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Preface

This book is devoted to the rigorous mathematical modeling of physical processes
in underground continuous media, namely, the correct description of porous elastic
solids with fluid-filled pores. Recently this subject has been attracting increased
attention for many reasons: the recovery of oil and gas, liquid waste disposal into
the ground, seismic phenomena, acoustic wave propagation in the water-saturated
porous bottom of the ocean, diffusion-convection in porous media, etc.

Such continuous media are called heterogeneous continuous media. That is, those
continuous media which consist of two or more different components (phases) and in
any sufficiently small amount of a continuum there are different phases. The mini-
mum size of this volume is different for different heterogeneous media, but usually it
is in the range from several microns to several tens of microns.

There are two different approaches to the description of heterogeneous media.
The first approach, which we call the phenomenological approach, is based upon
the notion of a continuous medium as a kind of conglomerate, where at each point
all phases of such a medium are present. In this approach, the main difficulty is the
physical modeling: the choice of axioms that define the dependence of the stress
tensor on the basic characteristics of motion and thermodynamic relations. The
second approach is based on precise physical modeling with further simplification
of the mathematical model using the methods of mathematical analysis. As a rule,
the differential equations of the exact mathematical model contain a small
parameter. Therefore, the main methods of simplifying exact mathematical models
are the methods of linearization and homogenization. Roughly speaking, these are
methods of constructing approximate mathematical models from the original one,
when the small parameter tends to zero. In this approach we must keep in mind the
limits of applicability of the physical models and methods of mathematical
analysis. The more precise and more rigorous methods provide the more trustable
mathematical models.

The phenomenological poroelastic equations derived by K. von Terzaghi and
M. Biot have long been regarded as standard and have formed the basis for solving
particular problems in poroelasticity. Terzaghi’s and Biot’s poroelastic equations
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take into account the displacement of both the fluid in the pores and the solid
skeleton and the coupling between them. These works have been rather heuristic.
Hence, several authors (R. Burridge and J. Keller [1], E. Sanchez-Palencia [2],
T. Levy [3-6]) have attempted to apply the second approach and derive the
macroscopic poroelastic equations on the basis of the fundamental laws of con-
tinuum mechanics and rigorous homogenization methods. The idea is quite nat-
ural: one first must describe the joint motion of the elastic skeleton and the fluid in
pores at the microscopic level by means of classical continuum mechanics, and
then use homogenization to find appropriate approximation models (homogenized
equations). The Navier-Stokes equations still hold at this scale of the pore size in
the order of 5-15 microns [7, 8]. Thus, as we have mentioned above, the mac-
roscopic mathematical models obtained are still within the limits of physical
applicability.

In this book we follow the method suggested by R. Burridge and J. Keller and
E. Sanchez-Palencia and systematically study filtration and acoustic processes in
poroelastic media.

Some parts of the book have been written in cooperation with my Ph.D. stu-
dents. Chapter 4 has been written in cooperation with I. Nekrasova, the first part of
the Chap. 5 has been written in cooperation with N. Erygina, the first part of the
Chap. 8 has been written in cooperation with A. Guerus, and Chap. 10 has been
written in cooperation with R. Zimin.

I am grateful to J. R. Ockendon for his always useful advices and my special
thanks for the book title.

I am also grateful to R. Perkins who carefully read the manuscript and essen-
tially improved my English. Researches which form the basis of the present book
have been partially supported by the Federal Program “Research and scientific—
pedagogical brainpower of Innovative Russia” for 2009-2013 (State Contract
14.A18.21.0357) and Grants N° 0691/GF and N° 0751/GF of the Ministry of
Education and Science of Kazakhstan.

Almaty, April 2013 Anvarbek Meirmanov
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Introduction

In the present book we derive different mathematical models describing flows in
poroelastic media. To explain the method we consider a bounded domain Q C R?
perforated by pores. A pore space (a liquid domain) € is filled with a viscous
liquid and there is a solid skeleton Q; = Q\Q; which is supposed to be an elastic
body. Then the joint motion in € is described by the system [1]

0 - -
a(pv)—kv-(pv®v—;(]P’f+(l—;{)IF’s):pF, (0.0.1)
Op
EJFV “(pv) =0, (0.0.2)

where V -u is the divergence of u:
V -u=tr(Vu),
a matrix a @ b is defined as
(a@b)-c=a(b-c),

for any vectors a, b, and ¢, and a divergence V - P for any smooth tensor P is
defined as

¢ (V-P)=V - (P"-¢)

for any constant vector c.

The function J is the characteristic function of the pore space €y, IP; and Py are
stress tensors in the liquid domain and in the solid skeleton respectively, v is the
velocity, p is the density of the medium, and F is a given vector of distributed mass
forces.

Equations (0.0.1, 0.0.2) are understood in the sense of distributions (as corre-
sponding integral identities) and contain dynamic equations for the liquid

dv d_p

- = .]P F . :O
P V- Pr+pF, dt+pVV ;

in the pore space €y for t > 0, dynamic equations for the solid component

XV
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dv dp
— =V -Py+pF, —+pV - -v=0,
pdt sTP dt p v

in Q; for ¢t > 0, and the continuity condition for normal tensions
(]P)S — Pf) -n=20

on the common boundary I'(f) “pore space-solid skeleton”. Here m is a unit
normal to I'(7).

We do not intend to specify state equations for stress tensors and for the density.
Let us just outline the problem, because it is completely nonlinear and contains one
more unknown subject: the common boundary “pore space-solid skeleton”. The
main postulate here is that the solid and the liquid components are immiscible.
Therefore, the unknown (free) boundary I'(¢) is a surface of a contact disconti-
nuity [1], which is defined by the Cauchy problem for the characteristic function ¥:

W17 v=0, 1(%0) = 1(x). 003)
in the whole domain Q for # > 0.

It is clear that, even if one knows how to solve the problem (0.0.1-0.0.3), this
mathematical model would not be useful for practical needs, since the function ¥
changes its value from 0 to 1 on the scale of a few microns. Thus, the most suitable
way to get a practically significant mathematical model is a homogenization. But
for this case the problem (0.0.1-0.0.3) becomes absolutely unsolvable. To get
something solvable and still reasonable, we use the scheme suggested in [2, 3] and
linearize the basic system.

That is, we approximate the characteristic function } of the liquid domain ; by
its value at the initial time moment

!

(= XO(X)a

and the free boundary I'(¢) by its initial position I',.
Next we suppose that

ow
Vo~ —
or’
where w is a displacement vector of the medium,

d azw
g PV = (0 + (1= 70)) 55

dp 1 op ow
dterV’V*c} az“’fv' ot

in the liquid part,
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d 179
—p+pV a—p+pV-

ow
dt 3

ot

in the solid part, where p, and p, are constant average densities of the liquid in
pores and of the solid skeleton respectively, ¢; and c; are the speed of compression
sound waves in the pore liquid and in the solid skeleton respectively, and that

Py = uD(x,v)+ (v(V -v) —p) 1, (0.0.4)

Py, = AD(x,w) — pL. (0.0.5)

1
Here D(x,u) = 3 (Vu + Vu") is the symmetric part of Vu, I is a unit tensor, p is

the dynamic viscosity, v is the bulk viscosity, and / is the elastic constant.
To apply the well-known homogenization results [4], we must consider special
liquid domains € and impose the following constraints.

Assumption 0.1

(1) Let x(y) be some 1-periodic function, Y; = {y € Y : x(y) = 0} be the “solid
part” of the unit cube ¥ = (0,1)° ¢ R?, and let the “liquid part” Yp={ye
Y:x(y) =1} of Y be its open complement. We write y = 0Y; N 0Y, and
assume that y is a Lipschitz continuous surface.

(2) The domain Ej is a periodic repetition in R? of the elementary cell Yi =&Yy
and the domain E? is a periodic repetition in R? of the elementary cell
Y =¢Y,.

(3) The pore space Q CQ=QnNE; is a periodic repetition in € of the ele-
mentary cell &Y, and the solid skeleton Q' C Q=QnNE:is a periodic rep-
etition in Q of the elementary cell &Y. The Lipschitz continuous boundary
I = 0Q{ N 0L is a periodic repetition in 2 of the boundary &y.

(4) Y, and Yy are connected sets.

Under this assumption

X
1o(x) = 1*(x) = c(x)2(),
where ¢(x) is the characteristic function of the domain Q.
In dimensionless variables

where L is the characteristic size of the physical domain in consideration, 7 is the
characteristic time of the physical process, p° is the mean density of water, and g
is acceleration due gravity, the dynamic system takes the form
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& azw &
o 02 V.- P+ p°F, (0.0.6)
& aw & & aw
P =7 o D(x, =) + (1= )2 D, w) + (7' (V- 55 =p) L, (0.07)
pHoLV - w=0. (0.0.8)

l
In (0.0.6-0.0.8) ¢ = I is the dimensionless pore size, [ is the average size of pores,

o, = oprr’ + ops(L =7, p"=pr o +p, (1= 1),

L 2u 24
G =—, Oy=—7, o)=-—-
gt N aLgp® T Lgp®’
2
2v _ Prcy " _,oscs2

Uy = —F——F, pf= ) = )
YT aLgpd T L " Lg

py and p, are the respective mean dimensionless densities of the liquid in pores

and the solid skeleton, correlated with the mean density of water p°.

Various particular cases of the linearization of (0.0.1-0.0.3) have been inten-
sively studied by many authors: Buchanan—Gilbert-Lin [5, 6], Buckingham [7],
Burridge—Keller [2], Clopeau—Ferrin—Gilbert-Mikelic—Paoli [8, 9, 10], Levy [11],
Nguetseng [12], Sanchez-Hubert [13], Sanchez-Palencia [3].

The present book is based on the author’s ideas [14-20]. We systematically
investigate the special form (0.0.6-0.0.8) of the linearization of (0.0.1-0.0.3),
containing the dimensionless parameter o, which is responsible for the type of the
physical process. For very slow and long-term processes, such as the filtration of
liquids, «, ~ 0. For fast (short-term) processes, such as in acoustics or hydraulic
shock, o; ~ 1, or o ~ o0.

Theoretically the system (0.0.6-0.0.8), with corresponding initial and boundary
conditions, is one of the most adequate mathematical models, describing the
motion of the viscous liquid in the pore space of the elastic solid skeleton. But, as
we have mentioned above, such a model has no practical significance, since it is
necessary to solve the problem in the physical domain of a few hundred meters,
while the coefficients oscillate on the scale of a few tens of microns. The practical
significance of the model appears only after homogenization. So, we have to let all
dimensionless criteria o, o, ®;, ... be variable functions depending on the small
parameter ¢, and find all the limiting regimes of (0.0.6-0.0.8) as ¢ — 0. It is clear,
that these limiting regimes depend on criteria o, o, ;. .., or more precisely, on
their limiting values at ¢ = 0.

In this book we analyze all possible limiting regimes and all possible physical
processes described by the system (0.0.6-0.0.8). To separate physical processes
and the possible different types of continuous media, we introduce the following
criteria
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To = 1{% 0{1(8), Ho = 11\1’% aﬂ(’g)v do = }1{% ai(8)7
cto=lima,f(e), 2y =lima,,(e),

707 X0 P SN

.o )
My :11m—‘§, A1 =1lim—.
eNO0 &

For filtration processes 79 = 0 and instead of (0.0.6) we may consider the equation
V.- P+ pF=0. (0.0.9)

The system (0.0.7-0.0.9) describes the slow motion of compressible viscous lig-
uids in pores. Usually, for such motion the velocity of the liquid is about 6-12 m
per year.

As a rule in classical mechanics we are trying to use the simplest equations that
take into account all the possible simplifying assumptions. Here, the next simplifying
assumption is the incompressibility of the medium. As is well known, the measure
of incompressibility of any given medium is its speed of sound. Incompressible
media have an infinite speed of sound. In particular, for long-term physical processes
the behavior of acoustic waves is not so important, and for many real liquids we may
accept the assumption that the given liquid is incompressible. On the other hand, the
speed of sound of compression waves in the solid skeleton is two or three times more
than the speed of sound of compression waves in the liquid. So the first assumption
implies that the given solid skeleton is also incompressible. Thus

Cro =00, C50 = OQ,

and the filtration of an incompressible liquid in an elastic solid skeleton is
described by the system

0
V- (XS o, D(x, a—v:) + (1 — %", D(x, w) —p]I) + pF =0, (0.0.10)

V-w=0. (0.0.11)

Of course, the simplest case, is the motion of a viscous liquid in an absolutely rigid
solid body. This case is described by the criterion

)v() = Q.

The corresponding simplification of (0.0.7-0.0.9) for a compressible liquid is the
system

)
a_IZJ““PfV'VZO’ (0.0.12)

V- (0, D(x,v) — pI) + psF =0 (0.0.13)
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for the liquid velocity v and liquid pressure p in the domain €y for t > 0.
An incompressible viscous liquid in an absolutely rigid solid skeleton is
described by the Eq. (0.0.13) and the continuity equation

V-v=0. (0.0.14)

Note that all these simplified models can be derived rigorously as appropriate
asymptotic limits for the basic model (o; — oo, or o, — 00).
For 7y > 0 we may rescale variables by setting

0 W — W,

and get the system
o*w
¢ 2 1 _V.P+ o°F 0.0.15
P + p°F, ( )
. ow o _
P =y a,D(x, E) + (1 = )2, Dx, w) + (2, (V - v) —p) L (0.0.16)
p+u,V-w=0, (0.0.17)

which describes short-term processes like acoustics or hydraulic shock.
In (0.0.15-0.0.17)

Now, after the first simplification, we may pass to the limit as ¢ — 0 and get the
desired homogenized models. But first and foremost we have to decide what kind
of model do we want to get? Everything depends on dimensionless criteria 7o, f,
Ao, etc. For example, for the system (0.0.10, 0.0.11) we have two variable quan-
tities o, and o; and four criteria g, Ao, 1y and 4;. We emphasize again that the
system (0.0.10, 0.0.11) is the basic one and all its homogenized systems are just
approximations of different degrees of exactness. If we are going to get the sim-
plest system, then we look for the limit as ¢ — 0 with

=00, po=0, O0O<yu <oo.

This case corresponds to the usual Darcy system of filtration

v:iB<—Vp+W@, (0.0.18)

V-v=0 (0.0.19)

in the domain Q for r € (0, T) (see Sect. 1.1). We may refer to this system as the
first level of approximation of the system (0.0.10, 0.0.11).
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For
0<dp<oo, py=0, O<p <oo

one has the second level of approximation of the basic system, which is the
Terzaghi—Biot system of poroelasticity

ow;
Vovi(l-m)V. g: -0, (0.0.20)
V- (209 : D(x,w) —pl) + ((mps + (1 —m)p,)F =0, (0.0.21)
ow, 1
v=m— —|—M—]E-(—Vp—|—pfF) (0.0.22)

in the domain Q for ¢ € (0,T) for the velocity v of the liquid component, the
displacement vector w, of the solid component, and the pressure p of the mixture
(see Sect. 1.2).

Finally, for

O0<ip<oo, O<pyg<oo

we arrive at the third level of approximation of (0.0.10, 0.0.11), which is a
system of poroelastic filtration

V-w=0, (0.0.23)
V- P+ ((m pr+ (1 —m)p,)F =0, (0.0.24)
o ow
P=—pl+%: D(X,E) + 9 : D(x,w)

t (0.0.25)
+/ N3(r — 1) : D(x, w(x,7))dr
0

in the domain Q for ¢ € (0,T) for the displacements w and the pressure p of the
mixture (see Sect. 1.4).

Thus we have a set of approximate models, from a simple one to quite complex
ones. The choice of model depends on the needs of the researcher. Of course, in
practical applications all physical parameters are fixed and we cannot determine
theoretical limits of the dimensionless complexes, which we have defined above.
For this reason we just put

2u Mo 2p L’ l

T tLgpV’ 'uliszirLgpoliz’ A

Ho = %

%
 Lgp®

2o =0
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We apply the same scheme to the model (0.0.15-0.0.17) of short-term processes,
and to all other mathematical models at the microscopic level considered here.
So, the main aims of the book are the following:

(1) To find the most adequate and correct mathematical models at the microscopic
level for each of the physical process under consideration, based on the basic
principles of continuum mechanics.

(2) To fulfill rigorously the limiting procedures from the microscopic level to the
Macroscopic ones.

The choice of the model at the microscopic level must be based upon the
definition of theoretical small parameters and dimensionless criteria, describing
the process (long-term or short-term process, compressible or incompressible
medium and so on).

Under correct mathematical model we will understand the initial boundary-
value problem for the system of differential equations, which has a unique solution
in some appropriate sense (classical, weak, or very weak).

Once again we emphasize that all our results are based upon the Nguetseng
method of the two-scale convergence. All details of Nguetseng’s theory and
corresponding references may be found in [21, 4]. Appendix B lists all basic
definitions and statements of this theory. Here we only note the principal advan-
tage of the method. As is well known, very often the main difficulty in PDE
problems is the limit as ¢ — 0 in integrals I of the form

= /Q (%) v (x) o (x)d, (0.0.26)

where sequences {u‘} and {v*} converge only weakly in L, (€2). The current theory
cannot give the answer what will be the exact limit. As a rule, in homogenization

theory u’(x) = u(§) For this case Nguetseng has suggested a new notion of
&

convergence in L,(Q), the so called two-scale convergence, where all functions

of the type u’(x) = u(x, ) form the class of test functions. Thus, Nguetseng has

transformed a very dlfﬁcult problem into a not less difficult one, but has solved the
latter in a brilliant manner.

Proper homogenization theory has attracted the attention of a very large number
of researchers, and we refer to the books of Bensoussan, Lions, and Papanicolau
[22], Jikov, Kozlov, and Oleinik [23], Hornung [24], Bakhvalov and Panasenko
[25].

Note that there are reasonable objections to mathematical modeling via the
homogenization of periodic structures: the method does not possess the necessary
commonality, since the global periodicity is not inherent in physical reality.
Fortunately, from the very beginning we understood the importance of such
objections. In Chaps. 5 and 9 it will be shown that homogenized mathematical
models of liquid filtration and acoustics possess the property of locality. That is,
the physical medium being modeling may have different physical parameters of
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the solid skeleton, such as elasticity, density, geometry, etc., in different parts of
the domain under consideration.

A brief description of the organization of the book is as follows. The material
consists of eleven chapters and two Appendices.

In Chap. 1 we deal with different models for the isothermal filtration of com-
pressible and incompressible liquids in a solid skeleton, and derive homogenized
models for different types of continuous media. We have roughly divided the
continuous media under consideration into the following groups.

(1) The liquid is slightly viscous, if u, = 0.

(2) The liquid is viscous, if 0 <y, <oo.

(3) The solid body is extremely elastic if 1y, = 0.
(4) The solid body is elastic if 0 <1y <oo.

(5) The solid body is absolutely rigid if 1y = co.

This Chap. 1 is the main base for the book and for different applications, which
will be discussed in later chapters.

The Chap. 2 deals with homogenized models for non-isothermal filtration of a
compressible liquid in a solid skeleton.

In the Chap. 3 we consider hydraulic shock (short-term processes) in incom-
pressible media. Hydraulic shock is a sharp rise of pressure in some fluid-filled
system such as pipes, fractures and pores. This process is used in oil well frac-
turing. There are some engineering models (formulae) to calculate the pressure in
the pipe system during a hydraulic shock. But these models do not work for more
complex systems, such as an oil well. Existing mathematical models of hydraulic
shock in porous media [26-28] are nothing more than the same engineering
models of pipe systems. For the basic model at the microscopic level we sys-
tematically derive all possible homogenized models.

The Chap. 4 deals with double-porosity models of liquid filtration describing a
liquid filtration in a solid body, perforated by pores and fractures. Already there are
many different mathematical models describing this physical process. They take
into account the geometry of the space occupied by the liquid (liquid domain), and
the physical properties of the liquid and solid components (see, for example,
[29-34].

Note that pores differ from fractures only by their characteristic size: if [, is the
characteristic size of pores and [. is the characteristic size of fractures, then
I, < l.. The well-known phenomenological double-porosity model, suggested by
G. L. Barenblatt, Iu. P. Zheltov and I. N. Kochina [29], describes a two-velocity
liquid continuum in an absolutely rigid body, where the macroscopic velocity v,
and the pressure g, in pores and the macroscopic velocity v, and the pressure g, in
fractures satisfy two different Darcy’s laws
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k, ke
A\ E[ (*qu + Pr F)7 Ve = E (*ch + Pr F)7 (0027)

and two continuity equations
V-v,=J, V-v.=-J. (0.0.28)
The model is completed by the postulate

J=PBlgc—q,). B= const.

The scientific and practical value of mathematical models describing such com-
plicated processes is obvious. But their physical reliability is also very important.
Pioneering work of L. Tartar (see Appendix in [3]), where Darcy’s law of filtration
has been rigorously derived, was an example that stimulated many authors to
repeat the same result for double-porosity models (T. Arbogast et al. [35],
A. Bourgeat et al. [36] and Z. Chen [37]). That is, firstly find an adequate math-
ematical model at the microscopic level with corresponding small parameters, and,
secondly, rigorously fulfill the homogenization procedure.

Because the last two papers repeat the ideas of the first one, let us briefly
discuss the main points in [35]. As an initial model at the microscopic level the
authors have considered a periodic structure, consisting of “solid” blocks of a size
0 surrounded by fluid. The solid component is assumed to be already homoge-
nized: there is no pore space and the motion of the fluid in blocks is governed by
usual Darcy equations of filtration. So the authors have used the method of reit-
erated homogenization; when the first homogenization procedure is applied to the
solid matrix and liquid in pores, and then to the mixture “solid” blocks—Iliquid in
fractures. The motion of the fluid in the fracture space (the space between “solid”
blocks) is described by some artificial system, similar to the Darcy equations of
filtration. There is no physical basis, but from a mathematical point of view such a
choice of equations of fluid dynamics in fractures has a very solid basis. It is
impossible to find reasonable boundary conditions on the common boundary of the
“solid” block—fracture space if the fluid dynamics is described by the Stokes
equations, but there are reasonable boundary conditions if the liquid motion is
described by the Darcy equations of filtration. Therefore, the final homogenized
models in [35, 36], and in [37] have no connection with the fundamental laws of
continuum mechanics. But there is sense in the idea of the method of reiterated
homogenization for such problems. Unfortunately, the authors have used the
wrong models, describing the motion of “solid” blocks and the liquid in the
fracture space. We will use this method for acoustics in Chap. 9.

In Chap. 4 we follow the chosen method and first formulate the mathematical
model at the microscopic level. The difference from the first chapter is only in the
geometry of the liquid domain, because differential equations for the motion of the
liquid and the solid components must be the same. To model the geometry we
postulate that there are two small parameters: the dimensionless size of pores ¢ and
the dimensionless size of fractures 0 and & < 0. As usual, we suppose the
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Fig. 0.1 Double porosity geometry: isolated fractures

periodicity of the pore and fracture spaces, so that the characteristic function y, of
the liquid domain has a form

- X X
I{O(X) - /C(X’Eag)v

where 7(x,y,z) is a l-periodic function with respect to variables y and z (see
Figs. 0.1 and 0.2).

Thus, for this mathematical model at the microscopic level one of the main
problems is the limit in integrals of the form

= /Q 2 3 () p(x)a, (0.0.29)

when ¢ and 0 tend to zero. Compared with (0.0.26), in (0.0.29) there appears a new
scale of the fast variable, associated with the parameter J. This problem has been
solved in [21, 38] by introducing the method of reiterated homogenization. For the
slightly viscous incompressible liquid in an elastic incompressible skeleton the
homogenized system consists of the differential equations

ow ow
il =(1 = AL 0.0.30
5 (1 —me)m, 3 ( )

v=v.+ (1 —m)
V-v=0, (0.0.31)

s 1 .
JoV - (BY : D(w,)) - —V g+ pF =0, (0.0.32)
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ow,
ot

Ve = M¢

1 1
+—B) (p,F — =Vq,), 0.0.33
0 (s - r) ( )

for the velocity v, in pores, velocity v. and pressure gy in fractures, and for the
displacements w; of the solid component (for details see Chap. 4). For an abso-
lutely rigid skeleton

Ao — 00, wy— 0,

and we arrive at the system

vV=v., V,=0, w,=0, (0.0.34)

Vv, =0, (0.0.35)

v, = Lo (pF — dif), (0.0.36)
M ' m

for the velocity v, and pressure g in fractures. The last system describes the
motion of the slightly viscous incompressible liquid in the pore—fracture space of
an absolutely rigid skeleton, and obviously asymptotically closed to the basic
equations of the continuum mechanics.

But the equations obtained contradict to the model (0.0.27, 0.0.28) from [29]. In
(0.0.34-0.0.36) the liquid in pores is blocked and unmoved,and there is no second
pressure in fractures.

.........................................................................

Fig. 0.2 Double porosity geometry: connected fracture space
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Later, one of the authors [29] G. I. Barenblatt in one of his books on the
filtration theory ([39], p. 187), noted that “... the liquid motion in such a medium
(fractured—porous) is realized mainly along fractures, while the volume of
fractures is small and main reserves of the liquid are in the porous blocks”. This
observation, based on the deep physical intuition of the author, is not confirmed by
when the correct mechanism for extracting liquid from the pores is specified. Our
result shows that for a more accurate description of real physical processes one
must take into account the elastic properties of the solid skeleton, namely, the
elastic stresses in the solid skeleton (but not the second pressure in the pores) are
the main factor that allow the liquid to flow from the pores into the fractures.

In Chap. 5 we investigate liquid filtration in composite domains. That is, liquid
filtration in at least two domains with a common boundary, and with different
properties.

For example, filtration in a poroelastic medium, which has a common boundary
with some elastic body, or with a water reservoir. The main problem here is the
boundary conditions on the common boundary for the solutions of homogenized
equations. P. Polubarinova-Kochina [40] uses the Darcy system of filtration in the
porous medium and simply postulates the hydrostatics in the reservoir and the
continuity of the pressure on the common boundary “reservoir-porous medium”.
There are some particular results obtained by W. Jiger and A. Mikeli¢ [41-43] for
special geometry of pore space (disconnected solid skeleton) and only for domains
in R?. We study the complete problem in R® for the arbitrary geometry of cor-
responding pore spaces.

Next, if we consider filtration from a reservoir into the poroelastic medium (see
Fig. 0.3), then for the basic model at the microscopic level there is a flow from a
reservoir Q° into the porous medium Q and maybe backwards, and its can be
calculated. The same property remains valid for the homogenized model of
poroelastic filtration (0 < y,, Ao <oc). But for Darcy’s system of filtration in Q
(first level of approximation with u, = 0, 49 = o0), or for the Terzaghi-Biot
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Fig. 0.3 Filtration from reservoir
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Fig. 0.4 Two different poroelastic media

system of poroelasticity in € (second level of approximation with
Uy = 0, 0 < g < 00), the motion in the reservoir Q° is automatically approximated
by hydraulics, the limiting pressure on the common boundary S takes the value of
the hydraulic pressure at S° (the pressure is continuous!), and there is no infor-
mation about the flow from Q° into Q and back.

Another example involves two poroelastic media with the same properties of
the liquid. Here everything depends on the structure of the pore spaces in € and
Q% Let py = 0. If Y]9 defines the pore space in Q°, and Yy defines the pore space in
Q, then for Yy N on # () the pressure is continuous on the common boundary S°
and there is a flow from Q° into Q or vice-versa. For ¥; N Y79 = () instead of
continuity of the pressure, one has another condition, which shows that there is
neither flow from Q° into Q nor back (Fig. 0.4).

As is known, the most rigorous results of homogenization theory are obtained
for very special physical media, when the local heterogeneity has a periodic
structure. Therefore, the objections from opponents of such a method of mathe-
matical modeling—that the models have a low practical value—are quite rea-
sonable. The situation is similar to the situation with differential equations with
constant coefficients, and differential equations with variable coefficients. The
practical value of the first is not comparable to the practical value of the latter. But
the history of mathematics shows that the theory of equations with variable
coefficients cannot be constructed without a complete theory of equations with
constant coefficients. The above analogy suggests a way to solve the problem of
mathematical modeling of physical processes in macroscopic inhomogeneous
media. The detailed analysis of the homogenized problems in composite domains
permits the derivation of homogenized models allowing for the variable geometry
and elasticity of the solid component.

Expressly, let Q be a domain in consideration and 7% = {Kl((S), e Kf\,i)} be a
partition of Q2 into nonintersecting subdomains with a diameter J. All physical and
geometrical characteristics of the medium are assumed to be constant in the given

subdomain K,(,(;). The problem as formulated for a fixed  is defined by the
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characteristic function of the pore space ) (x,y). This function is 1-periodic in y
and piecewise-constant in X. The homogenized model obtained, depending on the
parameter J, has been already studied above and admits a subsequent limit as
0 — 0, which leads to the final homogenized model, taking into account the
macroscopic inhomogeneity of the continuum.

Note that the formal justification of the symmetry of the diagram (the limit as
0 — 0 for fixed ¢ and then the limit as ¢ — 0) is not physically rigorous, because
the diameter 6 of the subdomain K,({S) cannot be less than the characteristic size ¢ of
pores in the solid skeleton. Nevertheless, for sufficiently reasonable agreements the
limit as n — oo leads to the homogenization problem with a characteristic function
of the pore space y(x,y) = lims_o 7 (x,y) (in each xy € Q there is a proper pore
space, defined by the characteristic function y(xo,y)). The homogenization of this
problem coincides with the final homogenized model, obtained before. This proves
the correctness of our approach.

Chapters 6—9 are devoted to homogenized models in acoustics. In Chap. 6 we
consider isothermal acoustics and in Chap. 7 nonisothermal acoustics. Next,
Chap. 8 repeats the results of Chap. 5 for acoustics, and in Chap. 9 we derive
double-porosity models for acoustics.

For example, in Chap. 6 we derive mathematical models (IA),—(IA) .. Obvi-
ously, all these models describe the same physical process, but with varying
degrees of approximation. We may also say that due to an incomplete description
we allocate in each model the various components of the process. For example, in
the first models (IA),—(IA), we describe only compression sound waves in the
fluid in pores. In models (IA);—(IA),, we study the interaction of compression
sound waves in the solid skeleton and in the fluid in pores. Vice-versa, in the
model (IA),; we describe compression sound waves and shear waves in the solid
skeleton. Finally, in models (IA)s and (IA),, we study the interaction of com-
pression sound waves in the solid skeleton and in the fluid in pores, and shear
waves in the solid skeleton.

In the last two Chaps. 10 and 11 we consider some applications of our theory:
diffusion-convection in porous media, and the free boundary problem of a joint
motion of two immiscible incompressible liquids (the Muskat problem).

Diffusion-convection processes in porous media @ C R* is described by a
diffusion-convection equation in the liquid domain € (pore space)

%—I—V‘Vc:DAc, (0.0.37)
ot

for the concentration ¢ of an admixture. Here D is the given diffusion coefficient,
and v is the velocity of the liquid.

If we consider the most general case of the motion of continuous media, which
is a generalized motion with strong discontinuity, then the boundary condition on
the surface of strong discontinuity I'; = 0, N 0€s (the common boundary *“pore
space—solid skeleton”) at the time moment # > 0 has a form
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c((v-m)=V,) =D (Ve n). (0.0.38)

In (0.0.38) n is a unit normal vector to I';, and V,, is a velocity of replacement of
surface I'; in the direction of normal n.

In the general case the velocity field is defined by the mathematical model
(0.0.1-0.0.3), which is a free boundary problem. In particular, one of the boundary
condition on the free surface of a contact discontinuity has the form

v-n=1V,, (0.0.39)
and for this case (0.0.38) transforms to
Ve-n=0 (0.0.40)

As we have mentioned above, the mathematical model (0.0.1-0.0.3) obviously
would not be suitable for practical use and in dimensionless variables the most
appropriate dynamic system, coupled with a convection-diffusion equation has the
form

V-w=0, (0.0.41)
V-P+pF =0, (0.0.42)
ow
P = oo D (X,E) + (1 — o) D(x,w) — p1, (0.0.43)
Oc Ow
~+=Ve= 0.0.44
6t+6t Ve=opAc, ( )
where
D+ _
=77 W= a(c), p=xolpr+0c)+ (1= yxo)ps

We must complete the model with the boundary conditions on the common (and
fixed) boundary I'. The boundary conditions for dynamic equations have already
been discussed earlier. For the convection-diffusion equation one has a choice. By
supposition, V,, = 0, and this postulate and the boundary condition (0.0.38) imply

(apVe—c a—w) -n=0. (0.0.45)
ot

This is the first choice. The second choice is a condition (0.0.40). Thus, for the
same process we have two different models—the mathematical model (0.0.40-
0.0.44), and the mathematical model (0.0.41-0.0.45). The difference is caused by
the fact that for our approximation both the boundary conditions for the concen-
tration are not quite exact.

Note that for an absolutely rigid solid skeleton w = v = 0 in the solid part
(0.0.40) coincides with (0.0.45). That is, both models coincide.
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In Chap. 10 we derive homogenized models for diffusion-convection in an
absolutely rigid solid skeleton, and in poroelastic media for the model (0.0.40—
0.0.44) with o, = py = const > 0.

The results in Chap. 10 are based upon the author’s papers [22-24, 36, 44, 48-55].

The homogenization procedure for (0.0.37) with a given velocity field v has
been described in [22-24, 36, 44, 48-55].

In the last Chap. 11 we study the joint motion of immiscible liquids, which are
modeled as one nonhomogeneous liquid. We consider two different incompress-
ible viscous liquids with the same viscosity and different constant densities. The
exact mathematical model at the microscopic level consists of the dynamic
equations

Vo (7P 4+ (1 - 7)) + (pr 7+ ps (1 —7))F =0, (0.0.46)
V.v=0, (0.0.47)

o7 N N
5 TV V=0 7(x,0) = xo(x), (0.0.48)

which is a sub-model of (0.0.1-0.0.3) for the case of the filtration of an incom-
pressible liquid in an incompressible solid skeleton, completed with the Cauchy
problem

o0,
Wy V=0, py(x0) = (9 (00.49)

for the density of the nonhomogeneous liquid in the liquid domain @, for ¢ > 0.
The last problem is equivalent to the the Cauchy problem

0
2V Ve=0, p(x0) = (X)) +p, (1= 7(x)  (0:050)

for the density p = p; 7 + p, (1 — %) of the medium.
Let I1y be a smooth surface dividing Q into two subdomains Q" and Q~ and

pf(o) (x) = pf+ = const for x € Q7 p}o) (x) = p; = const for x€ Q™.
Then for the smooth velocity field v(x, ) there exists a smooth surface of the
strong discontinuity I1(¢), I1(0) = IIy, dividing Q; into two subdomains ij (¢) and
Q; (1), such that

p(x,1) = p; for x€ Qf(r), and p(x,1)=p; for x€ Q.

That is, the problem (0.0.46-0.0.48, 0.0.50) really describes the joint motion of
two immiscible incompressible liquids with the different constant densities sepa-
rated by the free boundary II(z).
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It is obvious that the resulting problem is too complicated. To simplify the
model and get simpler, but still reasonable one, we replace (0.0.46-0.0.48) by the
system

0

V- (100D, ) + (1 = 20)m Dl w) —pI) + pF =0, (0051)

ow
Viv=0, v=—/—, (0.0.52)

ot

completed with the Cauchy problem
op

e +v:-Vp=0, p(x,0)= p}o)(x) %o+ o (1= 20) (0.0.53)

for the density p of the medium.

For y, = #%(x) this mathematical problem at the microscopic level has at least
one weak solution {v*, p®, p°} and the main problem is to get homogenized
equations in the limit as ¢ — O in the transport equation for the density p®. The
structure of the system does not permit any uniform estimates for the density with
respect to the small parameter ¢, except its boundedness:

0<p, = const<p*(x,1) <p; .

Thus, we may expect only the weak compactness of {p°}, and the limit in (0.0.53)
is possible, if {v¢} converges strongly in L,(Q7). It is almost impossible to get
such a property if yy, = 0.

So, in the Chap. 11 under the restrictions

0< gy, lo<oo

we derive a homogenized system, which we refer as the Muskat problem for a
viscoelastic filtration.

All results of that chapter are based on [56].

The case of an absolutely rigid solid skeleton is a sub-model of (0.0.51-0.0.53)
when /g = oo (¢; — o0) and is described by the problem

V- (102 D(x,v) = pI) + p; F =0, (0.0.54)
V.v=0, (0.0.55)
%—FV-fo o, (0.0.56)

ot
py(x,0) = p” (x) (0.0.57)

for the velocity v, pressure p, and density p, of the liquid in the domain @y for
t > 0. The existence of a smooth free boundary for this problem has been proved
in [57].
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The nontrivial homogenization of the dynamic system (0.0.54, 0.0.56) makes
sense only for y, = y*(x), yy =0, and 0 <y, <oo and, as was shown earlier in
Chap. 1, leads to the Darcy system of filtration.

We have already mentioned above, that for this case our method does not
permit the correct limit in the transport equation (0.0.57). But the formal
homogenization of (0.0.54—0.0.57) under these restrictions results in the domain
for ¢ > 0 the well-known free boundary Muskat problem

1 1
=—B(-—Vp+ CV= .
v 1 ( P pfF)7 V-v=0, (0.0.58)

% +Vpr-v=0, pi(x,0)= p}m(x) (0.0.59)
in its weak formulation.

This problem is easy to formulate, but almost impossible to solve. For this
reason very little is known, neither in classical nor in weak solutions. There are
only a few results of classical solvability locally in time or globally in time, though
there are nearly explicit solutions, and there is no result for a global in time weak
solvability (see, [S8—62] and references there).

Numerical simulations of the problem (0.0.54-0.0.57) made in [63] for a single
capillary, show the existence of a smooth free boundary (the surface of strong
discontinuity) in the capillary at different times (see Fig. 0.5). This fact somewhat
confirms the results of [57].

It is clear that we may consider any finite number of such disconnected cap-
illaries and pass from the single capillary to an absolutely rigid solid skeleton,
perforated by a system of disconnected capillaries.

The limiting procedure (¢ ™\, 0) is modeled by increasing the number of cap-
illaries. For sufficiently small ¢ (a sufficiently large number of capillaries) we
arrive at the Muskat problem (0.0.58, 0.0.59).

We apply he same idea to an elastic body with the same geometry of the pore
space, described by (0.0.51-0.0.53).

1y

Fig. 0.5 The single capillary
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Comparison of numerical simulations (see Fig. 0.6) shows the appearance of a
mushy region for the free boundary Muskat problem (0.0.58, 0.0.59), and the
existence of a smooth free boundary for the Muskat problem for viscoelastic
filtration.

The first fact indirectly indicates a lack of classical solutions of the free
boundary Muskat problem (0.0.58, 0.0.59).

Fig. 0.6 Disconnected capillaries: absolutely rigid (above) and elastic solid skeleton

Fig. 0.7 Disconnected solid skeleton: absolutely rigid body (above) and elastic body
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A similar conclusion can be reached with numerical simulation for the prob-
lems (0.0.54-0.0.57) and (0.0.51-0.0.53) for a disconnected solid skeleton, when
Y, C Y is a cube which does not touch the boundary 0Y (see Fig. 0.7).

In Appendix A we concisely list the main notions of continuum mechanics
following [1], and in Appendix B we formulate all mathematical statements from
Analysis and PDE, needed in the main text of the book.

Notations of functional spaces and norm there are the same as in [64, 65, 66].
Some of these notations are listed in Appendix B.
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Chapter 1
Isothermal Liquid Filtration

We derive all the possible homogenized equations of the model M4 of an isothermal
filtration (or, simply, a liquid filtration)

1
P+ V.w=0, (1.0.1)

ap
V.P+4F =0, (1.0.2)

ow ow
P = xoouD(, 5-) + (1 = x0)oD(x, W) - (p ~ X0V - W)H’ (1.0.3)

and its submodels: the model M5 of the filtration of an incompressible liquid

V.w=0, (1.0.4)
V.P+ jF =0, (1.0.5)
ow
P= Xoaﬂm(x, E) + (1 = xo)roD(x, w) — pl, (1.0.6)

the model Mly7 of the filtration of a compressible liquid in an absolutely rigid
solid skeleton

1
Xo(—2p+V~W) =0, (1.0.7)

&

f
Xo(V-IP—i—,OfF) =0, (1.0.8)

ow ow

P=o,Dl{x,—)— —a,V-— |, 1.0.9
o (x ar) (” o ar) (102
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2 1 Isothermal Liquid Filtration

in the bounded domain 2 = 2, UT' U2, C R*, I' = 32y N 312, with a C?
continuous boundary § = 9§2 fort € (0, T).
In (1.0.1)—(1.0.9) xo(x) is the characteristic function of the domain £ .
In this chapter we consider a homogenization procedure only for periodic struc-
tures. That is, we impose Assumption 0.1.
Under this assumption
X
€

xo(x) = x°(x) = g(X)x( ) (1.0.10)
where ¢ (x) is the characteristic function of the domain £2, and
&p = =xct+ 0= p=p"=x"pr+ (1= x)ps.

We say that the pore space is disconnected, if the domain E ]1( is disconnected
(7 £ NJY = ), and the pore space is connected, if the domain £ } is connected
Yy NAY #0).

Similarly, we say that the solid skeleton is disconnected, if the domain E Sl is
disconnected (_Y s N oY = @), and the solid skeleton is connected, if the domain F S]
is connected (Y N Y # ().

It is assumed that all dimensionless parameters depend on the small parameter ¢
and the (finite or infinite) limits exist:

o
lim o, (8) = o, lim —% = pq, lim ay(g) = vg.
lim (&) = 1o lim 22 1 lim v(€) =g

We say that

(1) the liquid is slightly viscous, if o = 0,

(2) the liquid is viscous , if 0 < o < o0,

(3) the solid body is extremely elastic if Ao = 0,
(4) the solid body is elastic if 0 < Ay < oo,

(5) the solid body is absolutely rigid if Ao = co.

In what follows, we denote as Cy any constant depending only on domains 2, Y
and Y.

1.1 A Compressible Slightly Viscous Liquid in an Absolutely
Rigid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M(j7 of the filtration of compressible liquid in an absolutely rigid solid
skeleton. It is easy to show that this model is a limit of the model M4 as Ay — oo.
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One of the consequences of this statement is the following:

w(x, 1) =0, px,1)=0, xe .

ow
If we putv = o then we may rewrite the last condition and Egs. (1.0.7)—(1.0.9)

in the form
1 ap R
—2—+V-V=O,xe.Qf,te(0,T), (1.1.1)
C t
f
V-P+psF =0, er?,te(O,T), (1.1.2)
P= ot,ﬂD(x, V) + (avV -V — p)]I, (1.1.3)
v(x,1) =0, xe€R;US, S=082,1t€(0,T), (1.1.4)

px,0)=0, xe£. (1.1.5)
Throughout this section we assume that conditions
no=0, 0 < pu; < oo, O<c§c<oo,0<vo<oo,

and
/ [F|2dxdt = F* < 00
7

hold true.

1.1.1 Statement of the Problem and Main Results

Definition 1.1 We say that the pair of functions {v®, p®} such that v*(x, ) = 0 for
X € 2{ andr > 0, and

o 1,0
vie W, (27), p° € La(Rr), 2r =2 x(0,7),

is a weak solution of the problem (1.1.1)—(1.1.5), if it satisfies the integral identities

/ Xg(ozu]]])(x, Vo) : D(x, (p)-l—(avV-VS—ps)V-go—pfF~g0)dxdt =0, (1.1.6)
Qr

10
/ (VS-VE—i——z—EpS)dxdt:(), (1.1.7)
Qr Cf at
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for any smooth functions ¢ and &, such that ¢ satisfies condition (1.1.4) and & s
atisfies condition £(x, ) = 0.

In (1.1.6) the convolution A : B of two tens ors A = (A;;) and B = (B;;) is defined

3
asA:B=tr(A-B) = Z AijBij.

i, j=1

Theorem 1.1 (1) Foralle > 0 and for an arbitrary time interval [0, T'] there exists

(2)

a unique generalized solution of problem (1.1.1)—(1.1.5) and

/ (aM|VV€|2+|V€|2+av|V~V€|2)dxdt+ max / 1p€2dx
Q2r 0<t<T Jo
2

< P2 (1.1.8)
X

where the constant Cy is independent of the small parameter €.
The nontrivial homogenization procedure for the problem (1.1.1)—(1.1.5) makes
sense if and only if the pore space is connected and

uo =0, 0 < pu; < oo. (1.1.9)

Under these conditions and condition vo > 0, the sequences {v¢}, {V-v®}, {p ¢},
and {q ¢}, where g ¢ = p® —a,V - V®, converge weakly in Lo ($27) and L,(82T)
as ¢ — 0 (up to some subsequences) to functions v, V - v, p and
q=p—wV-ve Wzl ’O(SZT) respectively and these limiting functions solve
the homogenized system of equations, consisting of the continuity equation

m dp
- —+V-v=0, (1.1.10)
cy ot

and Darcy’s law in the form
1 0
V:—B(—V(p—i—v—g—p)—i—pfF) (1.1.11)
M1 ¥ ot

in the domain 2 fort € (0, T).

If vog = 0, then the sequences {v¢} and {p ¢} converge weakly in Lo (27) and
L>(827) as e — 0 (up to some subsequences) to functions v and mp correspond-
ingly and these limiting functions solve the homogenized system of equations,
consisting of the continuity equation(1.1.10) and usual Darcy’s law in the form

v=MiB(—vp+pfF) (1.1.12)
1

in the domain §2 fort € (0, T).
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Systems (1.1.10)—(1.1.12) are completed with boundary and initial conditions

vix,t) n(x) =0, xe S, r€(0,7), (1.1.13)
p(x,0) =0, x € £2. (1.1.14)
(3) For a disconnected pore space, or in the case w1 = 00, the unique limiting

regime is a state of rest.

(4) Theproblems(1.1.10), (1.1.11),(1.1.13),(1.1.14)and (1.1.10), (1.1.12)—(1.1.14)
have a unique solution.
In(1.1.10)—(1.1.13) m = fY x (y)dy is the porosity, the symmetric strictly pos-
itive definite constant matrix B is given below by (1.1.27) and n is the normal
vector to the boundary S.

Note, that boundary and initial conditions are understood in a weak sense as a
corresponding integral identity for the continuity equation (1.1.10).

We refer to the problem (1.1.10), (1.1.11), (1.1.13), (1.1.14) as the homogenized
model (IF) . Actually, this model is the one-parametric family of models, depending
on the parameter vg > 0. For vg = 0 the model (IF); is described by the problem
(1.1.12)—(1.1.14). So, we may just formally put this value vy = 0 in corresponding
equations. In what follows we will no longer point out this fact, having in mind the
above mentioned procedure.

Remark The limit as ¢y — oo results in the usual Darcy system of filtration for an
incompressible liquid.

1.1.2 Proof of Theorem 1.1

1.1.2.1 Basic a Priori Estimates

The proof of existence and uniqueness results for the problem (1.1.1)—(1.1.5) is

standard. .

Due to the regularity of v® the function p® possesses a time derivative €

Lo (£27) and satisfies the continuity equation (1.1.1) in the usual sense.

Let h(t) = 1for0 < 7 < tand h(r) = 0fort < v < T. To prove the estimate
(1.1.8) we consider the integral identity (1.1.6) with the test function ¢(x, t) =
h(t)vé(x, 7) and use the continuity equation (1.1.1):

1
| 0 (@ P + v vP)xar + o [ iptenpas
2 2ct Ja

C
=/ xosF - vidxdr < T0F2+8/ xEIVePdxdr. (1.1.15)
2 2
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As a next step we estimate
I¢ = / x|Iv¢2dx.
Q

Let G®, where k = (k1, ky, k3) € 73, be the intersection of .Q"; withaset {x : x =
e(y +K), y € Y}. Then ‘

2t=J 6% and 1*= > (k). Is(k)=/ v Pdx.
keZ? keZ? o

In each integral 7¢(k) we change variables by x = ¢y, then apply the Friedrichs—
Poincaré inequality and return to the original variables:

/ V¢ |%dx 253/ [v¢|2dy <83C0/ |Vy78|2dy:£2Co/ |Vve|2dx.
G&® y &) y &) G&®

Finally, we arrive at the chain of inequalities
/ x|v¢|2dx <52C0/ |Vve|2dx <62CO/ ID(x, v°)|?dx
2 2 2
&2 &2
< —Coa / ID(x, v¥)|*dx = —Coay, / x°ID(x, v¥) dx,
Olﬂ (7 Olﬂ k7]

where we have used Korn’s inequality (see Appendix B). The above relations and

(1.1.15) for

g2

§=—2=C
20 0

provide (1.1.8). For the case ;1 = oo this estimate implies
vV —>0, p® >0, ase—>0

strongly in Ly ($27).

1.1.3 Homogenization

Let condition (1.1.9) hold and vy > 0. Then the sequences {v®}, {eD(x, v¥)}, {V-v¢},

8 &
{ gt ] {p¢}and {¢°}, where

oy, dp ¢
¢ =,V v 4 pt= 2L
cr Jat

+p°,
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are bounded in L (£27) and L, (£27). Therefore, we may extract some subsequences
(for simplicity we keep the same notation) such that the sequences {v¢}, {V - v*},

8 &
[ gt ], {p*} and {¢°} converge weakly in Ly (£27) and L,(£27) to functions v,

0
V.v, a—}z, p, and g respectively and

q=p+v—§8—p. (1.1.16)
cy ot
The limiting functions v and p obviously satisfy the continuity equation (1.1.10) and
boundary and initial conditions (1.1.13) and (1.1.14).
At the same time by Nguetseng’s theorem (see Appendix B) sequences {v®},
{eD(x, v®)}, {V - v¢}, {p*}, and {¢®} converge two-scale in Ly (£27) and L,(£27) to
the functions

1 0P
V(X’I»Y)’ D(yaV(X’I»Y))v C_ZE(X»I’YL P(X’I»Y)’ and Q(Xatvy)

f
correspondingly,
vg 0P
Q=P+ —5—, (1.1.17)
cy ot
and
0, PeLy(2r xY), V,D(y,V) € Lo(2r x Y). (1.1.18)

Finally, the two-scale limit in the integral identity (1.1.7) with test functions
X
& =&K& (—) gives us the microscopic continuity equation
e
Vy,-V=0,yeVY. (1.1.19)
Lemma 1.1 The following equalities hold true

P, 1,y) = x(y) p(x,1), QX 1,y) = x(¥)q(x,1). (1.1.20)

Proof The passage to the limit as ¢ — 0 in (1.1.6) with test functions ¢ =
& @o(X, 1) (f) where @1 (y) is finite in Y7, yields
e
V,0(x,t,y) =0, yeYy. (1.1.21)

Therefore
ox,1,y) = x(¥)qgx,1).
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Equations (1.1.17) and (1.1.21) give the result
VyP(x,t,y) =0, ye Yy,

and
P(x,t,y) = x(y) p(x, 1).

Now we are ready to derive equation (1.1.11). To do that we choose the test function

X

in the integral identity (1.1.6) as ¢ = @o(X, 1)@ (—), where the 1-periodic function
£

@1(y) is divergence free and finite in Y s:

L+L5+15+17 =0,

where

If = —’; 9o (eD(x, v%)) : D(y, @1)dxdt,
& 2r

I3 = o /ﬂ (Ve D v0) = (Voo 8 g1 + 91 ® Voo)dudr,
T
[ = —/ q° (¢1 - Vpo)dudt,
27

I = —/ preo(F - ¢1)dxdr.
7
Passage to the limit as ¢ — 0 gives us
I — (po(/ w1D(y, V) : D(y, <p1)dy)dxdt, I5; — 0,
Qr Yy
I —>— [ Vgo- (/ q x(y)wl(y)dy)dxdt,
Yy

2r
e _/ ¢0(/ ps (F - o1())dy)dxdr.
S Yy
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Thus,
/Q (wo(x, 1) : (1D(y, V) : D(y, ¢1) — psF - 91(y))dy
T f

= Voo(x,1) - (/Y o1 x (Y)dy) q)dxdt
f

= / ((po(x, Ha(x,t) +q Veo(x, 1) - b)dxd =0, (1.1.22)
2r
where
a(x, 1) = /Y (1D, V) : Dy, ¢1) — psF - g1 () dy,
!

b= —/ ¢1(y)dy = const.
Yy

Due to Lemma B. 15 (see Appendix B) we first may choose ¢; such that b =
e;, i = 1,2,3,where {e], e>, e3} is a standard Cartesian basis. Nguetseng’s Theorem
guarantees that a € L,(§27). Therefore,

Vg € La(£27).

Next we reintegrate (1.1.22) with respect the variables (x, ¢) and arrive at the micro-
scopic equation

©1

TAyV—VyQ—Vq—i—pfF:O (1.1.23)

in the domain Y7, which is understood in the sense of distributions. Here we have
used the equality

1 1
V-D(y,V) = 5AV~I—§V(V-V),

and the continuity equation (1.1.19).

The term V,I1(x, ¢, y) in (1.1.23) appears due to the orthogonality in L (Y s) of
the set of all divergence free vectors ¢ to the set of gradients V[T of scalar functions
II.

The two-scale limit in the equality

(I=x v =0

gives us
(1—x(W)Vx,1,y) =0, or V(x,7,y) =0, y € Y;.

The last condition and the regularity condition (1.1.18) result in the boundary con-
dition
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Vx,t,y) =0, yey =09Y; NaY;. (1.1.24)
Lete;, i = 1, 2,3 be the usual Cartesian basis in R3 and

2

3
Z(— Vg +,0fF) = ZZ"(X’ 1e;.
i=1

Then the solution V of the problem (1.1.19), (1.1.23), and (1.1.24) has a form
3 ' R
V=> Vi) = M—(va ® e,-) (= Vg + psF), (1.1.25)
, 1 \4
i=1 i=1
where the 1-periodic function V) (y) solves the periodic boundary value problem
AYVD v = ¢, yevy,
V.-V =0, yevy, (1.1.26)
vV =0, yey.

The existence and uniqueness results for the problem (1.1.26) and the properties of
the matrix

3 3
B=2)" (/Y V"')(y)dy) ®e=2> (VO ®e, (1.1.27)
i=1 f i=1
follow from the energy equality
/ vv® . vvWgy = / e - VWdy (1.1.28)
Yy Yy

In fact, applying in (1.1.28) fori = j Holder’s and Friedrichs—Poincaré’s inequalities
we arrive at

/ VO 2dy < Clsz/ IVVOPdy, i =1,2,3,
Yy Yy

IVV®2qy < mc%yf, i=1,2,3.
Yf
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For a disconnected pore space the unique solution of the problem (1.1.26) is

VD =0, 0¥ =y, and B =0.

Lemma 1.2 The matrix B is strictly positively definite.

Proof Let the pore space be connected and

¢=(,8,8), n=0m,n,n) eR>,

3 3
i=l1 i=1

Then (1.1.27) and (1.1.28) give us

1

SB-¢)n=(z)y, - m )y 0= (Vae: Vay)y,,

or

1
(B-¢)-n=(Va : Va)y,, and E(B L) -0 =(Vr i VI )y, > a

N =

for some constant & > 0 and any vector ¢ with [¢| = 1.
In fact, otherwise there exists some vector ¢ with |¢| = 1, such that

Vz; =0, orz; =A-y+ ¢

with some constant matrix A and some constant vector &y. But the function z; is a
periodic solution of the problem

Aylg- —VQé- :—é‘, AAS] Yf,
V'Z§=O, yGYf,
z; =0, yevy.

For a connected pore space any periodic linear functions can only be constant. Re-
calling the homogeneous boundary condition on y for z; we conclude that z; = 0.
The last relation and the differential equation for z, result in the equality VQ, = ¢.
Hence Q; = ¢ -y +const and by the same arguments Q; = const and { = 0 which
is impossible by supposition.

For the case vy = 0 the sequences {v®} and {p ¢} converge weakly and two-scale in
1

Ly (£27) and L, (£27) to functions v(x, t), V(X, ¢, y) and p(X, t), (—) x(y) p(x, 1)
m

correspondingly. The limiting functions satisfy (1.1.17) and (1.1.10) with boundary
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and initial conditions (1.1.13) and (1.1.14) in a weak sense. That is, they are solution

of the integral identity
1 0&
VE . +— =P dxdt =0, (1.1.29)
Qr Cf at

for any smooth functions &, such that £(x, 7) = 0.

Note, that the sequence {¢°} converges weakly in L, (§27) to the function p(x, 1)
and two-scale in L, (§27) to the function x (y) p(x, t). Repeating once more we arrive
at (1.1.12).

Lemma 1.3 Theproblems(1.1.10),(1.1.11),(1.1.13),(1.1.14)and(1.1.10), (1.1.12)-
(1.1.14) have a unique solution.

Proof The uniqueness of the solution to the problem (1.1.10), (1.1.11), (1.1.13),
(1.1.14) follows from its linearity and the energy identity for the homogeneous prob-
lem in the form

d
< ( A 2vp. (B~Vp))dx+/ Vp-(B-Vp)dx =0. (1.1.30)
dt Jo 2c 2c Q
f r
The identity (1.1.30) is the result of a formal integration by parts over domain £2 of
the equation
d 0

m L = v B(Vp+ 3V(E))

cf ot % ot

after its multiplication by p. The last equation is an obvious combination of Egs.
(1.1.10) and (1.1.11).

For the problem (1.1.10), (1.1.12)—(1.1.14) we use the identity (1.1.30) with vy =
0.

In particular, the uniqueness of the limiting problems shows that any subsequences
of sequences {v®}, {¢®} and {p ¢} converge to the same limit. Therefore each entire
sequence {v®}, {¢®} and {p ®} converges to a unique limit.

1.2 An Incompressible Slightly Viscous Liquid in an
Incompressible Elastic Skeleton

In this section as a basic mathematical model at the microscopic level we consider the
model M5 of the filtration of an incompressible liquid in an incompressible elastic
solid skeleton

V.-w=0,xe2, te(0,7), (1.2.1)
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V- P+pF=0, xe2, te(0,T1),

ow

P = x* ID)(,
X(x# X at

) + (1= x)aeD, W) — pL,
wx,t)=0, xe§, te(0,T),
/ p(x,0)dx =0,1€(0,T), x*w(x,0) =0, x € £2,
Q

h
whete Pt =prx°+ps (1= x°).

Throughout this section we additionally impose
Assumption 1.1 The solid skeleton £2{ is a connected domain.
We also assume that conditions

no=0, 0 <pu; <00, 0 <Xy < o0,

and
/ |F|>dxdt = F? < oo
fr

hold true.
In (1.2.3)—(1.2.6)

o
= lim a, (¢), = lim —&.
#o = limy w(€)s 11 lim 22

1.2.1 Statement of the Problem and Main Results

Definition 1.2 We say that the pair of functions {w*®, p ¢} such that

o 1,0 3

& & BW &
w e W, (£27), x°V o7 € La(827), p° € L2(827),

13

(1.2.2)

(1.2.3)

(1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

is a weak solution of the problem (1.2.1)—(1.2.5), if it satisfies the continuity equa-
tion (1.2.1) almost everywhere in §27, the initial and normalization conditions (1.2.5)

and an integral identity

ot

a &
/ (XgaMD(x, l) + (1 — xHroD(x, w) — pgﬂ) : D(x, @)dxdt
7

=/ o°F - o dxdt,
2r
o 1,0

for any functions ¢ € W, (£27)

(1.2.8)
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The solution of this problem possesses different smoothness in domains .Q; and
2. To preserve the best properties—which the solution possesses in the solid part—
we extend the function w® from the solid part £2} of the domain £2 onto the whole
domain £2. To do this we use the extension result (see Lemma B.4.2, Appendix B):

there exists an extension

we =Eq: (W), Ege: WH(R5) - Wi(R), (1.2.9)
such that
(1= x"@)(Wx,1)—wix,0)) =0, xe, te(0,7T), (1.2.10)

and

/ Iwé (x, 1)|*dx < Co / Iwe (x, 1)|%dx,
2 ¢

/ ID(x, we(x, 1))| dx gco/ ID(x, w*(x, ) |*dx, 1€ (0,T),
2

Q¢

(1.2.11)

where Cy is independent of ¢ and ¢ € (0, T).

Theorem 1.2 There exists a unique weak solution {w®, p ¢} of the problem (1.2.1)-
(1.2.5) and

/ (IweP? + 1D, WP + 1 ° ) dxd < CoF?,
27

2
max 82/ ID(x, w)[2dx < S—CoF2, (12.12)
O<t<T Q "
82
/ \We(x, 1) — WE(x, 1)|?dxdt < —CoF?, (1.2.13)
2r Ay

where .
(X, 1) = / pf(x, 7)dr,
0
W, is the extension (1.2.9) and the constant Cy is independent of the small parameter
e.

Theorem 1.3 Let {w®, p ®} be the weak solution of the problem (1.2.1)—(1.2.5), w§
be an extension (1.2.9),

t
Té(x, 1) = / pf(x, T)dr,
0

and 1 = 00, or 1] < 00, but the pore space be disconnected.
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Then

(1) up to some subsequences sequences {w®} and {m ¢} converige weakly in L, ($27)
and Lo(827) to the functions w € Lo (27) and m € W2’0(.QT) respectively,

and the sequence {W¢} converges weakly in Wé’O(QT) to the function Wy = W €
o 1,0
W, (£27);

(2) the limiting functions solve the system of homogenized equations in the domain
27, consisting of the continuity equation

V-w, =0, (1.2.14)
and the homogenized momentum balance equation
V. (Aoms :D(x,ws)—p]I)~|—,6F=0, (1.2.15)

completed with homogeneous normalization and boundary conditions
/ px,t)dx =0, wg(x,1) =0, xe S, t € (0,7T); (1.2.16)
Q

(3) the problem (1.2.14)— (1.2.16) has a unique solution.
In(1.2.15)

am

—, p=mps+ 1 —m)ps, m=/lyx(y)dy,

P="g

and the symmetric strictly positively definite constant fourth-rank tensor N is given
below by (1.2.35).

We refer to the problem (1.2.15), (1.2.16) as the homogenized model (IF),.

Theorem 1.4 Let {w®, p*} be the weak solution of the problem (1.2.1)—(1.2.5), w¢
be an extension (1.2.9),

t
(X, 1) =/ pf(x, v)dr,
0

the pore space be connected, and |1, < 0.
Then

(1) up to some subsequences sequences {x*w®} and {x°m ¢} converge weakly in
Ly(27) and Ly(227) to functions W) € La(2r) and mmy € Wy(27) re-
spectively, and the sequence {w%} converges weakly in W;’O(.QT) to the function

o 1,0
ws € Wy (£27);

(2) limiting functions solve the system of homogenized equations in the domain S2r,

consisting of the continuity equation
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V-w (1 —m) V- w, =0, (1.2.17)

the homogenized momentum balance equation
V- (AN :D(x,ws) —pyl)+pF =0 (1.2.18)

for the solid component, and Darcy’s law in the form
1 1
w(f)zmws—i——IB%-(—an—i—pf/ F(x, 7)d7), (1.2.19)
"1 0

for the liquid component, completed with homogeneous boundary conditions
(1.2.16) for the solid component and homogeneous normalization and boundary
conditions

/ mr(x, )dx =0, w(x, 1) nx) =0, xe8, te(0,T) (1220
2

for the liquid pressure p y and displacements w') of the fluid component;
(3) the problem (1.2.16)—(1.2.20) has a unique solution.
In (1.2.18)—(1.2.20)

om .
pPr= 8_z‘f € La(27), p=mpr+ (A —m)p;, m= /Y x(Ydy,

n is the normal vector to the boundary S, the symmetric strictly positive defi-
nite constant matrix B is given by (1.1.27) (see Theorem 1.1), and the symmet-
ric strictly positively definite constant fourth-rank tensor M is given below by
(1.2.38).

We refer to the problem (1.2.16)—(1.2.20) as the homogenized model (IF)3.

1.2.2 Proof of Theorem 1.2

Setting in (1.2.8) ¢(x,t) = h(t)W*(X, t), where h(tr) = 1 for 0 < 7 < ¢ and
h(tr) =0fort < v < T, in the same way as in the previous section, we arrive at
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& & 2 82 & ey |2
W (x, 1) —wi(x,1)|["dx < —Co aﬂ|]D)(x, we (X, t)) — ]D)(x, Ws))| dx,
Q Ay 25
f

t
aM/ D (x, wh(x, t))|2dx+ko/ / ID(x, wh(x, t))|2dxdr
28 0 Jas

f

C t
< —0F2+8/ / \we (x, 7)|2dxd.
3 0 Jo
(1.2.21)

In particular,

/ W (x, 1) 2dx < / IwE (x, 1)[*dx
2 2

+Co “—”(/ |D(x,wf)|2dx+/ |D(x,w§)|2dx).
1231 .Q; 2

Now we use the properties of the extension operator Eg: (see Appendix B) and
Korn’s inequality, which state that

| minPar<co [ 1vwiznPdx < co [ e wie.n)ldx,
2 Q o

and

/;2 |]D)(X,W§(X, t))|2dx < Co/ ‘]D)(x’ WE(X, t))‘zdx.

25

Therefore,

t
O‘M/m D (x, W (x, t))}zdx-i-)»o/o /Q‘9 ID(x, w(x, ‘L'))|2d_xd‘[
f s

t
<COSO&// |D(x,WS(X,T))|2dxdt+@F2
mJo Jas s

t
+8Co// |]D)(x,wg(x,r))|2dxdr,
0 Jar

and the desired estimates (1.2.12) and (1.2.13) for the functions w® and w? follow
now from the last inequality with 2§ Co = X9, Grownwall’s inequality and inequality
(1.2.21).

To prove the estimate (1.2.12) for the pressure p ¢, we consider the integral identity
(1.2.8) as a relation

t
/ 7V - pdxdt = / (F:D(x, 9) + ,08/ F(x, 7)dt - ¢)dxdt,
7 2r 0
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where

aF_
ar

ow® oF
oD (x, ;;: ) + (1 = x)roD(x, w¥), F, 3 € La(827).

This relation implies

1
’/ nSV-godxdt‘ < COF(/ |V(p|2dxdt)2. (12.22)
Qr fr
Next we choose the test function ¢, such that

V.g=x°¢, and/ |V<p|2dxdz<co/ |7 ¢ |2 dxdt.
Q2r 2r

Namely, we decompose the function ¢ to the sum of two functions ¢ and V
such that
Ay =m% x€8, ¥ls=0, (1.2.23)

V.go=0, xe, (<po+V1p)S=0. (1.2.24)

On the strength of well-known results [56, 57] and the normalization condition

/ 7 é(x, t)dx =0,
2

the problem (1.2.23) has a unique solution ¢ € Lz((O, T); W22(.Q)),

T N2
/ (IWH;)(I)) dt < Co/ |7 ¢ > dxdt,
0 f7)

T

and the problem (1.2.24) has at least one solution ¢y € W;’O(.QT),

T 2 r 2
[ (e @) ar<co [ (1180) .
0 0

The last two relations and (1.2.22) give us the estimate (1.2.12) for the time integral
7 ¢ of the pressure p°.
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1.2.3 Proofs of Theorem 1.3 and 1.4

Estimate (1.2.12) guarantees the boundedness of sequences {w®}, {e D(x, w®)},
{xfweh {wel, (DG, wol {(x°7f) {1 — x*)7?} and {7 °} in La(£27) and
L>($27). Therefore, these sequences, except {& x° D(x, w®)}, weakly converge in
L,(£27) and L (£27) to functions w, w) | wy, D(x, wy), mmy, (1 — m)mg, and
m =mumny+ (1 —m)m, respectively. On the strength of the properties of the exten-

sion operator Eg: (see Appendix B) wy € \;)Vzi (8£27).
Owing to Nguetseng’s theorem, there exist 1-periodic in y functions

W, 1,y), D(y, Wx, 1, y)), W, 1,y), D(y, Ux,1,y)),
Hf(tha Y), HS(X’tvy)7 and H(Xata Y) :Hf +H€

such that the above mentioned sequences, including {& x° D(x, w®)}, two-scale con-
verge in Lo (£27) and L, (§27) as ¢ — 0 respectively to

W, x(y)D(y, W, W w, D(x, wy) +D(y, U), Iy, I, and I1.
The same theorem of Nguetseng states that

WD = xy)W, W=WD 4 (1 - xy) ws(x, 1),
Oy =x(y) I, Iy = (1 - x(y) I,

and
W, D(y, W), D(y,U), IT € Lo(27 x Y).

The two-scale limit in the continuity equation (1.2.1) in the form
/ w® . Vé&dxdr =0 (1.2.25)
2r

X
with test function £ = ¢ & (—) h(x, t), where functions &y(y) are finite in Y,
e

results in the microscopic continuity equation
Vy-W=0, yely. (1.2.26)

Now, we rewrite the integral identity (1.2.8) in the form

t

/ (onID)(x, w®) : D(x, ¢p) — 7€ (V-¢p) — pg/ F(x, t)dt - (pg)dxdt =0,
or 0

with test functions
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d X
¢ = / o (x, T, —) dt, suppeo(x,t,y) C Yy, forall(x,t) € £27.
0 &
Applying the results of the previous section for

po(X,t,y) =€e@o(X,t,y)

and
po(X,t,y) = h(X, 1) p{(y), Vy-@i1(y) =0, suppe; C Yy,

we arrive at the relations

Hyx,1,y) = x(Y)mpx, 1), Vayela(f2r),

and at the microscopic periodic boundary value problem (1.1.19), (1.1.23), (1.1.24)
in Y in the form

'
n1Vy -D(y,W)—-V,Q0 —Vr;+ ,of/ F(x, t)dt =0, (1.2.27)
0

W, t,y) = ws(x,1), y €V, (1.2.28)

completed with the continuity equation (1.2.26).

For 11 < oo the problem (1.2.26)—(1.2.28) for the difference (W — wy) results
in Darcy’s law (1.2.19).

For a disconnected pore space the last problem has a unique solution w = wg.

Finally, estimate (1.2.13) and condition p; = oo imply the equality w = wy.
This fact and the passage to the limit in the continuity equation (1.2.25) for any
& e WZ(I’O)(QT), give us the limiting continuity equation (1.2.14) for the case of a
disconnected pore space, or for the case of (] = oo.

For the case 1| < oo the two-scale limit in (1.2.25) in the form

/ (x*w® + (1 — x°)w;) - VEdxdt =0
Q2r
with test function & = £(x, t) gives us the homogenized continuity equation
/ (W + (1 — m)w) - VEdxdt = 0,
27

in the integral form, which obviously imply the differential equation (1.2.17) and the
boundary condition

(WY + (1 —m)w,) -n(x) =0, x € S.



1.2 An Incompressible Slightly Viscous Liquid in an Incompressible Elastic Skeleton 21
The properties of the extension operator Eg¢ result in
w,(x,1) =0, xeS.

Therefore, the last two conditions imply the boundary condition (1.2.20).

Next we pass to the limitas ¢ — 01in the integral identity (1.2.8) with two different
types of test functions. First, with test functions ¢ = ¢(X, ). The estimates obtained
do not permit us to do it directly, because we have no compactness for the pressures.
Therefore, we rewrite the identity (1.2.8) in the form

/ (( — xfa,D(x, w®) : D (x, E;_g;)) + (1 — xHroD(x, wg)) : D(x, <p))dxdt
Qr

0
—/ TfV. (_(p) )dxdt = / p°F - @ dxdt,
Qr ot 27

and only after that will pass to the limit as ¢ — 0 and get:

/-Or (S :D(x, @) + 7V - (%_(f))dxdt = /Q AF - o dxdt,

S =2o((1 = m)D(x, wy) + (D(y, U))y, ).

To rewrite the last identity in the usual form, we consider the mollifiers [59]

1 t+h 1 t
up(x,t) = }—l/ ulx, r)dr, uj(x,t) = Z/ u(x, t)dr,
t t—h

and put ¢ = (¢o)};- Carrying out smoothing and differentiation with respect to time
from the test function we arrive at

9
/ (Sh:D(x,m)—ﬂv-(pO)dxdt:/ OF - @ dxdt.
2r ot Qr

On the basis of this identity and the uniform boundedness in L, (£27) of S;, with
respect to i (in the same way as in Theorem 1.2) we conclude that the sequence
a
{ % } is uniformly bounded in L, (£27) with respect to 4.
The properties of the mollifiers imply the inclusion of

_ T en
P= 2(827).

The last relation allows us to transform the integral identity obtained above to the
usual macroscopic momentum balance equation
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/ (S:D(x,gp)—pV~<p)dxdt=/ OF - @ dxdt,
Q2r 2r

or, to its formal expression as a differential equation

V. (,\0((1 —m)D(x, wy) + (D(y, U))y,) — p]I) + pF =0. (1.2.29)

X
Now we repeat once more with test functions ¢ = gh(X)@g (—, t) in (1.2.8) and get
&
the microscopic momentum balance equation

T
/0 /Y ho(l = x)(DCx, we) +D(y, U) : D(y. po)dydi

T B]
=_/ /nv. (ﬂ) dydr,  (1.2.30)
0 Y ot

AT
P=xps+Pi="-€LlaY x 2r).

which implies

Choosing now ¢y(y, t) with supp g9 C Y we obtain

N

P_8
s — at

€ Ly(Y x 27),

and all together

87Tf ans
pr=—"¢ Ly($27), Ps= a5 € Ly(Y x £27).

The two-scale limit in the continuity equation (1.2.1) in domain £2{ in the form

X
(1-2(%))v-wi =0
e
gives us the missing microscopic continuity equation
(1—=xW)(V-wy+V, -U)=0, yeV. (1.2.31)

The microscopic problem is completed with the normalization condition

(U)y, :/ Udy = 0.
Y
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If w1 = oo, or the pore space is disconnected (the case when w = w;) the macro-
scopic equation (1.2.14) holds true. Thus (1.2.31) takes the form

(1-x)Vy-U=0, yeY. (1.2.32)

Lemma 1.4 Let 11 = 00, or the pore space be disconnected. Then the limiting
functions wg and p satisfy the homogenized momentum balance equation (1.2.15).

Proof To derive the homogenized momentum balance equation (1.2.15) we have to
express D(y, U) as an operator on D(x, wy) by means of Egs. (1.2.30) and (1.2.32),
and substitute it into the equation (1.2.29):

D(y, U) = By(y) : D(x, wy),
and

3
N =1—m > IVQI7+ By,
i,j=1

where )
I = E(ei ®ej+e;@e),

{e1, €3, e3} is a standard Cartesian basis, and the fourth-rank tensor A ® B is the
tensor (direct) product of the second-rank tensors A and B: (A®B) : C=AB : C)
for any second-rank tensor C.

To this end, we rewrite (1.2.30) in the form

I
v, - ((1 — 0 (D(x, wy) + D(y, U) — (P pf)]l)) —o, (1.2.33)

and will look for a solution of (1.2.32) and (1.2.33) in the form

3
U= > Uy wDijx.0),
ij=1

3
Pi—pr=i0 2. P§yDij(x. 1),
ij=1
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where
Dyx ) = 2 (2 ey + 2 (x, 1) ( )
ii(x, ) =-(—(Xx, — (X, . Wy = (uy, uaz, uz),
ij B 8Xj ox; K 1 2, U3
3
D(x,ws) = > Di; IV,
i,j=I
and

. _ (ij) ij _ pp _
v, ((1 X (D(y, US) + 77 — P H))—O» yey’] (1.2.34)

(11— 0V, U =0, yev, W)y, =o.

s

In what follows, we understand all equations like the first one in (1.2.34) in the sense
of distributions. That is, as an integral identity

/ (D(y, US") + 37 — P{7T) : D(y, @)dy =0,
Yy
which holds true for any smooth 1-periodic in y functions ®(y).

The existence and uniqueness of the 1-periodic weak solution U(()ij ) € Wé( Yy) to
the problem (1.2.34) follows from the a priori estimate

[ vugPwray < co.
Y,
In turn, this estimate is a consequence of an energy identity
D U(ij) 2 ij . U(ij) dv =0
(ID(y, Uy 2 + 17 : D(y, Uy"))dy = 0.
Yy

Thus,

3 3
D(y.U) = > Dy, Uy )Di; = > Dy, UF) (I : Dx, wy))
ij=1 ij=1

3
= ( > DUy ®J"f') : D(x, wy) = By(y) : D(x, wy),
i,j=1
and

3 3
N=-m > IT@J+ > Dy, Uy, ® I, (1.2.35)
i,j=1 i j=1
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All properties of the tensor 91° follow from identities

/ (D(y, US”) - D(y, USD) + 39 - Dy, US))dy = 0, (1.2.36)
Xy

which are the result of multiplication of the microscopic momentum balance equation
for Ug] ) by U(()kl) and integration by parts over domain Y.

Lemma 1.5 The constant fourth-rank tensor N° is symmetric and strictly positively
definite.

Proof Let ¢ = (¢;;) and n = (5;;) be arbitrary symmetric matrices and

3 3
Yo= > Ul Yy= D Uy
ij=1 ij=1

Then (1.2.36) transforms to
(D(y, Ye) : D(y, Yp))y, +(D(y, Yp))y, : ¢ =0.

By definition
(M :¢)in=0—-mi :n+ Dy, Y))y, : .

The sum of the last two equalities results in a relation

(0 :¢) i =((DO. Yo +8) : (DO Yy) +n))
which shows the symmetry and the positivity of the tensor 91°. The strict positivity
of this tensor follows from the structure of the domain Yy in the same way, as in the
previous section, namely, if (Y : 5) : n = 0, then for some 7, such that n : n = 1
one has D(y, Y,) +n = 0. This equality implies the linearity of Y,. But this is
impossible for a connected solid skeleton.

In fact, Y, is a periodic solution of the problem

Vy - ((1 - 0D, Yy) 41— Pnﬂ)) =0, yeY, ]
(1-x)Vy-Y,=0,y€e7Y, (Yy)y, =0.

As we have mentioned in the previous section, due to periodicity conditions, any
linear and periodic function in the elementary cell may only be constant if the peri-
odic repetition of this cell forms a connected domain. The normalization condition
(Yy)y, = 0 implies Y,, = 0. By construction Y, + n = 0. Therefore n = 0, which
is impossible by the supposition n : n = 1.
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The weak limit in the normalization condition (1.2.5) in the form

0= Tdht fdx )dt Tdht dx |dt
-/ E”(/g” ’C) - E“(/Q” ’“)
T
:/ h(t)(/ pdx)dt:O
0 9]

for arbitrary smooth functions %(¢) finite on (0, 7), results in the normalization
condition (1.2.16).

Lemma 1.6 The problem (1.2.14)—(1.2.16) has a unique solution.

Proof The equality wy = 0 follows from the energy identity
/ Ao (O : D(x, wy)) : D(x, wy)dx =0
2

for F = 0, the strict positivity of 91°, and the boundary condition in (1.2.16).
The differential equation (1.2.15) for wy = 0 defines a pressure p as some function
of t. The normalization condition in (1.2.16) implies p = 0.

Now let 11 < oo and the pore space be connected. To define U we have the
periodic boundary value problem (1.2.31), (1.2.33) and the solution of this problem
has the form

3
U= > U WDijx. 0+ U ®(V - ws(x.1),
ij=1

3
Pi—pr=n D P @Dix. 0+ 10 PGV - Wi (x, 1),

i j=1
where
v, (= 0@, ) - pO1) =0, } (1.2.37)
(1=0F, -0 + 1) =0, (UP)y, =0, yev.

To solve the problem (1.2.37) we first find a 1-periodic function V¢ € W%(YS) such
that
Vy-Vo+1=0, yeY,.

There are many ways to construct the function V. For example, let

Vy-Up+1=0, ye¥, Up(y) =0, yeol.
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The existence of Uy € Wé (Y) follows from [56]. Now we extend it periodically
outside of Y as
Vo(y + k) = Up(y),

where y € Y, k = (k1, k2, k3) and the coordinates of the vector k are integers.
The correctness of the problem (1.2.37) is a consequence of the energy identity

/Y D(y. U) : (D(y. UL) - D(y. Vo))dy = 0.

The last equality is the result of the multiplication of the first equation in (1.2.37) by
(U(()O) — V) and integration by parts over domain Y.

Lemma 1.7 The limiting functions wg and p y satisfy the homogenized momentum
balance equation (1.2.18).

Proof To find ] we have to calculate expressions (ID(y, U))y, and p as operators
on D(x, wg) and (V - wy):

(1 —m)D(x, wy) + (D(y, U))y, = N : D(x, wy) + (D, Uy, (V - wy)
= (30 + (DO, Uy, ® 1) : D, w).

p=(Plyy=xpr+UA=)0P)y =(pr+UA=)(Ps = ps)ly
3

=pr+{(Ps—pp)y, = Py +)»o< > P(()ij)> Dij + xo(P )y, (V - W),
ij=1 Y,

and

"”> 1@ 17 | :Dex, wo) + (AP ) I)(V - wy)
=~ .

<
=
I
~
~
=
|
>
(=}
N/\
M-
~
o~

3
= k0<z Pg”> T®J7 4 2o(P )y, I®T | : Dix, wy).
hj=1 Y

Therefore,
N = N + (D(y, UM))y, &T —< > Pg«’)> 10J7 — (P V) Il (1.2.38)
hi=l Y,

The basic properties of the tensor 1] follow from the equalities
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(PV)y, = —(D(y, UL : Dy, UM))y,, (1.2.39)

(D(y, U : Dy, Uy, =0, (1.2.40)

(P )y, = (D, UL : Ty, (1.2.41)

(D(y, US) - Dy, Uy, + (39 D(y, UF))y, =0, (12.42)

for all i, j, k, I = 1, 2, 3. Equation (1.2.39) is a result of multiplication of the

equation for U by U and integration by parts over domain Y. Equation (1.2.40)
q o 9Y Yo g Y P q

is the result of multiplication of the equation for U(()O) by U(()U ) and integration by
parts over domain Y.
(i)

Equation (1.2.41) is the result of the multiplication of the equation for Uj,”" by

U(()O) and integration by parts over domain Y. Here we additionally take into account
the relation (1.2.40).
Finally, equation (1.2.42) is the result of the multiplication of the equation for

Ugj ) by U(()k]) and integration by parts over domain Y.
By construction
3 ..
/(Ps_Pthdx:)\O <Z Po(l])> / Dij(X,t)dx
2 S 2
i,j=1 Y,

+ X0 (P(§°>>YS/ V - w(x, t)dx = 0,
2

and

/ pdx:/ (pf-f-(Ps—Pf)Y)dx:/ prdx.
Q 2 2

Thus, the normalization condition (1.2.20) follows from the last equality and the

integral identity
T
/ h(t)(/ 7 (X, t)dx)dt =0
0 2

for arbitrary smooth functions /4 (#) after taking the limit as ¢ — 0.

Lemma 1.8 The constant fourth-rank tensor Wi is symmetric and strictly positively
definite.

Proof Let ¢ = (¢;;) and n = (5;;) be arbitrary symmetric matrices and

3 3
ij ij 0 0
Yo=> Ul Yy= > Un. Y2=Uuwe YO =U .
i,j=1 i,j=1
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Then Egs. (1.2.39)—(1.2.42) are transformed to equations

— (PO I@T:¢) = (D, YD) : DO, Y, (1.2.43)
(D(y, Y;) : D(y, YD)y, =0, (1.2.44)
3 i1 ..
- <Z Pé"’)> 1QI7|:¢|:n= M. YDy, : ¢ (1.2.45)
i,j=1 v
(D(y, Ye) : D(y, Yy, + ¢ 2 (D(y, Yy))y, =0. (1.2.46)

Therefore,

() =0 =m7:n+ D0, YOy, : n+ D0, YD)y, =1
+¢ (DO YD)y, + (D, Y) : D(y, Y))y,.

Taking into account equalities (1.2.43)—(1.2.46) we finally get

(M :¢) :n = (D, Ye) : D(y. Yy, + Dy, Yy, : ¢
+ (D, Yoy, : 0+ (D, YO) : D(y, Yy, + ¢ = (D(y, Y)))v,
+0: (D, YD)y, + A —m)g i n
= (DO, Y +Y) +¢) : (DG, Y, + YD) + n))y,- (1.2.47)

Equation (1.2.47) shows that the tensor 91} is symmetric:
(M} :¢):in=(M 1) : ¢
In particular,
(M :2) ¢ = (DG Ye + YD +¢) - (D(y, Ye + YY) +¢)), >0.

Therefore the tensor 1] is strictly positively definite.

Lemma 1.9 The problem (1.2.16)—(1.2.20) has a unique solution.

Proof To prove the uniqueness of the problem (1.2.16)—(1.2.20) we multiply equa-
tion (1.2.18) with F = 0 by w, and integrate by parts over §2:

/ AoD(x, W) - (‘ﬁi :D(x,ws))dx —/ prVwydx =0.
2 2
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The combination of Darcy’s law (1.2.19) with F = 0 and the continuity equation
(1.2.17) give us

V.w, = LV . (IB%-an).

i
Thus, J
1
- \v4 -(IB%~V )d / V- -wsdx =0,
21 dt o Ty Ty )dx + pr W dx
and
1 d .
1 d an.(]Ba.v;Tf)dx+/ AoD(, wy) : (T 2 D, wy) )dx = 0.
2ur dt Jo I?)

The last equality and normalization condition (1.2.20) imply
wy =0, mp=0.
As in the previous section we conclude that any subsequences of sequences {w®},

{w?}, and {p ®} converge to the same limits. Therefore entire sequences converge to
those unique limits.

1.3 A Compressible Slightly Viscous Liquid in a Compressible
Elastic Skeleton

Here, as a basic mathematical model at the microscopic level we consider the model
M4 of the filtration of a compressible liquid in a compressible elastic solid skeleton

1
— p+V-w=0, (13.1)
P

V.P+ pF =0, (13.2)

e ow e e ow
P=y ozu]D)(x, E) + (1= x)ADEr W) = (p = X'V S )L (133)
wx, 1) =0, xS, 1 €(0,T), (13.4)
ay x° p(x,0) = 0, x°w(x,0)=0, x € 2. (13.5)

Throughout this section assume that conditions

o =0, 0 <y <00, 0< Ao, ¢}, ¢ <00, 0< 1y < 00, (1.3.6)
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and
2 oF |2 2
IF| +‘—‘ dxdt = F? < 00 (13.7)
Qr ot

hold true.

In (1.3.1)—(1.3.6)

of = x*ch + (1= x)ct,

(07
= lim a, (¢), = lim £,
o lim w(€), 1 lim 22

vo = lim «,,(g).
0 ¢ e\0

1.3.1 Statement of the Problem and Main Results

Definition 1.3 We say that the pair of functions {w®, p ¢} such that

£

e 01,0 e 8W e
we Wy (@), x°V(— ) €La(2r), p© € La(S2),

is a weak solution of the problem (1.3.1)—(1.3.5), if it satisfies the continuity equation
(1.3.1) almost everywhere in §27, the initial condition (1.3.5) and an integral identity

8 &
/ (XEQMD()C, B—V:) +— XS)AQD()C,WS)) - D(x, ¢) dxdr
7

8 &
_/ (Ps—ngXuV- d )(V~<p)dxdt=/ p°F - @ dxdt,
Qr 31‘ Q2r

(1.3.8)

1,0
for any functions ¢ € svz (£27).

Theorem 1.5 There exists a unique weak solution {w®, p ¢} of the problem (1.3.1)-
(1.3.5) and

2 ow® 2 € 2
OlgzixTL(|D(x,wf(x,t))| +‘]D)(x, 8ts (x,t)) + oy x© z (x, 1) )dx
a2w6 2 ape 2
fa, |D(x, —— dxdt < CyoF?,
+/m(““ ) +‘at )x ofi
(1.3.9)
owe Iwe 2 2
/ Yo, 1) — Dy, r)’ dxdt < S CyF?, (1.3.10)
Q2r at at oy
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where W be an extension (1.2.9) and the constant Cy is independent of the small
parameter &.

Theorem 1.6 Let {w®, p ®} be the weak solution of the problem (1.3.1)—(1.3.5), W
be an extension (1.2.9), and ;11 = 00 or 1 < o0 but the pore space be disconnected.
Then

a &€
(1) forallvy > 0O the sequences {w°}, {V-w®}, {x¢p°¢}, Ixs%], and {q®}, where

e € g, 0 p° .
g =x\p +—= or ) converge weakly in Lo (821) and L, ($21) (up to some
N 9 d
subsequences) to functions w, V - W, m ﬁ andmq = m\py + napry
ot bt

respectively;

(2) forvg = Othe sequences {w°}, {V-w°}, and {x¢ p ¢} converge weakly in Ly (§27)
and Ly ($27) (up to some subsequences) to functions w, V -w, and m p y respec-
tively;

(3) for all vo > 0O the sequence {W;} converges weakly in Wé’o(.QT) (up to some

o 1,0
subsequences) to the function wy, € W, (827) and wy = W;
(4) limiting functions solve the system of homogenized equations in the domain 2,
consisting of the homogenized continuity equation

m s <0
—Pf +mV - w, =C,:D(x, wy) + —¢, (1.3.11)
cy Ao

the state equation

vo Op
cr ot

and the homogenized momentum balance equation
V- (Ao : D(x, ws) —qCj) + pF =0, (1.3.13)
completed with homogeneous boundary and initial conditions
wi(x,1) =0, xe S, t€(0,7), vpr(x,0) =0, x € £2; (1.3.14)

(5) there exists A, > 0, such that for all Ao > Ay the problem (1.3.11)—(1.3.14) has
a unique solution.
In(13.11), (1.3.13)
f?:mpf-i‘(l —m) ps,
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the symmetric strictly positively definite constant fourth-rank tensor N5, ma-
trices Cyy and C{, and the constant cpy are given below by formulae (1.3.26),
(1.3.27) and (1.3.31) and do not depend on Ag.

We refer to the problem (1.3.11)—(1.3.14) as the homogenized model (IF),.

Theorem 1.7 Let {w®, p ®} be the weak solution of the problem (1.3.1)—(1.3.5), w¢
be an extension (1.2.9), the pore space be connected, and 1 < 0.
Then

£

w & &
o ],{x P },IX

), converge weakly in Lo (§21) and Lo($27) (up

e9p°
Jat

Bl
(1) forallvy > 0O the sequences {x° w®}, [xe ], and {q*},

8 £
whereqszxg(pg-l-a—; P
cr Jat

ow() apy
to some subsequences) to functions w'/), v m TR andmgq = m(pf +

——) € Wzl’o(.QT) respectively;

£

0
(2) for vog = O the sequences {x° w®}, [Xg il ] and {x°p ¢} converge weakly

ot
ow()

at

in Lo (827) and Lo($27) (up to some subsequences) to functions w, , and

mpy € W21 ’O(QT) respectively;

&

ad
(3) forall vo = 0 sequences {w} and | ;ZS ] converge weakly in Wé’o(.QT) (up

OW. o 1,0
to some subsequences) to functions a—; € W, (827) respectively;
(4) limiting functions solve the system of homogenized equations in the domain 27,
consisting of the homogenized continuity equation

m § CS
S pr+ Ve W =ChiDex, wy) + g, (1.3.15)
s 0

the state equation (1.3.12), the homogenized momentum balance equation
(1.3.13) for the solid component, and Darcy’s law in the form

:m—t‘+B.(—vq+pfF), (1.3.16)

for the liquid component, completed with the homogeneous boundary and initial
conditions (1.3.14), and the homogeneous boundary condition

wx, 1) - nx)=0, xe S, te,T) (1.3.17)

for the pressure p! and displacements w'/) of the fluid component.
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(5) there exists A, > 0, such that for all Ao > A, the problem (1.3.13)—(1.3.17) has
a unique solution.
In (1.3.16) and (1.3.17) n is the normal vector to the boundary S, the symmetric
strictly positively definite constant matrix B is given in Theorem 1.1 of the present
chapter.

We refer to the problem (1.3.13)—(1.3.17) as the homogenized model (IF)s.

