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Preface

This book is devoted to the rigorous mathematical modeling of physical processes
in underground continuous media, namely, the correct description of porous elastic
solids with fluid-filled pores. Recently this subject has been attracting increased
attention for many reasons: the recovery of oil and gas, liquid waste disposal into
the ground, seismic phenomena, acoustic wave propagation in the water-saturated
porous bottom of the ocean, diffusion-convection in porous media, etc.

Such continuous media are called heterogeneous continuous media. That is, those
continuous media which consist of two or more different components (phases) and in
any sufficiently small amount of a continuum there are different phases. The mini-
mum size of this volume is different for different heterogeneous media, but usually it
is in the range from several microns to several tens of microns.

There are two different approaches to the description of heterogeneous media.
The first approach, which we call the phenomenological approach, is based upon
the notion of a continuous medium as a kind of conglomerate, where at each point
all phases of such a medium are present. In this approach, the main difficulty is the
physical modeling: the choice of axioms that define the dependence of the stress
tensor on the basic characteristics of motion and thermodynamic relations. The
second approach is based on precise physical modeling with further simplification
of the mathematical model using the methods of mathematical analysis. As a rule,
the differential equations of the exact mathematical model contain a small
parameter. Therefore, the main methods of simplifying exact mathematical models
are the methods of linearization and homogenization. Roughly speaking, these are
methods of constructing approximate mathematical models from the original one,
when the small parameter tends to zero. In this approach we must keep in mind the
limits of applicability of the physical models and methods of mathematical
analysis. The more precise and more rigorous methods provide the more trustable
mathematical models.

The phenomenological poroelastic equations derived by K. von Terzaghi and
M. Biot have long been regarded as standard and have formed the basis for solving
particular problems in poroelasticity. Terzaghi’s and Biot’s poroelastic equations
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take into account the displacement of both the fluid in the pores and the solid
skeleton and the coupling between them. These works have been rather heuristic.
Hence, several authors (R. Burridge and J. Keller [1], E. Sanchez-Palencia [2],
T. Levy [3–6]) have attempted to apply the second approach and derive the
macroscopic poroelastic equations on the basis of the fundamental laws of con-
tinuum mechanics and rigorous homogenization methods. The idea is quite nat-
ural: one first must describe the joint motion of the elastic skeleton and the fluid in
pores at the microscopic level by means of classical continuum mechanics, and
then use homogenization to find appropriate approximation models (homogenized
equations). The Navier-Stokes equations still hold at this scale of the pore size in
the order of 5–15 microns [7, 8]. Thus, as we have mentioned above, the mac-
roscopic mathematical models obtained are still within the limits of physical
applicability.

In this book we follow the method suggested by R. Burridge and J. Keller and
E. Sanchez-Palencia and systematically study filtration and acoustic processes in
poroelastic media.

Some parts of the book have been written in cooperation with my Ph.D. stu-
dents. Chapter 4 has been written in cooperation with I. Nekrasova, the first part of
the Chap. 5 has been written in cooperation with N. Erygina, the first part of the
Chap. 8 has been written in cooperation with A. Guerus, and Chap. 10 has been
written in cooperation with R. Zimin.

I am grateful to J. R. Ockendon for his always useful advices and my special
thanks for the book title.

I am also grateful to R. Perkins who carefully read the manuscript and essen-
tially improved my English. Researches which form the basis of the present book
have been partially supported by the Federal Program ‘‘Research and scientific—
pedagogical brainpower of Innovative Russia’’ for 2009–2013 (State Contract
14.A18.21.0357) and Grants N0 0691/GF and N0 0751/GF of the Ministry of
Education and Science of Kazakhstan.

Almaty, April 2013 Anvarbek Meirmanov
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Introduction

In the present book we derive different mathematical models describing flows in
poroelastic media. To explain the method we consider a bounded domain X � R

3

perforated by pores. A pore space (a liquid domain) Xf is filled with a viscous
liquid and there is a solid skeleton Xs ¼ XnXf which is supposed to be an elastic
body. Then the joint motion in X is described by the system [1]

o

ot
ðq vÞ þ r �

�
q v� v� ~vPf þ ð1� ~vÞPs

�
¼ q F; ð0:0:1Þ

oq
ot
þr � ðq vÞ ¼ 0; ð0:0:2Þ

where r � u is the divergence of u:

r � u ¼ trðruÞ;

a matrix a� b is defined as

ða� bÞ � c ¼ aðb � cÞ;

for any vectors a, b, and c, and a divergence r � P for any smooth tensor P is
defined as

c � ðr � PÞ ¼ r � ðP� � cÞ

for any constant vector c.
The function ~v is the characteristic function of the pore space Xf , Pf and Ps are

stress tensors in the liquid domain and in the solid skeleton respectively, v is the
velocity, q is the density of the medium, and F is a given vector of distributed mass
forces.

Equations (0.0.1, 0.0.2) are understood in the sense of distributions (as corre-
sponding integral identities) and contain dynamic equations for the liquid

q
dv

dt
¼ r � Pf þ q F;

dq
dt
þ qr � v ¼ 0;

in the pore space Xf for t [ 0, dynamic equations for the solid component

xv



q
dv

dt
¼ r � Ps þ q F;

dq
dt
þ qr � v ¼ 0;

in Xs for t [ 0, and the continuity condition for normal tensions

ðPs � Pf Þ � n ¼ 0

on the common boundary CðtÞ ‘‘pore space-solid skeleton’’. Here n is a unit
normal to CðtÞ.

We do not intend to specify state equations for stress tensors and for the density.
Let us just outline the problem, because it is completely nonlinear and contains one
more unknown subject: the common boundary ‘‘pore space-solid skeleton’’. The
main postulate here is that the solid and the liquid components are immiscible.
Therefore, the unknown (free) boundary CðtÞ is a surface of a contact disconti-
nuity [1], which is defined by the Cauchy problem for the characteristic function ~v:

d~v
dt
� o~v

ot
þr ~v � v ¼ 0; ~vðx; 0Þ ¼ v0ðxÞ; ð0:0:3Þ

in the whole domain X for t [ 0.
It is clear that, even if one knows how to solve the problem (0.0.1–0.0.3), this

mathematical model would not be useful for practical needs, since the function ~v
changes its value from 0 to 1 on the scale of a few microns. Thus, the most suitable
way to get a practically significant mathematical model is a homogenization. But
for this case the problem (0.0.1–0.0.3) becomes absolutely unsolvable. To get
something solvable and still reasonable, we use the scheme suggested in [2, 3] and
linearize the basic system.

That is, we approximate the characteristic function ~v of the liquid domain Xf by
its value at the initial time moment

~v ’ v0ðxÞ;

and the free boundary CðtÞ by its initial position C0.
Next we suppose that

v ’ ow

ot
;

where w is a displacement vector of the medium,

o

ot
ðq vÞ ’

�
qf v0 þ qsð1� v0Þ

� o2w

ot2
;

dq
dt
þ qr � v ’ 1

c2
f

op

ot
þ qf r �

ow

ot

in the liquid part,
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dq
dt
þ qr � v ’ 1

c2
s

op

ot
þ qsr �

ow

ot

in the solid part, where qf and qs are constant average densities of the liquid in
pores and of the solid skeleton respectively, cf and cs are the speed of compression
sound waves in the pore liquid and in the solid skeleton respectively, and that

Pf ¼ lDðx; vÞ þ
�
m ðr � vÞ � p

�
I; ð0:0:4Þ

Ps ¼ kDðx;wÞ � p I: ð0:0:5Þ

Here Dðx; uÞ ¼ 1
2
ðruþru�Þ is the symmetric part of ru, I is a unit tensor, l is

the dynamic viscosity, m is the bulk viscosity, and k is the elastic constant.
To apply the well-known homogenization results [4], we must consider special

liquid domains Xf and impose the following constraints.

Assumption 0.1

(1) Let vðyÞ be some 1-periodic function, Ys ¼ fy 2 Y : vðyÞ ¼ 0g be the ‘‘solid

part’’ of the unit cube Y ¼ ð0; 1Þ3 � R
3, and let the ‘‘liquid part’’ Yf ¼ fy 2

Y : vðyÞ ¼ 1g of Y be its open complement. We write c ¼ oYf \ oYs and
assume that c is a Lipschitz continuous surface.

(2) The domain Ee
f is a periodic repetition in R

3 of the elementary cell Y e
f ¼ eYf

and the domain Ee
s is a periodic repetition in R

3 of the elementary cell
Y e

s ¼ eYs.
(3) The pore space Xe

f � X ¼ X \ Ee
f is a periodic repetition in X of the ele-

mentary cell eYf , and the solid skeleton Xe
s � X ¼ X \ Ee

s is a periodic rep-
etition in X of the elementary cell eYs. The Lipschitz continuous boundary
Ce ¼ oXe

s \ oXe
f is a periodic repetition in X of the boundary ec.

(4) Ys and Yf are connected sets.

Under this assumption

v0ðxÞ ¼ veðxÞ ¼ 1ðxÞvðx
e
Þ;

where 1ðxÞ is the characteristic function of the domain X.
In dimensionless variables

x! x

L
; w! w

L
; t! t

s
; F! F

g
; q! q

q 0
;

where L is the characteristic size of the physical domain in consideration, s is the
characteristic time of the physical process, q 0 is the mean density of water, and g
is acceleration due gravity, the dynamic system takes the form
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asq
e o2w

ot2
¼ r � Pþ qeF; ð0:0:6Þ

P ¼ ve al Dðx;
ow

ot
Þ þ ð1� veÞak Dðx;wÞ þ

�
veam ðr �

ow

ot
Þ � p

�
I; ð0:0:7Þ

pþ ae
pr � w ¼ 0: ð0:0:8Þ

In (0.0.6–0.0.8) e ¼ l

L
is the dimensionless pore size, l is the average size of pores,

ae
p ¼ ap;f v

e þ ap;sð1� veÞ; qe ¼ qf ve þ qs ð1� veÞ;

as ¼
L

gs2
; al ¼

2l
sLg q 0

; ak ¼
2k

Lg q 0
;

am ¼
2m

sLg q 0
; ap;f ¼

qf c 2
f

Lg
; ap;s ¼

qs c 2
s

Lg
;

qf and qs are the respective mean dimensionless densities of the liquid in pores

and the solid skeleton, correlated with the mean density of water q 0.
Various particular cases of the linearization of (0.0.1–0.0.3) have been inten-

sively studied by many authors: Buchanan–Gilbert-Lin [5, 6], Buckingham [7],
Burridge–Keller [2], Clopeau–Ferrin–Gilbert–Mikelić–Paoli [8, 9, 10], Levy [11],
Nguetseng [12], Sanchez-Hubert [13], Sanchez-Palencia [3].

The present book is based on the author’s ideas [14–20]. We systematically
investigate the special form (0.0.6–0.0.8) of the linearization of (0.0.1–0.0.3),
containing the dimensionless parameter as, which is responsible for the type of the
physical process. For very slow and long-term processes, such as the filtration of
liquids, as� 0. For fast (short-term) processes, such as in acoustics or hydraulic
shock, as� 1, or as�1.

Theoretically the system (0.0.6–0.0.8), with corresponding initial and boundary
conditions, is one of the most adequate mathematical models, describing the
motion of the viscous liquid in the pore space of the elastic solid skeleton. But, as
we have mentioned above, such a model has no practical significance, since it is
necessary to solve the problem in the physical domain of a few hundred meters,
while the coefficients oscillate on the scale of a few tens of microns. The practical
significance of the model appears only after homogenization. So, we have to let all
dimensionless criteria as; al, ak; . . . be variable functions depending on the small
parameter e, and find all the limiting regimes of (0.0.6–0.0.8) as e! 0. It is clear,
that these limiting regimes depend on criteria as; al, ak. . ., or more precisely, on
their limiting values at e ¼ 0.

In this book we analyze all possible limiting regimes and all possible physical
processes described by the system (0.0.6–0.0.8). To separate physical processes
and the possible different types of continuous media, we introduce the following
criteria
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s0 ¼ lim
e&0

asðeÞ; l0 ¼ lim
e&0

alðeÞ; k0 ¼ lim
e&0

akðeÞ;

c2
f ;0 ¼ lim

e&0
ap;f ðeÞ; c2

s;0 ¼ lim
e&0

ap;sðeÞ;

l1 ¼ lim
e&0

al

e2
; k1 ¼ lim

e&0

ak

e2
:

For filtration processes s0 ¼ 0 and instead of (0.0.6) we may consider the equation

r � Pþ qeF ¼ 0: ð0:0:9Þ

The system (0.0.7–0.0.9) describes the slow motion of compressible viscous liq-
uids in pores. Usually, for such motion the velocity of the liquid is about 6–12 m
per year.

As a rule in classical mechanics we are trying to use the simplest equations that
take into account all the possible simplifying assumptions. Here, the next simplifying
assumption is the incompressibility of the medium. As is well known, the measure
of incompressibility of any given medium is its speed of sound. Incompressible
media have an infinite speed of sound. In particular, for long-term physical processes
the behavior of acoustic waves is not so important, and for many real liquids we may
accept the assumption that the given liquid is incompressible. On the other hand, the
speed of sound of compression waves in the solid skeleton is two or three times more
than the speed of sound of compression waves in the liquid. So the first assumption
implies that the given solid skeleton is also incompressible. Thus

cf ;0 ¼ 1; cs;0 ¼ 1;

and the filtration of an incompressible liquid in an elastic solid skeleton is
described by the system

r �
�
ve al Dðx;

ow

ot
Þ þ ð1� veÞak Dðx;wÞ � p I

�
þ qeF ¼ 0; ð0:0:10Þ

r � w ¼ 0: ð0:0:11Þ

Of course, the simplest case, is the motion of a viscous liquid in an absolutely rigid
solid body. This case is described by the criterion

k0 ¼ 1:

The corresponding simplification of (0.0.7–0.0.9) for a compressible liquid is the
system

op

ot
þ ap;f r � v ¼ 0; ð0:0:12Þ

r �
�
al Dðx; vÞ � p I

�
þ qf F ¼ 0 ð0:0:13Þ
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for the liquid velocity v and liquid pressure p in the domain Xf for t [ 0.
An incompressible viscous liquid in an absolutely rigid solid skeleton is

described by the Eq. (0.0.13) and the continuity equation

r � v ¼ 0: ð0:0:14Þ

Note that all these simplified models can be derived rigorously as appropriate
asymptotic limits for the basic model (ak !1, or ap;f !1).

For s0 [ 0 we may rescale variables by setting

asw! w;

and get the system

qe o2w

ot2
¼ r � Pþ qeF; ð0:0:15Þ

P ¼ ve �al Dðx;
ow

ot
Þ þ ð1� veÞ�ak Dðx;wÞ þ

�
�am ðr � vÞ � p

�
I; ð0:0:16Þ

pþ �ae
pr � w ¼ 0; ð0:0:17Þ

which describes short-term processes like acoustics or hydraulic shock.
In (0.0.15–0.0.17)

�al ¼
al

as
; �am ¼

am

as
; �ak ¼

ak

as
; �ae

p ¼
ae

p

as
:

Now, after the first simplification, we may pass to the limit as e! 0 and get the
desired homogenized models. But first and foremost we have to decide what kind
of model do we want to get? Everything depends on dimensionless criteria s0, l0,
k0, etc. For example, for the system (0.0.10, 0.0.11) we have two variable quan-
tities al and ak and four criteria l0, k0, l1 and k1. We emphasize again that the
system (0.0.10, 0.0.11) is the basic one and all its homogenized systems are just
approximations of different degrees of exactness. If we are going to get the sim-
plest system, then we look for the limit as e! 0 with

k0 ¼ 1; l0 ¼ 0; 0\l1\1:

This case corresponds to the usual Darcy system of filtration

v ¼ 1
l1

B

�
�r pþ qf F

�
; ð0:0:18Þ

r � v ¼ 0 ð0:0:19Þ

in the domain X for t 2 ð0; TÞ (see Sect. 1.1). We may refer to this system as the
first level of approximation of the system (0.0.10, 0.0.11).
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For

0\k0\1; l0 ¼ 0; 0\l1\1

one has the second level of approximation of the basic system, which is the
Terzaghi–Biot system of poroelasticity

r � vþ ð1� mÞr � ows

ot
¼ 0; ð0:0:20Þ

r �
�
k0 Ns

1 : Dðx;wsÞ � p I
�
þ
�
ðm qf þ ð1� mÞqs

�
F ¼ 0; ð0:0:21Þ

v ¼ m
ows

ot
þ 1

l1
B �
�
�r pþ qf F

�
ð0:0:22Þ

in the domain X for t 2 ð0;TÞ for the velocity v of the liquid component, the
displacement vector ws of the solid component, and the pressure p of the mixture
(see Sect. 1.2).

Finally, for

0\k0\1; 0\l0\1

we arrive at the third level of approximation of (0.0.10, 0.0.11), which is a
system of poroelastic filtration

r � w ¼ 0; ð0:0:23Þ

r � bP þ
�
ðm qf þ ð1� mÞqs

�
F ¼ 0; ð0:0:24Þ

bP ¼� p IþN1 : Dðx; ow

ot
Þ þN2 : Dðx;wÞ

þ
Z t

0
N3ðt � sÞ : Dðx;wðx; sÞÞds

ð0:0:25Þ

in the domain X for t 2 ð0; TÞ for the displacements w and the pressure p of the
mixture (see Sect. 1.4).

Thus we have a set of approximate models, from a simple one to quite complex
ones. The choice of model depends on the needs of the researcher. Of course, in
practical applications all physical parameters are fixed and we cannot determine
theoretical limits of the dimensionless complexes, which we have defined above.
For this reason we just put

l0 ¼ al ¼
2l

sLg q 0
; l1 ¼

l0

e2
¼ 2l

sLg q 0

L2

l2
; e ¼ l

L
;

k0 ¼ ak ¼
2k

Lg q 0
:
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We apply the same scheme to the model (0.0.15–0.0.17) of short-term processes,
and to all other mathematical models at the microscopic level considered here.

So, the main aims of the book are the following:

(1) To find the most adequate and correct mathematical models at the microscopic
level for each of the physical process under consideration, based on the basic
principles of continuum mechanics.

(2) To fulfill rigorously the limiting procedures from the microscopic level to the
macroscopic ones.

The choice of the model at the microscopic level must be based upon the
definition of theoretical small parameters and dimensionless criteria, describing
the process (long-term or short-term process, compressible or incompressible
medium and so on).

Under correct mathematical model we will understand the initial boundary-
value problem for the system of differential equations, which has a unique solution
in some appropriate sense (classical, weak, or very weak).

Once again we emphasize that all our results are based upon the Nguetseng
method of the two-scale convergence. All details of Nguetseng’s theory and
corresponding references may be found in [21, 4]. Appendix B lists all basic
definitions and statements of this theory. Here we only note the principal advan-
tage of the method. As is well known, very often the main difficulty in PDE
problems is the limit as e! 0 in integrals Ie of the form

Ie ¼
Z

X
ueðxÞ veðxÞuðxÞdx; ð0:0:26Þ

where sequences fueg and fveg converge only weakly in L2ðXÞ. The current theory
cannot give the answer what will be the exact limit. As a rule, in homogenization

theory ueðxÞ ¼ uðx
e
Þ. For this case Nguetseng has suggested a new notion of

convergence in L2ðXÞ, the so called two-scale convergence, where all functions

of the type ueðxÞ ¼ uðx; x
e
Þ form the class of test functions. Thus, Nguetseng has

transformed a very difficult problem into a not less difficult one, but has solved the
latter in a brilliant manner.

Proper homogenization theory has attracted the attention of a very large number
of researchers, and we refer to the books of Bensoussan, Lions, and Papanicolau
[22], Jikov, Kozlov, and Oleinik [23], Hornung [24], Bakhvalov and Panasenko
[25].

Note that there are reasonable objections to mathematical modeling via the
homogenization of periodic structures: the method does not possess the necessary
commonality, since the global periodicity is not inherent in physical reality.
Fortunately, from the very beginning we understood the importance of such
objections. In Chaps. 5 and 9 it will be shown that homogenized mathematical
models of liquid filtration and acoustics possess the property of locality. That is,
the physical medium being modeling may have different physical parameters of
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the solid skeleton, such as elasticity, density, geometry, etc., in different parts of
the domain under consideration.

A brief description of the organization of the book is as follows. The material
consists of eleven chapters and two Appendices.

In Chap. 1 we deal with different models for the isothermal filtration of com-
pressible and incompressible liquids in a solid skeleton, and derive homogenized
models for different types of continuous media. We have roughly divided the
continuous media under consideration into the following groups.

(1) The liquid is slightly viscous, if l0 ¼ 0.
(2) The liquid is viscous, if 0\l0\1.
(3) The solid body is extremely elastic if k0 ¼ 0.
(4) The solid body is elastic if 0\k0\1.
(5) The solid body is absolutely rigid if k0 ¼ 1.

This Chap. 1 is the main base for the book and for different applications, which
will be discussed in later chapters.

The Chap. 2 deals with homogenized models for non-isothermal filtration of a
compressible liquid in a solid skeleton.

In the Chap. 3 we consider hydraulic shock (short-term processes) in incom-
pressible media. Hydraulic shock is a sharp rise of pressure in some fluid-filled
system such as pipes, fractures and pores. This process is used in oil well frac-
turing. There are some engineering models (formulae) to calculate the pressure in
the pipe system during a hydraulic shock. But these models do not work for more
complex systems, such as an oil well. Existing mathematical models of hydraulic
shock in porous media [26–28] are nothing more than the same engineering
models of pipe systems. For the basic model at the microscopic level we sys-
tematically derive all possible homogenized models.

The Chap. 4 deals with double-porosity models of liquid filtration describing a
liquid filtration in a solid body, perforated by pores and fractures. Already there are
many different mathematical models describing this physical process. They take
into account the geometry of the space occupied by the liquid (liquid domain), and
the physical properties of the liquid and solid components (see, for example,
[29–34].

Note that pores differ from fractures only by their characteristic size: if lp is the
characteristic size of pores and lc is the characteristic size of fractures, then
lp 	 lc. The well-known phenomenological double-porosity model, suggested by
G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina [29], describes a two-velocity
liquid continuum in an absolutely rigid body, where the macroscopic velocity vp

and the pressure qp in pores and the macroscopic velocity vc and the pressure qc in
fractures satisfy two different Darcy’s laws
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vp ¼
kp

l
ð�rqp þ qf FÞ; vc ¼

kc

l
ð�rqc þ qf FÞ; ð0:0:27Þ

and two continuity equations

r � vp ¼ J; r � vc ¼ �J: ð0:0:28Þ

The model is completed by the postulate

J ¼ bðqc � qpÞ; b ¼ const :

The scientific and practical value of mathematical models describing such com-
plicated processes is obvious. But their physical reliability is also very important.
Pioneering work of L. Tartar (see Appendix in [3]), where Darcy’s law of filtration
has been rigorously derived, was an example that stimulated many authors to
repeat the same result for double-porosity models (T. Arbogast et al. [35],
A. Bourgeat et al. [36] and Z. Chen [37]). That is, firstly find an adequate math-
ematical model at the microscopic level with corresponding small parameters, and,
secondly, rigorously fulfill the homogenization procedure.

Because the last two papers repeat the ideas of the first one, let us briefly
discuss the main points in [35]. As an initial model at the microscopic level the
authors have considered a periodic structure, consisting of ‘‘solid’’ blocks of a size
d surrounded by fluid. The solid component is assumed to be already homoge-
nized: there is no pore space and the motion of the fluid in blocks is governed by
usual Darcy equations of filtration. So the authors have used the method of reit-
erated homogenization; when the first homogenization procedure is applied to the
solid matrix and liquid in pores, and then to the mixture ‘‘solid’’ blocks—liquid in
fractures. The motion of the fluid in the fracture space (the space between ‘‘solid’’
blocks) is described by some artificial system, similar to the Darcy equations of
filtration. There is no physical basis, but from a mathematical point of view such a
choice of equations of fluid dynamics in fractures has a very solid basis. It is
impossible to find reasonable boundary conditions on the common boundary of the
‘‘solid’’ block—fracture space if the fluid dynamics is described by the Stokes
equations, but there are reasonable boundary conditions if the liquid motion is
described by the Darcy equations of filtration. Therefore, the final homogenized
models in [35, 36], and in [37] have no connection with the fundamental laws of
continuum mechanics. But there is sense in the idea of the method of reiterated
homogenization for such problems. Unfortunately, the authors have used the
wrong models, describing the motion of ‘‘solid’’ blocks and the liquid in the
fracture space. We will use this method for acoustics in Chap. 9.

In Chap. 4 we follow the chosen method and first formulate the mathematical
model at the microscopic level. The difference from the first chapter is only in the
geometry of the liquid domain, because differential equations for the motion of the
liquid and the solid components must be the same. To model the geometry we
postulate that there are two small parameters: the dimensionless size of pores e and
the dimensionless size of fractures d and e	 d. As usual, we suppose the

xxiv Introduction

http://dx.doi.org/10.2991/978-94-6239-015-7_9
http://dx.doi.org/10.2991/978-94-6239-015-7_4


periodicity of the pore and fracture spaces, so that the characteristic function v0 of
the liquid domain has a form

v0ðxÞ ¼ ~vðx; x
e
;
x

d
Þ;

where ~vðx; y; zÞ is a 1-periodic function with respect to variables y and z (see
Figs. 0.1 and 0.2).

Thus, for this mathematical model at the microscopic level one of the main
problems is the limit in integrals of the form

Ie;d ¼
Z

X
uðx

e
;
x

d
Þ ve;dðxÞuðxÞdx; ð0:0:29Þ

when e and d tend to zero. Compared with (0.0.26), in (0.0.29) there appears a new
scale of the fast variable, associated with the parameter d. This problem has been
solved in [21, 38] by introducing the method of reiterated homogenization. For the
slightly viscous incompressible liquid in an elastic incompressible skeleton the
homogenized system consists of the differential equations

v ¼ vc þ ð1� mcÞ
ows

ot
; vp ¼ ð1� mcÞmp

ows

ot
; ð0:0:30Þ

r � v ¼ 0; ð0:0:31Þ

k0r �
�
B
ðsÞ
0 : DðwsÞ

�
� 1

m
r qf þ q̂F ¼ 0; ð0:0:32Þ

Fig. 0.1 Double porosity geometry: isolated fractures
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vc ¼ mc
ows

ot
þ 1

l2
B
ðcÞ�qf F�

1
m
rqf

�
; ð0:0:33Þ

for the velocity vp in pores, velocity vc and pressure qf in fractures, and for the
displacements ws of the solid component (for details see Chap. 4). For an abso-
lutely rigid skeleton

k0 !1; ws ! 0;

and we arrive at the system

v ¼ vc; vp ¼ 0; ws ¼ 0; ð0:0:34Þ

r � vc ¼ 0; ð0:0:35Þ

vc ¼
1
l2

B
ðcÞ�qf F�

1
m
rqf

�
; ð0:0:36Þ

for the velocity vc and pressure qf in fractures. The last system describes the
motion of the slightly viscous incompressible liquid in the pore–fracture space of
an absolutely rigid skeleton, and obviously asymptotically closed to the basic
equations of the continuum mechanics.

But the equations obtained contradict to the model (0.0.27, 0.0.28) from [29]. In
(0.0.34–0.0.36) the liquid in pores is blocked and unmoved,and there is no second
pressure in fractures.

Fig. 0.2 Double porosity geometry: connected fracture space
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Later, one of the authors [29] G. I. Barenblatt in one of his books on the
filtration theory ([39], p. 187), noted that ‘‘... the liquid motion in such a medium
(fractured–porous) is realized mainly along fractures, while the volume of
fractures is small and main reserves of the liquid are in the porous blocks’’. This
observation, based on the deep physical intuition of the author, is not confirmed by
when the correct mechanism for extracting liquid from the pores is specified. Our
result shows that for a more accurate description of real physical processes one
must take into account the elastic properties of the solid skeleton, namely, the
elastic stresses in the solid skeleton (but not the second pressure in the pores) are
the main factor that allow the liquid to flow from the pores into the fractures.

In Chap. 5 we investigate liquid filtration in composite domains. That is, liquid
filtration in at least two domains with a common boundary, and with different
properties.

For example, filtration in a poroelastic medium, which has a common boundary
with some elastic body, or with a water reservoir. The main problem here is the
boundary conditions on the common boundary for the solutions of homogenized
equations. P. Polubarinova-Kochina [40] uses the Darcy system of filtration in the
porous medium and simply postulates the hydrostatics in the reservoir and the
continuity of the pressure on the common boundary ‘‘reservoir-porous medium’’.
There are some particular results obtained by W. Jäger and A. Mikelić [41–43] for
special geometry of pore space (disconnected solid skeleton) and only for domains
in R

2. We study the complete problem in R
3 for the arbitrary geometry of cor-

responding pore spaces.
Next, if we consider filtration from a reservoir into the poroelastic medium (see

Fig. 0.3), then for the basic model at the microscopic level there is a flow from a
reservoir X0 into the porous medium X and maybe backwards, and its can be
calculated. The same property remains valid for the homogenized model of
poroelastic filtration (0\l0; k0\1). But for Darcy’s system of filtration in X
(first level of approximation with l0 ¼ 0; k0 ¼ 1), or for the Terzaghi–Biot

Fig. 0.3 Filtration from reservoir
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system of poroelasticity in X (second level of approximation with
l0 ¼ 0; 0\k0\1), the motion in the reservoir X0 is automatically approximated
by hydraulics, the limiting pressure on the common boundary S0 takes the value of
the hydraulic pressure at S0 (the pressure is continuous!), and there is no infor-
mation about the flow from X0 into X and back.

Another example involves two poroelastic media with the same properties of
the liquid. Here everything depends on the structure of the pore spaces in X and
X0. Let l0 ¼ 0. If Y0

f defines the pore space in X0, and Yf defines the pore space in

X, then for Yf \ Y0
f 6¼ ; the pressure is continuous on the common boundary S0

and there is a flow from X0 into X or vice-versa. For Yf \ Y0
f ¼ ; instead of

continuity of the pressure, one has another condition, which shows that there is
neither flow from X0 into X nor back (Fig. 0.4).

As is known, the most rigorous results of homogenization theory are obtained
for very special physical media, when the local heterogeneity has a periodic
structure. Therefore, the objections from opponents of such a method of mathe-
matical modeling—that the models have a low practical value—are quite rea-
sonable. The situation is similar to the situation with differential equations with
constant coefficients, and differential equations with variable coefficients. The
practical value of the first is not comparable to the practical value of the latter. But
the history of mathematics shows that the theory of equations with variable
coefficients cannot be constructed without a complete theory of equations with
constant coefficients. The above analogy suggests a way to solve the problem of
mathematical modeling of physical processes in macroscopic inhomogeneous
media. The detailed analysis of the homogenized problems in composite domains
permits the derivation of homogenized models allowing for the variable geometry
and elasticity of the solid component.

Expressly, let X be a domain in consideration and PðdÞ ¼ fKðdÞ1 ; :::;KðdÞNd
g be a

partition of X into nonintersecting subdomains with a diameter d. All physical and
geometrical characteristics of the medium are assumed to be constant in the given

subdomain KðdÞn . The problem as formulated for a fixed d is defined by the

Fig. 0.4 Two different poroelastic media
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characteristic function of the pore space vðdÞðx; yÞ. This function is 1-periodic in y
and piecewise-constant in x. The homogenized model obtained, depending on the
parameter d, has been already studied above and admits a subsequent limit as
d! 0, which leads to the final homogenized model, taking into account the
macroscopic inhomogeneity of the continuum.

Note that the formal justification of the symmetry of the diagram (the limit as
d! 0 for fixed e and then the limit as e! 0) is not physically rigorous, because

the diameter d of the subdomain KðdÞn cannot be less than the characteristic size e of
pores in the solid skeleton. Nevertheless, for sufficiently reasonable agreements the
limit as n!1 leads to the homogenization problem with a characteristic function
of the pore space vðx; yÞ ¼ limd!0 vðdÞðx; yÞ (in each x0 2 X there is a proper pore
space, defined by the characteristic function vðx0; yÞ). The homogenization of this
problem coincides with the final homogenized model, obtained before. This proves
the correctness of our approach.

Chapters 6-9 are devoted to homogenized models in acoustics. In Chap. 6 we
consider isothermal acoustics and in Chap. 7 nonisothermal acoustics. Next,
Chap. 8 repeats the results of Chap. 5 for acoustics, and in Chap. 9 we derive
double-porosity models for acoustics.

For example, in Chap. 6 we derive mathematical models ðIAÞ1–ðIAÞ16. Obvi-
ously, all these models describe the same physical process, but with varying
degrees of approximation. We may also say that due to an incomplete description
we allocate in each model the various components of the process. For example, in
the first models ðIAÞ1–ðIAÞ4 we describe only compression sound waves in the
fluid in pores. In models ðIAÞ5–ðIAÞ12 we study the interaction of compression
sound waves in the solid skeleton and in the fluid in pores. Vice-versa, in the
model ðIAÞ13 we describe compression sound waves and shear waves in the solid
skeleton. Finally, in models ðIAÞ15 and ðIAÞ16 we study the interaction of com-
pression sound waves in the solid skeleton and in the fluid in pores, and shear
waves in the solid skeleton.

In the last two Chaps. 10 and 11 we consider some applications of our theory:
diffusion-convection in porous media, and the free boundary problem of a joint
motion of two immiscible incompressible liquids (the Muskat problem).

Diffusion-convection processes in porous media X � R
3 is described by a

diffusion-convection equation in the liquid domain Xf (pore space)

oc

ot
þ v � r c ¼ DM c; ð0:0:37Þ

for the concentration c of an admixture. Here D is the given diffusion coefficient,
and v is the velocity of the liquid.

If we consider the most general case of the motion of continuous media, which
is a generalized motion with strong discontinuity, then the boundary condition on
the surface of strong discontinuity Ct ¼ oXs \ oXf (the common boundary ‘‘pore
space–solid skeleton’’) at the time moment t [ 0 has a form
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c
�
ðv � nÞ � Vn

�
¼ D ðr c � nÞ: ð0:0:38Þ

In (0.0.38) n is a unit normal vector to Ct, and Vn is a velocity of replacement of
surface Ct in the direction of normal n.

In the general case the velocity field is defined by the mathematical model
(0.0.1–0.0.3), which is a free boundary problem. In particular, one of the boundary
condition on the free surface of a contact discontinuity has the form

v � n ¼ Vn; ð0:0:39Þ

and for this case (0.0.38) transforms to

rc � n ¼ 0 ð0:0:40Þ

As we have mentioned above, the mathematical model (0.0.1–0.0.3) obviously
would not be suitable for practical use and in dimensionless variables the most
appropriate dynamic system, coupled with a convection-diffusion equation has the
form

r � w ¼ 0; ð0:0:41Þ

r � Pþ ~qF ¼ 0; ð0:0:42Þ

P ¼ v0alD

�
x;

ow

ot

�
þ ð1� v0ÞakDðx;wÞ � p I; ð0:0:43Þ

oc

ot
þ ow

ot
� r c ¼ aD M c; ð0:0:44Þ

where

aD ¼
D s
L2

; al ¼ alðcÞ; ~q ¼ v0ðqf þ d cÞ þ ð1� v0Þqs:

We must complete the model with the boundary conditions on the common (and
fixed) boundary C. The boundary conditions for dynamic equations have already
been discussed earlier. For the convection-diffusion equation one has a choice. By
supposition, Vn ¼ 0, and this postulate and the boundary condition (0.0.38) imply

�
aDr c� c

ow

ot

�
� n ¼ 0: ð0:0:45Þ

This is the first choice. The second choice is a condition (0.0.40). Thus, for the
same process we have two different models—the mathematical model (0.0.40–
0.0.44), and the mathematical model (0.0.41–0.0.45). The difference is caused by
the fact that for our approximation both the boundary conditions for the concen-
tration are not quite exact.

Note that for an absolutely rigid solid skeleton w ¼ v ¼ 0 in the solid part
(0.0.40) coincides with (0.0.45). That is, both models coincide.
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In Chap. 10 we derive homogenized models for diffusion-convection in an
absolutely rigid solid skeleton, and in poroelastic media for the model (0.0.40–
0.0.44) with al ¼ l0 ¼ const [ 0.

The results in Chap. 10 are based upon the author’s papers [22–24, 36, 44, 48–55].
The homogenization procedure for (0.0.37) with a given velocity field v has

been described in [22–24, 36, 44, 48–55].
In the last Chap. 11 we study the joint motion of immiscible liquids, which are

modeled as one nonhomogeneous liquid. We consider two different incompress-
ible viscous liquids with the same viscosity and different constant densities. The
exact mathematical model at the microscopic level consists of the dynamic
equations

r �
�
~vPf þ ð1� ~vÞPs

�
þ
�
qf ~vþ qs ð1� ~vÞ

�
F ¼ 0; ð0:0:46Þ

r � v ¼ 0; ð0:0:47Þ

o~v
ot
þ v � r ~v ¼ 0; ~vðx; 0Þ ¼ v0ðxÞ; ð0:0:48Þ

which is a sub-model of (0.0.1–0.0.3) for the case of the filtration of an incom-
pressible liquid in an incompressible solid skeleton, completed with the Cauchy
problem

oqf

ot
þ v � r qf ¼ 0; qf ðx; 0Þ ¼ qð0Þf ðxÞ ð0:0:49Þ

for the density of the nonhomogeneous liquid in the liquid domain Xf for t [ 0.
The last problem is equivalent to the the Cauchy problem

oq
ot
þ v � r q ¼ 0; qðx; 0Þ ¼ qð0Þf ðxÞ v0ðxÞ þ qs

�
1� v0ðxÞ

� ð0:0:50Þ

for the density q ¼ qf ~vþ qs ð1� ~vÞ of the medium.

Let P0 be a smooth surface dividing X into two subdomains Xþ and X� and

qð0Þf ðxÞ ¼ qþf ¼ const for x 2 Xþ; qð0Þf ðxÞ ¼ q�f ¼ const for x 2 X�:

Then for the smooth velocity field vðx; tÞ there exists a smooth surface of the
strong discontinuity PðtÞ, Pð0Þ ¼ P0, dividing Xf into two subdomains Xþf ðtÞ and
X�f ðtÞ, such that

qðx; tÞ ¼ qþf for x 2 Xþf ðtÞ; and qðx; tÞ ¼ q�f for x 2 X�:

That is, the problem (0.0.46–0.0.48, 0.0.50) really describes the joint motion of
two immiscible incompressible liquids with the different constant densities sepa-
rated by the free boundary PðtÞ.
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It is obvious that the resulting problem is too complicated. To simplify the
model and get simpler, but still reasonable one, we replace (0.0.46–0.0.48) by the
system

r �
�
v0 al Dðx;

ow

ot
Þ þ ð1� v0Þak Dðx;wÞ � p I

�
þ q F ¼ 0; ð0:0:51Þ

r � v ¼ 0; v ¼ ow

ot
; ð0:0:52Þ

completed with the Cauchy problem

oq
ot
þ v � r q ¼ 0; qðx; 0Þ ¼ qð0Þf ðxÞ v0 þ qf ð1� v0Þ ð0:0:53Þ

for the density q of the medium.
For v0 ¼ veðxÞ this mathematical problem at the microscopic level has at least

one weak solution fve; pe; qeg and the main problem is to get homogenized
equations in the limit as e! 0 in the transport equation for the density qe. The
structure of the system does not permit any uniform estimates for the density with
respect to the small parameter e, except its boundedness:

0\q� ¼ const\qeðx; tÞ\q�1
� :

Thus, we may expect only the weak compactness of fqeg, and the limit in (0.0.53)
is possible, if fveg converges strongly in L2ðXTÞ. It is almost impossible to get
such a property if l0 ¼ 0.

So, in the Chap. 11 under the restrictions

0\l0; k0\1

we derive a homogenized system, which we refer as the Muskat problem for a
viscoelastic filtration.

All results of that chapter are based on [56].
The case of an absolutely rigid solid skeleton is a sub-model of (0.0.51–0.0.53)

when k0 ¼ 1 (ak !1) and is described by the problem

r �
�
v0 al Dðx; vÞ � p I

�
þ qf F ¼ 0; ð0:0:54Þ

r � v ¼ 0; ð0:0:55Þ

oqf

ot
þ v � r qf ¼ 0; ð0:0:56Þ

qf ðx; 0Þ ¼ qð0Þf ðxÞ ð0:0:57Þ

for the velocity v, pressure p, and density qf of the liquid in the domain Xf for
t [ 0. The existence of a smooth free boundary for this problem has been proved
in [57].
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The nontrivial homogenization of the dynamic system (0.0.54, 0.0.56) makes
sense only for v0 ¼ veðxÞ, l0 ¼ 0, and 0\l1\1 and, as was shown earlier in
Chap. 1, leads to the Darcy system of filtration.

We have already mentioned above, that for this case our method does not
permit the correct limit in the transport equation (0.0.57). But the formal
homogenization of (0.0.54–0.0.57) under these restrictions results in the domain X
for t [ 0 the well-known free boundary Muskat problem

v ¼ 1
l1

B

�
� 1

m
r pþ qf F

�
; r � v ¼ 0; ð0:0:58Þ

oqf

ot
þr qf � v ¼ 0; qf ðx; 0Þ ¼ qð0Þf ðxÞ ð0:0:59Þ

in its weak formulation.
This problem is easy to formulate, but almost impossible to solve. For this

reason very little is known, neither in classical nor in weak solutions. There are
only a few results of classical solvability locally in time or globally in time, though
there are nearly explicit solutions, and there is no result for a global in time weak
solvability (see, [58–62] and references there).

Numerical simulations of the problem (0.0.54–0.0.57) made in [63] for a single
capillary, show the existence of a smooth free boundary (the surface of strong
discontinuity) in the capillary at different times (see Fig. 0.5). This fact somewhat
confirms the results of [57].

It is clear that we may consider any finite number of such disconnected cap-
illaries and pass from the single capillary to an absolutely rigid solid skeleton,
perforated by a system of disconnected capillaries.

The limiting procedure (e& 0) is modeled by increasing the number of cap-
illaries. For sufficiently small e (a sufficiently large number of capillaries) we
arrive at the Muskat problem (0.0.58, 0.0.59).

We apply he same idea to an elastic body with the same geometry of the pore
space, described by (0.0.51–0.0.53).

Fig. 0.5 The single capillary
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Comparison of numerical simulations (see Fig. 0.6) shows the appearance of a
mushy region for the free boundary Muskat problem (0.0.58, 0.0.59), and the
existence of a smooth free boundary for the Muskat problem for viscoelastic
filtration.

The first fact indirectly indicates a lack of classical solutions of the free
boundary Muskat problem (0.0.58, 0.0.59).

Fig. 0.6 Disconnected capillaries: absolutely rigid (above) and elastic solid skeleton

Fig. 0.7 Disconnected solid skeleton: absolutely rigid body (above) and elastic body
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A similar conclusion can be reached with numerical simulation for the prob-
lems (0.0.54–0.0.57) and (0.0.51–0.0.53) for a disconnected solid skeleton, when
Ys � Y is a cube which does not touch the boundary oY (see Fig. 0.7).

In Appendix A we concisely list the main notions of continuum mechanics
following [1], and in Appendix B we formulate all mathematical statements from
Analysis and PDE, needed in the main text of the book.

Notations of functional spaces and norm there are the same as in [64, 65, 66].
Some of these notations are listed in Appendix B.
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Chapter 1
Isothermal Liquid Filtration

We derive all the possible homogenized equations of the modelM14 of an isothermal
filtration (or, simply, a liquid filtration)

1

α̃p
p + ∇ · w = 0, (1.0.1)

∇ · P + ρ̃F = 0, (1.0.2)

P = χ0αμD

(
x,

∂w
∂t

)
+ (1 − χ0)λ0D(x, w) −

(
p − χ0αν∇ · ∂w

∂t

)
I, (1.0.3)

and its submodels: the model M15 of the filtration of an incompressible liquid

∇ · w = 0, (1.0.4)

∇ · P + ρ̃F = 0, (1.0.5)

P = χ0αμD

(
x,

∂w
∂t

)
+ (1 − χ0)λ0D(x, w) − p I, (1.0.6)

the model M17 of the filtration of a compressible liquid in an absolutely rigid
solid skeleton

χ0

(
1

c2f
p + ∇ · w

)
= 0, (1.0.7)

χ0
(∇ · P + ρ f F

) = 0, (1.0.8)

P = αμD

(
x,

∂w
∂t

)
−
(

p − αν∇ · ∂w
∂t

)
I, (1.0.9)

A. Meirmanov, Mathematical Models for Poroelastic Flows, 1
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_1,
© Atlantis Press and the authors 2014



2 1 Isothermal Liquid Filtration

in the bounded domain Ω = Ω f ∪ Γ ∪ Ωs ⊂ R
3, Γ = ∂Ω f ∩ ∂Ωs , with a C2

continuous boundary S = ∂Ω for t ∈ (0, T ).
In (1.0.1)–(1.0.9) χ0(x) is the characteristic function of the domain Ω f .
In this chapter we consider a homogenization procedure only for periodic struc-

tures. That is, we impose Assumption 0.1.
Under this assumption

χ0(x) = χε(x) = ς(x)χ

(
x
ε

)
, (1.0.10)

where ς(x) is the characteristic function of the domain Ω , and

α̃p = αε
p = χεc2f + (1 − χε)c2s , ρ̃ = ρε = χερ f + (1 − χε)ρs .

We say that the pore space is disconnected, if the domain E1
f is disconnected

(Y f ∩ ∂Y = ∅), and the pore space is connected, if the domain E1
f is connected

(Y f ∩ ∂Y �= ∅).
Similarly, we say that the solid skeleton is disconnected, if the domain E1

s is
disconnected (Y s ∩ ∂Y = ∅), and the solid skeleton is connected, if the domain E1

s
is connected (Y s ∩ ∂Y �= ∅).

It is assumed that all dimensionless parameters depend on the small parameter ε

and the (finite or infinite) limits exist:

lim
ε↘0

αμ(ε) = μ0, lim
ε↘0

αμ

ε2
= μ1, lim

ε↘0
αν(ε) = ν0.

We say that

(1) the liquid is slightly viscous, if μ0 = 0,
(2) the liquid is viscous , if 0 < μ0 < ∞,
(3) the solid body is extremely elastic if λ0 = 0,
(4) the solid body is elastic if 0 < λ0 < ∞,
(5) the solid body is absolutely rigid if λ0 = ∞.

In what follows, we denote as C0 any constant depending only on domains Ω , Y
and Y f .

1.1 A Compressible Slightly Viscous Liquid in an Absolutely
Rigid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M17 of the filtration of compressible liquid in an absolutely rigid solid
skeleton. It is easy to show that this model is a limit of the model M14 as λ0 → ∞.
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One of the consequences of this statement is the following:

w(x, t) = 0, p(x, t) = 0, x ∈ Ωε
s .

If we put v = ∂w
∂t

, then we may rewrite the last condition and Eqs. (1.0.7)–(1.0.9)

in the form
1

c2f

∂p

∂t
+ ∇ · v = 0, x ∈ Ωε

f , t ∈ (0, T ), (1.1.1)

∇ · P + ρ f F = 0, x ∈ Ωε
f , t ∈ (0, T ), (1.1.2)

P = αμD
(
x, v

)+ (αν∇ · v − p
)
I, (1.1.3)

v(x, t) = 0, x ∈ Ωε
s ∪ S, S = ∂Ω, t ∈ (0, T ), (1.1.4)

p(x, 0) = 0, x ∈ Ω. (1.1.5)

Throughout this section we assume that conditions

μ0 = 0, 0 < μ1 � ∞, 0 < c2f < ∞, 0 � ν0 < ∞,

and ∫

ΩT

|F|2dxdt = F2 < ∞

hold true.

1.1.1 Statement of the Problem and Main Results

Definition 1.1 We say that the pair of functions {vε, pε} such that vε(x, t) = 0 for
x ∈ Ωε

s and t > 0, and

vε ∈ ◦
W

1,0

2 (ΩT ), pε ∈ L2(ΩT ), ΩT = Ω × (0, T ),

is a weak solution of the problem (1.1.1)–(1.1.5), if it satisfies the integral identities

∫

ΩT

χε
(
αμD(x, vε) : D(x, ϕ)+(αν∇·vε − p ε

)∇·ϕ−ρ f F·ϕ
)

dxdt = 0, (1.1.6)

∫

ΩT

(
∇ξ · vε + 1

c2f

∂ξ

∂t
p ε

)
dxdt = 0, (1.1.7)
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for any smooth functions ϕ and ξ , such that ϕ satisfies condition (1.1.4) and ξ s
atisfies condition ξ(x, T ) = 0.

In (1.1.6) the convolution A : B of two tens ors A = (Ai j ) and B = (Bi j ) is defined

as A : B = tr(A · B) =
3∑

i, j=1

Ai j Bi j .

Theorem 1.1 (1) For all ε > 0 and for an arbitrary time interval [0, T ] there exists
a unique generalized solution of problem (1.1.1)–(1.1.5) and

∫

ΩT

(
αμ|∇vε|2 + |vε|2 + αν |∇ · vε|2

)
dxdt + max

0<t<T

∫

Ω

|p ε|2dx

� ε2

αμ

C0F2, (1.1.8)

where the constant C0 is independent of the small parameter ε.
(2) The nontrivial homogenization procedure for the problem (1.1.1)–(1.1.5) makes

sense if and only if the pore space is connected and

μ0 = 0, 0 < μ1 < ∞. (1.1.9)

Under these conditions and condition ν0 > 0, the sequences {vε}, {∇ ·vε}, {p ε},
and {q ε}, where q ε = p ε −αν∇ · vε, converge weakly in L2(ΩT ) and L2(ΩT )

as ε → 0 (up to some subsequences) to functions v, ∇ · v, p and
q = p − ν0∇ · v ∈ W 1,0

2 (ΩT ) respectively and these limiting functions solve
the homogenized system of equations, consisting of the continuity equation

m

c2f

∂p

∂t
+ ∇ · v = 0, (1.1.10)

and Darcy’s law in the form

v = 1

μ1
B

(
− ∇

(
p + ν0

c2f

∂p

∂t

)
+ ρ f F

)
(1.1.11)

in the domain Ω for t ∈ (0, T ).
If ν0 = 0, then the sequences {vε} and {p ε} converge weakly in L2(ΩT ) and
L2(ΩT ) as ε → 0 (up to some subsequences) to functions v and mp correspond-
ingly and these limiting functions solve the homogenized system of equations,
consisting of the continuity equation (1.1.10) and usual Darcy’s law in the form

v = 1

μ1
B
(− ∇ p + ρ f F

)
(1.1.12)

in the domain Ω for t ∈ (0, T ).
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Systems (1.1.10)–(1.1.12) are completed with boundary and initial conditions

v(x, t) · n(x) = 0, x ∈ S, t ∈ (0, T ), (1.1.13)

p(x, 0) = 0, x ∈ Ω. (1.1.14)

(3) For a disconnected pore space, or in the case μ1 = ∞, the unique limiting
regime is a state of rest.

(4) The problems (1.1.10), (1.1.11), (1.1.13), (1.1.14) and (1.1.10), (1.1.12)–(1.1.14)
have a unique solution.
In (1.1.10)–(1.1.13) m = ∫

Y χ(y)dy is the porosity, the symmetric strictly pos-
itive definite constant matrix B is given below by (1.1.27) and n is the normal
vector to the boundary S.

Note, that boundary and initial conditions are understood in a weak sense as a
corresponding integral identity for the continuity equation (1.1.10).

We refer to the problem (1.1.10), (1.1.11), (1.1.13), (1.1.14) as the homogenized
model (IF)1. Actually, this model is the one-parametric family of models, depending
on the parameter ν0 � 0. For ν0 = 0 the model (IF)1 is described by the problem
(1.1.12)–(1.1.14). So, we may just formally put this value ν0 = 0 in corresponding
equations. In what follows we will no longer point out this fact, having in mind the
above mentioned procedure.

Remark The limit as c f → ∞ results in the usual Darcy system of filtration for an
incompressible liquid.

1.1.2 Proof of Theorem 1.1

1.1.2.1 Basic a Priori Estimates

The proof of existence and uniqueness results for the problem (1.1.1)–(1.1.5) is
standard.

Due to the regularity of vε the function p ε possesses a time derivative
∂p ε

∂t
∈

L2(ΩT ) and satisfies the continuity equation (1.1.1) in the usual sense.
Let h(τ ) = 1 for 0 < τ < t and h(τ ) = 0 for t < τ < T . To prove the estimate

(1.1.8) we consider the integral identity (1.1.6) with the test function ϕ(x, τ ) =
h(τ )vε(x, τ ) and use the continuity equation (1.1.1):

∫

Ωt

χε
(
αμ|D(x, vε)|2 + αν |∇ · vε|2

)
dxdτ + 1

2c2f

∫

Ω

|p ε(x, t)|2dx

=
∫

Ωt

χερ f F · vεdxdτ � C0

δ
F2 + δ

∫

Ωt

χε|vε|2dxdτ. (1.1.15)
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As a next step we estimate

I ε =
∫

Ω

χε|vε|2dx .

Let G(k), where k = (k1, k2, k3) ∈ Z
3, be the intersection of Ωε

f with a set {x : x =
ε(y + k), y ∈ Y }. Then

Ωε
f =

⎜

k∈Z3

G(k) and I ε =
∑

k∈Z3

I ε(k), I ε(k) =
∫

G(k)

|vε|2dx .

In each integral I ε(k) we change variables by x = εy, then apply the Friedrichs–
Poincaré inequality and return to the original variables:

∫

G(k)

|vε|2dx = ε3
∫

Y (k)

|v ε|2dy � ε3C0

∫

Y (k)

|∇yv ε|2dy = ε2C0

∫

G(k)

|∇vε|2dx .

Finally, we arrive at the chain of inequalities

∫

Ω

χε|vε|2dx � ε2C0

∫

Ω

|∇vε|2dx � ε2C0

∫

Ω

|D(x, vε)|2dx

� ε2

αμ

C0αμ

∫

Ω

|D(x, vε)|2dx = ε2

αμ

C0αμ

∫

Ω

χε|D(x, vε)|2dx,

where we have used Korn’s inequality (see Appendix B). The above relations and
(1.1.15) for

δ = ε2

2αμ

C0

provide (1.1.8). For the case μ1 = ∞ this estimate implies

vε → 0, p ε → 0, as ε → 0

strongly in L2(ΩT ).

1.1.3 Homogenization

Let condition (1.1.9) hold and ν0 > 0. Then the sequences {vε}, {εD(x, vε)}, {∇ ·vε},⎧
∂p ε

∂t

}
, {p ε} and {qε}, where

qε = −αν∇ · vε + p ε = αν

c2f

∂p ε

∂t
+ p ε,
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are bounded in L2(ΩT ) and L2(ΩT ). Therefore, we may extract some subsequences
(for simplicity we keep the same notation) such that the sequences {vε}, {∇ · vε},⎧

∂p ε

∂t

}
, {p ε} and {qε} converge weakly in L2(ΩT ) and L2(ΩT ) to functions v,

∇ · v,
∂p

∂t
, p, and q respectively and

q = p + ν0

c2f

∂p

∂t
. (1.1.16)

The limiting functions v and p obviously satisfy the continuity equation (1.1.10) and
boundary and initial conditions (1.1.13) and (1.1.14).

At the same time by Nguetseng’s theorem (see Appendix B) sequences {vε},
{εD(x, vε)}, {∇ · vε}, {p ε}, and {qε} converge two-scale in L2(ΩT ) and L2(ΩT ) to
the functions

V(x, t, y), D
(
y, V(x, t, y)

)
,

1

c2f

∂ P

∂t
(x, t, y), P(x, t, y), and Q(x, t, y)

correspondingly,

Q = P + ν0

c2f

∂ P

∂t
, (1.1.17)

and
Q, P ∈ L2

(
ΩT × Y

)
, V, D(y, V) ∈ L2

(
ΩT × Y

)
. (1.1.18)

Finally, the two-scale limit in the integral identity (1.1.7) with test functions

ξ = ξ0(x, t)ξ1

(
x
ε

)
gives us the microscopic continuity equation

∇y · V = 0, y ∈ Y. (1.1.19)

Lemma 1.1 The following equalities hold true

P(x, t, y) = χ(y) p(x, t), Q(x, t, y) = χ(y) q(x, t). (1.1.20)

Proof The passage to the limit as ε → 0 in (1.1.6) with test functions ϕ =
ε ϕ0(x, t)ϕ1

(x
ε

)
, where ϕ1(y) is finite in Y f , yields

∇y Q(x, t, y) = 0, y ∈ Y f . (1.1.21)

Therefore
Q(x, t, y) = χ(y) q(x, t).
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Equations (1.1.17) and (1.1.21) give the result

∇y P(x, t, y) = 0, y ∈ Y f ,

and
P(x, t, y) = χ(y) p(x, t).

Now we are ready to derive equation (1.1.11). To do that we choose the test function

in the integral identity (1.1.6) as ϕ = ϕ0(x, t)ϕ1

(x
ε

)
, where the 1-periodic function

ϕ1(y) is divergence free and finite in Y f :

I ε
1 + I ε

2 + I ε
3 + I ε

4 = 0,

where

I ε
1 = αμ

ε2

∫

ΩT

ϕ0
(
εD(x, vε)

) : D(y, ϕ1)dxdt,

I ε
2 = √

αμ

∫

ΩT

(√
αμ D(x, vε)

) : (∇ϕ0 ⊗ ϕ1 + ϕ1 ⊗ ∇ϕ0
)
dxdt,

I ε
3 = −

∫

ΩT

qε
(
ϕ1 · ∇ϕ0

)
dxdt,

I ε
4 = −

∫

ΩT

ρ f ϕ0
(
F · ϕ1

)
dxdt.

Passage to the limit as ε → 0 gives us

I ε
1 →

∫

ΩT

ϕ0

( ∫

Y f

μ1D(y, V) : D(y, ϕ1)dy
)

dxdt, I ε
2 → 0,

I ε
3 → −

∫

ΩT

∇ϕ0 ·
( ∫

Y f

q χ(y)ϕ1(y)dy
)

dxdt,

I ε
4 → −

∫

ΩT

ϕ0

( ∫

Y f

ρ f
(
F · ϕ1(y)

)
dy
)

dxdt.
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Thus,

∫

ΩT

(
ϕ0(x, t)

∫

Y f

(
μ1D(y, V) : D(y, ϕ1) − ρ f F · ϕ1(y)

)
dy

− ∇ϕ0(x, t) · (
∫

Y f

ϕ1(y)χ(y)dy
)

q
)

dxdt

=
∫

ΩT

(
ϕ0(x, t)a(x, t) + q ∇ϕ0(x, t) · b

)
dxd = 0, (1.1.22)

where

a(x, t) =
∫

Y f

(
μ1D(y, V) : D(y, ϕ1) − ρ f F · ϕ1(y)

)
dy,

b = −
∫

Y f

ϕ1(y)dy = const.

Due to Lemma B. 15 (see Appendix B) we first may choose ϕ1 such that b =
ei , i = 1, 2, 3, where {e1, e2, e3} is a standard Cartesian basis. Nguetseng’s Theorem
guarantees that a ∈ L2(ΩT ). Therefore,

∇q ∈ L2(ΩT ).

Next we reintegrate (1.1.22) with respect the variables (x, t) and arrive at the micro-
scopic equation

μ1

2
�yV − ∇y Q − ∇q + ρ f F = 0 (1.1.23)

in the domain Y f , which is understood in the sense of distributions. Here we have
used the equality

∇ · D(y, V) = 1

2
� V + 1

2
∇(∇ · V

)
,

and the continuity equation (1.1.19).
The term ∇yΠ(x, t, y) in (1.1.23) appears due to the orthogonality in L2(Y f ) of

the set of all divergence free vectors ϕ1 to the set of gradients∇yΠ of scalar functions
Π .

The two-scale limit in the equality

(1 − χε)vε = 0

gives us (
1 − χ(y)

)
V(x, t, y) = 0, or V(x, t, y) = 0, y ∈ Ys .

The last condition and the regularity condition (1.1.18) result in the boundary con-
dition
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V(x, t, y) = 0, y ∈ γ = ∂Ys ∩ ∂Ys . (1.1.24)

Let ei , i = 1, 2, 3 be the usual Cartesian basis in R3 and

2

μ1

(
− ∇q + ρ f F

)
=

3∑
i=1

zi (x, t)ei .

Then the solution V of the problem (1.1.19), (1.1.23), and (1.1.24) has a form

V =
3∑

i=1

zi V(i)(y) = 2

μ1

( 3∑
i=1

V(i) ⊗ ei

)
· (− ∇q + ρ f F

)
, (1.1.25)

where the 1-periodic function V(i)(y) solves the periodic boundary value problem

�yV(i) − ∇Q(i) = −ei , y ∈ Y f ,

∇ · V(i) = 0, y ∈ Y f ,

V(i) = 0, y ∈ γ.

⎫⎬
⎭ (1.1.26)

The existence and uniqueness results for the problem (1.1.26) and the properties of
the matrix

B = 2
3∑

i=1

(∫

Y f

V(i)(y)dy

)
⊗ ei = 2

3∑
i=1

〈V(i)〉Y f ⊗ ei , (1.1.27)

follow from the energy equality

∫

Y f

∇V(i) : ∇V( j)dy =
∫

Y f

ei · V( j)dy (1.1.28)

In fact, applying in (1.1.28) for i = j Hölder’s and Friedrichs–Poincaré’s inequalities
we arrive at ∫

Y f

|V(i)|2dy � C2
Y f

∫

Y f

|∇V(i)|2dy, i = 1, 2, 3,

∫

Y f

|∇V(i)|2dy � m C2
Y f

, i = 1, 2, 3.
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For a disconnected pore space the unique solution of the problem (1.1.26) is

V(i) = 0, Q(i) = yi , and B = 0.

Lemma 1.2 The matrix B is strictly positively definite.

Proof Let the pore space be connected and

ζ = (ζ1, ζ2, ζ3), η = (η1, η2, η3) ∈ R
3,

zζ =
3∑

i=1

ζi V(i), zη =
3∑

i=1

ηi V(i).

Then (1.1.27) and (1.1.28) give us

1

2

(
B · ζ

) · η = 〈zζ 〉Y f · η, 〈zζ 〉Y f · η = 〈∇zζ : ∇zη〉Y f ,

or

1

2

(
B · ζ

) · η = 〈∇zζ : ∇zη〉Y f , and
1

2

(
B · ζ

) · ζ = 〈∇zζ : ∇zζ 〉Y f > α

for some constant α > 0 and any vector ζ with |ζ | = 1.
In fact, otherwise there exists some vector ζ with |ζ | = 1, such that

∇zζ = 0, or zζ = A · y + ζ0

with some constant matrix A and some constant vector ζ0. But the function zζ is a
periodic solution of the problem

�yzζ − ∇Qζ = −ζ, y ∈ Y f ,

∇ · zζ = 0, y ∈ Y f ,

zζ = 0, y ∈ γ.

⎫⎬
⎭

For a connected pore space any periodic linear functions can only be constant. Re-
calling the homogeneous boundary condition on γ for zζ we conclude that zζ = 0.
The last relation and the differential equation for zζ result in the equality ∇Qζ = ζ .
Hence Qζ = ζ ·y+const and by the same arguments Qζ = const and ζ = 0 which
is impossible by supposition.

For the case ν0 = 0 the sequences {vε} and {p ε} converge weakly and two-scale in

L2(ΩT ) and L2(ΩT ) to functions v(x, t), V(x, t, y) and p(x, t),

(
1

m

)
χ(y) p(x, t)

correspondingly. The limiting functions satisfy (1.1.17) and (1.1.10) with boundary
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and initial conditions (1.1.13) and (1.1.14) in a weak sense. That is, they are solution
of the integral identity

∫

ΩT

(
∇ξ · + 1

c2f

∂ξ

∂t
p

)
dxdt = 0, (1.1.29)

for any smooth functions ξ , such that ξ(x, T ) = 0.
Note, that the sequence {qε} converges weakly in L2(ΩT ) to the function p(x, t)

and two-scale in L2(ΩT ) to the functionχ(y) p(x, t). Repeating oncemorewe arrive
at (1.1.12).

Lemma 1.3 The problems (1.1.10), (1.1.11), (1.1.13), (1.1.14) and (1.1.10), (1.1.12)–
(1.1.14) have a unique solution.

Proof The uniqueness of the solution to the problem (1.1.10), (1.1.11), (1.1.13),
(1.1.14) follows from its linearity and the energy identity for the homogeneous prob-
lem in the form

d

dt

∫

Ω

(
m

μ1

2c2f
p2 + ν0

2c2f
∇ p · (B · ∇ p

))
dx +

∫

Ω

∇ p · (B · ∇ p
)
dx = 0. (1.1.30)

The identity (1.1.30) is the result of a formal integration by parts over domain Ω of
the equation

m
μ1

c2f

∂p

∂t
= ∇ · B

(
∇ p + ν0

c2f
∇(∂p

∂t

))

after its multiplication by p. The last equation is an obvious combination of Eqs.
(1.1.10) and (1.1.11).

For the problem (1.1.10), (1.1.12)–(1.1.14) we use the identity (1.1.30) with ν0 =
0.

In particular, the uniqueness of the limiting problems shows that any subsequences
of sequences {vε}, {qε} and {p ε} converge to the same limit. Therefore each entire
sequence {vε}, {qε} and {p ε} converges to a unique limit.

1.2 An Incompressible Slightly Viscous Liquid in an
Incompressible Elastic Skeleton

In this section as a basicmathematical model at themicroscopic level we consider the
model M15 of the filtration of an incompressible liquid in an incompressible elastic
solid skeleton

∇ · w = 0, x ∈ Ω, t ∈ (0, T ), (1.2.1)
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∇ · P + ρεF = 0, x ∈ Ω, t ∈ (0, T ), (1.2.2)

P = χεαμD

(
x,

∂w
∂t

)
+ (1 − χε)λ0D(x, w) − p I, (1.2.3)

w(x, t) = 0, x ∈ S, t ∈ (0, T ), (1.2.4)

∫

Ω

p(x, t)dx = 0, t ∈ (0, T ), χε w(x, 0) = 0, x ∈ Ω, (1.2.5)

where
ρε = ρ f χε + ρs (1 − χε).

Throughout this section we additionally impose

Assumption 1.1 The solid skeleton Ωε
s is a connected domain.

We also assume that conditions

μ0 = 0, 0 < μ1 � ∞, 0 < λ0 < ∞, (1.2.6)

and ∫

ΩT

|F|2dxdt = F2 < ∞ (1.2.7)

hold true.
In (1.2.3)–(1.2.6)

μ0 = lim
ε↘0

αμ(ε), μ1 = lim
ε↘0

αμ

ε2
.

1.2.1 Statement of the Problem and Main Results

Definition 1.2 We say that the pair of functions {wε, p ε} such that

wε ∈ ◦
W

1,0

2 (ΩT ), χε∇ ∂wε

∂t
∈ L2(ΩT ), p ε ∈ L2(ΩT ),

is a weak solution of the problem (1.2.1)–(1.2.5), if it satisfies the continuity equa-
tion (1.2.1) almost everywhere inΩT , the initial and normalization conditions (1.2.5)
and an integral identity∫

ΩT

(
χεαμD

(
x,

∂wε

∂t

)
+ (1 − χε)λ0D(x, wε) − p ε

I

)
: D(x, ϕ)dxdt

=
∫

ΩT

ρεF · ϕ dxdt, (1.2.8)

for any functions ϕ ∈ ◦
W

1,0

2 (ΩT )
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The solution of this problem possesses different smoothness in domains Ωε
f and

Ωε
s . To preserve the best properties—which the solution possesses in the solid part—

we extend the function wε from the solid part Ωε
s of the domain Ω onto the whole

domain Ω . To do this we use the extension result (see Lemma B.4.2, Appendix B):
there exists an extension

wε
s = EΩε

s

(
wε
)
, EΩε

s
: W1

2(Ω
ε
s ) → W1

2(Ω), (1.2.9)

such that

(
1 − χε(x)

)(
wε(x, t) − wε

s (x, t)
) = 0, x ∈ Ω, t ∈ (0, T ), (1.2.10)

and ∫

Ω

|wε
s (x, t)|2dx � C0

∫

Ωε
s

|wε(x, t)|2dx,

∫

Ω

∣∣D(x, wε
s (x, t)

)∣∣2dx � C0

∫

Ωε
s

∣∣D(x, wε(x, t)
)∣∣2dx, t ∈ (0, T ),

(1.2.11)

where C0 is independent of ε and t ∈ (0, T ).

Theorem 1.2 There exists a unique weak solution {wε, p ε} of the problem (1.2.1)–
(1.2.5) and ∫

ΩT

(
|wε

s |2 + |D(x, wε
s )|2 + |π ε|2

)
dxdt � C0F2,

max
0<t<T

ε2
∫

Ω

|D(x, wε)|2dx � ε2

αμ

C0F2, (1.2.12)

∫

ΩT

|wε(x, t) − wε
s (x, t)|2dxdt � ε2

αμ

C0F2, (1.2.13)

where

π ε(x, t) =
∫ t

0
pε(x, τ )dτ,

wε
s is the extension (1.2.9) and the constant C0 is independent of the small parameter

ε.

Theorem 1.3 Let {wε, p ε} be the weak solution of the problem (1.2.1)–(1.2.5), wε
s

be an extension (1.2.9),

π ε(x, t) =
∫ t

0
pε(x, τ )dτ,

and μ1 = ∞, or μ1 < ∞, but the pore space be disconnected.
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Then

(1) up to some subsequences sequences {wε} and {π ε} converge weakly in L2(ΩT )

and L2(ΩT ) to the functions w ∈ L2(ΩT ) and π ∈ W 1,0
2 (ΩT ) respectively,

and the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) to the function ws = w ∈
◦
W

1,0

2 (ΩT );
(2) the limiting functions solve the system of homogenized equations in the domain

ΩT , consisting of the continuity equation

∇ · ws = 0, (1.2.14)

and the homogenized momentum balance equation

∇ · (λ0 Ns : D(x, ws) − p I
)+ ρ̂F = 0, (1.2.15)

completed with homogeneous normalization and boundary conditions

∫

Ω

p(x, t)dx = 0, ws(x, t) = 0, x ∈ S, t ∈ (0, T ); (1.2.16)

(3) the problem (1.2.14)– (1.2.16) has a unique solution.

In (1.2.15)

p = ∂π

∂t
, ρ̂ = m ρ f + (1 − m) ρs, m =

∫

Y
χ(y)dy,

and the symmetric strictly positively definite constant fourth-rank tensor Ns is given
below by (1.2.35).

We refer to the problem (1.2.15), (1.2.16) as the homogenized model (IF)2.

Theorem 1.4 Let {wε, p ε} be the weak solution of the problem (1.2.1)–(1.2.5), wε
s

be an extension (1.2.9),

πε(x, t) =
∫ t

0
pε(x, τ )dτ,

the pore space be connected, and μ1 < ∞.
Then

(1) up to some subsequences sequences {χεwε} and {χεπ ε} converge weakly in
L2(ΩT ) and L2(ΩT ) to functions w( f ) ∈ L2(ΩT ) and m π f ∈ W 1,0

2 (ΩT ) re-

spectively, and the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) to the function

ws ∈ ◦
W

1,0

2 (ΩT );
(2) limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the continuity equation



16 1 Isothermal Liquid Filtration

∇ · w( f ) + (1 − m)∇ · ws = 0, (1.2.17)

the homogenized momentum balance equation

∇ · (λ0 Ns
1 : D(x, ws) − p f I

)+ ρ̂F = 0 (1.2.18)

for the solid component, and Darcy’s law in the form

w( f ) = m ws + 1

μ1
B · (− ∇ π f + ρ f

∫ t

0
F(x, τ )dτ

)
, (1.2.19)

for the liquid component, completed with homogeneous boundary conditions
(1.2.16) for the solid component and homogeneous normalization and boundary
conditions

∫

Ω

π f (x, t)dx = 0, w( f )(x, t) · n(x) = 0, x ∈ S, t ∈ (0, T ) (1.2.20)

for the liquid pressure p f and displacements w( f ) of the fluid component;
(3) the problem (1.2.16)–(1.2.20) has a unique solution.

In (1.2.18)–(1.2.20)

p f = ∂π f

∂t
∈ L2(ΩT ), ρ̂ = m ρ f + (1 − m) ρs, m =

∫

Y
χ(y)dy,

n is the normal vector to the boundary S, the symmetric strictly positive defi-
nite constant matrix B is given by (1.1.27) (see Theorem 1.1), and the symmet-
ric strictly positively definite constant fourth-rank tensor Ns

1 is given below by
(1.2.38).

We refer to the problem (1.2.16)–(1.2.20) as the homogenized model (IF)3.

1.2.2 Proof of Theorem 1.2

Setting in (1.2.8) ϕ(x, τ ) = h(τ )wε(x, τ ), where h(τ ) = 1 for 0 < τ < t and
h(τ ) = 0 for t < τ < T , in the same way as in the previous section, we arrive at
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∫

Ω

|wε(x, t) − wε
s (x, t)|2dx � ε2

αμ

C0

∫

Ωε
f

αμ

∣∣D(x, wε(x, t)
)− D

(
x, wε

s )
)∣∣2dx,

αμ

∫

Ωε
f

∣∣D(x, wε(x, t)
)∣∣2dx + λ0

∫ t

0

∫

Ωε
s

∣∣D(x, wε(x, τ )
)∣∣2dxdτ

� C0

δ
F2 + δ

∫ t

0

∫

Ω

|wε(x, τ )|2dxdτ.

(1.2.21)

In particular,

∫

Ω

|wε(x, t)|2dx �
∫

Ω

|wε
s (x, t)|2dx

+ C0
αμ

μ1

( ∫

Ωε
f

|D(x, wε)|2dx +
∫

Ω

|D(x, wε
s )|2dx

)
.

Now we use the properties of the extension operator EΩε
s
(see Appendix B) and

Korn’s inequality, which state that

∫

Ω

|wε
s (x, t)|2dx � C0

∫

Ω

|∇ wε
s (x, t)|2dx � C0

∫

Ω

∣∣D(x, wε
s (x, t)

)∣∣2dx,

and ∫

Ω

∣∣D(x, wε
s (x, t)

)∣∣2dx � C0

∫

Ωε
s

∣∣D(x, wε(x, t)
)∣∣2dx .

Therefore,

αμ

∫

Ωε
f

∣∣D(x, wε(x, t)
)∣∣2dx + λ0

∫ t

0

∫

Ωε
s

∣∣D(x, wε(x, τ )
)∣∣2dxdτ

� C0 δ
αμ

μ1

∫ t

0

∫

Ωε
f

∣∣D(x, wε(x, τ )
)∣∣2dxdτ + C0

δ
F2

+ δ C0

∫ t

0

∫

Ωε
s

∣∣D(x, wε(x, τ )
)∣∣2dxdτ,

and the desired estimates (1.2.12) and (1.2.13) for the functions wε and wε
s follow

now from the last inequality with 2δ C0 = λ0, Grownwall’s inequality and inequality
(1.2.21).

To prove the estimate (1.2.12) for the pressure p ε, we consider the integral identity
(1.2.8) as a relation

∫

ΩT

π ε ∇ · ϕ dxdt =
∫

ΩT

(
F : D(x, ϕ) + ρε

∫ t

0
F(x, τ )dτ · ϕ

)
dxdt,
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where

∂F

∂t
= αμD

(
x,

∂wε

∂t

)
+ (1 − χε)λ0D(x, wε), F,

∂F

∂t
∈ L2(ΩT ).

This relation implies

∣∣∣
∫

ΩT

π ε ∇ · ϕ dxdt
∣∣∣ � C0 F

( ∫

ΩT

|∇ϕ|2dxdt
) 1

2
. (1.2.22)

Next we choose the test function ϕ, such that

∇ · ϕ = π ε, and
∫

ΩT

|∇ϕ|2dxdt � C0

∫

ΩT

|π ε|2dxdt.

Namely, we decompose the function ϕ to the sum of two functions ϕ0 and ∇ ψ

such that
�ψ = π ε, x ∈ Ω, ψ |S = 0, (1.2.23)

∇ · ϕ0 = 0, x ∈ Ω,
(
ϕ0 + ∇ψ

)
S

= 0. (1.2.24)

On the strength of well-known results [56, 57] and the normalization condition

∫

Ω

π ε(x, t)dx = 0,

the problem (1.2.23) has a unique solution ψ ∈ L2
(
(0, T ); W 2

2 (Ω)
)
,

∫ T

0

(
‖ψ‖(2)

2 (t)
)2

dt � C0

∫

ΩT

|π ε|2dxdt,

and the problem (1.2.24) has at least one solution ϕ0 ∈ W1,0
2 (ΩT ),

∫ T

0

(
‖ϕ0‖(1)

2 (t)
)2

dt � C0

∫ T

0

(
‖ψ‖(2)

2 (t)
)2

dt.

The last two relations and (1.2.22) give us the estimate (1.2.12) for the time integral
π ε of the pressure p ε.
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1.2.3 Proofs of Theorem 1.3 and 1.4

Estimate (1.2.12) guarantees the boundedness of sequences {wε}, {εD(x, wε)},
{χε wε}, {wε

s }, {D(x, wε
s )}, {χε π ε}, {(1 − χε)π ε} and {π ε} in L2(ΩT ) and

L2(ΩT ). Therefore, these sequences, except {ε χε
D(x, wε)}, weakly converge in

L2(ΩT ) and L2(ΩT ) to functions w, w( f ), ws , D(x, ws), m π f , (1 − m)πs , and
π = m π f + (1 − m)πs respectively. On the strength of the properties of the exten-

sion operator EΩε
s
(see Appendix B) ws ∈ ◦

W
1,0

2 (ΩT ).
Owing to Nguetseng’s theorem, there exist 1-periodic in y functions

W(x, t, y), D
(
y, W(x, t, y)

)
, W( f )(x, t, y), D

(
y, U(x, t, y)

)
,

Π f (x, t, y), Πs(x, t, y), and Π(x, t, y) = Π f + Πs

such that the above mentioned sequences, including {ε χε
D(x, wε)}, two-scale con-

verge in L2(ΩT ) and L2(ΩT ) as ε → 0 respectively to

W, χ(y)D
(
y, W( f )), W( f ), ws, D(x, ws) + D

(
y, U), Π f , Πs, and Π.

The same theorem of Nguetseng states that

W( f ) = χ(y) W, W = W( f ) + (1 − χ(y)
)

ws(x, t),

Π f = χ(y)Π, Πs = (
1 − χ(y)

)
Π,

and
W, D

(
y, W), D

(
y, U), Π ∈ L2(ΩT × Y ).

The two-scale limit in the continuity equation (1.2.1) in the form

∫

ΩT

wε · ∇ξdxdt = 0 (1.2.25)

with test function ξ = ε ξ0

(x
ε

)
h(x, t), where functions ξ0(y) are finite in Y f ,

results in the microscopic continuity equation

∇y · W = 0, y ∈ Y f . (1.2.26)

Now, we rewrite the integral identity (1.2.8) in the form

∫

ΩT

(
αμD(x, wε) : D(x, ϕε

0) − π ε (∇ · ϕε
0) − ρε

∫ t

0
F(x, τ )dτ · ϕε

0

)
dxdt = 0,

with test functions
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ϕ =
∫ t

0
ϕ0

(
x, τ,

x
ε

)
dτ, suppϕ0(x, t, y) ⊂ Y f , for all (x, t) ∈ ΩT .

Applying the results of the previous section for

ϕ0(x, t, y) = ε ϕ̃0(x, t, y)

and
ϕ0(x, t, y) = h(x, t) ϕε

1(y), ∇y · ϕ1(y) = 0, suppϕ1 ⊂ Y f ,

we arrive at the relations

Π f (x, t, y) = χ(y) π f (x, t), ∇ π f ∈ L2(ΩT ),

and at the microscopic periodic boundary value problem (1.1.19), (1.1.23), (1.1.24)
in Y f in the form

μ1 ∇y · D(y, W) − ∇y Q − ∇π f + ρ f

∫ t

0
F(x, τ )dτ = 0, (1.2.27)

W(x, t, y) = ws(x, t), y ∈ γ, (1.2.28)

completed with the continuity equation (1.2.26).
For μ1 < ∞ the problem (1.2.26)–(1.2.28) for the difference (W − ws) results

in Darcy’s law (1.2.19).
For a disconnected pore space the last problem has a unique solution w = ws .
Finally, estimate (1.2.13) and condition μ1 = ∞ imply the equality w = ws .

This fact and the passage to the limit in the continuity equation (1.2.25) for any
ξ ∈ W (1,0)

2 (ΩT ), give us the limiting continuity equation (1.2.14) for the case of a
disconnected pore space, or for the case of μ1 = ∞.

For the case μ1 < ∞ the two-scale limit in (1.2.25) in the form

∫

ΩT

(
χεwε + (1 − χε)wε

s

) · ∇ξdxdt = 0

with test function ξ = ξ(x, t) gives us the homogenized continuity equation

∫

ΩT

(
w( f ) + (1 − m)ws

) · ∇ξdxdt = 0,

in the integral form, which obviously imply the differential equation (1.2.17) and the
boundary condition

(
w( f ) + (1 − m)ws

) · n(x) = 0, x ∈ S.
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The properties of the extension operator EΩε
s
result in

ws(x, t) = 0, x ∈ S.

Therefore, the last two conditions imply the boundary condition (1.2.20).
Nextwe pass to the limit as ε → 0 in the integral identity (1.2.8)with two different

types of test functions. First, with test functions ϕ = ϕ(x, t). The estimates obtained
do not permit us to do it directly, because we have no compactness for the pressures.
Therefore, we rewrite the identity (1.2.8) in the form

∫

ΩT

((− χεαμD(x, wε) : D
(

x,
∂ϕ

∂t

)
+ (1 − χε)λ0D(x, wε)

) : D(x, ϕ)
)

dxdt

−
∫

ΩT

π ε∇ ·
(

∂ϕ

∂t

))
dxdt =

∫

ΩT

ρεF · ϕ dxdt,

and only after that will pass to the limit as ε → 0 and get:

∫

ΩT

(
S : D(x, ϕ) + π∇ ·

(∂ϕ

∂t

))
dxdt =

∫

ΩT

ρ̂F · ϕ dxdt,

S = λ0
(
(1 − m)D(x, ws) + 〈D(y, U)〉Ys

)
.

To rewrite the last identity in the usual form, we consider the mollifiers [59]

uh(x, t) = 1

h

∫ t+h

t
u(x, τ )dτ, uh̄(x, t) = 1

h

∫ t

t−h
u(x, τ )dτ,

and put ϕ = (ϕ0)h̄ . Carrying out smoothing and differentiation with respect to time
from the test function we arrive at

∫

ΩT

(
Sh : D(x, ϕ0) − ∂πh

∂t
∇ · ϕ0

)
dxdt =

∫

ΩT

ρ̂F · ϕ dxdt.

On the basis of this identity and the uniform boundedness in L2(ΩT ) of Sh with
respect to h (in the same way as in Theorem 1.2) we conclude that the sequence⎧

∂πh

∂t

}
is uniformly bounded in L2(ΩT ) with respect to h.

The properties of the mollifiers imply the inclusion of

p = ∂π

∂t
∈ L2(ΩT ).

The last relation allows us to transform the integral identity obtained above to the
usual macroscopic momentum balance equation
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∫

ΩT

(
S : D(x, ϕ) − p ∇ · ϕ

)
dxdt =

∫

ΩT

ρ̂F · ϕ dxdt,

or, to its formal expression as a differential equation

∇ ·
(
λ0
(
(1 − m)D(x, ws) + 〈D(y, U)〉Ys

)− pI
)

+ ρ̂F = 0. (1.2.29)

Now we repeat once more with test functions ϕ = εh(x)ϕ0

(x
ε
, t
)
in (1.2.8) and get

the microscopic momentum balance equation

∫ T

0

∫

Y
λ0(1 − χ)

(
D(x, ws)+D(y, U)

) : D(y, ϕ0)dydt

= −
∫ T

0

∫

Y
Π ∇ ·

(
∂ϕ0

∂t

)
dydt, (1.2.30)

which implies

P = χ p f + Ps = ∂Π

∂t
∈ L2(Y × ΩT ).

Choosing now ϕ0(y, t) with supp ϕ0 ⊂ Ys we obtain

Ps = ∂Πs

∂t
∈ L2(Y × ΩT ),

and all together

p f = ∂π f

∂t
∈ L2(ΩT ), Ps = ∂Πs

∂t
∈ L2(Y × ΩT ).

The two-scale limit in the continuity equation (1.2.1) in domain Ωε
s in the form

(
1 − χ

(x
ε

))
∇ · wε

s = 0

gives us the missing microscopic continuity equation

(
1 − χ(y)

)(∇ · ws + ∇y · U
) = 0, y ∈ Y. (1.2.31)

The microscopic problem is completed with the normalization condition

〈U〉Ys =
∫

Ys

Udy = 0.
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If μ1 = ∞, or the pore space is disconnected (the case when w = ws) the macro-
scopic equation (1.2.14) holds true. Thus (1.2.31) takes the form

(
1 − χ(y)

)∇y · U = 0, y ∈ Y. (1.2.32)

Lemma 1.4 Let μ1 = ∞, or the pore space be disconnected. Then the limiting
functions ws and p satisfy the homogenized momentum balance equation (1.2.15).

Proof To derive the homogenized momentum balance equation (1.2.15) we have to
express D(y, U) as an operator on D(x, ws) by means of Eqs. (1.2.30) and (1.2.32),
and substitute it into the equation (1.2.29):

D(y, U) = B
s
0(y) : D(x, ws),

and

Ns = (1 − m)

3∑
i, j=1

J
i j ⊗ J

i j + 〈Bs
0〉Ys ,

where

J
i j = 1

2

(
ei ⊗ e j + e j ⊗ ei

)
,

{e1, e2, e3} is a standard Cartesian basis, and the fourth-rank tensor A ⊗ B is the
tensor (direct) product of the second-rank tensorsA and B: (A⊗B) : C = A(B : C)

for any second-rank tensor C.
To this end, we rewrite (1.2.30) in the form

∇y ·
(
(1 − χ)

(
D(x, ws) + D(y, U) − 1

λ0
(Ps − p f )I

)) = 0, (1.2.33)

and will look for a solution of (1.2.32) and (1.2.33) in the form

U =
3∑

i, j=1

U(i j)
0 (y)Di j (x, t),

Ps − p f = λ0

3∑
i, j=1

P (i j)
0 (y)Di j (x, t),
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where

Di j (x, t) = 1

2

( ∂ui

∂x j
(x, t) + ∂u j

∂xi
(x, t)

)
, ws = (u1, u2, u3),

D(x, ws) =
3∑

i, j=1

Di j J
i j ,

and
∇y ·

(
(1 − χ)

(
D(y, U(i j)

0 ) + J
i j − P(i j)

0 I
)) = 0, y ∈ Y,

(1 − χ)∇y · U(i j)
0 = 0, y ∈ Y, 〈U(i j)

0 〉Ys = 0.

}
(1.2.34)

In what follows, we understand all equations like the first one in (1.2.34) in the sense
of distributions. That is, as an integral identity

∫

Ys

(
D(y, U(i j)

0 ) + J
i j − P(i j)

0 I
) : D(y,θ)dy = 0,

which holds true for any smooth 1-periodic in y functions θ(y).
The existence and uniqueness of the 1-periodic weak solution U(i j)

0 ∈ W1
2(Ys) to

the problem (1.2.34) follows from the a priori estimate

∫

Ys

|∇U(i j)
0 (y)|2dy � C0.

In turn, this estimate is a consequence of an energy identity

∫

Ys

(|D(y, U(i j)
0 )|2 + J

i j : D(y, U(i j)
0 )

)
dy = 0.

Thus,

D(y, U) =
3∑

i, j=1

D(y, U(i j)
0 )Di j =

3∑
i, j=1

D(y, U(i j)
0 )

(
J

i j : D(x, ws)
)

=
( 3∑

i, j=1

D(y, U(i j)
0 ) ⊗ J

i j
)

: D(x, ws) = B
s
0(y) : D(x, ws),

and

Ns = (1 − m)

3∑
i, j=1

J
i j ⊗ J

i j +
3∑

i, j=1

〈D(y, U(i j)
0 )〉Ys ⊗ J

i j . (1.2.35)
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All properties of the tensor Ns follow from identities

∫

Ys

(
D(y, U(i j)

0 ) : D(y, U(kl)
0 ) + J

i j : D(y, U(kl)
0 )

)
dy = 0, (1.2.36)

which are the result ofmultiplication of themicroscopicmomentumbalance equation
for U(i j)

0 by U(kl)
0 and integration by parts over domain Y .

Lemma 1.5 The constant fourth-rank tensor Ns is symmetric and strictly positively
definite.

Proof Let ζ = (ζi j ) and η = (ηi j ) be arbitrary symmetric matrices and

Yζ =
3∑

i, j=1

U(i j)
0 ζi j , Yη =

3∑
i, j=1

U(i j)
0 ηi j .

Then (1.2.36) transforms to

〈D(y, Yζ ) : D(y, Yη)〉Ys + 〈D(y, Yη)〉Ys : ζ = 0.

By definition (
Ns : ζ

) : η = (1 − m)ζ : η + 〈D(y, Yζ )〉Ys : η.

The sum of the last two equalities results in a relation

(
Ns : ζ

) : η =
〈(
D(y, Yζ ) + ζ

)
:
(
D(y, Yη) + η

)〉
Ys

,

which shows the symmetry and the positivity of the tensor Ns . The strict positivity
of this tensor follows from the structure of the domain Ys in the same way, as in the
previous section, namely, if

(
Ns : η

) : η = 0, then for some η, such that η : η = 1
one has D(y, Yη) + η = 0. This equality implies the linearity of Yη. But this is
impossible for a connected solid skeleton.

In fact, Yη is a periodic solution of the problem

∇y ·
(
(1 − χ)

(
D(y, Yη) + η − PηI

)) = 0, y ∈ Y,

(1 − χ)∇y · Yη = 0, y ∈ Y, 〈Yη〉Ys = 0.

}

As we have mentioned in the previous section, due to periodicity conditions, any
linear and periodic function in the elementary cell may only be constant if the peri-
odic repetition of this cell forms a connected domain. The normalization condition
〈Yη〉Ys = 0 implies Yη = 0. By construction Yη + η = 0. Therefore η = 0, which
is impossible by the supposition η : η = 1.
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The weak limit in the normalization condition (1.2.5) in the form

0 = −
∫ T

0

dh

dt
(t)

(∫

Ω

π εdx

)
dt → −

∫ T

0

dh

dt
(t)

(∫

Ω

π dx

)
dt

=
∫ T

0
h(t)

(∫

Ω

p dx

)
dt = 0

for arbitrary smooth functions h(t) finite on (0, T ), results in the normalization
condition (1.2.16).

Lemma 1.6 The problem (1.2.14)–(1.2.16) has a unique solution.

Proof The equality ws = 0 follows from the energy identity

∫

Ω

λ0
(
Ns : D(x, ws)

) : D(x, ws)dx = 0

for F = 0, the strict positivity of Ns , and the boundary condition in (1.2.16).
The differential equation (1.2.15) forws = 0 defines a pressure p as some function

of t . The normalization condition in (1.2.16) implies p = 0.

Now let μ1 < ∞ and the pore space be connected. To define U we have the
periodic boundary value problem (1.2.31), (1.2.33) and the solution of this problem
has the form

U =
3∑

i, j=1

U(i j)
0 (y)Di j (x, t) + U(0)

0 (y)
(∇ · ws(x, t)

)
,

Ps − p f = λ0

3∑
i, j=1

P (i j)
0 (y)Di j (x, t) + λ0 P (0)

0 (y)
(∇ · ws(x, t)

)
,

where

∇y ·
(
(1 − χ)

(
D(y, U(0)

0 ) − P(0)
0 I

)) = 0,

(1 − χ)(∇y · U(0)
0 + 1) = 0, 〈U(0)

0 〉Ys = 0, y ∈ Y.

}
(1.2.37)

To solve the problem (1.2.37) we first find a 1-periodic function V0 ∈ W1
2(Ys) such

that
∇y · V0 + 1 = 0, y ∈ Ys .

There are many ways to construct the function V0. For example, let

∇y · U0 + 1 = 0, y ∈ Y, U0(y) = 0, y ∈ ∂Y.
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The existence of U0 ∈
◦

W1
2 (Y ) follows from [56]. Now we extend it periodically

outside of Y as
V0(y + k) = U0(y),

where y ∈ Y , k = (k1, k2, k3) and the coordinates of the vector k are integers.
The correctness of the problem (1.2.37) is a consequence of the energy identity

∫

Ys

D(y, U(0)
0 ) : (D(y, U(0)

0 ) − D(y, V0)
)
dy = 0.

The last equality is the result of the multiplication of the first equation in (1.2.37) by
(U(0)

0 − V0) and integration by parts over domain Ys .

Lemma 1.7 The limiting functions ws and p f satisfy the homogenized momentum
balance equation (1.2.18).

Proof To findNs
1 we have to calculate expressions 〈D(y, U)〉Ys and p as operators

on D(x, ws) and (∇ · ws):

(1 − m)D(x, ws) + 〈D(y, U)〉Ys = Ns : D(x, ws) + 〈D(y, U(0)
0 )〉Ys

(∇ · ws
)

=
(
Ns + 〈D(y, U(0)

0 )〉Ys ⊗ I

)
: D(x, ws),

p = 〈P〉Y = 〈χ p f + (1 − χ)Ps〉Y = 〈p f + (1 − χ)(Ps − p f )〉Y

= p f + 〈(Ps − p f )〉Ys = p f + λ0

〈
3∑

i, j=1

P (i j)
0

〉

Ys

Di j + λ0〈P (0)
0 〉Ys

(∇ · ws
)
,

and

pI − p f I =
⎛
⎝λ0

〈
3∑

i, j=1

P (i j)
0

〉

Ys

I ⊗ J
i j

⎞
⎠ : D(x, ws) +

(
λ0〈P (0)

0 〉Ys I

)(∇ · ws
)

=
⎛
⎝λ0

〈
3∑

i, j=1

P (i j)
0

〉

Ys

I ⊗ J
i j + λ0〈P (0)

0 〉Ys I ⊗ I

⎞
⎠ : D(x, ws).

Therefore,

Ns
1 = Ns + 〈D(y, U(0)

0 )〉Ys ⊗ I−
〈

3∑
i, j=1

P (i j)
0

〉

Ys

I⊗ J
i j − 〈P (0)

0 〉Ys I⊗ I. (1.2.38)

The basic properties of the tensor Ns
1 follow from the equalities
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〈P(0)
0 〉Ys = −〈D(y, U(0)

0 ) : D(y, U(0)
0 )〉Ys , (1.2.39)

〈D(y, U(i j)
0 ) : D(y, U(0)

0 )〉Ys = 0, (1.2.40)

〈P(i j)
0 〉Ys = −〈D(y, U(0)

0 ) : Ji j 〉Ys , (1.2.41)

〈D(y, U(i j)
0 ) : D(y, U(kl)

0 )〉Ys + 〈Ji j : D(y, U(kl)
0 )〉Ys = 0, (1.2.42)

for all i, j, k, l = 1, 2, 3. Equation (1.2.39) is a result of multiplication of the
equation for U(0)

0 by U(0)
0 and integration by parts over domain Ys . Equation (1.2.40)

is the result of multiplication of the equation for U(0)
0 by U(i j)

0 and integration by
parts over domain Ys .

Equation (1.2.41) is the result of the multiplication of the equation for U(i j)
0 by

U(0)
0 and integration by parts over domain Ys . Here we additionally take into account

the relation (1.2.40).
Finally, equation (1.2.42) is the result of the multiplication of the equation for

U(i j)
0 by U(kl)

0 and integration by parts over domain Ys .

By construction

∫

Ω

〈Ps − p f 〉Ys dx = λ0

〈
3∑

i, j=1

P (i j)
0

〉

Ys

∫

Ω

Di j (x, t)dx

+ λ0 〈P(0)
0 〉Ys

∫

Ω

∇ · ws(x, t)dx = 0,

and ∫

Ω

pdx =
∫

Ω

(p f + 〈Ps − p f 〉Y )dx =
∫

Ω

p f dx .

Thus, the normalization condition (1.2.20) follows from the last equality and the
integral identity ∫ T

0
h(t)

(∫

Ω

π ε(x, t)dx

)
dt = 0

for arbitrary smooth functions h(t) after taking the limit as ε → 0.

Lemma 1.8 The constant fourth-rank tensor Ns
1 is symmetric and strictly positively

definite.

Proof Let ζ = (ζi j ) and η = (ηi j ) be arbitrary symmetric matrices and

Yζ =
3∑

i, j=1

U(i j)
0 ζi j , Yη =

3∑
i, j=1

U(i j)
0 ηi j , Y0

ζ = U(0)
0 tr ζ, Y0

η = U(0)
0 tr η.
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Then Eqs. (1.2.39)–(1.2.42) are transformed to equations

− (〈P(0)〉Ys I ⊗ I : ζ
) : η = 〈D(y, Y0

ζ ) : D(y, Y0
η)〉Ys , (1.2.43)

〈D(y, Yη) : D(y, Y0
ζ )〉Ys = 0, (1.2.44)

−
⎛
⎝
⎛
⎝
〈

3∑
i, j=1

P (i j)
0

〉

Ys

I ⊗ J
i j

⎞
⎠ : ζ

⎞
⎠ : η = 〈D(y, Y0

η)〉Ys : ζ, (1.2.45)

〈D(y, Yζ ) : D(y, Yη)〉Ys + ζ : 〈D(y, Yη)〉Ys = 0. (1.2.46)

Therefore,

(
Ns

1 : ζ
) : η = (1 − m)ζ : η + 〈D(y, Yζ )〉Ys : η + 〈D(y, Y0

ζ )〉Ys : η

+ ζ : 〈D(y, Y0
η)〉Ys + 〈D(y, Y0

ζ ) : D(y, Y0
η)〉Ys .

Taking into account equalities (1.2.43)–(1.2.46) we finally get

(
Ns

1 : ζ
) : η = 〈D(y, Yζ ) : D(y, Yη)〉Ys + 〈D(y, Yη)〉Ys : ζ

+ 〈D(y, Yζ )〉Ys : η + 〈D(y, Y0
ζ ) : D(y, Y0

η)〉Ys + ζ : 〈D(y, Y0
η)〉Ys

+ η : 〈D(y, Y0
ζ )〉Ys + (1 − m)ζ : η

= 〈(
D(y, Yζ + Y0

ζ ) + ζ
) : (D(y, Yη + Y0

η) + η
)〉

Ys
. (1.2.47)

Equation (1.2.47) shows that the tensor Ns
1 is symmetric:

(
Ns

1 : ζ
) : η = (

Ns
1 : η

) : ζ.

In particular,

(
Ns

1 : ζ
) : ζ = 〈(

D(y, Yζ + Y0
ζ ) + ζ

) : (D(y, Yζ + Y0
ζ ) + ζ

)〉
Ys

> 0.

Therefore the tensor Ns
1 is strictly positively definite.

Lemma 1.9 The problem (1.2.16)–(1.2.20) has a unique solution.

Proof To prove the uniqueness of the problem (1.2.16)–(1.2.20) we multiply equa-
tion (1.2.18) with F = 0 by ws and integrate by parts over Ω:

∫

Ω

λ0D(x, ws) :
(
Ns

1 : D(x, ws)
)

dx −
∫

Ω

p f ∇ · ws dx = 0.
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The combination of Darcy’s law (1.2.19) with F = 0 and the continuity equation
(1.2.17) give us

∇ · ws = 1

μ1
∇ ·

(
B · ∇ π f

)
.

Thus,
1

2μ1

d

dt

∫

Ω

∇ π f ·
(
B · ∇ π f

)
dx +

∫

Ω

p f ∇ · ws dx = 0,

and

1

2μ1

d

dt

∫

Ω

∇ π f ·
(
B · ∇ π f

)
dx +

∫

Ω

λ0D(x, ws) :
(
Ns

1 : D(x, ws)
)

dx = 0.

The last equality and normalization condition (1.2.20) imply

ws = 0, π f = 0.

As in the previous section we conclude that any subsequences of sequences {wε},
{wε

s }, and {p ε} converge to the same limits. Therefore entire sequences converge to
those unique limits.

1.3 A Compressible Slightly Viscous Liquid in a Compressible
Elastic Skeleton

Here, as a basic mathematical model at the microscopic level we consider the model
M14 of the filtration of a compressible liquid in a compressible elastic solid skeleton

1

αε
p

p + ∇ · w = 0, (1.3.1)

∇ · P + ρεF = 0, (1.3.2)

P = χεαμD

(
x,

∂w
∂t

)
+ (1 − χε)λ0D(x, w) −

(
p − χεαν∇ · ∂w

∂t

)
I, (1.3.3)

w(x, t) = 0, x ∈ S, t ∈ (0, T ), (1.3.4)

αν χε p(x, 0) = 0, χε w(x, 0) = 0, x ∈ Ω. (1.3.5)

Throughout this section assume that conditions

μ0 = 0, 0 < μ1 � ∞, 0 < λ0, c2f , c2s < ∞, 0 � ν0 < ∞, (1.3.6)
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and ∫

ΩT

(
|F|2 +

∣∣∣∂F
∂t

∣∣∣
2
)

dxdt = F2
1 < ∞ (1.3.7)

hold true.
In (1.3.1)–(1.3.6)

αε
p = χεc2f + (1 − χε)c2s ,

μ0 = lim
ε↘0

αμ(ε), μ1 = lim
ε↘0

αμ

ε2
, ν0 = lim

ε↘0
αν(ε).

1.3.1 Statement of the Problem and Main Results

Definition 1.3 We say that the pair of functions {wε, p ε} such that

wε ∈ ◦
w
1,0

2 (ΩT ), χε∇
(

∂wε

∂t

)
∈ L2(ΩT ), p ε ∈ L2(ΩT ),

is a weak solution of the problem (1.3.1)–(1.3.5), if it satisfies the continuity equation
(1.3.1) almost everywhere inΩT , the initial condition (1.3.5) and an integral identity

∫

ΩT

(
χεαμD

(
x,

∂wε

∂t

)
+ (1 − χε)λ0D(x, wε)

)
: D(x, ϕ) dxdt

−
∫

ΩT

(
p ε − χεαν∇ · ∂wε

∂t

)(∇ · ϕ
)

dxdt =
∫

ΩT

ρεF · ϕ dxdt,

(1.3.8)

for any functions ϕ ∈ ◦
w
1,0

2 (ΩT ).

Theorem 1.5 There exists a unique weak solution {wε, p ε} of the problem (1.3.1)–
(1.3.5) and

max
0<t<T

∫

Ω

(∣∣D(x, wε
s (x, t)

)∣∣2 +
∣∣∣∣D
(

x,
∂wε

s

∂t
(x, t)

)∣∣∣∣
2

+ ανχ
ε

∣∣∣∣
∂p ε

∂t
(x, t)

∣∣∣∣
2)

dx

+
∫

ΩT

(
χεαμ

∣∣∣∣D(x,
∂2wε

∂t2
)

∣∣∣∣
2

+
∣∣∣∣
∂p ε

∂t

∣∣∣∣
2)

dxdt � C0F2
1 ,

(1.3.9)

∫

ΩT

∣∣∣∂wε

∂t
(x, t) − ∂wε

s

∂t
(x, t)

∣∣∣
2
dxdt � ε2

αμ

C0F2
1 , (1.3.10)



32 1 Isothermal Liquid Filtration

where wε
s be an extension (1.2.9) and the constant C0 is independent of the small

parameter ε.

Theorem 1.6 Let {wε, p ε} be the weak solution of the problem (1.3.1)–(1.3.5), wε
s

be an extension (1.2.9), and μ1 = ∞ or μ1 < ∞ but the pore space be disconnected.
Then

(1) for all ν0 > 0 the sequences {wε}, {∇ ·wε}, {χε p ε},
⎧
χε ∂p ε

∂t

}
, and {qε}, where

qε = χε

(
p ε + αν

c2f

∂ pε

∂t

)
, converge weakly in L2(ΩT ) and L2(ΩT ) (up to some

subsequences) to functions w, ∇ · w, m
∂p f

∂t
, and m q = m

(
p f + ν0

c2f

∂ p f

∂t

)

respectively;
(2) for ν0 = 0 the sequences {wε}, {∇ ·wε}, and {χε p ε} converge weakly in L2(ΩT )

and L2(ΩT ) (up to some subsequences) to functions w, ∇ ·w, and m p f respec-
tively;

(3) for all ν0 � 0 the sequence {wε
s } converges weakly in w1,0

2 (ΩT ) (up to some

subsequences) to the function ws ∈ ◦
W

1,0

2 (ΩT ) and ws = w;
(4) limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the homogenized continuity equation

m

c2f
p f + m ∇ · ws = C

s
0 : D(x, ws) + cs

0

λ0
q, (1.3.11)

the state equation

q = p f + ν0

c2f

∂p f

∂t
(q = p f for ν0 = 0), (1.3.12)

and the homogenized momentum balance equation

∇ · (λ0 Ns
2 : D(x, ws) − q C

s
1

)+ ρ̂F = 0, (1.3.13)

completed with homogeneous boundary and initial conditions

ws(x, t) = 0, x ∈ S, t ∈ (0, T ), ν0 p f (x, 0) = 0, x ∈ Ω; (1.3.14)

(5) there exists λ∗ > 0, such that for all λ0 > λ∗ the problem (1.3.11)–(1.3.14) has
a unique solution.
In (1.3.11), (1.3.13)

ρ̂ = m ρ f + (1 − m) ρs,
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the symmetric strictly positively definite constant fourth-rank tensor Ns
2, ma-

trices C
s
0 and C

s
1, and the constant cs

0 are given below by formulae (1.3.26),
(1.3.27) and (1.3.31) and do not depend on λ0.

We refer to the problem (1.3.11)–(1.3.14) as the homogenized model (IF)4.

Theorem 1.7 Let {wε, p ε} be the weak solution of the problem (1.3.1)–(1.3.5), wε
s

be an extension (1.2.9), the pore space be connected, and μ1 < ∞.
Then

(1) for all ν0 > 0 the sequences {χε wε},
⎧
χε ∂wε

∂t

}
, {χε p ε},

⎧
χε ∂p ε

∂t

}
, and {qε},

where qε = χε

(
p ε + αν

c2f

∂ pε

∂t

)
, converge weakly in L2(ΩT ) and L2(ΩT ) (up

to some subsequences) to functions w( f ),
∂w( f )

∂t
, m

∂p f

∂t
, and m q = m

(
p f +

ν0

c2f

∂ p f

∂t

)
∈ W 1,0

2 (ΩT ) respectively;

(2) for ν0 = 0 the sequences {χε wε},
⎧
χε ∂wε

∂t

}
, and {χε p ε} converge weakly

in L2(ΩT ) and L2(ΩT ) (up to some subsequences) to functions w,
∂w( f )

∂t
, and

m p f ∈ W 1,0
2 (ΩT ) respectively;

(3) for all ν0 � 0 sequences {wε
s } and

⎧
∂wε

s

∂t

}
converge weakly in W1,0

2 (ΩT ) (up

to some subsequences) to functions
∂ws

∂t
∈ ◦

W
1,0

2 (ΩT ) respectively;

(4) limiting functions solve the system of homogenized equations in the domain ΩT ,
consisting of the homogenized continuity equation

m

c2f
p f + ∇ · w( f ) = C

s
0 : D(x, ws) + cs

0

λ0
q, (1.3.15)

the state equation (1.3.12), the homogenized momentum balance equation
(1.3.13) for the solid component, and Darcy’s law in the form

∂w( f )

∂t
= m

ws

∂t
+ B · (−∇ q + ρ f F

)
, (1.3.16)

for the liquid component, completed with the homogeneous boundary and initial
conditions (1.3.14), and the homogeneous boundary condition

w( f )(x, t) · n(x) = 0, x ∈ S, t ∈ (0, T ) (1.3.17)

for the pressure p f and displacements w( f ) of the fluid component.
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(5) there exists λ∗ > 0, such that for all λ0 > λ∗ the problem (1.3.13)–(1.3.17) has
a unique solution.
In (1.3.16) and (1.3.17) n is the normal vector to the boundary S, the symmetric
strictly positively definite constant matrixB is given in Theorem 1.1 of the present
chapter.

We refer to the problem (1.3.13)–(1.3.17) as the homogenized model (IF)5.

Theorem 1.8 Let ν0 = 0 and μ1 = ∞, or μ1 < ∞, but the pore space be discon-
nected.

Then q = p f and the solution ws of the problem (1.3.11)–(1.3.14) satisfies in the
domain ΩT the homogenized equation

∇ · (λ0 Ns
3 : D(x, ws)

)+ ρ̂F = 0 (1.3.18)

with the boundary condition (1.3.14).
The symmetric strictly positive definite constant fourth-rank tensor Ns

3 is given
below by formula (1.3.39) and does not depend on λ0.

We refer to the problem (1.3.14), (1.3.18) as the homogenized model (IF)6.

1.3.2 Proof of Theorem 1.5

The proof of estimates (1.3.9) and (1.3.10) for the function

(
∂wε

∂t
− ∂wε

s

∂t

)
repeats

the proof of estimates (1.2.12) and (1.2.13) in Theorem 1.2. We just have to use the
equalities

∫

Ω

χε

(
αμ

∣∣∣D
(

x,
∂wε

∂t

)∣∣∣
2 + αν

c2f

∣∣∣∂ p ε

∂t

∣∣∣
2)

dx

+ 1

2

d

dt

∫

Ω

(
(1 − χε)λ0|D(x, wε)|2 + 1

αε
p
|p ε|2

)
dx =

∫

Ω

ρεF · ∂wε

∂t
dx,

1

2

d

dt

∫

Ω

(
(1 − χε)λ0

∣∣∣D
(

x,
∂wε

∂t

)∣∣∣
2 + 1

αε
p

∣∣∣∂p ε

∂t

∣∣∣
2
)

dx

+
∫

Ω

χε

(
αμ

∣∣∣D
(

x,
∂2wε

∂t2

)∣∣∣
2 + αν

c2f

∣∣∣∂
2 p ε

∂t2

∣∣∣
2
)

dx =
∫

Ω

ρε ∂F
∂t

· ∂wε

∂t
dx .

(1.3.19)
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1.3.3 Proof of Theorem 1.6

On the strength of Theorem 1.5 sequences {wε}, {χεwε}, {∇ ·wε}, {wε
s }, {D(x, wε

s )},
{χε p ε}, {(1 − χε)p ε}, and {pε} converge weakly in L2(ΩT ) and L2(ΩT ) (up to

some subsequences) to functions w, w( f ), ∇ · w, ws ∈ ◦
W

1,0

2 (ΩT ), D(x, ws), m p f ,
(1 − m)ps , and p = m p f + (1 − m)ps respectively, and sequences {wε}, {χεwε},
{wε

s }, {D(x, wε
s )}, {χε p ε}, and {(1 − χε)p ε} converge two-scale in L2(ΩT ) and

L2(ΩT ) respectively to functions

W(x, t, y) = W(x, t, y)χ(y) + (1 − χ(y))ws(x, t), W(x, t, y)χ(y),

ws(x, t), D(x, ws) + D
(
y, U(x, t, y)

)
,

p f (x, t)χ(y), and Ps(x, t, y).

For ν0 = 0 the sequence {qε} converges weakly in L2(ΩT ) to function m p f and
two-scale in L2(ΩT ) to function p f χ(y).

For ν0 � 0 sequences

⎧
χε ∂pε

∂t

}
and {qε} convergeweakly in L2(ΩT ) to functions

m
∂p f

∂t
and mq respectively. Passing to the limit as ε → 0 in the state equation in

the form ∫

ΩT

(
(qε − χε p ε)ξ(x, t) + αν

c2f
χε p ε ∂ξ

∂t
(x, t)

)
dxdt = 0,

we get the homogenized state equation

q = p f + ν0

c2f

∂p f

∂t
,

and the initial condition
ν0 p f (x, 0) = 0, x ∈ Ω.

At the same time the sequence {qε} converges two-scale in L2(ΩT ) to function
q(x, t) χ(y).

As we have shown in the proof of Theorem 1.3, weak and two-scale limits W, p f ,
andq satisfy themicroscopic system (1.2.25)–(1.2.27) and the state equation (1.3.12).
Therefore, if the pore space is disconnected, then W(x, t, y)χ(y) = ws(x, t)χ(y)

and
W(x, t, y) = ws(x, t).

Due to estimate (1.3.10) the same equality holds true for the case μ1 = ∞.
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Lemma 1.10 Limiting functions ws and p f satisfy in the domain ΩT the macro-
scopic continuity equation for the liquid component

m

c2f
p f + m∇ · ws = 〈∇y · U〉Ys . (1.3.20)

Proof To prove (1.3.20) we rewrite the continuity equation (1.3.1) as

∫

ΩT

(
1

c2f
χε p εξ(x, t) − wε · ∇ξ(x, t)

)
dxdt

=
∫

ΩT

(1 − χε)ξ(x, t)∇ · wε
s dxdt.

Passage to the limit as ε → 0 gives as

∫

ΩT

(
1

c2f
χε p εξ(x, t) − wε · ∇ξ(x, t)

)
dxdt

→
∫

ΩT

(
ξ

m

c2f
p f − ws · ∇ξ

)
dxdt =

∫

ΩT

ξ

(
m

c2f
p f + ∇ · ws

)
dxdt,

∫

ΩT

(1 − χε)∇ · wε
s ξ(x, t)dxdt

→
∫

ΩT

ξ
(
(1 − m)∇ · ws + 〈∇y · U〉Ys

)
dxdt.

After reintegrating we arrive at (1.3.20).
In the last relation we took into account Nguetseng’s theorem (see Appendix B).

Lemma 1.11 Limiting functions ws and q satisfy in the domain ΩT the homogenized
momentum balance equation (1.3.13).

Proof Initially, using the continuity equation (1.3.1) in the domain Ωε
s in the form

(1 − χε)p ε = −c2s (1 − χε)∇ · wε
s ,

we rewrite the integral identity (1.3.8) as

I ε
f + I ε

s =
∫

ΩT

ρεF · ϕ dxdt, (1.3.21)

where
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I ε
f =

∫

ΩT

χεαμD(x, vε) : D(x, ϕ)dxdt +
∫

ΩT

χε qε∇ · ϕdxdt,

I ε
s =

∫

ΩT

(1 − χε)
(
λ0D(x, wε

s ) : D(x, ϕ) + c2s (∇ · wε
s )(∇ · ϕ)

)
dxdt

= λ0

∫

ΩT

(1 − χε)
(
N(0) : D(x, wε

s )
) : D(x, ϕ)dxdt,

and

N(0) =
3∑

i, j=1

J
i j ⊗ J

i j + c2s
λ0

I ⊗ I.

