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Newton’s Laws and Conservation of Momentum 
 
 
6-1C  
Solution We are to express Newton’s three laws.  
 
Analysis Newton’s first law states that “a body at rest remains at rest, and a body in motion remains in motion at 
the same velocity in a straight path when the net force acting on it is zero.” Therefore, a body tends to preserve its state 
or inertia. Newton’s second law states that “the acceleration of a body is proportional to the net force acting on it and is 
inversely proportional to its mass.” Newton’s third law states “when a body exerts a force on a second body, the second 
body exerts an equal and opposite force on the first.” 
 
Discussion As we shall see in later chapters, the differential equation of fluid motion is based on Newton’s second law. 

  

 
 

6-2C  
Solution We are to discuss if momentum is a vector, and its direction.  
 
Analysis Since momentum ( Vm ) is the product of a vector (velocity) and a scalar (mass), momentum must be a 
vector that points in the same direction as the velocity vector. 
 
Discussion In the general case, we must solve three components of the linear momentum equation, since it is a vector 
equation. 

  

 
 

6-3C  
Solution We are to discuss the conservation of momentum principle.  
 
Analysis The conservation of momentum principle is expressed as “the momentum of a system remains constant 
when the net force acting on it is zero, and thus the momentum of such systems is conserved”. The momentum of a 
body remains constant if the net force acting on it is zero. 
 
Discussion Momentum is not conserved in general, because when we apply a force, the momentum changes. 

  

 
 

6-4C  
Solution We are to discuss Newton’s second law for rotating bodies.  
 
Analysis Newton’s second law of motion, also called the angular momentum equation, is expressed as “the rate of 
change of the angular momentum of a body is equal to the net torque acting it.” For a non-rigid body with zero net 
torque, the angular momentum remains constant, but the angular velocity changes in accordance with  Iω = constant 
where I is the moment of inertia of the body. 
 
Discussion Angular momentum is analogous to linear momentum in this way: Linear momentum does not change 
unless a force acts on it. Angular momentum does not change unless a torque acts on it. 

  

 
 

6-5C  
Solution We are to compare the angular momentum of two rotating bodies 
 
Analysis No. The two bodies do not necessarily have the same angular momentum. Two rigid bodies having the 
same mass and angular speed may have different angular momentums unless they also have the same moment of inertia I. 
 
Discussion The reason why flywheels have most of their mass at the outermost radius, is to maximize the angular 
momentum. 

  



Chapter 6  Momentum Analysis of Flow Systems 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission.   

6-3

 
Linear Momentum Equation 
 
 
 
 
6-6C  
Solution We are to discuss the importance of the RTT, and its relationship to the linear momentum equation.  
 
Analysis The relationship between the time rates of change of an extensive property for a system and for a 
control volume is expressed by the Reynolds transport theorem (RTT), which provides the link between the system and 
control volume concepts. The linear momentum equation is obtained by setting Vb = and thus VmB =  in the Reynolds 
transport theorem.  
 
Discussion Newton’s second law applies directly to a system of fixed mass, but we use the RTT to transform from the 
system formulation to the control volume formulation. 

  

 
 
6-7C  
Solution We are to describe and discuss body forces and surface forces.  
 
Analysis The forces acting on the control volume consist of body forces that act throughout the entire body of the 
control volume (such as gravity, electric, and magnetic forces) and surface forces that act on the control surface (such as 
the pressure forces and reaction forces at points of contact). The net force acting on a control volume is the sum of all body 
and surface forces. Fluid weight is a body force, and pressure is a surface force (acting per unit area). 
 
Discussion In a general fluid flow, the flow is influenced by both body and surface forces. 

  

 
 
6-8C  
Solution We are to discuss surface forces in a control volume analysis.  
 
Analysis All surface forces arise as the control volume is isolated from its surroundings for analysis, and the 
effect of any detached object is accounted for by a force at that location. We can minimize the number of surface forces 
exposed by choosing the control volume (wisely) such that the forces that we are not interested in remain internal, 
and thus they do not complicate the analysis. A well-chosen control volume exposes only the forces that are to be 
determined (such as reaction forces) and a minimum number of other forces. 
 
Discussion There are many choices of control volume for a given problem. Although there are not really “wrong” and 
“right” choices of control volume, there certainly are “wise” and “unwise” choices of control volume. 

  

 
 
6-9C  
Solution We are to discuss the momentum flux correction factor, and its significance.  
 
Analysis The momentum-flux correction factor β enables us to express the momentum flux in terms of the mass flow 

rate and mean flow velocity as avg
A

c VmdAnVV
c

βρ =⋅∫ )( . The value of β is unity for uniform flow, such as a jet flow, 

nearly unity for fully developed turbulent pipe flow (between 1.01 and 1.04), but about 1.3 for fully developed laminar pipe 
flow. So it is significant and should be considered in laminar flow; it is often ignored in turbulent flow. 
 
Discussion Even though β is nearly unity for many turbulent flows, it is wise not to ignore it. 
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6-10C  
Solution We are to discuss the momentum equation for steady one-D flow with no external forces.  
 
Analysis The momentum equation for steady one-dimensional flow for the case of no external forces is 

out in
0F mV mVβ β= = −∑ ∑ ∑  

where the left hand side is the net force acting on the control volume (which is zero here), the first term on the right hand 
side is the incoming momentum flux, and the second term on the right is the outgoing momentum flux by mass.  
 
Discussion This is a special simplified case of the more general momentum equation, since there are no forces. In this 
case we can say that momentum is conserved. 

  

 
 
6-11C  
Solution We are to explain why we can usually work with gage pressure rather than absolute pressure.  
 
Analysis In the application of the momentum equation, we can disregard the atmospheric pressure and work with 
gage pressures only since the atmospheric pressure acts in all directions, and its effect cancels out in every direction. 
 
Discussion In some applications, it is better to use absolute pressure everywhere, but for most practical engineering 
problems, it is simpler to use gage pressure everywhere, with no loss of accuracy. 

  

 
 
6-12C  
Solution We are to compare the reaction force on two fire hoses.  
 
Analysis The fireman who holds the hose backwards so that the water makes a U-turn before being discharged 
will experience a greater reaction force. This is because of the vector nature of the momentum equation. Specifically, the 
inflow and outflow terms end up with the same sign (they add together) for the case with the U-turn, whereas they have 
opposite signs (one partially cancels out the other) for the case without the U-turn. 
 
Discussion Direction is not an issue with the conservation of mass or energy equations, since they are scalar equations. 

  

 
 
6-13C  
Solution We are to discuss if the upper limit of a rocket’s velocity is limited to V, its discharge velocity.  
 
Analysis No, V is not the upper limit to the rocket’s ultimate velocity. Without friction the rocket velocity will 
continue to increase (i.e., it will continue to accelerate) as more gas is expelled out the nozzle. 
 
Discussion This is a simple application of Newton’s second law. As long as there is a force acting on the rocket, it will 
continue to accelerate, regardless of how that force is generated. 

  

 
 
6-14C  
Solution We are to describe how a helicopter can hover.  
 
Analysis A helicopter hovers because the strong downdraft of air, caused by the overhead propeller blades, 
manifests a momentum in the air stream.  This momentum must be countered by the helicopter lift force. 
 
Discussion In essence, the helicopter stays aloft by pushing down on the air with a net force equal to its weight. 
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6-15C  
Solution We are to discuss the power required for a helicopter to hover at various altitudes.  
 
Analysis Since the air density decreases, it requires more energy for a helicopter to hover at higher altitudes, 
because more air must be forced into the downdraft by the helicopter blades to provide the same lift force. Therefore, it 
takes more power for a helicopter to hover on the top of a high mountain than it does at sea level. 
 
Discussion This is consistent with the limiting case – if there were no air, the helicopter would not be able to hover at 
all. There would be no air to push down. 

  

 
 
6-16C  
Solution We are to discuss helicopter performance in summer versus winter.  
 
Analysis In winter the air is generally colder, and thus denser. Therefore, less air must be driven by the blades to 
provide the same helicopter lift, requiring less power. Less energy is required in the winter. 
 
Discussion However, it is also harder for the blades to move through the denser cold air, so there is more torque 
required of the engine in cold weather. 

  

 
6-17C  
Solution We are to discuss if the force required to hold a plate stationary doubles when the jet velocity doubles.  
 
Analysis No, the force will not double. In fact, the force required to hold the plate against the horizontal water 
stream will increase by a factor of 4 when the velocity is doubled since 

2)( AVVAVVmF ρρ ===  

and thus the force is proportional to the square of the velocity. 
 
Discussion You can think of it this way: Since momentum flux is mass flow rate times velocity, a doubling of the 
velocity doubles both the mass flow rate and the velocity, increasing the momentum flux by a factor of four. 

  

 
 
6-18C  
Solution We are to discuss the acceleration of a cart hit by a water jet.  
 
Analysis The acceleration is not be constant since the force is not constant.  The impulse force exerted by the 
water on the plate is 2)( AVVAVVmF ρρ === , where V is the relative velocity between the water and the plate, which is 
moving. The magnitude of the plate acceleration is thus a = F/m.  But as the plate begins to move, V decreases, so the 
acceleration must also decrease. 
 
Discussion It is the relative velocity of the water jet on the cart that contributes to the cart’s acceleration. 

  

 
 
6-19C  
Solution We are to discuss the maximum possible velocity of a cart hit by a water jet.  
 
Analysis The maximum possible velocity for the plate is the velocity of the water jet. As long as the plate is 
moving slower than the jet, the water exerts a force on the plate, which causes it to accelerate, until terminal jet velocity is 
reached. 
 
Discussion Once the relative velocity is zero, the jet supplies no force to the cart, and thus it cannot accelerate further. 
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6-20  
Solution It is to be shown that the force exerted by a liquid jet of velocity V on a stationary nozzle is proportional to 
V2, or alternatively, to 2m . 

Assumptions 1 The flow is steady and incompressible. 2 The nozzle is given to be stationary.  3 The nozzle involves a 
90° turn and thus the incoming and outgoing flow streams are normal to each other. 4 The water is discharged to the 
atmosphere, and thus the gage pressure at the outlet is zero. 

Analysis We take the nozzle as the control volume, and the flow 
direction at the outlet as the x axis. Note that the nozzle makes a 90° 
turn, and thus it does not contribute to any pressure force or momentum 
flux term at the inlet in the x direction. Noting that AVm ρ=  where A 
is the nozzle outlet area and V is the average nozzle outlet velocity, the 
momentum equation for steady one-dimensional flow in the x direction 
reduces to   

∑∑∑ −=
inout

VmVmF ββ       →   VmVmF outoutRx ββ ==  

where FRx is the reaction force on the nozzle due to liquid jet at the nozzle outlet. Then, 

 AVm ρ=     →   2AVAVVVmFRx βρβρβ ===     or  
A

m
A

mmVmFRx ρ
β

ρ
ββ

2
===  

Therefore, the force exerted by a liquid jet of velocity V on this stationary nozzle is proportional to V2, or 
alternatively, to 2m . 
 
Discussion If there were not a 90o turn, we would need to take into account the momentum flux and pressure 
contributions at the inlet. 

  

 
 

6-21  
Solution A water jet of velocity V impinges on a plate moving toward the water jet with velocity ½V. The force 
required to move the plate towards the jet is to be determined in terms of F acting on the stationary plate. 

Assumptions 1 The flow is steady and incompressible. 2 The plate is vertical and the jet is normal to plate. 3 The pressure 
on both sides of the plate is atmospheric pressure (and thus its effect cancels out). 4 Fiction during motion is negligible. 5 
There is no acceleration of the plate. 6 The water splashes off the sides of the plate in a plane normal to the jet. 6 Jet flow is 
nearly uniform and thus the effect of the momentum-flux correction factor is negligible, β ≅ 1.  

Analysis We take the plate as the control volume. The relative velocity between the plate and the jet is V when the 
plate is stationary, and 1.5V when the plate is moving with a velocity ½V  towards the plate.  Then the momentum equation 
for steady one-dimensional flow in the horizontal direction reduces to   

∑∑∑ −=
inout

VmVmF ββ    →              iiRiiR VmFVmF =→−=−  

 
Stationary plate:  ( AVAVmVV iii ρρ === and        )  →   FAVFR == 2ρ    
 
Moving plate:  ( )5.1(and        5.1 VAAVmVV iii ρρ === ) 

  →   FAVVAFR 25.225.2)5.1( 22 === ρρ    
 
Therefore, the force required to hold the plate stationary against the oncoming water jet becomes 2.25 times greater 
when the jet velocity becomes 1.5 times greater.   

Discussion Note that when the plate is stationary, V is also the jet velocity. But if the plate moves toward the stream 
with velocity ½V, then the relative velocity is 1.5V, and the amount of mass striking the plate (and falling off its sides) per 
unit time also increases by 50%. 

  

1/2V
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6-22  
Solution A 90° elbow deflects water upwards and discharges it to the atmosphere at a specified rate. The gage 
pressure at the inlet of the elbow and the anchoring force needed to hold the elbow in place are to be determined. 

Assumptions 1 The flow is steady, frictionless, incompressible, and irrotational (so that the Bernoulli equation is 
applicable). 2 The weight of the elbow and the water in it is negligible. 3 The water is discharged to the atmosphere, and 
thus the gage pressure at the outlet is zero. 4 The momentum-flux correction factor for each inlet and outlet is given to be β 
= 1.03. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) We take the elbow as the control volume, and designate the entrance by 1 and the outlet by 2. We also 
designate the horizontal coordinate by x (with the direction of flow as being the positive direction) and the vertical 
coordinate by z. The continuity equation for this one-inlet one-outlet steady flow system is kg/s. 3021 === mmm  Noting 
that AVm ρ= , the mean inlet and outlet velocities of water are  

m/s 18.3
]4/m) 1.0()[  kg/m(1000

 kg/s25
)4/( 23221 ======

ππρρ D
m

A
mVVV  

Noting that V1 = V2 and P2 = Patm, the Bernoulli equation for a streamline going through the center of the reducing elbow is 
expressed as 

 ( ) )(           
22 12gage ,112212

2
22

1

2
11 zzgPzzgPPz

g
V

g
Pz

g
V

g
P

−=→−=−→++=++ ρρ
ρρ

 

Substituting, 

( )( )( )3 2 2
1  gage 2

1 kN1000 kg/m 9 81 m/s 0 35 m 3 434 kN/m 3 434 kPa
1000 kg m/s,P . . . .

⎛ ⎞
= = = ≅⎜ ⎟⋅⎝ ⎠

3.43 kPa  

(b) The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and z- 

components of the anchoring force of the elbow be FRx and FRz, and assume them to be in the positive directions. We also 
use gage pressures to avoid dealing with the atmospheric pressure which acts on all surfaces. Then the momentum 
equations along the x and y axes become 

VmVmF
VmVmAPF

Rz

Rx

ββ
ββ

=+=

−=+−=+

)(
)(0

2

11gage1,  

Solving for FRx and FRz, and substituting the given values, 
 

           

N 109

]4/m) 1.0()[N/m 3434(
m/s kg1
N 1m/s) 8 kg/s)(3.125(03.1 22

2

1gage ,1

−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
−=

−−=

π

β APVmFRx

 

N 9.81
m/s kg1
N 1m/s) 8 kg/s)(3.125(03.1 2 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
== VmFRy β  

and    °=°−=
−

===+−=+= 143N 136 37
109

9.81tantan     9.81)109( 1-1-2222

Rx

Ry
RyRxR F

F
FFF θ,  

Discussion Note that the magnitude of the anchoring force is 136 N, and its line of action makes 143° from the positive 
x direction. Also, a negative value for FRx indicates the assumed direction is wrong, and should be reversed. 
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6-23  
Solution A 180° elbow forces the flow to make a U-turn and discharges it to the atmosphere at a specified rate. The 
gage pressure at the inlet of the elbow and the anchoring force needed to hold the elbow in place are to be determined. 