Theorem 1.8 Let vog = 0 and 1 = 0o, or (1] < 00, but the pore space be discon-
nected.

Then g = py and the solution w of the problem (1.3.11)—(1.3.14) satisfies in the
domain 21 the homogenized equation

V- (oM : D(x, wy)) + AF =0 (1.3.18)

with the boundary condition (1.3.14).
The symmetric strictly positive definite constant fourth-rank tensor N is given
below by formula (1.3.39) and does not depend on \.

We refer to the problem (1.3.14), (1.3.18) as the homogenized model (IF)¢.

1.3.2 Proof of Theorem 1.5

w® owS

5 5 ) repeats
the proof of estimates (1.2.12) and (1.2.13) in Theorem 1.2. We just have to use the

equalities

The proof of estimates (1.3.9) and (1.3.10) for the function

IWEN |2 dpe2

Jor (el e 5+ 515
Q ot Cf ot

1d 1 ow®

d 5 (@ =xomipew P+ iptP)dx = [ pF S,

2dt Jo Ol;; Q at
1d IWe y |2 1 jop?é 2
L L (0 romlpls B+ L
2dt Q(( X )ho| DA at +a§, ot *

82p8
012

W12
+/_QXg(aM‘D(x’_3t2 )‘ +¥

2 oF ow*
dx :/ pf— W dx
o ot ot

(1.3.19)
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1.3.3 Proof of Theorem 1.6

On the strength of Theorem 1.5 sequences {w®}, {x°w®}, {V-w®}, {wi}, {D(x, wi)},
{x¢pe} {(1 — x®)p?}, and {p®} converge weakly in L2(.QT) and Ly(£27) (up to

some subsequences) to functions w, wiH, V.w, w € W2 (.QT) D(x, ws), m py,
(I =m)ps,and p = m py + (1 —m) py respectively, and sequences {w}, { x*w®},
{(wil, (D(x, wH)}, {x°p®}, and {(1 — x®)p®} converge two-scale in L, (£27) and
Lo ($27) respectively to functions

W, 1,y) = WX, 1, y)x(y) + (1 = x(y)ws(x, 1), WX, 2, ¥)x(y),
we(x, 1), D(x, wy) +D(y, Uk, 1,y)),
prx, )x(y), and Py(X,1,y).

For vy = 0 the sequence {¢°} converges weakly in L>(§27) to function m p and
two-scale in L (§27) to function p s x (y).

8 &
Forvg > pt } and {¢°} converge weakly in L, (£27) to functions

m % and mgq respectively. Passing to the limit as ¢ — 0 in the state equation in

the form

d
(@ = x"pHEx, 1)+ a—;xgpg—s(x, 1))dxdt =0,
Qr Cf ot

we get the homogenized state equation
q=pf+—=5—-

and the initial condition
\)()pf(X, 0)=0, xe 2.

At the same time the sequence {g°®} converges two-scale in L,(£27) to function
qx, 1) x(y).

As we have shown in the proof of Theorem 1.3, weak and two-scale limits W, p 7,
and ¢ satisfy the microscopic system (1.2.25)—(1.2.27) and the state equation (1.3.12).
Therefore, if the pore space is disconnected, then W(x, ¢, y) x (y) = wy(X, 1) x (y)
and

WX, t,y) = wg(X, 1).

Due to estimate (1.3.10) the same equality holds true for the case 1 = oo.
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Lemma 1.10 Limiting functions wg and py satisfy in the domain 21 the macro-
scopic continuity equation for the liquid component

m
C—2Pf+mv‘ws= (Vy - Uy,. (1.3.20)
f

Proof To prove (1.3.20) we rewrite the continuity equation (1.3.1) as

/Q (cizxgpaé(x, 1) —w* - VE(X, t))dxdt
r \Cy

= [ (= xHEX, )V - widxdt.
Q7

Passage to the limit as ¢ — 0 gives as

/ (%xspss(x, 1) —w - VE(X, t))dxdt
Qr Cf

m m
—ps—w.-VEdxdt = —pr+V-w )dxdt,
> . (SC?c}Cf s S) X /.QT%'(C%];f s) X

(1= x5V - -wiE(x, t)dxdt
Q7

— E((l —m)V - ws + (Vy -U)ys)dxdt.
7

After reintegrating we arrive at (1.3.20).
In the last relation we took into account Nguetseng’s theorem (see Appendix B).

Lemma 1.11 Limiting functions wg and q satisfy in the domain 21 the homogenized
momentum balance equation (1.3.13).

Proof Initially, using the continuity equation (1.3.1) in the domain £2{ in the form
(1= 1P ==c{(1 = x)HV - Wi,
we rewrite the integral identity (1.3.8) as

5+ 1 =/ o°F - p dxdt, (1.3.21)
. o

where
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ch = / xfa,D(x, v¥) : D(x, ¢)dxdt +/ x5q°V - pdxdt,
r 2

T

1;?:/ (1 — x*) (oD (x, WE) : D(x, @) + c2(V - WE)(V - 9))dxdt
f2r

=k [ (1= xH(N?:Dx, wh)) : D(x, p)dxdt,
2r

and 5
N0 =" TV eI/ +

i, j=1

&H®H
Ao '

Now we pass to the limit as ¢ — 0 in the integral identity (1.3.21) with two dif-

ferent types of test functions. Firstly, with test functions ¢ = ¢(x, t) and secondly,
X

with test functions ¢ = eh(X, 1)@g (—) After standard reintegration we obtain the
€

macroscopic momentum balance equation
v. (xo NO - (1= m) D(x, wy) + (D(y, U))ys)) —mVg+pF=0, (1322)

and the microscopic momentum balance equation
©) !
v, (=00 (D, wy) + DGy, V) +%q]1)) = 0. (1.323)

Note, that the sequence {¢°} converges weakly and two-scale in Ly (£27) to mq for
vp > 0, and converges weakly and two-scale in L3 (§27) to mp ¢ for vg = 0.

To calculate 9T} and C] we have to solve (1.3.23) and find (ID(y, U))y, as an
operator on D(x, wy) and g.

Let Ugj ) (y) and Uéo) (y) be solutions of periodic problems

Vy - ((1 - x)(‘ﬂ(o) L (79 4+ Dy, Ug""))))) =0, (1.3.24)
and
vy (4 =0@? D, v +1)) =0 (1.3.25)
inY.

The correct solvability of problems (1.3.24) and (1.3.25) follows from the energy
equalities
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/ (M@ Dy, US)) : Dy, Uy = _/ (@ :39) : Dy, US Dy,

s K

/Y (@ D UP) Dy, Uy = - / I:D(y, U)dy(= —(v-UP)y,),

s

and the corresponding energy estimates.
As before, we conclude that the solution U to the problem (1.3.23) has a form

3
y 1
Uk t.y) = D7 U 00Dy (x.0) + - g (x. ) U ().
0

i j=1
Then
DGOy, = > DU )y, Dij + pTRALCS UMy,
ij=1
3 .. . 1 0
= ( > . )y, ®J<”>) D, ws) + 5 q (D, Uy )y,
ij=1 0

and

3 3
M= (1-m X eI+ > D0, Uy, ©IP)  (1326)
i.j=1 i,j=1

C =ml— (D(y, UL))y,. (13.27)

Lemma 1.12 The constant fourth-rank tensor Yt is symmetric and strictl positivel
2 Y y y
definite.

Proof Asbefore (see Lemmas 1.2.2 and 1.2.5), all properties of the tensor 9 follow
from the equality

[ (D00 i Uy

__ / (in(o) :JW)) Dy, U)ay, (1.3.28)
Y

which is the result of multiplying the Eq.(1.3.24) for Ugj ) by Ugd) and integration
by parts over domain Y.
Let ¢ = (¢;;) and n = (n;;) be arbitrary symmetric matrices and
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3 3
Vo= U0 Y= ) U
i,j=1 i,j=1

Then, after multiplying the equation (1.3.28) by ¢;;nx; and summing over all indices
we arrive at

(D0 Y0) : DOL Yy + (M :¢) : DO Yy, = 0. (13.29)
By definition
(M5 :8) = (M) i)y, +H((NO ) DO, Yo, (1.3.30)

The sum of (1.3.29) and (1.3.30) gives us the equality

O:0)in= [ (N (0. Yo 1)) s (B0 Y,) +¢)dy.

which proves the statement of the lemma, because the constant fourth-rank tensor
N is obviously symmetric and strictly positively definite.

Lemma 1.13 Limiting functions ws and q satisfy in the domain 21 the homogenized
continuity equation (1.3.11).

Proof To prove the lemma we just have to express the right-hand side of (1.3.20)
using (1.3.26):

3
g 1
(Vy - Uy, = > (Vy - Uy, Dy + AL Uy,
i,j=1
3 o 1
( (Vy . Ug])>YSJl/) : ]D)(x, WS) + ()\—0 (Vy . Ug)))Ys) q.
i, j=1

Therefore, (1.3.11) holds, if

3
5= D (VU 09, ey = (v - Uy, (1.3.31)
ij=1

Lemma 1.3.2 shows that ¢ < 0.
Lemma 1.14 The problem (1.3.11)—(1.3.14) has a unique solution.

Proof To prove the lemma for the case vy > 0 let us multiply equation (1.3.13) with
F = 0 by wy, integrate by parts over domain §2 and estimate the term containing g
using Holder’s inequality and properties of the tensor 915:
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1
/ D(x, wy) : (9 : D(x, wy))dx = —/ g C} : D(x, wy)dx
2 ro J@2

/

1 Co 2
<= | D(x, 2 (91 D(x, d — dx.
2/9 (x, ws) : (0 : D(x, wy))dx + " /Qq X

In a sequel, we solve (1.3.12) and find ps as

t
p,c:v—gexp —V—gt /exp v—g‘l,' q(x, t)dr,
’ r Cy 0 Cy

substitute it into (1.3.11), multiply the result by g, integrate over §2, and estimate g
as

/ qzdx < Co/ D(x, wy) : (‘ﬂ; s D(x, Ws))dx.
2 Q
Thus,

1
5/ D(x, wy) : (‘ﬂi :D(x, ws))dx
Q
C C
< =0 qzdx < —0/ D(x, wy) : (‘ﬁ% : ]D)(x,ws))dx,
r0 Je rJe
which implies wy = 0, ¢ = 0 for
Ao > AF =2C.

The case vy = 0 is considered in a similar way.

1.3.4 Proof of Theorem 1.7

ow® awe dp¢
;: ],{wi},[ ;:5],{D(x,W§)},{xepe},[x8 8’; ]

and {¢°} converge weakly in L, (§£27) and L, (£27) up to some subsequences to func-

SwlF) o 1,0 dw, o 1.0 9
tions w'/), 5 Ws € Wa (21), a—t‘v € W, (27),D(x,ws), mps, m %
&

BV: ] {wel, (DG, w)l,

The sequences {x*w®}, [ x*

>

and m g respectively, and sequences {w°}, {x*w¢}, [ x°

&

ap
ot

{x¢p?}, IXE ], and {g¢°} converge two-scale in Lo (£27) and L»(£27) to

W)
functions W(x, 7, y), W (x, 1,y),

’ wS(X1 t)a ]D)(xv WS) + ]D)(yv U(Xs t’ Y))’

ap r .
XY prx, 1), x(y)a—[f(x, 1), and x (y)q(x, t) respectively.
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For vy = 0 the sequence {¢°} converges weakly in L, (£27) to mp y and two-scale
in Lp(£27) to pr(x, 1) x(¥)-

As we have shown before, weak and two-scale limits W/, pf, and g satisfy
the microscopic system (1.2.25)—(1.2.27) and the state equation (1.3.12). Therefore,
for a connected pore space the limiting functions w'/) and g € WZI’O(QT) satisfy
in the domain 27 Darcy’s law (1.3.16) and the boundary condition (1.3.17) on the
boundary S. In the same way we show that limiting functions wy and ¢ satisfy in
the domain £27 the homogenized momentum balance equation (1.3.13). So, we only
must prove the following statement.

Lemma 1.15 Limiting functions Wy and py satisfy the homogenized continuity
equation (1.3.15).

Proof As before in Lemma 1.3.1, we rewrite the continuity equation (1.3.1) as

/ (izxsp%(x, 1 —w - VE(X, t))dxdt
.QT Cf

= / (1—-xHEx, 1)V - Widxdt. (1.3.32)
7

After two-scale passage to the limit as ¢ — 0 in (1.3.32) we arrive at the integral
identity

/ (ﬂzpfé(x, 1 — (W + (1 —myw,) - VE(x, t))dxdt
Qr Cf

= / E(x, t)((l —m)V - ws + (V, ~U)ys)dxdt.
2rJor
Reintegration transforms the last identity to the macroscopic continuity equation
n ) =
—pf+V-wl = (V- Uy, (1.3.33)
i
The rest of the proof repeats the proof of the Lemma 1.13.

Lemma 1.16 The problem (1.3.11)—(1.3.14) has a unique solution.

Proof Let us consider the simplest case vg = 0. The case vy > 0 is considered in a
similar way (see Lemma 1.3.5 and Lemma 1.2.6).

Asin Lemma 1.3.5, we multiply equation (1.3.13) with F = 0 by wy, integrate by
parts over domain £27 and estimate the term with ¢ = p using Holder’s inequality
and properties of the tensor 9t3:
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1
/ D(x, wy) : (9 : D(x, wy))dxdt = —/ q C} : D(x, wy)dxdt
2r o J@r
1 )
< f/ D(x, wg) : (9152 : ]D)(x,ws))dxdt
2 Jor

Co 2
+ — prdxdt.
2 Jor f

In a sequel, we rewrite Eqs. (1.3.15) and (1.3.16) as

S t
m_% pr—V- IB%-/ fo(x,t)dt)z((ca—m]l):]D)(x,ws),
c? r ) 0 '

multiply by p s, integrate over £2 x (0, t), and estimate p ; as

t t
//p}(x,r)dxdr+l/ |v(/ pr(x, T)dt)|*dx
0 J@ m.Jje 0
t
< Co/ / D(x, wy(x, 7)) : (mi:]]])(x,ws(x, r)))dxdt.
0 Je

Thus, wy =0, py =0forig > A",

1.3.5 Proof of Theorem 1.8

If w1 = oo, and vy = O then
wy=w, and g = py,

and the homogenized system (1.3.11)—(1.3.13) takes the form
1 s ~
pr= E( —mI+CY): D(x,wy) =C: D(x, wy),

V- (09 : D(x, wy) — py C}) + pF =0,

where

m c
cy Ao
The last two equations are obviously transformed to

V- (09 +C ®0) : D(x, w)) + 4F = 0. (1.3.34)
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It seems that the shortest way to prove the statement of the theorem is to show that
the tensor 915 in the form

N = 1Ny +C; @ C

is symmetric and strictly positively definite. Unfortunately, we have no idea how
to do it. So, we choose a more complicated route with more technical details, but
leading to the right answer.

Using the macroscopic continuity equation(1.3.20) for the liquid component
we rewrite the micro-and macroscopic momentum balance equations (1.3.22) and
(1.3.23) as

2 2

G v
Vo (0000 0+ 20 (9, Ol L vy Uy
22
+ D(x, wy) +( : f)(v- ws)]I)) —0. (1.3.35)
2-c

V- (1 =mDe, w) + (B0, U)r) + (<L) (v, - Uy

0
+ ((1 — m) ;—i +m %)) (v - W) ]1) + A—loﬁF —0. (1.3.36)

Setting in (1.3.35)

3
U= > U D+ U m(V - wy),
ij=1

we arrive at the following periodic-boundary value problems in Yj:

2
. )
Vi (=000 U 437 4 55, 0

2

C .o
f B2 —
*om (Vy- U3 )YSH)) 0, (1.3.37)

2 2
c;, —C

v, (1 - 0@e v + E

A0

C2 C2

As before, the correctness of these problems under the normalization conditions
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s

Uy, = Uy, =0

follows from the energy equalities
/Y (. U5 +17) : Do, U + 3+ (v U )dy

2
_f( V.. Uiy )2 ~0
+ om / y 3 y s

/(]D)(y,U(O)) D(y, U“”)+ (v U<°))2)dy
Y

G ([ v, v (e v, 0%y =0
nom(/ys R I el AR

Thus

3 2 2
—-m 3 o+ (1-m on Do

i,j=1
3 22N\ 3 } )
+ > D@y US))y, @ I +( — f) SV Uiy 10
i,j=1 0 i,j=1
22
+ (D(y, Uy, ®H+(S/\—f)<v- U0y I (1.3.39)
0

Let ¢ = (¢;;) and n = (n;;) be arbitrary symmetric matrices and
3
0 0
Z U0, Y= > Ui, Y =0 uws Y =0y,
i,j=1 i,j=1
Then

2
(mg:;):nz(l—m)é‘:n+((l—m) +m:—f)tr§trn
0

_ 2
c Cf

2
+(Sxo )(V Yoy, trn+ (D, Yo))y, 1 n

C2 _ C2
+ (D, YD)y, : n+( : f)(v- Yoy g, (1.3.40)
A0

The symmetry of the tensor 91 in the form
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(M3:¢):n=(M5:n):¢
follows from the equations
(DG, Uy : Dy, UF))y, + +20.U Uy, 1Y)

+ (V U v, Uy,

" %Wy U )y, (9, - UF)y, =0, (1341)

Dy, UY) : Dy, Uy, + —<<vv U)2)y,

Y

< © 7 0 2
o) U (9 U ) =0 (1342)

((D(y, U7y : D(y, UMy, + (DG, UD))y, = IY)

2
C ..
AO <V Ugm Vy U(0)> —L —(Vy - Ugl]))ys (Vy - Ugo))yy =0,

Y )»()m
(1.3.43)
2 2
c;, —C
(D(y, UL : Dy, US))y, +( : . f)(vy Uy,
2
C
(1.3.44)

which appear by multiplying of Egs. (1.3.37) and (1.3.38) by U and U®, and
integration by parts.
In fact, let us rewrite these relations in the form

(D(y, Y¢) : D(y, Yp))y, + (D, Yy, 1 ¢

2 2
C
+(Vy - Yo Vy - Yy)y, + M—mey Yoy, (Vy - Yyly, =0,

)
(1.3.45)
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2
C
(D(y, YY) : D(y, Yy, + (v YOV, YD)y,

2 &
+( o )<Vy'Y?>xctfﬁ+—<Vy'Y?>Yx<Vy‘Y8)YS=07

Aom
(1.3.46)
(DG, Ye) : Dy, YD)y, + (DG, YD)y, : ¢
2 2
Cy 0 Cf 0
+ A—OWy Yo Vy - Yoy, + M—m(vy “Ye)y, (Vy - Yy, =0,
(1.3.47)
2 — c?
s
(D(y. YY) : D(y, Yp))y, +( - )(Vy Yy, tre
o 0 c} 0
+ )L—SO(V), YQVy - Yy, + M—‘m(vy Yy, (Vy - Yy,
(1.3.48)

and sum Eqs. (1.3.40) and (1.3.45)—(1.3.48):

(M5 :¢) = =me:n+ DG, Yy, : n+ D, Yy)y, : ¢
+(D(y, Y) : DOy, Yy, + (DO, YP) - DOy, Y)y, + (D, YD)y, : ¢
+ D@, YD)y, : 0+ (D, Yo) : Dy, Yy, + (D0, YY) : Dy, Yy)y,

2
Cc

+ A—S((l —m)tr gty + (V- Yoy, tr+ (Vy - Yy)y, trg
0

+(Vy - Y Vy - Yyly, +(Vy - YO V- Y?m + (Vy ~Y?)yS try

(V- YOy g+ (Vy - Yo V- YO)y, + (V- YOy Y,,)ys)
2
F (.2

+ATm(m e ten —m (Vy - Yeby, trg —m (Vy - Yy)y, tr¢

+(Vy - Yoy, (Vy - Yoy, + (Vy - Yo)y, (Vy - Yohy, —m (Vy - Y)y try

+m (Vy - Y0y, g+ (Vy - Yoy, (Vy - Yoly, + (Vy - Yby, (Vy ~Y,7)YS).

Thus

(M : ) :n = (DO, Ze) +¢) = DOy, Zy) + 1))y,
2
+ K—i)((vy L+ 0)(Vy Ly + )y,
2
C

+ M—fm((vy L)y, —mul)((Vy-Zy)y, —mtrn),  (13.49)
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where Z; = Y +Y].
The last relation shows the symmetry of the tensor 913. In particular, for { = n

M :¢0): ¢ = (D, Ze) +¢) : Dy, Zg) 4 ¢))y,

o 2 c?‘ 2
+ A—O((vy Ly +1r )y, + M—-m(wy L)y, —mtrg).

(1.3.50)
Therefore,

5 : D(x, ws)) s D(x, wy) = ag D(x, wy) : D(x, wy), ag = const > 0.

1.4 A Viscous Liquid in an Elastic Skeleton

In the present section as basic mathematical models at the microscopic level we con-
sider the model M5 of the filtration of an incompressible liquid in an incompressible
elastic solid skeleton and the model M4 of a filtration of compressible liquid in a
compressible elastic solid skeleton for the case o, = 0.

The model M5 consists of the continuity equation

V.-w=0, xe2, te(,T), (1.4.1)

the momentum balance equation

V.P+pF=0, xe, te,T), (1.4.2)
the state equation
ow
P = x*uoD(x, 5-) + (1= XD, w) = pL (1.4.3)

the boundary condition
wx, 1) =0, xe S, te(,7), (1.4.4)

and normalization and initial conditions
/ p(x,0)dx =0,1€(0,T), x*w(kx,00 =0, xc 2. (1.4.5)
2

The model M4 consists of the momentum balance equation (1.4.2), the state
equation (1.4.3), the boundary condition (1.4.4), the continuity equation
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1
_8p+v.w:(), (1.4.6)
P
and the initial condition
xfw(x,0) =0, x € 2. (1.4.7)

Throughout this section we assume that conditions

0 < po. Mo, 3. € < 00, (1.4.8)

2
/ (|F| + (=X
7
hold true.

In (1.4.6), (1.4.8)

and
JoF ‘2
at

)dxdt =F} <00 (1.4.9)

of = xFch + (1= x°)ct.
Definition 1.4 We say that the pair of functions {w?, p ¢} such that

ow®

o 1,0
we W, (@0 V(5

) € Lo(27), p© e La(2r)

is a weak solution of the problem (1.4.1)—(1.4.5), if it satisfies the continuity equation
(1.4.1) almost everywhere in £27, normalization and initial conditions (1.4.5) and an
integral identity

& awg £ £
(" oD (v, == ) + (1 = x)20D(x, wH)) : Dix, @) dxds
Qr at

—/ pS(V . go) dxdt = / p°F - o dxdt, (1.4.10)
Qr 27

o 1,0
for any functions ¢ € W, (£27).

For the problem (1.4.2)—(1.4.4), (1.4.6), (1.4.7) we change the state equation (1.4.3),
excluding therefrom the pressure by means of the continuity equation (1.4.6):

3
P— XSMOD(x, a—v:) + 0N Dx, w),

3
N = (1 x> ID @I +efI@L
i,j=1

Definition 1.5 We say that the function w®, such that
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o 1,0 W
& & w
w e W, (£27), x V( » ) € Ly(827),

is a weak solution of the problem (1.4.2)—(1.4.4), (1.4.6), (1.4.7), if it satisfies the
initial condition (1.4.5) and an integral identity

" Iw* ©
(x oD ( x, + 0 :D(x,w)) - D(x, ¢) dxdt
Qr ot

=/ p°F - o dxdt, (1.4.11)
fr

o 1,0
for any functions ¢ € W, (£27).

Integral identities (1.4.10) and (1.4.11) show, that w® possesses different smoothness

in domains .Q; and £2¢. As in previous sections, to preserve the best properties, which

&
the solution now has in the liquid part, we extend the function

from the liquid

part of the domain £2 onto its solid part £2¢{:
ow®
v =Ege ,
25 ( 3t )

ow?
Xe(x)( Py (x, 1) — vi(x, t)) =0, xe£, re(0,7),

such that

/Q lg(x, t)’zdx < CO/Q? ‘8;:8 (x,t)‘zdx,

/ ID(x. v (x. )P dx < co/ (D(x,
2 Q;

ow® 2
;: &, z))’ dx, 1€(0,T),

&

0
where v¢ = EQ; ( ;‘; ) and Cy is independent of ¢ and ¢ € (0, T').

Theorem 1.9 There exists a unique weak solution {w®, p®} of the problem (1.4.1)-
(1.4.5) and

/ (|w8|2+|D(x,8)|2)dxdt
fr

+ max / (|D(x,wf)|2+|pv8|2)dx < CoF?, (1.4.12)
2

0<t<T
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w€
where V¢ = ]EQ; (?), and the constant Cy is independent of the small parame-

ter €.

Theorem 1.10 The statement of Theorem 1.9 holds true for a weak solution w® of
the problem (1.4.2)—(1.4.4), (1.4.6), (1.4.7).

Theorem 1.11 Let the pair {w*, p®} be the weak solution of the problem (1.4.1)-

(1.4.5).
Then
(1) the sequences {W°}, {(Vw®}, {v®}, {Vv®}, and {p®} converge weakly in L, (§27)
8 &€
and Lo(821) (up to some subsequences) to functions w, Vw, = a—“;, V =

ow® .
\Y o ) and p respectively;

(2) limiting functions solve the system of homogenized equations in the domain 27,
consisting of the homogenized continuity equation

V-w=0, (1.4.13)
the homogenized momentum balance equation
V.P+pF =0, (1.4.14)

and the state equation
—~ ow
Pz—p]l—i-m]ZD(X,E)‘FWZZD(X,W)

'
+/ Nt — 1) : D(x, w(x, 7))dT, (1.4.15)
0

completed with the homogeneous boundary condition
w(x,t) =0, xe S, te(0,7), (1.4.16)
and the homogeneous initial condition
w(x,0) =0, x e £2; (1.4.17)

(3) if a pore space is connected, then the symmetric tensor N is strictly positively
definite. For the case of a disconnected pore space (isolated pores) the symmetric
positively definite tensor N degenerates and the tensor Yo becomes strictly
positively definite;

(4) the problem (1.4.13)—(1.4.17) has a unique solution.

In(1.4.14), (1.4.15)
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o =mps+ (1 —m) p;,
and fourth-rank tensors Ny, No, N3(¢) are given below by formulae (1.4.30).

We refer to the problem (1.4.13)—(1.4.17) as the homogenized model (IF);.
Theorem 1.12 Let W be the weak solution of the problem (1.4.2)—(1.4.4), (1.4.6),

(1.4.7).
Then
(1) the sequences {w®}, {VW?}, {v®}, and {Vv®} converge weakly in Lo(27) (up
to some subsequences) to functions w, VW, v = al: and Vv = V ;8>
respectively;

(2) limiting functions solve the system of homogenized equations in the domain 2,
consisting of the homogenized momentum balance equation

V.P+pF =0, (1.4.18)

and the state equation

~ 9 t
P =D, a—vtv) + N5 : D(x, w) +/ Ne(t — 7) : D(x, (X, 7))dT,
0

(1.4.19)
completed with the homogeneous boundary condition

wx, 1) =0, xeS, te(,7), (1.4.20)

and the homogeneous initial condition (1.4.17).

(3) if a pore space is connected, then the symmetric tensor Ny is strictly positively
definite. For the case of a disconnected pore space (isolated pores) N4 = 0 and
the tensor s becomes strictly positively definite.

(4) the problem (1.4.17)—(1.4.20) has a unique solution.

In (1.4.19) fourth-rank tensors Y4 and Ns, and fourth-rank tensor Ne(t) are
given below by formulae (1.4.44).

We refer to the problem (1.4.17)—(1.4.20) as the homogenized model (IF)g.

1.4.1 Proofs of Theorem 1.9 and 1.10

The proofs of these theorems are straightforward and repeat the proof of Theorems
1.2 and 1.5. We just outline the derivation of the estimate (1.4.12) for the first case
of Theorem 1.9.

To do that, we rewrite (1.4.10) as
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& awe & &
(3 roDx, =) + (1 = x)MD(x, w)) : Dix. ) dx
2

—/ pVS(V-w)dx=/ p°F - pdx,
2 2

£

w
; and get

MO/QXSD(x )(d +'\°d/(1—
:/Q ow*

Next we integrate the last relation with respect to time, rewrite the right-hand side,
and using the properties of the extension v® estimate the result from below and from
above:

put there ¢ =

dx

()

t
?/ / |D(x,v8)|2(x,t)dxdr+)L—O / (1 = x5)IDCr, w2 (x, 1)dx

< [ f
of oo

=/ / prS(F-VS)(X,‘L')dxdT—i-/ os(1 — x5 F - wh)(x, t)dx
0o Je Q

! oF
—/ / ps(1 — XS)(— ~W8)(X, T)dxdt

< — / / |D(x, V8)| (x, r)dxd‘r—{——/ (1= x5 D(x, wH)|?(x, t)dx
2Cy

)(x T)dxdrt

)(x T)dxdrt

+C0/ /(1—X€)|D(x,wf)|2(x, T)dxdt + CoF?.
0 J

Here for simplicity we have supposed that F(x, 0) = 0.
The rest of the proof is standard. We just have to use the evident inequality

t aw8
/ xEID(x, w2 (x, 1)dx < Co/ / x© D(x, )
Q 0 Jo ot

and the basic property of the extension operator

/ e |p ow®
X,
I?) X at

2
(x, 7)dxdr,

2

(x, )dx < Co/ ID(x,%)>(x, t)dx.
2
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1.4.2 Proof of Theorem 1.11

First of all, we use Lemma B.11 (see Appendix B), which states that

/ IV (x, )% dx < co/ ID(x, v°)|?dx.
2 ¢

o 1,0
On the strength of Theorem 1.9, Lemma B.14 (v € W, (£27)), and Nguet-
seng’s theorem sequences {w®}, {v®}, {D(x, w®)}, {D(x, v¥)}, and {p°} converge
as ¢ — 0 weakly in Ly (£27) and L, ($27) (up to some subsequences) to functions
1,0

w € \‘;qu (£21),v € \OJVZ’ (£27), D(x, w), D(x, v), and p respectively and converge
two-scale in Lo (£27) and L, (§27) respectively to 1-periodic in y functions

w(x, 1), v(x,1), D(x,w) + D(y, W(x, 1, y)),

D(x,v) + ID)(y, W(x, ¢, y)), and P(x,1,y).

Lemma 1.17 For almost all (X,t,y) € Q21 x Yy

t

t
w(x, 1) = / v(x, 7)dt, W(x,t,y) = / VX, y, 1)dr,
0 0

or
0= 0, Vot y) = W ix1,y)
VX, = —X,17), X, 1, = — X1, )
ot Y= y

and the initial condition (1.4.17) holds true.

Proof For almost all x € §2

t
xEWE (X, t)=/ xEve(x, T)dr.
0
Therefore,

[, wome - wionen (7) x (7) deas

_ /QT (/IT Y(D)dT) o (%) - VE (X, g1 (’8-‘) X (1-‘) dxdi

for smooth 1-periodic in y arbitrary functions 1 (¢), ¢o(x), and ¢ (y).
The two-scale limit as ¢ — 0 and reintegration results in the identity
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T
0 :/ ((/ W(T)df)v(xv 1) — Yy )wx, l))dxdt
27 t

t
= w(t)(/ v(x, 7)dt — wW(X, t))dxdt,
27 0

which proves the statement of the lemma for w(x, ?).
The proof of the lemma for W(x, ¢, y) is the same.

To derive the continuity equation(1.4.13) we fulfil the usual L,(£27) limit as
¢ — 0 in the continuity equation (1.4.1). After the two-scale limit in (1.4.1) we
arrive at the microscopic continuity equation

Vy-W=0, yeVt. (1.4.21)

Next we pass to the limit as ¢ — 0 in the integral identity (1.4.10) with two dif-
ferent types of test functions. First, with test functions ¢ = ¢(x, ), and then with

X
test functions ¢ = eh(X, t)pp (—) After the standard reintegrating we obtain the
&

macroscopic momentum balance equation

V.P+pF=0, (1.4.22)
- 9 oW
Pmfn(e ) () )
+ 20 (1 —m)D(x, w) + (D(y, W))y,) — p1, (1.4.23)

and the microscopic momentum balance equation
ow ALY
Vy- Dx, —)+D|y, —
;(/LOX( x, 50+ (y a;))
+ 20 (1= x)(D(x, w) + D(y, W)) — P ]1) —0.

The last one we rewrite as
oW
Vy - {x (oD (v, = +Z)+21 (1= Dy, W)= PI)=0, (1.4.24)
where

3
A i
Z(x,t) = uoD (x, E) — 2D(x, w) = E Zij(x, I)J( D,

i,j=1
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To find tensors D1y, Mo, and N3(r) we have to solve the problem (1.4.21) and
(1.4.24), find D (y, BB_VIV) and D(y, W) as operators on D (x, E;—v:) and D(x, w),
and substitute these expressions into (1.4.23).

Let (W@ (y, 1), P@)(y, 1)} and {wgi><y), PSP (y)}i, j =1,2,3 be solutions

of periodic problems
WU\ )
Vy - (x o D(y, T)

+ 20 (1 — )D(y, Wiy — plid 11) =0, (1.4.25)
Vy - wil) — 0,
XMWy, 0) = Wi (y), |

Yy (x (oD, WEP) + 39 — R T)) =0,

(i) (if) (1.4.26)
v,. Wi —q, / X OWD (w)dy =0,
Y

in the domain Y.
Then

3 t
W(x,1,y) = E / WDy, t — 1)Z;j(x, T)dT,
— Jo
i,j=1

and

3 . 3 ! ..
Pty =1 S PP Wz + S /0 PUD(y. 1 — )2y (x, D),
ij=1 i,j=1

3 t ..
Do W) = 3 [ DO WGt - 02,5 e
i,j=1

3 t
= Z/ (D, Wy, t — 1) @ JW) : Z(x, 1)dT
0

i,j=1

3
= (MO z D()’,W(()”)) ®J(U)) :D(x, w)
ij=1

3 '
-2 /0 (0D, Wy, 1 = 7))

ij=1
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dw(ih) N
+ no D(y, 8—r(y’ r— ‘L'))) ® J(”)) s D(x, w(x, 7))dT.

Using the evident relation

W) W)
9T (Y»t_l'):_ ot (yvt_t)v

one has
t
D(y, W) = o (y) : D(x, w) +/ Ay, 1 — 1) : D(x, ww(x, 7))dt, (1.4.27)
0

where

3
Aoy) = po Y D(y. We (y) ® I (1.4.28)
ij=1

and

3 .o

W) iy -

A(y.0)= > (uoD(y, 5 (¥ 0) = AoD(y, Wy, t))) ® I, (1.4.29)
i, j=1

Equations (1.4.27) and (1.4.28) result in
oW ow
D (yv ?) = Q[O(Y) : D (-xv E(X’ t)) + 22ll(yv 0) : ]D)()C, W(X, t))

t
+/ el (v,t — 1) : D(x, w(x, 1))dr.

o ot
Therefore,
3 .. .. ]
Ny =pom Z I @ I 4 g (Ao)y,,
ij=1
My = ko (1 —m) D I ®ID + 50 Aoy, + o i (y, 0y, [ (1:4:30)
i,j=1
oA
N3(1) = o <8_t1(y’ t)> + 2o (2 (Y, D)y, -
Yy )

Lemma 1.18 All quantities in (1.4.30) are well-defined by virtue of the correct
solvability of problems (1.4.25) and (1.4.26).
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Proof The statement of the lemma and the infinite smoothness of the solution with

respect to time is a consequence of energy estimates. The latter follow from energy
identities. In fact, the first chain of identities

1 .. ! ..
E/YX”“O ID(y, Wiy, t))|2dy+/0 /Y(l — 0% Dy, WD (y, 1)) [Pdyde

1 i,
= E/YX 1o Dy, W ) Pdy,

/ X 1o |D(y»W((fj)(y))|2dy+/ xD(y, W y) : 7Pdy =0,  (1.431)
Y Y

is the result of multiplying of the first equation in (1.4.25) by W(i_j_) and integration
by parts over Y x (0, t), and of the first equation in (1.4.26) by W(()” ) and integration

by parts over Y. These identities provides estimates

[max /Y : ID(y, Wy, 1)) Pdy + /0 ' /Y S ID(y, W) Pdydt < Co.
Considering (1 — x (y)) W% )(y,0) as a periodic solution of the Stokes system
Vy - (Ao D(y, W) — PN T) =0, v, Wi =0,
in Yj, coinciding on the boundary y with the function
X@WD(y,0) € Wy(Yy),
we obtain [56]

/ ID(y, W (y, 0))Idy < Co.
Y

This estimate and (1.4.25) at t = 0 imply

AW Us) 2
D(y, (y.0)| dy < Co.
Jat
Yy

We can repeat the procedure repeatedly and finally prove the lemma.

Lemma 1.19 If a pore space is connected, then the symmetric tensor N is strictly
positive definite. For the case of a disconnected pore space (isolated pores) the
symmetric positively definite tensor YN degenerates and the symmetric tensor
becomes strictly positive definite.

Proof Let the pore space be connected, { = (¢;;) and n = (»;;) be arbitrary
symmetric matrices and
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3 N 3 N
Vo= Wit Y= W
i,j=1 ij=1
By definition
(M :¢)in=pom¢ 0+ pg(D(y, L ENTRE
Next, we use equalities
ij kl kl ij
/ X 1o D(y, W§7) - D(y, W) dy +/ xD(y, W) : 3%ay =0
Y Y
fori, j = 1,2, 3, which are simple consequences of (1.4.31) and arrive at

Thus,
(O :¢) :n=po (o D(y, Yy) +¢) : (moD(y. Yo) + 1))y,

The first statement of the lemma follows from the last relation in the same way, as

in previous sections.
Let now the pore space be disconnected. For this case the problem (1.4.26) for all

i, j = 1,2, 3 has a unique solution, linear in y:

ij 1 ij . . .
Ho W(()l]) = E(Yiej +yjei), Pé”) =0, ifi # J,

,U«OW(()“) = (—§YI» %yz, %n), Pé“) = %
Ko W(()zz) = (%M, —%yz, %ys), P(;zz) = %
10 w(()“) = (%)’l» %yz, —§y3), Pé33) = %
These equalities lead to
X (Mo D(y, Wi (y)) + I — pgffm) —o, (1.4.33)

3 3
_ i)y o T L ™ (ii)
o)y, =-m D 1D @0 +§Z;H®J”,
1=

i, j=1

and

3
M :0): 77=/L0% > i

i=1
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3
Thus 91; degenerates for any symmetric ¢, such that Z {izl. =0.
i=1
To prove the last statement, we use equations
oW
ot

<Mo D(y. ——0.0) : D(y. Wéf‘”)>

Yf
+ (o D(y, WSy - D@y, W)y, =0,

fori, j = 1,2, 3, which are the result of multiplying of the first equation in (1.4.25)

attr =0 by W(()kl) and integration by parts over Y.
By means of (1.4.33) we rewrite it as

oY
- <D(y, a—f(y, 0)) : 77> + (MDD, Ye) : D(y, Yy))y, =0, (1.4.34)
Yy

where we took into account the equality

3 i 3
WD . 0 iy iy
> Df . CA®ID) =D —(V, - WD) I =

i=1
Finally,
(M2:¢) in=20 (L —m)¢ :n+ao (Ao : )y, tn+ 1o (1.0 )y, i n
2 Y,
= ko (L —=m)t :n+xopo(D(y. Ye) : n)y, + ug (D(y. W(y,O)) )y,
— 30 10{D(y, Yn) : )y, = 2o (1 =m)¢ i

+ 20 10D, Yo) 1 n)y, + ho 1d (DO, Yo) - Dy, Y))y,
- )"0 MO(D(% YT]) : §>Yf

We recall that
D, Y))y, = =D, Yy,

and
(DG, Yy, : & =Dy, Yy, 11

due to (1.4.32).
Therefore,

(2 :¢) 10 =20 {(koD(. Yy) +¢) : (oD, Yo) + 1))y

which proves the lemma.
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Lemma 1.20 The problem (1.4.13)—(1.4.17) has a unique solution.

Proof For a connected pore space the difference {w, p} of the two possible so-
lutions of (1.4.13)—(1.4.17) satisfies the homogeneous problem (1.4.13)—(1.4.17).
Multiplication of (1.4.14) by w and integration by parts over £2 give us

1d
2t s (M : D(x, w)) : D(x, w)dx
= —/ (M2 : D(x, w)) : D(x, w)dx
2
t
—/ (/ N3(r — 1) : D(x, wdT) : D(x, w)dx
2 0
< Co/ D(x, w) : D(x, w)dx,
2
if we use Holder’s inequality and the estimate
t
/ / D(x, w(x, 7)) : D(x, w(x, 7))dxdt
0 J
<T / ]D)(x, w(x, t)) : ]D)(x, w(x, t))dx.
2
Grownwall’s inequality and the properties of the tensor 91 guarantee the equality

/ D(x, w(x, 1)) : D(x, w(x, 1))dx = 0
2

forallt € (0, 7).
For a disconnected pore space the proof is the same:

t
Co_l/o /Q D(x, w(x, 7)) : D(x, w(x, 7))dxdt
g/ (90 Dx, wex 1) ) D, wix, 1) dx
2
t
+/ / (‘ﬁz : ]D)(x, w(X, r))) : ]D)(x, w(X, r))dxdt
0 Je
t T
= —/ / (/ Ma(r — &) : D(x, w(x, §))d§) : D(x, w(x, 7))dxdt
0oJe Jo
t rT 1
<Co(// /D(x,w(x,g)):ﬂ)(x,w(x, £))dxdzdr)’
0oJo Je

1

t 1
(/ / ]D)(x, w(x, r)) : ]D(x, w(X, r))dxdr) °
0 JR
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1.4.3 Proof of Theorem 1.12

o 1,0
As in the proof of Theorem 1.11 there exist functions w, v e W, (£27), w(x, 0) =

0, x € £, and 1-periodic in y functions W, V, such that sequences {w®} and {*}

. . w .
converge as ¢ — 0 weakly in Wé’o(.QT) to functions w and v = o respectively,

and sequences {ID(x, w®)} and {ID(x, v®)} two-scale converge as ¢ — 0 in Ly (£27)
to the functions

ad oW
D(x, W) +D(y, w(x, 7,y)), and ID)(x, a—v:) + ID)(y, W)

respectively.

To derive macro- and microscopic momentum balance equations we pass to the
limit as ¢ — O in the integral identity (1.4.11) with two different types of test
functions. Firstly, with test functions ¢ = @(x, ), and then with test functions

X
¢ = ¢eh(x, t)¢po (—) After reintegrating we obtain
e

3 W
Yy (1o x®) (D (x, B—V:) + D, W))
+2(y) : (D(x, w) +D(y, W))) —0, (1.4.35)

where

3
Wy = (1-xWv) (?»0 > AP @IWD) + ¢t (]1@]1)) +x et (I®1)
i,j=1

= (1= xM)NY + x(y)c; A,

3
NO =20 D> (1D @ID) + 2 (1e]1),
ij=1

and _
V - P+pF =0, (1.4.36)

~ d A%
P=pomD(x, =2 ) + po(D [y, ==
a1 or ) Iy,

+ (Az)y : D(x, w) + (A : D(y, W))y. (1.4.37)

where
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Let

3

9 y

Y(x, t)=M0[D)(x,8—‘;V)+(c§c I8D —NO):Dex,w) = > 19D ¥ (x 1),
i j=1

Then we may rewrite (1.4.35) as

oW
vy (XD (y, =

o ) +Y(x,0) + (1 = x A : D, W) =0,

and look for the solution of this equation in the form

3 t
W(x,1,y) = Z/O WD (y, 1 — 1)Y;;(x, 1)dr,

i,j=1

where 1-periodic in y functions W) (y, 1), ij = 1, 2, 3, are solutions of the periodic
initial boundary value problems

AW/ .
Vy - (X MoD(y, )+ A (y) : D(y, W(’”)) =0,

ot (1.4.38)
X@WWD (y,0) = Wi ),
Vy - (x (o D(y, WSy + JW))) —-0 (1.4.39)

in the domain Y.

The proof of the existence and uniqueness of solutions to problems (1.4.38) and
(1.4.39) and the infinite smoothness with respect to time of the solution of (1.4.38)
is straightforward (see Lemma 1.18).

Thus,

3 !
D(y, W) = Z/O D(y, Wi (y, t — ©)¥;;(x, T)dT
ij=1

3 '
_ Z/ D(y, Wi (y, 1 — 1)) @ J9) : Y(x, 1)d7
0

i,j=1

t
=3 : D(x, w) +/ Aa(y,t — 1) : ]D)(x, w(X, r))dr, (1.4.40)
0

where

3
A (y) = o Y D(y. Wy v) ® I (1.4.41)
i j=1



1.4 A Viscous Liquid in an Elastic Skeleton 63

and
3 JW ) )
Ag(y, t) = D s 1 !
4(y. 1) ijzz:l (uo a2 L2 )
- ( > D(y, Wiy, 0) @ 19) : . (1.4.42)
i,j=1
Finally,
IW ow
D(y, W) =A@y : D (x, E(X’ t)) + A4(y, 0) : ]D)(x, w(x, t))
Dl
+/ a—t4(y, t— 1) D(x, w(x, 1))dr, (1.4.43)
0
and \
Ny = pom Z I @ 16 4 pg (As)y,,
e (1.4.44)

Ns = (A)y -Qi-( (Ao = A}y + po (A4(y, 0))y,
0
Ne(1) = o (== (. D)y, + (A2 2 Aa(y. D)y,

Lemma 1.21 [fa pore space is connected, then the symmetric tensor Ny is strictly
positive definite. For the case of a disconnected pore space (isolated pores) N4 = 0
and the symmetric tensor Ms becomes strictly positive definite.

Proof Let the pore space be connected, { = (¢;;) and n = (»;;) be arbitrary
symmetric matrices and

3 3
— W (i) _ v (i)
Y = E W() Gij, Yy = E WO nij-
i,j=1 i,j=1

we have
(M4 :¢) in=pom¢ :n+pui(y. Yo))y, 1 n.

and
1o D(y, Yy )y, 0 ¢ 4 15 (D(y, Ye) : D(y, Yp))y,.

which is a simple consequence of (1.4.39). Thus,

(M4 :¢) :n=po((oD(y. Yy) +¢) : (moD(y. Yo) +n))y,-

which proves the first statement of the lemma.
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Let now the pore space be disconnected. For this case the problem (1.4.39) has a
unique solution, linear in y:

—an 1
) Wé’j) = z()’iej + yjei),
e AG)) N —
x(¥) (uo D(y, Wy () +J ) =0, (1.4.45)
and

3 .. .

W)y, =-m > IJD @I, (1.4.46)
ij=1

This equality results 914 = 0.
To prove the last statement, we use equations

W) _
<M0]D>(y, a7 (y, O)) : D(y, w(()kl))>
Yy

(% : Dy, W) Dy, W)y =0,

fori, j =1, 2, 3, which are the result of multiplying the first equation in (1.4.38) at

t =0by \TV(()kl) and integration by parts over Y.
By means of (1.4.45) we rewrite it as

Y,
— <]D) (y, W(y, O)) tMyy; + ((Q12 : D(y, Y;)) 1 D(y, Yn)>Y =0. (1447

We also recall that
D&, YY)y, = =D, Yy,
and

D@y, W) @ 1)y, = (34 @ D(y, Wi))y,

due to (1.4.45).
Next, in the expression

Ms:¢):n=((A2:¢) sy + (A2 :A3)y 1 &) =+ po (Aa(y. 0) : O)yy 1

we calculate each term:

(@2:8) iy = A =m) (NP :¢) i n+mcs o) (),
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(A :A3)y = ¢) i

= (1 =m) (@ : (o S B0 W, @ 100)) ¢) i

i,j=1
3
+ (G aeD: (o 3 DOW )y, @19)) 1 ¢) i
i,j=l1
= (1 —=m)uo(NQ : D(y, Y,))y, : ¢ + ¢ po((V - Yy, (tro),

1o (2Aa(y,0) = Qhy, 1= %<D(y f(y 0)) >Y
!

3
Z ,LL()ID)(y,\TVgJ)) ®J(”)> :‘]’Iio)> :{) i
Yy

i,j=1
= 13((2 : D(y, Y)) : D, Yy

3 . o
+(—m) ((‘ﬂ(o) 1< Z uoD(y',‘TVé"'))®J<’/)> ) :§> in
ij=1 Ys
3 . o
+CJ2f I®10) :< Z ;LoD(y,W(()’J))®J(lJ)> C)in
= Yf

i,j=1
= u%< (@ DG ) 1 DG, Yy ) >Y + UV Y) - (V- Yy,
+ (N0 D, YOy, 10+ cF uol(V - Yoy, (ir).

Finally we get

Ms:¢):n= <(‘ﬁ(0) s (oD (y, Y¢) + 77)) : (oD (y, Yy) + §)>

Y,

+ c§c<(M0(V -Ye) + trn) . (MO(V Y,) +tr§)>
Yy

The uniqueness of the problem (1.4.17)—(1.4.20) is proved in the same way as in
Theorem 1.11.



Chapter 2
Filtration of a Compressible Thermo-Fluid

The model M3 consists of the differential equations

1
— p+V.-w=0, (2.0.1)
®p
V.P+ jF =0, (2.0.2)
. 00 - . ow
fo— — V- (@,V0) = @ — yp6p V - —, (2.0.3)
at at
ow - ow
P = xoo,, D X o + (1 = x0)Ao D(x, w) — p+a00—XOauV-¥ I

(2.0.4)

and its submodel, the mathematical model M ¢ of the filtration of a compressible
thermo-fluid in an non-isothermal absolutely rigid solid skeleton. In turn, the last
model consists of the differential equations

1
X0 (—2 pP+V- w) -0, (2.0.5)
c
f
X0 (V P+ pfF) =0, (2.0.6)
. 00 . ow
o~ V- (@; V) =P — xovoBr |V - 5 ) (2.0.7

ow ow
P=ca,D (x, 5) — (p—l—,sz? -,V - (E)) I. (2.0.8)

These models are derived in Appendix A.
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As in the previous chapter, we impose Assumption 0.1 and suppose that £2 is a

domain with a C? continuous boundary S = 3£2.
Under this assumption

x0(x) = x"(x) = c(X)x (i—() p=p"=x"pr+d—=x)ps,
where ¢ (xX) is the characteristic function of the domain 2, and
ay =0y = xBr+ 1 —xIBs o=n5=Xcpr+0—=X)cps,
ap=a,= Xsc? + (1= x5 e =0af, = xp + (1 — x) .

We assume that the dimensionless parameters o, and «, depend on the small
parameter ¢ and that the (finite or infinite) limits exist:

o
lim o, () = uo, lim & = , lim oy, (g) = vp.
lim (&) = o lim 2 m1 lim v(&) =
In what follows, we denote as Cg any constant depending only on domains §2, Y

and Y.
Without lost of generality we may suppose that yp = 1.

2.1 A Viscous Thermo-Fluid in a Non-isothermal Absolutely
Rigid Solid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M7 of the filtration of compressible liquid in an absolutely rigid solid
skeleton. It is easy to show that this model is a limit of the model Ml14 as o) — o0.
One of the consequences of this statement is the following:

wx, 1) =0, px,t)=0, xe€ ¢

d
If we putv = a—‘:’, then we may rewrite the last condition and Eqgs. (2.0.5)—(2.0.8)

in the form
1 ap .
—2—+V-V=0,XE.Q,[€(O,T), 2.1.1)
¢4 Ot .
f
V-P+psF =0, xe.Qjc,te(O, T, 2.1.2)
bl

ngE —V- (@, V) =@ — xBr(V-V), xe2,1e€(0,7T), (2.1.3)
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P=a,Dx,v)—ql, 2.1.4)
e . Oy Op
cy ot
v(x,1) =0, xe 2:US, t€(0,7), (2.1.6)
v(x,1)=0,xe8, te0,T), 2.1.7)
9 (x,0) = (x), p(x,0) =0, xe€ 2. (2.1.8)

Throughout this section we assume that c%, »nyf, s, By Bs, Cp,fs Cp,s and Ao are
positive constants and that conditions

o =0, 0<pp <oo, 0Ky < o0,
and
/ |F|2dxdt+/ |®2dxdt = F* < o0
Q7 r

hold true.

2.1.1 Statement of the Problem and Main Results

Definition 2.1 We say that the system of four functions {v®, p ¢, ¢ ¢, ¥*} such that

o 1,0 o 1,0
vie W, (27), pf,q° € L2(27), 9° € W, (27),

is a weak solution of the problem (2.1.1)—(2.1.8), if it satisfies the state equation
(2.1.5), the condition (2.1.6), and the integral identities

/9 x° (ozu]D(x, V) 1 D(x, ) —g° (V-¢) —psF- go) dxdt =0, (2.1.9)
T

1 0
/ VE'VS—I——Z—sps dxdi =0, (2.1.10)
Qr Cf ot

and

/ (a;ws VY — ;78198%) dxdt =/ (@ — x°By (V-¥°)) Y dxdt,
r 2r

ot
(2.1.11)
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0 1,0 o 1.1
for any functions ¢ € W, (.Q]% x (0, T)) and &£, ¥ € W, (£2r), such that

Ex,T) =¥ (x,T) = 0.

Theorem 2.1 (1) Foralle > 0 and for an arbitrary time interval [0, T'] there exists
a unique generalized solution of problem (2.1.1)—(2.1.8) and

/ (aﬂwvﬂz F VO + VP + |V - V8|2) dxdi 2.1.12)
Qr

2

&

+ max/ (|p5|2+|195|2)dx<—C0§2,
0<t<T Jo oy

where the constant Cy is independent of the small parameter ¢.
(2) The nontrivial homogenization procedure for the problem (2.1.1)—(2.1.8) makes
sense if and only if the pore space is connected and

no =0, 0<pu; < oo. (2.1.13)

Under these conditions the sequences {v°}, {V - v¢}, {¢ ¢}, and {p ¢} converge
weakly in Lo (821) and Lo (821) (up to some subsequences) to functions v, V - v,

q € W21 ’O(QT), and p respectively and the sequence {0 €} converges weakly in
o 1,0
W, (£27) to function 9.

The limiting functions solve the homogenized system of equations, consisting

of the continuity equation

m dp
- —+V.v=0, (2.1.14)
¢, ot
f
the state equation
vo dp
g=p+mpso+—2 L (2.1.15)
cy ot
Darcy’s law in the form
1
v=—B (—Vq—}—pfF), (2.1.16)
n1 '
and the heat equation
. 00 By op )
— — = —=V.(B"-V?9)+ 2.1.17
P ot % ot ( )+ ( )

in the domain §2 fort € (0, T).
If vo = 0, then functions v and p satisfy Darcy’s law in the form
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1
v:M—IBé(—V(p-i-m,sz?)—l—pfF). (2.1.18)
1

System (2.1.14)—(2.1.17) is completed with boundary and initial conditions
v(x,t)-nx) =0, 9(x,t) =0, xe S, re(0,7), (2.1.19)
?(x,0) =0, p(x,0) =0, xe 2. (2.1.20)

(3) For adisconnected pore space, or in the case 1 = 00, a unique limiting regime
for the liquid dynamics is a state of rest v=0and p = 0.

In Eqs.(2.1.14)—(2.1.20) ¢, = m¢p f + (1 —m)Cp s, the symmetric strictly
positive definite constant matrix B is the same as in Theorem 1.1, the symmetric
strictly positive definite constant matrix B is given below by formula (2.1.27),
and n is the normal vector to the boundary S.

We refer to the problem (2.1.14)—(2.1.20) as the homogenized model (NIIF);.

Theorem 2.2 For vy > 0 there exists B° > 0, such that the problem (2.1.14)—
(2.1.20) has a unique solution for all By < BY.
Ifvg = 0, then the problem (2.1.14)—(2.1.20) has a unique solution for all By > 0

2.1.2 Proof of Theorem 2.1

Existence and uniqueness results for the problem (2.1.1)—(2.1.8) are proved in the
Appendix B.
The estimate (2.1.12) is proved on the basis of energy equality

// ozu|JD)xV(x ‘L'))| +ay |V Vi(x, r)| + o, | VO (x, r)|)dxdt

(2.1.21)
1 e |98 2 1 e 2
+3 [ Al Dl + = [prex 0] )dx
2 Cf

t
=//(@08+X8pfF~V8)dxd'L’,
0 J

as well as earlier in Theorem 2.1.
Therefore, sequences {v®}, { p®} and {¢°} converge weakly in L, (£27) and L, (£27)
(up to some subsequences) to functions v, mp, and mq respectively.
1,0

At the same time the sequence {¥°} converges weakly in Vtt)lz’ (£27) to function
¥ (x, 1), and sequences {9¢} and {V1¢} converge two-scale in Ly (27) and L, (£27)
to 1-periodic in y functions ¥ (x, t) and V 9 (x, t) + V, @ (x, t, y) respectively.
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In a similar way to the previous sections it can be shown that g € W21 ’O(SZT) and

limiting functions v, g, p, and ¥ obviously satisfy Egs. (2.1.14)—(2.1.16), (2.1.18),

initial condition (2.1.20) for the pressure p, and the last statement of the theorem.

Thus, we only have to prove (2.1.17). To do that we fulfill the two-scale limit as
¢ — 0 in the integral identity (2.1.11) in the form

9
/ Wl VO VY + ﬁf e dxdt:/ @ y dxdt
Qr Cf ot Qr

with two different types of test functions. First, with test functions ¢ = ¥ (x, ), and
X
then with test functions ¢ = eh(x, 1)y (—)
&
We have

Br . 0¥

/Q (3V0 + (3(y)V,0)y) - V¢+( — & 0)3)51)“1; (2.1.22)
r o}

=/ D Y dxdt,
r

/ h(x, 1) (/ #(y) (VO 4 V,0) - (Vy o)) dy) dxdt =0.  (2.1.23)
Qr Y

After standard reintegration we obtain the macroscopic heat equation

L 3 .
“p 5 T ﬁ—zf L_v. (VO + (x(y)V,0)y) + @, (2.1.24)
ot s ot

and the microscopic heat equation
Vy - (3(y) (VO + V,0)) =0. (2.1.25)

As usual, we look for the 1-periodic solution of the Eq.(2.1.23) in the form

Ox,1,y) = ZO“(y) (x 0,

where

Vy - () (V00 +¢)) =o0. (2.1.26)

Then,

%(y)V 00) ®e;. (2.1.27)

||Mw
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The homogenized heat equation (2.1.17) and initial condition (2.1.20) for the
temperature follow from (2.1.24), (2.1.27), and integral identity (2.1.22).

The existence and uniqueness results for the problem (2.1.26) and properties of
the matrix B? follow from equalities

/ %(V@u) VO te - @u)) dy = 0.
Y

In fact, let
¢ = (1,8, 8), n=0n,m,m3) € R,
3 ‘ 3 .
2= > VOV, 7, => pved.
i=1 i=1
Then
(3 (2 - 7))y + (32 (£ - 2y))y =0,
and

B-¢)-n= (& -y + (2 - M)y
= (& -M)y + (3@ - M)y + (222 - Zy))y + (32 - 2p))y
= (% ((zé“ +n) - (2, + 5)) )Y'

2.1.3 Proof of Theorem 2.2

Let vp > 0. Then the uniqueness of the solution to the problem (2.1.14)—(2.1.20)
follows from its linearity and corresponding energy identities.
Firstly, we rewrite Egs. (2.1.14)—(2.1.17) as

p 1 9
ﬂz_P:_v.(]Ba-(Ver”—gv(—p)+mﬁf-v19)), (2.1.28)
c~ ot 751 c ot ’

f 7
99 9
6 w8 vo+ v+ 2V () 4mpve)). @129
ot o8 c? ot :

d
Next, we multiply (2.1.28) by a—l; and integrate by parts over £2:
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1 d m (3p\>  w ap ap
2 dt/ Ve ® Vp)dx+/(cff (5) +mcffv(3t) (B v(af)))dx
(2.1.30)
e o)
mr o Je Jat

. ap 2
< C V9 Pdx + / v<—)
oﬂf/| | 4Wf b

Finally, we multiply (2.1.29) by ¥, integrate by parts over §2, and sum the result with
(2.1.30):

d 1 ,  MmB7
£ — Vp-(B- Vp)+ |z9| dx + ve B+ —LB) Vo )dx
dt Jo \2 1y Q M1

(2.1.31)
m (dp Vo 14
S(EC) () (a)))
_br B i ( ( (@)))
< Ml/g((Vﬁ) B > Ja Vo)-{B-V o dx
V(a”)z
ot

dx
< Co (ﬂf+ﬂ})/g|V19|2dx+co/g|vp|2dx+ﬂf "

dx.

Vo
4,u_]cf

+ Coﬂf/ |V 9% dx +

2
dx.

d
" ()
ot
Using the properties of matrices B and B”, choosing 8° sufficiently small, and applying
Gronwall’s inequality [61] we arrive at the first statement of the lemma.

Let us recall that the Gronwall inequality states that if a nonnegative function y(t)
satisfies the conditions

d
d—f(r) <) y(t) + F(0), y(0)=0

with nonnegative summable functions c(¢) and F'(¢), then

t t
y(t) < exp (/ c(r)dr) / F(t)dr,
0 0

dy t t
— (1) < c(t) exp (/ c(r)dr) / F(t)dt + F(1).
dt 0 0

and

For the case vg = 0, Egs. (2.1.28) and (2.1.29) take the form
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mO0 Ly B (VprmBVD). (2.1.32)
¢y t 231
ap%:v.(B”-Vﬁ+%ﬁ.(v;9+mﬂfv0)). (2.1.33)

Now, we multiply (2.1.32) by p, (2.1.33) by 9, integrate by parts over £2, and sum results:

J .
S P+ L2 dx+/Vﬁ~(]B0~Vl9)dx
dt Q 2C3c 2 Q

+Mi/(mﬂfVﬁ+vp)(1Ba-(mﬁfv0+Vp))dx:0.
1J2

This last identity implies 0 = p = 0.

2.2 A Slightly Viscous Thermo-Fluid in a Thermo-Elastic
Skeleton

Here, as a basic mathematical model at the microscopic level we consider the model M3
of a non-isothermal liquid filtration in a thermo-elastic solid skeleton, consisting of the
differential equations

L€p+v.wzo, 2.2.1)
p
V.-P+ p°F =0, (2.2.2)
a1 ow
[ v AN — — a2tV —
o o V- (ai,V9) =@ —ap V ( o ) , 2.2.3)
ow e ~
P=xa,D (x, E) + (1= xHrDx,w) — g1, 2.2.4)
- e g0y Op
g=p+oad+x —5——, (2.2.5)
Cf ot
wx, 1) =0, 9(x,1) =0, xe 5, 1€ 0,T), (2.2.6)
x°w(x,00=0, (nfd+afV- w) x,00=0, xe 2. 2.2.7)

Throughout this section we additionally impose Assumption 1.1 and also assume that
conditions
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o =0, 0 <pp <00, 0< v < o0, (2.2.8)

2 2
0 < 2o, Cry Css Cp,f> Cp,sy Xf, s, ﬁfv Bss vo < 00,

oF
/ (|F|2dxdt + ‘—
Q2r at

hold true.
In Egs. (2.2.1)—(2.2.8)

and

2
)dxdt + / |®|2dxdt = F} < 00 (2.2.9)
r

ap = xBr+U—=xDBs ng=x"cpr+A—=xDcps,

&
af, = xgcff + (1 - x‘?‘)cf af, = xFrp + (1 — x%) .

and

o
= lim«,(¢), vo=lima,(e), = lim 2.
o lim w(€), v lim v(©), w1 lim 2

2.2.1 Statement of the Problem and Main Results

Definition 2.2 We say that the triple of functions {w®, p ¢, ©#*} such that

o 1,0 o 1,0 ow® op*®
w'e W, (27), 9°, e W, (27), ng( a7 ) € Lo(227), p¥, 5 € La(827),

is a weak solution of the problem (2.2.1)—(2.2.7), if it satisfies the continuity and state
Egs.(2.2.1) and (2.2.5) almost everywhere in §27, the initial conditions (2.2.7) and integral
identities

/ (XSaMID) (x, aa—vf) + (1 = x5HroD(x, ws)) : D(x, @) dxdt (2.2.10)
2r

—/ gt (vV-9) dxdt:/ o°F - o dxdt,
.QT QT

and

9
/ (aiVﬁa VY — (n§° + o V- we) i) dxdt :/ @ Ydxdt, (22.11)
2r ot 2r
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0 1,0 o 1.1
for any functions ¢ € W, (£27)and ¢ € W, (£27), such that ¥ (x,T) = 0.

In Eq.(2.2.10)

8 &€
é’E:pE_’_aéﬂS_‘r_X&‘ai; p |
c5 Ot
f
Theorem 2.3 The problem (2.2.1)—(2.2.7) has an unique weak solution {w¢, p¢,
v}, and
ow?® 2 2 é 2
e p v vt s
oTiXT/Q o X (x, o7 (X,t)) +IVI X, D" +avx o7 (x, 1) )dx
(2.2.12)
aws\ > |ave > |ope |
+/ ‘D (x, W") +‘ +‘ P dxdt < Co.FL,
2r ot ot ot
owe & 2 2
/ V) - x| dedr < ScoFR, (2.2.13)
Q2r ot at oy

where WS is an extension (1.2.9), and the constant C is independent of the small parameter
e.

Theorem 2.4 Let {w®, p*, ©¥°} be a weak solution of the problem (2.2.1)~(2.2.7), w% be
an extension (1.2.9) and 11 = 00, or 11 < 00, but the pore space be disconnected.
Then for all vo > 0

(1) up to some subsequences the sequences {w°}, {V -w®}, {x¢p ¢}, and {q®}, where q° =
& & & (xv ap ¢ .
x\p"+Br—B)0" + gl Rrvall | converge weakly in Ly (£27) and L2 (82T)
c
f
to functions W, V - W, mp g, and mq respectively.
At the same time the sequence {W5} converges weakly in Wé’O(QT) and two-scale in

1,0
Lo ($27) to function wy = w € VOVZ (£27), and the sequence {9¢} converges weakly
o 1,0

in W, (£27) and two-scale in Ly($27) to function ¥;
(2) the limiting functions solve the system of homogenized equations in the domain 27,
consisting of the homogenized continuity equation

m cs
S pr+mV.we=C):D(x, wy) + g, (2.2.14)
cy o)
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the state equation

Yo 9ps
2
Cf ot

qg=pr+mBr—p) 0+ (g=pr+m(Bs—PBs) 0 for vo =0), (2.2.15)

the homogenized momentum balance equation
V- (AN : D(x, ws) —q C] — B 1) + pF =0, (2.2.16)
and the homogenized heat equation

. 0v
CPEZ

ow ¢ g
V-B-V9)+®+C”:D(x, — U 2.2.17
( )+ @+ (x or )+x0 ot ( )

The system is completed with homogeneous boundary and initial conditions

w(x,1) =0, #(x,1)=0, xe S, t (0, T), (2.2.18)

vo pr(x,0) =0, (2.2.19)

S
&y 9(x.0) = C” : D (x. wy(x. 0)) + i—o 4(x,0), x € 2.
0

In Egs.(2.2.14)~(2.2.17)
p=mpys+ (1 —m)ps,

the symmetric strictly positively definite constant fourth-rank tensor N5, matrices C;)
and C3, and the constant cy are the same as in Theorem 1.6, the symmetric strictly
positively definite constant matrix B is defined in Theorem 2.1, and the matrix CV is
given below by formula (2.2.25).

We refer to the problem (2.2.14)—(2.2.19) as the homogenized model (NIIF),.

Theorem 2.5 Let {w®, p®, 0°} be a weak solution of the problem (2.2.1)~(2.2.7) , W¢ be
an extension (1.2.9), the pore space be connected and 1] < 00.

(1)

(2)

Then for all vo = 0

up to some subsequences the sequences {W¢}, {x*w®}, {V - w8}, {x*p?}, and {¢*},
8 &
where ¢° = x° (pe + By — Bs)V° + (oz; % , converge weakly in 1,(827)
c
!

and Lo (§27) to functions w, wlH) V. w, mpy, and mq € WQI’O(QT) respectively.

At the same time the sequence {W$} converges weakly in Wé’O(QT) and two-scale

in Lo (827) to function wg € \(’)V2’ (£27), and the sequence {9*} converges weakly in
o 1,0
W, (827) and two-scale in Lo(§27) to function ¥;

the limiting functions solve the system of homogenized equations in the domain 2,
consisting of the homogenized continuity equation
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m Cs
ZPr+V: wi) =C : D(x, wy) + )T(:)q, (2.2.20)
z

the state equation (2.2.15), the homogenized momentum balance equation (2.2.16) for
the solid component, the homogenized heat equation

Lo aw) aw e 9
Cpmzv-(Bﬂ-Vﬂ)-{—@—ﬂf(V-at +C?:D(x, “)+—°—q

at Ao Ot
(2.2.21)
and Darcy’s law in the form
i t
w =mw, +B- (/ (—Vq + ,ofF) (x, ‘C)d‘l,') , (2.2.22)
0

for the liquid component.

The system is completed with homogeneous boundary conditions (2.2.18) for the
solid component and for the temperature, initial conditions

vo pr(x,0) =0, ¢, 0(x,0) (2.2.23)
? <o
=Cy : D(x, ws(x,0)) + " q(x,0)
+8 (Vv x,0), xe 2,
and homogeneous boundary condition
wx, 1) -nx) =0, xeS, te,T) (2.2.24)
for displacements w') of the fluid component.

In Egs. (2.2.21)—(2.2.24) n is the normal vector to the boundary S, the symmetric
strictly positively definite constant matrix B is the same as in Theorem 1.1, the matrix
Cy and the constant c are the same as in Theorem 1.6, the symmetric strictly positively
definite constant matrix B? is defined in Theorem 2.1, and the matrix (Cll? is given below
by formula (2.2.26).

We refer to the problem (2.2.15), (2.2.16), (2.2.18), (2.2.21)—(2.2.24) as the homogenized
model (NIIF)3.

2.2.2 Proof of Theorem 2.3

The proof of this theorem repeats the proofs of Theorem 2.1 and Theorem 1.5, and is based
upon the energy equality
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2

1d awe o apel?
m/g("‘”g D(x’ W) 25 | +“1'W'2)‘“
7

2

awe\[> 1 |op® av e |?
1—xHr |D{x, — — g d
+/_Q(( X (x at ) o, | ot o175 x

vt oF ow®
:/ @ + pf—- ") dx
Q Jt at ot

2.2.3 Proofs of Theorem 2.4 and Theorem 2.5

The proofs of these theorems are almost exact repeats of the proofs of Theorem 1.6 and
Theorem 1.7. We only have to derive homogenized heat equation (2.2.17) and (2.2.21),
and corresponding initial conditions (2.2.19) and (2.2.23). Here we simply repeat the proof
of Theorem 2.1 with one difference for each case w = w; (Theorem 2.4), and w # w;
(Theorem 2.5). The difference is in the macroscopic heat equations.

For both cases we start with the heat equation in the form

d
/ (aiVﬂs -V — ngﬁs—w) dxdt = / @ Ydxdr+1°,
Qr at Q2r

where 3

I¢ =/ ay (V- ws)—wdxdz.

Qr ot
One has
oy (V-w) = Brx(V-w) + B,(1 — x*)(V - w*)

=Br(V-w) + (B — Br)(1 — x5)(V - w).

Therefore,

lim /¢ =10 = /Q (B (V-w) + (Bs — B)((1 —m)(V - wy)

e\0
oy

gdxdt, w=w 4 (1 —mw,.
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If w = wyg, then

o 0
1= [ (B w0+ B = 07, Uy W var,
Jor t

where,g =mpBsr+ 1 —m)ps.
For w # wy

d
= [ (BT WD) (= mBT w0+ (B = BT, - Uhy) S dar
Q2r P
Therefore,
i (v 2 WUV _ oy ) L b
ﬂ(V- 8t)+(l3s—ﬂf)<vy-(at)>n_(C .]D)(x, 8t)+)L0 5

(1 — m)B (V- 8‘“) + (B — By) <Vy : @> —c} :D(x, 3‘“) L ol
Y,

at at at Ao Ot
and
C” = —BI— (Bs — BT, (2.2.25)
CY = —(1 —m)B,I— (Bs — By) C}. (2.2.26)

To derive initial conditions (2.2.19) and (2.2.23) note that the homogenized heat equations
(2.2.17) and (2.2.21) are actually formal expressions (as distributions) of the corresponding
integral identities

S a
/ (Bl’ V) VY + ((Cl’ D, wy) + L g —ép 19) —w)dxdt :/ @ ¥ dxdt,
2r AQ ot Qr

and
s o <o (A oY
/ BY -V¥)-Vy + (CI:]D)(x,ws)+fq+ﬂf(V-w ) —Cp® ) — ) dxdt
Qr ro ot

= / @ Y dxdt.
f2r

The last expressions evidently contains the initial conditions (2.2.19) and (2.2.23) (in a
weak sense).

2.3 A Viscous Thermo-Fluid in an Elastic Skeleton

In this section as a basic mathematical model at the microscopic level we consider the model
M3 of a non-isothermal liquid filtration in a thermo-elastic solid skeleton, consisting of
the differential equations
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1
—p+V-w=0,
@

V.-P+5F+af Vo =0,

s ow
V. (@LV) =P —al V- —,
T0%; (VD) R AP

ow

P=xuoD|(x,
X 1o (xat

)+(1—XE))~0D(X,W)—PH,
wx, 1) =0, 9(x,1) =0, xe S, 1€ 0,T),
xfwx,0) =0, 9(x,0) =0, x € 2.

Throughout this section we assume that conditions

2 2
0 < po, Ao, €7, €5, Cp.fs Cpisy 52, %5, Bry Bs < 00,

, oF
F2dxdt + |~
2r at

hold true.

and

2
)dxdt +/ |®>dxdt = 912 < 00
r

2.3.1 Statement of the Problem and Main Results

Definition 2.3 We say that the pair of functions {w®, ©¥¢} such that

&

o 1,0 o 1,0 ow
w'e W, (27), 9%, € W, (27), XSV( o1

) € La(27),

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

is a weak solution of the problem (2.3.1)—(2.3.6), if it satisfies the continuity equation
(2.3.1) almost everywhere in £27, the initial conditions (2.3.6) and integral identities

e w* (©)
x oD (x, — )+ 07 D(x, 9) ) dxdt
Q2r ot

:/Q (pEF—i—ocg Vl?) -@dxdt,
T

(2.3.9)
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and

9 ow*
/ (@w@ VY — ngﬁg—‘/’) dxdt = / (cp — (v : l)) ¥ dxd,
Qr ot Qr ot

(2.3.10)
o 1,0 o 1,1
for any functions ¢ € W, (£2r)and € W, (£2r), such that ¥ (x, T) = 0.

In Eq.(2.3.9)
3

N =1 —xHr D ID@ID +afIQL
i, j=1

Solution w* of this problem possesses different smoothness in each domain £2% and

£2¢. To preserve the best properties, which the solution now possesses in the liquid part,
&€

we use the extension lemma (see Appendix B) to extend the function from the liquid
part of the domain £2 onto its solid part .Q;:
ow?
& = &
\4 _ng( o ) (2.3.11)
such that
& aws &
X (%) a7 x,1)—-vxnN|=0 xe, 1€(0,7),
and
awe 2
/ Ve (x, 1)2dx < co/ ‘ Yx.0)| dx, (2.3.12)
2 Qs | 9t
2 owe 2
/ D (x, v*(x, 1)) | dx < co/ ‘]D) (x, —(x, r)) dx, 1€(0,T),
17, Q5 ot

where Cy is independent of ¢ and ¢t € (0, T).
Theorem 2.6 There exists a unique weak solution {w¢®, ¥¢} of the problem (2.3.1)—(2.3.6)
and

/ X° (|ID>(x, vOF + |Vﬁ€|2) dxdi (2.3.13)

2r
+ max / (IDCx, w92 + [9°12) dx < Co.Z1,
0<t<T Jo

where V¢ is an extension (2.3.12), and the constant Cy is independent of the small parameter
e.

The proof of this theorem is straightforward and repeats the proof of Theorem 1.2 and
Theorem 1.5, Theorem 2.1.
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Theorem 2.7 Let w® be the weak solution of the problem (2.3.1)—(2.3.6) and v° be an
extension (2.3.12).
Then
(1) the sequences {w°}, {v®}, and {9°} converge weakly in Wé’O(QT) and WZI‘O(.QT) to
ow
functions w, v = o and ¥ respectively;

(2) limiting functions solve the system of homogenized equations in the domain 2t, con-
sisting of the homogenized momentum balance equation

V. P+ pF =0, (2.3.14)
the state equation
PP =P-Co — /OZ CY(t — 1)¥(x, 7)dr, (2.3.15)
P= Ny : D (x, E;—‘;V) + N5 : D(x,w) + /Ot Ne(t — 1) : D(x, W(X, 7))dT,

and the homogenized heat equation

t
ép aaij V. (Bﬁ VY — (cgﬁ +/ c?(r — )Y (X, T)d‘[) ]I) (2.3.16)
0
ad
-

0.
=<I>—(C4.ID)( o

) —CY :D(x, W) —/Ot(Cg(t —17):D(x, w(x, 1)) dr,
completed with the homogeneous boundary and initial conditions
wix,t)=0, 9(x,1)=0, xe 8§, te(0,T), (2.3.17)
w(x,0) =0, 9(x,0) =0, x € £2. (2.3.18)
In Egs. (2.3.14)—(2.3.16) fourth-rank tensors Na, N5, and Ne(t) are given above by
formulae (1.4.44) (see Theorem 1.12), the symmetric strictly positively definite constant

matrix BY is the same as in Theorem 2.1, and matrices (Cg, Cg (1), (C}z, (C?, (Cg (1),
and scalars cg and clf (t) are given below by formulae (2.3.25)—(2.3.31).

We refer to the problem (2.3.14)—(2.3.18) as the homogenized model (NIIF)4.

2.3.2 Proof of Theorem 2.7

Itis clear that the major part of the proof of this theorem repeats the proofs of Theorem 1.12,
Theorem 2.1, and Theorem 2.5. The difference is in the form of the micro- and macroscopic
momentum balance equations
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oW oW
v, (koxw (o(x 5) +2 (5 57)) (23.19)

—ByY)Y (X, HI 4 Aa(y) : (D(x, w) +D(y, W))) =0,

BY) =xMBs + A —=x(¥) Bs.
W =1—x@) (*0 X (1P @ID)+ A8D | +xm) AD,

i,j=1

and _
V. P? 4+ pF =0, (2.3.20)

~ ow A%
P’ = pomD (x, g) + o <]D> (y, W)> (2.3.21)
Yy

+(2)y : D(x, W) + (s : D(y, W))y — AL,

N

p=mpyr+ (1 —mps, B=mBs+(1—mps,

and in the form of the micro- and macroscopic heat equations

Vy - (3(y) (VO + V,0)) =0, (23.22)
3
por =V (3V9 + (1Y, 6)y) (2.3.23)
o [(OW W
—o— o (2) - [y, )

The solution of the microscopic momentum balance equation (2.3.19) is slightly differ-
ent from the solution of the microscopic momentum balance equation (1.4.35) in the proof
of Theorem 1.12:

3 t t
W(x,1,y) = z /W(”)(y,t—t)Y,-j(x, r)dr—/ WOy, t — )o(x, )dx,
o 0 0
i,j=1
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where W is a solution of the periodic boundary value problem

IW©® -
Vy- (x uoD(y, 5 | D (y, W(O)) =0,

~ ~ 2.3.24
xHWO(y, 0) = WO (), 2.3.24)
Vy - (x (MOD (y, VVBO)) + ﬂ(y)ﬂ)) =
in the domain ¥ and W is a solution of (1.4.38), (1.4.39).
Therefore,
t
PP =P-Ch» —/ CY(t — )P (x, 7)dr,
0
and o
» _
€ = B+ uo <]DJ (y, W )>Yf : (2.3.25)
JWO _
9o ) ©)
C? () = po <]D)(y, - )>Y n (912 ) (y, w ))Y . (2.3.26)
f

The solution of the microscopic heat equation (2.3.22) is the same as the solution of the
microscopic heat equation (2.1.25) in the proof of Theorem 2.1.

Therefore,
VY + (2(y)V,0), =B - V.
Next,
ow oW ow > i)
v - [ — vy ) =gv. (2 v. WD 30y
A (a:)+<ﬂ(y) v, >Y p (at)+<,~z—1< )3 x.1)
- Y

_ @) N
+<v.wg’)>yﬁ+/ (Z < W >Y t —0ID Y(x, 1)

i,j=1

awO 9
+<V- V;]t > (t — )0 (x, r))dr:(CZ :]D)(x, ET‘;V)_I—CZS? D(x, w)
Y

t
+/ Cl(t — 1) : D (x, w(x, r))dr-i—coz?-i-/ At -0 x, 1)dx,
0

where

3
CY = BT+ o <Z (v -Wg’”)> 36D, (2.3.27)
ij=1

Y
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3 ~ ..
W) .
Cl=po Y. <v. o (y,0)> 76 (2.3.28)
i,j=1 Y
3
- (m§°> :J<u>)<z (V,Wgn)> 7
i,j=1 y
) 3 92W(i)
Clty=po » 1D (v. o7 (2.3.29)
i,j=1 Y
3 ~ ..
. W)
-3 <m<10> :J(u)) <v. o > ,
i,j=1 Y
g =(v- \TV(()°)>Y, (2.3.30)
aWO
c?(z):<v- oy > . (2.3.31)



Chapter 3
Hydraulic Shock in Incompressible
Poroelastic Media

3.1 The Problem Statement and Basic A Priori Estimates

As a basic mathematical model at the microscopic level here we consider the model
My of isothermal short-term processes in incompressible media:

V.w=0, G.1.1)
8 _ g P+ 5F (3.1.2)
P = pE: o
o ow o
P = XaM]D)(x, 5) +( = H)aDx, w) — plL. (3.13)

This model is derived in Appendix A.
Throughout this chapter we impose Assumption 0.1 and Assumption 1.1, com-
pleted with

Assumption 3.1 The pore space Q]’f is a connected domain.

Under these assumptions
~ & X ~ I3 & &
100 =100 = c0x (3) . 6=p" ="y + (1= x)p.

where ¢ (x) is the characteristic function of the domain 2.

Usually, the initial impulse for the hydraulic shock is transmitted into the oil
reservoir through a well filled with a liquid (Fig.3.1).

To model this process we consider the domain £2 as a subdomain of the domain
0, such that the compliment of £2 in Qisacylinder 2° = {x € R? : x]+x3 < §° <
1, @o(x1,x2) < x3 < 0}. In turn, the domain Q is a subset of the half -space {x3 < 0}
and its boundary S consists of two parts. The part S! is a subdomain of the plane
{x3 = 0}. The compliment §2=5 \S I is a smooth C? surface, and in some small

A. Meirmanov, Mathematical Models for Poroelastic Flows, 89
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_3,
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Fig. 3.1 1—domain £2°, 1
2—domain £2

neighborhood of the plane {x3 = 0} it is represented by the equation @ (x1, x2) = 0

(thatis $% is a cylinder near the plane {x3 = 0}).

For the given ¢ > 0 the solid-liquid mixture in the domain §27 is governed by the

system
V-w =0,
92wt
& =V.P,
P on

a &
P= XS&HID)(x, hid

=)+ (=) @D W) —p° L

(3.14)

(3.1.5)

(3.1.6)

In the domain .Q% the liquid motion is described by the Stokes system, consisting of

the continuity equation (3.1.4) and the momentum balance equation

92wt
: =V.P°
Pt or?
ow?
P(’:‘D(,—)— e
B T P

(3.1.7)

(3.1.8)
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On the common boundary S = 92 N 352° the usual continuity conditions for
displacements and for the normal component of the momentum hold true

limo w(x,t) = lim0 w(x, 1), 3.1.9)
* o0 xen
lim P'(x,7) - n(x’) = lim P(x, 1) -nx%). (3.1.10)
¥ o0 xeo

Here n(xo) is a normal vector to the boundary S0 atx0 e §O.
Now we impose boundary conditions on the outer boundary S = dQ. On the part
St we put
(EP° + (1 — O)P) - &3 = —po(x, 1es, (3.1.11)
where po(X, t) is the impulse defining the hydraulic shock. We suppose that pg is
52
finite in {x € R3|x12 +x§ < 03 <1,-6§ <x3 <0}
On the rest of the outer boundary $2
wi(x, 1) =0 (3.1.12)

for t > 0.
The problem has the homogeneous initial conditions

8 £
we(x,0) =0, 8—“;(x, 0)=0, x € Q. (3.1.13)

In the usual way we define a weak solution of the problems (3.1.4)—(3.1.13).
Definition 3.1 We say that the pair of functions {w®, p ¢} such that

& o 1.0 ow’ &
w’e W, (Qr), o € Ly (Qr), p° € La(Q7),

is a weak solution of the problem (3.1.4)—(3.1.13), if it satisfies the continuity
equation (3.1.4) almost everywhere in Q7, the first initial condition in (3.1.13) for
the function w®, and the integral identity

e 0w 0y 0 41— P -
/QT( R (R ;)P).D(x,¢))dxdt

:_/ V - (¢ po)dxdt (3.1.14)
Or
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ad
for all functions ¢ € W;’O(QT)’ a—(f € Ly(Qr), such that ¢(x,7) = 0 on the
boundary $2, and ¢x,T) =0forx € Q.

In(3.1.12) p* = (£ + (L = Ox)pr + (1 — O)(1 — x*)ps and ¢ = {(x) is the
characteristic function of the domain £22° in Q.

The integral identity (3.1.14) contains Stokes equations in £2y U 2% fort > 0,
Lamé’s equations in §2; for # > 0, the continuity condition for the normal tensions at
the boundary SO (condition (3.1.10)), the similar condition at the common boundary
“pore space—solid skeleton”, and the second initial condition in (3.1.13).

Sometimes we will use the identity (3.1.14) in its differential form

2 €
L 0°W
912

=V (P’ + (1 - o)P), (3.1.15)

and say that (3.1.15) and (3.1.11) are understood in the sense of distributions.

For the problem (3.1.4)—(3.1.13) we will find all the possible limiting regimes
(homogenized equations) as & \ 0.

To do that we suppose that the dimensionless parameters ¢, and @; depend on
the small parameter ¢ and the (finite or infinite) limits exist:

- .oy . .oy
lim o, (e) = ,llm—l: , lim oy (e) = Ag, lim — = Aj.
lim (&) = 1o im 2 "1 lim 2 (&) 0. im-3 1

Throughout this chapter we assume that

2
)dxdt =P < 0.

/(|Vpo<x,t>|2+'vap—°<x,t)
or ot

In what follows, we denote as Cy any constant depending only on domains 2, Y and
Yy
The derivation of all these limiting regimes is based upon on the following.

Theorem 3.1 Let {w*, p¢} be the weak solution of the problem (3.1.4)—~(3.1.13).
Then

>we e - ow®
1-0)x°)ID :
OQ;EXT/Q(' P+ 1P (¢ + (= Ox)IDer =)

oW
ot

(1= (1 = XD, =) )dx < G, (3.1.16)

where the constant Cy is independent of the small parameter ¢.

The proof of this theorem is straightforward. In fact, the estimate (3.1.16) for
displacements w® follows from the energy identity
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1d awe\ |2
—— o° DA x, il dx
2dt Jo ot

32we\ |2 po\ 9’we
+ v + l — € ]D) , — d :/ V{ — . d .
/Q“"(g = )‘ (x arz) “= o (at) Te

In turn, the last relation is the result of differentiation of (3.1.15) with respect to time,
L a*we . . .
multiplication by TR and integration by parts over domain Q.

2

32 e
Y rama -0 -y

912

The estimation of the pressure p® repeats the estimation of the pressure in Theorem
1.2 with some evident changes. So, the integral identity (3.1.14) and estimates
(3.1.16) for displacements imply

1
‘/ pSV-(pdxdt‘ < Com(/ |V<p|2dxdt)2. (3.1.17)
or (@]

T

The difference from Theorem 1.2 is in the choice of the test function ¢. Here we
choose the test function ¢ from the same conditions

V-p=p°, and/

|Vo|?dxdt < Cy / |p ¢ | dxdt.
or

or

and decompose the function ¢ into the sum of two functions ¢g and V i such that

d
Ay =p°, xeQ, ¢¥| =0, i d =0, (3.1.18)
$2 8X3 S
Vogo=0 x€Q, oo+ Vy =0, x€ S, (3.1.19)

The difference in the choice of test functions is in the boundary condition for the
function v on the part S!. Instead of the homogeneous Dirichlet condition we put
the homogeneous Neumann condition.

The desired smoothness of the solutions of the problems (3.1.18) and (3.1.19)
follows from the structure of the boundary S. In fact, we may extend the solution ¢
outside of Q near some small neighborhood of {x3 = 0} and S as an odd function,
and then from the domain obtained into {x3 > 0} as an even function satisfying the
Poisson equation, and use the local estimates in W22(Q ") [60, 61].

3.2 A Slightly Viscous Liquid in an Extremely Elastic Skeleton

Throughout this section we assume that

1o =0, Ao =0. (3.2.1)
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3.2.1 Main Results

Theorem 3.2 Let {w®, p ¢} be the weak solution of the problem (3.1.4)—(3.1.13) and
U1 = A1 = o00.

Then the sequence {p°} converges weakly in Ly(Qr) as ¢ — 0 to the solution
pe W21 ’O(QT) of the mixed boundary value problem

1
V. (—vVp) =0, , 1> 0, 322
(og¥r) =0 xc0 1> (322)
p(x, 1) =po(x,1), xeS', 1>0, (3.2.3)
Vp(x,1) -n(x) =0, x e S, ¢t > 0. (3.2.4)

In (3.2.2)~(3.2.4)
p®) = (£00+ (1= £00)m) pr + (1= £00) (1 = m)py,

and n(x) is the normal vector to the boundary S* at the point x € S>.
We refer to the problems (3.2.2)—(3.2.4) as the homogenized model (HS);.

Theorem 3.3 Ler {w°, p¢} be the weak solution of the problems (3.1.4)—(3.1.13)
and
0< pr, A <oo.

Then the sequence {p°} converges weakly in Ly(Qr) as ¢ — 0 to the solution p €

WZI’O(QT) of the mixed boundary value problem, consisting of boundary conditions
(3.2.3) on the part S' of the boundary S, boundary condition

1
(/ B, A15x,t — 1) - Vp(x, r)dt) -n(x) =0 (3.2.5)
0
on the part S* of the boundary S, and homogenized equation

t
v.(/ B(ul,kl;x,t—r)-Vp(x,r)dt)=O, Xxe€Q, t>0.  (326)
0

In(3.2.5) and (3.2.6) B(u1, A1; X, t) is given below by formula (3.2.24) and n(x)
is the normal vector to the boundary S* at the point x € §2.

We refer to the problems (3.2.3), (3.2.5) and (3.2.6) as the homogenized model
(HS),.
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Note that the Eq. (3.2.6) and the boundary condition (3.2.5) are a formal expression
of the integral identity

t
/ (/ B(u1, M3 X, 1 — 1) - V plx, f)dr) Védxdt = 0 (3.2.7)
or

0
for any smooth function &, vanishing at the part S! of the boundary S. As we have

mentioned above, p satisfies (3.2.5) and (3.2.6) in the sense of distributions.
To formulate the following statements we need an additional construction. So, let

0; = O\R2¢, and
where
Eg: : W3(Q5) — W1(0)
is an extension operator from Q; on Q, and
Eg: : WH(S25) — W(0Q)
is an extension operator from £2¢ on Q, such that
W;Z =w’ in QJ‘? x (0,7), wi=w’in 2! x(0,7),
and
/ Wi [2dx < Co / W 2dx, / [wiPdx < Co / W [2dx,
0 of 0 2f

/ IDCx, wp)|2dx < Co / IDCx, W) [2dx,

0 0

/|]D)(x, wo)|2dx < Co/ [D(x, w®)|?dx. (3.2.8)
0 2

(for more details see the extension lemma in Appendix B).

