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Preface

This book is about how symmetric functions can be used in enumeration. The devel-
opment is entirely self-contained, including an extensive introduction to the ring of
symmetric functions. Many of the proofs are combinatorial and involve bijections or
sign-reversing involutions. There are numerous exercises with full solutions, many
of which highlight interesting mathematical gems.

The intended audience is graduate students and researchers in mathematics or
related subjects who are interested in counting methods, generating functions, or
symmetric functions. The mathematical prerequisites are relatively low; we assume
the readers possess a knowledge of elementary combinatorics and linear algebra.
We use the basic ideas of group theory and ring theory sparingly in the book, using
them mostly in Chapter 6.

Chapter 1 introduces fundamental combinatorial objects such as permutations
and integer partitions. Statistics on permutations and rearrangements are defined
and relationships between q-analogues of n, n!, and

(n
k

)
are given, as these are used

in later chapters. We also provide an introduction to generating functions. Much of
the material in this introductory chapter is classic.

Symmetric functions are introduced in Chapter 2. Our development emphasizes
the combinatorics of the transition matrices between bases of symmetric functions
in a way that cannot be found elsewhere. Readers may find this approach more
accessible than those in other books that discuss symmetric functions. This material
is essential to understanding the later chapters in the book; after all, this book is all
about how to use the relationships between symmetric functions to solve counting
problems.

One of the major ideas this book highlights is that ring homomorphisms ap-
plied to the ring of symmetric functions can be used to find interesting generating
functions. This is first applied in Chapter 3, where we use the background material
introduced in Chapters 1 and 2 to find an assortment of generating functions for
permutation statistics. We are able to count and refine permutations according to
restricted appearances of descents and prove a number of results about words.

v



vi Preface

In Chapter 4, the techniques introduced in Chapter 3 are extended to find gener-
ating functions for a variety of objects. The exponential formula and the generating
functions derived from linear recurrence equations can be found with the methods
introduced in Chapter 4.

The Robinson-Schensted-Knuth algorithm is presented in Chapter 5, an impor-
tant algorithm which needs to be included in any book on symmetric functions and
enumeration. Connections are made to increasing subsequences in permutations and
words and the Schur symmetric functions. A q-analogue of the celebrated hook
length formula is proved.

Symmetric functions are used to prove Pólya’s enumeration theorem in Chap-
ter 6, allowing us to count objects modulo symmetries. This is a standard topic in
many courses on combinatorics, but too often it is not made clear that Pólya’s enu-
meration theorem can be properly phrased using the language of symmetric func-
tions. We also give a new combinatorial proof of the Murnaghan-Nakayama rule
from the Pieri rules.

Chapters 7 and 8 are more specialized chapters than the others, and may appeal
to researchers in this area. In Chapter 7 we study consecutive pattern matches in
permutations, words, cycles, and alternating permutations. Chapter 8 introduces the
reciprocity method, an approach which can provide a way to define ring homomor-
phisms with desirable properties.

Most of the results and exercises found in Chapters 3, 4, 7, and 8 are appearing
in book form for the first time.

The chapter dependency chart for the text is as follows:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 7

Chapter 8

Chapter 5

Chapter 6

Anthony Mendes thanks Jeff Remmel for introducing him to some wonder-
ful mathematics and for working with him over the years. He thanks all students
who took Math 435 or Math 530 in the fall of 2014 at Cal Poly San Luis Obispo
for carefully reading a preliminary copy of this text. Thanks also go to the fol-
lowing people who pointed out at least one typographical error or suggested a
specific improvement to the text: Shelby Burnett, Maggie Conley, Saba Gerami,
Mike LaMartina, Amanda Lombard, Thomas Stienke, and Thomas J. Taylor. Most
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Jeff Remmel would like to thank Adriano Garsia, Domique Foata, and Ian Mac-
donald who introduced him to the theory of symmetric functions and enumerative
combinatorics. He also thanks the following Ph.D. students who helped him over
the years to develop parts of the theory presented in this book: Tamsen Whitehead,
Diseree Beck, Tom Langley, Jennifer Wagner, Tony Mendes, Amanda Riehl, Jeff
Liese, Evan Fuller, Andy Niedermaier, Andre Harmse, Miles Jones, Adrian Duane
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6.1 Pólya’s Enumeration Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.2 The Cycle Index Polynomial and Schur Functions . . . . . . . . . . . . . . . 196
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7 Consecutive Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.1 Nonoverlapping Consecutive Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.2 Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.3 The Minimal Overlapping Property . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.4 Minimal Overlapping Patterns in Cycles . . . . . . . . . . . . . . . . . . . . . . . 238
7.5 Minimal Overlapping Patterns in Words . . . . . . . . . . . . . . . . . . . . . . . . 240
7.6 Minimal Overlapping Patterns in Alternating Permutations . . . . . . . . 244
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

8 The Reciprocity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.1 The Reciprocity Method for Pattern Avoiding

Permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Transition Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



Chapter 1
Permutations, Partitions, and Power Series

Permutations, integer partitions, and power series are three fundamental topics that
are central to combinatorics. This chapter introduces these ideas, providing the
mathematical infrastructure for our future work.

1.1 Permutations and Rearrangements

The symmetric group Sn is the set of all bijections σ : {1, . . . ,n}→ {1, . . . ,n} under
the operation of composition. Elements of Sn will be called permutations of n. Per-
mutations have a wide variety of applications; they are essential in algebra, computer
science, and statistics.

There are at least three different ways to write a permutation σ ∈ Sn. First, if
σ(i) = σi for i = 1, . . . ,n, then we can write σ in two-line notation:

σ =
1 2 · · · n

σ1 σ2 · · · σn.

Second, a permutation can be written in one-line notation by only writing the second
row of the two rows in two-line notation: σ = σ1σ2 · · ·σn. Third, permutations can
be written in cyclic notation by letting

σ = (a1 a2 a3 · · · ak)(b1 b2 · · · b j) · · ·
represent the permutation which has a1 in position ak, a2 in position a1, a3 in posi-
tion a2, and so on.

For example, if σ ∈ S5 is defined by σ(1) = 2, σ(2) = 4, σ(3) = 5, σ(4) = 1,
and σ(5) = 3, then in two-line notation we have

σ =
1 2 3 4 5
2 4 5 1 3

,

in one-line notation we have σ = 2 4 5 1 3, and in cycle notation we have
σ = (1 2 4)(3 5).

© Springer International Publishing Switzerland 2015
A. Mendes, J. Remmel, Counting with Symmetric Functions, Developments
in Mathematics 43, DOI 10.1007/978-3-319-23618-6 1
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2 1 Permutations, Partitions, and Power Series

The main advantage of two-line notation is that the inverse function σ−1 can be
easily found by interchanging the rows of each of the pairs in two-line notation and
then sorting the pairs so that the top row reads 12 · · ·n. In the above example,

σ−1 =
1 2 3 4 5
4 1 5 2 3

.

A permutation statistic is a function mapping Sn into the nonnegative integers.
Four important examples of permutation statistics are the descent, excedance, inver-
sion, and major index statistics, denoted by des,exc, inv, and maj. For any permuta-
tion σ = σ1 · · ·σn ∈ Sn, we define these statistics by

des(σ) = (the number of indices i with σi > σi+1) ,

exc(σ) = (the number of indices i with σi > i) ,

inv(σ) = (the number of indices i and j with i < j and σi > σ j) , and

maj(σ) = (the sum of the indices i with σi > σi+1) .

These same definitions make sense if the permutation σ = σ1 · · ·σn is replaced with
any finite sequence of integers.

These four statistics on S3 are displayed below:

σ des(σ) exc(σ) inv(σ) maj(σ)

1 2 3 0 0 0 0
1 3 2 1 1 1 2
2 1 3 1 1 1 1
2 3 1 1 2 2 2
3 1 2 1 1 2 1
3 2 1 2 1 3 3

It is no accident that the first two and the last two columns of the table are equidis-
tributed, that is, they have the same number of 0s, 1s, 2s, and 3s.

One observation about inversions which will be used later in our work is that
inv(σ) = inv(σ−1) for all σ ∈ Sn. To see this, denote the inverse to σ = σ1 · · ·σn

as σ−1 = σ−1
1 · · ·σ−1

n in one-line notation. By considering our two-line notation
method of finding the inverse function, it can be seen that i < j and σi > σ j if and
only if σ−1

j < σ−1
i and j > i. This says that positions i and j cause an inversion in

σ if and only if the values σ−1
j and σ−1

i cause an inversion in σ−1.
Understanding the properties of these statistics, subsequent generalizations of

these statistics, and many new permutation statistics is still an active area of mathe-
matical research. In only the past few decades, beautiful combinatorial and bijective
proofs of classical and new results have been published. One of the first along these
lines proves that the inversion and major index statistics are equidistributed over
the symmetric group, a result of our Theorems 1.2 and 1.3.



1.1 Permutations and Rearrangements 3

Theorem 1.1. Descents and excedances are equidistributed over Sn.

Proof. We will define a bijection ϕ : Sn → Sn such that if σ = σ1 · · ·σn ∈ Sn has k
descents, then exc(ϕ(σ)) will also equal k.

Suppose σ j = 1. Erase the first j integers in σ and begin to construct ϕ(σ)
with the cycle (σ j · · ·σ2σ1). Continue this process iteratively with the next smallest
integer in what remains in σ , building up ϕ(σ) cycle by cycle. For example, if
σ = 9 3 1 6 8 2 7 4 5, then ϕ(σ) is the permutation (1 3 9)(2 8 6)(4 7)(5)
in cyclic notation. This construction does not break σ at a descent and writes
cycles in ϕ(σ) in such a way that if σi > σi+1 if and only if i < ϕ(σ)i. There-
fore des(σ) = exc(ϕ(σ)). ��

The q-analogue of 0 is [0]q = 0 and the q-analogue of the positive integer n is

[n]q = 1+q+ · · ·+qn−1 =
1−qn

1−q
,

where q is an indeterminate. The q-analogue of n is a generalization of n. After all,
by taking q= 1 (or, if we write [n]q = (1−qn)/(1−q), by taking the limit as q→ 1),
we recover n. However, we should refrain from thinking about q as a variable. The
indeterminate q is simply a device to track the operations performed on n. This q is
our bookkeeper.

The q-analogues of n! and the binomial coefficient
(n

k

)
can be defined in straight-

forward ways; we define [0]q! = 1 and for integers 0 ≤ k ≤ n we define

[n]q! = [n]q[n−1]q · · · [1]q and

[
n
k

]

q
=

[n]q!
[k]q![n− k]q!

.

Theorem 1.2. If n is a positive integer, then [n]q! = ∑
σ∈Sn

qinv(σ).

Proof. The statement is true for n = 1. We proceed by induction on n.
There are n places to insert the integer n into a permutation σ = σ1 · · ·σn−1 ∈

Sn−1 in order to create an element of Sn. We can insert n in the position immediately
preceding σi for each 1 ≤ i ≤ n−1 or we can insert n after σn−1. If we insert n in the
position immediately before σi, then we have introduced n− i new inversions into
the permutation. If we place the n at the end of σ , we introduce no new inversions.
The exponents on q in 1+ q1 + · · ·+ qn−1 correspond to the inversions caused by
the insertion of n. We now have that

∑
σ∈Sn

qinv(σ) =
(
1+q+ · · ·+qn−1) ∑

σ∈Sn−1

qinv(σ) = [n]q[n−1]q!.

Since [n]q! = [n]q[n−1]q!, this completes the proof. ��
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Theorem 1.3. If n is a positive integer, then [n]q! = ∑
σ∈Sn

qmaj(σ).

Proof. The statement is true for n = 1. We proceed by induction on n.
There are n places to insert the integer n into a permutation of σ ∈ Sn−1 in order

to create an element of Sn. Label these places with the integers 0, . . . ,n− 1 in the
following way:

1. Label the last place with 0.
2. Label the places falling between descents from right to left with 1, . . . ,des(σ).
3. Label the remaining places from left to right with des(σ)+1, . . . ,n−1.

For example, if σ = 1 8 7 5 3 6 2 4, then our labeling is

5 6 4 3 2 7 1 8 0

1 8 7 5 3 6 2 4

Let σ (i) denote the permutation of Sn that results from σ by inserting n into the
space labeled with an i. We claim that maj(σ (i)) = i+maj(σ) for all i.

Inserting the n in the last position does not change the major index, and so
maj(σ (0)) = maj(σ).

Next, suppose σ j > σ j+1 is a descent and the space between σ j and σ j+1 is
labeled with i. Then there are i−1 descents to the right of σ j+1 in σ . Before inserting
n, there was a contribution of j to maj(σ) arising from the descent at position j.
After inserting n, there is a rise at position j in σ (i), a descent at position j+1, and
each descent to right σ j will have shifted its position to the right, resulting in an
additional contribution of i to maj(σ (i)). Thus maj(σ (i)) = i+maj(σ).

Similarly, inserting n at the start of σ causes an increase to maj of 1 for the
new descent at position 1 and des(σ) accounting for the additional contribution of
each descent in σ to maj(σ (des(σ)+1)) and therefore maj(σ (des(σ)+1)) = des(σ)+
1+maj(σ).

Lastly, we consider how the major indices of σ (i) and σ (i+1) differ when i ≥
des(σ)+1. That is, suppose that i ≥ des(σ)+1 and the space before σ j is labeled
with i so that either j = 1 or σ j−1 < σ j. Assume that σ j > σ j+1 > · · ·> σk < σk+1

so that the space following σk is labeled with i+1. The situation is pictured here:

σ (i) = · · ·n > σ j > σ j+1 > · · ·> σk−1 > σk < σk+1 · · ·
σ (i+1) = · · ·σ j > σ j+1 > · · ·> σk−1 > σk < n > σk+1 · · ·

We claim that maj(σ (i+1)) = 1+maj(σ (i)). The contribution from the sequences
σ1 · · ·σ j−1 and σk+1 · · ·σn−1 to the major index is the same in both σ (i) and σ (i+1).
The contribution of the sequence n > σ j > σ j+1 > · · · > σk−1 > σk < σk+1 to
maj(σ (i)) is j + ( j + 1) + ( j + 2) + · · ·+ k while the contribution from the seq-
uence σ j > σ j+1 > · · · > σk−1 > σk < n > σk+1 to maj(σ (i+1)) is j + ( j + 1) +
· · ·+(k−1)+(k+1). Thus it follows that maj(σ (i+1)) = 1+maj(σ (i)) and, hence,
maj(σ (i+1)) = 1+ i+maj(σ (i)). By induction on i we have shown that maj(σ (i)) =
i+maj(σ) for all i.
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The exponents on q in 1+q1+ · · ·+qn−1 correspond to the increase to the major
index caused by the insertion of n. Thus, just like the situation for inversions,

∑
σ∈Sn

qmaj(σ) =
(
1+q+ · · ·+qn−1) ∑

σ∈Sn−1

qmaj(σ) = [n]q[n−1]q!.

Since [n]q! = [n]q[n−1]q!, this completes the proof. ��
Theorems 1.2 and 1.3 together imply that the inversion and major index permuta-

tion statistics are equidistributed. The proofs of these two theorems can be modified
to arrive at a bijective proof, that is, we can create a bijection ϕ : Sn → Sn such that
inv(σ) = maj(ϕ(σ)) for all σ ∈ Sn.

Create the permutation σ , starting with the permutation 1 ∈ S1, by inserting the
integers 2, . . . ,n into the previous permutation and keeping track of inversions along
the way. For example, if σ = 8 1 2 7 6 4 3 5, we have

To find ϕ(σ), build a permutation in Sn by using the labeling scheme in the proof
of Theorem 1.3 while forcing the major index statistic to be the same as the inversion
statistic at each step. In the example of σ = 8 1 2 7 6 4 3 5, we have

This shows that ϕ(8 1 2 7 6 4 3 5) = 4 1 7 6 2 3 8 5.
Let R(0k,1n−k) denote the set of all possible rearrangements of k 0s and n−k 1s.

The definitions of descent, excedance, inversions, and major index are still valid for
elements of R(0k,1n−k) as well as for permutations of n.
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Theorem 1.4. If 0 ≤ k ≤ n, then

[
n
k

]

q
= ∑

r∈R(0k,1n−k)

qinv(r).

Proof. Rewritten, the statement in this theorem is

[n]q! = [k]q![n− k]q!

⎛

⎝ ∑
r∈R(0k,1n−k)

qinv(r)

⎞

⎠ .

Using Theorem 1.2, this is equivalent to showing

(

∑
σ∈Sn

qinv(σ)

)

=

(

∑
α∈Sk

qinv(α)

)(

∑
β∈Sn−k

qinv(β )

)⎛

⎝ ∑
r∈R(0k,1n−k)

qinv(r)

⎞

⎠ .

This will be done bijectively by displaying a bijection ϕ : Sk × Sn−k × R(0k,
1n−k)→ Sn such that

inv(α)+ inv(β )+ inv(r) = inv(ϕ((α,β ,r)))

for all (α,β ,r) ∈ Sk ×Sn−k ×R(0n−k,1k).
Given (α,β ,r) ∈ Sk × Sn−k ×R(0n−k,1k), write down r. Write down α under-

neath the 0s in r. Add k to each integer in β and write down the result underneath
the 1s in r. Define ϕ((α,β ,r)) to be the permutation σ now written underneath r.
For example, when α = 3 1 2 4, β = 6 4 1 3 5 2, and r = 1 0 0 1 1 1 0 1 0 1, we
have

1 0 0 1 1 1 0 1 0 1
10 3 1 8 5 7 2 9 4 6

This process is reversible and therefore a bijection. The total number of inversions
is the correct number since the integers in α and the integers in β keep their relative
order and there are additional inversions in the resulting permutation every time a 1
appears before a 0 in r. ��

Theorem 1.4 implies
[n

k

]
q must be a polynomial in q for all n ≥ k, a fact which

does not immediately follow from the definition of the q-binomial coefficient.

Theorem 1.5. If 0 ≤ k ≤ n, then
[

n
k

]

q
= ∑

r∈R(0k,1n−k)

qmaj(r).

Proof. Theorem 1.4 allows us to prove this result by exhibiting a bijection ϕ :
R(0k,1n−k)→ R(0k,1n−k) such that maj(r) = inv(ϕ(r)) for all r ∈ R(0k,1n−k).

We first define a bijection Γ : R(0k,1n−k)→ R(0k,1n−k). If r ends with a 0, define
Γ (r) to be r with every consecutive substring of the form 1 · · ·10 changed to 01 · · ·1.
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If r ends with a 1, define Γ (r) to be r with every consecutive substring of the form
0 · · ·01 changed to 10 · · ·0. For example, Γ (1100010100) = 0110001010.

If r ends with a 0, then inv(Γ (r)) = inv(r)− (n− k) because changing 1 · · ·10
into 01 · · ·1 for all 1s in r decreases the number of inversions in r by 1 for each of
the n− k 1s in r. Similarly, if r ends with a 1, then inv(Γ (r)) = inv(r)+ k.

If r contains no 0s, then we define ϕ(r) = r. Otherwise, let w be r with the last
0 and all trailing 1’s deleted. This way r can be written as w01 · · ·1. For any rear-
rangement r ∈ R(0k,1n−k) we define ϕ(r) recursively by ϕ(r) = Γ (ϕ(w))01 · · ·1.
It can be checked that ϕ(10110100011) = 00111010011. By definition, ϕ(r) ends
with a 0 if and only if r ends with a 0.

The fact that ϕ is a bijection follows from the fact that Γ is a bijection. To com-
plete the proof, we will show that maj(r) = inv(ϕ(r)) by induction on the length
of r. Suppose we add a 0 to the end of r ∈ R(0k,1n−k). Then we have

inv(ϕ(r0)) = inv(Γ (ϕ(r))0)
= inv(Γ (ϕ(r)))+(n− k)

=

{
inv(ϕ(r))− (n− k)+(n− k) if ϕ(r) ends in 0,

inv(ϕ(r))+ k+(n− k) if ϕ(r) ends in 1.

Using the induction hypothesis and the fact that ϕ(r) ends in a 0 if and only if r
does, this is equal to {

maj(r) if r ends in 0,

maj(r)+n if r ends in 1.

In both cases, this is equal to maj(r0). We have shown that inv(ϕ(r0)) = maj(r0).
Now suppose we add a 1 onto the end of r. Since ϕ(r1) = Γ (ϕ(w))01 · · ·11 =

ϕ(r)1, we have

inv(ϕ(r1)) = inv(ϕ(r)1) = inv(ϕ(r)) = maj(r) = maj(r1).

This completes the proof. ��
Theorem 1.6. Let n and k be positive integers with k ≤ n and let q be a prime
number. Then

[n
k

]
q is equal to the number of k-dimensional vector subspaces of the

vector space of dimension n over the finite field with q elements.

Proof. We first find the number of ways of selecting k linearly independent vectors.
There are qn −1 choices for the first vector since we can freely select any of the qn

vectors in the vector space except for the zero vector. There are qn − q choices for
the second vector since we can select any of the qn −q vectors which are not linear
combinations of our first choice of vectors. Continuing this idea, there are

(qn −1)(qn −q) · · ·(qn −qk−1)

possible sets of k linearly independent vectors.
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This same counting argument implies that there are (qk−1)(qk−q) · · ·(qk−qk−1)
possible bases for a k-dimensional subspace. Every set of k linearly independent
vectors can serve as a basis for a k-dimensional subspace, so the total number of
k-dimensional subspaces is

(qn −1)(qn −q) · · ·(qn −qk−1)

(qk −1)(qk −q) · · ·(qk −qk−1)
=

(qn −1)(qn−1 −1) · · ·(qn−k+1 −1)
(qk −1)(qk−1 −1) · · ·(q−1)

=
[n]q[n−1]q · · · [n− k+1]q

[k]q[k−1]q · · · [1]q
=

[
n
k

]

q
,

as desired. ��

1.2 Integer Partitions and Tableaux

An integer partition of n, written λ � n, is a finite sequence of weakly decreasing
nonnegative integers. If λ = (λ1, . . . ,λk) � n with λk 	= 0, then we write |λ | = n,
�(λ ) = k, and max(λ ) = λ1. Below are all 7 integer partitions of 5:

(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1).

In this order, the lengths �(λ ) are 1,2,2,3,3,4,5 while the maximum parts are
5,4,3,3,2,2,1. Occasionally it may be convenient to denote λ as 1m1 2m2 3m3 · · ·
if λ has mi parts of size i. Using this notation, the integer partitions of 5 are

51, 1141, 2131, 1231, 1122, 1321, 15.

Integer partitions can be identified by the corresponding Young diagram; this is
a collection of left-justified rows of boxes where row i has λi boxes reading from
bottom to top. The Young diagrams for the integer partitions of 5 are

.

In many places Young diagrams are drawn with the largest row on top; in this way
the integer partition (5,3,2) would be drawn as

.
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The mathematics is indifferent to the manner in which Young diagrams are drawn,
and so the choice whether to draw them with maximum part on the bottom or on
the top is a matter of personal preference. We prefer drawing Young diagrams with
largest row on the bottom since it then appears as if the cells of the diagrams are
affected by gravity.

Integer partitions can be ordered by the reverse lexicographic order. We define
integer partitions λ ,μ � n to satisfy the relation λ ≤ μ if the largest part of λ is
greater than the largest part of μ . If the largest parts in λ and μ are the same,
then inductively consider the second largest parts of these partitions. The integer
partitions of 5 listed above are already written in increasing reverse lexicographic
order.

Theorem 1.7. The number of integer partitions λ � n with �(λ ) = k is equal to the
number of integer partitions λ � n with max(λ ) = k.

Proof. Take λ � n with �(λ ) = k. Interchange rows and columns in the Young dia-
gram of λ to create the integer partition λ ′. For instance,

becomes

and so if λ = (4,4,2,1), then λ ′ = (4,3,2,2). Pairing λ with λ ′ proves the result
bijectively. ��

The partition λ ′ in the proof of Theorem 1.7 is called the conjugate of λ .
The only known direct formula for the number of integer partitions of n is

∞

∑
k=1

√
k

π
√

2
∑

0<h<k
(h,k)=1

e
−2πinh

k +πi∑k−1
j=1

j
k

(
h j
k −

⌊
h j
k

⌋
− 1

2

)
d
dz

sinh

(
π
k

√
2
3

(
z− 1

24

)
)

√
z− 1

24

∣
∣
∣
∣
∣
∣
∣
∣
z=n

where (h,k) denotes the greatest common divisor of h and k. This formula is too
complicated for everyday use, but from it comes the fact that the number of integer
partitions of n is approximately equal to

1

4n
√

3
eπ
√

2n/3.

Information about the number of integer partitions of n can be encoded as an elegant
infinite product, as seen in our next theorem.

Theorem 1.8. Let p(n) be the number of integer partitions of n and z an indetermi-
nate. Then

∞

∑
n=0

p(n)zn =
∞

∏
i=1

1
1− zi .
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Proof. Expanding each term in the infinite product as a geometric series, we have

∞

∏
i=1

1
1− zi =

(
1

1− z

)(
1

1− z2

)(
1

1− z3

)
· · ·

=
(
1+ z+ z2 + · · ·)(1+(z2)+(z2)2 + · · ·)(1+(z3)+(z3)2 + · · ·) · · · .

Selecting one factor of (zi)mi between each pair of parentheses, each term in the
expansion of this product is of the form (z)m1(z2)m2(z3)m3 · · · . There is a 1–1 cor-
respondence between these terms and integer partitions written with the notation
1m1 2m2 3m3 · · · . The result follows since the size of this integer partition, namely
1m1 +2m2 +3m3 + · · · , matches the exponent of z in (z)m1(z2)m2(z3)m3 · · · . ��

There are numerous partition identities which can be found either bijectively, like
our proof of Theorem 1.7, or by manipulating expressions involving indeterminates,
like our proof of Theorem 1.8. Some may be found in the exercises.

Theorem 1.9. If 0 ≤ k ≤ n, then
[

n
k

]

q
= ∑

partitions λ with Young diagrams
fitting in an k× (n− k) rectangle

q|λ |.

Proof. Theorem 1.4 allows us to prove this result by exhibiting a bijection ϕ bet-
ween the partitions λ with a Young diagram fitting inside a k×(n−k) rectangle and
rearrangements r ∈ R(0k,1n−k) such that |λ |= inv(ϕ(λ )).

Following along the northeast edge of its Young diagram, each integer partition
λ can be interpreted as a path which travels south or east in unit steps, starts at
(0,n− k), and ends at (k,0). For example, the path created by the integer partition
(3,3,1,1), which fits inside a 4× 5 rectangle, is the path which starts at (0,4) and
then moves one unit east, south, south, east, east, south, south, east, east, ending
at (5,0).

Let ϕ(λ ) by the rearrangement created by writing a 0 for each south step and
a 1 for an east step in the path associated with λ . In this way, ϕ((3,3,1,1)) =
100110011. Each 1 in a rearrangement r corresponds to a column in the Young
diagram of λ with height equal to the number of 0s appearing after the 1 in r. This
implies that |λ |= inv(ϕ(λ )). ��

A mathematical abacus of length n is a depiction of a string with either beads or
empty places at positions 1, . . . ,n reading left to right. Below we display an abacus
of length 10 with beads at positions 2,3,4,6, and 9:
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Although mathematical abaci are nothing more than a fancy way of writing down
an element in R(0k,1n−k), we will see in future chapters that it can be convenient to
represent integer partitions using mathematical abaci.

Let b1, . . . ,bk be the beads on a mathematical abacus a reading left to right and
let empty(bi) denote the number of empty places to the left of bi. The mathematical
abacus a naturally corresponds to the integer partition

λa = (empty(bk),empty(bk−1), . . . ,empty(b1))

where we possibly allow parts of size 0 at the end of λa. Then λa can have at most k
parts of maximum size n− k. The bijection in Theorem 1.9, when integer partitions
are interpreted as mathematical abaci, tells us that

[
n
k

]

q
= ∑

abaci a of length n with k beads

qempty(b1)+···+empty(bk).

This gives us our fifth combinatorial interpretation for the q-binomial coefficient;
the other four are given in Theorems 1.4, 1.5, 1.6, and 1.9.

The cycle type of a permutation σ ∈ Sn is the integer partition found by writing
down lengths of the cycles in σ in decreasing order. For example, the cycle type of
the permutation σ = (1 2 3)(4)(5 6 7 8) is the integer partition (4,3,1).

Theorem 1.10. The number of σ ∈ Sn with cycle type λ = 1m1 2m2 · · · is n!/zλ ,
where, for an integer partition λ = 1m1 2m2 3m3 · · · , we define zλ to be the number
1m1 2m2 3m3 · · ·m1!m2!m3! · · · .
Proof. Take any permutation in Sn written in one-line notation and place parenthe-
ses around the integers as to create a permutation of cycle type λ = 1m1 2m2 · · · .
There are n! ways to do this. Any one of i cyclic rearrangements of a cycle of length
i leaves the permutation unchanged; divide by 1m1 2m2 · · · to account for this. Any
permutation of the mi cycles of length i will also not change the permutation; div-
ision by m1!m2! · · · will resolve this. Therefore the number of permutations with
cycle type λ is

n!
1m1 2m2 · · ·m1!m2! · · · =

n!
zλ

,

as desired. ��
A tableau is a filling of the cells of a Young diagram with positive integers. The

tableau is called column strict if these integers satisfy two restrictions:

1. The integers strictly increase when reading bottom to top within columns, and
2. the integers weakly increase when reading left to right within rows.

For example, all possible column strict tableaux of shape (4,2,1) and filled with the
integers 1,1,1,2,2,3,4 are
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1 1 1 4

2 2

3

1 1 1 3

2 2

4

1 1 1 2

2 4

3

1 1 1 2

2 3

4

We define CSλ to be the set of all possible tableaux of shape λ . Let Tc denote the
integer in the cell c of T ∈CSλ . The weight of T is defined to be

w(T ) = ∏
cells c in T

xTc .

The four column strict tableaux displayed above all have weight x3
1x2

2x3x4. The con-
tent of the tableau is the integer partition found by sorting the exponents on this
weight in nonincreasing order; for instance, all four column strict tableaux shown
above have content (3,2,1,1).

1.3 Generating Functions

Generating functions will enable us to answer the question “How many are there?”
when simple and direct formula may not exist. They provide such elegant and suc-
cinct answers to enumeration problems that, once understood, generating functions
often become a preferred way of counting.

Although we did not identify them at the time, q-analogues are generating func-
tions and we used generating functions in the proof of Theorem 1.8. Let z be an
indeterminate. The generating function for the sequence a0,a1, . . . is

a0 +a1z1 +a2z2 + · · ·=
∞

∑
n=0

anzn.

For example, the generating function for the sequence 1,3,5,7, . . . is

1+3z1 +5z2 +7z3 + · · ·=
∞

∑
n=0

(2n+1)zn

and the generating function for the sequence 1,1,1,1, . . . is

1+1z1 +1z2 +1z3 + · · ·=
∞

∑
n=0

zn.

Generating functions have been a standard tool to the combinatorialist since the
times of Euler and Laplace. They can be added, multiplied, differentiated, and inte-
grated, so they are more than just a special way to write down sequences. Once the
generating function for a sequence is known, properties such as averages, variances,
and asymptotics can often be easily understood.
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The generating function

a0z0 +a1z1 +a2z2 + · · ·=
∞

∑
n=0

anzn

for the sequence a0,a1, . . . is also known as a formal power series. The adjective
“formal” refers to the fact that we are not necessarily performing the operation of
addition. We are simply presenting the sequence a0,a1, . . . in a specific way, using
plus symbols to separate terms and using powers of z as placeholders.

The ring of formal power series, denoted R[[z]], is the set of all formal power
series in z representing sequences with entries in R. The ring of formal power series
will help us make precise the notions of addition, multiplication, and other opera-
tions on generating functions.

For each nonnegative integer j, define a function ·|z j from R[[z]] to R such that

∞

∑
n=0

anzn

∣
∣
∣
∣
∣
z j

= a j.

The element in R found by an application of ·|z j is the coefficient of z j. Two elements
in R[[z]] are equal provided the coefficients of z j in each formal power series are
equal for all j ≥ 0.

The sum of two formal power series is defined by
(

∞

∑
n=0

anzn

)

+

(
∞

∑
n=0

bnzn

)

=
∞

∑
n=0

(an +bn)z
n,

where the plus symbol on the right hand side of the equation denotes the sum of two
elements in R. The product of two formal power series is defined by

(
∞

∑
n=0

anzn

)(
∞

∑
n=0

bnzn

)

=
∞

∑
n=0

(a0bn +a1bn−1 + · · ·+an−1b1 +anb0)zn,

where the plus symbols and the adjacent elements on the right-hand side denote the
sum and product of elements in R.

Let 1 represent the formal power series 1+0z+0z2 + · · · . If
(

∞

∑
n=0

anzn

)(
∞

∑
n=0

bnzn

)

= 1,

then we say that ∑∞
n=0 bnzn is the reciprocal of ∑∞

n=0 anzn and write

∞

∑
n=0

bnzn =

(
∞

∑
n=0

anzn

)−1

=
1

∑∞
n=0 anzn .
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For example, the product of the two formal power series 1− z and 1+ z+ z2 + · · · is
equal to 1 and so

1+ z+ z2 + · · ·= (1− z)−1 =
1

1− z
.

If this formal power series is interpreted as a complex-valued function, only certain
values of z would make 1+ z+ z2 + · · · = 1/(1− z) true; namely, those values of z
with |z| < 1. However, since we are using generating functions to formally encode
the values of a sequence, we can be cavalier about such issues and simply state that
the generating function for 1,1,1, . . . is equal to 1/(1− z) without reference to a
radius of convergence. After all, we generally do not care about evaluating generat-
ing functions at any particular value of z. On the other hand, we do reserve the right
to interpret generating functions as functions of a complex variable when doing so
is beneficial.

The composition of ∑∞
n=0 anzn and ∑∞

m=1 bmzm is the formal power series

∞

∑
n=0

an

(
∞

∑
m=1

bmzm

)n

.

A potential problem in this definition arises if any coefficient in the above formal
power series is an infinite sum of elements in R. However, we have

∞

∑
n=0

an

(
∞

∑
m=1

bmzm

)n∣∣
∣
∣
∣
z j

=
∞

∑
n=0

an
(
b1z1 + · · ·+b jz

j)n

∣
∣
∣
∣
∣
z j

=
j

∑
n=0

an
(
b1z1 + · · ·+b jz

j)n

∣
∣
∣
∣
∣
z j

,

where in the last expression we are selecting the coefficient of z j in a finite sum. So,
by starting the inserted formal power series at the b1 term, we force the coefficient
of z j in the composition to be a finite sum of elements in R for all j ≥ 0. This shows
there are no problems with our definition of composition.

The derivative is a function d/dz(·) from R[[z]] to R[[z]] defined by

d
dz

(
∞

∑
n=0

anzn

)

=
∞

∑
n=0

(n+1)an+1zn,

where n+ 1 is the element 1+ · · ·+ 1 in R. The integral is a function
∫ ·dz from

R[[z]] to R[[z]] defined by

∫ (
∞

∑
n=0

anzn

)

dz =
∞

∑
n=1

an−1

n
zn

provided the multiplicative inverse of n exists in R for n ≥ 1. In our definition of
integration, the coefficient of z0 in the integral of any formal power series is taken



1.3 Generating Functions 15

to be 0. The derivative and integral for formal power series obey the usual differen-
tiation and integration laws, such as the product rule, chain rule, and integration by
parts.

As seen in Theorem 1.8, we may want to understand infinite products in the ring
of formal power series such as ∏∞

i=1 1/(1− zi). To make sense of such products, we
define the notion of convergence of formal power series.

If we are given formal power series f (i)(z) = ∑n≥0 f (i)n zn for i ≥ 1, then we say

lim
i→∞

f (i)(z) = f (z) = ∑
n≥0

fnzn

provided that for each n ≥ 0 there is an m such f (i)n = fn for all i ≥ m. Further, we
define

∞

∏
i=1

f (i)(z) = lim
n→∞

n

∏
i=1

f (i)(z) and
∞

∑
i=1

f (i)(z) = lim
n→∞

n

∑
i=1

f (i)(z).

For example, for any 0 ≤ k < n,

n

∏
i=1

1
1− zi

∣
∣
∣
∣
∣
zk

=
k

∏
i=1

1
1− zi

∣
∣
∣
∣
∣
zk

,

meaning that ∏∞
i=1 1/(1− zi) is well defined.

We also want to work over the ring of formal power series with infinitely many
variables, R[[x1,x2, . . .]]. To formally define such a ring, we establish some notation.
We say that a function γ : {1,2, . . .}→ {0,1,2, . . .} is a weak composition of n with
m parts if

1. γ(i) = γi = 0 for all i > m,
2. γm > 0, and
3. ∑m

i=1 γi = n.

In such a situation, we shall simply write γ = (γ1,γ2, . . . ,γm) with the understanding
that γi = 0 for i ≥ m. Let xγ = ∏m

i=1 xγi
i . With this notation, the 0s before the final

nonzero element count as parts for a weak composition.
We refer to elements of the form xγ as monomials and say that xγ has degree n if

γ is a weak composition of n.
For example, γ = (2,0,1,0,3) is a weak composition of 6 with 5 parts which

corresponds to the function γ(1) = 2, γ(2) = 0, γ(3) = 1, γ(4) = 0, γ(5) = 3, and
γ(i) = 0 for i > 5 and xγ = x2

1x0
2x1

3x0
4x3

5 = x2
1x3x3

5 is a monomial of degree 6.
We say that a function γ : {1,2, . . .}→ {0,1,2, . . .} is a composition of n with m

parts if

1. γ(i) = γi = 0 for all i > m,
2. γi > 0 for all i ≤ m, and
3. ∑m

i=1 γi = n.

Thus compositions are not allowed to have 0 parts. In this situation we write |γ |= n.
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For n ≥ 1, let WCn denote the set of all weak compositions of n, let WC0 = {0}
where 0 denotes the zero function, and let WC =

⋃
n≥0 WCn. Then we define

R[[x1,x2, . . .]] =

{

∑
γ∈WC

aγ xγ : aγ ∈ R

}

,

and for any n ≥ 1 we define

Rn[[x1,x2, . . .]] =

{

∑
γ∈WCn

aγ xγ : aγ ∈ R

}

.

The ring of formal power series R[[z]] can be recovered from R[[x1,x2, . . .]] by
setting x1 = z and 0 = x2 = x3 = · · · . Similarly, the ring of formal power series in
finitely many variables, denoted R[[x1, . . . ,xn]], can be defined by taking xi = 0 for
i ≥ n in the ring R[[x1,x2, . . . ]].

We can define infinite products and sums in R[[x1,x2, . . .]] in the same way we

did for R[[z]]. Let x = (x1,x2, . . .) and suppose that f (i)(x) = ∑γ∈WC f (i)γ xγ are formal
power series for i ≥ 1. We define

lim
i→∞

f (i)(x) = f (x) = ∑
γ∈WC

fγ xγ

if for each γ ∈WC there is an m such f (i)γ = fγ for all i ≥ m. Further, we define

∞

∏
i=1

f (i)(x) = lim
n→∞

n

∏
i=1

f (i)(x) and
∞

∑
i=1

f (i)(x) = lim
n→∞

n

∑
i=1

f (i)(x).

For example, with these definitions, ∏i≥1 1/(1−xit) is well defined in R[[t,x1, . . .]].
We will work in the subring BR[[x1,x2, . . .]] of R[[x1,x2, . . .]] which consists of

all those elements of f = ∑γ∈WC cγ xγ in R[[x1,x2, . . .]] such that there some m ≥ 0
such that cγ 	= 0 implies |γ | ≤ m. These are the elements f of R[[x1,x2, . . .]] such that
degrees of monomials that appear in F are bounded. It follows that

BR[[x1,x2, . . .]] =
⊕

n≥0

Rn[[x1,x2, . . .]].

A function ϕ : R → R′ is a ring homomorphism if ϕ(1) = 1 and ϕ(r1r2 + r3) =
ϕ(r1)ϕ(r2)+ϕ(r3) for all r1,r2,r3 ∈ R. Such a ring homomorphism ϕ may be ex-
tended to be a ring homomorphism ϕ : R[[z]]→ R′[[z]] by defining

ϕ

(
∞

∑
n=0

anzn

)

=
∞

∑
n=0

ϕ(an)z
n.

If the formal power series ∑∞
n=0 anzn and ∑∞

n=0 bnzn in R[[z]] are reciprocals of one
another, then

0 = ϕ(0) = ϕ

(
n

∑
m=0

ambn−m

)

=
n

∑
m=0

ϕ(am)ϕ(bn−m)
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for n ≥ 1. Therefore ϕ (∑∞
n=0 anzn) and ϕ (∑∞

n=0 bnzn) are reciprocals of one another;
in symbols,

ϕ

(
∞

∑
n=0

anzn

)−1

=

(
∞

∑
n=0

ϕ(an)z
n

)−1

.

Many of the results in this book involve using ring homomorphisms to find gen-
erating functions for interesting sequences, and so the fact that ring homomorphisms
interact nicely with operations on generating functions such as reciprocation will be
used frequently.

Although elements in R[[z]] are not defined to be functions of z, our definitions
for coefficient, sum, product, reciprocal, composition, and derivative are the same
definitions we could give for complex-valued functions. So, within an appropriate
radius of convergence, it is safe to interpret generating functions as actual functions.

We end this section by showing how interpreting a generating function as a
complex-valued function can help us understand the asymptotic growth of the
coefficients of the power series, an. We state and use a few theorems from com-
plex analysis, the proofs of which can be found in most textbooks on the subject.

Each series f (z) = ∑∞
n=0 anzn has a radius of convergence R, which is either a

nonnegative real number or ∞, such that the series converges for all |z| < R and
diverges for all |z|> R. Further, f (z) is differentiable at all values of z with |z|< R
and, provided R 	= ∞, there is an a with |a| = R such that f (z) is not differentiable
at a. This a is a singularity of f .

We can often identify the radius of convergence of the power series representa-
tion of f (z) by finding the singularity closest to 0. For example, consider

f (z) =
1

1−2sinz
.

Singularities occur when the denominator is zero, so the singularities of f (z) are at
π/6+2kπ and 5π/6+2kπ for all integers k. The singularity closest to 0 has mag-
nitude π/6, so this is the radius of convergence for the power series representation
of f (z).

Alternatively, the radius of convergence can be found using a limit supre-
mum. The limit supremum of a sequence of real numbers x0,x1, . . . , denoted
limsupn→∞ xn, is defined to be

limsup
n→∞

xn = lim
n→∞

(sup{xn,xn+1, . . .})

where sup{xn,xn+1, . . .} is either equal to the smallest real number larger than every
term in xn,xn+1, . . . or equal to ∞ if there is no real number larger than every term in
xn,xn+1, . . . . The root test from complex analysis says that the radius of convergence
R of f (z) = ∑∞

n=0 anzn satisfies

limsup
n→∞

|an|1/n =
1
R
,
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where 1/0 = ∞ and 1/∞ = 0 by convention. This statement gives us information
about the asymptotics, or the limiting behavior, of the sequence an. In particular, the
definition of limit superior gives that for every ε > 0 the inequality

|an|<
(

1
R
+ ε

)n

(1.1)

holds for large enough n. The radius of convergence R is the largest number for
which (1.1) holds for all ε > 0.

For example, again consider f (z) = 1/(1− 2sinz). Since the radius of conver-
gence is π/6, there are coefficients a0,a1, . . . such that the equality f (z) =∑∞

n=0 anzn

holds for all |z|< π/6. These coefficients satisfy

|an|<
(

6
π
+0.0001

)n

< (1.91)n

for large enough n. By identifying the radius of convergence we have found an
excellent bound on the growth of an.

We can often do much better than finding bounds. Continuing our example,
L’Hôpital’s rule gives

lim
z→π/6

(
z− π

6

)
f (z) = lim

z→π/6

z− π
6

1−2sinz
=

−1√
3
,

and so multiplying f (z) by
(
z− π

6

)
removes the singularity at π/6. This means

f (z) =
−1/

√
3

z−π/6
+g(z)

for some function g(z) which has the same singularities as f (z) except for π/6.
Since the power series expansion of the geometric series 1/(z−a) is −∑∞

n=0 zn/an+1,

g(z) = f (z)+
1/
√

3
z−π/6

=
∞

∑
n=0

anzn − 1√
3

∞

∑
n=0

(
6
π

)n+1

zn

=
∞

∑
n=0

(

an − 1√
3

(
6
π

)n+1
)

zn.

The radius of convergence of this series is 5π/6 because 5π/6 is the singularity of
g(z) closest to 0. Using (1.1),

∣
∣
∣
∣
∣
an − 1√

3

(
6
π

)n+1
∣
∣
∣
∣
∣
<

(
6

5π
+0.01

)n

< (0.40)n

for large enough n. We have found an outstanding approximation for an, namely
(6/π)n+1 /

√
3, without computing a single term in the sequence.
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More generally, let a be a singularity of f (z) = ∑∞
n=0 anzn which is closest to 0.

If a is the only singularity of f with magnitude |a| = R and if there is an integer k
for which

lim
z→a

(z−a)k f (z) = ck < ∞,

then there are constants c1, . . . ,ck−1 and a complex-valued function g(z) with radius
of convergence R′ > R such that

f (z) =
ck

(z−a)k + · · ·+ c1

(z−a)
+g(z).

Let bn be the coefficient of zn in the series expansion of ck
(z−a)k + · · ·+ c1

(z−a) ; an

explicit formula for bn can be found without too much trouble (see Exercises 1.19
and 1.20). Then we have

g(z) =
∞

∑
n=0

(an −bn)zn

and so (1.1) tells us

|an −bn|<
(

1
R′ + ε

)n

(1.2)

for some fixed ε > 0 and large enough n. This means bn is a good approximation
for an, especially if R′ is larger than 1. If more accurate approximations are wanted,
this process can be repeated on the function g to enlarge R′ even further.

Now that we have shown why it may be useful to permit generating functions to
be interpreted as complex-valued functions, we are ready to begin our foray into the
wonderful world of symmetric functions.

Exercises

1.1. Prove
[n

k

]
q =

[ n
n−k

]
q

bijectively.

1.2. Let n = k1 + · · ·+ k�. The q-multinomial coefficient
[ n

k1,...,k�

]
q

is [n]q!
[k1]q!···[k�]q! .

Show that
[

n
k1, . . . ,k�

]

q
= ∑

r∈R(1k1 ,...,�k� )

qinv(r),

where R(1k1 , . . . , �k�) denotes the set of rearrangements of k1 1s, k2 2s, etc.

1.3. A rim hook is a sequence of connected cells in the Young diagram of an integer
partition which begins in a cell on the northeast boundary and travels along the
northeast edge such that its removal leaves the Young diagram of a smaller integer
partition. For example, below we display a rim hook containing 6 cells:
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Let λa be the integer partition corresponding to the mathematical abacus a with
beads b1, . . . ,bk reading left to right. Show that moving bead bi to an empty position
j places to its left removes a rim hook with j cells from the Young diagram of λa.

In Exercises 1.4, 1.5, 1.6, and 1.7, prove the stated “q-analogued” version of a
well-known identity involving binomial coefficients. Do not prove these identities
by writing

[n
k

]
q as a fraction and manipulating powers of q; instead, use one of the

combinatorial interpretations given in Theorems 1.4, 1.5, 1.6, 1.9 or use mathemat-
ical abaci.

1.4. The q-Pascal identity:

[
n
k

]

q
= qk

[
n−1

k

]

q
+

[
n−1
k−1

]

q
.

1.5. The q-Cauchy identity: xn =
n

∑
k=0

[
n
k

]

q
(x−q0) · · ·(x−qk−1).

1.6. The q-binomial theorem: (1+ xq0) · · ·(1+ xqn−1) =
n

∑
k=0

q(
k
2)
[

n
k

]

q
xk.

1.7. The q-Vandermonde identity:

[
a+b

c

]

q
=

n

∑
k=0

q(a−k)(c−k)
[

a
k

]

q

[
b

c− k

]

q
.

1.8. By expanding them as infinite products, show that the generating function for
the number of integer partitions of n with distinct parts is equal to the generating
function for the number of integer partitions of n with only odd parts.

1.9. Prove the identity in Exercise 1.8 bijectively.

1.10. Show that the number of integer partitions of a− c with length b− 1 and no
parts larger than c is equal to the number of integer partitions of a− b with length
c−1 and no parts larger than b.

1.11. Show that the number of integer partitions with both odd and distinct parts
with no parts greater than 2n − 1 is equal to the number of integer partitions λ
which have a Young diagram which fits inside an n×n square and λ = λ ′.

1.12. Remove a staircase (an integer partition of the form (k,k−1, . . . ,2,1)) from a
Young diagram of an integer partition to show that

∞

∏
n=1

(1+ yzn) =
∞

∑
k=0

ykz(
k+1

2 )

(1− z)(1− z2) · · ·(1− zk)
.
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1.13. Show that for any integer k the coefficient of yk in

∞

∏
n=0

(1+ yzn)
∞

∏
m=1

(
1+ y−1zm)

is equal to zk(k−1)/2
∞

∏
n=1

1/(1− zn). This can be done by drawing a staircase next to

an integer partition of n. Slice this picture along a diagonal line in order to find to
two integer partitions with distinct parts.

1.14. From Exercise 1.13 deduce the Jacobi triple product identity:

∞

∑
k=−∞

ykzk2
=

∞

∏
n=1

(1− zn)
(
1+ yz2n−1)(1+ y−1z2n−1) .

1.15. A pentagonal number is an integer of the form (3k2 −k)/2 for some integer k.
Using Exercise 1.14, deduce Euler’s pentagonal number theorem:

∞

∏
n=1

(1− zn) =
∞

∑
k=−∞

(−1)kz(3k2−k)/2.

Then show that

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · · ,

where p(n) is the number of integer partitions of n and the integers 0,1,2,5,7,12, . . .
are the pentagonal numbers.

1.16. Prove Euler’s pentagonal number theorem (given in Exercise 1.15) using a
sign reversing involution on the set of integer partitions of n with distinct parts.

1.17. The Laplace transform is an integral transform used in a variety of science and
engineering applications. It is defined on real valued functions f (t) by

L { f (t)}= F(s) =
∫ ∞

0
f (t)e−st dt,

where s is positive real number. Show that L {tn}= n!/sn+1 for integers n.
Formally extending this definition, we define the Laplace transform on formal

power series by

L

{
∞

∑
n=0

antn

}

=
∞

∑
n=0

ann!/sn+1.

These two definitions coincide when all integrals and sums converge.
Show that if F(s) is the Laplace transform for the “exponential” generating func-

tion ∑∞
n=0 antn/n!, then F(1/s)/s is the “ordinary” generating function ∑∞

n=0 ansn.
This allows us to convert exponential generating functions into ordinary generating
functions or vice versa using the Laplace transform or its inverse.
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1.18. Let f (z) = ∑∞
n=0 anzn. How can f (z) be used to find a generating function for

∞

∑
n=0

a jnz jn

for a positive integer j?

1.19. For any complex number a and nonnegative integer n, define the generalized
binomial coefficient to be

(
a
n

)
=

a(a−1) · · ·(a−n+1)
n!

.

Newton’s generalized binomial theorem says that the power series for (1+ z)a is

(1+ z)a =
∞

∑
n=0

(
a
n

)
zn.

Prove this theorem by taking derivatives of (1+ z)a and evaluating them at z = 0.

1.20. Use Newton’s binomial theorem to show that for any positive integer i,

1
(1− z)i =

∞

∑
n=0

(
i+n−1

n

)
zn.

Then find an explicit formula for bn, the coefficient of zn in the series expansion of
ck

(z−a)k + · · ·+ c1
(z−a) . This bn approximates the coefficients an in (1.2).

Solutions

1.1 Using the interpretation of
[n

k

]
q given in Theorem 1.9, conjugate an integer

partition with a Young diagram which fits inside of an k× (n− k) rectangle to find
another integer partition of the same size with a Young diagram which fits inside of
a (n− k)× k rectangle.

1.2 Use the same ideas as in the proof of Theorem 1.4, define a bijection ϕ : Sk1 ×
·· ·×Sk� ×R(1k1 , . . . , �k�)→ Sn such that

inv(α1)+ · · ·+ inv(α�)+ inv(r) = inv(ϕ((α1, . . . ,α�,r)))

for all (α1, . . . ,α�,r) ∈ Sk1 ×·· ·×Sk� ×R(1k1 , . . . , �k�).
The bijection ϕ can be defined by starting with (α1, . . . ,α�,r). Write down r.

Underneath the is in r, write down αi where each integer in αi is increased by k1 +
· · ·+ki−1. We end up with a permutation in Sn with the correct number of inversions.
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1.3 Suppose bead bi passes over � beads when moving to its new position in the
empty place j places to its left. Then the number of empty spaces to the left of bead
bi is decreased by j− � and the number of empty spaces to the left of each of the �
skipped over beads is decreased by 1. In the corresponding integer partition

λa = (empty(bk), . . . ,empty(b1)) ,

this means that j− � is subtracted from part i and 1 is subtracted from the � parts
appearing after part i.

In terms of Young diagrams, cells in the shape of an “L” are removed from the
Young diagram of λa. For example, suppose we move the rightmost bead in the
mathematical abacus

9 places to its left; thereby creating the abacus

.

This corresponds to removing the shaded “L” shown below

.

Removing such an “L” shape is equivalent to removing a rim hook which begins
at the top of the “L,” traces a path along the northeast boundary of the Young dia-
gram, and ends at the bottom of the “L.” Therefore moving a bead bi to an empty
place j places to its left corresponds to removing the rim hook from the Young
diagram of λa which starts in row i reading bottom to top.

1.4 Although this proof uses rearrangements, the identity can be just as easily
proved using other combinatorial interpretations.

A rearrangement r ∈ R(0k,1n−k) can either begin with a 0 or a 1. If r begins with
a 0, then removing this 0 will decrease the number of 0s by 1 and will not change the
number of inversions in r. So the rearrangements which begin with a 0 correspond
to
[n−k

k−1

]
q
.

If r begins with a 1, then this 1 causes a total of k inversions. Rearrangements
which begin with a 1 correspond to qk

[n−k
k

]
. Since elements in R(0k,1n−k) must start

with either a 0 or a 1, the statement follows.

1.5 Let X be a vector space with a finite number of elements x and let Vn(q) be
a vector space of dimension n over the finite field with q elements for q prime.
Consider all linear maps L : Vn(q)→ X . A linear transformation is determined by its
action on the n basis vectors in a basis for Vn(q). There are x linearly independent
choices for each basis vector, so there are xn total linear maps L.
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Suppose the dimension of the null space of L is n − k. By Theorem 1.6 and
exercise 1.1, there are

[n
k

]
q =

[ n
n−k

]
q

possible choices for which subspace of Vn(q)

will serve as the null space. The remaining k basis vectors must be sent to k linearly
independent vectors; there are (x−q0) · · ·(x−qk−1) choices here.

Therefore

xn = (the number of linear maps L : Vn(q)→ X)

=
n

∑
k=0

(the number of L : Vn(q)→ X with null space of dimension n− k)

=
n

∑
k=0

[
n
k

]

q
(x−q0) · · ·(x−qk−1).

We have verified this polynomial identity true for primes q, and thus the identity
must hold for all q.

1.6 Let �i denote the number of 1s appearing to the left of the ith 0 in a rearrange-
ment r = r1 · · ·rn ∈ R(0k,1n−k). For example, if r = 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0,
then the sequence �1, . . . , �7 is equal to 0,1,3,4,4,4,8. From this definition, the ith

occurrence of 0 in r is the character in position �i +(i− 1), and so the sum of the
positions of the 0s in r is (�1 +0)+ · · ·+(�k +(k−1)).

The number of inversions in r is the number of times a 1 appears to the left of
a 0. Therefore we have

inv(r)+

(
k
2

)
= (�1 + · · ·+ �k)+(0+1+ · · ·+(k−1))

= 0χ(r1 = 0)+1χ(r2 = 0)+ · · ·+(n−1)χ(rn = 0),

where for any statement A, χ(A) is 1 if A is true and 0 if A is false.
To each term in the expansion of the product (1+ xq0) · · ·(1+ xqn−1) we can

associate a rearrangement r in this way: If 1 is selected from the (1+ xqi) term in
the product, write down 1. If qix is selected, write down 0. Therefore the coefficient
of xk in this product is equal to

∑
r=r1···rn∈R(0k,1n−k)

q0χ(r1=0)+1χ(r2=0)+···+(n−1)χ(rn=0),

which simplifies to

∑
r=r1···rn∈R(0k,1n−k)

qinv(r)+(k
2) = q(

k
2)
[

n
k

]

q

by Theorem 1.4, as needed.
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1.7 Consider an integer partition λ with a Young diagram which fits inside of a
c×(a+b−c) rectangle created by a lattice path from (0,c) to (a+b−c,0). Identify
the smallest value of k for which the Young diagram of λ contains (n− k)× (a− k)
rectangle. Here is an example of what such a rectangle might look like when a =
6,b = 16, and c = 7:

c− k

k

a− k b− (c− k)

The lattice path can be broken into two pieces: a path from (0,c) to (a−k,c−k)
and then a path from (a− k,c− k) to (a+ b− c,0). These two lattice paths corre-
spond to integer partitions which fit into a k× (a− k) and (c− k)× (b− (c− k))
rectangles. Since the area of the rectangle inside λ has (a−k)(c−k) cells, the iden-
tity follows; the right hand side sorts integer partitions according to k, keeping track
of the total number of cells as the exponent of q.

1.8 Using the same logic as the proof of Theorem 1.8, the generating function for
the number of integer partitions of n with distinct parts is

(1+ z)(1+ z2)(1+ z3) · · ·= 1− z2

1− z
1− z4

1− z2

1− z6

1− z3 · · ·

=
1

(1− z)(1− z3)(1− z5)
· · · .

This is the generating function for the number of integer partitions with only odd
parts.

1.9 Given λ = (λ1, . . . ,λ�) � n with distinct parts, write each λi as 2aidi where di is
an odd number. Then we have

n = λ1 + · · ·+λ�

= 2a1 d1 + · · ·+2ak dk

= (a sum of distinct powers of 2) ·1+(a sum of distinct powers of 2) ·3+ · · · ,

where we have grouped the terms according to their odd components. This corre-
sponds to an integer partition with only odd parts; the coefficient the odd number
d tells us how many times the integer partition should contain d. This process is
reversible since each integer has a unique base 2 representation.
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1.10 We prove this bijectively, starting with λ � (a− c) with �(λ ) = b− 1 where
no parts of λ are larger than c. Follow these three steps:

1. Add a row of c cells to the bottom to the Young diagram of λ .
2. Delete the first column.
3. Conjugate.

The result of these three reversible steps is the Young diagram of an integer partition
of a−b with length c−1 and no parts larger than b.

1.11 Take an integer partition with both odd and distinct parts with no parts greater
than 2n− 1 and bend each row of cells of length 2k− 1 in the Young diagram into
an “L” shape. Nesting these “L”s gives the Young diagram of an integer partition λ
such that λ fits inside of an n×n square and λ = λ ′. A picture:

1.12 The left-hand side of the equation is equal to

∞

∑
n=0

∑
λ � n has distinct parts

y�(λ )zn.

Since an integer partition λ in the above sum must have distinct parts, it must contain
a staircase of height �(λ ) = k. Remove this staircase and left justify the remaining
cells in the Young diagram; an example is below:

becomes

What remains must be an integer partition with ≤ k parts; these are in 1–1 correspon-
dence by conjugation with integer partitions with parts of size ≤ k. The generating
function for these integer partitions is

1
1− z

1
1− z2 · · ·

1
1− zk .

Sorting by the height of the removed staircase, which contains 1+2+ · · ·+k=
(k+1

2

)

cells, the generating function for the number of integer partitions with distinct parts
is therefore equal to

∞

∑
k=0

ykz(
k+1

2 )

(1− z)(1− z2) · · ·(1− zk)
.
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1.13 First assume that k is nonnegative. For the product zk(k−1)/2
∞

∏
n=1

1/(1− zn), we

place a staircase of k− 1 cells (we use the mirror image of the Young diagram for
the integer partition (k− 1,k− 2, . . . ,1) since 1+ · · ·+ k− 1 = k(k− 1)/2) next to
an integer partition of n, like the picture below which shows when k = 3:

Cut these cells along the diagonal line following the top of the staircase to form
two integer partitions. Let λ be the integer partition with Young diagram found by
left justifying the cells below the diagonal and let μ be the integer partition found
by conjugating and then left justifying the cells above the diagonal. The integer
partitions λ and μ which come from the above diagram are shown below:

These integer partitions λ and μ must have distinct parts. Furthermore, depend-
ing on whether the last step of the diagonal line is vertical or horizontal, �(λ )−�(μ)
is either k or k − 1. If �(λ )− �(μ) = k − 1, add a 0 part to λ in order to make
�(λ )− �(μ) = k.

If k is negative, then k(k− 1)/2 = |k|(|k|+ 1)/2, so place a staircase of k cells
next to an integer partition. Then, take μ to be the integer partition found below
the diagonal line and let λ be the conjugate of the integer partition found above the
diagonal line. We now have an ordered pair (λ ,μ) with �(λ )− �(μ) = k or k−1; if
the difference is k−1, then add a 0 part to λ to make the difference k.

We have shown the desired equality since the coefficient of yk in the product

∞

∏
n=0

(1+ yzn)
∞

∏
m=1

(
1+ y−1zm)

is equal to the number of pairs of integer partitions (λ ,μ) where λ can have a 0 part
and �(λ )− �(μ) = k.
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1.14 Sum the result in Exercise 1.13 over all possible integers k to find

∞

∑
k=−∞

ykzk(k−1)/2 =
∞

∏
n=1

(1− zn)
(
1+ yzn−1)(1+ y−1zn) .

Then find the result by taking “z” as “z2” and “y” as “yz.”

1.15 Take “z” as “z3/2” and “y” as “−z−1/2” in the Jacobi triple product identity to
find

∞

∑
k=−∞

(−1)kz(3k2−k)/2 =
∞

∏
n=1

(
1− z3n)(1− z3n−2)(1− z3n−1)=

∞

∏
n=1

(1− zn) .

Therefore we have

1 =

(
∞

∏
n=0

1
1− zn

)(
∞

∏
n=0

(1− zn)

)

=

(
∞

∑
n=0

p(n)zn

)(
∞

∑
n=0

(−1)kz(3k2−k)/2

)

.

Comparing coefficients of zn on both sides of the equality gives

0 = p(n)− p(n−1)− p(n−2)+ p(n−5)+ p(n−7)−·· · .

1.16 Since the product ∏∞
n=1(1− zn) is equal to

∑
λ has distinct parts

(−1)�(λ )z|λ |, (1.3)

we will consider integer partitions with distinct parts. The sign of such an integer
partition λ is defined to be (−1)�(λ ).

Given an integer partition λ with distinct parts, let top(λ ) be the number of cells
in the top row of the Young diagram of λ and let stair(λ ) be the number of cells in
the “staircase” which starts in the bottom right cell of the Young diagram of λ and
travels along a diagonal with slope −1. For example, we depict top(λ ) and stair(λ )
for λ = (8,7,6,4,3) below:

We define λ to be a fixed point under the involution ϕ if either

1. �(λ ) = k for some integer k, top(λ ) = k, and stair(λ ) = k, or
2. �(λ ) = k for some integer k, top(λ ) = k+1, and stair(λ ) = k.
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Otherwise, define ϕ in the following way: if top(λ )≤ stair(λ ), then ϕ(λ ) is the
integer partition found by removing the cells in the top section of the Young diagram
of λ and placing them alongside of the staircase. For example, we would change the
integer partition displayed above to this one:

If top(λ )> stair(λ ), then define ϕ(λ ) to be the integer partition which undoes the
above operation, that is, remove the cells in the staircase and place them on the top.

Unless λ is a fixed point, the sign of λ and ϕ(λ ) differs by −1. Therefore (1.3)
is equal to the signed sum over all possible fixed points of the involution ϕ(λ ). An
example of each of the two varieties of fixed points are shown below:

In the first case we count the number of cells in |λ | by looking at the staircase of
height k−1 next to the k× k square of cells. This gives

|λ |= k2 +

(
k
2

)
=

3k2 − k
2

.

In the second case, the staircase next to the k× (k+1) rectangle gives that

|λ |= k(k+1)+

(
k
2

)
=

3k2 + k
2

=
3(−k)2 − (−k)

2
.

These fixed points correspond to the pentagonal numbers, as desired.

1.17 We have

L {1}=
∫ ∞

0
e−st dt =

1
s

and, using integration by parts,

L {tn}=
∫ ∞

0
tne−st dt

= − tn

s
e−st

∣
∣
∣
∣

∞

0
+

n
s

∫ ∞

0
tn−1e−st dt

=
n
s
L {tn−1}

for all positive integers n. The statement L {tn}= n!/sn+1 follows by induction.
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The Laplace transform of the exponential generating function ∑∞
n=0 antn/n! is

F(s) =L

{
∞

∑
n=0

an

n!
tn

}

=
∞

∑
n=0

an
1

sn+1 ,

and so F(1/s)/s = ∑∞
n=0 ansn, as desired.

1.18 Let ζ = e2πi/ j be a primitive jth root of unity. Then

f (ζ z)+ · · ·+ f (ζ jz)
j

=
1
j

∞

∑
n=0

an
ζ n + · · ·+ζ n j

j
zn.

Since ζ n + · · ·+ζ n j is equal to j if j divides n and 0 otherwise, this sum is equal to
∑∞

n=0 an jzn j, as desired.

1.19 If f (z) = (1+ z)a, then the nth derivative f (n)(z) = a(a− 1) · · ·(a− n+ 1)
(1+ z)a−n. Evaluating at 0 gives f (n)(0) = a(a−1) · · ·(a−n+1). Since the power
series for a function f (z) is given by

f (z) =
∞

∑
n=0

f (n)(0)
n!

zn,

we have now proved Newton’s binomial theorem.

1.20 Newton’s binomial theorem gives

(1− z)−i =
∞

∑
n=0

(−i)(−i−1) · · ·(−i−n+1)
n!

(−z)n

=
∞

∑
n=0

i(i+1) · · ·(i+n−1)
n!

zn

=
∞

∑
n=0

(
i+n−1

n

)
zn,

as desired. This says that the coefficient of zn in ci/(z−a)i = (−1)icia−i/(1− z/a)i

is equal to ci(−1)i
(i+n−1

n

)
/an+i and therefore

bn = (−1)k ck

an+k

(
k+n−1

n

)
+ · · ·+(−1)1 c1

an+1

(
1+n−1

n

)
.

Notes

A delightful text introducing generating functions and their uses is Wilf’s Generat-
ingfunctionology [117]. Stanley’s Enumerative Combinatorics [109] is an excellent
text which introduces generating functions and permutation statistics. These two
books deserve to be read by every student of combinatorics.
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The systematic study of the permutation statistics des, exc, inv, and maj was
begun by MacMahon [83]. He proved that des and exc where equidistributed over
permutations and des and exc where equidistributed over permutations. The first
bijective proofs of these fact was given by Foata. Our proof of the fact that des and
exc are equidistributed over Sn can be found in [43]. The proof of Theorem 1.3
and the subsequent bijection is due to Carlitz [18]. The proof of Theorem 1.5 is a
modification of a proof by Foata [44].

Those interested in integer partitions are referred to Andrew’s The Theory of
Integer Partitions [4] and Wilf’s notes Lectures and Integer Partitions which can be
found on his Web site. For instance, Andrew’s book includes a proof of the direct
formula for the number of integer partitions we display on our page 9, due to Hardy
and Ramanujan. The interpretation of integer partitions as abaci can be found in
Loehr’s Bijective Combinatorics [81].



Chapter 2
Symmetric Functions

This chapter provides a lean but solid introduction to symmetric functions. All of
the theory needed for our later chapters is carefully introduced while simultaneously
giving the reader a firm hook on which to hang future studies. Our method is novel
in that we emphasize the combinatorics of transition matrices and most of our proofs
are combinatorial.

The subject is vast and an attempt to create an encyclopedic account would
distract from our focus of using symmetric functions to solve enumeration problems.
Therefore we have made heartbreaking choices on what topics to include or not in-
clude in this chapter, although we admit to succumbing a few interesting digressions
which are not strictly needed in our development.

2.1 Standard Bases for Symmetric Functions

Let x1,x2, . . . be an infinite collection of indeterminates and, just as introduced in
Section 1.3, let BQ[[x1,x2, . . . ]] be the subring of Q[[x1,x2, . . . ]] containing those
monomials with bounded degree. Given a permutation σ = σ1 . . .σN ∈ SN and
P(x1,x2, . . .) ∈ BQ[[x1,x2, . . .]], we define

σP(x1,x2, . . .xN ,xN+1,xN+2, . . .) = P(xσ1 ,xσ2 , . . .xσN ,xN+1,xN+2, . . .).

We say that P(x1,x2, . . .) is a symmetric function if for all N ≥ 1 and all σ ∈ SN ,

σP(x1,x2, . . .) = P(x1,x2, . . .).

Thus P(x1,x2, . . .) is a symmetric function if it is invariant under all finite permuta-
tions of the variables x1,x2, . . ..

© Springer International Publishing Switzerland 2015
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in Mathematics 43, DOI 10.1007/978-3-319-23618-6 2
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We define Λ(x1,x2, . . .) to be the set of all symmetric functions in BQ[[x1,x2, . . .]].
Since the sum and the product of any two symmetric functions are again symmetric
functions, it follows that Λ(x1,x2, . . .) is a ring. Further, we let

Λn(x1,x2, . . .) = Λ(x1,x2, . . .)∩BQn[[x1,x2, . . .]]

and we will refer to Λn(x1,x2, . . .) as the vector space of symmetric functions
of degree n. Our definitions ensure that we can write any symmetric function
P(x1,x2, . . .) in the form

P(x1,x2, . . .) =
N

∑
n=0

Pn(x1,x2, . . .),

where Pn(x1,x2, . . .) ∈ Λn[[x1,x2, . . .]] for all n by breaking P(x1,x2, . . .) into its
degree n components. In symbols, this means

Λ(x1,x2, . . .) =
∞⊕

n=0

Λn(x1,x2, . . .).

By taking xi = 0 for all i ≥ N +1, the ring of symmetric functions Λ(x1,x2, . . .)
specializes to the polynomial ring Λ(x1, . . . ,xN). In this situation, an element f ∈
Λ(x1, . . . ,xN) is called a symmetric polynomial in the variables x1, . . . ,xN with co-
efficients in Q. This means that for all permutations σ = σ1 · · ·σN ∈ SN ,

f (x1, . . . ,xN) = f (xσ1 , . . . ,xσN ).

For example, one symmetric polynomial in the variables x1,x2, and x3 is

2x1 +2x2 +2x3 − x1x2 − x1x3 − x2x3 +4x1x2x3.

There are six standard bases for Λn: the monomial symmetric functions, the
elementary symmetric functions, homogeneous symmetric functions, power sym-
metric functions, the Schur symmetric functions, and the forgotten symmetric func-
tions. The main objective of this book is to exploit the relationships between these
bases in order to solve counting problems.

The Monomial Symmetric Functions

If γ = (γ1, . . . ,γN) is a weak composition of n, then we let λ (γ) the partition found
by sorting γ in weakly decreasing order. For example, if γ = (2,0,3,1,0,1,0,0,4),
then λ (γ) = (4,3,2,1,1).

Let λ = (λ1, . . . ,λ�) be an integer partition of n. The monomial symmetric
function mλ = mλ (x1,x2, . . .) is defined to be
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mλ = ∑
γ∈WCn,λ (γ)=λ

xγ .

Put differently, mλ is the sum of all the monomials whose exponents can be rear-
ranged to give the partition λ . For example, the monomial symmetric polynomial
m(2,1)(x1,x2,x3) is

m(2,1)(x1,x2,x3) = x2
1x1

2 + x2
1x1

3 + x1
1x2

2 + x2
2x1

3 + x1
1x2

3 + x1
2x2

3.

Theorem 2.1. The set {mλ : λ � n} is a basis for Λn.

Proof. If α and β are two weak compositions of n such that λ (α) = λ (β ) = λ ,
then α and β are rearrangements of one another. Thus the coefficients of xα and
xβ in any given symmetric function P(x1,x2, . . .) are the same. This implies that we
can write P(x1,x2, . . .) in the form

P(x1,x2, . . .) = ∑
λ�n

cλ mλ

for constants cλ , implying that {mλ : λ � n} spans Λ(x1,x2, . . .).
Since mλ and mμ have no monomials in common if λ 	= μ , the set {mλ : λ � n}

is an independent set, thereby showing the theorem true. ��
Theorem 2.1 tells us that the dimension of Λn(x1,x2, . . .) is p(n), the number of

partitions of n.

The Elementary, Homogeneous, and Power
Symmetric Functions

The nth elementary symmetric function en is defined using a generating function.
Let E(z) denote the generating function for the sequence e0,e1,e2, . . . . Define en by

E(z) =
∞

∑
n=0

enzn =
∞

∏
i=1

(1+ xiz) = (1+ x1z)(1+ x2z) · · · .

For example, if 0 = x4 = x5 = · · · , the generating function E(z) becomes

(1+ x1z)(1+ x2z)(1+ x3z)

= 1+(x1 + x2 + x3)z+(x1x2 + x1x3 + x2x3)z
2 + x1x2x3z3

and so the first few elementary symmetric polynomials in three variables are e0 = 1,
e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, and e3 = x1x2x3. In general, we can
employ similar logic as found in the proof of Theorem 1.8 to conclude each variable
xi can appear at most once in a given monomial in en. In other words, the elementary
symmetric function en is the sum of all square-free monomials of degree n—this
means that each monomial in en is not divisible by x2

i for any xi. The symmetric
function en is also equal to m(1n).
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The elementary symmetric function en can be expressed as a sum of column strict
tableaux of shape 1n. We have

en = ∑
T∈CS(1n)

w(T ).

For example, the terms in the symmetric polynomial

e3(x1,x2,x3,x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

are the weights of the following column strict tableaux of shape 13 which are filled
with integers no larger than 4:

1

2

3

1

2

4

1

3

4

2

3

4

For any integer partition λ = (λ1, . . . ,λ�) � n, we define eλ = eλ1
· · ·eλ� . The

fundamental theorem of symmetric functions says that the set {eλ : λ � n} is a basis
for Λn; this is our forthcoming Theorem 2.17.

The nth homogeneous symmetric function hn is defined in a similar manner as en.
Letting H(z) denote the generating function for hn, we define

H(z) =
∞

∑
n=0

hnzn =
∞

∏
i=1

1
1− xiz

.

For example, if we take 0 = x4 = x5 = · · · , then H(z) becomes
(

1
1− x1z

)(
1

1− x2z

)(
1

1− x3z

)

= (1+ x1z+ x2
1z2 + · · ·)(1+ x2z+ x2

2z2 + · · ·)(1+ x3z+ x2
3z2 + · · ·)

= 1+(x1 + x2 + x3)z
1 +(x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3)z
2 + · · ·

and so the first few homogeneous symmetric polynomials in three variables are
h0 = 1, h1 = x1 + x2 + x3, and h2 = x2

1 + x2
2 + x2

3 + x1x2 + x1x3 + x2x3. In general, by
writing each term in the infinite product as a geometric series and expanding, we see
that hn contains all possible degree n monomials, each with leading coefficient 1. In
other words,

hn = ∑
λ�n

mλ .

The homogeneous symmetric function hn can be expressed as a sum of column
strict tableaux of shape n; we have

hn = ∑
T∈CS(n)

w(T ).
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For example, the terms in the symmetric polynomial

h2(x1,x2,x3) = x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3

are the weights of the following column strict tableaux of shape 2 which are filled
with integers no larger than 3:

1 1 2 2 3 3 1 2 1 3 2 3

For any integer partition λ = (λ1, . . . ,λ�) � n, we define hλ = hλ1
· · ·hλ� . The set

{hλ : λ � n} is a basis for Λn; this is our Corollary 2.20.
The nth power symmetric function pn is defined to be

pn(x1,x2,x3, . . .) = xn
1 + xn

2 + xn
3 + · · ·

and so pn = m(n). The power symmetric function pn can be expressed as a weighted
sum of tableaux if we require that every integer in a tableau of shape (n) be the
same. Just like the elementary and homogeneous symmetric functions, we define
pλ = pλ1

· · · pλ� for any integer partition λ = (λ1, . . . ,λ�) � n. We will show that
{pλ : λ � n} is a basis for Λn in Corollary 2.24.

The Schur Symmetric Functions

The most important basis for Λn with respect to its relationship to other areas of
mathematics is the Schur symmetric functions—they are crucial in understanding
the representation theory of the symmetric group. Given an integer partition λ � n,
we define the Schur symmetric function sλ by

sλ = ∑
T∈CSλ

w(T ).

For example, all possible column strict tableaux of shape (2,1) which are filled with
integers less than or equal to 3 are

1 2

3

1 3

2

1 1

2

1 1

3

1 2

2

1 3

3

2 2

3

2 3

3

and so

s(2,1)(x1,x2,x3) = 2x1x2x3 + x2
1x2 + x2

1x3 + x1x2
2 + x1x2

3 + x2
2x3 + x2x2

3.

From this definition it may not be clear that the Schur symmetric function is even a
symmetric function, much less a basis for Λn.
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Theorem 2.2. For any λ � n, the Schur symmetric function sλ is an element of Λn.

Proof. Every element in Sn is a product of adjacent transpositions, that is, every
element in Sn is the product of permutations of the form (i i+1), so it is enough to
show that sλ (x1,x2, . . .) is unchanged under the action of switching xi and xi+1 for
all positive integers i. This means that we need to show that for every column strict
tableau with k occurrences of i and j occurrences of i+1, there is a corresponding
column strict tableau of the same shape with j occurrences of i and k occurrences
of i+1.

Take T ∈CSλ . The appearances of i in relationship to the appearances of i+1 in
T must look something like the appearances of the 3s and 4s below:

3 3 3 3 3 3 3 4 4

3 3 3 4 4 4

3 3 4 4 4 4

Each row in T may have a sequence of is followed by a sequence of (i+1)s. Rows
are aligned so that an i cannot appear atop another i in the row below.

Suppose a given row of T contains a sequence of k is followed by j (i+1)s such
that none of these is or (i+1)s are immediately above or below cells containing an
i or i+ 1. Change this row of T so that it now contains j is followed by k (i+ 1)s.
Make this change for every row of T to create the column strict tableau T ′. For
example, changing the 3s and 4s in the cells displayed above produces:

3 3 3 3 4 4 4 4 4

3 3 3 3 4 4

3 4 4 4 4 4

The new column strict tableau has the same shape as before with the number of is
and (i+1)s switched, as needed. ��

We end this section by using Vandermonde determinants to provide an alternative
definition of the Schur symmetric function in the case where there are finitely many
variables x1, . . . ,xN .