Assumptions 1 The flow is steady, frictionless, one-dimensional, incompressible, and irrotational (so that the Bernoulli 
equation is applicable). 2 The weight of the elbow and the water in it is negligible. 3 The water is discharged to the 
atmosphere, and thus the gage pressure at the outlet is zero. 4 The momentum-flux correction factor for each inlet and 
outlet is given to be β = 1.03. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) We take the elbow as the control volume, and designate the entrance by 1 and the outlet by 2. We also 
designate the horizontal coordinate by x (with the direction of flow as being the positive direction) and the vertical 
coordinate by z. The continuity equation for this one-inlet one-outlet steady flow system is kg/s. 3021 === mmm  Noting 
that AVm ρ= , the mean inlet and outlet velocities of water are  

m/s 18.3
]4/m) 1.0()[  kg/m(1000

 kg/s25
)4/( 23221 ======

ππρρ D
m

A
mVVV  

Noting that V1 = V2 and P2 = Patm, the Bernoulli equation for a streamline going through the center of the reducing elbow is 
expressed as 

( ) )(           
22 12gage ,112212

2
22

1

2
11 zzgPzzgPPz

g
V

g
Pz

g
V

g
P

−=→−=−→++=++ ρρ
ρρ

 

Substituting, 

 ( )( )( )3 2 2
1  gage 2

1 kN1000 kg/m 9 81 m/s 0 70 m 6 867 kN/m 6 867 kPa
1000 kg m/s,P . . . .

⎛ ⎞
= = = ≅⎜ ⎟⋅⎝ ⎠

6.87 kPa  

(b) The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and z- 

components of the anchoring force of the elbow be FRx and FRz, and assume them to be in the positive directions. We also 
use gage pressures to avoid dealing with the atmospheric pressure which acts on all surfaces. Then the momentum 
equations along the x and z axes become 

0
2)()( 121gage1,

=

−=+−−=+

Rz

Rx

F
VmVmVmAPF βββ

 

Solving for FRx and substituting the given values, 
 

           

N 218

]4/m) 1.0()[N/m 6867(
m/s kg1
N 1m/s) 8 kg/s)(3.125(03.12

2

22
2

1gage ,1

−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
×−=

−−=

π

β APVmFRx

 

and  FR  = FRx = - 218 N since the y-component of the anchoring force is zero. 
Therefore, the anchoring force has a magnitude of 218 N and it acts in the negative 
x direction.  

Discussion Note that a negative value for FRx indicates the assumed direction is wrong, and should be reversed. 
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6-24E  
Solution A horizontal water jet strikes a vertical stationary plate normally at a specified velocity. For a given 
anchoring force needed to hold the plate in place, the flow rate of water is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water splatters off the sides of the plate in a plane normal to 
the jet. 3 The water jet is exposed to the atmosphere, and thus the pressure of the water jet and the splattered water is the 
atmospheric pressure which is disregarded since it acts on the entire control surface. 4 The vertical forces and momentum 
fluxes are not considered since they have no effect on the horizontal reaction force. 5 Jet flow is nearly uniform and thus the 
effect of the momentum-flux correction factor is negligible, β ≅ 1. 
 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis We take the plate as the control volume such that it contains the entire plate and cuts through the water jet 
and the support bar normally, and the direction of flow as the positive direction of x axis. The momentum equation for 
steady one-dimensional flow in the x (flow) direction reduces in this case to  

 ∑∑∑ −=
inout

VmVmF ββ       →              11 VmFVmF RRx =→−=−  

We note that the reaction force acts in the opposite direction to flow, and we should not forget the negative sign for forces 
and velocities in the negative x-direction.  Solving for m  and substituting the given values, 

lbm/s 376
lbf 1

ft/slbm 32.2
ft/s 30
lbf 350 2

1
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
==

V
F

m Rx  

Then the volume flow rate becomes 

/s3ft 6.02=== 3lbm/ft 62.4
lbm/s 376

ρ
mV  

Therefore, the volume flow rate of water under stated assumptions must be 6.02 ft3/s.   
 

Discussion In reality, some water will be scattered back, and this will add to the reaction force of water. The flow rate in 
that case will be less.  

  

 

FRx = 350 lbf

m

Waterjet 

1 
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6-25  
Solution A reducing elbow deflects water upwards and discharges it to the atmosphere at a specified rate. The 
anchoring force needed to hold the elbow in place is to be determined. 

Assumptions 1 The flow is steady, frictionless, one-dimensional, incompressible, and irrotational (so that the Bernoulli 
equation is applicable). 2 The weight of the elbow and the water in it is considered. 3 The water is discharged to the 
atmosphere, and thus the gage pressure at the outlet is zero. 4 The momentum-flux correction factor for each inlet and 
outlet is given to be β = 1.03. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis The weight of the elbow and the water in it is 

kN  0.4905  N 490.5)m/s kg)(9.81 50( 2 ==== mgW  

We take the elbow as the control volume, and designate the 
entrance by 1 and the outlet by 2. We also designate the 
horizontal coordinate by x (with the direction of flow as being 
the positive direction) and the vertical coordinate by z. The 
continuity equation for this one-inlet one-outlet steady flow 
system is kg/s. 3021 === mmm  Noting that AVm ρ= , the 
inlet and outlet velocities of water are  

m/s 12
)m 0025.0)(  kg/m(1000

 kg/s30

m/s 0.2
)m 0150.0)(  kg/m(1000

 kg/s30

23
2

2

23
1

1

===

===

A
mV

A
mV

ρ

ρ
 

Taking the center of the inlet cross section as the reference level (z1 = 0) and noting that P2 = Patm, the Bernoulli equation 
for a streamline going through the center of the reducing elbow is expressed as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−
=−→++=++ 2

2
1

2
2

gage ,112

2
1

2
2

212

2
22

1

2
11

2
     

2
      

22
z

g
VVgPzz

g
VVgPPz

g
V

g
Pz

g
V

g
P ρρ

ρρ
 

Substituting, 

 kPa 73.9kN/m 9.73
m/skg 1000

kN 14.0
)m/s 81.9(2

m/s) 2(m/s) 12()m/s 81.9)(kg/m 1000( 2
22

22
23

gage ,1 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
=P  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and z- components 

of the anchoring force of the elbow be FRx and FRz, and assume them to be in the positive directions. We also use gage 
pressures to avoid dealing with the atmospheric pressure which acts on all surfaces. Then the momentum equations along 
the x and z axes become 

 θββθβ sinand     cos 2121gage1, VmWFVmVmAPF RzRx =−−=+  

Solving for FRx and FRz, and substituting the given values, 

 ( ) ( )( )2 2
2 1  gage 1 21

1 kN1 03 30 kg/s)[(12cos45 -2) m/s] 73 9 kN/m 0 0150 m
1000 kg m/s

0.908 kN

Rx ,F m V cos V P A . ( . .β θ
⎛ ⎞

= − − = ° −⎜ ⎟⋅⎝ ⎠
= −

 

  kN0.753 kN4905.0
m/s kg1000

 kN1m/s) in45 kg/s)(12s30(03.1sin 22 =+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
°=+= WVmFRz θβ  

 °−=
−

===+−=+= 39.7kN 1.18
908.0

753.0tantan     ,)753.0()908.0( 1-1-2222

Rx

Rz
RzRxR F

F
FFF θ  

Discussion Note that the magnitude of the anchoring force is 1.18 kN, and its line of action makes –39.7° from +x 
direction. Negative value for FRx indicates the assumed direction is wrong. 
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6-26  
Solution A reducing elbow deflects water upwards and discharges it to the atmosphere at a specified rate. The 
anchoring force needed to hold the elbow in place is to be determined. 

Assumptions 1 The flow is steady, frictionless, one-dimensional, incompressible, and irrotational (so that the Bernoulli 
equation is applicable). 2 The weight of the elbow and the water in it is considered. 3 The water is discharged to the 
atmosphere, and thus the gage pressure at the outlet is zero. 4 The momentum-flux correction factor for each inlet and 
outlet is given to be β = 1.03. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis The weight of the elbow and the water in it is 

kN  0.4905  N 490.5)m/s kg)(9.81 50( 2 ==== mgW  

We take the elbow as the control volume, and designate the entrance 
by 1 and the outlet by 2. We also designate the horizontal coordinate 
by x (with the direction of flow as being the positive direction) and 
the vertical coordinate by z. The continuity equation for this one-inlet 
one-outlet steady flow system is kg/s. 3021 === mmm  Noting that 

AVm ρ= , the inlet and outlet velocities of water are  

m/s 12
)m 0025.0)(  kg/m(1000

 kg/s30

m/s 0.2
)m 0150.0)(  kg/m(1000

 kg/s30

23
2

2

23
1

1

===

===

A
mV

A
mV

ρ

ρ
 

Taking the center of the inlet cross section as the reference level (z1 = 0) and noting that P2 = Patm, the Bernoulli equation 
for a streamline going through the center of the reducing elbow is expressed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

−
=−→++=++ 2

2
1

2
2

gage ,112

2
1

2
2

212

2
22

1

2
11

2
     

2
      

22
z

g
VVgPzz

g
VVgPPz

g
V

g
Pz

g
V

g
P ρρ

ρρ
 

or, kPa 73.9kN/m 9.73
m/skg 1000

kN 14.0
)m/s 81.9(2

m/s) 2(m/s) 12()m/s 81.9)(kg/m 1000( 2
22

22
23

gage ,1 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
=P  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and y- components 

of the anchoring force of the elbow be FRx and FRz, and assume them to be in the positive directions. We also use gage 
pressures to avoid dealing with the atmospheric pressure which acts on all surfaces. Then the momentum equations along 
the x and z axes become 

θββθβ sinand           cos 2121gage1, VmWFVmVmAPF RyRx =−−=+  

Solving for FRx and FRz, and substituting the given values, 

  
kN 297.1)m 0150.0)(kN/m 9.73(

m/skg 1000
kN 1m/s] 2)-os110kg/s)[(12c 30(03.1

)cos(

22
2

1gage ,112

−=−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
°=

−−= APVVmFRx θβ

 

kN 0.8389kN 4905.0
m/skg 1000

kN 1m/s) n110kg/s)(12si 30(03.1sin
22 =+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
°=+= WVmFRz θβ  

and    
°−=

−
==

=+−=+=

32.9

kN 1.54

297.1
8389.0tantan   

 8389.0)297.1(

1-1-

2222

Rx

Rz

RzRxR

F
F

FFF

θ
 

Discussion Note that the magnitude of the anchoring force is 1.54 kN, and its line of action makes –32.9° from +x 
direction. Negative value for FRx indicates assumed direction is wrong, and should be reversed. 

  

 

Water 
30 kg/s 

150 m2 

25 cm2 

110° 

W 

FRz 

FRx 

2

1



Chapter 6  Momentum Analysis of Flow Systems 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission.   

6-12

6-27  
Solution Water accelerated by a nozzle strikes the back surface of a cart moving horizontally at a constant velocity. 
The braking force and the power wasted by the brakes are to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water splatters off the sides of the plate in all directions in 
the plane of the back surface. 3 The water jet is exposed to the atmosphere, and thus the pressure of the water jet and the 
splattered water is the atmospheric pressure which is disregarded since it acts on all surfaces. 4 Fiction during motion is 
negligible. 5 There is no acceleration of the cart. 7 The motions of the water jet and the cart are horizontal. 6 Jet flow is 
nearly uniform and thus the effect of the momentum-flux correction factor is negligible, β ≅ 1. 

Analysis We take the cart as the control volume, and the 
direction of flow as the positive direction of x axis. The relative 
velocity between the cart and the jet is 

m/s 101015cartjet =−=−= VVVr   

Therefore, we can view the cart as being stationary and the jet moving 
with a velocity of 10 m/s. Noting that water leaves the nozzle at 15 m/s 
and the corresponding mass flow rate relative to nozzle exit is 25 kg/s, 
the mass flow rate of water striking the cart corresponding to a water jet 
velocity of 10 m/s relative to the cart is 

kg/s 67.16kg/s) 25(
m/s 15
m/s 10

jet
jet

=== m
V
V

m r
r    

The momentum equation for steady one-dimensional flow in the x (flow) direction reduces in this case to  

 ∑∑∑ −=
inout

VmVmF ββ       →              brake rriiRx VmFVmF −=→−=  

We note that the brake force acts in the opposite direction to flow, and we should not forget the negative sign for forces and 
velocities in the negative x-direction.  Substituting the given values,  

N 167−≅−=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+−=−= N 166.7

m/skg 1
N 1m/s) 01kg/s)( 67.16(

2brake rrVmF  

The negative sign indicates that the braking force acts in the opposite direction to motion, as expected. Noting that work is 
force times distance and the distance traveled by the cart per unit time is the cart velocity, the power wasted by the brakes is   

 W833=⎟
⎠
⎞

⎜
⎝
⎛

⋅
==

m/sN 1
 W1m/s) N)(5 7.166(cartbrakeVFW  

Discussion Note that the power wasted is equivalent to the maximum power that can be generated as the cart velocity is 
maintained constant. 

  

 
6-28  
Solution Water accelerated by a nozzle strikes the back surface of a cart moving horizontally. The acceleration of the 
cart if the brakes fail is to be determined. 

Analysis The braking force was determined in previous problem 
to be 167 N. When the brakes fail, this force will propel the cart 
forward, and the acceleration will be    

2m/s 0.556=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
==

N 1
m/skg 1

kg 300
N 167 2

cartm
Fa   

Discussion This is the acceleration at the moment the brakes fail. The acceleration will decrease as the relative velocity 
between the water jet and the cart (and thus the force) decreases. 
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6-29E  
Solution A water jet hits a stationary splitter, such that half of the flow is diverted upward at 45°, and the other half is 
directed down. The force required to hold the splitter in place is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 
The water jet is exposed to the atmosphere, and thus the 
pressure of the water jet before and after the split is the 
atmospheric pressure which is disregarded since it acts on all 
surfaces. 3 The gravitational effects are disregarded. 4 Jet flow 
is nearly uniform and thus the effect of the momentum-flux 
correction factor is negligible, β ≅ 1. 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis The mass flow rate of water jet is 

lbm/s 6240/s)ft )(100lbm/ft 4.62( 33 === Vm ρ  

We take the splitting section of water jet, including the splitter as the control volume, and designate the entrance by 1 and 
the outlet of either arm by 2 (both arms have the same velocity and mass flow rate). We also designate the horizontal 
coordinate by x with the direction of flow as being the positive direction and the vertical coordinate by z.  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and y- 

components of the anchoring force of the splitter be FRx and FRz, and assume them to be in the positive directions.  Noting 
that V2 = V1 = V and mm 2

1
2 = , the momentum equations along the x and z axes become 

00)sin()sin(

)1(coscos)(2

22
1

22
1

122
1

=−−++=

−=−=

θθ

θθ

VmVmF

VmVmVmF

Rz

Rx  

Substituting the given values, 

( ) 2

1 lbf6240 lbm/s (20 ft/s)(cos45 1) 1135 lbf
32.2 lbm ft/sRx

Rz

F -

F

⎛ ⎞= ° = − − ≅⎜ ⎟⋅⎝ ⎠
= 0

-1140 lbf
 

The negative value for FRx indicates the assumed direction is wrong, and should be reversed. Therefore, a force of 1140 lbf 
must be applied to the splitter in the opposite direction to flow to hold it in place. No holding force is necessary in the 
vertical direction. This can also be concluded from the symmetry.  

Discussion In reality, the gravitational effects will cause the upper stream to slow down and the lower stream to speed 
up after the split. But for short distances, these effects are indeed negligible. 

  

 

100 ft3/s

20 ft/s 

45° 

45° 

FRz 

FRx



Chapter 6  Momentum Analysis of Flow Systems 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission.   

