulated, what will the temperature of the slurry be

when it enters the boiler, for both case (a) and case (b)?

39. A sludge is to be transported by pipeline. It has been determined that the sludge

may be described by the power law model, with a flow index of 0.6, an apparent

viscosity of 50 cP at a shear rate of 1 s�1, and a density of 95 lbm/ft
3. What

hydraulic horsepower would be required to pump the slurry at a rate of 600 gpm

through a 6 in. ID pipe that is 5 mi long?

40. You must design a transfer system to feed a coal slurry to a boiler. However,

you don’t know the slurry properties, so you measure them in the lab using a

cup-and-bob (Couette) viscometer. The cup has a diameter of 10 cm and a bob

diameter of 9.8 cm, and the length of the bob is 8 cm. When the cup is rotated at

a rate of 2 rpm, the torque measured on the bob is 2:4� 104 dyn cm, and at

20 rpm it is 6:5� 104 dyn cm.
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(a) If you use the Bingham plastic model to describe the slurry properties, what

are the values of the yield stress and the limiting viscosity?

(b) If the power law model were used instead, what would be the values of the

flow index and consistency?

(c) Using the Bingham plastic model for the slurry, with a value of the yield

stress of 35 dyn/cm2, a limiting viscosity of 35 cP, and a density of 1.2 g/cm3,

what horsepower would be required to pump the slurry through a 1000 ft

long, 3 in. ID sch 40 pipe at a rate of 100 gpm?
41. A thick slurry with SG¼ 1.3 is to be pumped through a 1 in. ID pipe that is

200 ft long. You don’t know the properties of the slurry, so you test it in the lab

by pumping it through a 4 mm ID tube that is 1m long. At a flow rate of

0.5 cm3/s, the pressure drop in this tube is 1 psi, and at a flow rate of 5 cm3/s it is

1.5 psi. Estimate the pressure drop that would be required to pump the slurry

through the 1 in. pipe at a rate of 2 gpm and also at 30 gpm. Clearly explain the

procedure you use, and state any assumptions that you make. Comment in

detail about the possible accuracy of your predictions. Slurry SG¼ 1.3.

42. Drilling mud has to be pumped down into an oil well that is 8000 ft deep. The

mud is to be pumped at a rate of 50 gpm to the bottom of the well and back to

the surface, through a pipe having an effective ID of 4 in. The pressure at the

bottom of the well is 4500 psi. What pump head is required to do this?

The drilling mud has properties of a Bingham plastic, with a yield stress of

100 dyn/cm2, a limiting (plastic) viscosity of 35 cP, and a density of 1.2 g/cm3.

43. A straight vertical tube, 100 cm long and 2 mm ID, is attached to the bottom of

a large vessel. The vessel is open to the atmosphere and contains a liquid with a

density of 1 g/cm3 to a depth of 20 cm above the bottom of the vessel.

(a) If the liquid drains through the tube at a rate of 3 cm3/s, what is it’s

viscosity?

(b) What is the largest tube diameter that can be used in this system to measure

the viscosity of liquids that are at least as viscous as water, for the same

liquid level in the vessel? Assume that the density is the same as water.

(c) A non-Newtonian fluid, represented by the power law model, is introduced

into the vessel with the 2 mm diameter tube attached. If the fluid has a flow

index of 0.65, an apparent viscosity of 5 cP at a shear rate of 10 s�1, and a

density of 1.2 g/cm3, how fast will it drain through the tube, if the level is 20

cm above the bottom of the vessel?
44. A non-Newtonian fluid, described by the power law model, is flowing through a

thin slit between two parallel planes of widthW, separated by a distance H. The

slit is inclined upward at an angle 
 to the horizontal.

(a) Derive an equation relating the volumetric flow rate of this fluid to the

pressure gradient, slit dimensions, and fluid properties.

(b) For a Newtonian fluid, this solution can be written in dimensionless form as

f ¼ 24=NRe;h

where the Reynolds number, NRe;h, is based upon the hydraulic diameter of

the channel. Arrange your solution for the power law fluid in dimensionless

form, and solve for the friction factor, f.
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(c) Set your result from (b) equal to 24=NRe;h and determine an equivalent

expression for the power law Reynolds number for slit flow.

45. You are drinking a milk shake through a straw that is 8 in. long and 0.3 in. in

diameter. The milk shake has the properties of a Bingham plastic, with a yield

stress of 300 dyn/cm2, a limiting viscosity of 150 cP, and a density of 0.8 g/cm3.

(a) If the straw is inserted 5 in. below the surface of the milk shake, how hard

must you suck to get the shake flowing through the entire straw (e.g., how

much vacuum must you pull, in psi)?

(b) If you pull a vacuum of 1 psi, how fast will the shake flow (in cm3/s)?

46. Water is to be transferred at a rate of 500 gpm from a cooling lake through a

6 in. diameter sch 40 pipeline to an open tank in a plant that is 30 mi from the

lake.
(a) If the transfer pump is 70% efficient, what horsepower motor is required to

drive the pump?

(b) An injection station is installed at the lake that injects a high polymer into

the pipeline, to give a solution of 50 ppm concentration with the following

properties: a low shear limiting viscosity of 80 cP, a flow index of 0.5, and a

transition point from low shear Newtonian to shear thinning behavior at a

shear rate of 10 s�1. What horsepower is now required to drive the same

pump, to achieve the same flow rate?

47. You measure the viscosity of a sludge in the lab and conclude that it can be

described as a power law fluid with a flow index of 0.45, a viscosity of 7 poise at

a shear rate of 1 s�1, and a density of 1.2 g/cm3.

(a) What horsepower would be required to pump the sludge through a 3 in. sch

40 pipeline, 1000 ft long, at a rate of 100 gpm?

(b) The viscosity data show that the sludge could also be described by the

Bingham plastic model, with a viscosity of 7 poise at a shear rate of 1 s�1

and a viscosity of 0.354 poise at a shear rate of 100 s�1. Using this model,

what required horsepower would you predict for the above pipeline?

(c) Which answer do you think would be the most reliable, (a) or (b), and why?

48. An open drum, 3 ft in diameter, contains a mud that is known to be described

by the Bingham plastic model, with a yield stress of 120 dyn/cm2, a limiting

viscosity of 85 cP, and a density of 98 lbm/ft
3. A 1 in. ID hose, 10 ft long, is

attached to a hole in the bottom of the drum to drain the mud out. How far

below the surface of the mud should the end of the hose be lowered in order to

drain the mud at a rate of 5 gpm?

49. You would like to determine the pressure drop–flow rate relation for a slurry in

a pipeline. To do this, you must determine the rheological properties of the

slurry, so you test it in the lab by pumping it through a 1/8 in. ID pipe that is

10 ft long. You find that it takes 5 psi pressure drop in the pipe to produce a

flow rate of 100 cm3/s and that 10 psi results in a flow rate of 300 cm3/s.

(a) What can you deduce about the rheological characteristics of the slurry

from these data?
(b) If it is assumed that the slurry can be adequately described by the power

law model, what are the values of the fluid properties, as deduced from the

data?
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(c) If the Bingham plastic model is used instead of the power law model to

describe the slurry, what are its properties?

50. A pipeline is installed to transport a red mud slurry from an open tank in an

alumina plant to a disposal pond. The line is 5 in. sch 80 commercial steel,

12,000 ft long, and is designed to transport the slurry at a rate of 300 gpm. The

slurry properties can be described by the Bingham plastic model, with a yield

stress of 15 dyn/cm2, a limiting viscosity of 20 cP, and an SG of 1.3. You may

neglect any fittings in this pipeline.

(a) What delivered pump head and hydraulic horsepower would be required to

pump this mud?

(b) What would be the required pump head and horsepower to pump water at

the same rate through the same pipeline?

(c) If 100 ppm of fresh Separan AP-30 polyacrylamide polymer were added to

the water in case (b), what would the required pump head and horsepower

be?

51. Determine the power required to pump water at a rate of 300 gpm through a

3 in. ID pipeline, 50 mi long, if:

(a) The pipe is new commercial steel

(b) The pipe wall is hydraulically smooth

(c) The pipe wall is smooth, and ‘‘degraded’’ Separan AP-30 polyacrylamide is

added to the water at a concentration of 100 wppm.

NOTATION

D diameter, [L]

DF driving force, Eq. (6-67), [FL/M¼L2/t2]

ef energy dissipated per unit mass of fluid, [FL/M¼L2/t2]

f Fanning friction factor, [—]

Fx force component in the x direction, [F¼ML/t2]

Kf loss coefficient, [—]

L length, [L]

m power law consistency parameter, [M/Lt2�n]

n power law flow index, [—]

NDe Deborah number, [—]

NHe Hedstrom number, Eq. (6-62), [—]

NRe Reynolds number, [—]

NRe;s solvent Reynolds number, [—]

NRe;pl power law Reynolds number, [—]

P pressure, [F/L2¼M/Lt2]

Q volumetric flow rate, [L3/t]

r radial direction, [L]

R tube radius, [L]

t time, [t]

V spatial average velocity, [L/t]

v� friction velocity, Eq. (6-28), [L/t]
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vx local velocity in the x direction, [L/t]

v 0
x turbulent eddy velocity component in the x direction, [L/t]

vþ dimensionless velocity, Eq. (6-27), [—]

w external shaft work (e.g., � pump work) per unit mass of fluid

[FL/M¼L2/t2]

yþ dimensionless distance from wall, Eq. (6-27), [—]

�L laminar boundary layer thickness, [L]

�T turbulent boundary layer thickness, [L]

" roughness, [L]

� potential (¼ Pþ �gz), [F/L2¼M/Lt2]

� viscosity (constant), [M/Lt]

� density, [M/L3]

so yield stress, [F/L2¼M/Lt2]

�rx shear stress component, force in x direction on r surface,

[F/L2¼M/Lt2]

� 0rx turbulent (Reynolds) stress component, [F/L2¼M/Lt2]

�w stress exerted by the fluid on the wall, [F/L2¼M/Lt2]

Subscripts

x, y, z, 
 coordinate directions

w wall location
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7

Internal Flow Applications

I. NONCIRCULAR CONDUITS

All the relationships presented in Chapter 6 apply directly to circular pipe.
However, many of these results can also, with appropriate modification, be
applied to conduits with noncircular cross sections. It should be recalled
that the derivation of the momentum equation for uniform flow in a tube
[e.g., Eq. (5-44)] involved no assumption about the shape of the tube cross
section. The result is that the friction loss is a function of a geometric
parameter called the ‘‘hydraulic diameter’’:

Dh ¼ 4
A

Wp

ð7-1Þ

where A is the area of the flow cross section and Wp is the wetted perimeter
(i.e., the length of contact between the fluid and the solid boundary in the
flow cross section). For a full circular pipe, Dh ¼ D (the pipe diameter). The
hydraulic diameter is the key characteristic geometric parameter for a
conduit with any cross-sectional shape.

A. Laminar Flows

By either integrating the microscopic momentum equations (see Example
5-9) or applying a momentum balance to a ‘‘slug’’ of fluid in the center
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of the conduit as was done for tube flow, a relationship can be deter-
mined between flow rate and driving force for laminar flow in a conduit
with a noncircular cross section. This can also be done by application of
the equivalent integral expressions analogous to Eqs. (6-6) to (6-10). The
results for a few examples for Newtonian fluids will be given below.
These results are the equivalent of the Hagen–Poiseuille equation for a
circular tube and are given in both dimensional and dimensionless form.

1. Flow in a Slit

Flow between two flat parallel plates that are closely spaced (h 
 W) is
shown in Fig. 7-1. The hydraulic diameter for this geometry is
Dh ¼ 4A=Wp ¼ 2h, and the solution for a Newtonian fluid in laminar
flow is

Q ¼ ���Wh3

12�L
ð7-2Þ

This can be rearranged into the equivalent dimensionless form

fNRe;h ¼ 24 ð7-3Þ
where

NRe;h ¼ DhV�

�
¼ DhQ�

�A
ð7-4Þ

Here, A ¼ Wh, and the Fanning friction factor is, by definition,

f ¼ ef�
V2

2

�
4L

Dh

� � ¼ ����
�V2

2

�
4L

Dh

� � ð7-5Þ

because the Bernoulli equation reduces to ef ¼ ���=� for this system.

2. Flow in a Film

The flow of a thin film down an inclined plane is illustrated in Fig. 7-2. The
film thickness is h
 W , and the plate is inclined at an angle 
 to the vertical.
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FIGURE 7-1 Flow in a slit.



For this flow the hydraulic diameter is Dh ¼ 4h (since only one boundary in
the cross section is a wetted surface). The laminar flow solution for a
Newtonian fluid is

Q ¼ ��� h3W

3�L
¼ �gh3W cos 


3�
ð7-6Þ

The dimensionless form of this equation is

fNRe;h ¼ 24 ð7-7Þ
where the Reynolds number and friction factor are given by Eqs. (7-4) and
(7-5), respectively.

3. Annular Flow

Axial flow in the annulus between two concentric cylinders, as illustrated in
Fig. 7-3, is frequently encountered in heat exchangers. For this geometry the
hydraulic diameter is Dh ¼ ðDo �Di, and the Newtonian laminar flow
solution is

Q ¼ ����ðD2
o �D2

i Þ
128�L

D2
o þD2

i �
D2

o �D2
i

ln ðDo=DiÞ

 !
ð7-8Þ
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FIGURE 7-2 Flow in a film.

FIGURE 7-3 Flow in an annulus.



The dimensionless form of this expression is

fNRe;h ¼ 16� ð7-9Þ
where

� ¼ ðDo �DiÞ2

D2
o þD2

i �
D2

o �D2
i

lnðDo=DiÞ

ð7-10Þ

It can be shown that as Di=Do ! 0, �! 1 and the flow approaches that for
a circular tube. Likewise, as Di=Do ! 1, �! 1:5 and the flow approaches
that for a slit.

The value of fNRe;h for laminar flow varies only by about a factor of
50% or so for a wide variety of geometries. This value has been determined
for a Newtonian fluid in various geometries, and the results are summarized
in Table 7-1. This table gives the expressions for the cross-sectional area and
hydraulic diameter for six different conduit geometries, and the correspond-
ing values of fNRe;h, the dimensionless laminar flow solution. The total
range of values for fNRe;h for all of these geometries is seen to be approxi-
mately 12–24. Thus, for any completely arbitrary geometry, the dimension-
less expression fNRe;h � 18 would provide an approximate solution for fully
developed flow, with an error of about 30% or less.

B. Turbulent Flows

The effect of geometry on the flow field is much less pronounced for turbu-
lent flows than for laminar flows. This is because the majority of the energy
dissipation (e.g., flow resistance) occurs within the boundary layer, which, in
typical turbulent flows, occupies a relatively small fraction of the total flow
field near the boundary. In contrast, in laminar flow the ‘‘boundary layer’’
occupies the entire flow field. Thus, although the total solid surface
contacted by the fluid in turbulent flow influences the flow resistance, the
actual shape of the surface is not as important. Consequently, the hydraulic
diameter provides an even better characterization of the effect of geometry
for noncircular conduits with turbulent flows than with laminar flows. The
result is that relationships developed for turbulent flows in circular pipes can
be applied directly to conduits of noncircular cross section simply by
replacing the tube diameter by the hydraulic diameter in the relevant
dimensionless groups. The accuracy of this procedure increases with
increasing Reynolds number, because the higher the Reynolds number the
greater the turbulence intensity and the thinner the boundary layer; hence
the less important the actual shape of the cross section.
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It is important to use the hydraulic diameter substitution (D ¼ Dh) in
the appropriate (original) form of the dimensionless groups [e.g.,
NRe ¼ DV�=�, f ¼ ef=ð2LV2=DÞ� and not a form that has been adapted
for circular tubes (e.g., NRe ¼ 4Q�=�D�Þ. That is, the proper modification
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TABLE 7-1 Laminar Flow Factors for Noncircular Conduits

A ¼ �D2=4 fNRe;h ¼ 16

Dh ¼ D

A ¼ D2 fNRe;h ¼ 14:2

Dh ¼ D

A ¼ ð1=2Þðd 2 sin 	Þ

Dh ¼
d sin 	

1þ sinð	=2Þ

A ¼ Dd

Dh ¼ 2Dd=ðD þ dÞ

fNRe;h ¼ 16

2=3þ ð11=24Þðd=DÞð2� d=DÞ

A ¼ �dD fNRe;h ¼ 2D2
h ðD2 þ d2Þ=ðD2d2Þ

Dh ¼ 4dDð64� 16c2Þ
ðd þ DÞð64� 3c4Þ

c ¼ ðD � dÞ=ðD þ dÞ for 0:1 < D=d < 10

A ¼ dD=2 Dh ¼ 2dD=½d þ D þ ðd2 þ D2Þ1=2�

	 ¼ tan�1
�
D

d

�

	 (deg) fNRe;h

10 12.5

30 13.1

45 13.3

60 13.3

90 13.2

120 12.7

150 12.5

D=d fNRe;h

1 14.2

2 15.8

5 19.2

10 21.1

	 fNRe;h

10 12.5

30 13.0

45 13.2

60 13.0

70 12.8

90 12.0



of the Reynolds number for a noncircular conduit is ½DhV�=�, not
4Q�=�Dh�. One clue that the dimensionless group is the wrong form for
a noncircular conduit is the presence of �, which is normally associated only
with circular geometries (Remember: ‘‘pi are round, cornbread are square’’).
Thus, the appropriate dimensionless groups from the tube flow solutions
can be modified for noncircular geometries as follows:

NRe;h ¼ DhV�

�
¼ 4Q�

Wp�
ð7-11Þ

f ¼ efDh

2LV2
¼ 2ef

LQ2

A3

Wp

 !
ð7-12Þ

NR ¼ NRe;h

"=Dh

¼ D2
hQ�

"A�
¼ 16Q�

"�

A

W2
p

 !
ð7-13Þ

fN2
Re;h ¼

32ef�
2

L�2

A

Wp

� �3

¼ ef�
2D3

h

2L�2
ð7-14Þ

fN5
Re;h ¼

2048efQ
3�5

L�5

A

W2
p

 !3

ð7-15Þ

The circular tube expressions for f and NRe can also be transformed into the
equivalent expressions for a noncircular conduit by the substitution

�! Wp

Dh

¼ 4
A

D2
h

¼ 1

4

W2
p

A

 !
ð7-16Þ

II. MOST ECONOMICAL DIAMETER

We have seen how to determine the driving force (e.g., pumping require-
ment) for a given pipe size and specified flow as well as how to determine the
proper pipe size for a given driving force (e.g., pump head) and specified
flow. However, when we install a pipeline or piping system we are usually
free to select both the ‘‘best’’ pipe and the ‘‘best’’ pump. The term ‘‘best’’ in
this case refers to that combination of pipe and pump that will minimize the
total system cost.

The total cost of a pipeline or piping system includes the capital cost of
both the pipe and pumps as well as operating costs, i.e. the cost of the energy
required to drive the pumps:
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Capital cost of pipe (CCP)
Capital cost of pump stations (CCPS)
Energy cost to power pumps (EC)

Although the energy cost is ‘‘continuous’’ and the capital costs are ‘‘one time,’’
it is common to spread out (or amortize) the capital cost over a period of Y
years i.e., over the ‘‘economic lifetime’’ of the pipeline. The reciprocal of
this (X ¼ 1=Y) is the fraction of the total capital cost written off per year.
Taking 1 year as the time basis, we can combine the capital cost per year and
the energy cost per year to get the total cost (there are other costs, such as
maintenance, but these are minor and do not materially influence the result).

Data on the cost of typical pipeline installations of various sizes were
reported by Darby and Melson (1982). They showed that these data can be
represented by the equation:

CCP ¼ aDp
ftL ð7-17Þ

where Dft is the pipe ID in feet, and the parameters a and p depend upon the
pipe wall thickness as shown in Table 7-2. Likewise, the capital cost of
(installed) pump stations (for 500 hp and over) was shown to be a linear
function of the pump power, as follows (see Fig. 7-4):

CCPS ¼ Aþ BHP=	e ð7-18Þ
where A ¼ 172; 800, B ¼ 450:8 hp�1 (in 1980 $), and HP/	e is the horse-
power rating of the pump, (HP is the ‘‘hydraulic power,’’ which is the
power delivered directly to the fluid).

The energy cost is determined from the pumping energy requirement,
which is in turn determined from the Bernoulli equation:

�w ¼ ��

�
þ 1

2
�V2 þ

X
ef ð7-19Þ
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TABLE 7-2 Cost of Pipe (1980$)a

Pipe grade

ANSI ANSI ANSI ANSI ANSI
Parameter 300# 400# 600# 900# 1500#

a 23.1 23.9 30.0 38.1 55.3
p 1.16 1.22 1.31 1.35 1.39

aPipe cost ð$=ftÞ ¼ aðIDftÞp
(Note: The ANSI pipe grades correspond approximately to Sched 20, 30, 40, 80, and 120 for

commercial steel pipe.



where

X
ef ¼ 4f

V2

2

X �
L

D

�
eq

ð7-20Þ

and
P ðL=DÞeq is assumed to include the equivalent length of any fittings

(which are usually a small portion of a long pipeline). The required hydrau-
lic pumping power (HP) is thus

HP ¼ �w _mm ¼ _mm
2fLV2

D
þ��

�

 !
¼ 32fL _mm3

�2�2D5
þ _mm

��

�
ð7-21Þ

The total pumping energy cost per year is therefore

EC ¼ CHP=	e ð7-22Þ
where C is the unit energy cost (e.g., $/(hp yr), ¢/kWh) and 	e is the pump
efficiency. Note that the capital cost increases almost linearly with the pipe
diameter, whereas the energy cost decreases in proportion to about the fifth
power of the diameter.

The total annual cost of the pipeline is the sum of the capital and
energy costs:

TC ¼ XðCCPþ CCPSÞ þ EC ð7-23Þ
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FIGURE 7-4 Cost of pump stations (1980 $). Pump station cost ð$Þ ¼ CCPS ¼ Aþ
B hp=	e where A ¼ 172;800 and B ¼ 451=hp for stations of 500 hp or more.



Substituting Eqs. (7-17), and (7-22) into Eq. (7-23) gives

TC ¼ XaDpLþ XAþ BX þ C

	e

32fL _mm3

�2�2D5
þ _mm

��

�

" #
ð7-24Þ

Now we wish to find the pipe diameter that minimizes this total cost. To do
this, we differentiate Eq. (7-24) with respect to D, set the derivative equal to
zero, and solve for D (i.e., Dec, the most economical diameter):

Dec ¼
Bþ CY

ap	e

160f _mm3

�2�2

 !" #1=ðpþ5Þ
ð7-25Þ

where Y ¼ 1=X is the ‘‘economic lifetime’’ of the pipeline.
One might question whether the cost information in Table 7-2 and

Fig. 7-4 could be used today, because these data are based on 1980
information and prices have increased greatly since that time. However,
as seen from Eq. (7-25), the cost parameters (i.e., B, C, and a) appear as
a ratio. Since capital costs and energy costs tend to inflate at approxi-
mately the same rate (see, e.g., Durand et al., 1999), this ratio is essen-
tially independent of inflation, and conclusions based on 1980 economic
data should be valid today.

A. Newtonian Fluids

Equation (7-25) is implicit for Dec, because the friction factor ( f ) depends
upon Dec through the Reynolds number and the relative roughness of the
pipe. It can be solved by iteration in a straightforward manner, however, by
the procedure used for the ‘‘unknown diameter’’ problem in Chapter 6. That
is, first assume a value for f (say, 0.005), calculate Dec from Eq. (7-25), and
use this diameter to compute the Reynolds number and relative roughness;
then use these values to find f (from the Moody diagram or Churchill
equation). If this value is not the same as the originally assumed value,
used it in place of the assumed value and repeat the process until the values
of f agree.

Another approach is to regroup the characteristic dimensionless vari-
ables in the problem so that the unknown (Dec) appears in only one group.
After rearranging Eq. (7-25) for f , we see that the following group will be
independent of Dec:

fN
pþ5
Re ¼ 4

�

� �pþ3 �2ap	e _mm
pþ2

10ðBþ CYÞ�pþ5
¼ Nc ð7-26Þ
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We can call this the ‘‘cost group’’ (NcÞ, because it contains all the cost
parameters. We can also define a roughness group that does not include
the diameter:

NR ¼ "=Dec

NRe

¼ ��"

4 _mm
ð7-27Þ

The remaining group is the Reynolds number, which is the dependent group
because it contains Dec:

NRe ¼
4 _mm

�Dec�
ð7-28Þ

The Moody diagram can be used to construct a plot of NRe versus
Nc ¼ fNpþ5 for various values of p and NR (a double parametric plot),
which permits a direct solution to this problem (see Darby and Melson,
1982). The above equations can also be used directly to simplify the iterative
solution. Since the value of Nc is known, assuming a value for f will give NRe

directly from Eq. (7-26). This, in turn, gives Dec from Eq. (7-28), and hence
"=Dec. These values of NRe and "=Dec are used to find f (from the Moody
diagram or Churchill equation), and the iteration is continued until succes-
sive values of f agree. The most difficult aspect of working with these groups
is ensuring a consistent set of units for all the variables (with appropriate use
of the conversion factor gc, if working in engineering units). For this reason,
it is easier to work with consistent units in a scientific system (e.g., SI or cgs),
which avoids the need for gc.

Example 7-1: Economic Pipe Diameter. What is the most economical
diameter for a pipeline that is required to transport crude oil with a viscosity
of 30 cP and an SG of 0.95, at a rate of 1 million barrels per day using ANSI
1500# pipe, if the cost of energy is 5¢ per kWh (in 1980 $)? Assume that the
economical life of the pipeline is 40 years and that the pumps are 50%
efficient.

Solution. From Table 7-2, the pipe cost parameters are

p ¼ 1:39; a ¼ 55:3
$

ft2:39
� 3:28 ft

m

� �2:39

¼ 945:5$=m2:39

Using SI units will simplify the problem. After converting, we have

_mm ¼ �Q ¼ 1748 kg=s; � ¼ 0:03 Pa s; CY ¼ $17:52=W

From Fig. 7-4 we get the pump station cost factor B:

B ¼ 451 $=hp ¼ 0:604 $=W
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and the ‘‘cost group’’ is [Eq. (7-26)]

Nc ¼
4

�

� �pþ3 �2ap	e _mm
pþ2

10ðBþ CYÞ�pþ5
¼ 5:07� 1027 ¼ fN6:39

Re

Assuming a roughness of 0.0018 in., we can solve for Dec by iteration as
follows.

First, assume f ¼ 0:005 and use this to get NRe from Nc ¼ fN6:39
Re .

From NRe we find Dec, and thus "=Dec. Then, using the Churchill equation
or Moody diagram, we find a valyue for f and compare it with the assumed
value. This is repeated until convergence is achieved:

Assumed f NRe Dec(m) "=Dec f (Churchill)

0.005 4:96� 104 1.49 3:07� 10�5 0.00523
0.00523 4:93� 104 1.50 3:05� 10�5 0.00524

This agreement is close enough. The most economical diameter is 1.5m, or
59.2 in. The ‘‘standard pipe size’’ closest to this value on the high side (or the
closest size that can readily be manufactured) would be used.

B. Non-Newtonian Fluids

A procedure analogous to the one followed can be used for non-Newtonian
fluids that follow the power law or Bingham plastic models (Darby and
Melson, 1982).

1. Power Law

For power law fluids, the basic dimensionless variables are the Reynolds
number, the friction factor, and the flow index (n). If the Reynolds number
is expressed in terms of the mass flow rate, then

NRe;pl ¼
4

�

� �2�n
4n

3nþ 1

� �n _mm2�n�n�1

D4�3n
ec 8n�1m

 !
ð7-29Þ

Eliminating Dec from Eqs. (7-25) and (7-29), the equivalent cost group
becomes

f 4�3nN
5þp
Re;pl ¼

ð52:4Þð103nÞð27p�3nð1þpÞÞ
�ð2þnÞð1þpÞm5þp

ap	e
Bþ CY

� �4�3n

� �3�pþnðp�1Þ _mm2ðp�1Þþnð4�pÞ

½ð3nþ 1Þ=n�nð5þpÞ

 !
ð7-30Þ
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Since all values on the right hand side of Eq. (7-30) are known, assuming a
value of f allows a corresponding value of NRe pl to be determined. This
value can then be used to check the assumed value of f using the general
expression for the power law friction factor [Eq. (6-44)] and iterating until
agreement is attained.

2. Bingham Plastic

The basic dimensionless variables for the Bingham plastic are the Reynolds
number, the Hedstrom number, and the friction factor. Eliminating Dec

from the Reynolds number and Eq. (7-25) (as above), the cost group is:

fN
pþ5
Re ¼ 4

�

� �pþ3 �2ap	e _mm
pþ2

10ðBþ CY Þ�pþ5
1

 !
ð7-31Þ

Dec can also be eliminated from the Hedstrom number by combining it with
the Reynolds number:

NHeN
2
Re ¼

4

�

� �2 �0� _mm2

�41

 !
ð7-32Þ

These equations can readily be solved by iteration, as follows. Assuming a
value of f allows NRe to be determined from Eq. (7-31). This is then used
with Eq. (7-32) to find NHe. The friction factor is then calculated using these
values of NRe and NHe and the Bingham plastic pipe friction factor equation
[Eq. (6-62)]. The result is compared with the assumed value, and the process
is repeated until agreement is attained.

Graphs have been presented by Darby and Melson (1982) that can be
used to solve these problems directly without iteration. However, interpola-
tion on double-parametric logarithmic scales is required, so only approximate
results can be expected from the precision of reading these plots.Asmentioned
before, the greatest difficulty in using these equations is that of ensuring con-
sistent units. In many cases it is most convenient to use cgs units in problems
such as these, because fluid properties (density and viscosity) are frequently
found in these units, and the scientific system (e.g., cgs) does not require the
conversion factor gc. In addition, the energy cost is frequently given in cents
per kilowatt-hour, which is readily converted to cgs units (e.g., $/erg).

III. FRICTION LOSS IN VALVES AND FITTINGS

Evaluation of the friction loss in valves and fittings involves the determina-
tion of the appropriate loss coefficient (Kf ), which in turn defines the energy
loss per unit mass of fluid:

ef ¼ KfV
2=2 ð7-33Þ
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where V is (usually) the velocity in the pipe upstream of the fitting or
valve (however, this is not always true, and care must be taken to ensure
that the value of V that is used is the one that is used in the defining
equation for Kf ). The actual evaluation of Kf is done by determining the
friction loss ef from measurements of the pressure drop across the fitting
(valve, etc.). This is not straightforward, however, because the pressure in
the pipe is influenced by the presence of the fitting for a considerable
distance both upstream and downstream of the fitting. It is not possible,
therefore, to obtain accurate values from measurements taken at pressure
taps immediately adjacent to the fitting. The most reliable method is to
measure the total pressure drop through a long run of pipe both with
and without the fitting, at the same flow rate, and determine the fitting
loss by difference.

There are several ‘‘correlation’’ expressions for Kf , which are described
below in the order of increasing accuracy. The ‘‘3-K’’ method is recom-
mended, because it accounts directly for the effect of both Reynolds number
and fitting size on the loss coefficient and more accurately reflects the scale
effect of fitting size than the 2-K method. For highly turbulent flow, the
Crane method agrees well with the 3-K method but is less accurate at low
Reynolds numbers and is not recommended for laminar flow. The loss
coefficient and ðL=DÞeq methods are more approximate but give acceptable
results at high Reynolds numbers and when losses in valves and fittings are
‘‘minor losses’’ compared to the pipe friction. They are also appropriate for
first estimates in problems that require iterative solutions.

A. Loss Coefficient

Values of Kf for various types of valves, fittings, etc. are tabulated in various
textbooks and handbooks. The assumption that these values are constant
for a given type of valve or fitting is not accurate, however, because in reality
the value of Kf varies with both the size (scale) of the fitting and the level of
turbulence (Reynolds number). One reason that Kf is not the same for all
fittings of the same type (e.g., all 908 elbows) is that all the dimensions of a
fitting, such as the diameter and radius of curvature, do not scale by the
same factor for large and small fittings. Most tabulated values for Kf are
close to the values of K1 from the 3-K method.

B. Equivalent L=D Method

The basis for the equivalent L=D method is the assumption that there is
some length of pipe (Leq) that has the same friction loss as that which occurs
in the fitting, at a given (pipe) Reynolds number. Thus, the fittings are
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conceptually replaced by the equivalent additional length of pipe that has
the same friction loss as the fitting:

ef ¼
4fV2

2

X L

D

� �
eq

ð7-34Þ

where f is the friction factor in the pipe at the given pipe Reynolds number
and relative roughness. This is a convenient concept, because it allows the
solution of pipe flow problems with fittings to be carried out in a manner
identical to that without fittings if Leq is known. Values of ðL=DÞeq are
tabulated in various textbooks and handbooks for a variety of fittings and
valves and are also listed in Table 7-3. The method assumes that (1) sizes of
all fittings of a given type can be scaled by the corresponding pipe diameter
(D) and (2) the influence of turbulence level (i.e., Reynolds number) on the
friction loss in the fitting is identical to that in the pipe (because the pipe f
values is used to determine the fitting loss). Neither of these assumptions is
accurate (as pointed out above), although the approximation provided by
this method gives reasonable results at high turbulence levels (high Reynolds
numbers), especially if fitting losses are minor.

C. Crane Method

The method given in Crane Technical Paper 410 (Crane Co., 1991) is a
modification of the preceding methods. It is equivalent to the ðL=DÞeq
method except that it recognizes that there is generally a higher degree of
turbulence in the fitting than in the pipe at a given (pipe) Reynolds number.
This is accounted for by always using the ‘‘fully turbulent’’ value for f (e.g.,
fT) in the expression for the friction loss in the fitting, regardless of the
actual Reynolds number in the pipe, i.e.,

ef ¼
KfV

2

2
; where Kf ¼ 4fTðL=DÞeq ð7-35Þ

The value of fT can be calculated from the Colebrook equation,

fT ¼ 0:0625

½logð3:7D="Þ�2 ð7-36Þ

in which " is the pipe roughness (0.0018 in. for commercial steel). This is a
two-constant model [ fT and (L=DÞeq], and values of these constants are
tabulated in the Crane paper for a wide variety of fittings, valves, etc.
This method gives satisfactory results for high turbulence levels (high
Reynolds numbers) but is less accurate at low Reynolds numbers.
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D. 2-K (Hooper) Method

The 2-K method was published by Hooper (1981, 1988) and is based on
experimental data in a variety of valves and fittings, over a wide range of
Reynolds numbers. The effect of both the Reynolds number and scale (fit-
ting size) is reflected in the expression for the loss coefficient:

ef ¼
KfV

2

2
; where Kf ¼

K1

NRe

þ K1 1þ 1

IDin

� �
ð7-37Þ

Here, IDin is the internal diameter (in inches) of the pipe that contains the
fitting. This method is valid over a much wider range of Reynolds numbers
than the other methods. However. the effect of pipe size (e.g., 1=IDin) in Eq.
(7-37) does not accurately refect observations, as discussed below.

E. 3-K (Darby) Method

Although the 2-K method applies over a wide range of Reynolds numbers,
the scaling term (1/ID) does not accurately reflect data over a wide range of
sizes for valves and fittings, as reported in a variety of sources (Crane, 1988,
Darby, 2001, Perry and Green, 1998, CCPS, 1998 and references therein).
Specifically, all preceding methods tend to underpredict the friction loss for
pipes of larger diameters. Darby (2001) evaluated data from the literature
for various valves, tees, and elbows and found that they can be represented
more accurately by the following ‘‘3-K’’ equation:

Kf ¼
K1

NRe

þ Ki 1þ Kd

D0:3
n;in:

 !
ð7-38Þ

Values of the 3 K ’s (K1, Ki, and Kd) are given in Table 7-3 (along with
represesentative values of ½L=D�eqÞ for various valves and fittings. These
values were determined from combinations of literature values from the
references listed above, and were all found to accurately follows the scaling
law given in Eq. (7-38). The values of K1 are mostly those of the Hooper 2-K
method, and the values of Ki were mostly determined from the Crane data.
However, since there is no single comprehensive data set set for many fit-
tings over a wide range of sizes and Reynolds numbers, some estimation was
necessary for some values. Note that the values of Kd are all very close to
4.0, and this can be used to scale known values of Kf for a given pipe size to
apply to other sizes. This method is the most accurate of the methods
described for all Reynolds numbers and fitting sizes. Tables 7-4 and 7-5
list values for Kf for Expansions and Contractions, and Entrance and
Exit conditions, respectively, from Hooper (1988).

Internal Flow Applications 209



210 Chapter 7

T
A
B
L
E
7
-3

3
-K

C
o
n
s
ta
n
ts

fo
r
L
o
s
s
C
o
e
ffi
c
ie
n
ts

fo
r
V
a
lv
e
s
a
n
d
F
it
ti
n
g
s

K
f
¼

K
1
=
N

R
e
þ

K
ið1
þ

K
d
=
D

n
Þ

w
h
e
re

D
n
is

th
e
n
o
m
in
a
l
d
ia
m
e
te
r
in

in
c
h
e
s

F
it
ti
n
g

ðL
=
D
Þe
q

K
1

K
i

K
d

E
lb
o
w
s

9
0
8

T
h
re
a
d
e
d
,
s
ta
n
d
a
rd

ðr
=
D
¼

1
Þ

3
0

8
0
0

0
.1
4

4
.0

T
h
re
a
d
e
d
,
lo
n
g
ra
d
iu
s

ðr
=
D
¼

1
:5
Þ

1
6

8
0
0

0
.0
7
1

4
.2

F
la
n
g
e
d
,
w
e
ld
e
d
,
b
e
n
d
s

ðr
=
D
¼

1
Þ

2
0

8
0
0

0
.0
9
1

4
.0

ðr
=
D
¼

2
Þ

1
2

8
0
0

0
.0
5
6

3
.9

ðr
=
D
¼

4
Þ

1
4

8
0
0

0
.0
6
6

3
.9

ðr
=
D
¼

6
Þ

1
7

8
0
0

0
.0
7
5

4
.2

M
it
e
re
d

1
w
e
ld

(9
0
8)

6
0

1
0
0
0

0
.2
7

4
.0

2
w
e
ld
s

(4
5
8)

1
5

8
0
0

0
.0
6
8

4
.1

3
w
e
ld
s

(3
0
8)

8
8
0
0

0
.0
3
5

4
.2

4
5
8

T
h
re
a
d
e
d
s
ta
n
d
a
rd

ðr
=
D
¼

1
Þ

1
6

5
0
0

0
.0
7
1

4
.2

L
o
n
g
ra
d
iu
s

ðr
=
D
¼

1
:5
Þ

5
0
0

0
.0
5
2

4
.0

M
it
e
re
d
1
w
e
ld

(4
5
8)

1
5

5
0
0

0
.0
8
6

4
.0

2
w
e
ld
s

(2
2
.5
8)

6
5
0
0

0
.0
5
2

4
.0

1
8
0
8

T
h
re
a
d
e
d
,
c
lo
s
e
re
tu
rn

b
e
n
d

ðr
=
D
¼

1
Þ

5
0

1
0
0
0

0
.2
3

4
.0

F
la
n
g
e
d

ðr
=
D
¼

1
Þ

1
0
0
0

0
.1
2

4
.0

A
ll

ðr
=
D
¼

1
:5
Þ

1
0
0
0

0
.1
0

4
.0



Internal Flow Applications 211
T
e
e
s

T
h
ro
u
g
h
-B
ra
n
c
h
(a
s
e
lb
o
w
)

T
h
re
a
d
e
d

ðr
=
D
¼

1
Þ

6
0

5
0
0

0
.2
7
4

4
.0

ðr
=
D
¼

1
:5
Þ

8
0
0

0
.1
4

4
.0

F
la
n
g
e
d

ðr
=
D
¼

1
Þ

2
0

8
0
0

0
.2
8

4
.0

S
tu
b
-i
n
b
ra
n
c
h

1
0
0
0

0
.3
4

4
.0

R
u
n
T
h
ro
u
g
h

T
h
re
a
d
e
d

ðr
=
D
¼

1
Þ

2
0

2
0
0

0
.0
9
1

4
.0

F
la
n
g
e
d

ðr
=
D
¼

1
Þ

1
5
0

0
.0
1
7

4
.0

S
tu
b
-i
n
b
ra
n
c
h

1
0
0

0
0

V
a
lv
e
s
a
n
g
le

v
a
lv
e
�

4
5
8
fu
ll
lin
e
s
iz
e
,


¼

1
5
5

9
5
0

0
.2
5

4
.0

�
9
0
8
fu
ll
lin
e
s
iz
e
,


¼

1
1
5
0

1
0
0
0

0
.6
9

4
.0

G
lo
b
e
v
a
lv
e

S
ta
n
d
a
rd
,


¼

1
3
4
0

1
5
0
0

1
.7
0

3
.6

P
lu
g
v
a
lv
e

B
ra
n
c
h
fl
o
w

9
0

5
0
0

0
.4
1

4
.0

S
tr
a
ig
h
t
th
ro
u
g
h

1
8

3
0
0

0
.0
8
4

3
.9

T
h
re
e
-w

a
y
(fl
o
w

th
ro
u
g
h
)

3
0

3
0
0

0
.1
4

4
.0

G
a
te

v
a
lv
e

S
ta
n
d
a
rd
,


¼

1
8

3
0
0

0
.0
3
7

3
.9

B
a
ll
v
a
lv
e

S
ta
n
d
a
rd
,


¼

1
3

3
0
0

0
.0
1
7

4
.0

D
ia
p
h
ra
g
m

D
a
m
-t
y
p
e

1
0
0
0

0
.6
9

4
.9

S
w
in
g
c
h
e
c
k
V
m
in
¼

3
5
½�
ðlb

m
=
ft
3
Þ��

1
=
2

1
0
0

1
5
0
0

0
.4
6

4
.0

L
if
t
c
h
e
c
k

V
m
in
4
0
½�
lb

m
=
ft
3
Þ�1

=
2

6
0
0

2
0
0
0

2
.8
5

3
.8



212 Chapter 7

TABLE 7-4 Loss Coefficients for Expansions and
Contractions

Kf to be used with upstream velocity head, V 2
1 =2. 
 ¼ d=D

Contraction

	 < 458

NRe;1 < 2500:

Kf ¼ 1:6

�
1:2þ 160

NRe;1

�
1


4
� 1

� �
sin

	

2

NRe;1 > 2500:

Kf ¼ 1:6½0:6þ 1:92f1�
1� 
2


4

" #
sin

	

2

NRe;1 < 2500:

Kf ¼ 1:2þ 160

NRe;1

� �
1


4
� 1

� �
sin

	

2

� �1=2
NRe;1 > 2500:

Kf ¼ ½0:6þ 0:48f1� 1� 
2


4

" #
sin

	

2

� �1=2
Expansion

	 < 458

NRe;1; 4000:

Kf ¼ 5:2ð1� 
4Þ sin 	

2

NRe;1 > 4000:

Kf ¼ 2:6ð1þ 3:2f1Þð1� 
2Þ2 sin 	

2

	 > 458

NRe;1 < 4000:

Kf ¼ 2ð1� 
4Þ
NRe;1 > 4000:

Kf1 ¼ ð1þ 3:2f1Þð1� 
2Þ2

NRe;1 is the upstream Reynolds number, and f1 is the pipe

friction factor at this Reynolds number.

Source: Hooper (1988).



The definition of Kf (i.e., Kf ¼ 2ef=V
2Þ involves the kinetic energy of

the fluid, V2=2. For sections that undergo area changes (e.g., pipe entrance,
exit, expansion, or contraction), the entering and leaving velocities will be
different. Because the value of the velocity used with the definition of Kf is
arbitrary, it is very important to know which velocity is the reference value
for a given loss coefficient. Values of Kf are usually based on the larger
velocity entering or leaving the fitting (through the smaller area), but this
should be verified if any doubt exists.

A note is in order relative to the exit loss coefficient, which is listed in
Table 7-5 as equal to 1.0. Actually, if the fluid exits the pipe into unconfined
space, the loss coefficient is zero, because the velocity of a fluid exiting the
pipe (in a free jet) is the same as that of the fluid inside the pipe (and the
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kinetic energy change is also zero). However, when the fluid exits into a
confined space the kinetic energy is dissipated as friction in the mixing pro-
cess as the velocity goes to zero, so the loss coefficient is 1.0. In this case the
change in the kinetic energy and the friction loss at the exit cancel out.

IV. NON-NEWTONIAN FLUIDS

There are insufficient data in the literature to enable reliable correlation or
prediction of friction loss in valves and fittings for non-Newtonian fluids. As
a first approximation, however, it can be assumed that a correlation similar
to the 3-K method should apply to non-Newtonian fluids if the (Newtonian)
Reynolds number in Eq. (7-38) could be replaced by a single corresponding
dimensionless group that adequately characterizes the influence of the non-
Newtonian properties. For the power law and Bingham plastic fluid models,
two rheological parameters are required to describe the viscous properties,
which generally results in two corresponding dimensionless groups (NRe;pl

and n for the power law, and NRe and NHe for the Bingham plastic).
However, it is possible to define an ‘‘effective viscosity’’ for a non-
Newtonian fluid model that has the same significance for the Reynolds
number as the viscosity for a Newtonian fluid and incorporates all the
appropriate parameters for that model and that can be used to define an
equivalent non-Newtonian Reynolds number (see Darby and Forsyth,
1992). For a Newtonian fluid, the Reynolds number can be rearranged as
follows:

NRe ¼
DV�

�
¼ �v2

�V=D
¼ �V2

�w=8
ð7-39Þ

Introducing �w ¼ m½ð8V=DÞð3nþ 1Þ=4n�n for the power law model, the result
is

NRe;pl ¼
27�3n�Q2�n

m�2�nD4�3n

n

3nþ 1

� �n

ð7-40Þ

which is identical to the expression derived in Chapter 6. For the Bingham
plastic, the corresponding expression for the Reynolds number is:

NRe;BP ¼ 4Q�

�D�1ð1þ �D3�0=32Q�1Þ ¼
NRe

1þNHe=8NRe

ð7-41Þ

This is determined by replacing �w for the Newtonian fluid in Eq. (7-39) with
�0 þ �1 _��w and using the approximation _��w ¼ 8V=D. The ratio NHe=NRe ¼
D�0=V�1 is also called the Bingham number (NBiÞ. Darby and Forsyth
(1992) showed experimentally that mass transfer in Newtonian and non-
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Newtonian fluids can be correlated by this method; that is, the same cor-
relation applies to both Newtonian and non-Newtonian fluids when the
Newtonian Reynolds number is replaced by either Eq. (7-40) for the
power law fluid model or Eq. (7-41) for the Bingham plastic fluid model.
As a first approximation, therefore, we may assume that the same result
would apply to friction loss in valves and fittings as described by the 2-K or
3-K models [Eq. 7-38)].

V. PIPE FLOW PROBLEMS WITH FITTINGS

The inclusion of significant fitting friction loss in piping systems requires a
somewhat different procedure for the solution of flow problems than that
which was used in the absence of fitting losses in Chapter 6. We will consider
the same classes of problems as before, i.e. unknown driving force, unknown
flow rate, and unknown diameter for Newtonian, power law, and Bingham
plastics. The governing equation, as before, is the Bernoulli equation,
written in the form

DF ¼ � ��

�
þ w

� �
¼
X

ef þ
1

2
�ð�V2Þ ð7-42Þ

where

X
ef ¼

1

2

X
ðV2Kf Þ ¼

8Q2

�2

X Kf

D4
ð7-43Þ

Kpipe ¼
4fL

D
; Kfit ¼

K1

NRe

þ K1 1þ Ko

D0:3
n

� �
ð7-44Þ

and the summation is over each fitting and segment of pipe (of diameter D)
in the system. The loss coefficients for the pipe and fittings are given by the
Fanning friction factor and 3-K formula, as before. Substituting Eq. (7-43)
into Eq. (7-42) gives the following form of the Bernoulli equation:

DF ¼ 8Q2

�2

X
i

Ki

D4
i

þ �2
D4

2

� �1
D4

1

 !
ð7-45Þ

The �’s are the kinetic energy correction factors at the upstream and down-
stream points (recall that � ¼ 2 for laminar flow and � ¼ 1 for turbulent
flow for a Newtonian fluid).
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A. Unknown Driving Force

Here we wish to find the net driving force required to transport a given fluid
at a given rate through a given pipeline containing a specified array of valves
and fittings.

1. Newtonian Fluid

The knowns and unknowns for this case are

Given: Q; �; �;Di;Li; "i; fittings Find: DF

The driving force (DF) is given by Eq. (7-45), in which the Ki’s are related to
the other variables by the Moody diagram (or Churchill equation) for each
pipe segment (Kpipe), and by the 3-K method for each valve and fitting (Kfit),
as a function of the Reynolds number:

NRe i ¼
4Q�

�Di�
ð7-46Þ

The solution procedure is as follows:

1. Calculate NRe i from Eq. (7-46) for each pipe segment, valve, and
fitting (i).

2. For each pipe segment of diameter Di, get fi from the Churchill
equation or Moody diagram using NRe i and "i=Di, and calculate
Kpipe ¼ 4ðfL=DÞi.

3. For each valve and fitting, calculate K from NRe i, and Di, using
the 3-K method.

4. Calculate the driving force, DF, from Eq. (7-45).

2. Power Law Fluid

The knowns and unknowns for this case are:

Given: Q;Di;Li; "i;m; n; fittings Find: DF

The appropriate expressions that apply are the Bernoulli equation [Eq. (7-
45)], the power law Reynolds number [Eq. (7-40)], the pipe friction factor as
a function of NRe;pl and n [Eq. (6-44)], and the 3-K equation for fitting losses
[Eq. (7-38)] with the Reynolds number replaced by NRe;pl. The procedure is

1. From the given values, calculate NRe;pl from Eq. [7-40].
2. Using NRe pl and n, calculate f (and the corresponding Kpipe) for

each pipe section from the power law friction factor equation [Eq.
(6-44)], and calculate Kf for each valve and fitting using the 3-K
method [Eq. (7-38)].
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3. Calculate the driving force (DF) from the Bernoulli equation, Eq.
(7-45).

3. Bingham Plastic

The procedure for the Bingham plastic is identical to that for the power law
fluid, except that Eq. (7-41) is used for the Reynolds number in the 3-K
equation for fittings instead of Eq. (7-39), and the expression for the
Bingham pipe friction factor is given by Eq. (6-62).

B. Unknown Flow Rate

The Bernoulli equation [Eq. (7-45)] can be rearranged for the flow rate, Q, as
follows:

Q ¼ �

2
ffiffiffi
2

p DFX
i

ðKi=D
4
i Þ þ �2=D4

2 � �1=D4
1

2
64

3
75

1=2

ð7-47Þ

The flow rate can be readily calculated if the loss coefficients can be
determined. The procedure involves an iteration, starting with estimated
values for the loss coefficients. These are used in Eq. (7-47) to find Q,
which is used to calculate the Reynolds number(s), which are then used to
determine revised values for the Ki’s, as follows.

1. Newtonian Fluid

The knowns and unknowns are

Given: DF;D;L; "; �; �; fittings Find: Q

1. A first estimate for the pipe friction factor and the Ki’s can be
made by assuming that the flow is fully turbulent (and the
�’s ¼ 1). Thus,

f1 ¼
0:0625

½logð3:7D="Þ�2 ð7-48Þ

and

Kfit ¼ Ki 1þ Kd

D0:3
n; in:

 !
ð7-49Þ

2. Using these values, calculate Q from Eq. (7-47), from which the
Reynolds number is determined: NRe ¼ 4Q�=�D�Þ.
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3. Using this Reynolds number, determine the revised pipe friction
factor (and hence Kpipe ¼ 4fL=D) from the Moody diagram (or
Churchill equation), and the Kfit values from the 3-K equation.

4. Repeat steps 2 and 3 until Q does not change.

The solution is the last value of Q calculated from step 2.

2. Power Law Fluid

The knowns and unknowns are

Given: DF;D;L;m; n; � Find: Q

The procedure is essentially identical to the one followed for the Newtonian
fluid, except that Eq. (7-40) is used for the Reynolds number in step 2 and
Eq. (6-44) is used for the pipe friction factor in step 3.

3. Bingham Plastic

The knowns and unknowns are

Given: DF;D;L; �1; �0 Find: Q

The procedure is again similar to the one for the Newtonian fluid, except that
the pipe friction factor in step 3 (thus Kpipe) is determined from Eq. (6-62)
using NRe ¼ 4Q�=�D�1 and NHe ¼ D2��0=�

2
1. The values of Kfit are deter-

mined from the 3-K equation using Eq. (7-41) for the Reynolds number.

C. Unknown Diameter

It is assumed that the system contains only one size (diameter) of pipe. The
Bernoulli equation can be rearranged to give D:

D ¼ 8Q2ðPi Ki þ �2D4=D4
2 � �1D4=D4

1Þ
�2DF

" #1=4

ð7-50Þ

This is obviously implicit in D (the terms involving the �’s can be neglected
for the initial estimate). If the Ki values can be estimated, then the diameter
can be determined from Eq. (7-50). However, since D is unknown, so is "=D,
so a ‘‘cruder’’ first estimate for f and for the Kfit values is required. Also,
since Kpipe ¼ 4fL=D, an estimated value for f still does not allow determina-
tion of Kpipe. Therefore, the initial estimate for Kpipe can be made by neglect-
ing the fittings altogether, as outlined in Chapter 6.

1. Newtonian Fluids

The knowns and unknowns are

Given: Q;DF;L; "; �; � Find: D
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If fittings are neglected, the following group can be evaluated from known
values:

fN5
Re ¼

32DF �5Q3

�3L�5
ð7-51Þ

The procedure is as follows.

1. For a first estimate, assume f ¼ 0:005.
2. Use this in Eq. (7-51) to estimate the Reynolds number:

NRe ¼
fN5

Re

0:005

 !1=5

¼ 32DF �5Q3

0:005�3L�5

 !1=5

ð7-52Þ

3. Get a first estimate for D from this Reynolds number:

D ¼ 4Q�

��NRe

ð7-53Þ

Now the complete equations for f and Kfit can be used for further
iteration.

4. Using the estimates of D and NRe obtained in steps 2 and 3,
determine f and Kpipe from the Moody diagram (or Churchill
equation) and the Kfit from the 3-K formula.

5. Calculate D from Eq. (7-50), using the previous value of D (from
step 3) in the � terms.

6. If the values of D from steps 3 and 5 do not agree, calculate the
value of NRe using the D from step 5, and use these NRe and D
values in step 4.

7. Repeat steps 4–6 until D does not change.

2. Power Law Fluid

The knowns and unknowns are

Given: Q;DF;L;m; n; � Find: D

The basic procedure for the power law fluid is the same as above for the
Newtonian fluid. We get a first estimate for the Reynolds number by
ignoring fittings and assuming turbulent flow. This is used to estimate
the value of f (hence Kpipe) using Eq. (6-44) and the Kfit values from the
equivalent 3-K equation. Inserting these into Eq. (7-50) then gives a
first estimate for the diameter, which is then used to revise the
Reynolds number. The iteration continues until successive values agree,
as follows:

1. Assume f ¼ 0:005.
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2. Ignoring fittings, the first estimate for NRe;pl is

NRe;pl ¼
fN

5=ð4�3nÞ
Re;pl

0:005

 !ð4�3nÞ=5

¼ �2DF

0:16LQ2

 !ð4�3nÞ=5
27�3nQ2�n

m�2�n

n

3nþ 1

� �n
" #

ð7-54Þ

3. Get a first estimate for D from this value and the definition of the
Reynolds number:

D ¼ 27�3n�Q2�n

m�2�nNRe;pl

n

3nþ 1

� �n
" #1=ð4�3nÞ

ð7-55Þ

4. Using the values of NRe;pl from step 2 and D from step 3, calculate
the value of f and Kpipe) from Eq. (6-44), and the Kfit values from
the 3-K equation.

5. Insert the K values into Eq. (7-50) to find a new value of D.
6. If the value of D from step 5 does not agree with that from step 3,

use the value from step 5 to calculate a revised NRe;pl, and repeat
steps 4–6 until agreement is attained.

3. Bingham Plastic

The knowns and unknowns are

Given: Q;DF;L; �0; �1; � Find: D

The procedure for a Bingham plastic is similar to the foregoing, using Eq.
(6-62) for the pipe friction factor:

1. Assume f ¼ 0:02.
2. Calculate

fN5
Re ¼

32DFQ3�5

�3L�51
ð7-56Þ

3. Get a first estimate of Reynolds number from

NRe ¼
fN5

Re

0:02

 !1=5

ð7-57Þ

4. Use this to estimate D:

D ¼ 4Q�

�NRe�1
ð7-58Þ
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5. Using this D and NRe, calculate NHe ¼ D2��0=�
2
1, the pipe

friction factor from Eq. (6-62), Kpipe ¼ 4fL=D, and the Kfit’s
from the 3-K equation using Eq. (7-41) for the Bingham plastic
Reynolds number.

6. Insert the Kf values into Eq. (7-50) to get a revised value of D.
7. Using this value of D, revise the values of NRe and NHe, and repeat

steps 5–7 until successive values agree.

VI. SLACK FLOW

A special condition called ‘‘slack flow’’ can occur when the gravitational
driving force exceeds the full pipe friction loss, such as when a liquid is being
pumped up and down over hilly terrain. Consider the situation shown in
Fig. 7-5, in which the pump upstream provides the driving force to move the
liquid up the hill at a flow rate of Q. Since gravity works against the flow on
the uphill side and aids the flow on the downhill side, the job of the pump is
to get the fluid to the top of the hill. The minimum pressure is at point 2 at
the top of the hill, and the flow rate (Q) is determined by the balance
between the pump head (Hp ¼ �w=g) and the frictional and gravitational
resistance to flow on the uphill side (i.e., the Bernoulli equation applied from
point 1 to point 2):

Hp ¼ hf12 þ
�2 ��1

�g
ð7-59Þ

where

hf12 ¼
4fL12

gD

V2

2

 !
ð7-60Þ

Internal Flow Applications 221

FIGURE 7-5 Conditions for slack flow.



and Hp is the required pump head (e.g., �w=g). Now the driving force in the
pipe on the downhill side (from point 2 to point 3) is determined only by the
potential (pressure and gravity) difference between these two points, which
is independent of the flow rate. However, this driving force must be
balanced by the friction loss (resistance) in the pipe:

�2 ��3

�g
¼ hf23 ð7-61Þ

The friction loss is determined by the fluid properties, the fluid velocity, and
the pipe size. If the pipe is full of liquid, the velocity is determined by the
pipe diameter and flow rate (Q), both of which are the same on the downhill
side as on the uphill side for a constant area pipe. Since the downhill driving
force is mainly gravity, the higher the hill the greater is the driving force
relative to the ‘‘full pipe’’ flow resistance. Thus it is quite feasible that, for a
full pipe, the downhill conditions will be such that

�2 ��3

�g
> ðhf23 Þfull ð7-62Þ

Because the energy balance [Eq. (7-61)] must be satisfied, we see that the
friction loss on the downhill side must increase to balance this driving
force. The only way this can happen is for the velocity to increase, and
the only way this can occur is for the flow cross-sectional area to
decrease (because Q is fixed). The only way the flow area can change
is for the liquid to fill only part of the pipe, i.e., it must flow partly full
(with the remaining space filled with vapor). This condition is known as
slack flow; the pipe is full on the upstream side of the hill but only partly
full on the downstream side, with a correspondingly higher velocity in the
downhill pipe such that the friction loss on the downhill side balances the
driving force. Since the pressure in the vapor space is uniform, there will
be no ‘‘pressure drop’’ in the slack flow downhill pipe, and the driving
force in this section is due only to gravity.

The cross section of the fluid in the partially full pipe will not
be circular (see Fig. 7-6), so the methods used for flow in a noncircular
conduit are applicable, i.e., the hydraulic diameter applies. Thus, Eq.
(7-61) becomes

z2 � z3 ¼ hf23 ¼
2fLQ2

gDhA
2

ð7-63Þ
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where Dh ¼ 4A=Wp. If the depth of the liquid in the pipe is � (which can be
either larger or smaller than R; see Fig. 7-6), the expressions for the flow
cross section and wetted perimeter are

A ¼ R2

�
cos�1

�
1� �

R

�
�
�
1� �

R

�
1�

�
�

R

�2
" #1=2�

ð7-64Þ

and

Wp ¼ 2R cos�1 1� �

R

	 

ð7-65Þ

In order to find � for a given pipe, fluid, and flow rate, a trial-and-
error (iterative) procedure is required:

1. Assume a value of �=R and calculate A, Wp, and Dh.
2. Calculate NRe ¼ ðDhQ�Þ=A�, and determine f from the Moody

diagram (or Churchill equation).
3. Calculate the right-hand side (RHS) of Eq. (7-63). If

z2 � z3 < RHS, then increase the assumed value of �=R and repeat
the process. If z2 � z3 > RHS, then decrease the assumed value of
�=R and repeat. The solution is obtained when z2 � z3 ¼ RHS of
Eq. (7-63).

Example 7-2: Slack Flow. A commercial steel pipeline with a 10 in ID
carries water over a 300 ft high hill. The actual length of the pipe is 500 ft on
the upstream side, and 500 ft on the downstream side of the hill. Find (a) the
minimum flow rate at which slack flow will not occur in the pipe and (b) the
position of the interface in the pipe when the flow rate is 80% of this value.
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Solution. Slack flow will not occur until the driving force (due to
gravity) on the downstream side of the hill (from 2 to 3 in Fig. 7-5) exceeds
the friction loss in this part of the pipeline; that is, when Eq. (7-63) is no
longer satisfied with A ¼ �D2=4 and Dh ¼ D.

(a) Since this an ‘‘unknown flow rate’’ problem, the flow rate can
most easily be determined by first computing the value:

fN2
Re ¼

g�z �2D3

2L23�
2

¼ 4:82� 1010

where the fluid density has been taken to be 1 g/cm3 and the
viscosity 1 cp. This is solved iteratively with the Churchill equa-
tion for f and NRe, by first assuming f ¼ 0:005, then using this to
get NRe from the above equation. Using this NRe value, with
"=D ¼ 0:0018=10 ¼ 0:00018, f is found from the Churchill equa-
tion. This process is repeated until successive values of f agree.
This process gives f ¼ 0:0035 and NRe ¼ 3:73� 106. The flow
rate is then

Q ¼ �D�NRe

4�
¼ 7:44� 105 cm3=s ¼ 11; 800 gpm

(b) For a flow rate of 80% of the value found in (a), slack flow will
occur, and Eq. (7-63) must be satisfied for the resulting non-
circular flow section (partly full pipe). In this case, we cannot
calculate either f , A, or Dh ¼ 4A=Wp a priori. Collecting the
known quantities together on one side of the Eq. (7-63), we get

f

DhA
2
¼ g�z

2LQ2
¼ 2:13� 10�9 cm�3

This value is used to determine f , Dh, A, Wp, and R by iteration
using Eqs. (7-64) (7-65) and the Churchill equation, as follows.
Assuming a value of �=R permits calculation of A and Wp from
Eqs. (7-64) and (7-65), which also gives Dh ¼ 4A=Wp. The
Reynolds number is then determined from NRe ¼ DhQ�=A�,
which is used to determine f from the Churchill equation.
These values are combined to calculate the value of f =DhA

2,
and the process is repeated until this value equals
2:13� 10�9 cm�3. The results are

�=R ¼ 1:37; A ¼ 57:2 in2; Wp ¼ 19:5 in;

NRe ¼ 3:01� 106; f ¼ 0:00337
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That is, the water interface in the pipe is a little more than two-
thirds of the pipe diameter above the bottom of the pipe.

VII. PIPE NETWORKS

Piping systems often involve interconnected segments in various combina-
tions of series and/or parallel arrangements. The principles required to ana-
lyze such systems are the same as those have used for other systems, e.g., the
conservation of mass (continuity) and energy (Bernoulli) equations. For
each pipe junction or ‘‘node’’ in the network, continuity tells us that the
sum of all the flow rates into the node must equal the sum of all the flow
rates out of the node. Also, the total driving force (pressure drop plus
gravity head loss, plus pump head) between any two nodes is related to
the flow rate and friction loss by the Bernoulli equation applied between
the two nodes.

If we number each of the nodes in the network (including the entrance
and exit points), then the continuity equation as applied at node i relates the
flow rates into and out of the node:

Xn
n¼1

Qni ¼
Xm
m¼1

Qim ð7-66Þ

where Qni represents the flow rate from any upstream node n into node i,
and Qim is the flow rate from node i out to any downstream node m.

Also, the total driving force in a branch between any two nodes i and j
is determined by Bernoulli’s equation [Eq. (7-45)] as applied to this branch.
If the driving force is expressed as the total head loss between nodes (where
hi ¼ �i=�g), then

hi � hj �
wij

g
¼ 8Q2

ij

g�2D4
ij

Xj
i

Kf ij ð7-67Þ

where �wij=g is the pump head (if any) in the branch between nodes i and j,
Dij is the pipe diameter, Qij is the flow rate, and

Pj
i Kf ij represents the sum

of the loss coefficients for all of the fittings, valves, and pipe segments in the
branch between nodes i and j. The latter are determined by the 3-K equation
for all valves and fittings and the Churchill equation for all pipe segments
and are functions of the flow rates and pipe sizes (Qij and Dij) in the branch
between nodes i and j. The total number of equations is thus equal to the
number of branches plus the number of (internal) nodes, which then equals
the number of unknowns that can be determined in the network.

These network equations can be solved for the unknown driving force
(across each branch) or the unknown flow rate (in each branch of the net-
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work) or an unknown diameter for any one or more of the branches, subject
to constraints on the pressure (driving force) and flow rates. Since the solu-
tion involves simultaneous coupled nonlinear equations, the process is best
done by iteration on a computer and can usually be done by using a spread-
sheet. The simplest procedure is usually to assume values for the total head
hi at one or more intermediate nodes, because these values are bounded by
upstream and downstream values that are usually known, and then iterate
on these internal head values.

A typical procedure for determining the flow rates in each branch of a
network given the pipe sizes and pressures entering and leaving the network
is illustrated by the following example.

Example 7-3: Flow in a Manifold. A manifold, or ‘‘header,’’ distributes
fluid from a common source into various branch lines, as shown in the Fig.
7-7. The manifold diameter is chosen to be much larger than that of the
branches, so the pressure drop in the manifold is much smaller than that in
the branch lines, ensuring that the pressure is essentially the same entering
each branch. However, these conditions cannot always be satisfied in
practice, especially if the total flow rate is large and/or the manifold is
not sufficiently larger than the branch lines, so the assumptions should be
verified.

The header illustrated is 0.5 in. in diameter and feeds three branch
lines, each 0.25 in. in diameter. The five nodes are labeled in the diagram.
The fluid exits each of the branches at atmospheric pressure and the same
elevation, so each of the branch exit points is labeled ‘‘5’’ because the exit
conditions are the same for all three branches. The distance between the
branches on the header is 60 ft, and each branch is 200 ft long. Water enters
the header (node 1) at a pressure of 100 psi and exits the branches (nodes 5)
at atmospheric pressure. The entire network is assumed to be horizontal.
Each branch contains two globe valves in addition to the 200 ft of pipe and
the entrance fitting from the header to the branch. We must determine the
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pressure at the entrance to each branch, the flow rate through each branch,
and the total flow rate entering the system. The equations for this problem
are set up in a spreadsheet, the output of which is shown in Table 7-6. The
procedure followed is outlined below.

The head at both the entrance to the header (h1 ¼ 230:8 ft) and the exit
from the branches (h5 ¼ 0) is known. If the head at node 2 were known,
Bernoulli’s equation [Eq. (7-67)] could be used to calculate the flow rate
from 1 to 2 (Q12) and the flow rate from 2 to 5 (Q25). By continuity, the flow
rate from 2 to 3 must be the difference between these (Q23 ¼ Q12 �Q25).
This flow rate is then used in Eq. (7-67) to determine the total head at node 3
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(h3). With h3 known, Q35 can be determined from Eq. (7-67), as above. Q34

is then determined from continuity (Q34 ¼ Q23 �Q35). Knowing Q34 and h3
allows h4 to be determined from Eq. (7-67). Q45 can then be determined
from the known values of h4 and h5, as well as by continuity, since
Q34 ¼ Q45. Comparison of these two values of Q45 provides a check on
the converged solution, as does the overall continuity equation
Q12 ¼ Q25 þQ35 þQ45.

The spreadsheet calculations are done by first assuming a value for h2
and checking the continuity of the flow rates for agreement. The value of h2
is adjusted until these checks are in reasonable agreement. The calculation
of flow rate from Bernoulli’s equation [Eq. (7-67)] is also iterative, because
the equation involves the loss coefficients, which depend upon the flow
rate through the Reynolds number. Thus, initial estimates for these loss
coefficients must be made, as shown on the spreadsheet output (these are
based on f ¼ 0:005 for the pipe segments, and Kf ¼ K1 for each fitting).
The iteration revises these values using the Churchill equation for Kpipe ¼
4fL=D and the 3-K method for the fittings. Only two iteration steps are
needed for each unknown Q calculation, as shown on the output. The result
shows Spreadsheet Output for Example 7-3 that the head in the manifold
drops about 10%, but this does not result in the flow rates in he branch lines
varying significantly. The spreadsheet is also very convenient for ‘‘what if?’’
analyses, because it is easy to change any of the known conditions, pipe
sizes, fluid properties, etc. and immediately observe the results.

PROBLEMS

1. You must design a pipeline to carry crude oil at a rate of 1 million barrels per

day. If the viscosity of the oil is 25 cP and its SG is 0.9, what is the most

economic diameter for the pipeline if the pipe cost is $3 per foot of length

and per inch of diameter, if the power cost $0.05/kWh, and the cost of the

pipeline is to be written off over a 3 year period? The oil enters and leaves the

pipeline at atmospheric pressure. What would the answer be if the economic

lifetime of the pipeline were 30 years?

2. A crude oil pipeline is to be built to carry oil at the rate of 1 million barrels per

day (1 bbl ¼ 42 gal). If the pipe costs $12 per foot of length per inch of diameter,

power to run the pumps costs $0.07/kWh, and the economic lifetime of the

pipeline is 30 yr, what is the most economic diameter for the pipeline? What

total pump horsepower would be required if the line is 800mi long, assuming

100% efficient pumps? (Oil: � ¼ 35 cP, � ¼ 0:85 g/cm3).

3. A coal slurry pipeline is to be built to transport 45 million tons/yr of coal slurry

a distance of 1500mi. The slurry can be approximately described as Newtonian,

with a viscosity of 35 cP and SG of 1.25. The pipeline is to be built from ANSI

600# commercial steel pipe, the pumps are 50% efficient, energy costs are $0.06/
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kWh, and the economic lifetime of the pipeline is 25 years. What would be the

most economical pipe diameter, and what would be the corresponding velocity

in the line?

4. The Alaskan pipeline was designed to carry crude oil at a rate of 1.2 million bbl/

day (1 bbl ¼ 42 gal). If the oil is assumed to be Newtonian, with a viscosity of

25 cP and SG ¼ 0:85, the cost of energy is $0.1/kWh, and the pipe grade is 600#

ANSI, what would be the most economical diameter for the pipeline? Assume

that the economic lifetime of the pipeline is 30 years.

5. What is the most economical diameter of a pipeline that is required to transport

crude oil (� ¼ 30 cP, SG ¼ 0:95) at a rate of 1 million bbl/day using ANSI

1500# pipe if the cost of energy is $0.05/kWh (in 1980 dollars), the economic

lifetime of the pipeline is 40 yr, and the pumps are 50% efficient.

6. Find the most economical diameter of sch 40 commercial steel pipe that would

be needed to transport a petroleum fraction with a viscosity of 60 cP and SG of

1.3 at a rate of 1500 gpm. The economic life of the pipeline is 30 yr, the cost of

energy is $0.08/kWh, and the pump efficiency is 60%. The cost of pipe is $20 per

ft length per inch ID. What would be the most economical diameter to use if

the pipe is stainless steel, at a cost of $85 per (ft in. ID), all other things being

equal?

7. You must design and specify equipment for transporting 100% acetic acid

(SG ¼ 1:0, � ¼ 1 cP) at a rate of 50 gpm from a large vessel at ground level

into a storage tank that is 20 ft above the vessel. The line includes 500 ft of pipe

and eight flanged elbows. It is necessary to use stainless steel for the system

(pipe is hydraulically smooth), and you must determine the most economical

size pipe to use. You have 1.5 in. and 2 in. nominal sch 40 pipe available for the

job. Cost may be estimated from the following approximate formulas:

Pump cost: Cost ($)=75.2 (gpm)0:3 (ft of head)0:25

Motor cost: Cost ($)¼ 75 (hp)0:85

Pipe cost: Cost ($)/ft¼ 2.5 (nom. dia, in.)3=2

908 elbow: Cost ($)¼ 5 (nom. dia, in)1:5

Power: Cost¼ 0.03 $/kWh

(a) Calculate the total pump head (i.e., pressure drop) required for each size

pipe, in ft of head.

(b) Calculate the motor hp required for each size pipe assuming 80% pump

efficiency (motors available only in multiples of 1/4 hp)

(c) Calculate the total capital cost for pump, motor, pipe, and fittings for each

size pipe.

(d) Assuming that the useful life of the installation is 5 yr, calculate the total

operating cost over this period for each size pipe.

(e) Which size pipe results in the lowest total cost over the 5 yr period?

8. A large building has a roof with dimensions 50 ft� 200 ft, that drains into a

gutter system. The gutter contains three drawn aluminum downspouts that

have a square cross section, 3 in. on a side. The length of the downspouts

from the roof to the ground is 20 ft. What is the heaviest rainfall (in in./hr)

that the downspouts can handle before the gutter will overflow?
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9. A roof drains into a gutter, which feeds the water into a downspout with a

square cross section (4 in.� 4 in.). The discharge end of the downspout is 12 ft

below the entrance, and terminates in a 908 mitered (one weld) elbow. The

downspout is made of smooth sheet metal.

(a) What is the capacity of the downspout, in gpm?

(b) What would the capacity be if there were no elbow on the end?

10. An open concrete flume is to be constructed to carry water from a plant unit to

a cooling lake by gravity flow. The flume has a square cross section and is

1500 ft long. The elevation at the upstream end is 10 ft higher than that of

the lower end. If the flume is to be designed to carry 10,000 gpm of water

when full, what should its size (i.e., width) be? Assume rough cast concrete.

11. An open drainage canal with a rectangular cross section is 10 ft wide and 5 ft

deep. If the canal slopes 5 ft in 1mi, what is the capacity of the canal in gpm

when running full of water?

12. A concrete lined drainage ditch has a triangular cross section that is an equi-

lateral triangle 8 ft on each side. The ditch has a slope of 3 ft/mi. What is the

flow capacity of the ditch, in gpm?

13. An open drainage canal is to be constructed to carry water at a maximum rate

of 106 gpm. The canal is concrete-lined and has a rectangular cross section with

a width that is twice its depth. The elevation of the canal drops 3 ft per mile of

length. What should the dimensions of the canal be?