Theorem 3.4 Let {w®, p¢} be the weak solution of the problem (3.1.4)—(3.1.13),
mr =00, 0 <Ay <00,

and w; = Eg: (w®).

Then there exists a subsequence of small parameters {¢ > 0} such that the
Iwe 8wj§ 82wj‘§
sequences {pf}, {1 (1 —¢)(1 — XS)W]’ rval B and v converge weakly
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in Ly(Qr) and Ly (Qr) as € \( 0 to the functions p € W2 (QT)

82
ar . . - o .

of homogenized equations consisting of the continuity equation

— and
ot ot

respectively and these limiting functions satisfy in the domain Qr the system

V-v=0, (3.2.9)

where )

ow ow'®

ve 2 Vo, r)dr—i—(l—g“)( f+ )
prJo ot
the momentum balance equation
IWs aw') !

(1— ;)(mpfa—i to [ Ve r)dt) -0, (3.2.10)

for the liquid component, and the momentum balance equation

aw' owy
(1—§)( o7 —(1—’"7) (3.2.11)

t 92
=—a—o/MWmMn—w(wmw+m .t
0 a2

(x, r))dr
(3.2.11)

for the solid component.
Equations (3.2.9)—~(3.2.11) are supplemented with the homogeneous initial con-
ditions

w® (x,0) = ws(x,0) =0, (3.2.12)

for displacements in the liquid and the solid components and boundary conditions
(3.2.3) and
v(x,1)-nx) =0, xe 8%, t>0, (3.2.13)

for the velocity vy and pressure p.

In (3.2.11) the matrix B (0o, A1; t) is defined below by formulae (3.2.47) and
(3.2.54) and the constant matrix B® (00, 0; 1) = BY (00, 0) is strictly positively
definite.

We refer to the problem (3.2.3), (3.2.9)—(3.2.13) as homogenized model (HS)3.
Theorem 3.5 Let {w®, p®} be the weak solution of the problem (3.1.4)—~(3.1.13),

A =00, 0y < o0,

and w¢ = Eg: (WF).
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Then there exists a subsequence of small parameters {¢ > 0} such that the

. o OW? ow: 3>we
sequences {p°}, 1 x 5 1-2) 5 | and { (1 —¢) o2 converge weakly

1.0 aw(f) BWS
in L(Qr) and Lo(Q7) as € N\ 0 to the functions p € W, (Q7), o A and
3w
Tzs respectively and these limiting functions satisfy in the domain Qr the system
of homogenized equations consisting of the continuity equation

V-v=0, (3.2.14)
where
c [t aw() OW;
v=—= [ Vpxndr+(1 -0 (S—+1-m=).
or Jo at at
the momentum balance equation
@ aw) oW, !
(1— ;)(p N d—mpe s 4 [ vpx, r)dr) =0, (3215
at at 0

for the solid component, and the momentum balance equation

m
at ot

(1 _{)(aw(f) aws)

Bzws
2 x,7))dt (3.2.16)

t
=—( —§)/O B(f)(m,oo;t—f)-(vp(& T) + pf

for the liquid component.

Equations(3.2.14)—(3.2.16) are supplemented with the homogeneous initial con-
ditions (3.2.12) for displacements w ) and W; in the liquid and the solid components,
and boundary conditions (3.2.3) and (3.2.13) for the pressure p and the velocity v.

In (3.2.16) the matrix BY) (1, 00; t) is defined below by formulae (3.2.70) and
(3.2.76) and the constant matrix B 0,00;1) = BP0, 0o) is strictly positively
definite.

We refer to the problem (3.2.3), (3.2.12)—(3.2.16) as the homogenized model
(HS)4.

3.2.2 Proof of Theorem 3.2

2w

912
min{a,, @}, are bounded in L, (Qr) and L, (Q7). Hence there exists a subsequence
of small parameters {¢ > 0} and functions p and w such that

By Theorem 3.1, the sequences {p®}, {w*}, ,and {«(g) Vw®} where 0[2(8) =
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. . 92wt 9%w (3.2.17)
—_ s w = VV7 —_— oo
P p 912 912
weakly in Ly (Qr) and Lo (Q7) as € N\ 0.
Note also that

& (1= D@, W) = 0, @, (¢ + (1 —2)x°)Dx, w) — 0 (3.2.18)

strongly in Ly (Qr) as € \( 0.
Relabeling if necessary, we assume that the sequences themselves converge.

By Nguetseng’s theorem, there exist 1-periodic in y functions P(x,?,y) and
&

ot
oW .
Lr(Q1) and Ly (Q7) to P(x, t,y), W(Xx, t,y), and r respectively.

By supposition of the theorem

0
W(x, t,y) such that the sequences {p®}, {w®}, and [ hid ] converge two-scale in

. ae)
lim — = o0
eN\o0 &

Applying Lemma B.13 (see Appendix B) we conclude that
W(x, t,y) = w(x, ). (3.2.19)

Next, we prove the following

Lemma 3.1 Under the conditions uo = 0, Ao = 0 the two-scale limit of the
sequence {p°} coincides with its weak limit:

P(x,t,y) =p(x,1). (3.2.20)

Proof To prove the statement we fulfill the two-scale limit in (3.1.14) with test
X

function ¢ = eh(x, t)¢pg (—):
&

/ h(x, z)( / P(x, 1, y)Vy~(po(y)dy)dxdt:O.
Or Y

After reintegrating we arrive at
VyP(x,t,y) =0, yeY,

which is equivalent to (3.2.20).

Now we are ready to derive the homogenized momentum balance equation and
the homogenized continuity equation. First, we pass to the limitas ¢ — 0in (3.1.14)
with test function ¢ = ¢(X, t), vanishing on the part S2 of the boundary S, and at
t=T:
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ow  Jdp
(p(x)— Y. (p)dxdt — | V. (ppo)duds, (3.2.21)
Oor o 9t Or
where

px) = (£ + (1= co0)m) pr + (1= £00) (1 = mypy.

The simple analysis of the integral identity (3.2.21) and estimates (3.1.16) show that
Vp € Ly(Qr), and functions w and p satisfy the homogenized momentum balance

equation
2

0°w

and boundary condition (3.2.3) in the usual sense.
Next, we rewrite the continuity Eq.(3.1.4) as an integral identity

/ wéVEdxdt =0
Or
for an arbitrary smooth function &, and then pass to the limit as ¢ — 0:

/ wVE&dxdt = 0.
Or

2
Choosing now & = 32 where ¢ vanishes at + = T, we may rewrite the last
identity as
3°w
/ —— Vidxdr = 0. (3.2.23)
or 9t

The combination of (3.2.22) and (3.2.23) gives us the desired integral identity

/ (va)-vmxdr:o, (3.2.24)
or \P(X)

which is equivalent to Eq. (3.2.2) in the domain Q and boundary condition (3.2.4) on
the boundary S? in the sense of distributions.

3.2.3 Proof of Theorem 3.3

92w
By Theorem 3.1, the sequences {p°}, {w*}, [

a2
bounded in L, (Q7) and L, (Q7).

£

8“; )] are

}, {eVw?}, and <£V( 3
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Hence there exists a subsequence of small parameters {¢ > 0} and functions p
and w such that
3°w* 3°w
or? ar?

PF=p w—=w,

weakly in Lo (Qr) and Lo (Qr) as € N\ 0.

Owing to Nguetseng’s theorem and Lemma 3.2, there exists a I-periodic in
2 €

3_:; ] , {eVw?}, and

)] converge two-scale in Lp(Qr) and Lo(Qr) to p(x,1t), W(x,1,y),

y function W(x, ¢, y) such that the sequences {p®}, {w®}, {
[ ow

sV(
ot

3°W aW
’ (x,1t, y)], V,W(x, t,y) and Vy(w)(x, t,y) respectively.

£

ar?
Nguetseng’s theorem also guarantees that

92w

W5 Ta.0
ar?

oW
v, W, vy(w) € Ly(Qr x V). (3.2.25)

Lemma 3.2 The limiting functions w and W satisfy the macroscopic continuity
equation and boundary condition

V-w=0, w-n=0 (3.2.26)
in the domain Qt and at the boundary S%, and microscopic continuity equation
VvV, - W=0 (3.2.27)

in the domain Yt for almost all (x, 1) € Qr.
The proof is straightforward (for details see Chap. 1 and proof of Theorem 3.1).

Lemma 3.3 For almost all (x,t) € Qr the limiting functions p and W satisfy the
microscopic momentum balance equation

_ W _ oW
oY) =Yy - (11X VDO )

40 (1 = £(x,y))D(y, W) — 17]1) —Vp yevY, t>0,3.228)
completed with the homogeneous initial conditions
ALY
W(x,y, 0) = W(X’ y,00=0, yeY. (3.2.29)

In (3.2.28)
XX y) =¢x) 4+ (1-2)x®y),
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To prove this lemma we simply pass to the limit as ¢ — 0 in (3.1.14) with test
functions ¢ in the form ¢ = h(X, t)@o | — ), where ¢ (y) is 1-periodic in y function,
£

solenoidal in Y, and arrive at the integral identity
/ (a(x, Dh + p(x, 1) - V h)dxdt = 0,
or

where

a(x, 1) = /Y (pa%v oo+ (mn (v, o)
+ 31 (1= 2)DG, W) = ITT) : Dy, g0) )dy € Lo(Qr).

The last identity shows the validity of (3.2.28) with Vp € L, (Qr).

As a final step we have to solve the periodic initial boundary value problem
(3.2.27)—~(3.2.29) and find W as an operator on Vp. The desired Eq.(3.2.6) and
boundary condition (3.2.5) are the result of substituting w = (W)y into the macro-
scopic continuity equation (3.2.26).

We look for the solution {W, IT} of the problem (3.2.27)—(3.2.29) in the form

3 '
; ad
W 1,y) =D /0 WOy, 1 — ’)a_f-("’ 7)dr,
i=1 t

3 !
. d
M(x,t,y) = Z/O 79 x, y, t— r)a—f_(x, 7)dT,
i=1 i

where {W(i), I1 (i)} ,i=1,2, 3, are solutions to the following periodic initial bound-
ary value problem

3?W dW®
0 5 = V7 : ( X 5 D( 5 )
p(X,y) Y v\ X (X, y) o
+ (1= 2% Y)DE, W) = 19T), v, WO =0,
(3.2.30)
in Y, for t > 0, completed with homogeneous initial conditions
. w®
WO, y,00 =0, 5(x,y)——(x,y,0)=—e;, yev. (3.231)

at
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The solvability of this problem is standard and is based upon the energy equality

1 ow® 2 :
3/ (ﬁ(x, V| == n| (1= 2 w) Do, W“W)dy

ar
dW®
Dly, ——

2

1 1
dydt = —/ - dy.
2 )y px,y)

t
+/ /mi(x,y)
0 Y

Thus,
t s 3 '
W= / (ZW(’)(X, V.1 —T)® ei) -V p(x, 1)dT,
0 \ioy
and ,
wix, 1) = / B(ur, 1 x,1 — 1) - V p(x, D),

0

where
3 o
B(i, Al; X, 1) = / Zw@(x, 1,y) @ eidy. (3.2.32)
Y

i=1

To end the proof we have to show that Vp € L,(Qr), and the function p satisfies
the boundary condition (3.2.3). In fact, the passage to the limit as ¢ — 0 in (3.1.14)
with test functions ¢ = ¢(x, ) result in the identity

_ 3°W
pP(X,Y)——>-dy) ¢ —pV-¢|dxdt=— [ V- (ppo)dxdt,
or \\Jy ot or

which together with (3.2.25) prove the statement.

3.2.4 Proof of Theorem 3.4

3.2.4.1 The Case A1 > 0.

Estimates (3.2.8) and (3.1.16) provide the boundedness of sequences {p°}, {w;},
3’w®

a2

912
and L2 (QT)
Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
Wy, and w®_ such that

92wt
[ f],{awis},{(l—é“)(l—Xs)Wg},aHd[(1 -1 = x%) ]ian(QT)
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?we 92w
RN & . N f
)4 D wf sz 81‘2 8t2 )
weé 32W(s)
A=01—xHw =~ w®, 1 —-0)1 -y ) T T (3.2.33)

weakly in Ly (Qr) and Lo (Q7) as € N\ 0.
In particular, the weak passage to the limit as € N\ O in integral identities

0

3 wi
/Q(wjf-a—(f—i-a—fwo)dxdtzo,

[a-oa-x(w
0

for any smooth functions (X, t), such that ¢(x, ) = 0, results in the initial condi-
tions (3.2.12).
By Nguetseng’s theorem and Lemma 3.1, there exists a 1-periodic in y function

£

<p)dxdt —0,

9%we
W(x, t,y) such that the sequences {p*}, {W;}, {wel, {(1 — x5Hwe}, o | and
{eVW?®} converge two-scale in Lr(Q7) and Ly (Qr) to p(X, 1), wr(x, 1), W(X, 1,y),
92W
(1 - X(y))W(x £y, o (x t,y), and V,W(x, ¢, y) respectively.
Nguetseng’s theorem also guarantees that
?W
W, TR V,W e Ly(Qr x Y) (3.2.34)
and
W, 1,y) = x(WWrx, 1) + (1 — x ()W, 1, y). (3.2.35)

ow
Lemma 3.4 The limiting functions v = m and W satisfy the homogenized con-

tinuity equation(3.2.9) in the domain Qr and boundary condition (3.2.13) on the
boundary S% for the velocity

Bw(‘)

v=(¢+ —;)m)3—+( -) (3.2.36)

and microscopic continuity equation (3.2.27) in the domain Yt for almost all (x, t) €

Or.

The proof of this lemma repeats the proof of Lemma 3.3 if we note, that the weak
&
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& &

ow
ot

owg ow
- _ f - —
=+ =0m) ot + A= —=x") o1

results in (3.2.36).

Lemma 3.5 The limiting functions p, wy and w') satisfy the integral identity

3wy *w
/QT((pf(H(l—;)m) 52 Tel-0—5 )'w—pv-w)dxdt

Or

for all smooth functions ¢, such that ¢ (X, t) = 0 on the boundary S%.

The proof of this lemma is straightforward. We simply pass to the limit as e — 0
in (3.1.14) with test functions ¢ = ¢ (X, 1).

The integral identity (3.2.37) evidently results in the inclusion Vp € L2(Qr),
the boundary condition (3.2.3), and the momentum balance equation for the liquid
component in the form

9 ow) !
o+ —om) =L+ (1 - = =—/ V p(x, 1),
t at 0

Multiplying the last equation by ¢ and (1 — ¢) we obtain (3.2.10) and

3Wf t
fpfa— =-¢ | Vpx, r)dr.
t 0

This last formula and (3.2.36) give us

aws  aw® )

t
v = _i/ Vp(x, t)dt + (1 — ;)(m— + (3.2.38)
PrJo

ot ot
To derive the momentum balance equation for the solid component we simply pass

to the limit as ¢ — 0 in (3.1.14) with test functions ¢ = h(x, t)(po(§, t), where
&

h(x, t) is smooth and finite in §27, and the 1-periodic in y smooth function ¢y (y) is
divergence free and finite in Y. If W = (1 — x(y))W, then the pair {W®, 11}
satisfies the equation

PPWE %
N ?lAyW(‘Y) - V,[1¥ -V p (3.2.39)

in the domain Y, x (0, T') and initial conditions
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(s)

W
WO (x,0,y) =
x,0,y) ”

x,0,y) =0, ye¥; (3.2.40)

for almost all x € £27.
Conditions (3.2.34) and formula (3.2.35) provide the boundary condition

WY, 1,y) = wr(x, 1), (v,1) €y x (0,T) (3.2.41)
for almost all x € £27.

Therefore, the solution {W), IT®)} to the periodic initial boundary value problem
(3.2.27), (3.2.39)—(3.2.41) has the form

32wy
av:g’l (x, r))dr,

3t
a
® — 3 O 1 (2P
W - Wf(X, t) + P A Wi (y7 t t)(8x1_ (X7 'L') + Ps
® SH op 0wy d
I (x,t,y) = i_El A I, (y,t—r)(a—Xi(x, t)+ps?(x, 1:)) T,

where w; = (wr,1, wy 2, wy3) and {Wl@, Hi(s)} ,i=1,2,3, are solutions to the
following periodic initial boundary value problem

2w
S AW —vn®, (v, e Y, x (0,T) (3.2.42)
,05 3[2 — 2 y i y i ’ y’ s kl ’ .
Vy Wy, 0 =0, (y,1) € Y5 x (0, 7T), (3.2.43)
gs)
W (.00 =0, p—i=(y.0) =i, y € Yo, (3.2.44)
Wy, 0 =0, (y,) ey x (0,T), (3.2.45)

for almost all x € £27.
The correctness of the problem (3.2.42)—(3.2.45) follows from the energy equality
(s)

EAY
/ (Ps —(y, 1)
Ys

2 (1 —m)

Al
+ 7|VW§”<y, r)|2)dy = :

ot

s

We recall that the problem (3.2.42)—(3.2.45) for solenoidal functions W§i) , vanishing
at y and r = 0, is understood as integral identity
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(s)
T an ) 8<p _ () . o .
Ps — — M VW, 1 Vo )dydt = | e - ¢(y, 0)dy
0 . Jat Jat a

for any solenoidal 1-periodic smooth function ¢, vanishing at y and t = T. By
definition

ow® JW®)
(x,0) = o7 (%, 2, y)dy

ot
w1 e oW
=<1—m7—/0 (> (/ Ty = Ddy) ® ) - (Vpx,T)

i=1 /Y

92w ow
+ps g (5 D)dr = (1= m) =L

t © awa
— | BY(oo, A5t —1) - (Vp(x, t)—l—pSW(x,r))dt, (3.2.46)
0 T
where 5 .
IW;®
B (00, A1; 1) = / L_(y,0d . 3.2.47
(00, 113 1) ;(Y S v.ndy) @ e, (3.247)

3.2.4.2 The Case A1 = 0.

For this case we may repeat everything as for the previous case A; > 0, except for:

(1) two-scale convergence of the sequence {¢Vw?®} to the function VW € L,
(Qr x Y), and
(2) derivation of the momentum balance equation for the solid component.

For A1 = 0 the microscopic momentum balance equation for the solid component
has the form
W
or?

0s =-V, 1% —V p. (3.2.48)

Instead of condition (3.2.41) on the boundary y one has there a condition
(W(S) (x,1,y) — wr(x, t)) -n(y) =0, (3.2.49)

which is a consequence of the microscopic continuity equation(3.2.27) and the
representation

W, t,y) = x@Wwrx, )+ (1 — xM)WY(x,1,y), ye Y. (3.2.50)

To solve (3.2.48) we apply to this equation the operation Vy- and use again (3.2.27):
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PWO
0=V,- (ps -7 ) =V, (V, T¥). (3.2.51)

The boundary condition (3.2.49) and Eq. (3.2.48) provide the boundary condition on
the boundary y for the pressure I7):

ar?

; Sye 0%wy
a%=—{>"1"we )-\Vr+os prenll K
i=1

where Hi(s), i = 1,2, 3, are solutions to the periodic boundary value problems

) 32Wf
Vy IT¥ -n(y) = = V p+ ps -n(y). (3.2.52)

Let

rTY =0, yev,, (V, [T —e)-ny)=0.ye€y. (3.2.53)

3 2
o°w
v, 19 = —(z v, 1Y e ei) : (V P+ ps?f).

i=1

Then

After integration (3.2.48) over domain Y we arrive at the desired momentum balance
Eq.(3.2.11) for the solid component with

3
psB@ (00, 0) = (1 —m)I — (Z /Y Vv, 11 (y)dy @ ei)- (3.2.54)
i=1 s

To prove that B®) (oo, 0; 1) is symmetric and strictly positively definite, we use the
definition of the solution to the problem (3.2.53) with test function Hj(‘v)

arr®
/ \V/ 17j(s) . V]'[i(s)dy — / 5 L-dy = 0. (3.2.55)
s s y.]

Let ¢ = (¢1, &2, ¢3) and n = (11, 12, n3) be arbitrary constant vectors and

3 3
Z; = zni(S)é-iv ) = an(s‘)?’]l
i=1 i=1

Then (3.2.55) is equivalent to
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/Vz§-Vz,7dy—/ Vi, -ndy =0.
Ys

s

On the other hand

ps(B“)(oo,O)-n)I:/ n~§dy—/ Vz,-tdy=0.

YS S

The combination of the last two relations result in the equality
ps(B(00,0) - n) - ¢ =/ (n—2z;) - (§ — zy)dy,
Yy

which proves the last statement of the theorem.

3.2.5 Proof of Theorem 3.5

The proof of this theorem repeats the proof of the previous theorem with evident
symmetric changes. Therefore, we only formulate the main results, omitting all
proofs.

3.2.5.1 The Case 11 > 0.

9w 9 we owe
The sequences {p°}, {w*}, [8_:;]]’{(1 —wel, [(1 — ;)T‘ZS], [auv( ;: )],

2 wé

{x¢w?}, and [Xg o2 ] are bounded in L, (Q7) and L, (Q7).

Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
w,, and w) such that

92we 92w
N

pé‘_\p’ We_\w’ (l_g-)W?—\Ws,

ot2 oz’
92we 02w 92we 32w
1— N & i —~ ——— (3256
(=2 ar? a2 XV W X on 912 ( )

weakly in Lo (Qr) and Lo (Qr) as € N\ 0.

As in the previous subsubsection we conclude that functions w') and wy satisfy
the initial condition (3.2.12).

Next, there exists a 1-periodic in y function W(X, 7, y) such that the sequences

9w Iw*
{Ps},{W§},{ws},{x8W8},[ 8:; ],andlsV( ;‘; )]convergetwo—scaleian(QT)




3.2 A Slightly Viscous Liquid in an Extremely Elastic Skeleton 109

*W
and LZ(QT) to P(Xa t), WS(Xv t)’ W(Xv z, Y)’ X(y))W(X9 z, y)’ ?(Xv z, y)3 and

ow
vy (W) (x, ¢, y) respectively, and

w W o (W € Ly(Or X Y) (3.2.57)
YN y a1 2\T s <L
oW ow, oW
o ®LY) = (1- X(Y))a—ts(X, D+ x5 X 1Y), (3.2.58)

ow
Lemma 3.6 The limiting functions v = o and W satisfy the homogenized con-

tinuity equation (3.2.14) in the domain Qt and boundary condition (3.2.13) on the
boundary S% for the velocity

B] aw) W,
v=za—vtv+(1—z)(%+(1—m) BVZ) (3.2.59)

and microscopic continuity equation (3.2.27) in the domain Yt for almost all (X, t) €

Or.
Lemma 3.7 The limiting functions p, w, wy and w\) satisfy the integral identity
| (o P a-0 ) =00 —m ) oY)
— —_— — —_— —_— m —— . —_— . x
o, (655 O ) +esd—¢ P A A
=—/ V- (¢ po)ddt
or
(3.2.60)

. _ 2
Jfor all smooth functions ¢, such that ¢(X, t) = 0 on the boundary S7.

The integral identity (3.2.60) results in the inclusion Vp € L, (Qr), the boundary
condition (3.2.3), and the momentum balance equation for the solid component in
the form

ow aw() oW, !
Pf(é“g + 1 - OT) +pos(1=20)A —m) 5 = _/0 Vp(x, t)dT.

Multiplying the last equation by ¢ and (1 — ¢) we obtain (3.2.15) and
ow d
top =~ | Vpx. ).
at 0

This last formula and (3.2.59) give us



110 3 Hydraulic Shock in Incompressible Poroelastic Media

t )
ve -2 [ Vpx ndr + (1 —;)((1 _ s +8w—). (3.2.61)
or Jo at at

To derive the momentum balance equation for the liquid component we simply pass
to the limit as ¢ — 0 in (3.1.14) with test functions ¢ = h(x, t)(po(§, t), where

h(x, t) are smooth and finite in £27, and 1-periodic in y smooth functions ¢y (y) are
divergence free and finite in Yy. If we put W = x(y)W, then the limiting integral
identity for the pair (W), 1)} is equivalent to the differential equation

32w w1 aw)
of =5 y(

== - ) —v,1" —V p (3.2.62)

in the domain Yy x (0, T') and initial conditions

aw)
wWhx,0,y) = ”

(x,0,y) =0, ye ¥y (3.2.63)
for almost all x € £27. Relations (3.2.57) and (3.2.58) imply the boundary condition
WO x, 1,y) = wy(x, 1), (y,1) € y x (0, T) (3.2.64)

for almost all x € £27.
Therefore, the solution {W), [T} to the periodic initial boundary value prob-
lem (3.2.27), (3.2.62)—(3.2.64) has the form

3 2
ap 0wy
W = wy(x, 1) + E /0 W}”(y, r— t)(a(x, T) + pfaT;’(x, r))dr,
i=1 !

3 2

ap Wy i
nPx1y) =) /0 H,V)(y,t—w(—axi(x, ™)+ ot (%, 7)) d,
i=1

where wy = (w1, Ws,2, Ws3) and {Wl@, Hi(f)} , 1 = 1,2, 3, are solutions to the
following periodic initial boundary value problem

WO, WO
=5 y(T)—vyni LD eYrx(0,T), (3265
v, - Wy, 0 =0, (y,1) € ¥y x (0, T), (3.2.66)
%)

W00 =0, pr— (. 0) =i y € ¥y, (3.2.67)
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)
Wiy, =0, (y.0) ey x(0,7), (3.2.68)
for almost all x € £27.
By definition
aw() aw)
(x,1) =/ (x, 1, y)dy (3.2.69)
at Yy at
3 )
oWy ! oW
=m— —/O (Z(/Y a—t’(y,t—r)dy)@)ei) (Vp(x, 7)
92w, oWy
+ pof 572 (x, ‘L’))dl’ =m ”

"BO 0°ws
_ BY’ (g, 00t —1) - (Vp x,7)+ pf—z(x, r))dr,
0 at

(3.2.69)

where

: aow?
B (1,00 0) =D (/Y - t)dy) ®e;. (3.2.70)

i=1

3.2.5.2 The Case ;11 = 0.

For 111 = 0 the microscopic momentum balance equation for the liquid component

has the form ()
0°W :
i = ~v, 19 — v p. (3.2.71)

Instead of condition (3.2.64) on the boundary y one has there a condition
(WO, 1,y) — ws(x, 1)) -n(y) =0, (3.2.72)

which is a consequence of the microscopic continuity equation (3.2.27) and the rep-
resentation

W ty) = xMWO 1,y + (1= xm)wsx.0), ye Y. (3.2.73)
To solve (3.2.71) we apply to this equation the operation Vy- and use again (3.2.27):

22WO
0=V, (pr) =V, (v, 17). (3.2.74)

The boundary condition Eqs. (3.2.72) and (3.2.71) provide the boundary condition
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%) 92w,
Vy [TV’ -n(y) =—({Vp+ ,Ofv -n(y) (3.2.75)

on the boundary y for the pressure I7¢).
Let
. : 3w
h = _ Dvye; |- 2%
nh = (leni (y)e,) (v P+ P ) ,
=

where IT l.(f), i =1, 2,3, are solutions to the periodic boundary value problems
AyHi(f) =0, yeY, (V Hi(f) —e)-ny) =0, yey.

Then

3 2
0w
v, 1" = —(E vyn,.(f)®e,~). (Vp—i—pf?zs).

i=1

After integration (3.2.71) over domain Yy we arrive at the desired momentum balance
equation (3.2.16) for the liquid component with

3
pr B (0, 00) = m 1 — (Z / v, 1 (y)dy ® e,-). (3.2.76)
i=1"Yr

The proof of the last statement of the theorem repeats the proof of the same statement
in Theorem 3.4.

3.3 A Viscous Liquid in an Extremely Elastic Skeleton

Throughout this section we assume that

&y = 10, 0 < po < 00, Ag = 0. (3.3.1)

3.3.1 Main Results

Theorem 3.6 Let {w®, p¢} be the weak solution of the problem (3.1.4)—~(3.1.13),

Al = 00,

ow®
€ — <
and vy = IEQf ( ” ) Then
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(1) the sequence {V;} converges weakly in W;’O(QT) to the function vy, sequences
[ ow®

at

ow .
—— = V¢ and p respectively;

] and {p ¥} converge weakly in L(Q7) and Ly(Q7) to functions v =

(2) limiting functions vy and p solve the system of homogenized equations in the
domain Qr, consisting of the continuity equation

Vv =0, (3.3.2)

and the homogenized momentum balance equation
8Vf ~
pX) 5=V . (3.3.3)

B} = 10 (6D, vp) + (1 — ) N : Dix, vp) — p1L,
completed with the boundary conditions
B -e; = —poes, xe S, (3.3.4)
vi(x,1) =0, x € §%, (3.3.5)
fort € (0, T), and initial condition
vi(x,0) =0, x e Q; (3.3.6)

(3) the problem (3.3.2)—(3.3.6) has a unique solution.
In(3.3.3)

px) = (£00 + (1= £00)m) pr + (1 = £0) (1 = m)py,

and the symmetric strictly positively definite constant fourth-rank tensor ‘ﬁg is
given below by (3.3.22).
We refer to the problem (3.3.2)—(3.3.6) as the homogenized model (HS)s.

Theorem 3.7 Let {w®, p®} be the weak solution of the problem (3.1.4)—~(3.1.13),
0< A < o0,

ow®
& _ Y A
and V= IEQf ( ” ) Then
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(1) the sequence {V;} converges weakly in WZI’O(QT) to the function vy, sequences

8V; [1_ 1 — e, IW* 1— o)1 — sazwg]{s di(l—

av
(1 — x5)p*} converge weakly in Ly(Qr) and Lo (Qr) to functions 8_tf v,
v

at
(2) limiting functions vy, v, p, and p solve the system of homogenized equations
in the domain Qr, consisting of the continuity equation

p, and (1 —m)p; € W21 ’O(QT) respectively;

V(€ + A =0myv+v9) =0, (3.3.7)
the homogenized momentum balance equation

v N
vV _v. ¥, (3.3.8)
ot

0
pr(c +m(1 — ;))% + s

P = uo(2 D@, vp) + (1= O, D, vp)) — (Ep+ (1= O py)LL

for the liquid component, and the homogenized momentum balance equation

t © 3Vf
/0 B (00, 2131 =) (Vs (%, 1) + (1 = 0)py 5= (%, 1)) d
=—(v — (1 —=m1 - )v) (3.3.9)

for the solid component, completed with the boundary and initial conditions
(3.3.5)—(3.3.6) for the liquid component, the boundary condition

v®@.n=0, xeS? re(0,T) (3.3.10)
for the solid component, and the boundary condition
P . e3 = —poes (3.3.11)

on the boundary S' for t € (0, T) for the liquid and solid components.

In (3.3.8)—(3.3.11) the symmetric strictly positively definite constant fourth-
rank tensor ‘)’E}I is given below by (3.3.25), the matrix ]E%(S)(oo, A1; 1) is defined
in Theorem 3.4, and n is the normal vector to the boundary S.

We refer to the problem (3.3.4)—(3.3.11) as the homogenized model (HS)g.
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3.3.2 Proof of Theorem 3.6

By Theorem 3.1 and the properties of the extension operator ]Est_ the sequences

Iwe avs ave 92wt
{ps}’ {(1 - Xg)Ps}, {V;}» {]D)(x’ V;)}a [ l ]7 [_f]’ [D(-xs _f)]’ [BTV;]’ and

ot ot ot

w€

5,V ( 0
o
2
Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
Ps» V, and vy such that

) ] are bounded in L, (Q7) and Ly (Q7).

pr=p, 1= = xHp" = 1 =)A= mp;,

ow® R 92w N ov

£
vV, —5— —
ot ar? ot

weakly in Lo (Qr) and Lo (Qr) as € N\ 0, and

BVS v
e _f %Y
iV Ty ot

weakly in Wé’O(QT) as e \( 0.
Justasin Theorem 1.3 we conclude that vy satisfies the boundary condition (3.3.5).
Note also that
a,(l —)D(x, w®) — 0

strongly in Lo (Q7) as ¢ \( 0.

Relabeling if necessary, we assume that the sequences themselves converge.

By Nguetseng’s theorem there exist 1-periodic in y functions P(x, ¢, y), V(X, t, y),
and V¢(x, 7, y), such that

Pel)QrxY), V, Vpela(Or xY),
vV aV;

and that the sequences {p¢}, {v¢}, {V;E-}, {eD(x, v¥)}, and {D(x, v%)} converge two-
scalein Ly(Qr) and Lo (Qr) to P(X, 1, y), V(X, 1,¥), V¢ (X, 1), D(y, V), and D(x, v) +
D(y, Vy) respectively.

Lemma 3.8 The limiting functions vy, v, and V satisfy the macroscopic and micro-
scopic continuity equations

V.v=0, (x,/)€Qr, v-n=0, (x,1) € 5%, (3.3.12)

XNV -V +V, - V) =0, (x,1) € 27, y€Y, (3.3.13)



116 3 Hydraulic Shock in Incompressible Poroelastic Media

and
Vy V=0, x,1) e 27, y€eY, (3.3.14)

where
VL) =+ xMUA=0)vy+A=0(1 = xW)VEX, 1Y), (3.3.15)
v=(Vy =(C+mI—=0)v+A=0)(V)y,,

and n is a unit normal vector to the boundary S.

The proof of (3.3.12) repeats the proof of (1.3.14) in Chap. 1.
Equation (3.3.13) is a result of a two-scale limit in the equality

xf(x)V - V; =0
for (x,t) € £27.

Equation (3.3.14) is a simple consequence of a two-scale limit in the continuity
equation (3.1.4) in its integral form:

/QT evE -V (ho(x, h (g)) dxdt = 0.

Finally, the relation (3.3.15) is a result of two-scale limit in the equality
V= (x5 = O)VE+ (1= X1 = OV,

Lemma 3.9 The following equality holds true
(=P 1.y) = 1= O(Prx 6y + (1= x®) psxn).  (33.16)

where (1 — )Py = (1 = 5)x (V)P (X, 1,y).

The proof of this lemma repeats the proof of Lemma 1.4 with evident symmetric
changes.

Lemma 3.10 The limiting functions vz, p, Vg, and P satisfy the macroscopic momen-
tum balance equation
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ov A"
/ (,of(z+m(1—;))—f+ps(1—;)<—> -0+ (1o(€ +m(1 = £) D, vy)
QT ot Jat Y

+(1—§)(]D)(Y»Vf))}{f)—llﬂ)ZD(x,ga))dxdz‘:/ V.- (ppo)dxdt (3.3.17)

or

in the domain Qt and the microscopic momentum balance equation

v, - (x (0 (DCx, vp) + Dy, Vp)) — (P —ps)]I)) =0 (33.18)

in the domain Y for almost all (x,t) € $27.

Proof Equation (3.3.17) follow from (3.1.14) after the two-scale limit with test func-
tions ¢ = @(x, t). Equation (3.3.18) follows from (3.1.14) after the two-scale limit
X
with test functions ¢ = eh(X, t)@g (—), where £ is finite in £2.
e

&

0
Lemma B.13 and the boundedness of the sequence I&AV( ;; ) ] in L, (Q7) result

Vx, t,y) = v(X,1).
Applying the two-scale limit to the equality x®(v® — V;-) = 0, we arrive at

X (VD —vp(x, 1) =0,

or v(x,?) = V¢(X,1). Therefore, the function v satisfies the continuity equa-
tion (3.3.2) and the continuity equation (3.3.13) takes the form

XWVy-Vi=0, x,1) € 27, y€Y, (3.3.19)

while the macroscopic momentum balance equation (3.3.17) becomes
vy
L (P00 =9 - 0po) & (uo((6 +m(1 = ) Dz vy
T

+ (1= D0, V)y,) = L) : Der. ) )dxdr =0,

which is equivalent to the macroscopic momentum balance equation
vy
P00~ = V- (1o((¢ +m(1 = ) D vp)
+ (1= DG, Vo)) — pﬂ). (3.3.20)

in the differential form, the boundary condition (3.3.4), and the initial condition
(3.3.6).
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Lemma 3.11 The limiting functions vy and p satisfy in the domain Qr the homog-
enized momentum balance equation(3.3.3).

Proof We simply repeat the proof of Theorem 1.3 with symmetric change of the
domain Yy onto domain Y;. In fact, to find (D(y, Vf))yf in the domain £27 we look
for the 1-periodic solution V¢, Py of the system (3.3.18) and (3.3.19) in the form

3

V= > VO y)Dyx, 1),
i,j=1

3
Pr—ps=mpo PP (y)Dy(x, 1),
ij=1

where
Dy = 2 (D, + D ( )
ij (X, =~ | —K, — X, , Vf= ) ) )
ij 2 oy, ox; r = (Vr.1, Vr.2, V£3
3 .o
D(x, v) = D Dy(x, 0 I,
ij=1
and ) ) )
v, - (x (D(y, V@ + Ji — P(’-’)H)) =0, yev, 3321)
xVy V@ =0, (V®)y =0, yev.
Then 5
N =1 —ml+ Z (D(y, VP))y, ® JV. (3.3.22)

ij=1

Recall that the homogenized momentum balance equation (3.3.3) is understood as
an integral identity

9
/Q (,O(X)% o+ (uo(g“J + (1 —00) D@, vy) —p]l) D, go))dxdt

:/ V - (¢ po)dxdt
Or

for all functions ¢ € Wé’O(QT), such that ¢(x, ) = 0 on the boundary S2, and
ox,T) =0, xe€Q.
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Therefore the function vy satisfies the boundary and initial conditions (3.3.4) and
(3.3.6). Finally, the solution vy vanishes on the boundary S% for the same reason, as
in Theorem 1.3.

The uniqueness of the problem (3.3.2)—(3.3.6) follows from the energy equality

1d
o )0|Vf|2dx+MO/ ((€J+ (1—)N) : D(x, Vf)) : D(x, v)dx =0
tJo 0

for the homogeneous problem and the properties of the tensor ‘ﬁ{).

3.3.3 Proof of Theorem 3.7

3.3.3.1 The Case A1 > 0.

As in the previous subsection we conclude that the sequences {p?}, {vjﬁ}, {D(x, VJ‘E)}

ow® ow®
{ ;: ],and [SV( ;: )} are bounded in Ly (Q7) and L, (QOr).

Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
Ps» v, and vy such that

pr=p, 1= = xHp" = 1A =)A= mp;,

ow® 92w ov
—_N V’ L N —
ot ar? ot

&

weakly in Lo (Qr) and Lo (Qr) as € \( 0, and

BVS v
e _f %Y
ViV Ty ot

weakly in Wy (Qr).
As in Theorem 1.3 we conclude that vy satisfies the boundary condition (3.3.5).
Note also that
a,(l —)D(x, w®) — 0 (3.3.23)

strongly in Lo (Q7) as ¢ N\ 0.
At the same time there exist 1-periodic in y functions P(X, ¢, y) from L, (Qr x Y),
oV dVy
andV(x, t,y), Vs (x, t,y) from L, (Q; WZI’O(YT)), such that o B_tf € Ly(Qr)and

the sequences {p°}, {v®}, {V]‘?}, {eVv®} and {VVE} converge two-scale in L (Q7) and
Lo(Qr) to P(X,1,y), V(X, £, ), V¢ (X, 1), VyV(X, 1, y), and V V¢ (X, 1) + V, V¢ (X, 1, Y)
respectively.
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For all these functions the statements of Lemma 3.8, Lemma 3.9, Lemma 3.10,
and the boundary condition (3.3.4) hold true.

To find (D(y, Ve)y, in (3.3.17) we have to solve the system (3.3.13) and (3.3.18)
in the domain Y for almost all (x,7) € §27. This system is similar to the system
(1.3.31), (1.3.33), where we simply have to change the domain Y onto domain Y.

Therefore

3

Vi = D> VO @D;x, 1) + Vo) (V - vr(x, 1),
ij=1

3
Pr—ps=po Yy, PP mDy(x. 1) + 1o Poy)(V - vs(x. 1)),

ij=1
where
Yy (X (DG, Vo) — POH)) =0, ] (3.3.24)
x(Vy-Vo+1) =0, (Vo)y, =0, yeY,
and

P = 10o((€ +m(1 = ) D, vp) + (1 — (DG, Vp)y,) —pl
= ¢ (noD(x, vp) — pI)
+ (1= ) (o (mDx, ¥p) + (PO, V) = (P + (L= 0p3)1)1)
= ¢ (roD(x, vp) = p1)
+ (1= ) (10 (9% + (DO, Vo), ®T) : D, vp) = (s + (P = pi)yT)

= ¢ (oD (x, vp) — pI) + (1 — O) (oM, : Dix, vp) — psl),

where

3
= + (DG, Vo)), ® I — <Z P<"f'>> 1017 — (Po)yI®L (3325

i,j=1 Y

All properties of the tensor ‘J‘(J; are the same as those of the tensor 91} in Theorem 1.4.

It is easy to see that the sequence {(1 — ¢)(1 — x®)v®} converges two-scale in
L>(Qr) to the function V& = (1 — ¢(x))(1 — x(y))V, and weakly in L(Qr) to
the function v*) = (1 — ¢)(V)y,. Therefore, the limiting functions vy, v(*), and p;
satisfy the homogenized momentum balance equation (3.3.8), boundary and initial
conditions (3.3.4)—(3.3.6) and continuity equation (3.3.7).

To derive the homogenized momentum balance equation(3.3.9) for the solid
component we pass to the limit in (3.1.14) as ¢ \, O with test functions ¢ =
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h(x, t)¢o (E), where A(x, 1) is finite in §2 for all ¢ € (0, T), and 1-periodic smooth
€

function ¢ (y) is divergence free and finite in Y;:
/ (ah + pshb - Vh)dxdt =0,
r

where

ave
“‘”:/(mat'%+mDuV%:Mme@emmn
Y,

b= —/ pody = const.
Yy

Just as in the proof of Theorem 1.1 we conclude that
Vpr € Lo(27).

One has for the function
t
W® = / Ve (y,x, t)dt
0

the microscopic momentum balance equation

PFWE )
Py = %A WO — PO _Vp(x,1), yeYs, te©T) (3.3.26)
and initial conditions
W)

Jat

9
WO (y, x,0) = (¥.x,0)=0, yeY, (3.3.27)

for almost all (x, t) € £27.
We complete (3.3.26) and (3.3.27) with continuity equation (3.3.14), boundary
condition

t
WOy, x,1) = / ve(x, T)dt, y €y, (X, 1) € 27, (3.3.28)
0
which is a consequence of (3.3.15) and regularity condition

V, V,VeLx(QOr xY).

Let us look for the solution of the obtained system in the form
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t 3t
W = / vix. T)dT + ) / Wy, 1 — D)z(x, 1),
0 i=1 0

3

PO = / oy, 1 — 1)z(x, t)dx,
. 0
i=1

where

3
av
2= Vpux0) + (). 2= Dz e

i=1

Then for i = 1,2, 3 periodic in variable y functions Wl@, Hl.(x) satisfy an initial
boundary-value problem

P2WY 4
P =5 WY -1 (y, 1) e ¥, x(0,7),
vy W =0, (r,0 € ¥, x (0, 1),

o (3.3.29)
Wl‘ (Y» t) = 07 (yv [) € V X (07 T),
W(S)
(5) _ i — —e:
W7 (y,0) =0, ps o7 (y,0) = —e;, ye ¥,

The problem (3.3.29) has been already studied in the proof of Theorem 3.4.
Thus,

3w
VO = vi(x, 1) + Z/ o (y.t — D)zi(x, 1)dr,
i=1 70

and for function v® the Eq.(3.3.9) holds true. In particular, this equation provides
the boundary condition
v(x,00=0, x € 2,

which, in turn, together with (3.3.17) guarantee the initial condition (3.3.6).
The boundary condition (3.3.10) follows from (3.3.5) and (3.3.12).

3.3.3.2 The Case A1 = 0.

The proof of this case completely repeats the proof of the previous case A; > 0,
except for the derivation of the homogenized momentum balance equation for the
solid component. Here we only have to repeat the proof of Theorem 3.4 for a similar
case A; = 0.
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3.4 A Slightly Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

&, = ho, 0 < Ag <00, 1o =0. (3.4.1)

3.4.1 Main Results

Theorem 3.8 Let {w®, p¢} be the weak solution of the problem (3.1.4)—(3.1.13),
1 = 00,

and wé = Ege (W°). Then

(1) the sequence {w} converges weakly in Wé’O(QT) to the function wg, sequences

owe . . ow
and {p ¢} converge weakly in Lo (Q71) and Ly(Qr) to functions v = m

at
oW,
(1-0) (v - ) —0; (3.4.2)

and p respectively and
(2) limiting functions v, Wg, and p solve the system of homogenized equations in the
domain Qr, consisting of the continuity equation

V.v=0, (3.4.3)

and the homogenized momentum balance equation

2
" ov. B, (3.4.4)

(X pa-p?
Pree T° ot
By = ao(1 — ) 9 : D(x, wy)) — pL,

completed with the boundary conditions
P)-e3=—poes, xS, (3.4.5)
wy(x,1) =0, x € §2, (3.4.6)

fort € (0, T), and initial conditions

oWy
ev(x, 0) = (1 — )wy(x, 0) = (1 — C)%(x, 0)=0, xecQ: (347
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(3) the problem (3.4.2)—(3.4.7) has a unique solution.
In(3.4.4)

p=mps+(1—m)ps.

and the symmetric strictly positively definite constant fourth-rank tensor 2y is
defined in Theorem 1.3.

We refer to the problem (3.4.2)—(3.4.7) as the homogenized model (HS)7.
Theorem 3.9 Let {w®, p¢} be the weak solution of the problem (3.1.4)—(3.1.13),

0 < < o0,

and wé = Eg: (WF).
Then

(1) the sequence {w;} converges weakly in Wé’O(QT) to the function wg, sequences
{(¢ + A =)x")weY, {p©), and {(1 = £)x* p©) converge weakly in La(Qr)
and Ly(Qr) to functions w), p, and m py respectively, and (; p+ (11— ;‘)pf) €

1,0
W, (Or).

(2) limiting functions wy, w9, and Dy solve the system of homogenized equations

in the domain Qr, consisting of the continuity equation

V- (w+ 1 -ma-¢ow) =0, (3.4.8)
the homogenized momentum balance equation

32w 2

w 0“wW ~
v ps(1 =) 31‘2S =V.P, (3.4.9)

P =0 (1 =M : D(x, wy) — (p+ (1= O)py)l

for the solid component, and the homogenized momentum balance equation

aw) OW, 4
(1-0(5m—m %) == [ B Gu et =) (Vs
+pe(l — )a2ws( ))d (3.4.10)
pf Dz % 1)dr 4.

for the liquid component, completed with the boundary and initial conditions
(3.4.6)—(3.4.7) for the solid component, and boundary and initial conditions

w.n=0, xeS 1,7, (3.4.11)

ow\)
wh(x,0) = 2

(X0 =0, xe0 (3.4.12)
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for the liquid component, and the boundary condition
P e5 = —poes, (3.4.13)

on the boundary S for t € (0, T) for the solid and liquid components.

In (3.4.9)—(3.4.11) the symmetric strictly positively definite constant fourth-rank
tensor ‘ﬁi is defined in Theorem 1.4, the matrix B (1, 00; t) is defined in
Theorem 3.4, and n is the normal vector to the boundary s2,

We refer to the problem (3.4.4)—(3.4.12) as the homogenized model (HS)s.

3.4.2 Proof of Theorem 3.8

By Theorem 3.1 and the properties of the extension operator Egp: the sequences

ow® ow? ow?
{pe},{(l—{)wf},{(l—g“)]D)(x,wﬁ)}[ ;; ],[(1—4) A],I(l—i)m)()ﬁ WA) ,
’32“,8 ow®

w
ot ot
W]’ and [&MV( ” )] are bounded in Ly (Q7) and Ly (Q7).

Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
w,, and w such that

€ ow ave N v

oW R _
ot ar ot ot

& & __

P’ —=p v

)

weakly in Ly (Qr) and Lo (Q7) as ¢ N\ 0, and

ows oWy
_

at at

W — w;

weakly in Wé’O(QT) as e N\ 0.
As in Theorem 1.3 we conclude that wy satisfies the boundary condition (3.4.6).
Note also that
o, D, w®) — 0

strongly in Ly (Q7) as ¢ N\ 0.
Relabeling if necessary, we assume that the sequences themselves converge.
By Nguetseng’s theorem, there exist 1-periodic in y functions P(x, ¢, y), U(x, t, y),
and V(x, ¢, y) such that
A%
(2) thesequences {p°}, {v*}, {wi}, {eVVv®}, and {VW{} converge two-scale in L (Qr)
and L>(Q7) to P, V, wy(x, 1), V,V, and (V w, + VyU) respectively.
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Lemma 3.12 The limiting functions ws, v, and W satisfy the macroscopic and
microscopic continuity equations

V.v=0, (x,?) € Or, (3.4.14)
(1- X(y))(V wy+V,-U)=0, x,) ey, yey, (3.4.15)
and
Vy V=0, x,1) e 2r,y€Y, (3.4.16)
where

aw,
V. ny) = (¢ +x®U—0O)Vx.t.y) + (1 — x(y))%(x, H., (34.17)

and
OW;s
v=(Vly=¢v+ 1 =-0(V)y, + (1 —m) ;: (x, 1). (3.4.18)
Lemma 3.13 The following equality holds true
(1= OPX, 1,y) = (1 = O)(Ps(x, 1, y) + x(¥) pr(x, 1)), (3.4.19)

where Py = (1 — X(y))P(x, 1y).

The proofs of these lemmas repeat proofs of Lemmas 3.8 and 1.4 respectively,
with evident symmetric changes.

Lemma 3.14 The limiting functions Wy, p, Vy, and P satisfy the macroscopic
momentum balance equation

2

av G 9° Wy
Pf(CE + 1 - C)g(v)yf) + ps(1 — m)v
=V (h0((1 =MD, w) + (DG, V)y,) =pI),  (3:420)

in the domain Qr, the boundary condition (3.4.5), the initial condition (3.4.7) for
the function v, and the microscopic momentum balance equation

Vo (1= 030 (D6 wo) + DG, V) = (P + xpy)T) =0 (34.21)

in the domain Y for almost all (X, t) € §27.

Proof Equation (3.4.20) follows from (3.1.14) after two-scale limit with test func-
tions ¢ = @(X, 1):
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/ - U= OV)y) + po(l —my D). 29 3.4.22
Qr( (,Of(iV (1 =)(V)y;) + ps(1 —m) Bt).g (3.4.22)

+ (Ao ((1 = m) D(x, wy) + (D(y, U))y,) — pI) : D(x, (p))dxdt

__ / V- (¢ po)dd. (34.22)
Or

This last integral identity in the form

]
/ (—prve5r =pV-0+ V- (ppo))dudr =0
Or !

for the finite in £2° functions ¢ provides the boundary condition (3.4.5), initial con-
dition (3.4.7) for the function v, and an estimate

CIV p(x, 1)|2dxdr < CoB>. (3.4.23)
Or

Equation (3.4.21) follows from (3.1.14) after the two-scale limit with test functions
X

¢ = eh(X, o (—), where £ is finite in £2.
e

&

w .
- )} in L2(07)

Lemma B.13 and the boundedness of the sequence H&MV(
result in
Vx, t,y) = v(x, 1). (3.4.24)
Applying the two-scale limit to the equality
&

(1= —x)(v - 2=) =0,

we arrive at (3.4.2). Therefore, the function v satisfies the continuity equation (3.4.3)
and the continuity equation (3.4.15) takes the form

(1—xW)Vy-U=0, (x,n) €7, yeY, (3.4.25)
while the macroscopic momentum balance equation (3.4.22) becomes

ow ad
/ ( — (pfg“v + ps —S) e +/ V - (¢ po)dxdt (3.4.26)
or ot ot Or

+ (Ao ((1 = m) D(x, wy) + (D(y, U))y,) — pI) : D(x, (p))dxdt =0,

(3.4.26)
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which is equivalent to the differential equation

v 92w,

Pt G+ ps =5t = V- (Ro((1 = DG, w) + PG U))y,) —pl)  (3427)

and initial condition (3.4.7) for the function wy.

Lemma 3.15 The limiting functions v, Wy, and p satisfy in the domain Qr the homog-
enized momentum balance equation (3.4.4).

The proof of this lemma repeats the proof of the corresponding statement in
Theorem 1.3.
The uniqueness of the problem (3.4.2)—(3.4.7) follows from the energy equality

2
)dx=0

for the solution wg and v of the homogeneous (pg = 0) problem. This equality is a
result of multiplying equation (3.4.4) by v and integrating by parts over domain Q
with the use of (3.4.2).

1d

@ _ s . . 2 Al %
> Q((l O)ro(NG = Dex, wy)) = D(x, wy) + pr¢ v~ + p(1 C)‘ ar

3.4.3 Proof of Theorem 3.9

3.4.3.1 The Case 1 > 0.

As in the previous subsection we conclude that the sequences {p°}, {(1 — ¢) x*p®},

aow® owe owe 3’we owe
& & s s ~
(Wil (DG, W, [ - ] [ - ] ’D(x, - )] [_8t2 ] and [auv( = )]
are bounded in L (Q7) and Ly (Q7).
Hence there exists a subsequence of small parameters {¢ > 0} and functions p,

Df» Wy, and v such that

P —=p, A=0xp° = (1 =) —m)py,

ow® 3°w® v\
— ey sy — € N
(E+a=0x) 7= =V +0-0x) =3 Py

weakly in Ly (Qr) and Lo (Q7) as ¢ N\ 0, and

ow; oWy
—_

&
wé —~ wy,
s T’ ot

o 1,0
weakly in W;’O(.QT), and wy € W, (£27).



3.4 A Slightly Viscous Liquid in an Elastic Skeleton 129

We also have that
a,D(x, w) - 0 (3.4.28)

strongly in Lo (Q7) as ¢ N\ O.
At the same time there exist 1-periodic in y functions P(x, t,y), U(x, #,y), and
V(x, t,y) such that

A%

(2) thesequences {p®}, {v*}, {w$}, {¢VV®}, and {VW{} converge two-scale in L (Qr)
and Ly (Q7) to P, V, wy(x, 1), V,V, and (V W + VyU) respectively.

For all these functions hold true statements of Lemma 3.12, Lemma 3.13, and
Lemma 3.14.

To find (D(y, U))y, in (3.4.20) we have to solve the system (3.4.15) and (3.4.21) in
the domain Y for almost all (x, ) € §£27. This system is already studied in Theorem
1.4. Therefore the functions wy, w) and py satisfy the continuity equation (3.4.8), the
homogenized momentum balance equation (3.4.9), and boundary conditions (3.4.5)
and (3.4.11).

In fact, the boundary condition (3.4.11) follows from the continuity equation in
the form

/ w - Virdxdt =0 (3.4.29)
or

for any smooth functions ¢ and the boundary condition (3.4.6). The validity of the
boundary condition (3.4.5) has been shown in Theorem 3.8.

ow®
It is easy to see that the sequence [({ +x°1 - {)) 7] converges two-scale

in L, (Qr) to the function V¥ = (¢ + (1 — O)x (y))V.
To derive the homogenized momentum balance equation(3.4.10) for the lig-
uid component we pass to the limit in (3.1.14) as ¢ \( O with test functions

¢ = h(x, t)(po(z), where A(x, t) is finite in Q for all ¢+ € (0, T), and 1-periodic
e

smooth function g (y) is divergence free and finite in Y:

/ (ah + (§p+ (11— g“)pf) b- Vh)dxdt =0,
or
where

A%
ax.0 = [ (o o0+ D0 V) D)) dy € La(1)
f

b= —/ pody = const.
Y,

Just as in the proof of Theorem 1.1 we conclude that
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V(¢p+(1=0ps) € La(Qr).

Forx € £2 one has for the function V&) the microscopic momentum balance equation

vy
— = % AVD v, 1D — v pe (3.4.30)

of
in the domain Yy x (0, T) and initial conditions
VO (x,0,y) =0, ye ¥ (3.4.31)

for almost all x € £27.
The relation (3.4.17) and the smoothness of the function V: V,V,V € L,
(827 x Y), imply the boundary condition

VO, 1,y) =

8;? x,1), (y,t) ey x(0,T) (3.4.32)

for almost all x € £27.
We complete (3.4.30)—(3.4.32) with continuity equation (3.4.16) in the form

V, -V =0, ye vy, (x,1) € 2r. (3.4.33)
This problem has been already studied in the proof of the Theorem 3.5. Therefore,
the limiting functions w,, w, and py satisfy the homogenized momentum balance
equation (3.4.10).
3.4.3.2 The Case ;11 = 0.
The proof of this case completely repeats the proof of the previous case u; > 0,
except for the derivation of the homogenized momentum balance equation for the

liquid component. Here we only have to repeat the proof of Theorem 3.5 for a similar
case 1 = 0.

3.5 A Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

a, = Ao, oy = o, 0 <Xo, po < oo. (3.5.1)
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3.5.1 Main Results

Theorem 3.10 Let {w°, p¢} be the weak solution of the problem (3.1.4)—~(3.1.13).
Then

JwE o 1,0
(1) sequences {w°} and [ ;; ] converge weakly in W, (§27) to the functions w
2we

and v respectively, sequences iW] and {p®} converge weakly in L(Q7)

9%w
and Ly (Qr) to functions e and p respectively;

(2) limiting functions w, v, and p solve the system of homogenized equations in the
domain Qr, consisting of the continuity equation

V.w=0, (3.5.2)

and the homogenized momentum balance equation

3°w ~

P =¢ juoD(x,v)

1
+ (1 =0) (M : Dx, v) + Ny : D(x, w) +/ Myt — 1) : D(x, w(x, 7))dr,
0

completed with the boundary and initial conditions

P-e3 = —poes, x € S, (3.5.4)
wx, 1) =0, x € 5, (3.5.5)
w(x,0) =v(x,0) =0, xe Q; (3.5.6)

(3) the problem (3.5.2)—(3.5.6) has a unique solution.
In (3.5.3)

p(x) = (c00 + (1= C0)m) pr + (1 = ) (1 = m)p,

and fourth-rank tensors My, N1, and N3(t) are defined in Theorem 1.11.

We refer to the problem (3.5.2)—(3.5.6) as the homogenized model (HS)g.
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3.5.2 Proof of Theorem 3.10

9 & 82 &
By Theorem 3.1 the sequences {p°}, {w°}, [ il ], [ w

ot 912
ow® .
]D)(x, ; ) are bounded in Ly (Qr) and L, (Qr).

Hence there exists a subsequence of small parameters {¢ > 0} and functions p,
w, and v such that

], {D(x, w®)}, and

92we 92w

& S N —
or? ot?

P —p
weakly in Ly (Q7) and Ly (Q7) as ¢ N\ 0, and

ow?

o 1,0
weakly in W, (§27) as ¢ \( 0.
Relabeling if necessary, we assume that the sequences themselves converge.
By Nguetseng’s theorem, there exist functions P(x, ¢,y) from L (Qr x Y), and
W, t,y) from LQ(QT; Wé(Y)) that are 1-periodic in y and satisfy the condition

& &

0 d
that the sequences {p°}, {w®}, ’l], {Vw?®}, and {V( ;: )] converge two-scale

ot
inLy(Qr) and Ly (Q7) to P, w(X, ), v(X, 1), (V w+ VyW), and (V v+V, (ﬂ))

ot
respectively.

Lemma 3.16 The limiting functions w and W satisfy the macroscopic and micro-
scopic continuity equations

V.-w=0, (x,1) € Or, (3.5.7)
V, W=0, x,)€Qr,ye?Y. (3.5.8)

The proof of this lemma is straightforward (see also the proof of Theorem 1.11).

Lemma 3.17 The limiting functions w, p, W, and P satisfy the macroscopic momen-
tum balance equation

92w
PO +Vp—V- (¢ oD@, v)

=V. ((1 - ;)(uom]D)(x, v) + X0 (1 —m) D(x, w)))

IW
+V. ((1 - E)(Mo <ID> (y, W)> )+)»0 (D(y, W)y, )) (3.5.9)
Yy
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in the domain Qr, the boundary condition (3.5.4), the initial condition (3.5.6), and
the microscopic momentum balance equation

IW
vy - (Mo x(y)D (y, 7) + 20 (1= x)D@, W) — PH)
=+ (ko x @)D, v) + 20 (1= X)) D, w)). (35.10)

in the domain Y for almost all (x,t) € §27.

Proof Equation (3.5.9) follows from (3.1.14) after the two-scale limit with test func-
tions ¢ = (X, 1):

ow acp
/(a; m V~(¢po)+(pl—§MoD(x,V)):D(x,w))dxdt

= / (uom]D)(x, v) + Ao (1 — m) D(x, w)) : D(x, @)dxdt
7
oW
+ /Q (,uo (D(y, ?»Yf’) + Ao (D(y, W))yx) : D(x, )dxdt. (3.5.11)

This lastintegral identity provides the boundary condition (3.5.4) and initial condition
(3.5.6).
Equation (3.5.10) follows from (3.1.14) after the two-scale limit with test functions

¢ = eh(x, t)(po(f), where £ is finite in £2.
e

To derive the homogenized momentum balance equation (3.5.6) we simply have

to solve the periodic problem (3.5.8), (3.5.10) in the domain Y7, to calculate terms
oW
<]D)( , ?)> and (D(y, W))y,, and substitute these expressions in (3.5.9). But all
Yy

these steps have already been taken in the proof of Theorem 1.11.

The uniqueness of the problem (3.5.2)—(3.4.6) follows from the energy equality

/,o(x)|v(x t0)|2dx+/ / s D(x, v) : D(x, v)dxdt

- /S2 (9% D(x, wix, 1)) : D, wix, 10))dx

1 t
_/O/ D(x, v(x, 1)) : (/ M3t — 1) : D(x, w(x, t))dr)dxdt.
0o Je 0

(3.5.12)

d
for the solution v = B_VIV of the homogeneous (py = 0) problem.
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In fact, the representation

t
/ ID(x, w(x, N|2dx = 2/ / D(x, w(x, 7)) : D(x, v(x, 7))dxdt
Q2 0 Je
implies
0]
/ ID(x, w(x, t0)|*dx < 4o / / ID(x, v)|*dxdt

2 0 JR

10
<4t*/ / ID(x, v)|2dxdt (3.5.13)
0 Je

for 1y < t,.
Therefore, (3.5.12), (3.5.13), and the strict positive definiteness of 91; result in

1o 2 1o
/ /‘]D)(x,v)‘ dxdtgz*co/ /|]D)(x,v)|2dxdt
0 2 0 2

. 1 . . .
for tp < t,. Choosing t,, < = Cp we obtain v = 0 in §2; . Repeating once more we

will prove our statement for a finite number of steps.



Chapter 4
Double Porosity Models for a Liquid Filtration

The liquid domain £2¢, which is a subdomain of a bounded domain §2 with a Lipschitz
continuous boundary S = 942, is defined in the following way. Let K be a unit cube,
K = Z;UZ,Uy,, where Z; and Z; are open sets, the common boundary y. = 0Z;N0Z;
is a Lipschitz continuous surface, and a periodic repetition in R? of the domain Z; is
a connected domain with a Lipschitz continuous boundary. The elementary cell Zf
models a fracture space $2° : the domain £2¢ is the intersection of the cube £2 with a
periodic repetition in R of the elementary cell 8Zs. In the same way we define the
pore space .Q;: K =Yy UY;Uy,, yp is a Lipschitz continuous surface, a periodic
repetition in R3 of the domain Y is a connected domain with a Lipschitz continuous
boundary, and .Q[‘f is the intersection of £2\£2¢ with a periodic repetition in R3 of
the elementary cell £Y. Finally, we put 2! = 2¢ U 22, 20 = .Q\.Q]is is the solid
skeleton, and " = 928 N 927 is the “solid skeleton-liquid domain” interface.

We also may characterize liquid and solid domains using indicator functions
in 2. Let ¢(x) be the indicator function of the domain £2 in R3, that is c(x) =1if
x € 2 and c(x) = 0if x € R3\£2. Let also Xxp(¥) be the 1-periodic extension
of the indicator function of the domain Yy in K and x.(z) be the 1-periodic
extension of the indicator function of the domain Z; in K. Then Xf x) = ¢(x) XC(%)
stands for the indicator function of the domain .Qf (fracture space), xg x) =
c(X) (I = xc(5)xp(3) stands for the indicator function of the domain £2,, (pore
space) and

200 =500 (2. 5) . 20D = %@ + (1= x@) %)

stands for the indicator function of the liquid domain Qf‘s

Let us call such a geometry a double porosity geometry and corresponding math-
ematical model a double porosity model. In this chapter we consider the motion of
an incompressible liquid in an incompressible elastic skeleton, and the motion of a
compressible liquid in a compressible elastic skeleton (Figs.4.1, 4.2 and 4.3).

A. Meirmanov, Mathematical Models for Poroelastic Flows, 135
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_4,
© Atlantis Press and the authors 2014
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EEEE

Fig. 4.2 Double porosity geometry: isolated fractures
We consider the model M5 as the basic mathematical model at the microscopic
level for an incompressible liquid in an incompressible elastic skeleton:
V-w=0, x,0) e 2r =8 x(0,T), 4.0.1)

V-P+p°F=0, (x,1) € 2r, (4.0.2)
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S E @0

.........................................................................

Fig. 4.3 Double porosity geometry: connected fracture space

9

Py ‘Sozﬂ]]])(x, a—vtv) + = 7HD, w) — g1, 4.03)

wx, 1) =0, (x,1) € 2, (4.0.4)

/ gx, dx =0, 1€ (0,T), 7°w(x,0)=0, x € 2, (4.0.5)
2

where
P =pr %%+ ps(1—7%).

For the motion of a compressible liquid in a compressible elastic skeleton as a basic
mathematical model at the microscopic level we consider the model M4

1
—q+V-w=0, (x.1) € 2r, (4.0.6)
q
V-P+p’F=0, (x,1) € 2r, (4.0.7)
5 aw
P— X‘SaMID)( - ) + (1= 7% Dex, w) — (4.0.8)
wx, 1) =0, xe8, te(0,7), 4.0.9)

7Pwx,00=0, x € £2, (4.0.10)
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where

a;=c§25+c§(1—x“).

4.1 Main Results

Definition 4.1 We say that the pair of functions {w®, ¢°}, such that

K ow? °
W eWy? (@r), —— € La((0, T W3 (2)). ¢° € La(927),

is a generalized solution to the problem (4.0.1)—(4.0.5), if it satisfies the continuity
equation (4.0.1) in the usual sense almost everywhere in 2 x (0, 7), normalization
and initial conditions (4.0.5), and the integral identity

! =5 ow’ =5 8
/ / (Ol#)( D (x, W) + Ao (1 — x°)D(x, w )) s D(x, )dxdt “4.1.1)
0 2

T
=/ / (P°F - ¢+ ¢° (V- @) dxdt
0 2

for any vector-functions ¢ € Ly ((O, T); Wé (.Q)).

The homogeneous boundary condition (4.0.4) is already included into the corre-
sponding functional space.

Definition 4.2 We say, that the pair of functions {w‘s, q 5}, such that

K ow? °
w e W, (21). — - e Lo((0.T): W (2)). ¢° < Lo(2r).

is a generalized solution to the problem (4.0.6)—(4.0.10), if it satisfies the continuity
equation (4.0.6) in the usual sense almost everywhere in £2 x (0, T), the initial
condition (4.0.10), and the integral identity (4.1.1) for any vector-functions ¢ €

Ly ((0, T); Wi (2)).

As before, the homogeneous boundary condition (4.0.9) is already included into
the corresponding functional space.
Let

lima, (8) =0, lim 2 = lim 24—
g0 = E s TR {2 T

Throughout this chapter we impose Assumption 1.1, and suppose that
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0 < Ao, c]%, c§<oo, 1 <r < oo,

IACE

To formulate the existence and uniqueness results we need to extend the function w
from 28 to £2: w8 = Egs (WS) (for the definition of this extension see Appendix B):

/ Iwl |2dx < c/ [w? 2 dx, / ID(x, wd)|%dx < c/ ID(x, w)|%dx,
Q 28 Q Q8

where C is independent of § and 7.

2

2
)dxdt =F? < .

92F

912

oF

+
ot

8

Theorem 4.1 There exists a sufficiently small 5y > 0, such that for any 0 < § < ¢
and for any 0 < t < T problems (4.0.1)—(4.0.5) and (4.0.6)—(4.0.10) have unique
generalized solutions and the following estimates hold true

/|w‘s(x,t)|2dx+au/ |]D)(x,w5(x,t))|2dx

+/ ID(x, wox, 1) Pdx < CF?, (4.12)
28

/}V‘S(x,t)|2dx+au/ |]D>(x,V‘S(X»l))|2dx
2 2}

aw’ 2
+/ D (x, a—f(x, r)) dx < CF?, (4.1.3)
2
/ |¢® (x, )] dx < CF2, (4.1.4)
2
ot 2
—I;/ |(W? — w)(x, )| dx
& Q;
o
T I =), n[Pdx < cF?, 4.1.5)
2
aow’
% (v -5 )en] ax
e Jae Jat
o K3 8W(S 2 5
+8—’§/ (V - ats)(x, n| dx < CF7, (4.1.6)
@




140 4 Double Porosity Models for a Liquid Filtration

8
w
where V0 = TS and C is independent of § and t.

Theorem 4.2 Under the conditions of Theorem 4.1 let {w®, q°)} be a solution to the
problem (4.0.1)—(4.0.5) and |1, = 00, or the fracture space is disconnected (isolated
fractures).

Then there exist a subsequence of small parameters {8 > 0}, and functions v, €
Lo ($27)—the limiting velocity of the liquid in pores, v, € Lo($27)—the limiting

velocity of the liquid in fractures, w; € W;’O (827)—the limiting displacements of
the solid skeleton, and qy € Ly (§27)—the limiting pressure in the liquid, such that
aw’ ow’ -
the sequences X; o ] |)(és o ] and {3° ¢°} converge weakly in Ly (27) and
Ly (827) to the functions Vp, v, and mqy, respectively as 6 “\ 0.

o
At the same time the sequence {wf} converges weakly in Wé’o (827) to the function
wsas § N\ 0.
The limiting functions vy, V¢, Wy, and qy satisfy the following relations

oWy oW,

sz(l_mc)mPW’ Ve = me o

fvp (1= my s OV @.1.7)
V=vVv.+V —m = , 1.
cr at at
and the anisotropic Lamé’s system

V.-v=0, (4.1.8)
A V- (B Dwy) — Vg + pF =0, (4.1.9)

in 2 x (0, T) with homogeneous normalization and boundary conditions

/ gr(x,0dt =0, wy(x,1)=0, x€S, t>0. (4.1.10)
2

The fourth-rank constant tensor %(()s) is defined below by formula (4.3.36), p =
mpp + (1 —m)p, m = [¢ [ Xdydz—the porosity of the liquid domain, m, =
/; x Xpdy—the porosity of the pore space, and m. = /; x Xcdz—the porosity of the
Sfracture space, m = m.+(1—m¢)my,. The tensor %(()S) is symmetric, strictly positively
definite, and depends only on the geometry of the solid cells Y and Z;.

We refer to the problem (4.1.7)—(4.1.10) as the homogenized model (DPF);.

Theorem 4.3 Under the conditions of Theorem 4.1 let {w®, ¢°)} be a solution to the
problem (4.0.1)—(4.0.5), uy < oo, and the fracture space be connected.
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Then there exist a subsequence of small parameters {§ > 0}, and functions v, €
L, ($27)—the limiting velocity of the liquid in pores, v, € Lo($27)—the limiting

velocity of the liquid in fractures, wg € W;’O (827)—the limiting displacements of
the solid skeleton, and qr € Ly ($27)—the limiting pressure in the liquid, such that
aw’ ow’
le TS ], ixf ETS ], and {3° ¢°} converge weakly in Ly (227) and
L (827) to the functions Vp, V¢, and mqy, respectively as § 0.

the sequences {

o
At the same time the sequence {Wf} converges weakly in W;’O (£27) to the function
w,as 6 N\ 0.
The limiting functions vp, V¢, Ws, and gy satisfy in Q27 the following relations

(1 = meymy 2 (1= s @.1.11)
v, =0 —-m)m, —, v=¥V —m , 1.
P P 5t ¢ ot
Equations (4.1.8), (4.1.9), Darcy’s law in the form
oW, |
Ve = Me + —B (,ofF — qu), X € $2, 4.1.12)
a2
normalization and boundary conditions (4.1.10), and boundary condition
v-n=0, xe8§, (4.1.13)

where n is a unit normal vector to the boundary S at x € S. In (4.1.12) the strictly
positively definite constant matrix B, is defined below by formula (4.3.18) and
depends only on the geometry of the liquid cell Zy. The fourth-rank constant tensor
%és) is defined below by formula (4.3.36), p = m pp+(1—m) p, m = [¢ [i Xdydz—
the porosity of the liquid domain, m,, = |, x Xpdy—the porosity of the pore space, and
me = [ xedz—the porosity of the fracture space, m = mc + (1 —mc)my,. The tensor
‘BE)S) is symmetric, strictly positively definite, and depends only on the geometry of
the solid cells Yy and Z;.

We refer to the problem (4.1.8)—(4.1.13) as the homogenized model (DPF),.

We obtain the double-porosity model for the absolutely rigid solid skeleton from
the limit of solutions to the model (DPF), as A9 — oo. In this case the liquid in
pores is blocked and unmoving.

Theorem 4.4 Let uy < 00, Ag = nand WAE"), vi”) and q(n) be a solution to the prob-

lem (4.1.8)—(4.1.13). Then there exists a subsequence {ny}, such that the sequence

8W(”k) o
{ 3Yt converges strongly in Wé’o (827) to zero as ny — oo, the sequence

{V,(,"") } converges strongly in L ($27) to zero as n — o0, and sequences {vé"")} and
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{q}nk)} converge weakly in Lo (£27) and L,($27) to functions V., and gy € W21 ’O(QT)
respectively as ny — 00.
These limiting functions solve the problem

oW,

=v,=0, v.= 1 po (oF — Vgr), xe82 (4.1.14)
81’ p E) Mz ) E)

Vve=0,xe€82, v..n=0, xe8. (4.1.15)

We refer to the problem (4.1.14) and (4.1.15) as the homogenized model (DPF)s3.

Theorem 4.5 Under the conditions of Theorem 4.1 let {w®, q°} be a solution to
the problem (4.0.6)—(4.0.10) and pu> = oo, or the fracture space is disconnected
(isolated fractures).

Then there exist a subsequence of small parameters {8 > 0}, and functions v, €
Lo (827)—the limiting velocity of the liquid in pores, V. € Lo (§27)—the limiting

velocity of the liquid in fractures, ws € W;’O (§27)—the limiting displacements of
the solid skeleton, q; € Lo(S27)—the limiting pressure in the solid skeleton, and

8
w
qr € Ly (827)—the limiting pressure inthe liquid, such that the sequences [ X; TS ],

P §
[Xf B_V:] (1 = %% 4% and {3° ¢°} converge weakly in Lo(27) and Lo(27) to

the functions Vp, Ve, qs, and mqy, respectively as § \ 0.

At the same time the sequence {Wf} converges weakly in Wé’o (827) to the function
w,as 6 N\ 0.

The limiting functions vy, V¢, Wy, gs, and gy satisfy in §2 x (0, T) relations (4.1.7)
and the anisotropic Lamé’s system

V. (xo B Dix, wy) + g <c<f>) 4 pF =0, (4.1.16)
1 a(s) (s)
= qs + — g5 + A : D(x, wy) =0, (4.1.17)
s )
1 an 1 dgs
- <L 4+ - —=4V.-v=0, 4.1.18
c]% a2 ot Y ( )

completed with the homogeneous boundary condition
ws(x,1) =0, xe€S. (4.1.19)
In(4.1.16) and (4.1.17) the symmetric, strictly positively definite fourth-rank constant

tensor BY), constant matrices C® and A®, and constant a®® are defined below
by formulae (4.5.23)~(4.5.26), p = mp; + (1 —m) p,, m = [¢ [ xdydz—the
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porosity of the liquid domain, m, = |, x Xpdy—the porosity of the pore space, and
me = |, x Xcdz—the porosity of the fracture space. The tensor AY is | and depends
only on the geometry of the solid cells Yy and Z. The tensor B, matrices C® and

AW and the constant " depend only on the geometry of the solid cells Yy and Zs,
2

and criterion f = —
)no
We refer to the problem (4.1.7), (4.1.16)—(4.1.19) as the homogenized model
(DPF)4.

Theorem 4.6 Under the conditions of Theorem 4.1 let {(w®, q°)} be a solution to the
problem (4.0.6)—(4.0.10), y < 00, and the fracture space is connected.

Then there exist a subsequence of small parameters {§ > 0}, and functions v, €
Lo (827)—the limiting velocity of the liquid in pores, v, € Lo(§27)—the limiting

velocity of the liquid in fractures, Wy € Wé’o (827)—the limiting displacements
of the solid skeleton, q; € Lp(§27)—the limiting pressure in the solid skeleton, and

aw’
qr € Ly (82r7)—the limiting pressure inthe liquid, such that the sequences [ xp o7 ],

ow §
’Xf ” ] {(1 = %% ¢°) and {%° ¢°} converge weakly in Ly(27) and Ly(27) as

8 N\ 0 to the functions vy, V., g5, and mgqy respectively.

At the same time the sequence {wf} converges weakly in W;’O (827) as § (O to
the function ws as § \ 0.

The limiting functions Vp, V¢, Ws, gs, and qr satisfy in 2 x (0, T) relations (4.1.11),
equations (4.1.16)—(4.1.17), Darcy’s law (4.1.12), and boundary conditions (4.1.13)
and (4.1.19).

We refer to the problem (4.1.11)—(4.1.13), (4.1.16), (4.1.17), (4.1.19) as the homog-
enized model (DPF)s.

4.2 Proof of Theorem 4.1

The only nonstandard element here is a proof of estimates (4.1.5) and (4.1.6), which

are the basis of other estimates. 5

To prove (4.1.2) we choose as a test function in (4.1.1) the function A(7) al x, 1),
T
where h(t) =1, Tt € (0,t) and h(z) =0, T € [t, T):

[ bl no)

2 t aw8
+ —)\0 / (- X5)|D(x, wo(x, 1) | dx :/ / p°F - —dxdr.
2 2 0 Je at

2
dxdt
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8

w
Passing the time derivative from —— to F in the right-hand side integral, applying

t
after that to this integral the Holder inequality and the evident estimate

/ x°|D(x, W (x, 1)) t)|dx<C// ( E(X r))

and using the equality
/9(1 — x))|D(x, Wi (x, z))\zdxz/g(l — X)) [D(x, Wi (x, 0)[*dx,

2
dxdr,

we arrive at

J(t)EaMAZX5|D(x, wo(x, t))|2dx+xo [(Z(l—xa)}D(x, wo(x, t))|2dx

t
gCFz—i—/ / |wé (x, 7)|%dxdx.
0 Je

[e]
Next we put wg =w — Wf. By construction wg € Wé (.Q]&s ).

To estimate the integral
I

s _ 812
f_/m [wql“dx

f

we divide it by two parts:

p=I+1, 1;=/ |wp | dx, 1;‘:/95 wp | dx.
P

c

Let G},k) ,where k = (k, kp, k3) € 73, be the intersection of .Q; with a set {x :

e(y +Kk). y € K}. Then 22§ = Uy, .73G5" and

=D k), k) = / N \wi|>dx.

keZ3

next we divide the sets Gl(,k) by two groups:

4.2.1)

(1) the set G[(,k), k € Zy, has no intersection with the boundary between pore and

fracture spaces, and

(2) the set G;,k), k € 71, has an intersection with the boundary between pore and

fracture spaces.

For the first group in each integral lf we change variable by x = ¢(y — yk), then
apply the Friedrichs-Poincaré inequality and finally return to the original variables:
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812 3 =5 |2
[Py = [Py
Gp y®

<& / ID(y, Wox °)[*dy = e*C / ID(x, w)|2dx,
y® ¥

and

8§12 2 812
Z/G(k) W |2dx < & C/m ID(x, w3)|dx.
P f

keZgy

Here wo Sy, 1) = wg (x, t) and C is a constant in the Friedrichs-Poincaré inequality
for the domain Yy C K.

All sets Gl(,k) from the second group are in the ¢ N—neighborhood of the set
Ukez, G,(,k), where N € Z is an integer bound for the Lipschitz norm for y,.. Therefore,

for each G}(,k/) from the second group there is at least one GI(,k”) from the first group
such that

/ [wh|2dx < C(N) / W),
G(k) G(k )
j4 4

and each set of the first group is repeated no more than N times.

Thus,
> /(k) Iwol2dx < CN)N > /(k) W 2dx,
kez, ” 9p keZy” Op
Ir<e’c > / D, (w))|2dx < 2 C / ID(x, w3)|dx. (4.2.2)
kezs G 2}
In the same way we show that
P <scC / DG, w)|2dx. (4.2.3)

2

In fact, as before we again divide the integral ? into the sum of integrals over domains
Gf-k ) and make a change of variables:

X = 0z, wS(x,t):vVO(z,t), /

\w)|2dx = 83 / \W)|*dz.
G z®
For integrals over domains ng) we use the Friedrichs-Poincaré inequality, based on
. ~ . .. . . &
the fact that the function wg vanishes on the some periodic (w1th period S) part of
the boundary 8G£k) with a strictly positive measure, which is bounded from below

independently of 5.
Thus,
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2 2
8
1;? <C@E? + 52)/ ID(x, w))|?dx < C (8— + —> aﬂ/ ID(x, w®)[>dx
Qja a/}, on Q/E

+C(e* +6%) / DG, W) Pdx < CI (@),
0
f

and

/ |w5|2dxg/ |wg|2dx+/ |w§|2dxgc(1(r)+/ Iw®|2dx).
28 28 08 08

S A f s

To estimate the integral
1= / |w [2dx
2

we use the Friedrichs-Poincaré inequality and the properties of the extension w:
I 5/ \wl 2dx < c/ ID(x, wo)|?dx < cxo/ ID(x, w)|2dx < CI(7).
2 Q 28
Gathering everything together we have
/ [wo2dx < CJ(p).
2

Estimate (4.1.2) follows now from (4.2.1) and Gronwall’s inequality. The same
estimate (4.1.2) together with (4.2.2) and (4.2.3) result (4.1.5).
To prove estimates (4.1.3) and (4.1.6) we simply repeat once more for the “time
s

derivative” of identity (4.1.1) and PR

Estimate (4.1.4) for an incompressible liquid is a simple consequence of (4.1.2),
(4.1.3), (4.1.5), and (4.1.6). For a compressible liquid this estimate follows from
the same estimates (4.1.2), (4.1.3), (4.1.5), and (4.1.6) and the continuity equation

(4.0.6).

4.3 Proofs of Theorems 4.2 and 4.3

4.3.1 Weak and Three-Scale Limits of Sequences
of Displacements, Velocities and Pressure

8

w

First, we define the velocity of the liquid in pores as Vf, = X,f TR the velocity
8

0
of the liquid in fractures as vg = Xf a—“; and the velocity of the solid skeleton as
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9 8
v = ;:S . By definition

s

8 s S8\ 8
VO =V, 4 v+ (1= X°)vs. (4.3.1)

N

On the strength of Theorem 4.1, the sequences {¥°4¢°}, {(1 — x%)¢°}, {v°}, {V;}, {Vf,},
{wo}, (v}, and {D(x, w®)} are bounded in L, (£27) and Ly (£27).
Hence there exists a subsequence of small parameters {§ > 0} and functions

af» qs € La(27), ¥, Vp, Ve, Vs € Lo(£27) and wy € Wi" (27) such that

= mg =3¢ =g Vv, Vo=, Vv,

vy — Vg, wf —w,, D, wf) — D(x, wy) 4.3.2)

==}

weakly in L, (£27) and L (£27) as § N\ 0.
Note also that
%, D(x, v°) — 0 (4.3.3)

strongly in Ly (£27) as § N\ 0.

Next we apply the method of reiterated homogenization (see [6, 70] and Appen-
dix B): there exist functions Q¢ (X, t,y,z), Os(X, 1,y,2), V(X,1,y,2), V.(X, 1, y, 2),
Uc(x,t,2z), and U,(X, t,y, z) that are 1-periodic in y and z and satisfy the condition
that the sequences (0 4%), {1 — 7% 4%, (V9 {Vg}, and {D(x, wf)} three-scale
converge (up to some subsequences) to Qr(x,t,y,z), Os(X,1,y,.2), V(X,1,y,2),
Ve(x, t,y, 2), and D(x, wy) + D(z, Us(x, 7, 2)) + D(y, Up(x, 1, y, 2)), respectively.

The sequence {wf} three-scale converges to the function w(x, ).

Relabeling if necessary, we assume that the sequences themselves converge.

Remember that three-scale convergence of the sequence {r°} to the function
I1(x, t,y, z) means the convergence of integrals

s X X
t Jt, —, — ) dxdt
/QTn(x )(p(x - 6))6

—>/ //H(x,t,y,z)gp(x,t,y,z)dzdydxdt,
orJyJz

for any smooth 1-periodic in y and z function ¢ (X, t, y, Z).
By definition the function

(X, 1) = ((IT)y)z,

where
(H)y:/ I1(x,t,y,z)dy, (H)Z:/ I1(x,t,y,z)dz,
K K

is a weak limit in L, (£27) of the sequence {7%}.
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4.3.2 Macro- and Microscopic Equations

We start the proof of the theorem from the macro- and microscopic equations related
to the liquid motion and to the continuity equation.

Lemma 4.1 For almostall (x,t) € 27,y € Y and z € Z, the weak and three-scale
limits of the sequences {3° ¢°}, {(1 — ¥°) ¢°}, {v®}, {Vf.}, {vg}, and {wf} satisfy the
relations

Or =qr(x, DXy, 2), Os=0s(1-3%(@.2), (4.3.4)

Vp =0 —me)mpvs, v=ve+ (1 —m)vs, (4.3.5)

Vovx, 0 =0, (x.1) € 2r, v(x,)-n(x) =0, (x,1) € S, (4.3.6)
(1= (V-ws+V, -Ue+ Vy - Up) =0, 4.3.7)

where
X(.2) = xc@ + (1 = xc @) xp(¥),

n(x) is a normal vectorto S atx € S, m = ({X)y),—the porosity of the liquid domain,
my = (xp)y—the porosity of the pore space, and m: = (x.),—the porosity of the
fracture space.

Proof By the properties of three-scale convergence one has equalities
Or =x0 Os=U—x) 0.

Choosing in (4.1.1) a test function in the form ¢ = ¢ hy(t) h(x) 1//(§, ;—(), where
€
Y (y, z) is finite in Yy x Zy, and passing to the limit as § N\, 0 we arrive at

Xy, 2)VyQr =0, or Or =x(y,2) Qr(x,1,2).

Now we repeat once more with ¢ = & ho(t) h(x) ¥ (§, ;—(), where ¥ (y, z) is finite in
s
Yy x Zy, and get

X(y,2)V.0r =0, or O = x(y,2z) Or(x, 1),

which results in (4.3.4).

Equalities (4.3.5) are a simple consequence of (4.3.1), (4.1.6) and the properties
of three-scale convergence.

The continuity equation and boundary condition in (4.3.6) follow from the conti-
nuity equation (4.0.1) in the form
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/ V0 Vydx =0, (4.3.8)
2

which holds true for any smooth functions v, after passing in (4.3.8) to the limit as

5\ 0.

The three-scale limit in continuity equation (4.0.1) in the form
(1-35Hv-v0=0
results in the continuity equation (4.3.6).
Lemmad4.2 LetV = (Vedy. If p = 00, then
V=V, =v(x 1) x(z), Ve=meVvs. (4.3.9)

If uy < oo, then for almost every (X,t) € 27 the function Visal -periodic in z
solution to the Stokes system

- %AZV = —V.[T — Vs + pF, (4.3.10)

V.-V =0, (4.3.11)
in the domain Zy, such that
V(X,1,2) = Vs(X, 1), ZE V. (4.3.12)

Proof Firstly we derive the continuity equation (4.3.11). To do that we put ¢ =
X
8o (x, E) in the integral identity (4.3.8), pass to the limit as § \ 0, and get identity

/ / V - V.yo(x, 2)dxdz = 0,
2Jz

which is obviously equivalent to (4.3.11).
If wo = o0, then (4.3.9) follows from estimate (4.1.6).

Let now wy < oo. If we choose in the integral identity (4.1.1) a test function ¢ in
the form ¢ = ho(t)h1(x) W(;—(), where supp hy C $2, supp ¥ (z) C Zp, V. - ¢ = 0,

and pass to the limit as § N\ 0, we arrive at
[ 0¥ (VD) + 4 (T 0+ 6 gz =0,
2J7

In the same way as in Chap. 1 we may show that V gy € Ly (£27).
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The desired equation (4.3.10) follows from the last identity, if we pass derivatives
from the test function to V and take into account (4.3.11). The term Vzﬁ appears
due to condition V, - ¥ = 0.

Finally, the boundary condition (4.3.12) follows from the representation

(Viy =V + (1= xe@) vs(x, 1),

and inclusion (V), € W% (Z) for almost every (x, t) € £27.

Now we derive macro- and microscopic equations for the solid motion. Let

1 ~ 1 -
éf = )L_Oqf» Os = ()\_OQS - éf) (I =), gs= {00z,
where
Wz, = (1 = x)¥)z, (P)y, = ((1 = xp)¥)y.
Then

1 1 ~ ~
A_(Qf +4q5) = )»_(<(1 - )?)(Qf + Qs))z)y = <(21f + Qs)z)y = Elf + gs
0 0

Lemma 4.3 Functions wy, U, Uy, gy, and gy satisfy in 27 the macroscopic
equation

2 ((1 —m)Dx, wy) + (1 —mp)(D(z, Ue))z,

+ (D, Uy) — 0)z)y, — s 11) n )%F —0.  (43.13)

where
ﬁ:mpf—i-(l—m)ps and leglf"f'zls-

To prove this lemma we put in (4.1.1) ¢ = ho(?)h;(x), where h is finite in £2, and
pass to the limit as § N\ 0, taking into account (4.3.3).

Lemma 4.4 Functions w,, U, U, and QS satisfy in Zs and almost everywhere in
7 the microscopic equation

Ve (1= % (1 = mp) (Dx wo) + DGz, U,) (4.3.14)

+ (D, Up) — Os ]I)yx)) =0. (4.3.14)

To prove this lemma we put in (4.1.1) ¢ = Sho(t)h (X)wo(;—(), where h; is finite in
£2, pass to the limit as § \( 0, and use the equality
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(1= =0 = xp)1 = xe).

Lemma 4.5 Functions w,, U, U, and QS satisfy in Y5 and almost everywhere in
Q71 X Zg the microscopic equation

v, - ((1 — %) (D(x, wy) + D(z, Up) + D(y, Uy) — qu)) —0.  (43.15

To prove the lemma we put in (4.1.1) ¢ = eho(t)h1(x) <p0(§) 01 (5), where hy is
e
finite in £2, and pass to the limit as § N\ 0.

4.3.3 Homogenized Equations

The derivation of homogenized equations is quite standard (see previous chapters).
For the liquid motion we solve the microscopic system (4.3.9)—(4.3.12), find V as an

oWy
operator on Vg and a—;, and then use the relation v, = (V) Z- That is, holds true
the following lemma.