6-14

 
 
6-30E  
 

Solution The previous problem is reconsidered. The effect of splitter angle on the force exerted on the splitter as the 
half splitter angle varies from 0 to 180° in increments of 10° is to be investigated. 
 
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

g=32.2 "ft/s2" 
rho=62.4 "lbm/ft3" 
V_dot=100 "ft3/s" 
V=20 "ft/s" 
m_dot=rho*V_dot 
F_R=-m_dot*V*(cos(theta)-1)/g "lbf" 

 

θ, ° m , lbm/s FR, lbf 
0 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 

6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 
6240 

0 
59 

234 
519 
907 
1384 
1938 
2550 
3203 
3876 
4549 
5201 
5814 
6367 
6845 
7232 
7518 
7693 
7752 

 

Discussion The force rises from zero at θ = 0o to a maximum at θ = 180o, as expected, but the relationship is not linear. 
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18 m/s 

Waterjet 

1000 kg 

Frictionless track 

6-31  
Solution A horizontal water jet impinges normally upon a vertical plate which is held on a frictionless track and is 
initially stationary. The initial acceleration of the plate, the time it takes to reach a certain velocity, and the velocity at a 
given time are to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water always splatters in the plane of the retreating plate. 3 
The water jet is exposed to the atmosphere, and thus the pressure of the water jet and the splattered water is the atmospheric 
pressure which is disregarded since it acts on all surfaces. 4 The tract is nearly frictionless, and thus fiction during motion is 
negligible. 5 The motions of the water jet and the cart are horizontal. 6 The velocity of the jet relative to the plate remains 
constant, Vr = Vjet = V. 7 Jet flow is nearly uniform and thus the effect of the momentum-flux correction factor is negligible, 
β ≅ 1.  

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) We take the vertical plate on the frictionless track as the control volume, and the direction of flow as the 
positive direction of x axis. The mass flow rate of water in the jet is   

  kg/s35.34]4/m)  (0.05m/s)[ )(18 kg/m1000( 23 === πρVAm  

 The momentum equation for steady one-dimensional flow in the x (flow) direction reduces in this case to  

 ∑∑∑ −=
inout

VmVmF ββ       →              VmFVmF RxiiRx −=→−=  

where FRx is the reaction force required to hold the plate in place. When the plate is released, an equal and opposite impulse 
force acts on the plate, which is determined to   

N  636
m/s kg1
N 1m/s)  kg/s)(1834.35( 2plate =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
==−= VmFF Rx  

Then the initial acceleration of the plate becomes    

2m/s 0.636=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
==

N  1
m/s kg1

 kg1000
N 636 2

plate

plate

m
F

a  

This acceleration will remain constant during motion since the force acting 
on the plate remains constant. 

(b) Noting that a = dV/dt = ΔV/Δt since the acceleration a is constant, the time it takes for the plate to reach a velocity of 9 
m/s is  

s 14.2=
−

=
Δ

=Δ
2

plate

m/s 636.0
m/s )09(

a
V

t  

(c) Noting that a = dV/dt and thus dV = adt and that the acceleration a is constant, the plate velocity in 20 s becomes 

m/s 12.7=+=Δ+= s) 20)(m/s 636.0(0 2
plate 0,plate taVV  

Discussion The assumption that the relative velocity between the water jet and the plate remains constant is valid only 
for the initial moments of motion when the plate velocity is low unless the water jet is moving with the plate at the same 
velocity as the plate.  
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6-32  
Solution A 90° reducer elbow deflects water downwards into a smaller diameter pipe. The resultant force exerted on 
the reducer by water is to be determined. 

Assumptions 1 The flow is steady, frictionless, one-dimensional, incompressible, and irrotational (so that the Bernoulli 
equation is applicable). 2 The weight of the elbow and the water in it is disregarded since the gravitational effects are 
negligible. 3 The momentum-flux correction factor for each inlet and outlet is given to be β = 1.04. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the elbow as the control volume, and designate the 
entrance by 1 and the outlet by 2. We also designate the horizontal coordinate by 
x (with the direction of flow as being the positive direction) and the vertical 
coordinate by z. The continuity equation for this one-inlet one-outlet steady flow 
system is kg/s. 4.35321 === mmm  Noting that AVm ρ= , the mass flow rate 
of water and its outlet velocity are   

 kg/s4.353]4/m)  (0.3m/s)[ )(5 kg/m1000()4/( 232
1111 ==== ππρρ DVAVm  

m/s 20
]4/m) 15.0()[  kg/m(1000

 kg/s4.353
4/ 232

22
2 ====

πρπρ D
m

A
mV  

The Bernoulli equation for a streamline going through the center of the reducing elbow is expressed as 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−
+=→++=++ 21

2
2

2
1

122

2
22

1

2
11

2
            

22
zz

g
VVgPPz

g
V

g
Pz

g
V

g
P ρ

ρρ
 

Substituting, the gage pressure at the outlet becomes 

 kPa 4.117
kN/m 1

kPa 1
m/skg 1000

kN 15.0
)m/s 81.9(2

m/s) 20(m/s) 5()m/s 81.9)(kg/m 1000(kPa) 300( 222

22
23

2 =⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
+=P  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and z- components 

of the anchoring force of the elbow be FRx and FRz, and assume them to be in the positive directions.  Then the momentum 
equations along the x and z axes become 

0)(
0

22gage2,

11gage1,

−−=−

−=+

VmAPF
VmAPF

Rz

Rx

β
β

 

Note that we should not forget the negative sign for forces and velocities in the negative x or z direction.  Solving for FRx 
and FRz, and substituting the given values, 

 kN0.23
4

m) 3.0(
) kN/m300(

m/s kg1000
 kN1m/s)  kg/s)(54.353(04.1

2
2

21gage ,11 −=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
−=−−=

π
β APVmFRx  

 kN28.5
4

m) 15.0(
) kN/m4.117(

m/s kg1000
 kN1m/s)  kg/s)(204.353(04.1

2
2

21gage ,22 −=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
−=+−=

π
β APVmFRz and  

°=
−
−

==

=−+−=+=

12.9

kN 23.6

0.23
28.5tantan   

  )28.5()0.23(

1-1-

2222

Rx

Rz

RzRxR

F
F

FFF

θ
 

Discussion The magnitude of the anchoring force is 23.6 kN, and its line of action makes 12.9° from +x direction. 
Negative values for FRx and FRy indicate that the assumed directions are wrong, and should be reversed. 
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6-33  [Also solved using EES on enclosed DVD] 

Solution A wind turbine with a given span diameter and efficiency is subjected to steady winds. The power generated 
and the horizontal force on the supporting mast of the turbine are to be determined. 
 

Assumptions 1 The wind flow is steady and incompressible. 2 The efficiency of the turbine-generator is independent of 
wind speed. 3 The frictional effects are negligible, and thus none of the incoming kinetic energy is converted to thermal 
energy. 4 Wind flow is uniform and thus the momentum-flux correction factor is nearly unity, β ≅ 1.  

Properties The density of air is given to be 1.25 kg/m3.  

Analysis (a) The power potential of the wind is its kinetic 
energy, which is V2/2 per unit mass, and 2/2Vm  for a given mass 
flow rate: 
 

m/s 94.6
 km/h6.3
m/s 1 km/h)25(1 =⎟

⎠
⎞

⎜
⎝
⎛=V  

 kg/s200,55
4

m) (90m/s) 94.6)( kg/m25.1(
4

2
3

2

11111 ====
ππ

ρρ
D

VAVm  

    kW 1330
m/s kN1

 kW1
m/s kg1000

 kN1
2
m/s) (6.94

 kg/s)200,55(
2 2

22
1

1max =⎟
⎠
⎞

⎜
⎝
⎛

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
===

V
mkemW  

Then the actual power produced becomes     

            kW 426===  kW)1330)(32.0(maxnewind turbiact WW η  

(b) The frictional effects are assumed to be negligible, and thus the portion of incoming kinetic energy not converted to 
electric power leaves the wind turbine as outgoing kinetic energy. Therefore, 

 )1(
2

  
2

          )1( newind turbi

2
1

2
2

newind turbi12 ηη −=→−=
V

m
V

mkemkem  

or 
                      m/s 72.50.32-1m/s) 94.6(1  newind turbi12 ==−= ηVV  

We choose the control volume around the wind turbine such that the wind is normal to the control surface at the inlet and 
the outlet, and the entire control surface is at the atmospheric pressure. The momentum equation for steady one-dimensional 
flow is ∑∑∑ −=

inout

VmVmF ββ . Writing it along the x-direction (without forgetting the negative sign for forces and 

velocities in the negative x-direction) and assuming the flow velocity through the turbine to be equal to the wind velocity 
give 

kN 67.3−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
=−=−= 21212 m/s kg1000

 kN1m/s) 6.94-2 kg/s)(5.7200,55()( VVmVmVmFR  

The negative sign indicates that the reaction force acts in the negative x direction, as expected. 

Discussion This force acts on top of the tower where the wind turbine is installed, and the bending moment it generates 
at the bottom of the tower is obtained by multiplying this force by the tower height.    
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6-34E  
Solution A horizontal water jet strikes a curved plate, which deflects the water back to its original direction. The 
force required to hold the plate against the water stream is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water jet 
is exposed to the atmosphere, and thus the pressure of the water jet and 
the splattered water is the atmospheric pressure, which is disregarded 
since it acts on all surfaces. 3 Friction between the plate and the surface it 
is on is negligible (or the friction force can be included in the required 
force to hold the plate). 4 There is no splashing of water or the 
deformation of the jet, and the reversed jet leaves horizontally at the same 
velocity and flow rate. 5 Jet flow is nearly uniform and thus the 
momentum-flux correction factor is nearly unity, β ≅ 1. 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis We take the plate together with the curved water jet as the control volume, and designate the jet inlet by 1 
and the outlet by 2. We also designate the horizontal coordinate by x (with the direction of incoming flow as being the 
positive direction). The continuity equation for this one-inlet one-outlet steady flow system is mmm == 21  where  

lbm/s 8.428]4/ft) 12/3([ft/s) 140)(lbm/ft (62.4]4/[ 232 ==== ππρρ DVVAm  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Letting the reaction force to hold 

the plate be FRx and assuming it to be in the positive direction, the momentum equation along the x axis becomes 

VmVmVmFRx 2)()( 12 −=+−−=  

Substituting, 

( ) 2

1 lbf2 428 8  lbm/s (140 ft/s) 3729 lbf
32.2 lbm ft/sRxF . ⎛ ⎞= − = − ≅⎜ ⎟⋅⎝ ⎠

3730 lbf−  

Therefore, a force of 3730 lbf must be applied on the plate in the negative x direction to hold it in place. 

Discussion Note that a negative value for FRx indicates the assumed direction is wrong (as expected), and should be 
reversed. Also, there is no need for an analysis in the vertical direction since the fluid streams are horizontal.  
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6-35E  
Solution A horizontal water jet strikes a bent plate, which deflects the water by 135° from its original direction. The 
force required to hold the plate against the water stream is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water jet is exposed to the atmosphere, and thus the pressure 
of the water jet and the splattered water is the atmospheric pressure, which is disregarded since it acts on all surfaces. 3 
Frictional and gravitational effects are negligible. 4 There is no splattering of water or the deformation of the jet, and the 
reversed jet leaves horizontally at the same velocity and flow rate. 5 Jet flow is nearly uniform and thus the momentum-flux 
correction factor is nearly unity, β ≅ 1. 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis We take the plate together with the curved water jet as the control volume, and designate the jet inlet by 1 
and the outlet by 2. We also designate the horizontal coordinate by x (with the direction of incoming flow as being the 
positive direction), and the vertical coordinate by z. The continuity equation for this one-inlet one-outlet steady flow system 
is mmm == 21  where  

lbm/s 8.428]4/ft) 12/3([ft/s) 140)(lbm/ft (62.4]4/[ 232 ==== ππρρ DVVAm  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the x- and z- components 

of the anchoring force of the plate be FRx and FRz, and assume them to be in the positive directions.  Then the momentum 
equations along the x and y axes become 

°=°+=
°+−=+−°−=

45sin45sin)(
)45cos1()(45cos)(

2

12

VmVmF
VmVmVmF

Rz

Rx  

Substituting the given values, 

lbf 6365
ft/slbm 32.2

lbf 1)cos45ft/s)(1 lbm/s)(140 8.428(2 2

−=

⎟
⎠
⎞

⎜
⎝
⎛

⋅
°+−=RxF  

lbf 1318
ft/slbm 32.2

lbf 1ft/s)sin45 lbm/s)(140 8.428( 2 =⎟
⎠
⎞

⎜
⎝
⎛

⋅
°=RzF  

and   ( )22 2 2 -1 1 13186365 1318      tan tan 11 7 168 3
6365

Ry -
R Rx Rz

Rx

F
F F F . .

F
θ= + = − + = = = = − ° = ° ≅ °

−
,6500 lbf 168  

Discussion Note that the magnitude of the anchoring force is 6500 lbf, and its line of action is 168° from the positive x 
direction. Also, a negative value for FRx indicates the assumed direction is wrong, and should be reversed. 
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6-36  
Solution Firemen are holding a nozzle at the end of a hose while trying to extinguish a fire. The average water outlet 
velocity and the resistance force required of the firemen to hold the nozzle are to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water jet is exposed to the atmosphere, and thus the pressure 
of the water jet is the atmospheric pressure, which is disregarded since it acts on all surfaces. 3 Gravitational effects and 
vertical forces are disregarded since the horizontal resistance force is to be determined. 5 Jet flow is nearly uniform and 
thus the momentum-flux correction factor can be taken to be unity, β ≅ 1.  

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) We take the nozzle and the horizontal 
portion of the hose as the system such that water enters the 
control volume vertically and outlets horizontally (this way 
the pressure force and the momentum flux at the inlet are in 
the vertical direction, with no contribution to the force balance 
in the horizontal direction), and designate the entrance by 1 
and the outlet by 2. We also designate the horizontal 
coordinate by x (with the direction of flow as being the 
positive direction). The average outlet velocity and the mass 
flow rate of water are determined from   

m/s 29.5===== m/min 1768
4/m) 06.0(

/minm 5
4/ 2

3

2 ππDA
V VV  

 kg/s3.83 kg/min5000/min)m )(5 kg/m1000( 33 ==== Vρm  

(b) The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let horizontal force 

applied by the firemen to the nozzle to hold it be FRx, and assume it to be in the positive x direction.  Then the momentum 
equation along the x direction gives 

( ) 2

1 N0 83 3 kg/s (29.5 m/s) 2457 N
1kg m/sRx eF mV mV .

⎛ ⎞
= − = = = ≅⎜ ⎟⋅⎝ ⎠

2460 N  

Therefore, the firemen must be able to resist a force of 2460 N to hold the nozzle in place. 

Discussion The force of 2460 N is equivalent to the weight of about 250 kg. That is, holding the nozzle requires the 
strength of holding a weight of 250 kg, which cannot be done by a single person. This demonstrates why several firemen 
are used to hold a hose with a high flow rate.   
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6-37  
Solution A horizontal jet of water with a given velocity strikes a flat plate that is moving in the same direction at a 
specified velocity. The force that the water stream exerts against the plate is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water splatters in all directions in the plane of the plate. 3 
The water jet is exposed to the atmosphere, and thus the pressure of the water jet and the splattered water is the atmospheric 
pressure, which is disregarded since it acts on all surfaces. 4 The vertical forces and momentum fluxes are not considered 
since they have no effect on the horizontal force exerted on the plate. 5 The velocity of the plate, and the velocity of the 
water jet relative to the plate, are constant. 6 Jet flow is nearly uniform and thus the momentum-flux correction factor can 
be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the plate as the control volume, and the flow 
direction as the positive direction of x axis. The relative velocity 
between the plate and the jet is 

m/s 201030platejet =−=−= VVVr   

Therefore, we can view the plate as being stationary and the jet to be 
moving with a velocity of 20 m/s. The mass flow rate of water relative 
to the plate [i.e., the flow rate at which water strikes the plate] is 

          kg/s 27.39
4

m) (0.05m/s) 20)(kg/m 1000(
4

2
3

2

====
ππ

ρρ
D

VAVm rrr  

 
The momentum equation for steady one-dimensional flow is ∑∑∑ −=

inout

VmVmF ββ . We let the horizontal reaction 

force applied to the plate in the negative x direction to counteract the impulse of the water jet be FRx.  Then the momentum 
equation along the x direction gives 

N 785=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
==→−=−

2m/s1kg
N 1m/s) kg/s)(20 27.39(        0 rrRxiRx VmFVmF  

Therefore, the water jet applies a force of 785 N on the plate in the direction of motion, and an equal and opposite force 
must be applied on the plate if its velocity is to remain constant. 