Given an integer partition λ � n where n ≤ N, write λ as (λ1, . . . ,λN) so that
λ has N parts (the last parts of λ can be 0). We define Δλ (x1, . . . ,xN) to be the

determinant of the matrix with i, j entry equal to x
λ j+N− j
i . For example,

Δ(3,1,0,0)(x1,x2,x3,x4) =

∣
∣
∣
∣
∣
∣
∣
∣

x3+3
1 x1+2

1 x0+1
1 x0+0

1
x3+3

2 x1+2
2 x0+1

2 x0+0
2

x3+3
3 x1+2

3 x0+1
3 x0+0

3
x3+3

4 x1+2
4 x0+1

4 x0+0
4

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣

x6
1 x3

1 x1 1
x6

2 x3
2 x2 1

x6
3 x3

3 x3 1
x6

4 x3
4 x4 1

∣
∣
∣
∣
∣
∣
∣
∣

.
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Using the expansion of the determinant of a matrix as a signed sum over the sym-
metric group Sn, we have

Δλ (x1, . . . ,xN) = ∑
σ=σ1···σN∈SN

sign(σ)xλ1+N−1
σ1 xλ2+N−2

σ2 · · ·xλN+0
σN ,

where sign(σ) is the sign of the permutation σ . This implies that Δλ is a polynomial
in x1, . . . ,xN . Theorem 2.3 says that the polynomial Δ(0,...,0)(x1, . . . ,xN), known as
the Vandermonde determinant, factors nicely.

Theorem 2.3. We have Δ(0,...,0)(x1, . . . ,xN) = ∏
1≤i< j≤N

(xi − x j).

Proof. Switching xi and x j interchanges two rows in the determinant

Δ(0,...,0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

xN−1
1 xN−2

1 · · · 1
xN−1

2 xN−2
2 · · · 1

...
xN−1

N xN−2
N · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

which has the net effect of changing the sign of Δ(0,...,0) by a factor of −1. This
implies that Δ(0,...,0)(x1, . . . ,xN) is divisible by (xi − x j) for every i < j.

More generally, this shows ∏1≤i< j≤N(xi − x j) divides Δ(0,...,0). Since these two
polynomials are sums of monomials of degree (N − 1) + (N − 2) + · · ·+ 0, they
must be equal up to some constant factor. By considering the main diagonal of the
determinant, the coefficient of xN−1

1 xN−2
2 · · ·x0

N is 1 in both the determinant and the
product, so this constant factor is 1. ��

Slight modifications of the proof of Theorem 2.3 show that Δ(0,...,0)(x1, . . . ,xN)
divides Δλ (x1, . . . ,xN) for all λ � n. Furthermore, since switching xi and x j changes
Δλ (x1, . . . ,xN) by a factor of −1, Δλ (x1, . . . ,xN)/Δ(0,...,0)(x1, . . . ,xN) is a symmetric
polynomial. For example,

Δ(2,1,0)(x1,x2,x3)

Δ(0,0,0)(x1,x2,x3)
=

∣
∣
∣
∣
∣
∣

x4
1 x2

1 1
x4

2 x2
2 1

x4
3 x2

3 1

∣
∣
∣
∣
∣
∣

(x1 − x2)(x1 − x3)(x2 − x3)

which, when expanded and simplified, is equal to

2x1x2x3 + x2
1x2 + x2

1x3 + x1x2
2 + x1x2

3 + x2
2x3 + x2x2

3.

Theorem 2.4 explains why this calculation gives the Schur symmetric polynomial
s(2,1)(x1,x2,x3).
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Theorem 2.4. For any λ � n ≤ N, we have
Δλ (x1, . . . ,xN)

Δ(0,...,0)(x1, . . . ,xN)
= sλ (x1, . . . ,xN).

Proof. Expanding the determinant Δλ (x1, . . . ,xN) as a sum over permutations in SN

and using Theorem 2.3, the identity in the statement of the theorem is the same as

∏
1≤i< j≤N

1
xi − x j

∑
σ=σ1···σN∈SN

sign(σ)xλ1+N−1
σ1 xλ2+N−2

σ2 · · ·xλN+0
σN = ∑

T∈CSλ

w(T ).

Multiply both sides of this equation by xN
1 xN−1

2 · · ·x1
N . With this term, we factor out

the first term in each of the parentheses in ∏i< j 1/(xi − x j) and use xN−1
1 xN−2

2 · · ·x0
N

to turn this product into ∏i< j 1/(1 − x j/xi). The remaining x1 · · ·xN is used to
increase each exponent in the sum on the left by 1. Our equation becomes

∏
1≤i< j≤N

1
1− xi

x j

∑
σ∈SN

sign(σ)xλ1+N
σ1 xλ2+N−1

σ2 · · ·xλN+1
σN = xN

1 xN−1
2 · · ·x1

N ∑
T∈CSλ

w(T ).

(2.1)
We will prove this formulation of the identity with a sign reversing involution.

Looking at the left-hand side of this equality, we begin by constructing combina-
torial objects in the following manner:

1. Affix an additional N− j+1 cells to the left of the jth row of the Young diagram
of λ , counting rows from bottom to top.

2. Select a permutation σ = σ1 · · ·σN ∈ SN and write σ vertically to the right of the
Young diagram, reading bottom to top.

3. Starting from the bottom, place the integer σi into each cell in row i of our
picture.

For example, if λ = (3,1,0,0), the choice of σ = 2 1 4 3 gives

2 2 2 2 2 2 2

1 1 1 1

4 4

3

2

1

4

3

by following steps 1, 2, and 3. These three steps account for the sum on the left-hand
side of (2.1). To account for the product

∏
i< j

1

1− x j
xi

= ∏
i< j

(
1+

(
x j
xi

)
+
(

x j
xi

)2
+
(

x j
xi

)3
+ · · ·

)
,

we finish creating our combinatorial in step 4:

4. In each row i, change any number of σis to an integer larger than σi. If every σi is
changed, select any number of integers larger than σi to write down to the left of
row i. Arrange the integers in each row so as to form a nondecreasing sequence.
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For example, we can choose to change the above object into the one below:

2 2 2 2 3 3 4

2 2 2 3 3 3 3 3 3 3

4 4

4 4 4 4 4

2

1

4

3

We define the sign of such an object T to be sign(σ) and we define the weight of
the object to be
(

xthe number of 1’s in T
1

xthe number of integers not in a cell in row σ1
1

)

· · ·
(

xthe number of n’s in T
n

xthe number of integers not in a cell in row σn
n

)
.

For instance, the sign of the object displayed above is sign(2 1 4 3) = +1 and the
weight is x−6

1 x7
2x5

3x9
4. By construction, the signed, weighted sum over all possible

objects T is equal to the left-hand side of (2.1).
Let T be an object under consideration. We now describe how to create a new

object ϕ(T ) with the same weight as T but with opposite sign. Starting from the
most north cell in the most east column, scan the columns of T from top to bottom,
moving right to left, looking for the first violation of column strictness. In the sample
object displayed above, this violation occurs at the place where a 3 appears above
another 3.

If T has no violations of column strictness, define ϕ(T ) = T . Otherwise, let c be
this first violating cell—this means the integer in c is not greater than the integer
in the cell immediately below c. Define ϕ(T ) to be T with c and every cell in the
same row and to the left of c switched with the cell kitty-corner to its south west.
Additionally, if c is in the ith row, switch the positions of σi and σi−1 in σ . Below
we show the image of the object T displayed above together with added diagonal
lines to help the reader more readily identify how cells have been changed:

2 2 2 3 3 3 3 3 3 3 3 3 4

2 2 2 2

4 4

4 4 4 4 4

1

2

4

3

Since integers increase within rows, the integer in c is switched with a cell con-
taining an integer no greater than the integer in c. Therefore the first violating cell
in ϕ(T ) must be in the same position as the first violating cell in T , that is, ϕ is an
involution. Introducing the transposition (σi,σi+1) changes the sign of σ by a factor
of −1 and, since the integers both inside and outside of the cells in T and ϕ(T )
are the same, the weights of T and ϕ(T ) are also the same. In conclusion, ϕ is an
involution which is weight preserving and, unless T is a fixed point, sign reversing.
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The fixed points under the involution ϕ must look something like below:

1 1 1 1 1 1 3

2 2 2 3

3 3

4

1

2

3

4

There can be no violations of column strictness and so the column immediately to
the left of the Young diagram of shape λ must contain the integers 1, . . . ,n reading
bottom to top. Therefore every fixed point must have σ equal to 1 2 · · · n, every
integer to the left of the Young diagram in row i containing i, and there cannot be
any integers appearing outside of a cell.

These fixed points correspond to column strict tableaux of shape λ with an
additional weight of xN

1 xN−1
2 · · ·x1

N coming from the cells to the left of the tableau;
in other words, we have found the right-hand side of equation (2.1). ��

2.2 Relationships Between Bases for Symmetric Functions

Our first relationship between symmetric functions, Theorem 2.5, follows immedi-
ately from our definitions of en and hn. However, although simple, we will reap an
incredible amount of information about generating functions for permutation statis-
tics from Theorem 2.5.

Theorem 2.5. The generating functions E(z) and H(z) for the elementary and
homogeneous symmetric polynomials satisfy H(z) = 1/E(−z).

Proof. By definition, H(z) =
∞

∏
i=1

1
1− xiz

=
1

∏∞
i=1(1+ xi(−z))

= 1/E(−z). ��

Rewriting Theorem 2.5 as 1 = H(z)E(−z), we find

1 =
∞

∑
n=0

(
n

∑
i=0

(−1)ieihn−i

)

zn.

Comparing coefficients of zn shows that ∑n
i=0(−1)ieihn−i is equal to 0 for all n ≥ 1.

In following the philosophy of providing simple combinatorial proofs whenever rea-
sonable, we will prove this fact with a sign reversing involution on pairs of column
strict tableaux.

Proof (A second proof of Theorem 2.5). Consider ordered pairs (S,T ) where S
is a column strict tableau of shape 1i and T a column strict tableau of shape
(n− i) for some i ≤ n. Define the sign of (S,T ) to be (−1)i and the weight to be
w(S)w(T ). Then the signed, weighted sum over all possible pairs (S,T ) is equal to
∑n

i=0(−1)ieihn−i.
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If the topmost integer in S is not smaller than the rightmost in T , move this integer
from S to T . Otherwise, move the rightmost integer in T to the top of S. An example:

1

2

4

6

, 1 1 4 4

1

2

4
, 1 1 4 4 6

This process is the desired sign reversing involution. ��
The next theorem nicely illustrates a common theme in our work: after a theorem

is proved combinatorially (that is, proved with a bijection or a sign reversing invo-
lution), we can usually modify the proof to arrive at new, related results.

Theorem 2.6. For k ≥ 1 and n ≥ 1, ∑n−1
i=0 (−1)ieis(1k,n−i) = (−1)n−1en+k.

Proof. The left hand side of this equation is the signed, weighted sum over all pairs
of the form (S,T ) where S is a column strict tableau of shape 1i, T is a column
strict tableau of shape (1k,n− i) with n− i ≥ 1, the sign is (−1)i, and the weight
is w(S)w(T ). Apply the same sign reversing and weight preserving involution as in
the second proof of Theorem 2.5: if the topmost integer in S is not smaller than the
rightmost in T , move this integer from S to T . Otherwise, undo this operation.

Since we require that n− i≥ 1, there are fixed points which cannot be changed by
this involution. Such a fixed point (S,T ) must have the topmost integer in S smaller
than the single element on the bottom row of T . For example, one fixed point when
k = 3 and n = 5 is

1

3

4

5

,

6

7

8

9

Since the sign of such a fixed point is (−1)n−1, the weighted sum over all fixed
points (S,T ) corresponds to (−1)n−1en+k; this can be seen by affixing T atop S. ��
Corollary 2.7. For k ≥ 1,

∞

∑
n=1

s(1k,n)z
n+k =

∑∞
n=k+1(−1)n−k−1enzn

E(−z)
.

Proof. Multiplying both sides of this equation by E(−z) = ∑∞
n=0(−1)nenzn and

expanding, we find this statement:

∞

∑
n=1

(
n−1

∑
i=0

(−1)ieis(1k,n−i)

)

zn+k =
∞

∑
n=k+1

(−1)n−k−1enzn.

The result follows by replacing the inner summand on the left-hand side with
(−1)n−k−1en+k as allowed by Theorem 2.6 and reindexing. ��
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Simple bijections and involutions can give relationships between the elementary,
homogeneous, and power symmetric functions, as we show in Theorems 2.8 and 2.9.
These two theorems are commonly attributed to Isaac Newton or Albert Girard.

Theorem 2.8. For n ≥ 1, ∑n−1
i=0 hi pn−i = nhn.

Proof. The right-hand side corresponds to the weighted sum over all column strict
tableaux of shape n where one of the n cells is shaded. Define a bijection on such
objects in this way: if a cell c containing i is marked, remove c and all of the cells
right of c that also contain i to create two-column strict tableau. This process is
depicted below:

1 1 2 2 2 2 4 5 1 1 2 4 5 , 2 2 2

The result is a pair (S,T ) where S is a column strict tableau of shape i and T is
a column strict tableau of shape n − i where every cell in T contains the same
integer. The weighted sum over all such pairs corresponds to the left-hand side of
the equation. ��
Theorem 2.9. For n ≥ 1, ∑n−1

i=0 (−1)iei pn−i = (−1)n−1nen.

Proof. The left-hand side corresponds to the signed and weighted sum over all pairs
of the form (S,T ) where S is a column strict tableau of shape 1i, T is a column strict
tableau of shape n− i where every cell in T contains the same integer, the sign of
(S,T ) is (−1)i, and the weight is w(S)w(T ).

Define a weight preserving and sign reversing involution on such pairs (S,T ) in
the following way. If the integer in T also appears in S, move that integer from S
to T . If the integer in T does not appear in S and T contains more than one cell,
then move one cell from T to S. Otherwise, declare (S,T ) to be a fixed point. This
operation is displayed below:

1

2

4

5

, 2 2 2

1

4

5
, 2 2 2 2

The fixed points (S,T ) under this operation have sign (−1)n−1, have only one cell
in T , and the integer in that cell does not appear in S. If we place the single cell in T
into S and shade it gray, these fixed points correspond to (−1)n−1nen since there are
nen ways to form a column strict tableau of shape 1n with one cell shaded gray. ��
Corollary 2.10. We have

∞

∑
n=1

pnzn =
∑∞

n=1(−1)n−1nenzn

E(−z)
.
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Proof. Multiplying both sides of this equation by E(−z) = ∑∞
n=0(−1)nenzn and

expanding, we find this statement:

∞

∑
n=1

(
n−1

∑
i=0

(−1)iei pn−i

)

zn =
∞

∑
n=1

(−1)n−1nenzn.

This follows immediately by replacing the inner summand on the left-hand side with
(−1)n−1en as allowed by Theorem 2.9. ��
Theorem 2.11. For n ≥ 1, ∑λ�n n!pλ/zλ = n!hn.

Proof. Write a permutation σ ∈ Sn above the cells of a standard tableau of shape n.
The weighted sum over all possible objects is equal to n!hn.

Suppose that the largest integer inside a cell in an object T is i. Locate the largest
integer in σ atop an i in T , say σ j. Cut the σ j cell and all cells to the right off of
T , creating two objects. Repeat this procedure on the remaining portion of T until
there are no more cuts to be made. For example, if the object T is shown below,

8 1 5 2 6 10 11 4 12 3 7 9

1 1 1 1 2 2 2 3 3 3 3 3

then we would change T into

8 1 5 2 6 10 11 4 12 3 7 9

1 1 1 1 2 2 2 3 3 3 3 3

Even if many components which result from these cuts were rearranged, the process
could be reversed in order to reconstruct T .

The integers on the top of the object created by cutting T can be considered a
permutation of n written in cyclic notation. If the cycle type of this permutation
is the integer partition λ = (λ1, . . . ,λ�), then each part λi corresponds to a column
strict tableau of shape (λi) where every integer is the same. Since Theorem 1.10
gives that the number of permutations with cycle type λ is n!/zλ , these objects are
counted by ∑λ�n n!pλ/zλ . ��
Theorem 2.12. For n ≥ 1, ∑λ�n(−1)n−�(λ )n!pλ/zλ = n!en.

Proof. Take a permutation σ ∈ Sn written in cyclic notation and, underneath each
cycle of length λi, write a column strict tableau of shape (λi) where each cell con-
tains the same integer. If σ has cycle type λ , then we define the sign of such an
object to be (−1)n−�(λ ). The signed, weighed sum over all such objects is equal to
the left-hand side of the equation.

Momentarily ignoring the sign of an object T , apply the inverse to the bijection
found in the proof of Theorem 2.11. We will now define a sign reversing involution
in order to cancel any terms with a sign of −1.

If no two integers appearing in the cells of T are the same, define T as a fixed
point. Otherwise, scan the cells of T from left to right looking for the first occurrence
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of two consecutive cells containing the same integer, say i. When this happens, find
the largest two integers in the permutation σ which appear above an i and switch
them. As an example, our involution pairs these objects:

5 1 2 3 6 4 8 9 7

1 1 1 2 2 4 4 4 5

2 1 5 3 6 4 8 9 7

1 1 1 2 2 4 4 4 5

This is a sign reversing involution because we have introduced exactly one trans-
position into the permutation σ . Fixed points correspond to a permutation atop a
column strict tableau of shape (n) where no two cells contain the same integer.
These fixed points, which have sign (−1)n−n = 1, naturally correspond to n!en. ��

We end this section by showing that some of these relationships between sym-
metric functions can be rephrased in terms of matrix determinants.

Theorem 2.13. For all n ≥ 1,

en =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

h1 h2 h3 · · · hn

1 h1 h2 · · · hn−1

0 1 h1 · · · hn−2
...

...
...

...
0 0 0 · · · h1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Proof. The assertion is true when n = 1 because e1 = h1. We proceed by induction.
Removing the ith row and last column of the n×n determinant leaves a determi-

nant of the form ∣
∣
∣
∣
A B
0 C

∣
∣
∣
∣ .

where A is an (i−1)× (i−1) matrix of the same form as the original n×n matrix,
B is an (i− 1)× (n− i) matrix, 0 is the (i− 1)× (n− i) zero matrix, and C is an
(n− i)×(n− i) upper triangular matrix with 1s along the diagonal. By the induction
hypothesis, the determinant of this matrix is ei−1.

Expanding the determinant of the original n×n matrix along the last column, we
find

n−1

∑
i=0

(−1)n+i−1hn−iei = en +(−1)n−1
n

∑
i=0

(−1)ieihn−i

which, by theorem 2.5, is equal to en. ��
Theorem 2.14. For all n ≥ 1,

pn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

e1 1 0 · · · 0
2e2 e1 1 · · · 0
3e3 e2 e1 · · · 0

...
...

...
...

nen en−1 en−2 · · · e1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Proof. The assertion is true when n = 1 because p1 = e1. We proceed by induction.
Removing the ith column and last row of the n×n determinant leaves a determi-

nant of the form ∣
∣
∣
∣
A 0
B C

∣
∣
∣
∣ .

where A is an (i−1)× (i−1) matrix of the same form as the original n×n matrix,
0 is the (i− 1)× (n− i) zero matrix, B is an (n− i)× (i− 1) matrix, and C is an
(n− i)×(n− i) lower triangular matrix with 1s along the diagonal. By the induction
hypothesis, the determinant of this matrix is pi−1.

Expanding the determinant of the original n×n matrix along the last row, we find

(−1)n−1nen p0 −
n−1

∑
i=1

(−1)iei pn−i = (−1)n−1nen −
n−1

∑
i=0

(−1)iei pn−i + pn

which, by Theorem 2.9, is equal to pn. ��

2.3 Transition Matrices

Let {aλ : λ � n} and {bλ : λ � n} be two bases for Λn. There is a p(n)× p(n) change
of basis matrix A with entries indexed by partitions λ and μ such that

aμ = ∑
λ�n

Aλ ,μ bλ , (2.2)

where Aλ ,μ is the λ ,μ entry of A. The matrix A is the a-to-b transition matrix.
Let λ (1), . . . ,λ (p(n)) be the integer partitions of n listed in the reverse lexico-

graphic order, say, and take f ∈ Λn. Since {aλ : λ � n} and {bλ : λ � n} are bases,
there are constants cλ (1) , . . . ,cλ (p(n)) and dλ (1) , . . . ,dλ (p(n)) such that

f = cλ (1)aλ (1) + · · ·+ cλ (p(n))aλ (p(n))

= dλ (1)bλ (1) + · · ·+dλ (p(n))bλ (p(n)) .

Using standard matrix notation, equation (2.2) is equivalent to

⎡

⎢
⎣

Aλ (1),λ (1) · · · Aλ (1),λ (p(n))

...
. . .

...
Aλ (p(n)),λ (1) · · · Aλ (p(n)),λ (p(n))

⎤

⎥
⎦

⎡

⎢
⎣

cλ (1)

...
cλ (p(n))

⎤

⎥
⎦=

⎡

⎢
⎣

dλ (1)

...
dλ (p(n))

⎤

⎥
⎦ .

Thus multiplying by the a-to-b transition matrix A allows us to take a symmetric
function f expressed in terms of the a basis and write f in terms of the b basis.

This section is devoted to providing combinatorial interpretations for the entries
of the transition matrices between various symmetric functions.
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We do not have to use infinitely many variables to find such transition matrices.
To see this, notice that for the monomial symmetric function mλ (x1,x2, . . . ,xN) to
be nonzero, it must be the case that N ≥ n—otherwise there may not be enough
variables to create a monomial with the needed exponents. Thus {mλ (x1, . . . ,xN) :
λ � n} is a basis for Λn(x1, . . . ,xN).

This means that the a-to-m transition matrix A is the same in Λn(x1, . . . ,xN) as
it is in Λn(x1,x2, . . .). If the b-to-m transition matrix is B, then it follows that the
a-to-b transition matrix is B−1A. Since A and B are the same in Λn(x1, . . . ,xN) and
Λn(x1,x2, . . .), the a-to-b transition matrix is also the same in Λn(x1, . . . ,xN) and
Λn(x1,x2, . . .). Thus when we are studying the transition matrices between bases of
Λn(x1,x2, . . .), it is enough to only consider symmetric polynomials in N variables
x1,x2, . . . ,xN for some N ≥ n.

The s-to-m Transition Matrix

If we let Kλ ,μ equal the number of column strict tableau of shape λ and content μ ,
then definition of the Schur symmetric function says that the coefficient of mλ in sμ
is Kμ ,λ . This coefficient is called a Kostka number.

The Kostka matrix is the square matrix indexed by integer partitions of n writ-
ten in reverse lexicographic order with λ ,μ entry equal to Kμ ,λ . For example, the
Kostka matrix with rows indexed by λ (the content) and columns indexed by μ
(the shape) when n = 4 is

⎡

⎢
⎢
⎢
⎢
⎣

(4) (3,1) (22) (2,12) (14)

(4) 1 0 0 0 0
(3,1) 1 1 0 0 0
(22) 1 1 1 0 0
(2,12) 1 2 1 1 0
(14) 1 3 2 3 1

⎤

⎥
⎥
⎥
⎥
⎦
.

The (2,12),(3,1) entry is 2 because there are two-column strict tableau of shape
(3,1) and type (2,12):

1 1 2

3

1 1 3

2

The Kostka matrix is the s-to-m transition matrix, or the change of basis matrix,
which turns a linear combination of Schur functions into a linear combination of
monomial symmetric functions by matrix multiplication. In other words, the co-
efficient of mλ in a1s(4) + a2s(3,1) + a3s(22) + a4s(2,12) + a5s(14) can be found by
performing the matrix multiplication
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⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 2 1 1 0
1 3 2 3 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

a1

a2

a3

a4

a5

⎤

⎥
⎥
⎥
⎥
⎦
.

Theorem 2.15. The set {sλ : λ � n} is a basis for Λn.

Proof. If λ < μ in the reverse lexicographic order, then the first part in which λ and
μ disagree is larger in λ than in μ . In this case there are no column strict Young
tableau of shape μ and type λ . Further, Kλ ,λ = 1 for all λ � n. This tells us that
the Kostka matrix is invertible because it is lower triangular with ones along the
diagonal. Since {mλ : λ � n} is a basis for Λn, so is {sλ : λ � n}. ��

The e-to-m Transition Matrix

Given integer partitions λ = (λ1, . . . ,λ�) and μ = (μ1, . . . ,μk), let Z2Mλ ,μ be the
number of �× k matrices with entries either 0 or 1 such that the sum of the ith

row is λi and the sum of the jth column is μ j. For example, if λ = (3,2,1) and
μ = (2,2,2), then one possible matrix is

⎡

⎣
1 1 1
0 1 1
1 0 0

⎤

⎦

because the row sums are λ and the column sums are μ .

Theorem 2.16. The coefficient of mλ in eμ is Z2Mλ ,μ .

Proof. Given λ � n, we will count the number of ways we can form the monomial
xλ1

1 · · ·xλk
k by multiplying out eμ = eμ1 · · ·eμ�

by organizing our work into a table
where rows are indexed by x1, . . . ,xk and columns are indexed by eμ1 , . . . ,eμ�

. Place
a 1 in the xi row and eμ j column entry of the table if the monomial selected from eμ j

to contribute to a final product contains xi and place a 0 in the table otherwise.
For example, when λ = (32,2,12) and μ = (32,22), one possible table is

⎡

⎢
⎢
⎢
⎢
⎣

e3 e3 e2 e2

x1 1 1 0 1
x2 1 1 1 0
x3 0 1 0 1
x4 0 0 1 0
x5 1 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
.
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This table corresponds to the terms in each parenthesis in

e(32,22)(x1,x2, . . .) = (x1x2x3 + x1x2x4 + · · ·)2(x1x2 + x1x3 + · · ·)2

which are selected to form the monomial x3
1x3

2x2
3x1

4x1
5.

The number of ways to form such a table is the coefficient of mλ in eμ . Each
table is an element in Z2Mλ ,μ and so the theorem is proved. ��

Theorem 2.16 gives a combinatorial interpretation for the entries in the e-to-m
transition matrix. This matrix in the case n = 4 is shown below:

⎡

⎢
⎢
⎢
⎢
⎣

(4) (3,1) (22) (2,12) (14)

(4) 0 0 0 0 1
(3,1) 0 0 0 1 4
(22) 0 0 1 2 6
(2,12) 0 1 2 5 12
(14) 1 4 6 12 24

⎤

⎥
⎥
⎥
⎥
⎦
.

This is a symmetric matrix because the number of matrices with row sum λ and
column sum μ is the same as the number of matrices with column sum λ and row
sum μ by transposition.

The next theorem is known as the fundamental theorem of symmetric functions.

Theorem 2.17. The set {eλ : λ � n} is a basis for Λn.

Proof. The only possible 0-1 matrix with row sum λ and column sum λ ′ is the
matrix with the upside-down Young diagram of λ displayed in 1s in the matrix. For
instance, the only 0-1 matrix with row sum (4,2,1) and column sum (3,2,1,1) is

⎡

⎣
1 1 1 1
1 1 0 0
1 0 0 0

⎤

⎦

The same argument will show that if λ ′ < μ ′, then there are no possible 0-1
matrices with row sum μ and column sum λ ′ because there are not enough parts in
μ to account for the first part of λ . Therefore a reordering of the rows and columns of
the e-to-m transition matrix results in a triangular matrix with 1s along the diagonal.
This transition matrix is therefore invertible, implying that {eλ : λ � n} is a basis
for Λn. ��

The h-to-e and e-to-h transition matrices

Let Bλ ,μ be the set of all possible Young diagrams of μ where the rows of μ are
partitioned into “bricks” of lengths giving the integer partition λ . The four T ∈ Bλ ,μ
when λ = (4,2,2,1,1) and μ = (5,3,2) are here:
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These elements in Bλ ,μ are called brick tabloids of content λ and shape μ .

Theorem 2.18. The coefficient of eλ in hμ is (−1)n−�(λ ) ∣∣Bλ ,μ
∣
∣. In other words,

hμ = ∑
λ�n

(−1)n−�(λ ) ∣∣Bλ ,μ
∣
∣eλ .

Proof. The right-hand side of this identity can be interpreted combinatorially. Use
the summand and the

∣
∣Bλ ,μ

∣
∣ term to select a brick tabloid of content λ and shape

μ for some λ � n. Using the eλ term, fill each brick with a decreasing sequence of
distinct positive integers. Define the weight of such a brick tabloid to be the usual
weight of a tableau. Finally, define the sign of such an object to be (−1)n−�(λ ) (this
power is the total number of cells in brick tabloid plus the number of bricks in the
tabloid). The signed sum over all such combinatorial objects is equal to the right-
hand side of the identity in the statement of the theorem.

For example, one such combinatorial object created in this way is shown below:

4 5 3 2 1

3 1
2 4 3

The weight of this object is x2
1x2

2x3
3x2

4x5 and the sign is (−1)10−5.
Let B be the set of combinatorial objects created in this way. We now define

a sign reversing weight preserving involution ϕ on B. Starting in the top row and
scanning the bricks in B ∈B from left to right, locate the first time if there is either
a brick of length ≥ 2 or there is a brick of length 1 followed by another brick in the
same row such that the integer labels between the two consecutive bricks decrease.

If there is a brick of length ≥ 2, then let ϕ(B) be the object found by chopping the
first cell off the brick of length ≥ 2, thereby creating two bricks. If there is a brick
of length 1 followed by another brick in the same row such that the integer labels
between the two consecutive bricks decrease, then let ϕ(B) be the object found by
combining the bricks. If neither situation is found after scanning all the rows of B,
let ϕ(B) = B.

For example, the image of the combinatorial object shown above is here:

4 5 3 2 1

3 1
2 4 3

Fixed points under this involution must have every brick of length 1 and the
integer labels within each row must weakly increase. The sign of such an object
is (−1)n−n = 1 and the weights give rise to exactly the homogeneous symmetric
function hμ . This proves the desired identity. ��
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Theorem 2.18 gives a combinatorial interpretation for the entries of the h-to-
e transition matrix. This matrix in the case n = 4 is shown below; the entries are
(−1)n−�(λ ) ∣∣Bλ ,μ

∣
∣with λ (the content) indexing the rows and μ (the shape) indexing

the columns:

⎡

⎢
⎢
⎢
⎢
⎣

(4) (3,1) (22) (2,12) (14)

(4) −1 0 0 0 0
(3,1) 2 1 0 0 0
(22) 1 0 1 0 0
(2,12) −3 −2 −2 −1 0
(14) 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦
.

Theorem 2.19. The h-to-e transition matrix is its own inverse.

Proof. Writing down the matrix multiplication explicitly, we wish to show that

∑
α�n

(−1)n−�(λ )+n−�(α)
∣
∣Bλ ,α

∣
∣
∣
∣Bα ,μ

∣
∣=

{
1 if λ = μ,
0 if λ 	= μ.

(2.3)

Given an element T1 ∈ Bλ ,α and T2 ∈ Bα ,μ , form a “double brick tabloid” by placing
the bricks in each row of T1 into the corresponding brick in T2. For example, if T1

and T2 are the brick tabloids shown below

then we would combine T1 and T2 to create the double brick tabloid shown here:

Given a double brick tabloid created from T1 and T2, call the bricks in the rows
of T1 “big bricks” and call the bricks inside the big bricks “little bricks.” If we
define the sign of a double brick tabloid to be (−1)the number of big and little bricks, then
the signed, weighted sum of all possible double brick tabloids of shape μ filled with
little bricks of content λ is equal to the left-hand side of (2.3).

To find the right-hand side of (2.3), we will define a sign reversing involution.
Scan the double brick tabloid from top to bottom and then from left to right looking
for the first time there are either

1. two consecutive big bricks within a row, or
2. two little bricks inside of one big brick.

The double brick tabloid is a fixed point if there are no instances of either situ-
ation 1 or situation 2. Otherwise, if we encounter 1 first, then combine the two big
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bricks into one. If we encounter 2 first, then split the violating big brick b into two
big bricks immediately after the first little brick in b. These are inverse operations
which reverse the sign of the double brick tabloid.

For example, the double brick tabloid shown earlier in this proof would be
changed to this double brick tabloid:

Each row in a fixed point must contain exactly one big brick containing exactly
one little brick. Therefore only one fixed point of positive sign exists exactly when
λ = μ , which is the right-hand side of (2.3). ��
Corollary 2.20. The set {hλ : λ � n} is a basis for Λn.

Proof. The h-to-e transition matrix is invertible and the elementary symmetric func-
tions are a basis, so the homogeneous symmetric functions are also a basis. ��
Corollary 2.21. The coefficient of hλ in eμ is (−1)n−�(λ ) ∣∣Bλ ,μ

∣
∣. In other words,

eμ = ∑
λ�n

(−1)n−�(λ ) ∣∣Bλ ,μ
∣
∣hλ .

The p-to-e and p-to-m Transition Matrices

Small modifications to brick tabloids can help us describe the elements in both the
p-to-e and the p-to-m transition matrices. Define the weight of T ∈ Bλ ,μ , denoted
w(T ), to be the product of the lengths of the bricks ending each row in T and let

w(Bλ ,μ) = ∑
T∈Bλ ,μ

w(T ).

For example, the weights of the four brick tabloids displayed after the proof of
Theorem 2.17 on page 51 are 16, 8, 4, and 2, showing that w(B(4,22,12),(5,3,2)) = 30.
Theorem 2.22 below tells us that the λ ,μ entry of the p-to-e transition matrix is
equal to (−1)n−�(λ )w(Bλ ,μ).

Theorem 2.22. The coefficient of eλ in pμ is (−1)n−�(λ )w(Bλ ,μ).

Proof. Let cλ ,μ be the coefficient of eλ in pμ . We will show the following facts:

1. c(n),(n) = (−1)n−1n.

2. If λ � n has more than one part, then cλ ,(n) =
n−1

∑
i=1

(−1)i−1cλ\i,(n−i) where λ \ i

denotes the integer partition λ with one part of size i removed with cλ\i,μ = 0 if
λ does not have a part of size i.
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3. If α +β denotes the partition created by the multiset union of α and β where
α � μ1 and β � n−μ1, then

cλ ,μ = ∑
α+β=λ

cα ,(μi)cβ ,μ\μi
.

After proving these identities true, we will show that the integers (−1)n−�(λ )w(Bλ ,μ)
satisfy the same identities, thereby proving the theorem since both integers satisfy
the same recursion and initial conditions.

Theorem 2.9 tells us that (−1)n−1nen = ∑n−1
i=0 (−1)iei pn−i. Rewriting this,

pn = (−1)n−1nen +
n−1

∑
i=1

(−1)i−1ei pn−i

= (−1)n−1nen +
n−1

∑
i=1

(−1)i−1ei

(

∑
α�n−i

cα ,(n−i)eα

)

= (−1)n−1nen + ∑
λ�n

(
n−1

∑
i=1

(−1)i−1cλ\i,(n−i)

)

eλ

where in the last line we have combined the ei and the eα terms to create eλ where
λ is an integer partition with more than one part. Looking at the coefficients of en

and eλ in this expression verifies items 1 and 2. As for the third item,

∑
λ�n

cλ ,μ eλ = pμ = pμ1 pμ\μ1

=

(

∑
α�n

cα ,(μ1)eα

)(

∑
β�n

cβ ,μ\μ1
eβ

)

= ∑
α+β=λ

cα ,(μ1)cβ ,μ\μ1
eλ .

Comparing coefficients of eλ on the extremes gives item 3.
Now we show that (−1)n−�(λ )w(Bλ ,μ) satisfies the same recursions. Item 1

follows since (−1)n−�((n))w(B(n),(n)) = (−1)n−1n.
Item 2 follows by sorting the bricks appearing in the one row of (n) by the

length of the first brick. Suppose that λ 	= (n) and i is a part of λ . Then there are
w(Bλ\i,(n−i)) ways to create weighted brick tabloid of shape (n) after starting with a
brick of length i. Therefore we have

(−1)n−�(λ )w(Bλ ,(n)) = (−1)n−�(λ )
n−1

∑
i=1

w(Bλ\i,(n−i))

=
n−1

∑
i=1

(−1)i−1
(
(−1)(n−i)−(�(λ )−1)w(Bλ\i,(n−i))

)
,

which verifies item 2.
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Item 3 follows by sorting the bricks according to the bricks appearing in the top
row. The number of weighted brick tabloids with bricks in the lengths appearing in
α in the top row is equal to w(Bα ,(μ1))w(Bβ ,μ\μ1

) where β is the integer partition

for which α +β = λ . Therefore (−1)n−�(λ )w(Bλ ,μ) is equal to

∑
α+β=λ

(
(−1)μ1−�(α)w(Bα ,(μ1))

)(
(−1)(n−μ1)−�(β )w(Bβ ,μ\μ1

)
)
,

which verifies item 3 and completes the proof. ��
An ordered brick tabloid of content μ = (μ1, . . . ,μ�) and shape λ is a brick

tabloid in Bμ ,λ such that the bricks of length μ1, . . . ,μ� are labeled with 1, . . . , �
such that brick labels decrease within rows. For example, all four possible ordered
brick tabloids of content (3,22,12) and shape (42,1) are shown below:

5

4 1

3 2

4

5 1

3 2

5

4 1

3 2

4

5 1

3 2

Let OBμ ,λ be the number of ordered brick tabloids of content μ and shape λ .

Theorem 2.23. The coefficient of mλ in pμ is OBμ ,λ .

Proof. The number of ordered brick tabloids of content μ and shape λ corresponds
directly to the number of times the monomial xλ1

1 · · ·xλk
k appears in the expansion of

the product

pμ = pμ1 · · · pμ�
=
(
xμ1

1 + xμ1
2 + · · ·) · · ·(xμ�

1 + xμ�
2 + · · ·) .

Specifically, if row λi in an ordered brick tabloid contains bricks labeled μi1 , . . . ,μik ,
then this ordered brick tabloid corresponds to selecting the xi term from each of
pμ1 , . . . , pμik

to contribute to the final monomial. ��
Theorem 2.23 tells us the coefficient in the p-to-m transition matrix is OBμ ,λ .

For clarity and for reference in section 6, we display this matrix in the case n = 4
with rows indexed by λ (the shape) and columns indexed by μ (the content):

⎡

⎢
⎢
⎢
⎢
⎣

(4) (3,1) (22) (2,12) (14)

(4) 1 1 1 1 1
(3,1) 0 1 0 2 4
(22) 0 0 2 2 6
(2,12) 0 0 0 2 12
(14) 0 0 0 0 24

⎤

⎥
⎥
⎥
⎥
⎦
.

Corollary 2.24. The set {pλ : λ � n} is a basis for Λn.

Proof. The p-to-m transition matrix is invertible since it is upper triangular with
nonzero diagonal entries. ��



56 2 Symmetric Functions

At this point we have a number of combinatorial descriptions for the entries of
the transition matrices between standard bases of the ring of symmetric functions.
We have recorded what we have done so far by labeling the edge on the directed
graph below with the λ ,μ entry of the corresponding transition matrix:

s

e

h p

m

Kμ ,λ

Z2Mλ ,μ

(−1)n−�(λ ) ∣∣Bλ ,μ
∣∣

(−1) n−�(λ )w(B
λ ,μ )

OBμ ,λ

There are combinatorial interpretations for the other transition matrices we have
not included in this section; many are developed in the exercises. For reference, we
have drawn a more complete diagram which includes all of the transition matrices
introduced in this text in Appendix A.

This graph is connected if edge directions are ignored, so we can now combine
transition matrices by matrix inversion or multiplication to turn any one basis into
another. For instance, to find the m-to-h transition matrix, we multiply the inverse
of the e-to-m matrix and the e-to-h matrix; in the case of n = 4 this is

⎡

⎢
⎢
⎢
⎢
⎣

−1 0 0 0 0
2 1 0 0 0
1 0 1 0 0
−3 −2 −2 −1 0
1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 0 1
0 0 0 1 4
0 0 1 2 6
0 1 2 5 12
1 4 6 12 24

⎤

⎥
⎥
⎥
⎥
⎦

−1

=

⎡

⎢
⎢
⎢
⎢
⎣

4 −4 −2 4 −1
−4 7 2 −7 2
−2 2 3 −4 1
4 −7 −4 10 −3
−1 2 1 −3 1

⎤

⎥
⎥
⎥
⎥
⎦
.

2.4 A Scalar Product

This section defines a scalar product on Λn. This scalar product has a relationship
to some of the results in Chapter 5. Although not discussed in this book, the scalar
product is also closely related to an inner product in the representation theory of the
symmetric group, see [104] for more details on that connection.

We define a scalar product on Λn by declaring that {pλ/
√

zλ : λ � n} is an
orthonormal basis. In other words, we define our scalar product so that

〈
pλ√
zλ

,
pμ√
zμ

〉

=

{
1 if λ = μ ,

0 if λ 	= μ ,

for all λ ,μ � n and then extend the definition by linearity.
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We say that two bases {aλ : λ � n} and {bλ : λ � n} of Λn are dual bases if

〈
aλ ,bμ

〉
=

{
1 if λ = μ ,

0 if λ 	= μ ,

for all λ ,μ � n. This means that the basis {pλ/
√

zλ : λ � n} is dual with itself. The
next theorem provides a useful characterization of dual bases in Λn.

Theorem 2.25. Bases {aλ : λ � n} and {bλ : λ � n} of Λn are dual if and only if

∑
λ�n

aλ (X)bλ (Y ) = ∑
λ�n

pλ (X)pλ (Y )
zλ

where X = (x1,x2, . . .) and Y = (y1,y2, . . .).

Proof. Let A be the a-to-pλ/
√

zλ transition matrix and let B be the b-to-pλ/
√

zλ
transition matrix. This means

aλ = ∑
α�n

Aα ,λ
pα√
zα

and bμ = ∑
β�n

Bβ ,μ
pβ√zβ

.

Then we have

〈
aλ ,bμ

〉
=

〈

∑
α�n

Aα ,λ
pα√
zα

, ∑
β�n

Bβ ,μ
pβ√zβ

〉

= ∑
α ,β�n

Aα ,λ Bβ ,μ

〈
pα√
zα

,
pβ√zβ

〉

= ∑
α�n

Aα ,λ Bα ,μ .

This last sum is the μ , λ entry in the matrix multiplication BTA. Therefore the
bases {aλ : λ � n} and {bλ : λ � n} of Λn are dual if and only if BTA = I.

On the other hand, we have

∑
λ�n

aλ (X)bλ (Y ) = ∑
λ�n

(

∑
α�n

Aα ,λ
pα(X)√

zα

)(

∑
β�n

Bβ ,λ
pβ (Y )√zβ

)

= ∑
α ,β ,λ�n

Aα ,λ Bβ ,λ
pα(X)√

zα

pβ (Y )√zβ

The coefficient of pα(X)pβ (Y )/
√zα zβ in this last line is

∑
λ�n

Aα ,λ Bβ ,λ ,

which is the β ,α entry in the matrix multiplication BAT. Therefore identity in the
statement of the theorem is true if and only if BAT = I.
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The theorem follows since BTA = I if and only if BAT = I. ��
The next theorem gives an alternative expression for the sums in Theorem 2.25.

Theorem 2.26. We have ∏
i, j≥1

1
1− xiy j

= ∑
λ

pλ (X)pλ (Y )
zλ

.

Proof. Starting with the left-hand side of the identity, we have

∏
i, j≥1

1
1− xiy j

= exp

(

ln ∏
i, j≥1

1
1− xiy j

)

= exp

(

∑
i, j≥1

ln
1

1− xiy j

)

.

Using ln1/(1− x) = ∑k≥1 xk/k and expx = ∑m≥0 xm/m!, the above expression is

exp

(

∑
i, j,k≥1

xk
i yk

j

k

)

= exp

(

∑
k≥1

pk(X)pk(y)
k

)

= ∑
m≥0

(

∑
k≥1

pk(X)pk(Y )
k

)m
1

m!
.

Let ·|2n denote the degree 2n terms for n ≥ 1 in a sum or product. Applying
degree 2n extraction on both sides of our string of inequalities gives

∏
i, j≥1

1
1− xiy j

∣
∣
∣
∣
∣
2n

= ∑
m≥0

(

∑
k≥1

pk(X)pk(Y )
k

)m
1

m!

∣
∣
∣
∣
∣
2n

=
n

∑
m=1

(
n

∑
k=1

pk(X)pk(Y )
k

)m
1

m!

∣
∣
∣
∣
∣
2n

where we are able to truncate the infinite sums since the tail end of the series cannot
contribute to a degree 2n term. Using the multinomial theorem (x1 + · · ·+ xn)

m =

∑a1+···+an=m

( m
a1,...,an

)
xa1

1 · · ·xan
n , this expression is equal to

n

∑
m=1

1
m! ∑

a1+···+an=m

m!
a1! · · ·an!

n

∏
k=1

(
pk(X)pk(Y )

k

)ak
∣
∣
∣
∣
∣
2n

.

The degree of the terms in ∏n
i=1 (pk(X)pk(Y )/k)ak are 2(a1 + 2a2 + · · ·+ nan).

Furthermore, if λ = (1a1 · · ·nan) is a partition of n with m parts, then a1 + · · ·+an =
m, a1 +2a2 + · · ·+nan = n, and pλ (X)pλ (Y )/zλ = ∏n

k=1(pk(X)pk(Y ))ak/(kaiai!).
We now have

∏
i, j≥1

1
1− xiy j

∣
∣
∣
∣
∣
2n

=
n

∑
m=1

∑
a1+···+an=m

a1+2a2+···+nan=n

n

∏
k=1

pk(X)ak pk(Y )ak

kak ak!
= ∑

λ�n

pλ (X)pλ (Y )
zλ

.

The theorem follows by summing this identity over all nonnegative integers n. ��
Theorem 2.27. The homogeneous symmetric functions {hλ : λ � n} and the mono-
mial symmetric functions {mλ : λ � n} are dual bases in Λn.
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Proof. The definition of the homogeneous symmetric function says

∏
i≥1

1
1− xiy j

= ∑
n≥0

hn(X)yn
j

for any j ≥ 1, and so

∏
i, j≥1

1
1− xiy j

=
∞

∏
j=1

∑
n≥0

hn(X)yn
j .

The left-hand side of this identity is symmetric in the variables y1,y2, . . . . If we
take the coefficient of mλ (Y ) on the right-hand side of the equation, the coefficient
is hλ (X). This proves

∏
i, j≥1

1
1− xiy j

= ∑
λ

hλ (X)mλ (Y ),

which, by Theorems 2.25 and 2.26, is enough to prove the theorem. ��
Theorem 5.6, found in Chapter 5, will provide a combinatorial proof that the

Schur symmetric functions {sλ : λ � n} are an orthonormal basis for Λn.

Theorem 2.28. Let {aλ : λ � n} and {bλ : λ � n} be one pair of dual bases in Λn

and let {a′λ : λ � n} and {b′λ : λ � n} be second pair of dual bases. If A is the a-to-a′

transition matrix and B is the b-to-b′ transition matrix, then A =
(
B−1

)T
.

Proof. Since A is the a-to-a′ transition matrix, aμ = ∑λ�n Aλ ,μ a′λ . The b′-to-b tran-
sition matrix is B−1, and so b′λ = ∑μ�n B−1

μ ,λ bμ where B−1
μ ,λ is the μ ,λ entry of B−1.

We now have

Aλ ,μ =

〈

∑
λ�n

Aλ ,μ a′λ ,b
′
λ

〉

=
〈
aμ ,b

′
λ
〉
=

〈

aμ , ∑
μ�n

B−1
μ ,λ bμ

〉

= B−1
μ ,λ ,

which is the same as A =
(
B−1

)T
. ��

At this point we know the dual basis for the monomial symmetric functions (the
homogeneous), the homogeneous symmetric functions (the monomials), the power
symmetric functions (the power symmetric functions, divided by a factor of zλ ), and
the Schur symmetric functions (the Schur symmetric functions). But what is dual to
the elementary symmetric functions? We define the forgotten symmetric functions
{ fλ : λ � n} ⊆ Λn to be dual to the basis {eλ : λ � n}.

The forgotten symmetric functions can be found using Theorem 2.28. The hom-
ogeneous and the monomial symmetric functions are dual, and, by Theorem 2.18,
the h-to-e transition matrix has μ ,λ entry (−1)n−�(λ ) ∣∣Bλ ,μ

∣
∣. By Theorem 2.28, the

f -to-m transition matrix has μ ,λ entry (−1)n−�(μ) ∣∣Bμ ,λ
∣
∣. Put differently,

fμ = ∑
λ�n

(−1)n−�(μ) ∣∣Bμ ,λ
∣
∣mλ .

Thus the forgotten symmetric functions can be expanded into monomials by counting
brick tabloids.
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2.5 The ω Transformation

In this section we define a ring homomorphism ω on Λ . This function will expand
our understanding of fundamental relationships between standard bases for Λ and
will allow us to explain why the transition matrices between certain bases in Λn are
the same as previously described transition matrices.

Since the elementary symmetric functions {eλ : λ � n} are basis for Λn for all
n, the functions e0,e1, . . . are algebraically independent and generate Λ . This means
every element of Λ can be uniquely expressed as a polynomial in the functions
e1, . . . ,eN for some N.

This means we can define a ring homomorphism ω on Λ by defining ω(en) for
each n≥ 1 and then extending ω by linearity. Defining various ring homomorphisms
on Λ can reveal many combinatorial identities; this is one of our major themes.

For this section we will take ω to be the ring homomorphism defined by setting
ω(en) = hn for all n ≥ 1. It follows that ω(eλ ) = hλ for all λ � n.

Theorem 2.29. The function ω is an involution.

Proof. Using Theorem 2.18 to expand hn in terms of the elementary symmetric
functions, we have

ω(hn) = ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|ω(eλ )

= ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|hλ .

Corollary 2.21 says this sum is equal to en. Therefore ω2(en) =ω(hn) = en, showing
that ω is an involution. ��
Theorem 2.30. For all n ≥ 1, ω(pn) = (−1)n−1 pn.

Proof. We show this by induction on n, with the case n = 1 being true since p1 =
e1 = h1 and thus ω(p1) = ω(e1) = h1 = (−1)1−1 p1.

Assume by induction that ω(pk) = (−1)k−1 pk for k ≤ n. By Theorem 2.8,

pn = nhn −
n−1

∑
i=1

hi pn−i.

Applying ω to both sides and using the induction hypothesis, we find

ω(pn) = nen −
n−1

∑
i=1

(−1)n−i−1ei pn−i,

which, by Theorem 2.9, we can conclude is equal to (−1)n−1 pn. ��
Theorem 2.30 implies that ω(pλ ) = (−1)n−�(λ )pλ for all λ � n.
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Theorem 2.31. For any symmetric functions f ,g ∈ Λn, 〈ω( f ),ω(g)〉= 〈 f ,g〉.
Proof. For any λ ,μ � n,

〈

ω
(

pλ√
zλ

)
,ω

(
pμ√
zμ

)〉

=

〈

(−1)n−�(λ ) pλ√
zλ

,(−1)n−�(μ) pμ√
zμ

〉

=

{
1 if λ = μ ,

0 if λ 	= μ ,

=

〈
pλ√
zλ

,
pμ√
zμ

〉

.

It is enough to prove the theorem true for a basis, like we just did for the basis
{pλ/

√
zλ : λ � n}. ��

Theorem 2.31 allows us to find the image of the monomial symmetric functions
under the ring homomorphism ω . For any λ ,μ � n, we have

〈
eλ ,ω(mμ)

〉
=
〈
ω(eλ ),mμ

〉
=
〈
hλ ,mμ

〉
=

{
1 if λ = μ ,

0 if λ 	= μ .

This says that the bases {eλ : λ � n} and {ω(mλ ) : λ � n} are dual. Since the for-
gotten symmetric functions are the functions which are dual to the elementary sym-
metric functions, it must be the case that ω(mλ ) = fλ .

At this point we know the values of ω on the elementary, homogeneous, power,
monomial, and forgotten bases. What about the Schur symmetric functions? We will
use Theorem 2.32 to prove that ω(sλ ) = sλ ′ where λ ′ is the conjugate partition to λ .
The identities in Theorem 2.32 are known as the Jacobi–Trudi identities and are of
interest in their own right. The proof we have chosen to include is due to Ira Gessel
and Xavier Viennot.

Theorem 2.32. Let λ � n be an integer partition with � parts λ1 ≤ λ2 ≤ ·· · ≤ λ�

written in nondecreasing order. Then

sλ = det
(
hλi+i− j

)
i, j=1,...,� and sλ ′ = det

(
eλi+i− j

)
i, j=1,...,�

where we set hk = 0 and ek = 0 if k < 0.

Proof. We first prove the identity involving the homogeneous symmetric functions.
Each homogeneous symmetric function hλi+i− j is the weighted sum over all col-

umn strict tableaux of shape (λi + i− j). By interpreting the integers appearing in
the column strict tableaux as the x-coordinates of the north steps, each choice of
such a column strict tableaux corresponds to a weighted path p in the plane which
starts at (1, j), makes unit steps either north or east, and ends in an infinite number
of east steps at height λi + i.
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For example, suppose that λ = (4,4,4,4), i = 3, and j = 1. Looking at hλi+i− j =
h4+3−1 = h6, the column strict tableau on the left is interpreted as the lattice path on
the right in the figure below:

5 7 7 10 10 10

The column strict tableau on the left corresponds to the path on the right because
the path has north steps at x-coordinates 5,7,7,10,10, and 10. From such a path it
is easy to find i (since the maximum height is λi + i) and j (since the starting point
is at height j).

Let P j,λi+i be the set of such lattice paths which begin at (1, j) and end with
an infinite sequence of east steps at height λi + i. If we define the weight of p ∈
P j,λi+i to be the weight of the corresponding column strict tableau, then hλi+i− j is
the weighted sum over all p ∈ P j,λi+i.

Expanding the determinant as a signed sum over permutations σ ∈ Sn, we have

det
(
hλi+i− j

)
i, j=1,...,� = ∑

σ∈Sn

sign(σ)hλ1+1−σ(1) · · ·hλ�+�−σ(�).

The terms in this sum can be considered collections of paths (p1, . . . , p�) where
pi ∈ Pσ(i),λi+i for i = 1, . . . , �. The ordered �-tuple of lattice paths (p1, . . . , p�) will
be called a lattice path family. For example, if λ = (4,4,4,4) and σ = 3 2 1 4, one
such lattice path family is represented below:
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If we define the weight of the lattice path family (p1, . . . , p�) to be the product
of the weights of the paths p1, . . . , p� and if we define the sign of the family to be
the sign of the underlying permutation σ (which can be deduced from the lattice
path family since the integer σ(i) can be found for each i), then by construction,
det

(
hλi+i− j

)
i, j=1,...,� is the weighted, signed sum over all lattice path families.

Because we ordered the parts of λ in nondecreasing order, the maximum heights
of the paths in a lattice path family (p1, . . . , p�), namely λ1+1, . . .λ�+�, are distinct.
Moreover, the ith highest path reading bottom to top on the right side of a lattice path
family is the path pi. This path must appear as the σ(i)th path reading bottom to top
on the left. This means that the permutation σ can be found easily: the ith highest
path on the right ends up as the σ(i)th highest path on the right.

To prove the identity involving the homogeneous symmetric functions in the
statement of the theorem, we will describe a weight preserving, sign reversing invo-
lution on lattice path families which will leave fixed points corresponding to column
strict tableau of shape λ .

The involution ϕ is as follows. If there is no place in the lattice path family
(p1, . . . , p�) where two paths intersect, define the lattice path family to be fixed un-
der the involution ϕ . Otherwise, find the most south and then most west coordinate
where two paths intersect. Exactly two paths must intersect here, for if three lattice
paths intersect at the same point, then two of these paths must have intersected at a
more south or more west coordinate, contradicting our choice of intersection. Fur-
thermore, by our choice of intersection, the paths involved must begin at consecutive
coordinates.

Suppose this intersection involves the paths pi and pi+1. Define ϕ to be the lat-
tice path family found by switching the tail ends of pi and pi+1 after this point of
intersection and leaving all other paths alone.

For example, considering the lattice path family displayed earlier in the proof,
the first point of intersection is at the (3,−3) coordinate and involves the second
and the third paths. Applying the involution ϕ to this lattice path family gives the
picture below:

The function ϕ is weight preserving and is an involution because (p1, . . . , p�) and
ϕ(p1, . . . , p�) have the same set of north steps and any coordinates of intersection
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remain unchanged; in particular, the most south and most west coordinate of inter-
section is preserved. Furthermore, since we have switched the ending positions of
exactly two paths, the permutation σ is changed by one transposition, changing the
sign of σ by −1.

Thus det
(
hλi+i− j

)
i, j=1,...,� is equal the weighted sum over all lattice path families

where no two paths intersect. Since each path pi lies below the path pi+1 for all i,
the underlying permutation in such a nonintersecting lattice path family must be the
identity permutation, which has sign +1.

Each nonintersecting lattice path family (p1, . . . , p�) naturally corresponds to a
column strict tableaux of shape λ . Starting from the top path and working down-
wards, fill the rows in a tableau of shape λ working bottom up with the x-coordinates
of the north steps in each path. For example, below we display one nonintersecting
lattice path family together with the corresponding tableau:

2 2 3 3

4 4 4 9

7 7 7 10

8 9 9 11

Since each path in the nonintersecting lattice path family moves north and east
only, each row of the tableau is weakly increasing. Furthermore, by construction,
the kth column in the tableau is strictly increasing since the kth north step in path p
must appear higher than the kth north step in any path below p.

Since the Schur symmetric function is the weighted sum over all column strict
tableaux of shape λ , at this point we have proved the identity

sλ = det
(
hλi+i− j

)
i, j=1,...,� .

The proof for the elementary symmetric function determinant is the same as
that for the homogeneous symmetric functions with a few small modifications.
We outline the main points but leave some of the finer details for the reader to
verify.

The key difference is that each elementary symmetric function eλi+i− j is the sum
over column strict tableaux of shape 1(λi+i− j), meaning that, unlike the homoge-
neous symmetric function, we cannot have repeated integers in a tableau. Thus the
corresponding lattice paths cannot have two consecutive north steps—every north
step must be immediately followed by an east step.
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To adjust for this difference, we will associate each column strict tableau coming
from eλi+i− j with a lattice path p in the plane which starts at (1, j), takes steps of the
form (1,0) or (1,1), and ends in an infinite number of (1,0) steps at height λi + i.
We create the path p such that if the integer k appears in the column strict tableaux,
then p has a diagonal step beginning at x-coordinate k.

Therefore the determinant

det
(
eλi+i− j

)
i, j=1,...,� = ∑

σ∈Sn

sign(σ)eλ1+1−σ(1) · · ·eλ�+�−σ(�)

can be interpreted as a signed, weighted sum over lattice path families with east and
diagonal steps instead of east and north steps. For example, one such lattice path
family when λ = (2,2,4) is shown below:

The weight of this lattice path family shown above is x1x2
3x5x6x7x9x10 (since the

diagonal steps begin at x-coordinates 1,3,3,5,6,7,9, and 10) and the underlying
permutation is σ = 2 3 1 with sign +1.

We can now apply the same involution as described for the homogeneous sym-
metric functions; find the most south and most west coordinate where two paths
intersect and switch their tails.

The positions of the diagonal steps in a fixed point can be used to fill the rows
of a tableau of shape λ in the same way as we did for the homogeneous symmet-
ric functions. Fixed points naturally correspond to tableau with strictly increasing
rows and weakly increasing columns. For example, the fixed point shows on the left
corresponds to the tableau on the right:

3 5 8 9

3 5

5 6
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This proves
sλ ′ = det

(
eλi+i− j

)
i, j=1,...,�

since conjugating these tableaux which correspond to fixed points gives the neces-
sary column strict tableaux. ��
Corollary 2.33. For all λ � n, ω(sλ ) = sλ ′ .

Proof. Apply ω to the first identity in 2.32 to find the second identity. ��

Exercises

2.1. Show that s(1k,n) =
k

∑
i=0

(−1)k−ieihn+k−i.

2.2. Show that pr =
r−1

∑
k=0

(−1)ks(r−k,1k) for r ≥ 1.

2.3. Show
∞

∑
n=1

pnzn = zH ′(z)/H(z) where H ′(z) is the derivative of H(z) =
∞

∑
n=0

hnzn.

2.4. Prove that the coefficient of hλ in eμ is (−1)n−�(λ ) ∣∣Bλ ,μ
∣
∣ using an involution

similar to that found in the proof of Theorem 2.18.

2.5. Show that for integer partitions λ ,μ � n,

∑
α�n

(−1)�(λ )+�(α)OBλ ,α w(Bα ,μ) =

{
0 if λ 	= μ,
zλ if λ = μ.

2.6. Using Exercise 2.5, show that the coefficient of pλ in eμ is (−1)n−�(λ )OBλ ,μ/zλ
and the coefficient of pλ in mμ is (−1)�(λ )+�(μ)w(Bμ ,λ )/zλ .

2.7. Define an alternating polynomial f in the variables x1, . . . ,xn to be a polynomial
with coefficients in Q such that

f (x1, . . . ,xn) = sign(σ) f (xσ1 , . . . ,xσn)

for all permutations σ = σ1 · · ·σn ∈ Sn. For example, one alternating polynomial
in the variables x1,x2, and x3 is x1x2x3(x1 − x2)(x1 − x3)(x2 − x3). Show that any
alternating polynomial must be divisible by the Vandermonde determinant Δ(0,...,0)

and therefore must have minimum degree
(n

2

)
.

2.8. Show that Δλ is an alternating polynomial (see Exercise 2.7). Further, show that
if a monomial xλ1+n−1

1 · · ·xλn+n−n
n is a term in an alternating polynomial f , then f

must have all terms present in Δλ . These two facts imply that {Δλ : λ � k} is a basis
for the set of alternating polynomials of degree k+

(n
2

)
.
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2.9. Let RCSλ denote the set of reverse column strict tableaux, that is, all tableaux
where the integer labeling weakly decreases in rows and strictly decreases
in columns. For example, here are all elements in RCS(2,1) that are filled with
integers ≤ 3:

3 1

2

3 2

1

2 1

1

3 1

1

2 2

1

3 3

1

3 2

2

3 3

2

.

Show that sλ = ∑RCSλ
w(T ) for any λ � n.

2.10. A labeling of the mathematical abacus a is a filling of the k beads in a with
a permutation in Sk. Below we display a labeled abacus of length 10 with 5 beads
filled with the permutation 3 4 2 1 5 ∈ S5:

3 4 2 1 5

Let b1, . . . ,bk be the beads in a labeled abacus a when read left to right, let
label(bi) be the integer in bead bi, and let position(bi) be the position of bead bi.

We define the weight of a to be xposition(b1)
label(b1)

· · ·xposition(bk)
label(bk)

and we define the sign of a

to be the sign of the permutation label(bk) · · · label(b1). For instance, the weight of
the labeled abacus shown above is x2

3x3
4x4

2x6
1x9

5 and the sign is sign(5 1 2 4 3) =−1.
Let λ be the integer partition corresponding to the abacus a. Show that

x1 · · ·xkΔλ (x1, . . . ,xk) = ∑sign(�)weight(�)

where the sum runs over all possible labelings � of the abacus a.

2.11. Let λ � n. Using Exercise 2.10, show that e jΔα = ∑Δλ where the sum runs
over the integer partitions λ � (n+ j) found by adding 1 to j distinct parts of α .

2.12. Using Exercise 2.11 to expand eμ Δ(0,...,0) into a sum of terms of the form Δλ ,
show that the λ ,μ entry of the e-to-s transition matrix is equal to Kλ ′,μ .

2.13. Let ν be a rim hook (see Exercise 1.3). The sign of ν , denoted sign(ν), is
defined to be (−1)the number of rows spanned by ν−1. For instance, the sign of the rim
hook of length 6 pictured below is (−1)3−1 =+1:

Using Exercise 2.10, show that

p jΔα = ∑sign(ν)Δλ

where the sum runs over the integer partitions λ which can be found by adding a
rim hook ν of length j to α .
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2.14. A rim hook tableau of shape λ and content μ = (μ1, . . . ,μ�) is a filling of
the cells of the Young diagram of λ with rim hooks of lengths μ1, . . . ,μ� (see
Exercise 1.3) labeled with 1, . . . , � such that the removal of the last i rim hooks
leaves the Young diagram of a smaller integer partition for all i. For example, below
we display all possible rim hook tableau of shape (5,4,4) and content (5,5,1,1,1):

543

2

1 542

3

1

5

43

2

1

5

42

3

1

The sign of a rim hook tableau T is defined to be the product of the signs of the
rim hooks in T (see Exercise 2.13). The four rim hook tableaux pictured above all
have sign +1. We define

χλ
μ = ∑

rim hook tableaux T with
shape λ and content μ

sign(T ).

Using Exercise 2.13 to expand pμ Δ(0,...,0) into a sum of terms of the form Δλ ,

show that the λ , μ entry of the p-to-s transition matrix is χλ
μ .

2.15. A special rim hook tabloid of shape λ and content μ is a rim hook tableau of
shape λ and content μ (see Exercise 2.14) such that the labels on the rim hooks are
erased and every rim hook contains at least one cell in the first column of the Young
diagram of λ . The change of nomenclature from “tableau” to “tabloid” indicates
that the rim hooks within a special rim hook tabloid are unordered.

For example, here are the only two possible special rim hook tabloids of content
(6,6,4,2) and shape (5,5,4,3,1):

Let K−1
μ ,λ to be the integer defined by

K−1
μ ,λ = ∑

special rim hook tabloids T
of shape λ and content μ

sign(T )

where sign(T ) is defined in Exercise 2.14. The goal of this exercise is to show that
the inverse to the Kostka matrix has λ ,μ entry equal K−1

μ ,λ , that is, we want to show

∑
α�n

Kμ ,α K−1
α ,λ =

{
1 if μ = λ ,
0 if μ 	= λ .

(2.4)
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for all λ ,μ . This can be done by considering pairs (C,S) where C is a column strict
tableau and S is a special rim hook tabloid such that:

1. The special rim hook tabloid S of shape λ and content α is chosen first. Let ai be
the length of the special rim hook which begins in row i of S reading bottom to
top. This number might be 0.

2. The column strict tableau C has shape μ and contains a1 1s, a2 2s, etc. By The-
orem 2.2, the number of ways to form C is independent of this specification of
number of 1’s, 2’s, etc.

3. The sign of (C,S) is equal to sign(S).

For example, one pair when μ = (7,6,5) and λ = (5,5,4,3,1) is

1 1 2 2 2 2 3

2 2 3 3 3 5

3 3 5 5 5

, .

There is a unique way to switch the tail ends of two consecutive special rim
hooks in S. Use this “tail-switching” idea to define a sign reversing involution on
such pairs (C,S) in order to verify (2.4).

2.16. Given integer partitions λ = (λ1, . . . ,λ�) and μ = (μ1, . . . ,μk), let NMλ ,μ be
the number of �× k matrices with nonnegative integer entries such that the sum of
the ith row is λi and the sum of the jth column is μ j. Show that the coefficient of mλ
in hμ is NMλ ,μ .

2.17. Show that

n!en =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p1 1 0 · · · 0 0
p2 p1 2 · · · 0 0
...

...
...

...
...

pn−1 pn−2 pn−3 · · · p1 n−1
pn pn−1 pn−2 · · · p2 p1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Using the ω transformation, find a similar relationship involving the homogeneous
and power symmetric functions.

Solutions

2.1 Looking at the right-hand side of the identity, we can consider ordered pairs
(S,T ) where S is a column strict tableau of shape 1i for 0 ≤ i ≤ k and T is a column
strict tableau of shape (n+k− i). The sign is (−1)k−i. We now apply a sign reversing
involution similar to that found in the second proof of Theorem 2.5.
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If the bottommost integer in S is not larger than the leftmost integer in T , then
move this integer from S to T . Otherwise, if S has height smaller than k and if the
bottommost integer in S is larger than the leftmost integer in T , then move this
integer from T to S.

Fixed points under this sign reversing involution must have S with height k and
the bottommost integer in S is larger than the leftmost integer in T , like the picture
below if k = 4:

2

3

4

6

, 1 1 4 4

These fixed points, which have sign +1, correspond to tableaux of shape (1k,n) by
gluing S atop T .

2.2 Define the sign of a column strict tableau T of shape (r− k,1k) to be (−1)k.
Consider the following sign reversing involution: locate the largest integer m app-
earing in T . If m appears in the first column of T and this first column has more than
one cell, then move m to the right of the bottom row of T . If m appears in bottom
row of T and m is larger than the largest cell in the first column of T , then move m
to the first column.

Fixed points under this sign reversing involution must have the largest integer m
appearing in both the bottom row of T and the first column of T . Furthermore, the
first column of T must have only one cell. It follows that T must contain exactly one
row, and that every cell in that row contains the same integer m. These fixed points
correspond to pr, as desired.

2.3 Using Theorem 2.8,

H(z)
∞

∑
n=1

pnzn =
∞

∑
n=1

(
n−1

∑
i=0

hi pn−i

)

zn =
∞

∑
n=1

nhnzn = z
∞

∑
n=0

nhnzn−1 = zH ′(z).

2.4 The proof is similar to the proof of Theorem 2.18 except that we allow weakly
decreasing sequences in the bricks instead of strictly decreasing sequences. In par-
ticular, the desired identity is

eμ = ∑
λ�n

(−1)n−�(λ ) ∣∣Bλ ,μ
∣
∣hλ . (2.5)

The right-hand side of (2.5) can be interpreted combinatorially. Use the summand
and the

∣
∣Bλ ,μ

∣
∣ term to select a brick tabloid of content λ and shape μ for some

λ � n. Using the hλ term, fill each brick with a weakly decreasing sequence of
positive integers. Define the weight and sign in the same way as in the proof of
theorem 2.18. The signed sum over all such combinatorial objects is equal to the
right-hand side of (2.5).
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Define an involution ϕ by starting in the top row and scanning the bricks from
left to right, locating the first time there is either a brick of length ≥ 2 or there is
a brick of length 1 followed by another brick in the same row such that the integer
labels between the two consecutive bricks weakly decrease.

If there is a brick of length ≥ 2, change the object by chopping the first cell off
the brick of length ≥ 2, thereby creating two bricks. If there is a brick of length 1
followed by another brick in the same row such that the integer labels between the
two consecutive bricks weakly decrease, then change the object by combining the
bricks. Do nothing if neither situation is found.

Fixed points must consist of only bricks of length 1 (and thus must have sign
+1) and must have strictly increasing sequences of integers within each row, corre-
sponding directly with eμ , as desired.

2.5 Construct a set of combinatorial objects by following these steps:

1. Select an ordered brick tabloid of content λ and shape α for some α � n.
2. Select a brick tabloid of content α and shape μ . Select one cell in the last brick

in each row and shade it gray. This shading accounts for the weight in a weighted
brick tabloid.

3. Combine the brick tabloids selected in step 1 and step 2 by placing the bricks
in each row of the ordered brick tabloid into the corresponding brick in the
weighted brick tabloid.

For example, if the brick tabloids

8 1

6 4 2

3

5

7

and

are selected in steps 1 and 2, then combining them in step 3 would create

73

6 4 2

5 8 1
.

Let T be the set of all objects created by following steps 1, 2, and 3. Call a
smaller brick appearing inside of another brick a “little brick” and the larger bricks
“big bricks.” Define the sign of T ∈ T to be (−1)the number of big and little bricks in T . By
construction, the signed, weighted sum of T ∈ T is the sum in the statement of this
exercise.

Define a sign reversing involution by examining the last big brick in each row of
T , starting from top to bottom, looking for either

1. a last big brick which contains more than one little brick or
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2. a row with more than one big brick such that the last big brick contains only one
little brick.

If case 1 is found, break the big brick into smaller big bricks by moving the little
brick containing the shaded cell into its own big brick at the end of the row. If case
2 is found, combine the two big bricks into one big brick, sorting the little bricks so
that the little brick labels decrease within the big brick. For example, the image of
the T ∈ T displayed earlier is shown below:

7 3

6 4 2

5 8 1

Fixed points must have exactly one big brick in each row, and that big brick must
contain exactly one little brick. These fixed points, which all have sign +1, occur
exactly when λ = μ . If λ = 1m1 2m2 · · · , then the total number of fixed points is
zλ = 1m1 2m2 · · ·m1!m2! · · · since 1m1 2m2 · · · accounts for the placement of the shaded
cell in each row and m1!m2! · · · accounts for the ways to rearrange the labels on little
bricks of the same length.

2.6 Exercise 2.5 gives the λ , μ entry in the matrix multiplication

‖(−1)n−�(λ )OBλ ,μ‖λ ,μ�n‖(−1)n−�(λ )w(Bλ ,μ)‖λ ,μ�n.

The product of these two matrices is the diagonal matrix with λ th diagonal entry
equal to zλ , which is nearly the identity matrix. From this we can say two things:

1. the inverse to ‖(−1)n−�(λ )w(Bλ ,μ)‖λ ,μ�n is ‖(−1)n−�(λ )OBλ ,μ/zλ‖λ ,μ�n and
2. the inverse to ‖OBλ ,μ‖λ ,μ�n is ‖(−1)�(λ )+�(μ)w(Bμ ,λ )/zλ‖λ ,μ�n.

Stated differently,

1. the e-to-p transition matrix, which is the inverse to the p-to-e transition matrix
given in Theorem 2.22, has λ ,μ entry (−1)n−�(λ )OBλ ,μ/zλ and

2. the m-to-p transition matrix, which is the inverse to the p-to-m transition matrix
given in Theorem 2.23, has λ ,μ entry (−1)�(λ )+�(μ)w(Bμ ,λ )/zλ , as desired.

2.7 Considering the transposition (i j), an alternating polynomial f must satisfy

f (x1, . . . ,xi, . . . ,x j, . . . ,xN) =− f (x1, . . . ,x j, . . . ,xi, . . . ,xN)

for all integers i, j. Therefore f must be divisible by (xi −x j) for all i, j. This means
that f must be divisible by the Vandermonde determinant ∏

i< j
(xi − x j) and that the

degree of f must be at least (N −1)+ · · ·+0 =
(N

2

)
.

2.8 The determinant of a matrix is changed by a factor of −1 when two rows are
interchanged. Since Δλ is the determinant
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

xλ1+n−1
1 xλ2+n−2

1 · · · xλn+0
1

xλ1+n−1
2 xλ2+n−2

2 · · · xλn+0
2

...
...

...

xλ1+n−1
n xλ2+n−2

n · · · xλn+0
n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

switching the roles of xi and x j changes the sign of Δλ by −1. It is therefore an
alternating polynomial.

If xλ1+n−1
1 xλ2+n−2

2 · · ·xλn+0
n is a term in an alternating polynomial f , then f must

contain all terms of the form sign(σ)xλ1+n−1
σ1 xλ2+n−2

σ2 · · ·xλn+0
σn for σ a permutation

of Sn. Therefore f contains

Δλ (x1, . . . ,xn) = ∑
σ=σ1···σn∈Sn

sign(σ)xλ1+n−1
σ1 xλ2+n−2

σ2 · · ·xλn+0
σn

,

as desired.

2.9 We will describe a weight preserving function which turns any T ∈ CSλ into
a T ′ ∈ RCSλ .

Take T ∈ CSλ . If a 1 appears in the same column as a 2 in T , switch their
positions. Then if a sequence of 1s appears in the same row as a sequence of 2s
in T , switch the appearances of these sequences. Now every 1 appears above or to
the right of every 2. Repeat this procedure with the 1s and 3s in T , then the 1s and
4s, and so on, until every 1 is appears above or to the right of every larger integer
in T .

Inductively repeat this process with 2, moving all appearances of 2 above or to
the right of all larger integers. Then repeat this process with 3, 4, and so on. The
result is the desired reverse column strict tableau T ′.

2.10 If b1, . . . ,bk are the beads in the abacus a, then the corresponding integer parti-
tion λ is equal to (empty(bk), . . . ,empty(b1)) where empty(bi) denotes the number
of empty places to the left of bi. We have

x1 · · ·xkΔλ (x1, . . . ,xk) = ∑
σ=σ1···σk∈Sk

sign(σ)xλ1+k
σ1 · · ·xλk+1

σk

= ∑
σ=σ1···σk∈Sk

sign(σ)xempty(bk)+k
σ1 · · ·xempty(b1)+1

σk
.

Since there are exactly i− 1 beads to the left of bead bi, we know position(bi) =
empty(bi)+ i. Therefore our sum is equal to

∑
σ=σ1···σk∈Sk

sign(σ)xposition(bk)
σ1 · · ·xposition(b1)

σk
= ∑

labeling � of a

sign(�)weight(�).

2.11 Let a be the mathematical abacus corresponding to the integer partition α .
Since e j is the sum of square-free monomials of degree j, each monomial in the
product
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e jΔα = e j ∑
� is a labeling of a

sign(�)weight(�)

can be associated with an ordered pair of the form (xi1 · · ·xi j , �) where i1 < · · · < i j

are j distinct positive integers and � is a labeling of a. By defining the sign of such
a pair to be sign(�) and the weight to be xi1 · · ·xi j weight(�), it follows that e jΔα is
the signed, weighted sum over all possible pairs of the form (xi1 · · ·xi j , �).

Given (xi1 · · ·xi j , �), starting with the leftmost possible bead and working right-
ward, move the beads with labels given by i1, . . . , i j one space to the right. If we
cannot move bead b one space to the right because that space is occupied by another
bead b′, match (xi1 · · ·xi j , �) with the pair found by interchanging the labels on b and
b′ in both xi1 · · ·xi j and �. Since the permutations in � and �′ differ by a transposi-
tion, these two objects have opposite signs. They have the same weight, and so their
pairing will cancel them from the sum.

Each time we move one of the k beads to the right, we are increasing one part in
the corresponding integer partition by 1. Therefore e jΔα corresponds to the signed
sum over all possible labelings of abaci which correspond to an integer partition
λ � (n+ j) which can be found by adding 1 to j distinct parts of α , as desired.

2.12 Let μ = (μ1, . . . ,μ�) � n. By Exercise 2.11, eμ Δ(0,...,0) = eμ1 · · ·eμ�
Δ(0,...,0) is

the sum of terms of the form Δλ where λ is an integer partition created by adding
1 to μ1 distinct parts in the integer partition (0, . . . ,0), then adding 1 to μ2 distinct
parts to the result, then adding 1 to μ3 distinct parts to the result, and so on. Place an
i in the cell of the Young diagram for the integer partition λ if the cell was created
by adding 1 in step i of this process.

For example, we can create Δ(6,3,3,2) from e(3,3,3,2,2,1)Δ(0,...,0) by starting with
(0,0,0,0), then successively adding 1 to distinct parts to create (1,1,1,0), (2,2,1,1),
(3,3,2,1), (4,3,3,1), (5,3,3,2), and then (6,3,3,2). Recording these steps by plac-
ing 1, . . . ,6 in the cells of the Young diagram gives

1 2 3 4 5 6

1 2 3

1 3 4

2 5

.

The integers in this tableau of shape λ must weakly increase within columns and
strictly increase within rows. Therefore the number of terms of the form Δλ in the
expansion of eμ Δ(0,...,0) is equal to the number of column strict tableau of shape λ ′
and content μ , namely Kλ ′,μ .

We now have that eμ Δ(0,...,0) = ∑λ�n Kλ ′,μ Δλ . Dividing both sides of this equa-
tion by Δ(0,...,0) and using Theorem 2.4, we have eμ = ∑λ�n Kλ ′,μ sλ , as desired.