Lemma 4.6 Let (1| < 0o. Then functions V¢, Vs, V.= Ve + (1 —m¢) vy, and gy satisfy
in the domain 27 the usual Darcy system of filtration

1
Ve = me vy + —B (ofF — Vgr), (x,1) € 2r, (4.3.16)
w2

V.v=0, xe£2, v.n=0, xeS, t>0, 4.3.17)

where n is a unit normal vector to the boundary S at x € S.
If the fracture space is connected, then the strictly positively definite constant
matrix B, is defined by the formula

3

1 .
() — .
BO = S (Vi) @ (4.3.18)
i=1

In (4.3.18) functions Vi(z), i = 1,2, 3, are solutions to the periodic boundary-value
problems

1 i i i
50NV + VI =, Y,V =0, z€7, (4.3.19)

Vi=0, zey.,

where €;, i = 1,2, 3, are the standard Cartesian basis vectors.
If the fracture space is disconnected (isolated fractures), then the unique solution
to the problem (4.3.19)is Vi =0, i = 1,2,3, B© =0, and
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Ve = Mg V.

The same procedure is applied to the solid motion. First, we solve the microscopic
equation (4.3.15) coupled with a continuity equation (4.3.7), find U, as an operator
on D(z, U.) and D(x, wy), and substitute the result into equation (4.3.14). Next, we
solve the obtained microscopic equation and find U, as an operator on D(x, wy).
Finally, we substitute expressions U, and U, as operators on D(x, w,) into macro-
scopic equation (4.3.13) and arrive at the desired homogenized equation for the
function wy.

Lemma 4.7 Functions ws and U, satisfy in Zs the microscopic equation
_ (o . —
Ve - ((1 x) Ay (Dx, wy) + Dz, Uc))) =0, (4.3.20)

where fourth-rank constant tensor 2 is defined below by formula (4.3.23).

Proof Let

o 1wl awl
Dl]zz(a_xs—i_a_;)a dZV'wS5 wS:(W§7W?9 Wf))
Cj i

i 1{aUul Ul Lo s
Di@>:§(¥;+az;)’ d@=V: U, Ue=(Ue, U, Up),

DY

(p)ZDij-l-Dij dpy=d+d .

()

Asusual, Eq. (4.3.20) follows from the microscopic equations (4.3.14) after we insert
into (4.3.14) the expression

(D, Up)y, — Q5,1 = €+ (D(x, wy) + D(z, Up)).

To find the exact form of this last expression we look for the solution U, to the system
of microscopic equations (4.3.15) and (4.3.7) in the form

3 3
U, = > UlyD, +Uyyd ), Q=D 0l D], +0yy)d )
ij=1 ij=1
and arrive at the following periodic boundary-value problems in Y;:

Vo (=X (D0, U +37 - gf)) =0, yev.

. . (4.3.21)
Vy Ul =0, (U)y,=0, ye¥,,
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v, ((1 — %) (DG, U) — 0 H)) =0, ye7¥, } (43.22)

Vy-U)+1=0, (U))y, =0, yeY,.
In (4.3.21)

o1 - 1
JV = E(HU + T = E(ei e +e®e).

Problems (4.3.21) and (4.3.22) are understood in the sense of distributions. For
example, the first equation in (4.3.21) is equivalent to the integral identity

/Y (1 = %) (DG, UD) + I — Q1) : D(y, )y = 0

for any smooth and periodic in y function ¢(y).
The solvability of the problem (4.3.21) directly follows from the a priori estimate

[ vugeas<c.

s

and the this is a consequence of the energy identity
/ (]D)(y, Ul : D@y, U) +J7 : Dy, U;‘{))dy —0.
Ys

To solve the problem (4.3.22) we use a 1-periodic function V¢ € W%(YS) such that
Vy-Vo+1=0, ye¥,

(see proof of Theorem 1.4).
Then the solvability of the problem (4.3.22) follows from the energy equality

/y (PG, U : (PG, UD) - DGy, Vo)) )dy =0,

K

which is aresult of substituting the test function ¢ = (US —V)) into the corresponding

to the first equation in (4.3.22) integral identity.
Thus,

3
(D(y, Up)y, = (@sv,T = D (D, UN)y, DY) + (DO, Uy, d )
ij=1

- Zﬁ(Q};’A)YSDZ,))H—((ngd(”))ﬂ

i,j=1

—

<

3
= > (@6, Uy, - @y, 1) D,
ij=1
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+ (D6, Uy, = (@) 1) d )

3
= > (0. Uiy, @17 - @)y, 10 1Y)

i,j=1

: (Do, W) + D Uo)
+ (L0, Uy, 81— (@)y, 1®1) : (Dix, w) + Dz, Uo))
= (e} + ey + el + ) ¢ (Dl wy) + Dz Vo))

= (ID)(x w,) + D(z, U, ))

where

3
A = U —my) D T @I +ef =1 —mp)3+ e
ij=1

3
3= el ¢ =l +e)+ e+,

ij=1
e = 2 (D0 UD), @7, &) = (Do, Uy, ® L
i,j=1
3 B )
- @ Iell, & =—()yIelL (4.3.23)
ij=1

Lemma 4.8 Tensors Qléc) and Cg) ) are symmetric and the tensor Ql(()c) is strictly pos-
itively definite, that is for any arbitrary symmetric matrices { = (&;;) and n = (n;;)

@Y 2)in= @R n) ¢, and (A :¢):¢ = BE:0),

where positive constant B is independent of ¢.

Proof To prove the lemma we need some properties of the tensor Ql(()c)

from the equalities

, which follow

—(Q0)y, = (D, UY) : Dy, U}y, (4.3.24)
(D, UY) : D@y, Up))y, =0, (4.3.25)
(@), = —(D@, Up) : Iy, (4.3.26)

(D(y, UD) : Dy, Uy, + (J7 : Dy, UY))y, =0, (4.3.27)
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foralli, j, k, I =1, 2, 3.

Equation (4.3.24) is an integral identity, corresponding to the first equation in
(4.3.22) with the test function UY.

Equation (4.3.25) is an integral identity, corresponding to the first equation in
(4.3.22) with the test function U['f.

Equation (4.3.26) is an integral identity, corresponding to the first equation in
(4.3.21) with the test function Ug. Here we additionally took into account relations
(4.3.25).

Finally, equation (4.3.27) is an integral identity, corresponding to the first equation
in (4.3.21) with the test function U,’jl .

Next we put

3 3

ij ij 0 0 0 0

Y, = E UZ;,-]-, Y, = E Ugnl-j, Y, =u,trg, Y, =u,trn.
ij=1 ij=1

Then
e it = DY)y, €L = Dy (Y,

and equations (4.3.24)—(4.3.27) take the form

(€4 ¢) s = Dy(YD) : DY), (4.3.28)
(Dy(Yy) : Dy(Y))y, =0, (4.3.29)
@h:¢)n=(cin) ¢ (43.30)

(@) ) 1 ¢+ (Dy(Ye) : Dy(Y,))y, =0. 4.331)

Therefore,

(@5 :¢) s = =m0+ (& :¢) :n = DY)y, : ¢
+ Dy (YD)y, : 0+ 1 (Dy(Y))y, + (Dy(YD) : Dy(Y))y,
+ (= mp)¢ .

Taking into account (4.3.29) and (4.3.31) we finally get

@& 1 ¢) = (A —mp¢ 0+ DE. YD) : DO yD)y,
+ (D, YD)y, 1 ¢+ (DG, YD)y, : n+ (DG, ye) : DG Yy,
+¢ (DO, YY)y, + 1t (DO, Y))y,
= (DO, Yo +¥D) +¢) : (DG, Yy + Y0 + 1)), - (4.3.32)
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Equations (4.3.32) and (4.3.23) show that tensors Ql(()c) and Qg’ ) are symmetric:

(Qléc) : ;) n= (Q(((f) :17) e (QZ(()p) :;) n=—{0—-mp¢ :;‘—I—(Q[(()C) :§) .
In particular,

@& ¢) 0 = (D, Y, +Y‘§) +¢): (DO, Y + YD) + ¢))y, >0,

and 2 is strictly positively definite.
In fact, if (21(()0) : ¢9) : ¢% = 0 for some ¢°, such that ¢° : ¢¥ = 1, then

D@y, Y,0 + Y?O) +:%=0.

The last equality is possible if and only if the periodic function Y0 + Y?o is a linear
one. But due to the geometry of the solid cell Y it is possible only if

Y oY) + Ygo (y) = U° = const.

On the other hand, the function

3
Uy) = > U] +udy) e’
ij=1
is a solution to the problem

Vv, (=) (PO, U + = 0')) =0, yev,
Vy U4t =0, (U)y, =0, yeV,.

Therefore % = 0, which contradicts the supposition.

Lemma 4.9 Functions wy and qy satisfy in 21 the homogenized equation
V. (,\0 BY : Dx, wy) — qfﬂ) +pF=0, (4.3.33)

where fourth-rank constant tensor %(()S) is defined below by formula (4.3.36).

Proof Following the standard scheme, we look for the solution to the microscopic
equation (4.3.20) in the form

3
Uc(x.t.z) = > Ul(@)Dy(x. 1),
ij=1
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where functions Uéj satisfy in Z the periodic boundary-value problem

v, - ((1 — 2 AL+ (D(z, UY) +Jij)) =0, (Ul =0, (4.3.34)

S

which is understood in the sense of distributions. Thus

3
D Uz = (D (P Uz @ 1) : Dix, wy) = € 2 Dix, wy),
ij=1
3 . .
¢ = > (DG UD)z ® 17, (4.3.35)
ij=1

and
(((D(y, U,) — ésD)Y_)ZS = QZ(()”) : ((1 — me)D(x, wy) + (D(z, Uc))ZS)
= ¢ ((1 = m)D(x, wy) + € Dex, wy)
= (1 =m)3+ef) : Dix wy)

= (@ =myed + e ef) : Dix, wy),

BY =1 -mI+ A -—mpe + 1 —mye? +ef - ¢
=1-mJ+(L-—mp)3I+el) e + 1 —m)el
—(1-mI+2A7 ¢ + (1 —m)ed
= (1 —m) (1 =mp) 3 +ef) +2 : ¢
= (1 =—m) AP +2AL ¢ =AY (1 —m) I+ €),

where we have used equalities

(I-m)y=(1 _mp)(l —me)

and
J:A=A:J=2A

for any fourth-rank tensor 2.
Finally
B =AY (1 —m) I +€Y), (4.3.36)

where € is defined by (4.3.35).

Lemma 4.10 The tensor %(()S) is symmetric and strictly positively definite.
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Proof To prove the second statement of the Lemma we use the equality
(o) . 7yy - ki
(A7 = D(z, UY)) : D(z, Ug)dz
Zs

+ / @A : Dz, I9) : D(z, U)dz = 0, (4.3.37)

Zy

which is simply the integral identity with the test function Uf.l , corresponding to the
differential equation (4.3.34).

Let
3 B 3
= Z Ulcjé‘ijv Z 771]
ij=1 j=1
Then (4.3.37) takes the form
(AF : D Z0)) : D Zy)), +((QAF DG Zy) :¢), =0. (4338
Also note that by definition
¢t = (D, Ze))z, (4.3.39)

Relations (4.3.38) and (4.3.39) result in

(‘B(()s) ) in=>1- mc)(%(c) L)+ ((Ql(()c) : Q(()C)) : g“) iy
=1 —m)(AF :¢) 10+ (A 1 (DG Zo))z,) 10
=1 =m) @A 1 ¢) s+ (A D Zp)) : D, Zy)z,
@ D@ Zy) Oz + @A (DG Ze)z)
=2 : (DG Zo) +¢)) 1 (D2, Zy) + 1)),

which proves the symmetry of %(()s).
In particular,

(88 n) 0 =((2: (D) +0) D@z +0)), =5 (n:)

s

4.4 Proof of Theorem 4.4

The homogenization procedure proves the existence at least one (weak) solution to
the problem (4.1.8)—(4.1.13). But we also may prove the correctness (uniqueness
and existence of the solution) of the problem (4.1.8)—(4.1.13) directly,using basic a
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priori estimates

t 1
n / / Vv (x, 7)|2dxdt + — / |vq}”) (x, )|dx < CF?. (4.4.1)
0 Je n2 J

8qf(.n )

To derive (4.4.1) we multiply the continuity equation (4.1.8) by , integrate

by parts over domain 2, express the velocity using the representation (4.1.11) and
Darcy’s law (4.1.12). Next we differentiate (4.1.9) with respect to time, multiply by
v inte i :
s ,integrate by parts over domain §2, and sum results:
1 q;"
/ Ao D(x, vy) : (A(S) : D(x, Vs)) + —(IEB(”) -(V q’(p"))) Av=L) ) ax
2 “2 ’

ot
(n)
. dq dF
- / P wo.Fy. (VL) + 55 v, | ax. (4.4.2)
o\ 12 at ot

Estimate (4.4.1) follows now from (4.4.2), and Holder, Gronwall, and Korn’s inequal-
ities.

Finally, we apply the standard compactness results to choose the convergent sub-
sequences {VE."")} and {q("")}, and pass to the limit as ny — oo in integral identities,
corresponding to (4.1.8) and (4.1.9).

The estimate (4.4.1) and the representation (4.1.11) also guarantee the strong
convergence of {v\”} and {Vl(,")} to Zero as n — oo.

4.5 Proofs of Theorems 4.5 and 4.6

As in the proofs of Theorems 4.2 and 4.3 we conclude that there exists a subsequence
of small parameters {§ > 0} and functions gy, g5 € L(827), V, Vp, Ve, Vs € Lo(827)

and wy eWé’O (£27) such that

8 =a =30 =g Vv, v, Vv
Vv W= w, DG, wd) = D(x, wy) (45.1)
weakly in Ly (£27) and Lo (£27) as § N\ 0, and
%’ @, D(x, v°) — 0 (4.5.2)

strongly in Lo (£27) as § N\ O.
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For uy = oo relations (4.1.7) hold true, and for p, < oo relations (4.1.11) hold
true.

At the same time the sequences {3° ¢°}, {(1 — x%) ¢°}, {v®}, {Vg}, and {D(x, Wf)}
three-scale converge (up to some subsequences) to Q¢ (X, t,y, z) = (1/m) gr(x, 1)
Xy 2), Os(x,t,y,z) = (1 — x)Qy, V(X,1,y,2), Vc(x,1,y,2), and D(x, wy) +
D(z, Ue(x, 7,2)) + D(y, Up(x, 1.y, 2)) respectively, and the sequence {w?} three-
scale converges to the function wy(X, ).

These functions satisfy micro- and macroscopic equations (4.3.10)—(4.3.15), and
additional micro- and macroscopic continuity equations and the boundary condition

1 dgr 1 dgs
——F4+5—4V.v=0, v.n=0,x€5, (4.5.3)
¢t t c; e
1
&+ —0(V-wg+V, - Uc+V, -Uy) =0. (4.5.4)
N

The equation (4.5.3) is derived in the usual way (see Chaps.1 and 2), and the
Eq.(4.5.4) is just a three-scale limit in the continuity equation

(1—”)(2(1 iV w)=0

for the solid component.
Equations (4.3.10)—(4.3.12) result in Darcy’s law (4.1.12) as in Theorem 4.2.
The dynamics equations for the solid component follow from Egs.(4.3.13)—
(4.3.15) and the Eq. (4.5.4).

Lemma 4.11 For almost all (x,t) € Q27 functions w, U, and gy satisfy in Z the
microscopic equation

Ve (1= (2 : (D, W) + D Up) +,C9)) =0, (455

where the constant forth rank tensor A€ and the constant matrix C) are defined
below by formulae (4.5.8) and (4.5.9).

Proof Let

» _ » _ 1
TV =D(x, wy) +D(z,Ue), d¥V =V -wy +V,-Ue + ﬁCIf,

Z T g0

i,j=1

>»|W
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As usual, Eq. (4.5.5) follows from the microscopic equations (4.3.14), after we insert
into (4.3.14) the expression

(Dy(Up) — Oy, = €V 1 (D(x, wy) + D(z, Up)) + g C©.

To find the exact form of this last expression we look for the solution U, and O; to
the system of microscopic equations (4.3.15) and (4.5.4) in the form

—0, =8V, -Upy+ 4P, U,

3
= > VPN T + VO () a?,
ij=1

and arrive at the following periodic boundary value problems in Yj:

v (=) (V) + 37) + B (9, - Vi T)) =0, (4.5.6)
v (=) @V + 8V, VO + D)) =0 (4.5.7)

with the following normalization conditions

Vi), =0, (V;")y, =0.

s

Equations (4.5.6) and (4.5.7) are understood in the sense of distributions. For
example, the Eq. (4.5.6) is equivalent to the integral identity

/Y(l — 1) (DO, V) +19) + B (Vy - VI T) : D(y, @)dy =0

for any smooth periodic in y function ¢(y).
The solvability of (4.5.6) and (4.5.7) is already discussed in previous sections.
Thus,

3
(D@, Up) = Oyl)y, = > (D@, Vi)y, TP + (D, VE))y, dP
ij=1
3

+B( DAV VDY TP )I+dD B (v, VO 4 1)y, T
ij=1

3

= > (1@ V) + V-V, ) 1)
l:

+dP (D@, V) + B (Vy - VI + DDy,
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w

= ( D UDE. V) + V- VPT)y, Jff) . T®
i,j=1

+ ((]D)(y, VO 4 89, - VO 4 Dy, ®H) L T®
1
+ ir (DG, VO + B(Vy - VI + DDy,

—¢® . Tw g]f (C(”),

where
A = (1 —my)J+ P, (4.5.8)
1
cO = ’E(D(y, VO)+8(Vy - VO + DDy, (4.5.9)
and 5
¢? =3 U V) + Y-V Ly, @1 + fCORL
ij=1

Lemma 4.12 Tensor A€ is symmetric and is strictly positively definite, that is for
any arbitrary symmetric matrices { = (¢;j) and n = (n;;)

@AD:g)in=2D )¢, and (AD:¢): ¢ = a0,

where positive constant o is independent of .

()
0

Proof To prove the lemma we need some properties of the tensor 2, ”, which follow

from the equalities

=B (Vy - VO)y, = (Dy(VD) : DUV, + BI(Vy - VIONT, - VID))y,,
(4.5.10)

—B(Vy - VD)y, = (V) : Dy(V))y, + B((Vy - VNV, - VD)),
(4.5.11)

—(Dy(V) : 1)y, = (Dy(VI) : Dy(ViN))y, + BL(Vy - V)V, - VID))y,,
(4.5.12)

_(Dy(V](,kl)) SJij>Yx — <Dy(Vl(,lj)) . Dy(V,(,k[)»n + B{(V, ~V§)kl))(Vy 'V,(,lj)»Yy
(4.5.13)

foralli, j, k, I =1, 2, 3.
Equation (4.5.10) is an integral identity, corresponding to the Eq. (4.5.7) with the
test function V[(,O).
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Equation (4.5.11) is an integral identity, corresponding to the Eq. (4.5.7) with the
test function V[(,U).

Equation (4.5.12) is an integral identity, corresponding to the Eq. (4.5.6) with the
test function V,(,O).

Finally, Eq. (4.5.13) is an integral identity, corresponding to the Eq.(4.5.6) with

the test function V[gkl).

Next we put

3 3
Ye=2 Vi, Yy=2 Viiw,
i,j=1 i,j=1

Y =VPws, Y)=VPun
Then equations (4.5.10)—(4.5.13) transform to

B(Vy - Yoy, trg + (Dy(Y)) : Dy(Y)))y,

+ BV - YD) (Vy - X))y, =0, (4.5.14)
B(Vy - Yy, tre + (Dy(Ye) : Dy(Y))y,

+B((Vy - Y (Vy - Y]y, =0, (4.5.15)

Dy (YD), : ¢+ (Dy(Ye) : Dy(Y))y,
+ BV - Y)(Vy - YD)y, =0, (4.5.16)

(Dy(Yp))y, : ¢+ (Dy(Ye) : Dy(Yy))y,
+ B((Vy - YO (Vy - Yy))y, =0. (4.5.17)

Thus,

@)= =mp¢n+ (€ :¢)
=1 =m0+ D, Y))y, : n+B(Vy - Yoy, try
+ (DG YD)y, : 4 B(Vy - YQ)y, trn+ B (1 —my)trg try.

Adding to the right hand side of the last equality the left hand side of (4.5.14)—(4.5.17)
we finally get

(A€ 1) i =((DG, Ye + YD) +¢) : (DG, Y, + Y9 + 1))y,
+B((Vy - (Y + YD) + 1) (Vy - (Y, + YO + trn))y,

This representation proves the symmetry of ). In particular,
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@A g) 0 =(DO. Y + YD) + ) : (DO Y + YD) + £))y,
+B((Vy - (Yo + YD) + ) (Vy - (Yo + YD) +1rE)), >0,

which proves that () is strictly positively definite.

Lemma 4.13 Functions ws and qy satisfy in 27 the homogenized momentum
balance equation

V- (0 BY : D(w,) + ¢, CV) + HF =0, (4.5.18)

and the pressure q;s in the solid skeleton is defined by

1 1
——qy=—a" g + A : D(wy). (4.5.19)
c Ao

In (4.5.18) and (4.5.19) the constant forth rank tensor B, constant matrices C®
and A, and the constant a® are defined below by (4.5.23)—(4.5.26). The tensor

B, matrices C® and A, and the constant a'® depend only on the geometry of
2

c
the solid cells Yy and Z, and criterion B = )L—g
0

Proof As usual, we look for the solution to the microscopic equation (4.5.5) in the
form

3
Vex, 1,2) = > VP @)DV (x, 1) + V¥ @) (x, 1),
ij=1
where )
O A 1 2 3
Dlj:z(a_xjs—}_a_xls)’ wS:(Ws7W59 Ws)a

and functions VEU) and Véo) satisfy in Z following periodic boundary value problems

v, - ((1 — %) A9 : (D, VD) +Jff)) =0, (V@), =0, (4.5.20)

V.. ((1 — X (A : Dz, VO) + (C(C))) =0, (VO), =0, @521

which are understood in the sense of distributions.
Therefore,

3
DG U0z =( D G VP))z ©17) : Dix, w)

ij=1
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+3r (D@ V)z, = A - D(x, wy) + g C},

3
A0 =D D VM @17, € = D6 V), (45.22)
ij=1

and
(DG, Tp) = OsT))y )y =€ 2 ((1 = m)Dx, wy) + (D, Vo)) z,)

+3p (1 = m)CO =P ((1 = me)D(x, wy)
+29: Dx, wy))
+3r (€? : P + (1 = me)C©)

=e® (1= mo) T+ 2A) : Dex, wy))
+3r (€P 1 P + (1 = me)C©)

= ((1 —me)e® 4 ¢ . ngc)) : D(x, wy)

+3r (€Y + (1 —m)C©).
Coming back to the macroscopic equation (4.3.13) we see that

BO =1 =m I+ A —m) A + (1 —m)e® + ¢ .y
=1 —m 3+ (1 —mp)I+€P): A + (1 —me) P
=1-m3I+A A + (1 —m)e?
= (1 =mo) (1= mp 3 +€P) + 2@
= (1= m) A+ A A7 = A (= m) 3 +2A).
where we have used equalities (1 —m) = (1 —mp)(1 —m¢)andJ: A =A:J=2

for any forth rank tensor 2.
Thus,

BO = A© - (1 —mp) I+ 2. (4.5.23)
In a completely analogous way, we obtain

mCY = (1 —my)CP +¢? :CY 4 (1 —m)CO —1
= (1 =mp)I+€P): CY + (1 —=m)CO —1
=29 :CY + (1 —m)CO — 1.



166 4 Double Porosity Models for a Liquid Filtration
Therefore,
mC® =2© . CY + (1 —m)CO - 1. (4.5.24)

To calculate the pressure in the solid component we use the macroscopic continuity
equation for the solid component

1
— s = (I =m)V-wy+ (I —mp)(V; - Ue)z, + ((Vy - Up)y,)z,,
N

which follows from the microscopic continuity equation (4.5.4) after integration over
Y, and Z;. Next we have

(Vy - Up)z, = AP 1 (D(x, wy) + D(z, Up)) +a? Gy,

where
3 . ..
AP — z (Vy - VI(JU)>Ys IV + (V- VI(;O)HY I,
ij=1
L )
a _E< )7'Vp )YJ’
and
(V) - Uply)z, =A% : ((1 = mDex, wy)
+ (DG Uo))z,) + (1 = m)a® gy.
Thus,
1
——qs =1 —m)I: D, wy) + (1 —m)AP : D(x, w)
N
+ AP Dz, Ue))z + (1 — me)a? Gy
= (1 —m)A : D(x, wy) + A 1 (D(z, Ue))z, + a' g
—A© . ((1 — mo)J + (D(z, Ue))z ) ++a Gy,
where
A = AP (1 —mp)I, a9 =a? (1 —m).
Since

(D(z, Up))z, = A\ D(x, wy) + g CV,
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then finally one has

1 : . N ~
—c—*qs =A© . ((l —me)J + Qlic)) : D(x, wy) + (A(‘) : (Cis) + a(C))qf,

s

and
A® — A© . ((1 —m)J + 9156))7 (4.5.25)

a® = l(a(c) +A© . @%S)). (4.5.26)
m

Lemma 4.14 The tensor BY) is symmetric and strictly positively definite.

Proof To prove the first statement of the Lemma we use the equality

/ (A2 (D, V) 4+ 39) : D(z, VED)dz = 0, (4.5.27)

s

which is an integral identity corresponding to (4.5.20) with the test function ngl).
Let

3 3
Ze= VP, Zy=2 V.
ij=1 ij=1

Then (4.5.27) takes the form
(A€ : D@ Zo)) : DGz, Zy)), +((AC: DG Zy) 1 ¢), =0. (4528
Note that by definition (see (4.5.22))
A = (D Ze))z,. (4.5.29)
Relations (4.5.28) and (4.5.29) lead to the following chain of equalities
(‘B(S) ) in=>1- mc)(Ql(”) (L) in+ ((Ql(") :Qlﬁc)) : ;) oy
=1 —m)(A:¢) i+ (A (D Ze))z,) 1
=1 —m)(AQ:¢) i n+ (A Dz Ze)) : D(z, Zy))z,

+ (A9 Dz, Zy) : Oz + (A9 (D, Ze))z,) 0
=((&: (D& Ze) +¢)) = (DG, Zy) + 1)),

which proves the symmetry of B,
In particular,

(B ) 10 = (A2 (D& Zy) +n)) : (D@ Zy) + 1)), > 0.



Chapter 5
Filtration in Composite Incompressible Media

5.1 Filtration from a Reservoir into a Porous Medium

5.1.1 The Problem Statements and Main Results

The problem in its simplest setting is modeled by two domains §2¢ and §2 having a
common boundary S (Fig.5.1). The domain £2° models a reservoir and is occupied
by liquid, and the domain £2 models a porous medium. The motion of the liquid in
29 for t > 0 is governed by the non-stationary Stokes system

V.w=0, (5.1.1)

2

9
0pf o =V Py + pre, }P’fzotMID)(x,—w)—p]L (5.12)

at? ot

and the joint motion of the poroelastic media in §2 for ¢+ > 0 is governed by the
model M4 consisting of the continuity equation (5.1.1) and the momentum balance

equation
2

°w
f_ _ =V.P ‘e, 5.1.3
Top 8f2 +p ( )
where 4
P = qum(x, 8—?) (1= x*)roDx, w) — plL, (5.1.4)

and p® = prx® + ps (1 — x°).
On the common boundary §° = 82 N 9£2° for t > 0 the continuity conditions

Iim w(x,?) = lim w(x,1), (5.1.5)
X — X X —> X
xe 0 X € R
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Fig. 5.1 Filtration from 4
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hold true for displacements and for normal tensions. Here n(xY) is a normal vector
to the boundary S° at x° € §°.
We complete the problem with the Neumann boundary condition

Ps(x,1)-n=—p (x,f)n, (5.1.7)

on the part S! of the outer boundary S of the domain Q = £2° U §° U £ (which is
also the part of the boundary 9£2°) for ¢ > 0, the Dirichlet boundary condition

w(x,1) =0 (5.1.8)

on the part §2 = § \E of the outer boundary S for ¢ > 0, and initial conditions
ow
w(x, 0) = E(X’ 0)=0, xe Q. (5.1.9)

In (5.1.1)—(5.1.9) the characteristic function x ¢ (x) of the domain .Q; is given by the
expression
R X
00 = ().
where ¢ (x) is the characteristic function of the domain 2, x (y) is the characteristic
function of the liquid cell Y in the unit cube Y, and e is a unit vector in the direction
of gravity.
Let, as usual,
lim oy, (e) = p lima—“—u
o 0 N0 &2 -
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We use the problem (5.1.1)—(5.1.9) to derive the desired homogenized problem for
the case o = 0 and 0 < u; < oo and will do it in two steps. First we fix 7o and
pass to the limit as ¢ N\ 0, and after that we pass to the limit as o N\ 0.

For the case 0 < g < oo we will use the model Mjs, or, more precisely, the
formal limit as 79 N\ O of the model (5.1.1)—(5.1.9), which consists of relations
(5.1.1), (5.1.4)—(5.1.8), completed with the momentum balance equation

V-Pr+pre=0 (5.1.10)
in the domain £2° for ¢ > 0, the momentum balance equation
V-P+p°e=0 (5.1.11)
in the domain 2 for ¢+ > 0, and the initial condition
w(x,0) =0, xe.QU.Q;. (5.1.12)

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the structure
of the pore space, defined by the characteristic function y (y). We also assume that
S1 is a part of the plane {x3 = 0}, e = —e3, and that the domain Q is a subset of
the half-space {x3 < 0}. Moreover we suppose that S is a C>—smooth surface and
in some small neighborhood of the plane {x3 = 0} it is represented by the equation
D (x1,x2) =0.

The given function p° is supposed to be smooth:

0

/QT (|v PO(x. 1)1 + )v (aai)(x, :)‘2) dxdt = B < oo (5.1.13)

t

Definition 5.1 We say that the pair of functions {w®, p ¢}, such that

& &

oW
ot

& ' 8W &
p° € Lx(07), W, , Vw" € Lo(Q7),

et (t+1=-0Dx°)V

is a weak solution of the problem (5.1.1)—(5.1.9), if it satisfies the continuity equation
(5.1.1) almost everywhere in Q7 = Q x (0, T), the boundary condition (5.1.8), the
initial condition (5.1.9) for the function w?, and the integral identity

w9
/ (—roﬁs h ~—(p+(§]P’f+(l—§)IE”):]D)(x,go))dxdt
or ar ot

— /Q (5% -9 — V- (¢ p%)dxdt (5.1.14)

for all smooth functions ¢, such that ¢(x, t) = 0 at the boundary S 2 and ox,T) =
0,xe Q.



172 5 Filtration in Composite Incompressible Media

In (5.1.14) 5% = (¢ + (1 = O x%)pr + (1 — )1 — xF)ps and ¢ = ¢(x) is the
characteristic function of the domain £2° in Q.

The identity (5.1.14) obviously contains Eqgs.(5.1.2) and (5.1.3), and boundary
conditions (5.1.6) and (5.1.7).

Definition 5.2 We say that the pair of functions {w®, p ¢}, such that

&

W
; ) € La(07),

d
pfeLxQﬂ,wiﬂmex(p+a—;uaD(L

is a weak solution of the problem (5.1.1), (5.1.4)—(5.1.8), (5.1.10)—(5.1.12), if it
satisfies the continuity equation (5.1.1) almost everywhere in Q7, the boundary
condition (5.1.8), the initial condition (5.1.12), and the integral identity

/Q((;Pf+(1—;)lp>):]D)(x,go)+v-(<pp°)—ﬁ8e-<p)dxdz=o (5.1.15)

for all smooth functions ¢, such that ¢(x, t) = 0 at the boundary S%.

Theorem 5.1 Let
P’ =p®). (5.1.16)

Then for all ¢ > 0 and for an arbitrary time interval [0, T'] there exists a unique
generalized solution of problem (5.1.1)—(5.1.9) and

N
max 'L'O —2
0<1<T Jo at

[ (1P anle+ - ox)
or

2 2

a £
T a0 =0 = x5

ot

D(x, Wg)‘z)dx

+‘L'())

a £
D(x, )

2
)dxdz < Co.
ot

(5.1.17)

where here and in what follows, we denote as Cy any constant independent of 1
and .

Theorem 5.2 Under condition (5.1.13) for all ¢ > 0 and for an arbitrary time
interval [0, T there exists a unique generalized solution of problem (5.1.1), (5.1.4)—
&€

(5.1.8), (5.1.10)~(5.1.12) and
/ (I pe 1 e (¢ + (= 0)xF) D(x 8l) z)dxdt
or H ’ Jat

+ Ao max / (1—x%) I DG, wh) Pdx < Co(B2+1).  (5.1.18)

0<t<T J




5.1 Filtration from a Reservoir into a Porous Medium 173
Theorem 5.3 Under the conditions of Theorem 5.1 let
mo =0, 0 < Ao, 10 <00, 1 = 00,

{W®, p*} be the weak solution of the problem (5.1.1)~(5.1.9) and wy = Ege (we)
be an extension (3.2.8) from the domain $2; onto the domain $2.

owe 82 &
Then sequences {w°}, [ ;: ] I(l —-?) 8:§S ] and {p®} converge weakly in
Bzws

L2(Q7) and Lo(Q7) to the functions W, v, (1 — OW’

e — 0.

At the same time the sequence {W; } converges weakly in Wé’o (827) to the function
wsas e — 0.

The limiting pressure p and the limiting velocity v of the liquid satisfy the system

and p respectively as

v
-[Opr-FVp:pfe’ V-v=0 (5.1.19)

in the domain §2q fort > 0.
In the domain 2 for t > 0 limiting functions wg and p solve the homogenized
system, consisting of the homogenized momentum balance equation

~ 82Ws

wh—g =V P+ jpe, (5.1.20)

PY) = 209 : Dix, wy) — p,

and the continuity equation
V. w,=0. (5.1.21)

The problem is completed with the continuity conditions

lim  w(x,1) nx’) = lim S WD) n(x’), (5.1.22)
xes ©F xeay ’

lim PO (x, 1) - n(x’) = — lim  p(x.1) n(x") (5.1.23)
X—> X~ €S XxX—>x’ €8
xe R X € 2

on the common boundary S°, the homogeneous boundary condition
w; =0 (5.1.24)

on the part S? of the outer boundary S, the boundary condition
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p(x, 1) = po(t) (5.1.25)

on the part S(l) = §' N Qg of the outer boundary S, and the boundary condition
P (x, 1) - n(x) = —po()n(x’) (5.1.26)

on the part Sl1 = S''N 2 of the outer boundary S.
In (5.1.20)~(5.1.26) n(x°) is a unit normal to S° (or S}) at x° € S° (or S}),

p=mpys+(1—m)ps, m=/x(y)dy7
Y

and the symmetric strictly positively definite constant fourth-rank tensor N is given
by (1.2.35) (see Theorem 1.3 of Chap. 1).

We refer to the problem (5.1.19)—(5.1.26) as the homogenized model (FCM);.

1
Theorem 5.4 Under the conditions of Theorem 5.3 let g = —, and p™, w'"™, and
n

w§”) be the weak solution of the problem (5.1.19)—(5.1.26).

Then the sequence {p"™} converges weakly in L>(Q7) to the function p, and the
sequence {w§”)} converges weakly in Wé’O(QT) to the function Wy as n — Q.

The limiting pressure p of the liquid in the domain $§2( coincides fort > 0 with
the hydrostatic pressure

p(x, 1) = p(1) = prx3 = po(x, 1). (5.1.27)

The limiting functions solve the homogenized system in the domain §2 for t > 0,
consisting of the homogenized momentum balance equation

V-PY 4+ pe=0, (5.1.28)

and the continuity equation (5.1.21).

The problem is completed with the boundary condition (5.1.24) on the part S* of
the outer boundary S, the boundary condition (5.1.26) on the part Sl1 =S'NnQ2of
the outer boundary S, and the boundary condition

lim P (x, 1) - n(x®) = —po(x’, 1) - n(x°) (5.1.29)

Xe

on the common boundary S°.
In (5.1.26)~(5.1.29) n(x°) is a unit normal to S° (or S}) at x° € S° (or S}),

,6=m,0f+(l—m),03, m=/yX(Y)dy’
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and the symmetric strictly positively definite constant fourth-rank tensor J is given
by (1.2.35) (see Theorem 1.3 of Chap. 1).

We refer to the problem (5.1.24), (5.1.26)—(5.1.29) as the homogenized model
(FCM),.

Theorem 5.5 Under the conditions of Theorem 5.1 let
mo =0, 0 < Ao, n1, 70 < 00,

{w®, p?} be the weak solution of the problem (5.1.1)~(5.1.9) and wi = Eg:¢ (Wg)
be an extension (1.2.9) from the domain §2} onto the domain 2.
Iwe 82 & 82 e
Then sequences {(1=8)x° p*) {p°), (W), {6 =, [;3—:21 [(1 -7 ]
2w

oW 0°wW
d {(1— €
” ] an [( Ox o2

0
Lo(Q7) and Ly(Q7) to the functions (1 — Ompy € Wi(2r), p, w, tv, ;a—f,

82w aw() 32w

¢! —C)F, A-0)wH, 1-0) o and (1 —{)T respectively as ¢ — 0,

and the sequence {W;} converges weakly in Wé’O(QT) to the function wg as ¢ — Q.
The limiting pressure p and the limiting velocity v of the liquid in the domain $2g
satisfy in §2o fort > 0 the system (5.1.19).
In the domain $2 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation

&€

{1 = O)x*w, I(l —Ox°

I converge weakly in

V. (w1 —m)yw,) =0, (5.1.30)
the homogenized momentum balance equation
() | Ao
V-P"+pe=0, (5.1.31)
]P’(ls) =10 : D(x, wy) — prl

for the solid component, and the momentum balance equation

ow() 9 t 52
V;t —m a“;s = /0 IB%(f)(ro; t—1)- (—fo (x, r)—pf?“;(x, r)—i—pfe)dr
(5.1.32)
for the liquid component, completed with the continuity conditions
lim PPxn-onex)=— lim pxn-nxd), (5.1.33)

X—>Xx €S8 X—>Xx" €S
X e 2 X € 2
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lim (w1 —mw)x 0 -nx) = lim w0 nx’), (5.134)

x>xles Xx—>x" €S
X e 2 X € £
lim prx,t)= lim p(x,1) (5.1.35)
x—>x0es0 x—>x0es0
X e R X € 2

on the common boundary S°, boundary conditions (5.1.24), (5.1.25), the boundary
condition
w21 nx® =0 (5.1.36)

on the part S? of the outer boundary S, and boundary conditions
PP (x, 1) - n(x’) = —po()n(x"), (5.1.37)

prx,1) = p°(t) (5.1.38)

on the part S } of the outer boundary S.
In (5.1.30)—(5.1.38) n(x°) is a unit normal to S° (or $2)arx® e 89 (or $2),

p=mpys+(1—m)ps, m=/x(y)dy,
Y

the symmetric matrix B (1y; 1) is given below by formula (5.1.70), and the sym-
metric strictly positively definite constant fourth-rank tensor 0] is given by (1.2.38)
(see Theorem 1.4 of Chap. 1).

We refer to the problem (5.1.19), (5.1.24), (5.1.25), (5.1.30)—(5.1.38) as the homog-
enized model (FCM)3.

1
Theorem 5.6 Under the conditions of Theorem 5.5 let 19 = —, and p(”), w§"),
n

wlfim) p(”), Ty M) be a solution of the model (FCM)3.

Then sequences {p™}, {(1 — Oy MY and {(1 — £)wH™} converge weakly in
L>(Q7) and Lo(Qr) to the functions p, (1 — {)my, and (1 — C)w(f) respectively
as n — 00, and the sequence {W§")} converges weakly in Wé’O(QT) to the function
W, asn — oo.

The limiting pressure p of the liquid in the domain 2 coincides fort > 0 with
the hydrostatic pressure (5.1.27).

The limiting functions W, 7 ¢, and wl) solve in the domain 2 fort > 0 the
homogenized system, consisting of the homogenized momentum balance equation
(5.1.31), the continuity equation (5.1.30), and Darcy’s law

1
W(f):_[Bg.(_Vy',;f-|-l‘)ofe)7 (5139)
1
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for the liquid component, completed with the boundary conditions (5.1.24), (5.1.33),
(5.1.36), (5.1.37), and the boundary condition

t
Tr(X, 1) =/O po(x, T)dt (5.1.40)

on the common boundary S° and on the part S 11 of the outer boundary S.
In (5.1.39), (5.1.40)

t
r(X, t):/o p(x, t)dr, m:/yx(y)dy,

the symmetric strictly positive definite constant matrix B is given by (1.1.27) (see
Theorem 1.1 of Chap. 1).

We refer to the problem (5.1.24), (5.1.25), (5.1.33), (5.1.36), (5.1.37), (5.1.39),
(5.1.40) as the homogenized model (FCM)4.

Theorem 5.7 Under the conditions of Theorem 5.4 let {wik), wih m f (k)} be a
solution of the model (FCM)4 with Ay = k.
Then sequences {r f ©1 and {wRY converge weakly in L>(Qr) and Ly (Q7)

to the functions s, and w() respectively as k — oo, and the sequence {ng)}
converges strongly in L ($27) to zero.

In the domain $2 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation

v.-w) =0 (5.1.41)

and Darcy’s law

1
w) = _B. (= Vrp+tpre), (5.1.42)
n1

for the liquid component, completed with the boundary conditions (5.1.36) and
(5.1.40).

We refer to the problem (5.1.36), (5.1.40)—(5.1.42) as the homogenized model
(FCM)s.

Theorem 5.8 Under the condition of Theorem 5.2 let
oy = o, 0 < po, Ao < 00

and {w?, p?} be the weak solution of the problem (5.1.1), (5.1.4)—(5.1.8), (5.1.10)—
(5.1.12).

Then the sequence {p®} converges weakly in Lo(Q7) as ¢ — 0 to the function
p and the sequence {W*} converges weakly in Wé’O(QT) as ¢ — 0 to the func-


http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1

178 5 Filtration in Composite Incompressible Media

tion w. The limiting functions solve the homogenized system, consisting of the Stokes
equations

V.w=0. (5.1.43)
ow
V. (;uﬂD)(x,E) —pﬂ)+pfe=0 (5.1.44)

in the domain 2° for t > 0, the continuity equation (5.1.39) and the homogenized
momentum balance equation R
V-P+pe=0 (5.1.45)

in the domain §2 fort > 0, where

~ ow t

P=—-pIl+7 :D{x, o + 9 D(x, w) + N3t — 1) : D(x, w(x, 1))dr.
0

The problem is completed with the continuity condition for normal tensions

lim (MOD(x,%—V:(x, t))—p(x, t)H)-n(xO)z lim Px, 1) -n(x) (5.146)

X — X X — X
xe 0 Xxe 2

on the common boundary S°, the Neumann boundary condition
ow 0
uob(x. T x.0) = pex. L) -n = —p°(x.n. (5.1.47)

on the part S(% of the outer boundary S, the Neumann boundary condition
P.on=—-p°, t)n, (5.1.48)
on the part Sl1 of the outer boundary S, the Dirichlet boundary condition
w(x, 1) =0 (5.1.49)
on the part §* of the outer boundary S, and the initial condition
w(x,0) =0, x € £2. (5.1.50)

Fourth-rank tensors Ny, Mo, N3(t) are given by formulae (1.4.30) (see Theorem
1.11 of Chap. 1) and the symmetric tensor N is strictly positively definite.

We refer to the problem (5.1.43)—(5.1.50) as the homogenized model (FCM)g.
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5.1.2 Proof of Theorem 5.1

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1 _ | 0wW® ,
E/Q(TO'O » (x, 1)
+O‘M//§+(]_§)X)

2

+xo(1 — )1 — x°)|D(x, wi(x, t>)|2)dx

)

dxdt

/ / (5.1.51)
and
1 .| 9%we . . 2
E/Q(rop o2 (x,1) ID)(x, ) )dx
2

+au// (t+d=0x") (, 82(X t)) dxdt

= / o Ll (5.152)

- 2 QTOIO 8t X, X = 1o. .

We may use, for example, Galerkin’s method. This method shows that for any r > 0
and any divergent free function ¢ € WZ] (Q), vanishing at x € S?, the equality

82 &
/Qroﬁg 8:; (x,1) - p(X)dx +/Q (CIF’f + (1 — ()]P’)(x, t): ]D)(x, go(x))dx

= / pfe-p(x)dx
0

holds true.
Fort =0P; + (1 — ¢)P = 0, and therefore

92wt
/ 100" ——>(x,0) - p(x)dx = / phe- p(x)dx.
ot
o o
2w£
In particular, Galerkin’s method states that V(X’ 0) is a divergent free function
in Q. Therefore, for
92wt
X) = ——(x,0
p(xX) = = 3-(x.0)
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92we

~g 82W€ 2 ~g
Qrop o2 (x, 0)’ dx = Qp e- o2 (x,0)dx,

which implies

92w 2 Co
5 0 } dr < =2
/Qrop 53 (% 0)] dx o

The last relation and (5.1.52) provide an estimate of the time derivative 572 in

(5.1.17).
To estimate the right-hand side of (5.1.51) we use representations

pf=pr+ A =1=x)ps —py), e=—Vaxz,
integration by parts and the continuity equation (5.1.1)

pf/ e~w8dx=—pf/(Vx3)-w£dx=0.
] o

So

1 &
[:/ / e ow dxdr = —pf/ (Vx3) - wodx + (ps —pf)/ (1—x%e-widx
0.Jo ar 0 e

= (ps—pf)/g(l—xg)ewgdx.

Next we apply the Holder inequality

1< (ps —pf)(/gdx)é(/g(l - xS)IWSIZdX)%

(ps — pyf)? 5/ 2
< B o142 [ a = xHwhRd
%5 | |+2 Q( X)W |7dx

and extension w¢ = Eg: (W) (see (3.2.8) and Appendix B, Lemma B.9) from the
domain £2; onto the domain Q with Friedrichs—Poincaré’s inequality:

I =/<1—x8)|w8|2dx=/(1—x8>|w§|2dx<c/<1—x8>|w§|2dx,
2 2 2
and Korn’s inequality
/(1—x8)|w§|2dx<c/(1—x8)|®<x,w§)|2dx
2 2

=c/Q(l—xsxl—;>|D<x,w€)|2dx.
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Finally one has

(ps — py)?

I<
26

)
21+c /Q(l — x5 = 0D, wH)[2dx,

which together with (5.1.52) prove (5.1.17).
The pressure p is estimated in the same way as in Chap. 3 (Theorem 3.1).

5.1.3 Proof of Theorem 5.2

As above, the proof of this theorem repeats the proofs of similar theorems in the
previous chapters. Estimates (5.1.18) for displacements are based on the energy

equality
A0
- 1—
2 / (

+uo// (t+0=0x°) ( (Xr))
=/ / (58e—vp°).—(x, T)dxdr.
0 Jo at

The estimation of the pressure p? is the same as in Theorem 3.1.

2
) |D(x, wh(x, t))’ dx

2
dxdt

5.1.4 Proof of Theorem 5.3

On the basis of estimates (5.1.17), the results of Chap. 1, and Lemma B.5.1 (;t] = 00)
we conclude that fore — 0

p® — p weaklyin Ly(Qr),
w® — w(x, t) weakly and two-scale in Ly(Q7),

we — wy(x, 1) weakly and two-scale in Lo(Q7),

owé ow .
57 — E(X’ t) weakly and two-scale in Ly (Q7),

E_)as

N

ot

(x, 1) weakly and two-scale in L, (£27),
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92we ow?2 .
— W(X’ t) weakly and two-scale in Ly(Q7),

2we 2
0w ow;

W — W(X’ t) weakly and two-scale in L, (£27),

w(x,t) =ws(x,1), xe 2, t >0,
D(x, wt) — D(x, wy) +D(y, U(x, 1, y)) two-scale in Ly (£27).
Passing to the limit as ¢ — 0 in (5.1.14) with test functions ¢ = ¢(X, t), vanishing

att = T and at S2, we arrive at the microscopic momentum balance equation in the
form of the integral identity

' 0 0
/ V(g Po)dxdt - 07 / (roﬁ MER +pe- (p)dxdt
or JQr at ot

+ /Q (201 =MD, we) + (Dx. U)y,) — p1) : Dix, @)
T
ow  dg
- A . V. .
/99 (ropf 5 +pore- ¢+ p( fp))dxdt
In Theorem 1.3 of Chap. I we have shown that

(1 —m)D(x, wy) + (D(x, U))y, = N, : D(x, wy).

Therefore, the last identity takes the form

dwg 0
/ V- (¢ p)dxdt —/ (foﬁ AL TS </))dxdt
or Qr at ot

+ / (Ao‘ﬂf) s D(x, wy) — p]I) : D(x, p)dxdt
fr

ow 0
= / 0 (‘L’opfa— : 3—‘0 tpre-p+p(V- (p))dxdt. (5.1.53)
2 t t

The continuity equation (5.1.1) for w® is evidently transformed into the continuity
equation in the form of the integral identity

/ V& -wdxdt =0 (5.1.54)
or

for any smooth function £ vanishing at S' x (0, T'). This identity implies the continuity
equation in (5.1.19), the continuity equation (5.1.21), and the continuity condition
(5.1.22) on the common boundary 0.
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In turn, the integral identity (5.1.53) implies the dynamic equation in (5.1.19),
the dynamic equation (5.1.20), the continuity condition (5.1.23) on the common
boundary $°, the boundary condition (5.1.26) on the part S 11 of the outer boundary
S, and the boundary condition (5.1.25) on the part S& of the outer boundary S.
The boundary condition (5.1.24) is a consequence of the corresponding boundary
condition (5.1.8) (see Chap. 1).

5.1.5 Proof of Theorem 5.4

Note that estimates (5.1.17) are still valid for the functions p(”) and w§”). Then
(5.1.17) and (5.1.19) imply the inclusion V p™ € L,(£2;), and estimates

1 192w® 2
max (|
OStST/Q (n2§’ ar?

1 92wl 12
+?(1_‘;)‘ a2 ’)dx

1 jawm 2 1 awd 2
- —1—“‘ 2o(1— OIDCx, w) 2 )d
+0r;§xT/Q(nc\ o= 0| B r0 = oG W P )ax
T
+/ /(lp(n)|2+§|Vp(n)|2)dXdl<C0. (5.1.55)
0 Jo

Coming back to (5.1.53) in the form

(n)
1.0 d
/ V'(gppo)dxdt—/ (—,5 Ws '—(p+,5e~g0)dxdt
Or Qr \n ot at

+/ (Aomf) - D(x, w§")) — pm ]I) : D(x, p)dxdt
7

1 aw®™ dg
— - N : M (V. @) )dxdt 5.1.56
/Q?(npf o g Trre et <0)> x (5.1.56)

we conclude that
p™x, 1) =p’t), xe Sk, 1>0 (5.1.57)

as a trace of function from W21 ’0(!2}) ).
Due to estimates (5.1.55) there exists a subsequence of n (still denoted for sim-
plicity by n) such that

1. 0wy
np ot

— 0 strongly in Ly (£27),

1 ow®

- — 0 strongly in LL .QO,
npf ar gly 2(£27)
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V p" —~ V po, p™ — po weakly in Ly(£2,) and Ly (£27),
and
p —~ p, w§") — Wy, Vw§”) — V w, weakly in L,(£27) and L (£27)

asn — oo.
The limit in (5.1.56) and in (5.1.54) as n — oo results in the integral identity

/ V. ((ppo)dxdt — / . (,ofe 9+ po (V- ga))dxdt
or 2

T

+/ ((AOWB:D(X,WS)—p]I):]D)(x,go)—,ﬁe-w)dxdt:O, (5.1.58)
fr

and the continuity equation (5.1.21).

Integral identity (5.1.58) obviously implies (5.1.26)—(5.1.29).

The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.
5.1.6 Proof of Theorem 5.5

On the basis of estimates (5.1.17), results of Chap. 1, and Nguetseng’s theorem we
conclude that fore — 0

p° — p(x,1) weakly L2(Qr),

A=0p°xf* = A=0prx x(y) two-scalein Lr(Q7),

ow®
Jat

— v weakly in Lr(Q7),

92we
at?

3
—~ a—:(x, #) weakly in L>(Q7),

ow®
ot

— V(x,t,y) two-scalein Ly(Q7),

92we

=5 - W(X’ t,y) two-scalein Lo(Q7),

a £
SD(X, ;: ) — D(y, V(x,1,y)) two-scale in Ly(Q7),

wo — w(x, 1) weakly and two-scale in Ly (£27),
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&
owg

at

el
— S (x,1) weakly and two-seale in La(2r),

82W§ 92w, .
o2 — W(X, t) weakly and two-scale in Ly ($27),

D(x, w§) = D(x, wy) + D(y, U(x, 7, y)) two-scale in Ly(£27).

It is easy to see that

oWy
V=§V+(1—§)(x(y)V+(l—x(y)) - ) (5.159)
t
and
av|?
/ / (ro|V|2 + 3| —| + |D(y,V)|2)dxdt < C, (5.1.60)
orJy Jt

where Cy is independent of .
Moreover, we have the equality ¢ V = ¢ v(X, t), but this fact is not useful to us.
The two-scale limitin (5.1.14) as ¢ — O with test functions ¢ = ¢(X, ), vanishing
att = T and at S? results in

aw/ aws) 0 .
/ V.(¢p0)dxdt—/ (1:0 (pf——i—ps(l—m) S)._(p+pe.¢)dxdt
or 27 ot ot ot

+/ (Ao((l —m)D(x, wy) + (D(x, U)))@) - p]I) : D(x, p)dxdt
2r

a
=/ (ro,ofv-—(p+pfe~<p+p(V-<p))dxdt.
_Qg at

Earlier in Chap. 1 (Theorem 1.4) it was shown that
Mo ((1=m)D(x, ws) + (D(x, U))y,) — pT = 21N} : D(x, w!”) — ps L.

Therefore,

ow 0 .
/ V~(gop0)dxdt—/ (T()(,O}"V“r‘,os(l —m) s) . —€0+pe-<p)dxdt
QT Qr ’ at Bt

+/ (/\o‘ﬁ‘i :D(x, wy) — pr ]1) - D(x, 9)dxdt
2r

aw  Jdg
=/0 (ropfg-¥+,0fe-<p+p(v-go))dxdt. (5.1.61)
‘QT
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The continuity equation (5.1.1) for w® after taking the limit as ¢ — O is transformed
into the macroscopic continuity equation in the form of the integral identity

ow/ oWy
/rzr VE (g“v—i—(l —g)(7+(1 —m) = ))dxdt —0 (5162

and the microscopic continuity equation
Vy - V=0,yeY, xeQ,t>0 (5.1.63)

(for details see Chap. 1).

Integral identities (5.1.61) and (5.1.62) imply differential equations (5.1.19),
(5.1.30), and (5.1.31), continuity condition (5.1.23), the continuity condition (5.1.33)
on the common boundary S0, and boundary conditions (5.1.25) and (5.1.37) on the
outer boundary S.

The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.

So, we have only to derive the dynamic equation for the liquid component in 2.

To do that we consider the integral identity (5.1.14) in the form

awe 9 ~ ~
/ (—ro o il ~—(p+ (tPr+ (1 —0P) :ID)(x,(p))dxdt
or ot ot

= / (pfe- ¢+ (p° — p")V - p)dxdt,
or
Pr=P;—p°l, P=P— p°I,
with test functions ¢ = h(X, t)¢o (E), where h vanishes at S2, and @o(y) is a

1-periodic in y function, such that Vy -9 =0 fory € Y, and supp 9o C Y. One
has

3’w® o ow®
hrony S e+ % (0(s. 2)) 00
/QT( wpf o w0t hZ(EDlx. = (y: %0)

—(c @ =P+ =) x" (p° = pN)Vh-go—hpye- wo)dxdt

&

= 5[, HE0 ) (row o i
T

The limit in the last identity as ¢ — 0 results in

EAY
/ (h (TOPf <a_ -<po> +h i (D(y, V) : D(y, 9o))y — pyre- (fpo)y)
or ! Y

— =P+ A= (s —p") lgo)y - Vh)dxdf =0, (5164
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or
/ (h ay + p(by - Vh))dxdt =0. (5.1.65)
or

In (5.1.65)

A

ay = T0Pf <¥ ~¢0>Y +h (D@, V) : D, @)y — pre - (@o)y,

where a, € Lz((O, T); L2(Q)) due to (5.1.56), and

p=tp—pH+U=0)(pr—p"), by=—(go)y.

In the same way as in Chap. | and on the base of Lemma B.15, choosing in (5.1.65)
@o from conditions (¢pg)y = e€;, i = 1,2,3 ({e1, e, e3} is a standard Cartesian
basis), we conclude that the function ﬁ(”) belongs to wé’O(QT),

/ |V 5™ 2dxdt < Co, (5.1.66)
or

where Cy does not depend on 79, and the function p s satisfies boundary condition
(5.1.34).

Estimate (5.1.66) obviously implies the continuity condition (5.1.35) on the com-
mon boundary S°.

For supp h C §2 (5.1.64) is equivalent to the differential equation

oV
wef o = TAyV —VyII =V pr+pre (5.1.67)

in Yy fort > 0, which we complete with continuity equation (5.1.63), the boundary
condition

ad
Vix,1,y) = %(x, 1), yev, (5.1.68)
(see (5.1.59)), and the initial condition
V(y,0) =0, yeYy. (5.1.69)

The problem (5.1.63), (5.1.67)—(5.1.69) for tp = 1 has been solved in Chap. 3 (see
proof of Theorem 3.5). Therefore, we simply formulate the result.

)
Lemma 5.1 For almost all x € $2 the function V;t = (V)y, satisfies equation
(5.1.32), where
3
B (r:1) = (/ Vi, t)dy) D e, (5.1.70)
i=1 ~Yr
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and Vl(f) ,i =1,2,3, are solutions to the following periodic initial boundary value

problem

)
aV; K1 ' :
0Py —— = TAijf) —v, 1", (y,1) € Yp x (0, 7),

v, VP4, 1) =0, (y,0) €Yy, t >0,
wor Vi (v.0) = e, ye vy,

VP 4y, =0, yey, 1>0.

5.1.7 Proof of Theorem 5.6

(5.1.71)

(5.1.72)

(5.1.73)

(5.1.74)

As in the proof of Theorem 5.4 we use estimates (5.1.55), (5.1.66), the integral
identity (5.1.61) to conclude that there exists a subsequence of n (still denoted for

simplicity by n) such that

ow"

1
np ot

— 0 strongly in Ly (£27),

1 aw®
—py vg; — 0 strongly in LQ(Q]Q),
n

Vp™ =V po, p™ — po weakly in Lo(22) and Ly (20),
Vpﬁf) —~ Vs, p?) — py weakly in Lz(.Q]Q) and Lo (£27),
w ~ w, Vw" —~ Vw, weakly in Ly(£27)

asn — 0o.
The limiting functions are bounded

/ (IV p s + [wy? + ID(x, wy)[?)dxdt < Co,
27

and satisfy the integral identity

/9 ((xomﬁ :D(x, W) — (pr — pN)1I) : Dx,9) — pe- go)dxdt
T

(5.1.75)
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= /QO (pre @+ (p—p"(V-))dxdt. (5.1.76)

T

which results in the dynamic equation (5.1.31), the relation (5.1.27), and boundary
conditions (5.1.33) and (5.1.37).
The boundary condition (5.1.35), which implies (5.1.40) on the common boundary
SO, follows from (5.1.66), (5.1.75), and the boundary condition (5.1.35) for p}").
The validity of the boundary condition (5.1.24) has been proved earlier in Chap. 1.
To derive the continuity equation (5.1.30) and Darcy’s law (5.1.39) we somehow
have to pass to the limit as n — oo in equations (5.1.30) and (5.1.32). Unfortunately
owlfim) . awg")

we have no uniform estimates with respect to n not only for ” an Py but

neither for w(/>"),
Let us try to find estimates using estimate (5.1.66) for pressure and estimates
(5.1.60) for two-scale limits in the form

/ /( |V(n)| nz‘av(n)

The problem (5.1.63), (5.1.67)—(5.1.69) can be rewritten for functions

‘]D(y V(”))‘ )dxdt <Co.  (5.177)

t
w(")(x,t,y) :/ vV (x, y, 7)dr,
0

t t
P (x,1,y) = / ™.y, v)dr, and 7{"(x.1) = / PP (x. 1)dx
0 0

as
,0 v — 2 A W _ Vyp(n) _ VJT}H) +ipre,
V wm — 0, yeYy (5.1.78)
W, 1,y) =w(x, 1), y€y.

The standard procedure results in the equality

1y
VW™ — wm)y2dy

Yy
1
- / (tpre—vaf — e PV (WD — W) gy,
Yy

and, successively, the a priori estimate

/ / (IW® — w12 4 V(W — w2 dydxdt
2r JYy
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< co/ (1+/ )1V<”>
2r Yy n

This last estimate in the usual way implies the uniform estimate

2
dydxdt) < Co. (5.1.79)

/ |P™ 2 dydxdt) < Co (5.1.80)
2r JYy

for the pressure P™.
Now we may extract convergent subsequences (for simplicity keeping the same
notations)
P — p = po(x, 1) weakly in W, (2D,

p(f") — py weakly in WZI’O(QT),
ﬁ(") N ﬁ weakly in WQLO(QT)’

7™ —~ 7 weakly in W;’O(QT))y

1 ow™
n ot

— 0 strongly in L, (£27),

wh WA(,”) weakly in Wé’O(QT),

N
Ly :
—V¥ — 0 strongly in Ly(£27 x Y),
n

W® — W, V,W® — V,W weakly in Ly(27 x Y;),
P™ — P weakly in Ly(27 x Yy),
wim = (W)~ w/ = (W)y, weaklyin Ly(82r)

asn — 00.
Here

t t
A", 1) = / ﬁ(’l)(x, )dt, 7(x,t) = / p(x, t)dr,
0 0

and po(X, 1) is the hydrostatic pressure defined by (5.1.27).
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The limit as n — oo in the continuity equation (5.1.30) in its integral form
/ VE - (W + (1 —m) w)dxdt =0
2r

with test functions £ vanishing in £2¢ results in the same continuity equation (5.1.30)
for the limiting functions w) and wy, and the boundary condition (5.1.36).

The microscopic periodic boundary value problem, defining Darcy’s law (5.1.39)
(see proofs of Theorems 1.1 and 1.4 in Chap. 1), follows from (5.1.78) after taking
the limit n — oo:

M1
TA)}W —VyP—-Vrs+tpre=0,

V-W=0yer (5.1.81)
W(x,1,y) =ws(X, 1), y €Y.

As usual, we must fulfill the limiting procedure in the corresponding integral identity.
Finally, the boundary condition (5.1.40) on the part S 11 of the outer boundary S is
a consequence of the convergence

7™ ~ 7 weakly in Wzl’O(QT)

and the corresponding boundary condition for 7.

5.1.8 Proof of Theorem 5.7

Let . .
p* =pP = po. #® =7 —m

and

t
wo(X, 1) :/ po(x, T)dT.
0

Firstly we find estimates for the solution {w§k), v, p f 0}, independent of k. To
do that we rewrite Egs. (5.1.31) and (5.1.39) as

—kV - (0 :Dx, w®)) + VP = pe—Vpy =Fy, (5.1.82)
1 1

w _pwh p —B.(va®)= —B.(tpre—Vm)=F. (5183)
M1 M1

Next we multiply (5.1.82) by W‘Ek), (5.1.83) by V™ integrate by parts over §2, sum

results, and take into account (5.1.30) in its form of the integral identity:
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/ (w0 4 (1 —myw®) . vpPdx = 0.
2
One has

1 d
k / (9 - Dx, wi) : DOx, w)dx + —— / va® . (B (Va®))dx
?) ‘ ‘ 2pydt Jo
d aF
- / Fs~w§k)dx+—/ Fl-Vﬁ(k)dx—/ L va®dx.  (5.1.84)
o ’ dt Jo o Ot

Note that all integrals over boundaries disappear due to the choice of functions 77 )
and u® and corresponding boundary conditions.
The last relation and the imbedding theorem [61] imply estimates

k /m (|w§’<>(x, D1 + (D(x, wh (x, 1) lz)dxdt

+ max/ IV ® (x, 1)[>dx < Co. (5.1.85)
0<t<T Jo

The derivation of (5.1.85) is quite formal because we do not have any information
about the existence of V p®).
For a rigorous proof we must use mollifiers

1 IX —y]|
ump (X, 1) = h_3/R3 n( A y )u(y, tydy

(see [3, 61]) with some smooth and finite kernel 1, and instead of (5.1.83) we consider
the corresponding integral identity

/ (—vg w4 Ly -B.(Vﬁ<k>))dx :/ Ve Fidx,  (5.1.86)
2 1231 2

where we have used the continuity equation (5.1.30) in its form as an integral identity.
To obtain the desired estimates we choose in (5.1.86) & as & = (), pass the
smoothing from the test function v to the cofactors, and put ¥ = ( ﬁ(k))(h):

_ Lo s _
/Q (= vGE® ) - WO + oV B VGE®) g )dx
= /QV(ﬁ("))(h)'(Fz)<h>dX-

The last identity is easily transformed to

t _ 1 _ ~
/0 /Q(P(k))(h) V- (W) gydxdr + 2—,‘“/9 VE®) B - V(@®)gdx
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! F
= / V(ﬁ(k))(h)~(Fl)(h)dx—/ / V(ﬁ("))(h)~(—l) dxdr,
2 0 J ot (h)

and, after the limit as 7 — 0, to the equality
! 1
/ / PP V. wRdxdr + —/ va® . B.vz®)ax
0 Jo 2u1 Jo

t 9F
= / Vﬁ<’<>.F,dx—/ / va® . ZLaxdr.
2 0 Jo ot

This relation and the evident consequence of (5.1.82)
¢ ¢
k/ / (‘ﬂsl :]D)(x,wﬁk))) :D(x,wﬁk))dxr —/ / V. wﬁk)dxdt
0 J2 0 J2

t
= //Fs-wik)dxr
0 Je

result in (5.1.85).
Estimates (5.1.85) and Darcy’s law (5.1.39) imply the estimate

/ WP 2dxdr < Cp.
7

On the basis of the last estimate and estimates (5.1.85) we may choose the convergent
subsequences
W‘Ek”) — 0 strongly in Wé’O(QT),

wlkn) ~ w) weakly in Ly (£27),

n}kn) — 7y weakly in Ly(£27)

as k, — oo.
Darcy’s law (5.1.83) in the form

VAR = B (B — Wk g )

provides that
Vn}k”) — Vs weakly in L (£27)

as k,, —> oo.
After taking the limit in (5.1.39) and in the continuity equation (5.1.30) in the
form of the integral identity
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/ (Wkn) (1 —myw)) . V gdxdt = 0
27

we arrive at (5.1.36), (5.1.40)—(5.1.42).

5.1.9 Proof of Theorem 5.8

The main part of the proof of this Theorem repeats the proof of Theorem 1.11 of

Chap 1. Let
owe
& — &
v —EQf( ar )
&

0
be an extension of oW from .Qjc U £ onto Q (see Theorem 1.11).

Estimates (5.1.18) provides the existence of convergent subsequences (for sim-
plicity still denoted by ¢), such that

p° — p(x,t) weaklyinin Ly(Q7),
p® — P(x,t,y) two-scalein Ly(Q7),

w® — w(x, t) two-scale in Ly(Q7),
. ow .
Ve > v(x, 1) = W(x, t) two-scale in Ly (Q7),

]D)(x, ws) — ]D)(x, W) + ]D)(y, W(x, ¢, y)) two-scale in Lo (Q7),

D(x, v*) — D(x, %_‘;V) +]D>(y, %) two-scale in La(Qr).

The two-scale limit in (5.1.15) with test functions ¢ = @(X, t) results in the integral
identity

a oW
/ ((uom(x,a—w)—pH+(1—;>wo<D(y,—)> + AoD(x, W)
or t ot v

+20(DO, W) : D 9) + V- (¢ p)

—(¢pr+ (1 — ;)ﬁ)ewp)dxdt —0. (5.1.87)
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Due to Theorem 1.11
ow oW ~
(1-%) (N«O (D(X, ¥)+<1D>(y, W)> )-H»o(]D)(x, w)+(D(y, w))y,)—p H) =P.
Yy
Therefore, (5.1.87) transforms to

/Q ((§M0D(x, aa—v:) —pl+ (- g)ﬁi) : D(x, )

+ V(9" — (¢or + (1 —;),3)e-¢)dxdt —0. (5.1.88)

The continuity equation (5.1.1) after taking the limit as ¢ — 0 does not change its
form:

V-w=0. (5.1.89)

In the usual way one may show that the integral identity (5.1.88) is equivalent to

the Eqgs. (5.1.44) and (5.1.45), and the boundary conditions (5.1.46)—(5.1.48). The
boundary condition (5.1.49) follows from the integral identity

/ (W(V @) + VW - p)dxdt =0
7

for any smooth function ¢, vanishing at S, after taking the limit as & — 0.
Finally, the initial condition (5.1.50) follows from the integral identity

Iw ap
. 22V dxdr =0,
/mm(af v at) g

which holds true for any smooth function ¢ = ¢(X, #) vanishing at # = T'. The last
identity is a result of the two-scale limit as ¢ — 0 in

ad
/ X‘e(vg-q)—i—wg- —(p)dxdt=0.
Q2r at

5.2 Filtration in Two Different Poroelastic Media

5.2.1 Statement of the Problems

This section is devoted to the joint motion in the domain Q = 29 U S° U £2 of two
different poroelastic media in £2( and 2 respectively (Fig.5.2). We suppose that £2
and £2 have a common boundary S°.



196 5 Filtration in Composite Incompressible Media

Fig. 5.2 Two different
poroelastic media

QO
SO
.
Q S

In the domain £2° for r > 0 the motion of the medium is described by the model
Mis

V.-w=0, (5.2.1)
VPO 4 p%¢F =0, (5.2.2)
where

ow

PO = yfa,D(x,
XD (x.

) + (1= xOHAD@, w) — plL.

The motion in §2 for ¢t > 0 is also governed by the model M5, consisting of the
continuity equation (5.2.1) and the momentum balance equation

V.P+ p°F =0, (5.2.3)
where
0w
P— Xgocu]D)(x, E) (1= xAeD(x, w) — pLL

On the common boundary $ = 352 N 9£2° for r > 0 the continuity conditions

lim w(x,r) = lim w(x,1), (5.24)
Y00 xeo
lim P'(x, 1) -nix’) = lim P(x, 1) -n(x°) (5.2.5)
Yoo xeo

hold true for displacements and normal tensions. Here n(x%) is a normal vector to
the boundary S° at x° € S°.
The problem is concluded with the Dirichlet boundary condition

w(x, 1) =0 (5.2.6)

on the outer boundary S = 9 Q for ¢ > 0, the initial condition
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1F@Wx,0) =0, xe Q, (5.2.7)

and the normalization condition

/Q % p(x,1)dx = 0. (5.2.8)

In (5.2.1)—(5.2.8) F is a given density of distributed mass forces,
X5 =X + (1 =) x° (%)

is the characteristic function of the liquid domain Q% = Q?’s U .Q;
= cmo + (1 - c)m, m = / Xy, mo = / X0y,
Y Y

p%¢ = prxg+ 00— x5, pF=prxt 4 pel = x°).

As usual, 18 and A are dimensionless Lamé’s constants of the solid component in
29 and £2 respectively, ,0? and p, are dimensionless densities of the solid component
in 29 and £2 respectively, x°(x) is the characteristic function of the liquid domain
.Q’J’l, X( (X) is the characteristic function of the liquid domain .Q(f).’g,
X
e

100 =(1=c00)x (3). x50 = ¢exo(3).

Finally, ¢ (x) is the characteristic function of the domain 2%in Q, x(y) is the charac-
teristic function of the domain Y in the unit cube Y, and xo(y) is the characteristic
function of the domain Y]Q in the unit cube Y.

Here we consider three different cases, when

D 1no=0,0 < pu; < 00, g = oo (absolutely rigid solid skeleton);
) wo=0,0 < puy < 00,0 < Ap < oo (slightly viscous liquid in an elastic solid
skeleton);
II) 0 < mo, Ao < oo (viscous liquid in an elastic solid skeleton),
where

(07
= lim a,(¢), = lim —&.
o lim w(®), lim 22

We will obtain the homogenized model for the first case as a limit in the homogenized
model for the second case with | < oo, when Ay — oo.

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the pore
spaces, defined by characteristic functions y (y) and xo(y), and suppose that

max / |F(x, t)|2dx = ‘132 < Q.
O<t<T 0
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5.2.2 Main Results

It is clear, what type of homogenized equations we will obtain in each domain £2°
and £2 for ¢ > 0. All these equations have already been described in Chap. 1. The
main problem here is the continuity conditions on the common boundary S°. In turn
these conditions depend on the structures of the corresponding pore spaces, or, on the
functions xo(y) and y (y). For the sake of simplicity, we consider only two different
cases (Figs.5.3,5.4,5.5 and 5.6).

So,

(1) for the first structure of the common pore space elementary liquid domains Y ]9
and Y have a nonempty intersection in Y

YOO Yy # 0 (5.2.9)

(2) for the second structure of the common pore space elementary liquid domains
Y](? and Y have an empty intersection in Y

Y9Ny, =0 (5.2.10)

(3) for both structures of the common pore space elementary solid domains YS0
and Y, have a nonempty intersection in Y:

Yony, #0. (5.2.11)

We say that for the first structure the common pore space is connected, and for the
second structure the common pore space is disconnected.

Fig. 5.3 Connected common
pore space
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Fig. 5.4 Connected common
pore space

Fig. 5.5 Disconnected com-
mon pore space

Fig. 5.6 Disconnected com-
mon pore space
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To formulate the next statement we introduce the common liquid and solid
domains Q; and Q7 as

Q=2 ues 0f =20 uQf,

where $2 ;) €, .QSO’E, 2 ]f, and 27 are liquid and solid domains in 29 and 2 respec-

tively.

Lemma 5.2 Letw® € Ly ((0, T); Wé (Qf )). Then for the first and second structures
of the pore space in Q there exists an extension operator

Eg: : La((0, T); Wh(Q5)) — La((0, T); Wi(0)),
w, = Eg:s (W), (5.2.12)

such that
(1—x°®)(Wix, 1) —w°(x,1)) =0, x€ Q, t >0, (5.2.13)

and

/ we Pdx < Co / W Pdx.
0 oy

/ ID(x, wé)[?dx < CO/ ID(x, w®)|%dx, (5.2.14)
0 Q¢

where Cy is independent of ¢ and t € (0, T).
Definition 5.3 We say that the pair of functions {w®, p ¢}, such that

o 1,0
w®e W, (Gr), p® € La(Gr), Gr =0 x (0, T),

is a weak solution of the problem (5.2.1)—(5.2.8), if it satisfies the continuity equation
(5.2.1) almost everywhere in G 7, the normalization condition (5.2.8), and the integral
identity

/G (—aux “Dix, wo) : D(x, {;—‘f) + (1 = X HA)D(x, w°) : D(x, ¢))dxdt

= /G (PS(V @)+ p°F - @)dxdt (5.2.15)

9 o 1,0
for all functions ¢ vanishing at r = T, such that ¢, a—f € W, (Gr).
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In (5.2.15)
AX) = ) ¢(x) + ho (1 — ¢(x)).

Theorem 5.9 For all ¢ > 0 and for an arbitrary time interval [0, T] there exists a
unique generalized solution of problem (5.2.1)—(5.2.8) and

max / % 6(0[ ‘}D)(x, we (X, t))‘2 + Ol—”lwg(x, 1) — wi(x, t)|2)dx

O<t<T 0 " 82 s

+/ (|n€|2+x(x)|1D>(x,w€)|2)dxdt < CoP?, (5.2.16)
Gr

where Cy is independent of €, A0, and ro for rg > 1, Ag > 1, and
t
mé(x, 1) =/ pf(x, 7)dr.
0

Theorem 5.10 Let pg = 0, 11 = 00, 0 < Ao, A) < 00, {W®, p®} be the weak
solution of the problem (5.2.1)—(5.2.8),

t
Ti(x, 1) = / pf(x, v)dr,
0

and w¢ = Eg: (W*) be an extension from the domain Q% onto the domain Q.
Then up to some subsequences the sequences {W°} and {x¢m®} converge weakly
in Ly(Gr) and Lo(Gt) as € — 0 to the functions Wy and m 7 ¢ respectively, and

the sequence {w%} converges weakly in Wé’O(G T)) as ¢ — 0 to the function w.
am
The limiting functions wy and 7 ¢, where 8_l‘f € Lo(Gr), solve in the domain
20 for t > 0 the homogenized system, consisting of the homogenized momentum
balance equation
(s,0) A0
V- P57+ 0 F=0, (5.2.17)
PO = 239000 D(x, wy) — py L

and the continuity equation
V. w,=0. (5.2.18)

In the domain $2 for t > 0 the limiting functions solve the homogenized system,
consisting of the homogenized momentum balance equation

V-PY 4+ 5F =0, (5.2.19)
PS = o0 : D(x, wy) — pr1,

and the continuity equation (5.2.18).
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The problem is completed with the normalization condition
/ prx,t)dx =0, (5.2.20)
0

the boundary condition
ws =0 (5.2.21)

on the outer boundary S for t > 0, and the continuity conditions

lim w(x,?) = limo w(x, 1), x" e S5, (5.2.22)
xeo g
lim PO (x, 1) nx’) = lim PSO(x, 1) - n(x?), x° e §° (5.2.23)
X9 Yoo

on the common boundary S° fort > 0.
In (5.2.17)~(5.2.23) n(x°) is a unit normal to S° ar x° € S°,

oms
sza_tfv w=¢mo+ (1 —0)m,

ﬁozmopf'l'(l—mo)ﬂ?a mOZ/XOdy»
Y

p=mpg+(1—m)ps, m=/xdy,
Y

the symmetric strictly positively definite constant fourth-rank tensors ‘ﬁg’o and Ny
are given by (5.2.54).

We refer to the problem (5.2.17)—(5.2.23) as the homogenized model (FCM)5.

Theorem 5.11 Let ug =0,0 < g, Ao < 00, {W, p*} be the weak solution of the
problem (5.2.1)~(5.2.8), and w; = Ege (WE) be an extension from the domain Q%
onto the domain Q, and

t
8 (x, t)=/ pf(x, T)dr,
0

Then up to some subsequences the sequences {X © ¢}, and {x  W®} converge weakly
in Lo(G1) and Ly(Gr) as € — 0 to the functions m 1y and w') respectively, and
the sequence {w%} converges weakly in W;(Q)) as ¢ — 0 to the function wg.

In the domain $2° for t > 0 limiting functions W(f), Wy, and wy, where
9@

v € La(@2r),

of the continuity equation

€ Ly (827), solve the homogenized system, consisting
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V- (WY (1 = mg) wy) =0, (5.2.24)
the homogenized momentum balance equation
v.POY 4 50F =0, (5.2.25)
PO = A3 90 D(x, wy) — pr T

for the solid component, and Darcy’s law in the form
1 t

w = mow, + —B° - ( ~Vaar+ pf/ F(x, ‘C)d‘l,') (5.2.26)
23! 0

for the liquid component.
In the domain $2 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation

Ve (w1 —m)yw,) =0, (5.2.27)
the homogenized momentum balance equation
v-PY 4 5F =0, (5.2.28)
P = o0 : D(x, wy) — prll

for the solid component, and Darcy’s law in the form

1 t
W —mw+ LB ( Vg + pf/ Fx, ‘c)d‘l:) (5.2.29)
M1 0

for the liquid component.
The problem is completed with the normalization condition

/ 7 (x, 1)dx =0, (5.2.30)
0

the boundary condition (5.2.21) for the solid displacements wg and the boundary
condition
wHx, 1) -nx) =0 (5.2.31)

for the liquid displacements on the outer boundary S for t > 0, and continuity

conditions
lim wy(x,1) = lim wy(x, 1), x’ e §°, (5.2.32)

X — X X — X
xe xe 0
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lim PV(x, 1) -n(x”) = lim PPV x, 1) - nx), x e 8, (5.2.33)
s vead
and
lim n(x): (W) + (1 — m) wy) (x, 1)
xee

= lim nx% - (WY + 1 —mo)wy)(x,1), x" e S° (5234

X — X
xe.QO

on the common boundary S° fort > 0.

Finally, the last missing continuity condition on S° depends on the structure of
the common pore space, namely, if the common pore space is connected (as in the
case of the first structure), then

lim 7p(x,0) = lim m7(x1), x* €S, (5.2.35)
e X0

and if the common pore space is disconnected (as in the case of the second structure),
then
lim nx’) - (W) —mw)(x,1) =0, x° € 5°. (5.2.36)

X=X

X €2

Conditions (5.2.34) and (5.2.36) result in

lim nx%) - (W) —mow,)(x,1) =0, x” € 5°. (5.2.37)

X — X
xent

In (5.2.24)—~(5.2.37) n(x°) is a unit normal to S° arx° e Y,

o .
pf=a—tf, o= ¢mo+(1—Om,

p% =mopys+ (1 —mo)pl, mo=/xody,
Y

p=mps+(1—m)p;, mz/xdy,
Y

the symmetric strictly positively definite constant fourth-rank tensor ‘ﬁi’o is given by
(1.2.38) for the pore space with the characteristic function xo(y), and the symmetric
strictly positively definite constant fourth-rank tensor I is given by (1.2.38) for
the pore space with the characteristic function x(y) (see Theorem 1.4 of Chap. 1),
the symmetric strictly positive definite constant matrix B® is given by (1.1.27) for
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the pore space with the characteristic function xo(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function x (y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.2.21), (5.2.24)—(5.2.35) for the first structure of the com-
mon pore space as the homogenized model (FCM)g, and to the problem (5.2.21),
(5.2.24)—(5.2.34), (5.2.36), (5.2.37) for the second structure of the common pore
space as the homogenized model (FCM)g.

Theorem 5.12 Under the conditions of Theorem 5.9 let {ng), wlh), n}k)} be the
weak solution of the model (FCM)g with Ag =Ap =k.

Then up to some subsequences sequences {n}k)}, and {W(f 'k)} converge weakly
in Lo(Gr) and Lo(Gr) as k — oo to the functions g and w') respectively, and

the sequence {wik)} converges strongly in Ly (G ) to zero.
In the domain 2° for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation

v.wl) = (5.2.38)

and Darcy’s law

: 1 !
w) — —Rgo. (_ Vors+ pf/ F(x, ‘L’)d‘[), (5.2.39)
M“1 0

and in the domain $2 for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation (5.2.38) and Darcy’s law

X 1 !
w)=_B. (— Vg +,0f/ F(x, r)df), (5.2.40)
151 0

completed with the boundary condition (5.2.31) for the liquid velocity on the outer
boundary S for t > 0, the normalization condition (5.2.30), and the continuity
conditions (5.2.35) and

lim nx%) -w(x,1) = lim n(x") - w(x, 1), x’e s° (5.2.41)
xeo X0

on the common boundary S° fort > 0.

The symmetric strictly positive definite constant matrix BC is given by (1.1.27)
for the pore space with the characteristic function xo(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function x (y) (see Theorem 1.1 of Chap. 1).
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We refer to the problem (5.2.30), (5.2.31), (5.2.35), (5.2.38)—(5.2.41) as the homog-
enized model (FCM)g.

Theorem 5.13 Under the conditions of Theorem 5.9 let {w_gk), wl/k) n;k)} be the
weak solution of the model (FCM)q with A = A¢ = k. A

Then, up to some subsequences sequences {y'r}k) }, and (w0} converge weakly
in Ly(Gr) and Lo (Gr) as k — o0 to the functions my and w() respectively, and

the sequence {W‘Ek)} converges strongly in Lo (Gr) to zero.

In the domain 2° for t > 0 limiting functions solve the homogenized system,
consisting of the continuity equation (5.2.38) and Darcy’s law (5.2.39), and in the
domain $2 for t > 0 limiting functions solve the homogenized system, consisting
of the continuity equation (5.2.38) and Darcy’s law (5.2.40), completed with the
boundary condition (5.2.31) for the liquid velocity on the outer boundary S for
t > 0, the normalization condition (5.2.30), and the continuity conditions (5.2.41)
and
lim nx") - wx,n=0 x"es® (5.2.42)

X — X
Xxe 2

on the common boundary S° fort > 0.

The symmetric strictly positive definite constant matrix BC is given by (1.1.27)
for the pore space with the characteristic function xo(y), and the symmetric strictly
positive definite constant matrix B is given by (1.1.27) for the pore space with the
characteristic function x (y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.2.30), (5.2.31), (5.2.38)—(5.2.42) as the homogenized
model (FCM);.

To consider the following case we change the setting of the problem at the micro-
scopic level, namely, instead of the normalization condition (5.2.8) we consider the
normalization condition

/ pfx,1)dx =0. (5.2.43)
(0]

The proof of the solvability of (5.2.1)—(5.2.7), (5.2.43) and the derivation of the a
priori estimates repeat exactly the proof of the solvability and the derivation of the a
priori estimates of (5.2.1)—(5.2.8).

Theorem 5.14 Let
ay = 10, 0 < po, ro, A) < 00,

(I=x9

oF 2
| dxdr =9 < o,
Gr Jat

and {w*°, p®} be the weak solution of the problem (5.2.1)—(5.2.7), (5.2.43).
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Then up to some subsequences the sequence {p®} converges weakly in Lo(GT)
as ¢ — 0 to the function p, and the sequence {wW°} converges weakly in Wé‘O(GT))
as ¢ — 0 to the function w.

The limiting functions solve the homogenized system, consisting of the continuity
equation

V.-w=0, (5.2.44)
and the homogenized momentum balance equation

P'+5F =0,

vV -
3
ﬁl”\’O=—1!?11+‘31‘1):ID>()C,a—v:)+‘n§:ID)(x,w)

t
+ / NIz — 1) : D(x, W(x, 7))dT (5.2.45)
0

in the domain 2° fort > 0, the continuity equation (5.2.44) and the homogenized
momentum balance equation

V.P+pF=0,

~ 0
P=—-pl+9 :]D)(x, a—vtv) + 9% D(x, w)
t
+/ N3(t — 1) : D(x, w(x, 7))dt (5.2.46)
0

in the domain S2 for t > 0.
The problem is completed with the normalization condition

/ p(x,t)dx =0, (5.2.47)
0

the continuity condition for normal tensions

lim P'(x, 1) -n(x%) = lim P(x, 1) - n(x") (5.2.48)
o N

on the common boundary S°, the Dirichlet boundary condition
w(x,t) =0 (5.2.49)
the outer boundary S, and the initial condition

w(x,0)=0, xe Q. (5.2.50)
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Fourth-rank tensors ‘ﬁ?, ‘ﬁg, ‘ﬁg(t) are given by formulae (1.4.30) for criteria |
and Ag, and the pore space with the characteristic function xo(y), and fourth-rank
tensors Ny, No, N3 (t) are given by formulae (1.4.30) for criteria jro and Ao, and
the pore space with the characteristic function x (y) (see Theorem 1.11 of Chap. 1).
The symmetric tensors ‘ﬁ(l) and Ny are strictly positively definite.

We refer to the problem (5.2.44)—(5.2.50) as the homogenized model (FCM) ;.

5.2.3 Proof of Lemma 5.2

For all elementary cells which have no intersection with the common boundary S° we
construct the extension in the same way, as in the corresponding extension lemma in
Appendix B. So, we have to consider more precisely only cells ¢ Y ©) with nonempty
intersections with S°. To simplify the proof we consider only two different cases:
(HY }) C Yy (first structure), and (2) ¥ }) N Yy = @ (second structure). All these

cubes have two parts. The first part belongs to the domain £2° and has the pore space
defined by xo(y), and the second part belongs to §2 and has the pore space defined by
x (y). For the first structure of the common pore space (see Fig.5.4) the pore space
in the whole cube has the same structure as in other cubes in 29 and in £2. So we
may use the same method of extension as in that extension lemma. For the second
structure of the common pore space (see Fig.5.5) one has two disconnected sets, but
it is again possible to apply the same extension method as before.

5.2.4 Proof of Theorem 5.9

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters (see, for example, the proof of Theorem 1.2). In fact, setting in (5.2.15)
X, 7) = h(t)W(x, ), where h(t) = 1 forO < v <tandh(r) =Ofort <t < T
we first obtain that

aM/QE |D(x, w(x, t))|2dx

f
t
+min(k8,ko)/ / ID(x, w*(x, ) [dxdr < CoR?, (5.2.51)
0 /o5

T
/ /|W8(x, 1) — wi(x, 1)|2dxdtz
o Jo


http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1

5.2 Filtration in Two Different Poroelastic Media 209

Co r
< —oay
reJoo Jos

where w¢ is an extension of w® from the solid part Q¢ onto the liquid part Q*}:

D(x, ' (x, 1)) — D(x, Wi (x, 1)) ‘2dx, (5.2.52)

/ IWe (x, 1)|*dx < Co / \we (x, 1)|%dx,
0 05

» 2
/ Iwe(x, 1)|2dx < Co/ ‘D(x,wﬁ(x, t))‘ dx
(@] o

<C0/
0

O;={xeQ: ') =0}, Q%={xeQ:x°®=1}%

D(x, W (x, 1)) ’zdx, (5.2.53)

In (5.2.51) and (5.2.52) Cy depends only on the domain Q, and the geometry of
pore spaces in £2° and £2, and does not depend on &, and in (5.2.51) Cy additionally
depends on min{kg, Xo, 1}.

5.2.5 Proof of Theorem 5.10

On the basis of estimates (5.2.16) and in the same way as in Chap. 1 we conclude
that fore — 0

78— mpx, 0X@) + (1 — X)) s(x, 1, y) two-scalein Lo(Gr),
xfn® —~mmy weaklyin Ly(Gr),
we — wy(x, 1) weakly and two-scale in Lo(Gr),
w® — w = wy(x, ) weakly and two-scale in Ly(G7),
]D)(x, wﬁ) — ]D)(x, w (X, t)) + ]D)(y, ﬁ(x, t, y)) two-scale in Lr (G 7).
The continuity condition (5.2.22) on the common boundary S° is a consequence of

the smoothness of wy.
The weak limit in the continuity equation (5.2.1) in its integral form

/ w® - Vhdxdt =0
Gr
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for arbitrary smooth functions 4 = h(x, t) results in the continuity equation (5.2.18)
in Q fort > 0.
As we have shown in Chap. 1 (Theorems 1.3 and 1.4)

37Tf
Pr=—5, € Ly(Gr), Ps=

N

e LYy x G7).

Passing to the limit as ¢ — 0 in (5.2.15) with test functions ¢ = ¢(X, t), vanishing
att = T and at S, we arrive at the microscopic momentum balance equation in the
form of the integral identity

/G (( )»8((1 —mo)D(x, wg) + (D(x, fJ))YSO —((Ps — Pf)>y_9) :D(x, 9)
T
+ (1= Oao((1 —m)D(x, w)+(D(x, U)y, — (Ps — pp))y,) : Dix, tﬂ))dxdt

=/ (Pf V-9)+ (Cﬁo +1 - C)ﬁ)F~<p)dxdt =0.
Gr

for arbitrary smooth function ¢ vanishing at S.
The function U is defined separately in each domain .Q% and 27 (see Theorem
1.3 of Chap. 1):

U= Uo(x, t,y), forxe .QO, U= U, t,y), forxe £,
and

D(x, ) + (DG, U)y0 — ((Ps = pp))yo = Ny° - D(x, wy)

3
= (‘JIS’O —< > P(()”’O)>Y0H®Jij) :D(x, wy),
i =1 s
D(x, wy) + (DCx, U))y, — ((Ps — pp))y, = Mg : Dix, wy)

= (n—{ i ") 1@ 17) : D, w). (5.2.54)
ij=I :

Here 0% and N are given by (1.2.35) for the pore space with characteristic functions

xo(y) and x (y), and P (()ij 9 and P (()ij ) are solutions of the system (1.2.34) in domains
Y and YS0 respectively.
Therefore the last identity takes the form

/G (¢ ((695° : Dex, wy) = s 1) Dix, ) = 5OF - )

+ (1= ) (o) : D(x, wy) — pr ) : D(x, ) — F - go))dxdt —0.
(5.2.55)
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This identity implies Eqgs. (5.2.17) and (5.2.19) in .Q% and £27 respectively, and the
continuity condition (5.2.23) on the common boundary S°.
The weak limit in the normalization condition (5.2.8) in the form

0:—/5‘2-?(:)(/9 );gnﬁdx)dta—/(:i—il(t)(/g nfdx)dt
:/Th(t)(/ pfdx)dtzo
0 2

for arbitrary smooth finite on (0, 7") functions /A (¢) results in the normalization con-
dition (5.2.20).