Now we pass to the limit as ε → 0 in the integral identity (1.3.21) with two dif-
ferent types of test functions. Firstly, with test functions ϕ = ϕ(x, t) and secondly,

with test functions ϕ = εh(x, t)ϕ0

(x
ε

)
. After standard reintegration we obtain the

macroscopic momentum balance equation

∇ ·
(
λ0 N

(0) : ((1 − m)D(x, ws) + 〈D(y, U)〉Ys

))− m ∇q + ρ̂F = 0, (1.3.22)

and the microscopic momentum balance equation

∇y ·
(
(1 − χ)

(
N(0) : (D(x, ws) + D(y, U)

)+ 1

λ0
q I
)) = 0. (1.3.23)

Note, that the sequence {qε} converges weakly and two-scale in L2(ΩT ) to mq for
ν0 > 0, and converges weakly and two-scale in L2(ΩT ) to mp f for ν0 = 0.

To calculate Ns
2 and C

s
1 we have to solve (1.3.23) and find 〈D(y, U)〉Ys as an

operator on D(x, ws) and q.
Let U(i j)

2 (y) and U(0)
2 (y) be solutions of periodic problems

∇y ·
(
(1 − χ)

(
N(0) : (J(i j) + D(y, U(i j)

2 )
))) = 0, (1.3.24)

and
∇y ·

(
(1 − χ)

(
N(0) : D(y, U(0)

2 ) + I
)) = 0 (1.3.25)

in Y .
The correct solvability of problems (1.3.24) and (1.3.25) follows from the energy

equalities
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∫

Ys

(
N(0) : D(y, U(i j)

2 )
)

: D(y, U(i j)
2 )dy = −

∫

Ys

(
N(0) : J(i j)

)
: D(y, U(i j)

2 )dy,

∫

Ys

(
N(0) : D(y, U(0)

2 )
)

: D(y, U(0)
2 )dy = −

∫

Ys

I : D(y, U(0)
2 )dy(= −〈∇ · U(0)

2 〉Ys ),

and the corresponding energy estimates.
As before, we conclude that the solution U to the problem (1.3.23) has a form

U(x, t, y) =
3∑

i, j=1

U(i j)
2 (y)Di j (x, t) + 1

λ0
q(x, t) U(0)

2 (y).

Then

〈D(y, U)〉Ys =
3∑

i, j=1

〈D(y, U(i j)
2 )〉Ys Di j + 1

λ0
q 〈D(y, U(0)

2 )〉Ys

=
( 3∑

i, j=1

〈D(y, U(i j)
2 )〉Ys ⊗ J

(i j)
)

: D(x, ws) + 1

λ0
q 〈D(y, U(0)

2 )〉Ys ,

and

Ns
2 = N(0) :

(
(1 − m)

3∑
i, j=1

J
i j ⊗ J

i j +
3∑

i, j=1

〈D(y, U(i j)
2 )〉Ys ⊗ J

(i j)
)

(1.3.26)

C
s
1 = m I − 〈D(y, U(0)

2 )〉Ys . (1.3.27)

Lemma 1.12 The constant fourth-rank tensorNs
2 is symmetric and strictly positively

definite.

Proof As before (see Lemmas 1.2.2 and 1.2.5), all properties of the tensorNs
2 follow

from the equality

∫

Ys

(
N(0) : D(y, U(i j)

2 )
)

: D(y, U(kl)
2 )dy

= −
∫

Ys

(
N(0) : J(i j)

)
: D(y, U(kl)

2 )dy, (1.3.28)

which is the result of multiplying the Eq. (1.3.24) for U(i j)
2 by U(kl)

2 and integration
by parts over domain Y .

Let ζ = (ζi j ) and η = (ηi j ) be arbitrary symmetric matrices and
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Yζ =
3∑

i, j=1

U(i j)
2 ζi j , Yη =

3∑
i, j=1

U(i j)
2 ηi j .

Then, after multiplying the equation (1.3.28) by ζi jηkl and summing over all indices
we arrive at

〈(N(0) : D(y, Yζ )
) : D(y, Yη)〉Ys + 〈(N(0) : ζ

) : D(y, Yη)〉Ys = 0. (1.3.29)

By definition

(
Ns

2 : ζ
) : η = 〈(N(0) : ζ

) : η〉Ys + 〈(N(0) : η
) : D(y, Yζ )〉Ys . (1.3.30)

The sum of (1.3.29) and (1.3.30) gives us the equality

(
Ns

2 : ζ
) : η =

∫

Ys

(
N(0) : (D(y, Yζ ) + η

)) : (D(y, Yη) + ζ
)
dy,

which proves the statement of the lemma, because the constant fourth-rank tensor
N(0) is obviously symmetric and strictly positively definite.

Lemma 1.13 Limiting functions ws and q satisfy in the domain ΩT the homogenized
continuity equation (1.3.11).

Proof To prove the lemma we just have to express the right-hand side of (1.3.20)
using (1.3.26):

〈∇y · U〉Ys =
3∑

i, j=1

〈∇y · U(i j)
2 〉Ys Di j + 1

λ0
q〈∇y · U(0)

2 〉Ys

=
( 3∑

i, j=1

〈∇y · U(i j)
2 〉YsJ

i j
)

: D(x, ws) +
(

1

λ0
〈∇y · U(0)

2 〉Ys

)
q.

Therefore, (1.3.11) holds, if

C
s
0 =

3∑
i, j=1

〈∇y · U(i j)
2 〉YsJ

i j , cs
0 = 〈∇y · U(0)

2 〉Ys . (1.3.31)

Lemma 1.3.2 shows that cs
0 < 0.

Lemma 1.14 The problem (1.3.11)–(1.3.14) has a unique solution.

Proof To prove the lemma for the case ν0 > 0 let us multiply equation (1.3.13) with
F = 0 by ws , integrate by parts over domain Ω and estimate the term containing q
using Hölder’s inequality and properties of the tensorNs

2:
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∫

Ω
D(x, ws) : (Ns

2 : D(x, ws)
)
dx = 1

λ0

∫

Ω
q C

s
1 : D(x, ws)dx

� 1

2

∫

Ω
D(x, ws) : (Ns

2 : D(x, ws)
)
dx + C0

λ0

∫

Ω
q2dx .

In a sequel, we solve (1.3.12) and find p f as

p f = ν0

c2f
exp

(
− ν0

c2f
t

)∫ t

0
exp

(
ν0

c2f
τ

)
q(x, τ )dτ,

substitute it into (1.3.11), multiply the result by q, integrate over Ω , and estimate q
as ∫

Ω

q2dx � C0

∫

Ω

D(x, ws) : (Ns
2 : D(x, ws)

)
dx .

Thus,

1

2

∫

Ω

D(x, ws) : (Ns
2 : D(x, ws)

)
dx

� C0

λ0

∫

Ω

q2dx � C0

λ0

∫

Ω

D(x, ws) : (Ns
2 : D(x, ws)

)
dx,

which implies ws = 0, q = 0 for

λ0 > λ∗ = 2C0.

The case ν0 = 0 is considered in a similar way.

1.3.4 Proof of Theorem 1.7

The sequences {χεwε},
⎧
χε ∂wε

∂t

}
, {wε

s },
⎧

∂wε
s

∂t

}
, {D(x, wε

s )}, {χε p ε},
⎧
χε ∂ p ε

∂t

}
,

and {qε} converge weakly in L2(ΩT ) and L2(ΩT ) up to some subsequences to func-

tions w( f ),
∂w( f )

∂t
, ws ∈ ◦

W
1,0

2 (ΩT ),
∂ws

∂t
∈ ◦

W
1,0

2 (ΩT ), D(x, ws), mp f , m
∂ p f

∂t
,

and m q respectively, and sequences {wε}, {χεwε},
⎧
χε ∂wε

∂t

}
, {wε

s }, {D(x, wε
s )},

{χε p ε},
⎧
χε ∂ p ε

∂t

}
, and {qε} converge two-scale in L2(ΩT ) and L2(ΩT ) to

functions W(x, t, y), W( f )(x, t, y),
∂W( f )

∂t
, ws(x, t), D(x, ws) + D

(
y, U(x, t, y)

)
,

χ(y)p f (x, t), χ(y)
∂p f

∂t
(x, t), and χ(y)q(x, t) respectively.
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For ν0 = 0 the sequence {qε} converges weakly in L2(ΩT ) to mp f and two-scale
in L2(ΩT ) to p f (x, t) χ(y).

As we have shown before, weak and two-scale limits W( f ), p f , and q satisfy
the microscopic system (1.2.25)–(1.2.27) and the state equation (1.3.12). Therefore,
for a connected pore space the limiting functions w( f ) and q ∈ W 1,0

2 (ΩT ) satisfy
in the domain ΩT Darcy’s law (1.3.16) and the boundary condition (1.3.17) on the
boundary S. In the same way we show that limiting functions ws and q satisfy in
the domain ΩT the homogenized momentum balance equation (1.3.13). So, we only
must prove the following statement.

Lemma 1.15 Limiting functions ws and p f satisfy the homogenized continuity
equation (1.3.15).

Proof As before in Lemma 1.3.1, we rewrite the continuity equation (1.3.1) as

∫

ΩT

(
1

c2f
χε p εξ(x, t) − wε · ∇ξ(x, t)

)
dxdt

=
∫

ΩT

(1 − χε)ξ(x, t)∇ · wε
s dxdt. (1.3.32)

After two-scale passage to the limit as ε → 0 in (1.3.32) we arrive at the integral
identity

∫

ΩT

(
m

c2f
p f ξ(x, t) − (w( f ) + (1 − m)ws

) · ∇ξ(x, t)

)
dxdt

=
∫

ΩT

∫

ΩT

ξ(x, t)
(
(1 − m)∇ · ws + 〈∇y · U〉Ys

)
dxdt.

Reintegration transforms the last identity to the macroscopic continuity equation

m

c2f
p f + ∇ · w( f ) = 〈∇y · U〉Ys . (1.3.33)

The rest of the proof repeats the proof of the Lemma 1.13.

Lemma 1.16 The problem (1.3.11)–(1.3.14) has a unique solution.

Proof Let us consider the simplest case ν0 = 0. The case ν0 > 0 is considered in a
similar way (see Lemma 1.3.5 and Lemma 1.2.6).

As in Lemma 1.3.5, we multiply equation (1.3.13) with F = 0 by ws , integrate by
parts over domain ΩT and estimate the term with q = p f using Hölder’s inequality
and properties of the tensor Ns

2:
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∫

ΩT

D(x, ws) : (Ns
2 : D(x, ws)

)
dxdt = 1

λ0

∫

ΩT

q C
s
1 : D(x, ws)dxdt

� 1

2

∫

ΩT

D(x, ws) : (Ns
2 : D(x, ws)

)
dxdt

+ C0

λ0

∫

ΩT

p2f dxdt.

In a sequel, we rewrite Eqs. (1.3.15) and (1.3.16) as

(
m

c2f
− cs

0

λ0

)
p f − ∇ ·

(
B ·
∫ t

0
∇ p f (x, τ )dτ

)
= (

C
s
0 − m I

) : D(x, ws),

multiply by p f , integrate over Ω × (0, t), and estimate p f as

∫ t

0

∫

Ω

p2f (x, τ )dxdτ + 1

m

∫

Ω

|∇(
∫ t

0
p f (x, τ )dτ

)|2dx

� C0

∫ t

0

∫

Ω

D
(
x, ws(x, τ )

) :
(
Ns

2 : D(x, ws(x, τ )
))

dxdτ.

Thus, ws = 0, p f = 0 for λ0 > λ∗.

1.3.5 Proof of Theorem 1.8

If μ1 = ∞, and ν0 = 0 then

ws = w, and q = p f ,

and the homogenized system (1.3.11)–(1.3.13) takes the form

p f = 1

β

(− m I + C
s
0

) : D(x, ws) = C̃ : D(x, ws),

∇ · (λ0 Ns
2 : D(x, ws) − p f C

s
1

)+ ρ̂F = 0,

where

β = m

c2f
− cs

0

λ0
> 0.

The last two equations are obviously transformed to

∇ ·
((

λ0 N
s
2 + C

s
1 ⊗ C̃

) : D(x, ws)
)

+ ρ̂F = 0. (1.3.34)
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It seems that the shortest way to prove the statement of the theorem is to show that
the tensor Ns

3 in the form
Ns

3 = λ0 N
s
2 + C

s
1 ⊗ C̃

is symmetric and strictly positively definite. Unfortunately, we have no idea how
to do it. So, we choose a more complicated route with more technical details, but
leading to the right answer.

Using the macroscopic continuity equation (1.3.20) for the liquid component
we rewrite the micro-and macroscopic momentum balance equations (1.3.22) and
(1.3.23) as

∇y ·
(
(1 − χ)

(
D(y, U) + c2s

λ0m
(∇y · U)I + c2f

λ0
〈∇y · U〉Ys I

+ D(x, ws) +
(c2s − c2f

λ0

)
(∇ · ws) I

)) = 0. (1.3.35)

∇ ·
((

(1 − m)D(x, ws) + 〈D(y, U〉Ys )
)+

(c2s − c2f
λ0

)
〈∇y · U〉Ys I

+
(
(1 − m)

c2s
λ0

+ m
c2f
λ0

))(
∇ · ws) I

)
+ 1

λ0
ρ̂F = 0. (1.3.36)

Setting in (1.3.35)

U =
3∑

i, j=1

U(i j)
3 (y)Di j + U(0)

3 (y)(∇ · ws),

we arrive at the following periodic-boundary value problems in Ys :

∇y ·
(
(1 − χ)

(
D(y, U(i j)

3 ) + J
i j + c2s

λ0
∇y · U(i j)

3 I

+ c2f
λ0m

〈∇y · U(i j)
3 〉Ys I

)) = 0, (1.3.37)

∇y ·
(
(1 − χ)

(
D(y, U(0)

3 ) + (
c2s − c2f

λ0
)I

+ c2s
λ0

∇y · U(0)
3 I + c2f

λ0m
〈∇y · U(0)

3 〉Ys I
)) = 0. (1.3.38)

As before, the correctness of these problems under the normalization conditions
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〈U(i j)
3 〉Ys = 〈U(0)

3 〉Ys = 0

follows from the energy equalities

∫

Ys

((
D(y, U(i j)

3 ) + J
i j ) : D(y, U(i j)

3 ) + c2s
λ0

(∇y · U(i j)
3 )2

)
dy

+ c2f
λ0m

( ∫

Ys

∇y · U(i j)
3 dy

)2 = 0,

∫

Ys

(
D(y, U(0)

3 ) : D(y, U(0)
3 ) + c2s

λ0
(∇y · U(0)

3 )2
)

dy

+ c2f
λ0m

(∫

Ys

∇y · U(0)
3 dy

)2

+
(

c2s − c2f
λ0

)∫

Ys

∇y · Ũ0dy = 0.

Thus

Ns
3 = (1 − m)

3∑
i, j=1

J
i j ⊗ J

i j +
(

(1 − m)
c2s
λ0

+ m
c2f
λ0

)
I ⊗ I

+
3∑

i, j=1

〈D(y, U(i j)
3 )〉Ys ⊗ J

i j +
(

c2s − c2f
λ0

)
3∑

i, j=1

〈∇ · U(i j)
3 〉Ys I ⊗ J

i j

+ 〈D(y, U(0)
3 )〉Ys ⊗ I +

(
c2s − c2f

λ0

)
〈∇ · U(0)

3 〉Ys I ⊗ I. (1.3.39)

Let ζ = (ζi j ) and η = (ηi j ) be arbitrary symmetric matrices and

Yζ =
3∑

i, j=1

U(i j)
3 ζi j , Yη =

3∑
i, j=1

U(i j)
3 ηi j , Y0

ζ = U(0)
3 tr ζ, Y0

η = U(0)
3 tr η.

Then

(
Ns

3 : ζ
) : η =(1 − m)ζ : η +

(
(1 − m)

c2s
λ0

+ m
c2f
λ0

)
tr ζ tr η

+
(

c2s − c2f
λ0

)
〈∇ · Yζ 〉Ys tr η + 〈D(y, Yζ )〉Ys : η

+ 〈D(y, Y0
ζ )〉Ys : η +

(
c2s − c2f

λ0

)
〈∇ · Y0

η〉Ys tr ζ. (1.3.40)

The symmetry of the tensor Ns
3 in the form
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(
Ns

3 : ζ
) : η = (

Ns
3 : η

) : ζ

follows from the equations

(〈D(y, U(i j)
3 ) : D(y, U(kl)

3 )〉Ys + 〈D(y, U(kl)
3 )〉Ys : Ji j )

+ c2s
λ0

〈∇y · U(i j)
3 ∇y · U(kl)

3 〉Ys

+ c2f
λ0m

〈∇y · U(i j)
3 〉Ys 〈∇y · U(kl)

3 〉Ys = 0, (1.3.41)

〈D(y, U(0)
3 ) : D(y, U(0)

3 )〉Ys + c2s
λ0

〈(∇y · U(0)
3 )2〉Ys

+
(

c2s − c2f
λ0

)
〈∇y · U(0)

3 〉Ys +
c2f

λ0m

(〈∇y · U(0)
3 〉Ys

)2 = 0, (1.3.42)

(〈D(y, U(i j)
3 ) : D(y, U(0)

3 )〉Ys + 〈D(y, U(0)
3 )〉Ys : Ji j )

+ c2s
λ0

〈∇y · U(i j)
3 ∇y · U(0)

3 〉Ys + c2f
λ0m

〈∇y · U(i j)
3 〉Ys 〈∇y · U(0)

3 〉Ys = 0,

(1.3.43)

〈D(y, U(0)
3 ) : D(y, U(kl)

3 )〉Ys +
(

c2s − c2f
λ0

)
〈∇y · U(kl)

3 〉Ys

+ c2s
λ0

〈∇y · U(0)
3 ∇y · U(kl)

3 〉Ys + c2f
λ0m

〈∇y · U(0)
3 〉Ys 〈∇y · U(kl)

3 〉Ys ,

(1.3.44)

which appear by multiplying of Eqs. (1.3.37) and (1.3.38) by U(kl)
3 and U(0), and

integration by parts.
In fact, let us rewrite these relations in the form

〈D(y, Yζ ) : D(y, Yη)〉Ys + 〈D(y, Yη)〉Ys : ζ

+ c2s
λ0

〈∇y · Yζ ∇y · Yη〉Ys + c2f
λ0m

〈∇y · Yζ 〉Ys 〈∇y · Yη〉Ys = 0,

(1.3.45)
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〈D(y, Y0
ζ ) : D(y, Y0

η)〉Ys + c2s
λ0

〈∇y · Y0
η ∇y · Y0

ζ 〉Ys

+
(

c2s − c2f
λ0

)
〈∇y · Y0

ζ 〉Ys tr η + c2f
λ0m

〈∇y · Y0
ζ 〉Ys 〈∇y · Y0

η〉Ys = 0,

(1.3.46)

〈D(y, Yζ ) : D(y,Y0
η)〉Ys + 〈〈D(y, Y0

η)〉Ys : ζ

+ c2s
λ0

〈∇y · Yζ ∇y · Y0
η〉Ys + c2f

λ0m
〈∇y · Yζ 〉Ys 〈∇y · Y0

η〉Ys = 0,

(1.3.47)

〈D(y, Y0
ζ ) : D(y, Yη)〉Ys +

(
c2s − c2f

λ0

)
〈∇y · Yη〉Ys tr ζ

+ c2s
λ0

〈∇y · Y0
ζ ∇y · Yη〉Ys + c2f

λ0m
〈∇y · Y0

ζ 〉Ys 〈∇y · Yη〉Ys ,

(1.3.48)

and sum Eqs. (1.3.40) and (1.3.45)–(1.3.48):

(
Ns

3 : ζ
) : η = (1 − m)ζ : η + 〈D(y, Yζ )〉Ys : η + 〈D(y, Yη)〉Ys : ζ

+ 〈D(y, Yζ ) : D(y, Yη)〉Ys + 〈D(y, Y0
ζ ) : D(y, Y0

η)〉Ys + 〈D(y, Y0
η)〉Ys : ζ

+ D(y, Y0
ζ )〉Ys : η + 〈D(y, Yζ ) : D(y, Y0

η)〉Ys + 〈D(y, Y0
ζ ) : D(y, Yη)〉Ys

+ c2s
λ0

(
(1 − m)tr ζ tr η + 〈∇ · Yζ 〉Ys tr η + 〈∇y · Yη〉Ys tr ζ

+ 〈∇y · Yζ ∇y · Yη〉Ys + 〈∇y · Y0
η ∇y · Y0

ζ 〉Ys + 〈∇y · Y0
ζ 〉Ys tr η

+ 〈∇ · Y0
η〉Ys tr ζ + 〈∇y · Yζ ∇y · Y0

η〉Ys + 〈∇y · Y0
ζ ∇y · Yη〉Ys

)

+
c2f

λ0m

(
m2 tr ζ tr η − m 〈∇y · Yζ 〉Ys tr η − m 〈∇y · Yη〉Ys tr ζ

+ 〈∇y · Yζ 〉Ys 〈∇y · Yη〉Ys + 〈∇y · Y0
ζ 〉Ys 〈∇y · Y0

η〉Ys − m 〈∇y · Y0
ζ 〉Ys tr η

+ m 〈∇y · Y0
η〉Ys tr ζ + 〈∇y · Yζ 〉Ys 〈∇y · Y0

η〉Ys + 〈∇y · Y0
ζ 〉Ys 〈∇y · Yη〉Ys

)
.

Thus(
Ns

3 : ζ
) : η = 〈(D(y, Zζ ) + ζ

) : D(y, Zη) + η
)〉Ys

+ c2s
λ0

〈(∇y · Zζ + tr ζ )(∇y · Zη + tr η)〉Ys

+ c2f
λ0m

(〈∇y · Zζ 〉Ys − m tr ζ
)(〈∇y · Zη〉Ys − m tr η

)
, (1.3.49)
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where Zζ = Yζ + Y0
ζ .

The last relation shows the symmetry of the tensor Ns
3. In particular, for ζ = η

(Ns
3 : ζ ) : ζ = 〈(D(y, Zζ ) + ζ

) : D(y, Zζ ) + ζ
)〉Ys

+ c2s
λ0

〈(∇y · Zζ + tr ζ )2〉Ys + c2f
λ0m

(〈∇y · Zζ 〉Ys − m tr ζ
)2

.

(1.3.50)

Therefore,

(Ns
3 : D(x, ws)

) : D(x, ws) � a0 D(x, ws) : D(x, ws), a0 = const > 0.

1.4 A Viscous Liquid in an Elastic Skeleton

In the present section as basic mathematical models at the microscopic level we con-
sider the modelM15 of the filtration of an incompressible liquid in an incompressible
elastic solid skeleton and the model M14 of a filtration of compressible liquid in a
compressible elastic solid skeleton for the case αν = 0.

The model M15 consists of the continuity equation

∇ · w = 0, x ∈ Ω, t ∈ (0, T ), (1.4.1)

the momentum balance equation

∇ · P + ρεF = 0, x ∈ Ω, t ∈ (0, T ), (1.4.2)

the state equation

P = χεμ0D

(
x,

∂w
∂t

)
+ (1 − χε)λ0D(x, w) − p I, (1.4.3)

the boundary condition

w(x, t) = 0, x ∈ S, t ∈ (0, T ), (1.4.4)

and normalization and initial conditions
∫

Ω

p(x, t)dx = 0, t ∈ (0, T ), χε w(x, 0) = 0, x ∈ Ω. (1.4.5)

The model M14 consists of the momentum balance equation (1.4.2), the state
equation (1.4.3), the boundary condition (1.4.4), the continuity equation
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1

αε
p

p + ∇ · w = 0, (1.4.6)

and the initial condition
χε w(x, 0) = 0, x ∈ Ω. (1.4.7)

Throughout this section we assume that conditions

0 < μ0, λ0, c2f , c2s < ∞, (1.4.8)

and ∫

ΩT

(∣∣F∣∣2 + (1 − χε)

∣∣∣∂F
∂t

∣∣∣
2
)

dxdt = F2
1 < ∞ (1.4.9)

hold true.
In (1.4.6), (1.4.8)

αε
p = χεc2f + (1 − χε)c2s .

Definition 1.4 We say that the pair of functions {wε, p ε} such that

wε ∈ ◦
W

1,0

2 (ΩT ), χε∇
(∂wε

∂t

)
∈ L2(ΩT ), p ε ∈ L2(ΩT )

is a weak solution of the problem (1.4.1)–(1.4.5), if it satisfies the continuity equation
(1.4.1) almost everywhere in ΩT , normalization and initial conditions (1.4.5) and an
integral identity

∫

ΩT

(
χεμ0D

(
x,

∂wε

∂t

)
+ (1 − χε)λ0D(x, wε)

)
: D(x, ϕ) dxdt

−
∫

ΩT

p ε
(∇ · ϕ

)
dxdt =

∫

ΩT

ρεF · ϕ dxdt, (1.4.10)

for any functions ϕ ∈ ◦
W

1,0

2 (ΩT ).

For the problem (1.4.2)–(1.4.4), (1.4.6), (1.4.7) we change the state equation (1.4.3),
excluding therefrom the pressure by means of the continuity equation (1.4.6):

P = χεμ0D

(
x,

∂w
∂t

)
+ N

(ε)
1 : D(x, w),

N
(ε)
1 = (1 − χε)λ0

3∑
i, j=1

J
(i j) ⊗ J

(i j) + αε
pI ⊗ I.

Definition 1.5 We say that the function wε, such that
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wε ∈ ◦
W

1,0

2 (ΩT ), χε∇
(

∂wε

∂t

)
∈ L2(ΩT ),

is a weak solution of the problem (1.4.2)–(1.4.4), (1.4.6), (1.4.7), if it satisfies the
initial condition (1.4.5) and an integral identity

∫

ΩT

(
χεμ0D

(
x,

∂wε

∂t

)
+ N

(ε)
1 : D(x, w)

)
: D(x, ϕ) dxdt

=
∫

ΩT

ρεF · ϕ dxdt, (1.4.11)

for any functions ϕ ∈ ◦
W

1,0

2 (ΩT ).

Integral identities (1.4.10) and (1.4.11) show, that wε possesses different smoothness
in domainsΩε

f andΩε
s . As in previous sections, to preserve the best properties, which

the solution now has in the liquid part, we extend the function
∂wε

∂t
from the liquid

part of the domain Ω onto its solid part Ωε
s :

vε = EΩε
f

(
∂wε

∂t

)
,

such that

χε(x)

(
∂wε

∂t
(x, t) − vε(x, t)

)
= 0, x ∈ Ω, t ∈ (0, T ),

∫

Ω

∣∣∣ε(x, t)
∣∣∣2dx � C0

∫

Ωε
f

∣∣∣∂wε

∂t
(x, t)

∣∣∣2dx,

∫

Ω

∣∣D(x, vε(x, t)
)∣∣2 dx � C0

∫

Ωε
f

∣∣∣D
(

x,
∂wε

∂t
(x, t)

)∣∣∣2dx, t ∈ (0, T ),

where vε = EΩε
f

(
∂wε

∂t

)
, and C0 is independent of ε and t ∈ (0, T ).

Theorem 1.9 There exists a unique weak solution {wε, pε} of the problem (1.4.1)–
(1.4.5) and

∫

ΩT

(
|wε|2 + |D(x,ε )|2

)
dxdt

+ max
0<t<T

∫

Ω

(
|D(x, wε)|2 + |p vε|2

)
dx � C0F2

1 , (1.4.12)
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where vε = EΩε
f

(
∂wε

∂t

)
, and the constant C0 is independent of the small parame-

ter ε.

Theorem 1.10 The statement of Theorem 1.9 holds true for a weak solution wε of
the problem (1.4.2)–(1.4.4), (1.4.6), (1.4.7).

Theorem 1.11 Let the pair {wε, pε} be the weak solution of the problem (1.4.1)–
(1.4.5).

Then

(1) the sequences {wε}, {∇wε}, {vε}, {∇vε}, and {pε} converge weakly in L2(ΩT )

and L2(ΩT ) (up to some subsequences) to functions w, ∇w, = ∂wε

∂t
, ∇ =

∇
(

∂wε

∂t

)
, and p respectively;

(2) limiting functions solve the system of homogenized equations in the domain ΩT ,
consisting of the homogenized continuity equation

∇ · w = 0, (1.4.13)

the homogenized momentum balance equation

∇ · P̂ + ρ̂F = 0, (1.4.14)

and the state equation

P̂ = −p I + N1 : D(x,
∂w
∂t

) + N2 : D(x, w)

+
∫ t

0
N3(t − τ) : D(x, w(x, τ ))dτ, (1.4.15)

completed with the homogeneous boundary condition

w(x, t) = 0, x ∈ S, t ∈ (0, T ), (1.4.16)

and the homogeneous initial condition

w(x, 0) = 0, x ∈ Ω; (1.4.17)

(3) if a pore space is connected, then the symmetric tensor N1 is strictly positively
definite. For the case of a disconnected pore space (isolated pores) the symmetric
positively definite tensor N1 degenerates and the tensor N2 becomes strictly
positively definite;

(4) the problem (1.4.13)–(1.4.17) has a unique solution.

In (1.4.14), (1.4.15)
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ρ̂ = m ρ f + (1 − m) ρs,

and fourth-rank tensors N1, N2, N3(t) are given below by formulae (1.4.30).

We refer to the problem (1.4.13)–(1.4.17) as the homogenized model (IF)7.

Theorem 1.12 Let wε be the weak solution of the problem (1.4.2)–(1.4.4), (1.4.6),
(1.4.7).

Then

(1) the sequences {wε}, {∇wε}, {vε}, and {∇vε} converge weakly in L2(ΩT ) (up

to some subsequences) to functions w, ∇w, v = ∂wε

∂t
, and ∇v = ∇

(
∂wε

∂t

)

respectively;
(2) limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the homogenized momentum balance equation

∇ · P̃ + ρ̂F = 0, (1.4.18)

and the state equation

P̃ = N4 : D(x,
∂w
∂t

) + N5 : D(x, w) +
∫ t

0
N6(t − τ) : D(x, w(x, τ ))dτ,

(1.4.19)
completed with the homogeneous boundary condition

w(x, t) = 0, x ∈ S, t ∈ (0, T ), (1.4.20)

and the homogeneous initial condition (1.4.17).
(3) if a pore space is connected, then the symmetric tensor N4 is strictly positively

definite. For the case of a disconnected pore space (isolated pores) N4 = 0 and
the tensor N5 becomes strictly positively definite.

(4) the problem (1.4.17)–(1.4.20) has a unique solution.
In (1.4.19) fourth-rank tensors N4 and N5, and fourth-rank tensor N6(t) are
given below by formulae (1.4.44).

We refer to the problem (1.4.17)–(1.4.20) as the homogenized model (IF)8.

1.4.1 Proofs of Theorem 1.9 and 1.10

The proofs of these theorems are straightforward and repeat the proof of Theorems
1.2 and 1.5. We just outline the derivation of the estimate (1.4.12) for the first case
of Theorem 1.9.

To do that, we rewrite (1.4.10) as
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∫

Ω

(
χεμ0D(x,

∂wε

∂t
) + (1 − χε)λ0D(x, wε)

)
: D(x, ϕ) dx

−
∫

Ω

p vε
(∇ · ϕ

)
dx =

∫

Ω

ρεF · ϕ dx,

put there ϕ = ∂wε

∂t
and get

μ0

∫

Ω

χε
∣∣∣D
(

x,
∂wε

∂t

) ∣∣∣
2
dx + λ0

2

d

dt

∫

Ω

(1 − χε)

∣∣∣∣D
(

x, wε

)∣∣∣∣
2

dx

=
∫

Ω

ρεF · ∂wε

∂t
dx = I.

Next we integrate the last relation with respect to time, rewrite the right-hand side,
and using the properties of the extension vε estimate the result from below and from
above:

μ0

C0

∫ t

0

∫

Ω

|D(x, vε)|2(x, τ )dxdτ + λ0

2

∫

Ω

(1 − χε)|D(x, wε)|2(x, t)dx

�
∫ t

0
I dτ =

∫ t

0

∫

Ω

ρ f χ
εbigg(F · ∂wε

∂t

)
(x, τ )dxdτ

+
∫ t

0

∫

Ω

ρs(1 − χε)

(
F · ∂wε

∂t

)
(x, τ )dxdτ

=
∫ t

0

∫

Ω

ρ f χ
ε(F · vε)(x, τ )dxdτ +

∫

Ω

ρs(1 − χε)(F · wε)(x, t)dx

−
∫ t

0

∫

Ω

ρs(1 − χε)

(
∂F
∂t

· wε

)
(x, τ )dxdτ

� μ0

2C0

∫ t

0

∫

Ω

|D(x, vε)|2(x, τ )dxdτ + λ0

4

∫

Ω

(1 − χε)|D(x, wε)|2(x, t)dx

+ C0

∫ t

0

∫

Ω

(1 − χε)|D(x, wε)|2(x, τ )dxdτ + C0F2
1 .

Here for simplicity we have supposed that F(x, 0) = 0.
The rest of the proof is standard. We just have to use the evident inequality

∫

Ω

χε|D(x, wε)|2(x, t)dx � C0

∫ t

0

∫

Ω

χε

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

(x, τ )dxdτ,

and the basic property of the extension operator

∫

Ω

χε

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

(x, t)dx � C0

∫

Ω

|D(x,ε )|2(x, t)dx .
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1.4.2 Proof of Theorem 1.11

First of all, we use Lemma B.11 (see Appendix B), which states that

∫

Ω

|vε(x, t)|2dx � C0

∫

Ωε

|D(x, vε)|2dx .

On the strength of Theorem 1.9, Lemma B.14 (v ∈ ◦
W

1,0

2 (ΩT )), and Nguet-
seng’s theorem sequences {wε}, {vε}, {D(x, wε)}, {D(x, vε)}, and {pε} converge
as ε → 0 weakly in L2(ΩT ) and L2(ΩT ) (up to some subsequences) to functions

w ∈ ◦
W

1,0

2 (ΩT ), v ∈ ◦
W

1,0

2 (ΩT ),D(x, w),D(x, v), and p respectively and converge
two-scale in L2(ΩT ) and L2(ΩT ) respectively to 1-periodic in y functions

w(x, t), v(x, t), D(x, w) + D
(
y, W(x, t, y)

)
,

D(x, v) + D
(
y, W(x, t, y)

)
, and P(x, t, y).

Lemma 1.17 For almost all (x, t, y) ∈ ΩT × Y f

w(x, t) =
∫ t

0
v(x, τ )dτ, W(x, t, y) =

∫ t

0
V(x, y, τ )dτ,

or

v(x, t) = ∂w
∂t

(x, t), V(x, t, y) = ∂W
∂t

(x, t, y),

and the initial condition (1.4.17) holds true.

Proof For almost all x ∈ Ω

χεwε(x, t) =
∫ t

0
χεvε(x, τ )dτ.

Therefore,

∫

ΩT

ψ(t)ϕ0(x) · wε(x, t)ϕ1

(x
ε

)
χ
(x

ε

)
dxdt

=
∫

ΩT

( ∫ T

t
ψ(τ)dτ

)
ϕ0 (x) · vε(x, t)ϕ1

(x
ε

)
χ
(x

ε

)
dxdt

for smooth 1-periodic in y arbitrary functions ψ(t), ϕ0(x), and ϕ1(y).
The two-scale limit as ε → 0 and reintegration results in the identity
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0 =
∫

ΩT

((∫ T

t
ψ(τ)dτ

)
v(x, t) − ψ(t)w(x, t)

)
dxdt

=
∫

ΩT

ψ(t)

(∫ t

0
v(x, τ )dτ − w(x, t)

)
dxdt,

which proves the statement of the lemma for w(x, t).
The proof of the lemma for W(x, t, y) is the same.

To derive the continuity equation (1.4.13) we fulfil the usual L2(ΩT ) limit as
ε → 0 in the continuity equation (1.4.1). After the two-scale limit in (1.4.1) we
arrive at the microscopic continuity equation

∇y · W = 0, y ∈ Y. (1.4.21)

Next we pass to the limit as ε → 0 in the integral identity (1.4.10) with two dif-
ferent types of test functions. First, with test functions ϕ = ϕ(x, t), and then with

test functions ϕ = εh(x, t)ϕ0

(x
ε

)
. After the standard reintegrating we obtain the

macroscopic momentum balance equation

∇ · P̂ + ρ̂F = 0, (1.4.22)

P̂ = μ0

(
m D

(
x,

∂w
∂t

)
+ 〈D

(
y,

∂W
∂t

)
〉Y f

)

+ λ0
(
(1 − m)D(x, w) + 〈D(y, W)〉Ys

)− p I, (1.4.23)

and the microscopic momentum balance equation

∇y ·
(
μ0 χ

(
D(x,

∂w
∂t

) + D

(
y,

∂W
∂t

))

+ λ0 (1 − χ)
(
D(x, w) + D(y, W)

)− P I

)
= 0.

The last one we rewrite as

∇y ·
(

χ
(
μ0 D

(
y,

∂W
∂t

)
+ Z

)+ λ0 (1 − χ)D(y, W) − P I

)
= 0, (1.4.24)

where

Z(x, t) = μ0D

(
x,

∂w
∂t

)
− λ0D(x, w) =

3∑
i, j=1

Zi j (x, t)J(i j).



1.4 A Viscous Liquid in an Elastic Skeleton 55

To find tensors N1, N2, and N3(t) we have to solve the problem (1.4.21) and

(1.4.24), find D

(
y,

∂W
∂t

)
and D(y, W) as operators on D

(
x,

∂w
∂t

)
and D(x, w),

and substitute these expressions into (1.4.23).

Let {W(i j)(y, t), P(i j)(y, t)} and { ˙
W(i j)

0 (y), P(i j)
0 (y)} i, j = 1, 2, 3 be solutions

of periodic problems

∇y ·
(

χ μ0 D

(
y,

∂W(i j)

∂t

)

+ λ0 (1 − χ)D(y, W(i j)) − P(i j)
I

)
= 0,

∇y · w(i j) = 0,

χ(y)W(i j)(y, 0) = W(i j)
0 (y),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(1.4.25)

∇y ·
(
χ
(
μ0 D(y, W(i j)

0 ) + J
(i j) − P(i j)

0 I
)) = 0,

∇y · W(i j)
0 = 0,

∫

Y
χ(y)W(i j)

0 (y)dy = 0,

⎫
⎪⎬
⎪⎭

(1.4.26)

in the domain Y .
Then

W(x, t, y) =
3∑

i, j=1

∫ t

0
W(i j)(y, t − τ)Zi j (x, τ )dτ,

and

P(x, t, y) = χ(y)

3∑
i, j=1

P(i j)
0 (y)Zi j (x, t) +

3∑
i, j=1

∫ t

0
P(i j)(y, t − τ)Zi j (x, τ )dτ,

D(y, W) =
3∑

i, j=1

∫ t

0
D(y, W(i j)(y, t − τ))Zi j (x, τ )dτ

=
3∑

i, j=1

∫ t

0

(
D(y, W(i j)(y, t − τ)) ⊗ J

(i j)) : Z(x, τ )dτ

=
(
μ0

3∑
i, j=1

D(y, W(i j)
0 ) ⊗ J

(i j)
)

: D(x, w)

−
3∑

i, j=1

∫ t

0

((
λ0 D(y, W(i j)(y, t − τ))
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+ μ0 D(y,
∂w(i j)

∂τ
(y, t − τ))

)⊗ J
(i j)
)

: D(x, w(x, τ ))dτ.

Using the evident relation

∂W(i j)

∂τ
(y, t − τ) = −∂W(i j)

∂t
(y, t − τ),

one has

D(y, W) = A0(y) : D(x, w) +
∫ t

0
A1(y, t − τ) : D(x, ww(x, τ )

)
dτ, (1.4.27)

where

A0(y) = μ0

3∑
i, j=1

D
(
y, W(i j)

0 (y)
)⊗ J

(i j) (1.4.28)

and

A1(y, t) =
3∑

i, j=1

(
μ0D

(
y,

∂W(i j)

∂t
(y, t)

)− λ0D
(
y, W(i j)(y, t)

))⊗ J
(i j). (1.4.29)

Equations (1.4.27) and (1.4.28) result in

D

(
y,

∂W
∂t

)
= A0(y) : D

(
x,

∂w
∂t

(x, t)

)
+ A1(y, 0) : D(x, w(x, t)

)

+
∫ t

0

∂A1

∂t
(y, t − τ) : D(x, w(x, τ )

)
dτ.

Therefore,

N1 = μ0 m
3∑

i, j=1

J
(i j) ⊗ J

(i j) + μ0 〈A0〉Y f ,

N2 = λ0 (1 − m)

3∑
i, j=1

J
(i j) ⊗ J

(i j) + λ0 〈A0〉Ys + μ0 〈A1(y, 0)〉Y f

N3(t) = μ0

〈
∂A1

∂t
(y, t)

〉

Y f

+ λ0 〈A1(y, t)〉Ys .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.4.30)

Lemma 1.18 All quantities in (1.4.30) are well-defined by virtue of the correct
solvability of problems (1.4.25) and (1.4.26).
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Proof The statement of the lemma and the infinite smoothness of the solution with
respect to time is a consequence of energy estimates. The latter follow from energy
identities. In fact, the first chain of identities

1

2

∫

Y
χ μ0

∣∣D(y, W(i j)(y, t)
)∣∣2dy +

∫ t

0

∫

Y
(1 − χ)λ0

∣∣D(y, W(i j)(y, τ )
)∣∣2dydτ

= 1

2

∫

Y
χ μ0

∣∣D(y, W(i j)
0 (y)

)∣∣2dy,

∫

Y
χ μ0

∣∣D(y, W(i j)
0 (y)

)∣∣2dy +
∫

Y
χD
(
y, W(i j)

0 (y)
) : J(i j)dy = 0, (1.4.31)

is the result of multiplying of the first equation in (1.4.25) by W(i j) and integration
by parts over Y × (0, t), and of the first equation in (1.4.26) by W(i j)

0 and integration
by parts over Y . These identities provides estimates

max
0<t<T

∫

Y f

∣∣D(y, W(i j)(y, t)
)|2dy +

∫ T

0

∫

Ys

∣∣D(y, W(i j))|2dydt � C0.

Considering (1 − χ(y))W(i j)(y, 0) as a periodic solution of the Stokes system

∇y · (λ0 D(y, W(i j)) − P(i j)
I
) = 0, ∇y · W(i j) = 0,

in Ys , coinciding on the boundary γ with the function

χ(y)W(i j)(y, 0) ∈ W1
2(Ys),

we obtain [56] ∫

Ys

|D(y, W(i j)(y, 0)
)|2dy � C0.

This estimate and (1.4.25) at t = 0 imply

∫

Y f

∣∣∣D(y,
∂W(i j)

∂t
(y, 0)

)∣∣∣
2
dy � C0.

We can repeat the procedure repeatedly and finally prove the lemma.

Lemma 1.19 If a pore space is connected, then the symmetric tensor N1 is strictly
positive definite. For the case of a disconnected pore space (isolated pores) the
symmetric positively definite tensor N1 degenerates and the symmetric tensor N2
becomes strictly positive definite.

Proof Let the pore space be connected, ζ = (ζi j ) and η = (ηi j ) be arbitrary
symmetric matrices and
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Yζ =
3∑

i, j=1

W(i j)
0 ζi j , Yη =

3∑
i, j=1

W(i j)
0 ηi j .

By definition

(
N1 : ζ

) : η = μ0 m ζ : η + μ2
0〈D

(
y, Yζ )〉Y f : η.

Next, we use equalities

∫

Y
χ μ0 D

(
y, W(i j)

0

) : D(y, W(kl)
0

)
dy +

∫

Y
χD
(
y, W(kl)

0 )
) : J(i j)dy = 0

for i, j = 1, 2, 3, which are simple consequences of (1.4.31) and arrive at

μ0 D
(
y, Yη

)〉Y f : ζ + μ2
0 〈D(y, Yζ

) : D(y, Yη

)〉Y f = 0. (1.4.32)

Thus, (
N1 : ζ

) : η = μ0 〈(μ0 D(y, Yη) + ζ
) : (μ0 D(y, Yζ ) + η

)〉Y f .

The first statement of the lemma follows from the last relation in the same way, as
in previous sections.

Let now the pore space be disconnected. For this case the problem (1.4.26) for all
i, j = 1, 2, 3 has a unique solution, linear in y:

μ0 W(i j)
0 = 1

2
(yi e j + y j ei ), P(i j)

0 = 0, if i �= j,

μ0 W(11)
0 = (−2

3
y1,

1

3
y2,

1

3
y3), P(11)

0 = 1

3
,

μ0 W(22)
0 = (

1

3
y1,−2

3
y2,

1

3
y3), P(22)

0 = 1

3
,

μ0 w(11)
0 = (

1

3
y1,

1

3
y2,−2

3
y3), P(33)

0 = 1

3
.

These equalities lead to

χ(y)
(
μ0 D

(
y, W(i j)

0 (y)
)+ J

(i j) − P(i j)
0 I

)
= 0, (1.4.33)

〈A0〉Y f = −m
3∑

i, j=1

J
(i j) ⊗ J

(i j) + m

3

3∑
i=1

I ⊗ J
(i i),

and

(N1 : ζ ) : η = μ0
m

3

3∑
i=1

ζi i ηi i .
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Thus N1 degenerates for any symmetric ζ , such that
3∑

i=1

ζ 2
i i = 0.

To prove the last statement, we use equations

〈
μ0 D

(
y,

∂W(i j)

∂t
(y, 0)

)
: D(y, W(kl)

0 )

〉

Y f

+ 〈λ0 D(y, W(i j)
0 ) : D(y, W(kl)

0 )〉Ys = 0,

for i, j = 1, 2, 3, which are the result of multiplying of the first equation in (1.4.25)
at t = 0 by W(kl)

0 and integration by parts over Y .
By means of (1.4.33) we rewrite it as

−
〈
D

(
y,

∂Yζ

∂t
(y, 0)

)
: η

〉

Y f

+ 〈λ0D(y, Yζ ) : D(y, Yη)〉Ys = 0, (1.4.34)

where we took into account the equality

3∑
i=1

D

(
y,

∂W(i i)

∂t

)
: (I ⊗ J

(i i)) =
3∑

i=1

∂

∂t
(∇y · W(i i)) J(i i) = 0.

Finally,

(
N2 : ζ

) : η = λ0 (1 − m)ζ : η + λ0 〈A0 : ζ 〉Ys : η + μ0 〈A1(y, 0) : ζ 〉Y f : η

= λ0 (1 − m)ζ : η + λ0 μ0〈D
(
y, Yζ ) : η〉Ys + μ2

0 〈D(y,
∂Yζ

∂t
(y, 0)

) : η〉Y f

− λ0 μ0〈D
(
y, Yη) : ζ 〉Y f = λ0 (1 − m)ζ : η

+ λ0 μ0〈D(y, Yζ ) : η〉Ys + λ0 μ2
0 〈D(y, Yζ ) : D(y, Yη)〉Ys

− λ0 μ0〈D(y, Yη) : ζ 〉Y f .

We recall that
〈D(y, Yη)〉Y f = −〈D(y, Yη)〉Ys ,

and
〈D(y, Yη)〉Y f : ζ = 〈D(y, Yζ )〉Y f : η

due to (1.4.32).
Therefore,

(
N2 : ζ

) : η = λ0
〈(
μ0D(y, Yη) + ζ

) : (μ0D(y, Yζ ) + η
)〉

Ys
,

which proves the lemma.
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Lemma 1.20 The problem (1.4.13)–(1.4.17) has a unique solution.

Proof For a connected pore space the difference {w, p} of the two possible so-
lutions of (1.4.13)–(1.4.17) satisfies the homogeneous problem (1.4.13)–(1.4.17).
Multiplication of (1.4.14) by w and integration by parts over Ω give us

1

2

d

dt

∫

Ω

(
N1 : D(x, w)

) : D(x, w)dx

= −
∫

Ω

(
N2 : D(x, w)

) : D(x, w)dx

−
∫

Ω

( ∫ t

0
N3(t − τ) : D(x, w)dτ

) : D(x, w)dx

� C0

∫

Ω

D(x, w) : D(x, w)dx,

if we use Hölder’s inequality and the estimate

∫ t

0

∫

Ω

D
(
x, w(x, τ )

) : D(x, w(x, τ )
)
dxdτ

� T
∫

Ω

D
(
x, w(x, t)

) : D(x, w(x, t)
)
dx .

Grownwall’s inequality and the properties of the tensorN1 guarantee the equality

∫

Ω

D
(
x, w(x, t)

) : D(x, w(x, t)
)
dx = 0

for all t ∈ (0, T ).
For a disconnected pore space the proof is the same:

C−1
0

∫ t

0

∫

Ω

D
(
x, w(x, τ )

) : D(x, w(x, τ )
)
dxdτ

�
∫

Ω

(
N1 : D(x, w(x, t)

)) : D(x, w(x, t)
)
dx

+
∫ t

0

∫

Ω

(
N2 : D(x, w(x, τ )

)) : D(x, w(x, τ )
)
dxdτ

= −
∫ t

0

∫

Ω

( ∫ τ

0
N3(τ − ξ) : D(x, w(x, ξ)

)
dξ
) : D(x, w(x, τ )

)
dxdτ

� C0

( ∫ t

0

∫ τ

0

∫

Ω

D
(
x, w(x, ξ)

) : D(x, w(x, ξ)
)
dxdξdτ

) 1
2 ·

( ∫ t

0

∫

Ω

D
(
x, w(x, τ )

) : D(x, w(x, τ )
)
dxdτ

) 1
2
.
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1.4.3 Proof of Theorem 1.12

As in the proof of Theorem 1.11 there exist functions w, v ∈ ◦
W

1,0

2 (ΩT ), w(x, 0) =
0, x ∈ Ω , and 1-periodic in y functions W, V, such that sequences {wε} and {ε}
converge as ε → 0 weakly in W1,0

2 (ΩT ) to functions w and v = ∂w
∂t

respectively,

and sequences {D(x, wε)} and {D(x, vε)} two-scale converge as ε → 0 in L2(ΩT )

to the functions

D(x, W) + D
(
y, w(x, t, y)

)
, and D

(
x,

∂w
∂t

)
+ D

(
y,

∂W
∂t

)

respectively.
To derive macro- and microscopic momentum balance equations we pass to the

limit as ε → 0 in the integral identity (1.4.11) with two different types of test
functions. Firstly, with test functions ϕ = ϕ(x, t), and then with test functions

ϕ = εh(x, t)ϕ0

(x
ε

)
. After reintegrating we obtain

∇y ·
(
μ0 χ(y)

(
D

(
x,

∂w
∂t

)
+ D(y,

∂W
∂t

)

)

+ A2(y) : (D(x, w) + D(y, W)
)) = 0, (1.4.35)

where

A2(y) = (
1 − χ(y)

)(
λ0

3∑
i, j=1

(
J
(i j) ⊗ J

(i j))+ c2s
(
I ⊗ I

))+ χ(y)c2f
(
I ⊗ I

)

= (
1 − χ(y)

)
N(0) + χ(y)c2f (I ⊗ I),

N(0) = λ0

3∑
i, j=1

(
J
(i j) ⊗ J

(i j))+ c2s
(
I ⊗ I

)
,

and
∇ · P̃ + ρ̂F = 0, (1.4.36)

where

P̃ = μ0 m D

(
x,

∂w
∂t

)
+ μ0

〈
D

(
y,

∂W
∂t

) 〉

Y f

+ 〈A2〉Y : D(x, w) + 〈A2 : D(y, W)〉Y . (1.4.37)
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Let

Y(x, t) = μ0 D

(
x,

∂w
∂t

)
+ (c2f (I ⊗ I) − N(0)) : D(x, w) =

3∑
i, j=1

J
(i j) Yi j (x, t),

Then we may rewrite (1.4.35) as

∇y ·
(
χ(y)

(
μ0 D

(
y,

∂W
∂t

)
+ Y(x, t)

)+ (1 − χ(y))N
(0)
1 : D(y, W)

)
= 0,

and look for the solution of this equation in the form

W(x, t, y) =
3∑

i, j=1

∫ t

0
W̃(i j)(y, t − τ)Yi j (x, τ )dτ,

where 1-periodic in y functions W̃(i j)(y, t), i j = 1, 2, 3, are solutions of the periodic
initial boundary value problems

∇y ·
(
χ μ0 D

(
y,

∂W̃(i j)

∂t

)
+ A2(y) : D(y, W̃(i j))

)
= 0,

χ(y)W̃(i j)(y, 0) = W̃(i j)
0 (y),

⎫⎪⎬
⎪⎭

(1.4.38)

∇y ·
(
χ
(
μ0 D(y, W̃(i j)

0 ) + J
(i j))) = 0 (1.4.39)

in the domain Y .
The proof of the existence and uniqueness of solutions to problems (1.4.38) and

(1.4.39) and the infinite smoothness with respect to time of the solution of (1.4.38)
is straightforward (see Lemma 1.18).

Thus,

D(y, W) =
3∑

i, j=1

∫ t

0
D(y, W̃(i j)(y, t − τ))Yi j (x, τ )dτ

=
3∑

i, j=1

∫ t

0
D(y, W̃(i j)(y, t − τ)) ⊗ J

(i j)) : Y(x, τ )dτ

= A3 : D(x, w) +
∫ t

0
A4(y, t − τ) : D(x, w(x, τ )

)
dτ, (1.4.40)

where

A3(y) = μ0

3∑
i, j=1

D
(
y, W̃(i j)

0 (y)
)⊗ J

(i j) (1.4.41)
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and

A4(y, t) =
3∑

i, j=1

(
μ0 D

(
y,

∂W̃(i j)

∂t
(y, t)

)
⊗ J

(i j)
)

−
( 3∑

i, j=1

D
(
y, W̃(i j)(y, t)

)⊗ J
(i j)
)

: N(0)
1 . (1.4.42)

Finally,

D(y,
∂W
∂t

) = A3(y) : D
(

x,
∂w
∂t

(x, t)

)
+ A4(y, 0) : D(x, w(x, t)

)

+
∫ t

0

∂A4

∂t
(y, t − τ) : D(x, w(x, τ )

)
dτ, (1.4.43)

and

N4 = μ0 m
3∑

i, j=1

J
(i j) ⊗ J

(i j) + μ0 〈A3〉Y f ,

N5 = 〈A2〉Y + 〈A2 : A3〉Y + μ0 〈A4(y, 0)〉Y f

N6(t) = μ0 〈∂A4

∂t
(y, t)〉Y f + 〈A2 : A4(y, t)〉Ys .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.4.44)

Lemma 1.21 If a pore space is connected, then the symmetric tensor N4 is strictly
positive definite. For the case of a disconnected pore space (isolated pores) N4 = 0
and the symmetric tensor N5 becomes strictly positive definite.

Proof Let the pore space be connected, ζ = (ζi j ) and η = (ηi j ) be arbitrary
symmetric matrices and

Yζ =
3∑

i, j=1

W̃(i j)
0 ζi j , Yη =

3∑
i, j=1

W̃(i j)
0 ηi j .

we have (
N4 : ζ

) : η = μ0 m ζ : η + μ2
0〈D

(
y, Yζ )〉Y f : η,

and
μ0 D

(
y, Yη

)〉Y f : ζ + μ2
0 〈D(y, Yζ

) : D(y, Yη

)〉Y f .

which is a simple consequence of (1.4.39). Thus,

(
N4 : ζ

) : η = μ0 〈(μ0 D(y, Yη) + ζ
) : (μ0 D(y, Yζ ) + η

)〉Y f .

which proves the first statement of the lemma.
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Let now the pore space be disconnected. For this case the problem (1.4.39) has a
unique solution, linear in y:

μ0 w̃(i j)
0 = 1

2
(yi e j + y j ei ),

χ(y)
(
μ0 D

(
y, w̃(i j)

0 (y)
)+ J

(i j)
)

= 0, (1.4.45)

and

〈A3〉Y f = −m
3∑

i, j=1

J
(i j) ⊗ J

(i j). (1.4.46)

This equality resultsN4 = 0.
To prove the last statement, we use equations

〈
μ0 D

(
y,

∂W̃(i j)

∂t
(y, 0)

)
: D(y, w̃(kl)

0 )

〉

Y f

+ 〈(A2 : D(y, W̃(i j)
0 )

) : D(y, W̃(kl)
0 )〉Y = 0,

for i, j = 1, 2, 3, which are the result of multiplying the first equation in (1.4.38) at
t = 0 by W̃(kl)

0 and integration by parts over Y .
By means of (1.4.45) we rewrite it as

−
〈
D

(
y,

∂Yζ

∂t
(y, 0)

)
: η〉Y f + 〈(A2 : D(y, Yζ )

) : D(y, Yη)

〉

Ys

= 0. (1.4.47)

We also recall that
〈D(y, Yη)〉Y f = −〈D(y, Yη)〉Ys ,

and
〈D(y, W̃(i j)

0 ) ⊗ J
(i j)〉Y f = 〈J(i j) ⊗ D(y, W̃(i j)

0 )〉Y f

due to (1.4.45).
Next, in the expression(
N5 : ζ

) : η = 〈(A2 : ζ
) : η〉Y + (〈A2 : A3〉Y : ζ

) : η + μ0 〈A4(y, 0) : ζ 〉Y f : η

we calculate each term:

〈(A2 : ζ
) : η〉Y = (1 − m)

(
N(0) : ζ

) : η + m c2f (tr ζ ) (tr η),
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(〈A2 : A3〉Y : ζ
) : η

= (1 − m)
((
N(0) : (〈μ0

3∑
i, j=1

D(y, W̃(i j)
0 )〉Ys ⊗ J

(i j))) : ζ
)

: η

+
((

c2f (I ⊗ I) : (〈μ0

3∑
i, j=1

D(y, W̃(i j)
0 )〉Y f ⊗ J

(i j))) : ζ
)

: η

= (1 − m)μ0〈N(0) : D(y, Yη)〉Ys : ζ + c2f μ0〈(∇ · Yη)〉Y f (tr ζ ),

μ0 〈A4(y, 0) : ζ 〉Y f : η = μ2
0

〈
D

(
y,

∂Yζ

∂t
(y, 0)

)
: η

〉

Y f

−
⎛
⎝
⎛
⎝
〈 3∑

i, j=1

μ0 D(y, W̃(i j)
0 ) ⊗ J

(i j)
〉

Y f

: N(0)
1

⎞
⎠ : ζ

⎞
⎠ : η

= μ2
0〈
(
A2 : D(y, Yζ )

) : D(y, Yη)〉Y

+ (1 − m)

⎛
⎝
⎛
⎝N(0) :

〈 3∑
i, j=1

μ0 D(y, W̃(i j)
0 ) ⊗ J

(i j)
〉

Ys

⎞
⎠ : ζ

⎞
⎠ : η

+ c2f

⎛
⎝
⎛
⎝(I ⊗ I) :

〈 3∑
i, j=1

μ0 D(y, W̃(i j)
0 ) ⊗ J

(i j)
〉

Y f

⎞
⎠ : ζ

⎞
⎠ : η

= μ2
0

〈 (
N(0) : D(y, Yζ )

) : D(y, Yη

) 〉

Ys

+ μ2
0 c2f 〈(∇ · Yζ ) · (∇ · Yη)〉Y f

+ μ0〈N(0) : D(y, Yζ )〉Ys : η + c2f μ0〈(∇ · Yζ )〉Y f (tr η).

Finally we get

(
N5 : ζ

) : η =
〈(
N(0) : (μ0D(y, Yζ ) + η

)) : (μ0D(y, Yη) + ζ
)〉

Ys

+ c2f

〈(
μ0(∇ · Yζ ) + tr η

) · (μ0(∇ · Yη) + tr ζ
)〉

Y f

.

The uniqueness of the problem (1.4.17)–(1.4.20) is proved in the same way as in
Theorem 1.11.



Chapter 2
Filtration of a Compressible Thermo-Fluid

The model M13 consists of the differential equations

1

α̃p
p + ∇ · w = 0, (2.0.1)

∇ · P + ρ̃F = 0, (2.0.2)

η̃0
∂ϑ

∂t
− ∇ · (α̃κ∇ϑ) = Φ − γ0α̃ϑ ∇ · ∂w

∂t
, (2.0.3)

P = χ0αμ D

(
x,

∂w
∂t

)
+ (1 − χ0)λ0 D(x, w) −

(
p + α̃ϑ ϑ − χ0αν∇ · ∂w

∂t

)
I,

(2.0.4)

and its submodel, the mathematical model M16 of the filtration of a compressible
thermo-fluid in an non-isothermal absolutely rigid solid skeleton. In turn, the last
model consists of the differential equations

χ0

(
1

c2f
p + ∇ · w

)
= 0, (2.0.5)

χ0
(∇ · P + ρ f F

) = 0, (2.0.6)

η̃0
∂ϑ

∂t
− ∇ · (α̃κ∇ϑ) = Φ − χ0γ0 β f

(
∇ · ∂w

∂t

)
, (2.0.7)

P = αμD

(
x,

∂w
∂t

)
−
(

p + β f ϑ − αν∇ ·
(

∂w
∂t

))
I. (2.0.8)

These models are derived in Appendix A.
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As in the previous chapter, we impose Assumption 0.1 and suppose that Ω is a
domain with a C2 continuous boundary S = ∂Ω .

Under this assumption

χ0(x) = χε(x) = ς(x)χ

(
x
ε

)
, ρ̃ = ρε = χερ f + (1 − χε)ρs,

where ς(x) is the characteristic function of the domain Ω , and

α̃ϑ = αε
ϑ = χεβ f + (1 − χε)βs η̃0 = ηε

0 = χ̃ cp, f + (1 − χ̃) cp,s,

α̃p = αε
p = χεc2f + (1 − χε)c2s α̃κ = αε

κ
= χε

κ f + (1 − χε)κs .

We assume that the dimensionless parameters αμ and αν depend on the small
parameter ε and that the (finite or infinite) limits exist:

lim
ε∪0

αμ(ε) = μ0, lim
ε∪0

αμ

ε2
= μ1, lim

ε∪0
αν(ε) = ν0.

In what follows, we denote as C0 any constant depending only on domains Ω , Y
and Y f .

Without lost of generality we may suppose that γ0 = 1.

2.1 A Viscous Thermo-Fluid in a Non-isothermal Absolutely
Rigid Solid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M17 of the filtration of compressible liquid in an absolutely rigid solid
skeleton. It is easy to show that this model is a limit of the model M14 as αλ ⊂ ∩.
One of the consequences of this statement is the following:

w(x, t) = 0, p(x, t) = 0, x ∈ Ωε
s .

If we put v = ∂w
∂t

, then we may rewrite the last condition and Eqs. (2.0.5)–(2.0.8)

in the form
1

c2f

∂p

∂t
+ ∇ · v = 0, x ∈ Ωε

f , t ∈ (0, T ), (2.1.1)

∇ · P + ρ f F = 0, x ∈ Ωε
f , t ∈ (0, T ), (2.1.2)

ηε
0
∂ϑ

∂t
− ∇ · (αε

κ
∇ϑ) = Φ − χεβ f (∇ · v), x ∈ Ω, t ∈ (0, T ), (2.1.3)
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P = αμD (x, v) − q I, (2.1.4)

q = p + β f ϑ χε + αν

c2f

∂p

∂t
, x ∈ Ω, t ∈ (0, T ), (2.1.5)

v(x, t) = 0, x ∈ Ωε
s ∅ S, t ∈ (0, T ), (2.1.6)

ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.1.7)

ϑ(x, 0) = ϑ0(x), p(x, 0) = 0, x ∈ Ω. (2.1.8)

Throughout this section we assume that c2f , κ f , κs , β f , βs , cp, f , cp,s and λ0 are
positive constants and that conditions

μ0 = 0, 0 < μ1 � ∩, 0 � ν0 < ∩,

and ∫

ΩT

|F|2dxdt +
∫

ΩT

|Φ|2dxdt = F 2 < ∩

hold true.

2.1.1 Statement of the Problem and Main Results

Definition 2.1 We say that the system of four functions {vε, p ε, q ε, ϑε} such that

vε ∈ ◦
W

1,0

2 (ΩT ), p ε, q ε ∈ L2(ΩT ), ϑε ∈ ◦
W

1,0

2 (ΩT ),

is a weak solution of the problem (2.1.1)–(2.1.8), if it satisfies the state equation
(2.1.5), the condition (2.1.6), and the integral identities

∫

ΩT

χε
(
αμD(x, vε) : D(x, ϕ) − qε (∇ · ϕ) − ρ f F · ϕ

)
dxdt = 0, (2.1.9)

∫

ΩT

(
∇ξ · vε + 1

c2f

∂ξ

∂t
p ε

)
dxdt = 0, (2.1.10)

and
∫

ΩT

(
αε

κ
∇ϑε · ∇ψ − ηε

0ϑ
ε ∂ψ

∂t

)
dxdt =

∫

ΩT

(
Φ − χεβ f (∇ · vε)

)
ψ dxdt,

(2.1.11)
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for any functions ϕ ∈ ◦
W

1,0

2

(
Ωε

f × (0, T )
)
and ξ, ψ ∈ ◦

W
1,1

2 (ΩT ), such that

ξ(x, T ) = ψ(x, T ) = 0.

Theorem 2.1 (1) For all ε > 0 and for an arbitrary time interval [0, T ] there exists
a unique generalized solution of problem (2.1.1)–(2.1.8) and

∫

ΩT

(
αμ|∇vε|2 + |∇ϑε|2 + |vε)|2 + αμ|∇ · vε|2

)
dxdt (2.1.12)

+ max
0<t<T

∫

Ω

(
|p ε|2 + |ϑ ε|2

)
dx � ε2

αμ

C0F
2,

where the constant C0 is independent of the small parameter ε.
(2) The nontrivial homogenization procedure for the problem (2.1.1)–(2.1.8) makes

sense if and only if the pore space is connected and

μ0 = 0, 0 < μ1 < ∩. (2.1.13)

Under these conditions the sequences {vε}, {∇ · vε}, {q ε}, and {p ε} converge
weakly in L2(ΩT ) and L2(ΩT ) (up to some subsequences) to functions v, ∇ · v,
q ∈ W 1,0

2 (ΩT ), and p respectively and the sequence {ϑ ε} converges weakly in
◦
W

1,0

2 (ΩT ) to function ϑ .
The limiting functions solve the homogenized system of equations, consisting

of the continuity equation
m

c2f

∂p

∂t
+ ∇ · v = 0, (2.1.14)

the state equation

q = p + m β f ϑ + ν0

c2f

∂p

∂t
, (2.1.15)

Darcy’s law in the form

v = 1

μ1
B
(−∇ q + ρ f F

)
, (2.1.16)

and the heat equation

ĉp
∂ϑ

∂t
− β f

c2f

∂p

∂t
= ∇ · (Bϑ · ∇ ϑ

)+ Φ (2.1.17)

in the domain Ω for t ∈ (0, T ).
If ν0 = 0, then functions v and p satisfy Darcy’s law in the form
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v = 1

μ1
B
(−∇(p + m β f ϑ) + ρ f F

)
. (2.1.18)

System (2.1.14)–(2.1.17) is completed with boundary and initial conditions

v(x, t) · n(x) = 0, ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.1.19)

ϑ(x, 0) = 0, p(x, 0) = 0, x ∈ Ω. (2.1.20)

(3) For a disconnected pore space, or in the case μ1 = ∩, a unique limiting regime
for the liquid dynamics is a state of rest v = 0 and p = 0.

In Eqs. (2.1.14)–(2.1.20) ĉp = m ĉp, f + (1 − m)ĉp,s , the symmetric strictly
positive definite constant matrix B is the same as in Theorem 1.1, the symmetric
strictly positive definite constant matrix B

ϑ is given below by formula (2.1.27),
and n is the normal vector to the boundary S.

We refer to the problem (2.1.14)–(2.1.20) as the homogenized model (NIF)1.

Theorem 2.2 For ν0 > 0 there exists β0 > 0, such that the problem (2.1.14)–
(2.1.20) has a unique solution for all β f < β0.

If ν0 = 0, then the problem (2.1.14)–(2.1.20) has a unique solution for all β f � 0.

2.1.2 Proof of Theorem 2.1

Existence and uniqueness results for the problem (2.1.1)–(2.1.8) are proved in the
Appendix B.

The estimate (2.1.12) is proved on the basis of energy equality

∫ t

0

∫

Ω

χε
(
αμ

⎜⎜D (x, vε(x, τ )
)⎜⎜2 + αν

⎜⎜∇ · vε(x, τ )
⎜⎜2 + αε

κ

⎜⎜∇ϑε(x, τ )
⎜⎜2) dxdτ

(2.1.21)

+ 1

2

∫

Ω

(
ηε
0

⎜⎜ϑε(x, t)
⎜⎜2 + 1

c2f

⎜⎜p ε(x, t)
⎜⎜2
)

dx

=
∫ t

0

∫

Ω

(
Φ ϑε + χερ f F · vε

)
dxdτ,

as well as earlier in Theorem 2.1.
Therefore, sequences {vε}, {pε} and {qε} convergeweakly inL2(ΩT ) and L2(ΩT )

(up to some subsequences) to functions v, mp, and mq respectively.

At the same time the sequence {ϑε} converges weakly in
◦

W
1,0

2 (ΩT ) to function
ϑ(x, t), and sequences {ϑε} and {∇ϑε} converge two-scale in L2(ΩT ) and L2(ΩT )

to 1-periodic in y functions ϑ(x, t) and ∇ ϑ(x, t) + ∇yΘ(x, t, y) respectively.
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In a similar way to the previous sections it can be shown that q ∈ W 1,0
2 (ΩT ) and

limiting functions v, q, p, and ϑ obviously satisfy Eqs. (2.1.14)–(2.1.16), (2.1.18),
initial condition (2.1.20) for the pressure p, and the last statement of the theorem.

Thus, we only have to prove (2.1.17). To do that we fulfill the two-scale limit as
ε ⊂ 0 in the integral identity (2.1.11) in the form

∫

ΩT

(
αε

κ
∇ϑε · ∇ψ +

(
χε β f

c2f
pε − ηε

0ϑ
ε

)
∂ψ

∂t

)
dxdt =

∫

ΩT

Φ ψ dxdt

with two different types of test functions. First, with test functions ψ = ψ(x, t), and

then with test functions ψ = εh(x, t)ψ0

(x
ε

)
.

We have

∫

ΩT

(
κ̂∇ϑ + 〈κ(y)∇yΘ∞Y

) · ∇ψ +
(

β f

c2f
p − ĉp ϑ)

∂ψ

∂t

)
dxdt (2.1.22)

=
∫

ΩT

Φ ψ dxdt,

∫

ΩT

h(x, t)

(∫

Y
κ(y)

(∇ ϑ + ∇yΘ
) · (∇yψ0(y)

)
dy

)
dxdt = 0. (2.1.23)

After standard reintegration we obtain the macroscopic heat equation

ĉp
∂ϑ

∂t
− β f

c2f

∂p

∂t
= ∇ · (κ̂∇ ϑ + 〈κ(y)∇yΘ∞Y

)+ Φ, (2.1.24)

and the microscopic heat equation

∇y · (κ(y)
(∇ ϑ + ∇yΘ

)) = 0. (2.1.25)

As usual, we look for the 1-periodic solution of the Eq. (2.1.23) in the form

Θ(x, t, y) =
3⎧

i=1

Θ(i)(y)
∂ϑ

∂xi
(x, t),

where
∇y ·

(
κ(y)

(
∇yΘ

(i) + ei

))
= 0. (2.1.26)

Then,

B
ϑ = κ̂I +

3⎧
i=1

〈
κ(y)∇yΘ

(i)⎫
Y → ei . (2.1.27)
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The homogenized heat equation (2.1.17) and initial condition (2.1.20) for the
temperature follow from (2.1.24), (2.1.27), and integral identity (2.1.22).

The existence and uniqueness results for the problem (2.1.26) and properties of
the matrix B

ϑ follow from equalities

∫

Y
κ

(
∇Θ(i) · ∇Θ( j) + ei · Θ( j)

)
dy = 0.

In fact, let
ζ = (ζ1, ζ2, ζ3), η = (η1, η2, η3) ∈ R

3,

zζ =
3⎧

i=1

ζi∇Θ(i), zη =
3⎧

i=1

ηi∇Θ(i).

Then
〈κ (zζ · zη)∞Y + 〈κ (ζ · zη)∞Y = 0,

and

(B · ζ ) · η = 〈κ (ζ · η)∞Y + 〈κ (zζ · η)∞Y

= 〈κ (ζ · η)∞Y + 〈κ (zζ · η)∞Y + 〈κ (zζ · zη)∞Y + 〈κ (ζ · zη)∞Y

= 〈
κ
(
(zζ + η) · (zη + ζ )

) ⎫
Y .

2.1.3 Proof of Theorem 2.2

Let ν0 > 0. Then the uniqueness of the solution to the problem (2.1.14)–(2.1.20)
follows from its linearity and corresponding energy identities.

Firstly, we rewrite Eqs. (2.1.14)–(2.1.17) as

m

c2f

∂p

∂t
= 1

μ1
∇ ·

(
B ·
(

∇ p + ν0

c2f
∇
(

∂p

∂t

)
+ m β f ∇ ϑ

))
, (2.1.28)

ĉp
∂ϑ

∂t
= ∇ ·

(
B

ϑ · ∇ ϑ + β f

μ1
B ·
(

∇ p + ν0

c2f
∇
(

∂p

∂t

)
+ m β f ∇ ϑ

))
. (2.1.29)

Next, we multiply (2.1.28) by
∂p

∂t
and integrate by parts over Ω:
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1

2μ1

d

dt

∫

Ω

∇ p · (B · ∇ p) dx +
∫

Ω

(
m

c2f

(
∂p

∂t

)2

+ ν0

μ1 c2f
∇
(

∂p

∂t

)
·
(

B · ∇
(

∂p

∂t

)))
dx

(2.1.30)

= −m β f

μ1

∫

Ω

(
(∇ ϑ) ·

(
B · ∇

(
∂p

∂t

)))
dx

� C0β
2
f

∫

Ω

|∇ ϑ |2dx + ν0

4μ1 c2f

∫

Ω

⎜⎜⎜⎜∇
(

∂p

∂t

)⎜⎜⎜⎜
2

dx .

Finally, we multiply (2.1.29) by ϑ , integrate by parts overΩ , and sum the result with
(2.1.30):

d

dt

∫

Ω

(
1

2μ1
∇ p · (B · ∇ p) + ĉp

2
|ϑ |2

)
dx +

∫

Ω

(
∇ ϑ ·

(
B

ϑ + m β2
f

μ1
B

)
· ∇ ϑ

)
dx

(2.1.31)

+
∫

Ω

(
m

c2f

(
∂p

∂t

)2

+ ν0

μ1 c2f
∇
(

∂p

∂t

)
·
(

B · ∇
(

∂p

∂t

)))
dx

� −β f

μ1

∫

Ω

((∇ ϑ) · (B · ∇ p)) dx − ν0 β f

μ1 c2f

∫

Ω

(
(∇ ϑ) ·

(
B · ∇

(
∂p

∂t

)))
dx

+ C0β
2
f

∫

Ω

|∇ ϑ |2dx + ν0

4μ1 c2f

∫

Ω

⎜⎜⎜⎜∇
(

∂p

∂t

)⎜⎜⎜⎜
2

dx

� C0

(
β f + β2

f

) ∫

Ω

|∇ ϑ |2dx + C0

∫

Ω

|∇ p|2dx + β f

∫

Ω

⎜⎜⎜⎜∇
(

∂p

∂t

)⎜⎜⎜⎜
2

dx .

Using the properties of matrices B and B
ϑ , choosing β0 sufficiently small, and applying

Gronwall’s inequality [61] we arrive at the first statement of the lemma.
Let us recall that the Gronwall inequality states that if a nonnegative function y(t)

satisfies the conditions

dy

dt
(t) � c(t) y(t) + F(t), y(0) = 0

with nonnegative summable functions c(t) and F(t), then

y(t) � exp

(∫ t

0
c(τ )dτ

) ∫ t

0
F(τ )dτ,

and
dy

dt
(t) � c(t) exp

(∫ t

0
c(τ )dτ

) ∫ t

0
F(τ )dτ + F(t).

For the case ν0 = 0, Eqs. (2.1.28) and (2.1.29) take the form
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m

c2f

∂p

∂t
= 1

μ1
∇ · (B · (∇ p + m β f ∇ ϑ)

)
, (2.1.32)

ĉp
∂ϑ

∂t
= ∇ ·

(
B

ϑ · ∇ ϑ + β f

μ1
B · (∇ p + m β f ∇ ϑ)

)
. (2.1.33)

Now, we multiply (2.1.32) by p, (2.1.33) by ϑ , integrate by parts over Ω , and sum results:

d

dt

∫

Ω

(
m

2 c2f
|p|2 + ĉp

2
|ϑ |2

)
dx +

∫

Ω

∇ ϑ · (Bϑ · ∇ ϑ
)

dx

+ 1

μ1

∫

Ω

(m β f ∇ ϑ + ∇ p)
(
B · (m β f ∇ ϑ + ∇ p)

)
dx = 0.

This last identity implies ϑ = p = 0.

2.2 A Slightly Viscous Thermo-Fluid in a Thermo-Elastic
Skeleton

Here, as a basic mathematical model at the microscopic level we consider the model M13

of a non-isothermal liquid filtration in a thermo-elastic solid skeleton, consisting of the
differential equations

1

αε
p

p + ∇ · w = 0, (2.2.1)

∇ · P + ρεF = 0, (2.2.2)

ηε
0
∂ϑ

∂t
− ∇ · (αε

κ
∇ϑ) = Φ − αε

θ ∇ ·
(

∂w
∂t

)
, (2.2.3)

P = χεαμ D

(
x,

∂w
∂t

)
+ (1 − χε)λ0 D(x, w) − q̃ I, (2.2.4)

q̃ = p + αε
θ ϑ + χε αν

c2f

∂p

∂t
, (2.2.5)

w(x, t) = 0, ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.2.6)

χε w(x, 0) = 0,
(
ηε
0 ϑ + αε

θ ∇ · w
)
(x, 0) = 0, x ∈ Ω. (2.2.7)

Throughout this section we additionally impose Assumption 1.1 and also assume that
conditions
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μ0 = 0, 0 < μ1 � ∩, 0 � ν0 < ∩, (2.2.8)

0 < λ0, c2f , c2s , cp, f , cp,s , κ f , κs, β f , βs, γ0 < ∩,

and ∫

ΩT

(
|F|2dxdt +

⎜⎜⎜⎜
∂F
∂t

⎜⎜⎜⎜
2
)

dxdt +
∫

ΩT

|Φ|2dxdt = F 2
1 < ∩ (2.2.9)

hold true.
In Eqs. (2.2.1)–(2.2.8)

αε
θ = χεβ f + (1 − χε)βs ηε

0 = χε cp, f + (1 − χε) cp,s ,

αε
p = χεc2f + (1 − χε)c2s αε

κ
= χε

κ f + (1 − χε)κs .

and
μ0 = lim

ε∪0
αμ(ε), ν0 = lim

ε∪0
αν(ε), μ1 = lim

ε∪0

αμ

ε2
.

2.2.1 Statement of the Problem and Main Results

Definition 2.2 We say that the triple of functions {wε, p ε, ϑε} such that

wε ∈ ◦
W

1,0

2 (ΩT ), ϑε, ∈ ◦
W

1,0

2 (ΩT ), χε∇
(

∂wε

∂t

)
∈ L2(ΩT ), p ε,

∂p ε

∂t
∈ L2(ΩT ),

is a weak solution of the problem (2.2.1)–(2.2.7), if it satisfies the continuity and state
Eqs. (2.2.1) and (2.2.5) almost everywhere in ΩT , the initial conditions (2.2.7) and integral
identities

∫

ΩT

(
χεαμD

(
x,

∂wε

∂t

)
+ (1 − χε)λ0 D(x, wε)

)
: D(x, ϕ) dxdt (2.2.10)

−
∫

ΩT

q̃ ε (∇ · ϕ) dxdt =
∫

ΩT

ρεF · ϕ dxdt,

and

∫

ΩT

(
αε

κ
∇ϑε · ∇ψ − (ηε

0ϑ
ε + αε

θ ∇ · wε
) ∂ψ

∂t

)
dxdt =

∫

ΩT

Φ ψ dxdt, (2.2.11)
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for any functions ϕ ∈ ◦
W

1,0

2 (ΩT ) and ψ ∈ ◦
W

1,1

2 (ΩT ), such that ψ(x, T ) = 0.

In Eq. (2.2.10)

q̃ ε = p ε + αε
θ ϑ ε + χε αν

c2f

∂p ε

∂t
,

Theorem 2.3 The problem (2.2.1)–(2.2.7) has an unique weak solution {wε, p ε,

ϑε}, and

max
0<t<T

∫

Ω

(
αμχε

⎜⎜⎜⎜D
(

x,
∂wε

∂t
(x, t)

)⎜⎜⎜⎜
2

+ |∇ϑε(x, t)|2 + ανχ
ε

⎜⎜⎜⎜
∂p ε

∂t
(x, t)

⎜⎜⎜⎜
2
)

dx

(2.2.12)

+
∫

ΩT

(⎜⎜⎜⎜D
(

x,
∂wε

s

∂t

)⎜⎜⎜⎜
2

+
⎜⎜⎜⎜
∂ϑε

∂t

⎜⎜⎜⎜
2

+
⎜⎜⎜⎜
∂p ε

∂t

⎜⎜⎜⎜
2
)

dxdt � C0F
2
1 ,

∫

ΩT

⎜⎜⎜⎜
∂wε

∂t
(x, t) − ∂wε

s

∂t
(x, t)

⎜⎜⎜⎜
2

dxdt � ε2

αμ

C0F
2
1 , (2.2.13)

where wε
s is an extension (1.2.9), and the constant C0 is independent of the small parameter

ε.

Theorem 2.4 Let {wε, p ε, ϑε} be a weak solution of the problem (2.2.1)–(2.2.7), wε
s be

an extension (1.2.9) and μ1 = ∩, or μ1 < ∩, but the pore space be disconnected.
Then for all ν0 � 0

(1) up to some subsequences the sequences {wε}, {∇ ·wε}, {χε p ε}, and {qε}, where qε =
χε

(
p ε + (β f − βs) ϑε +

(
αν

c2f

)
∂p ε

∂t

)
, converge weakly in L2(ΩT ) and L2(ΩT )

to functions w, ∇ · w, mp f , and mq respectively.

At the same time the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) and two-scale in

L2(ΩT ) to function ws = w ∈ ◦
W

1,0

2 (ΩT ), and the sequence {ϑε} converges weakly

in
◦

W
1,0

2 (ΩT ) and two-scale in L2(ΩT ) to function ϑ;
(2) the limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the homogenized continuity equation

m

c2f
p f + m ∇ · ws = C

s
0 : D(x, ws) + cs

0

λ0
q, (2.2.14)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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the state equation

q = p f +m (β f −βs) ϑ + ν0

c2f

∂p f

∂t
(q = p f +m (β f −βs) ϑ for ν0 = 0), (2.2.15)

the homogenized momentum balance equation

∇ · (λ0 Ns
2 : D(x, ws) − q C

s
1 − βs ϑ I

)+ ρ̂F = 0, (2.2.16)

and the homogenized heat equation

ĉp
∂ϑ

∂t
= ∇ · (Bϑ · ∇ ϑ

)+ Φ + C
ϑ : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
. (2.2.17)

The system is completed with homogeneous boundary and initial conditions

ws(x, t) = 0, ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.2.18)

ν0 p f (x, 0) = 0, (2.2.19)

ĉp ϑ(x, 0) = C
ϑ : D (x, ws(x, 0)) + cs

0

λ0
q(x, 0), x ∈ Ω.

In Eqs. (2.2.14)–(2.2.17)
ρ̂ = m ρ f + (1 − m) ρs ,

the symmetric strictly positively definite constant fourth-rank tensor Ns
2, matrices C

s
0

and C
s
1, and the constant cs

0 are the same as in Theorem 1.6, the symmetric strictly
positively definite constant matrix B

ϑ is defined in Theorem 2.1, and the matrix C
ϑ is

given below by formula (2.2.25).

We refer to the problem (2.2.14)–(2.2.19) as the homogenized model (NIF)2.

Theorem 2.5 Let {wε, p ε, ϑε} be a weak solution of the problem (2.2.1)–(2.2.7) , wε
s be

an extension (1.2.9), the pore space be connected and μ1 < ∩.
Then for all ν0 � 0

(1) up to some subsequences the sequences {wε}, {χεwε}, {∇ · wε}, {χε p ε}, and {qε},
where qε = χε

(
p ε + (β f − βs) ϑε +

(
αν

c2f

)
∂p ε

∂t

)
, converge weakly in L2(ΩT )

and L2(ΩT ) to functions w, w( f ), ∇ · w, mp f , and mq ∈ W 1,0
2 (ΩT ) respectively.

At the same time the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) and two-scale

in L2(ΩT ) to function ws ∈ ◦
W

1,0

2 (ΩT ), and the sequence {ϑε} converges weakly in
◦

W
1,0

2 (ΩT ) and two-scale in L2(ΩT ) to function ϑ;
(2) the limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the homogenized continuity equation

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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m

c2f
p f + ∇ · w( f ) = C

s
0 : D(x, ws) + cs

0

λ0
q, (2.2.20)

the state equation (2.2.15), the homogenized momentum balance equation (2.2.16) for
the solid component, the homogenized heat equation

ĉp
∂ϑ

∂t
= ∇ · (Bϑ · ∇ ϑ

)+ Φ − β f

(
∇ · ∂w( f )

∂t

)
+ C

ϑ
1 : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
,

(2.2.21)
and Darcy’s law in the form

w( f ) = m ws + B ·
(∫ t

0

(−∇ q + ρ f F
)
(x, τ )dτ

)
, (2.2.22)

for the liquid component.

The system is completed with homogeneous boundary conditions (2.2.18) for the
solid component and for the temperature, initial conditions

ν0 p f (x, 0) = 0, ĉp ϑ(x, 0) (2.2.23)

= C
ϑ
1 : D (x, ws(x, 0)) + cs

0

λ0
q(x, 0)

+ β f

(
∇ · w( f )(x, 0)

)
, x ∈ Ω,

and homogeneous boundary condition

w( f )(x, t) · n(x) = 0, x ∈ S, t ∈ (0, T ) (2.2.24)

for displacements w( f ) of the fluid component.

In Eqs. (2.2.21)–(2.2.24) n is the normal vector to the boundary S, the symmetric
strictly positively definite constant matrix B is the same as in Theorem 1.1, the matrix
C

s
0 and the constant cs

0 are the same as in Theorem 1.6, the symmetric strictly positively
definite constant matrix B

ϑ is defined in Theorem 2.1, and the matrix C
ϑ
1 is given below

by formula (2.2.26).

We refer to the problem (2.2.15), (2.2.16), (2.2.18), (2.2.21)–(2.2.24) as the homogenized
model (NIF)3.

2.2.2 Proof of Theorem 2.3

The proof of this theorem repeats the proofs of Theorem 2.1 and Theorem 1.5, and is based
upon the energy equality
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1

2

d

dt

∫

Ω

(
αμχε

⎜⎜⎜⎜D
(

x,
∂wε

∂t

)⎜⎜⎜⎜
2

+ αν

c2f
χε

⎜⎜⎜⎜
∂p ε

∂t

⎜⎜⎜⎜
2

+ αε
κ

|∇ ϑε|2
)

dx

+
∫

Ω

(
(1 − χε)λ0

⎜⎜⎜⎜D
(

x,
∂wε

∂t

)⎜⎜⎜⎜
2

+ 1

αε
p

⎜⎜⎜⎜
∂p ε

∂t

⎜⎜⎜⎜
2

+ ηε
0

⎜⎜⎜⎜
∂ϑ ε

∂t

⎜⎜⎜⎜
2
)

dx

=
∫

Ω

(
Φ

∂ϑε

∂t
+ ρε ∂F

∂t
· ∂wε

∂t

)
dx .

2.2.3 Proofs of Theorem 2.4 and Theorem 2.5

The proofs of these theorems are almost exact repeats of the proofs of Theorem 1.6 and
Theorem 1.7. We only have to derive homogenized heat equation (2.2.17) and (2.2.21),
and corresponding initial conditions (2.2.19) and (2.2.23). Here we simply repeat the proof
of Theorem 2.1 with one difference for each case w = ws (Theorem 2.4), and w ◦= ws

(Theorem 2.5). The difference is in the macroscopic heat equations.
For both cases we start with the heat equation in the form

∫

ΩT

(
αε

κ
∇ϑε · ∇ψ − ηε

0ϑ
ε ∂ψ

∂t

)
dxdt =

∫

ΩT

Φ ψ dxdt + I ε,

where

I ε =
∫

ΩT

αε
θ (∇ · wε)

∂ψ

∂t
dxdt.

One has

αε
θ (∇ · wε) = β f χ

ε(∇ · wε) + βs(1 − χε)(∇ · wε)

= β f (∇ · wε) + (βs − β f )(1 − χε)(∇ · wε).

Therefore,

lim
ε∪0

I ε = I 0 =
∫

ΩT

(
β f (∇ · w) + (βs − β f )

(
(1 − m)(∇ · ws)

+ 〈∇y · U∞Ys

))∂ψ

∂t
dxdt, w = w( f ) + (1 − m)ws .
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If w = ws , then

I 0 =
∫

ΩT

(
β̂(∇ · ws) + (βs − β f )〈∇y · U∞Ys

) ∂ψ

∂t
dxdt,

where β̂ = m β f + (1 − m)βs .
For w ◦= ws

I 0 =
∫

ΩT

(
β f (∇ · w( f )) + (1 − m)βs(∇ · ws) + (βs − β f )〈∇y · U∞Ys

) ∂ψ

∂t
dxdt.

Therefore,

β̂

(
∇ · ∂ws

∂t

)
+ (βs − β f

) ⎬∇y ·
(

∂U
∂t

)⎭

Ys

= C
ϑ : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
,

(1 − m)βs

(
∇ · ∂ws

∂t

)
+ (βs − β f

) ⎬∇y · ∂U
∂t

⎭

Ys

= C
ϑ
1 : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
,

and
C

ϑ = −β̂I − (βs − β f )C
s
0, (2.2.25)

C
ϑ
1 = −(1 − m)βsI − (βs − β f

)
C

s
0. (2.2.26)

To derive initial conditions (2.2.19) and (2.2.23) note that the homogenized heat equations
(2.2.17) and (2.2.21) are actually formal expressions (as distributions) of the corresponding
integral identities

∫

ΩT

(
B

ϑ · ∇ ϑ) · ∇ψ +
(

C
ϑ : D(x, ws) + cs

0
λ0

q − ĉ p ϑ

)
∂ψ

∂t

)
dxdt =

∫

ΩT

Φ ψ dxdt,

and

∫

ΩT

(
B

ϑ · ∇ ϑ) · ∇ψ +
(

C
ϑ
1 : D(x, ws) + cs

0
λ0

q + β f (∇ · w( f )) − ĉ p ϑ

)
∂ψ

∂t

)
dxdt

=
∫

ΩT

Φ ψ dxdt.

The last expressions evidently contains the initial conditions (2.2.19) and (2.2.23) (in a
weak sense).

2.3 A Viscous Thermo-Fluid in an Elastic Skeleton

In this section as a basicmathematicalmodel at themicroscopic level we consider themodel
M13 of a non-isothermal liquid filtration in a thermo-elastic solid skeleton, consisting of
the differential equations
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1

αε
p

p + ∇ · w = 0, (2.3.1)

∇ · P + ρ̃F + αε
θ ∇ϑ = 0, (2.3.2)

ηε
0
∂ϑ

∂t
− ∇ · (αε

κ
∇ϑ) = Φ − αε

θ ∇ · ∂w
∂t

, (2.3.3)

P = χεμ0 D

(
x,

∂w
∂t

)
+ (1 − χε)λ0 D(x, w) − p I, (2.3.4)

w(x, t) = 0, ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.3.5)

χε w(x, 0) = 0, ϑ(x, 0) = 0, x ∈ Ω. (2.3.6)

Throughout this section we assume that conditions

0 < μ0, λ0, c2f , c2s , cp, f , cp,s , κ f , κs, β f , βs < ∩, (2.3.7)

and ∫

ΩT

(
|F|2dxdt +

⎜⎜⎜⎜
∂F
∂t

⎜⎜⎜⎜
2
)

dxdt +
∫

ΩT

|Φ|2dxdt = F 2
1 < ∩ (2.3.8)

hold true.

2.3.1 Statement of the Problem and Main Results

Definition 2.3 We say that the pair of functions {wε, ϑε} such that

wε ∈ ◦
W

1,0

2 (ΩT ), ϑε, ∈ ◦
W

1,0

2 (ΩT ), χε∇
(

∂wε

∂t

)
∈ L2(ΩT ),

is a weak solution of the problem (2.3.1)–(2.3.6), if it satisfies the continuity equation
(2.3.1) almost everywhere in ΩT , the initial conditions (2.3.6) and integral identities

∫

ΩT

(
χεμ0D

(
x,

∂wε

∂t

)
+ N

(ε)
1 : D(x, ϕ)

)
dxdt (2.3.9)

=
∫

ΩT

(
ρεF + αε

θ ∇ϑ
) · ϕ dxdt,
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and

∫

ΩT

(
αε

κ
∇ϑε · ∇ψ − ηε

0ϑ
ε ∂ψ

∂t

)
dxdt =

∫

ΩT

(
Φ − αε

θ

(
∇ · ∂wε

∂t

))
ψ dxdt,

(2.3.10)

for any functions ϕ ∈ ◦
W

1,0

2 (ΩT ) and ψ ∈ ◦
W

1,1

2 (ΩT ), such that ψ(x, T ) = 0.

In Eq. (2.3.9)

N
(ε)
1 = (1 − χε)λ0

3⎧
i, j=1

J
(i j) → J

(i j) + αε
pI → I.

Solution wε of this problem possesses different smoothness in each domain Ωε
f and

Ωε
s . To preserve the best properties, which the solution now possesses in the liquid part,

we use the extension lemma (see Appendix B) to extend the function
∂wε

∂t
from the liquid

part of the domain Ω onto its solid part Ωε
f :

vε = EΩε
f

(
∂wε

∂t

)
, (2.3.11)

such that

χε(x)

(
∂wε

∂t
(x, t) − vε(x, t)

)
= 0, x ∈ Ω, t ∈ (0, T ),

and

∫

Ω

|vε(x, t)|2dx � C0

∫

Ωε
f

⎜⎜⎜⎜
∂wε

∂t
(x, t)

⎜⎜⎜⎜
2

dx, (2.3.12)

∫

Ω

⎜⎜D (x, vε(x, t)
)⎜⎜2 dx � C0

∫

Ωε
f

⎜⎜⎜⎜D
(

x,
∂wε

∂t
(x, t)

)⎜⎜⎜⎜
2

dx, t ∈ (0, T ),

where C0 is independent of ε and t ∈ (0, T ).

Theorem 2.6 There exists a unique weak solution {wε, ϑε} of the problem (2.3.1)–(2.3.6)
and

∫

ΩT

χε
(⎜⎜D(x, vε)

⎜⎜2 + |∇ϑε|2
)

dxdt (2.3.13)

+ max
0<t<T

∫

Ω

(|D(x, wε)|2 + |ϑε|2) dx � C0F
2
1 ,

where vε is an extension (2.3.12), and the constant C0 is independent of the small parameter
ε.

The proof of this theorem is straightforward and repeats the proof of Theorem 1.2 and
Theorem 1.5, Theorem 2.1.
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Theorem 2.7 Let wε be the weak solution of the problem (2.3.1)–(2.3.6) and vε be an
extension (2.3.12).

Then

(1) the sequences {wε}, {vε}, and {ϑε} converge weakly in W1,0
2 (ΩT ) and W 1,0

2 (ΩT ) to

functions w, v = ∂w
∂t

, and ϑ respectively;

(2) limiting functions solve the system of homogenized equations in the domain ΩT , con-
sisting of the homogenized momentum balance equation

∇ · P̃
ϑ + ρ̂F = 0, (2.3.14)

the state equation

P̃
ϑ = P̃ − C

ϑ
2 ϑ −

∫ t

0
C

ϑ
3 (t − τ)ϑ(x, τ )dτ, (2.3.15)

P̃ = N4 : D

(
x,

∂w
∂t

)
+ N5 : D(x, w) +

∫ t

0
N6(t − τ) : D(x, w(x, τ ))dτ,

and the homogenized heat equation

ĉp
∂ϑ

∂t
− ∇ ·

(
B

ϑ · ∇ ϑ −
(

cϑ
0 ϑ +

∫ t

0
cϑ
1 (t − τ)ϑ(x, τ )dτ

)
I

)
(2.3.16)

= Φ − C
ϑ
4 : D

(
x,

∂w
∂t

)
− C

ϑ
5 : D(x, w) −

∫ t

0
C

ϑ
6 (t − τ) : D (x, w(x, τ )) dτ,

completed with the homogeneous boundary and initial conditions

w(x, t) = 0, ϑ(x, t) = 0, x ∈ S, t ∈ (0, T ), (2.3.17)

w(x, 0) = 0, ϑ(x, 0) = 0, x ∈ Ω. (2.3.18)

In Eqs. (2.3.14)–(2.3.16) fourth-rank tensors N4, N5, and N6(t) are given above by
formulae (1.4.44) (see Theorem 1.12), the symmetric strictly positively definite constant
matrix B

ϑ is the same as in Theorem 2.1, and matrices C
ϑ
2 , C

ϑ
3 (t), C

ϑ
4 , C

ϑ
5 , C

ϑ
6 (t),

and scalars cϑ
0 and cϑ

1 (t) are given below by formulae (2.3.25)–(2.3.31).

We refer to the problem (2.3.14)–(2.3.18) as the homogenized model (NIF)4.

2.3.2 Proof of Theorem 2.7

It is clear that themajor part of the proof of this theorem repeats the proofs of Theorem 1.12,
Theorem 2.1, and Theorem 2.5. The difference is in the form of themicro- andmacroscopic
momentum balance equations
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∇y ·
(

μ0 χ(y)

(
D

(
x,

∂w
∂t

)
+ D

(
y,

∂W
∂t

))
(2.3.19)

−β(y)ϑ(x, t)I + A2(y) : (D(x, w) + D(y, W))) = 0,

β(y) = χ(y)β f + (1 − χ(y)) βs ,

A2(y) = (1 − χ(y))


λ0

3⎧
i, j=1

(
J
(i j) → J

(i j)
)

+ c2s (I → I)


+ χ(y)c2f (I → I) ,

and
∇ · P̃

ϑ + ρ̂F = 0, (2.3.20)

P̃
ϑ = μ0 m D

(
x,

∂w
∂t

)
+ μ0

⎬
D

(
y,

∂W
∂t

)⎭

Y f

(2.3.21)

+ 〈A2∞Y : D(x, w) + 〈A2 : D(y, W)∞Y − β̂ϑI,

ρ̂ = mρ f + (1 − m)ρs , β̂ = mβ f + (1 − m)βs,

and in the form of the micro- and macroscopic heat equations

∇y · (κ(y)
(∇ ϑ + ∇yΘ

)) = 0, (2.3.22)

ĉp
∂ϑ

∂t
− ∇ · (κ̂∇ϑ + 〈κ(y)∇yΘ∞Y

)
(2.3.23)

= Φ − β̂∇ ·
(

∂w
∂t

)
−
⎬
β(y)∇y · ∂W

∂t

⎭

Y
.

The solution of the microscopic momentum balance equation (2.3.19) is slightly differ-
ent from the solution of the microscopic momentum balance equation (1.4.35) in the proof
of Theorem 1.12:

W(x, t, y) =
3⎧

i, j=1

∫ t

0
W̃(i j)(y, t − τ)Yi j (x, τ )dτ −

∫ t

0
W̃(0)(y, t − τ)ϑ(x, τ )dτ,

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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where W̃(0) is a solution of the periodic boundary value problem

∇y ·
(

χ μ0 D

(
y,

∂W̃(0)

∂t

)
+ A2(y) : D

(
y, W̃(0)

))
= 0,

χ(y)W̃(0)(y, 0) = W̃(0)
0 (y),

∇y ·
(
χ
(
μ0 D

(
y, W̃(0)

0

)
+ β(y)I

))
= 0


⎛⎛⎛⎛⎛⎝
⎛⎛⎛⎛⎛⎞

(2.3.24)

in the domain Y and W̃(i j) is a solution of (1.4.38), (1.4.39).
Therefore,

P̃
ϑ = P̃ − C

ϑ
2 ϑ −

∫ t

0
C

ϑ
3 (t − τ)ϑ(x, τ )dτ,

and
C

ϑ
2 = β̂I + μ0

⎠
D

(
y, W̃(0)

0

)〉
Y f

, (2.3.25)

C
ϑ
3 (t) = μ0

〈
D

(
y,

∂W̃(0)

∂t

)〉

Y f

+
⎠
A2 : D

(
y, W̃(0)

)〉
Y

. (2.3.26)

The solution of the microscopic heat equation (2.3.22) is the same as the solution of the
microscopic heat equation (2.1.25) in the proof of Theorem 2.1.

Therefore,
κ̂∇ϑ + 〈κ(y)∇yΘ

⎫
Y = B

ϑ · ∇ϑ.

Next,

β̂ ∇ ·
(

∂w
∂t

)
+
⎬
β(y)∇y · ∂W

∂t

⎭

Y
= β̂ ∇ ·

(
∂w
∂t

)
+
〈 3⎧

i, j=1

(
∇ · W̃(i j)

0

)
J
(i j)

〉

Y

: Y(x, t)

+
⎠
∇ · W̃(0)

0

〉
Y

ϑ +
∫ t

0




3⎧
i, j=1

〈
∇ · ∂W̃(i j)

∂t

〉

Y

(t − τ)J(i j) : Y(x, τ )

+
〈
∇ · ∂W̃(0)

∂t

〉

Y

(t − τ)ϑ(x, τ )

)
dτ = C

ϑ
4 : D

(
x,

∂w
∂t

)
+ C

ϑ
5 : D(x, w)

+
∫ t

0
C

ϑ
6 (t − τ) : D (x, w(x, τ )) dτ + cϑ

0 ϑ +
∫ t

0
cϑ
1 (t − τ)ϑ(x, τ )dτ,

where

C
ϑ
4 = β̂ I + μ0

〈
3⎧

i, j=1

(
∇ · W̃(i j)

0

)〉

Y

J
(i j), (2.3.27)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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C
ϑ
5 = μ0

3⎧
i, j=1

〈
∇ · ∂W̃(i j)

∂t
(y, 0)

〉

Y

J
(i j) (2.3.28)

−
(
N

(0)
1 : J

(i j)
) 〈 3⎧

i, j=1

(
∇ · W̃(i j)

0

)〉

Y

,

C
ϑ
6 (t) = μ0

3⎧
i, j=1

J
(i j)

〈
∇ · ∂2W̃(i j)

∂t2

〉

Y

(2.3.29)

−
3⎧

i, j=1

(
N

(0)
1 : J

(i j)
) 〈

∇ · ∂W̃(i j)

∂t

〉

Y

,

cϑ
0 =

⎠
∇ · W̃(0)

0

〉
Y

, (2.3.30)

cϑ
1 (t) =

〈
∇ · ∂W̃(0)

∂t

〉

Y

. (2.3.31)



Chapter 3
Hydraulic Shock in Incompressible
Poroelastic Media

3.1 The Problem Statement and Basic A Priori Estimates

As a basic mathematical model at the microscopic level here we consider the model
M21 of isothermal short-term processes in incompressible media:

∇ · w = 0, (3.1.1)

α̃
ρ2w
ρt2

= ∇ · P + α̃F, (3.1.2)

P = χ̃ ∂̄μD

(
x,

ρw
ρt

)
+ (1 − χ̃)∂̄λD(x, w) − p I. (3.1.3)

This model is derived in Appendix A.
Throughout this chapter we impose Assumption 0.1 and Assumption 1.1, com-

pleted with

Assumption 3.1 The pore space νΩ
f is a connected domain.

Under these assumptions

χ̃(x) = χΩ(x) = Γ(x)χ
(x

Ω

)
, α̃ = αΩ = χΩαf + (1 − χΩ)αs,

where Γ(x) is the characteristic function of the domain ν .
Usually, the initial impulse for the hydraulic shock is transmitted into the oil

reservoir through a well filled with a liquid (Fig. 3.1).
To model this process we consider the domain ν as a subdomain of the domain

Q, such that the compliment ofν inQ is a cylinderν 0 = {x ∪ R
3 : x21 +x22 � ε2 <

1, ς0(x1, x2) < x3 < 0}. In turn, the domain Q is a subset of the half -space {x3 < 0}
and its boundary S consists of two parts. The part S1 is a subdomain of the plane
{x3 = 0}. The compliment S2 = S\S1 is a smooth C2 surface, and in some small

A. Meirmanov, Mathematical Models for Poroelastic Flows, 89
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_3,
© Atlantis Press and the authors 2014
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Fig. 3.1 1—domain ν0,
2—domain ν

1
2

neighborhood of the plane {x3 = 0} it is represented by the equation ϕ(x1, x2) = 0
(that is S2 is a cylinder near the plane {x3 = 0}).

For the given Ω > 0 the solid-liquid mixture in the domain νT is governed by the
system

∇ · wΩ = 0, (3.1.4)

αΩ ρ2wΩ

ρt2
= ∇ · P, (3.1.5)

P = χΩ∂̄μD

(
x,

ρwΩ

ρt

)
+ (1 − χΩ) ∂̄λD(x, wΩ) − pΩ

I. (3.1.6)

In the domain ν0
T the liquid motion is described by the Stokes system, consisting of

the continuity equation (3.1.4) and the momentum balance equation

αf
ρ2wΩ

ρt2
= ∇ · P0, (3.1.7)

P
0 = ∂̄μD

(
x,

ρwΩ

ρt

)
− pΩ

I. (3.1.8)
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On the common boundary S0 = ρν ⊂ ρν0 the usual continuity conditions for
displacements and for the normal component of the momentum hold true

lim
x ∩ x0

x ∪ ν0

w(x, t) = lim
x ∩ x0
x ∪ ν

w(x, t), (3.1.9)

lim
x ∩ x0

x ∪ ν0

P
0(x, t) · n(x0) = lim

x ∩ x0
x ∪ ν

P(x, t) · n(x0). (3.1.10)

Here n(x0) is a normal vector to the boundary S0 at x0 ∪ S0.
Now we impose boundary conditions on the outer boundary S = ρQ. On the part

S1 we put (
ξP0 + (1 − ξ )P

) · e3 = −p 0(x, t)e3, (3.1.11)

where p0(x, t) is the impulse defining the hydraulic shock. We suppose that p0 is

finite in {x ∪ R
3|x21 + x22 <

ε2

2
< 1,−ε < x3 < 0}.

On the rest of the outer boundary S2

wΩ(x, t) = 0 (3.1.12)

for t > 0.
The problem has the homogeneous initial conditions

wΩ(x, 0) = 0,
ρwΩ

ρt
(x, 0) = 0, x ∪ Q. (3.1.13)

In the usual way we define a weak solution of the problems (3.1.4)–(3.1.13).

Definition 3.1 We say that the pair of functions {wΩ, p Ω} such that

wΩ ∪ ∈
W

1,0

2 (QT ),
ρwΩ

ρt
∪ L2(QT ), p Ω ∪ L2(QT ),

is a weak solution of the problem (3.1.4)–(3.1.13), if it satisfies the continuity
equation (3.1.4) almost everywhere in QT , the first initial condition in (3.1.13) for
the function wΩ, and the integral identity

∫

QT

(
− α̃Ω ρwΩ

ρt
· ρς

ρt
+ (ξP0 + (1 − ξ )P

) : D(x, ς)
)

dxdt

= −
∫

QT

∇ · (ς p 0)dxdt (3.1.14)
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for all functions ς ∪ W1,0
2 (QT ),

ρς

ρt
∪ L2(QT ), such that ς(x, t) = 0 on the

boundary S2T , and ς(x, T) = 0 for x ∪ Q.

In (3.1.12) α̃Ω = (
ξ + (1 − ξ )χΩ

)
αf + (1 − ξ )(1 − χΩ)αs and ξ = ξ(x) is the

characteristic function of the domain ν0 in Q.
The integral identity (3.1.14) contains Stokes equations in νf ∅ ν0 for t > 0,

Lamé’s equations inνs for t > 0, the continuity condition for the normal tensions at
the boundary S0 (condition (3.1.10)), the similar condition at the common boundary
“pore space–solid skeleton”, and the second initial condition in (3.1.13).

Sometimes we will use the identity (3.1.14) in its differential form

α̃Ω ρ2wΩ

ρt2
= ∇ · (ξP0 + (1 − ξ )P

)
, (3.1.15)

and say that (3.1.15) and (3.1.11) are understood in the sense of distributions.
For the problem (3.1.4)–(3.1.13) we will find all the possible limiting regimes

(homogenized equations) as Ω ↘ 0.
To do that we suppose that the dimensionless parameters ∂̄μ and ∂̄λ depend on

the small parameter Ω and the (finite or infinite) limits exist:

lim
Ω↘0

∂̄μ(Ω) = μ0, lim
Ω↘0

∂̄μ

Ω2
= μ1, lim

Ω↘0
∂̄λ(Ω) = λ0, lim

Ω↘0

∂̄λ

Ω2
= λ1.

Throughout this chapter we assume that

∫

QT

(
|∇ p 0(x, t)|2 +

∣∣∣∣∇
ρp 0

ρt
(x, t)

∣∣∣∣
2)

dxdt = P2 < ∞.

In what follows, we denote as C0 any constant depending only on domains ν , Y and
Yf .

The derivation of all these limiting regimes is based upon on the following.

Theorem 3.1 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13).
Then

max
0∞t∞T

∫

Q

(
|ρ

2wΩ

ρt2
|2 + |pΩ|2 + ∂̄μ

(
ξ + (1 − ξ )χΩ

)|D(x,
ρwΩ

ρt
)|2

+ ∂̄λ(1 − ξ )(1 − χΩ)|D(x,
ρwΩ

ρt
)|2
)

dx � C0P
2, (3.1.16)

where the constant C0 is independent of the small parameter Ω.

The proof of this theorem is straightforward. In fact, the estimate (3.1.16) for
displacements wΩ follows from the energy identity
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1

2

d

dt

∫

Q

(
α̃Ω

∣∣∣∣
ρ2wΩ

ρt2

∣∣∣∣
2

+ ∂̄λ(1 − ξ )(1 − χΩ)

∣∣∣∣D
(

x,
ρwΩ

ρt

)∣∣∣∣
2
⎜

dx

+
∫

Q
∂̄μ

(
ξ + (1 − ξ )χΩ

)∣∣∣∣D
(

x,
ρ2wΩ

ρt2

)∣∣∣∣
2

dx =
∫

Q
∇
(

ρp 0

ρt

)
· ρ2wΩ

ρt2
dx.

In turn, the last relation is the result of differentiation of (3.1.15) with respect to time,

multiplication by
ρ2wΩ

ρt2
, and integration by parts over domain Q.

The estimation of the pressure pΩ repeats the estimation of the pressure in Theorem
1.2 with some evident changes. So, the integral identity (3.1.14) and estimates
(3.1.16) for displacements imply

∣∣∣
∫

QT

p Ω ∇ · ς dxdt
∣∣∣ � C0 P

( ∫

QT

|∇ς|2dxdt
) 1

2
. (3.1.17)

The difference from Theorem 1.2 is in the choice of the test function ς. Here we
choose the test function ς from the same conditions

∇ · ς = p Ω, and
∫

QT

|∇ς|2dxdt � C0

∫

QT

|p Ω|2dxdt.

and decompose the function ς into the sum of two functions ς0 and ∇ τ such that

→τ = p Ω, x ∪ Q, τ

∣∣∣
S2

= 0,
ρτ

ρx3

∣∣∣
S1

= 0, (3.1.18)

∇ · ς0 = 0, x ∪ Q, ς0 + ∇τ = 0, x ∪ S2. (3.1.19)

The difference in the choice of test functions is in the boundary condition for the
function τ on the part S1. Instead of the homogeneous Dirichlet condition we put
the homogeneous Neumann condition.

The desired smoothness of the solutions of the problems (3.1.18) and (3.1.19)
follows from the structure of the boundary S. In fact, we may extend the solution ς

outside of Q near some small neighborhood of {x3 = 0} and S2 as an odd function,
and then from the domain obtained into {x3 > 0} as an even function satisfying the
Poisson equation, and use the local estimates in W2

2 (Q ◦) [60, 61].

3.2 A Slightly Viscous Liquid in an Extremely Elastic Skeleton

Throughout this section we assume that

μ0 = 0, λ0 = 0. (3.2.1)
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3.2.1 Main Results

Theorem 3.2 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13) and

μ1 = λ1 = ∞.

Then the sequence {pΩ} converges weakly in L2(QT ) as Ω ∩ 0 to the solution
p ∪ W1,0

2 (QT ) of the mixed boundary value problem

∇ ·
( 1

α(x)
∇ p
)

= 0, x ∪ Q, t > 0, (3.2.2)

p(x, t) = p0(x, t), x ∪ S1, t > 0, (3.2.3)

∇p(x, t) · n(x) = 0, x ∪ S2, t > 0. (3.2.4)

In (3.2.2)–(3.2.4)

α(x) =
(
ξ(x) + (1 − ξ(x)

)
m
)
αf + (1 − ξ(x)

)
(1 − m)αs,

and n(x) is the normal vector to the boundary S2 at the point x ∪ S2.

We refer to the problems (3.2.2)–(3.2.4) as the homogenized model (HS)1.

Theorem 3.3 Let {wΩ, p Ω} be the weak solution of the problems (3.1.4)–(3.1.13)
and

0 � μ1, λ1 < ∞.

Then the sequence {pΩ} converges weakly in L2(QT ) as Ω ∩ 0 to the solution p ∪
W1,0

2 (QT ) of the mixed boundary value problem, consisting of boundary conditions
(3.2.3) on the part S1 of the boundary S, boundary condition

( ∫ t

0
B(μ1, λ1; x, t − δ) · ∇ p(x, δ )dδ

)
· n(x) = 0 (3.2.5)

on the part S2 of the boundary S, and homogenized equation

∇ ·
( ∫ t

0
B(μ1, λ1; x, t − δ) · ∇ p(x, δ )dδ

)
= 0, x ∪ Q, t > 0. (3.2.6)

In (3.2.5) and (3.2.6) B(μ1, λ1; x, t) is given below by formula (3.2.24) and n(x)

is the normal vector to the boundary S2 at the point x ∪ S2.