2.13 Let a be the mathematical abacus corresponding to the integer partition α .
Since p j = x j

1 + x j
2 + · · · , each monomial in the product

p jΔα = p j ∑
� is a labeling of a

sign(�)weight(�)
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can be associated with an ordered pair of the form (x j
i , �) where � is a labeling of a.

If the sign of such a pair is sign(�) and the weight is x j
i weight(�), then p jΔα is the

signed, weighted sum over all possible pairs of the form (x j
i , �).

Given (x j
i , �), move the bead with label i to the right j spaces. If we cannot do this

because that space is occupied by another bead b′, match (x j
i , �) with the pair found

by interchanging the labels on b and b′ in both x j
i and �. Since the permutations in

� and �′ differ by a transposition, these two objects have opposite signs. They have
the same weight, and so their pairing will cancel them from the sum.

If we happen to move this bead b over another bead b′, then we are multiplying
the permutation giving the labels on � by the transposition (label(b) label(b′)). For
example, if we move the bead with label 4

3 4 2 1 5

7 spaces to the right to form

3 42 1 5 ,

then we introduce the transpositions (2 4), (1 4), and (5 4) to the underlying
permutation.

Exercise 1.3 tells us that we are adding one rim hook of size j to the correspond-
ing integer partition each time we move a bead b to the right j spaces. The number
of beads b passes is one less than the number of rows in the corresponding rim hook
ν , and so this move changes the sign by sign(ν). Therefore, by Exercise 1.3, p jΔα
corresponds to the signed sum over all possible labelings of abaci which correspond
to an integer partition λ � (n+ j) which can be found by adding a rim hook ν of
length j to α .

2.14 Let μ = (μ1, . . . ,μ�) � n. By Exercise 2.13, pμ Δ(0,...,0) = pμ1 · · · pμ�
Δ(0,...,0) is

the sum of terms of the form ±Δλ where λ is an integer partition created by adding
a first rim hook μ of size μ� to (0, . . . ,0), then adding a rim hook of length μ�−1 to
the result, then adding a rim hook of length to μ�−2 to the result, and so on. The ±
sign on ±Δλ is determined by the product of the rim hooks. Label the order the rim
hooks were placed with the numbers 1, . . . , � to find a rim hook tableau of shape λ
and content μ .

This shows that pμ Δ(0,...,0) = ∑λ�n χλ
μ Δλ . Dividing both sides of this equation

by Δ(0,...,0) and using Theorem 2.4, we have pμ = ∑λ�n χλ
μ sλ , as desired.

2.15 If row i contains only the integer i for each row i in C reading bottom to top,
then define (C,S) to be a fixed point of the involution. Otherwise, find the least i
such that row i contains an integer larger than i, and let j be the maximum integer
in this row.

Let ν j be the special rim hook which begins in row j of S. By switching their tail
ends, there is a unique way to change the special rim hooks ν j and ν j−1 to two other
special rim hooks which occupy the same cells as ν j and ν j−1. Change S into the
special rim hook tabloid found by making this switch.
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Performing this “tail-switching” operation on S changes the lengths of the special
rim hooks ν j and ν j−1, and so to be a valid pair of the form (C,S) we need to change
the frequencies of the js and the ( j−1)s in C accordingly. Make this switch using
the involution in the proof of Theorem 2.2.

For example, the image of the pair (C,S) displayed in Exercise 2.15 is shown
below:

1 1 2 2 2 3 3

2 2 3 3 3 5

3 3 5 5 5

, .

This “tail-switching” involution changes the sign of S by −1 since it either intro-
duces or removes exactly one extra down step in the rim hook ν j.

The fixed points under this involution must have row i of C containing exactly i.
This means that a special rim hook of length i begins in row i of S for all i. There
is exactly one special rim hook tabloid S with this property—the special rim hook
tabloid which features a completely flat rim hook in each row. This one fixed point
of sign +1 only occurs when μ = λ , verifying equation (2.4).

2.16 Given λ � n, we will count the number of ways can we form the monomial
xλ1

1 · · ·xλk
k by multiplying out hμ = hμ1 · · ·hμ�

by organizing our work into a table
where rows are indexed by x1, . . . ,xk and columns are indexed by hμ1 , . . . ,hμ�

. Place
an m in the xi row and hμ j column entry of the table if the monomial selected from
hμ j to contribute to a final product contains xm

i .
For example, when λ = (32,2,12) and μ = (32,22), one possible table is

⎡

⎢
⎢
⎢
⎢
⎣

h3 h3 h2 h2

x1 3 0 0 0
x2 0 0 1 2
x3 0 2 0 0
x4 0 0 1 0
x5 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎦
.

This table corresponds to the terms in each parenthesis in

h(32,22)(x1,x2, . . .) = (x3
1 + · · ·+ x2

1x2 + · · ·+ x1x2x3 + · · ·)2(x2
1 + · · ·+ x1x2 + · · ·)2

which are selected to form the monomial x3
1x3

2x2
3x1

4x1
5.

The number of ways to form a such a table is the coefficient of mλ in hμ . Each
table is an element in NMλ ,μ as desired.

2.17 The assertion is true when n = 1 because 1!e1 = p1. We proceed by induction.
Removing the ith column and last row of the n×n determinant leaves a determi-

nant of the form
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∣
∣
∣
∣
A 0
B C

∣
∣
∣
∣

where A is an (i−1)× (i−1) matrix of the same form as the original n×n matrix,
0 is the (i− 1)× (n− i) zero matrix, B is an (n− i)× (i− 1) matrix, and C is an
(n− i)× (n− i) lower triangular matrix diagonal entries equal to i, i+ 1, . . . ,n−
1. By the induction hypothesis, the determinant of this matrix is (i − 1)!ei−1i
(i−1) · · ·(n−1) = (n−1)!ei−1.

Expanding the determinant of the original n×n matrix along the last row,

n

∑
i=1

(−1)n−i pn−(i−1)(n−1)!ei−1 = (−1)n−1(n−1)!
n−1

∑
i=0

(−1)i pn−iei,

which, by Theorem 2.9, is equal to (−1)n−1(n−1)!(−1)n−1nen = n!en.
Applying ω to both sides of the identity gives

n!hn =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p1 1 0 · · · 0 0
−p2 p1 2 · · · 0 0

...
...

...
...

...
(−1)n−2 pn−1 (−1)n−3 pn−2 (−1)n−4 pn−3 · · · −p1 n−1
(−1)n−1 pn (−1)n−2 pn−1 (−1)n−3 pn−2 · · · −p2 p1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Notes

The theory of symmetric functions has a long history and with many applications
to the representation theory of finite groups, special functions, and combinatorics.
There are two books on the theory of symmetric functions that we would recom-
mend.

The first is Macdonald’s Symmetric functions and Hall polynomials [82], which
contains a wealth of information not presented here, including several generaliza-
tions of the symmetric functions such as the Hall–Littlewood symmetric functions
which involve an extra parameter q and Macdonald polynomials which involve two
extra parameters q and t. There are many combinatorial applications of both Hall–
Littlewood symmetric functions and Macdonald polynomials which are beyond the
scope of this book. See, for example, Haglund’s book [55].

A second account of the theory of symmetric functions is found in Stanley’s
Enumerative Combinatorics, Volume 2 [108]. The latter text contains notes on the
history of symmetric functions with numerous references.

There are many approaches of developing the theory of symmetric functions.
Our approach has been to give direct combinatorial proofs of identities wherever
possible. Moreover, we have made sure that our proofs work over the ring of sym-
metric functions in infinitely many variables; this will be needed for some of our
applications.
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The exercises allow us to add 11 edges to the directed graph giving the transition
matrices between bases for the ring of symmetric functions featured on page 56.
Specifically,

1. Exercise 2.6 says the λ ,μ entry of the e-to-p matrix is (−1)n−�(λ ) OBλ ,μ
zλ

.

2. Exercise 2.6 says the λ ,μ entry of the m-to-p matrix is (−1)�(λ )+�(μ) w(Bμ ,λ )
zλ

.
3. Exercise 2.12 says the λ ,μ entry of the e-to-s matrix is Kλ ′,μ .
4. Exercise 2.14 says the λ ,μ entry of the p-to-s matrix is χλ

μ .

5. Exercise 2.15 says the λ ,μ entry of the m-to-s matrix is K−1
μ ,λ .

6. Exercise 2.15 says the λ ,μ entry of the s-to-e matrix is K−1
λ ,μ ′ .

7. Exercise 2.16 says the λ ,μ entry of the h-to-m matrix is NMλ ,μ .

The ω transformation implies that the λ ,μ entry of the x-to-y transition matrix
is the λ ,μ entry of the ω(x)-to-ω(y) transition matrix for all bases x,y. Applying ω
to items 1, 3, 6 on the above list as well as Theorem 2.22 gives

8. The λ ,μ entry of the h-to-p matrix is
OBλ ,μ

zλ
.

9. The λ ,μ entry of the h-to-s matrix is Kλ ,μ .
10. The λ ,μ entry of the s-to-h matrix is K−1

λ ,μ .

11. The λ ,μ entry of the p-to-h matrix is (−1)�(λ )+�(μ)w(Bλ ,μ).

Theorem 2.28 when applied to the dual bases {sλ : λ � n} and {sλ : λ � n} and
the dual bases {pλ : λ � n} and {pλ/zλ : λ � n} when applied to item 4 on the above
list gives

12. The λ ,μ entry of the s-to-p transition matrix is χμ
λ /zλ .

All of the above information about transition matrices is recorded as a directed
graph in Appendix A.

We have not provided a combinatorial interpretation of the entries are the m-to-e
and m-to-h transition matrices. Combinatorial interpretations for the entries of these
matrices are described in [9], but they do not have straightforward descriptions and
are difficult to use in applications, and so we choose to omit them.

In [115] and [116], White gave somewhat lengthy but purely combinatorial
proofs that the λ ,μ entry of the s-to-p transition matrix is χμ

λ /zλ . We shall give
a different approach to this result in Chapter 5 where we give a second proof of the
so-called Muraghan–Nakyama rule.

The combinatorial interpretations of the entries of the transition matrices for sym-
metric functions can be found in [33, 73] while the idea of using labeled abaci to
prove results about transition matrices is due to Loehr [80, 81].



Chapter 3
Counting with the Elementary
and Homogeneous Symmetric Functions

Let ϕ be a ring homomorphism on the ring of symmetric functions Λ . If we know
the values of ϕ(en) for all n, then, as described in the beginning of Section 2.5, we
know ϕ( f ) for any symmetric function f because f can be expressed as sums and
products of elementary symmetric functions.

In this chapter we will define certain ring homomorphisms ϕ on the elementary
symmetric functions. By understanding what ϕ does to the homogeneous symmetric
functions, we will be able to find generating functions for permutation statistics.

3.1 Counting Descents

A first example of how to use ring homomorphisms to find generating functions will
involve the distribution of descents in the permutations in the symmetric group Sn.
Let E0(x) = 1 and En(x) = ∑σ∈Sn xdes(σ). The first of these polynomials are

E0(x) = 1,

E1(x) = 1,

E2(x) = 1+ x,

E3(x) = 1+4x+ x2,

E4(x) = 1+11x+11x2 + x3,

E5(x) = 1+26x+66x2 +26x3 + x4,

E6(x) = 1+57x+302x2 +302x3 +57x4 + x5.

We will find a simple, closed expression for the generating function ∑∞
n=0 En(x)zn/n!.

© Springer International Publishing Switzerland 2015
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Theorem 3.1. Define a ring homomorphism ϕ : Λ →Q[x] by ϕ(e0) = 1 and

ϕ(en) =
(−1)n−1

n!
(x−1)n−1

for n ≥ 1. Then ϕ(hn) = En(x)/n!.

Proof. Theorem 2.18 says that the expansion of hn in terms of elementary symmet-
ric functions can be expressed in terms of brick tabloids. We have

n!ϕ(hn) = n! ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|ϕ(eλ )

= n! ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|ϕ(eλ1
)ϕ(eλλ2

) · · ·

= n! ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|
(−1)λ1−1

λ1!
(x−1)λ1−1 (−1)λ2−1

λ2!
(x−1)λ2−1 · · ·

= ∑
λ�n

(
n
λ

)
|Bλ ,(n)|(x−1)n−�(λ ), (3.1)

where
(n

λ
)

denotes the multinomial coefficient n!/(λ1!λ2! · · ·).
The plan is to create a collection of signed, weighed objects from (3.1) and then

define a sign reversing involution which leaves fixed points corresponding to En(x).
To begin, construct combinatorial objects in the following manner:

1. Select a permutation λ � n and a brick tabloid in Bλ ,(n).
2. If the lengths of the bricks in the brick tabloid are b1, . . . ,b�, then select � dis-

joint subsets of size b1, . . . ,b� from {1, . . . ,n}. Write these subsets in decreasing
order within the bricks of the brick tabloid.

3. Place a “1” in the last cell of each brick and place a choice of “x” or “−1” in
every other cell.

Let T be the set of objects created in this manner. For T ∈ T, define w(T ) to be the
product of the −1s and xs appearing in T . One possible T ∈ T with weight (−1)2x3

when n = 12 is

6 7 3 1 5 2 11 12 10 9 8 4

1 x x 1 −1 1 1 1 1 −1 x 1

.

In our three-step process of creating T ∈ T, step 1 accounts for the sum and the
|Bλ ,(n)| term in (3.1), step 2 accounts for the multinomial coefficient, and step 3

accounts for the (x−1)n−�(λ ) term. This means

n!ϕ(hn) = ∑
T∈T

w(T ).
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We now define an involution on T. Scan T ∈ T from left to right looking for the
first occurrence of either a −1 or two consecutive bricks with a decrease appearing
in the integer labeling between them.

If neither is found in T , leave T fixed. If a −1 is found first, then break the brick
with the −1 into two smaller bricks after the occurrence of the −1 and change the
−1 to a 1. If we find two consecutive bricks with a decrease appearing in the integer
labeling between them, combine the two bricks into one larger brick and change the
1 in the middle to a −1. The image of the T ∈ T displayed earlier in this proof under
this operation is

6 7 3 1 5 2 11 12 10 9 8 4

1 x x 1 1 1 1 1 1 −1 x 1

This process changes from an occurrence of a −1 into a descent and vice versa.
This is a sign reversing and weight preserving involution. Fixed points under this
involution must look like this:

3 11 6 1 7 4 2 12 10 9 8 5

1 x x 1 x x 1 x x x x 1

Fixed points must have no −1s and no decreases between bricks. These fixed points
naturally correspond to permutations in Sn with an x for each descent. This shows

n!ϕ(hn) = ∑
σ∈SN

xdes(σ) = En(x),

as desired. ��
Corollary 3.2. We have

∞

∑
n=0

En(x)
n!

zn =
x−1

x− e(x−1)z
.

Proof. Applying the ϕ in Theorem 3.1 to the identity in Theorem 2.5 gives

∞

∑
n=0

En(x)
n!

zn = ϕ

(
∞

∑
n=0

hnzn

)

=
1

ϕ (∑∞
n=0 en(−z)n)

=
1

1+∑∞
n=1

(−1)n−1

n! (x−1)n−1(−z)n

=
x−1

x− e(x−1)z
,

as required. ��
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In this chapter we will change the ring homomorphism ϕ in Theorem 3.1 in vari-
ous ways, thereby finding many generating functions from the relationship between
the elementary and homogeneous symmetric functions. In preparation, let us take a
closer look at ϕ:

ϕ(en) =
(−1)n−1

n!
(x−1)n−1.

(Whenever we define a ring homomorphisms on the ring of symmetric functions by
describing what happens to en, we will assume that n ≥ 1 since ϕ(e0) = ϕ(1) must
always equal 1 in order to be a homomorphism.) There are three main components
to this definition: the (−1)n−1 sign, the division by n!, and the (x − 1)n−1 term.
Each of the three components plays different roles in the proof of Theorem 3.1. Let
us examine each term carefully.

Since the coefficient of eλ in hn is (−1)n−�|Bλ ,(n)|, the (−1)n−1 sign in the defi-
nition of ϕ allows us to cancel the (−1)n−� sign when expanding the homogeneous
symmetric functions in terms of the elementary symmetric functions. This (−1)n−1

will be a mainstay in our upcoming variations on the homomorphism ϕ .
The division by n! gave rise to the multinomial coefficient

(n
λ
)

in equation (3.1).
This multinomial coefficient enabled us to fill our bricks with decreasing sequences
of integers. By changing the n! in the definition of ϕ we will be able to change how
we label the bricks with integers.

The (x−1)n−1 term in the definition of ϕ allowed us to weigh a brick of length n
by placing a choice of x or −1 in each nonterminal cell in a brick. By changing this
(x− 1)n−1 term we will be able to change how we weight each brick. We can find
many different generating functions by getting creative with this weighting term.

We begin showing how to modify ϕ to find new generating functions by showing
how to count the number of permutations in Sn where descents must be arranged in
certain ways. A permutation σ = σ1 · · ·σn ∈ Sn has a 2-descent if there is an index
i for which σi−1 > σi > σi+1. To count the number of permutations in Sn which do
not have a 2-descent, we will restrict how the x and −1 weights appear in each brick.

In particular, let Rn−1,i be the number of ways to rearrange i copies of x and n−
1− i copies of −1 such that no two xs appear consecutively. Changing the (x−1)n−1

term in the definition of ϕ to

f (n) = ∑
i≥0

Rn−1,ix
i(−1)n−1−i (3.2)

will allow us to weight each cell in a brick with either an x or a −1 such that no
two consecutive xs appear within a brick. This choice will force us to never have a
2-descent, as seen in the proof of Theorem 3.3.

Theorem 3.3. The generating function for permutations in Sn which do not have a
2-descent is

∞

∑
n=0

zn

n! ∑
σ ∈ Sn does not
have a 2-descent

xdes(σ) =
ez/2

cos
(

z
√

4x−1
2

)
− 1√

4x−1
sin
(

z
√

4x−1
2

) .
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Proof. Define a ring homomorphism ϕ by ϕ(e0) = 1 and

ϕ(en) =
(−1)n−1

n!
f (n)

for n ≥ 1 where f (n) is the function defined in (3.2). Following the same logic as
what led to (3.1), we find

n!ϕ(hn) = ∑
λ=(λ1,...,λ�)�n

(
n
λ

)
|Bλ ,(n)| f (λ1) f (λ2) · · · . (3.3)

Begin to create combinatorial objects from (3.3) by using the summation, the
|Bλ ,(n)| term, and the multinomial coefficient to follow steps 1 and 2 in the proof
of Theorem 3.1. This creates a brick tabloid of shape (n) with the numbers 1, . . . ,n
written in the cells such that each brick contains a decreasing sequence. To account
for the f (λ1) · · · f (λ�) term in (3.3), place a 1 at the end of each brick and an x or
−1 in every other cell such that no two xs appear in consecutive cells.

Let T be the set of objects created in this manner and let w(T ) be the product of
the −1s and xs appearing in T ∈ T. An example of a T ∈ T with weight (−1)5x4 is

12 11 9 8 7 2 5 1 10 6 4 3

−1 x −1 −1 x 1 x 1 −1 −1 x 1

.

The signed, weighed sum over all possible T ∈ T is equal to n!ϕ(hn).
Perform the same sign reversing, weight preserving involution in the proof of

Theorem 3.1: scan from left to right looking for the first −1 or consecutive bricks
with a decrease between them. Break or combine bricks accordingly. The fixed
points under this involution look like

12 5 7 8 2 11 4 6 10 1 3 9

x 1 1 x 1 x 1 1 x 1 1 1

as there can be no −1s or decreases between bricks. These fixed points correspond
to permutations in Sn which do not have a 2-descent with a weight giving the number
of descents. This shows

ϕ(hn) =
1
n! ∑

σ ∈ Sn does not
have a 2-descent

xdes(σ).

To find a generating function, we apply ϕ to both sides of the identity

∞

∑
n=0

hnzn =
1

∑∞
n=0 en(−z)n

to find
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∞

∑
n=0

zn

n! ∑
σ ∈ Sn does not
have a 2-descent

xdes(σ) =
1

1+∑∞
n=1

(−1)n−1

n! f (n)(−z)n
. (3.4)

Our only remaining task is to use the definition of f (n) to transform the right-
hand side of (3.4) into the function displayed in the statement of the theorem. This is
not a particularly difficult task but does require showing that a number of identities
are true. Since this task is not strictly necessary—after all, (3.4) already gives us
the desired generating function—and since showing these manipulations right now
might distract from our development, we have chosen to describe how to turn (3.4)
into the statement of the theorem in Exercises 3.5 and 3.6. ��

If we take x = 1 in the generating function in Theorem 3.3, we find

∞

∑
n=0

zn

n!
|{σ ∈ Sn does not have a 2-descent}|= ez/2

cos
(

z
√

3
2

)
− 1√

3
sin
(

z
√

3
2

) . (3.5)

The coefficients |{σ ∈ Sn does not have a 2-descent}|/n! tell us the probability that
a permutation in Sn will not have a 2-descent.

This generating function in (3.5) is ripe for using the methods described in the
second part of Section 1.3. The singularities of this function are when the denomina-
tor is 0, which happens when z= 2π

√
3/9+2kπ

√
3/3 for integers k. The singularity

closest to 0, namely 2π
√

3/9, is the radius of convergence. Using L’Hôpitals rule,

lim
z→2π

√
3/9

(

z− 2π
√

3
9

)
ez/2

cos
(

z
√

3
2

)
− 1√

3
sin
(

z
√

3
2

) =−eπ
√

3/9,

and so multiplying by (z− 2π
√

3/9) removes this singularity. This means that our
generating function behaves like that of

−eπ
√

3/9
(
z−2π

√
3/9

) = eπ
√

3/9
∞

∑
n=0

(
9

2π
√

3

)n+1

zn

for values of z close to 2π
√

3/9. The singularity second closest to 0 has magnitude
|−4π

√
3/9|, a number with reciprocal less than 0.42. Putting everything together,

∣
∣
∣
∣
∣
|{σ ∈ Sn does not have a 2-descent}|

n!
− eπ

√
3/9
(

9

2π
√

3

)n+1
∣
∣
∣
∣
∣
< (0.42)n

for large enough n. We now have a wonderful approximation for the coefficients of
our generating function.

We can extract even more information from Theorem 3.3 to answer questions like
this: What is the expected number of descents in a permutation without a 2-descent?
Differentiating the function in Theorem 3.3 with respect to x and evaluating the
result at x = 1 gives
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∞

∑
n=0

zn

n! ∑
σ ∈ Sn does not
have a 2-descent

des(σ) =
ez/2

(√
3(2−3z)sin

(√
3z
2

)
−3zcos

(√
3z
2

))

√
3
(

cos
(√

3z
2

)
− 1√

3
sin
(√

3z
2

))2 .

Again we have a function amenable to the techniques found in the second part of
Section 1.3. Doing similar but more intricate calculations as shown above, we can
find that

((
4π −3

√
3

6π

)

(n+1)− 9+2π
√

3
27

)

eπ
√

3/9
(

9

2π
√

3

)n+1

is within (0.42)n of 1
n! ∑σ ∈ Sn does not have a 2-descent des(σ) for large enough n. Com-

bining this last approximation with the approximation for the number of permuta-
tions without a 2-descent, we can find an approximation for the expected number of
descents in a permutation without a 2-descent:

∑σ ∈ Sn does not have a 2-descent des(σ)

|{σ ∈ Sn does not have a 2-descent}| ≈
(

4π −3
√

3
6π

)

(n+1)− 9+2π
√

3
27

.

The ring homomorphism

ϕ(en) =
(−1)n−1

n!
f (n),

where f (n) is given by (3.2), was used in the proof of Theorem 3.3. This f (n)
was designed so that no two consecutive xs would appear in a brick, which in turn
allowed us to find the generating function for the number of permutations without a
2-descent. Suppose we change this f (n) to

∑
i≥0

Rn−1,i, jx
i(−1)n−1−i (3.6)

where Rn−1,i, j is the number of ways to rearrange i copies of x and n−1− i copies of
−1 such that no j xs appear consecutively. This new f (n) would give the generating
function for the number of permutations without j consecutive descents, otherwise
known as j-descents. Indeed, only slight modifications to the proof of Theorem 3.3
are needed to show that

∞

∑
n=0

zn

n! ∑
σ ∈ Sn does not
have a j-descent

des(σ) =
1

1+∑∞
n=1

(−1)n−1

n! (−z)n ∑i≥0 Rn−1,i, jxi(−1)n−1−i
.

(3.7)

When j = 2, we were able to manipulate the generating function in (3.7) to get an
explicit formula involving sines and cosines as displayed in Theorem 3.3, but such
a simplification is not usually possible. However, if we specialize (3.7) by taking
x = 1, we can find a nice form for the resulting generating function:
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Theorem 3.4. For j ≥ 1,

∞

∑
n=0

|{σ ∈ Sn does not have a j-descent}| z
n

n!
=

j+1

(1−ζ j)eζ z + · · ·+(1−ζ )eζ jz
,

where ζ = e2πi/( j+1) is a primitive ( j+1)th root of unity.

Proof. We begin by showing the identity

∑
i≥0

(−1)iRn−1,i, j =

⎧
⎪⎨

⎪⎩

(−1)n−1 if j+1 divides n−1,

(−1)n if j+1 divides n,

0 otherwise,

(3.8)

with a sign reversing involution I.
Define the sign of r = r1 . . .rn−1 ∈ Rn−1,i, j to be (−1)i. If r1 = x, then let I(r) be

the rearrangement r with r1 changed to (−1). If r1 = (−1) and changing this value
to x does not create j copies x which appear consecutively in r, then let I(r) be the
rearrangement r with r1 changed to x.

If r1 = (−1) and xr2r3 · · ·rn−1 has j consecutive xs, then either

r = (−1) x x · · · x︸ ︷︷ ︸
j−1

or r = (−1) x x · · · x︸ ︷︷ ︸
j−1

(−1) r j+2 · · · rn−1.

In the first case, define I(r) = r, and in the second case, inductively define I(r) such
that I(r) = r1 · · ·r j+1I(r j+2 · · ·rn−1).

There are only two possible fixed points r under this sign reversing involution I:

r = (−1) x x · · · x (−1)
︸ ︷︷ ︸

j+1

(−1) x x · · · x (−1)
︸ ︷︷ ︸

j+1

· · ·(−1) x x · · · x (−1)
︸ ︷︷ ︸

j+1

and

r = (−1) x x · · · x (−1)
︸ ︷︷ ︸

j+1

(−1) x x · · · x (−1)
︸ ︷︷ ︸

j+1

· · ·(−1) x x · · · x
︸ ︷︷ ︸

j

In the first case, j+1 divides n−1 and the sign is (−1)
n−1
j+1 ( j−1) = (−1)n−1. In the

second case, j + 1 divides n and the sign is (−1)
n

j+1 ( j−1) = (−1)n. We have now
verified (3.8).

Taking x = 1 in (3.7) and using (3.8), we can find that

∞

∑
n=0

|{σ ∈ Sn does not have a j-descent}| z
n

n!
=

1

∑∞
n=0

z( j+1)n

(( j+1)n)! − z( j+1)n+1

(( j+1)n+1)!

.

Using the idea in Exercise 1.18, the right side of the above equation is
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(
eζ 0z + · · ·+ eζ jz

j+1
−
∫

eζ 0z + · · ·+ eζ jz

j+1
dz

)−1

,

which in turn may be simplified to look like the statement of the theorem. ��
As indicated in the last two theorems, changing the definition of the function

f (n) in the ring homomorphism ϕ(en) = (−1)n−1 f (n)/n! can produce generating
functions for permutations where the appearances of descents are restricted in some
way.

We end this section with one last example of this phenomenon, with more
examples given in Exercises 3.7 and 3.8.

A permutation σ = σ1σ2σ3 · · ·σn ∈ Sn is alternating provided

σ1 > σ2 < σ3 > σ4 < · · · .

Descents occur exactly at odd indices in an alternating permutation.
To find the generating function for the number of alternating permutations in S2n,

we would like to apply the involution in Theorems 3.1 and 3.3 to find fixed points
which are brick tabloids with bricks of exactly length 2. Defining

f (n) =

{
(−1)n/2−1 if n is even,

0 if n is odd
(3.9)

will do this for us, as shown below.

Theorem 3.5. We have
∞

∑
n=0

|{σ ∈ Sn is alternating}| z
n

n!
= secz+ tanz.

Proof. Let ϕ be the ring homomorphism on the ring of symmetric functions defined
by ϕ(en) = (−1)n−1 f (n)/n! where f (n) is given in (3.9). This definition of ϕ will
imply that ϕ(hk) = 0 when k is odd, so we focus our attention on ϕ(h2n). The same
steps as what led to (3.1) shows that

(2n)!ϕ (h2n) = ∑
λ�2n

(
2n
λ

)
|Bλ ,(2n)| f (λ1) f (λ2) · · · .

Using this sum, construct combinatorial objects by selecting a brick tabloid of
shape (2n) such that every brick is an even length. Write the integers 1, . . . ,2n in the
cells of the bricks such that each brick contains a decreasing sequence. In addition
to forcing each bricks to be of an even length, the function f (n) instructs us to place
a 1 in the final cell of each brick and a −1 in all other even cells. For example, one
such combinatorial object is

12 11 9 8 7 2 5 1 10 6 4 3

−1 −1 1 1 −1 1

.
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Perform the usual involution, first described in the proof of Theorem 3.1: scan the
bricks from left to right looking for either a −1 or a decrease between consecutive
bricks and break or combine bricks accordingly. Fixed points cannot have a −1 or a
decrease between bricks, and so they must look like the object below.

12 9 11 2 8 7 10 5 6 1 4 3

1 1 1 1 1 1

.

These fixed points correspond to alternating permutations, thereby proving that
(2n)!ϕ(h2n) is the number of alternating permutations in S2n. Applying ϕ to
Theorem 2.5 gives a generating function for the number of alternating permutations
of an even number:

∞

∑
n=0

|{σ ∈ S2n is alternating}| z2n

(2n)!
= ϕ

(
∞

∑
n=0

hnzn

)

=
1

∑∞
n=0 ϕ(en)(−z)n

=
1

∑∞
n=0

(−1)n

(2n)! z2n
.

This last line is equal to secz.
To understand the alternating permutations of an odd number, we apply the ring

homomorphism to the power symmetric functions. Using Theorem 2.22,

(2n−1)!ϕ(p2n) = (2n−1)! ∑
λ�2n

(−1)n−�(λ )w(Bλ ,(n))ϕ(eλ1
)ϕ(eλ2

) · · ·

= ∑
λ�2n

∑
T ∈ Bλ ,(2n) has even

length bricks b1, . . . ,b�

(2n−1)!
b1! · · ·bk!

(bk)(−1)
b1
2 +···+ bk

2 −k.

= ∑
λ�2n

∑
T ∈ Bλ ,(2n) has even

length bricks b1, . . . ,b�

(
2n−1

b1, . . . ,b�−1,b�−1

)
(−1)

b1
2 +···+ b�

2 −�.

From this sum we can create the same objects as we did for (2n)!ϕ(h2n) with the
exception that we use the integers 1, . . . ,2n−1 instead of 1, . . . ,2n, leaving the final
cell without an integer. These combinatorial objects look like this:

11 10 9 8 7 2 5 1 6 4 3

−1 −1 1 1 −1 1

.

The brick breaking or combining involution leaves fixed points corresponding to al-
ternating permutations, and so (2n−1)!ϕ(p2n) is equal to the number of alternating
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permutations in S2n−1. Applying ϕ to both sides of Corollary 2.10 shows that the
generating function ∑∞

n=1 |{σ ∈ S2n−1 is alternating}| z2n−1

(2n−1)! is equal to

ϕ

(
1
z

∞

∑
n=0

pnzn

)

=
∑∞

n=1(−1)n−1nϕ(en)zn−1

∑∞
n=0 ϕ(en)(−z)n

=

(
∞

∑
n=1

(−1)n−1z2n−1

(2n−1)!

)

/

(
∞

∑
n=0

(−1)nz2n

(2n)!

)

.

This last line is equal to tanz.
Adding together the generating functions for the even alternating permutations

with the generating function for the odd alternating permutations gives secz+ tanz,
as desired. ��

The singularity of secz+ tanz closest to 0 is at π/2 and the singularity second
closest to 0 is at −3π/2. Since limz→π/2(z−π/2)(secz+ tanz) =−2, the methods
in the second part of Section 1.3 tell us that

∣
∣
∣
∣
∣
|{σ ∈ Sn is alternating}|

n!
−2

(
2
π

)n+1
∣
∣
∣
∣
∣
<

(
2

3π
+0.0001

)n

for large enough n. Therefore the probability that a random permutation in Sn is
alternating is approximately 2n+2/πn+1.

3.2 Changing Brick Labels

In Section 3.1, the function f (n) in the definition of the ring homomorphism
ϕ(en) = (−1)n−1 f (n)/n! was changed, enabling us to count permutations with des-
cents appearing in prescribed ways. In this section we will change the n! in the
definition of ϕ , enabling us to keep track of more permutation statistics and count
objects other than permutations.

As a first example, consider the ring homomorphism defined by

ϕ(en) =
(−1)n−1

[n]q!
q(

n
2)(x−1)n−1. (3.10)

Without the extra powers of q, this is the same ring homomorphism defined in
Theorem 3.1. Our goal is to show that the extra powers of q keep track of inver-
sions. The next lemma will help in the process.

A descending run in a permutation is a consecutive decreasing subsequence. For
example, 9 8 2 6 5 4 3 1 7 has descending runs 982, 65431, and 7.
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Lemma 3.6. Let b1, . . . ,b� be nonnegative integers which sum to n. Then
[

n
b1, . . . ,b�

]

q
q(

b1
2 )+···+(b�

2 ) = ∑
σ ∈ Sn has descending

runs of lengths b1, . . . ,b�

qinv(σ).

Proof. Exercise 1.2, which is a straightforward generalization of Theorem 1.4, says
[

n
λ

]

q
=

[
n

b1, . . . ,b�

]

q
= ∑

r∈R(1b1 ,...,�b� )

qinv(r),

so the q-multinomial coefficient in (3.11) instructs us to select a r ∈ R(1b1 , . . . , �b�).
With r we will associate a permutation σ−1 ∈ Sn by numbering from right to left all
the 1s in r with 1, . . . ,b1, then numbering all the 2s in r with b1 +1, . . . ,b1 +b2, and
so on. For example, say b1 = 4,b2 = 5, and b3 = 3. Let r = 2 2 3 1 2 3 1 2 2 1 3 1
be the element selected in R(14,25,33). The table below records r, σ−1, and σ :

1 2 3 4 5 6 7 8 9 10 11 12
r = 2 2 3 1 2 3 1 2 2 1 3 1
σ−1 = 9 8 12 4 7 11 3 6 5 2 10 1
σ = 12 10 7 4 9 8 5 2 1 11 6 3

We have designed σ to have decreasing sequences of lengths b1, . . . ,b�. Further-
more, by construction,

inv(σ) = inv
(
σ−1)= inv(r)+

(
b1

2

)
+ · · ·+

(
b�
2

)

because inv(r) gives the inversions between descending runs and
(bi

2

)
gives the inv-

ersions within the ith descending run in σ . ��
The proof of Lemma 3.6 can be easily modified to show that

[ n
b1,...,b�

]
is equal to

∑qinv(σ) where the sum runs over the permutations σ ∈ Sn with increasing runs of
lengths b1, . . . ,b�.

Theorem 3.7. We have

∞

∑
n=0

zn

[n]q! ∑
σ∈Sn

xdes(σ)qinv(σ) =
x−1

x− e(x−1)z
q

,

where ez
q = ∑∞

n=0 q(
n
2)zn/[n]q! is a q-analogue of the exponential function.

Proof. We will retrace the proof of Theorem 3.1, keeping track of what happens to
powers of q along the way. Applying the homomorphism ϕ in (3.10) to [n]q!hn gives

[n]q!ϕ(hn) = ∑
λ�n

[
n
λ

]

q
q(

λ1
2 )+(

λ2
2 )+···|Bλ ,(n)|(x−1)λ1−1(x−1)λ2−1 · · · . (3.11)
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Begin to create combinatorial objects by selecting a brick tabloid T ∈ Bλ ,(n) for
some λ � n. Fill each nonterminal cell in each brick in T with a choice of either
x or −1 and place a +1 in the terminal cell of each brick. These choices use the
summand, the |Bλ ,(n)| term, and the (x−1) terms in (3.11).

Suppose the bricks in T have lengths b1, . . . ,b� when read from left to right.
Lemma 3.6 uses the powers of q in (3.1) to fill the cells of T with a permutation
σ ∈ Sn such that the integers in σ decrease within bricks. In each cell, write a power
of q counting the number of integers to the right which are larger.

For example, one such combinatorial object created in the above manner is

12 10 7 4 9 8 5 2 1 11 6 3

q11 q9 q6 q3 q6 q5 q3 q1 q0 q2 q1 q0

x x −1 1 x −1 −1 x 1 −1 −1 1

.

If we define the weight of such a combinatorial object to be the product of all xs,
(−1)s, and powers of q, then [n]q!ϕ(hn) is the weighted sum over all possible com-
binatorial objects.

The usual brick breaking and combining involution does not change the inte-
gers in the underlying permutation and therefore does not affect the powers of q.
This involution leaves fixed points corresponding to ∑σ∈Sn xdes(σ)qinv(σ). The gen-
erating function in the statement of the theorem follows from applying ϕ(en) to
Theorem 2.5. ��

Every choice for f (n) in section 3.1 when defining ϕ(en) = (−1)n−1 f (n)/n! can
be used to define ϕ(en) = (−1)n−1 f (n)/[n]q!. This means all of our previous results
can include a power of q to keep track of inversions. For example, one possible such
q-analogue is

∞

∑
n=0

zn

n! ∑
σ ∈ Sn is alternating

qinv(σ) =
1+ sinq z

cosq z
,

where cosq z = ∑∞
n=0(−1)nq(

2n
2 ) z2n

[2n]q! and sinq z = ∑∞
n=0(−1)nq(

2n+1
2 ) z2n+1

[2n+1]q! .
A second way to change the labels on a brick tabloid can be used to understand

the distribution of common descents in two permutations. For σ = σ1, . . . ,σn and
τ = τ1, . . . ,τn ∈ Sn, let comdes(σ ,τ) be the number of indices i for which σi > σi+1

and τi > τi+1. In order to find a generating function for ∑σ ,τ∈Sn xcomdes(σ ,τ), consider
the ring homomorphism defined by

ϕ(en) =
(−1)n−1

(n!)2 (x−1)n−1. (3.12)

Changing the “1/n!” to a “1/(n!)2” will permit us to include two permutations in
our brick tabloids instead of one.
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Theorem 3.8. We have
∞

∑
n=0

zn

(n!)2 ∑
σ ,τ∈Sn

xcomdes(σ ,τ) =
x−1

x−∑∞
n=0

(x−1)nzn

(n!)2

.

Proof. Using Theorem 2.18 to apply the homomorphism in (3.12) to (n!)2hn gives

(n!)2ϕ(hn) = ∑
λ�n

(
n
λ

)2

|Bλ ,(n)|(x−1)λ1−1(x−1)λ2−1 · · · .

This sum tells us to create combinatorial objects similar to those in the proof of
Theorem 3.1 but which contain two permutations instead of one:

11 5 3 12 10 8 4 2 9 7 6 1

10 2 4 12 9 7 6 1 11 8 5 3

x 1 1 −1 x −1 −1 1 x −1 x 1

.

Scan these objects from left to right looking for the first common descent or −1
and break or combine the bricks accordingly. Fixed points under this involution have
no −1s and have powers of x registering the number of common descents, showing
that (n!)2ϕ(hn) = ∑σ ,τ∈Sn xcomdes(σ ,τ). The generating function in the statement of
the theorem follows from applying ϕ to Theorem 2.5. ��

We could easily find a similar generating function for common descents in m-
tuples of permutations and we can change the “(x− 1)n−1” in (3.12) to any choice
of “ f (n)” in order to restrict the appearances of common descents in some way.
In order to keep track of the inversions for each permutation, these results can be
q-analogued by considering homomorphisms of the form (−1)n−1 f (n)/([n]q1! [n]q2!).

A third way to change the brick labels will help us understand words. A word
with letters in {0, . . . ,k − 1} is a finite sequence w = w1 · · ·wn with each wi ∈
{0, . . . ,k−1}. The set of all words of length n with letters in {0, . . . ,k−1} is denoted
by {0, . . . ,k−1}∗n. The ring homomorphism defined by

ϕ(en) = (−1)n−1q(
n
2)
[

k
n

]

q
(x−1)n−1, (3.13)

where k is a positive integer, will enable us to prove the result below.

Theorem 3.9. If sum(w) denotes the sum of the integers in w ∈ {0, . . . ,k−1}∗n, then

∞

∑
n=0

zn ∑
w∈{0,...,k−1}∗n

xdes(w)qsum(w) =
x−1

x− (z− zx;q)k
,

where (a;q)k denotes the product (1−aq0)(1−aq1) · · ·(1−aqk−1).

Proof. Each r ∈ R(0n,1k−n) is associated with nonincreasing word w ∈ {0, . . . ,k−
1}∗n by interpreting the number of 0s before the ith 1 in r to be the number of (i−1)s
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in w. To make w strictly decreasing, add n− i to the ith integer in w. For instance,
r = 0 0 1 1 0 0 0 1 0 0 1 corresponds to w = 3 3 2 2 2 0 0. Adding 6,5,4,3,2,1, and
0 to w gives the strictly decreasing word 9 8 6 5 4 3 1 0.

Theorem 1.4 says that q(
n
2)
[k

n

]
q = q(

n
2)∑r∈R(0n,1k−n) qinv(r). The number of inver-

sions in each rearrangement r is equal to the sum of the integers in the corresponding
word w. Since adding n− i to the ith integer increases this sum by

(n
2

)
, we have

q(
n
2)
[

k
n

]

q
= ∑

w ∈ {0, . . . ,k−1}∗n is
strictly decreasing

qsum(w). (3.14)

If ϕ is as defined in (3.13), then

ϕ(hn) = ∑
λ�n

q(
λ1
2 )
[

k
λ1

]

q
q(

λ1
2 )
[

k
λ1

]

q
· · · |Bλ ,(n)|(x−1)λ1−1(x−1)λ2−1 · · · .

This sum tells us to create combinatorial objects like this (using k = 8):

7 5 3 3 7 7 2 5 4 3 2 1

q7 q5 q3 q3 q7 q7 q2 q5 q4 q3 q2 q1

x x 1 1 1 −1 1 x −1 x x 1

.

Instead of a permutation, (3.14) allows us to fill each brick with a strictly decreasing
word in {0, . . . ,k−1}∗n and places a power of q to match integer in each cell.

Scan the bricks from left to right looking for either the first −1 or a weak de-
crease between consecutive bricks. Break or combine the bricks accordingly. This
involution shows ϕ(hn) = ∑w∈{0,...,k−1}∗n xdes(w)qsum(w). Applying ϕ to Theorem 2.5
gives

∞

∑
n=0

zn ∑
w∈{0,...,k−1}∗n

xdes(w)qsum(w) =
x−1

x−∑∞
n=0 q(

n
2)
[k

n

]
q(x−1)nzn

.

The q-binomial theorem, displayed in our Exercise 1.6, says that generating function
be written to look like the statement of the theorem. ��

Every choice for f (n) in section 3.1 when defining ϕ(en) = (−1)n−1 f (n)/n! can

be used to define a ring homomorphism ϕ(en) = (−1)n−1q(
n
2)
[k

n

]
f (n). This allows

us to restrict the appearances of descents in words.
To illustrate this point, suppose we wanted to count the words in {0, . . . ,k−1}∗n

which never have j consecutive descents, paralleling our result in Theorem 3.4. If
we define a ring homomorphism by ϕ(en) = (−1)n−1

(k
n

)
f (n) where f (n) is given

in (3.6), then ϕ(hn) is a sum of combinatorial objects built from brick tabloids with
the exception that bricks contain decreasing sequences in {0, . . . ,k−1}∗n instead of
decreasing runs in a permutation. Replacing “1/n!” with “

(k
n

)
” in (3.7) gives
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∞

∑
n=0

zn ∑
w ∈ {0, . . . ,k−1}∗n does not

have j consec. descents

xdes(w) =
1

1+∑n=1(−z)n
(k

n

)
∑i≥1 Rn−1,i, j(−x)i

,

where Rn−1,i, j is the number of ways to rearrange i copies of x and n− i−1 copies
of −1 such that no j xs appear consecutively. Specializing by taking x = 1 and
simplifying using the approach found in the proof of Theorem 3.4, we can find that

∞

∑
n=0

|{w ∈ {0, . . . ,k−1}∗n does not have j consecutive descents}|zn

=
j+1

(1−ζ j)(1+ζ z)k + · · ·+(1−ζ )(1+ζ jz)k ,

where ζ = e2πi/( j+1) is a primitive ( j+1)th root of unity.
Although the result in Theorem 3.9 is about words, it can be translated into a

statement about permutations in Sn; in particular, it gives information about the joint
distribution of the descents, descents of the inverse, and major index statistics.

Theorem 3.10. We have

∞

∑
n=0

zn

(u;q)n+1
∑

σ∈Sn

xdes(σ−1)udes(σ)qmaj(σ) =
∞

∑
k=0

(x−1)uk

x− (z− zx;q)k+1
.

Proof. Select a term in ∑w∈{0,...,k−1}∗n xwdes(w)qsum(w) and let r be the reverse of the
word w. With r we associate a permutation σ−1 ∈ Sn by numbering from left to right
the (k−1)s in r, then from left to right numbering the (k−2)s in r, and so on. This
forces the (k−1)s in r to correspond to the first block of numbers in σ , the (k−2)s
in r to correspond to the second block of numbers in σ , and so on. These blocks sort
the exponents on q in nonincreasing order.

Next we associate with r a nonnegative integer sequence a = a1 · · ·an such that
ai is the difference between consecutive exponents on q in σ for i = 1, . . . ,n−1 and
an is the final q exponent. For example, if k = 8 and w = 7 5 3 3 7 7 2 5 4 3 2 1, then
here are r, σ−1, σ , the q exponents, and a:

1 2 3 4 5 6 7 8 9 10 11 12
r = 1 2 3 4 5 2 7 7 3 3 5 7

σ−1 = 12 10 7 6 4 11 1 2 8 9 5 3
σ = 7 8 12 5 11 4 3 9 10 2 6 1

q exponents = 7 7 7 5 5 4 3 3 3 2 2 1
a = 0 0 2 0 1 1 0 0 1 0 1 1

This permutation σ and sequence a have the following properties:

1. The word w can be reconstructed from σ and a, so the process of associating w
with the pair (σ ,a) is invertible.

2. The number of descents in σ−1 is the number of descents in w.
3. Since the ith exponent is ai + · · ·+an, the q exponents sum to 1a1 + · · ·+nan.
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4. As a special case of the last fact, the maximum q exponent is a1 + · · ·+an.
5. We have ai = 0 if and only if σi < σi+1.

Therefore the sum ∑w∈{0,...,k−1}∗n xdes(w)qsum(w) is equal to

k−1

∑
j=0

(
∑

σ∈Sn

xdes(σ−1) ∑
sequences a1 · · ·an

with ai = 0 iff σi < σi+1

q1a1+···+nanua1+···+an
)
∣
∣
∣
∣
∣
u j

=
1

1−u ∑
σ∈Sn

xdes(σ−1) ∑
sequences a1 · · ·an

with σi < σi+1 iff ai = 0

(uq1)a1 · · ·(uqn)an

∣
∣
∣
∣
∣
uk−1

.

Let χ(σi < σi+1) equal 1 if σi < σi+1 is true and 0 if false. With this notation, the
above sum is equal to

1
1−u ∑

σ∈Sn

xdes(σ−1) ∑
a1≥χ(σ1>σ2)

(uq)a1 ∑
a1≥χ(σ2>σ3)

(uq2)a2 · · · ∑
an≥0

(uqn)an

∣
∣
∣
∣
∣
uk−1

= ∑
σ∈Sn

xdes(σ−1) (uq)χ(σ1>σ2)(uq2)χ(σ2>σ3) · · ·1
(1−u)(1−uq)(1−uq2) · · ·(1−uqn)

∣
∣
∣
∣
∣
uk−1

=
1

(u;q)n+1
∑

σ∈Sn

xdes(σ−1)udes(σ)qmaj(σ)

∣
∣
∣
∣
∣
uk−1

.

The result displayed in the statement of the theorem now follows by applying the
result in Theorem 3.9 and summing over all k. ��

Taking q = 1 in Theorem 3.9, we find

∞

∑
n=0

zn ∑
w∈{0,1,...,k−1}∗n

xdes(w) =
x−1

x− (1+ z(x−1))k .

In Theorem 3.11, we formally extend this generating function to words with letters
taken from an infinite alphabet. This infinite version of Theorem 3.9 is not remark-
able because of the generating function itself but because the ring homomorphism
used in the proof is defined by sending elementary symmetric functions to a special-
ization of the elementary symmetric functions. Examples where we define similar
ring homomorphisms by sending the elementary symmetric functions to specializa-
tions of the homogeneous symmetric functions and the power symmetric functions
can be found in Exercise 3.15.

Theorem 3.11. We have

∞

∑
n=0

zn ∑
w1···wn∈{1,2,...}∗n

xdes(w)yw1 · · ·ywn =
x−1

x−∏i≥1(1+ z(x−1)yi)
,

where {1,2, . . .}∗n denotes the set of words of length n with letters in {1,2, . . .}.
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Proof. Define a ring homomorphism ϕ on Λn by

ϕ(en) = (−1)n−1(x−1)n−1en(y1,y2, . . .)

for n ≥ 1. It follows that

ϕ(hn) = ∑
λ�n

∣
∣Bλ ,(n)

∣
∣(x−1)n−�(λ )eλ (y1,y2, . . .).

From this sum we create combinatorial objects by selecting a brick tabloid of
shape (n) for some λ � n and make a choice of x or −1 for each nonterminal cell of
each brick. Use the elementary symmetric function eλ (y1,y2, . . .) to place a square-
free monomial in y1,y2, . . . in each brick by placing a variable yi in each cell such
that subscripts strictly decrease from left to right. One such example of a combina-
torial object created in this way is

y6 y5 y1 y3 y88 y7 y2 y9 y4 y3 y2 y1

x x 1 1 1 −1 1 x −1 x x 1

.

The weight of such an object is the product of all x, −1, and y variables.
Apply the usual involution on this collection of combinatorial objects by looking

for decreases in the subscripts of the y variables between two bricks and breaking
or combining accordingly. Fixed points correspond to words w ∈ {1,2, . . .}∗n with a
power of x for each strict decrease in w and a subscript on the variable y for each
letter in w.

This proves

ϕ(hn) = ∑
w1···wn∈{1,2,...}∗n

xdes(w)yw1 · · ·ywn .

The generating function in the statement of the theorem follows from applying ϕ to
Theorem 2.5 and using the definition of the generating function E(z) on page 35 to
simplify. ��

Our next two results, Theorems 3.12 and 3.13, illustrate how sums in the defini-
tion of the ring homomorphism ϕ can permit different choices of bricks in a brick
tabloid.

Again considering words over the infinite alphabet w = w1 · · ·wn ∈ {1,2, . . .}∗n,
we can keep track of descents between consecutive even integers in w and consec-
utive odd integers in w separately. Let even des(w) be the number of indices i for
which wi > wi+1 and both wi and wi+1 are even. Similarly, let odd des(w) be the
number of indices i for which wi > wi+1 and both wi and wi+1 are odd.

Theorem 3.12. The generating function

∞

∑
n=0

zn ∑
w1···wn∈{1,2,...}∗n

ueven des(w)veven des(w)yw1 · · ·ywn
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is equal to

(u−1)(v−1)

uv−1− (v−1)

(
∞

∏
i=1

(1+ z(u−1)y2i)

)

− (u−1)

(
∞

∏
i=1

(1+ z(v−1)y2i−1)

) .

Proof. Let f (n) be the function
(
en(y2,y4,y6, . . .)(u−1)n−1 + en(y1,y3,y5, . . .)(v−1)n−1)

and define a ring homomorphism ϕ by ϕ(en) = (−1)n−1 f (n). Then we have

ϕ(hn) = ∑
λ�n

|Bλ ,(n)| f (λ1) f (λ2) · · · .

Start building combinatorial objects by selecting T ∈ Bλ ,(n) for some λ � n. Each
brick of length k is assigned a term of the form f (k).

The sum in the definition of f (k) gives us a choice for each brick: use the
ek(y2,y4, . . .)(u− 1)k−1 term or use the ek(y1,y3, . . .)(v− 1)k−1 term. If we select
the former, place a sequence of yis in the cells of the brick such that subscripts dec-
rease, just like in the proof of Theorem 3.11, with the further specification that only
even subscripts appear in the brick. Additionally, place a choice of either u or −1
in each nonterminal cell of the brick. Let us call these bricks “even bricks”. If we
select the ek(y1,y3, . . .)(v−1)k−1 term for a brick of length k, do the same operation
but with odd subscripts in the brick and vs instead of us. Let us call these bricks
“odd bricks.”

The involution we define on such combinatorial objects is our usual brick break-
ing and combining involution with the modification that we only consider breaking
or combining two even bricks or two odd bricks. That is, scan from left to right look-
ing for the first −1, two consecutive even bricks which can be combined to create a
larger even brick or two consecutive odd bricks which can be combined to create a
larger odd brick. Break or combine accordingly.

Fixed points under this involution look like this:

y6 y4 y2 y15 y11 y7 y5 y12 y10 y6 y4 y2

u u 1 v v v 1 u u u u 1

.

These fixed points correspond to words w ∈ {1,2, . . .}∗n with a u weight correspond-
ing to even des(w), a v weight corresponding to odd des(w), and a yi each time i
appears in w. It follows that ϕ(hn)=∑w1···wn∈{1,2,...}∗n ueven des(w)veven des(w)yw1 · · ·ywn .
To find the generating function in the statement of the theorem, apply ϕ to both
sides of Theorem 2.5 and perform routine simplifications similar to those found in
the proof of Theorem 3.11. ��
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We can specialize the generating function in Theorem 3.12 to the finite alphabet
{1, . . . ,k} by setting yi = 0 for i > k. For example, by setting yi = 1 for i ≤ 3, setting
yi = 0 for i > 3, and setting u = v = 0, we find

∞

∑
n=0

zn{w ∈ {1,2,3}∗n has even des(w) = odd des(w) = 0}= 1
1−3z+ z2 .

This happens to equal the generating function of even Fibonacci numbers ∑∞
n=0 F2nzn

where F0 = F1 = 1 and Fn = Fn−1 +Fn−2.
For a word w = w1 · · ·wn ∈ {0, . . . ,k− 1}∗n, define block j(w) to be the number

of maximal consecutive strings of js in w. For example, if w = 11022211001, then
block0(w) = 2, block1(w) = 3, and block2(w) = 1.

Theorem 3.13. We have

∞

∑
n=0

zn ∑
w∈{0,...,k−1}∗n

xblock0(w)
0 · · ·xblockk−1(w)

k−1 =

(

1−
k−1

∑
i=0

xiz
1− (1− xi)z

)−1

.

Proof. Define ϕ(en) = (−1)n−1 f (n) where

f (n) = x0(1− x0)
n−1 + · · ·+ xk−1(1− xk−1)

n−1.

Applying ϕ to hn gives ∑λ�n |Bλ ,(n)| f (λ1) f (λ2) · · · from which we create combina-
torial objects by selecting a brick tabloid T ∈ Bλ ,(n) for some λ � n. For each brick
in T , select an i ∈ {0, . . . ,k−1}, place a choice of 1 or −xi in each nonterminal cell
in the brick, and place a xi in the terminal cell. One such combinatorial object is

1 −x2 −x2 x2 1 1 x1 x1 1 1 −x0 x0
.

Scan from left to right looking for either a − sign or two bricks which con-
tain the same variable xi. Break or combine bricks accordingly, reversing the − in
the middle. This involution leaves fixed points corresponding to terms in the sum

∑w∈{0,...,k−1}∗n xblock0(w)
0 · · ·xblockk−1(w)

k−1 . That is, we interpret a brick in a fixed point
which consists of k 1’s followed by xi as a block of (k + 1) 1’s. We can find our
generating function from applying ϕ to Theorem 2.5:

∞

∑
n=0

zn ∑
w∈{0,...,k−1}∗n

xblock0(w)
0 · · ·xblockk−1(w)

k−1 =

(

1−
∞

∑
n=1

k−1

∑
i=0

xi

1− xi
(z(1− xi))

n

)−1

=

(

1−
k−1

∑
i=0

xiz
1− (1− xi)z

)−1

,

which is the generating function in the statement of the theorem.
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What is the expected value of block0(w) for w ∈ {0,1}∗n? We calculate

∂
∂x0

(
1− x0z

1− (1− x0)z
− x1z

1− (1− x1)z

)−1
∣
∣
∣
∣
∣
x0=1,x1=1

=
z(1− z)
(1−2z)2 .

The coefficient of zn for n ≥ 1 in the above series is (n+1)2n−2. There are 2n words
in {0, . . . ,k−1}∗n, so the expected number of 0 blocks is (n+1)2n−2/2n = (n+1)/4.

We end this chapter with one final application of how the relationship between the
elementary and homogeneous symmetric functions can give us information about
permutation statistics.

Theorem 3.14. We have

∞

∑
n=0

zn

[n]q!(x;u)n+1
∑

σ∈Sn

xdes(σ)qinv(σ)umaj(σ) =
∞

∑
k=0

xk

e−u0z
q · · ·e−ukz

q

.

Proof. This result will be proved using the ring homomorphism defined by

ϕk(en) =
1

[n]q! ∑
i0,...,ik≥0

i0+···+ik=n

[
n

i0, . . . , ik

]

q
q(

i0
2)+···+(ik

2)u0i0+···+kik ,

where k is a nonnegative integer. Applying ϕ to [n]q!hn, we have

[n]q!ϕk(hn) = ∑
λ�n

[
n
λ

]

q
(−1)n−�(λ )|Bλ ,(n)| ∏

parts λ j in λ
ϕk(eλ j

). (3.15)

From this sum we build combinatorial objects by first selecting a brick tabloid in
Bλ ,(n) for some λ � n. The (−1)n−�(λ ) term tells us to place a +1 in the terminal
cell of each brick and a −1 in all other cells. The note after the proof of Lemma 3.6
allows us to use the

[n
λ
]

q term in (3.15) to fill the cells of the brick tabloid with a
permutation σ such that σ has increasing runs within each brick, keeping a power
of q counting the inversions in σ .

For each brick of length n, the definition of ϕk(en) tells us to select nonnegative
integers i0, . . . , ik which sum to n. Record these choices of i0, . . . , ik by placing i j

copies of ui j into the cells such that the exponents on u are weakly increasing within
each brick.

Each brick of length n currently contains an increasing sequence of integers. By

Lemma 3.6, the
[ n

i0,...,ik

]
q
q(

i0
2)+···+(ik

2) term in the definition of ϕk(en) allows us to

rearrange this increasing sequence as to have descending runs of lengths i0, . . . , ik.
This means we can order the integers within each brick such that there is a decrease
whenever two consecutive cells contain the same power of u. The powers of q allow
us to register a q in each cell according to the inversions caused by the integer in
that cell.
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For example, here is one combinatorial object created in the indicated manner:

10 2 6 12 11 4 1 3 9 7 8 5

q9 q1 q4 q8 q7 q2 q0 q0 q3 q1 q1 q0

u1 u1 u3 u0 u0 u0 u0 u2 u3 u3 u1 u1

−1 −1 1 −1 −1 −1 −1 −1 −1 1 −1 1

.

By defining the weight of such a combinatorial object as the product of all −1s,
powers of u, and powers of q, the weighted sum over all possible objects is equal to
[n]q!ϕk(hn).

Scan the cells from left to right looking for either a −1 or two consecutive bricks
which can be combined to create another combinatorial object in our collection.
Either break or combine the bricks as needed. This involution leaves fixed points
with only bricks of length 1 such that the powers of u must weakly decrease and
there must be an increase in the permutation whenever two consecutive bricks have
the same power of u. One such fixed point is below:

4 6 8 2 3 5 7 9 11 12 1 10

q3 q4 q5 q1 q1 q1 q1 q1 q2 q2 q0 q0

u3 u3 u3 u2 u2 u1 u1 u1 u1 u1 u0 u0

1 1 1 1 1 1 1 1 1 1 1 1

.

We can count the number of fixed points using an approach similar to that found
in the proof of Theorem 3.10. Given a fixed point, let ai be the difference in u expo-
nents on bricks i and i+1 for i = 1, . . . ,n−1 and let an be the final u exponent. For
example, the sequence a1, . . . ,an corresponding to the fixed point displayed above
is 0 0 1 0 1 0 0 0 0 1 0 0.

From the definition of a, the u exponent on the ith brick is ai + · · ·+an and there-
fore the exponents on u in the fixed point total a1 +2a2 + · · ·+an. This also means
that the largest u exponent is a1 + · · ·+ an. Furthermore, if σ is the permutation in
the bottom row of the fixed point, then ai = 0 if and only if σi > σi+1.

Therefore the weighted sum over all fixed points is equal to

k

∑
j=0

(
∑

σ∈Sn

qinv(σ) ∑
sequences a1 · · ·an

with ai = 0 iff σi > σi+1

u1a1+···+nanxa1+···+an
)
∣
∣
∣
∣
∣
x j

.

Multiplying by 1/(1− x) allows us to extract the coefficient of xk from the inside
term instead of summing over all coefficients of x j. We can sum over each variable
ai with σi > σi+1 individually and, since we are extracting the coefficient of xk, we
can include extra infinite sums of the form ∑ai≥0(xui)ai when σi 	> σi+1. What this
means is that the above expression is equal to
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1
1− x ∑

σ∈Sn

qinv(σ) ∑
a1≥χ(σ1>σ2)

(xu1)a1 ∑
a2≥χ(σ2>σ3)

(xu2)a2 · · ·
∣
∣
∣
∣
∣
xk

= ∑
σ∈Sn

qinv(σ) xdes(σ)umaj(σ)

(1− x)(1− xu) · · ·(1− xun)

∣
∣
∣
∣
∣
xk

,

where we summed each of the geometric series.
We have shown that [n]q!ϕk(hn) = ∑σ∈Sn qinv(σ)xdes(σ)umaj(σ)/(x;u)n+1

∣
∣
xk .

Applying ϕk to Theorem 2.5 and summing over all k ≥ 0 gives

∞

∑
n=0

zn

[n]q!(x;u)n+1
∑

σ∈Sn

qinv(σ)xdes(σ)umaj(σ) =
∞

∑
k=0

xkϕk

(
∞

∑
n=0

hnzn

)

=
∞

∑
k=0

xk

∑∞
n=0 ϕk(en)(−z)n .

The generating function in the statement of the theorem follows by noticing that
ϕ(en) is the coefficient of zn in eu0z

q · · ·eukz
q . ��

In this section we changed the “1/n!” in ϕ(en) = (−1)n−1 f (n)/n! in various
ways, allowing us to keep track of inversions, the major index statistic, descents in
the inverse permutation, common descents, and analogous statistics for words. By
combining these different changes to “1/n!” and by modifying the function f (n),
we can find all sorts of generating functions for permutations and words.

Exercises

3.1. For σ = σ1 · · ·σn ∈ Sn, the permutation statistic “rise,” denoted ris(σ), is the
number of indices i for which σi < σi+1. Suppose that for each n, Tn is a subset of
Sn. Further, suppose we know

f (z,x) =
∞

∑
n=0

zn

n! ∑
σ∈Tn

xdes(σ).

How can f (z,x) be used to find a generating function for ∑∞
n=0

zn

n! ∑σ∈Tn xris(σ)?
The point of this exercise is to illustrate that if we know the generating function

for ∑σ∈Tn xstat(σ) for some permutation statistic stat, then we can use it to find the
generating function for the complement statistic defined by n− stat(σ) for σ ∈ Tn.

3.2. Let stat be a permutation statistic, let k be a nonnegative integer, let Tn be a
subset of Sn for all n, and let an be the number of permutations in Tn with stat(σ)= k.
Suppose we know

f (z,x) =
∞

∑
n=0

zn

n! ∑
σ∈Tn

xstat(σ). (3.16)

How can f (z,x) be used to find a generating function for ∑∞
n=0 an

zn

n! ?
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3.3. Let stat be a permutation statistic, let m be a nonnegative integer, and let Tn be
a subset of Sn for all n. Suppose we know the generating function f (z,x) in (3.16).
How can f (z,x) be used to find a generating function for

∞

∑
n=0

zn

n! ∑
σ∈Tn

stat(σ)m?

This allows us to find the mth moment of stat(σ), which is ∑σ∈Tn stat(σ)m/|Tn|. If
a permutation σ ∈ Tn is randomly chosen such that each element in Tn has an equal
probability of being selected, then the first moment is the expected value of stat and
the second moment can be used to find the variance, which is equal to

1
|Tn| ∑

σ∈Tn

stat(σ)2 −
(

1
|Tn| ∑

σ∈Tn

stat(σ)

)2

.

3.4. The normal distribution with expected value μ and variance v is
1√
2πv

e−
(x−μ)2

2v .

Use Exercise 3.3 to find the expected value and variance for descents in Sn, thereby
finding the normal distribution which best approximates the distribution of descents
in Sn.

3.5. Prove 2n−2i
(

n− i
i

)
= ∑

j≥0

(
n+1
2 j+1

)(
j
i

)
by a double counting argument.

3.6. With the help of the identity in Exercise 3.5, show that the function f (n) in (3.2)
is equal to

f (n) = (−1)n−1 ∑
i≥0

(
n− i

i

)
(−x)i =

(
1+

√
1−4x

)n+1 − (1−√
1−4x

)n+1

(−2)n+1
√

1−4x
.

Then manipulate the generating function in (3.4) into the function in Theorem 3.3.

3.7. Define

f (n) = (−1)n−1 ∑
i≥0

(
n−1− i

i

)
x2i.

Show that f (n) gives the number of rearrangements of xs and (−1)s of length n−1
such that every maximal consecutive subsequence of xs has an even length. Use the
identity displayed in Exercise 3.6 to find an explicit formula for f (n).

Let ϕ be the ring homomorphism defined by ϕ(en) = (−1)n−1 f (n)/n! where
f (n) is given above. Show that n!ϕ(hn) = ∑xdes(σ) where the sum runs over all
permutations σ ∈ Sn with maximal descending runs of only odd lengths. Use this to
find an explicit generating function for

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has descending

runs of only odd lengths

xdes(σ).
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3.8. Find a generating function for ∑xdes(σ) where the sum runs over all permu-
tations in σ ∈ Sn which do not have a maximal descending run of length 1. App-
roximately what is the probability that a random permutation in Sn will not have a
maximal descending run of length 1?

3.9. A Dyck path of length 2n is a path in the plane which starts at (0,0), ends at
(2n,0), uses steps of the form (1,1) or (1,−1), and never travels below the x-axis.
A labeled Dyck path is a Dyck path where each step between y = k−1 and y = k is
labeled with a number in {1, . . . ,k}. For example, one labeled Dyck path is

1

2 1 2

3 1

2

1 1

2 2

1

.

Use a bijection to show that the number of labeled Dyck paths of length 2n is equal
to the number of alternating permutations in S2n.

3.10. Let Ak(z) = ∑∞
n=0 a2n,kz2n where a2n,k is the number of labeled Dyck paths of

length 2n which start at (0,k), end at (2n,k), and never travel below the line y = k
(see Exercise 3.9). Show that Ak−1(z) = 1/(1− k2z2Ak(z)) and deduce that

∞

∑
n=0

|{σ ∈ S2n : σ is alternating}|z2n =
1

1− 12z2

1− 22z2

1− 32z2

1−·· ·

.

3.11. Modifying the methods introduced in exercises 3.9 and 3.10, show that

∞

∑
n=0

|{σ ∈ S2n+1 : σ is alternating}|z2n+1 =
z

1− 1 ·2 · z2

1− 2 ·3 · z2

1− 3 ·4 · z2

1−·· ·

.

Use this result together with the continued fraction in Exercise 3.10 to find the rem-
ainder when the number of alternating permutations in Sn is divided by 4.

3.12. The hyperoctahedral group Bn, also called the set of signed permutations, is
the set of permutations σ of {−n, . . . ,−1,1, . . . ,n} such that σ(−i) =−σ(i) for all
i. Elements in Bn are denoted as permutations of {1, . . . ,n} in one-line notation with
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a line over i if σ(i) is negative. For example, 2 1 ∈ B2 denotes the permutation σ
which satisfies σ(1) =−2, σ(−1) = 2, σ(2) = 1, and σ(−2) =−1.

Define a total ordering ≺ on the integers that all nonnegative numbers are larger
than all positive numbers and nonnegative numbers and positive numbers are or-
dered among themselves in the usual way. Thus, for example,

0 ≺ 1 ≺ 2 ≺ 3 ≺ 4 ≺−4 ≺−3 ≺−2 ≺−1.

For σ = σ1 · · ·σn ∈ Bn, set σn+1 = +∞ and define desB(σ) to be the number of
indices i for which σi+1 ≺ σi and neg(σ) to be the number of indices i for which σi

is negative.

By defining ϕ(en) to equal
(−1)n−1

n!

(
(x−1)n−1 + vnx(1− x)n−1) , prove that

∞

∑
n=0

zn

n! ∑
σ∈Bn

vneg(σ)xdesB(σ) =
x−1

xev(1−x)z − e(x−1)z
.

Use this result to find the generating function for ∑∞
n=0

zn

n! ∑σ∈Dn vneg(σ)xdesB(σ)

where the demihyperoctahedral group Dn is the subgroup of Bn containing those
permutations σ with an even number of indices i for which σ(i) is negative.

3.13. For w = w1 · · ·wn ∈ {0, . . . ,k − 1}∗n, define the number of weak descents,
denoted wdes(w), to be the number of indices i for which wi ≥ wi+1. Use the ring
homomorphism ϕ defined by

ϕ(en) = (−1)n−1
[

n+ k−1
k−1

]

q
(x−1)n−1 (3.17)

to find a generating function for ∑∞
n=0 zn ∑w∈{0,...,k−1}∗n xwdes(w)qsum(w). Then find

simple expressions for ∑∞
n=0 zn ∑w∈{0,...,k−1}∗n xwdes(w) and the generating function

for the number of words which do not have j consecutive weak descents.

3.14. Use Exercise 3.13 to show that

∞

∑
n=0

(−1)nznqn

(u;q)n+1
∑

σ∈Sn

xdes(σ−1)udes(σ)qmaj(σ) =
∞

∑
k=1

(x−1)u−k−1

x−∑∞
n=0

[n+k−1
k−1

]
1
q
(x−1)nzn

.

3.15. If a ring homomorphism ϕ is defined on Λn by setting

ϕ(en) = (−1)n−1(x−1)n−1hn(y1,y2, . . .)

for n ≥ 1, then what enumeration result arises from applying ϕ to hn? What is the
corresponding result if ϕ is changed to

ϕ ′(en) = (−1)n−1(x−1)n−1 pn(y1,y2, . . .)?
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Exercises 3.16, 3.17, and 3.18 illustrate how information about certain orthogo-
nal polynomials can be found by defining homomorphisms on Λ .

3.16. The Chebyshev polynomial of the first kind Tn(x) is the coefficient of zn in the
series expansion of (1− xz)/(1− 2xz+ z2) and the Chebyshev polynomial of the
second kind Un(x) is the coefficient of zn in the series expansion of 1/(1−2xz+z2).
Let ϕ be the homomorphism defined by

ϕ(en) =

⎧
⎪⎨

⎪⎩

1 if n = 0 or n = 2,

2x if n = 1, and

0 otherwise.

Show that ϕ(pn) = 2Tn(x) for n ≥ 1 and ϕ(hn) =Un(x) for n ≥ 0. Then use previ-
ously established relationships between en,hn, and pn to prove these identities:

Tn(x) =
1
2

�n/2�
∑
i=0

((
n− i−1

i

)
+2

(
n− i−1

i−1

))
(−1)i(2x)n−2i, (3.18)

Un(x) =
�n/2�
∑
i=0

(
n− i

i

)
(−1)i(2x)n−2i, (3.19)

Un(x) =
2
n

n−1

∑
i=0

Ui(x)Tn−i(x), (3.20)

Un(x) = 2xUn−1(x)−Un−2(x), (3.21)

Un(x) = ∑
λ�n

2�(λ )

zλ
Tλ1

(x) · · ·Tλ�(x), (3.22)

0 = ∑
λ�n

(−2)�(λ )

zλ
Tλ1

(x) · · ·Tλ�(x) (3.23)

are true for n ≥ 3. Additionally, show that

Tn(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x 1 0 0 0 0
1 2x 1 0 0 0
0 1 2x 1 0 0

. . .
0 0 0 1 2x 1
0 0 0 0 1 2x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and Un(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2x 1 0 0 0 0
1 2x 1 0 0 0
0 1 2x 1 0 0

. . .
0 0 0 1 2x 1
0 0 0 0 1 2x

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

where these are n×n determinants.

3.17. The Legendre polynomial Pn(x) is the coefficient of zn in the power series
expansion of 1/

√
1−2xz+ z2. Define a homomorphism ϕ by ϕ(pn) = Tn(x) where

Tn(x) is defined in Exercise 3.16. Use Exercise 2.3 to show that ϕ(hn) = Pn(x). This
means we can apply ϕ to previously established relationships between hn and pn to
find numerous identities involving Pn(x) and Tn(x).
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3.18. The Hermite polynomial Hn(x) is the coefficient of zn/n! in e2xz−z2
. Define a

homomorphism ϕ by ϕ(p0) = 1, ϕ(p1) = 2x, ϕ(p2) =−2, and ϕ(pn) = 0 for n≥ 3.
Show ϕ(n!hn) = Hn(x) and

Hn(x) =
�n/2�
∑
i=0

n!
(n−2i)!i!

(−1)i(2x)n−2i.

3.19. Define a homomorphism ϕ by ϕ(hn) = p(n) where p(n) is the number of
integer partitions of n. Using the fact that the logarithm of a product is a sum of
logarithms and the series expansion of ln1/(1− z), show that ϕ(pn) = σ(n) where
σ(n) is the sum of the divisors of n. Conclude that nσ(n) = ∑n

k=1 σ(k)p(n− k).

Solutions

3.1 Subtracting the first term from the series and then taking “z” as “zx” and “x” as
“x−1” in Corollary 3.2, we find

∞

∑
n=1

zn

n! ∑
σ∈Tn

xn−des(σ) = f (zx,1/x).

Since each index from 1, . . . ,n− 1 is either a descent or a rise, des(σ)+ ris(σ) =
n− 1 for all permutations σ ∈ Sn, implying n− des(σ) = ris(σ)+ 1. Dividing the
above equation by x and then adding the first term back into the series gives

∞

∑
n=0

zn

n! ∑
σ∈Tn

xris(σ) = ( f (zx,1/x)−1)/x+1.

3.2 Taking partial derivatives,

1
k!

∂
∂x

f (z,x) =
∞

∑
n=0

zn

n! ∑
σ∈Tn

stat(σ)(stat(σ)−1) · · ·(stat(σ)− k+1)
k!

xstat(σ)−k

=
∞

∑
n=0

zn

n! ∑
σ∈Tn

(
stat(σ)

k

)
xstat(σ)−k.

Evaluating this expression at x= 0 gives the constant terms with respect to x, thereby
counting all permutations σ with stat(σ)− k = 0. In this case

(stat(σ)
k

)
= 1, which

means ∑σ∈Tn

(stat(σ)
k

)
xstat(σ)−k

∣
∣
∣
x=0

= an. We have found

1
k!

∂
∂x

f (z,x)

∣
∣
∣
∣
x=0

=
∞

∑
n=0

an
zn

n!
.



Solutions 107

3.3 Let Ax be the operator x ∂
∂x . Then

Ax f (z,x) =
∞

∑
n=0

zn

n! ∑
σ∈Tn

stat(σ)xstat(σ).

Iterating m times and evaluating at x = 1 (or taking the limit as x → 1 as necessary),

Am
x f (z,x)|x=1 =

∞

∑
n=0

zn

n! ∑
σ∈Tn

stat(σ)m,

which gives a way to find the desired generating function.

3.4 Using the operator Ax defined in the solution to Exercise 3.3, in the example of
descents we take f (z,x) = (x−1)/(x− e(x−1)z) and see that

A1
x f (z,x)

∣
∣
x=1 =

z2

2(1− z)2 =
1
2

∞

∑
n=0

(n+1)zn+2

where we used L’Hôpital’s rule to take the limit as x → 1 and Newton’s binomial
theorem to simplify. The expected number of descents in Sn is (n−1)/2.

As for the variance, we calculate

A2
x f (z,x)

∣
∣
x=1 =

3z2 − z3 + z4

6(1− z)3

=
1
6

∞

∑
n=0

3

(
n+2

2

)
zn+2 −

(
n+2

2

)
zn+3 +

(
n+2

2

)
zn+4.

The coefficient of zn in the above expression is the second moment. Therefore the
variance is

1
2

(
n
2

)
− 1

6

(
n−1

2

)
+

1
6

(
n−2

2

)
−
(

n+1
2

)2

=
n+1

12
.

The normal distribution which best approximates the number of descents in Sn is

therefore
√

6e
− 3(2x−n+1)2

2(n+1) /
√
(n+1)π . Below we plot this normal distribution when

n = 25 along with bars showing the exact probabilities that a permutation in S25 has
x descents:

0.1

0.2

0.3

12 24
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3.5 Create an ordered pair of subsets (S,T ) by first selecting a subset S of size i
from {1, . . . ,n− i} and then selecting a subset T of any size from {1, . . . ,n} \ S. If
there are odd number of elements in S∪ T , add n+ 1 to T . There are

(n−i
i

)
ways

to select S and an independent 2n−2i ways to select T , so there are 2n−2i
(n−i

i

)
such

ordered pairs.
There is a second way to create such an ordered pair (S,T ). First choose a subset

X of an odd size larger than 2i from {1, . . . ,n+1}. If X has 2 j+1 elements, choose S
to be a subset of size i from the smallest j elements in X and let T =X \S. Then S is a
subset of size i selected from {1, . . . ,n− i}, T is a subset of {1, . . . ,n+1}, and S∪T
is odd, as desired. The number of ways to follow this procedure is ∑ j≥0

(2n+1
2 j+1

)( j
i

)

since the summand and
( n+1

2 j+1

)
select X while

( j
i

)
selects S.

3.6 Take a sequence, like

x −1 x −1 −1 x −1 −1 x −1 x −1 −1 x −1 −1 −1 x

which contains i copies of x and n− 1− i copies of −1 such that no two xs appear
consecutively and interpret the first x and subsequent pairs −1 x as a bar and the
remaining −1s as a star. This changes the above sequence into

| | � | � | | � | � � |.
There are

(n−i
i

)
rearrangements i bars and n− 2i stars, so the number of desired

sequences is also equal to
(n−i

i

)
. Therefore f (n) = (−1)n−1 ∑i≥1

(n−i
i

)
(−x)i.

