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Preface to the Fourth Edition

It is now twenty years since the third edition of this book was published and in
that period many advances have been made to the art and science of turboma-
chinery design. Knowledge of the flow processes within turbomachines has increased
dramatically resulting in the appearance of new and innovative designs. Some of
the long-standing, apparently intractable, problems such as surge and rotating stall
have begun to yield to new methods of control. New types of flow machine have
made their appearance (e.g. the Wells turbine and the axi-fuge compressor) and
some changes have been made to established design procedures. Much attention
is now being given to blade and flow passage design using computational fluid
dynamics (CFD) and this must eventually bring forth further design and flow effi-
ciency improvements. However, the fundamentals do not change and this book is
still concerned with the basics of the subject as well as looking at new ideas.

The book was originally perceived as a text for students taking an Honours degree
in engineering which included turbomachines as well as assisting those undertaking
more advanced postgraduate courses in the subject. The book was written for engi-
neers rather than mathematicians. Much stress is laid on physical concepts rather
than mathematics and the use of specialised mathematical techniques is mostly kept
to a minimum. The book should continue to be of use to engineers in industry
and technological establishments, especially as brief reviews are included on many
important aspects of turbomachinery giving pointers to more advanced sources of
information. For those looking towards the wider reaches of the subject area some
interesting reading is contained in the bibliography. It might be of interest to know
that the third edition was published in four languages.

A fairly large number of additions and extensions have been included in the
book from the new material mentioned as well as “tidying up” various sections
no longer to my liking. Additions include some details of a new method of fan
blade design, the determination of the design point efficiency of a turbine stage,
sections on centrifugal stresses in turbine blades and blade cooling, control of flow
instabilities in axial-flow compressors, design of the Wells turbine, consideration of
rothalpy conservation in impellers (and rotors), defining and calculating the optimum
efficiency of inward flow turbines and comparison with the nominal design. A
number of extensions of existing topics have been included such as updating and
extending the treatment and application of diffuser research, effect of prerotation
of the flow in centrifugal compressors and the use of backward swept vanes on
their performance, also changes in the design philosophy concerning the blading of
axial-flow compressors. The original chapter on radial flow turbines has been split
into two chapters; one dealing with radial gas turbines with some new extensions
and the other on hydraulic turbines. In a world striving for a ‘greener’ future it was
felt that there would now be more than just a little interest in hydraulic turbines. It
is a subject that is usually included in many mechanical engineering courses. This
chapter includes a few new ideas which could be of some interest.



X Preface to the Fourth Edition

A large number of illustrative examples have been included in the text and many
new problems have been added at the end of most chapters (answers are given at the
end of the book)! It is planned to publish a new supplementary text called Solutions
Manual, hopefully, shortly after this present text book is due to appear, giving the
complete and detailed solutions of the unsolved problems.

S. Lawrence Dixon
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Preface to Third Edition

Several modifications have been incorporated into the text in the light of recent
advances in some aspects of the subject. Further information on the interesting
phenomenon of cavitation has been included and a new section on the optimum
design of a pump inlet together with a worked example have been added which
take into account recently published data on cavitation limitations. The chapter on
three-dimensional flows in axial turbomachinieas been extended; in particular the
section concerning theonstant specific mass flow desigha turbine nozzle has
been clarified and now includes the flow equations for a following rotor row. Some
minor alterations on the definition of blade shapes were needed so | have taken the
opportunity of including a simplified version of the parabolic arc camber line as
used for some low camber blading.

Despite careful proof reading a number of errors still managed to elude me in the
second edition. | am most grateful to those readers who have detected errors and
communicated with me about them.

In order to assist the reader | have (at last) added a list of symbols used in the
text.

S.L.D.

Xi
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CHAPTER 1

Introduction: Dimensional
Analysis: Similitude

If you have known one you have known all. (TERENCE, Phormio.)

Definition of a turbomachine

We classify as turbomachines all those devices in which energy is transferred
either to, or from, a continuously flowing fluid by tldynamic actionof one or
more moving blade rows. The wotdrbo or turbinis is of Latin origin and implies
that which spins or whirls around. Essentially, a rotating blade rowet@ or an
impeller changes the stagnation enthalpy of the fluid moving through it by either
doing positive or negative work, depending upon the effect required of the machine.
These enthalpy changes are intimately linked with the pressure changes occurring
simulataneously in the fluid.

The definition of a turbomachine as stated above, is rather too general for the
purposes of this book as it embraagzen turbomachines such as propellers, wind
turbines and unshrouded fans, all of which influence the state of a not readily
quantifiable flow of a fluid. The subjefiuid mechanics, thermodynamics of turbo-
machinery therefore, is limited to machines enclosed by a closely fitting casing or
shroud through which a readily measurable quantity of fluid passes in unit time.
The subject of open turbomachines is covered by the classic text of Glauert (1959)
or by Duncaret al. (1970), the elementary treatment of propellers by general fluid
mechanics textbooks such as Streeter and Wylie (1979) or Massey (1979), and the
important, still developing subject of wind turbines, by Freris (1990).

Two main categories of turbomachine are identified: firstly, those walsorb
power to increase the fluid pressure or head (ducted fans, compressors and pumps);
secondly, those thairoducepower by expanding fluid to a lower pressure or head
(hydraulic, steam and gas turbines). Figure 1.1 shows, in a simple diagrammatic
form, a selection of the many different varieties of turbomachine encountered in
practice. The reason that so many different types of either pump (compressor) or
turbine are in use is because of the almost infinite range of service requirements.
Generally speaking, for a given set of operating requirements there is one type of
pump or turbine best suited to provide optimum conditions of operation. This point
is discussed more fully in the section of this chapter concerned with specific speed.

Turbomachines are further categorised according to the nature of the flow path
through the passages of the rotor. When the path ahtbegh-flowis wholly or mainly
parallel to the axis of rotation, the device is termedaaial flow turbomachinde.g.

1



2 Fluid Mechanics, Thermodynamics of Turbomachinery

Rotor blades Rotor blades
Outlet vanes

——i.
Flow — Flow ——

(a) Single stage axial flow
COMpressor or pump

(b) Mixed flow pump

Flow direction Guide vanes Runner blades
Outlet diffuser

Vaneless diffuser

Flow— --Flow
Volute
Draught tube ; v/
Impeller
(c) Centrifugal compressor or pump (d) Francis turbine

(mixed flow type)

/ Guide vanes

-—Flow

Flow -

Draught tube

or diffuser
(e) Kaplan turbine

t
(f) Pelton wheel

FiG. 1.1. Diagrammatic form of various types of turbomachine.

Figure 1.1(a) and (e)). When the path of thmugh-flowis wholly or mainly in a plane
perpendicular to the rotation axis, the device is termedial flow turbomachinge.qg.
Figure 1.1(c)). More detailed sketches of radial flow machines are givenin Figures 7.1,
7.2, 8.2 and 8.3Vlixed flow turbomachineare widely used. The termixed flowin
this context refers to the direction of the through-flow at rotor outlet when both radial
and axial velocity components are present in significant amounts. Figure 1.1(b) shows
a mixed flow pump and Figure 1.1(d) a mixed flow hydraulic turbine.

One further category should be mentioned. All turbomachines can be classified
as eitherimpulse or reaction machines according to whether pressure changes are
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absent or present respectively in the flow through the rotor. In an impulse machine
all the pressure change takes place in one or more nozzles, the fluid being directed
onto the rotor. The Pelton wheel, Figure 1.1(f), is an example of an impulse turbine.

The main purpose of this book is to examine, through the laws of fluid mechanics
and thermodynamics, the means by which the energy transfer is achieved in the
chief types of turbomachine, together with the differing behaviour of individual
types in operation. Methods of analysing the flow processes differ depending upon
the geometrical configuration of the machine, on whether the fluid can be regarded
as incompressible or not, and whether the machine absorbs or produces work. As
far as possible, a unified treatment is adopted so that machines having similar
configurations and function are considered together.

Units and dimensions

The International System of Units, SI (le S§ste International d’Unés)
is a unified self-consistent system of measurement units based on the MKS
(metre-kilogram-second) system. It is a simple, logical system based upon decimal
relationships between units making it easy to use. The most recent detailed
description of S| has been published in 1986 by HMSO. For an explanation of
the relationship between, and use of, physical quantities, units and numerical values
seeQuantities, Units and Symbolpublished by The Royal Society (1975) or refer
to ISO 31/0-1981.

Great Britain was the first of the English-speaking countries to begin, in the
1960s, the long process of abandoning the old Imperial System of Units in favour
of the International System of Units, and was soon followed by Canada, Australia,
New Zealand and South Africa. In the USA a ten year voluntary plan of conversion
to Sl units was commenced in 1971. In 1975 US President Ford signed the Metric
Conversion Act which coordinated the metrication of units, but did so without
specifying a schedule of conversion. Industries heavily involved in international
trade (cars, aircraft, food and drink) have, however, been quick to change to Sl for
obvious economic reasons, but others have been reluctant to change.

S| has now become established as the only system of units used for teaching
engineering in colleges, schools and universities in most industrialised countries
throughout the world. The Imperial System was derived arbitrarily and has no
consistent numerical base, making it confusing and difficult to learn. In this book
all numerical problems involving units are performed in metric units as this is more
convenient than attempting to use a mixture of the two systems. However, it is
recognised that some problems exist as a result of the conversion to Sl units. One
of these is that many valuable papers and texts written prior to 1969 contain data
in the old system of units and would need converting to Sl units. A brief summary
of the conversion factors between the more frequently used Imperial units and Sl
units is given in Appendix 1 of this book.

Some Sl units

The Sl basic units used in fluid mechanics and thermodynamics armetre
(m), kilogram (kg), second(s) andthermodynamic temperatur@). All the other
units used in this book are derived from these basic units.urieof forceis the
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newton (N), defined as that force which, when applied to a mass of 1 kilogram,
gives an acceleration to the mass of 19m/Bhe recommendednit of pressureis
the pascal (Pa) which is the pressure produced by a force of 1 newton uniformly
distributed over an area of 1 square metre. Several other units of pressure are in wide-
spread use, however, foremost of these beingotire Much basic data concerning
properties of substances (steam and gas tables, charts, etc.) have been prepared in Si
units with pressure given in bars and it is acknowledged that this alternative unit of
pressure will continue to be used for some time as a matter of expediency. It is noted
that 1 bar equals P@Pa (i.e. 10N/m?), roughly the pressure of the atmosphere at
sea level, and is perhaps an inconveniently large unit for pressure in the field of
turbomachinery anyway! In this book the convenient size ofkitepascal (kPa) is
found to be the most useful multiple of the recommended unit and is extensively
used in most calculations and examples.

In Sl the units of all forms of energy are the same as for work. Oiieof energy
is thejoule (J) which is the work done when a force of 1 newton is displaced through
a distance of 1 metre in the direction of the force, e.g. kinetic ene}@yﬂo has the
dimensions kg« m?/s%; however, 1 kg= 1 N &/m from the definition of the newton
given above. Hence, the units of kinetic energy must be=Nthupon substituting
dimensions.

Thewatt (W) is theunit of power when 1 watt is applied for 1 second to a system
the input of energy to that system is 1 joule (i.e. 1J).

The hertz (Hz) is the number of repetitions of a regular occurrence in 1 second.
Instead of writing c/s for cycles/sec, Hz is used instead.

The unit of thermodynamic temperatueethe kelvin (K), written without the®
sign, and is the fraction 1/273.16 of the thermodynamic temperature of the triple
point of water. The degree celsiu¥C] is equal to the unit kelvin. Zero on the
celsius scale is the temperature of the ice point (273.15K). Specific heat capacity,
or simply specific heat, is expressed as J/kg K or as"@T/kg

Dynamic viscosity, dimension® =171, has the Sl units of pascal seconds, i.e.

M kg N.s?
— = — = ——— = Pas.
LT ms mZs

Hydraulic engineers find it convenient to express pressure in terrheauf of a
liquid. The static pressure at any point in a liquid at rest is, relative to the pressure
acting on the free surface, proportional to the vertical distance of the free surface
above that point. The hedd is simply the height of a column of the liquid which
can be supported by this pressureplis the mass density (kgAhandg the local
gravitational acceleration (nf)s then the static pressuge (relative to atmospheric
pressure) i = pgH, whereH is in metres ang is in pascals (or N/f). This is
left for the student to verify as a simple exercise.

Dimensional analysis and performance laws

The widest comprehension of the general behaviour of all turbomachines is,
without doubt, obtained frondimensional analysisThis is the formal procedure
whereby the group of variables representing some physical situation is reduced



Introduction: Dimensional Analysis: Similitude 5

into a smaller number of dimensionless groups. When the number of indepen-
dent variables is not too great, dimensional analysis enables experimental relations
between variables to be found with the greatest economy of effort. Dimensional
analysis applied to turbomachines has two further important uses: (a) prediction
of a prototype’s performance from tests conducted on a scale model (similitude);
(b) determination of the most suitable type of machine, on the basis of maximum
efficiency, for a specified range of head, speed and flow rate. Several methods of
constructing non-dimensional groups have been described by Doeighhg1995)

and by Shames (1992) among other authors. The subject of dimensional analysis was
made simple and much more interesting by Edward Taylor (1974) in his comprehen-
sive account of the subject. It is assumed here that the basic techniques of forming
non-dimensional groups have already been acquired by the student.

Adopting the simple approach of elementary thermodynamics, an imaginary enve-
lope (called acontrol surfacé of fixed shape, position and orientation is drawn
around the turbomachine (Figure 1.2). Across this boundary, fluid flows steadily,
entering at station 1 and leaving at station 2. As well as the flow of fluid there
is a flow of work across the control surface, transmitted by the shaft either to, or
from, the machine. For the present all details of the flow within the machine can
be ignored and only externally observed features such as shaft speed, flow rate,
torque and change in fluid properties across the machine need be considered. To be
specific, let the turbomachine bgpamp (although the analysis could apply to other
classes of turbomachine) driven by an electric motor. The speed of rofétioan
be adjusted by altering the current to the motor; the volume flow @atean be
independentlyadjusted by means of a throttle valve. For fixed values of theset
and N, all other variables such as torque headH, are thereby established. The
choice of Q and N as control variablesis clearly arbitrary and any other pair of
independent variables such asand H could equally well have been chosen. The
important point to recognise is, that there are for this putwp, control variables.

If the fluid flowing is changed for another of different densjtyand viscosity
u, the performance of the machine will be affected. Note, also, that for a turbo-
machine handling compressible fluids, otfieid propertiesare important and are
discussed later.

So far we have considered only one particular turbomachine, namely a pump of
a given size. To extend the range of this discussion, the effect ofdbenetric

Control surface

— 7 Control volume

(1)_>' /
!
]
|
|

Throttle valve

™

FiG. 1.2. Turbomachine considered as a control volume.
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variableson the performance must now be included. The size of machine is char-
acterised by the impeller diametB;, and the shape can be expressed by a number
of length ratios]1/D, I»/D, etc.

Incompressible fluid analysis

The performance of a turbomachine can now be expressed in terms of the control
variables, geometric variables and fluid properties. For the hydraulic pump it is
convenient to regard the net energy trangfér the efficiencyy, and power supplied
P, as dependent variables and to write the three functional relationships as

gH:fl(Q,N,D,p,,u,lBl,lBZ,...>, (1.19)
I I

n=/f2 <Q,N,D,p,u,5,5,...>, (1.1b)

P=fs (Q,N,D,p,u,l—l,l—z,...), (110
D'D

By the procedure of dimensional analysis using the three primary dimensions, mass,
length and time, or alternatively, using three of the independent variables we can
form the dimensionless groups. The latter, more direct procedure, requires that the
variables selectedh, N, D, do not of themselves form a dimensionless group. The
selection ofp, N, D as common factors avoids the appearance of special fluid terms
(e.g. u, Q) in more than one group and allow$/, n and P to be made explicit.
Hence the three relationships reduce to the following easily verified forms.

Energy transfer coefficient, sometimes called head coefficient

gH 0 ,OND2 1 1y
= —— = —_ —, =, =, ... |, 1.2

Q pND? 11 Iy
—ps (2 AN iz ) 12b
n f5<ND3 DD (1.2b)
Power coefficient

. P Q pND? 11 I,
PZIO[V?’D5=f6(]VD3’M’D’D’.”>. (12C)

The non-dimensional grou®/(ND®) is a volumetric flow coefficient and
pND?/i is a form of Reynolds numbeRe In axial flow turbomachines, an
alternative toQ/(ND®) which is frequently used is the velocity (or flow) coefficient
¢ = c./U whereU is blade tip speed and the average axial velocity. Since

0 = ¢, x flow areax ¢, D?
and U x ND.
then
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Because of the large number of independent groups of variables on the right-hand
side of eqgns. (1.2), those relationships are virtually worthless unless certain terms
can be discarded. In a family afeometrically similarmachinesl,/D, I,/D are
constant and may be eliminated forthwith. The kinematic viscosity, u/p is

very small in turbomachines handling water and, although speed, expressHl by

is low the Reynolds number is correspondingly high. Experiments confirm that
effects of Reynolds number on the performance are small and may be ignored in a
first approximation. The functional relationships for geometrically similar hydraulic
turbomachines are then,

Y = f4[Q/(ND*)] (1.3a)
n= fslQ/(ND*)] (1.3b)
P = fe[Q/(ND?)]. (1.30)

This is as far as the reasoning of dimensional analysis alone can be taken; the actual
form of the functionsf 4, f5 and f¢ must be ascertained by experiment.