We refer to the problems (3.2.3), (3.2.5) and (3.2.6) as the homogenized model
(HS)2.
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Note that theEq. (3.2.6) and the boundary condition (3.2.5) are a formal expression
of the integral identity

∫

QT

( ∫ t

0
B(μ1, λ1; x, t − δ) · ∇ p(x, δ )dδ

)
· ∇Πdxdt = 0 (3.2.7)

for any smooth function Π , vanishing at the part S1 of the boundary S. As we have
mentioned above, p satisfies (3.2.5) and (3.2.6) in the sense of distributions.

To formulate the following statements we need an additional construction. So, let
QΩ

f = Q\ν Ω
s , and

wΩ
f = EQΩ

f

(
wΩ
)
, wΩ

s = EνΩ
s

(
wΩ
)
,

where
EQΩ

f
: W1

2(Q
Ω
f ) ∩ W1

2(Q)

is an extension operator from QΩ
f on Q, and

EνΩ
s

: W1
2(ν

Ω
s ) ∩ W1

2(Q)

is an extension operator from νΩ
s on Q, such that

wΩ
f = wΩ in QΩ

f × (0, T), wΩ
s = wΩ in νΩ

s × (0, T),

and
∫

Q
|wΩ

f |2dx � C0

∫

QΩ
f

|wΩ|2dx,
∫

Q
|wΩ

s |2dx � C0

∫

νΩ
s

|wΩ|2dx,

∫

Q
|D(x, wΩ

f )|2dx � C0

∫

QΩ
f

|D(x, wΩ)|2dx,

∫

Q
|D(x, wΩ

s )|2dx � C0

∫

νΩ
s

|D(x, wΩ)|2dx. (3.2.8)

(for more details see the extension lemma in Appendix B).

Theorem 3.4 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

μ1 = ∞, 0 � λ1 < ∞,

and wΩ
f = EQΩ

f

(
wΩ
)
.

Then there exists a subsequence of small parameters {Ω > 0} such that the

sequences {pΩ},
⎧
(1 − ξ )(1 − χΩ)

ρwΩ

ρt

}
,

⎫
ρwΩ

f

ρt

⎬
, and

⎫
ρ2wΩ

f

ρt2

⎬
converge weakly
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in L2(QT ) and L2(QT ) as Ω ↘ 0 to the functions p ∪ W1,0
2 (QT ),

ρw(s)

ρt
,
ρwf

ρt
, and

ρ2wf

ρt2
respectively and these limiting functions satisfy in the domain QT the system

of homogenized equations consisting of the continuity equation

∇ · v = 0, (3.2.9)

where

v = − ξ

αf

∫ t

0
∇ p(x, δ )dδ + (1 − ξ )

(
m

ρwf

ρt
+ ρw(s)

ρt

)
,

the momentum balance equation

(1 − ξ )
(

mαf
ρwf

ρt
+ αs

ρw(s)

ρt
+
∫ t

0
∇ p(x, δ )dδ

)
= 0, (3.2.10)

for the liquid component, and the momentum balance equation

(1 − ξ )
(ρw(s)

ρt
− (1 − m)

ρwf

ρt

)
(3.2.11)

= −(1 − ξ )

∫ t

0
B

(s)(∞, λ1; t − δ) ·
(
∇p(x, δ ) + αs

ρ2wf

ρδ 2
(x, δ )

)
dδ

(3.2.11)

for the solid component.
Equations (3.2.9)–(3.2.11) are supplemented with the homogeneous initial con-

ditions
w(s)(x, 0) = wf (x, 0) = 0, (3.2.12)

for displacements in the liquid and the solid components and boundary conditions
(3.2.3) and

v(x, t) · n(x) = 0, x ∪ S2, t > 0, (3.2.13)

for the velocity vf and pressure p.
In (3.2.11) the matrix B

(s)(∞, λ1; t) is defined below by formulae (3.2.47) and
(3.2.54) and the constant matrix B

(s)(∞, 0; t) = B
(s)(∞, 0) is strictly positively

definite.

We refer to the problem (3.2.3), (3.2.9)–(3.2.13) as homogenized model (HS)3.

Theorem 3.5 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

λ1 = ∞, 0 � μ1 < ∞,

and wΩ
s = EνΩ

s

(
wΩ
)
.
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Then there exists a subsequence of small parameters {Ω > 0} such that the

sequences {pΩ},
⎧
χΩ ρwΩ

ρt

}
,

⎧
(1 − ξ )

ρwΩ
s

ρt

}
, and

⎧
(1 − ξ )

ρ2wΩ
s

ρt2

}
converge weakly

in L2(QT ) and L2(QT ) as Ω ↘ 0 to the functions p ∪ W1,0
2 (QT ),

ρw(f )

ρt
,
ρws

ρt
, and

ρ2ws

ρt2
respectively and these limiting functions satisfy in the domain QT the system

of homogenized equations consisting of the continuity equation

∇ · v = 0, (3.2.14)

where

v = − ξ

αf

∫ t

0
∇ p (x, δ )dδ + (1 − ξ )

(ρw(f )

ρt
+ (1 − m)

ρws

ρt

)
,

the momentum balance equation

(1 − ξ )
(
α(f ) ρw(f )

ρt
+ (1 − m)αs

ρws

ρt
+
∫ t

0
∇ p (x, δ )dδ

)
= 0, (3.2.15)

for the solid component, and the momentum balance equation

(1 − ξ )
(ρw(f )

ρt
− m

ρws

ρt

)

= −(1 − ξ )

∫ t

0
B

(f )(μ1, ∞; t − δ) · (∇ p (x, δ ) + αf
ρ2ws

ρδ2
(x, δ )

)
dδ (3.2.16)

for the liquid component.
Equations (3.2.14)–(3.2.16) are supplemented with the homogeneous initial con-

ditions (3.2.12) for displacements w(f ) and ws in the liquid and the solid components,
and boundary conditions (3.2.3) and (3.2.13) for the pressure p and the velocity v.

In (3.2.16) the matrix B
(f )(μ1,∞; t) is defined below by formulae (3.2.70) and

(3.2.76) and the constant matrix B
(f )(0,∞; t) = B

(f )(0,∞) is strictly positively
definite.

We refer to the problem (3.2.3), (3.2.12)–(3.2.16) as the homogenized model
(HS)4.

3.2.2 Proof of Theorem 3.2

By Theorem 3.1, the sequences {pΩ}, {wΩ},
⎧

ρ2wΩ

ρt2

}
, and {∂(Ω)∇wΩ}where ∂2(Ω) =

min{∂̄μ, ∂̄λ}, are bounded in L2(QT ) and L2(QT ). Hence there exists a subsequence
of small parameters {Ω > 0} and functions p and w such that
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pΩ γ p, wΩ γ w,
ρ2wΩ

ρt2
γ

ρ2w
ρt2

(3.2.17)

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0.
Note also that

∂̄λ(1 − ξ )D(x, wΩ) ∩ 0, ∂̄μ

(
ξ + (1 − ξ )χΩ

)
D(x, wΩ) ∩ 0 (3.2.18)

strongly in L2(QT ) as Ω ↘ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
By Nguetseng’s theorem, there exist 1-periodic in y functions P(x, t, y) and

W(x, t, y) such that the sequences {pΩ}, {wΩ}, and
⎧

ρwΩ

ρt

}
converge two-scale in

L2(QT ) and L2(QT ) to P(x, t, y), W(x, t, y), and
ρW
ρt

respectively.

By supposition of the theorem

lim
Ω↘0

∂(Ω)

Ω
= ∞.

Applying Lemma B.13 (see Appendix B) we conclude that

W(x, t, y) = w(x, t). (3.2.19)

Next, we prove the following

Lemma 3.1 Under the conditions μ0 = 0, λ0 = 0 the two-scale limit of the
sequence {pΩ} coincides with its weak limit:

P(x, t, y) = p(x, t). (3.2.20)

Proof To prove the statement we fulfill the two-scale limit in (3.1.14) with test

function ς = Ωh(x, t)ς0

(x
Ω

)
:

∫

QT

h(x, t)
( ∫

Y
P(x, t, y)∇y · ς0(y)dy

)
dxdt = 0.

After reintegrating we arrive at

∇yP(x, t, y) = 0, y ∪ Y ,

which is equivalent to (3.2.20).

Now we are ready to derive the homogenized momentum balance equation and
the homogenized continuity equation. First, we pass to the limit as Ω ∩ 0 in (3.1.14)
with test function ς = ς(x, t), vanishing on the part S2 of the boundary S, and at
t = T :
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∫

QT

(
α(x)

ρw
ρt

· ρς

ρt
+ p ∇ · ς

)
dxdt =

∫

QT

∇ · (ς p0)dxdt, (3.2.21)

where
α(x) =

(
ξ(x) + (1 − ξ(x)

)
m
)
αf + (1 − ξ(x)

)
(1 − m)αs.

The simple analysis of the integral identity (3.2.21) and estimates (3.1.16) show that
∇p ∪ L2(QT ), and functions w and p satisfy the homogenized momentum balance
equation

α(x)
ρ2w
ρt2

+ ∇ p = 0, (3.2.22)

and boundary condition (3.2.3) in the usual sense.
Next, we rewrite the continuity Eq. (3.1.4) as an integral identity

∫

QT

wΩ∇Πdxdt = 0

for an arbitrary smooth function Π , and then pass to the limit as Ω ∩ 0:

∫

QT

w∇Πdxdt = 0.

Choosing now Π = ρ2ξ

ρt2
, where ξ vanishes at t = T , we may rewrite the last

identity as ∫

QT

ρ2w
ρt2

∇ξdxdt = 0. (3.2.23)

The combination of (3.2.22) and (3.2.23) gives us the desired integral identity

∫

QT

( 1

α(x)
∇ p
)

· ∇ξdxdt = 0, (3.2.24)

which is equivalent to Eq. (3.2.2) in the domain Q and boundary condition (3.2.4) on
the boundary S2 in the sense of distributions.

3.2.3 Proof of Theorem 3.3

By Theorem 3.1, the sequences {pΩ}, {wΩ},
⎧

ρ2wΩ

ρt2

}
, {Ω∇wΩ}, and

⎧
Ω∇
(ρwΩ

ρt

)}
are

bounded in L2(QT ) and L2(QT ).
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Hence there exists a subsequence of small parameters {Ω > 0} and functions p
and w such that

pΩ γ p, wΩ γ w,
ρ2wΩ

ρt2
γ

ρ2w
ρt2

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0.
Owing to Nguetseng’s theorem and Lemma 3.2, there exists a 1-periodic in

y function W(x, t, y) such that the sequences {pΩ}, {wΩ},
⎧

ρ2wΩ

ρt2

}
, {Ω∇wΩ}, and

⎧
Ω∇
(ρwΩ

ρt

)}
converge two-scale in L2(QT ) and L2(QT ) to p(x, t), W(x, t, y),

⎧
ρ2W
ρt2

(x, t, y)

}
, ∇yW(x, t, y) and ∇y

(ρW
ρt

)
(x, t, y) respectively.

Nguetseng’s theorem also guarantees that

W,
ρ2W
ρt2

, ∇yW, ∇y

(ρW
ρt

)
∪ L2(QT × Y). (3.2.25)

Lemma 3.2 The limiting functions w and W satisfy the macroscopic continuity
equation and boundary condition

∇ · w = 0, w · n = 0 (3.2.26)

in the domain QT and at the boundary S2T , and microscopic continuity equation

∇y · W = 0 (3.2.27)

in the domain YT for almost all (x, t) ∪ QT .

The proof is straightforward (for details see Chap.1 and proof of Theorem 3.1).

Lemma 3.3 For almost all (x, t) ∪ QT the limiting functions p and W satisfy the
microscopic momentum balance equation

ᾱ(x, y)
ρ2W

ρt2
=∇y ·

(
μ1χ̄ (x, y)D(y,

ρW
ρt

)

+ λ1
(
1 − χ̄(x, y)

)
D(y, W) − ζ I

)
− ∇ p, y ∪ Y , t > 0,(3.2.28)

completed with the homogeneous initial conditions

W(x, y, 0) = ρW
ρt

(x, y, 0) = 0, y ∪ Y . (3.2.29)

In (3.2.28)
χ̄(x, y) = ξ(x) + (1 − ξ(x)

)
χ(y),

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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ᾱ(x, y) = αf χ̄ (x, y) + αs
(
1 − χ̄ (x, y)

)
.

To prove this lemma we simply pass to the limit as Ω ∩ 0 in (3.1.14) with test

functions ς in the form ς = h(x, t)ς0

(x
Ω

)
, where ς0(y) is 1-periodic in y function,

solenoidal in Y , and arrive at the integral identity

∫

QT

(
a(x, t)h + p(x, t) · ∇ h

)
dxdt = 0,

where

a(x, t) =
∫

Y

(
ᾱ

ρ2W
ρt2

· ς0 +
(
μ1χ̄D

(
y,

ρW
ρt

)

+ λ1
(
1 − χ̄

)
D(y, W) − ζ I

)
: D(y, ς0)

)
dy ∪ L2(QT ).

The last identity shows the validity of (3.2.28) with ∇p ∪ L2(QT ).
As a final step we have to solve the periodic initial boundary value problem

(3.2.27)–(3.2.29) and find W as an operator on ∇p. The desired Eq. (3.2.6) and
boundary condition (3.2.5) are the result of substituting w = √W⊗Y into the macro-
scopic continuity equation (3.2.26).

We look for the solution {W, ζ} of the problem (3.2.27)–(3.2.29) in the form

W(x, t, y) =
3⎭

i=1

∫ t

0
W(i)(x, y, t − δ)

ρp

ρxi
(x, δ )dδ,

ζ(x, t, y) =
3⎭

i=1

∫ t

0
ζ(i)(x, y, t − δ)

ρp

ρxi
(x, δ )dδ,

where {W(i), ζ(i)} , i = 1, 2, 3, are solutions to the following periodic initial bound-
ary value problem

ᾱ(x, y)
ρ2W(i)

ρt2
= ∇y ·

(
μ1χ̄(x, y)D

(
y,

ρW(i)

ρt

)

+ λ1
(
1 − χ̄(x, y)

)
D(y, W(i)) − ζ(i)

I

)
, ∇y · W(i) = 0,

(3.2.30)

in Y , for t > 0, completed with homogeneous initial conditions

W(i)(x, y, 0) = 0, ᾱ(x, y)
ρW(i)

ρt
(x, y, 0) = −ei, y ∪ Y . (3.2.31)
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The solvability of this problem is standard and is based upon the energy equality

1

2

∫

Y

(
ᾱ(x, y)

∣∣∣ρW(i)

ρt
(x, t, y)

∣∣∣
2 + λ1

(
1 − χ̄ (x, y)

)|D(y, W(i))|2
⎜

dy

+
∫ t

0

∫

Y
μ1χ̄(x, y)

∣∣∣∣∣D
(

y,
ρW(i)

ρt

⎜∣∣∣∣∣
2

dydδ = 1

2

∫

Y

1

ᾱ(x, y)
dy.

Thus,

W =
∫ t

0

( 3⎭
i=1

W(i)(x, y, t − δ) ⊗ ei

)
· ∇ p(x, δ )dδ,

and

w(x, t) =
∫ t

0
B(μ1, λ1; x, t − δ) · ∇ p(x, δ )dδ,

where

B(μ1, λ1; x, t) =
∫

Y

3⎭
i=1

W(i)(x, t, y) ⊗ eidy. (3.2.32)

To end the proof we have to show that ∇p ∪ L2(QT ), and the function p satisfies
the boundary condition (3.2.3). In fact, the passage to the limit as Ω ∩ 0 in (3.1.14)
with test functions ς = ς(x, t) result in the identity

∫

QT

((∫

Y
ᾱ(x, y)

ρ2W
ρt2

dy

)
· ς − p ∇ · ς

)
dxdt = −

∫

QT

∇ · (ς p0)dxdt,

which together with (3.2.25) prove the statement.

3.2.4 Proof of Theorem 3.4

3.2.4.1 The Case λ1 > 0.

Estimates (3.2.8) and (3.1.16) provide the boundedness of sequences {pΩ}, {wΩ
f },⎫

ρ2wΩ
f

ρt2

⎬
, {∂λ∇wΩ}, {(1− ξ )(1− χΩ)wΩ}, and

⎧
(1 − ξ )(1 − χΩ)

ρ2wΩ

ρt2

}
in L2(QT )

and L2(QT ).
Hence there exists a subsequence of small parameters {Ω > 0} and functions p,

wf , and w(s), such that
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pΩ γ p, wΩ
f γ wf ,

ρ2wΩ
f

ρt2
γ

ρ2wf

ρt2
,

(1 − ξ )(1 − χΩ)wΩ γ w(s), (1 − ξ )(1 − χΩ)
ρ2wΩ

ρt2
γ

ρ2w(s)

ρt2
(3.2.33)

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0.
In particular, the weak passage to the limit as Ω ↘ 0 in integral identities

∫

Q

(
wΩ

f · ρς

ρt
+ ρwΩ

f

ρt
· ς
)

dxdt = 0,

∫

Q
(1 − ξ )(1 − χΩ)

(
wΩ · ρς

ρt
+ ρwΩ

ρt
· ς
)

dxdt = 0,

for any smooth functions ς(x, t), such that ς(x, T) = 0, results in the initial condi-
tions (3.2.12).

By Nguetseng’s theorem and Lemma 3.1, there exists a 1-periodic in y function

W(x, t, y) such that the sequences {pΩ}, {wΩ
f }, {wΩ}, {(1 − χΩ)wΩ},

⎧
ρ2wΩ

ρt2

}
, and

{Ω∇wΩ} converge two-scale in L2(QT ) and L2(QT ) to p(x, t), wf (x, t), W(x, t, y),
(
1 − χ(y)

)
W(x, t, y),

ρ2W
ρt2

(x, t, y), and ∇yW(x, t, y) respectively.

Nguetseng’s theorem also guarantees that

W,
ρ2W
ρt2

, ∇yW ∪ L2(QT × Y) (3.2.34)

and
W(x, t, y) = χ(y)wf (x, t) + (1 − χ(y)

)
W(x, t, y). (3.2.35)

Lemma 3.4 The limiting functions v = ρw
ρt

and W satisfy the homogenized con-

tinuity equation (3.2.9) in the domain QT and boundary condition (3.2.13) on the
boundary S2T for the velocity

v = (
ξ + (1 − ξ )m

)ρwf

ρt
+ (1 − ξ )

ρw(s)

ρt
, (3.2.36)

and microscopic continuity equation (3.2.27) in the domain YT for almost all (x, t) ∪
QT .

The proof of this lemma repeats the proof of Lemma 3.3 if we note, that the weak

limit of the sequence of functions
ρwΩ

ρt
in the form
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ρwΩ

ρt
= (

ξ + (1 − ξ )m
)ρwΩ

f

ρt
+ (1 − ξ )(1 − χΩ)

ρwΩ

ρt

results in (3.2.36).

Lemma 3.5 The limiting functions p, wf and w(s) satisfy the integral identity

∫

QT

((
αf
(
ξ + (1 − ξ )m

)ρ2wf

ρt2
+ αs(1 − ξ )

ρ2w(s)

ρt2

⎜
· ς − p ∇ · ς

⎜
dxdt

= −
∫

QT

∇ · (ς p 0)dxdt (3.2.37)

for all smooth functions ς, such that ς(x, t) = 0 on the boundary S2
T .

The proof of this lemma is straightforward. We simply pass to the limit as Ω ∩ 0
in (3.1.14) with test functions ς = ς(x, t).

The integral identity (3.2.37) evidently results in the inclusion ∇p ∪ L2(QT ),
the boundary condition (3.2.3), and the momentum balance equation for the liquid
component in the form

αf
(
ξ + (1 − ξ )m

)ρwf

ρt
+ αs(1 − ξ )

ρw(s)

ρt
= −

∫ t

0
∇ p(x, δ )dδ.

Multiplying the last equation by ξ and (1 − ξ ) we obtain (3.2.10) and

ξαf
ρwf

ρt
= −ξ

∫ t

0
∇ p(x, δ )dδ.

This last formula and (3.2.36) give us

v = − ξ

αf

∫ t

0
∇ p(x, δ )dδ + (1 − ξ )

(
m

ρwf

ρt
+ ρw(s)

ρt

)
. (3.2.38)

To derive the momentum balance equation for the solid component we simply pass

to the limit as Ω ∩ 0 in (3.1.14) with test functions ς = h(x, t)ς0

(x
Ω
, t
)
, where

h(x, t) is smooth and finite in νT , and the 1-periodic in y smooth function ς0(y) is
divergence free and finite in Ys. If W(s) = (

1− χ(y)
)
W, then the pair {W(s), ζ(s)}

satisfies the equation

αs
ρ2W(s)

ρt2
= λ1

2
→yW(s) − ∇yζ

(s) − ∇ p (3.2.39)

in the domain Ys × (0, T) and initial conditions
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W(s)(x, 0, y) = ρW(s)

ρt
(x, 0, y) = 0, y ∪ Ys (3.2.40)

for almost all x ∪ νT .
Conditions (3.2.34) and formula (3.2.35) provide the boundary condition

W(s)(x, t, y) = wf (x, t), (y, t) ∪ η × (0, T) (3.2.41)

for almost all x ∪ νT .
Therefore, the solution {W(s), ζ(s)} to the periodic initial boundaryvalue problem

(3.2.27), (3.2.39)–(3.2.41) has the form

W(s) = wf (x, t) +
3⎭

i=1

∫ t

0
W(s)

i (y, t − δ)
( ρp

ρxi
(x, δ ) + αs

ρ2wf ,i

ρt2
(x, δ )

)
dδ,

ζ(s)(x, t, y) =
3⎭

i=1

∫ t

0
ζ

(s)
i (y, t − δ)

( ρp

ρxi
(x, δ ) + αs

ρ2wf ,i

ρt2
(x, δ )

)
dδ,

where wf = (wf ,1, wf ,2, wf ,3) and {W(s)
i , ζ

(s)
i } , i = 1, 2, 3, are solutions to the

following periodic initial boundary value problem

αs
ρ2W(s)

i

ρt2
= λ1

2
→yW(s)

i − ∇yζ
(s)
i , (y, t) ∪ Ys × (0, T), (3.2.42)

∇y · W(s)
i (y, t) = 0, (y, t) ∪ Ys × (0, T), (3.2.43)

W(s)
i (y, 0) = 0, αs

ρW(s)
i

ρt
(y, 0) = ei, y ∪ Ys, (3.2.44)

W(s)
i (y, t) = 0, (y, t) ∪ η × (0, T), (3.2.45)

for almost all x ∪ νT .
The correctness of the problem (3.2.42)–(3.2.45) follows from the energy equality

∫

Ys

(
αs

∣∣∣∣
ρW(s)

i

ρt
(y, t)

∣∣∣∣
2

+ λ1

2
|∇W(s)

i (y, t)|2
⎜

dy = (1 − m)

αs
.

We recall that the problem (3.2.42)–(3.2.45) for solenoidal functions W(i)
s , vanishing

at η and t = 0, is understood as integral identity



106 3 Hydraulic Shock in Incompressible Poroelastic Media

∫ T

0

∫

Ys

(
αs

ρW(s)
i

ρt
· ρς

ρt
− λ1∇W(s)

i : ∇ς

⎜
dydt =

∫

Ys

ei · ς(y, 0)dy

for any solenoidal 1-periodic smooth function ς, vanishing at η and t = T . By
definition

ρw(s)

ρt
(x, t) =

∫

Ys

ρW(s)

ρt
(x, t, y)dy

= (1 − m)
ρwf

ρt
−
∫ t

0

( 3⎭
i=1

( ∫

Ys

ρW(s)
i

ρt
(y, t − δ)dy

)⊗ ei

)
· (∇ p (x, δ )

+ αs
ρ2wf

ρδ 2
(x, δ )

)
dδ = (1 − m)

ρwf

ρt

−
∫ t

0
B

(s)(∞, λ1; t − δ) · (∇ p (x, δ ) + αs
ρ2wf

ρδ 2
(x, δ )

)
dδ, (3.2.46)

where

B
(s)(∞, λ1; t) =

3⎭
i=1

( ∫

Ys

ρW(s)
i

ρt
(y, t)dy

)
⊗ ei. (3.2.47)

3.2.4.2 The Case λ1 = 0.

For this case we may repeat everything as for the previous case λ1 > 0, except for:

(1) two-scale convergence of the sequence {Ω∇wΩ} to the function ∇W ∪ L2
(QT × Y), and

(2) derivation of the momentum balance equation for the solid component.

For λ1 = 0 the microscopic momentum balance equation for the solid component
has the form

αs
ρ2W(s)

ρt2
= −∇y ζ(s) − ∇ p. (3.2.48)

Instead of condition (3.2.41) on the boundary η one has there a condition

(
W(s)(x, t, y) − wf (x, t)

) · n(y) = 0, (3.2.49)

which is a consequence of the microscopic continuity equation (3.2.27) and the
representation

W(x, t, y) = χ(y)wf (x, t) + (1 − χ(y)
)
W(s)(x, t, y), y ∪ Y . (3.2.50)

To solve (3.2.48)weapply to this equation the operation∇y· anduse again (3.2.27):
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0 = ∇y ·
(
αs

ρ2W(s)

ρt2

)
= −∇y · (∇y ζ(s)). (3.2.51)

The boundary condition (3.2.49) and Eq. (3.2.48) provide the boundary condition on
the boundary η for the pressure ζ(s):

∇y ζ(s) · n(y) = −
(

∇ p + αs
ρ2wf

ρt2

⎜
· n(y). (3.2.52)

Let

ζ(s) = −
(

3⎭
i=1

ζ
(s)
i (y)ei

⎜
·
(

∇ p + αs
ρ2wf

ρt2

⎜
,

where ζ
(s)
i , i = 1, 2, 3, are solutions to the periodic boundary value problems

→yζ
(s)
i = 0, y ∪ Ys, (∇y ζ

(s)
i − ei) · n(y) = 0. y ∪ η. (3.2.53)

Then

∇y ζ(s) = −
(

3⎭
i=1

∇y ζ
(s)
i ⊗ ei

⎜
·
(

∇ p + αs
ρ2wf

ρt2

⎜
.

After integration (3.2.48) over domain Ys we arrive at the desiredmomentum balance
Eq. (3.2.11) for the solid component with

αsB
(s)(∞, 0) = (1 − m)I −

( 3⎭
i=1

∫

Ys

∇y ζ
(s)
i (y)dy ⊗ ei

)
. (3.2.54)

To prove that B(s)(∞, 0; t) is symmetric and strictly positively definite, we use the
definition of the solution to the problem (3.2.53) with test function ζ

(s)
j

∫

Ys

∇ ζ
(s)
j · ∇ ζ

(s)
i dy −

∫

Ys

ρζ
(s)
i

ρyj
dy = 0. (3.2.55)

Let ξ = (ξ1, ξ2, ξ3) and π = (π1, π2, π3) be arbitrary constant vectors and

zξ =
3⎭

i=1

ζ
(s)
i ξi, zπ =

3⎭
i=1

ζ
(s)
i πi.

Then (3.2.55) is equivalent to
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∫

Ys

∇ zξ · ∇ zπdy −
∫

Ys

∇ zξ · πdy = 0.

On the other hand

αs
(
B

(s)(∞, 0) · π
) · ξ =

∫

Ys

π · ξdy −
∫

Ys

∇ zπ · ξdy = 0.

The combination of the last two relations result in the equality

αs
(
B

(s)(∞, 0) · π
) · ξ =

∫

Ys

(π − zξ ) · (ξ − zπ)dy,

which proves the last statement of the theorem.

3.2.5 Proof of Theorem 3.5

The proof of this theorem repeats the proof of the previous theorem with evident
symmetric changes. Therefore, we only formulate the main results, omitting all
proofs.

3.2.5.1 The Case μ1 > 0.

The sequences {pΩ}, {wΩ},
⎧

ρ2wΩ

ρt2

}
,
{
(1 − ξ )wΩ

s

}
,

⎧
(1 − ξ )

ρ2wΩ
s

ρt2

}
,

⎧
∂μ∇

(ρwΩ

ρt

)}
,

{χΩwΩ}, and
⎧
χΩ ρ2wΩ

ρt2

}
are bounded in L2(QT ) and L2(QT ).

Hence there exists a subsequence of small parameters {Ω > 0} and functions p,
ws, and w(f ), such that

pΩ γ p, wΩ γ w,
ρ2wΩ

ρt2
γ

ρ2w
ρt2

, (1 − ξ )wΩ
s γ ws,

(1 − ξ )
ρ2wΩ

s

ρt2
γ

ρ2ws

ρt2
, χΩwΩ γ w(f ), χΩ ρ2wΩ

ρt2
γ

ρ2w(f )

ρt2
(3.2.56)

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0.
As in the previous subsubsection we conclude that functions w(f ) and ws satisfy

the initial condition (3.2.12).
Next, there exists a 1-periodic in y function W(x, t, y) such that the sequences

{pΩ}, {wΩ
s }, {wΩ}, {χΩwΩ},

⎧
ρ2wΩ

ρt2

}
, and

⎧
Ω∇
(

ρwΩ

ρt

)}
converge two-scale inL2(QT )
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and L2(QT ) to p(x, t), ws(x, t), W(x, t, y), χ(y))W(x, t, y),
ρ2W
ρt2

(x, t, y), and

∇y

(ρW

ρt

)
(x, t, y) respectively, and

W,
ρ2W
ρt2

, ∇y

(
ρW
ρt

)
∪ L2(QT × Y), (3.2.57)

ρW
ρt

(x, t, y) = (
1 − χ(y)

)ρws

ρt
(x, t) + χ(y)

ρW
ρt

(x, t, y). (3.2.58)

Lemma 3.6 The limiting functions v = ρw
ρt

and W satisfy the homogenized con-

tinuity equation (3.2.14) in the domain QT and boundary condition (3.2.13) on the
boundary S2T for the velocity

v = ξ
ρw
ρt

+ (1 − ξ )
(ρw(f )

ρt
+ (1 − m)

ρws

ρt

)
, (3.2.59)

and microscopic continuity equation (3.2.27) in the domain YT for almost all (x, t) ∪
QT .

Lemma 3.7 The limiting functions p, w, ws and w(f ) satisfy the integral identity

∫

QT

((
αf
(
ξ

ρ2w
ρt2

+ (1 − ξ )
ρ2w(f )

ρt2
)+ αs(1 − ξ )(1 − m)

ρ2ws

ρt2
) · ς − p ∇ · ς

)
dxdt

= −
∫

QT

∇ · (ς p 0)dxdt

(3.2.60)

for all smooth functions ς, such that ς(x, t) = 0 on the boundary S2
T .

The integral identity (3.2.60) results in the inclusion ∇p ∪ L2(QT ), the boundary
condition (3.2.3), and the momentum balance equation for the solid component in
the form

αf

(
ξ

ρw
ρt

+ (1 − ξ )
ρw(f )

ρt

)
+ αs(1 − ξ )(1 − m)

ρws

ρt
= −

∫ t

0
∇ p(x, δ )dδ.

Multiplying the last equation by ξ and (1 − ξ ) we obtain (3.2.15) and

ξαf
ρw
ρt

= −ξ

∫ t

0
∇ p(x, δ )dδ.

This last formula and (3.2.59) give us
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v = − ξ

αf

∫ t

0
∇ p(x, δ )dδ + (1 − ξ )

(
(1 − m)

ρws

ρt
+ ρw(f )

ρt

⎜
. (3.2.61)

To derive the momentum balance equation for the liquid component we simply pass

to the limit as Ω ∩ 0 in (3.1.14) with test functions ς = h(x, t)ς0

(x
Ω
, t
)
, where

h(x, t) are smooth and finite in νT , and 1-periodic in y smooth functions ς0(y) are
divergence free and finite in Yf . If we put W(f ) = χ(y)W, then the limiting integral
identity for the pair {W(f ), ζ(f )} is equivalent to the differential equation

αf
ρ2W(f )

ρt2
= μ1

2
→y

(ρW(f )

ρt

)
− ∇yζ

(f ) − ∇ p (3.2.62)

in the domain Yf × (0, T) and initial conditions

W(f )(x, 0, y) = ρW(f )

ρt
(x, 0, y) = 0, y ∪ Yf (3.2.63)

for almost all x ∪ νT . Relations (3.2.57) and (3.2.58) imply the boundary condition

W(f )(x, t, y) = ws(x, t), (y, t) ∪ η × (0, T) (3.2.64)

for almost all x ∪ νT .
Therefore, the solution {W(f ), ζ(f )} to the periodic initial boundary value prob-

lem (3.2.27), (3.2.62)–(3.2.64) has the form

W(f ) = ws(x, t) +
3⎭

i=1

∫ t

0
W(f )

i (y, t − δ)
( ρp

ρxi
(x, δ ) + αf

ρ2ws,i

ρδ 2
(x, δ )

)
dδ,

ζ(f )(x, t, y) =
3⎭

i=1

∫ t

0
ζ

(f )
i (y, t − δ)

( ρp

ρxi
(x, δ ) + αf

ρ2ws,i

ρδ 2
(x, δ )

)
dδ,

where ws = (ws,1, ws,2, ws,3) and {W(f )
i , ζ

(f )
i } , i = 1, 2, 3, are solutions to the

following periodic initial boundary value problem

αf
ρ2W(f )

i

ρt2
= μ1

2
→y

(ρW(f )
i

ρt

)
− ∇yζ

(f )
i , (y, t) ∪ Yf × (0, T), (3.2.65)

∇y · W(f )
i (y, t) = 0, (y, t) ∪ Yf × (0, T), (3.2.66)

W(f )
i (y, 0) = 0, αf

ρW(f )
i

ρt
(y, 0) = ei, y ∪ Yf , (3.2.67)
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W(f )
i (y, t) = 0, (y, t) ∪ η × (0, T), (3.2.68)

for almost all x ∪ νT .
By definition

ρw(f )

ρt
(x, t) =

∫

Yf

ρW(f )

ρt
(x, t, y)dy (3.2.69)

= m
ρws

ρt
−
∫ t

0

(
3⎭

i=1

(∫

Yf

ρW(f )
i

ρt
(y, t − δ)dy

)
⊗ ei

⎜
·
(

∇ p (x, δ )

+ αf
ρ2ws

ρδ 2
(x, δ )

)
dδ = m

ρws

ρt

−
∫ t

0
B

(f )(μ1,∞; t − δ) ·
(
∇ p (x, δ ) + αf

ρ2ws

ρδ 2
(x, δ )

)
dδ,

(3.2.69)

where

B
(f )(μ1,∞; t) =

3⎭
i=1

(∫

Yf

ρW(f )
i

ρt
(y, t)dy

)
⊗ ei. (3.2.70)

3.2.5.2 The Case μ1 = 0.

For μ1 = 0 the microscopic momentum balance equation for the liquid component
has the form

αf
ρ2W(f )

ρt2
= −∇y ζ(f ) − ∇ p. (3.2.71)

Instead of condition (3.2.64) on the boundary η one has there a condition

(
W(f )(x, t, y) − ws(x, t)

) · n(y) = 0, (3.2.72)

which is a consequence of the microscopic continuity equation (3.2.27) and the rep-
resentation

W(x, t, y) = χ(y)W(f )(x, t, y) + (1 − χ(y)
)
ws(x, t), y ∪ Y . (3.2.73)

To solve (3.2.71)weapply to this equation the operation∇y· anduse again (3.2.27):

0 = ∇y ·
(
αf

ρ2W(f )

ρt2

)
= −∇y · (∇y ζ(f )). (3.2.74)

The boundary condition Eqs. (3.2.72) and (3.2.71) provide the boundary condition
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∇y ζ(f ) · n(y) = −
(

∇ p + αf
ρ2ws

ρt2

)
· n(y) (3.2.75)

on the boundary η for the pressure ζ(f ).
Let

ζ(f ) = −
(

3⎭
i=1

ζ
(f )
i (y)ei

⎜
·
(

∇ p + αf
ρ2ws

ρt2

)
,

where ζ
(f )
i , i = 1, 2, 3, are solutions to the periodic boundary value problems

→yζ
(f )
i = 0, y ∪ Yf , (∇y ζ

(f )
i − ei) · n(y) = 0, y ∪ η.

Then

∇y ζ(f ) = −
(

3⎭
i=1

∇y ζ
(f )
i ⊗ ei

⎜
·
(

∇ p + αf
ρ2ws

ρt2

)
.

After integration (3.2.71) over domain Yf we arrive at the desiredmomentum balance
equation (3.2.16) for the liquid component with

αf B
(f )(0,∞) = m I −

( 3⎭
i=1

∫

Yf

∇y ζ
(f )
i (y)dy ⊗ ei

)
. (3.2.76)

The proof of the last statement of the theorem repeats the proof of the same statement
in Theorem 3.4.

3.3 A Viscous Liquid in an Extremely Elastic Skeleton

Throughout this section we assume that

∂̄μ = μ0, 0 < μ0 < ∞, λ0 = 0. (3.3.1)

3.3.1 Main Results

Theorem 3.6 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

λ1 = ∞,

and vΩ
f = EQΩ

f

(
ρwΩ

ρt

)
. Then
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(1) the sequence {vΩ
f } converges weakly in W1,0

2 (QT ) to the function vf , sequences⎧
ρwΩ

ρt

}
and {p Ω} converge weakly in L2(QT ) and L2(QT ) to functions v =

ρw
ρt

= vf and p respectively;

(2) limiting functions vf and p solve the system of homogenized equations in the
domain QT , consisting of the continuity equation

∇ · vf = 0, (3.3.2)

and the homogenized momentum balance equation

α(x)
ρvf

ρt
= ∇ · P̂f

0, (3.3.3)

P̂
f
0 = μ0

(
ξD(x, vf ) + (1 − ξ )N

f
0 : D(x, vf )

)− p I,

completed with the boundary conditions

P̂
f
0 · e3 = −p 0e3, x ∪ S1, (3.3.4)

vf (x, t) = 0, x ∪ S2, (3.3.5)

for t ∪ (0, T), and initial condition

vf (x, 0) = 0, x ∪ Q; (3.3.6)

(3) the problem (3.3.2)–(3.3.6) has a unique solution.
In (3.3.3)

α(x) =
(
ξ(x) + (1 − ξ(x)

)
m
)
αf + (1 − ξ(x)

)
(1 − m)αs,

and the symmetric strictly positively definite constant fourth-rank tensor Nf
0 is

given below by (3.3.22).

We refer to the problem (3.3.2)–(3.3.6) as the homogenized model (HS)5.

Theorem 3.7 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

0 � λ1 < ∞,

and vΩ
f = EQΩ

f

(
ρwΩ

ρt

)
. Then
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(1) the sequence {vΩ
f } converges weakly in W1,0

2 (QT ) to the function vf , sequences⎫
ρvΩ

f

ρt

⎬
,

⎧
(1 − ξ )(1 − χΩ)

ρwΩ

ρt

}
,

⎧
(1 − ξ )(1 − χΩ)

ρ2wΩ

ρt2

}
, {p Ω}, and {(1−ξ )

(1 − χΩ)p Ω} converge weakly in L2(QT ) and L2(QT ) to functions
ρvf

ρt
, v(s),

ρv(s)

ρt
, p, and (1 − m)ps ∪ W1,0

2 (νT ) respectively;

(2) limiting functions vf , v(s), p, and ps solve the system of homogenized equations
in the domain QT , consisting of the continuity equation

∇ · ((ξ + (1 − ξ )m)vf + v(s)) = 0, (3.3.7)

the homogenized momentum balance equation

αf
(
ξ + m(1 − ξ )

)ρvf

ρt
+ αs

ρv(s)

ρt
= ∇ · P̂f , (3.3.8)

P̂
f = μ0

(
ξ D(x, vf ) + (1 − ξ )N

f
1 : D(x, vf )

)− (ξ p + (1 − ξ ) ps
)
I,

for the liquid component, and the homogenized momentum balance equation

∫ t

0
B

(s)(∞, λ1; t − δ) · (∇ ps(x, δ ) + (1 − ξ )αs
ρvf

ρδ
(x, δ )

)
dδ

= −(v(s) − (1 − m)(1 − ξ )vf
)

(3.3.9)

for the solid component, completed with the boundary and initial conditions
(3.3.5)–(3.3.6) for the liquid component, the boundary condition

v(s) · n = 0, x ∪ S2, t ∪ (0, T) (3.3.10)

for the solid component, and the boundary condition

P̂
f · e3 = −p 0e3 (3.3.11)

on the boundary S1 for t ∪ (0, T) for the liquid and solid components.
In (3.3.8)–(3.3.11) the symmetric strictly positively definite constant fourth-

rank tensor Nf
1 is given below by (3.3.25), the matrix B

(s)(∞, λ1; t) is defined
in Theorem 3.4, and n is the normal vector to the boundary S2.

We refer to the problem (3.3.4)–(3.3.11) as the homogenized model (HS)6.
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3.3.2 Proof of Theorem 3.6

By Theorem 3.1 and the properties of the extension operator EQΩ
f
the sequences

{pΩ}, {(1− χΩ)pΩ}, {vΩ
f }, {D(x, vΩ

f )},
⎧

ρwΩ

ρt

}
,

⎫
ρvΩ

f

ρt

⎬
,

⎫
D(x,

ρvΩ
f

ρt
)

⎬
,

⎧
ρ2wΩ

ρt2

}
, and

⎧
∂̄λ∇(

ρwΩ

ρt
)

}
are bounded in L2(QT ) and L2(QT ).

Hence there exists a subsequence of small parameters {Ω > 0} and functions p,
ps, v, and vf such that

pΩ γ p, (1 − ξ )(1 − χΩ)pΩ γ (1 − ξ )(1 − m)ps,

vΩ = ρwΩ

ρt
γ v,

ρ2wΩ

ρt2
γ

ρv
ρt

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0, and

vΩ
f γ vf ,

ρvΩ
f

ρt
γ

ρvf

ρt

weakly in W1,0
2 (QT ) as Ω ↘ 0.

Just as in Theorem1.3we conclude that vf satisfies the boundary condition (3.3.5).
Note also that

∂̄λ(1 − ξ )D(x, wΩ) ∩ 0

strongly in L2(QT ) as Ω ↘ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
ByNguetseng’s theorem there exist 1-periodic in y functionsP(x, t, y),V(x, t, y),

and Vf (x, t, y), such that

P ∪ L2(QT × Y), V, Vf ∪ L2(QT × Y),

∇V, ∇Vf ,
ρV
ρt

,
ρVf

ρt
∪ L2(QT × Y),

and that the sequences {pΩ}, {vΩ}, {vΩ
f }, {ΩD(x, vΩ)}, and {D(x, vΩ

f )} converge two-
scale in L2(QT ) andL2(QT ) toP(x, t, y),V(x, t, y), vf (x, t),D(y, V), andD(x, vf )+
D(y, Vf ) respectively.

Lemma 3.8 The limiting functions vf , v, and Vf satisfy the macroscopic and micro-
scopic continuity equations

∇ · v = 0, (x, t) ∪ QT , v · n = 0, (x, t) ∪ S2T , (3.3.12)

χ(y)(∇ · vf + ∇y · Vf ) = 0, (x, t) ∪ νT , y ∪ Y , (3.3.13)
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and
∇y · V = 0, (x, t) ∪ νT , y ∪ Y , (3.3.14)

where

V(x, t, y) = (
ξ + χ(y)(1 − ξ )

)
vf + (1 − ξ )

(
1 − χ(y)

)
V(x, t, y), (3.3.15)

v = √V⊗Y = (
ξ + m (1 − ξ )

)
vf + (1 − ξ )√V⊗Ys ,

and n is a unit normal vector to the boundary S2.

The proof of (3.3.12) repeats the proof of (1.3.14) in Chap.1.
Equation (3.3.13) is a result of a two-scale limit in the equality

χΩ(x)∇ · vΩ
f = 0

for (x, t) ∪ νT .
Equation (3.3.14) is a simple consequence of a two-scale limit in the continuity

equation (3.1.4) in its integral form:

∫

QT

Ω vΩ · ∇
(

h0(x, t)h
(x

Ω

))
dxdt = 0.

Finally, the relation (3.3.15) is a result of two-scale limit in the equality

vΩ = (
ξ + χΩ(1 − ξ )

)
vΩ

f + (1 − χΩ)(1 − ξ )vΩ.

Lemma 3.9 The following equality holds true

(1 − ξ )P(x, t, y) = (1 − ξ )
(

Pf (x, t, y) + (1 − χ(y)
)

ps(x, t)
)
, (3.3.16)

where (1 − ξ )Pf = (1 − ξ )χ(y)P(x, t, y).

The proof of this lemma repeats the proof of Lemma 1.4 with evident symmetric
changes.

Lemma 3.10 The limiting functions vf , p, Vf , and P satisfy the macroscopic momen-
tum balance equation

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
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∫

QT

(
αf
(
ξ + m (1 − ξ )

)ρvf

ρt
+ αs(1 − ξ )

〈
ρV
ρt

〉

Ys

· ς + (μ0
(
(ξ + m(1 − ξ ))D(x, vf )

+ (1 − ξ )√D(y, Vf )⊗Yf

)− p I
) : D(x, ς)

)
dxdt =

∫

QT

∇ · (ς p 0)dxdt (3.3.17)

in the domain QT and the microscopic momentum balance equation

∇y ·
(
χ
(
μ0
(
D(x, vf ) + D(y, Vf )

)− (Pf − ps)I
)) = 0 (3.3.18)

in the domain Y for almost all (x, t) ∪ νT .

Proof Equation (3.3.17) follow from (3.1.14) after the two-scale limit with test func-
tions ς = ς(x, t). Equation (3.3.18) follows from (3.1.14) after the two-scale limit

with test functions ς = Ωh(x, t)ς0

(x
Ω

)
, where h is finite in ν .

Lemma B.13 and the boundedness of the sequence

⎧
∂̄λ∇

(ρwΩ

ρt

)}
in L2(QT ) result

V(x, t, y) = v(x, t).

Applying the two-scale limit to the equality χΩ(vΩ − vΩ
f ) = 0, we arrive at

χ(y)
(
v(x, t) − vf (x, t)

) = 0,

or v(x, t) = vf (x, t). Therefore, the function vf satisfies the continuity equa-
tion (3.3.2) and the continuity equation (3.3.13) takes the form

χ(y)∇y · Vf = 0, (x, t) ∪ νT , y ∪ Y , (3.3.19)

while the macroscopic momentum balance equation (3.3.17) becomes

∫

QT

(
α(x)

ρvf

ρt
· ς − ∇ · (ς p 0) + (μ0

(
(ξ + m(1 − ξ ))D(x, vf )

+ (1 − ξ )√D(y, Vf )⊗Yf

)− p I
) : D(x, ς)

)
dxdt = 0,

which is equivalent to the macroscopic momentum balance equation

α(x)
ρvf

ρt
= ∇ ·

(
μ0
(
(ξ + m(1 − ξ ))D(x, vf )

+ (1 − ξ )√D(y, Vf )⊗Yf

)− p I
)
. (3.3.20)

in the differential form, the boundary condition (3.3.4), and the initial condition
(3.3.6).
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Lemma 3.11 The limiting functions vf and p satisfy in the domain QT the homog-
enized momentum balance equation (3.3.3).

Proof We simply repeat the proof of Theorem 1.3 with symmetric change of the
domain Yf onto domain Ys. In fact, to find √D(y, Vf )⊗Yf in the domain νT we look
for the 1-periodic solution Vf , Pf of the system (3.3.18) and (3.3.19) in the form

Vf =
3⎭

i,j=1

V(ij)(y)Dij(x, t),

Pf − ps = μ0

3⎭
i,j=1

P (ij)(y)Dij(x, t),

where

Dij(x, t) = 1

2

(
ρvf ,i

ρxj
(x, t) + ρvf ,j

ρxi
(x, t)

)
, vf = (vf ,1, vf ,2, vf ,3),

D(x, vf ) =
3⎭

i,j=1

Dij(x, t) Jij,

and
∇y ·

(
χ
(
D(y, V(ij)) + J

ij − P(ij)
I
)) = 0, y ∪ Y ,

χ∇y · V(ij) = 0, √V(ij)⊗Yf = 0, y ∪ Y .

⎬
(3.3.21)

Then

N
f
0 = (1 − m)J +

3⎭
i,j=1

√D(y, V(ij))⊗Yf ⊗ J
ij. (3.3.22)

Recall that the homogenized momentum balance equation (3.3.3) is understood as
an integral identity

∫

QT

(
α(x)

ρvf

ρt
· ς +

(
μ0
(
ξJ + (1 − ξ )N

f
0

) : D(x, vf ) − p I
)

: D(x, ς)
)

dxdt

=
∫

QT

∇ · (ς p 0)dxdt

for all functions ς ∪ W1,0
2 (QT ), such that ς(x, t) = 0 on the boundary S2T , and

ς(x, T) = 0, x ∪ Q.
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Therefore the function vf satisfies the boundary and initial conditions (3.3.4) and
(3.3.6). Finally, the solution vf vanishes on the boundary S2T for the same reason, as
in Theorem 1.3.

The uniqueness of the problem (3.3.2)–(3.3.6) follows from the energy equality

1

2

d

dt

∫

Q
α|vf |2dx + μ0

∫

Q

((
ξJ + (1 − ξ )N

f
0

) : D(x, vf )
)

: D(x, vf )dx = 0

for the homogeneous problem and the properties of the tensorNf
0.

3.3.3 Proof of Theorem 3.7

3.3.3.1 The Case λ1 > 0.

As in the previous subsection we conclude that the sequences {pΩ}, {vΩ
f }, {D(x, vΩ

f )}⎧
ρwΩ

ρt

}
, and

⎧
Ω∇(

ρwΩ

ρt
)

}
are bounded in L2(QT ) and L2(QT ).

Hence there exists a subsequence of small parameters {Ω > 0} and functions p,
ps, v, and vf such that

pΩ γ p, (1 − ξ )(1 − χΩ)pΩ γ (1 − ξ )(1 − m)ps,

vΩ = ρwΩ

ρt
γ v,

ρ2wΩ

ρt2
γ

ρv
ρt

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0, and

vΩ
f γ vf ,

ρvΩ
f

ρt
γ

ρvf

ρt

weakly in W1,0
2 (QT ).

As in Theorem 1.3 we conclude that vf satisfies the boundary condition (3.3.5).
Note also that

∂̄λ(1 − ξ )D(x, wΩ) ∩ 0 (3.3.23)

strongly in L2(QT ) as Ω ↘ 0.
At the same time there exist 1-periodic in y functions P(x, t, y) from L2(QT ×Y),

andV(x, t, y),Vf (x, t, y) fromL2
(
Q; W1,0

2 (YT )
)
, such that

ρV
ρt

,
ρVf

ρt
∪ L2(QT ) and

the sequences {pΩ}, {vΩ}, {vΩ
f }, {Ω∇vΩ} and {∇vΩ

f } converge two-scale in L2(QT ) and
L2(QT ) to P(x, t, y), V(x, t, y), vf (x, t),∇yV(x, t, y), and∇ vf (x, t)+∇yVf (x, t, y)

respectively.
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For all these functions the statements of Lemma 3.8, Lemma 3.9, Lemma 3.10,
and the boundary condition (3.3.4) hold true.

To find √D(y, Vf )⊗Yf in (3.3.17) we have to solve the system (3.3.13) and (3.3.18)
in the domain Y for almost all (x, t) ∪ νT . This system is similar to the system
(1.3.31), (1.3.33), where we simply have to change the domain Ys onto domain Yf .

Therefore

Vf =
3⎭

i,j=1

V(ij)(y)Dij(x, t) + V0(y)
(∇ · vf (x, t)

)
,

Pf − ps = μ0

3⎭
i,j=1

P (ij)(y)Dij(x, t) + λ0 P0(y)
(∇ · vf (x, t)

)
,

where
∇y ·

(
χ
(
D(y, V0) − P0I

)) = 0,

χ(∇y · V0 + 1) = 0, √V0⊗Yf = 0, y ∪ Y ,

⎬
(3.3.24)

and

P̂
f = μ0

(
(ξ + m(1 − ξ ))D(x, vf ) + (1 − ξ )√D(y, Vf )⊗Yf

)− p I

= ξ
(
μ0D(x, vf ) − p I

)

+ (1 − ξ )
(
μ0
(
mD(x, vf ) + √D(y, Vf )⊗Yf

)− √χf P + (1 − χ)ps⊗Y
)
I

)

= ξ
(
μ0D(x, vf ) − p I

)

+ (1 − ξ )
(
μ0
(
N

f
0 + √D(y, V0)⊗Yf ⊗ I

) : D(x, vf ) − (ps + √P − ps⊗Y I

)

= ξ
(
μ0D(x, vf ) − p I

)+ (1 − ξ )
(
μ0N

f
1 : D(x, vf ) − psI

)
,

where

N
f
1 = N

f
0 + √D(y, V0)⊗Yf ⊗ I −

〈
3⎭

i,j=1

P (ij)

⎛

Yf

I ⊗ J
ij − √P0⊗Yf I ⊗ I. (3.3.25)

All properties of the tensorNf
1 are the same as those of the tensorNs

1 in Theorem 1.4.
It is easy to see that the sequence {(1 − ξ )(1 − χΩ)vΩ} converges two-scale in

L2(QT ) to the function V(s) = (
1 − ξ(x)

)(
1 − χ(y)

)
V, and weakly in L2(QT ) to

the function v(s) = (1 − ξ )√V⊗Ys . Therefore, the limiting functions vf , v(s), and ps

satisfy the homogenized momentum balance equation (3.3.8), boundary and initial
conditions (3.3.4)–(3.3.6) and continuity equation (3.3.7).

To derive the homogenized momentum balance equation (3.3.9) for the solid
component we pass to the limit in (3.1.14) as Ω ↘ 0 with test functions ς =

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
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h(x, t)ς0

(x
Ω

)
, where h(x, t) is finite in ν for all t ∪ (0, T), and 1-periodic smooth

function ς0(y) is divergence free and finite in Ys:

∫

νT

(
a h + ps b · ∇ h

)
dxdt = 0,

where

a(x, t) =
∫

Ys

(
αs

ρV(s)

ρt
· ς0 + μ1D(y, V(s)) : D(y, ς0)

⎜
dy ∪ L2(νT ),

b = −
∫

Ys

ς0dy = const.

Just as in the proof of Theorem 1.1 we conclude that

∇ pf ∪ L2(νT ).

One has for the function

W(s) =
∫ t

0
V(s)(y, x, δ )dδ

the microscopic momentum balance equation

αs
ρ2W(s)

ρt2
= λ1

2
→ W(s) − P(s) − ∇ ps(x, t), y ∪ Ys, t ∪ (0, T) (3.3.26)

and initial conditions

W(s)(y, x, 0) = ρW(s)

ρt
(y, x, 0) = 0, y ∪ Ys, (3.3.27)

for almost all (x, t) ∪ νT .
We complete (3.3.26) and (3.3.27) with continuity equation (3.3.14), boundary

condition

W(s)(y, x, t) =
∫ t

0
vf (x, δ )dδ, y ∪ η, (x, t) ∪ νT , (3.3.28)

which is a consequence of (3.3.15) and regularity condition

V, ∇yV ∪ L2(QT × Y).

Let us look for the solution of the obtained system in the form
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W(s) =
∫ t

0
vf (x, δ )dδ +

3⎭
i=1

∫ t

0
W(s)

i (y, t − δ)zi(x, δ )dδ,

P(s) =
3⎭

i=1

∫ t

0
ζ

(s)
i (y, t − δ)zi(x, δ )dδ,

where

z = ∇ ps(x, t) + αf
ρvf

ρt
(x, t), z =

3⎭
i=1

zi(x, t)ei.

Then for i = 1, 2, 3 periodic in variable y functions W(s)
i , ζ

(s)
i satisfy an initial

boundary-value problem

αs
ρ2W(s)

i

ρt2
= λ1

2
→ W(s)

i − ζ
(s)
i , (y, t) ∪ Ys × (0, T),

∇y · W(s)
i = 0, (y, t) ∪ Ys × (0, T),

W(s)
i (y, t) = 0, (y, t) ∪ η × (0, T),

W(s)
i (y, 0) = 0, αs

ρW(s)
i

ρt
(y, 0) = −ei, y ∪ Ys.

⎝
⎞⎞⎞⎞⎞⎞⎞⎠
⎞⎞⎞⎞⎞⎞⎞

(3.3.29)

The problem (3.3.29) has been already studied in the proof of Theorem 3.4.
Thus,

V(s) = vf (x, t) +
3⎭

i=1

∫ t

0

ρW(i)
s

ρt
(y, t − δ)zi(x, δ )dδ,

and for function v(s) the Eq. (3.3.9) holds true. In particular, this equation provides
the boundary condition

v(s)(x, 0) = 0, x ∪ ν,

which, in turn, together with (3.3.17) guarantee the initial condition (3.3.6).
The boundary condition (3.3.10) follows from (3.3.5) and (3.3.12).

3.3.3.2 The Case λ1 = 0.

The proof of this case completely repeats the proof of the previous case λ1 > 0,
except for the derivation of the homogenized momentum balance equation for the
solid component. Here we only have to repeat the proof of Theorem 3.4 for a similar
case λ1 = 0.
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3.4 A Slightly Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

∂̄λ = λ0, 0 < λ0 < ∞, μ0 = 0. (3.4.1)

3.4.1 Main Results

Theorem 3.8 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

μ1 = ∞,

and wΩ
s = EνΩ

s

(
wΩ
)
. Then

(1) the sequence {wΩ
s } converges weakly in W1,0

2 (QT ) to the function ws, sequences⎧
ρwΩ

ρt

}
and {p Ω} converge weakly in L2(QT ) and L2(QT ) to functions v = ρw

ρt
and p respectively and

(1 − ξ )

(
v − ρws

ρt

)
= 0; (3.4.2)

(2) limiting functions v, ws, and p solve the system of homogenized equations in the
domain QT , consisting of the continuity equation

∇ · v = 0, (3.4.3)

and the homogenized momentum balance equation

αf ξ
ρv
ρt

+ α̂ (1 − ξ )
ρ2ws

ρt2
= ∇ · P̂s

0, (3.4.4)

P̂
s
0 = λ0(1 − ξ )Ns

0 : D(x, ws)
)− p I,

completed with the boundary conditions

P̂
s
0 · e3 = −p 0e3, x ∪ S1, (3.4.5)

ws(x, t) = 0, x ∪ S2, (3.4.6)

for t ∪ (0, T), and initial conditions

ξv(x, 0) = (1 − ξ )ws(x, 0) = (1 − ξ )
ρws

ρt
(x, 0) = 0, x ∪ Q; (3.4.7)
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(3) the problem (3.4.2)–(3.4.7) has a unique solution.
In (3.4.4)

α̂ = m αf + (1 − m) αs,

and the symmetric strictly positively definite constant fourth-rank tensor Ns
0 is

defined in Theorem 1.3.

We refer to the problem (3.4.2)–(3.4.7) as the homogenized model (HS)7.

Theorem 3.9 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13),

0 � μ1 < ∞,

and wΩ
s = EνΩ

s

(
wΩ
)
.

Then

(1) the sequence {wΩ
s } converges weakly in W1,0

2 (QT ) to the function ws, sequences
{(ξ + (1 − ξ )χΩ

)
wΩ}, {p Ω}, and {(1 − ξ )χΩ p Ω} converge weakly in L2(QT )

and L2(QT ) to functions w(f ), p, and m pf respectively, and
(
ξ p + (1− ξ )pf

) ∪
W1,0

2 (QT ).
(2) limiting functions ws, w(f ), and pf solve the system of homogenized equations

in the domain QT , consisting of the continuity equation

∇ · (w(f ) + (1 − m)(1 − ξ )ws
) = 0, (3.4.8)

the homogenized momentum balance equation

αf
ρ2w(f )

ρt2
+ αs(1 − ξ )

ρ2ws

ρt2
= ∇ · P̂s, (3.4.9)

P̂
s = λ0 (1 − ξ )Ns

1 : D(x, ws)
)− (ξ p + (1 − ξ )pf

)
I

for the solid component, and the homogenized momentum balance equation

(1 − ξ )
(ρw(f )

ρt
− m

ρws

ρt

)
= −

∫ t

0
B

(f )(μ1,∞; t − δ) · (∇ pf (x, δ )

+ αf (1 − ξ )
ρ2ws

ρδ 2
(x, δ )

)
dδ (3.4.10)

for the liquid component, completed with the boundary and initial conditions
(3.4.6)–(3.4.7) for the solid component, and boundary and initial conditions

w(f ) · n = 0, x ∪ S2, t ∪ (0, T), (3.4.11)

w(f )(x, 0) = ρw(f )

ρt
(x, 0) = 0, x ∪ Q (3.4.12)
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for the liquid component, and the boundary condition

P̂
s · e3 = −p 0e3, (3.4.13)

on the boundary S1 for t ∪ (0, T) for the solid and liquid components.
In (3.4.9)–(3.4.11) the symmetric strictly positively definite constant fourth-rank
tensor Ns

1 is defined in Theorem 1.4, the matrix B
(f )(μ1,∞; t) is defined in

Theorem 3.4, and n is the normal vector to the boundary S2.

We refer to the problem (3.4.4)–(3.4.12) as the homogenized model (HS)8.

3.4.2 Proof of Theorem 3.8

By Theorem 3.1 and the properties of the extension operator EνΩ
s
the sequences

{pΩ}, {(1−ξ )wΩ
s }, {(1−ξ )D(x, wΩ

s )}
⎧

ρwΩ

ρt

}
,

⎧
(1 − ξ )

ρwΩ
s

ρt

}
,

⎧
(1 − ξ )D(x,

ρwΩ
s

ρt
)

}
,

⎧
ρ2wΩ

ρt2

}
, and

⎧
∂̄μ∇(

ρwΩ

ρt
)

}
are bounded in L2(QT ) and L2(QT ).

Hence there exists a subsequence of small parameters {Ω > 0} and functions p,
ws, and w such that

pΩ γ p, vΩ = ρwΩ

ρt
γ

ρw
ρt

= v,
ρvΩ

ρt
γ

ρv
ρt

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0, and

wΩ
s γ ws

ρwΩ
s

ρt
γ

ρws

ρt

weakly in W1,0
2 (νT ) as Ω ↘ 0.

As in Theorem 1.3 we conclude that ws satisfies the boundary condition (3.4.6).
Note also that

∂̄μD(x, wΩ) ∩ 0

strongly in L2(QT ) as Ω ↘ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
ByNguetseng’s theorem, there exist 1-periodic iny functionsP(x, t, y),U(x, t, y),

and V(x, t, y) such that

(1) P ∪ L2(QT × Y), U, V, ∇yU, ∇yV,
ρV
ρt

∪ L2(QT × Y);

(2) the sequences {pΩ}, {vΩ}, {wΩ
s }, {Ω∇vΩ}, and {∇wΩ

s } converge two-scale in L2(QT )

and L2(QT ) to P, V, ws(x, t), ∇yV, and
(∇ ws + ∇yU

)
respectively.
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Lemma 3.12 The limiting functions ws, v, and ws satisfy the macroscopic and
microscopic continuity equations

∇ · v = 0, (x, t) ∪ QT , (3.4.14)

(
1 − χ(y)

)
(∇ · ws + ∇y · U) = 0, (x, t) ∪ νT , y ∪ Y , (3.4.15)

and
∇y · V = 0, (x, t) ∪ νT , y ∪ Y , (3.4.16)

where

V(x, t, y) = (
ξ + χ(y)(1 − ξ )

)
V(x, t, y) + (1 − χ(y)

)ρws

ρt
(x, t), (3.4.17)

and

v = √V⊗Y = ξv + (1 − ξ )√V⊗Yf + (1 − m)
ρws

ρt
(x, t). (3.4.18)

Lemma 3.13 The following equality holds true

(1 − ξ )P(x, t, y) = (1 − ξ )
(
Ps(x, t, y) + χ(y) pf (x, t)

)
, (3.4.19)

where Ps = (
1 − χ(y)

)
P(x, t, y).

The proofs of these lemmas repeat proofs of Lemmas 3.8 and 1.4 respectively,
with evident symmetric changes.

Lemma 3.14 The limiting functions ws, p, Vf , and P satisfy the macroscopic
momentum balance equation

αf
(
ξ

ρv
ρt

+ (1 − ξ )
ρ

ρt
√V⊗Yf

)+ αs(1 − m)
ρ2ws

ρt2

= ∇ ·
(
λ0
(
(1 − m)D(x, ws) + √D(y, U)⊗Ys

)− p I
)
, (3.4.20)

in the domain QT , the boundary condition (3.4.5), the initial condition (3.4.7) for
the function v, and the microscopic momentum balance equation

∇y ·
(
(1 − χ)λ0

(
D(x, ws) + D(y, U)

)− (Ps + χ pf
)
I

)
= 0 (3.4.21)

in the domain Y for almost all (x, t) ∪ νT .

Proof Equation (3.4.20) follows from (3.1.14) after two-scale limit with test func-
tions ς = ς(x, t):
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∫

QT

(
−
(

αf
(
ξv + (1 − ξ )√V⊗Yf

)+ αs(1 − m)
ρws

ρt

)
· ρς

ρt
(3.4.22)

+ (λ0
(
(1 − m)D(x, ws) + √D(y, U)⊗Ys

)− p I
) : D(x, ς)

)
dxdt

= −
∫

QT

∇ · (ς p 0)dxdt. (3.4.22)

This last integral identity in the form

∫

QT

(
− αf v · ρς

ρt
− p ∇ · ς + ∇ · (ς p 0)

)
dxdt = 0

for the finite in ν0 functions ς provides the boundary condition (3.4.5), initial con-
dition (3.4.7) for the function v, and an estimate

∫

QT

ξ |∇ p(x, t)|2dxdt � C0P
2. (3.4.23)

Equation (3.4.21) follows from (3.1.14) after the two-scale limit with test functions

ς = Ωh(x, t)ς0

(x
Ω

)
, where h is finite in ν .

Lemma B.13 and the boundedness of the sequence

⎧
∂̄μ∇

(ρwΩ

ρt

)}
in L2(QT )

result in
V(x, t, y) = v(x, t). (3.4.24)

Applying the two-scale limit to the equality

(1 − ξ )(1 − χΩ)
(

vΩ − ρwΩ
s

ρt

)
= 0,

we arrive at (3.4.2). Therefore, the function v satisfies the continuity equation (3.4.3)
and the continuity equation (3.4.15) takes the form

(
1 − χ(y)

)∇y · U = 0, (x, t) ∪ νT , y ∪ Y , (3.4.25)

while the macroscopic momentum balance equation (3.4.22) becomes

∫

QT

(
−
(
αf ξv + αs

ρws

ρt

)
· ρς

ρt
+
∫

QT

∇ · (ς p 0)dxdt (3.4.26)

+ (λ0
(
(1 − m)D(x, ws) + √D(y, U)⊗Ys

)− p I
) : D(x, ς)

)
dxdt = 0,

(3.4.26)



128 3 Hydraulic Shock in Incompressible Poroelastic Media

which is equivalent to the differential equation

αf ξ
ρv
ρt

+ αs
ρ2ws

ρt2
= ∇ ·

(
λ0
(
(1 − m)D(x, ws) + √D(y, U)⊗Ys

)− p I
)

(3.4.27)

and initial condition (3.4.7) for the function ws.

Lemma 3.15 The limiting functions v, ws, and p satisfy in the domain QT the homog-
enized momentum balance equation (3.4.4).

The proof of this lemma repeats the proof of the corresponding statement in
Theorem 1.3.

The uniqueness of the problem (3.4.2)–(3.4.7) follows from the energy equality

1

2

d

dt

∫

ν

(
(1 − ξ )λ0

(
Ns

0 : D(x, ws)
) : D(x, ws) + αf ξ |v|2 + α̂(1 − ξ )

∣∣∣∣
ρws

ρt

∣∣∣∣
2
⎜

dx = 0

for the solution ws and v of the homogeneous (p0 = 0) problem. This equality is a
result of multiplying equation (3.4.4) by v and integrating by parts over domain Q
with the use of (3.4.2).

3.4.3 Proof of Theorem 3.9

3.4.3.1 The Case μ1 > 0.

As in the previous subsection we conclude that the sequences {pΩ}, {(1 − ξ )χΩpΩ},
{wΩ

s }, {D(x, wΩ
s )},

⎧
ρwΩ

ρt

}
,

⎧
ρwΩ

s

ρt

}
,

⎧
D

(
x,

ρwΩ
s

ρt

)} ⎧ρ2wΩ

ρt2

}
, and

⎧
∂̄μ∇

(ρwΩ

ρt

)}

are bounded in L2(QT ) and L2(QT ).
Hence there exists a subsequence of small parameters {Ω > 0} and functions p,

pf , ws, and v(f ) such that

pΩ γ p, (1 − ξ )χΩpΩ γ (1 − ξ )(1 − m)pf ,

(
ξ + (1 − ξ )χΩ

)ρwΩ

ρt
γ v(f ),

(
ξ + (1 − ξ )χΩ

)ρ2wΩ

ρt2
γ

ρv(f )

ρt

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0, and

wΩ
s γ ws,

ρwΩ
s

ρt
γ

ρws

ρt

weakly in W1,0
2 (νT ), and ws ∪ ∈

W
1,0

2 (νT ).
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We also have that
∂̄μD(x, wΩ) ∩ 0 (3.4.28)

strongly in L2(QT ) as Ω ↘ 0.
At the same time there exist 1-periodic in y functions P(x, t, y), U(x, t, y), and

V(x, t, y) such that

(1) P ∪ L2(QT × Y), U, V, ∇yU, ∇yV,
ρV
ρt

∪ L2(QT × Y);

(2) the sequences {pΩ}, {vΩ}, {wΩ
s }, {Ω∇vΩ}, and {∇wΩ

s } converge two-scale in L2(QT )

and L2(QT ) to P, V, ws(x, t), ∇yV, and
(∇ ws + ∇yU

)
respectively.

For all these functions hold true statements of Lemma 3.12, Lemma 3.13, and
Lemma 3.14.

To find √D(y, U)⊗Ys in (3.4.20) we have to solve the system (3.4.15) and (3.4.21) in
the domain Y for almost all (x, t) ∪ νT . This system is already studied in Theorem
1.4.Therefore the functionsws,w(f ), andpf satisfy the continuity equation (3.4.8), the
homogenized momentum balance equation (3.4.9), and boundary conditions (3.4.5)
and (3.4.11).

In fact, the boundary condition (3.4.11) follows from the continuity equation in
the form ∫

QT

w · ∇τdxdt = 0 (3.4.29)

for any smooth functions τ and the boundary condition (3.4.6). The validity of the
boundary condition (3.4.5) has been shown in Theorem 3.8.

It is easy to see that the sequence

⎧(
ξ + χΩ(1 − ξ )

)ρwΩ

ρt

}
converges two-scale

in L2(QT ) to the function V(f ) = (
ξ + (1 − ξ )χ(y)

)
V.

To derive the homogenized momentum balance equation (3.4.10) for the liq-
uid component we pass to the limit in (3.1.14) as Ω ↘ 0 with test functions

ς = h(x, t)ς0

(x
Ω

)
, where h(x, t) is finite in Q for all t ∪ (0, T), and 1-periodic

smooth function ς0(y) is divergence free and finite in Yf :

∫

QT

(
a h + (ξ p + (1 − ξ )pf

)
b · ∇ h

)
dxdt = 0,

where

a(x, t) =
∫

Yf

(
αf

ρV
ρt

· ς0 + μ1D(y, V) : D(y, ς0)
)

dy ∪ L2(QT ),

b = −
∫

Yf

ς0dy = const.

Just as in the proof of Theorem 1.1 we conclude that
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∇ (ξ p + (1 − ξ )pf
) ∪ L2(QT ).

For x ∪ ν one has for the functionV(f ) themicroscopicmomentumbalance equation

αf
ρV(f )

ρt
= μ1

2
→ V(f ) − ∇y ζ(f ) − ∇ pf (3.4.30)

in the domain Yf × (0, T) and initial conditions

V(f )(x, 0, y) = 0, y ∪ Yf (3.4.31)

for almost all x ∪ νT .
The relation (3.4.17) and the smoothness of the function V: V,∇yV ∪ L2

(νT × Y), imply the boundary condition

V(f )(x, t, y) = ρws

ρt
(x, t), (y, t) ∪ η × (0, T) (3.4.32)

for almost all x ∪ νT .
We complete (3.4.30)–(3.4.32) with continuity equation (3.4.16) in the form

∇y · V(f ) = 0, y ∪ Yf , (x, t) ∪ νT . (3.4.33)

This problem has been already studied in the proof of the Theorem 3.5. Therefore,
the limiting functions ws, w(f ), and pf satisfy the homogenized momentum balance
equation (3.4.10).

3.4.3.2 The Case μ1 = 0.

The proof of this case completely repeats the proof of the previous case μ1 > 0,
except for the derivation of the homogenized momentum balance equation for the
liquid component. Here we only have to repeat the proof of Theorem 3.5 for a similar
case μ1 = 0.

3.5 A Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

∂̄λ = λ0, ∂̄μ = μ0, 0 < λ0, μ0 < ∞. (3.5.1)
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3.5.1 Main Results

Theorem 3.10 Let {wΩ, p Ω} be the weak solution of the problem (3.1.4)–(3.1.13).
Then

(1) sequences {wΩ} and

⎧
ρwΩ

ρt

}
converge weakly in

∈
W

1,0

2 (νT ) to the functions w

and v respectively, sequences

⎧
ρ2wΩ

ρt2

}
and {p Ω} converge weakly in L2(QT )

and L2(QT ) to functions
ρ2w
ρt2

and p respectively;

(2) limiting functions w, v, and p solve the system of homogenized equations in the
domain QT , consisting of the continuity equation

∇ · w = 0, (3.5.2)

and the homogenized momentum balance equation

α(x)
ρ2w
ρt2

+ ∇ p = ∇ · P̂, (3.5.3)

P̂ = ξ μ0 D(x, v)

+ (1 − ξ )
(
N1 : D(x, v) + N2 : D(x, w) +

∫ t

0
N3(t − δ) : D(x, w(x, δ ))dδ,

completed with the boundary and initial conditions

P̂ · e3 = −p 0e3, x ∪ S1T , (3.5.4)

w(x, t) = 0, x ∪ S2T , (3.5.5)

w(x, 0) = v(x, 0) = 0, x ∪ Q; (3.5.6)

(3) the problem (3.5.2)–(3.5.6) has a unique solution.
In (3.5.3)

α(x) =
(
ξ(x) + (1 − ξ(x)

)
m
)
αf + (1 − ξ(x)

)
(1 − m)αs,

and fourth-rank tensors N1, N1, and N3(t) are defined in Theorem 1.11.

We refer to the problem (3.5.2)–(3.5.6) as the homogenized model (HS)9.
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3.5.2 Proof of Theorem 3.10

By Theorem 3.1 the sequences {pΩ}, {wΩ},
⎧

ρwΩ

ρt

}
,

⎧
ρ2wΩ

ρt2

}
, {D(x, wΩ)}, and

⎧
D

(
x,

ρwΩ

ρt

)}
are bounded in L2(QT ) and L2(QT ).

Hence there exists a subsequence of small parameters {Ω > 0} and functions p,
w, and v such that

pΩ γ p,
ρ2wΩ

ρt2
γ

ρ2w
ρt2

weakly in L2(QT ) and L2(QT ) as Ω ↘ 0, and

wΩ γ w
ρwΩ

ρt
γ v = ρw

ρt

weakly in
∈
W

1,0

2 (νT ) as Ω ↘ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
By Nguetseng’s theorem, there exist functions P(x, t, y) from L2(QT × Y), and

W(x, t, y) from L2
(
QT ; W1

2(Y)
)
that are 1-periodic in y and satisfy the condition

that the sequences {pΩ}, {wΩ},
⎧

ρwΩ

ρt

}
, {∇wΩ}, and

⎧
∇
(ρwΩ

ρt

)}
converge two-scale

in L2(QT ) andL2(QT ) toP,w(x, t), v(x, t),
(∇ w+∇yW

)
, and

(
∇ v + ∇y

(
ρW
ρt

))

respectively.

Lemma 3.16 The limiting functions w and W satisfy the macroscopic and micro-
scopic continuity equations

∇ · w = 0, (x, t) ∪ QT , (3.5.7)

∇y · W = 0, (x, t) ∪ QT , y ∪ Y . (3.5.8)

The proof of this lemma is straightforward (see also the proof of Theorem 1.11).

Lemma 3.17 The limiting functions w, p, W, and P satisfy the macroscopic momen-
tum balance equation

α(x)
ρ2w
ρt2

+ ∇ p − ∇ ·
(
ξ μ0 D(x, v)

)

= ∇ · ((1 − ξ )
(
μ0 mD(x, v) + λ0 (1 − m)D(x, w)

))

+ ∇ ·
(

(1 − ξ )

(
μ0

〈
D

(
y,

ρW
ρt

)〉

Yf

⎜
+ λ0 √D(y, W)⊗Ys

))
, (3.5.9)
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in the domain QT , the boundary condition (3.5.4), the initial condition (3.5.6), and
the microscopic momentum balance equation

∇y ·
(

μ0 χ(y)D

(
y,

ρW
ρt

)
+ λ0

(
1 − χ(y)

)
D(y, W) − PI

)

= ∇y ·
(
μ0 χ(y)D(x, v) + λ0

(
1 − χ(y)

)
D(x, w)

)
. (3.5.10)

in the domain Y for almost all (x, t) ∪ νT .

Proof Equation (3.5.9) follows from (3.1.14) after the two-scale limit with test func-
tions ς = ς(x, t):

∫

QT

(ρw
ρt

· ρς

ρt
− ∇ · (ς p 0) + (p I − ξ μ0 D(x, v)

) : D(x, ς)
)

dxdt

=
∫

νT

(
μ0 mD(x, v) + λ0 (1 − m)D(x, w)

) : D(x, ς)dxdt

+
∫

νT

(
μ0 √D(y,

ρW
ρt

)⊗Yf

)+ λ0 √D(y, W)⊗Ys

) : D(x, ς)dxdt. (3.5.11)

This last integral identity provides the boundary condition (3.5.4) and initial condition
(3.5.6).

Equation (3.5.10) follows from (3.1.14) after the two-scale limitwith test functions

ς = Ωh(x, t)ς0

(x
Ω

)
, where h is finite in ν .

To derive the homogenized momentum balance equation (3.5.6) we simply have
to solve the periodic problem (3.5.8), (3.5.10) in the domain YT , to calculate terms〈
D

(
y,

ρW
ρt

)〉

Yf

and √D(y, W)⊗Ys , and substitute these expressions in (3.5.9). But all

these steps have already been taken in the proof of Theorem 1.11.
The uniqueness of the problem (3.5.2)–(3.4.6) follows from the energy equality

1

2

∫

ν

α(x)|v(x, t0)|2dx +
∫ t0

0

∫

ν

(
N1 : D(x, v)

) : D(x, v)dxdt

= −1

2

∫

ν

(
N2 : D(x, w(x, t0)

)) : D(x, w(x, t0))dx

−
∫ t0

0

∫

ν

D
(
x, v(x, t)

) :
( ∫ t

0
N3(t − δ) : D(x, w(x, δ )

)
dδ
)

dxdt.

(3.5.12)

for the solution v = ρw
ρt

of the homogeneous (p0 = 0) problem.
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In fact, the representation

∫

ν

|D(x, w(x, t)|2dx = 2
∫ t

0

∫

ν

D
(
x, w(x, δ )

) : D(x, v(x, δ )
)
dxdδ

implies

∫

ν

|D(x, w(x, t0)|2dx � 4t0

∫ t0

0

∫

ν

|D(x, v)|2dxdt

� 4t∗
∫ t0

0

∫

ν

|D(x, v)|2dxdt (3.5.13)

for t0 < t∗.
Therefore, (3.5.12), (3.5.13), and the strict positive definiteness of N1 result in

∫ t0

0

∫

ν

∣∣∣D(x, v
)∣∣∣
2
dxdt � t∗C0

∫ t0

0

∫

ν

|D(x, v
)|2dxdt

for t0 < t∗. Choosing t∗ <
1

2
C0 we obtain v = 0 in νt∗ . Repeating once more we

will prove our statement for a finite number of steps.



Chapter 4
Double Porosity Models for a Liquid Filtration

The liquid domainαρ
f , which is a subdomain of a bounded domainα with aLipschitz

continuous boundary S = χα , is defined in the following way. Let K be a unit cube,
K = Zf ∇Zs∇∂c, whereZf andZs are open sets, the commonboundary ∂c = χZf ∪χZs

is a Lipschitz continuous surface, and a periodic repetition in R3 of the domain Zs is
a connected domain with a Lipschitz continuous boundary. The elementary cell Zf
models a fracture space αρ

c : the domain αρ
c is the intersection of the cube α with a

periodic repetition in R
3 of the elementary cell ρZf . In the same way we define the

pore space αλ
p : K = Yf ∇ Ys ∇ ∂p, ∂p is a Lipschitz continuous surface, a periodic

repetition in R3 of the domain Ys is a connected domain with a Lipschitz continuous
boundary, and αλ

p is the intersection of α\αρ
c with a periodic repetition in R

3 of

the elementary cell λYf . Finally, we put αρ
f = αλ

p ∇ αρ
c , α

ρ
s = α\αρ

f is the solid

skeleton, and ν ρ = χαρ
s ∪ χαρ

f is the “solid skeleton–liquid domain” interface.
We also may characterize liquid and solid domains using indicator functions

in α . Let Ω(x) be the indicator function of the domain α in R
3, that is Ω(x) = 1 if

x ⊂ α and Ω(x) = 0 if x ⊂ R
3\α . Let also Γp(y) be the 1-periodic extension

of the indicator function of the domain Yf in K and Γc(z) be the 1-periodic
extension of the indicator function of the domain Zf in K . Then Γρ

c (x) = Ω(x)Γc(
x
ρ
)

stands for the indicator function of the domain αρ
c (fracture space), Γρ

p (x) =
Ω(x)(1 − Γc(

x
ρ
))Γp(

x
λ
) stands for the indicator function of the domain αλ

p (pore
space) and

Γ̃ ρ(x) = Ω(x)Γ̃
(x

λ
,

x
ρ

)
, Γ̃(y, z) = Γc(z) + (1 − Γc(z)

)
Γp(y)

stands for the indicator function of the liquid domain αρ
f .

Let us call such a geometry a double porosity geometry and corresponding math-
ematical model a double porosity model. In this chapter we consider the motion of
an incompressible liquid in an incompressible elastic skeleton, and the motion of a
compressible liquid in a compressible elastic skeleton (Figs. 4.1, 4.2 and 4.3).

A. Meirmanov, Mathematical Models for Poroelastic Flows, 135
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_4,
© Atlantis Press and the authors 2014
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Fig. 4.1 Single porosity geometry

Fig. 4.2 Double porosity geometry: isolated fractures

We consider the model M15 as the basic mathematical model at the microscopic
level for an incompressible liquid in an incompressible elastic skeleton:

∩ · w = 0, (x, t) ⊂ αT = α × (0, T), (4.0.1)

∩ · P + ε ρF = 0, (x, t) ⊂ αT , (4.0.2)
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Fig. 4.3 Double porosity geometry: connected fracture space

P = Γ̃ ρςμD

(
x,

χw
χt

)
+ (1 − Γ̃ ρ)ϕ0 D(x, w) − q I, (4.0.3)

w(x, t) = 0, (x, t) ⊂ αT , (4.0.4)
∫

α

q(x, t)dx = 0, t ⊂ (0, T), Γ̃ ρ w(x, 0) = 0, x ⊂ α, (4.0.5)

where
ε ρ = εf Γ̃ ρ + εs (1 − Γ̃ ρ).

For the motion of a compressible liquid in a compressible elastic skeleton as a basic
mathematical model at the microscopic level we consider the model M14

1

ς ρ
q

q + ∩ · w = 0, (x, t) ⊂ αT , (4.0.6)

∩ · P + ε ρF = 0, (x, t) ⊂ αT , (4.0.7)

P = Γ̃ ρςμD

(
x,

χw
χt

)
+ (1 − Γ̃ ρ)ϕ0 D(x, w) − q I, (4.0.8)

w(x, t) = 0, x ⊂ S, t ⊂ (0, T), (4.0.9)

Γ̃ ρ w(x, 0) = 0, x ⊂ α, (4.0.10)
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where

ς ρ
q = c2f Γ̃ ρ + c2s (1 − Γ̃ ρ).

4.1 Main Results

Definition 4.1 We say that the pair of functions {w ρ, q ρ}, such that

wρ ⊂
∈

W1,0
2 (αT ),

χw ρ

χt
⊂ L2

(
(0, T);

∈
W1

2 (α ρ
f )
)
, q ρ ⊂ L2

(
αT
)
,

is a generalized solution to the problem (4.0.1)–(4.0.5), if it satisfies the continuity
equation (4.0.1) in the usual sense almost everywhere in α × (0, T), normalization
and initial conditions (4.0.5), and the integral identity

∫ T

0

∫

α

(
ςμΓ̃ρ

D

(
x,

χwρ

χt

)
+ ϕ0 (1 − Γ̃ ρ)D(x, wρ)

)
: D(x, ξ)dxdt (4.1.1)

=
∫ T

0

∫

α

(
ερF · ξ + qρ (∩ · ξ)

)
dxdt

for any vector-functions ξ ⊂ L2
(
(0, T);

∈
W1

2 (α)
)
.

The homogeneous boundary condition (4.0.4) is already included into the corre-
sponding functional space.

Definition 4.2 We say, that the pair of functions {w ρ, q ρ}, such that

wρ ⊂
∈

W1,0
2 (αT ),

χw ρ

χt
⊂ L2

(
(0, T);

∈
W1

2 (α ρ
f )
)
, q ρ ⊂ L2

(
αT
)
,

is a generalized solution to the problem (4.0.6)–(4.0.10), if it satisfies the continuity
equation (4.0.6) in the usual sense almost everywhere in α × (0, T), the initial
condition (4.0.10), and the integral identity (4.1.1) for any vector-functions ξ ⊂
L2
(
(0, T);

∈
W1

2 (α)
)
.

As before, the homogeneous boundary condition (4.0.9) is already included into
the corresponding functional space.

Let
lim
ρ∅0

ςμ(ρ) = 0, lim
ρ∅0

ςμ

ρ2
= μ1, lim

ρ∅0

ςμ

λ2
= μ2,

Throughout this chapter we impose Assumption 1.1, and suppose that
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0 < ϕ0, c2f , c2s < ∞, 1 < r < ∞,

∫ T

0

∫

α

(
|F|2 +

∣∣∣∣
χF
χt

∣∣∣∣
2

+
∣∣∣∣
χ2F
χt2

∣∣∣∣
2 )

dxdt = F2 < ∞.

To formulate the existence and uniqueness results we need to extend the function wρ

from αρ
s to α: wλ

s = Eαρ
s

(
wλ
)
(for the definition of this extension see Appendix B):

∫

α

|wρ
s |2dx ≤ C

∫

αρ
s

|wρ|2dx,
∫

α

|D(x, wρ
s )|2dx ≤ C

∫

αρ
s

|D(x, wρ)|2dx,

where C is independent of ρ and t.

Theorem 4.1 There exists a sufficiently small ρ0 > 0, such that for any 0 < ρ < ρ0
and for any 0 < t < T problems (4.0.1)–(4.0.5) and (4.0.6)–(4.0.10) have unique
generalized solutions and the following estimates hold true

∫

α

|wρ(x, t)|2dx + ςμ

∫

αρ
f

∣∣D(x, wρ(x, t)
)∣∣2dx

+
∫

αρ
s

∣∣D(x, wρ
s (x, t)

)∣∣2dx � CF2, (4.1.2)

∫

α

∣∣vρ(x, t)
∣∣2dx + ςμ

∫

αρ
f

∣∣D(x, vρ(x, t)
)∣∣2dx

+
∫

αρ
s

∣∣∣∣D
(

x,
χwρ

s

χt
(x, t)

)∣∣∣∣
2

dx � CF2, (4.1.3)

∫

α

∣∣qρ(x, t)
∣∣2dx � CF2, (4.1.4)

ςμ

λ2

∫

αλ
p

∣∣(wρ − wρ
s

)
(x, t)

∣∣2dx

+ ςμ

ρ2

∫

αρ
c

∣∣(wρ − wρ
s

)
(x, t)

∣∣2dx � CF2, (4.1.5)

ςμ

λ2

∫

αλ
p

∣∣∣∣
(

vρ − χwρ
s

χt

)
(x, t)

∣∣∣∣
2

dx

+ ςμ

ρ2

∫

αρ
c

∣∣∣∣
(

vρ − χwρ
s

χt

)
(x, t)

∣∣∣∣
2

dx � CF2, (4.1.6)
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where vρ = χwρ

χt
and C is independent of ρ and t.

Theorem 4.2 Under the conditions of Theorem 4.1 let {w ρ, q ρ} be a solution to the
problem (4.0.1)–(4.0.5) and μ2 = ∞, or the fracture space is disconnected (isolated
fractures).

Then there exist a subsequence of small parameters {ρ > 0}, and functions vp ⊂
L2(αT )—the limiting velocity of the liquid in pores, vc ⊂ L2(αT )—the limiting

velocity of the liquid in fractures, ws ⊂
∈

W1,0
2 (αT )—the limiting displacements of

the solid skeleton, and qf ⊂ L2(αT )—the limiting pressure in the liquid, such that

the sequences

{
Γλ

p
χwρ

χt

⎜
,

{
Γρ

c
χwρ

χt

⎜
, and {Γ̃ ρ qρ} converge weakly in L2(αT ) and

L2(αT ) to the functions vp, vc, and mqf , respectively as ρ ∅ 0.

At the same time the sequence {wρ
s } converges weakly in

∈
W1,0

2 (αT ) to the function
ws as ρ ∅ 0.

The limiting functions vp, vc, ws, and qf satisfy the following relations

vp = (1 − mc) mp
χws

χt
, vc = mc

χws

χt
,

v ∞ vc + vp + (1 − m)
χws

χt
= χws

χt
, (4.1.7)

and the anisotropic Lamé’s system

∩ · v = 0, (4.1.8)

ϕ0 ∩ · (B(s)
0 : D(ws)

)− ∩ qf + ε̂F = 0, (4.1.9)

in α × (0, T) with homogeneous normalization and boundary conditions

∫

α

qf (x, t)dt = 0, ws(x, t) = 0, x ⊂ S, t � 0. (4.1.10)

The fourth-rank constant tensor B
(s)
0 is defined below by formula (4.3.36), ε̂ =

m εf + (1 − m) εs, m = ⎧
K

⎧
K Γ̃dydz—the porosity of the liquid domain, mp =⎧

K Γpdy—the porosity of the pore space, and mc = ⎧
K Γcdz—the porosity of the

fracture space, m = mc+(1−mc)mp. The tensorB(s)
0 is symmetric, strictly positively

definite, and depends only on the geometry of the solid cells Ys and Zs.

We refer to the problem (4.1.7)–(4.1.10) as the homogenized model (DPF)1.

Theorem 4.3 Under the conditions of Theorem 4.1 let {w ρ, q ρ} be a solution to the
problem (4.0.1)–(4.0.5), μ2 < ∞, and the fracture space be connected.
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Then there exist a subsequence of small parameters {ρ > 0}, and functions vp ⊂
L2(αT )—the limiting velocity of the liquid in pores, vc ⊂ L2(αT )—the limiting

velocity of the liquid in fractures, ws ⊂
∈

W1,0
2 (αT )—the limiting displacements of

the solid skeleton, and qf ⊂ L2(αT )—the limiting pressure in the liquid, such that

the sequences

{
Γλ

p
χwρ

χt

⎜
,

{
Γρ

c
χwρ

χt

⎜
, and {Γ̃ ρ qρ} converge weakly in L2(αT ) and

L2(αT ) to the functions vp, vc, and mqf , respectively as ρ ∅ 0.

At the same time the sequence {wρ
s } converges weakly in

∈
W1,0

2 (αT ) to the function
ws as ρ ∅ 0.

The limiting functions vp, vc, ws, and qf satisfy in αT the following relations

vp = (1 − mc) mp
χws

χt
, v = vc + (1 − mc)

χws

χt
, (4.1.11)

Equations (4.1.8), (4.1.9), Darcy’s law in the form

vc = mc
χws

χt
+ 1

μ2
B

(c)(εf F − ∩qf
)
, x ⊂ α, (4.1.12)

normalization and boundary conditions (4.1.10), and boundary condition

v · n = 0, x ⊂ S, (4.1.13)

where n is a unit normal vector to the boundary S at x ⊂ S. In (4.1.12) the strictly
positively definite constant matrix B

(c), is defined below by formula (4.3.18) and
depends only on the geometry of the liquid cell Zf . The fourth-rank constant tensor

B
(s)
0 is defined below by formula (4.3.36), ε̂ = m εf +(1−m) εs, m = ⎧

K

⎧
K Γ̃dydz—

the porosity of the liquid domain, mp = ⎧
K Γpdy—the porosity of the pore space, and

mc = ⎧
K Γcdz—the porosity of the fracture space, m = mc + (1−mc)mp. The tensor

B
(s)
0 is symmetric, strictly positively definite, and depends only on the geometry of

the solid cells Ys and Zs.

We refer to the problem (4.1.8)–(4.1.13) as the homogenized model (DPF)2.
We obtain the double-porosity model for the absolutely rigid solid skeleton from

the limit of solutions to the model (DPF)2 as ϕ0 → ∞. In this case the liquid in
pores is blocked and unmoving.

Theorem 4.4 Let μ2 < ∞, ϕ0 = n and w(n)
s , v(n)

c and q(n)
f be a solution to the prob-

lem (4.1.8)–(4.1.13). Then there exists a subsequence {nk}, such that the sequence{
χw(nk)

s

χt

⎫
converges strongly in

∈
W1,0

2 (αT ) to zero as nk → ∞, the sequence

{v(nk)
p } converges strongly in L2(αT ) to zero as nk → ∞, and sequences {v(nk)

c } and
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{q(nk)

f } converge weakly in L2(αT ) and L2(αT ) to functions vc, and qf ⊂ W1,0
2 (αT )

respectively as nk → ∞.
These limiting functions solve the problem

χws

χt
= vp = 0, vc = 1

μ2
B

(c)(εf F − ∩qf
)
, x ⊂ α, (4.1.14)

∩ · vc = 0, x ⊂ α, vc · n = 0, x ⊂ S. (4.1.15)

We refer to the problem (4.1.14) and (4.1.15) as the homogenized model (DPF)3.

Theorem 4.5 Under the conditions of Theorem 4.1 let {w ρ, q ρ} be a solution to
the problem (4.0.6)–(4.0.10) and μ2 = ∞, or the fracture space is disconnected
(isolated fractures).

Then there exist a subsequence of small parameters {ρ > 0}, and functions vp ⊂
L2(αT )—the limiting velocity of the liquid in pores, vc ⊂ L2(αT )—the limiting

velocity of the liquid in fractures, ws ⊂
∈

W1,0
2 (αT )—the limiting displacements of

the solid skeleton, qs ⊂ L2(αT )—the limiting pressure in the solid skeleton, and

qf ⊂ L2(αT )—the limiting pressure in the liquid, such that the sequences

{
Γλ

p
χwρ

χt

⎜
,

{
Γρ

c
χwρ

χt

⎜
, {(1 − Γ̃ ρ) qρ} and {Γ̃ ρ qρ} converge weakly in L2(αT ) and L2(αT ) to

the functions vp, vc, qs, and mqf , respectively as ρ ∅ 0.

At the same time the sequence {wρ
s } converges weakly in

∈
W1,0

2 (αT ) to the function
ws as ρ ∅ 0.

The limiting functions vp, vc, ws, qs, and qf satisfy in α × (0, T) relations (4.1.7)
and the anisotropic Lamé’s system

∩ ·
(
ϕ0 B

(s) : D(x, ws) + qf C
(s)
)

+ ε̂F = 0, (4.1.16)

1

c2s
qs + a(s)

ϕ0
qf + A

(s) : D(x, ws) = 0, (4.1.17)

1

c2f

χqf

χt
+ 1

c2s

χqs

χt
+ ∩ · v = 0, (4.1.18)

completed with the homogeneous boundary condition

ws(x, t) = 0, x ⊂ S. (4.1.19)

In (4.1.16) and (4.1.17) the symmetric, strictly positively definite fourth-rank constant
tensor B(s), constant matrices C

(s) and A
(s), and constant a(s) are defined below

by formulae (4.5.23)–(4.5.26), ε̂ = m εf + (1 − m) εs, m = ⎧
K

⎧
K Γdydz—the
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porosity of the liquid domain, mp = ⎧
K Γpdy—the porosity of the pore space, and

mc = ⎧
K Γcdz—the porosity of the fracture space. The tensor A(s) is , and depends

only on the geometry of the solid cells Ys and Zs. The tensor B(s), matrices C(s) and
A

(s), and the constant a(s) depend only on the geometry of the solid cells Ys and Zs,

and criterion τ = c 2
s

ϕ0
.

We refer to the problem (4.1.7), (4.1.16)–(4.1.19) as the homogenized model
(DPF)4.

Theorem 4.6 Under the conditions of Theorem 4.1 let {w ρ, q ρ} be a solution to the
problem (4.0.6)–(4.0.10), μ2 < ∞, and the fracture space is connected.

Then there exist a subsequence of small parameters {ρ > 0}, and functions vp ⊂
L2(αT )—the limiting velocity of the liquid in pores, vc ⊂ L2(αT )—the limiting

velocity of the liquid in fractures, ws ⊂
∈

W1,0
2 (αT )—the limiting displacements

of the solid skeleton, qs ⊂ L2(αT )—the limiting pressure in the solid skeleton, and

qf ⊂ L2(αT )—the limiting pressure in the liquid, such that the sequences

{
Γλ

p
χwρ

χt

⎜
,

{
Γρ

c
χwρ

χt

⎜
, {(1 − Γ̃ ρ) qρ} and {Γ̃ ρ qρ} converge weakly in L2(αT ) and L2(αT ) as

ρ ∅ 0 to the functions vp, vc, qs, and mqf respectively.

At the same time the sequence {wρ
s } converges weakly in

∈
W1,0

2 (αT ) as ρ ∅ 0 to
the function ws as ρ ∅ 0.

The limiting functions vp, vc, ws, qs, and qf satisfy in α×(0, T) relations (4.1.11),
equations (4.1.16)–(4.1.17), Darcy’s law (4.1.12), and boundary conditions (4.1.13)
and (4.1.19).

We refer to the problem (4.1.11)–(4.1.13), (4.1.16), (4.1.17), (4.1.19) as the homog-
enized model (DPF)5.

4.2 Proof of Theorem 4.1

The only nonstandard element here is a proof of estimates (4.1.5) and (4.1.6), which
are the basis of other estimates.

Toprove (4.1.2)we choose as a test function in (4.1.1) the functionh(δ )
χwρ

χδ
(x, δ ),

where h(δ ) = 1, δ ⊂ (0, t) and h(δ ) = 0, δ ⊂ [t, T):

ςμ

∫ t

0

∫

α

Γρ

∣∣∣∣D
(

x,
χwρ

χt
(x, δ )

)∣∣∣∣
2

dxdδ

+ 1

2
ϕ0

∫

α

(1 − Γρ)
∣∣D(x, wρ(x, t)

)∣∣2dx =
∫ t

0

∫

α

ε ρF · χwρ

χt
dxdδ.
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Passing the time derivative from
χwρ

χt
to F in the right-hand side integral, applying

after that to this integral the Hölder inequality and the evident estimate

∫

α

Γρ
∣∣D(x, wρ(x, t)

)∣∣2dx ≤ C
∫ t

0

∫

α

Γρ

∣∣∣∣D
(

x,
χwρ

χt
(x, δ )

)∣∣∣∣
2

dxdδ,

and using the equality

∫

α

(1 − Γρ)
∣∣D(x, wρ(x, t)

)∣∣2dx =
∫

α

(1 − Γρ)
∣∣D(x, wρ

s (x, t)
)∣∣2dx,

we arrive at

J(t) ∞ ςμ

∫

α

Γρ
∣∣D(x, wρ(x, t)

)∣∣2dx + ϕ0

∫

α

(1 − Γρ)
∣∣D(x, wρ

s (x, t)
)∣∣2dx

� CF2 +
∫ t

0

∫

α

|wρ(x, δ )|2dxdδ. (4.2.1)

Next we put wρ
0 = wρ − wρ

s . By construction wρ
0 ⊂

∈
W1

2 (αρ
f ).

To estimate the integral

Iρ
f =

∫

αρ
f

|wρ
0|2dx

we divide it by two parts:

Iρ
f = Iλ

p + Iρ
c , Iλ

p =
∫

αλ
p

|wρ
0|2dx, Iρ

c =
∫

αρ
c

|wρ
0|2dx.

Let G(k)
p , where k = (k1, k2, k3) ⊂ Z

3, be the intersection of αλ
p with a set {x : x =

λ(y + k), y ⊂ K}. Then αλ
p = ∇k⊂Z3G(k)

p and

Iλ
p =

⎬

k⊂Z3

Iλ
p (k), Iλ

p (k) =
∫

G(k)
p

|wρ
0|2dx.

next we divide the sets G(k)
p by two groups:

(1) the set G(k)
p , k ⊂ Z0, has no intersection with the boundary between pore and

fracture spaces, and
(2) the set G(k)

p , k ⊂ Z1, has an intersection with the boundary between pore and
fracture spaces.

For the first group in each integral Iλ
p we change variable by x = λ(y − yk), then

apply the Friedrichs-Poincaré inequality and finally return to the original variables:
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∫

G(k)
p

|wρ
0|2dx = λ3

∫

Y (k)

|wρ
0,k|2dy

� λ3C
∫

Y (k)

|D(y, w0,k
ρ)|2dy = λ2C

∫

G(k)
p

|D(x, wρ
0)|2dx,

and ⎬
k⊂Z0

∫

G(k)
p

|wρ
0|2dx � λ2 C

∫

αρ
f

|D(x, wρ
0)|2dx.

Herew0,k
ρ(y, t) = wρ

0(x, t) andC is a constant in the Friedrichs-Poincaré inequality
for the domain Yf ◦ K .

All sets G(k)
p from the second group are in the λ N—neighborhood of the set

∇k⊂Z0G(k)
p , whereN ⊂ Z is an integer bound for the Lipschitz norm for ∂c. Therefore,

for each G(k√)
p from the second group there is at least one G(k√√)

p from the first group
such that ∫

G(k√)
p

|wρ
0|2dx � C(N)

∫

G(k√√)
p

|wρ
0|2dx,

and each set of the first group is repeated no more than N times.
Thus, ⎬

k⊂Z1

∫

G(k)
p

|wρ
0|2dx � C(N) N

⎬
k⊂Z0

∫

G(k)
p

|wρ
0|2dx,

Iλ
p � λ2 C

⎬

k⊂Z3

∫

G(k)
p

|Dx(wρ
0)|2dx � λ2 C

∫

αρ
f

|D(x, wρ
0)|2dx. (4.2.2)

In the same way we show that

Iρ
c ≤ ρ2 C

∫

αρ
f

|D(x, wρ
0)|2dx. (4.2.3)

In fact, as beforewe again divide the integral Iρ
c into the sumof integrals over domains

G(k)
c and make a change of variables:

x = ρz, wρ
0(x, t) = w̃ρ

0(z, t),
∫

G(k)
c

|wρ
0|2dx = ρ3

∫

Z(k)

|w̃ρ
0|2dz.

For integrals over domains G(k)
c we use the Friedrichs-Poincaré inequality, based on

the fact that the function w̃ρ
0 vanishes on the some periodic

(
with period

λ

ρ

)
part of

the boundary χG(k)
c with a strictly positive measure, which is bounded from below

independently of ρ.
Thus,
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Iρ
f � C(λ2 + ρ2)

∫

αρ
f

|D(x, wρ
0)|2dx ≤ C

(
λ2

ςμ

+ ρ2

ςμ

)
ςμ

∫

αρ
f

|D(x, wρ)|2dx

+ C(λ2 + ρ2)

∫

αρ
f

|D(x, wρ
s )|2dx ≤ C J(t),

and
∫

αρ
f

|wρ|2dx ≤
∫

αρ
f

|wρ
0|2dx +

∫

αρ
f

|wρ
s |2dx ≤ C

(
J(t) +

∫

αρ
s

|wρ|2dx
)
.

To estimate the integral

Iρ
s =

∫

αρ
s

|wρ|2dx

we use the Friedrichs-Poincaré inequality and the properties of the extension ws:

Iρ
s ≤

∫

α

|wρ
s |2dx ≤ C

∫

α

|D(x, wρ
s )|2dx ≤ Cϕ0

∫

αρ
s

|D(x, wρ)|2dx ≤ CJ(t).

Gathering everything together we have

∫

α

|wρ|2dx ≤ CJ(t).

Estimate (4.1.2) follows now from (4.2.1) and Gronwall’s inequality. The same
estimate (4.1.2) together with (4.2.2) and (4.2.3) result (4.1.5).

To prove estimates (4.1.3) and (4.1.6) we simply repeat once more for the “time

derivative” of identity (4.1.1) and
χ2wρ

χt2
.

Estimate (4.1.4) for an incompressible liquid is a simple consequence of (4.1.2),
(4.1.3), (4.1.5), and (4.1.6). For a compressible liquid this estimate follows from
the same estimates (4.1.2), (4.1.3), (4.1.5), and (4.1.6) and the continuity equation
(4.0.6).

4.3 Proofs of Theorems 4.2 and 4.3

4.3.1 Weak and Three-Scale Limits of Sequences
of Displacements, Velocities and Pressure

First, we define the velocity of the liquid in pores as vλ
p = Γλ

p
χwρ

χt
, the velocity

of the liquid in fractures as vρ
c = Γρ

c
χwρ

χt
and the velocity of the solid skeleton as
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vρ
s = χwρ

s

χt
. By definition

vρ = vλ
p + vρ

c + (1 − Γ̃ ρ)vρ
s . (4.3.1)

On the strength of Theorem 4.1, the sequences {Γ̃ ρqρ}, {(1− Γ̃ ρ)qρ}, {vρ}, {vλ
p}, {vρ

c},
{wρ

s }, {vρ
s }, and {D(x, wρ

s )} are bounded in L2(αT ) and L2(αT ).
Hence there exists a subsequence of small parameters {ρ > 0} and functions

qf , qs ⊂ L2(αT ), v, vp, vc, vs ⊂ L2(αT ) and ws ⊂
∈

W1,0
2 (αT ) such that

Γ̃ ρ qρ Π mqf , (1 − Γ̃ ρ) qρ Π qs, vρ Π v, vλ
p Π vp, vρ

c Π vc,

vρ
s Π vs, wρ

s Π ws, D(x, wρ
s ) Π D(x, ws) (4.3.2)

weakly in L2(αT ) and L2(αT ) as ρ ∅ 0.
Note also that

Γ̃ ρ ςμD(x, vρ) → 0 (4.3.3)

strongly in L2(αT ) as ρ ∅ 0.
Next we apply the method of reiterated homogenization (see [6, 70] and Appen-

dix B): there exist functions Qf (x, t, y, z), Qs(x, t, y, z), V(x, t, y, z), Vc(x, t, y, z),
Uc(x, t, z), and Up(x, t, y, z) that are 1-periodic in y and z and satisfy the condition
that the sequences {Γ̃ ρ qρ}, {(1 − Γ̃ ρ) qρ}, {Vρ}, {Vρ

c}, and {D(x, wρ
s )} three-scale

converge (up to some subsequences) to Qf (x, t, y, z), Qs(x, t, y, z), V(x, t, y, z),
VC(x, t, y, z), and D(x, ws) + D

(
z, Uc(x, t, z)

)+ D
(
y, Up(x, t, y, z)

)
, respectively.

The sequence {wρ
s } three-scale converges to the function ws(x, t).

Relabeling if necessary, we assume that the sequences themselves converge.
Remember that three-scale convergence of the sequence {γρ} to the function

ζ(x, t, y, z) means the convergence of integrals

∫

αT

γρ(x, t) ξ
(

x, t,
x
λ
,

x
ρ

)
dxdt

→
∫

αT

∫

Y

∫

Z
ζ(x, t, y, z) ξ(x, t, y, z)dzdydxdt,

for any smooth 1-periodic in y and z function ξ(x, t, y, z).
By definition the function

γ(x, t) = ⊗⊗ζ〉y〉z,

where

⊗ζ〉y =
∫

K
ζ(x, t, y, z)dy, ⊗ζ〉z =

∫

K
ζ(x, t, y, z)dz,

is a weak limit in L2(αT ) of the sequence {γρ}.
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4.3.2 Macro- and Microscopic Equations

We start the proof of the theorem from the macro- and microscopic equations related
to the liquid motion and to the continuity equation.

Lemma 4.1 For almost all (x, t) ⊂ αT , y ⊂ Y and z ⊂ Z, the weak and three-scale
limits of the sequences {Γ̃ ρ qρ}, {(1 − Γ̃ ρ) qρ}, {vρ}, {vρ

c}, {vρ
p}, and {wρ

s } satisfy the
relations

Qf = qf (x, t)Γ̃(y, z), Qs = Qs
(
1 − Γ̃(y, z)

)
, (4.3.4)

vp = (1 − mc) mp vs, v = vc + (1 − mc)vs, (4.3.5)

∩ · v(x, t) = 0, (x, t) ⊂ αT , v(x, t) · n(x) = 0, (x, t) ⊂ ST , (4.3.6)

(1 − Γ̃ )
(∩ · ws + ∩z · Uc + ∩y · Up

) = 0, (4.3.7)

where
Γ̃ (y, z) = Γc(z) + (1 − Γc(z)

)
Γp(y),

n(x) is a normal vector to S at x ⊂ S, m = ⊗⊗Γ̃〉y〉z—the porosity of the liquid domain,
mp = ⊗Γp〉y—the porosity of the pore space, and mc = ⊗Γc〉z—the porosity of the
fracture space.

Proof By the properties of three-scale convergence one has equalities

Qf = Γ̃ Qf , Qs = (1 − Γ̃ ) Qs.

Choosing in (4.1.1) a test function in the form ξ = λ h0(t) h(x) η
(x
λ
,

x
ρ

)
, where

η(y, z) is finite in Yf × Zf , and passing to the limit as ρ ∅ 0 we arrive at

Γ̃(y, z)∩yQf = 0, or Qf = Γ̃ (y, z) Qf (x, t, z).

Now we repeat once more with ξ = ρ h0(t) h(x) η
(x
λ
,

x
ρ

)
, where η(y, z) is finite in

Yf × Zf , and get

Γ̃ (y, z)∩zQf = 0, or Qf = Γ̃(y, z) Qf (x, t),

which results in (4.3.4).
Equalities (4.3.5) are a simple consequence of (4.3.1), (4.1.6) and the properties

of three-scale convergence.
The continuity equation and boundary condition in (4.3.6) follow from the conti-

nuity equation (4.0.1) in the form
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∫

α

vρ · ∩ηdx = 0, (4.3.8)

which holds true for any smooth functions η , after passing in (4.3.8) to the limit as
ρ ∅ 0.

The three-scale limit in continuity equation (4.0.1) in the form

(1 − Γ̃ ρ)∩ · vρ
s = 0

results in the continuity equation (4.3.6).

Lemma 4.2 Let ⎭V = ⊗Vc〉y. If μ2 = ∞, then

⎭V = Vc = vs(x, t) Γc(z), vc = mcvs. (4.3.9)

If μ2 < ∞, then for almost every (x, t) ⊂ αT the function ⎭V is a 1-periodic in z
solution to the Stokes system

− μ2

2
�z⎭V = −∩z ⎭ζ − ∩qf + εf F, (4.3.10)

∩z ·⎭V = 0, (4.3.11)

in the domain Zf , such that

⎭V(x, t, z) = vs(x, t), z ⊂ ∂c. (4.3.12)

Proof Firstly we derive the continuity equation (4.3.11). To do that we put η =
ρη0

(
x,

x
ρ

)
in the integral identity (4.3.8), pass to the limit as ρ ∅ 0, and get identity

∫

α

∫

Zf

⎭V · ∩zη0(x, z)dxdz = 0,

which is obviously equivalent to (4.3.11).
If μ2 = ∞, then (4.3.9) follows from estimate (4.1.6).
Let now μ2 < ∞. If we choose in the integral identity (4.1.1) a test function ξ in

the form ξ = h0(t)h1(x) η
(x
ρ

)
, where supp h1 ◦ α , suppη(z) ◦ Zf , ∩z · η = 0,

and pass to the limit as ρ ∅ 0, we arrive at

∫

α

∫

Zf

(
h1μ2⎭V · (∩z · Dz(η)) + qf (∩h1 · η) + εf (F · η)h1

)
dxdz = 0.

In the same way as in Chap.1 we may show that ∩ qf ⊂ L2(αT ).

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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The desired equation (4.3.10) follows from the last identity, if we pass derivatives
from the test function to ⎭V and take into account (4.3.11). The term ∩z ⎭ζ appears
due to condition ∩z · η = 0.

Finally, the boundary condition (4.3.12) follows from the representation

⊗V〉y = ⎭V + (1 − Γc(z)
)

vs(x, t),

and inclusion ⊗V〉y ⊂ W1
2(Z) for almost every (x, t) ⊂ αT .

Now we derive macro- and microscopic equations for the solid motion. Let

q̃f = 1

ϕ0
qf , Q̃s =

(
1

ϕ0
Qs − q̃f

)
(1 − Γ̃ ), q̃s = ⊗⊗Q̃s〉Zs〉Ys ,

where
⊗π 〉Zs = ⊗(1 − Γc)π 〉z, ⊗ψ〉Ys = ⊗(1 − Γp)π 〉y.

Then

1

ϕ0
(qf + qs) = 1

ϕ0
⊗⊗(1 − Γ̃ )(Qf + Qs)〉z〉y = ⊗⊗q̃f + Q̃s〉z〉y = q̃f +⎭qs

Lemma 4.3 Functions ws, Uc, Up, q̃f , and q̃s satisfy in αT the macroscopic
equation

∩ ·
(
(1 − m)D(x, ws) + (1 − mp)⊗D(z, Uc)〉Zs

+ ⊗⊗D(y, Up) − Q̃s〉Zs〉Ys − q̃f I

)
+ ε̂

ϕ0
F = 0, (4.3.13)

where
ε̂ = m εf + (1 − m) εs and q̃ = q̃f + q̃s.

To prove this lemma we put in (4.1.1) ξ = h0(t)h1(x), where h is finite in α , and
pass to the limit as ρ ∅ 0, taking into account (4.3.3).

