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Preface

This project grew out of the 1973 master’s thesis that Ágoston Németh, a student of
András Prékopa at the Technical University of Budapest, wrote on the problem of
optimal power dispatch from producers to consumers. It was read by Béla Potecz,
Deputy Director of the Hungarian National Power Dispatch Center, and the three of
us decided to create a suitable model for optimal daily power generation in Hungary.
We were able to secure financial support from the National Power Company and
launched the project at the Computer and Automation Institute of the Hungarian
Academy of Sciences, where András Prékopa served as Director of the Department
of Operations Research (which in 1977 became part of the larger Department of
Applied Mathematics under the leadership of András Prékopa).

The first model with a solution algorithm and computer code was ready in
1979, but it was a failure. It ran successfully on a small network of ten nodes,
but the Hungarian power network had 170 nodes. The data also contained many
inaccuracies, and the solutions to load flow subproblems were slow and required
enhancements.

Our ambition was to handle simultaneously, in one model, the unit commitment
and the distribution problem in a given network, taking into account the physics of
the transmission network. This resulted in a large-scale, nonlinear, mixed-variable,
decomposition-type optimization problem whose solution was still unrealistic given
the state of computer technology in the late 1970s and early 1980s. Size reduction
was needed, which resulted in the introduction of the concept of mode of operation.
This meant grouping the generators, and those in one group were supposed to be
in operation or in standstill position simultaneously. The problem of the modified
model was solved by subsequent uses of a modified Benders decomposition on
an IBM 3031 computer. The solution that provided us with the optimal daily
scheduling of power generation in Hungary took only 2 min. A day was subdivided
into 26 periods, and a very accurate power demand forecast, developed separately
by another team in the same Institute, was used.

Many years have passed since the first successful solution, and the methodology
from that period was used by the National Power Dispatch Center for some time.
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vi Preface

Currently the power plants have many owners, and hence application of the model
is difficult, but negotiations are under way regarding its use or modification. We are
convinced that the summary of our project presented in this book can still be useful.

Our model belongs to the class of security-constrained unit commitment (SCUC)
models that provide an extension of traditional unit commitment models by incorpo-
rating security constraints with respect to power flow along a transmission network.
A bibliographical survey for the 35 years up to 2003 [54] showed that the first SCUC
model that included constraints on the voltages at the nodes of the transmission
network was proposed and numerically tested by Ma and Shahidehpour [47].
This model contained two separate subproblems for real and reactive power flow
constraints. A simplified model with a single subproblem was presented in [24].
From an algorithmic point of view, the main idea is to apply Benders’ decomposition
with subproblems corresponding to the power flow component. For large-scale
power systems, further developments related to the SCUC model with voltage
constraints, as well as the application of the Benders decomposition algorithm, can
be found in [49], [23], and [73, 74]. Regarding solution algorithms for the optimal
power flow problem, we refer the reader to [21, 22] for extensive bibliographical
surveys.

A distinguishing feature of our SCUC model is that in addition to production,
startup, shutdown, and changeover costs, a term representing transmission losses
is also included in the objective function, and this term is present in the supply
constraints as well. The majority of papers in this field focus on either a power
systems engineering or operations research approach. A second distinguishing
feature of our book is that it combines insights from power systems engineering and
operations research, both for building a model and for the development of a solution
algorithm. By providing sufficient details, we aim to make the book accessible to
readers from both fields and to graduate students.

In this book we assume that the transmission network topology does not change
across the scheduling period. However, system reliability and performance can be
improved by switching transmission lines on or off. Recent research has suggested
that network topology, in connection with the availability of transmission lines,
and power generation should be optimized simultaneously; see [53] and references
therein. In emergency situations, or to avoid such situations, it may be necessary
or advisable to split the transmission network into self-sufficient subnetworks,
called islands. In [20] the authors propose a mixed-variable model for the optimal
formation of such islands.

The subject of our book is short-term power generation scheduling, with the goal
of operating existing generating and electric apparatus as a whole at an optimal
level. For long-term power system planning, see the survey paper [25].

We do not intend to include all details acquired in the course of the project but
rather concentrate on the developed mathematical model and its numerical solution.
What follows is a brief summary of the contents of the book.

In Chap. 1 we summarize the most important knowledge concerning electric
power systems and formulate the problem from a physical point of view.



Preface vii

In Chap. 2 we disregard the special properties of the Hungarian power system
and formulate a general model for scheduling daily power generation by thermal
power plants and transmitting power to consumers through a given transmission
system. Integer variables represent modes of operation, and constraints representing
the network are included.

In Chap. 3 simplifying hypotheses are introduced. They play an important role
in the specialized problem, the optimal daily scheduling of power generation in
Hungary, and allow for a fast computerized solution of the problem.

A detailed description of the simplified model is presented in Chap. 4. The special
forms of the objective function and the coefficient matrix of the linear constraints
are presented.

Finally, in Chap. 5 a detailed numerical solution of the problem is presented. It
is based on Benders’ decomposition. Nonlinear constraints are linearized at some
working point, and then the specially structured linear programming problem is
solved by the aforementioned decomposition. Heuristics is used to find the next
feasible working point.

The comprehensive appendix summarizes basic information about transmission
networks in electric power systems. There are several approaches to mathematically
describing transmission systems, and we have created our own version.

The book is largely based on the paper [12]. The references [10, 11] represents
brief accounts of the main model, while [38] presents the first, albeit incomplete,
model formulation.

In addition to the authors of this book, several other researchers participated in the
project for shorter periods of time, providing us with help in designing algorithms,
coding, and collecting data. We acknowledge the contributions of János Fülöp,
Gerzson Kéri, László Sparing, Piroska Turchányi, and Béla Vizvári.

Piscataway, NJ, USA András Prékopa
Zurich, Switzerland János Mayer
Budapest, Hungary Beáta Strazicky
Budapest, Hungary István Deák
Budapest, Hungary János Hoffer
Budapest, Hungary Ágoston Németh
Budapest, Hungary Béla Potecz
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Chapter 1
Control of Electric Power Systems

1.1 General Characteristics of Electric Power Systems

An electric power system is a combination of power-producing units, transmission
lines, international cooperation, transformers, and a distribution network supplying
customers with power under joint supervision and control.

The development of the system and its further modifications according to
customers’ long-term needs is the task of system planning. The task of generation
control is, however, to operate the existing generating and electric apparatus as a
whole at an optimal level.

This book is related to the subject of central generation control, which must meet
the following main requirements:

1. The time-varying demand for active and reactive power must be met. The energy
corresponding to active power cannot be stored in the system. This demand
passes through the network in microseconds and manifests itself at the power
plant generators. Fortunately, due to the composition of consumption, the power
demand can be considered constant on the time scale of 1 min, and this is much
larger than the reaction time of the controllers of the generators. The small
fluctuations corresponding to time intervals shorter than 1 min are compensated
by these devices. An additional characteristic of the system is that the production
side has hardly any influence on consumption, which manifests itself for the
production as an external factor.

2. Generated power should also comply with the quality requirements of a technical
nature.

• The frequency of the alternating current may only deviate from the nominal
value (50 Hz) within a prescribed tolerance range. This is a significant factor
with regard to the operation and stability of a system since in power plants
power is generated by synchronous generators. In addition, some power
consumption devices (synchronous motors, electric clocks, railway safety
devices) are also calibrated for nominal frequency.

A. Prékopa et al., Scheduling of Power Generation, Springer Series in Operations
Research and Financial Engineering, DOI 10.1007/978-3-319-07815-1__1,
© Springer International Publishing Switzerland 2014
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2 1 Control of Electric Power Systems

• The voltages in a basic network must be within prescribed limits in order to
have the voltage fluctuation within the tolerance range for power-consuming
devices that are calibrated for a nominal voltage.

• The power supply must be continuous. An overload of a dangerous size
should not occur, either in power generation or in the network apparatus. The
daily configuration of the system must be devised such that any incidental
breakdown can cause only minor damage.

• The international power exchange may differ from the scheduled values
(determined by contracts) only within the tolerance range.

• Environmental pollution as a side effect should be minimized.

3. Production costs should be minimized.

Under these constraints, varying power demands can only be satisfied if the
controllable quantities of the system, above all the amount of power injected into the
network by power plants, are continually adjusted by operations control. Apart from
this, operations control must determine in each of the periods the most appropriate
values of the other variable system parameters, such as setting the position of tap-
changing transformers, give orders to start up or shut down capacitors and shunt
reactors, or change the network configuration. Concerning the devices mentioned,
see Sect. 1.2.3 and Sect. A.2 of appendix.

Some of the foregoing questions are addressed in more detail in what follows.

1.1.1 Power Balance

The basic task of operations control is to satisfy the actual active and reactive power
demand of consumers. Denoting the number of the nodes of the network by N
(Sect. A.2 of appendix) and considering the networks up to the cutoff points of
the international transmission lines, the following equations express the balance of
generated and consumed power:

NX

iD1
PGi C

NX

iD1
PTi D

NX

iD1
PDi CP�; (1.1.1)

NX

iD1
QGi C

NX

iD1
QTi C

NX

iD1
QKi C

NX

iD1
QCi �

NX

iD1
QLi D

NX

iD1
QDi CQ�: (1.1.2)

Equation (1.1.1) expresses the active power balance, whereas Eq. (1.1.2) expresses
the reactive power balance. The applied notations are as follows (with index i
indicating the serial numbers of the nodes):
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PGi ;QGi D injection of active and reactive power by power plants;

PTi ;QTi D all active and reactive power arriving at connection points to

international transmission lines;

PDi ;QDi D active and reactive power demand of consumers;

QKi D reactive power generated by synchronous condensers;

QCi D reactive power generated by capacitances of transmission lines and

by shunt condensers;

QLi D reactive power consumption by shunt reactors;

P�;Q� D overall loss of active respectively reactive power in

transmission system.

The basic task of operations control is to choose the changeable parameters of
the system in a such way that

(a) Eqs. (1.1.1) and (1.1.2) hold;
(b) The constraints listed at the beginning of Sect. 1.1 are satisfied;
(c) Parameter values are chosen from the set restricted by (a) and (b) that are the

“most adequate” with respect to the whole system;
(d) The “most adequate” combination of changeable quantities and parameters is

implemented at the right moment and the system is maintained in this state
until the implementation of a new parameter setting becomes necessary.

The following questions have not yet received a definitive answer: how detailed
should the mathematical model of an electric power system be and what criteria are
needed to determine the so-called best combination of the regulated quantities and at
the same time the best combination of system state characteristic quantities? Obvi-
ously, the direction of research will be greatly influenced by the experience gained
with present electric power systems. For example, typically, greater breakdowns are
followed by critical investigations of the existing operations control strategy.

An overall global optimization that takes into account the effect of all regulated
quantities on all characteristic quantities of system states, especially if, beyond the
usual constraints and economic efficiency aspects, it includes criteria concerning
operation safety regulations, will constitute a very complex large-scale nonlinear
problem. In principle, this problem may include statistical considerations, too.
In the 1-day generation control problem, the influence of random effects can be
disregarded in a first approximation, provided that the power demand is predicted
with reasonable accuracy. In this book, an attempt is made to provide a deterministic
formulation of the problem: a mixed-variable (discrete-continuous) model is built
(Chap. 2).



4 1 Control of Electric Power Systems

1.1.2 Basic Elements of Present Generation Control Strategy

The present methods of generation control subdivide the task into more or less
mutually independent separate subtasks, the latter themselves containing further
simplifications.

The most common separation is based on the recognition that the active power
balance, expressed in (1.1.1), is to a great extent independent of the reactive power
and voltage conditions (Sect. A.4 of appendix). Therefore, the control of the active
power and frequency can be separated from the control of the reactive power and
voltage. The first one is often called (P –f ) control, whereas the latter is called
(Q–V ) control. Their separability is highly supported by the practical aspect that
opportunities for interference with power plants can also be decoupled accordingly:
PGi production can be altered by modifying the basic signs of the turbine controllers
(primary controllers), while QGi injection can be changed by modifying the basic
signs of the voltage controllers of generators.

Of the two types of control, (P –f ) control is the primary task because its
economic effects are more obvious and because in modern power plants the
tolerance range for the frequency is prescribed very strictly (in general, the tolerance
in a normal mode of operation is ˙0:1%). To illustrate the mechanism of frequency
control in a power plant, let us suppose that active power demand is decreasing
somewhat at a certain time. Then the speed of rotation of the generator and the
A.C. frequency increase to a certain extent as the torque generated by the turbine
still corresponds to the earlier higher demand. The steam valve control mechanism
of the turbine senses this increase and consequently decreases the amount of steam
entering the turbine. In due course, the torque and the speed of rotation decrease, and
the generator transmits less active power. As a result, a new dynamic equilibrium
emerges.

The frequency control of the network is carried out in a way that (apart from those
power plants in which the steam valve control mechanism of turbines with small
reaction times are in operation) all the power plants inject active and reactive power
in accordance with the schedule. Frequency control is performed by the selected
power plants through their injection of active power.

In a normal mode of operation, system-level (Q–V ) control is generally given
less attention. On the one hand, practically no production costs arise in connection
with reactive power production respectively consumption; it plays only a minor
economic role by slightly modifying transmission losses. On the other hand, when
network voltages deviate from the nominal values, the tolerance level is at least
˙5%, and quite often a deviation of ˙10% is still permitted. However, (Q–V )
control may play a significant role in restoring normal system operation during
breakdowns.

In the sequel, generation control should always be understood as active power
generation control.
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1.1.3 Central Generation Control

Due to the complexity of power generation control outlined previously, the fol-
lowing subdivision based on time scale and tasks has been established for central
generation control.

1.1.3.1 Subdivision by Time Scale

• Preparatory tasks:
Calculations are done using estimated load data prior to actual generation
and taking into account necessary maintenance work, that determine the basic
conditions of online power generation, and voltage control (e.g., time points
concerning startup and shutdown of individual blocks; daily generation and
voltage schedule; export and import contracts; maintenance preparation).

• Generation control:
Online (automatic or manual) control is performed by setting system power
balance based on actual instantaneous data and having the following main
constituents: on the one hand, automatic generation control (AGC) whose parts
are the central control and the block control in power plants; on the other hand,
automatic voltage control (AVC) or supervising voltage control (SVC) for setting
the desired reactive power balance.

1.1.3.2 Subdivision by Task

• Ensuring power balance:
PGi is determined in the AGC task in such a way that consumer demand is met
in terms of the scheduled frequency and the exchange power complies with the
value defined in the schedule.

• Decision making:
In the AGC task the PGi gross load is subdivided among the available power
plants, i.e., the active power to be generated by the individual power plants is
determined. In the AVC (SVC) task the following factors must be determined: the
power injection respectively voltage of the reactive power sources, the positions
of the tap-changing transformers, and the start and stop states of individual
network elements. This should be done in such a way that consumer demand
is satisfied by the permitted bus voltages while at the same time the value of QTi

is kept within the acceptable range.
• Implementation:

The changes in power production are imposed as determined in the AGC task.
This is accomplished by the power plant controller and subsequently by the block
controllers.
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• In the AVC (SVC) task, orders are carried out concerning the injection of reactive
power, modifications to the bus voltages, adjustment of transformer taps and
performing start and stop actions. This is implemented by utilizing controllable
sources of reactive power at the power stations, the excitation controls of the
power plant generators and synchronous condensers, by the operation of the
circuit breakers of the shunt reactors and condensers (high-voltage lines, cables),
and by way of transformer tap adjustments.

1.2 Formulation of the Daily Scheduling Problem

Providing a daily schedule means the following things for each period of the day
(periods of either 60 or 30 min):

• The most suitable mode of operation and the power level are determined for each
power plant;

• The size of electric power export and import is determined; and
• The value of the potentials at the nodes are determined in such a way that the

country should be supplied with electric energy, the voltages at the consumer
nodes should deviate from the nominal value only slightly, transmission lines
should not have a thermal overload, and power generation at the nodes connected
to controllable sources of reactive power should fall within a preset range.
Furthermore, practical specifications should be taken into account, including
constraints concerning the power plants and the network.

In our case, schedules are for 25-h periods, i.e., 1 day and the first hour of the
following day. Our model, which is presented in Chap. 2, is developed not merely
to determine a sort of feasible daily schedule but to find a schedule in the set of
feasible schedules that has the lowest possible cost with respect to a selected cost
function.

In the following subsections the various elements of the preceding task are
discussed. In the next subsection consumption and the daily demand curve are
analyzed, followed by a subsection on power plants. The third subsection is
devoted to a discussion of the transmission network, and in the last subsection the
components of the cost of electric power production are examined.

1.2.1 Consumption and Daily Demand Curve

The main goal of a power supply is to provide consumers, who live in geographically
distributed areas, with electric power. Apart from a few consumers (large industrial
consumers), supply is provided by far-flung distribution networks having a relatively
low voltage level that are connected by nodal substations to the basic transmission



1.2 Formulation of the Daily Scheduling Problem 7

load (MW)

time (h)

evening peak evening peak
morning peak

dawn minimum

midday minimum

Fig. 1.1 Characteristic daily demand curve

network. The power demand at the nodes of the basic network varies significantly
during the day. Within periods of 60 or 30 min the fluctuations of both the active and
reactive power are fairly low; therefore, they will be considered as being constant.

The total amount of consumption in 1 h at the various nodes of the system, the
amount of power consumed by the power plants themselves, the transmission losses,
and the potential exported quantity together constitute the instantaneous power
demand. The change in this power demand over time is described by the power
demand as a function of time. In engineering terminology, this function is called the
demand curve.

The daily demand curve depends in a complex way on the following factors:

• Seasons (e.g., time of sunrise and sunset, length of time between them, winter
and summer time);

• Type of day (workday, holiday);
• Weather conditions (e.g., sunshine, temperature, clouds, wind);
• What’s on TV.

In Hungary the daily power demand curve can be estimated fairly well, with an
accuracy of 1–2 % using computer programs. This curve always includes two local
minima and two local maxima.

Daily scheduling starts with the evening peak load period (from 5:00 to 7:00 p.m.)
and involves 23 hourly periods and 4 periods of 30 min.

The power demand changes over the course of an hour only slightly, so in
calculations it will be considered constant for the 60- and 30-min periods. This fact
can also be expressed by stating that the demand curve is replaced by a piecewise
constant function, also called a step function (Figs. 1.1 and 1.2).
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load (MW)

time (h)

Fig. 1.2 Approximation of daily demand curve by a step function, the day being subdivided into
hourly and half-hourly periods

1.2.2 Power Plants and Their Modes of Operation

On industrial scales, electric power is generated in thermal, hydroelectric, and
nuclear power plants. In the various plants different economic and technical
conditions prevail, depending on the applied modes of power conversion, the type
and actual state of the machinery, the quality, and the accessibility of the primary
energy source used.

In this book we consider electric energy production based solely on thermal
power plants.

The different operating states of a power plant, corresponding to specific choices
of the various types of equipment (groups of blocks, boiler–turbine–generatorunits),
are called the modes of operation of a power plant. The modes of operation of a
power plant operate in a predetermined range with respect to active and reactive
power. The plant can switch from one mode of operation to another by virtue
of changeovers. Changeovers are always carried out by starting/stopping some
subdivisions of the apparatus. There are pairs of modes of operation that are based
on entirely different equipment. Among these modes of operation, no changeover is
permitted due to the very high costs this would entail.

For technical reasons, after shutting off a power plant unit, it can only return to
the process of power generation following a standstill period of at least 4 h.

Import power is regarded as being produced by a separate power plant. The
characteristics of the modes of operation of this so-called import power plant are
in accordance with the conditions in interstate contracts.

The primary energy sources needed for the operation of power plants are brought
to production sites as a result of cooperation among companies. The issues arising
in connection with this cooperation (such as transport problems, storage in the case
of hydroelectric power plants) may necessitate the restriction of the daily primary
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energy source consumption of a power plant or power plants. In mathematical terms
this may mean either a lower or an upper bound. The consumption of primary energy
sources can directly be expressed in terms of daily generated power; therefore, it
may happen that lower or upper consumption bounds, unlike production bounds,
are imposed on daily production. These are called fuel constraints.

1.2.3 Basic Electric Power System Network

Electric power generated in power plants is conveyed to consumers through an
electric network. The branches of a transmission network can be classified in the
following groups:

(a) Transmission lines of 750, 400, and 220 kV, connected to an international
cooperation network and considered to extend as far as the border of the
country;

(b) National basic network of main transmission lines of 400 and 220 kV;
(c) High-voltage main distribution network of 120 kV;
(d) Distribution network of a still lower voltage level.

The various parts of the network, corresponding to the different network volt-
age levels, are connected to one another by substations containing transformers.
Depending on their power demand, consumers are connected to a network of the
appropriate voltage level at the nodes.

For central generation control the electric power system manifests itself as
a looped network also containing international connections, where consumption
(demand) appears in concentrated form at high-voltage nodes, while power plants
inject power into the network at high-voltage nodes that may partially be the
same nodes where demand also appears. Accordingly, in a model for optimal daily
scheduling, parts (a) and (b) of the preceding grouping of the transmission network
are taken into account, together with those parts of the network under (c) (120 kV)
to which significant power plants are connected or that form (or may form) shunt
branches between nodes at 400- and 200-kV voltage levels. In the sequel, this part
of the network will be considered the transmission network of the power system and
will be called the basic network.

Power plants, reactive power sources, and consumers are connected to the nodes
of the basic network. Power plants and consumption have already been discussed.
Let us now give a brief account of the controllable devices that may inject or
consume reactive power at the nodes (see also Sect. A.2 of appendix).

Devices acting as reactive power sources are connected to network nodes and can
either inject (power plant generators, synchronous condensers, static or controllable
capacitors) or consume (power plant generators, synchronous condensers, shunt
reactors) reactive power. The power of those sources that can be controlled
continuously can move freely within a specified range, while the power of those
that can be switched (shunt reactors, static capacitors) changes proportionally to the
square of the node voltage.
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The nodes are connected to one another by branches that can be transmission
lines, cables, or transformers. The branches are electrically symmetric with respect
to their endpoints, and they have finite resistance, inductance, capacitance, and
a finite thermal load bound. From the point of view of the generation control
(and not for electrical engineering reasons) intersystem transmission lines are
considered separately, connecting various national systems or systems of different
Organizations. Due to the ohmic resistance of the branches, transmission is coupled
with a loss depending on the load and on the voltage conditions. It should be
emphasized that the elements of the transmission network are dynamic in the
sense that, because of the fault of some network elements or their scheduled
disconnection, the network configuration may change daily or possibly in even
shorter intervals.

As an illustration, two daily periods with an extreme load are briefly discussed.
In a period of minimal night load (Sect. 1.2.1), transmission lines and cables are

lightly loaded. Then their capacitive character is dominating, and as a result they
generate reactive power. The overproduction of reactive power is accompanied by
an increase in voltages (Sect. A.2 of appendix). The devices connected to the nodes
that consume reactive power (see previous discussion) play an important role in
compensating for this consumption.

The other extreme case is the peak load, when there is a high reactive power
demand. On the one hand, this is because many power consumption devices (electric
motors) consume reactive power. On the other hand, the transmission lines are
highly loaded and their inductive character prevails. In this situation voltages drop,
which can be compensated by reactive power sources.



Chapter 2
A General Mathematical Programming Model
for the Scheduling of Electric Power Generation

In this chapter a general mathematical programming model of the scheduling
problem as formulated in Sect. 1.2 is presented for the case where the electric power
generation system includes thermal plants only. The model is called general because
no simplifying assumptions are applied for the sake of obtaining a mathematical
programming model tractable from the mathematical and computational viewpoints.

In Chap. 4 a simplified model will be presented. The two models differ a great
deal with respect to the hypotheses concerning changeovers between different
modes of operation.

In the general model, the impacts of changeovers between modes of operation
can be summarized in the following way.

(a) Units that are shut off and units of the same kind that have not taken part in the
operation previously can only enter the production process after a minimum 4 h
standstill.

(b) Upon starting up a unit, startup costs arise depending on the length of the
standstill period. No preliminary assumptions are made about the operational
period of the units to be started. The length of the operational period is
determined by the optimization over the whole day.

(c) Changeovers that may include the shutoff of certain devices and at the same time
the startup of others are regarded as the sum of the two changeovers between the
modes of operation. This rarely happens, but its possibility cannot be excluded.

Further differences between the two models include the following ones. While
the general model can be formulated for a scheduling period of arbitrary length,
the simplified model is designed for a 1-day (resp. 25-h) period because of the
simplifying assumptions made in Sect. 3.2. The periods in the simplified model,
where the power demand can be considered constant, have lengths of 30 or 60 min.
In the general model, these periods are of arbitrary length. In the sequel, the term
period will be used to mean a period of time for which the power demand is
considered constant.

A. Prékopa et al., Scheduling of Power Generation, Springer Series in Operations
Research and Financial Engineering, DOI 10.1007/978-3-319-07815-1__2,
© Springer International Publishing Switzerland 2014
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2.1 Model Variables

In accordance with the problem formulation (Sect. 1.2), for each of the periods of
the scheduling horizon we must determine the modes of operation to be used in the
power plants, the power levels of the selected modes of operation, and the voltages
at the nodes with controllable voltage.

Accordingly, the variables of the model will be the vectors denoting the modes
of operation in the individual periods, the power levels, and the voltages. The large
number of variables and the fact that we can refer to them in different ways present
some difficulties in describing the model.

A general feature of our notation will be that the variable vectors and their
components will be endowed by superscripts to denote the particular period to which
the variable refers. If the superscript is missing, then a vector is being referred to,
which arises by concatenating the corresponding vectors with superscripts based on
the order of the periods. An exception to this convention will be the part devoted to
the discussion of the voltage states of the network, where variable vectors without
a superscript will denote variables corresponding to an arbitrary but fixed period.
The discussion of the voltage conditions of the network is complicated enough, so
to make it simpler, no superscript is included. When a variable without a superscript
is used in this sense, it will be noted.

Let T denote in the sequel the number of periods of the scheduling time interval,
while at denotes the length of the t th period. Accordingly, the length of the
scheduling interval is

PT
tD1 at . LetK denote the number of power plants andM.k/

the number of feasible modes of operation in the kth power plant.
For referring to the modes of operation of the power plants, the terminology first,

second, : : :, M.k/th mode of operation will be used in the case of the individual
power plants. There is no restriction made with regard to the order of the modes
of operation in the general model. Concerning this, see the notes at the end of
Sect. 2.2.2.

Additional necessary notations will be defined at their first occurrence, and in
Sect. 2.5 they will be summarized.

2.1.1 Mode-of-Operation Variables

The vector variables yt , .t D 1;2; : : : ;T /, are introduced for the specification of the
applicable modes of operation in power plants in different periods whose dimension
is
PK

kD1M.k/. Furthermore, let y be a vector composed of the previous vectors via
concatenation and having dimension T

PK
kD1M.k/.

The value of the components of yt is 0 or 1. Their definition is as follows. To
each of the power plants, and for a specific power plant to each of its modes of
operation, there corresponds one of the components in the order of the power plants
and for each power plant in the order of its feasible modes of operation. Based on
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this ordering, the first component of yt corresponds to the j th mode of operation
of the i th power plant for j D l �Pi�1

kD1M.k/, provided that
Pi�1

kD1M.k/ < l �Pi
kD1M.k/ holds.
The components will often be referred to with a pair of indices, where the first

index is the serial number of the power plant and the second one is the serial number
of one of the modes of operation of that power plant corresponding to the particular
component.

Let the value of the previously described first component be 1 if in the t th period
in the i th power plant the j th mode of operation is to be used; otherwise let the
value be 0.

Because exactly one mode of operation is active at one time, the preceding
definition immediately implies that the following relations must hold:

M.i/X

jD1
ytij D 1; i D 1;2; : : : ;K; t D 1;2; : : : ;T: (2.1.1)

The vector y without a superscript is formed, according to our convention, by con-
catenating the yt , t D 1;2; : : : ;T , vectors. Thus, for example, yt0l D y

t0
ij corresponds

to that component of the vector y that has the index

.t0�1/
KX

kD1
M.k/C l D .t0�1/

KX

kD1
M.k/C

i�1X

kD1
M.k/Cj:

Later on there will be a need for information on the modes of operation applied in the
last period preceding the recent scheduling stage. This information can be provided
by specifying the values of the variables of the modes of operation for this last
period. Let y0 denote the corresponding vector. In the model this is a

PK
kD1M.k/-

dimensional constant vector containing 0–1 components.

2.1.1.1 Remarks

1. The reader may wonder: what happens if in the power plants the set of feasible
modes of operation is not the same in two consecutive scheduling stages, or if
this set changes even within a single scheduling stage? (This might happen if, for
example, some maintenance work is being finished at some time during the day
and units not operable previously can now enter into production.)

The answer is simple: in the scheduling stage the set of feasible modes of
operation is specified in such a way that it should be the widest possible. Those
modes of operation whose selection is only permitted in a couple of periods, are
considered as separate modes of operation. Concerning these, we prescribe that in
those periods where they are not available, the corresponding mode-of-operation
variable take the value 0.
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This convention makes it possible for the set of modes of operation M.k/,
k D 1;2; : : : ;K , to be independent of time and for each of the individual serial
numbers of the modes of operation to represent the same mode of operation
throughout.

2. The question may arise as to what happens if in a power plant just one of the
modes of operation is feasible, that is, if M.i/D 1 holds for the i th power plant.
In this case, in the model it is sufficient to specify the production level of this
particular mode of operation; the corresponding mode-of-operation variable is
superfluous since its value can only be 1.

Despite this, to make the description of the model simpler, these power plants
or modes of operation are not addressed separately. The variable yi1 is used
instead, and the fulfillment of yi1 D 1 is ensured by applying Eq. (2.1.1).

3. Note that the mode-of-operation variables of the simplified model are defined in
a different way.

2.1.2 Production-Level Variables

To specify the production levels of the modes of operation in the various periods,
the production variable vectors pt are used. Their dimension is

PK
kD1M.k/.

Their concatenation .t D 1;2; : : : ;T / results in vector p, which has the dimension
T
PK

kD1M.k/.

2.1.2.1 Definition of pt

To each mode of operation in each power plant we associate one of the components
of pt (in the order of the modes of operation and power plants exactly as was
done in the case of the mode-of-operation variables). The components will also
be referred to by double indices, where the first index is the serial number of the
corresponding power plant and the second one is the serial number of the mode
of operation. Accordingly, component ptij is that component of vector pt whose

index is
Pi�1

kD1M.k/C j and whose index in vector p is .t � 1/PK
kD1M.k/CPi�1

kD1M.k/Cj .
For the permitted production levels minimal and maximal values are prescribed

for each mode of operation at each power plant. These bounds will be denoted by
Pmin
ij and Pmax

ij , i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/.
The value of the component ptij is defined as follows. Let ptij D 0 if the j th

mode of operation is not applied at power plant i in period t . Otherwise, let its value
be defined as the difference between the production level and its prescribed lower
bound for the j th mode of operation at power plant i .