The boundary condition (5.2.21) on the outer boundary S follows from the Lemma
B.14 in Appendix B.

Finally, the continuity condition (5.2.22) on the common boundary S is a con-
sequence of the inclusion wy € W;’O(GT).

5.2.6 Proof of Theorem 5.11

As in the proofs of Theorems 5.5, 5.6, and 5.10 of this Chapter, and Theorem 1.4 of
Chap. 1, we conclude that for ¢ — 0

xfm® — m(x,1) weakly in Ly(G7),

= xx, )7+ (1= X%, ¥)Is(x, 1,y) two-scale in Ly(Gr),
2ew® = w') weakly inLa(G7),
2ew' = 1 (x, y)W(x, 1,y) two-scale in Ly(G7), w') = (3W)y,
wo — wy(x, r) weakly and two-scale in Lo(G7),
D(x, w§) — D(x, wy(x, 1)) + D(y, U(x, 1, y)) two-scale inLy(Gr),
W=Wx oy +1-0OWxty, U=y +0-OUxLY),

XX, ¥) =@ xo®) + (1 =) x¥),

om

€ L (Gr). pr =" ¢ 1,(Gr)
81‘ 2 Tvpf_ at 2 T)

p:

and the integral identities
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/ (cW D + (1 —mo)wy)+ (1 =)W + (1 —m)wy)) - Vhdxdt = 0, (5.2.56)
Gr

+ (1= Ox(Dlx, wy) + (D(x, U))y, = pI) : D(x, ¢) ) dxds = 0.
(5.2.57)

hold true for any smooth functions 7 = h(x, t) and ¢ = ¢(X, t), vanishing at S.
Next, following the proofs of Theorem 1.4 and Theorem 5.8 we use representations

D(x, wy) + (D(x, U))yo — pT =N : Dix, wy) — ps I
forx € 29, and
D(x, Ws) + (D(x, U))y, — pI =9 : D(x, wy) — ps I,

for x € §2, and arrive at the integral identity

/G (¢ (047° : D0 wo) = ps D : Dix, ) = 6°F - ¢)

+ (1= ) (o : D(x, wy) — pr ) : D(x, ) — F - go))dxdt —0.
(5.2.58)

This identity implies Eqgs. (5.2.25) and (5.2.28) in .{2? and 27 respectively, and the
continuity condition (5.2.33) on the common boundary S°. The boundary condition
(5.2.21) on the outer boundary S follows from the Lemma B.14 in Appendix B, the
continuity condition (5.2.32) on the common boundary S° is a consequence of the
inclusion wy € W;’O(GT).

The integral identity (5.2.56) implies continuity equations (5.2.24) and (5.2.27) in
.Qg and 27 respectively, the continuity condition (5.2.34) on the common boundary
$9, and boundary condition (5.2.31) on the outer boundary .

To derive Darcy’s laws (5.2.26) and (5.2.29) in .Q% and 27 respectively, and prove
that Vry € Lo(Gr), we pass to the limit as ¢ — 0 in (5.2.15) with test functions

p= /Oth(x, )dT o (Z—() ,

where

(1) h is finite in 29 and @o(y) is divergent free and finite in ¥ 0,
and
(2) his finite in £2 and @ (y) is divergent free and finite in Y.
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Fig. 5.7 Continuity of the
pressure on S°

This procedure has been done in Chap.1 (proofs of Theorems 1.3 and 1.4) and
together with microscopic continuity equations

Vy - Wox,1,y) =0, ye ¥, V, W(x,1,y) =0, y€ ¥}
defines (5.2.26) and (5.2.29).
The missing continuity condition (5.2.35) or (5.2.36) on S0 depends on the struc-

ture of the common pore space. For the first structure there exist divergent free and
finite in Y7 N YJQ smooth functions ¢; (y) (Fig.5.7), such that

(@i)y =¢;, i=1,2,3,

where {e;, e, e;} is a standard Cartesian basis. The existence of such functions is
proved in Lemma B.15 of Appendix B.

Next we put in (5.2.15)
! X
o= [ nx e ().
0 &

where h(x°, 1) # 0 for x € S° and is h(x, ) vanishes outside of some small
neighborhood of x0, and pass to the limit as ¢ — O:

t
/Q h (11 (DG W) : Dy, @)y — pf( /0 Fdr) @iy )dxdt
T

13
0y . e _ Ao
g 1B WO DO Gy or ([ Par) - @ry)asa

— wr(Vh -e~)dxdt—/ wr(Vh -e)dxdt
/:zr / ' 29 / l

oh o Oh .
_/Q (hPl-—}—a—xinf)dxdt—l—/Qo (nP, +3—xinf)dxdt_0, i=1,23
T T
(5.2.59)

where .
PO = =D W) : D@y + oy ( [ Far) - G
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Fig. 5.8 Disconnected pore
space =~

t
P == DG, W) DG gy + s ( [ Fdr) - (G

Due to estimates (5.2.16) and the two-scale convergence results (see Appendix B)
we have

wp, PP e Ly(2Y), mp, P e La(27), i =1,2,3.

Therefore s € W21 0 (Gr) and function 7 7 satisfies the continuity condition (5.2.35)
on the common boundary S°.

Now, let the common pore space be disconnected (the second structure). The
function W* = w® — w¢ is identically equal to zero in the solid domain Qf due to
the properties of the extension w¢.

Moreover, by supposition on a structure of the common pore space we have the
equality

w =0
on the common boundary S° (see Figs. 5.5 and 5.8).
Let

w={xe2:x-x" <8}, o ={xef:|x—x"|<3s}

for x? € 80 and sufficiently small positive 8, and &(x, #) be a smooth function, such
that

£x",1) £0, suppé C of.

By the choice of the function & and the domain w®

wo(x,t) =0 for x € do0°.
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Therefore

T T
/ /ngv-widxdtz/ /?;V-widxdt
0 w 0 w®
T T
- —/ gv.w*?dxdt:/ / Ve . wodxdt
0 3

0 w? w
T
/ /vs ~(x°w* — x° w)dxdt.
0 w

Passing to the two-scale limit in the last identity as ¢ — 0 we arrive at

T
/ / E(mV-wy + (Vy - Wy, )dxdt
0 w

T
= / / VeE - (W —mwg)dxd. (5.2.60)
0 3}

The arbitrary choice of &, the condition & (xo, t) # 0 for x € §9, and the identity
(5.2.60) imply (5.2.36).

The validity of the normalization condition (5.2.20) for p is proved in the the
previous theorem. By definition

t
Tr(X, 1) = /0 prx, t)dt.

t
/ (X, )dx :/ (/ prx, r)dx)dt =0,
o) 0 0]

which proves (5.2.30).

Therefore,

5.2.7 Proof of Theorem 5.12

Note that estimates (5.2.16) are still valid for the solutions of (FCM)¢. These esti-
mates are independent of 1o = k. But the problem itself also possesses such estimates
and we will try to obtain them.

First we use continuity equations in the form

Vowl ) g vow® = v owh (x 1) e 29,
V.owlh _mv.ow® = —v.wh (x,1) e 2r,

s

and rewrite the problem as two integral identities



216 5 Filtration in Composite Incompressible Media

/(k(it:ID)(x,wg’O)):D(x,<p)—p§5)v.<p)dx=/ oF - pdx,  (5.2.61)
0 0

t
/ ((]E-Vn}k))-V§-‘+EV-w‘gk))dx:/ pfvg.lﬁa-(/ F(x, r)dr)dx (5.2.62)
0 0 0

o 1,0
for any functions ¢ €e W, (Gr) and £ € Wzl’O(GT).
In (5.2.61), (5.2.62)

t
(k) (k)
(X,t)=/ (X, T)dT,
s A py (x, 7)dt
N=cM+ (1 -0)M,
B=¢B+(1-¢)B.

0
Suppose for the moment that e (VJT]((k)) e L>(Gr).
If we putp = w§k) in (5.2.61) and & = p;k) in (5.2.62), and then sum results, we

obtain

- 1d -
k/Q(‘ﬁ:]D)(x,wgk))) :D(x,w§k>)dx+EE/QVn}.">-(B.Vn}"))dx

d - t
= [ pF-w®q —/ vl . B. /F ,T)dt)d
/Qp W, x+dt Q,Of Ty (0 x, 1) t)x

- / prV n}") B - Fdx. (5.2.63)
0

This equality and the properties of tensors ‘ﬁi’o and O] and matrices B° and B imply
the desired estimates

k / IDCx, wk)2dxdr + max / |v7r}")(x, D2dx < CoB2,  (5.2.64)
Gr O0<t<T 0

where Cj is independent of ¢ and k for k > 1.

The rigorous derivation of (5.2.63) requires the use of mollifiers and one may find
such types of estimates for parabolic equations in [61].

Estimates (5.2.64), and Eqgs.(5.2.26) and (5.2.29) show that there exist subse-
quences {ng")}, {n}k”)}, and {W(f’k”)}, such that

o 1.0
wln) — 0 strongly in W, (Gr),

n}k") — my weakly in WZI’O(GT),



5.2 Filtration in Two Different Poroelastic Media 217

and
wlk) s W) weakly in Lo(Gr)

ask, — 00, and the limiting functions obviously solve the problem (5.2.30), (5.2.31),
(5.2.35), (5.2.38)—(5.2.41).

In fact, Egs. (5.2.39), (5.2.40) are the direct result of the limit in Egs. (5.2.26),
(5.2.29). The continuity equation (5.2.38) in Q, the continuity condition (5.2.41),
and the boundary condition (5.2.31) follow from the continuity equation (5.2.27) in
its integral form

/ VE. (w(f’k”) +(c(=mo)+ (=)l — m))w§k"))dxdt —0,
Gr

which holds true for any smooth function &(x, 7).
The continuity condition (5.2.35) follows from the smoothness of the function
T
As before, the weak limit as k, — oc in the normalization condition (5.2.30) for

nf‘-k”) in the form

T T
oz/ h(;)(/ n}k”)dx)dte/ h(t)(/ nfdx)dt:O
0 2 0 2

for arbitrary smooth functions /4 (#) results in the normalization condition (5.2.30)
for the function 7 ¢.

5.2.8 Proof of Theorem 5.13

The proof of this theorem is similar to the proof of the previous one. To explain our
ideas on how to obtain estimates independent of k, we again use the formal method

under the supposition V p(fk) e La(Gr).
Firstly we rewrite (5.2.58) as

/Q(c (9} DCx, w) = py D) : D, 9) = p'F - )
+ (1= (kD - Dx, wy) — prl) - Dix, @) — AF - (p))dx =0 (5.2.65)

and put ¢ = wAgk).

Then we multiply (5.2.24) and (5.2.27) by pﬁf), integrate over domain £2° and £2
respectively, and sum the results with (5.2.65):
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0=k / (; Dx, wih) - (910 : D, wi))
0

+ (1 =)D, why - (30 D(x,w_§k>)))dx —/QﬁOF.w§k>dx
+/ prV - WP mow®ydx +/ prV - WP — w8y dx
20 2
=h+L+5L+1;=0.

The last two integrals I3 and I4 we rewrite using integration by parts, boundary
conditions (5.2.21), (5.2.31), (5.2.36), and (5.2.37), and Egs. (5.2.26) and (5.2.29) as

1 t
L= — vpf.]BO.(an—pf/ F(x,r)dt)dx,
K1 J o 0

1 t
Iy = — fo-B-(an—pf/ F(X,‘E)dt)dx.
n1 J 0

Gathering all together we arrive at (5.2.63).

The rest of the proof repeats the proof of Theorem 5.12. The slight difference here
is only in the derivation of the boundary condition (5.2.42). To prove that we rewrite
the continuity equation (5.2.27) in £2 as

V- W — pw®) 4w = o,

multiply by an arbitrary smooth function £ and integrate by parts over domain 27
using boundary conditions (5.2.21), (5.2.31), and (5.2.36):

/Q ( — Ve (WD —why pev. w§k>)dxdz =0.

The limit as k — oo in the last identity results in

/ ve -wPdxdr =0,
2

which is equivalent to the continuity equation (5.2.38) and the boundary condition
(5.2.42).

5.2.9 Proof of Theorem 5.14

The new supposition of the theorem, that

/(1_ 8)8F
Qr X\

2
dxdt =2 < oo,

t
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permits us to get estimates

/ (|wg|2 + [D(x, v€)|2)dxdt
fr

+ max / (l]DD(x,WE)|2+ |p£|2)dx < Co(R? + 1), (5.2.66)
TJa

O<t<

£

&
; ) is an extension of

where v¢ = ]ETst from the liquid domain Q? onto

Q (see the proof of Theorem 1.9).
On the basis of these estimates we conclude that for ¢ — 0

p® — p weakly in Ly(Gr),

w® — w(x, t) weakly and two-scale in Ly(G7),

9 o 1,0
Ve v(x, 1) = 8—? weakly in W, (Gr) and two-scale in Ly(G7).

D(x, w*) — D(x, w) + D(y, W) two-scale in Lo(G71),

]D)(x,vg) —>ID)(x,V) + D(y,x?) - D(x,aa—vtv)

IW
+ D(y, 7) two-scale in Lo (G7),

W=:W+(1-0W,

where functions W and W are defined separately in (2? x Y and £27 x Y (for details
see the proof of Theorem 1.11). The same theorem says that limiting functions satisfy
Egs. (5.2.44)-(5.2.46), the boundary condition (5.2.49), and the initial condition
(5.2.50). The validity of the normalization condition (5.2.47) is a consequence of the
weak convergence of { p®} and the normalization condition (5.2.43).

Finally, the boundary condition (5.2.48) follows from the integral identity (5.2.15)
after taking the two-scale limit as ¢ — 0 with test functions ¢ = @(x, ?):

[ (vo(man (s, 52) + (B 250)),0) + olc1 = mormis,w

f

+ (D(y, WO))yo) — pH) : D(x, p)dxdt — / ) A°F - pdxdt
2

T

+ /9 T (Mo (mp(x, 83—?) + (Do, aa—vtv>>yf) + 2o ((1 = m)D(x, w)
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+ (D(y, W))ys) — pH) :D(x, @)dxdt —/ OF - pdxdt =0. (5.2.67)

7

In fact, by Theorem 1.11

Bm (o ) + (20, )

f
+ 2o ((1 = mo)D(x, W) + (D(y, W) o),

P pem(me(e ) + (00 57)), )

+ )\'0((1 - m)D(-x9 W) + <]D)(y’ W))Ys)a

and the integral identity (5.2.67) takes the form
/G (EP° + (1 — ©)P) : D(x, p)dxdt :/G (¢6° + (1 = ©)p)F - pdxdt,
T T

which obviously implies the boundary condition (5.2.48).

5.3 Filtration in Poroelastic Media with a Variable Structure

In this section we will try to model nonperiodic poroelastic media with a variable

structure in the domain §2, described for ¢+ > 0 by the model Mj5 with the char-

acteristic function xo(x) of the liquid domain £2¢. To do this we use the standard

procedure of approximation of variable coefficients by means of step functions.
Suppose that for some small positive §

X
—), ro =2y ps = py, forx e K©®

X000 = o o,

where y,(y) is a 1-periodic in y function,
N
Ay = const., p' = const., 2 = U K,E‘S),
n=1
and for § > 0O the cube K, ,(,5) is an intersection of the domain §2 with the cube § K,

K =10, 1P c B3, ItK® NIt K> = ¢ for m # n.
Let
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8
1Py = @, 250 =25, o) = p]" for x €KY
be step functions in the variable x. Then x ®)(x,y) is a 1-periodic function in the

variable y.
Now, as usual, we consider in the domain §2 for r > 0 the problem

V.whe =0, (5.3.1)

awd-e
V. (X(S’SO{MD(Xy T

with the characteristic function

X
x> Ex) = x@ (x, g)

)+(1—X6’6))\(()6)D(x, whey— phe H)—Fp‘s’EF =0, (53.2)

of the pore space .Q‘;.’s, the solid density ps(‘s) (x), and the elasticity coefficient )L(()‘S) (%),
depending on the variable x € £2 and the small parameter & < §.
The problem is completed with the boundary condition

wE(x,0) =0, xeS =082, t>0, (5.3.3)

and initial and normalization conditions

xXFOWE(x, 1) =0, x€Q, (5.3.4)
X g ©®) ©)
/ ©) p>e(x,)dx =0, m?(x) = / x(x, y)dy. (5.3.5)
2 m®(x) v

In (5.3.2)
PME®) = " ®pr + (1= X" )" ().

Differential equation (5.3.2) is understood as an integral identity

r d
/0 /.Q (— aMXS’*?ID)(x, woe): D (x, a—f)—l—k(()s)(l—x‘s’s)]l)(x, w ) D(x, ga))dxdt

T
=/O /Q(p‘s’s(pr)—!—pB’eF-(p)dxdt (5.3.6)

9 o 1,0
for all functions ¢ vanishing at t = T, such that ¢, 8—? €W, (Gr).

Throughout this section we impose Assumptions 0.1, 1.2, and 3.1 for the struc-
tures, defined by characteristic functions yx,(y), completed with an additional sup-
position.
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Assumption 5.1 Let 2 = ,[,V:l K\, where K,*) is an intersection of £2 with the
cube § K, K = [0, 11 € B3, IntK”) N IntKY = @ for m # n, and

XD X, ¥) = xa(y), forx e K

be a characteristic function of the pore space in £2.
Then the common pore space in 2 is connected (see previous section), that is, for
any K ,(18) and K| ,,(f ), having a common boundary,

Y@y Ee. ym oy £,
where Y ;") and Y™ are elementary liquid domains and ¥ and ¥"" are elementary

solid domains, defined by characteristic functions x,(y) and x,,(y) respectively.

Next we introduce an extension
8,e _ m®) (b
wot(x, 1) = Eg. (w**)

from the solid part
Q2= {xe.Q:X(‘S) (x,§):0}
€

of the domain §2 onto the whole domain 2, with the following properties:
(1= x"*®) (W x, 1) —w¥(x,1) =0, xe2,te(,T),

and
/ Wi (x, t)|2dx < Co/ W (x, t)|2dx,
2 ar

/|]D)(x,wf’5(x,t))|2dx<C0/ D (x, W (x, )| dx, 1€ (©,T),
2

where Cy is independent of ¢, §, and ¢ € (0, T').

The existence of such an extension for domains £2¢ with a non- periodic structure
is proved as well as the existence of the extension (1.2.9) for domains £2¢ with
periodic structure.

Under these assumptions for solutions {whe, p%¢}of the problem (5.3.1)—(5.3.5)
all statements of the previous section hold true, which we reformulate as the following
theorems.

Theorem 5.15 For all ¢ > 0 and for arbitrary time interval [0, T'] there exists a
unique generalized solution of problem (5.3.1)—(5.3.5) and
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o
max /X‘S’S(aMID(x,WS’S(X, D)+ S wh (x, 1) — whe (x, t)|2)dx
0<t<T J o &

T
+/ / (|n&€|2 +A3|D(x,w5’€)|2)dxdt < Co'P?, (5.3.7)
0 J
where Cy is independent of €, )Lg for )\.(()5) > A", and

t
e (x, 1) = / poe(x, T)dr,
0

‘132 = max / IF(x, 1)|>dx < oco.
0<t<T J o
Theorem 5.16 Let
no=0, uy =00, 0 <A™ <A§)8)(x) < AT < o0,

{w?¢, p %€} be the weak solution of the problem (5.3.1)~(5.3.5),
t
i = [ pem o,
0

and w?’s =Eg: (w‘s’s) be an extension from the domain .Q;S’s ={xeR:x"x) =
0} onto the domain S2.

Then the sequences {wW>¢} and {x®¢w®¢} converge weakly in Ly(227) and
Lo (827) as € — 0 to the functions w§8) and m® 71}8) respectively, and the sequence

{Wg,s} converges weakly in Wzl’o(.Qr) as ¢ — 0 to the function W§8).

The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the homogenized momentum balance equation

V- PYx) +pPx)F =0, (5.3.8)
PP %) = A0 N x) : Dex, w) — pPL (5.3.9)

and the continuity equation
V. w® =o. (5.3.10)

The problem is completed with the normalization condition

/ P (x. ndx =0 (5.3.11)
P

and the boundary condition
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w® =0 (5.3.12)

on the outer boundary S fort > 0.
In (5.3.8), (5.3.9)
©
Py == 3000 =mP® pp + (1-m(0) o 0,

the symmetric strictly positively definite fourth-rank tensor ‘ﬁ‘i’a (x) is given at point
X € §2 by (1.2.38) for the pore space with the characteristic function x ®) (x,y) (see
Theorem 1.4 of Chap. 1).

We refer to the problem (5.3.8)—(5.3.12) as the homogenized model (]F(CM)g).
Theorem 5.17 Let

o =0, O<0<A_<M1,A(()8)(x)<k+<oo,

{w®e, p €Y be the weak solution of the problem (5.3.1)~(5.3.5), W?’s =Eg: (W’S’s)
be an extension from the domain 2§ = {x € 2 : x%(x) = 0} onto the domain 2,
and

t
7%, 1) :/ pPe(x, T)dx.
0

Then the sequences {x** %%}, and {x®¢ w®¢} converge weakly in L>(27) and
Lo (27) ase — 0to the functions m® n](ca) and w® 1) respectively, and the sequence

{Wg’g} converges weakly in Wé’O(QT) as ¢ — 0 to the function w‘E’”.

()
. T
The limiting functions JTJ(CS), w@ ) and W§5), where Vﬂ’;s) e L (£27), a—f IS

Lo (827), solve in the domain S2 for t > 0 the homogenized system, consisting of the
continuity equation

V. (WD + (1-mPx)w?) =0, (5.3.13)
the homogenized momentum balance equation
VPP x) + P F =0, (5.3.14)
PP (%) = A5 ) N’ x) 1 Dx, w) — pP1 (5.3.15)
for the solid component, and Darcy’s law in the form

1 t
wOD =@y w® + —BO(x). (— v+ pf/ F(x, t)dt) (5.3.16)
"1 ’ 0
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for the liquid component.

The problem is completed with the normalization condition (5.3.11), the boundary

condition (5.3.12) for the solid displacements w@, and the boundary condition

wO DX, 1) nx) =0 (5.3.17)

for the liquid displacements on the outer boundary S fort > Q.
In (5.3.13)—(5.3.17) n(X) is a unit normal to S atx € S,

(8)

o
P = a_? 5O x) =m®x) ps + (1 - mP ) p® x),

the symmetric strictly positively definite fourth-rank tensor ‘ﬂ‘i’a (x) is given for almost
all points x € $2 by (1.2.38) for the pore space with the characteristic function
x O (x,y) (see Theorem 1.4 of Chap. 1), the symmetric strictly positive definite matrix
B (x) is given for almost all points X € $2 by (1.1.27) for the pore space with the
characteristic function x®)(x,y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.3.11), (5.3.12)—-(5.3.17) as a homogenized model
@CM)Y).
Theorem 5.18 Under the conditions of Theorem 5.17 let {w§‘“‘>, w@ L0 ﬂ](ca’k)}
be a weak solution of the model (]F(CM)%) with )»(()8) =k

Then the sequences {nj(f’k)} and {w R converge weakly in Lr(27) and
L2 (£27) as k — oo to the functions 71;8) and w1 respectively, and the sequence

{w_gs’k) } converges strongly in Lo (§27) to zero.
The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the continuity equation

v.wéh =9 (5.3.18)
and Darcy’s law
5.0 _ L oo ®) !
wé ) = —BO(x). —- Vo, +pf/ F(x, 7)dt ), (5.3.19)
M1 0

completed with the boundary condition (5.3.17) for the liquid velocity on the outer
boundary S fort > 0, and the normalization condition (5.3.11).

The symmetric strictly positively definite matrix B®)(x) is given for almost all
pointsx € §2 by (1.1.27) for the pore space with the characteristic function x ® (x, y)
(see Theorem 1.1 of Chap. 1).

We refer to the problem (5.3.11), (5.3.17)—(5.3.19) as the homogenized model
(FCM)'Y.
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To consider the following case we change the setting of the problem at the micro-
scopic level, namely, instead of the normalization condition (5.3.5) we consider the
normalization condition

/ P>t (x,1)dx = 0. (5.3.20)
2

The proof of the solvability of the problem (5.3.1)—(5.3.4), (5.3.20) and the derivation
of the a priori estimates repeat exactly the proof of the solvability and the derivation
of the a priori estimates of the problem (5.3.1)—(5.3.5).

Theorem 5.19 Let

a, = o, 0 <A™ < o, A(()a)(x) <At < o0,

T
/ /(1—)(8)
0o Je

and {w>¢, p %%} be the weak solution of the problem (5.3.1)~(5.3.4), (5.3.20).
Then the sequence {p®*} converges weakly in L»(21) as € — 0 to the function
p® and the sequence {w**} converges weakly in Wé’o (827) as e — 0to the function
©)
w'o),
The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the continuity equation

2

oF
— | dxdt = p? ,
o X PT < o0

vV.w® =0, (5.3.21)
and the homogenized momentum balance equation

V. POx) +p®x)F =0, (5.3.22)

~ ow(®
PO (x) = _p<3>}1+m§‘”(x):m>(x, i

) )
o ) + 9P %) D(x, w®)

t
+ / N (x, 1 — 1) : D(x, wO(x, 1))dr. (5.3.23)
0
The problem is completed with the normalization condition
/ P (x,t)dx =0, (5.3.24)
2

the Dirichlet boundary condition

w@x,1) =0 (5.3.25)
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at the outer boundary S, and the initial condition

w?(x,0)=0, x € £2. (5.3.26)
In (5.3.21)—(5.3.26)

AP x) =m@x) ps + (1= mPx) p (%),

fourth-rank tensors ‘ﬁ?) (x), ‘J'(gs)(x), and mg&) (x, t) are given for almost all points
X € §2 by formulae (1.4.30) for criteria o and A(()S)(X), and the pore space with
the characteristic function x® (x,y) (see Theorem 1.11 of Chap. 1). The symmetric
tensor ‘ﬁ?) is strictly positively definite.

We refer to the problem (5.3.21)—(5.3.26) as the homogenized model (FCM) (1‘2.
Now we may complete the construction of mathematical models with variable
properties of the medium by the following

Assumption 5.2 Under the conditions of Assumption 5.1 let { x@(x,y)} be a
sequence of characteristic functions, which approximately describe the pore space
in £2.

Then there exists a function x (X, y)m l-periodic in the variable y, such that the
sequence {x ¥} converges uniformly in £2 x ¥ as § — 0 to the function x (x, y).

Let Yy (x) and Y;(x) be elementary liquid and solid cells in Y, defined by the
characteristic function y (x, y). Then due to Assumptions 5.1 and 5.2 for any x¢ € §2
there exists y > 0, such that

Yrx)NYr(Xo) #9¥, YX)NYi(X0) =¥, YVX: [x—Xg| <. (5.3.27)
We additionally suppose that
) X) = 2, pPx) = py(x) in La(£2) (5.3.28)

as § — 0. These last assumptions permit us to pass to the limit as § — 0 in the
mathematical models (IF(CM)E(;) — (FCM) 5‘2.
So, the following statements hold true.

Theorem 5.20 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let
{w§‘”, w: /) n}s)} be a solution of the model (]FCM)%).

Then the sequences {w® "} and {r ;53)} converge weakly in Lo (£27) and L, (827)

as 8 — 0 to the functions Wy and 7 ¢ respectively, and the sequence {W§8)} converges

weakly in Wé’O(QT) as 8§ — 0 to the function w.
The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the homogenized momentum balance equation
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V.-Pi(x)+ px)F =0, (5.3.29)
P1(x) = Ao(x) 9} (x) : D(x, wy) — pr1, (5.3.30)

and the continuity equation
V- w, =0. (5.3.31)

The problem is completed with the normalization condition

/ prx,0)dx =0 (5.3.32)
2

and the boundary condition
w, =0 (5.3.33)

on the outer boundary S fort > 0.
In (5.3.29)—(5.3.33)

omy
Pr=— AX) =mx) pr+ (1 —mx)) pg(x), m(x) Z/YX(X’y)dy,

the symmetric strictly positively definite fourth-rank tensor Yt} (x) is given at point
X € §2 by (1.2.38) for the pore space with the characteristic function x (X,y) (see
Theorem 1.4 of Chap. 1).

We refer to the problem (5.3.29)—(5.3.33) as the homogenized model (IF(CM)(I%) .

Theorem 5.21 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let
{w§‘”, w1 71}8)} be a solution of the model (]FCM)%‘Z).

Then the sequences {w® )} and {JT;(S)} converge weakly in Lo (£27) and L, (827)

as 8 — 0to the functions w/ and r respectively, and the sequence {W£8)} converges
weakly in Wé’O(QT) as 8§ — 0 to the function w.

The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the continuity equation
Ve (w4 (1 =mx)w) =0, (5.3.34)
the homogenized momentum balance equation
V-Pi(x)+ px)F =0, (5.3.35)
Pi(x) = 2o(x) N (x) : D(x, wy) — pr 1 (5.3.36)

for the solid component, and Darcy’s law in the form
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1 t

w/ =mx) wy + —B(x) - (— Vo + p,-/ F(x, r)dr) (5.3.37)
23 ’ “Jo

for the liquid component.
The problem is completed with the normalization condition (5.3.32), the boundary
condition (5.3.33) for the solid displacements wg, and the boundary condition

w/(x,7) - nx) =0 (5.3.38)

for the liquid displacements on the outer boundary S fort > Q.
In (5.3.34)—(5.3.38) n(X) is a unit normal to S atx € S,

omy .
Pr=— AX) =m(x) py+ (1 —m(x)) ps(x), m(X)=/yx(X,y)dy,

the symmetric strictly positively definite fourth-rank tensor It} (X) is given for almost
allpointsx € $2 by (1.2.38) for the pore space with the characteristic function x (X, y)
(see Theorem 1.4 of Chap. 1), the symmetric strictly positively definite matrix B(x) is
given for almost all pointsx € §2 by (1.1.27) for the pore space with the characteristic
function x (X,y) (see Theorem 1.1 of Chap. 1).

We refer to the problem (5.3.32), (5.3.33)—(5.3.38) as the homogenized model
FCM)Y.
Theorem 5.22 Under the conditions of Theorem 5.21 let {W§k), wlro), n}k)} be the
weak solution of the model (FCM) ﬁ) with Lo(X) = k.

Then the sequences {n’}k)} and {w'S0)} converge weakly in Ly(27) and Ly (227)

as k — oo to the functions ¢ and w/ respectively, and the sequence {W§k)} con-
verges strongly in Lo (§27) to zero.

The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the continuity equation

V.-wl =0 (5.3.39)

and Darcy’s law

t
w/ = iB(x) : (— Vs + pf/ F(x, t)dr), (5.3.40)
M1 ’ 0

completed with the boundary condition (5.3.38) for the liquid velocity on the outer
boundary S fort > 0, and the normalization condition (5.3.32).

The symmetric strictly positively definite matrix B(X) is given for almost all points
X € §2 by (1.1.27) for the pore space with the characteristic function x (X,y) (see
Theorem 1.1 of Chap. 1).
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We refer to the problem (5.3.32), (5.3.38)—(5.3.40) as the homogenized model
()
(FCM) 5 .
Theorem 5.23 Under Assumptions 5.1 and 5.2 and conditions (5.3.28) let {w®) p®)}
be a solution of the model (IF(CM)E%).
Then the sequence {p®} converges weakly in L»(27) as 8§ — 0 to the function p
and the sequence {w®} converges weakly in wé’O(QT) as 8§ — 0 to the function w.

The limiting functions solve in the domain S2 for t > 0 the homogenized system,
consisting of the continuity equation

V.w=0, (5.3.41)

and the homogenized momentum balance equation

V.Px) + px)F =0, (5.3.42)
f@(x) =-—-pl+MX): D(x, %—:V) + 9 (x) : D(x, w)
t
+/ MN3(x,t — 1) : D(x, wx, 7))dT. (5.3.43)
0

The problem is completed with the normalization condition

/ p(x,1)dx =0, (5.3.44)
2

the Dirichlet boundary condition
w(x, 1) =0 (5.3.45)
at the outer boundary S, and the initial condition
wx,0) =0, xe £2. (5.3.46)

In (5.3.41)~(5.3.46)
px) =m(x) py+ (1 —m(x)) ps(x), m(x) = /Y XX, y)dy,

fourth-rank tensors My (x), No(X), and N3(X, t) are given for almost all points X €
2 by formulae (1.4.30) for criteria o and io(X), and the pore space with the
characteristic function x (X, y) (see Theorem 1.11 of Chap. 1). The symmetric tensor
N, is strictly positively definite.

We refer to the problem (5.3.41)~(5.3.46) as the homogenized model (FCM)?.
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To prove all these statements we only have to show that tensors ‘Iﬁ"g x), mga) x),
‘ﬁé‘s) (x), and ‘J'(gs)(x, 1), and matrices B (x) continuously depend on § as § — 0.

The proof of this fact is quite standard and we do it schematically only for the
tensor ‘ﬂi"s (x).

Lemma 5.3 The tensor ‘ﬁi’s(x) is a continuous with respect to parameter 4.

Proof To prove the statement we only have to show the continuity of the solution
{Ué” ), Pa(l] )} of the problem

. _L® ©) _ p® =
vy (1= 2@, U®) + - POT)) =0, YGY’] (5.3.47)

(1= xV, - UY =0, yev, U?),6=0

with respect to §, if the characteristic function (1 — X (‘3)(y)) of the solid cell Y, S(a) is
a continuous with respect to 8.

Without loss of generality we may assume that functions U® and P® are defined
inY,

/ (1V, U2 + PP 12)ay < Co, (5.3.48)
Y

and that
V,-U® =0, yev. (5.3.49)

Then the difference U = U®) —U®2) p = p®) _ p@2) js 3 solution of the integral
identity

=)0, 0) = P1) D g1y
= /Y (= x®)D(y. Ua) : DAy, 9)dy, (5.3.50)
completed with the continuity equation
V,-U=0, ye?. (5.3.51)
Setting in (5.3.50) ¢ = U one has the equality

/ (1— x®0)D(y, U)Pdy = / G = xOND(y, Uz) : D(y, U)dy,
Y Y

which provides the first estimate

/ IV,U*dy < Co max Xy — x> (5.3.52)
Y ye
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o 1
Letnow @9 € W, (Y) be found from the condition
Vy-po=P, yeY. (5.3.53)

Such a choice is always possible (see [59]) and
/Y IVygol*dy < Co /Y |PIPdy < Ci. (5.3.54)
Setting in (5.3.50) ¢ = ¢o we arrive at the second estimate
/ |P*dy < Co max |V (y) — x )%, (5.3.55)
Y yey

Note that we have started with the mathematical problem at the microscopic level
(5.3.1)—(5.3.5), depending on two small parameters ¢ and §, then first pass to the
limit as & — 0, and after that pass to the limit as § — 0.

For such limiting procedures with two independent small parameters pure math-
ematics requires proofs for the full diagram. It means that now we must first pass to
the limit as 6 — 0, and after that pass to the limit as ¢ — 0. The limiting model will
be correct, if in both cases we get the same result.

The limit as § — 0 in (5.3.1)—(5.3.5) obviously results in the problem

V-w® =0, (5.3.56)

&

V. (XsaM]D)(x, ait) £ (1= xHro®Dx, W) — p° 11) 4o F =0, (5.3.57)

WX, 0)=0, xeS§=032, >0, (5.3.58)
xE@Wi(x,1) =0, x € £, (5.3.59)

&
/Q ’;T(;) P°(x, Hdx = 0, (5.3.60)

where
px) = x"®pr+ (1 — x°®)ps(x), m(x) = /Y x (X, y)dy,
with the limiting characteristic function
R X
X (X) =X (Xv _)
e

of the pore space.
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The correctness of the problem (5.3.56)—(5.3.60) is proved in a way similar to the
the correctness of the problem (5.3.1)—(5.3.5).
As above, we introduce an extension

wix, 1) = Eg) (W) (5.3.61)
from the solid part «
Qf:{xeﬂ:x(x,;):O}
of the domain 2 onto the whole domain §2, with the following properties:
(1—x*®) (W1 —wix,1)=0 xe, 1e(0,7),

and

/ Iwé (x, 1)|2dx < CO/ |We (x, 1)|%dx,
2 8

2
/ ‘]D)(x,wi(x, t))‘ dx < Co/
2 for

where Cy is independent of ¢ and ¢ € (0, T').

The existence of such an extension for domains §2{ with a non-periodic structure
might be proved as well as the existence of the extension (1.2.9) for domains £2¢
with a periodic structure.

So, the following theorem holds true.

D(x, W (x, t))fdx, 1e(0.T), (53.62)

Theorem 5.24 Under Assumptions 5.1 and 5.2 for all ¢ > 0 and for an arbitrary
time interval [0, T] there exists a unique generalized solution of problem (5.3.56)—
(5.3.60) and

2«
& D(x, & ot ‘ et g 1) — & t 2)d
OTIELXT/QX (oz#‘ (x wo(x )) + 2 W™ (X, 1) — w,(x, )| )dx

T
+/ / (|n5|2+Ao(x)|ﬂ)(x,w§)|2)dxdtgcozpz, (5.3.63)
0 2

where Cy is independent of €, Ao(X) for Lo(X) > A™, and

t
(X, 1) =/ pf(x, v)dr,
0

P> = max / IF(x, 1)|%dx < oo.
0<t<T Jo
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The limit as ¢ — 0 in (5.3.56)—(5.3.60) does not cause any difficulties and one
formulates the following theorems.

Theorem 5.25 Under Assumptions 5.1 and 5.2 let
no =0, uy =00, 0 <A™ <A0(x)<k+<oo,

{w®, p¢} be the weak solution of the problem (5.3.56)—(5.3.60),
t
me(x, 1) =/ pe(x, t)dr,
0

and w§ = IE(Q*Q (w‘e) be an extension (5.3.61).

Then the sequences {w®} and {x°m%¢} converge weakly in L(27) and L>(827)
as ¢ — 0 to the functions wy and m(x) wy respectively, and the sequence {w¢}

converges weakly in Wé’O(QT) as ¢ — 0 to the function wg.
The pair of functions {wy, 7w} solves in the domain S2 for t > 0 the problem

(0)
(FCM) 5 .
Theorem 5.26 Under Assumptions 5.1 and 5.2 let

wo=0, 0 <A™ <y, ro(x) < AT < o0,

{w®, p®} be the weak solution of the problem (5.3.56)—(5.3.60), w§ = E(Q*z (we) be
an extension (5.3.61), and

t
Té(x, 1) = / pf(x, T)dr.
0

Then the sequences {x* 7°}, and {x* W*} converge weakly in L($27) and Lo ($27)
as ¢ — 0 to the functions m(X) wy and w() respectively, and the sequence {w¢}

converges weakly in WI’O(SZT) as & — 0 to the function wy.
8 Yy 2

. . f) 1,0 87tf
The triple of functions {ws, W'/, ¢}, wheremy € W, " (£27), o € Ly(827),

solves in the domain §2 fort > 0 the problem (FCM) ﬁ).

Theorem 5.27 Under the conditions of Theorem 5.26 let {w‘gk), wifh), n}k) } be the
weak solution of the model (FCM) ﬁ) with Ao(x) = k.
Then the sequences {n;k)} and {w50)Y converge weakly in L»(27) and Ly (227)

as k — oo to the functions wy and w') respectively, and the sequence {ng)}
converges strongly in L ($27) to zero.
The pair of functions {w'/), 7 ¢} solves in the domain 2 for t > 0 the problem

0)
FCM)'?.
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For the case
0 <A™ < o, Mo(x) <A™ < oo, (5.3.64)

instead of the problem (5.3.56)—(5.3.60) we consider the problem (5.3.56)—(5.3.59)
with the normalization condition

/ pE(x, t)dx = 0. (5.3.65)
2

Theorem 5.28 Under Assumptions 5.1 and 5.2 for all ¢ > 0 and for arbitrary
time interval [0, T there exists a unique generalized solution {w®, p ¢} of problem
(5.3.56)—(5.3.59), (5.3.65) and

max Ao/ (1— 8)(x))]D x, wE(x, t)))

O<t<T

where Cy is independent of ¢ and
‘}32 = max / [F(x, 1)>dx < oco.

The sequence {p*} converges weakly in Ly($27) as ¢ — 0 to the function p and the
sequence {W°} converges weakly in W, (£27) as ¢ — 0 to the function w.

The pair of functions {w, p} solves in the domain S2 for t > 0 the problem
(FCM) Y.

Proofs of these theorems in its main points repeats the proofs of the similar
theorems above. That is why we prove only Theorem 5.26 to outline the differences.

5.3.1 Proof of Theorem 5.26

On the basis of estimates (5.3.66) we conclude that for e — 0
xEm® = mX)mwy(x, 1) weakly in Ly(£27),
78— I =xxy) s+ (1 —x(xy)I(x,1,y) two-scale in Ly(£27),
x°W" — x(x,y)W(x, t,y) two-scale in Ly (£27),

x°w' = w(x, 1) weakly inLy(27), w') = (W)y,,
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wi — wy(x, 1) weakly and two-scale in L, (£27),
]D)(x, Wf) — ]D)(x, w; (X, t)) + ]D)(y, Ux, 1, y)) two-scale in L, (£27).

The properties of the function y (x, y) admit the two-scale limit in the integrals

T
1<8>=/ /Xg(x)(p (x,?t) W (x, 1)dxdt,
0 J@ &

where ¢(x, ¢, y) is a smooth 1-periodic in y function, and u® — U (X, t, y) two-scale
in Lo (827).
Indeed, by construction,

T
1e9 = [ [ e (x 2r) wxnaxar
0 Jo €
T
*/ / / x DX, y) o, 1. YU, t,y)dydxdt = 1O
0 2JY

ase — 0.
Therefore, if

T
I(°)=/ //x(x,y)w(x,t,y)U(x,t,y)dydxdt,
0 RJY

then for any y > 0 there exists &g = &p(y), such that
|[(8) _ 1(0)| — |1(8) _ 1(8,5)| + |I(8’5) _ 1(0,5)| + |I(0’5) _ 10| <y

for any ¢ < &y.
We simply choose § from conditions

1@ =1 < L0 -0 < L

and after that for fixed § we choose &y from the condition

1@ _ 109 - g

for any ¢ < &.
Now we pass to the limit as ¢ — 0 in the integral identity

T
/ / ((Xgoz,ﬂD)(x, w) —7n°l): D (x, 8_<p)
0 Je at

— (1 = x)A®D(x, ) : D(x, ) + p° (XF - go)dxdt =0, (53.67)
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which is equivalent to Eq. (5.3.57).
After the limit with test functions ¢ = ¢(x, ) we arrive at the macroscopic
momentum balance equation

T
L (ot = meyDes, wo + 00 D) 2 D)

9
+ (mf +(UTf = 7))y V - (a_(f) — p(X)F - <p)dxdt =0, (5.3.68)

and taking in (5.3.67) ¢ = ¢h(X)¢o (§, t), we obtain the microscopic momentum
€
balance equation

T
/O /Y ho(l = 1) (D(x, wy) + D(y. U) : D(y, po)dyd

T d¢o
= — v . {—)dydt. 5.3.69
/0 /Y ( at ) Y ( )

The two-scale limit as ¢ — 0 in the continuity equation (5.3.56) results the micro-
scopic continuity equation

(1—x)(V-w;+V,-U)=0 (5.3.70)

for the solid component.
Just as in Theorem 1.4, we conclude that (5.3.68)—(5.3.70) imply the inclusion

37‘[,«'
Pr=—-¢€ LyLy(827),

and differential equation (5.3.35).

The boundary condition (5.3.33) is a consequence of properties of the extension
operator (5.3.61), and the validity of the normalization condition (5.3.32) is proved
in the same way as in previous statements.

Next, after the two-scale limits as ¢ — 0 in the continuity equation (5.3.56) in its
form of the integral identity

T
/ / (Xsws + 1 - Xg)wf:) -Vé&dxdt =0
0 2

with two different groups of test functions £ = &£(x,t) and £ = ¢ h(x, t)éo(f),
e

supp&y C Yy(x), we arrive at macroscopic continuity equation in the form of
an integral identity, which implies continuity equation (5.3.34) for the mixture, and
boundary condition (5.3.38) for the liquid component, and the microscopic continuity
equation
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V,- W=0, yeYsx) (5.3.71)

for the liquid component.

X
The last stepis alimitas e — 01in (5.3.67) with test functions ¢ = h(X, t)¢g (—),
I3

where smooth function ¢((y) is 1-periodic in the variable y, divergent free and has
a finite support in Y 7 (x):

. " oh
/0 /g (E 11 {D(y, W) = Dy, 90)) v, 00 — 5 (@0)y,00 V - (5)

oh d
~ 3 pf/ F(x, t)drt - ((po)yf(x))dxdt =0. (5.3.72)
0

Let xo € §2. By Assumptions 5.1 and 5.2 there exists some small § > 0, such that
forany x € £2, |[xo — x| < 8, one has Y¢(xo) N Y (x) # 9.
So, we may choose functions ¢g ; (y), i = 1, 2, 3, such that

1
(e}
®0,i € Wo(Yo), V-0, =0, (9o,i)yv, =€, Yo C Nixy—x|<s¥r(X),

where {eq, e>, e3} is an orthogonal Cartesian basis. The existence of such functions
follows from Lemma B.15 (see Appendix B).

ol
Let Qo = {x € 2 : |xo — x| < 8} and hg € L2((0, T); W,(Qo)). Setting in
ah
(5.3.72) m = ho and @9 = ¢p,; we obtain

r oh
/ / (ho D;(x) —my —)dxdt =0, (5.3.73)
0o Jo 0x;

where
t
i(x) = 11 (D(y, W) : D(y. ¢0.)) v, — 7 /0 Fx, 1)d7 - ¢;.

Nguetseng’s theorem guarantees the inclusion
D(y, W) € Lo(£27 x Y).

Therefore
371,«' .
—(x0) = ?i(x0), i =1,2,3,
8)6,'

and
Vs = (P, P2, P3) € Lo(27).
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after reintegrating (5.3.72) we arrive at the equation
t
u1Vy -D(y, W) = V,¥ -V, + ,of/ F(x,t)dt =0 (5.3.74)
0

in the domain Y s (x), which together with continuity equation (5.3.71) and the bound-
ary condition

WX, t,y) =w(x, 1), yeyx) =Yr(x) NY(x) (5.3.75)

result in Darcy’s law (5.3.37).



Chapter 6
Isothermal Liquid Filtration

The mathematical model M, consists of the differential equations

1
?p+V-w=0, x,t) e 2r =2 x(0,7T), 6.0.1)

o

P

EazW &
P W:V-]Phl—p F, (x,t) € 27, (6.0.2)
&~ aw &N — &= 8W
P=x"a,D{x, a7 + (1= xHou,Dx,w)—{p—x a,V- o I, (6.0.3)
wx,t)=0, x,1) e S =S x(0,7), (6.0.4)
oW

w(x, 0) = E(X, 0)=0,x€e £, (6.0.5)

and the model M5 consists of the differential equations

1
xg(_—2p+V~w) =0, (x,t) € 27, (6.0.6)

c4

f

3w e
pf_atz =x V-]P’—i—pfF ,(x,1) € 27, (6.0.7)
_ ow _ ow

P= aM]D)(x, W) - (p — @V - W)H’ (6.0.8)

in the bounded domain 2 = 2% U I' U2 C R?, I'* = 825 N3, witha C*
continuous boundary § = 9§2 fort € (0, T).
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Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_6,
© Atlantis Press and the authors 2014



242 6 Isothermal Liquid Filtration

Recall that in (6.0.1)—(6.0.8) the characteristic function x ¢ (x) of the domain -fo

is given by the expression
X
X (®) =¢®)x (5) : (6.0.9)
where ¢ (x) is the characteristic function of the domain £2, x (y) is the characteristic
function of the domain Y, and
@b =i+ 1= xe p°=x"pr+ U —x")ps.

For the definition of @, &, @y, ¢, and ¢y see Appendix A.

As usual, the function p% = x® p® stands for the liquid pressure, and the function
pi = (1 — x®) p® stands for the solid pressure.

We also assume that all dimensionless parameters depend on the small parameter
¢ and that the (finite or infinite) limits exist:

lim &, () = po, lim @ (e) = v, lim &.(e) = Ao,
e & &\0

\O \O
.« . ay
lim & = , lim —= = Aj.
eN\0 g2 i e\0 g2 !

In the following sections we will find homogenized equations of acoustics for

(D aslightly viscous liquid in an absolutely rigid solid skeleton: o = 0, Ag = oo,
(IT) aslightly viscous liquid in an extremely elastic solid skeleton: g = 0, 1o = 0,
and
(IIT) a slightly viscous liquid in an elastic solid skeleton: o =0, 0 < Xp < o0.

Throughout this chapter it is assumed that

/QT (|F<x, N>+ ‘%(x, )

and that Assumptions 0.1, 1.1 and 3.1 hold true.

2
)dxdt =F?< 00,

Definition 6.1 We say that the pair of functions {w®, p®} such that

o 1.0 awe

w'e W, (27), x°V 5

€ Lo(227), p® € La(27),

is a weak solution of the problem (6.0.1)—(6.0.5), if it satisfies the continuity equa-
tion (6.0.1) almost everywhere in 27, the first initial condition in (6.0.5), and the
integral identity

ow® 0
/ (—ps hd -—‘”+P:D(x,¢))dxdr=—/ o°F - gdxdi  (6.0.10)
Qr at at Qr
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o 1,0
for all functions ¢ vanishing at t = 7', t = 0 and S7, such that ¢ € W, (£27),
% ¢ Ly(2r).

Theorem 6.1 For all ¢ > 0 and for any time interval [0, T] there exists a unique
generalized solution of the problem (6.0.1)—(6.0.5) and

ow?
e .t 2
OrgixT/g(lp x, D>+

2
+ (1 — %)@ |D(x, w€)|2)dx

8[)8 2 2 € 2 B owe 2
—(x,t —(x,t 1 — x° DY x, d
+o‘1‘f‘<T/g(’at(x) +| 0|+ - 6 p(x 2 )x
we 2 e 12
+/ XE(O_HL D(X, hd ) +a,|V )dxdt
2r at
aZWa 2 2 |2
+/ Xa(&ﬂm(x,v) +a,|V- )dxdt < CoF?, (6.0.11)
Qr

where here and in what follows, we denote as Cy any constant depending only on
domains 2, Y and Y .

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1d awe |2
—— [ (s + (1= x)aD(x, w*) : D(x, w*) + — |p ?)d
2dt ot p
aws valv awe\ 2 J
ot @ ot .
W
= F. ——dx,
/gp B
ld/ .| 82w* +(1 pan(x. ™) s ) 4 ape|? J
—— —_— - o x,— ) :D{x, — —|— X
2d o2 A T or ) T |

aZWS aZWS 32W8 2
K ( (x’ 72 ):D(x’ o2 )“‘“(V' o2 ) )d’“
oF 92
=/ e il dx,
o ot 9r?

For example, the first equality follows from the Eq. (6.0.2), if we express the stress
tensor IP and the pressure p? there using state equations (6.0.3) and continuity equa-
&€

tion (6.0.1), multiply the result by a—v: and integrate by parts.
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6.1 A Compressible Slightly Viscous Liquid in an Absolutely
Rigid Skeleton

In this section as a basic mathematical model at the microscopic level we consider
the model M; of the motion of a compressible liquid in an absolutely rigid solid
skeleton, where

w(x, 1) =0, px,1)=0, xe .

0
If we putv = 3—‘:7, then we may rewrite the last condition and Egs. (6.0.6)—(6.0.8)

in the form {8
S P iv.v=0xe2,1€0,T), (6.1.1)
c5 ot
f
v e
pfazv-IF’—l—,ofF,xe.Qf,te(O, T), (6.1.2)
P= &M]D)(x, v) + (&VV -V — p)]I, (6.1.3)
vix,1) =0, px,1)=0, xeRUS, te(0,T), (6.1.4)
vx,0) =0, px,0 =0, xe€. (6.1.5)

Throughout this section we assume that conditions
mo=0, 0< <00, 0 <cp <00, 0V <00

hold true.

6.1.1 Statement of the Problem and Main Results

Definition 6.2 We say that the pair of functions {v®, p ¢} such that

o 1.0
vie W, (27), p° e La(f27),

is a weak solution of the problem (6.1.1)—(6.1.5), if it satisfies condition (6.1.4) and
integral identities
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/ Xs(o_zu]D)(x, ve) : D(x, @) + (&vV Ve — pS)V . go)dxdt
2r

dp
= for(==  v¢ +F - ¢)dxdt, 6.1.6
/QTXPf(atV+ w)x (6.1.6)
19
/ (Vs-v€+3—gp8)dxdt=0, 6.1.7)
Qr Cr at

for any smooth functions ¢ and &, such that ¢ and & satisfy condition (6.1.4), and
conditions ¢(x, T) = 0,&(x, T) = 0.

Theorem 6.2 For all ¢ > 0 and for an arbitrary time interval [0, T] there exists a
unique generalized solution of problem (6.1.1)—(6.1.5) and

/(5{“|VV8|2+5(V|V~V€|2)dxdt
Q7
+ max / (|p8(x, D12+ v (x, t)|2)dx < CoF2. (6.1.8)
O<t<T Q

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equality

1d 1
- (,Of|V8|2 + _—zlpslz)dx +/ (&M]D)(x, v&) i D(x, V) + a,(V - vs)z)dx
2dt Jo Cf 2

= / prF-vidx.
2

Theorem 6.3 Let {v®, p¢} be the weak solution of the problem (6.1.1)—(6.1.5),
q®=pf—ay(V-v®%), and
m1 >0, v = 0.

Then for vy > 0 the sequences {v¢}, {V - v}, {q ¢} and {p ¢} converge weakly in
Lo (827) and Lo(827) as € < 0 to functions v, V - v, q, and p respectively.

These limiting functions, where ¢ = p — vo(V - v) € WZI’O(.QT), solve the
homogenized system of equations in the domain 2 fort € (0, T), consisting of the
continuity equation

1 ap
— +V.v=0, (6.1.9)

=2
Cf ot

and the dynamic equation in the form

t
v:/ B (uy, 0011 = 1)+ (= V(p = w(V W) + oy )x. )T, (6.1.10)
0
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Forvy = 0 the sequences {v°} and {p ¢} converge weakly in Ly (£27) and Lo ($21)
as & < 0 to functions v and p € Wzl’o(.Qr) respectively and these limiting func-
tions solve the homogenized system of equations, consisting of the continuity equa-
tion(6.1.9) and the dynamic equation in the form

t
V= / BY (w1, 005t — 1) - (= V p + psF)(x, 1)d7. (6.1.11)
0

Equations(6.1.9), (6.1.10) and (6.1.9), (6.1.11) are completed with boundary and
initial conditions
vix,1)-n(x) =0, xe §,te(0,T7), (6.1.12)

9
p(x,0) =voa—l:(x, 0)=0,x € 2. (6.1.13)

The matrix B (1, 00; t) has been defined in Chap. 3 by the formula(3.2.70).

Theorem 6.4 Let {v®, p©} be the weak solution of the problem (6.1.1)—(6.1.5),
gt =p?—a,(V-v®, and
1 =0, v =0.

Then for vy > 0 the sequences {v¢}, {V - v*}, {q ?}, and {p ¢} converge weakly in
L2 (827) and Lo(827) to functions v, V - v, g, and p respectively.

These limiting functions, where ¢ = p — vo(V - v) € WZI’O(SZT), solve the
homogenized system of equations in the domain 2 fort € (0, T), consisting of the
continuity equation(6.1.9) and the dynamic equation in the form

ov

— =BY0, oo).(—lv(p—vo(V~v))+pfF). (6.1.14)
ot m

Forvg = 0 the sequences {v¢} and {p ¢} converge weakly in L (27) and Lo ($27)
as ¢ — 0 to functions v and p € W21 ’O(QT) respectively and these limiting func-
tions solve the homogenized system of equations, consisting of the continuity equa-
tion(6.1.9) and the dynamic equation in the form

2—:=]Ba<f>(o, oo)~(—%Vp+pfF). (6.1.15)

Equations (6.1.9), (6.1.14) and (6.1.9), (6.1.15) are completed with boundary and
initial conditions (6.1.12) and (6.1.13).

The symmetric and strictly positively definite constant matrix B (0, oo) has
been defined in Chap. 3 by formula(3.2.76).

Problems (6.1.9), (6.1.11)—(6.1.14) and (6.1.9), (6.1.12), (6.1.13), (6.1.15) have
unique solutions.
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We refer to these described problems as the homogenized models (TA); (u; >
0, vo > 0), TA)2 (1 > 0, vo = 0), (TA)3 (u1 = 0, vo > 0), and ([A)4 (11 =
0, vg = 0) of isothermal acoustics in an absolutely rigid body.

6.1.2 Proofs of Theorems 6.2—6.4

The main parts of all these proofs repeat the similar proofs from Chaps. 1 and 3. The
only differences here are the macro- and microscopic equations.

So, we may assume, that the sequence {v®} converges two-scale and weakly in
L, (£27) to functions V(x, #,y) and v(x, ) = (V)y respectively, and the sequence
{p?} weakly converges in L;(§27) to function p. At the same time the sequence
{V - v®} for vy > 0 weakly converges in L;(§27) to the function V - v and the
sequence {a,V - v¢} for vy = 0 converges strongly in L, (£27) to zero.

The limiting functions satisfy the macroscopic continuity equation (6.1.9) in £27.

For vg > 0 and u; > O the limiting functions satisfy the microscopic dynamic
equation

oV
pf¥=7AyV—vyn+v (= p+v(V V) + p/F. (6.1.16)

For vp = 0 and w1 > O the limiting functions satisfy the microscopic dynamic

equation
oV

For vg > 0 and u; = O the limiting functions satisfy the microscopic dynamic
equation

ov
pfgzvynJrv (= p+vo(V - V) + p/F, (6.1.18)
Finally, for vop = 0 and 1 = O the limiting functions satisfy the microscopic
dynamic equation
ov
pfazvyH—Vp—i—pfF, (6.1.19)

For all cases the limiting functions satisfy the microscopic continuity equation
Vy,-V=0 (6.1.20)

in Y, and the condition
V(x,t,y) =0 fory € ¥;. (6.1.21)

Recall that all equations are understood in the sense of distributions. For example,
we must complete the microscopic continuity equation (6.1.20) with the boundary
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condition
[VI'n=0, yevy, (6.1.22)

where n is a normal vector to the boundary y. Relations (6.1.21) and (6.1.22) give
us the condition
V-n=0, yey, (6.1.23)

which we will use as a boundary condition for the case g = 0.
For the case g > 0 condition (6.1.21) and the imbedding VV € L, (27 x Y)
result in
V(x,t,y) =0, yey. (6.1.24)

The problem (6.1.16), (6.1.20), (6.1.24), the problem (6.1.17), (6.1.20), (6.1.24),
the problem (6.1.18), (6.1.20), (6.1.23), and the problem (6.1.19), (6.1.20), (6.1.23),
completed with initial condition

V(ix,y,0)=0, yeY, (6.1.25)
have been considered in Chap. 3 (proof of Theorem 3.5).

It is clear that the problems (6.1.9), (6.1.11)—(6.1.14) and (6.1.9), (6.1.12),

(6.1.13), (6.1.15) are reduced to linear hyperbolic equations for the pressure. There-

fore, the uniqueness of these problems follow from the properties of the matrix
B (0, 00).

6.2 A Compressible Slightly Viscous Liquid in a Compressible
Extremely Elastic Skeleton

Throughout this section we assume that

1o =0, Ao =0. 6.2.1)

6.2.1 Main Results

Theorem 6.5 Let {v¢, p ¢} be the weak solution of the problem (6.0.1)—(6.0.5) and
M1 = Al = 00.

Then the sequence {pf} converges weakly in Ly(27) as ¢ — 0 to the limiting
pressure p(X, t) of the mixture, which satisfies the initial boundary-value problem
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2

p 9°p L
E_ZW:Ap_pV.F’XEQ’t>O’ (622)
(Vﬁ - ,5F) ‘nx)=0, xe S, >0, (6.2.3)
ap
p(x,0) = E(X’ 0)=0, xe 2. (6.2.4)
In (6.2.2)—(6.2.4)
~ 0
p(x,1) = px,1) +m gﬁ(x, 1), (6.2.5)
cy at

p=mpp+(1—mp,

and n(X) is the normal vector to the boundary S at the point x € S.
For vy = 0 the limiting pressure p of the mixture is given by formula

p=7. (6.2.6)

and satisfies the initial boundary-value problem

pp _ 5(V-F), xe€2,1>0 (6.2.7)
e - -F), x , >0, 2.
c2 912 p=o
(Vp — ﬁF) -nx) =0, xeS,r>0, (6.2.8)
ap
P(x.0) = Z(x.0) =0, x 2 (6.2.9)

for the wave equation.

We refer to the problem (6.2.2)—(6.2.4) as the homogenized model (IA)s and to
the problem (6.2.7)—(6.2.9) as the homogenized model (IA)g.

Theorem 6.6 Let {W®, p ¢} be the weak solution of the problem (6.0.1)—(6.0.5) and
0< pr, A <oo.

Then the sequence { p?} converges weakly in L,($27) as ¢ — 0 to the function p,

d
where p € Wzl’o(.QT), V()V(a—f) S W;’O(.QT), and this limiting pressure p of the

mixture satisfies the initial boundary-value problem consisting of the homogenized
equation
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(0 @ . ap @ .
V. — By (w1, A5t —1) -V o + B (ur, A5t —1) - Vp )X, 1)dt
0 C

7
9
- —f—v.f (6.2.10)

ql\’)lb>

in the domain §2r, the boundary condition

t » 9
/(Y—gﬁé)(m,m;r—r»V(—”)+B<“>(m,m;r—r>~Vp)(x,r)dr-n(x)
0 Cf ot

=—f(x,1) -nkx) (6.2.11)

on the boundary St, and the initial condition
px,0)=(x,0=0, xe 2. (6.2.12)
In(6.2.10), (6.2.11) matrices B(“)(ul LA 1) andIBS(()a)(le, A1; 1), and the function

f(x, t) are given below by formulae (6.2.40)—(6.2.42), and n(X) is the normal vector
to the boundary S at the pointx € S.

For vo = O the limiting pressure p of the mixture satisfies the homogenized
equation
pap " p@
~—2¥+V- B (ui, At —1) - Vpx,1)dt +V-f=0 (6.2.13)
¢ 0

in the domain 27, the boundary condition
t
/ BY(uy, Ast —1) -V p(x,1)dt -n(x) = —f (x, 1) - n(x) (6.2.14)
0
on the boundary St, and initial conditions (6.2.12).

We refer to the problem (6.2.10)—(6.2.12) as the homogenized model (IA)7, and
to the problem (6.2.12)—(6.2.14) as the homogenized model (IA)g.
To formulate the following statements we consider extensions

wh = Eq: (W), and w§ = Eg: (W),

where
Eo: : Wy(25) - W3(2)

is an extension operator from .Q; on §2, and

Eg: : WH(28) — Wi(£2)
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is an extension operator from £2¢ on £2, such that
w*} =w’ in .Q; x (0, T), wi=win £ x(0,7),

and
[ i< [ wpax [ wiPar<c [ wPdx,
2 25 2 fols

/ ID(x, w)Pdx < Co / ID(x, W)l *dx,
2 ' 0%

/lD(x,w§)|2dx<Co/ ID(x, w®)|?dx.  (6.2.15)
2 8

(for more details see Appendix B, Lemma B.9).

Theorem 6.7 Let {w®, p ¢} be the weak solution of the problem (6.0.1)—(6.0.5),
u1 =00, 0 <A < o0,

and W&, = Eq: (we).
Then for vy" > O there exists a subsequence of small parameters {&¢ > 0} such
that the sequences {p®}, {(1 — x°)w®}, and {w?}, converge weakly in Lo ($27) and

Lo(827) as & \, O to the functions p, w*) and w r respectively and these limiting

0
functions, where p € WZI’O(.QT), UOV( p) € Wé’O(QT), satisfy in the domain 21

r
the system of homogenized equations consisting of the continuity equation
m  (1—m)\dp awy  aw®
— — 4+ V. —_— =0, 6.2.16
(5,%+ c2 )8t+ (m ot | Tar (6:2.16)
the momentum balance equation
ow aw ! . .
mpfa—tf + o +/ ( — pF + vp)(x, r)dt =0, (6.2.17)
0

for the liquid component, and the momentum balance equation

aw® W s
at ot
! 3wy
= _/ B (0o, A1t — 1) - (V P+ ps(W - F))(x, 7)d7(6.2.18)
0 T

for the solid component.
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Equations (6.2.16)—(6.2.18) are supplemented with the homogeneous initial con-
ditions

w¥(x,0) = wy(x,0) =0, (6.2.19)
for displacements in the liquid and the solid components and boundary condition

W(S)
Jt

A a
mT(x, 1)+ x,))-nx)=0, xe S, t>0. (6.2.20)
For vy = O the limiting pressure p of the mixture and functions w'*) and w 7 satisfy

in the domain 27 the system of homogenized equations consisting the continuity
equation

1- 9 3 aw®)
(%Jr( _zm))—p+v-(mﬂ+ v ):o, (6221)
cy C§ ot ot ot
the momentum balance equation
ow r aw®) ! N
mpp— s ——+ (= pF +V p)(x, 1)dT =0, (6.2.22)
0

for the liquid component, the momentum balance equation

aw®) W
— (1 —m)—=
ot ot
! 82Wf
= —/ ]B%(s)(oo, Ayt —1)- (Vp + /ox(—2 — F))(x, T)dt
0 at

(6.2.23)

for the solid component, and initial and boundary conditions (6.2.19) and (6.2.20).
In (6.2.17) the function p is given by (6.2.5), in (6.2.18) and in (6.2.23) the matrix
B (00, A1; t) has been defined in Chap. 3 by formulas(3.2.76) and (3.2.53).

We refer to the problem (6.2.16)—(6.2.20) as the homogenized model (IA)g, and
to the problem (6.2.19)—(6.2.23) as the homogenized model (IA)1g.
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Theorem 6.8 Let {w®, p ¢} be the weak solution of the problem (6.0.1)—(6.0.5),
Al =00, 0 <y < o0,

and W? = E_Q;? (Wg).

Then for vo > 0 there exists a subsequence of small parameters {¢ > 0} such
that the sequences {p®}, {x*w®}, {W;} converge weakly in Ly(21) as ¢ \{ 0 to
the functions p, w® w and wy respectively and these limiting functions, where

d
p € Wzl’o(.QT), UOV(a—f) S W;’O(.QT), satisfy in the domain 21 the system of

homogenized equations consisting of the continuity equation

m (1—m)\op aw') Wy
(5% t ) T ( or TUmm (6:2:24)
the momentum balance equation
aw() oW, . .
pr—— (1 —m)py— = (,oF —Vp ) (x, 7)dx, (6.2.25)
at at 0

for the solid component, and the momentum balance equation

aw() IW,
—m e
ot ot
! 3°w
=—/ B<f><m,oo;t—r)~(v;5+pf( ;—F))<x,r>dr
0 ’ at

(6.2.26)

for the liquid component.
Equations (6.2.24)—(6.2.26) are supplemented with the homogeneous initial con-
ditions
w(x,0) =w(x,0) =0, xe (6.2.27)

for displacements in the liquid and the solid components and boundary condition

aw() AW,
) n@ =0, xes. >0 (6.2.28)

For vy = 0 the limiting pressure p of the sequence {p®} and functions w') and
Wy satisfy in the domain 27 the system of homogenized equations consisting the
continuity equation

mo (A=mNop , o (9w ca-m™) o (6.2.29)
_ _- . —m =0, L.
¢; c2 at dt at
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the momentum balance equation

aw(H)

pfa—+(l —m)ps

t
OWs _ / (,5F— v p)(x, D)dr, (6.2.30)
0

for the solid component, and the momentum balance equation

aw() oW,
s
at ot
roo. 0°w
= —/ B (u1, 0011 — 1) - (Vp +pf(—; —F))(x, D)dt
0 aT

(6.2.31)

for the liquid component, and initial and boundary conditions (6.2.27) and (6.2.28).

In (6.2.26) and (6.2.31) the matrix B (1, 0o; t) has been defined in Chap. 3 by
formula(3.2.70) and formula(3.2.76), and in (6.2.25) and (6.2.26) the function p is
given by (6.2.5).

We refer to the problem (6.2.24)—(6.2.28) as the homogenized model (IA);;, and
to the problem (6.2.27)—(6.2.31) as the homogenized model (IA);;.

6.2.2 Proofs of Theorems 6.5-6.8

Proofs of Theorems 6.5-6.8 repeat the proofs of the corresponding Theorems in
Chaps. 1 and 3 with evident changes.
In the same way as in Lemma 1.1. in Chap. 1 and Lemma 3.9 in Chap. 3 one may

d
show that the sequences {p®} and { p¢}, where p® = XE(( ) ;jt
f

two-scale in Lo (£27) to functions p(x, t) and P(x,1t, y) respectively and

) + p®, converge

P(x,1,y) = p(x, 1) + _2x(y) (x 7).
s

Correspondingly, the sequences {p®} and {p®} converge weakly in L, ($27) to func-
tions p(x,t) and p(x, t), where

ap
ot

pOxD) = plen) +m 5 2.1,
cr

The main differences here from Chap.3 are the derivations of continuity equations
and boundary conditions, which repeat the same procedure for compressible media
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in Chap. 1, and the derivation of the microscopic momentum balance equation for
the case 0 < uy, A1 < o0.

In general, one has the following limiting continuity equation

1-— ad
(%_'_( —Zm))_p+VV=0, X€97t>0’
Cf Cq Jat

and boundary condition
v.-n=0,xe8, t>0.

For uy =ocoand Ay = 0o, or u; < ooand Ay < 00

_ ow
TR
For u; = oo and A < oo
ow . w')
vV=m—
or ot
Finally, for u; < coand 1| = o0
awl)  aw
V= —
at ot

6.2.2.1 Proof of Theorem 6.5

The continuity equation and boundary condition for this case have a form

1— d 0
t § ot ot

w-n=0, xe8, t>0.
The weak limit as ¢ — 0 in the integral identity (6.0.10) results
p— =—Vp+pF.

The combination of these relations give us models (IA)5 and (IA)g.
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6.2.2.2 Proof of Theorem 6.6

As in the previous subsection the continuity equation and boundary condition for
this case have the form

1 1Y)dp ow
__2+__2 _+V._:O,XEQ,I>O,
c; ¢ ot ot

w-n=0,xeS§, t>0.
Next, in the usual way (see Lemma 3.2.3 in Chap. 3) we prove the inclusion V P €

0
Ly(27 xY),thatisV p € Ly(27), V (a—l:) € L, (£27), and derive the microscopic

momentum balance equation:

W oW
p(y)v =V (mx(y)D(y, §> + A1 (1= x(y)D(y, W) — 1711)
—VP+pyF, yev, t>0, (6.2.32)

where
o) =prx +ps (1= x¥).

and the microscopic continuity equation
Vy,-W=0, yevY. (6.2.33)
These equations are completed with homogeneous initial conditions
oW
W(X7Y7O):W(Xay’o)zov er

We look for the periodic solution of the problem as a sum

3t
. d
Wty =3 [ WO =02 e
i=1 !

3 t 2
Vo o 9°p
+C—%;/O W (y,t—r)axiar(x, 1)dt

3w
> /O WOy, 1 — 1) Fix, 1),
i=1
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3 t
. d
.ty => /O H<’>(y,r—r)a—5(x, T)dt
i=1 !

+i/t”“)(y P
o 0 0 ’ 8)6,‘3‘17 ’

3
+ Z/o HI(;)(y, t—1)Fi(x, 1)dT,
i=1

where
F(x,t) = (F1 (x,1), Fr(x, 1), F3(x, t)).

In turn, the pairs {W®, 1O}, (WO, 1O} and (W, 1P} fori = 1,2, 3 solve
periodic initial boundary value problems in the domain Y, for ¢ > 0

azw@')_V )V IW®
oz v\ X Ty

+ (1= x»)VyW?D — 1@ ]1), v, - W =0, (6234

p(y)

. aW®
WO(y,0) =0, PH— —¥.0) =&, yev. (6.2.35)
2y (@) i)
W, IW,
p(y) a2 —Vy~(mx(y)Vy( o )

+ a1 (1= x) v, W — 1l H), v, - WY =0, (6236)

, (@)
Wi .00 =0, p»)—=L-(v.0) = —x e, ye¥. (6.2.37)
and
W oWy
p(y)—at2 =Vy - v\ mix(MVy ”

+ (1= x)V, WY — ¥ H), v, - WP =0, (6238)

: oW
() _ F .
Wi (y,0) =0, 7(& 0)=e, yev (6.2.39)
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258
respectively.
Thus,
’i .
AW & [ awWD d
—:Z/ t—r)—p(x, T)dTt
i at 0X;
3 t () 2
Vo W, 9°p
— Jt— ,T)d
+5§Z/0 g VT D g DT
i=1
3 t @)
+Z/ F (y,t —1)F;(x, 1)dT,
i=1 70
and

23:/ <8W([)> (t —‘L’)—(X T)dTt

1=
3 t @) 2
Vo IW, 3%p
32 > _T)ax,-az(x’ t)dt
Dyt
=/ B@ (w1, hist — 1) -V p(x, 1)dt

0

t
d
B(()a)(m, At —1)-V a_p (x, t)dt +f(x,1),
T

@)

>Y(y, t—1)Fi(x, 1)dt

V
2
cr
where ;
IW®
(a) C1) — .
B (11, A1 1) = Z}( - >Y(t) ® e, (6.2.40)
1=
3 @)
oW,
B (i1, Ars 1) = 0 )Y(t)@)ei, (6.2.41)
i=1
f(x,1) = (y, — 1) F;(x, t)dr. (6.2.42)

As before, the combination of all the relations obtained result in models (IA)7 and

(TA)s.
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6.2.2.3 Proof of Theorem 6.7
For this case the velocity of the mixture is given by the expression

awy  ow®
ot ot

v=m

3

and the continuity equation in the domain £2 for r > 0 takes the form

m 1—-m)\a ow aw®
(_—2+( — ))—p+V~<m—f+ ):0
c2 c: ot ot at

The weak limit as ¢ — 0 in the integral identity (6.0.10) results in the momentum
balance equation
3wy *w)
=—-Vp+oF

for the liquid component.
Finally, the derivation of the momentum balance equation for the solid component
begins with the microscopic system of equations

WS : : :
P = éAme —v,1® -V p, V-WO =0,

in the domain Yy, and repeats the same procedure as in the proof of Theorem 3.4 of
Chap. 3.

6.2.2.4 Proof of Theorem 6.8

Here for the velocity of the mixture one has

. ow® OWy

v a0
ot + ot

and the continuity equation takes the form

m 1—m)\a awl)  ow
(_—2+( _ ))—p+v.( + S):o.
cy ¢ ot ot ot

The weak limit as ¢ — 0 in the integral identity (6.0.10) results in the momentum
balance equation
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32w 92w - A
PfaT‘f'(l —m)/)s? =—-Vp+oF

for the solid component.
The derivation of the momentum balance equation for the liquid component begins
with the microscopic system of equations

2wH)
Pr g = %Aywm —v, 1 —v j, V.-WP =0,

in the domain Y, and repeats the same procedure in the proof of Theorem 3.5 of
Chap. 3.

6.3 A Compressible Slightly Viscous Liquid in a Compressible
Elastic Skeleton

Throughout this section we assume that

no =0, 0 < Ap < o0. (6.3.1)

6.3.1 Main Results

Theorem 6.9 Let {w®, p?®} be the weak solution of the problem (6.1.1)—(6.1.5),
wi = ]EQ§ (WS) be an extension 1.2.9, and |11 = 00 or 11 < 00 but the pore space
be disconnected.

Then

&

0
(1) forallvy > Othe sequences {w®}, {V-w®}, [XSpS], [X‘E gt ],and{qg}, where

a &
q° = Xg(pg—avV~( 8“; )), converge weakly in Ly (27) and Lo (27) (up to

2 ot

opr Vg 0
some subsequences) to functions w, V - w, %, andmq =m (p r+ = ﬂ)
f

respectively;

(2) forvg = 0 the sequences {w°}, {V-w®} and {x° p ¢} converge weakly in L, (§27)
and Ly ($27) (up to some subsequences) to functions w, V - W, and np ¢ respec-
tively;

(3) forall vy > 0 the sequence {w%} converges weakly in Wé’o(.QT) to the function
Wy = W,

(4) limiting functions solve the system of homogenized equations in the domain 27,
consisting of the homogenized continuity equation
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1 CS
S PptmVews = Cy - D(x, wy) + )L—((’)q, 6.3.2)
2

the state equation

vp dp
qg=rprr+ —2—f (g = py for vo =0), (6.3.3)
cr ot

and the homogenized momentum balance equation

~ 82Ws
P

=V (M : D(x, wy) —¢q C}) + fF, (6.3.4)
completed with homogeneous boundary and initial conditions

w,(x,t) =0, xe S, te(0,7), (6.3.5)
AV
w,(x,0) = W(X’ 0)=0, xe £2; (6.3.6)

(5) there exists Ay > 0, such that for all Ao > Ay the problem (6.3.2)—(6.3.6) has a
unique solution.

In (6.3.2), (6.3.4)
p=mps+(1—m)ps,

the symmetric strictly positively definite constant fourth-rank tensor N5, matrices
Cp and C3, and the constant cjy are given in Chap. 1 by formulas(1.3.26), (1.3.27)
and 1.3.31 and do not depend on Ay.

We refer to the problem (6.3.2)-(6.3.6) with vy = 0 as the homogenized model
(TA)3 and to the problem (6.3.2)—(6.3.6) with vy > 0 as the homogenized model
(TA)14.

Theorem 6.10 Let {w®, p°} be the weak solution of the problem (6.1.1)—(6.1.5),
Wi = Eq: (W‘S) be an extension (1.2.9), the pore space be connected, and |11 < 00.
Then

0"
o1

)), converge weakly in Lo ($27) and

(1) forall vg > O the sequences {w®}, {x* w®}, {V-w®}, {x® p®}, 1 x

8 £
{q®}), where ¢° = Xg(pg —a,V - ( ;Z

], and

: 0
L>(827) (up to some subsequences) to functions w, wH V.w m ﬂ, and

at

mq=m (pf + c_z_t) € W;’O(QT) respectively;
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(2) forvy = 0 the sequences {w°}, {x° w®}, {V - w®}, and {x° p ¢} converge weakly
in Lo (§27) and Lo (821) (up to some subsequences) to functions w, wl) V.w,
andmpy € W21 ’O(QT) respectively;

(3) forall vy > 0 the sequence {w:} converges weakly in W;’O(.QT) to the function
W,

(4) limiting functions solve the system of homogenized equations in the domain 2,
consisting of the homogenized continuity equation

m c
E—zpf+v- wh) :(C(S):D(x,ws)—i—iq, 6.3.7)
i

the state equation (6.3.3), the homogenized momentum balance equation

3?w(/) 32w .
pr—ga— Tos(l=m—r= =V (20 : D, w5) =g Cf) + F. (63.8)
for the solid component, the boundary and initial conditions (6.3.5) and (6.3.6), the
homogenized momentum balance equation

! Vo 0 3w
—/ BY) (g, 001 — 1) - (V (pf + _—gﬂ) +Pf(_25 —F))(X, T)dt
0 Cf Jt 0T

9 f 9
AL (6.3.9)
By a1

for the liquid component, and homogeneous boundary condition
wx, 1) nx)=0, xe$, 1€(0,T) (6.3.10)

for displacements w1 of the liquid component.

In (6.3.9) and (6.3.10) n is the normal vector to the boundary S, the matrix
BY) (1, 00; t) is given in the proof of Theorem 3.4 of Chap. 3 (see formulae (3.2.70)
and (3.2.76), and the constant matrix B® (oo, 0; 1) = B® (00, 0) is strictly positively
definite.

We refer to the problem (6.3.3)—(6.3.10) with vg = 0 as the homogenized model
(TA)15 and to the problem (6.3.3)—(6.3.10) with vy > 0 as the homogenized model
(IA)16-

Theorem 6.11 The solution wg to the model (1A)3 satisfies the homogenized
equation
L 07w
P

=V (AN : D(x, wy)) + pF (6.3.11)

in the domain 21, completed with the boundary and initial conditions (6.3.5) and
(6.3.6).
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The symmetric strictly positive definite constant fourth-rank tensor Yty is given
in Chap. 1 by formula(1.3.39) and does not depend on X.

6.3.2 Proofs of Theorems 6.9—6.11

As in the previous subsection, the proofs of these theorems repeat corresponding
proofs of Theorems 1.6—1.8 in Chap. 1 and the proof of Theorem 6.8 of this chapter.

For example, the proof of Theorem 6.9 differs from the proof of Theorem 1.6
only in the form of the macroscopic momentum balance equation:

92w,
Poor

_v. ()\0 NO - (1= m) D(x, wy) + (D(y, U))YS)) — Vg + pF.

The proof of Theorem 6.10 repeats the proofs of Theorem 6.9 and Theorem 1.7,
where instead of Darcy’s law (1.3.16) we use the homogenized momentum balance
equation (6.2.26) for the liquid component.
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Chapter 7
Non-isothermal Acoustics in Poroelastic Media

‘We consider the model M9 under the condition &, = 0O:

1
—p+V-w=0, (x.1) € Q2r =2 x (0,T), (7.0.1)
(07
P
Sazw &
P oz =V P40 F (x1) € 2r, (7.0.2)
9
P = XS&M]D)<x, a—v:) + (1= xHaDx, w) — (p + o DI; (7.0.3)
L0 . L ow
Mg = V- @LV) — oy VS (x1) € 21, (7.0.4)
W, 1) =0, d(x,1) =0, (x,1) € Sy =S x (0, T), (7.0.5)
ow
WX, 0) = S5 (x.0) = 0, 9(x,0) = (), x € 2, (7.0.6)

in the bounded domain 2 = .Qf( Uruesc R3, e = B.Qjc N 0£2¢, with a Cc?
continuous boundary S = 92 forr € (0, T).

This model is derived in Appendix A.

Recall that in (7.0.1)—(7.0.6) the characteristic function x ¢ (x) of the domain .QJ%
is given by the expression

x5 (X) = co(x)x (g) ,

where ¢((xX) is the characteristic function of the domain £2, x (y) is the characteristic
function of the domain Y, and

& =7+ (1= x5, p°=x"pr+ U= xDps. af = xBy+ (1= x°)Bs.

A. Meirmanov, Mathematical Models for Poroelastic Flows, 265
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_7,
© Atlantis Press and the authors 2014
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no=xcp.r+ 0 —=xDeps, ab, = x" s p+ (1= x%) .

For the definition of jy, &;, Ay, Oy, 778, af, and of, see Appendix A.

As usual, the function p%, = x* p* stands for the liquid pressure, and the function
pi = (1 — x®) p® stands for the solid pressure.

We also assume that all dimensionless parameters depend on the small parameter
¢ and the (finite or infinite) limits exist:

lim @, (¢) = o, limay(e) = Ao, lim as. r(e) = sy,
51{%0‘“(8) Ho 81{%‘“(8) 0 S{I}Jan,/(e) f

lim £ = 4y, lim — =A;, lim
e\ g2 H e\o0 & ! e\0 g2

Throughout this chapter it is assumed that

|0
/Q T (|F<x, I + ' o

0<Cp’f, CP,S’ Ef’ ES? A, )70 < 00,

2
)dxdt =F? < 00,

and that Assumptions 0.1, 1.1 and 3.1 hold true.
Definition 7.1 We say that the triple of functions {w*®, p ¢, 9¢} such that

o 1,0 oweé o 1,0
w®e W, (27), 5 € Lo(27), p® € Lo(R27), 9 € W, (27)

is a weak solution of the problem (7.0.1)—(7.0.6), if it satisfies the continuity
equation (7.0.1) almost everywhere in §27, the first initial condition in (7.0.6)

wi(x,0) =0, xe 2,

and integral identities

awe @
/ (— ot W% + P : D(x, w))dxdt = —/ ofF - pdxdt, (7.0.7)
Qr ar ot Qr
Iy i Iy
/QT (— M O* TS VO VY~ foa (V~w)§)dxdt - /:2T n590 ()Y (x, 0)dxdr

(7.0.8)
o 1,0 3 0 1,0
for all functions ¢ and ¥, suchthatg € W, (£27), B eLy(27), ¥ € W, (£27),
]
a—‘f € Ly(27)and (x, T) = 0, ¥(x, T) = 0 forx € £2.
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Theorem 7.1 For all ¢ > 0 and for an arbitrary time interval [0, T] there exists a
unique generalized solution of problem (7.0.1)—(7.0.6) and
2

O<r<T

3 2 € 2 aw®
max / Ip"x, D" + 0 °(x, 0" + (x,1)
2 at

+(- XE)&MD(%WE)P)dX
8 &€ a ' 2
+ max / P (x,1) Dy x, w dx
0<t<T J at at
: ow® 2w\ 2 g 898 ]
€ = -~ &
+/.QTX m ‘D(X,W) D x,atiz + a5 | IV +‘VW dxdt

2 8195 2
+/ (1= x5| |vo? +‘V—‘ dxdt < CyF?, (7.0.9)
JQr ot

2 2

+

32we

912

&

ot

2+‘

(x, 1)

&0 +0—xHay

2

_|_

where here and in what follows, we denote as Cy any constant depending only on
domains 2, Y and Y.

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1d ) 1 g
s— | |0 + (1= xH&, IDx, WO ? + = [p°1* + 219°% )dx
2dt Jo op Yo
ow’
& —- D ,
—l—./g (x ay (x o )
2
1d . ) awe\ > 1 2
- = 1— x5a, D(x, — — d
2dr g<p +A=x0%, (x 81)‘ & x
2w \© ot 2 aF 92w
+/ XSO_[[L Dp x, + = d)C:/ pf—  ———dx
2 912 Y0 Q ot 912

ow

For example, the first equality follows from the Eq. (7.0.2), if we multiply it by o

integrate by parts, express the stress tensor P and V - w there using state equations
&

owe 2

ot

2 e

& g a
+ L)y g2 dx:/ 0°F - 2y,
Y0 J2 ot

azw&‘ 2

912

ot
ot

ap®
at

o
70

09¢
vV
at

&

1%
(7.0.3) and continuity equation (7.0.1), then multiply the Eq. (7.0.4) by —, integrate
Y0

by parts and sum with the previous result.

7.1 A Slightly Viscous Liquid in an Extremely Elastic
Solid Skeleton

Throughout this section we assume that

no =0, Ao =0. (7.1.1)
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7.1.1 Main Results

Theorem 7.2 Let {v¢, p¢, ©°} be a weak solution of the problem (7.0.1)—(7.0.6)
and
0<xp <00, U =»xr =o0.

Then the sequences {w®} and {p®} converge as ¢ — 0 weakly and two-scale in
L2 (827) and Ly(827) to the displacements w and the pressure p € Wzl’o(.QT) of

the mixture correspondingly, and the sequence {9} converges as ¢ — 0 weakly in
o 1.0
W, (£27) and two-scale in L, (S27) to the temperature U (X, t) of the mixture.

These limiting functions satisfy in the domain 27 the system of homogenized

differential equations
2

~ 0°W A ~
0W=V(P+/319)+,0F, (7.1.2)
1
sz+V'w:0, (7.1.3)
¢
. 00, dp 9
— —y—=V.(B".Vy), 7.14
Por TV o ( ) (7.1.4)

completed with boundary and initial conditions

w(x, 1) -nx) =0, (X,1) € Sr, (7.1.5)
9(x,1) =0, (x,1) € Sr, (7.1.6)
w(x, 0) = %—Y(x, 0)=0, x€ 2, (7.1.7)
9(x,0) = 99(x), X € 2. (7.1.8)

In(7.1.2)~(7.1.8)

. 1 m (1 —m)
p:mpf—{—(l—m)ps, ._—2:74- =
c cf Cs

~

B=mBr+ (1 —m)Bs, & =mcp s+ A —m)cps,

m=/yx(y)dy, Yy =mys+ (1 —m)ys,

_ B
vr =70+

y Bs
i s — Y0 5>
; c?
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the matrix BY is defined in Chap. 2 (see Theorem2.1), and n(X) is the normal vector
to the boundary S at the pointx € S.

We refer to the problem (7.1.2)—(7.1.8) as the homogenized model (NIA);.
To formulate the following statements we consider an extension

9 = Eq: (9°), (7.1.9)

where
Ege : Wy (25) — W) (£2)

is an extension operator from £2¢ on £2, such that

98 = 9% in 2° x (0, T),

P

and
/Iﬁilzdx<co/ [9¢|2dx, /|v0§|2dx<co/ IV 9¢%dx.  (7.1.10)
Q2 Qf 2 Qf

(for more details see Appendix B, LemmaB.4.1).

Theorem 7.3 Let {v®, p¢, ©¢} be a weak solution of the problem (7.0.1)—(7.0.6),
Uy = Eq@:(0°) be an extension (7.1.9), and

2 =0, 0 <3 <00, U1 =2 =00.

Then the sequence {p*} converges weakly and two-scale in Ly(821) as ¢ — 0 to
the pressure of the mixture p(X, t), the sequences {w°} and {x ¢ 0%} converge weakly
in Ly (827) and Ly(821) as ¢ — 0 to the displacements w(X, t) of the mixture and

the liquid temperature 9 (x, t) correspondingly, and the sequence {07} converges
o 1O
weakly in W, (§27) and two-scale in L(§27) as ¢ — 0 to the temperature U, (X, t)

of the solid component.
These limiting functions satisfy in the domain §21 the homogenized momentum
balance equation

. 9%w .
poz =V (p+Br 00+ —mdy)+pF, (7.1.11)

the homogenized continuity equation(7.1.3), and the homogenized heat equation

390 09 o _

cp,fTJrc,,,s(l —m) raiat =V (5B - V), (7.1.12)

completed with the state equation
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t ap 3
S I(x, 1) = md(x, r)+/0 a P —1) (yfa—r—c,,,fa—:

) (x, T)dt, (7.1.13)
and boundary and initial conditions(7.1.5), (7.1.7), and
9s(x,t) =0, (x,t) € St, (7.1.14)
¥5(x,0) = ¥p(x), X € £2. (7.1.15)

In(7.1.11)~(7.1.15)

p=mps~+ (1 —m)p;, m=/x(y)dy,
Y

N _ P _ B
Crep.f s

the matrix ]B%S” and the function a'*)(t) are defined below by (7.1.39) and (7.1.45),
and n(X) is the normal vector to the boundary S at the point X € S.

We refer to the problem (7.1.3), (7.1.11)—(7.1.15) as the homogenized model
(NIA),.

Theorem 7.4 Let {w®, p¢, ¥ ¢} be a weak solution of the problem(7.0.1)—(7.0.6)
and
0<sp<oo, 0<uy, A <o00.