One relation betweert, ¢, n and P may be immediately stated. For a pump the
net hydraulic powerPy equalspQgH which is the minimum shaft power required
in the absence of all losses. No real process of power conversion is free of losses and
the actual shaft powaP must be larger tha®y. We define pump efficiency (more
precise definitions of efficiency are stated in Chapten2 Py /P = pQgH /P.
Therefore

_17 0\ sH 35
P=1 <ND3> wpNP (1.4)

Thus f¢ may be derived fromyfs and /s since P = ¢/n. For a turbine the net
hydraulic powerPy supplied is greater than the actual shaft power delivered by
the machine and the efficienay= P/Py. This can be rewritten ag = n¢y by
reasoning similar to the above considerations.

Performance characteristics

The operating condition of a turbomachine will dgnamically similarat two
different rotational speeds if all fluid velocities edrresponding pointsvithin the
machine are in the same direction and proportional to the blade speed. If two
points, one on each of two different hedtbw characteristics, represent dynamically
similar operation of the machine, then the non-dimensional groups of the variables
involved, ignoring Reynolds number effects, may be expected to have the same
numerical value for both points. On this basis, non-dimensional presentation of
performance data has the important practical advantage of collapsing into virtually
a single curve, results that would otherwise require a multiplicity of curves if plotted
dimensionally.

Evidence in support of the foregoing assertion is provided in Figure 1.3 which
shows experimental results obtained by the author (at the University of Liverpool)
on a simple centrifugal laboratory pump. Within the normal operating range of
this pump, 003 < Q/(ND?®) < 0.06, very little systematic scatter is apparent which
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might be associated with a Reynolds number effect, for the range of speeds 2500

N < 5000 rev/min. For smaller flowg/(ND?®) < 0.025, the flow became unsteady

and the manometer readings of uncertain accuracy but, nevertheless, dynamically
similar conditions still appear to hold true. Examining the results at high flow rates
one is struck by a marked systematic deviation away from the “single-curve” law
at increasing speed. This effect is duecavitation a high speed phenomenon of
hydraulic machines caused by the release of vapour bubbles at low pressures, which
is discussed later in this chapter. It will be clear at this stage that under cavitating
flow conditions, dynamical similarity is not possible.

5.0£ .

c+
® 3
4.0 ® oy o
+X
I|“‘g Key: x x 2500 rev/min © x
ol% L © o 3500 Yo
= 30 © © 4500 &
38 + + 5000 *8
= w7
(] - ~
g 2 Note gH in m?/s? T
- N rev/s Observe deterioration in_+
3 Qme/s performance at high speeds
R o Dm (effect is due to cavitation)
| | |
0.02 0.04 0.06

Flow coefficient, Q / (ND®)

Fic. 1.3. Dimensionless head-volume characteristic of a centrifugal pump.

——

8.0

Loci of dynamically
similar conditions

o
o

Head, Hm
S
=)

2.0

0 | | | |
0.2 0.4 0.6 0.8

Volumetric flow rate, Q dm¥s

Fic. 1.4. Extrapolation of characteristic curves for dynamically similar conditions at
N = 3500 rev/min.
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The non-dimensional results shown in Figure 1.3 have, of course, been obtained
for a particular pump. They would also be approximately valid for a range of
different pump sizes so long as all these pumps are geometrically similar and cavi-
tation is absent. Thus, neglecting any change in performance due to change in
Reynolds number, the dynamically similar results in Figure 1.3 can be applied to
predicting the dimensional performance of a given pump for a series of required
speeds. Figure 1.4 shows such a dimensional presentation. It will be clear from the
above discussion that the locus of dynamically similar points inHh€) field lies
on a parabola sincH varies asv? and Q varies asV.

Variable geometry turbomachines

The efficiency of a fixed geometry machine, ignoring Reynolds number effects,
is a unique function of flow coefficient. Such a dependence is shown by line (b)
in Figure 1.5. Clearly, off-design operation of such a machine is grossly inefficient
and designers sometimes resort tgagiable geometrymachine in order to obtain
a better match with changing flow conditions. Figure 1.6 shows a sectional sketch
of a mixed-flow pump in which the impeller vane angles may be vadedng
pump operation. (A similar arrangement is used in Kaplan turbines, Figure 1.1.)
Movement of the vanes is implemented by cams driven from a servomotor. In some
very large installations involving many thousands of kilowatts and where operating

(envelope of optimum efficiency)

Efficiency, #

Flow coefficient, ¢

Fic. 1.5. Different efficiency curves for a given machine obtained with various blade
settings.

Outlet guides vanes

FiG. 1.6. Mixed-flow pump incorporating mechanism for adjusting blade setting.
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conditions fluctuate, sophisticated systems of control may incorporate an electronic
computer.

The lines (a) and (c) in Figure 1.5 show the efficiency curves at other blade
settings. Each of these curves represents, in a sense, a different constant geometry
machine. For such a variable geometry pump the desired operating line intersects
the points of maximum efficiency of each of these curves.

Introducing the additional variable into eqgn. (1.3) to represent the setting of the
vanes, we can write

V= f1(@. B)in= fae, B). (1.5)

Alternatively, with 8 = f3(¢, n) = fa(¢, ¥), B can be eliminated to give a new
functional dependence

R 1.6

ND3’ N2D2 (1.6)
Thus, efficiency in a variable geometry pump is a function of both flow coefficient
and energy transfer coefficient.

n=f5<¢,w>=f5( 0 eH )

Specific speed

The pump or hydraulic turbine designer is often faced with the basic problem
of deciding what type of turbomachine will be the best choice for a given duty.
Usually the designer will be provided with some preliminary design data such as
the headH, the volume flow rat€ and the rotational speed when a pump design
is under consideration. When a turbine preliminary design is being considered the
parameters normally specified are the shaft poRiethe head at turbine entrf
and the rotational speed. A non-dimensional parameter called thecific speed
N;, referred to and conceptualised as #i@ape numberis often used to facilitate
the choice of the most appropriate machine. This new parameter is derived from the
non-dimensional groups defined in egn. (1.3) in such a way that the characteristic
diameterD of the turbomachine is eliminated. The valueMf gives the designer
a guide to the type of machine that will provide the normal requirement of high
efficiency at the design condition.

For any one hydraulic turbomachimngth fixed geometrythere is a unique rela-
tionship between efficiency and flow coefficient if Reynolds number effects are
negligible and cavitation absent. As is suggested by any one of the curves in
Figure 1.5, the efficiency rises to a maximum value as the flow coefficient is
increased and then gradually falls with further increase.irrhis optimum effi-
ciencyn = nmax IS Used to identify a unique valge= ¢; and corresponding unique
values ofy = y, andP = P;. Thus,

% = ¢ = constant (1.7
H
]\}gzDz = 1 = constant (1.7b)
P N
= P, = constant (1.7¢)

pN3D>
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It is a simple matter to combine any pair of these expressions in such a way as to
eliminate the diameter. For a pump the customary way of eliminddimgto divide

1/2 by wf“. Thus
d)i/z NQ1/2

NS:W:W’ (1.8)

where N, is called thespecific speedThe term specific speed is justified to the
extent thatN, is directly proportional toN. In the case of a turbine thpower
specific speedV,, is more useful and is defined by,

~1/2
P2 NP2

Wt T (gH )

Nyp = (1.9)

Both eqgns. (1.8) and (1.9) attmensionlesslt is always safer and less confusing

to calculate specific speed in one or other of these forms rather than dropping the
factorsg and p which would make the equatiordimensionaland any values of
specific speed obtained using them would then depend upon the choice of the units
employed. The dimensionless form &f (and Ny,) is the only one used in this
book. Another point arises from the fact that the rotational spAeds expressed

in the units of revolutions per unit of time so that although isl dimensionless,
numerical values of specific speed need to be thought of as revs. Alternative versions
of egns. (1.8) and (1.9) in radians are also in common use and are written

_ QQ]‘/Z
Q= W’ (1.8a)
QyVP/p
sp = W, (1.939)

There is a simple connection betwesh and Ny, (and betweerf2; and Q,p). By
dividing egn. (1.9) by eqgn. (1.8) we obtain

Nop _ NP/p)2gH* (P \"?
Ny (gH)¥* NQY2 ~ \ pgOH
From the definition of hydraulic efficiency, for a pump we obtain:

Ny, @, 1

= =, (1.9b)
Ny Qs Un
and, for a turbine we obtain:
Nsp  Qp
—t = — = . 1.9¢c
N~ o N (1.9¢)

Remembering that specific speed, as defined above, is at the point of maximum
efficiency of a turbomachine, it becomes a parameter of great importance in selecting
the type of machine required for a given duty. The maximum efficiency condition
replacesthe condition of geometric similarity, so that any alteration in specific
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(a) Axial flow (b) Mixed flow (c) Centrifugal flow

Fic. 1.7. Range of pump impellers of equal inlet area.

speed implies that the machine design changes. Broadly speaking, each different
class of machine has its optimum efficiency within its own fairly narrow range of
specific speed.

For a pump, eqn. (1.8) indicates, for constant sp€ethatN; is increased by an
increase inQ and decreased by an increaseHn From eqgn. (1.7b) it is observed
that H, at a constant speed, increased with impeller diameté&. Consequently,
to increaseN, the entry area must be made large and/or the maximum impeller
diameter small. Figure 1.7 shows a range of pump impellers varying from the axial-
flow type, through mixed flow to a centrifugal- or radial-flow type. The size of
each inlet is such that they all handle the same volume flowikewise, the head
developed by each impeller (of different diamef@r is made equal by adjusting
the speed of rotatiov. SinceQ andH are constant, theN varies withN alone.

The most noticeable feature of this comparison is the large change in size with
specific speed. Since a higher specific speed implies a smaller machine, for reasons
of economy, it is desirable to select theghest possible specific speednsistent

with good efficiency.

Cavitation

In selecting a hydraulic turbomachine for a given héadind capacityQ, it is
clear from the definition of specific speed, eqn. (1.8), that the highest possible value
of Ny should be chosen because of the resulting reduction in size, weight and cost.
On this basis a turbomachine could be made extremely small were it not for the
corresponding increase in the fluid velocities. For machines handling liquids the
lower limit of size is dictated by the phenomenonaaivitation

Cavitation is the boiling of a liquid at normal temperature when the static pres-
sure is made sufficiently low. It may occur at the entry to pumps or at the exit
from hydraulic turbines in the vicinity of the moving blades. The dynamic action
of the blades causes the static pressure to reduce locally in a region which is
already normally below atmospheric pressure and cavitation can commence. The
phenomenon is accentuated by the presence of dissolved gases which are released
with a reduction in pressure.

For the purpose of illustration consider a centrifugal pump operating at constant
speed and capacity. By steadily reducing the inlet pressure head a point is reached
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when streams of small vapour bubbles appear within the liquid and close to solid
surfaces. This is callecavitation inceptionand commences in the regions of lowest
pressure. These bubbles are swept into regions of higher pressure where they
collapse. This condensation occurs suddenly, the liquid surrounding the bubbles
either hitting the walls or adjacent liquid. The pressure wave produced by bubble
collapse (with a magnitude of the order 400 MPa) momentarily raises the pres-
sure level in the vicinity and the action ceases. The cycle then repeats itself and
the frequency may be as high as 25kHz (Shepherd 1956). The repeated action of
bubbles collapsing near solid surfaces leads to the well-known cavitation erosion.

The collapse of vapour cavities generates noise over a wide range of
frequencies- up to 1MHz has been measured (Pearsall 1972) i.e. so-called
“white noise”. Apparently it is the collapsing smaller bubbles which cause the
higher frequency noise and the larger cavities the lower frequency noise. Noise
measurement can be used as a means of detecting cavitation (Pearsall 1966/7).
Pearsall and McNulty (1968) have shown experimentally that there is a relationship
between cavitation noise levels and erosion damage on cylinders and concludes that
a technique could be developed for predicting the occurrence of erosion.

Up to this point no detectable deterioration in performance has occurred. However,
with further reduction in inlet pressure, the bubbles increase both in size and number,
coalescing into pockets of vapour which affects the whole field of flow. This growth
of vapour cavities is usually accompanied by a sharp drop in pump performance
as shown conclusively in Figure 1.3 (for the 5000 rev/min test data). It may seem
surprising to learn that with this large change in bubble size, the solid surfaces
are much less likely to be damaged than at inception of cavitation. The avoidance
of cavitation inception in conventionally designed machines can be regarded as
one of the essential tasks of both pump and turbine designers. However, in certain
recent specialised applications pumps have been designed to operatesumeter
cavitating conditions. Under these conditions large size vapour bubbles are formed
but, bubble collapse takes pladewnstreamof the impeller blades. An example of
the specialised application of a supercavitating pump is the fuel pumps of rocket
engines for space vehicles where size and mass must be kept low at all costs. Pearsall
(1966) has shown that the supercavitating principle is most suitable for axial flow
pumps of high specific speed and has suggested a design technique using methods
similar to those employed for conventional pumps.

Pearsall (1966) was one of the first to show that operating in the supercavitating
regime was practicable for axial flow pumps and he proposed a design technique to
enable this mode of operation to be used. A detailed description was later published
(Pearsall 1973), and the cavitation performance was claimed to be much better than
that of conventional pumps. Some further details are given in Chapter 7 of this book.

Cavitation limits

In theory cavitation commences in a liquid when the static pressure is reduced to
the vapour pressure corresponding to the liquid’'s temperature. However, in practice,
the physical state of the liquid will determine the pressure at which cavitation starts
(Pearsall 1972). Dissolved gases come out of solution as the pressure is reduced
forming gas cavities at pressures in excess of the vapour pressure. Vapour cavitation
requires the presence of nuclesubmicroscopic gas bubbles or solid non-wetted
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particles— in sufficient numbers. It is an interesting fact that in the absence of such
nuclei a liquid can withstand negative pressures {easile stress@sPerhaps the
earliest demonstration of this phenomenon was that performed by Osborne Reynolds
(1882) before a learned society. He showed how a column of mercury more than
twice the height of the barometer could be (and was) supported by the internal cohe-
sion (stress) of the liquid. More recently Ryley (1980) devised a simple centrifugal
apparatus for students to test the tensile strength of both plain, untreated tap water
in comparison with water that had been filtered and then de-aerated by boiling.
Young (1989) gives an extensive literature list covering many aspects of cavitation
including the tensile strength of liquids. At room temperature the theoretical tensile
strength of water is quoted as being as high as 1000 atm (100 MPa)! Special pre-
treatment (i.e. rigorous filtration and pre-pressurization) of the liquid is required to
obtain this state. In general the liquids flowing through turbomachines will contain
some dust and dissolved gases and under these conditions negative pressure do
not arise.

A useful parameter is the available suction head at entry to a pump or at exit
from a turbine. This is usually referred to as thet positive suction headNPSH,
defined as

H; = (po— pv)/(pg) (1.10)

where p, and p, are the absolute stagnation and vapour pressures, respectively, at
pump inlet or at turbine outlet.

To take into account the effects of cavitation, the performance laws of a hydraulic
turbomachine should include the additional independent varidbldgnoring the
effects of Reynolds number, the performance laws of a constant geometry hydraulic
turbomachine are then dependent on two groups of variable. Thus, the efficiency,

n= f(¢» Nys) (111)

where thesuction specific speedV,, = NOY?/(gH,)**, determines the effect of
cavitation, andp = Q/(ND?), as before.
It is known from experiment that cavitation inception occurs for an almost
constant value ofV,, for all pumps (and, separately, for all turbines) designed
to resist cavitation. This is because the blade sections at the inlet to these pumps
are broadly similar (likewise, the exit blade sections of turbines are similar) and it
is the shapeof the low pressure passages which influences the onset of cavitation.
Using the alternative definition of suction specific sp&igd= QQY?/(gH )Y/?,
whereQ is the rotational speed in rad/g, is the volume flow ivn®/s andgH, is
in m?/s, it has been shown empirically (Wislicehus 1947) that

Q, >~ 3.0 (rad) (1.12a)
for pumps, and
Qg >~ 4.0 (rad) (2.12b)

for turbines.
Pearsall (1973) described a supercavitating pump with a cavitation performance
much better that of conventional pumps. For this pump suction specific sgegds,
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up to 9.0 were readily obtained and, it was claimed, even better values might be
possible, but at the cost of reduced head and efficiency. It is likely that supercavi-
tating pumps will be increasingly used in the search for higher speeds, smaller sizes
and lower costs.

Compressible gas flow relations
Stagnation properties

In turbomachines handling compressible fluids, large changes in flow velocity
occur across the stages as a result of pressure changes caused by the expansion or
compression processes. For any point in the flow it is convenient to combine the
energy terms together. The enthalpy,and the kinetic energy%c2 are combined
and the result is called th&tagnation enthalpy

ho=h+ %62.

