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Fundamentals, Grid Generation, and Boundary Conditions 
 
 
 
 

15-1C 
Solution We are to list the unknowns and the equations for a given flow situation.  
 

Analysis There are only three unknowns in this problem, u, v, and P (orP′). Thus, we require three equations: 
continuity, x momentum (or x component of Navier-Stokes), and y momentum (or y component of Navier-Stokes). These 
equations, when combined with the appropriate boundary conditions, are sufficient to solve the problem. 
 
Discussion The actual equations to be solved by the computer are discretized versions of the differential equations. 

  

 
 
 
 
15-2C 
Solution We are to define several terms or phrases and provide examples.  
 

Analysis  
(a) A computational domain is a region in space (either 2-D or 3-D) in which the numerical equations of fluid flow 

are solved by CFD. The computational domain is bounded by edges (2-D) or faces (3-D) on which boundary 
conditions are applied. 

(b) A mesh is generated by dividing the computational domain into tiny cells. The numerical equations are then solved 
in each cell of the mesh. A mesh is also called a grid. 

(c) A transport equation is a differential equation representing how some property is transported through a flow 
field. The transport equations of fluid mechanics are conservation equations. For example, the continuity equation is a 
differential equation representing the transport of mass, and also conservation of mass. The Navier-Stokes equation is a 
differential equation representing the transport of linear momentum, and also conservation of linear momentum. 

(d) Equations are said to be coupled when at least one of the variables (unknowns) appears in more than one 
equation. In other words, the equations cannot be solved alone, but must be solved simultaneously with each other. 
This is the case with fluid mechanics since each component of velocity, for example, appears in the continuity equation 
and in all three components of the Navier-Stokes equation. 

 
Discussion Students’ definitions should be in their own words. 

  

 
 
 
 
15-3C 
Solution We are to discuss the difference between nodes and intervals and analyze a given computational domain in 
terms of nodes and intervals. 
 
Analysis Nodes are points along an edge of a computational domain that represent the vertices of cells. In other 
words, they are the points where corners of the cells meet. Intervals, on the other hand, are short line segments between 
nodes. Intervals represent the small edges of cells themselves. In Fig. P15-3 there are 6 nodes and 5 intervals on the top 
and bottom edges. There are 5 nodes and 4 intervals on the left and right edges.  
 
Discussion We can extend the node and interval concept to three dimensions. 
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15-4C 
Solution For a given computational domain with specified nodes and intervals we are to compare a structured grid 
and an unstructured grid and discuss. 
 
Analysis We construct the two grids in the figure: (a) structured, and (b) unstructured. 
 

 

 

 

 
(a) (b) 

 
 There are 5 × 4 = 20 cells in the structured grid, and there are 36 cells in the unstructured grid. 
 
Discussion Depending on how individual students construct their unstructured grid, the shape, size, and number of cells 
may differ considerably. 

  

 
 
 
 
15-5C 
Solution We are to summarize the eight steps involved in a typical CFD analysis. 
 
Analysis We list the steps in the order presented in this chapter: 
 

1. Specify a computational domain and generate a grid. 
2. Specify boundary conditions on all edges or faces. 
3. Specify the type of fluid and its properties. 
4. Specify numerical parameters and solution algorithms. 
5. Apply initial conditions as a starting point for the iteration. 
6. Iterate towards a solution. 
7. After convergence, analyze the results (post processing). 
8. Calculate global and integral properties as needed. 

 
Discussion The order of some of the steps is interchangeable, particularly Steps 2 through 5. 

  

 
 
 
 
15-6C 
Solution We are to explain why the cylinder should not be centered horizontally in the computational domain.  
 
Analysis Flow separates over bluff bodies, generating a wake with reverse flow and eddies downstream of the 
body. There are no such problems upstream. Hence it is always wise to extend the downstream portion of the domain as far 
as necessary to avoid reverse flow problems at the outlet boundary. 
 
Discussion The same problems arise at the outlet of ducts and pipes – sometimes we need to extend the duct to avoid 
reverse flow at the outlet boundary. 
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15-7C 
Solution We are to discuss the significance of several items with respect to iteration.  
 

Analysis  
(a) In a CFD solution, we typically iterate towards a solution. In order to get started, we make some initial conditions 

for all the variables (unknowns) in the problem. These initial conditions are wrong, of course, but they are necessary 
as a starting point. Then we begin the iteration process, eventually obtaining the solution. 

(b) A residual is a measure of how much our variables differ from the “exact” solution. We construct a residual by 
putting all the terms of a transport equation on one side, so that the terms all add to zero if the solution is correct. As 
we iterate, the terms will not add up to zero, and the remainder is called the residual. As the CFD solution iterates 
further, the residual should (hopefully) decrease. 

(c) Iteration is the numerical process of marching towards a final solution, beginning with initial conditions, and 
progressively correcting the solution. As the iteration proceeds, the variables converge to their final solution as the 
residuals decrease. 

(d) Once the CFD solution has converged, post processing is performed on the solution. Examples include plotting 
velocity and pressure fields, calculating global properties, generating other flow quantities like vorticity, etc. Post 
processing is performed after the CFD solution has been found, and does not change the results. Post processing is 
generally not as CPU intensive as the iterative process itself. 

 
Discussion We have assumed steady flow in the above discussions. 

  

 
 
 
15-8C 
Solution We are to discuss how the iteration process is made faster.  
 

Analysis  
(a) With multigridding, solutions of the equations of motion are obtained on a coarse grid first, followed by 

successively finer grids. This speeds up convergence because the gross features of the flow are quickly established on 
the coarse grid, and then the iteration process on the finer grid requires less time. 

(b) In some CFD codes, a steady flow is treated as though it were an unsteady flow. Then, an artificial time is used to 
march the solution in time. Since the solution is steady, however, the solution approaches the steady-state solution as 
“time” marches on. In some cases, this technique yields faster convergence. 

 
Discussion There are other “tricks” to speed up the iteration process, but CFD solutions often take a long time to 
converge. 

  

 
 
 
15-9C 
Solution We are to list the boundary conditions that are applicable to a given edge, and we are to explain why other 
boundary conditions are not applicable. 
 
Analysis We may apply the following boundary conditions: outflow, pressure inlet, pressure outlet, symmetry (to 
be discussed), velocity inlet, and wall. The curved edge cannot be an axis because an axis must be a straight line.  The edge 
cannot be a fan or interior because such edges cannot be at the outer boundary of a computational domain. Finally, the 
edge cannot be periodic since there is no other edge along the boundary of the computational domain that is of 
identical shape (a periodic boundary must have a “partner”). The symmetry boundary condition merits further discussion. 
Numerically, gradients of flow variables in the direction normal to a symmetry boundary condition are set to zero, and there 
is no mathematical reason why the curved right edge of the present computational domain cannot be set as symmetry. 
However, you would be hard pressed to think of a physical situation in which a curved edge like that of Fig. P15-9 would 
be a valid symmetry boundary condition. 
 
Discussion Just because you can set a boundary condition and generate a CFD result does not guarantee that the result 
is physically meaningful. 
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15-10C 
Solution We are to discuss the standard method to test for adequate grid resolution. 
 
Analysis The standard method to test for adequate grid resolution is to increase the resolution (by a factor of 2 in all 
directions if feasible) and repeat the simulation. If the results do not change appreciably, the original grid is deemed 
adequate. If, on the other hand, there are significant differences between the two solutions, the original grid is likely of 
inadequate resolution. In such a case, an even finer grid should be tried until the grid is adequately resolved. 
 
Discussion Keep in mind that if the boundary conditions are not specified properly, or if the chosen turbulence model is 
not appropriate for the flow being simulated by CFD, no amount of grid refinement is going to make the solution more 
physically correct. 

  

 
 
 
 
 
15-11C 
Solution We are to discuss the difference between a pressure inlet boundary condition and a velocity inlet boundary 
condition, and we are to explain why both pressure and velocity cannot be specified on the same boundary.  
 
Analysis At a pressure inlet we specify the pressure but not the velocity. At a velocity inlet we specify the 
opposite – velocity but not pressure. To specify both pressure and velocity would lead to mathematical over-
specification, since pressure and velocity are coupled in the equations of motion. When pressure is specified at a 
pressure inlet (or outlet), the CFD code automatically adjusts the velocity at that boundary. In a similar manner, when 
velocity is specified at a velocity inlet, the CFD code adjusts the pressure at that boundary. 
 
Discussion Since pressure and velocity are coupled, specification of both at a boundary would lead to inconsistencies in 
the equations of motion at that boundary. 

  

 
 
 
 
 
15-12C 
Solution We are to label all the boundary conditions to be applied to a computational domain.  
 
Analysis The inlet is a velocity inlet. The outlet is a pressure outlet. All other edges that define the outer limits of the 
computational domain are walls. Finally, there are three edges that must be specified as interior. These are all labeled in the 
figure below. 
 

 

Velocity inlet 
VPressure 

outlet 

Wall 

Interior 

Wall 
Interior

Wall 

Wall

Interior 

Wall 

Wall

 
 
Discussion It is critical that each boundary condition be specified carefully. Otherwise the CFD solution will not be 
correct. 
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15-13C 
Solution We are to analyze what will happen to inlet pressure and outlet velocity when a fan is turned on in the 
computational domain of the previous problem.  
 
Analysis Since the fan helps to push air through the channel, the inlet pressure will adjust itself so that less inlet 
pressure is required. In other words, the inlet pressure will decrease when the fan is turned on. Since the inlet velocity is 
the same in both cases, the mass flow rate (and volume flow rate since the flow is incompressible) must remain the same 
for either case. Therefore, outlet velocity will not change. 
 
Discussion It may seem at first glance that Vout should increase because of the fan, but in order to conserve mass, the 
outlet velocity cannot change. The solution is constrained by the specified inlet boundary condition. In a real physical 
experiment, there is no such restriction. The fan would cause the inlet pressure to decrease, the inlet velocity to increase, 
and the outlet velocity to increase. 

  

 
 
 
 
 
 
 
15-14C 
Solution We are to list and briefly describe six boundary conditions, and we are to give an example of each.  
 
Analysis In the chapter we list ten, so any six of these will suffice: 
 

− Axis: Used in axisymmetric flows as the axis of rotation. Example: the axis of a torpedo-shaped body. 
− Fan: An internal edge (2-D) or face (3-D) across which a sudden pressure rise is specified. Example: an axial flow 

fan in a duct. 
− Interior: An internal edge (2-D) or face (3-D) across which nothing special happens – the interior boundary 

condition is used at the interface between two blocks. Example: all of the multiblock problems in this chapter, 
which require this boundary condition at the interface between any two blocks. 

− Outflow: An outlet boundary condition in which the gradient of fluid properties is zero normal to the outflow 
boundary. Outflow is typically useful far away from the object or area of interest in a flow field. Example: the far 
field of flow over a body. 

− Periodic: When the physical geometry has periodicity, the periodic boundary condition is used to specify that 
whatever passes through one face of the periodic pair must simultaneously enter the other face of the periodic pair. 
Example: in a heat exchanger where there are several rows of tubes. 

− Pressure inlet: An inflow boundary in which pressure (but not velocity) is known and specified across the face. 
Example: the high pressure settling chamber of a blow-down wind tunnel facility. 

− Pressure outlet: An outflow boundary in which pressure (but not velocity) is known and specified across the face. 
Example: the outlet of a pipe exposed to atmospheric pressure. 

− Symmetry: A face over which the gradients of all flow variables are set to zero normal to the face – the result is a 
mirror image across the symmetry plane. Fluid cannot flow through a symmetry plane. Example: the mid-plane of 
flow over a circular cylinder in which the lower half is a mirror image of the upper half. 

− Velocity inlet: An inflow boundary condition in which velocity (but not pressure) is known and specified across 
the face. Example: a uniform freestream inlet flow entering a computational domain from one side. 

− Wall: A boundary through which fluid cannot pass and at which the no-slip condition (or a shear stress condition) 
is applied. Example: the surface of an airfoil that is being modeled by CFD. 

 
Discussion There are additional boundary conditions used in CFD calculations, but these are the only ones discussed in 
this chapter. 
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15-15 
Solution We are to sketch a structured and an unstructured grid near the airfoil surface, and discuss advantages and 
disadvantages of each.  
 
Analysis In either case it is wise to cluster cells close to the airfoil surface since we expect that a thin boundary layer 
will exist along the surface, and we need many tiny cells within the boundary layer to adequately resolve it. Some simple, 
coarse meshes are drawn in Fig. 1. We would certainly want much higher resolution for CFD calculations. 
 

  
(a) (b) 

 
The structured grid in Fig 1a is called a C-grid since it wraps around the airfoil like the letter “C”. The main advantage of 
the structured grid is that we can get high resolution near the surface with few cells. The main advantage of the unstructured 
grid is that it is somewhat easier to generate when the geometry is complicated (especially for highly curved surfaces). 
Furthermore, it is easier to transition between curved and straight edges with an unstructured grid. The main disadvantage 
of an unstructured grid is that more cells are required for the same spatial resolution. 
 
Discussion There are numerous other ways to construct a grid around this airfoil. 

  

 
 
 
 
 
 
 
15-16 
Solution We are to sketch a hybrid grid around an airfoil and explain its advantages.  
 
Analysis We sketch a hybrid grid in the figure. Note that the grid is 
structured near the airfoil surface, but unstructured beyond the surface. The 
advantage of a hybrid grid is that it combines the advantages of both 
structured and unstructured grids. Near surfaces we can use a structured 
grid to finely resolve the boundary layer with a minimum number of cells, 
and away from surfaces we can use an unstructured grid so that we can 
rapidly expand the cell size. We can also more easily blend the grid into the 
edges of the computational domain with an unstructured grid.  
 
Discussion A structured grid is generally the best choice, but a hybrid grid is often a better option than a fully 
unstructured grid. 

  

 
 

 
FIGURE 1 
A coarse structured (a) and 
unstructured (b) grid. Notice that 
the cells are clustered (more fine) 
near the surface of the airfoil since 
there is likely to be large velocity 
gradients there (in the boundary 
layer). 
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15-17 
Solution We are to sketch the blocking for a structured grid, sketch a coarse grid, and label all the boundary 
conditions to be applied to the computational domain.  
 
Analysis First of all, we recognize that because of symmetry, we can split the domain in half vertically. We construct 
four blocks around the half-cylinder to transform from round to square, and then we add simple rectangular blocks 
upstream and downstream of the cylinder (Fig. 1). There is a total of six blocks. 

 
With the block structure of Fig. 1 no cells are highly skewed, and cells are clustered near the cylinder wall and the upper 
wall of the duct as desired. 
 The bottom edge of the computational domain is a line of symmetry. The inlet is a velocity inlet. The outlet is a 
pressure outlet. The upper edge of the computational domain is a wall. The edges that define the cylinder are also walls. 
Finally, there are 5 edges that are specified as interior. These are all labeled in Fig. 2. 

 
Discussion There are alternative ways to set up the blocking topology. For example, at the top we may define a thin 
block (Block 7) that stretches across the entire horizontal domain so that the boundary layer on the top wall of the channel 
can be more adequately resolved (Fig. 3). 

 
  

 
 

 
 
 
FIGURE 1 
A possible blocking topology and 
coarse structured grid for a 2-D 
multiblock computational domain. 

 
 
 
 
 
FIGURE 2 
Boundary conditions specified on 
each edge of a 2-D multiblock 
computational domain. 

 
 
FIGURE 3 
An alternative blocking topology 
and coarse structured grid for the 2-
D multiblock computational 
domain. A seventh block is added 
at the top for better boundary layer 
resolution near the top plate. 
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15-18 
Solution We are to sketch the blocking for a structured grid, sketch a coarse grid, and label all the boundary 
conditions to be applied to the computational domain.  
 