Discussion Note that we used the relative velocity in the determination of the mass flow rate of water in the momentum 
analysis since water will enter the control volume at this rate. (In the limiting case of the plate and the water jet moving at 
the same velocity, the mass flow rate of water relative to the plate will be zero since no water will be able to strike the 
plate).   
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6-38  
 

Solution The previous problem is reconsidered. The effect of the plate velocity on the force exerted on the plate as 
the plate velocity varies from 0 to 30 m/s in increments of 3 m/s is to be investigated. 
 
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

rho=1000 "kg/m3" 
D=0.05 "m" 
V_jet=30 "m/s" 
 

Ac=pi*D^2/4 
V_r=V_jet-V_plate 
m_dot=rho*Ac*V_r 
F_R=m_dot*V_r "N" 

 

Vplate, m/s Vr, m/s FR, N 
0 
3 
6 
9 

12 
15 
18 
21 
24 
27 
30 

30 
27 
24 
21 
18 
15 
12 
9 
6 
3 
0 

1767 
1431 
1131 
866 
636 
442 
283 
159 
70.7 
17.7 

0 
 

Discussion When the plate velocity reaches 30 m/s, there is no relative motion between the jet and the plate; hence, 
there can be no force acting. 
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6-39E  
Solution A fan moves air at sea level at a specified rate. The force required to hold the fan and the minimum power 
input required for the fan are to be determined. 

Assumptions 1 The flow of air is steady and incompressible. 2 Standard atmospheric conditions exist so that the pressure 
at sea level is 1 atm. 3 Air leaves the fan at a uniform velocity at atmospheric pressure. 4 Air approaches the fan through a 
large area at atmospheric pressure with negligible velocity. 5 The frictional effects are negligible, and thus the entire 
mechanical power input is converted to kinetic energy of air (no conversion to thermal energy through frictional effects).   6 
Wind flow is nearly uniform and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties The gas constant of air is R = 0.3704 
psi⋅ft3/lbm⋅R. The standard atmospheric pressure at sea level is 
1 atm = 14.7 psi.  

Analysis (a) We take the control volume to be a 
horizontal hyperbolic cylinder bounded by streamlines on the 
sides with air entering through the large cross-section (section 
1) and the fan located at the narrow cross-section at the end 
(section 2), and let its centerline be the x axis. The density, 
mass flow rate, and discharge velocity of air are 

3
3

lbm/ft 0749.0
R) R)(530/lbmftpsi (0.3704

psi 7.14
=

⋅⋅
==

RT
Pρ   

lbm/s 2.50lbm/min 8.149/min)ft 2000)(lbm/ft 0749.0( 33 ==== Vρm  

ft/s 10.6ft/min 6.636
4/ft) 2(

/minft 2000
4/ 2

3

2
22

2 =====
ππDA

V VV  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Letting the reaction force to hold 

the fan be FRx and assuming it to be in the positive x (i.e., the flow) direction, the momentum equation along the x axis 
becomes 

lbf 0.82=⎟
⎠

⎞
⎜
⎝

⎛

⋅
==−=

22
ft/slbm 32.2

lbf 1ft/s) 6lbm/s)(10. 50.2(0)( VmVmFRx  

Therefore, a force of 0.82 lbf must be applied (through friction at the base, for example) to prevent the fan from moving in 
the horizontal direction under the influence of this force.    

(b) Noting that  P1 = P2 = Patm and  V1 ≅ 0, the energy equation for the selected control volume reduces to   

lossmech,turbine2

2
22

 upump,1

2
11

22
EWgz

VP
mWgz

VP
m ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

ρρ
   →     

2

2
2

 ufan,
V

mW =  

Substituting, 

 W 5.91=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⎟
⎠

⎞
⎜
⎝

⎛

⋅
==

ft/slbf 0.73756
 W1

ft/slbm 2.32
lbf 1

2
ft/s) (10.6

lbm/s) 50.2(
2 2

22
2

ufan,
V

mW  

Therefore, a useful mechanical power of 5.91 W must be supplied to air. This is the minimum required power input required 
for the fan. 

Discussion The actual power input to the fan will be larger than 5.91 W because of the fan inefficiency in converting 
mechanical power to kinetic energy.   
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6-40  
Solution A helicopter hovers at sea level while being loaded. The volumetric air flow rate and the required power 
input during unloaded hover, and the rpm and the required power input during loaded hover are to be determined. 

Assumptions 1 The flow of air is steady and incompressible. 2 Air leaves the blades at a uniform velocity at atmospheric 
pressure. 3 Air approaches the blades from the top through a large area at atmospheric pressure with negligible velocity. 4 
The frictional effects are negligible, and thus the entire mechanical power input is converted to kinetic energy of air (no 
conversion to thermal energy through frictional effects).  5 The change in air pressure with elevation is negligible because 
of the low density of air. 6 There is no acceleration of the helicopter, and thus the lift generated is equal to the total weight. 
7 Air flow is nearly uniform and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties The density of air is given to be 1.18 kg/m3.   

Analysis (a) We take the control volume to be a vertical hyperbolic cylinder bounded by streamlines on the sides 
with air entering through the large cross-section (section 1) at the top and the fan located at the narrow cross-section at the 
bottom (section 2), and let its centerline be the z axis with upwards being the positive direction.  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Noting that the only 

force acting on the control volume is the total weight W and it acts in the negative z direction, the momentum equation 
along the z axis gives 

              )(              0)( 2
2

22222 A
WVAVVAVVmWVmW
ρ

ρρ =→===→−−=−  

where A is the blade span area, 
222 m 7.1764/m) 15(4/ === ππDA  

Then the discharge velocity, volume flow rate, and the mass flow rate 
of air in the unloaded mode become 

   m/s 7.21
)m )(176.7 kg/m(1.18

)m/s  kg)(9.81000,10(
23

2
unloaded

unloaded,2 ===
A

gm
V

ρ
 

    ( )( )2 3
unloaded 2 unloaded 176 7 m 21 7 m/s 3834 m /s,AV . .= = = ≅V 33830 m /s  

      kg/s4524/s)m 3834)( kg/m18.1( 33
unloadedunloaded === Vρm  

Noting that P1 = P2 = Patm, V1 ≅ 0, the elevation effects are negligible, and the frictional effects are disregarded, the energy 
equation for the selected control volume reduces to   

 
lossmech,turbine2

2
22

 upump,1

2
11

22
EWgz

VP
mWgz

VP
m ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

ρρ
   →     

2

2
2

 ufan,
V

mW =  

Substituting, 

 ( ) ( )22
2

unloaded fan,u 2
unloaded

21.7 m/s 1 kN 1 kW4524 kg/s 1065 kW
2 2 1 kN m/s1000 kg m/s

V
W m

⎛ ⎞ ⎛ ⎞⎛ ⎞= = = ≅⎜ ⎟ ⎜ ⎟⎜ ⎟⋅⋅ ⎝ ⎠⎝ ⎠⎝ ⎠
1070 kW  

(b) We now repeat the calculations for the loaded helicopter, whose mass is 10,000+15,000 = 25,000 kg:   

m/s 3.34
)m )(176.7 kg/m(1.18

)m/s  kg)(9.81000,25(
23

2
loaded

loaded,2 ===
A

gm
V

ρ
 

 kg/s7152m/s) 3.34)(m 7.176)( kg/m18.1( 23
loaded 2,loadedloaded ==== AVm ρρV  

( )
2 2

2
loaded  fan,u 2

loaded

(34.3 m/s) 1 kN 1 kW7152 kg/s 4207 kW
2 2 1 kN m/s1000 kg m/s

V
W m

⎛ ⎞ ⎛ ⎞⎛ ⎞= = = ≅⎜ ⎟ ⎜ ⎟⎜ ⎟⋅⋅ ⎝ ⎠⎝ ⎠⎝ ⎠
4210 kW  

Noting that the average flow velocity is proportional to the overhead blade rotational velocity, the rpm of the loaded 
helicopter blades becomes 

 rpm 632===→=→= rpm) 400(
7.21
3.34                   unloaded

unloaded2,

loaded2,
loaded

unloaded

loaded

unloaded2,

loaded2,
2 n

V
V

n
n
n

V
V

nkV  

Discussion The actual power input to the helicopter blades will be considerably larger than the calculated power input 
because of the fan inefficiency in converting mechanical power to kinetic energy.   
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6-41  
Solution A helicopter hovers on top of a high mountain where the air density considerably lower than that at sea 
level. The blade rotational velocity to hover at the higher altitude and the percent increase in the required power input to 
hover at high altitude relative to that at sea level are to be determined. 

Assumptions 1 The flow of air is steady and incompressible. 2 The air leaves the blades at a uniform velocity at 
atmospheric pressure. 3 Air approaches the blades from the top through a large area at atmospheric pressure with negligible 
velocity. 4 The frictional effects are negligible, and thus the entire mechanical power input is converted to kinetic energy of 
air.  5 The change in air pressure with elevation while hovering at a given location is negligible because of the low density 
of air. 6 There is no acceleration of the helicopter, and thus the lift generated is equal to the total weight. 7 Air flow is 
nearly uniform and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties The density of air is given to be 1.18 kg/m3 at sea level, and 0.79 kg/m3 on top of the mountain.  

Analysis (a) We take the control volume to be a vertical hyperbolic cylinder bounded by streamlines on the sides 
with air entering through the large cross-section (section 1) at the top and the fan located at the narrow cross-section at the 
bottom (section 2), and let its centerline be the z axis with upwards being the positive direction.  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Noting that the only force 

acting on the control volume is the total weight W and it acts in the negative z direction, the momentum equation along the z 
axis gives 

              )(              0)( 2
2

22222 A
WVAVVAVVmWVmW
ρ

ρρ =→===→−−=−  

where A is the blade span area. Then for a given weight W, the ratio of discharge velocities becomes   

222.1
 kg/m0.79
 kg/m1.18

/

/
3

3

mountain

sea

sea

mountain

sea,2

mountain,2 ====
ρ

ρ
ρ

ρ

AW

AW
V

V
 

Noting that the average flow velocity is proportional to the overhead blade rotational velocity, the rpm of the helicopter 
blades on top of the mountain becomes 

rpm 489===→=→= rpm) 400(222.1                   sea
sea2,

mountain2,
mountain

sea2,

mountain2,

sea

mountain
2 n

V
V

n
V

V
n

n
kVn  

Noting that P1 = P2 = Patm, V1 ≅ 0, the elevation effect are negligible, and the frictional effects are disregarded, the energy 
equation for the selected control volume reduces to   

lossmech,turbine2

2
22

 upump,1

2
11

22
EWgz

VP
mWgz

VP
m ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

ρρ
   →     

2

2
2

 ufan,
V

mW =  

or    
A

W
A

WA
A

WAVAVAVVmW
ρρ

ρ
ρ

ρρρ
2222

5.15.1

2
1

3

2
1

3
2

2
2

2

2
2

ufan, =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
====  

Then the ratio of the required power input on top of the mountain to 
that at sea level becomes 

 222.1
kg/m 0.79
kg/m 1.18

/5.0
/5.0

3

3

mountain

sea

sea
5.1

mountain
5.1

ufan, sea

ufan,mountain ===
ρ

ρ
ρ

ρ
AW

AW
W

W
 

Therefore, the required power input will increase by 22.2% on top of 
the mountain relative to the sea level. 

Discussion Note that both the rpm and the required power input to the helicopter are inversely proportional to the 
square root of air density.  Therefore, more power is required at higher elevations for the helicopter to operate because air is 
less dense, and more air must be forced by the blades into the downdraft. 

  

 
 

15 m 

Load 
15,000 kg 

Sea level 

1

2 



Chapter 6  Momentum Analysis of Flow Systems 

 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to 
teachers and educators for course preparation.  If you are a student using this Manual, you are using it without permission.   

6-26

6-42  
Solution The flow rate in a channel is controlled by a sluice gate by raising or lowering a vertical plate. A relation for 
the force acting on a sluice gate of width w for steady and uniform flow is to be developed. 

Assumptions 1 The flow is steady, incompressible, frictionless, and uniform (and thus the Bernoulli equation is 
applicable.) 2 Wall shear forces at surfaces are negligible.  3 The channel is exposed to the atmosphere, and thus the 
pressure at free surfaces is the atmospheric pressure.  4 The flow is horizontal. 5 Water flow is nearly uniform and thus the 
momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Analysis We take point 1 at the free surface of the upstream flow before the gate and point 2 at the free surface of the 
downstream flow after the gate. We also take the bottom surface of the channel as the reference level so that the elevations 
of points 1 and 2 are y1  and y2, respectively. The application of the Bernoulli equation between points 1 and 2 gives 

)g( 2         
22 21

2
1

2
22

2
22

1

2
11 yyVVy

g
V

g
P

y
g

V
g

P
−=−→++=++

ρρ
     (1) 

The flow is assumed to be incompressible and thus the density is constant. Then the conservation of mass relation for this 
single stream steady flow device can be expressed as 

     and                                     
22

2
11

1221121 wyA
V

wyA
VVAVA VVVVVVVV ====→==→==  (2) 

Substituting into Eq. (1),     

2
1

2
2

21
22

1
2
2

21
21

2

1

2

2 /1
)(2

        
/1/1

)(2
     )(2

yy
yyg

wy
yy

yyg
wyyg

wywy −

−
=→

−

−
=→−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
VVVV     (3) 

Substituting Eq. (3) into Eqs. (2) gives the following relations for velocities, 

  
/1

)(2
and               

/1
)(2

2
1

2
2

21
22

1
2
2

21

1

2
1 yy

yyg
V

yy
yyg

y
y

V
−

−
=

−

−
=     (4) 

We choose the control volume as the water body surrounded by the vertical cross-sections of the upstream and downstream 
flows, free surfaces of water, the inner surface of the sluice gate, and the bottom surface of the channel. The momentum 
equation for steady one-dimensional flow is ∑∑∑ −=

inout

VmVmF ββ . The force acting on the sluice gate FRx is 

horizontal since the wall shear at the surfaces is negligible, and it is equal and opposite to the force applied on water by the 
sluice gate. Noting that the pressure force acting on a vertical surface is equal to the product of the pressure at the centroid 
of the surface and the surface area, the momentum equation along the x direction gives 

  )()(
2

)(
2

        122
2

1
1

122211 VVmwy
y

gwy
y

gFVmVmAPAPF RxRx −=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+−→−=−+− ρρ  

Rearranging, the force acting on the sluice gate is determined to be 

)(
2

)( 2
2

2
121 yygwVVmFRx −+−= ρ   (5) 

where V1 and V2 are given in Eq. (4). 

 
Discussion Note that for y1 >> y2, Eq. (3) simplifies to 

12 2gywy=V  or 12 2gyV =  which is the Toricelli equation for 
frictionless flow from a tank through a hole a distance y1 below the free 
surface. 
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6-43  
Solution Water enters a centrifugal pump axially at a specified rate and velocity, and leaves in the normal direction 
along the pump casing. The force acting on the shaft in the axial direction is to be determined. 