The stagnation enthalpy is constant in a flow process that does not involve
a work transfer or a heat transfer even though irreversible processes may be
present. In Figure 1.8, point 1 represents the actual or static state of a fluid in
an enthalpy-entropy diagram with enthalpy,; at pressurep; and entropys;. The

fluid velocity is c¢;. The stagnation state is represented by the point 01 brought

about by an irreversible deceleration. For a reversible deceleration the stagnation
point would be at point 01s and the state change would be cisledropic

>
>

S

Fic. 1.8. The static state (point 1), the stagnation (point 01) and the isentropic stagna-
tion (point 01s) of a fluid.
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Stagnation temperature and pressure

If the fluid is a perfect gas, thein= C,T, whereC, = yR/(y — 1), so that the
stagnation temperature can be defined as
To=T+ %CZ/CP,
To 2

c
T + 5 )yRT +3(0r—1 (1.13a

where theMach numberM = c¢/a = c¢//yRT.
The Gibb’s relation, derived from the second law of thermodynamics (see
Chapter 2), is

1
Tds = dh — —dp.
o)
If the flow is brought to rest both adiabatically and isentropically (ise=dD), then,
using the above Gibb’s relation,

d
dh = C,dT = —ZRT
p
so that
dp Cp,dl  y dT

p RT y—-1T"

Integrating, we obtain

In p = In constant+ 4 InT,
y—1
and so,
T v/(y=1) -1 y/y-1
Po_ (Lo —(1+ Y "m? (1.13b)
p T 2

From the gas law density, = p/(RT), we obtainpeg/p = (po/ p)(T/To) and hence,

T 1/(y-1 -1 1/(y-1)
Po _ (-0) — <1+ —M2> . (1.13c)
0 T 2

Compressible fluid analysis

The application of dimensional analysis to compressible fluids increases, not unex-
pectedly, the complexity of the functional relationships obtained in comparison with
those already found for incompressible fluids. Even if the fluid is regarded as a
perfect gas, in addition to the previously used fluid properties, two further char-
acteristics are required; these arg, the stagnation speed of sound at entry to
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the machine ang, the ratio of specific heat§ ,/C,. In the following analysis the
compressible fluids under discussion are either perfect gases, or else, dry vapours
approximating in behaviour to a perfect gas.

Another choice of variables is usually preferred when appreciable density changes
occur across the machine. Instead of volume flow atéhe mass flow rate: is
used; likewise for the head changg the isentropicstagnation enthalpychange
Ah, is employed.

The choice of this last variable is a significant one for, in an ideal and adiabatic
processAhg; is equal to the work done by unit mass of fluid. This will be discussed
still further in Chapter 2. Since heat transfer from the casings of turbomachines
is, in general, of negligible magnitude compared with the flux of energy through
the machine, temperature on its own may be safely excluded as a fluid variable.
However, temperature is an easily observable characteristic and, for a perfect gas,
can be easily introduced at the last by means of the equation of gtgies RT,
whereR = Ro/m = C, — C,, m being the molecular weight of the gas aRgl =
8.314 kJ/(kg mol K) is theUniversal gas constant

The performance parametershy, n and P for a turbomachine handling a
compressible flow, are expressed functionally as:

Ahgs, n, P = f(u, N, D, 1, pot, ao1, ¥). (1.14a)

Becausepg andag change through a turbomachine, values of these fluid variables
are selected at inlet, denoted by subscript 1. Equation (1.14a) expresseparate
functional relationships, each of which consists of eight variables. Again, selecting
po1, N, D as common factors each of these three relationships may be reduced to
five dimensionless groups,

s T V (1.14b)

Ahgs P { m  potND? ND }
B poiND3® 1 ap1 '

Alternatively, the flow coefficient¢ = r1/(po2ND®) can be written as¢ =
1/ (po1ao1D?). As ND is proportional to blade speed, the graMPp/ao; is regarded
as ablade Mach number
For a machine handling a perfect gas a different set of functional relationships is
often more useful. These may be found either by selecting the appropriate variables
for a perfect gas and working through again from first principles or, by means
of some rather straightforward transformations, rewriting eqn. (1.14b) to give more
suitable groups. The latter procedure is preferred here as it provides a useful exercise.
As a concrete example consider an adiabatic compressor handling a perfect gas.
The isentropic stagnation enthalpy rise can now be wri@gal oo, — To1) for the
perfect gas. This compression process is illustrated in Figure 1.9a where the stag-
nation state point changes at constant entropy between the stagnation pressures
po1 and pgo. The equivalent process for a turbine is shown in Figure 1.9b. Using
the adiabatic isentropic relationshiy o = constant, together witlp/p = RT, the
expression

—1
Tozs_<[702>(y )Y
To1 po1
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(a) Compressor (b) Turbine

Fic. 1.9. The ideal adiabatic change in stagnation conditions across a turbomachine.

is obtained. Hence\hg, = C,To1[(poz/po)” /7 —1]. Since C, = yR/(y — 1)
anda%l = yRTos, then

Ahqg/agy o f(poz/ poy).
The flow coefficient can now be more conveniently expressed as

. @mRTor i/ (RToy)
po1a0iD®  poi\/(YRTo)D?  D?por/y

As 11 = po1D?*(ND), the power coefficient may be written
P mC ,ATo _ Cp,ATo _ ATy

f) = = = = .
poiN3D®  {po1D*(ND)}(ND)? ~ (ND)? To1

Collecting together all these newly formed non-dimensional groups and inserting
them in eqn. (1.14b) gives

po2 ATy my/(RTo1)  ND
— N, YV = f 2 ) s Re’ y .
D?2po1 " /(RTo1)

Po1 To1

The justification for droppings from a number of these groups is simply that it
already appears separately as an independent variable.

For a machine of a specific size and handling a single gas it has become
customary, in industry at least, to deleteR, andD from eqn. (1.15) and similar
expressions. If, in addition, the machine operates at high Reynolds numbers (or over
a small speed rangelRe can also be dropped. Under these conditions eqgn. (1.15)
becomes

& ATo_ {l’h\/T()l N }
’ por  NToi)

por To1
Note that by omitting the diametér and gas constam, the independent variables
in egn. (1.16) are no longer dimensionless.
Figures 1.10 and 1.11 represent typical performance maps obtained from
compressor and turbine test results. In both figures the pressure ratio across the whole

(1.15)

(1.16)
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Lines of constant efficiency
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FiG. 1.10. Overall characteristic of a compressor.

Choking mass flow
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Fic. 1.11. Overall characteristic of a turbine.
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machine is plotted as a function 6f(./To1)/ po1 for fixed values ofN/(/To1),
this being a customary method of presentation. Notice that for both machines
subscript 1 is used to denote conditions as inlet. One of the most striking features
of these performance characteristics is the rather weak dependence of the turbine
performance upomwV /+/To; contrasting with the strong dependence shown by the
compressor on this parameter.

For the compressor, efficient operation at constépt/To; lies to the right of
the line marked Surg€. A discussion of the phenomenon of surge is included in
Chapter 5; in brief, for multistage compressors it commences approximately at the
point (for constantV/./To1) where the pressure ratio flattens out to its maximum
value. The surge line denotes the limitsiéible operatiorof a compressor, unstable
operation being characterised by a severe oscillation of the mass flow rate through
the machine. The choked regions of both the compressor and turbine characteristics
may be recognised by the vertical portions of the constant speed lines. No further
increase init(+/To1)/ po1 is possible since the Mach number across some section
of the machine has reached unity and the flow is said tohwked

The inherent unsteadiness of the flow within
turbomachines

A fact often ignored by turbomachinery designers, or even unknown to students,
is that turbomachines can only work the way they do because of unsteady flow
effects taking place within them. The fluid dynamic phenomena that are associated
with the unsteady flow in turbomachines has been examined by Greitzer (1986) in
a discourse which was intended to be an introduction to the subject but actually
extended far beyond the technical level of this book! Basically Greitzer, and others
before him, in considering the fluid mechanical process taking place on a fluid
particle in an isentropic flow, deduced thetgnation enthalpy of the particle can
change only if the flow is unsteadipean (1959) appears to have been the first
to record that without aminsteady flowinside a turbomachine, no work transfer
can take place. Paradoxically, both at the inlet to and outlet from the machine the
conditions are such that the flow can be considered as steady.

A physical situation considered by Greitzer is the axial compressor rotor as
depicted in Figure 1.12a. The pressure field associated with the blades is such that
the pressure increases from the suction surface (S) to the pressure surface (P). This
pressure field moves with the blades and, to an observer situated at the point * (in the
absolute frame of reference), a pressure that varies with time would be recorded,
as shown in Figure 1.12b. Thus, fluid particles passing through the rotor would
experience a positive pressure increase with time dj¢0r > 0). From this fact it
can then be shown that the stagnation enthalpy of the fluid particle also increases
because of the unsteadiness of the flow, i.e.

Dhy _ 1dp
Dt por’

where /Dt is the rate of change following the fluid particle.
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A

Static pressure at *

Direction of blade motion

DR

Time

(b)

Location
of static

tapping

@)

Fic. 1.12. Measuring unsteady pressure field of an axial compressor rotor. (a) Pressure
is measured at point x on the casing. (b) Fluctuating pressure measured at point .
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Problems

1. A fan operating at 1750 rev/min at a volume flow rate of 4.2fndevelops a head
of 153mm measured on a water-filled U-tube manometer. It is required to build a larger,
geometrically similar fan which will deliver the same head at the same efficiency as the
existing fan, but at a speed of 1440 rev/min. Calculate the volume flow rate of the larger fan.

2. An axial flow fan 1.83 m diameter is designed to run at a speed of 1400 rev/min with an
average axial air velocity of 12.2m/s. A quarter scale model has been built to obtain a check
on the design and the rotational speed of the model fan is 4200 rev/min. Determine the axial
air velocity of the model so that dynamical similarity with the full-scale fan is preserved.
The effects of Reynolds number change may be neglected.

A sufficiently large pressure vessel becomes available in which the complete model can
be placed and tested under conditions of complete similarity. The viscosity of the air is
independent of pressure and the temperature is maintained constant. At what pressure must
the model be tested?

3. A water turbine is to be designed to produce 27 MW when running at 93.7 rev/min
under a head of 16.5m. A model turbine with an output of 37.5kW is to be tested under
dynamically similar conditions with a head of 4.9m. Calculate the model speed and scale
ratio. Assuming a model efficiency of 88%, estimate the volume flow rate through the model.

It is estimated that the force on the thrust bearing of the full-size machine will be 7.0 GN.
For what thrust must the model bearing be designed?

4. Derive the non-dimensional groups that are normally used in the testing of gas turbines
and compressors.

A compressor has been designed for normal atmospheric conditions (101.3 kP&@nd 15
In order to economise on the power required it is being tested with a throttle in the entry
duct to reduce the entry pressure. The characteristic curve for its normal design speed of
4000 rev/min is being obtained on a day when the ambient temperaturéGs 20 what
speed should the compressor be run? At the point on the characteristic curve at which the
mass flow would normally be 58 kg/s the entry pressure is 55 kPa. Calculate the actual rate
of mass flow during the test.

Describe, with the aid of sketches, the relationship between geometry and specific speed
for pumps.



[ N

CHAPTER 2

Basic Thermodynamics,
Fluid Mechanics:
Definitions of Efficiency

Take your choice of those that can best aid your action. (SHAKESPEARE,
Coriolanus.)

Introduction

THIS chapter summarises the basic physical laws of fluid mechanics and ther-
modynamics, developing them into a form suitable for the study of turbomachines.
Following this, some of the more important and commonly used expressions for the
efficiency of compression and expansion flow processes are given.

The laws discussed are:

(1) thecontinuity of flow equation

(2) thefirst law of thermodynamicand thesteady flow energy equatipn
(3) themomentum equation

(4) thesecond law of thermodynamics

All of these laws are usually covered in first-year university engineering and tech-

nology courses, so only the briefest discussion and analysis is give here. Some
fairly recent textbooks dealing comprehensively with these laws are those written

by Cengel and Boles (1994), Douglas, Gasiorek and Swaffield (1995), Rogers and
Mayhew (1992) and Reynolds and Perkins (1977). It is worth remembering that

these laws are completely general; they are independent of the nature of the fluid
or whether the fluid is compressible or incompressible.

The equation of continuity

Consider the flow of a fluid with density, through the element of areaAd
during the time interval d Referring to Figure 2.1, it is the stream velocity the
elementary mass isitdl= pcdtdA cosd, whered is the angle subtended by the normal
of the area element to the stream direction. The velocity component perpendicular
to the area d is ¢, = ccosh and so @& = pc,dAds. The elementary rate of mass
flow is therefore

dm
din = — = pc,dA. 2.1
i = - = pe (2.1)

23
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Fic. 2.1. Flow across an element of area.

Most analyses in this book are limited to one-dimensional steady flows where
the velocity and density are regarded as constant across each section of a duct
or passage. IA; and A, are the flow areas at stations 1 and 2 along a passage
respectively, then

m = p1Ccp1A1 = p2Cp2A2 = pC,A, (2.2)

since there is no accumulation of fluid within the control volume.

The first law of thermodynamics  — internal energy

Thefirst law of thermodynamicstates that if a system is taken through a complete
cycle during which heat is supplied and work is done, then

fMQ—dW)=Q (2.3)

where ¢ dQ represents the heat supplied to the system during the cycl¢ dndthe
work done by the system during the cycle. The units of heat and work in egn. (2.3)
are taken to be the same.

During a change of state from 1 to 2, there is a change in the property internal
energy,

2
E,—FE = / (dQ — dw). (2.4
1

For an infinitesimal change of state

dE = dQ — dw. (2.4a)

The steady flow energy equation

Many textbooks, e.gCengel and Boles (1994), demonstrate how the first law of
thermodynamics is applied to the steady flow of fluid through a control volume so
that the steady flow energy equation is obtained. It is unprofitable to reproduce this
proof here and only the final result is quoted. Figure 2.2 shows a control volume
representing a turbomachine, through which fluid passes at a steady rate of mass
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FiG. 2.2. Control volume showing sign convention for heat and work transfers.

flow iz, entering at position 1 and leaving at position 2. Energy is transferred from
the fluid to the blades of the turbomachine, positive work being done (via the shaft)
at the rateW,. In the general case positive heat transfer takes place at th@rate
from the surroundings$o the control volume. Thus, with this sign convention the
steady flow energy equation is

O — W, =si[(ha — h1) + 3(c3 — ) + 8(z2 — 2], (2.5)

where#h is the specific enthalpy%c2 the kinetic energy per unit mass agd the
potential energy per unit mass.

Apart from hydraulic machines, the contribution of the last term in egn. (2.5)
is small and usually ignored. Defining stagnation enthalpyhpy= 1 + %cz and
assumingg(zz — z1) is negligible, egn. (2.5) becomes

0 — W, = r(hoz2 — hoy). (2.6)

Most turbomachinery flow processes are adiabatic (or very nearly so) and it is
permissible to writeQ = 0. For work producing machines (turbine8), > 0, so
that

W, = W, = ri(hor — hop). (2.7)

For work absorbing machines (compressd#s) < 0, so that it is more convenient
to write

W, = —W, = r(hoz — hoy). (2.8)

The momentum equation — Newton’s second law of
motion

One of the most fundamental and valuable principles in mechanidgugon’s
second law of motianThe momentum equation relates the sum of the external forces
acting on a fluid element to its acceleration, or to the rate of change of momentum
in the direction of the resultant external force. In the study of turbomachines many
applications of the momentum equation can be found, e.g. the force exerted upon
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a blade in a compressor or turbine cascade caused by the deflection or acceleration
of fluid passing the blades.

Considering a system of mass the sum of all the body and surface forces acting
onm along some arbitrary directionis equal tothe time rate of change of the total
x-momentum of the systeire.

d
YF, = E(mCX)' (2.9)

For a control volume where fluid enters steadily at a uniform velagityand leaves
steadily with a uniform velocity,,, then

XF, = m(CXZ - Cxl) (293.)
Equation (2.9a) is the one-dimensional form of the steady flow momentum equation.
Euler’'s equation of motion

It can be shown for the steady flow of fluid through an elementary control volume
that, in the absence of all shear forces, the relation

1
—dp+cdc+gdz =0 (2.10)
0

is obtained. This is Euler's equation of motion for one-dimensional flow and is
derived from Newton's second law. By shear forces being absent we mean there
is neither friction nor shaft work. However, it is not necessary that heat transfer
should also be absent.

Bernoulli's equation

The one-dimensional form of Euler's equation applies to a control volume whose
thickness is infinitesimal in the stream direction (Figure 2.3). Integrating this equa-
tion in the stream direction we obtain

21 1
/ “dp+ 5(E D)+ gz~ ) =0 (2.10a)
1

Fluid density, p

Fixed datum

FiG. 2.3. Control volume in a streaming fluid.
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which is Bernoulli's equation. For an incompressible flujd,is constant and
egn. (2.10a) becomes

1
;(poz — po1) +8(z2 — z1) =0, (2.10b)

where stagnation pressurejg = p + %pcz.
When dealing with hydraulic turbomachines, the tdread H occurs frequently
and describes the quantigy+ po/(pg). Thus eqgn. (2.10b) becomes

H,—H,=0. (210C)

If the fluid is a gas or vapour, the change in gravitational potential is generally
negligible and eqgn. (2.10a) is then

21 1
/ “dp+ Z(c5—c?)=0. (2.10d)
1P 2

Now, if the gas or vapour is subject to only a small pressure change the fluid density
is sensibly constant and

Po2 = po1 = Po, (2.10e)

i.e. the stagnation pressure is constant (this is also truedomgpressible isentropic
process.

Moment of momentum

In dynamics much useful information is obtained by employing Newton’s second
law in the form where it applies to the moments of forces. This form is of central
importance in the analysis of the energy transfer process in turbomachines.

For a system of masa, the vector sum of the moments of all external forces
acting on the system about some arbitrary akisA fixed in space is equal to the
time rate of change of angular momentum of the system about that axis, i.e.

d
Th = ma(rCe), (2.11)

wherer is distance of the mass centre from the axis of rotation measured along the
normal to the axis andy the velocity component mutually perpendicular to both
the axis and radius vectet

For a control volume thiaw of moment of momentuoan be obtained. Figure 2.4
shows the control volume enclosing the rotor of a generalised turbomachine.
Swirling fluid enters the control volume at radiug with tangential velocitycg;
and leaves at radiug, with tangential velocitycy,. For one-dimensional steady
flow

Ta = m(race2 — rice1) (2.11a)

which states that, the sum of the moments of the external forces acting on fluid
temporarily occupying the control volume is equal to the net time rate of efflux of
angular momentum from the control volume.
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Gy

Flow direction

FiG. 2.4. Control volume for a generalised turbomachine.