Analysis First of all, we recognize that because of symmetry, we can split the domain in half vertically. We construct 
four blocks inside the half-circle, and then we add blocks with one curved edge and three straight edges upstream and 
downstream of the cylinder (Fig. 1). 

 
 

 
 
 
 
 
 
 

The setup of Fig. 1 contains six blocks. With this block structure, no cells are highly skewed, and cells are clustered near 
upper wall of the duct as desired. Cells are also clustered at the junctions between Blocks 1 and 2 and Blocks 4 and 6, 
where flow separation may occur. 
 The bottom edge of the computational domain is a line of symmetry. The inlet is a velocity inlet. The outlet is a 
pressure outlet. The upper edge of the computational domain is a wall. The edges that define the cylinder are also walls. 
Finally, there are 5 edges that are specified as interior. These are all labeled in Fig. 2. 
 

 
Discussion There are of course, alternative ways to set up the blocking topology.  

  

 
 

 
 
 
FIGURE 1 
The blocking and coarse structured 
grid for a 2-D multiblock 
computational domain. 

 
 
 
FIGURE 2 
Boundary conditions specified on 
each edge of a 2-D multiblock 
computational domain. 

 

Block 6 
Block 4 

Block 5 

Block 1 

Block 3

Block 2

Symmetry line 

 

Pressure 
outlet 

Symmetry 

Wall 

Interior Interior

Velocity 
inlet Wall

Symmetry 

Interior 



Chapter 15 Computational Fluid Dynamics 

15-10 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

15-19 
Solution We are to modify an existing grid so that all blocks are elementary blocks. Then we are to verify that the 
total number of cells does not change. 
 
Analysis The right edge of Block 2 of Fig. 15-11b is split twice to accommodate Block 1. We therefore split Block 2 
into three separate elementary blocks. Unfortunately, this process ends up splitting Block 6 twice, which in turn splits 
Block 4 twice. We end up with 12 elementary blocks as shown in Fig. 1. 

 
We add up all the cells in these 12 blocks – we get a total of 464 cells. This agrees with the total of 464 cells for the original 
6 blocks in the domain. 
 
Discussion Sometimes it is easier to create a grid with elementary blocks, even if the CFD code can accept blocks with 
split edges or faces. 

  

 
 
15-20 
Solution We are to modify an existing grid into a smaller number of non- elementary blocks, and we are to verify 
that the total number of cells does not change. 
 
Analysis We combine Blocks 2, 3, 4, and 5 of Fig. 15-10b. Together, these produce one structured grid that wraps 
around the square in the middle – there are still 5 i intervals, but now there are 48 j intervals. We end up with 3 non-
elementary blocks, as shown in Fig. 1. 

 
We add up all the cells in these 12 blocks – we get a total of 464 cells. This agrees with the total of 464 cells for the original 
6 blocks in the domain. 
 
Discussion Block 2 in Fig. 1 is called an O-grid (for obvious reasons). 

  

 
 
 
 
 
 
 
FIGURE 1 
The blocking and coarse structured grid 
for a 2-D multiblock computational 
domain. Only elementary blocks are used 
in this grid. 

 
 
 
 
 
 
FIGURE 1 
The blocking and coarse structured grid for 
a 2-D multiblock computational domain. 
Only elementary blocks are used in this grid. 
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15-21 
Solution We are to generate a computational domain and label all appropriate boundary conditions for one stage of a 
new heat exchanger design. 
 
Analysis We take advantage of the periodicity of the geometry. There are several ways to create a periodic grid for 
this flow. The simplest computational domain consists of a single flow passage between two neighboring tubes. We can 
make the periodic edge intercept anywhere on the front portion of the tube that we desire. We choose the lower surface for 
convenience and simplicity. The periodic computational domain is sketched in Fig. 1. 
 Boundary conditions are also straightforward, and are labeled in Fig. 1. For a known inlet velocity we set the 
boundary condition at the left edge as a velocity inlet. The tube walls are obviously set as walls. The outlet can be set as 
either a pressure outlet or an outflow, depending on the provided information and how far the outlet region extends 
beyond the tubes. Finally, we set two pairs of translationally periodic boundaries, one fore and one aft of the tubes. We 
label them separately to avoid confusion. 

 
 
 
Discussion The fore and aft periodic edges are not horizontal in Fig. 1. This is not a problem since the periodic 
boundary condition is not restricted to horizontal or even to flat surfaces. An alternative, equally acceptable computational 
domain is shown in Fig. 2. 

  

 

 
 
 
 
 
 
 
 
FIGURE 1 
A periodic computational domain for a 
given geometry. Boundary conditions are 
also labeled. 

 
 
 
 
FIGURE 2 
An alternative periodic computational 
domain for a given geometry. Boundary 
conditions are also labeled. 
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15-22 
Solution We are to sketch a structured multiblock grid with four-sided elementary blocks for a given computational 
domain. 
 
Analysis We choose the computational domain of Fig. 1 of the previous problem. Since all edges are straight, the 
blocking scheme can be rather simple. We sketch the blocking topology and apply a coarse mesh in Fig. 1 for the case in 
which the CFD code does not require the node distribution to be exactly the same on periodic pairs. 
 

 
Unfortunately, many CFD codes require that the node distribution on periodic pairs of edges be identical (the two edges of 
a periodic pair are “linked” in the grid generation process). In such a case, the grid of Fig. 1 would not be acceptable. 
Furthermore, although the edges of the blocks of Fig. 1 are not split with respect to adjacent blocks, the top edges of Block 
1 and Block 3 are split with respect to the boundary conditions (part of the edge is periodic and part is a wall). Thus these 
blocks are not really elementary blocks after all. We construct a more elaborate blocking topology in Fig. 2 to correct these 
problems. The node distribution on the edges of each periodic pair are identical, at the expense of more complexity (7 
instead of 5 blocks) and more cell skewness. 

 
Discussion Some of the cells have moderate skewness with the blocking topology of Fig. 2, especially near the corners 
of Block 2 and Block 7 and throughout Block 5. A more complicated topology can be devised to reduce the amount of 
skewness. 

  

 
 

FIGURE 1 
The blocking topology and a coarse 
structured grid for a periodic computational 
domain. This blocking topology applies to 
CFD codes that allow a block’s edges to be 
split for application of boundary conditions, 
and do not require periodic edge pairs to 
have identical node distributions. 

 
 
 
 
 
FIGURE 2 
The blocking topology and a coarse 
structured grid for a periodic computational 
domain. This blocking topology applies to 
CFD codes that require elementary blocks 
and require periodic edge pairs to have 
identical node distributions. 
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15-23 
Solution We are to discuss why there is reverse flow in this CFD calculation, and then we are to explain what can be 
done to correct the problem. 
 
Analysis Reverse flow at an outlet is usually an indication that the computational domain is not large enough. 
In this case the rectangular heat exchanger tubes are inclined at 35o, and the flow will most certainly separate, leaving large 
recirculating eddies in the wakes. Anita should extend the computational domain in the horizontal direction 
downstream so that the eddies have a chance to “close” and the flow has a chance to re-develop into a flow without any 
reverse flow. 
 
Discussion In most commercial CFD codes a warning will pop up on the computer monitor whenever there is reverse 
flow at an outlet. This is usually an indication that the computational domain should be enlarged. 

  

 
 
 
 
 
 
15-24 
Solution We are to generate a computational domain and label all appropriate boundary conditions for two stages of 
a heat exchanger. 
 
Analysis We look for the smallest computational domain that takes advantage of the periodicity of the geometry. 
There are several ways to create a periodic grid for this flow. The simplest computational domain consists of a single flow 
passage between two neighboring tubes. We can make the periodic edge intercept anywhere on the fore and aft portions of 
the heat exchanger that we desire. We choose the periodic computational domain sketched in Fig. 1. 
 Boundary conditions are also straightforward, and are labeled in Fig. 1. For a known inlet velocity we set the 
boundary condition at the left edge as a velocity inlet. The tube walls are obviously set as walls. The outlet can be set as 
either a pressure outlet or an outflow, depending on the provided information and how far the outlet region extends 
beyond the tubes. Finally, we set three pairs of translationally periodic boundaries, one fore, one mid, and one aft of the 
tubes. We label them separately to avoid confusion. 

 
Discussion Many other equally acceptable computational domains are possible. 

  

 
 

 
 
 
 
 
 
 
 
 
 
FIGURE 1 
A periodic computational domain 
for a given geometry. Boundary 
conditions are also labeled. 
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15-25 
Solution We are to sketch a structured multiblock grid with four-sided elementary blocks for a given computational 
domain. 
 
Analysis We choose the computational domain of Fig. 1 of the previous problem. We sketch one possible elementary 
blocking topology in Fig. 1 for the case in which the CFD code requires the node distribution to be exactly the same on 
periodic pairs. We also assume that we cannot split one periodic edge and not its partner. The blocks are numbered. This 
topology has 16 elementary blocks. 
 
 

 
Note that with this blocking topology we had to split the periodic “mid” boundary pair into two edges (the tops of blocks 6 
and 7 and the bottoms of blocks 9 and 10). As long as both pairs of each segment are the same size and have the same 
number of nodes, this is not a problem. In the CFD code we would have to name each periodic pair separately, however. 
The block numbers are labeled. Notice that most of the blocks are nearly rectangular such that none of the computational 
cells would have to be highly skewed. 
 
Discussion This seems like a rather complicated blocking topology. It would require a bit of work to generate the grid. 
However, the time spent on developing a good grid is usually well worth the effort.  By reducing the amount of cell 
skewness, we are able to speed up the CFD calculations and obtain more accurate results. This kind of topology also 
enables us to cluster cells near walls and wakes as needed. 

  

 
 

FIGURE 1 
The elementary blocking topology for a 
periodic computational domain. This 
blocking topology applies to CFD codes that 
do not allow a block’s edges to be split for 
application of boundary conditions, and 
requires periodic edge pairs to have identical 
node distributions. 
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FlowLab Problems 
 
 
 
15-26 
Solution We are to generate CFD solutions for external flow over a 2-D block. Specifically, we are to compare drag 
coefficient for various values of R/D (the extent of the outer boundary of the computational domain). In addition, we are to 
compare the calculated value of CD with experiment. 
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The 
flow is symmetric about the x axis. 3 The flow is turbulent, but steady in the 
mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 
kg/m⋅s. 
 
Analysis 
(a) The Reynolds number is 

 
( )( )( )3

5

1.225 kg/m 2.0 m/s 0.10 m
Re

1.7894 10  kg/m s
VDρ
μ −= = =

× ⋅
41.37×10  

Experimental data indicate that the drag coefficient for this body is CD ≈ 1.9 
at Reynolds numbers greater than 104 (see Chap. 11). 
 

 (b) The CFD code is run for eight values of R, all else being equal. CD is tabulated as a function of R/D in Table 1, and 
plotted in Fig. 2. As the extent of the computational domain grows in size, the drag coefficient decreases steadily, but levels 
off to three significant digits of precision by R/D ≈ 200. Thus, a 
computational domain extent of R/D ≈ 100 is sufficient to achieve 
independence of CD. We report a final value of CD = 1.34. 
(c) There are several possible reasons for the discrepancy between the 
calculated value of CD (1.34) and the experimentally obtained value of 
CD (about 1.9). First of all, the actual flow is most likely unsteady, with 
vortices being shed into the wake, whereas we are simulating a steady 
flow. In addition, the unsteady shedding of vortices renders the flow no 
longer symmetric about the x axis, whereas we are forcing our flow to be 
symmetric. Furthermore, the grid resolution may not be adequate to 
achieve grid independence (this is checked in the following problem). 
Finally (and most importantly), we are using a turbulence model to 
simulate this flow field. The CFD solution we obtain is only as good as 
the degree to which the turbulence model correctly models the physics of 
the turbulence. As discussed in the text, no turbulence model is 
universally valid for all types of turbulent flows. Discrepancies between 
experiment and CFD will always exist regardless of how fine the grid or 
how large the extent of the computational domain. 
 

(d) Streamlines near the body are plotted for R/D = 5 and 500 in Fig. 2. 
We notice that the streamlines for the R/D = 5 case are more tight around 
the body compared to those for R/D = 500. This is most likely due to 
interference from the outer edges of the computational domain, which 
are too close for the R/D = 5 case. 
 

TABLE 1 
Drag coefficient as a function of the 
normalized extent of the 
computational domain for turbulent 
flow over a rectangular block. 
 

R/D CD 
5 1.81927

10 1.50662
20 1.41076
50 1.36723

100 1.35282
200 1.34671
500 1.34408

 

1.3
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103102101 100 

R/D  
FIGURE 1 
Drag coefficient plotted as a function of the 
normalized extent of the computational 
domain for turbulent flow over a rectangular 
block. 
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(a) R/D = 5 

 

Block 

 

 

(b) R/D = 500 

 

Block 

 
 

Discussion Newer versions of FlowLab may give slightly different results. It is perhaps surprising how far away the 
edges of the computational domain must be in order for them not to influence the flow field around the body. No attempt 
was made here to optimize the grid, and although the comparison between various grid extents is valid, the solution itself 
may not be grid independent; the actual value of drag coefficient may not be correct due to lack of grid resolution. Grid 
independence is analyzed in the next problem.  

  

 
 
 
 
 
 
 
15-27 
Solution We are to test for grid independence by running various values of grid resolution, and we are to examine the 
effect of grid resolution on drag coefficient. 
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The flow is symmetric about the x axis. 3 The flow is 
turbulent, but steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 
10-5 kg/m⋅s. 
 
Analysis We run the CFD code for several grid resolutions, and 
we list drag coefficient as a function of total number of computational 
cells in Table 1. Although some discrepancies exist in the third or 
fourth digit, the drag coefficient levels off to three significant digits of 
precision by the sixth row of the table. Further grid refinement may be 
necessary. We report a final value of CD = 1.33 (to three significant 
digits of precision for comparison with experimental results). This 
result differs from the experimentally obtained value of CD = 1.9 by 
about 30%. We have achieved grid independence to three digits, and 
thereby eliminate lack of grid resolution as a source of the discrepancy. The other reasons for the discrepancy between CFD 
and experiment remain, regardless of how fine the grid. Namely, nonuniversality of the turbulence model, unsteadiness, and 
nonsymmetry. 
 
Discussion Newer versions of FlowLab may give slightly different results. This exercise illustrates that grid refinement 
does not necessarily lead to improved CFD predictions. 

  

 
 

 
 
 
 
FIGURE 2 
Streamlines for steady, 
incompressible, two-dimensional, 
turbulent flow over a rectangular 
block at R/D = (a) 5, (b) 500. Only 
the upper half of the flow is 
simulated  

TABLE 1 
Drag coefficient as a function of number of 
cells in the computational domain for 
turbulent flow over a rectangular block.  
 

Number of cells CD 
3120 1.45505

10400 1.35249
12480 1.34893
18720 1.33839
23920 1.33595
26000 1.33379
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15-28 
Solution We are to repeat the CFD calculation of drag coefficient around a rectangular block for two other fluids – 
water and kerosene, and we are to compare our results to those obtained using air as the fluid.  
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The 
flow is symmetric about the x axis. 3 The flow is turbulent, but steady in the 
mean. 
 
Properties The density and viscosity of the default air are ρ = 1.225 
kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. The density and viscosity of liquid 
water at T = 15oC are 998.2 kg/m3 and 1.003 × 10-3 kg/m⋅s. The density and 
viscosity of kerosene at T = 15oC are 780.0 kg/m3 and 2.40 × 10-3 kg/m⋅s. 
 
Analysis A comparison of the CFD calculations for all three fluids is 
given in Table 1. The drag coefficient is identical to about five digits of 
precision. We conclude that for incompressible flow without free surface 
effects, the Reynolds number is the critical parameter; the type of fluid is irrelevant provided that the Reynolds number 
is the same. This reinforces what we learned about dimensional analysis in Chap. 7. 
 