Properties We take the density of water to be 1000 kg/m3. 

Assumptions 1 The flow is steady and incompressible. 2 The forces 
acting on the piping system in the horizontal direction are negligible. 3 
The atmospheric pressure is disregarded since it acts on all surfaces. 

Analysis We take the pump as the control volume, and the inlet 
direction of flow as the positive direction of x axis. The momentum 
equation for steady one-dimensional flow in the x (flow) direction 
reduces in this case to  

 ∑∑∑ −=
inout

VmVmF ββ       →   iiRxiRx VVmFVmF Vρ==→−=−             

Note that the reaction force acts in the opposite direction to flow, and we should not forget the negative sign for forces and 
velocities in the negative x-direction.  Substituting the given values,  

N 840=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
=

2
33

brake
m/skg 1
N 1m/s)  /s)(7m )(0.12kg/m 1000(F  

Discussion To find the total force acting on the shaft, we also need to do a force balance for the vertical direction, and 
find the vertical component of the reaction force. 

  

 
 
 
Angular Momentum Equation 
 
6-44C  
Solution We are to discuss how the angular momentum equation is obtained from the RTT.  
 
Analysis The angular momentum equation is obtained by replacing B in the Reynolds transport theorem by the 
total angular momentum  sysH , and b by the angular momentum per unit mass Vr × . 
 
Discussion The RTT is a general equation that holds for any property B, either scalar or (as in this case) vector. 

  

 
6-45C  
Solution We are to express the angular momentum equation for a specific (restricted) control volume.  
 
Analysis The angular momentum equation in this case is expressed as VmrI ×−=α  where α  is the angular 
acceleration of the control volume, and r  is the vector from the axis of rotation to any point on the line of action of F . 
 
Discussion This is a simplification of the more general angular momentum equation (many terms have dropped out). 

  

 
6-46C  
Solution We are to express the angular momentum equation in scalar form about a specified axis.  
 

Analysis The angular momentum equation about a given fixed axis in this case can be expressed in scalar form as  

∑∑∑ −=
inout

VmrVmrM  where r is the moment arm, V is the magnitude of the radial velocity, and m  is the mass 

flow rate.  
 

Discussion This is a simplification of the more general angular momentum equation (many terms have dropped out). 
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6-47  
Solution Water is pumped through a piping section. The moment acting on the elbow for the cases of downward and 
upward discharge is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water is discharged to the atmosphere, and thus the gage 
pressure at the outlet is zero. 3 Effects of water falling down during upward discharge is disregarded. 4 Pipe outlet diameter 
is small compared to the moment arm, and thus we use average values of radius and velocity at the outlet. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the entire pipe as the control volume, and designate the 
inlet by 1 and the outlet by 2. We also take the x and y coordinates as shown. 
The control volume and the reference frame are fixed. The conservation of mass 
equation for this one-inlet one-outlet steady flow system is mmm == 21 , and 

VVV == 21  since Ac = constant. The mass flow rate and the weight of the 
horizontal section of the pipe are  
 

 kg/s24.45)m/s 4](4/m) 12.0()[  kg/m(1000 23 === πρ VAm c  

N/m 3.294
m/s kg1
N 1)m/s 81.9)(m 2)(  kg/m(15 2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
== mgW  

 
(a) Downward discharge: To determine the moment acting on the pipe at point A, we need to take the moment of all 
forces and momentum flows about that point. This is a steady and uniform flow problem, and all forces and momentum 
flows are in the same plane. Therefore, the angular momentum equation in this case can be expressed as  

∑∑∑ −=
inout

VmrVmrM where r is the moment arm, all moments in the counterclockwise direction are positive, and all 

in the clockwise direction are negative. 
The free body diagram of the pipe section is given in the figure. Noting that the moments of all forces and 

momentum flows passing through point A are zero, the only force that will yield a moment about point A is the weight W of 
the horizontal pipe section, and the only momentum flow that will yield a moment is the outlet stream (both are negative 
since both moments are in the clockwise direction). Then the angular momentum equation about point A becomes 

221 VmrWrM A −=−    

Solving for MA and substituting, 

mN 70.0 ⋅−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
=−= 2221 m/s kg1

N 1m/s)  kg/s)(4m)(45.54 (2-N) m)(294.3 1(VmrWrM A  

The negative sign indicates that the assumed direction for MA is wrong, and should be reversed. Therefore, a moment of 70 
N⋅m acts at the stem of the pipe in the clockwise direction.   
 
(b) Upward discharge: The moment due to discharge stream is positive in this case, and the moment acting on the pipe at 
point A is 

mN 659 ⋅=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+=+=

2221
m/skg 1
N 1m/s) kg/s)(4 m)(45.54 (2N) m)(294.3 1(VmrWrM A  

Discussion Note direction of discharge can make a big difference in the moments applied on a piping system. This 
problem also shows the importance of accounting for the moments of momentums of flow streams when performing 
evaluating the stresses in pipe materials at critical cross-sections.  
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6-48E  
Solution A two-armed sprinkler is used to generate electric power. For a specified flow rate and rotational speed, the 
power produced is to be determined. 

Assumptions 1 The flow is cyclically steady (i.e., steady from a 
frame of reference rotating with the sprinkler head). 2 The water is 
discharged to the atmosphere, and thus the gage pressure at the nozzle 
outlet is zero. 3 Generator losses and air drag of rotating components 
are neglected. 4 The nozzle diameter is small compared to the moment 
arm, and thus we use average values of radius and velocity at the outlet. 

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis We take the disk that encloses the sprinkler arms as the 
control volume, which is a stationary control volume. The conservation 
of mass equation for this steady flow system is mmm == 21 . Noting 
that the two nozzles are identical, we have 2/nozzle mm =  or 

2/nozzle totalVV =  since the density of water is constant. The average 
jet outlet velocity relative to the nozzle is 

ft/s 2.392
gal 480.7

ft 1
]4/ft) 12/5.0([

gal/s 4 3

2
jet

nozzle
jet =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

πA
V

V
 

The angular and tangential velocities of the nozzles are 

ft/s  52.36 rad/s)ft)(26.18 2(

 rad/s26.18
s 60

min 1 rev/min)250(22

nozzle ===

=⎟
⎠
⎞

⎜
⎝
⎛==

ω

ππω

rV

n
 

The velocity of water jet relative to the control volume (or relative to a 
fixed location on earth) is 

ft/s 8.33936.522.392nozzlejet =−=−= VVVr  
The angular momentum equation can be expressed as 

∑∑∑ −=
inout

VmrVmrM  where all moments in the 

counterclockwise direction are positive, and all in the clockwise 
direction are negative.  Then the angular momentum equation about the 
axis of rotation becomes 

rVmrM nozzleshaft 2−=−         or      rVmrM totalshaft =  

Substituting, the torque transmitted through the shaft is determined to be 

ftlbf 1409
ft/slbm 32.2

lbf 1ft/s) .8lbm/s)(339 ft)(66.74 2( 2totalshaft ⋅=⎟
⎠
⎞

⎜
⎝
⎛

⋅
== rVmrM  

since    lbm/s 74.66)/sft 480.7/8)(lbm/ft  (62.4 33
totaltotal === Vρm . Then the power generated becomes    

kW 50.0=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅===

ft/slbf 737.56
 kW1ft)lbf 09 rad/s)(1418.26(2 shaftshaft MMnW ωπ  

Therefore, this sprinkler-type turbine has the potential to produce 50 kW of power.  
 
Discussion This is, of course, the maximum possible power. The actual power generated would be much smaller than 
this due to all the irreversible losses that we have ignored in this analysis. 
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6-49E  
Solution A two-armed sprinkler is used to generate electric power. For a specified flow rate and rotational speed, the 
moment acting on the rotating head when the head is stuck is to be determined. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

Assumptions 1 The flow is uniform and steady. 2 The water is discharged to the atmosphere, and thus the gage pressure 
at the nozzle outlet is zero. 3 The nozzle diameter is small compared to the moment arm, and thus we use average values of 
radius and velocity at the outlet.  

Properties We take the density of water to be 62.4 lbm/ft3. 

Analysis We take the disk that encloses the sprinkler arms as the control volume, which is a stationary control 
volume. The conservation of mass equation for this steady flow system is mmm == 21 . Noting that the two nozzles are 

identical, we have 2/nozzle mm =  or nozzle total 2/=V V  since the density of water is constant. The average jet outlet velocity 
relative to the nozzle is 

ft/s 2.392
gal 480.7

ft 1
]4/ft) 12/5.0([

gal/s 4 3

2
jet

nozzle
jet =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

πA
V

V
 

The angular momentum equation can be expressed as ∑∑∑ −=
inout

VmrVmrM  where all moments in the 

counterclockwise direction are positive, and all in the clockwise direction are negative.  Then the angular momentum 
equation about the axis of rotation becomes 

jetVmrM nozzleshaft 2−=−         or      jetVmrM totalshaft =  

Substituting, the torque transmitted through the shaft is determined to be 

( )( )( )shaft total 2

1 lbf2 ft 66.74 lbm/s 392.2 ft/s 1626 lbf ft
32.2 lbm ft/sjetM rm V ⎛ ⎞= = = ⋅ ≅ ⋅⎜ ⎟⋅⎝ ⎠

1630 lbf ft  

since  lbm/s 74.66)/sft 480.7/8)(lbm/ft  (62.4 33
totaltotal === Vρm .   

Discussion When the sprinkler is stuck and thus the angular velocity is zero, the torque developed is maximum since 
0nozzle =V  and thus ft/s  2.392jetr == VV , giving shaft, max 1630 lbf ftM = ⋅ . But the power generated is zero in this case 

since the shaft does not rotate.  
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6-50  
Solution A three-armed sprinkler is used to water a garden. For a specified flow rate and resistance torque, the 
angular velocity of the sprinkler head is to be determined. 

Assumptions 1 The flow is uniform and cyclically steady (i.e., steady from a frame of reference rotating with the 
sprinkler head). 2 The water is discharged to the atmosphere, and thus the gage pressure at the nozzle outlet is zero. 3 Air 
drag of rotating components are neglected. 4 The nozzle diameter is small compared to the moment arm, and thus we use 
average values of radius and velocity at the outlet. 

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.  

Analysis We take the disk that encloses the sprinkler arms as the 
control volume, which is a stationary control volume. The conservation 
of mass equation for this steady flow system is mmm == 21 . Noting 
that the three nozzles are identical, we have 3/nozzle mm =  or 

3/nozzle totalVV =  since the density of water is constant. The average jet 
outlet velocity relative to the nozzle and the mass flow rate are 

m/s 117.9
L 1000

m 1
]4/m) 012.0([3

L/s 40 3

2
jet

nozzle
jet =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

πA
V

V
 

 kg/s40)L/s 40)(  kg/L(1totaltotal === Vρm  

The angular momentum equation can be expressed as 
 ∑∑∑ −=

inout

VmrVmrM   

where all moments in the counterclockwise direction are positive, and 
all in the clockwise direction are negative.  Then the angular 
momentum equation about the axis of rotation becomes 

rVmr nozzle0 3T −=−         or      rVmr total0T =  

Solving for the relative velocity Vr  and substituting,   

m/s 1.3
N 1
m/s kg1

 kg/s)m)(40 40.0(
mN 50T 2

total

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
==

mr
Vr  

Then the tangential and angular velocity of the nozzles become 

m/s 8.1141.39.117jetnozzle =−=−= rVVV  

nozzle 114 8 m/s
0 4 m

287 rad/s 60 s 2741 rpm
2 2  1 min

V .
r .

n

ω

ω
π π

= = =

⎛ ⎞= = = ≅⎜ ⎟
⎝ ⎠

287 rad/s

2740 rpm
 

Therefore, this sprinkler will rotate at 2740 revolutions per minute (to three significant digits).  
 
Discussion The actual rotation rate will be somewhat lower than this due to air friction as the arms rotate. 
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6-51  
Solution A Pelton wheel is considered for power generation in a hydroelectric power plant. A relation is to be 
obtained for power generation, and its numerical value is to be obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The flow is uniform and cyclically steady. 2 The water is discharged to the atmosphere, and thus the gage 
pressure at the nozzle outlet is zero. 3 Friction and losses due to air drag of rotating components are neglected. 4 The nozzle 
diameter is small compared to the moment arm, and thus we use average values of radius and velocity at the outlet. 

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.   

Analysis The tangential velocity of buckets corresponding to an angular velocity of nπω 2=  is ωrV =bucket . Then 
the relative velocity of the jet (relative to the bucket) becomes 

ωrVVVV jjr −=−= bucket        

We take the imaginary disk that contains the Pelton wheel as the control volume. The inlet velocity of the fluid into this 
control volume is Vr, and the component of outlet velocity normal to the moment arm is Vrcosβ. The angular momentum 
equation can be expressed as ∑∑∑ −=

inout

VmrVmrM  where all moments in the counterclockwise direction are 

positive, and all in the clockwise direction are negative.  Then the angular momentum equation about the axis of rotation 
becomes 

rr VmrVmrM −=− βcosshaft      or   )cos1)(()cos1(shaft βωβ −−=−= rVmrVmrM jr  

Noting that shaftshaftshaft 2 MMnW ωπ ==  and Vρ=m , the shaft power output of a Pelton turbine becomes 

)cos1)((shaft βωωρ −−= rVrW jV  

which is the desired relation. For given values, the shaft power output is determined to be 

MW 11.3=⎟
⎠
⎞

⎜
⎝
⎛

⋅
°×=

m/sN 10
MW 1)cos160-m/s)(1 15.712- rad/s)(5071.15(m) 2)(/sm 10)( kg/m1000( 6

33
shaftW  

where         rad/s71.15
s 60

min 1 rev/min)150(22 =⎟
⎠
⎞

⎜
⎝
⎛== ππω n  

Discussion The actual power will be somewhat lower than this due to air drag and friction. Note that this is the shaft 
power; the electrical power generated by the generator connected to the shaft is be lower due to generator inefficiencies. 
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6-52  
 

Solution The previous problem is reconsidered. The effect of β on the power generation as β varies from 0° to 180° 
is to be determined, and the fraction of power loss at 160° is to be assessed. 
 
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

rho=1000 "kg/m3" 
r=2 "m" 
V_dot=10 "m3/s" 
V_jet=50 "m/s" 
n_dot=150 "rpm" 
omega=2*pi*n_dot/60 
V_r=V_jet-r*omega 
m_dot=rho*V_dot 
W_dot_shaft=m_dot*omega*r*V_r*(1-cos(Beta))/1E6 "MW"  
W_dot_max=m_dot*omega*r*V_r*2/1E6 "MW"  
Efficiency=W_dot_shaft/W_dot_max 

 

Angle,  
β° 

Max power, 

maxW , MW  
Actual power, 

shaftW , MW 
Efficiency, 

η 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 

11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 
11.7 

0.00 
0.09 
0.35 
0.78 
1.37 
2.09 
2.92 
3.84 
4.82 
5.84 
6.85 
7.84 
8.76 
9.59 
10.31 
10.89 
11.32 
11.59 
11.68 

0.000 
0.008 
0.030 
0.067 
0.117 
0.179 
0.250 
0.329 
0.413 
0.500 
0.587 
0.671 
0.750 
0.821 
0.883 
0.933 
0.970 
0.992 
1.000 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion The efficiency of a Pelton wheel for β =160° is 0.97. Therefore, at this angle, only 3% of the power is lost. 
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6-53  
Solution A centrifugal blower is used to deliver atmospheric air. For a given angular speed and power input, the 
volume flow rate of air is to be determined. 

    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The flow is steady in the mean. 2 Irreversible losses are negligible. 3 The tangential components of air 
velocity at the inlet and the outlet are said to be equal to the impeller velocity at respective locations.  