According to this definition, the production level of the j th mode of operation at
power plant i can be specified as the sum
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Pmin
ij ytij Cptij ;

and the following relation must hold:

Pmin
ij ytij � Pmin

ij ytij Cptij � Pmax
ij ytij

respectively

0� ptij � .Pmax
ij �Pmin

ij /ytij : (2.1.2)

According to the preceding definition, componentptij can only have a nonzero value
if ytij D 1 holds. The fulfillment of this criterium is ensured by the factor ytij in the
product Pmax

ij �ytij appearing on the right-hand side of the first inequality in (2.1.2).
(Conversely, from the fulfillment of ytij D 1 it does not follow that ptij > 0 holds
since if the mode of operation works on the permitted minimal level, then we have
ptij D 0.)

2.1.3 Voltage Variables

For all of the nodes of a transmission network, the real and imaginary parts of the
complex voltage associated with the nodes are considered variables of the model.
Let us denote in the t th period the real part of the voltages by vt1; : : : ;v

t
N and the

imaginary part by wt1; : : : ;w
t
N , where N stands for the number of the nodes of

the network. Let the corresponding vectors be denoted by vt and wt , respectively.
In the sequel, in cases where a fixed period is considered, the superscripts will be
omitted.

2.2 Objective Function of the Model

The objective function to be minimized is provided by the costs of electric power
generation. This involves the cost of fuel needed to run the blocks of the power
plants on a given level, the restart costs of the blocks consisting of heat losses due
to stoppages and the deterioration costs due to changeovers, and, finally, the costs
due to transmission losses. These three components are discussed separately.

2.2.1 Production Costs of the Power Plant Units

The costs of operation of power plant units can be specified in the following way.
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Fig. 2.1 Characteristic generation cost curve

To each feasible mode of operation of each power plant can be associated a
characteristic cost curve (Fig. 2.1).

Let fij .P / be a function defining the curve of costs, where P is the production
level and the value of the function represents the costs of fuel consumption on
production levelP per unit time, and fij .P / is a convex, strictly increasing function.

The domain of definition of fij .P / is the interval ŒPmin
ij ;Pmax

ij � because the
mode of operation j in power plant i may only operate within these production
limits. If another mode of operation is active, then the portion of production costs
corresponding to mode of operation j at power plant i is obviously 0.

The following notations are introduced.
Let Kij D fij .P

min
ij /, which represents the costs of minimal power output in the

case where mode of operation j is active at power plant i .
Let kij .P / D fij .P

min
ij CP/� fij .Pmin

ij /, that is, the additional cost that arises
when the amountP of electric power is generated beyond the minimalPmin

ij quantity
if power plant i operates at production level Pmin

ij CP . The domain of the definition
of function kij .P / is the interval Œ0;Pmax

ij �Pmin
ij �.

According to our convention, the length of period t is denoted by at . Therefore,
the production costs of mode of operation j at power plant i during period t can be
formulated as

at fKijy
t
ij Ckij .p

t
ij /g: (2.2.3)

Consequently, the partial costs, which have their origin in the operation of the power
plant blocks, for the entire scheduling interval are

TX

tD1
at

KX

iD1

M.i/X

jD1
fKij y

t
ij Ckij .p

t
ij /g: (2.2.4)
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Fig. 2.2 Costs associated with stopping and restarting (standstill) of power plant units as a
function of standstill time

2.2.2 Stoppage, Restart, and Changeover Costs

Considering the costs of stoppages of modes of operation means considering the
costs that arise at the startup of power plant units following a standstill period.
Regarding individual power plant units, these costs include deterioration costs and
costs of extra maintenance work, as well as the costs of reheating following a
standstill since during the standstill period the units cool down. Because heat loss
has an exponential character, this type of cost can be expressed as an exponential
function of the standstill time.

Figure 2.2 shows a cost curve representing the costs of restart of a unit following
a standstill time � . This cost curve can be specified by the formula

g.�/DG.0/CfG.1/�G.0/g.1� e�c�/; (2.2.5)

where c, G.0/, and G.1/ are constant characteristic quantities of the power
plant units; G.0/ represents deterioration and extra maintenance costs; fG.1/�
G.0/g.1� e�c�/ represents the costs due to heat loss; and G.1/ can be interpreted
as the costs of a cold start following a long standstill. c > 0 holds since the costs
of heat loss increase with the length of the standstill. The function g.�/ is defined
for all � � 0 despite the fact that the units are either working continuously, thereby
causing no stoppage or restart costs, or there is a standstill for at least 4 h. Due to the
recommendations, patterns, guarantees, and operational specifications restricting
transient heat stress, large-scale apparatus can only be restarted after a minimum
standstill of 4 h.

In the model decisions are made concerning the operation respectively standstill
of modes of operation. To take into account in the model the costs due to a standstill
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of power plant units, the connection between power plant units and modes of
operation must be clarified. If every mode of operation meant the operation of
different power plant units, then the standstill time of the mode of operation and the
standstill time of the corresponding power plant units would be the same, implying
that to compute the standstill costs of the power plant units, the standstill times of the
modes of operation could be taken into account, and the latter could be specified as
a function of the mode-of-operation variables ytij . However, there is no such one-to-
one correspondence between the modes of operation and the power plant units. The
modes of operation are formed by technically feasible cooperations of the power
plant units. Here is an example.

Suppose there are three units in a power plant, denoted by �1 , �2 , and �3 . If
�A and �B are two possible modes of operation in the power plant, where �A consists
of the operation of unit �1 and �B involves the cooperation of units �2 and �3 , the
standstill time of the units is equal to the standstill time of the modes of operation,
and the standstill costs are easily calculated. If, however, there is a third mode
of operation, �C , involving the simultaneous operation of all three units, then the
standstill time of the units is no longer equal to the standstill time of the modes of
operation.

In the sequel we present a method for taking into account in the model the
standstill costs of power plant units. For the description of this method the following
terminology and notations will be used.

Regarding the j th mode of operation at the i th power plant, the starting time
of the individual periods can be either shutdown time or startup time, while in the
case of unchanged operations, the periods are called continuous operation periods
respectively unchanged inoperative periods (or continuous standstill periods).

Therefore, the starting time of period t is a shutdown time if yt�1ij D 1 and ytij D 0

hold. If yt�1ij D 0 and ytij D 1, the starting time of the period is the startup time.
Period t is a continuous operation period if yt�1ij D 1 and ytij D 1 hold. Otherwise, if
yt�1ij D 0 and ytij D 0, then it is an unchanged inoperative period (since the vector y0

was defined earlier, the preceding terminology is well defined for t D 1;2; : : : ;T ).
Let us define the length of continuous standstills of the modes of operation in

every period in the following way.
Let the length of a continuous standstill of the j th mode of operation at the i th

power plant in period t be

• 0 if period t is a starting period or a continuous operation period;
• at if period t is a shutoff period;
• The length of time from the beginning of the last shutoff period preceding

period t , including the length of period t , if period t is an unchanged inoperative
period.

Let us denote by �ij .t/ the continuous standstill time of mode of operation j at
power plant i in period t . �ij .t/ can be specified by the following formulas:

�ij .t/D �ij .t �1/Cat if period t is an unchanged inoperative period, i.e., if
yt�1ij D 0 and ytij D 0 hold;
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�ij .t/D at if the starting time of period t is a shutdown time, i.e., if yt�1ij D 1 and
ytij D 0 hold;

�ij .t/D 0 if period t is a continuous operation period or its starting time is a
startup time, i.e., if either yt�1ij D 1 and ytij D 1 or yt�1ij D 0 and ytij D 1 hold.

The dependence of �ij .t/ on the components of mode-of-operation variables can
be expressed in the following product form as well:

�ij .t/D f�ij .t �1/Catg.1�ytij /: (2.2.6)

In fact, the value of this product is 0 if ytij D 1 holds. Otherwise, �ij .t/ D at if
ytij D 0 and yt�1ij D 1 since �ij .t �1/D 0 holds. Finally, �ij .t/D �ij .t �1/Cat if
ytij D 0 and yt�1ij D 0 hold.

To complete the definition, the interpretation of �ij .0/ must be supplied. Let
�ij .0/D 0 if y0ij D 1 (i.e., if the mode of operation is active at the end of the previous
planning stage), and let �ij .0/ represent the length of the standstill preceding the
planning stage if y0ij D 0, i.e., �ij .0/ equals �ij .T / of the previous period.

Like the modes of operation, the terms shutdown resp. startup time, continuous
operation resp. unchanged inoperative period will be used with regard to the power
plant units as well. The length of continuous standstills of power plant units will
also be defined. To this end, the following notations will be used.

Let N.i/ be the number of units in power plant i . The units will be referred to
by serial numbers; let L.i/ D f1;2; : : : ;N.i/g be the index set of serial numbers.
Let J.i;j / denote that subset of L.i/ whose simultaneous operation of the units
provides mode of operation j at power plant i .

A unit with serial number k0 of the i th power plant is operative in period t if in
the case where ytij0 D 1 also k0 2 J.i;j0/ holds. If both ytij0 D 1 and k0 … J.i;j0/
hold, then the k0th unit is inoperative in period t .

The preceding information can also be specified with the value of the sumP
j Wk02J.i;j / y

t
ij , where the addition is carried out for those values of j for which

k0 2 J.i;j / holds:

X

j Wk02J.i;j /
ytij D

�
1 if unit k0 of power plant i is operative in period t ,
0 otherwise.

The start time of period t is a shutdown time for unit k0 at power plant i if

X

j Wk02J.i;j /
yt�1ij D 1 and

X

j Wk02J.i;j /
ytij D 0:

The terms startup time, continuous operation resp. unchanged inoperative period
are defined in a similar way, i.e., regarding the sums

P
j Wk02J.i;j / y

t
ij throughout.

We will need the lengths of continuous standstills of the power plant units. This is
defined in an analogous way to the continuous standstill of the modes of operation.
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Let �ik.t/ denote the continuous standstill time of unit k at power plant i in
period t . �ik.t/ can be specified by the following formulas:

�ik.t/D �ik.t �1/Cat if
X

j Wk2J.i;j /
yt�1ij D 0 and

X

j Wk2J.i;j /
ytij D 0;

�ik.t/D at if
X

j Wk2J.i;j /
yt�1ij D 1 and

X

j Wk2J.i;j /
ytij D 0;

�ik.t/D 0 if
X

j Wk2J.i;j /
yt�1ij D 1 and

X

j Wk2J.i;j /
ytij D 1;

or
X

j Wk2J.i;j /
yt�1ij D 0 and

X

j Wk2J.i;j /
ytij D 1;

or it can also be expressed as the following product:

�ik.t/D f�ik.t �1/Catg
0

@1�
X

j Wk2J.i;j /
ytij

1

A :

The value of �ik.0/, which is needed to complete the definition, is determined in an
analogous way to the definition of �ij .0/.

It follows from the definition of the standstill times of the modes of operation and
of units that

�ik.t/D min
j Wk2J.i;j /�i;j .t/; k D 1;2; : : : ;N.i/; i D 1;2; : : : ;K;

holds, and if the operation of a particular unit is necessary for the operation of only
one mode of operation, then the standstill times of the unit and of the mode of
operation are equal.

The costs of standstill in an electric power generation system are first considered
periodwise, separately for the individual power plants resp. their units, and then
these partial costs are summed up. Considering an individual power plant unit, for
each period the costs arising in that particular period are taken into account.

Let gik.�/ denote the standstill-cost function of unit k at power plant i , k D
1;2; : : : ;N.i/, i D 1;2; : : : ;K .

Let us examine the values of function gik.�ik.t//. If the kth unit in the i th
power plant is not operative in the t th period, then this function value is the cost
of standstill corresponding to a standstill time till the end of that period. If the kth
unit at the i th power plant is operative in the t th period, then �ik.t/ D 0 holds and
the corresponding function value represents the deterioration costs.

Therefore, the costs due to the state of the kth unit of the i th power plant in the
t th period can be specified utilizing the function gik.�/ as follows:
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:1�
0

@
X

j Wk2J.i;j /
yt�1ij

1

A
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@
X

j Wk2J.i;j /
ytij

1

A

9
=

;gik.�ik.t//�
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<

:1�
X

j Wk2J.i;j /
ytij

9
=

;gik.�ik.t �1//:

(2.2.7)

To see this, let us discuss the following four cases.

(a) If the kth unit of the i th power plant is inoperative in the t th period, as well as
in the preceding period, i.e., if

X

j Wk2J.i;j /
yt�1ij D 0 and

X

j Wk2J.i;j /
ytij D 0

hold, then the value of expression (2.2.7) is

gik.�ik.t//�gik.�ik.t �1//:

This is the cost of being in an unchanged inoperative state in a time interval of
length at , from time �ik.t �1/ to time �ik.t/, in period t .

(b) If for the kth unit in the i th power plant the starting point of the t th period is
a shutdown time, that is, in the .t � 1/th period a mode of operation is active
that requires the operation of the kth unit, .

P
j Wk2J.i;j / yt�1ij D 1/, and in the t th

period none of this type of mode of operation is active, .
P

j Wk2J.i;j / ytij D 0/,
then the value of expression (2.2.7) is

gik.at /�gik.0/;

which represents the costs of standstill for a time interval of length at .
(c) If the kth unit at the i th power plant is operative in the t th period as well as

in the .t �1/th period, .
P

j Wk2J.i;j / yt�1ij D 1 and
P

j Wk2J.i;j / ytij D 1), then the
value of (2.2.7) is 0.

(d) If for the kth unit at the i th power plant the starting point of the t th period is a
startup time, that is, the unit is active in the t th period, .

P
j Wk2J.i;j / ytij D 1), but

it is not in operation in the preceding period, .
P

j Wk2J.i;j / yt�1ij D 0/, then the
value of (2.2.7) is gik.0/, representing the deterioration costs corresponding to
the preceding standstill time interval.

Finally, by summing up the values in (2.2.7) for t D 1;2; : : : ;T , we arrive at the
overall cost for the entire scheduling interval, and this corresponds to the states
of the kth unit at the i th power plant. This is represented as a sum of function-
value increments, corresponding to argument increments having lengths equal
to the period lengths. The deterioration cost gik.0/ is taken into account at the
time of startup of the unit (Fig. 2.3). In continuous operation periods, no standstill
costs arise.

Let us give an illustration with a specific example. Assume there are three power
plant units at the fifth power plant, where the simultaneous operation of units 1 and 3
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Fig. 2.3 Representation of cost of changeover corresponding to standstill �0 as a sum of function-
value increments and gik.0/

provides mode of operation 1, and the operation of all three units provides mode of
operation 2: M.5/D 2, N.5/D 3, J.5;1/D f1;3g, J.5;2/D f1;2;3g.

Let us further assume that mode of operation 1 is active in the period preceding
the current planning stage and in the first three periods of the planning stage as
well, and in the next four periods mode of operation 2 is active. Finally, mode of
operation 1 is operative till the end of the planning stage. Let the planning stage
contain ten periods. Let us suppose that mode of operation 2 was shut off 2 h prior
to the planning stage. Then the values of the mode-of-operation variables are as
follows:

y051 D 1; y151 D 1; y251 D 1; y351 D 1; y451 D 0; y551 D 0; y651 D 0; y751 D 0;

y851 D 1; y951 D 1; y1051 D 1I
y052 D 0; y152 D 0; y252 D 0; y352 D 0; y452 D 1; y552 D 1; y652 D 1; y752 D 1;

y852 D 0; y952 D 0; y1052 D 0:

The lengths of the standstill intervals of the modes of operation, �51.t/ and �52.t/,
t D 0;1;2; : : : ;10, are as follows:

�51.0/D 0; �51.1/D �51.2/D �51.3/D 0; �51.4/D a4; �51.5/D a4Ca5;
�51.6/D a4Ca5Ca6; �51.7/D a4 Ca5Ca6Ca7; �51.8/D 0; �51.9/D 0;

�51.10/D 0;
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�52.0/D 2; �52.1/D 2Ca1; �52.2/D 2Ca1Ca2; �52.3/D 2Ca1Ca2 Ca3;

�52.4/D �52.5/D �52.6/D �52.7/D 0; �52.8/D a8; �52.9/D a8Ca9;

�52.10/D a8Ca9Ca10:

The lengths of the standstill intervals of the power plant units, �51.t/, �52.t/, and
�53.t/, t D 0;1;2; : : : ;10, are as follows:

�51.t/D min
j W12J.i;j /�5;j .t/ D

�
�51.t/D 0; t D 0;1;2;3;8;9;10;

�52.t/D 0; t D 4;5;6;7I
�52.t/D min

j W22J.5;j /�5;j .t/ D �52.t/I
�53.t/D min

j W32J.5;j /�5;j .t/ D min.�51.t/;�52.t//D 0:

Therefore, the costs due to the periodwise states of the power plant units are as
follows:

Period Unit 1 Unit 2 Unit 3

1. 0 g52.2Ca1/�g52.2/ 0
2. 0 g52.2Ca1Ca2/�g52.2Ca1/ 0
3. 0 g52.2Ca1Ca2Ca3/�g52.2Ca1Ca2/ 0
4. 0 g52.0/ 0
5. 0 0 0
6. 0 0 0
7. 0 0 0
8. 0 g52.a8/�g52.0/ 0
9. 0 g52.a8 Ca9/�g52.a8/ 0

10. 0 g52.a8 Ca9Ca10/�g52.a8 Ca9/ 0

The sum of the standstill costs for all of the periods is

g52.2Ca1Ca2Ca3/�g52.2/Cg52.0/Cg52.a8Ca9 Ca10/�g52.0/:

This is in agreement with the fact that power plant unit 2 is in standstill for 2 h in the
preceding planning stage and in the first three periods of the recent planning stage
[g52.2Ca1Ca2 Ca3/�g52.2/], then it is started [g52.0/] and is again in standstill
from the eighth up to the tenth period [g52.a8Ca9Ca10/�g52.0/].

The total cost of standstill in the entire electric power system is

TX

tD1

KX

iD1

N.i/X

kD1
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;gik.�ik.t//
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�
8
<

:1�
X

j Wk2J.i;j /
ytij

9
=

;gik.�ik.t �1//
3

5 : (2.2.8)

This sum does not contain the deterioration costs of units due to standstill in the last
period of the considered planning stage. This portion of costs is taken into account
at the time of restart, but now no restart occurs. The deterioration costs of the units
in standstill in the last period are

KX

iD1

N.i/X

kD1
gik.0/

0

@1�
X

j Wk2J.i;j /
yTij

1

A ; (2.2.9)

which is taken into account in the subsequent planning stage.
In calculating the standstill costs, is not taken into account that the actual length

of standstill of the stopped equipment is always at least 4 h. The fulfillment of this
requirement will be ensured in the specification of the model constraints.

2.2.2.1 Remark

The way we have considered the costs of standstill and restart is more general than
is needed for the operations management of electric power plants. It is certainly
true that the units of a specific power plant may cooperate in many different
ways, that is, several different modes of operation are feasible at power plants,
and those modes can be specified as index sets consisting of the serial numbers
of the corresponding power plant units (these have been denoted by J.i;j /, j D
1;2; : : : ;M.i/). However, according to operations management practice, for a given
planning cycle only a subset of all possible modes of operation is feasible, namely
a subset that can be ordered in such a way that for the corresponding J.i;j / sets

J.i;j1/� J.i;j2/� � � � � J.i;jr /

holds. Sometimes (rarely, in fact), a more general case occurs when the acceptable
modes of operation in the planning stage can only be ordered in such a way that
feasible J.i;j / sets can be subdivided into two groups of the aforementioned
character. Let these groups be

J.i;j1/� J.i;j2/� � � � � J.i;jr /;

J.i; l1/� J.i; l2/� � � � � J.i; ls/:

In general, these two groups are not independent. J.i; l1/ is part of a set of indices
of the first group, and some set of the first group is a subset of J.i; ls/. Based on the
technical and technological conditions, this is the most general case that can actually
occur in practice.
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We provide examples for both cases:
Let us suppose that there are five units in a power plant and the J.i;j /

sets corresponding to the modes of operation provided by the possible forms of
cooperation of these units are as follows:

f1g; f1;2g; f1;3g; f1;2;4g; f1;3;5g; f1;2;3;5g; f1;2;3;4;5g:

An example of the first case is a planning stage where the following modes of
operation are possible:

f1g; f1;2g; f1;2;3;5g; f1;2;3;4;5g

as it is true that

f1;2;3;4;5g � f1;2;3;5g � f1;2g � f1g:

An example of the second case is a planning stage where the following modes of
operation are possible:

f1g; f1;2g; f1;3g; f1;3;5g; f1;2;3;5g and f1;2;3;4;5g:

Then

f1;2;3;4;5g � f1;2;3;5g � f1;2g � f1gI f1;3;5g � f1;3g

and

f1;2;3;4;5g � f1;3;5gI f1;3g � f1g

are satisfied.
A planning stage where, in addition to the modes of operation in the foregoing

second example, the mode of operation f1;2;4g is also feasible cannot occur for
engineering reasons. However, there can be another planning stage where the modes
of operation f1g, f1;2g, f1;2;4g are feasible. This would again be an example of the
first case.

Since in this book a model for a given scheduling period is considered, M.i/,
i D 1;2; : : : ;k, indicates the number of modes of operation that are feasible in the
given scheduling period and not the number of all possible modes of operation.
Thus, in the calculation of the costs of standstill, the previously given characteristics
of the sets J.i;j /, j D 1;2; : : : ;M.i/, i D 1;2; : : : ;K , can be used.

In the simplified model, it will be assumed that the order of the modes of
operation is as follows:

J.i;1/� J.i;2/� � � � � J.i;M.i//:
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2.2.3 Costs from Transmission Losses

The electric energy generated by power plants is conveyed to consumers through an
electric network system. Due to the ohmic resistance of the branches of the network,
transmission is accompanied by a loss of active power. Part of the electric energy
is converted into heat. Taking a fixed period, costs that originate in transmission
losses are

C v.v;w/D �atP
v.v;w/; (2.2.10)

where C v.v;w/ is the value of transmission losses in the local currency (Fts) for the
given period; � is the cost of 1 MWh in the local currency (Fts); at is the length of
period t in hours; P v.v;w/ is in turn the total active power loss in the network in
megawatts. The function P v.v;w/ is a convex quadratic function of the variables
v;w [see (A.4.21), (A.4.30), and (A.4.31)]. The total cost of transmission losses is
the sum of the costs of losses over the periods.

2.3 Model Constraints

The system of model constraints contains, on the one hand, constraints that are
necessary for the definition of the variables and, on the other hand, constraints
that contribute to the description of the operation of the electric power system.
Constraints can also be grouped on the basis of whether they represent relationships
among the variables of an individual period in a repeated fashion for the periods or
whether they prescribe relationships among the variables of several periods.

2.3.1 Constraints Repeated for Periods

For a given period we require that only one mode of operation may be active at
each of the power plants, the power level of the mode of operation should be within
the permitted range, and the amount of generated electric power should be equal
to the nationwide demand for electric power, plus the transmission losses and self-
consumption needed for electric power generation. We also require that the network
conditions of the electric power system must be feasible in every period.

As a result of the definition of the mode-of-operation variables, the requirement
of one mode of operation in one power plant means that Eqs. (2.1.1) should hold.
These conditions will be referred to as the special ordered set (SOS) constraints,
which is a generally accepted term in discrete programming. A SOS is a set of
variables having a value of 0 or 1 such that among the variables one and only one
has a value of 1.
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Naturally, because of the definition of the mode-of-operation variables, the

ytij D 0 or 1; j D 1;2; : : : ;M.i/; i D 1;2; : : : ;K

criteria must be met for these variables, too.
In accordance with the definition of production-level variables, inequali-

ties (2.1.2) must be satisfied in every period. In the sequel, these inequalities will
be referred to as variable coupling constraints. These are constraints that directly
couple the mode-of-operation and production-level variables for each power plant
and for each plant’s mode of operation.

The constraints associated with the requirement of satisfying the power demand
are called supply constraints (to every period is attached one constraint of this sort).
With the help of production-level and mode-of-operation variables, the production
level of the electric power system in period t can be specified by the following sum:

KX

iD1

M.i/X

jD1
.Pmin

ij ytij Cptij /: (2.3.11)

A so-called function of self-consumption is provided for every mode of operation
at every power plant. It determines the amount of electric power necessary for the
operation of the power plant taken as a function of the power level of the mode
of operation. Let P self

ij denote the function of self-consumption belonging to the
j th mode of operation at power plant i . The self-consumption of power plant i in
period t is

M.i/X

jD1
P self
ij .Pmin

ij ytij Cptij /; (2.3.12)

and the self-consumption of the entire electric power system in period t is

P t self D
KX

iD1

M.i/X

jD1
P self
ij .Pmin

ij ytij Cptij /: (2.3.13)

Let P t dem denote the value of electric power demand in period t and P t loss the
transmission losses in period t .

The supply constraint is as follows:

KX

iD1

M.i/X

jD1

�
Pmin
ij ytij Cptij

�
D P t dem CP t loss CP t self: (2.3.14)
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Note that P t loss and P t self are actually functions, with the values of P t loss being
specified by a convex quadratic function of the voltage variables vt and wt and
the values of P t self depending nonlinearly on the pt and yt variables. In contrast,
P t dem is a constant provided by the demand curve. Methods for calculating loss and
self-consumption are not detailed here. In Chap. 3 we will make some simplifying
assumptions concerning them as well.

Constraints describing the network conditions of the electric power system will
be discussed next (where the superscripts identifying the periods will be omitted).

To build up a system of constraints related to the transmission network, as a
starting point we consider relations (A.3.43), which establish a connection between
the power injections at the nodes and the voltages of the nodes. For ease of
discussion we reproduce them here:

fi .v;w/ D Pi

gi .v;w/ D Qi

�
i D 1; : : : ;N: (2.3.15)

In the sequel, let IE denote the set of serial numbers of those nodes to which power
plants are connected, and let NE be the number of elements of IE . Let us denote
further by IM the set of serial numbers of those nodes to which a piece of equipment
of the electric power system is connected for which the value of the reactive power
injection respectively consumption is not prescribed for the given period; it can
vary within a given range. Later on these nodes will be called nodes connected to
controllable sources of reactive power, or reactive power source nodes for short. (For
more details see Sect. A.3 of appendix). Let NM denote the number of elements
of IM . The index sets IE and IM are considered to be ordered according to the
increasing order of the serial numbers of their elements.

In what follows, the Pi active power appearing in Eqs. (2.3.15) will be considered
in the decomposed form

Pi D PG
i �PF

i ; i D 1; : : : ;N; (2.3.16)

where superscript G represents generated (injected) power and F indicates con-
sumption. The quantities PF

i , i D 1; : : : ;N , are the values of consumption (power
demand) at the nodes, and obviously, the relation PG

i D 0, i … IE , holds.
Let OPG denote the NE-dimensional vector formed by the i 2 IE components of

the vector PG . To include Eqs. (2.3.15) in the model as constraints, it is sufficient
to express the vector OPG in terms of the vectors p and y, the latter denoting
vectors composed of production-level respectively mode-of-operation variables.
The dimension of p (and y as well) will be denoted by n.

The amount of power actually generated in the different modes of operation
(denited by Op 2 Rn) can be obtained as

Op D p C diag .pmin/y; (2.3.17)
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where diag .pmin/ is a diagonal matrix whose diagonal elements are the components
of pmin, where pmin is the vector of the minimal power levels corresponding to power
plants and their modes of operation.

Consequently, active power injection at individual nodes can simply be obtained
by adding up the actually produced powers corresponding to the modes of operation
of those power plants that are connected to that node, in other words, by adding up
the corresponding components of Op. This means carrying out the following linear
transformation:

OPG D H Op; (2.3.18)

where H is a summation matrix of size .NE �n/. In the i th row of the matrix is a 1
in positions corresponding to the modes of operation of the power plant connected
to the i th power plant node; all the other elements in the row are 0; i D 1; : : : ;NE .

Let D be the matrix of the linear transformation defined by (2.3.17) and (2.3.18).
Its size is NE � .2n/. Furthermore, let DT D .d1; : : :dL/. Thus, we have the
following relation:

OPG D D

 
p
y

!
: (2.3.19)

If i 2 IE , let E.i/ denote the serial number of index i within the ordered set IE .
Before the specification of the final form of the system of constraints (2.3.15)

to be attached to the model, one more comment is necessary. In Eqs. (2.3.15), in
the case of i 2 IM , the quantities Qi are to be treated as variables (Sect. A.3 of
appendix). However, because they occur only on the right-hand side of the reactive-
power relations, constraints with serial numbers i 2 IM can be omitted from those
in the reactive power part.

Therefore, the system of constraints connecting the p, y variables to the voltages
at the nodes takes the form

dTE.i/

 
p
y

!
�fi .v;w/D PF

i ; i 2 IE;

�fi .v;w/D PF
i ; i … IE; (2.3.20)

gi .v;w/DQi; i … IM ;

where the functions fi .v;w/, gi .v;w/ are quadratic functions of the variables v,
w [see (A.3.42)], and constant quantities appear on the right-hand side of the
constraints.

The rest of the system of constraints with respect to the network express
restrictions in the form of inequalities concerning the various electric quantities.
Each one is discussed separately.
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2.3.1.1 Voltage Limit Constraints

In an electric power system every power consumption device is calibrated for a fixed
nominal voltage level. A too large deviation from this level may result in damage
or equipment malfunction. To keep consumers’ voltage near the nominal value, the
voltage at the nodes of a high-voltage network should be within given intervals. Let
V min
i be the lower bound on the absolute value of voltage at the i th node of a high-

voltage transmission network, and let the upper bound be V max
i , i D 1; : : : ;N . Then

the voltage limit constraints are as follows:

V min
i � .v2i C w2i /

1=2 � V max
i ; i D 1; : : : ;N: (2.3.21)

2.3.1.2 Branch-Load Constraints

Branch-load constraints refer to the thermal loadability of branches and prevent
overheating. For each of the branches .i;k/ of the transmission network a T max

ik

value is specified. For safety reasons, the absolute value of power (apparent power)
flowing in the branch is not allowed to exceed this value. Power flow is discussed
in Sect. A.4 of appendix; the apparent power is connected to the model variables
by Eq. (A.4.20). In this respect the power loss in the branch can be neglected;
consequently, the branch load constraints are as follows:

jSik.vi ;vk;wi ;wk/j � T max
ik (2.3.22)

for every .i;k/ branch of the transmission network.

2.3.1.3 Reactive Power Injection Constraints

These constraints restrict the injection or consumption of reactive power at the nodes
connected to controllable sources of reactive power (in our case, their serial numbers
are i 2 IM ). In the case of power plants and synchronous condensers, depending
on the characteristics of the synchronous generators, their reactive power injection
(resp. consumption) is limited and implies limits concerning the reactive power
injection respectively consumption at the corresponding node. There are lower
and upper bounds specified for the other controllable sources of reactive power
regarding their injection respectively consumption of reactive power (concerning
the controllable sources of reactive power see Sect. A.2 of appendix).