Then the sequence {p} converges weakly and two-scale in Lo ($27) as ¢ — 0 to the
pressure p(X,t) of the mixture, the sequence {w®} converges weakly in L,(27) as
& — 0to the displacements w(X, t) of the mixture, and the sequence {0¢} converges
o 1,0
weakly in W, (§27) and two-scale in L(§27) as € — 0 to the temperature ¥ (X, t)
of the mixture.
a

These limiting functions, where p € WZI’O(QT) and 8_]: € Lo(827), satisfy in the

domain §21 homogenized momentum balance equation
' B@ 5 o op
V| BYu,Arit—1)-V(p+B9)x 1)dt = —Za v.-f, (7.1.16)
0 C

and the homogenized heat equation (7.1.4), completed with boundary and initial
conditions(7.1.6), (7.1.8), and

t
/BW(M,M;z—r)-v(p+,§0)(x,f)dr.n(x):—f(x,t).n(x), (7.1.17)
0
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p(x,0)=0, x e £2. (7.1.18)
In(7.1.16), (7.1.17)
. 1 m (1 —m)

B=mBs+1—m)ps, mz/yﬂy)dy,

the matrix B (w1, A1; t) and the function f(xX, t) have been defined in Chap.6 by
formulae (6.2.40)—(6.2.42), and n(X) is the normal vector to the boundary S at the
pointx € §.

We refer to the problem (7.1.4), (7.1.6), (7.1.8), (7.1.16)(7.1.18) as the homoge-
nized model (NIA)j3.

Theorem 7.5 Let {w®, p¢, O ¢} be a weak solution of the problem (7.0.1)—(7.0.6),
U5 = Eq: (V) be an extension (7.1.9), and

np =0, 21 =00, 0< g, A < o0.

Then the sequence {p®} converges weakly and two-scale in Lo($27) as ¢ — 0 to the
pressure p(X, t) of the mixture, the sequence {w°} converges weakly in Lo ($2r1) as
e — 0to the displacements w(X, t) of the mixture. At the same time the sequence {07}

converges weakly in {’)Vz’ (827) and two-scalein L>(§21) as ¢ — Oto the temperature
U5 (X, t) of the solid component, and the sequence { x¢ ¥} converges weakly and two-
scale in L»(S27) as € — 0 to the liquid temperature 9 (x, 1) = mo(x, 1).

a
These limiting functions, where p € Wzl’o(.QT) and 8—[; € Lo(827), satisfy in the
domain §27 the homogenized momentum balance equation(7.1.16) and the homog-

enized heat equation

N 8193 A 8[7

Ep. —V5=V-(%5B?-Vﬂs), (7.1.19)
completed with boundary and initial conditions(7.1.14), (7.1.15), (7.1.17), and
(7.1.18).

In(7.1.19)

C’\pzmcp,f‘i‘(l_m)cp,m mZAX(y)dy’

. _ B B
y =mys+ (1 —m)ys, szyo—{, Vs =705
Cf Cy
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and the matrix IB%;’ is defined below by (7.1.39).
We refer to the problem (7.1.14)—(7.1.19) as the homogenized model (NIA)4.
To formulate the following statements we consider extensions

w‘; = E_Q; (wg), and w; = Eq: (WE), (7.1.20)

where
Eq: : W3(25) - W)(£2)

is an extension operator from .Q? on £2, and

Eqr : W3(2)) — W3(2)
is an extension operator from £2¢ on 2, such that
Wj«- =w in .Q; x (0,7), w; =w"in £2{ x (0,T),

and

[wiiax<co [ wpar [ wia<c [ P
2 Q8 2 fors

/ IDCx, w5)|Pdx < Co/ IDCx, W)l dx,

/ ID(x, w8)|?dx < co/ ID(x, w®)|?dx.
Q Q¢

(for more details see Appendix B, LemmaB.9).

Theorem 7.6 Let {w°, p®, ¥¢} be a weak solution of the problems(7.0.1)—(7.0.6),
0<sp <00, up =00, 0 <Ay <00,

and w‘} = Eg; (w‘g) be an extension (7.1.20).

Then the sequences {p*} and {W?}, converge weakly and two-scale in L($27)
and Lo (827) as € (0 to the pressure p(X,t) and the displacements wy(X,t) of
the liquid component respectively. The sequence {(1 — x)W®} converges weakly
in La(27) as ¢ N\ O to the displaceilnoents w) of the solid component, and the

sequence {0°} converges weakly in ‘%/2, (£27) and two-scale in L,(27) as € — 0
to the temperature of the mixture ¥ (X, t).
a
These limiting functions, where p € WZI’O(.QT) and 8_lt] € Lo(827), satisfy in

the domain S27 the system of homogenized differential equations, consisting of the
continuity equation
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1 ap owp  dw®
— — 4+ V. —_— =0, 7.1.21
c2 ot + (m ot + ot ( )

the momentum balance equation

t
+/ (—=pF+V(p+B0))(x,1)dt =0  (7.1.22)
0

for the liquid component, the momentum balance equation

awt (1 — )2 (7.1.23)
— —m)—— .
ot ot
t © azwf
=— [ BY¥(co, A5t —=1)- | V(p+ Bs?) + ps 572 -F) ) 1)dr
0
(7.1.23)

for the solid component, and the heat equation(7.1.4).
Equations(7.1.4), (7.1.21)—(7.1.23) are supplemented with boundary and initial
conditions (7.1.6), (7.1.8), and initial conditions
w9 (x,0) = wp(x,0) =0 (7.1.24)

for displacements in the liquid and the solid components, and the boundary condition

Wy aw()
m— L) + -0 ) me0 =0, x e 5. 1> 0. (7.1.25)

In(7.1.21)~(7.1.25)

. 1 m (1 —m)
Cc Cf CS

f=mps+(1—m)ps. m=/Yx<y>dy,

and the matrix B®) (0o, A1; 1) has been defined in Chap. 3 by formulae(3.2.47) and
(3.2.54).

We refer to the problem (7.1.4), (7.1.6), (7.1.8), (7.1.21)—(7.1.25) as the homog-
enized model (NIA)s.

Theorem 7.7 Let {w®, p%, ©°} be a weak solution of the problem (7.0.1)—(7.0.6),

wp=0, 0<2 <00, 1 =00, 0 <Ay <0,
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U = Eq@:(0°) be an extension (7.1.9), and w? = EQ; (wg) be an extension (7.1.20).

Then the sequences {p*} and {wi‘.}, converge weakly and two-scale in L($27)
as & \( 0 and L ($27) to the pressure p(X, t) and the displacements w (X, t) of the
liquid component respectively, the sequences {(1 — x®)w®} and {x® 0°} converge
weakly in Ly(27) and Ly(227) as € N\ 0 to the displacements w) of the solid
component and the liquid temperature 9 f) (x, 1), and the sequence {02} converges

o ]
weakly in W, (821) and two-scale in Lo(§21) as ¢ — 0 to the limiting temperature
¥ (X, t) of the solid component.

0
These limiting functions, where p € WZI’O(QT) and 8_1; € Lo(827), satisfy in

the domain 27 the system of homogenized differential equations, consisting of the
continuity equation (7.1.21), the momentum balance equation

ar )
t
—/ ( — PF+V (p+ B 0P + (1 —m)B, m))(x, Ddr (7.1.26)
0

for the liquid component, the momentum balance equation

aw® A
—(1=-m—L
ot ot
t © a2wf
=—/OIB% o231 =0) - (Vo + 890 + s (54~ F) ) (x maae

(7.1.27)

for the solid component, and the heat equation(7.1.12).

Equations(7.1.10), (7.1.21), (7.1.26) and (7.1.27) are supplemented with bound-
ary and initial conditions(7.1.14), (7.1.15), (7.1.24) and (7.1.25).

In (7.1.26) and (7.1.27)

p=mps+ (1 —m)ps, m=/x(y)dy,
Y

and the matrix BY (0o, A1; t) has been defined in Chap. 3 by formulae (3.2.47) and
(3.2.54).

We refer to the problem (7.1.10), (7.1.14), (7.1.15), (7.1.21), (7.1.24)—~(7.1.27) as
the homogenized model (NIA)g.

Theorem 7.8 Let {w®, p¢, ©¥¢} be a weak solution of the problem (7.0.1)—(7.0.6),

0<xp <00, A1 =00, 0< 1 <00,
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and wi = Ege (wg) be an extension (7.1.20).

Then the sequences {p®} and {w¢)}, converge weakly and two-scale in Ly($27)
and L ($27) as ¢ \( 0 to the pressure p(X, t) of the mixture and the displacements
Wy (X, 1) of the solid component respectively, the sequence { x* w®} converges weakly

in Lo(27) as € \, 0 to the displacements w') of the liquid component, and the
1,0

sequence {9°} converges weakly in ‘?Vz’ (827) and two scale in Lr(27) ase — 0
to the temperature ¥ (X, t) of the mixture.
0
These limiting functions, where p € WZ]’O(.QT) and B_It’ € Ly(827), satisfy in

the domain 27 the system of homogenized differential equations, consisting of the
continuity equation

1 9 ow() 9
~_2_p+v.(w_+(1_m) ws):o, (7.1.28)
¢~ ot t

the momentum balance equation

w()
dr

OWg ro. A
o+ =mp S = [ (=Y o) (.1.29

for the solid component, the momentum balance equation

aw() oWy
—m
ot ot
! 92w,
= —/ BY) (u1, 00;t — 1) - (V (P+Br)+pyr ( 812‘ — F)) (x, 7)dt
0

(7.1.30)
for the liquid component, and the heat equation(7.1.4).
Equations(7.1.4), (7.1.28)—(7.1.30) are supplemented with the boundary and ini-
tial conditions(7.1.6), (7.1.8), initial conditions

w(x,0) =w(x,0) =0, xe (7.1.31)

for displacements in the liquid and the solid components, and the boundary condition

ow() 9
(W—+(1 —m) ;:S)-n(x) =0, xeS, 150 (7.1.32)

In (7.1.28)~(7.1.30)

p=mop+(=mps 5=+
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B=mpr+(—mps m=/Yx<y>dy,

and the matrix BY) (1, oo; t) has been defined in Chap. 3 by formulae (3.2.70) and
(3.2.76).

We refer to the problem (7.1.4), (7.1.6), (7.1.8), (7.1.28)—(7.1.32) as the homog-
enized model (NIA)7.

Theorem 7.9 Let {w®, p¢, ¥¢} be a weak solution of the problem (7.0.1)—(7.0.6),
=0, =00, Ay =00, 0 < 1 <00,

U5 = Eq¢ (V) be an extension(7.1.9), and wi = Ege (Wg) be an extension (7.1.20).

Then the sequences {p®} and {w%}, converge weakly and two-scale in Ly($2T)
and Ly (£27) as € N\ 0 to the pressure p(X, t) of the mixture and the displacements
Wy (X, t) of the solid component respectively, and the sequence {x° w®} converges
weakly in Lo(27) as € \{ O to the displacements w'/) of the liquid component. At

the same time the sequence {9} converges weakly in W2 (.QT) and two-scale in
Lo(827) as € — 0 to the limiting temperature U(X, t) of the solid component, and
the sequence {x° ¥¢} converges weakly and two-scale in L,(§27) as ¢ — 0 to the
liquid temperature PI(x, 1) = mos(x, 1).

0
These limiting functions, where p € WZI’O(.QT) and 8—1: € Lo(827), satisfy in

the domain S2t1 the system of homogenized differential equations(7.1.19), (7.1.28)—
(7.1.30), and boundary and initial conditions(7.1.14), (7.1.15), (7.1.31) and (7.1.32).

We refer to the problem (7.1.14), (7.1.15), (7.1.19), (7.1.28)—(7.1.32) as the
homogenized model (NIA)g.

7.1.2 Proofs of Theorems 7.2-7.9

Proofs of Theorems7.2-7.9 repeat the proofs of corresponding Theorems in
Chaps. 1-3 and 6. Dynamic equations are derived in the same way as in Chap. 6.
Theorems7.2—7.3 correspond to Theorem6.5, Theorems7.4-7.5 correspond to
Theorem 6.6, Theorems 7.6—7.7 correspond to Theorem 6.7, and Theorems 7.8-7.9
correspond to Theorem 6.8.

The basic integral identity (7.1.4) of this chapter differs from the basic identity
(6.0.10) in Chap. 6 in only one term

/ of 08V - pdxdt.
7

Therefore, the limiting procedure does not cause any difficulties.
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The really new features here are the homogenized heat equations (7.1.4), (7.1.12)
and (7.1.19).
For all these equations we start with the integral identity (7.0.8) in the form

9 3
/ (=m0 AR SR TR —w)dxdt
or ot ot
=/ noPo(X) ¥ (x, 0)dxdt, (7.1.33)
Qr
where p g
Ye=x"vr+A=xv vr=7 C—g Ys =0 C—;
s

f

If 0 < ¢ < oo, then estimates(7.0.9) and (7.1.33) result in the macroscopic
equation

.00 .0 0
ey =7 50 =V {(epx + 51— 0) (VO +,0)), + AF.

the microscopic equation

Vy - (Gerx + 2500 = 0) (V9 +9,0)) =0,

and, finally, the homogenized equation (7.1.4) (for details see Chap.?2).

Here y = mys + (1 — m)ys, and VO (x,1) + V,0(x, 1, y) is a two-scale limit
of the sequence {V 9¢}.

If 2/ = 0and 0 < s < oo, then estimates(7.0.9) and (7.1.33) result the
macroscopic equation

I AR N a )319s _ap

C —_— C —m — -

EAFTER ar o
=V (s =) (VI +V,05))y + 5 F (7.1.34)

and microscopic equations
v, - ((%(1 — ) (Vo + vy@s)) —0, (7.1.35)
oW ap

Cpf 5 = by oY) +yy o (7.1.36)

were V 9¢(X, 1) + V,04(X, 1,y) is a two-scale limit of the sequence {V ¥}, and
O (x,1,y) is a two-scale limit of the sequence {x° ¥¢}.

Recall, that Eq. (7.1.35) is understood in the sense of distributions, and is equiv-
alent to the integral identity
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/Y (1 =0) (V2 +9,6,)) : Vody =0

for any smooth 1-periodic function ¢(y). It means that

AyBO; =0, ye¥s, (VI +V,0;)-n(y) =0, yey.

Here n(y) is a normal vector to the boundary y aty € y.
We look for the solution to (7.1.37) in the form

3
. 90,
® — 10 s
@mnw—ﬁkg@%mmm
1=
where
AyOY =0, yeY,. (&+V,0) ny =0, yey.
Then
3 .
%ﬁ%=(ﬁivﬁﬁ”®m)-vm,
i=1
and

3
B! = (1—mI+ > (v,6{)y ®e¢;.

i=1

(7.1.37)

(7.1.38)

(7.1.39)

We consider the microscopic equation (7.1.35) in Y. Therefore it must be com-

pleted with the boundary condition
O (x,1,y) = 95(x.1), y € v,
and the initial condition
O (x,y,0) = 9,(x,0), y€ Y.

The boundary condition (7.1.40) is a consequence of the equality

O, 1,y) = 0V x, 1, ))x () + 05(x, 1) (1 — x(¥)),

and the inclusion ) € L, (27; W) (Y)).
The initial condition (7.1.41) is a consequence of the equality

OV (x,y,0)x(y) + 95(x,0)(1 — x(y))
= 9@ x(y) + Do) (1 — x(¥)),

(7.1.40)

(7.1.41)

(7.1.42)
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which follows from the integral identity

vt ap X
¥ — )dxdt =— | ,—,0)d
G T e

for any smooth 1-periodic in y functions ¢(x, ¢, y), such that p(x,y, T) = 0, after
taking a limit as ¢ — O.

The same equality (7.1.42) provides the initial condition (7.1.15).

To solve the problem (7.1.36), (7.1.40), (7.1.41) we use a representation

%) ‘5 ap 90y
OV(x,t,y) = 0s(x, 1) + O, t—)\Vr— —¢pr — ) (x, T)dT,
0 ot ot

where the function @ (y, 1) is a solution to the periodic initial boundary-value problem

00 _
r.f 5 =xAy0O, ye Yy (7.1.43)
> - 1
Oy, 1) =0, ye y, 0,0 = o ye Yy (7.1.44)
p,
Thus, )
a () = (O, )y, (7.1.45)

The Eq.(7.1.19) is a consequence of (7.1.12) for the case 9 = muvy.

7.2 A Slightly Viscous Liquid in an Elastic Skeleton

Throughout this section we assume that

no =0, 0 < Ap < oo. (7.2.1)

7.2.1 Main Results

Theorem 7.10 Let {w®, p ¢, ¥°} be a weak solution of the problem(7.0.1)—(7.0.6),
wi = Eqe (W‘S) be an extension (7.1.20), and

n1 =00, 0<xp <o0.
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Then up to some subsequences the sequences {w°} and {x ¢ p ¢} converge weakly and
two-scale in Lo (§27) and Ly($27) to functions W(X, t) and p (X, t) respectively.
At the same time the sequence {W5} converges weakly in Wé’o(.QT) and two-

o 1,0
scale in Lo(§27) to the function wg(X, t), Wy € W, (£27), and the sequence {¥°}
1,0

o ’
converges weakly in W, (§27) and two-scale in Ly(S27) to the function U (X, t).
Limiting functions solve the system of homogenized equations in the domain S2r,
consisting of the homogenized continuity equation

S

1 : c
—pr+mV - wy=Cj:D(x, wy) + iq, (7.2.2)

Cy

the state equation
q=ps+mBs— P50, (7.2.3)

the homogenized momentum balance equation

~ aZwS
P

= V.- (Ao : D(x,w,) — g C} — B 9 1) + §F, (7.2.4)

and the homogenized heat equation

v ow ¢ 0q
ép—=V-(B" - V) +C”:D(x, — )+ 2. 7.2.5
AT ( )+ (x ar )" Lo Ot (7.23)

The system is completed with boundary and initial conditions
ws(x,1) =0, xe S, te(0,7T), (7.2.6)
v(x,1) =0, xe S, t€(0,7T), (7.2.7)
oW,

w,(x,0) = ?(X’ 0)=0, xe £, (7.2.8)

CS
ep(9(x,0) — Po(x)) = /\—0 q, X € L. (7.2.9)

0

In(7.2.2)~(7.2.9)
p= mp ¢+ (1 —m) p;, CAp =mcp r+A—-—m)cps, m= / x(Ydy,
Y

the symmetric strictly positively definite constant fourth-rank tensor 5, matrices
Cp and C3, and the constant cy are given in Chap. 1 by formulae(1.3.26), (1.3.27)
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and (1.3.31). The symmetric strictly positively definite constant matrix B” and the
matrix C* are defined in Chap. I in Theorems2.1 and 2.4.

We refer to the problems (7.2.2)—(7.2.9) as the homogenized model (NIA)g.
Theorem 7.11 Let {w*®, p¢, 0%} be a weak solution of the problems (7.0.1)—(7.0.6),

n1 =00, x5 =0, s =00,

Uy = Eq:(0°) be an extension (7.1.9), and wg = Eqe (ws) be an extension (7.1.20).

Then up to some subsequences the sequences {W°} and {x® ¥} converge weakly
and two-scale in Ly (27) and L, (827) to the displacements of the mixture w(X, t)
and the liquid temperature 9 1) (x, t) respectively.

The sequence{x®p?®} converge weakly and two-scale in Ly(§27) to the liquid
pressure p ¢(X, t) and the function p y(X, t) x (y) respectively.

At the same time the sequence {W¢} converges weakly in Wé’o (8271) and two-scale
in Lo(827) to the solid displacements Wg(X, t) and the sequence {97} converges
weakly in Wzl’o(.QT) and two-scale in Ly(8271) to the solid temperature ¥4 (X, t).

1,0
Limiting functions, where wg (X, t) = W(X, 1), Wy € \OV2 (827), and 9 (x, 1) =
o 1,0
mg(X, 1), Os € W, (827), solve the system of homogenized equations in the
domain 27, consisting of the homogenized continuity equation(7.2.2), the state
equation
q=ps+mBr— B . (7.2.10)

the homogenized momentum balance equation

~ 82Ws
P

=V (A0 : D(x, wy) — q C} — B 95 I) + pF, (7.2.11)

and the homogenized heat equation

. 0D o 9 Wy ¢y 9q
=V.(B.V,)+C :Dx, 2% 72.12
P o (By -V 05) + ST RV (7.2.12)

The system is completed with boundary and initial conditions(7.2.6), (7.2.8) and

9,(x,1) =0, xe S, t €(0,T), (7.2.13)
. o)
¢p (95(x,0) — Po(x)) = X €. (7.2.14)

In(7.2.11)—~(7.2.14)

p=mps+ (1 —m)ps, ¢p=mcp ¢+ (1—-m)cys, m=/x(y)dy,
Y
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the symmetric strictly positively definite constant fourth-rank tensor N5, the matrix
Cy and the constant cy are given in Chap.1 by formulae(1.3.26), (1.3.27) and
(1.3.31). The symmetric strictly positively definite constant matrix B? and the matrix
C? are defined in this chapter in Theorem 7.3, and in Chap. I in Theorem2.4.

We refer to the problem (7.2.2), (7.2.6), (7.2.8) (7.2.10)—(7.2.14) as the homoge-
nized model (NIA) .

Theorem 7.12 Let {w®, p?, 0%} be a weak solution of the problems (7.0.1)—(7.0.6),
wy = Ege (W‘S) be an extension (7.1.20), ¢ ¢ = x*’"(ps +(Br— ,35)198), and

n1 <00, 0< s <o0.

Then up to some subsequences the sequence {W$} converges weakly in W;’O(SZT)
and two-scale in Ly (£27) to the solid displacements wg (X, t), and the sequence {9°}
1,0

converges weakly in ‘%/2, (8271) and two-scale in L($27) to the temperature of the
mixture U (X, t).

At the same time the sequence { x ¢ p ¢} converges weakly and two-scale in L(82T)
to the liquid pressure py(X,t) and the function pyr(X,t)x(y) respectively, the
sequence {x¢ wW°} converges weakly in Lo(27) to the liquid displacements w'/),
and the sequence {q °} converges weakly and two-scale in L,(27) to the functions
mq (X, t) and q(X, t)x (y) respectively. o

The limiting functions, where wg € VOVZ’ (27)and g = (py + (By — Bs)V) €
W21 ’O(QT), solve the system of homogenized equations in the domain 27, consisting
of the homogenized continuity equation

1 cs
=PtV wi) =CS:D(x,ws)+A—Zq, (7.2.15)
7

the state equation (7.2.3), the homogenized momentum balance equation

32w 32w,

Pf + ps o2 =V (M : D(x, wy) —qC] — B, 1) + pF, (7.2.16)

for the solid component with boundary and initial conditions(7.2.6) and (7.2.8), the
homogenized heat equation(7.2.5) with boundary and initial conditions(7.2.7) and
(7.2.9), and the homogenized momentum balance equation

"R 0%ws
— [ BY (u, 00t —=1)-\Vg+pr| == —F) Jx 1)dt
0 31’2

9 f) 9
A AL (7.2.17)
ot ot

for the liquid component with homogeneous boundary and initial conditions
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wHx, 1) nx)=0, xe8, re(0,T), (7.2.18)

wH(x,0)=0, x € 2. (7.2.19)

In (7.2.15)—(7.2.18) the symmetric strictly positively definite constant fourth-rank
tensor W5, matrices Cjy and C), and the constant c are given in Chap. 1 by formu-
lae(1.3.26), (1.3.27) and (1.3.31). the matrix B(«f)(;u, 00; t) is defined by (3.2.70)
and (3.2.76) in Chap. 3 and n is the normal vector to the boundary S.

We refer to the problem (7.2.3), (7.2.5)—(7.2.9), (7.2.15)—(7.2.19) as the homog-
enized model (NIA);.

Theorem 7.13 Let {w®, p¢, 9°} be a weak solution of the problem(7.0.1)—(7.0.6),

n1 <00, x5 =0, s =00,

wy = Eqe (ws) be an extension(7.1.20), and ¥ = Ege (9°) be an extension (7.1.9).

Then up to some subsequences the sequence {x°p ¢} converges weakly and two-
scale in L (27) to the liquid pressure p (X, t) and the function p y (X, t) x (y) respec-
tively, the sequence {x° ¥°} converges weakly and two-scale in Ly ($27) to the liquid
temperature 9 (x, t), and the sequence {x° W®} converges weakly in L(21) to
the liquid displacements wH(x, 1).

At the same time the sequence {W5} converges weakly in W2 (.QT) and two-
scale in Ly (827) to the solid displacements wg(X, t), the sequence {97} converges

weakly in W21 O(QT) and two- scale in Lo(27) to the solid temperature 9 (x, t),

and wg(x, 1) = w(x, 1), 9 (x, 1) = m0, (x 1).
1,0 o 1,0
The limiting functions, where wg € W2 (£27) and 9, € W2 (£27), solve the

system of homogenized equations in the domain 27, consisting of the homogenized
continuity equation(7.2.15), the state equation(7.2.10), the homogenized momentum
balance equation

32w 32w s s .
52 + ps Pl V- (o9 Dx, wy) — g C} — Bs 0, 1) + pF, (7.2.20)

pof

for the solid component with boundary and initial conditions(7.2.6) and (7.2.8), the
homogenized heat equation(7.2.12) with boundary and initial conditions (7.2.13) and
(7.2.14), and the homogenized momentum balance equation(7.2.17) for the liquid
component with homogeneous boundary and initial conditions(7.2.18) and (7.2.19).

In (7.2.20) the symmetric strictly positively definite constant fourth-rank tensor
N, and matrix C{, and the constant ¢y are given in Chap. 1 by formulae(1.3.26) and
(1.3.27).

We refer to the problem (7.2.6), (7.2.8), (7.2.10), (7.2.12)—(7.2.14), (7.2.15),
(7.2.17)—(7.2.20) as the homogenized model (NIA);>.

The proofs of these statements repeats the proofs of similar statements in Chaps. 1,
2, and 6.
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Chapter 8
Isothermal Acoustics in Composite Media

We restrict ourself to a simple situation, when the domain Q is a unit cube: Q =
(0, 1) x (0, 1) x (0, 1), the poroelastic medium occupies the domain £2 = (0, 1) x
0, D x(0,a), 0 <a < 1andthedomain 2© (2, or G)isan open complement
to £2:

0=02URWuUSsY sO=302niR"®,

or
0=02uRVYus® sO_-j30ni",

or
0=2UGUS? §sO_=-302nsG.

As in the previous chapter, we describe the motion of the mixture in the domain £2
for t > 0 by the system

& 1 — y¢

()_(—2+ X )p+V-w:0, (8.0.1)

C C

f Ky

& £ 82W &
(prx®+ A = x"ps) 7 =V P+p°F, (8.0.2)
. ow o -

P=x"a,D|x, o + (1 — xHoDx, w) — pl, (8.0.3)

The motion of an elastic body in the domain £2®) for r > 0 is governed by Lamé’s
system

1
P+V.-w=0, (8.0.4)

)
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0) 8°W 0
0= =v. PY 4 pOF, (8.0.5)
ot
P = a"D(x, w) — pl, (8.0.6)
where 65)(\0) and EEO) are dimensionless Lamé’s constants for the elastic body in £2®).

The motion of the liquid in the domain £2() for r > 0 is described by the Stokes
system

I
L prvow=o, (8.0.7)
cf
9w

o TN =9 B 4 pE, (8.0.8)

. 3
PO = a,D (x, 8_VIV) _pL (8.0.9)

Finally, the motion of the mixture in the domain G for ¢+ > 0 is described by the
system

1
>_<_g on PEV.w=0, (8.0.10)
7 @)
Cg
e &\ (0) I*w (0) e
(erx6 + 1 =x)p%) 55 = V- B0+ o°F, (8.0.11)
pO _ ey ¥ 1 — 530D I
= x6auD (x. - ) + (= xH&" D, w) — pIL (8.0.12)

where xj is the characteristic function of the liquid domain G; in G:

. X
1600 =x0 (%)
€
For the first and third configurations the elastic properties of the solid material in
2 and 2 (G¢ and £2) might be different, while in all cases the liquid must be the
same.
On the common boundary S the usual continuity conditions for displacements
hold true:

lim w(x,t) = lim w(x,1), (8.0.13)
N o

and for the normal component of the momentum
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lim PY(x, 1) -nx") = lim P(x,1) - nx’), (8.0.14)
2;;» o
for the first structure,
lim PO (x, 1) -nx") = lim P(x, 1) - n(x’) (8.0.15)
T r )
for the second structure, and
lim PO, ) nx% = lim P(x, 1) -nx%) (8.0.16)
xeo xeo

for the third structure.
To complete the problems we impose a homogeneous boundary condition

wx,t) =0, x,1))eSr=Sx(0,T), (8.0.17)

on the boundary S = d 0, and homogeneous initial conditions

w(x, 0) = E;—V:(x, 0)=0, xe Q. (8.0.18)

As before, we assume that

IF(x, 0)]” + LIPS
or ot

and Assumption 0.1, Assumption 1.2 and Assumption 3.1 hold true. It is also assumed
that all dimensionless parameters depend on the small parameter ¢ and the (finite or

2
)dxdt = F? < 0,

infinite) limits exist:

po. lim @ (e) = o, lim @ @) =4,
&

limay,(e) =

£N0 w(®)
lim % lim & =y i @ =
im—< =pu;, lim— =2, lim-—2%- =
N0 &2 e eN0 &2 ! eNO0 g2

Throughout this chapter we assume that
o = 0.

In the usual way one may define weak solutions to the problem (I) (relations
(8.0.1)—(8.0.6), (8.0.13), (8.0.14), (8.0.17), (8.0.18)), to the problem (II) (relations
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(8.0.1)—(8.0.3), (8.0.7)—(8.0.9), (8.0.13), (8.0.15), (8.0.17), (8.0.18)) and to the prob-
lem (IIT) (relations (8.0.1)—(8.0.3), (8.0.10)—(8.0.13), (8.0.16)—(8.0.18)) by means of
integral identities.

Let ¢ (x) be the characteristic function of the domain §2 and

ply =1 =0pQ +¢ (orx + (1= x")ps).
Py =1 =0pr+¢ (orx" + (1= xps),

Py = (1= (026 + (1 = xPV) +& (prx" + (1= x)py).

Definition 8.1 We say that the pair of functions {w®, p ®} such that

o L1
Wg € W2 (QT)! pe S LZ(QT)v

is a weak solution of the problem (I), if it satisfies the continuity equation

1 x& o 1—x® . .
(1 - C)( (0))2 +¢ (c—2 + ) pE+V.-wé =0, (8.0.19)
Cs

almost everywhere in Qr, and the integral identity

owé  d¢
e (2222 L. ) dxar
/QT P(s)( ot ot * (P) *
- / (g]P’—l—(l —{)]P’(S)) D(x, @)dxdt  (8.0.20)
or

o 1,0 9
for all functions ¢, such that ¢ € W, (Qr), 8—(;0 € Ly(£27) and @(x, T) = 0 for

x € Q.
Definition 8.2 We say that the pair of functions {w®, p ¢} such that

o 1,1
W8 S W2 (QT)’ pg € LZ(QT)v

is a weak solution of the problem (II), if it satisfies the continuity equation

1 € 1—yx*
((1 = +¢ (X—2 + _2X )) pf+V-w=0, (8.0.21)
Cy cy Cy

almost everywhere in Q7, and the integral identity
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(2 a—(0+F dxdt
o, PO\ Tar e TT?)H

:/ ({IP’+(1—§)IP’(f)):]D)(x,(p)dxdt (8.0.22)
or

for all functions ¢, such that ¢ € W2 (QT) o € Ly(£27) and @(x, T) = O for
x e Q.

Definition 8.3 We say that the pair of functions {w*, p ¢} such that

o LI
w'e W, (Qr), pf € L2(Q7),

is a weak solution of the problem (III), if it satisfies the continuity equation

e 1 — y¢ & 1 — v
(1-20) )_(_34_ on +¢C )_(—2+_—2X pe+V-wf=0, (8.023)
(@) G

almost everywhere in Q7, and the integral identity

owé d¢e
vl — - F.o)dxdt
oy o (550 45-0)

- / (§P+(1—§)P(O)):]D(x,go)dxdt (8.0.24)
or

for all functions ¢, such that ¢ € VOVZ (QT) ” € Lo (£27) and ¢ (x, T) = 0 for
xe Q.

Theorem 8.1 For all ¢ > 0 and for an arbitrary time interval [0, T'] there exists a
unique generalized solution {w*, p ¢} of the problem (I) and

2
2 ow?
ma (x,t — (X, t
0<z<XT/9(|p( )| +‘ ar( )

+0Tta<xT/Q (|p (x, t)} +'—(x 1)

+ (1= x5, D, w5)|2)dx

+ (1 - & |Dix, wo)| )

apt 2 2w
+ max + | ——x, )| +1—x°
O<t<T/_Q 9 912 a3 (1= x")ax D )
3[75 2 aZWe ) ( )
+ max X, 1) +|——(x,0)] + (1 —
0<t<T/9(s> (‘ at =, 1) a2 (x.0 (1= xa,
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. e 2 we 2
+/ x5y ('D (x, ow ) ]D)(x, 0w )‘ )dxdt <CoF?,  (8.0.25)
JQ2r at

ar2
where the constant Cy is independent of the small parameter ¢ and the criteria
- _0) -
ay, ot£ ), ay.

+

The proof of this theorem repeats the proofs of similar theorems in the previous
chapters and is based on the energy equalities

1d awe |2 ) 1
37 (pg o | T (1 = ) Dx, wh) : D(x, wé) + qlpglz)dx
t Jo t oy,
ld Iw’ 2 ey~ (0) e e g2
+§d_ Ps + (1= x"a, 'Dx, w") : D(x, w*) + [p°17 ] dx
tJow® at (5(0))
S
ow? ow® ow?
+/ x e D x, — ) :D{x, — dx:/ o¢F - dx,
0 ot ot 0 ot
L O PP S L W L WL L
2dt Jo\P |02 OO T ) P\ T ) T & o
1 d 2wt | A ow* ow* 1 |ope|?
2dt oo | A3 D(x’ at )'D<x’ at )+ o

2
)

+/ (s 9w D 9*we 4 /~F8F azwsd
@D\ x5 ) :D\x, =5 ) )dx = rvl ¥
o\ 312 312 P TRTE
In the same way one may prove.

Theorem 8.2 For all ¢ > 0 and for an arbitrary time interval [0, T] there exists a
unique generalized solution {w®, p ¢} of the problem (II) and

2
+ (1= %)y D, w's)}z)dx

2 T
dx + / / €3, |D
) o Jon X T

maX/ |p*x z>|2+‘ﬁ(x 0
0<t<T Jo ’ ar

2 owe
4+ max x| + | —(x, ¢
0<t<T/_Q(f) (p ¢ )‘ ' at .

ap?¢ 2 2wt _ awe \ |2
+ )|+ | = x| +0 = x° D{x, — d
ogaz(r/g (’ at @) a2 & 7) (=x0am (x at ) *
2 2
. apé‘ 2 32w8 /T/ ~ 32WS
+ ma —(x, )| +|—=(x,t dx + fa, |ID| x,—— )| dxdt
0<z<xT/_Q(f) (‘ ar &1 a2 &0 T Jen XA 2 *
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. we 2 92we
fa D{x, — Dy x, —5—
+/X2T e (‘ (x ar )‘ * (x a2

where the constant Cy is independent of the small parameter ¢ and the criteria

2
) dxdt < CoF?,

(8.0.26)

_ _(0) -
ay, ai), ay.

Theorem 8.3 For all ¢ > 0 and for an arbitrary time interval [0, T] there exists a
unique generalized solution {w®, p ¢} of the problem (II) and

& 2 aw? 2 N NP
max pex. D"+ |——& 0] +1—xDHa, D, wh)|” )dx
0<t<T Jg ot

+ max /(|p (x, t)| —1—‘—()( 1)
0<t<T

+ (- xHa?” D, wS)}z)dx

apa 2 BZWS ~ we 2
—(x,t 1—xHap |D(x, — d
OI<nta<xT/Q ( 0 * a2 @)+ =X (x ot ) *
ape 2 2w 2 ©) owe 2
Jt —(x, 1 1—x& , d
+01<nza<XT/G ot 0] + a2 0+ =X0), I (x at )‘ *
2
awe\ |2 92wt
+ ‘o D x, + D x, —— dxdt
/.QTX " ‘ ( 8t) ( 812)‘)

(0) awe \ |2 92wt 2 2
/ /Xo% ’ (x, at) + D x,v dxdr < CoF~, (8.0.27)

where the constant Cy is independent of the small parameter ¢ and the criteria

_0) -
o), ai), ay.

8.1 Acoustics in an “Elastic Body—Poroelastic Medium”’
Configuration

8.1.1 Main Results

Theorem 8.4 Let {w®, p*} be the weak solution of the problem (I) and
0<A80)<oo, U1 = Ay = 00.

Then the limits w and p of the sequences {w°} and { p ¢} satisfy the dynamic equation
in the form of the integral identity
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/ ((1 — A OD(x, w) — p]I) D(x, p)dxdt
or

82
:/Q By (F— aTvzv) - @dxdi 8.1.1)
T

o 1,0
for any function ¢ € W, (Qr), and the continuity equation in the form of the
integral identity

2
1 m 1—m ap ow
1 - — + — + — — Y —=V¢y.— |dxdt =0

(8.1.2)

for any smooth function € Wzl’O(QT).
Here

ps = (1 =¢0) p\” +¢(X)p, p=mps+(1—m)p;.
Relations (8.1.1)—(8.1.2) are completed with the homogeneous boundary condition

w(x,t) =0, (8.1.3)

on the boundary St\0 82T, and the homogeneous initial conditions
ow
w(x,0) = E(X’ 0)=0, xe Q. (8.1.4)

We refer to the problem (8.1.1)—(8.1.4) as the homogenized model (ACM);.
Note, that the integral identities (8.1.1), (8.1.2) are equivalent to Lamé’s system

WP'FV-W:O, (8.1.5)
(0 0°W © ©
0T =V (1D w) = pT) + pOF (8.1.6)

in the domain .Q(TS ), and the acoustic system

2

. 0°W . m l—m\op ow
- _V F, | — - —+V.{—)=0 8.1.7
0 o2 p+p (E]% + 22 ) o1 + (Bt) ( )

in the domain 27.
These differential equations are completed with the continuity conditions
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1
lim w(x, 1) -nx’) = |-~ lim w(x, 1) -nx’) |, (8.1.8)
e o® xeo

lim (,\g”ﬂ)(x,w(x, N) - p(x, t)]I)-n(xO)z lim px0nx’)  (8.19)
e a® xeo

on the common boundary S;O), the boundary and initial conditions (8.1.3), (8.1.4),
the boundary condition
w(x,7)-nx) =0 (8.1.10)

(s)

on the boundary S7\0$2; and the initial conditions

d
p(x,0) =0, w(x,O)za—Vtv(x, 0)=0, x€ 2. 8.1.11)
Theorem 8.5 Let {w®, p?} be the weak solution of the problem (I) and
)
0<xry” <00, 0K up, A <o00.

Then the limits w and p of the sequences {w*} and {p ¢} satisfy in the domain .Q;S)
Lamé’s system (8.1.5), (8.1.6), the boundary and initial conditions (8.1.3), (8.1.4),
and the homogenized equation

A m 1—m)\o
P A [
y Cq at

t
- — ~/mB(“)(Ml,Al;t—t)-Vp(X,r)dr (8.1.12)
0

in the domain $27.
These differential equations are completed with the continuity condition

. 0w 0
lim —(x,¢) -n(x")
X —> X t

xe2®

t
_ lim/B@(m,m;r—r)-Vp(x,r)dr+f(x,r) n(xY),
X — X 0
xXe R

(8.1.13)
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and the continuity condition (8.1.9) on the common boundary S (O), the boundary
condition

t
/ B (w1, A3t — 1) -V p(x,7)dT - n(x) = —f (x, 1) - n(x) (8.1.14)
0

on the boundary B.QT\S(TO) , and the initial condition
px,0)=0, x € £2. (8.1.15)

In Egs.(8.1.12)~(8.1.14)
p=mpy+(1—m)ps.

the matrix B@ (m1, A1; t) and the functionf (X, t) are given in Chap. 6 by the formulae
(6.2.40) and (6.2.42).

We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.11)—(8.1.13) as the homog-
enized model (ACM);.

Theorem 8.6 Ler {w®, p ¢} be the weak solution of the problem (I),
O<A(()0) <00, mp=o00, 0<<A| < o0,

and w‘} = EQ; (w®) (for definition of this extension see Chap.6).

Then the limits w and p of the sequences {w°} and { p ¢} satisfy in the domain .Q(; )
Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3), (8.1.4).
In the domain 27 the pressure of the mixture p, and the limiting functions w), and
wy of the sequences {(1 — x°)wW®} and {W?} satisfy the system of homogenized
equations, consisting of the continuity equation

1— 3 3 aw)
LA Sl 0N LA A L ) (8.1.16)
s C{ ot ot at

the momentum balance equation

3 Lo
m,of—f—i-ps—-i-/ (—pF+Vp) x,7)dt =0, (8.1.17)
0

for the liquid component and the momentum balance equation


http://dx.doi.org/10.2991/978-94-6239-015-7_6
http://dx.doi.org/10.2991/978-94-6239-015-7_6
http://dx.doi.org/10.2991/978-94-6239-015-7_6
http://dx.doi.org/10.2991/978-94-6239-015-7_6

8.1 Acoustics in an “Elastic Body—Poroelastic Medium” Configuration 295

aw'® W
—(1—m)—=
at at
t 82
= _/ B(S)(oo,kl;t—r)-<Vp+ps( azvzf —F))(x, 7)dt
0

(8.1.18)

for the solid component.
The problem is completed with the boundary condition (8.1.9) and the boundary
condition

3 awy  ow®
fim —vtv(x,t)~n(x0)= lim (m%Jr Vavt )(X,t) ) (8.1.19)

X — X 8 X — X
XE_Q(S) xe R

on the common boundary S(TO) , the boundary condition

EAA ow n(x) = 0 (8.1.20)
" n(x) = 1.
ot Jat

on the boundary ST\E).Q;?), and the initial conditions
wr(x,0) = w9 (x,0) =0, x € 2. (8.1.21)

In(8.1.17)~(8.1.18)
p=mpy+(1—m)ps.

and the matrix B®) (co, A1 t) has been defined in Chap. 3 by formulae (3.2.47) and
(3.2.54).

We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.16)—(8.1.21) as the homog-
enized model (ACM)3.

Theorem 8.7 Let {w®, p ¢} be the weak solution of the problem (1),
O<A(()0)<oo, A =00, 0< up < oo,

and wi = Eqe (W?) (for definition of this extension see Chap.6).

Then the limits w and p of the sequences {w°} and {p ¢} satisfy in the domain
Q;x) Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),
(8.1.4).

In the domain 27 the pressure of the mixture p, and the limiting functions
w, and wy of the sequences {x*w*} and {we} satisfy the system of homogenized
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equations, consisting of the continuity equation

m (1—m)\adp aw() oW,
— v | —— — =0, 8.1.22
(52+ 22 )ar + ( 5 Td—m— ( )

the momentum balance equation

Pf

) 5 r
Y (U —m)p D =/ (5F — V p) (x, 1), (8.1.23)
ot at 0

for the solid component and the momentum balance equation

ow() oW,

m
ot ot

! 32w,
= —/ IBé(f)(,u],oo;t—r) . (Vp—{—,of (8_ —F)) (x, 7)dt
0

(8.1.24)

for the liquid component.
The problem is completed with the boundary condition (8.1.9) and the boundary
condition

Iw aw() ow
li —(x,1) - Oy = 1 _— 1-— d 0] - 0
im ” x,1)-nx") 1rn0 ( a7 + ( ” (x,1) n(x")

o 1o
(8.1.25)
on the common boundary S (0), the boundary condition
aw() oW,
1— . =0 8.1.26
( o T ( o7 n(x) ( )
on the boundary ST\BQ;S ) , and the initial conditions
wi(x,0) =w(x,0) =0, x € 2. (8.1.27)

In (8.1.23)~(8.1.24)

~

10=m10f+(1_m)ps,

and the matrix B (1, oo; 1) has been defined in Chap. 3 by formulae (3.2.70) and
(3.2.76).
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We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.22)—(8.1.27) as the homog-
enized model (ACM)4.

Theorem 8.8 Ler {w®, p ¢} be the weak solution of the problem (I),
O<A(()0) <00, mp=o00, 0<ip< oo,

and wi = Ege (W°).

Then the limits w and p of the sequences {w°} and {p ¢} satisfy in the domain
.Q;Y) Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),
(8.1.4).

In the domain 21 the limit wy (the solid displacement) of the sequence {w¢}
satisfies the homogenized equation

~ 82Ws
P

=V - (LN : D(x, wy)) + F, (8.1.28)

completed with the initial and boundary conditions

oW,
ot

wi(x,0) = —(x,0) =0, x € 2, (8.1.29)
wi(x,1) =0, x € 32\SY, 1 € (0, T). (8.1.30)

On the common boundary S(TO) the continuity conditions

lirr}) w(x,t) = lirn0 w (X, 1) (8.1.31)
N s

and
lim (A(()O)ID)(x, w(x, 1)) — p (X, 1) H) -n(x°)
x — x0
xen®
= lim (Ao N < D(x, Wi (x, t))) - n(x% (8.1.32)
xea
hold true.
In (8.1.28)

ﬁ:mpf+(] —m) ps,

and the symmetric strictly positive definite constant fourth-rank tensor N5 is given
in Chap. 1 by the formula (1.3.39).
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We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.28)—(8.1.32) as the homog-
enized model (ACM)s.

Theorem 8.9 Let {w®, p ¢} be the weak solution of the problem (I),

0<A(()0)<oo, 0<pup <00, 0<Ag < o0,

and w¢ = Eg: (W°).

Then the limits w and p of the sequences {w°} and {p ¢} satisfy in the domain
Gt Lamé’s system (8.1.5), (8.1.6) and the boundary and initial conditions (8.1.3),
(8.1.4).

Inthe domain Q27 the limits p y (the liquid pressure), w/ (the liquid displacement),
and Wy (the solid displacement) of the sequences {x* p ¢}, {x® w®}, and {w¢} satisfy
the system of the homogenized equations, consisting of the continuity equation

m ) CS
4V W =Ty Dex, wy) + k—opf, (8.1.33)

the momentum balance equation

92w 82ws
+
PI o Ps7or2

=V (M : D, wy) — psC}) + 4F, (8.1.34)

for the solid component, the momentum balance equation

! 92w
_ ) cr_ ). ¥ _
/OB (n1,00;t — 1) (fo‘f‘pf(a_[z F))(X, T)dt
ow() 9
A AAL (8.1.35)
at at

for the liquid component, the continuity condition (8.1.31) and the continuity condi-
tions

lim w(x, ) -nx’) = lim (WP, )+ (1 —mwy(x,0) -nx"), (8.1.36)

XE.Q(S) X € 2
and

lim (k(()O)ID)(x, w(x, 1)) — p (X, 1) 11) - n(x%)

X — X
xe )

= lim, (,\0 NS D(x, wy(x. 1)) — py Ci)) ‘nx") (8.1.37)

X e 2
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on the common boundary S (O), the homogeneous boundary and initial conditions
(8.1.29) and (8.1.30) for the solid displacements, and the homogeneous boundary
and initial conditions

wHx, 1) -nx) =0, xea2\S?, t (0, 1), (8.1.38)
w(x,00=0, x € 2. (8.1.39)

for the liquid displacements.
In(8.1.33)—(8.1.35)
o =m/0f+(1 —m) ps,

the symmetric strictly positively definite constant fourth-rank tensor Y5, the matrices
Cp and Cf, and the constant cjy are given in Chapter I by formulae (1.3.26), (1.3.27)
and, (1.3.31) and the matrix B (1, 00; t) has been defined in Chap.3 by the
formula (3.2.70).

We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.29)—(8.1.31), (8.1.33)—
(8.1.39) as the homogenized model (ACM)¢.

8.1.2 Proofs of Theorems 8.4-8.7

The proofs of these theorems are standard and repeat the proofs of the corresponding
theorems in the previous chapters, because we can prove the statements separately
in each of the domains G and £2. Thus, the main problem here is the boundary
conditions on the common boundary §®. These boundary conditions follow from
the limiting integral identity (8.1.2), and the integral identity

/ (1= 02 D(x, w) = p1) : D(x, @)dxdt
or
92w
- / / Ps) (X, Y) (F——z(x,t,y))-(p(x, Hdydxdt, (8.1.40)
orJy Jat

where W(X, ¢, y) is the two-scale limit of the sequence {w*}, and

P (X, ¥) = (1 = ¢X)p? + ) (o7 x (¥ + (1= x¥) ).

For all cases (8.1.40) implies the dynamic Lamé’s equation (8.1.5) in the domain G
and the boundary condition (8.1.9) on the common boundary S®. The integral iden-
tity (8.1.2) implies the continuity equation (8.1.6) in the domain Gr, the continuity
equation
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m 1-m\d%p 0’w
St —— )= +V.— =0, 8.1.41
(EJ%—i_ c2 )8t2 TV ( )

in the domain §27, and the boundary condition

. 82 w 0 . 82 w 0
XLHE) W(X’ 1) -nix’) = Xlin;o W(X’ 1) -n(x") (8.1.42)
xen®) Xe R

on the common boundary §© .
All the differences are concentrated in the dynamic equation in the domain 27

. . . . ow
and in the representation of the velocity of the mixture o

8.1.2.1 Proof of Theorem 8.4

For this case W(x, t,y) = w(X,t) and the integral identity (8.1.40) implies the
dynamic equation

R 02w

— =-Vp+pF 8.1.43
P57 p+p ( )
in the domain 27.

Relations (8.1.41)—(8.1.43) evidently imply the acoustic equation (8.1.7) in the
domain £27 and the boundary condition (8.1.8) on the boundary § ©,

8.1.2.2 Proof of Theorem 8.5
To obtain the dynamic equation here we simply repeat the proof of Theorem 6.6.
That is, we firstly derive the microscopic dynamic equation (6.2.32) with P = p

and then the microscopic continuity equation (6.2.33). These relations result in the
representation

a t
8—:V(x, 1) =/ B (w1, st —1) -V p(x, 1)dt + £(X, 1) (8.1.44)
0

of the velocity in the mixture.
This representation, the continuity equation (8.1.41), and the boundary condition
(8.1.42) imply the equation (8.1.12) and the boundary condition (8.1.13).

8.1.2.3 Proof of Theorem 8.6

For this case the velocity of the mixture is given by the formula
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oW ow oW
Sty = XML+ (1= ) Ty,

ow _ owy  ow®

ot — W= (1- W, 1,y)d
ar " ar + ar (x, 1) /y( XMW, 1, y)dy,

which together with (8.1.41) result in (8.1.16).

The integral identity (8.1.40) implies the dynamic equation (8.1.17) for the liquid
component.

To find the representation (8.1.18) we use the microscopic dynamic equation

PWE
/O‘YT - TAyW(S) - Vyn(s) ~Vp, W= (1 - X(y))W,

for the solid component, the microscopic continuity equation
V-W® =0

in the domain Y, and the corresponding boundary and initial conditions. This prob-
lem has been already solved in Chap. 3 (see the proof of Theorem 3.4). The rest of
the proof is the same as the proofs of previous theorems.

8.1.2.4 Proof of Theorem 8.7

Here the velocity of the mixture is given by the formula

oW
ot

oW oW s
T(X»I’Y):X(Y)g(x»t’Y)‘F(l_X(Y)) (X1 t)v

aw  awl) AW,
— = 1— , w1 :/ W(x, 7, y)dy,
5 5 + (1 —m) 5 W (x,1) YX(Y) (x, 1, y)dy

which together with (8.1.41) result in (8.1.22).

The integral identity (8.1.40) implies the dynamic equation (8.1.23) for the solid
component. The representation (8.1.24) has been already obtained in Chap. 3 (see the
proof of Theorem 3.5). The rest of the proof is the same as for the previous theorems.

8.1.3 Proofs of Theorems 8.8 and 8.9

For these cases the two-scale limit P (X, t, y) of the sequence {p®} is given by

I=0p+sxWprx, D+ (1= xy) Psx,t,y).
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For p1 = oo the two-scale limit w of {w*} is given by
W, 1,y) = ws(x, 1),
and for u; < 0o
W, 1,y) = XWX, 1,¥) + (1 = x () Wy (x, 7).

The two-scale limit of the sequence {w?} is equal to w; (X, ), and the two-scale limit
of the sequence {ID(x, w%)} is given by

D(x, wy(x, 1)) +D(y, Ux, £, y))

(see proofs of Theorem 1.6 and Theorem 1.7).
The integral identity (8.1.40) is replaced by

/ (1= 02D, W) + ¢ 2o((1 = m)D(x, w,)
or
+(ID)(y,U))yS)) :]D)(x,(p)dxdt—/ pV - @dxdt
or

°W
=/ /pm(x,y) F——(t,y))dy- X t)dxdt (8.1.45)
orJy ot

with smooth functions ¢, vanishing on the boundary 9 Q, and the integral identity
(8.1.2) is replaced by

11— 1-— oP d
/ n/ (22 ) e | Ly vy Y dwde =0
Or Y ~(0) c Cg ot ot

Cs f

(8.1.46)

with smooth functions 7.
In (8.1.45)

P X, ¥) = (1= ¢x)p? +cx) (o x @ + (1= x@)ps)-

As before, relations (8.1.45) and (8.1.46) result in Lamé’s system (8.1.5) and
(8.1.6) in .Q(TS) and the boundary conditions (8.1.32), (8.1.36) and (8.1.37) on the

common boundary S(To).

Equations (8.1.28), (8.1.32), (8.1.33) and (8.1.34) and the boundary and initial
conditions (8.1.29), (8.1.30), (8.1.38) and (8.1.39) are already derived in Chap. I and
Chap. 6 (see proofs of Theorems 1.6—1.8 and 6.9-6.11).

Finally, the boundary condition (8.1.31) is a consequence of the smoothness of
w, and w and is derived as well as the boundary condition (8.1.30).
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8.2 Acoustics in a “Liquid-Poroelastic Medium” Configuration

8.2.1 Main Results

Theorem 8.10 Let {W*, p ¢} be the weak solution of the problem (II) and

M1 = A] = 00.

0
Then the limits v = 8_‘:, (the liquid velocity) and p (the pressure) of the sequences

&
{ 5 ] and {p £} satisfy the system of acoustic equations

ov
Prar £V =prF,

|-

9
—f+V~v=0

[9Y]
o

in the domain 2 for t > 0, and the system of acoustic equations

ov
5%V LV p = 4F.
:Oat +Vp=p

m 1—m}\ao
=t —p—i-V'V:O
cy Cq ot

in the domain 2 fort > 0.

(8.2.1)

(8.2.2)

(8.2.3)

(8.2.4)

Relations (8.2.1)—(8.2.4) are completed with the homogeneous boundary condi-

tion
v(x, 1) -n(x) =0,

on the boundary St, the homogeneous initial conditions
p(x,00=0, v(x,0) =0, xe 0,
and the continuity conditions

lim v(x,) -nx") = lim v(x,7) nx),
X*)XO X*)XO
xe ) X€ R

lim p(x,t) = lim p(x,t)
X — X X — XO
xeol) xeQ

(8.2.5)

(8.2.6)

(8.2.7)

(8.2.8)
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on the common boundary S(TO).
Here

p=mps+(1—m)ps,

n(x) is the normal to S atx € S, and n(x%) is the normal 10 S© arx% € O,
We refer to the problem (8.2.1)—(8.2.8) as the homogenized model (ACM);.

Theorem 8.11 Let {w®, p®} be the weak solution of the problem (II) and

0< pr, A <o00.

d
Then the limits v = a—‘;v (the liquid velocity) and p (the pressure) of the sequences

&

” and { p ¢} satisfy in the domain Q;f ) the system of acoustic equations (8.2.1),

(8.2.2), and the system of acoustic equations in the domain $27, consisting of the
momentum balance equation in the form

t
V(x, 1) = / B (1, 2131 — 1) - V p (x, D)t +£(x, 1), (82.9)
0

and continuity equation (8.2.4).

The differential equations are completed with the boundary and initial conditions
(8.2.5), (8.2.6), and the continuity conditions (8.2.7) and (8.2.8).

The matrix IB%(“)(,u], A1; t) and the function £(X,t) are given in Chap.6 by the
formulae (6.2.40), (6.2.42).

We refer to the problem (8.2.1), (8.2.2), (8.2.4)—(8.2.9) as the homogenized model
(ACM)g.

Theorem 8.12 Let {w*®, p ¢} be the weak solution of the problem (II),
m1 =00, 0 <A <00,

and w;’c = E_QL; (ws ) (for definition of this extension see Chap.6).

d
Then the limits v = 8—‘: (the liquid velocity) and p (the pressure) of the sequences

ow®
d{p?}, wh
{at]an {p?}, where

9 (s)
ve=(—0Ovt+emead 4 IV

ad
=(A=0v+imvs+¢vY 2.10

and w® and w s are the limits of the sequences {(1 — x*)w®} and {W?}, satisfy in

the domain .Q;f ) the system of acoustic equations (8.2.1), (8.2.2), and the system of
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acoustic equations in the domain 27, consisting of the momentum balance equation
t

mprf+psV(s)+/ (—,5F+Vp)(x,t)dr:0, (8.2.11)
0

for the liquid component, the momentum balance equation

v — (- myvy

1
- _/ B (00, 2= 1) (Vp+ ps(aaﬁ ~F))xndr  (38212)
0 T

for the solid component, and the continuity equation

m (I —m)\op )
(E_%+ z2 )E+V-(me+VS)=0. (8.2.13)

The problem is completed with the boundary and initial conditions (8.2.5), (8.2.6),
and the continuity conditions (8.2.7) and (8.2.8).
In(8.2.11)—(8.2.12)

p=mps+(1—m)ps,

and the matrix B (co, A1; t) has been defined in Chap. 3 by the formulae (3.2.47)
and (3.2.54).

We refer to the problem (8.2.1), (8.2.2), (8.2.5)—(8.2.8), (8.2.10)—(8.2.13) as the
homogenized model (ACM)g.

Theorem 8.13 Let {w®, p®} be the weak solution of the problem (II),
Al =00, 0 <y < 00,

and wi = Ege (ws ) (for definition of this extension see Chap.6).

ad
Then the limits v = 8—‘: (the liquid velocity) and p (the pressure) of the sequences

ow®
and {p ¢}, where

Jat
aw() oWy
v=(-ovto——+cd-m—
= -v+evD 4, (8.2.14)

and w'") and wy are the limits of the sequences {x*w} and (WS}, satisfy in the

domain .Q;f ) the system of acoustic equations (8.2.1), (8.2.2), and the system of
acoustic equations in the domain S2t, consisting of the continuity equation
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1— 0
(_ﬁz+( _2"’))—”+v.(v<f> +v,) =0, (8.2.15)
Cf Cq Jat

the momentum balance equation

t
pr v 4 (L= m)ps vy = / (5F -V p)x. 1)dr, (82.16)
0

for the solid component and the momentum balance equation

v — v
"B AL
=— BY (uy, 005t —1)-{Vp+pr 3 —F) ) x, v)dt (8.2.17)
0 T

for the liquid component.
The problem is completed with the boundary and initial conditions (8.2.5), (8.2.6),
and the continuity conditions (8.2.7) and (8.2.8).
In (8.2.16)—(8.2.17)
p=mps+(1—m)p;.

and the matrix B (1, 00; t) has been defined in Chap. 3 by the formulae (3.2.70)
and (3.2.76).

We refer to the problem ((8.2.1), (8.2.2), (8.2.5)—(8.2.8), (8.2.14)—(8.2.17) as the
homogenized model (ACM) .

Theorem 8.14 Let {w®, p ¢} be the weak solution of the problem (1),
n1 =00, 0 <Xy < oo,

and wé = Eg: (WF).

d
Then the limits v = 8—‘: (the liquid velocity), p (the pressure), and W (the solid

&

ad
displacement) of the sequences [ 8“; }, {p®}, and {w:}, where

0

N

v=>0-0v+¢ =0 =v+ vy, (8.2.18)

w
ot
satisfy in the domain Q}f ) the system of acoustic equations (8.2.1), (8.2.2), and
Lamé’s equation
~ azws
Poar

= V- (o0 : D(x, wy)) + SF (8.2.19)

in the domain 21, completed with the homogeneous boundary condition
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v(x, 1) -n(x) =0, (8.2.20)
on the boundary 32 \S© for t > 0, the homogeneous initial conditions
p(x,0) =0, v(x,0)=0 (8.2.21)
for the liquid velocity and the pressure in the domain 21, the homogeneous bound-
ary condition

WS (X7 t) = 07 (8.2.22)

on the boundary 32\S© for t > 0, and the homogeneous initial conditions

w,(x,0) =

IW,
57 (x,00=0 (8.2.23)

for the solid displacement in S2.
On the common boundary S(TO) the continuity conditions

9
lim v(x,7) -n&%) = lim %(x, 1) -nx°) (8.2.24)
oo b
and
— lim pxHn% = lim (,\0 N D(x, wy(x, z))) ‘n(x%), (8.2.25)
reol) e
hold true.
Here n(XO) is the normal vector to S© at x° € §©.
In(8.2.19)

p=mps+(1—m)p;,

and the symmetric strictly positive definite constant fourth-rank tensor N is given
in Chap. I by the formula (1.3.39).

We refer to the problem (8.2.1), (8.2.2), (8.2.18)—(8.2.25) as the homogenized
model (ACM) ;.

Theorem 8.15 Let {w*®, p ¢} be the weak solution of the problem (II),
0<pup <00, 0 <A< o0,

and w¢ = Eg: (WF).


http://dx.doi.org/10.2991/978-94-6239-015-7_1
http://dx.doi.org/10.2991/978-94-6239-015-7_1

308 8 Isothermal Acoustics in Composite Media

d
Then the limits v = a—‘: (the liquid velocity) and p (the pressure) of the sequences

awe
d{p¢}, wh
’at]an {p?}, where

f)

ow'- 0wy
v=a—¢w+c3%—+ca—m>w

o =1 =0v+cv) +evg, (82.26)

satisfy the system of acoustic equations (8.2.1), (8.2.2) in the domain o ), and the
boundary and initial conditions (8.2.20)—(8.2.21).

In the domain 27 the limiting functions py (liquid pressure), wl) (liquid dis-
placement), and wy (solid displacement) of the sequences {¢ x° p ¢}, {¢ x® w®}, and
{¢ W&} satisfy the system of homogenized equations, consisting of the continuity

equation
S

1 c
—pr+ VoW =C: D, wo) + 2py, (8.2.27)
s o

the momentum balance equation

a2w<f>+ 92w,
a2 Ps7or2

pf =V (M :Dx,wy) — prCj) +pF,  (8.228)

for the solid component, and the momentum balance equation

B 02w,
— [ BY (ur, 00t —=7) - \Vpr+pr| == —F (x,r)dt
0 ’ dt2

ow() 9
A AL (8.2.29)
ot at

for the liquid component.
These differential equations are completed with the continuity conditions

3
lim  v(x, 1 -nx") = lim (v<f>(x, H+ 1 —m) ;: (X, t))-n(xo), (8.2.30)
- v

and

— lim px DA = lim (Aomg:ﬂ)(x,ws(x, N—p;s Cﬁ))-n(xo) (8.2.31)
o) xen

on the common boundary S (0), the homogeneous boundary and initial conditions
(8.2.22) and (8.2.23) for the solid displacement, and the homogeneous boundary
and initial conditions
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wHx, 1) -nx) =0, xea2\S©, t (0, 1), (8.2.32)

f) —
w/(x,0) =0, xe 2 (8.2.33)

for the liquid displacement.
In (8.2.27)~(8.2.32) n(x%) is the normal vector 10 S© ar x0 € SO, n(x) is the
normal vector to 052 at X € 052,

15=mpf+(1_m):057

the symmetric strictly positively definite constant fourth-rank tensor Jt;, matrices C;)
and C3, and the constant ¢}y are given in Chap. 1 by the formulae (1.3.26), (1.3.27)
and (1.3.31), and the matrix B (11, 00; t) is defined in Chap. 3 by the formulae
(3.2.70) and (3.2.76).

We refer to the problem (8.2.1), (8.2.2), (8.2.20), (8.2.21), (8.2.26)—(8.2.33) as
the homogenized model (ACM) 5.

8.2.2 Proofs of Theorems 8.10-8.13

The proofs of these theorems are standard and repeat the proofs of the corresponding
theorems in previous chapters, because we can prove all the statements, except the
validity of the continuity conditions on the common boundary, separately in each
of domains £2¢) and 2. Thus, the main problem here is the continuity conditions
on the common boundary §®. These continuity conditions follow from the limiting
integral identity

9%w
[ p@oadi= [ [ (- SR mny) o ndydar,
or or Jy dt

(8.2.34)
o 1,0
for any smooth function ¢ € W, (Q7), and the integral identity

1 1-— 0 0
/ (((1—;)_—2+§(%+_—2m))—pw—vw-—w)dxdt=0
or cr cr C{ ot ot

(8.2.35)
for any smooth function ¢ € Wzl’O(QT).
Here W(x, ¢, y) is a two-scale limit of the sequence {w®}, and

oY) =(1—¢®)psr + & (or x@ + (1= x¥) ps)).

For all cases (8.2.34) and (8.2.35) imply the system of acoustic equations (8.2.1)
and (8.2.2) in the domain 2!/, the continuity conditions (8.2.7) and (8.2.8) on the
common boundary $@, and the continuity equation
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m l—-m\odp ow

4+ —)—+V-—=0 8.2.36

(5]% - c2 ) TERY ( )

in the domain £27.
All the differences are concentrated in the dynamic equation in the domain 27

. . . . ow
and in the representation of the velocity of the mixture o

8.2.2.1 Proof of Theorem 8.10

For this case W(x,,y) = w(X, t) and the integral identity (8.2.34) implies the

dynamic equation
2

07w .

in the domain £27.

8.2.2.2 Proof of Theorem 8.11

Here to obtain the dynamic equation we simply repeat the proof of Theorem 6.6.
That is we derive the microscopic dynamic equation (6.2.32) with P = p and the
microscopic continuity equation (6.2.33), which result in the representation

9 t
a—:v(x, 1) = / B@ (w1, A5t —1) -V p(x, )dT +£(X, 1) (8.2.38)
0

of the velocity of the mixture.

8.2.2.3 Proof of Theorem 8.12

For this case the velocity of the mixture is given by the formula

W oty = x O x+ (1 - x®) w1, )
8[ 77y_Xy 8t ’ Xy a[ 7’y’

dw dwy  aw®

ot — W= [ (1- W, ¢, y)dy.
o=m— st —— WO /Y( X)W, t,y)dy

The integral identity (8.2.34) implies the dynamic equation (8.2.11) for the liquid
component.
To find the representation (8.2.12) we use the microscopic dynamic equation
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92W

—T = MAWS — v — v p, WO = (1 - x(n)W,

Ps
for the solid component, the microscopic continuity equation
vV-W® =0,
in the domain Y;, and the corresponding boundary and initial conditions. This prob-
lem has been already solved in Chap.3 (see the proof of Theorem 3.4). The rest of
the proof is the same as for the previous theorems.

8.2.2.4 Proof of Theorem 8.13

Here the velocity of the mixture is given by the formula
oW oW oWy
-— X, 1, = — X, 1, 1 - — X, 1),
5 X1y = x(M—-x )+ (1= xW) 5 %D

0w _ aw()

oW,
_ = 1_ -’ (f) ,t =/ W ,t, d .
5 o + (1 —m) rratl (x, 1) yx(y) (x,1,y)dy

The integral identity (8.2.34) implies the dynamic equation (8.2.16) for the solid
component. The representation (8.2.17) has been already obtained in Chap.3 (see
the proof of Theorem 3.5). The rest of the proof is the same as for the previous
theorems.

8.2.3 Proofs of Theorems 8.14 and 8.15

For these cases the two-scale limit P(x, ¢, y) of the sequence {p®} is given by

d=p+ %X(Y) pr&x 0 +¢ (1= x®) Ps(x,1,y).
For 11 = oo the two-scale limit W of the sequence {w?} is given by
W(x, t,y) = ws(x, 1),
and for u| < oo itis given by

W, 1,y) = xMWE, 1, y) + (1 — x(y)ws(x, 1).


http://dx.doi.org/10.2991/978-94-6239-015-7_3
http://dx.doi.org/10.2991/978-94-6239-015-7_3

312 8 Isothermal Acoustics in Composite Media

The two-scale limit of {w} is equal to {w, (X, f)}, and the two-scale limit of the
sequence {D(x, w$)} is given by

D(x, wy(x, 1)) + D(y, Ux, 1, y))

(see proofs of Theorems 1.6 and 1.7).
The integral identity (8.2.34) is replaced by

/Q (£ Ao(mD(x, w) + (D(y, U))y,) — pl) : D(x, @)dxdt

°W
= / P&y (F= == 1.9) ) - o(x, nndydxdi  (8.2.39)
orJy ot

with the smooth functions ¢, vanishing on the boundary d Q, and the integral identity
(8.2.35) is replaced by

/ (/ 2o (2412 P v 8W)d dt =0 (8.2.40)
— = 4+ —= —dy—Vn-— )dxdt = 2.
or V" I\ e a2 S Ty

with the smooth functions 7.
In (8.2.39)

oY) =(1—2®)psr + & (orx@ + (1= x®)ps)-

For u; = o0
W(x,t,y) = ws(x, 1),

and for u; < 00

WX, 1,y) = xMWE, 1, y) + (1 = x () Ws (X, 1).

As before, the relations (8.2.39) and (8.2.40) result in the system of acoustic equations
(8.2.1),(8.2.2) in .Q(Tf), the homogenized momentum balance equations (8.2.19) and
(8.2.27), the continuity equation (8.2.28) in §27, the continuity conditions (8.2.24),
(8.2.25), (8.2.30) and (8.2.31) on the common boundary S(TO), and the boundary
conditions (8.2.20) and (8.2.32).

The boundary and initial conditions (8.2.21), (8.2.22), (8.2.23) and (8.2.33) and
the equation (8.2.29) have been already derived in the previous sections (see also
Chaps. 1,4 and 6).
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8.3 Acoustics in a “Poroelastic Medium-Poroelastic Medium”
Configuration

8.3.1 Main Results

In this section we restrict ourselves to the only two cases

(l)k(()o) =0, )»50) <00, 0<Xig<oo, uo=0, u; < oo,
and

)2 =0, 2 =00, 0<ip <00, uo=0, i < oo.
The remaining cases can be treated similarly.

Theorem 8.16 Let {w®, p ¢} be the weak solution of the problem (1),
xf{”:o, )»io) <00, 0<Xig<oo, wp=0, pu; < oo,

and wé = Eg: (WF).

ow
Then the limits v = o (the liquid velocity) and p (the pressure) of the sequences

&
[ 5 ] and {p ¢} satisfy in the domain G the system of acoustic equations, con-

sisting of the momentum balance equation in the form
! 0
VX, 1) = / B (1, V5t — 1) - V p(x, 1)dT +£(x, 1), (8.3.1)
0

and continuity equation

(m+—1_m)3p+v v=0 (832)
__2 - 3 _ . = U. D.
coo@M)) o

In the domain 27 the limiting functions m py (liquid pressure), wl) (liquid dis-
placements), and wy (solid displacements) of the sequences {¢ x° p ¢}, {¢ x& w®},
and {¢ W%} satisfy the system of homogenized equations, consisting of the continuity

equation
S

m . C,
—pr+ VoW =Cy: D, wy) + 2py, (8.3.3)
Cf )\,0

the momentum balance equation

82w(f)+ 92w,
a2 P

oy =V (oM :Dx,w,) — prC}) +pF,  (83.4)

for the solid component, and the momentum balance equation
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! 9%w awl) ow
— [ BY(uy,00:t—1)-(V —_F ,71)dt = ———— !
/0 (1, 00 7) pf+pf 372 (x, 7)dt ” m a1

(8.3.5)

for the liquid component.
The differential equations are completed with the homogeneous boundary condi-
tions

v(x,7) -n(x) =0, xedG\S?, >0, (8.3.6)
whx, 1) nx) =0 xea2\s?, r>o0, (8.3.7)
wi(x,1) =0, xed2\S?, r>0, (8.3.8)

the homogeneous initial conditions

px,0)=0, xegG, (8.3.9)
) IWs
w(x,0) = wg(x,0) = 5 x,0) =0, xe€ £, (8.3.10)

and the continuity conditions

9
lim v(x,?) -nx%) = lim_ VO, 1)+ —m) ;:S x,1) -nx%), (8.3.11)
xeG xeo

and

~ lim p(x.)nG’) = lim (0% : D(x. ws(x,0) = ps C}) ) nx") (8.3.12)
xeG X e

on the common boundary S(TO) .
In (8.3.1)~(8.3.12) n(x°) is the normal vector to S© at x° € SO, n(x) is the
normal vector to 0Q at x € dQ, and

p=mps+(1—m)ps.

The matrix IB%(()“) (m1, A(IO); t) and the function f(x, t) are given in Chap. 6 by formulae
(6.2.40), (6.2.42), where instead of x, ps, and Ay one must consider x©, ,03(0),
and A(lo).

The symmetric strictly positively definite constant fourth-rank tensor Y, matrices
Cyy and C3, and the constant c are given in Chapter I by formulae (1.3.26), (1.3.27)
and (1.3.31), and the matrix B (i1, oo; t) is defined in Chap.3 by the formulae
(3.2.70) and (3.2.76).

We refer to the problem (8.3.1)—(8.3.12) as the homogenized model (ACM) 3.
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Theorem 8.17 Let {w®, p®} be the weak solution of the problem (1),
A(()O):o, )\io)zoo, 0<ip<oo, uo=0, pu; < oo,

and w¢ = Eg: (W), ué = Eg: (w°).
Then the pressure p of the mixture in G, the pressure p ¢ of the liquid in 27,

d
and the velocity [ B_VIV] of the medium

w= (-0 +u)+¢ W +w),

where p, u) (the liquid displacement in G), u, (the solid displacement in Gr),
mpf¢, w') (the liquid displacement in 21 ), and Wy (the solid displacement in 27 )
are limits of the sequences {(1 —¢) p®}, {(1 — &) xo w°} {(1 — O)uf} {¢ x° p°),
{¢ x* w®), and {¢ Wi}, satisfy in the domain Gt the system of acoustic equations,
consisting of the continuity equation

1— 3 dul)
’%ur( moz) LU L =0,  (83.13)
cy (_(0)) ot ot
Cs
the momentum balance equation
oul” 0 T
P+ (1= o) ! ) s 5 / (,0( F — vp)(x, 1)z, (8.3.14)
0

for the solid component, and the momentum balance equation

8ll(f) Bu‘ ! 3211‘
—m0—€=—/0 IB%(()f)(m,oo;t—r).(Vp+pf( ; —F))(x,r)dt

at at It
(8.3.15)

for the liquid component.

In the domain 27 the limiting functions satisfy the system of homogenized equa-
tions, consisting of the continuity equation (8.3.3), the momentum balance equation
8.3.4) for the solid component, and the momentum balance equation (8.3.5) for the
liquid component.

The differential equations are completed with the homogeneous boundary and
initial conditions (8.3.6)—(8.3.10), the homogeneous condition (8.3.10), the homo-
geneous initial conditions

u(x,0) = u;(x,0) =0, x € G, (8.3.16)

and the continuity conditions (8.3.11) and (8.3.12) on the common boundary S(TO).
In (8.3.13)—(8.3.16)
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PO =mopsr+ (1 —mp)p”, my= / x©wdy,
Y

the matrix ]B%(()f)(,ul, 00; t) has been defined in Chap.3 by formulae (3.2.70) and
(3.2.76), where instead of x one must consider x©.

We refer to the problem (8.1.3)—(8.1.6), (8.1.9), (8.1.11)—(8.1.13) as the homog-
enized model (ACM) 4.

The proofs of these theorems repeat the proofs of the similar statements in this
chapter.
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Chapter 9
Double Porosity Models for Acoustics

In this chapter we consider acoustics in porous media with the double porosity
geometry, where the liquid domain is composed by a periodic system of pores with
the dimensionless size ¢ and a periodic system of cracks with the dimensionless size
8 (see Chap.4). The liquid domain .Q;Sc, which is a subdomain of a bounded domain £2
with the Lipschitz continuous boundary S = 92, is defined in the following way. Let
K be the unit cube, K = Z U Z; Uy,, where Z s and Z; are open sets, the common
boundary y, = 0Zy N 0Zy is the Lipschitz continuous surface, and the periodic
repetition in R3 of the domain Z; is a connected domain with the Lipschitz continuous
boundary. The elementary cell Z y models the crack space .Qf : the domain .Qf is the
intersection of the cube §2 with the periodic repetition in R of the elementary cell
8Z . In the same way we define the pore space £2): K = Yy UY; Uy, yp is the
Lipschitz continuous surface, the periodic repetition in R of the domain Y; is the
connected domain with the Lipschitz continuous boundary, and £2}, is the intersection

of .Q\.Qf with the periodic repetition in R3 of the elementary cell ¢Y r. Finally, we
put 29 = 25U 20, 2} = 2\£27 is a solid skeleton, and I"® = 92 N 92 is the
“solid skeleton—liquid domain” interface.

We also may characterize the liquid and solid domains using the indicator func-
tions in £2. Let ¢ (x) be the indicator function of the domain £2 in R3. Thatis ¢ (x) = 1
ifx € 2 and ¢(x) = 0if x € R3\ 2. Let also xp(y) be the 1-periodic extension of
the indicator function of the domain Y in K and x.(z) be the 1-periodic extension

X
of the indicator function of the domain Z ¢ in K. Then xf x) = c(X) xe (—) stands
for the indicator function of the domain .Qf, Xg’s(x) = ¢(x) (1 — Xe (;—()) Xp (§)

£
stands for the indicator function of the domain £2 ; and

1700 = c007 (3.5) . 2002 = xe@ + (1= @) 1,

stands for the indicator function of the liquid domain .Q? (Figs.9.1, 9.2 and 9.3).
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Fig. 9.1 Single porosity geometry

----35'33“531

I..”‘) 808r78

Fig. 9.2 Double porosity geometry: isolated fractures

9 Double Porosity Models for Acoustics

9.1 Acoustics in a Slightly Compressible Liquid

and an Elastic Solid Skeleton

‘We consider the model M of isothermal acoustics as the basic mathematical model

at the microscopic level:
1

mq+V~W=

g

0, (9.1.1)
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0000000 t++ Qp,
DD'\r
Fig. 9.3 Double porosity geometry: connected fracture space
3w
8,e 8,e
C— =V -P+ p°°F, 9.1.2
a2 P .1.2)
=05 ow =8¢
P = jla D(x, 5) + (=750 D(x, w) — 9.1.3)
wx,t)=0, x,1) e St =S x(0,T), 9.1.4)
ow
w(x,0) = W(X’ 0)=0, xe £, (9.1.5)

where

PPt = por ko= 70, ¢ = cGx il -

ol 5,8).

In Chap. 4 under the conditione = §”,r > 1, we have used the three-scale convergent
method to derive the homogenized models. In this chapter we apply the method of
reiterated homogenization, suggested in [11, 30, 34]. Firstly for fixed § > 0 we
consider the joint motion of the solid skeleton and the liquid in pores, and approximate
the system (9.1.1)—(9.1.5), describing this motion, by some homogenized system

letting ¢ — 0.
Let us consider the case, when

&M=M2827 0 < uy < oo.

(9.1.6)
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By supposition
I l
§==, =2,
L L
where [ is the crack characteristic size, [, is the pore characteristic size, and L is
the characteristic size of the entire porous body.

For the liquid in pores we represent the criterion @, as

with some 1 < r < 2, fix o, i and §, and letting & be variable.
Under this supposition we apply the first homogenization procedure as ¢ — 0
and as the result will get the homogenized model (IA);5 in the domain .Qf p =

.Q\.Q_g, describing the acoustics in a mixture of the solid and the liquid in pores (see
Theorem 6.11):
~ 82Ws
P a2

=V (M : D(x, wy)) + AF. 9.1.7)

Adding the Stokes system in the crack space .Qf we arrive at the system

92w
~8
——F
P <ar2 )
s 2 ow s s
=V lx (n2é"D X’W —gcl)+ A= x)Hro N : D(x, w) ),
(9.1.8)

X(@e+c3 V- we) =0 (9.1.9)

in the domain 27 = £2 x (0, T'), describing at the microscopic level acoustics in
the liquid in cracks and in the mixture of the solid skeleton and the liquid in pores.
The differential equations are completed with boundary and initial conditions
(9.1.4) and (9.1.5).
In (9.1.8) and (9.1.9)

w=xlw.+ = xOws, p°=prxl+p0—xD),

w, are displacements of the liquid in crack space, wy are displacements of the solid
skeleton, which coincide with displacements of the mixture of the solid skeleton
and the liquid in pores, ¢, is the pressure of the liquid in cracks, and the symmetric
strictly positive definite constant fourth-rank tensor 913 is given in Chap. 1 by formula
(1.3.39).
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The second homogenization as § — 0 leads to the desired double porosity model
for acoustics in a mixture of a slightly compressible liquid and an elastic solid
skeleton, and completes the method of reiterated homogenization.

9.1.1 Statement of the Problem and Main Results

Asusual, we define a weak solution to the problem (9.1.4), (9.1.5), (9.1.8) and (9.1.9)
as a pair of functions {w?’, q?}, which satisfy the regularity conditions

awd 0 1,0
5 wew, (2r), ¢’ € La(827),

the continuity equation (9.1.9) for the liquid in cracks in the usual sense a.e. in £27,
and the integral identity

P §
/ (Xf (maz}m(x, i) —qfﬂ) (9.1.10)
Qr Jat

+ (1= xOHro M : D(x, wﬁ)) - D(x, @)dxdt

~ agl) 8W8

)

= 0 __+Fgo dxd[
/QT (8t ot )

B
ad € Ly(827), ¢(x,t) = 0 on the

for all functions ¢, such that ¢ € wé’o(.QT), ”

boundary St, and ¢(x, T) = 0 for x € £2.

Theorem 9.1 Let

IF(x, t)|’dxdt = F? < cc.
or

Then for all § > 0 and for the arbitrary time interval [0, T] there exists a unique
weak solution of the problem (9.1.4), (9.1.5), (9.1.8), (9.1.9) and

2
+ (1= xDHr0(M : D(x, wh)) :]D)(x,w‘s))dx

2
aw’
ot

aws
—(x,t
o (x, 1)

) 2
max N X,t +
0<t<r/9 (1g . 0)

(9.1.11)

+/ o 8% %0 dxdt < CoF2,
2r

where C is independent of §.
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The proof of this theorem repeats the proofs of the similar theorems in previous
chapters and is based on the energy equality

2
li (~6 ow? + 1 - XS))&0|D(X,W5)|2 + X6i|q8|2)dx
2dt Jo ot c Cc} 0
2.8 S . SN . s s aw(g
+ QMZS Xc(m3.D(x,W)),[D)(x’w)dx: Qp F'a—tdx,

Theorem 9.2 Let {wW°, q°} be a weak solution of the problem and W = Egs (w?)
be an extension (1.2.9).

Then up to some subsequences the sequence {x f w?} converges weakly in Lo (£27)
to the displacements w,. of the liquid in cracks, the sequence { Xf qf} converges
weakly in L(§27) to the pressure q. of the liquid in cracks and two-scale in Ly($2T)
10 q-(X, t) Xc(z), and the sequence {v_vf} converges weakly in W;’O(.QT) and two-scale
in Ly (827) to the displacements W (X, t) of the solid skeleton.

The limiting functions solve the system of homogenized equations in the domain
7, consisting of the homogenized continuity equation

1 B cf
5_2q“+v' Wcz(Cf):]D)(x,Ws)—i—ﬁqc, 9.1.12)
f

the homogenized momentum balance equation

3w, 9w, _ R
pf—atz‘ +ps—8t2“ =V (hB : D(x, Wy) — g C§) + 4F, (9.1.13)

for the solid component and the homogenized momentum balance equation

L) 1 92w,
— | BY(ui,000t —1)- |\ —Vge+pr| 7z —F) Jx 1)dt
0 me 0T

oW, 0w,
_ Owe s 9.1.14
ar " o ( )

for the liquid component.
The differential equations are completed with the homogeneous initial and bound-
ary conditions

We(x,1) =0, xe S, t e (0,T), (9.1.15)
_ AL
Wy(x,0) =~ (x.0) =0, x € 2 (9.1.16)

for the displacement of the mixture, and the homogeneous boundary condition

w.(x,t)-nx)=0, xe8§, re0,7) (9.1.17)
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for the displacement w,. of the liquid in cracks. In (9.1.12)—(9.1.14) the matrix
BY) (1, 0o; t) has been defined in Chap. 3 by formulae (3.2.70) and (3.2.76), and
matrices C{ and C{, the constant cg, and the constant symmetric and strictly posi-
tively definite fourth-rank tensor B8 are given below by formulae (9.1.28)—(9.1.30).

9.1.2 Proof of Theorem 9.2

The estimates (9.1.11) guarantee the weak and two-scale convergence in L, (§27)

wo
and L, (£27) of the sequences {Xc } [Xc a7 ] {w }, and {D(x, v'v‘s)}

aw? ow?

s r.—s.
xS = = Ve, xS - EBVexz0), x2qd T xe@ qe(x, 1),

W LS Wk, 1), D(x, W) S D(x, Wi(x, 1) + D(z, Uk, 2, 1).

These limiting functions satisfy the macroscopic momentum balance equation

2w,
" —pF+V g, (9.1.18)

o
=V . (AO 0N ¢ ((1 = me)D(x, Wy) + (D(z, ﬁ))zx))

in the domain 27, and the microscopic momentum balance equation

; _ i 1
VZ-((I—X,:(Z))‘JIS:(]D)(x,ws)~|—]D)(z,U))+ . qc]l)=0 (9.1.19)

in the unit cube K for the displacement vector of the mixture in the solid skeleton
and in the liquid in pores.
For the velocity of the liquid in cracks one has the macroscopic continuity equation

1 g, U
— V. Ve=(V,- — 9.1.20
c2 ot * ¢ < ° ot > ( )
f s
in the domain £27 with the boundary condition
Ve-n=0, xe S, (9.1.21)

the microscopic continuity equation

V. Ve=0 (9.1.22)
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and the microscopic momentum balance equation
oV, 1
pf—— =p28;Ve = V. I1 = —V g + pfF (9.1.23)
ot me

in the liquid domain Z s, completed with the boundary condition

ow

Ve(x,2,1) = a; (X,1), Z € Y. (9.1.24)

The problem (9.1.22)—(9.1.24) has been already studied in previous Chaps.3 and 6
and

oW,
Ve=(Ve)z, =m —=
t 1 92w
_/ B (ua, 003t — 1) - (_ Vae+ps (_w; — F) )(x, 7)dT,
0 me ’ aT

(9.1.25)

where the matrix B (111, 0o; 1) is defined by (3.2.70) and (3.2.76) in Chap. 3.
To solve (9.1.19) we look for the solution in the form

3
U= 'Zl U @D 60 + 5= 4 U () e, 0,
L=

where
Die ) = 3 (P + T xn)). W = ( )
X, ) = - —(x, —(x,t)), wg = (ui, us, uz),
ij ) axj ax; s 1 2, U3

and the 1-periodic in z functions Ugfj )i, j=1,2,3and Uéo)

periodic boundary-value problem

satisfy the following

v, - (‘J‘(? : D(Z,_Ugj))) =0, z e Z, 9.1.26)
(2 : (DG U + 7)) v =0, ze ., o
(D, UP) +1) - v=0, z€ y.

Then

3

(D(z, U))z, = ( > <D(z,U§’”)>zSJ"J‘) 1 D(x, W) + 1

0Me

(D(z, UM) 2, g,
i,j=1
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3

; - y ) 1
(V. Uz, = ( > V- ~U§’-”>ZSJ‘J) D0 W) o (Ve U z.4e,
ij=1 ¢
and
B =01 (1 —m)I+ D (D U)) 2, T7), (9.1.28)
ij=1
1 3 . ..
Cf = — (D UMz, C§= 3 (V:- U207, (9.1.29)
¢ i j=1
5 =—(V.- Uz (9.1.30)

The symmetry of the tensor B is proved in the same way as in Chap. 4.
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Chapter 10
Diffusion and Convection in Porous Media

The model Ml»7 consists of the stationary Stokes equations

V- (r1(OD(x, v) + 0V - v = p)I) + (pf + 8 )F =0, (10.0.1)
a—p+c2V-v=0 (10.0.2)
ar 1 o

for a weakly compressible liquid, and the diffusion-convection equation

9
8—f+v-(cv—1)0vc)=0 (10.0.3)

in the liquid domain £2% for r > 0.
The differential equations are completed with the boundary conditions

v(x,1) =0, (10.0.4)
Vex, t) -n(x) =0, (10.0.5)
on the boundary §¢ = 89; for ¢ > 0, and the initial conditions
c(x,0) = co(x), X € (2; (10.0.6)
px,0)=0, xe .Qjﬁ (10.0.7)
In Eq. (10.0.5) n is the unit normal vector to the boundary S¢.
The model M5 takes into account the movement of a solid skeleton, namely, the

concentration of the admixture c, the displacement of the continuous medium w, and
the pressure p satisfy the diffusion-convection equation

A. Meirmanov, Mathematical Models for Poroelastic Flows, 327
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7_10,
© Atlantis Press and the authors 2014
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dc  OIw
— 4+ — -Ve=DyA 10.0.8
Y + a7 c o Ac ( )

in the pore space .Q;} for ¢t > 0, the momentum balance equation

a
V- (XSMOD (x, a_vtv) + (1= xHroD(x, w) — 17]1) +pF=0,  (10.09

and the continuity equation
V.-w=0 (10.0.10)

in the domain 2 for r > 0, the normalization condition

/ p X, dx =0, (10.0.11)
2

the boundary and initial conditions (10.0.5), (10.0.6) for the concentration c, and the
boundary and initial conditions

w=0,xeS=0902, t >0, (10.0.12)
wx,0)=0, xe Qfs (10.0.13)
for the displacement w.
In Eq.(10.0.9)
pf = x(pr+8c)+ ps(1 = x°).

Throughout this chapter we impose Assumptions 0.1 and 3.1.

10.1 Diffusion-Convection in an Absolutely Rigid Skeleton

In this section we suppose that co(x) and F(x, 7) are the measurable functions,

0<cox) <1, / IF(x, 1)|?dxdt < F? < o0, (10.1.1)
27
0 < s < pi(e) < ' o € C?[0, 00), (10.1.2)

and vy, c]%, Dy, 4 are positive constants.
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10.1.1 Statement of the Problem and Main Results

Definition 10.1 We say that the triple of functions {v®, p®, c¢®}is a weak solution
of the problem (10.0.1)—(10.0.7) if

ve el ((0, T): W) (Q;)) et e Lo (0.7): W) (27)).

ag, €L, ((0, T): Ly (Q;))

and the integral identities

// ( 8_5 CVS_DOVCS).VS—I—S;'CEV-VS)dxdl‘
QS

- —/ co(X) E(x, 0) dx, (10.1.3)

2y

T
/ / (szul(cg)]D)(x,Vg)—(pa—vov-vg)ﬂ):ID)(x,(p)dxdt
0 2°¢

7

T
=// (pf +8c*)F-pdxdt, (10.1.4)

0 £
and
T aw .
—=p 4 cive V) dxdt =0 (10.1.5)
0o Je:\ot

hold true for any smooth functions &, ¥ and ¢, such that §(x, T) = ¥ (x,T) = 0
and ¢(x,t) = 0 for x € S°.

Note that the integral identity (10.1.3) contains the differential equation (10.0.3)
in the pore space, the boundary condition (10.0.5) on the boundary S, and the
initial condition (10.0.6). The boundary condition (10.0.4) is already included into
the corresponding functional space for v, and the initial condition (10.0.7) is already
included into the integral identity (10.1.5).