14. A drainage ditch is to be built to carry rainfall runoff from a subdivision. The

maximum design capacity is to be 1 million gph (gal/hr), and it will be concrete

lined. If the ditch has a cross section that is an equilateral triangle (open at the

top) and if it has a slope of 2 ft/mi, what should the width at the top be?

15. A drainage canal is to be dug to keep a low-lying area from flooding during

heavy rains. The canal would carry the water to a river that is 1mi away

and 6 ft lower in elevation. The canal will be lined with cast concrete and

will have a semicircular cross section. If it is sized to drain all of the water

falling on a 1mi2 area during a rainfall of 4 in./hr, what should the diameter

of the semicircle be?

16. An open drainage canal with a rectangular cross section and a width of 20 ft is

lined with concrete. The canal has a slope of 1 ft/1000 yd. What is the depth of

water in the canal when the water is flowing through it at a rate of 500,000 gpm?

17. An air ventilating system must be designed to deliver air at 208F and atmo-

spheric pressure at a rate of 150 ft3/s, through 4000 ft of square duct. If the air

blower is 60% efficient and is driven by a 30 hp motor, what size duct is

required if it is made of sheet metal?

18. Oil with a viscosity of 25 cP and SG of 0.78 is contained in a large open tank. A

vertical tube made of commercial steel, with a 1 in. ID and a length of 6 ft, is

attached to the bottom of the tank. You want the oil to drain through the tube

at a rate of 30 gpm.

(a) How deep should the oil in the tank be for it to drain at this rate?

(b) If a globe valve is installed in the tube, how deep must the oil be to drain at

the same rate, with the valve wide open?
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19. A vertical tube is attached to the bottom of a vessel that is open to the atmo-

sphere. A liquid with SG=1.2 is draining from the vessel through the tube,

which is 10 cm long and has an ID of 3mm. When the depth of the liquid in the

vessel is 4 cm, the flow rate through the tube is 5 cm3/s.

(a) What is the viscosity of the liquid (assuming it is Newtonian)?

(b) What would your answer be if you neglected the entrance loss from the tank

to the tube?

20. Heat is to be transferred from one process stream to another by means of a

double pipe heat exchanger. The hot fluid flows in a 1 in. sch 40 tube, which is

inside (concentric with) a 2 in. sch 40 tube, with the cold fluid flowing in the

annulus between the tubes. If both fluids are to flow at a velocity of 8 ft/s and

the total equivalent length of the tubes is 1300 ft, what pump power is required

to circulate the colder fluid? Properties at average temperature: � ¼ 55 lbm=ft
3,

� ¼ 8 cP.

21. A commercial steel (e ¼ 0:0018 in.) pipeline is 11
4
in. sch 40 diameter, 50 ft long,

and includes one globe valve. If the pressure drop across the entire line is

22.1 psi when it is carrying water at a rate of 65 gpm, what is the loss coefficient

for the globe valve? The friction factor for the pipe is given by the equation

f ¼ 0:0625=½logð3:7D=eÞ�2

22. Water at 688F is flowing through a 458 pipe bend at a rate of 2000 gpm. The

inlet to the bend is 3 in. ID, and the outlet is 4 in. ID. The pressure at the inlet is

100 psig, and the pressure drop in the bend is equal to half of what it would be

in a 3 in. 908 elbow. Calculate the net force (magnitude and direction) that the

water exerts on the pipe bend.

23. What size pump (horsepower) is required to pump oil (SG ¼ 0:85, � ¼ 60 cP)

from tank A to tank B at a rate of 2000 gpm through a 10 in. sch 40 pipeline,

500 ft long, containing 20 908 elbows, one open globe valve, and two open gate

valves? The oil level in tank A is 20 ft below that in tank B, and both are open to

the atmosphere.

24. A plant piping system takes a process stream (� ¼ 15 cP, � ¼ 0:9 g/cm3) from

one vessel at 20 psig, and delivers it to another vessel at 80 psig. The system

contains 900 ft of 2 in. sch 40 pipe, 24 standard elbows, and five globe valves. If

the downstream vessel is 10 ft higher than the upstream vessel, what horsepower

pump would be required to transport the fluid at a rate of 100 gpm, assuming a

pump efficiency of 100%?

25. Crude oil (� ¼ 40 cP, SG ¼ 0:87) is to be pumped from a storage tank to a

refinery through a 10 in. sch 20 commercial steel pipeline at a flow rate of

2000 gpm. The pipeline is 50mi long and contains 35 908 elbows and 10 open

gate valves. The pipeline exit is 150 ft higher than the entrance, and the exit

pressure is 25 psig. What horsepower is required to drive the pumps in the

system if they are 70% efficient?

26. The Alaskan pipeline is 48 in. ID, 800mi long, and carries crude oil at a rate of

1.2 million bbl/day (1 bbl¼ 42 gal). Assuming the crude oil to be a Newtonian

fluid with a viscosity of 25 cP and SG of 0.87, what is the total pumping horse-
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power required to operate the pipeline? The oil enters and leaves the pipeline at

sea level, and the line contains the equivalent of 150 908 elbows and 100 open

gate valves. Assume that inlet and discharge pressures are 1 atm.

27. A 6 in. sch 40 pipeline carries oil (� ¼ 15 cP, SG ¼ 0:85) at a velocity of

7.5 ft/s from a storage tank at 1 atm pressure to a plant site. The line con-

tains 1500 ft of straight pipe, 25 908 elbows, and four open globe valves. The

oil level in the storage tank is 15 ft above ground, and the pipeline discharges

at a point 10 ft above ground at a pressure of 10 psig. What is the required

flow capacity in gpm and the pressure head to be specified for the pump

needed for this job? If the pump is 65% efficient, what horsepower motor is

required to drive the pump?

28. An open tank contains 5 ft of water. The tank drains through a piping

system containing ten 908 elbows, ten branched tees, six gate valves, and

40 ft of horizontal sch 40 pipe. The top surface of the water and the pipe

discharge are both at atmospheric pressure. An entrance loss factor of 1.5

accounts for the tank-to-pipe friction loss and kinetic energy change.

Calculate the flow rate (in gpm) and Reynolds number for a fluid with

a viscosity of 10 cp draining through sch 40 pipe with nominal diameters

of 1/8, 1/4, 1/2, 1, 1.5, 2, 4, 6, 8, 10, and 12 in., including all of the above

fittings, using (a) constant Kf values, (b) ðL=DÞeq values, (c) the 2-K method,

and (d) the 3-K method. Constant Kf and ðL=DÞeq values from the literature

are given below for these fittings:

Fitting Constant Kf ðL=DÞeq
908 elbow 0.75 30

Branch tee 1.0 60

Gate valve 0.17 8

29. A pump takes water from a reservoir and delivers it to a water tower. The water

in the tower is at atmospheric pressure and is 120 ft above the reservoir. The

pipeline is composed of 1000 ft of straight 2 in. sch 40 pipe containing 32 gate

valves, two globe valves, and 14 standard elbows. If the water is to be pumped

at a rate of 100 gpm using a pump that is 70% efficient, what horsepower motor

would be required to drive the pump?

30. You must determine the pump pressure and power required to transport a

petroleum fraction (� ¼ 60 cP, � ¼ 55 lbm=ft3) at a rate of 500 gpm from a

storage tank to the feed plate of a distillation column. The pressure in the

tank is 2 psig, and that in the column is 20 psig. The liquid level in the tank is

15 ft above ground, and the column inlet is 60 ft high. If the piping system

contains 400 ft of 6 in. sch 80 steel pipe, 18 standard elbows, and four globe

valves, calculate the required pump head (i.e., pressure rise) and the horsepower

required if the pump is 70% efficient.

31. What horsepower pump would be required to transfer water at a flow rate of

100 gpm from tank A to tank B if the liquid surface in tank A is 8 ft above

ground and that in tank B is 45 ft above ground? The piping between tanks
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consists of 150 ft of 112 in. sch 40 pipe and 450 ft of 2 in. sch 40 pipe, including 16

908 standard elbows and four open globe valves.

32. A roof drains into a gutter, which feeds the water into a downspout that has a

square cross section (4 in.� 4 in.). The discharge end of the downspout is 12 ft

below the entrance and terminates in a 908 mitered (one weld) elbow. The

downspout is made of smooth sheet metal.

(a) What is the capacity of the downspout, in gpm?

(b) What would the capacity be if there were no elbow on the end?

33. An additive having a viscosity of 2 cP and a density of 50 lbm=ft
3 is fed from a

reservoir into a mixing tank. The pressure in the reservoir and in the tank is

1 atm, and the level in the reservoir is 2 ft above the end of the feed line in the

tank. The feed line contains 10 ft of 1/4 in. sch 40 pipe, four elbows, two plug

valves, and one globe valve. What will the flow rate of the additive be, in gpm, if

the valves are fully open?

34. The pressure in the water main serving your house is 90 psig. The plumbing

between the main and your outside faucet contains 250 ft of galvanized 3/4 in.

sch 40 pipe, 16 elbows, and the faucet which is an angle valve. When the faucet

is wide open, what is the flow rate, in gpm?

35. You are filling your beer mug from a keg. The pressure in the keg is 5 psig, the

filling tube from the keg is 3 ft long with 1/4 in. ID, and the valve is a diaphragm

dam type. The tube is attached to the keg by a (threaded) tee, used as an elbow.

If the beer leaving the tube is ft above the level of the beer inside the keg and

there is a 2 ft long, 1/4 in. ID stainless steel tube inside the keg, how long will it

take to fill your mug if it holds 500 cm3? (Beer: � ¼ 8 cP, � ¼ 64 lbm=ft
3)

36. You must install a piping system to drain SAE 10 lube oil at 708F (SG ¼ 0:928)
from tank A to tank B by gravity flow. The level in tank A is 10 ft above that in

tank B, and the pressure in A is 5 psi greater than that in tank B. The system

will contain 200 ft of sch 40 pipe, eight std elbows, two gate valves, and a globe

valve. What size pipe should be used if the oil is to be drained at a rate of

100 gpm?

37. A new industrial plant requires a supply of water at a rate of 5.7m3/min. The

gauge pressure in thewatermain, which is located 50m from the plant, is 800 kPa.

The supply line from the main to the plant will require a total length of 65m of

galvanized iron pipe, four standard elbows, and two gate valves. If the water

pressure at the plant must be no less than 500 kPa, what size pipe should be used?

38. A pump is used to transport water at 728F from tank A to tank B at a rate of

200 gpm. Both tanks are vented to the atmosphere. Tank A is 6 ft above the

ground with a water depth of 4 ft in the tank, and tank B is 40 ft above ground

with a water depth of 5 ft . The water enters the top of tank B, at a point 10 ft

above the bottom of the tank. The pipeline joining the tanks contains 185 ft of

2 in. sch 40 galvanized iron pipe, three standard elbows, and one gate valve.

(a) If the pump is 70% efficient, what horsepower motor would be required to

drive the pump?

(b) If the pump is driven by a 5 hp motor, what is the maximum flow rate that

can be achieved, in gpm?
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39. A pipeline carrying gasoline (SG ¼ 0:72, � ¼ 0:7 cP) is 5mi long and is made of

6 in. sch 40 commercial steel pipe. The line contains 24 of 908 elbows, eight open
gate valves, two open globe valves, and a pump capable of producing a max-

imum head of 400 ft . The line inlet pressure is 10 psig and the exit pressure is

20 psig. The discharge end is 30 ft higher than the inlet end.

(a) What is the maximum flow rate possible in the line, in gpm?

(b) What is the horsepower of the motor required to drive the pump if it is 60%

efficient?

40. A water tower supplies water to a small community of 800 houses. The level of

the water in the tank is 120 ft above ground level, and the water main from the

tower to the housing area is 1mi of sch 40 commercial steel pipe. The water

system is designed to provide a minimum pressure of 15 psig at peak demand,

which is estimated to be 2 gpm per house.

(a) What nominal size pipe should be used for the water main?

(b) If this pipe is installed, what would be the actual flow rate through the water

main, in gpm?

41. A 12 in. sch 40 pipe, 60 ft long, discharges water at 1 atm pressure from a

reservoir. The pipe is horizontal, and the inlet is 12 ft below the surface of

the water in the reservoir.

(a) What is the flow rate in gpm?

(b) In order to limit the flow rate to 3,500 gpm, an orifice is installed at the end

of the pipe. What should the orifice diameter be?

(c) What size pipe would have to be used to limit the flow rate to 3500 gpm

without using an orifice?

42. Crude oil with a viscosity of 12.5 cP and SG ¼ 0:88 is to be pumped through a

12 in. sch 30 commercial steel pipe at a rate of 1900 bbl/hr. The pipeline is 15mi

long, with a discharge that is 250 ft above the inlet, and contains 10 standard

elbows and four gate

(a) What pump horsepower is required if the pump is 67% efficient?

(b) If the cost of energy is $0.08/kWh and the pipe is 600# ANSI steel, is the

12 in. pipe the most economical one to use (assume a 30 yr economic life of

the pipeline)? If not, what is the most economical diameter?

43. A pipeline to carry crude oil at a rate of 1 million bbl/day is constructed with

50 in. ID pipe and is 700mi long with the equivalent of 70 gate valves installed

but no other fittings:

(a) What is the total power required to drive the pumps if they are 70% effi-

cient?

(b) How many pump stations will be required if the pumps develop a discharge

pressure of 100 psi?

(c) If the pipeline must go over hilly terrain, what is the steepest downslope

grade that can be tolerated without creating slack flow in the pipe line?

(Crude oil viscosity is 25 cP, SG ¼ 0:9:)
44. You are building a pipeline to transport crude oil (SG ¼ 0:8, � ¼ 30 cP) from a

seaport over a mountain to a tank farm. The top of the mountain is 3000 ft

above the seaport and 1000 ft above the tank farm. The distance from the port
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to the mountain top is 200 mi, and from the mountain top to the tank farm it is

75mi. The oil enters the pumping station at the port at 1 atm pressure and is to

be discharged at the tank farm at 20 psig. The pipeline is 20 in. sch 40, and the

oil flow rate is 2000 gpm.

(a) Will slack flow occur in the line? If so, you must install a restriction (orifice)

in the line to ensure that the pipe is always full. What should the pressure

loss across the orifice be, in psi?

(b) How much pumping power will be required, if the pumps are 70%

efficient? What pump head is required?

45. You want to siphon water from an open tank using a hose. The discharge end

of the hose is 10 ft below the water level in the tank. The minimum allowable

pressure in the hose for proper operation is 1 psia. If you wish the water velocity

in the hose to be 10 ft/s, what is the maximum height that the siphon hose can

extend above the water level in the tank for proper operation?

46. A liquid is draining from a cylindrical vessel through a tube in the bottom of the

vessel, as illustrated in Fig. 7-46. The liquid has a specific gravity of 1.2 and a

viscosity of 2 cP. The entrance loss coefficient from the tank to the tube is 0.4,

and the system has the following dimensions:

D ¼ 2 in:; d ¼ 3mm; L ¼ 20 cm; h ¼ 5 cm; e ¼ 0:0004 in:

(a) What is the volumetric flow rate of the liquid in cm3/s?

(b) What would the answer to (a) be if the entrance loss were neglected?

(c) Repeat part (a) for a value of h ¼ 75 cm.

47. Water from a lake is flowing over a concrete spillway at a rate of 100,000 gpm.

The spillway is 100 ft wide and is inclined at a 308 angle to the vertical. If the

effective roughness of the concrete is 0.03 in., what is the depth of water in the

stream flowing down the spillway?

48. A pipeline consisting of 1500 ft of 6 in. sch 40 pipe containing 25 908 elbows and
four open gate valves carries oil with a viscosity of 35 cP and a specific gravity

of 0.85 at a velocity of 7.5 ft/s from a storage tank to a plant site. The storage
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tank is at atmospheric pressure and the level in the tank is 15 ft above ground.

The pipeline discharge is 10 ft above ground, and the discharge pressure is

10 psig.

(a) What is the required pump capacity (in gpm) and pump head (in ft ) needed

in this pipeline?

(b) If the pump has an efficiency of 65%, what horsepower motor would be

required to drive it?

49. A centrifugal pump is located 4 ft above the surface of water in a tank. The

suction line to the pump is 6 in. sch 40 pipe and extends 6 ft below the surface of

the water. If the water temperature is 508F, what is the pressure (in psia) at the

pump inlet when the flow rate is 500 gpm?

50. Water is pumped at a rate of 500 gpm through a 10 in. ID pipeline, 50 ft long,

that contain two standard elbows and a swing check valve. The pressure is 1 atm

entering and leaving the pipeline. Calculate the pressure drop (in psi) through

the pipeline due to friction using (a) the 2-K method; (b) the ðL=DÞeq method;

(c) the 3-K method.

51. Water at 708F is flowing in a film down the outer surface of a 4 in. OD vertical

tube at a rate of 1 gpm. What is the thickness of the film?

52. What diameter of pipe would be required to transport a liquid with a viscosity

of 1 cP and a density of 1 g/cm3 at a rate of 1500 gpm, if the length of the pipe is

213 ft, the wall roughness is 0.006 in., and the total driving force is 100 ft lbf /

lbm?

53. The ETSI pipeline was designed to carry a coal slurry from Wyoming to Texas

at a rate of 30� 106 tons/yr. The slurry behaves like a Bingham plastic, with

a yield stress of 100 dyn/cm2, a limiting viscosity of 40 cP, and a density of

1.4 g/cm3. Using the cost of ANSI 1500# pipe and 7¢/kWh for electricity,

determine the most economical diameter for the pipeline if its economical life-

time is 25 yr and the pumps are 50% efficient.

54. A mud slurry is drained from a tank through a 50 ft long plastic hose. The hose

has an elliptical cross section with a major axis of 4 in. and a minor axis of 2 in.

The open end of the hose is 10 ft below the level in the tank. The mud is a

Bingham plastic, with a yield stress of 100 dyn/cm2, a limiting viscosity of 50 cP,

and a density of 1.4 g/cm3.

(a) At what rate will the mud drain through the hose (in gpm)?

(b) At what rate would water drain through the hose?

55. A 908 threaded elbow is attached to the end of a 3 in. sch 40 pipe, and a

reducer with an inside diameter of 1 in. is threaded into the elbow. If water is

pumped through the pipe and out the reducer into the atmosphere at a rate of

500 gpm, calculate the forces exerted on the pipe at the point where the elbow is

attached.

56. A continuous flow reactor vessel contains a liquid reacting mixture with a

density of 0.85 g/cm3 and a viscosity of 7 cP at 1 atm pressure. Near the bottom

of the vessel is a 11
2
in. outlet line containing a safety relief valve. There is 4 ft of

pipe with two 908 elbows between the tank and the valve. The relief valve is a

spring-loaded lift check valve, which opens when the pressure on the upstream
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side of the valve reaches 5 psig. Downstream of the valve is 30 ft of horizontal

pipe containing four elbows and two gate valves that empties into a vented

catch tank. The check valve essentially serves as a level control for the liquid in

the reactor because the static head in the reactor is the only source of pressure

on the valve. Determine

(a) The fluid level in the reactor at the point where the valve opens.

(b) When the valve opens, the rate (in gpm) at which the liquid will drain from

the reactor into the catch tank.

(c) The steady state level in the reactor vessel when the valve is open and the

liquid is draining out.

NOTATION

A cross sectional area, [L2�
A pump station cost parameter, Fig. 7-4, [$]

a pipe cost parameter, [4=Lpþ1]

B pump station cost parameter, Fig. 7-4, ½$t=FL ¼ $t3=ML2�
C energy cost, ½$=FL ¼ $t2=ML2�
D diameter, [L]

D hydraulic diameter, [L]

DF driving force, Eq. (7-42), ½FL=M ¼ L2=t2]
ef energy dissipated per unit mass of fluid, ½FL=M ¼ L2=t2�
f Fanning friction factor, [L]

fT fully turbulent friction factor, Eq. (7-36), [—]

h fluid layer thickness, [L], or total/head potenbtial (m/pg), [L]

Hp required pump head, [L]

hf friction loss head, [2]

HP power, [FL=t ¼ ML2=t3�
IDin pipe inside diameter in inches, [L]

Kf loss coefficient, [—]

K1;K1 2-K loss coefficient parameters, [—]

K1;Ki;Kd 3-K loss coefficient parameters, [—]

L length, [L]
_mm mass flow rate, [M/t]

Nc cost group, Eq. (7-26), [—]

NHe Hedstrom number, [—]

NRe;h Reynolds number based on hydraulic diameter, [—]

NRe;pl power law Reynolds number, [—]

Q volumetric flow rate, [L3=t]
R pipe radius, [L]

V spatial average velocity, [L/t]

Wp wetted perimeter, [L]

� position of influence in partially full pipe [L]

X fraction of capital cost charged per unit time, [1/1t]

Y economic lifetime ¼ 1=X , [t]
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� kinetic energy correction factor, [—]

�ð Þ ð Þ1 � ð Þ2
" roughness, [L]

	e efficiency, [—]

� density, [M/L3]

� potential ðPþ �gzÞ, ½F=L2 ¼ M=Lt2�

Subscripts

1 reference point 1

2 reference point 2

ij difference in values between points i and j

n nominal pipe size in inches
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8

Pumps and Compressors

I. PUMPS

There exist a wide variety of pumps that are designed for various specific
applications. However, most of them can be broadly classified into two
categories: positive displacement and centrifugal. The most significant char-
acteristics of each of these are described below.

A. Positive Displacement Pumps

The term positive displacement pump is quite descriptive, because such
pumps are designed to displace a more or less fixed volume of fluid during
each cycle of operation. They include piston, diaphragm, screw, gear, pro-
gressing cavity, and other pumps. The volumetric flow rate is determined by
the displacement per cycle of the moving member (either rotating or reci-
procating) times the cycle rate (e.g., rpm). The flow capacity is thus fixed by
the design, size, and operating speed of the pump. The pressure (or head)
that the pump develops depends upon the flow resistance of the system in
which the pump is installed and is limited only by the size of the driving
motor and the strength of the parts. Consequently, the discharge line from
the pump should never be closed off without allowing for recycle around the
pump or damage to the pump could result.
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In general positive displacement pumps have limited flow capacity but
are capable of relatively high pressures. Thus these pumps operate at
essentially constant flow rate, with variable head. They are appropriate
for high pressure requirements, very viscous fluids, and applications that
require a precisely controlled or metered flow rate.

B. Centrifugal Pumps

The term ‘‘centrifugal pumps’’ is also very descriptive, because these pumps
operate by the transfer of energy (or angular momentum) from a rotating
impeller to the fluid, which is normally inside a casing. A sectional view of a
typical centrifugal pump is shown in Fig. 8-1. The fluid enters at the axis or
‘‘eye’’ of the impeller (which may be open or closed and usually contains
radial curved vanes) and is discharged from the impeller periphery. The
kinetic energy and momentum of the fluid are increased by the angular
momentum imparted by the high-speed impeller. This kinetic energy is
then converted to pressure energy (‘‘head’’) in a diverging area (the
‘‘volute’’) between the impeller discharge and the casing before the fluid
exits the pump. The head that these pumps can develop depends upon the
pump design and the size, shape, and speed of the impeller and the flow
capacity is determined by the flow resistance of the system in which the
pump is installed. Thus, as will be shown, these pumps operate at approxi-
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mately constant head and variable flow rate, within limits, of course,
determined by the size and design of the pump and the size of the driving
motor.

Centrifugal pumps can be operated in a ‘‘closed off’’ condition (i.e.,
closed discharge line), bceause the liquid will recirculate within the pump
without causing damage. However, such conditions should be avoided,
because energy dissipation within the pump could result in excessive heating
of the fluid and/or the pump or unstable operation, with adverse con-
sequences. Centrifugal pumps are most appropriate for ‘‘ordinary’’ (i.e.,
low to moderate viscosity) liquids under a wide variety of flow conditions
and are thus the most common type of pump. The following discussion
applies primarily to centrifugal pumps.

II. PUMP CHARACTERISTICS

Bernoulli’s equation applied between the suction and the discharge of a
pump gives

�w ¼ �P

�
¼ gHp ð8-1Þ

That is, the net energy or work put into the fluid by the pump goes to
increasing the fluid pressure or the equivalent pump head, Hp. However,
because pumps are not 100% efficient, some of the energy delivered from the
motor to the pump is dissipated or ‘‘lost’’ due to friction. It is very difficult
to separately characterize this friction loss, so it is accounted for by the
pump efficiency, 	e, which is the ratio of the useful work (or hydraulic
work) done by the pump on the fluid (�w) to the work put into the pump
by the motor (�wm):

	e ¼
�w

�wm

ð8-2Þ

The efficiency of a pump depends upon the pump and impeller design, the
size and speed of the impeller, and the conditions under which it is operating
and is determined by tests carried out by the pump manufacturer. This will
be discussed in more detail later.

When selecting a pump for a particular application, it is first neces-
sary to specify the flow capacity and head required of the pump.
Although many pumps might be able to meet these specifications, the
‘‘best’’ pump is normally the one that has the highest efficiency at the
specified operating conditions. The required operating conditions, along
with a knowledge of the pump efficiency, then allow us to determine the
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required size (e.g., brake horsepower, HP) of the driving motor for the
pump:

HP ¼ �wm _mm ¼ �PQ

	e
¼ �gHpQ

	e
ð8-3Þ

Now the power delivered from the motor to the pump is also the
product of the torque on the shaft driving the pump (�) and the angular
velocity of the shaft (!):

HP ¼ �! ¼ �gHpQ

	e
ð8-4Þ

If it is assumed that the fluid leaves the impeller tangentially at the same
speed as the impeller (an approximation), then an angular momentum
balance on the fluid in contact with the impeller gives:

� ¼ _mm!R2
i ¼ �Q!R2

i ð8-5Þ
where Ri is the radius of the impeller and the angular momentum of the fluid
entering the eye of the impeller has been neglected (a good assumption). By
eliminating � from Eqs. (8-4) and (8-5) and solving for Hp, we obtain

Hp ffi
	e!

2R2
i

g
ð8-6Þ

This shows that the pump head is determined primarily by the size and speed
of the impeller and the pump efficiency, independent of the flow rate of the
fluid. This is approximately correct for most centrifugal pumps over a wide
range of flow rates. However, there is a limitation to the flow that a given
pump can handle, and as the flow rate approaches this limit the developed
head will start to drop off. The maximum efficiency for most pumps occurs
near the flow rate where the head starts to drop significantly.

Figure 8-2 shows a typical set of pump characteristic curves as
determined by the pump manufacturer. ‘‘Size 2� 3’’ means that the pump
has a 2 in. discharge and a 3 in. suction port. ‘‘R&C’’ and ‘‘17

8
pedestal’’ are

the manufacturer’s designations, and 3500 rpm is the speed of the impeller.
Performance curves for impellers with diameters from 61

4
to 83

4
in. are shown,

and the efficiency is shown as contour lines of constant efficiency. The
maximum efficiency for this pump is somewhat above 50%, although
some pumps may operate at efficiencies as high as 80% or 90%.
Operation at conditions on the right-hand branch of the efficiency contours
(i.e., beyond the ‘‘maximum normal capacity’’ line in Fig. 8-2) should be
avoided, because this could result in unstable operation. The pump with the
characteristics in Fig. 8-2 is a slurry pump, with a semiopen impeller,
designed to pump solid suspensions (this pump can pass solid particles as
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large as 11
4
in. in diameter). Pump characteristic curves for a variety of other

pumps are shown in Appendix H.
Such performance curves are normally determined by the manu-

facturer from operating data using water at 608F. Note from Eq. (8-6)
that the head is independent of fluid properties, although from Eq. (8-4)
the power is proportional to the fluid density (as is the developed pressure).
The horsepower curves in Fig. 8-2 indicate the motor horsepower required
to pump water at 608F and must be corrected for density when operating
with other fluids and/or at other temperatures. Actually, it is better to use
Eq. (8-4) to calculate the required motor horsepower from the values of the
head, flow rate, and efficiency at the operating point. The curves on Fig. 8-2
labeled ‘‘minimum NPSH’’ refer to the cavitation characteristics of the
pump, which will be discussed later.

III. PUMPING REQUIREMENTS AND PUMP SELECTION

When selecting a pump for a given application (e.g., a required flow capacity
and head), we must specify the appropriate pump type, size and type of
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impeller, and size (power) and speed (rpm) of the motor that will do the
‘‘best’’ job. ‘‘Best’’ normally means operating in the vicinity of the best
efficiency point (BEP) on the pump curve (i.e., not lower than about 75%
or higher than about 110% of capacity at the BEP). Not only will this
condition do the required job at the least cost (i.e., least power requirement),
but it also provides the lowest strain on the pump because the pump design
is optimum for conditions at the BEP. We will concentrate on these factors
and not get involved with the mechanical details of pump design (e.g.,
impeller vane design, casing dimensions or seals). More details on these
topics are given by Karassik et al. (1976).

A. Required Head

A typical piping application starts with a specified flow rate for a given fluid.
The piping system is then designed with the necessary valves, fittings, etc.
and should be sized for the most economical pipe size, as discussed in
Chapter 7. Application of the energy balance (Bernoulli) equation to the
entire system, from the upstream end (point 1) to the downstream end (point
2) determines the overall net driving force (DF) in the system required to
overcome the frictional resistance:

DF ¼
X

ef ð8-7Þ
(where the kinetic energy change is assumed to be negligible).

The total head (driving force) is the net sum of the pump head, the
total pressure drop, and the elevation drop:

DF

g
¼ Hp þ

P1 � P2

�g
þ ðz1 � z2Þ ð8-8Þ

The friction loss (
P

ef ) is the sum of all of the losses from point 1
(upstream) to point 2 (downstream):

X
ef ¼

X
i

V2

2
Kf

 !
i

¼ 8Q2

�2

X
i

Kf

D4

� �
i

ð8-9Þ

where the loss coefficients (Kf ’s) include all pipe, valves, fittings, con-
tractions, expansions, etc. in the system. Eliminating DF and

P
ef from

Eqs. (8-7), (8-8), and (8-9) and solving for the pump head, Hp, gives

Hp ¼
P2 � P1

�g
þ ðz2 � z1Þ þ

8Q2

g�2

X
i

Kf

D

4� �
i

ð8-10Þ

This relates the system pump head requirement to the specified flow rate and
the system loss parameters (e.g., the Kf values). Note that Hp is a quadratic
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function of Q for highly turbulent flow (i.e., constant Kf ). For laminar flow,
the Kf values are inversely proportional to the Reynolds number, which
results in a linear relationship between Hp and Q. A plot of Hp versus Q
from Eq. (8-10), illustrated in Fig. 8-2 as line S1, is called the operating line
for the system. Thus the required pump head and flow capacity are deter-
mined by the system requirements, and we must select the best pump to meet
this requirement.

B. Composite Curves

Most pump manufacturers provide composite curves, such as those shown
in Fig. 8-3, that show the operating range of various pumps. For each pump
that provides the required flow rate and head, the individual pump
characteristics (such as those shown in Fig. 8-2 and Appendix H) are then
consulted. The intersection of the system curve with the pump characteristic
curve for a given impeller determines the pump operating point. The
impeller diameter is selected that will produce the required head (or greater
at the specified flow rate). This is repeated for all possible pump, impeller,
and speed combinations to determine the combination that results in the
highest efficiency (i.e., least power requirement). Note that if the operating
point (Hp, Q) does not fall exactly on one of the (impeller) curves, then the
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actual impeller diameter that produces the higher head at the required flow
rate Q is chosen. However, when this pump is installed in the system, the
actual operating point will correspond to the intersection of the system
curve [Eq. (8-10)] and the actual pump impeller curve at this point, as
indicated by the X in Fig. 8-2.

Example 8-1: Pump Selection. Consider a piping system that must deliver
water at a rate of 275 gpm from one storage tank to another, both of which
are at atmospheric pressure, with the level in the downstream tank being
50 ft higher than in the upstream tank. The piping system contains 65 ft of
2 in. sch 40 pipe, one globe valve, and six elbows. If the pump to be used has
the characteristics shown in Fig. 8-2, what diameter impeller should be used
with this pump, and what motor horsepower would be required?

Solution. The head requirement for the piping system is given by
Eq. (8-10). Here, z2 � z1 ¼ 50 ft and, since both upstream and downstream
pressures are 1 atm, �P ¼ 0. The Reynolds number at 275 gpm for water at
608F is 4:21� 105, which gives a friction factor of 0.00497 in commercial
steel pipe ("=D ¼ 0:0018=2:067Þ. The corresponding loss coefficient for the
pipe is Kpipe ¼ 4fL=D ¼ 7:51, and the loss coefficients for the fittings from
Table 7-3 are (assuming flanged connections) elbow, K1 ¼ 800, Ki ¼ 0:091,
Kd ¼ 4:0; globe valve, K1 ¼ 1500, Ki ¼ 1:7, Kd ¼ 3:6. At the pipe Reynolds
number, this gives

P ðKf Þ ¼ ðKpipe þ KGlbV þ 6Kel ¼ 16:4. The curve labeled
S1 in Fig. 8-2 is Hp vs. Q from Eq. (8-10), for this value of the loss coeffi-
cients. This neglects the variation of the Kf over the range of flow rate
indicated, which is a good assumption at this Reynolds number. At a flow
rate of 275 gpm, the required head from Eq. (8-10) is 219 ft.

The point where the flow rate of 275 gpm intersects the system curve in
Fig. 8-2 (at 219 ft of head) falls between impeller diameters of 71

4
and 73

4
in.,

as indicated by the O on the line. Thus, the 7
1
4 in. diameter would be too

small, so we would need the 71
4
in. diameter impeller. However, if the pump

with this impeller is installed in the system, the operating point would move
to the point indicated by the X in Fig. 8-2. This corresponds to a head of
almost 250 ft and a flow rate of about 290 gpm (i.e., the excess head provided
by the larger impeller results in a higher flow rate than desired, all other
things being equal).

One way to achieve the desired flow rate of 275 gpm would obviously
be to close down on the valve until this value is achieved. This is equivalent
to increasing the resistance (i.e., the loss coefficient) for the system, which
will shift the system curve upward until it intersects the 73

4
in. impeller curve

at the desired flow rate of 275 gpm. The pump will still provide 250 ft of
head, but about 30 ft of this head is ‘‘lost’’ (dissipated) due to the additional
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resistance in the partly closed valve. The pump efficiency at this operating
point is about 47%, and the motor power (Hp) required to pump water at
608F at this point is HP ¼ �gHpQ=	e ¼ 37 hp.

A control valve operates in this mode automatically (as discussed in
Chapter 10), but this is obviously not an efficient use of the available energy.
A more efficient way of controlling the flow rate, instead of closing the
valve, might be to adjust the speed of the impeller by using a variable
speed drive. This would save energy because it would not increase the
friction loss as does closing down on the valve, but it would require greater
capital cost because variable speed drives are more expensive than fixed
speed motors.

IV. CAVITATION AND NET POSITIVE SUCTION HEAD (NPSH)

A. Vapor Lock and Cavitation

As previously mentioned, a centrifugal pump increases the fluid pressure by
first imparting angular momentum (or kinetic energy) to the fluid, which is
converted to pressure in the diffuser or volute section. Hence, the fluid
velocity in and around the impeller is much higher than that either entering
or leaving the pump, and the pressure is the lowest where the velocity is
highest. The minimum pressure at which a pump will operate properly must
be above the vapor pressure of the fluid; otherwise the fluid will vaporize (or
‘‘boil’’), a condition known as cavitation. Obviously, the higher the tempera-
ture the higher the vapor pressure and the more likely that this condition
will occur. When a centrifugal pump contains a gas or vapor it will still
develop the same head, but because the pressure is proportional to the fluid
density it will be several orders of magnitude lower than the pressure for a
liquid at the same head. This condition (when the pump is filled with a gas
or vapor) is known as vapor lock, and the pump will not function when this
occurs.

However, cavitation may result in an even more serious condition than
vapor lock. When the pressure at any point within the pump drops below
the vapor pressure of the liquid, vapor bubbles will form at that point (this
generally occurs on or near the impeller). These bubbles will then be trans-
ported to another region in the fluid where the pressure is greater than the
vapor pressure, at which point they will collapse. This formation and col-
lapse of bubbles occurs very rapidly and can create local ‘‘shock waves,’’
which can cause erosion and serious damage to the impeller or pump. (It is
often obvious when a pump is cavitating, because it may sound as though
there are rocks in the pump!)
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B. NPSH

To prevent cavitation, it is necessary that the pressure at the pump suction
be sufficiently high that the minimum pressure anywhere in the pump will be
above the vapor pressure. This required minimum suction pressure (in
excess of the vapor pressure) depends upon the pump design, impeller size
and speed, and flow rate and is called the minimum required net positive
suction head (NPSH). Values of the minimum required NPSH for the
pump in Fig. 8-2 are shown as dashed lines. The NPSH is almost indepen-
dent of impeller diameter at low flow rates and increases with flow rate as
well as with impeller diameter at higher flow rates. A distinction is some-
times made between the minimum NPSH ‘‘required’’ to prevent cavitation
(sometimes termed the NPSHR) and the actual head (e.g., pressure) ‘‘avail-
able’’ at the pump suction (NPSHA). A pump will not cavitate if
NPSHA > ðNPSHRþ vapor pressure headÞ.

The NPSH at the operating point for the pump determines where the
pump can be installed in a piping system to ensure that cavitation will not
occur. The criterion is that the pressure head at the suction (entrance) of the
pump (e.g., the NPSHA) must exceed the vapor pressure head by at least the
value of the NPSH (or NPSHR) to avoid cavitation. Thus, if the pressure at
the pump suction is Ps and the fluid vapor pressure is Pv at the operating
temperature, cavitation will be prevented if

NPSHA ¼ Ps

�g

 NPSHþ Pv

�g
ð8-11Þ

The suction pressure Ps is determined by applying the Bernoulli equation to
the suction line upstream of the pump. For example, if the pressure at the
entrance to the upstream suction line is P1, the maximum distance above
this point that the pump can be located without cavitating (i.e., the
maximum suction lift) is determined by Bernoulli’s equation from P1 to Ps :

hmax ¼
P1 � Pv

�g
�NPSHþ V2

1 � V2
s

2g
�
P ðef Þs

g
ð8-12Þ

where Eq. (8-11) has been used for Ps. V1 is the velocity entering the suction
line, Vs is the velocity at the pump inlet (suction), and

P ðef Þs is the total
friction loss in the suction line from the upstream entrance (point 1) to the
pump inlet, including all pipe, fittings, etc. The diameter of the pump suction
port is usually bigger than the discharge or exit diameter in order to mini-
mize the kinetic energy head entering the pump, because this kinetic energy
decreases the maximum suction lift and enhances cavitation. Note that if the
maximum suction lift (hmax) is negative, the pump must be located below the
upstream entrance to the suction line to prevent cavitation. It is best to
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be conservative when interpreting the NPSH requirements to prevent
cavitation.

The minimum required NPSH on the pump curves is normally deter-
mined using water at 608F with the discharge line fully open. However, even
though a pump will run with a closed discharge line with no bypass, there
will be much more recirculation within the pump if this occurs, which
increases local turbulence and local velocities as well as dissipative heating,
both of which increase the minimum required NPSH. This is especially true
with high efficiency pumps, which have close clearances between the
impeller and pump casing.

Example 8-2: Maximum Suction Lift. A centrifugal pump with the
characteristics shown in Fig. 8-2 is to be used to pump an organic liquid
from a reboiler to a storage tank, through a 2 in. sch 40 line, at a rate of
200 gpm. The pressure in the reboiler is 2.5 atm, and the liquid has a vapor
pressure of 230mmHg, an SG of 0.85, and a viscosity of 0.5 cP at the work-
ing temperature. If the suction line upstream of the pump is also 2 in. sch 40
and has elbows and one globe valve, and the pump has a 73

4
in. impeller,

what is the maximum height above the reboiler that the pump can be located
without cavitating?

Solution. The maximum suction lift is given by Eq. (8-12). From Fig.
8-2, the NPSH required for the pump at 200 gpm is about 11 ft. The velocity
in the reboiler (V1) can be neglected, and the velocity in the pipe (see
Appendix E-1) is Vs ¼ 200=10:45 ¼ 19:1 ft/s.

The friction loss in the suction line

ef ¼
V2

s

2

X
ðKpipe þ KGlbV þ 2KelÞ

where Kpipe ¼ 4fh=D and the fitting losses are given by the 3-K formula and
Table 7-3 (elbow: K1 ¼ 800, K1 ¼ 0:091, Kd ¼ 4:0; globe valve: K1 ¼ 1500,
K1 ¼ 1:7, Kd ¼ 3:6). The value of the Reynolds number for this flow is
5:23� 105, which, for commercial steel pipe ("=D ¼ 0:0018=2:067), gives
f ¼ 0:00493. Note that the pipe length is h in Kpipe, which is the same as
the maximum suction length (hmax) on the left of Eq. (8-12), assuming that
the suction line is vertical. The unknown (h) thus appears on both sides of
the equation. Solving Eq. (8-12) for h gives 17.7 ft.

C. Specific Speed

The flow rate, head, and impeller speed at the maximum or ‘‘best’’ efficiency
point (BEP) of the pump characteristic can be used to define a dimensionless
group called the specific speed:
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Ns ¼
N

ffiffiffiffi
Q

p
H3=4

in
rpm

ffiffiffiffiffiffiffiffiffiffi
gpm

p
ft3=4

� �
ð8-13Þ

Although this group is dimensionless (and hence unitless), it is common
practice to use selected mixed (inconsistent) units when quoting the value
of Ns, i.e., N in rpm, Q in gpm, and H in feet. The value of the specific speed
represents the ratio of the pump flow rate to the head at the speed cor-
responding to the maximum efficiency point (BEP) and depends primarily
on the design of the pump and impeller. As previously stated, most centri-
fugal pumps operate at relatively low heads and high flow rates, e.g., high
values of Ns. However, this value depends strongly on the impeller design,
which can vary widely from almost pure radial flow to almost pure axial
flow (like a fan). Some examples of various types of impeller design are
shown in Fig. 8-4. Radial flow impellers have the highest head and lowest
flow capacity (low Ns), whereas axial flow impellers have a high flow rate
and low head characteristic (high Ns). Thus the magnitude of the specific
speed is a direct indication of the impeller design and performance, as shown
in Fig. 8-5. Figure 8-5 also indicates the range of flow rates and efficiencies
of the various impeller designs, as a function of the specific speed. As indi-
cated in Fig. 8-5, the maximum efficiency corresponds roughly to a specific
speed of about 3000.

D. Suction Specific Speed

Another ‘‘dimensionless’’ group, analogous to the specific speed, that relates
directly to the cavitation characteristics of the pump is the suction specific
speed, Nss:

Nss ¼
NQ1=2

ðNPSHÞ3=4 ð8-14Þ

The units used in this group are also rpm, gpm and ft. This identifies the
inlet conditions that produce similar flow behavior in the inlet for geo-
metrically similar pump inlet passages. Note that the suction specific
speed (Nss) relates only to the pump cavitation characteristics as related
to the inlet conditions, whereas the specific speed (Ns) relates to the entire
pump at the BEP. The suction specific speed can be used, for example, to
characterize the conditions under which excessive recirculation may occur at
the inlet to the impeller vanes. Recirculation involves flow reversal and
reentry resulting from undesirable pressure gradients at the inlet or dis-
charge of the impeller vanes, and its occurrence generally defines the stable
operating limits of the pump. For example, Fig. 8-6 shows the effect of the
suction specific speed on the stable ‘‘recirculation-free’’ operating window,
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FIGURE 8-4 Impeller designs and specific speed characteristics. (From Karassik et
al., 1976.)



expressed as NPSH versus percent of capacity at BEP, for various values of
Nss.

It should be noted that there are conflicting parameters in the proper
design of a centrifugal pump. For example, Eq. (8-12) shows that the smaller
the suction velocity (Vs), the less the tendency to cavitate, i.e., the less severe
the NPSH requirement. This would dictate that the eye of the impeller
should be as large as practical in order to minimize Vs. However, a large
impeller eye means a high vane tip speed at the impeller inlet, which is
destabilizing with respect to recirculation. Hence, it is advisable to design
the impeller with the smallest eye diameter that is practicable.

V. COMPRESSORS

A compressor may be thought of as a high pressure pump for a compressible
fluid. By ‘‘high pressure’’ is meant conditions under which the compressible
properties of the fluid (gas) must be considered, which normally occur when
the pressure changes by as much as 30% or more. For ‘‘low pressures’’ (i.e.,
smaller pressure changes), a fan or blower may be an appropriate ‘‘pump’’
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for a gas. Fan operation can be analyzed by using the incompressible
flow equations, because the relative pressure difference and hence the
relative density change are normally small. Like pumps, compressors
may be either positive displacement or centrifugal, the former being sui-
table for relatively high pressures and low flow rates whereas the latter
are designed for higher flow rates but lower pressures. The major distinc-
tion in the governing equations, however, depends upon the conditions of
operation, i.e., whether the system is isothermal or adiabatic. The follow-
ing analyses assume that the gas is adequately described by the ideal gas
law. This assumption can be modified, however, by an appropriate com-
pressibility correction factor, as necessary. For an ideal (frictionless) com-
pression, the work of compression is given by the Bernoulli equation,
which reduces to

�w ¼
ðP2

P1

dP

�
ð8-15Þ
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tion. (Numbers on the curves are the values of the suction specific speed, Nss.)
(From Raymer, 1993.)



The energy balance equation for the gas can be written

�h ¼ qþ ef þ
ðP2

P1

dP

�
ð8-16Þ

which says that the work of compression plus the energy dissipated due to
friction and any heat transferred into the gas during compression all go to
increasing the enthalpy of the gas. Assuming ideal gas properties, the density
is

� ¼ PM

RT
ð8-17Þ

The compression work cannot be evaluated from Eq. (8-15) using Eq. (8-17)
unless the operating condition or temperature is specified. We will consider
two cases: isothermal compression and adiabatic compression.

A. Isothermal Compression

If the temperature is constant, eliminating � from Eqs. (8-17) and (8-15) and
evaluating the integral gives

�w ¼ RT

M
ln

P2

P1

ð8-18Þ

where the ratio P2=P1 is the compression ratio (r).

B. Isentropic Compression

For an ideal gas under adiabatic frictionless (i.e., isentropic) conditions,

P

�k
¼ constant; where k ¼ cp

cv
; cp ¼ cv þ

R

M
ð8-19Þ

The specific heat ratio k is approximately 1.4 for diatomic gases (O2, N2,
etc.) and 1.3 for triatomic and higher gases (NH3, H2O, CO2, etc.). The
corresponding expression for isothermal conditions follows from Eq. (8-17):

P=� ¼ constant ð8-20Þ
Note that the isothermal condition can be considered a special case of the
isentropic condition for k ¼ 1. The ‘‘constant’’ in Eq. (8-19) or (8-20) can be
evaluated from known conditions at some point in the system (e.g., P1 and
T1). Using Eq. (8-19) to eliminate the density from Eq. (8-15) and evaluating
the integral leads to

�w ¼ RT1k

Mðk� 1Þ
P2

P1

� �ðk�1Þ=k
�1

" #
ð8-21Þ
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Although it is not obvious by inspection, setting k ¼ 1 in Eq. (8-21)
reduces that equation to Eq. (8-18) (this follows by application of
l’Hospital’s rule).

If we compare the work required to compress a given gas to a given
compression ratio by isothermal and isentropic processes, we see that the
isothermal work is always less than the isentropic work. That is, less energy
would be required if compressors could be made to operate under iso-
thermal conditions. However, in most cases a compressor operates under
more nearly adiabatic conditions (isentropic, if frictionless) because of the
relatively short residence time of the gas in the compressor, which allows
very little time for heat generated by compression to be transferred away.
The temperature rise during an isentropic compression is determined by
eliminating � from Eqs. (8-17) and (8-19):

T2

T1

¼ P2

P1

� �ðk�1Þ=k
¼ rðk�1Þ=k ð8-22Þ

In reality, most compressor conditions are neither purely isothermal nor
purely isentropic but somewhere in between. This can be accounted for in
calculating the compression work by using the isentropic equation [Eq.
(8-21)], but replacing the specific heat ratio k by a ‘‘polytropic’’ constant, �,
where 1 < � < k. The value of � is a function of the compressor design as
well as the properties of the gas.

C. Staged Operation

It is often impossible to reach a desired compression ratio with a single
compressor, especially a centrifugal compressor. In such cases multiple
compressor ‘‘stages’’ can be arranged in series to increase the overall
compression ratio. Furthermore, to increase the overall efficiency it is
common to cool the gas between stages by using ‘‘interstage coolers.’’
With interstage cooling to the initial temperature (T1), it can be shown
that as the number of stages increases, the total compression work for
isentropic compression approaches that of isothermal compression at T1.

For multistage operation, there will be an optimum compression ratio
for each stage that will minimize the total compression work. This can be
easily seen by considering a two stage compressor with interstage cooling.
The gas enters stage 1 at (P1, T1), leaves stage 1 at (P2, T2) and is then
cooled to T1. It then enters stage 2 at (P2, T1), and leaves at P3. By comput-
ing the total isentropic work for both stages [using Eq. (8-21)] and setting
the derivative of this with respect to the interstage pressure (P2) equal to
zero, the value of P2 that results in the minimum total work can be found.
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The result is that the optimum interstage pressure that minimizes the total
work for a two stage compression with intercooling to T1 is

P2 ¼ ðP1P3Þ1=2 or
P2

P1

¼ P3

P2

¼ r ¼ P3

P1

� �1=2

ð8-23Þ

That is, the total work is minimized if the compression ratio for each stage is
the same. This result can easily be generalized to any number (n) of stages
(with interstage cooling to the initial temperature), as follows:

r ¼ P2

P1

¼ P3

P2

¼ � � � ¼ Pnþ1

Pn

¼ Pnþ1

P1

� �1=n

ð8-24Þ

If there is no interstage cooling or if there is interstage cooling to a tem-
perature other than T1, it can be shown that the optimum compression ratio
for each stage (i) is related to the temperature entering that stage (Ti) by

Ti

Piþ1

Pi

� �ðk�1Þ=k
¼ Tir

ðk�1Þ=k
i ¼ const ð8-25Þ

D. Efficiency

The foregoing equations apply to ideal (frictionless) compressors. To
account for friction losses, the ideal computed work is divided by the com-
pressor efficiency, 	e, to get the total work that must be supplied to the
compressor:

ð�wÞtotal ¼
ð�wÞideal
	e

ð8-26Þ

The energy ‘‘lost’’ due to friction is actually dissipated into thermal energy,
which raises the temperature of the gas. This temperature rise is in addition
to that due to the isentropic compression, so that the total temperature rise
across an adiabatic compressor stage is given by

T2 ¼ T1r
ðk�1Þ=k þ 1� 	e

	e

�wideal

cv

� �
ð8-27Þ

PROBLEMS

Pumps

1. The pressure developed by a centrifugal pump for Newtonian liquids that are

not highly viscous depends upon the liquid density, the impeller diameter, the

rotational speed, and the volumetric flow rate.
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(a) Determine a suitable set of dimensionless groups that should be adequate to

relate all of these variables.

You want to know what pressure a pump will develop with a liquid having an

SG of 1.4 at a flow rate of 300 gpm using an impeller with a diameter of 12 in.

driven by a motor running at 1100 rpm. You have a similar test pump in the lab

with a 6 in. impeller driven by an 1800 rpm motor. You want to run a test with

the lab pump under conditions that will allow you to determine the pressure

developed by the larger pump.

(b) Should you use the same liquid in the lab as in the larger pump, or can you

use a different liquid? Why?

(c) If you use the same liquid, at what flow rate will the operation of the lab

pump simulate that of the larger pump?

(d) If the lab pump develops a pressure of 150 psi at the proper flow rate, what

pressure will the field pump develop at 300 gpm?

(e) What pressure will the field pump develop with water at 300 gpm?

2. The propeller of a speed boat is 1 ft in diameter and is 1 ft below the surface of

the water. At what speed (rpm) will cavitation occur at the propeller? Water

density ¼ 64 lbm=ft
3, Pv of water ¼ 18:65mmHg.

3. You must specify a pump to be used to transport water at a rate of 5000 gpm

through 10mi of 18 in. sch 40 pipe. The friction loss in valves and fittings is

equivalent to 10% of the pipe length, and the pump is 70% efficient. If a

1200 rpm motor is used to drive the pump, determine:

(a) The required horsepower and torque rating of the motor.

(b) The diameter of the impeller that should be used in the pump.

4. You must select a centrifugal pump that will develop a pressure of 40 psi when

pumping a liquid with an SG of 0.88 at a rate of 300 gpm. From all the pump

characteristic curves in Appendix H, select the best pump for this job. Specify

pump head, impeller diameter, motor speed, efficiency, and motor horsepower.

5. An oil with a 32.68 API gravity at 608F is to be transferred from a storage tank

to a process unit that is 10 ft above the tank, at a rate of 200 gpm. The piping

system contains 200 ft of 3 in. sch 40 pipe, 25 908 screwed elbows, six stub-in tees

used as elbows, two lift check valves, and four standard globe valves. From the

pump performance curves in Appendix H, select the best pump to do this job.

Specify the pump size, motor speed, impeller diameter, operating head and

efficiency and the horsepower of the motor required to drive the pump.

6. Youmust purchase a centrifugal pump to circulate cooling water that will deliver

5000 gpm at a pressure of 150 psi. If the pump is driven by an 1800 rpm motor,

what should the horsepower and torque rating of the motor be, and how large

(diameter) should the pump impeller be, assuming an efficiency of 60%?

7. In order to pump a fluid of SG ¼ 0:9 at a rate of 1000 gpm through a piping

system, a hydraulic power of 60 hp is required. Determine the required pump

head, the torque of the driving motor, and the estimated impeller diameter, if an

1800 rpm motor is used.

8. From your prior analysis of pumping requirements for a water circulating

system, you have determined that a pump capable of delivering 500 gpm at a
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pressure of 60 psi is required. If a motor operating at 1800 rpm is chosen to

drive the pump, which is 70% efficient, determine:

(a) The required horsepower rating of the motor.

(b) The required torque rating of the motor.

(c) The diameter of the impeller that should be used in the pump.

(d) What color the pump should be painted.

9. You want to pump water at 708F from an open well, 200 ft deep, at a rate of

30 gpm through a 1 in. sch 40 pipe, using a centrifugal pump having an NPSH

of 8 ft. What is the maximum distance above the water level in the well that the

pump can be located without cavitating? (Vapor pressure of water at

608F ¼ 18:7mmHg.)

10. Steam condensate at 1 atm and 958C (Pv ¼ 526mmHg) is returned to a boiler

from the condenser by a centrifugal boiler feed pump. The flow rate is 100 gpm

through a 2.5 in. sch 40 pipe. If the equivalent length of the pipe between the

condenser and the pump is 50 ft, and the pump has an NPSH of 6 ft, what is the

maximum height above the condenser that the pump can be located?

11. Water at 1608F is to be pumped at a rate of 100 gpm through a 2 in. sch 80 steel

pipe from one tank to another located 100 ft directly above the first. The pres-

sure in the lower tank is 1 atm. If the pump to be used has a required NPSH of

6 ft of head, what is the maximum distance above the lower tank that the pump

may be located?

12. A pump with a 1 in. diameter suction line is used to pump water from an open

hot water well at a rate of 15 gpm. The water temperature is 908C, with a vapor

pressure of 526mmHg and density of 60 lbm/ft
3. If the pump NPSH is 4 ft, what

is the maximum distance above the level of the water in the well that the pump

can be located and still operate properly?

13. Hot water is to be pumped out of an underground geothermally heated aquifer

located 500 ft below ground level. The temperature and pressure in the aquifer

are 3258F and 150 psig. The water is to be pumped out at a rate of 100 gpm

through 2.5 in. pipe using a pump that has a required NPSH of 6 ft. The suction

line to the pump contains four 908 elbows and one gate valve. How far below

ground level must the pump be located in order to operate properly?

14. You must install a centrifugal pump to transfer a volatile liquid from a remote

tank to a point in the plant 500 ft from the tank. To minimize the distance that

the power line to the pump must be strung, it is desirable to locate the pump as

close to the plant as possible. If the liquid has a vapor pressure of 20 psia, the

pressure in the tank is 30 psia, the level in the tank is 30 ft above the pump inlet,

and the required pump NPSH is 15 ft, what is the closest that the pump can be

located to the plant without the possibility of cavitation? The line is 2 in. sch 40,

the flow rate is 100 gpm and the fluid properties are � ¼ 45 lbm=ft
3 and

� ¼ 5 cP.

15. It is necessary to pump water at 708F (Pv ¼ 0:35 psia) from a well that is 150 ft

deep, at a flow rate of 25 gpm. You do not have a submersible pump, but you

do have a centrifugal pump with the required capacity that cannot be sub-

merged. If a 1 in. sch 40 pipe is used, and the NPSH of the pump is 15 ft,
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how close to the surface of the water must the pump be lowered for it to operate

properly?

16. You must select a pump to transfer an organic liquid with a viscosity of 5 cP

and SG of 0.87 at a rate of 1000 gpm through a piping system that contains

1000 ft of 8 in. sch 40 pipe, four globe valves, 16 gate valves, and 43 standard 908
elbows. The discharge end of the piping system is 30 ft above the entrance, and

the pressure at both ends is 10 psia.

(a) What pump head is required?

(b) What is the hydraulic horsepower to be delivered to the fluid?

(c) Which combination of pump size, motor speed, and impeller diameter from

the pump charts in Appendix H would you choose for this application?

(d) For the pump selected, what size motor would you specify to drive it?

(e) If the vapor pressure of the liquid is 5 psia, how far directly above

the liquid level in the upstream tank could the pump be located without

cavitating?

17. You need a pump that will develop at least 40 psi at a flow rate of 300 gpm of

water. What combination of pump size, motor speed, and impeller diameter

from the pump characteristics in Appendix H would be the best for this appli-

cation? State your reasons for the choice you make. What are the pump effi-

ciency, motor horsepower and torque requirement, and NPSH for the pump

you choose at these operating conditions?

18. A centrifugal pump takes water from a well at 1208F (Pv ¼ 87:8mmHg) and

delivers it at a rate of 50 gpm through a piping system to a storage tank. The

pressure in the storage tank is 20 psig, and the water level is 40 ft above that in

the well. The piping system contains 300 ft of 1.5 in. sch 40 pipe, 10 standard 908
elbows, six gate valves, and an orifice meter with a diameter of 1 in.

(a) What are the specifications required for the pump?

(b) Would any of the pumps represented by the characteristic curves in

Appendix H be satisfactory for this application? If more than one of

them would work, which would be the best? What would be the pump

head, impeller diameter, efficiency, NPSH, and required horsepower for

this pump at the operating point?

(c) If the pump you select is driven by an 1800 rpm motor, what impeller

diameter should be used?

(d) What should be the minimum torque and horsepower rating of the motor,

if the pump is 50% efficient?

(e) If the NPSH rating of the pump is 6 ft at the operating conditions, where

should it be located in order to prevent cavitation?

(f) What is the reading of the orifice meter, in psi?

19. Water at 208C is pumped at a rate of 300 gpm from an open well in which the

water level is 100 ft below ground level into a storage tank that is 80 ft above

ground. The piping system contains 700 ft of 31
2
in. sch 40 pipe, eight threaded

elbows, two globe valves, and two gate valves. The vapor pressure of the water

is 17.5mmHg.

(a) What pump head and hydraulic horsepower are required?
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(b) Would a pump whose characteristics are similar to those shown in Fig. 8-2

be suitable for this job? If so, what impeller diameter, motor speed, and

motor horsepower should be used?

(c) What is the maximum distance above the surface of the water in the well at

which the pump can be located and still operate properly?

20. An organic fluid is to be pumped at a rate of 300 gpm, from a distillation

column reboiler to a storage tank. The liquid in the reboiler is 3 ft above ground

level, the storage tank is 20 ft above ground, and the pump will be at ground

level. The piping system contains 14 standard elbows, four gate valves, and

500 ft of 3 in. sch 40 pipe. The liquid has an SG of 0.85, a viscosity of 8 cP,

and a vapor pressure of 600mmHg. If the pump to be used has characteristics

similar to those given in Appendix H, and the pressure in the reboiler is 5 psig,

determine

(a) The motor speed to be used.

(b) The impeller diameter.

(c) The motor horsepower and required torque.

(d) Where the pump must be located to prevent cavitation.

21. A liquid with a viscosity of 5 cP, density of 45 lbm=ft
3, and vapor pressure of

20 psia is transported from a storage tank in which the pressure is 30 psia to an

open tank 500 ft downstream, at a rate of 100 gpm. The liquid level in

the storage tank is 30 ft above the pump, and the pipeline is 2 in. sch 40 com-

mercial steel. If the transfer pump has a required NPSH of 15 ft, how far down-

stream from the storage tank can the pump be located without danger of

cavitation?

22. You must determine the specifications for a pump to transport water at 608C
from one tank to another at a rate of 200 gpm. The pressure in the upstream

tank is 1 atm, and the water level in this tank is 2 ft above the level of the pump.

The pressure in the downstream tank is 10 psig, and the water level in this tank

is 32 ft above the pump. The pipeline contains 250 ft of 2 in. sch 40 pipe, with 10

standard 908 flanged elbows and six gate valves.

(a) Determine the pump head required for this job.

(b) Assuming your pump has the same characteristics as the one shown in Fig.

8-2, what size impeller should be used, and what power would be required

to drive the pump with this impeller at the specified flow rate?

(c) If the water temperature is raised, the vapor pressure will increase accord-

ingly. Determine the maximum water temperature that can be tolerated

before the pump will start to cavitate, assuming that it is installed as

close to the upstream tank as possible.

23. A piping system for transporting a liquid (� ¼ 50 cP, � ¼ 0:85 g/cm3) from

vessel A to vessel B consists of 650 ft of 3 in. sch 40 commercial steel pipe

containing four globe valves and 10 elbows. The pressure is atmospheric in A

and 5 psig in B, and the liquid level in B is 10 ft higher than that in A. You want

to transfer the liquid at a rate of 250 gpm at 808F using a pump with the

characteristics shown in Fig. 8-2. Determine

(a) The diameter of the impeller that you would use with this pump.
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(b) The head developed by the pump and the power (in horsepower) required

to pump the liquid.

(c) The power of the motor required to drive the pump

(d) The torque that the motor must develop.

(e) The NPSH of the pump at the operating conditions.

24. You must chose a centrifugal pump to pump a coal slurry. You have deter-

mined that the pump must deliver 200 gpm at a pressure of at least 35 psi. Given

the pump characteristic curves in Appendix H, tell which pump you would

specify (give pump size, speed, and impeller diameter) and why? What is the

efficiency of this pump at its operating point, what horsepower motor would be

required to drive the pump, and what is the required NPSH of the pump? The

specific gravity of the slurry is 1.35.

25. You must specify a pump to take an organic stream from a distillation reboiler

to a storage tank. The liquid has a viscosity of 5 cP, an SG of 0.78, and a vapor

pressure of 150mmHg. The pressure in the storage tank is 35 psig, and the inlet

to the tank is located 75 ft above the reboiler, which is at a pressure of 25 psig.

The pipeline in which the pump is to be located is 2
1
2 in. sch 40, 175 ft long, and

there will be two flanged elbows and a globe valve in each of the pump suction

and discharge lines. The pump must deliver a flow rate of 200 gpm. If the pump

you use has the same characteristics as that illustrated in Fig. 8-2, determine

(a) The proper impeller diameter to use with this pump.

(b) The required head that the pump must deliver.

(c) The actual head that the pump will develop.

(d) The horsepower rating of the motor required to drive the pump.

(e) The maximum distance above the reboiler that the pump can be located

without cavitating.

26. You have to select a pump to transfer benzene from the reboiler of a distillation

column to a storage tank at a rate of 250 gpm. The reboiler pressure is 15 psig

and the temperature is 608C. The tank is 5 ft higher than the reboiler and is at a

pressure of 25 psig. The total length of piping is 140 ft of 2 in. sch 40 pipe. The

discharge line from the pump containsthree gate valves and 10 elbows, and the

suction line has two gate valves and six elbows. The vapor pressure of benzene

at 608C is 400mmHg.

(a) Using the pump curves shown in Fig. 8-2, determine the impeller diameter

to use in the pump, the head that the pump would develop, the power of the

motor required to drive the pump, and the NPSH required for the pump.

(b) If the pump is on the same level as the reboiler, how far from the reboiler

could it be located without cavitating?

27. A reboiler at the bottom of a distillation column contains an organic liquid at

1 atm and 3208F, at which its density is 0.7 g/cm3, its viscosity is 0.5 cP, and its

vapor pressure is 800mmHg. The liquid must be pumped to another column at

a rate of 200 gpm and discharges at 1 atm at a point 30 ft higher than the

reboiler. You must select the best pump from those represented by the curves

in Appendix H and determine where the pump is to be installed. The suction

line of the pump will include 20 ft of 21
2
in. sch 40 pipe, eight elbows, four gate
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valves, and a contraction from the reboiler. Using the curves in Appendix H,

determine:

(a) The required pump head, and the best pump for this job.

(b) The best size of impeller to use in this pump, the motor speed, and the

motor horsepower.

(c) The efficiency and NPSH required for the pump.

(d) How far above the reboiler the pump can be installed and still function

properly.

28. A circulating pump takes hot water at 858C from a storage tank, circulates it

through a piping system at a rate of 150 gpm, and discharges it to the atmo-

sphere. The tank is at atmospheric pressure, and the water level in the tank is

20 ft above the pump. The piping consists of 500 ft of 2 in. sch 40 pipe, with one

globe valve upstream of the pump and three globe valves and eight threaded

elbows downstream of the pump. If the pump has the characteristics shown in

Fig. 8-2, determine

(a) The head that the pump must deliver, the best impeller diameter to use with

the pump, the pump efficiency and NPSH at the operating point, and the

motor horsepower required to drive the pump.

(b) How far the pump can be located from the tank without cavitating.

Properties of water at 858C: Viscosity 0.334 cP, density 0.970 g/cm3,

vapor pressure 433.6mmHg.

29. A slurry pump operating at 1 atm must be selected to transport a coal slurry

from an open storage tank to a rotary drum filter, at a rate of 250 gpm. The

slurry is 40% solids by volume and has an SG of 1.2. The level in the filter is

10 ft above that in the tank, and the line contains 400 ft of 3 in. sch 40 pipe, two

gate valves, and six 908 elbows. A lab test shows that the slurry can be described

as a Bingham plastic with � ¼ 50 cP and �0 ¼ 80 dyn/cm2.

(a) What pump head is required?

(b) Using the pump curves in Appendix H, choose the pump that would be

the best for this job. Specify the pump size, motor speed, impeller

diameter, efficiency, and NPSH. Tell what criteria you used to make

your decision.

(c) What horsepower motor would you need to drive the pump?

(d) Assuming the pump you choose has an NPSH of 6 ft at the operating

conditions, what is the maximum elevation above the tank that the pump

could be located, if the maximum temperature is 808C? (Pv of water is

0.4736 bar at this temperature.)

30. A red mud slurry residue from a bauxite processing plant is to be pumped from

the plant to a disposal pond, at a rate of 1000 gpm, through a 6 in. ID pipeline

that is 2500 ft long. The pipeline is horizontal, and the inlet and discharge of the

line are both at atmospheric pressure. The mud has properties of a Bingham

plastic, with a yield stress of 250 dyn/cm2, a limiting viscosity of 50 cP, and a

density of 1.4 g/cm3. The vapor pressure of the slurry at the operating tempera-

ture is 50mmHg. You have available several pumps with the characteristics

given in Appendix H.
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(a) Which pump, impeller diameter, motor speed and motor horsepower would

you use for this application?

(b) How close to the disposal pond could the pump be located without cavitat-

ing?

(c) It is likely that none of these pumps would be adequate to pump this slurry.

Explain why, and explain what type of pump might be better.

31. A pipeline is installed to transport a red mud slurry from an open tank in an

alumina plant to a disposal pond. The line is 5 in. sch 80 commercial steel,

12,000 ft long, and is designed to transport the slurry at a rate of 300 gpm.

The slurry properties can be described by the Bingham plastic model, with a

yield stress of 15 dyn/cm2, a limiting viscosity of 20 cP, and an SG of 1.3. You

may neglect any fittings in this pipeline.

(a) What delivered pump head and hydraulic horsepower would be required to

pump this mud?

(b) What would be the required pump head and horsepower to pump water at

the same rate through the same pipeline?

(c) If 100 ppm of fresh Separan AP-30 polyacrylamide polymer were added to

the water in case (b), above, what would the required pump head and

horsepower be?

(d) If a pump with the same characteristics as those illustrated in Fig. 8-2 could

be used to pump these fluids, what would be the proper size impeller and

motor horsepower to use for each of cases (a), (b), and (c), above. Explain

your choices.

32. An organic liquid is to be pumped at a rate of 300 gpm from a distillation

column reboiler at 5 psig to a storage tank at atmospheric pressure. The liquid

in the reboiler is 3 ft above ground level, the storage tank is 20 ft above ground,

and the pump will be at ground level. The piping system contains 14 standard

elbows, four gate valves, and 500 ft of 3 in. sch 40 pipe. The liquid has an SG of

0.85, a viscosity of 8 cP, and a vapor pressure of 600mmHg. Select the best

pump for this job from those for which the characteristics are given in Appendix

H, and determine

(a) The motor speed

(b) The impeller diameter

(c) The motor horsepower and required torque

(d) Where the pump must be located to prevent cavitation.

Compressors

33. Calculate the work per pound of gas required to compress air from 708F and

1 atm to 2000 psi with an 80% efficient compressor under the following condi-

tions:

(a) Single stage isothermal compression.

(b) Single stage adiabatic compression.

(c) Five stage adiabatic compression with intercooling to 708F and optimum

interstage pressures.
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(d) Three stage adiabatic compression with interstage cooling to 1208F and

optimum interstage pressures.

Calculate the outlet temperature of the air for cases (b), (c), and (d), above. For

air: cp ¼ 0:24Btu (lbm 8F), k ¼ 1:4.
34. It is desired to compress ethylene gas [MW ¼ 28, k ¼ 1:3, cp ¼ 0:357Btu/(lbm

8F)] from 1 atm and 808F to 10,000 psia. Assuming ideal gas behavior, calculate

the compression work required per pound of ethylene under the following

conditions:

(a) A single stage isothermal compressor.

(b) A four stage adiabatic compressor with interstage cooling to 808F and

optimum interstage pressures.

(c) A four stage adiabatic compressor with no intercooling, assuming the same

interstage pressures as in (b) and 100% efficiency.

35. You have a requirement to compress natural gas (k ¼ 1:3, MW ¼ 18) from

1 atm and 708F to 5000 psig. Calculate the work required to do this per

pound of gas in a 100% efficient compressor under the following conditions:

(a) Isothermal single stage compressor.

(b) Adiabatic three stage compressor with interstage cooling to 708F.
(c) Adiabatic two stage compressor with interstage cooling to 1008F.

36. Air is to be compressed from 1 atm and 708F to 2000 psia. Calculate the work

required to do this per pound of air using the following methods:

(a) A single stage 80% efficient isothermal compressor.

(b) A single stage 80% efficient adiabatic compressor.

(c) A five stage 80% efficient adiabatic compressor with interstage cooling to

708F.
(d) A three stage 80% efficient adiabatic compressor with interstage cooling to

1208F. Determine the expression relating the pressure ratio and inlet tem-

perature for each stage for this case by induction from the corresponding

expression for optimum operation of the corresponding two stage case.

(e) Calculate the final temperature of the gas for cases (b), (c), and (d).

37. It is desired to compress 1000 scfm of air from 1 atm and 708F to 10 atm.

Calculate the total horsepower required if the compressor efficiency is 80% for

(a) Isothermal compression.

(b) Adiabatic single stage compression.

(c) adiabatic three stage compression with interstage cooling to 708F and opti-

mum interstage pressures.

(d) Calculate the gas exit temperature for cases (b) and (c).

Note: cp ¼ 7Btu/(lb mol8F); assume ideal gas.

38. You want to compress air from 1 atm, 708F, to 2000 psig, using a staged com-

pressor with interstage cooling to 708F. The maximum compression ratio per

stage you can use is about 6, and the compressor efficiency is 70%.

(a) How many stages should you use?

(b) Determine the corresponding interstage pressures.

(c) What power would be required to compress the air at a rate of 105 scfm?

(d) Determine the temperature leaving the last stage.
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(e) How much heat (in Btu/hr) must be removed by the interstage coolers?

39. A natural gas (methane) pipeline is to be designed to transport the gas at a rate

of 50,000 scfm. The pipe is to be 6 in. ID, and the maximum pressure that the

compressors can develop is 10,000 psig. The compressor stations are to be

located in the pipeline at the point at which the pressure drops to 100 psi

above that at which choked flow would occur (this is the suction pressure for

the compressors). If the design temperature for the pipeline is 608F, the com-

pressors are 60% efficient, and the compressor stations each operate with three

stages and interstage cooling to 608F, determine

(a) The proper distance between compressor stations, in miles.

(b) The optimum interstage pressure and compression ratio for each compres-

sor stage.

(c) The total horsepower required for each compressor station.

40. A compressor feeds ethylene to a pipeline, that is 500 ft long and 6 in. in

diameter. The compressor suction pressure in 50 psig at 708F, the discharge

pressure is 800 psig, and the downstream pressure at the end of the pipeline is

300 psig. For each of the two following cases, determine (1) the flow rate in the

pipeline in scfm and (2) the power delivered from the compressor to the gas, in

horsepower:

(a) The compressor operates with a single stage;

(b) The compressor has three stages, with interstage cooling to the entering

temperature.

NOTATION

D diameter, [L]

DF driving force, Eq. (8-8), [L2=t2�
ef energy dissipated per unit mass of fluid, [FL=M ¼ L2=t2]
g acceleration due to gravity, [L=t2�
Hp pump head, [L]

HP power, ½FL=t ¼ ML2=t3�
hmax maxmaximum suction lift, [L]

k isentropic exponent ð¼ cv=cp for ideal gas), [—]

Kf loss coefficient, [—]

M molecular weight, [M/mol]

Ns specific speed, Eq. (8-13)

Nss suction specific speed, Eq. (8-14)

NPSH net positive suction head, [L]
_mm mass flow rate, [M/t]

P pressure, [F=L2 ¼ M=ðLt2�
Pv vapor pressure, [F=L2 ¼ M=Lt2�
Q volumetric flow rate, [L3=t]
R radius, [L]

r compression ratio, [—]

T temperature, [T]
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w work done by fluid system per unit mass of fluid, [FL=M ¼ L2=t2�
� moment or torque, [FL ¼ ML2=t2�
�ð Þ ð Þ2 � ð Þ1
	e efficiency, [—]

� density, [M=L3]

! angular velocity, [1/t]

Subscripts

1 reference point 1

2 reference point 2

Glbv Globe value

i impeller, ideal (frictionless)

m motor

s suction line
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9

Compressible Flows

I. GAS PROPERTIES

The main difference between the flow behavior of incompressible and com-
pressible fluids, and between the equations that govern them, is the effect of
variable density, e.g., the dependence of density upon pressure and tempera-
ture. At low velocities (relative to the speed of sound), relative changes in
pressure and associated effects are often small and the assumption of incom-
pressible flow with a constant (average) density may be reasonable. It is
when the gas velocity approaches the speed at which a pressure change
propagates (i.e., the speed of sound) that the effects of compressibility
become the most significant. It is this condition of high-speed gas flow
(e.g., ‘‘fast gas’’) that is of greatest concern to us here.