If the i th node is a controllable source of reactive power and the bounds on
reactive power at the power plant are Qmin

i .y/, Qmax
i .y/, i 2 IM \ IE , otherwise

Qmin
i , Qmax

i , i 2 IMnIE , then the following constraints arise:

Qmin
i .y/�Qi �Qmax

i .y/; i 2 IM \ IE;
(2.3.23)
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Qmin
i �Qi �Qmax

i ; i 2 IMnIE:

As stated earlier, the quantities Qi are specified in explicit form in Eqs. (2.3.15);
therefore, the reactive power injection constraints, imposed via substitutions, are as
follows:

Qmin
i .y/� gi .v;w/ �Qmax

i .y/; i 2 IM \ IE;
(2.3.24)

Qmin
i � gi .v;w/ �Qmax

i ; i 2 IMnIE:

In the inequalities (2.3.24), in the lines referring to the power plants, the bounds on
both the left- and right-hand sides are functions of the mode-of-operation variables
since the bounds related to reactive power injection can be determined by adding
up the bounds related to the reactive power injection of the modes of operation of
the power plants that are connected to the nodes. Let OQmin

i and OQmax
i represent the

following vectors: their dimension equals the dimension of y, and in the position
of the modes of operation that are connected to the i th node there are lower and
upper bounds attached to the corresponding mode of operation. The remaining
components are 0 in both vectors. Therefore, the realization of the aforementioned
addition leads to the following bounds on the controllable sources of reactive power:

Qmin
i .y/D yT OQmin

i ; Qmax
i .y/D yT OQmax

i ; i 2 IM \ IE:

2.3.2 Constraints Connecting the Periods

Among the variables of the different periods of the model, the stop-and-start
constraints and the fuel constraints establish links.

In the model, the stop-and-start constraints involve mode-of-operation variables
only, and each fuel constraint contains the production-level and mode-of-operation
variables of just one power plant. Constraints involving voltage variables of several
periods are not included in the model.

In the stop-and-start constraints, for technical reasons, shutoff equipment cannot
become operative before a minimum standstill of 4 h, and for economic reasons a
power plant unit having the same characteristics as the shutoff device cannot start
either. Technically, this latter case would be possible, but for economic reasons it
is not sensible to stop a unit if, for example, a unit with similar characteristics and
production level will have to be started 2 h later.

The requirement ensuring a minimum standstill of the shutoff units of 4 h can be
formulated using the �ik.t/ standstill functions defined in Sect. 2.2.2 by requiring
that the value of the product
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�ik.t �1/
0

@1�
X

j Wk2J.i;j /
yt�1ij

1

A

0

@
X

j Wk2J.i;j /
ytij

1

A (2.3.25)

be either 0 or otherwise at least 4. This must hold for t D 1;2; : : : ;T , i D 1;2; : : : ;K ,
and kD 1;2; : : : ;N.i/. Such a formulation of the condition is advantageous because
the units shut off at the end of the preceding planning stage and, prior to that, do not
need special consideration.

At the same time, the calculation of �ik.t/, is fairly complicated and it is therefore
desirable to formulate this condition without involving these quantities.

Let us introduce the following notation. Let t be fixed .t D 1;2; : : : ;T � 1/, and
let l.t/ be the index for which the following inequalities hold:

tC l.t/ � T;

at CatC1C�� �CatCl.t / � 4;

at CatC1C�� �CatCl.t /�1 < 4:

If no such l.t/ exists, then let l.t/ D T � t . According to this definition, l.t/
represents the number of periods starting with period t whose total length is at least
4 h, provided that these 4 h following period t (including the at length of period
t) belong to the planning interval. If this condition is not fulfilled, then l.t/ is the
number of periods of the planning interval following the t th period. The reason for
introducing this notation is that in the subdivision of the planning interval there
are periods whose length is not equal to 1 h. On the other hand, according to the
requirement, the shutoff units must be in standstill for at least 4 h.

Using this notation, the minimal 4-h standstill requirement can be formulated
as follows. For all i D 1;2; : : : ;K , k D 1;2; : : : ;N.i/ and t D 1;2; : : : ;T � 1 the
following implication holds: whenever both

X

j Wk2J.i;j /
yt�1ij D 1 and

X

j Wk2J.i;j /
ytij D 0

hold,

X

j Wk2J.i;j /
ytClij D 0

must hold for all l D 1;2; : : : ; l.t/, too.
It can easily be seen that the preceding relation is enforced by prescribing the

following system of inequalities:

X

j Wk2J.i;j /
yt�1ij �

X

j Wk2J.i;j /
ytij C

X

j Wk2J.i;j /
ytClij � 1; (2.3.26)
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t D 1;2; : : : ;T �1;
l D 1;2; : : : ; l.t/;

i D 1;2; : : : ;K;

k D 1;2; : : : ;N.i/:

These constraints require that if a unit is shut off in a period corresponding to the
planning time interval, it should not be restarted within the following 4 h. It remains
to ensure that those power plant units that have been shut off within the last 4 h of
the previous planning stage should in the current planning stage only be available
for startup after a standstill of at least 4 h. These types of start-and-stop constraints
will be called first-startup constraints.

To formulate them, let lik be the number of unchanged inoperative periods needed
for unit k at power plant i . That is, in the case of

P
j Wk2J.i;j / y0ij D 0 and �ik.0/ < 4,

let lik be the serial number of the period where

�ik.0/Ca1C�� �Calik � 4

and

�ik.0/Ca1C�� �Calik�1 < 4

hold; otherwise let lik D 0.
For all the units of every power plant we require that

X

j Wk2J.i;j /
ytij D 0

must hold in the first lik periods of the current planning stage. Therefore, the first-
startup constraints are as follows:

X

j Wk2J.i;j /
ylij D 0; i D 1;2; : : : ;K; l D 1;2; : : : ; lik; k D 1;2; : : : ;N.i/:

(2.3.27)
Recall that, according to the remark in Sect. 2.1.1, further individual restrictions may
be necessary with respect to the mode-of-operation variables. It may also happen
that for some reason, certain modes of operation cannot function consecutively at
certain power plants. These subjects will not be discussed further in this book.

Figure 2.4 displays the structure of stop-and-start constraints using a matrix
pattern (the first-startup constraints are neglected). The nonzero blocks in the figure,
indicated as unit blocks, are in reality summation matrices, with their structure
displayed separately in Fig. 2.5.

Fuel constraints also establish connections among the variables of separate
periods.

According to the discussion in Sect. 1.2.2, to provide faultless operation of an
electric power system, it may be necessary to restrict the consumption of primary
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Fig. 2.4 Schematic overview of stop-and-start constraints

energy sources of a power plant (or plants). This restriction may mean a lower or an
upper bound, possibly a lower and an upper bound, or even an equality constraint.

In the model, restriction of the primary energy sources of a power plant in the
planning stage is accomplished by including fuel constraints. Power plants where
such constraints are necessary will be called power plants with fuel constraints.

Let i be the index of a power plant with fuel constraints. The total production of
power plant i in the planning stage can be expressed by the sum

TX

tD1
at

M.i/X

jD1
.Pmin

ij ytij Cptij /: (2.3.28)

The quantity of the generated electric power is directly related to the quantity of the
consumed primary energy source. Therefore, bounds on the primary energy source
can easily be transformed into bounds on the quantity of power to be generated. The
fuel constraints are formulated as

Rimin �
TX

tD1
at

M.i/X

jD1
.Pmin

ij ytij Cptij /�Rimax; (2.3.29)
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Fig. 2.5 Structure of a summation block in stop-and-start constraints

where Rimin and Rimax represent respectively the prescribed lower and upper
bounds on the amount of electric energy to be generated.

Let us note that the restrictions as formulated previously refer to the electric

power generated in the whole planning stage –
�PT

tD1 at hours
�

– while in practice

consumption of the primary energy source in a 24-h period is usually restricted.
In cases where the values of Rimin and Rimax represent restrictions for 24 h, the
generated power should only be added up for the periods corresponding to the given
24-h time interval.

2.4 Model Structure, Size, and Characteristics

In this final subsection concerning the general model, we briefly discuss the
structure and summarize the main characteristics of the nonlinear mixed integer
programming problem corresponding to the general model.

The variables of the model are the mode-of-operation variables .y/, the
production-level variables .p/, and the voltage variables (v, w/. The components
of the mode-of-operation vector variable can only have a value of 0 or 1, and the
production-level variables are nonnegative.
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The objective function to be minimized is the sum of the following three terms.
The production-cost part (2.2.4) of the objective function is a separable function of
the ytij and ptij variables that is linear in the mode-of-operation variables yt and
nonlinear but convex in the production-level variables pt . The cost of standstill
(2.2.8) is the sum of nonlinear functions of the components ytij , t D 1;2; : : : ;T ,
corresponding to the modes of operation of the individual power plants. The third
term (2.2.10) represents the costs due to transmission losses; it is a periodwise
convex quadratic function of the vt , wt variables. Thus, for fixed values of the mode-
of-operation variables the objective function is convex and separable in the variables
p, v, and w.

The system of constraints is structured. To each of the periods correspond
constraints involving only the variables of that period. Thus, for a fixed period, for
the components of the mode-of-operation variables the SOS constraints (2.1.1) must
hold, while between yt and pt the linear (2.1.2) variable coupling constraints provide
connections. The supply constraints (2.3.14) are equality constraints and include all
the variables yt , pt , vt , and wt . They are nonlinear equality constraints since on
the right-hand side a nonlinear function of

PM.i/
jD1 .Pmin

ij ytij Cptij / and a nonlinear
transmission loss function appear. The latter function is a convex quadratic function
of the vt , wt variables.

Network constraints are also constraints repeated for periods. Power balance
constraints (2.3.20), connecting the variables yt and pt with the node-voltage
variables vt , wt , are nonlinear equality constraints. The voltage limit constraints
(2.3.21) are inequality constraints prescribing lower and upper bounds on the
absolute value of the voltages at the nodes. Although the absolute value function
is a convex function of vi and wi , prescribing lower bounds results in nonconvex
constraints. The branch-load constraints (2.3.22) are inequality constraints involving
nonlinear and nonconvex functions of vt and wt . Finally, the reactive power injection
constraints (2.3.24) are nonlinear inequality constraints, including the variables yt ,
vt and wt . They are linear in the variables yt but nonlinear and nonconvex in the
variables vt and wt .

The constraints connecting the periods are as follows. The linear stop-and-
start constraints, (2.3.26) and (2.3.27), include the mode-of-operation variables
of several periods. Their structure can be seen in Fig. 2.4. Regarding the fuel
constraints (2.3.29), each particular constraint contains the variables of several
periods. Nevertheless, it is a linear function of the mode of operation and the
production-level variables belonging to just one power plant.

Figure 2.6 shows a schematic sketch of the model, where the production level,
mode-of-operation, and voltage variables of a given period are given consecutively.

Fixing the values of the mode-of-operation variables ytij results in a nonlinear
programming problem with continuous variables. As discussed earlier, the objective
function to be minimized is convex. However, with the exception of the fuel
constraints and the upper bounding side of the voltage limit constraints, the
constraints are nonconvex from the point of view of mathematical programming.
The reason is that those constraints either are of the nonlinear equality type or
involve nonconvex functions.
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Fig. 2.6 Structure of general model

The size of the nonlinear mixed-variable optimization problem, corresponding to
the general model, is as follows.
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2.4.1 Number of Model Variables

1. The number of the model’s 0� 1 variables D T � the number of the available
modes of operation in the electric power generating system:

T

KX

iD1
M.i/:

2. The number of production-level variables D T � the number of the modes of
operation available in the electric power generating system:

T

KX

iD1
M.i/:

3. The number of continuous voltage variables DT � the number of network nodes:

T �N:

2.4.2 Number of Model Constraints

1. Periodwise: the number of SOS constraints equals the number of power plants;
the number of modes of operation available in the electric power generating
system equals the number of variable coupling constraints; there is one supply
constraint; there are twice as many voltage limit constraints as the number of
network nodes, twice as many branch-load constraints as the number of branches,
as many reactive power injection constraints as the number of network nodes
connected to controllable sources of reactive power. Additionally, there are the
power flow constraints.

2. Connecting the periods: The number of start-and-stop constraints connecting the
different periods is approximately 4�T times the number of units in the electric
power system; furthermore, there are at most five fuel constraints.

Note that if an enumeration type strategy were used to solve a problem, i.e., the
problem were solved using fixed values of the mode-of-operation variables, then
the size of the problem to be solved in the individual iterations would be as follows.
Number of variables: T .KCN/.
Number of constraints:

1. Periodwise: as many lower and upper bounds on the production-level variables
as the number of power plants (they correspond to the variable coupling
constraints), one supply constraint, and the same number of network constraints
as before.
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2. In this problem, just the fuel constraints would connect the periods. There would
be five of them at most.

If there is no fuel constraint in a specific planning stage, the problem decomposes
into T independent separate problems (because the mode-of-operation variables are
fixed!). Each of them contains as many production-level variables as the number
of power plants and twice as many voltage variables as the number of transmission
network nodes. Their objective function is a convex, separable, nonlinear function
of the production-level variables. There are some nonlinear constraints as well.
For example, the constraints describing network conditions are quadratic, but not
necessarily convex.

2.5 Summary of Notations in Chap. 2

T Number of periods in planning stage;
at Length of t th period in hours;
K Number of power plants;
M.k/ Number of modes of operation available in power plants

in considered planning stage, k D 1;2; : : : ;K;
i , j Pair of indices referring to j th mode of operation of i th

power plant, i D 1;2; : : : ;K , j D 1;2; : : : ;M.k/;
yt , ytl , y

t
ij Vector of mode-of-operation variables and its compo-

nents, corresponding to t th period;
y Vector of all mode-of-operation variables (formed by

concatenating vectors yt );
y0 Value of vector of modes of operation at last period

preceding current planning stage;
pt , ptl , p

t
ij Production-level variable vector and its components cor-

responding to t th period;
p Vector of all production-level variables in model (formed

by concatenating vectors pt );
Pmin
ij , Pmax

ij Lower and upper bounds on j th mode of operation at i th
power plant;

vt , wt Vectors formed by real and imaginary parts of complex
potential at nodes of network in t th period;

fij .P / Production costs as function of produced power for j th
mode of operation at i th power plant;

Kij D fij .P
min
ij / Cost of production on minimal level for j th mode of

operation at i th power plant;
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kij .P /D fij .P
min
ij CP/ Production costs of excess power P above minimum

level corresponding to j th mode of operation at i th power
plant;

�fij .Pmin
ij /

N.i/ Number of units at i th power plant;
J.i;j / Set of serial numbers of units operating during j th mode

of operation at i th power plant;
gik.�/ Cost of standstill of unit k at power plant i as function of

standstill time;
Gik.1/, Gik.0/, cik Constants appearing in function of cost of standstill;
�ij .t/ Length of continuous standstill of j th mode of operation

at i th power plant up to period t ;
�ij .0/ Length of continuous standstill preceding current plan-

ning stage for j th mode of operation at i th power plant;
�ik.t/ Length of continuous standstill of kth unit at i th power

plant up to t th period;
�ik.0/ Length of continuous standstill of kth unit preceding

current planning stage at i th power plant;
P self
ij .P / Amount of self-consumption during production on level

P in j th mode of operation at i th power plant;
P t loss Transmission losses in period t (a function of vt , wt );
P t self Total amount of self-consumption of whole electric

power system in period t (a function of yt , pt );
P t dem Power demand in t th period, with the value (MW) of the

demand curve corresponding to t th period;
l.t/ Number of periods following period t whose total length

– including length of period t – is at least 4 h in duration,
respectively number of periods following period t in
current planning stage;

lik The kth unit at i th power plant can only be started
following first lik periods of planning stage;

Rimin, Rimax Bounds on production imposed by fuel constraints for
power plants with fuel constraints;

N The number of the nodes of the network;
M Number of branches of network;
IE Index set consisting of serial numbers of nodes to which

power plants are connected;
NE Number of elements of IE ;
IM Set of serial numbers of nodes with connected control-

lable source of reactive power;
NM Number of elements of IM ;
Pi Difference between amounts of active power injection

and consumption at i th node, i D 1; : : : ;N ;
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Qi Difference between amounts of reactive power injection
and consumption at i th node, i D 1; : : : ;N ;

PG
i Active power injection at i th node, i D 1; : : : ;N ;
PF
i Active power consumption at i th node, i D 1; : : : ;N ;

OPGi NE-dimensional vector formed by i 2 IE components of
vector PG;

D Matrix of linear transformation mapping production-level
and mode-of-operation variables into generated power at
nodes;

pmin Its components, corresponding to power plants and
modes of operation, are the minimal production levels;

vi Real part of voltage at i th node;
wi Imaginary part of voltage at i th node;
V min
i Lower bound on absolute value of voltage at i th node;
V max
i Upper bound on absolute value of voltage of i th node;
Qmin
i .y/ Lower bound on reactive power, i 2 IM \ IE ;

Qmax
i .y/ Upper bound on reactive power, i 2 IM \ IE ;

Qmin
i Lower bound on reactive power, i 2 IMnIE ;

Qmax
i Upper bound on reactive power, i 2 IMnIE ;

T max
ik Upper bound on apparent power related to branch .i;k/

(thermic loadability);
fi .v;w) Function describing dependence of active power corre-

sponding to node i on network voltage distribution;
gi .v;w/ Function describing dependence of reactive power corre-

sponding to node i on network voltage distribution;
Sik.vi ;vk;wi ;wk/ Power flowing out from i th node into branch .i;k/;
P v.v;w/ Active power loss as function of voltage distribution.



Chapter 3
Assumptions for Model Simplification

In Chap. 2, our aim in formulating the general model of the scheduling problem was
to construct a model that would best describe the problem, regardless of whether we
had any chance of solving the corresponding mathematical programming problem.
According to the overview of the model in Sect. 2.4, the corresponding problem is
a large-scale, mixed-variable problem containing nonlinearities both in its objective
function and constraints. Due to its size and complexity, there is no way to solve
realistically sized instances of this problem numerically.

An attempt should be made to decrease the number of variables and constraints
and eliminate the nonlinearities in such a way that the model should still be a
proper model of the scheduling problem and the solution of the corresponding
mathematical programming problem should be an already manageable task.

This chapter discusses simplifying assumptions that will help to simplify the
general model in the foregoing sense.

To model the scheduling problem, it is advisable to consider these assumptions
since the mathematical programming problem that arises in this way will be
numerically tractable.

Our assumptions are well founded because they are based on characteristics
of long-standing technologies of operations management or employ mathematical
approximation techniques. There are also some simplifications with respect to the
applied notations.

The next chapter, Chap. 4, includes a description of the simplified model. The
applied planning stage corresponds to a 25-h time interval and contains T D 27

periods, at D 1:0 or 0:5, t D 1;2; : : : ;27.

A. Prékopa et al., Scheduling of Power Generation, Springer Series in Operations
Research and Financial Engineering, DOI 10.1007/978-3-319-07815-1__3,
© Springer International Publishing Switzerland 2014
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3.1 Simplifying Assumptions Based on the Characteristic
Shape of the Demand Curve

A characteristic feature of the demand curve, which provides information about
daily electric power demand, is that between pairs of two maximal values of the
power demand there are several subsequent periods where the demand monotoni-
cally decreases, followed by some periods in which it varies to a small extent around
a minimal value and finally a few periods follow with monotonically increasing
demand (see Fig. 1.1 on p. 7).

It seems reasonable to require that in time intervals with monotonically decreas-
ing demand no changeovers should be allowed that would require the startup (i.e.,
heating up) of power plant units, that is, only those changeovers should be permitted
that involve shutting down some power plant units.

In time intervals where the demand increases monotonically, only those
changeovers will be permitted that originate from an already active mode of
operation by starting up additional units.

In those time intervals where demand changes only slightly, no changeovers will
be permitted; only the production levels of active modes of operation may be varied.

Based on the preceding discussion, as a simplifying assumption, a planning stage
of 1 day can be subdivided into six subsequent phases.

The first and fourth phases are characterized by monotonically decreasing
demand. In the third and sixth phases, demand increases in a monotonous way.
The second and fifth phases should contain four periods each, where the demand
fluctuates around a minimal value.

Let us call the first and fourth phases shutdown phases, the third and sixth phases
startup phases, and the second and fourth phases phases of stagnation.

In the search for an optimum let us confine ourselves to those schedules where in
the shutdown phases only changeovers that involve merely shutdowns of units are
permitted, in the startup phases only changeovers that can be attained by startups are
considered as feasible, and finally, in phases of stagnation there are no changeovers.

This restriction of the number of possible schedules is in accordance with the
practice of operations management of power plants and follows in a natural way
from information related to the cost impacts of changeovers.

At the same time, from the point of view of the model, this is a simplifying
assumption because schedules complying with the assumption automatically ensure
a standstill of the shutoff equipment for a minimum of 4 h. Therefore, the stop-and-
start constraints described in Sect. 2.3.2 can be dropped from the model, resulting
in a decrease in the number of constraints.

Note that the regulations concerning operations management in power plants are
roughly similar to those in Hungary, with minor differences [46].
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3.2 Specification for Ordering the Mode of Operations

The comment in the final part of Sect. 2.2.1 shows that in most cases the modes of
operation that are feasible in a given planning stage can be ordered in such a way
that

J.i;j1/� J.i;j2/� � � � � J.i;jM.i//

holds for the sets J.i;j /, i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/, consisting of the serial
numbers of the corresponding power plant units.

The simplified model is formulated for a planning stage where the modes of
operation have the aforementioned characteristics. It is also supposed that for the
order of the modes of operation

J.i;1/� J.i;2/� � � � � J.i;M.i//

holds for all i D 1;2; : : : ;K .
In other words, a changeover to a mode of operation of a higher serial number

can be carried out by shutting off some power plant units.
On the one hand, this simplifying assumption makes it easier to include in the

model those features described in Sect. 3.1; on the other hand, it facilitates the
formulation of the costs of standstill of the power plant units. That is, if J.i;1/ �
J.i;2/ � � � � � J.i;M.i// holds, then those units for which k 2 J.i; l/nJ.i; l C 1/

is satisfied are in standstill in periods when neither mode of operation l nor a mode
of operation preceding this mode of operation is active. Here and in the sequel,
the term mode of operation preceding mode of operation j respectively mode of
operation following mode of operation j is used, meaning that in the order of the
modes of operation a particular mode of operation precedes respectively follows
mode of operation j , i.e., its serial number is smaller respectively larger.

The aforementioned relation between the standstill of the mode of operation and
of the power plant units makes it possible that subsequently the costs of standstill
of the modes of operation will be considered instead of the costs of standstill of the
power plant units.

Let sij .�/ be the function of the costs of standstill of the j th mode of operation
in the i th power plant. The value of sij .�/ is defined as

sij .�/D
X

k2J.i;j /nJ.i;jC1/
gik.�/; i D 1;2; : : : ;K; j D 1;2; : : : ;M.i/�1:

The costs of standstill of power plant units of serial number k 2 J.i;j /nJ.i;j C1/

must be taken into account in those periods when a mode of operation following
the j th mode of operation is active. Therefore, the sij .�/ costs of standstill of the
j th mode of operation should also be considered in those periods when one of the
modes of operation following the j th mode of operation is active.
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3.3 Approximation of Production Costs

According to Sect. 2.2.1, the partial costs of a P level production of the j th mode
of operation at the i th power plant can be specified by the function fij .P /, i D
1;2; : : : ;K , j D 1;2; : : : ;M.i/.

As a simplifying assumption, instead of these nonlinear cost functions fij .P /, let
us consider a piecewise-linear approximation of them (Fig. 3.1).

Let the number of line segments of the approximating cost function of the j th
mode of operation at the i th power plant be r.i;j /.

Let the power values corresponding to the breakpoints of the approximating
function be

Pmin
ij D Pmin

ij1 ;

Pmax
ij1 D Pmin

ij 2 ;

Pmax
ijr.i;j /�1 D Pmin

ijr.i;j /;

Pmax
ijr.i;j / D Pmax

ij : (3.3.1)
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Fig. 3.1 Piecewise-linear approximation of production costs
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Let the slopes of the approximating line segments be cijl , l D 1;2; : : : ; r.i;j /. The
cost functions fij .P / are such that the following relations hold with respect to the
slopes:

cij1 < cij 2 < � � �< cijr.i;j /: (3.3.2)

Concerning this approximation, the cost of production level P in the j th mode of
operation of the i th power plant is as follows (provided that Pmin

ij l0
� P � Pmax

ij l0
, i.e.,

P belongs to the l0th line segment):

fij .P /	Kij C
l0�1X

lD1
.Pmax

ij l �Pmin
ij l /cijl C .P �Pmin

ij l0
/cijl0 ; (3.3.3)

where Kij D fij .P
min
ij / holds, in accordance with the notations introduced in

Chap. 2.
If the function of production costs is replaced by a piecewise-linear function

as described previously, then the number of production level variables must be
increased. Therefore, in the simplified model there are r.i;j / variables instead of a
single ptij variable of the general model (Sect. 4.1.2).

3.4 Approximation of Changeover Costs

The partial costs due to standstill and changeovers can be specified as described in
Sect. 2.2.2. The resulting function, however, is a complicated nonlinear function of
the 0–1 variables characterizing the modes of operation.

In this section we will show the assumption that can be used to approximate these
costs with a linear function of the already mentioned variables.

To obtain an approximation we will make the following assumption: the shut-
downs and startups of the power plant units are carried out in a symmetric way.
This assumption means that if a power plant unit is shut off l periods prior to
the stagnation phase, then the restart takes place at the end of the l th period
following the stagnation phase. (This assumption is closely related to the discussion
in Sect. 3.1; it is justified by the specific characteristics of the demand curve.) As a
consequence of our assumption, there are no so-called overlapping costs among the
individual planning intervals. If a unit was shut off prior to the analyzed planning
stage, then its approximate costs of standstill had to be taken into account in the
previous planning interval. Similarly, if a power plant unit is shut off in the present
planning stage, the costs of standstill are taken into account in the present planning
stage.

The assumption of symmetric stop–restart is only made to simplify the compu-
tation of the costs of standstill. However, in the model, other schedules, including
modes of operation of nonsymmetric stop–restart, are permitted as well.
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1
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Fig. 3.2 In the case of symmetric stop–restart, stops and restarts indicated by �1 �2 �4 �6 �7
cannot occur

The approximate linear function of the cost of changeover is such that if a
symmetric stop and restart takes place, the function value is equal to the cost as
computed in Sect. 2.2.2; otherwise, it provides an approximation of that cost.

To better understand the notion of symmetric stop and restart, let us consider
Fig. 3.2.

Figure 3.2 shows adjoining demand curves and pairs of stops and restarts. The
starting points of the arrows indicate the shutdown of a power plant unit, while the
endpoints of the arrows indicate a restart of that unit.

Time of stop Time of start

1 Previous day 2nd shutdown phase 1st startup phase
2 Previous day 2nd shutdown phase 2nd startup phase
3 1st shutdown phase 1st startup phase
4 1st shutdown phase 2nd startup phase
5 2nd shutdown phase 2nd startup phase
6 2nd shutdown phase following day 1st startup phase
7 2nd shutdown phase following day 2nd startup phase

Symmetric restart means that only types �3 and �5 may occur, the consequence
of which is that the cost has no portion that would overlap with the next day.

In Fig. 3.2 it can be seen quite clearly that the assumption is supported by the
characteristic shape of the demand curve (approximately the same demand values
are located symmetrically with respect to the phase of stagnation).

In the approximation of the cost of standstill, the cost of a 4C 2l0 standstill
associated with stopping and restarting a unit or units (depending on the changeover)
shut off l0 periods prior to the phase of stagnation will be represented as a sum in
a way similar to that given in Sect. 2.2.2 (this standstill is due to the 4-h stagnation
and the l0 periods prior to it and following it, resulting in a 2l0-h standstill; here the
possibility that there are also some 30-min periods is disregarded).
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To represent this as a sum, let us define the quantities d tij in the following way
(for every mode of operation in every power plant and in every period, apart from
the second, third, and fourth periods of the stagnation phases):

d tij D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

sij .4C2l/� sij .4C2l�1/ if t is the l th period prior to the stagna-
tion phase,

sij .4/ if t is the beginning of the stagnation
phase,

sij .4C2l�1/� sij .4C2l�2/ if t is the l th period after the stagnation
phase.

(3.4.4)

Let us assume that the j th mode of operation of the i th power plant is shut off at
the beginning of the l0th period prior to the stagnation phase that starts at t0 and that
its restart is performed in a symmetric way. In this case,

t0X

tDt0�l0
d tij C

3Ct0Cl0X

tDt0C4
d tij D sij .4C2l0/ (3.4.5)

holds, i.e., the sum of the d tij quantities over the standstill periods equals the
corresponding cost of standstill. The addition of the d tij quantities means the
addition of the increments of the cost of standstill, like the addition presented in
Sect. 2.2.2. The order of addition is different, though. Figure 3.3 highlights this.

If the start does not take place in a symmetric way and the addition is carried
out with the actual standstill times, there is a deviation from the value sij .4C
2l0/ consisting of the partial sum, which corresponds to the second term in the
addition. We assume that the standstill costs obtained in this way are good-enough
approximations of the actual sij .�/ costs.

In the model we must ensure that the costs of standstill corresponding to those
units that are shut off due to stops and restarts of types �1 and �2 , according to the
notation in Fig. 3.2, should not be charged during the period in question. When a �4
type of stop-restart OCCURS, no standstill costs should be taken into account in the
case of equipment that is still in standstill in the second stop–stagnation–start phase.
The costs of stop–restart of the �6 and �7 types are given by an approximation of
the costs of symmetric stop–restart, as explained earlier. Stop–restarts of the �3 and
�5 types are either symmetric approximately symmetric.

3.5 Introduction of an Operating Point and Some Notations

Regarding those parts of the general model presented in Chap. 2 that involve
a transmission network, the functions appearing in constraints (2.3.20), (2.3.22),
and (2.3.24), as well as the objective function (2.2.10), are nonlinear. Since our
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Fig. 3.3 Cost of standstill as a sum of d tij increments. Increments indicated by I on the right-hand
side provide the first part of the summation; those indicated by II provide the second part of the
summation; Arabic numerals indicate the order of the terms

aim is to build a linear model, we wish to approximate these functions by linear
functions. The procedure will be as follows: an operating point will be fixed,
a linearization around the operating point will be carried out, and by imposing
bounds on the variables, it will be ensured that the accuracy of the approximation is
sufficiently good in the corresponding neighborhood of the operating point.

Naturally, the operating point will be a point for which the network con-
straints (A.3.43) hold; therefore, its specification requires the solution of the power
flow problem (Sect. A.3). This requires the specification of the absolute values
of the voltages at the nodes connected to controllable sources of reactive power
(defined in Sect. 2.3.1; see Sect. A.3) and the value of the voltage at the reference
node. Regarding the model, these quantities are prescribed input data. Furthermore,
the power consumption at the consumers’ nodes and the generated active power at
the nodes of the power plants must be known. The former are input data while the
latter are provided by solving an optimization problem for the particular period with
respect to power generation (for details see Sects. 4.3.1 and 5.4).