Discussion Newer versions of FlowLab may give slightly different results. Some incompressible CFD codes work with 
normalized variables from the start, requiring input of a Reynolds number instead of dimensional quantities such as 
velocity, density, and viscosity.  

  

 
 
 
 
15-29 
Solution We are to generate CFD solutions for drag coefficient as a function of Reynolds number and compare and 
discuss. 
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The 
flow is symmetric about the x axis. 3 The flow is turbulent, but steady in 
the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 
kg/m⋅s. 
 
Analysis We compare six cases in Table 1. We see that CD levels 
off to a value of 1.43 to three digits of precision for Re greater than about 
5 × 105. Thus, we have achieved Reynolds number independence, 
although the required Reynolds number is somewhat larger than that 
required experimentally. 
 The last two cases are peculiar in that the Mach numbers are well 
beyond the incompressible limit (around 0.3) since the speed of sound in 
air at room temperature is around 340 m/s. However, even though these flows are unphysical, the CFD code is run as 
incompressible, and is not “aware” of this problem since the speed of sound is treated as infinite in an incompressible flow 
solver. The comparison with Re is still valid since we can use any incompressible fluid for the calculations, as illustrated in 
the previous problem. 
 
Discussion Newer versions of FlowLab may give slightly different results. Reynolds number independence checks are 
not always as simple as that shown here, because as Re increases, boundary layer thicknesses tend to decrease, requiring a 
finer mesh near walls. In the present problem this is not really an issue because the flow separates at the sharp edges of the 
block, and boundary layer thickness is not an important parameter in calculation of the drag. 

  

 
 

TABLE 1 
Drag coefficient as a function of fluid 
type for the case of turbulent flow over 
a rectangular block. In all cases, the 
Reynolds number is the same. 
 

Fluid Re CD 
Air 1.37 × 104 1.34344 
Water 1.37 × 104 1.34343 
Kerosene 1.37 × 104 1.34343 
 

TABLE 1 
Drag coefficient as a function of 
Reynolds number for turbulent flow 
over a rectangular block. 
 

Re CD 
10000 1.30788
50000 1.40848

100000 1.42215
500000 1.43065

1.00E+06 1.43194
3.00E+06 1.43296
5.00E+06 1.43431
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15-30 
Solution We are to generate CFD solutions using several turbulence models, and we are to compare and discuss the 
results, particularly the drag coefficient. 
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The flow is symmetric about the x axis. 3 The flow is 
turbulent, but steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis All cases are run at the same Reynolds number, namely 1.37 × 104. We compare drag coefficient for all four 
cases in Table 1. We see that CD depends greatly on turbulence model. Most of the models underpredict the drag coefficient 
by about 30%, but the k-ω model overpredicts CD by more than 33%. In terms of percentage error, the Reynolds stress 
model is closest to the experimental value of 1.9. 
 

 
Discussion Newer versions of FlowLab may give slightly different results. Turbulence models involve semi-empirical 
analysis, curve-fits, and simplifications, and no turbulence model is best for every kind of fluid flow. It is not always 
clear which turbulence model to use for a given problem. 

  

 
 

TABLE 1 
Drag coefficient as a function of turbulence model for flow over a rectangular block. The error is in 
comparison to the experimental value of 1.9. 
 

Turbulence model CD Error (%) 
k-ε (2 eq.) 1.34342 -29.5% 
k-ω (2 eq.) 2.536939 33.5% 
Spallart-Allmaras (1 eq.) 1.360602 -28.4% 
Reynolds stress model (5 eq.) 1.385374 -27.1% 
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15-31 
Solution We are to run CFD simulations of flow over a 2-D rectangular block with various values of L/D. We are to 
compare and discuss streamlines and drag coefficient, and we are to 
compare our CFD results to experiment.  
 
Assumptions 1 The flow is two-dimensional and incompressible. 2 The 
flow is symmetric about the x axis. 3 The flow is turbulent, but steady in 
the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 
10-5 kg/m⋅s. 
 
Analysis (a) Drag coefficient is tabulated as a function of L/D in 
Table 1. These data are also plotted in Fig. 1, along with experimental 
data from Chap. 11. We see that the calculations are consistently lower 
than the experimental values for the smaller lengths, but the agreement is 
very good at L/D = 3 (as high as the table goes). While the 
experimentally obtained drag coefficient peaks at L/D = 0.5, the CFD 
calculations predict that CD decays continually with L/D. 
 
 
 
 
(b) For several values of L/D, we plot streamlines near the block (Fig. 2). We can see why the drag coefficient decreases as 
L/D increases. Namely, as the block length increases, the large recirculating flow regions in the wake (wake eddies) 
decrease in size (particularly in the vertical direction). In all cases, the flow 
separates at the sharp corner of the blunt face, but as L increases, the flow has 
more time to flatten out along the upper and lower walls of the block, leading to 
wake eddies of reduced thickness. Indeed, by L/D = 3.0 (Fig. 2f) the separated 
flow along the upper and lower walls appears to reattach just upstream of the 
back of the block. The wake eddies in this case are much thinner than those of the 
shorter blocks (compare Fig. 2b and 2e for example). Another way to express this 
is to say that the longer blocks are more “streamlined” (in a gross sense of the 
word) than are the shorter blocks, and therefore have less drag. Experiments 
show that the drag is highest at L/D = 0.5. Apparently the vortex shedding 
process is strong for this case, leading to high drag. Our steady, symmetric CFD 
model is not able to simulate the unsteady features of the actual flow. 
 
 
(c) There are many possible reasons for the discrepancy between CFD 
calculations and experiment. We are modeling the problem as a steady flow that is symmetric about the axis, but 
experiments reveal that flow over bluff bodies like these oscillate and shed vortices – the flow is neither steady nor 
symmetric. Furthermore, we are using a turbulence model. As discussed previously, turbulence models are not universal, 
and may not be applicable to the present problem. A DNS or LES simulation would be required to correctly model the 
unsteady turbulent eddies.  
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FIGURE 1 
Drag coefficient as a function of L/D for 
turbulent flow over a rectangular block. 

 
TABLE 1 
Drag coefficient as a function of 
L/D for turbulent flow over a 
rectangular block.  
 

L/D CD 
0.1 1.53997
0.5 1.50858

1 1.46466
1.5 1.42077

2 1.36825
3 1.26405
5 1.09386
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(a) L/D = 0.1  

 

(b) L/D = 0.5  
 

(c) L/D = 1.0  

 

(d) L/D = 1.5  
 

(e) L/D = 2.0  

 

(f) L/D = 3.0  
 
Discussion Newer versions of FlowLab may give slightly different results. CFD issues such as grid resolution and the 
extent of the computational domain do not contribute appreciably to the discrepancy here, since we have set up the 
computational domain based on results of similar previous problems. As L/D increases, the discrepancy between CFD 
results and experiment gets smaller. This can be explained by the fact that the shed vortices are reduced in strength as L/D 
increases – the steady, symmetric CFD simulation thus becomes more physically correct with increasing L/D. 

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 2 
Streamlines for steady, incompressible, 
two-dimensional, turbulent flow over a 
rectangular block with various values 
of block length to block height: L/D = 
(a) 0.1, (b) 0.5, (c) 1.0, (d) 1.5, (e) 2.0, 
and (f) 3.0.  
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15-32 
Solution We are to generate CFD solutions for external flow over a cylindrical block. Specifically, we are to 
compare drag coefficient for various values of R/D (the extent of the outer boundary of the computational domain). In 
addition, we are to compare the calculated value of CD with experiment. 
 
Assumptions 1 The flow is incompressible. 2 The flow is 
axisymmetric about the x axis. 3 The flow is turbulent, but steady in 
the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 
10-5 kg/m⋅s. 
 
Analysis 
(a) The Reynolds number based on cylinder diameter is the same as 
that of Problem 15-26, namely, 

 
( )( )( )3

5

1.225 kg/m 2.0 m/s 0.10 m
Re

1.7894 10  kg/m s
VDρ
μ −= = =

× ⋅
41.37×10  

Experimental data indicate that the drag coefficient for this body is CD ≈ 0.90 at Reynolds numbers greater than 104 (see 
Chap. 11). 
 

 (b) The CFD code is run for eight values of R, all else being equal. CD is 
tabulated as a function of R/D in Table 1, and plotted in Fig. 2. As the 
extent of the computational domain grows in size, the drag coefficient 
decreases steadily, but is trying to level off by R/D ≈ 500. Thus, a 
computational domain extent of R/D ≈ 500 or more is needed to achieve 
independence of CD. We report a final value of CD = 0.99. Unfortunately, 
the program does not allow for R/D values greater than 500. 
 
(c) There are several possible reasons for the discrepancy between the 
calculated value of CD and the experimentally obtained value of CD 
(about 0.90). First of all, the actual flow is most likely unsteady, with 
vortices being shed into the wake, whereas we are simulating a steady 
flow. In addition, the unsteady shedding of vortices renders the flow no 
longer axisymmetric about the x axis, whereas we are forcing our flow to 
be axisymmetric. Furthermore, the grid resolution may not be adequate to 
achieve grid independence. Finally (and most importantly), we are using 
a turbulence model to simulate this flow field. The CFD solution we 
obtain is only as good as the degree to which the turbulence model 
correctly models the physics of the turbulence. As discussed in the text, 
no turbulence model is universally valid for all types of turbulent flows. 
Discrepancies between experiment and CFD will always exist regardless 
of how fine the grid or how large the extent of the computational domain. 
 

(d) Streamlines near the body are plotted for R/D = 5 and 500 in Fig. 2. There is surprisingly little observable difference 
between these two extreme cases.  Compared to the 2-D case, it appears that the axisymmetric case requires a greater 
computational domain extent. This is surprising, because in an axisymmetric flow field, the fluid can flow around the 
body in all directions, not just over the top and bottom as in 2-D flow. As fluid moves away from the body, the radius also 
increases there, and more mass can flow through that radial location compared to the 2-D case. In other words an 
axisymmetric flow is less “confined” or “constrained” than a corresponding two-dimensional flow. Thus, we might have 
expected the opposite behavior. 
 We compare our predicted drag coefficient (0.99) with that of experiment (0.90). The discrepancy is only about 
10% − much better agreement than the two-dimensional case. The reasons for this improvement is not clear. Axisymmetric 
flows tend to be less unsteady, and the vortices they shed are generally less coherent and weaker. This may contribute to 
some of the improvement. It may be merely fortuitous that the turbulence model yields better results for the axisymmetric 
case as compared to the 2-D case.  
 
 

TABLE 1 
Drag coefficient as a function of the 
normalized extent of the computational 
domain for turbulent flow over a cylindrical 
block. 
 

R/D CD 
5 1.0704

10 1.04053
20 1.03567
50 1.02155

100 1.00781
200 0.998819
500 0.992311
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FIGURE 1 
Drag coefficient plotted as a function of the 
normalized extent of the computational 
domain for turbulent flow over a rectangular 
block. 
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Block 

(a)  R/D = 5  

 

 
Block 

(b)  R/D = 500  
 

 

Discussion Newer versions of FlowLab may give slightly different results. The far field boundaries must be quite far 
away to achieve results that are independent of the extent of the boundary.  

  

 
 

 
 
 
 
 
FIGURE 2 
Streamlines for steady, 
incompressible, axisymmetric, 
turbulent flow over a rectangular 
block at R/D = (a) 5, (b) 500. Only 
one slice of the flow is shown.  
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15-33 
Solution We are to generate CFD solutions for several grid resolutions to test for grid independence for flow through 
a diffuser. Specifically, we are to compare streamlines and pressure difference at each level of grid resolution. 
 
Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis 
(a) Streamlines are plotted for six grid resolution cases in Fig. 1. 
 

x 

(a) 

 x 

(b) 

 

x 

(c) 

 x 

(d) 

 

x 

(e) 

 x 

(f) 

 
 
At the very coarse grid resolution, the streamlines are not well defined 
(Fig. 1a), and the calculation is not reliable. As grid resolution improves, 
details of the flow separation region become more refined – the boundary 
layer is unable to remain attached in such a strong adverse pressure 
gradient. From these plots, it appears that grid independence has been 
achieved by about the fourth case (Fig. 1d), beyond which there is no 
noticeable change in the shape of the streamlines. We note that simulation 
of flow separation and separation bubbles is often a very difficult task for 
a CFD program. In this particular problem we must use an extremely fine 
grid in order to resolve the details of the flow separation. 
 
(b) ΔP is tabulated as a function of cell 
count in the table for the case with θ = 
20o. As grid resolution improves, ΔP 
increases, and becomes independent of 
grid resolution by the fourth or fifth 
mesh. This is also seen in Fig. 2 where 
ΔP is plotted as a function of cell count.   
 
 
 
 
 

Discussion The unphysical-looking streamlines at the very coarse grid resolution (Fig. 1a) are due to interpolation 
errors when the CFD code calculates contours of constant stream function. Notice that even though there is gross flow 
separation in this diffuser, there is still a pressure recovery through the diffuser (Pin is less than Pout). A better design (with 
even higher pressure recovery) would use a smaller diffuser angle so as to avoid flow separation along the diffuser wall. 
The outlet of the computational domain is reasonably far downstream (several pipe diameters) to avoid reverse flow at the 
outlet.  

  

 
 
 
FIGURE 1 
Streamlines for steady, 
incompressible, axisymmetric, 
turbulent flow through a 
diffuser at various levels of grid 
resolution; the number of cells 
is (a) 880, (b) 3520, (c) 4950, 
(d) 8800, (e) 13750, and (f) 
19800.  
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FIGURE 2 
Pressure difference as a function of the 
number of cells in the computational 
domain. Turbulent flow through an 
axisymmetric diffuser. 

 
cell count ΔP (Pa)

880 -34.5622
3520 -32.7267
4950 -32.4183
8800 -32.2021

13750 -32.1162
19800 -32.1099
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15-34 
Solution We are to compare the pressure drop and the pressure distribution at the outlet of a diffuser in a round pipe 
with two different outlet conditions: pressure outlet and outflow.  
 
Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis For the present case (outflow boundary condition), the pressure difference is ΔP = Pin – Pout = −32.1096 Pa, 
which agrees to four digits of precision with the result of the previous problem at the same grid resolution, for which ΔP = 
Pin – Pout = −32.1090 Pa. Thus we conclude that the outlet boundary condition has negligible effect on this flow field. 
 For the case with the pressure outlet boundary condition, the static pressure at the outlet of the computational 
domain is forced to be constant (zero gage pressure in the calculations of the previous problem). In the present case 
however, the outflow boundary condition does not fix static pressure – rather, it forces flow variables to level off as they 
approach the outlet boundary. We find that P varies by less than 0. percent across the boundary. Thus, even though P is not 
forced to be constant along the outflow boundary, it turns out to be nearly constant anyway. 
 
Discussion Newer versions of FlowLab may give slightly different results. With a velocity inlet and an outflow outlet, 
we do not fix the value of pressure at either boundary. Instead, the CFD code assigns P = 0 gage pressure at some 
(arbitrary) location in the flow field (the default location is the origin). Even though the inlet and outlet pressures differ 
significantly between the two cases, ΔP is identical to within four significant digits of precision. These results verify the 
statement we made in Chap. 9: For incompressible flow, it is not pressure itself which is important to the flow field, but 
rather pressure differences. We conclude that the differences between pressure outlet and outflow are small, provided that 
the outlet boundary is far enough away from the region of interest in the flow field. 
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15-35 
Solution We are to generate CFD solutions for flow through a diffuser at various values of diffuser half-angle θ. 
Specifically, we are to compare streamlines and pressure difference for each case, and we are to determine the maximum 
value of θ that achieves the stated design objectives. 
 
Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis 
(a) Streamlines are plotted in Fig. 1 for all twelve cases. 
 

x (a) θ = 5o  
x (b) θ = 7.5o  

x (c) θ = 10o  
x (d) θ = 12.5o  

x (e) θ = 15o  
x (f) θ = 17.5o  

x (g) θ = 20o  
x (h) θ = 25o  

x (i) θ = 30o  
x (j) θ = 45o  

x (k) θ = 60o  
x (l) θ = 90o  

 
At θ = 5o and 7.5o, the flow does not separate along the diffuser wall 
(Figs. 1a and 1b), although separation appears imminent near the 
downstream corner of the diffuser for the latter case. To avoid flow 
separation, Barb should recommend a diffuser half-angle of 7.5o or 
less. As θ increases, the boundary layer is unable to remain attached in the 
adverse pressure gradient, and the flow separates. A very small separation 
bubble is apparent at θ = 10o (Fig. 1c). As θ continues to increase, the 
separation bubble grows in size, and the separation point moves upstream, 
closer and closer to the upstream corner of the diffuser (compare Figs. 1d 
through 1g). By θ = 25o (Fig. 1h), the flow separates very close to the start 
of the diffuser. From this point on, the diffuser angle is so sharp that the 
flow separates right at the upstream corner of the diffuser. The streamline 
patterns reveal that the separation bubble continues to grow in size as θ 
increases (Figs. 1i through 1j). Beyond θ ≈ 45o however, the streamline 
pattern changes very little in the separation bubble (compare Figs. 1k and 
1l).  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 
Streamlines for steady, 
incompressible, axisymmetric, 
turbulent flow through a diffuser 
at various values of diffuser half-
angle: θ = (a) 5o, (b) 7.5o, (c) 10o, 
(d) 12.5o, (e) 15o, (f) 17.5o,  (g) 
20o, (h) 25o, (i) 30o, (j) 45o, (k) 
60o, and (l) 90o. (The latter case 
is a sudden expansion.)  

-50.0

-40.0

-30.0

-20.0

-10.0

0 50 100
θ (degrees) 

ΔP 
(Pa) 

 
FIGURE 2 
Pressure difference from inlet to outlet as a 
function of diffuser half-angle θ. 
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(b) ΔP is tabulated as a function of diffuser half-angle in the table (four extra cases 
are solved for improved clarity). As θ increases, Pin increases, reflecting the effect of 
the larger separation bubble. Physically, we achieve less and less pressure recovery as 
the separation bubble grows. We see that ΔP flattens out at high values of θ, 
becoming nearly independent of θ beyond  θ ≈ 60o. This is also seen in Fig. 2 where 
Pin is plotted as a function of diffuser half-angle. There is a sharp rise in ΔP beyond 
30o. The reason for this is not certain, but is probably related to the fact that when θ is 
greater than about 30o, the flow separates right at the upstream corner. The pressure 
rise is greater than 40 Pa for all angles below 15o. Thus, to ensure a pressure recovery 
of at least 40 pascals, Barb should recommend a diffuser half-angle of 12.5o or 
less. 
 
Discussion The results here are for an older version of FlowLab, and the results at 
20o are therefore not exactly the same as those of the previous problem. Newer 
versions of FlowLab would give slightly different results, and the agreement would 
be exact. The outlet of the computational domain is reasonably far downstream 
(several pipe diameters) to avoid reverse flow at the outlet. Notice that even for the 
case of a sudden expansion (θ = 90o) there is still a pressure recovery through the 
diffuser (Pin is less than Pout).  

  

 
 

 
15-36 
Solution We are to perform a grid independence test on the 90o diffuser (sudden expansion) case of the previous 
problem by refining the grid resolution.  
 
Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is air with ρ = 
1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis We run several levels of grid 
refinement, tabulate the results, and plot the 
results. We have achieved grid 
independence to the third significant digit of 
precision by the fourth refinement level, 
namely, 8100 cells. The final value of ΔP is 
reported to three significant digits as -18.4 
Pa. 
 
Discussion Newer versions of FlowLab may give slightly different 
results. We could try refining the grid even further, but the increase in 
precision would not be worth the effort. In a flow field such as this, the 
separation point is fixed at the sharp corner; the CFD code does not have 
problems identifying the separation point. Notice that even for the case of 
a sudden expansion (θ = 90o) there is still a pressure recovery through the diffuser (Pin is less than Pout). 

  

 
θ ΔP 
5 -49.1371 

7.5 -47.7787 
10 -44.9927 

12.5 -42.4013 
15 -39.6981 

17.5 -37.6431 
20 -36.0981 
25 -32.7173 
30 -29.9919 

32.5 -23.2118 
35 -21.6434 

37.5 -21.0490 
45 -19.6571 
60 -18.7252 
75 -18.1364 
90 -18.3018 

 

-20.0

-19.5

-19.0

-18.5

-18.0

100 1000 10000 100000

 

Cell count 

ΔP 
(Pa) 

 

 
cell count ΔP (Pa)

996 -19.3374
2700 -18.5233
4500 -18.4956
8100 -18.4171

13500 -18.3977
17855 -18.3984
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15-37 
Solution We are to generate CFD solutions for several downstream 
tube extension lengths to see the impact of the downstream boundary. We 
are also to discuss the variation of Pin with Lextend. 
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is 
axisymmetric about the x axis. 3 The flow is laminar. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 
kg/m⋅s. 
 
Analysis 
(a) Only the first case at Lextend/D2 = 0.25 has reverse flow at the pressure 
outlet. By Lextend/D2 = 0.50 the reverse flow problems are gone. The 
streamlines reveal that the flow separates at the corner, forming a 
recirculating eddy. The eddy reattaches at approximately x/D2 = 0.50. 
Streamlines are shown for the first three cases in Fig. 1. The overall 
streamline shapes appear to be unaffected by the downstream extent of 
the computational domain. 
 

(b) Pin, P1, and ΔP = Pin – P1 are tabulated as functions of Lextend/D2. ΔP is 
independent of Lextend (to three significant digits of precision) by Lextend/D2 
= 0.5. 
 

 
 
 
(c) Inlet gage pressure Pin is plotted as a function of Lextend/D2 in Fig. 2. 
The inlet pressure drops as Lextend/D2 increases from 0.25 to 1.25, but then 
starts to slowly rise as Lextend/D2 continues to increase. We explain this 
trend with help from the streamlines of Fig. 1. First of all, the data for 
Lextend/D2 = 0.25 are not reliable, since there is reverse flow at the 
pressure outlet. Thus, we begin our discussion at Lextend/D2 = 0.50. The 
separation bubble (recirculating eddy) at the inlet to the smaller diameter 
tube forces the flow to converge and accelerate through an effective area 
that is smaller than the cross-sectional area of the small tube (a vena 
contracta). This high speed flow leads to a low pressure region near the 
separation bubble. Downstream of the separation bubble, the pressure 
tries to increase slightly (the downstream portion of the eddy behaves 
like a diffuser, recovering some of the pressure loss). However, since the 
outlet pressure is fixed at zero gage pressure, the inlet pressure must 
decrease to compensate. This explains why Pin decreases when Lextend/D2 
increases from 0.50 to 1.25. By Lextend/D2 = 1.25, the outlet of the 
computational domain is beyond the region of pressure recovery due to 
the eddy, and the flow begins its slow development towards fully 
developed laminar pipe flow. Beyond x/D2 ≈ 1.25 the pressure decreases 
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FIGURE 1 
Streamlines: Lextend/D2 = (a) 0.25, (b) 0.50, 
and (c) 0.75. 

 
Lextend/D2 Pin (Pa, gage) P1 (Pa, gage) ΔP (Pa) 

0.25 664.924 212.156 452.767 
0.5 622.068 171.15 450.918 

0.75 597.788 146.831 450.957 
1 590.532 139.464 451.068 

1.25 590.036 138.86 451.176 
1.5 592.523 141.24 451.283 

2 601.075 149.576 451.498 
2.5 609.822 158.733 451.089 

3 620.434 169.248 451.186 
 

550
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Lextend/ D2 
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FIGURE 2 
Inlet gage pressure as a function of 
normalized downstream extent of the 
computational domain. 
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axially along the tube because of friction along the pipe wall. But since the exit pressure is atmospheric, the inlet pressure 
must rise accordingly. In other words, the pressure at the inlet must rise to overcome the increasing pressure drop through 
the tube. We expect this trend to continue, eventually becoming linear. 
 Based on all our results taken collectively, we recommend that Shane use a value of Lextend/D2 of 2.0 or more to 
ensure proper simulation of this flow. If computer speed or memory is a problem, he can get away with a minimum of 
Lextend/D2 = 0.75 to avoid reverse flow problems at the outlet. 
 
Discussion For other geometries, fluids, or speeds, the separation bubble may extend farther than in this example. Thus 
is wise to extend the computational domain reasonably far downstream (several tube diameters).  

  

 
 

15-38 
Solution We are to simulate flow through a sudden contraction in a tube, using no downstream tube extension. We 
are to calculate the error in pressure drop and discuss.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is 
axisymmetric about the x axis. 3 The flow is laminar. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 
0.001003 kg/m⋅s. 
 
Analysis There is no reverse flow in the CFD simulation. The 
streamlines (shown in the figure) reveal that since there is no 
downstream extension, there is obviously no way to have a separation 
bubble. With the outlet pressure set to a constant value, the streamlines 
adjust themselves such that the fluid flows through the outlet without 
reverse flow. Although this may appear to be a good CFD solution, it 
turns out to be erroneous because the actual pressure across the interface of a sudden contraction is not constant. We obtain 
a net pressure difference of ΔP = Pin – Pout = 519.6 Pa. Compared to the best values from the previous problem (ΔP = 451 
Pa), the percentage error is about 15%. 
 
Discussion Newer versions of FlowLab may give slightly different results. The error in ΔP caused by neglecting the 
downstream extension is significant. This reinforces our discussion in the text about extending outlets. 

  

 
 

15-39 
Solution We are to simulate flow through a sudden contraction in a tube, using three different values of outlet 
pressure at the pressure outlet boundary. We are to compare the pressure drop and discuss.  
 
Assumptions 1 The flow is steady and incompressible. 2 The flow is axisymmetric. 3 The flow is laminar. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 kg/m⋅s. 
 
Analysis Results for the three cases are summarized in the table for the case in which Lextend/D2 = 2.0. We see that the inlet 
pressure and the pressure at x = 0 rise or fall in symphony with Pout, such that the net pressure difference is the same (to 
more than four significant digits) in all 
cases.  The results verify a statement we 
made in Chap. 9: For incompressible flow, 
it is not pressure itself which is important to 
the flow field, but rather pressure 
differences. 
 

Discussion The slight differences (in the fifth digit) in ΔP are due to numerical inaccuracies in the CFD code (the 
residuals never go to exactly zero). Note that we are subtracting two large numbers, which inevitably leads to precision 
errors. If we had run the simulation with double precision arithmetic and adjusted some of the numerical parameters, we 
could have obtained even better agreement. 

  

 

 

x 

Outlet 

 
 

 

Pout (Pa, gage) Pin (Pa, gage) P1 (Pa, gage) ΔP (Pa) 
-50,000 -49,398.9 -49,850.4 451.500 

0 601.075 149.576 451.498 
50,000 50,601.1 50,149.6 451.496 
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15-40 
Solution We are to generate CFD solutions for several downstream tube extension lengths to see the impact of the 
downstream boundary. 
 

Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric 
about the x axis. 3 The flow is turbulent, but steady in the mean. 
 

Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 
kg/m⋅s. 
 

Analysis (a) Four Reynolds numbers are calculated. Note that since 
the diameter decreases by a factor of 4 through the contraction, the 
average velocity in the smaller downstream tube increases by a factor of 
42 = 16 compared to that in the larger upstream tube. For the laminar case 
of Problem 15-37, 

Upstream tube: 

 
( )( )( )3

1 1
1

998.2 kg/m 0.05 m/s 0.008 m
Re

0.001003 kg/m s
V Dρ
μ

= = =
⋅

398.1  
(1) 

Downstream tube: 
( ) ( )( )3

2 2
2

998.2 kg/m 0.8 m/s 0.002 m
Re

0.001003 kg/m s
V Dρ
μ

= = =
⋅

1592  (2) 

Since both of these values are smaller than 2300, the laminar flow assumption for Problem 15-37 is reasonable. For the 
turbulent pipe flow of the present problem, 

Upstream pipe: 
( )( )( )3

1 1
1

998.2 kg/m 1.0 m/s 0.8 m
Re

0.001003 kg/m s
V Dρ
μ

= = =
⋅

796,200  (3) 

Downstream pipe: 
( )( )( )3

2 2
2

998.2 kg/m 16.0 m/s 0.2 m
Re

0.001003 kg/m s
V Dρ
μ

= = =
⋅

3,185,000  (4) 

These Reynolds numbers are clearly high enough that the flow is indeed turbulent. 
 

(b) Our CFD solutions reveal reversed flow for the smallest two cases, i.e. for Lextend/D2 = 0.25 and 0.5. For higher values of 
Lextend/D2 there is no reverse flow. Comparing to the results of Problem 15-37, apparently the separation bubble for 
turbulent flow is somewhat longer (proportionally) than that for laminar flow. This is verified by comparing the streamlines 
of Fig. 1 to those of Fig. 1c of Problem 15-37. 
 

(c) Pressures Pin, P1, and ΔP = Pin – P1 are 
tabulated as functions of Lextend/D2 in the table. 
Note that we use units of kPa instead of Pa here 
for convenience. ΔP is independent of Lextend (to 
three significant digits of precision) by Lextend/D2 = 
0. 5. 
 
Discussion Newer versions of FlowLab may 
give slightly different results. The lack of scatter 
in the turbulent data for ΔP beyond Lextend/D2 = 
0.5 is a rather pleasant surprise; we might have expected more scatter than the laminar flow solution of Problem 15-37, 
since we have two additional nonlinear transport equations to solve, with their associated interactions that complicate the 
solution.  

  

 

x 

Separation bubble 

 
 

FIGURE 1 
Streamlines for steady, incompressible, 
axisymmetric, turbulent flow through a 
sudden contraction at Lextend/D2 = 0.75. 

 

Lextend/D2 Pin (kPa, gage) P1 (kPa, gage) ΔP (kPa) 
0.25 309.31 122.121 187.189 

0.5 276.188 90.3473 185.841 
0.75 251.176 65.3649 185.811 

1 237.423 51.5843 185.839 
1.25 228.954 43.0877 185.866 

1.5 223.423 37.4649 185.958 
2 216.361 30.2144 186.147 
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15-41 
Solution We are to compare the pressure drop through a sudden contraction in a round pipe with two different outlet 
conditions: pressure outlet and outflow.  
 
Assumptions 1 The flow is incompressible. 2 The flow is axisymmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 kg/m⋅s. 
 
Analysis For the previous case (pressure outlet boundary condition), the average pressure at the inlet is Pin = 251.18 
kPa, the average pressure at x = 0 is P1 = 65.36 kPa, and the pressure difference is ΔP = Pin – P1 = 185.82 kPa. For the 
present case (outflow boundary condition), the average pressure at the inlet is Pin = 127.94 kPa, the average pressure at x = 
0 is P1 = −57.87 kPa, and the pressure difference is ΔP = Pin – P1 = 185.81 kPa. While the actual values of pressure differ 
throughout the contraction, the pressure difference agrees to nearly five digits of precision for the two cases. Thus we 
conclude that the outlet boundary condition has very little effect on this flow field. 
 For the case with the pressure outlet boundary condition, the static pressure at the outlet of the computational 
domain is forced to be constant (zero gage pressure in the calculations of the previous problem). In the present case 
however, the outflow boundary condition does not fix static pressure – rather, it forces flow variables to level off as they 
approach the outlet boundary.  
 