Theorem 10.1 The problem (10.0.1)—~(10.0.7) has at least one weak solution
{ve, p®, ct}, such that

0<cfx. <1, xe 5, 10, (10.1.6)

T
// |V c|?dxdt < C, F? (10.1.7)
0 .Q;
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T e
d
/ / (82|VVS|2 |V£|2 ' ;
0 K at

where C is independent of .

2
+ (V- Vs)z)dxdt < CF*  (10.1.8)

By Homogenization we mean the limiting procedure as ¢ N\ 0. But in our method
that is possible only for functions, defined in the whole domain £2 for ¢ > 0. So, we
first extend the functions v, p¢, and c¢? onto £2 for ¢ > 0, and only after that apply
the homogenization theory.

The functions v¢, V- v¥, and p ¢ are extended in a trivial way by setting v° = v?,
pf=pinQ{fort >0, and v¢=0,V-v® =0,and p¢ = 0 outside 27

For the functions ¢ the extension result [1] (see also Appendix B) states that

there exists an extension ~
¢t Z]EQ;(CE), (10.1.9)

such that
&

c® =¢cf, XG.Q?, te0,7T), (10.1.10)

and
/ E°(x, r>|2dx<c/ € (x, 1)|%dx,

/ |v5€(x,t)|2dx<c/ IV cé(x,0)>dx, te(0,T), (10.1.11)
2 2°
f

where C is independent of ¢ and 7 € (0, T).

Theorem 10.2 Let {v®, p®, c®} be the weak solution to the problem (10.0.1)-
(10.0.7). Then

(I) there exists a subsequence of small parameters {¢ > 0} as € \( 0, such that

(1) the sequence {V¢} converges weakly in Lo ($271) to the function v,

(2) the sequence {V - V¢} converges weakly in L, (£27) to the function V - v,

(3) the sequence {p°€} converges weakly in L,(§2T) to the function p,

(4) the sequence {c®} converges weakly in Wzl’o(.QT) and strongly in L(827)
to the function c.

(Il) The triple of limiting functions {v, p, c} is the weak solution of the diffusion-
convection problem for a compressible liquid in an absolutely rigid solid
skeleton, which consists of the dynamic equations

1

V=
mi(c)

1
B(——Vq+(pf+8c)F), (10.1.12)
m
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Vo 0
g=p+—2L (10.1.13)
c> ot
7
3—p+c2 V-v=0 (10.1.14)
ar

for the velocity v and pressure p of a slightly compressible liquid, and the diffusion-

convection equation

d .
mo-4v-Ve=Dy V- (BVe) (10.1.15)

for the concentration c of an admixture in the domain 2 for t > 0.
The problem is endowed with the homogeneous boundary conditions

v(x, 1) -n(x) =0, (10.1.16)
Ve, t)-nx) =0 (10.1.17)

on the boundary S fort > 0, and the initial conditions
px,0 =0, c(x,0)=co(x) X e £2. (10.1.18)

In Egs.(10.1.12)«(10.1.18)

m=(x)y =/Yx(y)dy

is the porosity, the symmetric and strictly positively definite constant matrix B is
given below by formula (10.1.58) (see also (1.1.27) in Theorem 1.1, Chap. 1), the
symmetric and strictly positively definite constant matrix B is defined below by
formula (10.1.61), and n is the unit outward normal vector to the boundary S.

We refer to the problem (10.1.12)—(10.1.18) as the homogenized model (DCARS);.

Theorem 10.3 Let (v, p® 0} pe the weak solution of the problem (10.0.1)—
(10.0.7) with c§ = k. Then

(I) there exists a subsequence k, — 00 such that

(1) the sequence {v*"} converges weakly in Lo (827) to the function v(>,

(2) the sequence {p*»} converges weakly in Ly($21) to the function p©®,

(3) the sequence {c(k">} converges weakly in WZI’O(.QT) and strongly in Lo($27)
to the function c(®);

(I) the triple of limiting functions {v©®), p(® ¢} is the weak solution of the
diffusion-convection problem for an incompressible liquid in an absolutely rigid
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solid skeleton, which consists of the Darcy system of filtration with the variable
viscosity

1 1
o __ 1 ol Ly, ( 5 (°°>)F 10.1.19
v () ( VP +\prtéc , ( )

V.v® =0 (10.1.20)

for the velocity v(® and pressure p® of an incompressible liquid in the domain 2
fort > 0, the diffusion-convection equation (10.1.15) with the velocity field {v(®}
for the concentration ¢\®, the boundary conditions (10.1.16) and (10.1.17), and the
initial condition (10.1.18) for the concentration.

We refer to the problem (10.1.15)—(10.1.20) as the homogenized model (DCARS);.

Theorem 10.4 Let {v¥, p® M} be the weak solution to the problem (10.0.1)—
(10.0.7) with vog = A. Then

(I) there exists a subsequence A, — 0, such that

(1) the sequence {v*")} converges weakly in Lo (827) to the function v(¥,

(2) the sequence {p¥»)} converges weakly in L»(827) to the function p©,

(3) the sequence {c()‘”)} converges weakly in W21 ’O(.QT) and strongly in L2($27)
to the function cO;

(I) the triple of limiting functions (v, p© ¢ O} is the weak solution of the
diffusion-convection problem for a slightly compressible liquid in absolutely
rigid solid skeleton, which consists of the Darcy system of filtration with the
variable viscosity

1 1
o _ p(_Lly,o ( Sy <0>)F 10.1.21
v P ( VP A+ oy +ée . ( )
p®
P v.v® — 10.1.22
FraT A ( )

for the velocity v and pressure p of a slightly compressible liquid in the domain

2 fort > 0, the diffusion-convection equation (10.1.15) with the velocity field {v(?}
for the concentration ¢, the boundary conditions (10.1.16) and (10.1.17), and the
initial condition (10.1.18) for the concentration.

We refer to the problem (10.1.15)—(10.1.18), (10.1.21), (10.1.22) as the homogenized
model (DCARS)3.
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10.1.2 Proof of Theorem 10.1

Letus divide the proof into several stages. As the first step we consider an approximate
problem, where the velocity v (for the moment we omit the index ) in the convection-
diffusion equation is replaced by its approximation

vy = M"(v)

_ 1 °°J(f_’ (/ J('Z_X|)- )dz ) dr. (10.1.23)
=13 . A - 7 v(z, T z) T. 1.

In Eq.(10.1.23)

v(x,t) if xe 2%, 0<t<T,

V(x,1) =10 if x e R\Q¢, t>0,
0 if xe R, andt>T, ort <0,

and J (s) is an infinitely smooth function, such that
o0

J(s) =0, if|s| > 1, and/

—00

J(s)ds/ J(x)dx = 1.
R3

By the well-known properties of the mollifiers M” [3]

() vay € CC’O(R3 x (—00, oo));
(2) if v e Lo(827), then v,y — v strongly in Ly (§27) as h — 0;

3) if ve Wy (2£), then V - vy — V - v strongly in W3° (£2£) as h — 0.

More precisely, we look for the solution {v&", p&” c&"} of the system of dif-
ferential equations

V-(szul(cg’h)}]])(x, Vol 4+ (V- vEh — ps’h)H)

+(pr +8cMHF =0, (10.1.24)
apé‘,h
5 +c;Vvot =0, (10.1.25)
dceh
— Vo) Vet =Dy Acth (10.1.26)

in the domain £2 ; fort > 0, satisfying the following boundary and initial conditions

volrx, 1) =0, xe §°, t >0, (10.1.27)
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Veo(x, 1) nx) =0, xe §°, 1> 0, (10.1.28)
c®M(x,0) = ¢) (%), x € 2F, (10.1.29)
POt (x,0) =0, xe 2F. (10.1.30)

In Eq.(10.126) v = M (v®") and

g €C™(R5), 0< g™ <1, ¢ (x) — co(x) as h — 0 ae.in 2°.
To solve (10.1.24)—(10.1.30) we fix the set
M={ce C([O, TI; C(ﬁ;)) :0<ex, ) < 1}

and consider the first auxiliary problem

V- (21 @D, u) + (V- u— @)I) + (py +8)F =0, (10.1.31)
49 L 2y.uzo (10.1.32)
8t f . .

forx e .Q; andt > 0, and
ux,7) =0, xe 5%, t>0; ¢q(x,00=0, xe .Q}‘? (10.1.33)
For all ¢ € 91 this problem defines the nonlinear operator
u= A1), A M — Ly((0.T): W) (25)).

Next we consider the second auxiliary problem

%+u(h)~Vc=DoAc (10.1.34)

forx € .Q]f and ¢t > 0, and
Ve, 1) -nx) =0, xe S >0, (10.1.35)
c(x,0) = cl(x), x e 2°, (10.1.36)

where
ugy =M"W), u= 4.
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The problem (10.1.34)—(10.1.36) defines the nonlinear operator A, which, due to the

maximum principle, transforms Wé’o (.QTS ) into the set M1:

o

c=Ar(u), A :Wé’0 (£27) — M.

Thus, the nonlinear operator A = A; - A transforms the set 91 into itself. It is clear
that all of the fixed points ¢ " of the operator A define solutions {v&", p&" c&"
to the problem (10.1.24)—(10.1.30). To prove the existence of at least one fixed point
of A we have to show that A is a completely continuous operator.

The weak solutions to the problems (10.1.24)—(10.1.30) and (10.1.31)—(10.1.33)
are defined in the same way as the weak solution to the problem (10.0.1)—(10.0.7).

Lemma 10.1 For any ¢ € N the problem (10.1.31)—(10.1.33) has a unique weak
solution {u, q}, such that

T 9 2
//(82|Vu|2+|u|2+‘a—‘t" +(V-w)? )dxdt < CF?, (10.1.37)
0 2°
f

and for any ¢y, c; € M
T
/ / (82|V(u1 —w)? + —u2|2) dxdt
0 &
f

2
< CF2( max  |é1(x, t)—Ez(x,t)|) , (10.1.38)
24 x(0,T)

&

7O
where C is independent of ¢ and h, and v; = A((¢;), i =1, 2.

Proof The proof of the first part of this lemma is standard. It can be based on the
Galerkin method coupled with the energy estimate

T 9 2

/ / (82|Vu|2+‘8—i]‘ +(V-wd < CF. (10.1.39)
o Jar
f

The latter is the result of the multiplication of (10.1.31) by u, and the use of (10.1.32),
Holder’s, Korn’s, and Friedrichs-Poincaré’s inequalities. Note that we may extend all

functions outside Q;i onto some cube Q D Q}i as zero, and apply Korn’s inequality
for Q. Thus, the constant C in (10.1.39) is independent of ¢.

The estimate
T T
// lul?dxdt < c&// |Vu|?dxdt
0 Jejp 0 Jef

has been already proved in Chap. 1, Theorem 1.1.
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The proof of the second part of the lemma is also standard. We consider the
initial—boundary value problem for the difference & = wu; — up, multiply the
differential equation for @ by 1, integrate the result by parts over domain §2 ¢, and
use Holder’s inequality.

Lemma 10.2 The problem (10.1.34)—(10.1.36) has a unique solution
cec! ((0, T); C*! (5;)), such that

0<cxn <1, xef, 1>0, (10.1.40)

T
/ / IV c|?dxdt < CF? (10.1.41)
0 ?
where C is independent of ¢ and h, and

ac
max (‘—(x, 1)
ot

25x(0,7)

+|Ve(x, r)|) < Nh). (10.1.42)

Ifci = Ao(u), u; = A(¢;), i = 1,2, forcy, co € M, then

O<t<T

max/ le1 (x, 1) — ca(x, t)|2dx+/ / [V(ci — c2)|>dxdt
gN(h)/ / |(u; — wp)|>dxdt. (10.1.43)
0 J2%

Proof The existence of a unique solution of (10.1.34)—(10.1.36) follows from ([61],
Sect. 5, Chap. III). Moreover, this solution satisfies the maximum principle (10.1.40).
In fact, let

ct(x, 1) = max{c (x, 1) — 1; 0}.

Then, using mollifiers in the same way as in the proof of Theorem 7.1 (Chap.III,
[61]), we arrive at the equality

1
E/ lct(x, 10)] dx—l—Do/ / |V ¢t 2dxdt
QS

// (wgpy - V) etdxdr =1, (10.1.44)
Qé‘

where we have used the initial condition (10.1.36) (¢t (x, 0) = 0), and the evident
relations
Ve-Vet=Vet Ve, ¢"Ve=c¢TVer.
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Applying to the right-hand side of (10.1.44) Holder’s and Cauchy’s inequalities, and
the boundedness of u(,) we arrive at

Dy [ 1 [
1< —0/ / |Vc+|2dxdt+zv2(h)—/ / lct|?dxdt,
2 Jo Jax 2Do Jo Jex
f f
and

1 1 o
- / lcT(x, 10)Pdx < N*(h) — / / leT(x, 1)[*dxdt,
2 25 2Dy Jo 25

which implies the equality ¢T(x,t) = 0, and the right-hand side inequality in
(10.1.40).
The left-hand side inequality in (10.1.40) is proved in the same way, if we put

c¢” (x,1) = min{c (x, 1); 0}.

Estimate (10.1.41) follows from the energy equality

1 to fo
—/ lc (x, t0)|2dx + Do / / % clzdxdt = —/ / (u(h) . Vc) cdxdt
2 Ja o Je o Jet

for ¢, similarly to (10.1.44), after applying (10.1.40).

The boundedness of ¢, the infinite smoothness of u(,) and cg, and the local
estimates for linear parabolic equations (Sect. 10, Chap.IV, [61]) imply the infi-
nite smoothness of ¢ inside £2% for 0 < ¢t < T. The boundary condition (10.1.35)
permits us to extend the solution of (10.1.34)—(10.1.36) onto the small neighborhood
outside of Q‘? for 0 < ¢t < T as an even function. Applying again local estimates
for linear parabolic equations, we conclude that c is infinitely smooth in the closure
of Q; x (0, T), which, in particular, implies (10.1.42).

The proof of (10.1.43) is straightforward. The integral identity for the difference
¢ = c¢] — ¢ has the form

T 3%' T
/ / (—5—+D0VE-V$)dxdt:/ / £ (@-Veo—(u)py - VE)dx,
Jo Jas ot 0 Jof

where a0 = (u2) () (X, 1) — (W) () (X, 7).
As before, this identity results:

1 t
7/ [E(x, t)|2dx+D0// |V & (x, 7)|2dxdt
2 Jas 0 /25

t
= / / c(x, 1) (ﬁ(x, 7)-Veo(x, 1) — (u)p)(x, 1) - VE(x, r)) dxdt = 1.
0 J¢
f
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The estimate (10.1.43) follows from the last equality and Gronwall’s inequality,
if we estimate the right-hand side / using Holder’s and Cauchy’s inequalities. We
also will use the estimates

IVea(x, )l < N(h), [(u)@mx 0] < N(h), xe 25, 0<t<T,

/ la(x, 1)*dx < Co / lup (x, 1) — ua(x, 1)|*dx,
25 25

which are based on the properties of the mollifiers.
In fact,

1 t
I<s—|  max J)e&x 0P / / |é(x, T)*dxdT
2D0 xe.Q;,0<t<T 0 Q;fc

1 1
t 2 t 2
+ N(h) (// |E(x,t)|2dxdr) (// |ﬁ(x,t)|2dxdt)
0 52} 0 Q;
Dy [! - 5
+ — |V c(x, T)|“dxdr,
2 Jo Jag
and
1 Dy [!
—/ |5(X,t)|2dx+—0// IV & (x, 7)[2dxdt
2 Jas 2 Jo Jas

t t
< N(h) (/ / 16(x, 7)|dxdt +/ / (x, r)lzdxdr).
0 .Q? 0 .Q"}

Now, to prove the solvability of (10.1.24)—(10.1.30) we just apply Schauder’s fixed
point theorem [55].
Indeed, the estimates (10.1.38), (10.1.42), (10.1.43) and the interpolation inequal-

ity
1 1
T 2 T 2 2
max  |v(x,1)]? <2 // lv|2dxdt // dxdt
2;%x0.1) 0 Jer o Jes
1
T 2
3
<cC // wi2dxdr ) max —v(x,t)’
0 Jaf 25x(0.7) at

for any smooth function v, such that v(x, 0) = 0, prove the continuity of A if we take
into account the equality

av
at

(c1 —c2)(x,0) =0 for c1 = Ax(uy), c2 = Arx(up).
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The estimate (10.1.42) shows that A is a compact operator. Therefore A is a com-
pletely continuous operator on the set 9i. Next, the estimate (10.1.40) shows that A
transforms the set 901 into itself. Finally, 977 is a closed convex set, which is enough
for existence at least one fixed point of A in 1.

It is clear that all of the fixed points of A preserve estimates (10.1.37), (10.1.40),
and (10.1.41). Thus, the following lemma holds true.

Lemma 10.3 There exists at least one weak solution {Vs’h, ps’h, cs’h} of the
problem (10.1.24)—(10.1.30), such that

T &
9

/ / (82|Vv€”’|2+|v8”1|2+‘—p

0 Jo: ot

2
+ (V- vg’h)z)dxdt < CF?,

(10.1.45)
0<c™(x, ) <1, xeQf, t>0, (10.1.46)
T
/ / IV & 2dxdt < CF? (10.1.47)
0 &
f

where C is independent of € and h.

As the last step in the proof of Theorem 10.1 we pass to the limit as 7 — 0 in the
corresponding integral identity, namely the following lemma holds true.

Lemma 10.4 There exists at least one weak solution {v¢, p¢, c®} of the problem
(10.0.1)—~(10.0.7), such that

T &

0
/ / 82|VV8|2 |V8|2 ‘ ;
0 H ot

0<cf®x <1 xef, 1>0, (10.1.49)

2
+ (V- vs)z)dxdt < CF?, (10.1.48)

T
// |V c?>dxdt < C F? (10.1.50)
0 Qj,

where C is independent of €.

Proof To prove the lemma we just have to find the convergent subsequences and pass
to the limit as 42 \( 0 in the integral identities (10.1.3) and (10.1.4) corresponding to
the dynamic equations for v&” and p®”, and in the integral identity, corresponding
to the diffusion-convection equation, which we rewrite as
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r h aé h h h h h
/ / c® m + (c® VE)n) Vo' — DoV " - VE + (Ec® YV - v&m" \dxdt
0 &€
f

+/x%mmmmM=a (10.0151)
22

for any smooth functions &, such that £(x, ) = 0.
Here we have used the well-known property of the mollifiers that

/wmwwww=/wmmwwm.
o o

The weak compactness of {p®"} and {V - v&"} in L>((0, T); Lz(Q‘;})) and the

weak compactness of {c &) and {v&"} in Ly ((O, T); W21 (.Q;)) and L, ((O, T); W21
(.Q;)) correspondingly follow from the estimates (10.1.45)—(10.1.47). The strong

compactness of {c &hy i Lz((O, T); Lz(Q;)) follows from the same estimates and
from Aubin’s compactness lemma [12, 68].

The limit in (10.1.3), (10.1.4) and (10.1.51) does not cause problems. We just
note that the product (c®"Vé Yh) - v&" converges to ¢®VE - v® and the product
(& cs’h)(h)V -v&! converges to £ ¢¢ V - v¢ due to the strong convergence of {c "}
in Lz((O, T); Lz(.jS )

10.1.3 Proof of Theorem 10.2

The main problem here is the strong compactness of {¢¢} in L>(£27). This follows
from the estimates (10.1.6), (10.1.7), the diffusion-convection equation (10.1.3), the
compactness lemma (see [9, 84]), and the properties of the corresponding extensions
(see also Appendix B).

The boundedness and the weak compactness in L, (£27) of {Vv¢} follow from the
estimates (10.1.8).

Let 9
V

qszps—voV~V€=p€+—gp

cy at

, (10.1.52)

and ¢ ¢ be an extension of g ¢ from .ij onto £2: ¢ = 0 outside of £2 }f fort > 0.
The weak compactness of {p®}, {G¢}, and {V - v¢} in L,(§27) follow from the
estimates (10.1.8) and the properties of the corresponding extensions.
Using (10.1.52) and the extensions p¢, g ¢, and v of the functions p¥¢, ¢ ¢, and
v¢, we rewrite the integral identities (10.1.3) and (10.1.4) as
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// (—+(c88 DOVGS).V§+§5£V~€75)dxdt

= —/ Go(x) £(x, 0) dx, (10.1.53)
2

T

/ /X£(€2M1(58)D(X,‘~’6)—58H) : D(x, p)dxdt

0 2
T

=/ /(,Of-f-(SEg)F-(p)dxdt. (10.1.54)
0o Je
Here
EO:COinQ;, O—OIH-anX E=v8 x*V.v¥=V.v%

The homogenization of the dynamic equations repeats the similar result in Chap. 1. In
fact, the weak limit in the relation (10.1.52) and in the continuity equation (10.1.5)
result in Egs. (10.1.13), (10.1.14), the boundary condition (10.1.16), and the first
initial condition in (10.1.18).

If P(x,t,y) and Q(X,t,y) are two-scale limits of {p®} and {g*} respectively,
then

vo P 1
Q=P+ —5—, Pty =—pXx0)x®y.
Cf ot m

Finally, let v(x, t, y) be the two-scale limit of {V¢}. Then

1 1
E/Ll(c)AyV—VyQ—ZVq—l—(pf—i-Sc)F:O, yeYy, (10.1.55)
V-v=0, ye/Yy. (10.1.56)
v=0, yey. (10.1.57)

We look for the solution of the problem (10.1.55)—(10.1.57) in the form

3
2 . 1
(@) A
= O (élv ®e,) ( Vg + (o +6c)F),

where e, e», e3 is a standard Cartesian basis.
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Then

3

3
B=), ( /Yf V(”(Y)dy) ®e=> (v)y, e, (10.1.58)
i=1 .

i=1

where v(¥) are solutions to the periodic boundary—value problem (1.1.26).
The homogenization of the diffusion-convection equation for ¢ ¢ is also standard.
In fact, due to the smoothness of the solution

EE(x, 1) = c(x, 1) weakly in W, (27),
¢8(x,t) = c(x,t) two-scale in L, (£27),
Véf - Ve+V, C two-scale in LLy (827),

The two-scale limit in (10.1.53) with the test functions & = £&(x,t) and & =
X

e&o (x, -, t), where &y(X, ¢, y) is an arbitrary 1-periodic in y function, results in
£

3
m8—j+v.vC=Dov-(mvC+<vyc>Yf), (10.1.59)

and
V- (x(W(Vec+V,0) =0, yev. (10.1.60)

As usual, we look for the solution of (10.1.60) in the form

3
N
Cx.t.y)=> Cy) a—;(x, 1).

i=1
Then,
3 .
B© =mﬂ+(2<vyc<’>(y)>yf ®ei), (10.1.61)

i=1

where -
V- (x(y)(e +V,C)) =0, yev.

10.1.4 Proof of Theorem 10.3

Let ,
w(x, 1) = / v(x, T)dT. (10.1.62)
0


http://dx.doi.org/10.2991/978-94-6239-015-7_1

10.1 Diffusion-Convection in an Absolutely Rigid Skeleton 343
Then the system (10.1.12)—(10.1.14) takes the form
(H-! — 2
mm(c)(B - ) -V = V(cf (V-w) 4+ v9(V- V)) +m(pr+38c)F.  (10.1.63)

Multiplication of (10.1.63) by v and integration by parts over 2 result in the energy
equality

/ (m ui(e)v - (IBE(f))_l -Vv+ (V- V)2 —m(py +38c)F- V)dx
Q
2
+ I d/(v )2dx = 0 (10.1.64)
—_— W = N <A1
2 di Jo *
and, consequently, the a priori estimate

/ (IV* + vo(V - v)?)dxdt + ¢} max /(V»w)zdeCFz, (10.1.65)
Qr 7 0<t<T Jo

where C is independent of ¢2 and vy.
Coming back to (10.1.12) and using (10.1.65) we get

/ |V g|*dxdt < C F>. (10.1.66)
27
Equations (10.1.13), (10.1.14) and the boundary condition (10.1.16) provide the
equality
/ qgx,t)dx = 0.
Q
Therefore,

/ lg)?dxdt < C F? (10.1.67)
27
(see [61]). The combination of (10.1.65) and (10.1.67) gives us
/ |p|>dxdt < C FC F>. (10.1.68)
27

Finally, for the concentration ¢ the estimates (10.1.6) and (10.1.7) with the constant
C independent of c? and vy hold true.

Now we are ready to pass to the limitask = c?c — 00. On the basis of the estimates
(10.1.6), (10.1.7), (10.1.65)—(10.1.68) we may choose some subsequences {vkn)},
(g%}, and {c%)} such that the sequence {v ")} converges weakly in L, (£27) to
the function v(>, the sequence {g*»)} converges weakly in L, (£27) to the function
p(°°), the sequence {c(k")} converges weakly in WZI’O(SZT) and strongly in L, ($27)
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to the function ¢(®, the sequence {V - v»)} converges weakly in L, (£27) to the
function V - v(®, and the sequence {V - w")} converges strongly in L(£27) to
Zero.

It is clear that the relation V - w(®) = 0 and the relation (10.1.62) for w(® and
v(®) imply the continuity equation V - v(°® = 0, and that the concentration ¢(*
satisfies the diffusion-convection equation (10.1.15) with the velocity field {v(>}.

To prove Darcy’s law (10.1.19) it is enough to fulfill the limiting procedure as
k, — oo in the integral identity

—1 1
/ (Hl(c(k"))ﬁl) . (B (f)) Cykn) Zq(kn)(v @) — psF- (p)dxdt —0.
7

10.1.5 Proof of Theorem 10.4

The proof of Theorem 10.4 repeats the proof of Theorem 10.3 with evident changes.
Note, that due to (10.1.65) 1oV - v — 0 as § — 0 strongly in L5 ((0, T); L2(£2)).

10.2 Diffusion-Convection in Poroelastic Media

10.2.1 Statement of the Problem and Main Results
. . 1. . .
Throughout this section we suppose that — is an integer, §2 is a cube whose edge
e
length is also an integer, and
co € L2(82), 0<co(x) <1, (10.2.1)

F=F(x), sup ([F®)|+|VF®x)|) = F < oo, (10.2.2)
xef2

Definition 10.2 We say that the triple of functions {w®, p?, c®}is a weak solution
of the problem (10.0.5), (10.0.6), (10.0.8)—(10.0.13), if

&

we eWy* (2n),

e Lo((0. 7): Wh(2)),
c® € La((0,T); W3 (2§)), p© e La(f2r),

and continuity equation (10.0.10) in £2 for + > 0, the normalization condition
(10.0.11), the initial condition (10.0.13), and the integral identities
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// (_ _+g w Vc8+D0Vc*’"-V§)dxdt

=/ co(x) §(x,0)dx, (10.2.3)
2F
’ & awg & £ &
/ / (x (xmom(x, k )+(1—x ©) A0 D(x, wE) — p H):D(x,go)
0 2 1
(10.2.4)
T
dxdt:/ /ng-godxdt, (10.2.4)
0 2

hold true the for any smooth functions & and ¢, suchthaté(x, 7) = Oand ¢(x,¢) =0
forx e Sandr > 0.

The integral identity (10.2.4) shows, that w® possesses different smoothness in
domains .Q; and £2{. To preserve the best properties, which the solution has in the
liquid part, we will use extension results [1, 36, 89] (see also Appendix B): there
exists a linear extension operator

1 e 1 & oW’
]Eg;v : W2(Qf) — Wy(£2), v ZEQ; o )

such that .

8—“;()(, D=v(x1), xeQ5 1e(T), (10.2.5)

ow® 2
/ IV (x, 1)|*dx < Co /
2 Q}

/\D(x,vg(x, n)[fdx < Co/ D(x, aa—vf(x, t))
2 .Q;

where Cy is independent of ¢ and ¢ € (0, T').

We additionally suppose that the geometry of the elementary cell Y permits us
to choose an extension operator such that the function v® vanishes at the boundary
S = 052 and we may apply the embedding [3]

2
dx,t € (0,7T),

(10.2.6)
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Fig. 10.1 Structures 1 and 2

/ Ve (x, 1)|?dx < co/ [VVe (x, 1)|%dx
2 2

< Cj / ID(x, v¥ (x, 1)) [*dx, (10.2.7)
2

where we have used Korn’s inequality for the domain £2. For example, this is possible
for the structures presented by Fig. 10.1 (see Lemma B.10).

Theorem 10.5 Under the conditions (10.2.1) and (10.2.2) the problem (10.0.5),
(10.0.6), (10.0.8)—(10.0.13) has at least one weak solution {w®, p¢, c®}, such that

T
max/ |c's(x,t)|2dx+// IV cf (x,0)|)?dxdt < Co F?,  (10.2.8)
O<t<T Q; 0 _st

0<cfx <1, xef 1>0, (10.2.9)

max we(x, )% + [VWe(x, 1)|2)d
0<I<T/9(' D2 + VW (x, 1) 2)dx

T
+// (Ve x, D2 + [VVE(x, 0)? + [p°(x, 1)[?)dxdr < CoF?,  (10.2.10)
0 J

max / (IVex, D> + |V vE(x, 1)[*)dx < C(Co, F), (10.2.11)
0<t<T Jo

/ IVVE(x, 1) — VVE(X, 12)|2dx < C(Co, F) |t — ta], (10.2.12)
2
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&
where v = E 25 a—“;), and the constant Cy is independent of the small parameter
eandt € (0,T).
Theorem 10.6 Under the conditions of Theorem 10.5 the sequences {w¢}, {v¢},

and {¢®} converge weakly as ¢ — 0 (up to some subsequences) in Wé’o (827) and

o
ow
W21’0 (827) to the functions w, v = o and c respectively, and the sequence {p°®}
converges weakly as ¢ — 0 (up to some subsequences) in L, (§27) to the function p.
These limiting functions satisfy in the domain S2 fort > O the system of differential
equations, consisting of the homogenized momentum balance equation

V-P+p(@F=0, (10.2.13)

where
t
P=—pl+9 :D(x,v)+ 9% : D(x, w) +/ Nt — 1) : D(x, w(x, 7))dT,
0

the continuity equation
V-v=0, (10.2.14)

and the homogenized diffusion-convection equation
a
m 8—: +v- (BOVe) =Dy V- (BOVC). (10.2.15)
The differential equations (10.2.13)—(10.2.15) are completed with the boundary con-
ditions
w =0, (10.2.16)
Ve-n=0, (10.2.17)
on the outer boundary S = 352 fort > 0, the initial conditions
w(x,0) =0, (10.2.18)

c(x,0) =mcp (x) (10.2.19)

in the domain 2, and the normalization condition

/ p (x,t)dx =0. (10.2.20)
2

In Egs. (10.2.13)—(10.2.19) n is the unit outward normal vector to the boundary S,
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p(c)y=m(pr+dc)+ (1 —m)p;s, m=/yx(y)dy,

the fourth-rank constant tensors YNy, My, and the fourth-rank tensor N3 (t) have been
defined in the Chap. 1 by formulae (1.4.30), where the tensor N is symmetric and
strictly positively definite, and the symmetric and strictly positively definite constant
matrix B has been defined in Theorem 10.2 by formula (10.1.61).

Ifthe domain'Y y is symmetric under rotations by the angle ) around the principal

axes of a Cartesian coordinate system, then the matrix B will be diagonal.

We refer to the problem (10.2.13)—(10.2.19) as the homogenized model (DCPEM).

10.2.2 Proof of Theorem 10.5

The proof is based on Schauder’s fixed point theorem [55]. Let us divide this proof
into several steps.
First, we consider the auxiliary problem, consisting of the dynamic equations

Jw
v (xg uoD(x, T )+ (1= xH D (x, W”’)) —p® H)

= —pn(x,c"M)F, (10.2.21)

v.-wh =0 (10.2.22)
in the domain 2 for ¢ > 0, the modified diffusion-convection equation

T v .V ™ = Dy A ™ (10.2.23)

in the domain §2 ;} for t > 0, the boundary condition
wh(x,1)=0 (10.2.24)
on the boundary S = 952 for ¢ > 0, the boundary condition
Ve, 1) nx) =0 (10.2.25)

on the boundary B.Q; for t > 0, the normalization condition

/ p™ (x, 1)dx = 0, (10.2.26)
22
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and the initial conditions
X W (x,0) =0, (10.2.27)

™ (x,0) = ¢ (x). (10.2.28)
In Egs. (10.2.21)—(10.2.28) n is the unit outward normal vector to the boundary 9£2°,
pi(x, c™) = x (o5 +8")n) + (1 = x)ps,

and

1 t+h
@0 =5 / ¢ (x, 7y dr,
t

— 1 rrh x — 2
(h) ) = — & d
=gz [ for(B5) e

are mollifiers [3, 61] with the infinitely smooth, nonnegative, even, and finite in
(=1, 1) function n(x), such that
1
/ nx)dx =1,
-1

ow®

ar )
To solve (10.2.21)—(10.2.28) we choose the set

and v¢ = Egi

T
M = {5 € La((0, T); La(£29)) /0 /!2 le(x, ) 2dxdt < T |9_§.|},
1

where |§2£| ia the Lebesgue measure of the set £2£, and for ¢ € 90 consider the
second auxiliary problem, consisting of the dynamic equations

0
V. (XEMO]D) (x, a—‘:) + (1= xHroD(x, w) — p]I) +pnx,0)F =0, (10.2.29)
V.-w=0 (10.2.30)
in the domain §2 for ¢t > 0, where

pn(x,¢) = x°(of +8(n) + x5 ps,

completed with the normalization condition (10.2.26), and the boundary and initial
conditions (10.2.24) and (10.2.27).
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For all ¢ € 9 this problem defines the linear operators

9
a_v: = A0(@), v="A10) = (Eg; 0 Ao) (@),

Ay — Wy0@2r).

Lemma 10.5 Under the conditions of Theorem 10.5 for any ¢ € 9N the problem
(10.2.24), (10.2.26), (10.2.27), (10.2.29), and (10.2.30) has a unique weak solution
{w, p}, such that

2 2
, 1 v ,D|%)d
OgixTAZ(lw(x )N°+ VW, 1)]7)dx

T
+ / / (IVee, O + IV v, 1 + | plx, 1)|*)dxdt
0 2

T
<COF2(/ / |E|2dxdt+1), (10.2.31)
0 2°
f

where Cy is independent of € and h.

Proof The solvability of the problem (10.2.24), (10.2.26), (10.2.27), (10.2.29) and
(10.2.30) is quite standard and we just show, how to derive the basic a priori estimates.

ow
We put ¢ = o in the integral identity

t
//(XEMOJD)(x,a—W)jL(l—xg))\oD(x,W)—pH):D(x,w)dxdr
0Je ot

t
://ph(x,E)F~<pdxdr,
0 Je

corresponding to (10.2.29), and get

'
uo/ / D(x,a—w(x, r))
e ot
0 /2
! _ ow
=] = pnx,c)F - — ) (x, t)dxdr. (10.2.33)
0 J ot

We estimate from below the left-hand side of (10.2.33) using (10.2.6), the evident

inequality
ad
D (x, —w(x, r))
ot

t
/XEID(x,W(x, )1*dx < Co/ / x°
2 0 JR

(10.2.32)

2
dxdt + );0/ |]D)(x,w(x, t))\zdx
2 Jae

2
dxdr,
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and Korn’s inequality, as

1o 2
V v(x, 7)|?dxdt 4 min / Vw(x, t)|“dx
2CO//I x, 7)| (ZC(% 2C0) IVwx, 1)

A
s 2C0/ / D v, T>)|2dmf+mm(2#c0 20)/9 ID(x, wix, ) 2dx < 1.

0
where v = ]Egsf (8_‘:,)
Now we estimate from above the right-hand side of (10.2.33) using (10.2.7), the

integration by parts, Holder’s, and Cauchy’s inequalities with parameter 8, and the
imbedding theorem for the function w in £2 [3]:

'
1 :/ / on(x,O)F - vdxdt +/ (1 — x%)psF - wdx
0 .Q? 2

t 1 T
< /3/ / Iv(x, f)lzdxdr—l—ﬂ/ lw(x, )|?dx + = CoF? / / |cl2dxdt + 1
0 Je Q B 0o Jes

t
<ﬂCO// IV v(x, r)|2dxdr+,BC0/ IV w(x, 1)|>dx
0 J 2

1 T
+ = CyF? / / &2 dxdt +1 ).
B 0 Jes

Gathering all together we have

12%0) 2
Vv(ix,t 2dxdt + min / Vw(x,)|“dx
2Co//| (x,7)] (2C0 2Co) [Vw(x, 1)

< ﬂCo/O /9 |V v(x, r)lzdxdr+ﬂCo/Q IV w(x, t)|%dx

t 1 T
+/ / lw(x, 7)|>dxdt + — CoF? / / \c)?dxdt +1).
0 Jo B 0 Jas

The desired estimate (10.2.31) for the functions w and v follows now from the last

inequality, if we put there
[ mo Ao
B = min — T
4C, 0 4Cy

and use Gronwall’s inequality.
The pressure p is estimated from the Eq. (10.2.29) as a linear bounded functional
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/ pv (pdx:/ (]P)]D)(x,(p)_ph(xﬂé)F (ﬂ)dx,
Q 2

defined for ¢ € Wé’o (£27), with

ow

P = x‘uoD (x, - ) + (1= x5 20 D0x, W) € La((0, T); La(2),

and satisfying the normalization condition (10.2.26).

Lemma 10.6 Under the conditions of Theorem 10.5 A (C) is a continuous operator.
Ifvi = A1(c1), voa = A1(C2), and Vv = vi — Vo, then

T
/ /(|€'(x,t)|2+|Vx7(x,t)|2)dxdt
0 2

T
< Co F? / / |¢1 — &2 |*dxdt. (10.2.34)
0 2°
f

The statement of the lemma follows from the linearity of A; and the estimate
(10.2.31).
As the next step we consider the solutions of the differential equation

d
a_jJrv.vc:DoAc (10.2.35)

in the domain 2 ; for ¢ > 0, satisfying the boundary condition

Ve-n=0 (10.2.36)

on the boundary 897r for ¢t > 0, and the initial condition

¢ (x,0) = cp (X). (10.2.37)

In Egs. (10.2.35), (10.2.36) v = A;(c), ¢ € 9, and n is the unit outward normal
vector to the boundary 927
By the properties of the mollifiers, the function ¥V is bounded and has bounded
first derivatives. Thus, due to well-known results for the linear parabolic equations
[61], the problem (10.2.35)—(10.2.37) has a unique weak solution ¢ = A,(v) such
that
0< ex,1)< 1, x€ .Qj» t >0, (10.2.38)

and
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max/ lc (X, t)|2dx+// IV ¢ (x,1)|?dxdt < CoF?. (10.2.39)
O0<t<T _Q

In fact, let
ct(x, 1) = max{c (x, 1) — 1; 0}.

Then, using the mollifiers in the same way as in the proof of Theorem 7.1 (Chap. 3,
[61]), we arrive at the equality

1 fo
-/ let(x, to)|2dx+Do/ / |V ¢t Pdxdt
2 /ey 0 Jaj

1o
—/ /‘(v-vﬁ) ctdxdt =1, (10.2.40)

where we have used the initial condition (10.2.37) (¢t (x, 0) = 0), and the evident
relations
Ve - Vet =Vet Vet ¢tvVe=ctveh.

Applying to the right-hand side of (10.2.40) Holder’s and Cauchy’s inequalities, and
the boundedness of Vv we get

Dy [T
70/ / |VC+|2dxdt+N2(h)ﬁ/ / et Pdxadt,

%/ let(x, t0)|Pdx < Nz(h)—// leT(x, 1)2dxdt,
27

which implies the equality ¢T(x,7) = 0, and the validity of the right-hand side
inequality in (10.2.38).
The left-hand side inequality in (10.2.38) is proved in the same way, if we consider

and

¢~ (x,t) = min{c (x, t); 0}.

The estimate (10.2.39) follows from the equality for ¢

1 10 1o
—/ lc (X, t0)|2dx+D0/ / |Vc|2dxdt=—/ / (V- V) cdxdt,
2Jas 0 Jaj 0 Je

similarly to (10.2.40), if we use the estimates (10.2.38) and the well-known property

of the mollifiers ’ ’
/ /|V|2dxdt</ /|V|2dxdt.
0 2 0 2
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Lemma 10.7 For any h > 0 Aj is a continuous operator. That is, if ¢c; = Ay (v;),
vi =A1(¢), i =1,2, forcy, co €M, and ¢ = ¢ — ¢, then

T
max/ |5(x,t)|2dx+/ / |V ¢ (x, t)|dxdt
O0<t<T QF 0 QF
f f
T 3
< N(h) (/ /X5|V1(x,t)—Vz(x,t)|2dxdt) . (10.2.41)
0 2

where N (h) depends on the parameter h.

Proof The proof of this lemma is straightforward. The integral identity for the
difference ¢ has the form

T ag T
/ / (—E——i—DoVE-Vf)dxdt:/ / é(V~ch—Vl~ VE)dx,
0 Jas ot 0 Jas

where V = Va(Xx, 1) — Vi (X, 1).
As before, this identity results:

1 t
—/ |E(x,t)|2dx+Do// [V (x, 7)%dxdT
2 25 0 Jay

t
= / / cx, 1) (V(X, 1) - Veo(x, 1) = Vi(x, 1) - VX, 7))dxdt = I.
0 Q?

The estimate (10.2.41) follows from the last equality, if we estimate its right-hand
side I using Holder, Cauchy, and Gronwall’s inequalities, and the estimates

lex, 0l <2, ix, )< N(h), xe 27, 0<t<T,

/ V(x, 1)|%dx < co/ [Vi(x, 1) — va(x, 1)|*dx.
25 25

In fact,

1 . ! -
I < — max [vi(x, t)|2 / / |c(x, r)|2dxdr
2Dy xe25,0<t<T 0 /2%

1 1
t 2 t 2
+2(// |ch(x,r)|2dxdt) (// |€'(x,t)|2dxdr)
0 Q; 0 Q‘;

Dy [! - 5
+ — |V c(x, T)|“dxdr,
2 Jo Jaj
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and

1 - 2 Dy [! - 2
— lc(x, t)|“dx + — |V c(x,7)|"dxdt
2 Ja 2 Jo Jas

: ‘ 2
< N(h) / / I&(x, T)|?dxdt + N(h) (/ / 1V (x, t)|2dxdt) )
0 Qj, 0 .Q;

Let A = A, - Aj. The maximum principle (10.2.38) shows that A transforms the
set M into itself. It is clear that all the fixed points ¢ of the operator A define the
solutions {w™ | p™ ¢} of the auxiliary problem (AP).

To prove the existence of at least one fixed point of A we have to show that A is
a completely continuous operator. Lemmas 10.6 and 10.7 prove the continuity of A.
The compactness of A follows from the estimate

T ov
&

D(x, —

/0 /QX (x a;)

1 1

§ T 2 T 2 2

< - / / e dxdt //Xé‘ dxdt ) ,

h\Jo Ja: 0o Je

which is the result of differentiation of (10.2.29) with respect to time, multiplica-
2

w
tion by ——- and integration by parts over §2 (formal derivation). For the rigorous

2
dxdt

av

ot

derivation we, as before, must use mollifiers.
In the usual way this last relation implies

2

T 2 T 2 T
3 9 9
//XS—V dxdtg//—v dxdtgco//v N dxdr
0o J ot o Jo|ot 0o Jo Jat
T 2 T 2
9 3
gcg/ / D(x,—v) dxdr < CS/ /XE D(x,—v) dxd,
0 I?) Jt 0 I?) Jt

T v\ [ 82 (7
/ /xs D(x,—) dxdt < 03—2/ /Xf |¢|?dxdt = N(h),
0o Je ot h*Jo Ja
2 T av
max IVv(x, t)|“dx < Co vVi{—
0<t<T J o 0 I?) Jat
(5)
\V4 -
at

T 2 T
[ aar<e] [
0 Jf2 0 Jf2

2
dxdt < N(h),

2
dxdt < N(h).
(10.2.42)

av
ot
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Now, let the sequence {Ek} be weakly convergent in Lz((O, T); Lz(.Q;)) to c.
Then on the basis of (10.2.42) we may extract some subsequence {v**}, which
converges strongly in Ly (£27) and weakly in Wy’ (27) to v = A (¢). Lemma 10.7
guarantees the strong convergence of {Ek }in Ly ((0, T); Lg(.Q;)) to ¢, which proves
the compactness of A.

Finally, 907 is a closed convex set, and that is enough for existence at least one
fixed point of A in 91 [55].

It is clear, that all the fixed points of A preserve the estimates (10.2.31), (10.2.38),
and (10.2.39). Thus, the following lemma holds true

Lemma 10.8 Under the conditions of Theorem 10.5 there exists at least one weak
solution {w™® | p™ MY of the problem (10.2.21)~(10.2.28), such that

T
/ / (W9 e 0P+ 1990w P 4+ 1p e ) P) dxds
0 2

+ max / (WP e, )2 + VWP (e, 0)]?)dx < Co F?, (10.2.43)

O0<t<T Q
0< P, <1, xe 25, 1>0, (10.2.44)
T
/ / Ve (x,0)2dxdt < Co F?, (10.2.45)
0 .Q;
max / (VP @, ) + Vv (x, 1)[*)dx < C(Co, F), (10.2.46)
0<t<T Jo
/ IVvPx, 1) — Vv (x, 1) Pdx < C(Co. F) |t — tal, (10.2.47)
2

where Cy is independent of €, h, and t € (0, T).

Proof Note, that the right-hand side of (10.2.21) possesses the bounded time deriv-
ative (the bounds of any norms obviously depend on the parameter /). Therefore the
solution {w(h), p(h)} of (10.2.21) has the additional smoothness

e 9wl e awh ap™
XV 912 Y a9 € Lo (£27), “or € Ly(827),

and we may differentiate with respect to time the integral identity corresponding to
(10.2.21):
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10 52w Fw®
/O /(XSMOD(X, 52 )+xfkoD(x, o : D(x, p)dxdt
ap® fo 9
/ /p—v (pdxdt—(S/ /X@(F-go)—((c(h))h)dxdtzl.
Q 0o Je ot

All statements of the lemma, except the estimates (10.2.46) and (10.2.47) are already
proved.
To prove (10.2.46) we rewrite the right hand-side of the last identity as

to gc M fo 9c M
1:5/ F-oE dxdt:(S/ / & (F. ) dxdt,
0 Jer ot 0 e Ot
h f

!

where L
W) (x, 1) = E/ cM(x, )dr, and p(x,1) =0 for ¢ < 0.
t—h

Next we use the convection-diffusion equation (10.2.23) and express the time deriv-
ative of ¢ M:

0] —_—
I = —5/ / (v . VY F - @) + DoV e™ -V (F - );) dxdt.
7

Finally into the identity obtained we put ¢ = 5
Jw
% X (x v (x, 10) dx+)»o/ / X5 ( , ‘;’ dxdt
=1=-5 / / v . v My F . v"): dxdt
Q&
—3/ / DoV ™ .V (F-vW); dxdt.
(10.2.48)

We estimate the right hand-side 7 in the usual way (see the proof of the estimate
(10.2.31)):
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1

0] % fo %
I < Comax |F| (/ / |v(h)|4dxdt) (/ / v c(h)lzdxdt)
0 7 0 ‘;
1 3 1o 2
+ Cp max |F| (/ / |Vv(h)|2dxdt) (/ / A% c(h)|2dxdt)
0 2 0 Sf

1
to 2 ) 2
+ Comax |V F| (/ / |v(”)|2dxdt) / / IV e Pdxdr
JO JR2 JO . S/
1o 1o
<CIF / / [V v? 2dxdt / / IV ™ Pdxdt + 1
0 2 0 *f

1o 10
+CyF / / |v(h)\2dxdt+/ / IV ™ Pdxdt) < C(Co, F), (10.2.49)
JO J JO . A’fo

where we have used (10.2.43). Thus, (10.2.48) and (10.2.49) result in (10.2.46).
The estimate (10.2.47) is proved similarly to the previous one. In fact, we may
rewrite the corresponding to (10.2.21) integral identity as

140 / x¢ (ID)(x, v (x, tz)) — ID)(x, v (x, t1))) : ]D)(x, (p(x))dx =1+ D,
Q

where

5]
I = —)»o/ /XSSID)(x,w(h)):ID)(x,w)dxdt,
1 2

n
12=8/ / )f(F-(p)( ) dxdt,
1 2 h
and estimate /, as above, using the diffusion-convection equation (10.2.23):
I dc M
12=5/ / F- 0 —ax ) ar
11 .Q; 8t h
5] —
=5 / / ((v<h) VMY F @)+ Dy VeV (F- (p)) dx ) dt
I3 .Q;

h

[5) —
=4 / / (<v<h>-Vc““))h(F-go)+DOV(c<’”>h-V(F-w))dxdr
1 }
1 1 1
7 5] 7 2
gcomax|F|(/ |<p|4dx) / (/ |V(h)|4dx) / IV P2ax ) de
2 t 2 .Q";}
1
3 o 2
+Comax|F|(/ |V(p|2dx)/ / VP Pax ) dr
2 f é

f

ac ™
ot
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1
2 5]
+ Comax |V F| (/ |<p|2dx) / /
2 I ‘Qf
1 Lo 3
2 2 2
gch(/ |Vgo|2dx) max(/ |Vv(h)|2dx) / / Ve 2ax ) de
2 ! 2 31 .Q‘;

1

1 =
2 (b 2
+C3F (/ |Vg0|2dx) / / Ve P2ax ) dr
2 1 £2°

f

1 1
2 : r (h) 2 ’ T
< C(Co, F) IV ol"dx VW dxdt ) | — 12
2 0 Jj
1

2
< C(Co, F) (/ Iprlzdx) |t2—fl|%-
Q

2
|V c(h)|2dx) dt

For I one has

1 1

3 T 2
I < ho (/ |V<p|2dx) (/ /|Vw(h)|2dxdt) lta —11]2.
2 0 2

Thus,
/ 1 (D v (x,12) = Dx, v x.1) ) D, 9(x))dx
2
2 : ]
< C(Co, F) (/ IV ol dx) lta — 1112
2
%
< Co, C(Co, F) (/ ID(Xvw)Izdx) I — 1l
2
3
< Co, C(Co, F) (/ x° |D(X7<P)|2dx) [tz — t1|%
2
and for

ox) = v (x, 1) — vV (x, 1))



360 10 Diffusion and Convection in Porous Media
we arrive at

fx
2

As the last step in the proof of Theorem 10.5 we pass to the limit as # — 0 in the
corresponding integral identities. The following lemma holds true

h h 2
D(x, v (x, 1)) — D(x. vP(x, zl))‘ dx < C(Co. F) |ty — 11].

Lemma 10.9 Under the conditions of Theorem 10.5 there exists at least one weak
solution {w?®, p?, c®} of the problem (10.0.5), (10.0.6), (10.0.8)—(10.0.13) and the
estimates (10.2.8)—(10.2.12) hold true.

Proof Lemma 10.8 provides the weak compactness of {wh}, (v(M} in Wé’O(QT),
and the weak compactness of { p™Yin Ly(827). That is, up to some subsequences

wh ~we vy L yE weakly in Wé’o(.QT) as h — 0,
p"™ — p® weakly in L,(£27) as h — 0.
The same Lemma 10.8 implies the boundedness and the weak compactness of ¢ )
in W, (2r):

c™ — ¢ weakly in Wzl’o(.QT) as h — 0.

Passing to the limit as 7 — 0 in the integral identity
T
/ / (x° oD, V) + (1 = x5 2o DG, wh) = p® 1) - D(x, g)dxd
0 Je
! h
=[] (0 e+ = x00 B 0527 <P - (o)) dxde
0 Je2
and taking into account the equality

&

w
a7 (x,1) =V (x,1), X€ .Q;}, te(0,7), (10.2.50)

we get (10.2.4).

Note that in the product ¢ (F - (¢);;) the sequence {(¢);;} converges strongly in
Lo ($27) to ¢.

The last relation (10.2.50) is the simple consequence of the integral identity

T a(p
[ o 32 Yoo
0o Jo at

for any smooth functions ¢, such that ¢(x, 0) = ¢(x, T) = 0.
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The limit as 7 — 0 in

T
/ /w(h)~ Védxdt =0
0 22

for any smooth & results in the continuity equation (10.0.10).

Finally, the main problem for the diffusion-convection equation (10.2.23) is
the limit in the product v . V ¢ where the sequence {V ¢} converges only
weakly in Ly($27). Thanks to estimates (10.2.46) and (10.2.47) there exists some
subsequence of {v("}, which converges strongly in L (£27). This fact provides the
weak convergence in Lo (§27) of the product v . V ¢ to the corresponding product
vé .Vt

So, these estimates and the diagonal procedure permit us to find some subse-
quences of {V(h)(, t)} and {V v t)}, which converge weakly in L, (£2) for almost
allt € (0, T) to vé(x, 1) and V v°(x, t) respectively. Due to the embedding theorem
[3], the weak convergence of {V vW(, 1)} in L,(£2) for almost all # € (0, T) results
in the strong convergence of (v(M(, 1)} in Ly (£2) for almost all ¢ € (0, T'). Thus, the
sequence of the bounded functions

P = / VB (x, 1) = vE(x, 1) Pdx, |fP @) < C(Co, F),
2

converges almost everywhere in (0, 7') to zero. According to Lebesque’s theorem
(or the dominated convergence theorem, [3])

T T
/ FP@dr = / / v (x, 1) — ve(x, 1)|>dxdt — 0 as h — 0.
0 0 2

The validity of the estimates (10.2.8)—(10.2.12) follow from the properties of the
weakly and strongly convergent sequences.
In particular, by construction, the sequence {u(h) (x)}, where
uP ) = Vv (x, 1) = v (x, 1)
weakly converges to the function

ué(x) =Vvix, 1) — Vvé(x, 1)

for almost all ¢1, t, € (0, T).
Therefore,

/ |u® (x)|*dx < limsup / lu™ (x)|*dx < C(Co, F) |t — 1]
2 h—0 2

for almost all ¢{, 1, € (0, T).
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10.2.3 Proof of Theorem 10.6

The proof is based on the principles of compactness, and the two-scale convergent
method [88].

First of all, using the extension operators, we rewrite the identities (10.2.3) and
(10.2.4) as

T 9 9 &
/ /Xe et e Y Gt Dyt Ve ) dxde
0o Jo ot ot
=/ x%co(x)E(x,0)dx (10.2.51)
2

T
/0 /Q (Xeuo D, v®) + (1 — xHroD(x, w®) — pS]I) : D(x, @)dxdt

T
=/0 /Q(xs(poJrSc‘E)ers(l—xg))F‘fpdxdt,
(10.2.52)

ow?

& — & cE = R & €
where v _]ng( Py )andc Ege(c?).

We also rewrite the continuity equation (10.0.10) as the integral identity

T
/ / w® - Vi dxdt =0, (10.2.53)
0 2

which holds true for any smooth functions .
Next on the base of the estimates (10.2.8)—(10.2.12), we state that there exist the
functions

ow
¢, p € LZ(-QT), VC, V= W? VV S LZ(QT)v

C, PelLy2r xY), VyC, vV, VyVGLz(.QT x Y),

and the convergent subsequences {¢¢}, {V ¢}, {p€}, (W}, (D (x, w®)}, {¥*}, and
{D (x, v®)} such that

EE(x, 1) — c(x, 1) weakly in W,"%(27),
cf(x,t) = c(x,t) two-scale in Lo(£27),
Véf - Ve+V, C two-scale inLy (£27),
pf(x,t) = p(x,1) weakly in L, (£27),
pé(x,t) = P(x,t,y) two-scale in Ly(827),
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we(x, 1) = w(x, 1) weakly in W3 (27),
D (x,w*) = D (x,w) + D (y, W) two-scale inLy(£27),

Ve (x, 1) = v(x, ) weakly in Wy* (27),
D (x, vg) — D (x,v) +D(y, V) two-scale inL,(£27),
oW
V(X, tv Y) = ?(Xv ta y)!

vé(X, 1) — V(x, t) and strongly in L, (£27)

ase — 0.

The last statement follows from the estimates (10.2.11) and (10.2.12). In fact,
these estimates and the diagonal procedure permit us to find some subsequences of
{ve(, )} and {V v®(, t)}, which converge weakly in L, (£2) for almost all r € (0, T)
to v(x, 7) and V v(x, 7) respectively. Due to the embedding theorem [3], the weak
convergence of {Vv®(, )} in Ly($2) for almost all ¢t € (0, T) results in the strong
convergence of {v®(, t)} in Ly(£2) for almost all ¢+ € (0, T'). Thus, the sequence of
the bounded functions

JE@) =/Q IV (x, 1) = v(x, DPdx, |f°(1)] < C(Co, F),

converges almost everywhere in (0, T') to zero. According to Lebesque’s theorem
(or the dominated convergence theorem, [3])

T T
/ fE()dt = / / Ve (x, 1) — V(x, 1)|*dxdt — 0 as h — 0.
0 0 2

The following statements, except the last one, are already known (see Chap. 1 and
the first part of the present chapter).

Lemma 10.10 The limiting functions satisfy in the domain S2 for t > 0 the system
of macroscopic equations
V.-v=0, (10.2.54)

V.-P+p@)F=0, (10.2.55)

P= ,uo(mD(x,V) +<]D) (y, ¥)> )
Yy

+ 2o ((1 = m) D(x, w) + (D(y, W))y,) — p1,

9
m a_j +V-(mVe+(VyCly,)=DgV-(mVe+(VyCy,).  (10.2.56)
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Lemma 10.11 The limiting functions satisfy in the domain Y forx € 2 andt > 0
the system of microscopic equations

Vy- W =0, (10.2.57)
v, - P =0, (10.2.58)

s oW

P = uox(y) (ID)(x, v)+D (y, 3))

+20(1 = x®)(Dx, w) + D(y, W)) — P,
Vy (x W(Ve+V, c)) = 0. (10.2.59)

Lemma 10.12 The relations

P=—pl+9 :D(x,v)+ 9 : Dx,w)

t
+/ N3t — 1) : D(x, w(x, 7))dr, (10.2.60)
0

and
mVc+(VyCly, =Bve, (10.2.61)

hold true.

Here fourth-rank constant tensors Ny, No, and fourth-rank tensor N3 (t) have
been defined in Chap. 1 by formulae (1.4.30), and the constant matrix B has been
defined in Theorem 10.2 by formula (10.1.61).

Lemma 10.13 Let the domain Y y be symmetric with respect to rotations of the angle
7 /2 around the principal axes of the Cartesian coordinate system. Then the matrix
B is diagonal.

Proof Let T, be the rotation of the angle /2 around the axes y3 with the direction
e3, such that T, - e; = e;. Here {e;, e>, e3} are the orthogonal basis of the Cartesian
coordinate system. If z = T» -y, y € Y, then, by conditions of the lemma, T, :
Yy — Yyand x(y) = x(2).

Let us recall, that the 1-periodic solution C of the boundary-value problem

(10.2.59) has the form 3
: ac
C=>»CcOy—,
; Wy

where C@(y), i = 1,2, 3, are solutions of the periodic boundary-value problem
Vy - (x(¥)(e +V,CD)) =0 (10.2.62)

in the domain Y.
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For the function C? (z) = C® (y) we have the periodic boundary-value problem

Ve (x@(T2-e2+ T - T - V,.CP)) = V, - (x(2)(e1 + V.C?)) =0 (10.2.63)

in the unit cube Z =Y.

The problem (10.2.63) coincides with the problem (10.2.62) and due to the unique-

ness of this problem

Py =CP@ =cV@=cPT y.
In the same way we obtain
CPy) =C¥x) =cPx =cM(T;3-y)

for the rotation x = T3y around the axes yj, such that T3 - ez = ey.
To find By we put )
ar = (v, D)y,

and calculate
a = (V,COW)y, = T3V.CP@)y, =T; -ay,

and
a3 = (V,CV )y, = THVCP®)y, =T -ay.

Leta; = aje; + azey + aszes. Then,

a=oaT; e+ a5 e+ 3T - e3 = ajer — aze; + azes,
a3 =T -e; + ooT5 - €2 + i3T5 - e3 = aje3 + aper — a3ey,

(10.2.64)

(10.2.65)

where we have used the evident properties of the transformations T, and T43:

T§~61=ez, T§~62=—el, T;~e3=e3,

and
’]1‘§~e1=e3, T;-ezzez, ’JI‘;-e3=—e1.

Thus,

Byp=a1 Qe +ar®@e+azRe3

=uje1®e; +ajex ®er +oje3 ez +aorer K e —are; Qe

+aze; ® e —aze; ¥e3+uzes ®ey +arxer ®es
=ouj(e1@e; +ex e +e3®e3),

due to the symmetry of Bo, which implies o = a3 = 0.



Chapter 11
The Muskat Problem

Here as the basic mathematical model at the microscopic level in the domain £2
for + > 0 we consider the mathematical model Mg of the joint motion of two
incompressible immiscible liquids, consisting of the dynamic equations

a £
V‘(XEMOD(X, W)+(1—xs)XolD(x,wg)—pg]I)+p€F=0, (11.0.1)

dt
ow®
V. =0 (11.0.2)
ot

for the displacement vector w® and the pressure p® of the medium, completed with
the Cauchy problem

apf  Iw® 0p¢ ow?
-Vp= V. =0, 11.0.3
or "o VPE T (p a;) (11.0.3)
P°(%.0) = p§(x) = o (0 1 + o (1= x°) (11.0.4)

for the density p of the medium.
The differential equations are endowed with the boundary condition

vi(x,t) =0, xe8,t>0 (11.0.5)
on the boundary S = 952 of the domain §2, the initial condition
xx)wf(x,0) =0, xe€ £, (11.0.6)

and the normalization condition
/ p°(x, )dx = 0. (11.0.7)
Q
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Throughout this chapter we impose Assumption 0.1 on the structure of the pore space
and additionally suppose that the solid skeleton is disconnected: Y C Y.
We also suppose that conditions

0 < Ao, Mo, ps < 00, (11.0.8)
0< pf_ = const < p}o)(x) < p}}" = const < 0, (11.0.9)
and oF
max (|F(X, B+ |VF(x, )| + '—(X, t) ) =F < (11.0.10)
(x,1)ef2r ot
hold true.

Recall that Eq.(11.0.1) is understood in the sense of distributions. It contains
Stokes equations in the liquid part, Lamé’s equations in the solid part, and the con-
tinuity condition

limo (XOD(x, wo(x, 1) —p°(x, 1) ]I) -n(x")
xe Q2§

= lim (/LOD(x,aa—“;g(x, t))—pf(x, t)]I)-n(XO) (11.0.11)

X — X
x e Qf

!

on the common boundary "¢ “solid skeleton-pore space”.

11.1 Statement of the Problem and Main Results

First of all let us look at the dynamic equation (11.0.1). The smoothness of the

solution with respect to time in the solid part depends on the smoothness of the term

p¢ F with respect to time. But the density p® might be some step function, which
&€

w
is sufficient for the existence of the derivative — in the liquid part, but does not

guarantee the existence of this derivative in the solid part.
Our aim is to get the homogenized model, which is asymptotically closed to
(11.0.1)—(11.0.7). Therefore we may make a small change to the model and in the
&€

transport equation (11.0.3) instead of consider some function v¢, which coin-
&€ &
in the liquid part and is asymptotically close to

cides with as ¢ — Oin

the solid part.

&€

w
from the liquid part SZ; to the solid

To do that, we extend the liquid velocity
part £27 using the extension LemmaB.10: for any ¢ > 0 there exists an extension



11.1 Statement of the Problem and Main Results 369

&

ol 9
v¢ € W, (£2) of the function il from the domain .ij onto domain £2 such that

8 £
x&(x) (vs(x, ) — ;: (x, t)) =0, xef2, t>0,
and
e awe |2
v |“dx < C dx, (11.1.1)
2 o | ot

2
dx, (11.1.1)

/ ID(x, v&)|2dx < c/
2 .Qf

8 &
D (x, il )
at
where C is independent of € and .
We fix this linear continuous operator from Wé(.Q}‘fi) to W; (£2) and denote it as

a &
Ve =Egs( h ) (11.1.2)

and, in what follows, call this function v* the liguid velocity.

Note, that due to the continuity Eq.(11.0.2) in the domain §27 and the structure
of the pore space we may choose the extension operator such that the function v*
will be solenoidal:

V-vi =0, (x,1) € 2r. (11.1.3)

&

a
The results of Sect. 1.4 show that ;Z and v° are asymptotically closed as ¢ — 0.

Definition 11. 1 We say that the triple of functions {w*®, p®, p°} is a weak solution
to the problem (11.0.1)—-(11.0.7), if

&

& o1,0 3 ow e &
wo eW," (£2r), x°V a7 € La(8£27), p°, p° € La(827),

w? is solenoidal in 27 = §£2 x (0, T), the pressure p satisfies the normalization
condition (11.0.7), and the integral identities

/ p° (ﬁ + oW -Vé) dxdt+/ po(X) E(x,0)dx =0, (11.1.4)
Qr ot at Q

and
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/ (—Xg()l# D(x, w®) : D (x, E;—f) + (1 — x®ay, D(x, w) : D(x, (p)) dxdt
7

=/ (P°V -9+ p°F - ¢)dxdt, (11.1.5)
Qr

hold true for any smooth functions & and ¢, such that £(x,7) = 0 and ¢(x,7) = 0
forx € S.

£

“; from the liquid part .Q]f onto the solid part

In (11.1.4) v® is the extension of
£2¢ given by (11.1.2) and

ve e Wy (@2p).

Note, that integral identity (11.1.5) contains differential equations in the pore space
and in the solid skeleton, the boundary condition (11.0.11) on the common boundary
I'¢ and the initial condition (11.0.6).

Theorem 11.1 Let conditions(11.0.8)—(11.0.11) hold true.
Then the problem (11.0.1)—(11.0.7) has at least one weak solution {w®, p*, p*},
such that

max/ (|W8|2+|V8|2+|Vw8(x,t)|2)dx+/ ¢ 2dxdt < C,  (11.1.6)
2 2r

O<t<T

owe 2
max / (|VV8|2+X8 D(x,l(x,t)) )dx+/
0<t<T J o at Q2r

/ VYV (x, 11) — V¥ (x, 1) dx < Clty — ]2, 11, 12 € 0,7), (11.1.8)
2

2
dxdt < C,

&

\%

(11.1.7)

0 < pf(x, 1) <max(p/, py) = py (11.1.9)

where C = C (,08' , F, T) is independent of ¢, and

ow?

g 3
v —E_Q(at )

!

Theorem 11.2 Under the conditions of Theorem2.1 let {w®, p®, p®} be the weak
solution to the problem (11.0.1)—(11.0.7). Then there exists a subsequence of small
parameters {¢ > 0} as ¢ \( 0, such that the sequence {w*} converges weakly in

W;’O (£27) and strongly in L (£27) to the function W, the sequence {p®} converges
weakly in L (£27) to the function p, the sequence {p®} converges weakly in L ($2r) to



11.1 Statement of the Problem and Main Results 371

w¢ 9
the function p, the sequence [ 5 ], converges weakly in W;!O (827) and strongly in

ow ow®
L2 (827) to the function o the sequence {v*}, where v¢ = EQ; (—

, converges
ot ) &

a
strongly in Ly ($27) to the function a—v:

The triple of limiting functions {w, p, p}is a weak solution to the Muskat problem
for viscoelastic filtration, which consists of the dynamic equations

V. (f@(w))—varpF:o, (11.1.10)

~ 9 t
P(w) =My :D (x, a—‘:) + M D(x, w) +/ My (t — 1) : D(x, w(x, T)dT,
0

V. w=0, (11.1.11)

for the displacement w and the pressure p of the mixture of the solid skeleton and
the liquid in pores, and the transport equation

ap ow
% v (Y ,) o 11.1.12
T (81‘ p) ( )

for the density p of the liquid mixture in the domain 2.
The problem is endowed with the homogeneous boundary condition

wx,/) =0, xS, t>0, (11.1.13)
and the initial conditions
w(x,0) =0, p(x,0)=pyx)= ,o;o)(x)m +ps(1—m) xeR. (11.1.14)

In (11.1.10) the fourth-rank constant tensors My, M, and the fourth-rank tensor
M, (¢) are defined in Chap. 1 by the formulae (1.4.30), and the tensor MMy is symmetric
and strictly positively definite.

11.2 Proof of Theorem 11.1

We prove the existence of the solution to the problem (11.0.1)-(11.0.7) using
the Schauder Fixed Point Theorem, mollifiers, and viscosity solutions method. For
the correct limiting procedure we have to derive a priori estimates, independent of
the parameters of the approximation. First of all we approximate the density in the
dynamic equation using a mollifier with respect to time. That gives us the additional
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smoothness of the solutions to the dynamic equations with respect to time. Next
we approximate the transport equation for the density by the diffusion—convection
equation with a small diffusion (viscosity). It gives us the additional smoothness of
the density with respect to time and spatial variables. Then we prove the existence
of the solution {p(s,1), W, k), Ps,i} to the double approximate problem using the
Schauder Fixed Point Theorem. To pass to the limit as § — 0 we need estimates
independent of § (Lemma 11.2). Here we essentially use the uniform boundedness of
w in a dual space L, ((O, T), W, ! (.Q)) and we also prove that these estimates
are independent of 4 and ¢. As we have mentioned above, the smoothness of the
solution must provide the convergence (at least weak) of the product p¢s 5y - V(5,1

0
where v(5 ) = ngs(%). For the fixed 2 > 0 the sequence {p(s )} is compact

in L, (£27) and the sequence {v(s 5} is weakly compact in L (§27). Thus, we may
pass to the limit as § — 0 and get the solution {p), w), p)} of the approximate
problem. As a last step we have to pass to the limit as # — 0. But the bounded
sequence {o(y)} is no longer a compact set in L (§27). Therefore, we must prove the
strong compactness in L;(§27) of the sequence {v(;)}. Functions v(;) have spatial
derivatives uniformly bounded in L, (£27). So, the sequence {v(;)} is a compact set
in Ly (£2) for any fixed t € (0, T). To state that {v(;} is a compact set in L (£27) one
has to have some smoothness of v, with respect to time [12, 68]. But the proper
dynamic equations do not directly provide this smoothness and we must find another
way, which has been realized in Lemma 11.2.

We divide the proof of the theorem into several independent steps.

First we solve the double approximation problem

V- (PPW) - Vp+(p)sF=0, V-u=0, (11.2.1)
ap

E+V~Vp=hAp, (11.2.2)

uls =0, x“uli=o =0, pls =0, plizo = p;" (X), (11.2.3)

o
) ec® (@), 0<p” <pfs o = p©@ ae. ing,

for h > 0 and § > 0 in £27, and then pass to the limit as § — 0 and &7 — O.
In(11.2.1),(11.2.2)

ou

P® (u) = x°a,D (x,
(w) = x"au (x a7

) + (1 — xHa,D(x, ),

| ou
(P = 5/, Sp(x, T)dt, V= E_Q; (5) ,
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o(x,1) = p(x,t), fort >0, and p(x,1t) = p;lo)(x) for t < 0.

0
By the properties of mollifiers the function (p)s) possesses time derivative 3

((,0)(5)) € Lr($27). This fact guarantees the additional smoothness of the solution u
with respect to time.

In the standard way we may define a weak solution to the problems (11.2.1)—
(11.2.3) as functions u, p and p satisfying the corresponding integral identities.

Lemma 11.1 For given h > 0 and § > O the problems (11.2.1)—(11.2.3) has at least
one weak solution.

Proof To solve the problems (11.2.1)—(11.2.3) we fix the set
M={0€l(2r):0< o(x,1) < py ae. in2r},
and consider in §27 the initial boundary-value problem for the linear system
V- (P®W) - Vp+(0)pF =0, V-u=0, (11.2.4)

with the homogeneous boundary and initial conditions (11.2.3) for the function u.
The solvability of this problem is standard and follows from the estimates

max (1" D w22 0) + 10 = x)DE W22, + I 2.2, < €, (11:25)

0<t<T
ou du ¢
) ,— 1 1 —y5D , — < —, 11.2.6
oIEfLXT(HX (x Bt) 219())+H( ) (x 3’) 20 8 ( :

where C = C(,o(‘)", F,T).

To obtain the first estimate we multiply Eq. (11.2.4) by u and integrate by parts over
domain £2 using Holder’s, Korn’s, Friedrichs-Poincaré and Gronwall’s inequalities.
To get the second estimate we differentiate the Eq.(11.2.4) with respect to time,

ou
multiply the result by m and integrate by parts over domain 2, repeating the same
procedure as above.

ou . .
Therefore, u and v = ngs (E) are the linear continuous operators on o':

u= ®y(0),v=®(0). In particular,

C
max (V2.2 + 19Vl2.2(0) < = Fllol.qr- (11.27)
0<t<T 1)

In (11.2.7) we have used Korn’s inequality and estimates (11.2.6) and (11.1.1).



374 11 The Muskat Problem

Next we consider in 27 the linear problem for the parabolic equation (11.2.2) with
ou
the conditions (11.2.3) for the function p, where v = ]E_Q;; (E) and u = & (o).

As before, the solvability of this problem is a simple consequence of the maximum
principle
0< p(x,0) < pg, ae. inf2r, (11.2.8)

the energy equality

t
/|,o(x,t)|2dx+2h/ / IVp(x, r)|2dxdt=/ 107 (%) 2dx,
2 0 J 2

and the estimate

T
max/ |,0(x,t)|2dx+2h/ /|vp(x,r)|2dxdr<|po+|2 (11.2.9)
O<t<T Q 0 Q

(for more details see [61]).

For fixed / the problems (11.2.2), (11.2.3) defines some continuous operator
p = ¥ (v). In fact, if p; = ¥(vy) and py = ¥(vy), then for p = p; — pp and
V = v; — v; one has

1d/ 15(x, )|*d +h/ IV52dx =J

A~ 7. X, =J,

2adt Jo'° R PR

J:—/ﬁVp2~€fdx=/p2Vﬁ-de.
2 2

h . 1 -
] < —/ IVh(x, t)|2dx+—|pg|2/ ¥ 2dx.
2 o 2h 2

Thus,
+

0
1@ (V1) — ¥ (V) 2.0 < —= Vi — Vall2.2;- (11.2.10)

Vh

Let now p = A(o) = lI/(@ (o)). Operator A is a continuous in 2 due to the
estimates (11.2.7) and (11.2.10), and transforms 9 into itself due to the estimates
(11.2.8). The set M is obviously convex and closed in L ($27).

Moreover, by the well-known properties of the solutions to the linear parabolic
equation (11.2.2), the embedding theorems [61], and the estimate (11.2.7)

J —
veLg(2r), pe W (@2r) c HPZ(2r).

This last smoothness property of the function p means that the operator A is com-
pletely continuous. Applying Schauder’s Fixed Point Theorem [55] we get at least one
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fixed point p(s, 1) of the operator A, which defines the solution {0 4y, Ws,n), Ps,h)}
to the problem (11.2.1)—(11.2.3), satisfying the estimates (11.2.5)—(11.2.9).

Now we derive the basic a priori estimates, which permits us to pass to the limit in
(11.2.1)—(11.2.3)as § - Oand h — 0.

Lemma 11.2 The solution {p(s,ny, Us,ky, Ps,ny) of the problem(11.2.1)—(11.2.3)
satisfies the estimates(11.2.8), (11.2.9) for the density p(s,p, the estimate(11.2.5),
and the estimates

T
Ju 2
max/|Vv(5,h>(x,t)|2dx+/ /(|p(3,h)|2+‘vﬂ‘ )dxdtgc,
0<t<T J 0 Jg dt
(11.2.11)

for the pressure ps.p, the liquid velocity Vs ) and the displacement us ), where
the constant C = C(,o(';, F, T) is independent of ¢, § and h.

Proof For the moment we omit indexes 4 and §. As we have mentioned above, the
approximation of p by (p)s) results in the additional smoothness of the solution u of
the problem (11.2.1)—(11.2.3) with respect to time. Now we prove that this additional
smoothness does not depend on the small parameters ¢, § and A.
ad
To do that we first multiply the Eq.(11.2.1) by a—l; integrate by parts over

domain £2, pass the time derivative in the term

ou
F.-—d
/Q(;O)(a) ;¥

from u onto (p)s)F and express the time derivative

3 L[ 9
(0)® _ _/ 9 x, tydr, for t > 8,
ot 8 Ji—s 07

and

9 1 /13
(0) ) _ _/ _'O(X, t)dt, fort <,
ot 3. Jo 01

using (11.2.2) in the form

ap _
5 =V-(hVp—pv).

‘We have

Ju)\ 2
OlM/ x€ ’D (x, _u)
I?) ot

where

d
dr + %_/ (1 = x)ID@ wPdx = Io(r),  (11.2.12)
2 dt Jo
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oF
—Io(2) = Io,0(1) +/ (L)) (8_ ~u) dx,
Q 1

t
Io.o(0) =/ (%/ (hVp = pV)(x, D)) - V(F - u) (x, Ddx. for 1 > 5,
9} t—§

and

t
Io,o(t)z/ (1/ (hVp — pv)(x, r)dt) -V(F - u)(x, dx, for r < 5.
2 8 Jo

Everything that we have done to get (11.2.12) is just a formal procedure, but it can
be done rigorously using the corresponding integral identities.
It is easy to see that for any positive y

t t
/ lo(r)|dT <y / / |v|*dxdr
0 0 JR
+ (i+1) (,0+F)2/t/ (IVu* + [u|?)dxdr
4y 2) "0 0Ja

ho[t t %

+—//h|Vp|2dxdr+2p0+F(//|u|2dxdr)
2 Jo Ja 0 Je

After integrating (11.2.12) with respect to time and taking into account the esti-
mates(11.2.5), (11.2.8) and (11.0.8) one has

! . ou 2
/O/QX ]D)(x,a(x,r))

! 2 1 4 42
< Cy [v(x, 7)|“dxdt + C ;+1 (,00 F+1D)"+C(py).
0 JR

dxdr+/ ID(x, u(x, 1)) [*dx
2

1
Choosing Cy < 3 we get

J (s 5ieo)

where C is independent of ¢, § and 4.
This last estimate, estimate (11.1.1), and Korn’s inequality imply

2
dxdt < C(pj F + 1)*, (11.2.13)

/ /|VV(x nPdxdt < C (pf F + 1)*. (11.2.14)
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Due to the inclusion v € Ly ((O, T); Wzl (.Q)) we may use the Friedrichs-Poincaré
inequality

T T
/ / IV(x, 1)|?dxdt < C / / IVv(x, 1)|?dxdt,
0 2 0 2

(11.2.15)
with constant C independent of €.
Estimates (11.2.14) and (11.2.15) result in

T
/ /|v(x,t)|2dxdz<C(p0+F+1)4.
0 2

(11.2.16)
Now, we repeat the same procedure for the time derivatives, namely, we differentiate

the Eq.(11.2.1) with respect to time, multiply the result by —l;, and integrate over
domain £2:

aﬂi E]D)xa—u
ot

2
le QX

dx+om/ (1—-x9
2

9 2
D(x, 8—‘;) dx = 1,1,
—hw =1 (t)+/() (E-a—u)d (11.2.17)
10 =1Iyo R2I0N il L2 2.

t) (x, t)dx, fort > §,

1 /! du
I 0(t) :/ (E/ (hVp — pv) (x, 'L’)d‘L') -V (F
Q =8
1 t
I1o(t) = / (5/ (hVp — pv) (x, r)dr) -V (F
2 0

2

ou

— ) (x, t)dx, fort < §,
ot

Ju

! ! ou 2
1 dt < h V{— dxd
/O|I(T)|T (J/+)/O/Q ‘ (at) o xdt
! 1
+ (of - F)? (/ / (—|V|2+h|Vp|2)dxdr+1).
0 Jo \4y
inequality

After integrating (11.2.17) with respect to time and using the Friedrichs-Poincaré

J,

2

dxéC/
2

ou

2

dx,
ot

ou

at

Vv

Korn’s inequality
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2
2 Q at

the evident decomposition
d
D (x, _u)
ot

3 2 2
/ D(x,—u) dx:/xs dx—i—/(l—x‘s)
o) ot I?) I?)
and the estimates (11.2.9) and (11.2.16) we have
2 t
G [ e lp (2, 2 e
5 ]D(x, at(x,t))‘ dx—l—a)L/O /.Q(l xX)
&€ au 2 &€
<@y +nC xED(x, — )| dax+ | A —=x5
2 ot 7}

Therefore

Ju 2 r
max / x° ]D)(x,—(x,t)) dx+/ /
0<t<T J Jt 0 Jo

The last estimate, the estimate (11.1.1), and Korn’s inequality imply

2

a
u dx,

vV —
at

2
dx,

>(+5)
ot

8 2
D (x, —u(x, r))‘ dxdt
at

°(3)
ot

2
dx) +C(pf P

2
dxdt < C (pf F+ 1)°.

(11.2.18)

Ju
vV
ot

max / |Vv(x, t)|2dx < C(pS’F + 1)6. (11.2.19)
0<t<T J

The estimate (11.2.11) for the pressure p follows from Eq.(11.2.1) as an estimate for

the bounded linear functional acting in the space L, ((0, T); W21 (.Q)) in the form

/ PV - o dxdr = / (PO@) : D, ¢) + (D) oyF - @)dxdr,  (112.20)
Q2r 7

and the estimates (11.2.8) and (11.2.18).

As the last step we pass to the limit as § — 0. We do that in the integral identity
(11.2.20) and in the integral identity

/ (p (% +v- vw) —hVp - vw) dxdt = —/ P\ () (x, 0)dx,
2r ot 2
(11.2.21)

with arbitrary smooth functions ¢ and . The functions ¢ and 1 vanish at S and the
function v vanishes att = T.
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Estimates (11.2.8), (11.2.9), and (11.2.11) guarantee the inclusion
90(s,h) R
LD ¢ 1,(0.1): Wy (@)

and the uniform boundedness in L, ((O, ), Wy ! (.Q)) with respect to §, i, and ¢.

On the basis of these estimates, the above mentioned inclusion, and the well-
known compactness results [68], we may choose some subsequence from {§ > 0},
such that the sequences

aU((SYh)

B ] » (Ve ) and {Voi '}

pe.mt {Vag [V

converge weakly in Ly (§27) and L, (£27) as § — 0 to the functions

. Vugy, V——, vy =Eg: | ——=) and Vp
Py () ot (h) 2\ 5, (h)

correspondingly, and the sequence {o(s,5)} converges strongly in L,(£27) as § — 0
to the function p(y).

Passing to the limit as § — 0 in the integral identities (11.2.20) and (11.2.21) we
conclude that the limiting functions {u), pa), Pay} are the weak solution to the
approximation problem

V- (P9Wp)) — Vow + o F =0, V- up =0, (11.2.22)
% Voo = hA 11.2.23
S F Yo - Vea =h o, (11.2.23)

completed with the initial and boundary conditions (11.2.3).

Finally, to prove Theorem 11.1 we have to pass to the limit as # — 0 in (11.2.3),
(11.2.22), and (11.2.23).

To do that we derive the main a priori estimate.

Lemma 11.3 The solutions {py, Wy, pawy} of the problems(11.2.22), (11.2.23),
and (11.2.3) satisfy the estimates (11.2.8), (11.2.9), (11.2.11) and the estimate

/ IVVay (X, 1) — Vv (X, 12)[2dx < Clty — t2|%, (11.2.24)
Q

with constant C independent of h and ¢.

Proof As before, we omit for the moment the index A. It is clear, that we have to
prove only the estimate(11.2.24). In the same way as in Lemma11.2 we get the
following integral identity
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aﬂi/ xfD (x, a—u(x, t)) D (x, (X)) dx = L (1), (11.2.25)
dt Jo ot

where
. ou
L) = —le/ (I -x5D (X, —(, I)) : D(x, w(X))dx
o ot

oF
+/Q (hVp — pv)(x, 1) - V(F(x, z).cp(x))dx+/9p(x, ) (E(x, l)-(p(x)) dx.

This last integral identity holds true for any solenoidal function ¢ € Wé (£2).
After integrating the right-hand side of (11.2.25) over the interval (¢, t;) and
using the estimates (11.2.8), (11.2.9), and (11.2.11) we arrive at

Z Z du
/Ilz(t)ldtéC/ IIhIVpI+|V|+‘VE‘+1|I2,9(t)dt||V<p||z,n
n

5l

1
<Clh—nl2|Velze.

Therefore,
. ou 1
x Dz, m :D(x, )dx < Clt1 — 1212 |Voll2, 2.
Q t
where ~
E)u_ u(xt) Bu(Xt)
ar ar Y oY

In particular, for

p=Vv=v(x,n)—-vx1), |Velhe <C, V1,1, €(0,7),

and 5
/ XEID)( , _u) : ]D)(x, V)dx <Cly— tzl%.
I?) at
But, by the definition of the extension v
0
Xg]]])(x, V) = x°D ( , _u) .

Thus,

ou ou ou 1
D x, — ) :D(x,— )dx = D(x, — ) : D(x,V)dx < Clt; — 1]2.
oo () 2 (5 ae= [om (v 57) s 9 <l
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The statement of the lemma follows now from the last estimate, estimate (11.1.1)
and Korn’s inequality.

Lemmas 11.2 and 11.3 permit us to find some subsequence from {4 > 0}, such
that the sequences

9
{Dx.ug)} [XsD (x, g(th))] vl {Dx.vw)}. P} and {pan)}

converge weakly in Ly (£27) and L, (§£27) as h — 0 to the functions

ow®

D(x, w), x°D (x, 7) ve, D(x,w"), p° and p°

correspondingly [68], and the sequence {v(;)} converges strongly in L(£27) as

8 &
h — 0 to the function v¥ = ngs ( ;‘; )

In fact, to prove the last statement we fix the countable set (t(k)),fi 10 which is
dense in (0, T') and choose the subsequence from {# > 0}, such that the sequences
{Vviy (X, t)} converge weakly in Ly(£2) as h — O forall k = 1,2,3,.... That
is possible due to the estimate(11.2.11) and the standard diagonal procedure. The
last fact and the estimate (11.2.24) guarantee the weak convergence in L, (£2) of the
sequences {Vv, (x, 1)} for all € (0, T). Now we apply the completely continu-

ous imbedding of W% (£2) into L»(£2) (see [68]) and conclude that the sequence*
{vi (x, 1)} converges strongly in L, (£2) for all # € (0, T). The limiting procedure
in the integral identities (11.2.20) and (11.2.21) as h — 0 proves the statement of
Theorem 11.1.

11.3 Proof of Theorem 11.2

To prove this theorem we only have to pass to the limit as ¢ — 0 in the corresponding
integral identities (11.1.4) and (11.1.5). It is already known, how to pass to the limit
in the convection term p° - v® in (11.1.4). The limit in (11.1.5) and in the continuity
equation repeats the same procedure as in Chap. 1.4 (proof of Theorem1.11) if we
take into account the estimates (11.1.6)—(11.1.9).
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Appendix A
Elements of Continuum Mechanics

A.1 Subject and Method of Continuum Mechanics

1. The subjects of study in continuum mechanics are physical bodies
(physical continua), having the properties of continuous media and internal mobility.
A physical continuum is a medium field with a continuous matter such that every
part of the medium, however small, is itself a continuum and entirely filled with
the matter. The property of internal mobility (or deformation) consists in translating
separated parts of the physical continuum with respect to each other, but keeping the
external form invariant.

Strictly speaking, by virtue of the atomic-molecular construction of any matter,
no such physical bodies do not exist. When we talk about a physical continuum we
suppose that the property of continuous matter is approximately true. That means
that we regard the scale of molecular process to be less than minimum scale of
interactions being studied. These scales are distinguished for different conditions.
For example, the average distance between particles (molecules) of air near of the
Earth is / ~ 107%cm, but in the atmosphere at the height of 60km it is / ~ 1073 cm
and in outer space it is / ~ 1 cm. If one considers that the lower bound of length L
on which processes are studied in these media is equal to 10 ~!, 102 and 10 cm,

l
then for all those cases we have I ~ 10 7. Therefore media in outer space can be

regarded as physical continua in the same meaning that we assume for air near the
Earth.

So the continuum hypothesis implies that a very small volume will contain a large
number of molecules. For example, V = 1cm3 of air contains N = 2.687 x 10!
molecules under normal conditions (from Avogadro’s hypothesis). Thus, in a cube
with 0.001 cm sides there are 2.687 x 10'? molecules—which is a very large number.
We are not interested in the properties of each molecule at any point x but rather in
the average over a large number of molecules in the neighborhood of the point x.
Mathematically, the association of averaged values of properties at a point x gives
rise to a continuum of points and numbers. In summary, the continuum hypothesis
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implies the postulate: Matter is continuously distributed throughout the region
under consideration because there are a large number of molecules even in
macroscopically small volumes.

Conceptually continuum media are separated into gases, liquids and solids. This is
aconditional distinction, depending on the statistical aspects of the molecular motions
in the media. For example, in gases, the molecules are far apart-having an average
separation between molecules of the order of 3.5 x 10~ c¢m. The cohesive forces
between the molecules are weak. The molecules randomly collide and exchange their
momentum, heat, and other properties giving rise to viscosity, thermal conductivity,
etc. These effects, though molecular in origin, are considered to be physical properties
of the medium itself. In liquids, the separation between molecules is much smaller
and the cohesive forces between a molecule and its neighbors are quite strong. Again,
the averaged molecular properties resulting from these cohesive forces are taken as
the properties of the medium. While air and water are treated by the same continuum
hypothesis, the effects of their motions are different due to the differences in their
molecular properties, e.g. viscosity, thermal conductivity, etc.

2. Continuum mechanics describes the global behavior of gases, liquids or solids
under the influence of external disturbances.

The concept of a physical continuum makes the powerful methods of calculus
available for the study of nonuniform distributions of physical variables and provides
an easily visualized physical model that closely approximates observations of bulk
matter. The problems of continuum mechanics are multiform.

Continuum mechanics is a foundation for the understanding of many aspects of
the applied sciences and engineering. It is a subject of enormous interest in numerous
fields such as biology, biomedicine, geophysics, meteorology, physical chemistry,
plasma physics and almost all branches of engineering.

Continuum mechanics is separated into experimental physical and theoretical
parts. We will consider only theoretical continuum mechanics.

The method of theoretical continuum mechanics consists of constructing a
mathematical model of the behavior of continuous media. A mathematical model is
a system of relationships (equations and inequalities) between values, which charac-
terize the different properties of media. Usually they are differential (finite) equations.
The initial and boundary data are added to these equations. The mathematical model
has to have the property of correctness. That means that the solutions of its compo-
nent equations have to exist, to be unique, and to be stable. For some models there
is no strict proof of correctness: in these cases one has to use the criteria of real-life
experience. Physical experiments serve as tests for the validity of a theoretical model.

After constructing a mathematical model we produce purely mathematical meth-
ods to study it. For achieve this we use analytical and numerical methods. Because of
the difficulty of solving equations in continuum mechanics there are various methods
of simplifications.

3. To understand better the physical foundations of the construction of mathemat-
ical models of continuum mechanics we firstly consider a molecular (microscopic)
description.
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Let some volume V of a continuum medium contain N molecules u; (i =
1,2, ..., N)with coordinates of position x and mass m;. The motion x; (¢) of molecule
wi obeys Newton’s Second Law

d 2X,‘

dx;
mi— =1, x(t) =x, d_tl(tO)ZV?’ (i=1,2,....N),

where f; is a force, which acts on the molecule ;. A solution of these equations
defines the position and velocity of molecule ; at any moment of time ¢. If we were
able to solve these equations we could answer any question about the behavior of
media in the volume V.

However this method is impracticable, because the number N is very large and
we do not know exactly the forces f;. Therefore in continuum mechanics we adopt
a macroscopic viewpoint: we ignore all the fine details of the molecular or atomic
structure and, for the purpose of study, we replace the microscopic medium with a
hypothetical continuum in which the basic values are replaced by average values.