For a detailed discussion of the process of linearization, some notations must be
introduced. In the sequel, the superscript t , indicating the periods for the variables,
will be omitted. Let (v�;w�) denote the operating point. In contrast to the notations
in Sect. 2.3.1, L.D NM/ denotes the number of nodes connected to controllable
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sources of reactive power. According to the discussion in Sect. A.3, the set of nodes
connected to controllable sources of reactive power consist of the .Q;V / nodes and
contains the reference node. The rest of the nodes will be called consumer nodes,
and their set consists of the .P;Q/ nodes according to Sect. A.3. LetNF denote the
number of consumer nodes. Vector v will be partitioned in the following way:

v D
 

vM

vF

!
; (3.5.6)

where vM 2 RL corresponds to nodes connected to controllable sources of reactive
power and vF 2 RNF corresponds to consumer nodes. It is assumed that the node
serial numbers start with nodes having attached controllable sources of reactive
power. Note that the superscript F is used in two different contexts. It indicates
consumer nodes in the case of voltage, whereas in the case of active power it
indicates power consumption (demand).

Let gT .v;w/ D .g1.v;w/; : : : ;gN .v;w//). This is partitioned according to the
components of controllable sources of reactive power and the components of the
consumers:

.gM.v;w//T D .g1.v;w/; : : : ;gL.v;w//;

.gF .v;w//T D .gLC1.v;w/; : : : ;gN .v;w//:
(3.5.7)

On the right-hand side in relation (2.3.15), Q 2 RN is partitioned in a similar way:

.QM/T D .Q1; : : : ;QL/I .QF /T D .QLC1; : : : ;QN /: (3.5.8)

With these notations the part of relations (2.3.15) that corresponds to reactive power
takes the following form:

g.v;w/DQ;

respectively

gM.v;w/D QM;

gF .v;w/D QF : (3.5.9)

The Jacobi matrix of the mapping g.v;w�/WRN !RN will be needed at the point
v D v�. It is denoted by Y and partitioned in accordance with the nodes connected
to controllable sources of reactive power and consumers:

Y D
�

Y1 Y2

Y3 Y4

� �
L�
NF :

„ƒ‚…
L

„ƒ‚…
NF

(3.5.10)
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On the basis of (A.3.35) and (A.3.39), the elements of matrix Y are as follows:

Yii D
X

k2J.i/
w�
kGik C v�

i

X

k2J.i/
.2Bik �!Cik/�

X

k2J.i/
v�
kBik; i D 1; : : : ;N I

(3.5.11)

Yik D
� �w�

i Gik � v�
i Bik if .i;k/ is a branch of the network,

0 otherwise:
(3.5.12)

3.6 Reduction in Number of Voltage Variables

The real and imaginary parts of the complex voltage of all the nodes are considered
variables in the model from Chap. 2. In this section, an approximate linear relation
is constructed between vM and vF , and using this relation vF can be expressed as a
function of vM . Therefore, in the simplified model it will be sufficient to regard vM

as a variable.
In Sect. A.4 it is made clear that the reactive power flow depends mainly on the

absolute values of the voltages at the nodes. Regarding the partition of voltage into
real and imaginary parts, it is an empirical fact that the reactive power flow depends
mainly on the real part and only to a smaller extent on the imaginary part. Like the
reasoning used in Sect. A.4, this fact can be supported by heuristic arguments as
well. Consequently, in connection with (3.5.9), the imaginary part will be fixed to
the value w� of the operating point. In this way the following relation arises:

gF .vM;vF ;w�/D QF : (3.6.13)

On the basis of (3.5.10), the Jacobi matrix of the preceding system of equations is
.Y3;Y4/. As a consequence of the connectedness properties of the electric network
(as a graph), matrix Y4 is nonsingular. Therefore, in a neighborhood of .v�M ;v�F /,
the system of Eqs. (3.6.13) defines vF in an implicit way as a function of vM , i.e.,
there exists a mapping hWRM ! RNF such that vF D h.vM/ holds. According to
the theorem on the derivative of implicit functions, we obtain

dh.v�M/
dvM

D �Y�1
4 Y3: (3.6.14)

Neglecting the higher-order terms in the Taylor series around v�M of the function
h.vM/, in a sufficiently small neighborhood of v�M the following linear relation
holds approximately:

vF � v�F 	 �Y�1
4 Y3.vM � v�M/: (3.6.15)

An approximately valid equality is denoted by “	” both here and in the sequel.
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3.7 Expressing Imaginary Part of Voltages by Active Power
Injection; Further Reduction in the Number of Voltage
Variables

In this section we will show that, by virtue of linearization, the imaginary parts of
the voltages at the nodes can be expressed in terms of the generated power PG at the
nodes. Since the latter can be expressed in a linear way using the variables of the
model to be formulated, in the simplified model, w might not act as a variable.

Here again, a linearization procedure, based on implicit functions and already
applied in Sect. 3.6, could be used. Nevertheless, a different method will be used
based on the linearization of power flow relations, which is needed anyway for the
branch-load constraints.

It is known that active power flow is mainly sensitive to phase angles. If the
voltages are partitioned into real and imaginary parts, it can be shown analogously
that the active power flow is mainly sensitive to the imaginary part of voltages. For
this reason, the real part of the voltage is fixed at the v� value corresponding to
the operating point and the power flow is analyzed as a function of w in a small
neighborhood of w�. To carry out the linearization, let us recall relation (A.4.32),
which describes the active power flowing out of the i th node into the branch .i;k/:

Tik.v
�
i ;v

�
k ;wi ;wk/DGikŒv

�
i .v

�
i �v�

k /Cwi .wi �wk/�CBik Œwi v�
k �wkv�

i �: (3.7.16)

According to A.4, Gik 
 Bik holds, and in relative units (see A.4), the deviations
between v�

i and v�
k and between wi and wk are small. Therefore, the following

approximation, which is well-established in practice, will be used:

Tik.v
�
i ;v

�
k ;wi ;wk/	 Bik.wiv

�
k � wkv�

i /: (3.7.17)

This relation is formulated for all branches, which can be performed in a compact
way by utilizing the following notations.

Let V be an M �N matrix resulting from the transposed AT of the node-edge
incidence matrix A in the following way. Proceeding in a row-by-row fashion in
matrix AT , the real part of the reference point voltage corresponding to the endpoint
of the edge is placed in the position of the starting point of the edge, while .�1/-
times the amount of the real part of the voltage at the starting point is placed at
the position corresponding to the endpoint of the edge. Let T (T 2 RM ) denote the
vector of active powers flowing out into the branch from the starting point of the
branch. Let B be a diagonal matrix of size M �M ; if the l th branch is .i;k/, then
let the l th element of the diagonal be Bik , l D 1; : : : ;M .

The approximation of the power flow with our notations is as follows:

T 	 BVw: (3.7.18)
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Let us note that relations (3.7.18) correspond edgewise to the direction of edges
as oriented in the directed graph, i.e., they describe the power flowing out into the
branches from the starting point of the branch in the directed graph. If the actual
power flow is of the direction k ! i , then the power flowing out from i into the
branch has a negative value.

In accordance with Sect. 2.3.1, the vector of power generated at the nodes is
denoted by PG .PG 2 RN ), where PG

i D 0, if i > L, and let PF be the vector of
consumption at the nodes. If a quantity’s notation also involves an �, it will refer to
the operating point.

A natural way to formulate the relation between the power flow T and the PG

vector is the application of Kirchhoff’s nodal law for power flow (Sect. A.4). Since
the power flow T is with regard to the orientation of the branches and there is a
power loss in the branches, a correction term must be introduced in Kirchhoff’s law.
The method will simply be as follows. If the actual flow is in accordance with the
orientation, the power consumption at the endpoint will be decreased by the amount
of the loss; otherwise, it will be increased by the same amount.

Let PK 2 RN be the following vector (on the notation see A.4):

PK
l D �

X

.i;l/branch
sgnTil�0

P v
i l C

X

.i;l/branch
sgnTil <0

P v
i l ; l D 1; : : : ;N: (3.7.19)

Therefore, Kirchhoff’s nodal law at operating point i will be

P�G D PF C P�K C ATT�: (3.7.20)

If we know the voltage distribution at the operating point, P�K can be determined
using (A.4.22) and (A.4.30) on the basis of (3.7.19). Having fixed the losses
at the operating point, the following approximation can be applied in a small
neighborhood of the operating point:

PG 	 PF C P�K C ATT: (3.7.21)

By substituting here the approximation of the power flow as specified in (3.7.18),
the following relation results:

PG � PF � P�K 	 ATBVw: (3.7.22)

Here the matrix ATBV is of size N �N and its rank is N �1 (Theorem A.1.8).
If the row and column of the matrix ATBV corresponding to the reference

node are deleted, the resulting matrix is nonsingular (Theorem A.1.8). Then it is
inverted, and the inverse matrix is appended with a first row and column containing
0 elements only. Let the resulting matrix be denoted by ZN . The phase angle of the
potential at the reference node is 0; therefore, w1 D 0 holds. Thus, utilizing (3.7.22),
the approximation formula
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w 	 ZN .PG � PF � P�K/ (3.7.23)

arises, as promised in the title of this Section.

3.8 Linearizing the Network Constraints

On the basis of the discussions in Sects. 3.6 and 3.7, the opportunity to build a
simplified linear model is given where in the constraints concerning the transmission
network, apart from the production level and mode of operation variables, only
the real parts of the complex voltages of the nodes with controllable sources of
reactive power occur as variables. However, to achieve this, appropriate linear
approximations to the functions appearing in the constraints (2.3.22) and (2.3.24)
of the general model must be specified. Furthermore, a way of handling the system
of network constraints (2.3.20) must also be specified.

First, the system of branch-load constraints (2.3.22) will be discussed. Their
linearization is quite simple on the basis of (3.7.18) and (3.7.23):

T 	 BVZN .PG � PF � P�K/: (3.8.24)

Here on the right-hand side PG is the only variable. Later on we will show that it
can be expressed as a linear function of the production-level and mode-of-operation
variables in the simplified model (Sect. 4.1.3).

In connection with the branch-load constraints, one more thing will be neglected:
the apparent power jSikj in constraints (2.3.22) will be replaced by the absolute
value of the active power as corrected by the losses, while appropriately corrected
T max
ik bounds will be used.
Next, the system of constraints (2.3.24) concerning the reactive power sources

will be considered. Applying the notations of Sect. 3.6 and disregarding the
quadratic terms of the Taylor expansion of gM.vM;vF ;w�/ around .v�M ;v�F /, we
obtain

gM.vM ;vF ;w�/	 gM.v�M;v�F ;w�/C Y1.vM � v�M/C Y2.vF � v�F /: (3.8.25)

Substituting on the basis of (3.6.15) results in

gM.vM ;vF ;w�/	 gM.v�M;v�F ;w�/C .Y1� Y2Y�1
4 Y3/.vM � v�M/: (3.8.26)

Finally, some remarks concerning the system of network constraints (2.3.20)
follow. This consists of quadratic constraints in the form of equalities that must
be satisfied by the network voltage distribution. They are implicitly included in
the model using the constraints resulting from the aforementioned linearizations
within a range determined by the still permitted error value in the process of
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linearization. The model for optimal daily scheduling, including all network
constraints formulated as inequalities and with respect to the real part of the voltage
of the nodes connected to controllable sources of reactive power as variables, is
solved first. Then, supplementing the optimal solution by the imaginary parts of the
operating-point voltages at the nodes connected to controllable sources of reactive
power and based on the optimal generated powers, the load-flow problem is solved
(Appendices 3 and 4). If the lower and upper bounds on the voltages at the nodes
are sufficiently close to the operating point values, i.e., if the range is sufficiently
narrow, then the voltage and power distribution obtained in this way will in the
physical sense still satisfy the voltage, branch-load, and reactive power injection
constraints. This strategy turned out to work well in practice.

3.9 Linearizing the Network Loss Function

The network loss function C v.v;w/, (2.2.10), is a convex quadratic function of the
variables .v;w/. Its linearization around the operating point simply means that the
quadratic terms are neglected in the Taylor expansion around the point .v�;w�/.

Utilizing the notations of Sect. 3.6 and indicating the values corresponding to the
operating point by �, we obtain the following relation:

P v.v;w/	 P v.v�;w�/CrT
vMP

v.v�;w�/.vM � v�M/

�rT
vF P

v.v�;w�/.vF � v�F /CrT
wP

v.v�;w�/.w � w�/: (3.9.27)

Practical experience has shown that the third term on the right-hand side can be
neglected. Let us introduce the notations dv D rvMP

v.v�;w�/, bv D rwP
v.w�;w�/.

The following formula can be obtained directly from Eq. (A.4.30) by computing the
derivatives

d v
i D

X

k
.i;k/branch

Rik

	
2GikI

�P
ik �

�
Bik � 1

2
!Cik

�
I

�Q
ik CBikI

�Q
ki



; i D 1; : : : ;L:

(3.9.28)
The components of bv can be obtained in a similar way:

bv
i D

X

k
.i;k/branch

Rik

h
2BikI

�P
ki CGikI

�Q
ik �GikI�Q

ik

i
; i D 1; : : : ;N:

On the basis of relation (3.7.23), (3.9.27) can be formulated as follows:

P v.v;w/	 P v.v�;w�/C
LX

iD1
d v
i vi �

LX

iD1
d v
i v�
i C bvTZN .PG � PF � P�K/� bvTw�:

(3.9.29)
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In the model constructed in the following section, it will turn out that PG can be
expressed as a linear function of the power and mode-of-operation variables, as
mentioned previously.

3.10 Voltage Check Periods

Those periods where, in addition to caloric constraints, network constraints are
also prescribed will be called voltage check periods. The generation of a system
of network constraints and their inclusion in the optimization is coupled with a
relatively higher computational time, and for this reason, in the simplified model,
network constraints are only prescribed for three periods. These are the extreme
load periods: the evening peak load period, the nightly minimum load period, and
the morning peak load period [see Eq. (3.3.1)]. At the time of a peak load, the
consumption of reactive power is high and the voltages are lower, while during the
nightly minimum load period both the production of reactive power and the voltages
are high. Based on general hands-on experience, which can also be derived from the
strategy related to start and stop actions in power plant blocks discussed in Sect. 3.1,
if network constraints are prescribed in the extreme peak load periods, they will be
satisfied in the intermediate (normal) periods as well.

3.11 Selection of Network Constraints

The voltage limit constraints (2.3.21) refer to all nodes. They represent bounds on
the absolute value of the complex voltages at the nodes. These will be modified
by prescribing bounds only on the real parts of voltages. The reason for this is
that, according to (3.7.23), restriction of the active power entails a restriction of the
imaginary part of the voltages as well. On the other hand, practical experience shows
that fluctuations in the imaginary part are small in the neighborhood of operating
points due to the strict bounds prescribed for the other electric quantities.

In the case of bounds prescribed for the real parts of the voltages at the nodes, only
a few consumer nodes are critical from the point of view of voltage limit constraints.

The operating pointsKv of the most violated constraints are selected from among
the constraints at the consumer nodes, or, alternatively, if those constraints are
satisfied, then points are selected where the values at the operating points are closest
to the limit. In practice,Kv D 30 proved to be sufficient.

With respect to the branch-load constraints (2.3.22), overload may occur on only
a small fraction of all of the transmission lines. On the basis of the power flow at the
operating point KA, constraints are selected in a manner analogous to that used for
the voltage limit constraints, and only these are prescribed in the simplified model.
In practice,KA D 30 proved to be sufficient here as well.



Chapter 4
The Model Obtained by Taking into Account
the Simplifying Assumptions

On the basis of the discussion in Chap. 3, the general model of the scheduling
problem can be simplified.

The simplified model is a large-scale mixed-variable mathematical programming
problem with a linear objective function and linear constraints, with the coefficient
matrix having a special structure. It is suitable for numerical solutions.

In the process of formulating the model, some changes in the notations take place,
apart from the already mentioned simplifications: in the simplified model, the mode-
of-operation variables are defined differently from how they were defined in the
general model to decrease the number of 0–1 variables.

The notations used in the description of the model here are the same as those used
in Sect. 2.1.

4.1 Simplified Model

4.1.1 Mode-of-Operation Variables

The xtij , i D 1;2; : : : ;K; j D 1;2; : : : ;M.i/� 1; t D 1;2; : : : ;27 variables will be
defined in the following way [K is the number of power plants, and M.i/ is the
number of modes of operation applicable at power plant i , i.e., as in the case of the
general model]:

xtij D

8
ˆ̂<

ˆ̂:

0 if at the i th power plant in the t th period the j th mode of operation or
a preceding mode of operation is active;

1 if at the i th power plant in the t th period a mode of operation
following the j th mode of operation is active.

(4.1.1)

A. Prékopa et al., Scheduling of Power Generation, Springer Series in Operations
Research and Financial Engineering, DOI 10.1007/978-3-319-07815-1__4,
© Springer International Publishing Switzerland 2014
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It is obvious that if the interpretation of the symbols xti;M.i/, i D 1;2; : : : ;K , t D
1;2; : : : ;27, is also defined in the foregoing way, their value can only be 0. Therefore,
xti;M.i/ D 0, i D 1;2; : : : ;K , t D 1;2; : : : ;27, and they are not variables of the model.
The number of modes of operation in the case of individual power plants is only
M.i/�1.

Despite this, the symbols xti;M.i/ defined in the preceding sense occur in the model
description. Similarly, the symbols xti;0, i D 1;2; : : : ;K , t D 1;2; : : : ;27, will also be
used in the model formulation. Their value is 1, in accordance with the definition
given previously.

Given this definition, the value of the difference of xti;j�1 � xtij is 1 if and only
if in the t th period at the i th power plant the j th mode of operation is active
[i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/, t D 1;2; : : : ;27]. It also follows from the
definition of xtij that the components corresponding to a given power plant, i.e.,
the xti1;x

t
i2; : : : ;x

t
i;M.i/�1 variables, take a value of 1 for a first section of consecutive

indices, followed by a second section where the value is 0 throughout. Concerning
the pair 1, 0 standing side by side, the position of 0 indicates which mode of
operation is operating at the given power plant in a particular period.

In the foregoing groups of variables, corresponding to different periods, the
position of the 1, 0 pair can vary. A move to the right means that a stop action took
place at the power plant in the time interval between the two periods. If it moves
to the left, then a startup action has occurred. If the position of the pair of 1, 0 is
unchanged, the mode of operation has not changed in the time interval between the
periods (Sect. 3.2).

The xt vector of the mode-of-operation variables corresponding to the t th
period is provided by concatenating the xtij , i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/�1
components in the order of the power plants and for a fixed power plant in the order
of the modes of operation. Its dimension is

PK
iD1.M.i/�1/.

Due to the assumption in Sect. 3.1, there is no changeover in the stagnation
phases. Therefore, it is quite sufficient to regard the mode-of-operation variables
of the first period of the stagnation phase as the model variables. For this reason,
xt only denotes variables in the case of t D 1;2; : : : ; t0, t0 C 4; : : : t1, t1 C 4; : : : ;27,
where t0 and t1 are the serial numbers of the first periods of the phases of stagnation.
The x variable without a superscript indicates the concatenation of the xt variables.
The dimension of x is

21

KX

iD1
.M.i/�1/:

In the formal description of the model the symbol xtij occurs also in the case
of t D t0 C 1, t0 C 2, t0 C 3 and t1 C 1, t1 C 2, t1 C 3 as well. These are to be
understood as xt0ij respectively xt1ij . In the model it is necessary to have information
about the mode of operations in the last period preceding the current planning stage.
The relevant information can be provided by supplying the value of the mode-of-
operation variables of this last period. Let us denote the corresponding vector of
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Fig. 4.1 Structure of matrix and constant term of linear transformation connecting mode-of-
operation variables of general and simplified model

the modes of operation by x0. In the model this is a
PK

iD1.M.i/�1/-dimensional,
constant vector of 0, 1 values.

Note that if the modes of operation and their order in the general model are the
same as the modes of operation and their order in this model, then for the mode-of-
operation variables of the two models the following relation holds:

yt D Hxt C Oh: (4.1.2)

To avoid notation that is too complicated, instead of providing H and Oh in an explicit
form, they are visualized in Fig. 4.1.

In the figure, the Hl block is of size M.l/� .M.l/� 1/ and .Hl /kk D �1, k D
1;2; : : : ;M.l/� 1, .Hl /kC1;k D 1, k D 1;2; : : : ;M.l/� 1. The remaining elements
of the matrix are 0. The rows corresponding to those power plants where there is
only one mode of operation contain only 0s. In the figure there is a row of this type
between the Hl and HlC2 blocks. The corresponding component in vector Oh is 1.

4.1.2 Production-Level Variables

To specify the production level of the modes of operation to be applied in the
individual periods at power plants, r.i;j / variables are attached to each mode
of operation in each period, where r.i;j / is the number of line segments in the
piecewise-linear approximation to the cost function corresponding to the mode of
operation.

Let ptijl , l D 1;2; : : : ; r.i;j /, t D 1;2; : : : ;27, denote the variable attached to the
j th mode of operation at the i th power plant.
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Let ptijl D 0, l D 1;2; : : : ; r.i;j /, if in the t th period at the i th power plant the
active mode of operation is not the j th mode of operation. Otherwise, in the case
where the j th mode of operation of the i th power plant is active on production level
P in the t th period, let ptijl � 0, l D 1;2; : : : ; r.i;j /, and, provided that

Pmin
ijk � P � Pmax

ijk (4.1.3)

holds, let

ptijl D Pmax
ij l �Pmin

ij l ; l D 1;2; : : : ;k�1; (4.1.4)

ptijk D P �Pmin
ijk ; (4.1.5)

ptijl D 0; l D kC1; : : : ; r.i;j /: (4.1.6)

From the definition it follows that ptijk > 0 can only hold for some index k if (4.1.4)
is fulfilled. The definition also implies that the conditions

0� ptijl � .Pmax
ij l �Pmin

ij l /.x
t
ij�1�xtij /; (4.1.7)

i D 1;2; : : : ;K; j D 1;2; : : : ;M.i/; l D 1;2; : : : ; r.i;j /

t D 1;2; : : : ;27

must also hold. In these relations, the factor .xtij�1 � xtij / on the right-hand side
ensures that ptijl > 0 can only hold in the case where the j th mode of operation is
active at the i th power plant.

Using the previously defined production-level variables, the production level of
the i th power plant in the t th period can be specified by the following sum:

P D Pmin
ij .xtij�1�xtij /C

r.i;j /X

lD1
ptijl : (4.1.8)

Adding up these relations for all modes of operation at the i th power plant, the
production level of the power plant in the t th period results in

M.i/X

jD1

2

4Pmin
ij .xti;j�1�xtij /C

r.i;j /X

lD1
ptijl

3

5 : (4.1.9)

For a fixed t , let pt denote a vector that is formed by the ptijl components by enlisting
them according to the ordering of the power plants and their modes of operation.

This pt will be the vector of production-level variables in the model correspond-
ing to the t th period. Its dimension is
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KX

iD1

M.i/X

jD1
r.i;j /:

The vector p without a superscript will be the vector of production-level variables
in the model. This vector is formed by concatenating the vectors pt , t D 1;2; : : : ;27.

4.1.3 Voltage Variables

In the voltage check periods, the real parts of voltages at the nodes corresponding to
controllable sources of reactive power are also variables of the model, in addition to
production-level and mode-of-operation variables. Let u denote the L-dimensional
vector formed by the preceding variables.

It was assumed in Chap. 3 that the PG vector of the active powers generated
at the nodes could be expressed as a linear function of the variables p, x of the
model. Indeed, let D� be the following matrix of size N �Nv [where Nv denotes
the dimension of .pT ;xT /]: its nonzero elements can only be found in those rows
corresponding to nodes that a power plant is connected to. In these rows, in the
columns of power type variables corresponding to the connected power plants, there
is a 1, while the correspondingPmin

i;jC1�Pmin
ij quantities can be found in the columns

of mode-of-operation type variables. It is easy to see that

PG D D�
 

p
x

!
C Pmin (4.1.10)

holds, where Pmin
k is the sum of the minimum production levels Pmin

i1 of the modes
of operation belonging to power plants connected to the kth node, and Pmin

k D 0 if
there is no power plant connected to the kth node.

4.2 Objective Function

Considering the simplifying assumptions explained in Chap. 3 and utilizing the
variables of the simplified model, the components of the nonlinear objective
function discussed in Sect. 2.2 are altered in the following way.
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4.2.1 Production Costs of Power Plant Blocks

The cost of production of the j th mode of operation of the i th power plant in the
t th period, corresponding to the production level determined by the production-level
variables ptijl , l D 1;2; : : : ; r.i;j / according to (4.1.8), will be

at

8
<

:Kij .x
t
i;j�1�xtij /C

r.i;j /X

lD1
cijl �ptijl

9
=

; ; (4.2.11)

where the piecewise-linear approximations to the production cost functions fij .P/,
i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/, have been utilized.

In the entire planning stage the partial costs of the operation of the power plant
blocks is

27X

tD1
at

KX

iD1

M.i/X

jD1

8
<

:Kij .x
t
i;j�1�xtij /C

r.i;j /X

lD1
cijlp

t
ijl

9
=

; (4.2.12)

which is a linear function of the model variables.

4.2.2 Partial Costs Due to Standstill and Restart

In accordance with Sect. 3.4, the approximate value of the costs of standstill of
power plant units respectively modes of operation can be obtained by adding up the
d tij quantities.

According to the definition of mode-of-operation variables and the assumption on
the specification of the modes of operation, if xtij D 1 holds, then at the i th power
plant in the t th period a mode of operation following the j th mode of operation is
active. However, this implies that at least one unit belonging to mode of operation j
is in standstill.

Therefore, the addition of the d tij quantities over the standstill time corresponds
to the addition of the d tij x

t
ij products for the entire planning stage (excluding the

second, third, and fourth periods of the stagnation phases). Consequently, the cost
of standstill is

27X

tD1

KX

iD1

M.i/X

jD1
d tij x

t
ij ; (4.2.13)

where in the summation t 6D t0C1; t0C2; t0C3 and t 6D t1 C1; t1 C2; t1C3

hold.
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This sum, however, contains the costs corresponding to units already in standstill
at the end of the preceding planning stage, but these should be neglected according
to the simplifying assumptions. Thus, the value of (4.2.13) must be modified. For
this let us change the definition of the d tij coefficients. Let d tij D 0 for every t
value belonging to the first stop phase, to the first start phase, to the first period
of the first stagnation phase and every mode of operation i , j [i D 1;2; : : : ;K ,
j D 1;2; : : : ;M.i/] for which x0ij D 1 holds (x0ij D 1 means that in the i th power
plant at the end of the preceding planning stage a mode of operation following the
j th mode of operation is active; therefore, a power plant unit belonging to the j th
mode of operation is in standstill).

If calculating the standstill costs using the altered values of the d tij coefficients
in (4.2.13), there is no cost of standstill in the first part of the planning stage
corresponding to units of types �1 and �2 (using the notations of Fig. 3.2) that
are shut off.

In the second part of the day, the costs of standstill of units of types �2 and �4
are still calculated, despite the fact that this should be neglected according to the
simplifying assumptions. A characteristic feature of stops and restarts of types �2
and �4 is that the shutoff unit is in standstill already in the last period of the first
startup phase. Let t� denote the serial number of the aforementioned period.

If xt
�

i0j0
D 1 holds, then a shutoff unit of types �2 and �4 belongs to the j0th mode

of operation in the i0th power plant. In the case of the addition of the d ti0j0 values for
the entire planning stage, the approximate value si0j0.4C2l0/ occurs in the sum for
the second part of the day, provided that l0 is the number of periods of the second
stop phase. Let us decrease the cost of standstill (4.2.13) by the sum

KX

iD1

M.i/X

jD1
sij .4C2l0/x

t�

ij : (4.2.14)

If for the case of t D t� the d tij coefficients are altered in such a way that their
value decreases by sij .4C2l0/, [i D 1;2; : : : ;K , j D 1;2; : : : ;M.i/], then (4.2.13)
is the approximation of the cost of standstill in accordance with our simplifying
assumptions.

4.2.3 Costs of Transmission Losses

Let the considered voltage check period be the t th one, and where no misunderstand-
ing may occur, superscript t is neglected concerning the variables. Let F.u;p;x/
denote the value of transmission losses, in the local currency (Fts), for the period.
On the basis of (3.9.29), the partial costs in the objective function due to the losses
are as follows:
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f .u;p;x/D �at

"
dT u C bTZN

 
D�
 

p
x

!
C Pmin � PF � P�K

!#
; (4.2.15)

where � is the cost of the loss of 1 MWh in Fts and at is the length of the t th period
in hours. The total cost of transmission losses is the sum of the costs of losses of the
individual periods.

4.3 Model Constraints

The constraints of the simplified model can also be arranged in groups by whether
they describe connections in a repeated way for the periods only among variables of
the individual periods or prescribe relations among the variables of several periods.
Among the constraints, there are some that are repeated for the periods, and they
must be satisfied explicitly only in the voltage check periods.

4.3.1 System of Constraints of a Normal Period

The satisfaction of the following constraints is required in every period. Normal
period refers to those periods where, except for these constraints, no further
constraints are needed to describe the relationships among the variables of these
periods.

By the definition of production-level variables, the fulfillment of the

0� ptijl � .Pmax
ij l �Pmin

ij l /.x
t
ij�1�xtij / (4.3.16)

i D 1;2; : : : ;K; j D 1;2; : : : ;M.i/; l D 1;2; : : : ; r.i;j /

variable coupling constraints must be required for each of the periods.
There is no need to include a constraint in the model to ensure that ptijk > 0

holds only in the case of ptijl D Pmax
ij l � Pmin

ij l , l D 1;2; : : : ;k � 1. Due to the
property (3.3.2) of the approximate functions of the production cost functions
fij .P /, this is automatically satisfied for the optimal solutions with minimal costs
of the mixed-variable problem corresponding to the model.

The supply constraint can be specified in the following way by using the variables
of the simplified model:

KX

iD1

M.i/X

jD1
.xtij�1�xtij /Pmin

ij C
r.i;j /X

lD1
ptijl D P t dem CP t loss CP t self: (4.3.17)
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Though this fact was not explained in the discussion of the simplifying assumptions,
the functions of self-consumption of the power plants (Sect. 2.3.1) are assumed in
this model to be independent of the modes of operation and are approximated by
linear functions of power plant production. Therefore,

P t self D
KX

iD1
P self
i

0

@
M.i/X

jD1
.xtij�1�xtij /Pmin

ij C
r.i;j /X

lD1
ptijl

1

A (4.3.18)

holds, where P self
i .P / is the linear function of self-consumption at power plant i .

In the simplified model there is no need for the SOS constraints of the general
model. It is, however, necessary to require the fulfillment of the relation

xtij�1�xtij � 0; j D 1;2; : : : ;M.i/�1; (4.3.19)

for i D 1;2; : : : ;K , due to the definition of the modes of operation. These are referred
to as the constraints on the mode-of-operation variables.

4.3.2 System of Constraints of Voltage Check Periods

Besides the constraints required in the normal periods, additional constraints are to
be prescribed in the voltage check periods.