Lemma 4.4 Functions ws, Uc, Up, and Q̃s satisfy in Zs and almost everywhere in
αT the microscopic equation

∩z ·
(
(1 − Γc)

(
(1 − mp)

(
D(x, ws) + D(z, Uc)

)
(4.3.14)

+ ⊗D(y, Up) − Q̃s I〉Ys

)) = 0. (4.3.14)

To prove this lemma we put in (4.1.1) ξ = ρh0(t)h1(x)ξ0
(x
ρ

)
, where h1 is finite in

α , pass to the limit as ρ ∅ 0, and use the equality
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(1 − Γ̃) = (1 − Γp)(1 − Γc).

Lemma 4.5 Functions ws, Uc, Up, and Q̃s satisfy in Ys and almost everywhere in
αT × Zs the microscopic equation

∩y ·
(
(1 − Γp)

(
D(x, ws) + D(z, Uc) + D(y, Up) − Q̃sI

)) = 0. (4.3.15)

To prove the lemma we put in (4.1.1) ξ = λh0(t)h1(x) ξ0
(x
ρ

)
ξ1
(x
λ

)
, where h1 is

finite in α , and pass to the limit as ρ ∅ 0.

4.3.3 Homogenized Equations

The derivation of homogenized equations is quite standard (see previous chapters).
For the liquid motion we solve the microscopic system (4.3.9)–(4.3.12), find⎭V as an

operator on ∩qf and
χws

χt
, and then use the relation vc = ⊗⎭V〉Zf . That is, holds true

the following lemma.

Lemma 4.6 Let μ1 < ∞. Then functions vc, vs, v = vc +(1−mc) vs, and qf satisfy
in the domain αT the usual Darcy system of filtration

vc = mc vs + 1

μ2
B

(c)(εf F − ∩qf
)
, (x, t) ⊂ αT , (4.3.16)

∩ · v = 0, x ⊂ α, v · n = 0, x ⊂ S, t > 0, (4.3.17)

where n is a unit normal vector to the boundary S at x ⊂ S.
If the fracture space is connected, then the strictly positively definite constant

matrix B
(c), is defined by the formula

B
(c) = 1

μ1

3⎬
i=1

⊗Vi〉Zf ⊗ ei. (4.3.18)

In (4.3.18) functions Vi(z), i = 1, 2, 3, are solutions to the periodic boundary-value
problems

−1

2
�zVi + ∩ζ i = ei, ∩y · Vi = 0, z ⊂ Zf ,

Vi = 0, z ⊂ ∂c,


 (4.3.19)

where ei, i = 1, 2, 3, are the standard Cartesian basis vectors.
If the fracture space is disconnected (isolated fractures), then the unique solution

to the problem (4.3.19) is Vi = 0, i = 1, 2, 3, B(c) = 0, and
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vc = mc vs.

The same procedure is applied to the solid motion. First, we solve the microscopic
equation (4.3.15) coupled with a continuity equation (4.3.7), find Up as an operator
on D(z, Uc) and D(x, ws), and substitute the result into equation (4.3.14). Next, we
solve the obtained microscopic equation and find Uc as an operator on D(x, ws).
Finally, we substitute expressions Up and Uc as operators on D(x, ws) into macro-
scopic equation (4.3.13) and arrive at the desired homogenized equation for the
function ws.

Lemma 4.7 Functions ws and Uc satisfy in Zs the microscopic equation

∩z ·
(
(1 − Γc)A

(c)
0 : (D(x, ws) + D(z, Uc)

)) = 0, (4.3.20)

where fourth-rank constant tensor Ac
0 is defined below by formula (4.3.23).

Proof Let

Dij = 1

2

(
χwi

s

χxj
+ χwj

s

χxi

)
, d = ∩ · ws, ws = (w1

s , w2
s , w3

s ),

Dij
(c) = 1

2

(
χUi

c

χzj
+ χUj

c

χzi

)
, d (c) = ∩z · Uc , Uc = (U1

c , U2
c , U3

c ),

Dij
(p) = Dij + Dij

(c), d (p) = d + d (c).

As usual, Eq. (4.3.20) follows from themicroscopic equations (4.3.14) after we insert
into (4.3.14) the expression

⊗D(y, Up)〉Ys − ⊗Q̃s〉YsI = C
(p)
0 : (D(x, ws) + D(z, Uc)

)
.

To find the exact form of this last expression we look for the solutionUp to the system
of microscopic equations (4.3.15) and (4.3.7) in the form

Up =
3⎬

i,j=1

Uij
p (y) Dij

(p) + U0
p(y) d (p), Q̃s =

3⎬
i,j=1

Qij
p (y) Dij

(p) + Q0
p(y) d (p)

and arrive at the following periodic boundary-value problems in Ys:

∩ y ·
(
(1 − Γp)

(
D(y, Uij

p ) + J
ij − Qij

p I
)) = 0, y ⊂ Y ,

∩ y · Uij
p = 0, ⊗Uij

p 〉Ys = 0, y ⊂ Ys,



 (4.3.21)
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∩ y ·
(
(1 − Γp)

(
D(y, U0

p) − Q0
p I
)) = 0, y ⊂ Y ,

∩ y · U0
p + 1 = 0, ⊗U0

p〉Ys = 0, y ⊂ Ys.

⎫
(4.3.22)

In (4.3.21)

J
ij = 1

2
(Iij + I

ji) = 1

2
(ei ⊗ ej + ei ⊗ ei).

Problems (4.3.21) and (4.3.22) are understood in the sense of distributions. For
example, the first equation in (4.3.21) is equivalent to the integral identity

∫

Y
(1 − Γp)

(
D(y, Uij

p ) + J
ij − Qij

p I
) : D(y, ξ)dy = 0

for any smooth and periodic in y function ξ(y).
The solvability of the problem (4.3.21) directly follows from the a priori estimate

∫

Ys

|∩Uij
p |2dy � C,

and the this is a consequence of the energy identity

∫

Ys

(
D(y, Uij

p ) : D(y, Uij
p ) + J

ij : D(y, Uij
p )
)

dy = 0.

To solve the problem (4.3.22) we use a 1-periodic function V0 ⊂ W1
2(Ys) such that

∩ y · V0 + 1 = 0, y ⊂ Ys

(see proof of Theorem 1.4).
Then the solvability of the problem (4.3.22) follows from the energy equality

∫

Ys

(
D(y, U0

p) : (D(y, U0
p) − D(y, V0)

))
dy = 0,

which is a result of substituting the test functionξ = (U0
p−V0) into the corresponding

to the first equation in (4.3.22) integral identity.
Thus,

⊗D(y, Up)〉Ys − ⊗⎭Qs〉YsI =
3⎬

i,j=1

⊗D(y, Uij
p )〉Ys Dij

(p) + ⊗D(y, U0
p)〉Ys d (p)

−
( 3⎬

i,j=1

⊗Qij
p 〉Ys Dij

(p)

)
I −

(
⊗Q0

p〉Ys d (p)
)
I

=
3⎬

i,j=1

(
⊗D(y, Uij

p )〉Ys − ⊗Qij
p 〉Ys I

)
Dij

(p)
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+
(
⊗D(y, U0

p)〉Ys − ⊗Q0
p〉Ys I

)
d (p)

=
3⎬

i,j=1

(
⊗D(y, Uij

p )〉Ys ⊗ J
ij − ⊗Qij

p 〉Ys I ⊗ J
ij
)

:
(
D(x, ws) + D(z, Uc)

)

+
(
⊗D(y, U0

p)〉Ys ⊗ I − ⊗Q0
p〉Ys I ⊗ I

)
:
(
D(x, ws) + D(z, Uc)

)

=
(
C

(p)
0,1 + C

(p)
0,2 + C

(p)
0,3 + C

(p)
0,4

)
:
(
D(x, ws) + D(z, Uc)

)

= C
(p)
0 :

(
D(x, ws) + D(z, Uc)

)
,

where

A
(c)
0 = (1 − mp)

3⎬
i,j=1

J
ij ⊗ J

ij + C
(p)
0 = (1 − mp)J + C

(p)
0 ,

J =
3⎬

i,j=1

J
ij ⊗ J

ij, C
(p)
0 = C

(p)
0,1 + C

(p)
0,2 + C

(p)
0,3 + C

(p)
0,4,

C
(p)
0,1 =

3⎬
i,j=1

⊗D(y, Uij
p )〉Ys ⊗ J

ij, C
(p)
0,2 = ⊗D(y, U0

p)〉Ys ⊗ I,

C
(p)
0,3 = −

3⎬
i,j=1

⊗Qij
p 〉Ys I ⊗ J

ij, C
(p)
0,4 = −⊗Q0

p〉Ys I ⊗ I. (4.3.23)

Lemma 4.8 Tensors A(c)
0 andC(p)

0 are symmetric and the tensor A(c)
0 is strictly pos-

itively definite, that is for any arbitrary symmetric matrices θ = (θij) and β = (βij)

(
A

(c)
0 : θ

) : β = (
A

(c)
0 : β

) : θ , and
(
A

(c)
0 : θ

) : θ � τ (θ : θ ),

where positive constant τ is independent of θ .

Proof To prove the lemmawe need some properties of the tensorA(c)
0 , which follow

from the equalities
−⊗Q0

p〉Ys = ⊗D(y, U0
p) : D(y, U0

p)〉Ys , (4.3.24)

⊗D(y, Uij
p ) : D(y, U0

p)〉Ys = 0, (4.3.25)

⊗Qij
p 〉Ys = −⊗D(y, U0

p) : Jij〉Ys , (4.3.26)

⊗D(y, Uij
p ) : D(y, Ukl

p )〉Ys + ⊗Jij : D(y, Ukl
p )〉Ys = 0, (4.3.27)
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for all i, j, k, l = 1, 2, 3.
Equation (4.3.24) is an integral identity, corresponding to the first equation in

(4.3.22) with the test function U0
p.

Equation (4.3.25) is an integral identity, corresponding to the first equation in
(4.3.22) with the test function Uij

p .
Equation (4.3.26) is an integral identity, corresponding to the first equation in

(4.3.21) with the test function U0
p. Here we additionally took into account relations

(4.3.25).
Finally, equation (4.3.27) is an integral identity, corresponding to the first equation

in (4.3.21) with the test function Ukl
p .

Next we put

Yθ =
3⎬

i,j=1

Uij
pθij, Yβ =

3⎬
i,j=1

Uij
pβij, Y0

θ = u0
p tr θ, Y0

β = u0
p tr β.

Then
C

(p)
0,1 : θ = ⊗Dy(Yθ )〉Ys , C

(p)
0,2 : θ = ⊗Dy(Y0

θ )〉Ys ,

and equations (4.3.24)–(4.3.27) take the form

(
C

(p)
0,4 : θ

) : β = ⊗Dy(Y0
θ ) : Dy(Y0

β)〉Ys , (4.3.28)

⊗Dy(Yβ) : Dy(Y0
θ )〉Ys = 0, (4.3.29)

(
C

(p)
0,3 : θ

) : β = (
C

(p)
0,2 : β

) : θ, (4.3.30)

(
C

(p)
0,1 : β

) : θ + ⊗Dy(Yθ ) : Dy(Yβ)〉Ys = 0. (4.3.31)

Therefore,

(
A

(c)
0 : θ

) : β = (1 − mp)θ : β + (C(p)
0 : θ

) : β = ⊗Dy(Y0
β)〉Ys : θ

+ ⊗Dy(Y0
θ )〉Ys : β + β : ⊗Dy(Yθ )〉Ys + ⊗Dy(Y0

θ ) : Dy(Y0
β)〉Ys

+ (1 − mp)θ : β.

Taking into account (4.3.29) and (4.3.31) we finally get

(
A

(c)
0 : θ

) : β = (1 − mp)θ : β + ⊗D(y, Y0
θ ) : D(y, y0β)〉Ys

+ ⊗D(y, Y0
β)〉Ys : θ + ⊗D(y, Y0

θ )〉Ys : β + ⊗D(y, yθ ) : D(y, Yβ)〉Ys

+ θ : ⊗D(y, Yβ)〉Ys + β : ⊗D(y, Yθ )〉Ys

= 〈(
D(y, Yθ + y0θ ) + θ

) : (D(y, Yβ + Y0
β) + β

)⎛
Ys

. (4.3.32)
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Equations (4.3.32) and (4.3.23) show that tensors A(c)
0 and C

(p)
0 are symmetric:

(
A

(c)
0 : θ

) : β = (
A

(c)
0 : β

) : θ,
(
C

(p)
0 : θ

) : β = −(1 − mp)θ : θ + (A(c)
0 : θ

) : β.

In particular,

(
A

(c)
0 : θ

) : θ = 〈(
D(y, Yθ + Y0

θ ) + θ
) : (D(y, Yθ + Y0

θ ) + θ
)⎛

Ys
> 0,

and A
(c)
0 is strictly positively definite.

In fact, if
(
A

(c)
0 : θ 0

) : θ 0 = 0 for some θ 0, such that θ 0 : θ 0 = 1, then

D(y, Yθ 0 + Y0
θ 0

) + θ 0 = 0.

The last equality is possible if and only if the periodic function Yθ 0 + Y0
θ 0

is a linear
one. But due to the geometry of the solid cell Ys it is possible only if

Yθ 0(Y) + Y0
θ 0

(y) = U0 = const.

On the other hand, the function

U0(y) =
3⎬

i,j=1

Uij
p (y)θ 0

ij + u0
p(y) tr θ 0

is a solution to the problem

∩ y ·
(
(1 − Γp)

(
D(y, U0) + θ 0 − Q0

I
)) = 0, y ⊂ Y ,

∩ y · U0 + tr θ 0 = 0, ⊗U0〉Ys = 0, y ⊂ Ys.

⎫

Therefore θ 0 = 0, which contradicts the supposition.

Lemma 4.9 Functions ws and qf satisfy in αT the homogenized equation

∩ ·
(
ϕ0 B

(s)
0 : D(x, ws) − qf I

)
+ ε̂F = 0, (4.3.33)

where fourth-rank constant tensor B(s)
0 is defined below by formula (4.3.36).

Proof Following the standard scheme, we look for the solution to the microscopic
equation (4.3.20) in the form

Uc(x, t, z) =
3⎬

i,j=1

Uij
c (z)Dij(x, t),
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where functions Uij
c satisfy in Z the periodic boundary-value problem

∩z ·
(
(1 − Γc)A

(c)
0 : (D(z, Uij

c ) + Jij)) = 0, ⊗Uij
c 〉Zs = 0, (4.3.34)

which is understood in the sense of distributions. Thus

⊗D(z, Uc)〉Zs =
( 3⎬

i,j=1

⊗D(z, Uij
c )〉Zs ⊗ J

ij
)

: D(x, ws) = C(c) : D(x, ws),

C
(c)
0 =

3⎬
i,j=1

⊗D(z, Uij
c )〉Zs ⊗ J

ij, (4.3.35)

and

〈〈(
D(y, Up) −⎭QsI

)⎛
Ys

⎛
Zs

= C
(p)
0 : ((1 − mc)D(x, ws) + ⊗D(z, Uc)〉Zs

)

= C
(p)
0 : ((1 − mc)D(x, ws) + C

(c)
0 : D(x, ws)

)

= C
(p)
0 :

((
(1 − mc) J + C

(c)
0

) : D(x, ws)
)

=
(
(1 − mc)C

(p)
0 + C

(p)
0 : C(c)

0

)
: D(x, ws),

B
(s)
0 = (1 − m) J + (1 − mp)C

(c)
0 + (1 − mc)C

(p)
0 + C

(p)
0 : C(c)

0

= (1 − m) J + ((1 − mp) J + C
(p)
0

) : C(c)
0 + (1 − mc)C

(p)
0

= (1 − m) J + A
(c)
0 : C(c)

0 + (1 − mc)C
(p)
0

= (1 − mc)
(
(1 − mp) J + C

(p)
0

)+ A
(c)
0 : C(c)

0

= (1 − mc)A
(c)
0 + A

(c)
0 : C(c)

0 = A
(c)
0 : ((1 − mc) J + C

(c)
0

)
,

where we have used equalities

(1 − m) = (1 − mp)(1 − mc)

and
J : A = A : J = A

for any fourth-rank tensor A.
Finally

B
(s)
0 = A

(c)
0 : ((1 − mc) J + C

(c)
0

)
, (4.3.36)

where C(c)
0 is defined by (4.3.35).

Lemma 4.10 The tensor B(s)
0 is symmetric and strictly positively definite.
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Proof To prove the second statement of the Lemma we use the equality

∫

Zs

(
A

(c)
0 : D(z, Uij

c )
) : D(z, Ukl

c )dz

+
∫

Zs

(
A

(c)
0 : D(z, Jij)

) : D(z, Ukl
c )dz = 0, (4.3.37)

which is simply the integral identity with the test function Ukl
c , corresponding to the

differential equation (4.3.34).
Let

Zθ =
3⎬

i,j=1

Uij
c θij, Zβ =

3⎬
i,j=1

Uij
c βij.

Then (4.3.37) takes the form

〈(
A

(c)
0 : D(z, Zθ )

) : D(z, Zβ)
⎛
Zs

+ 〈(A(c)
0 : D(z, Zβ)

) : θ
⎛
Zs

= 0. (4.3.38)

Also note that by definition

C
(c)
0 : θ = ⊗D(z, Zθ )〉Zs . (4.3.39)

Relations (4.3.38) and (4.3.39) result in

(
B

(s)
0 : θ

) : β = (1 − mc)
(
A

(c)
0 : θ

) : β +
((
A

(c)
0 : C(c)

0

) : θ
)

: β

= (1 − mc)
(
A

(c)
0 : θ

) : β + (A(c)
0 : ⊗D(z, Zθ )〉Zs

) : β

= (1 − mc)
(
A

(c)
0 : θ

) : β + ⊗(A(c)
0 : D(z, Zθ )

) : D(z, Zβ)〉Zs

+ 〈(A(c)
0 : D(z, Zβ)

) : θ 〉Zs + (A(c)
0 : ⊗D(z, Zθ )〉Zs

) : β

= 〈(A(c)
0 : (D(z, Zθ ) + θ

)) : (D(z, Zβ) + β
)⎛

Zs
,

which proves the symmetry of B(s)
0 .

In particular,

(
B

(s)
0 : β

) : β =
⎝(
A

(c)
0 : (D(z, zβ) + β

)) : (D(z, zβ) + β
)⎞

Zs
> τ

(
β : β

)
.

4.4 Proof of Theorem 4.4

The homogenization procedure proves the existence at least one (weak) solution to
the problem (4.1.8)–(4.1.13). But we also may prove the correctness (uniqueness
and existence of the solution) of the problem (4.1.8)–(4.1.13) directly,using basic a
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priori estimates

n
∫ t

0

∫

α

|∩v(n)
s (x, δ )|2dxdδ + 1

μ2

∫

α

|∩q(n)
f (x, t)|2dx � CF2. (4.4.1)

To derive (4.4.1) we multiply the continuity equation (4.1.8) by
χq(n)

f

χt
, integrate

by parts over domain α , express the velocity using the representation (4.1.11) and
Darcy’s law (4.1.12). Next we differentiate (4.1.9) with respect to time, multiply by
v(n)

s , integrate by parts over domain α , and sum results:

∫

α

⎠
ϕ0 D(x, vs) : (A(s) : D(x, vs)

)+ 1

μ2

(
B

(c) · (∩ q(n)
f )
) ·
⎠
∩ χq(n)

f

χt




 dx

=
∫

α

⎠
 εf

μ2
(B(c) · F) ·

⎠
∩ χq(n)

f

χt


+ ε̂

χF
χt

· vs


 dx. (4.4.2)

Estimate (4.4.1) follows now from (4.4.2), andHölder, Gronwall, andKorn’s inequal-
ities.

Finally, we apply the standard compactness results to choose the convergent sub-
sequences {v(nk)

c } and {q(nk)

f }, and pass to the limit as nk → ∞ in integral identities,
corresponding to (4.1.8) and (4.1.9).

The estimate (4.4.1) and the representation (4.1.11) also guarantee the strong
convergence of {v(n)

s } and {v(n)
p } to zero as n → ∞.

4.5 Proofs of Theorems 4.5 and 4.6

As in the proofs of Theorems 4.2 and 4.3 we conclude that there exists a subsequence
of small parameters {ρ > 0} and functions qf , qs ⊂ L2(αT ), v, vp, vc, vs ⊂ L2(αT )

and ws ⊂
∈

W1,0
2 (αT ) such that

Γ̃ ρ qρ Π qf , (1 − Γ̃ ρ)qρ Π qs, vρ Π v, vλ
p Π vp, vρ

c Π vc,

vρ
s Π vs, wρ

s Π ws, D(x, wρ
s ) Π D(x, ws) (4.5.1)

weakly in L2(αT ) and L2(αT ) as ρ ∅ 0, and

Γ̃ ρ ςμD(x, vρ) → 0 (4.5.2)

strongly in L2(αT ) as ρ ∅ 0.
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For μ2 = ∞ relations (4.1.7) hold true, and for μ2 < ∞ relations (4.1.11) hold
true.

At the same time the sequences {Γ̃ ρ qρ}, {(1− Γ̃ ρ) qρ}, {vρ}, {vρ
c}, and {D(x, wρ

s )}
three-scale converge (up to some subsequences) to Qf (x, t, y, z) = (1/m) qf (x, t)
Γ̃(y, z), Qs(x, t, y, z) = (1 − Γ̃ )Qs, V(x, t, y, z), Vc(x, t, y, z), and D(x, ws) +
D
(
z, Uc(x, t, z)

) + D
(
y, Up(x, t, y, z)

)
respectively, and the sequence {wρ

s } three-
scale converges to the function ws(x, t).

These functions satisfy micro- and macroscopic equations (4.3.10)–(4.3.15), and
additional micro- and macroscopic continuity equations and the boundary condition

1

c2f

χqf

χt
+ 1

c2s

χqs

χt
+ ∩ · v = 0, v · n = 0, x ⊂ S, (4.5.3)

1

c2s
Qs + (1 − Γ)

(∩ · ws + ∩z · Uc + ∩y · Up
) = 0. (4.5.4)

The equation (4.5.3) is derived in the usual way (see Chaps. 1 and 2), and the
Eq. (4.5.4) is just a three-scale limit in the continuity equation

(1 − Γ̃ λ)

(
1

c2s
qλ + ∩ · wλ

s

)
= 0

for the solid component.
Equations (4.3.10)–(4.3.12) result in Darcy’s law (4.1.12) as in Theorem 4.2.
The dynamics equations for the solid component follow from Eqs. (4.3.13)–

(4.3.15) and the Eq. (4.5.4).

Lemma 4.11 For almost all (x, t) ⊂ αT functions ws, Uc, and q̃f satisfy in Zs the
microscopic equation

∩z ·
(
(1 − Γc)

(
A(c) : (D(x, ws) + D(z, Uc)

)+ q̃f C
(c)
))

= 0, (4.5.5)

where the constant forth rank tensor A(c) and the constant matrix C
(c) are defined

below by formulae (4.5.8) and (4.5.9).

Proof Let

T
(p) = D(x, ws) + D(z, Uc), d (p) = ∩ · ws + ∩z · Uc + 1

τ
q̃f ,

τ = c∗
s

ϕ0
, T

(p) =
3⎬

i,j=1

T (p)

ij J
ij.

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_2
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As usual, Eq. (4.5.5) follows from the microscopic equations (4.3.14), after we insert
into (4.3.14) the expression

⊗Dy(Up) − Q̃sI〉Ys = C(p) : (D(x, ws) + D(z, Uc)
)+ q̃f C

(c).

To find the exact form of this last expression we look for the solution Up and Q̃s to
the system of microscopic equations (4.3.15) and (4.5.4) in the form

−Q̃s = τ ∩y · Up + τ d (p), Up

=
3⎬

i,j=1

V(ij)
p (y) T (p)

ij + V(0)
p (y) d (p),

and arrive at the following periodic boundary value problems in Ys:

∩ y ·
(
(1 − Γp)

((
Dy(V(ij)

p ) + J
ij)+ τ (∩y · V(ij)

p ) I
)) = 0, (4.5.6)

∩ y ·
(
(1 − Γp)

(
Dy(V(0)

p ) + τ (∩y · V(0)
p + 1)I

)) = 0 (4.5.7)

with the following normalization conditions

⊗V(ij)
p 〉Ys = 0, ⊗V(0)

p 〉Ys = 0.

Equations (4.5.6) and (4.5.7) are understood in the sense of distributions. For
example, the Eq. (4.5.6) is equivalent to the integral identity

∫

Y
(1 − Γp)

((
D(y, V(ij)

p ) + J
ij)+ τ (∩y · V(ij)

p ) I
) : D(y, ξ)dy = 0

for any smooth periodic in y function ξ(y).
The solvability of (4.5.6) and (4.5.7) is already discussed in previous sections.
Thus,

⊗D(y, Up) − Q̃sI〉Ys =
3⎬

i,j=1

⊗D(y, V(ij)
p )〉Ys T (p)

ij + ⊗D(y, V(0)
p )〉Ys d( p)

+ τ
( 3⎬

i,j=1

⊗∩ · V(ij)
p 〉Ys T (p)

ij

)
I + d( p) τ ⊗∩y · V(0)

p + 1〉Ys I

=
3⎬

i,j=1

(
⊗(D(y, V(ij)

p ) + τ ∩ · V(ij)
p I〉Ys

)
T (p)

ij

+ d( p) ⊗D(y, V(0)
p ) + τ (∩y · V(0)

p + 1)I〉Ys
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=
( 3⎬

i,j=1

⊗(D(y, V(ij)
p ) + τ ∩ · V(ij)

p I〉Ys ⊗ J
ij
)

: T(p)

+
(
⊗D(y, V(0)

p ) + τ (∩y · V(0)
p + 1)I〉Ys ⊗ I

)
: T(p)

+ 1

τ
q̃f ⊗D(y, V(0)

p ) + τ (∩y · V(0)
p + 1)I〉Ys

=C(p) : T(p) + q̃f C
(c),

where
A(c) = (1 − mp)J + C(p), (4.5.8)

C
(c) = 1

τ
⊗D(y, V(0)

p ) + τ (∩y · V(0)
p + 1)I〉Ys , (4.5.9)

and

C(p) =
3⎬

i,j=1

⊗(D(y, V(ij)
p ) + τ ∩ · V(ij)

p I〉Ys ⊗ J
ij + τ C

(c) ⊗ I.

Lemma 4.12 Tensor A(c) is symmetric and is strictly positively definite, that is for
any arbitrary symmetric matrices θ = (θij) and β = (βij)

(
A(c) : θ

) : β = (
A(c) : β

) : θ , and
(
A(c) : θ

) : θ � ς (θ : θ ),

where positive constant ς is independent of θ .

Proof To prove the lemmawe need some properties of the tensorA(c)
0 , which follow

from the equalities

−τ ⊗∩y · V(0)
p 〉Ys = ⊗Dy(V(0)

p ) : Dy(V(0)
p )〉Ys + τ⊗(∩y · V(0)

p )(∩y · V(0)
p )〉Ys ,

(4.5.10)

−τ ⊗∩y · V(ij)
p 〉Ys = ⊗Dy(V(ij)

p ) : Dy(V(0)
p )〉Ys + τ⊗(∩y · V(0)

p )(∩y · V(ij)
p )〉Ys ,

(4.5.11)

−⊗Dy(V(0)
p ) : Jij〉Ys = ⊗Dy(V(ij)

p ) : Dy(V(0)
p )〉Ys + τ⊗(∩y · V(0)

p )(∩y · V(ij)
p )〉Ys ,

(4.5.12)

−⊗Dy(V(kl)
p ) : Jij〉Ys = ⊗Dy(V(ij)

p ) : Dy(V(kl)
p )〉Ys + τ⊗(∩y · V(kl)

p )(∩y · V(ij)
p )〉Ys ,

(4.5.13)

for all i, j, k, l = 1, 2, 3.
Equation (4.5.10) is an integral identity, corresponding to the Eq. (4.5.7) with the

test function V(0)
p .
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Equation (4.5.11) is an integral identity, corresponding to the Eq. (4.5.7) with the
test function V(ij)

p .
Equation (4.5.12) is an integral identity, corresponding to the Eq. (4.5.6) with the

test function V(0)
p .

Finally, Eq. (4.5.13) is an integral identity, corresponding to the Eq. (4.5.6) with
the test function V(kl)

p .
Next we put

Yθ =
3⎬

i,j=1

V(ij)
p θij, Yβ =

3⎬
i,j=1

V(ij)
p βij,

Y0
θ = V(0)

p tr θ, Y0
β = V(0)

p tr β.

Then equations (4.5.10)–(4.5.13) transform to

τ ⊗∩y · Y0
β〉Ys tr θ + ⊗Dy(Y

0
θ ) : Dy(Y

0
β )〉Ys

+ τ⊗(∩y · Y0
θ )(∩y · Y0

β)〉Ys = 0, (4.5.14)

τ ⊗∩y · Yβ〉Ys tr θ + ⊗Dy(Yθ ) : Dy(Y0
β)〉Ys

+ τ⊗(∩y · Yθ )(∩y · Y0
β)〉Ys = 0, (4.5.15)

⊗Dy(Y0
β)〉Ys : θ + ⊗Dy(Yθ ) : Dy(Y0

β)〉Ys

+ τ⊗(∩y · Yθ )(∩y · Y0
β)〉Ys = 0, (4.5.16)

⊗Dy(Yβ)〉Ys : θ + ⊗Dy(Yθ ) : Dy(Yβ)〉Ys

+ τ⊗(∩y · Yθ )(∩y · Yβ)〉Ys = 0. (4.5.17)

Thus,

(
A(c) : θ

) : β = (1 − mp)θ : β + (C(p) : θ
) : β

= (1 − mp)θ : β + ⊗D(y, Yθ )〉Ys : β + τ ⊗∩y · Yθ 〉Ys tr β

+ ⊗D(y, Y0
θ )〉Ys : β + τ ⊗∩y · Y0

θ 〉Ys tr β + τ (1 − mp) tr θ tr β.

Adding to the right hand side of the last equality the left hand side of (4.5.14)–(4.5.17)
we finally get

(
A(c) : θ

) : β = 〈(D(y, Yθ + Y0
θ ) + θ

) : (D(y, Yβ + Y0
β) + β

)⎛
Ys

+ τ
〈(∩y · (Yθ + Y0

θ ) + tr θ
)(∩y · (Yβ + Y0

β) + tr β
)⎛

Ys
.

This representation proves the symmetry of A(c). In particular,
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(
A(c) : θ

) : θ = 〈(D(y, Yθ + Y0
θ ) + θ

) : (D(y, Yθ + Y0
θ ) + θ

)⎛
Ys

+ τ
〈(∩y · (Yθ + Y0

θ ) + tr θ
)(∩y · (Yθ + Y0

θ ) + tr θ
)⎛

Ys
> 0,

which proves that A(c) is strictly positively definite.

Lemma 4.13 Functions ws and qf satisfy in αT the homogenized momentum
balance equation

∩ ·
(
ϕ0 B

(s) : D(ws) + qf C
(s)
)

+ ε̂F = 0, (4.5.18)

and the pressure qs in the solid skeleton is defined by

− 1

c∗
s

qs = 1

ϕ0
a(s) qf + A

(s) : D(ws). (4.5.19)

In (4.5.18) and (4.5.19) the constant forth rank tensor B(s), constant matrices C(s)

and A
(s), and the constant a(s) are defined below by (4.5.23)–(4.5.26). The tensor

B(s), matrices C(s) and A
(s), and the constant a(s) depend only on the geometry of

the solid cells Ys and Zs, and criterion τ = c 2
s

ϕ0
.

Proof As usual, we look for the solution to the microscopic equation (4.5.5) in the
form

Vc(x, t, z) =
3⎬

i,j=1

V(ij)
c (z)Dij(x, t) + V(0)

c (z)q̃f (x, t),

where

Dij = 1

2

(
χwi

s

χxj
+ χwj

s

χxi

)
, ws = (w1

s , w2
s , w3

s ),

and functions V(ij)
c and V(0)

c satisfy in Z following periodic boundary value problems

∩z ·
(
(1 − Γc)A

(c) : (D(z, V(ij)
c ) + Jij)) = 0, ⊗V(ij)

c 〉Zs = 0, (4.5.20)

∩z ·
(
(1 − Γc)

(
A(c) : D(z, V(0)

c ) + C
(c))) = 0, ⊗V(0)

c 〉Zs = 0, (4.5.21)

which are understood in the sense of distributions.
Therefore,

⊗D(z, Uc)〉Zs =
( 3⎬

i,j=1

⊗D(z, V(ij)
c )〉Zs ⊗ J

ij
)

: D(x, ws)
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+ q̃f ⊗D(z, V(0)
c )〉Zs = A

(c)
1 : D(x, ws) + q̃f C

(s)
1 ,

A
(c)
1 =

3⎬
i,j=1

⊗D(z, V(ij)
c )〉Zs ⊗ J

ij, C
(s)
1 = ⊗D(z, V(0)

c )〉Zs , (4.5.22)

and 〈〈(
D(y, Up) − Q̃sI

)⎛
Ys

⎛
Zs

=C(p) : ((1 − mc)D(x, ws) + ⊗D(z, Vc)〉Zs

)

+ q̃f (1 − mc)C
(c) = C(p) : ((1 − mc)D(x, ws)

+ A
(c)
1 : D(x, ws)

)

+ q̃f
(
C(p) : C(s)

1 + (1 − mc)C
(c))

=C(p) :
((

(1 − mc) J + A
(c)
1

) : D(x, ws)
)

+ q̃f
(
C(p) : C(s)

1 + (1 − mc)C
(c))

=
(
(1 − mc)C

(p) + C(p) : A(c)
1

)
: D(x, ws)

+ q̃f
(
C(p) : C(s)

1 + (1 − mc)C
(c)).

Coming back to the macroscopic equation (4.3.13) we see that

B(s) = (1 − m) J + (1 − mp)A
(c)
1 + (1 − mc)C

(p) + C(p) : A(c)
1

= (1 − m) J + ((1 − mp) J + C(p)
) : A(c)

1 + (1 − mc)C
(p)

= (1 − m) J + A(c) : A(c)
1 + (1 − mc)C

(p)

= (1 − mc)
(
(1 − mp) J + C(p)

)+ A(c) : A(c)
1

= (1 − mc)A
(c) + A(c) : A(c)

1 = A(c) : ((1 − mc) J + A
(c)
1

)
,

where we have used equalities (1− m) = (1− mp)(1− mc) and J : A = A : J = A
for any forth rank tensor A.

Thus,

B(s) = A(c) : ((1 − mc) J + A
(c)
1

)
. (4.5.23)

In a completely analogous way, we obtain

mC
(s) = (1 − mp)C

(s)
1 + C(p) : C(s)

1 + (1 − mc)C
(c) − I

= (
(1 − mp)J + C(p)

) : C(s)
1 + (1 − mc)C

(c) − I

= A(c) : C(s)
1 + (1 − mc)C

(c) − I.
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Therefore,

mC
(s) = A(c) : C(s)

1 + (1 − mc)C
(c) − I. (4.5.24)

To calculate the pressure in the solid componentweuse themacroscopic continuity
equation for the solid component

− 1

c2s
qs = (1 − m)∩ · ws + (1 − mp)⊗∩z · Uc〉Zs + ⊗⊗∩y · Up〉Ys〉Zs ,

which follows from themicroscopic continuity equation (4.5.4) after integration over
Ys and Zs. Next we have

⊗∩y · Up〉Zs = A
(p) : (D(x, ws) + D(z, Uc)

)+ a(p) q̃f ,

where

A
(p) =

3⎬
i,j=1

⊗∩y · v(ij)
p 〉Ys J

ij + ⊗∩y · v(0)
p 〉Ys I,

a(p) = 1

τ
⊗∩y · v(0)

p 〉Ys ,

and

⊗⊗∩y · Up〉Ys〉Zs =A
(p) :

(
(1 − mc)D(x, ws)

+ ⊗D(z, Uc)〉Zs

)
+ (1 − mc)a

(p) q̃f .

Thus,

− 1

c∗
s

qs = (1 − m)I : D(x, ws) + (1 − mc)A
(p) : D(x, ws)

+ A
(p) : ⊗D(z, Uc)〉Zs + (1 − mc)a

(p) q̃f

= (1 − mc)A
(c) : D(x, ws) + A

(c) : ⊗D(z, Uc)〉Zs + a(c) q̃f

=A
(c) :

(
(1 − mc)J + ⊗D(z, Uc)〉Zs

)
+ +a(c) q̃f ,

where
A

(c) = A
(p) + (1 − mp)I, a(c) = a(p)(1 − mc).

Since
⊗D(z, Uc)〉Zs = A

(c)
1 : D(x, ws) + q̃f C

(s)
1 ,
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then finally one has

− 1

c∗
s

qs = A
(c) :

(
(1 − mc)J + A

(c)
1

)
: D(x, ws) + (A(c) : C(s)

1 + a(c))q̃f ,

and
A

(s) = A
(c) : ((1 − mc)J + A

(c)
1

)
, (4.5.25)

a(s) = 1

m

(
a(c) + A

(c) : C(s)
1

)
. (4.5.26)

Lemma 4.14 The tensor B(s) is symmetric and strictly positively definite.

Proof To prove the first statement of the Lemma we use the equality
∫

Zs

(
A(c) : (D(z, V(ij)

c ) + Jij) : D(z, V(kl)
c )dz = 0, (4.5.27)

which is an integral identity corresponding to (4.5.20) with the test function V(kl)
c .

Let

Zθ =
3⎬

i,j=1

V(ij)
c θij, Zβ =

3⎬
i,j=1

V(ij)
c βij.

Then (4.5.27) takes the form

〈(
A(c) : D(z, Zθ )

) : D(z, Zβ)
⎛
Zs

+ 〈(A(c) : D(z, Zβ)
) : θ

⎛
Zs

= 0. (4.5.28)

Note that by definition (see (4.5.22))

A
(c)
1 : θ = ⊗D(z, Zθ )〉Zs . (4.5.29)

Relations (4.5.28) and (4.5.29) lead to the following chain of equalities

(
B(s) : θ

) : β = (1 − mc)
(
A(c) : θ

) : β +
((
A(c) : A(c)

1

) : θ
)

: β

= (1 − mc)
(
A(c) : θ

) : β + (A(c) : ⊗D(z, Zθ )〉Zs

) : β

= (1 − mc)
(
A(c) : θ

) : β + ⊗(A(c) : D(z, Zθ )
) : D(z, Zβ)〉Zs

+ ⊗(A(c) : D(z, Zβ)
) : θ 〉Zs + (A(c) : ⊗D(z, Zθ )〉Zs

) : β

= 〈(A(c) : (D(z, Zθ ) + θ
)) : (D(z, Zβ) + β

)⎛
Zs

,

which proves the symmetry ofB(s).
In particular,

(
B(s) : β

) : β = 〈(
A(c) : (D(z, Zβ) + β

)) : (D(z, Zβ) + β
)⎛

Zs
> 0.



Chapter 5
Filtration in Composite Incompressible Media

5.1 Filtration from a Reservoir into a Porous Medium

5.1.1 The Problem Statements and Main Results

The problem in its simplest setting is modeled by two domains α0 and α having a
common boundary S0 (Fig. 5.1). The domain α0 models a reservoir and is occupied
by liquid, and the domain α models a porous medium. The motion of the liquid in
α0 for t > 0 is governed by the non-stationary Stokes system

∇ · w = 0, (5.1.1)

ρ0χ f
∂2w
∂t2

= ∇ · P f + χ f e, P f = λμD

(
x,

∂w
∂t

)
− p I, (5.1.2)

and the joint motion of the poroelastic media in α for t > 0 is governed by the
modelM24 consisting of the continuity equation (5.1.1) and the momentum balance
equation

ρ0χ
ν ∂2w

∂t2
= ∇ · P + χνe, (5.1.3)

where

P = ΩνλμD

(
x,

∂w
∂t

)
+ (1 − Ων)Γ0D(x, w) − p I, (5.1.4)

and χν = χ f Ω
ν + χs(1 − Ων).

On the common boundary S0 = ∂α ∪ ∂α0 for t > 0 the continuity conditions

lim
x ⊂ x0

x ∩ α0

w(x, t) = lim
x ⊂ x0
x ∩ α

w(x, t), (5.1.5)
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Fig. 5.1 Filtration from
reservoir

lim
x ⊂ x0

x ∩ α0

P f (x, t) · n(x0) = lim
x ⊂ x0
x ∩ α

P(x, t) · n(x0), (5.1.6)

hold true for displacements and for normal tensions. Here n(x0) is a normal vector
to the boundary S0 at x0 ∩ S0.

We complete the problem with the Neumann boundary condition

P f (x, t) · n = −p 0(x, t)n, (5.1.7)

on the part S1 of the outer boundary S of the domain Q = α0 ∈ S0 ∈ α (which is
also the part of the boundary ∂α0) for t > 0, the Dirichlet boundary condition

w(x, t) = 0 (5.1.8)

on the part S2 = S\S1 of the outer boundary S for t > 0, and initial conditions

w(x, 0) = ∂w
∂t

(x, 0) = 0, x ∩ Q. (5.1.9)

In (5.1.1)–(5.1.9) the characteristic function Ων(x) of the domain αν
f is given by the

expression

Ων(x) = ε(x)Ω
(x

ν

)
,

where ε(x) is the characteristic function of the domain α , Ω(y) is the characteristic
function of the liquid cell Y f in the unit cube Y , and e is a unit vector in the direction
of gravity.

Let, as usual,
lim
ν∅0

λμ(ν) = μ0, lim
ν∅0

λμ

ν2
= μ1.
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We use the problem (5.1.1)–(5.1.9) to derive the desired homogenized problem for
the case μ0 = 0 and 0 < μ1 < ∞ and will do it in two steps. First we fix ρ0 and
pass to the limit as ν ∅ 0, and after that we pass to the limit as ρ0 ∅ 0.

For the case 0 < μ0 < ∞ we will use the model M15, or, more precisely, the
formal limit as ρ0 ∅ 0 of the model (5.1.1)–(5.1.9), which consists of relations
(5.1.1), (5.1.4)–(5.1.8), completed with the momentum balance equation

∇ · P f + χ f e = 0 (5.1.10)

in the domain α0 for t > 0, the momentum balance equation

∇ · P + χνe = 0 (5.1.11)

in the domain α for t > 0, and the initial condition

w(x, 0) = 0, x ∩ α ∈ αν
f . (5.1.12)

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the structure
of the pore space, defined by the characteristic function Ω(y). We also assume that
S1 is a part of the plane {x3 = 0}, e = −e3, and that the domain Q is a subset of
the half-space {x3 < 0}. Moreover we suppose that S2 is a C2—smooth surface and
in some small neighborhood of the plane {x3 = 0} it is represented by the equation
ς(x1, x2) = 0.

The given function p0 is supposed to be smooth:

∫

QT

(
|∇ p0

(
x, t
)|2 +

∣∣∣∇
(∂p0

∂t

)(
x, t
)∣∣∣
2
)

dxdt = P2 < ∞. (5.1.13)

Definition 5.1 We say that the pair of functions {wν, p ν}, such that

p ν ∩ L2(QT ), wν,
∂wν

∂t
,
(
ϕ + (1 − ϕ )Ων

)∇ ∂wν

∂t
, ∇wν ∩ L2(QT ),

is a weak solution of the problem (5.1.1)–(5.1.9), if it satisfies the continuity equation
(5.1.1) almost everywhere in QT = Q × (0, T ), the boundary condition (5.1.8), the
initial condition (5.1.9) for the function wν, and the integral identity

∫

QT

(
− ρ0 χ̃ ν ∂wν

∂t
· ∂ξ

∂t
+ (ϕP f + (1 − ϕ )P

) : D(x, ξ)

)
dxdt

=
∫

QT

(
χ̃ νe · ξ − ∇ · (ξ p0)

)
dxdt (5.1.14)

for all smooth functions ξ, such that ξ(x, t) = 0 at the boundary S2
T , and ξ(x, T ) =

0, x ∩ Q.
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In (5.1.14) χ̃ ν = (
ϕ + (1 − ϕ )Ων

)
χ f + (1 − ϕ )(1 − Ων)χs and ϕ = ϕ(x) is the

characteristic function of the domain α0 in Q.
The identity (5.1.14) obviously contains Eqs. (5.1.2) and (5.1.3), and boundary

conditions (5.1.6) and (5.1.7).

Definition 5.2 We say that the pair of functions {wν, p ν}, such that

p ν ∩ L2(QT ), wν, D(x, w),
(
ϕ + (1 − ϕ )Ων

)
D

(
x,

∂wν

∂t

)
∩ L2(QT ),

is a weak solution of the problem (5.1.1), (5.1.4)–(5.1.8), (5.1.10)–(5.1.12), if it
satisfies the continuity equation (5.1.1) almost everywhere in QT , the boundary
condition (5.1.8), the initial condition (5.1.12), and the integral identity

∫

QT

((
ϕP f + (1 − ϕ )P

) : D(x, ξ) + ∇ · (ξ p0) − χ̃ νe · ξ
)

dxdt = 0 (5.1.15)

for all smooth functions ξ, such that ξ(x, t) = 0 at the boundary S2
T .

Theorem 5.1 Let
p0 = p0(t). (5.1.16)

Then for all ν > 0 and for an arbitrary time interval [0, T ] there exists a unique
generalized solution of problem (5.1.1)–(5.1.9) and

max
0≤t≤T

∫

Q

(
ρ 20

∣∣∣∂
2wν

∂t2

∣∣∣
2 + ρ0

∣∣∣∂wν

∂t

∣∣∣
2 + Γ0(1 − ϕ )(1 − Ων)

∣∣∣D(x, wν)

∣∣∣
2)

dx

+
∫

QT

(
|pν|2 + λμ

(
ϕ + (1 − ϕ )Ων

)∣∣∣D(x,
∂wν

∂t
)

∣∣∣
2)

dxdt � C0,

(5.1.17)

where here and in what follows, we denote as C0 any constant independent of ρ0
and ν.

Theorem 5.2 Under condition (5.1.13) for all ν > 0 and for an arbitrary time
interval [0, T ] there exists a unique generalized solution of problem (5.1.1), (5.1.4)–
(5.1.8), (5.1.10)–(5.1.12) and

∫

QT

(
| pν |2 +λμ

(
ϕ + (1 − ϕ )Ων

)∣∣∣D
(

x,
∂wν

∂t

)∣∣∣
2
)

dxdt

+ Γ0 max
0≤t≤T

∫

α

(
1 − Ων

) | D(x, wν) |2 dx � C0(P
2 + 1). (5.1.18)
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Theorem 5.3 Under the conditions of Theorem 5.1 let

μ0 = 0, 0 < Γ0, ρ0 < ∞, μ1 = ∞,

{wν, p ν} be the weak solution of the problem (5.1.1)–(5.1.9) and wν
s = Eαν

s

(
wν
)

be an extension (3.2.8) from the domain αν
s onto the domain α .

Then sequences {wν},
{

∂wν

∂t

⎜
,

{
(1 − ϕ )

∂2wν
s

∂t2

⎜
and {pν} converge weakly in

L2(QT ) and L2(QT ) to the functions W, v, (1 − ϕ )
∂2ws

∂t2
, and p respectively as

ν ⊂ 0.
At the same time the sequence {wν

s } converges weakly in W1,0
2 (αT ) to the function

ws as ν ⊂ 0.
The limiting pressure p and the limiting velocity v of the liquid satisfy the system

ρ0χ f
∂v
∂t

+ ∇ p = χ f e, ∇ · v = 0 (5.1.19)

in the domain α0 for t > 0.
In the domain α for t > 0 limiting functions ws and p solve the homogenized

system, consisting of the homogenized momentum balance equation

ρ0χ̂
∂2ws

∂t2
= ∇ · P(s)

0 + χ̂ e, (5.1.20)

P
(s)
0 = Γ0 N

s
0 : D(x, ws) − p I,

and the continuity equation
∇ · ws = 0. (5.1.21)

The problem is completed with the continuity conditions

lim
x ⊂ x0 ∩ S0
x ∩ α

ws(x, t) · n(x0) = lim
x ⊂ x0 ∩ S0
x ∩ α0

w(x, t) · n(x0), (5.1.22)

lim
x ⊂ x0 ∩ S0
x ∩ α

P
(s)
0 (x, t) · n(x0) = − lim

x ⊂ x0 ∩ S0
x ∩ α0

p(x, t) · n(x0) (5.1.23)

on the common boundary S0, the homogeneous boundary condition

ws = 0 (5.1.24)

on the part S2 of the outer boundary S, the boundary condition
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p(x, t) = p0(t) (5.1.25)

on the part S1
0 = S1 ∪ α0 of the outer boundary S, and the boundary condition

P
(s)
0 (x, t) · n(x0) = −p0(t)n(x0) (5.1.26)

on the part S1
1 = S1 ∪ α of the outer boundary S.

In (5.1.20)–(5.1.26) n(x0) is a unit normal to S0 (or S1
1 ) at x0 ∩ S0 (or S1

1 ),

χ̂ = m χ f + (1 − m) χs, m =
∫

Y
Ω(y)dy,

and the symmetric strictly positively definite constant fourth-rank tensor Ns
0 is given

by (1.2.35) (see Theorem 1.3 of Chap.1).

We refer to the problem (5.1.19)–(5.1.26) as the homogenized model (FCM)1.

Theorem 5.4 Under the conditions of Theorem 5.3 let ρ0 = 1

n
, and p(n), w(n), and

w(n)
s be the weak solution of the problem (5.1.19)–(5.1.26).
Then the sequence {p(n)} converges weakly in L2(QT ) to the function p, and the

sequence {w(n)
s } converges weakly in W1,0

2 (αT ) to the function ws as n ⊂ ∞.
The limiting pressure p of the liquid in the domain α0 coincides for t > 0 with

the hydrostatic pressure

p(x, t) = p0(t) − χ f x3 ∞ p0(x, t). (5.1.27)

The limiting functions solve the homogenized system in the domain α for t > 0,
consisting of the homogenized momentum balance equation

∇ · P(s)
0 + χ̂ e = 0, (5.1.28)

and the continuity equation (5.1.21).
The problem is completed with the boundary condition (5.1.24) on the part S2 of

the outer boundary S, the boundary condition (5.1.26) on the part S1
1 = S1 ∪ α of

the outer boundary S, and the boundary condition

lim
x ⊂ x0
x ∩ α

P
(s)
0 (x, t) · n(x0) = −p0(x0, t) · n(x0) (5.1.29)

on the common boundary S0.
In (5.1.26)–(5.1.29) n(x0) is a unit normal to S0 (or S1

1 ) at x0 ∩ S0 (or S1
1 ),

χ̂ = m χ f + (1 − m) χs, m =
∫

Y
Ω(y)dy,

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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and the symmetric strictly positively definite constant fourth-rank tensor Ns
0 is given

by (1.2.35) (see Theorem 1.3 of Chap.1).

We refer to the problem (5.1.24), (5.1.26)–(5.1.29) as the homogenized model
(FCM)2.

Theorem 5.5 Under the conditions of Theorem 5.1 let

μ0 = 0, 0 < Γ0, μ1, ρ0 < ∞,

{wν, p ν} be the weak solution of the problem (5.1.1)–(5.1.9) and wν
s = Eαν

s

(
wν
)

be an extension (1.2.9) from the domain αν
s onto the domain α .

Then sequences {(1−ϕ )Ων pν}, {pν}, {wν}, {ϕ ∂wν

∂t
},
{
ϕ

∂2wν

∂t2

⎜
,

{
(1 − ϕ )

∂2wν
s

∂t2

⎜
,

{(1 − ϕ )Ων wν},
{
(1 − ϕ )Ων ∂wν

∂t

⎜
and

{
(1 − ϕ )Ων ∂2wν

∂t2

⎜
converge weakly in

L2(QT ) and L2(QT ) to the functions (1 − ϕ )mp f ∩ W 1,0
2 (αT ), p, w, ϕv, ϕ

∂v
∂t

,

(1−ϕ )
∂2ws

∂t2
, (1−ϕ )w( f ), (1−ϕ )

∂w( f )

∂t
and (1−ϕ )

∂2w( f )

∂t2
respectively as ν ⊂ 0,

and the sequence {wν
s } converges weakly in W1,0

2 (αT ) to the function ws as ν ⊂ 0.
The limiting pressure p and the limiting velocity v of the liquid in the domain α0

satisfy in α0 for t > 0 the system (5.1.19).
In the domain α for t > 0 limiting functions solve the homogenized system,

consisting of the continuity equation

∇ · (w( f ) + (1 − m) ws
) = 0, (5.1.30)

the homogenized momentum balance equation

∇ · P(s)
1 + χ̂ e = 0, (5.1.31)

P
(s)
1 = Γ0 N

s
1 : D(x, ws) − p f I

for the solid component, and the momentum balance equation

∂w( f )

∂t
−m

∂ws

∂t
=
∫ t

0
B

( f )(ρ0; t −ρ) ·
(

−∇ p f (x, ρ )−χ f
∂2ws

∂ρ 2
(x, ρ )+χ f e

)
dρ

(5.1.32)
for the liquid component, completed with the continuity conditions

lim
x ⊂ x0 ∩ S0
x ∩ α

P
(s)
1 (x, t) · n(x0) = − lim

x ⊂ x0 ∩ S0
x ∩ α0

p(x, t) · n(x0), (5.1.33)
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lim
x ⊂ x0 ∩ S0
x ∩ α

(
w f + (1 − m)ws

)
(x, t) · n(x0) = lim

x ⊂ x0 ∩ S0
x ∩ α0

w(x, t) · n(x0), (5.1.34)

lim
x ⊂ x0 ∩ S0
x ∩ α

p f (x, t) = lim
x ⊂ x0 ∩ S0
x ∩ α0

p(x, t) (5.1.35)

on the common boundary S0, boundary conditions (5.1.24), (5.1.25), the boundary
condition

w( f )(x0, t) · n(x0) = 0 (5.1.36)

on the part S2 of the outer boundary S, and boundary conditions

P
(s)
1 (x, t) · n(x0) = −p0(t)n(x0), (5.1.37)

p f (x, t) = p0(t) (5.1.38)

on the part S1
1 of the outer boundary S.

In (5.1.30)–(5.1.38) n(x0) is a unit normal to S0 (or S2) at x0 ∩ S0 (or S2),

χ̂ = m χ f + (1 − m) χs, m =
∫

Y
Ω(y)dy,

the symmetric matrix B
( f )(ρ0; t) is given below by formula (5.1.70), and the sym-

metric strictly positively definite constant fourth-rank tensor Ns
1 is given by (1.2.38)

(see Theorem 1.4 of Chap.1).

We refer to the problem (5.1.19), (5.1.24), (5.1.25), (5.1.30)–(5.1.38) as the homog-
enized model (FCM)3.

Theorem 5.6 Under the conditions of Theorem 5.5 let ρ0 = 1

n
, and p(n), w(n)

s ,

w( f,n), p(n), τ f
(n) be a solution of the model (FCM)3.

Then sequences {p(n)}, {(1 − ϕ )τ f
(n)}, and {(1 − ϕ )w( f,n)} converge weakly in

L2(QT ) and L2(QT ) to the functions p, (1 − ϕ )τ f , and (1 − ϕ )w( f ) respectively

as n ⊂ ∞, and the sequence {w(n)
s } converges weakly in W1,0

2 (αT ) to the function
Ws as n ⊂ ∞.

The limiting pressure p of the liquid in the domain α0 coincides for t > 0 with
the hydrostatic pressure (5.1.27).

The limiting functions ws , τ f , and w( f ) solve in the domain α for t > 0 the
homogenized system, consisting of the homogenized momentum balance equation
(5.1.31), the continuity equation (5.1.30), and Darcy’s law

w( f ) = 1

μ1
B · (− ∇τ f + t χ f e

)
, (5.1.39)
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for the liquid component, completed with the boundary conditions (5.1.24), (5.1.33),
(5.1.36), (5.1.37), and the boundary condition

τ f (x, t) =
∫ t

0
p0(x, ρ )dρ (5.1.40)

on the common boundary S0 and on the part S1
1 of the outer boundary S.

In (5.1.39), (5.1.40)

τ f (x, t) =
∫ t

0
p(x, ρ )dρ, m =

∫

Y
Ω(y)dy,

the symmetric strictly positive definite constant matrix B is given by (1.1.27) (see
Theorem 1.1 of Chap.1).

We refer to the problem (5.1.24), (5.1.25), (5.1.33), (5.1.36), (5.1.37), (5.1.39),
(5.1.40) as the homogenized model (FCM)4.

Theorem 5.7 Under the conditions of Theorem 5.4 let {w(k)
s , w( f,k), τ f

(k)} be a
solution of the model (FCM)4 with Γ0 = k.

Then sequences {τ f
(k)}, and {w( f,k)} converge weakly in L2(QT ) and L2(QT )

to the functions τ f , and w( f ) respectively as k ⊂ ∞, and the sequence {w(k)
s }

converges strongly in L2(αT ) to zero.
In the domain α for t > 0 limiting functions solve the homogenized system,

consisting of the continuity equation

∇ · w( f ) = 0 (5.1.41)

and Darcy’s law

w( f ) = 1

μ1
B · (− ∇τ f + t χ f e

)
, (5.1.42)

for the liquid component, completed with the boundary conditions (5.1.36) and
(5.1.40).

We refer to the problem (5.1.36), (5.1.40)–(5.1.42) as the homogenized model
(FCM)5.

Theorem 5.8 Under the condition of Theorem 5.2 let

λμ = μ0, 0 < μ0, Γ0 < ∞

and {wν, p ν} be the weak solution of the problem (5.1.1), (5.1.4)–(5.1.8), (5.1.10)–
(5.1.12).

Then the sequence {pν} converges weakly in L2(QT ) as ν ⊂ 0 to the function
p and the sequence {wν} converges weakly in W1,0

2 (QT ) as ν ⊂ 0 to the func-

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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tion w. The limiting functions solve the homogenized system, consisting of the Stokes
equations

∇ · w = 0, (5.1.43)

∇ ·
(

μ0D

(
x,

∂w
∂t

)
− p I

)
+ χ f e = 0 (5.1.44)

in the domain α0 for t > 0, the continuity equation (5.1.39) and the homogenized
momentum balance equation

∇ · ⎧P + χ̂ e = 0 (5.1.45)

in the domain α for t > 0, where

⎧P = −p I + N1 : D
(

x,
∂w
∂t

)
+ N2 : D(x, w) +

∫ t

0
N3(t − ρ) : D(x, w(x, ρ ))dρ.

The problem is completed with the continuity condition for normal tensions

lim
x ⊂ x0

x ∩ α0

(
μ0D

(
x,

∂w
∂t

(x, t)
)

− p(x, t) I

)
· n(x0) = lim

x ⊂ x0
x ∩ α

⎧P(x, t) · n(x0) (5.1.46)

on the common boundary S0, the Neumann boundary condition

(
μ0D

(
x,

∂w
∂t

(x, t)
)

− p(x, t) I

)
· n = −p 0(x, t)n, (5.1.47)

on the part S1
0 of the outer boundary S, the Neumann boundary condition

⎧P · n = −p 0(x, t)n, (5.1.48)

on the part S1
1 of the outer boundary S, the Dirichlet boundary condition

w(x, t) = 0 (5.1.49)

on the part S2 of the outer boundary S, and the initial condition

w(x, 0) = 0, x ∩ α. (5.1.50)

Fourth-rank tensors N1, N2, N3(t) are given by formulae (1.4.30) (see Theorem
1.11 of Chap.1) and the symmetric tensor N1 is strictly positively definite.

We refer to the problem (5.1.43)–(5.1.50) as the homogenized model (FCM)6.
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5.1.2 Proof of Theorem 5.1

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1

2

∫

Q

(
ρ0χ̃

ν

∣∣∣∣
∂wν

∂t
(x, t)

∣∣∣∣
2

+ Γ0(1 − ϕ )(1 − Ων)
∣∣D(x, wν(x, t)

)∣∣2
)

dx

+ λμ

∫ t

0

∫

Q

(
ϕ + (1 − ϕ )Ων

)∣∣∣∣D
(

x,
∂wν

∂ρ
(x, ρ )

)∣∣∣∣
2

dxdρ

=
∫ t

0

∫

Q
χ̃ νe · ∂wν

∂t
(x, ρ )dxdρ, (5.1.51)

and

1

2

∫

Q

(
ρ0χ̃

ν

∣∣∣∣
∂2wν

∂t2
(x, t)

∣∣∣∣
2

+ Γ0(1 − ϕ )(1 − Ων)

∣∣∣∣D
(

x,
∂wν

∂t
(x, t)

)∣∣∣∣
2)

dx

+ λμ

∫ t

0

∫

Q

(
ϕ + (1 − ϕ )Ων

)∣∣∣∣D
(

x,
∂2wν

∂ρ 2
(x, ρ )

)∣∣∣∣
2

dxdρ

= 1

2

∫

Q
ρ0χ̃

ν

∣∣∣∣
∂2wν

∂t2

∣∣∣∣
2

(x, 0)dx = I0. (5.1.52)

We may use, for example, Galerkin’s method. This method shows that for any t � 0
and any divergent free function ξ ∩ W 1

2 (Q), vanishing at x ∩ S2, the equality

∫

Q
ρ0χ̃

ν ∂2wν

∂t2
(x, t) · ξ(x)dx +

∫

Q

(
ϕP f + (1 − ϕ )P

)
(x, t) : D(x, ξ(x)

)
dx

=
∫

Q
χ̃ νe · ξ(x)dx

holds true.
For t = 0 P f + (1 − ϕ )P = 0, and therefore

∫

Q
ρ0χ̃

ν ∂2wν

∂t2
(x, 0) · ξ(x)dx =

∫

Q
χ̃ νe · ξ(x)dx .

In particular, Galerkin’s method states that
∂2wν

∂t2
(x, 0) is a divergent free function

in Q. Therefore, for

ξ(x) = ∂2wν

∂t2
(x, 0)



180 5 Filtration in Composite Incompressible Media

∫

Q
ρ0χ̃

ν
∣∣∣∂

2wν

∂t2
(x, 0)

∣∣∣
2
dx =

∫

Q
χ̃ νe · ∂2wν

∂t2
(x, 0)dx,

which implies ∫

Q
ρ0χ̃

ν
∣∣∣∂

2wν

∂t2
(x, 0)

∣∣∣
2
dx � C0

ρ0
.

The last relation and (5.1.52) provide an estimate of the time derivative
∂2wν

∂t2
in

(5.1.17).
To estimate the right-hand side of (5.1.51) we use representations

χ̃ ν = χ f + (1 − ϕ )(1 − Ων)(χs − χ f ), e = −∇ x3,

integration by parts and the continuity equation (5.1.1)

χ f

∫

Q
e · wνdx = −χ f

∫

Q
(∇ x3) · wνdx = 0.

So,

I =
∫ t

0

∫

Q
χ̃νe · ∂wν

∂t
dxdρ = −χ f

∫

Q
(∇x3) · wνdx + (χs − χ f )

∫

α
(1 − Ων)e · wνdx

= (χs − χ f )

∫

α
(1 − Ων)e · wνdx .

Next we apply the Hölder inequality

I � (χs − χ f )
( ∫

α

dx
) 1

2
( ∫

α

(1 − Ων)|wν|2dx
) 1

2

� (χs − χ f )
2

2δ
|α| + δ

2

∫

α

(1 − Ων)|wν|2dx

and extension wν
s = Eαν

s

(
wν
)
(see (3.2.8) and Appendix B, Lemma B.9) from the

domain αν
s onto the domain Q with Friedrichs–Poincaré’s inequality:

I1 =
∫

α

(1 − Ων)|wν|2dx =
∫

α

(1 − Ων)|wν
s |2dx � C

∫

α

(1 − Ων)|∇ wν
s |2dx,

and Korn’s inequality

∫

α

(1 − Ων)|∇ wν
s |2dx � C

∫

α

(1 − Ων)|D(x, wν
s )|2dx

= C
∫

Q
(1 − Ων)(1 − ϕ )|D(x, wν)|2dx .
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Finally one has

I � (χs − χ f )
2

2δ
|α| + C

δ

2

∫

Q
(1 − Ων)(1 − ϕ )|D(x, wν)|2dx,

which together with (5.1.52) prove (5.1.17).
The pressure p is estimated in the same way as in Chap.3 (Theorem 3.1).

5.1.3 Proof of Theorem 5.2

As above, the proof of this theorem repeats the proofs of similar theorems in the
previous chapters. Estimates (5.1.18) for displacements are based on the energy
equality

Γ0

2

∫

α

(1 − Ων)

∣∣∣D(x, wν(x, t)
)∣∣∣
2
dx

+ μ0

∫ t

0

∫

Q

(
ϕ + (1 − ϕ )Ων

)∣∣∣∣D
(

x,
∂wν

∂ρ
(x, ρ )

)∣∣∣∣
2

dxdρ

=
∫ t

0

∫

Q

(
χ̃ νe − ∇ p0

) · ∂wν

∂t
(x, ρ )dxdρ.

The estimation of the pressure pν is the same as in Theorem 3.1.

5.1.4 Proof of Theorem 5.3

On the basis of estimates (5.1.17), the results of Chap.1, and LemmaB.5.1 (μ1 = ∞)
we conclude that for ν ⊂ 0

pν ⊂ p weakly in L2(QT ),

wν ⊂ w(x, t) weakly and two-scale in L2(QT ),

wν
s ⊂ ws(x, t) weakly and two-scale in L2(QT ),

∂wν

∂t
⊂ ∂w

∂t
(x, t) weakly and two-scale in L2(QT ),

∂wν
s

∂t
⊂ ∂ws

∂t
(x, t) weakly and two-scale in L2(αT ),

http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_1


182 5 Filtration in Composite Incompressible Media

∂2wν

∂t2
⊂ ∂w2

∂t2
(x, t) weakly and two-scale in L2(QT ),

∂2wν
s

∂t2
⊂ ∂w2

s

∂t2
(x, t) weakly and two-scale in L2(αT ),

w(x, t) = ws(x, t), x ∩ α, t > 0,

D
(
x, wν

s

) ⊂ D(x, ws) + D
(
y, U(x, t, y)

)
two-scale in L2(αT ).

Passing to the limit as ν ⊂ 0 in (5.1.14) with test functions ξ = ξ(x, t), vanishing
at t = T and at S2, we arrive at the microscopic momentum balance equation in the
form of the integral identity

∫

QT

∇ · (ξ p0)dxdt − QT

∫

αT

(
ρ0χ̂

∂ws

∂t
· ∂ξ

∂t
+ χ̂ e · ξ

)
dxdt

+
∫

αT

(
Γ0
(
(1 − m)D(x, ws) + →D(x, U)◦Ys

)− p I

)
: D(x, ξ)dxdt

=
∫

α0
T

(
ρ0χ f

∂w
∂t

· ∂ξ

∂t
+ χ f e · ξ + p (∇ · ξ)

)
dxdt.

In Theorem 1.3 of Chap.1 we have shown that

(1 − m)D(x, ws) + →D(x, U)◦Ys = Ns
0 : D(x, ws).

Therefore, the last identity takes the form

∫

QT

∇ · (ξ p0)dxdt −
∫

αT

(
ρ0χ̂

∂ws

∂t
· ∂ξ

∂t
+ χ̂ e · ξ

)
dxdt

+
∫

αT

(
Γ0N

s
0 : D(x, ws) − p I

) : D(x, ξ)dxdt

=
∫

α0
T

(
ρ0χ f

∂w
∂t

· ∂ξ

∂t
+ χ f e · ξ + p (∇ · ξ)

)
dxdt. (5.1.53)

The continuity equation (5.1.1) for wν is evidently transformed into the continuity
equation in the form of the integral identity

∫

QT

∇ Π · wdxdt = 0 (5.1.54)

for any smooth function Π vanishing at S1×(0, T ). This identity implies the continuity
equation in (5.1.19), the continuity equation (5.1.21), and the continuity condition
(5.1.22) on the common boundary S0.
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In turn, the integral identity (5.1.53) implies the dynamic equation in (5.1.19),
the dynamic equation (5.1.20), the continuity condition (5.1.23) on the common
boundary S0, the boundary condition (5.1.26) on the part S1

1 of the outer boundary
S, and the boundary condition (5.1.25) on the part S1

0 of the outer boundary S.
The boundary condition (5.1.24) is a consequence of the corresponding boundary
condition (5.1.8) (see Chap.1).

5.1.5 Proof of Theorem 5.4

Note that estimates (5.1.17) are still valid for the functions p(n) and w(n)
s . Then

(5.1.17) and (5.1.19) imply the inclusion ∇ p(n) ∩ L2(α
0
T ), and estimates

max
0≤t≤T

∫

Q

(
1

n2 ϕ

∣∣∣∂
2w(n)

∂t2

∣∣∣
2 + 1

n2 (1 − ϕ )

∣∣∣∂
2w(n)

s

∂t2

∣∣∣
2
)

dx

+ max
0≤t≤T

∫

Q

(
1

n
ϕ

∣∣∣∂w(n)

∂t

∣∣∣
2+ 1

n
(1 − ϕ )

∣∣∣∂w(n)
s

∂t

∣∣∣
2 + Γ0(1 − ϕ )|D(x, w(n)

s )|2
)

dx

+
∫ T

0

∫

Q

(
|p(n)|2 + ϕ |∇ p(n)|2

)
dxdt � C0. (5.1.55)

Coming back to (5.1.53) in the form

∫

QT

∇ · (ξ p0)dxdt −
∫

αT

(
1

n
χ̂

∂w(n)
s

∂t
· ∂ξ

∂t
+ χ̂ e · ξ

)
dxdt

+
∫

αT

(
Γ0N

s
0 : D(x, w(n)

s ) − p(n)
I
) : D(x, ξ)dxdt

=
∫

α0
T

(
1

n
χ f

∂w(n)

∂t
· ∂ξ

∂t
+ χ f e · ξ + p(n) (∇ · ξ)

)
dxdt (5.1.56)

we conclude that
p(n)(x, t) = p0(t), x ∩ S1

0 , t > 0 (5.1.57)

as a trace of function from W 1,0
2 (α 0

T ).
Due to estimates (5.1.55) there exists a subsequence of n (still denoted for sim-

plicity by n) such that

1

n
χ̂

∂w(n)
s

∂t
⊂ 0 strongly in L2(αT ),

1

n
χ f

∂w(n)

∂t
⊂ 0 strongly in L2(α

0
T ),
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∇ p(n) γ ∇ p 0, p(n) γ p 0 weakly in L2(α
0
T ) and L2(α

0
T ),

and

p(n) γ p, w(n)
s γ ws, ∇ w(n)

s ⊂ ∇ ws weakly in L2(αT ) andL2(αT )

as n ⊂ ∞.
The limit in (5.1.56) and in (5.1.54) as n ⊂ ∞ results in the integral identity

∫

QT

∇ · (ξ p0)dxdt −
∫

α0
T

(
χ f e · ξ + p0 (∇ · ξ)

)
dxdt

+
∫

αT

((
Γ0N

s
0 : D(x, ws) − p I

) : D(x, ξ) − χ̂ e · ξ
)

dxdt = 0, (5.1.58)

and the continuity equation (5.1.21).
Integral identity (5.1.58) obviously implies (5.1.26)–(5.1.29).
The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.

5.1.6 Proof of Theorem 5.5

On the basis of estimates (5.1.17), results of Chap.1, and Nguetseng’s theorem we
conclude that for ν ⊂ 0

pν γ p(x, t) weakly L2(QT ),

(1 − ϕ )pνΩν ⊂ (1 − ϕ )p f (x, t)Ω(y) two-scale in L2(QT ),

∂wν

∂t
γ v weakly in L2(QT ),

∂2wν

∂t2
γ

∂v
∂t

(x, t) weakly in L2(QT ),

∂wν

∂t
⊂ V(x, t, y) two-scale in L2(QT ),

∂2wν

∂t2
⊂ ∂V

∂t
(x, t, y) two-scale in L2(QT ),

νD

(
x,

∂wν

∂t

)
⊂ D

(
y, V(x, t, y)

)
two-scale in L2(QT ),

wν
s ⊂ ws(x, t) weakly and two-scale in L2(αT ),

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1


5.1 Filtration from a Reservoir into a Porous Medium 185

∂wν
s

∂t
⊂ ∂ws

∂t
(x, t) weakly and two-scale in L2(αT ),

∂2wν
s

∂t2
⊂ ∂2ws

∂t2
(x, t) weakly and two-scale in L2(αT ),

D
(
x, wν

s

) ⊂ D(x, ws) + D
(
y, U(x, t, y)

)
two-scale in L2(αT ).

It is easy to see that

V = ϕ V + (1 − ϕ )

(
Ω(y) V +

(
1 − Ω(y)

)∂ws

∂t

)
, (5.1.59)

and ∫

QT

∫

Y

(
ρ0|V|2 + ρ 20

∣∣∣∣
∂V
∂t

∣∣∣∣
2

+ |D(y, V)|2
)

dxdt � C0, (5.1.60)

where C0 is independent of ρ0.
Moreover, we have the equality ϕ V = ϕ v(x, t), but this fact is not useful to us.
The two-scale limit in (5.1.14) as ν ⊂ 0with test functionsξ = ξ(x, t), vanishing

at t = T and at S2 results in
∫

QT

∇ · (ξ p0)dxdt −
∫

αT

(
ρ0

(
χ f

∂w f

∂t
+ χs(1 − m)

∂ws

∂t

)
· ∂ξ

∂t
+ χ̂ e · ξ

)
dxdt

+
∫

αT

(
Γ0
(
(1 − m)D(x, ws) + →D(x, U)◦Ys

)− p I

)
: D(x, ξ)dxdt

=
∫

α0
T

(
ρ0χ f v · ∂ξ

∂t
+ χ f e · ξ + p (∇ · ξ)

)
dxdt.

Earlier in Chap.1 (Theorem 1.4) it was shown that

Γ0
(
(1 − m)D(x, ws) + →D(x, U)◦Ys

)− p I = Γ0N
s
1 : D(x, w(n)

s ) − p f I.

Therefore,

∫

QT

∇ · (ξ p0)dxdt −
∫

αT

(
ρ0

(
χ f v + χs(1 − m)

∂ws

∂t

)
· ∂ξ

∂t
+ χ̂ e · ξ

)
dxdt

+
∫

αT

(
Γ0N

s
1 : D(x, ws) − p f I

)
: D(x, ξ)dxdt

=
∫

α0
T

(
ρ0χ f

∂w
∂t

· ∂ξ

∂t
+ χ f e · ξ + p (∇ · ξ)

)
dxdt. (5.1.61)
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The continuity equation (5.1.1) for wν after taking the limit as ν ⊂ 0 is transformed
into the macroscopic continuity equation in the form of the integral identity

∫

αT

∇Π ·
(

ϕ v + (1 − ϕ )
(∂w f

∂t
+ (1 − m)

∂ws

∂t

))
dxdt = 0 (5.1.62)

and the microscopic continuity equation

∇y · V = 0, y ∩ Y, x ∩ Q, t > 0 (5.1.63)

(for details see Chap.1).
Integral identities (5.1.61) and (5.1.62) imply differential equations (5.1.19),

(5.1.30), and (5.1.31), continuity condition (5.1.23), the continuity condition (5.1.33)
on the common boundary S0, and boundary conditions (5.1.25) and (5.1.37) on the
outer boundary S.

The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.
So, we have only to derive the dynamic equation for the liquid component in α .
To do that we consider the integral identity (5.1.14) in the form

∫

QT

(
−ρ0 χ̃ ν ∂wν

∂t
· ∂ξ

∂t
+ (ϕ P̃ f + (1 − ϕ )̃P

) : D(x, ξ)

)
dxdt

=
∫

QT

(
χ̃ νe · ξ + (pν − p0)∇ · ξ

)
dxdt,

P̃ f = P f − pν
I, P̃ = P − pν

I,

with test functions ξ = h(x, t)ξ0

(x
ν

)
, where h vanishes at S2, and ξ0(y) is a

1-periodic in y function, such that ∇y · ξ0 = 0 for y ∩ Y , and supp ξ0 √ Y f . One
has

∫

QT

(
h ρ0χ f

∂2wν

∂t2
· ξ0 + h

λμ

ν2

(
νD
(

x,
∂wν

∂t

))
: D(y, ξ0)

− (ϕ (pν − p0) + (1 − ϕ ) Ων (pν − p0)
)∇h · ξ0 − h χ f e · ξ0

)
dxdt

= −ν

2

∫

QT

λμ

ν2

(
νD
(

x,
∂wν

∂t

))
: (∇h ⊗ ξ0 + ξ0 ⊗ ∇h

)
dxdt.

The limit in the last identity as ν ⊂ 0 results in

∫

QT

(
h

(
ρ0χ f

⎫
∂V
∂t

· ξ0

⎬

Y
+ h μ1 →D(y, V) : D(y, ξ0)◦Y − χ f e · →ξ0◦Y

)

− (ϕ (p − p0) + (1 − ϕ ) (p f − p0)
) →ξ0◦Y · ∇h

)
dxdt = 0, (5.1.64)
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or ∫

QT

(
h aξ + p̃ (bξ · ∇h)

)
dxdt = 0. (5.1.65)

In (5.1.65)

aξ = ρ0χ f

⎫
∂V
∂t

· ξ0

⎬

Y
+ h μ1→D(y, V) : D(y, ξ0)◦Y − χ f e · →ξ0◦Y ,

where aξ ∩ L2
(
(0, T ); L2(Q)

)
due to (5.1.56), and

p̃ = ϕ (p − p0) + (1 − ϕ ) (p f − p0), bξ = −→ξ0◦Y .

In the same way as in Chap.1 and on the base of Lemma B.15, choosing in (5.1.65)
ξ0 from conditions →ξ0◦Y = ei , i = 1, 2, 3 ({e1, e2, e3} is a standard Cartesian
basis), we conclude that the function p̃(n) belongs to w1,0

2 (QT ),

∫

QT

|∇ p̃(n)|2dxdt � C0, (5.1.66)

where C0 does not depend on ρ0, and the function p f satisfies boundary condition
(5.1.34).

Estimate (5.1.66) obviously implies the continuity condition (5.1.35) on the com-
mon boundary S0.

For supp h √ α (5.1.64) is equivalent to the differential equation

ρ0χ f
∂V
∂t

= μ1

2
�yV − ∇yζ − ∇ p f + χ f e (5.1.67)

in Y f for t > 0, which we complete with continuity equation (5.1.63), the boundary
condition

V(x, t, y) = ∂ws

∂t
(x, t), y ∩ η, (5.1.68)

(see (5.1.59)), and the initial condition

V(y, 0) = 0, y ∩ Y f . (5.1.69)

The problem (5.1.63), (5.1.67)–(5.1.69) for ρ0 = 1 has been solved in Chap.3 (see
proof of Theorem 3.5). Therefore, we simply formulate the result.

Lemma 5.1 For almost all x ∩ α the function
∂w( f )

∂t
= →V◦Y f satisfies equation

(5.1.32), where

B
( f )(ρ0; t) =

3⎭
i=1

(∫

Y f

V( f )
i (y, t)dy

)
⊗ ei , (5.1.70)
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and V( f )
i , i = 1, 2, 3, are solutions to the following periodic initial boundary value

problem

ρ0χ f
∂V( f )

i

∂t
= μ1

2
�yV( f )

i − ∇yζ
( f )
i , (y, t) ∩ Y f × (0, T ), (5.1.71)

∇y · V( f )
i (y, t) = 0, (y, t) ∩ Y f , t > 0, (5.1.72)

ρ0χ f V( f )
i (y, 0) = ei , y ∩ Y f , (5.1.73)

V( f )
i (y, t) = 0, y ∩ η, t > 0. (5.1.74)

5.1.7 Proof of Theorem 5.6

As in the proof of Theorem 5.4 we use estimates (5.1.55), (5.1.66), the integral
identity (5.1.61) to conclude that there exists a subsequence of n (still denoted for
simplicity by n) such that

1

n
χ̂

∂w(n)
s

∂t
⊂ 0 strongly in L2(αT ),

1

n
χ f

∂w(n)

∂t
⊂ 0 strongly in L2(α

0
T ),

∇ p(n) γ ∇ p 0, p(n) γ p 0 weakly in L2(α
0
T ) and L2(α

0
T ),

∇ p(n)
f γ ∇ p f , p(n)

f γ p f weakly inL2(α
0
T ) and L2(αT ),

w(n)
s γ ws, ∇ w(n)

s γ ∇ ws weakly in L2(αT )

as n ⊂ ∞.
The limiting functions are bounded

∫

αT

(|∇ p f |2 + |ws |2 + |D(x, ws)|2
)
dxdt � C0, (5.1.75)

and satisfy the integral identity

∫

αT

((
Γ0N

s
1 : D(x, ws) − (p f − p0) I

) : D(x, ξ) − χ̂ e · ξ
)

dxdt
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=
∫

α0
T

(
χ f e · ξ + (p − p0)(∇ · ξ)

)
dxdt. (5.1.76)

which results in the dynamic equation (5.1.31), the relation (5.1.27), and boundary
conditions (5.1.33) and (5.1.37).

The boundary condition (5.1.35),which implies (5.1.40) on the commonboundary
S0, follows from (5.1.66), (5.1.75), and the boundary condition (5.1.35) for p(n)

f .
The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.
To derive the continuity equation (5.1.30) and Darcy’s law (5.1.39) we somehow

have to pass to the limit as n ⊂ ∞ in equations (5.1.30) and (5.1.32). Unfortunately

we have no uniform estimates with respect to n not only for
∂w( f,n)

∂t
and

∂w(n)
s

∂t
, but

neither for w( f,n).
Let us try to find estimates using estimate (5.1.66) for pressure and estimates

(5.1.60) for two-scale limits in the form

∫

QT

∫

Y

(
1

n

∣∣V(n)
∣∣2 + 1

n2

∣∣∣∂V(n)

∂t

∣∣∣
2 +

∣∣∣D
(

y, V(n)
)∣∣∣

2
)

dxdt � C0. (5.1.77)

The problem (5.1.63), (5.1.67)–(5.1.69) can be rewritten for functions

w(n)(x, t, y) =
∫ t

0
V(n)(x, y, ρ )dρ,

P(n)(x, t, y) =
∫ t

0
ζ(n)(x, y, ρ )dρ, and τ

(n)
f (x, t) =

∫ t

0
p(n)

f (x, ρ )dρ

as
1

n
χ f V(n) = μ1

2
�yW(n) − ∇y P(n) − ∇ τ

(n)
f + t χ f e,

∇ · W(n) = 0, y ∩ Y f ;
W(n)(x, t, y) = w(n)

s (x, t), y ∩ η.




(5.1.78)

The standard procedure results in the equality

μ1

2

∫

Y f

|∇(W(n) − w(n)
s )|2dy

=
∫

Y f

(
t χ f e − ∇ τ

(n)
f − 1

n
χ f V(n)

) · (W(n) − w(n)
s )dy,

and, successively, the a priori estimate

∫

αT

∫

Y f

(|W(n) − w(n)
s |2 + |∇(W(n) − w(n)

s )|2)dydxdt
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� C0

∫

αT

(
1 +

∫

Y f

∣∣∣1
n

V(n)
∣∣∣
2
dydxdt

)
� C0. (5.1.79)

This last estimate in the usual way implies the uniform estimate

∫

αT

∫

Y f

|P(n)|2dydxdt
)

� C0 (5.1.80)

for the pressure P(n).
Now we may extract convergent subsequences (for simplicity keeping the same

notations)
p(n) γ p = p0(x, t) weakly in W 1,0

2 (α 0
T ),

p(n)
f γ p f weakly in W 1,0

2 (αT ),

p̃(n) γ p̃ weakly in W 1,0
2 (QT ),

τ̃ (n) γ τ̃ weakly in W 1,0
2 (QT )

)
,

1

n

∂w(n)
s

∂t
⊂ 0 strongly in L2(αT ),

w(n)
s ⊂ w(n)

s weakly in W1,0
2 (αT ),

1

n
V(n) ⊂ 0 strongly in L2(αT × Y ),

W(n) ⊂ W, ∇yW(n) ⊂ ∇yW weakly in L2
(
αT × Y f ),

P(n) ⊂ P weakly in L2
(
αT × Y f ),

w( f,n) = →W(n)◦Y f γ w f = →W◦Y f weakly in L2(αT )

as n ⊂ ∞.
Here

τ̃ (n)(x, t) =
∫ t

0
p̃(n)(x, ρ )dρ, τ̃(x, t) =

∫ t

0
p̃(x, ρ )dρ,

p̃(n) = ϕ p(n) + (1 − ϕ )p(n)
f , p̃ = ϕ p + (1 − ϕ )p f ,

and p0(x, t) is the hydrostatic pressure defined by (5.1.27).
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The limit as n ⊂ ∞ in the continuity equation (5.1.30) in its integral form

∫

αT

∇Π · (w( f,n) + (1 − m) w(n)
s

)
dxdt = 0

with test functions Π vanishing inα0 results in the same continuity equation (5.1.30)
for the limiting functions w( f ) and ws , and the boundary condition (5.1.36).

The microscopic periodic boundary value problem, defining Darcy’s law (5.1.39)
(see proofs of Theorems 1.1 and 1.4 in Chap.1), follows from (5.1.78) after taking
the limit n ⊂ ∞:

μ1

2
�yW − ∇y P − ∇ τ f + t χ f e = 0,

∇ · W = 0 y ∩ Y f ;
W(x, t, y) = ws(x, t), y ∩ η.




(5.1.81)

As usual, wemust fulfill the limiting procedure in the corresponding integral identity.
Finally, the boundary condition (5.1.40) on the part S1

1 of the outer boundary S is
a consequence of the convergence

τ̃ (n) γ τ̃ weakly in W 1,0
2 (QT )

and the corresponding boundary condition for τ̃ .

5.1.8 Proof of Theorem 5.7

Let
p̄(k) = p(k)

f − p0, τ̄ (k) = τ
(k)
f − τ0

and

τ0(x, t) =
∫ t

0
p0(x, ρ )dρ.

Firstly we find estimates for the solution {w(k)
s , v(k), p f

(k)}, independent of k. To
do that we rewrite Eqs. (5.1.31) and (5.1.39) as

− k ∇ · (Ns
1 : D(x, w(k)

s )
)+ ∇ p̄(k) = χ̂ e − ∇ p0 ∞ Fs, (5.1.82)

w( f,k) − m w(k)
s + 1

μ1
B · (∇τ̄ (k)) = 1

μ1
B · (t χ f e − ∇ τ0) ∞ Fl . (5.1.83)

Next we multiply (5.1.82) by w(k)
s , (5.1.83) by∇ p̄(k), integrate by parts overα , sum

results, and take into account (5.1.30) in its form of the integral identity:
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∫

α

(
w( f,k) + (1 − m)w(k)

s

) · ∇ p̄(k)dx = 0.

One has

k
∫

α

(
Ns

1 : D(x, w(k)
s )
) : D(x, w(k)

s )dx + 1

2μ1

d

dt

∫

α

∇τ̄ (k) · (B · (∇τ̄ (k))
)
dx

=
∫

α

Fs · w(k)
s dx + d

dt

∫

α

Fl · ∇τ̄ (k)dx −
∫

α

∂Fl

∂t
· ∇τ̄ (k)dx . (5.1.84)

Note that all integrals over boundaries disappear due to the choice of functions τ̄ (k)

and u(k) and corresponding boundary conditions.
The last relation and the imbedding theorem [61] imply estimates

k
∫

αT

(
|w(k)

s (x, t)|2 +
∣∣∣D(x, w(k)

s (x, t)
)∣∣∣
2)

dxdt

+ max
0≤t≤T

∫

α

|∇τ(k)(x, t)|2dx � C0. (5.1.85)

The derivation of (5.1.85) is quite formal because we do not have any information
about the existence of ∇ p(k).

For a rigorous proof we must use mollifiers

u(h)(x, t) = 1

h3

∫

R3
π

( |x − y|
h

)
u(y, t)dy

(see [3, 61]) with some smooth and finite kernel π, and instead of (5.1.83)we consider
the corresponding integral identity

∫

α

(
− ∇Π · w(k)

s + 1

μ1
∇Π · B · (∇τ̄ (k))

)
dx =

∫

α

∇Π · Fldx, (5.1.86)

wherewe have used the continuity equation (5.1.30) in its form as an integral identity.
To obtain the desired estimates we choose in (5.1.86) Π as Π = ψ(h), pass the

smoothing from the test function ψ to the cofactors, and put ψ = ( p̄(k))(h):

∫

α

(
− ∇( p̄(k))(h) · (w(k)

s )(h) + 1

μ1
∇( p̄(k))(h) · B · ∇(τ̄ (k))(h)

)
dx

=
∫

α

∇( p̄(k))(h) · (Fl)(h)dx .

The last identity is easily transformed to

∫ t

0

∫

α

( p̄(k))(h) ∇ · (w(k)
s )(h)dxdρ + 1

2μ1

∫

α

∇(τ̄ (k))(h) · B · ∇(τ̄ (k))(h)dx



5.1 Filtration from a Reservoir into a Porous Medium 193

=
∫

α

∇(τ̄ (k))(h) · (Fl)(h)dx −
∫ t

0

∫

α

∇(τ̄ (k))(h) ·
(

∂Fl

∂t

)

(h)

dxdρ,

and, after the limit as h ⊂ 0, to the equality

∫ t

0

∫

α

p̃(k) ∇ · w(k)
s dxdρ + 1

2μ1

∫

α

∇ τ̄ (k) · (B · ∇ τ̄ (k)
)
dx

=
∫

α

∇ τ̄ (k) · Fldx −
∫ t

0

∫

α

∇ τ̄ (k) · ∂Fl

∂t
dxdρ.

This relation and the evident consequence of (5.1.82)

k
∫ t

0

∫

α

(
Ns

1 : D(x, w(k)
s )
) : D(x, w(k)

s )dxρ −
∫ t

0

∫

α

p̃(k) ∇ · w(k)
s dxdρ

=
∫ t

0

∫

α

Fs · w(k)
s dxρ

result in (5.1.85).
Estimates (5.1.85) and Darcy’s law (5.1.39) imply the estimate

∫

αT

|w( f,k)|2dxdt � C0.

On the basis of the last estimate and estimates (5.1.85) wemay choose the convergent
subsequences

w(kn)
s ⊂ 0 strongly in W1,0

2 (αT ),

w( f,kn) γ w( f ) weakly in L2(αT ),

τ
(kn)
f γ τ f weakly in L2(αT )

as kn ⊂ ∞.
Darcy’s law (5.1.83) in the form

∇τ̄ (k) = μ1B
−1 · (Fl − w( f,kn) + m w(kn)

s

)

provides that
∇τ

(kn)
f γ ∇τ f weakly in L2(αT )

as kn ⊂ ∞.
After taking the limit in (5.1.39) and in the continuity equation (5.1.30) in the

form of the integral identity
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∫

αT

(
w( f,kn) + (1 − m)w(kn)

s

) · ∇ Πdxdt = 0

we arrive at (5.1.36), (5.1.40)–(5.1.42).

5.1.9 Proof of Theorem 5.8

The main part of the proof of this Theorem repeats the proof of Theorem 1.11 of
Chap1. Let

vν = Eαν
f

(
∂wν

∂t

)

be an extension of
∂wν

∂t
from αν

f ∈ α0 onto Q (see Theorem 1.11).

Estimates (5.1.18) provides the existence of convergent subsequences (for sim-
plicity still denoted by ν), such that

pν γ p(x, t) weakly in in L2(QT ),

pν ⊂ P(x, t, y) two-scale in L2(QT ),

wν ⊂ w(x, t) two-scale in L2(QT ),

vν ⊂ v(x, t) = ∂w
∂t

(x, t) two-scale in L2(QT ),

D
(
x, wν

) ⊂ D
(
x, w

)+ D
(
y, W(x, t, y)

)
two-scale in L2(QT ),

D
(
x, vν

) ⊂ D
(
x,

∂w
∂t

)+ D

(
y,

∂W
∂t

)
two-scale in L2(QT ).

The two-scale limit in (5.1.15) with test functions ξ = ξ(x, t) results in the integral
identity

∫

QT

((
μ0D

(
x,

∂w
∂t

)
− p I + (1 − ϕ )(μ0

⎫
D

(
y,

∂W
∂t

)⎬

Y f

+ Γ0D(x, w)

+ Γ0→D(y, W)◦Ys )
)

: D(x, ξ) + ∇ · (ξ p0)

− (ϕχ f + (1 − ϕ )χ̂
)
e · ξ

)
dxdt = 0. (5.1.87)
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Due to Theorem 1.11

(1−ϕ )

(
μ0

(
D(x,

∂w
∂t

)+
⎫
D

(
y,

∂W
∂t

)⎬

Y f

)
+Γ0(D(x, w)+→D(y, w)◦Ys )−p I

) =⎧P.

Therefore, (5.1.87) transforms to

∫

QT

((
ϕμ0D

(
x,

∂w
∂t

)
− p I + (1 − ϕ )⎧P

)
: D(x, ξ)

+ ∇ · (ξ p0) − (ϕχ f + (1 − ϕ )χ̂
)
e · ξ

)
dxdt = 0. (5.1.88)

The continuity equation (5.1.1) after taking the limit as ν ⊂ 0 does not change its
form:

∇ · w = 0. (5.1.89)

In the usual way one may show that the integral identity (5.1.88) is equivalent to
the Eqs. (5.1.44) and (5.1.45), and the boundary conditions (5.1.46)–(5.1.48). The
boundary condition (5.1.49) follows from the integral identity

∫

αT

(
wν(∇ · ξ) + ∇wν · ξ

)
dxdt = 0

for any smooth function ξ, vanishing at S0, after taking the limit as ν ⊂ 0.
Finally, the initial condition (5.1.50) follows from the integral identity

∫

αT

m

(
∂w
∂t

· ξ + w · ∂ξ

∂t

)
dxdt = 0,

which holds true for any smooth function ξ = ξ(x, t) vanishing at t = T . The last
identity is a result of the two-scale limit as ν ⊂ 0 in

∫

αT

Ων

(
vν · ξ + wν · ∂ξ

∂t

)
dxdt = 0.

5.2 Filtration in Two Different Poroelastic Media

5.2.1 Statement of the Problems

This section is devoted to the joint motion in the domain Q = α0 ∈ S0 ∈ α of two
different poroelastic media in α0 and α respectively (Fig. 5.2). We suppose that α0
and α have a common boundary S0.
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Fig. 5.2 Two different
poroelastic media

In the domain α0 for t > 0 the motion of the medium is described by the model
M15

∇ · w = 0, (5.2.1)

∇ · P0 + χ0,νF = 0, (5.2.2)

where

P
0 = Ων

0λμD

(
x,

∂w
∂t

)
+ (1 − Ων

0 )Γ00D(x, w) − p I.

The motion in α for t > 0 is also governed by the model M15, consisting of the
continuity equation (5.2.1) and the momentum balance equation

∇ · P + χνF = 0, (5.2.3)

where

P = ΩνλμD

(
x,

∂w
∂t

)
+ (1 − Ων)Γ0D(x, w) − p I.

On the common boundary S0 = ∂α ∪ ∂α0 for t > 0 the continuity conditions

lim
x ⊂ x0

x ∩ α0

w(x, t) = lim
x ⊂ x0
x ∩ α

w(x, t), (5.2.4)

lim
x ⊂ x0

x ∩ α0

P
0(x, t) · n(x0) = lim

x ⊂ x0
x ∩ α

P(x, t) · n(x0) (5.2.5)

hold true for displacements and normal tensions. Here n(x0) is a normal vector to
the boundary S0 at x0 ∩ S0.

The problem is concluded with the Dirichlet boundary condition

w(x, t) = 0 (5.2.6)

on the outer boundary S = ∂ Q for t > 0, the initial condition
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Ω̂ ν(x)w(x, 0) = 0, x ∩ Q, (5.2.7)

and the normalization condition
∫

Q

Ω̂ ν(x)

m̂(x)
p (x, t) dx = 0. (5.2.8)

In (5.2.1)–(5.2.8) F is a given density of distributed mass forces,

Ω̂ ν(x) = ϕ(x)Ων
0 (x) + (1 − ϕ(x)

)
Ων(x)

is the characteristic function of the liquid domain Qν
f = α

0,ν
f ∈ αν

f ,

m̂ = ϕ(x)m0 + (1 − ϕ(x)
)
m, m =

∫

Y
Ω(y)dy, m0 =

∫

Y
Ω0(y)dy,

χ0,ν = χ f Ω
ν
0 + χ0

s (1 − Ων
0 ), χν = χ f Ω

ν + χs(1 − Ων).

As usual, Γ00 and Γ0 are dimensionless Lamé’s constants of the solid component in
α0 andα respectively, χ0

s and χs are dimensionless densities of the solid component
in α0 and α respectively, Ων(x) is the characteristic function of the liquid domain
αν

f , Ω
ν
0 (x) is the characteristic function of the liquid domain α

0,ν
f ,

Ων(x) = (
1 − ϕ(x)

)
Ω
(x

ν

)
, Ων

0 (x) = ϕ(x)Ω0

(x
ν

)
.

Finally, ϕ(x) is the characteristic function of the domainα0 in Q, Ω(y) is the charac-
teristic function of the domain Y f in the unit cube Y , and Ω0(y) is the characteristic
function of the domain Y 0

f in the unit cube Y .
Here we consider three different cases, when

(I) μ0 = 0, 0 < μ1 < ∞, Γ0 = ∞ (absolutely rigid solid skeleton);
(II) μ0 = 0, 0 < μ1 � ∞, 0 < Γ0 < ∞ (slightly viscous liquid in an elastic solid

skeleton);
(III) 0 < μ0, Γ0 < ∞ (viscous liquid in an elastic solid skeleton),

where
μ0 = lim

ν∅0
λμ(ν), μ1 = lim

ν∅0

λμ

ν2
.

Wewill obtain the homogenizedmodel for the first case as a limit in the homogenized
model for the second case with μ1 < ∞, when Γ0 ⊂ ∞.

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the pore
spaces, defined by characteristic functions Ω(y) and Ω0(y), and suppose that

max
0<t<T

∫

Q
|F(x, t)|2dx = P2 < ∞.
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5.2.2 Main Results

It is clear, what type of homogenized equations we will obtain in each domain α0

and α for t > 0. All these equations have already been described in Chap.1. The
main problem here is the continuity conditions on the common boundary S0. In turn
these conditions depend on the structures of the corresponding pore spaces, or, on the
functions Ω0(y) and Ω(y). For the sake of simplicity, we consider only two different
cases (Figs. 5.3, 5.4, 5.5 and 5.6).

So,

(1) for the first structure of the common pore space elementary liquid domains Y 0
f

and Y f have a nonempty intersection in Y :

Y 0
f ∪ Y f �= ∅; (5.2.9)

(2) for the second structure of the common pore space elementary liquid domains
Y 0

f and Y f have an empty intersection in Y :

Y 0
f ∪ Y f = ∅; (5.2.10)

(3) for both structures of the common pore space elementary solid domains Y 0
s

and Ys have a nonempty intersection in Y :

Y 0
s ∪ Ys �= ∅. (5.2.11)

We say that for the first structure the common pore space is connected, and for the
second structure the common pore space is disconnected.

Fig. 5.3 Connected common
pore space
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Fig. 5.4 Connected common
pore space

Fig. 5.5 Disconnected com-
mon pore space

Fig. 5.6 Disconnected com-
mon pore space
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To formulate the next statement we introduce the common liquid and solid
domains Q ν

f and Q ν
s as

Q ν
f = α

0,ν
f ∈ α ν

f , Q ν
s = α 0,ν

s ∈ α ν
s ,

where α
0,ν
f , α 0,ν

s , α ν
f , and α ν

s are liquid and solid domains in α0 and α respec-
tively.

Lemma 5.2 Let wν ∩ L2
(
(0, T ); W1

2(Q ν
s )
)
. Then for the first and second structures

of the pore space in Q there exists an extension operator

EQ ν
s

: L2
(
(0, T ); W1

2(Q ν
s )
) ⊂ L2

(
(0, T ); W1

2(Q)
)
,

wν
s = EQ ν

s
(wν), (5.2.12)

such that

(
1 − Ω̂ ν(x)

)(
wν

s (x, t) − wν(x, t)
) = 0, x ∩ Q, t > 0, (5.2.13)

and
∫

Q
|wν

s |2dx � C0

∫

Q ν
s

|wν|2dx,

∫

Q
|D(x, wν

s )|2dx � C0

∫

Q ν
s

|D(x, wν)|2dx, (5.2.14)

where C0 is independent of ν and t ∩ (0, T ).

Definition 5.3 We say that the pair of functions {wν, p ν}, such that

wν ∩ ◦
W

1,0

2 (GT ), p ν ∩ L2(GT ), GT = Q × (0, T ),

is a weak solution of the problem (5.2.1)–(5.2.8), if it satisfies the continuity equation
(5.2.1) almost everywhere inGT , the normalization condition (5.2.8), and the integral
identity

∫

GT

(− λμΩ̂ ν
D(x, wν) : D

(
x,

∂ξ

∂t

)
+ (1 − Ω̂ ν)Γ(x)D(x, wν) : D(x, ξ)

)
dxdt

=
∫

GT

(
p ν(∇ · ξ) + χ̂ νF · ξ

)
dxdt (5.2.15)

for all functions ξ vanishing at t = T , such that ξ,
∂ξ

∂t
∩ ◦

W
1,0

2 (GT ).
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In (5.2.15)
Γ(x) = Γ00 ϕ(x) + Γ0

(
1 − ϕ(x)

)
.

Theorem 5.9 For all ν > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution of problem (5.2.1)–(5.2.8) and

max
0<t<T

∫

Q
Ω̂ ν
(
λμ

∣∣∣D(x, wν(x, t)
)∣∣∣
2 + λμ

ν2
|wν(x, t) − wν

s (x, t)|2
)

dx

+
∫

GT

(
|τ ν|2 + Γ(x)|D(x, wν)|2

)
dxdt � C0P

2, (5.2.16)

where C0 is independent of ν, Γ00, and Γ0 for Γ0 > 1, Γ00 > 1, and

τν(x, t) =
∫ t

0
pν(x, ρ )dρ.

Theorem 5.10 Let μ0 = 0, μ1 = ∞, 0 < Γ0, Γ00 < ∞, {wν, p ν} be the weak
solution of the problem (5.2.1)–(5.2.8),

τ ν(x, t) =
∫ t

0
pν(x, ρ )dρ,

and wν
s = EQν

s

(
wν
)

be an extension from the domain Qν
s onto the domain Q.

Then up to some subsequences the sequences {wν} and {Ω̂ ντν} converge weakly
in L2(GT ) and L2(GT ) as ν ⊂ 0 to the functions ws and m̂ τ f respectively, and

the sequence {wν
s } converges weakly in W1,0

2 (GT )
)

as ν ⊂ 0 to the function ws .

The limiting functions ws and τ f , where
∂τ f

∂t
∩ L2(GT ), solve in the domain

α0 for t > 0 the homogenized system, consisting of the homogenized momentum
balance equation

∇ · P(s,0)
0 + χ̂ 0 F = 0, (5.2.17)

P
(s,0)
0 = Γ00 N

s,0
0 : D(x, ws) − p f I,

and the continuity equation
∇ · ws = 0. (5.2.18)

In the domain α for t > 0 the limiting functions solve the homogenized system,
consisting of the homogenized momentum balance equation

∇ · P(s)
0 + χ̂ F = 0, (5.2.19)

P
(s)
0 = Γ0 N

s
0 : D(x, ws) − p f I,

and the continuity equation (5.2.18).
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The problem is completed with the normalization condition

∫

Q
p f (x, t)dx = 0, (5.2.20)

the boundary condition
ws = 0 (5.2.21)

on the outer boundary S for t > 0, and the continuity conditions

lim
x ⊂ x0
x ∩ α

ws(x, t) = lim
x ⊂ x0

x ∩ α0

ws(x, t), x0 ∩ S0, (5.2.22)

lim
x ⊂ x0
x ∩ α

P
(s)
0 (x, t) · n(x0) = lim

x ⊂ x0

x ∩ α0

P
(s,0)
0 (x, t) · n(x0), x0 ∩ S0 (5.2.23)

on the common boundary S0 for t > 0.
In (5.2.17)–(5.2.23) n(x0) is a unit normal to S0 at x0 ∩ S0,

p f = ∂τ f

∂t
, m̂ = ϕ m0 + (1 − ϕ )m,

χ̂ 0 = m0 χ f + (1 − m0) χ0
s , m0 =

∫

Y
Ω0dy,

χ̂ = m χ f + (1 − m) χs, m =
∫

Y
Ωdy,

the symmetric strictly positively definite constant fourth-rank tensors Ns,0
0 and Ns

0
are given by (5.2.54).

We refer to the problem (5.2.17)–(5.2.23) as the homogenized model (FCM)7.

Theorem 5.11 Let μ0 = 0, 0 < μ1, Γ0 < ∞, {wν, p ν} be the weak solution of the
problem (5.2.1)–(5.2.8), and wν

s = EQν
s

(
wν
)

be an extension from the domain Qν
s

onto the domain Q, and

τ ν(x, t) =
∫ t

0
pν(x, ρ )dρ,

Then up to some subsequences the sequences {Ω̂ ν τν}, and {Ω̂ ν wν} converge weakly
in L2(GT ) and L2(GT ) as ν ⊂ 0 to the functions m̂ τ f and w( f ) respectively, and
the sequence {wν

s } converges weakly in W1
2(Q)

)
as ν ⊂ 0 to the function ws .

In the domain α0 for t > 0 limiting functions w( f ), ws , and τ f , where

∇τ
(δ)
f ∩ L2(αT ),

∂τ
(δ)
f

∂t
∩ L2(αT ), solve the homogenized system, consisting

of the continuity equation
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∇ · (w( f ) + (1 − m0) ws
) = 0, (5.2.24)

the homogenized momentum balance equation

∇ · P(s,0)
1 + χ̂ 0 F = 0, (5.2.25)

P
(s,0)
1 = Γ00 N

s,0
1 : D(x, ws) − p f I

for the solid component, and Darcy’s law in the form

w( f ) = m0 ws + 1

μ1
B
0 ·
(

− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
(5.2.26)

for the liquid component.
In the domain α for t > 0 limiting functions solve the homogenized system,

consisting of the continuity equation

∇ · (w( f ) + (1 − m) ws
) = 0, (5.2.27)

the homogenized momentum balance equation

∇ · P(s)
1 + χ̂ F = 0, (5.2.28)

P
(s)
1 = Γ0 N

s
1 : D(x, ws) − p f I

for the solid component, and Darcy’s law in the form

w( f ) = m ws + 1

μ1
B ·
(

− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
(5.2.29)

for the liquid component.
The problem is completed with the normalization condition

∫

Q
τ f (x, t)dx = 0, (5.2.30)

the boundary condition (5.2.21) for the solid displacements ws and the boundary
condition

w( f )(x, t) · n(x) = 0 (5.2.31)

for the liquid displacements on the outer boundary S for t > 0, and continuity
conditions

lim
x ⊂ x0
x ∩ α

ws(x, t) = lim
x ⊂ x0

x ∩ α0

ws(x, t), x0 ∩ S0, (5.2.32)
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lim
x ⊂ x0
x ∩ α

P
(s)
1 (x, t) · n(x0) = lim

x ⊂ x0

x ∩ α0

P
(s,0)
1 (x, t) · n(x0), x0 ∩ S0, (5.2.33)

and

lim
x ⊂ x0
x ∩ α

n(x0)·(w( f ) + (1 − m) ws
)
(x, t)

= lim
x ⊂ x0

x ∩ α0

n(x0) · (w( f ) + (1 − m0) ws
)
(x, t), x0 ∩ S0 (5.2.34)

on the common boundary S0 for t > 0.
Finally, the last missing continuity condition on S0 depends on the structure of

the common pore space, namely, if the common pore space is connected (as in the
case of the first structure), then

lim
x ⊂ x0
x ∩ α

τ f (x, t) = lim
x ⊂ x0

x ∩ α0

τ f (x, t), x0 ∩ S0, (5.2.35)

and if the common pore space is disconnected (as in the case of the second structure),
then

lim
x ⊂ x0
x ∩ α

n(x0) · (w( f ) − m ws
)
(x, t) = 0, x0 ∩ S0. (5.2.36)

Conditions (5.2.34) and (5.2.36) result in

lim
x ⊂ x0

x ∩ α0

n(x0) · (w( f ) − m0 ws
)
(x, t) = 0, x0 ∩ S0. (5.2.37)

In (5.2.24)–(5.2.37) n(x0) is a unit normal to S0 at x0 ∩ S0,

p f = ∂τ f

∂t
, m̂ = ϕ m0 + (1 − ϕ )m,

χ̂ 0 = m0 χ f + (1 − m0) χ0
s , m0 =

∫

Y
Ω0dy,

χ̂ = m χ f + (1 − m) χs, m =
∫

Y
Ωdy,

the symmetric strictly positively definite constant fourth-rank tensor Ns,0
1 is given by

(1.2.38) for the pore space with the characteristic function Ω0(y), and the symmetric
strictly positively definite constant fourth-rank tensor Ns

1 is given by (1.2.38) for
the pore space with the characteristic function Ω(y) (see Theorem 1.4 of Chap.1),
the symmetric strictly positive definite constant matrix B

0 is given by (1.1.27) for
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the pore space with the characteristic function Ω0(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function Ω(y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.2.21), (5.2.24)–(5.2.35) for the first structure of the com-
mon pore space as the homogenized model (FCM)8, and to the problem (5.2.21),
(5.2.24)–(5.2.34), (5.2.36), (5.2.37) for the second structure of the common pore
space as the homogenized model (FCM)9.

Theorem 5.12 Under the conditions of Theorem 5.9 let {w(k)
s , w( f,k), τ

(k)
f } be the

weak solution of the model (FCM)8 with Γ00 = Γ0 = k.

Then up to some subsequences sequences {τ(k)
f }, and {w( f,k)} converge weakly

in L2(GT ) and L2(GT ) as k ⊂ ∞ to the functions τ f and w( f ) respectively, and

the sequence {w(k)
s } converges strongly in L2(GT ) to zero.

In the domain α0 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation

∇ · w( f ) = 0 (5.2.38)

and Darcy’s law

w( f ) = 1

μ1
B
0 ·
(

− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
, (5.2.39)

and in the domain α for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation (5.2.38) and Darcy’s law

w( f ) = 1

μ1
B ·
(

− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
, (5.2.40)

completed with the boundary condition (5.2.31) for the liquid velocity on the outer
boundary S for t > 0, the normalization condition (5.2.30), and the continuity
conditions (5.2.35) and

lim
x ⊂ x0
x ∩ α

n(x0) · w( f )(x, t) = lim
x ⊂ x0

x ∩ α0

n(x0) · w( f )(x, t), x0 ∩ S0 (5.2.41)

on the common boundary S0 for t > 0.
The symmetric strictly positive definite constant matrix B

0 is given by (1.1.27)
for the pore space with the characteristic function Ω0(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function Ω(y) (see Theorem 1.1 of Chap. 1).
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We refer to the problem (5.2.30), (5.2.31), (5.2.35), (5.2.38)–(5.2.41) as the homog-
enized model (FCM)10.

Theorem 5.13 Under the conditions of Theorem 5.9 let {w(k)
s , w( f,k), τ

(k)
f } be the

weak solution of the model (FCM)9 with Γ00 = Γ0 = k.

Then, up to some subsequences sequences {τ(k)
f }, and {w( f,k)} converge weakly

in L2(GT ) and L2(GT ) as k ⊂ ∞ to the functions τ f and w( f ) respectively, and

the sequence {w(k)
s } converges strongly in L2(GT ) to zero.

In the domain α0 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation (5.2.38) and Darcy’s law (5.2.39), and in the
domain α for t > 0 limiting functions solve the homogenized system, consisting
of the continuity equation (5.2.38) and Darcy’s law (5.2.40), completed with the
boundary condition (5.2.31) for the liquid velocity on the outer boundary S for
t > 0, the normalization condition (5.2.30), and the continuity conditions (5.2.41)
and

lim
x ⊂ x0
x ∩ α

n(x0) · w( f )(x, t) = 0, x0 ∩ S0 (5.2.42)

on the common boundary S0 for t > 0.
The symmetric strictly positive definite constant matrix B

0 is given by (1.1.27)
for the pore space with the characteristic function Ω0(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function Ω(y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.2.30), (5.2.31), (5.2.38)–(5.2.42) as the homogenized
model (FCM)11.

To consider the following case we change the setting of the problem at the micro-
scopic level, namely, instead of the normalization condition (5.2.8) we consider the
normalization condition ∫

Q
p ν (x, t) dx = 0. (5.2.43)

The proof of the solvability of (5.2.1)–(5.2.7), (5.2.43) and the derivation of the a
priori estimates repeat exactly the proof of the solvability and the derivation of the a
priori estimates of (5.2.1)–(5.2.8).

Theorem 5.14 Let
λμ = μ0, 0 < μ0, Γ0, Γ00 < ∞,

∫

GT

(1 − Ων)

∣∣∣∂F
∂t

∣∣∣
2
dxdt = P2

1 < ∞,

and {wν, p ν} be the weak solution of the problem (5.2.1)–(5.2.7), (5.2.43).
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Then up to some subsequences the sequence {pν} converges weakly in L2(GT )

as ν ⊂ 0 to the function p, and the sequence {wν} converges weakly in W1,0
2 (GT )

)
as ν ⊂ 0 to the function w.

The limiting functions solve the homogenized system, consisting of the continuity
equation

∇ · w = 0, (5.2.44)

and the homogenized momentum balance equation

∇ · ⎧P0 + χ̂ F = 0,

⎧P0 = −p I + N0
1 : D(x,

∂w
∂t

) + N0
2 : D(x, w)

+
∫ t

0
N0

3(t − ρ) : D(x, w(x, ρ ))dρ (5.2.45)

in the domain α0 for t > 0, the continuity equation (5.2.44) and the homogenized
momentum balance equation

∇ · ⎧P + χ̂ F = 0,

⎧P = −p I + N1 : D
(

x,
∂w
∂t

)
+ N2 : D(x, w)

+
∫ t

0
N3(t − ρ) : D(x, w(x, ρ ))dρ (5.2.46)

in the domain α for t > 0.
The problem is completed with the normalization condition

∫

Q
p (x, t) dx = 0, (5.2.47)

the continuity condition for normal tensions

lim
x ⊂ x0

x ∩ α0

⎧P0(x, t) · n(x0) = lim
x ⊂ x0
x ∩ α

⎧P(x, t) · n(x0) (5.2.48)

on the common boundary S0, the Dirichlet boundary condition

w(x, t) = 0 (5.2.49)

the outer boundary S, and the initial condition

w(x, 0) = 0, x ∩ Q. (5.2.50)
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Fourth-rank tensors N0
1, N0

2, N0
3(t) are given by formulae (1.4.30) for criteria μ0

and Γ00, and the pore space with the characteristic function Ω0(y), and fourth-rank
tensors N1, N2, N3(t) are given by formulae (1.4.30) for criteria μ0 and Γ0, and
the pore space with the characteristic function Ω(y) (see Theorem 1.11 of Chap.1).
The symmetric tensors N0

1 and N1 are strictly positively definite.