A. Ideal Gas

All gases are ‘‘non-ideal’’ in that there are conditions under which the
density of the gas may not be accurately represented by the ideal gas law,

� ¼ PM=R ð9-1Þ
However, there are also conditions under which this law provides a very
good representation of the density for virtually any gas. In general, the
higher the temperature and the lower the pressure relative to the critical
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temperature and pressure of the gas, the better the ideal gas law represents
gas properties. For example, the critical conditions for CO2 are 304K,
72.9 atm, whereas for N2 they are 126K, 33.5 atm. Thus, at normal atmo-
spheric conditions (300K, 1 atm) N2 can be described very accurately by the
ideal gas law, whereas CO2 deviates significantly from this law under such
conditions. This is readily discernible from the P–H diagrams for the com-
pound (see e.g., Appendix D), because ideal gas behavior can be identified
with the conditions under which the enthalpy is independent of pressure, i.e.,
the constant temperature lines on the P–H diagram are vertical (see Section
5.III.B of Chapter 5). For the most common gases (e.g., air) at conditions
that are not extreme, the ideal gas law provides a quite acceptable repre-
sentation for most engineering purposes.

We will consider gases under two possible conditions: isothermal and
isentropic (or adiabatic). The isothermal (constant temperature) condition
may be approximated, for example, in a long pipeline in which the residence
time of the gas is long enough that there is plenty of time to reach
thermal equilibrium with the surroundings. Under these conditions, for an
ideal gas,

P

�
¼ constant ¼ P1

�1
¼ P2

�2
; etc ð9-2Þ

The adiabatic condition occurs, for example, when the residence time of the
fluid is short as for flow through a short pipe, valve, orifice, etc. and/or for
well-insulated boundaries. When friction loss is small, the system can also be
described as locally isentropic. It can readily be shown that an ideal gas
under isentropic conditions obeys the relationship

P

�k
¼ constant

P1

�k1
¼ P2

�k2
; etc ð9-3Þ

where k ¼ cp=cv is the ‘‘isentropic exponent’’ and, for an ideal gas,
cp ¼ cv þ R=M. For diatomic gases k � 1:4, whereas for triatomic and
higher gases k � 1:3. Equation (9-3) is also often used for non-ideal gases,
for which k is called the ‘‘isentropic exponent.’’ A table of properties of
various gases, including the isentropic exponent, is given in Appendix C,
which also includes a plot of k as a function of temperature and pressure for
steam.

B. The Speed of Sound

Sound is a small-amplitude compression pressure wave, and the speed of
sound is the velocity at which this wave will travel through a medium. An
expression for the speed of sound can be derived as follows. With reference
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to Fig. 9-1, we consider a sound wave moving from left to right with velocity
c. If we take the wave as our reference, this is equivalent to considering a
standing wave with the medium moving from right to left with velocity c.
Since the conditions are different upstream and downstream of the wave, we
represent these differences by �V , �T , �P, and ��. The conservation of
mass principle applied to the flow through the wave reduces to

_mm ¼ �Ac ¼ ð�þ��ÞAðc��VÞ ð9-4Þ
or

�V ¼ c
��

�þ��
ð9-5Þ

Likewise, a momentum balance on the fluid ‘‘passing through’’ the wave isX
F ¼ _mmðV2 � V1Þ ð9-6Þ

which becomes, in terms of the parameters in Fig. 9-1,

PA� ðPþ�PÞA ¼ �Acðc��V � cÞ ð9-7Þ
or

�P ¼ �c�V ð9-8Þ
Eliminating �V from Eqs. (9-5) and (9-8) and solving for c2 gives

c2 ¼ �P

��
1þ��

�

� �
ð9-9Þ

For an infinitesimal wave under isentropic conditions, this becomes

c ¼
�
@P

@�

� �
s

�1=2
¼ k

@P

@�

� �
T

� �1=2
ð9-10Þ

where the equivalence of the terms in the two radicals follows from Eqs.
(9-2) and (9-3).
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For an ideal gas, Eq. (9-10) reduces to

c ¼ kP

�

� �1=2

¼ kRT

M

� �1=2

ð9-11Þ

For solids and liquids,

@P

@�

� �
s

¼ K

�
ð9-12Þ

where K is the bulk modulus (or ‘‘compressive stiffness’’) of the material. It is
evident that the speed of sound in a completely incompressible medium
would be infinite. From Eq. (9-11) we see that the speed of sound in an
ideal gas is determined entirely by the nature of the gas (M and k) and the
temperature (T).

II. PIPE FLOW

Consider a gas flowing in a uniform (constant cross section) pipe. The mass
flow rate and mass flux (G ¼ _mm=AÞ are the same at all locations along the
pipe:

G ¼ _mm=A ¼ �V ¼ constant ð9-13Þ
Now the pressure drops along the pipe because of energy dissipation (e.g.,
friction), just as for an incompressible fluid. However, because the density
decreases with decreasing pressure and the product of the density and velo-
city must be constant, the velocity must increase as the gas moves through
the pipe. This increase in velocity corresponds to an increase in kinetic
energy per unit mass of gas, which also results in a drop in temperature.
There is a limit as to how high the velocity can get in a straight pipe,
however, which we will discuss shortly.

Because the fluid velocity and properties change from point to point
along the pipe, in order to analyze the flow we apply the differential form of
the Bernoulli equation to a differential length of pipe (dL):

dP

�
þ gdzþ d

V2

2

 !
þ �ef ¼ ��w ¼ 0 ð9-14Þ

If there is no shaft work done on the fluid in this system and the elevation
(potential energy) change can be neglected, Eq. (9-14) can be rewritten using
Eq. (9-13) as follows:

dP

�
þ G2

�
d

1

�

� �
¼ ��ef ¼ � 2fV2dL

D
¼ � 2f

D

G

�

� �2

dL ð9-15Þ
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where the friction factor f is a function of the Reynolds number:

f ¼ fn NRe ¼
DG

�
ffi constant

� �
ð9-16Þ

Because the gas viscosity is not highly sensitive to pressure, for
isothermal flow the Reynolds number and hence the friction factor will
be very nearly constant along the pipe. For adiabatic flow, the viscosity
may change as the temperature changes, but these changes are usually
small. Equation (9-15) is valid for any prescribed conditions, and we
will apply it to an ideal gas in both isothermal and adiabatic (isentropic)
flow.

A. Isothermal Flow

Substituting Eq. (9-1) for the density into Eq. (9-15), rearranging, integrat-
ing from the inlet of the pipe (point 1) to the outlet (point 2), and solving the
result for G gives

G ¼ MðP2
1 � P2

2Þ=2RT
2fL=Dþ lnðP1=P2Þ

 !1=2

¼
ffiffiffiffiffiffiffiffiffiffi
P1�1

p 1� P2
2=P

2
1

4fL=D� 2 lnðP2=P1Þ

 !1=2

ð9-17Þ

If the logarithmic term in the denominator (which comes from the change in
kinetic energy of the gas) is neglected, the resulting equation is called the
Weymouth equation. Furthermore, if the average density of the gas is used in
the Weymouth equation, i.e.,

��� ¼ ðP1 þ P2ÞM
2RT

; or
M

2RT
¼ ���

P1 þ P2

ð9-18Þ

Eq. (9-17) reduces identically to the Bernoulli equation for an incompres-
sible fluid in a straight, uniform pipe, which can be written in the form

G ¼ ���ðP1 � P2Þ
2fL=D

� �1=2

¼
ffiffiffiffiffiffiffiffiffiffi
ðP1 ���

p 1� P1=P2

2fL=D

� �1=2

ð9-19Þ

Inspection of Eq. (9-17) shows that as P2 decreases, both the
numerator and denominator increase, with opposing effects. By setting
the derivative of Eq. (9-17) with respect to P2 equal to zero, the value of
P2 that maximizes G and the corresponding expression for the maximum G
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can be found. If the conditions at this state (maximum mass flux) are
denoted by an asterisk, e.g., P*2, G*, the result is

G* ¼ P*2

ffiffiffiffiffiffiffiffi
M

RT

r
¼ P*2

ffiffiffiffiffiffi
�1
P1

r
ð9-20Þ

or:

V*
2 ¼

ffiffiffiffiffiffiffiffi
RT

M

r
¼

ffiffiffiffiffiffi
P1

�1

s
¼ c ð9-21Þ

That is, as P2 decreases, the mass velocity will increase up to a maximum
value of G*, at which point the velocity at the end of the pipe reaches the
speed of sound. Any further reduction in the downstream pressure can have
no effect on the flow in the pipe, because the speed at which pressure
information can be transmitted is the speed of sound. That is, since pressure
changes are transmitted at the speed of sound, they cannot propagate
upstream in a gas that is already traveling at the speed of sound.
Therefore, the pressure inside the downstream end of the pipe will remain
at P*2, regardless of how low the pressure outside the end of the pipe (P2)
may fall. This condition is called choked flow and is a very important con-
cept, because it establishes the conditions under which maximum gas flow
can occur in a conduit. When the flow becomes choked, the mass flow rate in
the pipe will be insensitive to the exit pressure but will still be dependent
upon the upstream conditions.

Although Eq. (9-17) appears to be explicit for G, it is actually implicit
because the friction factor depends on the Reynolds number, which depends
on G. However, the Reynolds number under choked flow conditions is often
high enough that fully turbulent flow prevails, in which case the friction
factor depends only on the relative pipe roughness:

1ffiffiffi
f

p ¼ �4 log
"=D

3:7

� �
ð9-22Þ

If the upstream pressure and flow rate are known, the downstream
pressure (P2) can be found by rearranging Eq. (9-17), as follows

P2

P1

¼ 1� G2

P1�1

4fL

D
� 2 ln

P2

P1

� �� �( )1=2

ð9-23Þ

which is implicit inP2. A first estimate forP2 can be obtained by neglecting the
last term on the right (corresponding to the Weymouth approximation). This
first estimate can then be inserted into the last term in Eq. (9-23) to provide a
second estimate for P2, and the process can be repeated as necessary.
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B. Adiabatic Flow

In the case of adiabatic flow we use Eqs. (9-1) and (9-3) to eliminate density
and temperature from Eq. (9-15). This can be called the locally isentropic
approach, because the friction loss is still included in the energy balance.
Actual flow conditions are often somewhere between isothermal and adia-
batic, in which case the flow behavior can be described by the isentropic
equations, with the isentropic constant k replaced by a ‘‘polytropic’’
constant (or ‘‘isentropic exponent’’) �, where 1 < � < k, as is done for
compressors. (The isothermal condition corresponds to � ¼ 1, whereas
truly isentropic flow corresponds to � ¼ k.) This same approach can be
used for some non-ideal gases by using a variable isentropic exponent for
k (e.g., for steam, see Fig. C-1).

Combining Eqs. (9-1) and (9-3) leads to the following expressions for
density and temperature as a function of pressure:

� ¼ �1
P

P1

� �1=k

; T ¼ T1

P

P1

� �ðk�1Þ=k
ð9-24Þ

Using these expressions to eliminate � and T from Eq. (9-15) and solving for
G gives

G ¼
ffiffiffiffiffiffiffiffiffiffi
P1�1

p 2
k

kþ 1

� �
1� P2

P1

� �ðk�1Þ=kÞ !

4fL

D
� 2

k
ln

P2

P1

� �
2
66664

3
77775

1=2

ð9-25Þ

If the system contains fittings as well as straight pipe, the term
4fL=D ð¼ Kf;pipe) can be replaced by

P
Kf , i.e., the sum of all loss co-

efficients in the system.

C. Choked Flow

In isentropic flow (just as in isothermal flow), the mass velocity reaches a
maximum when the downstream pressure drops to the point where the
velocity becomes sonic at the end of the pipe (e.g., the flow is choked).
This can be shown by differentiating Eq. (9-25) with respect to P2 (as before)
or, alternatively, as follows

G ¼ _mm

A
¼ �V ð9-26aÞ

@G

@P
¼ @ð�VÞ

@P
¼ �

@V

@P
þ V

@�

@P
¼ 0 ðfor max GÞ ð9-26bÞ
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For isentropic conditions, the differential form of the Bernoulli equation is

dP

�
þ VdV ¼ 0 or

@V

@P
¼ � 1

�V
ð9-27Þ

Substituting this into Eq. (9-26b) gives

� 1

V
þ V

@�

@P
¼ 0 ð9-28Þ

However, since

c2 ¼ @P

@�

� �
s

ð9-29Þ

Eq. (9-28) can be written

� 1

V
þ V

c2
¼ 0; or V ¼ c ð9-30Þ

This shows that when the mass velocity reaches a maximum (e.g., the flow is
choked), the velocity is sonic.

1. Isothermal

Under isothermal conditions, choked flow occurs when

V2 ¼ c ¼ V*
2 ¼

ffiffiffiffiffiffiffiffi
RT

M

r
¼

ffiffiffiffiffiffi
P1

�1

s
ð9-31Þ

where the asterisk denotes the sonic state. Thus,

G* ¼ �2V*
2 ¼

P*2M

RT

ffiffiffiffiffiffiffiffi
RT

M

r
¼

ffiffiffiffiffiffiffiffiffiffi
P1�1

p P*2
P1

ð9-32Þ

If G* is eliminated from Eqs. (9-17) and (9-32) and the result is solved forP
Kf , the result is

X
Kf ¼

P1

P*2

� �2

�2 ln
P1

P*2

� �
� 1 ð9-33Þ

where 4fL=D in Eq. (9-17) has been replaced by
P

Kf . Equation (9-33)
shows that the pressure at the (inside of the) end of the pipe at which the
flow becomes sonic (P*2) is a unique function of the upstream pressure (P1)
and the sum of the loss coefficients in the system (

P
Kf ). Since Eq. (9-33) is

implicit in P*2, it can be solved for P*2 by iteration for given values of
P

Kf

and P1. Equation (9-33) thus enables the determination of the ‘‘choke
pressure’’ P*2 for given values of

P
Kf and P1.
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2. Adiabatic

For adiabatic (or locally isentropic) conditions, the corresponding expres-
sions are

V2 ¼ c ¼ V*
2 ¼

kRT2

M

� �1=2

;
T2

T1

¼ P2

P1

� �ðk�1Þ=k
ð9-34Þ

and

G* ¼ P*2M

RT*
2

kRT*
2

M

� �1=2

¼
ffiffiffiffiffiffiffiffiffiffi
P1�1

p
k

P*2
P1

� �ðkþ1Þ=k" #1=2

ð9-35Þ

Eliminating G* from Eqs. (9-25) and (9-35) and solving for
P

Kf gives

X
Kf ¼

2

kþ 1

P1

P*2

� �ðkþ1Þ=k
�1

" #
� 2

k
ln

P1

P*2

� �
ð9-36Þ

Just as for isothermal flow, this is an implicit expression for the ‘‘choke
pressure’’ (P*2) as a function of the upstream pressure (P1), the loss coeffi-
cients (

P
Kf Þ, and the isentropic exponent (k), which is most easily solved

by iteration. It is very important to realize that once the pressure at the end
of the pipe falls to P*2 and choked flow occurs, all of the conditions within
the pipe (G ¼ G*;P2 ¼ P*2, etc.) will remain the same regardless of how low
the pressure outside the end of the pipe falls. The pressure drop within the
pipe (which determines the flow rate) is always P1 � P*2 when the flow is
choked.

D. The Expansion Factor

The adiabatic flow equation [Eq. (9-25)] can be represented in a more con-
venient form as

G ¼ Y
2�1�PP

Kf

� �1=2

¼ Y
ffiffiffiffiffiffiffiffiffiffi
P1�1

p 2ð1� P2=P1ÞP
Kf

� �1=2

ð9-37Þ

where �1 ¼ P1M=RT1, �P ¼ P1 � P2, and Y is the expansion factor. Note
that Eq. (9-37) without the Y term is the Bernoulli equation for an in-
compressible fluid of density �1. Thus, the expansion factor Y ¼ Gadiabatic=
Gincompressible is simply the ratio of the adiabatic mass flux [Eq. (9-25)] to the
corresponding incompressible mass flux and is a unique function of P2=P1,
k, and Kf . For convenience, values of Y are shown in Fig. 9-2a for k ¼ 1:3
and Fig. 9-2b for k ¼ 1:4 as a function of �P=P1 and

P
Kf (which is

denoted simply K on these plots). The conditions corresponding to the
lower ends of the lines on the plots (i.e., the ‘‘button’’) represent the sonic
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FIGURE 9-2 Expansion factor for adiabatic flow in piping systems. (a) k ¼ 1:3;
(b) k ¼ 1:4. (From Crane Co., 1991.)



(choked flow) state where P2 ¼ P*2. These same conditions are given in the
tables accompanying the plots, which enables the relationships for choked
flow to be determined more precisely than is possible from reading the plots.
Note that it is not possible to extrapolate beyond the ‘‘button’’ at the end of
the lines in Figs. 9-2a and 9-2b because this represents the choked flow state,
in which P2 ¼ P*2 (inside the pipe) and is independent of the external exit
pressure.

Figure 9-2 provides a convenient way of solving compressible adia-
batic flow problems for piping systems. Some iteration is normally required,
because the value of Kf depends on the Reynolds number, which cannot be
determined until G is found. An example of the procedure for solving a
typical problem follows.

Given: P1, D, L, ", k, M Find: P*2 and G*

1. Estimate
P

Kf by assuming fully turbulent flow. This requires a
knowledge of "=D to get Kf ¼ 4fL=D for the pipe and Ki and Kd

for each fitting.
2. From Fig. 9-2a (for k ¼ 1:3) or Fig. 9-2b (for k ¼ 1:4), at the end

of the line corresponding to the value of K ¼P
Kf (or from the

table beside the plot) read the values of Y and
�P*=P1 ¼ ðP1 � P*2Þ=P1.

3. Calculate G ¼ G* from Eq. (9-37).
4. Calculate NRe ¼ DG=�, and use this to revise the value of K ¼P

Kf for the pipe (Kf ¼ 4fL=D) and fittings (3-K) accordingly.
5. Repeat steps 2–4 until there is no change in G.

The value of the downstream pressure (P2) at which the flow becomes
sonic (P2=P*2) is given by P*2 ¼ P1ð1��P*=P1). If the exit pressure is
equal to or less than this value, the flow will be choked and G is calculated
using P*2. Otherwise, the flow will be subsonic, and the flow rate will be
determined using the pressure P2.

E. Ideal Adiabatic Flow

The adiabatic flow of an ideal gas flowing through a frictionless conduit or a
constriction (such as an orifice nozzle, or valve) can be analyzed as follows.
The total energy balance is

�hþ g�zþ 1
2
�V2 ¼ qþ w ð9-38Þ

For horizontal adiabatic flow with no external work, this becomes

�hþ 1
2
�V2 ¼ 0 ð9-39Þ
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where

�h ¼ �ðcpTÞ ¼ k

k� 1
�

�
P

�

�
ð9-40Þ

which follows from the ideal gas relation cp � cv ¼ R=M and the definition
of k (k ¼ cp=cvÞ. Equation (9-39) thus becomes

k

k� 1

P2

�2
� P1

�1

� �
þ V2

2 � V2
1

2
¼ 0 ð9-41Þ

Using the isentropic condition (P=�k ¼ constant) to eliminate �2, this can be
written

V2
2 � V2

1 ¼ 2k

k� 1

P1

�1

� �
1� P2

P1

� �ðk�1Þ=k" #
ð9-42Þ

If V1 is eliminated by using the continuity equation, (�VAÞ1 ¼ ð�VAÞ2, this
becomes

V2 ¼
2k

k� 1

P1

�1

� � ½1� ðP2=P1Þðk�1Þ=k�
½1� ðA2=A1Þ2ðP2=P1Þ2=k�

" #1=2

ð9-43Þ

Because

G ¼ V2�2 ¼ V2�1ðP2=P1Þ1=k ð9-44Þ
and assuming that the flow is from a larger conduit through a small con-
striction, such that A1 � A2 (i.e., V1 
 V2Þ, Eq. (9-44) becomes

G ¼ 2k

k� 1

�
P2
1M

RT1

�
P2

P1

� �2=k

1� P2

P1

� �ðk�1Þ=k" #( )1=2

or

G ¼
ffiffiffiffiffiffiffiffiffiffi
P1�1

p 2k

k� 1

P2

P1

� �2=k

1� P2

P1

� �ðk�1Þ=k" #( )1=2

ð9-45Þ

Equation (9-45) represents flow through an ‘‘ideal nozzle,’’ i.e., an isentropic
constriction.

From the derivative of Eq. (9-45) (setting @G=@r ¼ 0 where r ¼ P2=P1),
it can be shown that the mass flow is a maximum when

P*2
P1

¼ 2

kþ 1

� �k=ðk�1Þ
ð9-46Þ
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which, for k ¼ 1:4 (e.g., air), has a value of 0.528. That is, if the downstream
pressure is approximately one half or less of the upstream pressure, the flow
will be choked. In such a case, the mass velocity can be determined by using
Eq. (9-35) with P*2 from Eq. (9-46):

G* ¼ P1

2

kþ 1

� �ðkþ1Þ=2ðk�1Þ
ffiffiffiffiffiffiffiffiffi
kM

RT1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kP1�1

p 2

kþ 1

� �ðkþ1Þ=2ðk�1Þ
ð9-47Þ

For k ¼ 1:4, this reduces to

G* ¼ 0:684P1

ffiffiffiffiffiffiffiffiffi
M

RT1

s
¼ 0:684

ffiffiffiffiffiffiffiffiffiffi
P1�1

p
ð9-48Þ

The mass flow rate under adiabatic conditions is always somewhat
greater than that under isothermal conditions, but the difference is normally
<20%. In fact, for long piping systems (L=D > 1000), the difference is
usually less than 5% (see, e.g., Holland, 1973). The flow of compressible
(as well as incompressible) fluids through nozzles and orifices will be con-
sidered in the following chapter on flow-measuring devices.

III. GENERALIZED EXPRESSIONS

For adiabatic flow in a constant area duct, the governing equations can be
formulated in a more generalized dimensionless form that is useful for the
solution of both subsonic and supersonic flows. We will present the resulting
expressions and illustrate how to apply them here, but we will not show the
derivation of all of them. For this, the reader is referred to publications such
as that of Shapiro (1953) and Hall (1951).

A. Governing Equations

For steady flow of a gas (at a constant mass flow rate) in a uniform pipe, the
pressure, temperature, velocity, density, etc. all vary from point to point
along the pipe. The governing equations are the conservation of mass
(continuity), conservation of energy, and conservation of momentum, all
applied to a differential length of the pipe, as follows.

1. Continuity

_mm

A
¼ G ¼ �V ¼ constant ð9-49aÞ
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or

d�

�
þ dV

V
¼ 0 ð9-49bÞ

2. Energy

hþ 1
2
V2 ¼ constant ¼ h0 ¼ cpT0 ¼ cpT þ 1

2
V2 ð9-50aÞ

or

dhþ VdV ¼ 0 ð9-50bÞ

Since the fluid properties are defined by the entropy and enthalpy,
Eqs. (9-50) represent a curve on an h�s diagram, which is called a
Fanno line.

3. Momentum

dP

�
þ VdV ¼ � 4�w

�Dh

dL ¼ � 2fV2

D
dL ð9-51Þ

By making use of the isentropic condition (i.e. P=�k ¼ constant), the
following relations can be shown

h ¼ cpT ¼ kRT

ðk� 1ÞM ¼ P

�

k

k� 1

� �
ð9-52Þ

P

�
¼ RT

M
¼ c2

k
ð9-53Þ

NMa ¼
V

c
ð9-54Þ

where NMA is the Mach number.
An ‘‘impulse function’’ (F) is also useful in some problems where the

force exerted on bounding surfaces is desired:

F ¼ PAþ �AV2 ¼ PAð1þ kN2
MaÞ ð9-55Þ

These equations can be combined to yield the dimensionless forms

dP

P
¼ � kN2

Ma½1þ ðk� 1ÞN2
Ma�

2ð1�N2
MaÞ

4f
dL

D

� �
ð9-56Þ
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dN2
Ma

N2
Ma

¼ kN2
Ma½1þ ðk� 1ÞN2

Ma=2�
1�N2

Ma

4f
dL

D

� �
ð9-57Þ

dV

V
¼ kN2

Ma

2ð1�N2
MaÞ

4f
dL

D

� �
¼ � d�

�
ð9-58Þ

dT

T
¼ � kðk� 1ÞN4

Ma

2ð1�N2
MaÞ

4f
dL

D

� �
ð9-59Þ

dP0

P0

¼ � kN2
Ma

2
4f

dL

D

� �
ð9-60Þ

and

dF

F
¼ dP

P
þ kN2

Ma

1þ kN2
Ma

dN2
Ma

N2
Ma

ð9-61Þ

The subscript 0 represents the ‘‘stagnation’’ state, i.e., the conditions that
would prevail if the gas were to be slowed to a stop and all kinetic energy
converted reversibly to internal energy. For a given gas, these equations
show that all conditions in the pipe depend uniquely on the Mach number
and dimensionless pipe length. In fact, if NMa < 1, an inspection of these
equations shows that as the distance down the pipe (dL) increases, V
will increase but P, �, and T will decrease. However, if NMa > 1, just the
opposite is true, i.e., V decreases while P, �, and T increase with distance
down the pipe. That is, a flow that is initially subsonic will approach (as a
limit) sonic flow as L increases, whereas an initially supersonic flow will also
approach sonic flow as L increases. Thus all flows, regardless of their start-
ing conditions, will tend toward the speed of sound as the gas progresses
down a uniform pipe. Therefore, the only way a subsonic flow can be
transformed into a supersonic flow is through a converging–diverging
nozzle, where the speed of sound is reached at the nozzle throat. We will
not be concerned here with supersonic flows, but the interested reader can
find this subject treated in many fluid mechanics books (such as Hall (1951)
and Shapiro (1953).

B. Applications

It is convenient to take the sonic state (NMa ¼ 1) as the reference state for
application of these equations. Thus, if the upstream Mach number is NMa,
the length of pipe through which this gas must flow to reach the speed of
sound (NMa ¼ 1) will be L*. This can be found by integrating Eq. (9-57)
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from (L ¼ 0, NMa) to (L ¼ L*, NMa ¼ 1). The result is

4 �ff L*

D
¼ 1�N2

Ma

kN2
Ma

þ kþ 1

2k
ln

ðkþ 1ÞN2
Ma

2þ ðk� 1ÞN2
Ma

" #
ð9-62Þ

where �ff is the average friction factor over the pipe length L*. Because the
mass velocity is constant along the pipe, the Reynolds number (and hence f )
will vary only as a result of variation in the viscosity, which is usually small.
If �L ¼ L ¼ L*1 � L*2 is the pipe length over which the Mach number
changes from NMa1 to NMa2, then

4 �ff�L

D
¼ 4 �ff L*

D

 !
1

� 4 �ff L*

D

 !
2

ð9-63Þ

Likewise, the following relationships between the problem variables and
their values at the sonic (reference) state can be obtained by integrating
Eqs. (9-56)–(9-60).

P

P*
¼ 1

NMa

kþ 1

2þ ðk� 1ÞN2
Ma

�
� �1=2

ð9-64Þ

T

T*
¼ c

c*

	 
2
¼ kþ 1

2þ ðk� 1ÞN2
Ma

ð9-65Þ

�

�*
¼ V*

V
¼ 1

NMa

2þ ðk� 1ÞN2
Ma

kþ 1

" #1=2

ð9-66Þ

P0

P*0
¼ 1

NMa

2þ ðk� 1ÞN2
Ma

kþ 1

" #ðkþ1Þ=2ðk�1Þ
ð9-67Þ

With these relationships in mind, the conditions at any two points (1 and 2)
in the pipe are related by

T2

T1

¼ T2=T*

T1=T*
;

P2

P1

¼ P2=P*

P1=P*
ð9-68Þ

and

4 �ff�L

D
¼ 4 �ff

D
ðL*1 � L*2Þ ¼

4 �ff L*

D

 !
1

� 4 �ff L*

D

 !
2

ð9-69Þ

Also, the mass velocity at NMa and at the sonic state are given by

G ¼ NMaP

ffiffiffiffiffiffiffiffi
kM

RT

r
; G* ¼ P*

ffiffiffiffiffiffiffiffiffiffi
kM

RT*

r
: ð9-70Þ
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For pipe containing fittings, the term 4fL=D would be replaced by the sum
of the loss coefficients (

P
Kf ) for all pipe sections and fittings. These equa-

tions apply to adiabatic flow in a constant area duct, for which the sum of
the enthalpy and kinetic energy is constant [e.g., Eq. (9-50)], which also
defines the Fanno line. It is evident that each of the dependent variables
at any point in the system is a unique function of the nature of the gas (k)
and the Mach number of the flow (NMa) at that point. Note that although
the dimensionless variables are expressed relative to their values at sonic
conditions, it is not always necessary to determine the actual sonic condi-
tions to apply these relationships. Because the Mach number is often the
unknown quantity, an iterative or trial-and-error procedure for solving the
foregoing set of equations is required. However, these relationships may be
presented in tabular form (Appendix I) or in graphical form (Fig. 9-3),
which can be used directly for solving various types of problems without
iteration, as shown below.

C. Solution of High-Speed Gas Problems

We will illustrate the procedure for solving the three types of pipe flow
problems for high-speed gas flows: unknown driving force, unknown flow
rate, and unknown diameter.

1. Unknown Driving Force

The unknown driving force could be either the upstream pressure, P1, or the
downstream pressure, P2. However, one of these must be known, and the
other can be determined as follows.

Given: P1;T1;G;D;L Find: P2

1. Calculate NRe ¼ DG=�1 and use this to find f1 from the Moody
diagram or the Churchill equation.

2. Calculate NMa1 ¼ ðG=P1ÞðRT1=kMÞ1=2. Use this with Eqs. (9-62),
(9-64), and (9-65) or Fig. 9-3 or Appendix I to find (4fL*1=DÞ1,
P1=P*, and T1=T*. From these values and the given quantities,
calculate L*1, P*, and T*.

3. Calculate L*2 ¼ L*1 � L, and use this to calculate (4f1L*2=DÞ2. Use
this with Fig. 9-3 or Appendix I or Eqs. (9-62), (9-64), and (9-65)
to get NMa2, P2=P*, and T2=T*. [Note that Eq. (9-62) is implicit
for NMa2]. From these values, determine P2 and T2.

4. Revise � by evaluating it at an average temperature, ðT1 þ T2Þ=2,
and pressure, (P1 þ P2)/2. Use this to revise NRe and thus f , and
repeat steps 3 and 4 until no change occurs.
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2. Unknown Flow Rate

The mass velocity (G) is the unknown, which is equivalent to the mass flow
rate because the pipe diameter is known. This requires a trial and error
procedure, because neither the Reynolds nor Mach numbers can be calcu-
lated a priori.
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Given: P1;P2;T1;L; and D Find: G

1. Assume a value for NMa1. Use Eqs. (9-62), (9-64), and (9-65) or
Fig. 9-3 or Appendix I with this value to find P1=P*, T1=T*, and
(4fL*1=DÞ1. From these and known quantities, determine P* and
T*.

2. Calculate G1 ¼ NMa1P1ðkM=RT1Þ1=2 and NRe1 ¼ DG=�. From the
latter, find f1 from the Moody diagram or Churchill equation.

3. Calculate (4fL*2=DÞ2 ¼ ð4fL*1=DÞ1 � 4f1L=D. Use this with Eq.
(9-62) (implicit) and Eqs. (9-64) and (9-65) or Fig. 9-3 or
Appendix I to find NMa2, P2/P*, and T2=T* at point 2.

4. Calculate P2 ¼ ðP2=P*ÞP*, T2 ¼ ðT2=T*ÞT*, G2 ¼ NMa2P2ðkM=
RT2Þ1=2, and NRe ¼ DG2=�. Use the latter to determine a revised
value of f ¼ f2.

5. Using f ¼ ð f1 þ f2Þ=2 for the revised friction factor, repeat steps 3
and 4 until there is no change.

6. Compare the given value of P2 with the calculated value from step
4. If they agree, the answer is the calculated value of G2 from step
4. If they do not agree, return to step 1 with a new guess for NMa1,
and repeat the procedure until agreement is achieved.

3. Unknown Diameter

The procedure for an unknown diameter involves a trial-and-error proce-
dure similar to the one for the unknown flow rate.

Given: P1;T1;L;P2; _mm Find: D

1. Assume a value for NMa1 and use Eqs. (9-62), (9-64), and (9-65) or
Fig. 9-3, or Appendix I to find P1=P*, T1=T* and (4fL*1=DÞ1. Also,
calculate G ¼ NMa1P1ðkM=RT1Þ1=2, D ¼ ð4 _mm=�GÞ1=2, and NRe1 ¼
DG=�. Use NRe1 to find f1 from the Moody diagram or Churchill
equation.

2. Calculate P2=P* ¼ ðP1=P*ÞðP2=P1Þ, and use this with Fig. 9-3 or
Appendix I or Eqs. (9-64) (implicitly), (9-62), and (9-65) to find
NMa2, (4fL*2=DÞ2, and T2=T*. Calculate T2 ¼ ðT2=T*ÞðT*=T1ÞT1,
and use P2 and T2 to determine �2. Then use �2 to determine
NRe2 ¼ DG=�2, which determines f2 from the Moody diagram
or Churchill equation.

3. Using f ¼ ð f1 þ f2Þ=2, calculate L ¼ L*1 � L*2 ¼ ½ð4fL*1=DÞ1 �
ð4fL*2=DÞ2�ðD=4f Þ:

4. Compare the value of L calculated in step 3 with the given value. If
they agree, the value of D determined in step 1 is correct. If they
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do not agree, return to step 1, revise the assumed value of NMa1,
and repeat the entire procedure until agreement is achieved.

PROBLEMS

Compressible Flow

1. A 12 in. ID gas pipeline carries methane (MW ¼ 16) at a rate of 20,000 scfm.

The gas enters the line at a pressure of 500 psia, and a compressor station is

located every 100mi to boost the pressure back up to 500 psia. The pipeline is

isothermal at 708F, and the compressors are adiabatic with an efficiency of

65%. What is the required horsepower for each compressor? Assume ideal gas.

2. Natural gas (CH4) is transported through a 6 in. ID pipeline at a rate of

10,000 scfm. The compressor stations are 150mi apart, and the compressor

suction pressure is to be maintained at 10 psig above that at which choked

flow would occur in the pipeline. The compressors are each two stage, operate

adiabatically with interstage cooling to 708F, and have an efficiency of 60%. If

the pipeline temperature is 708F, calculate:
(a) The discharge pressure, interstage pressure, and compression ratio for the

compressor stations.

(b) The horsepower required at each compressor station.

3. Natural gas (methane) is transported through a 20 in. sch 40 commercial steel

pipeline at a rate of 30,000 scfm. The gas enters the line from a compressor at

100 psi and 708F. Identical compressor stations are located every 10mi along

the line, and at each station the gas is recompressed to 100 psia and cooled to

708F.
(a) Determine the suction pressure at each compressor station.

(b) Determine the horsepower required at each station if the compressors are

80% efficient.

(c) How far apart could the compressor stations be located before the flow in

the pipeline becomes choked?

4. Natural gas (methane) is transported through an uninsulated 6 in. ID commer-

cial steel pipeline, 1mi long. The inlet pressure is 100 psi and the outlet pressure

is 1 atm. What are the mass flow rate of the gas and the compressor power

required to pump it? T1 ¼ 708F, �gas ¼ 0:02 cP.
5. It is desired to transfer natural gas (CH4) at a pressure of 200 psia and a flow

rate of 1000 scfs through a 1mi long uninsulated commercial steel pipeline into

a storage tank at 20 psia. Can this be done using either a 6 in. or 12 in. ID pipe?

What diameter pipe would you recommend? T1 ¼ 708F, � ¼ 0:02 cP.
6. A natural gas (methane) pipeline is to be designed to transport gas at a rate of

5000 scfm. The pipe is to be 6 in ID, and the maximum pressure that the com-

pressors can develop is 1500 psig. The compressor stations are to be located in

the pipeline at the point at which the pressure drops to 100 psi above that at

which choked flow would occur (i.e., the suction pressure for the compressor

stations). If the design temperature for the pipeline is 608F, the compressors are
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60% efficient, and the compressor stations each operate with three stages and

interstage cooling to 608F, determine

(a) The proper distance between compressor stations, in miles.

(b) The optimum interstage pressure and compression ratio for each com-

pressor stage.

(c) The total horsepower required for each compressor station.

7. Ethylene leaves a compressor at 3500 psig and is carried in a 2 in, sch 40 pipe-

line, 100 ft long, to a unit where the pressure is 500 psig. The line contains two

plug valves, one swing check valve, and eight flanged elbows. If the temperature

is 1008F, what is the flow rate (in scfm)?

8. A 12 in. ID natural gas (methane) pipeline carries gas at a rate of 20,000 scfm.

The compressor stations are 100mi apart, and the discharge pressure of the

compressors is 500 psia. If the temperature of the surroundings is 708F, what is
the required horsepower of each compressor station, assuming 65% efficiency?

If the pipeline breaks 10mi downstream from a compressor station, what will be

the flow rate through the break?

9. The pressure in a reactor fluctuates between 10 and 30 psig. It is necessary to

feed air to the reactor at a constant rate of 20 lbm/hr, from an air supply at

100 psig, 708F. To do this, you insert an orifice into the air line that will provide

the required constant flow rate. What should the diameter of the orifice be?

10. Oxygen is to be fed to a reactor at a constant rate of 10 lbm/s from a storage

tank in which the pressure is constant at 100 psig and the temperature is 708F.
The pressure in the reactor fluctuates between 2 and 10 psig, so you want to

insert a choke in the line to maintain the flow rate constant. If the choke is a 2 ft

length of tubing, what should the diameter of the tubing be?

11. Methane is to be fed to a reactor at a rate of 10 lbm/min. The methane is

available in a pipeline at 20 psia, 708F, but the pressure in the reactor fluctuates

between 2 and 10 psia. To control the flow rate, you want to install an orifice

plate that will choke the flow at the desired flow rate. What should the diameter

of the orifice be?

12. Ethylene gas (MW ¼ 28, k ¼ 1:3, � ¼ 0:1 cP) at 1008F is fed to a reaction vessel

from a compressor through 100 ft of 2 in. sch 40 pipe containing two plug

valves, one swing check valve, and eight flanged elbows. If the compressor

discharge pressure is 3500 psig and the pressure in the vessel is 500 psig, what

is the flow rate of the gas in scfm (1 atm, 608F)?
13. Nitrogen is fed from a high pressure cylinder, through 1/4 in. ID stainless steel

tubing, to an experimental unit. The line ruptures at a point 10 ft from the

cylinder. If the pressure of the nitrogen in the cylinder is 3000 psig and the

temperature is 708F, what are the mass flow rate of the gas through the line

and the pressure in the tubing at the point of the break?

14. A storage tank contains ethylene at 200 psig and 708F. If a 1 in. line that is 6 ft

long and has a globe valve on the end is attached to the tank, what would be the

rate of leakage of the ethylene (in scfm) if

(a) The valve is fully open?

(b) The line breaks off right at the tank?
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15. A 2 in. sch 40 pipeline is connected to a storage tank containing ethylene at

100 psig and 808C.
(a) If the pipe breaks at a distance of 50 ft from the tank, determine the rate at

which the ethylene will leak out of the pipe (in lbm/s). There is one globe

valve in the line between the tank and the break.

(b) If the pipe breaks off right at the tank, what would the leak rate be?

16. Saturated steam at 200 psig (3888F, 2.13 ft3=lbm, � ¼ 0:015 cP) is fed from a

header to a direct contact evaporator that operates at 10 psig. If the steam line is

2 in. sch. 40 pipe, 50 ft long, and includes four flanged elbows and one globe

valve, what is the steam flow rate in lbm/hr?

17. Air is flowing from a tank at a pressure of 200 psia and T ¼ 708F through a

venturi meter into another tank at a pressure of 50 psia. The meter is mounted

in a 6 in. ID pipe section (that is quite short) and has a throat diameter of 3 in.

What is the mass flow rate of air?

18. A tank containing air at 100 psia and 708F is punctured with a hole 1/4 in. in

diameter. What is the mass flow rate of the air out of the tank?

19. A pressurized tank containing nitrogen at 800 psig is fitted with a globe valve, to

which is attached a line with 10 ft of 1/4 in. ID stainless steel tubing and three

standard elbows. The temperature of the system is 708F. If the valve is left wide
open, what is the flow rate of nitrogen, in lbm/s and also in scfm?

20. Gaseous chlorine (MW ¼ 71) is transferred from a high pressure storage tank

at 500 psia and 608F, through an insulated 2 in. sch 40 pipe 200 ft long, into

another vessel where the pressure is 200 psia. What are the mass flow rate of the

gas and its temperature at the point where it leaves the pipe?

21. A storage tank containing ethylene at a pressure of 200 psig and a temperature

of 708F springs a leak. If the hole through which the gas is leaking is 1/2 in. in

diameter, what is the leakage rate of the ethylene, in scfm?

22. A high pressure cylinder containing N2 at 200 psig and 708F is connected by

1/4 in. ID stainless steel tubing, 20 ft long to a reactor in which the pressure is

15 psig. A pressure regulator at the upstream end of the tubing is used to control

the pressure, and hence the flow rate, of the N2 in the tubing.

(a) If the regulator controls the pressure entering the tubing at 25 psig what is

the flow rate of the N2 (in scfm)?

(b) If the regulator fails so that the full cylinder pressure is applied at the

tubing entrance, what will the flow rate of the N2 into the reactor be (in

scfm)?

23. Oxygen is supplied to an astronaut through an umbilical hose that is 7 m long.

The pressure in the oxygen tank is 200 kPa at a temperature of 108C, and the

pressure in the space suit is 20 kPa. If the umbilical hose has an equivalent

roughness of 0.01mm, what should the hose diameter be to supply oxygen at

a rate of 0.05 kg/s? If the suit springs a leak and the pressure drops to zero, at

what rate will the oxygen escape?

24. Ethylene (MW ¼ 28) is transported from a storage tank, at 250 psig and 708F,
to a compressor station where the suction pressure is 100 psig. The transfer line

is 1 in. sch 80, 500 ft long, and contains two ball valves and eight threaded
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elbows. An orifice meter with a diameter of 0.75 in. is installed near the entrance

to the pipeline.

(a) What is the flow rate of the ethylene through the pipeline (in scfh)?

(b) If the pipeline breaks at a point 200 ft from the storage tank and there are 4

elbows and one valve in the line between the tank and the break, what is the

flow rate of the ethylene (in scfh)?

(c) What is the differential pressure across the orifice for both cases (a) and (b),

in inches of water?

25. Air passes from a large reservoir at 708F through an isentropic converging–

diverging nozzle into the atmosphere. The area of the throat is 1 cm2, and that

of the exit is 2 cm2. What is the reservoir pressure at which the flow in the nozzle

just reaches sonic velocity, and what are the mass flow rate and exit Mach

number under these conditions?

26. Air is fed from a reservoir through a converging nozzle into a 1/2 in. ID drawn

steel tube that is 15 ft long. The flow in the tube is adiabatic, and the reservoir

temperature and pressure are 708F and 100 psia.

(a) What is the maximum flow rate (in lbm/s) that can be achieved in the tube?

(b) What is the maximum pressure at the tube exit at which this flow rate will

be reached?

(c) What is the temperature at this point under these conditions?

27. A gas storage cylinder contains nitrogen at 250 psig and 708F. Attached to the

cylinder is a 3 in. long, 1/4 in. sch 40 stainless steel pipe nipple, and attached to

that is a globe valve followed by a diaphragm valve. Attached to the diaphragm

valve is a 1/4 in. (ID) copper tubing line. Determine the mass flow rate of

nitrogen (in lbm/s) if

(a) The copper tubing breaks off at a distance of 30 ft downstream of the

diaphragm valve.

(b) The pipe breaks off right at the cylinder.

28. A natural gas pipeline (primarily CH4) is supplied by a compressor. The com-

pressor suction pressure is 20 psig, and the discharge pressure is 1000 psig. The

pipe is 5 in. sch 40, and the ambient temperature is 808F.
(a) If the pipeline breaks at a point 2mi downstream from the compressor

station, determine the rate at which the gas will escape (in scfm).

(b) If the compressor efficiency is 80%, what power is required to drive it?

29. You have to feed a gaseous reactant to a reactor at a constant rate of

1000 scfm. The gas is contained at 808F and a pressure of 500 psigin a

tank that is located 20 ft from the reactor, and the pressure in the reactor

fluctuates between 10 and 20 psig. You know that if the flow is choked in the

feed line to the reactor, then the flow rate will be independent of the pres-

sure in the reactor, which is what you require. If the feed line has a rough-

ness of 0.0018 in., what should its diameter be in order to satisfy your

requirements? The gas has an MW of 35, an isentropic exponent of 1.25,

and a viscosity of 0.01 cP at 808F.
30. A pressure vessel containing nitrogen at 3008F has a relief valve installed on its

top. The valve is set to open at a pressure of 125 psig and exhausts the contents
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to atmospheric pressure. The valve has a nozzle that is 1.5 in. in diameter and

4 in. long, which limits the flow through the valve when it opens.

(a) If the flow resistance in the piping between the tank and the valve, and from

the valve discharge to the atmosphere are neglected, determine the mass

flow through the valve when it opens in lbm/s.

(b) In reality, there is a 3 ft length of 3 in. pipe between the tank and the valve,

and a 6 ft length of 4 in. pipe downstream of the valve discharge. What is

the effect on the calculated flow rate of including this piping?

31. A storage tank contains ethylene at 808F and has a relief valve that is set to

open at a pressure of 250 psig. The valve must be sized to relieve the gas at a rate

of 85 lbm/s when it opens. The valve has a discharge coefficient (the ratio of the

actual to the theoretical mass flux) of 0.975.

(a) What should be the diameter of the nozzle in the valve, in inches?

What horsepower would be required to compress the gas from 1 atm to the

maximum tank pressure at a rate equal to the valve flow rate for:

(b) A single stage compressor;

(c) A two-stage compressor with intercooling. Assume 100% efficiency for the

compressor.

NOTATION

A cross sectional area, [L2]

c speed of sound, [L/t]

D diameter, [L]

F force [F ¼ ML=t2�
f Fanning friction factor, [—]

G mass flux, [M=tL2]

h enthalpy per unit mass, [FL=M ¼ L2=t2�
k isentropic exponent ð¼ cv=cp for ideal gas), [—]

Kf loss coefficient, [—]

L length, [L]

M molecular weight, [M/mol]
_mm mass flow rate, [M/t]

NMa Mach number, [—]

NRe Reynolds number, [—]

P pressure, [F=L2 ¼ M=ðLt2Þ]
q heat transferred to the fluid per unit mass, [FL=M ¼ L2=t2�
R gas constant, [FL=ðT moleÞ ¼ ML2=ðt2T molÞ�
T temperature, [T]

V spatial averaged velocity, [L/t]

w work done by the fluid system per unit mass, ½FL=M ¼ L2=t2�
Y expansion factor, [—]

z vertical distance measured upward, [L]

� density, [M/L3]
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Subscripts

1 reference point 1

2 reference point 2

s constant entropy

T constant temperature

Superscripts

* sonic state
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10

Flow Measurement and Control

I. SCOPE

In this chapter we will illustrate and analyze some of the more common
methods for measuring flow rate in conduits, including the pitot tube,
venturi, nozzle, and orifice meters. This is by no means intended to be a
comprehensive or exhaustive treatment, however, as there are a great many
other devices in use for measuring flow rate, such as turbine, vane, Coriolis,
ultrasonic, and magnetic flow meters, just to name a few. The examples
considered here demonstrate the application of the fundamental conserva-
tion principles to the analysis of several of the most common devices. We
also consider control valves in this chapter, because they are frequently
employed in conjunction with the measurement of flow rate to provide a
means of controlling flow.

II. THE PITOT TUBE

As previously discussed, the volumetric flow rate of a fluid through a con-
duit can be determined by integrating the local (‘‘point’’) velocity over the
cross section of the conduit:

Q ¼
ð
A

v dA ð10-1Þ
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If the conduit cross section is circular, this becomes

Q ¼
ð�R2

0

vðrÞ dð�r2Þ ¼ 2�

ðR
0

vðrÞr dr ð10-2Þ

The pitot tube is a device for measuring vðrÞ, the local velocity at a
given position in the conduit, as illustrated in Fig. 10-1. The measured
velocity is then used in Eq. (10-2) to determine the flow rate. It consists of
a differential pressure measuring device (e.g., a manometer, transducer, or
DP cell) that measures the pressure difference between two tubes. One tube
is attached to a hollow probe that can be positioned at any radial location in
the conduit, and the other is attached to the wall of the conduit in the same
axial plane as the end of the probe. The local velocity of the streamline that
impinges on the end of the probe is vðrÞ. The fluid element that impacts the
open end of the probe must come to rest at that point, because there is no
flow through the probe or the DP cell; this is known as the stagnation point.
The Bernoulli equation can be applied to the fluid streamline that impacts
the probe tip:

P2 � P1

�
þ 1

2
ðv22 � v21Þ ¼ 0 ð10-3Þ

where point 1 is in the free stream just upstream of the probe and point 2 is
just inside the open end of the probe (the stagnation point). Since the fric-
tion loss is negligible in the free stream from 1 to 2, and v2 ¼ 0 because the
fluid in the probe is stagnant, Eq. (10-3) can be solved for v1 to give

v1 ¼
2ðP2 � P1Þ

�

� �1=2

ð10-4Þ

The measured pressure difference �P is the difference between the
‘‘stagnation’’ pressure in the velocity probe at the point where it connects
to the DP cell and the ‘‘static’’ pressure at the corresponding point in the
tube connected to the wall. Since there is no flow in the vertical direction,
the difference in pressure between any two vertical elevations is strictly
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hydrostatic. Thus, the pressure difference measured at the DP cell is the
same as that at the elevation of the probe, because the static head between
point 1 and the pressure device is the same as that between point 2 and the
pressure device, so that �P ¼ P2 � P1.

We usually want to determine the total flow rate (Q) through the
conduit rather than the velocity at a point. This can be done by using
Eq. (10-1) or Eq. (10-2) if the local velocity is measured at a sufficient
number of radial points across the conduit to enable accurate evaluation
of the integral. For example, the integral in Eq. (10-2) could be evaluated
by plotting the measured vðrÞ values as vðrÞ vs. r2, or as rvðrÞ vs. r
[in accordance with either the first or second form of Eq. (10-2), respec-
tively], and the area under the curve from r ¼ 0 to r ¼ R could be deter-
mined numerically.

The pitot tube is a relatively complex device and requires considerable
effort and time to obtain an adequate number of velocity data points and to
integrate these over the cross section to determine the total flow rate. On the
other hand the probe offers minimal resistance to the flow and hence is very
efficient from the standpoint that it results in negligible friction loss in the
conduit. It is also the only practical means for determining the flow rate in
very large conduits such as smokestacks. There are standardized methods
for applying this method to determine the total amount of material emitted
through a stack, for example.

III. THE VENTURI AND NOZZLE

There are other devices, however, that can be used to determine the flow
rate from a single measurement. These are sometimes referred to as
obstruction meters, because the basic principle involves introducing an
‘‘obstruction’’ (e.g., a constriction) into the flow channel and then mea-
suring the pressure drop across the obstruction that is related to the flow
rate. Two such devices are the venturi meter and the nozzle, illustrated in
Figs. 10-2 and 10-3 respectively. In both cases the fluid flows through a
reduced area, which results in an increase in the velocity at that point.
The corresponding change in pressure between point 1 upstream of the
constriction and point 2 at the position of the minimum area (maximum
velocity) is measured and is then related to the flow rate through
the energy balance. The velocities are related by the continuity equation,
and the Bernoulli equation relates the velocity change to the pressure
change:

�1V1A1 ¼ �2V2A2 ð10-5Þ
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For constant density,

V1 ¼ V2

A2

A1

ð10-6Þ

and the Bernoulli equation is

P2 � P1

�
þ 1

2
ðV2

2 � V2
1 Þ þ ef ¼ 0 ð10-7Þ

where plug flow has been assumed. Using Eq. (10-6) to eliminate V1 and
neglecting the friction loss, Eq. (10-7) can be solved for V2:

V2 ¼
�2�P

�ð1� �4Þ
� �1=2

ð10-8Þ

where �P ¼ P2 � P1 and � ¼ d2=D1 (where d2 is the minimum diameter
at the throat of the venturi or nozzle). To account for the inaccuracies
introduced by assuming plug flow and neglecting friction, Eq. (10-8) is
written

V2 ¼ Cd

�2�P

�ð1� �4Þ
� �1=2

ð10-9Þ
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where Cd is the ‘‘discharge’’ or venturi (or nozzle) coefficient and is deter-
mined by calibration as a function of the Reynolds number in the conduit.
Typical values are shown in Fig. 10-4, where

NReD
¼ D1V1�

�
and NRed

¼ d2V2�

�
¼ NReD

=�:

Because the discharge coefficient accounts for the non-idealities in the
system (such as the friction loss), one would expect it to decrease with increas-
ingReynolds number, which is contrary to the trend inFig. 10-4.However, the
coefficient also accounts for deviation fromplugflow,which is greater at lower
Reynolds numbers. In any event, the coefficient is not greatly different from
1.0, having a value of about 0.985 for (pipe) Reynolds numbers above about
2� 105, which indicates that these non-idealities are small.

According to Miller (1983), for NReD
> 4000 the discharge coefficient

for the venturi, as well as for the nozzle and orifice, can be described as a
function of NReD

and � by the general equation

Cd ¼ C1 þ b

Nn
ReD

ð10-10Þ

where the parameters C1, b, and n are given in Table 10-1 as a function of �.
The range over which Eq. (10-10) applies and its approximate accuracy are
given in Table 10-2 (Miller, 1983). Because of the gradual expansion
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designed into the venturi meter, the pressure recovery is relatively large, so
the net friction loss across the entire meter is a relatively small fraction of the
measured (maximum) pressure drop, as indicated in Fig. 10-5. However,
because the flow area changes abruptly downstream of the orifice and noz-
zle, the expansion is uncontrolled, and considerable eddying occurs down-
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FIGURE 10-5 Unrecovered (friction) loss in various meters as a percentage of
measured pressure drop. (From Cheremisinoff and Cheremisinoff, 1987.)



stream. This dissipates more energy, resulting in a significantly higher net
friction loss and lower pressure recovery.

The foregoing equations assume that the device is horizontal, i.e., that
the pressure taps on the pipe are located in the same horizontal plane. If
such is not the case, the equations can be easily modified to account for
changes in elevation by replacing the pressure P at each point by the total
potential � ¼ Pþ �gz.

The flow nozzle, illustrated in Fig.10-3, is similar to the venturi meter
except that it does not include the diffuser (gradually expanding) section. In
fact, one standard design for the venturi meter is basically a flow nozzle with
an attached diffuser (see Fig.10-6). The equations that relate the flow rate
and measured pressure drop in the nozzle are the same as for the venturi
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FIGURE 10-6 International standard shapes for nozzle and venturi meter. (From
White, 1994.)



[e.g., Eq. (10-9)], and the nozzle (discharge) coefficient is also shown in Fig.
10-4. It should be noted that the Reynolds number that is used for the
venturi coefficient in Fig. 10-4 is based on the pipe diameter (D), whereas
the Reynolds number used for the nozzle coefficient is based on the nozzle
diameter (d) (note that NReD ¼ �NRed ). There are various ‘‘standard’’
designs for the nozzle, and the reader should consult the literature for details
(e.g., Miller, 1983). The discharge coefficient for these nozzles can also
be described by Eq. (10-10), with the appropriate parameters given in
Table 10-1.

IV. THE ORIFICE METER

The simplest and most common device for measuring flow rate in a pipe is
the orifice meter, illustrated in Fig. 10-7. This is an ‘‘obstruction’’ meter that
consists of a plate with a hole in it that is inserted into the pipe, and the
pressure drop across the plate is measured. The major difference between
this device and the venturi and nozzle meters is the fact that the fluid stream
leaving the orifice hole contracts to an area considerably smaller than that of
the orifice hole itself. This is called the vena contracta, and it occurs because
the fluid has considerable inward radial momentum as it converges into the
orifice hole, which causes it to continue to flow ‘‘inward’’ for a distance
downstream of the orifice before it starts to expand to fill the pipe. If the
pipe diameter is D, the orifice diameter is d, and the diameter of the vena
contracta is d2, the contraction ratio for the vena contracta is defined as
Cc ¼ A2=Ao ¼ ðd2=dÞ2. For highly turbulent flow, Cc � 0:6.

The complete Bernoulli equation, as applied between point 1 upstream
of the orifice where the diameter is D and point 2 in the vena contracta
where the diameter is d2, isðP1

P2

dP

�
¼ 1

2
ð�2V2

2 � �1V2
1 Þ þ

Kf

2
V2

1 ð10-11Þ
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As for the other obstruction meters, when the continuity equation is used to
eliminate the upstream velocity from Eq. (10-11), the resulting expression
for the mass flow rate through the orifice is

_mm ¼ CoAo�2

ð1� �4Þ1=2 2

ðP1

P2

dP

�

� �1=2
ð10-12Þ

where � ¼ d=D and Co is the orifice coefficient:

Co ¼ Ccffiffiffiffiffi
�2

p 1� �4
1� �4½Ccð�2=�1Þ�2½ð�1 � Kf Þ=�2�

" #1=2

ð10-13Þ

Co is obviously a function of � and the loss coefficient Kf (which depends on
NRe).

A. Incompressible Flow

For incompressible flow, Eq. (10-12) becomes

_mm ¼ CoAo

2��P

1� �4
� �1=2

ð10-14Þ

It is evident that the orifice coefficient incorporates the effects of both
friction loss and velocity changes and must therefore depend upon the
Reynolds number and beta ratio. This is reflected in Fig. 10-8, in which
the orifice (discharge) coefficient is shown as a function of the orifice
Reynolds number (NRed

) and �.
Actually, there are a variety of ‘‘standard’’ orifice plate and pressure

tap designs (Miller, 1983). Figure 10-9 shows the ASME specifications for
the most common concentric square edged orifice. The various pressure tap
locations, illustrated in Fig. 10-10, are radius taps (1D upstream and D=2
downstream); flange taps (1 in. upstream and downstream); pipe taps (212D
upstream and 8D downstream); and corner taps. Radius taps, for which the
location is scaled to the pipe diameter, are the most common. Corner taps
and flange taps are the most convenient, because they can be installed in the
flange that holds the orifice plate and so do not require additional taps
through the pipe wall. Pipe taps are less commonly used and essentially
measure the total unrecovered pressure drop, or friction loss, through the
entire orifice (which is usually quite a bit lower than the maximum pressure
drop across the orifice plate). Vena contracta taps are sometimes specified,
with the upstream tap 1D from the plate and the downstream tap at the vena
contracta location, although the latter varies with the Reynolds number and
beta ratio and thus is not a fixed position.
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The orifice coefficient shown in Fig. 10-8 is valid to within about 2–5%
(depending upon the Reynolds number) for all pressure tap locations except
pipe and vena contracta taps. More accurate values can be calculated from
Eq. (10-10), with the parameter expressions given in Table 10-1 for the
specific orifice and pressure tap arrangement.

B. Compressible Flow

Equation (10-14) applies to incompressible fluids, such as liquids. For an
ideal gas under adiabatic conditions, Eq. (10-12) gives

_mm ¼ CoAo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1�1
1� �4

s
2k

k� 1

P2

P1

� �2=k
P1

P2

� �ðk�1Þ=k
�1

" #( )1=2

ð10-15Þ
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FIGURE 10-8 Orifice discharge coefficient for square-edged orifice and flange,
corner, or radius type (From Miller, 1983.)



It is more convenient to express this result in terms of the ratio of Eq.
(10-15) to the corresponding incompressible equation, Eq. (10-14), which is
called the expansion factor Y:

_mm ¼ CoAoY

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1�1
1� �4

s
2 1� P2

P1

� �� �1=2
ð10-16Þ
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where the density �1 is evaluated at the upstream pressure (P1). For con-
venience, the values of Y are shown as a function of �P=P1 and � for the
square-edged orifice, nozzles, and venturi meters for values of k ¼ cp=cv of
1.3 and 1.4 in Fig. 10-11. The lines on Fig. 10-11 for the orifice can be
represented by the following equation for radius taps (Miller, 1983):

Y ¼ 1� �P

kP1

ð0:41þ 0:35�4Þ ð10-17Þ

and for pipe taps by

Y ¼ 1� �P

kP1

½0:333þ 1:145ð�2 þ 0:7�5 þ 12�13Þ� ð10-18Þ

V. LOSS COEFFICIENT

The total friction loss in an orifice meter, after all pressure recovery has
occurred, can be expressed in terms of a loss coefficient, Kf , as follows. With
reference to Fig. 10-12, the total friction loss is P1 � P3. By taking the
system to be the fluid in the region from a point just upstream of the orifice
plate (P1) to a downstream position where the stream has filled the pipe (P3),
the momentum balance becomesX

on system

F ¼ _mmðV3 � V1Þ ¼ 0 ¼ P1Ao þ P2ðA1 � AoÞ � P3A1 ð10-19Þ
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FIGURE 10-10 Orifice pressure tap locations. (From Miller, 1983.)
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FIGURE 10-11 Expansion factor for orifice, nozzle, and venturi meter. (a) k ¼ 1:3;
(b) k ¼ 1:4. (From Crane Co., 1978.)



The orifice equation [Eq. (10-14)] can be solved for the pressure drop
P1 � P2 to give

P1 � P2 ¼
�V2

o

2

1� �4
C2

o

 !
ð10-20Þ

Eliminating P2 from Eqs. (10-19) and (10-20) and solving for P1 � P3

provides a definition for Kf based on the pipe velocity (V1):

P1 � P3 ¼
�V2

oð1� �4Þð1� �2Þ
2C2

o

¼ �ef ¼
�V2

1Kf

2
ð10-21Þ

Thus the loss coefficient is

Kf �
ð1� �4Þð1� �2Þ

C2
o�

4
ð10-22Þ

If the loss coefficient is based upon the velocity through the orifice (Vo)
instead of the pipe velocity, the �4 term in the denominator of Eq. (10-22)
does not appear:

Kf ¼
ð1� �4Þð1� �2Þ

C2
o

ð10-23Þ

Equation (10-21) represents the net total (unrecovered) pressure drop due to
friction in the orifice. This is expressed as a percentage of the maximum
(orifice) pressure drop in Fig. 10-5.

VI. ORIFICE PROBLEMS

Three classes of problems involving orifices (or other obstruction meters)
that the engineer might encounter are similar to the types of problems
encountered in pipe flows. These are the ‘‘unknown pressure drop,’’
‘‘unknown flow rate,’’ and ‘‘unknown orifice diameter’’ problems. Each
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involves relationships between the same five basic dimensionless variables:
Cd, NReD

, �,�P=P1, and Y , where Cd represents the discharge coefficient for
the meter. For liquids, this list reduces to four variables, because Y ¼ 1 by
definition. The basic orifice equation relates these variables:

_mm ¼ �D2�2YCd

4

P1�1
1� �4
� �1=2

2 1� P2

P1

� �� �1=2
ð10-24Þ

NReD
¼ 4 _mm

�D�
; � ¼ d

D
ð10-25Þ

and Y ¼ fnð�;�P=P1Þ [as given by Eq. (10-17) or (10-18) or Fig. 10-11], and
Cd ¼ fnð�;NReD

) [as given by Eq. (10-10) or Fig. 10-8]. The procedure for
solving each of these problems is as follows.

A. Unknown Pressure Drop

In the case of an unknown pressure drop we want to determine the pressure
drop to be expected when a given fluid flows at a given rate through a given
orifice.

Given : _mm; �; �1;D; d ð� ¼ d=DÞ;P1 Find: �P

The procedure is as follows.

1. Calculate NReD
and 
 ¼ d=D from Eq. (10-25).

2. Get Cd ¼ Co from Fig. 10-8 or Eq. (10-10).
3. Assume Y ¼ 1, and solve Eq. (10-24) for (�PÞ1:

ð�PÞ1 ¼
4 _mm

�D2�2Co

� �2�
1� �4
2�1

�
ð10-26Þ

4. Using (�PÞ1=P1 and 
, get Y from Eq. (10-17) or (10-18) or Fig.
10-11.

5. Calculate �P ¼ ð�PÞ1=Y2.
6. Use the value of �P from step 5 in step 4, and repeat steps 4–6

until there is no change.

B. Unknown Flow Rate

In the case of an unknown flow rate, the pressure drop across a given orifice
is measured for a fluid with known properties, and the flow rate is to be
determined.

Given: �P;P1;D; d ð� ¼ d=DÞ; �; �1 Find: _mm
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1. Using �P=P1 and 
, get Y from Eq. (10-17) or (10-18) or Fig.
10-11.

2. Assume Co ¼ 0:61.
3. Calculate _mm from Eq. (10-24).
4. Calculate NReD from Eq. (10-25).
5. Using NReD and 
, get Co from Fig. 10-8 or Eq. (10-10).
6. If Co 6¼ 0:61, use the value from step 5 in step 3, and repeat steps

3–6 until there is no change.

C. Unknown Diameter

For design purposes, the proper size orifice (d or �) must be determined for
a specified (maximum) flow rate of a given fluid in a given pipe with a �P
device that has a given (maximum) range.

Given: �P;P1; �; �;D; _mm Find: d ði:e:; �Þ

1. Solve Eq. (10-24) for 
, i.e.,

� ¼ X

1þ X

� �1=4

; X ¼ 8

�1�P

_mm

�D2YCo

� �2

ð10-27Þ

2. Assume that Y ¼ 1 and Co ¼ 0:61.
3. Calculate NRed

¼ NReD
=
, and get Co from Fig. 10-8 or Eq.

(10-10) and Y from Fig. 10-11 or Eq. (10-17) or (10-18).
4. Use the results of step 3 in step 1, and repeat steps 1–4 until there

is no change. The required orifice diameter is d ¼ 
D.

VII. CONTROL VALVES

Flow control is achieved by a control valve, which is automatically adjusted
(opened or closed) continuously to achieve a desired flow rate. The valve is
controlled by a computer that senses the output signal from a flow meter
and adjusts the control valve by pneumatic or electrical signals in response
to deviations of the measured flow rate from a desired set point. The control
valve acts as a variable resistance in the flow line, because closing down on
the valve is equivalent to increasing the flow resistance (i.e., the Kf ) in the
line. The nature of the relationship between the valve stem or plug position
(which is the manipulated variable) and the flow rate through the valve
(which is the desired variable) is a nonlinear function of the pressure–flow
characteristics of the piping system, the driver (i.e., pump) characteristic,
and the valve trim characteristic, which is determined by the design of the
valve plug. This will be illustrated shortly.
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A. Valve Characteristics

Different valve plugs (or ‘‘cages’’ that surround the plug) are usually avail-
able for a given valve, each providing a different flow response (or ‘‘trim’’)
characteristic when the valve setting (i.e., the stem position) is changed. A
specific valve characteristic must be chosen to match the response of the flow
system and pump characteristic to give the desired response, as will be
demonstrated later.

Figure 10-13 illustrates the flow versus valve stem travel character-
istic for various typical valve trim functions (Fisher Controls, 1987). The
‘‘quick opening’’ characteristic provides the maximum change in flow rate
at low opening or stem travel, with a fairly linear relationship. As the
valve approaches the wide open position, the change in flow with
travel approaches zero. This is best suited for on–off control but is
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also appropriate for some applications where a linear response is desired.
The ‘‘linear’’ flow characteristic has a constant ‘‘valve gain,’’ that is, the
incremental change in flow rate with the change in valve plug position is
the same at all flow rates. The ‘‘equal percentage’’ trim provides the same
percentage change in flow for equal increments of valve plug position.
With this characteristic the change in flow is always proportional to the
value of the flow rate just before the change is made. This characteristic
is used in pressure control applications and where a relatively small
pressure drop across the valve is required relative to that in the rest of
the system. The modified parabolic characteristic is intermediate to the
linear and equal percentage characteristics and can be substituted for
equal percentage valve plugs in many applications with some loss in
performance.

Some general guidelines for the application of the proper valve char-
acteristic are shown in Fig. 10-14. These are rules of thumb and the proper
valve can be determined only by a complete analysis of the system in which
the valve is to be used [see also Baumann (1991) for simplified guidelines].
We will illustrate how the valve trim characteristic interacts with the pump
and system characteristics to affect the flow rate in the system and how to
use this information to select the most appropriate valve trim.

B. Valve Sizing Relations

1. Incompressible Fluids

Bernoulli’s equation applied across the valve relates the pressure drop and
flow rate in terms of the valve loss coefficient. This equation can be
rearranged to give the flow rate as follows:

Q ¼ AV ¼ A
2�Pv

�Kf

� �1=2

ð10-28Þ

where A is an appropriate flow area, V is the velocity through that area,
�Pv ¼ P1 � P2 is the pressure drop across the valve, and Kf is the loss
coefficient referred to the velocity V . However, in a control valve the inter-
nal flow geometry is relatively complex and the area (and hence V) varies
throughout the valve. Also, the pressure drop is not the maximum value in
the valve (which would occur if P2 is at the discharge vena contracta, as for
the orifice meter) but is the net unrecovered pressure loss, corresponding to
P2 which is far enough downstream that any possible pressure recovery has
occurred. The flow area and geometrical factors are thus combined, along
with the density of the reference fluid and the friction loss coefficient, into a
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FIGURE 10-14 Guidelines for control valve applications. (From Fisher Controls,
1987.)



single coefficient, resulting in the following equation for incompressible
fluids:

Q ¼ Cv

ffiffiffiffiffiffiffiffiffi
�Pv

SG

r
¼ Cv

ffiffiffiffiffiffiffiffiffiffiffiffi
�wghv

p
¼ 0:658Cv

ffiffiffiffiffi
hv

p
ð10-29Þ

This equation defines the flow coefficient, Cv. Here, SG is the fluid specific
gravity (relative to water), �w is the density of water, and hv is the ‘‘head
loss’’ across the valve. The last form of Eq. (10-29) applies only for units of
Q in gpm and hv in ft. Although Eq. (10-29) is similar to the flow equation
for flow meters, the flow coefficient Cv is not dimensionless, as are the flow
meter discharge coefficient and the loss coefficient (Kf ), but has dimensions
of ½L3�½L=M�1=2. The value of Cv is thus different for each valve and also
varies with the valve opening (or stem travel) for a given valve. Values for
the valve Cv are determined by the manufacturer from measurements on
each valve type. Because they are not dimensionless, the values will depend
upon the specific units used for the quantities in Eq. (10-29). More
specifically, the ‘‘normal engineering’’ (inconsistent) units of Cv are gpm/
(psi)1=2. [If the fluid density were included in Eq. (10-29) instead of SG, the
dimensions of Cv would be L2, which follows from the inclusion of the
effective valve flow area in the definition of Cv�: The reference fluid for
the density is water for liquids and air for gases.

The units normally used in the United States are the typical ‘‘engineer-
ing’’ units, as follows:

Q ¼ volumetric flow rate (gpm for liquids or scfh for gas or steam)
SG ¼ specific gravity [relative to water for liquids (62.3 lbm=ft

3) or
air at 608F and 1 atm for gases (0.0764 lbm=ft

3)]
�1 ¼ density at upstream conditions (lbm=ft

3)
P1 ¼ upstream pressure (psia)

�Pv ¼ total (net unrecovered) pressure drop across valve (psi)

Typical manufacturer’s values of Cv to be used with Eq. (10-29) require the
variables to be expressed in the above units, with hv in ft. [For liquids, the
value of 0.658 includes the value of the density of water, �w ¼ 62:3 lbm=ft

3,
the ratio g=gc (which has a magnitude of 1), and 144 (in./ft)2]. For each valve
design, tables for the values of the flow coefficients as a function of valve size
and percent of valve opening are provided by the manufacturer (see Table
10-3, pages 318–319). In Table 10-3, Km applies to cavitating and flashing
liquids and C1 applies to critical (choked) compressible flow, as discussed
later.

a. Valve–System Interaction. In normal operation, a linear relation
between the manipulated variable (valve stem position) and the desired
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variable (flow rate) is desired. However, the valve is normally a component
of a flow system that includes a pump or other driver, pipe and fittings
characterized by loss coefficients, etc. In such a system the flow rate is a
nonlinear function of the component loss coefficients. Thus the control
valve must have a nonlinear response (i.e., trim) to compensate for the
nonlinear system characteristics if a linear response is to result. Selection
of the proper size and trim of the valve to be used for a given application
requires matching the valve, piping system, and pump characteristics, all of
which interact (Darby, 1997). The operating point for a piping system
depends upon the pressure-flow behavior of both the system and the
pump, as described in Chapter 8 and illustrated in Fig. 8-2 (see also
Example 8-1). The control valve acts like a variable resistance in the piping
system, that is, the valve loss coefficient Kf increases (and the discharge
coefficient Cv decreases) as the valve is closed. The operating point for the
system is where the pump head (Hp) characteristic intersects the system head
requirement (Hs):

Hs ¼
�P

�g
þ�zþQ2

g

8

�

X
i

Kf

D4

� �
i

þ 1

�wC
2
v

" #
¼ Hp ð10-30Þ

where the last term in brackets is the head loss through the control valve, hv,
from Eq. (10-29), and Cv depends upon the valve stem travel, X (see, e.g.,
Fig. 10-13):

Cv ¼ Cv;max f ðXÞ ð10-31Þ
A typical situation is illustrated in Fig. 10-15, which shows the pump

curve and a system curve with no control valve and the same system curve
with a valve that is partially closed. Closing down on the valve (i.e., reducing
X) decreases the valve Cv and increases the head loss (hv) through the valve.
The result is to shift the system curve upward by an amount hv at a given
flow rate (note that hv also depends on flow rate). The range of possible flow
rates for a given valve (also known as the ‘‘turndown’’ ratio) lies between the
intersection on the pump curve of the system curve with a ‘‘fully open’’ valve
(Qmax, corresponding to Cv;max) and the intersection of the system curve
with the (partly) closed valve. Of course the minimum flow rate is zero
when the valve is fully closed. The desired operating point should be as
close as practical to Qmax, because this corresponds to an open valve with
minimum flow resistance. The flow is then controlled by closing down on the
valve (i.e., reducing X and Cv, and thus raising hv). The minimum operating
flow rate (Qmin) is established by the turndown ratio (i.e., the operating
range) required for proper control. These limits set the size of the valve
(e.g., the required Cv;max), and the head flow rate characteristic of the system
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(including pump and valve) over the desired flow range determines the
proper trim for the valve, as follows. As the valve is closed (reducing X)
the system curve is shifted up by an amount hv:

hv ¼
Q2

�wgC
2
v;max f

2ðXÞ ð10-32Þ

where f ðXÞ represents the valve trim characteristic function. Equation
(10-32) follows directly from Eqs. (10-29) and (10-31). Thus, as X (the
relative valve stem travel) is reduced, f ðXÞ and Cv are also reduced. This
increases hv, with the result that the system system curve now intersects
the pump curve further to the left, at a lower value of Q. Substituting Eq.
(10-32) into Eq. (10-30) gives

Hs ¼
�P

�g
þ�zþQ2 8

g�2

X
i

�
Kf

D4

�
i

þ 1

½0:658Cv;max f ðXÞ�2
" #

¼ Hp

ð10-33Þ
which shows how the system required head (Hs) depends upon the valve
stem position (X).

b. Matching Valve Trim to the System. The valve trim function is
chosen to provide the desired relationship between valve stem travel (X)
and flow rate (Q). This is usually a linear relation and/or a desired sensitiv-
ity. For example, if the operating point were far to the left on the diagram
where the pump curve is fairly flat, then hv would be nearly independent of
flow rate. In this case, Q would be proportional to Cv ¼ Cv;max f ðXÞ, and a
linear valve characteristic ½ f ðXÞ vs. X ] would be desired. However, the
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operating point usually occurs where both curves are nonlinear, so that hv
depends strongly on Q which in turn is a nonlinear function of the valve
stem position, X . In this case, the most appropriate valve trim can be
determined by evaluating Q as a function of X for various trim character-
istics (e.g., Fig. 10-13) and choosing the trim that provides the most linear
response over the operating range. For a given valve (e.g., Cv;max), and a
given trim response [e.g., f ðxÞ this can be done by calculating the system
curve [e.g., Eq. (10-33)] for various valve settings (X) and determining the
corresponding values of Q from the intersection of these curves with the
pump curve (e.g., the operating point). The trim that gives the most linear
(or most sensitive) relation between X and Q is then chosen. This process
can be aided by fitting the trim function (e.g., Fig. 10-13) by an empirical
equation such as:

Linear trim:

f ðXÞ ¼ X ð10-34Þ
Parabolic trim:

f ðXÞ ¼ X2 or Xn ð10-35Þ
Equal percentage trim:

f ðXÞ ¼ expðaXnÞ � 1

expðaÞ � 1
ð10-36Þ

Quick opening trim:

f ðXÞ ¼ 1� ½að1� XÞ � ða� 1Þð1� XÞn� ð10-37Þ
where a and n are parameters that can be adjusted to give the best fit to the
trim curves.