Relying on the contents of Sects. 2.3.1 and 3.5–3.8, the system of constraints on
the transmission network in the simplified model is specified here. Because a fixed
period is being considered here, superscript t will be omitted. Quantities referring
to the operating point are indicated by an � in a superscript position.

4.3.3 Voltage Limit Constraints

The V min
i , V max

i , i D 1; : : : ;N bounds referring to the absolute value of the voltages
at the nodes are given for each node. The bounds corresponding to the real part are
calculated as follows:

umin
i D Œ.V min

i /2� .w�
i /
2�

1
2 ; umax

i D Œ.V max
i /2� .w�

i /
2�

1
2 ; i D 1; : : : ;N: (4.3.20)

The voltage limit constraints corresponding to the nodes connected to controllable
sources of reactive power are individual lower upper bounds:

umin
i � ui � umax

i ; i D 1; : : : ;L: (4.3.21)



68 4 The Model Obtained by Taking into Account the Simplifying Assumptions

With respect to the consumer nodes, relation (3.6.15) can be applied, leading to the
following system of constraints:

uminF � v�F � Y�1
4 Y3.u � v�M/� umaxF ; (4.3.22)

where the notations of (3.5.6) were used.

4.3.4 Branch-Load Constraints

Let Tmax denote the M -dimensional vector of the T max
ik quantities in (2.3.22) that

were corrected in accordance with Sect. 3.8. On the basis of relations (3.7.23)
and (3.7.18),

T 	 BVZN .PG � PF � P�K/ (4.3.23)

results. Taking into account the relation concerning PG obtained in Sect. 4.1.3, the
system of branch-load constraints is as follows:

� Tmax � BVZN
"

D�
 

p
x

!
C Pmin � PF � P�K

#
� Tmax: (4.3.24)

Remark: Note that, in accordance with the discussion in Sect. 3.11, the model
includes Kv respectively KA voltage limit constraints corresponding to the con-
sumer nodes respectively branch-load constraints.

4.3.5 Reactive Power Source Constraints

This system of constraints can be formulated easily on the basis of (3.8.26)
and (2.3.24):

Qmin.x/� gM.v�;w�/C .Y1� Y2Y�1
4 Y3/.u � v�M/ � Qmax.x/: (4.3.25)

Here the notations of Sect. 3.8 are used and the Qmin.x/ and Qmax.x/ vectors,
consisting of the components Qmin

i .x/ and Qmax
i .x/, i D 1; : : : ;L, are introduced.

The functions on both the left- and right-hand sides of (4.3.25) must be specified
as well. The considerations concerning the system of constraints (2.3.24) in the
general model are valid here, too. Therefore, to specify the dependence of the lower
and upper bounds on x, it is quite sufficient to consider the linear relation (4.1.2)
between the y vector of the modes of operation of the general model and the x
vector of the modes of operation.
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On this basis, the Qmin
i .x/ and Qmax

i .x/ functions take the following form, with
notations as in (2.3.24):

Qmin
i .x/D .Hx C Oh/T OQmin

i ; Qmax
i .x/D .Hx C Oh/T OQmax

i ; i 2 IM \ IE;
Qmin
i .x/DQmin

i ; Qmax
i .x/DQmax

i ; i 2 IMnIE:
(4.3.26)

4.3.6 Constraints Connecting the Periods

In the simplified model there is no need for constraints corresponding to the stop-
and-start constraints in the general model. In this section it is sufficient to specify
the mathematical formulation of the regulations concerning operations management
as discussed in Sect. 3.1.

Start actions are not permitted in a stop phase. If the t th period is the last period
of the start phase or belongs to a stop phase, then

xtij D 1 implies xtC1ij D 1:

This Boolean condition is best described by the inequality

xtij � xtC1ij : (4.3.27)

The matrix of the resulting constraints is shown in Fig. 4.2.
The start conditions can be described in an analogous way. If t is the serial

number of the first period of a stagnation phase or not the last period of a start
phase, then

xtij D 0 implies xtC1ij D 0:

In the form of an inequality the constraint is

xtij � xtC1ij : (4.3.28)

The matrix structure of these constraints is displayed in Fig. 4.3.

4.3.7 Fuel Constraints

Fuel constraints are also constraints connecting several periods. To describe them,
it is sufficient to refer to Sect. 2.3.2 with respect to the general model and rewrite
formula (2.3.29) in terms of the variables of the simplified model:
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Rimin �P27
tD1 at

PM.i/
jD1

n
Pmin
ij .xtij�1�xtij /C

Pr.i;j /

lD1 ptijl
o

�Rimax: (4.3.29)

Let

hi .p;x/ DP27
tD1 at

PM.i/
jD1

n
Pmin
ij .xtij�1�xtij /C

Pr.i;j /

lD1 ptijl
o

(4.3.30)

be the linear function of the p production-level variables and the x mode-of-
operation variables. Based on this notation, the fuel constraints can be written as

Rimin � hi .p;x/�Rimax: (4.3.31)

4.4 Structure, Characteristics, and Size of the Simplified
Model

The next step is to formulate the large-scale mixed-variable mathematical program-
ming problem, with a linear objective function and linear constraints, corresponding
to the simplified model.

The objective function to be minimized is provided by the sum of the costs of
standstill in (4.2.13) decreased by (4.2.14), the production costs (4.2.12), and the
costs (4.2.15) of transmission losses.

The system of constraints consists of the following items:

(4.3.16) variable coupling constraints,
(4.3.17) supply constraints,
(4.3.19) constraints on mode-of-operation variables,
(4.3.22) voltage limit constraints,
(4.3.24) branch-load constraints,
(4.3.25) reactive power source constraints,
(4.3.27)–(4.3.28) stop-and-start constraints,
(4.3.30) fuel constraints.

Figure 4.4 shows the coefficient matrix of this problem. Variables in the individ-
ual periods are in the following order: voltage variables, production-level variables,
mode-of-operation variables. (Recall that only a few periods have associated voltage
variables, and the mode-of-operation variables do not correspond to the second,
third, and fourth periods of the stagnation phases.)

Each period is associated with a block of constraints, including variables corre-
sponding to the given period only. In Fig. 4.4 blocks corresponding to normal peri-
ods are indicated by �1 , while blocks of voltage check periods are indicated by �2 .

The blocks connected by a dotted line in Fig. 4.4 comprise the constraints of
the stop, stagnation, and start phases. Apart from the blocks denoted by �1 and
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Fig. 4.2 Matrix of stop constraints

�2 , blocks of the stop phase (denoted by �3 and �6 in Fig. 4.4) include the stop
conditions, while blocks of the start phase (�5 , �8 ) include the start conditions.
Blocks corresponding to the stagnation phase (�4 , �7 ) contain a single vector
of the mode-of-operation variables. The “small blocks” belonging to them and
corresponding to the periods are connected to one another by this vector of mode-
of-operation variables.

The same vectors of mode-of-operation variables establish connections between
blocks �3 and �5 and between �6 and �8 , respectively. Blocks �5 and �6 are
connected to one another by the vector of mode-of-operation variables belonging
to the last period of the first start phase.

Constraints connecting all the periods (top of Fig. 4.4) are fuel constraints.
The size of the mixed-variable linear programming problem, corresponding to

the simplified model, is as follows.
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4.4.1 Number of Variables

1. Number of 0–1 variables D 21x W
the difference between the number of modes of operation applicable in the
electric power generating system and the number of power plants;

2. Number of production-level variables D 27x W
the overall sum of the number of approximate sections of the production cost
functions of the modes of operation applicable in the electric power generation
system;

3. Number of voltage variables D 3x W
the number of nodes connected to controllable sources of reactive power in the
network.
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Fig. 4.4 Structure of simplified model

4.4.2 Number of Constraints

1. Periodwise, in each normal period (24 times in the problem): as many variable
coupling constraints as production-level variables + one supply constraint + as
many constraints as mode-of-operation variables restricted by them (the number
of mode-of-operation variables is 0 in the second, third, and fourth periods of the
stagnation phase);

2. In addition to the constraints of a normal period, in the case of a voltage check
period 2� the number of nodes connected to controllable sources of reactive
power + 60 constraints appear, including individual lower and upper bounds of
as many nodes connected to controllable sources of reactive power;

3. The number of stop–start constraints D 21� the number of modes of operation
applicable in the power generation system;

4. At most five fuel constraints.
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The solution approach to this problem will be discussed in the subsequent Section.

4.5 Summary of Notations Introduced in Chaps. 3 and 4

sij .�/ Function of standstill costs of j th mode of operation
at i th power plant;

r.i;j / Number of line segments in approximation of func-
tion fij .P /;

Pmin
ij l ;P

max
ij l Levels of production belonging to endpoints of l th

line segment in approximation;
cijl Slope of l th approximating line segment;
d tij Part of cost of standstill of j th mode of operation at

i th power plant to be taken into account in period t ;
xt ;xtij Mode-of-operation variable respectively its compo-

nent corresponding to t th period;
x0 Vector of modes of operation of last period of day

preceding current planning stage;
t0, t1 Serial number of period corresponding to beginning

of first and second stagnation phases;
ptijl l D 1;2; : : : ; r.i;j /, component of production-level

variable providing production level of j th mode of
operation at i th power plant in t th period;

pt , p Vector of production-level variables of t th period and
vector of production-level variables corresponding to
whole scheduling interval;

t� Serial number of last period of first start phase;
hi .p;x/ Linear function providing daily production of i th

power plant;
L Number of nodes connected to controllable sources

of reactive power (DNM );
NF Number of consumer nodes, LCNF DN ;
u Vector of voltage variables in fixed period; its com-

ponents are formed by real parts of voltages of nodes
connected to controllable sources of reactive power,
u 2 RL;

.v�;w�/ Vector of voltages at operating point;
umin
i Lower bound on real part of voltages at nodes con-

nected to controllable sources of reactive power;
umax
i Upper bound on real part of voltages at nodes con-

nected to controllable sources of reactive power;
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B Diagonal matrix of size M �M , and its diagonal
elements are the Bik quantities (see Sect. A.3);

V Matrix of size N �N needed for compact formu-
lation of dependence of power flow on voltage,
introduced after relation (3.7.17) (see its definition
there);

A Incidence matrix of network; in notation of appendix
the node-edge incidence matrix of graph (N � ;A D

� /;
ZN Can be obtained as follows: the row and column cor-

responding to the reference node should be deleted
in the matrix AT BV, and the resulting matrix should
be appended by a 0 row and column in positions of
deleted rows;

Y D
�

Y1 Y2

Y3 Y4

� �
L�
NF

„ƒ‚…
L

„ƒ‚…
NF

Jacobi matrix of transformation g.v;w�/ W RN !
RN

partitioned according to nodes connected to control-
lable sources of reactive power and consumer nodes;

D� Matrix of linear transformation providing actual
injection of real power at nodes by transforming
production-level and mode-of-operation variables;

PK Correction vector of branchwise real power losses;
dv Coefficient of u in part of objective function repre-

senting transmission losses;
bv Vector needed for construction of coefficients of p,

x variables in part of objective function representing
transmission losses;

� Cost of 1-MWh loss in local currency (Fts).



Chapter 5
Daily Scheduling

Both the generation system and the network transmitting electric power vary on a
day-to-day basis; therefore, the daily optimization problems to be solved and their
sizes also vary, although their structure remains essentially the same. This chapter
shows how the daily scheduling problem, corresponding to the simplified model of
the scheduling problem, can be set up and solved.

5.1 Generating the Mixed-Variable Problem Corresponding
to Daily Data

Because of necessary maintenance work, failure, and various fitting activities, the
transmission capacity of individual branches in a network may vary within a day (in
the case, for example, of shunts or transformers), or they might not be available for
carrying electric energy at all. The situation is similar with power plants; because
of failure, maintenance, or other issues, the production capacity of power plants and
the available modes of operation vary from day to day. Therefore, the numerical
optimization problem instance of the daily scheduling problem must be set up
(generated) on a daily basis. This means that, using adequate databases containing
constant data, these data should be retrieved and modified based on the present state
of the power system. The following factors must be determined for each particular
day: the general situation, the available network, the actual transmission capacity of
its different branches, the available modes of operation at the power plants, along
with their limitations and constraints.

A separate problem is presented by the setting up of the system of constraints for
daily voltage check periods. First a load-flow problem must be solved to determine
the operating point and the corresponding transmission losses. Then the system
of constraints corresponding to this operating point and transmission losses is
computed (only some of the constraints are taken into account; see Sect. 3.11).
Note that the voltage distribution is recalculated on the basis of the voltage data

A. Prékopa et al., Scheduling of Power Generation, Springer Series in Operations
Research and Financial Engineering, DOI 10.1007/978-3-319-07815-1__5,
© Springer International Publishing Switzerland 2014
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at the nodes connected to controllable sources of reactive power obtained as a result
of the optimization. Because the objective function includes coefficients of loss, the
obtained loss values will be smaller than the losses at the operating point (Sect. 3.5).

The other parts of the daily scheduling problem (start and stop constraints
variable coupling constraints, supply constraints, fuel constraints) are determined
on the basis of the preceding data taking into account the forecasted values of
consumers’ power demands on that particular day. Note that the forecasted demand
deviates by at most 1–2 % from the actual demand.

5.2 Solution Approaches

The large-scale, mixed variable optimization model instance, generated as described
previously and containing real and 0 or 1 -valued variables, can be solved numeri-
cally using different algorithms.

In the first line, application of the Benders decomposition method was con-
sidered; the whole model could have been solved using this algorithm in one
major step. However, this method was soon rejected because it would have meant
(Sect. 5.4) that a large number of integer programming problems had to be solved
in each iteration of the decomposition (the solution of a single one of these
subproblems would be a difficult task by itself). These subproblems, involving only
integer variables, do not have the decomposition structure that is characteristic of
the original large-scale model (after excluding some of the constraints).

The branch-and-bound method was also considered. In this case, the linear
programming model arising in the algorithm could have been solved using the
Dantzig–Wolfe decomposition algorithm. The reason this method was rejected was
that the number of integer variables can be very high (up to 400), and this feature
makes the branch-and-bound method practically inapplicable.

Relying on the foregoing considerations and on the physical background of
the scheduling problem, a decomposition-based optimization method was chosen,
including some heuristic elements as well. Roughly speaking, the problem is
solved in a periodwise fashion, while the combination of an overall solution and
the fulfillment of the fuel constraints are ensured by secondary assumptions. The
procedure will be presented in the next section.

5.3 Optimization Method

The constraints corresponding to the simplified model of the scheduling problem are
not taken into account in an explicit form (all constraints at one time) but separately,
by constraint group. This decomposition is possible because the separate periods
are connected by fuel constraints only, apart from the start-and-stop constraints.
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The optimizing algorithm consists of the following steps (the algorithm is described
for the case where there is only one fuel constraint):

1. The fuel constraint is omitted.
2. The resulting large-scale, mixed-variable programming problem (where the

interconnections among the separate periods are ensured by the start-and-stop
constraints and the mode-of-operation variables corresponding to the stagnation
phases) is solved in the following way (the third and fourth steps of the
algorithm).

3. The first, second, and third voltage check periods are solved in such a way
that specific restrictions are imposed on the possible values of the mode-of-
operation variables. In the solution of the first voltage check period, all the modes
of operation applicable in that particular day may occur with no restrictions.
In the solution of the second voltage check period (i.e., the first period of the
first stagnation phase), only those modes of operation are permitted that can be
achieved by shutdown actions from the modes of operation of the solution of the
first voltage check period. Finally, those modes of operation can be applied in the
third voltage check period (period of morning peak demand) that can be achieved
by a start action from the modes of operation of the solution of the second voltage
check period.

4. Afterward, the remaining problems corresponding to the remaining periods are
solved in succession in such a way that the values of the mode-of-operation
variables of the already solved periods preceding respectively following the given
period are taken into account. This is done as follows.

In a stop phase, only those modes of operation are considered in the solution
of the given period that can be achieved

(1) by a stop action from the system of modes of operation of the earlier, already
solved, period of the stop phase (in short, by a stop action from the previous
period) and from which

(2) by a further stop action the system of modes of operation of the later, already
solved, period of the stop phase can be obtained.

Similarly, in a start phase only those modes of operation are allowed in the
solution of a given period that can be achieved

(1) by a start action from the system of modes of operation of the earlier, already
solved, period of the start phase (in short, by a start action from a previous
period) and

(2) from which the system of modes of operation of a later, already solved, period
in the start phase can be achieved by a further start action.

Both at the stop and start actions, there can be (and are) nonchanging modes of
operation variables.

For example, in the solution of the second period only those modes of
operation can be considered that can be achieved by a stop action from the
first voltage check period and from which the modes of operation of the second
(already solved) voltage check period can be achieved by stop actions only. In the
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solution of the third period the modes of operation of the second period and the
second voltage check period should be considered, and so forth. For periods after
the third voltage check period but preceding the second stagnation phase, only
those modes of operation are permitted that depend on the periods solved earlier
and can be achieved by stop actions, while at the solution of the periods following
the stagnation phase, those modes of operation are allowed that can be achieved
by start actions from the already solved periods.

The optimization problems corresponding to the specific periods are solved
by the Benders decomposition method described in Sect. 5.4 that can take into
account the previously described restrictions on the modes of operation.

5. Once the solutions to each of the periods of the day is determined, it is checked
whether the overall solution satisfies the fuel constraint. If it does, the algorithm
comes to an end; we have obtained an optimal solution. If it does not, an iterative
procedure is applied to modify the solution achieved thus far. This procedure is
described in the sixth step of the algorithm.

6. In the iterative procedure, a decrease respectively increase of the electric power
production of the power plant with fuel constraint is essentially achieved by
increasing respectively decreasing the fuel costs. A detailed description of this
procedure follows.

According to (4.3.31) in Sect. 4.3.7, the fuel constraint can be formulated as

Rimin � hi .p;x/ �Rimax; (5.3.1)

where .Rimin CRimax/=2 is a predetermined, given value, and

Rimax CRimin

2
�Rimin DRimax � Rimax CRimin

2
D k

100

Rimax CRimin

2

holds, where in this case k is a predetermined integer defining the permitted
tolerance as a percentage (the usual value: k D 3;4;5). In the course of data
preparation, it is necessary to ensure that with the given Rimin and Rimax constant
values it is possible to find a pair of p, x vectors satisfying inequality (5.3.1).

Let .p0;x0/ denote now the solution obtained in the third and fourth steps of the
algorithm. If the inequality

Rimin � hi .p0;x0/ �Rimax

does not hold (otherwise, optimization would have come to an end in the fifth
step of the algorithm), the x0 vector will be fixed, i.e., no more changeovers take
place in connection with the production modes. Let us consider the optimization
problem that is obtained from the original problem by omitting the fuel constraint
and substituting the vector x0. Let us denote this problem by F0.x0/; it is an ordinary
linear programming problem consisting of 27 separate, mutually independent
blocks, with p being an unknown vector. Starting with this problem, a sequence
F1.x0/, F2.x0/ : : : of problems will be generated, where the individual problems
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differ from one another only in the c1;c2; : : : ;ck coefficients in the objective function
corresponding to the production-level variables of the active mode of operation at a
power plant with a fuel constraint. The ck coefficient appears in the problem Fk.x0/,
while the coefficient corresponding to the original problem, denoted by c0, appears
in the problem F0.x0/. Denoting the optimal solution of Fk.x0/ by pk , we determine
the ckC1 coefficient, and with it the FkC1.x0/ problem, by the following recursions
(s0 D 1):

ckC1 D ckskC1=sk (5.3.2)

skC1 D

8
ˆ̂̂
<

ˆ̂̂
:

sk

	
1�0:3Rimin �hi .pk;x0/

RiminCRimax
2



if hi .pk;x0/ < Rimin;

sk

	
1�0:3Rimax �hi.pk;x0/

RiminCRimax
2



if hi .pk;x0/ > Rimax:

(5.3.3)

To avoid unnecessary work, prices that have already been considered are excluded.
This is achieved by prescribing bounds smin and smax for the sk multiplier, where
the bounds are themselves updated in the procedure, steadily narrowing the range
of variation for sk . Initially, let

smin D 0:001 smax D 1;000:

An sk multiplier can cause underproduction respectively overproduction if
hi .pk;x0/ < Rimin [respectively hi .pk;x0/ >Rimax] holds in the case of the optimal
model solution pk formulated using the ck coefficient that was calculated on the
basis of sk . If there is an underproduction in the case of the newly determined
pk , then smax D sk will be the new upper bound if smin < sk < smax) holds (in
the case of overproduction, smin D sk). Therefore, smax comprises the smallest
of the multipliers causing underproduction, while smin contains the largest of the
multipliers causing overproduction. If the inequality smin � sk � smax holds for the
coefficient sk calculated according to (5.3.3), the price is altered according to (5.3.2).

Otherwise, the value of sk D smin C smax

2
is used in the determination of ck in (5.3.2).

The smin and smax limits serve to constantly narrow the interval for choosing the
possible multipliers; therefore, a ck price that has already been used cannot reappear.

The sense of the described price modification is as follows. If at a power plant
with a fuel constraint less electric power is generated than necessary [there is an
underproduction, i.e., hi .pk;x0/ < Rimin holds], then the coefficient of the objective
function in the subsequent problem decreases compared to the previous one, so
that the amount of electric power that is generated should increase (because the
model aims at minimizing the costs). Similarly, in the case of overproduction [i.e.,
if hi .pk;x0/ > Rimax holds], then the cost of electric power generation increases in
the following .kC 1/th problem, so that less electric power should be generated at
the given power plant.
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One of the following two cases holds with regard to the sequence p0;p1; : : : of
optimal solutions of the optimization problems F0.x0/;F1.x0/;F2.x0/ : : ::

a. A solution pk is found for which (5.3.1) holds, i.e., the .pk;x0/ solution satisfies
the fuel constraint as well;

b. A pair of solutions pl and pj is found where both hi .pl ;x0/ < Rimin and
hi .pj ;x0/ > Rimax hold.

The occurrence of other cases (e.g., that of the pk solutions causing underproduc-
tion only) is not possible, due to the verification of the data as described previously,
following the discussion of formula (5.3.1). In case a, the optimization procedure
terminates and pk respectively .pk;x0/ is considered an optimal solution of the
original problem. In case b, we proceed as follows. After fixing x0, the function
hi .pl ;x0/ is linear in p. Therefore, from the equality

˛hi .pl ;x0/C .1�˛/hi.pj ;x0/D Rimin CRimax

2

the multiplier 0 � ˛ � 1 can be determined, and with it the vector popt D ˛ � pl C
.1�˛/pj , which is considered an optimal solution since it is feasible, and

hi .popt;x0/D Rimin CRimax

2

holds as well.
Naturally, instead of ˛, the numbers ˛1 and ˛2 derived from the equalities

˛1hi .pl ;x0/C .1�˛1/hi .pj ;x0/DRimin;

˛2hi .pl ;x0/C .1�˛2/hi .pj ;x0/DRimax (5.3.4)

may also be used, where ˛1 and ˛2 are the two values corresponding to the lower
and upper bounds in the fuel constraint.

The application of ˛ is motivated by the fact that the fuel constraint can also
take the form of an equality by prescribing the consumption of a given quantity of
fuel respectively the requirement to generate a given .Rimin CRimax/=2 amount of
energy.

5.4 Benders Decomposition Method for Solving Subproblems

In the case of the optimization method presented in the preceding Sect. 5.3, the
whole problem decomposes into 27 subproblems. On the basis of their types they
can be arranged in three groups:

a. Problems corresponding to the voltage check periods;
b. Problems corresponding to the nonfirst periods of the stagnation phase;
c. Problems corresponding to the remaining so-called normal periods.
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The problems in groups a and c are mixed-integer linear optimization problems,
and the Benders decomposition method, utilizing the characteristics of these
problems, is used to solve them. The problems in group b are linear programming
problems with a single constraint and individual bounds on the variables; a greedy
algorithm is used to solve them (Nemhauser and Wolsey, [52]).

In this section the Benders decomposition method and the simplifications carried
out in its application are discussed, and only the mixed-integer linear case is
considered. Readers interested in the details are encouraged to consult Benders [1],
Lasdon [44], and Nemhauser and Wolsey, [52].

The Benders decomposition is used to solve optimization problems of the
following type (the notations in the description of the algorithm and the problem
are independent and different from the notations introduced in previous sections):

Ax C Fy � b;

x � 0;

y 2 Y; (5.4.5)

max.cT x C fT y/;

where: A: m�n1 matrix;
F: m�n2 matrix;
c;x: n1-dimensional vector;
f;y: n2-dimensional vector;
b: m-dimensional vector;
Y : n2-dimensional discrete set.

The problem to be solved is equivalent to the optimization problem

x0C ..uj /TF � fT /y � .uj /T b; j D 1; : : : ;p;

.vj /TFy � .vj /T b; j D 1; : : : ; r;

y 2 Y; (5.4.6)

maxx0;

where uj , j D 1; : : : ;p, and vj , j D 1; : : : ; r , are the extremal points respectively
extremal directions of a polyhedron defined by

AT u � c;

u � 0: (5.4.7)

Instead of the mixed-variables problem (5.4.5), the equivalent problem (5.4.6)
will be solved; apart from the variable x0, it is an integer programming problem.
Relaxation is used to sole this latter problem because there is a large number of
constraints that are not available in explicit form. The result is an iterative process



84 5 Daily Scheduling

E

(   2)=(   30)=< (   35)=<
1
1
1

1

-1
-1
-1

-1

... ...

The number of variables

     35=<

The number of
constraints

Fig. 5.1 Structure of the matrix of the first linear programming block to be solved in voltage check
periods

where the i th iteration consists of the solution of both a relaxation (obtained by
disregarding constraints) of problem (5.4.6) (let the optimal solution be denoted by
yi ) and the linear programming problem

AT u � c;

u � 0;

min.b � Fyi /T u: (5.4.8)

The feasible domains of problem (5.4.8) are the same during the iterations, only
the objective function vector changes as a function of the optimal solution yi of the
previously solved relaxation of problem (5.4.6). The optimization problem (5.4.8)
serve to check the optimality criterion and repeatedly generate constraints of the
optimization problem (5.4.6).

At the end of the iterative procedure, the continuous (x) part of the optimal
solution of (5.4.5) can be determined without solving a further linear programming
problem. Relying on duality theory (Prékopa [59]), the continuous part of the
solution can be computed on the basis of the simplex tableau corresponding to the
optimal solution of the last solved problem (5.4.8) (Hoffer [35]).

A further simplification is as follows: in the first iteration, the two-phase simplex
method is used to solve problem (5.4.8) (Prékopa [59]), while in subsequent
iterations the solution algorithm starts in the second phase, with the optimal solution
from the previous iteration serving as the starting feasible solution.

The (5.4.8) linear programming problem, which occurs in the course of the
solution of the problems corresponding to the voltage check periods, consists of
two independent blocks. Therefore, its solution is decomposed into the solution of
two separate problems (see Figs. 5.1 and 5.2 for the matrices of these two linear
programming problems).

The application of another idea for the solution of the linear programming
problem (5.4.8) corresponding to normal periods is in preparation. The application
of the algorithm presented in [36] by Hoffer could significantly decrease the
computational time needed to generate the optimal daily schedule.
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Fig. 5.2 Structure of the matrix of the second linear programming block to be solved in voltage
check periods

The role of matrix F in the decomposition method is quite peculiar. It is only used
in matrix multiplications. Multiplication from the right occurs in the computation of
the constraints for the relaxations of (5.4.6), while multiplication from the left is
used to calculate the coefficients of the objective function of problem (5.4.8). As
the matrices corresponding to the mode-of-operation variables in the problems of
both the normal and the voltage check periods are specially structured, apart from
the submatrix of branch-load constraints, the multiplication can be easily expressed
explicitly in terms of the nonzero elements of the matrices involved. Utilizing this
fact, matrices in the program are not represented by filling them up with their
elements, but the multiplicative operations are carried out in accordance with the
characteristics of the special structure.

The fulfillment of conditions related to mode-of-operation variables (describing
the characteristics of set Y ) has been implemented within the enumeration type
algorithm applied tp the solution of the relaxed problem (5.4.6) as follows:

• To take into account the systems of modes of operation of a previous and a
subsequent period: fixing the relevant mode of operation variables on the levels
of 0 or 1;

• To comply with further prescriptions for a given period: the compulsory oper-
ation or standstill of certain modes of operation by adequately fixing the
mode-of-operation variables;

• To satisfy conditions (4.3.19) describing the special logics of mode-of-operation
variables: by analyzing all the consequences of fixing and tying in an implicit
enumeration algorithm and fixing the relevant variables, e.g., if during enu-
meration a mode-of-operation variable is assigned a value of 1, then mode-of-
operation variables of a smaller index belonging to the same power plant are
fixed at a value of 1. If the same variable is assigned a value of 0, then the relevant
mode-of-operation variables of a higher index would be fixed at a value of 0.





Appendix
The Transmission Network of Electric Power
Systems

A.1 Mathematical Model of Electric Networks

In this section we build a mathematical model of electric networks. Our starting
point consists of the models presented in the paper [41] and in the books [63] and
[70]. We modify these models since the construction of a mathematical model of
a transmission network requires a new systematic analysis of the known facts and
consideration of certain facts from a new angle. For instance, we introduce a new
admittance transformation; see [50]. In our opinion, this facilitates a method of
analysis that is far less complicated than that based on the transformation in the
literature and it fits better into the conceptual framework of physics.

The electric network is modeled by a directed graph, and for this reason we
summarize some basic facts from graph theory.

Let us consider a finite set N and another set A , the latter consisting of pairs
of elements from N . The sets N and A together are called a graph, while the
elements of set N are called nodes and the elements of set A are called edges. The
pairs of elements included in set A can either be ordered (meaning that we specify
which of the elements is considered as first and which as second) or unordered. In
the former case the edges are called directed and in the latter case they are called
undirected.

A graph with undirected edges is called an undirected graph, while a graph with
directed edges is a directed graph. To distinguish them in the notation, the set of
edges of the latter will be denoted by A D . For the two types of graphs we introduce
the symbols .N ;A / for the undirected case and (N ;A D) for the directed case.

First undirected graphs are discussed. If set N has n elements, then the numbers
1; : : : ;n are used to denote the nodes of the graph, and every edge is a pair of distinct
numbers fi;j g, i.e., a subset consisting of two elements of the set N D f1; : : : ;ng.
Edge fi;j g is interpreted as connecting nodes i and j .

Obviously, if the number of nodes is n, the number of edges is at most n.n�1/=2.

87
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1 2
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Fig. A.1 Fourth example of undirected graph

1 2

3 4

Fig. A.2 First example of undirected graph
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4

Fig. A.3 Second example of undirected graph

A graph can be visualized by choosingn different points on the plane representing
the nodes of the graph, and points i , j are connected by a line if fi;j g 2 A . The
following figures depict four graphs.

Some important notions are introduced next, followed by some theorems along
with their proofs.