Discussion Newer versions of FlowLab may give slightly different results. With a velocity inlet and an outflow outlet, 
we do not fix the value of pressure at either boundary. Instead, the CFD code assigns P = 0 gage pressure at some 
(arbitrary) location in the flow field (the default location is the origin). Even though the inlet and outlet pressures differ 
significantly between the two cases, ΔP is identical to almost five significant digits of precision. This result again verifies 
the statement we made in Chap. 9: For incompressible flow, it is not pressure itself which is important to the flow field, but 
rather pressure differences. 
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15-42 
Solution We are to generate CFD solutions for several downstream duct extension lengths to see the impact of the 
downstream boundary. 
 
Assumptions 1 The flow is incompressible. 2 The flow is two-
dimensional and symmetric about the x axis. 3 The flow is turbulent, but 
steady in the mean. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 
kg/m⋅s. 
 
Analysis  (a) Our CFD solutions reveal reversed flow for the 
smallest three cases, i.e. for Lextend/D2 = 0.25, 0.5, and 0.75. For higher 
values of Lextend/D2, there is no reverse flow. Comparing to the results of 
Problem 15-40, the separation bubble for 2-D flow is somewhat longer 
than that for axisymmetric flow. This is verified by comparing the 
streamlines of Fig. 1 to those of Fig. 1 of Problem 15-40. 
 

(b) Pressures Pin, P1, and ΔP = Pin – P1 are tabulated as functions of 
Lextend/D2 in Table 1.  ΔP is independent of Lextend (to three significant digits of precision) by Lextend/D2 = 0.5. 
 

 
Discussion Newer versions of FlowLab may give slightly different results. Comparing ΔP between this problem (2-D) 
and Problem 15-40 (axisymmetric), we see that ΔP for the axisymmetric case is more than 17 times greater than ΔP for the 
2-D case. This is because for the axisymmetric case, the area downstream of the sudden contraction is 16 times smaller than 
the upstream area, while for the 2-D case, the area changes by only a factor of 4. Nevertheless, the 2-D case generates a 
longer separation bubble. 
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FIGURE 1 
Streamlines for steady, incompressible, two-
dimensional, turbulent flow through a 
sudden contraction at Lextend/D2 = 0.75. 

 

Lextend/D2 Pin (kPa, gage) P1 (kPa, gage) ΔP (kPa) 
0.25 18.203 7.3241 10.8789 

0.5 17.3614 6.65408 10.7073 
0.75 15.3649 4.67913 10.6858 

1 13.7764 3.09228 10.6841 
1.25 12.9757 2.29043 10.6853 

1.5 12.5034 1.81676 10.6867 
2 11.9787 1.29006 10.6887 
3 11.5309 0.845519 10.6853 
4 11.3452 0.660043 10.6852 

 

TABLE 1 
Inlet pressure, average pressure at x = 0, and 
pressure difference as functions of 
downstream extent of the computational 
domain. Data tabulated from CFD runs for 
steady, incompressible, two-dimensional, 
turbulent flow through a sudden contraction 
in a duct. 
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15-43 
Solution We are to generate CFD solutions for several grid resolutions to test for grid independence for flow through 
a jog in a channel. Specifically, we are to compare streamlines and pressure difference at each level of grid resolution. 
 
Assumptions 1 The flow is incompressible and two-dimensional. 2 The flow is turbulent, but steady in the mean. 
 
Properties The fluid is air with ρ = 1.225 kg/m3 and μ = 1.7894 × 10-5 kg/m⋅s. 
 
Analysis 
(a) Streamlines are plotted for six grid resolution cases in Fig. 1. At the very coarse grid resolution, a small separation 
bubble appears at the lower left corner of the jog (Fig. 1a); flow separation is not obvious at the other corners, but it appears 
imminent at the most downstream corner. As grid resolution improves, the separation bubble on the lower left corner grows 
in size (compare Figs. 1a and 1b), and another separation bubble appears downstream of the jog. With continued 
improvement of the grid, both separation bubbles, especially the downstream one, continue to grow in size (Fig. 1c through 
1f). Meanwhile, the streamlines become more rounded near the upper right corner of the jog. By 13,600 cells (Fig. 1e), a 
small recirculating zone is seen in this corner. The streamline pattern settles down by about 13,600 cells. We note that 
simulation of flow separation, separation bubbles, and reattachment is often a very difficult task for a CFD program. In this 
particular problem we must use a fairly fine grid in order to resolve all the details of the flow separation. 
 

(0,0) 

(a)  

(0,0)

(b)  

(0,0) 

(c)  

(0,0)

(d)  

(0,0) 

(e)  

(0,0)

(f)  
(b) ΔP is tabulated as a function of cell 
count in the table. As grid resolution 
improves, ΔP increases, reflecting the effect 
of the larger separation bubbles. Physically, 
we achieve less and less pressure recovery 
as the separation bubbles grow. We see that 
ΔP becomes independent of grid resolution 
to four significant digits by the fifth level of 
resolution, namely, at 13,600 cells. This is 
also seen in Fig. 2 where ΔP is plotted as a 
function of number of cells.   
 
Discussion Newer versions of FlowLab 
may give slightly different results. The sharp corners in the streamlines of 
the very coarse grid resolution case (Fig. 1a) are due to interpolation errors 
when the CFD code calculates contours of constant stream function. The 
outlet of the computational domain is reasonably far downstream (ten 
channel heights) to avoid reverse flow at the outlet.  

  

 
 
 
 
 
 
FIGURE 1 
Streamlines for steady, 
incompressible, two-
dimensional, turbulent flow 
through a jog in a channel at 
various levels of grid resolution: 
cell count = (a) 900, (b) 2500, 
(c) 5700, (d) 9100, (e) 13,600, 
and (f) 18,000. The origin (0,0) 
is marked on each figure for 
reference.  
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FIGURE 2 
Pressure difference vs. number of cells. 

 

cell count ΔP (Pa)
900 2.26846

2500 2.63636
5700 2.71292
9100 2.71739

13600 2.71835
15200 2.71828
18000 2.71856
20352 2.71746
24840 2.71544
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15-44 
Solution We are to generate CFD solutions for several grid resolutions to test for grid independence for flow through 
a jog in a channel. Specifically, we are to compare streamlines and pressure difference at each level of grid resolution. 
 
Assumptions 1 The flow is incompressible. 2 The flow is two-dimensional. 3 The flow is laminar and steady. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 kg/m⋅s. 
 
Analysis 
(a) Streamlines are plotted for six grid resolution cases in Fig. 1. 
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At the very coarse grid resolution (Fig. 1a), the streamlines are not very smooth, but reveal the overall flow pattern. 
Although there are no closed streamlines, it appears that flow separation is imminent at the lower left and upper right 
corners of the jog. The streamlines appear fairly similar to those of the turbulent flow of the previous problem. At the grid 
resolution of Fig. 1b, the flow clearly separates at the sharp corner at the origin. The flow also separates at the downstream 
inside corner of the jog. The streamlines are not well-enough resolved to show closed separation bubbles. As the grid is 
further refines, the separation bubbles grow in size (compare Figs. 1b through 1d). In addition, the streamlines are smoother 
and more rounded. With continued improvement of the grid, the streamlines become more rounded near the upper right 
corner of the jog. By Fig. 1e, a recirculating flow pattern is seen downstream of the jog. Based on streamline patterns, the 
grid is fully resolved at a cell count of about 10,000. However, the pressure drop seems to be creeping up a bit as grid 
resolution is refined even further; it is not clear why. 
 
(b) ΔP is tabulated as a function of grid resolution in Table 1. ΔP is also plotted as a function of number of cells in Fig. 2. 
As grid resolution improves, ΔP rises at first, reflecting the effect of the larger separation bubbles, but then decreases with 
further grid refinement, eventually leveling off after about 10,000 cells, implying grid independence by 104 cells. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 
Streamlines for steady, 
incompressible, two-
dimensional, laminar flow 
through a jog in a channel at 
various levels of grid resolution: 
cell count = (a) 272, (b) 576, (c) 
847, (d) 1700, (e) 3388, and (f) 
14,123. The origin (0,0) is 
marked on each figure for 
reference. The inlet velocity for 
these runs is 0.10 m/s. 
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Discussion Newer versions of 
FlowLab may give slightly 
different results. All cases 
converge nicely – the flow at this 
Reynolds number is steady and 
laminar. There is no sign of 
instability in the flow. The outlet 
of the computational domain is 
reasonably far downstream (ten 
channel heights) to avoid reverse 
flow at the outlet.  

  

TABLE 1 
Pressure difference from inlet to 
outlet as a function of cell 
count, V = 0.10 m/s. 

 

cell count ΔP (Pa)
272 37.6118
576 37.8096
847 37.5031

1700 36.9068
3388 36.5925

10625 36.4095
14123 36.4187
18645 36.435
23273 36.4636

36.0

36.5

37.0

37.5

38.0

100 1000 10000 100000

 

Number of cells 

ΔP 
(Pa) 

104103 102 105

 
FIGURE 2 
Pressure difference vs. number of cells, V = 
0.10 m/s. 
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15-45 
Solution We are to generate CFD solutions for several grid 
resolutions to test for grid independence for flow through a jog in a 
channel. Specifically, we are to compare streamlines and pressure 
difference at each level of grid resolution. 
 
Assumptions 1 The flow is incompressible. 2 The flow is two-
dimensional. 3 The flow is laminar and steady. 
 
Properties The fluid is water with ρ = 998.2 kg/m3 and μ = 0.001003 
kg/m⋅s. 
 
Analysis 
(a) Streamlines are plotted for six grid resolution cases in Fig. 1. 
 
 
 
 
 
 
 
 

(0,0) 

(a)  

(0,0)

(b)  

(0,0) 

(c)  

(0,0)

(d)  

(0,0) 

(e) 

Flow is not converging 

 

(0,0)

(f) 

Flow is not converging 

 
 

TABLE 1 
Pressure difference from inlet to outlet as a 
function of cell count for laminar flow 
through a two-dimensional jog, V = 1.0 m/s. 

 

cell count ΔP (Pa)
272 2025.69
576 2269.26
847 2324.99

1700 2482.44
3388 2582.17

10625 2515.71
14123 2484.86
18645 2468.57
23273 2511.98

FIGURE 1 
Streamlines at various levels of 
grid resolution: cell count = (a) 
272, (b) 576, (c) 847, (d) 1700, 
(e) 3388, and (f) 14,123. The 
origin (0,0) is marked on each 
figure for reference. The inlet 
velocity for these runs is 1.0 m/s. 
For cases (e) and (f), the 
streamline patterns are at an 
arbitrary point in the solution. 
For these two cases, the CFD 
calculations do not converge, 
and eddies appear in the channel 
downstream of the jog. As the 
iterations continue, these eddies 
are swept downstream, but new 
ones appear, implying that the 
flow at this Reynolds number is 
not steady. The streamline 
patterns change as the CFD code 
iterates. 
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At the very coarse grid resolution, a small separation bubble appears at the lower left corner of the jog (Fig. 1a); flow 
separation is not obvious at the other corners, but it appears imminent at the most downstream corner. The streamlines 
appear quite similar to those of the turbulent flow of Problem 15-43. As grid resolution improves, the separation bubble on 
the lower left corner grows in size (compare Figs. 1a and 1b), the 
streamlines are smoother and more rounded, and another separation 
bubble appears downstream of the jog. With continued improvement of 
the grid, both separation bubbles continue to grow in size (Figs. 1c and 
1d). Meanwhile, the streamlines become more rounded near the upper 
right corner of the jog. By Fig. 1c, a small recirculating zone is seen in 
this corner. The streamline pattern continues to change somewhat as the 
grid is further refined. However, just as we appear to be approaching grid 
independence, the flow develops some instabilities and cannot converge 
to a steady-state solution. This is first seen in the lower right portion of 
Fig. 1d – the streamlines drift away from the lower wall. While the 
streamline pattern in the front portion of the jog do not change 
appreciably, eddies develop in the recovery zone beyond the jog and are 
swept downstream as the grid is further refined (Figs. 1e and 1f). At the 
two finest grid resolutions, the flow is attempting to become unsteady. 
But since we are iterating towards a steady solution, the development and 
motion of these eddies is not physical. The solution fluctuates and is 
unable to converge. The bottom line is that we really should simulate this 
flow with an unsteady CFD solver. Grid independence is not achieved 
because the flow becomes unsteady and unstable when a very high 
resolution grid is used. 
 
(b) ΔP is tabulated as a function of grid resolution in Table 1. ΔP is also 
plotted as a function of number of cells in Fig. 2. As grid resolution improves, ΔP does not level off because the flow field 
is unstable – we should use an unsteady solver instead of a steady solver for this flow. 
 The Reynolds number for the present problem is 

Re at V = 1.0 m/s: 
( )( )( )3998.2 kg/m 1.0 m/s 0.001 m

Re
0.001003 kg/m s

VDρ
μ

= = =
⋅

995  (1) 

and for the previous problem, it is 

Re at V = 0.10 m/s: 
( )( )( )3998.2 kg/m 0.10 m/s 0.001 m

Re
0.001003 kg/m s

VDρ
μ

= = =
⋅

99.5  (2) 

Since the Reynolds number of the present case is ten times larger than that of the previous case, and since it is almost 1000, 
it is not surprising that unsteadiness and instabilities in the flow start to develop at high grid resolutions. 
 
Discussion Newer versions of FlowLab may give slightly different results. The results here are similar to those of CFD 
simulations of flow around a circular cylinder. Namely, the flow is naturally unsteady, and leads to convergence difficulties 
at high grid resolution when the simulation is forced to be steady.  
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FIGURE 2 
Pressure difference as a function of the 
number of cells in the computational 
domain; laminar flow through a jog in a 
channel. V = 1.0 m/s. 
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15-46 
Solution We are to generate CFD solutions for compressible flow of air through a converging-diverging nozzle, and 
compare mass flow rate at various values of back pressure. 
 
Assumptions 1 The flow is steady and compressible. 2 The flow is axisymmetric. 3 The flow is approximated as inviscid. 
 
Properties The fluid is air with k = 1.4. 
 
Analysis We tabulate and plot m  as a function of Pb/P0,inlet in Table 1 and Fig. 1 respectively. 
 

 
 
We see that m  is constant as long as the flow through the throat is sonic, because the flow is choked (Pb/P0,inlet < 0.95). 
For values of Pb/P0,inlet around 0.95 or higher, however, the flow in the diverging section becomes subsonic (no shock 
waves, and not choked), and the mass flow rate decreases with increasing Pb/P0,inlet from there on, as expected, since the 
flow is subsonic. 
 
Discussion The small variations in m  in Table 1 (in the sixth digit of precision) are due to the fact that the residuals in 
the CFD solution do not go to zero. A finer grid and longer run times would correct this. 
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FIGURE 1 
Mass flow rate as a function of back 
pressure ratio in a converging-diverging 
nozzle. 

TABLE 1 
Pressure difference from inlet to outlet as a 
function of cell count for laminar flow 
through a two-dimensional jog, V = 1.0 m/s. 

 

Pb/P0,inlet m  (kg/s) 
0.454545 9.08358 
0.545455 9.08356 
0.636364 9.08355 
0.727273 9.08357 
0.818182 9.08356 
0.909091 9.08354 
0.954545 9.03556 
0.977273 6.91699 
0.988636 4.97062 
0.990909 4.45686 
0.995455 3.16752 
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15-47 
Solution We are to generate CFD solutions for compressible flow of air through a converging-diverging nozzle, and 
plot pressure and Mach number contours at two values of back pressure. 
 
Assumptions 1 The flow is steady and compressible. 2 The flow is axisymmetric. 3 The flow is approximated as inviscid. 
 