Likewise, the pump characteristic can usually be described by a quad-
ratic equation of the form

Hp ¼ Ho � cQ� bQ2 ð10-38Þ
where Ho, c, and b are curve-fit parameters ðHo ¼ Hp at Q ¼ 0Þ.

The operating point is where the pump head [Eq. 10-38] matches the
system head requirement [Eq. 10-33]. Thus if Eq. (10-33) for the system head
is set equal to Eq. (10-38) for the pump head, the result can be solved for
1=f ðXÞ2 to give

1

f ðXÞ
� �2

¼ 0:433C2
max

Ho � cQ� bQ2 ��z��P=�g

Q2
� 0:00259

P
Kf

D4
in:

" #

(10-39)
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where conversion factors have been included for units of Q in gpm, Ho, �z,
and �P=�g in ft; Din: in inches, and Cv;max in (gpm/psi1=2). The valve
position X corresponding to a given flow rate Q is determined by equating
the value of f ðXÞ obtained from Eq. (10-39) to that corresponding to a
specific valve trim, e.g., Eqs. (10-34)–(10-37). This procedure is illustrated
by the following example.

Example 10-1: Control Valve Trim Selection. It is desired to find the trim
for a control valve that gives the most linear relation between stem position
(X) and flow rate (Q) when used to control the flow rate in the fluid transfer
system shown in Fig. 10-16. The fluid is water at 608F, flowing through
100 ft of 3 in. sch 40 pipe containing 12 standard threaded elbows in addition
to the control valve. The fluid is pumped from tank 1 upstream at atmo-
spheric pressure to tank 2 downstream, which is also at atmospheric
pressure and at an elevation Z2 ¼ 20 ft higher than tank 1. The pump is a
2� 3 centrifugal pump with an 8 3

4
in. diameter impeller, for which the head

curve can be represented by Eq. (10-38) with Ho ¼ 360 ft, a ¼ 0:0006, and
b ¼ 0:0005. A 3 in. control valve with the following possible trim plug char-
acteristics will be considered.

Equal percentage (EP):

Cv ¼ 51
expð0:5X2:5Þ � 1

expð0:5Þ � 1

Modified parabolic (MP):

Cv ¼ 60X1:6

Linear (L):

Cv ¼ 64X

Quick opening (QO):

Cv ¼ 70f1� ½0:1ð1� XÞ � ð0:1� 1Þð1� XÞ2:5�g
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The range of flow rates possible with the control valve can be estimated by
inserting the linear valve trim [i.e., Cv;max f ðXÞ ¼ 64X ] into Eq. (10-33) and
calculating the system curves for the valve open, half open, and one-fourth
open (X ¼ 1, 0.5, 0.25). The intersection of these system curves with the
pump curve shows that the operating range with this valve is approximately
150–450 gpm, as shown in Fig. 10-17.

The Q vs. X relation for various valve trim functions can be deter-
mined as follows. First, a flow rate (Q) is assumed, which is used to calculate
the Reynolds number and thence the pipe friction factor and the loss co-
efficients for the pipe and fittings. Then a valve trim characteristic function
is assumed and, using the pump head function parameters, the right-hand
side of Eq. (10-39) is evaluated. This gives the value for f ðXÞ for that trim
which corresponds to the assumed flow rate. This is then equated to the
appropriate trim function for the valve given above (e.g., EP, MP, L, QO)
and the resulting equation is solved for X (this may require an iteration
procedure or the use of a nonlinear equation solver). The procedure is
repeated over a range of assumed Q values for each of the given trim func-
tions, giving the Q vs. X response for each trim as shown in the Fig. 10-18. It
is evident that the equal percentage (EP) trim results in the most linear
response and also results in the greatest rangeability or ‘‘turndown’’
(which is inversely proportional to the slope of the line).
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2. Cavitating and Flashing Liquids

The minimum pressure in the valve (Pvc) generally occurs at the vena con-
tracta, just downstream of the flow orifice. The pressure then rises down-
stream to P2, with the amount of pressure recovery depending upon the
valve design. If Pvc is less than the fluid vapor pressure (Pv), the liquid
will partially vaporize forming bubbles. If the pressure recovers to a value
greater than Pv, these bubbles may collapse suddenly, setting up local shock
waves, which can result in considerable damage. This situation is referred to
as cavitation, as opposed to flashing, which occurs if the recovered pressure
remains below Pv so that the vapor does not condense. After the first vapor
cavities form, the flow rate will no longer be proportional to the square root
of the pressure difference across the valve because of the decreasing density
of the mixture. If sufficient vapor forms the flow can become choked, at
which point the flow rate will be independent of the downstream pressure as
long as P1 remains constant. The critical pressure ratio (rc ¼ P2c=Pv) at
which choking will occur is shown in Fig. 10-19 for water and Fig. 10-20
for other liquids, as a function of the liquid vapor pressure (Pv) relative to
the fluid critical pressure (Pc). Table 10-4 lists the critical pressure values for
some common fluids. An equation that represents the critical pressure ratio,
rc, with acceptable accuracy is (Fisher Controls, 1977)

rc ¼ 0:96� 0:28

ffiffiffiffiffiffi
Pv

Pc

s
ð10-40Þ
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FIGURE 10-18 Flow rate versus stem position for various trim functions.
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FIGURE 10-19 Critical pressure ratios for water. The abscissa is the water vapor
pressure at the valve inlet. The ordinate is the corresponding critical pressure ratio,
rc. (From Fisher Controls, 1987.)

FIGURE 10-20 Critical pressure ratio for cavitating and flashing liquids other than
water. The abscissa is the ratio of the liquid vapor pressure at the valve inlet
divided by the thermodynamic critical pressure of the liquid. The ordinate is the
corresponding critical pressure ratio, re. (From Fisher Controls, 1987.)



With rc known, the allowable pressure drop across the valve at which
cavitation occurs is given by

�Pc ¼ KmðP1 � rcPvÞ ð10-41Þ
where Km is the valve recovery coefficient (which is a function of the valve
design). The recovery coefficient is defined as the ratio of the overall net
pressure drop (P1 � P2) to the maximum pressure drop from upstream to
the vena contracta (P1 � PvcÞ:

Km ¼ P1 � P2

P1 � Pvc

ð10-42Þ

Values of Km for the Fisher Controls design EB valve are given in the last
column of Table 10-3, and representative values for other valves at the full-
open condition are given in Table 10-5.
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If the pressure drop across the valve is �P > �Pc, the value of �Pc is
used as the pressure drop in the standard liquid sizing equation to determine
Q:

Q ¼ Cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Pc=SG

p
ð10-43Þ

Otherwise the value of P1 � P2 is used.
The notation used here is that of the Fisher Controls literature (e.g.,

Fisher Controls, 1990). The ANSI/ISAS75.01 standard for control valves
(e.g., Baumann, 1991; Hutchison, 1971) uses the same equations, except that
it uses the notation FL ¼ ðKmÞ1=2 and FF ¼ rc in place of the factors Km and
rc:

C. Compressible Fluids

1. Subsonic Flow

For relatively low pressure drops, the effect of compressibility is negligible,
and the general flow equation [Eq. (10-29)] applies. Introducing the conver-
sion factors to give the flow rate in standard cubic feet per hour (scfh) and
the density of air at standard conditions (1 atm, 5208R), this equation
becomes

Qscfh ¼ 1362CvP1

�P

P1 SGT1

� �1=2

ð10-44Þ
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TABLE 10-5 Representative Full-Open Km Values for
Various Valves

Body type Km

Globe: single port, flow opens 0.70–0.80
Globe: double port 0.70–0.80
Angle: flow closes
Venturi outlet liner 0.20–0.25
Standard seat ring 0.50–0.60

Angle: flow opens
Maximum orifice 0.70
Minimum orifice 0.90

Ball valve
V-notch 0.40

Butterfly valve
608 open 0.55
908 open 0.30

Source: Hutchison (1971).



The effect of variable density can be accounted for by an expansion factor Y
as has been done for flow in pipes and meters, in which case Eq. (10-44) can
be written

Qscfh ¼ 1362CvP1Y
X

SGT1

� �1=2

ð10-45Þ

where

X ¼ �P

P1

¼ P1 � P2

P1

¼ 1� P2

P1

ð10-46Þ

The expansion factor Y depends on the pressure drop X, the dimensions
(clearance) in the valve, the gas specific heat ratio k, and the Reynolds
number (the effect of which is often negligible). It has been found from
measurements (Hutchison, 1971) that the expansion factor for a given
valve can be represented, to within about 	2%, by the expression

Y ¼ 1� X

3XT

ð10-47Þ

where XT is specific to the valve, as illustrated in Fig. 10-21. Deviations from
the ideal gas law can be incorporated by multiplying T1 in Eq. (10-44) or
(10-45) by the compressibility factor, Z, for the gas.
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FIGURE 10-21 Expansion factor (Y ) as a function of pressure drop ratio (X ) for
four different types of control valves. (From Hutchison, 1971.)



2. Choked Flow

When the gas velocity reaches the speed of sound, choked flow occurs and
the mass flow rate reaches a maximum. It can be shown from Eq. (10-45)
that this is equivalent to a maximum in YX1=2, which occurs at Y ¼ 0:667,
and corresponds to the terminus of the lines in Fig 10-21. That is, XT is the
pressure ratio across the valve at which choking occurs, and any further
increase in X (e.g., �P) due to lowering P2 can have no effect on the flow
rate.

The flow coefficient Cv is determined by calibration with water, and it
is not entirely satisfactory for predicting the flow rate of compressible fluids
under choked flow conditions. This has to do with the fact that different
valves exhibit different pressure recovery characteristics with gases and
hence will choke at different pressure ratios, which does not apply to liquids.
For this reason, another flow coefficient, Cg, is often used for gases. Cg is
determined by calibration with air under critical flow conditions (Fisher
Controls, 1977). The corresponding flow equation for gas flow is

Qcritical ¼ CgP1

520

SGT

� �1=2

ð10-48Þ

3. Universal Gas Sizing Equation

Equation (10-44), which applies at low pressure drops, and Eq. (10-48),
which applies to critical (choked) flow, have been combined into one general
‘‘universal’’ empirical equation by Fisher Controls (1977), by using a sine
function to represent the transition between the limits of these two states:

Qscfh ¼ Cg

520

SGT1

� �1=2

P1 sin
3417

C1

ffiffiffiffiffiffiffiffi
�P

P1

s" #
deg

ð10-49Þ

Here, C1 ¼ Cg=Cv and is determined by measurements on air. For the valve
in Table 10-3, values of C1 are listed in the last column. C1 is also approxi-
mately equal to 40X1=2

T (Hutchison, 1971). For steam or vapor at any pres-
sure, the corresponding equation is

Qlb=hr ¼ 1:06Cg

ffiffiffiffiffiffiffiffiffiffi
�1P1

p
sin

3417

C1

ffiffiffiffiffiffiffiffi
�P

P1

s" #
deg

ð10-50Þ

where �1 is the density of the gas at P1, in lbm=ft
3. When the argument of the

sine term (in brackets) in Eq. (10-49) or (10-50) is equal to 908 or more, the
flow has reached critical flow conditions (choked) and cannot increase above
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this value without increasing P1. Under these conditions, the sine term is set
equal to unity for this and all larger values of �P.

The foregoing equations are based on flow coefficients determined by
calibration with air. For application with other gases, the difference between
the properties of air and those of the other gas must be considered. The gas
density is incorporated into the equations, but a correction must be made
for the specific heat ratio (k ¼ cp=cv) as well. This can be done by consider-
ing the expression for the ideal (isentropic) flow of a gas through a nozzle,
which can be written (in ‘‘engineering units’’) as follows:

Qscfh ¼ 3:78� 105A2P1

SG
ffiffiffiffiffiffiffiffi
RT

p k

k� 1

P2

P1

� �2=k

� P2

P1

� �ðkþ1=kÞ" #( )1=2

ð10-51Þ

Critical (choked) flow will occur in the nozzle throat when the pressure ratio
is

r ¼ P2

P1

¼ 2

kþ 1

� �k=ðk�1Þ
ð10-52Þ

Thus, for choked flow, Eq. (10-51) becomes

Qscfh ¼ 3:78� 105A2P1

SG
ffiffiffiffiffiffiffiffi
RT

p k

kþ 1

� �
2

kþ 1

� �2=ðk�1Þ" #1=2

ð10-53Þ

The quantity in square brackets which is a function only of k [fn (k)],
represents the dependence of the flow rate on the gas property. Hence it
can be used to define a correction factor C2 that can be used as a multiplier
to correct the flow rate for air to that for any other gas:

C2 ¼
fnðkÞgas
fnðkÞair

¼

k

kþ 1

� �
2

kþ 1

� �2=ðk�1Þ" #1=2

0:4839
ð10-54Þ

A plot of C2 vs. k as given by Eq. (10-54) is shown in Fig. 10-22.

D. Viscosity Correction

A correction for fluid viscosity must be applied to the flow coefficient (Cv)
for liquids other than water. This viscosity correction factor (Fv) is obtained
from Fig. 10-23 by the following procedure, depending upon whether the
objective is to find the valve size for a given Q and �P, to find Q for a given
valve and �P, or to find �P for a given valve and Q.
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1. To Find Valve Size

For the given Q and �P, calculate the required Cv as follows:

Cv ¼
Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�P=SG
p ð10-55Þ

Then determine the Reynolds number from the equation

NRe ¼ 17250
Q

�cs
ffiffiffiffiffiffi
Cv

p ð10-56Þ

where Q is in gpm, �P is in psi, and �cs is the fluid kinematic viscosity (�=�)
in centistokes. The viscosity correction factor, Fv, is then read from the
middle line on Fig. 10-23 and used to calculate a corrected value of Cv as
follows:

Cvc
¼ CvFv ð10-57Þ

The proper valve size and percent opening are then found from the table for
the valve flow coefficient (e.g., Table 10-3) at the point where the coefficient
is equal to or higher than this corrected value.

Flow Measurement and Control 331

FIGURE 10-22 Correction factor of gas properties.



332 Chapter 10

FIGURE 10-23 Viscosity correction factor for Cv. (From Fisher Controls, 1977.)



2. To Predict Flow Rate

For a given valve (i.e., a given Cv) and given �P, the maximum flow rate
(QmaxÞ is determined from

Qmax ¼ Cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�P=SG

p
ð10-58Þ

The Reynolds number is then calculated from Eq. (10-56), and the viscosity
correction factor, Fv, is read from the bottom curve in Fig. 10-23. The
corrected flow rate is then

Qc ¼ Qmax=Fv ð10-59Þ

3. To Predict Pressure Drop

For a given valve (Cv) and given flow rate (Q), calculate the Reynolds
number as above and read the viscosity correction factor, Fv, from the
top line of Fig. 10-23. The predicted pressure drop across the valve is then

�P ¼ SG
QFv

Cv

� �2

ð10-60Þ

PROBLEMS

Flow Measurement

1. An orifice meter with a hole of 1 in. diameter is inserted into a 11
2
in. sch 40 line

carrying SAE 10 lube oil at 708F (SG ¼ 0:93). A manometer using water as the

manometer fluid is used to measure the orifice pressure drop and reads 8 in.

What is the flow rate of the oil, in gpm?

2. An orifice with a 3 in. diameter hole is mounted in a 4 in. diameter pipeline

carrying water. A manometer containing a fluid with an SG of 1.2 connected

across the orifice reads 0.25 in. What is the flow rate in the pipe, in gpm?

3. An orifice with a 1 in. diameter hole is installed in a 2 in. sch 40 pipeline carrying

SAE 10 lube oil at 1008F. The pipe section where the orifice is installed is

vertical, with the flow being upward. Pipe taps are used, which are connected

to a manometer containing mercury to measure the pressure drop. If the man-

ometer reading is 3 in., what is the flow rate of the oil, in gpm?

4. The flow rate in a 1.5 in. line can vary from 100 to 1000 bbl/day, so you must

install an orifice meter to measure it. If you use a DP cell with a range of 10 in.

H2O to measure the pressure drop across the orifice, what size orifice should

you use? After this orifice is installed, you find that the DP cell reads 0.5 in.

H2O. What is the flow rate in bbl/day? The fluid is an oil with an SG ¼ 0:89 and
� ¼ 1 cP.

5. A 4 in. sch 80 pipe carries water from a storage tank on top of a hill to a plant at

the bottom of the hill. The pipe is inclined at an angle of 208 to the horizontal.
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An orifice meter with a diameter of 1 in. is inserted in the line, and a mercury

manometer across the meter reads 2 in. What is the flow rate in gpm?

6. You must size an orifice meter to measure the flow rate of gasoline (SG ¼ 0:72)
in a 10 in. ID pipeline at 608F. The maximum flow rate expected is 1000 gpm,

and the maximum pressure differential across the orifice is to be 10 in. of water.

What size orifice should you use?

7. A 2 in. sch 40 pipe carries SAE 10 lube oil at 1008F (SG ¼ 0:928). The flow rate

may be as high as 55 gpm, and you must select an orifice meter to measure the

flow.

(a) What size orifice should be used if the pressure difference is measured using

a DP cell having a full scale range of 100 in.H2O?

(b) Using this size orifice, what is the flow rate of oil, in gpm, when the DP cell

reads 50 in.H2O of water?

8. A 2 in. sch 40 pipe carries a 358 API distillate at 508F (SG ¼ 0:85). The flow rate

is measured by an orifice meter which has a diameter of 1.5 in. The pressure

drop across the orifice plate is measured by a water manometer connected to

flange taps.

(a) If the manometer reading is 1 in., what is the flow rate of the oil, in gpm?

(b) What would the diameter of the throat of a venturi meter be that would give

the same manometer reading at this flow rate?

(c) Determine the unrecovered pressure loss for both the orifice and the ven-

turi, in psi.

9. An orifice having a diameter of 1 in. is used to measure the flow rate of SAE 10

lube oil (SG ¼ 0:928) in a 2 in. sch 40 pipe at 708F. The pressure drop across the

orifice is measured by a mercury (SG ¼ 13:6) manometer, which reads 2 cm.

(a) Calculate the volumetric flow rate of the oil in liters/s.

(b) What is the temperature rise of the oil as it flows through the orifice, in 8F?
[Cv ¼ 0:5 Btu/(lbm8F).]

(c) How much power (in horsepower) is required to pump the oil through the

orifice? (Note: This is the same as the rate of energy dissipated in the flow.)

10. An orifice meter is used to measure the flow rate of CCl4 in a 2 in. sch 40 pipe.

The orifice diameter is 1.25 in., and a mercury manometer attached to the pipe

taps across the orifice reads 1/2 in. Calculate the volumetric flow rate of CCl4 in

ft3/s. (SG of CCl4 ¼ 1:6.) What is the permanent energy loss in the flow above

due to the presence of the orifice in ft lbf=lbm? Express this also as a total overall

‘‘unrecovered’’ pressure loss in psi.

11. An orifice meter is installed in a 6 in. ID pipeline that is inclined upward at an

angle of 108 from the horizontal. Benzene is flowing in the pipeline at the flow

rate of 10 gpm. The orifice diameter is 3.5 in., and the orifice pressure taps are

9 in. apart.

(a) What is the pressure drop between the pressure taps, in psi?

(b) What would be the reading of a water manometer connected to the pressure

taps?

12. You are to specify an orifice meter for measuring the flow rate of a 358 API

distillate (SG ¼ 0:85) flowing in a 2 in. sch 160 pipe at 708F. The maximum flow
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rate expected is 2000 gph, and the available instrumentation for a differential

pressure measurement has a limit of 2 psi. What size hole should the orifice

have?

13. You must select an orifice meter for measuring the flow rate of an organic liquid

(SG ¼ 0:8, � ¼ 15 cP) in a 4 in. sch 40 pipe. The maximum flow rate anticipated

is 200 gpm, and the orifice pressure difference is to be measured with a mercury

manometer having a maximum reading range of 10 in. What size should the

orifice be?

14. An oil with an SG of 0.9 and viscosity of 30 cP is transported in a 12 in. sch. 20

pipeline at a maximum flow rate of 1000 gpm. What size orifice should be used

to measure the oil flow rate if a DP cell with a full-scale range of 10 in. H2O is

used to measure the pressure drop across the orifice? What size venturi would

you use in place of the orifice in the pipeline, everything else being the same?

15. You want to use a venturi meter to measure the flow rate of water, up to

1000 gpm, through an 8 in. sch 40 pipeline. To measure the pressure drop in

the venturi, you have a DP cell with a maximum range of 15 in.H2O pressure

difference. What size venturi (i.e., throat diameter) should you specify?

16. Gasoline is pumped through a 2 in. sch 40 pipeline upward into an elevated

storage tank at 608F. An orifice meter is mounted in a vertical section of the

line, which uses a DP cell with a maximum range of 10 in.H2O to measure the

pressure drop across the orifice at radius taps. If the maximum flow rate

expected in the line is 10 gpm, what size orifice should you use? If a water

manometer with a maximum reading of 10 in. is used instead of the DP cell,

what would the required orifice diameter be?

17. You have been asked by your boss to select a flow meter to measure the flow

rate of gasoline (SG ¼ 0:85) at 708F in a 3 in. sch 40 pipeline. The maximum

expected flow rate is 200 gpm, and you have a DP cell (which measures differ-

ential pressure) with a range of 0–10 in.H2O available.

(a) If you use a venturi meter, what should the diameter of the throat be?

(b) If you use an orifice meter, what diameter orifice should you use?

(c) For a venturi meter with a throat diameter of 2.5 in., what would the DP

cell read (in inches of water) for a flow rate of 150 gpm?

(d) For an orifice meter with a diameter of 2.5 in., what would the DP cell read

(in inches of water) for a flow rate of 150 gpm?

(e) How much power (in hp) is consumed by friction loss in each of the meters

under the conditions of (c) and (d)?

18. A 2 in. sch 40 pipe is carrying water at a flow rate of 8 gpm. The flow rate is

measured by means of an orifice with a 1.6 in. diameter hole. The pressure

drop across the orifice is measured using a manometer containing an oil of

SG 1.3.

(a) What is the manometer reading in inches?

(b) What is the power (in hp) consumed as a consequence of the friction loss

due to the orifice plate in the fluid?

19. The flow rate of CO2 in a 6 in. ID pipeline is measured by an orifice meter with a

diameter of 5 in. The pressure upstream of the orifice is 10 psig, and the pressure
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drop across the orifice is 30 in.H2O. If the temperature is 808F, what is the mass

flow rate of CO2?

20. An orifice meter is installed in a vertical section of a piping system, in which

SAE 10 lube oil is flowing upward (at 1008F). The pipe is 2 in. sch 40, and the

orifice diameter is 1 in. The pressure drop across the orifice is measured by a

manometer containing mercury as the manometer fluid. The pressure taps are

pipe taps (21
2
in: ID upstream and 8 in. ID downstream), and the manometer

reading is 3 in. What is the flow rate of the oil in the pipe, in gpm?

21. You must install an orifice meter in a pipeline to measure the flow rate of 35.68
API crude oil, at 808F. The pipeline diameter is 18 in, sch 40, and the maximum

expected flow rate is 300 gpm. If the pressure drop across the orifice is limited to

30 in.H2O or less, what size orifice should be installed? What is the

maximum permanent pressure loss that would be expected through this orifice,

in psi?

22. You are to specify an orifice meter for measuring the flow rate of a 358 API

distillate (SG ¼ 0:85) flowing in a 2 in. sch 160 pipe at 708F. The maximum flow

rate expected is 2000 gal/hr and the available instrumentation for the differen-

tial pressure measurement has a limit of 2 psi. What size orifice should be

installed?

23. A 6 in. sch 40 pipeline is designed to carry SAE 30 lube oil at 808F (SG ¼ 0:87)
at a maximum velocity of 10 ft/s. You must install an orifice meter in the line to

measure the oil flow rate. If the maximum pressure drop to be permitted across

the orifice is 40 in.H2O, what size orifice should be used? If a venturi meter is

used instead of an orifice, everything else being the same, how large should the

throat be?

24. An orifice meter with a diameter of 3 in. is mounted in a 4 in. sch 40 pipeline

carrying an oil with a viscosity of 30 cP and an SG of 0.85. A mercury mano-

meter attached to the orifice meter reads 1 in. If the pumping stations along the

pipeline operate with a suction (inlet) pressure of 10 psig and a discharge (out-

let) pressure of 160 psig, how far apart should the pump stations be, if the

pipeline is horizontal?

25. A 358 API oil at 508F is transported in a 2 in. sch 40 pipeline. The oil flow rate is

measured by an orifice meter that is 1.5 in. in diameter, using a water man-

ometer.

(a) If the manometer reading is 1 in., what is the oil flow rate, in gpm?

(b) If a venturi meter is used instead of the orifice meter, what should the

diameter of the venturi throat be to give the same reading as the orifice

meter at the same flow rate?

(c) Determine the unrecovered pressure loss for both the orifice and venturi

meters.

26. A 6 in. sch 40 pipeline carries a petroleum fraction (viscosity 15 cP, SG 0.85) at a

velocity of 7.5 ft/s, from a storage tank at 1 atm pressure to a plant site. The line

contains 1500 ft of straight pipe, 25 908 flanged elbows, and four open globe

valves. The oil level in the storage tank is 15 ft above ground, and the pipeline

discharge at a point 10 ft above ground, at a pressure of 10 psig.
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(a) What is the required flow capacity (in gpm) and the head (pressure) to be

specified for the pump needed to move the oil?

(b) If the pump is 85% efficient, what horsepower motor is required to drive it?

(c) If a 4 in. diameter orifice is inserted in the line to measure the flow rate, what

would the pressure drop reading across it be at the specified flow rate?

27. Water drains by gravity out of the bottom of a large tank, through a horizontal

1 cm ID tube, 5m long, that has a venturi meter mounted in the middle of the

tube. The level in the tank is 4 ft above the tube, and a single open vertical tube

is attached to the throat of the venturi. What is the smallest diameter of the

venturi throat for which no air will be sucked through the tube attached to the

throat? What is the flow rate of the water under this condition?

28. Natural gas (CH4) is flowing in a 6 in. sch 40 pipeline, at 50 psig and 808F. A
3 in. diameter orifice is installed in the line, which indicates a pressure drop of

20 in.H2O. What is the gas flow rate, in lbm/hr and scfm?

29. A solvent (SG ¼ 0:9, � ¼ 0:8 cP) is transferred from a storage tank to a process

unit through a 3 in. sch 40 pipeline, that is 2000 ft long. The line contains 12

elbows, four globe valves, an orifice meter with a diameter of 2.85 in., and a

pump having the characteristics shown in Fig. 8-2 with a 71
4
in. impeller. The

pressures in the storage tank and the process unit are both 1 atm, and the

process unit is 60 ft higher than the storage tank. What is the pressure reading

across the orifice meter, in in.H2O?

Control Valves

30. You want to control the flow rate of a liquid in a transfer line at 350 gpm. The

pump in the line has the characteristics shown in Fig. 8-2, with an 51
4
in. impel-

ler. The line contains 150 ft of 3 in. sch 40 pipe, 10 flanged elbows, four gate

valves, and a 3� 3 control valve. The pressure and elevation at the entrance and

exit of the line are the same. The valve has an equal percentage trim with the

characteristics given in Table 10-3. What should the valve opening be to achieve

the desired flow rate (in terms of percent of total stem travel)? The fluid has a

viscosity of 5 cP and a SG of 0.85.

31. A liquid with a viscosity of 25 cP and an SG of 0.87 is pumped from an open

tank to another tank in which the pressure is 15 psig. The line is 2 in. sch 40

diameter, 200 ft long, and contains eight flanged elbows, two gate valves, a

control valve, and an orifice meter.

(a) What should the diameter of the orifice in the line be for a flow rate of

100 gpm, if the pressure across the orifice is not to exceed 80 in. of water?

(b) If the control valve is a 2� 2 with equal percentage trim (see Table 10-3),

what is the percentage opening of the valve at this flow rate? The pump

curve can be represented by the equation

Hp ¼ 360� 0:0006Q� 0:0005Q2

where Hp is in ft and Q is in gpm.
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32. Water at 608F is to be transferred at a rate of 250 gpm from the bottom of a

storage tank to the bottom of a process vessel. The water level in the storage

tank is 5 ft above ground level and the pressure in the tank is 10 psig. In the

process vessel the level is 15 ft above ground and the pressure is 20 psig. The

transfer line is 150 ft of 3 in. sch 40 pipe, containing eight flanged elbows, three

80% reduced trim gate valves, and a 3� 3 control valve with the characteristics

given in Table 10-3. The pump in the line has the same characteristics as those

shown in Fig. 8-2 with an 8 in. impeller, and the control valve has a linear

characteristic. If the stem on the control valve is set to provide the desired

flow rate under the specified conditions, what should be the valve opening

(i.e., the percent of total travel of the valve stem)?

33. A piping system takes water at 608F from a tank at atmospheric pressure to a

plant vessel at 25 psig that is 30 ft higher than the upstream tank. The transfer

line contains 300 ft of 3 in. sch 40 pipe, 10 908 els, an orifice meter, a 2� 3 pump

with a 73
4
in. impeller (with the characteristic as given in Fig. 8-2) and a 3� 2

equal percentage control valve with a trim characteristic as given in Table 10-3.

A constant flow rate of 200 gpm is required in the system.

(a) What size orifice should be installed if the DP cell used to measure the

pressure drop across the orifice has a maximum range of 25 in.H2O?

(b) What is the stem position of the valve (i.e., the percent of total stem travel)

that gives the required flow rate?

NOTATION

A cross sectional area, [L2]

Co orifice coefficient, [—]

C1 Cg=Cv for a given control valve [—]

Cd discharge coefficient for (any) flow meter, [—]

Cg control valve discharge coefficient for gas flow, [L4tT1=2=M]

Cv control valve discharge coefficient for liquid flow, [L7=2=M1=2]

D pipe diameter, [L]

d orifice, nozzle, or venturi throat diameter, [L]

F force, [F ¼ mL=t2�
Fv control valve viscosity correction factor, Fig. 10-23

Hp pump head, [L]

Hv head loss across valve, [L]

k isentropic coefficient, (k ¼ cv=cp for ideal gas), [—]

Kf loss coefficient, [—]
_mm mass flow rate, [M/t]

NRe Reynolds number, [—]

P pressure, [F=L2 ¼ M=Lt2�
Pc critical pressure, [F=L2 ¼ M=Lt2�
P2c pressure at value exit at which flow is chocked, [F=L2 ¼ M=Lt2�
Pv vapor pressure, [F=L2 ¼ M=Lt2�
Q volumetric flow rate, [L3=t]

338 Chapter 10



R radius, [L]

r radial position, [L]

SG specific gravity, [—]

V spatial average velocity, [L/t]

v local velocity, [L/t]

Y expansion factor, [—]

z elevation above an arbitrary reference plane, [L]

� kinetic energy correction factor, [—]

� d=D, [—]

�ð Þ ð Þ2 � ðÞ1
� vicosity, [M/Lt]

� density, [M=L3]

� kinematic viscosity, � ¼ �=�, [L2/t]

Subscripts

1 reference point 1

2 reference point 2

d at orifice, nozzle, or venturi throat

D in pipe

o orifice

scfh standard cubic feet per hour

v venturi, viscosity correction, vapor pressure
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11

External Flows

I. DRAG COEFFICIENT

When a fluid flows past a solid body or the body moves through the fluid
(e.g., Fig. 11-1), the force (FD) exerted on the body by the fluid is propor-
tional to the relative rate of momentum transported by the fluid (�V2A).
This can be expressed in terms of a drag coefficient (CD) that is defined by
the equation

FD

A
¼ CD

2
�V2 ð11-1Þ

Here, � is the density of the fluid, V is the relative velocity between the fluid
and the solid body, and A is the cross sectional area of the body normal to
the velocity vector V, e.g., �d2=4 for a sphere. Note that the definition of the
drag coefficient from Eq. (11-1) is analogous to that of the friction factor for
flow in a conduit, i.e.,

�w ¼ f

2
�V2 ð11-2Þ

where �w is the force exerted by the moving fluid on the wall of the pipe per
unit area. In the case of �w, however, the area is the total contact area
between the fluid and the wall as opposed to the cross-sectional area normal
to the flow direction in the case of CD. One reason for this is that the fluid
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interaction with the tube wall is uniform over the entire surface for fully
developed flow, whereas for a body immersed in a moving fluid the nature
and degree of interaction vary with position around the body.

A. Stokes Flow

If the relative velocity is sufficiently low, the fluid streamlines can follow the
contour of the body almost completely all the way around (this is called
creeping flow). For this case, the microscopic momentum balance equations
in spherical coordinates for the two-dimensional flow ½vrðr; 
Þ; v
ðr; 
Þ� of a
Newtonian fluid were solved by Stokes for the distribution of pressure and
the local stress components. These equations can then be integrated over the
surface of the sphere to determine the total drag acting on the sphere, two-
thirds of which results from viscous drag and one-third from the non-
uniform pressure distribution (refered to as form drag). The result can be
expressed in dimensionless form as a theoretical expression for the drag
coefficient:

CD ¼ 24

NRe

ð11-3Þ

where

NRe ¼
dV�

�
ð11-4Þ

This is known as Stokes flow, and Eq. (11-3) has been found be accurate for
flow over a sphere for NRe < 0:1 and to within about 5% for NRe < 1. Note
the similarity between Eq. (11-3) and the dimensionless Hagen–Poiseuille
equation for laminar tube flow, i.e., f ¼ 16=NRe.
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B. Form Drag

As the fluid flows over the forward part of the sphere, the velocity increases
because the available flow area decreases, and the pressure decreases as a
result of the conservation of energy. Conversely, as the fluid flows around
the back side of the body, the velocity decreases and the pressure
increases. This is not unlike the flow in a diffuser or a converging–diverging
duct. The flow behind the sphere into an ‘‘adverse pressure gradient’’ is
inherently unstable, so as the velocity (and NRe) increase it becomes
more difficult for the streamlines to follow the contour of the body, and
they eventually break away from the surface. This condition is called
separation, although it is the smooth streamline that is separating from
the surface, not the fluid itself. When separation occurs eddies or vortices
form behind the body as illustrated in Fig. 11-1 and form a ‘‘wake’’ behind
the sphere.

As the velocity and NRe increase, the point of streamline separation
from the surface moves further upstream and the wake gets larger. The wake
region contains circulating eddies of a three-dimensional turbulent nature,
so it is a region of relatively high velocity and hence low pressure. Thus the
pressure in the wake is lower than that on the front of the sphere, and the
product of this pressure difference and the projected area of the wake results
in a force acting on the sphere in the direction of the flow, i.e., in the same
direction as the drag force. This additional force resulting from the low
pressure in the wake increases the form drag (the component of the drag
due to the pressure distribution, in excess of the viscous drag). The total
drag is thus a combination of Stokes drag and wake drag, and the drag
coefficient is greater than that given by Eq. (11-3) for NRe > 0:1. This is
illustrated in Fig. 11-2, which shows CD vs. NRe for spheres (as well as for
cylinders and disks oriented normal to the flow direction). For �103 < NRe

< 1� 105;CD ¼ 0:45 (approximately) for spheres. In this region the wake is
maximum, and the streamlines actually separate slightly ahead of the
equator of the sphere. The drag at this point is completely dominated
by the wake, which is actually larger in diameter than the sphere (see Fig.
11-4(a)).

C. All Reynolds Numbers

For NRe > 0:1 (or > 1, within � 5%), a variety of expressions for CD vs.
NRe (mostly empirical) have been proposed in the literature. However, a
simple and very useful equation, which represents the entire range of CD vs.
NRe reasonably well (within experimental error) up to about NRe ¼ 2� 105

is given by Dallavalle (1948):
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CD ¼ 0:632þ 4:8ffiffiffiffiffiffiffiffi
NRe

p
� �2

ð11-5Þ

[Actually, according to Coulson et al. (1991), this equation was first
presented by Wadell (1934).] A comparison of Eq. (11-5) with measured
values is shown in Fig. 11-2. A somewhat more accurate equation,
although more complex, has been proposed by Khan and Richardson
(1987):

CD ¼ 2:25

N0:31
Re

þ 0:358N0:06
Re

� �3:45
ð11-6Þ

Although Eq. (11-6) is more accurate than Eq. (11-5) at intermediate values
of NRe, Eq. (11-5) provides a sufficiently accurate prediction for most
applications. Also it is simpler to manipulate, so we will prefer it as an
analytical expression for the sphere drag coefficient.

D. Cylinder Drag

For flow past a circular cylinder with L=d � 1 normal to the cylinder axis,
the flow is similar to over for a sphere. An equation that adequately
represents the cylinder drag coefficient over the entire range of NRe (up to
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about 2� 105) that is analogous to the Dallavalle equation is

CD ¼ 1:05þ 1:9ffiffiffiffiffiffiffiffi
NRe

p
� �2

ð11-7Þ

A comparison of this equation with measured values is also shown in Fig.
11-2.

E. Boundary Layer Effects

As seen in Fig. 11-2, the drag coefficient for the sphere exhibits a sudden
drop from 0.45 to about 0.15 (almost 70%) at a Reynolds number of about
2:5� 105. For the cylinder, the drop is from about 1.1 to about 0.35. This
drop is a consequence of the transition of the boundary layer from laminar
to turbulent flow and can be explained as follows.

As the fluid encounters the solid boundary and proceeds along the
surface, a boundary layer forms as illustrated in Fig. 11-3. The boundary
layer is the region of the fluid near a boundary in which viscous forces
dominate and the velocity varies with the distance from the wall. Outside
the boundary layer the fluid velocity is that of the free stream. Near the wall
in the boundary layer the flow is stable, the velocity is low, and the flow is
laminar. However, the boundary layer thickness (�) grows along the plate (in
the x direction), in proportion to N1=2

Re;x (where NRe;x ¼ xV�=�). As the
boundary layer grows, inertial forces increase and it becomes less stable
until it reaches a point (at NRe;x � 2� 105) where it becomes unstable,
i.e., turbulent. Within the turbulent boundary layer, the flow streamlines
are no longer parallel to the boundary but break up into a three-dimensional
eddy structure.

With regard to the flow over an immersed body (e.g., a sphere), the
boundary layer grows from the impact (stagnation) point along the front of
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the body and remains laminar until NRe;x � :2� 105, where x is the distance
traveled along the boundary, at which point it becomes turbulent. If the
boundary layer is laminar at the point where streamline separation occurs,
the separation point can lie ahead of the equator of the sphere, resulting in a
wake diameter that is larger than that of the sphere. However, if the
boundary layer becomes turbulent before separation occurs, the three-
dimensional eddy structure in the turbulent boundary layer carries
momentum components inward toward the surface, which delays the
separation of the streamline and tends to stabilize the wake. This delayed
separation results in a smaller wake and a corresponding reduction in form
drag, which is the cause of the sudden drop in CD at NRe � 2� 105.

This shift in the size of the wake can be rather dramatic, as illustrated
in Fig. 11-4, which shows two pictures of a bowling ball falling in water,
with the wake clearly visible. The ball on the left shows a large wake because
the boundary layer at the separation point is laminar and the separation is
ahead of the equator. The ball on the right has a rougher surface, which
promotes turbulence, and the boundary layer has become turbulent before
separation occurs, resulting in a much smaller wake due to the delayed
separation. The primary effect of surface roughness on the flow around
immersed objects is to promote transition to the turbulent boundary layer
and delay separation of the streamlines and thus to slightly lower the value
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FIGURE 11-4 Two bowling balls falling in still water at 25 ft/s. The ball on the left is
smooth, and the one on the right has a patch of sand on the nose. (From Coulson
et al., 1991.)



of NRe at which the sudden drop (or ‘‘kink’’) in the CDNRe curve occurs.
This apparent paradox, wherein the promotion of turbulence actually
results in lower drag, has been exploited in various ways, such as the dimples
on golf balls and the boundary layer ‘‘spoilers’’ on airplane wings and
automobiles.

II. FALLING PARTICLES

Many engineering operations involve the separation of solid particles from
fluids, in which the motion of the particles is a result of a gravitational (or
other potential) force. To illustrate this, consider a spherical solid particle
with diameter d and density �s, surrounded by a fluid of density � and
viscosity �, which is released and begins to fall (in the x ¼ �z direction)
under the influence of gravity. A momentum balance on the particle is
simply �Fx ¼ max, where the forces include gravity acting on the solid
(Fg), the buoyant force due to the fluid (Fb), and the drag exerted by the
fluid (FD). The inertial term involves the product of the acceleration
(ax ¼ dVx=dt) and the mass (m). The mass that is accelerated includes that
of the solid (ms) as well as the ‘‘virtual mass’’ (mf ) of the fluid that is
displaced by the body as it accelerates. It can be shown that the latter is
equal to one-half of the total mass of the displaced fluid, i.e.,
mf ¼ 1

2
msð�=�s). Thus the momentum balance becomes

gð�s � �Þ�d3

6
� CD��d

2V2

8
¼ �d3ð�s þ �=2Þ

6

dV

dt
ð11-8Þ

At t ¼ 0;V ¼ 0 and the drag force is zero. As the particle accelerates, the
drag force increases, which decreases the acceleration. This process con-
tinues until the acceleration drops to zero, at which time the particle falls
at a constant velocity because of the balance of forces due to drag and
gravity. This steady-state velocity is called the terminal velocity of the
body and is given by the solution of Eq. (11-8) with the acceleration
equal to zero:

Vt ¼
4g�� d

3�CD

� �1=2

ð11-9Þ

where �� ¼ �s � �. It is evident that the velocity cannot be determined until
the drag coefficient, which depends on the velocity, is known. If Stokes flow
prevails, then CD ¼ 24=NRe, and Eq. (11-9) becomes

Vt ¼
g�� d2

18�
ð11-10Þ
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However, the criterion for Stokes flow (NRe < 1) cannot be tested until Vt is
known, and if it is not valid then Eq. (11-10) will be incorrect. This will be
addressed shortly.

There are several types of problems that we may encounter with falling
particles, depending upon what is known and what is to be found. All of
these problems involve the two primary dimensionless variables CD andNRe.
The former is determined, for gravitation-driven motion, by Eq. (11-9), i.e.,

CD ¼ 4g�� d

3�V2
t

ð11-11Þ

and CD can be related to NRe by the Dallavalle equation [Eq. (11-5)] over
the entire practical range of NRe. The following procedures for the various
types of problems apply to Newtonian fluids under all flow conditions.

A. Unknown Velocity

In this case, the unknown velocity (Vt) appears in both the equation for CD

[Eq. (11-11)] and the equation for NRe. Hence, a suitable dimensionless
group that does not contain the unknown V can be formulated as follows:

CDN
2
Re ¼

4d3�g��

3�2
¼ 4

3
NAr ð11-12Þ

where NAr is the Archimedes number (also sometimes called the Galileo
number). The most appropriate set of dimensionless variables to use for
this problem is thus NAr and NRe. An equation for NAr can be obtained
by multiplying Eq. (11-5) by N2

Re, and the result can then be rearranged for
NRe to give

NRe ¼ ½ð14:42þ 1:827
ffiffiffiffiffiffiffiffi
NAr

p
Þ1=2 � 3:798�2 ð11-13Þ

The procedure for determining the unknown velocity is therefore as follows.

Given : d; �; �s; � Find : Vt

1. Calculate the Archimedes number:

NAr ¼
d3�g��

�2
ð11-14Þ

2. Insert this value into Eq. (11-13) and calculate NRe.
3. Determine Vt from NRe, i.e., Vt ¼ NRe�=d�

If NAr < 15, then the system is within the Stokes law range and the terminal
velocity is given by Eq. (11-10).
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B. Unknown Diameter

It often happens that we know or can measure the particle velocity and wish
to know the size of the falling particle. In this case, we can form a
dimensionless group that does not contain d:

CD

NRe

¼ 4��� g

3�2V3
t

ð11-15Þ

This group can be related to the Reynolds number by dividing Eq. (11-5) by
NRe and then solving the resulting equation for 1=N1=2

Re to give

1ffiffiffiffiffiffiffiffi
NRe

p ¼ 0:00433þ 0:208

ffiffiffiffiffiffiffiffi
CD

NRe

s !1=2

� 0:0658 ð11-16Þ

The two appropriate dimensionless variables are now CD=NRe and NRe. The
procedure is as follows.

Given : Vt; �s; �; � Find : d

1. Calculate CD=NRe from Eq. (11-15).
2. Insert the result into Eq. (11-16) and calculate 1=N1=2

Re and hence
NRe.

3. Calculate d ¼ �NRe=Vt�.

If CD=NRe > 30, the flow is within the Stokes law range, and the diameter
can be calculated directly from Eq. (11-10):

d ¼ 18�Vt

g��

� �1=2

ð11-17Þ

C. Unknown Viscosity

The viscosity of a Newtonian fluid can be determined by measuring the
terminal velocity of a sphere of known diameter and density if the fluid
density is known. If the Reynolds number is low enough for Stokes flow
to apply (NRe < 0:1), then the viscosity can be determined directly by re-
arrangement of Eq. (11-10):

� ¼ d2g��

18Vt

ð11-18Þ

The Stokes flow criterion is rather stringent. (For example, a 1 mm diameter
sphere would have to fall at a rate of 1 mm/s or slower in a fluid with a
viscosity of 10 cP and SG ¼ 1 to be in the Stokes range, which means that
the density of the solid would have to be within 2% of the density of the
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fluid!) However, with only a slight loss in accuracy, the Dallavalle equation
can be used to extend the useful range of this measurement to a much higher
Reynolds number, as follows. From the known quantities, CD can be cal-
culated from Eq. (11-11). The Dallavalle equation [Eq. (11-5)] can be rear-
ranged to give NRe:

NRe ¼
4:8

C1=2
D � 0:632

 !2

ð11-19Þ

The viscosity can then be determined from the known value of NRe:

� ¼ dVt�

NRe

ð11-20Þ

Note that when NRe > 1000;CD � 0:45 (constant). From Eq. (11-19), this
gives � ¼ 0! Although this may seem strange, it is consistent because in this
range the drag is dominated by form (wake) drag and viscous forces are
negligible. It should be evident that one cannot determine the viscosity from
measurements made under conditions that are insensitive to viscosity, which
means that the utility of Eq. (11-19) is limited in practice to approximately
NRe < 100.

III. CORRECTION FACTORS

A. Wall Effects

All expressions so far have assumed that the particles are surrounded by an
infinite sea of fluid, i.e. that the boundaries of the fluid container are far
enough from the particle that their influence is negligible. For a falling
particle, this might seem to be a reasonable assumption if d=D < 0:01,
say, where D is the container diameter. However, the presence of the wall
is felt by the particle over a much greater distance than one might expect.
This is because as the particle falls it must displace an equal volume of
fluid, which must flow back around the particle to fill the space just
vacated by the particle. Thus the relative velocity between the particle
and the adjacent fluid is much greater than it would be in an infinite
fluid; i.e., the effective ‘‘free stream’’ (relative) velocity is no longer zero,
as it would be for an infinite stagnant fluid. A variety of analyses of this
problem have been performed, as reviewed by Chhabra (1992). These
represent the wall effect by a wall correction factor (Kw) which is a
multiplier for the ‘‘infinite fluid’’ terminal velocity. (this is also equivalent
to correcting the Stokes’ law drag force by a factor of Kw). The following
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equation due to Francis (see, e.g., Chhabra, 1992) is claimed to be valid
for d=D < 0:97 and NRe < 1:

Kwo
¼ 1� d=D

1� 0:475d=D

� �4

ð11-21Þ

For larger Reynolds numbers, the following expression is claimed to be
valid for d=D < 0:8 and NRe > 1000:

Kw1 ¼ 1� ðd=DÞ1:5 ð11-22Þ
Although these wall correction factors appear to be independent of
Reynolds number for small (Stokes) and large (> 1000Þ values of NRe, the
value of Kw is a function of both NRe and d/D for intermediate Reynolds
numbers (Chhabra, 1992).

B. Drops and Bubbles

Because of surface tension forces, very small drops and bubbles are nearly
rigid and behave much like rigid particles. However, larger fluid drops or
bubbles may experience a considerably different settling behavior, because
the shear stress on the drop surface can be transmitted to the fluid inside the
drop, which in turn results in circulation of the internal fluid. This internal
circulation dissipates energy, which is extracted from the energy of the
bubble motion and is equivalent to an additional drag force. For Stokes
flow of spherical drops or bubbles (e.g., NRe < 1), it has been shown by
Hadamard and Rybcznski (see, e.g., Grace, 1983) that the drag coefficient
can be corrected for this effect as follows:

Cd ¼ 24

NRe

�þ 2=3

�þ 1

� �
ð11-23Þ

where � ¼ �i=�o; �i being the viscosity of dispersed (‘‘inside’’) fluid and �o

the viscosity of the continuous (‘‘outside’’) fluid.
For larger Reynolds numbers (1 < NRe < 500), Rivkind and Ryskind

(see Grace, 1983) proposed the following equation for the drag coefficient
for spherical drops and bubbles:

CD ¼ 1

�þ 1
�

24

NRe

þ 4

N1=3
Re

 !
þ 14:9

N0:78
Re

" #
ð11-24Þ

As the drop or bubble gets larger, however, it will become distorted owing to
the unbalanced forces around it. The viscous shear stresses tend to elongate
the shape, whereas the pressure distribution tends to flatten it out in the
direction normal to the flow. Thus the shape tends to progress from
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spherical to ellipsoidal to a ‘‘spherical cap’’ form as the size increases. Above
a certain size, the deformation is so great that the drag force is approxi-
mately proportional to the volume and the terminal velocity becomes nearly
independent of size.

IV. NON-NEWTONIAN FLUIDS

The motion of solid particles, drops, or bubbles through non-Newtonian
fluid media is encountered frequently and has been the subject of consider-
able research (see, e.g., Chhabra, 1992). We will present some relations here
that are applicable to purely viscous non-Newtonian fluids, although there is
also much interest and activity in viscoelastic fluids. Despite the relatively
large amount of work that has been done in this area, there is still no general
agreement as to the ‘‘right,’’ or even the ‘‘best,’’ description of the drag on a
sphere in non-Newtonian fluids. This is due not only to the complexity of
the equations that must be solved for the various models but also to the
difficulty in obtaining good, reliable, representative data for fluids with well
characterized unambiguous rheological properties.

A. Power Law Fluids

The usual approach for non-Newtonian fluids is to start with known results
for Newtonian fluids and modify them to account for the non-Newtonian
properties. For example, the definition of the Reynolds number for a power
law fluid can be obtained by replacing the viscosity in the Newtonian
definition by an appropriate shear rate dependent viscosity function. If
the characteristic shear rate for flow over a sphere is taken to be V/d, for
example, then the power law viscosity function becomes

�! 	ð _��Þ ffi m
V

d

� �n�1

ð11-25Þ

and the corresponding expression for the Reynolds number is

NRe;pl ¼
�V2�ndn

m
ð11-26Þ

The corresponding creeping flow drag coefficient can be characterized by a
correction factor (X) to the Stokes law drag coefficient:

CD ¼ X
24

NRe;pl

ð11-27Þ
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A variety of theoretical expressions, as well as experimental values, for the
correction factor X as a function of the power law flow index (n) were
summarized by Chhabra (1992).

In a series of papers, Chhabra (1995), Tripathi et al. (1994), and
Tripathi and Chhabra (1995) presented the results of numerical calculations
for the drag on spheroidal particles in a power law fluid in terms of
CD ¼ fnðNRe; nÞ. Darby (1996) analyzed these results and showed that
this function can be expressed in a form equivalent to the Dallavalle
equation, which applies over the entire range of n and NRe as given by
Chhabra. This equation is

CD ¼ C1 þ
4:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NRe;pl=X
p

 !2

ð11-28Þ

where both X and C1 are functions of the flow index n. These functions were
determined by empirically fitting the following equations to the values given
by Chhabra (1995):

1

C1

¼ 1:82

n

� �8

þ34

" #1=8

ð11-29Þ

X ¼ 1:33þ 0:37n

1þ 0:7n3:7
ð11-30Þ

The agreement between these values of C1 and X and the values given by
Tripathi et al. (1994) and Chhabra (1995) is shown in Figs. 11-5 and 11-6.
Equations (11-28)–(11-30) are equivalent to the Dallavalle equation for a
sphere in a power law fluid. A comparison of the values of CD predicted by
Eq. (11-28) with the values given by Tripathi et al. and Tripathi and
Chhabra and Chhabra is shown in Fig. 11-7. The deviation is the greatest
for highly dilatant fluids, in the Reynolds number range of about 5–50,
although the agreement is quite reasonable above and below this range,
and for pseudoplastic fluids over the entire range of Reynolds number.
We will illustrate the application of these equations by outlining the
procedure for solving the ‘‘unknown velocity’’ and the ‘‘unknown diameter’’
problems.

1. Unknown Velocity

The expressions for CD and NRe;pl can be combined to give a group that is
independent of V:
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FIGURE 11-5 Plot of 1=C1 vs. n for power law fluid. Line is Eq. (11-29). Data points
are from Chhabra (1995) and Tripathi et al. (1994).

FIGURE 11-6 Plot of X vs. n for power law fluid. Line is Eq. (11-30). Data points
are from Tripathi et al. (1994) and Chhabra (1995).



C2�n
D

�
NRe;pl

X

�2

¼
�
�

Xm

�2
4g��

3�

� �2�n

dnþ2 ¼ Nd ð11-31Þ

which is similar to Chhabra’s Dþ parameter. Using Eq. (11-28) to eliminate
CD gives

Nd ¼ C1

NRe;pl

X

� �1=ð2�nÞ
þ 4:8

NRe;pl

X

� �n=2ð2�nÞ" #2ð2�nÞ
ð11-32Þ

Although this equation cannot be solved analytically for NRe;pl, it can be
solved by iteration (or by using the ‘‘solve’’ command on a calculator or
spreadsheet), because all other parameters are known. The unknown velo-
city is then given by

V ¼ mNRe;pl

�dn

� �1=ð2�nÞ
ð11-33Þ

2. Unknown Diameter

The diameter can be eliminated from the expressions for CD and NRe;pl as
follows:

Cn
DX

NRe;pl

¼ 4g��

3�

� �n
Xm

�

� �
V�ðnþ2Þ ¼ Nv ð11-34Þ
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FIGURE 11-7 Comparison of Eq. (11-28) with result sof Tripathi et al. (1994) and
Chhabra (1995).



Again using Eq. (11-28) to eliminate CD gives

NV ¼ C1

X

NRe;pl

� �1=2n

þ 4:8
X

NRe;pl

� �ð1þnÞ=2n" #2n

ð11-35Þ

As before, everything in this equation is known except for NRe;pl, which can
be determined by iteration (or by using the ‘‘solve’’ spreadsheet or calculator
command). When this is found, the unknown diameter is given by

d ¼ mNRe;pl

�V2�n

� �1=n

ð11-36Þ

Example 11-1: Unknown Velocity and Unknown Diameter of a Sphere
Settling in a Power Law Fluid. Table 11-1 summarizes the procedure,
and Table 11-2 shows the results of a spreadsheet calculation for an applica-
tion of this method to the three examples given by Chhabra (1995).
Examples 1 and 2 are ‘‘unknown velocity’’ problems, and Example 3 is an
‘‘unknown diameter’’ problem. The line labeled ‘‘Equation’’ refers to Eq.
(11-32) for the unknown velocity cases, and Eq. (11-35) for the unknown
diameter case. The ‘‘Stokes’’ value is from Eq. (11-9), which only applies for
NRe;pl < 1 (e.g., Example 1 only). It is seen that the solutions for Examples 1
and 2 are virtually identical to Chhabra’s values and the one for Example 3
is within 5% of Chhabra’s. The values labeled ‘‘Data’’ were obtained by
iteration using the data from Fig. 4 of Tripathi et al. (1994). These values are
only approximate, because they were obtained by interpolating from the
(very compressed) log scale of the plot.
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TABLE 11-1 Procedure for Determining Unknown Velocity or Unknown Diameter
for Particles Settling in a Power Law Fluid

Problem Unknown velocity Unknown diameter

Given: Particle diameter (d) and Particle settling velocity (V )
fluid properties (m; n; and �) and fluid properties (m; n; and �)

Step 1 Using value of n, calculate Using value of n, calculate
C1 and X from Eqs. (11-29) C1 and X from and (11-29)
and (11-30) and (11-30)

Step 2 Calculate Nd from Eq. (11-31). Calculate Nv from Eq. (11-34).
Step 3 Solve Eq. (11-32) for NRe;pl Solve Eqn. (11-35) for NRe;pl

by iteration (or using ‘‘solve’’ by iteration (or using ‘‘solve’’
function). function).

Step 4 Get V from Eq. (11-33). Get d from Eq. (11-36).



The method shown here has several advantages over that reported by
Chhabra (1995), namely,

1. All expressions are given in equation form, and it is not necessary
to read and interpolate any plots to solve the problems (i.e., the
empirical data are represented analytically by curve-fitting equa-
tions).

2. The method is more general, in that it is a direct extension of the
technique of solving similar problems for Newtonian fluids and
applies over all values of Reynolds number.

3. Only one calculation procedure is required, regardless of the value
of the Reynolds number for the specific problem.

4. The calculation procedure is simple and straightforward and can
be done quickly using a spreadsheet.

B. Wall Effects

The wall effect for particles settling in non-Newtonian fluids appears to be
significantly smaller than for Newtonian fluids. For power law fluids, the
wall correction factor in creeping flow, as well as for very high Reynolds
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TABLE 2 Comparison of Calculated Settling Properties Using Eq. (11-28) with
Literature Valuesa Chhabra (1995)

Example 1 Example 2 Example 3

Given data d ¼ 0:002 m d ¼ 0:002 m V ¼ 0:2 m/s
m ¼ 1:3 Pa s m ¼ 0:015 Pa s m ¼ 0:08 Pa s
n ¼ 0:6 n ¼ 0:8 n ¼ 0:5
� ¼ 1:002 kg/m3 � ¼ 1:050 kg/m3 � ¼ 1:005 kg/m3

�s ¼ 7780 kg/m3 �s ¼ 2500 kg/m3 �s ¼ 8714 kg/m3

Calculated X ¼ 1:403 X ¼ 1:244 X ¼ 1:438
values C1 ¼ 0:329 C1 ¼ 0:437 C1 ¼ 0:275

Nd ¼ 15:4 Nd ¼ 2830 Nd ¼ 0:064
NRe;pl ¼ 0:082 NRe;pl ¼ 55:7 NRe;pl ¼ 29:8

Equation: V ¼ 0:0208 m/s V ¼ 0:165 m/s d ¼ 7:05� 10�4 m

Chhabra (1995) V ¼ 0:0211s�1 V ¼ 0:167 m/s d ¼ 6:67� 10�4 m
Stokes’ law V ¼ 0:0206 m/s V ¼ 0:514 m/s d ¼ 5:31� 10�4 m
Tripathi et al. V ¼ 0:167 m/s d ¼ 7:18� 10�4

(1994) –Data NRe;pl ¼ 57 NRe;pl ¼ 30
Cd ¼ 1:3 Cd ¼ 1:8



numbers, appears to be independent of Reynolds number. For creeping
flow, the wall correction factor given by Chhabra (1992) is

Kw0
¼ 1� 1:6d=D ð11-37Þ

whereas for high Reynolds numbers he gives

Kw1 ¼ 1� 3ðd=DÞ3:5 ð11-38Þ
For intermediate Reynolds numbers, the wall factor depends upon the
Reynolds number as well as d/D. Over a range of 10�2 <
NRe;pl < 103; 0 < d=D < 0:5, and 0:53 < n < 0:95, the following equation
describes the Reynolds number dependence of the wall factor quite well:

1=Kw � 1=Kw1

1=Kw0
� 1=Kw1

¼ ½1þ 1:3N2
Re;pl��0:33 ð11-39Þ

C. Carreau Fluids

As discussed in Chapter 3, the Carreau viscosity model is one of the most
general and useful and reduces to many of the common two-parameter
models (power law, Ellis, Sisko, Bingham, etc.) as special cases. This
model can be written as

	 ¼ 	1 þ ð	0 � 	1Þ½1þ ð
 _��Þ2�ðn�1Þ=2 ð11-40Þ
where n ¼ 1� 2p is the flow index for the power law region [p is the shear
thinning parameter in the form of this model given in Eq. (3-26)]. Because
the shear conditions surrounding particles virtually never reach the levels
corresponding to the high shear viscosity (	1), this parameter can be
neglected and the parameters reduced to three: 	0; 
, and n. Chhabra and
Uhlherr (1988) determined the Stokes flow correction factor for this model,
which is a function of the dimensionless parameters n and N
 ¼ 
V=d. The
following equation represents their results for the CD correction factor over
a wide range of data to 	10%, for 0:4 < n < 1 and 0 < N
 < 400:

X ¼ 1

½1þ ð0:275N
Þ2�ð1�nÞ=2 ð11-41Þ

where the Stokes equation uses 	0 for the viscosity in the Reynolds number.

D. Bingham Plastics

A particle will not fall through a fluid with a yield stress unless the weight of
the particle is sufficient to overcome the yield stress. Because the stress is not
uniform around the particle and the distribution is very difficult to deter-
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mine, it is not possible to determine the critical ‘‘yield’’ criterion exactly.
However, it should be possible to characterize this state by a dimensionless
‘‘gravity yield’’ parameter:

YG ¼ �0
gd��

ð11-42Þ

By equating the vertical component of the yield stress over the surface of the
sphere to the weight of the particle, a critical value of YG ¼ 0:17 is obtained
(Chhabra, 1992). Experimentally, however, the results appear to fall into
groups: one for which YG � 0:2 and one for which YG � 0:04�0:08. There
seems to be no consensus as to the correct value, and the difference may well
be due to the fact that the yield stress is not an unambiguous empirical
parameter, inasmuch as values determined from ‘‘static’’ measurements
can differ significantly from the values determined from ‘‘dynamic’’ mea-
surements.

With regard to the drag on a sphere moving in a Bingham plastic
medium, the drag coefficient (CD) must be a function of the Reynolds
number as well as of either the Hedstrom number or the Bingham number
(NBi ¼ NHe=NRe ¼ �0d=�1V). One approach is to reconsider the Reynolds
number from the perspective of the ratio of inertial to viscous momentum
flux. For a Newtonian fluid in a tube, this is equivalent to

Newtonian:

NRe ¼
DV�

�
¼ 8�V2

�ð8V=DÞ ¼
8�V2

�w
ð11-43Þ

which follows from the Hagen–Poiseuille equation, because �w ¼ �ð8V=DÞ
is the drag per unit area of the wall and the shear rate at the wall in the pipe
is _��w ¼ 8V=D. By analogy, the drag force per unit area on a sphere is
F=A ¼ CD�V

2=2, which for Stokes flow (i.e., CD ¼ 24=NRe) becomes
F=A ¼ 12�V=d. If F/A for the sphere is considered to be analogous to
the ‘‘wall stress’’ (�) on the sphere, the corresponding ‘‘effective wall shear
rate’’ is 12V/d. Thus the sphere Reynolds number could be written

NRe ¼
dV�

�
¼ 12�V2

�ð12V=dÞ ¼
12�V2

�
ð11-44Þ

For a Bingham plastic, the corresponding expression would be
Bingham plastic:

12�V2

�
¼ 12�V2

�1ð12V=dÞ þ �0
¼ NRe

1þNBi=12
ð11-45Þ

Equation (11-45) could be used in place of the traditional Reynolds number
for correlating the drag coefficient.
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Another approach is to consider the effective shear rate over the
sphere to be V/d, as was done in Eq. (11-25) for the power law fluid. If
this approach is applied to a sphere in a Bingham plastic, the result is

NRe;BP ¼ NRe

1þNBi

ð11-46Þ

This is similar to the analysis obtained by Ainsley and Smith (see Chhabra,
1992) using the slip line theory from soil mechanics, which results in a
dimensionless group called the plasticity number:

Npl ¼
NRe

1þ 2�NBi=24
ð11-47Þ

A finite element analysis [as reported by Chhabra and Richard-
son (1999)] resulted in an equivalent Stokes’ law correction factor
Xð¼ CDNRe=24Þ that is a function of NBi for NBi < 1000:

X ¼ 1þ aNb
Bi ð11-48Þ

where a ¼ 2:93 and b ¼ 0:83 for a sphere in an unbounded fluid, and 2:93 >
a > 1:63 and 0:83 < b < 0:95 for 0 < d=D < 0:5. Also, based upon available
data, Chhabra and Uhlherr (1988) found that the ‘‘Stokes flow’’ relation
(CD ¼ 24X=NRe) applies up to NRe � 100N0:4

Bi for Bingham plastics.
Equation (11-48) is equivalent to a Bingham plastic Reynolds number
(NRe;BP) or plasticity number (Npl ) of

NRe;BP ¼ NRe

1þ 2:93N0:83
Bi

ð11-49Þ

Unfortunately, there are insufficient experimental data reported in the
literature to verify or confirm any of these expressions. Thus, for lack of
any other information, Eq. (11-49) is recommended, because it is based on
the most detailed analysis. This can be extended beyond the Stokes flow
region by incorporating Eq. (11-49) into the equivalent Dallavalle equation,

CD ¼ 0:632þ 4:8ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NRe;BP

p
 !2

ð11-50Þ

which can be used to solve the ‘‘unknown velocity’’ and ‘‘unknown
diameter’’ problems as previously discussed. However in this case re-
arrangement of the dimensionless variables CD and NRe;BP into an alterna-
tive set of dimensionless groups in which the unknown is in only one group
is not possible owing to the form of NRe;BP. Thus the procedure would be to
equate Eqs. (11-50) and (11-11) and solve the resulting equation directly by
iteration for the unknown V or d (as the case requires).
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PROBLEMS

1. By careful streamlining, it is possible to reduce the drag coefficient of an auto-

mobile from 0.4 to 0.25. How much power would this save at (a) 40 mph and a

(b) 60 mph, assuming that the effective projected area of the car is 25 ft2?

2. If your pickup truck has a drag coefficient equivalent to a 5 ft diameter disk and

the same projected frontal area, how much horsepower is required to overcome

wind drag at 40 mph? What horsepower is required at 70 mph?

3. You take a tumble while water skiing. The handle attached to the tow rope falls

beneath the water and remains perpendicular to the direction of the boat’s

heading. If the handle is 1 in. in diameter and 1 ft long and the boat is moving

at 20 mph, how much horsepower is required to pull the handle through the

water?

4. Your new car is reported to have a drag coefficient of 0.3. If the cross-sectional

area of the car is 20 ft2, how much horsepower is used to overcome wind

resistance at (a) 40 mph? (b) 55 mph? (c) 70 mph? (d) 100 mph? (T ¼ 708F).
5. The supports for a tall chimney must be designed to withstand a 120 mph wind.

If the chimney is 10 ft in diameter and 40 ft high, what is the wind force on the

chimney at this speed? T ¼ 508F.
6. A speedboat is propelled by a water jet motor that takes water in at the bow

through a 10 cm diameter duct and discharges it through an 50 mm diameter

nozzle at a rate of 80 kg/s. Neglecting friction in the motor and internal ducts,

and assuming that the drag coefficient for the boat hull is the same as for a 1 m

diameter sphere, determine:

(a) The static thrust developed by the motor when it is stationary.

(b) The maximum velocity attainable by the boat.

(c) The power (kW) required to drive the motor.

(Assume seawater density 1030 kg/m3, viscosity 1.2 cP.)

7. After blowing up a balloon, you release it without tying off the opening, and it

flies out of your hand. If the diameter of the balloon is 6 in., the pressure inside

it is 1 psig, and the opening is 1/2 in. in diameter, what is the balloon velocity?

You may neglect friction in the escaping air and the weight of the balloon

and assume that an instantaneous steady state (i.e., a pseudo steady state)

applies.

8. A mixture of titanium (SG ¼ 4:5) and silica (SG ¼ 2:65) particles, with dia-

meters ranging from 50 to 300 mm, is dropped into a tank in which water is

flowing upward. What is the velocity of the water if all the silica particles are

carried out with the water?

9. A small sample of ground coal is introduced into the top of a column of water

30 cm high, and the time required for the particles to settle out is measured. If it

takes 26 s for the first particle to reach the bottom and 18 hr for all particles to

settle, what is the range of particle sizes in the sample? (T ¼ 608F;SGcoal ¼ 1:4.)
10. You want to determine the viscosity of an oil that has an SG of 0.9. To do this,

you drop a spherical glass bead (SG ¼ 2:7) with a diameter of 0.5 mm into a

large vertical column of the oil and measure its settling velocity. If the measured

velocity is 3.5 cm/s, what is the viscosity of the oil?
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11. A solid particle with a diameter of 5 mm and SG ¼ 1:5 is released in a liquid

with a viscosity of 10 P and SG ¼ 1. How long will it take for the particle to

reach 99% of its terminal velocity after it is released?

12. A hot air popcorn popper operates by blowing air through the popping cham-

ber, which carries the popped corn up through a duct and out of the popper

leaving the unpopped grains behind. The unpopped grains weigh 0.15 g, half of

which is water, and have an equivalent spherical diameter of 4 mm. The popped

corn loses half of the water to steam, and has an equivalent diameter of 12 mm.

What are the upper and lower limits of the air volumetric flow rate at 2008F
over which the popper will operate properly, for a duct diameter of 8 cm?

13. You have a granular solid with SG ¼ 4, which has particle sizes of 300 �m
and smaller. You want to separate out all of the particles with a diameter of

20 �m and smaller by pumping water upward through a slurry of the

particles in a column with a diameter of 10 cm. What flow rate is required

to ensure that all particles less than 20 �m are swept out of the top of the

column? If the slurry is pumped upward into the bottom of the column

through a vertical tube, what should the diameter of this tube be to ensure

that none of the particles settle out in it?

14. You want to perform an experiment that illustrates the wake behind a sphere

falling in water at the point where the boundary layer undergoes transition from

laminar to turbulent. (See Fig. 11-4.) If the sphere is made of steel with a density

of 500 lbm=ft
3, what should the diameter be?

15. You have a sample of crushed coal containing a range of particle sizes from 1 to

1000 �m in diameter. You wish to separate the particles according to size by

entrainment, by dropping them into a vertical column of water that is flowing

upward. If the water velocity in the column is 3 cm/s, which particles will be

swept out of the top of the column, and which will settle to the bottom? (SG of

the solid is 2.5.)

16. A gravity settling chamber consists of a horizontal rectangular duct 6 m long,

3.6 m wide, and 3 m high. The chamber is used to trap sulfuric acid mist

droplets entrained in an air stream. The droplets settle out as the air passes

horizontally through the duct and can be assumed to behave as rigid spheres. If

the air stream has a flow rate of 6.5 m3/s, what is the diameter of the largest

particle that will not be trapped in the duct? (�acid ¼ 1:74 g/cm3; �air ¼ 0:01 g/

cm3;�air ¼ 0:02 cP; �acid ¼ 2 cP.)

17. A small sample of a coal slurry containing particles with equivalent spherical

diameters from 1 to 500 mm is introduced into the top of a water column 30 cm

high. The particles that fall to the bottom are continuously collected and

weighed to determine the particle size distribution in the slurry. If the solid

SG is 1.4 and the water viscosity is 1 cP, over what time range must the data

be obtained in order to collect and weigh all the particles in the sample?

18. Construct a plot of CD versus NRe;BP for a sphere falling in a Bingham plastic

fluid over the range of 1 < NRe < 100 and 10 < NBi < 1000 using Eq. (11-50).

Compare the curves for this relation based on Eqs. (11-45), (11-46), (11-47), and

(11-49).
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19. The viscosity of applesauce at 808F was measured to be 24.2 poise (P) at a shear

rate of 10 s�1 and 1.45 P at 500 s�1. The density of the applesauce is 1.5 g/cm3.

Determine the terminal velocity of a solid sphere 1 cm in diameter with a

density of 3.0 g/cm3 falling in the applesauce, if the fluid is described by (a)

the power law model; (b) the Bingham plastic model [use Eq. (11-49)].

20. Determine the size of the smallest sphere of SG ¼ 3 that will settle in applesauce

with properties given in Problem 19, assuming that it is best described by the

Bingham plastic model [Eq. (11-49)]. Find the terminal velocity of the sphere

that has a diameter twice this size.