Properties The gas constant of air is 0.287 kPa⋅m3/kg⋅K. The density of air at 20°C and 95 kPa is 

 3
3 kg/m 1.130

K) K)(293/kgmkPa (0.287
kPa 95

=
⋅⋅

==
RT
Pρ  

Analysis In the idealized case of the tangential fluid velocity being equal to the blade angular velocity both at the 
inlet and the outlet, we have 1,1 rV t ω=  and 2,2 rV t ω= , and the torque is expressed as   

)()()(T 2
1

2
2

2
1

2
2,11,22shaft rrrrmVrVrm tt −=−=−= ωρω V  

where the angular velocity is  

  rad/s78.83
s 60

min 1 rev/min)800(22 =⎟
⎠
⎞

⎜
⎝
⎛== ππω n  

Then the shaft power becomes   
)(T 2

1
2

2
2

shaftshaft rrW −== ωρω V  

Solving for V  and substituting, the volume flow rate of air is determined to    

/sm 0.224 3=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅⋅
=

−
=

N 1
m/s kg1

]m) (0.15-m) [(0.30 rad/s))(83.78 kg/m(1.130
m/sN 120

)(

2

22232
1

2
2

2
shaft

rr
W

ρω
V  

The normal velocity components at the inlet and the outlet are 

m/s 3.50

m/s 3.90

===

===

m) m)(0.034 30.0(2
/sm 224.0

2

m) m)(0.061 15.0(2
/sm 224.0

2
3

22
,2

3

11
,1

ππ

ππ

br
V

br
V

n

n

V

V

 

Discussion Note that the irreversible losses are not considered in this analysis. In reality, the flow rate and the normal 
components of velocities will be smaller. 
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6-54  
Solution A centrifugal blower is used to deliver atmospheric air at a specified rate and angular speed. The minimum 
power consumption of the blower is to be determined.  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The flow is steady in the mean. 2 Irreversible losses are negligible.   

Properties The density of air is given to be 1.25 kg/m3. 

Analysis We take the impeller region as the control volume. The normal velocity components at the inlet and the 
outlet are  

m/s 4.421
m) m)(0.056 45.0(2

/sm 70.0
2

m/s 6.793
m) m)(0.082 20.0(2

/sm 70.0
2

3

22
,2

3

11
,1

===

===

ππ

ππ

br
V

br
V

n

n

V

V

 

The tangential components of absolute velocity are: 

α1 = 0°:            0tan 1,1,1 == αnt VV  
α2 = 60°:          m/s 269.550tan)m/s 421.4(tan 1,2,2 =°== αnt VV  

The angular velocity of the propeller is 

  rad/s30.73
s 60

min 1 rev/min)700(22 =⎟
⎠
⎞

⎜
⎝
⎛== ππω n  

  kg/s875.0/s)m )(0.7 kg/m25.1( 33 === Vρm  
Normal velocity components V1,n and V2,n as well pressure acting on the inner and outer circumferential areas pass through 
the shaft center, and thus they do not contribute to torque. Only the tangential velocity components contribute to torque, and 
the application of the angular momentum equation gives 

 mN 075.2 
m/s kg1
N 10]-m/s) m)(5.269 45 kg/s)[(0.875.0()(T 2,11,22shaft ⋅=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
=−= tt VrVrm  

Then the shaft power becomes  

 W152=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅==

m/sN 1
W 1m)N 075 rad/s)(2.30.73(TshaftωW  

Discussion The actual required shaft power is greater than this, due to the friction and other irreversibilities that we 
have neglected in our analysis. Nevertheless, this is a good first approximation. 
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6-55  
 

Solution The previous problem is reconsidered. The effect of discharge angle α2 on the minimum power input 
requirements as α2 varies from 0° to 85° in increments of 5° is to be investigated. 
 
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

rho=1.25 "kg/m3" 
r1=0.20 "m" 
b1=0.082 "m" 
r2=0.45 "m" 
b2=0.056 "m" 
V_dot=0.70 "m3/s" 
V1n=V_dot/(2*pi*r1*b1) "m/s" 
V2n=V_dot/(2*pi*r2*b2) "m/s" 
Alpha1=0 
V1t=V1n*tan(Alpha1) "m/s" 
V2t=V2n*tan(Alpha2) "m/s" 
n_dot=700 "rpm" 
omega=2*pi*n_dot/60 "rad/s" 
m_dot=rho*V_dot "kg/s" 
T_shaft=m_dot*(r2*V2t-r1*V1t) "Nm" 
W_dot_shaft=omega*T_shaft "W" 

 
 
 
 
 
 

Angle,  
α2° 

 V2,t,  
m/s 

Torque,  
Tshaft, Nm 

Shaft power, 

shaftW , W 

0 
5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 

0.00 
0.39 
0.78 
1.18 
1.61 
2.06 
2.55 
3.10 
3.71 
4.42 
5.27 
6.31 
7.66 
9.48 
12.15 
16.50 
25.07 
50.53 

0.00 
0.15 
0.31 
0.47 
0.63 
0.81 
1.01 
1.22 
1.46 
1.74 
2.07 
2.49 
3.02 
3.73 
4.78 
6.50 
9.87 
19.90 

0 
11 
23 
34 
46 
60 
74 
89 

107 
128 
152 
182 
221 
274 
351 
476 
724 
1459 

 
Discussion When α2 = 0, the shaft power is also zero as expected, since there is no turning at all. As α2 approaches 90o, 
the required shaft power rises rapidly towards infinity. We can never reach α2 = 90o because this would mean zero flow 
normal to the outlet, which is impossible. 
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6-56E  
Solution Water enters the impeller of a centrifugal pump radially at a specified flow rate and angular speed. The 
torque applied to the impeller is to be determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The flow is steady in the mean. 2 Irreversible losses are negligible.   

Properties We take the density of water to be 62.4 lbm/ft3.  

Analysis Water enters the impeller normally, and thus 0,1 =tV . The tangential component of fluid velocity at the 
outlet is given to be ft/s 180,2 =tV . The inlet radius r1 is unknown, but the outlet radius is given to be r2 = 1 ft. The angular 
velocity of the propeller is 

  rad/s36.52
s 60

min 1 rev/min)500(22 =⎟
⎠
⎞

⎜
⎝
⎛== ππω n  

The mass flow rate is 

 lbm/s 2.83/s)ft )(80/60lbm/ft 4.62( 33 === Vρm  

Only the tangential velocity components contribute to torque, and the application of the angular momentum equation gives  

ftlbf 465 ⋅=⎟
⎠
⎞

⎜
⎝
⎛

⋅
=−= 2,11,22shaft ft/slbm 32.2

lbf 10] - ft/s) ft)(180 lbm/s)[(1 2.83()(T tt VrVrm  

Discussion This shaft power input corresponding to this torque is   

kW 33.0=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅===

ft/slbf 737.56
 kW1ft)lbf 5 rad/s)(4636.52(2 shaftshaft TTnW ωπ  

Therefore, the minimum power input to this pump should be 33 kW.  
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6-57  
Solution A centrifugal pump is used to supply water at a specified rate and angular speed. The minimum power 
consumption of the pump is to be determined. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assumptions 1 The flow is steady in the mean. 2 Irreversible losses are negligible.   

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the impeller region as the control volume. The normal velocity components at the inlet and the 
outlet are  

m/s 2.274
m) m)(0.035 30.0(2

/sm 15.0
2

m/s 2.296
m) m)(0.080 13.0(2

/sm 15.0
2

3

22
,2

3

11
,1

===

===

ππ

ππ

br
V

br
V

n

n

V

V

 

The tangential components of absolute velocity are: 

α1 = 0°:            0tan 1,1,1 == αnt VV  
α2 = 60°:            m/s 938.360tan)m/s 274.2(tan 1,2,2 =°== αnt VV  

The angular velocity of the propeller is 

  rad/s7.125
s 60

min 1 rev/min)1200(22 =⎟
⎠
⎞

⎜
⎝
⎛== ππω n  

  kg/s150/s)m )(0.15 kg/m1000( 33 === Vρm  
Normal velocity components V1,n and V2,n as well pressure acting on the inner and outer circumferential areas pass through 
the shaft center, and thus they do not contribute to torque. Only the tangential velocity components contribute to torque, and 
the application of the angular momentum equation gives 

 m kN2.177 
m/s kg1000

 kN10]-m/s) m)(3.938 30 kg/s)[(0.150()(T 2,11,22shaft ⋅=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
=−= tt VrVrm  

Then the shaft power becomes  

kW 22.3=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⋅==

m/s kN1
 kW1m) kN7.2 rad/s)(177.125(TshaftωW  

Discussion Note that the irreversible losses are not considered in analysis. In reality, the required power input will be 
larger. 
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Review Problems 
 
 

6-58  
Solution Water is flowing into and discharging from a pipe U-section with a secondary discharge section normal to 
return flow. Net x- and z- forces at the two flanges that connect the pipes are to be determined. 

Assumptions 1 The flow is steady and incompressible.  2 The weight of the U-turn and the water in it is negligible. 4 The 
momentum-flux correction factor for each inlet and outlet is given to be β = 1.03. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis The flow velocities of the 3 streams are 

  m/s 3.15
]4/m) 05.0()[kg/m (1000

kg/s 30
)4/( 232

1

1

1

1
1 ====

ππρρ D
m

A
m

V  

  m/s 80.2
]4/m) 10.0()[ kg/m(1000

 kg/s22
)4/( 232

2

2

2

2
2 ====

ππρρ D
m

A
m

V  

  m/s 3.11
]4/m) 03.0()[ kg/m(1000

 kg/s8
)4/( 232

3

3

3

3
3 ====

ππρρ D
m

A
m

V  

We take the entire U-section as the control volume. We designate the horizontal coordinate by x with the direction of 
incoming flow as being the positive direction and the vertical coordinate by z. The momentum equation for steady one-
dimensional flow is ∑∑∑ −=

inout

VmVmF ββ . We let the x- and z- components of the anchoring force of the cone be FRx 

and FRz, and assume them to be in the positive directions. Then the momentum equations along the x and z axes become 

                                          0-0
  )(          )(

3333

1122221111222211

VmFVmF
VmVmAPAPFVmVmAPAPF

RzRz

RxRx

β
βββ

=→=+
+−−−=→−−=++

 

Substituting the given values,  

N 733−=−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−

−−−−=

kN  0.733

m/skg 1000
kN 1m/s) kg/s)(15.3 30(

m/skg 1000
kN 1m/s) kg/s)(2.80 22(03.1

4
m) (0.10]kN/m )100150[(

4
m) (0.05]kN/m )100200[(

22

2
2

2
2 ππ

RxF

 

N 93.1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
= 2m/s kg1

N 1m/s) 3 kg/s)(11.8(03.1RzF  

The negative value for FRx indicates the assumed direction is wrong, and should be reversed. Therefore, a force of 733 N 
acts on the flanges in the opposite direction. A vertical force of 93.1 N acts on the flange in the vertical direction.   

Discussion To assess the significance of gravity forces, we estimate the weight of the weight of water in the U-turn and 
compare it to the vertical force. Assuming the length of the U-turn to be 0.5 m and the average diameter to be 7.5 cm, the 
mass of the water becomes 

 kg2.2m) (0.5
4

m) (0.075) kg/m1000(
4

2
3

2
=====

ππρρρ LDALm V  

whose weight is 2.2×9.81 = 22 N, which is much less than 93.1, but still significant. Therefore, disregarding the 
gravitational effects is a reasonable assumption if great accuracy is not required. 
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6-59  
Solution A fireman was hit by a nozzle held by a tripod with a rated holding force. The accident is to be investigated 
by calculating  the water velocity, the flow rate, and the nozzle velocity. 

Assumptions 1 The flow is steady and incompressible. 2 The water jet is exposed to the atmosphere, and thus the pressure 
of the water jet is the atmospheric pressure, which is disregarded since it acts on all surfaces. 3 Gravitational effects and 
vertical forces are disregarded since the horizontal resistance force is to be determined.  4 Jet flow is nearly uniform and 
thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the nozzle and the horizontal portion of the hose as the system such that water enters the control 
volume vertically and outlets horizontally (this way the pressure force and the momentum flux at the inlet are in the vertical 
direction, with no contribution to the force balance in the horizontal direction, and designate the entrance by 1 and the 
outlet by 2. We also designate the horizontal coordinate by x (with the direction of flow as being the positive direction). 

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . We let the horizontal 

force applied by the tripod to the nozzle to hold it be FRx, and assume it to be in the positive x direction.  Then the 
momentum equation along the x direction becomes 

2
2

3
2

2
2

4
m) (0.05)kg/m 1000(

N 1
m/skg 1N) (1800        

4
0 VVDAVVVmVmF eRx

ππρρ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
→===−=  

Solving for the water outlet velocity gives V = 30.3 m/s. Then the water flow rate becomes  

/sm 0.0595 3==== m/s) (30.3
4

m) (0.05
4

22 ππ VDAVV  

When the nozzle was released, its acceleration must have been 

       m/s 180
N 1
m/skg 1

kg 10
N 1800 2

2

nozzle
nozzle =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
==

m
Fa  

Assuming the reaction force acting on the nozzle and thus its acceleration to remain constant, the time it takes for the 
nozzle to travel 60 cm and the nozzle velocity at that moment were (note that both the distance x and the velocity V are zero 
at time t = 0) 

      s
a
xtatx  0816.0

m/s 180
m) 6.0(22        

2
2

2
1 ===→=  

      m/s 14.7=== s) 0816.0)(m/s 180( 2atV  

Thus we conclude that the nozzle hit the fireman with a velocity of 14.7 m/s.   

Discussion Engineering analyses such as this one are frequently used in accident reconstruction cases, and they often 
form the basis for judgment in courts.  
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6-60  
Solution During landing of an airplane, the thrust reverser is lowered in the path of the exhaust jet, which deflects the 
exhaust and provides braking. The thrust of the engine and the braking force produced after the thrust reverser is deployed 
are to be determined. 

Assumptions 1 The flow of exhaust gases is steady and one-dimensional. 2 The exhaust gas stream is exposed to the 
atmosphere, and thus its pressure is the atmospheric pressure. 3 The velocity of exhaust gases remains constant during 
reversing. 4 Jet flow is nearly uniform and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Analysis (a) The thrust exerted on an airplane is simply the momentum flux of the combustion gases in the reverse 
direction,   

    N 4500=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
== 2m/s kg1

N 1m/s)  kg/s)(25018(Thrust exexVm  

(b) We take the thrust reverser as the control volume such that it cuts through both exhaust streams normally and the 
connecting bars to the airplane, and the direction of airplane as the positive direction of x axis.  The momentum equation for 
steady one-dimensional flow in the x direction reduces to  

 ∑∑∑ −=
inout

VmVmF ββ       →    )20cos1(          )( )cos20( iRxRx VmFVmVmF °+=→−−°=  

 Substituting, the reaction force is determined to be 

N 8729m/s)  kg/s)(25018)(20cos1( =°+=RxF  

The breaking force acting on the plane is equal and opposite to this force, 

breaking 8729 NF = ≅ 8730  N  

Therefore, a braking force of 8730 N develops in the opposite direction to flight.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion This problem can be solved more generally by measuring the reversing angle from the direction of exhaust 
gases (α = 0 when there is no reversing). When α < 90°, the reversed gases are discharged in the  negative x direction, and 
the momentum equation reduces to 

 )cos1(          )( )cos( iRxRx VmFVmVmF αα −=→−−−=  

This equation is also valid for α >90° since cos(180°-α) = - cosα. Using α = 160°, for example, gives 
 )20cos1( )160cos1( iiRx VmVmF +=−= , which is identical to the solution above. 
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6-61  
 

Solution The previous problem is reconsidered. The effect of thrust reverser angle on the braking force exerted on 
the airplane as the reverser angle varies from 0 (no reversing) to 180° (full reversing) in increments of 10° is to be 
investigated. 
 
Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

V_jet=250 "m/s" 
 

m_dot=18 "kg/s" 
F_Rx=(1-cos(alpha))*m_dot*V_jet "N" 

 

Reversing 
angle,  

α° 

Braking force  
Fbrake, N 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
180 

0 
68 
271 
603 
1053 
1607 
2250 
2961 
3719 
4500 
5281 
6039 
6750 
7393 
7947 
8397 
8729 
8932 
9000 

 
Discussion As expected, the braking force is zero when the angle is zero (no deflection), and maximum when the angle 
is 180o (completely reversed). Of course, it is impossible to completely reverse the flow, since the jet exhaust cannot be 
directed back into the engine. 
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6-62E  
Solution The rocket of a spacecraft is fired in the opposite direction to motion. The deceleration, the velocity change, 
and the thrust are to be determined.  

Assumptions 1 The flow of combustion gases is steady and one-dimensional during the firing period, but the flight of the 
spacecraft is unsteady.  2 There are no external forces acting on the spacecraft, and the effect of pressure force at the nozzle 
outlet is negligible. 3 The mass of discharged fuel is negligible relative to the mass of the spacecraft, and thus the spacecraft 
may be treated as a solid body with a constant mass. 4 The nozzle is well-designed such that the effect of the momentum-
flux correction factor is negligible, and thus β ≅ 1. 

Analysis (a) We choose a reference frame in which the control 
volume moves with the spacecraft. Then the velocities of fluid steams 
become simply their relative velocities (relative to the moving body). 
We take the direction of motion of the spacecraft as the positive 
direction along the x axis. There are no external forces acting on the 
spacecraft, and its mass is nearly constant. Therefore, the spacecraft can 
be treated as a solid body with constant mass, and the momentum 
equation in this case is 

ff
CV Vm

dt
Vd

mVmVm
dt
Vmd

−=→−+= ∑∑ space
space

inout

         
)(

0 ββ

 
Noting that the motion is on a straight line and the discharged gases 
move in the positive x direction (to slow down the spacecraft), we write 
the momentum equation using magnitudes as  

          f
f

ff V
m

m
dt

dV
Vm

dt
dV

m
space

spacespace
space               −=→−=  

Substituting, the deceleration of the spacecraft during the first 5 seconds is determined to be 

       ft/s 41.7 2- ft/s) (5000
lbm 18,000

lbm/s 150 
space

space
space =−=−== f

f V
m

m
dt

dV
a  

(b) Knowing the deceleration, which is constant, the velocity change of the spacecraft during the first 5 seconds is 
determined from the definition of acceleration dtdVa / spacespace = to be 

   ft/s 209−==Δ=Δ→= )s 5)(ft/s (-41.7             2
spacespacespacespace  taVdtadV  

(c) The thrust exerted on the system is simply the momentum flux of the combustion gases in the reverse direction,   

    ( )( ) 2

1 lbfThrust 150 lbm/s 5000 ft/s 23 290 lbf
32.2 lbm ft/sR f fF m V ,⎛ ⎞= = − = − = − ≅ −⎜ ⎟⋅⎝ ⎠

23,300 lbf  

Therefore, if this spacecraft were attached somewhere, it would exert a force of 23,300 lbf (equivalent to the weight of 
23,300 lbm of mass on earth) to its support in the negative x direction. 
 
Discussion In Part (b) we approximate the deceleration as constant. However, since mass is lost from the spacecraft 
during the time in which the jet is on, a more accurate solution would involve solving a differential equation. Here, the time 
span is short, and the lost mass is likely negligible compared to the total mass of the spacecraft, so the more complicated 
analysis is not necessary. 
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6-63  
Solution A horizontal water jet strikes a vertical stationary flat plate normally at a specified velocity. For a given 
flow velocity, the anchoring force needed to hold the plate in place is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water splatters off the sides of the plate in a plane normal to 
the jet. 3 The water jet is exposed to the atmosphere, and thus the pressure of the water jet and the splattered water is the 
atmospheric pressure which is disregarded since it acts on the entire control surface. 4 The vertical forces and momentum 
fluxes are not considered since they have no effect on the horizontal reaction force. 5 Jet flow is nearly uniform and thus the 
momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis We take the plate as the control volume such that it contains the entire plate and cuts through the water jet 
and the support bar normally, and the direction of flow as the positive direction of x axis. We take the reaction force to be in 
the negative x direction. The momentum equation for steady one-dimensional flow in the x (flow) direction reduces in this 
case to  

 ∑∑∑ −=
inout

VmVmF ββ       →              VmFVmF RxiiRx =→−=−  

We note that the reaction force acts in the opposite direction to flow, and we should not forget the negative sign for forces 
and velocities in the negative x-direction. The mass flow rate of water is 

 kg/s90.58m/s) (30
4

m) (0.05) kg/m1000(
4

2
3

2
=====

ππρρρ VDAVm V  

 Substituting, the reaction force is determined to be 

( )( )58 90 kg/s 30 m/s 1767 NRxF .= = ≅ 1770 N  

Therefore, a force of 1770 N must be applied to the plate in the opposite direction 
to the flow to hold it in place.  

Discussion In reality, some water may be scattered back, and this would add to the reaction force of water.   
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6-64  
Solution A water jet hits a stationary cone, such that the flow is diverted equally in all directions at 45°. The force 
required to hold the cone in place against the water stream is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The water jet is exposed to the atmosphere, and thus the pressure 
of the water jet before and after the split is the atmospheric pressure which is disregarded since it acts on all surfaces. 3 The 
gravitational effects are disregarded. 4 Jet flow is nearly uniform and thus the momentum-flux correction factor can be 
taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis The mass flow rate of water jet is 

 kg/s90.58m/s) (30
4

m) (0.05) kg/m1000(
4

2
3

2
=====

ππρρρ VDAVm V  

We take the diverting section of water jet, including the cone as the control volume, and designate the entrance by 1 and the 
outlet after divergence by 2. We also designate the horizontal coordinate by x with the direction of flow as being the 
positive direction and the vertical coordinate by y.  
The momentum equation for steady one-dimensional flow is ∑∑∑ −=

inout

VmVmF ββ . We let the x- and y- components 

of the anchoring force of the cone be FRx and FRy, and assume them to be in the positive directions.  Noting that V2 = V1 = V 
and mmm == 12 , the momentum equations along the x and y axes become 

axis) x about symmetry of (because    0
)1(coscos 12

=
−=−=

Ry

Rx

F
VmVmVmF θθ

 

Substituting the given values, 

0
N 518

=

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
°=

Ry

Rx

F

F 2m/s kg1
N 11)-m/s)(cos45  kg/s)(3090.58(

 

The negative value for FRx indicates that the assumed direction is wrong, and should be reversed. Therefore, a force of 518 
N must be applied to the cone in the opposite direction to flow to hold it in place. No holding force is necessary in the 
vertical direction due to symmetry and neglecting gravitational effects.  

Discussion In reality, the gravitational effects will cause the upper part of flow to slow down and the lower part to 
speed up after the split. But for short distances, these effects are negligible. 
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6-65  
Solution An ice skater is holding a flexible hose (essentially weightless) which directs a stream of water horizontally 
at a specified velocity. The velocity and the distance traveled in 5 seconds, and the time it takes to move 5 m and the 
velocity at that moment are to be determined. 

Assumptions 1 Friction between the skates and ice is negligible. 2 The flow of water is steady and one-dimensional (but 
the motion of skater is unsteady). 3 The ice skating arena is level, and the water jet is discharged horizontally. 4 The mass 
of the hose and the water in it is negligible.  5 The skater is standing still initially at t = 0. 6 Jet flow is nearly uniform and 
thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) The mass flow rate of water through the hose is 

 kg/s14.3m/s) (10
4

m) (0.02) kg/m1000(
4

2
3

2
====

ππρρ VDAVm  

The thrust exerted on the skater by the water stream is simply the momentum flux of the water stream, and it acts in the 
reverse direction,   

(constant)  N 4.31
m/s kg1
N 1m/s)  kg/s)(1014.3(Thrust 2  =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⋅
=== VmF  

The acceleration of the skater is determined from Newton’s 2nd law of motion F = ma where m is the mass of the skater, 

2
2

m/s 0.523
N 1

 m/skg 1
kg 60

N 4.31
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
==

m
Fa  

Note that thrust and thus the acceleration of the skater is constant. The velocity of the skater and the distance traveled in 5 s 
are 

m 6.54

m/s 2.62

===

===
22

2
12

2
1

2
skater

s) 5)(m/s 0.523(

s) 5)(m/s 0.523(

atx

atV
 

(b) The time it will take to move 5 m and the velocity at that moment are 

m/s 2.3

s 4.4

===

===→=

s) 4.4)(m/s 0.523(
m/s 0.523
m) 5(22           

2
skater

2
2

2
1

atV
a
xtatx

 

Discussion In reality, the velocity of the skater will be lower because of friction on ice and the resistance of the hose to 
follow the skater. Also, in the Vmβ  expressions, V is the fluid stream speed relative to a fixed point. Therefore, the correct 
expression for thrust is )( skaterjet VVmF −= , and the analysis above is valid only when the skater speed is low relative to 
the jet speed. An exact analysis would result in a differential equation.   
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6-66  
Solution Indiana Jones is to ascend a building by building a platform, and mounting four water nozzles pointing 
down at each corner. The minimum water jet velocity needed to raise the system, the time it will take to rise to the top of 
the building and the velocity of the system at that moment, the additional rise when the water is shut off, and the time he 
has to jump from the platform to the roof are to be determined. 

Assumptions 1 The air resistance is negligible. 2 The flow of water is steady and one-dimensional (but the motion of 
platform is unsteady).  3 The platform is still initially at t = 0. 4 Jet flow is nearly uniform and thus the momentum-flux 
correction factor can be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis (a) The total mass flow rate of water through the 4 hoses and the total weight of the platform are 

 kg/s118m/s) (15
4

m) (0.05) kg/m1000(4
4

4
2

3
2

====
ππρρ VDAVm  

 N 1472
m/skg 1
N 1)m/s kg)(9.81 150(

2
2  =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
== mgW  

We take the platform as the system. The momentum equation for steady one-dimensional flow is 

∑∑∑ −=
inout

VmVmF ββ . The minimum water jet velocity needed to raise the platform is determined by setting the net 

force acting on the platform equal to zero, 
2

min

2

minminminmin 4
4             0)( VDVAVVmWVmW πρρ ===→−−=−  

Solving for Vmin and substituting,  

m/s 13.7=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
==

1N
m/s1kg

m) (0.05) kg/m1000(
N 1472 2

232min πρπD
WV  

(b) We let the vertical reaction force (assumed upwards) acting on the platform be FRz. Then the momentum equation in the 
vertical direction becomes 

N 298
1N

m/s1kg
m/s)  kg/s)(15(118-N) (1472          0)(

2
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ⋅
=−=→=−−=− VmWFVmVmWF RzRz  

The upward thrust acting on the platform is equal and opposite to this reaction force, and thus F = 298 N. Then the 
acceleration and the ascending time to rise 10 m and the velocity at that moment become    

       2
2

m/s 0.2
N 1
m/skg 1

kg 150
N 298

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ ⋅
==

m
Fa  

      s 3.2===→= 2
2

2
1

m/s 2
m) 10(22        

a
xtatx  

      m/s 6.4=== s) 2.3)(m/s 2( 2atV  
(c) When water is shut off at 10 m height (where the velocity is 6.4 m/s), the 
platform will decelerate under the influence of gravity, and the time it takes to 
come to a stop and the additional rise above 10 m become 

      s 0.65===→=−=
2

0
0

m/s 9.81
m/s 4.6        0

g
V

tgtVV  

      m 2.1==−= 22
2
12

2
1

0 s) )(0.65m/s (9.81-s) m/s)(0.65 4.6(gttVz  

Therefore, Jones has 2×0.65 = 1.3 s to jump off from the platform to the roof since it takes another 0.65 s for the platform 
to descend to the 10 m level. 

Discussion Like most stunts in the Indiana Jones movies, this would not be practical in reality. 
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6-67E  
Solution A box-enclosed fan is faced down so the air blast is directed downwards, and it is to be hovered by 
increasing the blade rpm. The required blade rpm, air outlet velocity, the volumetric flow rate, and the minimum 
mechanical power are to be determined. 

Assumptions 1 The flow of air is steady and incompressible. 2 The air leaves the blades at a uniform velocity at 
atmospheric pressure, and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 3 Air approaches the 
blades from the top through a large area at atmospheric pressure with negligible velocity. 4 The frictional effects are 
negligible, and thus the entire mechanical power input is converted to kinetic energy of air (no conversion to thermal 
energy through frictional effects).  5 The change in air pressure with elevation is negligible because of the low density of 
air. 6 There is no acceleration of the fan, and thus the lift generated is equal to the total weight.  

Properties The density of air is given to be 0.078 lbm/ft3.   

Analysis (a) We take the control volume to be a vertical hyperbolic cylinder bounded by streamlines on the sides 
with air entering through the large cross-section (section 1) at the top and the fan located at the narrow cross-section at the 
bottom (section 2), and let its centerline be the z axis with upwards being the positive direction.  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Noting that the only 

force acting on the control volume is the total weight W and it acts in the negative z direction, the momentum equation 
along the z axis gives 

              )(              0)( 2
2

22222 A
WVAVVAVVmWVmW
ρ

ρρ =→===→−−=−  

where A is the blade span area, 
222 ft 069.74/ft) 3(4/ === ππDA  

Then the discharge velocity to produce 5 lbf of upward force becomes 

ft/s 17.1=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ⋅
=

lbf 1
ft/slbm 32.2

)ft )(7.069lbm/ft (0.078
lbf 5 2

232V  

(b) The volume flow rate and the mass flow rate of air are determined from their 
definitions, 

/sft  121 3=== ft/s) 1.17)(ft 069.7( 2
2AVV  

lbm/s 43.9/s)ft 121)(lbm/ft 078.0( 33 === Vρm  

(c) Noting that P1 = P2 = Patm, V1 ≅ 0, the elevation effects are negligible, and the frictional effects are disregarded, the 
energy equation for the selected control volume reduces to   

lossmech,turbine2

2
22

 upump,1

2
11

22
EWgz

VP
mWgz

VP
m ++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++

ρρ
   →     

2

2
2

 ufan,
V

mW =  

Substituting, 

  W64.3=⎟
⎠
⎞

⎜
⎝
⎛

⋅
⎟
⎠
⎞

⎜
⎝
⎛

⋅
==

ft/slbf 0.73756
W 1

ft/slbm 2.32
lbf 1

2
ft/s) (18.0

lbm/s) 43.9(
2 2

22
2

ufan,
V

mW  

Therefore, the minimum mechanical power that must be supplied to the air stream is 64.3 W. 

Discussion The actual power input to the fan will be considerably larger than the calculated power input because of the 
fan inefficiency in converting mechanical work to kinetic energy.   
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6-68  
Solution A parachute slows a soldier from his terminal velocity VT to his landing velocity of VF.  A relation is to be 
developed for the soldier’s velocity after he opens the parachute at time t = 0. 

Assumptions 1 The air resistance is proportional to the velocity squared (i.e. F = -kV2). 2 The variation of the air 
properties with altitude is negligible. 3 The buoyancy force applied by air to the person (and the parachute) is negligible 
because of the small volume occupied and the low density of air. 4 The final velocity of the soldier is equal to its terminal 
velocity with his parachute open.  