Expanding both terms with the help of the binomial theorem,

(1+
√

1−4x)n+1 − (1−√
1−4x)n+1 = ∑

k≥0

(
n+1

k

)(
1− (−1)k

)(√
1−4x

)k

= 2 ∑
j≥0

(
n+1
2 j+1

)(√
1−4x

)2 j+1
.

Therefore the expression on the right-hand side of statement of this exercise is

(−1)n+1

2n ∑
j≥0

(
n+1
2 j+1

)
(1−4x) j =

(−1)n+1

2n ∑
i≥0

∑
j≥0

(
n+1
2 j+1

)(
j
i

)
(−4x)i

= (−1)n−1 ∑
i≥0

(
n− i

i

)
(−x)i,

where the last line used Exercise 3.5. This is f (n), as desired.
Let a =

√
1−4x and substitute f (n) into (3.4) to find
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(
∞

∑
n=0

(−1)n−1

n!

(
(1+a)n+1 − (1−a)n+1

(−2)n+1a

)

(−z)n

)−1

=

⎛

⎝ 1
2a

(1+a)
∞

∑
n=0

(−z(1+a)
2

)n

n!
− 1

2a
(1−a)

∞

∑
n=0

(−z(1−a)
2

)n

n!

⎞

⎠

−1

=

(
1

2a
(1+a)e−z/2e−za/2 − 1

2a
(1−a)e−z/2eza/2

)−1

.

This last line is equal to

ez/2

cosh(za/2)− 1
a sinh(za/2)

,

which, after using a = i
√

4x−1 and the identities cosh(iz) = cos(z) and sinh(iz) =
isin(z), can be manipulated into the desired expression.

3.7 Take a rearrangement of 2i copies of x and n− 1− 2i copies of −1 such that
every maximal consecutive subsequence of xs has an even length, such as

x x x x −1 −1 −1 x x x x x x −1 x x −1 x x,

and interpret “xx” as a star and “−1” as a bar. This changes the above sequence into
� � | | | � � � | � | �. There are

(n−1−i
i

)
rearrangements of i stars and n−2i−1 bars,

so the number of desired sequences is also equal to
(n−1−2i

i

)
. Therefore

f (n) = (−1)n−1 ∑
i≥0

(
n− i

i

)
(−x)i =−

(
1+

√
1+4x2

)n −
(

1−√
1+4x2

)n

(−2)n
√

1+4x2

(3.24)

where the second equality follows from taking “n” as “n− 1” and “−x” as “x2” in
the identity displayed in Exercise 3.6.

Using the same steps as what led to (3.1),

n!ϕ(hn) = ∑
λ�n

(
n
λ

)
|Bλ ,(n)| f (λ1) f (λ2) · · · .

From this sum we create combinatorial objects by selecting a brick tabloid in Bλ ,(n)
for some λ � n, writing the integers 1, . . . ,n in the cells so that each brick contains
a decreasing sequence, placing a sequence of xs and −1s such that every maximal
consecutive subsequence of xs has an even length in the first k−1 cells in each brick
of length k, and placing a +1 in the last cell of each brick.

Use the usual brick breaking or combining involution first described in the proof
of Theorem 3.1 on this set of combinatorial objects. Fixed points which look like

10 7 3 12 11 9 6 1 5 8 4 2

x x 1 x x x x 1 1 x x 1

,
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have bricks of only odd lengths. Therefore n!ϕ(hn) = ∑xdes(σ) where the sum runs
over all permutations σ ∈ Sn with descending runs of only odd lengths.

Applying ϕ to both sides of Theorem 2.5,

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has descending

runs of only odd lengths

xdes(σ) = ϕ

(
∞

∑
n=0

hnzn

)

=
1

1−∑∞
n=1 zn f (n)/n!

.

Using (3.24) to simplify, the above generating function can be shown to equal
√

1+4x2

√
1+4x2 + e−z/2

(
e−z

√
1+4x2/2 − ez

√
1+4x2/2

) .

3.8 Take a rearrangement of i copies of −1 and n− i−1 copies of x which end in x
and have every −1 immediately preceded by an x, such as

x −1 x x −1 x −1 x x −1 x −1 x −1 x x −1 x x,

and interpret each “x(−1)” as a star and all other copies of “x” as a bar. This changes
the above sequence into � | � � | � � � | � | |. There are

(n−i−2
i

)
rearrangements of i

stars and n−2i−1 bars ending with a bar, so there are
(n−i−2

i

)
such sequences.

Define a function f (n) by

f (n) = ∑
i≥0

(
n− i−2

i

)
xn−i−1(−1)i = xn−1 ∑

i≥0

(
n− i−2

i

)(
−1

x

)i

.

Taking “n” as “n− 2” and “x” as “1/x” in the identity displayed in Exercise 3.6
allows us to rewrite this function as

f (n) = x

(
x+

√
x2 −4x

)n−1 −
(

x−√
x2 −4x

)n−1

2n−1
√

x2 −4x
. (3.25)

Define a ring homomorphism ϕ such that ϕ(en) = (−1)n−1 f (n)/n! where f (n)
is given in (3.25). Using the same steps as what led to (3.1),

n!ϕ(hn) = ∑
λ�n

(
n
λ

)
|Bλ ,(n)| f (λ1) f (λ2) · · · .

From this sum we create combinatorial objects by selecting a brick tabloid in Bλ ,(n)
for some λ � n, writing the integers 1, . . . ,n in the cells so that each brick contains
a decreasing sequence, placing a sequence of xs and −1s such that every −1 is
immediately preceded by an x in the first k− 1 cells in each brick of length k, and
placing a +1 in the last cell of each brick.

The usual brick breaking or combining involution first described in the proof of
Theorem 3.1 leaves fixed points which have no bricks of length 1. This shows that
n!ϕ(hn) is equal to ∑xdes(σ) where the sum runs over all permutations in σ ∈ Sn

which do not have descending runs of length 1.
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Applying ϕ to both sides of Theorem 2.5,

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has no

descending runs of length 1

xdes(σ) = ϕ

(
∞

∑
n=0

hnzn

)

=
1

1−∑∞
n=1 zn f (n)/n!

.

Using 3.25 and performing very similar manipulations as shown in the solution to
Exercise 3.6, the above generating function can be shown to equal

e−xz/2

cos

(
z
√

4x−x2

2

)
− x√

4x−x2
sin

(
z
√

4x−x2

2

) .

Taking x = 1 in this function,

∞

∑
n=0

|{σ ∈ Sn has no descending runs of length 1}|
n!

zn =
e−z/2

cos
(

z
√

3
2

)
− 1√

3
sin
(

z
√

3
2

) .

With the exception of the negative sign in the exponent of e−z/2, this is the same
function as found in (3.5). Doing the same calculations as in the discussion which
follows (3.5), we find that the approximate probability that a permutation in Sn has

no descending runs of length 1 is e−π
√

3/9
(
9/(2π

√
3)
)n+1

.

3.9 Starting with an alternating permutation σ =σ1σ2 · · ·σ2n−1σ2n, we will describe
how to create a labeled Dyck path. Begin by drawing a Dyck path with (1,−1) steps
ending at x coordinates σ1,σ3, . . . ,σ2n−1 and (1,1) steps ending at x coordinates
σ2,σ4, . . . ,σ2n. Color the (1,1) steps blue.

Suppose the most left (1,−1) step ends at x coordinate σ2i−1. Label this (1,−1)
step with the number of blue (1,1) steps found between x coordinates σ2i − 1 and
σ2i−1. Recolor the (1,1) step ending at x coordinate σ2i black.

Continue inductively: Find the next most left (1,−1) step, say it ends x coor-
dinate σ2 j−1. Label this step with the number of blue (1,1) steps found between
x coordinates σ2 j − 1 and σ2 j−1, and recolor the (1,1) step ending at x coordinate
σ2 j black. After completing this process, all of the (1,−1) steps are labeled and the
(1,1) steps remain unlabeled.

Suppose the most right (1,1) step ends at x = σ2i. Remove the pair σ2i−1σ2i from
σ , leaving a sequence σ1σ2 σ3σ4 · · · σ2a−1σ2a with alternating descents. There are
a+1 positions before and after each pair in this sequence:

1 2 3 a a+1

σ1σ2 σ3σ4 · · · σ2a−1σ2a

Identify those positions for which the pair σ2i−1σ2i could be reinserted as to main-
tain alternating descents. If σ2i−1σ2i was originally in the �th such position, label the
(1,1) step ending at x coordinate σ2i with �.

Continue inductively: Find the next most right unlabeled (1,1) step, say it ends
at x coordinate σ2 j. Remove σ2 j−1σ2 j from σ . If σ2 j−1σ2 j was originally in the �th
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position it may have been placed in the remaining portion of σ , label the (1,1) step
with �. After completing this process, all steps are labeled. The resulting labeled
Dyck path is the image of σ .

For example, the image of σ = 3 2 7 5 12 9 10 1 11 4 8 6 after applying
the above operations is the labeled Dyck path

1

1 1 2

1

4 2

1 1 3

2

1

.

This process is a bijection. Indeed, the map described above is reversible. Given
a labeled Dyck path, we can first identify the pairs σ1σ2, · · · , σ2n−1σ2n in the per-
mutation σ with reading the labels on the steps of the form (1,−1) from left to right.
The order in which to insert these pairs as to form an alternating permutation can
be deduced by reading the labels on the steps of the form (1,1) from left to right.
For example, working backward from the labeled Dyck path in the statement of the
exercise produces the permutation 7 1 8 4 3 2 6 5 11 9 12 10.

3.10 Suppose that the first time after (0,k−1) that a labeled Dyck path counted by
a2n,k−1 returns to the line y = k−1 is at (2i,k−1). The underlying Dyck path must
look like this:

Dyck path of size 2i−2

k −1

2i 2n

Dyck path of
size 2n−2i

Since there are k ways to label the first (1,1) step and k ways to label the (1,−1) step
ending at x = 2i, the number of labeled Dyck paths is k2a2i−2,ka2n−2i,k−1. Summing
over all possible i gives an,k−1 = k2 ∑n

i=1 a2i−2,ka2n−2i,k−1 for n ≥ 1. Therefore

Ak−1(z)−1 = k2
∞

∑
n=1

n

∑
i=1

a2i−2,ka2n−2i,k−1z2n

= k2z2Ak(z)Ak−1(z).

Solving for Ak−1(z) gives Ak−1(z) = 1/(1− k2z2Ak(z)).
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Exercise 3.9 says A0(z) = ∑∞
n=0 |{σ ∈ S2n : σ is alternating}|z2n and so the con-

tinued fraction follows from repeatedly applying Ak−1(z) = 1/(1 − k2z2Ak(z)),
starting with k = 1.

3.11 The number of alternating permutations of 2n+ 1 is equal to the number of
alternating permutations of 2n+ 2 which end with the integer 1. Looking back at
the bijection in the solution to Exercise 3.9, the labeled Dyck paths of length 2n+2
which correspond to alternating permutations ending in 1 are those labeled Dyck
paths such that

1. except for the most left (1,1) step, the labels on each (1,1) step between y =
k−1 and y = k must have a label in {1, . . . ,k−1}, and

2. the Dyck path touches the x-axis at only (0,0) and (2n+2,0).

In pictures, we must have a labeled Dyck path which looks like

A labeled Dyck path of length 2n with
one fewer choice for labels on (1,1)steps

1 1

2n+2

Let Ak(z) = ∑∞
n=0 a2n,kz2n be the generating function for the number of labeled

Dyck paths which start at (0,k), end at (2n,k), and have one fewer choice for the
labels on the (1,1) steps. A very similar calculation to that found in the solution to
Exercise 3.10 shows that Ak−1(z) = 1/(1− (k−1) · k · z2Ak(z)). This gives

∞

∑
n=0

|{σ ∈ S2n+1 : σ is alternating}|z2n+1 = zA1(z) =
z

1−1 ·2 · z2A2(z)
.

The continued fraction in the statement of the exercise follows from repeatedly
applying Ak−1(z) = 1/(1− (k−1)kz2Ak(z)).

The two continued fractions in this exercise and Exercise 3.10 allow us to find the
number of alternating permutations in Sn modulo k. For example, by replacing each
4 with 0 in the continued fraction expressions, a generating function with coefficient
zn congruent to the number of alternating permutations in Sn modulo 4 is

1
1−12z2 +

z

1− 1 ·2 · z2

1−2 ·3 · z2

.

Going further and replacing both the −2 and the −6 with 2, the coefficients of the
above generating function are congruent to the coefficients in
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1
1−12z2 +

z

1+
2 · z2

1+2 · z2

=
∞

∑
n=0

z2n +
z+2z3

1+4z2 .

Therefore the remainder after the number of alternating permutations in Sn is divided
by 4 is 1 if n is even, 1 if n = 1, 2 if n = 3, and 0 otherwise.

3.12 Let f (n) =
(
(x−1)n−1 + vnx(1− x)n−1

)
so that we can write ϕ(en) using the

more compact notation (−1)n−1 f (n)/n!. Applying ϕ to n!hn gives equation (3.3).
From this expression we create combinatorial objects with types of bricks: positive
bricks and negative bricks.

With the sum, the |Bλ ,(n)|, and multinomial coefficients in (3.3), select a brick
tabloid T ∈ Bλ ,(n) for some λ � n and associate a disjoint subset of {1, . . . ,n} of
size k to each brick of length k in T . For each brick of length k, the function f (k)
gives us a choice of a (x−1)k−1 term or a vkx(1− x)k−1 term.

If we select the (x−1)n−1 term, write the subset assigned to the brick in decreas-
ing order and weight every nonterminal cell in the brick with a choice of x or −1.
These are positive bricks. If we select the vkx(1− x)k−1 term, then write the subset
assigned to the brick in increasing order, place a v in each cell, weight every non-
terminal cell in the brick with a choice of −x or 1, and place a final weight of x in
the terminal cell. These are our negative bricks. Below we display one combinatorial
object created in this way:

8 5 3 1 2 4 7 11 12 10 9 6

v v v v v

x x x 1 −x 1 x −x x x x 1

.

The involution we would like to apply to these objects is a modification to our
usual brick breaking and combining involution in that we will only combine two
positive bricks together or two negative bricks together. That is, to apply our in-
volution we scan a combinatorial object from left to right looking for the first cell
containing

1. a −1,
2. two consecutive positive bricks straddling a decrease,
3. a −x, or
4. two consecutive negative bricks straddling an increase.

If we first find case 1 above, break the single positive brick into two bricks and
reverse the sign on the −1 to +1. If we find case 2, then combine the two positive
bricks, changing the sign on the 1 in the middle. If we first find case 3 above, break
the single positive brick into two bricks and reverse the sign on the −x to x. If we
find case 4, then combine the two negative bricks, changing the sign on the x in the
middle.
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Fixed points must look like this:

8 5 3 1 2 4 11 7 12 10 9 6

v v v v v

x x x 1 1 1 1 x 1 x x 1

.

These fixed points correspond to elements σ ∈ Bn with a power of v counting the
number of integers i for which σ(i) is negative and a power of x counting the number
of times we have a descent in Bn. The generating function follows from applying ϕ
to both sides of Theorem 2.5 and simplifying.

The demihyperoctahedral group Dn contains those elements σ ∈ Bn with neg(σ)
is even. Thus if we let f (x,v,z) = (x−1)/(xev(1−x)z − e(x−1)z) the generating func-
tion we just found for Bn, then

∞

∑
n=0

zn

n! ∑
σ∈Dn

vneg(σ)xdesB(σ) =
1
2
( f (x,v,z)+ f (x,−v,z))

=
1
2

(
x−1

xev(1−x)z − e(x−1)z
+

x−1

xe−v(1−x)z − e(x−1)z

)
.

3.13 Theorem 1.4 says
[n+k−1

k−1

]
q
= ∑r∈R(0n,1k−1) qinv(r), so the q-multinomial coeffi-

cient tells us to select r ∈ R(0n,1k−1) for each brick of length n. With r, interpret the
number of 0s before the ith 1 to be the number of (i− 1)s in a nonincreasing word
w ∈ {0, . . . ,k−1}∗n. It follows that inv(r) = sum(w).

Applying the homomorphism ϕ in (3.17) to hn gives

ϕ(hn) = ∑
λ�n

[
λ1 + k−1

k−1

]

q

[
λ2 + k−1

k−1

]

q
· · · |Bλ ,(n)|(x−1)λ1−1(x−1)λ2−1 · · · .

This sum tells us to create combinatorial objects like this (using k = 8):

7 1 1 3 4 7 5 5 4 1 1 1

q7 q1 q1 q3 q4 q7 q5 q5 q4 q1 q1 q1

x x 1 1 1 −1 −1 x 1 −1 −1 1

.

The usual involution shows ϕ(hn) = ∑w∈{0,...,k−1}∗n xwdes(w)qsum(w). Applying ϕ to
Theorem 2.5 gives

∞

∑
n=0

zn ∑
w∈{0,...,k−1}∗n

xwdes(w)qsum(w) =
x−1

x−∑∞
n=0

[n+k−1
k−1

]
q
(x−1)nzn

.

Taking q = 1 and using Newton’s binomial theorem (see exercises 1.19 and 1.20),
this generating function specializes to (x−1)/(x− (1− (x−1)z)−k).



116 3 Counting with the Elementary and Homogeneous Symmetric Functions

Using the ring homomorphism defined by ϕ(en) = (−1)n−1
(n+k−1

k−1

)
f (n), where

f (n) is given in (3.6), gives

∞

∑
n=0

zn ∑
w ∈ {0, . . . ,k−1}∗n does not

have j consec. descents

xdes(w) =
1

1+∑∞
n=1(−z)n

(n+k−1
n

)
∑i≥1 Rn−1,i, j(−x)i

.

Specializing by taking x = 1 and simplifying using the approach found in the proof
of Theorem 3.4, we find that the generating function for number of words without j
consecutive weak descents is

j+1
(1−ζ j)(1−ζ z)−k + · · ·+(1−ζ )(1−ζ jz)−k ,

where ζ = e2πi/( j+1) is a primitive ( j+1)th root of unity.

3.14 Select a term in ∑w∈{0,...,k−1}∗n xwdes(w)qsum(w) and let r be the reverse of the
word w. With r we associate a permutation σ−1 ∈ Sn by numbering from right to
left the (k−1)s in r, then from right to left numbering the (k−2)s in r, and so on.
This forces the (k− 1)s in r to correspond to the first block of numbers in σ , the
(k− 2)s in r to correspond to the second block of numbers in σ , and so on. These
blocks sort the exponents on q in nonincreasing order.

Also associate with r a nonnegative integer sequence a = a1 · · ·an such that ai is
the difference between consecutive exponents on q in σ for i = 1, . . . ,n− 1 and an

is the final q exponent. This permutation σ and sequence a have the same properties
as the σ and a in the proof of Theorem 3.10 except that property 5 should instead
state that ai = 0 if and only if σi > σi+1. Therefore

∑
w∈{0,...,k−1}∗n

xwdes(w)qsum(w)

=
k−1

∑
j=0

(
∑

σ∈Sn

xdes(σ−1) ∑
sequences a1 · · ·an

with ai = 0 iff σi > σi+1

q1a1+···+nanua1+···+an
)
∣
∣
∣
∣
∣
u j

.

Using similar steps as found in the proof of Theorem 3.10, this simplifies to

(−1)n

qn( 1
u ; 1

q )n+1
∑

σ∈Sn

xdes(σ−1)

udes(σ)qmaj(σ)

∣
∣
∣
∣
∣
uk+1

.

The desired result follows by using the result in Exercise 3.13, summing over all k,
and replacing “q” with “1/q” and “u” with “1/u”.

3.15 It follows that

ϕ(hn) = ∑
λ�n

∣
∣Bλ ,(n)

∣
∣(x−1)n−�(λ )hλ (y1,y2, . . .).
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Create combinatorial objects in the exact same way as in the proof of Theo-
rem 3.11 with the exception that the subscripts of the y variables are allowed to
weakly decrease within bricks.

Apply the usual involution on this collection of combinatorial objects by looking
for weak decreases in the subscripts of the y variables between two bricks and break-
ing or combining accordingly. Fixed points correspond to words w ∈ {1,2, . . .}∗n
with a power of x for each weak decrease (weak decreases are defined in Exer-
cise 3.13) in w and a subscript on the variable y for each letter in w.

This proves

ϕ(hn) = ∑
w1···wn∈{1,2,...}∗n

xwdes(w)yw1 · · ·ywn .

The generating function

∞

∑
n=0

zn ∑
w1···wn∈{1,2,...}∗n

xwdes(w)yw1 · · ·ywn =
x−1

x−∏i≥1 1/(1− z(x−1)yi)

follows from applying ϕ to Theorem 2.5 and using the definition of the generating
function H(z).

The adjustment to the above argument when ϕ is changed to ϕ ′ is that each cell
in a brick must be filled with the same variable yi instead of having the subscripts
within a brick weakly decrease. If we combine or break bricks when there are the
same subscripts straddling two bricks, then we find fixed points with powers of x
counting the number of times consecutive cells have the same subscript. This gives

∞

∑
n=0

zn ∑
w1···wn∈{1,2,...}∗n

xthe number of i for which wi = wi+1 yw1 · · ·ywn

=
x−1

x−1−∑∞
n=1 zn(x−1)n pn(y1,y2, . . .)

.

3.16 Applying ϕ to both sides of Corollary 2.10,

∞

∑
n=1

ϕ(pn)z
n =

ϕ
(
∑∞

n=1(−1)n−1nenzn
)

ϕ(E(−z))
=

2xz−2z2

1−2xt + t2 .

Therefore 1+∑∞
n=1 ϕ(pn)zn/2 = (1− xz)/(1−2xz+ z2), showing ϕ(pn) = 2Tn(x).

Applying ϕ to both sides of Theorem 2.5 gives

∞

∑
n=0

ϕ(hn)z
n = ϕ(H(z)) =

1
ϕ(E(−z))

=
1

1−2xt + t2 ,

and so ϕ(hn) =Un(x).
Using Theorem 2.22,

2Tn(x) = ϕ(pn) = ∑
λ�n

(−1)n−�(λ )w(Bλ ,(n))ϕ(eλ1
)ϕ(eλ2

) · · · . (3.26)
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Since ϕ(en) = 0 unless n ≤ 2, the bricks in our weighted brick tabloid must have
length 1 or 2. There are

(n−i−1
i

)
ways to select a brick tabloid with i bricks of length

2 and n− 2i bricks of length 1 which end in a brick of length 1. There are
(n−i−1

i−1

)

ways to select a brick tabloid with i bricks of length 2 and n− 2i bricks of length
1 which end in a brick of length 2. In either case, the definition of ϕ(e1) tells us
that such a brick tabloid has an associated factor of (2x)n−2i. There are n− i total
bricks, so the (−1)n−�(λ ) term gives us (−1)i. Putting everything together, (3.26) is
equal to

�n/2�
∑
i=0

(
n− i−1

i

)
(−1)i(2x)n−2i +2

(
n− i−1

i−1

)
(−1)i(2x)n−2i

with the extra 2 in front of the second binomial coefficient coming from the weight
on a weighted brick tabloid. This proves (3.18).

Using Theorem 2.18,

Un(x) = ϕ(hn) = ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|ϕ(eλ1
)ϕ(eλ2

) · · · . (3.27)

Just as in (3.26), the bricks in our brick tabloid must have length 1 or 2. There are(n−i
i

)
brick tabloids with i bricks of length 2 and n− i bricks of length 1. The bricks

of length 1 each contribute a 2x term and since (−1)n−�(λ ) = (−1)i, (3.27) is equal
to (3.19), as desired.

Equations (3.20), (3.21), (3.22), and (3.23) immediately follow from applying
ϕ to Theorem 2.8, the identity ∑n

i=0(−1)ieihn−i which is implicit in Theorem 2.5,
Theorem 2.11, and Theorem 2.12, respectively. The two identities involving deter-
minants come from applying ϕ to Theorem 2.14 and to applying the ω transforma-
tion and then ϕ to Theorem 2.13.

3.17 By Exercise 2.3, (−1+∑∞
n=0 pnzn)/z=H ′(z)/H(z). Applying ϕ to both sides,

x− z
1−2xz+ z2 = ϕ

(
H ′(z)
H(z)

)
.

Integrating with respect to z gives ln
(
1−2xz+ z2

)−1/2
= lnϕ(H(z)) from which

we conclude that ϕ(H(z)) = 1/
√

1−2xz+ z2, as desired.

3.18 By Exercise 2.3, (−1+∑∞
n=0 pnzn)/z=H ′(z)/H(z). Applying ϕ to both sides,

2x−2z = ϕ
(

H ′(z)
H(z)

)
.

Integrating with respect to z gives 2xz− z2 = lnϕ(H(z)) from which we conclude
that ϕ(H(z)) = e2xz−z2

, as desired.
Using the h-to-p transition matrix, we have
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Hn(x) = ϕ(n!hn) = ∑
λ�n

n!
zλ

OBλ ,(n)ϕ(pλ ).

Since ϕ(pn) = 0 if n ≥ 3, the parts in a partition λ in above sum must be either
1 or 2. Let i be the number of parts of size 2 in such a partition, meaning that the
number of 1s is n−2i. It follows that zλ = 2ii!(n−2i)!, OBλ ,(n) = 1, and ϕ(pλ ) =

(−2)i(2x)n−2i. Using these values in the above expression proves the result.

3.19 By Exercise 2.3,

∞

∑
n=1

pnzn−1 =
1
z

(

−1+
∞

∑
n=0

pnzn

)

=
H ′(z)
H(z)

.

Integrating both sides gives ∑∞
n=1 pnzn−1/n = lnH(z). Using Theorem 1.8 and the

series expansion of ln1/(1− zi), we have

∞

∑
n=1

ϕ(pn)

n
zn = lnϕ(H(z)) = ln

∞

∏
i=1

1
1− zi =

∞

∑
i=1

ln
1

1− zi =
∞

∑
i=1

∞

∑
k=1

(zi)n

n
.

Comparing coefficients of zn on the extremes of these equalities,

ϕ(pn) = n ∑
i·k=n

1
k
= ∑

i·k=n

i = σ(n).

The identity involving p(n) and σ(n) given in the statement of the exercise follows
from applying ϕ to Theorem 2.8.

Notes

The method of applying ring homomorphisms to symmetric functions in order to
find generating functions started with the work of Brenti [14, 15]. The generating
function in Corollary 3.2 is well known (see page 244 of [25], page 68 of [102], and
page 215 of [45]), but it was Brenti who defined a ring homomorphism ϕ by setting
ϕ(en) = (−1)n−1(x−1)/n! to find it.

Brenti then observed that the same ring homomorphism applied to n!pλ/zλ gave
the sum of xexc(σ) over the set of all permutations of Sn whose cycle type induces
the partition λ , denoted Cλ . This allowed Brenti to prove that ∑σ∈Cλ

xexc(σ) was
unimodal.

However, Brenti did not use any results on the combinatorics of the transition
matrices between bases of symmetric functions in his paper. The first paper to com-
bine homomorphisms with such combinatorics was [6]; this is where Theorems 3.1
and 3.7 come from. Beck and Remmel also gave a completely combinatorial proof
of the fact that n!

zλ
ϕ(pλ ) = ∑σ inCλ

xexc(σ). Exercise 3.12 is also due to Beck, see [7].
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Since then, numerous papers written by a variety of authors have tinkered with
the proof to understand the permutation enumeration for signed permutations and
multiples of permutations [5, 8, 47, 59, 66, 74, 75, 76, 77, 78, 94, 96, 99, 100, 113,
114].

Alternating permutations have been called up-down permutations and zigzag seq-
uences in the literature. There have been various proofs and extensions of alternating
permutations throughout the years. Leonhard Euler correctly gave the expansion of
secz up to z16 (his coefficient of z18 is incorrect) and their connection to permuta-
tions [39]. This work probably spurred Sylvester to call the number of alternating
permutations Euler numbers [110].

Désiré André’s 1879 and 1881 papers are credited as containing the first proof
that the generating function for the alternating permutations is secz+ tanz [2, 3].
After Roger Entringer reproved André’s result in 1966 [37], his work was recounted
and reworked in a series of papers by Leonard Carlitz and Richard Scoville over
the next decade [16, 17, 19, 22]. The proof technique in these works was to use
recursions given by the definition of alternating permutations to find a differential
equation for the generating function. The q-analogue of the alternating permutations
was discovered by Richard Stanley by working with binomial posets [107].

The common descent statistic and was first studied by Leonard Carlitz, Richard
Scoville, and Theresa Vaughan [21, 23, 17]. Later, this statistic was studied by Jean-
Marc Fédou with Don Rawlings and Thomas Langley with the second author; the
latter paper used our approach of manipulating the relationships between symmetric
functions [40, 41, 76].

The result in Theorem 3.14 is due to Adriano Garsia and Ira Gessel [48, 51].
The proof we have provided was published in [89].

The continued fraction expansions for the alternating permutations found in exe-
rcises 3.10 and 3.11 and for set partitions given in Exercise 4.9 are due to Philippe
Flajolet [42].



Chapter 4
Counting with Nonstandard Bases

In Chapter 3 we found generating functions for permutation statistics by defining
ring homomorphisms on en and then applying them to hn. In this chapter we describe
another layer of versatility by defining ring homomorphisms on en and then applying
them to a brand new basis for the ring of symmetric functions, pν ,λ .

4.1 The Basis pν ,λ

The motivation for defining a new basis comes from Theorem 2.22, which says that
the coefficient of eλ in pn is (−1)n−�(λ )w(Bλ ,(n)). We have seen in the proof of
Theorem 3.5 that the extra weight on a brick tabloid can be useful when finding
generating functions. These weights will be even more useful when the weight can
be changed to be something other than the length of the last brick, and so that is how
we will define pν ,n.

Let ν be a function on the set of nonnegative integers. Recursively define a sym-
metric function pν ,n such that

pν ,n = (−1)n−1ν(n)en +
n−1

∑
k=1

(−1)k−1ek pν ,n−k

for all n ≥ 1. This definition of pν ,n allows us to write the generating function for
pν ,n in terms of the elementary symmetric functions. We have

(
∞

∑
n=0

(−1)nenzn

)(
∞

∑
n=1

pν ,nzn

)

=
∞

∑
n=1

(
n−1

∑
k=0

pν ,n−k(−1)kek

)

zn

=
∞

∑
n=1

(−1)n−1ν(n)enzn,
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and so
∞

∑
n=1

pν ,nzn =
∑∞

n=1(−1)n−1ν(n)enzn

∑∞
n=0(−1)nenzn . (4.1)

If ν(n) = 1 for all n ≥ 1, equation (4.1) tells us that

1+
∞

∑
n=1

p1,nzn = 1+
∑∞

n=1(−1)n−1enzn

∑n≥0(−1)nenzn =
1

∑∞
n=0(−1)nenzn = 1+

∞

∑
n=1

hnzn.

This means that p1,n is the homogeneous symmetric function hn. Other special
cases for ν give well-known symmetric functions. When taking ν(n) = n for n ≥ 1,
Corollary 2.10 says that pn,n is the power symmetric function pn. When taking

ν(n) =

{
0 if n ≤ k,

(−1)k otherwise

for some nonnegative integer k, then Corollary 2.7 says that pν ,n is the Schur func-
tion corresponding to the partition (1k,n).

For λ = (λ1,λ2, . . .) � n, let pν ,λ = pν ,λ1
pν ,λ2

· · · . The reason we have defined
pν ,λ in this way is because its expansion in terms of elementary symmetric functions
is a collection of weighted brick tabloids.

Suppose T ∈ Bλ ,μ has bricks of length b1, . . . ,b� ending each row. Define wν(T )
to be the product ν(b1) · · ·ν(b�) and let wν(Bλ ,μ) be the sum of weights of all
T ∈ Bλ ,μ . These are brick tabloids when ν(n) = 1 and these are weighted brick
tabloids when ν(n) = n.

Theorem 4.1. The coefficient of eλ in pν ,μ is (−1)n−�(λ )wν(Bλ ,μ).

Proof. Let cλ ,μ be the coefficient of eλ in pν ,μ . These numbers satisfy the following
three recursive identities:

1. c(n),(n) = (−1)n−1ν(n).

2. If λ � n has more than one part, then cλ ,(n) =
n−1

∑
i=1

(−1)n−icλ\i,(n−i).

3. If α +β denotes the partition created by the multiset union of α and β where
α � μ1 and β � n−μ1, then

cλ ,μ = ∑
α+β=λ

cα ,(μi)cβ ,μ\μi
.

The only difference between these three statements and the statements in the
proof of Theorem 2.22 is the first item. Therefore showing that both cλ ,μ and
(−1)n−�(λ )wν(Bλ ,μ) satisfy the completely deterministic recursions above is so
similar to the proof of Theorem 2.22 that it is left to the reader. ��
Corollary 4.2. If ν(n) 	= 0 for all n ≥ 1, the set {pν ,λ : λ � n} is a basis for Λn.
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Proof. There are no brick tabloids of shape λ and type μ when μ precedes λ in the
reverse lexicographic order, and there is exactly one brick tabloid of nonzero weight
when λ = μ . Thus the pν -to-e transition matrix is triangular with nonzero diagonal
entries. Since the elementary symmetric functions are a basis, so is {pν ,λ : λ � n}.

��

4.2 Counting with the Elementary and pν ,n

As a first example of how pν ,n may be used, we will find a generating function
for the number of final descents in permutations. Let fd(σ) be the number of final
descents in σ ∈ Sn, that is, fd(σ) is the length of the last maximal descending run.

We defined the ring homomorphism ϕ(en)= (−1)n−1(x−1)n−1/n! in section 3.1
in order to find a generating function registering descents. The factor of the form
(x− 1)n−1 allowed us to assign an x or a −1 into each nonterminal cell in a brick
of length n. In order to change this assignment of an x or −1 in the final brick, we
define

ν(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if n < j,

xn−1

(x−1)n−1 if n = j,

(x−1)n− j−1(−1)1x j−1

(x−1)n−1 if n > j,

where j is a positive integer. We will see in the proof below that ν will give us
control over how the xs and −1s appear in the final brick in a brick tabloid.

Theorem 4.3. We have

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)yfd(σ) =

(
x−1

x− e(x−1)z

)(

1+(1− y)
exyz − e(x−1)z

(x−1− xy)

)

.

Proof. This proof is similar to that of Theorem 3.1 but with changes made to the
last brick in a brick tabloid. Using Theorem 4.1, we apply the ring homomorphism
defined by ϕ(en) = (−1)n−1(x−1)n−1/n! to n!pν ,n to find

n!ϕ(pν ,n) = ∑
λ�n

(
n
λ

)
wν(Bλ ,(n))(x−1)λ1−1(x−1)λ2−1 · · · .

From this sum we create combinatorial objects by selecting a brick tabloid T ∈ Bλ ,(n),
filling T with a permutation such that each brick contains a decreasing sequence of
integers, placing a choice of x or −1 in each nonterminal cell of each brick, and
placing a +1 in the terminal cell of each brick.

To account for the extra weight on the last brick given by ν , we first demand that
the final brick must have a length of j or greater. If the final brick has length at least
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j, the division by (x−1)n−1 in the definition of ν(n) tells us to erase the choices of x
or −1. Then if the last brick has length j, place an x in every nonterminal cell of the
final brick. If the last brick has length greater than j, place a sequence of xs or −1s
in the nonterminal cells of the final brick such that the sequence ends with a −1
followed by exactly j−1 copies of x.

One example of such a combinatorial object when j = 6 is below:

7 6 11 12 10 9 8 5 4 3 2 1

−1 1 1 x −1 −1 x x x x x 1

.

We have forced the x and −1 labels to end with the sequence −1 x x x x x 1. Applying
our usual brick breaking or combining involution introduced in Chapter 3, we are
left with fixed points with exactly j final descents. Therefore n!ϕ(pν ,n) = ∑xdes(σ)

where the sum runs over permutations σ ∈ Sn with fd(σ) = j. Applying ϕ to both
sides of (4.1), we have

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)yfd(σ) = 1+
∞

∑
j=1

y j
∞

∑
n=1

zn

n! ∑
σ ∈ Sn has fd(σ) = j

xdes(σ)

= 1+
∞

∑
j=1

y jϕ

(
∞

∑
n=1

pν ,nzn

)

= 1+
∞

∑
j=1

y j ∑∞
n=1(−1)n−1ν(n)ϕ(en)zn

∑n=0(−1)nϕ(en)zn .

The generating function in the statement of the theorem follows from replacing
ϕ(en) and ν(n) with their definitions and then performing routine manipulations to
simplify. ��

The function ν used in the proof of Theorem 4.3 can be used together with the
many ways of changing the brick labels provided in section 3.2. In a straightfor-
ward manner, we can refine Theorem 4.3 by inversions, count the length of the final
number of common descents in pairs of permutations, count the final number of
decreases in a word in {0, . . . ,k− 1}∗n, and refine theorem 3.10 by the number of
final descents in the inverse permutation. Modifying the result in Exercise 4.1 can
also show that all of these same theorems can be refined by a statistic registering the
length of the final increasing run.

We can also change the properties of the final brick when we have defined ring
homomorphisms of the form ϕ(en) = (−1)n−1 f (n)/n! for some function f as found
in section 3.1. We give an example of this ability in the proof of the next theorem.

Theorem 4.4. We have

∞

∑
n=1

zn

n! ∑
σ ∈ Sn does not have

a 2-descent and σn−1 < σn

xdes(σ) =
2

√
4x−1cot

(
z
√

4x−1
2

)
−1

.
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Proof. Let f (n) be as defined in (3.2) and let ϕ be the ring homomorphism defined
by ϕ(en) = (−1)n−1 f (n)/n!. This was the definition of ϕ used in Theorem 3.3 in
order to find a generating function for the number of permutations which do not
have a 2-descent.

For this proof we would like the last brick in a brick tabloid to always have
length 1. To make this happen, we define a function ν(n) by

ν(n) =

⎧
⎨

⎩

1 if n = 1

− f (n−1)
f (n)

if n ≥ 2.

Applying ϕ to n!pν ,n allows us to create the same combinatorial objects as in
the proof of Theorem 3.3 except for the last brick. The definition of ν erases any
choices for x or −1 in the last brick and replaces them with a sequence of xs and
−1s such that no two xs can appear consecutively, a 1 appears in the terminal cell,
and a −1 appears in the second to last cell.

After applying our usual brick breaking or combining involution, the placement
of a −1 in the second to last cell in combinatorial object forces any fixed points to
have a final brick of length 1. The weighed sum of all fixed points, and therefore
ϕ(n!pν ,n), is equal to ∑xdes(σ) where the sum runs over permutations in σ ∈ Sn

without a 2-descent such that σn−1 < σn.
A generating function comes from applying ϕ to (4.1):

∞

∑
n=1

zn

n! ∑
σ ∈ Sn does not have

a 2-descent and σn−1 < σn

xdes(σ) =
∑∞

n=1(−1)n−1ν(n)ϕ(en)zn

∑n=0(−1)nϕ(en)zn . (4.2)

The bottom half of this expression is

1

∑n=0(−1)nϕ(en)zn =
1

−∑∞
n=0 f (n)zn/n!

.

This is the function found in (3.4) which simplifies to the function in the statement
of Theorem 3.3. The numerator in (4.2) simplifies to −∑∞

n=1 f (n− 1)zn/n!, which
is the derivative of −∑∞

n=0 f (n)zn/n!. This is the reciprocal of the function in the
statement of Theorem 3.3. Putting this together, we have that (4.2) is equal to

ez/2

cos
(

z
√

4x−1
2

)
− 1√

4x−1
sin
(

z
√

4x−1
2

)
∫ cos

(
z
√

4x−1
2

)
− 1√

4x−1
sin
(

z
√

4x−1
2

)

ez/2
dz.

The integral in the above equation evaluates to 2e−z/2 sin
(
z
√

4x−1/2
)
/
√

4x−1,
which in turn allows us to find the function in the statement of the theorem. ��

A valley in σ = σ1 · · ·σn ∈ Sn is an index between 2 and n−1 such that σi−1 > σi

and σi < σi+1. Let val(σ) be the number of valleys in σ . Aside from displaying how
ν can control what happens in the final part of a permutation, Theorem 4.4 secretly
encodes information about the distribution of valleys in Sn.
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Corollary 4.5. We have
∞

∑
n=0

zn

n! ∑
σ∈Sn

xval(σ) =
1√

x−1cot
(
z
√

x−1
)−1

.

Proof. To begin we will show that the number of permutations of n with k valleys
is equal to 2n−2k−1 times the number of permutations σ = σ1 · · ·σn ∈ Sn such that σ
does not have a 2-descent, σn−1 < σn, and des(σ) = k.

Suppose σi > · · · > σi+ j is a maximal descending run of length at least 2 in
the permutation σ = σ1 · · ·σn ∈ Sn. If i+ j 	= n, circle the integers σi+1, · · · ,σi+ j−1

and interlace these circled integers into the increasing run which ends at σi. If i+
j = n, circle the integers σi+1, . . . ,σi+ j and interlace these circled integers into the
increasing run which ends at σi. Let σ be the result of performing this operation on
each maximal descending run of length at least 2.

For example, if σ is the permutation

σ = 10 9 1 7 11 8 6 5 2 13 17 18 12 4 14 16 13 3,

then

σ = 9 10 1 5 6 7 8 11 2 12 13 17 18 3 4 13 14 16.

We can reconstruct σ from σ by placing any circled integers into the next
descending run to the right, so this process of changing σ to σ is reversible.

By construction, the permutation σ cannot have a 2-descent and must end with
an increase. Furthermore, the permutation σ has exactly one descent each time a
maximal decreasing run of length at least 2 is followed by an increasing run in σ ,
that is, σ has exactly one descent for each valley in σ .

The places in σ which begin and end a maximal descending run of length at least
2 cannot be circled. Furthermore, the last integer in σ cannot be circled. If σ has k
valleys, this means that there can be at most n−2k−1 circled integers in σ .

The bijection which turns σ into σ shows that the number of permutations in
Sn with k valleys is equal to the number of permutations σ ∈ Sn without 2-descents,
σn−1 < σn, and des(σ) = k with at most n−2k−1 circled integers.

Therefore
∞

∑
n=1

zn

n! ∑
σ∈Sn

xval(σ) =
∞

∑
n=1

zn

n!
2n−1 ∑

σ ∈ Sn does not have
a 2-descent and σn−1 < σn

( x
4

)des(σ)

=
1
2

2
√

4 x
4 −1cot

(
2z
2

√
4 x

4 −1
)−1

where the last line follows from Theorem 4.4. This is our generating function. ��
As the impetus for defining the nonstandard basis pν ,n came from the use of

the power symmetric functions when finding a generating function for the alter-
nating permutations in Theorem 3.5, we will show how this basis can generalize
the alternating permutations. Define σ = σ1 · · ·σn ∈ Sn to be j-alternating provided
σi < σi+1 if and only if j divides i. Descents occur exactly at odd indices in an
alternating permutation, so an alternating permutation is 2-alternating.



4.2 Counting with the Elementary and pν ,n 127

Theorem 4.6. Let m be an integer in {0, . . . , j−1}. Then

∞

∑
n=1

zn j−m

(n j−m)!
|{σ ∈ Sn j−m is j alternating}|= ∑∞

n=1(−1)n−1zn j−m/(n j−m)!

∑∞
n=0(−1)nzn j/(n j)!

.

Proof. Let ϕ be the homomorphism defined by ϕ(en) = (−1)n−1 f (n)/n! where
f (n) is (−1)n/ j−1 if j divides n and 0 otherwise. Let ν be the function defined by
ν(n) = n!/(n−m)!. The usual arguments give that ( jn−m)!ϕ(pν , jn) is equal to

∑
λ� jn

∑
T ∈ Bλ ,( jn) has bricks with

lengths b1, . . . ,b� divisible by j

( jn−m)!
b1! · · ·b�!

b�!
(b�−m)!

(−1)
b1
j +···+ b�

j −�.

The factorials in this sum simplify to
( jn−m

b1,...,b�−m

)
. This means we should create

combinatorial objects which look like this (when n = 3, j = 4, and m = 3):

9 8 7 6 4 3 2 1 5

−1 1 1

.

The −1 or 1 sign comes every jth brick, and each brick is a multiple of j. The
usual involution leaves fixed points corresponding to j alternating permutations.
The generating function follows from applying ϕ to equation (4.1). ��

Summing the cases of m = 0, . . . , j−1 in Theorem 4.6 can give nice expressions
for the generating function for the j-alternating permutations in Sn. For instance,
when j = 2 we find the generating function for alternating permutations (starting at
n = 1) is secz+ tanz−1 and the generating function for the 3-alternating permuta-
tions is

3+2
√

3ez/2 sin
(√

3z
2

)

e−z +2ez/2 cos
(√

3z
2

) .

For σ = σ1 · · ·σn ∈ Sn, let step(σ) be the number of indices i for which σi =
σi+1 + 1; these are indices which take one step down. We end this section by app-
lying a different sort of involution on brick tabloids in order to find a generating
function for the permutation statistic step.

Theorem 4.7. We have
∞

∑
n=1

zn

(n−1)! ∑
σ∈Sn

xstep(σ) =
z

(1− z)2ez(1−x)
.

Proof. Define a ring homomorphism ϕ by ϕ(en) = (−1)n−1 f (n)/n! where f (n) =
(−1)(1− x)n and define a function ν by ν(n) = n ·n!/ f (n). Then we have

(n−1)!ϕ(pν ,n) = ∑
λ�n

∑
T ∈ Bλ ,(n) has

bricks b1, . . . ,b�

(
n−1

b1, . . . ,b�−1

)
1
b�

f (b1) · · · f (b�)ν(b�). (4.3)
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From this we create combinatorial objects by selecting T ∈Bλ ,(n) for some λ � n and
using the multinomial coefficient in (4.3) to place decreasing sequences of integers
in the bricks of T such that each integer in {1, . . . ,n} appears once in T and the
integer n appears in the final brick (the appearance of the multinomial coefficient( n−1

b1,...,b�−1

)
in (4.3) instead of

( n−1
b1,...,b�

)
gives this condition).

The definition of f (n) tells us to place a choice of either 1 or −x in each cell
and, with the extra power of −1 in f (n), f (n) tells us to reverse the ± sign on
the terminal 1 or −x in each brick. To account for the function ν , we notice that
ν(b�)/b� = b�!/ f (b�) and so we erase all 1 or −x labels on the final brick coming
from the definition of f (n) and then permute the integers in the final brick.

For example, one combinatorial object created in this manner is

11 10 2 8 5 1 4 3 9 6 12 7

1 −x −1 −x −x x 1 x

.

The weighted sum over all possible combinatorial objects is equal to (n−1)!ϕ(pν ,n).
We will perform two involutions. First, scan the bricks from left to right looking

for either the first nonterminal brick of length greater than 1 or the first brick of
length 1 which sees a decrease in the integer labeling with the nonterminal brick to
its right. If we find a nonterminal brick of length greater than 1, make the first cell
of this brick into its own brick of length 1 and reverse the sign on the 1 or −x in this
new brick. If we find a brick of length 1 with a decrease in the integer labels, then
reverse this operation.

This process is a weight preserving and sign reversing involution. Fixed points
look like this

1 2 3 4 5 8 10 11 9 6 12 7

−1 x −1 x x x −1 x

.

Fixed points under this first involution must consist of an increasing list of bricks
of size 1, each containing a −1 or an x, followed by the final brick. Perform a second
involution on these fixed points by first locating the largest integer i such that either

1. i appears immediately to the right of j in the final brick where j is the smallest
integer in the final brick which is larger than i, or

2. i does not appear in the final brick and the label above i is a −1.

If the first case is found, remove i from the final brick and place it in the inc-
reasing sequence of bricks of length one with a label of −1. If the second case
is found, undo this operation. For example, the image of the combinatorial object
shown above under this second involution is

1 2 3 4 5 8 11 9 6 12 10 7

−1 x −1 x x x x

.
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Fixed points under the second involution cannot have either of the above two
cases hold. One such object is

2 4 5 8 11 9 3 6 1 12 7 10

x x x x x

.

If we take such a fixed point and place each i in a brick of length one after the app-
earance of i+1 in the final brick, then we find a permutation σ = σ1 · · ·σn ∈ Sn with
one x for each time σi = σi+1 + 1. For instance, the fixed point above corresponds
to the permutation 9 8 3 2 6 5 4 1 12 11 7 10. This means (n−1)!ϕ(pν ,n) =

∑σ∈Sn xstep(σ).
A generating function follows from applying ϕ to (4.1). We have

∞

∑
n=1

zn

(n−1)! ∑
σ∈Sn

xstep(σ) =
∑∞

n=1(−1)n−1ν(n)ϕ(en)zn

∑∞
n=0(−1)nϕ(en)zn =

∑∞
n=1 nzn

∑∞
n=0 zn(1− x)n/n!

,

which is equal to the generating function in the statement of the theorem. ��
One of the curious facts that we can deduce from the generating function in The-

orem 4.7 is the probability that a random permutation σ ∈ Sn will have step(σ) even.
To find this probability, we add the function in Theorem 4.7 to the same function
with “x” replaced with “−x,” divide by 2, and then take x = 1 to find

∞

∑
n=1

|{σ ∈ Sn has step(σ) even}|
(n−1)!

zn =
z(1+ e−2z)

2(1− z)2

=

(
e2 +1

2e2

)
1

(1− z)2 −
(

e2 −1
2e2

)
1

1− z
+g(z),

where g(z) is a function with no singularities. Using Newton’s binomial theorem
and accounting for the division by (n− 1)! instead of the usual n! in Theorem 4.7,
we find that a good approximation to |{σ ∈ Sn has step(σ) even}|/n! is

((
e2 +1

2e2

)
(n+1)− e2 −1

2e2

)
/n =

1
2
+

1
2e2 +

1
e2n

.

So, for large n, the probability that a random permutation σ ∈ Sn has step(σ) even
is approximately 1/2+1/(2e2)≈ 0.57668.

4.3 Recurrences

A linear homogeneous recurrence relation with constant coefficients is a sequence
which is recursively defined by

an = c1an−1 + c2an−2 + · · ·+ ckan−k (4.4)

for all n > k where k is a positive integer and c1, . . . ,ck are constants. We assume
that a1, . . . ,ak are known constants, from which the entire sequence can be found.



130 4 Counting with Nonstandard Bases

It is not difficult to find the generating function A(z) = ∑∞
n=1 anzn for such seq-

uences; indeed,

A(z) = a1z+ · · ·+akzk +
∞

∑
n=k+1

anzn

= a1z+ · · ·+akzk +
∞

∑
n=k+1

(c1an−1 + c2an−2 + · · ·+ ckan−k)z
n

= a1z+ · · ·+akzk + c1z
(

A(z)−a1z1 −·· ·−ak−1zk−1
)
+ · · ·+ ckzkA(z).

Solving for A(z) gives

A(z) =
a1z+(a2 − c1a1)z2 + · · ·+(ak − ck−1a1 −·· ·− c1ak−1)zk

1− c1z−·· ·− ckzk . (4.5)

In this section we will give a simple, combinatorial interpretation for the terms in
this recursion using weighted brick tabloids. Such combinatorial interpretations can
help us better understand the sequence an; see Exercises 4.3 and [12] for examples
of how to use these combinatorial interpretations to prove identities.

As an immediate result of the combinatorial interpretation, we will be able to
define a ring homomorphism ϕ and a function ν in order to find the generating
function A(z). This roundabout way of finding A(z) uses more overhead than the
above calculation, but we include it to exhibit the versatility of using brick tabloids
and symmetric function identities in counting problems.

Let Bn,k be the set of all brick tabloids T ∈ Bλ ,(n) for some λ � n such that there is
only one brick in T or the last two bricks in T have lengths which sum to an integer
larger than k. For a brick b of length � in a brick tabloid T ∈ Bn,k, define

w(b) =

⎧
⎪⎨

⎪⎩

0 if � > k,

c� if �≤ k and b is not the last brick in T , and

a� if �≤ k and b is the last brick in T ,

and define w(T ) to be the product of the weights of the bricks in T . For example,
one T ∈ B12,3 with weight c2

1c2c2
3a2 can be depicted by

c3 c1 c3 c1 c2 a2
.

If n ≤ k, then Bn,k contains exactly one brick tabloid T (which consists of exactly
one brick of length n) and so ∑T∈Bn,k

w(T ) = an. If n > k, then T ∈ Bn,k contains at
least two bricks. By summing over the length of the first brick,

∑
T∈Bn,k

w(T ) =
k

∑
i=1

∑
T ∈ Bn,k has first
brick of length i

w(T ) =
k

∑
i=1

ci ∑
T∈Bn−i,k

w(T ).

Therefore ∑T∈Bn,k
w(T ) satisfies the recursion in (4.4). This means we have our

combinatorial interpretation: an = ∑T∈Bn,k
w(T ).
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To find the generating function A(z) = ∑∞
n=1 anzn, we can define a ring homomor-

phism ϕ by ϕ(en) = (−1)n−1cn if n ≤ k and 0 otherwise. To go along with ϕ , we
define ν by ν(n) = (an−cn−1a1−·· ·−c1an−1)/cn if cn is nonzero and 0 otherwise.
Then

ϕ(pν ,n) = ∑
λ�n

∑
T ∈ Bλ ,(n) has bricks

with lengths b1, . . . ,b�

cb1 · · ·cb�ν(b�).

From this sum we select a brick tabloid T ∈ Bλ ,(n) for some λ � n and associate a
weight of cbi to the brick of length bi. The function ν(b�) tells us to cancel the cb�
weight on the final brick in T and replace it with either ab� or −cb�−iai for some i.

On this collection of weighted brick tabloids we can perform the following sign
reversing involution. If the last brick in such a combinatorial object T is −cb�−iai

for some i, then change T by breaking the last brick into two bricks, one of length
b�− i and the other of length i. If the last two bricks in T sum to an integer less than
or equal to k, reverse this operation and combine the last two bricks into one brick
with weight −cb�−iai. For instance, this involution pairs

c3 c1 c3 c2 −c1a2

with

c3 c1 c3 c2 c1 a2
.

Fixed points can have no negative weights and the last two bricks cannot have
lengths which sum to an integer smaller than k. These fixed points have a weighted
sum equal to an = ∑T∈Bn,k

w(T ).
By applying ϕ to the identity in (4.1), we find

A(z) = ϕ

(
∞

∑
n=1

pν ,nzn

)

=
∑∞

n=1(−1)n−1ν(n)ϕ(en)zn

∑∞
n=0(−1)nϕ(en)zn ,

which in turn is equal to the function in (4.5), as expected.

4.4 The Exponential Formula

In this section we apply the machinery we have developed to understand and refine
the “exponential formula,” which is a relationship between the generating functions
for connected objects and collections of those connected objects.

A common problem in combinatorics is to count the number of ways that the
integers 1, . . . ,n can be arranged in a structure which can be partitioned into disjoint,
unordered components. Here are three main examples of this phenomenon:



132 4 Counting with Nonstandard Bases

1. Permutations of n are built from disjoint, unordered cycles.
2. A set partition of n is a collection of pairwise disjoint nonempty sets with union

to {1, . . . ,n}. For instance, {{1,3,6,8},{2,5,7,10,11},{4,12},{9}} is a set
partition of 12. Set partitions of n are built from disjoint, unordered sets.

3. Labeled graphs on n nodes are built from disjoint, unordered connected compo-
nents.

The exponential formula gives generating functions for these situations.
Let Pn be a set of “pictures” containing the integers 1, . . . ,n. By a picture, we

simply mean that the integers 1, . . . ,n are arranged in some way. These pictures will
be our disjoint, connected components.

Let Sn be the collection of sets of the form {p1, . . . , pk} such that each pi is a
picture, the sizes of p1, . . . , pk sum to n, and the integer labels in the pictures have
been replaced so that the total set contains the integers 1, . . . ,n. For s ∈ Sn, define
the statistic pic(s) be the number of pictures in s.

As an example, suppose each element in Pn is a rooted labeled tree with n nodes
(see Exercise 4.4 for the definition of rooted labeled tree). Here is an element in P7:

5

2 6

1 4 7

3

Objects in Sn are built from components found in the sets P1,P2, . . . ; in this exam-
ple, we are creating rooted labeled forests on n nodes. Here is an element in S20:

15

18 20

6 7 16

13

4 14

3 12 19

8

2

17

10

11

5 9

1

We have chosen to list the rooted trees in this labeled forest in decreasing order
according to their smallest element, but since the rooted trees are unordered ele-
ments of a set, we could have displayed them in any order. For the above object s,
pic(s) = 4.

The next theorem is known as the exponential formula. It may be proved without
the machinery we have developed, but proving it by defining a ring homomorphism
on en provides two significant benefits. First, once understood in this way, we can
use the ability to weight the last brick in a brick tabloid differently from the other
bricks in order to refine the exponential formula a few different ways. Second, this
style of combinatorial proof by sign reversing involution unifies many different ad
hoc methods for finding generating functions.
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Theorem 4.8. If P(z) = ∑∞
n=1 |Pn|zn/n!, then

∞

∑
n=0

zn

n! ∑
s∈Sn

xpic(s) = exP(z).

Proof. Define a ring homomorphism by ϕ(en) = (−1)n−1 f (n)/n! where

f (n) =
n

∑
m=1

∑
i1,...,im≥1

i1+···+im=n

(
n

i1, . . . , im

) |Pi1 | · · · |Pim |
m!

(−1)m−1xm. (4.6)

Applying ϕ to n!hn gives (3.3). With this equation, begin to create combinatorial
objects by using the summand and |Bλ ,(n)| terms to select a brick tabloid T . Use
the multinomial coefficient

(n
λ
)

in (3.3) to associate with each brick in T of size k
a subset of {1, . . . ,n} of size k such that the subsets associated with the bricks in T
are pairwise disjoint.

The function f (n) in (4.6) tells us how to weight a brick of length n. With this
function, select an integer m between 1 and n and select positive indices i1, . . . , im
which sum to n. Use the factor of |Pi1 | · · · |Pim | in (4.6) to select pictures pi1 , . . . , pim ,
each containing i1, . . . , im integers. We have already been assigned a subset of pos-
itive integers of size n, say { j1, . . . , jn} where j1 < · · · < jn. Use the binomial co-
efficient

( n
i1,...,im

)
to replace the numbers 1, . . . , i� on picture pi� with elements of

{ j1, . . . , jn} such that each picture has distinct integer labels, the union of which is
equal to { j1, . . . , jn}.

Use the 1
m! term in (4.6) to sort these pictures containing the re-indexed labels

in increasing order according to the smallest element; suppose the pictures are
pk1 , . . . , pkm when listed in this way. Place pk1 into the kth

1 cell of the brick when
reading left to right, place pk2 into the (k1 + k2)

th cell reading left to right, and so
on. In each nonterminal cells which contain a picture, place one −x. Place an x in
the terminal cell of the brick.

Performing the above operations uses all the terms in (3.3). One possible com-
binatorial object created in this manner when taking pictures to be rooted labeled
trees is shown below.

x −x −x x

12

10 2

8

11

1 4

5

3

6

7

9

If we define the weight of such an object to be the product of the −x and x terms,
then it follows that the weighted sum over all possible combinatorial objects is equal
to n!ϕ(hn).

To rid ourselves of any object with a negative sign, apply the following sign
reversing weight preserving involution. Scan the bricks from left to right looking
for a −x or two consecutive bricks where the last picture in the first brick contains
a smaller integer than the first picture in the second brick. If a −x is scanned first,
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break the brick into two immediately after the −x and reverse the sign on the −x.
If two consecutive bricks with the correct order of pictures is found, then combine
the two consecutive bricks and reverse the sign on x now appearing in the middle.

The image of the combinatorial object shown above under this process is shown
below:

x x −x x

12

10 2

8

11

1 4

5

3

6

7

9

This is easily seen to be sign reversing and weight preserving. The fixed points
cannot have any −x labels and hence each brick must contain one and only one
picture. Furthermore, in a fixed point, the pictures when read from left to right must
be written in decreasing order according to their minimum elements. These fixed
points correspond to ∑s∈Sn xpic(s). Applying ϕ to Theorem 2.5 gives

∞

∑
n=0

zn

n! ∑
s∈Sn

xpic(s) =

(

1+
∞

∑
n=1

zn

n!

n

∑
m=1

∑
i1+···+im=n

(−x)m
(

n
i1, . . . , im

) |Pi1 | · · · |Pim |
m!

)−1

=

(
∞

∑
m=0

(−x)m

m!

m

∑
n=0

∑
i1+···+im=n

|Pi1 | · · · |Pim |
i1! · · · im!

zi1+···+im

)−1

which may be seen to equal exP(z). ��
Now that the exponential formula has been proved, let us show off some of its ca-

pabilities. As a first example, we will find generating functions for the cycle lengths
in permutations in Sn.

Let Pn be the set of cycles of length n. Although we did not do this in Theorem 4.8,
we have the ability to assign indeterminates to each picture in Pn if we so desire; the
involution in the proof of Theorem 4.8 is not affected by the content of the pictures
and hence is still weight preserving with respect to any indeterminates. This means
that we can additionally assign a weight of qn to go along with each picture in Pn.

There are (n−1)! cycles of length n and so |Pn|= qn(n−1)!. Therefore

P(z) =
∞

∑
n=1

zn

n!
|Pn|= q1z+q2

z2

2
+q3

z3

3
+ · · · .

Elements in Sn are permutations in Sn written in cyclic notation with powers of qi

counting the number of cycles of length i. Taking x = 1 in Theorem 4.8 (this power
of x would count the number of cycles in a permutation, something we are already
doing with the indeterminates qi) gives
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∞

∑
n=0

zn

n! ∑
σ∈Sn

qcyc1(σ)
1 qcyc2(σ)

2 · · ·= eq1z+q2
z2
2 +q3

z3
3 +···, (4.7)

where cyci(σ) is the number of cycles of length i in the permutation σ . The coeffi-
cient of zn/n! in (4.7) is known as the cycle index polynomial.

By taking special values of q1,q2, . . . , equation (4.7) can produce some interest-
ing generating functions. For example, if we let cyc(σ) be the total number of cycles
in σ and let q1 = q2 = · · ·= x in (4.7), we find

∞

∑
n=0

zn

n! ∑
σ∈Sn

xcyc(σ) = ex(z+ z2
2 + z3

3 +···) = ex ln 1
1−z =

1
(1− z)x .

An expansion of the right-hand side of the above expression by Newton’s binomial
theorem shows that ∑σ∈Sn xcyc(σ) = (x+0)(x+1) · · ·(x+(n−1)).

By taking certain values of qn in (4.7) to equal zero, we can restrict the appear-
ances of certain cycles. For instance, if j is a positive integer, then it may be shown
that the permutations σ ∈ Sn such that σ j = 1 are those permutations with cycles
of length dividing j. To find a generating function for those permutations in Sn with
σ j = 1, take qn = x if n divides j and qn = 0 otherwise to find that

∞

∑
n=0

zn

n! ∑
σ ∈ Sn with σ j = 1

xcyc(σ) = ∏
n divides j

exzn/n.

In the special case of j = 2, the generating function registering a power of x for each
cycle in an involution (a permutation with cycles of length 1 or 2) is ex(z+z2/2).

As another example, the generating function for the number of permutations in
Sn with all cycles of length at least m is equal to

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has cycles

of length at least m

xcyc(σ) = exzm/m+xzm+1/(m+1)+···

= e
x
(

ln 1
1−z− z1

1 −···− zm−1
m−1

)

=
e

x
(
− z1

1 −···− zm−1
m−1

)

(1− z)x .

Taking x = 1 in this last equation and then using the asymptotic techniques devel-
oped in the second part of section 1.3 shows that the approximate probability that a

random permutation will have cycles of length at least m is e−1− 1
2−···− 1

m−1 .
As a second application of Theorem 4.8 we will count the number of set parti-

tions. Let Pn contain only one picture, the picture “{1, . . . ,n}”. Then P(z) = ez −1.
It follows that elements in Sn are set partitions of n. The exponential formula gives

∞

∑
n=0

zn

n! ∑
s is a set partition of n

xthe number of sets in s = ex(ez−1).
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In particular, taking the coefficient of xk in the expansion of the above expression, it
follows that

∞

∑
n=0

|{the number of set partitions of n with k parts}| z
n

n!
=

(ez −1)k

k!
.

Additionally, we can restrict the sizes of the sets which appear in a set partition in
the same way that we restricted the cycles in a permutation.

As a last example of the exponential formula, let Gn be the set of labeled graphs
on n nodes. Since between any two nodes there is a choice of either placing an edge

or not, there are 2(
n
2) total elements in Gn. If we let P(z) the generating function for

the number of connected components in Gn, taking x = 1 in Theorem 4.8 gives

∞

∑
n=0

2(
n
2)

zn

n!
= eP(z).

The function P(z) can be found by taking logarithms. A second application of The-
orem 4.8 gives

∞

∑
n=0

zn

n! ∑
g∈Gn

xthe number of connected components in g = e
x ln

(
∑∞

n=0 2(
n
2) zn

n!

)

=

(
∞

∑
n=0

2(
n
2)

zn

n!

)x

.

Next we will show how the ability to weight the last brick in a brick tabloid
differently can refine Theorem 4.8 in a few different ways. Given an element s ∈ Sn

built with components found in P1, . . . ,Pn, let one(s) be the size of the component
in which label 1 may be found. For example, if s is the set partition

{9},{4,12},{2,5,7,10,11},{1,3,6,8}

of 12, then one(s) = 4 since number 1 appears within a set of size 4.

Theorem 4.9. If P(z) = ∑∞
n=1 |Pn|zn/n!, then

∞

∑
n=1

zn

n! ∑
s∈Sn

xpic(s)yone(s) =
∫

xexP(z) ∂
∂ z

(P(yz)) dz.

Proof. Define a function ν in order to weight the last brick in a brick tabloid by

ν(n) =

⎧
⎨

⎩

0 if n 	= j
nx|Pn|

f (n)
if n = j.

for some positive integer j where f (n) is given in (4.6). Applying the function ϕ in
the proof of Theorem 4.8 to (n− 1)!pν ,n gives (4.3). From this equation we create
the same combinatorial objects as found in the proof of Theorem 4.8 except for the
following conditions on the final brick:
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1. The last brick must be of length j,
2. The last brick must contain exactly one picture, and
3. The picture in the last brick contains the integer 1 (the appearance of the multi-

nomial coefficient
( n−1

b1,...,b�−1

)
in (4.3) instead of

( n−1
b1,...,b�

)
gives this condition).

Apply the involution found in the proof of Theorem 4.8. Since the 1 appears in
the last brick and that brick contains only one picture, this involution never combines
the last two bricks. Fixed points correspond to elements in Sn with the 1 appearing
in a picture of size j. Therefore we have

d
dz

(
∞

∑
n=1

zn

n! ∑
s∈Sn

xpic(s)yone(s)

)

=
∞

∑
n=1

zn−1

(n−1)! ∑
s∈Sn

xpic(s)yone(s)

=
∞

∑
j=1

y j

z
ϕ

(
∞

∑
n=1

pν ,nzn

)

=
∞

∑
j=1

y j ∑∞
n=1(−1)n−1ν(n)ϕ(en)zn−1

∑∞
n=0(−z)nϕ(en)

.

Just as in the proof of Theorem 4.8, the denominator of this expression is e−xP(z).
This, along with the definition of ν and ϕ , shows that the above string of equalities
is equal to

exP(z)
∞

∑
j=1

y jx|P j| z j−1

( j−1)!
= xexP(z) d

dz

(
∞

∑
j=1

(yz) j

j!
|P j|

)

= xexP(z) d
dz

(P(yz)) .

Integrating the extremities in this string of equalities proves the theorem. ��
Theorem 4.9 says, for instance, that

∑
n=1

zn

n! ∑
s is a set partition

xthe number of sets in sythe size of the set with 1 =
∫

xyex(ez−1)+yz dz

and

∞

∑
n=1

zn

n! ∑
σ∈Sn

yone(σ)qcyc1(σ)
1 qcyc2(σ)

2 · · ·=
∫

y(q1 +q2(yz)+ · · ·)eq1z+q2z2/2+··· dz.

If we take q1 = q2 = · · ·= x in this last equation, we find the specialization

∞

∑
n=1

zn

n! ∑
σ∈Sn

xcyc(σ)yone(σ) =

∫
xy

(1− z)x(1− yz)
dz.

In the proof of Theorem 4.8, we sorted pictures within each brick in increasing
order according to the smallest element. This choice of sorting pictures within bricks
was arbitrary—any linear order on the pictures can be used to prove the theorem.
The choice of sorting by smallest element was made so that the last brick in a fixed
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point would contain the element 1, enabling us to prove Theorem 4.9 more easily.
Different linear orders of pictures combined with the capacity to change the weight
on a last brick can refine the exponential formula in different ways, as shown in our
next theorem.

Theorem 4.10. We have

∞

∑
n=1

zn

n! ∑
s∈Sn

xpic(s)zmin(s) = exP(z)
∞

∑
j=1

∞

∑
n= j

y jν(n)
zn

n!
,

where min(s) is the minimum picture size in s ∈ Sn,

ν(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if n < j,

x|Pj|
f (n)

n− j

∑
m=1

∑
1≤i1,...,im≤ j

i1+···+im=n− j

(
n

i1, . . . , im, j

) |Pi1 | · · · |Pim |
(m+1)!

(−x)m if n ≥ j,

and f (n) is the function in (4.6).

Proof. Let ϕ be the homomorphism defined in the proof of Theorem 4.8 and let ν
be the function in the statement of the theorem. Applying ϕ to n!pν ,n gives

n!ϕ(pν ,n) = ∑
λ�n

∑
T ∈ Bλ ,(n) has

bricks b1, . . . ,b�

(
n

b1, . . . ,b�

)
f (b1) · · · f (b�)ν(b�). (4.8)

From this we can create combinatorial objects which, except for the last brick, are
similar to those found in the proof of Theorem 4.8. However, instead of ordering the
pictures in each brick according to minimum integers, sort the pictures in increasing
order according to size. Then if pictures within a brick have the same size, sort them
in increasing order according to minimum element.

The division by f (n) in the definition of ν erases all pictures in the last brick.
Then in the same way that f (n) placed pictures in the other bricks, the remaining
portion of ν places an ordered list of pictures in the last brick such that the last brick
must have a maximum size picture with exactly j integers. For example, when j = 4,
one such combinatorial object is shown below:

x −x −x x

12

10 2

8

11

1 4

5

3

6

7

9
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Apply the involution which breaks a brick at the first −x or combines two bricks
when the specified order on pictures is preserved. Fixed points must have pictures
which weakly decrease according to size and the last brick must contain a picture
of size j. This implies that the minimum sized picture in a fixed point must have
size j. In other words, fixed points correspond to ∑xpic(s) where the sum runs over
all s ∈ Sn which have min(s) = j. The generating function in the statement of the
theorem follows from applying ϕ to 4.1 and then summing over all j ≥ 1. ��

In a similar way as in the proof of this last theorem, the exponential theorem can
be refined to keep track of the size of the maximum picture.

We end this section by showing how an unlabeled version of the exponential
formula also can be proved using involutions on brick tabloids. Let Pn to be a set of
unlabeled pictures of size n—pictures which are like those described above but with
any integer labels erased. Let Un be the collection of sets of the form {p1, . . . , pk}
such that each pi is an unlabeled picture and the sum of the sizes of the pictures
is n. For instance, in the case where Pn contains unlabeled rooted trees on n nodes,
Un contains the unlabeled rooted forests on n nodes. Just as in the case of labeled
objects, for u ∈ Un, pic(u) denotes the number of pictures used to create u.

Theorem 4.11. We have
∞

∑
n=0

zn ∑
u∈Un

xpic(u) =
∞

∏
i=1

1

(1− xzi)|Pi| .

Proof. Define the homomorphism ϕ such that

ϕ(en) = (−1)n ∑
i1,i2,...,in≥0

i1+2i2+···+nin=n

(|P1|
i1

)
· · ·
(|Pn|

in

)
(−x)i1+···+in .

Applying ϕ to hn gives ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|ϕ(eλ1
) · · ·ϕ(eλ�) from which we create

combinatorial objects by first selecting T ∈ Bλ ,(n) for some λ � n and then using the
−1 sign in this equation and in the definition of ϕ to assign exactly one −1 sign to
each brick in T .

The definition of ϕ tells us that for each brick of length k we should choose
i1, . . . , ik nonnegative integers such that i1 + 2i2 + · · ·+ kik = k. Using the binomial
coefficients in the definition of ϕ , select i j different pictures in Pi j to be placed in
the brick for j = 1, . . . ,k. Sort these pictures in increasing order first according to
size, and then sort according to some arbitrary linear order given to Pn. Suppose that
when this is done, the pictures are pk1 , . . . , pkm . Place pk j in cell number k1+ · · ·+k j

reading left to right. In each one of the cells which now contains a picture, place one
factor of −x. Since there must be a picture in the last cell in any brick, so must there
be a −x. Use the factor −1 given to each brick to change this terminal −x to an x.



140 4 Counting with Nonstandard Bases

For example, one possible object created in this way is

x −x −x x

The weighted sum over all such combinatorial objects is ϕ(hn).
Scan the bricks from left to right looking for a −x or two consecutive bricks

which may be combined to preserve the order of the pictures. Break or combine
the bricks accordingly, changing the power on x in the process. This involution is
sign reversing and weight preserving. The fixed points cannot have any −x labels
and hence all bricks must contain one and only one picture. Furthermore, in a fixed
point, the pictures when read from left to right must be written in decreasing order.

These fixed points correspond to objects in Un with powers of x counting the
number of pictures. Applying ϕ to Theorem 2.5,

∑
n=0

zn ∑
u∈Un

xpic(u) =

(

∑
n=0

(−z)n(−1)n ∑
i1+···+nin=n

(|P1|
i1

)
· · ·
(|Pn|

in

)
(−x)i1+···+in

)−1

=

(
∞

∏
i=1

∑
j=0

(|P j|
j

)
(−x) j(zi) j

)−1

,

which by the binomial theorem is equal to the desired expression. ��
As an example of how Theorem 4.11 can be applied, consider the generating

function for the number of partitions of n refined by length. Let Pn be a set with
one picture, the picture consisting of a horizontal strip of n cells. Elements in Un

therefore correspond to Young diagrams. Theorem 4.11 gives

∑
n=0

zn ∑
λ�n

x�(λ ) =
∞

∏
i=1

1
(1− xti)

,

which is a refinement of Theorem 1.8.

4.5 Weighting Multiple Bricks

As we have seen in the previous sections, the ability to weight the last brick in a brick
tabloid gives us greater versatility in our method of using ring homomorphisms on
Λn to find generating functions. In this section we extend this idea further and allow
more refined weights of brick tabloids.
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Let ν1, . . . ,νr be functions defined on the set of nonnegative integers. If T is a
brick tabloid with bricks of lengths b1, . . . ,bk reading left to right, then let

wν1,...,νr(T ) = ν1(b1) · · ·νr(br)

if k ≥ r and define wν1,...,νr(T ) = 0 otherwise. Then we can define a new class of
symmetric functions by

pν1,...,νr ,n = ∑
λ�n

∑
T∈Bλ ,(n)

(−1)n−�(λ )wν1,...,νr(T )eλ .

We can first count brick tabloids T = (b1, . . . ,bk) with k = r and then count the
brick tabloids with k > r by sorting them by the size of the last brick. This gives that
pν1,...,νr ,n is equal to

∑
b1+···+br=n

bi≥1

(−1)n−rν1(b1) · · ·νr(br)eb1 · · ·ebr +
n−r

∑
k=1

(−1)k−1ek pν1,...,νr ,n−k.

From here it follows that

n−r

∑
k=0

(−1)kek pν1,...,νr ,n−k = ∑
b1+···+br=n

bi≥1

(−1)n−rν1(b1) · · ·νr(br)eb1 · · ·ebr

which implies that
(

∞

∑
n=0

(−1)kekzk

)( ∞

∑
n=r

pν1,...,νr ,nzn
)
=

r

∏
i=1

(
∞

∑
n=1

(−1)n−1νi(n)enzn

)

.

Therefore we have

∞

∑
n=r

pν1,...,νr ,nzn =
∏r

i=1

(
∑∞

n=1(−1)n−1νi(n)enzn
)

∑∞
n=0(−1)nenzn . (4.9)

This equation is analogous to (4.1). This means we can define ring homomorphisms
ϕ on the elementary symmetric functions, apply ϕ on pν1,...,νr ,n to get an expan-
sion in terms of weighted brick tabloids, define an involution which leaves interest-
ing fixed points, and then use (4.9) to get a generating function for a permutation
statistic. The rest of this section gives an example of this technique, following an
approach first shown in [90].

Let D(i,k, j)
i+kn+ j denote set of all permutations in Si+kn+ j such that the descents in

σ can only appear at indices in {i + k, i + 2k, . . . , i+ nk} where i, j,k, and n are
nonnegative integers which satisfy k ≥ 2, 0 ≤ i ≤ k−1, and 0 ≤ j ≤ k−1. We have
seen special cases of this set of permutations before; the case of k = 1 gives our

old friend the alternating permutations. For σ ∈ D
(i,k, j)
i+kn+ j, we let desi,k(σ) be the
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permutation statistic counting the number of integers of the form i+ ks such that
0 ≤ s ≤ n−1 and σi+ks > σi+ks+1. The next theorem is similar to Theorem 4.6.

Theorem 4.12. If k ≥ 2 and 0 < i, j < k, then

∞

∑
n=2

zkn

[kn− i− j]q! ∑
σ∈D(i,k, j)

i+kn+ j

qinv(σ)xrisi,k(σ)

=

(
∞

∑
n=1

(x−1)kznk

[nk− i]q!

)(
∞

∑
n=1

(x−1)kznk

[nk− j]q!

)

x−1−
∞

∑
n=1

(x−1)kznk

[nk]q!

−
∞

∑
n=2

(n−1)xn−2zkn

[kn− i− j]q!
q(

nk−i− j
2 ) +

∞

∑
n=2

x(n−1)zkn

[kn− i− j]q!
q(

nk−i− j
2 ).

Proof. Define a ring homomorphism ϕ and a function νi by setting ϕ(en) = 0 and
νi(n) = 0 if n is not a multiple of k and

ϕ(ekn) = (−1)kn−1 (x−1)k−1

[kn]q!
and νi(kn) =

[kn]q!
[kn− i]q!

otherwise. Then applying ϕ to pνi,ν j ,n gives

ϕ(pνi,ν j ,n) = ∑
λ�n

∑
T∈Bλ ,(n)

(−1)n−�(λ )wνi,ν j(T )ϕ(eλ ).

Since ϕ(eλ ) is equal to 0 if any of the parts in λ are not multiples of k, we may
assume that all parts in λ and n are multiples of k (and thus n ≥ 2). Furthermore,
if there are fewer than 2 bricks in a brick tabloid T , then the weight wνi,ν j(T ) is
defined equal to 0.