NOTATION

A cross-sectional area of particle normal to flow direction, [L2]

CD particle drag coefficient, [—]

d particle diameter, [L]

FD drag force on particle, [F ¼ ML=t2]
g acceleration due to gravity, [L/t2]

Kw0
low Reynolds number wall correction factor, [—]

Kw1 high Reynolds number wall correction factor, [—]

m power law consistency coefficient, [M/(Lt2�n)]

n power law flow index, [—]

NAr Archimedes number, Eq. (11-14), [—]

NRe;BP Bingham plastic Reynolds number, Eq. (11-47), [—]

NBi Bingham number ð¼ NRe=NHe ¼ d�o=�1V), [—]

NRe Reynolds number, [—]

NRe;pl Power law Reynolds number, [—]

N
 dimensionless time constant ð¼ 
V=dÞ, [—]

V relative velocity between fluid and particle, [L/t]

X correction factor to Stokes’ law to account for non-Newtonian properties,

[—]

� �i=�o, [—]

	o low shear limiting viscosity, [M/Lt]

	1 high shear limiting viscosity, [M/Lt]

�� �s � �, [M/L3]

� density, [M/L3]


 Carreau fluid time constant parameter, [t]

� viscosity (constant), [M/Lt]

�1 Bingham plastic limiting viscosity, [M/Lt]

�0 Bingham plastic yield stress, [F/L2 ¼ M=Lt2)]

Subscripts

i distributed (‘‘inside’’) liquid phase

o continuous (‘‘outside’’) liquid phase

s solid

t terminal velocity condition

External Flows 363



REFERENCES

Chhabra RP. Bubbles, Drops, and Particles in Non-Newtonian Fluids. Boca Raton,

FL: CRC Press, 1992.

Chhabra RP. Calculating settling velocities of particles. Chem. Eng, September 1995,

p 133.

Chhabra RP, D De Kee. Transport Processes in Bubbles, Drops, and Particles.

Washington, DCP: Hemisphere, 1992.

Chhabra RP, JF Richardson. Non-Newtonian Flow in the Process Industries.

Stoneham, MA: Butterworth-Heinemann, 1999.

Chhabra RP, PHT Uhlherr. Static equilibrium and motion of spheres in viscoplastic

liquids. In: NP Cheremisinoff, ed. Encyclopedia of Fluid Mechanics, Vol. 7.

Houston, TX: Gulf Pub Co, 1988, Chap 21.

Coulson JM, JF Richardson, JR Blackhurst, JH Harker. Chemical Engineering, Vol.

2, 4th ed. New York: Pergamon Press, 1991.

Dallavalle JM, Micrometrics. 2nd ed. Pitman, 1948.

Darby R. Determine settling rates of particles in non-Newtonian fluids. Chem Eng

103(12): 107-112, 1996.

Grace JR. Hydrodynamics of liquid drops in immiscible liquids. In: Cheremisinoff,

NP, R Gupta, eds. Handbook of Fluids in Motion. Ann Arbor Science, 1983,

Chap 38.

Khan AR, JF Richardson. Chem Eng Commun 62:135, 1987.

Perry JH, ed. Chemical Engineers’ Handbook. 6th ed., New York: McGraw-Hill,

1984.

Tripathi A, RP Chhabra. Drag on spheroidal particles in dilatant fluids. AIChE J

41:728, 1995.

Tripathi A, RP Chhabra, T Sundararajan. Power law fluid flow over spheroidal

particles. Ind Eng Chem Res 33:403, 1994.

Wadell H. J Franklin Inst 217:459, 1934.

364 Chapter 11



12

Fluid–Solid Separations by Free Settling

I. FLUID–SOLID SEPARATIONS

The separation of suspended solids from a carrier fluid is a requirement in
many engineering operations. The most appropriate method for achieving
this depends upon the specific properties of the system, the most important
being the size and density of the solid particles and the solids concentration
(the ‘‘solids loading’’) of the feed stream. For example, for relatively dilute
systems (� 10% or less) of relatively large particles (� 100�m or more) of
fairly dense solids, a gravity settling tank may be appropriate, whereas for
more dilute systems of smaller and/or lighter particles, a centrifuge may be
more appropriate. For very fine particles, or where a very high separation
efficiency is required, a ‘‘barrier’’ system such as a filter or membrane may
be needed. For highly concentrated systems, a gravity thickener may be
adequate or, for more stringent requirements, a filter may be needed.

In this chapter, we will consider separation processes for relatively
dilute systems, in which the effects of particle–particle interaction are
relatively unimportant (e.g., gravity and centrifugal separation).
Situations in which particle–particle interactions are negligible are
referred to as free settling, as opposed to hindered settling, in which
such interactions are important. Figure 12-1 shows the approximate
regions of solids concentration and density corresponding to free and
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hindered settling. In a Chapter 14 we will consider systems that are
controlled by hindered settling or interparticle interaction (e.g., filtration
and sedimentation processes).

II. GRAVITY SETTLING

Solid particles can be removed from a dilute suspension by passing the
suspension through a vessel that is large enough that the vertical component
of the fluid velocity is lower than the terminal velocity of the particles and
the residence time is sufficiently long to allow the particles to settle out. A
typical gravity settler is illustrated in Fig. 12-2. If the upward velocity of the
liquid (Q/A) is less than the terminal velocity of the particles (Vt), the
particles will settle to the bottom; otherwise, they will be carried out with
the overflow. If Stokes flow is applicable (i.e., NRe < 1), the diameter of the
smallest particle that will settle out is

d ¼ 18�Q

g��A

� �1=2

ð12-1Þ

If Stokes flow is not applicable (or even if it is), the Dallavalle equation in
the form of Eq. (11-16) can be used to determine the Reynolds number, and
hence the diameter, of the smallest setting particle:

1ffiffiffiffiffiffiffiffi
NRe

p ¼ 0:00433þ 0:208

ffiffiffiffiffiffiffiffi
CD

NRe

s !1=2

�0:0658 ð12-2Þ
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where

CD

NRe

¼ 4���g

3�2V3
t

; d ¼ NRe�A

Q�
ð12-3Þ

Alternatively, it may be necessary to determine the maximum capacity
(e.g., flow rate, Q) at which particles of a given size, d, will (or will not) settle
out. This can also be obtained directly from the Dallavalle equation in the
form of Eq. (11-13), by solving for the unknown flow rate:

Q ¼ �A

D�
½ð14:42þ 1:827

ffiffiffiffiffiffiffiffi
NAr

p
Þ1=2 � 3:798�2 ð12-4Þ

where

NAr ¼
d3�g��

�2
ð12-5Þ

III. CENTRIFUGAL SEPARATION

A. Fluid–Solid Separation

For very small particles or low density solids, the terminal velocity may be
too low to enable separation by gravity settling in a reasonably sized tank.
However, the separation can possibly be carried out in a centrifuge, which
operates on the same principle as the gravity settler but employs the (radial)
acceleration in a rotating system (!2r) in place of the vertical gravitational
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acceleration as the driving force. Centrifuges can be designed to operate at
very high rotating speeds, which may be equivalent to many g’s of accelera-
tion.

A simplified schematic of a particle in a centrifuge is illustrated in
Fig. 12-3. It is assumed that any particle that impacts on the wall of the
centrifuge (at r2) before reaching the outlet will be trapped, and all others
won’t. (It might seem that any particle that impacts the outlet weir barrier
would be trapped. However, the fluid circulates around this outlet corner,
setting up eddies that could sweep these particles out of the centrifuge.) It is
thus necessary to determine how far the particle will travel in the radial
direction while in the centrifuge. To do this, we start with a radial force
(momentum) balance on the particle:

Fcf � Fb � FD ¼ me

dVr

dt
ð12-6Þ

where Fcf is the centrifugal force on the particle, Fb is the buoyant force
(equal to the centrifugal force acting on the displaced fluid), FDis the drag
force, and me is the ‘‘effective’’ mass of the particle, which includes the solid
particle and the ‘‘virtual mass’’ of the displaced fluid (i.e. half the actual
mass of displaced fluid). Equation (12-6) thus becomes

ð�s � �Þ
�
�d3

6

�
!2r� �V2

rCD

�
�d2

8

�
¼
�
�s þ

�

2

��
�d3

6

�
dVr

dt
ð12-7Þ
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When the particle reaches its terminal (radial) velocity, dVr=dt ¼ 0, and Eq.
(12-7) can be solved for Vrt, (the radial terminal velocity):

Vrt ¼
4�� d!2r

3�CD

 !1=2

ð12-8Þ

If NRe < 1, Stokes’ law holds, and CD ¼ 24=NRe, in which case Eq. (12-8)
becomes

Vrt ¼
dr

dt
¼ ��d2!2r

18�
ð12-9Þ

This shows that the terminal velocity is not a constant but increases with r,
because the (centrifugal) driving force increases with r. Assuming that all of
the fluid is rotating at the same speed as the centrifuge, integration of Eq.
(12-9) gives

ln
r2
r1

� �
¼ ��d2!2

18�
t ð12-10Þ

where t is the time required for the particle to travel a radial distance from r1
to r2. The time available for this to occur is the residence time of the particle
in the centrifuge, t ¼ ~VV=Q, where ~VV is the volume of fluid in the centrifuge.
If the region occupied by the fluid is cylindrical, then ~VV ¼ �ðr22 � r21ÞL. The
smallest particle that will travel from the surface of the fluid (r1) to the wall
(r2) in time t is

d ¼ 18�Q lnðr2=r1Þ
��!2 ~VV

� �1=2

ð12-11Þ

Rearranging Eq. (12-11) to solve for Q gives

Q ¼ ��d2!2 ~VV

18� lnðr2=r1Þ
¼ ��gd2

18�

~VV!2

g lnðr2=r1Þ

 !
ð12-12Þ

which can also be written

Q ¼ Vt�; � ¼
~VV!2

g lnðr2=r1Þ

 !
ð12-13Þ

Here, Vt is the terminal velocity of the particle in a gravitational field and �
is the cross-sectional area of the gravity settling tank that would be required
to remove the same size particles as the centrifuge. This can be extremely
large if the centrifuge operates at a speed corresponding to many g’s.
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This analysis is based on the assumption that Stokes’ law applies, i.e.,
NRe < 1. This is frequently a bad assumption, because many industrial
centrifuges operate under conditions where NRe > 1. If such is the case,
an analytical solution to the problem is still possible by using the
Dallavalle equation for CD, rearranged to solve for NRe as follows:

NRe ¼
d�

�

dr

dt
¼ ½ð14:42þ 1:827

ffiffiffiffiffiffiffiffi
NAr

p
Þ1=2 � 3:797�2 ð12-14Þ

where

NAr ¼
d3�!2r��

�2
ð12-15Þ

Equation (12-14) can be integrated from r1 to r2 to give

t ¼ N12

�

d2!2 ��
ð12-16Þ

where

N12 ¼ 0:599ðNRe2 �NRe1 Þ þ 13:65ð ffiffiffiffiffiffiffiffiffiffi
NRe2

p � ffiffiffiffiffiffiffiffiffiffi
NRe1

p Þ

þ 17:29 ln
NRe2

NRe1

� �
þ 48:34

1ffiffiffiffiffiffiffiffiffiffi
NRe2

p � 1ffiffiffiffiffiffiffiffiffiffi
NRe1

p
 !

ð12-17Þ

The values of NRe2
and NRe1

are computed using Eq. (12-14) and the values
of NAr2

and NAr1
at r1 and r2, respectively. Since t ¼ ~VV=Q, Eq. (12-16) can be

rearranged to solve for Q:

Q ¼ �� d2!2 ~VV

�N12

¼ �� d2!2 ~VV

18� lnðr2=r1Þ
18

lnðr2=r1Þ
N12

� �
ð12-18Þ

where the term in brackets is a ‘‘correction factor’’ that can be applied to the
Stokes flow solution to account for non-Stokes conditions.

For separating very fine solids, emulsions, and immiscible liquids, a
disk-bowl centrifuge is frequently used in which the settling occurs in the
spaces between a stack of conical disks, as illustrated in Fig. 12-4. The
advantage of this arrangement is that the particles have a much smaller
radial distance to travel before striking a wall and being trapped. The dis-
advantage is that the carrier fluid circulating between the disks has a higher
velocity in the restricted spaces, which can retard the settling motion of the
particles. Separation will occur only when Vrt > Vrf , where Vrt is the radial
terminal velocity of the particle and Vrf is the radial velocity component of
the carrier fluid in the region where the fluid flow is in the inward radial
direction.
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B. Separation of Immiscible Liquids

The problem of separating immiscible liquids in a centrifuge can best be
understood by first considering the static gravity separation of immiscible
liquids, as illustrated in Fig. 12-5, where the subscript 1 represents the lighter
liquid and 2 represents the heavier liquid. In a continuous system, the static
head of the heavier liquid in the overflow pipe must be balanced by the
combined head of the lighter and heavier liquids in the separator, i.e.,

�2zg ¼ �2z2gþ �1z1g ð12-19Þ

or

z ¼ z2 þ z1
�1
�2

ð12-20Þ
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FIGURE 12-4 Schematic of disk-bowl centrifuge: 1,Ring; 2, bowl; 3,4, collectors for
products; 5, feed tank; 6, tube; 7,8, discharge nozzles; 9,10, funnels for collectors;
11, through channels; 12, bowl; 13, bottom; 14, thick-walled tube; 15 hole for
guide; 16, disk fixator; 17, disks; 18 central tube (From Azbel and Cheremisinoff,
1983.)



In a centrifuge, the position of the overflow weir is similarly
determined by the relative amounts of the heavier and lighter liquids
and their densities, along with the size and speed of the centrifuge. The
feed stream may consist of either the lighter liquid (1) dispersed in the
heavier liquid (2) or vice versa. An illustration of the overflow weir
positions is shown in Fig. 12-6. Because there is no slip at the interface
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FIGURE 12-5 Gravity separation of immiscible liquids.

FIGURE 12-6 Centrifugal separation of immiscible liquids.



between the liquids, the axial velocity must be the same at that point for
both fluids:

V1 ¼
Q1

A1

¼ Q1

�ðr2i � r21Þ

V2 ¼
Q2

A2

¼ Q2

�ðR2 � r2i Þ
ð12-21Þ

or

Q1

Q2

¼ r2i � r21
R2 � r2i

ð12-22Þ

This provides a relationship between the locations of the interface (ri) and
the inner weir (r) and the relative feed rates of the two liquids. Also, the
residence time for each of the two liquids in the centrifuge must be the same,
i.e.,

t ¼
~VVT

QT

¼ �LðR2 � r21Þ
Q2 þQ1

ð12-23Þ

For drops of the lighter liquid (1) dispersed in the heavier liquid (2), assum-
ing that Stokes flow applies, the time required for the drops to travel from
the maximum radius (R) to the interface (ri) is

t ¼ 18�2

�� d2!2
ln

R

ri

� �
¼ �LðR2 � r21Þ

Q2 þQ1

ð12-24Þ

For the case of drops of the heavier liquid (2) dispersed in the lighter liquid
(1), the corresponding time required for the maximum radial travel from the
surface (r1) to the interface (ri) is

t ¼ 18�1

�� d2!2
ln

ri
r1

� �
¼ �LðR2 � r21Þ

Q2 þQ1

ð12-25Þ

Equations (12-22) and (12-24) or (12-25) determine the locations of the light
liquid weir (r1) and the interface (ri) for given feed rates, centrifuge size, and
operating conditions.

The proper location of the heavy liquid weir (r2) can be determined by
a balance of the radial pressure difference through the liquid layers, which is
analogous to the gravity head balance in the gravity separator in Fig. 12-5.
The radial pressure gradient due to centrifugal force is

dP

dr
¼ �!2r or �P ¼ 1

2
�!2 �r2 ð12-26Þ
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Since both the heavy liquid surface at r2 and the light liquid surface at r1 are
at atmospheric pressure, the sum of the pressure differences from r1 to R to
r2 must be zero:

1

2
�2!

2ðr22 � R2Þ þ 1

2
�2!

2ðR2 � r21Þ þ
1

2
�1!

2ðr2i � r21Þ ¼ 0 ð12-27Þ

which can be rearranged to give

�2
�1

¼ r2i � r21
r2i � r22

ð12-28Þ

Solving for r2 gives

r22 ¼
�1
�2

r2i
�2
�1

� 1

� �
þ r21

� �
ð12-29Þ

Equations (12-22), (12-24) or (12-25), and (12-29) thus determine the three
design parameters ri; r1, and r2. These equations can be arranged in dimen-
sionless form. From Eq. (12-22),

�
r1
R

�2

¼
�
ri
R

�2

1þQ1

Q2

� �
�Q1

Q2

ð12-30Þ

For drops of the light liquid in the heavy liquid, Eq. (12-24) becomes

�
r1
R

�2

¼ 1� 18�2ðQ1 þQ2Þ
�LR2 �� d2!2

ln
R

ri

� �
ð12-31Þ

For drops of the heavy liquid in the light liquid, Eq. (12-25) becomes

r1
R

	 
2
¼ 1� 18�1ðQ1 þQ2Þ

�LR2 �� d2!2
ln

�
ri
R

� �
R

r1

� ��
ð12-32Þ

Also, Eq. (12-29) is equivalent to

�
r2
R

�2

¼ �1
�2

r2i
R2

�2
�1

� 1

� �
þ r21
R2

" #
ð12-33Þ

These three equations can be solved simultaneously (by iteration) for r1=R,
r2=R, and ri=R. It is assumed that the size of the suspended drops is known
as well as the density and viscosity of the liquids and the overall dimensions
and speed of the centrifuge.
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IV. CYCLONE SEPARATIONS

A. General Characteristics

Centrifugal force can also be used to separate solid particles from fluids by
inducing the fluid to undergo a rotating or spiraling flow pattern in a
stationary vessel (e.g., a cyclone) that has no moving parts. Cyclones are
widely used to remove small particles from gas streams (‘‘aerocyclones’’)
and suspended solids from liquid streams (‘‘hydrocyclones’’).

A typical cyclone is illustrated in Fig. 12-7 (this is sometimes referred
to as a ‘‘reverse flow’’ cyclone). The suspension enters through a rectangular
or circular duct tangential to the cylindrical separator, which usually has a
conical bottom. The circulating flow generates a rotating vortex motion that
imparts centrifugal force to the particles which are thrown outward to the
walls of the vessel, where they fall by gravity to the conical bottom and are
removed. The carrier fluid spirals inward and downward to the cylindrical
exit duct (also referred to as the ‘‘vortex finder’’), from which it travels back
up and leaves the vessel at the top. The separation is not perfect, and some
solid particles leave in the overflow as well as the underflow. The particle
size for which 50% leaves in the overflow and 50% leaves in the underflow is
called the cut size.
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FIGURE 12-7 Typical reverse flow cyclone.



The diameter of a hydrocyclone can range from 10 mm to 2.5 m, cut
sizes from 2 to 250 �m, and flow rate (capacities) from 0.1 to 7200 m3/hr.
Pressure drop can range from 0.3 to 6 atm (Svarovsky, 1984). For aerocy-
clones, very little fluid leaves with the solids underflow, although for hydro-
cyclones the underflow solids content is typically 45–50% by volume.
Aerocyclones can achieve effective separation for particles as small as 2–5
mm.

Advantages of the cyclone include (Svarosky, 1984)

1. Versatility. Virtually any slurry or suspension can be concen-
trated, liquids degassed, or the solids classified by size, density,
or shape.

2. Simplicity and economy. They have no moving parts and little
maintenance.

3. Small size. Low residence times, and relatively fast response.
4. High shear forces, which can break up agglomerates, etc.

The primary disadvantages are:

1. Inflexibility. A given design is not easily adapted to a range of
conditions. Performance is strongly dependent upon flow rate
and feed composition, and the turndown ratio (range of opera-
tion) is small.

2. Limited separation performance in terms of the sharpness of the
cut, range of cut size, etc.

3. Susceptibility to erosion.
4. High shear prevents the use of flocculents to aid the separation, as

can be done in gravity settlers.

An increase in any one operating parameter generally increases all others as
well. For example, increasing the flow rate will increase both separation
efficiency and pressure drop, and vice versa.

B. Aerocyclones

1. Velocity Distribution

Although the dominant velocity component in the cyclone is in the angular
(tangential) direction, the swirling flow field includes significant velocity
components in the radial and axial directions as well, which complicate
the motion and make a rigorous analysis impossible. This complex flow
field also results in significant particle–particle collisions, which cause
some particles of a given size to be carried out in both the overhead and
underflow discharge, thus affecting the separation efficiency.
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Cyclone analysis and design is not an exact science, and there are a
variety of approaches to the analysis of cyclone performance. A critical
review of the various methods for analyzing hydrocyclones is given by
Svarovsky (1996), and a review of different approaches to aerocyclone
analysis is given by Leith and Jones (1997). There are a number different
approaches to the analysis of aerocyclones, one of the most comprehensive
being that of Bhonet et al. (1997). The presentation here follows that of
Leith and Jones (1997), which outlines the basic principles and some of the
practical ‘‘working relations.’’ The reader is referred to other works,
especially those of Bhonet (1983) and Bhonet et al. (1997), for more details
on specific cyclone design.

The performance of a cyclone is dependent upon the geometry as
described by the values of the various dimensionless ‘‘length ratios’’ (see
Fig. 12-7): a=D; b=D;De=D;S=D; h=D;H=D, and B/D. Typical values of
these ratios for various ‘‘standard designs’’ are given in Table 12-1.

The complex three-dimensional flow pattern within the cyclone is
dominated by the radial (Vr) and tangential ðV
) velocity components.
The vertical component is also significant but plays only an indirect role
in the separation. The tangential velocity in the vortex varies with the dis-
tance from the axis in a complex manner, which can be described by the
equation

V
r
n ¼ constant ð12-34Þ

For a uniform angular velocity (! ¼ constant, i.e., a ‘‘solid body rotation’’),
n ¼ �1, whereas for a uniform tangential velocity (‘‘plug flow’’) n ¼ 0, and
for inviscid free vortex flow ! ¼ c=r2, i.e., n ¼ 1. Empirically, the exponent n
has been found to be typically between 0.5 and 0.9. The maximum value of
V
 occurs in the vicinity of the outlet or exit duct (vortex finder) at r ¼ De=2.
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TABLE 12-1 Standard Designs for Reverse Flow Cyclones

Q=D2

Ref.a Duty D a=D b=D De=D S=D h=D H=D B=D Kf ðm=h�Þ
1 High � 1 0.5 0.2 0.5 0.5 1.5 4.0 0.375 6.4 3500
2 High � 1 0.44 0.21 0.4 0.5 1.4 3.9 0.4 9.2 4940
3 Gen 1 0.5 0.25 0.5 0.625 2.0 4.0 0.25 8.0 6860
2 Gen 1 0.5 0.25 0.5 0.6 1.75 3.75 0.4 7.6 6680
1 High Q 1 0.75 0.375 0.75 0.875 1.5 4.0 0.375 7.2 16500
2 High Q 1 0.8 0.35 0.75 0.85 1.7 3.7 0.4 1.0 12500

a 1, Stairmand (1951); 2, Swift (1969); 3, Lapple (1951).

Source: Leith and Jones (1997).



For aerocyclones, the exponent n has been correlated with the cyclone dia-
meter by the expression

n ¼ 0:67D0:14
m ð12-35Þ

where Dm is the cyclone diameter in meters. The exponent also decreases as
the temperature increases according to

1� n

1� n1
¼ T

T1

� �0:3

ð12-36Þ

There is a ‘‘core’’ of rotating flow below the gas exit duct (vortex finder), in
which the velocity decreaes as the radius decreases and is nearly zero at the
axis.

2. Pressure Drop

The pressure drops throughout the cyclone owing to several factors: (1) gas
expansion, (2) vortex formation, (3) friction loss, and (4) changes in kinetic
energy. The total pressure drop can be expressed in terms of an equivalent
loss coefficient, Kf :

�P ¼ Kf

2
�GV

2
i ð12-37Þ

where Vi is the gas inlet velocity, Vi ¼ Q=ab. A variety of expressions have
been developed for Kf , but one of the simplest that gives reasonable results is

Kf ¼ 16
ab

D2
e

ð12-38Þ

This (and other) expressions may be accurate to only about 	50% or so,
and more reliable pressure drop informaiton can be obtained only by experi-
mental testing on a specific geometry. Typical values of Kf for the
‘‘standard’’ designs are given in Table 12-1.

3. Separation Efficiency

The efficiency of a cyclone ð	Þ is defined as the fraction of particles of a given
size that are separated by the cyclone. The efficiency increases with

1. Increasing particle diameter (d) and density
2. Increasing gas velocity
3. Decreasing cyclone diameter
4. Increasing cyclone length
5. Venting of some of the gas through the bottom solids exit
6. Wetting of the walls
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A typical plot of efficiency versus particle diameter is shown in Fig.
12-8. This is called a grade efficiency curve. Although the efficiency varies
with the particle size, a more easily determined characteristic is the ‘‘cut
diameter’’ (d50), the particle size that is collected with 50% efficiency.

The particles are subject to centrifugal, inertial, and drag forces as they
are carried in the spriraling flow, and it is assumed that the particles that
strike the outer wall before the fluid reaches the vortex finder will be
collected. It is assumed that the tangential velocity of the particle is the
same as that of the fluid ðVp
 ¼ V
) but that the radial velocity is not
ðVpr 6¼ VrÞ, because the particles move radially toward the wall relative to
the fluid. The centrifugal force acting on the particle is

Fc ¼ mp!
2r ¼ �d3�sV

2



6r
ð12-39Þ

Assuming Stokes flow, the drag force is

Fd ¼ 3��dðVpr � VrÞ ð12-40Þ
Equation (12-34) provides a relationship between the tangential velocity at
any point and that at the wall:

V
r
n ¼ V
wr

n
w ð12-41Þ

Although the velocity right at the wall is zero, the boundary layer at the wall
is quite small, so this equation applies up to the boundary layer very near
the wall. Setting the sum of the forces equal to the particle acceleration and
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FIGURE 12-8 Typical cyclone grade efficiency curve.



substituting Vpr ¼ dr=dt and V
 ¼ V
rðrw=rÞn gives the governing equation
for the particle radial position:

d2r

dt2
þ 18�

d2�s

dr

dt
� V2


wr
2n
w

r2nþ1
þ 18�Vr

d2�s

 !
¼ 0 ð12-42Þ

There is no general solution to this equation, and various analysis have been
based on specific approximations or simplifications of the equation.

One approximation considers the time it takes for the particle to travel
from the entrance point, ri, to the wall, rw ¼ D=2, relative to the residence
time of the fluid in the cyclone. By neglecting the acceleration term and the
fluid radial velocity and assuming that the velocity of the fluid at the
entrance is the same as the tangential velocity at the wall ðVi ¼ V
w), Eq.
(12-42) can be integrated to give the time required for the particle to travel
from its initial position (ri) to the wall (D/2). If this time is equal to or less
than the residence time of the fluid in the cyclone, that particle will be
trapped. The result gives the size of the smallest particle that will be trapped
completely (in principle):

d100 ¼
9�D2ð1� 2ri=DÞ2nþ2

4ðnþ 1ÞV2
i �st

" #1=2

ð12-43Þ

The residence time is related to the ‘‘number of turns’’ (N) that the fluid
makes in the vortex, which can vary from 0.2 to 10, with an average value of
5. If the 50% ‘‘cut diameter’’ particle is assumed to enter at (D� bÞ=2, with a
residence time of

t ¼ �DN

Vi

1� De

2D

� �
ð12-44Þ

and it is assumed that n ¼ 0, the cut diameter is

d50 ¼
9�b

2��sViN

� �1=2

ð12-45Þ

Another approach is to consider the particle for which the drag force
of the gas at the edge of the core where the velocity is maximum just
balances the centrifugal force. This reduces Eq. (12-42) to a ‘‘steady
state,’’ with no net acceleration or velocity of this particle. The maximum
velocity is given by Eq. (12-41) applied at the edge of the core:
V2

wr

2n
w ¼ V2


 r
2n
core. When this is introduced into Eq. (12-42), the result is

d100 ¼
9Q�

�ðH � SÞ�sV2
max

� �1=2

ð12-46Þ
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Although this predicts that all particles larger than d100 will be trapped and
all smaller particles will escept, the actual grade efficiency depends on par-
ticle size because of the variation of the inward radial velocity of the gas.

Leith and Licht (1972) incorporated the effect of turbulent reentrain-
ment of the solids in a solution of Eq. (12-42) to derive the following
expression for the grade efficiency:

	 ¼ 1� exp½�2ðNGNStÞ1=ð2nþ2Þ� ð12-47Þ
where

NSt ¼
d2�sV1ðnþ 1Þ

18�D
ð12-48Þ

is the Stokes number and NG is a dimensionless geometric parameter,

NG ¼ �D2

ab

�
2

�
1� De

D

� �2
S

D
� a

2D

� �
þ 1

3

S þ zc � h

D

� ��

� 1þ dc
D
þ

� �
dc
D

�2�
þ h

D
� De

D

� �2
zc
D

� S

D

�
ð12-49Þ

where zc is the core length, given by

zc ¼ 2:3De

�
D2

ab

�1=3

ð12-50Þ

and de is the core diameter, given by

dc ¼ D� ðD� BÞ S þ zc � h

H � h

� �
ð12-51Þ

Equation (12-47) implies that the efficiency increases as NG and/or NSt

increases.
These equations can serve as a guide for estimating performance but

cannot be expected to provide precise predicted behavior. However, they
can be used effectively to scale experimental results for similar designs of
different sizes operating under various conditions. For example, two
cyclones of a given design should have the same efficiency when the value
of NSt is the same for both. That is, if a given cyclone has a known efficiency
for particles of diameter d1, a similar cyclone will have the same efficiency
for particles of diameter d2, where

d2 ¼ d1
Q1

Q2

�s1
�s2

� �
�2

�1

� �
D2

D1

� �� �1=2
ð12-52Þ
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Thus, the grade efficiency of the similar cyclone can be constructed from the
grade efficiency of the known (tested) cyclone.

4. Other Effects

Increasing the solids loading of the feed increases the collection efficiency
and decreases the pressure drop. The effect on pressure drop is given by

ð�PÞc ¼
ð�PÞo

1þ 0:0086C1=2
i

ð12-53Þ

where Ci is the inlet solids loading in g/m3. The effect on overall collection
efficiency is given by

100� 	
100� 	1

¼ Ci1

Ci

� �0:182

ð12-54Þ

If the velocity near the wall is too high, particles will bounce off the
wall and become reentrained. The inlet velocity above which this occurs is
given by the empirical correlation

Vic ¼ 2400
��s
�2G

D0:2ðb=DÞ1:2
1� b=D

 !
ð12-55Þ

The cyclone efficiency increases with Vi up to about 1:25Vic, after which
reentrainment results in a decrease in efficiency.

C. Hydrocyclones

A similar approach to the analysis of hydrocyclones was presented by
Svarovsky (1984, 1990). He deduced that the system can be described in
terms of three dimensionless groups in addition to various dimensionless
geometric parameters. These groups are the Stokes number,

NSt50 ¼
Vtr

Vi

¼ �� d2
50Q

4��D3
ð12-56Þ

the Euler number, which is equivalent to the loss coefficient, Kf ,

NEu ¼ �P

�V2
i =2

¼ �2�PD4

8�Q2
ð12-57Þ

and the Reynolds number,

NRe ¼
DVi�

�
¼ 4Q�

�D�
ð12-58Þ
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In each of these groups, the characteristic length is the cyclone diameter, D,
and the characteristic velocity is Vi ¼ 4Q=�D2. Various empirical hydro-
cyclone models indicate that the relationship between these groups is

NSt50NEu ¼ C ð12-59Þ
and

NEu ¼ KpN
np
Re ð12-60Þ

The quantities C;Kp, and np are empirical constants, with the same values
for a given family of geometrically similar cyclones. The value of C ranges
from 0.06 to 0.33, the exponent np varies from zero to 0.8, and Kp ranges
from 2.6 to 6300. A summary of these parameters corresponding to some
known hydrocyclone designs is given in Table 12-2. The references in this
table are found in Svarovsky (1981), and the notation in this table is
as follows. Di ¼ 2ri ¼ ð4ab=�Þ1=2 is the equivalent diameter of the inlet,
Do ¼ De is the gas exit diameter, l ¼ S is the length of the vortex finder,
and L ¼ H is the total length of the hydrocyclone. These equations can
be used to predict the performance of a given cyclone as follows.

Equation (12-60) can be solved for the capacity, Q, to give

Q2þnp ¼ �2�PD4

8�Kp

�D�

4�

� �np

ð12-61Þ

and the cut size obtained from Eq. (12-59):

d2
50 ¼

4�NSt50NEuD
3�

KpQ��

�D�

4Q�

� �np

ð12-62Þ

In reality, extensive data by Medronho (Antunes and Medronho,
1992) indicate that the product NSt50NEu is not constant but depends on
the ratio of underflow to feed (R) and the feed volumetric concentration (Cv)
and NEu also depends on Cv as well as NRe. The Reitema and Bradley
geometries are two common families of geometrically similar designs, as
defined by the geometry parameters in Table 12-3 (Antunes and
Medronho, 1992).

The Bradley hydrocyclone has a lower capacity than the Reitema
geometry but is more efficient. For the Rietema cyclone geometry the cor-
relatins are (Antunes and Medronho, 1992)

NSt50NEu ¼ 0:0474½lnð1=RÞ�0:742 expð8:96CvÞ ð12-63Þ
and

NEu ¼ 371:5N0:116
Re expð�2:12CvÞ ð12-64Þ
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where

R ¼ 1218ðB=DÞ4:75N0:30
Eu ð12-65Þ

For the Bradley geometry, the corresponding correlations are (Antunes and
Medronho, 1992)

NSt50NEu ¼ 0:055½lnð1=RÞ�0:66 expð12CvÞ ð12-66Þ
and

NEu ¼ 258N0:37
Re ð12-67Þ

where

R ¼ 1:21� 106ðB=DÞ2:63N�1:12
Eu ð12-68Þ

These equations can be used to either predict the performance of a given
cyclone or size the cyclone for given conditions. For example, if the
definitions of NEu and NRe from Eqs. (12-57) and (12-58) are substituted
into Eq. (12-67) and the result rearranged for D, the result is

D ¼ 7:0
0:31Q0:54

�0:085�P0:23
ð12-69Þ

which is dimensionally consistent.

PROBLEMS

Free Settling Fluid–Particle Separations

1. A slurry containing solid particles having a density of 2.4 g/cm3 and ranging in

diameter from 0.001 to 0.1 in. is fed to a settling tank 10 ft in diameter. Water is

pumped into the tank at the bottom and overflows the top, carrying some of the

particles with it. If it is desired to separate out all particles of diameter 0.02 in.

and smaller, what flow rate of the water in gpm, is required?

2. A handful of sand and gravel is dropped into a tank of water 5 ft deep. The time

required for the solids to reach the bottom is measured and found to vary from
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TABLE 12-3 Families of Geometrically Similar Cyclones

Cone
Cyclone 2rin:=D De=D 2S=D 2h=D 2H=D angle

Rietema 0.28 0.34 0.4 — 5.0 10–208
Bradley 1/7 1/5 1/3 1/2 — 98



3 to 20 s. If the solid particles behave as equivalent spheres and have an SG of

2.4, what is the range of equivalent particle diameters?

3. It is desired to determine the size of pulverized coal particles by measuring the

time it takes them to fall a given distance in a known fluid. It is found that the

coal particles (SG ¼ 1:35) take a time ranging from 5 s to 1,000 min to fall 23

cm through a column of methanol (SG ¼ 0:785; � ¼ 0:88 cP). What is the size

range of the particles in terms of their equivalent spherical diameters? Assume

that the particles are falling at their terminal velocities at all times.

4. A water slurry containing coal particles (SG ¼ 1:35) is pumped into the bottom

of a large tank (10 ft diameter, 6 ft high), at a rate of 500 gal/hr, and overflows

the top. What is the largest coal particle that will be carried out in the overflow?

If the flow rate is increased to 5000 gal/hr, what size particles would you

expect in the overflow? The slurry properties can be taken to be the same as

for water.

5. To determine the settling characteristics of a sediment, you drop a sample of the

material into a column of water. You measure the time it takes for the solids to

fall a distance of 2 ft and find that it ranges from 1 to 20 s. If the solid SG ¼ 2:5,
what is the range of particle sizes in the sediment, in terms of the diameters of

equivalent spheres?

6. You want to separate all the coal particles having a diameter of 100 �m or

larger from a slurry. To do this, the slurry is pumped into the bottom of the

large tank. It flows upward and flows over the top of the tank, where it is

collected in a trough. If the solid coal has SG ¼ 1:4 and the total flow rate is

250 gpm, how big should the tank be?

7. A gravity settling chamber consists of a horizontal rectangular duct 6 m long,

3.6 m wide, and 3 m high. The duct is used to trap sulfuric acid mist droplets

entrained in an air stream. The droplets settle out as the air passes through the

duct and can be assumed to behave as rigid spheres. If the air stream has a flow

rate of 6.5 m3/s, what is the diameter of the largest particle that will not be

trapped by the duct? (Acid: � ¼ 1:75 g/cm3; � ¼ 3 cP. Air: � ¼ 0:0075 g/

cm3; � ¼ 0:02 cP.)

8. Solid particles of diameter 0.1 mm and density 2 g/cm3 are to be separated from

air in a settling chamber. If the air flow rate is 100 ft3/s and the maximum height

of the chamber is 4 ft, what should its minimum length and width be for all the

particles to hit the bottom before exiting the chamber? (Air: � ¼ 0:075 lbm/

ft3; � ¼ 0:018 cP.)

9. A settling tank contains solid particles that have a wide range of sizes. Water is

pumped into the tank from the bottom and overflows the top, at a rate of

10,000 gph. If the tank diameter is 3 ft, what separation of particle size is

achieved? (That is, what size particles are carried out the top of the tank,

assuming that the particles are spherical?) Solids density ¼ 150 lbm=ft
3.

10. You want to use a viscous Newtonian fluid to transport small granite particles

through a horizontal 1 in. ID pipeline 100 ft long. The granite particles have a

diameter of 1.5 mm and SG ¼ 4:0. The SG of the fluid can be assumed to be

0.95. The fluid should be pumped as fast as possible to minimize settling of the
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particles in the pipe but must be kept in laminar flow, so you design the system

to operate at a pipe Reynolds number of 1000. The flow rate must be fast

enough that the particles will not settle a distance greater than half the ID of

the pipe, from the entrance to the exit. What should the viscosity of the fluid be,

and what should the flow rate be (in gpm) at which it is pumped through the

pipe?

11. An aqueous slurry containing particles with the size distribution shown below is

fed to a 20 ft diameter settling tank [see, e.g., McCabe (1993) or Perry et al.

(1997) for definition of mesh sizes].

The feed enters near the center of the tank, and the liquid flows upward and

overflows the top of the tank. The solids loading of the feed is 0.5 lbm of solids

per gallon of slurry, and the feed rate is 50,000 gpm. What is the total solids

concentration and the particle size distribution in the overflow? Density of

solids is 100 lbm=ft
3. Assume that (1) the particles are spherical; (2) the particles

in the tank are unhindered; and (3) the feed and overflow have the same proper-

ties as water.

12. A water stream contacts a bed of particles with diameters ranging from 1 to 1000

�m and SG ¼ 2:5. The water stream flows upward at a rate of 3 cm/s. What size

particles will be carried out by the stream, and what size will be left behind?

13. An aqueous slurry containing particles with SG ¼ 4 and a range of sizes up to

300 �m flows upward through a small tube into a larger vertical chamber with a

diameter of 10 cm. You want the liquid to carry all of the solids through the

small tube, but you want only those particles with diameters less than 20 �m to

be carried out the top of the larger chamber. (a) What should the flow rate of

the slurry be (in gpm). (b) What size should the smaller tube be?

14. A dilute aqueous CaCO3 slurry is pumped into the bottom of a classifier at a

rate of 0.4 m3/s, and overflows the top. The density of the solids is 2.71 g/cm3.

(a) what should the diameter of the classifier be if the overflow is to contain no

particles larger than 0.2 mm in diameter?

(b) The same slurry as in (a) is sent to a centrifuge that operates at 5000 rpm.

The centrifuge diameter is 20 cm, its length is 30 cm, and the liquid layer

thickness is 20% of the centrifuge radius. What is the maximum flow rate

that the centrifuge can handle and achieve the same separation as the clas-

sifier?
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Tyler mesh size % of total solids in feed

8/10 5.0

10/14 12.0

14/20 26.0

20/28 32.0

28/35 21.0

35/48 4.0



15. A centrifuge that has a 40 cm ID and in 30 cm long has an overflow weir that is

5 cm wide. The centrifuge operates at a speed of 3600 rpm.

(a) What is the maximum capacity of the centrifuge (in gpm) for which particles

with a diameter of 25 �m and SG ¼ 1:4 can be separated from the suspen-

sion?

(b) What would be the diameter of a settling tank that would do the same job?

(c) If the centrifuge ID was 30 cm, how fast would it have to rotate to do the

same job, everything else being equal?

16. Solid particles with a diameter of 10 �m and SG ¼ 2:5 are to be removed from

an aqueous suspension in a centrifuge. The centrifuge has an inner radius of 1

ft, an outer radius of 2 ft, and a length of 1 ft. If the required capacity of the

centrifuge is 100 gpm, what should the operating speed (in rpm) be?

17. A centrifuge is used to remove solid particles with a diameter of 5 �m and

SG ¼ 1:25 from a dilute aqueous stream. The centrifuge rotates at 1200 rpm

and is 3 ft high, the radial distance to the liquid surface is 10 in., and the radial

distance to the wall is 14 in.

(a) Assuming that the particles must strike the centrifuge wall to be removed,

what is the maximum capacity of this centrifuge, in gpm?

(b) What is the diameter, in feet, of the gravity settling tank that would be

required to do the same job?

18. A dilute aqueous slurry containing solids with a diameter of 20 �m and

SG ¼ 1:5 is fed to a centrifuge rotating at 3000 rpm. The radius of the centri-

fuge is 18 in., its length is 24 in., and the overflow weir is 12 in. from the

centerline.

(a) If all the solids are to be removed in the centrifuge, what is the maximum

capacity that it can handle (in gpm)?

(b) What is the diameter of the gravity settling tank that would be required for

this separation at the same flow rate?

19. A centrifuge with a radius of 2 ft and a length of 1 ft has an overflow weir

located 1 ft from the centerline. If particles with SG ¼ 2:5 and diameters of

10 mm and less are to be removed from an aqueous suspension at a flow rate of

100 gpm, what should the operating speed of the centrifuge be (in rpm)?

20. A centrifuge with a diameter of 20 in. operates at a speed of 1800 rpm. If there is

a water layer 3 in. thick on the centrifuge wall, what is the pressure exerted on

the wall?

21. A vertical centrifuge, operating at 100 rpm, contains an aqueous suspension of

solid particles with SG ¼ 1:3 and radius of 1 mm. When the particles are 10 cm

from the axis of rotation, determine the direction in which they are moving

relative to a horizontal plane.

22. You are required to design an aerocyclone to remove as much dust as possible

from the exhaust coming from a rotary drier. The gas is air at 1008C and 1 atm

and flows at a rate of 40,000 m3/hr. The effluent from the cyclone will go to a

scrubber for final cleanup. The maximum loading to the scrubber should be 10

g/m3, although 8 g/m3 or less is preferable. Measurements on the stack gas

indicate tha tthe solids loading from the drier is 50 g/m3. The pressure drop
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in the cyclone must be less than 2 kPa. Use the Stairmand standard design

parameters from Table 12-1 as the basis for your design.

NOTATION

a inlet height, [L]
b inlet width, [L]
A area, [L2]
B cyclone bottom exit diameter, [L]
CD drag coefficient, [—]
Ci inlet solids loading, [M/L3]
d particle diameter, [L]
d50 diameter of 50% cut particle, [L]
d100 diameter of smallest trapped particle, [L]
D cyclone diameter, [L]
Dm cyclone diameter in meters, [L]
De cyclone top exit diameter, [L]
F force ½F ¼ ML=t2]
Fc centrifugal force, ½F ¼ ML=t2�
g acceleration due to gravity, [L/t2]
H total cyclone height, [L]
h height of cyclone cylindrical section, [L]
Kf loss coefficient, [—]
n exponent in Eq. (12-34), [—]
N number of turns in vortex, [—]
NG dimensionless geometry number, Eq. (12-49), [—]
NAr Archimedes number, [—]
NEu Euler number, Eq. (12-57), [—]
NRe Reynolds number, [—]
NSt Stokes number, Eq. (12-48), [—]
N12 parameter defined by Eq. (12-17), [—]
Q volumetric flow rate, [L3/t]
r radial position, [L]
t time, [t]
S cyclone vortex finder height, [L]
T temperature, [T]
~VV volume, [L3]
Vt terminal velocity, [L/t]
V*

1
gravity settling velocity, [L/t]

z vertical distance measured upward, [L]
	 efficiency, [—]
�( ) ( )2-( )1
� density, [M/L3]
� viscosity, [M/Lt]
� equivalent gravity settling area for centrifuge, [L2]
! angular velocity, [1/t]
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Subscripts

1,2 reference points
c core
e exit
G gas
i inlet
o solids-free
s solid
w wall

 angular direction
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13

Flow in Porous Media

I. DESCRIPTION OF POROUS MEDIA

By a ‘‘porous medium’’ is meant a solid, or a collection of solid particles,
with sufficient open space in or around the particles to enable a fluid to pass
through or around them. There are various conceptual ways of describing a
porous medium.

One concept is a continuous solid body with pores in it, such as a brick
or a block of sandstone. Such a medium is referred to as consolidated, and
the pores may be unconnected (‘‘closed cell,’’ or impermeable) or connected
(‘‘open cell,’’ or permeable). Another concept is a collection (or ‘‘pile’’) of
solid particles in a packed bed, where the fluid can pass through the voids
between the particles. This is referred to as unconsolidated. A schematic
representation is shown in Fig. 13-1. Either of these concepts may be
valid, depending upon the specific medium under consideration, and both
have been used as the basis for developing the equations that describe fluid
flow behavior within the medium. In practice, porous media may range from
a ‘‘tight’’ oil bearing rock formation to a packed column containing
relatively large packing elements and large void spaces.

The ‘‘pile of solid particles’’ concept is useful for either consolidated or
unconsolidated media as a basis for analyzing the flow process, because
many consolidated media are actually made up of individual particles that
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are just stuck together (e.g. sandstone). One of the key properties of a
porous medium is the porosity " or void fraction, which is defined by

" ¼ Total volume� Volume of solids

Total volume

¼ 1� Asolid

A
¼ Avoids

A
ð13-1Þ

where Asolid is the area of the solid phase in a cross section of area A.
We also distinguish between the velocity of approach, or the ‘‘super-

ficial’’ velocity of the fluid,

Vs ¼ Q=A ð13-2Þ
and the ‘‘interstitial’’ velocity, which is the actual velocity within the pores
or voids,

Vi ¼
Q

"A
¼ Vs

"
ð13-3Þ

A. Hydraulic Diameter

Because the fluid in a porous medium follows a tortuous path through
channels of varying size and shape, one method of describing the flow
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FIGURE 13-1 Porous media. (a) Consolidated medium; (b) unconsolidated
medium.



behavior in the pores is to consider the flow path as a ‘‘noncircular conduit.’’
This requires an appropriate definition of the hydraulic diameter:

Dh ¼ 4
Ai

Wp

¼ 4
AiL

WpL
¼ 4

Flow volume

Internal wetted surface area

¼ 4
"� Bed volume

ðNo: of particlesÞðSurface area=ParticleÞ ð13-4Þ

The medium, with overall dimensions AL, is assumed to be made up of a
collection of individual particles and may be either consolidated or un-
consolidated. The number of particles in the medium can be expressed as

No: particles ¼ ðBed volumeÞðFraction of solids in bedÞ
Volume=Particle

¼ ðBed volumeÞð1� "Þ
Volume=Particle

ð13-5Þ

Substitution of this into Eq. (13-4) leads to

Dh ¼ 4
"

1� "
1

as

� �
ð13-6Þ

where as ¼ ðparticle surface area)/(particle volume). If the particles are
spherical with diameter d, then as ¼ 6=d. Thus, for a medium composed
of uniform spherical particles,

Dh ¼ 2d"

3ð1� "Þ ð13-7Þ

If the particles are not spherical, the parameter d may be replaced by

d ¼  ds ¼ 6=as ð13-8Þ
where  is the sphericity factor, defined by

 ¼ Surface area of a spherewith same volume as the particle

Surface area of the particle
ð13-9Þ

and ds is the diameter of a sphere with the same volume as the particle.

B. Porous Medium Friction Factor

The expressions for the hydraulic diameter and the superficial velocity can
be incorporated into the definition of the friction factor to give an equivalent
expression for the porous medium friction factor:

f � ef
ð4L=DhÞðV2

i =2Þ
¼ efd"

3Lð1� "ÞV2
i

¼ efd"
3

3Lð1� "ÞV2
s

ð13-10Þ
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Most references use Eq. (13-10) without the numerical factor of 3 as the
definition of the porous medium friction factor, i.e.,

fPM � efd"
3

Lð1� "ÞV2
s

ð13-11Þ

C. Porous Medium Reynolds Number

In like fashion, the hydraulic diameter and the superficial velocity can be
introduced into the definition of the Reynolds number to give

NRe ¼
DhVi�

�
¼ 2d"Vi�

3ð1� "Þ� ¼ 2dVs�

3ð1� "Þ� ð13-12Þ

Here again, the usual porous medium Reynolds number is defined by Eq.
(13-12) without the numerical factor (2/3):

NRe;PM ¼ dVs�

ð1� "Þ� ð13-13Þ

II. FRICTION LOSS IN POROUS MEDIA

A. Laminar Flow

By analogy with laminar flow in a tube, the friction factor in laminar flow
would be

f ¼ 16

NRe

or fPM ¼ 72

NRe;PM

ð13-14Þ

However, this expression assumes that the total resistance to flow is due to
the shear deformation of the fluid, as in a uniform pipe. In reality the
resistance is a result of both shear and stretching (extensional) deformation
as the fluid moves through the nonuniform converging–diverging flow cross
section within the pores. The ‘‘stretching resistance’’ is the product of the
extension (stretch) rate and the extensional viscosity. The extension rate in
porous media is of the same order as the shear rate, and the extensional
viscosity for a Newtonian fluid is three times the shear viscosity. Thus, in
practice a value of 150–180 instead of 72 is in closer agreement with obser-
vations at low Reynolds numbers, i.e.,

fPM ¼ 180

NRe;PM

forNRe;PM < 10 ð13-15Þ

This is known as the Blake–Kozeny equation and, as noted, applies for
NRe;PM < 10.
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B. Turbulent Flow

At high Reynolds numbers (high turbulence levels), the flow is dominated by
inertial forces and ‘‘wall roughness,’’ as in pipe flow. The porous medium
can be considered an ‘‘extremely rough’’ conduit, with "=d � 1. Thus, the
flow at a sufficiently high Reynolds number should be fully turbulent and
the friction factor should be constant. This has been confirmed by observa-
tions, with the value of the constant equal to approximately 1.75:

fPM ¼ 1:75 forNRe;PM > 1000 ð13-16Þ
This is known as the Burke–Plummer equation and, as noted, applies for
NRe;PM > 1000.

C. All Reynolds Numbers

An expression that adequately represents the porous medium friction factor
over all values of Reynolds number is

fPM ¼ 1:75þ 180

NRe;PM

ð13-17Þ

This equation with a value of 150 instead of 180 is called the Ergun equation
and is simply the sum of Eqs (13-15) and (13-16). (The more recent
references favor the value of 180, which is also more conservative.)
Obviously, for NRe;PM < 10 the first term is small relative to the second,
and the Ergun equation reduces to the Blake–Kozeny equation. Likewise,
for NRe;PM > 1000 the first term is much larger than the second, and the
equation reduces to the Burke–Plummer equation.

If the definitions of fPM and NRe;PM are inserted into the Ergun
equation, the resulting expression for the frictional energy loss (dissipation)
per unit mass of fluid in the medium is

ef ¼ 1:75
V2

s

d

1� "
"3

� �
Lþ 180

Vs�ð1� "Þ2L
d2"3�

ð13-18Þ

III. PERMEABILITY

The ‘‘permeability’’ of a porous medium (K) is defined as the proportion-
ality constant that relates the flow rate through the medium to the pressure
drop, the cross-sectional area, the fluid viscosity, and net flow length
through the medium:

Q ¼ K
��PA

�L
ð13-19Þ
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This equation defines the permeability (K) and is known as Darcy’s law. The
most common unit for the permeability is the ‘‘darcy,’’ which is defined as
the flow rate in cm3/s that results when a pressure drop of 1 atm is applied to
a porous medium that is 1 cm2 in cross-sectional area and 1 cm long, for a
fluid with viscosity of 1 cP. It should be evident that the dimensions of the
darcy are L2, and the conversion factors are (approximately) 10�8

cm2=darcy ffi 10�11 ft2/darcy. The flow properties of tight, crude oil bearing,
rock formations are often described in permeability units of millidarcies.

If the Blake–Kozeny equation for laminar flow is used to describe the
friction loss, which is then equated to�P=� from the Bernoulli equation, the
resulting expression for the flow rate is

Q ¼ ��PA

�L

d2"3

180ð1� "Þ2
 !

ð13-20Þ

By comparison of Eqs. (13-19) and (13-20), it is evident that the permeability
is identical to the term in brackets in Eq. (13-20), which shows how the
permeability is related to the equivalent particle size and porosity of the
medium. Since Eq. (13-20) applies only for laminar flow, it is evident that
the permeability has no meaning under turbulent flow conditions.

IV. MULTIDIMENSIONAL FLOW

Flow in a porous medium in two or three dimensions is important in
situations such as the production of crude oil from reservoir formations.
Thus, it is of interest to consider this situation briefly and to point out some
characteristics of the governing equations.

Consider the flow of an incompressible fluid through a two-dimen-
sional porous medium, as illustrated in Fig. 13-2. Assuming that the kinetic
energy change is negligible and that the flow is laminar as characterized by
Darcy’s law, the Bernoulli equation becomes

� �P

�
þ g�z

� �
¼ ef ¼

�VsL

K�
ð13-21Þ

or

�
�

�

� �
¼ ��VsL

K�
ð13-22Þ

where the density cancels out if the fluid is incompressible. Equation (13-22)
can be applied in both the x and y directions, by taking L ¼ �x for the x
direction and L ¼ �y for the y direction:
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��

�x
¼ ��Vx

K
¼ @�

@x
ð13-23Þ

and

��

�y
¼ ��Vy

K
¼ @�

@y
ð13-24Þ

If Eq. (13-23) is differentiated with respect to x and Eq. (13-24) is differ-
entiated with respect to y and the results are added, assuming � and K to be
constant, we get

@2�

@x2
þ @

2�

@y2
¼ � �

K

@Vx

@x
þ @Vy

@y

� �
¼ 0 ð13-25Þ

For an incompressible fluid, the term in parentheses is zero as a result of the
conservation of mass (e.g., the microscopic continuity equation). Equation
(13-25) can be generalized to three dimensions as

r2� ¼ 0 ð13-26Þ
which is called the Laplace equation. The solution of this equation, along
with appropriate boundary conditions, determines the potential (e.g.,
pressure) distribution within the medium. The derivatives of this potential
then determine the velocity distribution in the medium [e.g., Eqs. (13-23)
and (13-24)]. The Laplace equation thus governs the three-dimensional
(potential) flow of an inviscid fluid. Note that the Laplace equation follows
from Eq. (13-25) for either an incompressible viscous fluid, by virtue of the
continuity equation, or for any flow with negligible viscosity effects (e.g.,
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FIGURE 13-2 Two-dimensional flow in a porous medium.



compressible flow outside the boundary layer near a solid boundary). It is
interesting that the same equation governs both of these extreme cases.

The Laplace equation also applies to the distribution of electrical
potential and current flow in an electrically conducting medium as well as
the temperature distribution and heat flow in a thermally conducting
medium. For example, if � ) E;V ) i, and �=K ) re, where re is the
electrical resistivity ðre ¼ RA=�xÞ, Eq. (13-22) becomes Ohm’s law:

@E

@x
¼ �reix; r2E ¼ 0; and

@ix
@x

þ @iy
@y

¼ 0 ð13-27Þ

Also, with � ) T;V ) q, and K=�) k, where k is the thermal conduc-
tivity, the same equations govern the flow of heat in a thermally conducting
medium (e.g., Fourier’s law):

@T

@x
¼ � 1

k
qx; r2T ¼ 0; and

@qx
@x

þ @qy
@y

¼ 0 ð13-28Þ

By making use of these analogies, electrical analog models can be con-
structed that can be used to determine the pressure and flow distribution
in a porous medium from measurements of voltage and current distribution
in a conducting medium, for example. The process becomes more complex,
however, when the local permeability varies with position within the
medium, which is often the case.

V. PACKED COLUMNS

At the other end of the spectrum from a ‘‘porous rock’’ is the uncon-
solidated medium composed of beds of relatively large scale packing
elements. These elements may include a variety of shapes, such as rings,
saddles, grids, and meshes, which are generally used to provide a large
gas/liquid interface for promoting mass transfer in such operations as
distillation or absorption or liquid–liquid extraction. A typical application
might be the removal of an impurity from a gas stream by selective
absorption by a solvent in an absorption column filled with packing. The
gas (or lighter liquid, in the case of liquid–liquid extraction) typically enters
the bottom of the column, and the heavier liquid enters the top and drains
by gravity, the flow being countercurrent as illustrated in Fig. 13-3.

For single-phase flow through packed beds, the pressure drop can
generally be predicted adequately by the Ergun equation. However, because
the flow in packed columns is normally countercurrent two-phase flow, this
situation is more complex. The effect of increasing the liquid mass flow rate
(L) on the pressure drop through the column for a given gas mass flow rate
(G), starting with dry packing, is illustrated in Fig. 13-4. The pressure drop
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for wet drained packing is higher than for dry packing, because the liquid
occupies some of the void space between packing elements even in the
‘‘drained’’ condition. As the liquid flow rate increases, the liquid occupies
an increasing portion of the void space, so the area available to the gas is
reduced and the total pressure drop increases. As the liquid flow rate
increases, the curve of �P vs. G becomes increasingly nonlinear. The points
labeled ‘‘l’’ in Fig. 13-4 are referred to as the ‘‘loading’’ points and indicate
points where there is a marked increase in the interaction between the liquid
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FIGURE 13-3 Schematic of packed column.

FIGURE 13-4 Effect of liquid rate on �P .



and the gas, and this is the desired operation point for the column. The
points labeled ‘‘f’’ in Fig. 13-4 are the ‘‘flooding’’ points. At these points, the
pressure drop through the column is equal to the static head of liquid in the
column. When this occurs, the pressure drop due to the gas flow balances
the static head of liquid, so the liquid can no longer drain through the
packing by gravity and the column is said to be ‘‘flooded.’’ It is obviously
undesirable to operate at or near the flooding point, because a slight increase
in gas flow at this point will carry the liquid out of the top of the column.

The pressure drop through packed columns, and the flooding
conditions, can be estimated from the generalized correlation of Leva
(1992), shown in Fig. 13-5. The pressure gradient in millimeters of water
per meter of packed height is the parameter on the curves, and interpolation
is usually necessary to determine the pressure drop (note that the pressure
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FIGURE 13-5 Generalized correlation for pressure drop in packed columns L ¼
liquid mass flux ½lbm=ðs ft2Þ; kg=ðsm2Þ�; G ¼ gas mass flux ½lbm=ðs ft2Þ; kg=ðsm2Þ�; �
L ¼ liquid density (lbm/ft

3, kg/m3), �G ¼ gas density (lbm/ft
3, kg/m3); F ¼ packing

factor (Table 13-1); �L ¼ liquid viscosity (mNs/m2), g ¼ ð9:81 m/s2, 32.2 ft/s2),
w ¼ water at sameT and P as column. (From Coulson et al., 1991.)



drop is not linearly proportional to the spacing between the curves).
Correction factors for liquid density and viscosity, which are to be applied
to the Y axis of this correlation, are also shown. The parameter F in this
correlation is called the packing factor. Values of F are given in Table 13-1,
which shows the dimensions and physical properties of a variety of types of
packing. Note that in Table 13-1 the term SB is equal to asð1� "Þ, where as is
the surface area per unit volume of the packing element. The packing factor
F is comparable to the term SB="

3 in the definition of fPM, but is an empiri-
cal factor that characterizes the packing somewhat better than SB="

3.

VI. FILTRATION

For fine suspended solids with particles that are too small to be separated
from the liquid by gravitational or centrifugal methods, a ‘‘barrier’’ method
such as a filter may be used. The liquid is passed through a filter medium
(usually a cloth or screen) that provides a support for the solid particles
removed from the slurry. In actuality, the pores in the filter medium are
frequently larger than the particles, which penetrate some distance into the
medium before being trapped. The layer of solids that builds up on the
surface of the medium is called the cake, and it is the cake that provides
the actual filtration. The pressure–flow characteristics of the porous cake
primarily determine the performance of the filter.

A. Governing Equations

A schematic of the flow through the cake and filter medium is shown in Fig.
13-6. The slurry flow rate is Q, and the total volume of filtrate that passes
through the filter is ~VV . The flow through the cake and filter medium is
inevitably laminar, so the resistance can be described by Darcy’s law and
the permeability of the medium (K):

��P

L
¼ Q�

KA
ð13-29Þ

Applying this relationship across both the cake and the filter medium in
series gives

P1 � P2 ¼
L

K

� �
cake

Q�

A

� �
ð13-30Þ

and

P2 � P3 ¼
L

K

� �
FM

Q�

A

� �
ð13-31Þ
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The total pressure drop across the filter is the sum of these:

P1 � P3 ¼
Q�

A

L

K

� �
cake

þ L

K

� �
FM

� �
ð13-32Þ

The term ðL=KÞcake is the resistance of the cake, and ðL=KÞFM is the re-
sistance of the filter medium. The latter is higher for a ‘‘dirty’’ filter medium
than for a clean one, but once the initial particles become embedded in the
medium and the cake starts to build up, it remains constant. The cake
resistance, on the other hand, continues to increase with time as the cake
thickness increases. The cake thickness is directly proportional to the
volume of solids that have been deposited from the slurry and inversely
proportional to the area:

Lcake ¼
~VVcake

A
¼

~VVsolids

Að1� "Þ ¼
Msolids

A�sð1� "Þ
ð13-33Þ

Now Msolids= ~VV is the mass of solids per unit volume of liquid in the slurry
feed (e.g., the ‘‘solids loading’’ of the slurry), and ~VV is the volume of liquid
(filtrate) that has passed to deposit Msolids on the cake. Thus, the cake
thickness can be expressed as

Lcake ¼
Msolids

~VV

� � ~VV

A

 !
1

�sð1� "Þ
¼ W

~VV

A
ð13-34Þ

where W ¼ ðMsolids= ~VVÞ=�sð1� "Þ is a property of the specific slurry or cake.
The density of the cake is given by

�c ¼ ð1� "Þ�s þ "�liq ð13-35Þ
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Substituting Eq. (13-34) into Eq. (13-32) and rearranging results in the basic
equation governing the filter performance:

Q

A
¼ 1

A

d ~VV

dt
¼ P1 � P3

�ð ~VVW=AK þ aÞ ð13-36Þ

where a is the filter medium resistance, i.e., a ¼ ðL=KÞFM.
It should be recognized that the operation of a filter is an unsteady

cyclic process. As the cake builds up and its resistance increases with time,
either the flow rate (Q) will drop or the pressure drop (�P) will increase with
time. The specific behavior depends on how the filter is operated, as follows.

B. Constant Pressure Operation

If the slurry is fed to the filter by a centrifugal pump that delivers (approxi-
mately) a constant head, or if the filter is operated by a controlled vacuum,
the pressure drop will remain essentially constant during operation and the
flow rate will drop as the cake thickness (resistance) increases. In this case,
Eq. (13-36) can be integrated for constant pressure to give

C1

~VV

A

 !2

þC2

~VV

A

 !
¼ ð��PÞt ð13-37Þ

where C1 ¼ �W=2K and C2 ¼ �a, both being assumed to be independent of
pressure (we will consider compressible cakes later). In Eq. (13-37), t is the
time required to pass volume ~VV of filtrate through the filter.

Since C1 and C2 are unique properties of a specific slurry–cake system,
it is usually more appropriate to determine their values from laboratory tests
using samples of the specific slurry and filter medium that are to be
evaluated in the plant. For this purpose, it is more convenient to rearrange
Eq. (13-37) in the form

��P t

~VV=A

� �
¼ C1

~VV

A

 !
þ C2 ð13-38Þ

If ~VV is measured as a function of t in a lab experiment for given values of�P
and A, the data can be arranged in the form of Eq. (13-38). When the left
hand side is plotted versus ~VV=A, the result should be a straight line with
slope C1 and intercept C2 (which are easily determined by linear regression).
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C. Constant Flow Operation

If the slurry is fed to the filter by a positive displacement pump, the flow rate
will be constant regardless of the pressure drop, which will increase with
time. In this case, noting that ~VV ¼ Qt, Eq. (13-36) can be rearranged to give

��P ¼ 2C1

Q

A

� �2

tþ C2

Q

A
ð13-39Þ

This shows that for given Q and A, the plot of�P versus t should be straight
and the system constants C1 and C2 can be determined from the slope 2C1

ðQ=AÞ2 and intercept C2ðQ=AÞ.
It is evident that the filter performance is governed by the system

constants C1 and C2 regardless of whether the operation is at constant
pressure or constant flow rate and that these constants can be evaluated
from laboratory data taken under either type of operation and used to
analyze the performance of the plant filter for either type of operation.

D. Cycle Time

As mentioned earlier, the operation of a filter is cyclic. The filtration process
proceeds (and the pressure increases or the flow rate drops) until either the
cake has built up to fill the space available for it or the pressure drop reaches
the operational limit. At that point, the filtration must cease and the cake
must be removed. There is often a wash cycle prior to removal of the cake in
order to remove the slurry carrier liquid from the pores of the cake using a
clean liquid. The pressure–flow behavior during the wash period is a steady-
state operation, controlled by the maximum cake and filter medium
resistance, because no solids are deposited during this period. The cake
can be removed by physically disassembling the filter, removing the cake
and the filter medium (as for a plate-and-frame filter), then reassembling
the filter and starting the cycle over. Or, in the case of a rotary drum
filter, the cake removal is part of the rotating drum cycle, which is contin-
uous although the filtration operation is still cyclic (this will be discussed
below).

The variable t in the foregoing equations is the actual time (tfilter) that
is required to pass a volume ~VV of filtrate through the medium and is only
part of the total time of the cycle (tcycle). The rest of the cycle, which may
include wash time, disassembly and assembly time, cleaning time, etc., we
shall call ‘‘dead’’ time (tdead):

tcycle ¼ tfilter þ tdead ð13-40Þ
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The net (average) filter capacity is determined by the amount of slurry
processed during the total cycle time, not just the ‘‘filter’’ time, and repre-
sents the average flow rate ( �QQ):

�QQ ¼
~VVcycle

tcycle

 !
const�P

¼ Qtfilter
tcycle

� �
constQ

ð13-41Þ

E. Plate-and-Frame Filters

A plate-and-frame filter press consists of alternate solid plates and hollow
frames in a ‘‘sandwich’’ arrangement. The open frames are covered by the
filter medium (e.g., the filter cloth), and the slurry enters through the frames
and deposits the cake on the filter medium. The operation is ‘‘batch,’’ in that
the filter must be disassembled when the cake fills the frame space, then
cleaned and reassembled, after which the entire process is repeated. A sche-
matic of a plate-and-frame press is shown in Fig. 13-7. In the arrangement
shown, all of the frames are in parallel and the total filter area (which
appears in the equations) is

A ¼ 2nAf ð13-42Þ
where n is the number of frames and Af is the filter area of (one side) of the
frame. The flow rate Q in the equations is the total flow rate, and Q=A ¼
Q=2nAf is the total flow per unit total filtering area, or the flow rate per filter
side per unit area of the filter side.

There are a variety of arrangements that operate in the same manner
as the plate- and-frame filter. One is the ‘‘leaf filter,’’ which may consist of
one or more ‘‘frames’’ that are covered by the filter medium and immersed
in the slurry. These filtration devices, are often operated by means of a
vacuum that draws the filtrate through the filter, with the cake collecting
on the filter medium on the outside of the frame.
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F. Rotary Drum Filter

The rotary drum filter is a ‘‘continuous’’ filtration device, because it does not
have to be shut down during the cycle, although the operation is still cyclic.
A schematic is shown in Fig. 13-8. The drum rotates at a rate N (rpm), and
the filter area is the total drum surface, i.e., A ¼ �DL. However, if the
fraction of the drum that is in contact with the slurry is f, then the length
of time in the cycle during which any one point on the surface is actually
filtering is f/N:

tcycle ¼
1

N
; tfilt ¼

f

N
ð13-43Þ

G. Compressible Cake

The equations presented so far all assume that the cake is incompressible,
i.e., that the permeability and density of the cake are constant. For many
cakes this is not so, because the cake properties may vary with pressure
(flocs, gels, fibers, pulp, etc.). For such cases, the basic filter equation
[Eq. (13-36)] can be expressed in the form

Q

A
¼ ð��PÞ1�s

�½�ð ~VV=AÞðMs= ~VVÞ þ a� ¼
1

A

d ~VV

dt
ð13-44Þ

where the pressure dependence is characterized by the parameter s, and �
and a are the pressure-independent properties of the cake. There are several
modes of performance of the filter, depending on the value of s:

1. If s ¼ 0, then Q � �P (the cake is incompressible).
2. If s < 1, then Q increases as �P increases (slightly compressible).
3. If s ¼ 1, then Q is independent of �P (compressible).
4. If s > 1, then Q decreases as �P increases (highly compressible).
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In case 4, the increasing pressure compresses the cake to such as extent that
it actually ‘‘squeezes off’’ the flow so that as the pressure increases the flow
rate decreases. This situation can be compensated for by adding a ‘‘filter
aid’’ to the slurry. This is a rigid dispersed solid that forms an incompres-
sible cake (diatomaceous earth, sand, etc.). This provides ‘‘rigidity’’ to the
cake and enhances its permeability, thus increasing the filter capacity (it may
seem like a paradox that adding more solids to the slurry feed actually
increases the filter performance, but it works!).

The equations that apply for a compressible cake are as follows.
Constant pressure drop:

C1

~VV

A

 !2

þC2

~VV

A

 !
¼ tð��PÞ1�s ð13-45Þ

Constant flow rate:

2C1

Q

A

� �2

tþ C2

Q

A

� �
¼ ð��PÞ1�s ð13-46Þ

where C1 ¼ ð��=2ÞðMs= ~VV) and C2 ¼ �a. There are now three parameters
that must be determined empirically from laboratory measurements: C1;C2,
and s. The easiest way to do this would be to use the constant pressure mode
in the laboratory (e.g., a Buchner funnel, with a set vacuum pressure differ-
ence) and obtain several sets of data for ~VV as a function of t, with each set at
a different value of �P. For each data set, the plot of t= ~VV vs. ~VV should yield
a straight line with a slope of C1=A

2ð��PÞ1�s and intercept of
C2=Að��PÞ1�s. Thus, a log-log plot of either the slope or the intercept
versus �P should have a slope of s� 1, which determines s.

PROBLEMS

Porous Media

1. A packed bed is composed of crushed rock with a density of 175 lbm/ft
3 of such

a size and shape that the average ratio of surface area to volume for the

particles is 50 in.2=in:3. The bed is 6 ft deep, has a porosity of 0.3, and is covered

by a 2 ft deep layer of water that drains by gravity through the bed. Calculate

the flow rate of water through the bed in gpm/ft2, assuming it exits at 1 atm

pressure.

2. An impurity in a water stream at a very small concentration is to be removed in

a charcoal trickle bed filter. The filter is in a cylindrical column that is 2 ft in

diameter, and the bed is 4 ft deep. The water is kept at a level that is 2 ft above

the top of the bed, and it trickles through by gravity flow. If the charcoal

particles have a geometric surface area to volume ratio of 48 in.�1 and they
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pack with a porosity of 0.45, what is the flow rate of water through the column,

in gpm?

3. A trickle bed filter is composed of a packed bed of broken rock. The shape of

the rock is such that the average ratio of the surface area to volume for the rock

particles is 30 in.�1 The bed is 2 ft deep, has a porosity of 0.3, and is covered by

a layer of water that is 2 ft deep and drains by gravity through the bed.

(a) Determine the volume flow rate of the water through the bed per unit bed

area (in gpm/ft2).

(b) If the water is pumped upward through the bed (e.g. to flush it out), calcu-

late the flow rate (in gpm/ft2 of bed area) that will be required to fluidize the

bed.

(c) Calculate the corresponding flow rate that would sweep the rock particles

away with the water. The rock density is 120 lbm=ft
3.

Packed Columns

4. A packed column that is 3 ft in diameter with a packing height of 25 ft is used to

absorb an impurity from a methane gas stream using an amine solution absor-

bent. The gas flow rate is 2000 scfm, and the liquid has a density of 1.2 g/cm3

and a viscosity of 2 cP. If the column operates at 1 atm and 808F, determine the

liquid flow rate at which flooding would occur in the column and the pressure

drop at 50% of the flooding liquid rate for the following packings:

(a) 2 in. ceramic Raschig rings

(b) 2 in. plastic Pall rings

5. A packed column is used to scrub SO2 from air by using water. The gas flow

rate is 500 scfm/ft2, and the column operates at 908F and 1 atm. If the column

contains No. 1 plastic Intalox packing, what is the maximum liquid flow rate

(per unit cross section of column) that could be used without flooding?

6. A stripping column packed with 2 in. metal Pall rings uses air at 5 psig and 808C
to strip an impurity from an absorber oil (SG ¼ 0:9, viscosity ¼ 5 cP,

T ¼ 208C). If the flow rate of the oil is 500 lbm/min and that of the air is 20

lbm/min,

(a) What is the minimum column diameter that can be used without flooding?

(b) If the column diameter is 50% greater than the minimum size, what is the

pressure drop per ft of column height?

7. A packed column that is 0.6 m in diameter and 4 m high and contains 25 mm

Raschig rings is used in a gas absorption process to remove an inpurity from the

gas stream by absorbing it in a liquid solvent. The liquid, which has a viscosity

of 5 cP and SG ¼ 1:1, enters the top of the column at a rate of 2.5 kg/(s m2),

and the gas, which can be assumed to have the same properties as air, enters the

bottom of the column at a rate of 0.6 kg/(s m2). The column operates at atmo-

spheric pressure and 258C. Determine:

(a) The pressure drop through the column, in inches of water.

(b) How high the liquid rate could be increased before the column would flood.

8. A packed column is used to absorb SO2 from flue gas using an ethanolamine

solution. The column is 4 ft in diameter, has a packed height of 20 ft, and is
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packed with 2 in. plastic Pall rings. The flue gas is at a temperature of 1808F and

has an average molecular weight of 31. The amine solution has a specific gravity

of 1.02 and a viscosity at the operating temperature of 1.5 cP. If the gas must

leave the column at 25 psig and a flow rate of 10,000 scfm, determine:

(a) The maximum allowable flow rate of the liquid (in gpm) that would result in

a pressure drop that is 50% of that at which flooding would occur.