Euler's pump and turbine equations

For a pump or compressor rotor running at angular vela@itghe rate at which
the rotor does work on the fluid is

'L’AQ = ﬁl(Ungz — U1C91), (2.12)

where the blade spedd = Qr.
Thus the work done on the fluid per unit mass or specific work, is

W, Q
— = L = Uycpp — Uicp1 > 0. (2.123)
m m

AW, =

This equation is referred to &uler's pump equation
For a turbine the fluid does workn the rotor and the sign for work is then
reversed. Thus, the specific work is

w
AW, = —L = Uicor — Uacgp > O. (2.12b)
m
Equation (2.12b) will be referred to &uler’s turbine equation

Defining rothalpy

In a compressor or pump the specific work done on the fluid equals the rise in
stagnation enthalpy. Thus, combining egns. (2.8) and (2.12a),

AW, = W,/ = UsCy — Uscor = hop — hox. (2.12c)

This relationship is true for steady, adiabatic and irreversible flow in compressor or
in pump impellers. After some rearranging of eqn. (2.12c) and writing h + %cz,
then

h1 + %ci —Uicor =h2 + %Cg — Uocgr =1. (2.12d)

According to the above reasoning a new functiohas been defined having the
same value at exit from the impeller as at entry. The funcfidras acquired the
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widely used nameothalpy, a contraction of rotational stagnation enthalpy, and is
a fluid mechanical property of some importance in the study of relative flows in
rotating systems. As the value of rothalpy is apparéntiychanged between entry
and exit of the impeller it is deduced that it must be constant along the flow lines
between these two stations. Thus, the rothalpy can be written generally as

I=h+ - Uc. (2.12e)

The same reasoning can be applied to the thermomechanical flow through a
turbine with the same result.

The second law of thermodynamics  — entropy

The second law of thermodynamjadeveloped rigorously in many modern ther-
modynamic textbooks, e.€engel and Boles (1994), Reynolds and Perkins (1977),
Rogers and Mayhew (1992), enables the concept of entropy to be introduced and
ideal thermodynamic processes to be defined.

An important and useful corollary of the second law of thermodynamics, known as
the Inequality of Clausiusstates that for a system passing through a cycle involving
heat exchanges,

do
j'{ - 0. (2.13)

where @ is an element of heat transferred to the system at an absolute temperature
T. If all the processes in the cycle are reversible then=ddQ; and the equality
in eqgn. (2.13) holds true, i.e.

d
7{ dOr =0. (2.13a)
T
The property called entropy, for a finite change of state, is then defined as
2
d
Sz—Slz/ &. (2.14)
1 T
For an incremental change of state
d
dS = mds = %, (2.14a)

wherem is the mass of the system.
With steady one-dimensional flow through a control volume in which the fluid
experiences a change of state from condition 1 at entry to 2 at exit,

L
/ 99 < sz —so). (2.15)
LT

* A discussion of recent investigations into the conditions required for the conservation of rothalpy
is deferred until Chapter 7.
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If the process is adiabaticQd= 0, then
§2 2 §1. (2.16)
If the process iseversibleas well, then
§2 = §1. (2.16a)

Thus, for a flow which is adiabatic, the ideal process will be one in which the
entropy remains unchanged during the process (the conditicsenfropy.

Several important expressions can be obtained using the above definition of
entropy. For a system of magsundergoing a reversible procesg & dQr = mTds
and d¥ = dWx = mpdv. In the absence of motion, gravity and other effects the
first law of thermodynamics, eqn. (2.4a) becomes

Tds = du + pdv. (2.17)
With & = u + pv then dv = du + pdv + vdp and eqn. (2.17) then gives
Tds = dh — vdp. (2.18)

Definitions of efficiency

A large number of efficiency definitions are included in the literature of turboma-
chines and most workers in this field would agree there are too many. In this book
only those considered to be important and useful are included.

Efficiency of turbines

Turbines are designed to convert the available energy in a flowing fluid into useful
mechanical work delivered at the coupling of the output shaft. The efficiency of this
process, theverall efficiencyyg, is a performance factor of considerable interest to
both designer and user of the turbine. Thus,

_ mechanical energy available at coupling of output shaft in unit time
10 = T maximum energy difference possible for the fluid in unit time

Mechanical energy losses occur between the turbine rotor and the output shaft
coupling as a result of the work done against friction at the bearings, glands, etc.
The magnitude of this loss as a fraction of the total energy transferred to the rotor is
difficult to estimate as it varies with the size and individual design of turbomachine.
For small machines (several kilowatts) it may amount to 5% or more, but for
medium and large machines this loss ratio may become as little as 1%. A detailed
consideration of the mechanical losses in turbomachines is beyond the scope of this
book and is not pursued further.

The isentropic efficiencyy, or hydraulic efficiencyn, for a turbine is, in broad
terms,

mechanical energy supplied to the rotor in unit time
maximum energy difference possible for the fluid in unit time

n:(or ng) =
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Comparing the above definitions it is easily deduced thantkehanical efficiency
nm, Which is simply the ratio of shaft power to rotor power, is

Nm = No/n: (OF no/Np).

In the following paragraphs the various definitions of hydraulic and adiabatic effi-
ciency are discussed in more detail.

For an incremental change of state through a turbomachine the steady flow energy
equation, egn. (2.5), can be written

dQ — dW, = rm[dh + 3d(c?) + gdz].

From the second law of thermodynamics
. 1
dO < mTds = m (dh - —dp> )
o
Eliminating d? between these two equations and rearranging
. 1 1.,
dw, < —m |—dp + éd(c )+ gdz| . (2.19)
o)

For a turbine expansion, notirigf, = W, > 0, integrate eqn. (2.19) from the initial
state 1 to the final state 2,

) 11 1
W. < s U Lap+ Sic-h+ staa- zZ)] . (2.20)
2

For a reversible adiabatic procesds =0=dh—dp/p. The incremental
maximum work output is then

AW, = —m[dh + 3d(c®) + gdz]

Xmax

Hence, the overall maximum work output between initial state 1 and final state 2 is
1 1
. ) )
Wt = m/ [dh + éd(c )+ gdz
2

= m[(ho1 — hoz) + g(z1 — 22)] (2.203)

where the subscriptin egn. (2.20a) denotes that the change of state between 1 and
2 is isentropic.

For an incompressible fluid, in the absence of friction, the maximum work output
from the turbine (ignoring frictional losses) is

W, =nmg[H1— H>), (2.20b)

Xmax
wheregH = p/p + %cz + gz.
Steam and gas turbines

Figure 2.5a shows a Mollier diagram representing the expansion process through an
adiabatic turbine. Line 42 represents the actual expansion and lir@slthe ideal
or reversible expansion. The fluid velocities at entry to and at exit from a turbine
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Fic. 2.5. Enthalpy-entropy diagrams for turbines and compressors.

may be quite high and the corresponding kinetic energies may be significant. On the
other hand, for a compressible fluid the potential energy terms are usually negligible.
Hence theactual turbine rotorspecific work

AWy = Wi/t = hoy — hop = (hy — h2) + 3(c§ — ¢3)

Similarly, theideal turbine rotor specific work between the same two pressures is
AWmax = W/ = hot — hoay = (h1 — hay) + 3(c% — ¢3)).

In Figure 2.5a the actual turbine work/unit mass of fluid is the stagnation enthalpy
change between state points 01 and 02 which lie on the stagnation pressuggdines
and pg, respectively. The ideal turbine work per unit mass of fluid is the stagnation
enthalpy change during theentropic procesbetween the same two pressures. The
kinetic energy of the fluid at the end of the ideal proc§s§ is not, however, the
same as that at the end of the actual pro@ésThis may be adduced as follows.
Taking for simplicity a perfect gas, thelh= C,T and p/p = RT. Consider the
constant pressure ling, (Figure 2.5a); ag’> > T, thenpy, > p,. From continuity
m/A = pc and since we are dealing with the same argeay co;, and the kinetic
energy terms are not equal. The difference in practice is usually negligible and often
ignored.

There are several ways of expressing efficiency, the choice of definition depending
largely upon whether thexit kinetic energyis usefully employed or is wasted. An
example where the exhaust kinetic energy is not wasted is from the last stage of
an aircraft gas turbine where it contributes to the jet propulsive thrust. Likewise,
the exit kinetic energy from one stage of a multistage turbine where it is used in
the next stage, provides another example. For these two cases the turbine and stage
adiabatic efficiency,, is thetotal-to-total efficiencyand is defined as

N = AW, /AW, . = (ho1 — ho2)/(ho1 — hoy). (2.21)
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If the difference between the inlet and outlet kinetic energies is smalkd?er 1c2,
then

N = (h1 — h2)/(h1 — hy) (2.21a)

When the exhaust kinetic energy is not usefully employed and entirely wasted,
the relevant adiabatic efficiency is thetal-to-static efficiency,;. In this case the
ideal turbine work is that obtained between state points 01 andtus

Nis = (hoa — ho2)/ (ho1 — hoas + 5¢5,)
= (ho1 — ho2)/ (ho1 — has). (2.22)

If the difference between inlet and outlet kinetic energies is small, eqgn. (2.22)
becomes

Nes = (hy — hp)/(hy — has + 22). (2.22a)

A situation where the outlet kinetic energy is wasted is a turbine exhausting directly
to the surroundings rather than through a diffuser. For example, auxiliary turbines
used in rockets often do not have exhaust diffusers because the disadvantages of
increased mass and space utilisation are greater than the extra propellant required
as a result of reduced turbine efficiency.

Hydraulic turbines

When the working fluid is a liquid, the turbine hydraulic efficiengy is defined
as the work supplied by the rotor in unit time divided by the hydrodynamic energy
difference of the fluid per unit time, i.e.

AW, AW,

_ , (2.23)
AM/Xmax g(Hl_HZ)

Nh =

Efficiency of compressors and pumps

The isentropiefficiencyn. of a compressor or thieydraulic efficiencyof a pump
n, is broadly defined as,

useful (hydrodynamic) energy input to fluid in unit time
power input to rotor '

nc(or nh) =

The power input to the rotor (or impeller) is always less than the power supplied
at the coupling because of external energy losses in the bearings and glands, etc.
Thus, the overall efficiency of the compressor or pump is

_useful (hydrodynamic) energy input to fluid in unit time
B power input to coupling of shaft

o

Hence the mechanical efficiency is

Nm = Mo/Nc(OF 0o/11).
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In eqgn. (2.19), for a compressor or pump process, replad#, with dW, and
rearrange the inequality to give the incremental work input

. 1 1
mm>m[ﬁm+2mﬁngw} (2.24)

The student should carefully check the fact that the rhs of this inequaliysiive
working from egn. (2.19)

For a complete adiabatic compression process going from state 1 to state 2, the
overall work input rate is

. 2d 1
W.=m [/ 717 + 5(05 - c%) + g(z2 — zl)} . (2.25)
1

For the correspondingeversibleadiabatic compression process, noting thdt =
0=dh —dp/p, the minimum work input rate is

. 2% 1
W emin = m/ {dh + Edc2 + gdz] = m[(hoz — ho1) + g(z2 —z1)].  (2.26)
1

From the steady flow energy equation, for an adiabatic process in a compressor
W = r(hoz — hoy). (2.27)

Figure 2.5b shows a Mollier diagram on which the actual compression process
is represented by the state change2land the corresponding ideal process by
1-2s. For an adiabatic compressor the only meaningful efficiency is the total-to-total
efficiency which is

minimum adiabatic work input per unit time

e = ‘actual adiabatic work input to rotor per unit time
hops — h
=2 (2.28)
hoz — ho1

If the difference between inlet and outlet kinetic energies is srhafl = 1c3 and

=y
Ne = o — hy

(2.283)

For incompressiblelow, egn. (2.25) gives
AW, =W, /m 2 [(p2— p1)/p+ 5(c5 — ¢ + 8(za — 21)] = g[H2 — H1.
For the ideal case with no fluid friction
AW ... = glH> — H1]. (2.29)
For a pump the hydraulic efficiency is defined as

AVVPmin _ g[H2 _Hl]
AW, AW,

= (2.30)
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Small stage or polytropic efficiency

The isentropicefficiencydescribed in the preceding section, although fundamen-
tally valid, can be misleading if used for comparing the efficiencies of turbomachines
of differing pressure ratios. Now any turbomachine may be regarded as being
composed of a large number of very small stages irrespective of the actual number
of stages in the machine. If each small stage has the same efficiency, then the
isentropic efficiency of the whole machine will be different from the small stage
efficiency, the difference depending upon the pressure ratio of the machine. This
perhaps rather surprising result is a manifestation of a simple thermodynamic effect
concealed in the expression for isentropic efficiency and is made apparent in the
following argument.

Compression process

Figure 2.6 shows an enthalpgntropy diagram on which adiabatic compression
between pressurgs and p; is represented by the change of state between points 1
and 2. The corresponding reversible process is represented by the isentropic line 1
to 2s. It is assumed that the compression process may be divided up into a large
number of small stages of equal efficiengy. For each small stage the actual work
input is W and the corresponding ideal work in the isentropic proces$3Vigin.

With the notation of Figure 2.6,

_SWmin_hxs_hl_hy:_hx_
TESW S T he—h hy—h,

Since each small stage has the same efficiency, ghea (ZéWnin/Z5W) is also
true.

Angles equal

S

FiG. 2.6. Compression process by small stages.
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From the relatiorf'ds = di — vdp, for a constant pressure proc&ss/os),, = T.
This means that the higher the fluid temperature dresater is the slope of the
constant pressure lines on the Mollier diagram. For a gas wheagea function
of T, constant pressure lines diverge and the slope of thedines greater than
the slope of linep; at the same value of entropy. At equal valuesTofconstant
pressure lines are of equal slope as indicated in Figure 2.6. For the special case
of a perfect gas(where C,, is constant),C,(d7/ds) =T for a constant pressure
process. Integrating this expression results in the equation for a constant pressure
line, s = C,logT + constant.

Returning now to the more general case, since

YW = {(hy — h1) + (hy — hy) + - -} = (h2 — ha),
then
np = [(he — h1) + (hyg — hy) + - -]/ (ha — ha).
The adiabatic efficiency of thehole compression process is
Ne = (has — h1)/(h2 — ha).
Because of the divergence of the constant pressure lines
{(hys — h1) + (hys — he) + - -} > (has — 1),

Z(SWmm > Wmin.

Therefore,
Np = Ne-

Thus, for a compression process the isentropic efficiency of the macHessthan

the small stage efficiency, the difference being dependent upon the divergence of
the constant pressure lines. Although the foregoing discussion has been in terms of
static states it can be regarded as applying to stagnation states if the inlet and outlet
kinetic energies from each stage are equal.

Small stage efficiency for a perfect gas

An explicit relation can be readily derived for a perfect gas, (is constant)
between small stage efficiency, the overall isentropic efficiency and pressure ratio.
The analysis is for the limiting case of an infinitesimal compressor stage in which
the incremental change in pressure js &s indicated in Figure 2.7. For the actual
process the incremental enthalpy rise is ahd the corresponding ideal enthalpy
rise is dh;.

The polytropic efficiency for the small stage is

B dh;, B vdp
~dn C,dT

np (2.31)

since for an isentropic procedls = 0 = dh;; — vdp.
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S

FiG. 2.7. Incremental change of state in a compression process.

Substitutingy = RT/p in eqn. (2.31), then

R Tdp

Np = C_p;ﬁ

and hence
dar  (y—Ddp
T oy, P
as C,=yR/(y—-1.

(2.32)

Integrating egn. (2.32) across the whole compressor and taking equal efficiency for
each infinitesimal stage gives,

T (y=D/npy
“2_ <E> . (2.33)
T, p1

Now the isentropic efficiency for the whole compression process is
Ne=Ta —T1)/(T2—T1) (2.34)

if it is assumed that the velocities at inlet and outlet are equal.
For theideal compression process py} = 1 in egn. (2.32) and so obtain

T y=D/y
Tor _ <PZ> (2.35)
T, p1

which is also obtainable fromv” = constant anghv = RT. Substituting egns. (2.33)
and (2.35) into eqn. (2.34) results in the expression

. l(&>(y—l)/y ~ 1 / l(&>(y—l)/npy ~ 11 ' (2.36)
p1 P1



38 Fluid Mechanics, Thermodynamics of Turbomachinery

OO e 0.9

£ 08

&

5

2 0.8
5

2 07

o

o

=

)

2 0.7

0.6}

Pressure ratio, p,/ p,

Fic. 2.8. Relationship between isentropic (overall) efficiency, pressure ratio and small
stage (polytropic) efficiency for a compressor (y = 1.4).

Values of “overall” isentropic efficiency have been calculated using eqn. (2.36) for a
range of pressure ratio and different values)pfand are plotted in Figure 2.8. This
figure amplifies the observation made earlier that the isentropic efficiency of a finite
compression process lisssthan the efficiency of the small stages. Comparison of
the isentropic efficiency of two machines of different pressure ratios is not a valid
procedure since, for equal polytropic efficiency, the compressor with the highest
pressure ratio is penalised by thi&ldenthermodynamic effect.

The termpolytropic used above arises in the context of a reversible compressor
compressing a gas from the same initial state to the same final state as the irreversible
adiabatic compressor but obeying the relati@ri = constant. The index is called
the polytropic index Since an increase in entropy occurs for the change of state in
both compressors, for the reversible compressor this is only possible if there is a
reversible heat transfer = T'ds. Proceeding farther, it follows that the value of
the indexn must always exceed that of This is clear from the following argument.