In our definition of pνi,ν j ,n, the function νi weights the first brick in a brick tabloid
and the function ν j weights the second brick. However, by moving this second
brick to the end of the brick tabloid, we can instead choose to apply the function
νi to the first brick and ν j to the last brick in the brick tabloid. Putting this idea
together with the same type of logic as found in the proof of Theorem 4.6, we have
[nk− i− j]q!ϕ(pν ,ν ,nk) is equal to

[nk− i− j]q! ∑
λ�nk
�(λ )≥2

∑
T∈Bλ ,(n)

(−1)nk−�(λ )wν1,...,νr(T )ϕ(eλ )

= ∑
λ�kn
�(λ )≥2

∑
T ∈ Bλ ,(kn) has bricks with

lengths b1, . . . ,b� divisible by k

[
nk− i− j

b1 − i,b2, . . . ,b�−1,b�− j

]

q
(x−1)

b1
k +···+ b�

k −�
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This last sum tells us to create combinatorial objects by selecting a brick tabloid
in T ∈ Bλ ,(kn) such that there are at least two bricks and each brick length is a
multiple of k. In every nonterminal kth cell in a brick, place a choice of x or −1
in a brick, using the power of (x− 1). With the q-multinomial coefficient, place a
sequence of integers in each brick such that

1. the first i cells of the first brick are left blank,
2. the last j cells of the last brick are left blank,
3. all other cells except the first i and last j contain integers such that each

brick contains a decreasing sequence of integers and every integer from 1, . . . ,
nk− i− j is used exactly once in T , and

4. a power of q in each cell records the number of smaller integers in T appearing
to the right.

For example, one such combinatorial object when k = 3, i = 2, and j = 1 is

12 8 7 6 10 5 2 11 9 4 3 1

q11 q7 q6 q5 q6 q4 q1 q4 q3 q2 q1 q0

x 1 1 −1 1

.

We next apply a slight variation on our usual brick breaking and combining inv-
olution. We want to apply the involution as usual, but run into a problem when T
contains exactly two bricks, there are no −1s anywhere in T , and there is a decrease
in the integer labeling between the two bricks. In this situation we would want to
combine these two bricks but cannot do so since each combinatorial object must
have at least two bricks by construction. Define such objects to be fixed points and
then proceed otherwise with the usual involution.

Fixed points now come in two varieties. First, there are fixed points which con-
tain no decreases between bricks and there is a power of x for each descent of the
form σi+ks > σi+ks+1. These are the fixed points we want because these fixed points
correspond to ∑σ∈D(i,k, j)

i+kn+ j
xdesi,k(σ)qinv(σ).

Second, there are fixed points which contain exactly two bricks which contain a
decrease between them. The underlying permutation σ in such a fixed point must be
the permutation σ = (kn− j− i) · · ·2 1, that is, all integers must appear in decreasing
order. One example when n = 5, k = 3, i = 2, and j = 1 is below:

12 11 10 9 8 7 6 5 4 3 2 1

q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0

x x 1 x 1

.

The weight on this type of a fixed point is xn−2q(
nk−i− j

2 ). There are n−1 such fixed
points because the two bricks can be partitioned in n−1 ways.
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Counting the fixed points, we have shown

[nk− i− j]q!ϕ(pνi,ν j ,n) = (n−1)xn−2q(
nk−i− j

2 ) + ∑
σ∈D(i,k, j)

i+kn+ j

xdesi,k(σ)qinv(σ).

Applying ϕ to both sides of (4.9) with r = 2 gives

∞

∑
n=2

zkn

[kn− i− j]q!

⎛

⎜
⎝(n−1)xn−2q(

nk−i− j
2 )− xn−1q(

nk−i− j
2 ) + ∑

σ∈D(i,k, j)
i+kn+ j

xdesi,k(σ)qinv(σ)

⎞

⎟
⎠

=

(
∑∞

n=1(−1)n−1νi(n)ϕ(en)zn
)(

∑∞
n=1(−1)n−1ν j(n)ϕ(en)zn

)

1+∑∞
n=1(−1)nϕ(en)zn

=

(
∑∞

n=1(x−1)k−1znk/[nk− i]q!
)(

∑∞
n=1(x−1)k−1znk/[nk− j]q!

)

1−∑∞
n=1(x−1)k−1znk/[nk]q!

,

which in turn can be rearranged to be the statement in the theorem. ��

Exercises

4.1. Let fi(σ) be the length of the final increasing sequence in a permutation σ .
Define a homomorphism ϕ by ϕ(en) = (−1)n−1(1− x)n−1x/n! and a function ν by

ν(n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if n < j,

1
(1− x)n−1x

if n = j,

(1− x)n− j−1(−x)
(1− x)n−1x

if n > j,

where j is a positive integer. Use ϕ and ν to find a generating function for

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)yfi(σ).

4.2. Let an,k be the number of weak alternating words in {0, . . . ,k−1}∗n, that is, an,k

is the number of words w1, . . . ,wn which have wi < wi+1 if and only if i is even.
Find a generating function for ∑∞

n=1 an,kzn.

4.3. The Fibonacci sequence is defined by F1 = F2 = 1 and Fn = Fn−1 +Fn−2 for
n ≥ 3. Using the combinatorial interpretation for recurrences given in section 4.3,
prove the identities F1 + · · ·+Fn−1 = Fn+1 −F2 and 3Fn = Fn+2 +Fn−2.

4.4. A path in a labeled graph is a finite sequence of distinct vertices such that con-
secutive vertices are connected by an edge. A labeled tree on n vertices is a labeled
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graph with n vertices such that there is a unique path connecting every pair of ver-
tices. This exercise proves there are nn−2 labeled trees with n vertices, a result known
as Cayley’s formula.

Let An be the set of objects created by selecting a labeled tree on n vertices,
shading one vertex gray, and then labeling the n−1 edges with 1, . . . ,n−1 in some
way. For example, one element in A6 is

12

3

4 5

65

1

4

2

3

By double counting the elements in An, prove that there are nn−2 labeled trees on
n vertices. Deduce the unusual identity

∞

∑
n=0

(n+1)(n−1) zn

n!
= exp

(
∞

∑
n=1

n(n−1) zn

n!

)

by considering rooted labeled trees, i.e., labeled trees with one distinguished vertex.

4.5. Let Ln(z) be the set of lists of the form (p1, . . . , pk) such that each pi is a picture
in Pi, the sizes of p1, . . . , pk sum to n, and the integer labels in the pictures have been
replaced so that the total list contains the integers 1, . . . ,n. This is a similar situation
as the exponential formula except that now we are considering ordered lists, not
unordered sets.

Define a ring homomorphism ϕ in order to prove that

∞

∑
n=0

zn

n! ∑
L∈Ln

xpic(L) =
1

1− xP(z)
,

where P(z) = ∑∞
n=1 |Pn|zn/n!.

If z0 is the unique solution to P(z) = 1 with smallest magnitude and if P′(z0) 	= 0,
find an approximation for |Ln|. As special cases, approximate the number of ordered
disjoint cycles with union n and the number of ordered set partitions of n.

4.6. Find a generating function for the number of permutations in S2n with only even
sized cycles. Exactly how many such permutations are there?

4.7. Find a generating function for the number of permutations in Sn with cycles
which must be an odd length. When taking n is even, this should be the same gener-
ating function as found in Exercise 4.6, implying that the number of permutations in
S2n with only even cycles must equal the number of permutations in S2n with only
odd cycles. Prove this identity bijectively.

4.8. A Motzkin path of length n is a path in the plane starts at (0,0), ends at (n,0),
uses steps of the form (1,1), (1,−1), or (1,0), and never travels below (but may
touch) the x-axis. A labeled Motzkin path is a Motzkin path where
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1. each (1,1) step is not labeled with an integer,
2. each (1,−1) step going from height y = k to height y = k−1 is labeled with an

integer in {1, . . . ,k}, and
3. each (1,0) step at height y = k is labeled with an integer in {1, . . . ,k+1}.

For example, one labeled Motzkin path is

2 1

3

1
2

1
1

1

.

Use a bijection to show that the number of labeled Motzkin paths of length n is
equal to the number of set partitions of n.

4.9. Use Exercise 4.8 and the approach in Exercise 3.10 to show that

∞

∑
n=0

|{the set partitions of n}|zn =
1

1− z− z2

1−2z− 2z2

1−3z− 3z2

1−4z−·· ·

.

Solutions

4.1 Applying our choices for ϕ and ν give us

n!ϕ(pν ,n) = ∑
λ�n

(
n
λ

)
wν(Bλ ,(n))(1− x)λ1−1x(1− x)λ2−1x · · · .

From this sum we select a brick tabloid T ∈ Bλ ,(n) for some λ � n. Use the
(n

λ
)

term
to select a permutation in which to fill the cells of T such that each brick contains
an increasing sequence. With the powers of x, place an x in the terminal cell of each
brick and a choice of either 1 or −x in every other cell.

The function ν tells us that the length of the last brick must be at least j. If the
final brick has length j, erase all of the x or 1 weights in the last brick. If the final
brick has length greater than j, erase all of the weights in the last brick and replace
them n− j−1 choices of −x or 1 and then a −x.
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One example of such a combinatorial object when j = 6 is below:

6 7 11 1 2 3 4 5 8 9 10 12

−x x x 1 −x −x

.

Modify our usual brick breaking and combining involution by scanning from left
to right looking for either the first −x or two consecutive bricks with an increase
between them. Break or combine the bricks accordingly, reversing the sign on the
resulting middle x or terminal −x. The fixed points under this involution tell us that
n!ϕ(pν ,n) = ∑xdes(σ) where the sum runs over σ ∈ Sn with fi(σ) = j.

A generating function follows from summing over all positive j and then apply-
ing ϕ to equation 4.1. Using similar steps as in the proof of Theorem 4.3,

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)yfi(σ) = 1+
∞

∑
j=1

y j ∑∞
n=1(−1)n−1ν(n)ϕ(en)zn

∑n=0(−1)nϕ(en)zn ,

which, by using the definitions of ϕ and ν together with routine simplification steps,
can be shown to equal

(
x−1

x− e(x−1)z

)(
x− (1− y)e(x−(1−y))z

x− (1− y)

)

.

4.2 Combining the ideas in Exercise 3.13 with that in Theorem 4.6, we let

ϕ(en) = (−1)n−1
(

n+ k−1
k−1

){
(−1)n/2−1 if n is even,

0 if n is odd.

Let m be either 0 or 1 and define ν(n) =
(n−m+k−1

k−1

)
/
(n+k−1

k−1

)
. Then applying ϕ to

pν ,2n−m gives

∑
λ�2n

∑
T ∈ Bλ ,(2n) has bricks with

even lengths b1, . . . ,b�

(
b1 + k−1

k−1

)
· · ·
(

b�−m+ k−1
k−1

)
(−1)

b1
2 +···+ b�

2 −�.

The binomial coefficients allow us to fill each brick with a weakly decreasing seq-
uence and so from this sum we create combinatorial objects which look like the
following (when k = 4, n = 6, and m = 1):

3 2 2 2 1 0 2 1 1 1 1

−1 −1 1 −1 1 1

.

Breaking or combining bricks at the first −1 or the first weak decrease between
bricks leaves fixed points corresponding to weak alternating words. Applying ϕ to
equation 4.1 and adding together the cases m = 0 and m = 1, we find that
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∞

∑
n=1

an,kzn =
1

1−∑∞
n=1(−1)n−1

(2n+k−1
k−1

)
z2n

+
∑∞

n=1(−1)n−1
(2n−1+k−1

k−1

)
z2n−1

1−∑∞
n=1(−1)n−1

(2n+k−1
k−1

)
z2n

.

It can be shown that this expression simplifies to

(1+ z2)k/2 sec(k arctanz)+ tan(k arctanz),

which nicely parallels the result for alternating permutations in Theorem 3.5.

4.3 Section 4.3 tells us that Fn is the number of brick tabloids T such that

1. each brick is of length 1 or 2 and has a weight of 1,
2. T either ends with a brick of length 2 or a brick of length 2 followed by a brick

of length 1.

For example, F5 = 5 because there are 5 such tabloids when n = 5:

Let Fn be the collection of the brick tabloids with these properties so that |Fn|= Fn.
To show F1 + · · ·+Fn−1 = Fn+1 −F2, take T ∈ Fk for some 1 ≤ k ≤ n−1 and

create an element in Fn by prepending a sequence of bricks with lengths 1,1, . . . ,1,2
to T . This operation is reversible and creates every element in Fn+1 except for the
one brick tabloid which only contains bricks of lengths 1,1, . . . ,1,2.

To show 3Fn = Fn+2 +Fn−2, take T ∈ Fn. If T begins with a brick of length 1,
replace this brick in T three ways: with a brick of length 1 followed by a brick of
length 2, with a brick of length 2 then 1, and with three bricks of length 1. If T
begins with a brick of length 2, then change T in three ways: by removing this brick
of length 2, by prepending T with a brick of length 2, and by prepending two bricks
of length 1. In pictures,

and

These identities also hold for any initial conditions F1,F2 since we have left the final
segment of the brick tabloid unchanged.
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4.4 Let Tn be the number of labeled trees on n vertices. There are Tn ways to select
a labeled tree, n ways to select a vertex to shade gray, and (n−1)! ways to label the
n−1 edges in T . Therefore there are Tnn(n−1)! elements in An.

For a second way to count the number of elements in A, consider constructing an
element in A by following this algorithm:

1. Begin with a graph with n labeled gray vertices and no edges.
2. Select any vertex u.
3. Select a gray vertex v such that there is no path from u to v (which, initially, can

be any vertex other than u).
4. Connect u and v with an edge and change v from a gray vertex to a white vertex.

If this is the ith edge added to the graph, label the edge with i.
5. If there are two or more gray vertices in the graph, go back to step 2.

As an example of this process, we display the sequence of graphs created by algo-
rithm in order to create the element in A6 displayed in the statement of this exercise:

12

3

4 5

6 ,

12

3

4 5

6

1
,

12

3

4 5

6

1

2

,

12

3

4 5

6

1

2

3

,

12

3

4 5

6

1

4

2

3

,

12

3

4 5

65

1

4

2

3

.

There are always n choices for the vertex u in step 2 of this algorithm and there
are n− i choices for vertex v in iteration i. Therefore the number of elements in An

is n(n− 1)n(n− 2) · · ·n(1) = nn−1(n− 1)!. Since this must also equal Tnn(n− 1)!,
we find Tn = nn−2, as desired.

There are nn−1 rooted labeled trees. There are (n+1)n−1 forests of rooted labeled
trees since, by connecting the vertex with label “n+ 1” to each root, these forests
are in one-to-one correspondence with labeled trees on n+ 1 vertices. The identity
follows from an application of the exponential formula and taking x = 1.

4.5 If ϕ(en)= (−1)n−1x|Pn|/n!, then n!ϕ(hn)=∑λ�n

(n
λ
)|Bλ ,(n)|x�(λ )|Pλ1

||Pλ2
| · · · ,

from which (in the case of taking pictures to be rooted labeled trees) we create com-
binatorial objects which look like this:

x x x x

12

10 2

8

11

1 4

5

3

6

7

9
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These objects immediately correspond with ∑L∈Ln xpic(s). Applying ϕ(n) to Theo-
rem 2.5 gives ∑∞

n=0
zn

n! ∑L∈Ln xpic(s) = 1/(1− xP(z)).
Taking x = 1, we find a singularity at |z0|. Since limz→z0

z−z0
1−P(z) =− 1

P′(z0)
,

∣
∣
∣
∣
|Ln|
n!

− 1
P′(z0)|z0|n+1

∣
∣
∣
∣<

(
1
|z1| + ε

)n

for all ε > 0 and large enough n where z1 denotes the solution to P(z) = 1 with
second smallest magnitude. This means |Ln| is approximately n!/(P′(z0)|z0|n+1).

In the special case of ordered cycles, P(z) = ∑∞
n=1 zn/n = − ln(1− z). Here we

find z0 = 1 − 1/e and P′(z0) = e, so the approximate number of ordered cycles
of size n is n!en/(e− 1)n+1. In the special case of ordered set partitions, P(z) =
∑∞

n=1 zn/n! = ez − 1. Here we find z0 = ln2 and P′(z0) = 2, so the approximate
number of ordered set partitions of size n is n!/(2(ln2)n+1).

4.6 Let Pn be empty if n is odd and the set of n cycles if n is even. Then

P(z) =
∞

∑
n=1

z2n

(2n)!
=

ln
(

1
1−z

)
+ ln

(
1

1+z

)

2
= ln

(
1√

1− z2

)
.

Using the exponential formula,

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has only

even sized cycles

xcyc(σ) = e
x ln

(
1√

1−z2

)

= (1− z2)−x/2 =
∞

∑
k=0

(−x/2
k

)
(−1)kz2k,

where the last equality comes from an application of Newton’s binomial theorem.
Taking x = 1 and extracting the coefficient of z2n/(2n!) from this sum gives an exact
formula for the number of permutations in S2n with only even sized cycles:

(−1)n
(−1/2

n

)
(2n)! = (−1)n (−1/2)(−1/2−1) · · ·(−1/2−n+1)

n!
(2n)!

=
1
2
· 3

2
· · · 2n−1

2
· (1 ·3 · · ·(2n−1))2n

= 12 ·32 ·52 · · ·(2n−1)2.

4.7 Let Pn be empty if n is even and the set of n cycles if n is odd. Then

P(z) =
∞

∑
n=1

z2n−1

(2n−1)!
=

ln
(

1
1−z

)− ln
(

1
1+z

)

2
= ln

(√
1+ z
1− z

)

.

Using the exponential formula,

∞

∑
n=0

zn

n! ∑
σ ∈ Sn has only
odd sized cycles

xcyc(σ) = e
x ln

(√
1+z
1−z

)

=

(
1+ z
1− z

)x/2

.
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Taking x = 1, this last function can be written as (1− z2)−1/2 + z(1− z2)−1/2. The
even terms in this series are given by the function (1− z2)−1/2, which is the same
generating function found in Exercise 4.6.

To show that the number of permutations in S2n with only even cycles must equal
the number of permutations in S2n with only odd cycles bijectively, begin with a
permutation σ ∈ S2n with only odd sized cycles.

Suppose that the cycles of σ are c1, . . . ,c2k where the cycles are written in dec-
reasing order according to maximum element and this maximum element is found
at the end of the cycle. Change each pair of cycles c2i−1 and c2i by removing the
first element from c2i and make it as the first element of c2i−1. For example,

(5 7 12) (11) (9 6 10) (1 4 2 3 8)

would be changed to

(11 5 7 12) (1 9 6 10) (4 2 3 8).

This process is reversible: working with pairs of cycles from left to right, remove
the first element in each cycle and place it into the cycle immediately to the right.
However, if doing so creates a permutation without the maximum element at the
end of each cycle, instead make the removed integer its own cycle of length 1. This
process is therefore a bijection, as desired.

4.8 In order to turn a labeled Motzkin path M into a set partition, begin by coloring
each step in M blue.

Suppose the most left blue (1,−1) step in M is in position j and has label �.
Locate the �th blue (1,1) step in M, say this occurs at position i. The set

s = {i, j}∪{i < m < j : the mth step in M is a blue (1,0) step with label �}

is one set in the set partition created from M. Recolor each step in M with a position
in s black. Iterate this process until all (1,−1) and (1,1) steps are black.

After this iteration, some blue (1,0) may remain. For each blue (1,0) step in
position j, place the set { j} into the set partition. This completes our description of
how to turn a labeled Motzkin path M into a set partition.

For example, the Motzkin path displayed in the statement of this exercise corre-
sponds to the set partition {{5,6},{1,3,7},{4,9},{10,11,12},{2},{8}}.

This method of turning a Motzkin path M into a set partition S is a bijection
since the inverse function can be described. Indeed, each set of size 1 in S gives
the position of a (1,0) step in M with maximum possible label. For s ∈ S with size
at least 2, the minimum number m in s gives the position of a (1,1) step in M,
the maximum number n in s gives the position of a (1,−1) step in M, and all other
numbers in s correspond to (1,0) steps in M. This gives us the Motzkin path without
the labels. The labels on the (1,−1) step and the (1,0) steps coming from s can be
found from the number of (1,1) steps between positions m and n in M.
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4.9 Let an,k be the number of labeled Motzkin paths which start at (0,k) and end at
(n,k). Let Ak(z) = ∑∞

n=0 an,kzn.
Suppose that the first time after (0,k−1) that a labeled Motzkin path counted by

ai,k−1 returns to the line y = k− 1 is at (i,k− 1). The path might begin with a step
of the form (1,0). In this case there are kan−1,k−1 ways to complete the path since
there are k ways to label the (1,0) step and an−1,k−1 ways to draw a labeled Motzkin
path from (1,k−1) to (n,k−1).

Otherwise, if i ≥ 2, the underlying Motzkin path must look like this:

Motzkin path of size i−2

k −1

i n

Motzkin path of
size n−i

Since there are k ways to label the (1,−1) step ending at x= i, the number of labeled
Motzkin paths if i ≥ 2 is kai−2,kan−i,k−1.

Summing over all possible i gives an,k−1 = kan−1,k−1 + k ∑n
i=2 ai−2,kan−i,k−1 for

n ≥ 2. Therefore

Ak−1(z)−1− kz =
∞

∑
n=2

an,k−1zn

=
∞

∑
n=2

an−1,k−1zn +
∞

∑
n=2

n

∑
i=2

ai−2,kan−i,k−1zn

= kz(Ak−1(z)−1)+ kz2Ak(z)Ak−1(z).

Solving for Ak−1(z) gives Ak−1(z) = 1/(1− kz− kz2Ak(z)).
Exercise 4.8 says A0(z) = ∑∞

n=0 |{the set partitions of n}|zn and so the continued
fraction follows from repeatedly applying Ak−1(z) = 1/(1− kz− kz2Ak(z)) starting
with k = 1.

Notes

The first use of the symmetric functions pν ,n in enumeration is found in [76, 87].
The first use of the symmetric functions pν1,ν2,n in enumeration is found in [90].

The generating function for the number of valleys in a permutation was first
proved by Roger Entringer by solving differential equations [38]. Leonard Carlitz
published a few papers containing the result [17, 20, 21] and Ira Gessel showed



Notes 153

how this generating function fit into his framework [51]. In these publications the
connection to the set of permutations σ ∈ Sn without 2-descents and σn−1 < σn was
not noted.

Carl Gustav Jacobi indicated a formal version of the exponential formula and
special cases of the exponential formula were given for permutations by Jacques
Touchard in 1939 and graphs by Robert Riddell and George Uhlenbeck in 1953
[62, 101, 111]. The full generality we give in Theorem 4.8 was first published in
the early 1970s in papers by Edward Bender with Jay Goldman, Peter Doubilet
with Gian-Carlo Rota and Richard Stanley, and Dominique Foata with Marcel-Paul
Schützenberger [11, 30, 45]. Since that time there have been a number of extensions
of the theory [10, 13, 49, 60, 68].

The proof of Cayley’s formula given in Exercise 4.4 is due to Jim Pitman [1].



Chapter 5
Counting with RSK

The RSK algorithm is a bijection from the set of matrices with nonnegative integer
entries to pairs of the form (P,Q) where P and Q are column strict tableaux of
the same shape. The simple algorithm has amazing relationships to both symmetric
functions and enumeration—no book on these topics is complete without it.

5.1 Row Insertion

Let T be a column strict tableau and j an integer. We define the row insertion of j
into T , denoted T ← j, to be the tableau found by following these rules:

I0. If T is the empty tableau, then T ← j is the column strict tableaux with 1 cell
which contains the integer j.

If T is not empty, assume T is of the form shown here:

a1 a2 · · · an

T

That is, the first row of T is a1 ≤ ·· · ≤ an and T ′ is the column strict tableau found
by removing the first row of T .

I1. If an ≤ j, then T ← j results from T by adding a cell containing j to the end of
the bottom row of T .

I2. If j < an, then let ak be the leftmost entry in bottom row of T that is larger than j.
Replace ak with j and insert ak into T ′. In this case we say that j bumps ak.

© Springer International Publishing Switzerland 2015
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For example, to row insert a 2 into the column strict tableau

1 1 3 5

2 3 5

4

,

we replace the 3 in the bottom row with a 2, the 5 in the second row with a 3, and
then place a new cell with a 5 into the third row. Graphically, this row insertion looks
like

1 1 3 5

2 3 5

4

← 2
,

1 1 2 5

2 3 5

4

← 3

,
1 1 2 5

2 3 3

4 ← 5

,
1 1 2 5

2 3 3

4 5

.

Shading the path of the replaced cells in the above row insertion process gives

1 1 2 5

2 3 3

4 5

.

We will call this path the bumping path when i is inserted into T . As we will show
in Theorem 5.1, such a path must start in the bottom row and, since T is a column
strict tableau, move up and weakly to the left. Furthermore, the integers in this path
are strictly increasing when read from bottom to top.

Theorem 5.1. If T is a column strict tableau and j is a positive integer, then T ← j
is a column strict tableau and the bumping path for the insertion of j in T moves
weakly to the left as one proceeds from bottom to top. Moreover, if sh(T ) is shape of
T and sh(T ← j) is the shape of T ← j, then sh(T )⊆ sh(T ← j).

Proof. We proceed by induction on |T |, with the theorem holding true if applying
rule I0 or I1.

Thus assume that rule I2 was applied and suppose j bumps ak in the bottom row
of T . The first row of T ← j is therefore a1 · · ·ak−1 jak+1 · · ·an. By our choice of ak,
we must have ak−1 ≤ j < ak ≤ ak+1 ≤ ·· · ≤ an, meaning that the first row of T ← j
is weakly increasing.

By induction, T ′ ← ak is a column strict tableaux. Thus to show that T ← j is
a column strict tableau, we need to only show that T ← j is strictly increasing in
columns in the first two rows. Suppose that b1 ≤ ·· · ≤ bs is the first row of T ′. There
are two cases.

Case 1. Suppose s ≥ k. In this case we know bk > ak, so T ′ ← ak either bumps bk

or it must bump some bs with s ≤ k. If bk is bumped, then the first two cells of
the kth column contains j in the first row and ak in the second row. Since j < ak,
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T ← j satisfies the column strict condition in kth column as the elements in the
first two rows of the remaining columns are the same as in T . Thus T ← j will
be column strict.

If ak bumps bs for s < k, then we know that in column k, the first two
elements are j and bk, but j < ak < bk so that we satisfy the column strict
condition in column k. In column s, the first two elements are as and ak, but we
know that as ≤ ak−1 ≤ j < ak so that we satisfy the column strict condition in
column s. In the remaining columns, the first two elements are the same as in
T . Thus T ← j will be column strict.

Case 2. Suppose s < k. In this case, we know that either ak sits at the end of the first
row in T ′ or it must bump some bs with s ≤ k. If ak sits at the end of the first row
in T ′, then either ak sits on top of j if s = k−1 (in which case j < ak) or ak sits
on top of some as+1 where s+1 ≤ k−1, in which case as+1 ≤ ak−1 ≤ j < ak.
In either case, T ← j is column strict in the first two rows of the column that
contains ak. The first two elements in the remaining columns are the same as in
T and so T ← j will be column strict.

If ak bumps bs for s < k, then we know that in column k, there is only one
element. In column s, the first two elements are as and ak, but we know that
as ≤ ak−1 ≤ j < ak so that we satisfy the column strict condition in column s. In
the remaining columns, the first two elements are the same as in T . Thus T ← j
will be column strict.

Lastly, the bumping path moves weakly to the left in the first two rows. By in-
duction, the bumping moves weakly to the left in T ′ ← ak. Thus the entire bumping
path moves weakly to the left. ��

If we are given T ← j and the location of the cell c1 in sh(T ← j) but not sh(T ),
then we can find both T and j. To reconstruct T and find j, follow these steps to
reverse the row insertion process:

1. If the final cell inserted into T is on the bottom row, then this cell contains j and
the removal of this cell leaves T .

2. If k is the integer in the final cell inserted into T , then find the rightmost entry
in the row below k that is smaller than k, say �. Remove the cell with k, replace
� with k, and repeat the process, moving down one row with each step.

Given a word w1w2 · · ·wn, let T ← w1 · · ·wn = (· · ·((T ← w1)← w2) · · ·)← wn

so that T ← w1 · · ·wn is the result of successively inserting w1,w2, . . . ,wn into T .
In such a situation, we denote T0 = T and Ti = T ← w1 . . .wi for i = 1, · · · ,n. It fol-
lows from Theorem 5.1 that

sh(T0)⊂ sh(T1)⊂ sh(T2)⊂ ·· · ⊂ sh(Tn)

where the notation μ ⊆ λ means that the Young diagram for μ fits inside that of λ .
We also let ci to be the cell in sh(Ti) but not sh(Ti−1) for i = 1, . . . ,n.

Theorem 5.2. If w = w1 · · ·wn is a word of length n ≥ 2 with letters in {1,2, . . .},
then the following two facts are true:
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1. If w1 ≤ ·· · ≤ wn, then ci+1 is strictly to the right and weakly below ci for all i.
2. If w1 > · · ·> wn, then ci+1 is strictly above and weakly to the left of ci for all i.

These conditions are pictured below:

c6 c7

c4 c5

c2 c3

c1

The case of w1 ≤ w2 ≤ ·· · ≤ w7,

c1

c2

c3

c4

c5

c6

c7

The case of w1 > w2 > · · · > w7.

Proof. To prove either statement 1 or 2, it is enough to consider only the case of
n = 2. If this is done, the results will follow by induction.

We prove the first statement by induction on the size of T . If c1 is row 1 (which
would be the case only if insertion rules I0 and I1 were applied to T ← w1), then w1

is at the end of the row in T1. Since w1 ≤ w2, the integer w2 is placed at the end of
the first row of T1 in the insertion T1 ← w2. In this case, c2 is clearly strictly to the
right and weakly below c1.

Suppose the bottom row of T contains a1 ≤ ·· · ≤ a j and w1 bumps ak in T ← w1.
By our choice of ak, we have ak−1 ≤ w1 < ak and w1 is in the kth cell of row 1 in T1.
This means that in the insertion T1 ← w2, either (i) w2 is placed in the end of row 1
or (ii) w2 must bump as where s > k. In case (i), our result follows since the cell c1

is the new cell created by T ′ ← ak and we know that bumping paths move weakly
to the left by Theorem 5.2. In case (ii), the result follows by induction since c1 and
c2 are the cells created by the insertion T ′ ← akas and ak ≤ as. This completes the
proof of the first statement.

The proof of the second statement is very similar, also following by induction on
the size of T .

If T = /0, then T1 is the tableau with one cell containing w1. As w1 > w2, this
means that w2 will bump w1 in the insertion T1 ← w2 so c2 will sit directly on top
of c1 in this case.

Suppose the bottom row of T contains a1 ≤ ·· · ≤ a j. If c1 is row 1 and we applied
rule I1 to find T ← w1, then w1 is at the end of the bottom row in T1. As w1 > w2,
then either w2 bumps w1 or it bumps some ak. In either case, our result immediately
follows from the fact that bumping paths move weakly to the left as we go up.

Finally, suppose that w1 bumps ak in T ← w1. Hence ak−1 ≤ w1 < ak. Then w1 is
in the kth cell of row 1 in T1. This means that either (i) w2 bumps w1 in the insertion
T1 ← w2 or (ii) w2 must bump ai where i < k. In case (i), our result follows because
cell c1 is the new cell created by T ′ ← akw1 and we know that ak > w1. In case (ii),
the result follows by induction since c1 and c2 are the cells created by the insertion
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T ′ ← akas and ak > ak−1 ≥ as. This proves the second statement and completes the
proof of the theorem. ��

The Pieri rules, found in Theorem 5.3, give a nice description of how to expand
the products hnsμ and ensμ into a sum of Schur symmetric functions. One nice
consequence of Theorems 5.1 and 5.2 is that they allow us to give a combinatorial
proof of the Pieri rules.

For integer partitions μ ,λ , we let λ/μ the cells in the Young diagram for λ but
not those in μ . This type of object is called a skew shape. We say that skew shape
λ/μ is a skew row if λ/μ has no two cells in the same column and λ/μ is a skew
column if no two cells of λ/μ lie in the same row.

For an alternative proof of the Pieri rule giving the expansion of ensμ using
labeled abaci, see Exercises 2.10, 2.11, and 2.12 in Chapter 2.

Theorem 5.3 (The Pieri rules). For any partition μ and for all n ≥ 1,

hnsμ = ∑
λ/μ is a skew row

with n cells

sλ and ensμ = ∑
λ/μ is a skew column

with n cells

sλ .

Proof. We begin with the expansion of hnsμ . Let Hn,μ denote set of all pairs (S,T )
where S is a column strict tableau of shape (n) and T is a column strict tableau of
shape μ . Let SRn,μ denote the set of all column strict tableaux P such that sh(P)/μ
is a skew row of size n. The expansion of hnsμ in the statement of the theorem is
equivalent to

∑
(S,T )∈Hn,μ

w(S)w(T ) = ∑
P∈SRn,μ

w(P),

where w(P) is the usual weight for column strict tableaux as defined in Chapter 1.
We claim that row insertion algorithm allows us to give a weight preserving bijec-

tion θ : Hn,μ → SRn,μ . That is, given a pair (S,T ), let a1 ≤ ·· · ≤ an be the elements
of S, reading from left to right. We define θ(S,T ) = P = T ← a1 . . .an. By the first
statement in Theorem 5.2, we know that if λ = sh(P), then λ/μ is skew row. More-
over, we know that in the insertion of a1 . . .an into T , the new cells where created
from left to right. This allows us to reverse our steps, showing that θ is one-to-one.

To show that θ is bijection, it remains to be shown that θ is surjective, that is, we
must show that if P is any column strict tableau such that sh(P)/μ is skew row of
size n, then there exists a sequence a1 ≤ ·· · ≤ an and a column strict tableau T of
shape μ such that P = T ← a1 . . .an.

The idea is that given P, we can look at the cells in sh(P)/μ . If P did come from
an insertion of the form T ← a1 · · ·an where a1 > · · · > an, then we know that new
cells were created from left to right by Theorem 5.2. Thus we just try to reverse the
process but first doing the reverse row insertion on the rightmost cell of sh(P)/μ .
Thus P = P1 ← an for some column strict tableau P1 such that sh(P1)/μ is skew row.
Next we reverse the row insertion for P1 using the rightmost cell of sh(P1)/μ . Thus
P1 =P2 ← an−1 so that P=P2 ← an−1an. Continuing on in this way, we will obtain a
sequence a1 · · ·an and a column strict tableau of shape μ such that P= T ← a1 · · ·an.
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For example, suppose μ = (4,2,1), λ = (5,4,2,1), and P is the column strict
tableau shown below

1 1 2 2 4

2 2 3 3

3 4

4

,

where we have shaded the cells in λ/μ . We illustrate the idea of reversing the row
insertion process by first undoing the row insertion of the bottom 4, then undoing
the row insertion of the right most 3, and so on.

1 1 2 2

2 2 3 3

3 4

4

← 4
,

1 1 2 3

2 2 3

3 4

4

← 24
,

1 1 3 3

2 2

3 4

4

← 224
,

1 2 3 3

2 4

3

4

← 1224
,

2 2 3 3

3 4

4

← 11224
.

The question of why a1, · · · ,an is weakly increasing remains. Appealing to the
second statement in Theorem 5.2, if a j > a j+1 for some j, then the new cell c j+1

created by the insertion of a j+1 into T ← a1 · · ·a j is strictly above and weakly to
left of the new cell c j created by the insertion of a j into T ← a1 · · ·a j−1. But this
is not what happens in our process—in our reverse process, ci+1 is strictly to the
right and weakly below ci. Hence there can be no such j and so a1, · · · ,an is weakly
increasing.

This now proves that θ is a bijection, proving the Pieri rule involving the homo-
geneous symmetric functions.

The proof of the Pieri rule involving the elementary symmetric functions is sim-
ilar. Let En,μ be the set of all pairs (S,T ) where S is a column strict tableau of shape
(1n) and T is a column strict tableau of shape μ . Let SCn,μ denote the set of all
column strict tableaux P such that sh(P)/μ is a skew column of size n. Then we
wish to show

∑
(S,T )∈En,μ

w(S)w(T ) = ∑
P∈SCn,μ

w(P).

Row insertion again allows us to give a weight preserving bijection Γ : En,μ →
SCn,μ . Given a pair (S,T ), let a1 > · · · > an be the elements of S, reading from top
to bottom. Define Γ (S,T ) = P = T ← a1 · · ·an. By Theorem 5.2, if λ = sh(P), then
λ/μ is skew column. Moreover, we know that in the insertion of a1 · · ·an into T ,



5.1 Row Insertion 161

the new cells were created from bottom to top. This allows us to reverse our steps,
implying that Γ is one-to-one.

We show that Γ is also surjective in a similar manner as when we showed θ is a
surjection earlier in the proof. Take and column strict tableau P such that sh(P)/μ
is a skew column with n cells. Look at the cells in sh(P)/μ . If P did come from an
insertion of the form T ← a1 · · ·an where a1 > · · ·> an then we know that new cells
were created from bottom to top.

Thus to reverse the process, we first apply reverse row insertion on the topmost
cell of sh(P)/μ , moving down the skew column, undoing row inserting at each
step. Continuing in this way, we will obtain a sequence a1 · · ·an and a column strict
tableau of shape μ such that P = T ← a1 · · ·an.

For example, suppose μ = (3,2,1), λ = (4,3,2,1,1), and P is the column strict
tableau shown below:

1 1 2 2

2 2 3

3 4

4

5

,

where we have shaded the cells in λ/μ . We illustrate the idea of this reverse row
insertion here:

1 2 2 2

2 3 3

4 4

5

← 1
,

1 2 2 3

2 3 4

4 5

← 21
,

1 2 2 4

2 3 5

4

← 321
,

1 2 2 5

2 3

4

← 4321
,

1 2 2

2 3

4

← 54321
.

Why is a1 . . .an strictly decreasing? If a j ≤ a j+1 for some j, then the new cell
c j+1 created by the insertion of a j+1 into T ← a1 · · ·a j is strictly to the right and
weakly below the new cell c j created by the insertion of a j into T ← a1 · · ·a j−1.
But this is not what happens in our process. That is, in our reverse process, ci+1 is
strictly above and weakly to the left of ci. Hence there can be no such j and a1 . . .an

is strictly decreasing. ��
By iterating the Pieri rule for the homogeneous symmetric functions, it can be

seen that if μ � n, then
hμ = ∑

λ�n

Kλ ,μ sλ , (5.1)

thereby giving the entries of the h-to-s transition matrix.
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That is, suppose μ = (μ1, . . . ,μk). Then hμ1 = s(μ1); we can place 1s in the cells
of the shape (μ1). Using the Pieri rule to multiply hμ2 s(μ1), we find all sλ such that
λ/(μ1) is a skew row. For each such λ , place 2s in the cells of λ/(μ1). It follows
that hμ2 s(μ1) equals the sum over all sλ such that the shape λ is the shape of column
strict tableau T of weight xμ1

1 xμ2
2 .

For each such λ , we can use the Pieri rule again to find hμ3 sλ . We mark each new
cell added to λ with a 3. Then hμ3 hμ2 s(μ1) equals the sum over all sδ such that the
shape δ is the shape of column strict tableau T of weight xμ1

1 xμ2
2 xμ3

3 . Continuing in
this way proves (5.1).

Item 9 in the Notes in Chapter 2 provides an alternative route to (5.1).
Applying the ω transformation to both sides of (5.1) gives

eμ = ∑
λ�n

Kλ ,μ sλ ′ ,

an identity which says that the λ ,μ entry of the e-to-s transition matrix is Kλ ′,μ .

5.2 The RSK Algorithm

We now present the RSK algorithm. It is named after Gilbert de Beauregard Robin-
son, who first described an algorithm equivalent to bumping, Craige Schensted
who described the algorithm for permutations, and Donald Knuth who extended
the algorithm from permutations to matrices.

Algorithm 5.4 (RSK). The input is a nonzero, nonnegative integer-valued matrix A.

1. Begin with P and Q as empty column strict tableaux.
2. Let (i, j) be the topmost and then the leftmost nonzero entry in A.
3. Change P to P ← j, thereby adding one cell to P. Add a cell containing i to Q

in the same position as the cell that was added to P.
4. Change A by subtracting 1 from the (i, j) entry.
5. If A is the zero matrix, stop. Otherwise, go back to step 2.

The output is the pair (P,Q).

For example, consider applying RSK to A=

[
1 2 0
3 0 1

]
. Starting at the top left entry

of A and moving across each row, the first nonzero entry is at (1,1). After initializing
P and Q to be empty, steps 3 and 4 give

P= 1 Q= 1 A=
[
0 2 0
3 0 1

]

.

Iterating until A is the zero matrix, we have
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P = 1 2 Q = 1 1 A =
0 1 0
3 0 1

,

P = 1 2 2 Q = 1 1 1 A =
0 0 0
3 0 1

,

P =
1 1 2

2
Q =

1 1 1

2
A =

0 0 0
2 0 1

,

P =
1 1 1

2 2
Q =

1 1 1

2 2
A =

0 0 0
1 0 1

,

P =
1 1 1 1

2 2
Q =

1 1 1 2

2 2
A =

0 0 0
0 0 1

,

P =
1 1 1 1 3

2 2
Q =

1 1 1 2 2

2 2
A =

0 0 0
0 0 0

.

The output of applying RSK to A is the pair (P,Q).
An alternative way of thinking about RSK is to consider the word of pairs

w(A) =
q1 q2 . . . qn

p1 p2 . . . pn

obtained by reading the rows of the matrix A from left to right starting at the top
row and ending at the bottom row where for each ai, j > 0, we write down ai, j pairs

of the form
i
j
. We call w(A) the bi-word of A. For example, if A is the matrix of our

example, then

w(A) =
1 1 1 2 2 2 2
1 2 2 1 1 1 3.

Then P is found from /0 ← p1 · · · pn. The matrix P is sometimes called the inser-
tion tableau. We then use the elements of q1 . . .qn to record the growth of P. That is,
if ci is the new cell created by the insertion ( /0 ← p1 · · · pi−1)← pi, then we place qi

in cell ci of Q. The matrix Q is sometimes called the recording tableau.

Theorem 5.5. The RSK algorithm is a bijection between nonnegative integer valued
matrices A and pairs of the form (P,Q) where P and Q are column strict tableau of
the same shape.
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Proof. Suppose that

w(A) =
q1 q2 · · · qn

p1 p2 · · · pn.

The shapes of P and Q are the same by construction. By Theorem 5.1, P is a
column strict tableau. Moreover, our construction ensures Q is weakly increasing in
rows and columns because at any stage, the new cell attached to Q contains a letter
i which is greater than or equal to all the previous letters added to Q.

Thus to prove Q is column strict, we need to only show that for any letter i, no
two is in the Q can lie in the same column. But this is an immediate consequence of
the first statement in Theorem 5.2. That is, the elements corresponding to the ith row
of A were inserted in weakly increasing order because when we created the word of
A, we read the elements from left to right. This insures that if qsqs+1 · · ·qt is a block
of is in q1 . . .qn, then ps ≤ ·· · ≤ pt . But then by the first statement in Theorem 5.2,
new cells which were created by the insertion

( /0 ← p1 · · · ps−1)← ps · · · pt

were created from left to right and form a skew row. Thus no two is in Q can be in
the same column so that Q is column strict.

It follows that we can read off the order in which the cells were created in P. That
is, for any fixed i, we know by the first statement in Theorem 5.2, the cells were
created from left to right. Thus the last cell c that was created in P corresponds to
the right-most cell which contains the largest element in Q. Because we can reverse
the row insertion algorithm starting at cell c, it follows that we can reconstruct A
from P and Q.

At this point we know that the correspondence A → (P,Q) is an injection, so it
remains to be shown that it is also a surjection. That is, we must show that if P and
Q are column strict tableaux of the same shape, then there is a nonnegative-valued
matrix A such that RSK sends A to (P,Q).

The idea is that given (P,Q), we can reverse the bumping process as it came from
inserting a bi-word of a matrix A. That is, for each i in Q, we assume that the cells
containing i were created from left to right. This allows us to reconstruct a bi-word

q1 q2 · · · qn

p1 p2 · · · pn

by successively reversing the bumping process in P using the cell that contains the
largest and then right-most element of Q.

For example, suppose we wish to undo the bumping process for the pair (P,Q)
shown below:

P =
1 1 3 4

2 4
Q =

1 1 2 2

2 2

We begin by locating the largest integer in P. If there are ties, select the rightmost.
In this example, the rightmost 4 in P is chosen. Then we undo row insertion in P,
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remove the cell in the same position as Q, and then record this move in the bi-word.
This process looks like this:

P =
1 1 3

2 4
Q =

1 1 2

2 2
w(A) = 2

4

P =
1 1

2 4
Q =

1 1

2 2
w(A) = 2 2

3 4

P =
1 4

2
Q =

1 1

2
w(A) =

2 2 2
1 3 4

P = 2 4 Q = 1 1 w(A) =
2 2 2 2
1 1 3 4

P = 2 Q = 1 w(A) =
1 2 2 2 2
4 1 1 3 4

P =∅ Q =∅ w(A) = 1 1 2 2 2 2
2 4 1 1 3 4

It only remains to be shown that for each i, if qsqs+1 · · ·qt is a block of is in
q1 · · ·qn, then ps ≤ ·· · ≤ pt . Just like in the proof of Theorem 5.3, we can use the
second statement in Theorem 5.2. That is, if p j > p j+1 for some s ≤ j < j+1 ≤ t,
then by Theorem 5.2, the cell c j+1 created by inserting p j+1 in /0 ← p1 · · · p j would
be strictly above cell ci created by p j in /0 ← p1 · · · p j−1. But by construction, c j+1

is strictly to the right and weakly below c j so that there can be no such j.
This shows that RSK is bijection from the set of all nonnegative integer-valued

matrices A onto the collection of pairs of column strict tableaux (P,Q) of the same
shape. ��

The Schur symmetric functions sλ were defined in Chapter 2 using column strict
tableaux, so it should not be a complete surprise that information about the Schur
symmetric functions can be deduced from the RSK algorithm. The product in the
next theorem is called the Cauchy kernel.

Theorem 5.6. We have ∏
i, j≥1

1
1− xiy jz

= ∑
λ

sλ (x1,x2, . . .)sλ (y1,y2, . . .)z
|λ |.

Proof. Write each 1/(1 − xiy jz) term in the infinite product as a geometric se-
ries and expand. Record the choice of xm

i ym
j zm, selected from the geometric series

1/(1− xiy jz) when creating a monomial in the expansion, by placing an m in the
(i, j) entry of a matrix A. By defining the weight of A = ‖ai, j‖ to be ∏i, j≥1 x

ai, j
i y

ai, j
j ,
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the coefficient of zn in the infinite product is the weighted sum of all nonnegative
integer-valued matrices A which have entries that sum to n.

For every (i, j) entry in A, RSK inserts ai, j copies of i into Q and ai, j copies of j
into P. By defining the weight of the pair (P,Q) to be

∏
i, j≥1

xthe number of times i is in Q
i ythe number of times j is in P

j ,

the weighted sum over all nonnegative integer-valued matrices A is equal to the
weighed sum over all pairs (P,Q) of column strict tableau of shape λ where λ
ranges over all integer partitions of n.

The Schur symmetric function sλ (x1,x2, . . .) is the weighted sum of all column
strict tableau Q of shape λ and sλ (y1,y2, . . .) gives P, so the coefficient of zn on
the right-hand side of the equality is also the weighted sum over all pairs (P,Q) of
column strict tableaux of shape λ � n. ��

Taking z = 1 and applying Theorems 2.25 and 2.26, Theorem 5.6 tells us that the
basis {sλ : λ � n} is self-dual in Λn.

We will prove a second Cauchy identity, namely

∏
i, j≥1

(1+ xiy jz) = ∑
λ

sλ (x1,x2, . . .)sλ ′(y1,y2, . . .)z
|λ |,

in Theorem 5.10 by slightly modifying the RSK algorithm to an algorithm known as
dual RSK. Dual RSK involves an analogue of row insertion for row strict tableaux.

We say that T is a row strict tableau of shape λ if T is a tableau of shape λ such
that integers strictly increase in rows, reading from left to right, and weakly increase
in columns, reading from bottom to top.

Let T be a row strict tableau and j an integer. We define the dual row insertion

of j into T , denoted T
d← j, to be the tableau found by the following three rules:

D0. If T is the empty tableau, then T
d← j is the column strict tableaux with 1 cell

which contains the integer j.

Otherwise we assume that the first row of T contains the integers a1 < · · ·< an and
T ′ is the row strict tableau that is found by removing the first row of T .

D1. If an < j, then T
d← j results from T by adding a cell containing j at the end of

the bottom row of T .

D2. If ak ≥ j, then let ak be the leftmost entry in bottom row of T that is greater
than or equal to j. Replace ak with j and then dual row insert ak into T ′.

For example, to dual row insert a 3 into the row strict tableau

1 2 3 5

1 2 4

2

,
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Graphically, this dual row insertion looks like

1 2 3 5

1 2 4

2

d← 3
,

1 2 3 5

1 2 4

2
d← 3

,
1 2 3 5

1 2 3

2
d← 4

,
1 2 3 5

1 2 3

2 4

.

Theorems 5.7 and 5.8 are the dual versions of Theorems 5.1 and 5.2. Their proofs
are so similar to the proofs of Theorems 5.1 and 5.2 that they are left to the reader.

Theorem 5.7. If T is a row strict tableau and j is a positive integer, then T
d← j is

a row strict tableau and the bumping path for the insertion of j in T moves weakly
to the left as one proceeds from bottom to top. Moreover, if sh(T ) is shape of T and

sh(T
d← j) is the shape of T

d← j, then sh(T )⊆ sh(T
d← j).

Given a word w1 · · ·wn, let T
d← w1 · · ·wn = (· · ·((T d← w1)

d← w2) · · ·) d← wn.

Further, let Ti = T
d← w1 · · ·wi for all i and let ci be the single cell in sh(Ti)/sh(Ti−1).

Theorem 5.8. If w = w1 · · ·wn is a word of length n ≥ 2 with letters in {1,2, . . .},
then these two facts are true:

1. If w1 < · · ·< wn, then ci+1 is strictly to the right and weakly below ci for all i.
2. If w1 ≥ ·· · ≥ wn, then ci+1 is strictly above and weakly to the left of ci for all i.

Algorithm 5.9 (Dual RSK). The input is a matrix A with entries either 0 or 1.

1. Begin with P and Q the empty tableaux.
2. Let (i, j) be the topmost and then the leftmost nonzero entry in A.

3. Change P to P
d← j, thereby adding one cell to P. Add a cell containing i to Q

in the same position as the cell that was added to P.
4. Change A by subtracting 1 from the (i, j) entry.
5. If A is the zero matrix, stop. Otherwise, go back to step 2.

The output is the pair (P,Q).

Like RSK, dual RSK can be phrased in terms of the bi-word of A instead of the
matrix A itself. In this way, we would apply dual RSK by successively dual row

inserting the pairs
i
j

for every i, j pair in the bi-word of A.

From here, Theorems 5.7 and 5.8 can be combined to prove that P is a row strict
tableau, Q is a column strict tableau, and we can recover the order in which the
cells were created in P from Q. Mimicking the proof of Theorem 5.5, the reader
can verify that dual RSK is a bijection between such pairs (P,Q) and 0,1 valued
matrices A.
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Theorem 5.10. ∏
i, j≥1

(1+ xiy jz) = ∑
λ

sλ (x1,x2, . . .)sλ ′(y1,y2, . . .)z
|λ |.

Proof. Expand each term (1+xiy jz) in the infinite product and record the choice of
xiy jz by placing a 1 in the (i, j) entry of a matrix A and the choice of 1 by placing a
0 in the (i, j) entry of a matrix A.

By defining the weight of A = ‖ai, j‖ to be ∏i, j≥1 x
ai, j
i y

ai, j
j , the coefficient of zn in

the infinite product is the weighted sum of all {0,1}-valued matrices A which have
entries that sum to n. The dual RSK row insertion algorithm associates A with a pair
(P,Q) of the same shape where P is a row strict tableau and Q is a column strict
tableau. Define the weight of (P,Q) to be

∏
i, j≥1

xthe number of times i is in Q
i ythe number of times j is in P

j ,

the weighted sum over all nonnegative {0,1}-valued matrices A is equal to the
weighed sum over all pairs (P,Q) of tableau of shape λ where λ ranges over all
partitions of n, P is a row strict tableau, and Q is a column strict tableau.

The Schur symmetric function sλ (x1,x2, . . .) is the weighted sum of all column
strict tableau Q of shape λ and sλ ′(y1,y2, . . .) is the weighted sum of all row strict
tableau P so the coefficient of zn on the right-hand side of the equality is also the
weighted sum over all pairs (P,Q) of shape λ � n where P is row strict tableau and
Q is a column strict tableau. ��

Dual row insertion can be rephrased in terms of column insertion. Given a
column strict tableau P, we define a column insertion by first transposing P, do-
ing dual row insertion, and then transposing again. Then instead of repeating row
insertion to define the RSK algorithm, we can repeat column insertion to define the
column RSK algorithm.

As a graphical example of column insertion, we have

1 3 4

3

↓
2

,
1 3 4

2 ↓
3

,
1 3 4

2 ↓
3

,
1 3 3

2

↓
4

,
1 3 3 4

2

.

Algorithm 5.11 (Column RSK). The input is a matrix A with entries either 0 or 1.
Apply RSK to A except replace each instance of row insertion with an instance of
column insertion. The output is the pair (P,Q).

For example, column RSK sends A =

[
1 0 1 1
0 1 1 0

]
to the pair (P,Q) where

P =
1 3

2 4

3

,

Q =
1 2

1 2

1

.



5.3 Weakly Increasing Subsequences in Words 169

In a similar way that row insertion maintains row strictness, the operation of
column insertion maintains column strictness. Therefore the output P from RSK
column insertion algorithm is a column strict tableau and one can use Theorems 5.7
and 5.8 to prove that Q is a row strict tableau.

The inverse column RSK algorithm can be described: starting with the pair (P,Q)
of tableau of the same shape such that P and Q′ are column strict, the inverse column
RSK algorithm is the same as the inverse RSK algorithm (found in the proof of
Theorem 5.5) with the exception that the topmost i is selected if there is more than
one largest integer i in Q. Therefore column RSK is a bijection between 0,1 matrices
A and pairs (P,Q) of tableau of the same shape such that P and Q′ are column strict.

5.3 Weakly Increasing Subsequences in Words

Matrices can be used to represent words and permutations. The matrix representing
the word w=w1 · · ·wn ∈ {1, . . . ,k}∗n is the n×k matrix that has a 1 in entry (i,wi) for
all i and 0s elsewhere. If the word happens to be a permutation, this is a permutation
matrix. For example, the permutation matrix for 1 4 2 5 3 is

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
0 0 1 0 0

⎤

⎥
⎥
⎥
⎥
⎦
.

Define the RSK algorithm (or the dual RSK algorithm) on words w = w1 · · ·wn

to be the result when the matrix representing w is inputted into the RSK algorithm.
This amounts to row inserting w1, . . . ,wn into P while recording the placement of
new cells with 1, . . . ,n in Q. For example, RSK sends 1 4 2 5 3 to (P,Q) where

P =
1 2 3

4 5

,

Q =
1 2 4

3 5

.

If w is a word or a permutation, we let P(w) and Q(w) denote the output tableaux
P and Q that come from applying RSK to w. We define the words w and v to be
P-equivalent if P(w) = P(v). For example, the words 1 2 1 2 3 3 2 and 2 3 1 1 2 2 3
are P-equivalent because

P(1 2 1 2 3 3 2) = P(2 3 1 1 2 2 3) =
1 1 2 2 3

2 3

.

Our next goal is to characterize P-equivalent words because doing so will allow
us to provide an amazing relationship between the RSK algorithm and increasing
subsequences in words.
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An elementary Knuth operation on a word w is one of these two operations:

1. If y z x appears consecutively in w and x < y ≤ z, then change the order of these
three letters to y x z and leave the rest of w unchanged.

2. If x z y appears consecutively in w and x ≤ y < z, then change the order of these
three letters to z x y and leave the rest of w unchanged.

Both of these two actions interchange consecutive integers on one side of the
middle-valued integer y and both of these actions are invertible. The reason for this
definition is because these operations (and their inverses) preserve the row insertion
process. That is, the first and second elementary Knuth operations give

P(y z x) = P(y x z) =
x z

y
and P(x z y) = P(z x y) =

x y

z

,

respectively.
We define two words w and v to be Knuth equivalent if w can be transformed

into v by a series of elementary Knuth operations or inverse elementary Knuth oper-
ations. For example, the words 1 2 1 2 3 3 2 and 2 3 1 1 2 2 3 are Knuth equivalent;
we display the sequence of elementary Knuth operations below with a boldfaced x
and z to be interchanged:

1 2 1 2 3 3 2 (operation 2)

2 1 1 2 3 3 2 (operation 1)

2 1 1 2 3 2 3 (operation 2)

2 1 1 3 2 2 3 (operation 2)

2 1 3 1 2 2 3 (inverse operation 1)

2 3 1 1 2 2 3

The row word of a tableau T is a canonical example of a word w with P(w) = T .
It is created by listing the elements in each row of T , starting with the top row and
moving down. For example, the row word of

1 1 2 2 3

2 3

is 2 3 1 1 2 2 3.

Theorem 5.12. Two words are P-equivalent if and only if they are Knuth equivalent.

Proof. Assume that w = w1 · · ·wn and v are P-equivalent. We will show that word w
is Knuth equivalent to the row word r for P(w). This will imply that v is also Knuth
equivalent to r, from which this direction of the if and only if statement will follow
from the transitivity of Knuth equivalence.

We proceed by induction on the length of the word w. Let r′ be the row word
for P(w1 · · ·wn−1) so that, by induction, r′ and w1 · · ·wn−1 are Knuth equivalent. We
need to show that r′wn and r are Knuth equivalent.
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How are r and r′ related? Suppose the bottom row of P(w1 · · ·wn−1) contains the
weakly increasing sequence r1, . . . ,r�. This is the sequence at the tail end of r′. Let
i be the integer that satisfies

r1 ≤ r2 ≤ ·· · ≤ ri−1 < wn ≤ ri ≤ ·· · ≤ r�.

Then the bottom row of P(w1 · · ·wn−1wn) contains the weakly increasing sequence
r1 · · ·ri−1wnri+1 · · ·r�. This is the sequence at the tail end of r.

Using ∼ to denote Knuth equivalence, we have

r′wn = r′′ r1 · · · ri−1 ri · · · r�−1 r� wn (operation 1)

∼ r′′ r1 · · · ri−1 ri · · · r�−1 wn r� (operation 1)

...

∼ r′′ r1 · · · ri−1 ri wn · · · r�−1 r� (operation 1)

∼ r′′ r1 · · · ri−1 ri wn ri+1 · · · r�−1 r� (operation 2)

...

∼ r′′ r1 ri · · · ri−1 wn ri+1 · · · r�−1 r� (operation 2)

∼ r′′ ri r1 · · · ri−1 wn ri+1 · · · r�−1 r�

This shows that the tail end of r′wn and r are the same. The resulting words found
by removing these tail ends from r′wn and r are P-equivalent since they both are the
row words for P(w1 · · ·wn) with the bottom row removed. By induction we have
shown that r′wn and r are Knuth equivalent, as needed.

For the reverse implication, assume that words w and v are Knuth equivalent. It is
enough to assume that w and v differ by a single elementary Knuth operation. We
will assume that v can be found from applying the first elementary Knuth operation
to w; the case where they differ by the second elementary Knuth operation is similar
and left to the reader.

It is enough to show that

((T ← y)← z)← x = ((T ← y)← x)← z (5.2)

whenever x < y ≤ z and T is an arbitrary column strict tableau T .
By Theorem 5.2, the path of replaced cells in T ← y appears strictly to the left

of the path of placed cells in (T ← y) ← z. Similarly, the path of replaced cells in
T ← y appears strictly to the right of the path of placed cells in (T ← y)← x.

Since row inserting z occurs on the other side of the path of replaced cells from
y, the path of replaced cells when row inserting x into T ← y is the same as the
path of replaced cells when row inserting x into (T ← y)← z. Similarly, since row
inserting z does not cross the barrier created by the path of replaced cells from y,
row inserting z commutes with row inserting x. This shows 5.2, as needed. ��
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A weakly increasing subsequence in a word w = w1 · · ·wn ∈ {1, . . . ,k}∗n is a
sequence wi1 ≤ wi2 ≤ ·· · ≤ wik for some 1 ≤ i1 < · · · < ik ≤ n. Let Ik(w) be the
maximum number of integers in a union of k disjoint weakly increasing sequences
in w.

For example, if w = 1 2 3 2 3 3 2 2 3 1 1, then I1(w) = 6; a longest weakly
increasing subsequence in w is boldfaced:

1 2 3 2 3 3 2 2 3 1 1.

There are other weakly increasing subsequences of length 6. To show that I2(w) = 9,
a second weakly increasing subsequence in w is italicized:

1 2 3 2 3 3 2 2 3 1 1.

Although it worked this time it may not always be the case that I2(w) can be found
by examining the integers not used in the subsequence found for I1(w). From here
we find Ik(w) = 11 for all k ≥ 3 since it takes three disjoint weakly increasing sub-
sequences to use every integer in w.

Continuing this example, we have

P(1 2 3 2 3 3 2 2 3 1 1) =
1 1 1 2 2 3

2 2 3

3 3

.

The shape of this tableau is the integer partition (6,3,2). As our next theorem shows,
it is not a coincidence that I1(w) = 6, I2(w) = 6+3, and I3(w) = 6+3+2.

Theorem 5.13. Let w be a word and let λ = (λ1,λ2, . . .) be the shape of P(w) where
λ� is the last nonzero entry in λ . Then Ik(w) = λ1 + · · ·+λk for all k ≥ 1.

Proof. Let r be the row word for P(w). Integers in a weakly increasing subsequence
in r must come from different columns in P(w). The longest weakly increasing
subsequence in r therefore uses every column. This means that I1(r) = λ1 and that
the longest weakly increasing subsequence in r consists of the λ1 integers at the tail
end of r. Removing the bottom row of P(w) and continuing inductively, we see that
Ik(r) = λ1 + · · ·+λk for the row word r.

It is enough to show that Ik(w) = Ik(v) whenever w and v are Knuth equivalent—
after all, we have just proved the theorem true for row words and, by the proof of
Theorem 5.12, every word w is Knuth equivalent to the row word for P(w). Further,
we only need to show that Ik(w) = Ik(v) when w and v differ by an elementary
Knuth operation. We will assume that w and v differ by the first elementary Knuth
operation and leave the similar case of the second elementary Knuth operation to
the reader.

Suppose w and v are the same except for three consecutive letters x < y≤ z which
appear as y z x in w but appear as y x z in v. The inequality Ik(w) ≤ Ik(v) follows
immediately because both x and z can be a part of a weakly increasing subsequence
in v but not in w.
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Suppose the v1, . . . ,vk are disjoint weakly increasing subsequences in v which
contain a total of Ik(v) integers. To show Ik(w) ≥ Ik(v), we will construct weakly
increasing subsequences in w with the same lengths as v1, . . . ,vk. If x and z do not
both appear in the same subsequence vi for some i, then v1, . . . ,vk are the desired
disjoint weakly increasing subsequences in w. For the remainder of this proof we
now assume that x and z both appear in vi for some i.

If y is not in v1, . . . ,vk, then replace x in vi with y to find the desired weakly
increasing subsequences in w.

If y appears in v j for i 	= j, then let v′i be the initial portion of vi that appears
up to and including the x concatenated with the tail end of v j that appears after
the y. Similarly, let v′j be the initial portion vi that appears up to and including the y
concatenated with the tail end of vi that appears after the x. Then v1, . . . ,vk with vi

and v j changed to v′i and v′j are the desired disjoint weakly increasing subsequences.
We have now shown Ik(w) ≤ Ik(v) and Ik(w) ≥ Ik(v), so these two integers are

equal, as needed. ��

5.4 Paths in Permutation Matrices

Drawing certain paths connecting the 1s in a permutation matrix can give a visual
representation of the RSK algorithm. This new understanding will allow us to prove
that if RSK sends the matrix A to (P,Q), then RSK sends AT to (Q,P).

Let M be a permutation matrix and let (i, j) be an entry containing a 1 in M. We
define an upright path segment to be a path created by starting at an entry in column
j below the 1, moving up column j until reaching the 1, and then moving right to
the first column which has a 1 above row i (or the last column of M if no such 1
exists). An upright path in M is created by chaining together upright path segments,
staring at the bottom entry of the first column in M.

For example, below is an upright path in the permutation matrix for 6 2 5 7 1 4 3:

0
0

0
0
0
0

0
0
0
0
0

0

0
0
0
0
0
0

0

0
0
0
0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0

0
0
0

1

1

1
1

1

1

1

A path diagram for the permutation matrix M is the matrix M together with nested
upright paths. Create a path diagram by drawing an upright path staring in the bot-
tom left entry of M. Ignore any 1s appearing in this path and draw another upright
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path, this time starting at the bottom entry of the leftmost column which contains
a 1. Iterate, continuing to draw upright paths until every 1 is in a path.

For example, here is the path diagram for the permutation matrix for 6 2 5 7 1 4 3:

0
0

0
0
0
0

0
0
0
0
0

0

0
0
0
0
0
0

0

0
0
0
0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0

0
0
0

1

1

1
1

1

1

1

The path diagram for the permutation matrix representing σ is related to the
column strict tableau P(σ) and Q(σ). We will soon show that an upright path begins
in column j exactly when there is a j in the bottom row of P(σ) and an upright path
ends in row i exactly when there is an i in the bottom row of Q(σ).

To verify this with our above example, the upright paths begin in columns 1,3,
and 7 and end in rows 1,3, and 4. These are indeed the bottom rows of

P(6 2 5 7 1 4 3) =

1 3 7

2 4

5

6

and Q(6 2 5 7 1 4 3) =

1 3 4

2 6

5

7

.

Going one step further, the sequence of column strict tableaux found when building
P(σ) with the RSK algorithm is

6 , 2

6

, 2 5

6

, 2 5 7

6

, 1 5 7

2

6

, 1 4 7

2 5

6

, 1 3 7

2 4

5

6

.

The bottom rows are 6, 2, 25, 257, 157, 147, and 137. Look at the top 1 row of M
only: the upright path begins in column 6. Look at the top 2 rows of M only: the
upright path begins in column 2. Look at the top 3 rows of M only: the upright paths
begin in columns 2,5. In general, looking only at the top k rows of M, an upright
path begins in column j exactly when there is a j in the bottom row of the kth column
strict tableau found when building P(σ). This is the content of our next theorem.

Theorem 5.14. Let M be the permutation matrix for the permutation σ = σ1 · · ·σn.
Then the bottom row of ∅ ← σ1 ← ·· · ← σk contains a j exactly when the top k
rows of the path diagram for M contains an upright path beginning in column j.
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Proof. The case k = 0 is vacuously true. We proceed by induction.
Suppose σk+1 is larger than each entry in the bottom row of ∅← σ1 ← ·· ·← σk.

Row inserting σk+1 simply appends σk+1 to the bottom row. In this case the 1 in row
k+1 in the permutation matrix M must appear farther to the right than all above 1s.
This means that a new upright path in the first k rows of M begins in the σk+1

column, as needed.
Suppose σk+1 is not larger than each entry in the bottom row of ∅← σ1 ← ·· ·←

σk. Let x be the smallest entry in the bottom row which is larger than σk+1. Then
row inserting σk+1 into ∅← σ1 ←·· ·← σk replaces the x in the first row with σk+1.

By our choice of x, the 1 in column x in M is the nearest 1 northeast of the 1 in
column σk+1. This means that the 1 in column x and the 1 in column σk+1 are in
the same upright path. Since the 1 in column σk+1 appears to the left of the x, this 1
now marks the start of this upright path, as needed. ��
Theorem 5.15. Let σ be a permutation with permutation matrix M. An upright path
in the path diagram for M begins in column j and ends in row i if and only if j is in
the bottom row of P(σ) and i is in the bottom row of Q(σ).

Proof. Taking k = n in Theorem 5.14 says that P(σ) contains j whenever an upright
path begins in column j.

An element k + 1 appears in the first row of Q whenever σk+1 is greater than
each entry in the bottom row of ∅← σ1 ← ·· · ← σk. As seen in the proof of Theo-
rem 5.14, there is an up-down path with a final 1 in row k+1 each time this happens.
Therefore each time there is a k+ 1 in the first row of Q, there is an up-down path
which ends in row k+1. ��

The proof of Theorem 5.14 says that an integer x is placed into the second row of
P(σ) each time an up-down path has a new up-down path segment. In other words,
a 0 appearing in a corner of an up-down path appears in column j exactly when
the second row of P(σ) contains a j. Therefore to find the second row of P(σ) and
Q(σ), we can create a second path diagram by connecting the corner 0s from the
first path diagram with upright path segments. For example, below we show this
second path diagram in our running example:

0
0

0
0
0
0

0
0
0
0
0

0

0
0
0
0
0
0

0

0
0
0
0
0

0
0
0
0

0
0

0
0
0
0
0
0

0
0
0

0
0
0

1

1

1
1

1

1

1

This second path diagram has upright paths which begin in columns 2 and 4 and end
in rows 2 and 6, so the second rows of P(σ) and Q(σ) are 2,4 and 2,6.
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To find the third row of P(σ) and Q(σ) and beyond, iterate this procedure. Create
a path diagram using the corner 0s from the previous iteration of the path diagram
to form new upright paths. The columns and rows which begin these paths give the
desired row in P(σ) and Q(σ).

Theorem 5.16. We have P(σ−1) = Q(σ) and Q(σ−1) = P(σ) for all σ ∈ Sn.

Proof. The columns in the path diagram of the permutation matrix M tell us P(σ)
and the rows tell us Q(σ). Therefore the rows in the path diagram of MT tell us P(σ)
and the columns tell us Q(σ). Since the permutation matrix for σ−1 is MT, we have
the desired result. ��

Another way to phrase Theorem 5.16 is to say that RSK sends M to (P,Q) if and
only if RSK sends MT to (Q,P) for all permutation matrices M. We can extend this
result to any nonnegative integer-valued matrix A by carefully changing A into a
permutation matrix.

Let A = ‖ai, j‖ be an m×n nonnegative integer-valued matrix. Let ri be the sum
of row i and let c j be the sum of column j in A. The permutation matrix st(A), called
the standardization of A, is the block matrix defined in the following way. Change
the i, j entry in A to the ri × c j block matrix with j, i block equal to the ai, j × ai, j

identity matrix and all other blocks equal to 0. For example,

st

([
3 1 2
1 2 1

])
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 0 0 0 0 0
0 0 I1 0 0 0
0 0 0 0 I2 0
0 I1 0 0 0 0
0 0 0 I2 0 0
0 0 0 0 0 I1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.3)

This definition of standardization gives that transposition and standardization
commute. In symbols, st(AT) = st(A)T.

The reason for this definition of st(A) comes from the order in which entries in A
are used in RSK. For example, if A is the matrix shown in (5.3), then we would use
the (i, j) pairs in the order

(1,1),(1,1),(1,1),(1,2),(1,3),(1,3),(2,1),(2,2),(2,2),(2,3)

when creating P and Q. The effect of standardization is that the 1s in the first coordi-
nate of this list of ordered pairs are relabeled from left to right with 1,2, . . . , �1. Then
the 2s are relabeled from left to right with �1 + 1, . . . , �1 + �2, and so on. Applying
this relabeling procedure twice, once for each coordinate, we find

(1,1),(2,2),(3,3),(4,5),(5,8),(6,9),(7,4),(8,6),(9,7),(10,10).

Standardization makes the integers in both the first and second coordinates distinct.
The matrix st(A) is the permutation matrix for the permutation created by reading
the second coordinates off of this list of ordered pairs.
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If we keep track of r1r2 · · · and c1c2 · · · , then standardization is reversible. These
row and column sums tell us the size of each block in the block matrix st(A)
from which we can reconstruct A. In other words, the function which sends A to
(st(A),r1r2 · · · ,c1c2 · · ·) is a bijection.

We define a standard tableau to be a column strict tableau T of size n such that
each of the integers 1, . . . ,n appear exactly once in T . If w is a word, the tableau
Q(w) will be standard. Similarly, both P(σ) and Q(σ) are standard tableau if and
only if σ is a permutation.

Just as the standardization of a matrix A makes the integers inserted in RSK dis-
tinct, we can define the standardization of a column strict tableau T in order to make
the integers in T distinct. Suppose T is a column strict tableau with �1 appearances
of 1, �2 appearances of 2, and so on. We can take T and create a standard tableau
st(T ) by relabeling the 1s in T from left to right with 1, . . . , �1, then relabeling the
2s in T from left to right with �1 + 1, . . . , �1 + �2, and so on. Below we display an
example of T and st(T ):

T =
1 1 1 2 2 3

2 2 3

3 3

st(T ) =
1 2 3 6 7 11

4 5 10

8 9

If we let ti the number of is in T , then we can reconstruct T from the pair
(st(T ), t). In other words, the function which sends T to the pair (st(T ), t1t2 · · ·)
is a bijection.

Theorem 5.17. Let A be a nonnegative integer-valued matrix. If RSK sends A to
(P,Q), then RSK sends AT to (Q,P).

Proof. Suppose that applying RSK to A involves the sequence of row insertions
∅ ← j1 ← ·· · ← jn. When changing to the standardized matrix st(A), the RSK
algorithm will instead row insert ∅← j′1 ← ·· · ← j′n where j′1, . . . , j′n is a sequence
such that j′i < j′k whenever ji ≤ jk. In other words, the relative magnitude of any
two terms in the sequences j1, . . . , jn and j′1, . . . , j′n is the same.

This means that the row insertions when RSK is applied to A match exactly the
row insertions when RSK is applied to st(A), with the exception that the integers
j′1, . . . , j′n are used instead of j1, . . . , jn. RSK inserts equal integers from left to right,
which matches our method of standardizing a column strict tableau, and so we can
conclude that RSK sends st(A) to (st(P),st(Q)).

We can now use Theorem 5.16 on the permutation matrix st(A) to find that RSK
sends st(A)T = st(AT) to (st(Q),st(P)).

Let r1r2 · · · and c1c2 · · · be the row and column sums of A. We can undo the
standardization process on st(AT), using c1c2 · · · as row sums and r1r2 · · · as column
sums, to find AT. Similarly, we can undo the standardization of st(Q) using r1r2 · · ·
to find Q and undo the standardization of st(P) using c1c2 · · · to find P. We have
now found that RSK sends AT to (Q,P), as desired. ��
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5.5 Permutation Statistics from the Cauchy Kernel

Let σ = σ1 · · ·σn be a permutation. If we let Des(σ) the set of indices i for which
σi > σi+1, then the descent and major index statistics can be written as des(σ) =
|Des(σ)| and maj(σ) = ∑i∈Des(σ) i.

We can adapt these definitions for standard tableaux. If T is a standard tableau,
we define Des(T ) to be the set of indices i such that i + 1 appears in a row
above i. The descent and major index statistic for standard tableau are defined by
des(T ) = |Des(T )| and maj(T ) = ∑i∈Des(T ) i. The relationship between the set Des
for permutations and the set Des for the output of RSK is in our next theorem.

Theorem 5.18. For all σ ∈ Sn, Des(σ) = Des(Q(σ)) and Des(σ−1) = Des(P(σ)).

Proof. Let T be a column strict tableau. If σi < σi+1, Theorem 5.2 says that the
last cell inserted in T ← σi appears strictly to the left of the last cell inserted into
(T ← σi)← σi+1. This implies that i+1 does not appear above the row containing
i in Q(σ).

If σi > σi+1, then a similar argument as found in the proof of Theorem 5.2 shows
that the path of replaced cells in T ← σi appears strictly to the right of the path
of replaced cells in (T ← σi) ← σi+1. Therefore the last cell inserted into T ← σi

appears strictly to the right of the last cell inserted into (T ← σi) ← σi+1. This
implies that i+1 appears above the row containing i in Q(σ).

We have now shown that Des(σ) = Des(Q(σ)). Using Theorem 5.16, we also
have Des(σ−1) = Des(Q(σ−1)) = Des(P(σ)). ��
Theorem 5.19. For all λ � n,

sλ (1,q,q
2, . . .) =

1
(1−q)(1−q2) · · ·(1−qn) ∑

T∈STλ

qmaj(T )

where STλ is the set of standard tableaux of shape λ .

Proof. Let sum(T ) denote the sum of the integers in a tableau T . In Exercise 2.9
it is seen that sλ = ∑R∈RCSλ

w(R) where RCSλ is the set of reverse column strict

tableaux. Therefore sλ (1,q
1,q2, . . .) is equal to ∑qsum(R)−n where the sum runs over

all R ∈ RCSλ .
Each R ∈ RCSλ can be turned into a T ∈CSλ by a reverse standardization proce-

dure: working from the largest integer to the smallest in R and moving from left to
right for repeated integers, replace the integers in R with the integers 1,2, . . . ,n. An
example of an R ∈ RCSλ and the tableau T ∈ STλ found by the reverse standardiza-
tion procedure is below:

R =
4 3 3 2 2 1

2 2 1 1

1 1

T =
1 2 3 6 7 12

4 5 10 11

8 9

.
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Let r = r1 · · ·rn be the word created by listing the integers in R in weakly
decreasing order. Define a word a = a1 · · ·an by ai = ri − ri+1 for i = 1, . . . ,n− 1
and an = rn. For example, the table below shows r and a for the example R and T
shown earlier in this proof:

1 2 3 4 5 6 7 8 9 10 11 12
r = 4 3 3 2 2 2 2 1 1 1 1 1
a = 1 0 1 0 0 0 1 0 0 0 0 1

Then we have that ri = ai + ai+1 + · · ·+ an, and so sum(R) = r1 + · · ·+ rn =
1a1 +2a2 + · · ·+nan. Additionally, we have an ≥ 1 and ai ≥ χ(i ∈ Des(st(T ))) for
i = 1, . . . ,n− 1 where χ(A) is 1 if the statement A is true and 0 if A is false. This
fact comes from the observation that an element in Des(σ) can only exist when the
reverse standardization process changes from relabeling the ks in R to relabeling the
(k+1)s in R for some k.

Therefore s(1,q,q2, . . .) = ∑R∈RCSλ
qsum(R)−n is equal to

q−n ∑
T∈STλ

∑
a1≥χ(1∈Des(T ))

· · · ∑
an−1≥χ(n−1∈Des(T ))

∑
an≥1

q1a1+2a2+···+nan

= q−n ∑
T∈STλ

∑
a1≥χ(1∈Des(T ))

(q1)a1 · · · ∑
an−1≥χ(n−1∈Des(T ))

(qn−1)an−1 ∑
an≥1

(qn)an

= q−n ∑
T∈STλ

(q1)χ(1∈Des(T )) · · ·(qn−1)χ(n−1∈Des(T ))qn

(1−q1) · · ·(1−qn−1)(1−qn)

where the last line came from summing the multiple geometric series. This last
equation can be seen to equal ∑T∈STλ

qmaj(T )/((1−q) · · ·(1−qn)), as needed. ��
By making small modifications to the above proof, we can refine Theorem 5.19

by descents. This refinement will be used to find generating functions for permuta-
tion statistics, as we will see in Theorem 5.21.