(b) The horsepower that would be required for the blower to move the gas

through the column if the blower is 80% efficient.

9. A packed absorption tower is used to remove SO2 from an air stream by

absorption in a solvent. The tower is 5 ft in diameter and 60 ft high and contains

1.5 in. plastic Pall rings. The temperature and pressure in the tower are 908F
and 30 psig. The gas stream flow rate is 6500 scfm. The liquids SG is 1.25, and

its viscosity is 25 cP.

(a) What is the liquid flow rate (in gpm) at which the column will flood?

(b) If the column operates at a liquid flow rate that is 75% of the flooding

value, what is the total pressure drop through the tower in psi?

10. A packed absorption column removes an impurity from a gas stream by contact

with a liquid solvent. The column is 3 ft in diameter and contains 25 ft of No. 2

plastic Super Intalox packing. The gas has an MW of 28, enters the column at

1208F, and leaves at 10 psig at a rate of 5000 scfm. The liquid has an SG of 1.15

and a viscosity of 0.8 cP. Determine:

(a) The flow rate of the liquid in gpm that would be 50% of the flow rate at

which the column would flood.

(b) The pressure drop through the column, in psi.

(c) The horsepower of the blower required to move the gas through the column

if it is 60% efficient.

Filtration

11. A fine aqueous suspension containing 1 lbm of solids per cubic foot of suspen-

sion is to be filtered in a constant pressure filter. It is desired to filter at an

average rate of 100 gpm, and the filter cake must be removed when it gets 2 in.

thick. What filter area is required? Data: ��P ¼ 10 psi, �(wet cake)=85

lbm=ft
3, K (permeability)=0.118 Darcy, a ¼ 2� 109ft�1.

12. An aqueous slurry containing 1.5 lbm of solid per gallon of liquid is pumped

through a filter cloth by a centrifugal pump. If the pump provides a constant

pressure drop of 150 psig, how long will it take for the filter cake to build up

to a thickness of 2 in.? The density of the filter cake is 30 lbm=ft
3, and its

permeability is 0.01 Darcy.

13. A packed bed that consists of the same medium as that in Problem 3 is to be

used to filter solids from an aqueous slurry. To determine the filter properties,

you test a small section of the bed, which is 6 in. in diameter and 6 in. deep, in

the lab. When the slurry is pumped through this test model at a constant flow

rate of 30 gpm, the pressure drop across the bed rises to 2 psia in 10 min. How

long will it take to filter 100,000 gal of water from the slurry in a full-sized bed
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that is 10 ft in diameter and 2 ft deep, if the slurry is maintained at a depth of 2

ft over the bed and drains by gravity through the bed?

14. A slurry containing 1 lbm of solids per gallon of water is to be filtered in a plate-

and-frame filter with a total filtering area of 60 ft2. The slurry is fed to the filter

by a centrifugal pump that develops a head of 20 psig. How long would it take

to build up a layer of filter cake 4 in. thick on the filter medium? Laboratory

data were taken on the slurry using a positive displacement pump operating at 5

gpm and 1 ft2 of filter medium. It was found that the pressure drop increased

linearly with time from an initial value of 0.2 psi to a value of 50 psi after 1 min.

The density of the dry filter cake was found to be 0.85 g/cm3.

15. A rotary drum filter 6 ft in diameter and 8 ft long is to be used to filter a slurry.

The drum rotates at 0.5 rpm, and one-third of the drum’s surface is submerged

in the slurry. A vacuum is drawn in the drum so that a constant pressure drop

of 10 psi is maintained across the drum and filter cake. You test the slurry in the

lab by pumping it at a constant filtrate rate of 20 gpm through 1 ft2 of the drum

filter screen and find that after 1 min the pressure drop is 8 psi and after 3 min

the pressure drop is 12 psi. How long will it take to filter 100,000 gal of filtrate

from the slurry using the rotary drum?

16. A plate-and-frame filter press contains 16 frames and operates at a constant

flow rate of 30 gpm. Each frame has an active filtering area of 4 ft2, and it takes

15 min to disassemble, clean, and reassemble the press. The press must be shut

down for disassembly when the pressure difference builds up to 10 psi. What is

the total net filtration rate in gpm for a slurry having properties determined by

the following lab test. A sample of the slurry is pumped at a constant pressure

differential of 5 psi through 0.25 ft2 of the filter medium. After 3 min, 1 gal of

filtrate has been collected. The resistance of the filter medium may be neglected.

17. A rotary drum filter is used to filter a slurry. The drum rotates at a rate of 3

min/cycle, and 40% of the drum surface is submerged in the slurry. A constant

pressure drop at 3 psi is maintained across the filter. If the drum is 5 ft in

diameter and 10 ft long, calculate the total net filtration rate in gpm that is

possible for a slurry having properties as determined by the following lab test. A

sample of the slurry was pumped at a constant flow rate of 1 gpm through 0.25

ft2 of the filter medium. After 10 min, the pressure difference across the filter

had risen to 2.5 psi. The filter medium resistance may be neglected.

18. You must filter 1000 lbm/min of an aqueous slurry containing 40% solids by

weight by using a rotary drum filter, diameter 4 m and length 4 m, that operates

at a vacuum of 25 in.Hg with 30% of its surface submerged in the slurry. A lab

test is run on a sample of the slurry using 200 cm2 of the same filter medium and

a vacuum of 25 in.Hg. During the first minute of operation, 300 cm3 of filtrate is

collected, and during the second minute an additional 140 cm3 is collected.

(a) How fast should the drum be rotated?

(b) If the drum is rotated at 2 rpm, what would the filter capacity be in pounds

of slurry filtered per minute?

19. A rotary drum filter is to be used to filter a lime slurry. The drum rotates at a

rate of 0.2 rpm, and 30% of the drum surface is submerged in the slurry. The
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filter operates at a constant �P of 10 psi. The slurry properties were determined

from a lab test at a constant flow rate of 0.5 gpm using 1/2 ft2 of the filter

medium. The test results indicated that the pressure drop rose to 2 psi in 10 s

and to 10 psi in 60 s. Calculate the net filtration rate per unit area of the drum

under these conditions, in gpm/ft2.

20. A plate-and-frame filter press operating at a constant�P of 150 psi is to be used

to filter a sludge containing 2 lbm of solids per ft3 of water. The filter must be

disassembled and cleaned when the cake thickness builds up to 1 in. The frames

have a projected area of 4 ft2, and the downtime for cleaning is 10 min/frame.

The properties of the sludge and cake were determined in a lab test operating at

a constant flow rate of 0.2 gpm of filtrate, with a filter area of 1/4 ft2. The test

results show that the pressure drop rises to 3 psi in 20 s and to 8 psi in 60 s.

Calculate the overall net filtration rate per frame in the filter, in gpm of filtrate,

accounting for the down time. The density of the cake was found to be 150

lbm=ft
3.

21. A packed bed composed of crushed rock having a density of 175 lbm=ft
3 is to be

used as a filter. The size and shape of the rock particles are such that the average

surface area to volume ratio is 50 in.2=in:3, and the bed porosity is 0.3. A lab

test using the slurry to be filtered is run on a bed of the same particles that is 6

in. deep and 6 in. in diameter. The slurry is pumped through this bed at a

constant filtrate rate of 10 gpm, and it is found that after 5 min the pressure

drop is 5 psi, and after 10 min it is 8 psi. Calculate how long it would take to

filter 100,000 gal of filtrate from the slurry in a full-scale bed that is 10 ft in

diameter and 2 ft deep, if the slurry is maintained at a depth of 2 ft above the

bed and drains through it by gravity. Assume that the slurry density is the same

as water.

22. A rotary drum filter has a diameter of 6 ft and a length of 8 ft and rotates at a

rate of 30 s/cycle. The filter operates at a vacuum of 500 mmHg, with 30% of its

surface submerged. The slurry to be filtered is tested in the lab using 0.5 ft2 of

the drum filter medium in a filter funnel operating at 600 mmHg vacuum. After

5 min of operation, 250 cm3 of filtrate has collected through the funnel, and

after 10 min, a total of 400 cm3 has collected.

(a) What would be the net (average) filtration rate of this slurry in the rotary

drum filter, in gpm?

(b) How much could this filtration rate be increased by increasing the speed

(i.e., rotation rate) of the drum?

23. A rotary drum filter, 10 ft in diameter and 8 ft long, is to be used to filter a

slurry of incompressible solids. The drum rotates at 1.2 rpm, and 40% of its

surface is submerged in the slurry at all times. A vacuum in the drum maintains

a constant pressure drop of 10 psi across the drum and filter cake. The slurry is

tested in the lab by pumping it at a constant rate of 5 gpm through 0.5 ft2 of the

drum filter screen. After 1 min, the pressure drop is 9 psi, and after 3 min it has

risen to 15 psi. How long will it take to filter 1 million gal of filtrate from the

slurry using the rotary drum? How long would it take if the drum rotated at 3

rpm?
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24. A slurry is being filtered at a net rate of 10,000 gal/day by a plate and frame

filter with 15 frames, with an active filtering area of 1.5 ft2 per frame, fed by a

positive displacement pump. The pressure drop varies from 2 psi at start-up to

25 psi after 10 min, at which time it is shut down for cleanup. It takes 10 min to

disassemble, clean out, and reassemble the filter. Your boss decides that it

would be more economical to replace this filter with a rotary drum filter

using the same filter medium. The rotary filter operates at a vacuum of 200

mmHg with 30% of its surface submerged and rotates at a rate of 5 min/rev. If

the drum length is equal to its diameter, how big should it be?

25. You want to select a rotary drum filter to filter a coal slurry at a rate of 100,000

gal of filtrate per day. The filter operates at a differential pressure of 12 psi, and

30% of the surface is submerged in the slurry at all times. A sample of the slurry

is filtered in the lab through a 6 in diameter sample of the filter medium at a

constant rate of 1 gpm. After 1 min the pressure drop across this filter is 3 psi,

and after 5 min it is 10 psi. If the drum rotates at a rate of 3 rpm, what total

filter area is required?

26. A slurry containing 40% solids by volume is delivered to a rotary drum filter

that is 4 ft in diameter and 6 ft long and operates at a vacuum of 25 in.Hg. A lab

test is run with a 50 cm2 sample of the filter medium and the slurry, at a

constant flow rate of 200 cm3/min. After 1 min the pressure across the lab filter

is 6 psi, and after 3 min it is 16 psi. If 40% of the rotary drum is submerged in

the slurry, how fast should it be rotated (rpm) in order to filter the slurry at an

average rate of 250 gpm?

27. A slurry is to be filtered with a rotary drum filter that is 5 ft in diameter and 8 ft

long, rotates once every 10 s, and has 20% of its surface immersed in the slurry.

The drum operates with a vacuum of 20 in.Hg. A lab test was run on a sample of

the slurry using 1/4 ft2 of the filter medium at a constant flow rate of 40 cm3/s.

After 20 s the pressure drop was 30 psi across the lab filter, and after 40 s it was

35 psi. How many gallons of filtrate can be filtered per day in the rotary drum?

28. A rotary drumfilter is to be installed in your plant. You run a lab test on the slurry

to be filtered using a 0.1 ft2 sample of the filtermedium at a constant pressure drop

of 10 psi After 1min you find that 500 cm3 of filtrate has passed through the filter,

and after 2 min the filtrate volume is 715 cm3. If the rotary drum filter operates

under a vacuum of 25 in.Hg with 25% of its surface submerged, determine:

(a) The capacity of the rotary drum filter, in gallons of filtrate per square foot

of surface area, if it operates at (1) 2 rpm; (2) 5 rpm.

(b) If the drum has a diameter of 4 ft and a length of 6 ft, what is the total filter

capacity in gal/day for each of the operating speeds of 2 and 5 rpm?

29. A slurry of CaCO3 in water at 258C containing 20% solids by weight is to be

filtered in a plate-and-frame filter. The slurry and filter medium are tested in a

constant pressure lab filter that has an area of 0.0439 m2, at a pressure drop

of 338 kPa. It is found that 10�3 m3 of filtrate is collected after 9.5 s, and

5� 10�3 m3 is collected after 107.3 s. The plate and frame filter has 20 frames,

with 0.873 m2 of filter medium per frame, and operates at a constant flow rate

of 0.00462 m3 of slurry per second. The filter is operated until the pressure drop
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reaches 500 kPa, at which time it is shut down for cleaning. The downtime is 15

min per cycle. Determine how much filtrate passes through the filter in each 24

hr period of operation (SG of CaCO3 is 1.6).

30. An algal sludge is to be clarified by filtering. A lab test is run on the sludge using

an area A of the filter medium. At a constant pressure drop of 40 kN/m2, a plot

of the time required to collect a volume ~VV of the filtrate times �P=ð ~VV=A) vs.
~VV=A gives a straight line with a slope of 1:2� 106 kN s/m4 and an intercept of

6:0� 104 kN s/m3. A repeat of the data at a pressure drop of 200 kN/m2 also

gave a straight line on the same type of plot, with the same intercept but with a

slope of 2:1� 106 kN s/m4. When a filter aid was added to the sludge in an

amount equal to 20% of the algae by weight, the lab test gave a straight line

with the same intercept but with a slope of 1:4� 106 kN s/m4.

(a) What does this tell you about the sludge?

(b) The sludge is to be filteredusing a rotary drumfilter,with adiameter of 4 ft and

a length of 6 ft, operating at a vacuum of 700 mmHg with 35% of the drum

submerged. If the drum is rotated at a rate of 2 rpm, how many gallons of

filtrate will be collected in a day, (1) with and (2) without the filter aid?

(c) What would the answer to (b) be if the drum speed was 4 rpm?

31. A slurry containing 0.2 kg solids/kg water is filtered through a rotary drum filter

operating at a pressure difference of 65 kN/m2. The drum is 0.6 m in diameter

and 0.6 m long, rotates once every 350 s, and has 20% of its surface submerged

in the slurry.

(a) If the overall average filtrate flow rate is 0.125 kg/s, the cake is incompres-

sible with a porosity of 50%, and the solids SG ¼ 3:0, determine the max-

imum thickness of the cake on the drum (you may neglect the filter medium

resistance).

(b) The filter breaks down, and you want to replace it with a plate-and-frame

filter of the same overall capacity, which operates at a pressure difference of

275 kN/m2. The frames are 10 cm thick, and the maximum cake thickness at

which the filter will operate properly is 4 cm. It will take 100 s to disas-

semble the filter, 100 s to clean it out, and 100 s to reassemble it. If the

frames are 0.3 m square, how many frames should the filter contain?

32. You want to filter an aqueous slurry using a rotary drum filter, at a total rate (of

filtrate) of 10,000 gal/day. The drum rotates at a rate of 0.2 rpm, with 25% of

the drum surface submerged in the slurry, at a vacuum of 10 psi. The properties

of the slurry are determined from a lab test using a Buchner funnel under a

vacuum of 500 mmHg, using a 100 cm2 sample of the filter medium and the

slurry, which resulted in the lab data given below. Determine the total filter area

of the rotary drum required for this job.

Time (s) Volume of filtrate (cm3)

50 10

100 18

200 31

400 51
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33. You want to use a plate and frame filter to filter an aqueous slurry at a rate of

1.8 m3 per 8 hr day. The filter frames are square, with a length on each side of

0.45 m. The ‘‘down time’’ for the filter press is 300 s plus an additional 100 s per

frame for cleaning. The filter operates with a positive displacement pump, and

the maximum operation pressure differential for the filter is 45 psi, which is

reached after 200 s of operation.

(a) How many frames must be used in this filter to achieve the required capa-

city?

(b) At what flow rate (in gpm) should the pump be operated?

The following lab data were taken with the slurry at a constant�P of 10 psi and

a 0.05 m2 sample of the filter medium:

After 300 s, the total volume of filtrate was 400 cm3.

After 900 s, the total volume of filtrate was 800 cm3.

34. An aqueous slurry is filtered in a plate-and-frame filter that operates at a con-

stant �P of 100 psi. The filter contains 20 frames, each of which has a projected

area per side of 900 cm2. A total filtrate volume of 0.7 m3 is passed through the

filter during a filtration time of 1200 s, and the down time for the filter is 900 s.

The resistance of the filter medium is negligible relative to that of the cake. You

want to replace the plate and frame filter with a rotary drum filter with the same

overall average capacity, using the same filter medium. The drum is 2.2 m in

diameter and 1.5 m long and operates at 5 psi vacuum with 25% of the drum

surface submerged in the slurry. At what speed, in rpm, should the drum be

operated?

35. You must transport a sludge product from an open storage tank to a

separations unit at 1 atm, through a 4 in. sch 40 steel pipeline that is

2000 ft long, at a rate of 250 gpm. The sludge is 30% solids by weight in

water and has a viscosity of 50 cP and Newtonian properties. The solid

particles in the sludge have a density of 3.5 g/cm3. The pipeline contains

four gate valves and six elbows.

(a) Determine the pump head (in ft) required to do this job. You can select any

pump with the characteristics given in Appendix H, and you must find the

combination of motor speed, motor horsepower, and impeller diameter that

should be used.

(b) You want to install a long radius venturi meter in the line to monitor the

flow rate, and you want the maximum pressure drop to be measured to be

equal to or less than 40 in. H2O. What should the diameter of the venturi

throat be?

(c) At the separations unit, the sludge is fed to a settling tank. The solids settle

in the tank, and the water overflows the top. What should the diameter of

the tank be if it is desired to limit the size of the particles in the overflow to

100 �m or less?

(d) If the sludge is fed to a centrifuge instead of the settling tank, at what speed

(rpm) should the centrifuge operate to achieve the same separation as the

settling tank, if the centrifuge dimensions are L ¼ D ¼ 1 ft;R1 ¼ R2=2 ¼
0:25 ft?
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(e) Suppose the sludge is fed instead to a rotary drum filter that removes all of

the solids from the stream. The drum operates at a vacuum of 6 psi, has

dimensions L ¼ D ¼ 4 ft, and operates with 30% of its surface submerged.

A lab test is performed on the sludge using 1 ft2 of the same filter medium as

on the drum, operating at a vacuum of 500 mmHg. In this test, it is found

that 8 gal passes the filter in 2 min, and a total of 20 gal passes through in 10

min. At what speed (rpm) should the rotary drum filter be operated?

36. Consider a dilute aqueous slurry containing solid particles with diameters of

0.1–1000 �m and a density of 2.7 g/cm3, flowing at a rate of 500 gpm.

(a) If the stream is fed to a settling tank in which all particles with diameter

greater than 100 mm are to be removed, what should the tank diameter be?

(b) The overflow from the settling tank contains almost all of the water plus the

fines not removed from the tank. This stream is fed to a centrifuge that has a

diameter of 20 in., a length of 18 in., and an overflow dam that is 6 in. from

the centerline. At what speed, in rpm, should the centrifuge rotate in order

to separate all particles with diameters of 1 �m and larger?

(c) If the centrifuge rotates at 2500 rpm, what size particles will be removed?

(d) Instead of the tank and centrifuge, the slurry is fed to a rotary drum filter

that has a diameter of 5 ft and a length of 10 ft. The drum operates under a

vacuum of 10 in.Hg, with 35% of its surface submerged in the slurry. A lab

test is run on the slurry at a constant flow rate of 100 cm3/min, using 50 cm2

of the filter medium. In the test filter, the pressure drop reaches 10 mmHg in

1 min and 80 mmHg in 10 min. How fast should the drum rotate (in rpm) to

handle the slurry stream?

NOTATION

A area, [L2]

a filter medium resistance, [1/L]

as particle surface area/per unit volume, [1/L]

C1 filter parameter ð¼ �W=2K), [M/L3 t]

C2 filter parameter ð¼ �aÞ, [M/L2 t]

D diameter, [L]

d particle diameter, [L]

Dh hydraulic diameter, [L]

ef energy dissipated per unit mass of fluid, ½FL=M ¼ L2=t2�
G gas mass flux, [M/L2t]

K permeability, [L2]

fPM porous media friction factor, Eq. (13-11), [—]

L length, [L], liquid mass flux [M/L2t]

Msolids mass of solids [M]

N rotation rate, rpm, [1/t]

n number of frames, [—]

NRe;PM porous media Reynolds number, Eq. (13-13), [—]

P pressure, ½F=L2 ¼ M=Lt2�
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Q volumetric flow rate, [L3/t]

s compressibility parameter, Eq. (13-44), [—]

t time, [t]

V velocity, [L/t]
~VV volume of filtrate, [L3]

W slurry or cake solids loading parameter ½¼ ðMsolids= ~VVÞ=�sð1� "Þ�, [—]

Wp wetted perimeter, [L]

x; y; z coordinate directions, [L]

�( ) ( )2 � ð Þ1
" porosity or void fraction, [—]

� potential ð¼ Pþ �gz), ½F=L2 ¼ M=Lt2�
� viscosity, [M/Lt]

� density, [M/L3]

 sphericity factor, [—]

Subscripts

1,2,3 reference points

f filter frame side

i interstitial

s superficial
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14

Fluidization and Sedimentation

I. FLUIDIZATION

When a fluid is passed upward through a bed of particles, as illustrated
in Fig. 14-1, the pressure drop increases as the fluid velocity increases.
The product of the pressure drop and the bed cross sectional area repre-
sents a net upward force on the bed, and when this force becomes equal
to the weight of the bed (solids and fluid) the bed becomes suspended by
the fluid. In this state the particles can move freely within the ‘‘bed,’’
which thus behaves much like a boiling liquid. Under these conditions
the bed is said to be ‘‘fluidized.’’ This freely flowing or bubbling behavior
results in a high degree of mixing in the bed, which provides a great
advantage for heat or mass transfer efficiency compared with a fixed bed.
Fluidized bed operations are found in refineries (i.e., fluid catalytic crack-
ers), polymerization reactors, fluidized bed combustors, etc. If the fluid
velocity within the bed is greater than the terminal velocity of the par-
ticles, however, the fluid will tend to entrain the particles and carry them
out of the bed. If the superficial velocity above the bed (which is less
than the interstitial velocity within the bed) is less than the terminal
velocity of the particles, they will fall back and remain in the bed.
Thus there is a specific range of velocity over which the bed remains
in a fluidized state.
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A. Governing Equations

The Bernoulli equation relates the pressure drop across the bed to the fluid
flow rate and the bed properties:

��P

�f
� gh ¼ ef ¼

fPMhV2
s

d

1� "
"3

� �
ð14-1Þ

where the porous medium friction factor is given by the Ergun equation,

fPM ¼ 1:75þ 180

NRe;PM

ð14-2Þ

and the porous medium Reynolds number is

NRe;PM ¼ dVs�

ð1� "Þ� ð14-3Þ

Now the criterion for incipient fluidization is that the force due to the
pressure drop must balance the weight of the bed, i.e.,

��P ¼ Bedwt:

A
¼ �sð1� "Þghþ �"gh ð14-4Þ

where the first term on the right is pressure due to the weight of the solids
and the second is the weight of the fluid in the bed. When the pressure drop
is eliminated from Eqs. (14-4) and (14-1), an equation for the ‘‘minimum
fluidization velocity’’ (Vmf) results:

ð�s � �Þð1� "Þg ¼ �ef
h

¼ 1:75
�V2

mf ð1� "Þ
d"3

þ 180
Vmf�ð1� "Þ2

d2"3
ð14-5Þ
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which can be written in dimensionless form, as follows:

NAr ¼ 1:75
N̂N2

Re

"3
þ 180

1� "
"3

� �
N̂NRe ð14-6Þ

where

NAr ¼
�g�� d3

�2
; N̂NRe ¼

dVmf�

�
ð14-7Þ

Equation (14-6) can be solved for the Reynolds number to give

N̂NRe ¼ ðC2
1 þ C2NArÞ1=2 � C1 ð14-8Þ

where

C1 ¼
180ð1� "Þ

3:5
; C2 ¼

"3

1:75
ð14-9Þ

Equation (14-8) gives the (dimensionless) superficial velocity (Vmf ) for
incipient fluidization.

B. Minimum Bed Voidage

Before the bed can become fluidized, however, the particles must dislodge
from their ‘‘packed’’ state, which expands the bed. Thus, the porosity (") in
Eqs (14-5) and (14-9) is not the initial ‘‘packed bed’’ porosity but the
‘‘expanded bed’’ porosity at the point of minimum fluidization ("mf ), i.e.,
the ‘‘minimum bed voidage’’ in the bed just prior to fluidization. Actually,
the values of C1 and C2 in Eq. (14-8) that give the best results for fluidized
beds of uniform spherical particles have been found from empirical obser-
vations to be:

C1 ¼ 27:2; C2 ¼ 0:0408 ð14-10Þ
By comparing these empirical values of C1 and C2 with Eqs. (14-9), the C1

value of 27.2 is seen to be equivalent to "mf ¼ 0:471 and the C2 value of
0.0408 equivalent to "mf ¼ 0:415. In actuality, the value of "mf may vary
considerably with the nature of the solid particles, as shown in Fig. 14-2.

C. Nonspherical Particles

Many particles are not spherical and so will not have the same drag
properties as spherical particles. The effective diameter for such particles
is often characterized by the equivalent Stokes diameter, which is the
diameter of the sphere that has the same terminal velocity as the particle.
This can be determined from a direct measurement of the settling rate of the
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particles and provides the best value of equivalent diameter for use in appli-
cations involving fluid drag on the particles.

An alternative description of nonspherical particles is often repre-
sented by the ‘‘sphericity factor’’ ( ), which is the number that, when multi-
plied by the diameter of a sphere with the same volume as the particle (ds),
gives the particle effective diameter (dp):

dp ¼  ds ð14-11Þ

The sphericity factor is defined as

 ¼ Surface area of the spherewith same volume as particle

Surface area of the particle
ð14-12Þ

Thus,

 ¼ As

Ap

¼ As=Vs

Ap=Vp

¼ 6=ds
as

ð14-13Þ

Equations (14-11) and (14-13) show that dp ¼ 6=as, where as is the surface-
to-volume ratio for the particle (Ap=Vp), as deduced in Chapter 13. Since
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Vp ¼ Vs (by definition), equivalent definitions of  are

 ¼ 6

ds

Vp

Ap

� �
¼ ð62�Þ1=3 V

2=3
p

Ap

¼ 4:84V2=3
p

Ap

ð14-14Þ

The minimum bed porosity at incipient fluidization for nonspherical
particles can be estimated from

"mf ffi ð14 Þ�1=3 ð14-15Þ
For spherical particles ( ¼ 1Þ Eq. (14-15) reduces to "mf ¼ 0:415.

II. SEDIMENTATION

Sedimentation, or thickening, involves increasing the solids content of a
slurry or suspension by gravity settling in order to effect separation (or
partial separation) of the solids and the fluid. It differs from the gravity
settling process that was previously considered in that the solids fraction is
relatively high in these systems, so particle settling rates are strongly
influenced by the presence of the surrounding particles. This is referred to
as hindered settling. Fine particles (10 mm or less) tend to behave differently
than larger or coarse particles (100 mm or more), because fine particles may
exhibit a high degree of flocculation due to the importance of surface forces
and high surface area. Figure 12-1 shows a rough illustration of the effect of
solids concentration and particle/fluid density ratio on the free and hindered
settling regimes.

A. Hindered Settling

A mixture of particles of different sizes can settle in different ways, accord-
ing to Coulson et al. (1991), as illustrated in Fig. 14-3. Case (a) corresponds
to a suspension with a range of particle sizes less than about 6:1. In this case,
all the particles settle at about the same velocity in the ‘‘constant composi-
tion zone’’ (B), leaving a layer of clear liquid above. As the sediment (D)
builds up, however, the liquid that is ‘‘squeezed out’’ of this layer serves to
further retard the particles just above it, resulting in a zone of variable
composition (C). Case (b) in Fig. 14-3 is less common and corresponds to
a broad particle size range, in which the larger particles settle at a rate
significantly greater than that of the smaller ones, and consequently there
is no constant composition zone.

The settling characteristics of hindered settling systems differ signifi-
cantly from those of freely settling particles in several ways:
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1. The large particles are hindered by the small particles, which
increase the effective resistance of the suspending medium for
the large particles. At the same time, however, the small particles
tend to be ‘‘dragged down’’ by the large particles, so that all
particles tend to fall at about the same rate (unless the size
range is very large, i.e. greater than 6:1 or so).

2. The upward velocity of the displaced fluid flowing in the interstices
between the particles is significant, so the apparent settling velo-
city (relative to a fixed point) is significantly lower than the par-
ticle velocity relative to the fluid.

3. The velocity gradients in the suspending fluid flowing upward
between the particles are increased, resulting in greater shear
forces.

4. Because of the high surface area to volume ratio for small
particles, surface forces are important, resulting in flocculation
and ‘‘clumping’’ of the smaller particles into larger effective
particle groups. This effect is more pronounced in a highly ionic
(conducting) fluid, because the electrostatic surface forces that
would cause the particles to be repelled are ‘‘shorted out’’ by the
conductivity of the surrounding fluid.

There are essentially three different approaches to describing hindered
settling. One approach is to define a ‘‘correction factor’’ to the Stokes free
settling velocity in an infinite Newtonian fluid (which we will designate V0),
as a function of the solids loading. A second approach is to consider the
suspending fluid properties (e.g. viscosity and density) to be modified by the
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presence of the fine particles. A third approach is to consider the collection
or ‘‘swarm’’ of particles equivalent to a moving porous bed, the resistance to
flow through the bed being determined by an equivalent of the Kozeny
equation. There is insufficient evidence to say that any one of these
approaches is any better or worse than the others. For many systems,
they may all give comparable results, whereas for others one of these
methods may be better or worse than the others.

If all of the solids are relatively fine and/or the slurry is sufficiently
concentrated that settling is extremely slow, the slurry can usually be
approximated as a uniform continuous medium with properties (viscosity
and density) that depend on the solids loading, particle size and density,
and interparticle forces (surface charges, conductivity, etc.). Such systems
are generally quite non-Newtonian, with properties that can be described
by the Bingham plastic or power law models. If the particle size distribu-
tion is broad and a significant fraction of the particles are fines (less than
about 30 mm or so), the suspending fluid plus fines can be considered to
be a continuous medium with a characteristic viscosity and density
through which the larger particles must move. Such systems may or
may not be non-Newtonian, depending on solids loading, etc., but are
most commonly non-Newtonian. If the solids loading is relatively low
(below about 10% solids by volume) and/or the particle size and/or
density are relatively large, the system will be ‘‘heterogeneous’’ and the
larger particles will settle readily. Such systems are usually Newtonian. A
summary of the flow behavior of these various systems has been pre-
sented by Darby (1986).

B. Fine Particles

For suspensions of fine particles, or systems containing a significant amount
of fines, the suspending fluid can be considered to be homogeneous, with the
density and viscosity modified by the presence of the fines. These properties
depend primarily on the solids loading of the suspension, which may be
described in terms of either the porosity or void fraction (") or, more
commonly, the volume fraction of solids, ’ ð’ ¼ 1� "Þ. The buoyant force
on the particles is due to the difference in density between the solid (�S) and
the surrounding suspension (�’), which is

�S � �’ ¼ �S � ½�Sð1� "Þ þ �"� ¼ "ð�S � �Þ ¼ ð1� ’Þð�S � �Þ ð14-16Þ

where � is the density of the suspending fluid.
The viscosity of the suspension (�’) is also modified by the presence of

the solids. For uniform spheres at a volumetric fraction of 2% or less,
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Einstein (1906) showed that

�’ ¼ �ð1þ 2:5’Þ ð14-17Þ
where � is the viscosity of the suspending fluid. For more concentrated
suspensions, a wide variety of expressions have been proposed in the
literature (see, e.g., Darby, 1986). For example, Vand (1948) proposed the
expression

�’ ¼ � exp
2:5’

1� 0:609’

� �
ð14-18Þ

although Mooney (1951) concluded that the constant 0.609 varies between
0.75 and 1.5, depending on the system. Equations (14-16) and (14-18) (or
equivalent) may be used to modify the viscosity and density in Stokes’ law,
i.e.,

V0 ¼
ð�S � �Þgd2

18�
ð14-19Þ

In this equation, V0 is the relative velocity between the unhindered particle
and the fluid. However, in a hindered suspension this velocity is increased by
the velocity of the displaced fluid, which flows back up through the suspen-
sion in the void space between the particles. Thus, if VS is the (superficial)
settling velocity of the suspension (e.g., ‘‘swarm’’) and VL is the velocity of
the fluid, the total flux of solids and liquid is ’Vs þ ð1� ’ÞVL. The relative
velocity between the fluid and solids in the swarm is Vr ¼ Vs � VL. If the
total net flux is zero (e.g., ‘‘batch’’ settling in a closed-bottom container with
no outflow), elimination of VL gives

Vr ¼
Vs

1� ’ ð14-20Þ

This also shows that VL ¼ �’Vs=ð1� ’Þ, i.e., VL is negative relative to Vs in
batch settling.

From Eqs. (14-16), (14-18), and (14-20), it is seen that the ratio of the
settling velocity of the suspension (Vs) to the terminal velocity of a single
freely settling sphere (V0) is

Vs

V0

¼ ð1� ’Þ2
exp½2:5’=ð1� k2’Þ�

ð14-21Þ

where the value of the constant k2 can be from 0.61 to 1.5, depending upon
the system. However, Coulson et al. (1991) remark that the use of a modified
viscosity for the suspending fluid is more appropriate for the settling of large
particles through a suspension of fines than for the uniform settling of a
‘‘swarm’’ of uniform particles with a narrow size distribution. They state
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that in the latter case the increased resistance is due to the higher velocity
gradients in the interstices rather than to an increased viscosity. However,
the net effect is essentially the same for either mechanism. This approach, as
well as the other two mentioned above, all result in expressions of the
general form

Vs

V0

¼ "2 fnð"Þ; " ¼ 1� ’ ð14-22Þ

which is consistent with Eq. (14-21).
A widely quoted empirical expression for the function in Eq. (14-22) is

that of Richardson and Zaki (1954):

fnð"Þ ¼ "n ð14-23Þ
where

n ¼

4:65 for NRep
< 0:2

4:35N�0:03
Rep

for 0:2 < NRe < 1

4:45N0:1
Rep

for 1 < NRep
< 500

2:39 for NRep > 500

8>>>><
>>>>:

where NRep is the single particle Reynolds number in an ‘‘infinite’’ fluid. An
alternative expression due to Davies et al. (1977) is

Vs

V0

¼ expð�k1’Þ ð14-24Þ

which agrees well with Eq. (14-23) for k1 ¼ 5:5. Another expression for
fn("), deduced by Steinour (1944) from settling data on tapioca in oil, is

fnð"Þ ¼ 10�1:82ð1�"Þ ð14-25Þ
Barnea and Mizrahi (1973) considered the effects of the modified den-

sity and viscosity of the suspending fluid, as represented by Eq. (14-21), as
well as a ‘‘crowding’’ or hindrance effect that decreases the effective space
around the particles and increases the drag. This additional ‘‘crowding fac-
tor’’ is 1þ k2’

1=3, which, when included in Eq. (14-21), gives

Vs

V0

¼ ð1� ’Þ2
ð1þ ’1=3Þ exp½5’=ð3ð1� ’Þ� ð14-26Þ

for the modified Stokes velocity, where the constant 2.5 in Eq. (14-21) has
been replaced by 5/3 and the constant k2 set equal to unity, based upon
settling observations.
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C. Coarse Particles

Coarser particles (e.g., �100 mm or larger) have a relatively small specific
surface, so flocculation is not common. Also, the suspending fluid surround-
ing the particles is the liquid phase rather than a ‘‘pseudocontinuous’’ phase
of fines in suspension, which would modify the fluid viscosity and density
properties. Thus, the properties of the continuous phase can be taken to be
those of the pure fluid unaltered by the presence of fine particles. In this
case, it can be shown by dimensional analysis that the dimensionless
settling velocity Vs=V0 must be a function of the particle drag coefficient,
which in turn is a unique function of the particle Reynolds number, NRep

,
the void fraction (porosity), " ¼ 1� ’, and the ratio of the particle
diameter to container diameter, d/D. Because there is a unique relationship
between the drag coefficient, the Reynolds number, and the Archimedes
number for settling particles, the result can be expressed in functional
form as

Vs

V0

¼ fn NAr;
d

D
; "

� �
ð14-27Þ

It has been found that this relationship can be represented by the empirical
expression (Coulson et al., 1991)

Vs

V0

¼ "n 1þ 2:4
d

D

� ��1

ð14-28Þ

where the exponent n is given by

n ¼ 4:8þ 2:4X

X þ 1
ð14-29Þ

and

X ¼ 0:043N0:57
Ar 1� 2:4

d

D

� �0:27
" #

ð14-30Þ

D. All Flow Regimes

The foregoing expressions give the suspension velocity (Vs) relative to the
single particle free settling velocity, V0, i.e., the Stokes velocity. However, it
is not necessary that the particle settling conditions correspond to the Stokes
regime to use these equations. As shown in Chapter 11, the Dallavalle
equation can be used to calculate the single particle terminal velocity V0
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under any flow conditions from a known value of the Archimedes number,
as follows:

V0 ¼
�

�d
½ð14:42þ 1:827

ffiffiffiffiffiffiffiffi
NAr

p
Þ1=2 � 3:798�2 ð14-31Þ

where

NAr ¼
d3�g��

�2
ð14-32Þ

This result can also be applied directly to coarse particle ‘‘swarms.’’
For fine particle systems, the suspending fluid properties are assumed to be
modified by the fines in suspension, which necessitates modifying the fluid
properties in the definitions of the Reynolds and Archimedes numbers
accordingly. Furthermore, because the particle drag is a direct function of
the local relative velocity between the fluid and the solid (the inter-
stitial relative velocity, Vr), it is this velocity that must be used in the
drag equations (e.g., the modified Dallavalle equation). Since
Vr ¼ Vs=ð1� ’Þ ¼ Vs=", the appropriate definitions for the Reynolds
number and drag coefficient for the suspension (e.g., the particle
‘‘swarm’’) are (after Barnea and Mizrahi, 1973):

NRe’
¼ dVr�

�’
¼ NRe0

Vs

V0

1

ð1� ’Þ exp½5’=3ð1� ’Þ
� �

ð14-33Þ

and

CD’
¼ CD0

V0

Vs

� �2 ð1� ’Þ2
1þ ’1=3

 !
ð14-34Þ

where NRe0
¼ dV0�=� and CD0

¼ 4gdð�S � �Þ=3�V2
0 are the Reynolds

number and drag coefficient for a single particle in an infinite fluid. Data
presented by Barnea and Mizrahi (1973) show that the ‘‘swarm’’ dimension-
less groups NRe’

and CD’
are related by the same expression as the cor-

responding groups for single particles, e.g., by the Dallavalle equation:

CD’
¼ 0:6324þ 4:8

N1=2
Re’

 !2

ð14-35Þ

Thus, the settling velocity, or the terminal velocity of the ‘‘swarm’’ can be
determined from

NRe’ ¼ ½ð14:42þ 1:827N1=2
Ar’

Þ1=2 � 3:798�2 ð14-36Þ
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where

NAr’
¼ 3

4
CD’

N2
Re’

¼ d3�gð�S � �Þ
�2ð1þ ’1=3Þ exp

�10’

3ð1� ’Þ
� �

ð14-37Þ

III. GENERALIZED SEDIMENTATION/FLUIDIZATION

The foregoing equations all apply to hindered settling of a suspension (or
‘‘swarm’’) of particles in a stagnant suspending medium. Barnea and
Mizrahi (1973) showed that these generalized relations may be applied to
fluidization as well, since a fluidized bed may be considered a particle
‘‘swarm’’ suspended by the fluid flowing upward at the terminal velocity
of the swarm. In this case the above equations apply with Vs replaced by the
velocity Vf , i.e., the superficial velocity of the fluidizing medium. Once NRe’

is found from Eqs. (14-36) and (14-37), the settling velocity (Vs) is
determined from Eq. (14-33). Barnea and Mizrahi (1973) presented data
for both settling and fluidization that cover a very wide range of the
dimensionless parameters, as shown in Fig. 14-4.

IV. THICKENING

The process of thickening involves the concentration of a slurry, suspension,
or sludge, usually by gravity settling. Because concentrated suspensions and/
or fine particle dispersions are often involved, the result is usually not a
complete separation of the solids from the liquid but is instead a separation
into a more concentrated (underflow) stream and a diluted (overflow)
stream. Thickeners and clarifiers are essentially identical. The only differ-
ence is that the clarifier is designed to produce a clean liquid overflow with a
specified purity, whereas the thickener is designed to produce a concentrated
underflow product with a specified concentration (Christian, 1994; Tiller
and Tarng, 1995; McCabe et al., 1993).

A schematic of a thickener/clarifier is shown in Fig. 14-5. As indicated
in Fig. 14-3, several settling regions or zones can be identified, depending on
the solids concentration and interparticle interaction. For simplicity, we
consider three primary zones, as indicated in Fig. 14-5 (with the understand-
ing that there are transition zones in between). The top, or clarifying, zone
contains relatively clear liquid from which most of the particles have settled.
Any particles remaining in this zone will settle by free settling. The middle
zone is a region of varying composition through which the particles move by
hindered settling. The size of this region and the settling rate depend on the
local solids concentration. The bottom zone is a highly concentrated settled
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or compressed region containing the settled particles. The particle settling
rate in this zone is very slow.

In the top (clarifying) zone the relatively clear liquid moves upward
and overflows the top. In the middle zone the solid particles settle as the
displaced liquid moves upward, and both the local solids concentration and
the settling velocity vary from point to point. In the bottom (compressed)
zone, the solids and liquid both move downward at a rate that is determined
mainly by the underflow draw-off rate. For a given feed rate and solids
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loading, the objective is to determine the area of the thickener and the
optimum underflow (draw-off) rate to achieve a specified underflow
concentration (’u), or the underflow rate and underflow concentration,
for stable steady state operation.

The solids concentration can be expressed in terms of either the solids
volume fraction (’) or the mass ratio of solids to fluid (R). If ’f is the volume
fraction of solids in the feed stream (flow rate Qf ) and ’u is the volume
fraction of solids in the underflow (flow rate Qu), then the solids ratio in the
feed, Rf ¼ ½(mass of solids)/(mass of fluid)]feed, and in the underflow,
Ru ¼ ½(mass of solids)/(mass of liquid)]u, are given by

Rf ¼
’f�S

ð1� ’f Þ�
; Ru ¼ ’u�S

ð1� ’uÞ�
ð14-38Þ

These relations can be rearranged to give the solids volume fractions in
terms of the solids ratio:

’f ¼
Rf

Rf þ �S=�
; ’u ¼

Ru

Ru þ �S=�
ð14-39Þ

Now the total (net) flux of the solids plus liquid moving through the
thickener at any point is given by

q ¼ Q

A
¼ qs þ qL ¼ ’Vs þ ð1� ’ÞVL ð14-40Þ
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where qs ¼ ’Vs is the local solids flux, defined as the volumetric settling rate
of the solids per unit cross-sectional area of the settler, and qL ¼ ð1� ’ÞVL

is the local liquid flux.
The solids flux depends on the local concentration of solids, the set-

tling velocity of the solids at this concentration relative to the liquid, and the
net velocity of the liquid. Thus the local solids flux will vary within the
thickener because the concentration of solids increases with depth and the
amount of liquid that is displaced (upward) by the solids decreases as the
solids concentration increases, thus affecting the ‘‘upward drag’’ on the
particles. As these two effects act in opposite directions, there will be
some point in the thickener at which the actual solids flux is a minimum.
This point determines the conditions for stable steady-state operation, as
explained below.

The settling behavior of a slurry is normally determined by measuring
the velocity of the interface between the top (clear) and middle suspension
zones in a batch settling test using a closed system (e.g., a graduated cylin-
der) as illustrated in Fig. 14-3. A typical batch settling curve is shown in Fig.
14-6 (see, e.g., Foust et al., 1980). The initial linear portion of this curve
usually corresponds to free (unhindered) settling, and the slope of this
region is the free settling velocity, V0. The nonlinear region of the curve
corresponds to hindered settling in which the solids flux in this region
depends upon the local solids concentration. This can be determined from
the batch settling curve as follows (Kynch, 1952). If the initial height of the
suspension with a solids fraction of ’o is Zo, at some later time the height of
the interface between the clear layer and the hindered settling zone will be
ZðtÞ, where the average solids fraction in this zone is ’ðtÞ. Since the total
amount of solids in the system is constant, assuming the amount of solids in
the clear layer to be negligible, it follows that

ZðtÞ’ðtÞ ¼ Zo’o or ’ðtÞ ¼ ’oZo

ZðtÞ ð14-41Þ

Thus, given the initial height and concentration ðZo; ’o), the average solids
concentration ’ðtÞ corresponding to any point on the curve ZðtÞ can be
determined. Furthermore, the hindered settling velocity and batch solids
flux at this point can be determined from the slope of the curve at that
point, i.e., Vsb ¼ �ðdZ=dtÞ and qsb ¼ ’Vsb. Thus, the batch settling curve
can be converted to a batch flux curve, as shown in Fig. 14-7. The batch flux
curve exhibits a maximum and a minimum, because the settling velocity is
nearly constant in the free settling region (and the flux is directly propor-
tional to the solids concentration), whereas the settling velocity and the flux
drop rapidly with increasing solids concentration in the hindered settling
region as explained above. However, the solids flux in the bottom
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(compressed) zone is much higher because of the high concentration of
solids in this zone. The minimum in this curve represents a ‘‘pinch’’ or
‘‘critical’’ condition in the thickener that limits the total solids flux that
can be obtained under steady-state (stable) operation.

Because the batch flux data are obtained in a closed system with no
outflow, the net solids flux is zero in the batch system and Eq. (14-40)
reduces to VL ¼ �’Vs=ð1� ’Þ. Note that VL and Vs are of opposite sign,
because the displaced liquid moves upward as the solids settle. The
relative velocity between the solids and liquid is Vr ¼ Vs � VL which,
from Eq. (14-20), is Vr ¼ Vs=ð1� ’Þ: It is this relative velocity that controls
the dynamics in the thickener. If the underflow draw-off rate from the
thickener is Qu, the additional solids flux in the thickener due to super-
imposition of this underflow is qu ¼ Qu=A ¼ Vu. Thus, the total solids
flux at any point in the thickener (qs) is equal to the settling flux relative
to the suspension (i.e., the batch flux qsb) at that point, plus the bulk flux due

434 Chapter 14

FIGURE 14-6 Typical batch settling curve for a limestone slurry.



to the underflow draw-off rate, ’Vu, i.e., qs ¼ qsb þ ’qu. Furthermore, at
steady state the net local solids flux in the settling zone (qs) must be equal to
that in the underflow, i.e., qs ¼ qu’u. Eliminating quand rearranging leads to

qsb ¼ qs 1� ’

’u

� �
ð14-42Þ

This equation represents a straight line on the batch flux curve (qsb vs: ’)
that passes through the points (qs; 0) and (0; ’u). The line intersects the ’
axis at ’u and the qsb axis at qs, which is the net local solids flux in the
thickener at the point where the solids fraction is ’. This line is called the
‘‘operating line’’ for the thickener, and its intersection with the batch flux
curve determines the stable operating point for the thickener, as shown in
Fig. 14-7. The ‘‘properly loaded’’ operating line is tangent to the batch flux
curve. At the tangent point, called the critical (or ‘‘pinch’’) point, the local
solids flux corresponds to the steady state value at which the net critical
(minimum) settling rate in the thickener equals the total underflow solids
rate. The ‘‘underloaded’’ line represents a condition for which the underflow
draw-off rate is higher than the critical settling rate, so no sludge layer can
build up and excess clear liquid will eventually be drawn out the bottom (i.e.
the draw-off rate is too high). The ‘‘overloaded’’ line represents the condi-
tion at which the underflow draw-off rate is lower than the critical settling
rate, so the bottom solids layer will build up and eventually rise to the
overflow (i.e., the underflow rate is too low).
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Once the operating line is set, the equations that govern the thickener
operation are determined from a solids mass balance as follows. At steady
state (stable) operating conditions, the net solids flux is

qs ¼
QS

A
¼ Qf’f

A
¼ Qu’u

A
ð14-43Þ

This equation relates the thickener area (A) and the feed rate and loading
(Qf ; ’f ) to the solids underfow rate (Qu) and the underflow loading (’u),
assuming no solids in the overflow. The area of a thickener required for a
specified underflow loading can be determined as follows. For a given
underflow solids loading (’u), the operating line is drawn on the batch
flux curve from ’u on the ’ axis tangent to the batch flux curve at the critical
point, (qc; ’c). The intersection of this line with the vertical axis (’ ¼ 0) gives
the local solids flux (qs) in the thickener that results in stable or steady-state
(properly loaded) conditions. This value is determined from the intersection
of the operating line on the qsb axis or from the equation of the operating
line that is tangent to the critical point (qc; ’c):

qs ¼
qc

1� ’c=’u
ð14-44Þ

If the feed rate (Qf ) and solids loading (’f ) are specified, the thickener area A
is determined from Eq. (14-43). If it is assumed that none of the solids are
carried over with the overflow, the overflow rate Qo is given by

Qo ¼ Qf ð1� ’f Þ �Qf’f
1� ’u
’u

ð14-45Þ

or

Qo

Qf

¼ 1� ’f
’u

ð14-46Þ

Likewise, the underflow rate Qu is given by

Qu ¼ Qf �Qo ¼ Qf �Qf 1� ’f
’u

� �
ð14-47Þ

or

Qu

Qf

¼ ’f
’u

ð14-48Þ

PROBLEMS

1. Calculate the flow rate of air (in scfm) required to fluidize a bed of sand

(SG ¼ 2:4), if the air exits the bed at 1 atm, 708F. The sand grains have an
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equivalent diameter of 500 mm and the bed is 2 ft in diameter and 1 ft deep, with

a porosity of 0.35. What flow rate of air would be required to blow the sand

away?

2. Calculate the flow rate of water (in gpm) required to fluidize a bed of 1/16 in.

diameter lead shot (SG = 11.3). The bed is 1 ft in diameter, 1 ft deep, and has a

porosity of 0.18. What water flow rate would be required to sweep the bed

away?

3. Calculate the range of water velocities that will fluidize a bed of glass spheres

(SG ¼ 2:1) if the sphere diameter is: (a) 2 mm, (b) 1 mm, (c) 0.1 mm.

4. A coal gasification reactor operates with particles of 500 mm diameter and

density of 1.4 g/cm3. The gas may be assumed to have properties of air at

1,0008F and 30 atm. Determine the range of superficial gas velocity over

which the bed is in a fluidized state.

5. A bed of coal particles, 2 ft in diameter and 6 ft deep, is to be fluidized using a

hydrocarbon liquid with a viscosity 15 cP and a density of 0.9 g/cm3. The coal

particles have a density of 1.4 g/cm3 and an equivalent spherical diameter of 1/8

in. If the bed porosity is 0.4:

(a) Determine the range of liquid superficial velocities over which the bed is

fluidized.

(b) Repeat the problem using the ‘‘particle swarm’’ (Barnea and Mizrah, 1973)

‘‘swarm terminal velocity’’ approach, assuming (1) ’ ¼ 1� ";
ð2Þ ’ ¼ 1� "mf .

6. A catalyst having spherical particles with dp ¼ 50mm and �s ¼ 1:65 g/cm3 is to

be used to contact a hydrocarbon vapor in a fluidized reactor at 9008F, 1 atm.

At operating conditions, the fluid viscosity is 0.02 cP and its density is 0.21

lbm=ft
3. Determine the range of fluidized bed operation, i.e., calculate;

(a) Minimum fluidization velocity for "mf ¼ 0:42.
(b) The particle terminal velocity.

7. A fluidized bed reactor contains catalyst particles with a mean diameter of

500mm and a density of 2.5 g/cm3. The reactor feed has properties equivalent

to 358 API distillate at 4008F. Determine the range of superficial velocities over

which the bed will be in a fluidized state.

8. Water is pumped upward through a bed of 1 mm diameter iron oxide particles

(SG ¼ 5:3). If the bed porosity is 0.45, over what range of superficial water

velocity will the bed be fluidized?

9. A fluidized bed combustor is 2 m in diameter and is fed with air at 2508F, 10
psig, at a rate of 2000 scfm. The coal has a density of 1.6 g/cm3 and a shape

factor of 0.85. The flue gas from the combustor has an average MW of 35 and

leaves the combustor at a rate of 2100 scfm at 25008F and 1 atm. What is the

size range of the coal particles that can be fluidized in this system?

10. A fluidized bed incinerator, 3 m in diameter and 0.56 m high, operates at 8508C
using a sand bed. The sand density is 2.5 g/cm3, and the average sand grain has

a mass of 0.16 mg and a sphericity of 0.85. In the stationary (packed) state, the

bed porosity is 35%. Find:

(a) The range of air velocities that will fluidize the bed.
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(b) The compressor power required if the bed is operated at 10 times the mini-

mum fluidizing velocity and the compressor efficiency is 70%. The com-

pressor takes air in from the atmosphere at 208C, and the gases leave the

bed at 1 atm.

11. Determine the range of flow rates (in gpm) that will fluidize a bed of 1 mm cubic

silica particles (SG ¼ 2:5) with water. The bed is 10 in. in diameter, 15 in. deep.

12. Determine the range of velocities over which a bed of granite particles (SG ¼ 4)

would be fluidized using

(a) Water at 708F
(b) Air at 708F and 20 psig.

13. Calculate the velocity of water that would be required to fluidize spherical

particles with SG ¼ 1:6 and diameter of 1.5 mm, in a tube with a diameter of

10 mm. Also, determine the water velocity that would sweep the particles out of

the tube. Assume:

(a) The bed starts as a packed bed and is fluidized when the pressure drop due

to friction through the bed balances the weight of the bed.

(b) The bed is considered to be a ‘‘swarm’’ of particles falling at the terminal

velocity of the ‘‘swarm.’’

(c) Compare the results of (a) and (b). Comment on any uncertainties or lim-

itations in your results.

14. You want to fluidize a bed of solid particles using water. The particles are

cubical, with a length on each side of 1/8 in. and on a SG of 1.2.

(a) What is the sphericity factor for these particles, and what is their equivalent

diameter?

(b) What is the approximate bed porosity at the point of fluidization of the bed?

(c) What velocity of water would be required to fluidize the bed?

(d) What velocity of water would sweep the particles out of the bed?

15. Solid particles with a density of 1.4 g/cm3 and a diameter of 0.01 cm are fed

from a hopper into a line where they are mixed with water, which is draining by

gravity from an open tank, to form a slurry having 0.4 lbm of solids per lbm of

water. The slurry is transported by a centrifugal pump through a 6 in. sch 40

pipeline that is 0.5 mi long, at a rate of 1000 gpm. The slurry can be described as

a Bingham plastic with a yield stress of 120 dyn/cm2 and a limiting viscosity of

50 cP.

(a) If the pipeline is at 608F, and the pump is 60% efficient with a required

NPSH of 15 ft, what horsepower motor would be required to drive the

pump?

(b) If the pump is 6 ft below the bottom of the water storage tank and the water

in the line upstream of the pump is at 908C (Pv ¼ 526 mmHg), what depth

of water in the tank would be required to prevent the pump from cavitating?

(c) A venturi meter is installed in the line to measure the slurry flow rate. If the

maximum pressure drop reading for the venturi is to be 29 in. of water,

what diameter should the venturi throat be?

(d) The slurry is discharged from the pipeline to a settling tank, where it is

desired to concentrate the slurry to 1 lbm of solids per lbm of water (in
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the underflow). Determine the required diameter of the settling tank and

the volumetric flow rates of the overflow (Qo) and underflow (Qu), in

gpm.

(e) If the slurry were to be sent to a rotary drum filter instead to remove all of

the solids, determine the required size of the drum (assuming that the drum

length and diameter are equal). The drum rotates at 3 rpm, with 25% of its

surface submerged in the slurry, and operates at a vacuum of 20 in.Hg. Lab

test data taken on the slurry with 0.5 ft2 of the filter medium, at a constant

flow rate of 3 gpm, indicated a pressure drop of 1.5 psi after 1 min of

filtration and 2.3 psi after 2 min of operation.

16. A sludge is to be clarified in a thickener that is 50 ft in diameter. The sludge

contains 35% solids by volume (SG ¼ 1:8) in water, with an average particle

size of 25 mm. The sludge is pumped into the center of the tank, where the solids

are allowed to settle and the clarified liquid overflows the top. Estimate the

maximum flow rate of the sludge (in gpm) that this thickener can handle.

Assume that the solids are uniformly distributed across the tank and that all

particle motion is vertical.

17. In a batch thickener, an aqueous sludge containing 35% by volume of solids

(SG ¼ 1:6), with an average particle size of 50 mm, is allowed to settle. The

sludge is fed to the settler at a rate of 1000 gpm, and the clear liquid

overflows the top. Estimate the minimum tank diameter required for this

separation.

18. Ground coal is slurried with water in a pit, and the slurry is pumped out of the

pit at a rate of 500 gpm with a centrifugal pump and into a classifier. The

classifier inlet is 50 ft above the slurry level in the pit. The piping system consists

of an equivalent length of 350 ft of 5 in. sch 40 pipe and discharges into the

classifier at 2 psig. The slurry may be assumed to be a Newtonian fluid with a

viscosity of 30 cP, a density of 75 lbm=ft
3, and a vapor pressure of 30 mmHg.

The solid coal has an SG ¼ 1:5.

(a) How much power would be required to pump the slurry?

(b) Using the pump characteristic charts in Appendix H, select the best pump

for this job. Specify the pump size, motor speed (rpm), and impeller dia-

meter that you would use. Also determine the pump efficiency and NPSH

requirement.

(c) What is the maximum height above the level of the slurry in the pit that the

pump could be located without cavitating?

(d) A Venturi meter is located in a vertical section of the line to monitor the

slurry flow rate. The meter has a 4 in. diameter throat, and the pressure

taps are 1 ft apart. If a DP cell (transducer) is used to measure the

pressure difference between the taps, what would it read (in inches of

water)?

(e) A 908 flanged elbow is located in the line at a point where the pressure

(upstream of the elbow) is 10 psig. What are the forces transmitted to the

pipe by the elbow from the fluid inside the elbow. (Neglect the weight of the

fluid.)
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(f) The classifier consists of three collection tanks in series that are full of

water. The slurry enters at the top on the side of the first tank, and leaves

at the top on the opposite side, which is 5 ft from the entrance. The solids

settle into the tank as the slurry flows into it and then overflows into the

next tank. The space through which the slurry flows above the tank is 2 ft

wide and 3 ft high. All particles for which the settling time in the space

above the collection tank is less than the residence time of the fluid flowing

in the space over the collection tank will be trapped in that tank. Determine

the diameter of the largest particle that will not settle into each of the three

collection tanks. Assume that the particles are equivalent spheres and that

they fall at their terminal velocity.

(g) The suspension leaving the classifier is transferred to a rotary drum filter to

remove the remaining solids. The drum operates at a constant pressure

difference of 5 psi and rotates at a rate of 2 rpm with 20% of the surface

submerged. Lab tests on a sample of the suspension through the same filter

medium were conducted at a constant flow rate of 1 gpm through 0.25 ft2 of

the medium. It was found that the pressure drop increased to 2.5 psi after 10

min, and the resistance of the medium was negligible. How much filter area

would be required to filter the liquid?

19. You want to concentrate a slurry from 5% (by vol) solids to 30% (by vol) in a

thickener. The solids density is 200 lbm=ft
3, and that of the liquid is 62.4

lbm=ft
3. A batch settling test was run on the slurry, and the analysis of the

test yielded the following information:

Vol. fraction solids Settling rate

’ [lbm=hrft
2Þ�

0.05 73.6

0.075 82.6

0.5 79.8

0.125 70.7

0.15 66

0.2 78

0.25 120

0.3 200

(a) If the feed flow rate of the slurry is 500 gpm, what should the area of the

thickener tank be?

(b) What are the overflow and underflow rates?

20. You must determine the maximum feed rate that a thickener can handle to

concentrate a waste suspension from 5% solids by volume to 40% solids by

volume. The thickener has a diameter of 40 ft. A batch flux test in the labora-

tory for the settled height versus time was analyzed to give the data below for

the solids flux versus solids volume fraction. Determine:

(a) The proper feed rate of liquid in gpm.
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(b) The overflow liquid rate in gpm.

(c) The underflow liquid rate in gpm.

Vol. fraction solids Settling rate

’ [lbm=hrft
2Þ�

0.03 0.15

0.05 0.38

0.075 0.46

0.10 0.40

0.13 0.33

0.15 0.31

0.20 0.38

0.25 0.60

0.30 0.80

NOTATION

A area, [L2]

as particle surface area/volume, [1/L]

CD drag coefficient, [—]

CD’
swarm drag coefficient, [—]

D container diameter, [L]

d particle diameter, [L]

ef energy dissipated per unit mass of fluid, ½FL=M ¼ L2=t2�
fPM porous media friction factor, [—]

P pressure, ½F=L2 ¼ M=Lt2�
g acceleration due to gravity, ½L=t2�
h height of bed, [L]

NAr Archimedes number, [—]

NAr’
swarm Archimedes number, [—]

N̂NAr Reynolds number defined by Eq. (14-7), [—]

NRe’
swarm Reynolds number, Eq. (14-33), [—]

NRe;PM porous media Reynolds number, [—]

t time, [t]

V velocity, [L/t]

�( ) ð Þ2 � ð Þ1
" porosity or void fraction, [—]

� viscosity, [M/Lt]

’ volume fraction of solids, [—]

� density, [M/L3]

 sphericity factor, [—]
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Subscripts

c critical point

f fluid, feed

i inlet

L liquid

mf minimum fluidization condition

o infinitely dilute condition, overflow

p particle

S solid

s superficial or solid ‘‘swarm’’, or spherical

u underflow

’ solid suspension of volume fraction ’
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15

Two-Phase Flow

I. SCOPE

The term ‘‘two-phase flow’’ covers an extremely broad range of situations,
and it is possible to address only a small portion of this spectrum in one
book, let alone one chapter. Two-phase flow includes any combination of
two of the three phases solid, liquid, and gas, i.e., solid–liquid, gas–liquid,
solid–gas, or liquid–liquid. Also, if both phases are fluids (combinations of
liquid and/or gas), either of the phases may be continuous and the other
distributed (e.g., gas in liquid or liquid in gas). Furthermore, the mass ratio
of the two phases may be fixed or variable throughout the system. Examples
of the former are nonvolatile liquids with solids or noncondensable gases,
whereas examples of the latter are flashing liquids, soluble solids in liquids,
partly miscible liquids in liquids, etc. In addition, in pipe flows the two
phases may be uniformly distributed over the cross section (i.e., homo-
geneous) or they may be separated, and the conditions under which these
states prevail are different for horizontal flow than for vertical flow.

For uniformly distributed homogeneous flows, the fluid properties
can be described in terms of averages over the flow cross section. Such
flows can be described as ‘‘one dimensional,’’ as opposed to separated or
heterogeneous flows, in which the phase distribution varies over the cross
section.
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We will focus on two-phase flow in pipes, which includes the transport
of solids as slurries and suspensions in a continuous liquid phase, pneumatic
transport of solid particles in a continuous gas phase, and mixtures of gas or
vapor with liquids in which either phase may be continuous. Although it
may appear that only one additional ‘‘variable’’ is added to the single-phase
problems previously considered, the complexity of two-phase flow is greater
by orders of magnitude. It is emphasized that this exposition is only an
introduction to the subject, and literally thousands of articles can be
found in the literature on various aspects of two-phase flow. It should
also be realized that if these problems were simple or straightforward, the
number of papers required to describe them would be orders of magnitude
smaller. Useful information can be found in Brodkey (1967), Butterworth
and Hewitt (1977), Chisholm (1983), Darby (1986), Fan and Zhu (1998),
Govier and Aziz (1972), Hedstroni (1982), Holland and Bragg (1995),
Klinzing et al. (1997), Levy (1999), Molerus (1993), Shook and Rocco
(1991) and Wallis (1969) among others.

II. DEFINITIONS

Before proceeding further, it is appropriate to define the various flow rates,
velocities, and concentrations for two-phase flow. There is a bewildering
variety of notation in the literature relative to two-phase flow, and we will
attempt to use a notation that is consistent with the definitions below for
solid–liquid, solid–gas, and liquid–gas systems.

The subscripts m, L, S, and G will represent the local two-phase
mixture, liquid phase, solid phase and gas phase, respectively. The defini-
tions below are given in terms of solid–liquid (S–L) mixtures, where the solid
is the more dense distributed phase and the liquid the less dense continuous
phase. The same definitions can be applied to gas–liquid (G–L) flows if the
subscript S is replaced by L (the more dense phase) and the L by G (the less
dense phase). The symbol ’ is used for the volume fraction of the more
dense phase, and " is the volume fraction of the less dense phase (obviously
’ ¼ 1� "). An important distinction is made between (’; "Þ and (’m; "m).
The former (’; "Þ refers to the overall flow-average (equilibrium) values
entering the pipe, i.e.,

’ ¼ QS

QS þQL

¼ 1� " ð15-1Þ

whereas the latter (’m; "m) refers to the local values at a given position in the
pipe. These are different (’m 6¼ ’; "m 6¼ ") when the local velocities of the
two phases are not the same (i.e., when slip is significant), as will be shown
below.
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Mass flow rate ( _mm) and volume flow rate (Q):

_mmm ¼ _mmS þ _mmL ¼ �SQS þ �LQL ¼ �mQm ð15-2Þ
Mass flux (G):

Gm ¼ _mmm

A
¼ GS þ GL ¼ _mmS þ _mmL

A
ð15-3Þ

Volume flux:

Jm ¼ JS þ JL ¼ Gm

�m
¼ GS

�S
þ GL

�L
¼ QS þQL

A
¼ Vm ð15-4Þ

Phase velocity:

VS ¼ JS
’

¼ JS
1� " ; VL ¼ JL

"
¼ JL

1� ’ ð15-5Þ

Relative (slip) velocity and slip ratio:

Vr ¼ VL � VS; S ¼ VL

VS

¼ 1þ Vr

VS

ð15-6Þ

Note that the total volume flux (Jm) of the mixture is the same as the super-
ficial velocity (VmÞ, i.e., the total volumetric flow divided by the total flow
area. However, the local velocity of each phase (Vi) is greater than the
volume flux of that phase (Ji), because each phase occupies only a fraction
of the total flow area. The volume flux of each phase is the total volume flow
rate of that phase divided by the total flow area.

The relative slip velocity (or slip ratio) is an extremely important
variable. It comes into play primarily when the distributed phase density
is greater than that of the continuous phase and the heavier phase tends to
lag behind the lighter phase for various reasons (explained below). The
resulting relative velocity (slip) between the phases determines the drag
exerted by the continuous (lighter) phase on the distributed (heavier)
phase. One consequence of slip (as shown below) is that the concentration
or ‘‘holdup’’ of the more dense phase within the pipe (’m) is greater than
that entering or leaving the pipe, because its residence time is longer.
Consequently, the concentrations and local phase velocities within a pipe
under slip conditions depend upon the properties and degree of interaction
of the phases and cannot be determined solely from a knowledge of the
entering and leaving concentrations and flow rates. Slip can be determined
only indirectly by measurement of some local flow property within the pipe
such as the holdup, local phase velocity, or local mixture density.
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For example, if ’ is the solids volume fraction entering the pipe at
velocity V, and ’m is the local volume fraction in the pipe where the solid
velocity is VS, a component balance gives

VS

V
¼ ’

’m
and

VL

V
¼ 1� ’

1� ’m
ð15-7Þ

Substituting these expressions into the definition of the slip velocity (and
dividing by the entering velocity, V, to make the results dimensionless) gives

�VVr ¼
Vr

V
¼ VL � VS

VL þ VS

¼ S � 1

S þ 1
¼ ’m � ’
’mð1� ’mÞ

ð15-8Þ

This can be solved for ’m in terms of �VVr and ’:

’m ¼ 1

2
1� 1

�VVr

þ 1

�VVr

� 1

� �2

þ 4’
�VVr

" #1=2
8<
:

9=
; ð15-9Þ

For example, if the entering solids fraction ’ is 0.4, the corresponding values
of the local solids fraction ’m for relative slip velocities ( �VVr) of 0.01, 0.1, and
0.5 are 0.403, 0.424, and 0.525, respectively. There are many ‘‘theoretical’’
expressions for slip, but practical applications depend on experimental
observations and correlations (which will be presented later). In gas–liquid
or gas–solid flows, ’m will vary along the pipe, because the gas expands as
the pressure drops and speeds up as it expands, which tends to increase the
slip, which in turn increases the holdup of the denser phase.

The mass fraction (x) of the less dense phase (which, for gas–liquid
flows, is called the quality) is x ¼ _mmL=ð _mmS þ _mmLÞ, so the mass flow ratio can
be written

_mmL

_mmS

¼ x

1� x
¼ �LVLA"m
�SVSAð1� "mÞ

¼ S
�L
�S

� �
"m

1� "m

� �
ð15-10Þ

This can be rearranged to give the less dense phase volume fraction in terms
of the mass fraction and slip ratio:

"m ¼ x

xþ Sð1� xÞ�L=�S
ð15-11Þ

The local density of the mixture is given by

�m ¼ "m�L þ ð1� "mÞ�S ð15-12Þ
which depends on the slip ratio S through Eq. (15-11). The corresponding
expression for the local in situ holdup of the more dense phase is

’m ¼ 1� "m ¼ Sð1� xÞð�L=�SÞ
xþ Sð1� xÞð�L=�SÞ

ð15-13Þ
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Note that both the local mixture density and the holdup increase as the slip
ratio (S) increases. The ‘‘no slip’’ (S ¼ 1) density or volume fraction is
identical to the equilibrium value entering (or leaving) the pipe.

III. FLUID–SOLID TWO-PHASE PIPE FLOWS

The conveying of solids by a fluid in a pipe can involve a wide range of flow
conditions and phase distributions, depending on the density, viscosity, and
velocity of the fluid and the density, size, shape, and concentration of the
solid particles. The flow regime can vary from essentially uniformly
distributed solids in a ‘‘pseudohomogeneous’’ (symmetrical) flow regime
for sufficiently small and/or light particles above a minimum concentration
to an almost completely segregated or stratified (asymmetrical) transport of
a bed of particles on the pipe wall. The demarcation between the ‘‘homo-
geneous’’ and ‘‘heterogeneous’’ flow regimes depends in a complex manner
on the size and density of the solids, the fluid density and viscosity, the
velocity of the mixture, and the volume fraction of solids. Figure 15-1
illustrates the approximate effect of particle size, density, and solids loading
on these regimes.

Either a liquid or a gas can be used as the carrier fluid, depending on
the size and properties of the particles, but there are important differences
between hydraulic (liquid) and pneumatic (gas) transport. For example, in
liquid (hydraulic) transport the fluid–particle and particle–particle inter-
actions dominate over the particle–wall interactions, whereas in gas
(pneumatic) transport the particle–particle and particle–wall interactions
tend to dominate over the fluid–particle interactions. A typical ‘‘practical’’
approach, which gives reasonable results for a wide variety of flow
conditions in both cases, is to determine the ‘‘fluid only’’ pressure drop
and then apply a correction to account for the effect of the particles from
the fluid–particle, particle–particle, and/or particle–wall interactions. A
great number of publications have been devoted to this subject, and
summaries of much of this work are given by Darby (1986), Govier and
Aziz (1972), Klinzing et al. (1997), Molerus (1993), and Wasp et al. (1977).
This approach will be addressed shortly.

A. Pseudohomogeneous Flows

If the solid particles are very small (e.g., typically less than 100 �m) and/or
not tremendously denser than the fluid, and/or the flow is highly turbulent,
the mixture may behave as a uniform suspension with essentially continuous
properties. In this case, the mixture can be described as a ‘‘pseudo single-
phase’’ uniform fluid and the effect of the presence of the particles can be
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accounted for by appropriate modification of the fluid properties (density
and viscosity). For relatively dilute suspensions (5% by volume or less), the
mixture will behave as a Newtonian fluid with a viscosity given by the
Einstein equation,

� ¼ �Lð1þ 2:5’Þ ð15-14Þ
where �L is the viscosity of the suspending (continuous) Newtonian fluid
and ’ ¼ 1� " is the volume fraction of solids. The density of the mixture is
given by

�m ¼ �Lð1� ’Þ þ �S’ ð15-15Þ
For greater concentrations of fine particles the suspension is more likely to
be non-Newtonian, in which case the viscous properties can probably be
adequately described by the power law or Bingham plastic models. The
pressure drop–flow relationship for pipe flow under these conditions can
be determined by the methods presented in Chapters 6 and 7.

B. Heterogeneous Liquid–Solid Flows

Figure 15-2 shows how the pressure gradient and flow regimes in a
horizontal pipe depend on velocity for a typical heterogeneous suspension.
It is seen that the pressure gradient exhibits a minimum at the ‘‘minimum
deposit velocity,’’ the velocity at which a significant amount of solids begins
to settle in the pipe. A variety of correlations have been proposed in the
literature for the minimum deposit velocity, one of the more useful being
(Hanks, 1980)

Vmd ¼ 1:32’0:186½2gDðs� 1Þ�1=2ðd=DÞ1:6 ð15-16Þ
where s ¼ �S=�L. At velocities below Vmd the solids settle out in a bed along
the bottom of the pipe. This bed can build up and plug the pipe if the
velocity is too low, or it can be swept along the pipe wall if the velocity is
near the minimum deposit velocity. Above the minimum deposit velocity,
the particles are suspended but are not uniformly distributed (’’symmetri-
cal’’) until turbulent mixing is high enough to overcome the settling forces.
One criterion for a nonsettling suspension is given by Wasp (1977):

Vr

V*
� 0:022 ð15-17Þ

where Vt is the particle terminal velocity and V* is the friction velocity:

V* ¼
ffiffiffiffiffi
�w
�

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
�PD

4�L

s
ð15-18Þ

Two-Phase Flow 449



For heterogeneous flow, one approach to determining the pressure
drop in a pipe is

�Pm ¼ �PL þ�PS ð15-19Þ
where �PLis the ‘‘fluid only’’ pressure drop and �PS is an additional
pressure drop due to the presence of the solids. For uniformly sized particles
in a Newtonian liquid, �PL is determined as for any Newtonian fluid in a
pipe. For a broad particle size distribution, the suspension may behave more
like a heterogeneous suspension of the larger particles in a carrier vehicle
composed of a homogeneous suspension of the finer particles. In this case,
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the homogeneous carrier will likely be non-Newtonian, and the methods
given in Chapter 6 for such fluids should be used to determine �PL.