Subgraph. Graph G 0 D .N 0;A 0/ is called a subgraph of graph G D .N ;A / if
both N 0 � N and A 0 � A hold.
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Fig. A.4 Third example of undirected graph

Path. If s, i1; : : : ; ik , t are different elements of the set N , then the sequence
of edges fs; i1g;fi1; i2g; : : : ; fik�1; ikg;fik; tg is called a path connecting nodes s
and t .

Circuit. If s, i1; : : : ; ik are different elements of set N , then the sequence of edges
fs; i1g;fi1; i2g, : : : ;fik�1; ikg, fik;sg is called a circuit.

Connected graph. If any two nodes of a graph can be connected by a path, then
the graph is called a connected graph. (The graph in Fig. A.1 is not connected,
whereas those in Figs. A.2–A.4 are connected.)

Tree. A graph is called a tree if it is connected and contains no circuit. (The graph
in Fig. A.4 is a tree.)

Spanning tree. Subgraph .N 0;A 0/ of graph .N ;A / is called a spanning tree if
.N 0;A 0/ is a tree and N D N 0 holds.

Isolated node. If node i does not belong to any of the edges, then it is called an
isolated node.

Terminal node. If node i belongs to exactly one edge, then it is called a terminal
node of the graph.

Theorem 1 A tree with n nodes has n�1 edges.

Proof. The assertion is obviously true in the case of nD 1. (A graph having a single
node is connected and circuit free, and thus it is a tree).

In the case of n � 2, it is first proved that the tree has a terminal node. In fact,
the two nodes that are connected by the longest possible path are terminal since
otherwise the path could be extended.

In the case of n � 2, the assertion can be proved by mathematical induction. For
n D 2 it is obviously true. Presupposing that the proposition is true in the case of
any tree with n nodes, let us consider a tree of nC1 nodes, where n � 2. Dropping
an arbitrary terminal node and the adjacent edge of the tree, we get a tree of n nodes
that has n�1 edges, according to the induction hypothesis. Consequently, together
with the edge that has just been dropped, in the original tree we have n edges, and
the assertion in the case of nC1 nodes is proved. Thus, Theorem 1 is proved. �

Theorem 2 Every pair of tree nodes can be connected by one and only one path.
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Proof. The definition of a tree requires the existence of a path. If there were a pair of
nodes that could be connected by two different paths, then the graph would contain
a circuit as well. This is not possible, however, because a tree is circuit free. The
proof is complete. �

Theorem 3 If every pair of nodes of a graph can be connected by one and only one
path, then the graph is a tree.

Proof. Because the graph is connected according to the assumption, only its circuit-
free character must be proved. This can easily be seen since any two nodes of
a circuit can be connected by two different paths using the edges in the circuit.
Theorem 3 is proved. �

The preceding theorems can be summarized in one theorem, as follows.

Theorem 4 For a graph G with n nodes, the following statements are equivalent:

(a) Graph G is a tree;
(b) Every pair of nodes of graph G can be connected by a unique path;
(c) Graph G is connected and has n�1 edges;
(d) Graph G is circuit free and has n�1 edges.

Theorem 5 If the graph G D .N ;A / is a tree and fi;j g … A , then there exists
precisely one circuit in the graph G1 D .N ;A [ fi;j g/.
Proof. There must be a circuit in graph G1 because it has as many nodes as G ,
though there is an additional edge in it. Consequently, graph G1 is not a tree but it is
connected; consequently, it contains a circuit. Now it remains to prove that there do
not exist two different circuits in graph G1. Using an indirect proof, let us suppose
that there are two different circuits in G1. In this case, edge fi;j g must belong to
both of them since G contains no circuit. If edge fi;j g is deleted in both circuits,
then there are two different paths connecting nodes i and j . This is not possible
according to Theorem 2. �
Theorem 6 If graph G D .N ;A / is connected, then it contains a spanning tree.

Proof. A constructive proof follows. Let N1 D fi1g, A1 D ;, where i1 2 N is
arbitrary. Then G1 D .N1;A1/ is a subgraph of G , and it is trivially a tree. Let
us assume that the subgraph Gk D .Nk;Ak/ of graph G is given and that it is a
tree, 1� k � n�1. Then GkC1 can be constructed in the following way. Because G
is connected, there exist ip 2 Nk and iq 2 N nNk for which fip; iqg 2 A holds.
Let NkC1 D Nk [ fiqg and AkC1 D Ak [ fip; iqg; then it is clear that GkC1 D
.NkC1;AkC1/ will also be a tree, and therefore Gn D .Nn;An/ is a spanning tree.
The proof is complete. �

The edges of an undirected graph have been identified up till now with a pair
of nodes formed by the endpoints of the relevant edge. For the modeling of the
electric network, however, a notion of an undirected graph is needed where two
nodes may be connected by more than one edge. Therefore, the edges can no longer
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Fig. A.5 Undirected graph with parallel edges

be identified with the pair of nodes of endpoints. For this reason, the definition of
the undirected graph needs to be generalized. In the sequel, an undirected graph will
be defined as follows.

Let us consider the finite sets N , A , and let us assign to each element of A
an unordered pair of elements of the set N (more precisely, a two-element subset
of N ). The sets N , A , together with the preceding assignments, are called an
undirected graph and are still denoted by the symbol .N ;A / for the sake of
simplicity. The elements of set N are called nodes, while the elements of set A
are called edges.

Let the number of elements of N be n and the number of elements of A be m.
The nodes of the graph can be denoted also in this case by the numbers 1; : : : ;n. The
edges of the graph are denoted by e1;e2; : : : ;em. If ek 2 A and the pair of elements
attached to the edge is fi;j g, this is denoted by the symbol ek ! fi;j g. If ek ! fi;j g
and el ! fi;j g, k 6D l , hold, then edges ek and el are called parallel edges.

Obviously, the undirected graph as defined at the beginning of this section is a
special case of this new definition: it corresponds to the prescription requiring that
different pairs of nodes should be assigned to different edges.

The visualization of the graph can be done in a similar way to what was done
previously. The n points in a plane represent the nodes of the graph, and points
fi;j g are connected by as many lines as there are edges assigned to the pair of
numbers fi;j g. The edges are visualized along with their identifiers. In the graph in
Fig. A.5, e1 and e2 are parallel edges.

The definitions of a subgraph, path, and circuit are modified in the following way.

Subgraph. A graph G 0 D .N 0;A 0/ is called a subgraph of graph G D .N ;A / if
N 0 � N , if A 0 � A , and, furthermore, if the same pairs of nodes are assigned
to the elements of set A 0 in G 0 as in graph G .

Path. If s, i1; : : : ; ik are different elements of set N , then the sequence of edges
ej1 ; : : : ;ejkC1

is called a path connecting nodes s and t if ej1 ! fs; i1g, ej2 !
fi1; i2g; : : : ;ejk ! fik�1; ikg, ejkC1

! fik; tg are satisfied.
Circuit. If s, i1; : : : ; ik are different elements of set N , the sequence of edges
ej1 ; : : : ;ejkC1

is called a circuit if ej1 ! fs; i1g, ej2 ! fi1; i2g, : : : ;ejk ! fik�1; ikg,
ejkC1

! fik;sg hold.
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All of the other definitions of undirected graphs as presented at the beginning
of this section can be transferred verbatim to the generalized notion of undirected
graphs by substituting the altered notions of a subgraph, path, and circuit as defined
previously. The reader can easily check that all the theorems will be valid in the
case of the more general graphs as well. The same proofs can be applied with minor
modifications in some places.

In the sequel we will discuss directed graphs. If the directed graph .N ;A D/ has
n nodes, they can be denoted by 1; : : : ;n in this case as well. For directed graphs
every edge corresponds to an ordered pair .i;j / of numbers. We assume that A D �
N � N holds, which means that any ordered pair of numbers corresponds to at
most one edge. Consequently, for the denotation of the edges we may employ the
corresponding ordered pairs of numbers. Let the number of edges bem, and let serial
numbers be assigned to the individual edges. We assume that .N ;A D/ contains no
loops, i.e., .i; i/ … A D , i D 1; : : : ;n holds.

Let .N ;A / denote an undirected graph corresponding to .N ;A D/, which
can be obtained from .N ;A D/ by considering the edges of this graph as being
undirected.

To apply a simplified notation, the following notation is allowed. If the compo-
nents of d 2 R

m (or d 2 C
m) represent edge characteristics and .i;j / is assigned

to edge l , then the notation di;j will be permitted along with dl to denote the l th
component of vector d. Furthermore, let us consider those edges of .N ;A / one
of whose endpoints is node i , i D 1; : : : ;n. We will denote by J.i/ the set of serial
numbers of the other endpoints. The set of these edges in graph .N ;A D/ will be
called the set of edges connected to node i . Finally, i.l/ denotes the serial number
of the other endpoint of the edge with serial number l connected to the i th node.

Definition The directed graph .M ;BD/ is called a subgraph of the directed graph
.N ;A D/ if M � N and BD � A D hold.

Definition The directed graph .N ;A D/ is connected if .N ;A / is connected.

In the sequel we will consider connected graphs only, i.e., it is assumed that
.N ;A D/ is a connected directed graph.

Definition Let .N ;FD/ be a subgraph of graph .N ;A D/. .N ;FD/ is called a
spanning tree if in the undirected graph .N ;A /, .N ;F / is a spanning tree.

The elements of A DnFD are called linking edges, and their number is denoted
by k. As a result of Theorem 1, the number of edges of .N ;FD/ is n� 1, and
k Dm�nC1 holds.

Definition Subgraph .NH;H D/ of graph .N ;A D/ is called a circuit if .NH ;H /

is a circuit in graph .N ;A /.

Circuits may be endowed with an orientation, that is, the fixing of a so-called
traversal of .NH;H /, intuitively. If there are more than two nodes in a circuit,
then, with respect to these nodes, a cyclic ordering is fixed. Then, in the case of
.i; l/ 2 H D , edge .i; l/ will be called positively oriented, with respect to the circuit,
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if in the cyclic order the order of the nodes is i; l . Otherwise, .i; l/ will be called
negatively oriented. If there are only two nodes in the circuit, then the circuit takes
the form H D D f.i; l/; .l; i/g, and the exact definition of traversal can easily be
formulated in an analogous way to the preceding case.

Definition Let N1, N2 be a partition of set N , i.e., N1[N2 D N and N1\N2 D
; should hold. The following subset of A D will be called a cut set corresponding
to this partition and will be denoted in this section by C.N1;N2/:

C.N1;N2/D f.i; l/ j .i; l/ 2 A D; i 2 N1; l 2 N2; or i 2 N2; l 2 N1g:

The cut sets can have orientations, meaning that one possible order of N1;N2 is
fixed, that is, for example, the .N1;N2/ pair of sets is handled as an ordered pair.
In the case of .i; l/ 2 C.N1;N2/, this edge is considered positively oriented with
respect to the cut set if i 2 N1 and negatively oriented if i 2 N2 holds.

Definition The cut set C.flg;N nflg/ is called a node cut set belonging to node l
for l D 1; : : : ;n. Obviously, C.flg;N nflg/ is the set of edges connected to node l .

For the sake of simplicity of presentation, a spanning tree .N ;FD/ is chosen
from graph .N ;A D/ and is regarded as fixed in the sequel.

Definition The basic circuits corresponding to the links A DnFD are the following
circuits: let .i; l/ 2 A DnFD . As a result of Theorem 5, graph .N ;FD [ f.i; l/g/
contains one and only one circuit, which is called the basic circuit generated by the
edge .i; l/.

Therefore, the number of basic circuits corresponding to the tree .N ;FD/ is k.

Definition By the basic cut sets belonging to the edges of tree .N ;FD/, the
following cut sets are meant: let .i; l/ 2 FD . If edge .i; l/ is deleted in the tree,
the tree disintegrates into two disjoint trees. Regarding the nodes of these trees, a
partition of N results. The cut set in .N ;A D/, corresponding to this partition, is
called a basic cut set generated by the edge .i; l/.

On the basis of the definition and of Theorem 1, it can be seen that the number of
basic cut sets corresponding to the tree .N ;FD/ is n�1.

In the sequel we will need various incidence matrices describing the structure of
graph .N ;A D/ and the orientations of cut sets and circuits. It is assumed that cut
sets and circuits corresponding to a graph are endowed with serial numbers and that
the basic cut sets, basic circuits, and node cut sets are also provided with serial
numbers corresponding to the resulting ordering. The definitions of the various
incidence matrices are as follows.

OQ: A cut-set incidence matrix describing cut sets and their fixed orientation.
Its size is p �m, where p is the number of cut sets corresponding to graph
.N ;A D/.
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Definition:

OQil D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 if edge l belongs to cut set i and it is
positively oriented with respect to the cut set;

�1 if edge l belongs to cut set i and it is
negatively oriented with respect to the cut set;

0 otherwise.

(A.1.1)

Q: Reduced cut-set incidence matrix of size .n � 1/ � m. For its definition
we assume that the cut sets are provided with the following orientations: the
orientations of basic cut sets are of the sort that the edges generating the cut
set are positively oriented, while the orientations of the remaining cut sets are
arbitrarily fixed. Then Q is the submatrix formed by choosing those n� 1 rows
of OQ that correspond to the basic cut sets.

OA: Node-edge incidence matrix of size n�m. It is assumed that the cut sets of
.N ;A D/ are endowed with the following orientations: the orientations of the
node cut sets are of the sort that with respect to them, the edges emanating
from the node are positively oriented; the orientation of the remaining cut sets is
arbitrarily fixed. Then OA is a submatrix of OQ corresponding to the rows of the n
node cut sets. Because the node-edge incidence matrix will be needed frequently
later on, its explicit form is also provided:

OAil D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 if the l th edge is connected to the i th node and the node
is the starting point of the edge;

�1 if the l th edge is connected to the i th node and the node
is the endpoint of the edge;

0 otherwise.

(A.1.2)

A: Reduced node-edge incidence matrix of size .n�1/�m. This matrix is formed
by deleting one of the rows of OA. In this way, n reduced node-edge incidence
matrices can be associated with OA.

OB: Circuit-edge incidence matrix, describing both the circuits corresponding to
graph .N ;A D/, and their fixed orientations. Its size is h�m, where h is the
number of circuits in the graph.
Definition:

OBil D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

1 if the l th edge is in the i th circuit and with respect to the
circuit it is positively oriented;

�1 if the l th edge is in the i th circuit and with respect to the
circuit it is negatively oriented;

0 otherwise.

(A.1.3)

B: Reduced circuit-edge incidence matrix of size k �m. For this definition the
circuits are oriented in the following way. The orientation of the basic circuits are
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of the sort that the edge generating the circuit is of positive orientation, while the
orientation of the remaining circuits is arbitrarily fixed. Then B is the submatrix
of matrix OB, corresponding to the rows of the basic circuits.

For the sake of simplicity of notation, let us assume that the serial numbers of
the edges of the graph start with the link edges corresponding to the fixed tree
.N ;FD/. Then B and Q take the following so-called normal form:

B D .Ek;F/I Q D .Q0;En�1/; (A.1.4)

where Ek , En�1 are unit matrices of appropriate sizes.
Later on the following theorem will be needed; its proof can be found in [63], for

example.

Theorem 7 The directed graph .M ;BD/ contains a circuit if and only if the
columns of its node-edge incidence matrix OA are linearly dependent.

The next theorem concerns the rank of various incidence matrices. For its
formulation let us introduce the notation r.D/ for the rank of a matrix, where D
is an arbitrary matrix.

Theorem 8 For the incidence matrices of the connected graph .N ;A D/ the
following assertions hold:

(i) r.Q/D n�1, r.B/D k;
(ii) r. OA/D n�1;

(iii) If any row of OA is deleted, then the rows of the resulting reduced node-edge
incidence matrices are linearly independent.

Proof. Statement (i), on the basis of (A.1.4), is trivial. To prove assertion (ii), let
us note first that if we add up the row vectors of OA, then a zero vector results.
Consequently, the rows of OA are linearly dependent, implying that r. OA/ � n� 1
holds. At the same time, it is possible to choose n�1 linearly independent column
vectors of OA. For this it is sufficient to choose the column vectors corresponding
to a spanning tree whose existence follows from Theorem 6. These vectors are in
fact linearly independent on the basis of Theorem 7. Finally, the proof of (iii) easily
follows from the fact that, due to a statement at the beginning of the proof of (ii),
any row of OA can be expressed as a linear combination of the others. Thus, the proof
is complete. �

The next theorem describes an orthogonality relation.

Theorem 9 For arbitrary orientations of the cut sets and circuits of graph
.N ;A D/, the following relation holds:

OQ OBT D 0: (A.1.5)

Proof. Let us choose the sth row in matrix OQ and the t th row in matrix OB. This
means that the sth cut set and the t th circuit are considered. If the cut set and the
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circuit have no common edges, then the scalar product is trivially zero. Otherwise, it
is easy to see that the cut set and the circuit have an even number of common edges.
Taking a traversal corresponding to the orientation of the circuit, the orientations of
common edges with respect to the circuit and to the cut set are identical or opposite,
in an alternating fashion. From this fact the proposition easily follows. �

In the sequel let Cm denote the linear space of complexm-tuples overC, endowed
with the usual scalar product: for a;b 2 C

m, ha;bi D Pm
iD1 ai b�

i , where � denotes
the complex conjugate.

If D is a subspace of Cm, its dimension will be denoted by dimD.
Because the elements of the matrices in Theorems 8 and 9 are real numbers,

the assertions concerning ranks remain valid when taking C
m as the basis, and the

orthogonality relation in (A.1.5) can also be formulated with scalar products in C
m.

The following notations are introduced.
Let CQ be the subspace of C

m spanned by the row vectors of OQ, and let CB
be the subspace spanned by the row vectors of OB. Since the rows of matrices OQ
and OB, corresponding to different orientations of cut sets and circuits, differ in the
multiplication by .�1/ at most, CQ and CB do not depend on the orientations of cut
sets and circuits.

Theorem 10 The following statements hold:

(i) dimCQ D n�1;
(ii) dimCB D k;

(iii) CQ and CB are orthogonal complementary subspaces.

Proof. Choosing appropriate orientations of the cut sets and circuits, the rows of
matrix Q can be found among the rows of matrix OQ, and the rows of matrix B can
be found among the rows of matrix OB. Therefore, on the basis of Theorem 8 we
obtain

dimCQ � n�1; dimCB � k: (A.1.6)

On the other hand, on the basis of (A.1.5), it can be seen that CQ and CB are
orthogonal subspaces of Cm. Therefore,

dimCQ C dimCB �m (A.1.7)

holds. With the help of the relation mD n�1Ck, we have obtained the proofs of
(i) and (ii). The orthogonality of the subspaces, along with (i) and (ii), imply (iii).
Thus, the proof is complete. �

The sequence of propositions related to the rank of the incidence matrices can be
completed by applying our theorem.

Theorem 11 For the connected graph .N ;A D/, with an arbitrary orientation of
the cut sets and circuits, the following relations hold: r. OQ/D n�1 and r. OB/D k.
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Proof. THe proof is trivial on the basis of Theorem 10. �

Note that utilizing the orthogonality relation (A.1.5), Q0 D �FT holds in
relations (A.1.4). Therefore, B and Q take the following form:

B D .Ek;F/; Q D .�FT ;En�1/: (A.1.8)

According to the fixed numbering of edges corresponding to relations (A.1.4),
the partition of the components of vectors in C

m is as follows.

If d 2 C
m, then d D

 
dK
dF

!
, where dK 2 C

k , dF 2 C
n�1.

In the sequel we discuss a description of the electrical states of networks.

Definition The following subspace of C
m, denoted by I , is called the current

space:

I D fi j OQi D 0; i 2 C
mg: (A.1.9)

The physical background is the following form of Kirchhoff’s first law: in an
electric network, the edge currents are of the sort that their signed sum is zero with
regard to any oriented cut set of the network.

From Theorems 8 and 11 it follows that I is a k-dimensional subspace of Cm,
which can be specified in the following equivalent forms:

I D fi j Qi D 0; i 2 C
mg; (A.1.10)

I D fi j OAi D 0; i 2 C
mg; (A.1.11)

I D fi j Ai D 0; i 2 C
mg: (A.1.12)

Of the preceding relations, (A.1.11) is the mathematical formulation of the follow-
ing form of Kirchhoff’s first law: the edge currents of electric networks are of the
sort that the sum of the currents flowing inward equals the sum of the currents
flowing outward with regard to any node of the network.

Equations (A.1.10) and (A.1.8) imply that the system of equations defining the
current space can also be formulated in the following form:

� FT iK C iF D 0: (A.1.13)

Further on, the components of the vectors i 2 I will also be called edge currents.
It can be seen from (A.1.13) that for arbitrarily chosen edge currents for the links

the edge currents corresponding to the edges of the tree are uniquely determined.

Definition The following subspace of Cm, denoted by V , is called a voltage space:

V D fv j OBv D 0; v 2 C
mg: (A.1.14)
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Considering the physical background, the definition corresponds to Kirchhoff’s
second law. This means that the edge voltages in electric networks are of the sort
that their signed sum is zero for any oriented circuit of the network.

From Theorems 8 and 11 it follows that the dimension of V is n�1 and V can
be specified in the following equivalent form:

V D fv j Bv D 0; v 2 C
mg: (A.1.15)

Utilizing (A.1.8), the system of equations defining the voltage space can also be
formulated in the following form:

vK C FvF D 0: (A.1.16)

The components of vectors v 2 V will also be called edge voltages.
From (A.1.16) it can be seen that choosing arbitrarily the edge voltages for the

edges of the tree, the edge voltages of the links are uniquely determined.
The relation between the voltage and current spaces is formulated in the following

theorem.

Theorem 12 The voltage space V and the current space I are orthogonal
complementary subspaces.

Proof. From the definitions, by applying Theorem 10, we obtain I DCB , V DCQ.
From these the proposition follows by applying Theorem 10. �

In the sequel we will need the following notation. For any vector a 2 C
q (q � 1/,

let a� 2 C
q denote a vector that is obtained by replacing all components with their

complex conjugates in a.

Definition The directed graph .N ;A D/, along with an assignment of edge
voltages and edge currents, will be called a network, provided that the voltage
and current vectors are elements of the voltage space V and the current space I ,
respectively.

Definition Let v 2 V and i 2 I . Then the electric power attached to the edges of
the network can be defined as follows.

If .j; l/ 2 A D , then the power corresponding to .j; l/, denoted by sjl , is the
following quantity:

sjl D vjl i
�
jl : (A.1.17)

The vector of powers attached to the edges is denoted by s, and its components will
be called edge powers.

The total power S attached to the network is defined as the sum of the edge
powers. Therefore, on the basis of (A.1.12) we obtain

S D vT i� D hv; ii D 0: (A.1.18)
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Considering the physical content, the orthogonality of I and V describes power
conservation.

Definition The electrical states of the network .N ;A D/ are defined as pairs of
vectors .i;v/, i 2 I , v 2 V . Therefore, the set of all electrical states is I �V .

Generally, in physical networks not every .i;v/, i 2 I , v 2 V pair is feasible.
For this reason, the notion of feasible electrical states is introduced. From a
mathematical point of view, this means that an M � I � V set is fixed, and an
electrical state .i;v/ is called feasible if .i;v/ 2 M is satisfied.

In the sequel, we discuss two cases concerning the possible choices of M .

Definition The linear admittance transformation of the network .N ;A D/ is a
linear transformation mapping C

m into itself, that is, mapping the voltage space
V into the current space I . The matrix of this transformation in the natural basis
will be denoted by Y.

Then matrix Y must fulfill the following condition. If v 2 V , then Yv D i 2 I
must hold.

Let IY denote the image space of the voltage space V resulting from the
transformation, i.e.,

IY D fi j there exists a v 2 V ; such that i D Yv holdsg: (A.1.19)

Then the requirement concerning matrix Y can also be formulated as IY � I .
If an admittance transformation with matrix Y is attached to the network

.N ;A D/, the set MY of the feasible electrical states is the following subset of
IY �V :

MY D f.i;v/ j i D Yv; i 2 I ; v 2 V g: (A.1.20)

Let us now consider a spanning tree (N ;FD), and let us partition matrix Y
according to the link and tree edges (branches) in the following way:

Y D
�

YKK;YKF

YFK;YFF

�
: (A.1.21)

Then the partitioned form of the admittance transformation will be as follows:

�
iK
iF

�
D
�

YKK;YKF

YFK;YFF

��
vK
vF

�
: (A.1.22)

On the basis of (A.1.16), the voltage space V can be represented as

V D
�

v

ˇ̌
ˇ̌ v D

�
vK
vF

�
D
� �F

En�1

�
vF ; vF 2 C

n�1
�
: (A.1.23)
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Substituting this into relation (A.1.22), we obtain

�
iK
iF

�
D
�

YKK;YKF

YFK;YFF

�� �F
En�1

�
vF : (A.1.24)

Thus, we get

iK D .�YKKF C YKF /vF ;

iF D .�YFKF C YFF /vF : (A.1.25)

On the basis of the definition, Y is an admittance transformation if and only if i D 
iK
iF

!
, computed according to (A.1.25), is an element of I for any vF 2 C

n�1.

Utilizing the defining Eq. (A.1.13) of the current space, we get that for any vF 2
C
n�1, the following relation must hold:

.FTYKKF � FTYKF /vF D .YFKF � YFF /vF : (A.1.26)

Consequently, for the submatrices of Y the following condition holds:

FTYKKF � FTYKF D YFKF � YFF : (A.1.27)

Further on, we will discuss the case where YKF D 0, YFK D 0 holds. Regarding its
physical background, this means that only those networks are analyzed that contain
a spanning tree such that the electromagnetic connection (mutual admittances)
between tree edges and link edges is negligible.

In this case the matrix of the admittance transformation is

Y D
�

YKK 0
0 �FT YKKF

�
: (A.1.28)

Therefore, the admittance transformation takes the following form:

iK D YKKvK; (A.1.29)

iF D �FT YKKFvF : (A.1.30)

Applying the preceding relations and relation (A.1.16), the subspace IY can be
represented as

IY D
�

i

ˇ̌
ˇ̌ i D �

�
YKKF

FTYKKF

�
vF ; vF 2 C

n�1
�
: (A.1.31)
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The physical background of relations (A.1.29) and (A.1.30) is as follows. The
diagonal elements of matrix YKK correspond to the edge admittances of the links,
while the rest of the elements in the matrix relate to the mutual admittances
between links. (Edge admittances in the physical sense will be discussed in the next
section; see also [70]). Considering relation (A.1.16) as well, and in accordance
with (A.1.29) and (A.1.30), we conclude that when fixing the voltages of tree edges,
for a given YKK the currents in the entire network are uniquely determined.

Note that, of course, matrix Y of the admittance transformation is not the same as
the matrix constructed on the basis of the admittances of the passive elements of the
network (see [70]), the latter also being denoted by Y in the engineering literature.

Definition The (linear) impedance transformation of the network .N ;A D/ is a
linear transformation mapping C

m into itself, which maps the current space I into
the voltage space V . The matrix of the transformation in the natural basis will be
denoted by Z. Then matrix Z must fulfill the following condition. If i 2 I , then
Zi D v 2 V holds.

Let VZ denote the image space of the current space I under an impedance
transformation, i.e., the following subspace of Cm:

VZ D fv j There exists an i 2 I for which v D Zi holdsg: (A.1.32)

Then the requirement concerning Z can also be given in the following form:
VZ � V .

If an impedance transformation with matrix Z is assigned to the network
.N ;A D/, then the set MZ of the feasible electrical states will be the following
subset of the set I �VZ:

MZ D f.i;v/ j v D Zi; i 2 I ; v 2 V g: (A.1.33)

Let us consider a spanning tree .N ;FD/ and partition matrix Z accordingly.
Proceeding analogously as in the case of the admittance transformation, the
following matrix Z is obtained:

Z D
��FZFFFT 0

0 ZFF

�
: (A.1.34)

The impedance transformation takes the following form:

vK D �FZFFFT iK; (A.1.35)

vF D ZFF iF : (A.1.36)
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From this, applying (A.1.13), we get the following representation of subspace VZ:

VZ D
�

v

ˇ̌
ˇ̌ v D

��FZFFFT

ZFFFT

�
� iK; iK 2 C

k

�
: (A.1.37)

The physical background of the impedance transformation is as follows.
The diagonal elements of matrix ZFF correspond to the edge impedances of the

tree edges (see the following section or, for example, [70]), while the rest of the
elements relate to the mutual impedances among tree edges (e.g., [70]). According
to (A.1.35) and (A.1.36) and taking (A.1.13) into account, we conclude that if the
currents of the link edges are fixed, then the voltages are uniquely determined in the
whole network for a given ZFF .

Of course, matrix Z of the impedance transformation as defined earlier is not the
same as the matrix being built on the basis of the impedances of passive elements,
which is also denoted by Z in the engineering literature.

Both matrix Y of the admittance transformation and Z of the impedance trans-
formation can be singular, even in the case where YKK and ZFF are nonsingular
matrices. In our case, the invertibility of the transformations restricted to the voltage
respectively current spaces is essential.

In the case of the admittance transformation, this means that we consider the
transformation defined by the relation i D Yv but restricted to v 2 V only. This is
a linear mapping V ! IY . For ensuring that it is a one-to-one correspondence,
the condition dimV D n� 1 D k D dimI must necessary be fulfilled. It can be
seen from (A.1.31) that it is a one-to-one mapping if and only if the columns of
the involved matrices are linearly independent. If the inverse transformation exists,
it is called a restricted impedance transformation. Its existence means that for any
i 2 IY there exists one and only one v 2 V for which .i;v/ is a feasible electrical
state.

Similar statements hold in the case of the impedance transformation, and the
restricted impedance transformation is defined in an analogous way.

Considering its physical background, assigning admittance and impedance
transformations to the networks can be regarded as a generalization of Ohm’s
law to networks.

Note that our starting assumption on fixing a spanning tree .N ;FD/ has no
conceptual significance, apart from simplifying the presentation. As a result of the
theorems proved earlier, if different spanning trees are chosen for the voltage and
current spaces, this merely means a change of the basis in those subspaces.

As an illustration, we consider a simple circuit. By this is meant the following
network:

N D f1;2g; A D D f.1;2/; .2;1/g; nDmD 2; k D 1:

The current space is the subspace I D f.i1; i2/ j i1 D i2g, while the voltage space
is the subspace V D f.v1;v2/ j v1 D �v2g. Both of them are one-dimensional
subspaces of C

2. In our case, the specification of the impedance and admittance
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transformations is equivalent to choosing one of the edges. Let us choose .2;1/, for
example, and fix a relation of the form

v21 DZ21i21; (A.1.38)

where Z21 2 C is a constant.
Considering its physical content, (A.1.38) is the usual form of Ohm’s law. The

matrix of the impedance transformation is as follows:

Z D
��Z21 0

0 Z21

�
: (A.1.39)

The restricted impedance and admittance transformations exist; they are one
another’s inverses. Therefore, they provide a one-to-one transformation between I
and V .

Definition The quantity Z21 in relation (A.1.38) is called the edge impedance of

edge .2;1/, while the quantity Y21 D 1

Z21
is called an edge admittance of the edge.

Finally, let us note that the presented theory can be developed in an analogous
way when taking R

m instead of Cm as the underlying space.