Theorem 5.20. Let (x;q)n+1 denote the product (1 − xq0)(1 − xq1) · · ·(1 − xqn).
Then for all λ � n we have

∞

∑
k=0

xksλ (1,q
1, . . . ,qk) =

1
(x;q)n+1

∑
T∈STλ

xdes(T )qmaj(T ),

where STλ is the set of standard tableaux of shape λ .

Proof. Let max(T ) denote the maximum integer in the tableau T . For reasons given
in the proof of Theorem 5.19, sλ (1,q

1, . . . ,qk) is equal to ∑qsum(R)−n where the sum
runs over all R ∈ RCSλ with max(R)≤ k+1.

Each R ∈ RCSλ with max(R) ≤ k+ 1 can be turned into a column strict tableau
C ∈ CSλ with max(C) ≤ k+ 1 by replacing each integer i in R with k+ 2− i. For
instance, if k = 3, the R on the left turns into the C on the right in the diagram below:
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R =
4 3 3 2 2 1

2 2 1 1

1 1

C =
1 2 2 3 3 4

3 3 4 4

4 4

.

Changing R to C in this way changes the sum of the tableau. Indeed, sum(R) =
(k+2)n− sum(C).

At this point we have

∞

∑
k=0

xksλ (1,q
1, . . . ,qk) =

∞

∑
k=0

xk ∑
R ∈ RCSλ has max(R)≤ k+1

qsum(R)−n

=
∞

∑
k=0

xk ∑
C ∈CSλ has max(C)≤ k+1

q(k+2)n−sum(C)−n

=
∞

∑
k=0

(xqn)k ∑
C ∈CSλ has max(C)≤ k+1

qn−sum(C)

=
1

1− xqn ∑
C∈CSλ

(xqn)max(C)−1qn−sum(C), (5.4)

where the last equality can be seen by expanding 1/(1− xqn) as a geometric series
and then examining the coefficient of xk.

The usual standardization procedure associates each C ∈ CSλ with a pair of the
form (st(C),c) where st(C) is an element in STλ and c = c1c2 · · · is a word such
that ci is the number of appearances of i in C. Let w = w1 · · ·wn be the word created
from c by replacing ci with ci copies of i for all i. Define a word a = a1 · · ·an by ai =
wi+1 −wi for i = 1, . . . ,n−1 and an = w1. The word a has the following properties:

1. We have max(C) = a1 + · · ·+an.
2. We have sum(C) = n ·max(C)− (1a1 +2a2 + · · ·+(n−1)an−1).
3. We have an ≥ 1 and ai ≥ χ(i ∈ Des(st(T ))) for i = 1, . . . ,n−1.

Therefore (5.4) is equal to

x−1

1− xqn ∑
T∈STλ

∑
a1≥χ(1∈Des(T ))

· · · ∑
an−1≥χ(n−1∈Des(T ))

∑
an≥1

xa1+···+anq1a1+···+(n−1)an−1

=
x−1

1− xqn ∑
T∈STλ

∑
a1≥χ(1∈Des(T ))

(xq1)a1 · · · ∑
an−1≥χ(1∈Des(T ))

(xqn−1)an−1 ∑
an≥1

xan

=
x−1

1− xqn ∑
T∈STλ

(xq1)χ(1∈Des(T )) · · ·(xqn−1)χ(n−1∈Des(T ))x1

(1− xq1) · · ·(1− xqn−1)(1− x)
,

where the last line came from summing the multiple geometric series. This last
equation can be seen to equal ∑T∈STλ

xdes(T )qmaj(T )/(x;q)n+1, as needed. ��
The Cauchy kernel can be used to extract information about permutation statis-

tics, as we see in our following theorem and in Exercises 5.3 and 5.6.
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Theorem 5.21. Let (z; p,q)k+1,�+1 denote ∏k
i=0 ∏�

j=0(1− zpiq j). Then we have

∞

∑
n=0

zn

(x; p)n+1(y;q)n+1
∑

σ∈Sn

xdes(σ)ydes(σ−1)pmaj(σ)qmaj(σ−1) = ∑
k,�≥0

xky�

(z; p,q)k+1,�+1
.

Proof. Taking xi = pi−1 for i = 1, . . . ,k+ 1 and y j = q j−1 for j = 1, . . . , �+ 1 and
all other variables xi,y j = 0 in Theorem 5.6, we find

1
(z; p,q)k+1,�+1

=
k

∏
i=0

�

∏
j=0

1
1− piq jz

=
∞

∑
n=0

∑
λ�n

sλ (1, p, . . . , pk)sλ (1,q, . . . ,q
�)zn

=
∞

∑
n=0

zn ∑
λ�n

∑
Q∈STλ

xdes(Q)pmaj(Q)

(x; p)n+1
∑

P∈STλ

ydes(P)qmaj(P)

(y;q)n+1

∣
∣
∣
∣
∣
xky�

,

where the last equality comes from taking the coefficient of xk in Theorem 5.20.
When restricted to permutations, the RSK algorithm is a bijection between permu-
tations σ ∈ Sn and pairs (P(σ),Q(σ)). Using this fact together with Theorem 5.18,
we have

1
(z; p,q)k+1,�+1

=
∞

∑
n=0

zn

(x; p)n+1(y;q)n+1
∑

σ∈Sn

xdes(σ)ydes(σ−1)pmaj(σ)qmaj(σ−1)

∣
∣
∣
∣
∣
xky�

.

The result follows from multiplying by xky� and summing over all k, �≥ 0. ��

5.6 Hooks

Let λ be an integer partition of n. The hook of a cell c is the “L”-shaped subset of
cells in the Young diagram of λ consisting of the cell c, all cells to the right of c
and in the same row, and all cells above c and in the same column. For example, the
hook of a cell c is shaded in the Young diagram below:

c

.

We define the hook length of the cell c, denoted h(c), to be the number of cells in
the hook of c. Below we have filled each cell c in the Young diagram for the integer
partition (6,5,3,2) with its hook length h(c):
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9 8 6 4 3 1

7 6 4 2 1

4 3 1

2 1

Theorem 5.22. For any λ = (λ1,λ2, . . .) � n,

q−0·λ1−1·λ2−···sλ (1,q,q
2, . . .) = ∏

c∈λ

1

1−qh(c)
,

where the notation c ∈ λ means that c is a cell in the Young diagram for λ .

Proof. As seen in the proof of Theorem 5.19, sλ (1,q,q
2, . . .) = ∑T∈CSλ

qsum(T )−n

where sum(T ) denotes the sum of the elements in T . Use the factor of q−n in this
sum to subtract 1 from each integer in T ∈ CSλ and use the q−0·λ1−1·λ2−··· term to
subtract (i−1) from each integer in row i of T . This process changes each T ∈CSλ
into a tableau filled with nonnegative integers such that

1. the integers weakly increase when reading bottom to top within columns and
2. the integers weakly increase when reading left to right within rows.

A tableau which satisfies the above conditions is called a reverse plane partition.
Let RPPλ be the set of reverse plane partitions of shape λ . Given any T ∈ RPPλ ,

let Tc be the nonnegative integer found in cell c. By defining the weight of T ∈ RPPλ
to be w(T ) = ∏cells c in T qTc , we now have

q−0·λ1−1·λ2−···sλ (1,q,q
2, . . .) = ∑

R∈RPPλ

w(R). (5.5)

Let Tλ denote the set of tableaux of shape λ , filled freely with nonnegative inte-
gers. Looking at the right side of the equality in the statement of the theorem, write
each term in the product ∏c∈λ 1/(1− qh(c)) as a geometric series and expand, sel-
ecting a term of the form (qh(c))i for each c ∈ λ . Record the choices of i made for
each cell by placing an i into cell c in a tableau T ∈ Tλ . By defining the hook weight
of T ∈ Tλ to be hw(T ) = ∏cells c in T (q

h(c))Tc , we now have

∏
c∈λ

1

(1−qh(c))
= ∑

T∈Tλ

hw(T ). (5.6)

Comparing equations (5.5) and (5.6), we see that the theorem can be proved by
defining a bijection ϕ : RPPλ → Tλ such that w(R) = hw(ϕ(R)) for all R ∈ RPPλ .
The bijection we will describe is an algorithm due to Abraham Hillman and Richard
Grassl [61].

The input to the algorithm is an element R ∈ RPPλ with not every entry equal
to 0. The image of R is the element T ∈ Tλ found by the following these steps:

1. Begin with T the tableaux of shape λ with all entries 0.
2. Locate the most north west nonzero element in R, say it lies in cell c.
3. Create a path P which moves down and to the right in R by starting at cell c. The

next step in P will move down if the cell below c contains the same integer as c
and the next step in P will move to the right otherwise. Continue creating P by
moving down and to the right in this manner until no more moves are possible.
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4. Subtract 1 from each cell in R that lies on the path P.
5. If P begins in column j and ends in row i, then add 1 to row i, column j entry

of T .
6. If R contains a nonzero entry, go back to step 2. If R contains only 0s, then the

output of the algorithm is T .

We give an example of this process below, where the appropriate path P is shaded
in each step:

R =
0 1 2 2 2

1 1 2 3 3

3 3 3 3

T =
0 0 0 0 0

0 0 0 0 0

0 0 0 0

,

R =
0 1 2 2 2

1 1 2 2 2

2 2 2 2

T =
0 0 0 0 0

1 0 0 0 0

0 0 0 0

,

R =
0 1 1 1 1

1 1 1 2 2

1 1 1 2

T =
1 0 0 0 0

1 0 0 0 0

0 0 0 0

,

R =
0 0 0 0 0

0 0 1 2 2

0 1 1 2

T =
2 0 0 0 0

1 0 0 0 0

0 0 0 0

,

R =
0 0 0 0 0

0 0 0 1 1

0 0 0 2

T =
2 0 0 0 0

1 1 0 0 0

0 0 0 0

,

R =
0 0 0 0 0

0 0 0 1 1

0 0 0 1

T =
2 0 0 0 0

1 1 0 0 0

0 0 0 1

,

R =
0 0 0 0 0

0 0 0 0 0

0 0 0 0

T =
2 0 0 0 0

1 1 0 1 0

0 0 0 1

.
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This algorithm moves from left to right down the columns of R, so the last entry
added to T lies in the right-most nonzero column of T . Furthermore, the weakly
increasing rows and columns in R force the last entry added to T to appear in the
bottom entry of this column. Therefore since the last increased cell in T can be iden-
tified, this algorithm is reversible: given a pair R,T , recreate the path P by traveling
up and to the left, moving up whenever neighboring entries in different rows are
equal and moving left otherwise.

The algorithm is a bijection since it is reversible. The algorithm is also weight
preserving since at any step in the algorithm we have w(R) = hw(T ) by design. This
completes the proof. ��

Theorems 5.19 and 5.22 combine to give the following corollary.

Corollary 5.23. For any λ = (λ1,λ2, . . .) � n, we have

∑
T∈STλ

qmaj(T ) =
[n]q!

∏c∈λ [h(c)]q
q0λ1+1λ2+···,

where STλ is the set of standard tableaux of shape λ .

Proof. Comparing the expressions for sλ (1,q,q
2, . . .) in Theorems 5.19 and 5.22,

1
(1−q)(1−q2) · · ·(1−qn) ∑

T∈STλ

qmaj(T ) =
1

∏c∈λ (1−qh(c))
q0λ1+1λ2+···.

The corollary follows by solving for ∑T∈STλ
qmaj(T ) and simplifying. ��

Let f λ denote the number of standard tableaux of shape λ � n. Taking q = 1 in
Corollary 5.23 gives that

f λ =
n!

∏c∈λ h(c)
(5.7)

for any λ � n. This identity, which gives a wonderful way to find the number of
standard tableaux, is known as the hook length formula. For example, instead of
calculating f (3,2) by listing the standard tableaux below, we can instead use the
hook length formula to see that f (3,2) = 5!/(4 ·3 ·2 ·1 ·1) = 5.

1 2 3

4 5

, 1 2 4

3 5

, 1 2 5

3 4

, 1 3 4

2 5

, 1 3 5

2 4

,

Since we proved the hook length formula in a somewhat roundabout way, the
intuition giving why the formula is correct may not have been fully formed. To gain
insight, consider the following incorrect, but enlightening “proof” of (5.7):
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Proof (incorrect). Randomly place the integers 1, . . . ,n into the Young diagram of
shape λ � n to create a tableau. Such a naı̈ve filling will be a standard tableau exactly
when each cell c is the smallest of the integers in its hook. The probability that
this happens for any given c ∈ λ is 1/h(c). Therefore the probability of creating a
standard tableau is 1/∏c∈λ h(c).

There are n! random placements of the integers 1, . . . ,n into the Young diagram
of shape λ , so the number of standard tableaux f λ is equal to n!/∏c∈λ h(c). ��

The error in the proof is that the probability of one cell c1 ∈ λ being the small-
est integer in c1s hook is not independent from the probability of a second cell
c2 ∈ λ being the smallest in c2s hook. Because the probabilities are not indepen-
dent, we cannot simply multiply them together in order to find the probability of
creating a standard tableau. Strangely, however, since the hook length formula is
indeed true, the probability of creating a standard tableau by randomly placing the
integers 1, . . . ,n into a Young diagram is 1/∏c∈λ h(c) nevertheless!

Exercises

5.1. Let T be a column strict tableau with distinct entries and let j 	= k be integers
not found in T . Show that (T ← j) ↓ k = (T ↓ k)← j, that is, show that row insertion
and column insertion commute when all integers involved are distinct.

5.2. For σ = σ1 · · ·σn ∈ Sn, define σ r to be the reverse permutation σn · · ·σ1. Use
exercise 5.1 to show that P(σ r) = P(σ)′.

5.3. Show that the generating function

∞

∑
n=0

zn

(x; p)n+1(y;q)n+1
∑

σ∈Sn

x(n−1)−des(σ)ydes(σ−1)p(
n
2)−maj(σ)qmaj(σ−1)

is equal to ∑k,�≥0 xky�(−z; p,q)k+1,�+1.

5.4. Let A be a symmetric matrix. By Theorem 5.17, RSK sends A to (P,P) where P
is a column strict tableau. Show that the trace of A is equal to the number of columns
of an odd length in P.

5.5. Use exercise 5.4 to show that

∏
i≥1

1
1− xiyz ∏

i< j

1
1− xix jz2 = ∑

λ
sλ (x1,x2, . . .)y

odd(λ ′)z|λ |,

where odd(λ ′) is the number of odd parts in the conjugate partition λ ′.
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5.6. Let In be the set of involutions in Sn, that is, the set of permutations in Sn with
σ = σ−1. Use exercise 5.5 to find a generating function for

∞

∑
n=0

zn

(x; p)n+1
∑

σ∈In

xdes(σ)yfix(σ)pmaj(σ)

where fix(σ) is the number of fixed points in the permutation σ .

5.7. Simplify these sums:

∑
λ�n

f λ , ∑
λ�n

( f λ )2, ∑
λ�n

f 2λ .

As usual, f λ denotes the number of standard tableaux of shape λ . The notation 2λ
means every part in λ is multiplied by 2. Exercise 5.4 may help with the third sum.

Solutions

5.1 We proceed by induction on the maximum element m found in (T ← j) ↓ k.
Let j = j1, j2, . . . , j� be the sequence of replaced cells in T ← j. This increasing

sequence moves up and weakly to the right in T . Similarly, let k = k1,k2, . . . ,kn be
the sequence of replaced cells in T ↓ k. This increasing sequence moves to the right
and weakly down in T . The diagram below simultaneously displays how these two
sequences must appear in T ← j and T ↓ k:

j1

j2

j3

j4

j5

...

j −1

j

j3

k1 k2 k3

k4 k5 · · · kn−1

kn

Case 1: m is not in either of the sequences j1, . . . , j� or k1, . . . ,kn. Then m can
be removed from T to form T ′ without influencing either sequence—the operation
of adding or removing m is independent of row inserting j or column inserting k.
Remove m, invoke induction to find that (T ′ ← j) ↓ k = (T ′ ↓ k) ← j, and then
reinsert m to see that row and column insertion commute.
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Case 2: m is found in the sequence j1, . . . , j� (this means j� = m) but not in the
sequence k1, . . . ,kn. Since m is the largest integer involved, row insertion terminated
one step after m was bumped from T . In other words, either j = m or the position of
m in T is at the cell labeled j�−1 in T ← j.

If the cell containing m in T is removed to form T ′, then the sequence of replaced
cells in the row insertion T ′ ← j is the same sequence j1, . . . , j�−1 but with the last
integer j� removed. This means T ′ ← j is equal to T ← j with m removed, showing
that removing or replacing m is independent of row inserting j.

Since m is not in k1, . . . ,kn, this sequence cannot involve the cell containing m
in T . Therefore removing or replacing m is independent of column inserting k. Now
we can remove m to form T ′, invoke induction (T ′ ← j) ↓ k = (T ′ ↓ k) ← j, and
then reinsert m to see that row and column insertions commute.

Case 3: m is not found in the sequence j1, . . . , j� but is in the sequence k1, . . . ,kn.
The result follows from an argument very similar to that found in Case 2.

Case 4: m is in both sequences j1, . . . , j� and k1, . . . ,kn and j�−1 > kn−1. A dia-
gram simultaneously illustrating the sequences j1, . . . , j� and k1, . . . ,kn in T ← j and
T ↓ k looks like this:

j1

j2

j3

...

jk1 k2

k3 · · ·

kn

j −1 = k −1

If more than one integer in the sequence j1, . . . , j�−1 was found in the column of
T ← j containing j�−1, then since kn−1 appears above j�−1 in T ↓ k, it would follow
that k�−1 > j�−1. This means T actually looks something like this:

j2

...

j −1

k2 k3

k4 · · · kn−1 m

From here it can be seen that both (T ← j) ↓ k and (T ↓ k) ← j are the same; in
particular, illustrating what happens with the above diagram, they are both equal to
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j1

...

j −2

k1 k2

k3 · · · kn−1 j −1

m

.

Case 5: m is in both sequences j1, . . . , j� and k1, . . . ,kn and j�−1 < kn−1. The
result follows from an argument very similar to that found in Case 4.

5.2 We have

P(σ r) =∅← σn ← σn−1 ← ·· · ← σ1 =∅ ↓ σn ← σn−1 ← ·· · ← σ1. (5.8)

Exercise 5.1 says that (5.8) is equal to ∅← σn−1 ← ·· ·← σ1 ↓ σn, so, by induction,
we know that

P(σ r) =∅ ↓ σ1 ↓ σ2 ↓ · · · ↓ σn.

Repeated column insertion of a list of distinct integers gives the conjugate standard
Young tableau as repeated row insertion. Therefore P(σ r) = P(σ)′.

5.3 Taking xi = pi−1 for i = 1, . . . ,k+ 1 and y j = q j−1 for j = 1, . . . , �+ 1 and all
other variables xi,y j = 0 in Theorem 5.10, we find

(−z; p,q)k+1,�+1 =
k

∏
i=0

�

∏
j=0

(1+ piq jz)

=
∞

∑
n=0

∑
λ�n

sλ ′(1, p, . . . , pk)sλ (1,q, . . . ,q
�)zn

=
∞

∑
n=0

zn ∑
λ�n

∑
Q∈STλ

xdes(Q′)pmaj(Q′)

(x; p)n+1
∑

P∈STλ

ydes(P)qmaj(P)

(y;q)n+1

∣
∣
∣
∣
∣
xky�

,

where the last equality comes from taking the coefficient of xk in Theorem 5.20.
The integer i + 1 is in a row above i in the standard tableau T if and only

if i + 1 is not in a row above i in the conjugate standard tableau T ′. Therefore
Des(T ) = {1, . . . ,n− 1} \Des(T ′). By theorem 5.18, des(T ′) = (n− 1)− des(σ)
and maj(T ′) =

(n
2

)−maj(σ).
Using Theorem 5.18 again for the P tableau and using the observation that

the dual RSK algorithm is a bijection between permutations σ ∈ Sn and pairs
(P(σ),Q(σ)′), we have that (−z; p,q)k+1,�+1 is equal to

∞

∑
n=0

zn

(x; p)n+1(y;q)n+1
∑

σ∈Sn

x(n−1)−des(σ)ydes(σ−1)p(
n
2)−maj(σ)qmaj(σ−1)

∣
∣
∣
∣
∣
xky�

.

The result follows from multiplying by xky� and summing over all k, �≥ 0.
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5.4 We proceed by induction on the number of rows in P, with the case of zero rows
being vacuously true.

The standardized matrix st(A) is symmetric and the trace of A and st(A) are
equal, allowing us to reduce to the case where A is a symmetric permutation matrix.

The path diagram for A is symmetric, so each upright path in the path diagram
must either have a 1 on the diagonal or a corner 0 on the diagonal. Let Ã be the
matrix A with any 1s found in the path diagram removed and any corner 0s in the
path diagram turned into 1s. Let P̃ be P with the bottom row removed.

Since the second path diagram determines the shape of P̃, we know by induction
that tr(Ã) is equal to the number of columns of an odd length in P̃. Therefore tr(Ã) is
the number of columns of an even length in P—equivalently, each 0 on the diagonal
of the path diagram accounts for a columns of an even length. Since the total number
of up-down paths in the path diagram is the total number of columns, it follows that
the number of 1s on the diagonal of A is the number of columns of an odd length.

5.5 We use ideas similar to those found in the proof of Theorem 5.6.
The coefficient of zn on the left-hand side is the weighted sum over all symmetric

matrices A with nonnegative integer entries that sum to n. This can be seen by ex-
panding each term in the products as geometric series. The terms in the first product
dictate the diagonal entries of A and the terms in the second product dictate both the
(i, j) and ( j, i) entries in A. Since each choice of diagonal entry comes along with a
power of y, the exponent on y is the trace of A.

RSK is a weight preserving bijection which changes the symmetric matrix A
into a single-column strict tableau P such that P has size n and, by exercise 5.4,
P has tr(A) columns of an odd length. Summing over all possible shapes λ of P
and noticing that odd(λ ) = tr(A), we can see this is exactly what is counted by the
coefficient of zn on the right side of the equality.

5.6 Take xi = pi−1 for i = 1, . . . ,k+1 and all other xi = 0 in exercise 5.5 to find

1
(yz; p)k+1

∏
0≤i< j≤k

1
(1− pi+ jz2)

=
∞

∑
n=0

∑
λ�n

sλ (1, p, . . . , pk)yodd(λ ′)zn

=
∞

∑
n=0

zn ∑
λ�n

yodd(λ ′) ∑
P∈STλ

xdes(P)pmaj(P)

(x; p)n+1

∣
∣
∣
∣
∣
xk

,

where the last equality comes from taking the coefficient of xk in Theorem 5.20.
Each standard tableau P corresponds to an involution σ ∈ In by applying the

inverse to the RSK algorithm to the pair (P,P). Furthermore, by exercise 5.4, the
trace of the permutation matrix representing σ is equal to odd(λ ′) where λ is the
shape of P. Since the trace of the permutation matrix gives the number of fixed
points in σ , the above string of equalities is equal to

∞

∑
n=0

zn

(x; p)n+1
∑

σ∈In

xdes(σ)yfix(σ)pmaj(σ)

∣
∣
∣
∣
∣
xk
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by Theorem 5.18. Multiply by xk and sum over all k ≥ 0 to find that the desired
generating function is

∞

∑
k=0

xk

(yz; p)k+1
∏

0≤i< j≤k

1
(1− pi+ jz2)

.

5.7 Let In be the set of involutions in Sn. RSK is a bijection from In to pairs of the
form (P,P) where P is a standard tableaux of size n. Therefore

∑
λ�n

f λ = (the number of standard tableau of size n) = |In|.

The generating function for the number of involutions of n was given in section 4.4.
RSK is a bijection from Sn to pairs of the form (P,Q) where P and Q are both

standard tableaux of size n. Therefore

∑
λ�n

( f λ )2 = (the number of standard tableau of size n)2 = |Sn|= n!.

As for the third sum, notice that

∑
λ�n

f 2λ = ∑
λ�2n

odd(λ )=0

f λ = ∑
λ�2n

odd(λ ′)=0

f λ ,

where odd(λ ) denotes the number of odd parts in λ � n.
The number of fixed points in an involution σ ∈ In is the trace of the permutation

matrix representing σ . Exercise 5.4 tells us that RSK is a bijection between invo-
lutions σ without a fixed point and pairs of the form (P,P) where P is a standard
tableau of a shape λ with odd(λ ′) = 0. Therefore

∑
λ�n

f 2λ = ∑
λ�2n

odd(λ )=0

f λ

= ∑
λ�2n

odd(λ ′)=0

f λ

= (the number of standard tableau of shape λ � 2n with odd(λ ′) = 0)

= (the number of σ ∈ I2n without a fixed point).

The number of σ ∈ I2n without a fixed point is equal to (2n− 1)(2n− 3) · · ·3 · 1;
this can be seen by writing σ in cyclic notation, selecting an integer from {2, . . . ,2n}
to place in a cycle of length 2 with 1, and then proceeding by induction.
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Notes

A straightening algorithm equivalent to the RSK was first published by Robinson
[103]. Later, Schensted created the row insertion algorithm [105], which Knuth ex-
tended to a map between matrices and pairs of column strict tableaux [72]. Our
proof the Cauchy identities come from the ideas in [72]. In this same paper, Knuth
defined the notion of Knuth equivalence and proved Theorem 5.12. Theorem 5.13
is due to Green [54].

Craige Schensted changed his name to Ea, after the Sumerian god Enki, in 1995.
At the end of 1999, anticipating millennium computer glitches, Ea added a second
name, becoming Ea Ea.

The hook length formula is due to Frame, Robinson, and Thrall [46]. In [104],
an interesting anecdote about the origins of the hook length formula are given;
apparently this identity was independently and simultaneously discovered by math-
ematicians visiting Michigan State University in 1953.

Section 5.4 is based on of a geometric version of the RSK algorithm due to
Viennot [112].

The generating function found in Theorem 5.21 is due to Gessel [50] and first
appeared in [48]. This first proof did not use the Cauchy kernel; the connection
to the Cauchy kernel is due to Désarménien and Foata [26, 27]; these papers also
included Exercise 5.7.

A (k, �) hook Schur function of shape λ is defined by

HSλ (x1, . . . ,xk;y1, . . . ,y�) = ∑
μ⊆λ

sμ(x1, . . . ,xk)sλ ′/μ ′(y1, . . . ,y�).

The ideas of Désarménien and Foata were extended from identities involving Schur
functions to the realm of (k, �) Schur functions in [98]. This work was further
extended by Desésarménien and Foata in [28].

The method of proving the hook length formula using symmetric functions is due
to Stanley [106].



Chapter 6
Counting Problems That Involve Symmetry

In this chapter we introduce Pólya’s enumeration theorem. The theory is designed
to solve counting problems which involve symmetry, like these:

1. How many ways are there to create a necklace with n black beads and n red
beads? Two necklaces are considered the same if the first necklace can be
rotated and/or flipped over to match the second necklace.

2. How many ways are there to color the faces of a cube such that 2 faces are red,
3 faces are black, and one face is fluorescent beige? Two colorings are the same
if one cube can be rotated to get the second.

6.1 Pólya’s Enumeration Theorem

This chapter uses some beginning concepts in group theory. For our purposes, a
finite group G is a nonempty subset of Sn such that στ and σ−1 are both in G for all
σ ,τ ∈ G. Let G be a group and let λ (g) be the cycle type of g ∈ G. Define the cycle
index polynomial for G to be the symmetric function

ZG =
1
|G| ∑

g∈G

pλ (g),

where, as usual, pk is the power symmetric function.
For example, the dihedral group D4, generated by the rotation (1 2 3 4) and the

reflection (1 2)(3 4), is a subgroup of S4. The group D4 acts on the set of vertices of
the square

12

3 4 .

© Springer International Publishing Switzerland 2015
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The elements in D4 are

{(1),(1 2 3 4),(1 3)(2 4),(1 4 3 2),(1 2)(3 4),(1 4)(2 3),(1 3),(2 4)},

and so the cycle index polynomial is

ZD4 =
1
8

(
2p4 +3p2

2 +2p2
1 p2 + p4

1

)
.

Let N denote the set of all functions f : {1, . . . ,n} → {1,2, . . .}. This function f
is called a coloring because each element {1, . . . ,n} is assigned a “color” (a positive
integer). The weight of such a function is

w( f ) =
∞

∏
i=1

x(the number of j with f ( j) = i)
i .

Given g ∈ G and f ∈ N, let g f denote the function defined by g f (i) = f (gi) for
all i. In this way, an equivalence relation on N can be defined such that f ∼ f ′ if
and only if there is a g ∈ G such that f = g f ′. The symmetric function FG is defined
to be

FG = ∑
[ f ]∈N/∼

w( f ),

where [ f ] is the equivalence class containing f ∈ N.
Using our running example of the vertices of the square, two colors are equivalent

if the first can be rotated and or reflected to find the second. For instance,

31

1 2
∼ 12

3 1 .

All possible inequivalent colorings which have a weight xλ1
1 xλ2

2 xλ3
3 xλ4

4 for some int-
eger partition λ = (λ1, . . . ,λ4) � 4 are shown below:

11

1 1

11

1 2

11

2 2

12

1 2

11

2 3

12

1 3

12

3 4

12

4 3

13

4 2

Each one of these colorings represents an equivalence class in N/∼. There are many
more equivalence classes not listed here; the colors in each one of the above equiva-
lence classes can be changed to find more inequivalent colorings. For instance, here
are more inequivalent colorings with weight x2

i x2
j for i 	= j:
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For this example, the symmetric function FD4 is therefore

FD4 = m(4) +m(3,1) +2m(2,2) +2m(2,1,1) +3m(1,1,1,1).

Using the m-to-p transition matrix, found by inverting the p-to-m transition matrix
given in section 2.3, we see that

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
0 1 0 2 4
0 0 2 2 6
0 0 0 2 12
0 0 0 0 24

⎤

⎥
⎥
⎥
⎥
⎦

−1⎡

⎢
⎢
⎢
⎢
⎣

1
1
2
2
3

⎤

⎥
⎥
⎥
⎥
⎦
=

1
8

⎡

⎢
⎢
⎢
⎢
⎣

2
0
3
2
1

⎤

⎥
⎥
⎥
⎥
⎦

and so FD4 =
1
8

(
2p(4) +3p(2,2) +2p(2,1,1) + p(1,1,1,1)

)
= ZD4 . This is no accident, as

we see in Theorem 6.1.

Theorem 6.1 (Pólya). The symmetric polynomials ZG and FG are equal.

Proof. The statement that ZG = FG is equivalent to

∑
g∈G

pλ (g) = |G| ∑
[ f ]∈N/∼

w( f ).

We will prove this identity bijectively.
Consider the set of objects formed by drawing a strip of k cells all filled with the

same positive integer underneath each cycle of length k in an element g ∈ G. For
instance, one possible object is

(1 5 3)
2 2 2

(2)
3

(4 7)
2 2

(6 10 9 8 11 12)
1 1 1 1 1 1

.

By defining the weight of such an object to be the product of the weights of the
underlying column strict tableau, the weighted sum over all possible objects is equal
to ∑g∈G pλ (g).

Given such an object, let f be the coloring such that f (i) = j if i appears in a
cycle above cells filled with j. Our objects are therefore ordered pairs (g, f ) where
g ∈ G, f ∈ N, and—since f is constant on the cycles of g—it must be the case
that g f = f . Let ϕ be the function which sends (g, f ) to (g′g, f ′) where f ′ is the
lexicographically least element in [ f ] and g′ is the lexicographically least element
in G for which g′ f = f ′.

The function ϕ is weight preserving. It is also a bijection because we can describe
its inverse. Let f ′ be the lexicographically least element in [ f ′]. Given h ∈ G, let g
be the lexicographically least element in G for which gh−1 f ′ = f ′. Then the inverse
image of (h, f ′) is the pair (g−1h,h−1 f ′) because

ϕ
(
(g−1h,h−1 f ′)

)
= (gg−1h, f ′) = (h, f ′).
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The function ϕ is the desired weight preserving bijection; it sends ordered pairs
(g, f ) with g f = f to ordered pairs in G×N/∼. The weighed sum over all possible
elements in G×N/∼ is equal to the right-hand side of the identity, as required. ��

To illustrate the utility of Theorem 6.1 we continue our running example with
the square. How many ways are there to color the vertices of the square if two
colorings are considered the same if one coloring can be rotated and or reflected
to find the other? The answer is FD4 (1, . . . ,1,0, . . .), the number found by taking
x1 = · · · = xk = 1 and all other variables xi equal to 0. Since pk (1, . . . ,1,0, . . .) =
1k + · · ·+1k = k, we have that the number of possible colorings is equal to

FD4 (1, . . . ,1,0, . . .) = ZD4 (1, . . . ,1,0, . . .) =
1
8

(
2k+3k2 +2k3 + k4) .

How many ways are there to color the vertices of square if we must color two
vertices black and two vertices white? The answer is the coefficient of x2

1x2
2 in FD4 .

We have

FD4 = ZD4

=
1
8

(
2p(4) +3p(2,2) +2p(2,1,1) + p(1,1,1,1)

)

=
1
8

(
2
(
x4

1 + · · ·)+3(x2
1 + · · ·)2 +2(x2

1 + · · ·)(x1 + · · ·)2 +(x1 + · · ·)4) .

A term of the form x2
1x2

2 can come from the p(2,2), p(2,1,1), and p(1,1,1,1) terms. There-
fore the coefficient is (3 ·2+2 ·2+6)/8 = 2.

Theorem 6.2 (Fermat’s little theorem). If q is a prime number and a a positive
integer, then aq −a is divisible by q.

Proof. When q is prime, the group Zq, which is generated by the cycle (1 2 · · · q),
has q−1 elements of cycle type (q) and one element of cycle type (1q). Therefore

FZq = ZZq =
1
q

(
pq

1 +(q−1)pq
)
.

It is clear from the definition that FG must be a polynomial with positive integer
coefficients for any group G. In particular, specializing by taking x1 = · · ·= xa = 1
and all other terms equal to 0, (aq +(q− 1)a)/q must be an integer. Fermat’s little
theorem follows. ��

6.2 The Cycle Index Polynomial and Schur Functions

This section is devoted to understanding the cycle index polynomial when expanded
in terms of the Schur basis. It turns out that the coefficient of the Schur symmetric
function sλ in the cycle index polynomial ZG is always a nonnegative integer. That
is, for any group G,
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ZG =
1
|G| ∑

g∈G

pλ (g) = ∑
λ�n

cλ sλ (6.1)

for nonnegative integer constants cλ . The proof of this fact is not particularly diffi-
cult but is beyond the scope of this text, as it involves the representation theory of
the symmetric group. See [104] for more details.

Since ZG is defined in terms of the power symmetric functions, we can use the
p-to-s transition matrix to write ZG in terms of Schur symmetric functions. Let χλ

μ
be the λ ,μ entry of the p-to-s transition matrix. In Exercises 2.13 and 2.14 in Chap-
ter 2, labeled abaci were used to find a combinatorial description of χλ

μ in terms of
the so-called rim hook tableaux. We begin this section with an alternative proof of
this combinatorial interpretation of χλ

μ which is based on the Pieri rules found in
Chapter 5. That way this section provides a self-contained description on how to
expand ZG into Schur functions. The proof we include below is based on the work
of [79] and has never appeared before in a book.

As first described in Exercise 1.3, a skew shape λ/μ is a rim hook of λ if it
contains no 2× 2 square and any two consecutive cells are connected by an edge.
A skew shape λ/μ is a broken rim hook of λ if it is a union of rim hooks. As
described in Exercise 2.13, the sign sgn(λ/μ) of a rim hook λ/μ which spans R
rows is (−1)R−1.

Theorem 6.3 (The Murnaghan–Nakayama rule). For all integers r and integer
partitions μ ,

prsμ = ∑
λ/μ is a rim hook with r cells

sgn(λ/μ)sλ .

Proof. Before showing the identity involving prsμ in the statement of the theorem,
we first understand how to expand s(r−k,1k)sμ into a sum of Schur functions.

Using the identity shown in Exercise 2.1, we have

s(r−k,1k)sμ =

(
k

∑
i=0

(−1)k−ieihr−i

)

sμ =
k

∑
i=0

(−1)k−ieihr−isμ ; (6.2)

therefore to understand s(r−k,1k)sμ we will consider terms of the form eihr−isμ .
By the Pieri rules, our Theorem 5.3, we have

eihr−isμ = ∑sλ ,

where the sum runs over all integer partitions λ which can be found by adding a
skew row containing r − i cells to μ and then adding a skew column containing i
cells to the result. If we put hs (for horizontal) in the cells in the added skew row
and vs (for vertical) in the cells in the skew column, we will find a diagram λ which
will look like this:
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h v

h h v

h h

v

h v

It follows that (6.2) can be interpreted as ∑sign(D)ssh(D) where D is a diagram
formed in the way described above such that D contains at most k cells labeled v
and the sign of D is defined to be (−1)k−(the number of v’s in D). We now define a sign
reversing involution J on these combinatorial objects.

Given any diagram D, find the bottom rightmost cell c in D which can be filled
with either an h or a v. If c contains v, then define J(D) to be D with the entry in c
changed to h. If c contains h and if D contains fewer than k cells with a v already,
then define J(D) to be D with the entry in c changed to h. Otherwise, set J(D) = D.

For example, the image of the object displayed earlier in the proof is sent to the
object pictured below by J:

h h

h h v

h h

v

h v

It is not difficult to see that J is an involution and, if D is not a fixed point, J
changes the number of vs in D by 1 and therefore changes sign of D. The fixed points
D under the involution J are such that D has k cells containing vs (and therefore has
sign +1) and the bottom rightmost cell which can contain an h or v contains an h.
Furthermore, by construction, there are r− k cells filled with hs which form a skew
row on the outside of μ and there are k cells filled with vs which form a skew column
in λ .

The arrangement of hs and vs in such a fixed point can either be a single rim hook
or a broken rim hook (a broken rim hook example is shown in the above diagrams).
If the hs and vs form a single rim hook, then the placement of the hs and vs is
completely determined since, by construction, two hs cannot appear in the same
column and two v’s cannot appear in the same row. An example:

h h

v

h h v
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At this point in the proof, we have shown that s(r−k,1k)sμ = ∑ssh(D) where the
sum runs over all fixed points D under J. From here, we will prove the Murnaghan–
Nakayama rule with the help of the identity found in Exercise 2.2 in Chapter 2.
Using this exercise, we have

prsμ =

(
r−1

∑
k=0

(−1)ks(r−k,1k)

)

sμ =
r−1

∑
k=0

(−1)ks(r−k,1k)sμ = ∑sign(D)ssh(D),

where the sum runs over all fixed points D under J and where we define sign(D) to
be (−1)the number of v’s in D.

To finish the proof we apply a second sign reversing involution K. If D contains
a single rim hook, then define K(D) = D. Otherwise, consider the bottom rightmost
cell c in the second rim hook reading bottom to top. If c contains an h, then change
this h to a v. If c contains a v, then change this v to an h. Thus K is the involution
J with two exceptions: we consider the bottommost cell in the second bottommost
rim hook, and we always change an h to a v with disregard to how many vs are
present in D. It can be seen that K is an involution which changes the sign of D
unless K(D) = D.

Since fixed points D make sh(D)/μ a single rim hook, and the number of vs in
D is equal to (the number of rows spanned by sh(D)/μ)− 1, we have that sign(D)
is equal to the sign of the rim hook sh(D)/μ . Therefore by summing the signs over
all fixed points D under K, we have

prsμ = ∑
λ/μ is a rim hook with r cells

sgn(λ/μ)sλ ,

as needed. ��
The λ ,μ entry χλ

μ of the p-to-s transition matrix can be found by iterating the
Murnaghan–Nakayama rule. That is, if μ = (μ1, . . . ,μ�), we write pμ = pμ1 · · · pμ�

.
We expand pμ�

as a sum of Schur functions using the Murnaghan–Nakayama rule
to find shapes λ of size μ�. Using the Murnaghan–Nakayama rule again on each
such choice of λ , we find all β such that β/λ is a rim hook in order to find the
expansion of pμ�−1 pμ�

. We continue this process, successively adding rim hooks of
lengths given by the parts of μ .

This suggests building a rim hook tableau of shape λ and content μ =(μ1, . . . ,μ�),
where a rim hook tableau of shape λ and content μ by filling the cells of the Young
diagram of λ with rim hooks of lengths μ1, . . . ,μ� labeled with 1, . . . , � such that
the removal of the last i rim hooks leaves the Young diagram of a smaller integer
partition (see Exercise 2.14).

We define the sign of a rim hook tableau to be the product of the signs of the rim
hooks that it contains and let χλ

μ the sum of the signs of all rim hook tableaux of
shape λ with content μ . Then we have

pμ = ∑
λ�n

χλ
μ sλ , (6.3)
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thereby giving the p-to-s transition matrix. For example, the two rim hook tableaux
of shape (3,2,1) with content (3,2,1) are

1 2

3

1

2

3

and

These rim hook tableaux have signs −1 and +1, and so χ(3,2,1)
(3,2,1) = 0.

The integers χλ
μ appear in other areas of mathematics. Most notably, χλ

μ is the
value of the irreducible character corresponding to the integer partition λ on the
conjugacy class corresponding to the integer partition μ , see [104]. This means that
there are books which contain tables of these values (see [63]) and software pack-
ages such as Sage (see sagemath.org) and a “SF” Maple package written by
John Stembridge that provide the ability to expand power symmetric functions in
terms of the Schur basis. This provides a route to finding the constants cλ in (6.1).

For example, consider the group G of rotations of the faces of a cube. By labeling
the faces of the cube in this way

6

5

3
6

5

4
6

3
2

5

3

5

3 1

,

we see that G is generated by the quarter turns (1 2 6 5)(3)(4) and (1 4 6 3)(2)(5).
From here it can be checked that the cycle index polynomial is

ZG =
1

24

(
p(16) +6p(4,12) +3p(22,12) +8p(32) +6p(23)

)
.

Either by using software, looking up tables of the values χλ
μ , or computing directly

by hand using (6.3), we can expand each power symmetric function above into the
Schur basis and then simplify to find

ZG = s(6) + s(4,2) + s(3,13) +2s(23).

This last expression can be used to answer counting problems such as this: how
many ways are there to color the faces of the cube such that three faces are red, two
faces are blue, and one face is neon gray? This question is asking for the coefficient
of x3

1x2
2x1 in ZG, and so we consider

ZG|x3
1x2

2x3
=
(

s(6) + s(4,2) + s(3,13) +2s(23)

)∣∣
∣
x3

1x2
2x3

= K(6),(3,2,1) +K(4,2),(3,2,1) +K(3,13),(3,2,1) +2K(23),(3,2,1),

where Kλ ,μ is the Kostka number counting the number of column strict tableaux of
shape λ and type μ . Thus we have reduced the problem of counting colorings of the
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cube into the problem of counting column strict tableaux. It is not difficult to find
these Kostka numbers by hand; when this is done, we find ZG|x3

1x2
2x3

= 3.
This leads to an interesting open problem first mentioned in [24]. For a fixed

μ = (μ1, . . . ,μ6) � 6, is there a natural bijection between column strict tableaux of
content μ and inequivalent colorings of the cube such that μi faces are color i such
that each column strict tableau of shape (6),(4,2), and (3,1) is sent to one coloring
and each column strict tableau of shape (23) is sent to two colorings?

We end this section with an example of a Schur function expansion of a cycle
index polynomial which is more complicated than the cycle index polynomial com-
ing from rotating the faces of the cube. Suppose we want to color the vertices of the
complete binary tree of height 2 where the vertices are labeled as below:

1

2 3

4 5 6 7

The group of symmetries G is generated by reflections about any one of the internal
vertices of the tree. These are listed here:

(1)

1

2 3

4 5 6 7

(4 5)

1

2 3

5 4 6 7

(6 7)

1

2 3

4 5 7 6

(4 5)(6 7)

1

2 3

5 4 7 6

(2 3)(4 6)(5 7)

1

3 2

6 7 4 5

(2 3)(4 7 5 6)

1

3 2

7 6 4 5

(2 3)(4 6 5 7)

1

3 2

6 7 5 4

(2 3)(4 7)(5 6)

1

3 2

7 6 5 4

From these figures it can be readily seen that

ZG =
1
8

(
p(17) +2p(2,15) + p(22,13) +2p(23,1) +2p(4,2,1)

)
.

Doing the calculations involving rim hook tableaux to expand this in terms of the
Schur basis, it can be shown that ZG is equal to

s(23,1) + s(3,14) +3s(3,2,12) +3s(3,22) +2s(32,1) +2s(4,13)

+6s(4,2,1) +3s(4,3) +2s(5,12) +4s(5,2) +2s(6,1) + s(7).
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This expansion into the Schur basis is somewhat involved; it is still possible to
compute the number of inequivalent colorings by hand. For example, if we want to
use color 1 three times, color 2 two times, and color 3 two times, then we calculate

ZG|x3
1x2

2x2
3
= K(23,1),(3,22) +K(3,14),(3,22) +3K(3,2,12),(3,22) +3K(3,22),(3,22)

+2K(32,1),(3,22) +2K(4,13),(3,22) +6K(4,2,1),(3,22) +3K(4,3),(3,22)

+2K(5,12),(3,22) +4K(5,2),(3,22) +2K(6,1),(3,22) +K(7),(3,22)

= 42.

Exercises

6.1. How many ways are there to color the vertices of a cube such that four vertices
are red, two are black, and two are invisible?

6.2. Let E be the set of two element subsets of {1, . . . ,n}. A simple graph on n
vertices corresponds to a coloring of E which uses two different colors: a set {i, j}
is colored q if the edge between i and j appears in a simple graph and 1 if not. For
example, the graph

12

3

4 5

6

corresponds to coloring each of {1,3},{1,4},{1,5},{3,4},{3,6}, and {4,5} with
q and all other elements of E with 1. In this way, the number of edges in the graph
is the number of times q is used in the coloring.

By defining σ{i, j} = {σ(i),σ( j)} for all σ ∈ Sn, the symmetric group Sn acts
on elements of E. Find

∑
inequivalent 2 colorings f of E

qthe number of times color q is used in f

when n = 4. Using the language of graph theory, we are finding

∑
nonisomorphic simple graphs g on 4 vertices

qthe number edges in g.

6.3. Show that ZG×H = ZGZH .

6.4. Let An be the alternating group (the subgroup of Sn containing elements with an
even number of inversions), Zn be the cyclic group of order n (the group generated
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by rotations of an n-sided regular polygon), and let Dn be the dihedral group of order
2n (the group generated by rotations and reflections of an n-sided regular polygon).
Show that

ZSn = hn,

ZAn = hn + en,

ZZn =
1
n

n

∑
i=1

(
pn/gcd(i,n)

)gcd(i,n)
, and

ZDn =
1
2

ZZn +

{
p1 p(n−1)/2

2 /2 if n is odd,(
pn/2

1 + p2
1 p(n−2)/2

2

)
/4 if n is even.

Solutions

6.1 By labeling the vertices of the cube in the following way

1

5

4

8

7

2

6

3

we see that the desired group is generated by the quarter turns (1 2 6 5)(4 3 7 8)
and (1 2 3 4)(5 6 7 8). From here it can be checked that the cycle index
polynomial is

1
24

(
p8

1 +9p4
2 +8p2

1 p2
3 +6p2

4

)
.

We want the coefficient of x4
1x2

2x2
3; such a term can only come from p8

1 or p4
2. There-

fore the answer is (
( 8

4,2,2

)
+9

( 4
2,1,1

)
)/24 = 22.

6.2 The set E is {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}. Calling these elements
e1, . . . ,e6, we see that the action of (1 2) on E corresponds to sending e1 to e1, e2 to
e3, e4 to e5, and e6 to e6. Therefore the action of (1 2) corresponds to applying the
permutation (1)(2 4)(3 5)(6) to the subscripts of e1, . . . ,e6. Similarly, (2 3) and
(3 4) correspond to the permutations (1 2)(3)(4)(5 6) and (1)(2 3)(4 5)(6) on
the subscripts of e1, . . . ,e6.

Since S4 is generated by (1 2),(2 3), and (3 4), the group G of symmetries of
E under the action of S4 is generated by (1)(2 4)(3 5)(6), (1)(2 3)(4 5)(6), and
(1 2)(3)(4)(5 6). From here we calculate the cycle index polynomial for G to be

1
24

(
p6

1 +9p2
1 p2

2 +8p2
3 +6p2 p4

)
= s(16) + s(22,12) + s(23) + s(32) + s(4,2) + s(6).
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The desired generating function can be found by taking x1 = q, x2 = 1, and all
other variables xi to equal 0. When this is done, the power symmetric polynomial pi

becomes qi +1. Using this in the cycle index polynomial, our answer is

1
24

(
(q+1)6 +9(q+1)2(q2 +1)2 +8(q2 +1)3 +6(q2 +1)(q4 +1)

)
.

When this polynomial is expanded, we find

1+q+2q2 +3q3 +2q4 +q5 +q6.

6.3 We have

ZG×H =
1

|G||H| ∑
(g,h)∈G×H

pλ (g)λ (h) =
1

|G||H| ∑
g∈G

∑
h∈H

pλ (g)pλ (h) = ZGZH .

6.4 The cycle index polynomial for the symmetric group is

ZSn =
1
n! ∑

σ∈Sn

pλ (σ) =
1
n! ∑

λ�n

pλ
n!
zλ

by Theorem 1.10. This is equal to hn by Theorem 2.11.
When written in one-line notation, the cycle (1 2 · · · k) is equal to 2 · · · k 1

and so this permutation has k − 1 inversions. More generally, if λ = (λ1, . . . ,λ�)
is an integer partition of n, then the permutation (1 · · · λ1)(λ1 + 1 · · · λ1 +
λ2) · · · has n− �(λ ) inversions. Inversions are constants on conjugacy classes, so
the number of inversions of σ ∈ Sn is (−1)n−�(λ (σ)). This helps us to find the cycle
index polynomial for the alternating group An; the cycle index polynomial ZAn is

2
n! ∑

σ∈An

pλ (σ) =
2
n! ∑

λ∈Sn

1+(−1)n−�(λ (σ))

2
pλ (σ) =

1
n! ∑

λ�n

(
1+(−1)n−�(λ )

)
pλ .

This is hn + en by Theorem 2.12.
The group Zn is generated by (1 2 · · · n). Since the ith power of this cycle splits

into gcd(i,n) cycles of size n/gcd(i,n), the cycle index polynomial ZZn is

1
n ∑

g∈Zn

pλ (g) =
1
n

n

∑
i=1

(
pn/gcd(i,n)

)gcd(i,n)
.

The group Dn is generated by the rotation (1 2 · · · n) and a reflection r of the
n-sided regular polygon about a fixed axis. Therefore Dn is the disjoint union of Zn

and rZn and so

ZDn =
1

2n ∑
g∈Dn

pλ (g) =
1
2n ∑

g∈Zn

pλ (g) +
1

2n ∑
g∈rZn

pλ (g) =
1
2

ZZn +
1

2n ∑
g∈rZn

pλ (g)
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If n is odd, the reflection r can equal

(1 (n−1))(2 (n−2)) · · ·((n−1)/2 (n+1)/2) .

In this case every element in rZn has cycle type (2(n−1)/2,1), and so

1
2n ∑

g∈rZn

pλ (g) =
1
2n

(
np1 p(n−1)/2

2

)
= p1 p(n−1)/2

2 /2.

If n is even, the reflection r can equal

(1 (n−1))(2 (n−2)) · · ·((n/2−1) (n/2+1)) .

In this case, half of the elements in rZn have cycle type (2(n−2)/2,12) and half of the
elements have cycle type (2n/2). These two cases arise depending on whether the
reflection fixes zero or two vertices of the regular polygon. Therefore we have

1
2n ∑

g∈rZn

pλ (g) =
1

2n

(n
2

p2
1 p(n−2)/2

2 +
n
2

pn/2
2

)
=
(

pn/2
1 + p2

1 p(n−2)/2
2

)
/4.

Notes

Rudimentary forms of Pólya’s enumeration theorem were known to Burnside in
1900. Redfield proved the first version of what is now known as Pólya’s Enumer-
ation Theorem [97]. For a modern account of Redfield’s work, see [56, 57, 58].
Pólya gave the first modern formulation of Pólya’s enumeration theorem [95].

The Murnaghan–Nakayama rule was proved independently by D.F. Murnaghan
[91] and T. Nakayama [92, 93].



Chapter 7
Consecutive Patterns

This chapter applies the machinery we have developed in the previous chapters to
find generating functions for the distribution of consecutive patterns in permutations
and words.

The study of patterns in permutations and words has been a very active area
of research in recent years, with explosive growth in the years since 1992. A sys-
tematic treatment of this subject is found in Kitaev’s Patterns in permutations and
words [71].

7.1 Nonoverlapping Consecutive Patterns

Given any sequence σ = σ1 · · ·σ j of distinct integers, let red(σ) be the reduced per-
mutation found by replacing the ith largest integer in σ with i. Given a permutation
τ ∈ S j, we say that σ = σ1 · · ·σn ∈ Sn has a (consecutive) τ-match ending at place
m if red(σm− j+1 · · ·σm) = τ .

For example, if τ = 1 3 2, then the permutation

has exactly 4 τ-matches. These τ-matches end at places 4,6,10, and 12. There are
2 nonoverlapping τ-matches in this permutation.

Theorem 7.1. For any permutation τ ∈ S j,

∞

∑
n=0

zn

n! ∑
σ∈Sn

xτ-nlap(σ) =
A(z)

(1− x)+ x(1− z)A(z)
,

where τ-nlap(σ) is the maximum number of nonoverlapping τ-matches in σ ∈ Sn

and A(z) = ∑∞
n=0 zn|{σ ∈ Sn does not have a τ-match }|/n!.

© Springer International Publishing Switzerland 2015
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Proof. For τ ∈ S j and positive integers �1, . . . , �m, let S( j,�1,...,�m) be the set of per-
mutations σ ∈ S j+�1+···+�m such that σ has exactly (m+1) τ-matches which end at
places j, j+ �1, . . . , and j+ �1 + · · ·+ �m. Furthermore, let Jτ be the set of all lists
of the form ( j, �1, . . . , �m) such that

1. the set S( j,�1,...,�m) is nonempty,
2. the integers �1, . . . , �m are all less than j, and
3. the inequality j ≤ �i + �i+1 holds for all consecutive integers �i, �i+1 in the list.

For example, if τ = 432165, then the permutation

has three τ-matches and they end at places 6,10, and 15. Therefore σ ∈ S(6,4,5). We
now know that (6,4,5) ∈ Jτ since S(6,4,5) is nonempty and the integers in the list
(6,4,5) satisfy the appropriate inequalities.

The inequalities in the second and third conditions on the list ( j, �1, . . . , �m) in
the definition of Jτ are designed so that consecutive τ-matches must overlap and
no one integer is a part of more than two τ-matches. In pictures, a permutation
σ ∈ S( j,�1,...,�m) for some ( j, �1, . . . , �m) ∈ Jτ looks like this:

j 1 2 3 · · · m

j

j

j

j

j

Given a permutation σ ∈ S( j,�1,...,�m) for some ( j, �1, . . . , �m) ∈ Jτ , we can deter-
mine the integers �1, . . . , �m by finding the ending places of the τ-matches in σ .

Define a homomorphism ϕ by ϕ(en) = (−1)n−1 f (n)/n! where f (1) = 1 and

f (n) = (1− x) ∑
( j,�1,...,�m)∈Jτ
j+�1+···+�m=n

(−1)m+1|S( j,�1,...,�m)|

for n ≥ 2.
Applying ϕ to n!hn gives (3.3), from which we create combinatorial objects by

first selecting a brick tabloid T ∈ Bλ ,(n) for some λ � n and then using the multino-
mial coefficient in (3.3) to assign a disjoint subset to each brick such that the union
of these subsets is {1, . . . ,n}.

All that remains to be used in (3.3) is the product f (λ1) f (λ2) · · · . Since f (1) = 1,
add no extra weight to a brick of length 1. Otherwise, for bricks of length n ≥ 2, the
function f (n) tells us to

1. select a permutation σ ∈ S( j,�1,...,�m) for some ( j, �1, . . . , �m) ∈ Jτ ,
2. rearrange the subset assigned to this brick of length n to create a distinct list of

integers which reduce to σ ,
3. place a −1 in each cell which ends a τ-match, and
4. Either keep the first −1 in each brick unchanged or change it to an x.
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For example, one combinatorial object created in this way when τ = 132 is

3 11 7 1 6 4 10 8 2 5 12 9

x −1

.

Let the weight be the product of all xs and −1s. Then n!ϕ(hn) is the weighted sum
over all possible combinatorial objects.

Define an involution in by first scanning the bricks from right to left looking for
the first instance of one of these four situations:

1. Exactly j consecutive bricks of length 1 that form a τ-match.
2. A brick of length j with a weight of −1.
3. A brick containing an element in S( j,�1,...,�m) for some ( j, �1, . . . , �m) ∈ Jτ to the

left of �m+1 bricks of length 1 such that combining the bricks would create an
element in S( j,�1,...,�m+1) for ( j, �1, . . . , �m+1) ∈ Jτ .

4. A brick of length longer than j (which must have a final cell containing a −1).

If situation 1 is found first, combine the j consecutive bricks into one brick of
length j and place a −1 in the terminal cell. For example, the combinatorial object
shown earlier in this proof should be changed to

3 11 7 1 6 4 10 8 2 5 12 9

x −1 −1

.

This changes every situation 1 into a situation 2, and so if a situation 2 is found first
we define our involution to undo this operation.

If a situation 3 is found, combine the brick containing the element of S( j,�1,...,�m)

with the �m+1 bricks to its right and place a −1 in the terminal cell. For example,
this would change

7 3 11 4 10 8 6 1 5 12 9 2

x x

into the combinatorial object

7 3 11 4 10 8 6 1 5 12 9 2

x −1 x

in the case of τ = 132. This changes every situation 3 into a situation 4, and so if a
situation 4 is found first we define our involution to undo this operation. This means
we will break of the �m cells in a brick of length longer than j.
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The fixed points under this involution cannot have any of the four situations listed
above. This means that no j consecutive bricks of length 1 can form a τ-match, every
brick of length j must have a weight of x, no brick can be lengthened using bricks
of length 1 to its right, and bricks must have length 1 or j.

One possible fixed point when τ = 132 is

5 1 8 6 12 7 2 3 11 4 10 9

x x

Reading right to left, we greedily assign one power of x for each nonoverlapping
τ-match in a fixed point. This means n!ϕ(hn) = ∑σ∈Sn xnlap(σ). Applying ϕ to The-
orem 2.5, we have

∞

∑
n=0

zn

n! ∑
σ∈Sn

xτ-nlap(σ) =
1

1− z+∑∞
n=2 ϕ(en)(−z)n

=
1

1− z− (1− x)∑∞
n=2

zn

n! ∑ ( j,�1,...,�m)∈Jτ
j+�1+···+�m=n

(−1)m+1|S( j,�1,...,�m)|
.

(7.1)

Taking x = 0 in this equation gives the generating function A(z) for those permu-
tations in Sn without any τ-matches. When x = 0 we find

A(z) =
1

1− z−∑∞
n=2

zn

n! ∑ ( j,�1,...,�m)∈Jτ
j+�1+···+�m=n

(−1)m+1|S( j,�1,...,�m)|
, (7.2)

which may be used to simplify (7.1), thereby giving the expression in the statement
of the theorem. ��

As a first example of generating functions given by Theorem 7.1, consider the
generating function for the number of nonoverlapping descents, that is, the num-
ber of nonoverlapping 21-matches. There is only one permutation in Sn without a
21-match, so A(z) = ∑∞

n=0 zn/n! = ez. Therefore we have

∞

∑
n=0

zn

n! ∑
σ∈Sn

x21-nlap(σ) =
ez

(1− x)+ x(1− z)ez .

Generalizing this, if τ = j · · · 2 1, then a permutation without a τ-match is
a permutation without a ( j − 1)-descent. Therefore the function A(z) giving the
number of permutations without a τ-match is given in Theorem 3.4. Using this in
Theorem 7.1, we find that for j ≥ 1,

∞

∑
n=0

zn

n! ∑
σ∈Sn

x j · · ·21-nlap(σ) =
j

jx(1− z)+(1− x)
(
(1−ζ j−1)eζ z + · · ·+(1−ζ )eζ j−1z

) ,
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where ζ = e2πi/ j is a primitive jth root of unity.
Another route to finding A(z) is through (7.2). Consider the case of τ = 132. The

only way to have overlapping τ-matches is if exactly one integer overlaps, so the
only possible lists in Jτ are of the form (3,2, . . . ,2,2).

We claim that the number of σ = σ1 · · ·σ2n+3 ∈ S(3,2,...,2,2) is (2n + 1)(2n −
1) · · ·3 ·1. Clearly this is the case when n = 0—there is only one permutation in S(3).
For larger n there must be a τ-match starting in position 2i+1 for all i = 0, . . . ,n, so
the integer σ2i+1 must be smaller than both σ2i+2 and σ2i+3 for i= 0, . . . ,n. It follows
that σ1 = 1, σ3 = 2, and σ2 can be any one of the 2n+1 elements in {3, . . . ,2n+3}.
We have proved the claim by induction since the reduced permutation σ3 · · ·σ2n+3

can be any one of the (2n−1) · · ·3 ·1 elements in S(3,2,...,2).
Therefore when τ = 132, equation (7.2) tells us that

A(z) =
1

1− z−∑∞
n=0(−1)n+1(2n+1) · · ·3 ·1 z2n+3

(2n+3)!

=
1

1− z−∑∞
n=0

(− 1
2

)n+1 z2n+3

(2n+3)(n+1)!

=

(
1−

∫
e−z2/2 dz

)−1

. (7.3)

Using this A(z) in Theorem 7.1 gives

∞

∑
n=0

zn

n! ∑
σ∈Sn

x132-nlap(σ) =

(
1− xz+(x−1)

∫
e−z2/2 dz

)−1

.

In section 3.2 we adapted homomorphisms of the form ϕ(en) = (−1)n−1 f (n)/n!
to include a power of q to register inversions, to count common descents in two
or more permutations, and to find analogous results about words. The proof of
Theorem 7.1 relies on a generating function of this form and so Theorem 7.1 can be
generalized in these ways as well. We record these results in our Theorems 7.2, 7.3,
and 7.4.

Additionally, we can generalize Theorem 7.1 by allowing more than just one
permutation τ to register a pattern match in a permutation. Let T be a set of permu-
tations τ ∈ S j and define a permutation σ = σ1 · · ·σn ∈ Sn to have a T-match ending
at place m if red(σm− j+1 · · ·σm) ∈ T.

For example, if T = {213,312}, then the permutation

has four T-matches, ending at places 3,5,7, and 11. This choice of T counts the
number of valleys.
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Theorem 7.2. For any subset T of S j,

∞

∑
n=0

zn

n! ∑
σ∈Sn

xT-nlap(σ)qinv(σ) =
Aq(z)

(1− x)+ x(1− z)Aq(z)

where T-nlap(σ) is the maximum number of nonoverlapping T-matches in σ ∈ Sn

and Aq(z) = ∑∞
n=0

zn

n! ∑σ ∈ Sn does not have a T-match qinv(σ).

Proof. The proof updates the proof of Theorem 7.1 for T-matches while including
the ideas in the proof of 3.7 to keep track of inversions.

Extending the definitions of Jτ and S( j,�1,...,�m), we let S( j,�1,...,�m) the set of per-
mutations of length j+ �1 + · · ·+ �m which have (m+ 1) T-matches which end at
places j, j + �1, and so on. We let JT the set of lists ( j, �1, . . . , �m) defined in the
same way as Jτ .

The appropriate homomorphism for this situation is ϕ(en) = (−1)n−1 f (n)/[n]q!
where f (1) = 1 and

f (n) = (1− x) ∑
( j,�1,...,�m)∈JT
j+�1+···+�m=n

(−1)m+1 ∑
σ∈S( j,�1,...,�m)

qinv(σ)

for n ≥ 2. Then we have [n]q!ϕ(hn) = ∑
λ�n

[
n
λ

]

q
|Bλ ,(n)| f (λ1) f (λ2) · · ·.

From this expression we build the same combinatorial objects as found in the
proof of Theorem 7.1 with two differences: we consider T-matches instead of
τ-matches, and we have a power of q in each cell counting the integers to the right
which are smaller. One object when T = {213,312} is

3 11 7 4 1 10 6 8 2 5 12 9

q2 q9 q5 q2 q0 q5 q2 q2 q0 q0 q1 q1

x −1

.

The involution in the proof of Theorem 7.1, provided we scan from right to left
looking for T-matches instead of τ-matches, does not rearrange the integers in the
permutation. The powers of q and the number of inversions are unchanged by this
operation, and so fixed points correspond to ∑σ∈Sn xT-nlap(σ)qinv(σ). The generating
function in the statement of the theorem now follows from applying ϕ to Theo-
rem 2.5 and simplifying in the same manner as in the proof of Theorem 7.1. ��

As an example of Theorem 7.2, suppose we would like the generating function
for the number of nonoverlapping valleys in Sn. A permutation has no valleys—that
is, a permutation has no T-matches when T = {213,312}—if the permutation is of
the form

σ1 < σ2 < · · ·< σm = n > σm+1 > · · ·> σn

for some integer m. There are
(n−1

m−1

)
choices for such a permutation, so summing

over all m gives that the number of permutations without a valley is ∑n
m=1

(n−1
m−1

)
=

2n−1.
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The generating function for the number of permutations without any valleys
is A(z) = 1+∑∞

n=1 2n−1zn/n! = (e2z + 1)/2. Taking q = 1 and using this A(z) in
Theorem 7.2 we find

∞

∑
n=0

zn

n! ∑
σ∈Sn

x# nonoverlapping valleys in σ =
e2z +1

2(1− x)+ x(1− z)(e2z +1)
. (7.4)

A common T-match in two permutations σ ,ρ ∈ Sn is an index i such that both σ
and ρ have a T-match ending at place i. If we let com-T-nlap(σ ,ρ) the number of
nonoverlapping common T-matches, then combining the methods in the proofs of
Theorem 7.2 and 3.8 in a straightforward way gives us Theorem 7.3:

Theorem 7.3. For any subset T of S j,

∞

∑
n=0

zn

(n!)2 ∑
σ ,ρ∈Sn

xcom-T-nlap(σ ,ρ) =
A(z)

(1− x)+ x(1− z)A(z)
,

where A(z) = ∑∞
n=0 |{σ ,ρ have no common T matches}|zn/(n!)2.

The generalization of Theorem 7.1 for words takes a bit more care since the idea
of a pattern match is slightly different from that for permutations. If V is a subset
of {0, . . . ,k− 1}∗j , then we say that w = w1 · · ·wn ∈ {0, . . . ,k− 1}∗n has a V-match
ending at place i if wi− j+1 · · ·wi ∈ V.

Unlike permutations, we do not consider reducing the word before determining
if it is an element of V. Also unlike permutations, it may be impossible for two
words to have an overlapping V-match. For example, if V = {10,20}, then no two
words in {0,1,2}∗n can have an overlapping V-match. These type of matches are
sometimes called exact V-matches to distinguish them from the case where we allow
reductions.

Theorem 7.4. For any subset V of {0, . . . ,k−1}∗j ,
∞

∑
n=0

zn

n! ∑
w∈{0,...,k−1}∗n

xV-nlap(w) =
A(z)

(1− x)+ x(1− kz)A(z)
,

where V-nlap(w) is the number of nonoverlapping V-matches and

A(z) =
∞

∑
n=0

|{w ∈ {0, . . . ,k−1}∗n does not have a V-match}|zn.

Proof. Modifying the proof of Theorem 7.1 for words, we let W( j,�1,...,�m) the set of
words in {0, . . . ,k− 1}∗j+�1+···+�m

which has exactly (m+ 1) V-matches which end
at places j, j+ �1, j+ �1 + �2, and so on.

Let JV be the set of all lists of the form ( j, �1, . . . , �m) such that

1. the set W( j,�1,...,�m) is nonempty,
2. the integers �1, . . . , �m are all less than j, and
3. the inequality j ≤ �i + �i+1 holds for all consecutive integers �i, �i+1 in the list.
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The second and third conditions here are the same as in the proof of Theorem 7.1, so
the V-matches must overlap. This means that if the set V does not allow overlapping
V-matches, then JV will contain only the list ( j).

The appropriate ring homomorphism is defined by ϕ(en) = (−1)n−1 f (n) where
f (1) = k and

f (n) = (1− x) ∑
( j,�1,...,�m)∈JV
j+�1+···+�m=n

(−1)m+1|W( j,�1,...,�m)|.

Applying ϕ to hn gives ∑λ�n |Bλ ,(n)| f (λ1) f (λ2) · · · , from which we create objects
like these (we have taken V= {010, 020} in this example):

0 2 2 0 2 0 1 0 1 0 2 1

x −1 −1 x

Specifically, in the same manner as before, we place a choice of {0, . . . ,k− 1} in
each brick of length 1 and fill longer bricks with a choice from W( j,�1,...,�m). On these
longer brick we place a −1 over each place which ends a V-match and either keep
the first −1 in place or change it to an x.

Define the same sort of involution as in the proof of Theorem 7.1, scanning from
right to left looking for either j bricks of length 1 to combine into one brick of
length j, a brick of length j to break into j bricks of length 1, a brick of length
at least j which can be combined with bricks of length 1 to its right, or a brick of
length longer than length j which can have the trailing �m bricks broken off into �m

bricks of length 1.
The weighted sum over all fixed points is ∑w∈{0,...,k−1}∗n xV-nlap(w). Applying ϕ to

Theorem 2.5 gives

∞

∑
n=0

zn

n! ∑
w∈{0,...,k−1}∗n

xV-nlap(w)

=
1

1−mz+(1− x)∑∞
n=2 zn ∑( j,�1,...,�m)∈JV

j+�1+···+�m=n
(−1)m+1|W( j,�1,...,�m)|

. (7.5)

Taking x = 0 gives

A(z) =
1

1−mz+∑∞
n=2 zn ∑( j,�1,...,�m)∈JV

j+�1+···+�m=n
(−1)m+1|W( j,�1,...,�m)|

, (7.6)

giving an alternative way to find A(z) which can sometimes be useful in computa-
tions. Using this expression for A(z) in (7.5) gives the generating function in the
statement of the theorem. ��

For an example of Theorem 7.4, consider counting the number of nonoverlapping
V= {0100} matches in words w∈{0,1}∗n. Every list in JV is of the form (4,3, . . . ,3)
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and there is only one element in W(4,3,...,3), the word 0100100100 · · ·100. Using (7.6)

we find that A(z) =
(
1−2z+∑∞

n=0(−1)3k+4z3k+4
)−1

= (1− 2z+ z4/(1+ z3))−1.
Putting this into Theorem 7.4 gives

∞

∑
n=0

zn ∑
w∈{0,1}∗n

x# nonoverlapping 0100 matches in w =
1+ z3

1−2z+ z3 − (1+ x)z4 .

7.2 Clusters

A τ-cluster of length n is a permutation σ ∈ Sn with some of the (possibly overlap-
ping) consecutive τ-matches marked in such a way that every element of σ is con-
tained in at least one marked τ-match and any two consecutive marked τ-matches
share at least one element in common. A given permutation σ ∈ Sn may give rise to
several τ-clusters.

For example, if τ = 142536 and we indicate a marked τ-match of σ by placing
an x on the element of σ that starts the marked τ-match, then

x
1 6 2 7

x
3 8 4 9 5 10

and
x
1 6

x
2 7

x
3 8 4 9 5 10

are two different τ-clusters, both arising from the same underlying permutation.
Let Cn,τ denote the set of all τ-clusters of length n. For any τ-cluster σ ∈ Cn,τ ,

let mkτ(σ) denote the number of marked τ-matches in σ . The cluster polynomial
Cn,τ(x,q) is defined by

Cn,τ(x,q) = ∑
σ∈Cn,τ

xmkτ (σ)qinvσ .

Note that if τ ∈ S j, then Cn,τ(x,q) = 0 for 1 ≤ n < j.
Theorem 7.5 is known as the cluster method of Goulden and Jackson [52, 53],

adapted for permutations as described by Elizalde and Noy [36]. This section is
devoted to showing how the cluster method can be proved by applying ring homo-
morphisms to symmetric function identities.

Theorem 7.5. Let τ ∈ S j. Then

∞

∑
n=0

zn

[n]q! ∑
σ∈Sn

xτ-match(σ)qinv(σ) =
1

1− (z+∑n≥ j Cn,τ(x−1,q)zn/[n]q!
) , (7.7)

where τ-match(σ) denotes the number of consecutive (possibly overlapping)
τ-matches in σ .
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Proof. Define ϑ by ϑ(e0) = ϑ(e1) = 1, ϑ(en) = 0 for 2 ≤ n ≤ j−1, and

ϑ(en) =
(−1)n−1

[n]q!
Cn,τ(x−1,q)

for n ≥ j. Applying ϑ to [n]q!hn and expanding in terms brick tabloids in the usual
way, we find

[n]q!ϑ(hn) = ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

[
n

b1, . . . ,b�

]

q
Cb1,τ(x−1,q)Cb2,τ(x−1,q) · · · .

The right-hand side of this equation can be interpreted combinatorially. Begin by
selecting a brick tabloid T . Since Cbi,τ(x− 1,q) 	= 0 if and only if either n = 1 or
there is a τ-cluster of size n if n > 1, assume that each bi is either of size 1 or the
size of some τ-cluster.

Interpret the q-binomial coefficient
[ n

b1,...,b�

]
q

as picking sets S1, . . .Sk where

|Si| = bi for i = 1, . . . ,k, placing the elements of Si in the cells of brick bi in in-
creasing order, and weighting the resulting filled brick tabloid by qinv(σ) where σ is
the permutation that results by reading the cells of the filled brick tabloid from left
to right.

Finally, use the Cb1,τ(x− 1,q)Cb2,τ(x− 1,q) · · · term to either take α(i) = 1 if
bi = 1 or to select a τ-cluster α(i) of size bi otherwise. With these choices, replace
the elements in brick bi by a permutation of Si that reduces to α(i). This will add

an extra inv(α(i)) inversions, accounting for the factor qinv(α(i)) associated to α(i) in
Cbi,τ(x−1,q).

Label each cell of bi that corresponds to a marked τ-match in α(i) with a choice
of either x or −1. The product of the labels of the cells of bi accounts for the factor

(x−1)mkτ (α(i)) associated with α(i) in Cbi,τ(x−1,q).
An example of such an object created in this way when τ = 142536 is below:

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 x −1 x

Let T denote the set of combinatorial objects created in this way. Let the sign
of T ∈ T, denoted sign(T ), be the product of the (−1)s appearing in T and let
the weight of T , denoted w(T ), be the product of all xs appearing in T along with a
power of q registering the number of inversions found in the underlying permutation
in T .

It follows from our construction that

[n]q!ϕ(hn) = ∑
T∈T

sign(T )w(T ).

Therefore, in order to complete the proof, we need to show
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∑
T∈T

sign(T )w(T ) = ∑
σ∈Sn

xτ-match(σ)qinv(σ). (7.8)

If this identity can be verified, then the proof of the theorem is complete since the
generating function in the statement of the theorem can then be found by applying
the ring homomorphism ϑ to both sides of Theorem 2.5 in the usual way.

We will give two proofs of (7.8). The first and simplest proof is to replace x by
(x+1) in (7.8), turning the right-hand side of (7.8) into ∑σ∈Sn(x+1)τ-match(σ)qinv(σ).

Let MSn,τ denote set of permutations in Sn where we have marked some of the
τ-matches by placing an x at the start of each marked τ-match. We let mkτ(σ)
denote the number of marked τ-matches in σ (these definitions extend our previous
definition of mkτ(σ) to include any permutation σ , not just clusters). It follows that

∑
σ∈Sn

(x+1)τ-match(σ)qinv(σ) = ∑
β∈MSn,τ

xmkτ (σ)qinv(σ). (7.9)

The effect of replacing x by (1+ x) on the left-hand side of (7.8) is the signed
sum of the weights of T ∈ T where the choice of x or −1 labels has been replaced
with only the choice of x.

There is a natural one-to-one correspondence between such T ∈ T and elements
of MSn,τ : simply send T to the element of MSn,τ found by removing the brick struc-
ture. We only need to show that we can recover the brick structure on T from the
labels.

Given a consecutive subsequence of a permutation β , say βi+1, . . . ,βi+k, let
red(βiβi+1 . . .βi+k) denote the element of MS j,τ that results by replacing the un-
derlying permutation with its reduction and marking all corresponding τ-matches
that are contained in βi+1 . . .βi+k. For example, if τ = 123, then

red(
x
1

x
2 3 5

x
4 7 9) =

x
1

x
2 3 5

x
4 6 7.

We say that a consecutive sequence βiβi+1 . . .βi+k of β is a τ-subcluster if
red(βiβi+1 . . .βi+k) is a τ-cluster. We say that it is a maximal τ-subcluster if it is
a τ-subcluster of β and it is not contained in a strictly larger τ-subcluster of β . For

example, the maximal 123-subclusters of β given above are
x
1

x
2 3 5 and

x
4 7 9. If we

start with T ∈ T, the bricks that are not of size 1 cover the maximal τ-subclusters of
β , meaning that we can recover T from β . This proves (7.9) and therefore completes
our first proof of the theorem.

Our second proof also shows that (7.9) follows from (7.8). Given that most of the
generating functions in this book come from proofs using involutions, it is natural
to ask if this passage from (7.8) to (7.9) can as well be realized by a series of invo-
lutions. Our second proof will show that this is indeed the case. Unfortunately, this
second proof is more involved than the first.

Given a permutation β = β1 . . .βn ∈ Sn, let β denote the element of MSn,τ where
the first element of every τ-match in β is marked. We shall call β the fully τ-marked
version of β .
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Let En,τ ,β denote the set of T ∈ T with underlying permutation β . If βi is not an

element of maximal τ-subcluster in β , then βi must be covered by a brick of size 1.
Thus if β has no τ-matches, then there is only one element in En,τ ,β , namely, the
one consisting entirely of bricks of size 1.

Fix β such that β has at least one τ-match. If T ∈ En,τ ,β , we say that a maximal

τ-subcluster βi+1 . . .βi+k in β is fully τ-marked if the elements of βi+1 . . .βi+k are
covered by a single brick of size k in T and the start of any τ-match contained in
βi+1 . . .βi+k is marked with an x.

As described above, there is only one element of T ∗ ∈ En,τ ,β in which every

maximal τ-subcluster βi+1 . . .βi+k in β is fully τ-marked. That is, T ∗ has the brick
structure associated with β and the start of any τ-match in β is marked with an x. In
such a case, the weight of T ∗ is xτ-match(β )qinv(β ).

Our goal in this second proof of (7.9) is to define a series of involutions which
will cancel out all the elements of En,τ ,β which are not equal to T ∗. That is, suppose
that we are given a T ∈ En,τ ,β \{T ∗} and βi+1βi+2 . . .βi+k is the left-most maximal

τ-subcluster of β which is not fully τ-marked in T . Thus the brick structure on the
elements β1, . . . ,βi is completely determined.