For the polytropic process,

dQr = du + pdv.
= %d(pv) + pdo.

Using pv" = constant andC, = R/(y — 1), after some manipulation the expres-
sion g = (y — n)/(y — 1) pdv is derived. For a compression process<d0 and
dQr > 0 thenn > y. For an expansion process & 0, dQz < 0 and agaim > y.

ExampLE 2.1. An axial flow air compressor is designed to provide an overall
total-to-total pressure ratio of 8 to 1. At inlet and outlet the stagnation temperatures
are 300K and 586.4 K, respectively.

Determine the overall total-to-total efficiency and the polytropic efficiency for the
compressor. Assume thatfor air is 1.4.
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Solution From eqn. (2.28), substituting= C,T, the efficiency can be written
as,

Poz (y=D/y L
— - gl/35 _ 1

_Tox—To <P01

= = = 0.85.
e Top—To1 To2/Tor—1 586-4/300— 1

From egn. (2.33), taking logs of both sides and re-arranging, we get,

_ v —=1In(poza/po) _ In8

1
_ = x "% _ 08865
T = N (Toa/Tor) 35 - In1.9547

Turbine polytropic efficiency

A similar analysis to the compression process can be applied to a perfect gas
expanding through an adiabatic turbine. For the turbine the appropriate expressions
for an expansion, from a state 1 to a state 2, are

T np(y=1/y
T_i — <%> (2.37)

np(y—=1/y y=1/y
n = [1— <Q> ] / ll— <&> ] . (2.38)
P1 P1

The derivation of these expressions is left as an exercise for the student. “Overall”
isentropic efficiencies have been calculated for a range of pressure ratio and different
polytropic efficiencies and are shown in Figure 2.9. The most notable feature of these
results is that, in contrast with a compression process, for an expansion, isentropic
efficiency exceedssmall stage efficiency.
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Fic. 2.9. Turbine isentropic efficiency against pressure ratio for various polytropic effi-
ciencies (y = 1.4).



40 Fluid Mechanics, Thermodynamics of Turbomachinery

Reheat factor

The foregoing relations obviously cannot be applied to steam turbines as vapours
do not in general obey the gas laws. It is customary in steam turbine practice to
use areheat factorRy as a measure of the inefficiency of the complete expansion.
Referring to Figure 2.10, the expansion process through an adiabatic turbine from
state 1 to state 2 is shown on a Mollier diagram, split into a number of small stages.
The reheat factor is defined as

Ry = [(hl - hx.y) + (hx - hys) + - ]/(hl - h2s) = (EAhts)/(hl - hZS‘)'

Due to the gradual divergence of the constant pressure lines on a Mollier Rhart,
is always greater than unity. The actual valueRgf for a large number of stages
will depend upon the position of the expansion line on the Mollier chart and the
overall pressure ratio of the expansion. In normal steam turbine practice the value of
Ry is usually between 1.03 and 1.08. For an isentropic expansion in the superheated
region with pv" = constant, the tables of Rogers and Mayhew (1995) give a value
for n = 1.3. Assuming this value for is valid, the relationship between reheat
factor and pressure ratio for various fixed values of the polytropic efficiency has
been calculated and is shown in Figure 2.11.

Now since the isentropic efficiency of the turbine is

_hi—hy _ hi—hy TAh;
C hi—hy XAl hy— hy

Nt

Ahjs

S

Fic. 2.10. Mollier diagram showing expansion process through a turbine split up into a
number of small stages.
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then

N = npRy (2.39)

which establishes the connection between polytropic efficiency, reheat factor and
turbine isentropic efficiency.

Nozzle efficiency

In a large number of turbomachinery components the flow process can be regarded
as a purely nozzle flow in which the fluid receives an acceleration as a result of a
drop in pressure. Such a nozzle flow occurs at entry to all turbomachines and in the
stationary blade rows in turbines. In axial machines the expansion at entry is assisted
by a row of stationary blades (calleglide vanesin compressors andozzlesin
turbines) which direct the fluid on to the rotor with a large swirl angle. Centrifugal
compressors and pumps, on the other hand, often have no such provision for flow

guidance but there is still a velocity increase obtained from a contraction in entry
flow area.

1.08

1.04

Reheat factor, Ry

1.0 I I I I I
2 4 6 8 10 12
Pressure ratio, p1/p2

Fic. 2.11. Relationship between reheat factor, pressure ratio and polytropic efficiency
(n=1.3).
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Fic. 2.12. Mollier diagrams for the flow processes through a nozzle and a diffuser:
(a) nozzle; (b) diffuser.

Figure 2.12a shows the process on a Mollier diagram, the expansion proceeding
from state 1 to state 2. It is assumed that the process is steady and adiabatic such
that ho1 = hoo.

According to Horlock (1966), the most frequently used definition of nozzle effi-
ciency, ny is, the ratio of the final kinetic energy per unit mass to the maximum
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theoretical kinetic energy per unit mass obtained by an isentropic expansion to the
same back pressure, i.e.

v = (3¢3)/(5c5) = (hor — ho)/(hoy — hay). (2.40)

Nozzle efficiency is sometimes expressed in terms of various loss or other coeffi-
cients. An enthalpy loss coefficient for the nozzle can be defined as

oy = (h — hay)/(5¢3), (2.41)
and, also, a velocity coefficient for the nozzle,

Ky = ca/cas. (2.42)
It is easy to show that these definitions are related to one another by

v =1/(1+¢y) = K3 (2.43)

ExaMmPLE 2.2. Gas enters the nozzles of a turbine stage at a stagnation pressure
and temperature of 4.0bar and 1200K and leaves with a velocity of 572m/s and
at a static pressure of 2.36 bar. Determine the nozzle efficiency assuming the gas
has the average properties over the temperature range of the expangign=of
1.160kJ/kg K andy = 1.33.

Solution From eqgns. (2.40) and (2.35) the nozzle efficiency becomes
_ 1-T5/Tos _ 1-T5/Tos

1—Ta/Tor 11— (p2/por)r—D/7’
Assuming adiabatic flowT o, = To1):

nn

Ty =Toz — 3¢5/C, = 1200— 3 x 572/1160= 1059K
and thus

1-10591200 0.1175
= = = 0.9576
1—(2.36/4)03%133  0.12271

nn

Diffusers

A diffuser is a component of a fluid flow system designed to reduce the flow
velocity and thereby increase the fluid pressure. All turbomachines and many other
flow systems incorporate a diffuser (e.g. closed circuit wind tunnels, the duct
between the compressor and burner of a gas turbine engine, the duct at exit from a
gas turbine connected to the jet pipe, the duct following the impeller of a centrifugal
compressor, etc.). Turbomachinery flows are, in general, subséhie {) and the
diffuser can be represented as a chardieérging in the direction of flow (see
Figure 2.13).

The basic diffuser is a geometrically simple device with a rather long history of
investigation by many researchers. The long timespan of the research is an indicator
that the fluid mechanical processes within it are complex, the research rather more
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Fic. 2.13. Some subsonic diffuser geometries and their parameters: (a) two-dimensional;
(b) conical; (c) annular.

difficult than might be anticipated, and some aspects of the flow processes are still
not fully understood. There is now a vast literature about the flow in diffusers and
their performance. Only a few of the more prominent investigations are referenced
here. A noteworthy and recommended reference, however, which reviews many
diverse and recondite aspects of diffuser design and flow phenomena is that of
Kline and Johnson (1986).

The primary fluid mechanical problem of the diffusion process is caused by the
tendency of the boundary layers to separate from the diffuser walls if the rate
of diffusion is too rapid. The result of too rapid diffusion is always large losses
in stagnation pressure. On the other hand, if the rate of diffusion is too low, the
fluid is exposed to an excessive length of wall and fluid friction losses become
predominant. Clearly, there must be aptimum rate of diffusiorbetween these
two extremes for which the losses are minimised. Test results from many sources
indicate that an included angle of aboudt2 7 degrees gives the optimum recovery
for both two-dimensional and conical diffusers.
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Diffuser performance parameters
The diffusion process can be represented on a Mollier diagram, Figure 2.12b,
by the change of state from point 1 to point 2, and the corresponding changes in

pressure and velocity fronp, andc; to p, andc,. The actual performance of a
diffuser can be expressed in several different ways:

(1) as the ratio of the actual enthalpy change to the isentropic enthalpy change;
(2) as the ratio of an actual pressure rise coefficient to an ideal pressure rise co-
efficient.

For steady and adiabatic flow in stationary passalfss= hoz, SO that
hy — hy = 3(c% — c3). (2.44a)
For the equivalent reversible adiabatic process from state point 1 to state point 2s,
(hos — h1 = 3(cf — ¢5). (2.44b)
A diffuser efficiencynp, also called thaliffuser effectivenesgan be defined as
N = (hag — h1)/(hz = h1) = (§ — ¢5))/ (5 = 5. (2.45a)

In a low speed flow or a flow in which the densipycan be considered nearly
constant,

has —h1 = (p2 — p1)/p
so that the diffuser efficiency can be written
b = 2(p2 — p1)/{p(cZ — c3). (2.45b)
Equation (2.45a) can be expressed entirely in terms of pressure differences, by
writing
h2 — hay = (ha — h1) — (h2s — ha)
= 3(c2 — c5) — (p2— p1)/p = (por — po2)/p.
then, with eqn. (2.45a),
_ (hos — h1) _ 1
(hos — h1) — (has — h2) 1 — (hos — h2)/(has — hy)
_ 1
1+ (po1— po2)/(p2 — p1)’

Np

(2.46)

Alternative expressions for diffuser performance

(1) A pressure rise coefficient, can be defined:
Cp=(p2— p1)/q, (2.47a)

whereg; = Zpc?.
For anincompressibldlow through the diffuser the energy equation can be written
as

pi/p+ 22 = pa/p+ 13+ Apo/p, (2.48)
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where the loss in total pressur&po = po1 — poz. Also, using the continuity equa-
tion across the diffuseg;A; = c2A,, we obtain

c1/c2 =Az2/A1 = Ag, (2.49)

whereAy, is the area ratio of the diffuser.

From eqn. (2.48), by setting po to zero and with eqn. (2.49), it is easy to show
that theideal pressure rise coefficiers

Cpi=1—(c2/c1)’ =1- [iz] (2.47b)
AR

Thus, eqgn. (2.48) can be rewritten as
Cp = Cpi - APO/Ql (250)

Using the definition given in eqn. (2.46), then the diffuser efficiency (referred to as
the diffuser effectivenesBy Sovran and Klomp (1967)), is

np = Cp/Cpi. (2.51)

(2) A total pressure recovery factppgy/ po1, is sometimes used as an indicator
of the performance of diffusers. From eqn. (2.45a), the diffuser efficiency can be
written

np = (T2/T1—1)/(T2T1— 1). (2.52)
For the isentropic process-2s:

T_Zs B [&] y=1/y
Ty p1 '

For the constant temperature process @2, Tds = —dp/p which, when combined
with the gas law,p/p = RT, gives & = —Rdp/ p:

. As=RIn (pOl> .
Po2

For the constant pressure process2, Tds = dh = C,dT,

T,
S As=Cphln (—) .
Tas

Equating these expressions for the entropy increase and Rgifig = (y — 1)/,
then

2 _ (&>(Vl)/)/

Ty Do2 ’

FEE-IEEr
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Fic. 2.14. Variation of diffuser efficiency with static pressure ratio for constant values of

total pressure recovery factor (y = 1.4).

Substituting these two expressions into eqn. (2.52):
=Dy _ 1
D = (PZ/pl) - . (253)
[(po1/ po2)(p2/ pL)] DY — 1

The variation ofyp as a function of the static pressure ratj®,/ p1, for specific
values of the total pressure recovery factagz/ poi1, is shown in Figure 2.14.

Some remarks on diffuser performance

It was pointed out by Sovran and Klomp (1967) that the uniformity or steadiness
of the flow at the diffuser exit is as important as the reduction in flow velocity (or
the static pressure rise) produced. This is particularly so in the case of a compressor
located at the diffuser exit since the compressor performance is sensitive to non-
uniformities in velocity in its inlet flow. Figure 2.15, from Sovran and Klomp (1967),
shows the occurrence of flow unsteadiness and/or non-uniform flow at the exit from
two-dimensional diffusers (correlated originally by Kline, Abbott and Fox 1959).
Four different flow regimes exist, three of which have steady or reasonably steady
flow. The region of “no appreciable stall” is steady and uniform. The region marked
“large transitory stall” is unsteady and non-uniform, while the “fully-developed” and
“jet flow” regions are reasonably steady but very non-uniform.

The line marked aa will be of interest in turbomachinery applications. However,

a sharply marked transition does not exist and the definition of an appropriate line
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FiG. 2.16. Typical diffuser performance curves for a two-dimensional diffuser, with
L/ W, = 8.0 (adapted from Kline et al. 1959).
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involves a certain degree of arbitrariness and subjectivity on the occurrence of “first
stall”.

Figure 2.16 shows typical performance curves for a rectangular diffuser with a
fixed sidewall to length ratia,/W, = 8.0, given in Klineet al. (1959). On the line
labelledC,,, points numbered 1, 2 and 3 are shown. These same numbered points
are redrawn onto Figure 2.15 to show where they lie in relation to the various
flow regimes. Inspection of the location of point 2 shows that optimum recovery at
constant length occurs slightly above the line marked “no appreciable stall”. The
performance of the diffuser between points 2 and 3 in Figure 2.16 is shows a very
significant deterioration and is in the regime of large amplitude, very unsteady flow.

Maximum pressure recovery

From an inspection of egn. (2.46) it will be observed that when diffuser effi-
ciencynp is a maximum, the total pressure loss is a minimum for a given rise in
static pressure. Another optimum problem is the requirementafimum pressure
recovery for a given diffuser length in the flow directioregardless of the area
ratio A, = A»/A;. This may seem surprising but, in general, this optimum condi-
tion produces a different diffuser geometry from that needed for optimum efficiency.
This can be demonstrated by means of the following considerations.

From egn. (2.51), taking logs of both sides and differentiating, we get:

O nup) = 2ancy— Lanc,)
g )T g e) T g U i)

Setting the L.H.S to zero for the condition of maximujy, then
19C, 1 9Cy
C, 3 Cp 3

Thus, at the maximum efficiency the fractional rate of increasg oWith a change
in 0 is equal to the fractional rate of increase ©f; with a change irg. At this
point C, is positive and, by definition, botld",; and 9C,/d6 are also positive.
Equation (2.54) shows thatC,/96 > 0 at the maximum efficiency point. Clearly,
C, cannot be at its maximum whenyp is at its peak value! What happens is
that C,, continues to increasentil 3C /90 = 0, as can be seen from the curves in
Figure 2.16.

Now, upon differentiating eqn. (2.50) with respectand setting the |hs to zero,
the condition for maximunC , is obtained, namely

3C i
30

Thus, as the diffuser angle is increased beyond the divergence which gave maximum
efficiency, the actual pressure rise will continue to rise until the additional losses
in total pressure balance the theoretical gain in pressure recovery produced by the
increased area ratio.

(2.54)

0
= @(APO/‘Il)-

Diffuser design calculation

The performance of a conical diffuser has been chosen for this purpose using data
presented by Sovran and Klomp (1967). This is shown in Figure 2.17 as contour
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Fic. 2.17. Performance chart for conical diffusers, B; = 0.02. (adapted from Sovran and
Klomp 1967).

plots of C, in terms of the geometry of the diffuset/R; and the area ratidg.

Two optimum diffuser lines, useful for design purposes, were added by the authors.
The first is the lineC”, the locus of points which defines the diffuser area ratio
Ag, producing the maximum pressure recovery for a prescribed non-dimensional
length, L/R;. The second is the lin€7", the locus of points defining the diffuser
non-dimensional length, producing the maximum pressure recovery at a prescribed
area ratio.

ExampLE 2.3. Design a conical diffuser to give maximum pressure recovery in a
non-dimensional lengtlv/R; = 4.66 using the data given in Figure 2.17.

Solution From the graph, using log-linear scaling, the appropriate valu€ ,of
is 0.6 and the corresponding value &% is 2.13. From eqn. (2.47b),; =1
—(1/2-13%) = 0.78. Hencey)p = 0.6/0.78 = 0.77.

Transposing the expression given in Figure 2.13b, the included cone angle can
be found:

20 = 2tan {(A%° — 1)/(L/R1)} = 11.26 deg
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ExampPLE 2.4. Design a conical diffuser to give maximum pressure recovery at a
prescribed area ratidg = 1.8 using the data given in Figure 2.17.

Solution From the graph(C, = 0.6 andN/R; = 7.85 (using log-linear scaling).
Thus,

20 = 2tan }{(1.8°° — 1)/7.85} = 5deg
Cpi=1- (1/1.8%) = 0.69 andn, = 0.6/0.69 = 0.87.
Analysis of a non-uniform diffuser flow

The actual pressure recovery produced by a diffuser of optimum geometry is
known to be strongly affected by the shape of the velocity profile at inlet. A large
reduction in the pressure rise which might be expected from a diffuser can result
from inlet flow non-uniformities (e.g. wall boundary layers and, possibly, wakes
from a preceding row of blades). Sovran and Klomp (1967) presented an incom-
pressible flow analysis which helps to explain how this deterioration in performance
occurs and some of the main details of their analysis are included in the following
account.