We refer to the problem (5.2.44)–(5.2.50) as the homogenized model (FCM)12.

5.2.3 Proof of Lemma 5.2

For all elementary cells which have no intersectionwith the common boundary S0 we
construct the extension in the same way, as in the corresponding extension lemma in
Appendix B. So, we have to consider more precisely only cells νỸ (k) with nonempty
intersections with S0. To simplify the proof we consider only two different cases:
(1) Y 0

f √ Y f (first structure), and (2) Y 0
f ∪ Y f = ∅ (second structure). All these

cubes have two parts. The first part belongs to the domain α0 and has the pore space
defined by Ω0(y), and the second part belongs toα and has the pore space defined by
Ω(y). For the first structure of the common pore space (see Fig. 5.4) the pore space
in the whole cube has the same structure as in other cubes in α0 and in α . So we
may use the same method of extension as in that extension lemma. For the second
structure of the common pore space (see Fig. 5.5) one has two disconnected sets, but
it is again possible to apply the same extension method as before.

5.2.4 Proof of Theorem 5.9

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters (see, for example, the proof of Theorem 1.2). In fact, setting in (5.2.15)
ξ(x, ρ ) = h(ρ )wν(x, ρ ), where h(ρ ) = 1 for 0 < ρ < t and h(ρ ) = 0 for t < ρ < T
we first obtain that

λμ

∫

Qν
f

∣∣D(x, wν(x, t)
)∣∣2dx

+ min(Γ00, Γ0)
∫ t

0

∫

Qν
s

∣∣D(x, wν(x, ρ )
)∣∣2dxdρ � C0P

2, (5.2.51)

∫ T

0

∫

Q
|wν(x, t) − wν

s (x, t)|2dxdtz
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� C0

μ1
λμ

∫ T

0

∫

Qν
f

∣∣∣D(x, wν(x, t)
)− D

(
x, wν

s (x, t)
)∣∣∣
2
dx, (5.2.52)

where wν
s is an extension of wν from the solid part Qν

s onto the liquid part Qν
f :

∫

Q
|wν

s (x, t)|2dx � C0

∫

Qν
s

|wν(x, t)|2dx,

∫

Q
|wν

s (x, t)|2dx � C0

∫

Q

∣∣∣D(x, wν
s (x, t)

)∣∣∣
2
dx

� C0

∫

Qν
s

∣∣∣D(x, wν(x, t)
)∣∣∣
2
dx, (5.2.53)

Qν
s = {x ∩ Q : Ω̂ ν(x) = 0}, Qν

f = {x ∩ Q : Ω̂ ν(x) = 1}.

In (5.2.51) and (5.2.52) C0 depends only on the domain Q, and the geometry of
pore spaces in α0 and α , and does not depend on ν, and in (5.2.51) C0 additionally
depends on min{Γ00, Γ0, 1}.

5.2.5 Proof of Theorem 5.10

On the basis of estimates (5.2.16) and in the same way as in Chap.1 we conclude
that for ν ⊂ 0

τν ⊂ τ f (x, t)Ω̂(y) + (1 − Ω̂ (y)
)
ζs(x, t, y) two-scale in L2(GT ),

Ω̂ ν τν γ m̂ τ f weakly in L2(GT ),

wν
s ⊂ ws(x, t) weakly and two-scale in L2(GT ),

wν ⊂ w = ws(x, t) weakly and two-scale in L2(GT ),

D
(
x, wν

s

) ⊂ D
(
x, ws(x, t)

)+ D
(
y, Û(x, t, y)

)
two-scale in L2(GT ).

The continuity condition (5.2.22) on the common boundary S0 is a consequence of
the smoothness of ws .

The weak limit in the continuity equation (5.2.1) in its integral form

∫

GT

wν · ∇hdxdt = 0

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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for arbitrary smooth functions h = h(x, t) results in the continuity equation (5.2.18)
in Q for t > 0.

As we have shown in Chap.1 (Theorems 1.3 and 1.4)

p f = ∂τ f

∂t
∩ L2(GT ), Ps = ∂ζs

∂t
∩ L2(Ys × GT ).

Passing to the limit as ν ⊂ 0 in (5.2.15) with test functions ξ = ξ(x, t), vanishing
at t = T and at S, we arrive at the microscopic momentum balance equation in the
form of the integral identity

∫

GT

(
ϕ Γ00

(
(1 − m0)D(x, ws) + →D(x, Û)◦Y 0

s
− →(Ps − p f )◦Y 0

s

) : D(x, ξ)

+ (1 − ϕ )Γ0
(
(1 − m)D(x, ws)+→D(x, Û)◦Ys − →(Ps − p f )◦Ys

) : D(x, ξ)
)

dxdt

=
∫

GT

(
p f (∇ · ξ) + (ϕ χ̂ 0 + (1 − ϕ )χ̂

)
F · ξ

)
dxdt = 0.

for arbitrary smooth function ξ vanishing at S.
The function Û is defined separately in each domain α0

T and αT (see Theorem
1.3 of Chap.1):

Û = U0(x, t, y), for x ∩ α0, Û = U(x, t, y), for x ∩ α,

and

D(x, ws) + →D(x, U0)◦Y 0
s

− →(Ps − p f )◦Y 0
s

= Ns,0
0 : D(x, ws)

=
(
Ns,0 −

〈 3⎭
i, j=1

P (i j,0)
0

〉
Y 0

s

I ⊗ J
i j
)

: D(x, ws),

D(x, ws) + →D(x, U)◦Ys − →(Ps − p f )◦Ys = Ns
0 : D(x, ws)

=
(
Ns −

〈 3⎭
i, j=1

P (i j)
0

〉
Ys
I ⊗ J

i j
)

: D(x, ws). (5.2.54)

HereNs,0 andNs are given by (1.2.35) for the pore spacewith characteristic functions
Ω0(y) and Ω(y), and P (i j,0)

0 and P (i j)
0 are solutions of the system (1.2.34) in domains

Ys and Y 0
s respectively.

Therefore the last identity takes the form

∫

GT

(
ϕ
(
(Γ00N

s,0
0 : D(x, ws) − p f I) : D(x, ξ) − χ̂ 0F · ξ

)

+ (1 − ϕ )
(
(Γ0N

s
0 : D(x, ws) − p f I) : D(x, ξ) − χ̂F · ξ

))
dxdt = 0.

(5.2.55)
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This identity implies Eqs. (5.2.17) and (5.2.19) in α0
T and αT respectively, and the

continuity condition (5.2.23) on the common boundary S0.
The weak limit in the normalization condition (5.2.8) in the form

0 = −
∫ T

0

dh

dt
(t)
( ∫

α

Ω̂ ν

m̂
τ νdx

)
dt ⊂ −

∫ T

0

dh

dt
(t)
( ∫

α

τ f dx
)

dt

=
∫ T

0
h(t)

( ∫

α

p f dx
)

dt = 0

for arbitrary smooth finite on (0, T ) functions h(t) results in the normalization con-
dition (5.2.20).

The boundary condition (5.2.21) on the outer boundary S follows from the Lemma
B.14 in Appendix B.

Finally, the continuity condition (5.2.22) on the common boundary S0 is a con-
sequence of the inclusion ws ∩ W1,0

2 (GT ).

5.2.6 Proof of Theorem 5.11

As in the proofs of Theorems 5.5, 5.6, and 5.10 of this Chapter, and Theorem 1.4 of
Chap.1, we conclude that for ν ⊂ 0

Ω̂ ν τν γ τ(x, t) weakly in L2(GT ),

τν ⊂ Ω̂(x, y) τ f + (1 − Ω̂ (x, y)
)
ζs(x, t, y) two-scale in L2(GT ),

Ω̂ νwν γ w( f ) weakly inL2(GT ),

Ω̂ νwν ⊂ Ω̂ (x, y)Ŵ(x, t, y) two-scale in L2(GT ), w( f ) = →Ω̂Ŵ◦Y ,

wν
s ⊂ ws(x, t) weakly and two-scale inL2(GT ),

D
(
x, wν

s

) ⊂ D
(
x, ws(x, t)

)+ D
(
y, Û(x, t, y)

)
two-scale inL2(GT ),

Ŵ = ϕW0(x, t, y) + (1 − ϕ )W(x, t, y), Û = ϕU0(x, t, y) + (1 − ϕ )U(x, t, y),

Ω̂(x, y) = ϕ(x)Ω0(y) + (1 − ϕ(x)
)
Ω(y),

p = ∂τ

∂t
∩ L2(GT ), p f = ∂τ f

∂t
∩ L2(GT ),

and the integral identities
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∫

GT

(
ϕ(w( f ) +(1−m0)ws)+(1−ϕ )(w( f ) +(1−m)ws)

) ·∇hdxdt = 0, (5.2.56)

∫

GT

(
ϕ Γ00

(
D(x, ws) + →D(x, U)◦Y 0

s
− p I

) : D(x, ξ) − (ϕ χ̂ 0 + (1 − ϕ )χ̂
)
F · ξ

+ (1 − ϕ )Γ0
(
D(x, ws) + →D(x, U)◦Ys − p I

) : D(x, ξ)
)

dxdt = 0.

(5.2.57)

hold true for any smooth functions h = h(x, t) and ξ = ξ(x, t), vanishing at S.
Next, following the proofs ofTheorem1.4 andTheorem5.8weuse representations

D(x, ws) + →D(x, U0)◦Y 0
s

− p I = Ns,0
1 : D(x, ws) − p f I

for x ∩ α0, and

D(x, ws) + →D(x, U)◦Ys − p I = Ns
1 : D(x, ws) − p f I,

for x ∩ α , and arrive at the integral identity

∫

GT

(
ϕ
(
(Γ00N

s,0
1 : D(x, ws) − p f I) : D(x, ξ) − χ̂ 0F · ξ

)

+ (1 − ϕ )
(
(Γ0N

s
1 : D(x, ws) − p f I) : D(x, ξ) − χ̂F · ξ

))
dxdt = 0.

(5.2.58)

This identity implies Eqs. (5.2.25) and (5.2.28) in α0
T and αT respectively, and the

continuity condition (5.2.33) on the common boundary S0. The boundary condition
(5.2.21) on the outer boundary S follows from the Lemma B.14 in Appendix B, the
continuity condition (5.2.32) on the common boundary S0 is a consequence of the
inclusion ws ∩ W1,0

2 (GT ).
The integral identity (5.2.56) implies continuity equations (5.2.24) and (5.2.27) in

α0
T andαT respectively, the continuity condition (5.2.34) on the common boundary

S0, and boundary condition (5.2.31) on the outer boundary S.
To deriveDarcy’s laws (5.2.26) and (5.2.29) inα0

T andαT respectively, and prove
that ∇τ f ∩ L2(GT ), we pass to the limit as ν ⊂ 0 in (5.2.15) with test functions

ξ =
∫ t

0
h(x, ρ )dρ ξ0

(x
ν

)
,

where

(1) h is finite in α0 and ξ0(y) is divergent free and finite in Y 0
f ,

and
(2) h is finite in α and ξ0(y) is divergent free and finite in Y f .
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Fig. 5.7 Continuity of the
pressure on S0

This procedure has been done in Chap.1 (proofs of Theorems 1.3 and 1.4) and
together with microscopic continuity equations

∇y · W0(x, t, y) = 0, y ∩ Y 0
f , ∇y · W(x, t, y) = 0, y ∩ Y 0

f

defines (5.2.26) and (5.2.29).
The missing continuity condition (5.2.35) or (5.2.36) on S0 depends on the struc-

ture of the common pore space. For the first structure there exist divergent free and
finite in Y f ∪ Y 0

f smooth functions ξ̃i (y) (Fig. 5.7), such that

→ξ̃i ◦Y = ei , i = 1, 2, 3,

where {e1, e1, e1} is a standard Cartesian basis. The existence of such functions is
proved in Lemma B.15 of Appendix B.

Next we put in (5.2.15)

ξ =
∫ t

0
h(x, ρ )dρ ξ̃i

(x
ν

)
,

where h(x0, t) �= 0 for x0 ∩ S0 and is h(x, t) vanishes outside of some small
neighborhood of x0, and pass to the limit as ν ⊂ 0:

∫

αT

h
(
μ1→D(y, W) : D(y, ξ̃i )◦Y − χ f

(∫ t

0
Fdρ

)
· →ξ̃i ◦Y

)
dxdt

+
∫

α0
T

h
(
μ1→D(y, W0) : D(y, ξ̃i )◦Y − χ f

( ∫ t

0
Fdρ

)
· →ξ̃i ◦Y

)
dxdt

−
∫

αT

τ f (∇ h · ei )dxdt −
∫

α0
T

τ f (∇ h · ei )dxdt

=
∫

αT

(
h Pi + ∂h

∂xi
τ f

)
dxdt +

∫

α0
T

(
h P 0

i + ∂h

∂xi
τ f

)
dxdt = 0, i = 1, 2, 3,

(5.2.59)

where

P 0
i = −μ1→D(y, W0) : D(y, ξ̃i )◦Y + χ f

( ∫ t

0
Fdρ

)
· →ξ̃i ◦Y ,

http://dx.doi.org/10.2991/978sps94sps6239sps015sps7sps1
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Fig. 5.8 Disconnected pore
space

Pi = −μ1→D(y, W) : D(y, ξ̃i )◦Y + χ f

( ∫ t

0
Fdρ

)
· →ξ̃i ◦Y .

Due to estimates (5.2.16) and the two-scale convergence results (see Appendix B)
we have

τ f , P0
i ∩ L2

(
α0

T

)
, τ f , Pi ∩ L2(αT ), i = 1, 2, 3.

Thereforeτ f ∩ W 1,0
2 (GT ) and functionτ f satisfies the continuity condition (5.2.35)

on the common boundary S0.
Now, let the common pore space be disconnected (the second structure). The

function w̃ν = wν − wν
s is identically equal to zero in the solid domain Qν

s due to
the properties of the extension wν

s .
Moreover, by supposition on a structure of the common pore space we have the

equality
w̃ν = 0

on the common boundary S0 (see Figs. 5.5 and 5.8).
Let

θ = {x ∩ α : |x − x0| < δ}, θν = {x ∩ αν
f : |x − x0| < δ}

for x0 ∩ S0 and sufficiently small positive δ, and Π(x, t) be a smooth function, such
that

Π(x0, t) �= 0, supp Π √ θν.

By the choice of the function Π and the domain θν

w̃ν(x, t) = 0 for x ∩ ∂θν.
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Therefore

∫ T

0

∫

θ

Ων Π ∇ · wν
s dxdt =

∫ T

0

∫

θν

Π ∇ · wν
s dxdt

= −
∫ T

0

∫

θν

Π ∇ · w̃νdxdt =
∫ T

0

∫

θν

∇ Π · w̃νdxdt

=
∫ T

0

∫

θ

∇ Π · (Ων wν − Ων wν
s

)
dxdt.

Passing to the two-scale limit in the last identity as ν ⊂ 0 we arrive at

∫ T

0

∫

θ

Π
(
m ∇ · ws + →∇y · W◦Y f

)
dxdt

=
∫ T

0

∫

θ

∇ Π · (w( f ) − m ws
)
dxdt. (5.2.60)

The arbitrary choice of Π , the condition Π(x0, t) �= 0 for x0 ∩ S0, and the identity
(5.2.60) imply (5.2.36).

The validity of the normalization condition (5.2.20) for p f is proved in the the
previous theorem. By definition

τ f (x, t) =
∫ t

0
p f (x, ρ )dρ.

Therefore, ∫

Q
τ f (x, t)dx =

∫ t

0

(∫

Q
p f (x, ρ )dx

)
dρ = 0,

which proves (5.2.30).

5.2.7 Proof of Theorem 5.12

Note that estimates (5.2.16) are still valid for the solutions of (FCM)6. These esti-
mates are independent ofΓ0 = k. But the problem itself also possesses such estimates
and we will try to obtain them.

First we use continuity equations in the form

∇ · w( f,k) − m0 ∇ · w(k)
s = −∇ · w(k)

s , (x, t) ∩ α0
T ,

∇ · w( f,k) − m ∇ · w(k)
s = −∇ · w(k)

s , (x, t) ∩ αT ,

and rewrite the problem as two integral identities
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∫

Q

(
k
(
Ñ : D(x, w(k)

s )
) : D(x, ξ) − p(k)

f ∇ · ξ
)

dx =
∫

Q
χ̃F · ξdx, (5.2.61)

∫

Q

(
(B̃·∇ τ

(k)
f )·∇ Π+Π ∇·w(k)

s

)
dx =

∫

Q
χ f ∇ Π ·B̃·

(∫ t

0
F(x, ρ )dρ

)
dx (5.2.62)

for any functions ξ ∩ ◦
W

1,0

2 (GT ) and Π ∩ W 1,0
2 (GT ).

In (5.2.61), (5.2.62)

τ
(k)
f (x, t) =

∫ t

0
p(k)

f (x, ρ )dρ,

Ñ = ϕ Ns,0
1 + (1 − ϕ )Ns

1,

B̃ = ϕ B
0 + (1 − ϕ )B.

Suppose for the moment that
∂

∂t
(∇τ

(k)
f ) ∩ L2(GT ).

If we put ξ = w(k)
s in (5.2.61) and Π = p(k)

f in (5.2.62), and then sum results, we
obtain

k
∫

Q

(
Ñ : D(x, w(k)

s )
) : D(x, w(k)

s )dx + 1

2

d

dt

∫

Q
∇ τ

(k)
f · (B̃ · ∇ τ

(k)
f

)
dx

=
∫

Q
χ̃F · w(k)

s dx + d

dt

∫

Q
χ f ∇ τ

(k)
f · B̃ ·

( ∫ t

0
F(x, ρ )dρ

)
dx

−
∫

Q
χ f ∇ τ

(k)
f · B̃ · Fdx . (5.2.63)

This equality and the properties of tensorsNs,0
1 andNs

1 and matrices B0 and B imply
the desired estimates

k
∫

GT

|D(x, w(k)
s )|2dxdt + max

0<t<T

∫

Q
|∇ τ

(k)
f (x, t)|2dx � C0P

2, (5.2.64)

where C0 is independent of ν and k for k > 1.
The rigorous derivation of (5.2.63) requires the use of mollifiers and one may find

such types of estimates for parabolic equations in [61].
Estimates (5.2.64), and Eqs. (5.2.26) and (5.2.29) show that there exist subse-

quences {w(kn)
s }, {τ(kn)

f }, and {w( f,kn)}, such that

w(kn)
s ⊂ 0 strongly in

◦
W

1,0

2 (GT ),

τ
(kn)
f ⊂ τ f weakly in W 1,0

2 (GT ),
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and
w( f,kn) ⊂ w( f ) weakly in L2(GT )

as kn ⊂ ∞, and the limiting functions obviously solve the problem (5.2.30), (5.2.31),
(5.2.35), (5.2.38)–(5.2.41).

In fact, Eqs. (5.2.39), (5.2.40) are the direct result of the limit in Eqs. (5.2.26),
(5.2.29). The continuity equation (5.2.38) in Q, the continuity condition (5.2.41),
and the boundary condition (5.2.31) follow from the continuity equation (5.2.27) in
its integral form

∫

GT

∇ Π ·
(

w( f,kn) + (ϕ(1 − m0) + (1 − ϕ )(1 − m)
)
w(kn)

s

)
dxdt = 0,

which holds true for any smooth function Π(x, t).
The continuity condition (5.2.35) follows from the smoothness of the function

τ f .
As before, the weak limit as kn ⊂ ∞ in the normalization condition (5.2.30) for

τ
(kn)
f in the form

0 =
∫ T

0
h(t)

(∫

α

τ
(kn)
f dx

)
dt ⊂

∫ T

0
h(t)

(∫

α

τ f dx

)
dt = 0

for arbitrary smooth functions h(t) results in the normalization condition (5.2.30)
for the function τ f .

5.2.8 Proof of Theorem 5.13

The proof of this theorem is similar to the proof of the previous one. To explain our
ideas on how to obtain estimates independent of k, we again use the formal method
under the supposition ∇ p(k)

f ∩ L2(GT ).
Firstly we rewrite (5.2.58) as

∫

Q

(
ϕ
(
(k Ns,0

1 : D(x, ws) − p f I) : D(x, ξ) − χ̂ 0F · ξ
)

+ (1 − ϕ )
(
(k Ns

1 : D(x, ws) − p f I) : D(x, ξ) − χ̂F · ξ
))

dx = 0 (5.2.65)

and put ξ = w(k)
s .

Then we multiply (5.2.24) and (5.2.27) by p(k)
f , integrate over domain α0 and α

respectively, and sum the results with (5.2.65):
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0 = k
∫

Q

(
ϕ D(x, w(k)

s ) : (Ns,0
1 : D(x, w(k)

s )
)

+ (1 − ϕ )D(x, w(k)
s ) : (Ns,0

1 : D(x, w(k)
s )
))

dx −
∫

Q
χ̂ 0F · w(k)

s dx

+
∫

α0
p f ∇ · (w( f,k) − m0w(k)

s )dx +
∫

α

p f ∇ · (w( f,k) − mw(k)
s )dx

= I1 + I2 + I3 + I4 = 0.

The last two integrals I3 and I4 we rewrite using integration by parts, boundary
conditions (5.2.21), (5.2.31), (5.2.36), and (5.2.37), and Eqs. (5.2.26) and (5.2.29) as

I3 = 1

μ1

∫

α0
∇ p f · B0 ·

(
∇ τ f − χ f

∫ t

0
F(x, ρ )dρ

)
dx,

I4 = 1

μ1

∫

α

∇ p f · B ·
(

∇ τ f − χ f

∫ t

0
F(x, ρ )dρ

)
dx .

Gathering all together we arrive at (5.2.63).
The rest of the proof repeats the proof of Theorem 5.12. The slight difference here

is only in the derivation of the boundary condition (5.2.42). To prove that we rewrite
the continuity equation (5.2.27) in α as

∇ · (w( f,k) − mw(k)
s ) + w(k)

s = 0,

multiply by an arbitrary smooth function Π and integrate by parts over domain αT

using boundary conditions (5.2.21), (5.2.31), and (5.2.36):
∫

α

(
− ∇Π · (w( f,k) − mw(k)

s ) + Π∇ · w(k)
s

)
dxdt = 0.

The limit as k ⊂ ∞ in the last identity results in
∫

α

∇Π · w( f )dxdt = 0,

which is equivalent to the continuity equation (5.2.38) and the boundary condition
(5.2.42).

5.2.9 Proof of Theorem 5.14

The new supposition of the theorem, that
∫

αT

(1 − Ων)

∣∣∣∣
∂F
∂t

∣∣∣∣
2

dxdt = P2
1 < ∞,
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permits us to get estimates

∫

αT

(
|wν|2 + |D(x, vν)|2

)
dxdt

+ max
0<t<T

∫

α

(
|D(x, wν)|2 + |p ν|2

)
dx � C0(P

2 + P2
1), (5.2.66)

where vν = EQν
f

(
∂wν

∂t

)
is an extension of

∂wν

∂t
from the liquid domain Qν

f onto

Q (see the proof of Theorem 1.9).
On the basis of these estimates we conclude that for ν ⊂ 0

pν γ p weakly in L2(GT ),

wν ⊂ w(x, t) weakly and two-scale in L2(GT ),

vν ⊂ v(x, t) = ∂w
∂t

weakly in
◦
W

1,0

2 (GT ) and two-scale in L2(GT ),

D
(
x, wν

) ⊂ D
(
x, w

)+ D
(
y, Ŵ

)
two-scale in L2(GT ),

D

(
x, vν

)
⊂D

(
x, v

)
+ D

(
y, V̂

)
= D

(
x,

∂w
∂t

)

+ D

(
y,

∂Ŵ
∂t

)
two-scale in L2(GT ),

Ŵ = ϕ W0 + (1 − ϕ ) W,

where functions W0 and W are defined separately inα0
T ×Y andαT ×Y (for details

see the proof of Theorem 1.11). The same theorem says that limiting functions satisfy
Eqs. (5.2.44)–(5.2.46), the boundary condition (5.2.49), and the initial condition
(5.2.50). The validity of the normalization condition (5.2.47) is a consequence of the
weak convergence of {pν} and the normalization condition (5.2.43).

Finally, the boundary condition (5.2.48) follows from the integral identity (5.2.15)
after taking the two-scale limit as ν ⊂ 0 with test functions ξ = ξ(x, t):

∫

α0
T

(
μ0

(
m0D

(
x,

∂w
∂t

)
+
〈
D

(
y,

∂W0

∂t

)〉
Y 0

f

)
+ Γ0

(
(1 − m0)D(x, w)

+ →D(y, W0)◦Y 0
s

)− p I

)
: D(x, ξ)dxdt −

∫

α0
T

χ̂0F · ξdxdt

+
∫

αT

(
μ0

(
mD

(
x,

∂w
∂t

)
+
〈
D(y,

∂W
∂t

)
〉
Y f

)
+ Γ0

(
(1 − m)D(x, w)
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+ →D(y, W)◦Ys

)− p I

)
: D(x, ξ)dxdt −

∫

αT

χ̂F · ξdxdt = 0. (5.2.67)

In fact, by Theorem 1.11

⎧P0 = − p I + μ0

(
m0D

(
x,

∂w
∂t

)
+
〈
D

(
y,

∂W0

∂t

)〉
Y 0

f

)

+ Γ0
(
(1 − m0)D(x, w) + →D(y, W0)◦Y 0

s

)
,

⎧P = − p I + μ0

(
mD

(
x,

∂W
∂t

)
+
〈
D

(
y,

∂w
∂t

)〉
Y f

)

+ Γ0
(
(1 − m)D(x, w) + →D(y, W)◦Ys

)
,

and the integral identity (5.2.67) takes the form

∫

GT

(
ϕ⎧P0 + (1 − ϕ )⎧P) : D(x, ξ)dxdt =

∫

GT

(
ϕ χ̂0 + (1 − ϕ )χ̂

)
F · ξdxdt,

which obviously implies the boundary condition (5.2.48).

5.3 Filtration in Poroelastic Media with a Variable Structure

In this section we will try to model nonperiodic poroelastic media with a variable
structure in the domain α , described for t > 0 by the model M15 with the char-
acteristic function Ω0(x) of the liquid domain α f . To do this we use the standard
procedure of approximation of variable coefficients by means of step functions.

Suppose that for some small positive δ

Ω0(x) = Ωn

(x
δ

)
, Γ0 = Γn

0 χs = χ n
s , for x ∩ K (δ)

n ,

where Ωn(y) is a 1-periodic in y function,

Γn
0 = const., χ n

s = const., α =
N⎛

n=1

K (δ)
n ,

and for δ > 0 the cube K (δ)
n is an intersection of the domain α with the cube δ K ,

K = [0, 1]3 √ R
3, IntK (δ)

n ∪ IntK (δ)
m = ∅ for m �= n.

Let
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Ω(δ)(x, y) = Ωn(y), Γ
(δ)
0 (x) = Γn

0, χ(δ)
s (x) = χ n

s for x ∩ K (δ)
n

be step functions in the variable x. Then Ω(δ)(x, y) is a 1-periodic function in the
variable y.

Now, as usual, we consider in the domain α for t > 0 the problem

∇ · wδ,ν = 0, (5.3.1)

∇·
(

Ωδ,νλμD

(
x,

∂wδ,ν

∂t

)
+(1−Ωδ,ν)Γ

(δ)
0 D(x, wδ,ν)− pδ,ν

I

)
+χδ,νF = 0, (5.3.2)

with the characteristic function

Ωδ,ν(x) = Ω(δ)
(

x,
x
ν

)

of the pore spaceα
δ,ν
f , the solid density χ

(δ)
s (x), and the elasticity coefficient Γ(δ)

0 (x),
depending on the variable x ∩ α and the small parameter ν < δ.

The problem is completed with the boundary condition

wδ,ν(x, 0) = 0, x ∩ S = ∂α, t > 0, (5.3.3)

and initial and normalization conditions

Ωδ,ν(x)wδ,ν(x, t) = 0, x ∩ α, (5.3.4)

∫

α

Ωδ,ν(x)

m(δ)(x)
pδ,ν(x, t)dx = 0, m(δ)(x) =

∫

Y
Ω(δ)(x, y)dy. (5.3.5)

In (5.3.2)
χδ,ν(x) = Ωδ,ν(x)χ f + (1 − Ωδ,ν(x)

)
χ(δ)

s (x).

Differential equation (5.3.2) is understood as an integral identity

∫ T

0

∫

α

(
− λμΩδ,ν

D(x, wδ,ν) :D
(

x,
∂ξ

∂t

)
+Γ

(δ)
0 (1−Ωδ,ν)D(x, wδ,ν) :D(x, ξ)

)
dxdt

=
∫ T

0

∫

α

(
p δ,ν(∇ · ξ) + χ δ,νF · ξ

)
dxdt (5.3.6)

for all functions ξ vanishing at t = T , such that ξ,
∂ξ

∂t
∩ ◦

W
1,0

2 (GT ).

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the struc-
tures, defined by characteristic functions Ωn(y), completed with an additional sup-
position.
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Assumption 5.1 Let α = ⎝N
n=1 K (δ)

n , where K (δ)
n is an intersection of α with the

cube δ K , K = [0, 1]3 √ R
3, IntK (δ)

n ∪ IntK (δ)
m = ∅ for m �= n, and

Ω(δ)(x, y) = Ωn(y), for x ∩ K (δ)
n

be a characteristic function of the pore space in α .
Then the common pore space inα is connected (see previous section), that is, for

any K (δ)
n and K (δ)

m , having a common boundary,

Y (n)
f ∪ Y (m)

f �= ∅, Y (n)
s ∪ Y (m)

s �= ∅,

where Y (n)
f and Y (m)

f are elementary liquid domains and Y (n)
s and Y (m)

s are elementary
solid domains, defined by characteristic functions Ωn(y) and Ωm(y) respectively.

Next we introduce an extension

wδ,ν
s (x, t) = E

(δ)
αν

s

(
wδ,ν

)

from the solid part

αν
s =

⎞
x ∩ α : Ω(δ)

(
x,

x
ν

)
= 0

⎠

of the domain α onto the whole domain α , with the following properties:

(
1 − Ωδ,ν(x)

)(
wδ,ν(x, t) − wδ,ν

s (x, t)
) = 0, x ∩ α, t ∩ (0, T ),

and
∫

α

∣∣wδ,ν
s (x, t)

∣∣2dx � C0

∫

αν
s

∣∣wδ,ν(x, t)
∣∣2dx,

∫

α

∣∣D(x, wδ,ν
s (x, t)

)∣∣2dx � C0

∫

αν
s

∣∣D(x, wδ,ν(x, t)
)∣∣2dx, t ∩ (0, T ),

where C0 is independent of ν, δ, and t ∩ (0, T ).
The existence of such an extension for domains αν

s with a non- periodic structure
is proved as well as the existence of the extension (1.2.9) for domains αν

s with
periodic structure.

Under these assumptions for solutions {wδ,ν, pδ,ν} of the problem (5.3.1)–(5.3.5)
all statements of the previous section hold true,whichwe reformulate as the following
theorems.

Theorem 5.15 For all ν > 0 and for arbitrary time interval [0, T ] there exists a
unique generalized solution of problem (5.3.1)–(5.3.5) and

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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max
0<t<T

∫

α

Ωδ,ν
(
λμ|D(x, wδ,ν(x, t)

)|2 + λμ

ν2
|wδ,ν(x, t) − wδ,ν

s (x, t)|2
)

dx

+
∫ T

0

∫

α

(
|τ δ,ν|2 + Γδ

0 |D(x, wδ,ν)|2
)

dxdt � C0P
2, (5.3.7)

where C0 is independent of ν, Γδ
0 for Γ

(δ)
0 > Γ−, and

τδ,ν(x, t) =
∫ t

0
pδ,ν(x, ρ )dρ,

P2 = max
0<t<T

∫

α

|F(x, t)|2dx < ∞.

Theorem 5.16 Let

μ0 = 0, μ1 = ∞, 0 < Γ− < Γ
(δ)
0 (x) < Γ+ < ∞,

{wδ,ν, p δ,ν} be the weak solution of the problem (5.3.1)–(5.3.5),

τ δ,ν(x, t) =
∫ t

0
pδ,ν(x, ρ )dρ,

and wδ,ν
s = EQν

s

(
wδ,ν

)
be an extension from the domain α

δ,ν
s = {x ∩ α : Ωδ,ν(x) =

0} onto the domain α .
Then the sequences {wδ,ν} and {Ωδ,ντδ,ν} converge weakly in L2(αT ) and

L2(αT ) as ν ⊂ 0 to the functions w(δ)
s and m(δ) τ

(δ)
f respectively, and the sequence

{wδ,ν
s } converges weakly in W 1,0

2 (αT ) as ν ⊂ 0 to the function w(δ)
s .

The limiting functions solve in the domain α for t > 0 the homogenized system,
consisting of the homogenized momentum balance equation

∇ · P(δ)
1 (x) + χ̂(δ)(x) F = 0, (5.3.8)

P
(δ)
1 (x) = Γ

(δ)
0 (x)Ns,δ

1 (x) : D(x, w(δ)
s ) − p(δ)

f I, (5.3.9)

and the continuity equation
∇ · w(δ)

s = 0. (5.3.10)

The problem is completed with the normalization condition

∫

α

p(δ)
f (x, t)dx = 0 (5.3.11)

and the boundary condition
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w(δ)
s = 0 (5.3.12)

on the outer boundary S for t > 0.
In (5.3.8), (5.3.9)

p(δ)
f = ∂τ

(δ)
f

∂t
, χ̂(δ)(x) = m(δ)(x) χ f + (1 − m(δ)(x)

)
χ(δ)

s (x),

the symmetric strictly positively definite fourth-rank tensor Ns,δ
1 (x) is given at point

x ∩ α by (1.2.38) for the pore space with the characteristic function Ω(δ)(x, y) (see
Theorem 1.4 of Chap.1).

We refer to the problem (5.3.8)–(5.3.12) as the homogenized model (FCM)
(δ)
13 .

Theorem 5.17 Let

μ0 = 0, 0 < 0 < Γ− < μ1, Γ
(δ)
0 (x) < Γ+ < ∞,

{wδ,ν, p δ,ν} be the weak solution of the problem (5.3.1)–(5.3.5), wδ,ν
s = EQν

s

(
wδ,ν

)
be an extension from the domain αν

s = {x ∩ α : Ωδ,ν(x) = 0} onto the domain α ,
and

τ δ,ν(x, t) =
∫ t

0
pδ,ν(x, ρ )dρ.

Then the sequences {Ωδ,ν τδ,ν}, and {Ωδ,ν wδ,ν} converge weakly in L2(αT ) and
L2(αT ) as ν ⊂ 0 to the functions m(δ) τ

(δ)
f and w(δ, f ) respectively, and the sequence

{wδ,ν
s } converges weakly in W1,0

2 (αT ) as ν ⊂ 0 to the function w(δ)
s .

The limiting functions τ
(δ)
f , w(δ, f ), and w(δ)

s , where ∇τ
(δ)
f ∩ L2(αT ),

∂τ
(δ)
f

∂t
∩

L2(αT ), solve in the domain α for t > 0 the homogenized system, consisting of the
continuity equation

∇ · (w(δ, f ) + (1 − m(δ)(x)
)

w(δ)
s

) = 0, (5.3.13)

the homogenized momentum balance equation

∇ · P(δ)
1 (x) + χ̂(δ)(x) F = 0, (5.3.14)

P
(δ)
1 (x) = Γ

(δ)
0 (x)Ns,δ

1 (x) : D(x, w(δ)
s ) − p(δ)

f I (5.3.15)

for the solid component, and Darcy’s law in the form

w(δ, f ) = m(δ)(x) w(δ)
s + 1

μ1
B

(δ)(x) ·
(

− ∇ τ
(δ)
f + χ f

∫ t

0
F(x, ρ )dρ

)
(5.3.16)
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for the liquid component.
The problem is completed with the normalization condition (5.3.11), the boundary

condition (5.3.12) for the solid displacements w(δ)
s , and the boundary condition

w(δ, f )(x, t) · n(x) = 0 (5.3.17)

for the liquid displacements on the outer boundary S for t > 0.
In (5.3.13)–(5.3.17) n(x) is a unit normal to S at x ∩ S,

p(δ)
f = ∂τ

(δ)
f

∂t
, χ̂(δ)(x) = m(δ)(x) χ f + (1 − m(δ)(x)

)
χ(δ)

s (x),

the symmetric strictly positively definite fourth-rank tensorNs,δ
1 (x) is given for almost

all points x ∩ α by (1.2.38) for the pore space with the characteristic function
Ω(δ)(x, y) (see Theorem 1.4 of Chap.1), the symmetric strictly positive definite matrix
B

(δ)(x) is given for almost all points x ∩ α by (1.1.27) for the pore space with the
characteristic function Ω(δ)(x, y) (see Theorem 1.1 of Chap.1).

We refer to the problem (5.3.11), (5.3.12)–(5.3.17) as a homogenized model
(FCM)

(δ)
14 .

Theorem 5.18 Under the conditions of Theorem 5.17 let {w(δ,k)
s , w(δ, f,k), τ

(δ,k)
f }

be a weak solution of the model (FCM)
(δ)
10 with Γ

(δ)
0 = k.

Then the sequences {τ(δ,k)
f } and {w(δ, f,k)} converge weakly in L2(αT ) and

L2(αT ) as k ⊂ ∞ to the functions τ
(δ)
f and w(δ, f ) respectively, and the sequence

{w(δ,k)
s } converges strongly in L2(αT ) to zero.
The limiting functions solve in the domain α for t > 0 the homogenized system,

consisting of the continuity equation

∇ · w(δ, f ) = 0 (5.3.18)

and Darcy’s law

w(δ, f ) = 1

μ1
B

(δ)(x) ·
(

− ∇ τ
(δ)
f + χ f

∫ t

0
F(x, ρ )dρ

)
, (5.3.19)

completed with the boundary condition (5.3.17) for the liquid velocity on the outer
boundary S for t > 0, and the normalization condition (5.3.11).

The symmetric strictly positively definite matrix B
(δ)(x) is given for almost all

points x ∩ α by (1.1.27) for the pore space with the characteristic function Ω(δ)(x, y)

(see Theorem 1.1 of Chap.1).

We refer to the problem (5.3.11), (5.3.17)–(5.3.19) as the homogenized model
(FCM)

(δ)
15 .
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To consider the following case we change the setting of the problem at the micro-
scopic level, namely, instead of the normalization condition (5.3.5) we consider the
normalization condition ∫

α

p δ,ν (x, t) dx = 0. (5.3.20)

The proof of the solvability of the problem (5.3.1)–(5.3.4), (5.3.20) and the derivation
of the a priori estimates repeat exactly the proof of the solvability and the derivation
of the a priori estimates of the problem (5.3.1)–(5.3.5).

Theorem 5.19 Let

λμ = μ0, 0 < Γ− < μ0, Γ
(δ)
0 (x) < Γ+ < ∞,

∫ T

0

∫

α

(1 − Ων)

∣∣∣∣
∂F
∂t

∣∣∣∣
2

dxdt = P2
1 < ∞,

and {wδ,ν, p δ,ν} be the weak solution of the problem (5.3.1)–(5.3.4), (5.3.20).
Then the sequence {pδ,ν} converges weakly in L2(αT ) as ν ⊂ 0 to the function

p(δ) and the sequence {wδ,ν} converges weakly in W1,0
2 (αT ) as ν ⊂ 0 to the function

w(δ).
The limiting functions solve in the domain α for t > 0 the homogenized system,

consisting of the continuity equation

∇ · w(δ) = 0, (5.3.21)

and the homogenized momentum balance equation

∇ · ⎧P(δ)(x) + χ̂(δ)(x) F = 0, (5.3.22)

⎧P(δ)(x) = − p(δ)
I + N

(δ)
1 (x) : D

(
x,

∂w(δ)

∂t

)
+ N

(δ)
2 (x) : D(x, w(δ))

+
∫ t

0
N

(δ)
3 (x, t − ρ) : D(x, w(δ)(x, ρ )

)
dρ. (5.3.23)

The problem is completed with the normalization condition

∫

α

p(δ) (x, t) dx = 0, (5.3.24)

the Dirichlet boundary condition

w(δ)(x, t) = 0 (5.3.25)
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at the outer boundary S, and the initial condition

w(δ)(x, 0) = 0, x ∩ α. (5.3.26)

In (5.3.21)–(5.3.26)

χ̂(δ)(x) = m(δ)(x) χ f + (1 − m(δ)(x)
)
χ(δ)

s (x),

fourth-rank tensors N(δ)
1 (x), N(δ)

2 (x), and N
(δ)
3 (x, t) are given for almost all points

x ∩ α by formulae (1.4.30) for criteria μ0 and Γ
(δ)
0 (x), and the pore space with

the characteristic function Ω(δ)(x, y) (see Theorem 1.11 of Chap.1). The symmetric
tensor N(δ)

1 is strictly positively definite.

We refer to the problem (5.3.21)–(5.3.26) as the homogenized model (FCM)
(δ)
16 .

Now we may complete the construction of mathematical models with variable
properties of the medium by the following

Assumption 5.2 Under the conditions of Assumption 5.1 let {Ω(δ)(x, y)} be a
sequence of characteristic functions, which approximately describe the pore space
in α .

Then there exists a function Ω(x, y)m 1-periodic in the variable y, such that the
sequence {Ω(δ)} converges uniformly in α × Y as δ ⊂ 0 to the function Ω(x, y).

Let Y f (x) and Ys(x) be elementary liquid and solid cells in Y , defined by the
characteristic function Ω(x, y). Then due to Assumptions 5.1 and 5.2 for any x0 ∩ α

there exists η > 0, such that

Y f (x) ∪ Y f (x0) �= ∅, Ys(x) ∪ Ys(x0) �= ∅, ∗ x : |x − x0| < η. (5.3.27)

We additionally suppose that

Γ
(δ)
0 (x) ⊂ Γ0(x), χ(δ)

s (x) ⊂ χs(x) in L2(α) (5.3.28)

as δ ⊂ 0. These last assumptions permit us to pass to the limit as δ ⊂ 0 in the
mathematical models (FCM)

(δ)
13 – (FCM)

(δ)
16 .

So, the following statements hold true.

Theorem 5.20 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let
{w(δ)

s , w(δ, f ), τ
(δ)
f } be a solution of the model (FCM)

(δ)
13 .

Then the sequences {w(δ, f )} and {τ(δ)
f } converge weakly in L2(αT ) and L2(αT )

as δ ⊂ 0 to the functions ws and τ f respectively, and the sequence {w(δ)
s } converges

weakly in W1,0
2 (αT ) as δ ⊂ 0 to the function ws .

The limiting functions solve in the domain α for t > 0 the homogenized system,
consisting of the homogenized momentum balance equation
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∇ · P1(x) + χ̂(x) F = 0, (5.3.29)

P1(x) = Γ0(x)Ns
1(x) : D(x, ws) − p f I, (5.3.30)

and the continuity equation
∇ · ws = 0. (5.3.31)

The problem is completed with the normalization condition

∫

α

p f (x, t)dx = 0 (5.3.32)

and the boundary condition
ws = 0 (5.3.33)

on the outer boundary S for t > 0.
In (5.3.29)–(5.3.33)

p f = ∂τ f

∂t
, χ̂(x) = m(x) χ f + (1 − m(x)

)
χs(x), m(x) =

∫

Y
Ω(x, y)dy,

the symmetric strictly positively definite fourth-rank tensor Ns
1(x) is given at point

x ∩ α by (1.2.38) for the pore space with the characteristic function Ω(x, y) (see
Theorem 1.4 of Chap.1).

We refer to the problem (5.3.29)–(5.3.33) as the homogenized model (FCM)
(0)
13 .

Theorem 5.21 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let
{w(δ)

s , w(δ, f ), τ
(δ)
f } be a solution of the model (FCM)

(δ)
14 .

Then the sequences {w(δ, f )} and {τ(δ)
f } converge weakly in L2(αT ) and L2(αT )

as δ ⊂ 0 to the functions w f and τ f respectively, and the sequence {w(δ)
s } converges

weakly in W1,0
2 (αT ) as δ ⊂ 0 to the function ws .

The limiting functions solve in the domain α for t > 0 the homogenized system,
consisting of the continuity equation

∇ · (w f + (1 − m(x)
)

ws
) = 0, (5.3.34)

the homogenized momentum balance equation

∇ · P1(x) + χ̂(x) F = 0, (5.3.35)

P1(x) = Γ0(x)Ns
1(x) : D(x, ws) − p f I (5.3.36)

for the solid component, and Darcy’s law in the form
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w f = m(x) ws + 1

μ1
B(x) ·

(
− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
(5.3.37)

for the liquid component.
The problem is completed with the normalization condition (5.3.32), the boundary

condition (5.3.33) for the solid displacements ws , and the boundary condition

w f (x, t) · n(x) = 0 (5.3.38)

for the liquid displacements on the outer boundary S for t > 0.
In (5.3.34)–(5.3.38) n(x) is a unit normal to S at x ∩ S,

p f = ∂τ f

∂t
, χ̂(x) = m(x) χ f + (1 − m(x)

)
χs(x), m(x) =

∫

Y
Ω(x, y)dy,

the symmetric strictly positively definite fourth-rank tensor Ns
1(x) is given for almost

all points x ∩ α by (1.2.38) for the pore space with the characteristic functionΩ(x, y)

(see Theorem 1.4 of Chap. 1), the symmetric strictly positively definite matrixB(x) is
given for almost all points x ∩ α by (1.1.27) for the pore space with the characteristic
function Ω(x, y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.3.32), (5.3.33)–(5.3.38) as the homogenized model
(FCM)

(0)
14 .

Theorem 5.22 Under the conditions of Theorem 5.21 let {w(k)
s , w( f,k), τ

(k)
f } be the

weak solution of the model (FCM)
(0)
14 with Γ0(x) = k.

Then the sequences {τ(k)
f } and {w( f,k)} converge weakly in L2(αT ) and L2(αT )

as k ⊂ ∞ to the functions τ f and w f respectively, and the sequence {w(k)
s } con-

verges strongly in L2(αT ) to zero.
The limiting functions solve in the domain α for t > 0 the homogenized system,

consisting of the continuity equation

∇ · w f = 0 (5.3.39)

and Darcy’s law

w f = 1

μ1
B(x) ·

(
− ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ

)
, (5.3.40)

completed with the boundary condition (5.3.38) for the liquid velocity on the outer
boundary S for t > 0, and the normalization condition (5.3.32).

The symmetric strictly positively definite matrixB(x) is given for almost all points
x ∩ α by (1.1.27) for the pore space with the characteristic function Ω(x, y) (see
Theorem 1.1 of Chap. 1).
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We refer to the problem (5.3.32), (5.3.38)–(5.3.40) as the homogenized model
(FCM)

(0)
15 .

Theorem 5.23 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let {w(δ), p(δ)}
be a solution of the model (FCM)

(δ)
16 .

Then the sequence {p(δ)} converges weakly in L2(αT ) as δ ⊂ 0 to the function p
and the sequence {w(δ)} converges weakly in w1,0

2 (αT ) as δ ⊂ 0 to the function w.
The limiting functions solve in the domain α for t > 0 the homogenized system,

consisting of the continuity equation

∇ · w = 0, (5.3.41)

and the homogenized momentum balance equation

∇ · ⎧P(x) + χ̂(x) F = 0, (5.3.42)

⎧P(x) = −p I + N1(x) : D
(

x,
∂w
∂t

)
+ N2(x) : D(x, w)

+
∫ t

0
N3(x, t − ρ) : D(x, w(x, ρ ))dρ. (5.3.43)

The problem is completed with the normalization condition

∫

α

p (x, t) dx = 0, (5.3.44)

the Dirichlet boundary condition

w(x, t) = 0 (5.3.45)

at the outer boundary S, and the initial condition

w(x, 0) = 0, x ∩ α. (5.3.46)

In (5.3.41)–(5.3.46)

χ̂(x) = m(x) χ f + (1 − m(x)
)
χs(x), m(x) =

∫

Y
Ω(x, y)dy,

fourth-rank tensors N1(x), N2(x), and N3(x, t) are given for almost all points x ∩
α by formulae (1.4.30) for criteria μ0 and Γ0(x), and the pore space with the
characteristic function Ω(x, y) (see Theorem 1.11 of Chap.1). The symmetric tensor
N1 is strictly positively definite.

We refer to the problem (5.3.41)–(5.3.46) as the homogenized model (FCM)
(0)
16 .
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To prove all these statements we only have to show that tensorsNs,δ
1 (x),N(δ)

1 (x),

N
(δ)
2 (x), and N

(δ)
3 (x, t), and matrices B(δ)(x) continuously depend on δ as δ ⊂ 0.

The proof of this fact is quite standard and we do it schematically only for the
tensor Ns,δ

1 (x).

Lemma 5.3 The tensor Ns,δ
1 (x) is a continuous with respect to parameter δ.

Proof To prove the statement we only have to show the continuity of the solution
{U(i j)

δ , P(i j)
δ } of the problem

∇y ·
(
(1 − Ω(δ))

(
D(y, U(δ)) + J − P(δ)

I
)) = 0, y ∩ Y,

(1 − Ω(δ))∇y · U(δ) = 0, y ∩ Y, →U(δ)◦
Y (δ)

s
= 0

}
(5.3.47)

with respect to δ, if the characteristic function
(
1 − Ω(δ)(y)

)
of the solid cell Y (δ)

s is
a continuous with respect to δ.

Without loss of generality wemay assume that functionsU(δ) and P(δ) are defined
in Y , ∫

Y

(|∇yU(δ)|2 + |P(δ)|2)dy � C0, (5.3.48)

and that
∇y · U(δ) = 0, y ∩ Y. (5.3.49)

Then the difference U = U(δ1) −U(δ2), P = P(δ1) − P(δ2) is a solution of the integral
identity

∫

Y
(1 − Ω(δ1))

(
D(y, U) − PI

) : D(y, ξ)dy

=
∫

Y
(Ω(δ1) − Ω(δ2))D(y, U2) : D(y, ξ)dy, (5.3.50)

completed with the continuity equation

∇y · U = 0, y ∩ Y. (5.3.51)

Setting in (5.3.50) ξ = U one has the equality

∫

Y
(1 − Ω(δ1))|D(y, U)|2dy =

∫

Y
(Ω(δ1) − Ω(δ2))D(y, U2) : D(y, U)dy,

which provides the first estimate

∫

Y
|∇yU|2dy � C0 max

y∩Y
|Ω(δ1)(y) − Ω(δ2)(y)|2. (5.3.52)
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Let now ξ0 ∩ ◦
W

1

2(Y ) be found from the condition

∇y · ξ0 = P, y ∩ Y. (5.3.53)

Such a choice is always possible (see [59]) and

∫

Y
|∇yξ0|2dy � C0

∫

Y
|P|2dy � C1. (5.3.54)

Setting in (5.3.50) ξ = ξ0 we arrive at the second estimate

∫

Y
|P|2dy � C0 max

y∩Y
|Ω(δ1)(y) − Ω(δ2)(y)|2. (5.3.55)

Note that we have started with the mathematical problem at the microscopic level
(5.3.1)–(5.3.5), depending on two small parameters ν and δ, then first pass to the
limit as ν ⊂ 0, and after that pass to the limit as δ ⊂ 0.

For such limiting procedures with two independent small parameters pure math-
ematics requires proofs for the full diagram. It means that now we must first pass to
the limit as δ ⊂ 0, and after that pass to the limit as ν ⊂ 0. The limiting model will
be correct, if in both cases we get the same result.

The limit as δ ⊂ 0 in (5.3.1)–(5.3.5) obviously results in the problem

∇ · wν = 0, (5.3.56)

∇ ·
(

ΩνλμD

(
x,

∂wν

∂t

)
+ (1−Ων)Γ0(x)D(x, wν)− pν

I

)
+χν(x)F = 0, (5.3.57)

wν(x, 0) = 0, x ∩ S = ∂α, t > 0, (5.3.58)

Ων(x)wν(x, t) = 0, x ∩ α, (5.3.59)

∫

α

Ων(x)

m(x)
pν(x, t)dx = 0, (5.3.60)

where

χν(x) = Ων(x)χ f + (1 − Ων(x)
)
χs(x), m(x) =

∫

Y
Ω(x, y)dy,

with the limiting characteristic function

Ων(x) = Ω
(

x,
x
ν

)

of the pore space.
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The correctness of the problem (5.3.56)–(5.3.60) is proved in a way similar to the
the correctness of the problem (5.3.1)–(5.3.5).

As above, we introduce an extension

wν
s (x, t) = E

(⇔)
αν

s

(
wν
)

(5.3.61)

from the solid part

αν
s =

⎞
x ∩ α : Ω

(
x,

x
ν

)
= 0

⎠

of the domain α onto the whole domain α , with the following properties:

(
1 − Ων(x)

)(
wν(x, t) − wν

s (x, t)
) = 0, x ∩ α, t ∩ (0, T ),

and
∫

α

|wν
s (x, t)|2dx � C0

∫

αν
s

|wν(x, t)|2dx,

∫

α

∣∣∣D(x, wν
s (x, t)

)∣∣∣
2
dx � C0

∫

αν
s

∣∣∣D(x, wν(x, t)
)∣∣∣
2
dx, t ∩ (0, T ), (5.3.62)

where C0 is independent of ν and t ∩ (0, T ).
The existence of such an extension for domains αν

s with a non-periodic structure
might be proved as well as the existence of the extension (1.2.9) for domains αν

s
with a periodic structure.

So, the following theorem holds true.

Theorem 5.24 Under Assumptions 5.1 and 5.2 for all ν > 0 and for an arbitrary
time interval [0, T ] there exists a unique generalized solution of problem (5.3.56)–
(5.3.60) and

max
0<t<T

∫

α

Ων
(
λμ

∣∣∣D(x, wν(x, t)
)∣∣∣
2 + λμ

ν2
|wν(x, t) − wν

s (x, t)|2
)

dx

+
∫ T

0

∫

α

(
|τ ν|2 + Γ0(x)|D(x, wν

s )|2
)

dxdt � C0P
2, (5.3.63)

where C0 is independent of ν, Γ0(x) for Γ0(x) > Γ−, and

τν(x, t) =
∫ t

0
pν(x, ρ )dρ,

P2 = max
0<t<T

∫

α

|F(x, t)|2dx < ∞.
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The limit as ν ⊂ 0 in (5.3.56)–(5.3.60) does not cause any difficulties and one
formulates the following theorems.

Theorem 5.25 Under Assumptions 5.1 and 5.2 let

μ0 = 0, μ1 = ∞, 0 < Γ− < Γ0(x) < Γ+ < ∞,

{wν, p ν} be the weak solution of the problem (5.3.56)–(5.3.60),

τ ν(x, t) =
∫ t

0
pν(x, ρ )dρ,

and wν
s = E

(⇔)
Qν

s

(
wν
)

be an extension (5.3.61).

Then the sequences {wν} and {Ωντδ,ν} converge weakly in L2(αT ) and L2(αT )

as ν ⊂ 0 to the functions ws and m(x) τ f respectively, and the sequence {wν
s }

converges weakly in W1,0
2 (αT ) as ν ⊂ 0 to the function ws .

The pair of functions {ws, τ f } solves in the domain α for t > 0 the problem

(FCM)
(0)
13 .

Theorem 5.26 Under Assumptions 5.1 and 5.2 let

μ0 = 0, 0 < Γ− < μ1, Γ0(x) < Γ+ < ∞,

{wν, p ν} be the weak solution of the problem (5.3.56)–(5.3.60), wν
s = E

(⇔)
Qν

s

(
wν
)

be
an extension (5.3.61), and

τ ν(x, t) =
∫ t

0
pν(x, ρ )dρ.

Then the sequences {Ων τν}, and {Ων wν} converge weakly in L2(αT ) and L2(αT )

as ν ⊂ 0 to the functions m(x) τ f and w( f ) respectively, and the sequence {wν
s }

converges weakly in W1,0
2 (αT ) as ν ⊂ 0 to the function ws .

The triple of functions {ws, w( f ), τ f }, where τ f ∩ W 1,0
2 (αT ),

∂τ f

∂t
∩ L2(αT ),

solves in the domain α for t > 0 the problem (FCM)
(0)
14 .

Theorem 5.27 Under the conditions of Theorem 5.26 let {w(k)
s , w( f,k), τ

(k)
f } be the

weak solution of the model (FCM)
(0)
14 with Γ0(x) = k.

Then the sequences {τ(k)
f } and {w( f,k)} converge weakly in L2(αT ) and L2(αT )

as k ⊂ ∞ to the functions τ f and w( f ) respectively, and the sequence {w(k)
s }

converges strongly in L2(αT ) to zero.
The pair of functions {w( f ), τ f } solves in the domain α for t > 0 the problem

(FCM)
(0)
15 .
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For the case
0 < Γ− < μ0, Γ0(x) < Γ+ < ∞, (5.3.64)

instead of the problem (5.3.56)–(5.3.60) we consider the problem (5.3.56)–(5.3.59)
with the normalization condition

∫

α

pν(x, t)dx = 0. (5.3.65)

Theorem 5.28 Under Assumptions 5.1 and 5.2 for all ν > 0 and for arbitrary
time interval [0, T ] there exists a unique generalized solution {wν, p ν} of problem
(5.3.56)–(5.3.59), (5.3.65) and

max
0<t<T

Γ0

∫

α

(1 − Ων)(x)

∣∣∣D(x, wν(x, t)
)∣∣∣
2
dx

+
∫ T

0

∫

α

(
|p ν|2 + λμ

∣∣∣D
(

x,
∂wν

∂t

)∣∣∣
2
)

dxdt � C0P
2, (5.3.66)

where C0 is independent of ν and

P2 = max
0<t<T

∫

α

|F(x, t)|2dx < ∞.

The sequence {pν} converges weakly in L2(αT ) as ν ⊂ 0 to the function p and the
sequence {wν} converges weakly in W1,0

2 (αT ) as ν ⊂ 0 to the function w.
The pair of functions {w, p} solves in the domain α for t > 0 the problem

(FCM)
(0)
16 .

Proofs of these theorems in its main points repeats the proofs of the similar
theorems above. That is why we prove only Theorem 5.26 to outline the differences.

5.3.1 Proof of Theorem 5.26

On the basis of estimates (5.3.66) we conclude that for ν ⊂ 0

Ων τν γ m(x)τ f (x, t) weakly in L2(αT ),

τν ⊂ ζ = Ω(x, y) τ f + (1 − Ω(x, y)
)
ζs(x, t, y) two-scale in L2(αT ),

Ωνwν ⊂ Ω(x, y)W(x, t, y) two-scale inL2(αT ),

Ωνwν γ w( f )(x, t) weakly inL2(αT ), w( f ) = →W◦Y f ,
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wν
s ⊂ ws(x, t) weakly and two-scale inL2(αT ),

D
(
x, wν

s

) ⊂ D
(
x, ws(x, t)

)+ D
(
y, U(x, t, y)

)
two-scale inL2(αT ).

The properties of the function Ω(x, y) admit the two-scale limit in the integrals

I (ν) =
∫ T

0

∫

α

Ων(x)ξ
(

x,
x
ν
, t
)

uν(x, t)dxdt,

where ξ(x, t, y) is a smooth 1-periodic in y function, and uν ⊂ U (x, t, y) two-scale
in L2(αT ).

Indeed, by construction,

I (ν,δ) =
∫ T

0

∫

α

Ωδ,ν(x)ξ
(

x,
x
ν
, t
)

uν(x, t)dxdt

⊂
∫ T

0

∫

α

∫

Y
Ω(δ)(x, y) ξ(x, t, y)U (x, t, y)dydxdt = I (0,δ)

as ν ⊂ 0.
Therefore, if

I (0) =
∫ T

0

∫

α

∫

Y
Ω(x, y) ξ(x, t, y)U (x, t, y)dydxdt,

then for any η > 0 there exists ν0 = ν0(η ), such that

|I (ν) − I (0)| = |I (ν) − I (ν,δ)| + |I (ν,δ) − I (0,δ)| + |I (0,δ) − I 0| < η

for any ν < ν0.
We simply choose δ from conditions

|I (ν) − I (ν,δ)| <
η

3
, |I (0,δ) − I 0| <

η

3
,

and after that for fixed δ we choose ν0 from the condition

|I (ν,δ) − I (0,δ)| <
η

3

for any ν < ν0.
Now we pass to the limit as ν ⊂ 0 in the integral identity

∫ T

0

∫

α

((
ΩνλμD(x, wν) − τν

I
) : D

(
x,

∂ξ

∂t

)

− (1 − Ων)Γ0(x)D(x, wν
s )
) : D(x, ξ) + χν(x)F · ξ

)
dxdt = 0, (5.3.67)
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which is equivalent to Eq. (5.3.57).
After the limit with test functions ξ = ξ(x, t) we arrive at the macroscopic

momentum balance equation

∫ T

0

∫

α

(
Γ0(x)

(
(1 − m(x))D(x, ws) + →D(y, U)◦Ys (x)

) : D(x, ξ)

+ (
τ f + →(ζ f − τ f )◦Ys (x)

)∇ ·
(

∂ξ

∂t

)
− χ̂(x)F · ξ

)
dxdt = 0, (5.3.68)

and taking in (5.3.67) ξ = νh(x)ξ0

(x
ν
, t
)
, we obtain the microscopic momentum

balance equation

∫ T

0

∫

Y
Γ0(1 − Ω)

(
D(x, ws) + D(y, U) : D(y, ξ0)dydt

= −
∫ T

0

∫

Y
ζ ∇ ·

(∂ξ0

∂t

)
dydt. (5.3.69)

The two-scale limit as ν ⊂ 0 in the continuity equation (5.3.56) results the micro-
scopic continuity equation

(1 − Ω)(∇ · ws + ∇y · U) = 0 (5.3.70)

for the solid component.
Just as in Theorem 1.4, we conclude that (5.3.68)–(5.3.70) imply the inclusion

p f = ∂τ f

∂t
∩ L2L2(αT ),

and differential equation (5.3.35).
The boundary condition (5.3.33) is a consequence of properties of the extension

operator (5.3.61), and the validity of the normalization condition (5.3.32) is proved
in the same way as in previous statements.

Next, after the two-scale limits as ν ⊂ 0 in the continuity equation (5.3.56) in its
form of the integral identity

∫ T

0

∫

α

(
Ωνwν + (1 − Ων)wν

s

) · ∇Πdxdt = 0

with two different groups of test functions Π = Π(x, t) and Π = ν h(x, t)Π0
(x

ν

)
,

supp Π0 √ Y f (x), we arrive at macroscopic continuity equation in the form of
an integral identity, which implies continuity equation (5.3.34) for the mixture, and
boundary condition (5.3.38) for the liquid component, and themicroscopic continuity
equation
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∇y · W = 0, y ∩ Y f (x) (5.3.71)

for the liquid component.

The last step is a limit as ν ⊂ 0 in (5.3.67) with test functions ξ = h(x, t)ξ0

(x
ν

)
,

where smooth function ξ0(y) is 1-periodic in the variable y, divergent free and has
a finite support in Y f (x):

∫ T

0

∫

α

(
∂h

∂t
μ1→D(y, W) : D(y, ξ0)◦Y f (x) − τ f →ξ0◦Y f (x) ∇ ·

(
∂h

∂t

)

− ∂h

∂t
χ f

∫ t

0
F(x, ρ )dρ · →ξ0◦Y f (x)

)
dxdt = 0. (5.3.72)

Let x0 ∩ α . By Assumptions 5.1 and 5.2 there exists some small δ > 0, such that
for any x ∩ α , |x0 − x| < δ, one has Y f (x0) ∪ Y f (x) �= ∅.

So, we may choose functions ξ0,i (y), i = 1, 2, 3, such that

ξ0,i ∩ ◦
W

1

2(Y0), ∇ · ξ0,i = 0, →ξ0,i ◦Y0 = ei , Y0 √ ∪|x0−x|<δY f (x),

where {e1, e2, e3} is an orthogonal Cartesian basis. The existence of such functions
follows from Lemma B.15 (see Appendix B).

Let Q0 = {x ∩ α : |x0 − x| < δ} and h0 ∩ L2
(
(0, T ); ◦

W
1

2(Q0)
)
. Setting in

(5.3.72)
∂h

∂t
= h0 and ξ0 = ξ0,i we obtain

∫ T

0

∫

α

(
h0 ςi (x) − τ f

∂h

∂xi

)
dxdt = 0, (5.3.73)

where

ςi (x) = μ1→D(y, W) : D(y, ξ0,i )◦Y f (x) − χ f

∫ t

0
F(x, ρ )dρ · ei .

Nguetseng’s theorem guarantees the inclusion

D(y, W) ∩ L2(αT × Y ).

Therefore
∂τ f

∂xi
(x0) = ςi (x0), i = 1, 2, 3,

and
∇ τ f = (

ς1, ς2, ς3
) ∩ L2(αT ).
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after reintegrating (5.3.72) we arrive at the equation

μ1 ∇y · D(y, W) − ∇yβ − ∇ τ f + χ f

∫ t

0
F(x, ρ )dρ = 0 (5.3.74)

in the domainY f (x), which togetherwith continuity equation (5.3.71) and the bound-
ary condition

W(x, t, y) = w(x, t), y ∩ η (x) = Y f (x) ∪ Ys(x) (5.3.75)

result in Darcy’s law (5.3.37).



Chapter 6
Isothermal Liquid Filtration

The mathematical model M 20 consists of the differential equations

1

ᾱε
p

p + ∇ · w = 0, (x, t) ∪ ΩT = Ω × (0, T ), (6.0.1)

ρε ∂2w
∂t2

= ∇ · P + ρεF, (x, t) ∪ ΩT , (6.0.2)

P = χεᾱμD

(
x,

∂w
∂t

)
+ (1 − χε)ᾱλD(x, w) −

(
p − χεᾱν∇ · ∂w

∂t

)
I, (6.0.3)

w(x, t) = 0, (x, t) ∪ ST = S × (0, T ), (6.0.4)

w(x, 0) = ∂w
∂t

(x, 0) = 0, x ∪ Ω, (6.0.5)

and the model M21 consists of the differential equations

χε

(
1

c̄ 2
f

p + ∇ · w
)

= 0, (x, t) ∪ ΩT , (6.0.6)

ρ f
∂2w
∂t2

= χε

(
∇ · P + ρ f F

)
, (x, t) ∪ ΩT , (6.0.7)

P = ᾱμD

(
x,

∂w
∂t

)
−

(
p − ᾱν∇ · ∂w

∂t

)
I, (6.0.8)

in the bounded domain Ω = Ωε
f ⊂ Γ ⊂ Ωε

s ∩ R
3, Γ ε = ∂Ωε

f ∈ ∂Ωε
s , with a C2

continuous boundary S = ∂Ω for t ∪ (0, T ).

A. Meirmanov, Mathematical Models for Poroelastic Flows, 241
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_6,
© Atlantis Press and the authors 2014
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Recall that in (6.0.1)–(6.0.8) the characteristic function χε(x) of the domain Ωε
f

is given by the expression

χε(x) = ζ(x)χ
(x

ε

)
, (6.0.9)

where ζ(x) is the characteristic function of the domain Ω , χ(y) is the characteristic
function of the domain Y f , and

ᾱε
p = χε c̄ 2

f + (1 − χε)c̄ 2
s , ρε = χερ f + (1 − χε)ρs .

For the definition of ᾱμ, ᾱν , ᾱλ, c̄ f , and c̄s see Appendix A.
As usual, the function pε

f = χε pε stands for the liquid pressure, and the function
pε

s = (1 − χε)pε stands for the solid pressure.
We also assume that all dimensionless parameters depend on the small parameter

ε and that the (finite or infinite) limits exist:

lim
ε∅0

ᾱμ(ε) = μ0, lim
ε∅0

ᾱν(ε) = ν0, lim
ε∅0

ᾱλ(ε) = λ0,

lim
ε∅0

ᾱμ

ε2
= μ1, lim

ε∅0

ᾱλ

ε2
= λ1.

In the following sections we will find homogenized equations of acoustics for

(I) a slightly viscous liquid in an absolutely rigid solid skeleton:μ0 = 0, λ0 = ∞,
(II) a slightly viscous liquid in an extremely elastic solid skeleton:μ0 = 0, λ0 = 0,

and
(III) a slightly viscous liquid in an elastic solid skeleton: μ0 = 0, 0 < λ0 < ∞.

Throughout this chapter it is assumed that

∫

QT

(
|F(x, t)|2 +

∣∣∣∣
∂F
∂t

(x, t)

∣∣∣∣
2)

dxdt = F2 < ∞,

and that Assumptions 0.1, 1.1 and 3.1 hold true.

Definition 6.1 We say that the pair of functions {wε, pε} such that

wε ∪ ◦
W

1,0

2 (ΩT ), χε∇ ∂wε

∂t
∪ L2(ΩT ), pε ∪ L2(ΩT ),

is a weak solution of the problem (6.0.1)–(6.0.5), if it satisfies the continuity equa-
tion (6.0.1) almost everywhere in ΩT , the first initial condition in (6.0.5), and the
integral identity

∫

ΩT

(
− ρε ∂wε

∂t
· ∂ϕ

∂t
+ P : D(x, ϕ)

)
dxdt = −

∫

ΩT

ρεF · ϕdxdt (6.0.10)
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for all functions ϕ vanishing at t = T , t = 0 and ST , such that ϕ ∪ ◦
W

1,0

2 (ΩT ),
∂ϕ
∂t ∪ L2(ΩT ).

Theorem 6.1 For all ε > 0 and for any time interval [0, T ] there exists a unique
generalized solution of the problem (6.0.1)–(6.0.5) and

max
0<t<T

∫

Ω

(
|pε(x, t)|2 +

∣∣∣∣
∂wε

∂t
(x, t)

∣∣∣∣
2

+ (1 − χε)ᾱλ|D(x, wε)|2
)

dx

+ max
0<t<T

∫

Ω

(∣∣∣∣
∂p ε

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣
∂2wε

∂t2
(x, t)

∣∣∣∣
2

+ (1 − χε)ᾱλ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2)

dx

+
∫

ΩT

χε

(
ᾱμ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+ ᾱν

∣∣∣∣∇ · ∂wε

∂t

∣∣∣∣
2)

dxdt

+
∫

ΩT

χε

(
ᾱμ

∣∣∣∣D
(

x,
∂2wε

∂t2

)∣∣∣∣
2

+ ᾱν

∣∣∣∣∇ · ∂2wε

∂t2

∣∣∣∣
2)

dxdt � C0F2, (6.0.11)

where here and in what follows, we denote as C0 any constant depending only on
domains Ω , Y and Y f .

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1

2

d

dt

∫

Ω

(
ρε

∣∣∣∣
∂wε

∂t

∣∣∣∣
2

+ (1 − χε)ᾱλD(x, wε) : D(x, wε) + 1

ᾱε
p
|pε|2

)
dx

+
∫

Ω

χε

(
ᾱμD

(
x,

∂wε

∂t

)
: D

(
x,

∂wε

∂t

)
+ ᾱν

(
∇ · ∂wε

∂t

)2)
dx

=
∫

Ω

ρεF · ∂wε

∂t
dx,

1

2

d

dt

∫

Ω

(
ρε

∣∣∣∣
∂2wε

∂t2

∣∣∣∣
2

+ (1 − χε)ᾱλD

(
x,

∂wε

∂t

)
: D

(
x,

∂wε

∂t

)
+ 1

ᾱε
p

∣∣∣∣
∂pε

∂t

∣∣∣∣
2)

dx

+
∫

Ω

χε

(
ᾱμD

(
x,

∂2wε

∂t2

)
: D

(
x,

∂2wε

∂t2

)
+ ᾱν

(
∇ · ∂2wε

∂t2

)2)
dx

=
∫

Ω

ρε ∂F
∂t

· ∂2wε

∂t2
dx,

For example, the first equality follows from the Eq. (6.0.2), if we express the stress
tensor P and the pressure pε there using state equations (6.0.3) and continuity equa-

tion (6.0.1), multiply the result by
∂wε

∂t
and integrate by parts.
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6.1 A Compressible Slightly Viscous Liquid in an Absolutely
Rigid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M21 of the motion of a compressible liquid in an absolutely rigid solid
skeleton, where

w(x, t) = 0, p(x, t) = 0, x ∪ Ωε
s .

If we put v = ∂w
∂t

, then we may rewrite the last condition and Eqs. (6.0.6)–(6.0.8)

in the form
1

c̄2f

∂p

∂t
+ ∇ · v = 0, x ∪ Ω, t ∪ (0, T ), (6.1.1)

ρ f
∂v
∂t

= ∇ · P + ρ f F, x ∪ Ωε
f , t ∪ (0, T ), (6.1.2)

P = ᾱμD
(
x, v

) + (
ᾱν∇ · v − p

)
I, (6.1.3)

v(x, t) = 0, p(x, t) = 0, x ∪ Ωε
s ⊂ S, t ∪ (0, T ), (6.1.4)

v(x, 0) = 0, p(x, 0) = 0, x ∪ Ω. (6.1.5)

Throughout this section we assume that conditions

μ0 = 0, 0 � μ1 < ∞, 0 < c f < ∞, 0 � ν0 < ∞

hold true.

6.1.1 Statement of the Problem and Main Results

Definition 6.2 We say that the pair of functions {vε, p ε} such that

vε ∪ ◦
W

1,0

2 (ΩT ), p ε ∪ L2(ΩT ),

is a weak solution of the problem (6.1.1)–(6.1.5), if it satisfies condition (6.1.4) and
integral identities
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∫

ΩT

χε
(
ᾱμD(x, vε) : D(x, ϕ) + (

ᾱν∇ · vε − p ε
)∇ · ϕ

)
dxdt

=
∫

ΩT

χερ f

(∂ϕ

∂t
· vε + F · ϕ

)
dxdt, (6.1.6)

∫

ΩT

(
∇ξ · vε + 1

c̄ 2
f

∂ξ

∂t
p ε

)
dxdt = 0, (6.1.7)

for any smooth functions ϕ and ξ , such that ϕ and ξ satisfy condition (6.1.4), and
conditions ϕ(x, T ) = 0, ξ(x, T ) = 0.

Theorem 6.2 For all ε > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution of problem (6.1.1)–(6.1.5) and

∫

ΩT

(
ᾱμ|∇vε|2 + ᾱν |∇ · vε|2

)
dxdt

+ max
0<t<T

∫

Ω

(
|p ε(x, t)|2 + |vε(x, t)|2

)
dx � C0F2. (6.1.8)

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equality

1

2

d

dt

∫

Ω

(
ρ f |vε|2 + 1

c̄ 2
f

|pε|2
)

dx +
∫

Ω

(
ᾱμD(x, vε) : D(x, v) + ᾱν(∇ · vε)2

)
dx

=
∫

Ω

ρ f F · vεdx .

Theorem 6.3 Let {vε, p ε} be the weak solution of the problem (6.1.1)–(6.1.5),
q ε = p ε − ᾱv(∇ · vε), and

μ1 > 0, ν0 � 0.

Then for ν0 > 0 the sequences {vε}, {∇ · vε}, {q ε} and {p ε} converge weakly in
L2(ΩT ) and L2(ΩT ) as ε ∞ 0 to functions v, ∇ · v, q, and p respectively.

These limiting functions, where q = p − ν0(∇ · v) ∪ W 1,0
2 (ΩT ), solve the

homogenized system of equations in the domain Ω for t ∪ (0, T ), consisting of the
continuity equation

1

c̄ 2
f

∂p

∂t
+ ∇ · v = 0, (6.1.9)

and the dynamic equation in the form

v =
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

− ∇(
p − ν0(∇ · v)

) + ρ f

)
(x, τ )dτ. (6.1.10)
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For ν0 = 0 the sequences {vε} and {p ε} converge weakly in L2(ΩT ) and L2(ΩT )

as ε ∞ 0 to functions v and p ∪ W 1,0
2 (ΩT ) respectively and these limiting func-

tions solve the homogenized system of equations, consisting of the continuity equa-
tion (6.1.9) and the dynamic equation in the form

v =
∫ t

0
B

( f )(μ1,∞; t − τ) · ( − ∇ p + ρ f F
)
(x, τ )dτ. (6.1.11)

Equations (6.1.9), (6.1.10) and (6.1.9), (6.1.11) are completed with boundary and
initial conditions

v(x, t) · n(x) = 0, x ∪ S, t ∪ (0, T ), (6.1.12)

p(x, 0) = ν0
∂p

∂t
(x, 0) = 0, x ∪ Ω. (6.1.13)

The matrix B
( f )(μ1,∞; t) has been defined in Chap.3 by the formula (3.2.70).

Theorem 6.4 Let {vε, p ε} be the weak solution of the problem (6.1.1)–(6.1.5),
q ε = p ε − ᾱν(∇ · vε), and

μ1 = 0, ν0 � 0.

Then for ν0 > 0 the sequences {vε}, {∇ · vε}, {q ε}, and {p ε} converge weakly in
L2(ΩT ) and L2(ΩT ) to functions v, ∇ · v, q, and p respectively.

These limiting functions, where q = p − ν0(∇ · v) ∪ W 1,0
2 (ΩT ), solve the

homogenized system of equations in the domain Ω for t ∪ (0, T ), consisting of the
continuity equation (6.1.9) and the dynamic equation in the form

∂v
∂t

= B
( f )(0,∞) ·

(
− 1

m
∇

(
p − ν0(∇ · v)

)
+ ρ f F

)
. (6.1.14)

For ν0 = 0 the sequences {vε} and {p ε} converge weakly in L2(ΩT ) and L2(ΩT )

as ε → 0 to functions v and p ∪ W 1,0
2 (ΩT ) respectively and these limiting func-

tions solve the homogenized system of equations, consisting of the continuity equa-
tion (6.1.9) and the dynamic equation in the form

∂v
∂t

= B
( f )(0,∞) ·

(
− 1

m
∇ p + ρ f F

)
. (6.1.15)

Equations (6.1.9), (6.1.14) and (6.1.9), (6.1.15) are completed with boundary and
initial conditions (6.1.12) and (6.1.13).

The symmetric and strictly positively definite constant matrix B
( f )(0,∞) has

been defined in Chap.3 by formula (3.2.76).
Problems (6.1.9), (6.1.11)–(6.1.14) and (6.1.9), (6.1.12), (6.1.13), (6.1.15) have

unique solutions.
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We refer to these described problems as the homogenized models (IA)1 (μ1 >

0, ν0 > 0), (IA)2 (μ1 > 0, ν0 = 0) , (IA)3 (μ1 = 0, ν0 > 0), and (IA)4 (μ1 =
0, ν0 = 0) of isothermal acoustics in an absolutely rigid body.

6.1.2 Proofs of Theorems 6.2–6.4

The main parts of all these proofs repeat the similar proofs from Chaps. 1 and 3. The
only differences here are the macro- and microscopic equations.

So, we may assume, that the sequence {vε} converges two-scale and weakly in
L2(ΩT ) to functions V(x, t, y) and v(x, t) = ◦V√Y respectively, and the sequence
{pε} weakly converges in L2(ΩT ) to function p. At the same time the sequence
{∇ · vε} for ν0 > 0 weakly converges in L2(ΩT ) to the function ∇ · v and the
sequence {ᾱν∇ · vε} for ν0 = 0 converges strongly in L2(ΩT ) to zero.

The limiting functions satisfy the macroscopic continuity equation (6.1.9) inΩT .
For ν0 > 0 and μ1 > 0 the limiting functions satisfy the microscopic dynamic

equation

ρ f
∂V
∂t

= μ1

2
⊗yV − ∇yΠ + ∇ ( − p + ν0(∇ · v)

) + ρ f F. (6.1.16)

For ν0 = 0 and μ1 > 0 the limiting functions satisfy the microscopic dynamic
equation

ρ f
∂V
∂t

= μ1

2
⊗yV − ∇yΠ − ∇ p + ρ f F. (6.1.17)

For ν0 > 0 and μ1 = 0 the limiting functions satisfy the microscopic dynamic
equation

ρ f
∂V
∂t

= ∇yΠ + ∇ ( − p + ν0(∇ · v)
) + ρ f F, (6.1.18)

Finally, for ν0 = 0 and μ1 = 0 the limiting functions satisfy the microscopic
dynamic equation

ρ f
∂V
∂t

= ∇yΠ − ∇ p + ρ f F, (6.1.19)

For all cases the limiting functions satisfy the microscopic continuity equation

∇y · V = 0 (6.1.20)

in Y , and the condition
V(x, t, y) = 0 for y ∪ Ys . (6.1.21)

Recall that all equations are understood in the sense of distributions. For example,
we must complete the microscopic continuity equation (6.1.20) with the boundary
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condition
[V] · n = 0, y ∪ γ, (6.1.22)

where n is a normal vector to the boundary γ . Relations (6.1.21) and (6.1.22) give
us the condition

V · n = 0, y ∪ γ, (6.1.23)

which we will use as a boundary condition for the case μ0 = 0.
For the case μ0 > 0 condition (6.1.21) and the imbedding ∇V ∪ L2(ΩT × Y )

result in
V(x, t, y) = 0, y ∪ γ. (6.1.24)

The problem (6.1.16), (6.1.20), (6.1.24), the problem (6.1.17), (6.1.20), (6.1.24),
the problem (6.1.18), (6.1.20), (6.1.23), and the problem (6.1.19), (6.1.20), (6.1.23),
completed with initial condition

V(x, y, 0) = 0, y ∪ Y, (6.1.25)

have been considered in Chap. 3 (proof of Theorem 3.5).
It is clear that the problems (6.1.9), (6.1.11)–(6.1.14) and (6.1.9), (6.1.12),

(6.1.13), (6.1.15) are reduced to linear hyperbolic equations for the pressure. There-
fore, the uniqueness of these problems follow from the properties of the matrix
B

( f )(0,∞).

6.2 A Compressible Slightly Viscous Liquid in a Compressible
Extremely Elastic Skeleton

Throughout this section we assume that

μ0 = 0, λ0 = 0. (6.2.1)

6.2.1 Main Results

Theorem 6.5 Let {vε, p ε} be the weak solution of the problem (6.0.1)–(6.0.5) and

μ1 = λ1 = ∞.

Then the sequence {pε} converges weakly in L2(ΩT ) as ε → 0 to the limiting
pressure p(x, t) of the mixture, which satisfies the initial boundary-value problem

http://dx.doi.org/10.2991/978-94-6239-015-7_3
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ρ̂

c̃ 2

∂2 p

∂t2
= ⊗ p̃ − ρ̂ ∇ · F, x ∪ Ω, t > 0, (6.2.2)

(∇ p̃ − ρ̂F
) · n(x) = 0, x ∪ S, t > 0, (6.2.3)

p(x, 0) = ∂p

∂t
(x, 0) = 0, x ∪ Ω. (6.2.4)

In (6.2.2)–(6.2.4)

p̃(x, t) = p(x, t) + m
ν0

c̄ 2
f

∂p

∂t
(x, t), (6.2.5)

ρ̂ = mρ f + (1 − m)ρs,
1

c̃ 2 = m

c̄ 2
f

+ (1 − m)

c̄ 2
s

,

and n(x) is the normal vector to the boundary S at the point x ∪ S.
For ν0 = 0 the limiting pressure p of the mixture is given by formula

p = p̃, (6.2.6)

and satisfies the initial boundary-value problem

ρ̂

c̃ 2

∂2 p

∂t2
= ⊗ p − ρ̂ (∇ · F), x ∪ Ω, t > 0, (6.2.7)

(∇ p − ρ̂F
) · n(x) = 0, x ∪ S, t > 0, (6.2.8)

p(x, 0) = ∂p

∂t
(x, 0) = 0, x ∪ Ω (6.2.9)

for the wave equation.

We refer to the problem(6.2.2)–(6.2.4) as the homogenized model (IA)5 and to
the problem (6.2.7)–(6.2.9) as the homogenized model (IA)6.

Theorem 6.6 Let {wε, p ε} be the weak solution of the problem (6.0.1)–(6.0.5) and

0 � μ1, λ1 < ∞.

Then the sequence {pε
f } converges weakly in L2(ΩT ) as ε → 0 to the function p,

where p ∪ W 1,0
2 (ΩT ), ν0∇

(∂ p

∂t

) ∪ W1,0
2 (ΩT ), and this limiting pressure p of the

mixture satisfies the initial boundary-value problem consisting of the homogenized
equation
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∇ ·
∫ t

0

(
ν0

c̄ 2
f

B
(a)
0 (μ1, λ1; t − τ) · ∇

(
∂ p

∂t

)
+ B

(a)(μ1, λ1; t − τ) · ∇ p

)
(x, τ )dτ

= − ρ̂

c̃ 2

∂ p

∂t
− ∇ · f (6.2.10)

in the domain ΩT , the boundary condition

∫ t

0

(
ν0

c̄ 2
f

B
(a)
0 (μ1, λ1; t − τ) · ∇

(∂ p

∂t

)
+ B

(a)(μ1, λ1; t − τ) · ∇ p

)
(x, τ )dτ · n(x)

= −f(x, t) · n(x) (6.2.11)

on the boundary ST , and the initial condition

p (x, 0) = (x, 0) = 0, x ∪ Ω. (6.2.12)

In (6.2.10), (6.2.11) matricesB(a)(μ1, λ1; t) andB(a)
0 (μ1, λ1; t), and the function

f(x, t) are given below by formulae (6.2.40)–(6.2.42), and n(x) is the normal vector
to the boundary S at the point x ∪ S.

For ν0 = 0 the limiting pressure p of the mixture satisfies the homogenized
equation

ρ̂

c̃ 2

∂ p

∂t
+ ∇ ·

∫ t

0
B

(a)(μ1, λ1; t − τ) · ∇ p(x, τ )dτ + ∇ · f = 0 (6.2.13)

in the domain ΩT , the boundary condition

∫ t

0
B

(a)(μ1, λ1; t − τ) · ∇ p (x, τ )dτ · n(x) = −f (x, t) · n(x) (6.2.14)

on the boundary ST , and initial conditions (6.2.12).

We refer to the problem (6.2.10)–(6.2.12) as the homogenized model (IA)7, and
to the problem (6.2.12)–(6.2.14) as the homogenized model (IA)8.

To formulate the following statements we consider extensions

wε
f = EΩε

f

(
wε

)
, and wε

s = EΩε
s

(
wε

)
,

where
EΩε

f
: W1

2(Ω
ε
f ) → W1

2(Ω)

is an extension operator from Ωε
f on Ω , and

EΩε
s

: W1
2(Ω

ε
s ) → W1

2(Ω)
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is an extension operator from Ωε
s on Ω , such that

wε
f = wε in Ωε

f × (0, T ), wε
s = wε in Ωε

s × (0, T ),

and
∫

Ω

|wε
f |2dx � C0

∫

Ωε
f

|wε|2dx,

∫

Ω

|wε
s |2dx � C0

∫

Ωε
s

|wε|2dx,

∫

Ω

|D(x, wε
f )|2dx � C0

∫

Qε
f

|D(x, wε)|2dx,

∫

Ω

|D(x, wε
s )|2dx � C0

∫

Ωε
s

|D(x, wε)|2dx . (6.2.15)

(for more details see Appendix B, Lemma B.9).

Theorem 6.7 Let {wε, p ε} be the weak solution of the problem (6.0.1)–(6.0.5),

μ1 = ∞, 0 � λ1 < ∞,

and wε
f = EΩε

f

(
wε

)
.

Then for ν0 > 0 there exists a subsequence of small parameters {ε > 0} such
that the sequences {pε}, {(1 − χε)wε}, and {wε

f }, converge weakly in L2(ΩT ) and

L2(ΩT ) as ε ∅ 0 to the functions p, w(s) and w f respectively and these limiting

functions, where p ∪ W 1,0
2 (ΩT ), ν0∇

(∂ p

∂t

) ∪ W1,0
2 (ΩT ), satisfy in the domain ΩT

the system of homogenized equations consisting of the continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂p

∂t
+ ∇ ·

(
m

∂w f

∂t
+ ∂w(s)

∂t

)
= 0, (6.2.16)

the momentum balance equation

mρ f
∂w f

∂t
+ ρs

∂w(s)

∂t
+

∫ t

0

(
− ρ̂F + ∇ p̃

)
(x, τ )dτ = 0, (6.2.17)

for the liquid component, and the momentum balance equation

∂w(s)

∂t
− (1 − m)

∂w f

∂t

= −
∫ t

0
B

(s)(∞, λ1; t − τ) ·
(

∇ p̃ + ρs

(
∂2w f

∂τ 2
− F

))
(x, τ )dτ (6.2.18)

for the solid component.
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Equations (6.2.16)–(6.2.18) are supplemented with the homogeneous initial con-
ditions

w(s)(x, 0) = w f (x, 0) = 0, (6.2.19)

for displacements in the liquid and the solid components and boundary condition

(
m

∂w f

∂t
(x, t) + ∂w(s)

∂t
(x, t)

)
· n(x) = 0, x ∪ S, t > 0. (6.2.20)

For ν0 = 0 the limiting pressure p of the mixture and functions w(s) and w f satisfy
in the domain ΩT the system of homogenized equations consisting the continuity
equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ ·

(
m

∂w f

∂t
+ ∂w(s)

∂t

)
= 0, (6.2.21)

the momentum balance equation

mρ f
∂w f

∂t
+ ρs

∂w(s)

∂t
+

∫ t

0

( − ρ̂F + ∇ p
)
(x, τ )dτ = 0, (6.2.22)

for the liquid component, the momentum balance equation

∂w(s)

∂t
− (1 − m)

∂w f

∂t

= −
∫ t

0
B

(s)(∞, λ1; t − τ) ·
(

∇ p + ρs

(
∂2w f

∂τ 2
− F

))
(x, τ )dτ

(6.2.23)

for the solid component, and initial and boundary conditions (6.2.19) and (6.2.20).
In (6.2.17) the function p̃ is given by (6.2.5), in (6.2.18) and in (6.2.23) the matrix

B
(s)(∞, λ1; t) has been defined in Chap.3 by formulas (3.2.76) and (3.2.53).

We refer to the problem (6.2.16)–(6.2.20) as the homogenized model (IA)9, and
to the problem (6.2.19)–(6.2.23) as the homogenized model (IA)10.
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Theorem 6.8 Let {wε, p ε} be the weak solution of the problem (6.0.1)–(6.0.5),

λ1 = ∞, 0 � μ1 < ∞,

and wε
s = EΩε

s

(
wε

)
.

Then for ν0 > 0 there exists a subsequence of small parameters {ε > 0} such
that the sequences {pε}, {χεwε}, {wε

s } converge weakly in L2(ΩT ) as ε ∅ 0 to
the functions p, w(s), w( f ), and ws respectively and these limiting functions, where

p ∪ W 1,0
2 (ΩT ), ν0∇

(
∂ p

∂t

)
∪ W1,0

2 (ΩT ), satisfy in the domain ΩT the system of

homogenized equations consisting of the continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ ·

(
∂w( f )

∂t
+ (1 − m)

∂ws

∂t

)
= 0, (6.2.24)

the momentum balance equation

ρ f
∂w( f )

∂t
+ (1 − m)ρs

∂ws

∂t
=

∫ t

0

(
ρ̂F − ∇ p̃

)
(x, τ )dτ, (6.2.25)

for the solid component, and the momentum balance equation

∂w( f )

∂t
− m

∂ws

∂t

= −
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

∇ p̃ + ρ f

(
∂2ws

∂τ 2
− F

))
(x, τ )dτ

(6.2.26)

for the liquid component.
Equations (6.2.24)–(6.2.26) are supplemented with the homogeneous initial con-

ditions
w( f )(x, 0) = ws(x, 0) = 0, x ∪ Ω (6.2.27)

for displacements in the liquid and the solid components and boundary condition

(
∂w( f )

∂t
+ (1 − m)

∂ws

∂t

)
· n(x) = 0, x ∪ S, t > 0. (6.2.28)

For ν0 = 0 the limiting pressure p of the sequence {pε} and functions w( f ) and
ws satisfy in the domain ΩT the system of homogenized equations consisting the
continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ ·

(
∂w( f )

∂t
+ (1 − m)

∂ws

∂t

)
= 0, (6.2.29)
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the momentum balance equation

ρ f
∂w( f )

∂t
+ (1 − m)ρs

∂ws

∂t
=

∫ t

0

(
ρ̂F − ∇ p

)
(x, τ )dτ, (6.2.30)

for the solid component, and the momentum balance equation

∂w( f )

∂t
− m

∂ws

∂t

= −
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

∇ p + ρ f

(
∂2ws

∂τ 2
− F

))
(x, τ )dτ

(6.2.31)

for the liquid component, and initial and boundary conditions (6.2.27) and (6.2.28).
In (6.2.26) and (6.2.31) the matrix B( f )(μ1,∞; t) has been defined in Chap.3 by

formula (3.2.70) and formula (3.2.76), and in (6.2.25) and (6.2.26) the function p̃ is
given by (6.2.5).

We refer to the problem (6.2.24)–(6.2.28) as the homogenized model (IA)11, and
to the problem (6.2.27)–(6.2.31) as the homogenized model (IA)12.

6.2.2 Proofs of Theorems 6.5–6.8

Proofs of Theorems 6.5–6.8 repeat the proofs of the corresponding Theorems in
Chaps. 1 and 3 with evident changes.

In the same way as in Lemma 1.1. in Chap.1 and Lemma 3.9 in Chap.3 one may

show that the sequences {pε} and { p̃ε}, where p̃ε = χε

((
ν0

c̄2f

)
∂pε

∂t

)
+ pε, converge

two-scale in L2(ΩT ) to functions p(x, t) and P̃(x, t, y) respectively and

P̃(x, t, y) = p(x, t) + ν0

c̄ 2
f

χ(y)
∂p

∂t
(x, t).

Correspondingly, the sequences {pε} and { p̃ε} converge weakly in L2(ΩT ) to func-
tions p(x, t) and p̃(x, t), where

p̃(x, t) = p(x, t) + m
ν0

c̄ 2
f

∂p

∂t
(x, t).

The main differences here from Chap.3 are the derivations of continuity equations
and boundary conditions, which repeat the same procedure for compressible media
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in Chap.1, and the derivation of the microscopic momentum balance equation for
the case 0 � μ1, λ1 < ∞.

In general, one has the following limiting continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ · v = 0, x ∪ Ω, t > 0,

and boundary condition
v · n = 0, x ∪ S, t > 0.

For μ1 = ∞ and λ1 = ∞, or μ1 < ∞ and λ1 < ∞

v = ∂w
∂t

.

For μ1 = ∞ and λ1 < ∞
v = m

∂w f

∂t
+ ∂w(s)

∂t
.

Finally, for μ1 < ∞ and λ1 = ∞

v = ∂w( f )

∂t
+ ∂ws

∂t
.

6.2.2.1 Proof of Theorem 6.5

The continuity equation and boundary condition for this case have a form

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ · ∂w

∂t
= 0, x ∪ Ω, t > 0,

w · n = 0, x ∪ S, t > 0.

The weak limit as ε → 0 in the integral identity (6.0.10) results

ρ̂
∂2w
∂t2

= −∇ p̃ + ρ̂F.

The combination of these relations give us models (IA)5 and (IA)6.
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6.2.2.2 Proof of Theorem 6.6

As in the previous subsection the continuity equation and boundary condition for
this case have the form

(
1

c̄ 2
f

+ 1

c̄ 2
s

)
∂p

∂t
+ ∇ · ∂w

∂t
= 0, x ∪ Ω, t > 0,

w · n = 0, x ∪ S, t > 0.

Next, in the usual way (see Lemma 3.2.3 in Chap.3) we prove the inclusion ∇ P̃ ∪
L2(ΩT ×Y ), that is∇ p ∪ L2(ΩT ), ∇

(
∂p

∂t

)
∪ L2(ΩT ), and derive themicroscopic

momentum balance equation:

ρ(y)
∂2W
∂t2

= ∇y ·
(

μ1χ(y)D

(
y,

∂W
∂t

)
+ λ1(1 − χ(y))D(y, W) − Π I

)

− ∇ P̃ + ρ(y)F, y ∪ Y, t > 0, (6.2.32)

where
ρ(y) = ρ f χ(y) + ρs

(
1 − χ(y)

)
,

and the microscopic continuity equation

∇y · W = 0, y ∪ Y. (6.2.33)

These equations are completed with homogeneous initial conditions

W(x, y, 0) = ∂W
∂t

(x, y, 0) = 0, y ∪ Y.

We look for the periodic solution of the problem as a sum

W(x, t, y) =
3∑

i=1

∫ t

0
W(i)(y, t − τ)

∂p

∂xi
(x, τ )dτ

+ ν0

c̄ 2
f

3∑
i=1

∫ t

0
W(i)

0 (y, t − τ)
∂2 p

∂xi∂τ
(x, τ )dτ

+
3∑

i=1

∫ t

0
W(i)

F (y, t − τ)Fi (x, τ )dτ,
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Π(x, t, y) =
3∑

i=1

∫ t

0
Π(i)(y, t − τ)

∂p

∂xi
(x, τ )dτ

+
3∑

i=1

∫ t

0
Π

(i)
0 (y, t − τ)

∂2 p

∂xi∂τ
(x, τ )dτ

+
3∑

i=1

∫ t

0
Π

(i)
F (y, t − τ)Fi (x, τ )dτ,

where
F(x, t) = (

F1(x, t), F2(x, t), F3(x, t)
)
.

In turn, the pairs {W(i), Π(i)}, {W(i), Π(i)}, and {W(i)
F , Π

(i)
F } for i = 1, 2, 3 solve

periodic initial boundary value problems in the domain Y , for t > 0

ρ(y)
∂2W(i)

∂t2
= ∇y ·

(
μ1χ(y)∇y

(
∂W(i)

∂t

)

+ λ1
(
1 − χ(y)

)∇yW(i) − Π(i)
I

)
, ∇y · W(i) = 0, (6.2.34)

W(i)(y, 0) = 0, ρ(y)
∂W(i)

∂t
(y, 0) = −ei , y ∪ Y, (6.2.35)

ρ(y)
∂2W(i)

0

∂t2
= ∇y ·

(
μ1χ(y)∇y

(∂W(i)
0

∂t

)

+ λ1
(
1 − χ(y)

)∇yW(i)
0 − Π

(i)
0 I

)
, ∇y · W(i)

0 = 0, (6.2.36)

W(i)
0 (y, 0) = 0, ρ(y)

∂W(i)
0

∂t
(y, 0) = −χ(y)ei , y ∪ Y, (6.2.37)

and

ρ(y)
∂2W(i)

F

∂t2
= ∇y · v

(
μ1χ(y)∇y

(
∂W(i)

F

∂t

)

+ λ1
(
1 − χ(y)

)∇yW(i)
F − Π

(i)
F I

)
, ∇y · W(i)

F = 0, (6.2.38)

W(i)
F (y, 0) = 0,

∂W(i)
F

∂t
(y, 0) = ei , y ∪ Y (6.2.39)
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respectively.
Thus,

∂W
∂t

=
3∑

i=1

∫ t

0

∂W(i)

∂t
(y, t − τ)

∂ p

∂xi
(x, τ )dτ

+ ν0

c̄ 2
f

3∑
i=1

∫ t

0

∂W(i)
0

∂t
(y, t − τ)

∂2 p

∂xi∂τ
(x, τ )dτ

+
3∑

i=1

∫ t

0

∂W(i)
F

∂t
(y, t − τ)Fi (x, τ )dτ,

and

∂w
∂t

=
3∑

i=1

∫ t

0

〈∂W(i)

∂t

〉
Y
(t − τ)

∂ p

∂xi
(x, τ )dτ

+ ν0

c̄ 2
f

3∑
i=1

∫ t

0

〈∂W(i)
0

∂t

〉
Y
(t − τ)

∂2 p

∂xi∂τ
(x, τ )dτ

+
3∑

i=1

∫ t

0

〈∂W(i)
F

∂t

〉
Y
(y, t − τ)Fi (x, τ )dτ

=
∫ t

0
B

(a)(μ1, λ1; t − τ) · ∇ p (x, τ )dτ

+ ν0

c̄ 2
f

∫ t

0
B

(a)
0 (μ1, λ1; t − τ) · ∇ ∂ p

∂τ
(x, τ )dτ + f(x, t),

where

B
(a)(μ1, λ1; t) =

3∑
i=1

〈∂W(i)

∂t

〉
Y
(t) ⊗ ei , (6.2.40)

B
(a)
0 (μ1, λ1; t) =

3∑
i=1

〈∂W(i)
0

∂t

〉
Y
(t) ⊗ ei , (6.2.41)

f(x, t) =
3∑

i=1

∫ t

0

〈∂W(i)
F

∂t

〉
Y
(y, t − τ)Fi (x, τ )dτ. (6.2.42)

As before, the combination of all the relations obtained result in models (IA)7 and
(IA)8.
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6.2.2.3 Proof of Theorem 6.7

For this case the velocity of the mixture is given by the expression

v = m
∂w f

∂t
+ ∂w(s)

∂t
,

and the continuity equation in the domain Ω for t > 0 takes the form

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ ·

(
m

∂w f

∂t
+ ∂w(s)

∂t

)
= 0.

The weak limit as ε → 0 in the integral identity (6.0.10) results in the momentum
balance equation

mρ f
∂2w f

∂t2
+ ρs

∂2w(s)

∂t2
= −∇ p̃ + ρ̂F

for the liquid component.
Finally, the derivation of themomentum balance equation for the solid component

begins with the microscopic system of equations

ρs
∂2W(s)

∂t2
= λ1

2
⊗yW(s) − ∇yΠ

(s) − ∇ p, ∇ · W(s) = 0,

in the domain Ys , and repeats the same procedure as in the proof of Theorem 3.4 of
Chap.3.

6.2.2.4 Proof of Theorem 6.8

Here for the velocity of the mixture one has

v = ∂w(f)

∂t
+ ∂ws

∂t
,

and the continuity equation takes the form

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
∂ p

∂t
+ ∇ ·

(
∂w( f )

∂t
+ ∂ws

∂t

)
= 0.

The weak limit as ε → 0 in the integral identity (6.0.10) results in the momentum
balance equation
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ρ f
∂2w( f )

∂t2
+ (1 − m)ρs

∂2ws

∂t2
= −∇ p̃ + ρ̂F

for the solid component.
The derivation of themomentumbalance equation for the liquid component begins

with the microscopic system of equations

ρ f
∂2W( f )

∂t2
= μ1

2
⊗yW( f ) − ∇yΠ

( f ) − ∇ p̃, ∇ · W( f ) = 0,

in the domain Y f , and repeats the same procedure in the proof of Theorem 3.5 of
Chap.3.

6.3 A Compressible Slightly Viscous Liquid in a Compressible
Elastic Skeleton

Throughout this section we assume that

μ0 = 0, 0 < λ0 < ∞. (6.3.1)

6.3.1 Main Results

Theorem 6.9 Let {wε, p ε} be the weak solution of the problem (6.1.1)–(6.1.5),
wε

s = EΩε
s

(
wε

)
be an extension1.2.9, and μ1 = ∞ or μ1 < ∞ but the pore space

be disconnected.
Then

(1) for all v0 > 0 the sequences {wε}, {∇·wε},
{
χε p ε

}
,

{
χε ∂p ε

∂t

}
, and {qε}, where

qε = χε

(
p ε −αν∇ ·

(
∂wε

∂t

))
, converge weakly in L2(ΩT ) and L2(ΩT ) (up to

some subsequences) to functions w, ∇ · w,
∂p f

∂t
, and m q = m

(
p f + ν0

c2f

∂p f

∂t

)

respectively;
(2) for ν0 = 0 the sequences {wε}, {∇ ·wε} and {χε p ε} converge weakly in L2(ΩT )

and L2(ΩT ) (up to some subsequences) to functions w, ∇ · w, and mp f respec-
tively;

(3) for all ν0 � 0 the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) to the function
ws = w;

(4) limiting functions solve the system of homogenized equations in the domain ΩT ,
consisting of the homogenized continuity equation

http://dx.doi.org/10.2991/978-94-6239-015-7_3
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1

c2f
p f + m ∇ · ws = C

s
0 : D(x, ws) + cs

0

λ0
q, (6.3.2)

the state equation

q = p f + ν0

c2f

∂p f

∂t
(q = p f for ν0 = 0), (6.3.3)

and the homogenized momentum balance equation

ρ̂
∂2ws

∂t2
= ∇ · (

λ0 N
s
2 : D(x, ws) − q C

s
1

) + ρ̂F, (6.3.4)

completed with homogeneous boundary and initial conditions

ws(x, t) = 0, x ∪ S, t ∪ (0, T ), (6.3.5)

ws(x, 0) = ∂ws

∂t
(x, 0) = 0, x ∪ Ω; (6.3.6)

(5) there exists λ∗ > 0, such that for all λ0 > λ∗ the problem (6.3.2)–(6.3.6) has a
unique solution.

In (6.3.2), (6.3.4)
ρ̂ = m ρ f + (1 − m) ρs,

the symmetric strictly positively definite constant fourth-rank tensor Ns
2, matrices

C
s
0 and C

s
1, and the constant cs

0 are given in Chap.1 by formulas (1.3.26), (1.3.27)
and 1.3.31 and do not depend on λ0.

We refer to the problem (6.3.2)–(6.3.6) with ν0 = 0 as the homogenized model
(IA)13 and to the problem (6.3.2)–(6.3.6) with ν0 > 0 as the homogenized model
(IA)14.

Theorem 6.10 Let {wε, p ε} be the weak solution of the problem (6.1.1)–(6.1.5),
wε

s = EΩε
s

(
wε

)
be an extension (1.2.9), the pore space be connected, and μ1 < ∞.

Then

(1) for all ν0 > 0 the sequences {wε}, {χε wε}, {∇ · wε}, {χε p ε},
{
χε ∂p ε

∂t

}
, and

{qε}, where qε = χε

(
p ε − ᾱv∇ ·

(
∂wε

∂t

))
, converge weakly in L2(ΩT ) and

L2(ΩT ) (up to some subsequences) to functions w, w( f ), ∇ · w, m
∂p f

∂t
, and

m q = m

(
p f + ν0

c2f

∂p f

∂t

)
∪ W 1,0

2 (ΩT ) respectively;
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(2) for ν0 = 0 the sequences {wε}, {χε wε}, {∇ · wε}, and {χε p ε} converge weakly
in L2(ΩT ) and L2(ΩT ) (up to some subsequences) to functions w, w( f ), ∇ · w,
and mp f ∪ W 1,0

2 (ΩT ) respectively;

(3) for all ν0 � 0 the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) to the function
ws ;

(4) limiting functions solve the system of homogenized equations in the domain ΩT ,
consisting of the homogenized continuity equation

m

c̄ 2
f

p f + ∇ · w( f ) = C
s
0 : D(x, ws) + cs

0

λ0
q, (6.3.7)

the state equation (6.3.3), the homogenized momentum balance equation

ρ f
∂2w( f )

∂t2
+ ρs(1 − m)

∂2ws

∂t2
= ∇ · (

λ0 N
s
2 : D(x, ws) − q C

s
1

) + ρ̂F, (6.3.8)

for the solid component, the boundary and initial conditions (6.3.5) and (6.3.6), the
homogenized momentum balance equation

−
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

∇
(

p f + ν0

c̄ 2
f

∂p f

∂t

)
+ ρ f

(
∂2ws

∂τ 2
− F

))
(x, τ )dτ

= ∂w( f )

∂t
− m

∂ws

∂t
(6.3.9)

for the liquid component, and homogeneous boundary condition

w( f )(x, t) · n(x) = 0, x ∪ S, t ∪ (0, T ) (6.3.10)

for displacements w( f ) of the liquid component.
In (6.3.9) and (6.3.10) n is the normal vector to the boundary S, the matrix

B
( f )(μ1,∞; t) is given in the proof of Theorem 3.4 of Chap.3 (see formulae (3.2.70)

and (3.2.76), and the constant matrixB(s)(∞, 0; t) = B
(s)(∞, 0) is strictly positively

definite.

We refer to the problem (6.3.3)–(6.3.10) with ν0 = 0 as the homogenized model
(IA)15 and to the problem (6.3.3)–(6.3.10) with ν0 > 0 as the homogenized model
(IA)16.

Theorem 6.11 The solution ws to the model (IA)13 satisfies the homogenized
equation

ρ̂
∂2ws

∂t2
= ∇ · (

λ0 N
s
3 : D(x, ws)

) + ρ̂F (6.3.11)

in the domain ΩT , completed with the boundary and initial conditions (6.3.5) and
(6.3.6).
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The symmetric strictly positive definite constant fourth-rank tensor Ns
3 is given

in Chap.1 by formula (1.3.39) and does not depend on λ0.

6.3.2 Proofs of Theorems 6.9–6.11

As in the previous subsection, the proofs of these theorems repeat corresponding
proofs of Theorems 1.6–1.8 in Chap.1 and the proof of Theorem 6.8 of this chapter.

For example, the proof of Theorem 6.9 differs from the proof of Theorem 1.6
only in the form of the macroscopic momentum balance equation:

ρ̂
∂2ws

∂t2
= ∇ ·

(
λ0 N

(0) : (
(1 − m)D(x, ws) + ◦D(y, U)√Ys

)) − ∇q + ρ̂F.

The proof of Theorem 6.10 repeats the proofs of Theorem 6.9 and Theorem 1.7,
where instead of Darcy’s law (1.3.16) we use the homogenized momentum balance
equation (6.2.26) for the liquid component.
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Chapter 7
Non-isothermal Acoustics in Poroelastic Media

We consider the model M19 under the condition ᾱv = 0:

1

ᾱε
p

p + ∇ · w = 0, (x, t) ∪ ΩT = Ω × (0, T ), (7.0.1)

ρε ∂2w
∂t2

= ∇ · P + ρεF, (x, t) ∪ ΩT , (7.0.2)

P = χεᾱμD

(
x,

∂w
∂t

)
+ (1 − χε)ᾱλD(x, w) − (p + αε

ϑ ϑ)I; (7.0.3)

ηε
0
∂ϑ

∂t
= ∇ · (αε

κ
∇ϑ) − γ̄0 αε

ϑ ∇ · ∂w
∂t

, (x, t) ∪ ΩT , (7.0.4)

w(x, t) = 0, ϑ(x, t) = 0, (x, t) ∪ ST = S × (0, T ), (7.0.5)

w(x, 0) = ∂w
∂t

(x, 0) = 0, ϑ(x, 0) = ϑ0(x), x ∪ Ω, (7.0.6)

in the bounded domain Ω = Ωε
f ⊂ Γ ⊂ Ωε

s ∩ R
3, Γ ε = ∂Ωε

f ∈ ∂Ωε
s , with a C2

continuous boundary S = ∂Ω for t ∪ (0, T ).
This model is derived in AppendixA.
Recall that in (7.0.1)–(7.0.6) the characteristic function χε(x) of the domain Ωε

f
is given by the expression

χε(x) = ς0(x)χ
(x

ε

)
,

where ς0(x) is the characteristic function of the domain Ω , χ(y) is the characteristic
function of the domain Y f , and

ᾱε
p = χε c̄2f + (1 − χε)c̄2s , ρε = χερ f + (1 − χε)ρs, αε

ϑ = χεβ f + (1 − χε)βs,
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ηε
0 = χεcp, f + (1 − χε)cp,s, αε

κ
= χε ακ, f + (1 − χε) κs .

For the definition of γ̄0, ᾱε
p, ᾱμ, ᾱλ, ηε

0, α
ε
ϑ , and αε

κ
see AppendixA.

As usual, the function pε
f = χε pε stands for the liquid pressure, and the function

pε
s = (1 − χε)pε stands for the solid pressure.
We also assume that all dimensionless parameters depend on the small parameter

ε and the (finite or infinite) limits exist:

lim
ε∅0

ᾱμ(ε) = μ0, lim
ε∅0

ᾱλ(ε) = λ0, lim
ε∅0

ᾱκ, f (ε) = κ f ,

lim
ε∅0

ᾱμ

ε2
= μ1, lim

ε∅0

ᾱλ

ε2
= λ1, lim

ε∅0

ᾱκ, f

ε2
= κ1.

Throughout this chapter it is assumed that

∫

QT

(
|F(x, t)|2 +

∣∣∣∣
∂F
∂t

(x, t)

∣∣∣∣
2 )

dxdt = F2 < ∞,

0 < cp, f , cp,s, c̄ f , c̄s, κs, γ̄0 < ∞,

and that Assumptions 0.1, 1.1 and 3.1 hold true.

Definition 7.1 We say that the triple of functions {wε, p ε, ϑε} such that

wε ∪ ◦
W

1,0

2 (ΩT ),
∂wε

∂t
∪ L2(ΩT ), p ε ∪ L2(ΩT ), ϑε ∪ ◦

W
1,0

2 (ΩT )

is a weak solution of the problem (7.0.1)–(7.0.6), if it satisfies the continuity
equation (7.0.1) almost everywhere in ΩT , the first initial condition in (7.0.6)

wε(x, 0) = 0, x ∪ Ω,

and integral identities

∫

ΩT

(
− ρε ∂wε

∂t
· ∂ϕ

∂t
+ P : D(x, ϕ)

)
dxdt = −

∫

ΩT

ρεF · ϕdxdt, (7.0.7)

∫

ΩT

(
− ηε

0 ϑε ∂ψ

∂t
+αε

κ
∇ϑε · ∇ψ − γ̄0 αε

ϑ (∇ · w)
∂ψ

∂t

)
dxdt =

∫

ΩT

ηε
0ϑ0(x)ψ(x, 0)dxdt

(7.0.8)

for all functionsϕ andψ , such thatϕ ∪ ◦
W

1,0

2 (ΩT ),
∂ϕ

∂t
∪ L2(ΩT ),ψ ∪ ◦

W
1,0

2 (ΩT ),

∂ψ

∂t
∪ L2(ΩT ) and ϕ(x, T ) = 0, ψ(x, T ) = 0 for x ∪ Ω .



7 Non-isothermal Acoustics in Poroelastic Media 267

Theorem 7.1 For all ε > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution of problem (7.0.1)–(7.0.6) and

max
0<t<T

∫

Ω

(
|p ε(x, t)|2 + |ϑ ε(x, t)|2 +

∣∣∣∣
∂wε

∂t
(x, t)

∣∣∣∣
2

+ (1 − χε)ᾱλ|D(x, wε)|2
)

dx

+ max
0<t<T

∫

Ω

⎜
⎧
∣∣∣∣
∂p ε

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣
∂ϑ ε

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
∂2wε

∂t2
(x, t)

∣∣∣∣∣
2

+ (1 − χε)ᾱλ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

⎫ dx

+
∫

ΩT

χε

⎜
⎧ᾱμ

⎜
⎧
∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+
∣∣∣∣∣D
(

x,
∂2wε

∂t2

)∣∣∣∣∣
2

⎫+ ᾱ

κ, f

(
|∇ ϑε |2 +

∣∣∣∣∇
∂ϑε

∂t

∣∣∣∣
2
)
⎫ dxdt

+
∫

ΩT

(1 − χε)

(∣∣∇ ϑε
∣∣2 +

∣∣∣∣∇
∂ϑε

∂t

∣∣∣∣
2
)

dxdt � C0F2, (7.0.9)

where here and in what follows, we denote as C0 any constant depending only on
domains Ω , Y and Y f .