Our first involution I1 looks at the element βi+1. Since βi+1 is the start of maximal
τ-subcluster of β , βi+1βi+2 . . .βi+ j is a τ-match. If in T , if βi+1 is covered with a
brick of size greater than 1, and if the label on cell i+1 is x, then T is a fixed point
of I1. Otherwise, we have two cases to consider.

Case A1. The number βi+1 is covered with a brick of size 1 in T . In this case, if
each of βi+1βi+2 . . .βi+ j is covered with bricks of size 1 in T , then let I1(T ) = T ′
where T ′ results from replacing the j bricks of size 1 on βi+1βi+2 . . .βi+ j by a
single brick of size j and the label on cell i+1 is changed to −1.

If βi+1βi+2 . . .βi+ j are not all covered with bricks of size 1 in T , there is
an s > 1 such that βi+1, . . . ,βi+s−1 are covered by bricks of size 1 and βi+s is
covered by some brick b of size u where u ≥ j. In this case, I1(T ) = T ′ where
T ′ is found by replacing the s−1 bricks of size 1 on βi+1βi+2 . . .βi+s−1 plus the
brick b by a single brick b∗ of size s−1+u and replacing the label on cell i+1
by −1.

Case A2. The number βi+1 is covered with a brick b size u where u > 1 in T and
L(i+1) = −1. In this case if u = j, meaning that βi+1βi+2 . . .βi+ j are covered
by a single brick b of size j, then let I1(T ) = T ′ where T ′ is found by replacing
brick b by j bricks of size 1 and replacing the label −1 of cell i+1 by 1.

If u > j, then by our conditions, one of the cells i+ 2, . . . , i+ j must be
labeled with either −1 or x since consecutive τ-matches in b which are labeled
with either −1 or x must have at least one element in common. In this case, let
s be the least number greater than 1 such that cell i+ s is labeled with either −1
or x. Let I1(T ) = T ′ where T ′ is found by replacing b by s−1 bricks of size 1
followed by a single brick of size u− s+ 1 and replacing the label −1 on cell
i+1 by 1.
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By construction, I1 is a sign reversing and weight preserving involution. Thus I1

shows that for fixed β with τ-match(β )≥ 1,

∑
T∈En,τ ,β

w(T ) = ∑
T∈En,τ ,β ,I1(T )=T

w(T ).

Let E1n,τ ,β denote set of all fixed points of I1, that is, E1n,τ ,β consists of all those

T ∈ En,τ ,β \{T ∗} such that the left most τ-subcluster βi+1 . . .βi+k of β which is not
fully τ-marked is such that βi+1 is covered with a brick of size greater than 1 and
cell i+1 is labeled with an x.

Our second involution considers the element βi+k. Since βi+1 . . .βi+k is a maxi-
mal τ-subcluster of β , we know that βi+k− j+1βi+k− j+2 . . .βi+k is a τ-match. If the
elements of βi+k− j+1βi+k− j+2 . . .βi+k are covered by a single brick and the label on
cell i+ k− j+1 is x, then T is a fixed point of I2. Otherwise, we have two cases to
consider.

Case B1. The number βi+k is covered with a brick of size 1 in T . In this case,
if each of βi+k− j+1βi+k− j+2 . . .βi+k is covered by a brick of size 1 in T , then
we let I2(T ) = T ′ where T ′ is found by replacing the j bricks of size 1 on
βi+k− j+1βi++k− j+2 . . .βi+k by a single brick of size j and replacing the label on
cell i+ k− j+1 by −1.

If βi+k− j+1βi+k− j+2 . . .βi+k are not all covered with bricks of size 1 in T ,
there is an s > 1 such that βi+k− j+1, . . . ,βi+k− j+s are contained in a single brick
of size u > 1 and βi+k− j+s+1, . . . ,βi+k are covered by bricks of size 1 in T . In
this case, let I2(B,β ,L) = T ′ where T ′ is found by replacing the brick b and the
following bricks of size 1 by a single brick b∗ and replacing the label on cell
i+ k− j+1 by −1.

Case B2. The number βi+k is covered with a brick b of size u where u > 1 in T and
L(i+ k− j + 1) = −1. In this case, if u = j so that βi+k− j+1βi+k− j+2 . . .βi+k

are covered by a single brick b of size j, then let I2(T ) = T ′ where T ′ is found
by replacing brick b by j bricks of size 1 and replacing the label −1 of cell
i+ k− j+1 by 1.

If u > j, then by our conditions, the second to last τ-match in b which is
labeled with x or −1 must end in some cell i+ s where i+k− j+1 ≤ s < i+k.
Then let I2(T ) = T ′ where T ′ is found by replacing b by a brick that starts at
the first cell of b and ends at cell i+ s followed by bricks of size 1 and replacing
the label −1 on cell i+ k− j+1 by 1.

By construction, I2 is a sign reversing weight preserving involution. Thus I2

shows that for fixed β with at least one τ-match,

∑
T∈E1n,τ ,β

w(T ) = ∑
T∈E1n,τ ,β ,I2(T )=T

w(T ).

Let E2n,τ ,β denote set of all fixed points of I2. That is, E2n,τ ,β consists of all T ∈
En,τ ,β \ {T ∗} such that in the left-most τ-subcluster βi+1 . . .βi+k of β which is not
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fully τ-marked in T , βi+1 is covered with a brick of size greater than 1 and cell i+1
is labeled with an x, the elements βi+k− j+1 . . .βi+k are contained in a single brick,
and the label on cell i+ k− j+1 is x.

Given T ∈ E2n,τ ,β , we say that maximal τ-subcluster βi+1 . . .βi+k of β is
x-connected in T if when we remove the −1 labels, red(βi+1 . . .βi+1) reduces to
a τ-cluster. Thus βi+1 . . .βi+k is x-connected in T if every element in βi+1 . . .βi+k

is an element of τ-match whose first element is labeled with x in L and any two
consecutive τ-matches whose first elements are labeled with x in L have at least one
element in common.

If the left-most maximal τ-subcluster of β which is not fully τ-marked in T is
x-connected in T , then T will be a fixed point of our third involution I3. Otherwise,
suppose that we are given T ∈ E2n,τ ,β and βi+1 . . .βi+k is the left-most maximal

τ-subcluster of β which is not x-connected in T . Then we let
β̂i+s = βi+sβi+s+1 . . .βi+s+ j−1 and β̂i+t = βi+tβi+t+1 . . .βi+t+ j−1 be the left-most

pair of consecutive τ-matches in βi+1 . . .βi+k whose first cells are marked with an
x and which have no elements in common. Since we are assuming that the first and
last τ-matches in βi+1 . . .βi+k are marked with an x in T , such a pair must exist.

In such a case, we must have i+s+ j−1 < i+ t. Let u0 = i+s < u1 < u2 < · · ·<
um < i+ t be the start of all the τ-matches in βi+1 . . .βi+k whose first elements lie
between i+ s and i+ t. Let β̂us denote the τ-match which starts at us for 1 ≤ s ≤ m.
Since βi+1 . . .βi+k is a maximal τ-subcluster of β , we know that β̂um must have at
least one element in common with β̂i+t .

However there may be more than one of the β̂us which have at least one element
in common with β̂i+t . Hence we let � the smallest s such that β̂us has at least one
element in common with β̂i+t . We then have five cases to consider depending on the
configuration for the τ-match β̂um = βumβum+1 . . .βum+ j−1.

Case C1. The number βum is covered by a brick of size 1. In this case, because
βi+1 . . .βi+k is a maximal τ-subcluster of β , we know that β̂um and β̂i+t must
have at least one element in common. It follows that all the cells that lie between
um and i+ t must be covered by bricks of size 1 and that βi+t must start with a
brick b of size greater than 1. In this case, we let I3(T ) = T ′ where T ′ is found
by replacing the bricks of size 1 on βumβum+1 . . .βi+t−1 plus the brick b by a
single brick b∗ and changing the label on cell um from 1 to −1.

Case C2. The number βum starts a brick b of size greater than 1 and is labeled
with −1. In this case, we let I3(T ) = T ′ where T ′ is found by replacing brick b
by bricks of size 1 on the elements βumβum+1 . . .βi+t−1 followed by a brick b∗
which covers the remaining cells of b and changing the label on cell um from
−1 to 1.

As an example, when τ = 1324, the function I3 sends this combinatorial object:

16 15 1 3 2

-1

5 4 8 7 10 9 13 12 14 6 11

x x
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to the combinatorial object pictured here:

If T is in case C1, then I3(T ) will be in case C2. Similarly, if T is in case C2, then
I3(T ) will be in case C1. When restricted to these two cases, I3 is an involution.

Case C3. The number βum is contained in a brick b of size greater than 1 which ends
before cell i+ t. In this case, a brick b′ must start at cell i+ t. It is possible that
there may be some bricks of size 1 in between b and b′. Moreover, if u� < um,
then all the cells from u� up to um must be labeled with 1 since there can be no
τ-match starting as such cells which are contained in b as all such τ-matches
have an element in common with β̂i+t .

Let I3(T ) = T ′ where T ′ is found by replacing b, b′, and any brick of size 1
between b and b′ by a single brick b∗ and changing the label on cell um from 1
to −1. Note that if u� < um, then all the cells from u� up to um must be labeled
with 1 in T ′.

Case C4. The number βum is contained in a brick b which also contains βi+t and
is labeled with −1 in T and if u� < um, then u� is also in brick b and all the
cells between u� − 1 and um are labeled with 1 in T . Consider the right-most
cell before um in b which has a label of either −1 or x. This cell must be of the
form ur where 0 ≤ r < � and β̂ur and β̂um have at least one element in common.

Let I3(T ) = T ′ where T ′ is found by replacing the brick b with a brick b∗

which starts at the first cell of b and ends at the end of the τ-match β̂ur , a brick
b∗∗ which starts at cell i+ t and contains all the cells to the left of i+ t in b, plus
a sequence of bricks of size 1 between b∗ and b∗∗ and changing the label on cell
um from −1 to 1. Note that if u� < um, then all the cells from u� up to um must
be labeled with 1 in T ′.

As an example, when τ = 142536, the function I3 sends this combinatorial object:

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 x

to the combinatorial object pictured here:

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 −1 x

If T is in case C3, then I3(T ) will be in case C4. Similarly, if T is in case C4, then
I3(T ) will be in case C3. When restricted to these two cases, I3 is an involution.

Case C5. Suppose we are not in cases C1–C4. In this case, it must that um is in the
same brick as i+ t, u� < um, and one of u�,u�+1, . . . ,um−1 must be labeled with
−1 in T . It follows that if the label on um can be either 1 or −1 because even

16 15 1 3 2

-1

5 4 8 7 10 9 13 12 14 6 11

x x
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if the label on um is 1, the labels on u�,u�+1, . . . ,um−1 ensure that T meets the
conditions to be in E2n,τ ,β .

Let I3(T ) = T ′ where all we do to find T ′ is change the label on cell um from
1 to −1 or from −1 to 1.

As an example, when τ = 142536, the function I3 sends this combinatorial object

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 x

to the combinatorial object pictured here:

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 −1 x

The map I3 is a sign reversing weight preserving involution when restricted to
case C5.

This completes the description of the involution I3. At this point we can now
consider those combinatorial objects fixed by I3. Let E3n,τ ,β denote set of all fixed
points of I3, That is, E3n,τ ,β consists of all those T ∈ En,τ ,β −{T ∗} such that in the

left-most τ-subcluster βi+1 . . .βi+k of β which is not fully τ-marked, the start of
the first τ-match is labeled with x, the start of the final τ-match is labeled with x,
and βi+1 . . .βi+k is x-connected which means that the elements βi+1 . . .βi+k must be
covered by a single brick b of size k.

This brings us to our final involution I4. Let β̂i+p = βi+pβi+p+1 . . .βi+p+ j−1 be
the left-most τ-match in βi+1 . . .βi+k which is not marked with an x. In this case,
let I4(T ) = T ′ where the only change made to T is that we change the label on cell
i+ p from 1 to −1 if the label on cell i+ p was 1 or we change the label on cell i+ p
from −1 to 1 if the label on cell i+ p was −1.

As an example, when τ = 142536, the function I3 sends this combinatorial object

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x −1 x −1 x

to the combinatorial object pictured here:

16 6 1 9 2 10 3 11 4 13 5 14 7 15 8 17 12

x x −1 x

The map I4 is a sign reversing and weight preserving involution.
There are no fixed points under all of the successive involutions I1, I2, I3, and I4,

showing that the signed, weighted sum over all elements in En,τ ,β \{T ∗} is 0. This is
exactly what is needed to finish our second proof that (7.9) follows from (7.8). ��
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7.3 The Minimal Overlapping Property

The basis pν ,n can be used to find a generating function for (possibly overlapping)
T-matches in permutations for sets T with the “minimal overlapping property.”

We say that a subset T of S j has the minimal overlapping property if the smallest
integer n such that a permutation in Sn with two T-matches exists is n = 2 j−1. Put
another way, every pair of overlapping T-matches must share exactly one integer.
For example, T = {213,312} has the minimal overlapping property since no per-
mutation in S4 has two T-matches (the permutation 21534 ∈ S5 has two T-matches).

Theorem 7.6. If T is a subset of S j+1 with the minimal overlapping property, then

∞

∑
n=1

zn

n! ∑
σ∈Sn

x# of T-matches in σ =
j−1

∑
m=0

(1− x)m/ jAm
(
(1− x)1/ jz

)

1− x− xA0
(
(1− x)1/ jz

)

where A(z) = ∑∞
n=1 anzn for an = |{σ ∈ Sn does not have a T-match }|/n! and

Am(z) =
∞

∑
n=1

an j−mzn j−m

for m = 0, . . . , j−1.

Proof. Let ϕ be the ring homomorphism defined by ϕ(en) = (−1)n−1x(1−x)n−1an j

and let ν be the function defined by v(n) = an j−m/(xan j). Then (n j−m)!ϕ(pν ,n) is
equal to

(n j−m)! ∑
λ�n

w(Bλ ,(n))x
λ1(1− x)λ1−1aλ1 jx

λ2(1− x)λ2−1aλ2 j · · · ,

which in turn may be written as

∑
T ∈ Bλ ,(n) for λ � n
has bricks b1, . . . ,b�

(
n j−m

jb1, . . . , jb�−m

)
x�−1(1− x)n−�( jb1)!a jb1 · · ·( jb�−m)!a jb�−m.

This expression tells us to choose a brick tabloid T ∈ Bλ�n for some λ � n with
bricks of lengths b1, . . . ,b�. Scale each brick by a factor of j. Use the multino-
mial coefficient to fill these bricks with disjoint sequences of integers with union
1, . . . ,n j−m, leaving the last m cells in the final brick empty. The terms of the form
( jbi)!a jbi permit us to rearrange the integers in each brick such that no brick con-
tains a T-match (although T-matches may straddle consecutive bricks). Finally, use
the x�−1(1−x)n−� term to place a choice of either 1 or −x in every jth cell not at the
end of a brick and place an x in the last cell of each nonterminal brick in T .
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One such object when n = 6, m = 1, and T = {213,312} (and so j = 2) is

5 1 2 3 4 11 9 8 6 10 7

x 1 −x x −x

.

Scan the bricks from left to right looking for the first −x or two consecutive
bricks which can be combined without creating a brick containing a T-match. If
a −x is found, break the brick into two bricks and reverse the sign on the −x. If
consecutive bricks can be combined, do so, changing the x in the middle to a −x.

A fixed point under this involution cannot have −xs and every x must appear
in a brick which cannot be combined with the brick to its immediate right without
introducing a brick with a T-match. For example, one such fixed point is

5 1 2 3 4 11 9 8 6 10 7

x 1 1 x 1

.

The hypothesis that T possesses the minimal overlapping property implies that there
is exactly one T-match for every x in a fixed point, since the difference between
the places of T-matches must be at least j. Therefore (n j−m)!ϕ(pν ,n) is equal to
∑σ∈Sn j−m

x# of T-matches in σ . Summing over all values of m,

∞

∑
n=1

zn

n! ∑
σ∈Sn

x# of T-matches in σ =
j−1

∑
m=0

∞

∑
n=1

zn j−m

(n j−m)! ∑
σ∈Sn j−m

x# of T-matches in σ

=
j−1

∑
m=0

1
zm ϕ

(
∞

∑
n=1

pν ,nzn j

)

.

=
j−1

∑
m=0

1
zm

∑∞
n=1(−1)n−1ν(n)ϕ(en)zn j

1+∑∞
n=1 ϕ(en)(−z j)n .

The definitions of ϕ(en) and ν(n) turn the above generating function into the state-
ment of the theorem. ��

As a double check of Theorem 7.6, consider T = {2 1} so that each T-match is
actually a descent. Here j = 1 and A(z) = ez −1 is the exponential generating func-
tion starting at n = 1 for the permutations in Sn without any descents. Theorem 7.6
gives

1+
∞

∑
n=1

zn

n! ∑
σ∈Sn

xdes(σ) = 1+
e(1−x)z −1

1− x− x
(
e(1−x)z −1

) =
x−1

x− e(x−1)z
,

which matches Corollary 3.2 as it should.
For a new example of Theorem 7.6, suppose T = {1 3 2} (so that j = 2) and let

A(z) be the generating function in (7.3), giving the number of permutations in Sn

without any 1 3 2 matches. This way, A0(z) = (A(z)+A(−z))/2− 1 and A1(z) =
(A(z)−A(−z))/2. Using Theorem 7.6 and cleaning up the result gives
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∞

∑
n=0

zn

n! ∑
σ∈Sn

x# of 132-matches in σ =

(
1−

∫
e(x−1)z2/2 dz

)−1

. (7.10)

For a third example of Theorem 7.6, let us find the generating function for the
number of valleys in permutations in Sn. Take T = {213, 312} (so that j = 2).
The exponential generating function giving the permutations with no valleys is
A(z) = ∑∞

n=1 2n−1zn/n! = (e2z − 1)/2, which was found in the discussion imme-
diately preceding (7.4). Using A0(z) = (A(z) +A(−z))2/2 = sinh2 z and A1(z) =
(A(z)−A(−z))2/2 = sinh2z/2 in Theorem 7.6 gives

∞

∑
n=0

zn

n! ∑
σ∈Sn

xval(σ) =
sinh2

(
z
√

1− x
)
+
√

1− xsinh
(
2z
√

1− x
)
/2

1− x− xsinh2 (z
√

1− x
) .

Using the identity sinh iz = isinz, this simplifies to the generating function in Corol-
lary 4.5, as it should. We have now found the generating function for the number of
valleys in a permutation in two different ways, which is good since no fact in math-
ematics should be considered true unless two different proofs are given (a joke).

Just as in the case of Theorem 7.1, Theorem 7.6 can be q-analogued to keep
track of inversions, extended to count common matches in tuples of permutations
and adapted to the case of words. These extensions are so similar to those given in
Theorems 7.2, 7.3, and 7.4 that they are left to the reader.

Let τ be a permutation which satisfies the minimal overlapping property. Theo-
rem 7.6 used permutations without any pattern matches in order to find a generating
function for the number of τ-matches in permutations. An alternative method to
finding this generating function can be found by using permutations with the max-
imum possible number of τ-matches. This is the approach we used in the proof of
Theorem 7.1 when finding a generating function for nonoverlapping τ-matches.

If τ ∈ S j has the minimal overlapping property, then the shortest permutation σ
such that σ has n τ-matches must have length n( j−1)+1. Let MPτ ,n( j−1)+1 be the
subset of Sn( j−1)+1 containing those permutations with n τ-matches. We shall refer
to the permutations in MPn,n( j−1)+1 as maximum packings for τ . Let mpτ ,n( j−1)+1 =
|MPτ ,n( j−1)+1| and

mpτ ,n( j−1)+1(q) = ∑
σ∈MPτ ,n( j−1)+1

qinv(σ).

As we see in our next theorem, a simple formula for mpτ ,n( j−1)+1(q) exists in the
special case when τ begins or ends with a 1.

Theorem 7.7. Suppose that τ = τ1 · · ·τ j ∈ S j has the minimal overlapping property
where τ1 = 1 and τ j = s. Then, for all n ≥ 1,

mpτ ,(n+1)( j−1)+1(q) = qinv(τ)
[
(n+1)( j−1)+1− s

j− s

]

q
mpτ ,n( j−1)+1(q).
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Unwinding this recursion gives

mpτ ,(n+1)( j−1)+1(q) = q(n+1)inv(τ)
n+1

∏
i=1

[
i( j−1)+1− s

j− s

]

q
.

Proof. Suppose σ = σ1 · · ·σ(n+1)( j−1)+1 is a maximum packing for τ . Since τ1 = 1,
the integer σ1 is less than σ2, . . . ,σ j, the integer σ j is less than σ j+1, . . . ,σ j+( j−1),
the integer σ2 j−1 is less than σ2 j, . . . ,σ2 j−1+( j−1), and so on.

It follows that σ1 = 1 and that σ j must be less than σ j+1, . . . ,σ(n+1)( j−1)+1. We
claim that σ j must be s. We know that σ j ≥ s since σ1 · · ·σ j being a τ-match means
that there must be s−1 elements of σ1, . . . ,σ j−1 which are less than σ j. However if
σ j > s, then 1, . . . ,σ j − 1 must be among σ1, . . . ,σ j−1, which violates the fact that
σ j is the sth smallest element among σ1, . . . ,σ j.

Therefore 1, . . . ,s must be among σ1, . . . ,σ j, meaning that the positions of
1, . . . ,s in σ1, . . . ,σ j must be the same as the positions of 1, . . . ,s in τ . There are((n+1)( j−1)+1−s

j−s

)
ways to choose the remaining j − s elements in σ1, . . . ,σ j. Once

these are chosen, then their positions are completely determined by τ . Moreover,
red(σ j · · ·σ(n+1)( j−1)+1) must be an element of MPτ ,n( j−1)+1. It follows that

mpτ ,(n+1)( j−1)+1 =

(
(n+1)( j−1)+1− s

j− s

)
mpτ ,n( j−1)+1.

As for the powers of q, we can count the inversions in σ by

1. counting the inversions in σ1 . . .σ j, which contribute a factor of qinvτ to qinvσ ,
2. counting inversions among {σ1, . . . ,σ j} \ {1, . . . ,s} and σ j+1 . . .σ(n+1)( j−1)+1,

which contribute a factor of
[(n+1)( j−1)+1−s

j−s

]
q

to mpτ ,(n+1)( j−1)+1(q) as we vary

over all choices {σ1, . . . ,σ j}\{1, . . . ,s}, and
3. counting the inversions in σ j . . .σ(n+1)( j−1)+1, contributing mpτ ,n( j−1)+1(q).

Therefore

mpτ ,(n+1)( j−1)+1(q) = qinv(τ)
[
(n+1)( j−1)+1− s

j− s

]

q
mpτ ,n( j−1)+1(q).

Iterating this recursion proves the second identity in the statement of the theorem.
��

Our interest in mpτ ,n( j−1)+1(q) comes from applications of the next theorem,
where we use these polynomials in q to find the generating function for the distri-
bution of τ-matches in permutations for various choices of τ .

Theorem 7.8. If τ ∈ S j has the minimal overlapping property, then

∞

∑
n=0

zn

[n]q! ∑
σ∈Sn

xthe number of τ-matches in σ qinv(σ)

=
1

1− (z+∑∞
n=1

zn( j−1)+1

[n( j−1)+1]q! (x−1)nmpτ ,n( j−1)+1(q))
.
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We will give two proofs of this theorem. The first proof uses the technique of
using a ring homomorphism on the ring of symmetric functions. As usual, it can be
modified to prove a number of similar results. The second proof is shorter but less
direct.

Proof (using a ring homomorphism). Define a ring homomorphism ϕ by ϕ(en) =
(−1)n−1 f (n)/[n]q! where

f (n) = (x−1)(n−1)/( j−1)mpτ ,n(q)

if n = s( j− 1)+ 1 for some s ≥ 0 and f (n) = 0 otherwise. Applying ϕ to [n]q!hn

gives

[n]q!ϕ(hn) = ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

[
n

b1, . . . ,b�(λ )

]

q

f (b1) f (b2) · · · . (7.11)

From here we create combinatorial objects by first selecting a brick tabloid
T ∈ Bλ ,(n) for some λ � n and then using the q-multinomial coefficient to assign
a disjoint subset to each brick such that the union of these subsets is {1, . . . ,n}.
With these assignments of disjoint subsets comes a power of q registering inver-
sions within disjoint subsets.

If bi = s( j−1)+1 for s ≥ 1, then let 1 ≤ ai
1 < · · ·< ai

s( j−1)+1 ≤ n be the subset
of {1, . . . ,n} assigned to the brick bi. We interpret the term

(x−1)(bi−1)/( j−1)mpτ ,bi(q) = (x−1)smpτ ,s( j−1)+1(q)

as the number of ways of filling bi with a permutation βi ∈ MPτ ,s( j−1)+1 and then
labeling each cell in bi which is the start of τ-match in βi with either x or −1. In
this case, we weight βi with qinv(βi). Finally, we replace the numbers by 1, . . . ,s( j−
1)+ 1 that occur in βi by a1, . . . ,as( j−1)+1, respectively. Doing this for each brick
will result in a filling of the cells of T with a permutation σ ∈ Sn. It follows that

inv(α)+ ∑
bi>1

inv(βi) = inv(σ)

since inv(α) accounts for the inversions that come from pairs of elements that lie
in two different bricks and ∑bi>1 inv(βi) accounts for the inversions that come from
pairs of σ that lie in the same brick.

For example, here are four different possible combinatorial objects—referred to
later in the proof as T1,T2,T3, and T4—created in this way when τ = 213 and n= 17:
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17 10 9 11 5 12 4 2 8 1 13 6 16 15 7 3 14

−1 x −1 −1 −1

17 10 9 11 5 12 4 2 8 1 13 6 16 15 7 3 14

x −1 x −1 −1 −1

17 10 9 11 5 4 8 2 12 1 13 6 16 15 7 3 14

x −1 x −1 −1 −1

17 10 9 11 5 4 8 2 12 1 13 6 16 15 7 3 14

x x −1 −1 −1 −1

There is a weight coming from −1 and x terms in each of these four examples; they
are x, x2, x2, and x2, respectively. All four of the these combinatorial objects have
72 inversions, and so there is a weight of q72 associated with all of them in addition
to the weight coming from the −1 and x terms. The signed weighted sum over all
combinatorial objects is equal to (7.11).

Define a sign reversing weight preserving involution I on the collection of such
combinatorial objects T by scanning the cells from left to right looking for the first
time we are in one of the following cases:

Case 1. There is a brick bi of size j whose first cell is labeled with −1. In this case,
let I(T ) be the object T with this brick of size j replaced with j bricks of size 1
and the −1 sign removed.

Case 2. There are j consecutive bricks of size 1 in T , namely bi,bi+1, . . . ,bi+ j−1,
such that the letters in these cells form a τ-match. In this case, I(T ) is T with
the bricks bi,bi+1, . . . ,bi+ j−1 combined into a single brick b of size j and the
first cell of b is labeled with −1.

Case 3. There is a brick bi of size (s+ 1)( j− 1)+ 1 where s ≥ 1 such that all the
labels on bi are xs except for the cell that is j cells from the right which is
labeled with −1. In this case, I(T ) is found by replacing the brick bi by a brick
of size s( j−1)+1 followed by j−1 bricks of size 1 and removing the −1 label
that was in bi.

Case 4. There are j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1 such that
bi = s( j−1)+1> 1 and bi+1, . . . ,bi+ j−1 are of size 1, all the labels on bi are xs,
and the letters in these bricks form a maximum packing for τ of size (s+1)( j−
1)+1. In this case, I(T ) is found by replacing the bricks bi,bi+1, . . . ,bi+ j−1 by
a single brick b of size (s+1)( j−1)+1 and by labeling the last cell of bi with
a −1.

Case 5. There is a brick bi of size (s+1)( j−1)+1 where s ≥ 1 such that the first
cell of bi is labeled with −1. In this case, I(T ) is found by replacing the brick bi
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by j−1 bricks of size 1 followed by a brick of size s( j−1)+1 and by removing
the −1 label that was on the first cell of bi.

Case 6. There are j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1, such that
bi, . . . ,bi+ j−2 are of size 1, bi+ j−1 = s( j − 1)+ 1 > 1, and the letters in these
bricks form a maximum packing for τ of size (s+ 1)( j− 1)+ 1. In this case,
I(T ) is found by replacing the bricks bi,bi+1, . . . ,bi+ j−1 by a single brick b of
size (s+1)( j−1)+1 and by labeling the first cell of b with a −1.

Case 7. There is a brick bi of size s( j−1)+1 where s ≥ 3 such that the first cell is
labeled with an x and there is a cell which has a label −1 which is not the jth
cell from the right. Let t be the left-most cell of bi which is labeled with −1.
In this case, I(T ) is found by replacing the brick bi with j consecutive bricks
c1,c2, . . . ,c j−1,c j where c1 contains all the cells of bi up to and including cell
t, c2, . . . ,c j−1 are bricks of size 1, and c j contains the remaining cells of bi.
Remove the −1 label from cell t.

Case 8. There are j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1, such that
bi = c(s− 1)+ 1 > 1 and has no −1 labels, bi+1, . . . ,bi+ j−2 are bricks of size
1, bi+ j−1 = d( j−1)+1 > 1, and the letters in these three bricks form a maxi-
mum packing for τ of size (c+d +1)( j−1)+1. In this case, I(T ) is found by
replacing the j bricks bi,bi+1, . . . ,bi+ j−1 by a single brick b and adding a label
−1 on the last cell of bi.

Case 9. If none of the previous 8 cases apply, set I(T ) = T .

For example, consider images of the combinatorial objects T1,T2,T3, and T4 pic-
tured earlier in this proof. Case 1 applies to T1, and so I(T1) is equal to

17 10 9 11 5 12 4 2 8 1 13 6 16 15 7 3 14

x −1 −1 −1

The object I(T1) now falls under the jurisdiction of case 2. Applying I yet again will
yield T1, showing that I is indeed an involution in this example.

Case 3 applies to T2. The involution I replaces b2 in T2 with a brick of size 3
followed by two bricks of size 1 and removing the −1 label from cell 4, as shown:

17 10 9 11 5 12 4 2 8 1 13 6 16 15 7 3 14

x x −1 −1 −1

Now I(T2) is in case 4, and it may be verified that I2(T2) = T2.
The object T3 is in case 5 where the needed bi is the third brick. Thus we obtain

I(T3) by replacing b3 by two bricks of size 1 followed by a brick of size 7 and
removing the −1 label on cell 5:

17 10 9 11 5 4 8 2 12 1 13 6 16 15 7 3 14

x x −1 −1 −1
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The result I(T3) is in case 6, and so I2(T3) = T3.
Finally, T4 is in case 7, with t = 9 so that we replace the fifth brick by three

consecutive bricks of sizes 3, 1, and 3, reading from left to right, and remove the −1
label for cell 9:

17 10 9 11 5 4 8 2 12 1 13 6 16 15 7 3 14

x x −1 −1 −1

The result I(T3) is in case 8, and it may be checked that I2(T4) = T4.
To prove that I is an involution we proceed by a case-by-case analysis. Let T

be a combinatorial object with I(T ) 	= T . In all cases, I(T ) is defined by changing
the brick structure on some cells s,s+ 1, · · · ,s+ j− 1 where σsσs+1 . . .σs+ j−1 is a
τ-match in σ .

Case 1 and Case 2. Suppose I(T ) was defined using case 1 and that the brick of
size j that was used in the definition of I(T ) is bi and bi covers cells t, t +
1, · · · , t + j− 1. Then in I(T ), we have the possibility to recombine the bricks
of size 1 that now cover cells t, t +1, · · · , t + j−1.

Thus if I2(T ) 	= T , then it must be that we took some action which involved a
τ-match σsσs+1 . . .σs+ j−1 where s < t. Now it cannot be that s+ j−1 < t since
otherwise we could have taken the same action by changing the brick structure
on cells s,s+1, . . . ,s+ j−1 in T which would violate the fact that we always
take an action on the left-most possible cells that we can when defining I(T ).

Because σ has the minimal overlapping property, the only other possibil-
ity is that t = s + j − 1. Now if s > 1, then the minimal overlapping prop-
erty for τ implies that σs−1σs . . .σs+ j−2 is not a τ-match and hence the cells
s−1,s, . . . ,s+ j−2 cannot lie in a single brick since the last j cells in any brick
b of size greater than 1 must correspond to a τ-match in σ . Thus it must be that
in T , cells s+1, · · · ,s+ j−2 must be covered by bricks of size 1. If cell s is also
covered by a brick of size 1, then we could apply case 6 to T using the j − 1
bricks of size 1 covering cells s, · · · ,s+ j − 2 plus bi which would contradict
the fact that for T , we are in case 1 using brick bi. If cell s is part of brick b of
size > 1, then we could apply case 8 to T using b plus the j−2 bricks of size 1
covering cells s+1, . . . ,s+ j−2 plus bi which again would contradict the fact
that for T , we are in case 1 using brick bi. If s= 1, then cells s, . . . ,s+ j−2 must
be covered by bricks of size 1 so that we could apply case 6 to T using the j−1
bricks of size 1 covering cells s, . . . ,s+ j−2 plus bi which would contradict the
fact that for T , we are in case 1 using brick bi.

Thus the left-most τ-match that we can use to define the image of I for I(T )
is the τ-match that lies in the j bricks of size 1 covering cells t, t+1, · · · , t+ j−1
in which case we know that I2(T ) = T . An entirely similar analysis will show
that if I(T ) is defined using case 2, then I2(T ) = T .

Case 3 and Case 4. Suppose I(T ) was defined using case 3 using a brick bi of size
a( j − 1)+ 1 where a ≥ 2 and bi covers cells t, t + 1, . . . , t + a( j − 1). Then in
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I(T ), there is a single brick b covering cells t, t+1, · · · , t+(a−1)( j−1) followed
by j−1 bricks of size 1 covering cells t +(a−1)( j−1)+1, . . . , t+a( j−1) and
all the labels on b are xs.

If I2(T ) 	= T , then it must be the case that we took some action which in-
volved a τ-match σsσs+1 . . .σs+ j−1 where s < t. But then we could have taken
some action by changing the brick structure on cells s,s+ 1, · · · ,s+ j − 1 in
T which would violate the fact that we always take an action on the left-most
possible cells that we can when defining I(T ). Thus it must be the case that the
left-most action that we can take to define I on I(T ) is to combine b with the
j−1 bricks of size 1 that follow b and hence I2(T ) = T . A similar analysis will
show that if I(T ) was defined using case 4, then I2(T ) = T .

Case 5 and Case 6. Suppose I(T ) was defined using case 5 using brick bi = a( j−
1) + 1 where a ≥ 2. The analysis in this case is essentially the same as the
analysis of Case 1. That is, suppose that bi covers cells t, t +1, · · · , t +a( j−1).
We are assuming that cell t is labeled with −1.

The first j−1 cells of bi in I(T ) will be covered with bricks of size 1 and the
remaining cells of bi with a single brick b. Thus if I2(T ) 	= T , then it must be
the case that we took some action which involved a τ-match σsσs+1 . . .σs+ j−1

where s < t. Now it cannot be that s+ j−1 < t since otherwise we could have
taken the same action by changing the brick structure on cells s,s+ 1, . . . ,s+
j − 1 in T which would violate the fact that we always take an action on the
left-most possible cells that we can when defining I(T ).

Because τ has the minimal overlapping property, the only other possibil-
ity is that t = s + j − 1. Now if s > 1, then the minimal overlapping prop-
erty for τ implies that σs−1σs . . .σs+ j−2 is not a σ -match and hence the cells
s− 1,s, · · · ,s+ j − 2 cannot lie in a single brick since the last j cells in any
brick b of size greater than 1 must correspond to a τ-match in σ . Thus it must
be that in T , cells s+1, · · · ,s+ j−2 must be covered by bricks of size 1. If cell
s is also covered by a brick of size 1, then we could apply case 6 to T using
the j − 1 bricks of size 1 covering cells s, . . . ,s+ j − 2 plus bi which would
contradict the fact that for T , we are in case 5 using brick bi.

If cell s is part of brick b of size > 1, then we could apply case 8 to T
using b plus the j−2 bricks of size 1 covering cells s+1, · · · ,s+ j−2 plus bi

which again would contradict the fact that for T , we are in case 5 using brick
bi. If s = 1, then cells s, · · · ,s+ j − 2 must be covered by bricks of size 1 so
that we could apply case 6 to T using the j− 1 bricks of size 1 covering cells
s, . . . ,s+ j−2 plus bi which would contradict the fact that for T , we are in case
5 using brick bi.

Thus the left-most τ-match that we can use to define the image of I for I(T )
is the τ-match that lies j−1 bricks of size 1 covering cells t, t +1, · · · , t + j−1
plus the brick b in which case we know that I2(T ) = T . An entirely similar
analysis will show that if I(T ) is defined using case 6, then I2(T ) = T .
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Case 7 and Case 8. Suppose I(T ) was defined using case 7 using a brick bi of size
a( j−1)+1 where a ≥ 3. Suppose that bi covers cells t, t +1, . . . , t +a( j−1).
We are assuming that cell t has label x and that the left-most cell of bi which is
labeled with −1 occurs on cell t +b( j−1) where 1 ≤ b < a−1.

Then in I(T ) there is a single brick b∗ covering cells t, t +1, . . . , t +b( j−1)
followed by j−2 bricks of size 1 covering cells t +b( j−1)+1, · · · , t +b( j−
1)+ j−2 followed by a brick b∗∗ covering the remaining cells of bi. Moreover
all the labels on b∗ are xs. In this case, if I2(T ) 	= T , then it must be the case that
we took some action which involved a τ-match σsσs+1 . . .σs+ j−1 where s < t.
But then we could have taken some action by changing the brick structure on
cells s,s+1, . . . ,s+ j−1 in T which would violate the fact that we always take
an action on the left-most possible cells that we can when defining I(T ).

Thus it must be the case that the left-most action that we can take to define
is to recombine b∗ plus the following j−2 bricks of size 1 plus b∗∗ into a single
brick so that I2(T ) = T . An entirely similar analysis will show that if I(T ) is
defined using Case 8, then I2(T ) = T .

We have now shown that I is a sign reversing weight preserving involution. It is
time to move on to describing the fixed points of the involution I.

Let T be a fixed point with bricks b1, . . . ,b�. There cannot be any −1 labels on
any of the bricks in B since otherwise we could apply cases 1, 3, 5, or 7. The x
weight of T is xc where c is the number of τ-matches in σ that lie entirely within
some brick bi in B.

We claim that any τ-match in σ must lie entirely within some brick. That is,
suppose that σ = σ1 . . .σn and σsσs+1 . . .σs+ j−1 a τ-match that does not lie in a
single brick. Because τ has the minimal overlapping property, there are only four
possibilities, namely,

a. cells s,s+1, · · · ,s+ j−1 are covered by bricks of size 1,
b. cell s is part of brick bi of size > 1 and cells s+1, . . . ,s+ j−1 are covered by

bricks of size 1,
c. cell s+ j−1 is part of brick bi of size > 1 and cells s, . . . ,s+ j−2 are covered

by bricks of size 1, and
d. cell s is part of a brick bi of size > 1, bi+1, . . . ,bi+ j−2 are bricks of size 1 cov-

ering cells s+1, · · · ,s+ j−2, and cell s+ j−1 is part of brick bi+ j−1 which is
of size > 1.

In case (a), we could apply case 2 of the definition of I to cells s,s+ 1, . . . ,s+
j−1. In case (b), we could apply case 4 of the definition of I to cells of bi plus cells
s+ 1, · · · ,s+ j− 1. In case c., we could apply case 6 of the definition of I to cells
s, . . . ,s+ j− 2 plus the cells of bi. In case d., we can apply case 8 of the definition
of I to the cells of contained in the bricks bi, · · · ,bi+ j−1.

Thus in each of the cases (a)–(d), I(T ) 	= T . This contradicts our choice of T .
Thus we have shown that if I(T ) = T , then the x weight of T is equal to xτ-mch(σ).

Finally note that if σ = σ1 · · ·σn ∈ Sn, then we can construct a fixed point of I by
placing bricks which cover the maximal length maximum packings in σ , covering
the remaining cells by bricks of size 1, and labeling the start of each τ-match in σ
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by x. It thus follows that [n]q!ϕ(hn) is equal to the sum of weights over all fixed
points, that is, we have shown that

[n]q!ϕ(hn) = ∑
σ∈Sn

xthe number of τ-matches in σ qinv(σ).

Applying ϕ to Theorem 2.5 gives the generating function in the statement of the
theorem. ��
Proof (not using a ring homomorphism). The idea of this second proof is to replace
x with x+1 in the statement of the theorem. Let MSτ ,n denote the set of all permu-
tations σ ∈ Sn where some of the τ-matches of σ are marked by marking the first
element of τ-match with a ∗. For example, if τ = 132 and σ = 2546175, then there
are two τ-matches in σ , namely, 245 and 175. Thus σ gives rise to the following
four elements MS132,7:

2546175, 2∗546175, 25461∗75, and 2∗5461∗75.

If σ ∈ MSτ ,n, we let ∗(σ) denote the number of ∗s that occur in σ . When we replace
x by x+1 in the generating function in the statement of the theorem, we find

1+ ∑
n≥1

zn

[n]q! ∑
σ∈MSτ ,n

x∗(σ) =
1

1− (z+∑n≥1
zn( j−1)+1

[n( j−1)+1]q! xnmpτ ,n( j−1)+1(q))
.

Our goal is to prove this identity is true.
Extracting the coefficient of zn/[n]q! on the right-hand side of this identity by

expanding the right-hand side as a geometric series, we find that ∑σ∈MSτ ,n x∗(σ) is
equal to

[n]q! ∑
k≥1

∑
b1 ,··· ,bk∈{1}∪{n( j−1)+1:n≥1}

b1+b2+···+bk=n

k

∏
i=1

(χ(bi = 1)+ χ(bi ≥ 1)x
bi−1
j−1 mpτ ,bi(q))

[bi]q!

= ∑
k≥1

∑
b1 ,··· ,bk∈{1}∪{n( j−1)+1:n≥1}

b1+b2+···+bk=n

[
n

b1, · · · ,bk

] k

∏
i=1

(χ(bi = 1)+χ(bi > 1)x
bi−1
j−1 mpτ ,bi(q)),

where for any statement A, χ(A) is 1 if A is true and 0 if A is false.
With the terms of the form

[
n

b1, · · · ,bk

] k

∏
i=1

(χ(bi = 1)+ χ(bi > 1)x
bi−1
j−1 mpτ ,bi(q))

in this expression we can associate an ordered triple of the form (B,σ ,L) such that

1. B is a list of integers of the form (b1, . . . ,bk) which sum to n. With these integers
we can associate a brick tabloid with bricks b1, . . . ,bk.
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2. σ is an element of Sn such that in each brick bi > i, the elements of σ reduces
to a maximum packing of MPτ ,bi , and

3. L is the labeling of the cells of B such that the start of each cell which starts a
τ-match that lies entirely with a brick bi is labeled with an x and all other cells
are labeled with 1.

We define the weight of such a triple to be qinvσ times the product of the labels in
each cell.

Given such a triple (B,σ ,L), we can obtain an element of MSτ ,n by removing
the brick structure and putting a ∗ on each element of σ whose cell was labeled
with an x. On the other hand, given an element of σ ∈ MSτ ,n, we can reconstruct
the brick structure as follows. Let us say that two marked τ-matches in σ are linked
if they have an element in common. Since τ is a minimal overlapping permutation,
two τ-matches in σ are linked if and only if the last element of the first τ-match is
equal to the first element of the second τ-match.

We call two marked τ-matches M and N of σ marked τ-match connected in σ if
there is a sequence of marked τ-matches of σ , M = M1,M2, · · · ,Mk = N such that
for all i, Mi and Mi+1 are linked. The maximal marked τ-match connected compo-
nents of σ under this relation are just consecutive sequences on σ which reduce to
a maximum packing of τ . Thus for each maximal marked τ-match connected com-
ponent, we simply cover the elements with a single brick b and cover all elements
which are not part of a maximal marked τ-match component by a brick of size 1
and label each cell that corresponds to element with a ∗ on it with x and label all re-
maining cells with 1, we can recover (B,σ ,L). This proves the desired equality. ��

Combining the results in Theorems 7.7 and 7.8 that if j ≥ 3 and τ = τ1 · · ·τ j ∈ S j

has the minimal overlapping property with τ1 = 1 and τ j = s, then

∑
n≥0

zn

[n]q! ∑
σ∈Sn

xthe number of τ-matches(σ)qinv(σ)

=
1

1− (z+∑n≥1
(x−1)nzn( j−1)+1

[n( j−1)+1]q!

(
qinv(τ)

)n+1 ∏n+1
i=1

[i( j−1)+1−s
j−s

]
)
.

For example, 132 has the minimal overlapping property and it can be shown that

mp132,2n+1(q) = qn
n

∏
i=1

[2i−1]q.

Applying our results to the permutation 132 gives us a q-analogue of (7.10):

∑
n≥0

zn

[n]q! ∑
σ∈Sn

x# of 132-matches(σ )qinv(σ) =
1

1− (z+∑n≥1
(x−1)nz2n+1

[2n+1]q! qn ∏n
i=1[2i−1]q)

=
1

1−∑n≥0
qn(x−1)nz2n+1

[2n+1]q ∏n
i=1[2i]q

.
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As another example, the permutation 1342 also has the minimal overlapping
property. Elizalde and Noy [35] showed that

∑
n≥0

zn

n! ∑
σ∈Sn

x# of 1342-matches(σ ) =
1

1− ∫ z
0 e(x−1)t3/6 dt

=
1

1−∑n≥0
(x−1)nz3n+1

6n(n!)(3n+1)

.

Since

mp1342,2n+1 = (q2)n
n

∏
i=1

[
3n+1−2

2

]
= q2n

n

∏
i=1

[3n−1]q[3n−2]q
[2]q

,

we can use Theorem 7.8 to find a q-analogue:

∑
n≥0

zn

n! ∑
σ∈Sn

x# of 1342-matches(σ )qinv(σ)

=
1

1− (z+∑n≥1
(x−1)nz3n+1

[3n+1]q! q2n 1
[2]nq

∏n
i=1[3i−1]q[3i−2]q)

=
1

1−∑n≥0
q2n(x−1)nz3n+1

[3n+1]q[2]nq ∏n
i=1[3i]q

.

As a third example, suppose τ is a permutation of the form τ = 12 · · ·aσ(a+1)
where σ is a permutation of {a+2, · · · ,k+1}, then τ has the minimal overlapping
property and inv(τ) = (k−a)+ inv(σ). Using Theorems 7.7 and 7.8, we have

∑
n≥0

zn

[n]q! ∑
σ∈Sn

x# of τ-matches(σ )qinv(σ)

=
1

1− (z+∑i≥0
(x−1)i+1zik+1

[ik+1]q! (qk−a+inv(σ))(i+1) ∏i
j=2

[ jk−a
k−a

] . (7.12)

We pause to observe two other consequences of Theorem 7.8. The permutations
α and β are called c-Wilf equivalent if the number of permutations in Sn without
any consecutive α matches is equal to the number of permutations in Sn without any
consecutive β matches for all n ≥ 1. We call these two permutations strongly c-Wilf
equivalent if

∞

∑
n=0

zn

n! ∑
σ∈Sn

x# of α-matches in σ =
∞

∑
n=0

zn

n! ∑
σ∈Sn

x# of β -matches in σ .

Clearly, if α and β are strongly c-Wilf equivalent, then α and β are also c-Wilf
equivalent. The surprise is that Theorem 7.8 implies the converse in the case of
minimal overlapping permutations. To see this, suppose that α and β are c-Wilf
equivalent and take x = 0 in Theorem 7.8 to see that
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1

1− (z+∑n≥1
zn( j−1)+1

(n( j−1)+1)!(−1)nmpα ,n( j−1)+1)

=
1

1− (z+∑n≥1
zn( j−1)+1

(n( j−1)+1)!(−1)nmpβ ,n( j−1)+1)

from which it follows that mpβ ,n( j−1)+1 = mpα ,n( j−1)+1 for all n ≥ 1. Then
Theorem 7.8 implies that the two generating functions for consecutive α and β
matches are the same.

A second consequence of Theorem 7.8 is a proof of a conjecture of Elizalde
[34] that if α = α1 · · ·α j and β = β1 · · ·β j are permutations in S j with the min-
imal overlapping property and α1 = β1 and α j = β j, then α and β are strongly
c-Wilf equivalent. This was proved independently by Duane and Remmel [32] using
Theorem 7.9 below and by Dotsenko and Khoroshkin [29].

Theorem 7.9. Suppose α =α1 · · ·α j and β = β1 · · ·β j are minimal overlapping per-
mutations in S j and α1 = β1 and α j = β j. Then for all n ≥ 1,

mpα ,n( j−1)+1 = mpβ ,n( j−1)+1.

If in addition qinv(α) = qinv(β ), then

mpα ,n( j−1)+1(q) = mpβ ,n( j−1)+1(q).

Proof. Let us try constructing all maximum packings σ = σ1 . . .σn( j−1)+1 of size
n( j−1)+1 for α or β . One way to do this is to partition {1, . . . ,n( j−1)+1} into
sets T1, . . . ,Tn where |T1| = j and |Ti| = j− 1 for i ≥ 2 and use the elements of T1

for σ1 . . .σ j, use the elements of T2 for σ j+1 . . .σ2 j−1, use the elements of T3 for
σ2 j · · ·σ3 j−2, and so on.

This may not work for all choices of T1, . . .Tn. For instance, if α = 132 and we
pick T1 = {4,5,6} and T2 = {1,2}, then there will be no way to use T1 for the
elements σ1σ2σ3 and use T2 for the elements σ4σ5 to produce a maximum packing
for 132 because we must let σ1 = 3, σ2 = 5, and σ3 = 4. But then σ3 will be greater
than σ4 and σ5 so that this choice will not allow us to construct a maximum packing
for 132.

Our claim is that for any choice of T1, . . . ,Tn, either we cannot construct a maxi-
mum packing for either α or β in this way or we can construct a maximum packing
for both α and β in this way.

For example, if α = 24153, then we first choose T1, . . . ,Tn; suppose we pick
T1 = {2,5,6,7,10},T2 = {1,8,9,15},T3 = {3,11,13,14}, and T4 = {4,12,16,17}.
This means that when creating the permutation σ , these sets of integers must appear
in the blank spaces as shown below:

{2,5,6,7,10} {1,8,9,15} {3,11,13,14} {4,12,16,17}
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Given the choice for T1, there is only one way to fill in the first 5 integers in σ as to
form an α match; we must have this:

5 7 2 10 6

{2,5,6,7,10} {1,8,9,15} {3,11,13,14} {4,12,16,17}

In this process, σ5 = 6 must be the third largest element of T1 since α5 = 3. In order
to continue, it must be that 6 is the second largest element in {6}∪T2 if σ5 · · ·σ9

is an α-match. Since 6 is the second largest element in {6}∪ T2, the positions of
the elements of T2 are then forced by the requirement that σ5 · · ·σ9 be an α-match
which is pictured below:

5 7 2 10 6 9 1 15 8

{2,5,6,7,10} {1,8,9,15} {3,11,13,14} {4,12,16,17}

In particular, σ9 must be the third largest element of {6}∪ T2 so that σ9 = 8. To
continue, it must be that 8 is the second largest element of {8}∪T3 if σ9 · · ·σ13 is
an α-match and σ13 must be the third largest element of {8}∪T3. In this case, 8 is
the second largest element of {8}∪T3 and we are forced to have σ13 = 11 since 11
is the third largest element of {8}∪T3:

5 7 2 10 6 9 1 15 8 13 3 14 11

{2,5,6,7,10} {1,8,9,15} {3,11,13,14} {4,12,16,17}

Repeating this logic with 11 being the second largest element of {11}∪T4, we can
construct a maximum packing for α using T1, · · · ,T4:

5 7 2 10 6 9 1 15 8 13 3 14 11 16 4 17 12

{2,5,6,7,10} {1,8,9,15} {3,11,13,14} {4,12,16,17}

In general, if α1 = β1 = s and α j = β j = t, then to be able to use T2 to continue
the construction of a maximum packing for either α or β , we must have that the
tth largest element a1 of T1 is the sth largest element of {a1}∪T2. If not, we cannot
use T1, . . . ,Tn to construct a maximum packing for either α or β . If so, then the tth
largest element a2 of {a1}∪T2 must be the s-largest element of {a2}∪T3. If not, we
cannot use T1, · · · ,Tn to construct a maximum packing for either α or β . If so, then
the tth largest element a3 of {a2}∪T3 must be the s-largest element of {a3}∪T4,
and so on. Thus we can use T1, . . . ,Tn to construct a maximum packing σ for α if
and only if we can use T1, . . . ,Tn to construct a maximum packing σ∗ for β .

Moreover, if qinv(α) = qinv(β ), then it will be the case that qinv(σ) = qinv(σ∗), as
needed to prove the theorem. ��
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7.4 Minimal Overlapping Patterns in Cycles

We can adapt definitions in the previous section to the cycle structure of per-
mutations. Given a cycle C = (c0, . . . ,cp−1), we assume that the cycle has been
rearranged so that c0 is the smallest element of C. The reduction of C, red(C), is
the p-cycle in SP where the ith smallest element in C is replaced by i. For example,
red(2,4,7,3) = (1,3,4,2).

Let τ = τ1 · · ·τ j ∈ S j and C = (c0, . . . ,cn) be an n-cycle in the cycle structure of
some permutation σ . We say that τ consecutively occurs in σ if j ≤ n and there is
an i such that red(cici+1 · · ·ci+ j−1) = τ where we take the indices modulo p. Thus τ
consecutively occurs in C if, as we traverse C, we see a consecutive sequence which
reduces to τ . Let τ-mch(C) denote the number of τ-matches in C.

For example, if τ = 231 and C = (2,5,6,4,9) then there are two τ-matches in C,
namely 564 and 492, so τ-mch(C) = 2.

Our definitions ensure that τ occurs in C if and only if τ consecutively occurs in
red(C). Thus if σ is a permutation of Sn consisting of cycles C1, . . . ,Ck, we define
τ-cmatch(σ) = ∑k

i=1 τ-mch(red(Ci)). Let Cn be the set of all n-cycles in Sn. The
exponential formula gives that

∞

∑
n=0

zn

n! ∑
σ∈Sn

ythe number of cycles in σ xτ-cmatch(σ) = exp

(

y
∞

∑
n=1

zn

n! ∑
C∈Cn

xτ-mch(C)

)

.

(7.13)
Looking at the right-hand side of this equation, we are motivated to study the

generating function

Cτ(z,x) = ∑
n≥1

zn

n! ∑
C∈Cn

xτ-mch(C).

In this subsection we consider the special case where τ is a minimal overlapping
pattern that starts with 1. Given an n-cycle C = (1,σ2, . . . ,σn), we associate a per-
mutation σ(C) = 1σ2 · · ·σn. We begin with the following lemma:

Lemma 7.1. If τ = τ1 · · ·τ j ∈ S j and τ1 = 1, then for all n-cycles C, τ-cmatch(C) =
τ-mch(σ(C)).

Proof. If C = (c0, . . . ,cn−1) = (1,σ2, . . . ,σn) and cici+1 · · ·ci+ j−1 is a cycle τ-match
in C where we take the indices modulo m, then c0 is an element of the cycle
τ-match if and only if i = 0. That is, since τ starts with 1, the only role that c0 = 1
can play in a cycle τ-match is 1.

This means that if cici+1 · · ·ci+ j−1 is a cycle τ-match in C, then 1 ≤ i < i+ j−1 ≤
n, thereby implying that cici+1 · · ·ci+ j−1 is also τ-match in σ(C). Thus every
τ-match in σ(C) gives rise to a τ-match in C. ��

Another useful property of minimal overlapping patterns τ ∈ S j which start with
1 is the following lemma whose proof we leave to the reader.

Lemma 7.2. If τ = τ1 · · ·τ j ∈ S j is a minimal overlapping permutation with τ1 = 1,
then for all n ≥ 1, every σ ∈ MPτ ,n( j−1)+1 starts with 1.
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Lemma 7.1 gives that if τ ∈ S j is a permutation that starts with 1, then

Cτ(z,x) =
∞

∑
n=1

zn

n! ∑
σ∈S1n

xτ-mch(σ)

where S1n is set of all permutations σ ∈ Sn which start with 1.

Theorem 7.10. Suppose that τ = τ1 · · ·τ j ∈ S j is a minimal overlapping pattern that
starts with 1 where j ≥ 3. Then

∞

∑
n=1

zn

(n−1)! ∑
σ∈S1n

xτ−mch(σ) =
z+∑n≥1

zn( j−1)+1

(n( j−1))!(x−1)nmpτ ,n( j−1)+1

1− (z+∑∞
n=1

zn( j−1)+1

(n( j−1)+1)!(x−1)nmpτ ,n( j−1)+1

.

Proof. Let ϕ be the ring homomorphism in Theorem 7.8 after taking q = 1. The
generating function in the statement of the theorem will follow from applying ϕ to
the modified basis pν ,n where

v(n) =

{
n if n = s( j−1)+1 for some s ≥ 0,

0 if otherwise.

Expanding pν ,n in terms of the elementary symmetric functions using Theorem 4.1,
we have

(n−1)!ϕ(pν ,n) =
1
n ∑

λ�n

(
n
λ

)
wν(Bλ ,(n)) f (λ1) f (λ2) · · ·

= ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

(
n−1

b1 −1, . . . ,b�(λ )−1

)
f (b1) f (b2) · · · .

We have consciously chosen to use ν to change the weight on the first brick instead
of the last brick.

Next we give a combinatorial interpretation to this last equation. Suppose we
have a brick tabloid B = (b1, . . . ,b�) of size n such that bi ∈ {1}∪ {s( j − 1)+ 1 :
s ≥ 1} for all i. Interpret the

( n−1
b1−1,b2,...,b�(λ )

)
term as filling the cells of B with a

permutation α = α1 · · ·αn such that α1 = 1 and α is increasing in each brick of B.
That is, we choose b1 − 1 elements for the first brick which we use to fill cells
2, . . . ,b1 in B and we choose bi elements to fill bi for each i ≥ 2.

If bi = s( j−1)+1 > 1, then let 1 ≤ ai
1 < · · ·< ai

s( j−1)+1 ≤ n be the elements of
α which are in the cells of bi reading from left to right. Interpret the term

f (bi) = (x−1)(bi−1)/( j−1)mpτ ,bi

as the number of ways of filling bi with a permutation βi ∈ MPk
τ ,s( j−1)+1 and then

labeling each cell in bi which is the start of a τ-match in βi with either x or −1. For
brick b1, clearly 1 is in cell 1 if b1 equals 1 and if b1 > 1, then 1 is in cell 1 since
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by Lemma 7.2, every maximum packing in MPτ ,b1 starts with 1. Finally, we replace
the numbers by 1, . . . ,s( j−1)+1 that occur in βi by a1, . . . ,as( j−1)+1, respectively.
Doing this for each brick will result in a filling of the cells of B with a permutation
σ ∈ S1n.

Let Q1τ ,n denote the set of all labeled brick tabloids that can be constructed in
this way. An element in Q ∈Q1τ ,n can be considered a triple T = (B,σ ,L) where

1. B= (b1, . . . ,b�) is a brick tabloid of shape (n) such that bi ∈ {1}∪{s( j−1)+1 :
s ≥ 1} for all i,

2. σ ∈ Sn is a permutation which starts with 1, and
3. if bi = s( j− 1)+ 1 > 1, then cells of bi are filled with a sequence γi such that

red(γi) is a maximum packing for τ of size s( j−1)+1 and each cell of bi which
corresponds to the start of τ-match in γi is labeled with either −1 or x.

The weight of T is defined to be the product of the x labels in T and the sign of T ,
sign(T ), is the product of the −1 labels in T .

At the point we have shown

(n−1)!ϕ(pν ,n) = ∑
T=(B,σ ,L)∈Q1τ ,n

sgn(T )w(T ).

We have arrived at the same situation that had in the proof of Theorem 7.8 with the
exception that all the permutations σ start with 1. We can then apply exactly the
same involution I that we applied in the proof of Theorem 7.8 and then apply ϕ to
(4.1) in order to find the generating function in the statement of the theorem. ��

By dividing both sides of the generating function in the statement of the last
theorem by z and then integrating with respect to z, we see that

Cτ(z,x) = ∑
n≥1

zn

n! ∑
σ∈S1n

xτ−mch(σ)

=
∫ z

0

1+∑n≥1
yn( j−1)

(n( j−1))!(x−1)nmpτ ,n( j−1)+1

1− (y+∑n≥1
yn( j−1)+1

(n( j−1)+1)!(x−1)nmpτ ,n( j−1)+1)
dy.

Using the substitution that u = (y+∑n≥1
yn( j−1)+1

(n( j−1)+1)!(x−1)nmpτ ,n( j−1)+1), we find

Cτ(z,x) =− ln

(

1− (z+ ∑
n≥1

zn( j−1)+1

(n( j−1)+1)!
(x−1)nmpτ ,n( j−1)+1)

)

which, in turn, can be used in (7.13).

7.5 Minimal Overlapping Patterns in Words

There are two natural ways to define pattern matchings in words, depending on
whether or not a word is reduced before looking for a pattern match.
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Making these ideas precise, we say that the word u = u1 · · ·u j exactly consecu-
tively occurs in the word w=w1 · · ·wn if there is an i such that wiwi+1 · · ·wi+ j−1 = u.
In such a situation, we say that w has an exact u-match starting at position i. We let
u-ematch(w) denote the number of exact u-matches in w. This was our concept of
pattern matches given when discussing Theorem 7.4.

A second way to define a pattern match in a word is to reduce the word first,
just as we did for permutations. If u and w have letters in {1,2, . . .} such that
red(u) = u, then we say that u consecutively occurs in w if there is an i such that
red(wiwi+1 · · ·wi+ j−1) = u. In such a situation, w has a u-match starting at position i.
Let u-match(w) denote the number of u-matches in w.

The two corresponding analogues of minimal overlapping permutations for
words are as follows. We say that u has the exact match minimal overlapping prop-
erty if the smallest i such that there exists a word w of length i with u-ematch(w) = 2
is 2 j − 1. If red(u) = u, then we say that u has the minimal overlapping prop-
erty (for words) if the smallest i such that there exists a word w of length i with
u−match(w) = 2 is 2 j−1. As before, this means that for a word w, two u-matches
in w can share at most one letter occurring at the end of the first u-match and at the
start of the second u-match.

For example, 121 has both the minimal overlapping property and the exact match
minimal overlapping property whereas 1122 does not have the minimal overlapping
property.

A new phenomenon happens in the case of pattern matching in words. Let
us say that a word u of length j with letters in {0, . . . ,k − 1} = [k] has the [k]-
nonoverlapping property ([k]-exact match nonoverlapping property) if the smallest i
such that there exists a word of length i with u-match(w) = 2 (u-ematch(w) = 2) is
2 j. Thus u has the [k]-nonoverlapping ([k]-exact match nonoverlapping) property if
no two u-matches (exact u-matches) can share a letter.

For example, if k = 3 and u = 00112, then u has both the [k]-nonoverlapping
property and the [k]-exact match nonoverlapping property. However, if k = 3 and
v = 011, then v has the [k]-exact match nonoverlapping property but does not have
the nonoverlapping property since w = 01122 has two v-matches. We note that
whether a word u has the [k]-minimal overlapping property, the [k]-exact minimal
overlapping property, or the [k]-exact nonoverlapping property can depend on k. For
example, 1122 is not [k]-minimal overlapping if k ≥ 3 but it has the nonoverlapping
property in the alphabet [2] = {1,2}.

The goal of this section is to find generating functions for the number of matches
of minimal overlapping patterns in words. To this end, suppose that u ∈ A j where
A = {1,2, . . .} or A = [k] for some k ≥ 2. If red(u) = u and u has the A-minimal
overlapping property, then the shortest words w ∈ A∗ such that u-match(w) = n have
length n( j−1)+1 so we let MPA

u,n( j−1)+1 denote the set of words w∈An( j−1)+1 with

u-match(w) = n. We will refer to elements of MPA
u,n( j−1)+1 as A-maximum packings

for u. Then we let mpA
u,n( j−1)+1 = |MPA

u,n( j−1)+1| if A is finite,

mpA
u,n( j−1)+1(r) = ∑

w∈MPA
u,n( j−1)+1

r∑w,
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and

mpA
u,n( j−1)+1(x1,x2, . . .) = ∑

w∈MPA
u,n( j−1)+1

x(w)

where x(w) = xthe number of w1’s in w
1 xthe number of w2’s in w

2 · · · .
If u has the A-exact match minimal overlapping property, then the shortest words

w ∈ A∗ such that u-ematch(w) = n have length n( j−1)+1 so we let EMPA
u,n( j−1)+1

denote the set of words w ∈ An( j−1)+1 such that u-ematch(w) = n. We will refer to
elements of EMPA

u,n( j−1)+1 as A-exact match maximum packings for u. Furthermore,

we define empA
u,n( j−1)+1 = |EMPA

u,n( j−1)+1| if A is finite,

empA
u,n( j−1)+1(r) = ∑

w∈EMPA
u,n( j−1)+1

r∑w,

and

empA
u,n( j−1)+1(x1,x2, . . .) = ∑

w∈EMPA
u,n( j−1)+1

x(w).

For example, if u = 121 and k ≥ 2, then the only w ∈ [k]2n+1 such that u-ematch

(w) = n is 1(21)n. This means emp[k]121,2n+1 = 1, emp121,2n+1(r) = r3n+1, and

emp[k]121,n( j−1)+1(x1,x2) = xn+1
1 xn

2 for all n ≥ 1 and k ≥ 2.

If we are just considering u-matches instead of exact u-matches in [k]2n+1, then
the only words w ∈ [k]2n+1 such that u-match(w) = n are of the form si1si2 j · · ·sins
where s ∈ {1, . . . ,k−1} and i1, . . . , in ∈ {s+1, . . . ,k}. Thus

mp[k]121,2n+1 =
k−1

∑
s=1

(k− s)n =
k−1

∑
i=1

in,

mp[k]121,2n+1(r) =
k−1

∑
s=1

r(n+1)s(rs+1[k− s]r)
n =

k−1

∑
i=1

r(2n+1)(k−i)[i]nr , and

mp[k]121,2n+1(x1, . . . ,xk) =
k−1

∑
s=1

xn+1
s (

k

∑
t=s+1

xt)
n.

Similarly, if we are just considering u-matches instead of exact u-matches for words
with letters in {1,2, . . .}, then the only words w such that u-match(w) = n are of the
form si1si2 j · · ·sins where i1, . . . , in ∈ {s+1,s+2, . . . ,}. Thus MP121,2n+1 is infinite
and

mp{1,2,...}
121,2n+1(r) =

∞

∑
s=1

r(n+1)s(
rs+1

1− r
)n = ∑

s≥1

rs(2n+1)+n

(1− r)n and

mp{1,2,...}
121,2n+1(x1,x2, . . .) =

∞

∑
s=1

xn+1
s (

∞

∑
t=s+1

xt)
n.
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Theorem 7.11. Let u be a word of length j with letters in {1,2, . . .} where j ≥ 3. If
u has the minimal overlapping property and red(u) = u, then

∑
n≥0

zn ∑
w∈{1,2,...}n

xu−match(w)x(w)

=
1

1− ((∑∞
i=1 xi)z+∑n≥1 zn( j−1)+1(x−1)nmp{1,2,...}

u,n( j−1)+1(x1,x2, . . .))
.

If u has the exact match minimal overlapping property, then

∑
n≥0

zn ∑
w∈{1,2,...}n

xu−ematch(w)x(w) =

1

1− ((∑∞
i=1 xi)z+∑n≥1 zn( j−1)+1(x−1)nemp{1,2,...}

u,n( j−1)+1(x1,x2, . . .))
.

Proof. This proof is a relatively straightforward modification of the proof given in
Theorem 7.8.

Suppose u is a word of length j with letters in {1,2, . . .} such that u has the
minimal overlapping property and red(u) = u. Define a ring homomorphism ϕ by
ϕ(en) = (−1)n−1 f (n) where

f (n) = (x−1)(n−1)/( j−1)mp{1,2,...}
u,n (x1,x2, . . .)

if n = s( j−1)+1 for some s ≥ 0 and f (n) = 0 otherwise. Applying ϕ to hn gives

ϕ(hn) = ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

f (b1) f (b2) · · · . (7.14)

As usual, our next task is to give a combinatorial interpretation to the right-hand
side of this last equation. Start with a brick tabloid B = (b1, . . . ,b�) of size n such
that each brick bi has a length which is of the form s( j − 1)+ 1 for some s ≥ 0.

Interpret the term f (bi) as filling bi with a word vi ∈ MP{1,2,...}
u,s( j−1)+1 and then labeling

each cell in bi which is the start of a u-match in vi with either x or −1.
For example, one different possible combinatorial objects created in this way

when u = 121 is

5 1 3 1 4 2 2 3 2 4 2 6 2 7 3 4 3

−1 x −1 −1 −1

The weight of this object is +x. The signed weighted sum over all combinatorial
objects is equal to (7.14).

These are the exact same combinatorial objects as found in proof of 7.8 with
the exception that our brick tabloids contain words instead of permutations. From
here on out the proof follows in exactly the same way as the proof of theorem 7.8:
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apply the exact same sign reversing weight preserving involution I on the collection
of such combinatorial objects T as found in the proof of theorem 7.8 (except with
every instance of “τ” found in the description of the involution I replaced with the
word “u”). For example, the image of the combinatorial object shown above is

5 1 3 1 4 2 2 3 2 4 2 6 2 7 3 4 3

x −1 −1 −1

.

Fixed points under this involution have a weight of xu-match(w)x(w). The sum of all
fixed points, and therefore ϕ(hn), is equal to ∑w∈{1,2,...}n xu-match(w)x(w). Applying
ϕ to Theorem 2.5 gives the first generating function in the statement of the theorem,
and repeating the argument yet again for exact matches gives the second generating
function in the statement of the theorem. ��

The proof of the last theorem still works if we restrict all the entries in the filled
brick tabloids to be from the alphabet [k] = {1, . . . ,k} for any k ≥ 2, and so we can
replace {1,2, . . .} in the statement of the last theorem with [k] if desired.

Another variant on Theorem 7.11 can be stated for colored permutations. A col-
ored permutation is a pair (σ ,u) where σ is a permutation in Sn and u is a
word of length n with letters in {0, . . . ,k − 1}. We say that a k-colored permu-
tation (σ ,u) has (τ ,w)-match starting at position i if red(σi · · ·σi+ j−1) = τ and
red(uiui+1 · · ·ui+ j−1) = w. This is an exact (τ ,w)-match if u1ui+1 · · ·ui+ j−1 = w.
A number of papers in the literature have addressed matches in colored permuta-
tions, such as [34, 85, 84, 86].

The definitions for maximal packings and the minimal overlapping property for
colored permutations follow by analogy to the situation for regular permutations or
words. We record these results here, with the details carefully spelled out in [32].

Theorem 7.12. If (τ ,u) is a colored permutation with red(u) = u and (τ ,u) has
the minimal overlapping property for colored permutations, then the generating
function

∞

∑
n=0

zn

n! ∑
(σ ,w) is a colored permutation

x(t,u)−match(σ ,u)qinv(σ)x(w)

is equal to

1

1− (x0 + · · ·+ xk−1)z−∑∞
n=1

zn( j−1)+1

[n( j−1)+1]q! (x−1)nmp[k]
(τ ,u),n( j−1)+1(q,x0, . . . ,xk−1)

.

7.6 Minimal Overlapping Patterns in Alternating Permutations

This section is devoted to finding an analogue of Theorem 7.8 for alternating per-
mutations. In contrast to our earlier definition of an alternating permutation, in this
section we will consider σ = σ1 · · ·σn ∈ Sn an alternating permutation if

σ1 < σ2 > σ3 < σ4 · · · .
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That is, in this section only, we will consider an alternating permutation as begin-
ning with an increase rather than a decrease. Let An be the set of all alternating
permutations in Sn.

An alternating permutation τ ∈A2 j has the alternating minimal overlapping prop-
erty if the smallest i such that there is a permutation σ ∈ A2i with τ-mch(σ) = 2
is 2( j − 1). This means that in any permutation σ = σ1 · · ·σ2n ∈ A2n, any two τ-
matches in σ can share at most two letters which must be at the end of the first
τ-match and the start of the second τ-match.

For example, τ = 142536 does not have the alternating minimal overlapping
property since τ-match(15263748) = 2 and the τ-match starting at position 1 and
the τ-match starting at position 3 share four letters, namely, 2637. However, the
permutation τ = 143526 does have the alternating minimal overlapping property.

If τ ∈ A2 j has the alternating minimal overlapping property, then the shortest
permutations σ ∈ A2m such that τ-match(σ) = n have length 2n( j − 1)+ 2. Thus
we let UDMPτ ,2n( j−1)+2 equal the set of permutations σ ∈ A2n( j−1)+2 such that
τ-match(σ) = n. We shall refer to the permutations in UDMPτ ,2n( j−1)+2 as alter-
nating maximum packings for τ and we let udmpτ ,2n( j−1)+2 = |UDMPτ ,2n( j−1)+2|.

It will turn out that the generating functions for the number of τ-matches in al-
ternating permutations can be expressed in terms of what we call generalized maxi-
mum packings for τ . We say that σ ∈ S2n is a generalized maximum packing for τ
if we can break σ into consecutive blocks σ = B1 · · ·Bk such that

1. for all 1 ≤ j ≤ k, B j is either an increasing sequence of length 2 or red(B j) is
an alternating maximum packing for τ of length 2s for some s and

2. for all 1 ≤ j ≤ k−1, the last element of B j is less than the first element of B j+1.

If σ is a generalized maximum packing for τ , there is only one possible block
structure. That is, if σ = σ1 · · ·σ2n ∈ S2n is a generalized maximum packing for
τ , our conditions force that σ2 j−1 < σ2 j for i = j, . . . ,n. Therefore σ2 j−1σ2 j and
σ2 j+1σ2 j+2 are in the same block if and only if σ2 j > σ2 j+1.

If σ is a generalized maximum packing for τ of length 2n with block structure
B1 · · ·Bk, then we define the weight w(B j) of block B j to be 1 if B j has size 2 and
to be (x−1)s if B j has length 2s( j−1)+2 where s ≥ 1. Then we define the weight
w(σ) of σ to be (−1)k−1w(B1)w(B2) · · ·W (Bk).

For example, if τ = 143526, then

σ = 1 2 3 8 7 9 4 10 6 11 5 12 13 14 15 18 17 19 16 20

is a generalized maximum packing for τ where B1 = 1 2, B2 = 3 8 7 9 4 10 6 11 5 12,
B3 = 13 14, B4 = 15 18 17 19 16 20. Thus w(B1) = w(B3) = 1, w(B2) = (x− 1)2,
and w(B4) = (x−1) so that w(σ) = (−1)3(x−1)3 =−(x−1)3.

Let GMPτ ,2n denote the set of σ ∈ S2n which is a generalized maximum packings
for τ and let

GMPτ ,2n(x) = ∑
σ∈GMPτ ,2n

w(σ).
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Similar definitions for generalized maximum packing can be given for permuta-
tions of an odd number. Specifically, σ ∈ S2n+1 is a generalized maximum packing
for τ if we can break σ into consecutive blocks σ = B1 · · ·Bk such that

1. for all 1 ≤ j < k, B j is either an increasing sequence of length 2 or red(B j) is
alternating maximum packing of τ of length 2s for some s,

2. Bk is a block of size 1, and
3. for all 1 ≤ j ≤ k−1, the last element of B j is less than the first element of B j+1.

From here the sets GMPτ ,2n+1 and GMPτ ,2n+1(x) are defined analogously as in the
case of even length permutations.

The main theorem in this section is as follows.

Theorem 7.13. For τ ∈ A2 j, an alternating minimal overlapping permutation with
j ≥ 3, we have

∞

∑
n=0

z2n

(2n)! ∑
σ∈A2n

xτ−mch(σ) =
1

1−∑∞
n=1 GMPτ ,2n(x) z2n

(2n)!

.

and

∞

∑
n=1

z2n−1

(2n−1)! ∑
σ∈A2n−1

xτ−mch(σ) =
∑∞

n=1 GMPτ ,2n−1(x) z2n−1

(2n−1)!

1−∑∞
n=1 GMPτ ,2n(x) z2n

(2n)!

.

Proof. We begin by finding the first of the two generating functions in the statement
of the theorem. Define a ring homomorphism ϕ by setting ϕ(e2n+1) = 0 and

ϕ(e2n) =
(−1)n−1

n!
GMPτ ,2n(x)

for all n.
Since an integer partition λ � (2n+ 1) must have at least one odd part, ϕ(eλ ),

and therefore ϕ(h2n+1), must both equal 0. Expanding (2n)!ϕ(h2n) in the usual way,
we have

(2n)!ϕ(h2n) = ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

(
2n

2b1, . . . ,2b�

)
GMPτ ,2b1(x)GMPτ ,2b2(x) · · · .

Create combinatorial objects from this equation by selecting a brick tabloid of
shape (2n) with only even length bricks and associate with each brick a disjoint sub-
set of {1, . . . ,2n}. Use the factor of the form GMPτ ,2b1(x)GMPτ ,2b2(x) · · · to select
a sequence of permutations σ (1), . . . ,σ (�(λ )) such that σ ( j) ∈ A2b j is a generalized

maximum packing for τ for all j. Then for each j, we let α( j) the sequence that
arises by replacing the rth largest element of σ ( j) by the rth largest element of the
subset associated with each brick. Place these sequences α( j) into the cells of the
bricks.
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We still must account for the x weights coming from GMPτ ,bi(x). To do so, place
a weight of 1 on top of each block of size 2 that ends a brick. Place a weight of −1
on each block of size 2 which does not end a brick. For blocks of size ≥ 2 j, we place
an (x−1) at start of each τ-match in the block and, in addition, we add a factor of
−1 to the first match in the block if the block is not the last block in a brick.

For example, we have pictured one combinatorial object created in this way when
τ(1) = 231546 where the underlying brick tableau has bricks of length 2,8, and 6.
We have also indicated the block structure in each brick by underlying those ele-
ments in a common block.

1 3 4 5 9 10 7 12 11 13 6 8 2 15 14 16

1 −1 x−1 x−1

If Tτ ,2n denotes the set of all combinatorial objects constructed in this way, then

(2n)!ϕ(h2n) = ∑
T∈Tτ ,2n

w(T )

where the weight of T is the product of the weights above the integers in T .
We now define two involutions, I and J, on the set of combinatorial objects we

have created. The first involution I is as follows. Read the bricks from left to right
until finding the first brick d j such that either

1. the generalized maximum packing corresponding to the elements in d j consists
of more than one block or

2. the generalized maximum packing corresponding to the elements in d j consists
of a single block and the last element of d j is less than the first element of the
following brick d j+1.

In the first situation, split d j into two bricks d∗ and d∗∗ where d∗ contains the cells
of the first block in the generalized maximum packing corresponding to the elements
in d j and d∗∗ contains the remaining cells of d j. Keep all the labels the same except
change the label on the first cell of d∗ from −1 to 1 if the first block of d j is of size
2 and from −(x−1) to (x−1) if the first block of d j has size ≥ 4.