The mass-averaged total pressgigat any cross-section of a diffuser can be
obtained by integrating over the section area. For symmetrical ducts with straight
centre lines the static pressure can be considered constant, as it is normally. Thus,

?o=/6(p+%pcz)dA//ch,
A A
=p+ ép/c3dA//ch. (2.55)
A A

The average axial velocity and the average dynamic pressyrat a section are
1 1
U= [ cdA andqg = ZpU>
3 feeaanda= 30
Substituting into eqgn. (2.55),
_ c\3
o= p+ %pr*‘/ (5) d4/UA
A
q c\3
=p+ 2 [ () dA=p+ag, (2.56)
A

A U

wherew is the kinetic energy flux coefficient of the velocity profile, i.e.

azj/A(;)adAzé/A(;])de=?/U2, (2.57)

where¢? is the mean square of the velocity in the cross-section@rdAU, i.e.

2=(1/0) /A c2do.
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From eqgn. (2.56) the change in static pressure in found as
P2 — p1 = (011 — @2q2) — (Po1 — Po2)- (2.58)

From egn. (2.51), with egns. (2.47a) and (2.47b), the diffuser efficiency (or diffuser
effectiveness) can now be written:

(p2 — p1)/q1
=C,/C,=—21
= ColCri =T a2
Substituting egn. (2.58) into the above expression,
_ 2
_aaft (az/a;)/AR] o i (2.59)
(1-1/A%) (1-1/A%)

wherew is the total pressure loss coefficient for the whole diffuser, i.e.

@ = (Po1 — Po2)/q1- (2.60)

Equation (2.59) is particularly useful as it enables the separate effects due the
changes in the velocity profile and total pressure losses on the diffuser effectiveness
to be found. The first term in the equation gives the reductiopgncaused by
insufficient flow diffusionThe second term gives the reductionnip produced by
viscous effects and represeimsfficient flow diffusionAn assessment of the relative
proportion of these effects on the effectiveness requires the accurate measurement
of both the inlet and exit velocity profiles as well as the static pressure rise. Such
complete data is seldom derived by experiments. However, Sovran and Klomp
(1967) made the observation that there is a widely held belief that fluid mechanical
losses are the primary cause of poor performance in diffusers. One of the important
conclusions they drew from their work was that it is the thickening of the inlet
boundary layer which is primarily responsible for the reductiom Thus, it is
insufficientflow diffusion rather tharinefficient flow diffusion which is often the
cause of poor performance.

Some of the most comprehensive tests made of diffuser performance were those
of Stevens and Williams (1980) who included traverses of the flow at inlet and at
exit as well as careful measurements of the static pressure increase and total pressure
loss in low speed tests on annular diffusers. In the following worked example, to
illustrate the preceding theoretical analysis, data from this source has been used.

ExampLE 2.5. An annular diffuser with an area ratidy = 2.0 is tested at low
speed and the results obtained give the following data:

at entry,o; = 1.059 B; = 0.109
at exit,ap = 1.543 B, = 0.364, C, = 0.577
Determine the diffuser efficiency.

NB B; andB; are the fractions of the area blocked by the wall boundary layers
at inlet and exit (displacement thicknesses) and are included only to illustrate the
profound effect the diffusion process has on boundary layer thickening.
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Solution From eqgns. (2.47a) and (2.58):

_P2— D1

= (01 — 02/A%) — w
q1

CP
= 1.059— 1.543/4 — 0.09 = 0.583
Using eqn. (2.59) directly,

np = C,/Cpi=C,/(1—1/A%) = 0.583/0.75
“.np = 07777

Stevens and Williams observed that an incipient transitory stall was in evidence
on the diffuser outer wall which affected the accuracy of the results. So, it is not

surprising that a slight mismatch is evident between the above calculated result and
the measured result.
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Problems

1. For the adiabatic expansion of a perfect gas through a turbine, show that the overall
efficiencyn, and small stage efficienay, are related by

n=0-e")/1A—e),

wheree = r&~"/7 andr is the expansion pressure ratipjs the ratio of specific heats.
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An axial flow turbine has a small stage efficiency of 86%, an overall pressure ratio of 4.5
to 1 and a mean value of equal to 1.333. Calculate the overall turbine efficiency.

2. Air is expanded in a multi-stage axial flow turbine, the pressure drop across each stage
being very small. Assuming that air behaves as a perfect gas with ratio of specific/heats
derive pressure-temperature relationships for the following processes:

(i) reversible adiabatic expansion;

(i) irreversible adiabatic expansion, with small stage efficiengy

(i) reversible expansion in which the heat loss in each stage is a constant fraaifdaihe
enthalpy drop in that stage;

(iv) reversible expansion in which the heat loss is proportional to the absolute température
Sketch the first three processes offi,a diagram.

If the entry temperature is 1100 K, and the pressure ratio across the turbine is 6 to 1, calculate

the exhaust temperatures in each of these three cases. Assumésthie833, thay, = 0.85,

and thatk = 0.1.

3. A multi-stage high-pressure steam turbine is supplied with steam at a stagnation pressure
of 7MPa. and a stagnation temperature of “&0The corresponding specific enthalpy is
3410kJ/kg. The steam exhausts from the turbine at a stagnation pressure of 0.7 MPa, the
steam having been in a superheated condition throughout the expansion. It can be assumed
that the steam behaves like a perfect gas over the range of the expansion gne-that
Given that the turbine flow process has a small-stage efficiency of 0.82, determine.

(i) the temperature and specific volume at the end of the expansion;

(ii) the reheat factor.

The specific volume of superheated steam is representeeby 0.231(h — 1943), where
p is in kPa,v is in m*/kg and#h is in k/kg.

4. A 20 MW back-pressure turbine receives steam at 4 MPa antiC3@Xxhausting from
the last stage at 0.35 MPa. The stage efficiency is 0.85, reheat factor 1.04 and external losses
2% of the actual sentropic enthalpy drop. Determine the rate of steam flow.

At the exit from the first stage nozzles the steam velocity is 244 m/s, specific volume
68.6 dni/kg, mean diameter 762mm and steam exit angle 76 deg measured from the axial
direction. Determine the nozzle exit height of this stage.

5. Steam is supplied to the first stage of a five stage pressure-compounded steam turbine
at a stagnation pressure of 1.5 MPa and a stagnation temperature’Gf 35@ steam leaves
the last stage at a stagnation pressure of 7.0 kPa with a corresponding dryness fraction of
0.95. By using a Mollier chart for steam and assuming that the stagnation state point locus
is a straight line joining the initial and final states, determine

(i) the stagnation conditions between each stage assuming that each stage does the same
amount of work;
(i) the total-to-total efficiency of each stage;
(i) the overall total-to-total efficiency and total-to-static efficiency assuming the steam enters
the condenser with a velocity of 200 m/s;
(iv) the reheat factor based upon stagnation conditions.
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CHAPTER 3

Two-dimensional Cascades

Let us first understand the facts and then we may seek the causes. (ARISTOTLE.)

Introduction

The operation of any turbomachine is directly dependent upon changes in the
working fluid’s angular momentum as it crosses individual blade rows. A deeper
insight of turbomachinery mechanics may be gained from consideration of the flow
changes and forces exerted within these individual blade rows. In this chapter the
flow past two-dimensional blade cascades is examined.

A review of the many different types of cascade tunnel, which includes low-speed,
high-speed, intermittent blowdown and suction tunnels, etc. is given by Sieverding
(1985). The range of Mach number in axial-flow turbomachines can be considered
to extend fromM = 0.2 to 2.5 (of course, if we also include fans then the lower
end of the range is very low). Two main types of cascade tunnel are:

(1) low-speed, operating in the range-BD m/s; and
(2) high-speed, for the compressible flow range of testing.

A typical low-speed, continuous running, cascade tunnel is shown in Figure 3.1(a).
The linear cascade of blades comprises a number of identical blades, equally spaced
and parallel to one another. A suction slot is situated on the ceiling of the tunnel
just before the cascade to allow the controlled removal of the tunnel boundary layer.
Carefully controlled suction is usually provided on the tunnel sidewalls immediately
upstream of the cascade so that two-dimensional, constant axial velocity flow can
be achieved.

Figure 3.1b shows the test section of a cascade facility for transonic and moderate
supersonic inlet velocities. The upper wall is slotted and equipped for suction,
allowing operation in the transonic regime. The flexible section of the upper wall
allows for a change of geometry so that a convergdivergent nozzle is formed,
thus allowing the flow to expand supersonically upstream of the cascade.

To obtain truly two-dimensional flow would require a cascade of infinite extent.
Of necessity cascades must be limited in size, and careful design is needed to ensure
that at least the central regions (where flow measurements are made) operate with
approximately two-dimensional flow.

For axial flow machines of high hub-tip ratio, radial velocities are negligible and,
to a close approximation, the flow may be described as two-dimensional. The flow in
a cascade is then a reasonable model of the flow in the machine. With lower hub-tip
radius ratios, the blades of a turbomachine will normally have an appreciable amount

55
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FiG. 3.1. Compressor cascade wind tunnels. (a) Conventional low-speed, continuous
running cascade tunnel (adapted from Carter et al. 1950). (b) Transonic/supersonic
cascade tunnel (adapted from Sieverding 1985).

of twist along their length, the amount depending upon the sort of “vortex design”
chosen (see Chapter 6). However, data obtained from two-dimensional cascades can
still be of value to a designer requiring the performance at discrete blade sections
of such blade rows.

Cascade nomenclature

A cascade blade profile can be conceived as a cucaetber lineupon which a
profile thickness distributiois symmetrically superimposed. Referring to Figure 3.2
the camber lingy(x) and profile thicknessx) are shown as functions of the distance
x along theblade chord I In British practice the shape of the camber line is usually
either a circular arc or a parabolic arc defined by the maximum camloeated at
distancez from the leading edge of the blade. The profile thickness distribution may
be that of a standard aerofoil section but, more usually, is one of the sections specif-
ically developed by the various research establishments for compressor or turbine
applications. Blade camber and thickness distributions are generally presented as
tables of y/I and ¢/l againstx/l. Some examples of these tables are quoted by
Horlock (1958, 1966). Summarising, the useful parameters for describing a cascade
blade are: camber line shagg], a/I, type of thickness distribution and maximum
thickness to chord ratiamax/!.
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FiG. 3.2. Compressor cascade and blade notation.

With the blades arranged in cascade, two important additional geometric variables
which define the cascade are thpace-chord ratio s/land thestagger angleg,
which is the angle between the chord line and a reference direpgrendicular
to the cascade frontThroughout the remainder of this book, all fluid and blade
angles are referred to this perpendicular so as to avoid the needless complication
arising from the use of other reference directions. However, custom dies hard; in
steam turbine practice, blade and flow angles are conventionally measured from the
tangential direction (i.e. parallel to the cascade front). Despite this, it is better to
avoid ambiguity of meaning by adopting the single reference direction already given.
The blades angles at entry to and at exit from the cascade are denatgcbygl
o, respectively. A most useful blade parameter is ¢aeber angle which is the
change in angle of the camber line between the leading and trailing edges and equals
o) — a% in the notation of Figure 3.2. For circular arc camber lines the stagger angle
is&= %(o/l + o). For parabolic arc camber lines of low camber (i.e. srhal) as
used in some compressor cascades, the inlet and outlet blade angles are
b/l , . bjl
@iz =BG iy
the equation approximating for the parabolic arc beihg= X{A(X — 1) + BY}
where X = x/l, Y = y/l. A, B are two arbitrary constants which can be solved
with the conditions that at = ¢, y = b and dv/dx = 0. The exact general equation
of a parabolic arc camber line which has been used in the design of highly cambered
turbine blades is dealt with by Dunham (1974).

ap=&+tamt

Analysis of cascade forces

The fluid approaches the cascade from far upstream with velociag an angle
a1 and leaves far downstream of the cascade with velagitat an anglexs. In
the following analysis the fluid is assumed to be incompressible and the flow to be
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steady. The assumption of steady flow is valid for an isolated cascade row but, in a
turbomachine, relative motion between successive blade rows gives rise to unsteady
flow effects. As regards the assumption of incompressible flow, the majority of
cascade tests are conducted at fairly low Mach numbers (e.g. 0.3 on compressor
cascades) when compressibility effects are negligible. Various techniques are avail-
able for correlating incompressible and compressible cascades; a brief review is
given by Csanady (1964).

A portion of an isolated blade cascade (for a compressor) is shown in Figure 3.3.
The forcesX andY are exerted by unit depth of blade upon the fluid, exactly equal
and opposite to the forces exerted by the fluid upon unit depth of blade. A control
surface is drawn with end boundaries far upstream and downstream of the cascade
and with side boundaries coinciding with the median stream lines.

Applying the principle of continuity to a unit depth of span and noting the assump-
tion of incompressibility, yields

€1C0Sx1 = €2 COSUp = Cy. (3.1)

The momentum equation applied in theand y directions with constant axial
velocity gives,

X = (p2— pus, (3.2)

Y= ,OSCX(Cy]_ - CyZ)v (33)
or

Y = psc?(tana; — tanay) (3.3a)

Equations (3.1) and (3.3) are completely valid for a flow incurring total pressure
losses in the cascade.

PPy
~7 % //-’
Control surface PR -~
Cx,
—
Cy,

X, Y Applied forces

(@ “ 7 . 4K

// c2 // mcx

z_/____iyf/ > l' %%
Cy—>

fF . ®

O

Fic. 3.3. Forces and velocities in a blade cascade.
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Energy losses

A real fluid crossing the cascade experiences a loss in total pressyréeue to
skin friction and related effects. Thus
Apo P1— P2 1 2 2
—— =" 4 —(c]— 5). 3.4
0 0 2\1 2
Noting that cf — ¢ = (¢ + ¢2) — (c5, + ¢?) = (cy1 + ¢y2)(cy1 — ¢y2), Substitute
eqgns. (3.2) and (3.3) into eqgn. (3.4) to derive the relation,

A 1
2P0 _ 2 (x4 vtana,), (3.5)
oS
where
tana, = 3 (tanay + tanay). (3.6)

A non-dimensional form of eqn. (3.5) is often useful in presenting the results of
cascade tests. Several forms of total pressure-loss coefficient can be defined of
which the most popular are,

¢ = Apo/(3pc?) (3.7a)
and
@ = Apo/(3063). (3.7b)

Using again the same reference parameter, a pressure rise coeffigieanid a
tangential force coefficient ; may be defined

P2 —p1 X
c,=trmm_ X (3.8)
épcx E,OSCX
Cr =1 = 2(tana; — tanay), @9
’ E,OSCX

using egns. (3.2) and (3.3a).
Substituting these coefficients into eqgn. (3.5) to give, after some rearrangement,

C, = Cytana,, — ¢. (3.10)

Lift and drag
A mean velocityc,, is defined as
Cm = Cx/ COSQUy, (3.11)

whereq,, is itself defined by eqn. (3.6). Considering unit depth of a cascade blade,
a lift force L acts in a direction perpendicular ¢g and a drag forc® in a direction
parallel toc,,. Figure 3.4 showé andD as the reaction forces exertby the blade
upon the fluid.
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Fic. 3.4. Lift and drag forces exerted by a cascade blade (of unit span) upon the fluid.

Y

L D

Fic. 3.5. Axial and tangential forces exerted by unit span of a blade upon the fluid.

Experimental data are often presented in terms of lift and drag when the data may
be of greater use in the form of tangential force and total pressure loss. The lift and
drag forces can be resolved in terms of the axial and tangential forces. Referring to

Figure 3.5,

L = X sina,, + Y cosa,,, 3.12)
D =Y sina,, — X cOS,. (3.13)
From eqgn. (3.5)
D = cos,, (Y tana,, — X) = sA po COSt,,. (3.14)
Rearranging eqgn. (3.14) faf and substituting into egn. (3.12) gives,
L = (Y tana,,, — sA po) Sina,, + Y cosa,,
= Y secw,, — sA pg Sina,,
= psc?(tana — tanay) sea,, — sA po Sina,, (3.15)
after using eqgn. (3.9).
Lift and drag coefficients may be introduced as
L
CL=3 , (3.163
2Pch
D
Cp= 5 (3.16b)
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Using eqn. (3.14) together with egn. (3.7),

SA po COSw,,

Cp= :g;cos”am. (3.17)

3pc2l
With egn. (3.15)

psc2(tanay — tanay) seax,, — sA po Sina,,

Cr
2pch

= 2; cOoSu,, (tanay — tanay) — Cp tana,,. (3.18)

Alternatively, employing egns. (3.9) and (3.17),
sin 2, >

(3.19)

N
C, = - cosux Cr—
L / m< f g 2

Within the normal range of operation in a cascade, valuespare very much less
thanC;. As «,, is unlikely to exceed 60 deg, the quantity, tana, in egn. (3.18)
can be dropped, resulting in the approximation,

L C 2seCay, Cs
oo ZE L 2 iangg — tanay) = —L se@a,. (3.20)
D Cp 4 e

Circulation and lift

The lift of a single isolated aerofoil for the ideal case whar= 0 is given by
the Kutta-Joukowski theorem

L = plc, (3.21)

wherec is the relative velocity between the aerofoil and the fluid at infinity Brid

the circulation about the aerofoil. This theorem is of fundamental importance in the

development of the theory of aerofoils (for further information see Glauert (1959).
In the absence of total pressure losses, the lift force per unit span of aiblade

cascadeusing egn. (3.15), is

L = psc?(tana; — tanay) sea,,
= pscm(cy1 — €y2). (3.22)

Now the circulation is the contour integral of velocity around a closed curve. For
the cascade blade the circulation is

I' =s5(cy1 — ¢y2). (3.23)
Combining eqgns. (3.22) and (3.23),
L = plcy,. (3.24)

As the spacing between the cascade blades is increased without limit (i.e.
s — 00), the inlet and outlet velocities to the cascadeandc,, becomes equal in
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magnitude and direction. Thus = ¢, = ¢ and eqn. (3.24) becomes identical with
the Kutta-Joukowski theorem obtained for an isolated aerofoil.