Properties The fluid is air with k = 1.4. 
 
Analysis We plot contours of P and Ma in Fig. 1. For the case in which Pb/P0,inlet = 0.455 (Fig. 1a), we observe a 
shock wave in the diverging portion of the nozzle. When Pb/P0,inlet = 0.977 (Fig. 1b), however, the flow in the entire nozzle 
is subsonic, and there are no shock waves. 
 

P 

 (a) 

Ma 

 

P 

 (b) 

Ma 

 
 
Plots of P and Ma versus x are shown in Fig. 2 for the two cases. Also shown are calculations from one-dimensional 
inviscid theory. The agreement is excellent. 
 
Discussion Newer versions of FlowLab may give slightly different results. The shock wave calculated by CFD is not 
straight, but curved, since the calculations are axisymmetric, and therefore show more detail than the simplified one-
dimensional approximation. 

  

 
 
 
 
15-48 
Solution We are to repeat the previous problem, but for the axisymmetric case.  
 

Analysis The results are expected to be similar, except that for the 2-D case, the area change is much less significant. 
Therefore it the value of back pressure that causes the flow to choke will be different than the axisymmetric case. We 
should still be able to observe a normal shock in the flow at low-enough values of back pressure. 
 
Discussion Newer versions of FlowLab may give slightly different results.  

  

 

 
 
 
 
 
 
FIGURE 1 
Contour plots of P and Ma for 
compressible flow of air 
through a converging-diverging 
nozzle: Pb/P0,inlet = (a) 0.455, 
and (b) 0.977. A normal shock 
is seen for the first case, since 
the flow is choked, but no 
shock is seen in the second 
case, since the flow is subsonic 
everywhere. The pressure scale 
is 0 (blue) to 220 kPa (red) for 
both cases. The Mach number 
scale is 0 (blue) to 2.5 (red) for 
both cases. 
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15-49 
Solution We are to study the effect of rear-end shape on automobile drag coefficient.  
 

Analysis The template provides five different geometries. Model 1 has a very blunt rear end, kind of like a station 
wagon. As the model number increases, the rear end 
gets more slanted and rounded. Table 1 shows the 
calculated drag coefficient for each model. 
 
 

It turns out that Model number 4 has the lowest 
drag coefficient, and Model number 1 has the 
highest. We probably would have guessed the latter, 
but not the former. Namely, the car with the most 
blunt rear end (Model 1) has the highest drag as we 
might expect, but most people would predict that 
Model 5, which is the most rounded, would have the 
lowest drag. Model 4 has a short notch for the trunk, 
and the aerodynamics turn out such that it has the 
lowest drag. 
 

Streamline plots are shown in Fig. 1 for Models 1 
and 4, the highest and lowest drag cases, respectively. It is clear from these plots that the blunted rear body has a larger 
separation bubble in the wake (low pressure in the wake which leads to large drag). On the other hand, Model 4 has a much 
smaller wake and therefore much less drag. 
 

 Model  

(a) 1 

 

(b) 4 

 
 

Discussion Newer versions of FlowLab may give slightly different results. It is not always immediately obvious 
whether a shape will have more or less drag than another shape. These results are two-dimensional, whereas actual 
automobiles, of course, are three-dimensional [see Problem 15-52]. 

  

TABLE 1 
Drag coefficient as a function of model number, where the 
rear end of the car is modified according to model number. 
 

Model 
number 

Description CD 

1 Blunt rear end, like a station wagon 0.320 

2 
Back window with a short trunk 
section 0.298 

3 
Similar to model 2, but with a longer 
trunk 0.276 

4 
More rounded back end with a short 
notch for the trunk 

0.180 
 

5 Fully rounded back end 0.212 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 
Streamlines for two representative two-
dimensional automobile shapes: (a) Model 1, 
and Model 4. 
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15-50 
Solution We are to examine the effect of the location of the upstream boundary on automobile drag calculations.  
 

Analysis We run five cases, and show the results in Table 1. It turns out that by about 20 heights away, the upper 
boundary condition no longer impacts the solution significantly to within three significant digits.  The final drag coefficient 
is reported as 0.180 to three significant digits. 
 
These data are also plotted in Fig. 1. We use a log scale on the horizontal axis since the range of H/h is fairly large. For 
three digits of precision, it is necessary that the top boundary be at least 20 car heights tall. If H/h is shorter than this, the 
upper boundary of the computational domain adversely influences the 
flow field. In the real-life flow, of course, the upper boundary is nearly 
infinite. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Discussion Newer versions of FlowLab may give slightly different 
results. The bottom wall of the computational domain is not moving in 
these calculations, so the flow near the ground is not modeled properly. 
Furthermore, the calculations are two-dimensional, while a real car is of 
course fully three-dimensional.  

  

 
 
 
 
 

15-51 
Solution We are to compare turbulence models for the calculation of automobile drag.  
 

Analysis The results from the CFD calculations are 
presented in Table 1. There is some variation in the calculated 
values of CD depending on the turbulence model used; CD 
ranges from 0.175 for the Spallart-Allmaras model to 0.223 
for the RSM model. The range of scatter is about 12%, which 
is actually not that large for comparison of four very different 
turbulence models. It is impossible to say which one, if any, is 
correct, since all turbulence models are approximations, with 
calibrated constants. Furthermore, we have no experimental 
data with which to compare the CFD results. 
 
Discussion Newer versions of FlowLab may give slightly different results. It would be good if we had experimental 
data with which to compare. 
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FIGURE 1 
Drag coefficient plotted as a function of the 
normalized extent of the computational 
domain for turbulent flow over a two-
dimensional automobile. 

TABLE 1 
Drag coefficient as a function of the 
normalized extent of the computational 
domain for turbulent flow over a cylindrical 
block. 
 

H/h CD 
5 0.2101

10 0.1847
20 0.1798
35 0.1796
50 0.1797

100 0.1798

TABLE 1 
Predicted drag coefficient on a two-dimensional 
automobile as a function of turbulence model. 
 

Turbulence model CD 
Spallart-Allmaras (1 eq.) 0.175 
k-ε (2 eq.) 0.182 
k-ω (2 eq.) 0.221 
Reynolds stress model (7 eq.) 0.223 
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15-52 
Solution We are to compare 2-D and 3-D drag predictions for flow over an automobile.  
 

Analysis The 3-D drag coefficient is 0.785, significantly higher than the 2-D case, which is around 0.2 for most of 
the cases. This is most likely due to the fact that flow separates off the sides of the car as well as off the top. Note too that 
the car model used in this analysis is more like a truncated 2-D model rather than a truly three-dimensional model. If all the 
sharp corners were rounded off, the drag coefficient would be much lower than that calculated here. 
 
Discussion Newer versions of FlowLab may give slightly different results. This is not a very good drag coefficient for a 
modern car, and there is much improvement possible by further streamlining. 

  

 
 
 
 
 
 
 
15-53 
Solution We are to examine entrance the length for laminar pipe flow.  
 

Analysis Table 1 shows the entrance length calculations, 
along with a comparison with theory. The results are very good, as 
is expected for laminar pipe flow. Note that the results are somewhat 
subjective since the end of the developing region is being judged 
“by eye”. Figure 1 shows the pressure along the axis as a function of 
downstream distance along the pipe axis for the case in which Re = 
500. It is clear that the pressure drop is more severe (higher slope) at 
the beginning section of the pipe, but it is hard to tell at what axial 
location the flow becomes fully developed from this type of a plot. 
Thus, the entrance length is more appropriately determined by 

studying the velocity profiles, as above. 
 
 

 
 
Discussion Newer versions of FlowLab may give slightly different results. Also, student answers may vary 
considerably because of the subjectivity of these results, as mentioned above. There are no shed vortices, unsteadiness, or 
non-symmetries in straight laminar pipe flow, so it is no surprise that the CFD calculations perform so well. 

  

 

TABLE 1 
Entry length vs. Reynolds number for 
developing laminar pipe flow. 
 

Re Le/D, CFD Le/D, Theory 
500 20 30

1000 50 60
1500 86 90
2000 1050 120

 

 
 
 
 
 
 
FIGURE 1 
Pressure as a function of axial distance 
down a long straight pipe at Re = 500. 
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15-54 
Solution We are to study the entrance region in turbulent pipe 
flow.  
 

Analysis Table 1 shows the entrance length calculations, along 
with a comparison with the empirical equation. The CFD results are 
consistently low compared to the empirical results, although the 
agreement improves as Reynolds number increases. Since the grid is 
sufficiently resolved and y+ values are appropriate, the discrepancies 
are due to deficiencies in the turbulence model. 
 
Discussion Newer versions of FlowLab may give slightly 
different results.  

  

 
 
15-55 
Solution We are to study fully developed laminar pipe flow, and compare CFD calculations of Darcy friction factor 
with theory.  
 

Analysis Table 1 shows the CFD calculations of f, along with a comparison with theory. The CFD and theoretical 
results agree very well, since that the grid is well-enough resolved, and the flow is laminar. The values agree to within 
0.05%, which is as good as one can ever expect from a CFD analysis. 
 
TABLE 1 
Darcy friction factor vs. Reynolds number for fully developed laminar pipe flow – comparison between CFD calculations 
and theory (f = 64/Re). 
 

Re f, CFD f, Theory Error (%) 
500 0.127944 0.128 -0.04375
750 0.0852963 0.085333 -0.0434

1000 0.0639721 0.064 -0.04359
1250 0.0511774 0.0512 -0.04414
1500 0.0426476 0.042667 -0.04469
2000 0.0319855 0.032 -0.04531

 

Discussion Newer versions of FlowLab may give slightly different results. There are no shed vortices, unsteadiness, or 
non-symmetries in straight laminar pipe flow, so it is no surprise that the CFD calculations perform so well. 

  

 
 
15-56 
Solution We are to study fully developed turbulent pipe flow, 
with smooth walls and compare CFD calculations of Darcy friction 
factor with experimentally determined values.  
 

Analysis Table 1 shows the CFD calculations of f, along with a 
comparison with the empirical formula (the Colebrook equation). The 
CFD and theoretical results agree reasonably well (within less than 
10% for all cases tested), and the agreement improves with increasing 
Reynolds number. The k-ε model performs better at the higher values 
of Reynolds number because the turbulence model is calibrated for high Re flows. 
 
Discussion Newer versions of FlowLab may give slightly different results. Ten percent agreement is excellent, 
considering that the Colebrook equation (or the Moody chart) is accurate to only about 15% to begin with. 

  

 
 

TABLE 1 
Entry length vs. Reynolds number for 
developing turbulent pipe flow. 
 

Re Le/D, CFD Le/D, Exper. 
2000 10 15.6
5000 11 18.2

10000 13 20.4
20000 18 22.9
50000 22 26.7

TABLE 1 
Darcy friction factor vs. Reynolds number 
for fully developed turbulent pipe flow. 
 

Re f, CFD f, Exper. 
5000 0.040007 0.0374

10000 0.03293 0.0309
50000 0.022029 0.0209
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15-57 
Solution We are to study fully developed turbulent pipe flow 
with rough walls, and compare CFD calculations of Darcy friction 
factor with experimentally determined values.  
 

Analysis Table 1 shows the CFD calculations of f, along with a 
comparison with the empirical formula (the Colebrook equation). The 
CFD and theoretical results agree reasonably well (within less than 
15% for all cases tested), and the agreement improves with increasing 
roughness. Since the agreement is within the known inaccuracy of the 
Colebrook equation (about 15%), these CFD results are considered 
adequate. 
 
Discussion Newer versions of FlowLab may give slightly 
different results.  

  

 
 
 
15-58 
Solution We are to model the laminar boundary layer on a flat plate using CFD, and compare to analytical results.  
 

Analysis For a Reynolds number of 1 × 105, the CFD calculations give a nondimensional boundary layer thickness of 
δ /x = 0.0154 and a drag coefficient of CD =  0.00435. The theoretical values are obtained from equations in Chaps. 10 and 
11, namely, 

 
5

4.91 4.91 0.0155
Re 1 10xx

δ
= = =

×
 (1) 

and 

 
5

1.33 1.33 0.00421
Re 1 10

D f
x

C C= = = =
×

 (2) 

The agreement is excellent for both values, the discrepancy being less than 1% for δ/x and about 3% for drag coefficient. 
 
Discussion Newer versions of FlowLab may give slightly different results.  

  

 
 
 
15-59 
Solution We are to compare CFD results to experimental results for the case of a flat plate turbulent boundary layer.  
 

Analysis For a Reynolds number of 1 × 107, the CFD calculations give a nondimensional boundary layer thickness of 
δ/x = 0.0140 and a drag coefficient of CD =  0.00292. The empirical values are obtained from equations in Chaps. 10 and 
11, namely, 

 
( )1/ 5 1/ 57

0.38 0.38 0.015
Re 1 10xx

δ
= = =

×
         and         

( )1/ 5 1/ 57

0.074 0.074 0.0029
Re 1 10

D f
x

C C= = = =
×

 

The agreement is excellent for both values, the discrepancy being about 7% for δ/x and negligible (within 2 significant 
digits) for drag coefficient. 
 
Discussion Newer versions of FlowLab may give slightly different results. We report our empirical values to only two 
significant digits in keeping with the level of precision and accuracy of turbulent flows. 

  

TABLE 1 
Darcy friction factor vs. dimensionless 
roughness height for fully developed 
turbulent pipe flow at Re = 1 × 106. 
 

ε/D f, CFD f, Exper. 
0.00005 0.0113382 0.0126
0.00025 0.0134436 0.0152
0.0005 0.016288 0.0172

0.001 0.0204516 0.0199
0.0015 0.0231213 0.0220

0.002 0.0246173 0.0236
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15-60 
Solution We are to compare turbulence models in CFD calculations of a flat plate turbulent boundary layer.  
 

Analysis The calculations for drag coefficient and boundary layer thickness are shown in Table 1 for four turbulence 
models: standard k-ε, standard k-ω, Spallart-Allmaras, and the 
Reynolds stress model (RSM). The first two are two-equation models, 
the third is a one-equation model, and the fourth is a full Reynolds 
stress model (5 equations for the two-dimensional case). All 
turbulence models are approximations, with calibrated constants. The 
drag coefficients range from 0.0027 for the RSM model to 0.0029 for 
the k-ε model. The empirical value is 0.0029. The dimensionless 
boundary layer thickness ranges from 0.012 for the k-ω model to 
0.014 for the k-ε model. The empirical value is 0.015. Thus, all the 
turbulence models do very well at predicting this flow, and the k-ε 
model performs the best, overall. The RSM model, in spite of its 
increased complexity, does not do as well as some of the simpler 
models. Since all turbulence models are calibrated with the turbulent flat plate boundary layer, it is not surprising that all of 
them give reasonable results. 
 
Discussion Newer versions of FlowLab may give slightly different results.  

  

 
 
 
 
 
 
15-61 
Solution We are to compare the velocity and thermal boundary layer thicknesses on a heated flat plate, laminar flow.  
 

Analysis The results are shown in Table 1. We denote the thermal boundary layer thickness as δT /L, and compare to 
the velocity boundary layer thickness, which we denote as δu /L. The 
velocity (or momentum) boundary layer thicknesses are identical, as 
expected, since the Reynolds number is the same for either fluid. 
However, since the Prandtl number (Pr = ν/κ) of water is close to 
1000, which is much greater than one, the velocity boundary layer 
thickness is much greater than the thermal boundary layer thickness for 
the water flow. In other words, momentum diffuses into the free-
stream flow much more rapidly than does temperature since the 
Prandtl number is large. The two thicknesses are nearly equal for the 
air, although the thermal boundary layer thickness is somewhat higher 
than the momentum boundary layer thickness. This is to be expected since the Prandtl number in air is about 0.70, which 
means that temperature diffuses more rapidly than does momentum since Pr < 1. 
 