The procedure for determining �PS that will be presented here is that
of Molerus (1993). The basis of the method is a consideration of the extra
energy dissipated in the flow as a result of the fluid–particle interaction. This
is characterized by the particle terminal settling velocity in an infinite fluid in
terms of the drag coefficient, Cd:

Cd ¼ 4gðs� 1Þd
3V2

t

ð15-20Þ

where s ¼ �S=�L. Molerus considered a dimensional analysis of the variables
in this system, along with energy dissipation considerations, to arrive at the
following dimensionless groups:

Vr

V

1

s

� �1=2

¼
�VVrffiffi
s

p ð15-21Þ

N2
Frp

¼ V2

ðs� 1Þdg ð15-22Þ

N2
Frt ¼

V2
t

ðs� 1ÞDg
ð15-23Þ

where V is the overall average velocity in the pipe, Vr ¼ VL � VS is the
relative (‘‘slip’’) velocity between the fluid and the solid, Vt is the terminal
velocity of the solid particle, d is the particle diameter, D is the tube
diameter, NFrp

is the particle Froude number, and NFrt
is the tube Froude

number. The slip velocity is the key parameter in the mechanism of
transport and energy dissipation, because the drag force exerted by the
fluid on the particle depends on the relative velocity. That is, the fluid
must move faster than the particles if it is to carry them along the pipe.
The particle terminal velocity is related to the particle drag coefficient and
Reynolds number, as discussed in Chapter 11 (e.g., unknown velocity), for
either a Newtonian or non-Newtonian carrier medium.

Molerus (1993) developed a ‘‘state diagram’’ that shows a correlation
between these dimensionless groups based on an extremely wide range of
data covering 25 < D < 315 mm, 12 < d < 5200�m, and 1270 < �S < 5250
kg/m3 for both hydraulic and pneumatic transport. This state diagram is
shown in Fig. 15-3 in the form

�VVr0ffiffi
s

p ¼ fnð ffiffi
s

p
NFrp

;N2
Frt

Þ ð15-24Þ
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where �VVr0
is the dimensionless ‘‘single-particle’’ slip velocity as determined

from the diagram, which in turn is used to define the parameter X0:

X0 ¼
�VV2
r0

1� �VVr0

ð15-25Þ

Using this value of X0 and the entering solids volume fraction (’), a value of
X is determined as follows:

For 0 < ’ < 0:25 : X ¼ X0

For ’ > 0:25 : X ¼ X0 þ 0:1N2
Frt ð’� 0:25Þ

The parameter X is the dimensionless solids contribution to the pressure
drop:

�PS

’�Lðs� 1ÞgL
Vt

V

� �2

� X ð15-26Þ

Knowing X determines �PS, which is added to �PL to get the total pressure
drop in the pipe.
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The foregoing procedure is straightforward if all the particles are of
the same diameter (d). However, if the solid particles cover a broad range of
sizes, the procedure must be applied for each particle size (diameter di,
concentration ’i) to determine the corresponding contribution of that
particle size to the pressure drop �PSi, The total solids contribution to
the pressure drop is then ��PSi . If the carrier vehicle exhibits non-
Newtonian properties with a yield stress, particles for which
d � �o=ð0:2g��) (approximately) will not fall at all.

For vertical transport, the major difference is that no ‘‘bed’’ can form
on the pipe wall but, instead, the pressure gradient must overcome the
weight of the solids as well as the fluid/particle drag. Thus the solids holdup
and hence the fluid velocity are significantly higher for vertical transport
conditions than for horizontal transport. However, vertical flow of slurries
and suspensions is generally avoided where possible owing to the much
greater possibility of plugging if the velocity drops.

Example 15-1: Determine the pressure gradient (in psi/ft) required to
transport a slurry at 300 gpm through a 4 in. sch 40 pipeline. The slurry
contains 50% (by weight) solids (SG ¼ 2:5) in water. The slurry contains a
bimodal particle size distribution, with half the particles below 100 �m and
the other half about 2000 �m. The suspension of fines is stable and consti-
tutes a pseudohomogeneous non-Newtonian vehicle in which the larger
particles are suspended. The vehicle can be described as a Bingham plastic
with a limiting viscosity of 30 cP and a yield stress of 55 dyn/cm2.

Solution. First convert the mass fraction of solids to a volume frac-
tion:

’ ¼ x

s� ðs� 1Þx ¼ 0:286

where s ¼ �S=�L. Half of the solids is in the non-Newtonian ‘‘vehicle,’’ and
half will be ‘‘settling,’’ with a volume fraction of 0.143. Thus the density of
the ‘‘vehicle’’ is

�m ¼ �S’þ �Lð1� ’Þ ¼ 1:215 g=cm3

Now calculate the contribution to the pressure gradient due to the
continuous Bingham plastic vehicle as well as the contribution from the
‘‘nonhomogeneous’’ solids. For the first part, we use the method presented
in Section 6 V.C of Chapter 6 for Bingham plastics. From the given data, we
can calculate NRe;BP ¼ 9540 and NHe ¼ 77; 600. From Eq. (6-62) this gives a
friction factor of f ¼ 0:0629 and a corresponding pressure gradient of
(�P=LÞf ¼ 2f �V2=D ¼ 1:105 psi/ft.
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The pressure gradient due to the heterogeneous component is
determined by the Molerus method. This first requires the determination
of the terminal velocity of the settling particles, using the method given in
Chapter 11, Section IV. D, for the larger particles settling in a Bingham
plastic. This requires determining NRe;BP;NBi and Cd for the particle, all of
which depend on Vt. This can be done using an iterative procedure to find
Vt, such as the ‘‘solve’’ function on a calculator or spreadsheet. The result is
Vt ¼ 19:5 cm/s. This is used to calculate the particle and tube Froude num-
bers, N2

Frp
¼ 25:6 and N2

Frt
¼ 0:0358. These values are used with Fig. 15-3 to

find ð �VVr=
ffiffi
s

p Þ ¼ 0:05, which corresponds to a value of X ¼ 0:00279. From
the definition of X, this gives (�P=LÞs ¼ 0:0312 psi/ft and thus a total
pressure gradient of ð�P=LÞt ¼ 1:14 psi/ft. In this case, the pressure drop
due to the Bingham plastic ‘‘vehicle’’ is much greater than that due to the
heterogeneous particle contribution.

C. Pneumatic Solids Transport

The transport of solid particles by a gaseous medium presents a considerable
challenge, because the solid is typically three orders of magnitude more
dense that the fluid (compared with hydraulic transport, in which the
solid and liquid densities normally differ by less than an order of magni-
tude). Hence problems that might be associated with instability in hydraulic
conveying are greatly magnified in the case of pneumatic conveying. The
complete design of a pneumatic conveying system requires proper attention
to the prime mover (fan, blower, or compressor), the feeding, mixing, and
accelerating conditions and equipment; and the downstream separation
equipment as well as the conveying system. A complete description of
such a system is beyond the scope of this book, and the interested reader
should consult the more specialized literature in the field, such as the
extensive treatise of Klinzing et al. (1997).

One major difference between pneumatic transport and hydraulic
transport is that the gas–solid interaction for pneumatic transport is
generally much smaller than the particle–particle and particle–wall interac-
tion. There are two primary modes of pneumatic transport: dense phase and
dilute phase. In the former, the transport occurs below the saltation velocity
(which is roughly equivalent to the minimum deposit velocity) in plug flow,
dune flow, or sliding bed flow. Dilute phase transport occurs above the
saltation velocity in suspended flow. The saltation velocity is not the same
as the entrainment or ‘‘pickup’’ velocity, however, which is approximately
50% greater than the saltation velocity. The pressure gradient–velocity
relationship is similar to the one for hydraulic transport, as shown in
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Fig.15-4, except that transport is possible in the dense phase in which the
pressure gradient, though quite large, is still usually not as large as for
hydraulic transport. The entire curve shifts up and to the right as the solids
mass flux increases. A comparison of typical operating conditions for dilute
and dense phase pneumatic transport is shown in Table 15-1.

Although lots of information is available on dilute phase transport
that is useful for designing such systems, transport in the dense phase is
much more difficult and more sensitive to detailed properties of the specific
solids. Thus, because operating experimental data on the particular materi-
als of interest are usually needed for dense phase transport, we will limit our
treatment here to the dilute phase.
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TABLE 15-1 Dilute vs. Dense Phase Pneumatic Transport

Conveying Solids
Conveying Solid loading velocity �P volume
mode (e.g. kgS/kgG [ft/s (m/s)] [psi (kPa)] fraction

Dilute phase < 15 > 35ð10Þ < 15ð100Þ < 1%
Dense phase > 15 < 35ð10Þ > 15ð100Þ > 30%



There are a variety of correlations for the saltation velocity, one of the
most popular being that of Rizk (1973):

�s ¼
_mmS

_mmG

¼ 10��N�
Frs

ð15-27Þ

where

� ¼ 1:44d þ 1:96; � ¼ 1:1d þ 2:5

and

NFRs
¼ Vgsffiffiffiffiffiffi

gd
p ð15-28Þ

Here �s is the ‘‘solids loading’’ (mass of solids/mass of gas), Vgs
is the

saltation gas velocity, and d is the particle diameter in mm. (It should be
pointed out that correlations such as this are based, of necessity, on a finite
range of conditions and have a relatively broad range of uncertainty, e.g.,
	50�60% is not unusual.)

1. Horizontal Transport

Two major effects contribute to the pressure drop in horizontal flow:
acceleration and friction loss. Initially the inertia of the particles must be
overcome as they are accelerated up to speed, and then the friction loss in
the mixture must be overcome. If VS is the solid particle velocity and _mmS ¼
�SVSð1� "ÞA is the solids mass flow rate, the acceleration component of the
pressure drop is

�PacS
þ�PacG

¼ VS

_mmS

A
þ �GV

2
G

2
¼ �GV

2
G

2
1þ 2

_mmS

_mmG

VS

VG

� �� �
ð15-29Þ

The slip ratio VG=VS ¼ S can be estimated, for example, from the IGT
correlation (see, e.g., Klinzing et al., 1997):

1

S
¼ VS

VG

¼ 1� 0:68d0:92�0:5S

�0:2G D0:54
ð15-30Þ

in which d and D are in meters and �S and �G are in kg/m3. For vertical
transport, the major differences are that no ‘‘bed’’ on the pipe wall is
possible, instead, the pressure gradient must overcome the weight of the
solids as well as the fluid/particle drag, so that the solids holdup and hence
the fluid velocity must be significantly higher under transport conditions.

The steady flow pressure drop in the pipe can be deduced from a
momentum balance on a differential slice of the fluid–particle mixture in a
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constant diameter pipe, as was done in Chapter 5 for single-phase flow (see
Fig. 5-6). For steady uniform flow through area Ax,X

Fx ¼ 0 ¼ dFxp
þ dFxg

þ dFxw

¼ �AxdP� ½�Sð1� "mÞ þ �G"m�gAx dz� ½�wS
þ �wG

�Wp dX

ð15-31Þ
where �wS

and �wG
are the effective wall stresses resulting from energy dis-

sipation due to the particle–particle as well as particle–wall and gas–wall
interaction, and Wp is the wetted perimeter. Dividing by Ax, integrating,
and solving for the pressure drop, ��P ¼ P1 � P2,

��P ¼ ½�Sð1� "mÞ þ �G"m�g�zþ ð�wS
þ �wG

Þ4L=Dh ð15-32Þ
where Dh ¼ 4Ax=Wp is the hydraulic diameter. The void fraction "m is the
volume fraction of gas in the pipe, i.e.,

"m ¼ 1� _mmS

�SVSA
¼ x

xþ Sð1� xÞ�G=�S
ð15-33Þ

The wall stresses are related to corresponding friction factors by

�wS
¼ fS

2
�Sð1� "mÞV2

S ¼ �PfS

4L=Dh

ð15-34aÞ

�wG
¼ fG

2
"mV

2
G ¼ �PfG

4L=Dh

ð15-34bÞ

Here �PfG
is the pressure drop due to ‘‘gas only’’ flow (i.e., the gas flowing

alone in the full pipe cross section). Note that if the pressure drop is less than
about 30% of P1, the incompressible flow equations can be used to deter-
mine �PfG

by using the average gas density. Otherwise, the compressibility
must be considered and the methods in Chapter 9 used to determine �PfG

.
The pressure drop is related to the pressure ratio P1=P2 by

P1 � P2 ¼ 1� P2

P1

� �
P1 ð15-35Þ

The solids contribution to the pressure drop, �PfS
, is a consequence of

both the particle–wall and particle–particle interactions. The latter is
reflected in the dependence of the friction factor fS on the particle diameter,
drag coefficient, density, and relative (slip) velocity by (Hinkel, 1953):

fS ¼ 3

8

�S
�G

� �
D

d

� �
Cd

VG � VS

VS

� �2

ð15-36Þ
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A variety of other expressions for fS have been proposed by various authors
(see, e.g.,Klinzing et al., 1997), such as that ofYang (1983) for horizontal flow,

fS ¼ 0:117
1� "
"3

� �
ð1� "ÞNRet

NRep

VG="ffiffiffiffiffiffiffi
gD

p
� �" #�1:15

ð15-37Þ

and for vertical flow,

fS ¼ 0:0206
1� "
"3

� �
ð1� "ÞNRet

NRep

" #�0:869

ð15-38Þ

where

NRet
¼ dVt�G

�G

; NRep
¼ dðVG="� VSÞ�G

�G

ð15-39Þ

and Vt is the particle terminal velocity.

2. Vertical Transport

The principles governing vertical pneumatic transport are the same as those
just given, and the method for determining the pressure drop is identical
(with an appropriate expression for fP). However, there is one major
distinction in vertical transport, which occurs as the gas velocity is
decreased. As the velocity drops, the frictional pressure drop decreases
but the slip increases, because the drag force exerted by the gas entraining
the particles also decreases. The result is an increase in the solids holdup,
with a corresponding increase in the static head opposing the flow, which in
turn causes an increase in the pressure drop. A point will be reached at
which the gas can no longer entrain all the solids and a slugging, fluidized
bed results with large pressure fluctuations. This condition is known as
choking (not to be confused with the choking that occurs when the gas
velocity reaches the speed of sound) and represents the lowest gas velocity
at which vertical pneumatic transport can be attained at a specified solids
mass flow rate. The choking velocity, VC, and the corresponding void
fraction, "C, are related by the two equations (Yang, 1983)

VC

Vt

¼ 1þ VS

Vtð1� "CÞ
ð15-40Þ

and

2gDð"�4:7
C � 1Þ

ðVC � VtÞ2
¼ 6:81� 105

�o
�S

� �2:2

ð15-41Þ

These two equations must be solved simultaneously for VC and "C.
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IV. GAS–LIQUID TWO-PHASE PIPE FLOW

The two-phase flow of gases and liquids has been the subject of literally
thousands of publications in the literature, and it is clear that we can
provide only a brief introduction to the subject here. Although the single
phase flow of liquids and gases is relatively straightforward, the two-
phase combined flow is orders of magnitude more complex. Two-phase
gas–liquid flows are also more complex than fluid–solid flows because
of the wider variety of possible flow regimes and the possibility that
the liquid may be volatile and/or the gas a condensable vapor, with
the result that the mass ratio of the two phases may change throughout
the system.

A. Flow Regimes

The configuration or distribution of the two phases in a pipe depends on the
phase ratio and the relative velocities of the phases. These regimes can be
described qualitatively as illustrated in Fig. 15-5a for horizontal flow and in
Fig. 15-5b for vertical flow. The patterns for horizontal flow are seen to be
more complex than those for vertical flow because of the asymmetrical effect
of gravity. The boundaries or transitions between these regimes have been
mapped by various investigators on the basis of observations in terms of
various flow and property parameters. A number of these maps have been
compared by Rouhani and Sohal (1983). Typical flow regime maps for
horizontal and vertical flow are shown in Figs. 15-6a and 15-6b.
In Figures 15-5 and 15-6, GG ¼ _mmG=A is the mass flux of the gas, GL ¼
_mmL=A is the mass flux of the liquid, and 
 and � are fluid property cor-
rection factors:


 ¼ �G
�A

� �
�L
�W

� �1=2

ð15-42Þ

� ¼ �W
�L

�L

�W

�W
�L

� �2
" #1=2

ð15-43Þ

where � is the surface tension and the subscripts W and A refer to water and
air, respectively, at 208C. A quantitative model for predicting the flow
regime map for horizontal flow in terms of five dimensionless variables
was developed by Taitel and Duckler (1976).

The momentum equation written for a differential length of pipe
containing the two-phase mixture is similar to Eq. (15-29), except that
the rate of momentum changes along the tube due to the change in

Two-Phase Flow 459



460 Chapter 15

FIGURE 15-5 Flow regimes in (a) horizontal and (b) vertical gas–liquid flow.
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FIGURE 15-6 Flow regime maps for (a) horizontal and (b) vertical gas–liquid flow.
(a, From Baker, 1954; b, from Hewitt and Roberts, 1969.)



velocity as the gas or vapor expands. For steady uniform flow through
area Ax,X

dFx ¼ d½ _mmGVG þ _mmLVL� ¼ dFxP þ dFxG þ dFxW ¼ 0

¼ �AxdP� ½�Lð1� "mÞ þ �G"m�Axdz� ½�wL
þ �wG

�WpdX

ð15-44Þ
where �wP

and �wG
are the stresses exerted by the particles and the gas on the

wall and Wp is the wetted perimeter. Dividing by Axdx and solving for the
pressure gradient, �dP=dX , gives

� dP

dX
¼ ½�Lð1� "mÞ þ �G"m�g

dz

dX
þ ð�wL

þ �wG
Þ 4

Dh

� �

þ 1

Ax

d

dX
ð _mmGVG þ _mmLVLÞ ð15-45Þ

where Dh ¼ 4Ax=Wp is the hydraulic diameter. The total pressure gradient is
seen to be composed of three terms resulting from the static head change
(gravity), energy dissipation (friction loss), and acceleration (the change in
kinetic energy):

� dP

dX
¼ � dP

dX

� �
g

� dP

dX

� �
f

� dP

dX

� �
acc

ð15-46Þ

This is comparable to Eq. (9-14) for pure gas flow.

1. Homogeneous Gas–Liquid Models

In principle, the energy dissipation (friction loss) associated with the gas–
liquid, gas–wall, and liquid–wall interactions can be evaluated and summed
separately. However, even for distributed (nonhomogeneous) flows it is
common practice to evaluate the friction loss as a single term, which, how-
ever, depends in a complex manner on the nature of the flow and fluid
properties in both phases. This is referred to as the ‘‘homogeneous’’ model:

� dP

dX

� �
f

¼ 4fm
Dh

�mV
2
m

2

 !
¼ 2fmG

2
m

�mDh

ð15-47Þ

The homogeneous model also assumes that both phases are moving at the
same velocity, i.e., no slip. Because the total mass flux is constant, the
acceleration (or kinetic energy change) term can be written

� dP

dX

� �
acc

¼ �mVm

dVm

dX
¼ G2

m

d�m
dX

ð15-48Þ
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where �m ¼ 1=�m is the average specific volume of the homogeneous two-
phase mixture:

�m ¼ 1

�m
¼ x

�G
þ 1� x

�L
¼ �Gxþ ð1� xÞ�L ð15-49Þ

and x is the quality (i.e., the mass fraction of gas). For ‘‘frozen’’ flows in
which there is no phase change (e.g., air and cold water), the acceleration
term is often negligible in steady pipe flow (although it can be appreciable in
entrance flows and in nonuniform channels). However, if a phase change
occurs (e.g., flashing of hot water or other volatile liquid), this term can be
very significant. Evaluating the derivative of �m from Eq. (15-49) gives

d�m
dX

¼ x
d�G
dX

þ ð�G � �LÞ
dx

dX
¼ x

d�G
dP

dP

dx
þ �GL

dx

dX
ð15-50Þ

where �GL ¼ �G � �L. The first term on the right describes the effect of the
gas expansion on the acceleration for constant mass fraction, and the last
term represents the additional acceleration resulting from a phase change
from liquid to gas (e.g., a flashing liquid).

Substituting the expressions for the acceleration and friction loss pres-
sure gradients into Eq. (15-45) and rearranging gives

� dP

dX
¼

2fmG
2
m

�mD
þ G2

m�GL

dx

dX
þ �mg

dz

dX

1þ G2
mx

d�G
dP

ð15-51Þ

Finding the pressure drop corresponding to a total mass flux Gm from this
equation requires a stepwise procedure using physical property data from
which the densities of both the gas phase and the mixture can be determined
as a function of pressure. For example, if the upstream pressure P1 and the
mass flux Gm are known, the equation is used to evaluate the pressure
gradient at point 1 and hence the change in pressure �P over a finite length
�L, and hence the pressure P1þi ¼ P1 ��P. The densities are then
determined at pressure P1þi. And the process is repeated at successive incre-
ments until the end of the pipe is reached.

A number of special cases permit simplification of the equation. For
example, if the pressure is high and the pressure gradient moderate, the term
in the denominator that represents the acceleration due to gas expansion can
be neglected. Likewise for ‘‘frozen’’ flow, for which there is no phase change
(e.g., air and cold water), the quality x is constant and the second term in
the numerator is zero. For flashing flows, the change in quality with length
(dx/dX) must be determined from a total energy balance from the pipe inlet
(or stagnation) conditions, along with the appropriate vapor–liquid
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equilibrium data for the flashing liquid. If the Clausius–Clapeyron equation
is used, this becomes

@�G
@P

� �
T

¼ � �
2
GLCpT


2GL

ð15-52Þ

where 
GL is the heat of vaporization and �GL is the change in specific
volume at vaporization. For an ideal gas,

@�G
@P

� �
T

¼ � 1

�P
;

@�G
@P

� �
s

¼ � P1=k
1

�1kP
ð1þkÞ=k ð15-53Þ

It should be noted that the derivative is negative, so that at certain condi-
tions the denominator of Eq. (15-51) can be zero, resulting in an infinite
pressure gradient. This condition corresponds to the speed of sound, i.e.,
choked flow. For a nonflashing liquid and an ideal gas mixture, the cor-
responding maximum (choked) mass flux Gm* follows directly from the
definition of the speed of sound:

Gm* ¼ cm�m ¼ �m k
@P

@�m

� �
T

� �1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�mkP

"

r
ð15-54Þ

The ratio of the sonic velocity in a homogeneous two-phase mixture to that
in a gas alone is cm=c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�G="�m

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L=�L"ð1� "Þ

p
. This ratio can be

much smaller than unity, so choking can occur in a two-phase mixture at
a significantly higher downstream pressure than for single phase gas flow
(i.e., at a lower pressure drop and a correspondingly lower mass flux).

Evaluation of each term in Eq. (15-51) is straightforward, except for
the friction factor. One approach is to treat the two-phase mixture as a
‘‘pseudo-single phase’’ fluid, with appropriate properties. The friction factor
is then found from the usual Newtonian methods (Moody diagram,
Churchill equation, etc.) using an appropriate Reynolds number:

NRe;TP ¼ DGm

�m

ð15-55Þ

where �m is an appropriate viscosity for the two-phase mixture. A wide
variety of methods have been proposed for estimating this viscosity, but
one that seems logical is the local volume-weighted average (Duckler et
al., 1964b):

�m ¼ "�G þ ð1� "Þ�L ð15-56Þ
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The corresponding density � is the ‘‘no-slip’’ or equilibrium density of the
mixture:

� ¼ "�G þ ð1� "Þ�L ¼ 1

x=�G þ ð1� xÞ=�L
ð15-57Þ

Note that the frictional pressure gradient is inversely proportional to the
fluid density:

� @P

@X

� �
f

¼ 2fmG
2
m

�D
ð15-58Þ

The corresponding pressure gradient for purely liquid flow is

� @P

@X

� �
fL

¼ 2fLG
2
L

�LD
ð15-59Þ

Taking the reference liquid mass flux to be the same as that for the two-
phase flow (GL ¼ Gm) and the friction factors to be the same ( fL ¼ fm), then

� @P

@X

� �
fm

¼ �L
�

� @P

@X

� �
fL

¼ x
�L
�

þ 1� x

� �
� @P

@X

� �
fL

ð15-60Þ

A similar relationship could be written by taking the single phase gas flow as
the reference instead of the liquid, i.e., GG ¼ Gm. This is the basis for the
two-phase multiplier method:

� @P

@X

� �
fm

¼ �2
R � @P

@X

� �
fR

ð15-61Þ

where R represents a reference single-phase flow, and �2
R is the two-phase

multiplier. There are four possible reference flows:

R ¼ L The total mass flow is liquid (Gm ¼ GL)
R ¼ G The total mass flow is gas (Gm ¼ GG)
R ¼ LLm The total mass flow is that of the liquid only in the mixture

½GLm ¼ ð1� xÞGm�
R ¼ GGm The total mass flow is that of the gas only in the mixture

ðGGm ¼ xGm)

The two-phase multiplier method is used primarily for separated flows,
which will be discussed later.

2. Omega Method for Homogeneous Equilibrium Flow

For homogeneous equilibrium (no-slip) flow in a uniform pipe, the govern-
ing equation is [equivalent to Eq. (15-45)]
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dP

dX
þ G2

m

d�m
dX

þ 2fm�mG
2
m

2D
þ g�z ¼ 0 ð15-62Þ

where �m ¼ 1=�m. By integrating over the pipe length L, assuming the
friction factor to be constant, this can be rearranged as follows:

4fmL

D
¼ Kf ¼

ð ��mð1þ G2
m d�m=dPÞdp

½G2
mð�2m=2Þ þ ðgD=4fmÞð�z=LÞ� ð15-63Þ

Leung (1996) used a linearized two-phase equation of state to evaluate
�m ¼ fnðPÞ:

�m
�o

¼ !
P0

P
� 1

� �
þ 1 ¼ �0

�m
ð15-64Þ

where �0 is the two-phase density at the upstream (stagnation) pressure P0.
The parameter ! represents the compressibility of the fluid and can be
determined from property data for � ¼ fnðPÞ at two pressures or estimated
from the physical properties at the upstream (stagnation) state. For flashing
systems,

! ¼ "0 1� 2
P0�GL0


GL0

� �
þ CpL0

T0P0

�0

�GL0


GL0

� �2

ð15-65Þ

and for nonflashing (frozen) flows,

! ¼ "0=k ð15-66Þ

Using Eq. (15-64), Eq. (15-63) can be written

4fmL

D
¼ Kf ¼ �

ð	2
	1

½ð1� !Þ	2 þ !	�ð1� G*
2
!=	2Þ d	

G*
2½ð1� !Þ	þ !�2=2þ 	2Nfi

ð15-67Þ

where 	 ¼ P=P0;G* ¼ Gm=ðP0�0Þ1=2 and

NFi ¼
�0g�z

P0ð4fmL=DÞ ð15-68Þ

is the ‘‘flow inclination number.’’ From the definition of the speed of sound,
it follows that the exit pressure ratio at which choking occurs is given by

	2c ¼ Gm*
ffiffiffiffi
!

p ð15-69Þ
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For horizontal flow, Eq. (15-67) can be evaluated analytically to give

4fmL

D
¼ 2

G*2
	1 � 	2
1� ! þ !

ð1� !Þ2 ln
ð1� !Þ	2 þ !
ð1� !Þ	1 þ !
� �� �

� 2 ln
ð1� !Þ	2 þ !
ð1� !Þ	1 þ !

	1
	2

� �� �
ð15-70Þ

As !! 1 [i.e., setting ! ¼ 1:001 in Eq. (15-70)], this reduces to the solution
for ideal isothermal gas flow [Eq. (9-17)], and for ! ¼ 0 it reduces to the
incompressible flow solution. For inclined pipes, Leung (1996) gives the
solution of Eq. (15-67) in graphical form for various values of NFi.

3. Numerical Solutions

The Omega method is limited to systems for which the linearized two-phase
equation of state [Eq. (15-64)] is a good approximation to the two-phase
density (i.e., single-component systems that are not too near the critical
temperature or pressure and multicomponent mixtures of similar
compounds). For other systems, the governing equations for homogeneous
flow can be evaluated numerically using either experimental or thermo-
dynamic data for the two-phase P� � relation or from a limited amount
of data and a more complex nonlinear model for this relation. As an
example, the program for such a solution for both homogeneous pipe and
nozzle flow is included on a CD that accompanies a CCPS Guidelines book
on pressure relief and effluent handling (CCPS, systems 1998). This program
is simple to use but does require input data for the density of the two-phase
mixture at either two or three pressures.

4. Separated Flow Models

The separated flow models consider that each phase occupies a specified
fraction of the flow cross section and account for possible differences in
the phase velocities (i.e., slip). There are a variety of such models in the
literature, and many of these have been compared against data for various
horizontal flow regimes by Duckler et al. (1964a), and later by Ferguson and
Spedding (1995).

The ‘‘classic’’ Lockhart–Martinelli (1949) method is based on the two-
phase multiplier defined previously for either liquid-only (Lm) or gas-only
(Gm) reference flows, i.e.,

� @P

@X

� �
fm

¼ �2
Lm � @P

@X

� �
fLm

ð15-71Þ
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or

� @P

@X

� �
fm

¼ �2
Gm � @P

@X

� �
fGm

ð15-72Þ

where the two-phase multiplier � is correlated as a function of the para-
meter � as shown in Fig. 15-7. There are four curves for each multiplier,
depending on the flow regime in each phase, i.e., both turbulent (tt), both
laminar (vv), liquid turbulent and gas laminar (tv), or liquid laminar and gas
turbulent (vt). The curves can also be represented by the equations

�2
Lm ¼ 1þ C

�
þ 1

�2
ð15-73Þ

and

�2
Gm ¼ 1þ C�þ �2 ð15-74Þ
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where the values of C for the various flow combinations are shown in Table
15-2.

The Lockhart–Martinelli correlating parameter �2 is defined as

�2 ¼ � @P

@X

� �
fLm

� @P

@X

� ��1

fGm

ð15-75Þ

where

� @P

@X

� �
fLm

¼ 2fLmð1� xÞ2G2
m

�LD
ð15-76Þ

and

� @P

@X

� �
fGm

¼ 2fGmx
2G2

m

�GD
ð15-77Þ

Here, fLm is the tube friction factor based on the ‘‘liquid-only’’ Reynolds
number NReLm ¼ ð1� xÞGmD=�L and fGm is the friction factor based on the
‘‘gas-only’’ Reynolds number NReGm

¼ xGmD=�G. The curves cross at
� ¼ 1, and it is best to use the ‘‘G’’ reference curves for � < 1 and the
‘‘L’’ curves for � > 1.

Using similarity analysis, Duckler et al. (1964b) deduced that

� @P

@X

� �
fm

¼ 2fLG
2
m

�LD

�L
�m

� �
�ð’Þ� ð15-78Þ

or

� @P

@X

� �
fm

¼ 2fGG
2
m

�GD

�G
�m

� �
�ð’Þ� ð15-79Þ

which is equivalent to the Martinelli parameters

�2
Lm ¼ �L

�m
�ð’Þ� and �2

Gm ¼ �G
�m
�ð’Þ� ð15-80Þ

where

�ð’Þ ¼ 1:0þ �ln ’

1:281� 0:478ð�ln ’Þ þ 0:444ð�ln ’Þ2
�0:094ð�ln ’Þ3 þ 0:00843ð�ln ’Þ4

ð15-81Þ
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TABLE 15-2 Values of Constant C in Two-Phase Multiplier Equations

Flow state Liquid Gas C

tt Turbulent Turbulent 20
vt Laminar Turbulent 12
tv Turbulent Laminar 10
vv Laminar Laminar 5



and

� ¼ �L
�m

’2

’m

 !
þ �G
�m

ð1� ’Þ2
1� ’m

 !
ð15-82Þ

and ’ and �m are the equilibrium (no-slip) properties. Another major dif-
ference is that Duckler et al. deduced that the friction factors fL and fG
should both be evaluated at the mixture Reynolds number,

NRem
¼ DGm

�m

� ð15-83Þ

5. Slip and Holdup

A major complication, especially for separated flows, arises from the effect
of slip. Slip occurs because the less dense and less viscous phase exhibits a
lower resistance to flow, as well as expansion and acceleration of the gas
phase as the pressure drops. The result is an increase in the local holdup of
the more dense phase within the pipe (’m) (or the corresponding two-phase
density, �m), as given by Eq. (15-11). A large number of expressions and
correlations for the holdup or (equivalent) slip ratio have appeared in the
literature, and the one deduced by Lockhart and Martinelli is shown in Fig.
15-7. Many of these slip models can be summarized in terms of a general
equation of the form

S ¼ a0
1� x

x

� �a1�1 �L
�G

� �a2�1 �L

�G

� �a3

ð15-84Þ

for which the values of the parameters are shown in Table 15-3. Although
many additional slip models have been proposed in the literature, it is not
clear which of these should be used under a given set of circumstances. In
some cases, a constant slip ratio (S) may give satisfactory results. For
example, in a comparison of calculated and experimental mass flux data
for high velocity air–water flows through nozzles, Jamerson and Fisher
(1999) found that S ¼ 1:1–1.8 accurately represents the data over a range
of x ¼ 0:02–0.2, with the value of S increasing as the quality (x) increases.

A general correlation of slip is given by Butterworth and Hewitt
(1977):

S ¼ 1þ a
Y

1þ bY
� bY

� �1=2

ð15-85Þ

where

Y ¼ x

1� x

�L
�G

� �
ð15-86Þ
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a ¼ 1:578N�0:19
ReL

�L
�G

� �0:22

ð15-87Þ

b ¼ 0:0273NWeN
�0:51
ReL

�L
�G

� �0:08

ð15-88Þ

NReL
¼ GmD

�L

; NWe ¼
G2

mD

��L
ð15-89Þ

An empirical correlation of holdup was developed by Mukherjee and
Brill (1983) based on over 1500 measurements of air with oil and kerosene in
horizontal, inclined, and vertical flow (inclination of 	908). Their results for
the holdup were correlated by an empirical equation of the form

"m ¼ exp c1 þ c2 sin 
 þ c3 sin
2 
 þ c4NL

N
c5
GV

N
c6
LV

� �� �
ð15-90Þ

where

NL ¼ �L

g

�L�
3

� �0:25
; NLV ¼ JL

�L
g�

� �0:25
; NGV ¼ JG

�L
g�

� �0:25
ð15-91Þ

and � is the liquid surface tension. The constants in Eq. (15-90) are given in
Table 15-4 for the various flow inclinations.

A correlation for holdup by Hughmark (1962) was found to represent
data quite well for both horizontal and vertical gas-liquid flow over a wide
range of conditions. This was found by Duckler et al. (1964a) to be superior
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TABLE 15-3 Parameters for Slip Model Equation

Model a0 a1 a2 a3

Homogeneous 1 1 �1 0
S ¼ ð�L=�GÞ1=2 1 1 �1=2 0
(Fauske, 1962)

S ¼ ð�L=�GÞ1=3 1 1 �2=3 0
(Moody, 1965)

Thom (1964) 1 1 �0:89 0.18
Baroczy (1966) 1 0.74 �0:65 0.13
Lockhart-Martinelli (tt) 1 0.75 �0:417 0.083
(1949)

Constant S ¼ S0 S0 1 �1 0



to a number of other relations that were checked against a variety of
data. The Hughmark correlation is equivalent to the following expression
for slip:

S ¼ 1� K þ ð1� xÞ=xÞ��=�L
Kð1� xÞ=xÞ�G=�L

ð15-92Þ

where the parameter K was found to correlate well with the diensionless
parameter Z:

Z ¼ N1=6
Re N

1=8
Fr =ð1� "Þ1=4 ð15-93Þ

where " is the ‘‘no-slip’’ volume fraction of gas. The volume average visc-
osity of the two phases is used in the Reynolds number, and NFr ¼ V2=gD
where V is the average velocity of the two-phase mixture. Hughmark pre-
sented the correlation between K and Z in graphical form, which can be
represented quite well by the expression

K ¼ 1

1þ 0:12=Z0:95

� �19

ð15-94Þ

The presence of slip also means that the acceleration term in the
general governing equation [Eq. (15-45)] cannot be evaluated in the same
manner as the one for homogeneous flow conditions. When the acceleration
term is expanded to account for the difference in phase velocities,
the momentum equation, when solved for the total pressure gradient,
becomes

� dP

dX
¼

�
� @P

@X

� �
fm

þG2
m

dx

dX
Að’m; xÞ þ �mg

dz

dX

�

1þ G2
m

�
x2

’m

d�

dP
þ @’m

@P

� �
x

� ð1� xÞ2
�Lð1� xÞ2 �

x2

x2’2m

�� ð15-95Þ

where

472 Chapter 15

TABLE 15-4 Coefficients for Eq. (15-90)

Flow Flow

direction pattern c1 c2 c3 c4 c5 c6

Uphill and All �0:3801 0.12988 �0:1198 2.3432 0.47569 0.28866

horizontal

Downhill Stratified �1:3303 4.8081 4.17584 56.262 0.07995 0.50489

Other �0:5166 0.78981 0.55163 15.519 0.37177 0.39395



Að’m; xÞ ¼
2x

�G’m
� 2ð1� xÞ
�Lð1� ’mÞ

� �
þ @’m

@x

� �
P

ð1� xÞ2
�Lð1� ’mÞ2

� x2

�G’
2
m

" #

ð15-96Þ

The pressure drop over a given length of pipe must be determined by a
stepwise procedure, as described for homogeneous flow. The major addi-
tional complication in this case is evaluation of the holdup (’m) or the
equivalent slip ratio (S) using one of the above correlations.

In some special cases simplifications are possible that make the process
easier. For example,

1. If the denominator of Eq. (15-87) is close to unity
2. If fm; �L, and �G are nearly constant over the length of pipe.

Example 15-2: Estimate the pressure gradient (in psi/ft) for a two-phase
mixture of air and water entering a horizontal 6 in. sch 40 pipe at a total
mass flow rate of 6500 lbm/min at 150 psia, 608F, with a quality (x) of 0.1
lbm air/lbm water. Compare your answers using the (a) omega (b) Lockhart–
Martinelli, and (c) Duckler methods.

Solution. At the entering temperature and pressure, the density of air
is 0.7799 lbm=ft

3, its viscosity is 0.02 cP, the density of water is 62.4 lbm=ft
3,

and its viscosity is 1 cP. The no-slip volume fraction corresponding to the
given quality is [by Eq. (15-11)] 0.899, and the corresponding density of the
mixture [by Eq. (15-12)] is 7.01 lbm=ft

3. The viscosity of the mixture, by Eq.
(15-56), is 0.119 cP. The slip ratio can be estimated from Eq. (15-84),
using the Lockhart–Martinelli constants from Table 15-3, to be
S ¼ 10:28. Using this value in Eq. (15-13) gives the in situ holdup
’m ¼ 0:6027. From the given mass flow rate and diameter, the total mass
flux Gm ¼ 540 lbm=ðft2sÞ:

(a) Omega method. Since this is a ‘‘frozen’’ flow (no phase changes),
the value of ! is given by Eq. (15-66), with k ¼ 1:4 for air, which
gives ! ¼ 0:642. From given data, NRem

¼ DGm=�m ¼ 3:41� 106

which, assuming a pipe roughness of 0.0018 in., gives f ¼ 0:00412
and a value of 4fL=D ¼ 0:0326. The pressure gradient is deter-
mined from Eq. (15-70), with G� ¼ Gm=ðP0�0Þ1=2 ¼ 0:245 and
	1 ¼ 1. The equation is solved by iteration for 	2 ¼ 0:999354,
or P2 ¼ 149:903 psia. The pressure gradient is thus
(P1 � P2Þ=L ¼ 0:0969 psi/ft. This pressure gradient will apply
until the pressure drops to the choke pressure, which from Eq.
(15-69) is 7.19 psia.
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(b) Lockhart–Martinelli method. Using the ‘‘liquid-only’’ basis, the
corresponding Reynolds number is NReLm ¼ ð1� xÞ
DGm=�L ¼ 3:66� 105, which gives a value of fLm ¼ 0:00419.
Likewise, using the ‘‘gas-only’’ basis gives NReGm

¼ x
DGm=�G ¼ 2:27� 106, which gives fGm ¼ 0:00383. These values
give the corresponding pressure gradients from Eqs. (15-76) and
(15-77) as 0.0135 and 0.012 psi/ft, respectively. The square root of
the ratio of these values gives the Lockhart–Martinelli parameter
� ¼ 1:0527, which, from Eq. (15-73), gives �2

Lm ¼ 20:9. The pres-
sure gradient is then calculated from Eq. (15-76) to be 0.283 psi/ft.

(c) Duckler method. This method requires determining values for �
and � from Eq. (15-82) and (15-81), respectively. The in situ
holdup determined above, ’m ¼ 0:6027, is used in the equation
for � to give a value of 0.377, and the no-slip holdup value of ’ ¼
0:101 is used in the equation for � to give a value of 2.416. These
values are used in Eq. (15-78), with a value of f ¼ 0:00378, to
determine the pressure gradient of 0.122 psi/ft.

The acceleration component to the total pressure gradient, from Eqs.
(15-48), (15-50), and (15-53) should also be included for cases (b) and (c) but
is negligible in these cases.

The flow regime can be determined from Fig.15-16a, using an ordinate
of 1 and an abscissa of 2635 kg/(m2 s) to be well in the dispersed flow
regime, so each of these methods should be applicable.

PROBLEMS

1. An aqueous slurry is composed of 45% solids (by volume). The solids have an

SG of 4 and the particle size distribution shown below.

US screen mesh Mesh opening (�m) Fraction passing

400 37 0.02

325 44 0.06

200 74 0.08

140 105 0.10

100 149 0.15

60 250 0.18

35 500 0.20

18 1000 0.12

10 2000 0.08

5 4000 0.01
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The slurry behaves as a non-Newtonian fluid, which can be described as a

Bingham plastic with a yield stress of 40 dyn/cm2 and a limiting viscosity of

100 cP. Calculate the pressure gradient (in psi/ft) for this slurry flowing at a

velocity of 8 ft/s in a 10 in. ID pipe.

2. Repeat Problem 1 but with the slurry described by the power law model, with a

consistency of 60 poise and a flow index of 0.18.

3. Spherical polymer pellets with a diameter of 1/8 in. and an SG of 0.96 are to be

transported pneumatically using air at 808F. The pipeline is horizontal, 6 in. ID

and 100 ft long, and discharges at atmospheric pressure. It is desired to trans-

port 15% by volume of solids, at a velocity that is 1 ft/s above the minimum

deposit velocity.

(a) What is the pressure of the air that is required at the entrance to the pipe to

overcome the friction loss in the pipe? (Note: An additional pressure gra-

dient required to accelerate the particles after contacting with the air, but

your answer should address only the friction loss.)

(b) If a section of this pipe is vertical, (1) what would the choking velocity be in

this line and (2) what would the pressure gradient (in psi/ft) be at a velocity

of 1 ft/s above the choking velocity?

4. Saturated ethylene enters a 4 in. sch 40 pipe at 400 psia. The ethylene flashes as

the pressure drops through the pipe, and the quality at any pressure can be

estimated by applying a constant enthalpy criterion along the pipe. If the pipe is

80 ft long and discharges at a pressure of 100 psia, what is the mass flow rate

through the pipe? Use 50 psi pressure increments in the stepwise calculation

procedure.

5. Natural gas (methane) and 408 API crude oil are being pumped through a 6 in.

sch 40 pipeline at 808F. The mixture enters the pipe at 500 psia, a total rate of

6000 lbm/min, and 6% quality. What is the total pressure gradient in the pipe at

this point (in psi/ft)?

NOTATION

Ax x component of area, [L2]

c speed of sound, [L/t]

Cd particle drag coefficient, [—]

Cp specific heat, [FL=MT ¼ L2=t2T�
D pipe diameter, [L]

Dh hydraulic diameter, [L]

d particle diameter, [L]

F force, ½F ¼ ML=t2�
f Fanning friction factor, [—]

G mass flux, [M/L2t]

G* dimensionless mass flux, [—]

g acceleration due to gravity, [L/t2]

J volume flux (superficial velocity), [L/t]

k isentropic exponent (specific heat ratio for ideal gas), [—]
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L length, [L]
_mm mass flow rate, [M/t]

NFi flow inclination number, [—]

NFrp
particle Froude number, Eq. (15-22), [—]

NFrs
solids Froude number, Eq. (15-28), [—]

NFrt
pipe Froude number, Eq. (15-23), [—]

NRet
particle terminal velocity Reynolds number, Eq. (15-39), [—]

NRep particle relative velocity Reynolds number, Eq. (15-39), [—]

NRe;TP two-phase Reynolds number, [—]

NWe Weber number, Eq. (15-89), [—]

P pressure, ½F=L2 ¼ m=Lt2�
V velocity, [L/t]

V* friction velocity, Eq. (15-18), [L/t]

Vmd minimum deposit velocity, [L/t]

Vr relative (slip) velocity [L/t]
�VVr dimensionless slip velocity ðVr=VmÞ , [—]

Vt particle terminal velocity, [L/t]

Q volumetric flow rate, [L3/t]

S velocity slip ratio, [—]

s �S=�L, [—]

X dimensionless solids contribution to pressure drop, Eq. (15-26), [—]

X horizontal coordinate direction, [L]

x mass fraction of less dense phase (quality, for gas–liquid flow), [—]

z vertical direction measured upward, [L]

Z dimensionless parameter defined by Eq. (15-93)

" volume fraction of the less dense phase, [—]

� property correction factor, Eq. (15-43), [—]

�R two-phase multiplier with reference to single phase R, [—]

’ volume fraction of the more dense phase, [—]


 latent heat, ½FL=M ¼ L2=t2�

 density correction factor, Eq. (15-42), [—]

	 pressure ratio, [—]

� viscosity, [M/(Lt)]

�s ratio of mass of solids to mass of gas, [—]

� specific volume, ½L3=M�
� density, [M/L3]

� surface tension, [F=L ¼ �=t2�
� shear stress, ½F=L2 ¼ M=ðLt2Þ�
� Lockhart–Martinelli correlating parameter, Eq. (15-75), [—]

! two-phase equation of state parameter, Eq. (15-65), [—]

Subscripts

1, 2 reference points

A air
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C choking condition

f friction loss, fluid

G, g gas

L liquid

m mixture

o stagnation state

R reference phase

S solid

w wall

W water
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Appendix A

Viscosities and Other Properties of
Gases and Liquids
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FIGURE A-1 Viscosities of various fluids at 1 atm pressure. 1 cp ¼ 0.01 g/
(cms) ¼ 6.72�10�4 lbm/(ft s) ¼ 2.42 lbm/(ft hr) ¼ 2.09�10�5 lbf s/ft

2. (From GG
Brown et al., Unit Operations, Wiley, New York, 1951, p 586. Reproduced by per-
mission of the publisher.)
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FIGURE A-2 Viscosity of various liquids. From Crane Technical Paper 4-10, Crane
Co. Chicago 1991.
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FIGURE A-3 Viscosity of water and liquid petroleum products. From Crane.
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TABLE A-1 Viscosities of Liquids (Coordinates apply to Fig. A-4)

Liquid X Y

Acetaldehyde 15.2 4.8
Acetic acid, 100% 12.1 14.2
Acetic acid, 70% 9.5 17.0
Acetic anhydride 12.7 12.8
Acetone, 100% 14.5 7.2
Acetone, 35% 7.9 15.0
Acetonitrile 14.4 7.4
Acrylic acid 12.3 13.9
Allyl alcohol 10.2 14.3
Allyl bromide 14.4 9.6
Allyl iodide 14.0 11.7
Ammonia, 100% 12.6 2.0
Ammonia, 26% 10.1 13.9
Amyl acetate 11.8 12.5
Amyl alcohol 7.5 18.4
Aniline 8.1 18.7
Anisole 12.3 13.5
Arsenic trichloride 13.9 14.5
Benzene 12.5 10.9
Brine, CaCl(S)_2(S), 25% 6.6 15.9
Brine, NaCl, 25% 10.2 16.6
Bromine 14.2 13.2
Bromotoluene 20.0 15.9
Butyl acetate 12.3 11.0
Butyl acrylate 11.5 12.6
Butyl alcohol 8.6 17.2
Butyric acid 12.1 15.3
Carbon dioxide 11.6 0.3
Carbon disuofide 16.1 7.5
Carbon tetrachloride 12.7 13.1
Chlorobenzene 12.3 12.4
Chloroform 14.4 10.2
Chlorosulfonic acid 11.2 18.1
Chlorotoluene, ortho 13.0 13.3
Chlorotoluene, meta 13.3 12.5
Chlorotoluene, para 13.3 12.5
Cresol, meta 2.5 20.8
Cyclohexanol 2.9 24.3
Cyclohexane 9.8 12.9
Dibromomethane 12.7 15.8
Dichloroethane 13.2 12.2
Dichloromethane 14.6 8.9
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TABLE A-1 (Continued )

Liquid X Y

Diethyl ketone 13.5 9.2
Diethyl oxalate 11.0 16.4
Diethylene glycol 5.0 24.7
Diphenyl 12.0 18.3
Dipropyl ether 13.2 8.6
Dipropyl oxalate 10.3 17.7
Ethyl acetate 13.7 9.1
Ethyl acrylate 12.7 10.4
Ethyl alcohol, 100% 10.5 13.8
Ethyl alcohol, 95% 9.8 14.3
Ethyl alcohol, 40% 6.5 16.6
Ethyl benzene 13.2 11.5
Ethyl bromide 14.5 8.1
2-Ethyl butyl acrylate 11.2 14.0
Ethyl chloride 14.8 6.0
Ethyl ether 14.5 5.3
Ethyl formate 14.2 8.4
2-Ethyl hexyl acrylate 9.0 15.0
Ethyl iodide 14.7 10.3
Ethyl propionate 13.2 9.9
Ethyl propyl ether 14.0 7.0
Ethyl sulfide 13.8 8.9
Ethylene bromide 11.9 15.7
Ethylene chloride 12.7 12.2
Ethylene glycol 6.0 23.6
Ethylidebe chloride 14.1 8.7
Fluorobenzene 13.7 10.4
Formic acid 10.7 15.8
Freon-11 14.4 9.0
Freon-12 16.8 5.6
Freon-21 15.7 7.5
Freon-22 17.2 4.7
Freon-113 12.5 11.4
Glycerol, 100% 2.0 30.0
Glycerol, 50% 6.9 19.6
Heptane 14.1 8.4
Hexane 14.7 7.0
Hydrochloric acid, 31.5% 13.0 16.6
Iodobenzene 12.8 15.9
Isobutyl alcohol 7.1 18.0
Isobutyric acid 12.2 14.4
Isopropyl alcohol 8.2 16.0
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TABLE A-1 (Continued )

Liquid X Y

Isopropyl bromide 14.1 9.2
Isopropyl chloride 13.9 7.1
Isopropyl iodide 13.7 11.2
Kerosene 10.2 16.9
Linseed oil, raw 7.5 27.2
Mercury 18.4 16.4
Methnol, 100% 12.4 10.5
Methanol, 90% 12.3 11.8
Methanol, 40% 7.8 15.5
Methyl acetate 14.2 8.2
Methyl acrylate 13.0 9.5
Methyl t-butyrate 12.3 9.7

Methyl n-butyrate 13.2 10.3

Methyl chloride 15.0 3.8
Methyl ethyl ketone 13.9 8.6
Methyl formae 14.2 7.5
Methyl iodide 14.3 9.3
Methyl propionate 13.5 9.0
Mehyl propyl ketone 14.3 9.5
Methyl sulfide 15.3 6.4
Naphthalene 7.9 18.1
Nitric acid 12.8 13.8
Nitric acid, 60% 10.8 17.0
Nitrobenzene 10.6 16.2
Nitrogen dioxide 12.9 8.6
Nitrotoluene 11.0 17.0
Octane 13.7 10.0
Octyl alcohol 6.6 21.1
Pentachloroethane 10.9 17.3
Pentane 14.9 5.2
Phenol 6.9 20.8
Phosphorus tribromide 13.8 16.7
Phosphorus trichloride 16.2 10.9
Propionic acid 12.8 13.8
Propyl acetate 13.1 10.3
Propyl alcohol 9.1 16.5
Propyl bromide 14.5 7.5
Propyl chloride 14.4 7.5
Propyl formate 13.1 9.7
Propyl iodide 14.1 11.6
Sodium 16.4 13.9
Sodium hydroxide, 50% 3.2 25.8
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TABLE A-1 (Continued )

Liquid X Y

Stannic chloride 13.5 12.8
Succinonitrile 10.1 20.8
Sulfur dioxide 15.2 7.1
Sulfuric acid, 110% 7.2 27.4
Sulfuric acid, 100% 8.0 25.1
Sulfuric acid, 98% 7.0 24.8
Sulfuric acid, 60% 10.2 21.3
Sulfuryl chloride 15.2 12.4
Tetrachloroethane 11.9 15.7
Thiophene 13.2 11.0
Titanium tetrachloride 14.4 12.3
Toluene 13.7 10.4
Trichloroethylene 14.8 10.5
Triethylene glycol 4.7 24.8
Turpentine 11.5 14.9
Vinyl acetate 14.0 8.8
Vinyl toluene 13.4 12.0
Water 10.2 13.0
Xylene, ortho 13.5 12.1
Xylene, meta 13.9 10.6
Xylene, para 13.9 10.9

Source: RH Perry, DW Green, eds. Perry’s Chemical Engineers’
Handbook. 7th ed. New York: McGraw-Hill, 1997. By permission.
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FIGURE A-4 Nomograph for viscosities of liquids at 1 atm. See Table A-1 for
coordinates. (To convert centipoise to pascal-seconds, multiply by 0.001.)
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TABLE A-2 The Viscosity of Water at 0–1008C

8C � (cP) 8C � (cP) 8C � (cP) 8C � (cP)

0 1.787 26 0.8705 52 0.5290 78 0.3638
1 1.728 27 0.8513 53 0.5204 79 0.3592
2 1.671 28 0.8327 54 0.5121 80 0.3547
3 1.618 29 0.8148 55 0.5040 81 0.3503
4 1.567 30 0.7975 56 0.4961 82 0.2460
5 1.519 31 0.7808 57 0.4884 83 0.3418
6 1.472 32 0.7647 58 0.4809 84 0.3377
7 1.428 33 0.7491 59 0.4736 85 0.3337
8 1.386 34 0.7340 60 0.4665 86 0.3297
9 1.346 35 0.7194 61 0.4596 87 0.3259

10 1.307 36 0.7052 62 0.4528 88 0.3221
11 1.271 37 0.6915 63 0.4462 89 0.3184
12 1.235 38 0.6783 64 0.4398 90 0.3147
13 1.202 39 0.6654 65 0.4335 91 0.3111
14 1.169 40 0.6529 66 0.4273 92 0.3076
15 1.139 41 0.6408 67 0.4213 93 0.3042
16 1.109 42 0.6391 68 0.4155 94 0.3008
17 1.081 43 0.6178 69 0.4098 95 0.2975
18 1.053 44 0.6067 70 0.4042 96 0.2942
19 1.027 45 0.5960 71 0.3987 97 0.2911
20 1.002 46 0.5856 72 0.3934 98 0.2879
21 0.9779 47 0.5755 73 0.3882 99 0.2848
22 0.9548 48 0.5656 74 0.3831 100 0.2818
23 0.9325 49 0.5561 75 0.3781
24 0.9111 50 0.5468 76 0.3732
25 0.8904 51 0.5378 77 0.3684

Table entries were calculated from the following empirical relationships from measurements

in viscometers calibrated with water at 208C (and 1 atm), modified to agree with the currently

accepted value for the viscosity at 208 of 1.002 cP:

0�208C : log10 �T ¼ 1301

998:333þ 8:1855ðT � 20Þ þ 0:00585ðT � 20Þ2 � 3:30233

(RC Hardy, RL Cottingham, J Res NBS 42:573, 1949.)

20�1008C : log10
�T

�20

¼ 1:3272ð20� T Þ � 0:001053ðT � 20Þ2
T þ 105

(JF Swindells, NBS, unpublished results.)
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TABLE A-3 Physical Properties of Ordinary Water and Common Liquids (SI
Units)

Isothermal
bulk Coefficient

Specific Absolute Kinematic Surface modulus of of thermal
Temp Density gravity viscosity viscosity tension elasticity expansion

Liquid T (8C) �(kg/m3) S �(N s/m2) �(m2/s) �(N/m) E�(N/m
2) �T (K�1Þ

Water 0 1000 1.000 1.79 E-3 1.79 E-6 7.56 E-2 1.99 E9 6.80 E-5
3.98 1000 1.000 1.57 1.57 — — —

10 1000 1.000 1.31 1.31 7.42 2.12 8.80
20 998 0.998 1.00 1.00 7.28 2.21 2.07 E-4
30 996 0.996 7.98 E-4 7.12 2.26 2.94
40 992 0.992 6.53 6.58 6.96 2.29 3.85
50 988 0.988 5.47 5.48 6.79 2.29 4.58
60 983 0.983 4.67 4.75 6.62 2.28 5.23
70 978 0.978 4.04 4.13 6.64 2.24 5.84
80 972 0.972 3.55 3.65 6.26 2.20 6.41
90 965 0.965 3.15 3.26 — 2.14 6.96

100 958 0.958 2.82 2.94 5.89 2.07 7.50
Mercury 0 13600 13.60 1.68 E-3 1.24 E-7 — 2.50 E10 —

4 13590 13.59 — — — — —
20 13550 13.55 1.55 1.14 37.5 2.50 E10 1.82 E-4
40 13500 13.50 1.45 1.07 — — 1.82
60 13450 13.45 1.37 1.02 — — 1.82
80 13400 13.40 1.30 9.70 E-8 — — 1.82

100 13350 13.35 1.24 9.29 — — —
Ethylene 0 � � 5.70 E-2 � � � �
glycol 20 1110 1.11 1.99 1.79 E-5 — — —

40 1110 1.10 9.13 E-3 8.30 E-6 — — —
60 1090 1.09 4.95 4.54 — — —
80 1070 1.07 3.02 2.82 — — —

100 1060 1.06 1.99 1.88 — — —
Methyl alcohol 0 810 0.810 8.17 E-4 1.01 E-6 2.45 E-2 9.35 E8 —
(methanol) 10 801 0.801 — — 2.26 8.78 —

20 792 0.792 5.84 7.37 E-7 — 8.23 —
30 783 0.783 5.10 6.51 — 7.72 —
40 774 0.774 4.50 5.81 — 7.23 —
50 765 0.765 3.96 5.18 — 6.78 —

Ethyl alcohol 0 806 0.806 1.77 E-3 2.20 E-6 2.41 E-2 1.02 E9 —
(ethanol) 20 789 0.789 1.20 1.52 — 9.02 E8 —

40 772 0.772 8.34 E-4 1.08 — 7.89 —
60 754 0.754 5.92 7.85 E-7 — 6.78 —

Normal 0 718 0.718 7.06 E-7 9.83 E-7 — 1.00 E9 —
octane 16 — — 5.74 — — — —

20 702 0.702 5.42 7.72 — — —
25 — — — — — 8.35 E8
40 686 0.686 4.33 6.31 — 7.48 —

Benzene 0 900 0.900 9.12 E-4 1.01 E-6 3.02 E-2 1.23 E9 —
20 879 0.879 6.52 7.42 E-7 2.76 1.06 —
40 858 0.857 5.03 5.86 — 9.10 E8 —
60 836 0.836 3.92 4.69 — 7.78 —
80 815 0.815 3.29 4.04 — 6.48 —

Kerosene �18 841 0.841 7.06 E-3 8.40 E-6 — — —
20 814 0.814 1.9 2.37 2.9 E-2 — —

Lubricating 20 871 0.871 1.31 E-6 1.50 E-9 — — —
oil 40 858 0.858 6.81 E-5 7.94 E-8 — — —

60 845 0.845 4.18 4.95 — — —
80 832 0.832 2.83 3.40 — — —

100 820 0.820 2.00 2.44 — — —
120 809 0.809 1.54 1.90 — — —
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TABLE A-4 Physical Properties of Ordinary Water and Common Liquids (EE
unitsa)

Isothermal
bulk Coefficient

Specific Absolute Kinematic Surface modulus of of thermal
Temp Density gravity viscosity viscosity tension elasticity expansion

Liquid T (8F) �(lbm/ft
3) S �(lbfs/ft

2) �(ft2/s) �(lbf/ft) E�(lbf/in.
2) �T (8R�1Þ

Water 32 62.4 1.00 3.75 E-5 1.93 E-5 5.18 E-3 2.93 E-5 2.03 E-3
40 62.4 1.00 3.23 1.66 5.14 2.94 —
60 62.4 0.999 2.36 1.22 5.04 3.11 —
80 62.2 0.997 1.80 9.30 E-6 4.92 3.22 —

100 62.0 0.993 1.42 7.39 4.80 3.27 1.7
120 61.7 0.988 1.17 6.09 4.65 3.33 —
140 61.4 0.983 9.81 E-6 5.14 4.54 3.30 —
160 61.0 0.977 8.38 4.42 4.41 3.26 —
180 60.6 0.970 7.26 3.85 4.26 3.13 —
200 60.1 0.963 6.37 3.41 4.12 3.08 1.52
212 59.8 0.958 5.93 3.19 4.04 3.00 —

Mercury 50 847 13.6 1.07 E-3 1.2 E-6 — — 1.0 E-4
200 834 13.4 8.4 E-3 1.0 — — 1.0 E-4
300 826 13.2 7.4 9.0 E-7 — — —
400 817 13.1 6.7 8.0 — — —
600 802 12.8 5.8 7.0 — — —

Ethylene 68 69.3 1.11 4.16 E-4 1.93 E-4 — — —
glycol 104 68.7 1.10 1.91 8.93 E-5 — — —

140 68.0 1.09 1.03 4.89 — — —
176 66.8 1.07 6.31 E-5 3.04 — — —
212 66.2 1.06 4.12 2.02 — — —

Methyl 32 50.6 0.810 1.71 E-5 1.09 E-5 1.68 E-3 1.36 E-5 —
alcohol 68 50.0 0.801 — — 1.55 1.9 —
(methanol) 104 49.4 0.792 1.22 7.93 E-6 — 1.05 —

140 48.9 0.783 1.07 7.01 — — —
176 48.3 0.774 9.40 E-6 6.25 — — —
212 47.8 0.765 8.27 5.58 — — —

Ethyl 32 50.3 0.806 3.70 E-5 2.37 E-5 1.65 E-3 1.48 E-5 —
alcohol 68 49.8 0.789 3.03 1.96 — 1.31 —
(ethanol) 104 49.3 0.789 2.51 1.64 — 1.14 —

140 48.2 0.772 1.74 1.16 — 9.83 E-4 —
176 47.7 0.754 1.24 8.45 E-6 — — —
212 47.1 0.745 � � � � �

Normal 32 44.8 0.718 1.47 E-5 1.06 E-5 — 1.45 E-5 —
octane 68 43.8 0.702 1.13 8.31 E-6 — — —

104 42.8 0.686 9.04 E-6 6.79 — 1.08 —
Benzene 32 56.2 0.900 1.90 E-5 1.09 E-5 2.07 E-3 1.78 E-5 —

68 54.9 0.879 1.36 7.99 E-6 1.89 1.53 —
104 53.6 0.858 1.05 6.31 — 1.32 —
140 52.2 0.836 8.19 E-6 5.05 — 1.13 —
176 50.9 0.815 6.87 4.35 — 9.40 E-4 —

Kerosene 0 52.5 0.841 1.48 E-4 9.05 E-5 — — —
77 50.8 0.814 3.97 E-5 2.55 E-5 — — —

Lubricating 68 54.5 0.871 2.74 E-8 1.61 E-8 — — —
oil 104 53.6 0.858 1.42 E-7 8.55 E-7 — — —

140 52.6 0.845 8.73 5.33 — — —
176 51.9 0.832 5.91 3.66 — — —
212 51.2 0.820 4.18 2.63 — — —
248 50.5 0.809 3.22 2.05 — — —

a EE¼English engineering
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TABLE A-5 Physical Properties of SAE Oils and Lubricants

SI units EE unitsa

Kinematic viscosity Kinematic viscosity

�(m2/s) �(ft2/s)

Temp Specific Temp. Specific

Fluid (8C) gravity Minimum Maximum (8F) gravity Minimum Maximum

Oil

SAE 50 99 — 1.68 E-5 2.27 E-5 210 — 1.81 E-4 2.44 E-4

99 — 1.29 1.68 210 — 1.08 1.81

99 — 9.6 E-4 1.29 210 — 1.03 E-2 1.08

99 — — 5.7 E-4 210 — — 6.14 E-3

�18 0.92 2.60 E-3 1.05 E-2 0 0.92 2.80 E-2 1.13 E-1

�18 0.92 1.30 2.60 E-2 0 0.92 1.40 2.80 E-2

�18 0.92 — 1.30 0 0.92 — 1.40

Lubricants

SAE 250 99 — 4.3 E-5 — 210 — 4.6 E-4 —

140 99 — 2.5 4.3 E-5 210 — 2.7 4.6 E-4

90 99 — 1.4 2.5 210 — 1.5 2.7

85W 99 — 1.1 — 210 — 1.2 —

80W 99 — 7.0 E-6 — 210 — 7.5 E-5 —

75W 99 — 4.2 — 210 — 4.5 E-5 —

a EE¼English engineering



492 Appendix A
T
A
B
L
E
A
-6

V
is
c
o
s
it
y
o
f
S
te
a
m

a
n
d
W
a
te
ra

V
is
c
o
s
it
y
o
f
s
te
a
m

a
n
d
w
a
te
r,
�

(c
P
)

T
e
m
p

1
2

5
1
0

2
0

5
0

1
0
0

2
0
0

5
0
0

1
0
0
0

2
0
0
0

5
0
0
0

7
5
0
0

1
0
0
0
0

1
2
0
0
0

(8
F
)

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

p
s
ia

S
a
t.
w
a
te
r

0
.6
6
7

0
.5
2
4

0
.3
8
8

0
.3
1
3

0
.2
5
5

0
.1
9
7

0
.1
6
4

0
.1
3
8

0
.1
1
1

0
.0
9
4

0
.0
7
8

—
—

—
—

S
a
t.
s
te
a
m

0
.0
1
0

0
.0
1
0

0
.0
1
1

0
.0
1
2

0
.0
1
2

0
.0
1
3

0
.0
1
4

0
.0
1
5

0
.0
1
7

0
.0
1
9

0
.0
2
3

—
—

—
—

1
5
0
0

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
1

0
.0
4
2

0
.0
4
2

0
.0
4
2

0
.0
4
4

0
.0
4
6

0
.0
4
8

0
.0
5
0

1
4
5
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
0

0
.0
4
1

0
.0
4
1

0
.0
4
3

0
.0
4
5

0
.0
4
7

0
.0
4
9

1
4
0
0

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
3
9

0
.0
4
0

0
.0
4
0

0
.0
4
2

0
.0
4
4

0
.0
4
7

0
.0
4
9

1
3
5
0

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
8

0
.0
3
9

0
.0
4
1

0
.0
4
4

0
.0
4
6

0
.0
4
9

1
3
0
0

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
7

0
.0
3
8

0
.0
4
0

0
.0
4
3

0
.0
4
5

0
.0
4
8

1
2
5
0

0
.0
3
5

0
.0
3
5

0
.0
3
5

0
.0
3
5

0
.0
3
5

0
.0
3
5

0
.0
3
5

0
.0
3
6

0
.0
3
6

0
.0
3
6

0
.0
3
7

0
.0
3
9

0
.0
4
2

0
.0
4
5

0
.0
4
8

1
2
0
0

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
5

0
.0
3
5

0
.0
3
6

0
.0
3
8

0
.0
4
1

0
.0
4
5

0
.0
4
8

1
1
5
0

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
4

0
.0
3
7

0
.0
4
1

0
.0
4
5

0
.0
4
9

1
1
0
0

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
2

0
.0
3
3

0
.0
3
3

0
.0
3
4

0
.0
3
7

0
.0
4
0

0
.0
4
5

0
.0
5
0

1
0
5
0

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
1

0
.0
3
2

0
.0
3
2

0
.0
3
3

0
.0
3
6

0
.0
4
0

0
.0
4
7

0
.0
5
2

1
0
0
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
0

0
.0
3
1

0
.0
3
2

0
.0
3
5

0
.0
4
1

0
.0
4
9

0
.0
5
5

9
5
0

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
2
9

0
.0
3
0

0
.0
3
1

0
.0
3
5

0
.0
4
2

0
.0
5
2

0
.0
5
9

9
0
0

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
8

0
.0
2
9

0
.0
3
5

0
.0
4
5

0
.0
5
7

0
.0
6
4

8
5
0

0
.0
2
6

0
.0
2
6

0
.0
2
6

0
.0
2
6

0
.0
2
6

0
.0
2
6

0
.0
2
7

0
.0
2
7

0
.0
2
7

0
.0
2
7

0
.0
2
8

0
.0
3
5

0
.0
5
2

0
.0
6
4

0
.0
7
0

8
0
0

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
5

0
.0
2
6

0
.0
2
6

0
.0
2
7

0
.0
4
0

0
.0
6
2

0
.0
7
1

0
.0
7
5

7
5
0

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
4

0
.0
2
5

0
.0
2
5

0
.0
2
6

0
.0
5
7

0
.0
7
1

0
.0
7
8

0
.0
8
1

7
0
0

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
3

0
.0
2
4

0
.0
2
6
*

0
.0
7
1

0
.0
7
9

0
.0
8
5

0
.0
8
6

6
5
0

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
2

0
.0
2
3

0
.0
2
3

0
:0
2
3

0
.0
8
2

0
.0
8
8

0
.0
9
2

0
.0
9
6

6
0
0

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
2
1

0
.0
8
7

0
.0
9
1

0
.0
9
6

0
.1
0
1

0
.1
0
4

5
5
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
.0
2
0

0
:0
1
9

0
.0
9
5

0
.1
0
1

0
.1
0
5

0
.1
0
9

0
.1
1
3

5
0
0

0
.0
1
9

0
.0
1
9

0
.0
1
9

0
.0
1
9

0
.0
1
9

0
.0
1
9

0
.0
1
9

0
.0
1
8

0
:0
1
8

0
.1
0
3

0
.1
0
5

0
.1
1
1

0
.1
1
4

0
.1
1
9

0
.1
2
2

4
5
0

0
.0
1
8

0
.0
1
8

0
.0
1
8

0
.0
1
8

0
.0
1
7

0
.0
1
7

0
.0
1
7

0
.0
1
7

0
.1
1
5

0
.1
1
6

0
.1
1
8

0
.1
2
3

0
.1
2
7

0
.1
3
1

0
.1
3
5

4
5
0

0
.1
0
6

0
.1
0
6

0
.1
0
6

0
.1
0
6

0
.1
0
6

0
.1
0
6

0
.1
0
6

0
:1
0
6

0
.1
3
1

0
.1
3
2

0
.1
3
4

0
.1
3
8

0
.1
4
3

0
.1
4
7

0
.1
5
0

3
5
0

0
.0
1
5

0
.0
1
5

0
.0
1
5

0
.0
1
5

0
.0
1
5

0
.0
1
5

0
:0
1
5

0
.1
5
2

0
.1
5
3

0
.1
5
4

0
.1
5
5

0
.1
6
0

0
.1
6
4

0
.1
6
8

0
.1
7
1

3
0
0

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
.0
1
4

0
:0
1
4

0
.1
8
2

0
.1
8
3

0
.1
8
3

0
.1
8
4

0
.1
8
5

0
.1
9
0

0
.1
9
4

0
.1
9
8

0
.2
0
1

2
5
0

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
.0
1
3

0
:0
1
3

0
.2
2
8

0
.2
2
8

0
.2
2
8

0
.2
2
8

0
.2
2
9

0
.2
3
1

0
.2
3
5

0
.2
3
8

0
.2
4
2

0
.2
4
5

2
0
0

0
.0
1
2

0
.0
1
2

0
:0
1
2

0
:0
1
2

0
.3
0
0

0
.3
0
0

0
.3
0
0

0
.3
0
0

0
.3
0
1

0
.3
0
1

0
.3
0
3

0
.3
0
6

0
.3
1
0

0
.3
1
3

0
.3
1
6

1
5
0

0
:0
1
1

0
:0
1
1

0
.4
2
7

0
.4
2
7

0
.4
2
7

0
.4
2
7

0
.4
2
7

0
.4
2
7

0
.4
2
7

0
.4
2
8

0
.4
2
9

0
.4
3
1

0
.4
3
4

0
.4
3
7

0
.4
3
9

1
0
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
0

0
.6
8
1

0
.6
8
2

0
.6
8
3

0
.6
8
3

5
0

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
9

1
.2
9
8

1
.2
9
6

1
.2
8
9

1
.2
8
4

1
.2
7
9

1
.2
7
5

3
2

1
.7
5
3

1
.7
5
3

1
.7
5
3

1
.7
5
3

1
.7
5
3

1
.7
5
3

1
.7
5
3

1
.7
5
2

1
.7
5
1

1
.7
4
9

1
.7
4
5

1
.7
3
3

1
.7
2
3

1
.7
1
3

1
.7
0
5

a
V
a
lu
e
s
d
ir
e
c
tl
y
b
e
lo
w

u
n
d
e
rs
c
o
re
d
v
is
c
o
s
iti
e
s
a
re

fo
r
w
a
te
r.

*
C
ri
ti
ca

l
p
o
in
t.