Efficiency of a compressor cascade

The efficiencynp of a compressor blade cascade can be defined in the same way
as diffuser efficiency; this is the ratio of the actual static pressure rise in the cascade
to the maximum possible theoretical pressure rise (i.e. Wity = 0). Thus,

np = P2— Pp1
= 2P
30(cZ — c5)
1 Apo

pc? tana,, (taney — tanay)”

Inserting eqns. (3.7) and (3.9) into the above equation,

¢

- 3.25
Cr tana,, ( )

np=1

Equation (3.20) can be written g¢C ; = (se€a,,)Cp/C which when substituted
into eqn. (3.25) gives
2Cp

1-— 3.26
Crsin 2, ( )

Np =

Assuming a constant liftdrag ratio, egn. (3.26) can be differentiated with respect
to «,, to give the optimum mean flow angle for maximum efficiency. Thus,

dnp _ 4Cpcos 2, _

doty C, sirf 2a,, =0,
so that
Umopr = 45deg
therefore
Npmax=1— f—:. (3.27)

This simple analysis suggests that maximum efficiency of a compressor cascade is
obtained when the mean flow angle is 45 deg, but ignores changes in th€ 5@t

with varying «,,,. Howell (1945) calculated the effect of having a specified variation

of Cp/Cy upon cascade efficiency, comparing it with the case wlegnC, is
constant. Figure 3.6 shows the results of this calculation as well as the variation of
Cp/Cy with «,,. The graph shows thap max iS at an optimum angle only a little less

than 45 deg but that the curve is rather flat for a rather wide changg.iflowell
suggested that value of,, rather lessthan the optimum could well be chosen with

little sacrifice in efficiency, and with some benefit with regard to pewegight ratio

of compressors. In Howell’s calculations, the drag is an estimate based on cascade
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Fic. 3.6. Efficiency variation with average flow angle (adapted from Howell 1945).

experimental data together with an allowance for wall boundary-layer losses and
“secondary-flow” losses.

Performance of two-dimensional cascades

From the relationships developed earlier in this chapter it is apparent that the
effects of a cascade may be completely deduced if the flow angles at inlet and
outlet together with the pressure loss coefficient are known. However, for a given
cascade only one of these quantities may be arbitrarily specified, the other two
being fixed by the cascade geometry and, to a lesser extent, by the Mach number
and Reynolds number of the flow. For a given family of geometrically similar
cascades the performance may be expressed functionally as,

¢, az = (a1, M1, Re), (3.28)

where¢ is the pressure loss coefficient, egn. (3M), is the inlet Mach number
= ¢1/(yRT1)Y?, Re is the inlet Reynolds number pic1l/u based on blade chord
length.

Despite numerous attempts it has not been found possible to determine, accurately,
cascade performance characteristics by theoretical means alone and the experimental
method still remains the most reliable technique. An account of the theoretical
approach to the problem lies outside the scope of this book, however, a useful
summary of the subject is given by Horlock (1958).

The cascade wind tunnel

The basis of much turbomachinery research and development derives from the
cascade wind tunnel, e.g. Figure 3.1 (or one of its numerous variants), and a brief
description of the basic aerodynamic design is given below. A more complete
description of the cascade tunnel is given by Caeteal. (1950) including many of
the research techniques developed.
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FiG. 3.7. Streamline flow through cascades (adapted from Carter et al. 1950).

In a well-designed cascade tunnel it is most important that the flow near the
central region of the cascade blades (where the flow measurements are made) is
approximately two-dimensional. This effect could be achieved by employing a large
number of long blades, but an excessive amount of power would be required to
operate the tunnel. With a tunnel of more reasonable size, aerodynamic difficulties
become apparent and arise from the tunnel wall boundary layers interacting with
the blades. In particular, and as illustrated in Figure 3.7a, the tunnel wall boundary
layer mingles with the end blade boundary layer and, as a consequence, this blade
stalls resulting in a non-uniform flow field.

Stalling of the end blade may be delayed by applying a controlled amount of
suction to a slit just upstream of the blade, and sufficient to remove the tunnel wall
boundary layer (Figure 3.7b). Without such boundary-layer removal the effects of
flow interference can be quite pronounced. They become most pronounced near the
cascade “stalling point” (defined later) when any small disturbance of the upstream
flow field precipitates stall on blades adjacent to the end blade. Instability of this type
has been observed in compressor cascades and can affect every blade of the cascade.
It is usually characterised by regular, periodic “cells” of stall crossing rapidly from
blade to blade; the terpropagating stallis often applied to the phenomenon. Some
discussion of the mechanism of propagating stall is given in Chapter 6.

The boundary layers on the walls to which the blade roots are attached, generate
secondary vorticityin passing through the blades which may produce substantial
secondary flowsThe mechanism of this phenomenon has been discussed at some
length by Carter (1948), Horlock (1958) and many others and a brief explanation
is included in Chapter 6.
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FiG. 3.8. Contraction of streamlines due to boundary layer thickening (adapted from
Carter et al. 1950).

In a compressor cascade the rapid increase in pressure across the blades causes
a marked thickening of the wall boundary layers and produces an effective
contraction of the flow, as depicted in Figure 3.8.cAntraction coefficientused
as a measure of the boundary-layer growth through the cascade, is defined by
p1c1€0Say/(p2c2 COSay). Carteret al. (1950) quotes values of 0.9 for a good tunnel
dropping to 0.8 in normal high-speed tunnels and even less in bad cases. These are
values for compressor cascades; with turbine cascades slightly higher values can
be expected.

Because of the contraction of the main through-flow, the theoretical pressure rise
across a compressor cascade, even allowing for losses, is never achieved. This will
be evident since a contraction (in a subsonic flow) accelerates the fluid, which is in
conflict with the diffuser action of the cascade.

To counteract these effects it is customary (in Great Britain) tcatigeast seven
blades in a compressor cascade, each blade having a minimum aspect ratio (blade
span-chord length) of 3. With seven blades, suction is desirable in a compressor
cascade but it is not usual in a turbine cascade. In the United States much lower
aspect ratios are commonly employed in compressor cascade testing, the technique
being the almost complete removal of tunnel wall boundary layers from all four
walls using a combination of suction slots and perforated end walls to which suction
is applied.

Cascade test results

The basic cascade performance data in low-speed flows are obtained from
measurements of total pressure, flow angle and velocity taken across one or more
complete pitches of the cascade, the plane of measurement being about half a
chord downstream of the trailing edge plane. The literature on instrumentation
is very extensive as are the various measurement techniques employed and
the student is referred to the works of Horlock (1958), Bryer and Pankhurst
(1971), Sieverding (1975, 1985). The publication by Bryer and Pankhurst for
deriving air speed and flow direction is particularly instructive and recommended,
containing as it does details of the design and construction of various instruments
used in cascade tunnel measurements as well as their general principles and
performance details.
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Fic. 3.9. Some combination pressure probes (adapted from Bryer and Pankhurst 1971):
(a) claw probe; (b) chamfered tube probe; (c) wedge probe.

Some representative combination pressure probes are shown in Figure 3.9. These
types are frequently used for pitchwise traversing across blade cascades but, because
of their small size, they are also used for interstage (radial) flow traversing in
compressors. For the measurement of flow direction in conditions of severe trans-
verse total pressure gradients, as would be experienced during the measurement of
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FiG. 3.10. Apparent flow angle variation measured by three different combination probes
traversed across a transverse variation of total pressure (adapted from Bryer and
Pankhurst 1971).

blade cascade flows, quite substantial errors in the measurement of flow direction
do arise. Figure 3.10 indicates thpparentflow angle variation measured by these
same three types of pressure probe when traversed across a transverse gradient of
total pressure caused by a compressor stator blade. It is clear that the wedge probe
is the least affected by the total pressure gradient. An investigation by Dixon (1978)
did confirm that all pressure probe instruments are subject to this type of directional
error when traversed across a total pressure variation such as a blade wake.

An extensive bibliography on all types of measurement in fluid flow is given
by Dowden (1972). Figure 3.11 shows a typical cascade test result from a traverse
across 2 blade pitches taken by Todd (1947) at an inlet Mach number of 0.6. It is
observed that a total pressure deficit occurs across the blade row arising from the
fluid friction on the blades. The fluid deflection is not uniform and is a maximum at
each blade trailing edge on the pressure side of the blades. From such test results,
average values of total pressure loss and fluid outlet angle are found (usually on a
mass flow basis). The use of terms like “total pressure loss” and “fluid outlet angle”
in the subsequent discussion will signify thesesragevalues.

Similar tests performed for a range of fluid inlet angles, at the same inlet Mach
numberM, and Reynolds numbeRe enables the complete performance of the
cascade to be determined (at thdf and Re. So as to minimise the amount of
testing required, much cascade work is performed at low inlet velocities, but at a
Reynolds number greater than the “critical” value. This critical Reynolds nuRWer
is approximately 2x 10° based on inlet velocity and blade chord. WRh > Re,.,
total pressure losses and fluid deflections are only slightly dependent on changes
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Fic. 3.11. A sample plot of inlet and outlet stagnation pressures and fluid outlet angle
(adapted from Todd 1947).

in Re. Mach number effects are negligible whéfy < 0.3. Thus, the performance
laws, eqn. (3.28), for this flow simplify to,

¢ a2 = f(ar). (3.28a)

There is a fundamental difference between the flows in turbine cascades and those
in compressor cascades which needs emphasising. A fluid flowing through a channel
in which the mean pressure is falling (mean flow is accelerating) experiences a
relatively small total pressure loss in contrast with the mean flow through a channel
in which the pressure is rising (diffusing flow) when losses may be high. This
characteristic difference in flow is reflected in turbine cascades by a wide range of
low loss performance and in compressor cascades by a rather narrow range.

Compressor cascade performance

A typical set of low-speed compressor cascade results (Howell 1942) for a blade
cascade of specified geometry, is shown in Figure 3.12. These results are presented
in the form of a pressure loss coefficientpo/(%pcf) and fluid deflectione=
a1 — ap against incidence = a; — a; (refer to Figure. 3.2 for nomenclature). Note
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FiG. 3.12. Compressor cascade characteristics (Howell 1942). (By courtesy of the
Controller of H.M.S.O., Crown copyright reserved).

that from eqgn. (3.7),Apo/(%pc§) =¢coga;. There is a pronounced increase in
total pressure loss as the incidence rises beyond a certain value and the cascade
is stalled in this region. The precise incidence at which stalling occurs is difficult
to define and astall point is arbitrarily specified as the incidence at which the
total pressure loss ivice the minimum loss in total pressure. Physically, stall is
characterised (at positive incidence) by the flow separating from the suction side of
the blade surfaces. With decreasing incidence, total pressure losses again rise and a
“negative incidence” stall point can also be defined as abovewhnking rangeis
conventionally defined as the incidence range between these two limits at which the
losses are twice the minimum loss. Accurate knowledge of the extent of the working
range, obtained from two-dimensional cascade tests, is of great importance when
attempting to assess the suitability of blading for changing conditions of operation.
A reference incidencangle can be most conveniently defined either at the mid-
point of the working range or, less precisely, at the minimum loss condition. These
two conditions do not necessarily give the same reference incidence.

From such cascade test results ghefile losseshrough compressor blading of
the same geometry may be estimated. To these losses estimates of the annulus
skin friction losses and other secondary losses must be added, and from which the
efficiency of the compressor blade row may be determined. Howell (1945) suggested
that these losses could be estimated using the following drag coefficients. For the
annulus walls loss,

Cp. = 0.025/H (3.29a)
and for the so-called “secondary” loss,
Cps = 0.018C2 (3.29b)

wheres, H are the blade pitch and blade length respectively, @pdhe blade lift
coefficient. Calculations of this type were made by Howell and others to estimate
the efficiency of a complete compressor stage. A worked example to illustrate the
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FiG. 3.13. Losses in a compressor stage (Howell 1945). (Courtesy of the Institution of
Mechanical Engineers).

details of the method is given in Chapter 5. Figure 3.13 shows the variation of stage
efficiency with flow coefficient and it is of particular interest to note the relative
magnitude of the profile losses in comparison with the overall losses, especially at
the design point.

Cascade performance data to be easily used, are best presented in some condensed
form. Several methods of empirically correlating low-speed performance data have
been developed in Great Britain. Howell’s correlation (1942) relates the performance
of a cascade to its performance at a “nominal” condition defined at 80% of the
stalling deflection. Carter (1950) has referred performance to an optimum incidence
given by the highest liftdrag ratio of the cascade. In the United States, the National
Advisory Committee for Aeronautics (NACA), now called the National Aeronautics
and Space Administration (NASA), systematically tested whole families of different
cascade geometries, in particular, the widely used NACA 65 Series (Hzireb
1957). The data on the NACA 65 Series has been usefully summarised by Felix
(1957) where the performance of a fixed geometry cascade can be more readily
found. A concise summary is also given by Horlock (1958).

Turbine cascade performance

Figure 3.14 shows results obtained by Ainley (1948) from two sets of turbine
cascade blades, impulse and “reaction”. The term “reaction” is used here to denote,
in a qualitative sense, that the fluid accelerates through the blade row and thus
experiences pressure drogluring its passage. There is no pressure change across an
impulse blade row. The performance is expressed in the foemA p,/(po2 — p2)
anda, against incidence.

From these results it is observed that:

(a) the reaction blades have a much wider range of low loss performance than the
impulse blades, a result to be expected as the blade boundary layers are subjected

to a favourable pressure gradient,
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(b) the fluid outlet anglex, remains relatively constant over the whole range of
incidence in contrast with the compressor cascade results.

For turbine cascade blades, a method of correlation is given by Ainley and Math-
ieson (1951) which enables the performance of a gas turbine to be predicted with an
estimated tolerance of within 2% on peak efficiency. In Chapter 4 a rather different
approach, using a method attributed to Soderberg, is outlined. While being possibly
slightly less accurate than Ainley’s correlation, Soderberg’s method employs fewer
parameters and is rather easier to apply.

Compressor cascade correlations

Many experimental investigations have confirmed that the efficient performance
of compressor cascade blades is limited by the growth and separation of the blade
surface boundary layers. One of the aims of cascade research is to establish the
generalised loss characteristics and stall limits of conventional blades. This task
is made difficult because of the large number of factors which can influence the
growth of the blade surface boundary layers, viz. surface velocity distribution, blade
Reynolds number, inlet Mach number, free-stream turbulence and unsteadiness,
and surface roughness. From the analysis of experimental data several correlation
methods have been evolved which enable the first-order behaviour of the blade
losses and limiting fluid deflection to be predicted with sufficient accuracy for engi-
neering purposes.

LIEBLEIN. The correlation of Lieblein (1959), NASA (1965) is based on the
experimental observation that a large amount of velocity diffusion on blade surfaces
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tends to produce thick boundary layers and eventual flow separation. Lieblein states
the general hypothesis that in the region of minimum loss, the wake thickness
and consequently the magnitude of the loss in total pressure, is proportional to
the diffusion in velocity on the suction-surface of the blade in that region. The
hypothesis is based on the consideration that the boundary layer on the suction-
surface of conventional compressor blades contributes the largest share of the blade
wake. Therefore, the suction-surface velocity distribution becomes the main factor
in determining the total pressure loss.

Figure 3.15 shows a typical velocity distribution derived from surface pressure
measurements on a compressor cascade blade in the region of minimum loss. The
diffusion in velocity may be expressed as the ratio of maximum suction-surface

Suction surface

Pressure surface

Blade surface velocity

0 Percent chord 100

Fic. 3.15. Compressor cascade blade surface velocity distribution.
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I
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FiG. 3.16. Model variation in velocity in a plane normal to axial direction.
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velocity to outlet velocitycmaxs/c2. Lieblein found a correlation between the diffu-
sion ratio cmaxs/c2 and the wake momentum-thickness to chord radig] at the
reference incidence (mid-point of working range) for American NACA 6%j/Aand
British C.4 circular-arc blades. The wake momentum-thickness, with the parameters
of the flow model in Figure 3.16 is defined as

0, = /;S % (1 - %) dy. (3.30)

The Lieblein correlation, with his data points removed for clarity, is closely fitted
by the mean curve in Figure 3.17. This curve represents the equation

% - 0.004/ {1 —117In (“"“) } (3.31)
c2

which may be more convenient to use in calculating results. It will be noticed that for
the limiting case whengg/l) — oo, the correspondingpper limit for the diffusion
ratio cmaxs/c2 is 2.35. Thepractical limit of efficient operation would correspond
to a diffusion ratio of between 1.9 and 2.0.

Losses are usually expressed in terms of the stagnation pressure loss coefficient
@ = Apo/ (3pc) or & = Apo/ (3pc?) as well as the drag coefficieity. Lieblein
and Roudebush (1956) have demonstrated the simplified relationship between
momentum-thickness ratio and total pressure loss coefficient, valid for unstalled
blades,

_ 6\ /1 cofay

0.04

0.02

Momentum thickness ratio, 6,/1

1.0 1.4 1.8 2.2
Diffusion ratio, ¢, ,, ¢/Co

Fic. 3.17. Mean variation of wake momentum—thickness/chord ratio with suction-surface
diffusion ratio at reference incidence condition for NACA 65 — (C19A10)10 blades and
British C.4 circular-arc blades (adapted from Lieblein (1959)).
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Combining this relation with egns. (3.7) and (3.17) the following useful results can
be obtained:

_ /sy coSa,, 6,\ [ cosa,\> s
CD_w(l) cof aq _2<l) (cowz) _§(1)00§a’"‘ (3.33)

The correlation given abovessumes knowledge of suction-surface velocities in
order that total pressure loss and stall limits can be estimated. As this data may be
unavailable it is necessary to establishemjuivalent diffusion ratipapproximately
equal tocmayxs/c2, that can be easily calculated from the inlet and outlet conditions
of the cascade. An empirical correlation was established by Lieblein (1959) between
a circulation parameter defined BYT") = I" cosw1/(Ic1) andcmaxs/c1 at the refer-
ence incidence, where the ideal circulatior= s(cy1 — ¢y2), using eqgn. (3.23). The
correlation obtained is the simplimear relation.