Discussion Newer versions of FlowLab may give slightly different results. Since the flow is laminar and the grid is  
well resolved with a large computational domain, these results are nearly “exact”. 

  

 
 

TABLE 1 
Drag coefficient and boundary layer 
thickness for a flat plate at  Re = 1 × 107 , as 
predicted by CFD with various turbulence 
models. 
 

ε/D CD δ /L 
k-ε 0.00291589 0.0140152
k-ω 0.00281271 0.0122085
S-A 0.00276828 0.013329
RSM 0.00274706 0.0131455

TABLE 1 
Nondimensional temperature and boundary 
layer thicknesses for a heated flat plate at  
Re = 1 × 105 , as predicted by CFD (laminar 
flow). 
 

Fluid δT /L δu /L 
air 0.017313 0.015412
water 0.007664 0.015412
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15-62 
Solution We are to compare the velocity and thermal boundary layer thicknesses on a heated flat plate, turbulent 
flow.  
 

Analysis The results are shown in Table 1. We denote the 
thermal boundary layer thickness as δT /L, and compare to the velocity 
boundary layer thickness, which we denote as δu /L. The velocity (or 
momentum) boundary layer thicknesses are identical, as expected, 
since the Reynolds number is the same for either fluid. The velocity 
boundary layer thickness is slightly greater than the thermal boundary 
layer thickness for the water flow, while the two thicknesses are nearly 
equal for the air, although the thermal boundary layer thickness is 
slightly greater than the momentum boundary layer thickness. These 
small differences are attributed to differences in the Prandtl number, as 
explained for the laminar case of the previous problem. However, turbulent diffusion dominates over laminar diffusion, and 
therefore the effect of Prandtl number is minimal. The thermal and momentum boundary layer thicknesses are nearly equal 
in both fluids since turbulent diffusion effects dominate laminar (molecular) diffusion effects, especially at high Re. 
 
Discussion Newer versions of FlowLab may give slightly different results. Mass (species), momentum (velocity), and 
energy (temperature) diffuse nearly equally in a turbulent flow since the large turbulent eddies cause rapid mixing through 
the boundary layer. Turbulence models do not actually calculate the details of the unsteady flow caused by these turbulent 
eddies; rather, they model the increased diffusion effects with approximations that enable the calculations to be performed 
in reasonable time on a computer. 

  

 
 
 
 
 
15-63 
Solution We are to calculate and plot pressure drop down a pipe with an elbow in turbulent flow.  
 

Analysis A plot of pressure as a function of axial distance along the upstream pipe, through the elbow, and through 
the downstream pipe is shown in Fig. 1. The pressure losses are nearly linear through the entrance region. In the elbow 
itself, and just downstream of it, the pressure drops rapidly. The rate of pressure drop in the pipe section downstream of the 
elbow is about the same as that upstream. Therefore, it appears that most of the pressure drop occurs near the region of the 
elbow. 
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Discussion Newer versions of FlowLab may give slightly different results.  

  

TABLE 1 
Nondimensional temperature and boundary 
layer thicknesses for a heated flat plate at  
Re = 1 × 107 , as predicted by CFD 
(turbulent flow, using the standard k-ε 
turbulence model). 
 

Fluid δT /L δu /L 
air 0.014527 0.014015
water 0.013162 0.014014

 
 
 
 
 
 
FIGURE 1 
Pressure along the axis of a pipe 
with an elbow at Re = 2 × 104, as 
predicted by CFD (turbulent flow, 
using the standard k-ε turbulence 
model). 
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15-64 
Solution We are to study the counter-rotating vortices in a turbulent pipe flow downstream of an elbow.  
 

Analysis Velocity vectors at several cross sections are plotted in Fig. 1. There are no counter-rotating eddies 
upstream of the elbow. However, they are formed as the fluid passes through the elbow, and are very strong just 
downstream of the elbow. These vortices decay in strength down the pipe after the elbow, but they persist for a very 
long time, and may influence the accuracy of flow meters downstream of an elbow. This is why many manufacturers of 
pipe flow meters recommend that their flow meter be installed at least 10 or 20 pipe diameters downstream of an elbow – to 
avoid influence of the counter-rotating eddies. 
 

 
Discussion The counter-rotating eddies lead to additional irreversible head loss as they dissipate.  

  

 
 
 
 
 
15-65 
Solution We are to calculate the minor loss coefficient through a pipe elbow in turbulent flow.  
 

Analysis The value of KL given in Chap. 8 is 0.30. For the pipe with the elbow, the pressure drop calculated by the 
CFD code is 0.284 kPa. For the straight pipe, the pressure drop is calculated to be 0.224 kPa. Subtracting these and 
converting to minor loss coefficient, the value of KL predicted by our CFD calculation for the standard k-ε turbulence model 
is 0.295 – a difference of less than two percent, and well within the accuracy of the Colebrook equation, which is about 
15%, and the accuracy of the tabulated minor loss coefficients, which is often much greater than 15%. This agreement is 
better than expected, considering that this is a very complex 3-D flow, and turbulence models may not necessarily apply for 
such problems. 
 
Discussion The agreement here is excellent – CFD does not always match so well with experiment, especially in 
turbulent flow when using turbulence models, since turbulence models are approximations that often lead to significant 
error.   

  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 1 
Velocity vector plots at several cross 
sections of a pipe with an elbow at Re = 2 × 
104, as predicted by CFD (turbulent flow, 
using the standard k-ε turbulence model). 
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15-66 
Solution We are to compare various turbulence models – how well they predict the minor loss in a pipe elbow.  
 

Analysis The results for four turbulence models are listed in Table 1. The standard k-ε turbulence model does the 
best job in predicting KL. The standard k-ω turbulence model does the worst job. The Spallart-Allmaras turbulence 
model calculations are not the worst, even though 
this is the simplest of the models. One would hope 
that the more complicated model (Reynolds stress 
model) would do a better job than the simpler 
models, but this is not the case in the present 
problem (it does worse than the k-ε model, but 
better than the other two. All turbulence models 
are approximations, with calibrated constants. 
While one model may do a better job in a certain 
flow, it may not do such a good job in another 
flow. This is the unfortunate state of affairs 
concerning turbulence models. 
 
Discussion Newer versions of FlowLab may give slightly different results. Although the RSM model does not seem to 
be too impressive based on this comparison, keep in mind that this is a very simple flow field. There are flows (generally 
flows of very complex geometries and rotating flows) for which the RSM model does a much better job than any 1-  or 2-
equation turbulence model, and is worth the required increase in computer resources. 

  

 
 
15-67 
Solution We are to use CFD to calculate the lift and drag 
coefficients on an airfoil as a function of angle of attack.  
 

Analysis The CFD analysis involves turbulent flow, using the 
standard k-ε turbulence model. The results are tabulated and plotted. 
The lift coefficient rises to 1.44 at α = 14o, beyond which the lift 
coefficient drops off. So, the stall angle is about 14o. Meanwhile, 
the drag coefficient increases slowly up to the stall location, and then 
rises significantly after stall.  

 
 
 
 
 
 
 

Discussion We note that this airfoil is not symmetric, as can be verified by the fact that the lift coefficient is nonzero at 
zero angle of attack. The lift coefficient does not drop as dramatically as is observed empirically. Why? The flow becomes 
unsteady for angles of attack beyond the stall angle. However, we are performing steady calculations. For higher angles, the 
run does not even converge; the CFD calculation is stopped because it has exceeded the maximum number of allowable 
iterations, not because it has converged. Thus the main reason for not capturing the sudden drop in CL after stall is because 
we are not accounting for the transient nature of the flow. The airfoil used in these calculations is called a ClarkY airfoil. 

  

TABLE 1 
Minor loss coefficient as a function of turbulence model for flow 
through a 90o elbow in a pipe. The error is in comparison to the 
experimental value of 0.30. 
 

Turbulence model KL Error (%) 
Spallart-Allmaras (1 eq.) 0.204 -32% 
k-ε (2 eq.) 0.295 -1.7% 
k-ω (2 eq.) 0.401 34% 
Reynolds stress model (7 eq.) 0.338 13% 
   

 

 

α (degrees) CL CD 
-2 0.138008 0.0153666
0 0.348498 0.0148594
2 0.560806 0.0149519
4 0.769169 0.0170382
5 0.867956 0.0192945
6 0.967494 0.0210042
8 1.14544 0.0275433

10 1.29188 0.0375832
12 1.39539 0.0522318
14 1.44135 0.0725146
16 1.41767 0.100056
18 1.34726 0.140424
20 1.29543 0.274792
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15-68 
Solution We are to analyze the effect of Reynolds number on 
lift and drag coefficient.  
 

Analysis The CFD analysis involves turbulent flow, using the 
standard k-ε turbulence model. For this airfoil, which is different 
than the airfoil analyzed in the previous problem, and for the case in 
which Re = 3 × 106, the lift coefficient rises to about 1.77 at about 
18o, beyond which the lift coefficient drops off (see the first table). 
So, the stall angle is about 18o. Meanwhile, the drag coefficient 
increases slowly up to the stall location, and then rises significantly 
after stall. The data are also plotted below. 

 
For the case in which Re = 6 × 106, lift 
coefficient rises to about 1.86 at about 20o, 
beyond which the lift coefficient drops off (see 
the second table). So, the stall angle is about 
20o. Meanwhile, the drag coefficient increases 
slowly up to the stall location, and then rises 
significantly after stall. These data are also 
plotted. 

 
The maximum lift coefficient and the stall angle have both increased somewhat 
compared to those at Re = 3 × 106 (half the Reynolds number). Apparently, the 
higher Reynolds number leads to a more vigorous turbulent boundary layer 
that is able to resist flow separation to a greater downstream distance than for 
the lower Reynolds number case. For all angles of attack, the drag coefficient 
is slightly smaller for the higher Reynolds number case, reflecting the fact that 
the skin friction coefficient decreases with increasing Re along a wall, all else 
being equal. [Airfoil drag (before stall) is due mostly to skin friction rather 
than pressure drag.] 

Finally, we plot the lift coefficient as a function of angle of attack for 
the two Reynolds numbers. The airfoil clearly performs better at the higher 
Reynolds number. 
 
Discussion The behavior of the lift and drag coefficients beyond stall is not 
as dramatic as we might have expected. Why? The flow becomes unsteady for 
angles of attack beyond the stall angle. However, we are performing steady 
calculations. For higher angles, the run does not even converge; the CFD calculation is stopped because it has exceeded the 

Re = 3 × 106 
 

α (degrees) CL CD 
0 0.221797 0.0118975
4 0.65061 0.0166523
6 0.858744 0.0212052
8 1.05953 0.0273125

10 1.2501 0.0351061
12 1.42542 0.0447038
14 1.57862 0.0562746
16 1.69816 0.0702321
18 1.76686 0.0875881
20 1.75446 0.111326
22 1.70497 0.178404

Re = 6 × 106 
 

α (degrees) CL CD 
0 0.226013 0.0106894
4 0.659469 0.015384
6 0.870578 0.0198087
8 1.07512 0.0256978
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maximum number of allowable iterations, not because it has converged. Thus the main reason for not capturing the sudden 
drop in CL after stall is because we are not accounting for the transient nature of the flow. We note that the airfoil used in 
this problem (a NACA2415 airfoil) is different than the one used in Problem 15-67 (a ClarkY airfoil). Comparing the two, 
the present one has better performance (higher maximum lift coefficient and higher stall angle, even though the Reynolds 
numbers here are lower than that of Problem 15-67. At higher Re, this airfoil may perform even better. 

  

 
 
15-69 
Solution We are to examine the effect of grid resolution on airfoil stall at a given angle of attack and Reynolds 
number.  
 

Analysis The CFD results are shown in Table 1 for the case in 
which the airfoil is at a 15o angle of attack at a Reynolds number of 1 
× 107. The lift coefficient levels off to a value of 1.44 to three 
significant digits by a cell count of about 17,000. The drag coefficient 
levels off to a value of 0.849 to three significant digits by a cell count 
of about 22,000. Thus, we have shown how far the grid must be 
refined in order to achieve grid independence. Thus, we have 
achieved grid independence for a cell count greater than about 
20,000.  
 As for the effect of grid resolution on stall angle, we see that 
with poor grid resolution, flow separation is not predicted accurately. 
Indeed, when the grid resolution is poor (under 10,000 cells in this 
particular case), stall is not observed even though the angle of attack 
(15o) is above the stall angle (14o) for this airfoil at this Reynolds 
number (1 × 107). When the cell count is about 15,000, however, stall 
is observed. Thus, yes, grid resolution does affect calculation of the 
stall angle – it is not predicted well unless the grid is sufficiently 
resolved. 
 
Discussion Newer versions of FlowLab may give slightly different results.  

  

 
 
 

15-70 
Solution We are to study the effect of computational domain extent on 
the calculation of drag in creeping flow.  
 

Analysis The drag coefficient is 
listed as a function of R/L in the table. The 
data are also plotted. From these data we 
see that for R/L greater than about 50, the 
drag coefficient has leveled off to a value 
of about 278 to three significant digits. 
This is rather surprising since the 
Reynolds number is so small, and the 
viscous effects are expected to influence 
the flow for tens of body lengths away from the body. 
 
Discussion When analyzing creeping flow using CFD, it is important to 
extend the computational domain very far from the object of interest, since 
viscous effects influence the flow very far from the object. This effect is not 
as great at high Reynolds numbers, where the inertial terms dominate the 
viscous terms.  

  

TABLE 1 
Lift and drag coefficients as a function of 
cell count (higher cell count means finer 
grid resolution) for the case of flow over a 
2-D airfoil at an angle of attack of 15o and 
Re = 1 × 107. 
 

Cells CL CD 
672 1.09916 0.242452

1344 1.00129 0.224211
2176 1.06013 0.196212
6264 1.02186 0.189023

12500 1.42487 0.0869799
16800 1.4356 0.0857791
21700 1.43862 0.0848678
24320 1.43719 0.0852304
27200 1.43741 0.0854769

 

R/L CD 
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10 289.152
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15-71 
Solution We are to study the 
effect of Reynolds number on flow 
over an ellipsoid.  
 

Analysis The velocity profile 
for creeping flow (Re < 1) shows a 
very slowly varying velocity from 
zero at the wall to V eventually. At 
high Re, we expect a thin boundary 
layer and flow that accelerates 
around the body. However, in 
creeping flow, there is negligible 
inertia, and the flow does not 
accelerate around the body. Instead, 
the body has significant impact on the flow to distances very far from the 
body. As Re increases, the drag coefficient drops sharply, as expected 
based on experimental data (see Chap. 11). At the higher values of Re 
(here, for Re = 50 and 100), inertial effects are becoming more 
significant than viscous effects, and the velocity flow disturbance caused 
by the body is confined more locally around the body compared to the 
lower Reynolds number cases. If Re were to be increased even more, 
very thin boundary layers would develop along the walls. The data are 
also plotted in Fig. 1. The drop in drag coefficient with increasing Reynolds number is quite dramatic as Re ranges from 0.1 
to 100. (CD decreases from more than 500 to nearly 1 in that range). Thus, we use a log-log scale in Fig. 1. 
 
Discussion Newer versions of FlowLab may give slightly different results.  
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FIGURE 1 
Drag coefficient plotted as a function of 
Reynolds number for creeping flow over a 
2×1 ellipsoid. 

TABLE 1 
Drag coefficient as a function 
of Reynolds number for flow 
over a 2×1 ellipsoid. 
 

Re CD 
0.1 552.89
0.5 114.634

5 14.3342
20 4.89852
50 2.61481

100 1.691
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General CFD Problems 
 
 
 
 
15-72 
Solution We are to generate three different coarse grids for the same 
geometry and node distribution, and then compare the cell count and grid 
quality. 
 