In the second situation, combine bricks d j and d j+1 into a single brick d. Since
the last element of d j is less than the first element of d j+1, the elements in the new
brick d will still reduce to a generalized maximum packing. Keep all the labels the
same except change the label on the first cell of d j from 1 to −1 if d j is of size 2
and from (x−1) to −(x−1) if d j has size ≥ 4.

In either situation, do not change the underlying permutation α . If neither situa-
tion applies, define T to be a fixed point under I.

For example, if T is the combinatorial object depicted earlier in the proof, then
the second situation applies. The effect of I on T is that we combine the first and
second bricks in T to create the combinatorial object shown below:
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1 3 4 5 9 10 7 12 11 13 6 8 2 15 14 16

−1 −1 x−1 x−1

This function I is a sign reversing involution. Therefore, in order to understand
n!ϕ(h2n), we only need to understand the fixed points T under I. Such a fixed point T
must have elements in each brick d which reduce to a generalized maximum packing
of τ consisting of a single block. Furthermore, we cannot combine any consecutive
bricks d j and d j+1 such that the last element in d j is greater than or equal to the first
element of d j+1 for any j. This means that the underlying permutation α must be an
alternating permutation.

To recap, fixed points T under I must satisfy these conditions:

1. The permutation α is an alternating permutation of length 2n,
2. T has bricks d1, . . . ,dk where each d j has even length and the elements in d j

reduce to a generalized maximum packing of τ within a single block, and
3. the label in the jth cell of T is (x− 1) if j is the start of τ-match in α and is

equal to 1 otherwise.

Instead of these exact fixed points, take any combinatorial object T with a cell
with a label (x− 1) and create two combinatorial objects T1 and T2 such that the
label (x− 1) is changed to x in T1 and −1 in T2. Therefore instead of considering
fixed points which satisfy the three above conditions, change the third condition to

3. the label in the jth cell of T is x or −1 if j is the start of τ-match in α and is
equal to 1 otherwise.

For example, one such fixed point T under I is when τ = 231546 is

1 4 3 9 6 7 2 10 8 11 5 13 12 14 15 16

1 1 −1 x 1

On these fixed points we will apply the involution J, which is fundamentally the
same as the involution given in the proof of Theorem 7.8, with modifications only
made to account for the fact that we are dealing with alternating permutations.

Define a sign reversing weight preserving involution J on the collection of such
combinatorial objects T by scanning the cells from left to right looking for the first
time we are in one of the following cases:

Case 1. There is a brick bi of size 2 j whose first cell is labeled with −1. In this
case, let J(T ) be the object T with this brick of size j replaced with j bricks of
size 2 and the −1 sign removed.

Case 2. There are j consecutive bricks of size 2 in T , namely bi,bi+1, . . . ,bi+ j−1,
such that the letters in these cells form a τ-match. In this case, J(T ) is T with
the bricks bi,bi+1, . . . ,bi+ j−1 combined into a single brick b of size 2 j and the
first cell of b is labeled with −1.
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Case 3. There is a brick bi of size 2(s+1)( j−1)+2 where s ≥ 1 such that all the
labels on bi are xs except for the cell that is 2 j cells from the right which is
labeled with −1. In this case, J(T ) is found by replacing the brick bi by a brick
of size 2s( j − 1)+ 2 followed by j − 1 bricks of size 2 and removing the −1
label that was in bi.

Case 4. There are 2 j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1 such that
bi = 2s( j−1)+2 > 2 and bi+1, . . . ,bi+ j−1 are of size 1, all the labels on bi are
xs, and the letters in these bricks form an alternating maximum packing for τ
of size 2(s+ 1)( j− 1)+ 2. In this case, J(T ) is found by replacing the bricks
bi,bi+1, . . . ,bi+ j−1 by a single brick b of size 2(s+1)( j−1)+2 and by labeling
the last cell of bi with a −1.

Case 5. There is a brick bi of size 2(s+ 1)( j − 1)+ 2 where s ≥ 1 such that the
first cell of bi is labeled with −1. In this case, J(T ) is found by replacing the
brick bi by j− 1 bricks of size 2 followed by a brick of size 2s( j− 1)+ 2 and
by removing the −1 label that was on the first cell of bi.

Case 6. There are j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1, such that
bi, . . . ,bi+ j−2 are of size 2, bi+ j−1 = 2s( j− 1)+ 2 > 2, and the letters in these
bricks form an alternating maximum packing for τ of size 2(s+ 1)( j− 1)+ 2.
In this case, J(T ) is found by replacing the bricks bi,bi+1, . . . ,bi+ j−1 by a single
brick b of size 2(s+1)( j−1)+2 and by labeling the first cell of b with a −1.

Case 7. There is a brick bi of size 2s( j−1)+2 where s ≥ 3 such that the first cell
is labeled with an x and there is a cell which has a label −1 which is not the jth
cell from the right. Let t be the left-most cell of bi which is labeled with −1.
In this case, J(T ) is found by replacing the brick bi with j consecutive bricks
c1,c2, . . . ,c j−1,c j where c1 contains all the cells of bi up to and including cell
t, c2, . . . ,c j−1 are bricks of size 2, and c j contains the remaining cells of bi.
Remove the −1 label from cell t.

Case 8. There are j consecutive bricks in T , namely bi,bi+1, . . . ,bi+ j−1, such that
bi = 2c(s−1)+2 > 2 and has no −1 labels, bi+1, . . . ,bi+ j−2 are bricks of size
2, bi+ j−1 = d( j − 1)+ 1 > 1, and the letters in these three bricks form an al-
ternating maximum packing for τ of size 2(c+ d + 1)( j− 1)+ 2. In this case,
J(T ) is found by replacing the j bricks bi,bi+1, . . . ,bi+ j−1 by a single brick b
and adding a label −1 on the last cell of bi.

Case 9. If none of the previous 8 cases apply, set J(T ) = T .

The remainder of the proof in the case of alternating permutations in A2n follows
in a completely analogous way as the proof of Theorem 7.8, that is, it can be shown
that J is an involution and that the fixed points under J correspond to alternating
permutations σ with a power of x corresponding to the number of τ matches in σ .
In turn, this means that

(2n)!ϕ(h2n) = ∑
σ∈A2n

xτ−match(σ).
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The first generating function in the statement of the theorem follows from applying
ϕ to the relationship between en and hn found in Theorem 2.5.

As for the alternating permutations of an odd length in A2n+1, we use the new
basis pν ,n for an appropriate choice of the function ν . We would like to select ν
so that we find the exact same combinatorial objects for alternating permutations in
A2n except that the entries in the final cell of the brick tabloid are erased. This is the
idea we used in the proofs of Theorems 3.5 and 4.6 when we first found generating
functions for alternating permutations and j-alternating permutations.

In this situation, the appropriate choice for ν is to take ν(2n−1) = 0 and

ν(2n) =
(−1)2n−1GMPτ ,2n−1(x)/(2n−1)!

ϕ(e2n)

for all n. After applying ϕ to (2n− 1)!pν ,2n, this choice of ν will change the last
brick in one of our combinatorial objects T described earlier in the proof in the
following ways:

1. Since we are dividing by ϕ(e2n) in the definition of ν , we erase all labels in a
last brick of length 2n in T .

2. Since we are dividing by a 1/(2n−1)! instead of the usual 1/(2n!) in the numer-
ator of the function ν , (2n−1)!ϕ(p2n,ν) will produce multinomial coefficients
of the form

( 2n−1
2b1,...,2be−1

)
in our usual expansion of (2n−1)!ϕ(p2n,ν). This will

allow us to leave the last cell blank.
3. Use the remaining (−1)2n−1GMPτ ,2n−1(x) term in ν to fill the first 2n−1 cells

in the last brick with blocks in the usual way.

For example, one such combinatorial object created in this way when τ =
231546, and which is counted by (2n)!ϕ(pν ,2n), is shown below:

2 3 7 8 5 10 9 13 4 6 1 12 11 13 14

−1 x−1 x−1 1

The only difference between the fillings of even length and our current fillings is
that our current fillings must have a last brick which ends in a block of size 1 and
the last cell of that brick is blank.

It is not difficult to check that the involutions I and J are not affected by these
changes to our combinatorial objects T . Therefore we can proceed exactly as in
the case of even length alternating permutations: first apply I to T , then apply J to
the fixed points under I. The fixed points under J will correspond to permutations in
A2n−1, which in turn will show that

(2n−1)!ϕ(p2n,ν) = ∑
α∈A2n−1

xτ−match(α).

From here, the second generating function in the statement of the theorem fol-
lows immediately from applying ϕ to (4.1). ��



7.6 Minimal Overlapping Patterns in Alternating Permutations 251

We end this section with a discussion on the problem of actually finding
udmpτ ,2n, GMPτ ,2n(x), and GMPτ ,2n+1(x). In general, finding GMPτ ,2n(x) and
GMPτ ,2n+1(x) is more difficult than finding mpτ ,2n and mpτ ,2n+1. Even if we cannot
easily provide a closed expression for GMPτ ,2n(x) or GMPτ ,2n+1(x) as a function of
n for any given alternating minimal overlapping permutation τ , we can still compute
GMPn,τ(x) using recursions.

Let Fn,k denote the set of all fillings of a k×n rectangular array with the integers
1, . . . ,kn such that the elements increase from bottom to top in each column. We let
(i, j) denote the cell in the ith row from the bottom and the jth column from the left
of the k×n rectangle and we let F(i, j) denote the element in cell (i, j) of F ∈ Fn,k.

If F is any filling of a k × n rectangle with distinct positive integers such that
elements in each column increase, reading from bottom to top, then we let red(F)
denote the element of Fn,k which results from F by replacing the ith smallest element
of F by i. For example, below we show a filling F alongside red(F).

F =

1 7 5

6 10 13

8 15 17

12 16 22

red(F) =

1 4 2

3 6 8

5 9 11

7 10 12

For F ∈ Fn,k and 1 ≤ c1 < · · · < c j ≤ n, we let F [c1, . . . ,c j] the filling of the
k× j rectangle where the elements in column a of F [c1, . . . ,c j] equal the elements
in column ca in F for a = 1, . . . , j. We can then extend the usual pattern matching
definitions from permutations to elements of Fn,k as follows.

Let P be an element of F j,k and F ∈ Fn,k where j ≤ n. Then P occurs in F if there
are 1≤ i1 < i2 < · · ·< i j ≤ n such that red(F[i1, . . . , i j]) =P, F avoids P if there is no
occurrence of P in F , and there is a P-match in F starting at position i if red(F [i, i+
1, . . . , i+ j−1]) = P. When k = 1, then Fn,1 = Sn, and our definitions reduce to the
standard definitions that have appeared in the pattern matching literature.

We let P-match(F) denote the number of P-matches in F . For example, below
we have displayed a P,F, and G for which there are no P-matches in F but there is
an occurrence of P in F , since red(F [1,2,5]) = P. Also, there are 2 P-matches in G
starting at positions 1 and 2, respectively, so P-match(G) = 2:

P =
1 4 7

2 5 8

3 6 9

F =
1 5 6 3 15 7

2 10 8 13 17 9

4 11 12 16 18 14

G =
1 5 8 12 15 3

2 6 10 13 17 9

4 7 11 16 18 14

If P∈F j,k, then let MPP
n( j−1)+1 to be the set of F ∈Fn( j−1)+1,k with P-match(F)=

n, i.e., the set of F ∈ Fn,k with the property that there are P-matches in F starting at
positions 1, j,2 j−1, . . . ,n j− ( j−1). We let mpP

n( j−1)+1 = |MPP
n |, and by conven-

tion, define mpP
1 = 1.

Given a permutation σ = σ1 · · ·σ2 j ∈ A2n, one can construct a column strict array
Pσ ∈ F j by letting the ith column of Pσ consist of σ2(i−1)+1σ2(i−1)+2, reading from
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bottom to top, for i = 1, . . . , j. Then if σ ∈ A2 j is an alternating minimal overlap-
ping permutation and τ ∈ A2n( j−1)+2 is an alternating maximum packing for σ ,
then Pτ will be a maximum packing for Pσ . For example if σ = 1 3 2 5 4 6 and
τ = 2 3 1 7 5 8 4 10 9 11 6 13 12 14, then Pσ and Pτ are pictured below:

Suppose that we are given an alternating minimal overlapping permutation τ ∈
A2 j. To help us visualize the order relationships within Pτ , we form a directed graph
GPτ on the cells of the 2× j rectangle by drawing a directed edge from the position
of the number s to the position of the number s + 1 in Pτ for j = 1, . . . ,2 j − 1.
For example, here is the graph GPτ pictured immediately to the right of Pτ for τ =
231546:

The graph GPτ determines the order relationships between all the cells in Pτ since
Pτ(r,s)< Pτ(u,v) if there is a directed path from cell (r,s) to cell (u,v) in GPτ .

Now suppose that F ∈ MPPτ
2n( j−1)+2 where n ≥ 2. Because there is a Pτ -match

starting in column j, we can superimpose GPτ on the cells in columns j, j +
1, . . . ,2 j − 1 to determine the order relations between the elements in those j
columns. If we do this for j-tuple of columns, a( j−1)−(a−1) and (a+1) j−a for
a= 1, . . . ,n−1, we end up with a directed graph on the cells of the 2×(n( j−1)+1)
rectangle which we will call Gn( j−1)+1,Pτ . For example, here is G9,P231546 for the
graph GP shown above:

If F ∈ MPPτ
n( j−1)+1 and there is a directed path from cell (r,s) to cell (u,v) in

Gn( j−1)+1,Pτ , then it must be the case that F(r,s) < F(u,v). Note that Gn( j−1)+1,Pτ
will always be a directed acyclic graph without multiple edges.

The graph Gn( j−1)+1,P induces a poset

Wn( j−1)+1,P = ({(i, j) : 1 ≤ i ≤ 2 & 1 ≤ j ≤ n( j−1)+1},<W )

on the cells of the 2× (n( j−1)+1) rectangle by defining (i, j)<W (s, t) if and only
if there is a directed path from (i, j) to (s, t) in Gn( j−1)+1,P.

We define the graph G+
n( j−1)+1,Pτ

to be the Hasse diagram for the covering re-
lation given by the partially ordered set indicated by Gn( j−1)+1,Pτ . In our running
example, this is
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G+
9,P =

=

The following lemma gives information about directed acyclic graphs with no
multiple edges, which will allow us to replace Gn( j−1)+1,P with G+

n( j−1)+1,P. Given

a directed acyclic graph G = (V,E) with no multiple edges, let Con(G) equal the
set of all pairs (i, j) ∈V ×V such that there is a directed path in G from vertex i to
vertex j. The proof of the lemma and the next theorem can be found in [59].

Lemma 7.3. Let G = (V,E) be a directed acyclic graph with no multiple edges. Let
H be the subgraph of G that results by removing all edges e = (i, j) ∈ E such that
there is a directed path from i to j in G that does not involve e. Then Con(G) =
Con(H).

Using Lemma 7.3, one can prove the following characterization of when the
maximum packings for P are unique. That is, we say that a pattern P ∈ F j,k with the
minimal overlapping property is degenerate if it satisfies

1. P(1,1) = 1 or P(1, j) = 1,
2. P(k,1) = jk or P(k, j) = jk, and
3. at least one of P(i,1)+1 = P(i+1,1) or P(i, j)+1 = P(i+1, j) holds, for each

1 ≤ i < k.

Theorem 7.14. Suppose k ≥ 2 and P ∈ F j,k is a pattern with the minimal overlap-
ping property. Then mpP,n( j−1)+1 = 1 for all n ≥ 1 if and only if P is degenerate.

Unfortunately there are no alternating minimal overlappings σ ∈ A2 j that cor-
respond to degenerate patterns in F j,2 when j = 3: If P ∈ F j,2 where j ≥ 3 and is
degenerate, either the first column of P is equal to 12 or the last column of P is
(2n−1)2n, both of which violate the alternating condition.

For nondegenerate patterns, Lemma 7.3 allows us to replace the graph Gn( j−1)+1,P

by the simpler graph G+
n( j−1)+1,P without losing an information about the possible

maximum packings of P231546.
The number of linear extensions of the poset WG+

9,P231546
is not hard to find.

A linear extension of WG+
9,P231546

is just a labeling L of vertices of G+
9,P231546

with

the numbers 1, . . . ,18 in such a way such that if there is a directed path from vertex
v to vertex w in G+

9,P231546
, then L(v)< L(w).

Define the branch points of G+
9,P231546

to be those vertices whose in degree is ≥ 2.

Suppose that b1,b2,b3 are the branch points of G+
9,P231546

, reading from left to right,
and ai is the vertex connected to bi from below for i = 1,2,3. The rightmost branch
point b3 and the 5 vertices to its right must be assigned the numbers 13, . . . ,18 in a
linear extension L, reading from left to right. Taking away these 6 vertices, we see
that we have 12 vertices left and that the vertex a3 is independent of the rest of the
remaining graph.
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Thus L(a3) can be any element in {1, . . . ,12}. Having fixed L(a3), the largest
three remaining numbers must be assigned to b2 and the two vertices on the path
from b2 to b3. Removing these 3 vertices, we see that a2 is independent of the re-
maining 8 vertices so that we have 8 choices for the value of L(a2). Having fixed
L(a2), the largest three remaining numbers must be assigned to b1 and the two ver-
tices on the path from b1 to b2. Removing these 3 vertices, we see that a1 is inde-
pendent of the remaining 4 vertices so that we have 4 choices for the value of L(a2).
In conclusion, the number of linear extensions of WG+

9,P231546
is 12 ·8 ·4 = 433!.

This argument can be applied in general to WG+
2n+1,P231546

. That is, there will n−1

branch points b1, . . . ,bn−1 in G+
2n+1,P231546

, reading from left to right. We then let ai

be the vertex connected to bi from below in G+
2n+1,P231546

. Then there will be 4n+2

vertices in G+
2n+1,P231546

and there are 6 vertices on the path from bn−1 moving to
the right and these elements must be assigned the largest 6 numbers in any linear
extension of WG+

2n+1,P231546
.

Taking away these 6 vertices, we see that we have 4(n−1) vertices left and that
the vertex an−1 is independent of the rest of the remaining graph. Thus L(an−1)
can be any element in {1, . . . ,4(n − 1)}. Having fixed L(an−1), the largest three
remaining numbers must be assigned to bn−2 and the two vertices on the path from
bn−2 to bn−3. Removing these 3 vertices, we see that an−2 is independent of the
remaining 4(n−2) vertices so that we have 4(n−2) choices for the value of L(a2).
Having fixed L(an−2), the largest three remaining numbers must be assigned to bn−3

and the two vertices on the path from bn−3 to bn−2. Removing these 3 vertices, we
see that an−2 is independent of the remaining 4(n − 3) vertices so that we have
(n−3) choices for the value of L(an−2).

Continuing on in this way, we see that the number of linear extensions of
WG+

2n+1,P231546
is ∏n−1

i=1 4i = 4n−1(n−1)!. Therefore

udmp4n+2,231546 = mp2n+1,P231546 = 4n−1(n−1)!.

More examples of explicit formulas for udmp2n( j−1)+2,τ when τ ∈ A2 j has the al-
ternating minimal overlapping property which can be found in the thesis of Adrian
Duane [31].

In general, it is a difficult problem to find explicit formulas for GMPτ ,2n(x) and
GMPτ ,2n+1(x). However if τ = τ1 · · ·τ2 j ∈ A2 j has the alternating minimal over-
lapping property where τ1 = 1 and τ2 j = 2 j, then GMPτ ,2n(x) satisfies a simple
recursion, as shown in the following theorem due to Adrian Duane and Jeffrey
Remmel [32].

Theorem 7.15. Suppose that τ = τ1 · · ·τ2 j ∈ A2 j with j ≥ 3 has the alternating min-
imal overlapping property where τ1 = 1 and τ2 j = 2 j. Then for n < j, Gτ ,2n(x) =
(−1)n−1. Additionally, Gτ ,2n(x) = (x−1)+(−1) j−1, and Gτ ,2n(x) is equal to

(x−1)sudmpτ ,2n −GMPτ ,2n−2(x)−
s−1

∑
i=1

(x−1)iudmpτ ,2i( j−1)+2GMPτ ,2(s−i)( j−1)(x)
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if 2n = 2s( j−1)+2 for some s ≥ 1, and Gτ ,2n(x) is equal to

−GMPτ ,2n−2(x)−
� n−1

j−1 �
∑
i=1

(x−1)iudmpτ ,2i( j−1)+2GMPτ ,2n−(2i( j−1)+2)(x)

if j−1 does not divide n−1.

Proof. If n < j, then any generalized maximum packing for τ of length 2n consists
of n blocks B1 · · ·Bn of size 2. Thus the only generalized maximum packing for τ of
length 2n is the identity permutation 12 · · ·2n which has weight (−1)n−1.

If n = j, any generalized maximum packing for τ of length 2n consists of either
(i) n blocks B1 · · ·Bn of size 2 or (ii) one block B1 of size 2n which must be equal to τ .
The only permutation for (i) is the identity which contributes (−1) j−1 to Gτ ,2 j(x)
and the only for (ii) is τ which contributes (x−1) to Gτ ,2 j(x).

Suppose that n> j. Since τ starts with 1 and ends with 2 j, any maximum packing
σ ∈ MPτ ,2s( j−1)+2 must start with 1 and end with 2s( j− 1)+ 2. Now suppose that
σ is a generalized maximum packing for τ of length 2n which has block structure
B1B2 · · ·Bk. Our observation about maximum packings for τ ensures that each block
Bi must start with the smallest element in block Bi and end with the largest element
in Bi. Since for any i < k the last element of Bi is less than the smallest element
of Bi+1, it follows that if |Bi| = bi for i = 1, . . . ,k, then the elements of B1 are just
1, . . .b1 and the elements of Bi+1 are just 1+∑i

a=1 bi, . . . ,bi+1 +∑i
a=1 bi. Thus we

can classify such generalized maximum packings σ by the size of the first block.

Case 1. Suppose k ≥ 2 and b1 = 2. In this case, B1 = 12 and the reduced permu-
tation red(B2 · · ·Bk) is a generalized maximum packing for τ of length 2n− 2.
Moreover, w(B1 · · ·Bk) =−w(red(B2 · · ·Bk). Thus the σ in this case contributes
−GMPτ ,2n−2(x) to GMPτ ,2n(x).

Case 2. Suppose k ≥ 2 and b1 = 2s( j − 1) + 2 for some s < n−1
j1

. In this case,
B1 is an element of MP2s( j−1)+2 and red(B2 · · ·Bk) is a generalized maxi-
mum packing for τ of length 2n− (2s( j − 1) + 2). Moreover w(B1 · · ·Bk) =
−(x − 1)sw(red(B2 · · ·Bk)). Hence, such permutations contribute −∑n−1

s=1 (x −
1)sudmpτ ,2s( j−1)+2GMPτ ,2n−2(x) to GMPτ ,2n(x).

Case 3. Suppose k = 1. In this case, 2n must be of the form 2s( j − 1) + 2 for
some s and σ ∈ MPτ ,2n. Such permutations contribute (x− 1)sudmpτ ,2s( j−1)+2
to GMPτ ,2n(x).

This completes the proof. ��
In the case where τ ∈ A2 j has the minimal overlapping property and τ starts with

1 and ends with 2 j, it is possible to compute Gτ ,2n+1(x). We do so in the following
theorem.

Theorem 7.16. Suppose that τ = τ1 · · ·τ2 j ∈ A2 j with j ≥ 3 has the alternating
minimal overlapping property where τ1 = 1 and τ2 j = 2 j. Then Gτ ,1(x) = 1 and
Gτ ,2n+1(x) =−Gτ ,2n(x) for n ≥ 1.
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Proof. The only generalized maximum packing for τ of length 1 is 1 (weight 1).
Our previous observations show that if B1 · · ·Bk is the block structure of a gener-

alized maximum packing for τ of length 2n+1, then Bk is of size 1 and its element
must be the largest element 2n+1. Thus B1 · · ·Bk−1 is a generalized maximum pack-
ing for τ of length 2n and w(B1 · · ·Bk) =−w(B1 · · ·Bk−1). ��

There are more cases where we can derive similar recursions for GMPτ ,2n(x) and
GMPτ ,2n+1(x) when τ either starts with one or ends with the largest elements. For
example, consider our previous example of τ = 231546. Then using the graphical
reasoning above, one can show that a typical generalized maximum packing σ with
block structure B1, . . . ,Bk is just a linear extension of a poset like

B1 B2 B3

or possibly

B1 B2 B3

That is, if the last block Bk is of size 2, then the two elements in Bk are two largest
elements in σ . If the last block Bk is of size 2(2k + 1), then all the elements in
the previous blocks are smaller than all the elements in Bk except those elements
connected to the main chain of G+

P(231546),2k+1 by vertical arrows.

Theorem 7.17. Define f (i,n) by f (1,n) = 2n− 5, f (2,n) = (2n− 9)(2n− 6), and

for s ≥ 3, f (s,n) = (2n−4s−1)(2n−4s+2)
s−2

∏
j=1

(2n−4s+2+4 j). If τ = 231546,

then Gτ ,2n(x) = (−1)n−1 for n < j, Gτ ,2n(x) = (x−1)+(−1) j−1, Gτ ,2n(x) is equal
to

4s−1(s−1)!(x−1)sudmpτ ,2n −GMPτ ,2n−2(x)−
s−1

∑
i=1

(x−1)i f (i,n)udmpτ ,4i+2GMPτ ,2n−4i−2(x)

if n = 2s+1 for some s ≥ 1, and Gτ ,2n(x) is equal to

−GMPτ ,2n−2(x)−
s−1

∑
i=1

(x−1)i f (i,s)udmpτ ,4i+2GMPτ ,2n−4i−2(x)

if n = 2s.

Proof. If n < j, then any generalized maximum packing for τ of length 2n consists
of n blocks B1 · · ·Bn of size 2. Thus the only generalized maximum packing for τ of
length 2n is the identity permutation 12 · · ·2n which has weight (−1)n−1.
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If n = j, any generalized maximum packing for τ of length 2n consists of either
(i) of n blocks B1, . . . ,Bn of size 2 or (ii) one block B1 of size 2n which must be
equal to τ . The only permutation for (i) is the identity which contributes (−1) j−1 to
Gτ ,2 j(x) and the only for (ii) is τ which contributes (x−1) to Gτ ,2 j(x).

Suppose that n > j. We classify the generalized maximum packings of τ by the
size of the last block of its block structure B1,B2, . . . ,Bk. We have three cases.

Case 1. Suppose k ≥ 2 and bk = 2. In this case, Bk = (2n − 1)(2n) and the re-
duced permutation red(B2, . . . ,Bk−1) is a generalized maximum packing for τ
of length 2n−2. Moreover w(B1 · · ·Bk) =−w(red(B2 · · ·Bk). Thus the σ in this
case contributes −GMPτ ,2n−2(x) to GMPτ ,2n(x).

Case 2. Suppose k ≥ 2 and bk = 4i+ 2 for some i < s. By our remarks above, all
the elements of B1, . . . ,Bk−1 are less than elements along central chain of the
poset G+

p(231546),2i+1 except for the elements connected to the central chain by

vertical arrows. We have pictured this situation in the case where |Bk| is of size
6, 10, 14, and 18 below:

Bk

Bk

Bk

Bk

The dotted line represents that we are only displaying the final connection
between the elements of B1, . . . ,Bk−1 and Bk. In such a situation, each linear
extension of the poset corresponds to a generalized maximum packing of τ
with block structure B1, . . . ,Bk with weight (−1)k−1 ∏i=1 w(Bi). We have a few
sub-cases to consider:

1. If Bk is of size 6, then the last 5 elements of the central chain of Bk must
be the largest 5 elements of the poset. If we remove these elements, then
the element of Bk below the central chain is independent of the remain-
ing elements so that we have 2n − 5 choices for this element. Once we
choose this element, the rest of σ just corresponds to a linear extension of
the poset associated with the block structure B1 · · ·Bk−1. Such permutations
contribute
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−(x−1)(2n−5)GMPτ ,2n−6(x) =−(x−1) f (1,n)GMPτ ,2n−6(x)

to GMPτ ,2n(x).
2. If Bk is of size 10, then the last 6 elements of the central chain of Bk must

be the largest 6 elements of the poset. If we remove these elements, then
the element of Bk below the central chain on the right is independent of the
remaining elements so that we have 2n−6 choices for this element.
Once this choice is made, the first two elements of the central chain must be
the largest two remaining elements. After removing these two elements, the
element below the central chain is independent of the rest of the elements
so we have (2n− 9) ways to choose this element. Once that is chosen, the
rest of σ just corresponds to a linear extension of the poset associated with
the block structure B1 · · ·Bk−1. Such permutations contribute

−(x−1)2(2n−6)(2n−9)GMPτ ,2n−10(x)=−(x−1)2 f (2,n)GMPτ ,2n−10(x)

to GMPτ ,2n(x).
3. If Bk is of size 4s+ 2 where s ≥ 3, then the last 6 elements of the central

chain of Bk are must be the largest 6 elements of the poset. If we remove
these elements, then the element of Bk below the central chain on the right
is independent of the remaining elements so that we have 2n− 6 choices
for this element.
Once we choose this element, the next three elements of the central chain
must be the largest three remaining elements. Once we remove those three
elements, the element below the central chain is independent of the rest
of the elements so there are (2n− 10) ways choose this element. If this
element is not the first element, reading from left to right, of the elements
of Bk below the central chain, then the next three elements of the central
chain must be the largest three remaining elements.
Once we remove those three elements, the element below the central chain
is independent of the rest of the elements so that we have (2n− 14) ways
to choose this element. We can continue in this way until we reach the first
element below the central chain; we will have (2n− 6)(2n− 10) · · ·(2n−
6+ 4(s− 2)) ways to choose the values of the elements below the central
chain.
Having chosen all these, then the first two elements of the central chain will
be the largest of the remaining elements. Once we have chosen those two
elements, we will have (2n−6+4(s−2))−3 ways to the first element be-
low the chain and then the rest of σ just corresponds to a linear extension of
the poset associated with the block structure B1 · · ·Bk−1. Such permutations
contribute

−(x−1)s f (s,n)GMPτ ,2n−2s−2(x)

to GMPτ ,2n(x).
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Case 3. Suppose k = 1. In this case, 2n must be of the form 2s + 2 for some s
and σ ∈ MPτ ,2n. Such permutations contribute (x− 1)sudmpτ ,2s+2 = 4s−1(s−
1)!(x−1)s to GMPτ ,2n(x).

This completes the proof. ��
We can also compute GMP231546,2n+1(x) in terms of GMP231546,2n+1(x), as we

show in our final result in this chapter.

Theorem 7.18. Suppose that τ = 231546 has the alternating minimal overlapping
property. Then Gτ ,1(x) = 1 and Gτ ,2n+1(x) =−Gτ ,2n(x) for n ≥ 1.

Proof. Clearly 1 is the only generalized maximum packing for τ of length 1 and it
has weight 1.

Our previous observations show that if B1, . . . ,Bk is the block structure of a gener-
alized maximum packing for τ of length 2n+1, then Bk is of size 1 and its element
must be the largest element 2n+ 1. Thus B1, . . . ,Bk−1 is a generalized maximum
packing for τ of length 2n and w(B1 · · ·Bk) =−w(B1 · · ·Bk−1). ��

Exercises

7.1. Given A(z) = ∑∞
n=0 |{σ ∈ Sn does not have a τ-match}|zn/n! for some τ ∈ S j,

approximate the expected number of nonoverlapping τ-matches in a randomly se-
lected permutation in Sn.

7.2. Find a normal distribution (see Exercise 3.4) which gives a reasonable approx-
imation for the distribution of nonoverlapping descents in Sn.

7.3. Let T be the set of permutations in τ = τ1 · · ·τ j+1 ∈ S j+1 which satisfy τ1 >
τ2 > · · ·> τ j and τ j < τ j+1. Find generating functions for

∞

∑
n=0

zn

n! ∑
σ∈Sn

xT-nlap(σ) and
∞

∑
n=0

zn

n! ∑
σ∈Sn

xT-match(σ).

Solutions

7.1 The probability that j consecutive integers is not a τ-match is 1−1/ j!. Group-
ing consecutive integers in a permutation into sets of size j, the probability that a
permutation in Sn will not have any τ-matches is at most (1−1/ j!)�n/ j�. Since the
coefficient of zn in A(z) is the probability that a permutation in Sn will not have
a τ-match, this means that the sum A(1) converges since it is not greater than the
convergent series ∑∞

n=0(1−1/ j!)�n/ j�. The number A′(1) is also well defined.
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Using Theorem 7.1 and the ideas in Exercise 3.3, the expected number of
τ-matches is

∂
∂x

A(z)
(1− x)+ x(1− z)A(z)

∣
∣
∣
∣
x=1

=
1−A(z)(1− z)

A(z)(z−1)2

=
1/A(1)
(z−1)2 +

1−A′(1)/A(1)2

(z−1)
+g(z),

where g(z) is a function with radius of convergence larger than 1. Using Exer-
cise 1.20, the expected number of nonoverlapping τ-matches in a randomly selected
permutation in Sn is approximately (n+1)/A(1)+A′(1)/A(1)2 −1.

7.2 The function A(z) in this example is ez. Using the result in the solution to
exercise 7.1, the expected number of nonoverlapping descents in Sn is approximately
(n+2)/e−1.

As for the variance,

A2
x f (z,x)

∣
∣
x=1 =− 2e−2z

(z−1)3 − 3e−z

(z−1)2 − 1
z−1

=− 2e−2

(z−1)3 − (3e−1 −4e−2)

(z−1)2 − 4e−2 +3e−1 −1
(z−1)

+g(z)

for some function g(z) with no singularities. Using the result in Exercise 1.20, we
can use the singular part of the above equation to find a very good estimate for the
second moment. Subtracting the square of (n+ 2)/e− 1 from this second moment
gives that the variance is very close to (3− e)(n+2)/e2.

The normal distribution which best approximates the number of descents in Sn is

therefore e
1− (ex+e−n−2)2

2(3−e)(n+2) /
√

2π(3− e)(n+2). Below we plot this normal distribution
when n = 25 along with bars showing the exact probabilities that a permutation in
S25 has x nonoverlapping descents:

0.1

0.2

0.3

0.4

12 24



Notes 261

7.3 Every permutation in Sn without a T-match must be the concatenation of int-
egers which reduce to a permutation of n − � without a j · · · 2 1-match with a
decreasing string of length �. For example, when j = 3, the permutation

σ = 9 1 7 8 4 5 2 11 12 10 6 3

does not have a T = {3214,4213,4312} match and is the concatenation of the inte-
gers 9 1 7 8 4 5 2 11 12 and the decreasing sequence 10 6 3. This concatenation is
unique if we require � to be a multiple of j, so we have

A(z) =
∞

∑
n=0

zn

n!
|{σ ∈ Sn has no T matches}|

=
∞

∑
n=0

zn

n!

n

∑
�=0

(
n
�

)
((n− �)!B(z))|zn−�

(

�!
∞

∑
i=0

zi j

(i j)!

)∣∣
∣
∣
∣
z�

,

where B(z) is the exponential generating function for the permutations in Sn without
a j · · · 2 1 match found in the statement of Theorem 3.4. Therefore

A(z) = B(z)
∞

∑
i=0

zi j

(i j)!
=

eζ 0z + · · ·+ eζ j−1z

(1−ζ j−1)eζ z + · · ·+(1−ζ )eζ j−1z
,

where ζ = e2πi/ j is a primitive jth root of unity. The desired generating functions
follow by using this particular A(z) in Theorems 7.2 and 7.6.

Notes

Theorem 7.1 was proved by Kitaev [70]. The proof that we have presented, which
also gives a method to calculate the function A(z) in the statement of the theorem, is
found in [88]. This method of finding A(z) was used to prove more explicit formulas
for the generating functions that avoid certain consecutive patterns in [77].

As stated in section 7.2, the cluster method is due to Goulden and Jackson and it
has many applications. Our proof of the cluster method is new.

The results in sections 7.3 and 7.5 are based on [32], the results in section 7.4 are
new, and the results in section 7.5 are based on [31, 100].

Many of the results on consecutive patterns in permutations were first proved by
Sergey Kitaev and Sergey Kitaev with Toufik Mansour. The generating function in
(7.3) is due to Elizalde and Noy.

Equation (7.12) generalizes a result due to Kitaev [69], which was proved using
an inclusion–exclusion argument, when proving the results due to Elizalde and Noy.

The problem of computing udmpτ ,2n has been studied in [59] in a different con-
text. There maximum packings in column strict arrays were considered. Here we
studied the problem of computing mpP

n( j−1)+1 for PF2, j is shown to reduced to find-
ing the number of linear extensions of a certain poset associated with P.



Chapter 8
The Reciprocity Method

In Chapters 3, 4, and 7, we showed that the generating function for the distribution
of many generating functions for permutations and words can be proved by applying
ring homomorphisms ϕ to symmetric function identities. Many different generating
functions came from applying ϕ to the identity in Theorem 2.5, namely

H(z) = ∑
n≥0

hnzn =
1

1+∑∞
n=1(−z)nen

=
1

E(−z)
.

Suppose that we are given some statistic s(σ) on permutations and wish to study
the generating function

∞

∑
n=0

zn

n! ∑
σ∈Sn

xs(σ).

In order to use our methods, we would like to come up with a ring homomorphism
ϕ which is defined on the elementary symmetric functions such that

n!ϕ(hn) = ∑
σ∈Sn

xs(σ),

which in turn would make ϕ(H(t)) equal to the desired generating function.
But how do we find an appropriate homomorphism ϕ? The reciprocity method,

the subject of this chapter, provides one possible answer to this question.
The reciprocity method begins by assuming that we can write the desired gener-

ating function as
∞

∑
n=0

zn

n! ∑
σ∈Sn

xs(σ) =
1

1+∑∞
n=1 Un(x) zn

n!

for some function Un(x) where we assume that the generating function

U(z,x) =
∞

∑
n=0

Un(x)
zn

n!
=

1

1+∑∞
n=1

zn

n! ∑σ∈Sn xs(σ)
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is the result of applying a second homomorphism Γ to the identity H(z) = 1/E(−z).
This assumption implies that Γ (e0) = 1 and

Γ (en) =
(−1)n

n! ∑
σ∈Sn

xs(σ)

for n ≥ 1. Expanding n!hn in terms of brick tabloids,

Un(x) = n!Γ (hn)

= n! ∑
λ�n

(−1)n−�(λ )|Bλ ,(n)|Γ (eλ )

= ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

(−1)�(λ )
(

n
b1, . . . ,b�

)

∏
i=1

∑
σ∈Sbi

xs(σ). (8.1)

The right-hand side of this expression has a natural combinatorial interpretation,
giving us information about Un(x) and information about how to define the appro-
priate ring homomorphism ϕ .

Let us illustrate this idea with example. Suppose that we want to find the gener-
ating function for

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)+1 =
1

1+∑∞
n=1 Un(x) zn

n!

.

Looking at (8.1), we can say that

Un(x) = ∑
T ∈ Bλ ,(n) for some λ � n

has bricks b1, . . . ,b�

(−1)�(λ )
(

n
b1, . . . ,b�

)

∏
i=1

∑
σ∈Sbi

xdes(σ)+1.

A combinatorial interpretation to the right-hand side of (8.1) is as follows.
First select a brick tabloid with bricks b1, . . . ,bk. Interpret the multinomial coef-

ficient as picking an ordered set partition T1, . . . ,Tk of {1, . . . ,n} such that the size
of Ti equals bi for i = 1, . . . ,n. We interpret ∏i=1 ∑σ∈Sbi

xdes(σ)+1 as the number of

ways of placing a permutation σ (i) of Ti in the cells of brick bi and labeling each
cell which starts a descent of σ (i) with an x and labeling the last cell of bi with an x
for i = 1, . . . ,k. Finally, we interpret the term (−1)�(λ ) as changing the label of the
last cell of each brick from x to −x.

One such combinatorial object is shown below, where we have chosen T1 =
{1,4,7,9}, T2 = {2,12,13}, T3 = {2,5,10}, T4 = {6,8,11}, σ (1) = 3124, σ (2) =
132, σ (3) = 213, and σ (4) = 123:

7 1 4 9 3 13 12 5 2 10 6 8 11

x −x x −x x −x −x

.
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Let On denote the set of all such combinatorial objects. Define the weight of such
an object to be the product of all x or −x labels. Then Un(x) is equal to the weighted
sum over On.

As usual, we can define an involution I on On by scanning the cells from right to
left looking for the first cell c such that either

i c is labeled with an x or
ii cell c is labeled with −x so that c is the last cell in some brick bi and the element

in cell c is larger the first cell of brick bi+1.

In the first case, split the brick b containing c into two bricks b∗ and b∗∗ such that
b∗ contains the cells of b up to and including cell c and b∗∗ contains the remaining
cells of b. Change the label on cell c from x to −x. In the second case, replace bi and
bi+1 by a single brick and change the label on cell c from −x to x. If neither case
applies, do nothing.

It follows that I is sign reversing weight preserving involution and Un(x) is there-
fore a weighted sum over the fixed points of I. In such a fixed point, there can be
no cells labeled x in the fixed point, so σ is increasing within each brick b of B and
there can be no decreases between bricks.

This means that the permutation σ in a fixed point must be the identity permu-
tation. We can have any brick structure on σ = 12 · · ·n. Therefore, for each i < n,
we can decide to have brick end at cell i, in which case we label cell i as −x, or we
cannot have a brick end at cell i, in which case the label is 1. Since the last cell is
labeled with −x, we have

Un(x) =−x(1− x)n−1.

Therefore

∞

∑
n=0

zn

n! ∑
σ∈Sn

xdes(σ)+1 =
1

1+∑∞
n=1 Un(x) zn

n!

=
1

1−∑∞
n=1 x(1− x)n−1 zn

n!

=
1− x

1− xe(1−x)z
.

We found the desired generating function without knowing the appropriate ring
homomorphism ϕ from the outset.

8.1 The Reciprocity Method for Pattern Avoiding
Permutations

Let NMn(τ) denote the set of permutations in Sn with no consecutive τ-matches
where τ is a permutation which begins with 1. We begin by assuming that
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∑
n=0

zn

n! ∑
σ∈NMn(τ)

ydes(σ)+1 =
1

1+∑∞
n=1 Uτ ,n(y) zn

n!

for some function Uτ ,n(y).
In this section we discuss how the reciprocity method can be used to find recur-

sions for Uτ(y) in the case when τ is of the form 1324 · · · p for p ≥ 4, that is, we are
considering the case where τ is created by from applying the transposition (23) to
the identity permutation. This will enable us to find the generating function for the
number of descents in permutations in NMn(τ).

Theorem 8.1. Let τ = 1324 · · · p where p ≥ 5. Then Uτ ,1(y) =−y and

Uτ ,n(y) = (1− y)Uτ ,n−1(y)+
� n−2

p−2 �+1

∑
k=2

(−y)k−1Uτ ,n−((k−1)(p−2)+1)(y)

for n ≥ 2.

Proof. Beginning with equation 8.1, we create combinatorial objects which have a
weighted sum equal to Uτ ,n(y). Looking at (8.1), we select a brick tabloid with bricks
b1, . . . ,b� and then interpret the multinomial coefficient as selecting an ordered set
partition T1, . . . ,T� of {1, . . . ,n} such that |Ti| = bi for each i. Use the factor of the
form ∏�

i=1 NMτ ,bi(y) to select permutations σ (1), . . . ,σ � such that σ (i) ∈ NMbi(τ)
for each i. Use these permutations to rearrange the ordered set partition associated
with each brick.

Place a power of y in each cell which contains a descent of σ (i) and label the last

cell of each brick with a y in order to account for the factor ydes(σ (i))+1 in equation
(8.1). Lastly, change the final y to −y, accounting for the (−1)�(λ ) in (8.1). Below we
display one possible combinatorial object created in this manner when τ = 13245:

2 12 5 16 13 14 6 7 9 15 1 3 11 8 10 4

y y y −y y y −y y −y

.

Define the weight of such an object T , w(T ), to be the product of the y and −y
labels and let Oτ ,n be the set of all possible combinatorial objects created in this
way. It follows that

Uτ ,n(y) = ∑
T∈Oτ ,n

w(T ).

Time for an involution! Define I on T ∈Oτ ,n in the following way. Scan the cells
of T from left to right looking for the first cell c such that either

i c is labeled with a y or
ii c is a cell at the end of a brick bi, σc > σc+1, and there is no τ-match of σ that

lies entirely in the cells of bricks bi and bi+1.
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In the case of (i), if c is a cell in brick b j, split b j into two bricks b′j and b′′j
where b′j contains all the cells of b j up to an including cell c and b′′j consists of the
remaining cells of b j. Change the label on cell c from y to −y.

In the case of (ii), combine the two bricks bi and bi+1 into a single brick b and
change the label on cell c from −y to y.

If neither case (i) or case (ii) applies, define I(T ) = T .
The fact that τ has only one descent is the key to ensuring that I is an weight

preserving sign reversing involution. That is, suppose that we are in case (i) and we
split brick b j into two bricks b′j and b′′j at cell c. Then if j > 1, we have to consider
the brick b j−1 that proceeds b j. Let d be the last cell of brick b j−1 and suppose that
σd > σd+1. Then the reason that we did not apply case (ii) of the definition of I at
cell d to define I(T ) is that there must be a τ-match that straddles the cells of b j−1

and b j. Since τ has one descent this τ-match can not extend beyond cell c since then
there would be two descents in the τ-match, namely σd > σd+1 and σc > σc+1. Thus
our τ-match that straddles the bricks b j−1 and b j, is contained in the bricks b j−1 and
b′j. It then easily follows that the first cell where we can apply our involution to I(T )

is again at cell c which implies that I2(T ) = T . Verifying that I2(T ) = T when either
σd < σd+1 or j = 1 is straightforward. Similarly, it is easy to check that I2(T ) = T
in the case where we apply case (ii) to define I.

A fixed point under I cannot have any cells labeled with y, and so elements within
each brick must be increasing. Similarly, if bi and bi+1 are two consecutive bricks
in a fixed point T , then either there is an increase between bricks bi and bi+1 or
there is a τ-match contained in the elements of the cells of bi and bi+1 which must
necessarily involve both the last element in bi and the first element of bi+1.

We claim that, in addition, the numbers in the first cells of the bricks must form
an increasing sequence reading from left to right. That is, suppose that bi and bi+1

are two consecutive bricks in a fixed point T of I and that a > a′ where a is the
number in the first cell of bi and a′ is the number in the first cell of bi+1. Then the
number in the last cell of bi must be greater than a′ so there is a τ-match in the cells
of bi and bi+1.

However, a′ is the least number that resides in the cells of bi and bi+1, meaning
that the only way that a′ could be part of a τ-match that occurs in the cells of bi and
bi+1 is to have a′ play the role of 1. But since we are assuming that τ starts with
1, this means a′ is part of a τ-match and that τ-match must be entirely contained
in bi+1—an impossibility. Thus a′ cannot be part of any τ-match that occurs in the
cells of bi and bi+1.

However, this would mean that the τ-match that occurs in the cells of bi and bi+1

must be contained entirely either in the cells of bi or in the cells of bi+1 which again
is impossible. We can now conclude that a < a′.

To recap, the fixed points T under I must satisfy

i there are no cells labeled with y in T ,
ii the integers in each brick of T form an increasing sequence, and
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iii if bi and bi+1 are two consecutive bricks in T , then either there is increase
between bi and bi+1 or there is a decrease between bi and bi+1 but there is a
τ-match contained in the elements of the cells of bi and bi+1 which straddle
these two bricks.

The results so far in the proof are valid for τ = 1324 . . . p where p ≥ 4, but from
this point on we specialize to the case of τ = 1324 · · · p where p ≥ 5.

Let T be a fixed point of I. Number 1 must be in the first cell of T . We claim
that 2 must be in the second or third cell of T . Suppose that 2 is in cell c where
c > 3. Since there are no descents within any brick, 2 must be the first cell in a
brick. Moreover, since the minimal numbers in the bricks of T form an increasing
sequence, 2 must be in the first cell of the second brick. Thus if b1 and b2 are the first
two bricks in T , then 1 is in the first cell of b1 and 2 is in the first cell of b2. But then
there is no τ-match in the cells of b1 and b2. We now have two cases, depending on
whether 2 is in the second cell of T or if 2 is in the third cell of T .

Case 1. Suppose 2 is in the second cell of T . There are two possibilities, namely
either

i 1 and 2 are both in the first brick b1 of T or
ii brick b1 is a single cell filled with 1 and 2 is in the first cell of the second

brick b2 of T .

In either case, 1 is not part of a τ-match in T and if we remove cell 1 from T
and subtract 1 from the numbers in the remaining cells, we would end up with
a fixed point T ′ of I in Oτ ,n−1.

In case (i), we have the weight of T and T ′ the same. In case (ii), since b1

will have a label −y on the first cell, so w(T ) = (−y)w(T ′). It follows that fixed
points in Case 1 will contribute (1− y)Uτ ,n−1(y) to Uτ ,n(y).

Case 2. Suppose 2 is in the third cell of T . Let T (i) denote the number in cell i of
T and b1,b2, . . . be the bricks of T . Since there are no descents within bricks in
T and the first numbers of each brick are increasing, it must that 2 is in the first
cell of b2. Thus b1 has two cells because there must be a τ-match straddling the
cells of b1 and b2 where the 1 in the first cell of b1 plays the roll of 1 and the 2
in the first cell of b2 plays the roll of 2.

Then b2 must have at least p− 2 cells because if not, there would not be
a τ-match straddling the cells of b1 and b2. But then the only reason that we
cannot combine bricks b1 and b2 is that there is a τ-match in the cells of b1 and
b2 which could only start at position 1.

Next we claim that T (p− 1) = p− 1. Since there is a τ-match starting at
position 1 and p ≥ 5, we know that all the numbers in the first p−2 cells of T
are strictly less than T (p−1). Thus T (p−1)≥ p−1. Now if T (p−1)> p−1,
then let i be least number in the set {1, . . . , p−1} that is not contained in bricks
b1 and b2. Since the numbers in each brick are increasing and the minimal
numbers of the bricks are increasing, the only possible position for i is the first
cell of brick b3. From here it follows that there is a decrease between bricks b2

and b3.
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Since T is a fixed point of Iτ , there is a τ-match in the cells of b2 and b3.
But since τ has only one descent, this τ-match can only start at the cell c which
is the second to the last cell of b2. Thus c could be p− 1 if b2 has p− 2 cells
or c > p−1 if b2 has more than p−2 cells. In either case, p−1 < T (p−1)≤
T (c)< T (c+1)> T (c+2) = i. But this is impossible since to have a τ-match
starting at cell c, we must have T (c) < T (c+ 2). Thus it must be the case that
T (p−1) = p−1 and {T (1), . . . ,T (p−1)}= {1, . . . , p−1}.

We now have two sub-cases.

Case 2a. Suppose there is no τ-match in T starting at cell p− 1. We claim that
T (p) = p. That is, if T (p) 	= p, then p cannot be in b2, so p must be in the first
cell of the brick b3. But then we claim that we could combine bricks b2 and
b3. That is, there will be a decrease between bricks b2 and b3 since p < T (p)
and T (p) is in b2. Since there is no τ-match in T starting at cell p− 1, the
only possible τ-match among the cells of b2 and b3 would have to start at a cell
c 	= p−1. But it cannot be the case that c < p−1 since then T (c)< T (c+1)<
T (c+2).

Similarly, it cannot be that c > p− 1 since then T (c) > p and p has to be
part of the τ-match—this is impossible since T (c) must play the role of 1 in
the τ-match. Thus T (p) = p. Thus if T ′ is the result of removing the first p−1
cells from T and subtracting p−1 from the remaining numbers, then T ′ will be
a fixed point of I in Oτ ,n−(p−1).

If b2 has p− 2 cells, then T ′ will start with a brick with one cell and if b2

has more than p−2 cells, then T ′ will start with a brick with at least two cells.
Since there is −y coming from the brick b1, the fixed points in Case 2a. will
contribute −yUτ ,n−(p−1)(y) to Uτ ,n(y).

Case 2b. Suppose there is a τ-match starting at cell p−1 in T . In this case, T (p−1)
< T (p) > T (p+ 1) and so b2 must have p− 2 cells and brick b3 starts at cell
p+1. We claim that b3 must have at least p−2 cells. That is, if b3 has less than
p−2 cells, then there could be no τ-match among the cells of b2 and b3 so then
we could combine b2 and b3 violating the fact that T is a fixed point of I.

In the general case, assume that the bricks b2, . . . ,bk−1 in T all have (p−2)
cells. Then let r1 = 1 and for j = 2, . . . ,k−1, let r j = 1+( j−1)(p−2). Thus
r j is the position of the second to last cell of brick b j for 1 ≤ j ≤ k− 1. Fur-
thermore, assume that there is a τ-match starting at cell r j for 1 ≤ j ≤ k−1. It
follows that T (rk−1)< T (rk−1 +1)> T (rk−1 +2) and so brick bk must start at
cell rk−1 +2 and there is a decrease between bricks bk−1 and bk.

But then bk has at least p−2 cells since otherwise we could combine bricks
bk−1 and bk violating the fact that T is a fixed point of I. Let rk = 1+(k− 1)
(p−2) and assume that T does not have a τ-match starting at position rk. This
is the situation pictured below:

T(1) T(2)

b1

r2

T(3) ··· T(r2) T(r2+1)

b2

rk−1

······
T(rk−1) T(rk−1+1)

bk 1

rk

··· T(rk) T(rk+1) ···
bk
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First we claim T (r j) = r j and {1, . . . ,r j} = {T (1), . . . ,T (r j)} for j =
1, . . . ,k. We have shown that T (1) = 1 and that T (r2) = T (p− 1) = p− 1 and
{T (1), . . . ,T (p − 1)} = {1, . . . , p − 1}. Assume by induction that T (r j−1) =
r j−1 and {1, . . . ,r j−1} = {T (1), . . . ,T (r j−1)}. Since there is a τ-match that
starts at cell r j−1 and p ≥ 5, we know that all the numbers

T (r j−1),T (r j−1 +1), . . . ,T (r j−1 + p−3)

are ≤ T (r j) = T (r j−1 + p−2). The sets {1, . . . ,r j−1} and {T (1), . . . ,T (r j−1)}
must be equal, and so we know T (r j)≥ r j.

Next suppose that T (r j) > r j and let i be the least number that does not lie
in the bricks b1, . . . ,b j. The numbers in each brick increase and the minimal
numbers in the bricks are increasing, so i is in the first cell of the next brick
b j+1. Now if j < k, then i = T (r j + 2) ≤ r j < T (r j) < T (r j+1) which would
violate the fact that there is a τ-match in T starting at cell r j.

If j = k, then it follows that there is a decrease between bricks bk and bk+1

since bk+1 starts with i ≤ rk < T (rk). Since T is a fixed point of I, this must
mean that there is a τ-match in the cells of bk and bk+1. But since τ has only
one descent, this τ-match can only start at the cell c which is the second to the
last cell of bk. Thus c must be greater than rk because there cannot be a τ-match
starting at cell rk.

So bk+1 must have more than p−2 cells. In this case, we have that i ≤ rk <
T (rk) ≤ T (c) < T (c+ 1) > T (c+ 2) = i. But this cannot be since to have a
τ-match starting at cell c, we must have T (c) < T (c+ 2). Thus it must be the
case that T (r j) = r j. But then r j−1 = T (r j−1) < T (d) < T (r j) = r j for r j−1 <
d < r j so that {T (1), . . . ,T (r j)}= {1, . . . ,r j}, as desired. Thus we have proved
by induction that T (r j)= r j and {1, . . . ,r j}= {T (1), . . . ,T (r j)} for j = 1, . . . ,k.

This means that the sequence T (1), . . . ,T (rk) is completely determined.
Next we claim that since there is no τ-match starting at position rk, it must
be the case that T (rk + 1) = rk + 1. That is, if T (rk + 1) 	= rk + 1, then rk + 1
cannot be in brick bk so then rk +1 must be in the first cell of the brick bk+1.

But then we could combine bricks bk and bk+1. That is, there will be a dec-
rease between bricks bk and bk+1 since rk + 1 < T (rk + 1) and T (rk + 1) is in
bk. Since there is no τ-match starting in T at cell rk, the only possible τ-match
among the cells of bk and bk+1 would have to start at a cell c 	= rk.

Now it cannot be that c< rk since then T (c)< T (c+1)< T (c+2). If c> rk,
then T (c) > rk + 1 and rk + 1 would have to be part of the τ-match, meaning
T (c) could not play the role of 1 in the τ-match. Thus it must be the case that
T (rk +1) = rk +1.

It now follows that if we let T ′ the result of removing the first rk cells from
T and subtracting rk from each number in the remaining cells, then T ′ will be a
fixed point I in Oτ ,n−rk .

If bk has p−2 cells, then the first brick of T ′ will have one cell and if bk has
more than p−2 cells, then the first brick of T ′ will have at least two cells. Since
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there is a factor −y coming from each of the bricks b1, . . . ,bk−1, the fixed points
in Case 2b. will contribute ∑k≥3(−y)k−1Uτ ,n−((k−1)(p−2)+1)(y) to Uτ ,n(y).

We have now proved the theorem. ��
The statement of Theorem 8.1 changes slightly in the case of taking τ = 1324,

as we record in the following theorem.

Theorem 8.2. Let τ = 1324. Then Uτ ,1(y) =−y and

Uτ ,n(y) = (1− y)U1234,n−1(y)+
� n

2 �
∑
k=2

(−y)k−1Ck−1U1324,n−2k+1(y)

for n ≥ 2 where Ck =
(2k

k

)
/(k+1) is the kth Catalan number.

Proof. The beginning of this proof is the same as the proof of Theorem 8.1. The
difference is in the analysis of the fixed points under the involution I.

Let T be a fixed point under I. We know that 1 is in the first cell of T . In the same
way as in the proof of theorem 8.1, either 2 is in the second or third cell in T . We
break the situation into the two different cases.

Case 1. Suppose 2 is in the second cell of T . In this case there are two possibilities,
namely either

i 1 and 2 lie in the first brick b1 of T or
ii brick b1 has one cell and 2 is the first cell of the second brick b2 of T .

In either case, 1 is not part of a 1324-match and if we remove cell 1 from T
and subtract 1 from the elements in the remaining cells, we would end up with
a fixed point T ′ of I in T1324,n−1.

In case (i), the weights of T and T ′ are the same. In case (ii), since b1 will
have a label −y on the first cell, w(T ) = (−y)w(T ′). Therefore fixed points in
Case 1 will contribute (1− y)U1324,n−1(y) to U1324,n(y).

Case 2. Suppose 2 is in cell 3 of T . Let T (i) denote the element in i cell of T and
let b1,b2, . . . be the bricks of T . There are no descents within bricks in T and
the minimal elements in the bricks are increasing, so 2 is in the first cell of a
brick b2. As in the proof of Theorem 8.1, it follows that b1 must have two cells.
But then b2 must have at least two cells since if b2 has one cell, there could be
no 1324-match contained in the cells of b1 and b2 and we could combine bricks
b1 and b2 which would mean that T is not a fixed point of I.

Thus b1 has two cells and b2 has at least two cells. But then the only reason
that we could not combine bricks b1 and b2 is that there is a 1324-match in the
cells of b1 and b2 which could only start at the first cell.

We now have two sub-cases.

Case 2a. There is no 1324-match in T starting at cell 3. Suppose for the moment
that {T (1),T (2),T (3),T (4)} is not equal to {1,2,3,4} and let

i = min({1,2,3,4}\{T (1),T (2),T (3),T (4)}).
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Since there is a 1324-match starting at position 1, it follows that T (4)> 4 since
T (4) is the fourth largest element in {T (1),T (2),T (3),T (4)}. Since the min-
imal elements of the bricks of T are increasing, it must be that i is the first
element in brick b3. But then we could combine bricks b2 and b3 because there
will be a decrease between bricks b2 and b3. Since there is no 1324-match in T
starting at cell 3, the only possible 1324-match among the elements in b2 and b3

would have start at a cell c > 3. But then T (c)> i, which is impossible since it
would have to play the role of 1 in the 1324-match and i would have to play the
role of 2 in the 1324-match. Thus it must be that T (1) = 1, T (2) = 3, T (3) = 2,
and T (4) = 4.

If we let T ′ be the result of removing the first 3 cells from T and subtract 3
from the remaining elements, then T ′ will be a fixed point in O1324,n−3. Since
there is −y coming from the brick b1, the fixed points in Case 2a. contribute
−yU1324,n−3(y) to U1324,n(y).

Case 2b. Suppose there is a 1324-match starting at 3 in T . In this case, T (3) <
T (4) > T (5), so b2 must have two cells and brick b3 starts at cell 5. We claim
that b3 must have at least two cells. Indeed, if b3 has one cell, then there could
be no 1324-match among the cells of b2 and b3 so that we could combine b2

and b3 violating the fact that T is a fixed point.
In general, assume that the bricks b2, . . . ,bk−1 in T all have two cells and

there are 1324-matches starting at cells 1,3, . . . ,2k − 3 but there is no 1324-
match starting at cell 2k− 1 in T . Then we know that bk has at least two cells.
Let ci < di be the numbers in the first two cells of brick bi for i = 1, . . . ,k. Then
we know red(cidici+1di+1)= 1324 for 1≤ i≤ k−1 and so ci < ci+1 < di < di+1.

It must be the case that {T (1), . . . ,T (2k)} = {1, . . . ,2k}. If not, there is
a number greater than 2k that occupies one of the first 2k cells. Let M be
the greatest such number. If M occupies one of the first 2k cells then there must
be a number less than 2k that occupies one of the last n−2k cells. Let m be the
least such number. Since numbers in bricks are increasing, M must occupy the
last cell in one of the first k−1 bricks or occupy cell 2k. If M occupies the last
cell in one of the first k−1 bricks, then M is part of a τ-match

Then red(ci M ci+1 di+1) = 1 3 2 4 implies that M < di+1, contradicting our
choice of M as the greatest number in the first 2k cells. Thus M cannot occupy
the last cell in one of the first k−1 bricks. This means that M must occupy cell
2k in T .

Since numbers in bricks are increasing, m occupies the first cell of bk+1.
Thus there is a descent between bricks bk and bk+1, meaning m must be part
of a 1324-match. But the only way this can happen is if in the 1324-match
involving m, m plays the role of 2 and the numbers in the last two cells of brick
bk play the role of 1 3.
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Since we are assuming that a 1324-match does not start at cell 2k−1 which
is the cell that the number ck occupies, the numbers in the last two cells of brick
bk must be greater than or equal to dk = M which is impossible since m < M.
Therefore {T (1), . . . ,T (2k)}= {1, . . . ,2k} and dk = 2k.

It now follows that if we remove the first 2k− 1 cells from T and replace
each remaining number i in T by i− (2k − 1), then we end up with a fixed
point in T ′ under I. Each such fixed point T will contribute (−y)k−1Un−2k+1(y)
to Un(y).

The only thing left to do is to count the number of such fixed points T . That is,
we must count the number of sequences c1d1c2d2 . . .ckdk such that

i c1 = 1,
ii c2 = 2,

iii dk = 2k,
iv {c1,d1, . . . ,ck,dk}= {1,2, . . . ,2k}, and
v red(cidici+1di+1) = 1324 for each 1 ≤ i ≤ k−1.

We aim to show there are Ck−1 such sequences where Ck−1 is the k− 1-st Catalan
number, which is also the number of Dyck paths of length 2k−2. (See Exercise 3.9
for the definition of a Dyck path.) We will prove this bijectively.

Start with a Dyck path P = (p1, p2, . . . , p2k−2) of length 2k− 2. Label the seg-
ments p1, . . . , p2k−2 with 2, . . . ,2k−1, respectively. Define φ(P) to be the sequence
c1d1 . . .ckdk where c1 = 1 and c2 . . .ck are the labels of the up-steps of P, reading
from left to right, d1 . . .dk−1 are the labels of the down steps, reading from left to
right, and d2k = 2k.

For example, bijection φ in the case k = 7 below when applied to the Dyck path
shown here yields the permutation 1 4 2 7 3 8 5 9 6 12 10 13 11 14.

2

3 4 5

6 7

8

9 10

11 12

13

By construction, if P is a Dyck path of length 2k− 2 and φ(P) = c1d1 . . .ckdk,
then c1 < c2 < · · · < ck and d1 < d2 < · · · < dk. Moreover, since each Dyck path
must start with an up-step, we have that c2 = 2. Clearly c1 = 1, dk = 2k, and
{c1,d1, . . . ,ck,dk} = {1, . . . ,2k} by construction. Thus c1d1 . . .ckdk satisfies con-
ditions (i)-(iv).

As for condition (v), note that c1 = 1 < d1 > 2 = c2 < d2 so red(c1d1c2d2) =
1 3 2 4. If 2 ≤ i ≤ k−1, then ci equals the label of the (i−1)th up-step, ci+1 equals
the label of the ith up-step, and di is the label of ith down-step. Since in a Dyck path,
the ith down-step must occur after the ith up-step, it follows that ci < ci+1 < di <
di+1 so that red(cidici+1di+1) = 1 3 2 4.
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Vice versa, if we start with a sequence c1d1 . . .ckdk satisfying conditions (i)-(v)
and create a path P = (p1, . . . , p2k−2) with labels 2, . . . ,2k − 1 such that p j is a
up-step if j+1 ∈ {c2, . . . ,ck} and p j is an down-step if j+1 ∈ {d1, . . . ,dk−1}, then
condition (iii) ensures P starts with an up-step and condition (v) ensures that the ith
up-step occurs before the ith down step so that P will be a Dyck path. Thus φ is
a bijection between the set of Dyck paths of length 2k− 2 and the set of sequence
c1,d1, . . . ,ck,dk satisfying conditions (i)-(v).

It follows that the fixed points T of I where the bricks b1,b2, . . . ,bk−1 are of size
2 and there are 1324-matches starting at positions 1,3, . . . ,2k− 3 in T , but there is
no 1324-match starting at position 2k− 1 in T contribute Ck−1(−y)k−1Un−2k+1(y)
to Un(y). This proves the theorem. ��

The recursions for Uτ ,n given in Theorems 8.1 and 8.2 allow us to find generating
functions for

∑
n=0

zn

n! ∑
σ∈NMn(τ)

ydes(σ)+1.

The exponential formula, our Theorem 4.8, can be used to provide a refinement of
this generating function.

Let σ = σ1 · · ·σn be a permutation in Sn. We say that σ j is a left-to-right min-
imum of σ if σ j < σi for all i < j. For example, the left-to-right minima of
σ = 938471625 are 9, 3, and 1. Let lr-min(σ) denote the number of left-to-right
minima of σ .

Given a cycle C = (c0, . . . ,cp−1) with smallest element c0 written first, we let
cyc-des(C) = 1+ des(c0, . . . ,cp−1). The statistic cyc-des(C) counts the number of
descent pairs as we traverse once around the cycle (the extra 1 counts the descent
pair cp−1 > c0). By convention, if C = (c0) is a one cycle, we let cyc-desC = 1.
If σ is a permutation in Sn with k cycles C1 . . .Ck, then we define cyc-des(σ) =
cyc-des(C1)+ · · ·+ cyc-des(Ck).

In [64], Miles Jones and Jeffrey Remmel studied generating functions of the form

NCMτ(z,x,y) =
∞

∑
n=0

zn

n! ∑
σ∈NCMn(τ)

x# of cycles in(σ)ycyc-des(σ),

where NCMn(τ) is the set of permutations σ ∈ Sn which have no cycle-τ-matches.
The basic idea was to use the exponential formula to reduce the problem of com-
puting NCMτ(t,x,y) to the problem of computing similar generating functions for n
cycles.

That is, let NCMn,k(τ) be the set of permutations σ of Sn with k cycles such that
σ has no cycle-τ-matches and Lncm

m (τ) denote the set of m cycles γ in Sm such γ has
no cycle-τ-matches. Then it can be shown with the exponential formula that

NCMτ(z,x,y) =
∞

∑
n=0

zn

n!

n

∑
k=1

xk ∑
σ∈NCMn,k(τ)

ycyc-des(σ) = ex∑m≥1
zm
m! ∑C∈Lncm

m (τ) ycyc-desC
.
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It turns out that if τ ∈ S j is a permutation that starts with 1, then we can reduce
the problem of finding NCMτ(t,x,y) to the usual problem of finding the generating
function of permutations that have no τ-matches. Let σ̄ be the permutation that
arises from C1 · · ·Ck by erasing all the parentheses and commas where C1, . . . ,Ck

are ordered by decreasing minimal elements and each cycle starts with its minimal
element. Then the minimal elements of the cycles correspond to left-to-right minima
in σ̄ . Under the bijection σ → σ̄ , cyc-des(σ) = des(σ̄)+1 since every left-to-right
minima other than the first element of σ̄ is part of a descent pair in σ̄ .

In [64], it was proved that if τ ∈ S j and τ starts with 1, then

i σ has k cycles if and only if σ̄ has k left-to-right minima,
ii cyc-des(σ) = 1+des(σ̄), and

iii σ has no cycle-τ-matches if and only if σ̄ has no τ-matches

for any σ ∈ Sn. These facts imply that NCMτ(z,x,y) = NMτ(z,x,y). (However, if
τ does not start with 1, then |NMn(τ)| might not equal |NCMn(τ)|. For example, it
can be checked that |NCM7(3142)|= 4236 whereas |NM7(3142)|= 4237.) Further-
more, these fact also imply that NMτ(t,x,y) = F(t,y)x for some function F(t,y).

If we let Uτ(z,y) the generating function ∑∞
n=0 Uτ ,n(y)zn/n!, then

Uτ(z,y) =
1

1+∑∞
n=1

zn

n! ∑σ∈NMτ ,n ydes(σ)+1
,

and so for any permutation τ which starts with a 1,

∞

∑
n=0

zn

n!
NMτ ,n(x,y) =

(
1

Uτ(z,y)

)x

.

Mathematica can be used to unwind the recursions in Theorems 8.1 and 8.2 in
order to find the values of U132...p,n(y). Once these polynomials are found, the poly-
nomials NM1324...p,n(x,y) can be computed. For example, the table below gives the
coefficient of yi in U13245,n(y) for n = 1, . . . ,10:

n�i 1 2 3 4 5 6 7 8 9 10
1 −1
2 −1 1
3 −1 2 −1
4 −1 3 −3 1
5 −1 5 −6 4 −1
6 −1 7 −12 10 −5 1
7 −1 9 −21 23 −15 6 −1
8 −1 11 −34 47 −39 21 −7 1
9 −1 13 −51 88 −90 61 −28 8 −1
10 −1 15 −72 153 −189 156 −90 36 −9 1



276 8 The Reciprocity Method

Using this table, the polynomials NM13245,n(x,y) can also be found:

n The polynomial NM13245,n(x,y)
1 xy
2 xy+ x2 y2

3 xy+ xy2 +3x2 y2 + x3 y3

4 xy+4xy2 +7x2 y2 + xy3 +4x2 y3 +6x3 y3 + x4 y4

5 xy+10xy2 +15x2 y2 +11xy3 +30x2 y3 +25x3 y3 + xy4 +5x2 y4 +10x3 y4+
10x4 y4 + x5 y5

6 xy+24xy2 +31x2 y2 +62xy3 +140x2 y3 +90x3 y3 +26xy4 +91x2 y4+
120x3 y4 +65x4 y4 + xy5 +6x2 y5 +15x3 y5 +20x4 y5 +15x5 y5 + x6 y6

7 xy+54xy2 +63x2 y2 +273xy3 +553x2 y3 +301x3 y3 +292xy4 +840x2 y4+
875x3 y4 +350x4 y4 +57xy5 +238x2 y5 +406x3 y5 +350x4 y5 +140x5 y5+
xy6 +7x2 y6 +21x3 y6 +35x4 y6 +35x5 y6 +21x6 y6 + x7 y7

In every case that we have tested, the polynomials U1324,n(−y) and U1324...p,n(−y)
are unimodal, leading us to conjecture they are unimodal for all p ≥ 4 and n ≥ 1.

Exercises

8.1. Prove that the coefficient of xkyk in NM1324...p,n(x,y)xkyk is equal to S(n,k)
where S(n,k) denotes the number of set partitions of {1, . . . ,n} into k disjoint
nonempty sets.

8.2. Prove that the coefficient of xy2 in NM1324...p,n(x,y) is equal to 2n−1−n if n < p
and 2n−1 −2n+ p−1 if n ≥ p.

8.3. How many permutations σ ∈ Sn have exactly one descent and no consecutive
1324 matches for n ≥ 4? How many permutations σ ∈ Sn have exactly one descent
and no consecutive 132 . . . p matches for n ≥ p?

Solutions

8.1 A permutation σ ∈ Sn that contributes to the coefficient xkyk in NM1324...p,n(x,y)
must have k left-to-right minima and k−1 descents. Since each left-to-right minima
of σ which is not the first element is always the second element of descent pair, it
follows that if 1= i1 < i2 < i3 < · · ·< ik are the positions of the left-to-right minima,
then σ must be increasing in each of the intervals [1, i2), [i2, i3), . . . , [ik−1, ik), [ik,n].
Therefore

{σ1, . . . ,σi2−1},{σi2 , . . . ,σi3−1}, . . . ,{σik−1 , . . . ,σik−1},{σik , . . . ,σn}
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is just a set partition of {1, . . . ,n} ordered by decreasing minimal elements. More-
over, no such permutation can have a 1324 . . . p match for any p ≥ 4.

If we are given a set partition of {1, . . . ,n} into the sets A1, . . . ,Ak such that
min(A1)> · · ·> min(Ak), then the permutation σ created by listing the elements in
each of the sets Ak,Ak−1, . . . ,A1 in increasing order is a permutation with k left-to-
right minima and k−1 descents where for any set A ⊆ {1, . . . ,n}.

8.2 Suppose that σ ∈ Sn contributes to the coefficient of xy2 in NM1324...p,n(x,y),
meaning that σ has one left-to-right minima and one descent. Thus, σ must start
with 1 and have one descent.

Now if A is any subset of {2, . . . ,n} and B = {2, . . . ,n} \A, then we let σA the
permutation created by writing down 1, the elements in A in increasing order, and
then the elements in B in increasing order. The only choices of A that do not give
rise to a permutation with one descent are /0 and {2, . . . , i} for i = 2, . . . ,n. It follows
that there 2n−1 −n permutations that start with 1 and have 1 descent.

Next consider when such a σA could have a 1234 . . . p match. If the 1234 . . .
p-match starts at position i, then red(σiσi+1σi+2σi+3) = 1324. This means that the
only descent is at position i+ 1 and all the elements σ j for j ≥ i+ 3 are greater
than or equal to σi+3. But then all the elements between 1 and σi+2 must appear in
increasing order in σ2 . . .σi−1. It follows that σA is of the form 1 . . .(q−2)q(q+2)
(q + 1)(q + 2) . . .n. There are no such permutations if n ≤ p − 1 and there are
n− (p−1) such permutations if n ≥ p as q ranges between 1 and n− (p−1).

8.3 The permutation σ with exactly one descent and no 1324 or 1324 . . . p matches
must have either one or two left–right minima. Therefore in the case of 1324, the
number of such permutations is equal to

NM1324,n(x,y)|xy2 − NM1324,n(x,y)|x2y2 = (2n−1 −2n+4−1)+(2n−1 −1)

= 2n −2n+2,

where we used exercises 8.1 and 8.2 together with the fact that there are 2n−1 − 1
set partitions of {1, . . . ,n} into two sets. Similarly, in the case of 132 . . . p, we have

NM1324,n(x,y)|xy2 − NM1324,n(x,y)|x2y2 = (2n−1 −2n+ p−1)+(2n−1 −1)

= 2n −2n+ p−2.

Notes

The reciprocity method was first recorded in [65].
In [67], generating functions were explicitly calculated to find formulas for the

permutations in Sn with exactly two descents and no consecutive 132 . . . p matches.
This gave enumeration results similar, but more intricate, to our Exercise 8.3. For
instance, for n ≥ 8, the number of permutations in Sn with exactly 2 descents and no
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consecutive 13245 matches is equal to

3n +(7−2n)2n +25− 53n
3

+n2 − n3

3
.

The proof of this result relies on generating function manipulations (see [67]).
A direct combinatorial proof is not known.

The methods in section 8.1 can be used to prove other results for collections of
patterns that start with 1 and have one descent. In [66], permutations of the form

τ = 1p2 . . .(p− 1) were considered and it is shown that NMτ(z,x,y) =
(

1
Uτ (z,y)

)x

where Uτ(z,y) = ∑∞
n=0 Uτ ,n(y) zn

n! with Uτ ,1(y) =−y, and for n ≥ 2,

Uτ ,n(y) = (1− y)Uτ ,n−1(y)+
� n−2

p−2 �
∑
k=1

(−y)k
(

n− k(p−3)−2
k−1

)
Uτ ,n−(k(p−2)+1)(y).

Similarly, if p ≥ 5 and τ = 134 . . .(p−1)2p, then it is shown that Uτ ,1(y) =−y, and
for n ≥ 2,

Uτ ,n(y) = (1− y)Uτ ,n−1(y)+
� n−2

p−2 �
∑
k=1

(−y)k 1
(p−3)k+1

(
k(p−2)

k

)
Uτ ,n−k(p−2)−1.

The reciprocity method can also be applied to find generating function of xdes(w)+1

over all words w ∈ {1,2, . . .}∗ which have no u-matches where u is a word such that
des(u) = 1. In this case explicit formulas for the generating function can be found
instead of resorting to recursions. This work will appear in the forthcoming Ph.D.
thesis of Sangha, who is a student of the second author.

The reciprocity method can also be extended to compute generating functions of
the form

∞

∑
n=0

zn

n! ∑
σ∈NMu(τ)

ydes(σ)+1.

where τ has more than one descent. This requires modifying the involution I in
Theorem 8.1. This will be done in the forthcoming Ph.D. thesis of Bach, who is also
a student of the second author.



Appendix A
Transition Matrices

The a to b edge in the following directed graph is labeled with the λ ,μ entry of the
a-to-b transition matrix Aλ ,μ . This means aμ = ∑λ�n Aλ ,μ bλ .
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L’Hôptial’s rule, 18
labeled graph, 132, 136
Langley, Thomas, 120
Laplace transform, 21
Legendre polynomial Pn, 105
limit supremum, 17
Loehr, Nicholas, 31

Macdonald, Ian, 77
MacMahon, Percy, 31
major indices, 2

for standard tableaux, 178
Mansour, Toufik, 261
minimal overlapping property, 223

for words, 240
in alternating permutations, 245
in cycles, 238

moment, 102
monomial symmetric function, 34
Murnaghan, D. F., 205
Murnaghan-Nakayama rule, 197

Nakayama, T., 205
Newton, Isaac, 44
normal distribution, 102
Noy, Marc, 215, 261

OBμ ,λ , 55
ω , 60
one

in exponential formula, 136
orthogonal polynomial, 105–106



Index 291

P-equivalent, 169
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