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1

2

d

dt

∫

Ω

(
ρε

∣∣∣∣
∂wε

∂t

∣∣∣∣
2

+ (1 − χε)ᾱλ |D(x, wε)|2 + 1

ᾱε
p
|pε|2 + ηε

0
γ̄0

|ϑε|2
)

dx

+
∫

Ω

(
χε ᾱμ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+ αε
κ

γ̄0
|∇ ϑε|2

)
dx =

∫

Ω
ρεF · ∂wε

∂t
dx,

1

2

d

dt

∫

Ω

⎜
⎧ρε

∣∣∣∣∣
∂2wε

∂t2

∣∣∣∣∣
2

+ (1 − χε)ᾱλ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+ 1

ᾱε
p

∣∣∣∣
∂pε

∂t

∣∣∣∣
2

+ ηε
0

γ̄0

∣∣∣∣
∂ϑε

∂t

∣∣∣∣
2

⎫ dx

+
∫

Ω

⎜
⎧χε ᾱμ

∣∣∣∣∣D
(

x,
∂2wε

∂t2

)∣∣∣∣∣
2

+ αε
κ

γ̄0

∣∣∣∣∇
∂ϑε

∂t

∣∣∣∣
2

⎫ dx =

∫

Ω
ρε ∂F

∂t
· ∂2wε

∂t2
dx,

For example, the first equality follows from the Eq. (7.0.2), if we multiply it by
∂wε

∂t
,

integrate by parts, express the stress tensor P and ∇ · w there using state equations

(7.0.3) and continuity equation (7.0.1), then multiply the Eq. (7.0.4) by
ϑε

γ̄0
, integrate

by parts and sum with the previous result.

7.1 A Slightly Viscous Liquid in an Extremely Elastic
Solid Skeleton

Throughout this section we assume that

μ0 = 0, λ0 = 0. (7.1.1)
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7.1.1 Main Results

Theorem 7.2 Let {vε, p ε, ϑε} be a weak solution of the problem (7.0.1)–(7.0.6)
and

0 < κ f < ∞, μ1 = λ1 = ∞.

Then the sequences {wε} and {pε} converge as ε ∞ 0 weakly and two-scale in
L2(ΩT ) and L2(ΩT ) to the displacements w and the pressure p ∪ W 1,0

2 (ΩT ) of
the mixture correspondingly, and the sequence {ϑε} converges as ε ∞ 0 weakly in
◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) to the temperature ϑ(x, t) of the mixture.
These limiting functions satisfy in the domain ΩT the system of homogenized

differential equations

ρ̂
∂2w
∂t2

= ∇ (p + β̂ ϑ) + ρ̂ F, (7.1.2)

1

c̃2
p + ∇ · w = 0, (7.1.3)

ĉp
∂ϑ

∂t
− γ̂

∂p

∂t
= ∇ · (Bϑ · ∇ϑ

⎬
, (7.1.4)

completed with boundary and initial conditions

w(x, t) · n(x) = 0, (x, t) ∪ ST , (7.1.5)

ϑ(x, t) = 0, (x, t) ∪ ST , (7.1.6)

w(x, 0) = ∂w
∂t

(x, 0) = 0, x ∪ Ω, (7.1.7)

ϑ(x, 0) = ϑ0(x), x ∪ Ω. (7.1.8)

In (7.1.2)–(7.1.8)

ρ̂ = mρ f + (1 − m) ρs,
1

c̃2
= m

c̄2f
+ (1 − m)

c̄2s
,

β̂ = mβ f + (1 − m) βs, ĉp = mcp, f + (1 − m) cp,s,

m =
∫

Y
χ(y)dy, γ̂ = mγ f + (1 − m) γs,

γ f = γ̄0
β f

c2f
, γs = γ̄0

βs

c2s
,
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the matrix B
ϑ is defined in Chap.2 (see Theorem2.1), and n(x) is the normal vector

to the boundary S at the point x ∪ S.

We refer to the problem(7.1.2)–(7.1.8) as the homogenized model (NIA)1.
To formulate the following statements we consider an extension

ϑε
s = EΩε

s
(ϑε), (7.1.9)

where
EΩε

s
: W 1

2 (Ωε
s ) ∞ W 1

2 (Ω)

is an extension operator from Ωε
s on Ω , such that

ϑε
s = ϑε in Ωε

s × (0, T ),

and
∫

Ω

|ϑε
s |2dx � C0

∫

Ωε
s

|ϑε|2dx,

∫

Ω

|∇ ϑε
s |2dx � C0

∫

Ωε
s

|∇ ϑε|2dx . (7.1.10)

(for more details see AppendixB, LemmaB.4.1).

Theorem 7.3 Let {vε, p ε, ϑε} be a weak solution of the problem (7.0.1)–(7.0.6),
ϑε

s = EΩε
s
(ϑε) be an extension (7.1.9), and

κ f = 0, 0 < κ1 < ∞, μ1 = λ1 = ∞.

Then the sequence {pε} converges weakly and two-scale in L2(ΩT ) as ε ∞ 0 to
the pressure of the mixture p(x, t), the sequences {wε} and {χε ϑε} converge weakly
in L2(ΩT ) and L2(ΩT ) as ε ∞ 0 to the displacements w(x, t) of the mixture and
the liquid temperature ϑ( f )(x, t) correspondingly, and the sequence {ϑε

s } converges

weakly in
◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) as ε ∞ 0 to the temperature ϑs(x, t)
of the solid component.

These limiting functions satisfy in the domain ΩT the homogenized momentum
balance equation

ρ̂
∂2w
∂t2

= ∇ (p + β f ϑ( f ) + βs(1 − m)ϑs
⎬+ ρ̂ F, (7.1.11)

the homogenized continuity equation (7.1.3), and the homogenized heat equation

cp, f
∂ϑ( f )

∂t
+ cp,s(1 − m)

∂ϑs

∂t
− γ̂

∂p

∂t
= ∇ · (κs B

ϑ
s · ∇ϑs

⎬
, (7.1.12)

completed with the state equation

http://dx.doi.org/10.2991/978-94-6239-015-7_2
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ϑ( f )(x, t) = mϑs(x, t) +
∫ t

0
a( f )(t − τ)

(
γ f

∂p

∂τ
− cp, f

∂ϑs

∂τ

)
(x, τ )dτ, (7.1.13)

and boundary and initial conditions (7.1.5), (7.1.7), and

ϑs(x, t) = 0, (x, t) ∪ ST , (7.1.14)

ϑs(x, 0) = ϑ0(x), x ∪ Ω. (7.1.15)

In (7.1.11)–(7.1.15)

ρ̂ = mρ f + (1 − m) ρs, m =
∫

Y
χ(y)dy,

γ̂ = mγ f + (1 − m) γs, γ f = γ̄0
β f

c2f cp, f
, γs = γ̄0

βs

c2s
,

the matrix B
ϑ
s and the function a( f )(t) are defined below by (7.1.39) and (7.1.45),

and n(x) is the normal vector to the boundary S at the point x ∪ S.

We refer to the problem (7.1.3), (7.1.11)–(7.1.15) as the homogenized model
(NIA)2.

Theorem 7.4 Let {wε, p ε, ϑ ε} be a weak solution of the problem(7.0.1)–(7.0.6)
and

0 < κ f < ∞, 0 � μ1, λ1 < ∞.

Then the sequence {pε} converges weakly and two-scale in L2(ΩT ) as ε ∞ 0 to the
pressure p(x, t) of the mixture, the sequence {wε} converges weakly in L2(ΩT ) as
ε ∞ 0 to the displacements w(x, t) of the mixture, and the sequence {ϑε} converges

weakly in
◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) as ε ∞ 0 to the temperature ϑ(x, t)
of the mixture.

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in the

domain ΩT homogenized momentum balance equation

∇ ·
∫ t

0
B

(a)(μ1, λ1; t − τ) · ∇(p + β̂ ϑ
⎬
(x, τ )dτ = − ρ̂

c̃2
∂p

∂t
− ∇ · f, (7.1.16)

and the homogenized heat equation (7.1.4), completed with boundary and initial
conditions (7.1.6), (7.1.8), and

∫ t

0
B

(a)(μ1, λ1; t − τ) · ∇(p + β̂ ϑ
⎬
(x, τ )dτ · n(x) = −f(x, t) · n(x), (7.1.17)
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p (x, 0) = 0, x ∪ Ω. (7.1.18)

In (7.1.16), (7.1.17)

ρ̂ = m ρ f + (1 − m) ρs,
1

c̃2
= m

c̄2f
+ (1 − m)

c̄2s
,

β̂ = m β f + (1 − m) βs, m =
∫

Y
χ(y)dy,

the matrix B
(a)(μ1, λ1; t) and the function f(x, t) have been defined in Chap.6 by

formulae (6.2.40)–(6.2.42), and n(x) is the normal vector to the boundary S at the
point x ∪ S.

We refer to the problem (7.1.4), (7.1.6), (7.1.8), (7.1.16)–(7.1.18) as the homoge-
nized model (NIA)3.

Theorem 7.5 Let {wε, p ε, ϑ ε} be a weak solution of the problem (7.0.1)–(7.0.6),
ϑε

s = EΩε
s
(ϑε) be an extension (7.1.9), and

κ f = 0, κ1 = ∞, 0 � μ1, λ1 < ∞.

Then the sequence {pε} converges weakly and two-scale in L2(ΩT ) as ε ∞ 0 to the
pressure p(x, t) of the mixture, the sequence {wε} converges weakly in L2(ΩT ) as
ε ∞ 0 to the displacements w(x, t) of the mixture. At the same time the sequence {ϑε

s }
converges weakly in

◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) as ε ∞ 0 to the temperature
ϑs(x, t) of the solid component, and the sequence {χε ϑε} converges weakly and two-
scale in L2(ΩT ) as ε ∞ 0 to the liquid temperature ϑ( f )(x, t) = mϑs(x, t).

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in the

domain ΩT the homogenized momentum balance equation (7.1.16) and the homog-
enized heat equation

ĉp
∂ϑs

∂t
− γ̂

∂p

∂t
= ∇ · (κs B

ϑ
s · ∇ϑs

⎬
, (7.1.19)

completed with boundary and initial conditions (7.1.14), (7.1.15), (7.1.17), and
(7.1.18).

In (7.1.19)

ĉp = mcp, f + (1 − m) cp,s, m =
∫

Y
χ(y)dy,

γ̂ = mγ f + (1 − m) γs, γ f = γ̄0
β f

c2f
, γs = γ̄0

βs

c2s
,

http://dx.doi.org/10.2991/978-94-6239-015-7_6
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and the matrix B
ϑ
s is defined below by (7.1.39).

We refer to the problem(7.1.14)–(7.1.19) as the homogenized model (NIA)4.
To formulate the following statements we consider extensions

wε
f = EΩε

f

(
wε
⎬
, and wε

s = EΩε
s

(
wε
⎬
, (7.1.20)

where
EΩε

f
: W1

2(Ω
ε
f ) ∞ W1

2(Ω)

is an extension operator from Ωε
f on Ω , and

EΩε
s

: W1
2(Ω

ε
s ) ∞ W1

2(Ω)

is an extension operator from Ωε
s on Ω , such that

wε
f = wε in Ωε

f × (0, T ), wε
s = wε in Ωε

s × (0, T ),

and
∫

Ω

|wε
f |2dx � C0

∫

Ωε
f

|wε|2dx,

∫

Ω

|wε
s |2dx � C0

∫

Ωε
s

|wε|2dx,

∫

Ω

|D(x, wε
f )|2dx � C0

∫

Qε
f

|D(x, wε)|2dx,

∫

Ω

|D(x, wε
s )|2dx � C0

∫

Ωε
s

|D(x, wε)|2dx .

(for more details see AppendixB, LemmaB.9).

Theorem 7.6 Let {wε, p ε, ϑε} be a weak solution of the problems(7.0.1)–(7.0.6),

0 < κ f < ∞, μ1 = ∞, 0 � λ1 < ∞,

and wε
f = EΩε

f

(
wε
⎬

be an extension (7.1.20).

Then the sequences {pε} and {wε
f }, converge weakly and two-scale in L2(ΩT )

and L2(ΩT ) as ε ∅ 0 to the pressure p(x, t) and the displacements w f (x, t) of
the liquid component respectively. The sequence {(1 − χε)wε} converges weakly
in L2(ΩT ) as ε ∅ 0 to the displacements w(s) of the solid component, and the

sequence {ϑε} converges weakly in
◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) as ε ∞ 0
to the temperature of the mixture ϑ(x, t).

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in

the domain ΩT the system of homogenized differential equations, consisting of the
continuity equation
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1

c̃2
∂p

∂t
+ ∇ ·

(
m

∂w f

∂t
+ ∂w(s)

∂t

)
= 0, (7.1.21)

the momentum balance equation

mρ f
∂w f

∂t
+ ρs

∂w(s)

∂t
+
∫ t

0

(− ρ̂F + ∇ (p + β̂ ϑ)
⎬
(x, τ )dτ = 0 (7.1.22)

for the liquid component, the momentum balance equation

∂w(s)

∂t
− (1 − m)

∂w f

∂t
(7.1.23)

= −
∫ t

0
B

(s)(∞, λ1; t − τ) ·
(

∇(p + βsϑ) + ρs

(
∂2w f

∂τ 2
− F

))
(x, τ )dτ

(7.1.23)

for the solid component, and the heat equation (7.1.4).
Equations (7.1.4), (7.1.21)–(7.1.23) are supplemented with boundary and initial

conditions (7.1.6), (7.1.8), and initial conditions

w(s)(x, 0) = w f (x, 0) = 0 (7.1.24)

for displacements in the liquid and the solid components, and the boundary condition

(
m

∂w f

∂t
(x, t) + ∂w(s)

∂t
(x, t)

)
· n(x) = 0, x ∪ S, t > 0. (7.1.25)

In (7.1.21)–(7.1.25)

ρ̂ = mρ f + (1 − m) ρs,
1

c̃2
= m

c̄2f
+ (1 − m)

c̄2s
,

β̂ = m β f + (1 − m) βs, m =
∫

Y
χ(y)dy,

and the matrix B
(s)(∞, λ1; t) has been defined in Chap.3 by formulae (3.2.47) and

(3.2.54).

We refer to the problem(7.1.4), (7.1.6), (7.1.8), (7.1.21)–(7.1.25) as the homog-
enized model (NIA)5.

Theorem 7.7 Let {wε, p ε, ϑε} be a weak solution of the problem(7.0.1)–(7.0.6),

κ f = 0, 0 < κ1 < ∞, μ1 = ∞, 0 � λ1 < ∞,

http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_3
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ϑε
s = EΩε

s
(ϑε) be an extension (7.1.9), and wε

f = EΩε
f

(
wε
⎬

be an extension (7.1.20).

Then the sequences {pε} and {wε
f }, converge weakly and two-scale in L2(ΩT )

as ε ∅ 0 and L2(ΩT ) to the pressure p(x, t) and the displacements w f (x, t) of the
liquid component respectively, the sequences {(1 − χε)wε} and {χε ϑε} converge
weakly in L2(ΩT ) and L2(ΩT ) as ε ∅ 0 to the displacements w(s) of the solid
component and the liquid temperature ϑ( f )(x, t), and the sequence {ϑε

s } converges

weakly in
◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) as ε ∞ 0 to the limiting temperature
ϑs(x, t) of the solid component.

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in

the domain ΩT the system of homogenized differential equations, consisting of the
continuity equation (7.1.21), the momentum balance equation

mρ f
∂w f

∂t
+ ρs

∂w(s)

∂t

= −
∫ t

0

(
− ρ̂F + ∇ (p + β f ϑ( f ) + (1 − m)βs ϑs

⎬)
(x, τ )dτ (7.1.26)

for the liquid component, the momentum balance equation

∂w(s)

∂t
− (1 − m)

∂w f

∂t

= −
∫ t

0
B

(s)(∞, λ1; t − τ) ·
(

∇(p + βsϑs) + ρs

(
∂2w f

∂τ 2
− F

))
(x, τ )dτ

(7.1.27)

for the solid component, and the heat equation (7.1.12).
Equations (7.1.10), (7.1.21), (7.1.26) and (7.1.27) are supplemented with bound-

ary and initial conditions (7.1.14), (7.1.15), (7.1.24) and (7.1.25).
In (7.1.26) and (7.1.27)

ρ̂ = mρ f + (1 − m) ρs, m =
∫

Y
χ(y)dy,

and the matrix B
(s)(∞, λ1; t) has been defined in Chap.3 by formulae (3.2.47) and

(3.2.54).

We refer to the problem (7.1.10), (7.1.14), (7.1.15), (7.1.21), (7.1.24)–(7.1.27) as
the homogenized model (NIA)6.

Theorem 7.8 Let {wε, p ε, ϑε} be a weak solution of the problem (7.0.1)–(7.0.6),

0 < κ f < ∞, λ1 = ∞, 0 � μ1 < ∞,

http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_3
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and wε
s = EΩε

s

(
wε
⎬

be an extension (7.1.20).
Then the sequences {pε} and {wε

s }, converge weakly and two-scale in L2(ΩT )

and L2(ΩT ) as ε ∅ 0 to the pressure p(x, t) of the mixture and the displacements
ws(x, t) of the solid component respectively, the sequence {χε wε} converges weakly
in L2(ΩT ) as ε ∅ 0 to the displacements w( f ) of the liquid component, and the

sequence {ϑε} converges weakly in
◦
W

1,0

2 (ΩT ) and two scale in L2(ΩT ) as ε ∞ 0
to the temperature ϑ(x, t) of the mixture.

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in

the domain ΩT the system of homogenized differential equations, consisting of the
continuity equation

1

c̃2
∂p

∂t
+ ∇ ·

(
∂w( f )

∂t
+ (1 − m)

∂ws

∂t

)
= 0, (7.1.28)

the momentum balance equation

ρ f
∂w( f )

∂t
+ (1 − m)ρs

∂ws

∂t
=
∫ t

0

(
ρ̂F − ∇ (p + β̂ ϑ)

)
(x, τ )dτ (7.1.29)

for the solid component, the momentum balance equation

∂w( f )

∂t
− m

∂ws

∂t

= −
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

∇ (p + β f ϑ) + ρ f

(
∂2ws

∂τ 2
− F

))
(x, τ )dτ

(7.1.30)

for the liquid component, and the heat equation (7.1.4).
Equations (7.1.4), (7.1.28)–(7.1.30) are supplemented with the boundary and ini-

tial conditions (7.1.6), (7.1.8), initial conditions

w( f )(x, 0) = ws(x, 0) = 0, x ∪ Ω (7.1.31)

for displacements in the liquid and the solid components, and the boundary condition

(
∂w( f )

∂t
+ (1 − m)

∂ws

∂t

)
· n(x) = 0, x ∪ S, t > 0. (7.1.32)

In (7.1.28)–(7.1.30)

ρ̂ = mρ f + (1 − m) ρs,
1

c̃2
= m

c̄2f
+ (1 − m)

c̄2s
,
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β̂ = m β f + (1 − m) βs, m =
∫

Y
χ(y)dy,

and the matrix B
( f )(μ1,∞; t) has been defined in Chap.3 by formulae (3.2.70) and

(3.2.76).

We refer to the problem (7.1.4), (7.1.6), (7.1.8), (7.1.28)–(7.1.32) as the homog-
enized model (NIA)7.

Theorem 7.9 Let {wε, p ε, ϑε} be a weak solution of the problem(7.0.1)–(7.0.6),

κ f = 0, κ1 = ∞, λ1 = ∞, 0 � μ1 < ∞,

ϑε
s = EΩε

s
(ϑε) be an extension (7.1.9), and wε

s = EΩε
s

(
wε
⎬

be an extension (7.1.20).
Then the sequences {pε} and {wε

s }, converge weakly and two-scale in L2(ΩT )

and L2(ΩT ) as ε ∅ 0 to the pressure p(x, t) of the mixture and the displacements
ws(x, t) of the solid component respectively, and the sequence {χε wε} converges
weakly in L2(ΩT ) as ε ∅ 0 to the displacements w( f ) of the liquid component. At

the same time the sequence {ϑε
s } converges weakly in

◦
W

1,0

2 (ΩT ) and two-scale in
L2(ΩT ) as ε ∞ 0 to the limiting temperature ϑs(x, t) of the solid component, and
the sequence {χε ϑε} converges weakly and two-scale in L2(ΩT ) as ε ∞ 0 to the
liquid temperature ϑ( f )(x, t) = mϑs(x, t).

These limiting functions, where p ∪ W 1,0
2 (ΩT ) and

∂p

∂t
∪ L2(ΩT ), satisfy in

the domain ΩT the system of homogenized differential equations (7.1.19), (7.1.28)–
(7.1.30), and boundary and initial conditions (7.1.14), (7.1.15), (7.1.31) and (7.1.32).

We refer to the problem (7.1.14), (7.1.15), (7.1.19), (7.1.28)–(7.1.32) as the
homogenized model (NIA)8.

7.1.2 Proofs of Theorems 7.2–7.9

Proofs of Theorems7.2–7.9 repeat the proofs of corresponding Theorems in
Chaps. 1–3 and 6. Dynamic equations are derived in the same way as in Chap.6.
Theorems7.2–7.3 correspond to Theorem6.5, Theorems7.4–7.5 correspond to
Theorem6.6, Theorems7.6–7.7 correspond to Theorem6.7, and Theorems7.8–7.9
correspond to Theorem6.8.

The basic integral identity (7.1.4) of this chapter differs from the basic identity
(6.0.10) in Chap.6 in only one term

∫

ΩT

αε
ϑ ϑε ∇ · ϕdxdt.

Therefore, the limiting procedure does not cause any difficulties.
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The really new features here are the homogenized heat equations (7.1.4), (7.1.12)
and (7.1.19).

For all these equations we start with the integral identity (7.0.8) in the form

∫

ΩT

(
− ηε

0 ϑε ∂ψ

∂t
+ αε

κ
∇ϑε · ∇ψ + γ ε pε ∂ψ

∂t

)
dxdt

=
∫

ΩT

ηε
0ϑ0(x)ψ(x, 0)dxdt, (7.1.33)

where

γ ε = χεγ f + (1 − χε)γs, γ f = γ̄0
β f

c2f
, γs = γ̄0

βs

c2s
.

If 0 < κ f < ∞, then estimates (7.0.9) and (7.1.33) result in the macroscopic
equation

ĉp
∂ϑ

∂t
− γ̂

∂p

∂t
= ∇ · ⎭(κ f χ + κs(1 − χ)

⎬(∇ ϑ + ∇yΘ
⎬〉

Y + ρ̂ F,

the microscopic equation

∇y ·
((

κ f χ + κs(1 − χ)
⎬(∇ ϑ + ∇yΘ

⎬) = 0,

and, finally, the homogenized equation (7.1.4) (for details see Chap.2).
Here γ̂ = mγ f + (1 − m)γs , and ∇ ϑ(x, t) + ∇yΘ(x, t, y) is a two-scale limit

of the sequence {∇ ϑε}.
If κ f = 0 and 0 < κ1 < ∞, then estimates (7.0.9) and (7.1.33) result the

macroscopic equation

cp, f
∂ϑ( f )

∂t
+ cp,s(1 − m)

∂ϑs

∂t
− γ̂

∂p

∂t
= ∇ · ⎭(κs(1 − χ)

⎬(∇ ϑs + ∇yΘs
⎬〉

Y + ρ̂ F (7.1.34)

and microscopic equations

∇y ·
((

κs(1 − χ)
⎬(∇ ϑs + ∇yΘs

⎬) = 0, (7.1.35)

cp, f
∂ Θ( f )

∂t
= κ1→y Θ( f ) + γ f

∂p

∂t
, (7.1.36)

were ∇ ϑs(x, t) + ∇yΘs(x, t, y) is a two-scale limit of the sequence {∇ ϑε
s }, and

Θ( f )(x, t, y) is a two-scale limit of the sequence {χε ϑε}.
Recall, that Eq. (7.1.35) is understood in the sense of distributions, and is equiv-

alent to the integral identity
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∫

Y

((
(1 − χ)

⎬(∇ ϑs + ∇yΘs
⎬) : ∇ ϕ dy = 0

for any smooth 1-periodic function ϕ(y). It means that

→y Θs = 0, y ∪ Ys, (∇ ϑs + ∇yΘs) · n(y) = 0, y ∪ γ. (7.1.37)

Here n(y) is a normal vector to the boundary γ at y ∪ γ .
We look for the solution to (7.1.37) in the form

Θs(x, t, y) =
3∑

i=1

Θ(i)
s (y)

∂ϑs

∂xi
(x, t),

where

→y Θ(i)
s = 0, y ∪ Ys, (ei + ∇yΘ

(i)
s ) · n(y) = 0, y ∪ γ. (7.1.38)

Then

∇yΘs =
(

3∑
i=1

∇yΘ
(i)
s ◦ ei

)
· ∇ ϑs,

and

B
ϑ
s = (1 − m)I +

3∑
i=1

√∇yΘ
(i)
s ⊗Ys ◦ ei . (7.1.39)

We consider the microscopic equation (7.1.35) in Y f . Therefore it must be com-
pleted with the boundary condition

Θ( f )(x, t, y) = ϑs(x, t), y ∪ γ, (7.1.40)

and the initial condition

Θ( f )(x, y, 0) = ϑs(x, 0), y ∪ Y f . (7.1.41)

The boundary condition (7.1.40) is a consequence of the equality

Θ(x, t, y) = Θ( f )(x, t, y)χ(y) + ϑs(x, t)
(
1 − χ(y)

⎬
,

and the inclusion Θ( f ) ∪ L2
(
ΩT ; W 1

2 (Y )
⎬
.

The initial condition (7.1.41) is a consequence of the equality

Θ( f )(x, y, 0)χ(y) + ϑs(x, 0)
(
1 − χ(y)

⎬

= ϑ0(x)χ(y) + ϑ0(x)
(
1 − χ(y)

⎬
, (7.1.42)
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which follows from the integral identity

∫

ΩT

(
∂ϑε

∂t
ϕ + ϑε ∂ϕ

∂t

)
dxdt = −

∫

Ω

ϑ0(x) ϕ
(

x,
x
ε
, 0
)

dx

for any smooth 1-periodic in y functions ϕ(x, t, y), such that ϕ(x, y, T ) = 0, after
taking a limit as ε ∞ 0.

The same equality (7.1.42) provides the initial condition (7.1.15).
To solve the problem(7.1.36), (7.1.40), (7.1.41) we use a representation

Θ( f )(x, t, y) = ϑs(x, t) +
∫ t

0
Θ̄(y, t − τ)

(
γ f

∂ p

∂τ
− cp, f

∂ϑs

∂τ

)
(x, τ )dτ,

where the function Θ̄(y, t) is a solution to the periodic initial boundary-value problem

cp, f
∂ Θ̄

∂t
= κ1→y Θ̄, y ∪ Y f (7.1.43)

Θ̄(y, t) = 0, y ∪ γ, Θ̄(y, 0) = 1

cp, f
, y ∪ Y f . (7.1.44)

Thus,
a( f )(t) = √Θ̄(., t)⊗Y f . (7.1.45)

The Eq. (7.1.19) is a consequence of (7.1.12) for the case ϑ( f ) = mϑs .

7.2 A Slightly Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

μ0 = 0, 0 < λ0 < ∞. (7.2.1)

7.2.1 Main Results

Theorem 7.10 Let {wε, p ε, ϑε} be a weak solution of the problem(7.0.1)–(7.0.6),
wε

s = EΩε
s

(
wε
⎬

be an extension (7.1.20), and

μ1 = ∞, 0 < κ f < ∞.
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Then up to some subsequences the sequences {wε} and {χε p ε} converge weakly and
two-scale in L2(ΩT ) and L2(ΩT ) to functions w(x, t) and p f (x, t) respectively.

At the same time the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) and two-

scale in L2(ΩT ) to the function ws(x, t), ws ∪ ◦
W

1,0

2 (ΩT ), and the sequence {ϑε}
converges weakly in

◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) to the function ϑ(x, t).
Limiting functions solve the system of homogenized equations in the domain ΩT ,

consisting of the homogenized continuity equation

1

c2f
p f + m ∇ · ws = C

s
0 : D(x, ws) + cs

0

λ0
q, (7.2.2)

the state equation
q = p f + m (β f − βs) ϑ, (7.2.3)

the homogenized momentum balance equation

ρ̂
∂2ws

∂t2
= ∇ · (λ0 Ns

2 : D(x, ws) − q C
s
1 − βs ϑ I

⎬+ ρ̂F, (7.2.4)

and the homogenized heat equation

ĉp
∂ϑ

∂t
= ∇ · (Bϑ · ∇ ϑ

⎬+ C
ϑ : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
. (7.2.5)

The system is completed with boundary and initial conditions

ws(x, t) = 0, x ∪ S, t ∪ (0, T ), (7.2.6)

ϑ(x, t) = 0, x ∪ S, t ∪ (0, T ), (7.2.7)

ws(x, 0) = ∂ws

∂t
(x, 0) = 0, x ∪ Ω, (7.2.8)

ĉp
(
ϑ(x, 0) − ϑ0(x)

⎬ = cs
0

λ0
q, x ∪ Ω. (7.2.9)

In (7.2.2)–(7.2.9)

ρ̂ = mρ f + (1 − m) ρs, ĉp = mcp, f + (1 − m) cp,s, m =
∫

Y
χ(y)dy,

the symmetric strictly positively definite constant fourth-rank tensor Ns
2, matrices

C
s
0 and C

s
1, and the constant cs

0 are given in Chap.1 by formulae (1.3.26), (1.3.27)
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and (1.3.31). The symmetric strictly positively definite constant matrix B
ϑ and the

matrix C
ϑ are defined in Chap.1 in Theorems2.1 and 2.4.

We refer to the problems (7.2.2)–(7.2.9) as the homogenized model (NIA)9.

Theorem 7.11 Let {wε, p ε, ϑε} be a weak solution of the problems(7.0.1)–(7.0.6),

μ1 = ∞, κ f = 0, κ1 = ∞,

ϑε
s = EΩε

s
(ϑε) be an extension (7.1.9), and wε

s = EΩε
s

(
wε
⎬

be an extension (7.1.20).
Then up to some subsequences the sequences {wε} and {χε ϑε} converge weakly

and two-scale in L2(ΩT ) and L2(ΩT ) to the displacements of the mixture w(x, t)
and the liquid temperature ϑ( f )(x, t) respectively.

The sequence{χε p ε} converge weakly and two-scale in L2(ΩT ) to the liquid
pressure p f (x, t) and the function p f (x, t)χ(y) respectively.

At the same time the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) and two-scale
in L2(ΩT ) to the solid displacements ws(x, t) and the sequence {ϑε

s } converges
weakly in W 1,0

2 (ΩT ) and two-scale in L2(ΩT ) to the solid temperature ϑs(x, t).

Limiting functions, where ws(x, t) = w(x, t), ws ∪ ◦
W

1,0

2 (ΩT ), and ϑ( f )(x, t) =
mϑs(x, t), ϑs ∪ ◦

W
1,0

2 (ΩT ), solve the system of homogenized equations in the
domain ΩT , consisting of the homogenized continuity equation (7.2.2), the state
equation

q = p f + m (β f − βs) ϑs, (7.2.10)

the homogenized momentum balance equation

ρ̂
∂2ws

∂t2
= ∇ · (λ0 Ns

2 : D(x, ws) − q C
s
1 − βs ϑs I

⎬+ ρ̂F, (7.2.11)

and the homogenized heat equation

ĉp
∂ϑs

∂t
= ∇ · (Bϑ

s · ∇ ϑs
⎬+ C

ϑ : D

(
x,

∂ws

∂t

)
+ cs

0

λ0

∂q

∂t
. (7.2.12)

The system is completed with boundary and initial conditions (7.2.6), (7.2.8) and

ϑs(x, t) = 0, x ∪ S, t ∪ (0, T ), (7.2.13)

ĉp
(
ϑs(x, 0) − ϑ0(x)

⎬ = cs
0

λ0
q, x ∪ Ω. (7.2.14)

In (7.2.11)–(7.2.14)

ρ̂ = mρ f + (1 − m) ρs, ĉp = mcp, f + (1 − m) cp,s, m =
∫

Y
χ(y)dy,
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the symmetric strictly positively definite constant fourth-rank tensor Ns
2, the matrix

C
s
0 and the constant cs

0 are given in Chap.1 by formulae (1.3.26), (1.3.27) and
(1.3.31). The symmetric strictly positively definite constant matrix B

ϑ
s and the matrix

C
ϑ are defined in this chapter in Theorem7.3, and in Chap.1 in Theorem2.4.

We refer to the problem (7.2.2), (7.2.6), (7.2.8) (7.2.10)–(7.2.14) as the homoge-
nized model (NIA)10.

Theorem 7.12 Let {wε, p ε, ϑε} be a weak solution of the problems(7.0.1)–(7.0.6),
wε

s = EΩε
s

(
wε
⎬

be an extension (7.1.20), q ε = χε
(

p ε + (β f − βs)ϑ
ε
⎬
, and

μ1 < ∞, 0 < κ f < ∞.

Then up to some subsequences the sequence {wε
s } converges weakly in W1,0

2 (ΩT )

and two-scale in L2(ΩT ) to the solid displacements ws(x, t), and the sequence {ϑε}
converges weakly in

◦
W

1,0

2 (ΩT ) and two-scale in L2(ΩT ) to the temperature of the
mixture ϑ(x, t).

At the same time the sequence {χε p ε} converges weakly and two-scale in L2(ΩT )

to the liquid pressure p f (x, t) and the function p f (x, t)χ(y) respectively, the
sequence {χε wε} converges weakly in L2(ΩT ) to the liquid displacements w( f ),
and the sequence {q ε} converges weakly and two-scale in L2(ΩT ) to the functions
mq(x, t) and q(x, t)χ(y) respectively.

The limiting functions, where ws ∪ ◦
W

1,0

2 (ΩT ) and q = (p f + (β f − βs)ϑ) ∪
W 1,0

2 (ΩT ), solve the system of homogenized equations in the domain ΩT , consisting
of the homogenized continuity equation

1

c2f
p f + ∇ · w( f ) = C

s
0 : D(x, ws) + cs

0

λ0
q, (7.2.15)

the state equation (7.2.3), the homogenized momentum balance equation

ρ f
∂2w( f )

∂t2
+ ρs

∂2ws

∂t2
= ∇ · (λ0 Ns

2 : D(x, ws) − q C
s
1 − βs ϑ I

⎬+ ρ̂F, (7.2.16)

for the solid component with boundary and initial conditions (7.2.6) and (7.2.8), the
homogenized heat equation (7.2.5) with boundary and initial conditions (7.2.7) and
(7.2.9), and the homogenized momentum balance equation

−
∫ t

0
B

( f )(μ1,∞; t − τ) ·
(

∇ q + ρ f

(
∂2ws

∂τ 2
− F

))
(x, τ )dτ

= ∂w( f )

∂t
− m

∂ws

∂t
(7.2.17)

for the liquid component with homogeneous boundary and initial conditions
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w( f )(x, t) · n(x) = 0, x ∪ S, t ∪ (0, T ), (7.2.18)

w( f )(x, 0) = 0, x ∪ Ω. (7.2.19)

In (7.2.15)–(7.2.18) the symmetric strictly positively definite constant fourth-rank
tensor Ns

2, matrices C
s
0 and C

s
1, and the constant cs

0 are given in Chap.1 by formu-
lae (1.3.26), (1.3.27) and (1.3.31). the matrix B

( f )(μ1,∞; t) is defined by (3.2.70)
and (3.2.76) in Chap.3 and n is the normal vector to the boundary S.

We refer to the problem (7.2.3), (7.2.5)–(7.2.9), (7.2.15)–(7.2.19) as the homog-
enized model (NIA)11.

Theorem 7.13 Let {wε, p ε, ϑε} be a weak solution of the problem(7.0.1)–(7.0.6),

μ1 < ∞, κ f = 0, κ1 = ∞,

wε
s = EΩε

s

(
wε
⎬

be an extension (7.1.20), and ϑε
s = EΩε

s
(ϑε) be an extension (7.1.9).

Then up to some subsequences the sequence {χε p ε} converges weakly and two-
scale in L2(ΩT ) to the liquid pressure p f (x, t) and the function p f (x, t)χ(y) respec-
tively, the sequence {χε ϑε} converges weakly and two-scale in L2(ΩT ) to the liquid
temperature ϑ( f )(x, t), and the sequence {χε wε} converges weakly in L2(ΩT ) to
the liquid displacements w( f )(x, t).

At the same time the sequence {wε
s } converges weakly in W1,0

2 (ΩT ) and two-
scale in L2(ΩT ) to the solid displacements ws(x, t), the sequence {ϑε

s } converges
weakly in W 1,0

2 (ΩT ) and two- scale in L2(ΩT ) to the solid temperature ϑ( f )(x, t),
and ws(x, t) = w(x, t), ϑ( f )(x, t) = mϑs(x, t).

The limiting functions, where ws ∪ ◦
W

1,0

2 (ΩT ) and ϑs ∪ ◦
W

1,0

2 (ΩT ), solve the
system of homogenized equations in the domain ΩT , consisting of the homogenized
continuity equation (7.2.15), the state equation (7.2.10), the homogenized momentum
balance equation

ρ f
∂2w( f )

∂t2
+ ρs

∂2ws

∂t2
= ∇ · (λ0 Ns

2 : D(x, ws) − q C
s
1 − βs ϑs I

⎬+ ρ̂F, (7.2.20)

for the solid component with boundary and initial conditions (7.2.6) and (7.2.8), the
homogenized heat equation (7.2.12) with boundary and initial conditions (7.2.13) and
(7.2.14), and the homogenized momentum balance equation (7.2.17) for the liquid
component with homogeneous boundary and initial conditions (7.2.18) and (7.2.19).

In (7.2.20) the symmetric strictly positively definite constant fourth-rank tensor
Ns

2 and matrix C
s
1, and the constant cs

0 are given in Chap.1 by formulae (1.3.26) and
(1.3.27).

We refer to the problem (7.2.6), (7.2.8), (7.2.10), (7.2.12)–(7.2.14), (7.2.15),
(7.2.17)–(7.2.20) as the homogenized model (NIA)12.

The proofs of these statements repeats the proofs of similar statements in Chaps. 1,
2, and 6.
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Chapter 8
Isothermal Acoustics in Composite Media

We restrict ourself to a simple situation, when the domain Q is a unit cube: Q =
(0, 1) × (0, 1) × (0, 1), the poroelastic medium occupies the domain α = (0, 1) ×
(0, 1)×(0, a), 0 < a < 1 and the domainα(s) (α( f ), or G) is an open complement
to α:

Q = α ∇ α(s) ∇ S(0), S(0) = ρα ∪ ρα(s),

or
Q = α ∇ α( f ) ∇ S(0), S(0) = ρα ∪ ρα( f ),

or
Q = α ∇ G ∇ S(0), S(0) = ρα ∪ ρG.

As in the previous chapter, we describe the motion of the mixture in the domain α

for t > 0 by the system

(
χ∂

c̄ 2
f

+ 1 − χ∂

c̄ 2
s

)
p + ⊂ · w = 0, (8.0.1)

(
λ f χ

∂ + (1 − χ∂)λs
) ρ2w

ρt2
= ⊂ · P + λ∂F, (8.0.2)

P = χ∂ν̄μD

(
x,

ρw
ρt

)
+ (1 − χ∂)ν̄ΩD(x, w) − p I, (8.0.3)

The motion of an elastic body in the domain α(s) for t > 0 is governed by Lamé’s
system

1(
c̄(0)

s

)2 p + ⊂ · w = 0, (8.0.4)
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λ(0)
s

ρ2w
ρt2

= ⊂ · P(s) + λ(0)
s F, (8.0.5)

P
(s) = ν̄

(0)
Ω D(x, w) − p I, (8.0.6)

where ν̄
(0)
Ω and c̄(0)

s are dimensionless Lamé’s constants for the elastic body in α(s).
The motion of the liquid in the domain α( f ) for t > 0 is described by the Stokes

system
1

c̄ 2
f

p + ⊂ · w = 0, (8.0.7)

λ f
ρ2w
ρt2

= ⊂ · P( f ) + λ f F, (8.0.8)

P
( f ) = ν̄μD

(
x,

ρw
ρt

)
− p I. (8.0.9)

Finally, the motion of the mixture in the domain G for t > 0 is described by the
system 

⎜⎧χ∂
0

c̄ 2
f

+ 1 − χ∂
0(

c̄(0)
s

)2


⎫⎬ p + ⊂ · w = 0, (8.0.10)

(
λ f χ

∂
0 + (1 − χ∂

0 )λ(0)
s

) ρ2w
ρt2

= ⊂ · P(0) + λ∂F, (8.0.11)

P
(0) = χ∂

0 ν̄μD

(
x,

ρw
ρt

)
+ (1 − χ∂

0 )ν̄
(0)
Ω D(x, w) − p I, (8.0.12)

where χ∂
0 is the characteristic function of the liquid domain G ∂

f in G:

χ∂
0 (x) = χ0

(x
∂

)
,

For the first and third configurations the elastic properties of the solid material in
α(s) and α (G ∂

s and α) might be different, while in all cases the liquid must be the
same.

On the common boundary S(0) the usual continuity conditions for displacements
hold true:

lim
x ∩ x0

x ∈ α(s)

w(x, t) = lim
x ∩ x0
x ∈ α

w(x, t), (8.0.13)

and for the normal component of the momentum
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lim
x ∩ x0

x ∈ α(s)

P
(s)(x, t) · n(x0) = lim

x ∩ x0
x ∈ α

P(x, t) · n(x0), (8.0.14)

for the first structure,

lim
x ∩ x0

x ∈ α( f )

P
( f )(x, t) · n(x0) = lim

x ∩ x0
x ∈ α

P(x, t) · n(x0) (8.0.15)

for the second structure, and

lim
x ∩ x0
x ∈ G

P
(0)(x, t) · n(x0) = lim

x ∩ x0
x ∈ α

P(x, t) · n(x0) (8.0.16)

for the third structure.
To complete the problems we impose a homogeneous boundary condition

w(x, t) = 0, (x, t) ∈ ST = S × (0, T ), (8.0.17)

on the boundary S = ρ Q, and homogeneous initial conditions

w(x, 0) = ρw
ρt

(x, 0) = 0, x ∈ Q. (8.0.18)

As before, we assume that

⎭

QT

(∣∣F(x, t)
∣∣2 +

∣∣∣∣
ρF
ρt

(x, t)

∣∣∣∣
2
)

dxdt = F2 < ∅,

andAssumption 0.1,Assumption 1.2 andAssumption 3.1 hold true. It is also assumed
that all dimensionless parameters depend on the small parameter ∂ and the (finite or
infinite) limits exist:

lim
∂↘0

ν̄μ(∂) = μ0, lim
∂↘0

ν̄Ω(∂) = Ω0, lim
∂↘0

ν̄
(0)
Ω (∂) = Ω

(0)
0 ,

lim
∂↘0

ν̄μ

∂2
= μ1, lim

∂↘0

ν̄Ω

∂2
= Ω1, lim

∂↘0

ν̄
(0)
Ω

∂2
= Ω

(0)
1 .

Throughout this chapter we assume that

μ0 = 0.

In the usual way one may define weak solutions to the problem (I) (relations
(8.0.1)–(8.0.6), (8.0.13), (8.0.14), (8.0.17), (8.0.18)), to the problem (II) (relations
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(8.0.1)–(8.0.3), (8.0.7)–(8.0.9), (8.0.13), (8.0.15), (8.0.17), (8.0.18)) and to the prob-
lem (III) (relations (8.0.1)–(8.0.3), (8.0.10)–(8.0.13), (8.0.16)–(8.0.18)) by means of
integral identities.

Let Γ(x) be the characteristic function of the domain α and

λ∂
(s) = (1 − Γ )λ(0)

s + Γ
(
λ f χ

∂ + (1 − χ∂)λs
)
,

λ∂
( f ) = (1 − Γ )λ f + Γ

(
λ f χ

∂ + (1 − χ∂)λs
)
,

λ∂
(0) = (1 − Γ )

(
λ f χ

∂
0 + (1 − χ∂

0 )λ(0)
s

)
+ Γ

(
λ f χ

∂ + (1 − χ∂)λs
)
.

Definition 8.1 We say that the pair of functions {w∂, p ∂} such that

w∂ ∈ ◦
W

1,1

2 (QT ), p ∂ ∈ L2(QT ),

is a weak solution of the problem (I), if it satisfies the continuity equation


⎜⎧(1 − Γ )

1(
c̄(0)

s

)2 + Γ

(
χ∂

c̄ 2
f

+ 1 − χ∂

c̄ 2
s

)
⎫⎬ p ∂ + ⊂ · w ∂ = 0, (8.0.19)

almost everywhere in QT , and the integral identity

⎭

QT

λ∂
(s)

(
ρw∂

ρt
· ρϕ

ρt
+ F · ϕ

)
dxdt

=
⎭

QT

(
ΓP + (1 − Γ )P(s)

)
: D(x,ϕ)dxdt (8.0.20)

for all functions ϕ, such that ϕ ∈ ◦
W

1,0

2 (QT ),
ρϕ

ρt
∈ L2(αT ) and ϕ(x, T ) = 0 for

x ∈ Q.

Definition 8.2 We say that the pair of functions {w∂, p ∂} such that

w∂ ∈ ◦
W

1,1

2 (QT ), p ∂ ∈ L2(QT ),

is a weak solution of the problem (II), if it satisfies the continuity equation

(
(1 − Γ )

1

c̄ 2
f

+ Γ

(
χ∂

c̄ 2
f

+ 1 − χ∂

c̄ 2
s

))
p ∂ + ⊂ · w ∂ = 0, (8.0.21)

almost everywhere in QT , and the integral identity
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⎭

QT

λ∂
( f )

(
ρw∂

ρt
· ρϕ

ρt
+ F · ϕ

)
dxdt

=
⎭

QT

(
ΓP + (1 − Γ )P( f )

)
: D(x,ϕ)dxdt (8.0.22)

for all functions ϕ, such that ϕ ∈ ◦
W

1,0

2 (QT ),
ρϕ

ρt
∈ L2(αT ) and ϕ(x, T ) = 0 for

x ∈ Q.

Definition 8.3 We say that the pair of functions {w∂, p ∂} such that

w∂ ∈ ◦
W

1,1

2 (QT ), p ∂ ∈ L2(QT ),

is a weak solution of the problem (III), if it satisfies the continuity equation


⎜⎧(1 − Γ )


⎜⎧χ∂

0

c̄ 2
f

+ 1 − χ∂
0(

c̄(0)
s

)2


⎫⎬+ Γ

(
χ∂

c̄ 2
f

+ 1 − χ∂

c̄ 2
s

)
⎫⎬ p ∂ + ⊂ · w ∂ = 0, (8.0.23)

almost everywhere in QT , and the integral identity

⎭

QT

λ∂
(0)

(
ρw∂

ρt
· ρϕ

ρt
+ F · ϕ

)
dxdt

=
⎭

QT

(
ΓP + (1 − Γ )P(0)

)
: D(x,ϕ)dxdt (8.0.24)

for all functions ϕ, such that ε ∈ ◦
W

1,0

2 (QT ),
ρϕ

ρt
∈ L2(αT ) and ϕ(x, T ) = 0 for

x ∈ Q.

Theorem 8.1 For all ∂ > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution {w∂, p ∂} of the problem (I) and

max
0<t<T

⎭

α

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣D(x, w∂)
∣∣2
)

dx

+ max
0<t<T

⎭

α(s)

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2

+ (1 − χ∂)ν̄
(0)
Ω

∣∣D(x, w∂)
∣∣2
)

dx

+ max
0<t<T

⎭

α


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
ρ2w∂

ρt2
(x, t)

∣∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

⎬ dx

+ max
0<t<T

⎭

α(s)


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
ρ2w∂

ρt2
(
x, t)

∣∣∣∣∣
2

+ (1 − χ∂)ν̄
(0)
Ω

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

⎬ dx
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+
⎭

αT

χ∂ν̄μ


⎧
∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

+
∣∣∣∣∣D
(

x,
ρ2w∂

ρt2

)∣∣∣∣∣
2

⎬ dxdt � C0F2, (8.0.25)

where the constant C0 is independent of the small parameter ∂ and the criteria
ν̄Ω, ν̄

(0)
Ω , ν̄μ.

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1

2

d

dt

⎭

α

(
λ∂

∣∣∣∣
ρw∂

ρt

∣∣∣∣
2

+ (1 − χ∂)ν̄ΩD(x, w∂) : D(x, w∂) + 1

ν̄∂
p
|p∂|2

)
dx

+ 1

2

d

dt

⎭

α(s)


⎜⎧λs

∣∣∣∣
ρw∂

ρt

∣∣∣∣
2

+ (1 − χ∂)ν̄
(0)
Ω D(x, w∂) : D(x, w∂) + 1(

c̄(0)
s

)2 |p∂|2

⎫⎬ dx

+
⎭

α

χ∂

(
ν̄μD

(
x,

ρw∂

ρt

)
: D
(

x,
ρw∂

ρt

))
dx =

⎭

Q
λ̃ ∂F · ρw∂

ρt
dx,

1

2

d

dt

⎭

α

(
λ∂

∣∣∣∣
ρ2w∂

ρt2

∣∣∣∣
2

+ (1 − χ∂)ν̄ΩD

(
x,

ρw∂

ρt

)
: D
(

x,
ρw∂

ρt

)
+ 1

ν̄∂
p

∣∣∣∣
ρp∂

ρt

∣∣∣∣
2
)

dx

+ 1

2

d

dt

⎭

α(s)


⎜⎧λs

∣∣∣∣
ρ2w∂

ρt2

∣∣∣∣
2

+ (1 − χ∂)ν̄
(0)
Ω D

(
x,

ρw∂

ρt

)
: D
(

x,
ρw∂

ρt

)
+ 1(

c̄(0)
s

)2
∣∣∣∣
ρp∂

ρt

∣∣∣∣
2


⎫⎬ dx

+
⎭

α

χ∂

(
ν̄μD

(
x,

ρ2w∂

ρt2

)
: D
(

x,
ρ2w∂

ρt2

))
dx =

⎭

Q
λ̃ ∂ ρF

ρt
· ρ2w∂

ρt2
dx .

In the same way one may prove.

Theorem 8.2 For all ∂ > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution {w∂, p ∂} of the problem (II) and

max
0<t<T

⎭

α

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣D(x, w∂)
∣∣2
)

dx

+ max
0<t<T

⎭

α( f )

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2
)

dx +
⎭ T

0

⎭

α( f )
χ∂ν̄μ

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

dxdt

+ max
0<t<T

⎭

α


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
ρ2w∂

ρt2
(x, t)

∣∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

⎬ dx

+ max
0<t<T

⎭

α( f )


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2
+
∣∣∣∣∣
ρ2w∂

ρt2
(x, t)

∣∣∣∣∣
2

⎬ dx +

⎭ T

0

⎭

α( f )
χ∂ν̄μ

∣∣∣∣∣D
(

x,
ρ2w∂

ρt2

)∣∣∣∣∣
2

dxdt
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+
⎭

αT

χ∂ν̄μ


⎧
∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

+
∣∣∣∣∣D
(

x,
ρ2w∂

ρt2

)∣∣∣∣∣
2

⎬ dxdt � C0F2,

(8.0.26)

where the constant C0 is independent of the small parameter ∂ and the criteria
ν̄Ω, ν̄

(0)
Ω , ν̄μ.

Theorem 8.3 For all ∂ > 0 and for an arbitrary time interval [0, T ] there exists a
unique generalized solution {w∂, p ∂} of the problem (II) and

max
0<t<T

⎭

α

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣D(x, w∂)
∣∣2
)

dx

+ max
0<t<T

⎭

G

(∣∣p ∂(x, t)
∣∣2 +

∣∣∣∣
ρw∂

ρt
(x, t)

∣∣∣∣
2

+ (1 − χ∂
0 )ν̄

(0)
Ω

∣∣D(x, w∂)
∣∣2
)

dx

max
0<t<T

⎭

α


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
ρ2w∂

ρt2
(x, t)

∣∣∣∣∣
2

+ (1 − χ∂)ν̄Ω

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

⎬ dx

+ max
0<t<T

⎭

G


⎧
∣∣∣∣
ρp ∂

ρt
(x, t)

∣∣∣∣
2

+
∣∣∣∣∣
ρ2w∂

ρt2
(x, t)

∣∣∣∣∣
2

+ (1 − χ∂
0 )ν̄

(0)
Ω

∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

⎬ dx

+
⎭

αT

χ∂ν̄μ


⎧
∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

+
∣∣∣∣∣D
(

x,
ρ2w∂

ρt2

)∣∣∣∣∣
2

⎬ dxdt

+
⎭ T

0

⎭

G
χ∂
0 ν̄

(0)
μ


⎧
∣∣∣∣D
(

x,
ρw∂

ρt

)∣∣∣∣
2

+
∣∣∣∣∣D
(

x,
ρ2w∂

ρt2

)∣∣∣∣∣
2

⎬ dxdt � C0F2, (8.0.27)

where the constant C0 is independent of the small parameter ∂ and the criteria
ν̄Ω, ν̄

(0)
Ω , ν̄μ.

8.1 Acoustics in an “Elastic Body–Poroelastic Medium”
Configuration

8.1.1 Main Results

Theorem 8.4 Let {w∂, p ∂} be the weak solution of the problem (I) and

0 < Ω
(0)
0 < ∅, μ1 = Ω1 = ∅.

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy the dynamic equation
in the form of the integral identity
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⎭

QT

(
(1 − Γ )Ω

(0)
0 D(x, w) − p I

)
: D(x,ϕ)dxdt

=
⎭

QT

λ̂s

(
F − ρ2w

ρt2

)
· ϕdxdt (8.1.1)

for any function ϕ ∈ ◦
W

1,0

2 (QT ), and the continuity equation in the form of the
integral identity

⎭

QT


⎧

⎧(1 − Γ )

(
1

c̄(0)
s

)2

+ Γ

(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

)
⎬ ρ p

ρt
ς − ⊂ ς · ρw

ρt


⎬ dxdt = 0

(8.1.2)
for any smooth function ς ∈ W 1,0

2 (QT ).
Here

λ̂s = (1 − Γ(x)) λ(0)
s + Γ(x)λ̂, λ̂ = m λ f + (1 − m) λs .

Relations (8.1.1)–(8.1.2) are completed with the homogeneous boundary condition

w(x, t) = 0, (8.1.3)

on the boundary ST \ραT , and the homogeneous initial conditions

w(x, 0) = ρw
ρt

(x, 0) = 0, x ∈ Q. (8.1.4)

We refer to the problem (8.1.1)–(8.1.4) as the homogenized model (ACM)1.
Note, that the integral identities (8.1.1), (8.1.2) are equivalent to Lamé’s system

1

(c̄(0)
s )2

p + ⊂ · w = 0, (8.1.5)

λ(0)
s

ρ2w
ρt2

= ⊂ ·
(
Ω

(0)
0 D(x, w) − p I

)
+ λ(0)

s F (8.1.6)

in the domain α
(s)
T , and the acoustic system

λ̂
ρ2w
ρt2

= −⊂ p + λ̂ F,

(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

)
ρ p

ρt
+ ⊂ ·

(
ρw
ρt

)
= 0 (8.1.7)

in the domain αT .
These differential equations are completed with the continuity conditions
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lim
x ∩ x0

x ∈ α(s)

w(x, t) · n(x0) =

⎧− 1

λ̂
lim

x ∩ x0
x ∈ α

w(x, t) · n(x0)


⎬ , (8.1.8)

lim
x ∩ x0

x ∈ α(s)

(
Ω

(0)
0 D (x, w(x, t)) − p (x, t) I

)
· n(x0) = lim

x ∩ x0
x ∈ α

p (x, t) n(x0) (8.1.9)

on the common boundary S(0)
T , the boundary and initial conditions (8.1.3), (8.1.4),

the boundary condition
w(x, t) · n(x) = 0 (8.1.10)

on the boundary ST \ρα
(s)
T and the initial conditions

p(x, 0) = 0, w(x, 0) = ρw
ρt

(x, 0) = 0, x ∈ α. (8.1.11)

Theorem 8.5 Let {w∂, p ∂} be the weak solution of the problem (I) and

0 < Ω
(0)
0 < ∅, 0 � μ1, Ω1 < ∅.

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy in the domain α
(s)
T

Lamé’s system (8.1.5), (8.1.6), the boundary and initial conditions (8.1.3), (8.1.4),
and the homogenized equation

λ̂

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
ρp

ρt
+ ⊂ · f

= −⊂ ·
⎭ t

0
m B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ (8.1.12)

in the domain αT .
These differential equations are completed with the continuity condition

lim
x ∩ x0

x ∈ α(s)

ρ w
ρt

(x, t) · n(x0)

=

⎧ lim

x ∩ x0
x ∈ α

⎭ t

0
B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ + f(x, t)


⎬ · n(x0),

(8.1.13)
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and the continuity condition (8.1.9) on the common boundary S(0)
T , the boundary

condition

⎭ t

0
B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ · n(x) = −f (x, t) · n(x) (8.1.14)

on the boundary ραT \S(0)
T , and the initial condition

p(x, 0) = 0, x ∈ α. (8.1.15)

In Eqs. (8.1.12)–(8.1.14)
λ̂ = m λ f + (1 − m) λs,

the matrixB(a)(μ1, Ω1; t) and the function f(x, t) are given in Chap.6 by the formulae
(6.2.40) and (6.2.42).

We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.11)–(8.1.13) as the homog-
enized model (ACM)2.

Theorem 8.6 Let {w∂, p ∂} be the weak solution of the problem (I),

0 < Ω
(0)
0 < ∅, μ1 = ∅, 0 � Ω1 < ∅,

and w∂
f = Eα∂

f
(w∂) (for definition of this extension see Chap.6).

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy in the domain α
(s)
T

Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3), (8.1.4).
In the domain αT the pressure of the mixture p, and the limiting functions w(s), and
w f of the sequences {(1 − χ∂)w∂} and {w∂

f } satisfy the system of homogenized
equations, consisting of the continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
ρp

ρt
+ ⊂ ·

(
m

ρw f

ρt
+ ρw(s)

ρt

)
= 0, (8.1.16)

the momentum balance equation

mλ f
ρw f

ρt
+ λs

ρw(s)

ρt
+
⎭ t

0

(−λ̂F + ⊂ p
)
(x, ϕ )dϕ = 0, (8.1.17)

for the liquid component and the momentum balance equation
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ρw(s)

ρt
−(1 − m)

ρw f

ρt

= −
⎭ t

0
B

(s)(∅, Ω1; t − ϕ) ·
(

⊂ p + λs

(
ρ2w f

ρϕ 2
− F

))
(x, ϕ )dϕ

(8.1.18)

for the solid component.
The problem is completed with the boundary condition (8.1.9) and the boundary

condition

lim
x ∩ x0

x ∈ α(s)

ρ w
ρt

(x, t) · n(x0) =

⎧ lim

x ∩ x0
x ∈ α

(
m

ρw f

ρt
+ ρw(s)

ρt

)
(x, t)


⎬ · n(x0) (8.1.19)

on the common boundary S(0)
T , the boundary condition

(
m

ρw f

ρt
+ ρw(s)

ρt

)
· n(x) = 0 (8.1.20)

on the boundary ST \ρα
(s)
T , and the initial conditions

w f (x, 0) = w(s)(x, 0) = 0, x ∈ α. (8.1.21)

In (8.1.17)–(8.1.18)
λ̂ = m λ f + (1 − m) λs,

and the matrix B
(s)(∅, Ω1; t) has been defined in Chap.3 by formulae (3.2.47) and

(3.2.54).

We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.16)–(8.1.21) as the homog-
enized model (ACM)3.

Theorem 8.7 Let {w∂, p ∂} be the weak solution of the problem (I),

0 < Ω
(0)
0 < ∅, Ω1 = ∅, 0 � μ1 < ∅,

and w∂
s = Eα∂

s
(w∂) (for definition of this extension see Chap.6).

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy in the domain
α

(s)
T Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),

(8.1.4).
In the domain αT the pressure of the mixture p, and the limiting functions

w( f ), and ws of the sequences {χ∂w∂} and {w∂
s } satisfy the system of homogenized
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equations, consisting of the continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
ρ p

ρt
+ ⊂ ·

(
ρw( f )

ρt
+ (1 − m)

ρws

ρt

)
= 0, (8.1.22)

the momentum balance equation

λ f
ρw( f )

ρt
+ (1 − m)λs

ρws

ρt
=
⎭ t

0

(
λ̂F − ⊂ p

)
(x, ϕ )dϕ, (8.1.23)

for the solid component and the momentum balance equation

ρw( f )

ρt
− m

ρws

ρt

= −
⎭ t

0
B

( f )(μ1,∅; t − ϕ) ·
(

⊂ p + λ f

(
ρ2ws

ρϕ 2
− F

))
(x, ϕ )dϕ

(8.1.24)

for the liquid component.
The problem is completed with the boundary condition (8.1.9) and the boundary

condition

lim
x ∩ x0

x ∈ α(s)

ρ w
ρt

(x, t) · n(x0) =

⎧ lim

x ∩ x0
x ∈ α

(
ρw( f )

ρt
+ (1 − m)

ρws

ρt

)
(x, t)


⎬ · n(x0)

(8.1.25)
on the common boundary S(0)

T , the boundary condition

(
ρw( f )

ρt
+ (1 − m)

ρws

ρt

)
· n(x) = 0 (8.1.26)

on the boundary ST \ρα
(s)
T , and the initial conditions

ws(x, 0) = w( f )(x, 0) = 0, x ∈ α. (8.1.27)

In (8.1.23)–(8.1.24)
λ̂ = m λ f + (1 − m) λs,

and the matrix B( f )(μ1,∅; t) has been defined in Chap.3 by formulae (3.2.70) and
(3.2.76).
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We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.22)–(8.1.27) as the homog-
enized model (ACM)4.

Theorem 8.8 Let {w∂, p ∂} be the weak solution of the problem (I),

0 < Ω
(0)
0 < ∅, μ1 = ∅, 0 < Ω0 < ∅,

and w∂
s = Eα∂

s
(w∂).

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy in the domain
α

(s)
T Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),

(8.1.4).
In the domain αT the limit ws (the solid displacement) of the sequence {w∂

s }
satisfies the homogenized equation

λ̂
ρ2ws

ρt2
= ⊂ · (Ω0 Ns

3 : D(x, ws)
)+ λ̂F, (8.1.28)

completed with the initial and boundary conditions

ws(x, 0) = ρws

ρt
(x, 0) = 0, x ∈ α, (8.1.29)

ws(x, t) = 0, x ∈ ρα\S(0), t ∈ (0, T ). (8.1.30)

On the common boundary S(0)
T the continuity conditions

lim
x ∩ x0

x ∈ α(s)

w(x, t) = lim
x ∩ x0
x ∈ α

ws(x, t) (8.1.31)

and

lim
x ∩ x0

x ∈ α(s)

(
Ω

(0)
0 D

(
x, w(x, t)

)− p (x, t) I
)

· n(x0)

= lim
x ∩ x0
x ∈ α

(
Ω0 N

s
3 : D(x, ws(x, t)

)) · n(x0) (8.1.32)

hold true.
In (8.1.28)

λ̂ = m λ f + (1 − m) λs,

and the symmetric strictly positive definite constant fourth-rank tensor Ns
3 is given

in Chap.1 by the formula (1.3.39).
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We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.28)–(8.1.32) as the homog-
enized model (ACM)5.

Theorem 8.9 Let {w∂, p ∂} be the weak solution of the problem (I),

0 < Ω
(0)
0 < ∅, 0 < μ1 < ∅, 0 < Ω0 < ∅,

and w∂
s = Eα∂

s

(
w∂
)
.

Then the limits w and p of the sequences {w∂} and {p ∂} satisfy in the domain
GT Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),
(8.1.4).

In the domain αT the limits p f (the liquid pressure), w f (the liquid displacement),
and ws (the solid displacement) of the sequences {χ∂ p ∂}, {χ∂ w∂}, and {w∂

s } satisfy
the system of the homogenized equations, consisting of the continuity equation

m

c2f
p f + ⊂ · w( f ) = C

s
0 : D(x, ws) + cs

0

Ω0
p f , (8.1.33)

the momentum balance equation

λ f
ρ2w( f )

ρt2
+ λs

ρ2ws

ρt2
= ⊂ · (Ω0 Ns

2 : D(x, ws) − p f C
s
1

)+ λ̂F, (8.1.34)

for the solid component, the momentum balance equation

−
⎭ t

0
B

( f )(μ1,∅; t − ϕ) ·
(
⊂ p f + λ f

(
ρ2ws

ρϕ 2
− F

))
(x, ϕ )dϕ

= ρw( f )

ρt
− m

ρws

ρt
(8.1.35)

for the liquid component, the continuity condition (8.1.31) and the continuity condi-
tions

lim
x ∩ x0

x ∈ α(s)

w(x, t) · n(x0) = lim
x ∩ x0
x ∈ α

(
w( f )(x, t) + (1 − m)ws(x, t)

) · n(x0), (8.1.36)

and

lim
x ∩ x0

x ∈ α(s)

(
Ω

(0)
0 D

(
x, w(x, t)

)− p (x, t) I
)

· n(x0)

= lim
x ∩ x0
x ∈ α

(
Ω0 N

s
2 : D(x, ws(x, t)

)− p f C
s
1

)) · n(x0) (8.1.37)
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on the common boundary S(0)
T , the homogeneous boundary and initial conditions

(8.1.29) and (8.1.30) for the solid displacements, and the homogeneous boundary
and initial conditions

w( f )(x, t) · n(x) = 0, x ∈ ρα\S(0), t ∈ (0, T ), (8.1.38)

w( f )(x, 0) = 0, x ∈ α. (8.1.39)

for the liquid displacements.
In (8.1.33)–(8.1.35)

λ̂ = m λ f + (1 − m) λs,

the symmetric strictly positively definite constant fourth-rank tensorNs
2, the matrices

C
s
0 and C

s
1, and the constant cs

0 are given in Chapter I by formulae (1.3.26), (1.3.27)
and, (1.3.31) and the matrix B

( f )(μ1,∅; t) has been defined in Chap.3 by the
formula (3.2.70).

We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.29)–(8.1.31), (8.1.33)–
(8.1.39) as the homogenized model (ACM)6.

8.1.2 Proofs of Theorems 8.4–8.7

The proofs of these theorems are standard and repeat the proofs of the corresponding
theorems in the previous chapters, because we can prove the statements separately
in each of the domains G and α . Thus, the main problem here is the boundary
conditions on the common boundary S(0). These boundary conditions follow from
the limiting integral identity (8.1.2), and the integral identity

⎭

QT

(
(1 − Γ )Ω

(0)
0 D(x, w) − p I

) : D(x,ϕ)dxdt

=
⎭

QT

⎭

Y
λ(s)(x, y)

(
F − ρ2w

ρt2
(x, t, y)

)
· ϕ(x, t)dydxdt, (8.1.40)

where W(x, t, y) is the two-scale limit of the sequence {w∂}, and

λ(s)(x, y) = (
1 − Γ(x)

)
λ(0)

s + Γ(x)
(
λ f χ(y) + (1 − χ(y)

)
λs)
)
.

For all cases (8.1.40) implies the dynamic Lamé’s equation (8.1.5) in the domain GT

and the boundary condition (8.1.9) on the common boundary S(0). The integral iden-
tity (8.1.2) implies the continuity equation (8.1.6) in the domain GT , the continuity
equation

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

)
ρ2 p

ρt2
+ ⊂ · ρ2w

ρt2
= 0, (8.1.41)

in the domain αT , and the boundary condition

lim
x ∩ x0

x ∈ α(s)

ρ2 w
ρt2

(x, t) · n(x0) = lim
x ∩ x0
x ∈ α

ρ2 w
ρt2

(x, t) · n(x0) (8.1.42)

on the common boundary S(0).
All the differences are concentrated in the dynamic equation in the domain αT

and in the representation of the velocity of the mixture
ρw
ρt

.

8.1.2.1 Proof of Theorem 8.4

For this case W(x, t, y) = w(x, t) and the integral identity (8.1.40) implies the
dynamic equation

λ̂
ρ2w
ρt2

= −⊂ p + λ̂ F (8.1.43)

in the domain αT .
Relations (8.1.41)–(8.1.43) evidently imply the acoustic equation (8.1.7) in the

domain αT and the boundary condition (8.1.8) on the boundary S(0).

8.1.2.2 Proof of Theorem 8.5

To obtain the dynamic equation here we simply repeat the proof of Theorem 6.6.
That is, we firstly derive the microscopic dynamic equation (6.2.32) with P̃ = p
and then the microscopic continuity equation (6.2.33). These relations result in the
representation

ρ w
ρt

(x, t) =
⎭ t

0
B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ + f(x, t) (8.1.44)

of the velocity in the mixture.
This representation, the continuity equation (8.1.41), and the boundary condition

(8.1.42) imply the equation (8.1.12) and the boundary condition (8.1.13).

8.1.2.3 Proof of Theorem 8.6

For this case the velocity of the mixture is given by the formula
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ρ W
ρt

(x, t, y) = χ(y)
ρw f

ρt
(x, t) + (1 − χ(y)

)ρW
ρt

(x, t, y),

ρ w
ρt

= m
ρw f

ρt
+ ρw(s)

ρt
, w(s)(x, t) =

⎭

Y

(
1 − χ(y)

)
W(x, t, y)dy,

which together with (8.1.41) result in (8.1.16).
The integral identity (8.1.40) implies the dynamic equation (8.1.17) for the liquid

component.
To find the representation (8.1.18) we use the microscopic dynamic equation

λs
ρ2W(s)

ρt2
= Ω1

2
∞yW(s) − ⊂yξ

(s) − ⊂ p, W(s) = (
1 − χ(y)

)
W,

for the solid component, the microscopic continuity equation

⊂ · W(s) = 0,

in the domain Ys , and the corresponding boundary and initial conditions. This prob-
lem has been already solved in Chap.3 (see the proof of Theorem 3.4). The rest of
the proof is the same as the proofs of previous theorems.

8.1.2.4 Proof of Theorem 8.7

Here the velocity of the mixture is given by the formula

ρ W
ρt

(x, t, y) = χ(y)
ρW
ρt

(x, t, y) + (1 − χ(y)
)ρws

ρt
(x, t),

ρ w
ρt

= ρw( f )

ρt
+ (1 − m)

ρws

ρt
, w( f )(x, t) =

⎭

Y
χ(y)W(x, t, y)dy,

which together with (8.1.41) result in (8.1.22).
The integral identity (8.1.40) implies the dynamic equation (8.1.23) for the solid

component. The representation (8.1.24) has been already obtained in Chap.3 (see the
proof of Theorem 3.5). The rest of the proof is the same as for the previous theorems.

8.1.3 Proofs of Theorems 8.8 and 8.9

For these cases the two-scale limit P(x, t, y) of the sequence {p∂} is given by

(1 − Γ ) p + Γ χ(y) p f (x, t) + Γ
(
1 − χ(y)

)
Ps(x, t, y).
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For μ1 = ∅ the two-scale limit w of {w∂} is given by

W(x, t, y) = ws(x, t),

and for μ1 < ∅

W(x, t, y) = χ(y)W(x, t, y) + (1 − χ(y)
)
ws(x, t).

The two-scale limit of the sequence {w∂
s } is equal to ws(x, t), and the two-scale limit

of the sequence {D(x, w∂
s )} is given by

D
(
x, ws(x, t)

)+ D
(
y, U(x, t, y)

)

(see proofs of Theorem 1.6 and Theorem 1.7).
The integral identity (8.1.40) is replaced by

⎭

QT

(
(1 − Γ )Ω

(0)
0 D(x, w) + Γ Ω0

(
(1 − m)D(x, ws)

+ →D(y, U)◦Ys

)) : D(x,ϕ)dxdt −
⎭

QT

p ⊂ · ϕdxdt

=
⎭

QT

⎭

Y
λ(s)(x, y)

(
F − ρ2W

ρt2
(x, t, y)

)
dy · ϕ(x, t)dxdt (8.1.45)

with smooth functions ϕ, vanishing on the boundary ρ Q, and the integral identity
(8.1.2) is replaced by

⎭

QT


⎜⎧τ

⎭

Y


⎜⎧ 1 − Γ(

c̄(0)
s

)2 +
(

χ

c̄ 2
f

+ 1 − χ

c̄ 2
s

)
Γ


⎫⎬ ρ P

ρt
dy − ⊂τ · ρw

ρt


⎫⎬ dxdt = 0

(8.1.46)
with smooth functions τ.

In (8.1.45)

λ(s)(x, y) = (
1 − Γ(x)

)
λ(0)

s + Γ(x)
(
λ f χ(y) + (1 − χ(y)

)
λs
)
.

As before, relations (8.1.45) and (8.1.46) result in Lamé’s system (8.1.5) and
(8.1.6) in α

(s)
T and the boundary conditions (8.1.32), (8.1.36) and (8.1.37) on the

common boundary S(0)
T .

Equations (8.1.28), (8.1.32), (8.1.33) and (8.1.34) and the boundary and initial
conditions (8.1.29), (8.1.30), (8.1.38) and (8.1.39) are already derived in Chap.1 and
Chap.6 (see proofs of Theorems 1.6–1.8 and 6.9–6.11).

Finally, the boundary condition (8.1.31) is a consequence of the smoothness of
ws and w and is derived as well as the boundary condition (8.1.30).
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8.2 Acoustics in a “Liquid–Poroelastic Medium” Configuration

8.2.1 Main Results

Theorem 8.10 Let {w∂, p ∂} be the weak solution of the problem (II) and

μ1 = Ω1 = ∅.

Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂} satisfy the system of acoustic equations

λ f
ρv
ρt

+ ⊂ p = λ f F, (8.2.1)

1

c̄ 2
f

ρ p

ρt
+ ⊂ · v = 0 (8.2.2)

in the domain α( f ) for t > 0, and the system of acoustic equations

λ̂
ρv
ρt

+ ⊂ p = λ̂F, (8.2.3)

(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

)
ρ p

ρt
+ ⊂ · v = 0 (8.2.4)

in the domain α for t > 0.
Relations (8.2.1)–(8.2.4) are completed with the homogeneous boundary condi-

tion
v(x, t) · n(x) = 0, (8.2.5)

on the boundary ST , the homogeneous initial conditions

p(x, 0) = 0, v(x, 0) = 0, x ∈ Q, (8.2.6)

and the continuity conditions

lim
x ∩ x0

x ∈ α( f )

v(x, t) · n(x0) = lim
x ∩ x0
x ∈ α

v(x, t) · n(x0), (8.2.7)

lim
x ∩ x0

x ∈ α( f )

p(x, t) = lim
x ∩ x0
x ∈ α

p(x, t) (8.2.8)
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on the common boundary S(0)
T .

Here
λ̂ = m λ f + (1 − m) λs,

n(x) is the normal to S at x ∈ S, and n(x0) is the normal to S(0) at x0 ∈ S(0).

We refer to the problem (8.2.1)–(8.2.8) as the homogenized model (ACM)7.

Theorem 8.11 Let {w∂, p ∂} be the weak solution of the problem (II) and

0 � μ1, Ω1 < ∅.

Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂} satisfy in the domain α

( f )
T the system of acoustic equations (8.2.1),

(8.2.2), and the system of acoustic equations in the domain αT , consisting of the
momentum balance equation in the form

v(x, t) =
⎭ t

0
B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ + f(x, t), (8.2.9)

and continuity equation (8.2.4).
The differential equations are completed with the boundary and initial conditions

(8.2.5), (8.2.6), and the continuity conditions (8.2.7) and (8.2.8).
The matrix B

(a)(μ1, Ω1; t) and the function f(x, t) are given in Chap.6 by the
formulae (6.2.40), (6.2.42).

We refer to the problem (8.2.1), (8.2.2), (8.2.4)–(8.2.9) as the homogenized model
(ACM)8.

Theorem 8.12 Let {w∂, p ∂} be the weak solution of the problem (II),

μ1 = ∅, 0 � Ω1 < ∅,

and w∂
f = Eα∂

f

(
w∂
)

(for definition of this extension see Chap.6).

Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂}, where

v = (1 − Γ )v + Γ m
ρw f

ρt
+ Γ

ρw(s)

ρt
= (1 − Γ )v + Γ m v f + Γ v(s), (8.2.10)

and w(s) and w f are the limits of the sequences {(1 − χ∂)w∂} and {w∂
f }, satisfy in

the domain α
( f )
T the system of acoustic equations (8.2.1), (8.2.2), and the system of
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acoustic equations in the domain αT , consisting of the momentum balance equation

mλ f v f + λs v(s) +
⎭ t

0

(− λ̂F + ⊂ p
)
(x, ϕ )dϕ = 0, (8.2.11)

for the liquid component, the momentum balance equation

v(s) − (1 − m)v f

= −
⎭ t

0
B

(s)(∅, Ω1; t − ϕ) ·
(
⊂ p + λs

(ρv f

ρϕ
− F

))
(x, ϕ )dϕ (8.2.12)

for the solid component, and the continuity equation

(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
ρp

ρt
+ ⊂ · (m v f + v(s)) = 0. (8.2.13)

The problem is completed with the boundary and initial conditions (8.2.5), (8.2.6),
and the continuity conditions (8.2.7) and (8.2.8).

In (8.2.11)–(8.2.12)
λ̂ = m λ f + (1 − m) λs,

and the matrix B
(s)(∅, Ω1; t) has been defined in Chap.3 by the formulae (3.2.47)

and (3.2.54).

We refer to the problem (8.2.1), (8.2.2), (8.2.5)–(8.2.8), (8.2.10)–(8.2.13) as the
homogenized model (ACM)9.

Theorem 8.13 Let {w∂, p ∂} be the weak solution of the problem (II),

Ω1 = ∅, 0 � μ1 < ∅,

and w∂
s = Eα∂

s

(
w∂
)

(for definition of this extension see Chap.6).

Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂}, where

v = (1 − Γ )v + Γ
ρw( f )

ρt
+ Γ (1 − m)

ρws

ρt
= (1 − Γ )v + Γ v( f ) + Γ vs, (8.2.14)

and w( f ) and ws are the limits of the sequences {χ∂w∂} and {w∂
s }, satisfy in the

domain α
( f )
T the system of acoustic equations (8.2.1), (8.2.2), and the system of

acoustic equations in the domain αT , consisting of the continuity equation
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(
m

c̄ 2
f

+ (1 − m)

c̄ 2
s

)
ρ p

ρt
+ ⊂ · (v( f ) + vs

) = 0, (8.2.15)

the momentum balance equation

λ f v( f ) + (1 − m)λs vs =
⎭ t

0

(
λ̂F − ⊂ p

)
(x, ϕ )dϕ, (8.2.16)

for the solid component and the momentum balance equation

v( f ) − m vs

= −
⎭ t

0
B

( f )(μ1,∅; t − ϕ) ·
(

⊂ p + λ f

(
ρvs

ρϕ
− F

))
(x, ϕ )dϕ (8.2.17)

for the liquid component.
The problem is completed with the boundary and initial conditions (8.2.5), (8.2.6),

and the continuity conditions (8.2.7) and (8.2.8).
In (8.2.16)–(8.2.17)

λ̂ = m λ f + (1 − m) λs,

and the matrix B
( f )(μ1,∅; t) has been defined in Chap.3 by the formulae (3.2.70)

and (3.2.76).

We refer to the problem ((8.2.1), (8.2.2), (8.2.5)–(8.2.8), (8.2.14)–(8.2.17) as the
homogenized model (ACM)10.

Theorem 8.14 Let {w∂, p ∂} be the weak solution of the problem (II),

μ1 = ∅, 0 < Ω0 < ∅,

and w∂
s = Eα∂

s

(
w∂
)
.

Then the limits v = ρw
ρt

(the liquid velocity), p (the pressure), and ws (the solid

displacement) of the sequences

{
ρw∂

ρt

}
, {p ∂}, and {w∂

s }, where

v = (1 − Γ )v + Γ
ρws

ρt
= (1 − Γ )v + Γ vs, (8.2.18)

satisfy in the domain α
( f )
T the system of acoustic equations (8.2.1), (8.2.2), and

Lamé’s equation

λ̂
ρ2ws

ρt2
= ⊂ · (Ω0 Ns

3 : D(x, ws)
)+ λ̂F (8.2.19)

in the domain αT , completed with the homogeneous boundary condition
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v(x, t) · n(x) = 0, (8.2.20)

on the boundary ρα( f )\S(0) for t > 0, the homogeneous initial conditions

p(x, 0) = 0, v(x, 0) = 0 (8.2.21)

for the liquid velocity and the pressure in the domain α( f ), the homogeneous bound-
ary condition

ws(x, t) = 0, (8.2.22)

on the boundary ρα\S(0) for t > 0, and the homogeneous initial conditions

ws(x, 0) = ρws

ρt
(x, 0) = 0 (8.2.23)

for the solid displacement in α .
On the common boundary S(0)

T the continuity conditions

lim
x ∩ x0

x ∈ α( f )

v(x, t) · n(x0) = lim
x ∩ x0
x ∈ α

ρws

ρt
(x, t) · n(x0) (8.2.24)

and

− lim
x ∩ x0

x ∈ α( f )

p (x, t) n(x0) = lim
x ∩ x0
x ∈ α

(
Ω0 N

s
3 : D(x, ws(x, t)

)) · n(x0), (8.2.25)

hold true.
Here n(x0) is the normal vector to S(0) at x0 ∈ S(0).
In (8.2.19)

λ̂ = m λ f + (1 − m) λs,

and the symmetric strictly positive definite constant fourth-rank tensor Ns
3 is given

in Chap.1 by the formula (1.3.39).

We refer to the problem (8.2.1), (8.2.2), (8.2.18)–(8.2.25) as the homogenized
model (ACM)11.

Theorem 8.15 Let {w∂, p ∂} be the weak solution of the problem (II),

0 < μ1 < ∅, 0 < Ω0 < ∅,

and w∂
s = Eα∂

s

(
w∂
)
.
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Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂}, where

v = (1 − Γ )v + Γ
ρw( f )

ρt
+ Γ (1 − m)

ρws

ρt
= (1 − Γ )v + Γ v( f ) + Γ vs, (8.2.26)

satisfy the system of acoustic equations (8.2.1), (8.2.2) in the domain α
( f )
T , and the

boundary and initial conditions (8.2.20)–(8.2.21).
In the domain αT the limiting functions p f (liquid pressure), w( f ) (liquid dis-

placement), and ws (solid displacement) of the sequences {Γ χ∂ p ∂}, {Γ χ∂ w∂}, and
{Γ w∂

s } satisfy the system of homogenized equations, consisting of the continuity
equation

1

c2f
p f + ⊂ · w( f ) = C

s
0 : D(x, ws) + cs

0

Ω0
p f , (8.2.27)

the momentum balance equation

λ f
ρ2w( f )

ρt2
+ λs

ρ2ws

ρt2
= ⊂ · (Ω0 Ns

2 : D(x, ws) − p f C
s
1

)+ λ̂F, (8.2.28)

for the solid component, and the momentum balance equation

−
⎭ t

0
B

( f )(μ1,∅; t − ϕ) ·
(

⊂ p f + λ f

(
ρ2ws

ρϕ 2
− F

)) (
x, ϕ

)
dϕ

= ρw( f )

ρt
− m

ρws

ρt
(8.2.29)

for the liquid component.
These differential equations are completed with the continuity conditions

lim
x ∩ x0

x ∈ α( f )

v(x, t) ·n(x0) = lim
x ∩ x0
x ∈ α

(
v( f )(x, t) + (1 − m)

ρws

ρt
(x, t)

)
·n(x0), (8.2.30)

and

− lim
x ∩ x0

x ∈ α( f )

p (x, t) n(x0) = lim
x ∩ x0
x ∈ α

(
Ω0 N

s
2 : D(x, ws(x, t)−p f C

s
1

))· n(x0) (8.2.31)

on the common boundary S(0)
T , the homogeneous boundary and initial conditions

(8.2.22) and (8.2.23) for the solid displacement, and the homogeneous boundary
and initial conditions
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w( f )(x, t) · n(x) = 0, x ∈ ρα\S(0), t ∈ (0, T ), (8.2.32)

w( f )(x, 0) = 0, x ∈ α (8.2.33)

for the liquid displacement.
In (8.2.27)–(8.2.32) n(x0) is the normal vector to S(0) at x0 ∈ S(0), n(x) is the

normal vector to ρα at x ∈ ρα ,

λ̂ = m λ f + (1 − m) λs,

the symmetric strictly positively definite constant fourth-rank tensorNs
2, matricesCs

0
and C

s
1, and the constant cs

0 are given in Chap.1 by the formulae (1.3.26), (1.3.27)
and (1.3.31), and the matrix B

( f )(μ1,∅; t) is defined in Chap.3 by the formulae
(3.2.70) and (3.2.76).

We refer to the problem (8.2.1), (8.2.2), (8.2.20), (8.2.21), (8.2.26)–(8.2.33) as
the homogenized model (ACM)12.

8.2.2 Proofs of Theorems 8.10–8.13

The proofs of these theorems are standard and repeat the proofs of the corresponding
theorems in previous chapters, because we can prove all the statements, except the
validity of the continuity conditions on the common boundary, separately in each
of domains α( f ) and α . Thus, the main problem here is the continuity conditions
on the common boundary S(0). These continuity conditions follow from the limiting
integral identity

−
⎭

QT

p (⊂ · ϕ) dxdt =
⎭

QT

⎭

Y
λ( f )(x, y)

(
F − ρ2w

ρt2
(x, t, y)

) · ϕ(x, t)dydxdt,

(8.2.34)

for any smooth function ϕ ∈ ◦
W

1,0

2 (QT ), and the integral identity

⎭

QT

((
(1 − Γ )

1

c̄ 2
f

+ Γ

(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

))
ρ p

ρt
ς − ⊂ ς · ρw

ρt

)
dxdt = 0

(8.2.35)
for any smooth function ς ∈ W 1,0

2 (QT ).
Here W(x, t, y) is a two-scale limit of the sequence {w∂}, and

λ( f )(x, y) = (
1 − Γ(x)

)
λ f + Γ(x)

(
λ f χ(y) + (1 − χ(y)

)
λs)
)
.

For all cases (8.2.34) and (8.2.35) imply the system of acoustic equations (8.2.1)
and (8.2.2) in the domain α

( f )
T , the continuity conditions (8.2.7) and (8.2.8) on the

common boundary S(0), and the continuity equation
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(
m

c̄ 2
f

+ 1 − m

c̄ 2
s

)
ρ p

ρt
+ ⊂ · ρw

ρt
= 0 (8.2.36)

in the domain αT .
All the differences are concentrated in the dynamic equation in the domain αT

and in the representation of the velocity of the mixture
ρw
ρt

.

8.2.2.1 Proof of Theorem 8.10

For this case W(x, t, y) = w(x, t) and the integral identity (8.2.34) implies the
dynamic equation

λ̂
ρ2w
ρt2

= −⊂ p + λ̂ F (8.2.37)

in the domain αT .

8.2.2.2 Proof of Theorem 8.11

Here to obtain the dynamic equation we simply repeat the proof of Theorem 6.6.
That is we derive the microscopic dynamic equation (6.2.32) with P̃ = p and the
microscopic continuity equation (6.2.33), which result in the representation

ρ w
ρt

(x, t) =
⎭ t

0
B

(a)(μ1, Ω1; t − ϕ) · ⊂ p (x, ϕ )dϕ + f(x, t) (8.2.38)

of the velocity of the mixture.

8.2.2.3 Proof of Theorem 8.12

For this case the velocity of the mixture is given by the formula

ρ W
ρt

(x, t, y) = χ(y)
ρw f

ρt
(x, t) + (1 − χ(y)

)ρW
ρt

(x, t, y),

ρ w
ρt

= m
ρw f

ρt
+ ρw(s)

ρt
, w(s)(x, t) =

⎭

Y

(
1 − χ(y)

)
W(x, t, y)dy.

The integral identity (8.2.34) implies the dynamic equation (8.2.11) for the liquid
component.

To find the representation (8.2.12) we use the microscopic dynamic equation
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λs
ρ2W(s)

ρt2
= Ω1∞yW(s) − ⊂yξ

(s) − ⊂ p, W(s) = (
1 − χ(y)

)
W,

for the solid component, the microscopic continuity equation

⊂ · W(s) = 0,

in the domain Ys , and the corresponding boundary and initial conditions. This prob-
lem has been already solved in Chap.3 (see the proof of Theorem 3.4). The rest of
the proof is the same as for the previous theorems.

8.2.2.4 Proof of Theorem 8.13

Here the velocity of the mixture is given by the formula

ρW
ρt

(x, t, y) = χ(y)
ρW
ρt

(x, t, y) + (1 − χ(y)
)ρws

ρt
(x, t),

ρ w
ρt

= ρw( f )

ρt
+ (1 − m)

ρws

ρt
, w( f )(x, t) =

⎭

Y
χ(y)W(x, t, y)dy.

The integral identity (8.2.34) implies the dynamic equation (8.2.16) for the solid
component. The representation (8.2.17) has been already obtained in Chap.3 (see
the proof of Theorem 3.5). The rest of the proof is the same as for the previous
theorems.

8.2.3 Proofs of Theorems 8.14 and 8.15

For these cases the two-scale limit P(x, t, y) of the sequence {p∂} is given by

(1 − Γ ) p + Γ

m
χ(y) p f (x, t) + Γ

(
1 − χ(y)

)
Ps(x, t, y).

For μ1 = ∅ the two-scale limit W of the sequence {w∂} is given by

W(x, t, y) = ws(x, t),

and for μ1 < ∅ it is given by

W(x, t, y) = χ(y)W(x, t, y) + (1 − χ(y)
)
ws(x, t).
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The two-scale limit of {w∂
s } is equal to {ws(x, t)}, and the two-scale limit of the

sequence {D(x, w∂
s )} is given by

D
(
x, ws(x, t)

)+ D
(
y, U(x, t, y)

)

(see proofs of Theorems 1.6 and 1.7).
The integral identity (8.2.34) is replaced by

⎭

QT

(
Γ Ω0

(
mD(x, w) + →D(y, U

)◦Ys

)− p I
) : D(x,ϕ)dxdt

=
⎭

QT

⎭

Y
λ( f )(x, y)

(
F − ρ2W

ρt2
(x, t, y)

)
· ϕ(x, t)dydxdt (8.2.39)

with the smooth functions ϕ, vanishing on the boundary ρ Q, and the integral identity
(8.2.35) is replaced by

⎭

QT

(
τ

⎭

Y

(
1 − Γ

c̄ 2
f

+
(

χ

c̄ 2
f

+ 1 − χ

c̄ 2
s

)
Γ

)
ρ P

ρt
dy −⊂τ · ρw

ρt

)
dxdt = 0 (8.2.40)

with the smooth functions τ.
In (8.2.39)

λ( f )(x, y) = (
1 − Γ(x)

)
λ f + Γ(x)

(
λ f χ(y) + (1 − χ(y)

)
λs
)
.

For μ1 = ∅
W(x, t, y) = ws(x, t),

and for μ1 < ∅

W(x, t, y) = χ(y)W(x, t, y) + (1 − χ(y)
)
ws(x, t).

Asbefore, the relations (8.2.39) and (8.2.40) result in the systemof acoustic equations
(8.2.1), (8.2.2) inα

( f )
T , the homogenized momentum balance equations (8.2.19) and

(8.2.27), the continuity equation (8.2.28) in αT , the continuity conditions (8.2.24),
(8.2.25), (8.2.30) and (8.2.31) on the common boundary S(0)

T , and the boundary
conditions (8.2.20) and (8.2.32).

The boundary and initial conditions (8.2.21), (8.2.22), (8.2.23) and (8.2.33) and
the equation (8.2.29) have been already derived in the previous sections (see also
Chaps. 1, 4 and 6).
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8.3 Acoustics in a “Poroelastic Medium–Poroelastic Medium”
Configuration

8.3.1 Main Results

In this section we restrict ourselves to the only two cases
(1) Ω

(0)
0 = 0, Ω

(0)
1 < ∅, 0 < Ω0 < ∅, μ0 = 0, μ1 < ∅,

and
(2) Ω

(0)
0 = 0, Ω

(0)
1 = ∅, 0 < Ω0 < ∅, μ0 = 0, μ1 < ∅.

The remaining cases can be treated similarly.

Theorem 8.16 Let {w∂, p ∂} be the weak solution of the problem (III),

Ω
(0)
0 = 0, Ω

(0)
1 < ∅, 0 < Ω0 < ∅, μ0 = 0, μ1 < ∅,

and w∂
s = Eα∂

s

(
w∂
)
.

Then the limits v = ρw
ρt

(the liquid velocity) and p (the pressure) of the sequences{
ρw∂

ρt

}
and {p ∂} satisfy in the domain GT the system of acoustic equations, con-

sisting of the momentum balance equation in the form

v(x, t) =
⎭ t

0
B

(a)
0 (μ1, Ω

(0)
1 ; t − ϕ) · ⊂ p (x, ϕ )dϕ + f(x, t), (8.3.1)

and continuity equation

(
m

c̄ 2
f

+ 1 − m(
c̄(0)

s
) 2
)

ρ p

ρt
+ ⊂ · v = 0. (8.3.2)

In the domain αT the limiting functions m p f (liquid pressure), w( f ) (liquid dis-
placements), and ws (solid displacements) of the sequences {Γ χ∂ p ∂}, {Γ χ∂ w∂},
and {Γ w∂

s } satisfy the system of homogenized equations, consisting of the continuity
equation

m

c2f
p f + ⊂ · w( f ) = C

s
0 : D(x, ws) + cs

0

Ω0
p f , (8.3.3)

the momentum balance equation

λ f
ρ2w( f )

ρt2
+ λs

ρ2ws

ρt2
= ⊂ · (Ω0 Ns

2 : D(x, ws) − p f C
s
1

)+ λ̂F, (8.3.4)

for the solid component, and the momentum balance equation
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−
⎭ t

0
B

( f )(μ1,∅; t −ϕ)·
(

⊂ p f + λ f

(
ρ2ws

ρϕ 2
− F

))
(x, ϕ )dϕ = ρw( f )

ρt
−m

ρws

ρt
(8.3.5)

for the liquid component.
The differential equations are completed with the homogeneous boundary condi-

tions
v(x, t) · n(x) = 0, x ∈ ρG\S(0), t > 0, (8.3.6)

w( f )(x, t) · n(x) = 0, x ∈ ρα\S(0), t > 0, (8.3.7)

ws(x, t) = 0, x ∈ ρα\S(0), t > 0, (8.3.8)

the homogeneous initial conditions

p(x, 0) = 0, x ∈ G, (8.3.9)

w( f )(x, 0) = ws(x, 0) = ρws

ρt
(x, 0) = 0, x ∈ α, (8.3.10)

and the continuity conditions

lim
x ∩ x0
x ∈ G

v(x, t) · n(x0) = lim
x ∩ x0
x ∈ α

(v( f )(x, t) + (1 − m)
ρws

ρt
(x, t)) · n(x0), (8.3.11)

and

− lim
x ∩ x0
x ∈ G

p (x, t) n(x0) = lim
x ∩ x0
x ∈ α

(
Ω0 N

s
2 : D(x, ws(x, t)

)− p f C
s
1

))· n(x0) (8.3.12)

on the common boundary S(0)
T .

In (8.3.1)–(8.3.12) n(x0) is the normal vector to S(0) at x0 ∈ S(0), n(x) is the
normal vector to ρ Q at x ∈ ρ Q, and

λ̂ = m λ f + (1 − m) λs .

The matrix B(a)
0 (μ1, Ω

(0)
1 ; t) and the function f(x, t) are given in Chap.6 by formulae

(6.2.40), (6.2.42), where instead of χ , λs , and Ω1 one must consider χ(0), λ
(0)
s ,

and Ω
(0)
1 .

The symmetric strictly positively definite constant fourth-rank tensorNs
2, matrices

C
s
0 and C

s
1, and the constant cs

0 are given in Chapter I by formulae (1.3.26), (1.3.27)
and (1.3.31), and the matrix B

( f )(μ1,∅; t) is defined in Chap.3 by the formulae
(3.2.70) and (3.2.76).

We refer to the problem (8.3.1)–(8.3.12) as the homogenized model (ACM)13.
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Theorem 8.17 Let {w∂, p ∂} be the weak solution of the problem (III),

Ω
(0)
0 = 0, Ω

(0)
1 = ∅, 0 < Ω0 < ∅, μ0 = 0, μ1 < ∅,

and w∂
s = Eα∂

s

(
w∂
)
, u∂

s = EG∂
s

(
w∂
)
.

Then the pressure p of the mixture in GT , the pressure p f of the liquid in αT ,

and the velocity

{
ρw
ρt

}
of the medium

w = (1 − Γ )(u( f ) + us) + Γ (w( f ) + ws),

where p, u( f ) (the liquid displacement in GT ), us (the solid displacement in GT ),
m p f , w( f ) (the liquid displacement in αT ), and ws (the solid displacement in αT )
are limits of the sequences {(1 − Γ ) p ∂}, {(1 − Γ ) χ∂

0 w∂}, {(1 − Γ ) u∂
s } {Γ χ∂ p ∂},

{Γ χ∂ w∂}, and {Γ w∂
s }, satisfy in the domain GT the system of acoustic equations,

consisting of the continuity equation


⎜⎧m0

c̄ 2
f

+ (1 − m0)(
c̄(0)

s

) 2


⎫⎬ ρ p

ρt
+ ⊂ ·

(
ρu( f )

ρt
+ (1 − m0)

ρus

ρt

)
= 0, (8.3.13)

the momentum balance equation

λ f
ρu( f )

ρt
+ (1 − m0)λ

(0)
s

ρus

ρt
=
⎭ t

0

(
λ̂(0)F − ⊂ p

)
(x, ϕ )dϕ, (8.3.14)

for the solid component, and the momentum balance equation

ρu( f )

ρt
−m0

ρus

ρt
= −

⎭ t

0
B

( f )
0 (μ1,∅; t − ϕ) ·

(
⊂ p + λ f

(
ρ2us

ρϕ 2
− F

))
(x, ϕ ) dϕ

(8.3.15)
for the liquid component.

In the domain αT the limiting functions satisfy the system of homogenized equa-
tions, consisting of the continuity equation (8.3.3), the momentum balance equation
8.3.4) for the solid component, and the momentum balance equation (8.3.5) for the
liquid component.

The differential equations are completed with the homogeneous boundary and
initial conditions (8.3.6)–(8.3.10), the homogeneous condition (8.3.10), the homo-
geneous initial conditions

u( f )(x, 0) = us(x, 0) = 0, x ∈ G, (8.3.16)

and the continuity conditions (8.3.11) and (8.3.12) on the common boundary S(0)
T .

In (8.3.13)–(8.3.16)
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λ̂(0) = m0 λ f + (1 − m0)λ
(0)
s , m0 =

⎭

Y
χ(0)(y)dy,

the matrix B
( f )
0 (μ1,∅; t) has been defined in Chap.3 by formulae (3.2.70) and

(3.2.76), where instead of χ one must consider χ(0).

We refer to the problem (8.1.3)–(8.1.6), (8.1.9), (8.1.11)–(8.1.13) as the homog-
enized model (ACM)14.

The proofs of these theorems repeat the proofs of the similar statements in this
chapter.
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Chapter 9
Double Porosity Models for Acoustics

In this chapter we consider acoustics in porous media with the double porosity
geometry, where the liquid domain is composed by a periodic system of pores with
the dimensionless size α and a periodic system of cracks with the dimensionless size
ρ (see Chap.4). The liquid domainχρ

f , which is a subdomain of a bounded domainχ

with the Lipschitz continuous boundary S = ∂χ , is defined in the followingway. Let
K be the unit cube, K = Z f ∇ Zs ∇ λc, where Z f and Zs are open sets, the common
boundary λc = ∂ Z f ∪ ∂ Zs is the Lipschitz continuous surface, and the periodic
repetition inR3 of the domain Zs is a connected domainwith theLipschitz continuous
boundary. The elementary cell Z f models the crack space χρ

c : the domain χρ
c is the

intersection of the cube χ with the periodic repetition in R
3 of the elementary cell

ρZ f . In the same way we define the pore space χα
p: K = Y f ∇ Ys ∇ λp, λp is the

Lipschitz continuous surface, the periodic repetition in R
3 of the domain Ys is the

connected domainwith the Lipschitz continuous boundary, andχα
p is the intersection

of χ\χρ
c with the periodic repetition in R

3 of the elementary cell αY f . Finally, we

put χρ
f = χα

p ∇ χρ
c , χ

ρ
s = χ\χρ

f is a solid skeleton, and ν ρ = ∂χρ
s ∪ ∂χρ

f is the
“solid skeleton–liquid domain” interface.

We also may characterize the liquid and solid domains using the indicator func-
tions inχ . Let Ω(x) be the indicator function of the domainχ inR3. That is Ω(x) = 1
if x ⊂ χ and Ω(x) = 0 if x ⊂ R

3\χ . Let also Γp(y) be the 1-periodic extension of
the indicator function of the domain Y f in K and Γc(z) be the 1-periodic extension

of the indicator function of the domain Z f in K . Then Γρ
c (x) = Ω(x)Γc

(x
ρ

)
stands

for the indicator function of the domain χρ
c , Γ

ρ,α
p (x) = Ω(x)

(
1 − Γc

(x
ρ

))
Γp

(x
α

)

stands for the indicator function of the domain χα
p and

Γ̃ ρ,α(x) = Ω(x)Γ̃
(x

α
,

x
ρ

)
, Γ̃(y, z) = Γc(z) + (

1 − Γc(z)
)
Γp(y)

stands for the indicator function of the liquid domain χρ
f (Figs. 9.1, 9.2 and 9.3).
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Fig. 9.1 Single porosity geometry

Fig. 9.2 Double porosity geometry: isolated fractures

9.1 Acoustics in a Slightly Compressible Liquid
and an Elastic Solid Skeleton

We consider the modelM20 of isothermal acoustics as the basic mathematical model
at the microscopic level:

1

ε̄
ρ,α
q

q + ∩ · w = 0, (9.1.1)
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Fig. 9.3 Double porosity geometry: connected fracture space

ς ρ,α ∂2w
∂t2

= ∩ · P + ς ρ,αF, (9.1.2)

P = Γ̃ ρε̄μD

(
x,

∂w
∂t

)
+ (1 − Γ̃ ρ,α)ϕ0 D(x, w) − q I, (9.1.3)

w(x, t) = 0, (x, t) ⊂ ST = S × (0, T ), (9.1.4)

w(x, 0) = ∂w
∂t

(x, 0) = 0, x ⊂ χ, (9.1.5)

where

ς ρ,α = ς f Γ̃
ρ,α + ςs(1 − Γ̃ ρ,α), ε̄ ρ,α

q = c2f Γ̃
ρ,α + c2s (1 − Γ̃ ρ,α).

InChap.4 under the condition α = ρ r , r > 1,wehave used the three-scale convergent
method to derive the homogenized models. In this chapter we apply the method of
reiterated homogenization, suggested in [11, 30, 34]. Firstly for fixed ρ > 0 we
consider the jointmotion of the solid skeleton and the liquid in pores, and approximate
the system (9.1.1)–(9.1.5), describing this motion, by some homogenized system
letting α ∈ 0.

Let us consider the case, when

ε̄μ = μ2 ρ2, 0 < μ2 < ∅. (9.1.6)

http://dx.doi.org/10.2991/978-94-6239-015-7_4
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By supposition

ρ = lc
L

, α = l p

L
,

where lc is the crack characteristic size, l p is the pore characteristic size, and L is
the characteristic size of the entire porous body.

For the liquid in pores we represent the criterion ε̄μ as

ε̄μ = μ2
l2c
L2

Lr

lr
p

αr = μ̃ αr ,

with some 1 < r < 2, fix μ2, μ̃ and ρ, and letting α be variable.
Under this supposition we apply the first homogenization procedure as α ∈ 0

and as the result will get the homogenized model (IA)15 in the domain χρ
s,p =

χ\χρ
c , describing the acoustics in a mixture of the solid and the liquid in pores (see

Theorem 6.11):

ς̂
∂2ws

∂t2
= ∩ · (ϕ0 Ns

3 : D(x, ws)
) + ς̂F. (9.1.7)

Adding the Stokes system in the crack space χρ
c we arrive at the system

ς̃ ρ

(
∂2w
∂t2

− F
)

= ∩ ·
(

Γρ
c

(
μ2 ρ2 D

(
x,

∂w
∂t

)
− qc I

)
+ (1 − Γρ

c )ϕ0 N
s
3 : D(x, w)

)
,

(9.1.8)

Γρ
c (qc + c2f ∩ · wc) = 0 (9.1.9)

in the domain χT = χ × (0, T ), describing at the microscopic level acoustics in
the liquid in cracks and in the mixture of the solid skeleton and the liquid in pores.

The differential equations are completed with boundary and initial conditions
(9.1.4) and (9.1.5).

In (9.1.8) and (9.1.9)

w = Γρ
c wc + (1 − Γρ

c )ws, ς̃ ρ = ς f Γ
ρ
c + ς̂(1 − Γρ

c ),

wc are displacements of the liquid in crack space, ws are displacements of the solid
skeleton, which coincide with displacements of the mixture of the solid skeleton
and the liquid in pores, qc is the pressure of the liquid in cracks, and the symmetric
strictly positive definite constant fourth-rank tensorNs

3 is given in Chap.1 by formula
(1.3.39).
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The second homogenization as ρ ∈ 0 leads to the desired double porosity model
for acoustics in a mixture of a slightly compressible liquid and an elastic solid
skeleton, and completes the method of reiterated homogenization.

9.1.1 Statement of the Problem and Main Results

As usual, we define a weak solution to the problem (9.1.4), (9.1.5), (9.1.8) and (9.1.9)
as a pair of functions {wρ, qρ

c }, which satisfy the regularity conditions

∂wρ

∂t
, wρ ⊂ ◦

w
1,0

2 (χT ), qρ
c ⊂ L2(χT ),

the continuity equation (9.1.9) for the liquid in cracks in the usual sense a.e. in χT ,
and the integral identity

∫

χT

(
Γρ

c

(
μ2 ρ2 D

(
x,

∂wρ

∂t

)
− qρ

c I

)
(9.1.10)

+ (1 − Γρ
c )ϕ0 N

s
3 : D(x, wρ)

)
: D(x, ξ)dxdt

=
∫

χT

ς̃ ρ

(
∂ξ

∂t
· ∂wρ

∂t
+ F · ξ

)
dxdt

for all functions ξ, such that ξ ⊂ w1,0
2 (χT ),

∂ξ

∂t
⊂ L2(χT ), ξ(x, t) = 0 on the

boundary ST , and ξ(x, T ) = 0 for x ⊂ χ .

Theorem 9.1 Let ∫

QT

|F(x, t)|2dxdt = F2 < ∅.

Then for all ρ > 0 and for the arbitrary time interval [0, T ] there exists a unique
weak solution of the problem (9.1.4), (9.1.5), (9.1.8), (9.1.9) and

max
0<t<T

∫

χ

(
|qρ

c (x, t)|2 +
∣∣∣∣∣
∂wρ

∂t
(x, t)

∣∣∣∣∣
2

+ (1 − Γρ
c )ϕ0

(
Ns

3 : D(x, wρ)
) : D(x, wρ)

)
dx

(9.1.11)

+
∫

χT

μ2 ρ2 Γρ
c

∣∣∣∣∣D
(

x,
∂wρ

∂t

)∣∣∣∣∣
2

dxdt � C0F2,

where C0 is independent of ρ.
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The proof of this theorem repeats the proofs of the similar theorems in previous
chapters and is based on the energy equality

1

2

d

dt

∫

χ

(
ς̃ ρ

∣∣∣∣
∂w ρ

∂t

∣∣∣∣
2

+ (1 − Γρ
c )ϕ0|D(x, w ρ)|2 + Γρ

c
1

c2f
|qρ

c |2
)

dx

+
∫

χ

μ2 ρ2 Γρ
c

(
Ns

3 : D(x, wρ)
) : D(x, wρ)dx =

∫

χ

ς̃ ρ F · ∂wρ

∂t
dx .

Theorem 9.2 Let {wρ, q ρ
c} be a weak solution of the problem and w̄ρ

s = Eχρ
s

(
wρ

)
be an extension (1.2.9).

Then up to some subsequences the sequence {Γρ
c wρ} converges weakly in L2(χT )

to the displacements wc of the liquid in cracks, the sequence {Γρ
c q ρ

c } converges
weakly in L2(χT ) to the pressure qc of the liquid in cracks and two-scale in L2(χT )

to qc(x, t)Γc(z), and the sequence {w̄ρ
s } converges weakly in w1,0

2 (χT ) and two-scale
in L2(χT ) to the displacements w̄s(x, t) of the solid skeleton.

The limiting functions solve the system of homogenized equations in the domain
χT , consisting of the homogenized continuity equation

1

c̄2f
qc + ∩ · wc = C

c
0 : D(x, w̄s) + c c

0

ϕ0
qc, (9.1.12)

the homogenized momentum balance equation

ς f
∂2wc

∂t2
+ ςs

∂2w̄s

∂t2
= ∩ · (

ϕ0 B
(c) : D(x, w̄s) − qc C

c
1

) + ς̂F, (9.1.13)

for the solid component and the homogenized momentum balance equation

−
∫ t

0
B

( f )(μ1,∅; t − τ) ·
(

1

mc
∩ qc + ς f

(
∂2w̄s

∂τ 2
− F

) )
(x, τ )dτ

= ∂wc

∂t
− mc

∂w̄s

∂t
(9.1.14)

for the liquid component.
The differential equations are completed with the homogeneous initial and bound-

ary conditions
w̄s(x, t) = 0, x ⊂ S, t ⊂ (0, T ), (9.1.15)

w̄s(x, 0) = ∂w̄s

∂t
(x, 0) = 0, x ⊂ χ (9.1.16)

for the displacement of the mixture, and the homogeneous boundary condition

wc(x, t) · n(x) = 0, x ⊂ S, t ⊂ (0, T ) (9.1.17)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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for the displacement wc of the liquid in cracks. In (9.1.12)–(9.1.14) the matrix
B

( f )(μ1,∅; t) has been defined in Chap.3 by formulae (3.2.70) and (3.2.76), and
matrices Cc

0 and C
c
1, the constant c c

0 , and the constant symmetric and strictly posi-
tively definite fourth-rank tensorB(c) are given below by formulae (9.1.28)–(9.1.30).

9.1.2 Proof of Theorem 9.2

The estimates (9.1.11) guarantee the weak and two-scale convergence in L2(χT )

and L2(χT ) of the sequences {Γρ
c q ρ

c },
{
Γρ

c
∂wρ

∂t

}
, {w̄ρ

s }, and {D(x, w̄ρ
s )}:

Γ ρ
c

∂w ρ

∂t
δ Vc(x, t), Γ ρ

c
∂w ρ

∂t
t.−s.−∈ Vc(x, z, t), Γ ρ

c q ρ
c

t.−s.−∈ Γc(z) qc(x, t),

w̄ρ
s

t.−s.−∈ w̄s(x, t), D(x, w̄ρ
s )

t.−s.−∈ D
(
x, w̄s(x, t)

) + D
(
z, Ū(x, z, t)

)
.

These limiting functions satisfy the macroscopic momentum balance equation

ς̃
∂2w̄s

∂t2
− ς̃F + ∩ qc (9.1.18)

= ∩ ·
(
ϕ0 N

3
s : (

(1 − mc)D(x, w̄s) + 〈D(z, Ū)∞Zs

))

in the domain χT , and the microscopic momentum balance equation

∩z ·
(
(1 − Γc(z))N3

s : (
D(x, w̄s) + D(z, Ū)

) + 1

ϕ0 mc
qc I

)
= 0 (9.1.19)

in the unit cube K for the displacement vector of the mixture in the solid skeleton
and in the liquid in pores.

For the velocity of the liquid in cracks one has themacroscopic continuity equation

1

c2f

∂qc

∂t
+ ∩ · Vc =

〈
∩z · ∂Ū

∂t

〉

Zs

(9.1.20)

in the domain χT with the boundary condition

Vc · n = 0, x ⊂ S, (9.1.21)

the microscopic continuity equation

∩z · Vc = 0 (9.1.22)

http://dx.doi.org/10.2991/978-94-6239-015-7_3
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and the microscopic momentum balance equation

ς f
∂Vc

∂t
= μ2 →zVc − ∩zΠ − 1

mc
∩ qc + ς f F (9.1.23)

in the liquid domain Z f , completed with the boundary condition

Vc(x, z, t) = ∂w̄s

∂t
(x, t), z ⊂ λc. (9.1.24)

The problem (9.1.22)–(9.1.24) has been already studied in previous Chaps. 3 and 6
and

Vc = 〈Vc∞Zs = m
∂w̄s

∂t

−
∫ t

0
B

( f )(μ2,∅; t − τ) ·
(

1

mc
∩ qc + ς f

(
∂2w̄s

∂τ 2
− F

) )
(x, τ )dτ,

(9.1.25)

where the matrix B( f )(μ1,∅; t) is defined by (3.2.70) and (3.2.76) in Chap.3.
To solve (9.1.19) we look for the solution in the form

Ū =
3∑

i, j=1

U(i j)
a (z)Di j (x, t) + 1

ϕ0 mc
qc U(0)

a (z) qc(x, t),

where

Di j (x, t) = 1

2

( ∂ui

∂x j
(x, t) + ∂u j

∂xi
(x, t)

)
, w̄s = (u1, u2, u3),

and the 1-periodic in z functions U(i j)
a i, j = 1, 2, 3 and U(0)

a satisfy the following
periodic boundary-value problem

∩z · (
N3

s : D(z, U(i j)
a )

) = 0, z ⊂ Zs,(
N3

s : (
D(z, U(i j)

a ) + J
i j )) · γ = 0, z ⊂ λc,

}
(9.1.26)

∩z · (
N3

s : D(z, U(0)
a )

) = 0, z ⊂ Zs,(
N3

s : D(z, U(i j)
a ) + I

) · γ = 0, z ⊂ λc.