Analysis The terminal velocity of a free falling object is reached when the air resistance (or air drag) equals the 
weight of the object, less the buoyancy force applied by the fluid, which is negligible in this case, 

2
2

anceair resist                          
F

F V
mg

kmgkVWF =→=→=         

This is the desired relation for the constant of proportionality k. When the parachute is deployed and the soldier starts to 
decelerate, the net downward force acting on him is his weight less the air resistance,   

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−=−=−= 2

2
2

2
2

anceair resistnet 1
FF V

VmgV
V
mg

mgkVmgFWF  

Substituting it into Newton’s 2nd law relation 
dt
dVmmaF ==net  gives 

 
dt
dVm

V
Vmg

F
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− 2

2
1  

Canceling m and separating variables, and integrating from t = 0 when V = VT  to 
t = t when V = V gives   

 gdt
VV

dV

F
=

− 22 /1
    →    dt

V
g

VV
dV t

FFT
∫∫ =

−

 

0 2

 V

 V 22  

Using 
xa
xa

axa
dx

−
+

=
−∫ ln

2
1  

22
 from integral tables and applying the 

integration limits, 

2lnln
2

1

FTF

TF

F

F

F V
gt

VV
VV

VV
VV

V
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+

−
−
+

 

Rearranging, the velocity can be expressed explicitly as a function of time as 

 
F

F

Vgt
FTFT

Vgt
FTFT

F eVVVV
eVVVV

VV /2

/2

)(
)(

−

−

−−+

−++
=  

Discussion Note that as t → ∞, the velocity approaches the landing velocity of VF, as expected.  
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6-69  
Solution An empty cart is to be driven by a horizontal water jet that enters from a hole at the rear of the cart. A 
relation is to be developed for cart velocity versus time. 

Assumptions 1 The flow of water is steady, one-dimensional, incompressible, and horizontal. 2 All the water which 
enters the cart is retained. 3 The path of the cart is level and frictionless.  4 The cart is initially empty and stationary, and 
thus V = 0 at time t = 0. 5 Friction between water jet and air is negligible, and the entire momentum of water jet is used to 
drive the cart with no losses. 6 Jet flow is nearly uniform and thus the momentum-flux correction factor can be taken to be 
unity, β ≅ 1. 

Analysis We note that the water jet velocity VJ is constant, but the car velocity V is variable. Noting that 
)( VVAm J −= ρ  where A is the cross-sectional area of the water jet and VJ - V is the velocity of the water jet relative to the 

cart, the mass of water in the cart at any time t is 

∫∫∫ −=−==
t

J
t

J
t

w VdtAtAVdtVVAdtmm
 

0 

 

0 

 

0 
)( ρρρ    (1) 

Also,  

)( VVAm
dt

dm
J

w −== ρ  

We take the cart as the moving control volume. The net force acting on the cart in this case is equal to the momentum flux 
of the water jet. Newton’s 2nd law F = ma = d(mV)/dt  in this case can be expressed as 

dt
Vmd

F
)( total=     where     JJJin VVVAVmVmVmVmF )()(

outin

−===−= ∑∑ ρββ  

and 

VVVA
dt
dVmm

dt
dm

V
dt
dVm

dt
dVm

dt
Vmd

dt
dVm

dt
Vmmd

dt
Vmd

Jwc

w
wc

w
c

w

)()(

)(])[()( ctotal

−++=

++=+=
+

=

ρ
 

Note that in Vmβ  expressions, we used the fluid stream velocity relative to a fixed point. Substituting, 

VVVA
dt
dVmmVVVA JwcJJ )()()( −++=− ρρ       →     

dt
dVmmVVVVA wcJJ )())(( +=−−ρ  

Noting that mw is a function of t (as given by Eq. 1) and separating variables, 

    
wcJ mm

dt
VVA

dV
+

=
− 2)(ρ

     →    

∫−+
=

− t
JcJ VdtAtAVm

dt
VVA

dV
 

0 

2)( ρρρ
 

Integrating from t = 0 when V = 0 to t = t when V = V gives the desired integral, 
 

∫
∫

∫
−+

=
−

t

o t
Jc

V

J VdtAtAVm

dt
VVA

dV  

  

0 

 

0 2)( ρρρ
 

Discussion Note that the time integral involves the integral of velocity, which complicates the solution.   
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6-70  
Solution A plate is maintained in a horizontal position by frictionless vertical guide rails. The underside of the plate 
is subjected to a water jet. The minimum mass flow rate minm to just levitate the plate is to be determined, and a relation is 
to be obtained for the steady state upward velocity. Also, the integral that relates velocity to time when the water is first 
turned on is to be obtained. 

Assumptions 1 The flow of water is steady and one-dimensional. 2 The water jet splatters in the plane of he plate.  3 The 
vertical guide rails are frictionless. 4 Times are short, so the velocity of the rising jet can be considered to remain constant 
with height. 5 At time t = 0, the plate is at rest. 6 Jet flow is nearly uniform and thus the momentum-flux correction factor 
can be taken to be unity, β ≅ 1. 

Analysis (a) We take the plate as the system. The momentum equation for steady one-dimensional flow is 

∑∑∑ −=
inout

VmVmF ββ . Noting that JAVm ρ=  where A is the cross-sectional area of the water jet and W = mpg, the 

minimum mass flow rate of water needed to raise the plate is determined by setting the net force acting on the plate equal to 
zero, 

gAmmAVmmgmVmWVmW pp ρ=→=→=→−=− minJminminJminJmin         )/(                      0  

For minmm > , a relation for the steady state upward velocity V is obtained setting the upward impulse applied by water jet 
to the weight of the plate (during steady motion, the plate velocity V is constant, and the velocity of water jet relative to 
plate is VJ –V), 

A
gm

A
mV

A
gm

VVVVAgmVVmW pp
JJpJ ρρρ

ρ −=→=−→−=→−=                  )(           )( 2  

(b) At time t = 0 the plate is at rest (V = 0), and it is subjected to water 
jet with minmm > and thus the net force acting on it is greater than the 
weight of the plate, and the difference between the jet impulse and the 
weight will accelerate the plate upwards. Therefore,  Newton’s 2nd law 
F = ma = mdV/dt  in this case can be expressed as 

dt
dVmgmVVAamWVVm ppJpJ =−−→=−− 2)(           )( ρ  

Separating the variables and integrating from t = 0 when V = 0 to t = t 
when V = V gives the desired integral, 

 V  

2 0  0
       

tp

t
J p

m dV
dt

A(V V ) m gρ =
= →

− −∫ ∫
 V

2 0

p

J p

m dV
t

A(V V ) m gρ
=

− −∫  

Discussion This integral can be performed with the help of integral tables. But the 
relation obtained will be implicit in V.  
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6-71  
Solution Water enters a centrifugal pump axially at a specified rate and velocity, and leaves at an angle from the 
axial direction. The force acting on the shaft in the axial direction is to be determined. 

Assumptions 1 The flow is steady and incompressible. 2 The forces acting on the piping system in the horizontal 
direction are negligible. 3 The atmospheric pressure is disregarded since it acts on all surfaces. 4 Water flow is nearly 
uniform at the outlet and thus the momentum-flux correction factor can be taken to be unity, β ≅ 1. 

Properties We take the density of water to be 1000 kg/m3. 

Analysis From conservation of mass we have mmm == 21 , and thus 

21 VV =  and 2211 VAVA cc = . Noting that the discharge area is half the inlet 
area, the discharge velocity is twice the inlet velocity. That is, 

m/s 10)m/s 5(22 11
2

1
21 ==== VV

A
A

VA
c

c
c    

We take the pump as the control volume, and the inlet direction of flow as 
the positive direction of x axis. The linear momentum equation in this case 
in the x direction reduces to  

∑∑∑ −=
inout

VmVmF ββ       →   ) cos (            cos 2112 θθ VVmFVmVmF RxRx −=→−=−  

where the mass flow rate it  

 kg/s200/s)m )(0.20 kg/m1000( 33 === Vρm  

Substituting the known quantities, the reaction force is determined to be (note that cos60° = 0.5) 

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⋅
= 2Rx m/s kg1

N 1m/s)cos60] (10-m/s)  kg/s)[(5200(F  

Discussion Note that at this angle of discharge, the bearing is not subjected to any horizontal loading. Therefore, the 
loading in the system can be controlled by adjusting the discharge angle. 

  

 
 

6-72  
Solution Water enters the impeller of a turbine through its outer edge of diameter D with velocity V making an angle 
α with the radial direction at a mass flow rate of m , and leaves the impeller in the radial direction. The maximum power 
that can be generated is to be shown to be shaft sinW nmDVπ α= . 

Assumptions 1 The flow is steady in the mean. 2 Irreversible losses are 
negligible.    

Analysis We take the impeller region as the control volume. The 
tangential velocity components at the inlet and the outlet are 0,1 =tV  and 

αsin,2 VV t = .   

Normal velocity components as well pressure acting on the inner and 
outer circumferential areas pass through the shaft center, and thus they do not 
contribute to torque. Only the tangential velocity components contribute to 
torque, and the application of the angular momentum equation gives 

2/)sin(0)(T ,22,11,22shaft αVDmVrmVrVrm ttt =−=−=  

The angular velocity of the propeller is nπω 2= . Then the shaft power 
becomes  

2/)sin(2Tshaftshaft απω VDmnW ==  

Simplifying, the maximum power generated becomes απ sinshaft DVmnW =  which is the desired relation. 

Discussion The actual power is less than this due to irreversible losses that are not taken into account in our analysis. 
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6-73  
Solution A two-armed sprinkler is used to water a garden. For specified flow rate and discharge angles, the rates of 
rotation of the sprinkler head are to be determined. 

 
 
 
 
 

 
 

 
 
 
 
 
 
 

Assumptions 1 The flow is uniform and cyclically steady (i.e., steady from a frame of reference rotating with the 
sprinkler head). 2 The water is discharged to the atmosphere, and thus the gage pressure at the nozzle outlet is zero. 3 
Frictional effects and air drag of rotating components are neglected. 4 The nozzle diameter is small compared to the 
moment arm, and thus we use average values of radius and velocity at the outlet. 

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L. 

Analysis We take the disk that encloses the sprinkler arms as the control volume, which is a stationary control 
volume. The conservation of mass equation for this steady flow system is mmm == 21 . Noting that the two nozzles are 

identical, we have 2/nozzle mm =  or nozzle total 2/=V V  since the density of water is constant. The average jet outlet velocity 
relative to the nozzle is 

m/s 49.95
L 1000

m 1
]4/m) 02.0([2

L/s 60 3

2
jet

nozzle
jet =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

πA
V

V
 

The angular momentum equation can be expressed as ∑∑∑ −=
inout

VmrVmrM . Noting that there are no external 

moments acting, the angular momentum equation about the axis of rotation becomes  

     θcos20 nozzle rVmr−=       →       0=rV       →      0nozzletjet, =−VV   

Noting that the tangential component of jet velocity is θcosjettjet, VV = , we have 

   θθ m/s)cos 49.95(cosjetnozzle == VV  

Also noting that rnrV πω 2nozzle == , and angular speed and the rate of rotation of sprinkler head become   

1) θ = 0°: 
( )nozzle 95 49 m/s cos0 212 rad/s 60 sand 2026 rpm

0 45 m 2 2  1 min
.V

n
r .

ωω
π π

⎛ ⎞= = = = = = ≅⎜ ⎟
⎝ ⎠

212 rad/s        2030 rpm  

2) θ = 30°: 
( )nozzle 95 49 m/s cos30 184 rad/s 60 sand 1755 rpm

0 45 m 2 2  1 min
.V

n
r .

ωω
π π

° ⎛ ⎞= = = = = = ≅⎜ ⎟
⎝ ⎠

184 rad/s      1760 rpm  

3) θ = 60°: 
( )nozzle 95 49 m/s cos60 106 rad/s 60 sand 1013 rpm

0 45 m 2 2  1 min
.V

n
r .

ωω
π π

° ⎛ ⎞= = = = = = ≅⎜ ⎟
⎝ ⎠

106 rad/s      1010 rpm  

Discussion Final results are given to three significant digits, as usual. The rate of rotation in reality will be lower 
because of frictional effects and air drag.  
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Solution The previous problem is reconsidered. The effect of discharge angle θ on the rate of rotation n  as θ varies 
from 0 to 90° in increments of 10° is to be investigated. 
 

Analysis The EES Equations window is printed below, followed by the tabulated and plotted results. 
 

D=0.02 "m" 
r=0.45 "m" 
n_nozzle=2 "number of nozzles" 
Ac=pi*D^2/4 
V_jet=V_dot/Ac/n_nozzle 
V_nozzle=V_jet*cos(theta) 
V_dot=0.060 "m3/s" 
omega=V_nozzle/r 
n_dot=omega*60/(2*pi) 

 

Angle, 
θ° 

Vnozzle , 
m/s 

ω 
rad/s 

n  
rpm 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

95.5 
94.0 
89.7 
82.7 
73.2 
61.4 
47.7 
32.7 
16.6 
0.0 

212 
209 
199 
184 
163 
136 
106 
73 
37 
0 

2026 
1996 
1904 
1755 
1552 
1303 
1013 
693 
352 

0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion The maximum rpm occurs when θ = 0o, as expected, since this represents purely tangential outflow. When θ 
= 90o, the rpm drops to zero, as also expected, since the outflow is purely radial and therefore there is no torque to spin the 
sprinkler. 
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Solution A stationary water tank placed on wheels on a frictionless surface is propelled by a water jet that leaves the 
tank through a smooth hole. Relations are to be developed for the acceleration, the velocity, and  the distance traveled by 
the tank as a function of time as water discharges. 

Assumptions 1 The orifice has a smooth entrance, and thus the frictional losses are negligible. 2 The flow is steady, 
incompressible, and irrotational (so that the Bernoulli equation is applicable).  3 The surface under the wheeled tank is level 
and frictionless. 4 The water jet is discharged horizontally and rearward. 5 The mass of the tank and wheel assembly is 
negligible compared to the mass of water in the tank. 4 Jet flow is nearly uniform and thus the momentum-flux correction 
factor can be taken to be unity, β ≅ 1.    

Analysis (a) We take point 1 at the free surface of the tank, and point 2 at 
the outlet of the hole, which is also taken to be the reference level (z2 = 0) so that 
the water height above the hole at any time is z. Noting that the fluid velocity at 
the free surface is very low (V1 ≅ 0), it is open to the atmosphere (P1 = Patm), and 
water discharges into the atmosphere (and thus P2 = Patm), the Bernoulli equation 
simplifies to 

             gzV
g

Vzz
g

V
g

Pz
g

V
g

P
J

J 2             0
2

          
22

2

2

2
22

1

2
11 =→+=→++=++

ρρ
 

The discharge rate of water from the tank through the hole is 

gz
D

V
D

AVm JJ 2
44

2
0

2
0 π

ρ
π

ρρ ===  

The momentum equation for steady one-dimensional flow is ∑∑∑ −=
inout

VmVmF ββ . Applying it to the water tank, 

the horizontal force that acts on the tank is determined to be 

2
2

4
0

2
0

2
0 D

gzgz
D

VmVmF Je
π

ρ
π

ρ ===−=  

The acceleration of the water tank is determined from Newton’s 2nd law of motion F = ma where m is the mass of water in 
the tank, zDm )4/( 2

tank πρρ == V , 

( )
( )

2
0

2

2
                       

4

gz D /Fa
m z D /

ρ π

ρ π
= = →

2
0
22

D
a g

D
=  

Note that the acceleration of the tank is constant. 
(b) Noting that a = dV/dt and thus dV = adt and acceleration a is constant, the velocity is expressed as   

                      V at= →
2
0
22

D
V g t

D
=  

(c) Noting that V = dx/dt and thus dx = Vdt, the distance traveled by the water tank is determined by integration to be  
2
0
2                       2             

D
dx Vdt dx g tdt

D
= → = →

2
20

2

D
x g t

D
=  

since x = 0 at t = 0.  

Discussion In reality, the flow rate discharge velocity and thus the force acting on the water tank will be less because of 
the frictional losses at the hole. But these losses can be accounted for by incorporating a discharge coefficient.   

  

 
 

 
Design and Essay Problems 
 
 
6-76  
Solution Students’ essays and designs should be unique and will differ from each other. 
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