To distinguish the continuum or macroscopic model from a microscopic one the
concept of the mean free path plays a fundamental role. This concept can be defined
as the average distance that a molecule travels between successive collisions with
other molecules. The ratio of the mean free path X to the characteristic length L of the

physical boundaries of interest, called the Knudsen number K,, = —, may be used

to distinguish between macroscopic and microscopic models. Based on the Knudsen
number the motion regimes are grouped as:

(a) continuum (K, < 0.1);
(b) rarefied gas (0.1 < K, < 5);
(¢) free molecular flow (K, > 5).

Regimes (a) and (b) are macroscopic models. All these regimes are encountered
in real life.

Two macroscopic theories are the most prevalent: the molecular-kinetic theory
and the phenomenological theory.

In the molecular-kinetic theory all average values are described with the help of
a theoretical probability approach. The mathematical model takes the form of the
Boltzmann equation. We study the phenomenological theory.

4. The basis of the phenomenological theory is that each point of a body V is
represented by its density, velocity and other mechanical values. These values are
defined as the limits of some average values, which are determined in the following
way. Let molecules u; (i = 1,2,...,N) from volume V have mass m;, velocity
v; and internal energy U;. With the help of these values one calculates the macro-
characteristics of the volume V:

N
M = Zm,- is the mass,

i=1
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N
K= Zm,-v,- is the impulse,
i=1

N
E = Z (U, + ml|v,| ) is the total energy.
i=1

Then
m . .
P = m is the average density,
K
Vi = m is the average velocity,
U .
U, = m is the average energy.
Here

N
U= Z(U + m,|v, V*|2) and |V| is the volume of V.
i=1

The macroscopic characteristics of the volume V can be expressed by means of
the average values:

1
=VIpe K=VIpave, E=VI(Ust She v.l?).

The hypothesis of the physical continuum allows us to give the point X the “limit”
values of its averages, for example,

p =1limp,, v=Iimv,,

where the volume V vanishes such that x € V. A mathematical model takes the form
of conservation laws that describe the changes of macroscopic characteristics with
respect to time.

We will construct the phenomenological theory of continuum mechanics as the
theory of a mathematical structure. This mathematical structure is based on the
following system of axioms.
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A.2 Basic Definitions and Axioms

1. A continuous medium is a part of physical space, changing with time. That means
that a continuous medium is a part of Euclidean three dimensional space R>, and
that time is independent of events. We use the non-relativistic Newtonian approach,
i.e. time is absolute.

Axiom 1 (Axiom of space-time)

Continuous medium is a subset of three dimensional Euclidean affine space. Time
is absolute. A Euclidean-affine space is a curvature-free space in which a set of
rectangular Cartesian coordinates can always be introduced on a global scale. It is
a linear three dimensional space over a field of real numbers R. In this space the
origin point O is fixed. Open connected sets 2 C R> are regarded as a positions
(configurations) of the continuous medium.

Axiom 2 (Axiom of mass and internal energy)

Set 2 C R3 is called a material domain (or medium) if an additive positive
function of sets M (w) is defined on it, which is called mass. It is supposed that for any
(nonempty) volume w C $2 its mass is M(w) > 0. The additiveness of mass means
that if o1 C 2, wr C 2 and w1 N wy = B, then M (w1 U w2) = M(w1) + M (w2).
Besides mass we determine another additive function of a set, which we call the
internal energy and we denote it by E;.

A medium £2 is called a material continuum, if functions M and E; are differen-
tiable on £2 and their densities (volume densities) are bounded.

The volume density of mass is denoted by p and it is called a density of media
(or simply density). The volume density of energy is denoted by pU and U is called
the specific internal energy (internal energy per unit mass). The following formula

M(co):/pdx, E,-(w):/pde

determines the connection between the additive functions of set w and its volume
density.

Axiom 3 (Axiom of material continuum)

A continuous medium is material continuum. The transition of continuous medium
from position 21 into position §2; is called its motion. The motion of a continuous
medium depends on time t, which varies in some interval (0, tg) C R. The position
of medium at the moment of time t is denoted by $2;. For all t € (0, ty) we consider
one-parametrical family of movements y; from position §2 to §2;. That means that
we have a mapping: y : 20 x (0, tg) —> $§2;. We denote y,(§) = y (&, t) for all
& €82 and ye(t) =y (&, 1) forall t € (0, 19) or we will write

Vi 20— 2, ye: (0,10) — £2;.
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Set
xeR: x=y:(r), 1 €(0,10))

is called a trajectory of point & € $29.

Axiom 4 (Axiom of movement)

For every t € (0, ty) there exists the movement y; of a continuous medium from
position §2¢ to position §2; and a mapping y; . §20 —> $2; is a homeomorphism; for
all points & € $2o the mapping ye : (0, t0) —> $2; is a continuous and piecewise
continuously differentiable function on (0, ty).

This axiom allows one to postulate a point of a continuous medium.

A material point (or particle) of a continuous medium is called a point x =
y(&,1) € £2;, which is obtained as a result of movement of the fixed point £ € 2.
Every particle describes in R? the trajectory of this point.

A set of points which consists of the same particles for all ¢ € (0, fg) is called a
material volume w;. By virtue of axiom 3 for all £ € §2 and all (except maybe for

ad
a finite number) values ¢ € (0, #y) there exists a derivative a—);(é, 1).

d
A derivative 8—7:(5 , 1) is called the velocity of point & € £2¢ and it is denoted by

_ 2 .0
v_atyg, '

2. Let F be either a scalar or vector or tensor function of position x and time ¢,
representing some physical property of the movement. There are two ways to describe
afield F in the moving continuous medium. The first one is called Eulerian. It consists
of giving a value of field F at the position  as a function of x € R? and time ¢ € (0, 1),
i.e. it has a value F(x, t).

The second way is called Lagrangian. In this case the given field is considered
as a function of each particle £ € £2( at the moment of time t € (0, 7). Let it be

0 0
F (&,1). The functions F(x, t) and F (&, t) are connected by identity
0
F(x,1) =F (§,1). (A.2.1)
There are two possible time derivatives:

0
oF JIF

—(x,t d —(&,1).
at(x ) an BI(E )

oF
A value — (x, 7) is the rate of change of field F' measured by an observer stationed
at the fixed point x € £2; and it is a local time variation of F.
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0
] 0
On the other hand, —F (&, 1) is arate of change of F (&, ) measured by an observer

moving with the particle. The differentiation (A.2.1) with respect to time gives

0
oF OF dr dF

= —+4+VF.-v=—.
ot at + v dt

A value — is called a total derivative (material or substantial derivative, or the

derivative following the motion).
In particular, if F = x = y (&, t) we obtain the formula for the definition of

velocity
d

oy X

V= —(§,1) = —.

ot €. dt

Coordinates (&, t) are called material or Lagrangian coordinates and (X, t) are
called spatial or Eulerian coordinates.

The difference between these descriptions is crucial. For example, if the field of

a vector of velocity is known in a Lagrange description, i.e. we have a vectorial

.0 . . .
function v(§, ), then we can find trajectories of particles (and that means we can
find the movement of the continuous medium)

"o
x=§+/ v(&, T)dr.
0

And if we know a field v in a Eulerian description (meaning that we have v = v(x, 1)),
then the same problem of determination of trajectories gives us the Cauchy problem
for the system of ordinary differential equations

dx
dt
In spite of the simplicity of the first problem a Lagrangian description is not always
convenient. In particular, the main differential equations of continuum mechanics
are simpler as Eulerian description.
In the Eulerian description a map y : £29 x (0, #9) —> £2; is obtained as a solu-
tion of the Cauchy problem (A.2.2). If the vectorial function v(X, #) is continuously

0x
differentiable, then for such solution there exists the Jacobian J = det(a—). For the
Jacobian we have a kinematic formula, known as Euler’s formula:

i

—=JV.v.
dt v
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3. In addition to the main numerical characteristics of material media (mass and

energy) there are the following additive functions of the set w C £2:
(i) linear momentum:

K(w):/,ovdx,

(i1) angular momentum:

H(w) = / P (X X v)dx,

Ey(w) = /

E(w) = Ex(w) + Ei(w).

(iii) kinetic energy:

o Iv|? dx,

N =

(iv) total energy:

The changes of these magnitudes under movement are the result of force and energetic
changes in the volume w. These actions are realized with the help of new magnitudes:
resultant force F(w), resultant moment G(w) and power N.

If we take these magnitudes for a fixed moving material volume «y, then they
will be only functions of time ¢. A following axiom determine the relations between
them.

Axiom 5 (Balance and poise)
For arbitrary moving material volume w; and in any time t € (0, ty) we have

d d
EM(Q)[) =0, EK(wt) = F(wy),

d d
EH(CUz) = G(wy), EE(wz) = N(wy).

Sometimes this axiom is called the hardening principle, because these equalities are
fulfilled for the movement of rigid bodies.

3. Further, we have to specify the right-hand sides in the formulae of Axiom 4. At
first we define the concept of resultant forces. We will consider two types of forces
which act on a material volume w:

(a) body forces,
(b) surface forces.

The body forces are forces of an extensive character acting on the bulk portions
of the continuous medium and arise from some external cause. Examples of external
causes are the force of gravity, forces of electric and magnetic origin acting on a
continuous medium carrying charged particles, etc. The body force is proportional
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to the volume of a continuous medium and therefore it is expressed as a force per
unit volume.

An additive vectorial function F, having a density (body force per unit mass) is
called an external body force. If we denote the body force per unit mass by the symbol
f(x, 1), then the body force per unit volume will be p f. Therefore, the external body
force acting on the volume w is given by formula

Fe(a)):/,ofdx.

And the moment of external body force acting on any material volume w is defined
by the formula

G.(w) = / o (x x f)dx.

Surface forces are forces of an intensive or local nature. They arise from mechan-
ical interaction between contiguous portions of continuous media. To explain the
phenomena from a continuum point of view, we consider two adjacent portions of
continuous media separated by an imaginary surface drawn between the media.

At the separating surface there exists a direct mechanical contact between the
particles of the media on the two sides of the surface, giving rise to forces of action
and reaction. If the continuous medium on one side is imagined to have been replaced
by the force system which it has produced, then at each point of the imaginary surface
there will be a force vector.

An internal surface force acts on a volume w only through its surface dw. In order
to define it we consider cross section X' of £2 by some plane dividing §2 into two
parts £21 and £2;.

The additive vector-function F; of sets o C X is called an internal surface force
acting through a cross section X' from the side £2> on the £2;.

Axiom 6 (Of internal surface forces)
An internal surface force is defined for any cross section X of §2 and it has a
density (surface ) on X.

Remark This axiom is named the Cauchy Stress Principle and it asserts the exis-
tence and differentiability of this force.

Let n be a local outward drawn unit normal vector of X directed on the side of
£2> (positive side of £21). We denote the density of the internal surface force by p,,.

A vector p,, is called the stress vector of surface forces acting on §2; through the
area with the normal n.

And for o C X the force, which acts on part 2 from the side of part £2, through
an area o is equal to

Fi(G)Z/pndG.



392 Appendix A: Elements of Continuum Mechanics

The value
Fi(w) = / p,do
Jw

is called the internal surface force acting on volume w C 2 from the side of £2.
Here n is positive outward drawn unit normal vector to the surface volume w.
The value

Gi(w) = / (x X pu) do
Jw

is called a moment of internal surface force, acting on the volume w.

Axiom 7 (Of forces and moments)
The (main) resultant force and resultant moment, acting on any material volume
w C $2 is given by the formulae:

F(w) = F;(0) + Fo(0) = / pydo + / o tdr,
dw w

G(w) = Gj(w) + G.(w) :/ (X x pp) do +/ p (x x f)dx.
Jw %)

4. In contrast to forces and moments, acting on the volume w, the power, brought
into the volume w, depends not only on the forces acting, but also on the heat output
and on external heat sources. So, an additive scalar function Q of sets 0 C X is
called a heat output through area X from the part £2, into £2;.

Axiom 8 (Of heat output)
A heat output is defined for any cross section X of §2 and it has a density (surface
density) on X. The surface density of heat output is denoted by g, and the value

Q(o) =/qnd0

gives the heat output from the §2 into 21 through the area o C X.

The value

Qw) = /a gndo

is called the heat output into volume @ C £2 from the domain §2 \ ®. Here n is a
positive outwardly-directed unit vector normal to the volume surface dw.

Axiom 9 (Of energy transfer)
The power N(w) passing into any volume  is equal to

N(w) = Ne(w) + Ni(w) + Q(w) = /

w

,O(V'f)dx—i-/ V- pndo +/ gndo.
Jw Jw
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We can summarize the previous axioms and definitions as the following classical
mathematical model of moving continuous media.

Mathematical model (M) (Integral conservation laws)
In a moving continuous medium for any moving volume w, C $2; and at any
moment of time t € (0, ty) the following equalities hold true:

d
— dx =0,
dt w,px

d
—/ pvdx:/ pnda—i—/ of dx,
dt [on dwy wy

d
—/ p(XXV)ydx = (xxpn)do—l-/ p (x x f)dx,
dt wy Ion

Wy
d 1,
£ - U)d -
arz/w,p(zMJr g

Each of these equalities is called the conservation law of the corresponding mechan-
ical value: conservation law of mass, conservation law of linear momentum, conser-
vation law of angular momentum, conservation law of energy.

Finally, we may formulate the following definition:

A moving continuous medium is an object satisfying the Axioms A1-A9. The
mathematical model consists of four conservation laws.

(V'pn)do+/

Wy

p(v~f)dx+/ gndo.

dwy dwy

A.3 Continuous Motion

1. The main functions (magnitudes) related to a moving continuous medium: density
p, specific internal energy U, velocity v, stress p,, with a normal vector n, a density
of heat output ¢,, and a density of external body forces f, will be further considered
using a Eulerian description. This means that these functions are functions of (x, #) in
adomain W € R* (x, t). The magnitudes p,, and g,, depend on the unit vector n € R3
(point of a unit sphere S1) and therefore they are given on the product W x Si.

At first we study a class of movements of continuous media where the main
magnitudes are sufficiently smooth functions.

2. A movement of a continuous medium is called continuous in a domain W if
the functions p, U, v, py, ¢, are continuously differentiable functions in W, the
functions p, and g, are continuous in W x Sy, and the function f is continuous in W.

3. Let us consider the derivative

dl d/ Fd.
Z1== ',
dt dt wl'o

where the function F(x, ) is continuously differentiable and the movement of the
continuous medium is continuous. In order to calculate this value we perform a
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transition to the Lagrange system of coordinates x = y (&, #). The integral has the
form

0 0 0
1:/ P (E.1)F (5.1 ] (€. 1)dE.
()

By virtue of the Theorem of Real Analysis we can replace the integral and calculate
the derivative

ti= [ S(PEniendEn)

dt Ju, 0t ’ ’ ’ '

On the strength of Euler’s formula

%(3 EDFEDT €n) = %(pFJ) =J(%(pF> +pFV V),

we obtain
/J(i(,oF)—F,OFV-V)dS:/ (i(pF)+pFV'V)dx
wy  \di o, \dt
and
d/ Fdx—/ (d( F)+pFV V)dx (A3.1)
dar ), e T ' o

4. For F = 1 one has

d/ d /(dp+ v )d 0
— X = —_— -V X = U.
dt wtp o, \dt p

Because wy is an arbitrary volume then by virtue of the Theorem of Real Analysis

dp
- V.-v=0. A3.2
7 +poV-v ( )

This equation is called a continuity equation. It is equivalent to the mass conservation
law in the class of continuous motions.
The continuity equation permits the simplifying

d Fd / dFd (A.3.3)
— X = — ax. .
dt w,p wtp dt

5. By virtue of (A.3.3) the equation of linear momentum takes the form

d
/p—vdxz/ pnda—l-/ pfdx.
wy dt dwy o

The last formula implies
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Theorem 1 (The first fundamental theorem of continuum mechanics)
There exists a tensor field of second order P in W such that for all (x,t) € W

p. = P(n).

The tensor PP is called a stress tensor.
Using the Gauss-Ostrogradsky Theorem, we have

/ pndoz/ V - Pdx.
dwy wy

Hence, the equation of linear momentum is reduced to

/ (,o%—V-IP’—pf)dx:O.
W

For a continuous motion the integrand function is continuous. Since this equation
is valid for any volume w;, we get the differential form of the conservation law of

linear momentum 4
pd—:=V~P+pf. (A3.4)

In the same way we may consider the angular momentum equation and prove

Theorem 2 For a continuous motion the conservation law of angular momentum
equation is fulfilled if and only if the stress tensor P is a symmetric tensor, i.e., P = P*,

6. For a continuous motion the conservation law of energy is reduced to the
equation

d /1
/ (,0 —(—|v|2 + U) VPV —p(v- f))dx =/ gndo.
wr dr \2 day
This representation for g, gives

Theorem 3 For a continuous motion in W there exists a vector field q in W, such
that for all (x,t) € W
qn = —q-n. (A3.5)

Vector q is called a heat output rate vector (or heat flux).

Introducing the heat output rate vector allows the transformation of the surface
integral into the volume integral:

/qndaz—/ q~ndc7=—/ V - qdx,
dwy dwy dawy



396 Appendix A: Elements of Continuum Mechanics

and the conservation law of energy becomes

d /1
/w’ (pE(E|V|2+U) — V- (P(v)) —,0(V~F)+V-q)dx=0.

For a continuous motion the last equation is equivalent to

d 1
p(FVP+U) = V- (BW) +o(v-F) =V q.

We simplify this equation using the relationships

d - dv
—|v|"=2v. —,
dt dt

V- (Pv)=v-(V-P)+P: (D, V),
where D is a rate-of-strain tensor
2D(x, v) = Vv + (Vv)",
and differential equation (A.3.4):

dUu
'OE =P:Dx,v)—V-q. (A.3.6)

This equation is called an energy equation (or heat flux equation).

Thus, for an arbitrary continuous motion of a continuous medium described by
model (M), there exist continuously differentiable fields of a symmetric stress ten-
sor P and a vector of heat output rate in which the integral conservation laws are
equivalent to the system of differential equations

P L ov.v=0
_ cv=20,
dt p

dv
— =V.P f,
pdt +p

du
— =P:Dkx,v) —V-q.
P (x,v) q
This system of partial differential equations is called the model (M>) of continuous
motion of continuum mechanics. If we assume that the body force is prescribed, then
the model (M>) consists of five independent (scalar) equations involving fourteen
unknown variables, namely, p, v, P, U, q.
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A model is called closed if the number of unknown variables is equal to the
number of equations in the model. And so, we have the problem of closing the model
(M>). This problem has to be solved on the basis of an additional information about
continuous media.

A.4 Elements of Thermodynamics

1. Thermodynamics studies the relations between the heat energy and other kinds
of energies and gives (reciprocal) formulae to convert of one kind of energy into
another. For example, if a body is heated, then strains and stresses are developed.
Conversely, if a body is strained rapidly, then heat is generated inside the body.
The main concept of thermodynamics is the physical body state. A phenomeno-
logical description of the state is given with the help of various functions called
state variables. For example, as mentioned before, the density p (or specific volume

1 i . .
V = —), the internal energy U are parameters of the state of a continuous medium.

Also the absolute temperature 6 > 0, specific entropy S and pressure p are basic
state variables.

Letz = (z1, 22, . . ., zx) be a set of the main state variables of continuous medium:
other state variables are functions of these variables. Such a medium is called a
k-parameter medium.

Each point z characterizes the state of the given continuous medium and we briefly
call this point the state (of the medium). Usually, the set of all such points (a space
of states) form some manifold Z. Suppose that in the space of state variables Z we
may choose a path (oriented curve) zW, z@), which provides a change of variables
from one state z(I) to another state z®). These paths (changes of states) are called
processes. If for a process from z(!) into z®) there exists a process from z? into zV
then such a process is called reversible, otherwise it is called irreversible.

2. Generally speaking, the heat O, which is the energy of the chaotic motion of
molecules, is not a state variable. This heat Q, obtained by the medium after a change
of state from z'1 to z® via process /(z(1), z») depends on this process.

Let us consider all states z’ in some small neighborhood of the state z. Then for
smooth processes [(z, Z') one has

k
dQ =" Bu(@)dzn,
m=1

where dz,, = z,, — zm. In this representation the quantity Q depends on the process,
if the right-hand side of the formula is not a total differential. But one may prove
that there exists a state parameter 6 (temperature), such that for reversible processes

d
the quotient 7Q becomes the total differential of another state parameter S. This
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function is called entropy. Entropy is regarded as a measure of change of energy
dissipation with respect to temperature and defined as

S —§= / 99
Izz) 9

for any reversible process [(z, ).
3. The first law of thermodynamics states that the equality

dQ = dA + dU

always holds true, expressing the energy conservation law: if some physical body
receives heat dQ, then this body will do mechanical work dA, and its internal energy
increases by dU.

The second law of thermodynamics is based on the concept of entropy associated
with irreversible thermodynamic processes and states that

0ds > dQ

for irreversible processes and
0dS = dQ

for reversible processes.

Axiom 10 (Thermodynamics axiom)
For a continuous medium the first and the second laws of thermodynamics apply.
Thus, for reversible thermodynamic processes the basic thermodynamic identity

0dS = dA + dU

holds true.

4. Heat fluxes from one part of a continuous medium to another part are described
empirically by Fourier’s law, expressing the very simple fact that these fluxes are the
results of differences of the temperature in different parts of the medium.

Axiom 11 (Fourier’s law)
The heat flux is proportional to the temperature gradient:

q=—»V0. (A4.1)
The coefficient of heat conductivity s« is always positive. In models of continuum

mechanics it is considered as a known function of other state variables. Therefore,
the energy equation has the form

du
por =P:iD+ V- (VE). (A4.2)
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A.5 Some Classical Models of Continuum Mechanics

1. Differential equations of mathematical model (M) are universal, that is, they are
valid for all continuous media. On the other hand, all additional relations (axioms),
that we have to formulate to close the mathematical model (M>), depend on the
given continuous medium. For example, for highly mobile continuous media, such
as liquids or gases, the stress tensor depends on the rate of strain tensor and indepen-
dent thermodynamic state variables. We do not formalize the derivation of a closed
mathematical model of liquid or gas, and assume that this relation is linear:

P=2uD(x,v)+ (—p+vV-v—y(6 — )L (A5.1)
The scalar invariants . and v depend on the thermodynamic state variables and they
are called the first (dynamic) and second (volume or bulk) coefficients of viscos-
ity, respectively, and are supposed to be given. The quantity 6y is a given average
temperature.
Axiom (A.5.1) allows one to calculate
P:Dx,v)=(—p—yd)V v+,
where the function
@ = 2uD(x, v) : D(x, V) + v(V - v)?
is called the dissipation function, and for the constant viscosity p
V-P=pAv—Vp+ @+ w)V(V-v) -y Vi
To complete the model we postulate the basic thermodynamic identity
vdS = dU + pdV. (A5.2)
The last identity is more conveniently written in the form
d¥ = Vdp — SdY (A5.3)
for the thermodynamic potential
v =U+pV—-19S,
which is supposed to be a known function of variables p and @.
Using the thermodynamic identity (A.5.2) and the continuity equation, we make

another simplifying transformation. We express the material derivative of the internal
energy as a similar derivative of the entropy:
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 _ dS AV dS pdp _ odS o
_— = _— _— = _ _—— = _— - V.
Par TP PP TP T o T !

Thus, we finally obtain the classical model M3 of fluids and gases

d
d—f+pV~V=0,
dv

— =V.P+pF,
P +p

P=2uD@, v) + (—p+v(V-v) =y (0 —6p))L,

pﬁ% =V - (54 VO) — y9(V - V) + Py,

& =21 (D(x, V) : (D(x, V) + v(V - V)%,
J—17 v

U=w@®p, V=-=— S=——1)
(¥, p) o= ™

(A5.4)

where the function ¥ (p, ¥) is supposed to be known.

Of course, the exact mathematical model M3 is too complicated, so in practical
applications one usually uses a different simplified submodel.

First, we consider the isothermal model, where the stress tensor does not depend
on the temperature (yy = 0). In this case the system is decoupled, that is, the equations
of motion are solved independently of the heat equation.

The next simplification is the assumption that the medium is incompressible. That
is p = po = const. Otherwise we say that the medium is compressible.

The incompressibility assumption, and the assumption @ = const essentially
simplify the original model Mj3. The mathematical model obtained is My

V-v=0,
dv (A5.5)
po—— = nAV = Vp+ poF,

ar
called the Navier-Stokes equations.
Finally, the most simple model is a linearization of the Navier-Stokes equations
in a state of rest, when the material derivative of the velocity is approximated by the
partial derivative in time of the velocity:

V-v=0,
ov
PO =pnAvV—Vp+ poF.

(A.5.6)

This mathematical model M is called the Stokes equations.

Coming back to the full non-isothermal model M3 we consider its linear approx-
imation, which is called the mathematical model Mg of a weakly compressible ther-
mofluid. In this model the density of the liquid is approximated by a linear function
of pressure, and the left hand-side of the heat equation, containing the material deriv-
ative of the entropy, approximated by the partial derivative of the temperature with
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respect to time, and in the nonlinear term on the right hand-side of the heat equation
the temperature ¢ is replaced by its mean value ¥y:

o 1 ds 8
p~pp+—5P—po) pO— ~cpp—, UV-V~DV-v, & ~0,
o dt ot

where p is the atmospheric pressure, ¢¢ and ¢, s are the speed of sound and the
specific heat capacity correspondingly in the liquid in consideration and pfo is the
mean dimensionless density of the liquid.

With these assumptions the model M takes the form

ap

Jt
)

o5 =V B+ fF,

P=2uD(x, v)+ (—p+v(V-v)—y(0 — 6p))L,

v
Cp.f E =V. (%fVl?) -V 190 (V . V).

+p19c]2V-V:0,

(A5.7)

2. As a rule, a mathematical model describing the behavior of an elastic solid
medium is considered in Lagrangian coordinates. The modeling of such a medium
is based on the following postulate: the stress state of the medium is determined by
the strain tensor and, possibly, the temperature. Of course, a similar construction
is also possible in Eulerian coordinates. These non-linear mathematical models are
very complicated and the most natural way to simplify the models is the method of
linearization. This method is based on the assumption of the existence of an equilib-
rium state, when the movement of the medium is equal to zero and the assumption
that small perturbations of the medium lead to small displacements. Mathematically,
these assumptions are equivalent to assumptions of the existence of stationary solu-
tions and their stability with respect to small perturbations of the incoming data.
Under these assumptions, the original mathematical model is reliably approximated
by its linear version. As might be expected, linear versions of models in the Lagrange
variables match those in Eulerian version. Since the main purpose of this book is to
simulate the joint motion of solid and liquid media near the equilibrium, then as the
basis for the description of deformable solids we take the Euler description and mod-
ification of the axioms of thermodynamics (A.5.2), as formulated in the preceding
paragraph for liquids and gases:

d¥ =Vdp — Sd9, W =U+pV —9S.

A continuous medium is called a deformable or elastic solid body, if the stress tensor
is determined by the axiom

— =2AD(x, V) =\ — +vs—

AS.
dt dt dt (A58)

daP (dp dz?)ﬂ.
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Thus, the mathematical model M; of a deformable elastic body is described by a
system of differential equations

dp

— 4+ pV.-v=0,

o7 +poV-v

d

pd_: = V.P+ pF, (A.5.9)
au

por =P (Dx, V) + V- (3cVD),

completed by Eq. (A.5.8), defining the stress tensor, and equations

G128 12 B:1'/
U=¥ —p——0—, —=

-=—, (A.5.10)
ap v p ap

where the function ¥ (p, ¥) is a known function of its arguments.

As in the case of models of liquids and gases, we consider an approximate model
of a deformable solid body, based on linearization of the original nonlinear model.
First, we linearize the constitutive equation (A.5.8), writing it in the form

P p
=D, v) — (— .—)]1.
ot . V) ot T ot

Next we define the displacement vector w by the formula

_8W
oo

Then the linearization of (A.5.8) takes the final form
P =2\AD(x, w) — (p + ysz?)]l.

In the same way as before, we arrive at the following form of linearization of the
model M7 in a state of rest:

op 02 ow
E—F,OSCSV'V:O, V:E,
av
p?E = AAW — Vp — y, V9 + pOF, (A5.11)

v
Cp,s E =V. (%S‘Vﬁ) — Y90 (V-v),

where ¢; and ¢ ¢ are the speed of sound and the specific heat capacity in the solid
under consideration and ,o? is the mean dimensionless density of the solid.

We call this system a model Mg of the linear thermoelasticity.

For y; = 0 the dynamic equations
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a 0
—p—i—pgchw:O, V= —w,
o o1t (A5.12)
'O‘?E = 1AW — Vp + pF
becomes independent of the heat equation
av
Cps 5o = V- (54 V0). (A.5.13)

We call the system (A.5.12) the Lamé equations of linear elasticity.

A.6 Shock Relations

1. It is easy to see the integral laws of conservation of the mathematical model M[; of
moving continuous media can be written in the form of an abstract scalar conservation

law 4
—/,oudx+/ X~nd0=/de (A.6.1)
dt w dw w

for any individual volume w.

For example, for the vector law of conservation of momentum, where v =
vi,v2,v3), P = (Py), i,j = 1,2,3 and F = (Fy, 2, F3), the equation for
the first component of the velocity vector has the form (A.6.1) with u = vy,
X = (=Pq1, —=P12, —P13) and Y = pF.

A characteristic feature of such a description of the motion of a continuous medium
is a minimum requirement of the smoothness of the basic variables describing the
motion of a continuous medium, namely, the model requires only the summability
of all terms of the model variables. There may be other equivalent formulations
of the model of moving continuous media. But, before formulating an equivalent
mathematical model, let us for the moment come back to the continuous movement
of a continuum. As above, each of the differential equations of mathematical model
M, can be written in the form of an abstract scalar equation

d
,Od—l: +V.X=7. (A.6.2)

If we use an equivalent form of the continuity equation

9 £9 . (ov) =0
—_ -(pv) =0,
ot P

then the Eq. (A.6.2) can be rewritten as
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a
E(pu) + V- (X+puv) =Y. (A.6.3)

Coming back to the model M, we see that one of its equivalent forms is the following

% v (v =0

- . v) =0,

ot P

P

—(pv) + V- (pv®@ Vv —P) = pF,
ot (A.6.4)

%(p(U + %IVIz)) — pF-v

I
—_v. (pv(U+ SV = 90 —]P’~v),

where a ® b denotes the tensor, which is defined for any two vectors a and b so that
for any vector ¢ the action of the tensor a ® b to the vector ¢ is given by the formula

(a®b)(c) =a(b-c).

Now we go back to the model M of moving continuous media. To do this, we
multiply Eq. (A.6.3) by an arbitrary smooth function ¢, compactly supported in W
(i..e, equal to zero outside some compact set lying strictly inside the domain W) and
integrate over the domain W. Then use the Gauss-Ostrogradsky Theorem of and pass
the differentiation from the functions « and (F + uv) onto the function ¢:

/ (pu%—(f + Ve (X+ puv) + Y(p)rdxdt —0. (A.6.5)
w

The integral identity (A.6.5) holds for all continuously differentiable functions g,
finite in the domain W, and it is obviously equivalent to the integral identity (A.6.1).

Thus, an equivalent form of the mathematical model M[; of moving continuous
media has the form:

o _
/W (pa + Vo - (pv))dxdt =0,

/ (,OV-%-FD(X,I//):(,OV®V—]P’)+pF~Iﬂ)dxdt=0,
w

at
9§

1 2
/W (o(v+ SIVP) 5+ oF - vé ) dvdr

(A.6.6)

_|_/ VE - (pV(U + l|v|2) — Vo —-P- v)dxdt =0,
W 2

where arbitrary scalar functions ¢ and £ and an arbitrary vector-function ¢ are
continuously differentiable and compactly supported in the domain W.
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2. There exists another equivalent form of the mathematical model M, namely,
let us integrate the Eq. (A.6.3) over an arbitrary domain G C W with the Lipschitz
boundary I":

9
/ (—(pu) +V - (X puv) — Y)dxdt —0.
G \ot

Next we use the Gauss-Ostrogradsky Theorem and get

/ (pu(l+v)+X)-vdF: / Ydxdt, (A.6.7)
r G

where 1 is an unit vector of the time axis, and v is the outward unit normal vector to
the surface I".

Equation (A.6.7) for the arbitrary domain G C W is equivalent to identity
(A.6.5) for the arbitrary function ¢ and both of these equations are equivalent to
the Eq. (A.6.1) for any individual volume w.

Recall that in the identity (A.6.7) I" is the three-dimensional hypersurface of the
four-dimensional space-time and the unit outward normal v to the surface I" is a
four-dimensional vector:

v = (v1, V2, 13, V4),

and
v-l=v4, v=(,v2,v30).

Now, using Eq. (A.6.7) let us derive one more equivalent form of the mathematical
model M :

/p(l+v)~vdF:O,

r
/(,ov®(l+v)—]P’)-vdF=/,oFdxdt,
r G

/F (p(U+ 5VP)A+v) ~B-v = 59) -var

= / PF - vdxdt,
G

where identities (A.6.8) hold true for any four dimensional domain G C R x (0, 1o)
with the Lipschitz boundary I".

(A.6.8)

Definition A.1 The motion of a continuous medium is called generalized motion,
if the functions p, U, P, v, ¢ are bounded measurable functions of the independent
variables (x,t) and for them integral relations (A.6.8) are satisfied for any four
dimensional domain G € R? x (0, fo) with the Lipschitz boundary I".
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3. The mathematical model My of moving continuous media is too complicated for
analysis and so far there is no strong result for the generalized motion of continuous
media. Therefore, the study of more simple sub-models of the model M is very
important. One of these sub-models of the model M is the mathematical model My
of generalized motion with a strong discontinuity.

Let motion be considered in the domain W C R3 x (0, #9) where this domain is
divided by some smooth surface IT C R3 x (0, tp) into two domains Wy and W,.

Definition A.2 The generalized motion of a continuous medium is called a motion
with strong discontinuity if in each domain W and W, the motion is a continuous
one and the functions p, U, P, v, ¢ have continuous limit values on the surface IT,
which are, generally speaking, different for W; and W>.

In this case the hypersurface I7 is called a surface of strong discontinuity.

By definition, in each of the domains W} and W> the differential equations (A.6.4)
hold true. It turns out that the main characteristics of the motion satisfy additional
relations on the surface of strong discontinuity /7.

To derive these relations, we consider an arbitrary domain G C W with smooth
boundary I'.Let G| = GNW| # 0,G> = GNWy 3, I = 'NGy, b = 'NG,
and y = G N I1. We apply the identity (A.6.7) for each of the domains G, G| and

G2:
/(pu(l+v)+X)~vdF=/ Ydxdt,
r G

/n (pu(l+v)+X)~vdF+/

14

/1‘2 (pu(l+v)+X)-vdF—/

14

(,01141(1 +V1) —i—Xl) -vdy =/ Ydxdt,
Gy

(,ozuz(l + V2) + Xz) -vdy =/ Ydxdt,
G

where v is the unit normal to the surface y, p1, u1, vi, X1 02, u2, v2, Xo are the limit
values on the surface y from the domain G and from the domain G, respectively.
Since

/F (pu(H—v) +X) -vdIl'
=/F (pu(l+v)+X)~vdF+/F (pu(l+v)+X)~vdF,

then subtracting from the first identity the last two identities we obtain

/y (p1u1(1+V1) +X1) -vdy =/ (pguz(l—l—vz) +X2) -vdy

14

for an arbitrary subset y € I1. Hence
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(,olul(l + Vl) + Xl) = (,ozuz(l + Vz) + Xz) -V

for all (x,¢t) € II.
The last equation can be written as

[pu(l+v)+X]-v=0, (x,1) €Il (A.6.9)
Here [ ] is a symbol of jump of the function ¢ at IT:

[l =1 — @2,

where ¢ and ¢; are limit values of the function ¢ from different sides of the surface
II.

The condition (A.6.9) gives us the missing relations on the surface of strong
discontinuity, completing the mathematical model My of generalized motion with a
strong discontinuity:

[p(1+V)]-v=0, 1) ell,
[pve(+v)—P]-v=0, xnell (A.6.10)

[p(U+%|V|2)(l+V) —P-v—xV¥]-v=0, (x,1)e€ll

Conditions (A.6.10) are called shock relations.

Note that we may get the same differential equation (A.6.4) and shock relations
(A.6.10) if, as the basic equations of the generalized motion of the continuum, we
use Eq. (A.6.6).

4. Shock relations can be rewritten in terms of the space R>. More precisely, in
terms of the two-dimensional surface

() = {(x,1) € [T |1 = const} C R,
which is a cross section of the surface of strong discontinuity /7 by the plane {t =
const}, namely, let n be the unit vector normal to the surface I7(¢) at a given point
x € I1(¢). It is clear that this analysis has a local nature. Therefore we can assume
that in the neighborhood of (x, ¢) € IT the surface IT can be represented as
IT: h(x,t)=0.
Then

v

Vh hy Vh
= 5 , D= V_h|70 )
JIVRE 412 [ 1VhP 42 |

where
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oh 0oh 0h doh
Vh= (20 2 ) e R b=
0x1 0xp 0x3 ot
Simple calculations show that
v=(=V,l+n)sina, (A.6.11)
where
|Vh|

Vi, = sinae = (v-n) =

1
VA JIVA2 + 12
The value V,, is called the velocity of replacement of the surface I1(t) in the direction
of normal n.
This value can be defined geometrically. Indeed, we consider a line L from the
point x € [1(?) in the direction of the normal n to the surface of I7(¢). Next, we pass
to the surface I7(t 4 &t). Let the point X + §x be the intersection of this surface with

the line L. Then
5X - n

V, = lim
st—0 Ot

Substituting the expression (A.6.11) into the equality (A.6.9) we get
[ou(va — Vu) + X,] =0, (x,1) € I, (A.6.12)

where

As above, the condition (A.6.12) allows to express the shock relations in terms of
the space R3:

[,O(Vn - Vn)] =0,
[pV(va — Vu) =P -n] =0, (A.6.13)

[p(U + %|V|2)(vn — V) —=v-(P-n) =3V -n] =0,

for all (x,¢) € I1.

5. A typical type of strong discontinuity is one in which v, = V,,. That is, the
velocity of the particles of the medium in the direction of the normal n coincides
with the velocity of the surface I1(¢). Therefore, there is no exchange of particles
between domains Wy and W, and the surface I7 (¢) is a material one. So, I7(¢) is the
surface of contact between two different states of a continuum. For example, water
and air or water and solid. Such a surface of strong discontinuity is called contact
discontinuity. The equations of contact discontinuity are:
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Vv, =V,
[P-n] =0, (A.6.14)
[v]-(P-m) + [V -n] =0,

for all (x,¢) € I1.

A.7 Joint Motion of an Elastic Sold and a Viscous Liquid

1. Heterogeneous continuous media are those continuous media which consist of
two or more different components (phases) and in any sufficiently small amount of
a continuum there might be different phases. The minimum size of this volume is
different in various heterogeneous media, but usually it is in the range from several
microns to several (first) tens of microns. Examples of such continuous media are
the motion of solid micro-particles in a liquid or gas or the movement of fluid in the
micro-pores of a deformable elastic body. There are two different approaches to the
description of heterogeneous media.

The first approach is based upon the notion of a continuous medium as a kind of
conglomerate, where at each point all phases of such a medium are present. In this
approach, the main difficulty is physical modeling, namely, the choice of axioms that
define the dependence of the stress tensor on the basic characteristics of the motion
and thermodynamic relations.

The second approach is based on precise physical modeling with further simpli-
fication by mathematical models using the methods of mathematical analysis. As a
rule, the differential equations of the exact mathematical model contain some small
parameter. Therefore, the main methods of simplifying the exact mathematical mod-
els are the methods of linearization and homogenization. Roughly speaking, these
are methods of constructing approximate mathematical models from the original
one, when the small parameter tends to zero. From a physical point of view a hetero-
geneous medium is an example of generalized motion with a strong discontinuity,
considered in the preceding paragraph. In this approach we must keep in mind the
limits of the application of physical models and the limits of applicability of meth-
ods of mathematical analysis. For example, physical experiments show that the basic
phenomenological models of continuous media are still applicable at scales of a few
microns. It is clear, that the mathematical part of the second approach depends on
the method chosen. The more precise and more rigorous method provides a more
trustable mathematical model.

Our aim is to obtain the mathematical models of the joint motion of an elastic
porous body and a liquid that fills the pores and cracks, that is those voids that appear
in the solid body during the time of its formation. The proper elastic body is called a
solid skeleton (or an elastic skeleton, or simply a skeleton). For the modeling of such
a motion we use the second approach, when a two-component continuum (solid-
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liquid) is described by the mathematical model My of a generalized motion with a
strong discontinuity.

Let £2 C R3 be the domain occupied by a continuous medium, G (f)—the domain
occupied by a solid skeleton, Gy (1)—the pore space occupied by the fluid and 17 (1)—
the boundary between the solid skeleton and pore space:

2 =G,(t) UGFt) UII(t).

Let additionally wg, vy, o5, Py, ps, Us and ¥ be the displacements, the velocity, the
density, the stress tensor, the pressure, the specific internal energy and the temperature
in the solid skeleton, and wy, v, or, Pr, pr, Uy and ¥ be the displacements, the
velocity, the density, the stress tensor, the pressure, the specific internal energy and
the temperature in the liquid.

We suppose that the stress tensor P, the displacement w, velocity v, density p,
pressure p, specific internal energy U, and temperature ¢ of the continuum are given
by formulae

P = 5P;+ (1 - 7)Ps,

Py =2uD(x, vp) + (= pr + v(V - vp) — yr (O — Vo)) L,
Py = 2AD(x, wy) — (ps + ¥5 (95 — 90))L,
w = xwy+ (1= )ws,
v=xvr+ = X)Vs,
p=xpr+ A —=xps p=xpr+ A= J0ps.
U=xUs+ 1= 0Us, 0= x9+ 1 - x)Vs,
where the characteristic function x of the domain Gy(¢) is defined as
xx, 1) =1, if(x,1) € Ge(t) and x(x,1) =0, if (x,1) € Gs(1).

Then Eq. (A.6.6) for the joint motion of the solid skeleton and the liquid take the
form
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fo a(p B
/0 /Q (,OE + Vo - (pv))dxdt =0,
1o aw
/ /(,ov~—+]D)(x,w):(pV®V—IP’)+pF~1/f)dxdt=O,
0 I?) ot
1o 1, 0
/ / (p(U + = |V[*) = + pF - v&)dxdt
0 J& 2 at

fo 1
+/ / VE - (,ov(U + §|V|2) AL A V)dxdt =0,
0 2

411

(A.7.1)

for arbitrary smooth functions ¢, ¢ and & with a compact support in £2 x (0, 7).
By definition, in the domain Gy (#) the equations of the continuous motion for the

liquid component

dpr
s V.vp =0,
it +t oV vy

dv
Pfd—f =V -Pr+pfF,

Py = 2uD(x, V) 4 (=pr + vV - vp = y0y)L,
ds

Pfﬁfd—; =V Gg V) = ypdpV - vy + Py,

@y = 21(DCx. vp) : (D, vp)).

T 0w
= Df)y — = ——, =——
= O =g = T

)

(A7.2)

hold true and in the domain G,(f) the equations of the continuous motion for the

solid component

dps ]
d[b + iOSV Vg = 07
dv
Ps dts =V P+ psF,
dP, dps dv;
=2\D —(— R
dt (e, vs) = a )
das
psﬁsd_ts =V (VD) +psV v + Py D(x, vy),
W, = w9 ) ]_BlI/S g 2
s = ¥Ys(Us, Ds)s ,Os_aps’ s = 819s7

hold true.

(A.7.3)

On the common boundary I7(¢) “solid—liquid” one has equations of contact dis-

continuity
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Vi-n=vr-n=1V,,
Py-n="Pf-n, (A.7.4)
Vg - (Ps-m) + 56,V -n = vp - (Pr-n) + 5V - n.

The condition that the surface I7(¢) is a surface of contact discontinuity means that
I1(t) is a material surface. That is

L ="4v.Vy=0. (A.7.5)

Equations (A.7.1)—(A.7.5) form the mathematical model M of joint motion with
a contact discontinuity of an elastic solid and a viscous liquid.

This model is an example of the mathematical problem with a free (unknown)
boundary 17 (7).

2. Equations (A.7.1)—(A.7.5) are very difficult to analyse mathematically and we
need additional physical assumptions to simplify the mathematical model M.

In classical continuum mechanics such a simplification is a linearization of the
original nonlinear model in the rest state. Here the basic physical assumption is the
postulate of the smallness of the deviations of the basic characteristics of the motion
from these characteristics in a state of rest. For a heterogeneous continuum elastic
porous body filled with liquid, such a physical postulate is justified because, for
example, the velocity of fluid in pores is about 3—6 m/year.

Let § be a small characteristic size, defining the deviations of the basic character-
istics of the motion from those characteristics in a state of rest. Then, as usual, we
neglect all terms of order 8.

All values with a dash stand for the linear part (with respect to the small para-
meter §) of deviations of the main characteristics of the medium from the main
characteristics of the medium in the rest state. In addition, let xo(x) be the character-
istic function of the liquid domain at the initial time and ¥ be the mean (constant)
temperature, and p? and p}9 be the average density of the solid skeleton and the liquid,
respectively. Then

XX, 1) = xo(x) +00), p=p+o0(), p=xopr+ (1— xo)pr,

1_ I %o | (I—xo)
o= pO(X) + 5P+ 0(8), PO = XOPJ? + (1 - XO)P?’ =5 t—
c c cf c?

v=v+o(8), V= xoVr+ (1 — x0)Vs,
9=+ +0), D= xod+ (1 — x0)?s,

ds 90
pﬁ‘E =3, +0(8), n=xocps+ (I = x0)cp,ss
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%V -vi+ D, =9V -vi+0(), i=f,s,

P=P+0@), P=xoP + 01— x0)P’,

P = 2uD(x, V) — (py + 0 — vV - V)L (A.7.6)
- _ _ : _ W
B = 22D(x, Wy) — (P + 1)L, V= ——, (A7.7)
where s
tim 22 _ o,
5—0 &

First of all, we note that the unknown domains G;(#) and G¢(t) in the linear model
are replaced by their initial positions G;(0) = §2; and G;(0) = §2y. Similarly, the
free boundary I7(¢) in the linear model is replaced by its initial position I7(0) = I".
Thus, in the domain £2, the main characteristics describing the behavior of the elastic
skeleton satisfy the differential equations of the model Mg of linear thermoelasticity

1 dp; 0w =

a o TV V=0
v -

p?a—; =V.P+ ng’ (A.7.8)
30y - _

D sa_; =V. (%sVﬁs) — ¥stoV - Vg,

and in the domain 2 the main characteristics describing the behavior of the lig-
uid, satisfy the differential equations of the model Mg of a weakly compressible
thermofluid

1 a_f 0 _
gtV Y0
v _
0% _v.pf 4 0 A9
pf 8t_VIP?jL,ofF, ( )
90 - _
e =V - (V) = oV -y

Relations (A.7.6)—(A.7.9) are completed with linearized equations of contact dis-
continuity.

Since the free boundary is substituted by its initial position, we may use only
one condition of the law of conservation of mass on the free boundary. Namely, the
condition

Vi-n=Vs-n, Xxel.

The obtained mathematical model is still incomplete. Therefore we postulate addi-
tional the conditions
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V=V, xeT, (A.7.10)
Oy =79, xeTl (A7.11)

on the contact surface I".

The last two conditions allow one to consider generalized motion of continuous
media with strong discontinuity, for continuous velocity and temperature. In this case
we may define all first order differential operators and omit indices s and f:

V=xoV+ (1= x0)V, O =00+ (- x0)d.

With this assumptions the linearized equations of the contact discontinuity take the
final form B B
P*-n=F.n xerl, (A.7.12)

4V -n =5V -n, xel. (A.7.13)

Equations (A.7.6)—(A.7.13), completed with the corresponding boundary conditions
on the outer boundary S = 942 and the initial conditions at = 0, form the closed
linear mathematical model M of a joint nonisothermal motion of a solid elastic
body and a weakly compressible viscous fluid.

The model Mj; can be written in an equivalent form as a system of integral

- ow
identities. Namely, the functions p, ¢}, w and v = a7 satisfy in the domain 2 =
U U 82 fort € (0, 1p) the continuity equation

P+’ ®)V-w =0, (A.7.14)

almost everywhere in £2 x (0, tp) and the integral identities

1
/0/ (po(x)v : 88—‘” —D(x, ) : P+ o ®)F - w)dxdt —0,
0 Je ! (A7.15)

0 _ a%- _
/ / (n(x)z?— CVE -2V — y(X)DEV - v)dxdt -0
0o Je ot

for any smooth and finite in £2 x (0, #p) functions ¢ .
In (A.7.15)

y(®) = yrx0®) + ¥5(1 = x0®). p°®) = pfxo®) + p (1 — x0(x)).

N(X) = ¢prx0(X) + ¢p,s(1 = x0(%)).

We also will use the differential form of equations for the model M, when some
equations are understood in the sense of distributions, namely, we use the form
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ov -
wmﬁ;=V-P+wum,

R15s _ B
n(x)g =V (V) —yX)9V -V,

which is a formal representation of the integral identities (A.7.15).

3. The equations of the model M are written in dimensional form, while for fur-
ther mathematical analysis the dimensionless form of equations is more convenient.
To rewrite the equations in a dimensionless form we make the following change of
variables

Ld

b 10 % b
00

_ w =
X—> —, > - W—>—, U —
L T L

&=

where L is the characteristic size of the domain under consideration, g is the value of
acceleration due to gravity, p © is the mean density of water, and 7 is the characteristic
time of the process.
To avoid new symbols we keep the same notations for domains occupied by solid
skeleton, liquid and the common “solid skeleton-liquid” boundary 2y, £2y and I".
In dimensionless variables the differential equation of the model M in the
domain £2 for ¢ > 0 takes the form

p+&V-w=0, (A.7.16)
_3%w 3
arpm =V .P+ pF, (A.7.17)
v 0
o= =V (@:V9) —yods V- a—v: (A7.18)

where the dimensionless stress tensor of the medium
P = xoP + (1 - xo)P* (A7.19)

coincides with the dimensionless viscous stress tensor

P = au]D)(x, 33_\:’) — (p + gD — o,V E;—V:)]I (A.7.20)

in the liquid and with the dimensionless elastic stress tensor
P’ = a; D(x, w) — (p + aﬂ,sﬂ)]l (A.7.21)

in the solid skeleton.
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In Egs. (A.7.16)—-(A.7.21)
P = x0or + (= x0)ps, 7o = xo0Mps + (1 = x0) Np.s>
ap = xo%pf + (1 — xo0)ap,s,
se = X00sef + (1 — X0)ses, @y = xoowr + (1 — xo)aw,s-

Dimensionless criteria «; (i = 7, i, . ..) are defined by formulae:

21 2X v
Oy = —=, o, = , ) =—, o= s
TTgr? T tLgpo Lgpo’ " tlgpo
2
Yoy T ¢
Cpj =T =0 Gej= 5 =i
Lgpo L=yr Lg
0
_ Lgpo b _Cpi .
Y=—_—: pj__v np,i__s ]_fsss
Yoyr P0 vr

where ¢y and c; are the speed of compressive sound waves in the liquid and in the solid

respectively, and pr and p, are the respective mean dimensionless densities of the

liquid in pores and the solid skeleton correlated with the mean density of water p°.
Equations of contact discontinuity (A.7.12) and (A.7.13) transform to

[P] - m={ lim P(x,1) — hm P(x, 1) | -n(xg) =0, (A.7.22)
i:{;? X E :zf
(o, V] - n(xp) =0 (A.7.23)
forxg e I'.

As before, Eqgs. (A.7.17), (A.7.18), (A.7.22), and (A.7.23) are completed with
conditions
[0 (%0, )] =0, [w(x0,0)] =0, x0 € I,

which are understood as the corresponding integral identities

/ / B(x )— —t —Dx, V) : P+ﬁ(x)F.¢)dxdt=o, (A.7.24)

/ / no(x)ﬁ—g—a%vg VY — 0 GEV - )dxdt 0, (A.7.25)

for any smooth and finite in £2 x (0, 7o) functions ¢ and .
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Differential equations (A.7.16)—(A.7.18) form a mathematical model M, of
small perturbations in the joint motion of a non-isothermal viscous fluid and a
non-isothermal elastic body, which is just the dimensionless form of the model M.

4. The model M, describes all possible motions of a mixture of a solid and a
liquid. The given physical process is characterized by parameters: the characteristic
time of the process, the characteristic size of the domain under consideration, vis-
cosities, the speed of sound and so on, which enter into dimensionless criteria o;
(i=71, u, A,...).

Therefore, a given physical process corresponds to the given set of dimensionless
criteria. We also may characterize physical processes using these dimensionless
criteria. Thus, the characteristic time of filtration processes of underground liquids
is some month and the characteristic size of the physical domains there is about one
thousands meters. Therefore,

o ~ 0,

and we may postulate that for liquid filtration in an elastic solid skeleton
ar =0. (A.7.26)
The corresponding mathematical model M3 of a filtration of a compressible

thermo-fluid in a thermo-elastic solid skeleton consists of the following differ-
ential equations

1

—p+V-w=0, (A.7.27)
®p

V-P+ poF =0, (A.7.28)

_ 0 - - ow
nOE =V. (a%Vﬁ) — Yoy V. E, (A729)
ow - ow
P= XO%D(X’ E) + (1= x0) o D(x, w) — (p+ap O — xoon V - W)H' (A.7.30)

Next we consider different sub-models of the model M3 with simplifying physical
assumptions. The first sub-model is the model M4 of isothermal filtration (or, simply,
liquid filtration), which corresponds to the assumption

vap s =0, yays=0. (A.7.31)
In this model the temperature is defined independently by the heat equation

oY
ﬁo; =V . (a,VV), (A.7.32)

and the motion of the medium is defined by the system
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1
P+ V.w=0, (A.7.33)
Op

V.P+4F =0, (A.7.34)

ow ow
P = XoaM]D)(x, E) + (1= 0D W) = (p = xoeV - SH)L (AT.35)

The second model is a sub-model of the model M4, which describes a filtration
of an incompressible liquid.

As is well-known, the measure of incompressibility of a given medium is the
speed of sound in the medium. Incompressible media have an infinite speed of
sound. Therefore, for long-term physical processes the behavior of acoustic waves
is not so important, and for many real liquids we may accept the assumption that the
given liquid is incompressible. On the other hand, as a rule, the speed of sound in the
solid skeleton two or three times more than the speed of sound in the liquid. Thus
we also may accept the assumption that the given solid skeleton is incompressible

and together these give
1 1
— ~ 0,
%p.f Ap.s

~ 0.

The corresponding axiom
Qpf = Qps =00 (A.7.36)

picks outs the class of physical media (incompressible media), which is described
by the mathematical model M5 of the filtration of an incompressible liquid:

V.w=0, (A.7.37)
V.P+jF =0, (A.7.38)

ow
P= XoaM]D)(x, E) (1 = x0)eD(x, w) — pL. (A7.39)

Sometimes we do not use the properties of the solid skeleton and may simplify
the model M, using postulate
o) = 00, (A.7.40)

which means that the solid skeleton is an absolutely rigid solid body. That axiom
transforms the initial model into the mathematical model Mi;¢ of the filtration of a
compressible thermo-fluid in an non-isothermal absolutely rigid solid skeleton:

1
X0<_P+V'w) =0, (A.7.41)
Up.f
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X0 (V P+ ,OfF) =0, (A.7.42)
_ o0v . ow
no— =V - (VD) — y xoass V- —, (A.7.43)
ot at
ow - ow
P= aM]D)(x, E) _ (p Yay® —a,V - E)H’ (A7.44)

where Eq.(A.7.42) is equivalent to the integral identity
fo _
/ / (]D)(x, v) P - pF- w)dxdt —0 (A7.45)
0o Jo

for any smooth function v, finite in £2;. This model is completed with the additional
boundary condition
wx, ) =0, xel. (A.7.46)

The sub-model M7 of the model M¢, describing isothermal motion consists of
equations

1
Xo(—P +V- w) =0, (A.7.47)
Up.f
x0(V P+ pF) =0, (A.7.48)
3 9
P = on]D)(x, a—vtv) _ (p —a,V- a_sz)H (A.7.49)
wx,) =0, xeTl, (A.7.50)

and we call this motion as the filtration of a compressible liquid in an absolutely
rigid solid skeleton.

Finally, the filtration of incompressible liquid in an absolutely rigid solid
skeleton is described by the model M g:

xoV-w=0, (A.7.51)

o (v P+ ,OfF) —0, (A7.52)

P—aﬂ)(x a_W)_ i (A.7.53)
=) TP o

wx, 1) =0, xel. (A.7.54)

4. For short-term processes like acoustic processes or hydraulic shock in porous
media
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ar ~ 00,
and we use one more renormalization by setting
AW —> W,

which transforms the model M, to the model M9 of non-isothermal short-term
processes:

p+a,V-w=0, (A.7.55)
2W

gz =V P+iF, (A.7.56)
ﬁoa—ﬁ =V (@,.V0) —oay V- a_w’ (A.7.57)

ot at
P = xo® + (1 — xo)P*, (A.7.58)
P =,D(x, aa_W) —(pt oyt — @V L (A7.59)

t ot

P’ = a,D(x, w) — (p + ay, )L (A.7.60)

In Egs. (A.7.55)—(A.7.60)
& = X0Gps + (1= X0)dpss Gy = Xodos + (1 — x0)&p.s.
Dimensionless criteria o; (i = u, v, A, ...) are defined by formulae:

_ 2ut VT _ 2172
oy = s oy = —&/, o) = s
L2 " L2pg g L2 py

g2‘1:2 .L.2

_ 2 .
. Qpi=pici —, j=f,s.

Yo = Po

As before, we may consider a sub-model My of isothermal short-term processes
under the assumption (A.7.31), which gives

p+aV-w=0, (A7.61)
2W
gz =V P+pF, (A.7.62)

P = xo® + (1 — xo)P*, (A.7.63)
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_ ow _ ow
P = aMD(x, E) _ (p —a,Vv- E)H, (A7.64)
P = @,D(x, w) —plL. (A.7.65)

Finally, we may simplify the last model and consider the model M of short-term
processes in incompressible media:

V.w=0, (A.7.66)
2W
p=3 =V -P+F, (A7.67)
_ ow _
P = Xoaﬂm(x, E) + (1 = x0)aD(x, w) — pLL (A.7.68)

and its sub-model M, of short-term processes in an absolutely rigid solid
skeleton:

V.w=0, (A.7.69)
_3%w 3
o (pW _V.P— ,OF) —0, (A.7.70)
_ ow
P= aM]D)<x, E) —pl. (A7.71)

5. It is easy to prove that the model M3 is an asymptotic limit of the model M,
as a; goes to zero, the model M5 is an asymptotic limit of the model M4 as o, s
and o ¢ go to infinity, the model M is an asymptotic limit of the model M as o),
goes to infinity, and the model Mg is an asymptotic limit of the model M7 as «, s
goes to infinity.

Under assumptions (A.7.31) the model M, transforms to the model M3 of small
perturbations in joint motion of isothermal viscous fluid and isothermal elastic
body, consisting of the following equations

pHE@Y-w=0, (A7.72)
_3°w 3
apoy =V P4 pF, (A7.73)
P = xo + (1 — x0)P’, (A.7.74)
P =g D(x, a_W) _ (p —a,V- 8—w)]1, (A7.75)
" ot ot

P* = o, D(x, w) — pl. (A.7.76)
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The limit as &, — oo in M3 results in the model

V.w=0, (A7.77)
_0°w 3
ow
P= XoaM]D)(x, E) 1 (1 = o) D(x, w) — pl, (A.7.79)

which we call the model M4 of small perturbations in joint motion of isothermal
incompressible viscous fluid and isothermal incompressible elastic body.

The limit as «; — 0 in M4 results in the model M 5.

6. Diffusion-convection processes in porous media 2 C R are described by
the diffusion-convection equation

3
a—j+v~Vc:DAc, (A.7.80)

for the concentration ¢ of an admixture in the liquid domain £2; (pore space).

Here D is the given diffusion coefficient, and v is the velocity of the liquid.

If we consider the most general case of the motion of continuous media, which
is a generalized motion with strong discontinuity, then the boundary condition on
the surface of strong discontinuity I; = 0§23 N 952 (the common boundary “pore
space—solid skeleton”) at the time # > 0 has the form

c((v-m)=V,)=D(Ve- n). (A.7.81)

In (A.7.81) n is a unit normal vector to I, and V, is a velocity of replacement of
surface I} in the direction of normal n.

In the general case the velocity field is defined by the mathematical model My,
which is a free boundary problem. In particular, one of the boundary condition at the
free surface of a contact discontinuity has the form

v-n=1V,, (A.7.82)
and for this case (A.7.81) transforms to
Ve-n=0. (A.7.83)

It is clear, that even if one knows how to solve the free boundary problem that arises,
this mathematical model obviously would not be suitable for practical use, since the
function y( changes its value from O to 1 on the scale of a few microns. Thus, the most
suitable way to get a practically significant mathematical model is a homogenization.
But in this case the mathematical problem becomes absolutely unsolvable. To get
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something more simple we use the mathematical model M5, where the characteristic
function x of the liquid domain 2y is approximated by its value at initial time:

X = xo(x),

and
ow
v~ —
ot

In dimensionless variables this model, coupled with a convection-diffusion equation
has the form

V.w=0, (A.7.84)
V.P+ jF =0, (A.7.85)
ow
P= Xoaﬂm(x, 5) +{ = xo)Dx, w) — pl, (A.7.86)
AL (A7.87)
Py Py c=oapAc, .
where
Dt

op ay =oay(c), p=xolpr+3dc)+ (1— x0)ps.

=17
We must complete the model with the boundary conditions on the common (and
fixed) boundary I". The boundary conditions for dynamic equations have already
been discussed.

For the convection-diffusion equation one has a choice. By supposition, V,, = 0,
and this postulate and the boundary condition (A.7.81) imply

9
(aDV c—c a—v:') ‘n=0. (A.7.88)

That is the first option. The second option is the condition (A.7.83). Thus, for the
same process we have two different models: the mathematical model M5, consisting
of (A.7.83)—(A.7.87), and the mathematical model Mg, consisting of (A.7.84)—
(A.7.88). The difference because both of the boundary conditions for concentration
are not quite exact in our approximation. But there is a case when both models
coincide.

In fact, for an absolutely rigid solid skeleton w = v = 0 in the solid part. Hence
(A.7.83) coincides with (A.7.88). We consider the model M7

1
Xo(—p +V. w) =0, (A.7.89)
Up.f
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X0 (V P+ (or +6 C)F) =0, (A.7.90)
P= otﬂ(c)]D)(x, 88—?) - (p — V- aa—vtv)ﬂ (A7.91)

coupled with (A.7.83) and (A.7.87), and refer to the model obtained as the mathe-
matical model M,7.

7. The joint motion of two incompressible immiscible liquids with the same
viscosity and different constant densities is described at the microscopic level by the
dynamic equations

Vo (X Pr+ (1= 0OPs) + (o5 X + ps (1 = 0))F =0, (A.7.92)
V.v=0, (A.7.93)

Ix . .
STV V=0 100 = x0(x), (A.7.94)

completed with the Cauchy problem

d

% +V V=0, px.0)=p”® (A.7.95)

for the density py of the nonhomogeneous liquid in the liquid domain £2y for ¢ > 0.
The last problem is equivalent to the Cauchy problem

ap

S TV V=0 p(x.0) = 1 (%) x0) + ps (1= xo(¥)  (A7.96)

for the density p of the medium.
Let ITy be a smooth surface dividing £2 into two subdomains 2" and £2~ and

pf(o) x) = ,o]?.L = const forx € 27, p;o) x) = ,of_ = const forx € 2.

Then for the smooth velocity field v(x, ) there exists a smooth surface of the strong
discontinuity I7(¢), IT1(0) = Iy, dividing £2y into two subdomains .Qf+ () and .Qf_ (1),
such that

p(x, 1) = pf forx € .Qf+(t), and p(x,1) = ,of_ forx € 2.

That is, the problem (A.7.92)—(A.7.94), (A.7.96) really describes the joint motion of
two immiscible incompressible liquids with the different constant densities separated
by the free boundary I7(t).

It is obvious that the resulting problem is too complicated. To simplify the model
and get simpler, but still reasonable one, we replace (A.7.92)—(A.7.94) by the system
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ow
V. (Xo o ]D)(x, —) +( = xo) Dx, W) —p]I) +pF=0, (A7.97)

ot
ow
V.v=0, v=—, (A.7.98)
ot
completed with the Cauchy problem
% v .vp=0 0) = p® 1 A7.99
E+V- p =0, px,0)=p"(x) xo+ pr(l—xo) (A.7.99)

for the density p of the medium.
‘We refer to the model (A.7.97)-(A.7.99) as the mathematical model Mg.



Appendix B
Auxiliary Mathematical Topics

B.1 Hilbert Spaces

A Hilbert space is a complete inner product space. That is to say, firstly the space
H is areal linear space provided with an inner product, denoted (u, v), for u and v in
H, satisfying the following defining conditions:

(u,u) 20, (u,u)=0< u=020, (B.1.1)
(u,v) = (v,u), Ww+v,w)=,v)+ (u,w), (B.1.2)
(au,v) = a(u,v), Vo eR. (B.1.3)

To such an inner product is assigned a norm, by

lull = V/(u, w). (B.1.4)
Then it is easy to verify that

lull =0, [lull =0« u=0,

loull = fellfuf.

Finally, the triangle inequality
lu+vil < flull + (VI

is a consequence of Cauchy’s inequality

|G, VI < ] - (vl (B.L.5)

A. Meirmanov, Mathematical Models for Poroelastic Flows, 427
Atlantis Studies in Differential Equations 1, DOI: 10.2991/978-94-6239-015-7,
© Atlantis Press and the authors 2014
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A sequence {uy}, u, € H convergestou € H:
Up — u, asn— oo,

if
lu—uy|| — 0 as n — oo. (B.1.6)

We also say that convergence (B.1.6) is a strong convergence.
A sequence {u,} is a Cauchy sequence provided that

lup — uml| = 0, as n, m — oo.

Completeness is the property that any Cauchy sequence converges.
The element u € H is an accumulation point of a set M C H, if there exists a
sequence {uy}, u, € M, such that

Uy, —> U, asn— oQ.

A closure M of a set M is a set of all the accumulation points of M.

M is closed if M = M.

We say that M is compact if any infinite subset of M contains a convergent
sequence.

A set M is dense in H, if M = H.

A Hilbert space H is separable, if there exists a countable set dense in H.

A set L(M) of all finite linear combinations

uotl' ’
1

m

1

of aset M = {u,} is said a linear span of M.
We say u and v are orthogonal if(u, v) = 0.
A set M is orthonormal, if

lul =1 forallu e M and (u,v) =0 forall u, ve M, u #v.

We call an orthonormal set M a basis if it is not contained in any larger orthonormal
set.

Lemma B.1 Any separable Hilbert space contains a countable basis.

Let M = {e,};2 | be a basis. We denote

)
u= E Cnén,
n=1
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if

m
E Cpep, — U, as m — oo.

n=1

Lemma B.2 Let H be a separable Hilbert space. Then for any basis M = {e,}>
and foranyu € H

o
u= chen, where ¢, = (u, e,). B.1.7)

n=1

A sequence {u,} is said to be weakly convergent to u:
U, = u, as n — 0o,

if
(up —u,v) - 0, asn— oo, Vve H.

Finally, we say that K is a weakly compact set if any sequence {u,}, u, € K, contains
a weakly convergent subsequence:

Uy, —uc kK, as m— oo.
Theorem B.1 In a separable Hilbert space any bounded closed ball
B={ueH: |u] <C},

is a weakly compact set.

B.2 Sobolev Spaces for Scalar Functions

Let £2 € R”" be a bounded set with a Lipschitz continuous boundary S = 9£2. Then
for any u € C'($2) and for any v € C! (£2)

ou v .
(—v+u—)dx=0, i=1,....n (B2.1)
Q 8x,~ ax,‘

We say that a function u(x), X € £2, is an element of the Hilbert space L, (£2) with
an inner product

(u, v):/ u(x) v(x)dx,
Q
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if
1
2 2
lull2,2 = (/ u (X)dx) < 0.
2

The Cauchy inequality (B.1.5) for L, (£2) has the form

‘ /9 u(x) v(x)dx| < ( /Q uz(x)dx)%( /9 vz(x)dx)%. (B2.2)

We also call this inequality the Holder inequality.
A function v; € L,(£2) is a weak derivative of a function u € L,(§2) with respect
to a variable x;, if

0 0 °
(—(pu n v,-—(p)dx —0, Vo eC' (). (B.2.3)
Q Bx,- axi
As usual we denote
ou
Vi= —.
ax,-

Now we define a Sobolev space W21 (£2) as alinear inner product space of all functions
u € L, (§2) with weak derivatives

ou .
— e lp(2), i=1,...,n,
ax,-
with the inner product
(V) =/ (u v+ Vi Vv)dx (B.2.4)
Q
and the norm 1
lulls'y = (/ (2 + IVu)ax) (B.2.5)
2
where
au au
vz (2, )
x| 0x,
and
n
3” aV 2
Vu-Vvy= — - —, |Vu|" =Vu-Vu.
i1 axi 8x,~

There is an equivalent definition of the Sobolev space W2l (£2) as a closure of the
inner product space of all functions u € C 1(£2) with inner product (B.2.4).
That is, for any u € W21 (£2) there exists a sequence {u,}, u, € C'(£2), such that



Appendix B: Auxiliary Mathematical Topics 431
_ (1
lu—uully o — 0 asn— oo.

Therefore a Sobolev space W21 (£2) is complete inner product space, or a complete
Hilbert space.

Lemma B.3 Forallu e W21 (£2) the trace
us(x) = u(x), xeS =002
is well defined and
(/S |u|2ds)% < Clull§g. (B.2.6)

where C depends only on the geometry of §2 and does not depend on u.
Moreover, if n(X) is an outward unit normal to S at X € S, then

/ lus(x) — u(x — en(x))|*ds — 0, as & — 0.
S

Lemma B.4 The imbedding operator W21 (82) — Lr(82) is completely continuous.
That is, any weakly convergent sequence in W21 (82) converges strongly in Lr($2).
In the same way we define a space W21 (£2) as a closure of the inner product space

of all functions u € C! (£2), vanishing at 3£2, with inner product (B.2.4).
It is easy to see, that for any function u € Wzl (£2) and for any function

Ve W21 (£2) formula (B.2.1) of integration by parts is still valid.

Lemma B.5 (Friedrichs—Poincaré’s inequality for the scalar functions)
Forallu € W21 (£2)
/ lul>dx < c/ |Vul*dx, (B.2.7)
2 2

where C depends only on the geometry of §2 and does not depend on u and
/ |u(x — 8n(x))|2ds — 0, as e — 0,
s

where n(X) is an outward unit normal to S at X € S.

For functions u(x, t), where (x,7) € £2r = 2 x (0,T), we define the space
Ly ((0, T); Lz(.Q)) = L»(827) as a Hilbert space with the inner product
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1

T 2
(u, v) = ( / ( / u(x, 1) v(x, t)dx)dt)
0 2

1

= (/ u(x, r) v(x, t)dxdt) ’ (B.2.8)
7

and the norm 1

lull2,2r = (/ u*(x, t)dxdt)z. (B.2.9)
Q2r

The Holder inequality for L, (§£27) has the form

/ u(x, 1) v(x, t)dxdt
Q7

< ( /9 T 2 (x, t)dxdt)%( /9 T VA(x, t)dxdt)%. (B.2.10)

We also define spaces

o 1 o 1,0
L*((0,T); W1 (£2)) = Wy °(27) and L*((0,T); W, (2)) =W, (£27)

as the Hilbert spaces with the inner product

(u,v) = ( (ux, )y v(x, t) + Vu(x, t) - Vv(x, t))dxdt) ? (B.2.11)

Q27

and the norm 1
@) 2 2 2
lull$'), = (/ W2, 1) + |Vu(x, 1)] )dxdt) . (B.2.12)
Q7

For any two functions u, v € W21 (£2) the Stokes (Gauss-Ostrogradsky) Theorem
has the form

0 0
/ (—uv—f-u—v)dx:/uvvids, i=1,...,n, (B.2.13)
Q N

ax,- Bxi

where v = (vq, ..., V) is the unit outward normal to the boundary S = 042.
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B.3 Sobolev Spaces for Vector Functions

We say that a vector function u(x) = (u1(x), ..., u,(x)), X € £2, is an element of
the Hilbert space L, (£2) with an inner product

(u,v) =/ u(x) - v(x)dx,
2

if
1
lullo.0 = ( / ueoPdr)* < oo,
2

Here

n
u-v= Zuivi, |u|2 =u-u
i=1

The Holder inequality for L (£2) has the form
1

‘/ u(x) - v(x)dx| < (/ |u(x)|2dx)7(/ |v(x)|2dx)7. (B3.1)
2 2 2

Now we introduce a Sobolev space W; (£2) (W; (£2)) for vector functions u as a clo-

sure of the space CL(22) (C! (£2)) of all vector functions, continuously differentiable
in §2, with the inner product

(u, v) = / (u(x)~v(x)+Vu(x):Vv(x))dx (B3.2)
2

and the norm

iy = ((ww)?2. (B.3.3)

The second-rank tensor (matrix) Vu is defined dy

ou aui L.
Vu =(—), iLhj=1,...,n

- & 8)(/
and
n
ou; Jv; 2
Vu: Vv = — - —, |Vu|" =Vu: Vu
“~ 9x; 0x;
ij=1 / J

Lemma B.6 (Korn’s inequality)
Letu € W%(S?) and u = 0 on the part Sy C S = 952 with a strictly positive
measure. Then
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/ |Vu|’dx < c/ D(x, u) : D(x, u)dx = C/ ID(x, w)|?dx, (B.3.4)
2 2 2

where C depends only on the geometry of §2 and does not depend on u, and the
symmetric second-rank tensor D(x, u) is defined by

D(x. u) 1(8u N au*)
xw=—-(—+— ).
2\0x  0x
More precisely, Korn’s inequality is valid for any subset V C W;(.Q), such that
the equality
Dx,u)=0 foruelV,

implies u = 0.
Lemma B.7 (Friedrichs-Poincaré’s inequality for the vector functions)

Forallu e W) (22)
/ lul?dx < C/ ID(x, u)|?dx, (B.3.5)
2 2
where C depends only on the geometry of §2 and does not depend on u and
/ lu(x — en(x))|2ds -0, ase — 0,
S

where n(x) is an outward unit normal to S at x € S.

For functions u(x, #), where (x,7) € £27, we define the space L ((0, T);
L>(82)) = Ly(£27) as a Hilbert space with an inner product

(u,v) = / u(x, 1) - v(x, t)dxdt
7

and the norm 1
lall2,e; = (/ lu(x, t)|2dxdt)2.
27

The Holder inequality for L, (£27) has the form

/ u(x, t) - v(x, t)dxdt
27

1 1
< </9T lu(x, t)|2dxdt)2(/QT IV(x, t)|2dxdt)2. (B.3.6)
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Let C19(27) be the space of all vector functions, continuously differentiable with

respect to spatial variables, and C-0 (£27) be a subspace of C'0(£27), consisting of
all functions vanishing at the boundary S = 9£2.
The spaces

o 1 o 1,0
L2((0, T); Wi(£2)) = Wi (27) and L2((0,T); W, (2)) =W, (21)

are the closure of the inner product spaces of all functions from C'*(£27) and

C!0 (27) respectively with the inner product
(u,v) = / (u(x, t)-v(x, 1)+ Vu(x, 1) : Vv(x, t))dx (B.3.7)
27

and the norm

0=

Sy, = (. w)?. (B.3.8)

For any function u € W;(.Q) the Stokes (Gauss-Ostrogradsky) Theorem takes
the form
/ V.udx = /u - vds, (B.3.9)
2 S

where v is the unit outward normal to the boundary S = 9£2.
More generally, for any second-rank tensor P € Wé(.Q ) the Stokes (Gauss-
Ostrogradsky) Theorem has the form

/ V. Pdx = /IP’- vds, (B.3.10)
2 S

where v is the unit outward normal to the boundary S = 9£2,anda-(V-P) = V-(P*-a)
for any constant vector a.
B.4 Periodic Structures

In this section we discuss the properties of Sobolev spaces in periodic domains .ij
or £2;, which have been defined in Chap. 1.
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B.4.1 Extension Results

The following statements are valid due to the well-known results from [1, 36, 53,
89]. We formulate them in the forms that are appropriate for us.

Lemma B.8 (Extension lemma for the scalar functions [1, 53])
Suppose that Assumptions 0.1 and 1.1 regarding the geometry of a periodic struc-
ture hold true (the domain $2; is a connected set) and w € W2l (£2).
Then there exists an extension
ws = Ege(w), Eqe: W)(225) — W3 (), (B.4.1)
Sfrom the domain 27 onto the whole domain §2 such that

(1= x* ) (wx, 1) —wy(x,1)) =0, x€ 8, t€(,T), (BA4.2)
and
[ mxniar<co [ pwosnpax
fod Qf
/ [Vws(x, 1) 2dx < CO/E IVw(x, )|>dx, t € (0,T),
? “ (B.423)

where Cy is independent of ¢ and t € (0, T).

Lemma B.9 (Extension lemma for the vector functions [36, 89])
Suppose that Assumptions 0.1 and 1.1 on the geometry of periodic structure hold
true (the domain $2; is a connected set) and w € Wé (£2).
Then there exists an extension
wy = Ege(w), Egr : Wi(25) — Wi(£2), (B.4.4)
Sfrom the domain 2¢ onto the whole domain §2 such that

(1= x*®)(wx, 1) —ws(x,1)) =0, xe &, te(0,7), (B.4.5)

and
/ Iwy(x, 1) %dx < Co / wix, )P,
2 fors

/ ID(x, wy)2dx < Co/ ID(x, w)|%dx, t e (0,T),
Q Q¢
(B.4.6)
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Fig. B.1 Left Connected solid and liquid parts. Right Disconnected solid part

where Cy is independent of ¢ and t € (0, T).

ol
Forw e W, (£2) (w € W2 (£2)) these statements do not guarantee the inclusion
1

wg € W2 (£2) (ws € W2 (£2)). But for the special geometry of the pore space the
extension permits this inclusion, namely, the following lemma holds true.

Let the first geometry of the pore space be represented by Fig. B.1(left), and the
second geometry be represented by Fig. B.1(right).

Lemma B.10 (Extension lemma for the special geometry [58, 89])

Let Assumption 0.1 hold and w € W2 (£2).
Then for the first geometry of the pore space there exist extensions Wy = Egs (W)

o 1

Sfrom 2 onto 2 and wy = E_ng (w) from .Q; onto §2 such that wg, wy € W, (£2)

and the estimates B.12 for wg and wy hold true.
For the second geometry there exists the extension Wy = ]E_Q;? (w) from .Q]‘f onto

o 1
$2 such that wy € W, (§2) and the estimates B.12 for wy holds true.
If for the second geometry additionally V - w = 0 in §2, then V - wy = 0 in £2.

Sometimes we do not need the homogeneous boundary condition w; = 0 on 952,
but we do need the estimate

/ [wsl*dx < € / ID(x, wy) [ dx (BAT)
2 Q

with the constant C independent of ¢.
For this case we prove the following statement.
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o 1
Lemma B.11 Under the conditions of Lemma B.9 let w € W, (§2).
Then the estimate (B.4.7) holds true.

Proof Let Q be a cube, £2 C Q, and u be an extension of w such that u = 0 for
1 1

u € Q\£2. The inclusion w e\L;VZ (£2) implies u e\ovz (Q). For the domain Q
we may define the solid part Q% and the extension u, in the same way as for the
domain §2 we have defined the solid part £2{ and the extension wy. It is clear that

ol
u; € W, (Q) for sufficiently large Q.
Thus, we may apply the Friedrichs—Poincaré inequality

/ lu,|?dx < C / ID(x, uy)|*dx.
0 0

It is also clear that
u; = wyin 2 and / |wS|2dx </ |us|2dx.
2 0

Therefore
/ lwy|2dx < C / ID(x, uy)|?dx.
2 0

Lemma B.9 states that
/ DG, u)Pdx < C / DG, w) .
0 o5
But

|D(x, u)|2dx=/ ID(x, w)|*dx
0 2

= / ID(x, wy)|*dx < / ID(x, wy)|?dx.
Q: 2

Gathering all together we arrive at the desired estimate (B.4.7).

Lemma B.12 (Korn’s inequality for periodic structures)
Under the conditions of Lemma B.9 let w € Wé(.Q).
Then

/ IVw|2dx < C / ID(x, (W)|2dx (B.4.8)
2 2

for the connected set Q]‘f, and
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/ |Vw|dx < C / ID(x, (w)|dx, (B.4.9)
2 52
for the connected set $2.
In (B.4.8), (B.4.9) the constant C is independent of €.
Proof Toprove the lemma we use Lemma B.9 and conclude that there exist functions

Wy € Wé(.Q) for the connected set .ij and wy € Wé(.Q) for the connected set 27
such that

_ : & _ : e
Wr=Wwin £;, W, =win £

and

/Wwaww<C/'wmwww,
2 .Q]f

/ﬁmmmww<c/'meww,
2 fors

where C is independent of ¢.
Next we use the standard Korn inequality (Lemma B.6):

/ |Vwe[2dx < C/ ID(x, wp)|dx,
Q ’ 2

/ |Vw,|?dx < C/ ID(x, wy)|*dx.
2 2

Finally, we apply the evident relations

/ |Vw|2dx</ |Vw|2dx+/ |wa|2dx=/ |Vwy|2dx
2f 2f 2 2

and

/ |Vw|2dx</ |Vw|2dx+/ |sz|2dx=/ |Vw,|dx,
Qf Qf 2f Q

which result in the statements of the lemma.
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B.5 Multi-Scale Convergence

B.5.1 Two-Scale Convergence

The method of two-scale convergence was proposed by G. Nguetseng [89] and has
been applied to a wide range of homogenization problems (see, for example, the
survey [70]).

A sequence {w®} C La(£27) is said to be two-scale convergent to a function
W(x,t,y, 1) € Lro(f2r x Y), 1-periodic in the variables (y, ) € Y x (0, 1), if and
only if for any function 0 = o (X, ¢,y, t), I-periodic in (y, 7)

. X f
w'(x, o\ x,t, —, — |dxdt
2r & &

1
— (/ /W(x, t,y,1)o(x,t,y, r)dydt)dxdt (B.5.1)
o Jy

Qr

ase — 0.
In what follows we restrict ourself to the test functions o = o (X, z, y). Then the
relation B.5.1 takes the form

/ wé(x, t)o (x, t E)d)cdt
Q2r &

— (/ W(x,t,y)o(x,t, y)dy)dxdt, (B.5.2)
Y

Qr

where

1
W(Xa t, y) == / W(X, t, Yy, 'L')d'[,
0

The existence and main properties of weakly convergent sequences are established
by the following fundamental theorem [70, 89]:

Theorem B.2 (Nguetseng’s theorem for scalar functions)

1.Any sequence {w®} bounded in L(§27) contains a subsequence, two-scale con-
vergent to some function W € Ly (21 x Y), 1-periodic in'y.
2.Let sequences {w®} and {eVw®} be uniformly bounded in Ly ($27).

Then there exist a function W = W(X,t,y) I-periodic in'y, and a subsequence
(W} such that W, V\W € Lr(Q27 x Y), and the subsequences {w®} and {sVw*}
two-scale converge to W and VW respectively.

3. Let sequences {w*} and {Vw*} be bounded in L,(§27).

Then there exist the functions w € Ly(27) and W € Ly (27 x Y) and a sub-
sequence from {Nw®} such that the function W is I-periodic in'y, Vw € Ly(27),
VW € Ly (27 x Y), and the subsequence {V'w*} two-scale converges to the function
Vw(x, 1) + V,W(X, 1, y).
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Theorem B.3 (Nguetseng’s theorem for vector functions)

1. Any sequence {w°} bounded in L, ($27) contains a subsequence, two-scale
convergent to some function W € Ly (27 x Y), I-periodic iny.
2. Let sequences {w*} and {eD(x, w®)} be uniformly bounded in L, ($27).
Then there exists a function W = W(X, t,y), I-periodic in'y, and a subsequence
{w®} suchthat W, V,W € Lo (227 x Y), and the subsequences {w*°} and {D(x, w®)}
two-scale converge in Lo ($27) to W and D(y, W) respectively.
3. Let sequences {w®} and {D(x, w®)} be bounded in L, ($27).
Then there exist the functions w € Ly (27) and W € Ly (27 x Y) and a subsequence
from {D(x, w®)} such that the function W is I-periodic in'y, {D(x, w)} € La(827),
D@y, W) € Lo(227 x Y), and the subsequence {D(x, W®)} two-scale converges to
the function D(x, w) + D(y, W).
4. Leto € Lhr(Y)ando®(X) =0 (z—() Assume that a sequence {w°} C Ly($27) two-

scale convergesto W € Ly(821 x Y). Then the sequence {o¥w®} two-scale converges
to the function o W.

Lemma B.13 Let a sequence {w® (X, t)} weakly converge in Ly(§27) to w(X, t) and
two-scale converges to W(X, t,y),

a(e)|[Vwill2.e, < C,
where C is independent of the small parameter ¢, and

1 &:oo,

e—>0 €
Then W(x,t,y) = w(X, ).

Proof Let ¥(x,t,y) be an arbitrary smooth scalar function periodic in y. The
sequence {ajg}, where

8 &
g'js = / ale) il (x, t)lI/<x, t, §)dxdt
Qr ax; &

J

is uniformly bounded in €.
Therefore,

a 3
/ s (x, z)w(x, 3 §)dxch: ot =0
Qr 0x e a(e)

as ¢ \ 0, which is equivalent to

ov
/ /W(x, t,y)— X, t,y)dvdxdt =0, j=1,...,n,
QrJY 8y/
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or
WX, t,y) = w(x,1).

The following lemma shows the limiting property of the weakly convergent
ol
sequences {wf} for w® € W, (£2). The lemma is valid both for scalar and vector
functions. So we will consider only scalar functions.

o 1,0
Lemma B.14 Under the conditions of Lemma B.8 let w* € W, ($27) and the

sequence {w} converge weakly in Wzl’o(.QT) and two-scale in Ly (27) to wg(X, t).
o1
Then wy € W, (£27).

Proof By construction the function w vanishes at the part ¢ = 35 N Q¢ of the
boundary S.

Let us choose the function u(y), 1-periodic and solenoidal in the unit cube Y, such
that supp u C Yy. Then the function 2(x, H)u (f) vanishes at the part S}f =0dSN .Q_]f of
€

X
the boundary S for any smooth function A(x, r) and the product a(x, H)wé (x, t)u(—)
&

vanishes at the boundary S.
Therefore we may apply the formula (B.2.1) for integration by parts, which in
this case takes the form

/ (h(x,t)ijf(x,t)).u(§)+w§(x,r)(u(§).Vh(x,t))dxdtzo. (B.5.3)
2r

Let Vwy(x, 1) + V,Wi(x, y, 1) be the two-scale limit of the sequence {Vw¢}. Then
the limit as ¢ — 0 in (B.15) results in

/Q (h (VYwg - (w)y, + (VyW; - u)y,) + wy((u)y, - VR))dxdt = 0.

Here
(u)y, =/ udy and (V,W; - u)y, =/ VyWs -udy =0
Yy ’ Y

due to condition Vy - u = 0.
Let
(wy, =e. (B.5.4)
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Then the last identity takes the form
/ (h (Vwyg - e) + wy(e - Vh))dxdt = / V. (hwge)dxdt = 0.
Q2r r

Applying the Stokes formula we obtain
/ h(x, Hwg(X, t)(e - m)do = 0, (B.5.5)
St

where ST = S x (0, T') and n is the unit normal to the to the boundary S.

In the following lemma we prove that for any unit vector e there exists a solenoidal
function u(y) with suppu C Yy satisfying (B.5.4). Then due to the arbitrary choice
of the functions 4 and vectors e the identity (B.5.5) implies w(x, 1) = 0 forx € S.

Lemma B.15 For any unit vector e there exists a solenoidal vector function u(y)
satisfying (B.5.4) and the condition suppu C Y;.

Proof LetB C Yy be a ball and u(y) be a nontrivial solution of the problem

Au—Vp=f, yeB, (B.5.6)
V-u=0, yeB, (B.5.7)
u=0, yeodB (B.5.8)

with some fixed function f(y).
We may always assume that

/udy =ep, with |eg| = 1.
B

Let T be the orthogonal matrix and T - eg = e.
Then in the new variables z = T -y the function v(z) = T - u(y) satisfies the
problem

A,v—V,gq=F, zeB, (B.5.9)
V.- v=0, veB, (B.5.10)
v=0, z€dB (B.5.11)

where F(z) = T - f and ¢(z) = p(y). By the construction

e:T'eoz/'{F'udyz/vdz.
B B
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B.5.2 Three-Scale Convergence

The method of three-scale convergence was proposed by G. Allaire and M. Briane
[6] and G. Nguetseng [70].

Lete =68",r > 1.

We say that the sequence {w®} three-scale converges in L, (§27) to the function
W(x, t,y, z), 1-periodic in the variables y and z, if

/ wo (x, 1) (p(X, t, § §)dxdt
Q2r )

— (//W(x,t,y,z)<p(x, t,y,z)dzdy)dxdt, (B.5.12)
yJz

2r
for any smooth function ¢(x, ¢, y, z), 1-periodic in y and z.

Theorem B.4 (Three-scale convergence)

1. Any sequence {w®} bounded in Lo(27) contains a subsequence, three-scale
convergent to some function W € Lo (21 x Y x Y), I-periodic in'y and z.

2. Let sequences {w°} and {D(x, w®)} be bounded in L, ($27).

Then there exist a subsequence from {D(x, w®)} and the functions w € Ly(27)
and Wy, We, € Lo(27 x Y x Y), Wy, and W, are 1-periodic iny and z, D(x, w) €
Ly(£27), D(y, W), D(y, W) € Lao(£27 x Y x Y), such that the subsequence
{D(x, w®)} three-scale converges to the function D(x, w) + D(y, W,) + D(z, We).

B.6 Some Compactness Results
In this section we formulate some compactness results for the bounded sequences
{(u¥(x, 1)} in Lp(£27), which are compact in L (£2) for any fixed ¢ € (0, 7).

: . .. Ou .
We say that the function u € L, (§27) possesses a time derivative o bounded in

Ly((0,T); Wy '(£2)), if

1
< Clols'y,

d
/ u —(pdxdt
Qr at

for any smooth function ¢.
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Lemma B.16 (Aubin’s compactness lemma [9])
Let the sequence {uk(x, 1)} be bounded in Loo((O, T); L2(.Q)) N W;‘O(QT) and
weakly convergent in the space L (§21) N W21 ’O(QT) to the function u(x, t). Let also
9 k
the sequence [ %(x, t)l be bounded in the space L ((0, T); W2—1 (_Q)).

Then the sequence {u k(x, 1)} converges strongly in Ly (§27) to its weak limit u(X, t).

Lemma B.17 (Compactness in periodic structures [84])
Let the sequence {uk(x, 1)} be bounded in LOO((O, T); Lz(.Q)) N Wzl’o(.QT) and
weakly convergent in the space Lo (§21) N Wzl’o(.QT) to the function u(x,t). Let

) k
also the sequence [Xg (x) aLt (x, t)] be bounded in the space Ly ((0, T); W2_1 (.Q)),

where Xk x) = x(kx), x(y) is a measurable bounded function, I-periodic in the
variable'y, such that

<X>y=/yx(y)dy=m#0,

and Y is the unit cube in R".
Then the sequence {u kx, 1)} converges strongly in Ly (§27) to its weak limit u(X, t).
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