Analysis The three meshes are shown in Fig. 1. The node distributions 
along the edges of the computational domain are identical in all three cases, 
and no smoothing of the mesh is performed. The structured multi-block 
mesh is shown in Fig. 1a. We split the domain into four blocks for 
convenience, and to achieve cells with minimal skewing. There are 1060 
cells. The unstructured triangular mesh is shown in Fig. 1b. There is only 
one block, and it contains 1996 cells. The unstructured quad mesh is shown 
in Fig. 1c. It has 833 cells in its one block. Comparing the three meshes, the 
triangular unstructured mesh has too many cells. The unstructured quad 
mesh has the least number of cells, but the clustering of cells occurs in 
undesirable locations, such as at the outlets on the right. The structured quad 
mesh seems to be the best choice for this geometry – it has only about 27% 
more cells than the unstructured quad mesh, but we have much more control 
on the clustering of the cells. Skewness is not a problem with any of the 
meshes. 
 
 
 
 
 
 
 
 

 
Discussion Depending on the grid generation software and the specified node distribution, students will get a variety of 
results. 

  

 
 

FIGURE 1 
Comparison of three meshes: (a) structured 
multiblock, (b) unstructured triangular, and (c) 
unstructured quadrilateral. 

 

(c) 

(a) 

(b) 
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15-73 
Solution We are to run a laminar CFD calculation of flow through a wye, calculate the pressure drop and how the 
flow splits between the two branches. 
 

Analysis We choose the structured grid for our CFD calculations. 
The back pressure at both outlets is set to zero gage pressure, and the 
average pressure at the inlet is calculated to be -8.74 × 10-5 Pa. The 
pressure drop through the wye is thus only 8.74 × 10-5 Pa (a negligible 
pressure drop). The streamlines are shown in Fig. 1. For this case, 57.8% 
of the flow goes out the upper branch, and 42.2% goes out the lower 
branch.  
 

Discussion There appears to be some tendency for the flow to 
separate at the upper left corner of the branch, but there is no reverse flow 
at the outlet of either branch. This case is compared to a turbulent flow 
case in the following problem. 

  

 
 

15-74 
Solution We are to run a turbulent CFD calculation of flow through a wye, calculate the pressure drop and how the 
flow splits between the two branches. 
 

Analysis We choose the structured grid for our CFD calculations. 
The back pressure at both outlets is set to zero gage pressure, and the 
average pressure at the inlet is calculated to be -3.295 Pa. The pressure 
drop through the wye is thus 3.295 Pa (a significantly higher pressure 
drop than that of the laminar flow, although we note that the inlet 
velocity for the laminar flow case was 0.002 times that of the turbulent 
flow case). The streamlines are shown in Fig. 1. For this case, 54.4% of 
the flow goes out the upper branch, and 45.6% goes out the lower 
branch. Compared to the laminar case, a greater percentage of the flow 
goes out the lower branch for the turbulent case. The streamlines at first 
look similar, but a closer look reveals that the spacing between 
streamlines in the turbulent case is more uniform, indicating that the 
velocity distribution is also more uniform (more “full”), as is expected 
for turbulent flow. 
 

Discussion There appears to be some tendency for the flow to separate at the upper left corner of the branch, but there 
is no reverse flow at the outlet of either branch. 

  

 
 

15-75 
Solution We are to keep refining a grid until it becomes grid independent for the case of a laminar boundary layer.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, and their choice of 
computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 

15-76 
Solution We are to keep refining a grid until it becomes grid independent for the case of a turbulent boundary layer.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
Upper branch

Lower branch 

 
 

FIGURE 1 
Streamlines for laminar flow through a wye. 

 
Upper branch

Lower branch 

 
 

FIGURE 1 
Streamlines for turbulent flow through a 
wye. The k-ε turbulence model is used. 
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15-77 
Solution We are to study ventilation in a simple 2-D room using CFD, and using a structured rectangular grid.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, and their choice of 
computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
15-78 
Solution We are to repeat the previous problem except use an unstructured grid, and we are to compare results.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
15-79 
Solution We are to use CFD to analyze the effect of moving the supply and/or return vents in a room.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
15-80 
Solution We are to use CFD to analyze a simple 2-D room with air conditioning and heat transfer.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
15-81 
Solution We are to compare the CFD predictions for 2-D and 3-D ventilation.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 
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15-82 
Solution We are to use CFD to study compressible flow through a converging nozzle with inviscid walls. 
Specifically, we are to vary the pressure until we have choked flow conditions.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, and their choice of 
computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-83 
Solution We are to repeat the previous problem, but allow friction at the wall, and also use a turbulence model. We 
are then to compare the results to those of the previous problem to see the effect of wall friction and turbulence on the flow.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-84 
Solution We are to generate a low-drag, streamlined, 2-D body, and try to get the smallest drag in laminar flow.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, and their choice of 
computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-85 
Solution We are to generate a low-drag, streamlined, axisymmetric body, and try to get the smallest drag in laminar 
flow. We are also to compare the axisymmetric case to the 2-D case of the previous problem. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-86 
Solution We are to generate a low-drag, streamlined, axisymmetric body, and try to get the smallest drag in turbulent 
flow. We are also to compare the turbulent drag coefficient to the laminar drag coefficient of the previous problem. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 
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15-87 
Solution We are to use CFD to study Mach waves in supersonic flow. We are also to compare the computed Mach 
angle with that predicted by theory.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, and their choice of 
computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
15-88 
Solution We are to study the effect of Mach number on the Mach angle in supersonic flow, and we are to compare to 
theory.  
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
 
Review Problems 
 
 
 
15-89C 
Solution  
(a) False: If the boundary conditions are not correct, if the computational domain is not large enough, etc., the solution can 

be erroneous and nonphysical no matter how fine the grid. 
(b) True: Each component of the Navier-Stokes equation is a transport equation. 
(c) True: The four-sided cells of a 2-D structured grid require less cells than do the triangular cells of a 2-D unstructured 

grid. (Note however, that some unstructured cells can be four-sided as well as three-sided.) 
(d) True: Turbulence models are approximations of the physics of a turbulent flow, and unfortunately are not universal in 

their application. 
  

 
 
 
15-90C 
Solution We are to discuss right-left symmetry as applied to a CFD simulation and to a potential flow solution.  
 
Analysis In the time-averaged CFD simulation, we are not concerned about top-bottom fluctuations or periodicity. 
Thus, top-bottom symmetry can be assumed. However, fluid flows do not have upstream-downstream symmetry in general, 
even if the geometry is perfectly symmetric fore and aft. In the problem at hand for example, the flow in the channel 
develops downstream. Also, the flow exiting the left channel enters the circular settling chamber like a jet, separating at the 
sharp corner. At the opposite end, fluid leaves the settling chamber and enters the duct more like an inlet flow, without 
significant flow separation. We certainly cannot expect fore-aft symmetry in a flow such as this. 
 On the other hand, potential flow of a symmetric geometry yields a symmetric flow, so it would be okay to cut our 
grid in half, invoking fore-aft symmetry. 
 
Discussion If unsteady or oscillatory effects were important, we should not even specify top-bottom symmetry in this 
kind of flow field. 
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15-91C 
Solution We are to discuss improvements to the given computational domain.  
 
Analysis (a) Since Gerry is not interested in unsteady fluctuations (which may be unsymmetric), he could eliminate 
half of the domain. In other words, he could assume that the axis is a plane of symmetry between the top and bottom 
of the channel. Gerry’s grid would be cut in size by a factor of two, leading to approximately half the required CPU time, 
but yielding virtually identical results. 
 

(b) The fundamental flaw is that the outflow boundary is not far enough downstream. There will likely be flow 
separation at the corners of the sudden contraction. With a duct that is only about three duct heights long, it is possible that 
there will be reverse flow at the outlet. Even if there is no reverse flow, the duct is nowhere near long enough for the flow 
to achieve fully developed conditions. Gerry should extend the outlet duct by many duct heights to allow the flow to 
develop downstream and to avoid possible reverse flow problems. 
 
Discussion The inlet appears to be perhaps too short as well. If Gerry specifies a fully developed channel flow velocity 
profile at the inlet, his results may be okay, but again it is better to extend the duct many duct heights beyond what Gerry 
has included in his computational domain. 

  

 
 
 

15-92C 
Solution We are to discuss a feature of modern computer systems for which nearly equal size multiblock grids are 
desirable. 
 
Analysis The fastest computers are multi-processor computers. In other words, the computer system contains more 
than one CPU – a parallel computer. Modern parallel computers may combine 32, 64, 128, or more CPUs or nodes, all 
working together. In such a situation it is natural to let each node operate on one block. If all the nodes are identical (equal 
speed and equal RAM), the system is most efficient if the blocks are of similar size. 
 
Discussion In such a situation there must be communication between the nodes. At the interface between blocks, for 
example, information must pass during the CFD iteration process. 

  

 
 
 

15-93C 
Solution We are to discuss the difference between multigridding and multiblocking, and we are to discuss how they 
may be used to speed up a CFD calculation. Then we are to discuss whether multigridding and multiblocking can be 
applied together. 
 
Analysis Multigridding has to do with the resolution of an established grid during CFD calculations. With 
multigridding, solutions of the equations of motion are obtained on a coarse grid first, followed by successively finer 
grids. This speeds up convergence because the gross features of the flow are quickly established on the coarse grid (which 
takes less CPU time), and then the iteration process on the finer grid requires less time. 
 Multiblocking is something totally different. It refers to the creation of two or more separate blocks or zones, 
each with its own grid. The grids from all the blocks collectively create the overall grid. As discussed in the previous 
problem, multiblocking can have some speed advantages if using a parallel-processing computer. In addition, some CFD 
calculations would require too much RAM if the entire computational domain were one large block. In such cases, the grid 
can be split into multiple blocks, and the CFD code works on one block at a time. This requires less RAM, although 
information from the dormant blocks must be stored on disk or solid state memory chips, and then swapped into and out of 
the computer’s RAM. 
 There is no reason why multigridding cannot be used on each block separately. Thus, multigridding and 
multiblocking can be used together. 
 
Discussion Although all the swapping in and out requires more CPU time and I/O time, for large grids multiblocking 
can sometimes mean the difference between being able to run and not being able to run at all. 

  

 



Chapter 15 Computational Fluid Dynamics 

15-57 
PROPRIETARY MATERIAL. © 2006 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and 
educators for course preparation.  If you are a student using this Manual, you are using it without permission. 

15-94C 
Solution We are to discuss why we should spend a lot of time developing a multiblock structured grid when we 
could just use an unstructured grid.  
 
Analysis There are several reasons why a structured grid is “better” than an unstructured grid, even for a case in 
which the CFD code can handle unstructured grids. First of all the structured grid can be made to have better resolution 
with fewer cells than the unstructured grid. This is important if computer memory and CPU time are of concern. 
Depending on the CFD code, the solution may converge more rapidly with a structured grid, and the results may be 
more accurate. In addition, by creating multiple blocks, we can more easily cluster cells in certain blocks and locations 
where high resolution is necessary, since we have much more control over the final grid with a structured grid. 
 
Discussion As mentioned in this chapter, time spent creating a good grid is usually time well spent. 

  

 
 
 
 
15-95 
Solution  We are to calculate flow through a single-stage heat exchanger. 
 
Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
 
15-96 
Solution  We are to study the effect of heating element angle of attack on heat transfer through a single-stage heat 
exchanger. 
 
Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 
 
15-97 
Solution  We are to calculate flow through a single-stage heat exchanger. 
 
Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 
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15-98 
Solution  We are to study the effect of heating element angle of attack on heat transfer through a two-stage heat 
exchanger. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-99 
Solution  We are to study the effect of spin on a cylinder using CFD, and in particular, analyze the lift force. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-100 
Solution  We are to study the effect of spin speed on a spinning cylinder using CFD, and in particular, analyze the lift 
force as a function of rotational speed in nondimensional variables. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-101 
Solution  We are to study flow into a slot along a wall using CFD. 
 

Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 

Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 

  

 
 
 

15-102 
Solution We are to calculate laminar flow into a 2-D slot, compare with irrotational flow theory, and with results of 
the previous problem, and discuss the vorticity field. 
 

Assumptions 1 The flow is steady and 2-D. 2 The flow is laminar.  
 

Analysis The flow field does not change much from the previous problem, except that a thin boundary layer shows 
up along the floor. The vorticity is confined to a region close to the floor – vorticity is negligibly small everywhere else, so 
the irrotational flow approximation is appropriate everywhere except close to the floor. 
 

Discussion The irrotational flow approximation is very useful for suction-type flows, as in air pollution control 
applications (hoods, etc.). 
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15-103 
Solution  We are to model the flow of air into a vacuum cleaner using CFD, and we are to compare the results to 
those obtained with the potential flow approximation. 
 
Analysis We must include a second length scale in the problem, 
namely the width w of the vacuum nozzle. For the CFD calculations, we 
set w = 2.0 mm and place the inlet plane of the vacuum nozzle at b = 2.0 
cm above the floor (Fig. 1). Only half of the flow is modeled since we 
can impose a symmetry boundary condition along the y-axis. We use the 
same volumetric suction flow rate as in the example problem, i.e., 

/ 0.314L =V  m2/s, but in the CFD analysis we specify only half of this 
value since we are modeling half of the flow field. 
 Results of the CFD calculations are shown in Fig. 2. Fig. 2a 
shows a view of streamlines in the entire computational plane. Clearly, 
the streamlines far from the inlet of the nozzle appear as rays into the 
origin; from “far away” the flow feels the effect of the vacuum nozzle in 
the same way as it would feel a line sink. In Fig. 2b is shown a close-up 
view of these same streamlines. Qualitatively, the streamlines appear 
similar to those predicted by the irrotational flow approximation. In Fig 
2c we plot contours of the magnitude of vorticity. Since irrotationality is 
defined by zero vorticity, these vorticity contours indicate where the 
irrotational flow approximation is valid – namely in regions where the 
magnitude of vorticity is negligibly small.  
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We see from Fig. 2c that vorticity is negligibly small everywhere in the flow field 
except close to the floor, along the vacuum nozzle wall, near the inlet of the nozzle, and inside the nozzle duct. In these 
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FIGURE 1 
CFD model of air being sucked into a 
vertical vacuum nozzle; the y-axis is a line 
of symmetry (not to scale –the far field is 
actually much further away from the nozzle 
than is sketched here). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 
CFD calculations of flow into 
the nozzle of a vacuum cleaner; 
(a) streamlines in the entire flow 
domain, (b) close-up view of 
streamlines, (c) contours of 
constant magnitude of vorticity 
illustrating regions where the 
irrotational flow approximation 
is valid, and (d) comparison of 
pressure coefficient with that 
predicted by the irrotational flow 
approximation. 
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regions, net viscous forces are not small and fluid particles rotate as they move; the irrotational flow approximation is not 
valid in these regions. Nevertheless, it appears that the irrotational flow approximation is valid throughout the majority of 
the flow field. Finally, the pressure coefficient predicted by the irrotational flow approximation is compared to that 
calculated by CFD in Fig. 2d. 
 
Discussion For x* greater than about 2, the agreement is excellent. However, the irrotational flow approximation is not 
very reliable close to the nozzle inlet. Note that the irrotational flow prediction that the minimum pressure occurs at x* ≈ 1 
is verified by CFD. 

  

 
 
 
 
 
15-104 
Solution  We are to compare CFD calculations of flow into a vacuum cleaner for the case of laminar flow versus the 
inviscid flow approximation. 
 
Analysis Students will have varied results, depending on the grid generation code, CFD code, turbulence model, and 
their choice of computational domain, etc. 
 
Discussion Instructors can add more details to the problem statement, if desired, to ensure consistency among the 
students’ results. 
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