A.2 Physical Description of the Transmission Network
of Electric Power Systems

In this section the construction of a surrogate electric network (in the physical sense
of the word) for a transmission network is outlined. Under the assumptions outlined
in this section, the voltage-current conditions of this surrogate network reflect the
conditions of the actual transmission network with reasonably good accuracy.

After an introductory discussion concerning harmonic alternating currents, a
simplified description of the transmission network follows. We mostly concentrate
on those components of the network that significantly influence the voltage-current
conditions and, therefore, the power conditions. Then we discuss the (in the physical
sense) substitute electric networks of the main components of a transmission
network. Finally, the structure of the substitute overall electric network is presented.

In the course of the construction of the model of the transmission network,
harmonic alternating currents are dealt with. To summarize the related physical
notions and basic relations, we consider the simple circuit displayed in Fig. A.6.

In this figure G is a voltage source and A represents one of the following ideal
network elements: ohmic resistance, inductor (coil), capacitor.

If the voltage source produces a harmonic alternating voltage v.t/ having angular
frequency !, then, if A is replaced by any of the previously listed ideal network
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~

i (t)

v (t)
AG

Fig. A.6 Simple circuit

elements, the current i.t/ flowing in the circuit will be a harmonic alternating current
with the same angular frequency !. This means that if the voltage is

v.t/D vmax cos.!tC'/; (A.2.1)

then

i.t/D imax cos.!tC / (A.2.2)

holds for the current flowing in the circuit, where vmax and imax are the amplitudes
and ' and  are the phase-angles for the voltage and current, respectively.

If A represents ohmic resistance with resistance value R, then, with respect to
voltage and current,

v.t/DRi.t/ (A.2.3)

holds at any time t .
However, if A is an inductor with inductance L, the differential equation

v.t/D L
di.t/

dt
(A.2.4)

describes the relation between voltage and current.
The situation is similar in the case of a capacitor of capacitance C where the

differential equation takes the following form:

i.t/D C
dv.t/

dt
: (A.2.5)

Next, the complex formalism concerning alternating currents is outlined. For the
rest of the book let j denote the complex imaginary unit.
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Let us introduce the following notations:

V D vmaxp
2
ej'; (A.2.6)

I D imaxp
2
ej : (A.2.7)

V and I , as defined by (A.2.6) and (A.2.7), are called the phase representations of

voltage and current, respectively. The role of the factor
1p
2

will become clear in the

subsequent discussion on complex power.
Substituting (A.2.1) and (A.2.2) into relations (A.2.3)–(A.2.5), it is easy to see

that (A.2.3)–(A.2.5) are respectively formally equivalent to

V DRI; (A.2.8)

V D j!LI; (A.2.9)

V D 1

j!C
I: (A.2.10)

The new formulas can be regarded as a complex representation of Ohm’s law.
The complex quantities (acting as the coefficient of I in the relations) are called
the impedances of the respective ideal circuit elements, while their reciprocals are
called admittances. Let Z denote the impedance defined in this way. Its value for
the various circuit elements is as follows:

Z DR for ohmic resistance, (A.2.11)

Z D j!L for inductor, (A.2.12)

Z D 1

j!C
for capacitor. (A.2.13)

In the sequel R will be called resistive reactance, !L inductive reactance, and
1

!C
capacitive reactance.

If we build an electric network in a physical sense on the basis of the ideal
network elements and voltage source discussed so far, then for the instantaneous
values of current and voltage Kirchhoff’s laws hold. Assuming that the angular
frequency ! is the same throughout the network, it is easy to see that Kirchhoff’s
current law concerning the nodes can be formulated in an equivalent way by
replacing the instantaneous values of currents with their phase representation.
The same is true concerning Kirchhoff’s voltage law on circuits and the phase
representation of the voltages.

In the sequel we assume that for all current and voltage sources the angular
frequency ! is the same.
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It can be seen that the model described in Sect. A.1 is quite suitable for the
mathematical description of a physical network built up from ideal circuit elements
by assigning the different network elements to the edges of the graph and thinking
in terms of phase representation. It is easy to show that if network elements are
connected in series or in parallel, the new compound element (due to Ohm’s
law formulated according to the complex description) can be substituted by a
single impedance that can be computed on the basis of the impedances of the
components, in an analogous way to the case of direct currents. Therefore, to reduce
the dimension of the mathematical model network, we associate to each of the
compound elements discussed earlier a single edge in the graph.

Regarding the circuit in Fig. A.6, the corresponding mathematical model will be a
simple circuit as defined and discussed in Sect. A.1. The impedances of the network
elements correspond to impedances assigned to the edges of the graph.

Let us recall the concept of electric power for harmonic alternating currents.
Consider again the circuit in Fig. A.6. Here the instantaneous power, denoted by
p.t/, is defined as follows:

p.t/D v.t/i.t/D vmaximax cos.!tC'/cos.!tC /: (A.2.14)

Following some elementary computations this can be written as

p.t/D 1

2
vmaximax cos.'� /Œ1C cos2.!tC /�

� 1

2
vmaximax sin.'� /sin2.!tC /: (A.2.15)

Let us introduce the notations as specified below:

P D 1

2
vmaximax cos.'� /; (A.2.16)

Q D 1

2
vmaximax sin.'� /: (A.2.17)

With these notations, the equation for the instantaneous power takes the form

p.t/D P.1C cos2.!tC //�Q sin2.!tC /; (A.2.18)

where P represents active power, which can be easily shown to be the mean value
of instantaneous power over one period. The first term in (A.2.18) can be interpreted
as a power flow of varying magnitude. Its direction depends on the sign of P , and
its values vary in a harmonic way around the mean value P by an angular frequency
of 2! (P � 0 corresponds to consumption).
Q represents reactive power. According to the second term in relation (A.2.18),

it is the peak value of a harmonic oscillation of a 2! angular frequency and of mean
value 0. Physically, the reactive power represents a continuous exchange of energy
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of mean value 0 between the voltage source and the impedance. More precisely,
this exchange of energy takes place between the source and the electromagnetic
field of the impedance. It can easily be derived from the preceding definition of
Q and Eqs. (A.2.4) and (A.2.5) that inductive impedance consumes reactive power
.Q � 0/, while capacitive impedance produces reactive power .Q � 0).

Complex power S is introduced with the following definition by applying the
phase representation of voltage (A.2.6) and current (A.2.7):

S D VI�: (A.2.19)

Substituting the phase representations, for complex power we get the following
formulation:

S D 1

2
vmaximaxe

j.'� /: (A.2.20)

Therefore, S can be expressed in terms of active and reactive power in the following
way:

S D P CjQ: (A.2.21)

The quantity jS j Dp
P2 CQ2 is called apparent power.

In this book the physical quantities are considered as being measured according
to the following units:

Impedances (resistive, inductive, capacitive, reactance) ˝

Admittances (all three) S D 1

˝
Voltage kV
Current kA
Active power MW
Reactive power Mvar
Apparent power MVA.

Now we will discuss the transmission network of electric power systems.
In general, transmission networks are many-phased. Their characteristic (and

herein analyzed) mode of operation is a symmetric balanced state, meaning that
in the individual phases the size of the current is the same and the phase angles are
shifted by constant values with respect to each other. In this case the determination
of the electrical state of the network can be carried out by a single-phase substitu-
tion; based on the results obtained in this way, the actual state can be reconstructed.
Therefore, in the sequel it is sufficient to consider single-phase networks only. In
the networks considered, in steady states the frequency of the harmonic alternating



108 A Transmission Network of Electric Power Systems

current has the same value across the network. Consequently, the complex phase
representation discussed previously can be applied in the construction of the model.

In an electric power system the power generated in power plants is conveyed to
consumers via an electric transmission network. In our model the basic network is
considered only, i.e., transmission lines of 750 kV, 400 kV, and 220 kV and that part
of the main distribution network that is 120 kV, selected according to power systems
engineering criteria, which plays a substantial role in power distribution.

From an engineering point of view, power transmission is carried out by
transmission lines and cables. Subnetworks, corresponding to different voltage
levels, are connected to one another through transformers.

The nodes of the network are power plant busbars and consumer substations. The
term busbar originates from the fact that the branches of the network, the generators
and transformers of the power plants, and the transformers connecting the consumer
distribution network of lower voltage to the transmission network are connected by
busbars made of copper or aluminum at the various network substations.

Next those main devices are enlisted whose ensemble results in power injection
respectively consumption at the nodes.

• Power plant synchronous generators generate active power and, depending on
their excitation control, may generate or consume reactive power. In our model
the overall power of all generators (possibly located in various power plants)
connected to the same node is considered.

• Consumers (load) includes all consumers connected to a node through the
distribution network of a lower voltage level. In our model the overall power
demand at the nodes is taken into account.

The following devices are used to inject or consume reactive power.

• A synchronous compensator is a synchronous engine that does not inject active
power at a node. Depending on the excitation of the rotor, it can either consume
or generate reactive power within the range delimited by its domain of control.

• A shunt reactor is an inductive device that consumes reactive power.
• A shunt capacitor, due to its capacitive characteristic, generates reactive power.

Several shunt capacitors can be connected to one node. Then the capacity can be
changed within the given limits by discrete jumps.

Next, the equivalent circuits of branches and transformers of a transmission
network are discussed. These are simple electric circuits consisting of a few edges
and ideal network elements. By an appropriate selection of the involved impedance
values they reflect the voltage-current states of the corresponding element of the
transmission network, in a steady state of the network, with reasonable accuracy
from an engineering viewpoint. Naturally, the equivalent circuit can only provide a
true picture of the voltage and current of the element of the transmission network in
that element’s domain of stable operation.

As a substitute for transmission lines, cables, and transformers, the so-called �
circuit can be utilized. This consists of three nodes and three branches, as illustrated
in Fig. A.7.
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Z1 Z2

Zπ

Fig. A.7 A � circuit

One of the three nodes is the grounded node, while the other two correspond
to busbars of the transmission network. The impedance values Z� , Z1, and Z2 are
specified on the basis of the engineering parameters of the transmission lines, cables,
and transformers [17]. In all three cases Z� takes the form Z� DRCj!L, where
R represents the ohmic resistance of the relevant element and L its inductance.
An important characteristic of the transmission network is that for all branches the
inductive reactance !L is significantly higher than the ohmic resistance R. In the
case of transformers these quantities differ by one order of magnitude.

In the case of transmission lines and cables, Z1 D Z2 D 2

j!C
holds, where C

represents the capacitance of transmission lines and cables. In the case of trans-
mission lines the value of !C is by approximately six orders of magnitudes smaller
than the value of !L. The value of capacity assigned to cables is significantly higher
than the values of capacity attached to transmission lines.

In the case of the transformers the situation is more complicated because some
of them can be regulated having a variable turn ratio; these are so-called tap-
changing transformers. In the case of non-tap-changing transformers and those of
the tap-changing ones for which the turn ratio is at a nominal value, the equivalent
circuit shown in Fig. A.7 simplifies because the vertical parts of � can be neglected.
Therefore, they can be represented by a single branch with an appropriately chosen
impedance value Z� .

In the case of those tap-changing transformers for which the turn ratio is not
at a nominal value, the values of the edge impedances Z� , Z1, and Z2 displayed
in Fig. A.7 can be determined on the basis of the transformer specifications and
transformer tap adjustments [17].

In the sequel, for the sake of simplicity of presentation we assume that for all of
the tap-changing transformers the turn ratio is at a nominal value; thus, all of them
can be represented by single branches with appropriately chosen Z� impedance
values.



110 A Transmission Network of Electric Power Systems

Based on the foregoing discussions, we will build a physical model of a
transmission network, that is, we will construct an electric network whose voltage-
current states reflect the voltage-current states of the transmission network with
reasonable accuracy.

The nodes of the equivalent electric network correspond to busbars. Let their
number be denoted by N . It is also assumed that the nodes are numbered. As an
.N C1/th node we introduce the grounded node.

The branches of the network are constructed as follows.
Let us assume that the i th and l th busbars are connected by a transmission

line or cable. In the equivalent circuit shown in Fig. A.7, resistance, coefficient of
inductance, and capacitance are denoted by Ril , Lil , and Cil , respectively. In the
equivalent electric network, we introduce a branch connecting the i th node with the
l th node that corresponds to the upper horizontal part of � with an edge impedance
value of Ril Cj!Lil . The vertical parts of � connect the i th and l th nodes with the

grounded node; an impedance value of
2

j!Cil
is assigned to both branches.

If the i th and l th busbars are connected by a transformer and Ril , Lil ohmic
resistance and coefficient of inductance has been assigned to it, in the equivalent
electric network the transformer is represented by an edge connecting the i th and
l th nodes with an edge impedance value of Ril Cj!Lil .

If the i th and l th nodes are connected by several transmission lines or cables,
they can be reduced in the equivalent network to the preceding three branches by a
substitution valid for impedances connected in parallel. For the sake of simplicity,
let Ril , Lil , Cil denote the resultant resistance, coefficient of inductance, and
capacitance, respectively.

Let M denote the number of those branches in the previously described electric
network whose two endpoints correspond to busbars. For the sake of simplicity of
reference, henceforth, these types of branches will be called � -type branches.

In the electric network achieved as a result of the procedure outlined earlier, apart
from the grounded node, the same number of capacitive branches (grounded at the
other ends) are connected to each node as there are � -type branches connected to
that node that represent transmission lines or cables. At each node these capacitive
branches are connected in parallel and can be replaced by a single branch, with the
capacitance of this branch being the sum of the capacitances of those branches. If
only � -type branches corresponding to transformers are connected to a node, then
no such branch is introduced. Let NC denote the number of those nodes to which
we have assigned a branch in the previously described way, connecting that node to
the grounded node, and let us assume that the serial numbers of the nodes start with
these nodes. Therefore, to each of the first NC nodes there is connected a capacitive
branch of the aforementioned type. These capacitive branches will be called ˇ-type
branches. Let the capacitance of these branches be denoted by Ci , i D 1; : : : ;NC .

As discussed previously, as a result of the operation of several components
there is a concentrated power injection or demand at busbars of the transmission
network. To take this into account, for each of the nodes corresponding to busbars
the electric network is supplemented by an additional branch connecting that node
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to the grounded node. The interpretation is that the power injection or demand
concentrated at the nodes arises in these branches. There are N branches of this
type that will be called ˛-type branches. However, no edge impedance values can
be assigned to these new branches.

In the transmission network the electromagnetic interaction between the various
transmission lines, cables, and transformers can be neglected. Therefore, the same
thing is assumed with respect to the ˇ and � -type branches of the electric network.
It is also assumed that there is no electromagnetic interaction between the ˛ and the
ˇ respectively � -type branches. This means that with respect to the ˇ and � -type
branches the voltage-current relation is the same as if the relevant branches were
located where circuit element A is located in the circuit displayed in Fig. A.6.

Summarizing, in an electric network, the number of nodes is N C 1, and the
.N C1/th node is the grounded node.

˛-type branches: branches connecting nodes with serial number 1; : : : ;N to the
grounded node. They have no edge impedance value assigned to them. The
number of such edges in the network is N .

ˇ-type branches: branches connecting nodes with serial numbers 1; : : : ;NC to the
grounded node of serial numberN C1. To the i th branch of this type is assigned

the edge impedance
1

j!Ci
. The number of ˇ type branches is NC .

� -type branches: branches whose serial numbers of the two endpoints are �N . The
set of these branches can be described mathematically as a subset of the set of
all pairs of numbers from the set f1; : : : ;N g. If this pair of numbers is fi; lg, the
edge impedance value assigned to the corresponding branch is Ril Cj!Lil . The
number of � -type branches is M .

Additional significant, though not yet discussed, characteristics of a network are
the following. Apart from grounded nodes, an undirected graph corresponding to
nodes and � -type branches is connected. Furthermore, the network is “looped,” i.e.,
the corresponding graph contains several circuits. Therefore, it can be assumed that
M >N holds.

A.3 Mathematical Model of the Transmission Network
of Electric Power Systems

Our main objective in this section is, starting from the physical model described in
Sect. A.2, to set up a mathematical model of a transmission network by applying the
general theory presented in Sect. A.1.

First a network model is built that serves as the basis of the mathematical model of
our transmission network. Then its voltage and current spaces are analyzed and the
notion of transmission losses is introduced and discussed. Starting from the system
of equations resulting from an analysis of an admittance transformation, the notion
of a reference node is introduced. In the course of our discussion of these topics, we



112 A Transmission Network of Electric Power Systems

will use the notation introduced in both of the previous sections. In cases where this
may lead to conflicting interpretations, we will make clear the sense in which the
notation is being used.

Finally, we formulate the main problem of load flow analysis for transmission
networks. For this we introduce some new notations, adapted to the standard
notation in the engineering literature.

Relying on the electric network model constructed in the previous section, the
mathematical model of the transmission network will be the following specified
special case of the general model presented in Sect. A.1.

The network is represented by the following graph .N ;A D/:

N : the set of graph nodes consisting of n D N C 1 elements, where the node
corresponding to the grounded node of the electric network has the serial number
N C1;

A D: the set of graph edges having m D M C N C NC elements partitioned
according to the ˛-, ˇ-, and � -type branches of the electric network.

Let

A D D A D
˛ [A D

ˇ [A D
� ; (A.3.1)

where the sets of edges A D
˛ , A D

ˇ , A D
� are defined as follows.

A D
˛ : these edges correspond to the ˛-type branches of the electric network. The
definition of this set is as follows:

A D
˛ D f.1;N C1/;.2;N C1/; : : : ; .N;N C1/g: (A.3.2)

A D
ˇ : the set of edges corresponding to the ˇ-type branches of the electric network,
defined as

A D
ˇ D f.N C1;1/.N C1;2/; : : : ; .N C1;NC /g: (A.3.3)

A D
� : the set of edges corresponding to the � -type branches of the electric network.
This set containsM elements and they connect nodes of the same serial numbers
as the corresponding � -type branches in the electric network. The orientation of
these edges is irrelevant henceforth; nevertheless, their orientation is considered
as being fixed.

The edges of graph .N ;A D/ have the following serial numbers: the serial
numbers start with edges belonging to A D

˛ in an order that is fixed according
to (A.3.2). Then the edges of A D

ˇ follow in an order as defined in (A.3.3), and,

finally, the elements of A D
� are numbered in an arbitrary order.

Let N� denote a subset of the set of nodes without a grounded node, i.e., N� D
f1; : : : ;N g.
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The graph .N ;A D/ is obviously connected. On the basis of the comment at
the end of the previous section, we assume that the subgraph .N� ;A D

� / is also
connected.

The spanning tree is fixed with the prescription FD D A D
˛ , i.e., the subgraph

.N ;A D
˛ / is chosen as the spanning tree. The tree has n� 1 D N edges. The

subgraph .N ;A˛/ forms a star of the graph .N ;A /, in the graph-theoretical sense.
The set A˛ consists of all those edges that connect node N C 1 to the remaining
nodes.

The set of link edges, corresponding to the previously mentioned choice of the
spanning tree, is the set A D

ˇ [A D
� . The number of links is k Dm�nC1DM C

NC . The graph .N ;A D
ˇ [A D

� / corresponding to links is a connected subgraph of

the graph .N ;A D/.
In this section (in contrast to Sect. A.1) let OA denote the node-edge incidence

matrix of the subgraph .N ;A D
ˇ [ A D

� /, while A denotes the reduced node-edge

incidence matrix that is formed by deleting the .N C1/th row in OA.
It can easily be seen that the basic cut sets corresponding to the tree become

the node cut sets of nodes with serial numbers 1; : : : ;N with respect to the graph
.N ;A D/. That is, the i th cut set consists of all edges from A D , which are
connected to the i th node, i D 1; : : : ;N . Therefore, on the basis of (A.1.4), the
reduced basic cut-set incidence matrix takes the following form:

Q D .A;EN /: (A.3.4)

From this and from (A.1.8) it follows that a reduced circuit-node incidence matrix
can be specified in the following form by the substitution F D �AT :

B D .EMCNC ;�AT /: (A.3.5)

Consequently, the current space I is a k D M CNC -dimensional subspace of
the space C

MCNCNC . Its defining system of equations on the basis of (A.3.4)
and (A.1.13) is

AiK C iF D 0: (A.3.6)

It can be seen from this system of equations that if the current vector iK is prescribed
for the links, i.e., for the elements of A D

ˇ [A D
� , then vector iF of the currents for

the tree edges is uniquely determined.
Relation (A.3.6) can also be interpreted as follows. If we restrict ourselves to

the network .N ;A D
ˇ [ A D

� /, then we can argue that at its nodes (apart from the
grounded node) currents are injected, and the injected currents are the components
of iF . Since A is a reduced node-edge incidence matrix of this network, in this
interpretation (A.3.6) describes a relation between currents injected at the nodes
and currents flowing at the edges of the network.
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The voltage space V is an n � 1 D N -dimensional subspace of the space
C
MCNCNC whose defining system of equations is based on (A.3.5) and (A.1.16),

as follows:

vK � AT vF D 0: (A.3.7)

It is evident from this relation that if the edge voltage vector vF is prescribed
arbitrarily for the edges of the tree, i.e., for the elements of A D

˛ , then the edge
voltages of the links are uniquely determined. With respect to the links in sets A D

ˇ

respectively A D
� , this has the following meaning: if the link belongs to the set A D

ˇ ,
then its form is .N C 1; i/, where 1 � i � NC holds. In this case the basic circuit
generated by the edge is formed by the edges .N C1; i/2 A D

ˇ and .i;NC1/2 A D
˛ .

Taking into account the numbering of the edges of the graph as specified previously,
we get

vNCi D vi ; i D 1; : : : ;NC : (A.3.8)

If .i; l/ 2 A D
� is fulfilled for a link .i; l/, then the basic circuit consists of the edges

.i; l/ 2 A D
� , .l;N C1/ 2 A D

˛ , .i;N C1/ 2 A D
˛ . Therefore, on the basis of (A.3.7),

the following relation holds:

vi l D vi � vl ; .i; l/ 2 A D
� : (A.3.9)

The results can be interpreted in the following way. Let us assign arbitrary ui 2 C

.i D 1; : : : ;N / values to the firstN nodes of the graph .N ;A D/, and let uNC1 D 0.
Furthermore, let the vector v 2 C

MCNCNC be specified as follows.
If .i; l/ 2 A D

ˇ [ A D
� , then vi l D ui � ul , and vi D ui , i D 1; : : : ;N , with respect

to the tree edges.
Relations (A.3.8) and (A.3.9) imply that this vector is an element of the voltage

space, i.e., v 2 V holds. Furthermore, it is clear that all the points of the voltage
space can be obtained in this way. This form of representation of the points of the
voltage space is known in the literature as the method of node potentials [70].

The numbers ui , i D 1; : : : ;N C 1, attached to the nodes in the foregoing way
are called node potentials and the vector u 2 C

N , formed by the the first N of
these numbers (i.e., disregarding the node that corresponds to the grounded node),
is called a vector of node potentials. Utilizing this vector, (A.3.7) can be written as
follows:

vK D AT u: (A.3.10)

The result can be interpreted by restricting ourselves to the subgraph .N ;A D
ˇ [

A D
� /: the set of nodes of the subgraph is identical with the set of nodes of the

original graph; therefore, the potentials can be related to the subgraph as well.
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Then, (A.3.10) provides the derivation of the edge voltages of the subgraph from
the node potentials as the usual potential difference.

In accordance with the discussion in Sect. A.2, in the case of ˇ and � type
branches that correspond to the links of the mathematical model, Ohm’s law holds
for each branch. That is, the ratio between the complex edge currents and edge
voltages is constant, independently of the complex currents and voltages of the
remaining branches. In the mathematical model, this means that the relation

iK D YKKvK (A.3.11)

holds, where YKK is a diagonal matrix whose diagonal elements are the edge
admittances of the links. Therefore, in accordance with Sect. A.1, there exists an
admittance transformation whose matrix, on the basis of (A.1.28) and (A.3.5), is

Y D
�

YKK 0

0 �AYKKAT

�
; (A.3.12)

where, in the usual way, the matrix is partitioned by link and tree edges. For the tree
edges, the admittance transformation provides the following relation:

iF D �AYKKAT vF : (A.3.13)

We introduce the notation

OY D AYKKAT : (A.3.14)

Then (A.3.13) takes the following form:

iF D � OYvF : (A.3.15)

Matrix OY depends solely on the structure of the graph .N ;A D
ˇ [ A D

� / and on
values of the edge admittances of this graph’s edges. Restricting our consideration
to .N ;A D

ˇ [A D
� /, in the literature the matrix OAYKK

OAT is called a node admittance

matrix (see [70], for example). Matrix OY derives from it by deletion of the row and
column that correspond to the grounded node.

If the network .N ;A D
ˇ [A D

� / is considered as a linear and passive .N C1/-pole

(see the definition of this in [70]), then on the basis of (A.3.15), � OY is a so-called
input admittance matrix [70].

From relation (A.1.31) it can be seen that the admittance transformation maps the
voltage space V into the following subspace IY of the current space I :

IY D
(

i j i D
 

YKKAT

�AYKKAT

!
vF ; vF 2 C

N

)
: (A.3.16)
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If the connected nature of the graph .N ;A D
ˇ [ A D

� / is utilized, it follows from
Theorem 8 that the rows of A are linearly independent. Therefore, since YKK is
nonsingular, it is easy to show that the rank of the matrix in relation (A.3.16) is N ,
and its columns are linearly independent.

From this it can be seen that the subspace IY is N -dimensional and that the
admittance transformation restricted to voltage space V establishes a one-to-one
correspondence between V and IY . According to the terminology introduced in
Sect. A.1, this means that the restricted impedance transformation exists.

Since in accordance with the discussion in Sect. A.2 k DM CNC >N holds for
the dimension of the current space I , IY is a proper subspace of I . Therefore, in
the set of feasible electrical states any v 2 V occurs coupled with an i 2 I , but the
converse is not true.

The orthogonality relation (A.1.18), representing the power balance, can be
written alternatively in the form

vTK i�K C vTF i�F D 0: (A.3.17)

According to Sect. A.1, this relation is implied by the definitions of current space
and voltage space (i.e., by Kirchhoff’s laws). A further derivation is provided in this
way from relations (A.3.7), (A.3.11), and (A.3.13). Taking the complex conjugates
on both sides of relation (A.3.13) and multiplying by vector vTF from the left, the
following relation results:

vTFAY�
KKAT v�

F C vTF i�F D 0: (A.3.18)

From this, utilizing (A.3.7) and (A.3.11), (A.3.17) can directly be derived.
Relation (A.3.18) can also be written in the form

� vF iTF D vTK i�K: (A.3.19)

Definition The quantity S v D vTK i�K is called a network loss.

Regarding its physical background, S v represents the overall complex power loss
in a transmission network. Equation (A.3.19) can be regarded as a power balance
equation if the quantity on the left-hand side represents the power injected into
the nodes of the network .N ;A D

ˇ [ A D
� /, whereas S v represents the loss at the

branches. The minus sign on the left-hand side is due to the fact that the tree
branches heading for A˛ are directed toward the grounded node.

Utilizing the node potential vector u, the following power-loss formulas can be
easily derived:

S v D �uT i�F ; (A.3.20)

S v D uT OY�u�; (A.3.21)

S v D uT AY�
KKAT u�: (A.3.22)
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Next, let us consider again relation (A.3.13). By the substitution vF D u we
introduce node potentials, and (A.3.13) assumes the form

AYKKAT u D �iF : (A.3.23)

The relation obtained in this way will be considered a system of equations for the
unknown components of u, regarding iF as given. Then (A.3.23) describes the
potential distribution on the nodes of the network .N ;A D

ˇ [ A D
� / for given

current injections at the nodes. In the sequel we will analyze the coefficient matrix
OY D AYKKAT of size N �N of the system of equations (A.3.23) in a detailed
manner.

The reduced node-edge incidence matrix of the connected graph .N ;A D
ˇ [A D

� /

has the following structure:

A D .Ec ;A� /; (A.3.24)

where Ec D �
 

ENc
0

!
, ENc is a unit matrix of size Nc �Nc, and A� is the node-edge

incidence matrix of the graph .N� ;A
D
� /. According to Theorem 8, the row vectors

of matrix A are linearly independent.
Let us partition matrix YKK according to the ˇ and � -type edges:

YKK D
�

Yˇ 0
0 Y�

�
; (A.3.25)

where Yˇ and Y� are diagonal matrices of the appropriate size.
Consequently, on the basis of (A.3.14), the coefficient matrix takes the following

form:

OY D
�

Yˇ 0
0 0

�
C A�Y�AT

� : (A.3.26)

The following notations are introduced:

Yˇ D jYK
ˇ ; Y� D Yv

� CjYK
� ; (A.3.27)

where YK
ˇ , Yv

� , YK
� are real matrices. Then, by straightforward computations, we

get that matrix QY of the real system of equations that corresponds to the complex
system of Eqs. (A.3.23) takes the following form:

QY D
�

0 � QYˇ

QYˇ 0

�
C
 

A�Yv
�AT

� �A�YK
� AT

�

A�YK
� AT

� A�Yv
�AT

�

!
; (A.3.28)

where QYˇ D
 

YK
ˇ 0

0 0

!
holds and the 0s denote zero matrices of appropriate size.
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According to the discussion in Sect. A.2, in (A.3.28) the elements of the matrix
that is the first term in the sum are of several orders of magnitude smaller than the
elements of the matrix in the second term. In the case of Nc < N the first matrix is
obviously singular. On the basis of Theorem 8, it can be seen that the matrix in the
second term of the sum is singular. Therefore, the matrix of the system of equations
is nearly singular (see [26] concerning this notion), which causes severe difficulties
in the numerical solution of the system of equations.

Therefore, we modify the system of linear equations (A.3.23) in the following
way: we consider one of the components of the potential vector u as fixed and
delete the equation with a serial number corresponding to the fixed component. The
matrix of the new system of equations can be obtained by deleting the corresponding
row and column in matrix OY. This means deleting two rows and two columns with
corresponding serial numbers in the matrix QY of the real system of equations. This
implies that the role of A� in the second term of (A.3.28) is now played by the
corresponding reduced node-edge incidence matrix Ar

� of the graph .N� ;A D
� /.

According to Theorem 8, the rows of Ar
� are linearly independent and the diagonal

elements of Yv
� are positive. Consequently, it is easy to see that Ar

�Yv
� .A

r
� /
T is a

positive definite matrix.
Both the matrix of the modified system of equations and the second term matrix in

its decomposition, carried out analogously to the case of (A.3.28), are nonsingular,
whichever row has been deleted. On the basis of our discussions so far, this fact
easily follows from the following theorem.

Theorem 1 Let us consider a matrix D of size 2p�2p with the following structure:

D D
�

D1 D3

�D3 D2

�
; (A.3.29)

where D1 and D2 are symmetric positive-definite matrices of size p�p and D3 is a
symmetric matrix of size p�p. Then D is nonsingular.