}
(9.1.27)

Then

〈D(z, Ū)∞Zs =
( 3∑

i, j=1

〈D(z, U(i j)
a )∞ZsJ

i j
)

: D(x, w̄s) + 1

ϕ0 mc
〈D(z, U(0)

a )∞Zs qc,
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〈∩z · Ū∞Zs =
( 3∑

i, j=1

〈∩z · U(i j)
a ∞ZsJ

i j
)

: D(x, w̄s) + 1

ϕ0mc
〈∩z · U(0)

a ∞Zs qc,

and

B(c) = N3
s : (

(1 − mc)J +
3∑

i, j=1

〈D(z, U(i j)
a )∞ZsJ

i j ), (9.1.28)

C
c
1 = 1

mc
〈D(z, U(0)

a )∞Zs , C
c
0 =

3∑
i, j=1

〈∩z · U(i j)
a ∞ZsJ

i j , (9.1.29)

cc
0 = 1

mc
〈∩z · U(0)

a ∞Zs . (9.1.30)

The symmetry of the tensor B(c) is proved in the same way as in Chap.4.
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Chapter 10
Diffusion and Convection in Porous Media

The model M27 consists of the stationary Stokes equations

∇ · (α2μ1(c)D(x, v) + (ρ0∇ · v − p)I
)+ (χ f + ∂ c)F = 0, (10.0.1)

λp

λt
+ c 2

f ∇ · v = 0 (10.0.2)

for a weakly compressible liquid, and the diffusion-convection equation

λc

λt
+ ∇ · (c v − D0 ∇ c) = 0 (10.0.3)

in the liquid domain να
f for t > 0.

The differential equations are completed with the boundary conditions

v(x, t) = 0, (10.0.4)

∇ c(x, t) · n(x) = 0, (10.0.5)

on the boundary Sα = λνα
f for t > 0, and the initial conditions

c(x, 0) = c0(x), x ∪ να
f , (10.0.6)

p(x, 0) = 0, x ∪ να
f . (10.0.7)

In Eq. (10.0.5) n is the unit normal vector to the boundary Sα.
The modelM25 takes into account the movement of a solid skeleton, namely, the

concentration of the admixture c, the displacement of the continuous medium w, and
the pressure p satisfy the diffusion-convection equation
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λc

λt
+ λw

λt
· ∇ c = D0 ⊂ c (10.0.8)

in the pore space να
f for t > 0, the momentum balance equation

∇ ·
(

Ωαμ0D

(
x,

λw
λt

)
+ (1 − Ωα)Γ0D(x, w) − pI

)
+ χαF = 0, (10.0.9)

and the continuity equation
∇ · w = 0 (10.0.10)

in the domain ν for t > 0, the normalization condition

∫

ν

p (x, t)dx = 0, (10.0.11)

the boundary and initial conditions (10.0.5), (10.0.6) for the concentration c, and the
boundary and initial conditions

w = 0, x ∪ S = λν, t > 0, (10.0.12)

w(x, 0) = 0, x ∪ ν α
f (10.0.13)

for the displacement w.
In Eq. (10.0.9)

χα = Ωα(χ f + ∂ c) + χs(1 − Ωα).

Throughout this chapter we impose Assumptions 0.1 and 3.1.

10.1 Diffusion-Convection in an Absolutely Rigid Skeleton

In this section we suppose that c 0(x) and F(x, t) are the measurable functions,

0 � c 0(x) � 1,
∫

νT

|F(x, t)|2dxdt � F2 < ∩, (10.1.1)

0 < μ∈ � μ1(c) � μ−1∈ , μ0 ∪ C2[0,∩), (10.1.2)

and ρ0, c 2
f , D0, μ∈ are positive constants.
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10.1.1 Statement of the Problem and Main Results

Definition 10.1 We say that the triple of functions {vα, pα, cα} is a weak solution
of the problem (10.0.1)–(10.0.7) if

v α ∪ L2

(
(0, T );

∅
W1

2

(
ν α

f

))
, c α ∪ L2

(
(0, T ); W 1

2

(
ν α

f

))
,

λp α

λt
∪ L2

(
(0, T ); L2

(
ν α

f

))
,

and the integral identities

∫ T

0

∫

ν α
f

(
c α λε

λt
+ (c αv α − D0∇ c α

) · ∇ε + ε c α∇ · v α

)
dxdt

= −
∫

ν α
f

c 0(x) ε(x, 0) dx, (10.1.3)

∫ T

0

∫

ν α
f

(
α2μ1(c

α)D(x, v α) − (p α − ρ0∇ · v α
)
I

)
: D(x, ς)dxdt

=
∫ T

0

∫

ν α
f

(
χ f + ∂ c α

)
F · ς dxdt, (10.1.4)

and ∫ T

0

∫

ν α
f

(
λϕ

λt
p α + c2f v α · ∇ ϕ

)
dxdt = 0 (10.1.5)

hold true for any smooth functions ε , ϕ and ς, such that ε(x, T ) = ϕ(x, T ) = 0
and ς(x, t) = 0 for x ∪ Sα.

Note that the integral identity (10.1.3) contains the differential equation (10.0.3)
in the pore space, the boundary condition (10.0.5) on the boundary S(α), and the
initial condition (10.0.6). The boundary condition (10.0.4) is already included into
the corresponding functional space for v, and the initial condition (10.0.7) is already
included into the integral identity (10.1.5).

Theorem 10.1 The problem (10.0.1)–(10.0.7) has at least one weak solution
{v α, p α, c α}, such that

0 � c α(x, t) � 1, x ∪ να
f , t > 0, (10.1.6)

∫ T

0

∫

ν α
f

|∇ c α|2dxdt � C, F2 (10.1.7)
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∫ T

0

∫

ν α
f

(
α2|∇v α|2 + |v α|2 +

∣∣∣∣
λp α

λt

∣∣∣∣
2

+ (∇ · v α)2

⎜
dxdt � C F2, (10.1.8)

where C is independent of α.

By Homogenization we mean the limiting procedure as α ↘ 0. But in our method
that is possible only for functions, defined in the whole domain ν for t > 0. So, we
first extend the functions v α, p α, and c α onto ν for t > 0, and only after that apply
the homogenization theory.

The functions v α,∇ ·v α, and p α are extended in a trivial way by setting ṽ α = v α,
p̃ α = p α in ν α

f for t > 0, and ṽ α = 0, ∇ · ṽ α = 0, and p̃ α = 0 outside ν α
f .

For the functions c α the extension result [1] (see also Appendix B) states that
there exists an extension

c̃ α = Ẽνα
f
(c α), (10.1.9)

such that
c α = c̃ α, x ∪ να

f , t ∪ (0, T ), (10.1.10)

and
∫

ν

|c̃ α(x, t)|2dx � C
∫

να
f

|c α(x, t)|2dx,

∫

ν

|∇ c̃ α(x, t)|2dx � C
∫

να
f

|∇ c α(x, t)|2dx, t ∪ (0, T ), (10.1.11)

where C is independent of α and t ∪ (0, T ).

Theorem 10.2 Let {v α, p α, c α} be the weak solution to the problem (10.0.1)–
(10.0.7). Then

(I) there exists a subsequence of small parameters {α > 0} as α ↘ 0, such that

(1) the sequence {ṽ α} converges weakly in L2(νT ) to the function v,
(2) the sequence {∇ · ṽ α} converges weakly in L2(νT ) to the function ∇ · v,
(3) the sequence { p̃ α} converges weakly in L2(νT ) to the function p,
(4) the sequence {c̃ α} converges weakly in W 1,0

2 (νT ) and strongly in L2(νT )

to the function c.

(II) The triple of limiting functions {v, p, c} is the weak solution of the diffusion-
convection problem for a compressible liquid in an absolutely rigid solid
skeleton, which consists of the dynamic equations

v = 1

μ1(c)
B

(
− 1

m
∇q + (χ f + ∂ c)F

)
, (10.1.12)
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q = p + ρ0

c2f

λp

λt
, (10.1.13)

λp

λt
+ c2f ∇ · v = 0 (10.1.14)

for the velocity v and pressure p of a slightly compressible liquid, and the diffusion-
convection equation

m
λc

λt
+ v · ∇c = D0 ∇ · (B (c)∇c

)
(10.1.15)

for the concentration c of an admixture in the domain ν for t > 0.
The problem is endowed with the homogeneous boundary conditions

v(x, t) · n(x) = 0, (10.1.16)

∇ c(x, t) · n(x) = 0 (10.1.17)

on the boundary S for t > 0, and the initial conditions

p(x, 0) = 0, c(x, 0) = c0(x) x ∪ ν. (10.1.18)

In Eqs. (10.1.12)–(10.1.18)

m = 〈Ω∞Y =
∫

Y
Ω(y)dy

is the porosity, the symmetric and strictly positively definite constant matrix B is
given below by formula (10.1.58) (see also (1.1.27) in Theorem 1.1, Chap.1), the
symmetric and strictly positively definite constant matrix B

(c) is defined below by
formula (10.1.61), and n is the unit outward normal vector to the boundary S.

We refer to the problem (10.1.12)–(10.1.18) as the homogenized model (DCARS)1.

Theorem 10.3 Let {v(k), p(k), c(k)} be the weak solution of the problem (10.0.1)–
(10.0.7) with c2f = k. Then

(I) there exists a subsequence kn → ∩ such that

(1) the sequence {v(kn)} converges weakly in L2(νT ) to the function v(∩),
(2) the sequence {p(kn)} converges weakly in L2(νT ) to the function p(∩),
(3) the sequence {c(kn)} converges weakly in W 1,0

2 (νT ) and strongly in L2(νT )

to the function c(∩);

(II) the triple of limiting functions {v(∩), p(∩), c(∩)} is the weak solution of the
diffusion-convection problem for an incompressible liquid in an absolutely rigid

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
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solid skeleton, which consists of the Darcy system of filtration with the variable
viscosity

v(∩) = 1

μ1(c(∩))
B

(
− 1

m
∇ p(∩) +

(
χ f + ∂ c(∩)

)
F
)

, (10.1.19)

∇ · v(∩) = 0 (10.1.20)

for the velocity v(∩) and pressure p(∩) of an incompressible liquid in the domain ν

for t > 0, the diffusion-convection equation (10.1.15) with the velocity field {v(∩)}
for the concentration c(∩), the boundary conditions (10.1.16) and (10.1.17), and the
initial condition (10.1.18) for the concentration.

We refer to the problem (10.1.15)–(10.1.20) as the homogenized model (DCARS)2.

Theorem 10.4 Let {v(Γ), p(Γ), c(Γ)} be the weak solution to the problem (10.0.1)–
(10.0.7) with ρ0 = Γ. Then

(I) there exists a subsequence Γn → 0, such that

(1) the sequence {v(Γn)} converges weakly in L2(νT ) to the function v(0),
(2) the sequence {p(Γn)} converges weakly in L2(νT ) to the function p(0),
(3) the sequence {c(Γn)} converges weakly in W 1,0

2 (νT ) and strongly in L2(νT )

to the function c(0);

(II) the triple of limiting functions {v(0), p(0), c(0)} is the weak solution of the
diffusion-convection problem for a slightly compressible liquid in absolutely
rigid solid skeleton, which consists of the Darcy system of filtration with the
variable viscosity

v(0) = 1

μ1(c(0))
B

(
− 1

m
∇ p(0) +

(
χ f + ∂ c(0)

)
F
)

, (10.1.21)

λp(0)

λt
+ c2f ∇ · v(0) = 0 (10.1.22)

for the velocity v(0) and pressure p(0) of a slightly compressible liquid in the domain
ν for t > 0, the diffusion-convection equation (10.1.15) with the velocity field {v(0)}
for the concentration c(0), the boundary conditions (10.1.16) and (10.1.17), and the
initial condition (10.1.18) for the concentration.

We refer to the problem (10.1.15)–(10.1.18), (10.1.21), (10.1.22) as the homogenized
model (DCARS)3.
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10.1.2 Proof of Theorem 10.1

Let us divide the proof into several stages.As thefirst stepwe consider an approximate
problem,where the velocity v (for themomentwe omit the index α) in the convection-
diffusion equation is replaced by its approximation

v(h) = M
h(v)

= 1

h4

∫ ∩

−∩
J

(
t − ξ

h

)(∫

R3
J

( |z − x|
h

)
v̄(z, ξ )dz

)
dξ. (10.1.23)

In Eq. (10.1.23)

v̄(x, t) =

⎧⎫
⎬

v(x, t) if x ∪ ν α
f , 0 < t < T ,

0 if x ∪ R
3\ν α

f , t > 0,

0 if x ∪ ν α
f , and t � T, or t � 0,

and J (s) is an infinitely smooth function, such that

J (s) = 0, if |s| > 1, and
∫ ∩

−∩
J (s)ds

∫

R3
J (|x|)dx = 1.

By the well-known properties of the mollifiers M h [3]

(1) v(h) ∪ C∩(
R
3 × (−∩,∩)

)
;

(2) if v ∪ L2(νT ), then v(h) → v strongly in L2(νT ) as h → 0;

(3) if v ∪
∅

W1,0
2 (ν α

T ), then ∇ · v(h) → ∇ · v strongly in
∅

W1,0
2 (ν α

T ) as h → 0.

More precisely, we look for the solution {v α,h, p α,h, c α,h} of the system of dif-
ferential equations

∇·(α2μ1(c
α,h)D(x, v α,h) + (ρ0∇ · v α,h − p α,h)I

)

+ (χ f + ∂ c α,h)F = 0, (10.1.24)

λp α,h

λt
+ c 2

f ∇ · v α,h = 0, (10.1.25)

λc α,h

λt
+ v α,h

(h) · ∇ c α,h = D0 ⊂ c α,h (10.1.26)

in the domain ν α
f for t > 0, satisfying the following boundary and initial conditions

v α,h(x, t) = 0, x ∪ Sα, t > 0, (10.1.27)
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∇ c α,h(x, t) · n(x) = 0, x ∪ Sα, t > 0, (10.1.28)

c α,h(x, 0) = c h
0 (x), x ∪ ν α

f , (10.1.29)

p α,h(x, 0) = 0, x ∪ ν α
f . (10.1.30)

In Eq. (10.1.26) v α,h
(h) = M

h(v α,h) and

c h
0 ∪

∅
C∩ (ν α

f ), 0 � c h
0 (x) � 1, c h

0 (x) → c0(x) as h → 0 a.e. in ν α.

To solve (10.1.24)–(10.1.30) we fix the set

M = {c̄ ∪ C
([0, T ]; C(ν

α

f )
) : 0 � c̄(x, t) � 1}

and consider the first auxiliary problem

∇ · (α2μ1(c̄)D(x, u) + (ρ0∇ · u − q)I
)+ (χ f + ∂ c̄)F = 0, (10.1.31)

λq

λt
+ c 2

f ∇ · u = 0 (10.1.32)

for x ∪ ν α
f and t > 0, and

u(x, t) = 0, x ∪ Sα, t > 0; q(x, 0) = 0, x ∪ ν α
f . (10.1.33)

For all c̄ ∪ M this problem defines the nonlinear operator

u = A1(c̄), A1 : M → L2
(
(0, T );

∅
W1

2 (ν α
f )
)
.

Next we consider the second auxiliary problem

λc

λt
+ u(h) · ∇ c = D0 ⊂ c (10.1.34)

for x ∪ ν α
f and t > 0, and

∇ c(x, t) · n(x) = 0, x ∪ Sα, t > 0, (10.1.35)

c(x, 0) = c h
0 (x), x ∪ ν α, (10.1.36)

where
u(h) = M

h(u), u = A1(c̃).
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The problem (10.1.34)–(10.1.36) defines the nonlinear operatorA2 which, due to the

maximum principle, transforms
∅

W1,0
2 (ν α

T ) into the set M:

c = A2(u), A2 :
∅

W1,0
2 (ν α

T ) → M.

Thus, the nonlinear operator A = A2 ·A1 transforms the setM into itself. It is clear
that all of the fixed points c α,h of the operator A define solutions {v α,h, p α,h, c α,h}
to the problem (10.1.24)–(10.1.30). To prove the existence of at least one fixed point
of A we have to show that A is a completely continuous operator.

The weak solutions to the problems (10.1.24)–(10.1.30) and (10.1.31)–(10.1.33)
are defined in the same way as the weak solution to the problem (10.0.1)–(10.0.7).

Lemma 10.1 For any c̄ ∪ M the problem (10.1.31)–(10.1.33) has a unique weak
solution {u, q}, such that

∫ T

0

∫

να
f

(
α2|∇u|2 + |u|2 +

∣∣∣∣
λq

λt

∣∣∣∣
2

+ (∇ · u)2

⎜
dxdt � C F2, (10.1.37)

and for any c̄1, c̄2 ∪ M
∫ T

0

∫

να
f

(
α2|∇(u1 − u2)|2 + |u1 − u2|2

)
dxdt

� C F2

(
max

να
f ×(0,T )

|c̄1(x, t) − c̄2(x, t)|
⎜2

, (10.1.38)

where C is independent of α and h, and ui = A1(c̄i ), i = 1, 2.

Proof The proof of the first part of this lemma is standard. It can be based on the
Galerkin method coupled with the energy estimate

∫ T

0

∫

να
f

(
α2|∇u|2 +

∣∣∣∣
λq

λt

∣∣∣∣
2

+ (∇ · u)2
)
d � C F2. (10.1.39)

The latter is the result of themultiplication of (10.1.31) by u, and the use of (10.1.32),
Hölder’s, Korn’s, and Friedrichs-Poincaré’s inequalities. Note that wemay extend all
functions outside να

f onto some cube Q ◦ να
f as zero, and apply Korn’s inequality

for Q. Thus, the constant C in (10.1.39) is independent of α.
The estimate

∫ T

0

∫

ν α
f

|u|2dxdt � C α2
∫ T

0

∫

ν α
f

|∇u|2dxdt

has been already proved in Chap.1, Theorem 1.1.

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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The proof of the second part of the lemma is also standard. We consider the
initial—boundary value problem for the difference û = u1 − u2, multiply the
differential equation for û by û, integrate the result by parts over domain ν α, and
use Hölder’s inequality.

Lemma 10.2 The problem (10.1.34)–(10.1.36) has a unique solution

c ∪ C1
(
(0, T ); C2,1

(
ν

α

f

))
, such that

0 � c(x, t) � 1, x ∪ ν α
f , t > 0, (10.1.40)

∫ T

0

∫

να
f

|∇ c|2dxdt � C F2 (10.1.41)

where C is independent of α and h, and

max
να

f ×(0,T )

(∣∣∣∣
λc

λt
(x, t)

∣∣∣∣+ |∇ c (x, t)|
)

� N (h). (10.1.42)

If ci = A2(ui ), ui = A1(c̄i ), i = 1, 2, for c̄1, c̄2 ∪ M, then

max
0<t<T

∫

να
f

|c1(x, t) − c2(x, t)|2dx +
∫ T

0

∫

να
f

|∇(c1 − c2)|2dxdt

� N (h)

∫ T

0

∫

να
f

|(u1 − u2)|2dxdt. (10.1.43)

Proof The existence of a unique solution of (10.1.34)–(10.1.36) follows from ([61],
Sect. 5, Chap. III). Moreover, this solution satisfies the maximum principle (10.1.40).
In fact, let

c+(x, t) = max{c (x, t) − 1; 0}.

Then, using mollifiers in the same way as in the proof of Theorem 7.1 (Chap. III,
[61]), we arrive at the equality

1

2

∫

να
f

|c+(x, t0)|2dx + D0

∫ t0

0

∫

να
f

|∇ c+|2dxdt

= −
∫ t0

0

∫

να
f

(
u(h) · ∇ c+) c+ dxdt = I, (10.1.44)

where we have used the initial condition (10.1.36) (c+(x, 0) = 0), and the evident
relations

∇ c · ∇ c+ = ∇ c+ · ∇ c+, c+ ∇ c = c+ ∇ c+.
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Applying to the right-hand side of (10.1.44) Hölder’s and Cauchy’s inequalities, and
the boundedness of u(h) we arrive at

I � D0

2

∫ t0

0

∫

να
f

|∇ c+|2dxdt + N 2(h)
1

2 D0

∫ t0

0

∫

να
f

|c+|2dxdt,

and
1

2

∫

να
f

|c+(x, t0)|2dx � N 2(h)
1

2 D0

∫ t0

0

∫

να
f

|c+(x, t)|2dxdt,

which implies the equality c+(x, t) √ 0, and the right-hand side inequality in
(10.1.40).

The left-hand side inequality in (10.1.40) is proved in the same way, if we put

c−(x, t) = min{c (x, t); 0}.

Estimate (10.1.41) follows from the energy equality

1

2

∫

να
f

|c (x, t0)|2dx + D0

∫ t0

0

∫

να
f

|∇ c|2 dxdt = −
∫ t0

0

∫

να
f

(
u(h) · ∇ c

)
c dxdt

for c, similarly to (10.1.44), after applying (10.1.40).
The boundedness of c, the infinite smoothness of u(h) and ch

0 , and the local
estimates for linear parabolic equations (Sect. 10, Chap. IV, [61]) imply the infi-
nite smoothness of c inside να

f for 0 � t � T . The boundary condition (10.1.35)
permits us to extend the solution of (10.1.34)–(10.1.36) onto the small neighborhood
outside of να

f for 0 � t � T as an even function. Applying again local estimates
for linear parabolic equations, we conclude that c is infinitely smooth in the closure
of να

f × (0, T ), which, in particular, implies (10.1.42).
The proof of (10.1.43) is straightforward. The integral identity for the difference

c̃ = c1 − c2 has the form

∫ T

0

∫

να
f

(
−c̃

λε

λt
+ D0 ∇ c̃ · ∇ ε

)
dxdt =

∫ T

0

∫

να
f

ε
(
ũ · ∇ c 2 − (u1)(h) · ∇ c̃

)
dx,

where ũ = (u2)(h)(x, t) − (u1)(h)(x, t).
As before, this identity results:

1

2

∫

να
f

|c̃(x, t)|2dx + D0

∫ t

0

∫

να
f

|∇ c̃ (x, ξ )|2dxdξ

=
∫ t

0

∫

να
f

c̃(x, ξ )
(
ũ(x, ξ ) · ∇ c 2(x, ξ ) − (u1)(h)(x, ξ ) · ∇ c̃ (x, ξ )

)
dxdξ √ I.
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The estimate (10.1.43) follows from the last equality and Gronwall’s inequality,
if we estimate the right-hand side I using Hölder’s and Cauchy’s inequalities. We
also will use the estimates

|∇ c 2(x, t)| � N (h), |(u1)(h)(x, t)| � N (h), x ∪ να
f , 0 < t < T,∫

να
f

|ũ(x, t)|2dx � C0

∫

να
f

|u1(x, t) − u2(x, t)|2dx,

which are based on the properties of the mollifiers.
In fact,

I � 1

2D0

(
max

x∪να
f ,0<ξ<T

|(u1)(h)(x, t)|2
⎜∫ t

0

∫

να
f

|c̃(x, ξ )|2dxdξ

+ N (h)

(∫ t

0

∫

να
f

|c̃(x, ξ )|2dxdξ

⎜ 1
2
(∫ t

0

∫

να
f

|ũ(x, ξ )|2dxdξ

⎜ 1
2

+ D0

2

∫ t

0

∫

να
f

|∇ c̃(x, ξ )|2dxdξ,

and

1

2

∫

να
f

|c̃(x, t)|2dx + D0

2

∫ t

0

∫

να
f

|∇ c̃ (x, ξ )|2dxdξ

� N (h)

(∫ t

0

∫

να
f

|c̃(x, ξ )|2dxdξ +
∫ t

0

∫

να
f

|ũ(x, ξ )|2dxdξ

⎜
.

Now, to prove the solvability of (10.1.24)–(10.1.30) we just apply Schauder’s fixed
point theorem [55].

Indeed, the estimates (10.1.38), (10.1.42), (10.1.43) and the interpolation inequal-
ity

max
να

f ×(0,T )
|v(x, t)|2 � 2

(∫ T

0

∫

να
f

|v|2dxdt

⎜ 1
2
(∫ T

0

∫

να
f

∣∣∣∣
λv

λt

∣∣∣∣
2

dxdt

⎜ 1
2

� C

(∫ T

0

∫

να
f

|v|2dxdt

⎜ 1
2

max
να

f ×(0,T )

∣∣∣∣
λv

λt
(x, t)

∣∣∣∣

for any smooth function v, such that v(x, 0) = 0, prove the continuity ofA if we take
into account the equality

(c1 − c2)(x, 0) = 0 for c1 = A2(u1), c2 = A2(u2).
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The estimate (10.1.42) shows that A is a compact operator. Therefore A is a com-
pletely continuous operator on the setM. Next, the estimate (10.1.40) shows that A
transforms the set M into itself. Finally, M is a closed convex set, which is enough
for existence at least one fixed point of A inM.

It is clear that all of the fixed points of A preserve estimates (10.1.37), (10.1.40),
and (10.1.41). Thus, the following lemma holds true.

Lemma 10.3 There exists at least one weak solution {v α,h, p α,h, c α,h} of the
problem (10.1.24)–(10.1.30), such that

∫ T

0

∫

να
f

(
α2|∇v α,h |2 + |v α,h |2 +

∣∣∣∣
λp α

λt

∣∣∣∣
2

+ (∇ · v α,h)2

⎜
dxdt � C F2,

(10.1.45)

0 � c α,h(x, t) � 1, x ∪ ν α
f , t > 0, (10.1.46)

∫ T

0

∫

να
f

|∇ c α,h |2dxdt � C F2 (10.1.47)

where C is independent of α and h.

As the last step in the proof of Theorem 10.1 we pass to the limit as h → 0 in the
corresponding integral identity, namely the following lemma holds true.

Lemma 10.4 There exists at least one weak solution {v α, p α, c α} of the problem
(10.0.1)–(10.0.7), such that

∫ T

0

∫

να
f

(
α2|∇v α|2 + |v α|2 +

∣∣∣∣
λp α

λt

∣∣∣∣
2

+ (∇ · v α)2

⎜
dxdt � C F2, (10.1.48)

0 � c α(x, t) � 1, x ∪ ν α
f , t > 0, (10.1.49)

∫ T

0

∫

να
f

|∇ c α|2dxdt � C F2 (10.1.50)

where C is independent of α.

Proof Toprove the lemmawe just have to find the convergent subsequences and pass
to the limit as h ↘ 0 in the integral identities (10.1.3) and (10.1.4) corresponding to
the dynamic equations for v α,h and p α,h , and in the integral identity, corresponding
to the diffusion-convection equation, which we rewrite as
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∫ T

0

∫

να
f

(
cα,h λε

λt
+ (cα,h∇ε)(h) · vα,h − D0∇ cα,h · ∇ε + (εcα,h)(h)∇ · v α,h

)
dxdt

+
∫

ν

Ωαch
0 (x)ε(x, 0)dx = 0, (10.1.51)

for any smooth functions ε , such that ε(x, T ) = 0.
Here we have used the well-known property of the mollifiers that

∫

Q
u(x) (v)(h)(x)dx =

∫

Q
(u)(h)(x) v(x)dx .

The weak compactness of {p α,h} and {∇ · v α,h} in L2
(
(0, T ); L2(ν

α
f )
)
and the

weak compactness of {c α,h} and {v α,h} in L2
(
(0, T ); W 1

2 (να
f )
)
and L2

(
(0, T );

∅
W 1

2

(να
f )
)
correspondingly follow from the estimates (10.1.45)–(10.1.47). The strong

compactness of {c α,h} in L2
(
(0, T ); L2(ν

α
f )
)
follows from the same estimates and

from Aubin’s compactness lemma [12, 68].
The limit in (10.1.3), (10.1.4) and (10.1.51) does not cause problems. We just

note that the product (c α,h∇ε)(h) · v α,h converges to c α∇ε · v α and the product
(ε c α,h)(h)∇ · v α,h converges to ε c α ∇ · v α due to the strong convergence of {c α,h}
in L2

(
(0, T ); L2(ν

α
f )
)
.

10.1.3 Proof of Theorem 10.2

The main problem here is the strong compactness of {c̃ α} in L2(νT ). This follows
from the estimates (10.1.6), (10.1.7), the diffusion-convection equation (10.1.3), the
compactness lemma (see [9, 84]), and the properties of the corresponding extensions
(see also Appendix B).

The boundedness and the weak compactness in L2(νT ) of {ṽ α} follow from the
estimates (10.1.8).

Let

q α = p α − ρ0∇ · v α = p α + ρ0

c2f

λp α

λt
, (10.1.52)

and q̃ α be an extension of q α from ν α
f onto ν: q̃ α = 0 outside of ν α

f for t > 0.
The weak compactness of { p̃ α}, {q̃ α}, and {∇ · ṽ α} in L2(νT ) follow from the

estimates (10.1.8) and the properties of the corresponding extensions.
Using (10.1.52) and the extensions p̃ α, q̃ α, and ṽ α of the functions p α, q α, and

v α, we rewrite the integral identities (10.1.3) and (10.1.4) as
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∫ T

0

∫

ν

Ω α

(
c̃ α λε

λt
+ (c̃ αṽ α − D0∇ c̃ α) · ∇ε + ε c̃ α∇ · ṽ α

)
dxdt

= −
∫

ν

c̃ 0(x) ε(x, 0) dx, (10.1.53)

∫ T

0

∫

ν

Ω α
(
α2μ1(c̃

α)D(x, ṽ α) − q̃ α
I
) : D(x, ς)dxdt

=
∫ T

0

∫

ν

(χ f + ∂ c̃ α)F · ς
)

dxdt. (10.1.54)

Here

c̃ 0 = c 0 inν α
f , c̃ 0 = 0 inν α

s , Ω α ṽ α = ṽ α, Ω α ∇ · ṽ α = ∇ · ṽ α.

The homogenization of the dynamic equations repeats the similar result in Chap.1. In
fact, the weak limit in the relation (10.1.52) and in the continuity equation (10.1.5)
result in Eqs. (10.1.13), (10.1.14), the boundary condition (10.1.16), and the first
initial condition in (10.1.18).

If P(x, t, y) and Q(x, t, y) are two-scale limits of { p̃ α} and {q̃ α} respectively,
then

Q = P + ρ0

c2f

λ P

λt
, P(x, t, y) = 1

m
p(x, t)Ω(y).

Finally, let v(x, t, y) be the two-scale limit of {ṽ α}. Then
1

2
μ1(c)⊂yv − ∇y Q − 1

m
∇ q + (χ f + ∂ c)F = 0, y ∪ Y f , (10.1.55)

∇ · v = 0, y ∪ Y f . (10.1.56)

v = 0, y ∪ τ. (10.1.57)

We look for the solution of the problem (10.1.55)–(10.1.57) in the form

v = 2

μ1(c)

(
3⎭

i=1

v(i) ⊗ ei

⎜
·
(

− 1

m
∇ q + (χ f + ∂ c)F

)
,

where e1, e2, e3 is a standard Cartesian basis.

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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Then

B =
3⎭

i=1

(∫

Y f

v(i)(y)dy

⎜
⊗ ei =

3⎭
i=1

〈v(i)∞Y f ⊗ ei , (10.1.58)

where v(i) are solutions to the periodic boundary—value problem (1.1.26).
The homogenization of the diffusion-convection equation for c α is also standard.
In fact, due to the smoothness of the solution

c̃ α(x, t) δ c(x, t) weakly in W 1,0
2 (νT ),

c̃ α(x, t) → c(x, t) two-scale in L2(νT ),

∇ c̃ α → ∇ c + ∇y C two-scale inLL2(νT ),

The two-scale limit in (10.1.53) with the test functions ε = ε(x, t) and ε =
αε0

(
x,

x
α
, t
)
, where ε0(x, t, y) is an arbitrary 1-periodic in y function, results in

m
λc

λt
+ v · ∇ c = D0∇ · (m ∇ c + 〈∇y C∞Y f

)
, (10.1.59)

and
∇ · (Ω(y)(∇ c + ∇yC)

) = 0, y ∪ Y. (10.1.60)

As usual, we look for the solution of (10.1.60) in the form

C(x, t, y) =
3⎭

i=1

C (i)(y)
λc

λxi
(x, t).

Then,

B
(c) = mI +

(
3⎭

i=1

〈∇yC (i)(y)∞Y f ⊗ ei

⎜
, (10.1.61)

where
∇ · (Ω(y)(ei + ∇y C (i))

) = 0, y ∪ Y.

10.1.4 Proof of Theorem 10.3

Let

w(x, t) =
∫ t

0
v(x, ξ )dξ. (10.1.62)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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Then the system (10.1.12)–(10.1.14) takes the form

mμ1(c)
(
B

( f )
)−1 · v = ∇(c2f (∇ · w) + ρ0(∇ · v)

)+ m(χ f + ∂ c)F. (10.1.63)

Multiplication of (10.1.63) by v and integration by parts over ν result in the energy
equality

∫

ν

(
m μ1(c)v · (B ( f )

)−1 · v + ρ0(∇ · v)2 − m(χ f + ∂ c)F · v
)

dx

+ c2f
2

d

dt

∫

ν

(∇ · w)2dx = 0, (10.1.64)

and, consequently, the a priori estimate

∫

νT

(|v|2 + ρ0(∇ · v)2
)
dxdt + c2f max

0<t<T

∫

ν

(∇ · w)2dx � C F2, (10.1.65)

where C is independent of c2f and ρ0.
Coming back to (10.1.12) and using (10.1.65) we get

∫

νT

|∇ q|2dxdt � C F2. (10.1.66)

Equations (10.1.13), (10.1.14) and the boundary condition (10.1.16) provide the
equality ∫

ν

q(x, t)dx = 0.

Therefore, ∫

νT

|q|2dxdt � C F2 (10.1.67)

(see [61]). The combination of (10.1.65) and (10.1.67) gives us

∫

νT

|p|2dxdt � C FC F2. (10.1.68)

Finally, for the concentration c the estimates (10.1.6) and (10.1.7) with the constant
C independent of c2f and ρ0 hold true.

Nowweare ready to pass to the limit as k = c2f → ∩.On the basis of the estimates

(10.1.6), (10.1.7), (10.1.65)–(10.1.68) we may choose some subsequences {v(kn)},
{q(kn)}, and {c(kn)} such that the sequence {v(kn)} converges weakly in L2(νT ) to
the function v(∩), the sequence {q(kn)} converges weakly in L2(νT ) to the function
p(∩), the sequence {c(kn)} converges weakly in W 1,0

2 (νT ) and strongly in L2(νT )
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to the function c(∩), the sequence {∇ · v(kn)} converges weakly in L2(νT ) to the
function ∇ · v(∩), and the sequence {∇ · w(kn)} converges strongly in L2(νT ) to
zero.

It is clear that the relation ∇ · w(∩) = 0 and the relation (10.1.62) for w(∩) and
v(∩) imply the continuity equation ∇ · v(∩) = 0, and that the concentration c(∩)

satisfies the diffusion-convection equation (10.1.15) with the velocity field {v(∩)}.
To prove Darcy’s law (10.1.19) it is enough to fulfill the limiting procedure as

kn → ∩ in the integral identity

∫

νT

(
μ1(c

(kn))ς · (B ( f )
)−1 · v(kn) − 1

m
q(kn)(∇ · ς) − χ f F · ς

)
dxdt = 0.

10.1.5 Proof of Theorem 10.4

The proof of Theorem 10.4 repeats the proof of Theorem 10.3 with evident changes.
Note, that due to (10.1.65) ρ0∇ · v(∂) → 0 as ∂ → 0 strongly in L2

(
(0, T ); L2(ν)

)
.

10.2 Diffusion-Convection in Poroelastic Media

10.2.1 Statement of the Problem and Main Results

Throughout this section we suppose that
1

α
is an integer, ν is a cube whose edge

length is also an integer, and

c 0 ∪ L2(ν), 0 � c 0(x) � 1, (10.2.1)

F = F(x), sup
x∪ν

(|F(x)| + |∇ F(x)|) = F < ∩, (10.2.2)

Definition 10.2 We say that the triple of functions {w α, p α, c α} is a weak solution
of the problem (10.0.5), (10.0.6), (10.0.8)–(10.0.13), if

w α ∪
∅

W1,0
2 (νT ),

λw α

λt
∪ L2

(
(0, T ); W1

2(ν
α
f )
)
,

c α ∪ L2
(
(0, T ); W 1

2 (ν α
f )
)
, p α ∪ L2(νT ),

and continuity equation (10.0.10) in ν for t > 0, the normalization condition
(10.0.11), the initial condition (10.0.13), and the integral identities
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∫ T

0

∫

ν α
f

(
−c α λε

λt
+ ε

λw α

λt
· ∇ c α + D0 ∇ c α · ∇ ε

)
dxdt

=
∫

ν α
f

c 0(x) ε(x, 0) dx, (10.2.3)

∫ T

0

∫

ν

(
Ωα(x)μ0 D

(
x,

λw α

λt

)
+ (1 − Ωα(x)

)
Γ0 D(x, w α) − p α

I

)
: D(x, ς)

(10.2.4)

dxdt =
∫ T

0

∫

ν

χ αF · ς dxdt, (10.2.4)

hold true the for any smooth functions ε and ς, such that ε(x, T ) = 0 and ς(x, t) = 0
for x ∪ S and t > 0.

The integral identity (10.2.4) shows, that wα possesses different smoothness in
domains να

f and να
s . To preserve the best properties, which the solution has in the

liquid part, we will use extension results [1, 36, 89] (see also Appendix B): there
exists a linear extension operator

Eν α
f

: W1
2(ν

α
f ) → W1

2(ν), vα = Eν α
f

(
λwα

λt

)
,

such that
λwα

λt
(x, t) = vα(x, t), x ∪ να

f , t ∪ (0, T ), (10.2.5)

∫

ν

|vα(x, t)|2dx � C0

∫

να
f

∣∣∣∣
λwα

λt
(x, t)

∣∣∣∣
2

dx,

∫

ν

∣∣D (x, vα(x, t)
)∣∣2dx � C0

∫

να
f

∣∣∣∣D
(

x,
λwα

λt
(x, t)

)∣∣∣∣
2

dx, t ∪ (0, T ),

(10.2.6)

where C0 is independent of α and t ∪ (0, T ).
We additionally suppose that the geometry of the elementary cell Y f permits us

to choose an extension operator such that the function vα vanishes at the boundary
S = λν and we may apply the embedding [3]
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Fig. 10.1 Structures 1 and 2

∫

ν

|vα(x, t)|2dx � C0

∫

ν

|∇vα(x, t)|2dx

� C2
0

∫

ν

|D(x, vα(x, t)
)|2dx, (10.2.7)

wherewe have usedKorn’s inequality for the domainν . For example, this is possible
for the structures presented by Fig. 10.1 (see Lemma B.10).

Theorem 10.5 Under the conditions (10.2.1) and (10.2.2) the problem (10.0.5),
(10.0.6), (10.0.8)–(10.0.13) has at least one weak solution {w α, p α, c α}, such that

max
0<t<T

∫

ν α
f

|c α (x, t)|2dx +
∫ T

0

∫

ν α
f

|∇ c α (x, t)|2dxdt � C0 F2, (10.2.8)

0 � c α(x, t) � 1, x ∪ να
f , t > 0, (10.2.9)

max
0<t<T

∫

ν

(|wα(x, t)|2 + |∇wα(x, t)|2)dx

+
∫ T

0

∫

ν

(
vα(x, t)|2 + |∇vα(x, t)|2 + |pα(x, t)|2)dxdt � C0F2, (10.2.10)

max
0<t<T

∫

ν

(|v α(x, t)|2 + |∇ v α(x, t)|2)dx � C(C0, F), (10.2.11)

∫

ν

|∇v α(x, t1) − ∇v α(x, t2)|2dx � C(C0, F) |t1 − t2|, (10.2.12)



10.2 Diffusion-Convection in Poroelastic Media 347

where vα = Eνα
f

(
λwα

λt

)
, and the constant C0 is independent of the small parameter

α and t ∪ (0, T ).

Theorem 10.6 Under the conditions of Theorem 10.5 the sequences {w α}, {v α},
and {c̃ α} converge weakly as α → 0 (up to some subsequences) in

∅
W1,0

2 (νT ) and
∅

W 1,0
2 (νT ) to the functions w, v = λw

λt
, and c respectively, and the sequence {p α}

converges weakly as α → 0 (up to some subsequences) in L2(νT ) to the function p.
These limiting functions satisfy in the domain ν for t > 0 the system of differential

equations, consisting of the homogenized momentum balance equation

∇ · P̂ + χ̂ (c) F = 0, (10.2.13)

where

P̂ = −p I + N1 : D(x, v) + N2 : D(x, w) +
∫ t

0
N3(t − ξ) : D(x, w(x, ξ ))dξ,

the continuity equation
∇ · v = 0, (10.2.14)

and the homogenized diffusion-convection equation

m
λc

λt
+ v · (B (c)∇c

) = D0 ∇ · (B (c)∇c
)
. (10.2.15)

The differential equations (10.2.13)–(10.2.15) are completed with the boundary con-
ditions

w = 0, (10.2.16)

∇ c · n = 0, (10.2.17)

on the outer boundary S = λν for t > 0, the initial conditions

w(x, 0) = 0, (10.2.18)

c (x, 0) = m c0 (x) (10.2.19)

in the domain ν , and the normalization condition

∫

ν

p (x, t)dx = 0. (10.2.20)

In Eqs. (10.2.13)–(10.2.19) n is the unit outward normal vector to the boundary S,
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χ̂ (c) = m (χ f + ∂ c) + (1 − m) χs, m =
∫

Y
Ω(y)dy,

the fourth-rank constant tensorsN1,N2, and the fourth-rank tensorN3(t) have been
defined in the Chap.1 by formulae (1.4.30), where the tensor N1 is symmetric and
strictly positively definite, and the symmetric and strictly positively definite constant
matrix B

(c) has been defined in Theorem 10.2 by formula (10.1.61).

If the domain Y f is symmetric under rotations by the angle
Π

2
around the principal

axes of a Cartesian coordinate system, then the matrix B
(c) will be diagonal.

We refer to the problem (10.2.13)–(10.2.19) as the homogenized model (DCPEM).

10.2.2 Proof of Theorem 10.5

The proof is based on Schauder’s fixed point theorem [55]. Let us divide this proof
into several steps.

First, we consider the auxiliary problem, consisting of the dynamic equations

∇·
(

Ωα μ0 D

(
x,

λw(h)

λt

⎜
+ (1 − Ωα) Γ0 D

(
x, w(h)

)
− p(h)

I

⎜

= −χ h(x, c(h))F, (10.2.21)

∇ · w(h) = 0 (10.2.22)

in the domain ν for t > 0, the modified diffusion-convection equation

λc(h)

λt
+ v̂(h) · ∇ c(h) = D0 ⊂ c(h) (10.2.23)

in the domain να
f for t > 0, the boundary condition

w(h)(x, t) = 0 (10.2.24)

on the boundary S = λν for t > 0, the boundary condition

∇ c(h)(x, t) · n(x) = 0 (10.2.25)

on the boundary λνα
f for t > 0, the normalization condition

∫

ν

p(h) (x, t)dx = 0, (10.2.26)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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and the initial conditions
Ωα(x)w(h)(x, 0) = 0, (10.2.27)

c(h) (x, 0) = c0 (x). (10.2.28)

In Eqs. (10.2.21)–(10.2.28) n is the unit outward normal vector to the boundary λνα,

χ h(x, c(h)) = Ωα
(
χ f + ∂ (c(h))h

)+ (1 − Ωα)χs,

and

(c(h))h(x, t) = 1

h

∫ t+h

t
c(h)(x, ξ ) dξ,

v̂(h)(x, t) = 1

h4

∫ t+h

t

∫

R3
γ

( |x − z|
h

)
vα(z, ξ ) dz

are mollifiers [3, 61] with the infinitely smooth, nonnegative, even, and finite in
(−1, 1) function γ(x), such that

∫ 1

−1
γ(x)dx = 1,

and vα = Eνα
f

(
λwα

λt

)
.

To solve (10.2.21)–(10.2.28) we choose the set

M =
{

c̄ ∪ L2
(
(0, T ); L2(ν

α
f )
) :

∫ T

0

∫

να
f

|c̄(x, t)|2dxdt � T |να
f |
}

,

where |ν α
f | ia the Lebesgue measure of the set ν α

f , and for c̄ ∪ M consider the
second auxiliary problem, consisting of the dynamic equations

∇ ·
(

Ωαμ0 D

(
x,

λw
λt

)
+ (1 − Ωα)Γ0 D(x, w) − p I

)
+χ h(x, c̄)F = 0, (10.2.29)

∇ · w = 0 (10.2.30)

in the domain ν for t > 0, where

χ h(x, c̄) = Ωα
(
χ f + ∂ (c̄)h

)+ Ωα
s χs,

completed with the normalization condition (10.2.26), and the boundary and initial
conditions (10.2.24) and (10.2.27).
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For all c̄ ∪ M this problem defines the linear operators

λw
λt

= A0(c̄), v = A1(c̄) = (
Eνα

f
∅ A0

)
(c̄),

A1 : M → W1,0
2 (νT ).

Lemma 10.5 Under the conditions of Theorem 10.5 for any c̃ ∪ M the problem
(10.2.24), (10.2.26), (10.2.27), (10.2.29), and (10.2.30) has a unique weak solution
{w, p}, such that

max
0<t<T

∫

ν

(|w(x, t)|2 + |∇ w(x, t)|2)dx

+
∫ T

0

∫

ν

(|v(x, t)|2 + |∇ v(x, t)|2 + |p(x, t)|2)dxdt

� C0 F2

(∫ T

0

∫

να
f

|c̄|2dxdt + 1

⎜
, (10.2.31)

where C0 is independent of α and h.

Proof The solvability of the problem (10.2.24), (10.2.26), (10.2.27), (10.2.29) and
(10.2.30) is quite standard andwe just show, how to derive the basic a priori estimates.

We put ς = λw
λt

in the integral identity

∫ t

0

∫

ν

(
Ωαμ0 D

(
x,

λw
λt

)
+ (1 − Ωα)Γ0 D(x, w) − p I

)
: D(x, ς)dxdξ

=
∫ t

0

∫

ν

χ h(x, c̄)F · ςdxdξ,

(10.2.32)

corresponding to (10.2.29), and get

μ0

∫ t

0

∫

να
f

∣∣∣∣D
(

x,
λw
λξ

(x, ξ )

)∣∣∣∣
2

dxdξ + Γ0

2

∫

να
s

∣∣D(x, w(x, t)
)∣∣2 dx

√ I =
∫ t

0

∫

ν

(
χ h(x, c̄)F · λw

λξ

)
(x, ξ )dxdξ. (10.2.33)

We estimate from below the left-hand side of (10.2.33) using (10.2.6), the evident
inequality

∫

ν

Ωα|D(x, w(x, t)
)|2dx � C0

∫ t

0

∫

ν

Ωα

∣∣∣∣D
(

x,
λw
λξ

(x, ξ )

)∣∣∣∣
2

dxdξ,



10.2 Diffusion-Convection in Poroelastic Media 351

and Korn’s inequality, as

μ0

2C2
0

∫ t

0

∫

ν
|∇ v(x, ξ )|2dxdξ + min

(
μ0

2C2
0

,
Γ0

2C0

⎜∫

ν
|∇ w(x, t)|2dx

� μ0

2C0

∫ t

0

∫

ν
|D(x, v(x, ξ )

)|2dxdξ + min

(
μ0

2C0
,
Γ0

2

)∫

ν
|D(x, w(x, t)

)|2dx � I,

where v = Eνα
f

(
λw
λt

)
.

Now we estimate from above the right-hand side of (10.2.33) using (10.2.7), the
integration by parts, Hölder’s, and Cauchy’s inequalities with parameter ζ, and the
imbedding theorem for the function w in ν [3]:

I =
∫ t

0

∫

να
f

χ h(x, c̄)F · vdxdξ +
∫

ν
(1 − Ωα)χsF · wdx

� ζ

∫ t

0

∫

ν
|v(x, ξ )|2dxdξ + ζ

∫

ν
|w(x, t)|2dx + 1

ζ
C0F2

(∫ T

0

∫

να
f

|c̄|2dxdt + 1

⎜

� ζ C0

∫ t

0

∫

ν
|∇ v(x, ξ )|2dxdξ + ζ C0

∫

ν
|∇ w(x, t)|2dx

+ 1

ζ
C0F2

(∫ T

0

∫

να
f

|c̄|2dxdt + 1

⎜
.

Gathering all together we have

μ0

2C2
0

∫ t

0

∫

ν

|∇ v(x, ξ )|2dxdξ + min

(
μ0

2C2
0

,
Γ0

2C0

⎜∫

ν

|∇ w(x, t)|2dx

� ζ C0

∫ t

0

∫

ν

|∇ v(x, ξ )|2dxdξ + ζ C0

∫

ν

|∇ w(x, t)|2dx

+
∫ t

0

∫

ν

|w(x, ξ )|2dxdξ + 1

ζ
C0F2

(∫ T

0

∫

να
f

|c̄|2dxdt + 1

⎜
.

The desired estimate (10.2.31) for the functions w and v follows now from the last
inequality, if we put there

ζ = min

(
μ0

4C2
0

,
Γ0

4C0

⎜

and use Gronwall’s inequality.
The pressure p is estimated from the Eq. (10.2.29) as a linear bounded functional
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∫

ν

p ∇ · ςdx =
∫

ν

(
P : D(x, ς) − χ h(x, c̄)F · ς

)
dx,

defined for ς ∪
∅

W1,0
2 (νT ), with

P = Ωαμ0 D

(
x,

λw
λt

)
+ (1 − Ωα) Γ0 D(x, w) ∪ L2

(
(0, T ); L2(ν),

and satisfying the normalization condition (10.2.26).

Lemma 10.6 Under the conditions of Theorem 10.5 A1(c̄) is a continuous operator.
If v1 = A1(c̄1), v2 = A1(c̄2), and ṽ = v1 − v2, then

∫ T

0

∫

ν

(|ṽ(x, t)|2 + |∇ ṽ(x, t)|2)dxdt

� C0 F2
∫ T

0

∫

να
f

|c̄1 − c̄2|2dxdt. (10.2.34)

The statement of the lemma follows from the linearity of A1 and the estimate
(10.2.31).

As the next step we consider the solutions of the differential equation

λc

λt
+ v̂ · ∇ c = D0 ⊂ c (10.2.35)

in the domain να
f for t > 0, satisfying the boundary condition

∇ c · n = 0 (10.2.36)

on the boundary λνα
f for t > 0, and the initial condition

c (x, 0) = c0 (x). (10.2.37)

In Eqs. (10.2.35), (10.2.36) v = A1(c̄), c̄ ∪ M, and n is the unit outward normal
vector to the boundary λνα

f .
By the properties of the mollifiers, the function v̂ is bounded and has bounded

first derivatives. Thus, due to well-known results for the linear parabolic equations
[61], the problem (10.2.35)–(10.2.37) has a unique weak solution c = A2(v) such
that

0 � c(x, t) � 1, x ∪ να
f , t > 0, (10.2.38)

and
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max
0<t<T

∫

να
f

|c (x, t)|2dx +
∫ T

0

∫

να
f

|∇ c (x, t)|2dxdt � C0F2. (10.2.39)

In fact, let
c+(x, t) = max{c (x, t) − 1; 0}.

Then, using the mollifiers in the same way as in the proof of Theorem 7.1 (Chap.3,
[61]), we arrive at the equality

1

2

∫

να
f

|c+(x, t0)|2dx + D0

∫ t0

0

∫

να
f

|∇ c+|2dxdt

= −
∫ t0

0

∫

να
f

(̂
v · ∇ c+) c+ dxdt = I, (10.2.40)

where we have used the initial condition (10.2.37) (c+(x, 0) = 0), and the evident
relations

∇ c · ∇ c+ = ∇ c+ · ∇ c+, c+ ∇ c = c+ ∇ c+.

Applying to the right-hand side of (10.2.40) Hölder’s and Cauchy’s inequalities, and
the boundedness of v̂ we get

I � D0

2

∫ t0

0

∫

να
f

|∇ c+|2dxdt + N 2(h)
1

2 D0

∫ t0

0

∫

να
f

|c+|2dxdt,

and
1

2

∫

να
f

|c+(x, t0)|2dx � N 2(h)
1

2 D0

∫ t0

0

∫

να
f

|c+(x, t)|2dxdt,

which implies the equality c+(x, t) √ 0, and the validity of the right-hand side
inequality in (10.2.38).

The left-hand side inequality in (10.2.38) is proved in the sameway, if we consider

c−(x, t) = min{c (x, t); 0}.

The estimate (10.2.39) follows from the equality for c

1

2

∫

να
f

|c (x, t0)|2dx + D0

∫ t0

0

∫

να
f

|∇ c|2 dxdt = −
∫ t0

0

∫

να
f

(̂
v · ∇ c

)
c dxdt,

similarly to (10.2.40), if we use the estimates (10.2.38) and the well-known property
of the mollifiers ∫ T

0

∫

ν

|̂v|2 dxdt �
∫ T

0

∫

ν

|v|2 dxdt.
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Lemma 10.7 For any h > 0 A2 is a continuous operator. That is, if ci = A2(vi ),
vi = A1(c̄i ), i = 1, 2, for c̄1, c̄2 ∪ M, and c̃ = c1 − c2, then

max
0<t<T

∫

να
f

|c̃ (x, t)|2dx +
∫ T

0

∫

να
f

|∇ c̃ (x, t)|2dxdt

� N (h)

(∫ T

0

∫

ν

Ωα|v1(x, t) − v2(x, t)|2dxdt

) 1
2

, (10.2.41)

where N (h) depends on the parameter h.

Proof The proof of this lemma is straightforward. The integral identity for the
difference c̃ has the form

∫ T

0

∫

να
f

(
−c̃

λε

λt
+ D0 ∇ c̃ · ∇ ε

)
dxdt =

∫ T

0

∫

να
f

ε
(
ṽ · ∇ c 2 − v̂1 · ∇ c̃

)
dx,

where ṽ = v̂2(x, t) − v̂1(x, t).
As before, this identity results:

1

2

∫

να
f

|c̃(x, t)|2dx + D0

∫ t

0

∫

να
f

|∇ c̃ (x, ξ )|2dxdξ

=
∫ t

0

∫

να
f

c̃(x, ξ )
(
ṽ(x, ξ ) · ∇ c 2(x, ξ ) − v̂1(x, ξ ) · ∇ c̃ (x, ξ )

)
dxdξ = I.

The estimate (10.2.41) follows from the last equality, if we estimate its right-hand
side I using Hölder, Cauchy, and Gronwall’s inequalities, and the estimates

|c̃(x, t)| � 2, |̂v1(x, t)| � N (h), x ∪ να
f , 0 < t < T,∫

να
f

|ṽ(x, t)|2dx � C0

∫

να
f

|v1(x, t) − v2(x, t)|2dx .

In fact,

I � 1

2D0

(
max

x∪να
f ,0<ξ<T

|̂v1(x, t)|2
⎜∫ t

0

∫

να
f

|c̃(x, ξ )|2dxdξ

+ 2

(∫ t

0

∫

να
f

|∇ c 2(x, ξ )|2dxdξ

⎜ 1
2
(∫ t

0

∫

να
f

|ṽ(x, ξ )|2dxdξ

⎜ 1
2

+ D0

2

∫ t

0

∫

να
f

|∇ c̃(x, ξ )|2dxdξ,
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and

1

2

∫

να
f

|c̃(x, t)|2dx + D0

2

∫ t

0

∫

να
f

|∇ c̃ (x, ξ )|2dxdξ

� N (h)

∫ t

0

∫

να
f

|c̃(x, ξ )|2dxdξ + N (h)

(∫ t

0

∫

να
f

|ṽ(x, ξ )|2dxdξ

⎜ 1
2

.

Let A = A2 ·A1. The maximum principle (10.2.38) shows that A transforms the
set M into itself. It is clear that all the fixed points c(h) of the operator A define the
solutions {w(h), p(h), c(h)} of the auxiliary problem (AP).

To prove the existence of at least one fixed point of A we have to show that A is
a completely continuous operator. Lemmas 10.6 and 10.7 prove the continuity of A.
The compactness of A follows from the estimate

∫ T

0

∫

ν

Ωα

∣∣∣∣D
(

x,
λv
λt

)∣∣∣∣
2

dxdt

� ∂

h

(∫ T

0

∫

να
f

|c̄|2dxdt

⎜ 1
2
(∫ T

0

∫

ν

Ωα

∣∣∣∣
λv
λt

∣∣∣∣
2

dxdt

⎜ 1
2

,

which is the result of differentiation of (10.2.29) with respect to time, multiplica-

tion by
λ2w
λt2

and integration by parts over ν (formal derivation). For the rigorous

derivation we, as before, must use mollifiers.
In the usual way this last relation implies

∫ T

0

∫

ν

Ωα

∣∣∣∣
λv
λt

∣∣∣∣
2

dxdt �
∫ T

0

∫

ν

∣∣∣∣
λv
λt

∣∣∣∣
2

dxdt � C0

∫ T

0

∫

ν

∣∣∣∣∇
(

λv
λt

)∣∣∣∣
2

dxdt

� C2
0

∫ T

0

∫

ν

∣∣∣∣D
(

x,
λv
λt

)∣∣∣∣
2

dxdt � C3
0

∫ T

0

∫

ν

Ωα

∣∣∣∣D
(

x,
λv
λt

)∣∣∣∣
2

dxdt,

∫ T

0

∫

ν

Ωα

∣∣∣∣D
(

x,
λv
λt

)∣∣∣∣
2

dxdt � C3
0
∂2

h2

∫ T

0

∫

ν

Ωα |c̄|2dxdt = N (h),

max
0<t<T

∫

ν

|∇ v(x, t)|2dx � C0

∫ T

0

∫

ν

∣∣∣∣∇
(

λv
λt

)∣∣∣∣
2

dxdt � N (h),

∫ T

0

∫

ν

∣∣∣∣
λv
λt

∣∣∣∣
2

dxdt � C0

∫ T

0

∫

ν

∣∣∣∣∇
(

λv
λt

)∣∣∣∣
2

dxdt � N (h).

(10.2.42)
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Now, let the sequence {c̄ k} be weakly convergent in L2
(
(0, T ); L2(ν

α
f )
)
to c̄.

Then on the basis of (10.2.42) we may extract some subsequence {v kn }, which
converges strongly in L2(νT ) and weakly in W1,0

2 (νT ) to v = A1(c̄). Lemma 10.7
guarantees the strong convergence of {c̄ k} in L2

(
(0, T ); L2(ν

α
f )
)
to c̄, which proves

the compactness of A.
Finally, M is a closed convex set, and that is enough for existence at least one

fixed point of A inM [55].
It is clear, that all the fixed points ofA preserve the estimates (10.2.31), (10.2.38),

and (10.2.39). Thus, the following lemma holds true

Lemma 10.8 Under the conditions of Theorem 10.5 there exists at least one weak
solution {w(h), p(h), c(h)} of the problem (10.2.21)–(10.2.28), such that

∫ T

0

∫

ν

(
|v(h)(x, t)|2 + |∇ v(h)(x, t)|2 + |p(h)(x, t)|2

)
dxdt

+ max
0<t<T

∫

ν

(|w(h)(x, t)|2 + |∇ w(h)(x, t)|2)dx � C0 F2, (10.2.43)

0 � c (h)(x, t) � 1, x ∪ να
f , t > 0, (10.2.44)

∫ T

0

∫

να
f

|∇ c (h) (x, t)|2dxdt � C0 F2, (10.2.45)

max
0<t<T

∫

ν

(|v(h)(x, t)|2 + |∇ v(h)(x, t)|2)dx � C(C0, F), (10.2.46)

∫

ν

|∇v(h)(x, t1) − ∇v(h)(x, t2)|2dx � C(C0, F) |t1 − t2|, (10.2.47)

where C0 is independent of α, h, and t ∪ (0, T ).

Proof Note, that the right-hand side of (10.2.21) possesses the bounded time deriv-
ative (the bounds of any norms obviously depend on the parameter h). Therefore the
solution {w(h), p(h)} of (10.2.21) has the additional smoothness

Ωα ∇
(

λ2w(h)

λt2

⎜
, Ω α

s ∇
(

λw(h)

λt

⎜
∪ L2(νT ),

λp(h)

λt
∪ L2(νT ),

and we may differentiate with respect to time the integral identity corresponding to
(10.2.21):
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∫ t0

0

∫

ν

(
Ωα μ0 D

(
x,

λ2w(h)

λt2

⎜
+ Ω α

s Γ0 D

(
x,

λw(h)

λt

⎜⎜
: D(x, ς)dxdt

−
∫ t0

0

∫

ν

λp(h)

λt
∇ · ςdxdt = ∂

∫ t0

0

∫

ν

Ωα (F · ς)
λ

λt

(
(c (h))h

)
dxdt = I.

All statements of the lemma, except the estimates (10.2.46) and (10.2.47) are already
proved.

To prove (10.2.46) we rewrite the right hand-side of the last identity as

I = ∂

∫ t0

0

∫

να
f

(F · ς)

(
λc (h)

λt

⎜

h

dxdt = ∂

∫ t0

0

∫

να
f

λc (h)

λt
(F · ς)h̄ dxdt,

where

(u)h̄(x, t) = 1

h

∫ t

t−h
c(h)(x, ξ ) dξ, and ς(x, t) = 0 for t < 0.

Next we use the convection-diffusion equation (10.2.23) and express the time deriv-
ative of c (h):

I = −∂

∫ t0

0

∫

να
f

(
(v̂(h) · ∇ c(h))(F · ς)h̄ + D0 ∇ c(h) · ∇ (F · ς)h̄

)
dxdt.

Finally into the identity obtained we put ς = λw(h)

λt

μ0

2

∫

ν

Ωα
∣∣∣D(x, v(h)(x, t0)

)∣∣∣
2

dx + Γ0

∫ t0

0

∫

ν

Ω α
s

∣∣∣∣∣D
(

x,
λw(h)

λt

⎜∣∣∣∣∣
2

dxdt

= I = −∂

∫ t0

0

∫

να
f

(v̂(h) · ∇ c(h))(F · v(h))h̄ dxdt

− ∂

∫ t0

0

∫

να
f

D0 ∇ c(h) · ∇ (F · v(h))h̄ dxdt.

(10.2.48)

We estimate the right hand-side I in the usual way (see the proof of the estimate
(10.2.31)):
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I �C0 max |F|
(∫ t0

0

∫

ν

|v(h)|4dxdt

) 1
2
(∫ t0

0

∫

να
f

|∇ c(h)|2dxdt

⎜ 1
2

+ C0 max |F|
(∫ t0

0

∫

ν

|∇ v(h)|2dxdt

) 1
2
(∫ t0

0

∫

να
f

|∇ c(h)|2dxdt

⎜ 1
2

+ C0 max |∇ F|
(∫ t0

0

∫

ν

|v(h)|2dxdt

) 1
2
(∫ t0

0

∫

να
f

|∇ c(h)|2dxdt

⎜ 1
2

� C2
0 F

∫ t0

0

∫

ν

|∇ v(h)|2dxdt

(∫ t0

0

∫

να
f

|∇ c(h)|2dxdt + 1

⎜

+ C0 F
∫ t0

0

∫

ν

|v(h)|2dxdt +
∫ t0

0

∫

να
f

|∇ c(h)|2dxdt
)

� C(C0, F), (10.2.49)

where we have used (10.2.43). Thus, (10.2.48) and (10.2.49) result in (10.2.46).
The estimate (10.2.47) is proved similarly to the previous one. In fact, we may

rewrite the corresponding to (10.2.21) integral identity as

μ0

∫

ν

Ωα
(
D
(
x, v(h)(x, t2)

)− D
(
x, v(h)(x, t1)

)) : D(x, ς(x)
)
dx = I1 + I2,

where

I1 = − Γ0

∫ t2

t1

∫

ν

Ω α
s D(x, w(h)) : D(x, ς)dxdt,

I2 = ∂

∫ t2

t1

∫

ν

Ωα (F · ς)

(
λc (h)

λt

⎜

h

dxdt,

and estimate I2 as above, using the diffusion-convection equation (10.2.23):

I2 = ∂

∫ t2

t1

(∫

να
f

(F · ς)
λc (h)

λt
dx

⎜

h

dt

= −∂

∫ t2

t1

(∫

να
f

(
(v̂(h) · ∇ c(h))(F · ς) + D0 ∇ c(h) · ∇ (F · ς)

)
dx

⎜

h

dt

= −∂

∫ t2

t1

∫

να
f

(
(v̂(h) · ∇ c(h)))h(F · ς) + D0 ∇ (c(h))h · ∇ (F · ς)

)
dxdt

� C0 max |F|
(∫

ν

|ς|4dx

) 1
4
∫ t2

t1

(∫

ν

|v(h)|4dx

) 1
4
(∫

να
f

|∇ c(h)|2dx

⎜ 1
2

dt

+ C0 max |F|
(∫

ν

|∇ ς|2dx

) 1
2
∫ t2

t1

(∫

να
f

|∇ c(h)|2dx

⎜ 1
2

dt
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+ C0 max |∇ F|
(∫

ν

|ς|2dx

) 1
2
∫ t2

t1

(∫

να
f

|∇ c(h)|2dx

⎜ 1
2

dt

� C3
0 F

(∫

ν

|∇ ς|2dx

) 1
2

max
t

(∫

ν

|∇ v(h)|2dx

) 1
2
∫ t2

t1

(∫

να
f

|∇ c(h)|2dx

⎜ 1
2

dt

+ C2
0 F

(∫

ν

|∇ ς|2dx

) 1
2
∫ t2

t1

(∫

να
f

|∇ c(h)|2dx

⎜ 1
2

dt

� C(C0, F)

(∫

ν

|∇ ς|2dx

) 1
2
(∫ T

0

∫

να
f

|∇ c(h)|2dxdt

⎜ 1
2

|t2 − t1| 12

� C(C0, F)

(∫

ν

|∇ ς|2dx

) 1
2 |t2 − t1| 12 .

For I1 one has

I1 � Γ0

(∫

ν

|∇ ς|2dx

) 1
2
(∫ T

0

∫

ν

|∇ w(h)|2dxdt

) 1
2

|t2 − t1| 12 .

Thus,

∫

ν

Ωα
(
D
(
x, v(h)(x, t2)

)− D
(
x, v(h)(x, t1)

)) : D(x, ς(x)
)
dx

� C(C0, F)

(∫

ν

|∇ ς|2dx

) 1
2 |t2 − t1| 12

� C0, C(C0, F)

(∫

ν

|D(x, ς)|2dx

) 1
2 |t2 − t1| 12

� C0, C(C0, F)

(∫

ν

Ωα |D(x, ς)|2dx

) 1
2 |t2 − t1| 12

and for
ς(x) = v(h)(x, t2) − v(h)(x, t1)
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we arrive at
∫

ν

Ωα
∣∣∣D(x, v(h)(x, t2)

)− D
(
x, v(h)(x, t1)

)∣∣∣
2

dx � C(C0, F) |t2 − t1|.

As the last step in the proof of Theorem 10.5 we pass to the limit as h → 0 in the
corresponding integral identities. The following lemma holds true

Lemma 10.9 Under the conditions of Theorem 10.5 there exists at least one weak
solution {w α, p α, c α} of the problem (10.0.5), (10.0.6), (10.0.8)–(10.0.13) and the
estimates (10.2.8)–(10.2.12) hold true.

Proof Lemma 10.8 provides the weak compactness of {w(h)}, {v(h)} in W1,0
2 (νT ),

and the weak compactness of {p(h)} in L2(νT ). That is, up to some subsequences

w(h) δ wα, v(h) δ vα, weakly in W1,0
2 (νT ) as h → 0,

p(h) δ pα weakly in L2(νT ) as h → 0.

The same Lemma 10.8 implies the boundedness and the weak compactness of c (h)

in W 1,0
2 (νT ):

c (h) δ c α weakly in W 1,0
2 (νT ) as h → 0.

Passing to the limit as h → 0 in the integral identity

∫ T

0

∫

ν

(
Ωα μ0 D(x, v(h)) + (1 − Ωα) Γ0 D(x, w(h)) − p(h)

I

)
: D(x, ς)dxdξ

=
∫ T

0

∫

ν

(
(Ωα χ0 + (1 − Ωα)χs) (F · ς) + ∂ Ωα c(h)

(
F · (ς)h̄

))
dxdξ

and taking into account the equality

λwα

λt
(x, t) = vα(x, t), x ∪ να

f , t ∪ (0, T ), (10.2.50)

we get (10.2.4).
Note that in the product c(h)

(
F · (ς)h̄

)
the sequence {(ς)h̄} converges strongly in

L2(νT ) to ς.
The last relation (10.2.50) is the simple consequence of the integral identity

∫ T

0

∫

ν

Ω(h)

(
w(h) · λς

λt
+ w(h) · ς

)
dxdt = 0

for any smooth functions ς, such that ς(x, 0) = ς(x, T ) = 0.
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The limit as h → 0 in

∫ T

0

∫

ν

w(h) · ∇ εdxdt = 0

for any smooth ε results in the continuity equation (10.0.10).
Finally, the main problem for the diffusion-convection equation (10.2.23) is

the limit in the product v̂(h) · ∇ c(h), where the sequence {∇ c(h)} converges only
weakly in L2(νT ). Thanks to estimates (10.2.46) and (10.2.47) there exists some
subsequence of {v̂(h)}, which converges strongly in L2(νT ). This fact provides the
weak convergence inL2(νT ) of the product v̂(h) ·∇ c(h) to the corresponding product
vα · ∇ cα.

So, these estimates and the diagonal procedure permit us to find some subse-
quences of {v(h)(, t)} and {∇ v(h)(, t)}, which converge weakly in L2(ν) for almost
all t ∪ (0, T ) to vα(x, t) and ∇ vα(x, t) respectively. Due to the embedding theorem
[3], the weak convergence of {∇ v(h)(, t)} in L2(ν) for almost all t ∪ (0, T ) results
in the strong convergence of {v(h)(, t)} in L2(ν) for almost all t ∪ (0, T ). Thus, the
sequence of the bounded functions

f (h)(t) =
∫

ν

|v(h)(x, t) − vα(x, t)|2dx, | f (h)(t)| � C(C0, F),

converges almost everywhere in (0, T ) to zero. According to Lebesque’s theorem
(or the dominated convergence theorem, [3])

∫ T

0
f (h)(t)dt =

∫ T

0

∫

ν

|v(h)(x, t) − vα(x, t)|2dxdt → 0 as h → 0.

The validity of the estimates (10.2.8)–(10.2.12) follow from the properties of the
weakly and strongly convergent sequences.

In particular, by construction, the sequence {u(h)(x)}, where

u(h)(x) = ∇v(h)(x, t1) − ∇v(h)(x, t2)

weakly converges to the function

u α(x) = ∇v α(x, t1) − ∇v α(x, t2)

for almost all t1, t2 ∪ (0, T ).
Therefore,

∫

ν

|u α(x)|2dx � lim sup
h→ 0

∫

ν

|u(h)(x)|2dx � C(C0, F) |t1 − t2|

for almost all t1, t2 ∪ (0, T ).
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10.2.3 Proof of Theorem 10.6

The proof is based on the principles of compactness, and the two-scale convergent
method [88].

First of all, using the extension operators, we rewrite the identities (10.2.3) and
(10.2.4) as

∫ T

0

∫

ν

Ωα

(
−c̃ α λε

λt
+ ε

λw α

λt
· ∇ c̃ α + D0 ∇ c̃ α · ∇ ε

)
dxdt

=
∫

ν

Ωα c 0(x) ε(x, 0) dx (10.2.51)

∫ T

0

∫

ν

(
Ωαμ0 D(x, v α) + (1 − Ωα)Γ0 D(x, w α) − p α

I
) : D(x, ς)dxdt

=
∫ T

0

∫

ν

(
Ωα(χ 0 + ∂ c α) + χs(1 − Ωα)

)
F · ς dxdt,

(10.2.52)

where vα = Eνα
f

(
λwα

λt

)
and c̃ α = Ẽνα

f
(c α).

We also rewrite the continuity equation (10.0.10) as the integral identity

∫ T

0

∫

ν

wα · ∇ ϕ dxdt = 0, (10.2.53)

which holds true for any smooth functions ϕ .
Next on the base of the estimates (10.2.8)–(10.2.12), we state that there exist the

functions

c, p ∪ L2(νT ), ∇ c, v = λw
λt

, ∇ v ∪ L2(νT ),

C, P ∪ L2(νT × Y ), ∇y C, V, ∇y V ∪ L2(νT × Y ),

and the convergent subsequences {c̃ α}, {∇ c̃ α}, {p α}, {wα}, {D (x, wα)}, {vα}, and
{D (x, vα)} such that

c̃ α(x, t) δ c(x, t) weakly in W 1,0
2 (νT ),

c̃ α(x, t) → c(x, t) two-scale in L2(νT ),

∇ c̃ α → ∇ c + ∇y C two-scale inL2(νT ),

p α(x, t) δ p(x, t) weakly in L2(νT ),

p α(x, t) → P(x, t, y) two-scale in L2(νT ),
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wα(x, t) δ w(x, t) weakly in
∅

W1,0
2 (νT ),

D
(
x, wα

) → D (x, w) + D (y, W) two-scale inL2(νT ),

vα(x, t) δ v(x, t) weakly in
∅

W1,0
2 (νT ),

D
(
x, vα

) → D (x, v) + D (y, V) two-scale inL2(νT ),

V(x, t, y) = λW
λt

(x, t, y),

vα(x, t) → v(x, t) and strongly inL2(νT )

as α → 0.
The last statement follows from the estimates (10.2.11) and (10.2.12). In fact,

these estimates and the diagonal procedure permit us to find some subsequences of
{vα(, t)} and {∇ vα(, t)}, which converge weakly in L2(ν) for almost all t ∪ (0, T )

to v(x, t) and ∇ v(x, t) respectively. Due to the embedding theorem [3], the weak
convergence of {∇ vα(, t)} in L2(ν) for almost all t ∪ (0, T ) results in the strong
convergence of {vα(, t)} in L2(ν) for almost all t ∪ (0, T ). Thus, the sequence of
the bounded functions

f α(t) =
∫

ν

|vα(x, t) − v(x, t)|2dx, | f α(t)| � C(C0, F),

converges almost everywhere in (0, T ) to zero. According to Lebesque’s theorem
(or the dominated convergence theorem, [3])

∫ T

0
f α(t)dt =

∫ T

0

∫

ν

|vα(x, t) − v(x, t)|2dxdt → 0 as h → 0.

The following statements, except the last one, are already known (see Chap. 1 and
the first part of the present chapter).

Lemma 10.10 The limiting functions satisfy in the domain ν for t > 0 the system
of macroscopic equations

∇ · v = 0, (10.2.54)

∇ · P̂ + χ̂ (c) F = 0, (10.2.55)

P̂ = μ0

(
m D(x, v) +

〈
D

(
y,

λW
λt

)〉

Y f

⎜

+ Γ0
(
(1 − m)D(x, w) + 〈D(y, W)∞Ys

)− p I,

m
λc

λt
+ v · (m ∇ c + 〈∇y C∞Y f

) = D0 ∇ · (m ∇ c + 〈∇y C∞Y f

)
. (10.2.56)

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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Lemma 10.11 The limiting functions satisfy in the domain Y for x ∪ ν and t > 0
the system of microscopic equations

∇y · W = 0, (10.2.57)

∇y · P̃ = 0, (10.2.58)

P̃ = μ0Ω(y)

(
D(x, v) + D

(
y,

λW
λt

))

+ Γ0
(
1 − Ω(y)

)(
D(x, w) + D(y, W)

)− P I,

∇y ·
(
Ω(y)

(∇ c + ∇y C
)) = 0. (10.2.59)

Lemma 10.12 The relations

P̂ = −p I + N1 : D(x, v) + N2 : D(x, w)

+
∫ t

0
N3(t − ξ) : D(x, w(x, ξ ))dξ, (10.2.60)

and
m ∇ c + 〈∇y C∞Y f = B

(c)∇c, (10.2.61)

hold true.
Here fourth-rank constant tensors N1, N2, and fourth-rank tensor N3(t) have

been defined in Chap.1 by formulae (1.4.30), and the constant matrix B(c) has been
defined in Theorem 10.2 by formula (10.1.61).

Lemma 10.13 Let the domain Y f be symmetric with respect to rotations of the angle
Π/2 around the principal axes of the Cartesian coordinate system. Then the matrix
B

(c) is diagonal.

Proof Let T2 be the rotation of the angle Π/2 around the axes y3 with the direction
e3, such that T2 · e2 = e1. Here {e1, e2, e3} are the orthogonal basis of the Cartesian
coordinate system. If z = T2 · y, y ∪ Y , then, by conditions of the lemma, T2 :
Y f → Y f and Ω(y) = Ω(z).

Let us recall, that the 1-periodic solution C of the boundary-value problem
(10.2.59) has the form

C =
3⎭

i=1

C (i)(y)
λc

λxi
,

where C (i)(y), i = 1, 2, 3, are solutions of the periodic boundary-value problem

∇y · (Ω(y)(ei + ∇yC (i))
) = 0 (10.2.62)

in the domain Y .

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
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For the function ⎛C (2)(z) = C (2)(y)we have the periodic boundary-value problem

∇z · (Ω(z)(T2 · e2 +T2 ·T∈
2 · ∇z⎛C (2))

) = ∇z · (Ω(z)(e1 + ∇z⎛C (2))
) = 0 (10.2.63)

in the unit cube Z = Y .
The problem (10.2.63) coincideswith the problem (10.2.62) and due to the unique-

ness of this problem

C (2)(y) = ⎛C (2)(z) = C (1)(z) = C (1)(T2 · y). (10.2.64)

In the same way we obtain

C (3)(y) = ⎛C (3)(x) = C (1)(x) = C (1)(T3 · y) (10.2.65)

for the rotation x = T3y around the axes y1, such that T3 · e3 = e1.
To find B0 we put a1 = 〈∇yC (1)(y)∞Y f ,

and calculate

a2 = 〈∇yC (2)(y)∞Y f = T
∈
2〈∇zC (1)(z)∞Y f = T

∈
2 · a1,

and
a3 = 〈∇yC (3)(y)∞Y f = T

∈
3〈∇ C (1)(x)∞Y f = T

∈
3 · a1.

Let a1 = η1e1 + η2e2 + η3e3. Then,

a2 = η1T
∈
2 · e1 + η2T

∈
2 · e2 + η3T

∈
2 · e3 = η1e2 − η2e1 + η3e3,

a3 = η1T
∈
3 · e1 + η2T

∈
3 · e2 + η3T

∈
3 · e3 = η1e3 + η2e2 − η3e1,

where we have used the evident properties of the transformations T2 and T3:

T
∈
2 · e1 = e2, T

∈
2 · e2 = −e1, T

∈
2 · e3 = e3,

and
T

∈
3 · e1 = e3, T

∈
3 · e2 = e2, T

∈
3 · e3 = −e1.

Thus,

B0 = a1 ⊗ e1 + a2 ⊗ e2 + a3 ⊗ e3
= η1e1 ⊗ e1 + η1e2 ⊗ e2 + η1e3 ⊗ e3 + η2e2 ⊗ e1 − η2e1 ⊗ e2

+ η3e3 ⊗ e1 − η3e1 ⊗ e3 + η3e3 ⊗ e2 + η2e2 ⊗ e3
= η1(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3),

due to the symmetry of B0, which implies η2 = η3 = 0.



Chapter 11
The Muskat Problem

Here as the basic mathematical model at the microscopic level in the domain Ω

for t > 0 we consider the mathematical model M28 of the joint motion of two
incompressible immiscible liquids, consisting of the dynamic equations

∇ ·
(

χε μ0 D

(
x,

∂wε

∂t

)
+ (1 − χε)λ0 D(x, wε) − pε

I

)
+ ρε F = 0, (11.0.1)

∇ ·
(

∂wε

∂t

)
= 0 (11.0.2)

for the displacement vector wε and the pressure pε of the medium, completed with
the Cauchy problem

∂ρε

∂t
+ ∂wε

∂t
· ∇ ρ ∪ ∂ρε

∂t
+ ∇ ·

(
ρε ∂wε

∂t

)
= 0, (11.0.3)

ρε(x, 0) = ρε
0(x) ∪ ρ

(0)
f (x) χε + ρs (1 − χε) (11.0.4)

for the density ρ of the medium.
The differential equations are endowed with the boundary condition

vε(x, t) = 0, x ⊂ Ω, t > 0 (11.0.5)

on the boundary S = ∂Ω of the domain Ω , the initial condition

χε(x)wε(x, 0) = 0, x ⊂ Ω, (11.0.6)

and the normalization condition
∫

Ω

pε(x, t)dx = 0. (11.0.7)
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Throughout this chapter we imposeAssumption 0.1 on the structure of the pore space
and additionally suppose that the solid skeleton is disconnected: Ys ∩ Yf .

We also suppose that conditions

0 < λ0, μ0, ρs < ∈, (11.0.8)

0 < ρ−
f = const � ρ

(0)
f (x) � ρ+

f = const < ∈, (11.0.9)

and

max
(x,t)⊂ΩT

(
|F(x, t)| + |∇F(x, t)| +

∣∣∣∣
∂F
∂t

(x, t)

∣∣∣∣
)

= F < ∈ (11.0.10)

hold true.
Recall that Eq. (11.0.1) is understood in the sense of distributions. It contains

Stokes equations in the liquid part, Lamé’s equations in the solid part, and the con-
tinuity condition

lim
x ∅ x0

x ⊂ Ωε
s

(
λ0D

(
x, wε(x, t)

) − p ε(x, t) I
)

· n(x0)

= lim
x ∅ x0

x ⊂ Ωε
f

(
μ0D

(
x,

∂wε

∂t
(x, t)

)
− p ε(x, t) I

)
· n(x0) (11.0.11)

on the common boundary Γ ε “solid skeleton-pore space”.

11.1 Statement of the Problem and Main Results

First of all let us look at the dynamic equation (11.0.1). The smoothness of the
solution with respect to time in the solid part depends on the smoothness of the term
ρε F with respect to time. But the density ρε might be some step function, which

is sufficient for the existence of the derivative
∂wε

∂t
in the liquid part, but does not

guarantee the existence of this derivative in the solid part.
Our aim is to get the homogenized model, which is asymptotically closed to

(11.0.1)–(11.0.7). Therefore we may make a small change to the model and in the

transport equation (11.0.3) instead of
∂wε

∂t
consider some function vε, which coin-

cides with
∂wε

∂t
in the liquid part and is asymptotically close to

∂wε

∂t
as ε ∅ 0 in

the solid part.

To do that, we extend the liquid velocity
∂wε

∂t
from the liquid part Ωε

f to the solid

part Ωε
s using the extension LemmaB.10: for any ε > 0 there exists an extension
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vε ⊂ ◦
W

1

2(Ω) of the function
∂wε

∂t
from the domain Ωε

f onto domain Ω such that

χε(x)

(
vε(x, t) − ∂wε

∂t
(x, t)

)
= 0, x ⊂ Ω, t > 0,

and

∫

Ω

|vε|2dx � C
∫

Ωε
f

∣∣∣∣
∂wε

∂t

∣∣∣∣
2

dx, (11.1.1)

∫

Ω

|D(x, vε)|2dx � C
∫

Ωε
f

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

dx, (11.1.1)

where C is independent of ε and t.
We fix this linear continuous operator from W1

2(Ω
ε
f ) to W1

2(Ω) and denote it as

vε = EΩε
f

(
∂wε

∂t

)
, (11.1.2)

and, in what follows, call this function vε the liquid velocity.
Note, that due to the continuity Eq. (11.0.2) in the domain ΩT and the structure

of the pore space we may choose the extension operator such that the function vε

will be solenoidal:
∇ · vε = 0, (x, t) ⊂ ΩT . (11.1.3)

The results of Sect. 1.4 show that
∂wε

∂t
and vε are asymptotically closed as ε ∅ 0.

Definition 11. 1 We say that the triple of functions {wε, pε, ρε} is a weak solution
to the problem (11.0.1)–(11.0.7), if

wε ⊂
◦

W1,0
2 (ΩT ), χε∇

(
∂wε

∂t

)
⊂ L2(ΩT ), ρε, pε ⊂ L2(ΩT ),

wε is solenoidal in ΩT = Ω × (0, T), the pressure p satisfies the normalization
condition (11.0.7), and the integral identities

∫

ΩT

ρε

(
∂ξ

∂t
+ ∂wε

∂t
· ∇ξ

)
dxdt +

∫

Ω

ρε
0(x) ξ(x, 0) dx = 0, (11.1.4)

and

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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∫

ΩT

(
−χεαμ D(x, wε) : D

(
x,

∂ϕ

∂t

)
+ (1 − χε)αλ D(x, wε) : D(x, ϕ)

)
dxdt

=
∫

ΩT

(
pε ∇ · ϕ + ρεF · ϕ

)
dxdt, (11.1.5)

hold true for any smooth functions ξ and ϕ, such that ξ(x, T) = 0 and ϕ(x, t) = 0
for x ⊂ S.

In (11.1.4) vε is the extension of
∂wε

∂t
from the liquid part Ωε

f onto the solid part

Ωε
s given by (11.1.2) and

vε ⊂
◦

W1,0
2 (ΩT ).

Note, that integral identity (11.1.5) contains differential equations in the pore space
and in the solid skeleton, the boundary condition (11.0.11) on the common boundary
Γ ε and the initial condition (11.0.6).

Theorem 11.1 Let conditions (11.0.8)–(11.0.11) hold true.
Then the problem (11.0.1)–(11.0.7) has at least one weak solution {wε, pε, ρε},

such that

max
0<t<T

∫

Ω

(
|wε|2 + |vε|2 + |∇wε(x, t)|2

)
dx +

∫

ΩT

|pε|2dxdt � C, (11.1.6)

max
0<t<T

∫

Ω

(
|∇vε|2 + χε

∣∣∣∣D
(

x,
∂wε

∂t
(x, t)

)∣∣∣∣
2
)

dx +
∫

ΩT

∣∣∣∣∇
∂wε

∂t

∣∣∣∣
2

dxdt � C,

(11.1.7)

∫

Ω

|∇vε(x, t1) − ∇vε(x, t2)|2dx � C |t1 − t2| 12 , t1, t2 ⊂ (0, T), (11.1.8)

0 � ρε(x, t) � max(ρ+
f , ρs) = ρ+

0 , (11.1.9)

where C = C(ρ+
0 , F, T) is independent of ε, and

vε = EΩε
f

(∂wε

∂t

)
.

Theorem 11.2 Under the conditions of Theorem2.1 let {wε, pε, ρε} be the weak
solution to the problem (11.0.1)–(11.0.7). Then there exists a subsequence of small
parameters {ε > 0} as ε ↘ 0, such that the sequence {wε} converges weakly in

◦
W1,0

2 (ΩT ) and strongly in L2(ΩT ) to the function w, the sequence {ρε} converges
weakly in L2(ΩT ) to the function ρ, the sequence {pε} converges weakly in L2(ΩT ) to
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the function p, the sequence

{
∂wε

∂t

}
, converges weakly in

◦
W1,0

2 (ΩT ) and strongly in

L2(ΩT ) to the function
∂w
∂t

, the sequence {vε}, where vε = EΩε
f

(
∂wε

∂t

)
, converges

strongly in L2(ΩT ) to the function
∂w
∂t

.

The triple of limiting functions {w, p, ρ} is a weak solution to the Muskat problem
for viscoelastic filtration, which consists of the dynamic equations

∇ ·
(
P̂(w)

)
− ∇ p + ρF = 0, (11.1.10)

P̂(w) = M0 : D
(

x,
∂w
∂t

)
+ M1 : D(x, w) +

∫ t

0
M2(t − τ) : D(x, w(x, τ )dτ,

∇ · w = 0, (11.1.11)

for the displacement w and the pressure p of the mixture of the solid skeleton and
the liquid in pores, and the transport equation

∂ρ

∂t
+ ∇ ·

(
∂w
∂t

ρ

)
= 0, (11.1.12)

for the density ρ of the liquid mixture in the domain ΩT .
The problem is endowed with the homogeneous boundary condition

w(x, t) = 0, x ⊂ S, t > 0, (11.1.13)

and the initial conditions

w(x, 0) = 0, ρ(x, 0) = ρ0(x) ∪ ρ
(0)
f (x) m + ρs (1 − m) x ⊂ Ω. (11.1.14)

In (11.1.10) the fourth-rank constant tensors M0, M1, and the fourth-rank tensor
M2(t) are defined in Chap.1 by the formulae (1.4.30), and the tensorM0 is symmetric
and strictly positively definite.

11.2 Proof of Theorem 11.1

We prove the existence of the solution to the problem (11.0.1)–(11.0.7) using
the Schauder Fixed Point Theorem, mollifiers, and viscosity solutions method. For
the correct limiting procedure we have to derive a priori estimates, independent of
the parameters of the approximation. First of all we approximate the density in the
dynamic equation using a mollifier with respect to time. That gives us the additional

http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
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smoothness of the solutions to the dynamic equations with respect to time. Next
we approximate the transport equation for the density by the diffusion–convection
equation with a small diffusion (viscosity). It gives us the additional smoothness of
the density with respect to time and spatial variables. Then we prove the existence
of the solution {ρ(δ,h), u(δ,h), p(δ,h)} to the double approximate problem using the
Schauder Fixed Point Theorem. To pass to the limit as δ ∅ 0 we need estimates
independent of δ (Lemma11.2). Here we essentially use the uniform boundedness of
∂ρ(δ,h)

∂t
in a dual space L2

(
(0, T); W−1

2 (Ω)
)
and we also prove that these estimates

are independent of h and ε. As we have mentioned above, the smoothness of the
solution must provide the convergence (at least weak) of the product ρ(δ,h) · v(δ,h),

where v(δ,h) = EΩε
f
(
∂u(δ,h)

∂t
). For the fixed h > 0 the sequence {ρ(δ,h)} is compact

in L2(ΩT ) and the sequence {v(δ,h)} is weakly compact in L2(ΩT ). Thus, we may
pass to the limit as δ ∅ 0 and get the solution {ρ(h), u(h), p(h)} of the approximate
problem. As a last step we have to pass to the limit as h ∅ 0. But the bounded
sequence {ρ(h)} is no longer a compact set in L2(ΩT ). Therefore, we must prove the
strong compactness in L2(ΩT ) of the sequence {v(h)}. Functions v(h) have spatial
derivatives uniformly bounded in L2(ΩT ). So, the sequence {v(h)} is a compact set
in L2(Ω) for any fixed t ⊂ (0, T). To state that {v(h)} is a compact set in L2(ΩT ) one
has to have some smoothness of v(h) with respect to time [12, 68]. But the proper
dynamic equations do not directly provide this smoothness and we must find another
way, which has been realized in Lemma11.2.

We divide the proof of the theorem into several independent steps.
First we solve the double approximation problem

∇ · (
P

(ε)(u)
) − ∇p + (ρ)(δ)F = 0, ∇ · u = 0, (11.2.1)

∂ρ

∂t
+ v · ∇ρ = h ∞ρ, (11.2.2)

u|S = 0, χεu|t=0 = 0, ρ|S = 0, ρ|t=0 = ρ
(0)
h (x), (11.2.3)

ρ
(0)
h ⊂

◦
C∈ (Ω), 0 � ρ

(0)
h � ρ+

0 , ρ
(0)
h ∅ ρ(0) a.e. inΩ,

for h > 0 and δ > 0 in ΩT , and then pass to the limit as δ ∅ 0 and h ∅ 0.
In (11.2.1), (11.2.2)

P
(ε)(u) = χεαμD

(
x,

∂u
∂t

)
+ (1 − χε)αλD(x, u),

(ρ)(δ) = 1

δ

∫ t

t−δ

ρ̂(x, τ )dτ, v = EΩε
f

(
∂u
∂t

)
,
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ρ̂(x, t) = ρ(x, t), for t > 0, and ρ̂(x, t) = ρ
(0)
h (x) for t < 0.

By the properties of mollifiers the function (ρ)(δ) possesses time derivative
∂

∂t(
(ρ)(δ)

) ⊂ L2(ΩT ). This fact guarantees the additional smoothness of the solution u
with respect to time.

In the standard way we may define a weak solution to the problems (11.2.1)–
(11.2.3) as functions u, p and ρ satisfying the corresponding integral identities.

Lemma 11.1 For given h > 0 and δ > 0 the problems(11.2.1)–(11.2.3) has at least
one weak solution.

Proof To solve the problems (11.2.1)–(11.2.3) we fix the set

M = {σ ⊂ L2(ΩT ) : 0 � σ(x, t) � ρ+
0 a.e. inΩT },

and consider in ΩT the initial boundary-value problem for the linear system

∇ · (
P

(ε)(u)
) − ∇p + (σ )(δ)F = 0, ∇ · u = 0, (11.2.4)

with the homogeneous boundary and initial conditions (11.2.3) for the function u.
The solvability of this problem is standard and follows from the estimates

max
0<t<T

(
→χε

D(x, u)→2,Ω(t)
)

+ →(1 − χε)D(x, u)→2,ΩT + →p →2,ΩT � C, (11.2.5)

max
0<t<T

(∥∥∥∥χε
D

(
x,

∂u
∂t

)∥∥∥∥
2,Ω

(t)

)
+

∥∥∥∥(1 − χε)D

(
x,

∂u
∂t

)∥∥∥∥
2,ΩT

� C

δ
, (11.2.6)

where C = C(ρ+
0 , F, T).

To obtain thefirst estimatewemultiplyEq. (11.2.4) byu and integrate byparts over
domain Ω using Hölder’s, Korn’s, Friedrichs-Poincaré and Gronwall’s inequalities.
To get the second estimate we differentiate the Eq. (11.2.4) with respect to time,

multiply the result by
∂u
∂t

and integrate by parts over domain Ω , repeating the same

procedure as above.

Therefore, u and v = EΩε
f

(
∂u
∂t

)
are the linear continuous operators on σ :

u = Φ0(σ ), v = Φ(σ). In particular,

max
0<t<T

(
→v→2,Ω(t) + →∇v→2,Ω(t)

)
� C

δ
F →σ→2,ΩT . (11.2.7)

In (11.2.7) we have used Korn’s inequality and estimates (11.2.6) and (11.1.1).
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Nextwe consider inΩT the linear problem for the parabolic equation (11.2.2) with

the conditions (11.2.3) for the function ρ, where v = EΩε
f

(
∂u
∂t

)
and u = Φ(σ).

As before, the solvability of this problem is a simple consequence of the maximum
principle

0 � ρ(x, t) � ρ+
0 , a.e. inΩT , (11.2.8)

the energy equality

∫

Ω

|ρ(x, t)|2dx + 2h
∫ t

0

∫

Ω

|∇ρ(x, τ )|2dxdτ =
∫

Ω

|ρ(0)
h (x)|2dx,

and the estimate

max
0<t<T

∫

Ω

|ρ(x, t)|2dx + 2h
∫ T

0

∫

Ω

|∇ρ(x, t)|2dxdt � |ρ+
0 |2 (11.2.9)

(for more details see [61]).
For fixed h the problems (11.2.2), (11.2.3) defines some continuous operator

ρ = Ψ (v). In fact, if ρ1 = Ψ (v1) and ρ2 = Ψ (v2), then for ρ̃ = ρ1 − ρ2 and
ṽ = v1 − v2 one has

1

2

d

dt

∫

Ω

|ρ̃(x, t)|2dx + h
∫

Ω

|∇ρ̃|2dx = J,

J = −
∫

Ω

ρ̃ ∇ρ2 · ṽdx =
∫

Ω

ρ2 ∇ρ̃ · ṽ dx.

|J| � h

2

∫

Ω

|∇ρ̃(x, t)|2dx + 1

2h
|ρ+

0 |2
∫

Ω

|ṽ|2dx.

Thus,

→Ψ (v1) − Ψ (v2)→2,ΩT � ρ+
0◦
h

→v1 − v2→2,ΩT . (11.2.10)

Let now ρ = Λ(σ) ∪ Ψ
(
Φ(σ)

)
. Operator Λ is a continuous in M due to the

estimates (11.2.7) and (11.2.10), and transforms M into itself due to the estimates
(11.2.8). The set M is obviously convex and closed in L2(ΩT ).

Moreover, by the well-known properties of the solutions to the linear parabolic
equation (11.2.2), the embedding theorems [61], and the estimate (11.2.7)

v ⊂ L6(ΩT ), ρ ⊂ W2,1
6 (ΩT ) ∩ Hβ,

β
2 (ΩT ).

This last smoothness property of the function ρ means that the operator Λ is com-
pletely continuous.ApplyingSchauder’s FixedPointTheorem [55]weget at least one
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fixed point ρ(δ,h) of the operator Λ, which defines the solution {ρ(δ,h), u(δ,h), p(δ,h)}
to the problem (11.2.1)–(11.2.3), satisfying the estimates (11.2.5)–(11.2.9).

Now we derive the basic a priori estimates, which permits us to pass to the limit in
(11.2.1)–(11.2.3) as δ ∅ 0 and h ∅ 0.

Lemma 11.2 The solution {ρ(δ,h), u(δ,h), p(δ,h)} of the problem(11.2.1)–(11.2.3)
satisfies the estimates (11.2.8), (11.2.9) for the density ρ(δ,h), the estimate (11.2.5),
and the estimates

max
0<t<T

∫

Ω

|∇v(δ,h)(x, t)|2dx +
∫ T

0

∫

Ω

(
|p(δ,h)|2 +

∣∣∣∇ ∂u(δ,h)

∂t

∣∣∣
2)

dxdt � C,

(11.2.11)

for the pressure p(δ,h), the liquid velocity v(δ,h) and the displacement u(δ,h), where
the constant C = C(ρ+

0 , F, T) is independent of ε, δ and h.

Proof For the moment we omit indexes h and δ. As we have mentioned above, the
approximation of ρ by (ρ)(δ) results in the additional smoothness of the solution u of
the problem(11.2.1)–(11.2.3) with respect to time. Nowwe prove that this additional
smoothness does not depend on the small parameters ε, δ and h.

To do that we first multiply the Eq. (11.2.1) by
∂u
∂t

, integrate by parts over

domain Ω , pass the time derivative in the term

∫

Ω

(ρ)(δ)F · ∂u
∂t

dx

from u onto (ρ)(δ)F and express the time derivative

∂(ρ)(δ)

∂t
= 1

δ

∫ t

t−δ

∂ρ

∂τ
(x, τ )dτ, for t > δ,

and
∂(ρ)(δ)

∂t
= 1

δ

∫ t

0

∂ρ

∂τ
(x, τ )dτ, for t < δ,

using (11.2.2) in the form

∂ρ

∂t
= ∇ · (

h ∇ρ − ρ v
)
.

We have

αμ

∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx + αλ

2

d

dt

∫

Ω

(1 − χε)|D(x, u)|2dx = I0(t), (11.2.12)

where
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−I0(t) = I0,0(t) +
∫

Ω

(ρ)(δ)

(
∂F
∂t

· u
)

dx,

I0,0(t) =
∫

Ω

(1
δ

∫ t

t−δ

(
h∇ρ − ρ v

)
(x, τ )dτ

)
· ∇(

F · u
)
(x, t)dx, for t > δ,

and

I0,0(t) =
∫

Ω

(1
δ

∫ t

0

(
h∇ρ − ρ v

)
(x, τ )dτ

)
· ∇(

F · u
)
(x, t)dx, for t < δ.

Everything that we have done to get (11.2.12) is just a formal procedure, but it can
be done rigorously using the corresponding integral identities.

It is easy to see that for any positive γ

∫ t

0
|I0(τ )|dτ � γ

∫ t

0

∫

Ω

|v|2dxdτ

+
(

1

4γ
+ 1

2

)
(ρ+

0 F)2
∫ t

0

∫

Ω

(|∇u|2 + |u|2)dxdτ

+ h

2

∫ t

0

∫

Ω

h|∇ρ|2dxdτ + 2ρ+
0 F

(∫ t

0

∫

Ω

|u|2dxdτ

) 1
2

.

After integrating (11.2.12) with respect to time and taking into account the esti-
mates (11.2.5), (11.2.8) and (11.0.8) one has

∫ t

0

∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

(x, τ )

)∣∣∣∣
2

dxdτ +
∫

Ω

|D(
x, u(x, t)

)|2dx

� Cγ

∫ t

0

∫

Ω

|v(x, τ )|2dxdτ + C

(
1

γ
+ 1

)
(ρ+

0 F + 1)4 + C (ρ+
0 )2.

Choosing Cγ � 1

2
we get

∫ T

0

∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

(x, t)

)∣∣∣∣
2

dxdt � C(ρ+
0 F + 1)4, (11.2.13)

where C is independent of ε, δ and h.
This last estimate, estimate (11.1.1), and Korn’s inequality imply

∫ T

0

∫

Ω

|∇v(x, t)|2dxdt � C (ρ+
0 F + 1)4. (11.2.14)
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Due to the inclusion v ⊂ L2
(
(0, T);

◦
W1

2 (Ω)
)
we may use the Friedrichs-Poincaré

inequality

∫ T

0

∫

Ω

|v(x, t)|2dxdt � C
∫ T

0

∫

Ω

|∇v(x, t)|2dxdt, (11.2.15)

with constant C independent of ε.
Estimates (11.2.14) and (11.2.15) result in

∫ T

0

∫

Ω

|v(x, t)|2dxdt � C (ρ+
0 F + 1)4. (11.2.16)

Now, we repeat the same procedure for the time derivatives, namely, we differentiate

the Eq. (11.2.1) with respect to time, multiply the result by
∂u
∂t

, and integrate over

domain Ω:

αμ

2

d

dt

∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx + αλ

∫

Ω

(1 − χε)

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx = I1(t),

− I1(t) = I1,0(t) +
∫

Ω

(ρ)(δ)

(
∂F
∂t

· ∂u
∂t

)
dx, (11.2.17)

I1,0(t) =
∫

Ω

(
1

δ

∫ t

t−δ

(h∇ρ − ρ v) (x, τ )dτ

)
· ∇

(
F · ∂u

∂t

)
(x, t)dx, for t > δ,

I1,0(t) =
∫

Ω

(
1

δ

∫ t

0
(h∇ρ − ρ v) (x, τ )dτ

)
· ∇

(
F · ∂u

∂t

)
(x, t)dx, for t < δ,

∫ t

0
|I1(τ )|dτ � (γ + h)

∫ t

0

∫

Ω

(∣∣∣∣∇
(

∂u
∂t

)∣∣∣∣
2

+
∣∣∣∣
∂u
∂t

∣∣∣∣
2
)

dxdτ

+ (ρ+
0 · F)2

(∫ t

0

∫

Ω

(
1

4γ
|v|2 + h|∇ρ|2

)
dxdτ + 1

)
.

After integrating (11.2.17) with respect to time and using the Friedrichs-Poincaré
inequality ∫

Ω

∣∣∣∣
∂u
∂t

∣∣∣∣
2

dx � C
∫

Ω

∣∣∣∣∇
∂u
∂t

∣∣∣∣
2

dx,

Korn’s inequality
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∫

Ω

∣∣∣∣∇
∂u
∂t

∣∣∣∣
2

dx � C
∫

Ω

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx,

the evident decomposition

∫

Ω

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx =
∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx +
∫

Ω

(1 − χε)

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx,

and the estimates (11.2.9) and (11.2.16) we have

αμ

2

∫

Ω
χε

∣∣∣∣D
(

x,
∂u
∂t

(x, t)

)∣∣∣∣
2

dx + αλ

∫ t

0

∫

Ω
(1 − χε)

∣∣∣∣D
(

x,
∂u
∂τ

(x, τ )

)∣∣∣∣
2

dxdτ

� (γ + h)C

(∫

Ω
χε

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx +
∫

Ω
(1 − χε)

∣∣∣∣D
(

x,
∂u
∂t

)∣∣∣∣
2

dx

)
+ C (ρ+

0 · F)6.

Therefore

max
0<t<T

∫

Ω

χε

∣∣∣∣D
(

x,
∂u
∂t

(x, t)

)∣∣∣∣
2

dx +
∫ T

0

∫

Ω

∣∣∣∣∇
∂u
∂t

∣∣∣∣
2

dxdt � C (ρ+
0 F + 1)6.

(11.2.18)
The last estimate, the estimate (11.1.1), and Korn’s inequality imply

max
0<t<T

∫

Ω

|∇v(x, t)|2dx � C (ρ+
0 F + 1)6. (11.2.19)

The estimate (11.2.11) for the pressure p follows from Eq. (11.2.1) as an estimate for

the bounded linear functional acting in the space L2

(
(0, T);

◦
W1

2 (Ω)
)
in the form

∫

ΩT

p ∇ · ϕ dxdt =
∫

ΩT

(
P

(ε)(u) : D(x, ϕ) + (ρ)(δ)F · ϕ
)
dxdt, (11.2.20)

and the estimates (11.2.8) and (11.2.18).

As the last step we pass to the limit as δ ∅ 0. We do that in the integral identity
(11.2.20) and in the integral identity

∫

ΩT

(
ρ

(
∂ψ

∂t
+ v · ∇ψ

)
− h∇ρ · ∇ψ

)
dxdt = −

∫

Ω

ρ
(0)
h (x)ψ(x, 0)dx,

(11.2.21)

with arbitrary smooth functions ϕ and ψ . The functions ϕ and ψ vanish at S and the
function ψ vanishes at t = T .
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Estimates (11.2.8), (11.2.9), and (11.2.11) guarantee the inclusion

∂ρ(δ,h)

∂t
⊂ L2

(
(0, T); W−1

2 (Ω)
)
,

and the uniform boundedness in L2

(
(0, T); W−1

2 (Ω)
)
with respect to δ, h, and ε.

On the basis of these estimates, the above mentioned inclusion, and the well-
known compactness results [68], we may choose some subsequence from {δ > 0},
such that the sequences

{p(δ,h)}, {∇u(δ,h)},
{
∇ ∂u(δ,h)

∂t

}
, {v(δ,h)} and {∇ρ(δ,h)}

converge weakly in L2(ΩT ) and L2(ΩT ) as δ ∅ 0 to the functions

p(h), ∇u(h), ∇ ∂u(h)

∂t
, v(h) = EΩε

f

(
∂u(h)

∂t

)
and ∇ρ(h)

correspondingly, and the sequence {ρ(δ,h)} converges strongly in L2(ΩT ) as δ ∅ 0
to the function ρ(h).

Passing to the limit as δ ∅ 0 in the integral identities (11.2.20) and (11.2.21) we
conclude that the limiting functions {u(h), p(h), ρ(h)} are the weak solution to the
approximation problem

∇ · (
P

(ε)(u(h))
) − ∇p(h) + ρ(h) F = 0, ∇ · u(h) = 0, (11.2.22)

∂ρ(h)

∂t
+ v(h) · ∇ρ(h) = h ∞ρ(h), (11.2.23)

completed with the initial and boundary conditions (11.2.3).
Finally, to prove Theorem11.1 we have to pass to the limit as h ∅ 0 in (11.2.3),

(11.2.22), and (11.2.23).
To do that we derive the main a priori estimate.

Lemma 11.3 The solutions {ρ(h), u(h), p(h)} of the problems(11.2.22), (11.2.23),
and (11.2.3) satisfy the estimates (11.2.8), (11.2.9), (11.2.11) and the estimate

∫

Ω

|∇v(h)(x, t1) − ∇v(h)(x, t2)|2dx � C|t1 − t2| 12 , (11.2.24)

with constant C independent of h and ε.

Proof As before, we omit for the moment the index h. It is clear, that we have to
prove only the estimate (11.2.24). In the same way as in Lemma11.2 we get the
following integral identity
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αμ

d

dt

∫

Ω

χε
D

(
x,

∂u
∂t

(x, t)

)
: D (x, ϕ(x)) dx = I2(t), (11.2.25)

where

I2(t) = −αλ

∫

Ω
(1 − χε)D

(
x,

∂u
∂t

(x, t)

)
: D(

x, ϕ(x)
)
dx

+
∫

Ω

(
h∇ρ − ρ v

)
(x, t) · ∇(

F(x, t) · ϕ(x)
)
dx +

∫

Ω
ρ(x, t)

(
∂F
∂t

(x, t) · ϕ(x)

)
dx.

This last integral identity holds true for any solenoidal function ϕ ⊂
◦

W1
2 (Ω).

After integrating the right-hand side of (11.2.25) over the interval (t1, t2) and
using the estimates (11.2.8), (11.2.9), and (11.2.11) we arrive at

∫ t2

t1
|I2(t)|dt � C

∫ t2

t1
→h|∇ρ| + |v| +

∣∣∣∣∇
∂u
∂t

∣∣∣∣ + 1→2,Ω(t) dt →∇ϕ→2,Ω

� C |t1 − t2| 12 →∇ϕ→2,Ω .

Therefore,

∫

Ω

χε
D

(
x,

∂ũ
∂t

)
: D(

x, ϕ
)
dx � C |t1 − t2| 12 →∇ϕ→2,Ω,

where
∂ũ
∂t

= ∂u
∂t

(x, t2) − ∂u
∂t

(x, t1).

In particular, for

ϕ = ṽ = v(x, t2) − v(x, t1), →∇ϕ→2,Ω � C, √ t1, t2 ⊂ (0, T),

and ∫

Ω

χε
D

(
x,

∂ũ
∂t

)
: D(

x, ṽ
)
dx � C |t1 − t2| 12 .

But, by the definition of the extension v

χε
D

(
x, ṽ

) = χε
D

(
x,

∂ũ
∂t

)
.

Thus,

∫

Ω

χε
D

(
x,

∂ũ
∂t

)
: D

(
x,

∂ũ
∂t

)
dx =

∫

Ω

χε
D

(
x,

∂ũ
∂t

)
: D(

x, ṽ
)
dx � C |t1 − t2| 12 .



11.2 Proof of Theorem11.1 381

The statement of the lemma follows now from the last estimate, estimate (11.1.1)
and Korn’s inequality.

Lemmas11.2 and 11.3 permit us to find some subsequence from {h > 0}, such
that the sequences

{
D

(
x, u(h)

)}
,

{
χε

D

(
x,

∂u(h)

∂t

)}
, {v(h)},

{
D

(
x, v(h)

)}
, {p(h)} and {ρ(h)}

converge weakly in L2(ΩT ) and L2(ΩT ) as h ∅ 0 to the functions

D
(
x, wε

)
, χε

D

(
x,

∂wε

∂t

)
, vε, D

(
x, wε

)
, pε and ρε

correspondingly [68], and the sequence {v(h)} converges strongly in L2(ΩT ) as

h ∅ 0 to the function vε = EΩε
f

(
∂wε

∂t

)
.

In fact, to prove the last statement we fix the countable set (t(k))
∈
k=1, which is

dense in (0, T) and choose the subsequence from {h > 0}, such that the sequences
{∇v(h)(x, t(k))} converge weakly in L2(Ω) as h ∅ 0 for all k = 1, 2, 3, . . .. That
is possible due to the estimate (11.2.11) and the standard diagonal procedure. The
last fact and the estimate (11.2.24) guarantee the weak convergence in L2(Ω) of the
sequences {∇v(h)(x, t)} for all t ⊂ (0, T). Now we apply the completely continu-

ous imbedding of
◦

W1
2 (Ω) into L2(Ω) (see [68]) and conclude that the sequence‘

{v(h)(x, t)} converges strongly in L2(Ω) for all t ⊂ (0, T). The limiting procedure
in the integral identities (11.2.20) and (11.2.21) as h ∅ 0 proves the statement of
Theorem11.1.

11.3 Proof of Theorem 11.2

To prove this theoremwe only have to pass to the limit as ε ∅ 0 in the corresponding
integral identities (11.1.4) and (11.1.5). It is already known, how to pass to the limit
in the convection term ρε · vε in (11.1.4). The limit in (11.1.5) and in the continuity
equation repeats the same procedure as in Chap. 1.4 (proof of Theorem1.11) if we
take into account the estimates (11.1.6)–(11.1.9).

http://dx.doi.org/10.2991/978-94-6239-015-7_1


Appendix A
Elements of Continuum Mechanics

A.1 Subject and Method of Continuum Mechanics

1. The subjects of study in continuum mechanics are physical bodies
(physical continua), having the properties of continuous media and internal mobility.
A physical continuum is a medium field with a continuous matter such that every
part of the medium, however small, is itself a continuum and entirely filled with
the matter. The property of internal mobility (or deformation) consists in translating
separated parts of the physical continuum with respect to each other, but keeping the
external form invariant.

Strictly speaking, by virtue of the atomic-molecular construction of any matter,
no such physical bodies do not exist. When we talk about a physical continuum we
suppose that the property of continuous matter is approximately true. That means
that we regard the scale of molecular process to be less than minimum scale of
interactions being studied. These scales are distinguished for different conditions.
For example, the average distance between particles (molecules) of air near of the
Earth is l ∇ 10−6 cm, but in the atmosphere at the height of 60km it is l ∇ 10−3 cm
and in outer space it is l ∇ 1 cm. If one considers that the lower bound of length L
on which processes are studied in these media is equal to 10−1, 10 2 and 10 5 cm,

then for all those cases we have
l

L
∇ 10−5. Therefore media in outer space can be

regarded as physical continua in the same meaning that we assume for air near the
Earth.

So the continuum hypothesis implies that a very small volume will contain a large
number of molecules. For example, V = 1 cm3 of air contains N = 2.687 × 1019

molecules under normal conditions (from Avogadro’s hypothesis). Thus, in a cube
with 0.001 cm sides there are 2.687×1010 molecules—which is a very large number.
We are not interested in the properties of each molecule at any point x but rather in
the average over a large number of molecules in the neighborhood of the point x.
Mathematically, the association of averaged values of properties at a point x gives
rise to a continuum of points and numbers. In summary, the continuum hypothesis
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384 Appendix A: Elements of Continuum Mechanics

implies the postulate: Matter is continuously distributed throughout the region
under consideration because there are a large number of molecules even in
macroscopically small volumes.

Conceptually continuummedia are separated into gases, liquids and solids. This is
a conditional distinction, dependingon the statistical aspects of themolecularmotions
in the media. For example, in gases, the molecules are far apart-having an average
separation between molecules of the order of 3.5 × 10−7 cm. The cohesive forces
between themolecules are weak. Themolecules randomly collide and exchange their
momentum, heat, and other properties giving rise to viscosity, thermal conductivity,
etc. These effects, thoughmolecular in origin, are considered to be physical properties
of the medium itself. In liquids, the separation between molecules is much smaller
and the cohesive forces between amolecule and its neighbors are quite strong. Again,
the averaged molecular properties resulting from these cohesive forces are taken as
the properties of the medium.While air and water are treated by the same continuum
hypothesis, the effects of their motions are different due to the differences in their
molecular properties, e.g. viscosity, thermal conductivity, etc.