Viscosities of Gases and Liquids 493

TABLE A-7 Viscosities of Gasesa (Coordinates Apply to Fig. A-5)

Gas X Y �� 107 P

Acetic acid 7.0 14.6 825 (508C)
Acetone 8.4 13.2 735
Acetylene 9.3 15.5 1017
Air 10.4 20.4 1812
Ammonia 8.4 16.0 1000
Amylene (
) 8.6 12.2 676
Argon 9.7 22.6 2215
Arsine 8.6 20.0 1575
Benzene 8.7 13.2 746
Bromine 8.8 19.4 1495
Butane (�) 8.6 13.2 735
Butane (iso) 8.6 13.2 744
Butyl acetate (iso) 5.7 16.3 778
Butylene (�) 8.4 13.5 761
Butylene (
) 8.7 13.1 746
Butylene (iso) 8.3 13.9 786
Butyl formate (iso) 6.6 16.0 840
Cadmium 7.8 22.5 5690 (500)
Carbon dioxide 8.9 19.1 1463
Carbon disulfide 8.5 15.8 990
Carbon monoxide 10.5 20.0 1749
Carbon oxysulfide 8.2 17.9 1220
Carbon tetrtachloride 8.0 15.3 966
Chlorine 8.8 18.3 1335
Chloroform 8.8 15.7 1000
Cyanogen 8.2 16.2 1002
Cyclohexane 9.0 12.2 701
Cyclopropane 8.3 14.7 870
Deuterium 11.0 16.2 1240
Diethyl ether 8.8 12.7 730
Dimethyl ether 9.0 15.0 925
Diphenyl ether 8.6 10.4 610 (50)
Diphenyl methane 8.0 10.3 605 (50)
Ethane 9.0 14.5 915
Ethanol 8.2 14.5 835
Ethyl acetate 8.4 13.4 743
Ethyl chloride 8.5 15.6 987
Ethylene 9.5 15.2 1010
Ethyl propionate 12.0 12.4 890
Fluoride 7.3 23.8 2250
Freon-11 8.6 16.2 1298 (93)
Freon-12 9.0 17.4 1496 (93)
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TABLE A-7 (Continued )

Gas X Y �� 107 P

Freon-14 9.5 20.4 1716
Freon-21 9.0 16.7 1389 (93)
Freon-22 9.0 17.7 1554 (93)
Freon-113 11.0 14.0 1166 (93)
Freon-114 9.4 16.4 1364 (93)
Helium 11.3 20.8 1946
Heptane (n) 9.6 10.6 618 (50)
Hexane (n) 8.4 12.0 644
Hydrogen 11.3 12.4 880
Hydrogen–helium
10% H2, 90% He 11.0 20.5 1780 (0)
25% H2, 75% He 11.0 19.4 1603 (0)
40% H2, 60% He 10.7 18.4 1431 (0)
60% H2, 40% He 10.8 16.7 1227 (0)
81% H2, 19% He 10.5 15.0 1016 (0)

Hydrogen–sulfur dioxide 8.7 18.1 1259 (17)
10% H2, 90% SO2 8.7 18.1 1259 (17)
20% H2, 80% SO2 8.6 18.2 1277 (17)
50% H2, 50% SO2 8.9 18.3 1332 (17)
80% H2, 20% SO2 9.7 17.7 1306 (17)

Hydrogen bromide 8.4 21.6 1843
Hydrogen chloride 8.5 19.2 1425
Hydrogen cyanide 7.1 14.5 737
Hydrogen iodide 8.5 21.5 1830
Hydrogen sulfide 8.4 18.0 1265
Iodine 8.7 18.7 1730 (100)
Krypton 9.4 24.0 2480
Mercury 7.4 24.9 4500 (200)
Mercury bromide 8.5 19.0 2253
Mercuric chloride 7.7 18.7 2200 (200)
Mercuric iodide 8.4 18.0 2045 (200)
Mesitylene 9.5 10.2 660 (50)
Methane 9.5 15.8 1092
Methane (deuterated) 9.5 17.6 1290
Methanol 8.3 15.6 935
Methyl acetate 8.4 14.0 870 (50)
Methyl acetylene 8.9 14.3 867
3-Methyl-1-butene 8.0 13.3 716
Methyl butyrate (iso) 6.6 15.8 824
Methyl bromide 8.1 18.7 1327
Methyl bromide 8.1 18.7 1327
Methyl chloride 8.5 16.5 1062
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TABLE A-7 (Continued )

Gas X Y �� 107 P

3-Methylene-1-butene 8.0 13.3 716
Methylene chloride 8.5 15.8 989
Methyl formate 5.1 18.0 923
Neon 11.1 25.8 3113
Nitric oxide 10.4 20.8 1899
Nitrogen 10.6 20.0 1766
Nitrous oxide 9.0 19.0 1460
Nonane (n) 9.2 8.9 554 (50)
Octane (n) 8.8 9.8 586 (50)
Oxygen 10.2 21.6 2026
Pentene (n) 8.5 12.3 668
Pentane (iso) 8.9 12.1 685
Phosophene 8.8 17.0 1150
Propane 8.9 13.5 800
Propanol (n) 8.4 13.5 770
Propanol (iso) 8.4 13.6 774
Propyl acetate 8.0 14.3 797
Propylene 8.5 14.4 840
Pyridine 8.6 13.3 830 (50)
Silane 9.0 16.8 1148
Stannic chloride 9.1 16.0 1330 (100)
Stannic bromide 9.0 16.7 142 (100)
Sulfur dioxide 8.4 18.2 1250
Thiazole 10.0 14.4 958
Thiophene 8.3 14.2 901 (50)
Toluene 8.6 12.5 686
2,2,3-Trimethylbutane 10.0 10.4 691 (50)
Trimethylethane 8.0 13.0 686
Water 8.0 16.0 1250 (100)
Xenon 9.3 23.0 2255
Zinc 8.0 22.0 5250 (500)

a Viscosity at 208C unless otherwise indicated.

Source: RH Perry, DW Green, eds. Perry’s Chemical Engineers’ Handbook. 7th ed. New
York: McGraw-Hill, 1997. By permission.
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FIGURE A-5 Nomograph for determining absolute viscosity of a gas near ambient
pressure and relative viscosity of a gas compared with air. (Coordinates from
Table A-7.) To convert from poise to pascal-seconds, multiply by 0.1. (From
Beerman, Meas Control, June 1982, pp 154–157.)
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The curves for hydrocarbon vapors and

natural gases in the chart at the upper

right are taken from Maxwell, the

curves for all other gases (except helium)

in the chart are based upon Sutherland’s

formula, as folloows:

� ¼ �0

0:555T0C

0:555T þ C

� �
T

T0

� �3=2

where

� ¼ viscosity in cP at temperature T

�0 ¼ viscosity, in CP at temperatue T0

T ¼ absolute temperature, in 8R
(460þ 8F) for which viscosity is

desired.

T0 ¼ absolute temperature, in 8R, for

which viscosity is known.

C ¼ Sutherland’s constant

Note: The variation of viscosity with

presssure is small for most gases. For

gases given on this page, the correction

of viscosity for pressure is less than 10%

for pressures up to 500 psi.

Approximate

Fluid values of 8C

O2 127

Air 120

N2 111

CO2 240

CO 118

SO2 416

NH2 370

H2 72

Upper chart example: The viscosity

of sulfur dioxide gas (SO2) at 2008F
is 0.016 cP.

Lower chart example: The viscosity

of carbon dioxide gas (CO2) at about 808F
is 0.015 cP.

FIGURE A-6 Viscosity of (a) gases and (b) refrigerant vapors. (From Crane
Technical Paper 410, Crane Co., Chicago, 1991.)
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FIGURE B-1 Curves for estimating viscosity from a single measurement value.
(From Gambill, 1959.)
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FIGURE C-1 Steam values of isentropic exponent, k (for small changes in pres-
sure (or volume) along an isentrope, pVk ¼ constant).





Appendix D

Pressure–Enthalpy Diagrams for Various
Compounds

505



506 Appendix D

F
IG

U
R
E

D
-1

O
x
y
g
e
n

p
re
s
s
u
re
–
e
n
th
a
lp
y

d
ia
g
ra
m
.

(F
ro
m

L
N

C
a
n
ja
r,

F
S

M
a
n
n
in
g
.

T
h
e
rm

o
d
yn

a
m
ic

P
ro
p
e
rt
ie
s

a
n
d

R
e
d
u
ce

d
C
o
rr
e
la
tio

n
s

fo
r
G
a
se

s.
H
o
u
s
to
n
,
T
X
:
G
u
lf

P
u
b
,

1
9
6
7
.
R
e
p
ro
d
u
c
e
d
b
y
p
e
rm

is
s
io
n
.)



Pressure–Enthalpy Diagrams 507

F
IG

U
R
E

D
-2

N
it
ro
g
e
n

p
re
s
s
u
re
–
e
n
th
a
lp
y

d
ia
g
ra
m
.
(F
ro
m

V
M

T
e
ja
d
a

e
t
a
l.

T
h
e
rm

o
p
ro
p
e
rt
ie
s

o
f
n
o
n
-h
y
d
ro
c
a
rb
o
n
s
.

H
yd

ro
ca

rb
o
n
P
ro
c
P
e
tr
o
l
R
e
fin

e
r,
M
a
rc
h
1
9
6
6
.
R
e
p
ri
n
te
d
b
y
p
e
rm

is
s
io
n
.)



508 Appendix D

F
IG

U
R
E
D
-3

P
re
s
s
u
re
–
e
n
th
a
lp
y
c
h
a
rt
,
c
a
rb
o
n
d
io
x
id
e
.
(F
ro
m

A
S
H
R
A
E

H
a
n
d
b
o
o
k
o
f
F
u
n
d
a
m
e
n
ta
ls
,
1
9
6
7
.)



Pressure–Enthalpy Diagrams 509

F
IG

U
R
E
D
-4

E
n
th
a
lp
y
–
lo
g
p
re
s
s
u
re

d
ia
g
ra
m

fo
r
R
e
fr
ig
e
ra
n
t
2
2
.
T
e
m
p
e
ra
tu
re

in
8F
,
v
o
lu
m
e

in
ft
3
/l
b
,
e
n
tr
o
p
y
in

B
tu
/(
lb

8R
),
q
u
a
lit
y
in

w
e
ig
h
t
p
e
rc
e
n
t.
(R

e
p
ri
n
te
d
b
y
p
e
rm

is
s
io
n
o
f
E
I
d
u

P
o
n
t
d
e
N
e
m
o
u
rs

&
C
o
m
p
a
n
y
,
1
9
6
7
.)



510 Appendix D

F
IG

U
R
E
D
-5

P
re
s
s
u
re
–
e
n
th
a
lp
y
d
ia
g
ra
m

o
f
e
th
a
n
e
.
(F
ro
m

H
yd

ro
ca

rb
o
n
P
ro
ce

ss
in
g
5
0
(4
):
1
4
0
,
1
9
7
1
.)



Pressure–Enthalpy Diagrams 511

F
IG

U
R
E

D
-6

P
re
s
s
u
re
–
e
n
th
a
lp
y

d
ia
g
ra
m

fo
r
e
th
y
le
n
e
.
(F
ro
m

R
E

S
te
rl
in
g
,
F
lu
id

T
h
e
rm

a
l
P
ro
p
e
rt
ie
s

fo
r

P
e
tr
o
le
u
m

S
ys

te
m
s
.
H
o
u
s
to
n
,
T
X
:
G
u
lf
P
u
b
.
R
e
p
ri
n
te
d
b
y
p
e
rm

is
s
io
n
.)





Appendix E

Microscopic Conservation Equations in
Rectangular, Cylindrical, and Spherical
Coordinates

CONTINUITY EQUATION

Rectangular coordinates (x, y, z):

@�

@t
þ @

@x
ð�vxÞ þ

@

@y
ð�vyÞ þ

@

@z
ð�vzÞ ¼ 0

Cylindrical coordinates ðr; 
; z):
@�

@t
þ 1

r

@

@r
ð�rvrÞ þ

1

r

@

@

ð�v
Þ þ

@

@z
ð�vzÞ ¼ 0

Spherical coordinates ðr; 
; �):
@�

@t
þ 1

r2
@

@r
ð�r2vrÞ þ

1

r sin 


@

@

ð�v
 sin 
Þ þ

1

r sin 


@

@�
¼ 0

513



MOMENTUM EQUATION IN RECTANGULAR COORDINATES

x component:

�
@vx
@t

þ vx
@vx
@x

þ vy
@vx
@y

þ vz
@vx
@z

� �

¼ � @P
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� �
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y component:
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z component:
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MOMENTUM EQUATION IN CYLINDRICAL COORDINATES

r component:
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z component:

�
@vz
@t

þ vr
@vz
@r

þ v

r

@vz
@


þ vz
@vz
@z

� �

¼ � @P
@z

þ 1

r

@

@r
ðr�rz þ

1

r

@�
z
@


þ @�zz
@z

� �
þ �gz

MOMENTUM EQUATION IN SPHERICAL COORDINATES

r component:
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COMPONENTS OF THE STRESS TENSOR �

Rectangular coordinates:

�xx ¼ þ� 2
@vx
@x

� 2

3
ðr � vÞ

� �
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� 2
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Cylindrical coordinates:
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Spherical coordinates:

�rr ¼ þ� 2
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Standard Steel Pipe Dimensions and
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TABLE F-1 Standard Steel Pipe Dimensions and Capacitiesa

Cross-sectional Circumference Capacity at 1 ft/s

area (ft) or surface velocity

Nominal Outside Wall Inside (ft/ft of length)

pipe diameter Schedule thickness diameter Metal U.S.

size (in.) (in.) no. (in.) (in) (in.2) Flow (ft2) Outside Inside min lb/h water

1
8 0.405 10S 0.949 0.307 0.055 0.00051 0.106 0.0804 0.231 115.5

40St, 40S 1.068 0.269 0.072 0.00040 0.106 0.0705 0.179 89.5

80X, 80S 0.095 0.215 0.093 0.00025 0.106 0.0563 0.113 56.5

1
4 0.540 10S 0.065 0.410 0.097 0.00092 0.141 0.107 0.412 206.5

40St, 40S 0.088 0.364 0.125 0.00072 0.141 0.095 0.323 161.5

80XS, 80S 0.119 0.302 0.157 0.00050 0.141 0.079 0.224 112.0

3
8 0.675 10S 0.065 0.545 0.125 0.00162 0.177 0.143 0.727 363.5

40ST, 40S 0.091 0.493 0.167 0.00133 0.177 0.129 0.596 298.0

80XS, 80S 0.126 0.423 0.217 0.00098 0.177 0.111 0.440 220.0

1
2 0.840 5S 0.065 0.710 0.158 0.00275 0.220 0.186 1.234 617.0

10S 0.083 0.674 0.197 0.00248 0.220 0.176 1.112 556.0

40ST, 40S 0.109 0.622 0.250 0.00211 0.220 0.163 0.945 472.0

80XS, 80S 0.147 0.546 0.320 0.00163 0.220 0.143 0.730 365.0

160 0.188 0.464 0.385 0.00117 0.220 0.122 0.527 263.5

XX 0.294 0.252 0.504 0.00035 0.220 0.066 0.155 77.5

3
4 1.050 5S 0.065 0.920 0.201 0.00461 0.275 0.241 2.072 1036.0

10S 0.083 0.884 0.252 0.00426 0.275 0.231 1.903 951.5

40ST, 40S 0.113 0.824 0.333 0.00371 0.275 0.216 1.665 832.5

80XS, 80S 0.154 0.742 0.433 0.00300 0.275 0.194 1.345 672.5

160 0.219 0.612 0.572 0.00204 0.275 0.160 0.917 458.5

XX 0.308 0.434 0.718 0.00103 0.275 0.114 0.461 230.5

1 1.315 5S 0.065 1.185 0.255 0.00768 0.344 0.310 3.449 1725

10S 0.109 1.097 0.413 0.00656 0.344 0.287 2.946 1473

40ST, 40S 0.133 1.049 0.494 0.00600 0.344 0.275 2.690 1345

80XS, 80S 0.179 0.957 0.639 0.00499 0.344 0.250 2.240 1120

160 0.250 0.815 0.836 0.00362 0.344 0.213 1.625 812.5

XX 0.358 0.599 1.076 0.00196 0.344 0.157 0.878 439.0

114 1.660 5S 0.065 1.530 0.326 0.01277 0.435 0.401 5.73 2865

10S 0.109 1.442 0.531 0.01134 0.435 0.378 5.09 2545

40ST, 40S 0.140 1.380 0.668 0.01040 0.435 0.361 4.57 2285

80XS, 80S 0.191 1.278 0.881 0.0891 0.435 0.335 3.99 1995

160 0.250 1.160 1.107 0.00734 0.435 0.304 3.29 1645

XX 0.382 0.896 1.534 0.00438 0.435 0.235 1.97 985

112 1.900 5S 0.065 1.770 0.375 0.01709 0.497 0.463 7.67 3835

10S 0.109 1.682 0.614 0.01543 0.497 0.440 6.94 3465

40ST, 40S 0.145 1.610 0.800 0.01414 0.497 0.421 6.34 3170

80XS, 80S 0.200 1.500 1.069 0.01225 0.497 0.393 5.49 2745

160 0.281 1.338 1.439 0.00976 0.497 0.350 4.38 2190

XX 0.400 1.100 1.885 0.00660 0.497 0.288 2.96 1480

2 2.375 5S 0.065 2.245 0.472 0.02749 0.622 0.588 12.34 6170

10S 0.109 2.157 0.776 0.02538 0.622 0.565 11.39 5695

40ST, 40S 0.154 2.067 1.075 0.02330 0.622 0.541 10.45 5225

80ST, 80S 0.218 1.939 1.477 0.02050 0.622 0.508 9.20 4600
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TABLE F-1 (Continued )

Cross-sectional Circumference Capacity at 1 ft/s

area (ft) or surface velocity

Nominal Outside Wall Inside (ft/ft of length)

pipe diameter Schedule thickness diameter Metal U.S.

size (in.) (in.) no. (in.) (in) (in.2) Flow (ft2) Outside Inside min lb/h water

160 0.344 1.687 2.195 0.01552 0.622 0.436 6.97 3485

XX 0.436 1.503 2.656 0.01232 0.622 0.393 5.53 2765

212 2.875 5S 0.083 2.709 0.728 0.04003 0.753 0.709 17.97 8985

10S 0.120 2.635 1.039 0.03787 0.753 0.690 17.00 8500

40ST, 40S 0.203 2.469 1.704 0.03322 0.753 0.647 14.92 7460

80XS, 80S 0.276 2.323 2.254 0.2942 0.753 0.608 13.20 6600

160 0.375 2.125 2.945 0.2463 0.753 0.556 11.07 5535

XX 0.552 1.771 4.028 0.01711 0.753 0.464 7.68 3840

3 3.500 5S 0.083 3.334 0.891 0.06063 0.916 0.873 27.21 13,605

10S 0.120 3.260 1.274 0.05796 0.916 0.853 26.02 13,010

40ST, 40S 0.216 3.068 2.228 0.05130 0.916 0.803 23.00 11,500

80XS, 80S 0.300 2.900 3.016 0.04587 0.916 0.759 20.55 10,275

160 0.438 2.624 4.213 0.03755 0.916 0.687 16.86 8430

XX 0.600 2.300 5.466 0.02885 0.916 0.602 12.95 6475

312 4.0 5S 0.083 3.834 1.021 0.08017 1.047 1.004 35.98 17,990

10S 0.120 3.760 1.463 0.07711 1.047 0.984 34.61 17,305

40ST, 40S 0.226 3.548 2.680 0.06870 1.047 0.929 30.80 15,400

80XS, 80S 0.318 3.364 3.678 0.06170 1.047 0.881 27.70 13,850

4 4.5 5S 0.083 4.334 1.152 0.10245 1.178 1.135 46.0 23,000

10S 0.120 4.260 1.651 0.09898 1.178 1.115 44.4 22,200

40ST, 40S 0.237 4.026 3.17 0.08840 1.178 1.054 39.6 19,800

80XS, 80S 0.337 3.826 4.41 0.07986 1.178 1.002 35.8 17,900

4 120 0.438 3.624 5.58 0.07170 1.178 0.949 32.2 16,100

160 0.531 3.438 6.62 0.06647 1.178 0.900 28.9 14,450

XX 0.674 3.152 8.10 0.05419 1.178 0.825 24.3 12,150

5 5.563 5S 0.109 5.345 1.87 0.1558 1.456 1.399 69.9 34.950

10S 0.134 5.295 2.29 0.1529 1.456 1.386 68.6 34,300

40ST, 40S 0.258 5.047 4.30 0.1390 1.456 1.321 62.3 31,150

80XS, 80S 0.375 4.813 6.11 0.1263 1.456 1.260 57.7 28,850

120 0.500 4.563 7.95 0.1136 1.456 1.195 51.0 25,500

160 0.625 4.313 9.70 0.1015 1.456 1.129 45.5 22,750

XX 0.750 4.063 11.34 0.0900 1.456 1.064 40.4 20,200

6 6.625 5S 0.109 6.407 2.23 0.2239 1.734 1.677 100.5 50,250

10S 0.134 6.357 2.73 0.2204 1.734 1.664 98.9 49,450

40ST, 40S 0.280 6.065 5.58 0.2006 1.734 1.588 90.0 45,000

80XS, 80S 0.432 5.761 8.40 0.1810 1.734 1.508 81.1 40,550

120 0.562 5.501 10.70 0.1650 1.734 1.440 73.9 36,950

160 0.719 5.187 13.34 0.1467 1.734 1.358 65.9 32,950

XX 0.864 4.897 15.64 0.1308 1.734 1.282 58.7 29,350

8 8.625 5S 0.109 8.407 2.915 0.3855 2.258 2.201 173.0 86,500

10S 0.148 8.329 3,941 0.3784 2.258 2.180 169.8 84,900

20 0.250 8.125 6.578 0.3601 2.258 2.127 161.5 80,750
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TABLE F-1 (Continued )

Cross-sectional Circumference Capacity at 1 ft/s

area (ft) or surface velocity

Nominal Outside Wall Inside (ft/ft of length)

pipe diameter Schedule thickness diameter Metal U.S.

size (in.) (in.) no. (in.) (in) (in.2) Flow (ft2) Outside Inside min lb/h water

30 0.277 8.071 7.265 0.3553 2.258 2.113 159.4 79,700

40ST, 40S 0.322 7.981 8.399 0.3474 2.258 2.089 155.7 77,850

60 0.406 7.813 10.48 0.3329 2.258 2.045 149.4 74,700

80XS, 80S 0.500 7.625 12.76 0.3171 2.258 1.996 142.3 71,150

100 0.594 7.437 14.99 0.3017 2.258 1.947 135.4 67,700

120 0.719 7.187 17.86 0.2817 2.258 1.882 126.4 63,200

140 0.812 7.001 19.93 0.2673 2.258 1.833 120.0 60,000

XX 0.875 6.875 21.30 0.2578 2.258 1.800 115.7 57,850

160 0.906 6.813 21.97 0.2532 2.258 1.784 113.5 56,750

10 10.75 5S 0.134 10.482 4.47 0.5993 2.814 2.744 269.0 134,500

10S 0.165 10.420 5.49 0.5922 2.814 2.728 265.8 132,900

20 0.250 10.250 8.25 0.5731 2.814 2.685 257.0 128,500

30 0.307 10.136 10.07 0.5603 2.814 2.655 252.0 126,000

40ST, 40S 0.365 10.020 11.91 0.5745 2.814 2.620 246.0 123,000

80S, 60XS 0.500 9.750 16.10 0.5185 2.814 2.550 233.0 116,500

80 0.594 9.562 18.95 0.4987 2.814 2.503 223.4 111,700

100 0.719 9.312 22.66 0.4728 2.814 2.438 212.3 106,150

120 0.844 9.062 26.27 0.4479 2.814 2.372 201.0 100,500

140, XX 1.000 8.750 30.63 0.4176 2.814 2.291 188.0 94,000

160 1.125 8.500 34.02 0.3941 2.814 2.225 177.0 88,500

12 12.75 5S 0.156 12.428 6.17 0.8438 3.338 3.26 378.7 189,350

10S 0.180 12.390 7.11 0.8373 3.338 3.24 375.8 187,900

20 0.250 12.250 9.82 0.8185 3.338 3.21 367.0 183,500

30 0.330 12.090 12.88 0.7972 3.338 3.17 358.0 179,000

ST, 40S 0.375 12.000 14.58 0.7854 3.338 3.14 352.5 176,250

40 0.406 11.938 15.74 0.7773 3.338 3.13 349.0 174,500

XS, 80S 0.500 11.750 19.24 0.7530 3.338 3.08 338.0 169.000

60 0.562 11.626 21.52 0.7372 3.338 3.04 331.0 165,500

80 0.688 11.374 26.07 0.7056 3.338 2.98 316.7 158,350

100 0.844 11.062 31.57 0.6674 3.338 2.90 299.6 149,800

120, XX 1.000 10.750 36.91 0.6303 3.338 2.81 283.0 141,500

140 1.125 10.500 41.09 0.6013 3.338 2.75 270.0 135,000

160 1.312 10.136 47.14 0.5592 3.338 2.65 251.0 125,500

14 14 5S 0.156 13.688 6.78 1.0219 3.665 3.58 459 229,500

10S 0.188 13.624 8.16 1.0125 3.665 3.57 454 227,000

10 0.250 13.500 10.80 0.9940 3.665 3.53 446 223,000

20 0.312 13.376 13.42 0.9750 3.665 3.50 438 219,000

30, ST 0.375 13.250 16.05 0.9575 3.665 3.47 430 215,000

40 0.438 13.124 18.66 0.9397 3.665 3.44 422 211,000

XS 0.500 13.000 21.21 0.9218 3.665 3.40 414 207,000

60 0.594 12.812 25.02 0.8957 3.665 3.35 402 201,000

80 0.750 12.500 31.22 0.8522 3.665 3.27 382 191,000

100 0.938 12.124 38.49 0.8017 3.665 3.17 360 180,000

120 1.094 11.812 44.36 0.7610 3.665 3.09 342 171,000

140 1.250 11.500 50.07 0.7213 3.665 3.01 324 162,000

160 1.406 11.188 55.63 0.6827 3.665 2.93 306 153,000
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TABLE F-1 (Continued )

Cross-sectional Circumference Capacity at 1 ft/s

area (ft) or surface velocity

Nominal Outside Wall Inside (ft/ft of length)

pipe diameter Schedule thickness diameter Metal U.S.

size (in.) (in.) no. (in.) (in) (in.2) Flow (ft2) Outside Inside min lb/h water

16 16 5S 0.165 15.670 8.21 1.3393 4.189 4.10 601 300,500

10S 0.188 15.624 9.34 1.3314 4.189 4.09 598 299,000

10 0.250 15.500 12.37 1.3104 4.189 4.06 587 293,500

20 0.312 15.376 15.38 1.2985 4.89 4.03 578 289,000

30, ST 0.375 15.250 18.41 1.2680 4.189 3.99 568 284,000

40, XS 0.500 15.000 24.35 1.2272 4.189 3.93 550 275,000

60 0.656 14.688 31.62 1.766 4.189 3.85 528 264,000

80 0.844 14.312 40.19 1.1171 4.189 3.75 501 250,500

100 1.031 13.939 48.48 1.0596 4.189 3.65 474 237,000

120 1.219 13.562 56.61 1.0032 4.189 3.55 450 225,000

140 1.438 13.124 65.79 0.9394 4.189 3.44 422 211,000

160 1.594 12.812 72.14 0.8953 4.189 3.35 402 201,000

18 18 5S 0.165 17.760 9.25 1.8029 4.712 4.63 764 382,000

10S 0.188 17.624 10.52 1.6941 4.712 4.61 760 379,400

10 0.250 17.500 13.94 1.6703 4.712 4.58 750 375,000

20 0.312 17.376 17.34 1.6468 4.712 4.55 739 369.500

ST 0.375 17.250 20.76 1.6230 4.712 4.52 728 364,000

30 0.438 17.124 24.16 1.5993 4.712 4.48 718 359,000

XS 0.500 17.000 27.49 1.5763 4.712 4.45 707 353,500

40 0.562 16.876 30.79 1.5533 4.712 4.42 697 348,500

60 0.750 16.500 40.54 1.4849 4.712 4.32 666 333,000

80 0.938 16.124 50.28 1.4180 4.712 4.2 636 318,000

100 1.156 15.688 61.17 1.3423 4.712 4.11 602 301,000

120 1.375 15.250 71.82 1.2684 4.712 3.99 569 284,500

140 1.562 14.876 80.66 1.2070 4.712 3.89 540 270,000

160 1.781 14.438 90.75 1.1370 4.712 3.78 510 255,000

20 20 5S 0.188 19.624 11.70 2.1004 5.236 5.14 943 471,500

10S 0.218 19.564 13.55 2.0878 5.236 5.12 937 467,500

10 0.250 19.500 5.51 2.0740 5.236 5.11 930 465,000

20, ST 0.375 19.250 23.12 2.0211 5.236 5.04 902 451,000

30, XS 0.500 19.000 30.63 1.9689 5.236 4.97 883 441,500

40 0.594 18.812 36.21 1.9302 5.236 4.92 866 433,000

60 0.812 18.376 48.95 1.8417 5.236 4.81 826 413,000

80 1.031 17.938 61.44 1.7550 5.236 4.70 787 393,500

100 1.281 17.438 75.33 1.6585 5.236 4.57 744 372,000

120 1.500 17.000 87.18 1.5763 5.236 4.45 707 353,500

140 1.750 16.500 100.3 1.4849 5.236 4.32 665 332.500

160 1.969 16.062 111.5 1.4071 5.236 4.21 632 316,000

24 24 5S 0.218 23.564 16.29 3.0285 6.283 6.17 1359 579,500

20, 10S 0.250 23.500 18.65 3.012 6.283 6.15 1350 675,000

20, ST 0.375 23.250 27.83 2.948 6.283 6.09 1325 662,500

XS 0.500 23.000 36.90 2.885 6.283 6.02 1295 642,500

30 0.562 22.876 41.39 2.854 6.283 5.99 1281 640,500

40 0.688 22.624 50.39 2.792 6.283 5.92 1253 626,500

60 0.969 22.062 70.11 2.655 6.283 5.78 1192 596,000

80 1.219 21.562 87.24 2.536 6.283 5.64 1138 569,000

100 1.531 20.938 108.1 2.391 6.283 5.48 1073 536,500
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TABLE F-1 (Continued )

Cross-sectional Circumference Capacity at 1 ft/s

area (ft) or surface velocity

Nominal Outside Wall Inside (ft/ft of length)

pipe diameter Schedule thickness diameter Metal U.S.

size (in.) (in.) no. (in.) (in) (in.2) Flow (ft2) Outside Inside min lb/h water

120 1.812 20.376 126.3 2.264 6.283 5.33 1016 508,000

140 2.062 19.876 142.1 2.155 6.283 5.20 965 482,500

160 2.344 19.312 159.5 2.034 6.283 5.06 913 456,500

30 30 5S 0.250 29.500 23.37 4.746 7.854 7.72 2130 1,065,000

10, 10S 0.312 29.376 29.10 4.707 7.854 7.69 2110 1,055,000

ST 0.375 29.250 34.90 4.666 7.854 7.66 2094 1,048,000

20, XS 0.500 29.000 46.34 4.587 7.854 7.59 2055 1,027,500

30 0.625 28.750 57.68 4.508 7.854 7.53 2020 1,010,000

a 5S, 10S, and 40S are extracted from Stainless Steel Pipe, ANSI B36.19–1976, with permission of the publisher,

the American Society of Mechanical Engineers, New York. ST= standard wall, XS= extra strong wall, XX=double

extra strong wall, and Schedules 10–160 are extracted from Wrought-Steel and Wrought-Iron Pipe, ANSI B36.10–

1975, with permission of the same publisher. Decimal thicknesses for respective pipe sizes represent their nominal

or average wall dimensions. Mill tolerances as high as �12 1
2% are permitted.

Plain-end pipe is produced by a square cut. Pipe is also shipped from the mills threaded, with a threaded

coupling on one end, or with the ends beveled for welding, or grooved or sized for patented couplings. Weights per

foot for threaded and coupled pipe are slightly greater because of the weight of the coupling, but it is not available

larger than 12 in or lighter than Schedule 30 sizes 8 through 12 in, or Schedule 406 in and smaller.

To convert inches to millimeters, multiply by 25.4; to convert square inches to square millimeters, multiply by

645; to convert feet to meters, multiply by 0.3048; to convert square feet to square meters, multiply by 0.0929; to

convert pounds per foot to kilograms per meter, multiply by 1.49; to convert gallons to cubic meters, multiply by

3:7854� 10�3; and to convert pounds to kilograms, multiply by 0.4536.
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TABLE G-2 Flow of Air Through Schedule 40 Steel Pipe





Appendix H

Typical Pump Head Capacity Range
Charts
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532 Appendix H

FIGURE H-1 Typical pump characteristic curves.
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FIGURE H-1 (Continued)
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FIGURE H-1 (Continued)
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FIGURE H-1 (Continued)
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FIGURE H-1 (Continued)
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Appendix I

Fanno Line Tables for Adiabatic Flow of
Air in a Constant Area Duct
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544 Appendix I

TABLE I-1 Fanno Line—Adiabatic, Constant Area Flow ðk ¼ 1:400Þ

NMa

T

T�
P

P�
P0

P0�
~VV
~VV *

F

F�
4fL

D

0 1.2000 1 1 0 1 1
0.01 1.2000 10, 9.544 5, 7.874 0.01095 4, 5.650 7, 134.40
0.02 1.1999 5, 4.770 2, 8.942 0.02191 22, 834 1, 778.45
0.03 1.1998 3, 6.511 1, 9.300 0.03286 15, 232 7, 87.08
0.04 1.1996 27, 382 14, 482 0.04381 11, 435 4, 40.35

0.05 1.1994 21, 903 11, 5914 0.05476 9, 1584 2, 80.02
0.06 1.1991 1 8, 251 9, 6659 0.06570 7.6, 428 19, 3.03
0.07 1.1988 15.6, 42 8.2, 915 0.07664 6.5, 620 14, 0.66
0.08 1.1985 13.6, 84 7.2, 616 0.08758 5.7, 529 10, 6.72
0.09 1.1981 12.1, 62 6.4, 614 0.09851 5.1, 249 8, 3.496

0.10 1.1976 10.9, 435 5.8, 218 0.10943 4.6, 236 66, 922
0.11 1.1971 9.9, 465 5.2, 992 0.12035 4.2, 146 54, 688
0.12 1.1966 9.1, 156 4.8, 643 0.13126 3.8, 747 45, 408
0.13 1.1960 8.4, 123 4.4, 968 0.14216 3.58, 80 38, 207
0.14 1.1953 7.8, 093 4.1, 824 0.15306 3.34, 32 32, 51 1

0.15 1.1946 7.2, 866 3.91, 03 0.16395 3.13, 17 27, 932
0.16 1.1939 6.82, 91 3.67, 27 0.17482 2.94, 74 24, 198
0.17 1.1931 6.42, 52 3.46, 35 0.18568 2.78, 55 21, 115
0.18 1.1923 6.06, 62 3.27, 79 0.19654 2.64, 22 18.5, 43
0.19 1.1914 5.74, 48 3.11, 23 0.20739 2.51, 46 16.3, 75

0.20 1.1905 5.45, 55 2.96, 35 0.21822 2.40, 04 14.5, 33
0.21 1.1895 5.19, 36 2.82, 93 0.22904 2.29, 76 12.9, 56
0.22 1.1885 4.95, 54 2.70, 76 0.23984 2.20, 46 11.5, 96
0.23 1.1874 4.73, 78 2.59, 68 0.25063 2.12, 03 10.4, 16
0.24 1.1863 4.53, 83 2.49, 56 0.26141 2.04, 34 9.3, 865

0.25 1.1852 4.35, 46 2.40, 27 0.27217 1.97, 32 8.4, 834
0.26 1.1840 4.18, 50 2.31, 73 0.28291 1.90, 88 7.6, 876
0.27 1.1828 4.02, 80 2.23, 85 0.29364 1.84, 96 6.9, 832
0.28 1.1815 3.88, 20 2.16, 56 0.30435 1.795, 0 6.3, 572
0.29 1.1802 3.74, 60 2.09, 79 0.31504 1.744, 6 5.7, 989

0.30 1.1788 3.61, 90 2.035, 1 0.32572 1.697, 9 5.2, 992
0.31 1.1774 3.50, 02 1.976, 5 0.33637 1.654, 6 4.8, 507
0.32 1.1759 3.38, 88 1.921, 9 0.34700 1.614, 4 4.44, 68
0.33 1.1744 3.28, 40 1.870, 8 0.35762 1.576, 9 4.08, 21
0.34 1.1729 3.18, 53 1.822, 9 0.36822 1.542, 0 3.75, 20
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TABLE I-1 (Continued )

NMa

T

T�
P

P�
P0

P0�
~VV
~VV *

F

F�
4fL

D

0.35 1.1713 3.09, 22 1.778, 0 0.37880 1.509, 4 3.45, 25
0.36 1.1697 3.004, 2 1.735, 8 0.38935 1.478, 9 3.18, 01
0.37 1.1680 2.920, 9 1.696, 1 0.39988 1.450, 3 2.93, 20
0.38 1.1663 2.842, 0 1.658, 7 0.41039 1.423, 6 2.70, 55
0.39 1.1646 2.767, 1 1.623, 4 0.42087 1.398, 5 2.49, 83

0.40 1.1628 2.695, 8 1.590, 1 0.43133 1.374, 9 2.30, 85
0.41 1.1610 2.628, 0 1.558, 7 0.44177 1.352, 7 2.13, 44
0.42 1.1591 2.563, 4 1.528, 9 0.45218 1.331, 8 1.97, 44
0.43 11572 2.501, 7 1.500, 7 0.46257 1.312, 2 1.82, 72
0.44 1.1553 2.442, 8 1.473, 9 0.47293 1.293, 7 1.69, 15

0.45 1.1533 2.386, 5 1.448, 6 0.48326 1.276, 3 1.56, 64
0.46 1.1513 2.332, 6 1.424, 6 0.49357 1.259, 8 1.45, 09
0.47 1.1492 2.280, 9 1.401, 8 0.50385 1.244, 3 1.34, 42
0.48 1.1471 2.231, 4 1.380, 1 0.51410 1.229, 6 1.24, 53
0.49 1.1450 2.183, 8 1.359, 5 0.52433 1.215, 8 1.15, 39

0.50 1.1429 2.138, 1 1.339, 9 0.53453 1.202, 7 1.06, 908
0.51 1.1407 2.094, 2 1.321, 2 0.54469 1.190, 3 0.99, 042
0.52 1.1384 2.051, 9 1.303, 4 0.55482 1.178, 6 0.91, 741
0.53 1.1362 2.011, 2 1.286, 4 0.56493 1.167, 5 0.84, 963
0.54 1.1339 1.971, 9 1.270, 2 0.57501 1, 157, 1 0.786, 62

0.55 1.1315 1.934, 1 1.254, 9 0.58506 1.147, 2 0.728, 05
0.56 1.1292 1.897, 6 1.240, 3 0.59507 1.137, 8 0.673, 57
0.57 1.1266 1.862, 3 1.226, 3 0.60505 1.128, 9 0.622, 86
0.58 1.1244 1.828, 2 1.213, 0 0.61500 1.120, 5 0.575, 68
0.59 1.1219 1.795, 2 1.200, 3 0.62492 1.112, 6 0.531, 74

0.60 1.1194 1.763, 4 1.188, 2 0.63481 1.1050, 4 0.490, 81
0.61 1.1169 1.732, 5 1.176, 6 0.64467 1.0979, 3 0.452, 70
0.62 1.1144 1.702, 6 1.165, 6 0.65449 1.0912, 0 0.417, 20
0.63 1.1118 1.673, 7 1.155, 1 0.66427 1.0848, 5 0.384, 11
0.64 1.1091 1.645, 6 1.145, 1 0.67402 1.0788, 3 0.353, 30

0.65 1.10650 1.618, 3 1.135, 6 0.68374 1.0731, 4 0.324, 60
0.66 1.10383 1.591, 9 1.126, 5 0.69342 1.0677, 7 0.297, 85
0.67 1.10114 1.566, 2 1.117, 9 0.70306 1.0627, 1 0.272, 95
0.68 1.09842 1.541, 3 1.109, 7 0.71267 1.0579, 2 0.249, 78
0.69 1.09567 1.517, 0 1.101, 8 0.72225 1.0534, 0 0.228, 21
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4fL

D

0.70 1.09290 1.493, 4 1.0943, 6 0.73179 1.0491, 5 0.208, 14
0.71 1.09010 1.470, 5 1.0872, 9 0.74129 1.0451, 4 0.189, 49
0.72 1.08727 1.448, 2 1.0805, 7 0.75076 1.0413, 7 0.172, 15
0.73 1.08442 1.426, 5 1.0741, 9 0.76019 1.0378, 3 0.156, 06
0.74 1.08155 1.405, 4 1.0681, 5 0.76958 1.0345, 0 0.141, 13

0.75 1.07856 1.384, 8 1.0624, 2 0.77893 1.0313, 7 0.127, 28
0.76 1.07573 1.364, 7 1.0570, 0 0.78825 1.0284, 4 0.114, 46
0.77 1.07279 1.345, 1 1.0518, 8 0.79753 1.0257, 0 0.102, 62
0.78 1.06982 1.326, 0 1.0470, 5 0.80677 1.0231, 4 0.091, 67
0.79 1.06684 1.3074 1.0425, 0 0.81598 1.0207, 5 0.081, 59

0.80 1.06383 1.2892 1.0382, 3 0.82514 1.0185, 3 0.072, 29
0.81 1.06080 1.2715 1.0342, 2 0.83426 1.0164, 6 0.063, 75
0.82 1.05775 1.2542 1.0304, 7 0.84334 1.0145, 5 0.055, 93
0.83 1.05468 1.2373 1.0269, 6 0.85239 1.0127, 8 0.048, 78
0.84 1.05160 1.2208 1.0237, 0 0.86140 1.0111 5 0.042, 26
0.85 1.04849 1.2047 1.0206, 7 0.87037 1.0096, 6 0.036, 32

0.86 1.04537 1.1889 1.0178, 7 0.87929 1.0082, 9 0.030, 97
0.87 1.04223 1.1735 1.0152, 9 0.88818 1.0070, 4 0.026, 13
0.88 1.03907 1.1584 1.0129, 4 0.89703 1.0059, 1 0.021, 80
0.89 1.03589 1.1436 1.0108, 0 0.90583 1.0049, 0 0.017, 93

0.90 1.03270 1.1291, 3 1.0088, 7 0.91459 1.0039, 9 0.0145, 13
0.91 1.02950 1.1150, 0 1.0071, 4 0.92332 1.0031, 8 0.0115, 19
0.92 1.02627 1.1011, 4 1.0056, 0 0.93201 1.0024, 8 0.0089, 16
0.93 1.02304 1.0875, 8 1.0042, 6 0.94065 1.0018, 8 0.0066, 94
0.94 1.01978 1.0743, 0 1.0031, 1 0.94925 1.0013, 6 0.0048, 15

0.95 1.01652 1.0612, 9 1.0021, 5 0.95782 1.0009, 3 0.0032, 80
0.96 1.01324 1.0485, 4 1.0013, 7 0.96634 1.0005, 9 0.0020, 56
0.97 1.00995 1.0360, 5 1.0007, 6 0.97481 1.0003, 3 0.0011, 35
0.98 1.00664 1.0237, 9 1.0003, 3 0.98324 1.0001, 4 0.0004, 93
0.99 1.00333 1.0117, 8 1.0000, 8 0.99164 1.0000, 3 0.0001, 20

1.00 1.00000 1.0000, 0 1.0000, 0 1.00000 1, 0000, 0 0
1.01 0.99666 0.9884, 4 1.0000, 8 1.00831 1.0000, 3 0.0001, 14
1.02 0.99331 0.9771, 1 1.0003, 3 1.01658 1.0001, 3 0.0004, 58
1.03 0.98995 0.9659, 8 1.0007, 3 1.02481 1.0003, 0 0.0010, 13
1.04 0.98658 0.9550, 6 1.0013, 0 1.03300 1.0005, 3 0.0017, 71
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D

1.05 0.98320 0.9443, 5 1.0020, 3 1.04115 1.0008, 2 0.0027, 12
1.06 0.97982 0.9338, 3 1.0029, 1 1.04925 1.0011, 6 0.0038, 37
1.07 0.97642 0.9235, 0 1.0039, 4 1.05731 1.0015, 5 0.0051, 29
1.08 0.97302 0.9133, 5 1.0051, 2 1.06533 1.0020, 0 0.0065, 82
1.09 0.96960 0.9033, 8 1.0064, 5 1.07331 1.0025, 0 0.0081, 85

1.10 0.96618 0.8935, 9 1.0079, 3 1.08124 1.00305 0.0099, 33
1.11 0.96276 0.8839, 7 1.0095, 5 1.08913 1.00365 0.0118, 13
1.12 0.95933 0.8745, 1 1.0113, 1 1.09698 1.00429 0.0138, 24
1.13 0.95589 0.8652, 2 1.0132, 2 1.10479 1.00497 0.0159, 49
1.14 0.95244 0.8560, 8 1.0152, 7 1.11256 1.00569 0.0181, 87

1.15 0.94899 0.8471, 0 1.0174, 6 1.1203 1.00646 0.0205, 3
1.16 0.94554 0.8382, 7 1.0197, 8 1.1280 1.00726 0.0229, 8
1.17 0.94208 0.8295, 8 1.0222, 4 1.1356 1.00810 0.0255, 2
1.18 0.93862 0.8210, 4 1.0248, 4 1.1432 1.00897 0.0281, 4
1.19 0.93515 0.8126, 3 1.0275, 7 1.1508 1.00988 0.0308, 5

1.20 0.93168 0.8043, 6 1.0304, 4 1.1583 1.01082 0.0336, 4
1.21 0.92820 0.7962, 3 1.0334, 4 1.1658 1.01178 0.0365, 0
1.22 0.92473 0.7882, 2 1.0365, 7 1.1732 1.01278 0.394, 2
1.23 0.92125 0.7803, 4 1.0398, 3 1.1806 1.01381 0.0424, 1
1.24 0.91777 0.7725, 8 1.0432, 3 1.1879 1.01486 0.0454, 7

1.25 0.91429 0.7649, 5 1.0467, 6 1.1952 1.01594 0.04858
1.26 0.91080 0.7574, 3 1.0504, 1 1.2025 1.01705 0.05174
1.27 0.90732 0.7500, 3 1.0541, 9 1.2097 1.01818 0.05494
1.28 0.90383 0.7427, 4 1.0580, 9 1.2169 1.01933 0.05820
1.29 0.90035 0.7355, 6 1.0621, 3 1.2240 1.02050 0.06150

1.30 0.89686 0.7284, 8 1.0663, 0 1.2311 1.02169 0.06483
1.31 0.89338 0.7215, 2 1.0706, 0 1.2382 1.02291 0.06820
1.32 0.88989 0.7146, 5 1.0750, 2 1.2452 1.02415 0.07161
1.33 0.88641 0.7078, 9 1.0795, 7 1.2522 1.02540 0.07504
1.34 0.88292 0.7012, 3 1.0842, 4 1.2591 1.02666 0.07850

1.35 0.87944 0.6946, 6 1.0890, 4 1.2660 1.02794 0.08199
1.36 0.87596 0.6881, 8 1.0939, 7 1.2729 1.02924 0.08550
1.37 0.87249 0.6818, 0 1.0990, 2 1.2797 1.03056 0.08904
1.38 0.86901 0.6755, 1 1.1041, 9 1.2864 1.03189 0.09259
1.39 0.06554 0.6693, 1 1.1094, 8 1.2932 1.03323 0.09616
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1.40 0.86207 0.6632, 0 1.1149 1.2999 1.03458 0.09974
1.41 0.85860 0.6571, 7 1.1205 1.3065 1.03595 0.10333
1.42 0.85514 0.6512, 2 1.1262 1.3131 1.03733 0.10694
1.43 0.85168 0.6453, 6 1.1320 1.3197 1.03872 0.11056
1.44 0.84822 0.6395, 8 1.1379 1.3262 1.04012 0.11419

1.45 0.84477 0.6338, 7 1.1440 1.3327 1.04153 0.11782
1.46 0.84133 0.6282, 4 1.1502 1.3392 1.04295 0.12146
1.47 0.83788 0.6226, 9 1.1565 1.3456 1.04438 0.12510
1.48 0.83445 0.6172, 2 1.1629 1.3520 1.04581 0.12875
1.49 0.83101 0.6118, 1 1.1695 1.3583 1.04725 0.13240

1.50 0.82759 0.6064, 8 1.1762 1.3646 1.04870 0.13605
1.51 0.82416 0.6012, 2 1.1830 1.3708 1.05016 0.13970
1.52 0.82075 0.5960, 2 1.1899 1.3770 1.05162 0.14335
1.53 0.81734 0.5908, 9 1.1970 1.3832 1.05309 0.14699
1.54 0.81394 0.5858, 3 1.2043 1.3894 1.05456 0.15063

1.55 0.81054 0.5808, 4 1.2116 1.3955 1.05604 0.15427
1.56 0.80715 0.5759, 1 1.2190 1.4015 1.05752 0.15790
1.57 0.80376 0.5710, 4 1.2266 1.4075 1.05900 0.16152
1.58 0.83038 0.5662, 3 1.2343 1.4135 1.06049 0.16514
1.59 0.79701 0.5614, 8 1.2422 1.4195 1.06198 0.16876

1.60 0.79365 0.5567, 9 1.2502 1.4254 1.06348 0.17236
1.61 0.79030 0.5521, 6 1.2583 1.4313 1.06498 0.17595
1.62 0.78695 0.5475, 9 1.2666 1.4371 1.06648 0.17953
1.63 0.78361 0.5430, 8 1.2750 1.4429 1.06798 0.18311
1.64 0.78028 0.5386, 2 1.2835 1.4487 1.06948 0.18667

1.65 0.77695 0.5342, 1 1.2922 1.4544 1.07098 0.19022
1.66 0.77363 0.5298, 6 1.3010 1.4601 1.07249 0.19376
1.67 0.77033 0.5255, 6 1.3099 1.4657 1.07399 0.19729
1.68 0.76703 0.5213, 1 1.3190 1.4713 1.07550 0.20081
1.69 0.76374 0.5171, 1 1.3282 1.4769 1.07701 0.20431

1.70 0.76046 0.5129, 7 1.3376 1.4825 1.07851 0.20780
1.71 0.75718 0.5088, 7 1.3471 1.4880 1.08002 0.21128
1.72 0.75392 0.5048, 2 1.3567 1.4935 1.08152 0.21474
1.73 0.75067 0.5008, 2 1.3665 1.4989 1.08302 0.21819
1.74 0.74742 0.4968, 6 1.3764 1.5043 1.08453 0.22162
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1.75 0.74419 0.4929, 5 1.3865 1.5097 1.08603 0.22504
1.76 0.74096 0.4890, 9 1.3967 1.5150 1.08753 0.22844
1.77 0.73774 0.4852, 7 1.4070 1.5203 1.08903 0.23183
1.78 0.73453 0.4814, 9 1.4175 1.5256 1.09053 0.23520
1.79 0.73134 0.4777, 6 1.4282 1.5308 1.09202 0.23855

1.80 0.72816 0.47407 1.4390 1.5360 1.09352 0.24189
1.81 0.72498 0.47042 1.4499 1.5412 1.09500 0.24521
1.82 0.72181 0.46681 1.4610 1.5463 1.09649 0.24851
1.83 0.71865 0.46324 1.4723 1.5514 1.09798 0.25180
1.84 0.71551 0.45972 1.4837 1.5564 1.00946 0.25507

1.85 0.71238 0.45623 1.4952 1.5614 1.1009 0.25832
1.86 0.70925 0.45278 1.5069 1.5664 1.1024 0.26156
1.87 0.70614 0.49937 1.5188 1.5714 1.1039 0.26478
1.88 0.70304 0.44600 1.5308 1.5763 1.1054 0.26798
1.89 0.69995 0.44266 1.5429 1.5812 1.1068 0.27116

1.90 0.69686 0.43936 1.5552 1.5861 1.1083 0.27433
1.91 0.69379 0.43610 1.5677 1.5909 1.1097 0.27748
1.92 0.69074 0.43287 1.5804 1.5957 1.1112 0.28061
1.93 0.68769 0.42967 1.5932 1.6005 1.1126 0.28372
1.94 0.68465 0.42651 1.6062 1.6052 1.1141 0.28681

1.95 0.68162 0.42339 1.6193 1.6099 1.1155 0.28989
1.96 0.67861 0.42030 1.6326 1.6146 1.1170 0.29295
1.97 0.67561 0.41724 1.6461 1.6193 1.1184 0.29599
1.98 0.67262 0.41421 1.6597 1.6239 1.1198 0.29901
1.99 0.66964 0.41121 1.6735 1.6824 1.1213 0.30201

2.00 0.66667 0.40825 1.6875 1.6330 1.1227 0.30499
2.01 0.66371 0.40532 1.7017 1.6375 1.1241 0.30796
2.02 0.66076 0.40241 1.7160 1.6420 1.1255 0.31091
2.03 0.65783 0.39954 1.7305 1.6465 1.1269 0.31384
2.04 0.65491 0.39670 1.7452 1.6509 1.1283 0.31675

2.05 0.65200 0.39389 1.7600 1.6553 1.1297 0.31965
2.06 0.64910 0.39110 1.7750 1.6597 1.1311 0.32253
2.07 0.64621 0.38834 1.7902 1.6640 1.1325 0.32538
2.08 0.64333 0.38562 1.8056 1.6683 1.1339 0.32822
2.09 0.64047 0.38292 1.8212 1.6726 1.1352 0.33104
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2.10 0.63762 0.38024 1.8369 1.6769 1.1366 0.33385
2.11 0.63478 0.37760 1.8528 1.6811 1.1380 0.33664
2.12 0.63195 0.37498 1.8690 1.6853 1.1393 0.33940
2.13 0.62914 0.37239 1.8853 1.6895 1.1407 0.34215
2.14 0.62633 0.36982 1.9018 1.6936 1.1420 0.34488

2.15 0.62354 0.36728 1.9185 1.6977 1.1434 0.34760
2.16 0.62076 0.36476 1.9354 1.7018 1.1447 0.35030
2.17 0.61799 0.36227 1.9525 1.7059 1.1460 0.35298
2.18 0.61523 0.35980 1.9698 1.7099 1.1474 0.35564
2.19 0.61249 0.35736 1.9873 1.7139 1.1487 0.35828

2.20 0.60976 0.35494 2.0050 1.7179 1.1500 0.36091
2.21 0.60704 0.35254 2.0228 1.7219 1.1513 0.36352
2.22 0.60433 0.35017 2.0409 1.7258 1.1526 0.36611
2.23 0.60163 0.34782 2.0592 1.7297 1.1539 0.36868
2.24 0.59895 0.34550 2.0777 1.7336 1.1552 0.37124

2.25 0.59627 0.34319 2.0964 1.7374 1.1565 0.37378
2.26 0.59361 0.34091 2.1154 1.7412 1.1578 0.37630
2.27 0.59096 0.33865 2.1345 1.7450 1.1590 0.37881
2.28 0.58833 0.33641 2.1538 1.7488 1.1603 0.38130
2.29 0.58570 0.33420 2.1733 1.7526 1.1616 0.38377

2.30 0.58309 0.33200 2.1931 1.7563 1.1629 0.38623
2.31 0.58049 0.32983 2.2131 1.7600 1.1641 0.38867
2.32 0.57790 0.32767 2.2333 1.7637 1.1653 0.39109
2.33 0.57532 0.32554. 2.2537 1.7673 1.1666 0.39350
2.34 0.57276 0.32342 2.2744 1.7709 1.1678 0.39589

2.35 0.57021 0.32133 2.2953 1.7745 1.1690 0.39826
2.36 0.56767 0.31925 2.3164 1.7781 1.1703 0.40062
2.37 0.56514 0.31720 2.3377 1.7817 1.1715 0.40296
2.38 0.56262 0.31516 2.3593 1.7852 1.1727 0.40528
2.39 0.56011 0.31314 2.3811 1.7887 1.1739 0.40760

2.40 0.55762 0.31114 2.4031 1.7922 1.1751 0.40989
2.41 0.55514 0.30916 2.4254 1.7956 1.1763 0.41216
2.42 0.55267 0.30720 2.4479 1.7991 1.1775 0.41442
2.43 0.55021 0.30525 2.4706 1.8025 1.1786 0.41667
2.44 0.54776 0.30332 2.4936 1.8059 1.1798 0.41891
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2.45 0.54533 0.30141 2.5168 1.8092 1.1810 0.42113
2.46 0.54291 0.29952 2.5403 1.8126 1.1821 0.42333
2.47 0.54050 0.29765 2.5640 1.8159 1.1833 0.42551
2.48 0.53810 0.29579 2.5880 1.8192 1.1844 0.42768
2.49 0.53571 0.29395 2.6122 1.8225 1.1856 0.42983

2.50 0.53333 0.29212 2.6367 1.8257 1.1867 0.43197
2.51 0.53097 0.29031 2.6615 1.8290 1.1879 0.43410
2.52 0.52862 0.28852 2.6865 1.8322 1.1890 0.43621
2.53 0.52627 0.28674 2.7117 1.8354 1.1901 0.43831
2.54 0.52394 0.28498 2.7372 1.8386 1.1912 0.44040

2.55 0.52163 0.28323 2.7630 1.8417 1.1923 0.44247
2.56 0.51932 0.28150 2.7891 1.8448 1.1934 0.44452
2.57 0.51702 0.27978 2.8154 1.8479 1.1945 0.44655
2.58 0.51474 0.27808 2.8420 1.8510 1.1956 0.44857
2.59 0.51247 0.27640 2.8689 1.8541 1.1967 0.45059

2.60 0.51020 0.27473 2.8960 1.8571 1.1978 0.45259
2.61 0.50795 0.27307 2.9234 1.8602 1.1989 0.45457
2.62 0.50571 0.27143 2.9511 1.8632 1.2000 0.45654
2.63 0.50349 0.26980 2.9791 1.8662 1.2011 0.45850
2.64 0.50127 0.26818 3.0074 1.8691 1.2021 0.46044

2.65 0.49906 0.26658 3.0359 1.8721 1.2031 0.46237
2.66 0.49687 0.26499 3.0647 1.8750 1.2042 0.46429
2.67 0.49469 0.26342 3.0938 1.8779 1.2052 0.46619
2.68 0.49251 0.26186 3.1234 1.8808 1.2062 0.46807
2.69 0.49035 0.26032 3.1530 1.8837 1.2073 0.46996

2.70 0.48820 0.25878 3.1830 1.8865 1.2083 0.47182
2.71 0.48606 0.25726 3.2133 1.8894 1.2093 0.47367
2.72 0.48393 0.25575 3.2440 1.8922 1.2103 0.47551
2.73 0.48182 0.25426 3.2749 1.8950 1.2113 0.47734
2.74 0.47971 0.25278 3.3061 1.8978 1.2123 0.47915

2.75 0.47761 0.25131 3.3376 1.9005 1.2133 0.48095
2.76 0.47553 0.24985 3.3695 1.9032 1.2143 0.48274
2.77 0.47346 0.24840 3.4017 1.9060 1.2153 0.48452
2.78 0.47139 0.24697 3.4342 1.9087 1.2163 0.48628
2.79 0.46933 0.24555 3.4670 1.9114 1.2173 0.48803



552 Appendix I

TABLE I-1 (Continued )

NMa

T

T�
P

P�
P0

P0�
~VV
~VV *

F

F�
4fL

D

2.80 0.46729 0.24414 3.5001 1.9140 1.2182 0.48976
2.81 0.46526 0.24274 3.5336 1.9167 1.2192 0.49148
2.82 0.46324 0.24135 3.5674 1.9193 1.2202 0.49321
2.83 0.46122 0.23997 3.6015 1.9220 1.2211 0.49491
2.84 0.45922 0.23861 3.6359 1.9246 1.2221 0.49660

2.85 0.45723 0.23726 3.6707 1.9271 1.2230 0.49828
2.86 0.45525 0.23592 3.7058 1.9297 1.2240 0.49995
2.87 0.45328 0.23458 3.7413 1.9322 1.2249 0.50161
2.88 0.45132 0.23326 3.7771 1.9348 1.2258 0.50326
2.89 0.44937 0.23196 3.8133 1.9373 1.2268 0.50489

2.90 0.44743 0.23066 3.8498 1.9398 1.2277 0.50651
2.91 0.44550 0.22937 3.8866 1.9423 1.2286 0.50812
2.92 0.44358 0.22809 3.9238 1.9448 1.2295 0.50973
2.93 0.44167 0.22682 3.9614 1.9472 1.2304 0.51133
2.94 0.43977 0.22556 3.9993 1.9497 1.2313 0.51291

2.95 0.43788 0.22431 4.0376 1.9521 1.2322 0.51447
2.96 0.43600 0.22307 4.0763 1.9545 1.2331 0.51603
2.97 0.43413 0.22185 4.1153 1.9569 1.2340 0.51758
2.98 0.43226 0.22063 4.1547 1.9592 1.2348 0.51912
2.99 0.43041 0.21942 4.1944 1.9616 1.2357 0.52064

3.00 0.42857 0.21822 4.1346 1.9640 1.2366 0.52216
3.50 0.34783 0.16850 6.7896 2.0642 1.2743 0.58643
4.00 0.28571 0.13363 10.719 2.1381 1.3029 0.63306
4.50 0.23762 0.10833 16.562 2.1936 1.3247 0.66764
5.00 0.20000 0.08944 25.000 2.2361 1.3416 0.69381

6.00 0.14634 0.06376 53.180 2.2953 1.3655 0.72987
7.00 0.11111 0.04762 104.14 2.3333 1.3810 0.75281
8.00 0.08696 0.03686 190.11 2.3591 1.3915 0.76820
9.00 0.06977 0.02935 327.19 2.3772 1.3989 0.77898

10.00 0.05714 0.02390 535.94 2.3905 1.4044 0.78683

1 0 0 1 2.4495 1.4289 0.82153



Accelerating systems:
horizontal, 92

vertical, 91
Accuracy, 35

Aerocyclones, 375–382
Analogies, 398

Angular momentum, 127–128
Anisotropic stress, 86

Annular flow, 197

API gravity, 73
Apparent viscosity, 57

Archimedes number, 348, 428

Barnea-Mizrahi
Correlation, 430–431

equation, 427, 429
Batch flux curve (see Thickening)

BEP (see Pumps)
Bernoulli equation, 115, 124, 154

Best efficiency point (BEP), (see

Efficiency)
Bingham number, 169, 359–360

Bingham plastic, 65–66, 70, 167–169
all flow regimes, 169

falling particles, 352–358
laminar pipe flow, 168

turbulent pipe flow, 169
unknown diameter, 176–177

unknown driving force, 171–172
unknown flow rate, 174

Blake-Kozeny equation, 394–396

Blasius, 159
Boundary layer, 10, 155–159, 345

Buckingham-Reiner equation, 168
Buffer zone, 156, 159

Bulk modulus, 270
Buoyancy, 94

Burke-Plummer equation, 395

Carreau fluid:
falling particles, 358

model, 67, 181
Cavitation (see Pumps)

Centrifugal separation, 367–374
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Centrifuge (see Centrifugal separation)
Choked flow (see Compressible flows)

Choking (see Two-phase flow)
Churchill equation, 164, 464

Clarifier, 430

Clasius-Clapeyron equation, 464
Colebrook, 162

Collection efficiency (see Efficiency)
Column packings, 402–403

Composite curves, 245
Compressible flows, 267–292

expansion factor, 275–277
Fanno line, 280, 284, 544–552

generalized expressions, 279–281
ideal adiabatic flow, 277–279

ideal nozzle, 278

pipe flow, 270–279
adiabatic flow, 273, 275

choked flow, 272, 273–275
isothermal, 271–273

Compressors, 252–256
efficiency, 256

isentropic, 254–255
isothermal, 254

staged operation, 255–259
Conservation principles, 105–134

of angular momentum, 127–128,

242
of dimensions, 1, 20

of dollars, 1
of energy, 1, 108–120

compressible flow, 280
in pipe flow, 151

of mass, l, 106–108
compressible flow, 279

microscopic, 107–108, 513
in pipe flow, 153

microscopic conservation equations,

513–517
of momentum, 1, 120–123

compressible flow, 280
microscopic, 130, 513–517

in pipe flow, 152
principles, 105–148

Continuity, 106, 108, 153
Control valves, 312–333

[Control values]
cavitating and flashing liquids, 324–

327
characteristics, 313–314

choked flow, 329

compressible fluids, 327–330
expansion factor, 328

flow coefficient, 316–329
incompressible flow, 314–327

trim, 313–314, 320–324
universal gas sizing equation, 329

valve-system interaction, 316–324
viscosity correction, 330–333

unknown flow rate, 333
unknown pressure drop, 333

unknown valve size, 331

Conversion factors, xv, 19
Cost

of energy, 201–202
of pipe, 201–203

of pump stations, 201
Couette viscometer, 60–63

Crane, 208
Cup-and-bob viscometer, 60–63

Cut size, 375, 380
Cycle time (see Filtration)

Cyclone (see Cyclone separations)

Cyclone separations, 375–385

Dallavalle equation, 343–344, 360, 366,
370, 428

Darby 3-K method, 209–211
Darcy’s law, 396, 401

Deborah number, 180–181
Density, 72–73

Diffuser, 117
Diffusivity, 5

Dilatant, 67

Dimensional analysis, 15, 22–30
Dimensionless groups, 35–36

Dimensions:
derived, 16

engineering, 16
fundamental, 16

scientific, 16
Dissipation of energy, 113–114, 153
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Dodge and Metzner equation, 166
Drag coefficient, 341–360

cylinder, 344–345
sphere, 342–344

swarm, 429

Drag reduction, 178–184
Drops and bubbles, 351

Dyad, 7, 85

Economic pipe diameter, 200–206
Newtonian fluids, 203–205

non-Newtonian fluids, 205–206
Eddy viscosity, 157

Efficiency:

best efficiency point (BEP), 244,
249–250

collection efficiency, 382
grade efficiency, 379, 381

pump, 241–243
separation, 378–379

Einstein equation, 426
Ellis model, 70

Energy (see Conservation of energy)
Energy dissipation, 114–115, 153

Enthalpy, 109, 112–113

Equivalent L/D, 207–208, 210
Euler number, 382–385

Expansion, 118, 124
Expansion factor (see Compressible

flows)

Falling particles, 347

Bingham plastics, 358–360
Carreau fluids, 358

power law fluids, 352–357
unknown diameter, 349, 355–357

unknown velocity, 349
unknown viscosity, 349–350

unknown velocity, 348
wall effects, 350, 357

Fanno line, 280, 284
tables, 544–552

Fick’s law, 5

Film flow, 196
Filtration, 401–409

compressible cake, 408
constant flow, 406

[Filtration]
constant pressure, 405–406

cycle time, 406–407
plate-and-frame, 407

rotary drum, 408

Fittings (see Valves and fittings)
Flooding point, 400

Flow inclination number, 466
Flow index, 66, 165–166

Fluidization, 419–423
minimum bed voidage, 421–422

minimum fluidization velocity, 420–
421

Fluid properties, 55–84, 480–497
pressure-enthalpy diagrams, 506–511

properties of gases, 502–503

Fluid-solid separations, 365–385
Form drag, 343

Fourier’s law, 4, 398
Free settling, 365–385

Free surface, 92
Friction factor:

Darcy, 123
Fanning, 11,123

homogeneous gas-liquid flow, 462
inclined plane, 134

pipe flow, 30, 124

pneumatic solids transport, 457–458
porous medium, 393–395

Friction loss, 113, 115, 123–125 (see
also Energy dissipation, Loss

coefficient)
drag reduction, 178–184

rough tubes, 160–164
smooth pipe, 159–160

valves and fittings, 206–214
non-Newtonian fluids, 214–215

Friction velocity, 158, 449

Froude number, 451, 472
Fruit salad law, 2

Fully turbulent friction factor, 162

Galieo number, 348
Grade efficiency (see Efficiency)

Gravity, 16
Gravity settling, 366–367
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Hagen-Poiseuille equation, 154
Heat, 4, 108

Hedstrom number, 168, 174
Hindered settling, 365–366, 423–428

Holdup (see Two-phase flow)

Homogeneous gas-liquid flow (see
Two-phase flow)

Hookean solid, 56
Hooper 2-K method, 209

Hydraulic diameter, 122, 133, 195–197,
200, 392–393, 457, 462

Hydrocyclones, 375, 382–385

Ideal as 73, 89, 254, 267, 270
isentropic, 90

isothermal, 89

Immiscible liquids, 371–374
Impeller (see Pumps)

Inclined plane, 131–134
friction factor, 134

Internal energy, 110–112
Interstitial velocity, 392

Irreversible effects, 113–116
Isentropic, 90, 254, 268

Isochoric, 88
Isothermal, 89, 254, 268, 274

Isotropic stress, 86

Kinematic viscosity, 6

Kinetic energy correction, 116

Laminar flow:
Bingham plastic, 168–169

Newtonian fluid, 31–32, 149, 154–
155

power law fluid, 165
Laplace equation, 397

Leibnitz’ rule, 178

Limiting viscosity, 66, 167–169
Loading point, 399

Lockhart-Martinelli method (see Two-
phase flow)

Loss coefficient (see also Friction
factor, Friction loss, Energy

dissipation)
fittings, 207:

[Loss coefficient]
general, 123–125

pipe, 124

Mach number, 280–286

Manometer, 88–89
Material classification, 58

Meter model, 71
Mixing length theory, 157–159

Molerus method (see Two-phase flow)
Momentum (see also Conservation of

momentum)
flux; 6, 11, 123

microscopic balance, 130–134
pipe flow, 152

Moody diagram, 160, 161

Moving boundary systems, 128–130
Moving systems, 91

Navier Stokes equations, 131

Net positive suction head (NPSH), (see
Pumps)

Networks (see Pipe flow)
Newtonian fluid, 65

all flow regimes, 164
laminar flow, 31, 151

turbulent flow, 155–164

unknown diameter, 175
unknown driving force, 171

unknown flow rate, 172–173
Newton’s law, 6, 17, 18

Noncircular conduits, 195–200
laminar flow, 195–198

turbulent flow, 198–200
Non-ideal gas, 111–112

Non-Newtonian fluids, 8, 57, 64–71
fluid-solid flows, 449

pipe flows, 164–169, 171, 173–177,

216–217, 218–220
valves and fittings, 214–215

Nonspherical particles, 421–423
Nozzle, 295–304

Obstruction meters, 295–312

Ohm’s law, 5, 398
Omega method (see Two-phase flow)

556 Index



Orifice meter, 304–312
compressible flow, 306–308

expansion factor, 307–309
incompressible flow, 305–306

loss coefficient, 308, 310

Packed columns, 398–401

Particles, 347–360
in Newtonian fluid, 347–351

in power law fluids, 352–358
swarm, 426

Permeability, 395–396, 401
Pipe dimensions, 520–524

Pipe flow, 31, 32, 149–193
air in schedule 40 pipe, 529

bend forces, 125–127

Bingham plastic, 167–169
compressible flow, 270–279

dimensional analysis, 31–35
energy balance, 151

energy dissipation, 152
friction factor, 152, 159–160

momentum balance, 152
networks, 225–228

Newtonian fluid, 154–164
power law fluid, 164–167

scale-up, 32–35

schedule number, 96
turbulence, 150

wall shear rate, 178
wall stress, 95–96, 152

water in schedule 40 pipe, 526–528
Pitot tube, 293–295

Pneumatic solids transport (see Two-
phase flow)

Poiseuille flow viscometer, 63–64, 177–
178

Polyacrylamide solutions, 69, 179

Porosity, 392
Porous media, 390–409

consolidated, 391–392
friction factor, 393–395

Reynolds number, 394
unconsolidated, 391–392

Power law fluid, 66, 70, 164–167
all flow regimes, 166–167

[Power law fluid]
falling particles, 352–357

laminar flow, 165
pipe flow, 164–167

turbulent flow, 166

unknown driving force, 171–172
unknown flow rate, 173–174

unknown particle diameter, 355–357
unknown particle velocity, 353–355

unknown pipe diameter, 175–176
Prandtl, 157

Precision, 35
Pseudoplastic, 67

Pumps, 239–252
BEP (see Efficiency)

cavitation, 247–249

characteristics, 241–245
composite curves, 245

head-capacity range charts, 532–541
impeller, 240, 242–243, 251, 246

NPSH, 248–249
positive displacement, 239

required head, 244
selection, 243–247

specific speed, 249–251, 253
suction lift, 248–249

suction specific speed, 250–251

Quality (see Two-phase flow)

Reynolds number:

Bingham plastic, 168, 174
cyclones, 383–385

Newtonian fluid, 12, 133, 150, 154,
160–164

non-circular conduits 196–198
porous medium, 394

power law fluid, 165, 175

solvent, 179–182
sphere, 342, 370

swarm, 429
two-phase flow, 464

unknown driving force, 170–172
Reynolds, Osborn, 149

Reynolds stresses, 131, 157
Rheological properties, 56, 59
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Richardson-Zaki equation, 427
Rotating fluid, 93

Roughness, 25, 160–164
equivalent wall roughness, 163

Scale-up, 5, 21, 30–35
Schedule number (see pipe flow)

Sedimentation, 423–430
Shear modulus, 56

Shear rate, 56, 61
Shear strain, 55

Shear stress, 6, 55, 60, 85
tensor, 131

tube wall, 152, 158, 165, 168, 341
two-phase flow, 457

Shear thinning, 66

Similitude, 15
Simple shear, 55

Sisko model, 70
Slack flow, 221–225

Slit flow, 196
Specific speed (see Pumps)

Speed of sound, 268–270
Sphericity factor, 393, 422–423

Standard atmosphere, 90
Statics, 85–104

basic equation, 87

forces on boundaries, 94
Stokes diameter, 421

Stokes flow, 342, 347–348, 366, 369
Stokes number, 381–385

Stress, 85–86
tensor, 8, 86, 515–517

Structural viscosity, 67–71
Suction lift (see Pumps)

Suction specific speed (see Pumps)
Superficial velocity, 392

System, 9, 105

Temperature dependence:

density, 73
viscosity, 71–72

Tensor, 7, 85
anisotropic, 85

isotropic, 86
Terminal velocity, 347, 369

Thermal diffusion coefficient, 4
Thickening, 430–436

batch flux curve, 433–436
3-K method (see Darby)

Toms effect, 178

Toricelli problem, 119
Transport:

coefficient, 3
of heat, 10

laws, 3
of mass, 10

models, 1
turbulent models, 10

Tube flow:
momentum balance, 121–123

viscometer, 63–64

Turbine, 129
Euler turbine equation, 128

Turbulent flow, 10, 155–160, 198
drag reduction, 178–184

momentum flux, 156–157
Newtonian fluid, 155–164

power law fluid, 166
2-K method (see Hooper)

Two-phase flow, 443–478
choking, 458

fluid-solid flows, 447–454

frozen flow, 463
gas-liquid two-phase pipe flow, 459–

474
heterogeneous solid-liquid flows,

449–454
holdup, 445, 470–472

homogeneous gas-liquid models,
462–467

Lockhart-Martinelli method, 467–
470

mass flux, 445

Molerus method, 451–454
numerical solutions, 467

Omega method, 465–467
phase velocity, 445

pneumatic solids transport, 454–458
pseudohomogeneous flows, 47–449

quality, 446
separated flow models, 467–474
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[Two-phase flow]
slip, 444–446, 470–472

two-phase multiplier, 465, 467–469
volume flux, 445

Units:
consistent, 22

engineering, 18
scientific, 18

Unknown diameter, 174, 218–221
Bingham plastic, 176–177, 220–221

compressible flow, 285–286
Newtonian fluid, 175, 218–219

orifice, 312
power law fluid, 175–176, 219–220

Unknown driving force, 170–173, 216

217
Bingham plastic, 171–172, 217

compressible flow, 283
Newtonian fluid, 171, 216

orifice, 311
power law fluid, 171, 216–217

Unknown flow rate, 172–174, 217–218
Bingham plastic, 174, 218

compressible flow, 284–285
Newtonian fluid, 172–173, 217–218

[Unknown flow rate]
orifice, 311–312

power law fluid, 173–174, 218

Valves and fitting, friction loss, 206–

214 (see also Control valves)
Vapor lock, 247

Venturi meter, 295–304
Virtual mass, 347, 368

Viscoelastic fluid, 59, 179–180

Viscometer:
cup-and-bob (Couette), 60–63

tube flow (Poiseuille), 63–64, 177–
178

Viscosity, 57–72, 177–176
data, 480–497

generalized plot, 500
von Karman equation, 158–159

Wake, 346
Weber number, 471

Weight, 16
Wetted perimeter, 7, 122, 457, 462

Work, 108

Yasuda model, 71

Yield stress, 66, 167–169, 359
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