Proof. Let x 2 R
2p be a vector for which Dx D 0 holds, and let us partition x as

x D
 

x1
x2

!
, x1;x2 2 R

p . Because of our assumptions we have

xTDx D xT1 D1x1C xT2 D2x2 D 0: (A.3.30)

This relation implies that x D 0 holds because of the positive definiteness of D1 and
D2. Therefore, the columns of D are linearly independent, i.e., D is nonsingular and
the theorem is proved. �

Furthermore, in the (A.3.28)-type decomposition when carried out for the matrix
of the modified system of equations, the second term is generally a well-conditioned
matrix. Therefore, taking into account the difference involving orders of magnitude
between the elements of the two matrices in the sum, the matrix of the modified
system of equations will itself also be well conditioned.
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Definition The node of the network .N ;A D
ˇ [ A D

� / for which the complex
potential is considered as fixed is called the reference node of the network.

The preceding result can also be formulated in the following manner: if the
current injections are prescribed for the nodes of the network .N ;A D

ˇ [ A D
� /

other than the reference node, the modified system of equations derived from
relation (A.3.23) uniquely determines the value of complex potentials of the nodes
other than the reference node, and the system of equations is also acceptable
from a numerical point of view. In relation (A.3.23), the current injection in
the row corresponding to the reference node is expressed explicitly in terms of
potentials at the other nodes; therefore, the current injection at the reference node
can be computed via substitution of the solution after having solved the system of
equations. These characteristics are unrelated to the fact of what node plays the role
of the reference node.

The potential distribution depends on the choice of the reference point and,
naturally, on the complex potential of the reference node.

The reference node of a transmission network cannot be chosen arbitrarily. On
the basis of the preceding discussion, we see that the current injection at the
reference node cannot be prescribed; it is uniquely determined by the potential
distribution. Therefore, only those nodes can operate as reference nodes where the
current injection is controllable, i.e., to which also power plants are connected with
a sufficiently high capacity that can provide injection at the level of actual demand.
Furthermore, the power plant that is attached to the reference node generally has an
important role in system control (e.g., in frequency control) as well. This subject is
beyond the scope of this book. The interested reader may consult [17] for further
information.

In the case of the transmission network of electric power systems, the actually
considered physical quantity is the electric power, instead of currents, with respect
to generation, consumption, and transmission. Therefore, relation (A.3.23) must
be reformulated in terms of powers instead of currents, which results in a loss of
linearity of the relevant system of equations.

Let s 2 C
N denote the vector of powers attached to the branches. Then, on the

basis of (A.1.17), the components of s can be computed as follows:

sp D upi
�
p ; p D 1; : : : ;N: (A.3.31)

Utilizing this relation and relation (A.3.14), (A.3.23) can be formulated as

u�
p

NX

qD1
OYpquq D �s�

p ; p D 1; : : : ;N: (A.3.32)

Regarding the components of the potential vector u as unknowns, we have arrived
at a nonlinear system of equations. Taking this as our starting point, we formulate
the power flow (so-called load flow) problem of transmission networks.

For this purpose we will introduce a new system of notations for electric
quantities in order to follow the generally accepted notations in the engineering
literature. This system of notations is used in the remaining parts of the appendix.
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For the sake of simplicity of presentation, it is assumed that a ˇ-type capacitive
branch is connected to every node, with the prescription Ci D 0, i DNc C1; : : : ;N .

In the sequel we will concentrate our analysis on the network .N ;A D
ˇ [ A D

� /,
which hasN nodes andNcCM edges. We will work with node potentials, and their
vector will be denoted by U 2 C

N .
Let Uk D Vke

j�k , k D 1; : : : ;N , where Vk is the absolute value of the potential
and �k is its phase angle. The vectors with components Vk and �k , k D 1; : : : ;N , are
denoted by V and � , respectively.

The representation with Cartesian coordinates will be needed too, and for this
lowercase letters will be used in the system of notations to be in accordance with
the system of notations of the scheduling model. Therefore, let U D vCjw, v 2R

N ,
w 2 R

N .
As discussed previously, the node potentials of the model can be interpreted as

the edge voltages of ˛-type edges. In the sequel, node potentials will be called node
voltages or simply voltages. Regarding their physical content, they are voltages of
the busbars with respect to the grounded node, and they are important measured
parameters of the system.

Let S 2 C
N denote the vector formed by .�1/ times the powers associated with

the edges of a tree whose components, in accordance with our previous discussion,
can be interpreted as a power injection at the nodes of the graph .N ;A D

ˇ [A D
� /.

Let S D P C jQ, P 2 R
N , Q 2 R

N , where the components of P are the
active powers and the components of Q are the reactive powers. Consumption is
interpreted as negative injection.

Let I 2 C
M denote the vector of edge currents belonging to � -type edges of the

network, and let I D IP C j IQ, where the components of IP 2 R
M are called real

currents and the components of IQ 2 R
M are called imaginary or reactive currents.

Subsequently, it is assumed that the edges of .N ;A D
ˇ [A D

� / are numbered from
1 to Nc CM in such a way that the numbering starts with the ˇ-type edges.

In accordance with the discussion in Sect. A.2, the edge admittances of the
network are as follows:

YNC1;i D j!Ci ; i D 1; : : : ;Nc; (A.3.33)

and

Yi;l D 1

Ril Cj!Lil
; .i; l/ 2 A D

� : (A.3.34)

The following notations are introduced:

Xil D !Lil

Gil D Ril

R2il CX2
il

Bil D Xil

R2il CX2
il

9
>>>>=

>>>>;

.i; l/ 2 A D
� : (A.3.35)
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Let Yli D Yil , Xli D Xil , Gli D Gil , and Bli D Bil for all .i; l/ 2 A D
� . Therefore,

we get the following relation for the edge admittances of � -type edges:

Yil DGil � jBil ; .i; l/ 2 A� : (A.3.36)

The diagonal elements of matrix YKK on the right-hand side of relation (A.3.14) are
the previously specified edge admittances.

It is easy to see that matrix OY, defined by relation (A.3.14), can be specified
directly in the following form:

OYik D

8
ˆ̂<

ˆ̂:

X

l2J.i/
Yil CYnC1;i ; if i D k;

�Yik; if i 6D k, k 2 J.i/;
0; otherwise:

(A.3.37)

In the representation (A.3.37) and later in the text as well, the notation J.i/

introduced in Sect. A.1 refers to the graph .N� ;A D
� /.

The real and imaginary parts of the elements of matrix OY will also be needed;
therefore, the following notations are introduced:

OYik D OGik Cj OBik I OGik and OBik are real, i;k D 1; : : : ;N: (A.3.38)

Following some minor reformulations, in our new system of notations,
relations (A.3.32) take the following form:

Ui

NX

kD1
OY �
ikU

�
k D Si ; i D 1; : : : ;N: (A.3.39)

By virtue of some simple rearrangements and utilizing representation (A.3.37), the
following relation is obtained:

jUi j2Y �
nC1;i C

X

k2J.i/
Ui .Ui �Uk/�Y �

ik D Si ; i D 1; : : : ;N: (A.3.40)

Utilizing (A.3.38) and taking the polar coordinate form of the voltages, the
equivalent real relations corresponding to equations (A.3.39) are as follows:

Vi

NX

kD1
VkŒ OGik cos.�i ��k/C OBik sin.�i ��k/�D Pi ;

Vi

NX

kD1
VkŒ OGik sin.�i ��k/� OBik cos.�i ��k/�DQi; i D 1; : : : ;N: (A.3.41)
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In the case of the Cartesian coordinates, the equivalent real relations are as follows:

NX

kD1
. OGikŒvivk C wiwk�C OBikŒvkwi � viwk�/D Pi ;

NX

kD1
. OGikŒvkwi � viwk�� OBikŒvivk C wiwk�/DQi; i D 1; : : : ;N: (A.3.42)

Subsequently, let us denote by ˚i.V;�/ and 	i.V;�/ the functions on the left-
hand side of the equations in (A.3.41), corresponding to active and reactive power,
respectively. The functions fi .v;w/ and gi .v;w/ are defined analogously with
respect to relations (A.3.42).

With these notations, (A.3.41) and (A.3.42) take the following form:

˚i.V;�/D Pi ;

	i .V;�/DQi; i D 1; : : : ;N; (A.3.43)

fi .v;w/D Pi ;

gi .v;w/DQi; i D 1; : : : ;N: (A.3.44)

The complex relations (A.3.39) and the equivalent real relations (A.3.43)
and (A.3.44) describe the connection between power injections at the nodes and
the node potentials. In the sequel, the real relations will be discussed. They are
nonlinear, with 2N power type and 2N voltage type variables, connected by
altogether 2N relations.

There are two relations and four variables for each node. If two variables are fixed
and two are considered unknown at each node, then the number of the equations in
the system of equations will be equal to the number of the unknowns.

We present a brief discussion on the question of which variables may be fixed at
the various nodes.

At the reference node of the network the complex voltage will be fixed in such a
way that in the polar representation the phase angle will be set to 0. The complex
power injection is considered unknown. For the sake of simplicity let us assume that
the reference node has a serial number of 1.

At the nodes corresponding to the consumer busbars, the complex power
consumption is given and will be fixed, whereas the complex voltage is considered
unknown.

The situation is the same at those nodes where the adjoining power plant
generators are adjusted for fixed reactive power injection.

Compared to the preceding two types of fixing, those nodes where the active
power injection and the absolute value of voltage are fixed can be considered an
intermediate case. This fixing presupposes that, on the one hand, using devices
connected to the node the aforementioned quantities can be adjusted, while on the
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other hand, reactive power injection, as prescribed by (A.3.43), takes place. Nodes
having connections to a power plant or to a synchronous condenser belong to this
type. In the case of power plants, this type of fixing is justified as follows. Active
power generation can be controlled by the overall power plant control. The voltage
of synchronous generators can be adjusted by controlling the current (excitation)
of their rotor, and through this the absolute value of the voltage of the power plant
busbar with respect to to the grounded node can also be controlled. The case is
similar with respect to the synchronous condenser because it is also a synchronous
engine. These nodes are called voltage-preserving nodes or controllable sources of
reactive power. For the sake of simplicity we assume that the serial numbers of this
type of node are 2; : : : ;L.

On the basis of the preceding discussion, the nodes can be classified as follows:

(a) Reference node: V1, �1 D 0 are fixed; the unknowns are P1 andQ1.
(b) .P;Q/ nodes: Pk and Qk are fixed; Vk and �k are unknowns, k DLC1; : : :N .

Most (80–90 %) of network nodes are of this type.
(c) .P;V / nodes: Pk and Vk are fixed,Qk and �k are unknowns, k D 1; : : : ;L.

The basic problem of load flow analysis can now be formulated as follows. The
system of equations (A.3.43) respectively (A.3.44) should be solved by taking into
account that, depending on the type of the nodes, the values of the adequate variables
are fixed. The system of equations obtained in this way consists of 2N equations and
has 2N unknowns.

In this system of equations those equations corresponding to the reference node
and those corresponding to the reactive power relations for the .P;V / nodes can
be disregarded for the following reason. In these equations one of the unknowns,
appearing only in that specific equation, is expressed by the equation as a function
of the other unknowns. Consequently, its value can be calculated by substitution
after the values of the remaining unknowns are determined.

Thus we have obtained a system of equations of the network calculation problem
for high-voltage transmission networks called load flow equations.

Let V 0
k , k D 1; : : : ;L denote the absolute values of the fixed voltages.

In the case of polar coordinates, the following system of equations arises:

Pi �˚i.V;�/D 0; i D 2; : : : ;N;

Qi �	i.V;�/D 0; i D LC1; : : : ;N;

Vk D V 0
k ; k D 1; : : : ;L;

�1 D 0: (A.3.45)

Once the previously discussed variables are fixed, the unknowns are Vi , i D LC
1; : : : ;N ; �i D 2; : : : ;N . The number of unknowns is 2N �L�1, which equals the
number of equations.

In the case of the variant with Cartesian coordinates the system of equations is as
follows:
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Pi �fi .v;w/D 0; i D 2; : : : ;N;

Qi �gi .v;w/D 0; i D LC1; : : : ;N;

v2k C w2k D .V 0
k /

2; k D 1; : : : ;L;

v1 D V 0
1 ;

w1 D 0: (A.3.46)

Once the previously discussed variables are fixed, the unknowns are vi , i D 2; : : : ;N ,
wi , i D 2; : : : ;N . The number of unknowns is 2N �2, which equals the number of
equations.

At the nodes connected to controllable sources of reactive power, bounds
depending on the characteristics of the adjoining devices must be satisfied with
respect to reactive power generation respectively consumption. If at a .P;V /

node (A.3.43) can only be fulfilled by violating the bounds, this node should be
changed to a .P;Q/ type of node. The situation is analogous for .P;Q/ nodes with
respect to the voltage. This problem is customarily solved as follows. The load flow
problem (A.3.43) is initially formulated with a fixed qualification of the nodes, and
the solution algorithm is modified such that during the iterations the qualification of
the nodes is changed if necessary. A detailed discussion of this topic is beyond the
scope of this book; the interested reader may consult [17], for example.

A.4 Power Flow: Stott’s Method for Solving the Load Flow
Problem

Instead of currents, our model is based on power injected at the nodes, and for
this reason the notion of power “flowing out” from the node to the branch will
be used. Having defined the notion of a power flow, we can summarize the main
characteristics of a transmission network of electric power systems based on the
algorithm to be presented. Then comes a description of Stott’s method, and finally
some further relations are presented related to active power flow and transmission
losses.

The starting point for the definition of power flow is relation (A.3.40). The
following notations are introduced:

S
�

ik D Ui.Ui �Uk/�Y �
ik if .i;k/ 2 A D

� or .k; i/ 2 A D
� ; (A.4.1)

S
ˇ

nC1;k D jUi j2Y �
nC1;i ; i D 1; : : : ;N: (A.4.2)

With our notations (A.3.40) takes the following form:

S
ˇ
nC1;i C

X

k2J.i/
S
�

ik D Si ; i D 1; : : : ;N: (A.4.3)
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Here Si is the power injected at node i , and if the quantities S�ik , Sˇik are considered
as powers flowing out from node i onto the adjoining branches, then (A.4.3), related
to the power flow, is formally analogous to Kirchhoff’s current law. It is easy to see
that as physical quantities, Sˇik and S�ik represent power.

The quantities Sˇik and S�ik determined by (A.4.1) and (A.4.2) are considered
jointly as a power flow on the network .N ;A D

ˇ [ A D
� /. The corresponding real

and imaginary parts are called active and reactive power flows.
In this way, two power values are assigned to every .i;k/ 2 A D

� edge, and in this
relation they are flowing out from the end nodes of an edge onto the edge, the latter
being considered undirected in this relation. It is important to note that S�ik 6D �S�ki
holds, meaning that the power flowing out from node i is not equal to the power
flowing in at the other node. Indeed, the value of the power flowing in at node k
can be considered as (�1) times the amount of power flowing out into the edge
.i;k/. Therefore, if S v

ik denotes the difference between the two values of power, the
following relation holds:

S v
ik D S

�

ik CS
�

ki D jUi �Ukj2Y �
ik; .i;k/ 2 A D

� : (A.4.4)

Considering the physical content of the quantities S v
ik , they represent transmission

losses at the edges of the network .N� ;A D
� /.

The following relation holds for the overall transmission loss S v as defined in
Sect. A.3:

S v D
NX

kD1
jUkj2Y �

nC1;k C
X

.i;k/2A D
�

jUi �Ukj2Y �
ik: (A.4.5)

In fact, this relation can easily be derived from Eq. (A.3.22) by utilizing (A.3.14)
and (A.3.37).

Next, some of the characteristics of the transmission network are discussed, with
the aim of preparing the construction of the algorithm.

Some branches of a transmission network represent transformers. There is a
considerable potential difference among the endpoints of these branches. The
stability of the algorithms aimed at solving the network calculation problem requires
a proper standardization of the voltages at the nodes, which has further advantages
as well [17]. Two types of procedures are used.

The first procedure is called the reduction to a mutual voltage base. First a voltage
value is fixed, then all the voltages at the nodes are standardized for an approximate
value. The fixed value is called the voltage constant. To each of the voltage intervals
[100 kV, 200 kV), [200 kV, 400 kV), [400 kV, 700 kV), [700 kV, 900 kV) is assigned
a nominal voltage value. The transformation is as follows:

Vnew D Vold
voltage constant

Vnominal
: (A.4.6)
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To obtain the same values of power as those prior to the transformation, the
remaining electric quantities must be transformed adequately.

The second procedure involves the introduction of relative units (r.u.). Quite
frequently this means that the voltages at the nodes are standardized to obtain new
values around the value 1. The transformation is as follows:

Vr:u: D Vold

Vnominal
: (A.4.7)

This procedure results in values without physical dimension, and, in agreement
with the remark concerning the previous procedure, the remaining electric quantities
must be transformed accordingly.

Next, those characteristics of the transmission network are summarized that play
an important role in the construction of algorithms for solving network calculation
problems.

(a) In the case of high-voltage electric networks, the inductive reactance Xik of
transmission lines and cables are generally much higher than their ohmic
resistance Rik . The ratio is one order of magnitude higher in the case of
transformers. This implies that

Gik 
 Bik; for every .i;k/ 2 A D
� :

(b) During stable system operation, the phase angles �k with respect to the reference
point are small, and j�kj < 20ı, k D 1; : : : ;N , holds. Phase differences related
to individual branches are small, too: j�i ��kj< 10ı for all .i;k/ 2 A D

� .
(c) In normal operating mode the deviation between the standardized voltages is

smaller than 15 %.

It is an empirical fact that in the relationship between active power flow and
voltage distribution [described by the relations concerning Pi in the system of
equations (A.3.43)], the phase angles of voltages play the dominant part. Experience
is similar with respect to the reactive power flow and the absolute values of voltages.
As an explanation for this phenomenon, some heuristic reasons are given next; see
[37].

It is first assumed that jU1j D jU2j holds for the complex potentials U1 and U2
at the endpoints of the branch .1;2/. Let the current flowing in the branch be I
(Fig. A.8).

In accordance with the preceding characteristics, ı is small and ˛ is approxi-
mately 90ı due to G12 
 B12. Therefore, I and U1 (respectively U2) are almost in
the same phase. For this reason the active component of the power is large compared
to the reactive power (in absolute values).

Next it is assumed that the potentials are in the same phase and their sizes differ
(Fig. A.9).
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Fig. A.8 Case where potentials at endpoints of a branch have the same magnitude
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Fig. A.9 Case where potentials at endpoints of a branch are in the same phase

Then the phase angles of I and U1 (respectively U2) differ by approximately
90ı; therefore, the reactive component of the power is large compared to the active
component.

For further analysis of the phenomenon, the system of equations (A.3.41)
is decomposed into systems of equations corresponding to real and imaginary
parts, and some simple reformulations are carried out. We introduce the following
notations:

ıik D �i ��k;
A.Vi ;Vk;ıik/D V 2

i �ViVk cosıik;

B.Vi ;Vk;ıik/D ViVk sinıik: (A.4.8)

With these notations the system of equations takes the following form:

Pi D
X

k2J.i/
ŒGikA.Vi ;Vk;ıik/CBikB.Vi ;Vk;ıik/�;

Qi D
X

k2J.i/
ŒBikA.Vi ;Vk;ıik/�GikB.Vi ;Vk;ıik/��!CiV 2

i ; i D 1; : : : ;N:

(A.4.9)

Next, the partial derivatives of A.Vi ;Vk;ıik/ and B.Vi ;Vk;ıik/ are computed:

@A

@Vi
D 2Vi �Vk cosıik;

@A

@Vk
D �Vi cosıik;
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@A

@ıik
D ViVk sinıik;

@B

@Vi
D Vk sinıik;

@B

@Vk
D Vi sinıik;

@B

@ıik
D ViVk cosıik: (A.4.10)

According to the previous discussion, ıik is small, and if standardization to relative

units is chosen, the absolute value of voltages is close to 1. Then

ˇ̌
ˇ̌ @A
@Vi

ˇ̌
ˇ̌ and

ˇ̌
ˇ̌ @A
@Vk

ˇ̌
ˇ̌

are significantly higher (they are close to 1) than

ˇ̌
ˇ̌ @A
@ıik

ˇ̌
ˇ̌ (which can have a value

of at most around sin10ı), i.e., the function A.Vi ;Vk;ıik/ is mainly sensitive to
the absolute values of the potentials. Similarly, it can be seen that the function
B.Vi ;Vk;ıik/ in the first line is sensitive to phase-angle differences.

Taking into account that Bik � Gik holds for all .i;k/ 2 A D
� edges, (A.4.9)

implies that the active power flow is mainly sensitive to the phase-angle differences,
while the reactive power flow is mainly sensitive with respect to the absolute values
of the voltages.

Next we present Stott’s method [69] for the solution of the network calculation
problem (A.3.45), which utilizes the previously discussed characteristics of a
transmission network. The algorithm is a variant of Newton’s method. The reason it
was chosen is that due to the previously discussed characteristics of a transmission
network, it is fairly easy to provide a reasonably good starting point. One such
starting solution is the so-called flat voltage start, where the complex voltage of all
the .P;Q/ nodes equals that of the reference node. The same thing holds regarding
the phase angles at .P;V / nodes. The choice of Newton’s method is also justified
by its fast convergence.

Based on the characteristics of the power flow discussed earlier in this appendix,
a decomposed version of Newton’s method is constructed.

Let us assume that a starting pair of vectors V.0/, �.0/ is given, where
V
.0/
1 ; : : : ;V

.0/
L are the values prescribed in (A.3.45). Then if before the .nC 1/th

iteration .n � 1) V.n/;� .n/ is given, the next iteration of the algorithm runs as
follows.

Step 1 A Newton correction step is carried out starting with �.n/ to solve the
following system of equations:

Pi �˚i.V.n/;�/D 0; i D 2; : : : ;N;

�1 D �
.0/
1 : (A.4.11)

Let �.nC1/ be the vector obtained in this way.
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Step 2 A Newton correction step is carried out where V.n/ is the starting point for
the following system of equations:

Qi �	i.V;� .nC1//D 0; i D LC1; : : : ;N;

Vk D V
.0/

k ; k D 1; : : : ;L: (A.4.12)

Let the vector computed in this way be V.nC1/.

Starting from this algorithmic framework, Stott’s method [69] can be obtained by
neglecting some terms in the Jacobi matrix, which is applied in the Newton steps,
by utilizing the characteristics of the transmission network.

The elements of the Jacobi matrix belonging to the system of equations (A.4.11)
are

@.Pi �˚i.V.n/;�//

@�k

ˇ̌
ˇ̌
�D�.n/

D �V .n/
i V

.n/

k

h
Gik sin.�.n/i ��.n/k /

�Bik cos.�.n/i ��.n/k /
i
; if i 6D k;

@.Pi �˚i.V.n/;�//

@�i

ˇ̌
ˇ̌
�D�.n/

D 	i.V
.n/;� .n//CBii .V

.n/
i /2;

i;k D 2; : : : ;N: (A.4.13)

The elements of the Jacobi matrix in the case of the system of equations (A.4.12)
are

@.Qi �	i.V;� .nC1///
@Vk

ˇ̌
ˇ̌
VDV.n/

D �V .n/
i

h
Gik sin.�.nC1/

i ��.nC1/
k /

�Bik cos.�.nC1/
i ��.nC1/

k /
i
; if i 6D k;

@.Qi �	i.V;� .nC1///
@Vi

ˇ̌
ˇ̌
VDV.n/

D 1

V
.n/
i

h
�	i.V.n/;� .nC1//CBii .V

.n/
i /2

i

i;k D LC1; : : : ;N: (A.4.14)

The following relations, implied by our discussions in this section, are the basis for
carrying out some deletions in the Jacobi matrix:

cos.�i ��k/	 1; jGik sin.�i ��k/j 
 Bik; (A.4.15)
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for all .i;k/ 2 A D
� . Accordingly, in relations (A.4.13) respectively (A.4.14), the

terms Gik sin.�i ��k/ are deleted and cos.�i ��k/ is replaced by 1.
Computer experimentation conducted over the course of developing this method

revealed that j	i j could be deleted as compared to BiiV 2
i .

We introduce some further notations. Let 
�.nC1/ � �.n/; then 
�1 D 0 holds;

V D V.nC1/� V.n/, implying
Vi D 0, i D 1; : : : ;L.

With our notations, following some deletions and rearrangements, the system of
linear equations corresponding to the Newton correction takes the following form:

V
.n/
i

NX

kD2
BikV

.n/

k 
�k D ˚i.V.n/;� .n//�Pi ; i D 2; : : : ;N; (A.4.16)

V
.n/
i

NX

kDLC1
Bik
Vk D 	i.Vn;� .nC1//�Qi; i D LC1; : : : ;N: (A.4.17)

We apply one more approximation; the values of voltage levels V .n/

k , k D 2; : : : ;N

in (A.4.16) are considered to be equal. This common value is 1 in the case of r.u.
scaling, described in Sect. A.2. If the other scaling is taken into account, the common
value is the voltage constant VSKAL. In this latter case the system of equations for
correction is as follows:

NX

kD2
Bik
�k D ˚i.V.n/;� .n//�Pi

V
.n/
i VSKAL

; i D 2; : : : ;N;

NX

kDLC1
Bik
Vk D 	i.V.n/;� .nC1//�Qi

V
.n/
i

; i D LC1; : : : ;N: (A.4.18)

The corresponding Newton steps will be as follows:

�.nC1/ D �.n/C
�; V.nC1/ D V.n/C
V: (A.4.19)

A great advantage of this method is that, during iterations, the matrices of the
system of linear equations in the calculations of the corrections are equal. Therefore,
if the Crout elimination is applied, it is sufficient to carry out triangularization
just once; in subsequent iterations the solution can be obtained by simple back
substitutions.

Let us now return to the discussion of the subject of power flow and transmission
losses. In the model for optimizing the daily schedule we will need in the case
of � -type branches the absolute value of power, i.e., the apparent power, flowing
out from node i onto the edge .i;k/, which is defined by the equality (A.4.1).
To emphasize the dependence on the voltages at the nodes, this power is denoted



A Transmission Network of Electric Power Systems 131

by Sik.vi ;vk;wi ;wk/. Disregarding the superscript in Eq. (A.4.1), the following
formula can be obtained from (A.4.1) for the square of the apparent power:

jSik.vi ;vk;wi ;wk/j2 D .v2i C w2i /Œ.vi � vk/
2C .wi � wk/

2�jYikj2; .i;k/ 2 A D
� :

(A.4.20)

Here the voltages were considered according to their real and imaginary parts, i.e.,
Cartesian coordinates were applied. This choice is motivated by the fact that in
the model for optimal daily scheduling the real and imaginary parts of the voltages
act as variables. In the final part of the appendix, we will retain this representation
throughout.

The following notations are introduced with respect to losses on the edges of the
network .N� ;A D

� /, defined by Eqs. (A.4.4):

S v
ik D P v

ik CjQv
ik; P v

ik; Q
v
ik are real; .i;k/ 2 A D

� : (A.4.21)

From this the following formula can be derived for the active power loss:

P v
ik DGikjUi �Ukj2: (A.4.22)

Because of the capacitive character of ˇ-type branches, it is obvious that there is no
active power loss along those edges.

Relation (A.4.22) was derived utilizing the � circuit as a substitute for transmis-
sion lines or transformers. A more accurate value can be obtained if the imaginary
current generated by the capacitance of the transmission line is added to the
imaginary part of the corresponding edge current, taking into account that the
vertical parts of � represent one half of the capacitive reactance of the edge. In
this way, an error is corrected that arises upon substitution by the � circuit and has
its origin within the � element. In the procedure for building the physical model
in Sect. A.2, the vertical parts of the � circuits, used to represent the transmission
lines and cables, were replaced by a single edge based on impedances connected in
parallel. For the previously described correction we need the original vertical parts.
Let Cik denote the capacity value attached to edge .i;k/ 2 A D

� in the equivalent
connection, considered in Sect. A.2. If the branch represents a transformer, then
let Cik D 0. Since the vertical parts of � represent one half of the capacity of

transmission lines or cables, the edge admittance attached to them is
1

2
j!Cik .

It is well known that the following formula holds for the active power loss [17]:

P v
ik DRikjIikj2: (A.4.23)

Therefore, to determine the loss, the complex edge current is needed. Applying
Ohm’s law gives

Iik D Ui �Uk
Rik CjXik

Cj
1

2
vi!Cik; .i;k/ 2 A D

� : (A.4.24)
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If in Eq. (A.4.24) the Cartesian coordinates of the voltages are chosen, the edge
current will be as follows:

IikD.vi � vk/Gik C .wi � wk/Bik Cj

	
.wi � wk/Gik � .vi � vk/Bik C 1

2
vi!Cik



:

(A.4.25)

From this the following relations can be deduced:

IPik D �Gik.vk � vi /�Bik.wk � wi /; (A.4.26)

IPki D �IPik ; (A.4.27)

I
Q

ik D Bik.vk � vi /�Gik.wk � wi /C 1

2
vi!Cik; (A.4.28)

I
Q

ki D �Bik.vk � vi /CGik.wk � wi /C 1

2
vk!Cik: (A.4.29)

By virtue of substitution in (A.4.23), the value of the corrected loss results:

P v
ik D 1

2
Rik

h
2.IPik/

2C .I
Q

ik /
2C .I

Q

ki /
2
i
: (A.4.30)

In the sequel, the active power loss arising on the branch .i;k/2 A D
� will be denoted

by P v
ik.vi ;vk;wi ;wk/ to emphasize its dependence on the voltage, for every branch

.i;k/ 2 A D
� .

Accordingly, the overall loss in the network will be denoted byP v.v;w/. Its value
is the sum of losses on the various edges

P v.v;w/D
X

.i;k/2AD
�

P v
ik.vi ;vk;wi ;wk/: (A.4.31)

Finally, some relations with respect to power flow are discussed. Let
Tik.vi ;vk;wi ;wk/ denote the active power flowing out from node i into the branch
.i;k/ 2 A D

� . It can be seen from Eq. (A.4.1) that its value is as follows:

Tik.vi ;vk;wi ;wk/DGikŒvi .vi � vk/C wi .wi � wk/�CBikŒwi vk � wkvi �: (A.4.32)

If the active power flowing out from the starting point onto the edge .i;k/ has been
determined, then utilizing this and the loss arising on this edge, the value of the
power flowing out from node k onto the edge can be determined. This power flowing
out from node k is denoted by Tki .vi ;vk;wi ;wk/. From the definition of the loss we
conclude that

Tki .vi ;vk;wi ;wk/D �Tik.vi ;vk;wi ;wk/CP v
ik.vi ;vk;wi ;wk/ (A.4.33)

holds.
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problem formulation, 119–124
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Standstill
costs, 17
period, 8, 11, 17

Stott’s method for solving power flow problem,
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Stott’s method for solving the power flow
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130–132
Transmission network

general features, 9–10
mathematical model, 111–119
physical description, 103–111

V
Variables, general model

mode of operation, 12–14
production level, 14–15
voltage, 15

Variables, simplified model
mode of operation, 59–61
production level, 61–63
voltage, 63

Voltage check periods, 57, 66, 67
Voltage space, 97
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