2. Continuum mechanics describes the global behavior of gases, liquids or solids
under the influence of external disturbances.

The concept of a physical continuum makes the powerful methods of calculus
available for the study of nonuniform distributions of physical variables and provides
an easily visualized physical model that closely approximates observations of bulk
matter. The problems of continuum mechanics are multiform.

Continuum mechanics is a foundation for the understanding of many aspects of
the applied sciences and engineering. It is a subject of enormous interest in numerous
fields such as biology, biomedicine, geophysics, meteorology, physical chemistry,
plasma physics and almost all branches of engineering.

Continuum mechanics is separated into experimental physical and theoretical
parts. We will consider only theoretical continuum mechanics.

The method of theoretical continuum mechanics consists of constructing a
mathematical model of the behavior of continuous media. A mathematical model is
a system of relationships (equations and inequalities) between values, which charac-
terize the different properties ofmedia.Usually they are differential (finite) equations.
The initial and boundary data are added to these equations. The mathematical model
has to have the property of correctness. That means that the solutions of its compo-
nent equations have to exist, to be unique, and to be stable. For some models there
is no strict proof of correctness: in these cases one has to use the criteria of real-life
experience. Physical experiments serve as tests for the validity of a theoretical model.

After constructing a mathematical model we produce purely mathematical meth-
ods to study it. For achieve this we use analytical and numerical methods. Because of
the difficulty of solving equations in continuummechanics there are various methods
of simplifications.

3. To understand better the physical foundations of the construction of mathemat-
ical models of continuum mechanics we firstly consider a molecular (microscopic)
description.
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Let some volume V of a continuum medium contain N molecules μi (i =
1, 2, . . . , N)with coordinates of position x andmassmi. Themotion xi(t) ofmolecule
μi obeys Newton’s Second Law

mi
d 2xi

dt 2
= fi, xi(t0) = x0i ,

d xi

dt
(t0) = v0i , (i = 1, 2, . . . , N),

where fi is a force, which acts on the molecule μi. A solution of these equations
defines the position and velocity of molecule μi at any moment of time t. If we were
able to solve these equations we could answer any question about the behavior of
media in the volume V.

However this method is impracticable, because the number N is very large and
we do not know exactly the forces fi. Therefore in continuum mechanics we adopt
a macroscopic viewpoint: we ignore all the fine details of the molecular or atomic
structure and, for the purpose of study, we replace the microscopic medium with a
hypothetical continuum in which the basic values are replaced by average values.

To distinguish the continuum or macroscopic model from a microscopic one the
concept of the mean free path plays a fundamental role. This concept can be defined
as the average distance that a molecule travels between successive collisions with
other molecules. The ratio of the mean free path α to the characteristic length L of the

physical boundaries of interest, called the Knudsen number Kn = α

L
, may be used

to distinguish between macroscopic and microscopic models. Based on the Knudsen
number the motion regimes are grouped as:

(a) continuum (Kn < 0.1);
(b) rarefied gas (0.1 < Kn < 5);
(c) free molecular flow (Kn > 5).

Regimes (a) and (b) are macroscopic models. All these regimes are encountered
in real life.

Two macroscopic theories are the most prevalent: the molecular-kinetic theory
and the phenomenological theory.

In the molecular-kinetic theory all average values are described with the help of
a theoretical probability approach. The mathematical model takes the form of the
Boltzmann equation. We study the phenomenological theory.

4. The basis of the phenomenological theory is that each point of a body V is
represented by its density, velocity and other mechanical values. These values are
defined as the limits of some average values, which are determined in the following
way. Let molecules μi (i = 1, 2, . . . , N) from volume V have mass mi, velocity
vi and internal energy Ui. With the help of these values one calculates the macro-
characteristics of the volume V :

M =
N∑

i=1

mi is the mass,
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K =
N∑

i=1

mivi is the impulse,

E =
N∑

i=1

(
Ui + 1

2
mi|vi|2

)
is the total energy.

Then

ρ∪ = m

|V | is the average density,

v∪ = K
|V | is the average velocity,

U∪ = U

|V | is the average energy.

Here

U =
N∑

i=1

(
Ui + 1

2
mi|vi − v∪|2

)
and |V | is the volume of V .

The macroscopic characteristics of the volume V can be expressed by means of
the average values:

M = |V | ρ∪, K = |V | ρ∪ v∪, E = |V |
(

U∪ + 1

2
ρ∪ |v∪|2

)
.

The hypothesis of the physical continuum allows us to give the point x the “limit”
values of its averages, for example,

ρ = lim ρ∪, v = lim v∪,

where the volume V vanishes such that x ⊂ V . A mathematical model takes the form
of conservation laws that describe the changes of macroscopic characteristics with
respect to time.

We will construct the phenomenological theory of continuum mechanics as the
theory of a mathematical structure. This mathematical structure is based on the
following system of axioms.
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A.2 Basic Definitions and Axioms

1. A continuous medium is a part of physical space, changing with time. That means
that a continuous medium is a part of Euclidean three dimensional space R

3, and
that time is independent of events. We use the non-relativistic Newtonian approach,
i.e. time is absolute.

Axiom 1 (Axiom of space-time)
Continuous medium is a subset of three dimensional Euclidean affine space. Time

is absolute. A Euclidean-affine space is a curvature-free space in which a set of
rectangular Cartesian coordinates can always be introduced on a global scale. It is
a linear three dimensional space over a field of real numbers R. In this space the
origin point O is fixed. Open connected sets χ ∩ R

3 are regarded as a positions
(configurations) of the continuous medium.

Axiom 2 (Axiom of mass and internal energy)
Set χ ∩ R

3 is called a material domain (or medium) if an additive positive
function of sets M(∂) is defined on it, which is called mass. It is supposed that for any
(nonempty) volume ∂ ∩ χ its mass is M(∂) > 0. The additiveness of mass means
that if ∂1 ∩ χ , ∂2 ∩ χ and ∂1 ∈ ∂2 = ∅, then M(∂1 ∪ ∂2) = M(∂1) + M(∂2).
Besides mass we determine another additive function of a set, which we call the
internal energy and we denote it by Ei.

A medium χ is called a material continuum, if functions M and Ei are differen-
tiable on χ and their densities (volume densities) are bounded.

The volume density of mass is denoted by ρ and it is called a density of media
(or simply density). The volume density of energy is denoted by ρU and U is called
the specific internal energy (internal energy per unit mass). The following formula

M(∂) =
∫

∂

ρ dx, Ei(∂) =
∫

∂

ρ U dx

determines the connection between the additive functions of set ∂ and its volume
density.

Axiom 3 (Axiom of material continuum)
A continuous medium is material continuum. The transition of continuous medium

from position χ1 into position χ2 is called its motion. The motion of a continuous
medium depends on time t, which varies in some interval (0, t0) ∩ R. The position
of medium at the moment of time t is denoted by χt . For all t ⊂ (0, t0) we consider
one-parametrical family of movements λt from position χ0 to χt . That means that
we have a mapping: λ : χ0 × (0, t0) −→ χt . We denote λt(ν) = λ (ν, t) for all
ν ⊂ χ0 and λν (t) = λ (ν, t) for all t ⊂ (0, t0) or we will write

λt : χ0 −→ χt, λν : (0, t0) −→ χt .
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Set
{x ⊂ R

3 : x = λν (t), t ⊂ (0, t0)}

is called a trajectory of point ν ⊂ χ0.

Axiom 4 (Axiom of movement)
For every t ⊂ (0, t0) there exists the movement λt of a continuous medium from

position χ0 to position χt and a mapping λt : χ0 −→ χt is a homeomorphism; for
all points ν ⊂ χ0 the mapping λν : (0, t0) −→ χt is a continuous and piecewise
continuously differentiable function on (0, t0).

This axiom allows one to postulate a point of a continuous medium.
A material point (or particle) of a continuous medium is called a point x =

λ (ν, t) ⊂ χt , which is obtained as a result of movement of the fixed point ν ⊂ χ0.
Every particle describes in R

3 the trajectory of this point.
A set of points which consists of the same particles for all t ⊂ (0, t0) is called a

material volume ∂t . By virtue of axiom 3 for all ν ⊂ χ0 and all (except maybe for

a finite number) values t ⊂ (0, t0) there exists a derivative
Ωλ

Ωt
(ν, t).

A derivative
Ωλ

Ωt
(ν, t) is called the velocity of point ν ⊂ χ0 and it is denoted by

v = Ω

Ωt
λ (ν, t).

2. Let F be either a scalar or vector or tensor function of position x and time t,
representing somephysical property of themovement. There are twoways to describe
a fieldF in themoving continuousmedium.Thefirst one is calledEulerian. It consists
of giving a value of field F at the position t as a function of x ⊂ R

3 and time t ⊂ (0, t0),
i.e. it has a value F(x, t).

The second way is called Lagrangian. In this case the given field is considered
as a function of each particle ν ⊂ χ0 at the moment of time t ⊂ (0, t0). Let it be
0
F (ν, t). The functions F(x, t) and

0
F (ν, t) are connected by identity

F(x, t) = 0
F (ν, t). (A.2.1)

There are two possible time derivatives:

ΩF

Ωt
(x, t) and

Ω
0
F

Ωt
(ν, t).

Avalue
ΩF

Ωt
(x, t) is the rate of change of fieldF measured by an observer stationed

at the fixed point x ⊂ χt and it is a local time variation of F.
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On the other hand,
Ω
0
F

Ωt
(ν, t) is a rate of change of

0
F (ν, t)measured by an observer

moving with the particle. The differentiation (A.2.1) with respect to time gives

Ω
0
F

Ωt
= ΩF

Ωt
+ ∞F · v

df= dF

dt
.

A value
dF

dt
is called a total derivative (material or substantial derivative, or the

derivative following the motion).
In particular, if F = x = λ (ν, t) we obtain the formula for the definition of

velocity

v = Ωλ

Ωt
(ν, t) = dx

dt
.

Coordinates (ν, t) are called material or Lagrangian coordinates and (x, t) are
called spatial or Eulerian coordinates.

The difference between these descriptions is crucial. For example, if the field of
a vector of velocity is known in a Lagrange description, i.e. we have a vectorial

function
0
v(ν, t), then we can find trajectories of particles (and that means we can

find the movement of the continuous medium)

x = ν +
∫ t

0

0
v(ν, Γ )dΓ.

And if we know a field v in a Eulerian description (meaning that we have v = v(x, t)),
then the same problem of determination of trajectories gives us the Cauchy problem
for the system of ordinary differential equations

dx
dt

= v(x, t), x(ν, 0) = ν. (A.2.2)

In spite of the simplicity of the first problem a Lagrangian description is not always
convenient. In particular, the main differential equations of continuum mechanics
are simpler as Eulerian description.

In the Eulerian description a map λ : χ0 × (0, t0) −→ χt is obtained as a solu-
tion of the Cauchy problem (A.2.2). If the vectorial function v(x, t) is continuously

differentiable, then for such solution there exists the Jacobian J = det
(Ωx
Ων

)
. For the

Jacobian we have a kinematic formula, known as Euler’s formula:

dJ

dt
= J ∞ · v.
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3. In addition to the main numerical characteristics of material media (mass and
energy) there are the following additive functions of the set ∂ ∩ χ:

(i) linear momentum:

K(∂) =
∫

∂

ρ v dx,

(ii) angular momentum:

H(∂) =
∫

∂

ρ (x × v) dx,

(iii) kinetic energy:

Ek(∂) =
∫

∂

1

2
ρ |v|2 dx,

(iv) total energy:
E(∂) = Ek(∂) + Ei(∂).

The changes of thesemagnitudes undermovement are the result of force and energetic
changes in the volume∂. These actions are realized with the help of newmagnitudes:
resultant force F(∂), resultant moment G(∂) and power N .

If we take these magnitudes for a fixed moving material volume ∂t , then they
will be only functions of time t. A following axiom determine the relations between
them.

Axiom 5 (Balance and poise)
For arbitrary moving material volume ∂t and in any time t ⊂ (0, t0) we have

d

dt
M(∂t) = 0,

d

dt
K(∂t) = F(∂t),

d

dt
H(∂t) = G(∂t),

d

dt
E(∂t) = N(∂t).

Sometimes this axiom is called the hardening principle, because these equalities are
fulfilled for the movement of rigid bodies.

3. Further, we have to specify the right-hand sides in the formulae of Axiom 4. At
first we define the concept of resultant forces. We will consider two types of forces
which act on a material volume ∂:

(a) body forces,
(b) surface forces.

The body forces are forces of an extensive character acting on the bulk portions
of the continuous medium and arise from some external cause. Examples of external
causes are the force of gravity, forces of electric and magnetic origin acting on a
continuous medium carrying charged particles, etc. The body force is proportional
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to the volume of a continuous medium and therefore it is expressed as a force per
unit volume.

An additive vectorial function Fe having a density (body force per unit mass) is
called an external body force. If we denote the body force per unit mass by the symbol
f(x, t), then the body force per unit volume will be ρ f . Therefore, the external body
force acting on the volume ∂ is given by formula

Fe(∂) =
∫

∂

ρ f dx.

And the moment of external body force acting on any material volume ∂ is defined
by the formula

Ge(∂) =
∫

∂

ρ (x × f) dx.

Surface forces are forces of an intensive or local nature. They arise from mechan-
ical interaction between contiguous portions of continuous media. To explain the
phenomena from a continuum point of view, we consider two adjacent portions of
continuous media separated by an imaginary surface drawn between the media.

At the separating surface there exists a direct mechanical contact between the
particles of the media on the two sides of the surface, giving rise to forces of action
and reaction. If the continuousmedium on one side is imagined to have been replaced
by the force systemwhich it has produced, then at each point of the imaginary surface
there will be a force vector.

An internal surface force acts on a volume ∂ only through its surface Ω∂. In order
to define it we consider cross section ε of χ by some plane dividing χ into two
parts χ1 and χ2.

The additive vector-function Fi of sets ς ∩ ε is called an internal surface force
acting through a cross section ε from the side χ2 on the χ1.

Axiom 6 (Of internal surface forces)
An internal surface force is defined for any cross section ε of χ and it has a

density (surface ) on ε .

Remark This axiom is named the Cauchy Stress Principle and it asserts the exis-
tence and differentiability of this force.

Let n be a local outward drawn unit normal vector of ε directed on the side of
χ2 (positive side of χ1). We denote the density of the internal surface force by pn.

A vector pn is called the stress vector of surface forces acting on χ1 through the
area with the normal n.

And for ς ∩ ε the force, which acts on part χ1 from the side of part χ2 through
an area ς is equal to

Fi(ς ) =
∫

ς

pn dς.
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The value

Fi(∂) =
∫

Ω∂

pn dς

is called the internal surface force acting on volume ∂ ∩ χ from the side of χ .
Here n is positive outward drawn unit normal vector to the surface volume ∂.

The value

Gi(∂) =
∫

Ω∂

(x × pn) dς

is called a moment of internal surface force, acting on the volume ∂.

Axiom 7 (Of forces and moments)
The (main) resultant force and resultant moment, acting on any material volume

∂ ∩ χ is given by the formulae:

F(∂) = Fi(∂) + Fe(∂) =
∫

Ω∂

pn dς +
∫

∂

ρ fdx,

G(∂) = Gi(∂) + Ge(∂) =
∫

Ω∂

(x × pn) dς +
∫

∂

ρ (x × f) dx.

4. In contrast to forces and moments, acting on the volume ∂, the power, brought
into the volume ∂, depends not only on the forces acting, but also on the heat output
and on external heat sources. So, an additive scalar function Q of sets ς ∩ ε is
called a heat output through area ε from the part χ2 into χ1.

Axiom 8 (Of heat output)
A heat output is defined for any cross section ε of χ and it has a density (surface

density) on ε . The surface density of heat output is denoted by qn and the value

Q(ς ) =
∫

ς

qndς

gives the heat output from the χ2 into χ1 through the area ς ∩ ε .

The value

Q(∂) =
∫

Ω∂

qndς

is called the heat output into volume ∂ ∩ χ from the domain χ \ ∂̄. Here n is a
positive outwardly-directed unit vector normal to the volume surface Ω∂.

Axiom 9 (Of energy transfer)
The power N(∂) passing into any volume ∂ is equal to

N(∂) = Ne(∂) + Ni(∂) + Q(∂) =
∫

∂

ρ (v · f)dx +
∫

Ω∂

v · pndς +
∫

Ω∂

qndς.
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We can summarize the previous axioms and definitions as the following classical
mathematical model of moving continuous media.

Mathematical model (M1) (Integral conservation laws)
In a moving continuous medium for any moving volume ∂t ∩ χt and at any

moment of time t ⊂ (0, t0) the following equalities hold true:

d

dt

∫

∂t

ρ dx = 0,

d

dt

∫

∂t

ρ v dx =
∫

Ω∂t

pn dς +
∫

∂t

ρf dx,

d

dt

∫

∂t

ρ (x × v) dx =
∫

Ω∂t

(x × pn) dς +
∫

∂t

ρ (x × f) dx,

d

dt

∫

∂t

ρ
(1
2
|v|2 + U

)
dx =

∫

Ω∂t

(v · pn) dς +
∫

∂t

ρ (v · f) dx +
∫

Ω∂t

qn dς.

Each of these equalities is called the conservation law of the corresponding mechan-
ical value: conservation law of mass, conservation law of linear momentum, conser-
vation law of angular momentum, conservation law of energy.

Finally, we may formulate the following definition:
A moving continuous medium is an object satisfying the Axioms A1–A9. The

mathematical model consists of four conservation laws.

A.3 Continuous Motion

1. The main functions (magnitudes) related to a moving continuous medium: density
ρ, specific internal energy U, velocity v, stress pn, with a normal vector n, a density
of heat output qn, and a density of external body forces f , will be further considered
using a Eulerian description. This means that these functions are functions of (x, t) in
a domain W ⊂ R

4(x, t). The magnitudes pn and qn depend on the unit vector n ⊂ R
3

(point of a unit sphere S1) and therefore they are given on the product W × S1.
At first we study a class of movements of continuous media where the main

magnitudes are sufficiently smooth functions.
2. A movement of a continuous medium is called continuous in a domain W if

the functions ρ, U, v, pn, qn are continuously differentiable functions in W , the
functions pn and qn are continuous in W ×S1, and the function f is continuous in W .

3. Let us consider the derivative

d

dt
I = d

dt

∫

∂t

ρFdx,

where the function F(x, t) is continuously differentiable and the movement of the
continuous medium is continuous. In order to calculate this value we perform a
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transition to the Lagrange system of coordinates x = λ (ν, t). The integral has the
form

I =
∫

∂0

0
ρ (ν, t)

0
F (ν, t)

0
J (ν, t)dν.

By virtue of the Theorem of Real Analysis we can replace the integral and calculate
the derivative

d

dt
I =

∫

∂0

Ω

Ωt

( 0
ρ (ν, t)

0
F (ν, t)

0
J (ν, t)

)
dν.

On the strength of Euler’s formula

Ω

Ωt

( 0
ρ (ν, t)

0
F (ν, t)

0
J (ν, t)

)
= d

dt

(
ρFJ

)
= J

( d

dt
(ρF) + ρ F ∞ · v

)
,

we obtain
∫

∂0

J
( d

dt
(ρF) + ρ F ∞ · v

)
dν =

∫

∂t

( d

dt
(ρF) + ρ F ∞ · v

)
dx

and
d

dt

∫

∂t

ρFdx =
∫

∂t

( d

dt
(ρF) + ρ F ∞ · v

)
dx. (A.3.1)

4. For F = 1 one has

d

dt

∫

∂t

ρ dx =
∫

∂t

(dρ

dt
+ ρ ∞ · v

)
dx = 0.

Because ∂t is an arbitrary volume then by virtue of the Theorem of Real Analysis

dρ

dt
+ ρ ∞ · v = 0. (A.3.2)

This equation is called a continuity equation. It is equivalent to themass conservation
law in the class of continuous motions.

The continuity equation permits the simplifying

d

dt

∫

∂t

ρ F dx =
∫

∂t

ρ
dF

dt
dx. (A.3.3)

5. By virtue of (A.3.3) the equation of linear momentum takes the form

∫

∂t

ρ
dv
dt

dx =
∫

Ω∂t

pn dς +
∫

∂t

ρ f dx.

The last formula implies
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Theorem 1 (The first fundamental theorem of continuum mechanics)
There exists a tensor field of second order P in W such that for all (x, t) ⊂ W

pn = P→n◦.

The tensor P is called a stress tensor.
Using the Gauss-Ostrogradsky Theorem, we have

∫

Ω∂t

pn dς =
∫

∂t

∞ · P dx.

Hence, the equation of linear momentum is reduced to

∫

∂t

(
ρ

dv
dt

− ∞ · P − ρ f
)

dx = 0.

For a continuous motion the integrand function is continuous. Since this equation
is valid for any volume ∂t , we get the differential form of the conservation law of
linear momentum

ρ
dv
dt

= ∞ · P + ρ f . (A.3.4)

In the same way we may consider the angular momentum equation and prove

Theorem 2 For a continuous motion the conservation law of angular momentum
equation is fulfilled if and only if the stress tensor P is a symmetric tensor, i.e., P = P

∪.

6. For a continuous motion the conservation law of energy is reduced to the
equation

∫

∂t

(
ρ

d

dt

(1
2
|v|2 + U

)
− ∞ · (P→v◦) − ρ (v · f)

)
dx =

∫

Ω∂t

qn dς.

This representation for qn gives

Theorem 3 For a continuous motion in W there exists a vector field q in W, such
that for all (x, t) ⊂ W

qn = −q · n. (A.3.5)

Vector q is called a heat output rate vector (or heat flux).

Introducing the heat output rate vector allows the transformation of the surface
integral into the volume integral:

∫

Ω∂t

qn dς = −
∫

Ω∂t

q · n dς = −
∫

Ω∂t

∞ · qdx,
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and the conservation law of energy becomes

∫

∂t

(
ρ

d

dt

(1
2
|v|2 + U

)
− ∞ · (

P→v◦) − ρ(v · F) + ∞ · q
)

dx = 0.

For a continuous motion the last equation is equivalent to

ρ
d

dt

(1
2
|v|2 + U

)
= ∞ · (

P→v◦) + ρ(v · F) − ∞ · q.

We simplify this equation using the relationships

d

dt
|v|2 = 2v · dv

dt
,

∞ · (
P→v◦) = v · (∞ · P

) + P : (
D(x, v)

)
,

where D is a rate-of-strain tensor

2D(x, v) = ∞v + (∞v
)∪

,

and differential equation (A.3.4):

ρ
dU

dt
= P : D(x, v) − ∞ · q. (A.3.6)

This equation is called an energy equation (or heat flux equation).
Thus, for an arbitrary continuous motion of a continuous medium described by

model (M1), there exist continuously differentiable fields of a symmetric stress ten-
sor P and a vector of heat output rate in which the integral conservation laws are
equivalent to the system of differential equations

dρ

dt
+ ρ ∞ · v = 0,

ρ
dv
dt

= ∞ · P + ρ f,

ρ
dU

dt
= P : D(x, v) − ∞ · q.

This system of partial differential equations is called the model (M2) of continuous
motion of continuummechanics. If we assume that the body force is prescribed, then
the model (M2) consists of five independent (scalar) equations involving fourteen
unknown variables, namely, ρ, v, P, U, q.
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A model is called closed if the number of unknown variables is equal to the
number of equations in the model. And so, we have the problem of closing the model
(M2). This problem has to be solved on the basis of an additional information about
continuous media.

A.4 Elements of Thermodynamics

1. Thermodynamics studies the relations between the heat energy and other kinds
of energies and gives (reciprocal) formulae to convert of one kind of energy into
another. For example, if a body is heated, then strains and stresses are developed.
Conversely, if a body is strained rapidly, then heat is generated inside the body.

The main concept of thermodynamics is the physical body state. A phenomeno-
logical description of the state is given with the help of various functions called
state variables. For example, as mentioned before, the density ρ (or specific volume

V = 1

ρ
), the internal energy U are parameters of the state of a continuous medium.

Also the absolute temperature ϕ > 0, specific entropy S and pressure p are basic
state variables.

Let z = (z1, z2, . . . , zk) be a set of the main state variables of continuous medium:
other state variables are functions of these variables. Such a medium is called a
k-parameter medium.

Each point z characterizes the state of the given continuousmedium andwe briefly
call this point the state (of the medium). Usually, the set of all such points (a space
of states) form some manifold Z . Suppose that in the space of state variables Z we
may choose a path (oriented curve) l(z(1), z(2)), which provides a change of variables
from one state z(1) to another state z(2). These paths (changes of states) are called
processes. If for a process from z(1) into z(2) there exists a process from z(2) into z(1),
then such a process is called reversible, otherwise it is called irreversible.

2. Generally speaking, the heat Q, which is the energy of the chaotic motion of
molecules, is not a state variable. This heat Q, obtained by the medium after a change
of state from z(1) to z(2) via process l(z(1), z(2)) depends on this process.

Let us consider all states z√ in some small neighborhood of the state z. Then for
smooth processes l(z, z√) one has

dQ =
k∑

m=1

Bm(z)dzm,

where dzm = z√
m − zm. In this representation the quantity Q depends on the process,

if the right-hand side of the formula is not a total differential. But one may prove
that there exists a state parameter ϕ (temperature), such that for reversible processes

the quotient
dQ

ϕ
becomes the total differential of another state parameter S. This
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function is called entropy. Entropy is regarded as a measure of change of energy
dissipation with respect to temperature and defined as

S√ − S =
∫

l(z,z√)

dQ

ϕ

for any reversible process l(z, z√).
3. The first law of thermodynamics states that the equality

dQ = dA + dU

always holds true, expressing the energy conservation law: if some physical body
receives heat dQ, then this body will do mechanical work dA, and its internal energy
increases by dU.

The second law of thermodynamics is based on the concept of entropy associated
with irreversible thermodynamic processes and states that

ϕdS � dQ

for irreversible processes and
ϕdS = dQ

for reversible processes.

Axiom 10 (Thermodynamics axiom)
For a continuous medium the first and the second laws of thermodynamics apply.
Thus, for reversible thermodynamic processes the basic thermodynamic identity

ϕdS = dA + dU

holds true.
4. Heat fluxes from one part of a continuous medium to another part are described

empirically by Fourier’s law, expressing the very simple fact that these fluxes are the
results of differences of the temperature in different parts of the medium.

Axiom 11 (Fourier’s law)
The heat flux is proportional to the temperature gradient:

q = −κ ∞ϕ. (A.4.1)

The coefficient of heat conductivity κ is always positive. In models of continuum
mechanics it is considered as a known function of other state variables. Therefore,
the energy equation has the form

ρ
dU

dt
= P : D + ∞ · (κ∞ϕ). (A.4.2)
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A.5 Some Classical Models of Continuum Mechanics

1. Differential equations of mathematical model (M2) are universal, that is, they are
valid for all continuous media. On the other hand, all additional relations (axioms),
that we have to formulate to close the mathematical model (M2), depend on the
given continuous medium. For example, for highly mobile continuous media, such
as liquids or gases, the stress tensor depends on the rate of strain tensor and indepen-
dent thermodynamic state variables. We do not formalize the derivation of a closed
mathematical model of liquid or gas, and assume that this relation is linear:

P = 2μD(x, v) + ( − p + ξ∞ · v − λf (ϕ − ϕ0)
)
I. (A.5.1)

The scalar invariants μ and ξ depend on the thermodynamic state variables and they
are called the first (dynamic) and second (volume or bulk) coefficients of viscos-
ity, respectively, and are supposed to be given. The quantity ϕ0 is a given average
temperature.

Axiom (A.5.1) allows one to calculate

P : D(x, v) = ( − p − λf τ
)∞ · v + δ,

where the function

δf = 2μD(x, v) : D(x, v) + ξ(∞ · v)2

is called the dissipation function, and for the constant viscosity μ

∞ · P = μ⊗v − ∞p + (ξ + μ)∞(∞ · v) − λf ∞τ.

To complete the model we postulate the basic thermodynamic identity

τdS = dU + pdV . (A.5.2)

The last identity is more conveniently written in the form

dΠ = Vdp − Sdτ (A.5.3)

for the thermodynamic potential

Π = U + pV − τS,

which is supposed to be a known function of variables p and τ .
Using the thermodynamic identity (A.5.2) and the continuity equation, we make

another simplifying transformation.We express thematerial derivative of the internal
energy as a similar derivative of the entropy:
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ρ
dU

dt
= ρτ

dS

dt
− pρ

dV

dt
= ρτ

dS

dt
+ p

ρ

dρ

dt
= ρτ

dS

dt
− p∞ · v.

Thus, we finally obtain the classical model M3 of fluids and gases

dρ

dt
+ ρ ∞ · v = 0,

ρ
dv
dt

= ∞ · P + ρF,

P = 2μD(x, v) + ( − p + ξ(∞ · v) − λf (ϕ − ϕ0)
)
I,

ρ τ
dS

dt
= ∞ · (κf ∞ϕ) − λf τ(∞ · v) + δf ,

δf = 2μ
(
D(x, v)

) : (
D(x, v)

) + ξ(∞ · v)2,

Π = Π (τ, p), V = 1

ρ
= ΩΠ

Ωp
, S = −ΩΠ

Ωτ
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.5.4)

where the function Π (p, τ) is supposed to be known.
Of course, the exact mathematical model M3 is too complicated, so in practical

applications one usually uses a different simplified submodel.
First, we consider the isothermal model, where the stress tensor does not depend

on the temperature (λf = 0). In this case the system is decoupled, that is, the equations
of motion are solved independently of the heat equation.

The next simplification is the assumption that the medium is incompressible. That
is ρ = ρ0 = const. Otherwise we say that the medium is compressible.

The incompressibility assumption, and the assumption μ = const essentially
simplify the original model M3. The mathematical model obtained is M4

∞ · v = 0,

ρ0
dv
dt

= μ⊗v − ∞p + ρ0F,

}
(A.5.5)

called the Navier-Stokes equations.
Finally, the most simple model is a linearization of the Navier-Stokes equations

in a state of rest, when the material derivative of the velocity is approximated by the
partial derivative in time of the velocity:

∞ · v = 0,

ρ0
Ωv
Ωt

= μ⊗v − ∞p + ρ0F.

}
(A.5.6)

This mathematical model M5 is called the Stokes equations.
Coming back to the full non-isothermal model M3 we consider its linear approx-

imation, which is called the mathematical model M6 of a weakly compressible ther-
mofluid. In this model the density of the liquid is approximated by a linear function
of pressure, and the left hand-side of the heat equation, containing the material deriv-
ative of the entropy, approximated by the partial derivative of the temperature with
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respect to time, and in the nonlinear term on the right hand-side of the heat equation
the temperature τ is replaced by its mean value τ0:

ρ ∇ ρ0
f + 1

c2f
(p − p0), ρτ

dS

dt
∇ cp,f

Ωτ

Ωt
, τ∞ · v ∇ τ0∞ · v, δf ∇ 0,

where p0 is the atmospheric pressure, cf and cp,f are the speed of sound and the
specific heat capacity correspondingly in the liquid in consideration and ρ0

f is the
mean dimensionless density of the liquid.

With these assumptions the model M6 takes the form

Ωp

Ωt
+ ρ0

f c2f ∞ · v = 0,

ρ0
f
Ωv
Ωt

= ∞ · P + ρ0
f F,

P = 2μ D(x, v) + ( − p + ξ(∞ · v) − λf (ϕ − ϕ0)
)
I,

cp,f
Ωτ

Ωt
= ∞ · (

κf ∞τ
) − λf τ0 (∞ · v).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(A.5.7)

2. As a rule, a mathematical model describing the behavior of an elastic solid
medium is considered in Lagrangian coordinates. The modeling of such a medium
is based on the following postulate: the stress state of the medium is determined by
the strain tensor and, possibly, the temperature. Of course, a similar construction
is also possible in Eulerian coordinates. These non-linear mathematical models are
very complicated and the most natural way to simplify the models is the method of
linearization. This method is based on the assumption of the existence of an equilib-
rium state, when the movement of the medium is equal to zero and the assumption
that small perturbations of the medium lead to small displacements. Mathematically,
these assumptions are equivalent to assumptions of the existence of stationary solu-
tions and their stability with respect to small perturbations of the incoming data.
Under these assumptions, the original mathematical model is reliably approximated
by its linear version. As might be expected, linear versions of models in the Lagrange
variables match those in Eulerian version. Since the main purpose of this book is to
simulate the joint motion of solid and liquid media near the equilibrium, then as the
basis for the description of deformable solids we take the Euler description and mod-
ification of the axioms of thermodynamics (A.5.2), as formulated in the preceding
paragraph for liquids and gases:

dΠ = Vdp − Sdτ, Π = U + pV − τS.

A continuous medium is called a deformable or elastic solid body, if the stress tensor
is determined by the axiom

dP

dt
= 2αD(x, v) −

(dp

dt
+ λs

dτ

dt

)
I. (A.5.8)
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Thus, the mathematical model M7 of a deformable elastic body is described by a
system of differential equations

dρ

dt
+ ρ∞ · v = 0,

ρ
dv
dt

= ∞ · P + ρF,

ρ
dU

dt
= P : (

D(x, v)
) + ∞ · (κ∞τ),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(A.5.9)

completed by Eq. (A.5.8), defining the stress tensor, and equations

U = Π − p
ΩΠ

Ωp
− τ

ΩΠ

Ωτ
,

1

ρ
= ΩΠ

Ωp
, (A.5.10)

where the function Π (p, τ) is a known function of its arguments.
As in the case of models of liquids and gases, we consider an approximate model

of a deformable solid body, based on linearization of the original nonlinear model.
First, we linearize the constitutive equation (A.5.8), writing it in the form

ΩP

Ωt
= 2αD(x, v) −

(Ωp

Ωt
+ λs

Ωτ

Ωt

)
I.

Next we define the displacement vector w by the formula

v = Ωw
Ωt

.

Then the linearization of (A.5.8) takes the final form

P = 2αD(x, w) − (
p + λsτ

)
I.

In the same way as before, we arrive at the following form of linearization of the
model M7 in a state of rest:

Ωp

Ωt
+ ρ0

s c2s ∞ · v = 0, v = Ωw
Ωt

,

ρ0
s
Ωv
Ωt

= α⊗w − ∞p − λs∞τ + ρ0
s F,

cp,s
Ωτ

Ωt
= ∞ · (

κs∞τ
) − λs τ0 (∞ · v),

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(A.5.11)

where cs and cp,s are the speed of sound and the specific heat capacity in the solid
under consideration and ρ0

s is the mean dimensionless density of the solid.
We call this system a model M8 of the linear thermoelasticity.
For λs = 0 the dynamic equations
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Ωp

Ωt
+ ρ0

s c2s ∞ · v = 0, v = Ωw
Ωt

,

ρ0
s
Ωv
Ωt

= α⊗w − ∞p + ρ0
s F

⎫
⎪⎬

⎪⎭
(A.5.12)

becomes independent of the heat equation

cp,s
Ωτ

Ωt
= ∞ · (

κs∞τ
)
. (A.5.13)

We call the system (A.5.12) the Lamé equations of linear elasticity.

A.6 Shock Relations

1. It is easy to see the integral laws of conservation of the mathematical model M1 of
moving continuousmedia can bewritten in the formof an abstract scalar conservation
law

d

dt

∫

∂

ρudx +
∫

Ω∂

X · ndς =
∫

∂

Y dx (A.6.1)

for any individual volume ∂.
For example, for the vector law of conservation of momentum, where v =

(v1, v2, v3), P = (Pij), i, j = 1, 2, 3 and F = (F1, F2, F3), the equation for
the first component of the velocity vector has the form (A.6.1) with u = v1,
X = (−P11,−P12,−P13) and Y = ρF1.

Acharacteristic feature of such a description of themotionof a continuousmedium
is a minimum requirement of the smoothness of the basic variables describing the
motion of a continuous medium, namely, the model requires only the summability
of all terms of the model variables. There may be other equivalent formulations
of the model of moving continuous media. But, before formulating an equivalent
mathematical model, let us for the moment come back to the continuous movement
of a continuum. As above, each of the differential equations of mathematical model
M2 can be written in the form of an abstract scalar equation

ρ
du

dt
+ ∞ · X = Y . (A.6.2)

If we use an equivalent form of the continuity equation

Ωρ

Ωt
+ ∞ · (ρv) = 0,

then the Eq. (A.6.2) can be rewritten as
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Ω

Ωt
(ρu) + ∞ · (X + ρuv

) = Y . (A.6.3)

Coming back to the modelM2 we see that one of its equivalent forms is the following

Ωρ

Ωt
+ ∞ · (ρv) = 0,

Ω

Ωt
(ρv) + ∞ · (

ρv ⊗ v − P
) = ρF,

Ω

Ωt

(
ρ(U + 1

2
|v|2)

)
− ρF · v

= −∞ ·
(
ρv(U + 1

2
|v|2) − κ∞τ − P · v

)
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.6.4)

where a ⊗ b denotes the tensor, which is defined for any two vectors a and b so that
for any vector c the action of the tensor a ⊗ b to the vector c is given by the formula

(
a ⊗ b

)→c◦ = a(b · c).

Now we go back to the model M1 of moving continuous media. To do this, we
multiply Eq. (A.6.3) by an arbitrary smooth function γ, compactly supported in W
(i..e, equal to zero outside some compact set lying strictly inside the domain W ) and
integrate over the domain W . Then use the Gauss-Ostrogradsky Theorem of and pass
the differentiation from the functions u and (F + uv) onto the function γ:

∫

W

(
ρu

Ωγ

Ωt
+ ∞γ · (

X + ρuv
) + Yγ

)
rdxdt = 0. (A.6.5)

The integral identity (A.6.5) holds for all continuously differentiable functions γ,
finite in the domain W , and it is obviously equivalent to the integral identity (A.6.1).

Thus, an equivalent form of the mathematical model M1 of moving continuous
media has the form:

∫

W

(
ρ

Ωγ

Ωt
+ ∞γ · (ρv

))
dxdt = 0,

∫

W

(
ρv · Ωζ

Ωt
+ D(x, ζ) : (

ρv ⊗ v − P
) + ρF · ζ

)
dxdt = 0,

∫

W

(
ρ
(
U + 1

2
|v|2)Ων

Ωt
+ ρF · vν

)
dxdt

+
∫

W
∞ν ·

(
ρv

(
U + 1

2
|v|2) − κ∞τ − P · v

)
dxdt = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.6.6)

where arbitrary scalar functions γ and ν and an arbitrary vector-function ζ are
continuously differentiable and compactly supported in the domain W .
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2. There exists another equivalent form of the mathematical model M1, namely,
let us integrate the Eq. (A.6.3) over an arbitrary domain G ∩ W with the Lipschitz
boundary η : ∫

G

( Ω

Ωt
(ρu) + ∞ · (

X + ρuv
) − Y

)
dxdt = 0.

Next we use the Gauss-Ostrogradsky Theorem and get

∫

η

(
ρu

(
l + v

) + X
)

· ξdη =
∫

G
Ydxdt, (A.6.7)

where l is an unit vector of the time axis, and ξ is the outward unit normal vector to
the surface η .

Equation (A.6.7) for the arbitrary domain G ∩ W is equivalent to identity
(A.6.5) for the arbitrary function γ and both of these equations are equivalent to
the Eq. (A.6.1) for any individual volume ∂.

Recall that in the identity (A.6.7) η is the three-dimensional hypersurface of the
four-dimensional space-time and the unit outward normal ξ to the surface η is a
four-dimensional vector:

ξ = (ξ1, ξ2, ξ3, ξ4),

and
ξ · l = ξ4, v = (v1, v2, v3, 0).

Now, using Eq. (A.6.7) let us derive onemore equivalent form of themathematical
model M1:

∫

η

ρ
(
l + v

) · ξdη = 0,
∫

η

(
ρv ⊗ (

l + v
) − P

)
· ξdη =

∫

G
ρFdxdt,

∫

η

(
ρ
(
U + 1

2
|v|2)(l + v

) − P · v − κ∞τ
)

· ξdη

=
∫

G
ρF · vdxdt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.6.8)

where identities (A.6.8) hold true for any four dimensional domain G ∩ R
3 × (0, t0)

with the Lipschitz boundary η .

Definition A.1 The motion of a continuous medium is called generalized motion,
if the functions ρ, U, P, v, q are bounded measurable functions of the independent
variables (x, t) and for them integral relations (A.6.8) are satisfied for any four
dimensional domain G ∩ R

3 × (0, t0) with the Lipschitz boundary η .
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3.ThemathematicalmodelM1 ofmoving continuousmedia is too complicated for
analysis and so far there is no strong result for the generalized motion of continuous
media. Therefore, the study of more simple sub-models of the model M1 is very
important. One of these sub-models of the model M1 is the mathematical model M9
of generalized motion with a strong discontinuity.

Let motion be considered in the domain W ∩ R
3 × (0, t0) where this domain is

divided by some smooth surface π ∩ R
3 × (0, t0) into two domains W1 and W2.

Definition A.2 The generalized motion of a continuous medium is called a motion
with strong discontinuity if in each domain W1 and W2 the motion is a continuous
one and the functions ρ, U, P, v, q have continuous limit values on the surface π ,
which are, generally speaking, different for W1 and W2.

In this case the hypersurface π is called a surface of strong discontinuity.

By definition, in each of the domains W1 and W2 the differential equations (A.6.4)
hold true. It turns out that the main characteristics of the motion satisfy additional
relations on the surface of strong discontinuity π .

To derive these relations, we consider an arbitrary domain G ∩ W with smooth
boundary η . Let G1 = G∈W1 �= ∅, G2 = G∈W2 �= ∅, η1 = η ∈ Ḡ1, η2 = η ∈ Ḡ2
and λ = G ∈ π . We apply the identity (A.6.7) for each of the domains G, G1 and
G2: ∫

η

(
ρu

(
l + v

) + X
)

· ξdη =
∫

G
Ydxdt,

∫

η1

(
ρu

(
l + v

) + X
)

· ξdη +
∫

λ

(
ρ1u1

(
l + v1

) + X1

)
· ξdλ =

∫

G1

Ydxdt,

∫

η2

(
ρu

(
l + v

) + X
)

· ξdη −
∫

λ

(
ρ2u2

(
l + v2

) + X2

)
· ξdλ =

∫

G2

Ydxdt,

where ξ is the unit normal to the surface λ , ρ1, u1, v1, X1 ρ2, u2, v2, X2 are the limit
values on the surface λ from the domain G1 and from the domain G2 respectively.
Since

∫

η

(
ρu

(
l + v

) + X
)

· ξdη

=
∫

η1

(
ρu

(
l + v

) + X
)

· ξdη +
∫

η2

(
ρu

(
l + v

) + X
)

· ξdη,

then subtracting from the first identity the last two identities we obtain

∫

λ

(
ρ1u1

(
l + v1

) + X1

)
· ξdλ =

∫

λ

(
ρ2u2

(
l + v2

) + X2

)
· ξdλ

for an arbitrary subset λ ⊂ π . Hence
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(
ρ1u1

(
l + v1

) + X1

)
· ξ =

(
ρ2u2

(
l + v2

) + X2

)
· ξ

for all (x, t) ⊂ π .
The last equation can be written as

[
ρu

(
l + v

) + X
] · ξ = 0, (x, t) ⊂ π. (A.6.9)

Here [ ] is a symbol of jump of the function γ at π :

[γ] = γ1 − γ2,

where γ1 and γ2 are limit values of the function γ from different sides of the surface
π .

The condition (A.6.9) gives us the missing relations on the surface of strong
discontinuity, completing the mathematical model M9 of generalized motion with a
strong discontinuity:

[
ρ
(
l + v

)] · ξ = 0, (x, t) ⊂ π,
[
ρv ⊗ (

l + v
) − P

] · ξ = 0, (x, t) ⊂ π,

[
ρ
(
U + 1

2
|v|2)(l + v

) − P · v − κ∞τ
] · ξ = 0, (x, t) ⊂ π.

⎫
⎪⎪⎬

⎪⎪⎭
(A.6.10)

Conditions (A.6.10) are called shock relations.
Note that we may get the same differential equation (A.6.4) and shock relations

(A.6.10) if, as the basic equations of the generalized motion of the continuum, we
use Eq. (A.6.6).

4. Shock relations can be rewritten in terms of the space R
3. More precisely, in

terms of the two-dimensional surface

π(t) = {(x, t) ⊂ π | t = const} ∩ R
3,

which is a cross section of the surface of strong discontinuity π by the plane {t =
const}, namely, let n be the unit vector normal to the surface π(t) at a given point
x ⊂ π(t). It is clear that this analysis has a local nature. Therefore we can assume
that in the neighborhood of (x, t) ⊂ π the surface π can be represented as

π : h(x, t) = 0.

Then

ξ =
⎛

⎝ ∞h√
|∞h|2 + h2t

,
ht√

|∞h|2 + h2t

⎞

⎠ , n =
( ∞h

|∞h| , 0
)

,

where
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∞h =
( Ωh

Ωx1
,

Ωh

Ωx2
,

Ωh

Ωx3

)
⊂ R

3, ht = Ωh

Ωt
.

Simple calculations show that

ξ = (−Vnl + n) sin ψ, (A.6.11)

where

Vn = − ht

|∞h| , sin ψ = (ξ · n) = |∞h|√
|∞h|2 + h2t

.

The value Vn is called the velocity of replacement of the surface π(t) in the direction
of normal n.

This value can be defined geometrically. Indeed, we consider a line L from the
point x ⊂ π(t) in the direction of the normal n to the surface of π(t). Next, we pass
to the surface π(t + θt). Let the point x + θx be the intersection of this surface with
the line L. Then

Vn = lim
θt→0

θx · n
θt

.

Substituting the expression (A.6.11) into the equality (A.6.9) we get

[
ρu

(
vn − Vn

) + Xn
] = 0, (x, t) ⊂ π, (A.6.12)

where
vn = v · n, Xn = X · n.

As above, the condition (A.6.12) allows to express the shock relations in terms of
the space R

3:

[
ρ(vn − Vn)

] = 0,
[
ρv(vn − Vn) − P · n

] = 0,
[
ρ
(
U + 1

2
|v|2)(vn − Vn) − v · (P · n) − κ∞τ · n

] = 0,

⎫
⎪⎪⎬

⎪⎪⎭
(A.6.13)

for all (x, t) ⊂ π .
5. A typical type of strong discontinuity is one in which vn = Vn. That is, the

velocity of the particles of the medium in the direction of the normal n coincides
with the velocity of the surface π(t). Therefore, there is no exchange of particles
between domains W1 and W2 and the surface π(t) is a material one. So, π(t) is the
surface of contact between two different states of a continuum. For example, water
and air or water and solid. Such a surface of strong discontinuity is called contact
discontinuity. The equations of contact discontinuity are:
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vn = Vn,

[P · n] = 0,

[v] · (P · n) + [κ∞τ · n] = 0,

⎫
⎪⎬

⎪⎭
(A.6.14)

for all (x, t) ⊂ π .

A.7 Joint Motion of an Elastic Sold and a Viscous Liquid

1. Heterogeneous continuous media are those continuous media which consist of
two or more different components (phases) and in any sufficiently small amount of
a continuum there might be different phases. The minimum size of this volume is
different in various heterogeneous media, but usually it is in the range from several
microns to several (first) tens of microns. Examples of such continuous media are
the motion of solid micro-particles in a liquid or gas or the movement of fluid in the
micro-pores of a deformable elastic body. There are two different approaches to the
description of heterogeneous media.

The first approach is based upon the notion of a continuous medium as a kind of
conglomerate, where at each point all phases of such a medium are present. In this
approach, the main difficulty is physical modeling, namely, the choice of axioms that
define the dependence of the stress tensor on the basic characteristics of the motion
and thermodynamic relations.

The second approach is based on precise physical modeling with further simpli-
fication by mathematical models using the methods of mathematical analysis. As a
rule, the differential equations of the exact mathematical model contain some small
parameter. Therefore, the main methods of simplifying the exact mathematical mod-
els are the methods of linearization and homogenization. Roughly speaking, these
are methods of constructing approximate mathematical models from the original
one, when the small parameter tends to zero. From a physical point of view a hetero-
geneous medium is an example of generalized motion with a strong discontinuity,
considered in the preceding paragraph. In this approach we must keep in mind the
limits of the application of physical models and the limits of applicability of meth-
ods of mathematical analysis. For example, physical experiments show that the basic
phenomenological models of continuous media are still applicable at scales of a few
microns. It is clear, that the mathematical part of the second approach depends on
the method chosen. The more precise and more rigorous method provides a more
trustable mathematical model.

Our aim is to obtain the mathematical models of the joint motion of an elastic
porous body and a liquid that fills the pores and cracks, that is those voids that appear
in the solid body during the time of its formation. The proper elastic body is called a
solid skeleton (or an elastic skeleton, or simply a skeleton). For the modeling of such
a motion we use the second approach, when a two-component continuum (solid-
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liquid) is described by the mathematical model M9 of a generalized motion with a
strong discontinuity.

Letχ ∩ R
3 be the domain occupied by a continuousmedium,Gs(t)—the domain

occupied by a solid skeleton,Gf (t)—the pore space occupied by the fluid andπ(t)—
the boundary between the solid skeleton and pore space:

χ = Gs(t) ∪ Gf (t) ∪ π(t).

Let additionally ws, vs, ρs, Ps, ps, Us and τs be the displacements, the velocity, the
density, the stress tensor, the pressure, the specific internal energy and the temperature
in the solid skeleton, and wf , vf , ρf , Pf , pf , Uf and τf be the displacements, the
velocity, the density, the stress tensor, the pressure, the specific internal energy and
the temperature in the liquid.

We suppose that the stress tensor P̃, the displacement w, velocity v, density ρ,
pressure p, specific internal energy U, and temperature τ of the continuum are given
by formulae

P̃ = β̃ P̃f + (1 − β̃ )P̃s,

Pf = 2μ D(x, vf ) + ( − pf + ξ(∞ · vf ) − λf (τf − τ0)
)
I,

Ps = 2αD(x, ws) − (
ps + λs (τs − τ0)

)
I,

w = β̃wf + (1 − β̃ )ws,

v = β̃vf + (1 − β̃)vs,

ρ = β̃ρf + (1 − β̃ )ρs, p = β̃pf + (1 − β̃ )ps,

U = β̃Uf + (1 − β̃ )Us, τ = β̃τf + (1 − β̃)τs,

where the characteristic function β̃ of the domain Gf (t) is defined as

β̃ (x, t) = 1, if (x, t) ⊂ Gf (t) and β̃ (x, t) = 0, if (x, t) ⊂ Gs(t).

Then Eq. (A.6.6) for the joint motion of the solid skeleton and the liquid take the
form
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∫ t0

0

∫

χ

(
ρ

Ωγ

Ωt
+ ∞γ · (ρv

))
dxdt = 0,

∫ t0

0

∫

χ

(
ρv · Ωζ

Ωt
+ D(x, ζ) : (

ρv ⊗ v − P
) + ρF · ζ

)
dxdt = 0,

∫ t0

0

∫

χ

(
ρ(U + 1

2
|v|2)Ων

Ωt
+ ρF · vν

)
dxdt

+
∫ t0

0

∫

χ

∞ν · (
ρv(U + 1

2
|v|2) − κ∞τ − P · v

)
dxdt = 0,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.7.1)

for arbitrary smooth functions γ, ζ and ν with a compact support in χ × (0, t0).
By definition, in the domain Gf (t) the equations of the continuous motion for the

liquid component

dρf

dt
+ ρf ∞ · vf = 0,

ρf
dvf

dt
= ∞ · Pf + ρf F,

Pf = 2μD(x, vf ) + (−pf + ξ∞ · vf − λf τf
)
I,

ρf τf
dSf

dt
= ∞ · (κf ∞τ) − λf τf ∞ · vf + δf ,

δf = 2μ
(
D(x, vf )

) : (
D(x, vf )

)
,

Πf = Πf (τf , pf ),
1

ρf
= ΩΠf

Ωpf
, Sf = −ΩΠf

Ωτf
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.7.2)

hold true and in the domain Gs(t) the equations of the continuous motion for the
solid component

dρs

dt
+ ρs∞ · vs = 0,

ρs
dvs

dt
= ∞ · Ps + ρsF,

dPs

dt
= 2αD(x, vs) − (dps

dt
+ λs

dτs

dt

)
I,

ρsτs
dSs

dt
= ∞ · (κs∞τ) + ps∞ · vs + Ps : D(x, vs),

Πs = Πs(τs, ps),
1

ρs
= ΩΠs

Ωps
, Ss = −ΩΠs

Ωτs
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.7.3)

hold true.
On the common boundary π(t) “solid–liquid” one has equations of contact dis-

continuity
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vs · n = vf · n = Vn,

Ps · n = Pf · n,

vs · (Ps · n) + κs∞τs · n = vf · (Pf · n) + κf ∞τf · n.

⎫
⎪⎬

⎪⎭
(A.7.4)

The condition that the surface π(t) is a surface of contact discontinuity means that
π(t) is a material surface. That is

dβ̃

dt
≡ Ωβ̃

Ωt
+ v · ∞β̃ = 0. (A.7.5)

Equations (A.7.1)–(A.7.5) form the mathematical model M10 of joint motion with
a contact discontinuity of an elastic solid and a viscous liquid.

This model is an example of the mathematical problem with a free (unknown)
boundary π(t).

2. Equations (A.7.1)–(A.7.5) are very difficult to analyse mathematically and we
need additional physical assumptions to simplify the mathematical model M10.

In classical continuum mechanics such a simplification is a linearization of the
original nonlinear model in the rest state. Here the basic physical assumption is the
postulate of the smallness of the deviations of the basic characteristics of the motion
from these characteristics in a state of rest. For a heterogeneous continuum elastic
porous body filled with liquid, such a physical postulate is justified because, for
example, the velocity of fluid in pores is about 3–6m/year.

Let θ be a small characteristic size, defining the deviations of the basic character-
istics of the motion from those characteristics in a state of rest. Then, as usual, we
neglect all terms of order θ2.

All values with a dash stand for the linear part (with respect to the small para-
meter θ) of deviations of the main characteristics of the medium from the main
characteristics of the medium in the rest state. In addition, let β0(x) be the character-
istic function of the liquid domain at the initial time and τ0 be the mean (constant)
temperature, and ρ0

s and ρ0
f be the average density of the solid skeleton and the liquid,

respectively. Then

β̃ (x, t) = β0(x) + o(θ), p = p̄ + o(θ), p̄ = β0p̄f + (1 − β0)p̄f ,

ρ = ρ0(x) + 1

c2
p̄ + o(θ), ρ0 = β0ρ

0
f + (1 − β0)ρ

0
s ,

1

c2
= β0

c2f
+ (1 − β0)

c2s
,

v = v̄ + o(θ), v̄ = β0v̄f + (1 − β0)v̄s,

τ = τ0 + τ̄ + o(θ), τ̄ = β0τ̄f + (1 − β0)τ̄s,

ρτ
dS

dt
= η

Ωτ̄

Ωt
+ o(θ), η = β0cp,f + (1 − β0)cp,s,
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τi∞ · vi + δi = τ0∞ · vi + o(θ), i = f , s,

P = P̄ + o(θ), P̄ = β0P̄
f + (1 − β0)P̄

s,

P̄
f = 2μD(x, v̄f ) − (

p̄f + λf τ̄f − ξ∞ · v̄f
)
I, (A.7.6)

P̄
s = 2αD(x, w̄s) − (

p̄s + λsτ̄s
)
I, v̄ = Ωw̄

Ωt
, (A.7.7)

where

lim
θ→0

o(θ)

θ
= 0.

First of all, we note that the unknown domains Gs(t) and Gf (t) in the linear model
are replaced by their initial positions Gs(0) = χs and Gf (0) = χf . Similarly, the
free boundary π(t) in the linear model is replaced by its initial position π(0) = η .
Thus, in the domainχs the main characteristics describing the behavior of the elastic
skeleton satisfy the differential equations of the model M8 of linear thermoelasticity

1

c2s

Ω p̄s

Ωt
+ ρ0

s ∞ · v̄s = 0,

ρ0
s
Ω v̄s

Ωt
= ∞ · P̄

s + ρ0
s F,

cp,s
Ωτ̄s

Ωt
= ∞ · (

κs∞τ̄s
) − λsτ0∞ · v̄s,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(A.7.8)

and in the domain χf the main characteristics describing the behavior of the liq-
uid, satisfy the differential equations of the model M6 of a weakly compressible
thermofluid

1

c2f

Ω p̄f

Ωt
+ ρ0

f ∞ · v̄f = 0,

ρ0
f
Ω v̄f

Ωt
= ∞ · P̄

f + ρ0
f F,

cp,f
Ωτ̄f

Ωt
= ∞ · (

κf ∞τ̄f
) − λf τ0∞ · v̄f .

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(A.7.9)

Relations (A.7.6)–(A.7.9) are completed with linearized equations of contact dis-
continuity.

Since the free boundary is substituted by its initial position, we may use only
one condition of the law of conservation of mass on the free boundary. Namely, the
condition

v̄s · n = v̄f · n, x ⊂ η.

The obtained mathematical model is still incomplete. Therefore we postulate addi-
tional the conditions
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v̄s = v̄f , x ⊂ η, (A.7.10)

τ̄s = τ̄f , x ⊂ η (A.7.11)

on the contact surface η .
The last two conditions allow one to consider generalized motion of continuous

media with strong discontinuity, for continuous velocity and temperature. In this case
we may define all first order differential operators and omit indices s and f :

v̄ = β0v̄ + (1 − β0)v̄, τ̄ = β0τ̄ + (1 − β0)τ̄.

With this assumptions the linearized equations of the contact discontinuity take the
final form

P̄
s · n = P̄

f · n, x ⊂ η, (A.7.12)

κs∞τ̄s · n = κf ∞τ̄f · n, x ⊂ η. (A.7.13)

Equations (A.7.6)–(A.7.13), completed with the corresponding boundary conditions
on the outer boundary S = Ωχ and the initial conditions at t = 0, form the closed
linear mathematical model M11 of a joint nonisothermal motion of a solid elastic
body and a weakly compressible viscous fluid.

The model M11 can be written in an equivalent form as a system of integral

identities. Namely, the functions p̄, τ̄ , w̄ and v̄ = Ωw̄
Ωt

satisfy in the domain χ =
χf ∪ η ∪ χs for t ⊂ (0, t0) the continuity equation

p̄ + c2(x)ρ0(x)∞ · w̄ = 0, (A.7.14)

almost everywhere in χ × (0, t0) and the integral identities

∫ t0

0

∫

χ

(
ρ0(x)v̄ · Ωζ

Ωt
− D(x, ζ) : P̄ + ρ0(x)F · ζ

)
dxdt = 0,

∫ t0

0

∫

χ

(
η(x)τ̄

Ων

Ωt
− ∞ν · κ∞τ̄ − λ (x)τ0ν∞ · v̄

)
dxdt = 0

⎫
⎪⎪⎬

⎪⎪⎭
(A.7.15)

for any smooth and finite in χ × (0, t0) functions γ ζ .
In (A.7.15)

λ (x) = λf β0(x) + λs
(
1 − β0(x)

)
, ρ0(x) = ρ0

f β0(x) + ρ0
s

(
1 − β0(x)

)
,

η(x) = cp,f β0(x) + cp,s
(
1 − β0(x)

)
.

We also will use the differential form of equations for the model M11, when some
equations are understood in the sense of distributions, namely, we use the form
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ρ0(x)
Ω v̄
Ωt

= ∞ · P̄ + ρ0(x)F,

η(x)
Ωτ̄

Ωt
= ∞ · (κ∞τ̄) − λ (x)τ0∞ · v̄,

which is a formal representation of the integral identities (A.7.15).
3. The equations of the model M11 are written in dimensional form, while for fur-

ther mathematical analysis the dimensionless form of equations is more convenient.
To rewrite the equations in a dimensionless form we make the following change of
variables

x → x
L

, t → t

Γ
, w̄ → w

L
, τ̄ → τ

τ0
, F → F

g
, ρ → ρ

ρ0 ,

where L is the characteristic size of the domain under consideration, g is the value of
acceleration due to gravity, ρ 0 is themean density of water, and Γ is the characteristic
time of the process.

To avoid new symbols we keep the same notations for domains occupied by solid
skeleton, liquid and the common “solid skeleton–liquid” boundary χs, χf and η .

In dimensionless variables the differential equation of the model M11 in the
domain χ for t > 0 takes the form

p + ψ̃p∞ · w = 0, (A.7.16)

ψΓ ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.17)

η̃0
Ωτ

Ωt
= ∞ · (ψ̃κ∞τ) − λ0 ψ̃ϕ ∞ · Ωw

Ωt
, (A.7.18)

where the dimensionless stress tensor of the medium

P = β0P
f + (1 − β0)P

s (A.7.19)

coincides with the dimensionless viscous stress tensor

P
f = ψμD

(
x,

Ωw
Ωt

)
−

(
p + ψτ,f τ − ψξ∞ · Ωw

Ωt

)
I (A.7.20)

in the liquid and with the dimensionless elastic stress tensor

P
s = ψαD(x, w) − (

p + ψτ,sτ
)
I (A.7.21)

in the solid skeleton.
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In Eqs. (A.7.16)–(A.7.21)

ρ̃ = β0ρf + (1 − β0)ρs, η̃0 = β0 ηp,f + (1 − β0) ηp,s,

ψ̃p = β0ψp,f + (1 − β0)ψp,s,

ψ̃κ = β0ψκ,f + (1 − β0)ψκ,s, ψ̃τ = β0ψτ,f + (1 − β0)ψτ,s.

Dimensionless criteria ψi (i = Γ, μ, . . .) are defined by formulae:

ψΓ = L

g Γ 2
, ψμ = 2μ

ΓLgρ0
, ψα = 2α

Lgρ0
, ψξ = ξ

ΓLgρ0
,

ψτ,j = τ0λi

Lgρ0
, ψκ,j = κjΓ

L2λf
, ψp,j = ρj

c2j
Lg

,

λ0 = Lgρ0

τ0λf
, ρj = ρ0

j

ρ0
, ηp,i = cp,i

λf
, j = f , s,

where cf and cs are the speed of compressive soundwaves in the liquid and in the solid
respectively, and ρf and ρs are the respective mean dimensionless densities of the
liquid in pores and the solid skeleton correlated with the mean density of water ρ 0.

Equations of contact discontinuity (A.7.12) and (A.7.13) transform to

[P] · n =
⎛

⎝ lim
x → x0
x ⊂ χs

P(x, t) − lim
x → x0
x ⊂ χf

P(x, t)

⎞

⎠ · n(x0) = 0, (A.7.22)

[ψκ∞τ] · n(x0) = 0 (A.7.23)

for x0 ⊂ η .
As before, Eqs. (A.7.17), (A.7.18), (A.7.22), and (A.7.23) are completed with

conditions
[τ(x0, t)] = 0, [w(x0, t)] = 0, x0 ⊂ η,

which are understood as the corresponding integral identities

∫ t0

0

∫

χ

(
ρ̃(x)

Ωw
Ωt

· Ωζ

Ωt
− D(x, ζ) : P + ρ̃(x)F · ζ

)
dxdt = 0, (A.7.24)

∫ t0

0

∫

χ

(
η̃0(x)τ

Ων

Ωt
− ψ̃κ∞ν · ∞τ − λ0 ψ̃ϕ ν∞ · Ωw

Ωt

)
dxdt = 0, (A.7.25)

for any smooth and finite in χ × (0, t0) functions γ and ζ .
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Differential equations (A.7.16)–(A.7.18) form a mathematical model M12 of
small perturbations in the joint motion of a non-isothermal viscous fluid and a
non-isothermal elastic body, which is just the dimensionless formof themodelM11.

4. The model M12 describes all possible motions of a mixture of a solid and a
liquid. The given physical process is characterized by parameters: the characteristic
time of the process, the characteristic size of the domain under consideration, vis-
cosities, the speed of sound and so on, which enter into dimensionless criteria ψi

(i = Γ, μ, α, . . .).
Therefore, a given physical process corresponds to the given set of dimensionless

criteria. We also may characterize physical processes using these dimensionless
criteria. Thus, the characteristic time of filtration processes of underground liquids
is some month and the characteristic size of the physical domains there is about one
thousands meters. Therefore,

ψΓ ∇ 0,

and we may postulate that for liquid filtration in an elastic solid skeleton

ψΓ = 0. (A.7.26)

The corresponding mathematical model M13 of a filtration of a compressible
thermo-fluid in a thermo-elastic solid skeleton consists of the following differ-
ential equations

1

ψ̃p
p + ∞ · w = 0, (A.7.27)

∞ · P + ρ̃F = 0, (A.7.28)

η̃0
Ωτ

Ωt
= ∞ · (ψ̃κ∞τ) − λ0 ψ̃τ ∞ · Ωw

Ωt
, (A.7.29)

P = β0ψμD

(
x,

Ωw
Ωt

)
+ (1−β0)ψαD(x, w)− (

p+ ψ̃τ τ −β0ψξ∞ · Ωw
Ωt

)
I. (A.7.30)

Nextweconsider different sub-models of themodelM13 with simplifyingphysical
assumptions. Thefirst sub-model is themodelM14 of isothermal filtration (or, simply,
liquid filtration), which corresponds to the assumption

λ0ψτ,f = 0, λ0ψτ,s = 0. (A.7.31)

In this model the temperature is defined independently by the heat equation

η̃0
Ωτ

Ωt
= ∞ · (ψ̃κ∞τ), (A.7.32)

and the motion of the medium is defined by the system
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1

ψ̃p
p + ∞ · w = 0, (A.7.33)

∞ · P + ρ̃F = 0, (A.7.34)

P = β0ψμD

(
x,

Ωw
Ωt

)
+ (1 − β0)ψαD(x, w) − (

p − β0ψξ∞ · Ωw
Ωt

)
I. (A.7.35)

The second model is a sub-model of the model M14, which describes a filtration
of an incompressible liquid.

As is well-known, the measure of incompressibility of a given medium is the
speed of sound in the medium. Incompressible media have an infinite speed of
sound. Therefore, for long-term physical processes the behavior of acoustic waves
is not so important, and for many real liquids we may accept the assumption that the
given liquid is incompressible. On the other hand, as a rule, the speed of sound in the
solid skeleton two or three times more than the speed of sound in the liquid. Thus
we also may accept the assumption that the given solid skeleton is incompressible
and together these give

1

ψp,f
∇ 0,

1

ψp,s
∇ 0.

The corresponding axiom
ψp,f = ψp,s = ∞ (A.7.36)

picks outs the class of physical media (incompressible media), which is described
by the mathematical model M15 of the filtration of an incompressible liquid:

∞ · w = 0, (A.7.37)

∞ · P + ρ̃F = 0, (A.7.38)

P = β0ψμD

(
x,

Ωw
Ωt

)
+ (1 − β0)ψαD(x, w) − p I. (A.7.39)

Sometimes we do not use the properties of the solid skeleton and may simplify
the model M12 using postulate

ψα = ∞, (A.7.40)

which means that the solid skeleton is an absolutely rigid solid body. That axiom
transforms the initial model into the mathematical model M16 of the filtration of a
compressible thermo-fluid in an non-isothermal absolutely rigid solid skeleton:

β0

( 1

ψp,f
p + ∞ · w

)
= 0, (A.7.41)
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β0
(∞ · P + ρf F

) = 0, (A.7.42)

η̃0
Ωτ

Ωt
= ∞ · (ψ̃κ∞τ) − λ0 β0ψτ,f ∞ · Ωw

Ωt
, (A.7.43)

P = ψμD

(
x,

Ωw
Ωt

)
−

(
p + ψ̃τ τ − ψξ∞ · Ωw

Ωt

)
I, (A.7.44)

where Eq. (A.7.42) is equivalent to the integral identity

∫ t0

0

∫

χf

(
D(x, ζ) : P̄ − ρf F · ζ

)
dxdt = 0 (A.7.45)

for any smooth function ζ , finite in χf . This model is completed with the additional
boundary condition

w(x, t) = 0, x ⊂ η. (A.7.46)

The sub-model M17 of the model M16, describing isothermal motion consists of
equations

β0

( 1

ψp,f
p + ∞ · w

)
= 0, (A.7.47)

β0
(∞ · P + ρf F

) = 0, (A.7.48)

P = ψμD

(
x,

Ωw
Ωt

)
−

(
p − ψξ∞ · Ωw

Ωt

)
I, (A.7.49)

w(x, t) = 0, x ⊂ η, (A.7.50)

and we call this motion as the filtration of a compressible liquid in an absolutely
rigid solid skeleton.

Finally, the filtration of incompressible liquid in an absolutely rigid solid
skeleton is described by the model M18:

β0∞ · w = 0, (A.7.51)

β0

(
∞ · P + ρf F

)
= 0, (A.7.52)

P = ψμD

(
x,

Ωw
Ωt

)
− p I, (A.7.53)

w(x, t) = 0, x ⊂ η. (A.7.54)

4. For short-term processes like acoustic processes or hydraulic shock in porous
media
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ψΓ ∇ ∞,

and we use one more renormalization by setting

ψΓ w −→ w,

which transforms the model M12 to the model M19 of non-isothermal short-term
processes:

p + ˜̄ψp∞ · w = 0, (A.7.55)

ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.56)

η̃0
Ωτ

Ωt
= ∞ · (ψ̃κ∞τ) − λ̄0 ψ̃τ ∞ · Ωw

Ωt
, (A.7.57)

P = β0P
f + (1 − β0)P

s, (A.7.58)

P
f = ψ̄μD

(
x,

Ωw
Ωt

)
− (

p + ψ̃τ,f τ − ψ̄ξ∞ · Ωw
Ωt

)
I, (A.7.59)

P
s = ψ̄αD(x, w) − (

p + ψ̃τ,sτ
)
I. (A.7.60)

In Eqs. (A.7.55)–(A.7.60)

˜̄ψp = β0ψ̄p,f + (1 − β0)ψ̄p,s, ˜̄ψτ = β0ψ̄τ,f + (1 − β0)ψ̄τ,s.

Dimensionless criteria ψ̄i (i = μ, ξ, α, . . .) are defined by formulae:

ψ̄μ = 2μΓ

L2ρ0
, ψ̄ξ = ξΓ

L2ρ0
, ψ̄α = 2αΓ 2

L2ρ0
,

λ̄0 = ρ0
g2Γ 2

τ0λf
, ψ̄p,j = ρj c 2

j
Γ 2

L2 , j = f , s.

As before, we may consider a sub-model M20 of isothermal short-term processes
under the assumption (A.7.31), which gives

p + ˜̄ψp∞ · w = 0, (A.7.61)

ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.62)

P = β0P
f + (1 − β0)P

s, (A.7.63)
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P
f = ψ̄μD

(
x,

Ωw
Ωt

)
−

(
p − ψ̄ξ∞ · Ωw

Ωt

)
I, (A.7.64)

P
s = ψ̄αD(x, w) − p I. (A.7.65)

Finally, we may simplify the last model and consider the model M21 of short-term
processes in incompressible media:

∞ · w = 0, (A.7.66)

ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.67)

P = β0ψ̄μD

(
x,

Ωw
Ωt

)
+ (1 − β0)ψ̄αD(x, w) − p I. (A.7.68)

and its sub-model M22 of short-term processes in an absolutely rigid solid
skeleton:

∞ · w = 0, (A.7.69)

β0

(
ρ̃

Ω2w
Ωt2

− ∞ · P − ρ̃F
)

= 0, (A.7.70)

P = ψ̄μD

(
x,

Ωw
Ωt

)
− p I. (A.7.71)

5. It is easy to prove that the model M13 is an asymptotic limit of the model M12
as ψΓ goes to zero, the model M15 is an asymptotic limit of the model M14 as ψp,f
and ψp,s go to infinity, the model M16 is an asymptotic limit of the model M12 as ψα

goes to infinity, and the model M18 is an asymptotic limit of the model M17 as ψp,f
goes to infinity.

Under assumptions (A.7.31) themodelM12 transforms to themodelM23 of small
perturbations in joint motion of isothermal viscous fluid and isothermal elastic
body, consisting of the following equations

p + ψ̃p∞ · w = 0, (A.7.72)

ψΓ ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.73)

P = β0P
f + (1 − β0)P

s, (A.7.74)

P
f = ψμD

(
x,

Ωw
Ωt

)
−

(
p − ψξ∞ · Ωw

Ωt

)
I, (A.7.75)

P
s = ψαD(x, w) − p I. (A.7.76)



422 Appendix A: Elements of Continuum Mechanics

The limit as ψ̃p → ∞ in M23 results in the model

∞ · w = 0, (A.7.77)

ψΓ ρ̃
Ω2w
Ωt2

= ∞ · P + ρ̃F, (A.7.78)

P = β0ψμD

(
x,

Ωw
Ωt

)
+ (1 − β0)ψαD(x, w) − p I, (A.7.79)

which we call the modelM24 of small perturbations in joint motion of isothermal
incompressible viscous fluid and isothermal incompressible elastic body.

The limit as ψΓ → 0 in M24 results in the model M15.
6. Diffusion-convection processes in porous media χ ∩ R

3 are described by
the diffusion-convection equation

Ωc

Ωt
+ v · ∞ c = D ⊗ c, (A.7.80)

for the concentration c of an admixture in the liquid domain χf (pore space).
Here D is the given diffusion coefficient, and v is the velocity of the liquid.
If we consider the most general case of the motion of continuous media, which

is a generalized motion with strong discontinuity, then the boundary condition on
the surface of strong discontinuity ηt = Ωχs ∈ Ωχf (the common boundary “pore
space–solid skeleton”) at the time t > 0 has the form

c
(
(v · n) − Vn

) = D (∞ c · n). (A.7.81)

In (A.7.81) n is a unit normal vector to ηt , and Vn is a velocity of replacement of
surface ηt in the direction of normal n.

In the general case the velocity field is defined by the mathematical model M10,
which is a free boundary problem. In particular, one of the boundary condition at the
free surface of a contact discontinuity has the form

v · n = Vn, (A.7.82)

and for this case (A.7.81) transforms to

∞ c · n = 0. (A.7.83)

It is clear, that even if one knows how to solve the free boundary problem that arises,
this mathematical model obviously would not be suitable for practical use, since the
functionβ0 changes its value from 0 to 1 on the scale of a fewmicrons. Thus, themost
suitable way to get a practically significant mathematical model is a homogenization.
But in this case the mathematical problem becomes absolutely unsolvable. To get
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somethingmore simplewe use themathematicalmodelM15, where the characteristic
function β̃ of the liquid domain χf is approximated by its value at initial time:

β̃ ∗ β0(x),

and

v ∗ Ωw
Ωt

,

In dimensionless variables this model, coupled with a convection-diffusion equation
has the form

∞ · w = 0, (A.7.84)

∞ · P + ρ̃F = 0, (A.7.85)

P = β0ψμD

(
x,

Ωw
Ωt

)
+ (1 − β0)ψαD(x, w) − p I, (A.7.86)

Ωc

Ωt
+ Ωw

Ωt
· ∞ c = ψD ⊗ c, (A.7.87)

where

ψD = D Γ

L2 , ψμ = ψμ(c), ρ̃ = β0(ρf + θ c) + (1 − β0)ρs.

We must complete the model with the boundary conditions on the common (and
fixed) boundary η . The boundary conditions for dynamic equations have already
been discussed.

For the convection-diffusion equation one has a choice. By supposition, Vn = 0,
and this postulate and the boundary condition (A.7.81) imply

(
ψD∞ c − c

Ωw
Ωt

)
· n = 0. (A.7.88)

That is the first option. The second option is the condition (A.7.83). Thus, for the
same process we have two different models: themathematical modelM25, consisting
of (A.7.83)–(A.7.87), and the mathematical model M26, consisting of (A.7.84)–
(A.7.88). The difference because both of the boundary conditions for concentration
are not quite exact in our approximation. But there is a case when both models
coincide.

In fact, for an absolutely rigid solid skeleton w = v = 0 in the solid part. Hence
(A.7.83) coincides with (A.7.88). We consider the model M17

β0

( 1

ψp,f
p + ∞ · w

)
= 0, (A.7.89)
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β0

(
∞ · P + (ρf + θ c)F

)
= 0, (A.7.90)

P = ψμ(c)D
(

x,
Ωw
Ωt

)
−

(
p − ψξ∞ · Ωw

Ωt

)
I, (A.7.91)

coupled with (A.7.83) and (A.7.87), and refer to the model obtained as the mathe-
matical model M27.

7. The joint motion of two incompressible immiscible liquids with the same
viscosity and different constant densities is described at the microscopic level by the
dynamic equations

∞ · (
β̃ Pf + (1 − β̃)Ps

) + (
ρf β̃ + ρs (1 − β̃ )

)
F = 0, (A.7.92)

∞ · v = 0, (A.7.93)

Ωβ̃

Ωt
+ v · ∞ β̃ = 0, β̃(x, 0) = β0(x), (A.7.94)

completed with the Cauchy problem

Ωρf

Ωt
+ v · ∞ ρf = 0, ρf (x, 0) = ρ

(0)
f (x) (A.7.95)

for the density ρf of the nonhomogeneous liquid in the liquid domain χf for t > 0.
The last problem is equivalent to the Cauchy problem

Ωρ

Ωt
+ v · ∞ ρ = 0, ρ(x, 0) = ρ

(0)
f (x) β0(x) + ρs

(
1 − β0(x)

)
(A.7.96)

for the density ρ of the medium.
Let π0 be a smooth surface dividing χ into two subdomains χ+ and χ− and

ρ
(0)
f (x) = ρ+

f = const for x ⊂ χ+, ρ
(0)
f (x) = ρ−

f = const for x ⊂ χ−.

Then for the smooth velocity field v(x, t) there exists a smooth surface of the strong
discontinuityπ(t),π(0) = π0, dividingχf into two subdomainsχ+

f (t) andχ−
f (t),

such that

ρ(x, t) = ρ+
f for x ⊂ χ+

f (t), and ρ(x, t) = ρ−
f for x ⊂ χ−.

That is, the problem (A.7.92)–(A.7.94), (A.7.96) really describes the joint motion of
two immiscible incompressible liquids with the different constant densities separated
by the free boundary π(t).

It is obvious that the resulting problem is too complicated. To simplify the model
and get simpler, but still reasonable one, we replace (A.7.92)–(A.7.94) by the system
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∞ ·
(

β0 ψμ D

(
x,

Ωw
Ωt

)
+ (1 − β0)ψα D(x, w) − p I

)
+ ρ F = 0, (A.7.97)

∞ · v = 0, v = Ωw
Ωt

, (A.7.98)

completed with the Cauchy problem

Ωρ

Ωt
+ v · ∞ ρ = 0, ρ(x, 0) = ρ

(0)
f (x) β0 + ρf (1 − β0) (A.7.99)

for the density ρ of the medium.
We refer to the model (A.7.97)–(A.7.99) as the mathematical model M28.



Appendix B
Auxiliary Mathematical Topics

B.1 Hilbert Spaces

A Hilbert space is a complete inner product space. That is to say, firstly the space
H is a real linear space provided with an inner product, denoted (u, v), for u and v in
H, satisfying the following defining conditions:

(u, u) � 0, (u, u) = 0 ⇔ u = 0, (B.1.1)

(u, v) = (v, u), (u + v, w) = (u, v) + (u, w), (B.1.2)

(ψu, v) = ψ(u, v), ∀ψ ⊂ R. (B.1.3)

To such an inner product is assigned a norm, by

‖u‖ = √
(u, u). (B.1.4)

Then it is easy to verify that

‖u‖ � 0, ‖u‖ = 0 ⇔ u = 0,

‖ψu‖ = |ψ|‖u‖.

Finally, the triangle inequality

‖u + v‖ � ‖u‖ + ‖v‖

is a consequence of Cauchy’s inequality

|(u, v)| � ‖u‖ · ‖v‖. (B.1.5)

A. Meirmanov, Mathematical Models for Poroelastic Flows, 427
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7,
© Atlantis Press and the authors 2014
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A sequence {un}, un ⊂ H converges to u ⊂ H:

un → u, as n → ∞,

if
‖u − un‖ → 0 as n → ∞. (B.1.6)

We also say that convergence (B.1.6) is a strong convergence.
A sequence {un} is a Cauchy sequence provided that

‖un − um‖ → 0, as n, m → ∞.

Completeness is the property that any Cauchy sequence converges.
The element u ⊂ H is an accumulation point of a set M ∩ H, if there exists a

sequence {un}, un ⊂ M, such that

un → u, as n → ∞.

A closure M of a set M is a set of all the accumulation points of M.
M is closed if M = M.
We say that M is compact if any infinite subset of M contains a convergent

sequence.
A set M is dense in H, if M = H.
A Hilbert space H is separable, if there exists a countable set dense in H.
A set L(M) of all finite linear combinations

m∑

i=1

uψi ,

of a set M = {uψ} is said a linear span of M.
We say u and v are orthogonal if(u, v) = 0.
A set M is orthonormal, if

‖u‖ = 1 for all u ⊂ M and (u, v) = 0 for all u, v ⊂ M, u �= v.

Wecall an orthonormal setM a basis if it is not contained in any larger orthonormal
set.

Lemma B.1 Any separable Hilbert space contains a countable basis.

Let M = {en}∞n=1 be a basis. We denote

u =
∞∑

n=1

cnen,
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if
m∑

n=1

cnen → u, as m → ∞.

Lemma B.2 Let H be a separable Hilbert space. Then for any basis M = {en}∞n=1
and for any u ⊂ H

u =
∞∑

n=1

cnen, where cn = (u, en). (B.1.7)

A sequence {un} is said to be weakly convergent to u:

un ⇀ u, as n → ∞,

if
(un − u, v) → 0, as n → ∞, ∀v ⊂ H.

Finally, we say that K is a weakly compact set if any sequence {un}, un ⊂ K , contains
a weakly convergent subsequence:

unm ⇀ u ⊂ K, as m → ∞.

Theorem B.1 In a separable Hilbert space any bounded closed ball

B = {u ⊂ H : ‖u‖ � C},

is a weakly compact set.

B.2 Sobolev Spaces for Scalar Functions

Let χ ⊂ R
n be a bounded set with a Lipschitz continuous boundary S = Ωχ . Then

for any u ⊂ C1(χ) and for any v ⊂
◦

C1 (χ)

∫

χ

( Ωu

Ωxi
v + u

Ωv

Ωxi

)
dx = 0, i = 1, . . . , n. (B.2.1)

We say that a function u(x), x ⊂ χ , is an element of the Hilbert space L2(χ) with
an inner product

(u, v) =
∫

χ

u(x) v(x)dx,
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if

‖u‖2,χ =
( ∫

χ

u2(x)dx
) 1

2
< ∞.

The Cauchy inequality (B.1.5) for L2(χ) has the form

∣∣∣∣
∫

χ

u(x) v(x)dx

∣∣∣∣ �
( ∫

χ

u2(x)dx
) 1

2
( ∫

χ

v2(x)dx
) 1

2
. (B.2.2)

We also call this inequality the Hölder inequality.
A function vi ⊂ L2(χ) is a weak derivative of a function u ⊂ L2(χ) with respect

to a variable xi, if

∫

χ

( Ωγ

Ωxi
u + vi

Ωγ

Ωxi

)
dx = 0, ∀γ ⊂

◦
C1 (χ). (B.2.3)

As usual we denote

vi = Ωu

Ωxi
.

Nowwedefine a Sobolev spaceW1
2 (χ) as a linear inner product space of all functions

u ⊂ L2(χ) with weak derivatives

Ωu

Ωxi
⊂ L2(χ), i = 1, . . . , n,

with the inner product

→u, v◦ =
∫

χ

(
u · v + ∞u · ∞v

)
dx (B.2.4)

and the norm

‖u‖(1)
2,χ =

( ∫

χ

(
u2 + |∞u|2

)
dx

) 1
2
, (B.2.5)

where

∞u =
( Ωu

Ωx1
, . . . ,

Ωu

Ωxn

)
,

and

∞u · ∞ v =
n∑

i=1

Ωu

Ωxi
· Ωv

Ωxi
, |∞u|2 = ∞u · ∞u.

There is an equivalent definition of the Sobolev space W1
2 (χ) as a closure of the

inner product space of all functions u ⊂ C1(χ) with inner product (B.2.4).
That is, for any u ⊂ W1

2 (χ) there exists a sequence {un}, un ⊂ C1(χ), such that
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‖u − un‖(1)
2,χ → 0 as n → ∞.

Therefore a Sobolev space W1
2 (χ) is complete inner product space, or a complete

Hilbert space.

Lemma B.3 For all u ⊂ W1
2 (χ) the trace

uS(x) = u(x), x ⊂ S = Ωχ

is well defined and
( ∫

S
|u|2ds

) 1
2 � C‖u‖(1)

2,χ, (B.2.6)

where C depends only on the geometry of χ and does not depend on u.
Moreover, if n(x) is an outward unit normal to S at x ⊂ S, then

∫

S

∣∣uS(x) − u
(
x − εn(x)

)∣∣2 ds → 0, as ε → 0.

Lemma B.4 The imbedding operator W1
2 (χ) → L2(χ) is completely continuous.

That is, any weakly convergent sequence in W1
2 (χ) converges strongly in L2(χ).

In the same way we define a space
◦

W1
2 (χ) as a closure of the inner product space

of all functions u ⊂
◦

C1 (χ), vanishing at Ωχ , with inner product (B.2.4).
It is easy to see, that for any function u ⊂ W1

2 (χ) and for any function

v ⊂
◦

W1
2 (χ) formula (B.2.1) of integration by parts is still valid.

Lemma B.5 (Friedrichs–Poincaré’s inequality for the scalar functions)

For all u ⊂
◦

W1
2 (χ) ∫

χ

|u|2dx � C
∫

χ

|∞u|2dx, (B.2.7)

where C depends only on the geometry of χ and does not depend on u and

∫

S

∣∣u
(
x − εn(x)

)∣∣2 ds → 0, as ε → 0,

where n(x) is an outward unit normal to S at x ⊂ S.

For functions u(x, t), where (x, t) ⊂ χT = χ × (0, T), we define the space
L2

(
(0, T); L2(χ)

) = L2(χT ) as a Hilbert space with the inner product
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(u, v) =
( ∫ T

0

( ∫

χ

u(x, t) v(x, t)dx
)

dt

) 1
2

=
( ∫

χT

u(x, t) v(x, t)dxdt

) 1
2

(B.2.8)

and the norm

‖u‖2,χT =
(∫

χT

u2(x, t)dxdt

) 1
2

. (B.2.9)

The Hölder inequality for L2(χT ) has the form

∣∣∣∣
∫

χT

u(x, t) v(x, t)dxdt

∣∣∣∣

�
( ∫

χT

u2(x, t)dxdt
) 1

2
( ∫

χT

v2(x, t)dxdt
) 1

2
. (B.2.10)

We also define spaces

L2((0, T); W1
2 (χ)

) = W1,0
2 (χT ) and L2((0, T); ◦

W
1

2 (χ)
) = ◦

W
1,0

2 (χT )

as the Hilbert spaces with the inner product

→u, v◦ =
( ∫

χT

(u(x, t) v(x, t) + ∞u(x, t) · ∞v(x, t))dxdt
) 1

2
(B.2.11)

and the norm

‖u‖(1)
2,χT

=
( ∫

χT

(u2(x, t) + |∞u(x, t)|2)dxdt
) 1

2
. (B.2.12)

For any two functions u, v ⊂ W1
2 (χ) the Stokes (Gauss-Ostrogradsky) Theorem

has the form
∫

χ

( Ωu

Ωxi
v + u

Ωv

Ωxi

)
dx =

∫

S
u v ξids, i = 1, . . . , n, (B.2.13)

where ξ = (ξ1, . . . , ξn) is the unit outward normal to the boundary S = Ωχ .
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B.3 Sobolev Spaces for Vector Functions

We say that a vector function u(x) = (u1(x), . . . , un(x)), x ⊂ χ , is an element of
the Hilbert space L2(χ) with an inner product

(u, v) =
∫

χ

u(x) · v(x)dx,

if

‖u‖2,χ =
( ∫

χ

|u(x)|2dx
) 1

2
< ∞.

Here

u · v =
n∑

i=1

uivi, |u|2 = u · u.

The Hölder inequality for L2(χ) has the form

∣∣∣∣
∫

χ

u(x) · v(x)dx

∣∣∣∣ �
( ∫

χ

|u(x)|2dx
) 1

2
( ∫

χ

|v(x)|2dx
) 1

2
. (B.3.1)

Nowwe introduce a Sobolev spaceW1
2(χ) (

◦
W1

2 (χ)) for vector functions u as a clo-

sure of the spaceC1(χ) (
◦

C1 (χ)) of all vector functions, continuously differentiable
in χ , with the inner product

→u, v◦ =
∫

χ

(
u(x) · v(x) + ∞u(x) : ∞v(x)

)
dx (B.3.2)

and the norm
‖u‖(1)

2,χ = (→u, u◦) 1
2 . (B.3.3)

The second-rank tensor (matrix) ∞u is defined dy

∞u = Ωu
Ωx

=
(Ωui

Ωxj

)
, i, j = 1, . . . , n

and

∞u : ∞v =
n∑

i,j=1

Ωui

Ωxj
· Ωvi

Ωxj
, |∞u|2 = ∞u : ∞u.

Lemma B.6 (Korn’s inequality)
Let u ⊂ W1

2(χ) and u = 0 on the part S0 ∩ S = Ωχ with a strictly positive
measure. Then
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∫

χ

|∞u|2dx � C
∫

χ

D(x, u) : D(x, u)dx = C
∫

χ

|D(x, u)|2dx, (B.3.4)

where C depends only on the geometry of χ and does not depend on u, and the
symmetric second-rank tensor D(x, u) is defined by

D(x, u) = 1

2

(Ωu
Ωx

+ Ωu
Ωx

∪)
.

More precisely, Korn’s inequality is valid for any subset V ∩ W1
2(χ), such that

the equality
D(x, u) = 0 for u ⊂ V ,

implies u = 0.

Lemma B.7 (Friedrichs-Poincaré’s inequality for the vector functions)

For all u ⊂
◦

W1
2 (χ)

∫

χ

|u|2dx � C
∫

χ

|D(x, u)|2dx, (B.3.5)

where C depends only on the geometry of χ and does not depend on u and

∫

S

∣∣u
(
x − εn(x)

)∣∣2 ds → 0, as ε → 0,

where n(x) is an outward unit normal to S at x ⊂ S.

For functions u(x, t), where (x, t) ⊂ χT , we define the space L2((0, T);
L2(χ)) = L2(χT ) as a Hilbert space with an inner product

(u, v) =
∫

χT

u(x, t) · v(x, t)dxdt

and the norm

‖u‖2,χT =
( ∫

χT

|u(x, t)|2dxdt
) 1

2
.

The Hölder inequality for L2(χT ) has the form

∣∣∣∣
∫

χT

u(x, t) · v(x, t)dxdt

∣∣∣∣

�
( ∫

χT

|u(x, t)|2dxdt
) 1

2
( ∫

χT

|v(x, t)|2dxdt
) 1

2
. (B.3.6)
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Let C1,0(χT ) be the space of all vector functions, continuously differentiable with

respect to spatial variables, and
◦

C1,0 (χT ) be a subspace of C1,0(χT ), consisting of
all functions vanishing at the boundary S = Ωχ .

The spaces

L2((0, T); W1
2(χ)

) = W1,0
2 (χT ) and L2((0, T); ◦

W
1

2 (χ)
) = ◦

W
1,0

2 (χT )

are the closure of the inner product spaces of all functions from C1,0(χT ) and
◦

C1,0 (χT ) respectively with the inner product

→u, v◦ =
∫

χT

(
u(x, t) · v(x, t) + ∞u(x, t) : ∞v(x, t)

)
dx (B.3.7)

and the norm
‖u‖(1)

2,χT
= (→u, u◦) 1

2 . (B.3.8)

For any function u ⊂ W1
2(χ) the Stokes (Gauss-Ostrogradsky) Theorem takes

the form ∫

χ

∞ · udx =
∫

S
u · ξds, (B.3.9)

where ξ is the unit outward normal to the boundary S = Ωχ .
More generally, for any second-rank tensor P ⊂ W1

2(χ) the Stokes (Gauss-
Ostrogradsky) Theorem has the form

∫

χ

∞ · Pdx =
∫

S
P · ξds, (B.3.10)

where ξ is the unit outwardnormal to the boundaryS = Ωχ , anda·(∞·P) = ∞·(P∪·a)

for any constant vector a.

B.4 Periodic Structures

In this section we discuss the properties of Sobolev spaces in periodic domains χε
f

or χε
s , which have been defined in Chap.1.

http://dx.doi.org/10.2991/978-94-6239-015-7_1
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B.4.1 Extension Results

The following statements are valid due to the well-known results from [1, 36, 53,
89]. We formulate them in the forms that are appropriate for us.

Lemma B.8 (Extension lemma for the scalar functions [1, 53])
Suppose that Assumptions 0.1 and 1.1 regarding the geometry of a periodic struc-

ture hold true (the domain χs is a connected set) and w ⊂ W1
2 (χ).

Then there exists an extension

ws = Eχε
s
(w), Eχε

s
: W1

2 (χε
s ) → W1

2 (χ), (B.4.1)

from the domain χε
s onto the whole domain χ such that

(
1 − βε(x)

)(
w(x, t) − ws(x, t)

) = 0, x ⊂ χ, t ⊂ (0, T), (B.4.2)

and
∫

χ

|ws(x, t)|2dx � C0

∫

χε
s

|w(x, t)|2dx,

∫

χ

|∞ws(x, t)|2dx � C0

∫

χε
s

|∞w(x, t)|2dx, t ⊂ (0, T),

(B.4.3)

where C0 is independent of ε and t ⊂ (0, T).

Lemma B.9 (Extension lemma for the vector functions [36, 89])
Suppose that Assumptions 0.1 and 1.1 on the geometry of periodic structure hold

true (the domain χs is a connected set) and w ⊂ W1
2(χ).

Then there exists an extension

ws = Eχε
s
(w), Eχε

s
: W1

2(χ
ε
s ) → W1

2(χ), (B.4.4)

from the domain χε
s onto the whole domain χ such that

(
1 − βε(x)

)(
w(x, t) − ws(x, t)

) = 0, x ⊂ χ, t ⊂ (0, T), (B.4.5)

and
∫

χ

|ws(x, t)|2dx � C0

∫

χε
s

|w(x, t)|2dx,

∫

χ

|D(x, ws)|2dx � C0

∫

χε
s

|D(x, w)|2dx, t ⊂ (0, T),

(B.4.6)
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Fig. B.1 Left Connected solid and liquid parts. Right Disconnected solid part

where C0 is independent of ε and t ⊂ (0, T).

For w ⊂ ◦
W

1

2 (χ) (w ⊂ ◦
W

1

2 (χ)) these statements do not guarantee the inclusion

ws ⊂ ◦
W

1

2 (χ) (ws ⊂ ◦
W

1

2 (χ)). But for the special geometry of the pore space the
extension permits this inclusion, namely, the following lemma holds true.

Let the first geometry of the pore space be represented by Fig.B.1(left), and the
second geometry be represented by Fig.B.1(right).

Lemma B.10 (Extension lemma for the special geometry [58, 89])

Let Assumption 0.1 hold and w ⊂ ◦
W

1

2 (χ).
Then for the first geometry of the pore space there exist extensions ws = Eχε

s
(w)

from χε
s onto χ and wf = Eχε

f
(w) from χε

f onto χ such that ws, wf ⊂ ◦
W

1

2 (χ)

and the estimates B.12 for ws and wf hold true.
For the second geometry there exists the extension wf = Eχε

f
(w) from χε

f onto

χ such that wf ⊂ ◦
W

1

2 (χ) and the estimates B.12 for wf holds true.
If for the second geometry additionally ∞ · w = 0 in χ , then ∞ · wf = 0 in χ .

Sometimes we do not need the homogeneous boundary condition ws = 0 on Ωχ ,
but we do need the estimate

∫

χ

|ws|2dx � C
∫

χ

|D(x, ws)|2dx (B.4.7)

with the constant C independent of ε.
For this case we prove the following statement.



438 Appendix B: Auxiliary Mathematical Topics

Lemma B.11 Under the conditions of Lemma B.9 let w ⊂ ◦
W

1

2 (χ).
Then the estimate (B.4.7) holds true.

Proof Let Q be a cube, χ ∩ Q, and u be an extension of w such that u = 0 for

u ⊂ Q\χ . The inclusion w ⊂ ◦
W

1

2 (χ) implies u ⊂ ◦
W

1

2 (Q). For the domain Q
we may define the solid part Qε

s and the extension us in the same way as for the
domain χ we have defined the solid part χε

s and the extension ws. It is clear that

us ⊂ ◦
W

1

2 (Q) for sufficiently large Qs.
Thus, we may apply the Friedrichs–Poincaré inequality

∫

Q
|us|2dx � C

∫

Q
|D(x, us)|2dx.

It is also clear that

us = ws inχ and
∫

χ

|ws|2dx �
∫

Q
|us|2dx.

Therefore ∫

χ

|ws|2dx � C
∫

Q
|D(x, us)|2dx.

Lemma B.9 states that
∫

Q
|D(x, us)|2dx � C

∫

Qε
s

|D(x, u)|2dx.

But
∫

Qε
s

|D(x, u)|2dx =
∫

χε
s

|D(x, w)|2dx

=
∫

χε
s

|D(x, ws)|2dx �
∫

χ

|D(x, ws)|2dx.

Gathering all together we arrive at the desired estimate (B.4.7).

Lemma B.12 (Korn’s inequality for periodic structures)
Under the conditions of Lemma B.9 let w ⊂ W1

2(χ).
Then ∫

χε
f

|∞w|2dx � C
∫

χε
f

|D(x, (w)|2dx (B.4.8)

for the connected set χε
f , and
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∫

χε
s

|∞w|2dx � C
∫

χε
s

|D(x, (w)|2dx, (B.4.9)

for the connected set χε
s .

In (B.4.8), (B.4.9) the constant C is independent of ε.

Proof Toprove the lemmaweuseLemmaB.9 and conclude that there exist functions
wf ⊂ W1

2(χ) for the connected set χε
f and ws ⊂ W1

2(χ) for the connected set χε
s

such that
wf = w in χε

f , ws = w in χε
s

and ∫

χ

|D(x, wf )|2dx � C
∫

χε
f

|D(x, w)|2dx,

∫

χ

|D(x, ws)|2dx � C
∫

χε
s

|D(x, w)|2dx,

where C is independent of ε.
Next we use the standard Korn inequality (Lemma B.6):

∫

χ

|∞wf |2dx � C
∫

χ

|D(x, wf )|2dx,

∫

χ

|∞ws|2dx � C
∫

χ

|D(x, ws)|2dx.

Finally, we apply the evident relations

∫

χε
f

|∞w|2dx �
∫

χε
f

|∞w|2dx +
∫

χε
s

|∞wf |2dx =
∫

χ

|∞wf |2dx

and ∫

χε
s

|∞w|2dx �
∫

χε
s

|∞w|2dx +
∫

χε
f

|∞ws|2dx =
∫

χ

|∞ws|2dx,

which result in the statements of the lemma.
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B.5 Multi-Scale Convergence

B.5.1 Two-Scale Convergence

The method of two-scale convergence was proposed by G. Nguetseng [89] and has
been applied to a wide range of homogenization problems (see, for example, the
survey [70]).

A sequence {wε} ∩ L2(χT ) is said to be two-scale convergent to a function
W̃(x, t, y, Γ ) ⊂ L2(χT × Y), 1-periodic in the variables (y, Γ ) ⊂ Y × (0, 1), if and
only if for any function ς = ς(x, t, y, Γ ), 1-periodic in (y, Γ )

∫

χT

wε(x, t)ς

(
x, t,

x
ε
,

t

ε

)
dxdt

→
∫

χT

( ∫ 1

0

∫

Y
W̃(x, t, y, Γ )ς (x, t, y, Γ )dydΓ

)
dxdt (B.5.1)

as ε → 0.
In what follows we restrict ourself to the test functions ς = ς(x, t, y). Then the

relation B.5.1 takes the form
∫

χT

wε(x, t)ς

(
x, t,

x
ε

)
dxdt

→
∫

χT

( ∫

Y
W(x, t, y)ς (x, t, y)dy

)
dxdt, (B.5.2)

where

W(x, t, y) =
∫ 1

0
W̃(x, t, y, Γ )dΓ.

The existence and main properties of weakly convergent sequences are established
by the following fundamental theorem [70, 89]:

Theorem B.2 (Nguetseng’s theorem for scalar functions)
1.Any sequence {wε} bounded in L2(χT ) contains a subsequence, two-scale con-

vergent to some function W ⊂ L2(χT × Y), 1-periodic in y.
2.Let sequences {wε} and {ε∞wε} be uniformly bounded in L2(χT ).

Then there exist a function W = W(x, t, y) 1-periodic in y, and a subsequence
{wε} such that W , ∞yW ⊂ L2(χT × Y), and the subsequences {wε} and {ε∞wε}
two-scale converge to W and ∞yW respectively.
3. Let sequences {wε} and {∞wε} be bounded in L2(χT ).

Then there exist the functions w ⊂ L2(χT ) and W ⊂ L2(χT × Y) and a sub-
sequence from {∞wε} such that the function W is 1-periodic in y, ∞w ⊂ L2(χT ),
∞yW ⊂ L2(χT ×Y), and the subsequence {∞wε} two-scale converges to the function
∞w(x, t) + ∞yW(x, t, y).
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Theorem B.3 (Nguetseng’s theorem for vector functions)
1. Any sequence {wε} bounded in L2(χT ) contains a subsequence, two-scale

convergent to some function W ⊂ L2(χT × Y), 1-periodic in y.
2. Let sequences {wε} and {εD(x, wε)} be uniformly bounded in L2(χT ).
Then there exists a function W = W(x, t, y), 1-periodic in y, and a subsequence
{wε} such that W, ∞yW ⊂ L2(χT ×Y), and the subsequences {wε} and {εD(x, wε)}
two-scale converge in L2(χT ) to W and D(y, W) respectively.
3. Let sequences {wε} and {D(x, wε)} be bounded in L2(χT ).
Then there exist the functions w ⊂ L2(χT ) and W ⊂ L2(χT ×Y) and a subsequence
from {D(x, wε)} such that the function W is 1-periodic in y, {D(x, w)} ⊂ L2(χT ),
D(y, W) ⊂ L2(χT × Y), and the subsequence {D(x, wε)} two-scale converges to
the function D(x, w) + D(y, W).

4. Let ς ⊂ L2(Y) and ςε(x) = ς
(x

ε

)
. Assume that a sequence {wε} ∩ L2(χT ) two-

scale converges to W ⊂ L2(χT ×Y). Then the sequence {ςεwε} two-scale converges
to the function ςW.

Lemma B.13 Let a sequence {wε(x, t)} weakly converge in L2(χT ) to w(x, t) and
two-scale converges to W(x, t, y),

ψ(ε)‖∞wε‖2,χT � C,

where C is independent of the small parameter ε, and

lim
ε→0

ψ(ε)

ε
= ∞,

Then W(x, t, y) = w(x, t).

Proof Let Π (x, t, y) be an arbitrary smooth scalar function periodic in y. The
sequence {ςε

j }, where

ςε
j =

∫

χT

ψ(ε)
Ωwε

Ωxj
(x, t)Π

(
x, t,

x
ε

)
dxdt

is uniformly bounded in ε.
Therefore,

∫

χT

ε
Ωwε

Ωxj
(x, t)Π

(
x, t,

x
ε

)
dxdt = ε

ψ(ε)
ς ε

j → 0

as ε ↘ 0, which is equivalent to

∫

χT

∫

Y
W(x, t, y)

ΩΠ

Ωyj
(x, t, y)dydxdt = 0, j = 1, . . . , n,
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or
W(x, t, y) = w(x, t).

The following lemma shows the limiting property of the weakly convergent

sequences {wε
s } for wε ⊂ ◦

W
1

2 (χ). The lemma is valid both for scalar and vector
functions. So we will consider only scalar functions.

Lemma B.14 Under the conditions of Lemma B.8 let wε ⊂ ◦
W

1,0

2 (χT ) and the
sequence {wε

s } converge weakly in W1,0
2 (χT ) and two-scale in L2(χT ) to ws(x, t).

Then ws ⊂ ◦
W

1

2 (χT ).

Proof By construction the function wε
s vanishes at the part Sε

s = ΩS ∈ χε
s of the

boundary S.
Let us choose the function u(y), 1-periodic and solenoidal in the unit cube Y , such

that supp u ∩ Yf . Then the function h(x, t)u
(x
ε

)
vanishes at the part Sε

f = ΩS ∈ χε
f of

the boundary S for any smooth function h(x, t) and the product h(x, t)wε
s (x, t)u

(x
ε

)

vanishes at the boundary S.
Therefore we may apply the formula (B.2.1) for integration by parts, which in

this case takes the form
∫

χT

(
h(x, t)∞wε

s (x, t)
) · u

(x
ε

) + wε
s (x, t)

(
u
(x
ε

) · ∞h(x, t)

)
dxdt = 0. (B.5.3)

Let ∞ws(x, t) + ∞yWs(x, y, t) be the two-scale limit of the sequence {∞wε
s }. Then

the limit as ε → 0 in (B.15) results in

∫

χT

(
h (∞ws · →u◦Yf + →∞yWs · u◦Yf ) + ws(→u◦Yf · ∞h)

)
dxdt = 0.

Here

→u◦Yf =
∫

Yf

udy and →∞yWs · u◦Yf =
∫

Yf

∞yWs · udy = 0

due to condition ∞y · u = 0.
Let

→u◦Yf = e. (B.5.4)
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Then the last identity takes the form

∫

χT

(
h (∞ws · e) + ws(e · ∞h)

)
dxdt =

∫

χT

∞ · (h ws e)dxdt = 0.

Applying the Stokes formula we obtain

∫

ST

h(x, t)ws(x, t)(e · n)dς = 0, (B.5.5)

where ST = S × (0, T) and n is the unit normal to the to the boundary S.
In the following lemmawe prove that for any unit vector e there exists a solenoidal

function u(y) with supp u ∩ Yf satisfying (B.5.4). Then due to the arbitrary choice
of the functions h and vectors e the identity (B.5.5) implies ws(x, t) = 0 for x ⊂ S.

Lemma B.15 For any unit vector e there exists a solenoidal vector function u(y)

satisfying (B.5.4) and the condition supp u ∩ Yf .

Proof Let B ∩ Yf be a ball and u(y) be a nontrivial solution of the problem

⊗u − ∞p = f, y ⊂ B, (B.5.6)

∞ · u = 0, y ⊂ B, (B.5.7)

u = 0, y ⊂ ΩB (B.5.8)

with some fixed function f(y).
We may always assume that

∫

B
udy = e0, with |e0| = 1.

Let T be the orthogonal matrix and T · e0 = e.
Then in the new variables z = T · y the function v(z) = T · u(y) satisfies the

problem
⊗zv − ∞zq = F, z ⊂ B, (B.5.9)

∞z · v = 0, v ⊂ B, (B.5.10)

v = 0, z ⊂ ΩB (B.5.11)

where F(z) = T · f and q(z) = p(y). By the construction

e = T · e0 =
∫

B
T · udy =

∫

B
vdz.
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B.5.2 Three-Scale Convergence

The method of three-scale convergence was proposed by G. Allaire and M. Briane
[6] and G. Nguetseng [70].

Let ε = θ r , r > 1.
We say that the sequence {wθ} three-scale converges in L2(χT ) to the function

W(x, t, y, z), 1-periodic in the variables y and z, if

∫

χT

wθ(x, t) γ

(
x, t,

x
ε
,

x
θ

)
dxdt

→
∫

χT

( ∫

Y

∫

Z
W(x, t, y, z) γ(x, t, y, z)dzdy

)
dxdt, (B.5.12)

for any smooth function γ(x, t, y, z), 1-periodic in y and z.

Theorem B.4 (Three-scale convergence)
1. Any sequence {wθ} bounded in L2(χT ) contains a subsequence, three-scale

convergent to some function W ⊂ L2(χT × Y × Y), 1-periodic in y and z.
2. Let sequences {wθ} and {D(x, wθ)} be bounded in L2(χT ).

Then there exist a subsequence from {D(x, wθ)} and the functions w ⊂ L2(χT )

and Wp, Wc,⊂ L2(χT × Y × Y), Wp and Wc are 1-periodic in y and z, D(x, w) ⊂
L2(χT ), D(y, Wp), D(y, Wc) ⊂ L2(χT × Y × Y), such that the subsequence
{D(x, wθ)} three-scale converges to the function D(x, w) + D(y, Wp) + D(z, Wc).

B.6 Some Compactness Results

In this section we formulate some compactness results for the bounded sequences
{uk(x, t)} in L2(χT ), which are compact in L2(χ) for any fixed t ⊂ (0, T).

We say that the function u ⊂ L2(χT ) possesses a time derivative
Ωu

Ωt
, bounded in

L2
(
(0, T); W−1

2 (χ)
)
, if

∣∣∣∣
∫

χT

u
Ωγ

Ωt
dxdt

∣∣∣∣ � C ‖γ‖(1)
2,χT

for any smooth function γ.
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Lemma B.16 (Aubin’s compactness lemma [9])
Let the sequence {u k(x, t)} be bounded in L∞

(
(0, T); L2(χ)

) ∈ W1,0
2 (χT ) and

weakly convergent in the space L2(χT ) ∈ W1,0
2 (χT ) to the function u(x, t). Let also

the sequence

{
Ωu k

Ωt
(x, t)

}
be bounded in the space L2

(
(0, T); W−1

2 (χ)
)
.

Then the sequence {u k(x, t)} converges strongly in L2(χT ) to its weak limit u(x, t).

Lemma B.17 (Compactness in periodic structures [84])
Let the sequence {u k(x, t)} be bounded in L∞

(
(0, T); L2(χ)

) ∈ W1,0
2 (χT ) and

weakly convergent in the space L2(χT ) ∈ W1,0
2 (χT ) to the function u(x, t). Let

also the sequence

{
βε(x)

Ωu k

Ωt
(x, t)

}
be bounded in the space L2

(
(0, T); W−1

2 (χ)
)
,

where βk(x) = β(k x), β(y) is a measurable bounded function, 1-periodic in the
variable y, such that

→β ◦Y =
∫

Y
β(y)dy = m �= 0,

and Y is the unit cube in Rn.
Then the sequence {u k(x, t)} converges strongly in L2(χT ) to its weak limit u(x, t).

References

1. Acerbi, E., Chiado Piat, V., Dal Maso, G., & Percivale, D. (1992). An extension theorem
from connected sets and homogenization in general periodic domains. Nonlinear Analysis,
18, 481–496.

2. Adachi, J.I., Detournay, E., & Peirce, A. P. (2010). Analysis of the classical pseudo-3Dmodel
for hydraulic fracture with equilibrium height growth across stress barriers. International
Journal of Rock Mechanics and Mining Sciences, 47, 625–639.

3. Adams, R. E. (1975). Sobolev spaces. New York: Academic Press.
4. Allaire, G. (1989). Homogenization of the Stokes flow in a connected porousmedium.Asymp-

totic Analysis, 2, 203–222.
5. Allaire, G. (1992). Homogenization and two-scale convergence. SIAM J. Math. Anal., 23,

1482–1518.
6. Allaire, G., & Briane, M. (1996). Multisale convergence and reiterated homogenization. Pro-

ceedings of the Royal Society of Edinburgh, 126A, 297–342.
7. Allaire, G., & Capdeboscq, Y. (2000). Homogenization of a spectral problem in neutronic

multigroup diffusion. Computer Methods in Applied Mechanics and Engineering, 187, 91–
117.

8. Amaziane, B., Goncharenko, M., & Pankratov, L. (2007). Homogenization of a convection–
diffusion equation in perforated domains with a weak adsorption. Zeitschrift für Angewandte
Mathematik und Physik, 58, 592–611.

9. Amaziane, B., Antontsev, S., Pankratov, L., & Piatnitski, A. (2010). Homogenization of
immiscible compressible two-phase flow in porous media: Application to gas migration in a
nuclear waste repository. SIAM Journal on Multiscale Modeling and Simulation, 8(5), 2023–
2047.

10. Antontsev, S., Meirmanov, A., & Yurinsky, V. (2000). A free boundary problem for Stokes
equations: Classical solutions. Interfaces and Free Boundaries, 2, 413–424.



446 Appendix B: Auxiliary Mathematical Topics

11. Arbogast, T., Douglas, J., & Hornung, U. (1990). Derivation of the double porosity model
of single phase flow via homogenization theory. SIAM Journal on Mathematical Analysis,
21(4), 823–836.

12. Aubin, J. P. (1963). Un théoréme de compacité. Comptes Rendus de l’Académie des Sciences,
256, 5042–5044.

13. Auriault, J.-L. (1997). Poroelastic media. In U. Hornung (Ed.), Homogenization and porous
media. Interdisciplinary applied mathematics (pp. 163–182). Berlin: Springer.

14. Bakhvalov, N. S., & Panasenko, G. (1989). Homogenization: Averaging processes in periodic
media. New York: Springer.

15. Barenblatt, G. I., Zheltov, Iu P,&Kochina, I. N. (1960). Basic concepts in the theory of seepage
of homogeneous liquids in fissures rocks. Journal of Applied Mathematics and Mechanics,
24, 1286–1303.

16. Barenblatt, G. I., Yentov, V. M., & Ryzhik, V. M. (1972). Theory of nonstationary liquid and
gas filtration. Moscow: Nedra. (Russian).

17. Bensoussan, A., Lions, J.-L., & Papanicolau, G. (1978). Asymptotic analysis for periodic
structure. Amsterdam: North Holland.

18. Bhiladvala, R. B., & Wang, Z. J. (2004). Effect of fluids on the Q factor and resonance
frequency of oscillating micrometer and nanometer scale beams. Physical Review E, 69,
036307.

19. Biot, M. (1941). General theory of three dimensional consolidation. Journal of Applied
Physics, 12, 155–164.

20. Biot, M. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. Journal
of Applied Physics, 26, 182–185.

21. Biot, M. (1955). Theory of propagation of elastic waves in a fluid-saturated porous solid. I.
Low-frequency range. Journal of the Acoustical Society of America, 28, 168–178.

22. Biot, M. (1955). Theory of propagation of elastic waves in a fluid-saturated porous solid. II.
Higher frequency range. Journal of the Acoustical Society of America, 28, 179–191.

23. Biot, M. (1962). Generalized theory of acoustic propagation in porous dissipative media.
Journal of the Acoustical Society of America, 34, 1256–1264.

24. Biot, M., & Willis, D. (1957). The elastic coefficients of the theory of consolidation. Journal
of Applied Mechanics, 24, 594–601.

25. Booth, R. J. S. (2011). Asymptotics for the Muskat problem. Journal of Engineering Mathe-
matics,. doi:10.1007/s1066501093703.
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