Cmaxs/c1 = 1.12+ 0.61f (T") (3.34)

which applies to both NACA 65-(f) and C.4 circular arc blades. Hence, the
equivalent diffusion ratio, after substituting forand simplifying, is

_ Cmaxs COSO[Z _
Deq= & = cosas {1 12+ 0.61 ( ) cog oy (tana; tanaz)} (3.35)

At incidence angles greater than reference incidence, Lieblein found that the
following correlation was adequate:

CoSw2
Deq= cosas {1 12+ k(i — irep)™* + 0.61 (l> cog oy (tanay — tanaz)}

(3.36)

wherek = 0.0117 for the NACA 65-(Ao) blades and = 0.007 for the C.4 circular
arc blades.

The expressions given above are still very widely used as a means of estimating
total pressure loss and the unstalled range of operation of blades commonly
employed in subsonic axial compressors. The method has been modified and
extended by Swann to include the additional losses caused by shock waves in
transonic compressors. The discussion of transonic compressors is outside the scope
of this text and is not included.

HoweLL. The low-speed correlation of Howell (1942) has been widely used by
designers of axial compressors and is based on a nominal condition such that the
deflections* is 80% of the stalling deflection, (Figure 3.12). Choosing* = 0.8,
as thedesign conditiorrepresents a compromise between the ultraconservative and
the overoptimistic! Howell found that the nominal deflections of various compressor
cascades are, primarily, a function of the spadw®ord ratios/I, the nominal fluid
outlet anglexs and the Reynolds numb&e

&* = f(s/l, a3, Re). (3.37)

It is important to note that the correlation (which is really a correlation of stalling
deflection,s; = 1.25¢*) is virtually independent of blade cambeérin the normal
range of choice of this parameter (2@ 6 < 40°). Figure 3.18 shows the variation of
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FiG. 3.18. Variation of nominal deflection with nominal outlet angle for several
space/chord ratios (adapted from Howell 1945).

¢* found by Howell (1945) against; for several spacechord ratios. The depen-
dence on Reynolds number is small & > 3 x 10°, based on blade chord.

An approximating formula to the data given in Figure 3.18, which was quoted by
Howell and frequently found to be useful in preliminary performance estimation, is
the tangent-difference rule:

155

1+ 1.5s/1
which is applicable in the range 9 o} < 40°.

tane] — tane = (3.38)

Fluid deviation

Thedifferencebetween the fluid and blade inlet angles at cascade inlet is under the
arbitrary control of the designer. At cascade outlet however, the difference between
the fluid and blade angles, called tiheviations, is a function of blade camber, blade
shape, spacechord ratio and stagger angle. Referring to Figure 3.2, the deviation
8 = ap — o, is drawn as positive; almost without exception it is in such a direction
that the deflection of the fluid is reduced. The deviation may be of considerable
magnitude and it is important that an accurate estimate is made of it. Re-examining
Figure 3.11 again, it will be observed that the fluid receives its maximum guidance
on the pressure side of the cascade channel and that this diminishes almost linearly
towards the suction side of the channel.

Howell used an empirical rule to relate nominal deviat&rnto the camber and
space-chord ratio,

8* = mb(s/1)", (3.39)
wheren = % for compressor cascades amd= 1 for compressomlet guide vanes
The value ofm depends upon the shape of the camber line and the blade setting.
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For a compressor cascade (i.e. diffusing flow),
m = 0.23(2a/1)? + /500, (3.40a)

whereq is the distance of maximum camber from the leading edge. For the inlet
guide vanes, which are essentiallybine nozzles (i.e. accelerating flow),

m = constant=0.19 (3.40b)

ExampLE 3.1. A compressor cascade has a spaberd ratio of unity and blade
inlet and outlet angles of 50 deg and 20 deg respectively. If the blade camber line is
a circular arc (i.ea/l = 50%) and the cascade is designed to operate at Howell's
nominal condition, determine the fluid deflection, incidence and ideal lift coefficient
at the design point.

Solution The camberf = o} — o, = 30deg. As a first approximation pat =
20deg in egn. (3.40) to give: = 0.27 and, using eqn. (3.399F = 0.27 x 30=
8.1deg. As a better approximation puf = 28.1deg in eqgn. (3.40) givingn =
0.2862 ands* = 8.6 deg. Thuse = 28.6 deg is sufficiently accurate.

From Figure 3.16, withs// = 1.0 and o5 = 286 deg obtaine* = o — b =
21 deg. Hencer; = 49.6 deg and the nominal inciden¢e= o] — oj = —0.4 deg.

Theideal lift coefficient is found by setting"p = 0 in egn. (3.18),

Cr = 2(s/l) cosa,, (tana; — tanay).

Putting a1 = «f, a2 = o5 and noting taw, = %(tana}‘ + tana3) obtain o, =
40.75deg andC; = 2(1.172— 0.545)0.758 = 0.95.

In conclusion it will be noted that the estimated deviation is one of the most
important quantities for design purposes, as small errors in it are reflected in large
changes in deflection and thus, in predicted performance.

Off-design performance

To obtain the performance of a given cascade at conditions removed from the
design point, generalised performance curves of Howell (1942) shown in Figure 3.19
may be used. If the nominal deflectieh and nominal incidencé* are known the
off-design performance (deflection, total pressure loss coefficient) of the cascade at
any other incidence is readily calculated.

ExaMPLE 3.2. In the previous exercise, with a cascade/éf= 1.0, a) = 50deg
anda, = 20deg the nominal conditions weté = 21 deg and* = —0.4 deg.
Determine the off-design performance of this cascade at an incidea@38 deg.

Solution Referring to Figure 3.19 and witti — i*)/¢* = 0.2 obtainCp = 0.017,
¢/e* = 1.15. Thus, the off-design deflection= 24.1 deg.
From eqgn. (3.17), the total pressure loss coefficient is,

¢ = Apo/ (3pc2) = Cp/[(s/1)coS ay].
Now a1 = o] +i = 538deg, alsax; = o1 — ¢ = 29.7 deg, therefore,

ay = tan {3 (taney + taney)} = tan 1{0.969 = 44.1deg
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Fic. 3.19. The off-design performance of a compressor cascade (Howell 1942). (By
courtesy of the Controller of H.M.S.O., Crown copyright reserved).

hence

¢ =0.017/0.719 = 0.0458
The tangential lift force coefficient, eqgn. (3.9), is

Cs = (p2 — p1)/(3pc?) = 2(tana; — tana,) = 1.596
The diffuser efficiency, eqgn. (3.25), is

np =1-¢/(Cyrtana,) =1— 0.0458/(1.596 x 0.969) = 97%

It is worth nothing, from the representative data contained in the above exercise,
that the validity of the approximation in egn. (3.20) is amply justified.

Howell’s correlation, clearly, is a simple and fairly direct method of assessing
the performance of a given cascade for a range of inlet flow angles. The data can
also be used for solving the more complexerse problemnamely, the selection
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of a suitable cascade geometry when the fluid deflection is given. For this case, if
the previous method of a nominal design condition is used, mechanically unsuit-
able spacechord ratios are a possibility. The spachord ratio may, however, be
determined to some extent by the mechanical layout of the compressor, the design
incidence then only fortuitously coinciding with the nominal incidence. The design
incidence is therefore somewhat arbitrary and some designers, ignoring nominal
design conditions, may select an incidence best suited to the operating conditions
under which the compressor will run. For instance, a negative design incidence may
be chosen so that at reduced flow ratgmsitiveincidence condition is approached.

Mach number effects

High-speed cascade characteristics are similar to those at low speed uatit-the
ical Mach numbel . is reached, after which the performance declines. Figure 3.20,
taken from Howell (1942) illustrates for a particular cascade tested at varying Mach
number and fixed incidence, the drastic decline in pressure rise coefficient up to the
maximumMach number at entry/,,, when the cascade is fully choked. When the
cascade is choked, no further increase in mass flow through the cascade is possible.
The definition of inlet critical Mach number is less precise, but one fairly satis-
factory definition (Horlock 1958) is that the maximuiwcal Mach number in the
cascade has reached unity.

Howell attempted to correlate the decrease in both efficiency and deflection in the
range of inlet Mach number3/. < M < M,, and these are shown in Figure 3.21.
By employing this correlation, curves similar to that in Figure 3.20 may be found
for each incidence.

One of the principal aims of high-speed cascade testing is to obtain data for
determining the values d#f. andM,,. Howell (1945) indicates how, for a typical
cascadeM . andM,, vary with incidence (Figure 3.22)
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FiG. 3.20. Variation of cascade pressure rise coefficient with inlet Mach number (Howell
1942). (By courtesy of the Controller of H.M.S.O., Crown copyright reserved).



Two-dimensional Cascades 79

1.0
n/n,
08 ele,
06}
04}
0.2
1 1 | I
0.2 0.4 0.6 0.8 1.0
M-M.
Mm - M,

Fic. 3.21. Variation of efficiency and deflection with Mach number (adapted from Howell
1942).

0.9

o
®

Mach number, M. or M,
(=]
3

o
o

0.5

0.4 L | ;
-10 -5 0 5 10
Incidence i, deg

Fic. 3.22. Dependence of critical and maximum Mach numbers upon incidence (Howell
1945). (By courtesy of the Institution of Mechanical Engineers).



80 Fluid Mechanics, Thermodynamics of Turbomachinery

Fan blade design (McKenzie)

The cascade tests and design methods evolved by Howell, Carter and others,
which were described earlier, established the basis of British axial compressor
design. However, a number of empirical factors had to be introduced into the
methods in order to correlate actual compressor performance with the performance
predicted from cascade data. The system has been in use for many years and has
been gradually modified and improved during this time.

McKenzie (1980) has described work done at Rolls-Royce to further develop the
correlation of cascade and compressor performance. The work was done on a low-
speed four-stage compressor with 50 per cent reaction blading of constant section.
The compressor hub to tip radius ratio was 0.8 and a large number of combinations
of stagger and camber was tested.

McKenzie pointed out that the deviation rule originated by Howell (1945), i.e.
egns. (3.39) and (3.40a) with= 0.5, was developed from cascade tests performed
without sidewall suction. Earlier in this chapter it was explained that the consequent
thickening of the sidewall boundary layers caused a contraction of the main through-
flow (Figure 3.8), resulting in a reduced static pressure rise across the cascade and
an increased air deflection. Rolls-Royce conducted a series of tests on C5 profiles
with circular arc camber lines using a number of wall suction slots to control the
axial velocity ratio (AVR). The deviation angles at mid-span with an AVR of unity
were found to be significantly greater than those given by eqn. (3.39).

From cascade tests McKenzie derived the following rule for the deviation angle:

8§ = (1.1+ 0.319)(s/1)¥? (3.41)

where§ and 6 are in degrees. From the results a relationship between the blade
stagger anglé and the vector mean flow anglg, was obtained:

tan¢ = tanw,, — 0.213 (3.42)

where tany,, is defined by eqn. (3.6). The significance of eqn. (3.42) is, that if the
air inlet and outlet anglesx{ and «, respectively) are specified, then the stagger
anglefor maximum efficiencgan be determined, assuming that a C5 profile (or a
similar profile such as C4) on a circular arc camber line is being considered. Of
course, the camber angleand the pitch/chord ratig/! still need to be determined.

In a subsequent paper McKenzie (1988) gave a graph of efficiency in terms of
Cp; ands/l, which was an improved presentation of the correlation given in his
earlier paper. The ideal static pressure rise coefficient is defined as

Cpi = 1— (c2/c1). (3.43)

McKenzie's efficiency correlation is shown in Figure 3.23, where the ridge line of
optimum efficiency is given by

s/l =9 x (0.567— Cp;) (3.44)

ExamMPLE 3.3. At the midspan of a proposed fan stator blade the inlet and outlet
air angles are to be; =58 and o, = 44°. Using the data and correlation of
McKenzie, determine a suitable blade camber and speluard ratio.
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Fic. 3.23. Efficiency correlation (adapted from McKenzie 1988).

Solution From eqn. (3.6) the vector mean flow angle is found,
tana, = 3(tana; + tana,) = 1.2830Q
From eqn. (3.42) we get the stagger angle,
tan¢ = tane,, — 0.213= 1.070Q

Thus,o,, = 52.066° and& = 46.937.
From egn. (3.43), assuming that AVR 1.0, we find

2
COSx
cp,-=1—( 1) — 0.4573

COSwrp
Using the optimum efficiency correlation, egn. (3.44),
s/l =9 x (0.567— 0.4573),
o8/l =0.9872
To determine the blade camber we combine
S=ax—dh=a—E—0/2
with egn. (3.41), to get

_E—art 1.1(s/1)Y3 _ 4693744+ 1.1 x 0.9957
0.5-031s/DHY3 0.5—-0.31 x 0.9957

-.0=2108.

According to McKenzie the correlation gives, for high stagger designs, peak effi-
ciency conditions well removed from stall and is in good agreement with earlier fan
blade design methods.

Turbine cascade correlation (Ainley)

Ainley and Mathieson (1951) published a method of estimating the performance
of an axial flow turbine and the method has been widely used ever since. In essence
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the total pressure loss and gas efflux angle for each row of a turbine stage is
determined at a singleeferencediameter and under a wide range of inlet condi-
tions. This reference diameter was taken as the arithmetic mean of the rotor and
stator rows inner and outer diameters. Dunham and Came (1970) gathered together
details of several improvements to the method of Ainley and Mathieson which
gave better performance prediction fmall turbines than did the original method.
When the blading igompetentlydesigned the revised method appears to give reli-
able predictions of efficiency to within 2% over a wide range of designs, sizes and
operating conditions.

Total pressure loss correlations

The overall total pressure loss is composed of three parts, viz. (i) profile loss,
(i) secondary loss, and (iii) tip clearance loss.

(i) A profile loss coefficient is defined as the loss in stagnation pressure across
the blade row or cascade, divided by the difference between stagnation and static
pressures at blade outlet; i.e.

__ po1— poz

Y, = . (3.45)
P02 — P2

In the Ainley method, profile loss is determined initially at zero incide¢ice 0).
At any other incidence the profile loss ratig /Y o) iS assumed to be defined by
a unique function of the incidence ratigi; (Figure 3.24), wheré; is the stalling
incidence. This is defined as the incidence at wiiGhY =0 = 2.0.

Ainley and Mathieson correlated the profile losses of turbine blade rows against
space/chord ratig//, fluid outlet anglex,, blade maximum thickness/chord ratj@

4
3 —
Yp
Yoi-0 2[~
1 } } }
] ] ]
-3 —2 1 0 1 2

i/is

Fic. 3.24. Variation of profile loss with incidence for typical turbine blading (adapted
from Ainley and Mathieson 1951).
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FiG. 3.25. Profile loss coefficients of turbine nozzle and impulse blades at zero inci-
dence (t/I = 20%; Re = 2 x 10%;, M < 0.6) (adapted from Ainley and Mathieson 1951).

and blade inlet angle. The variation Bf,;—o, againsts/! is shown in Figure 3.25

for nozzles and impulse blading at various flow outlet angles. The sign convention
used for flow angles in a turbine cascade is indicated in Figure 3.27. For other types
of blading intermediate between nozzle blades and impulse blades the following
expression is employed:

2 a1/
oy t/I\™t
Y pi=0) = {Yp(al_m + (a—2> [Y pat=a2) = ¥ p(al_O)]} <ﬁ> (3.46)

where all theY ,’s are taken at the same space/chord ratio and flow outlet angle.
If rotor blades are being considered, py 3or «; and g3 for az. Equation (3.46)
includes a correction for the effect of thickneshord ratio and is valid in the
range 015 < ¢/ < 0.25. If the actual blade hasr@l greater or less than the limits
quoted, Ainley recommends that the loss should be taken as equal to a blade having
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t/1 either 0.25 or 0.15. By substitutingy = o> and ¢/l = 0.2 in eqn. (3.46), the
zero incidence loss coefficient for the impulse bladigg1-.2) given in Figure 3.25
is recovered. Similarly, withwy =0 atz/l = 0.2 in eqn. (3.46) gives ,u1-0) Of
Figure 3.25.

A feature of the losses given in Figure 3.25 is that, compared with the impulse
blades, the nozzle blades have a much lower loss coefficient. This trend confirms
the results shown in Figure 3.14, that flow in which the mean pressure is falling
has a lower loss coefficient than a flow in which the mean pressure is constant
or increasing.

(ii) The secondary losses arise from complex three-dimensional flows set up as
a result of the end wall boundary layers passing through the cascade. There is
substantial evidence that the end wall boundary layers are convected inwards along
the suction-surface of the blades as the main flow passes through the blade row,
resulting in a serious mal-distribution of the flow, with losses in stagnation pressure
often a significant fraction of the total loss. Ainley found that secondary losses could
be represented by

Cps = AC1%/(s/1) (3.47)

where) is parameter which is a function of the flow acceleration through the blade
row. From eqgn. (3.17), together with the definitioniafeqn. (3.45) for incompress-
ible flow, Cp = Y (s/1) coS a,,/ coF a», hence

Cpscofaz  (Cp 2 cofay
s/l

© (s/DcoSa,,

=)z 3.48
coSa,, ( )

N

whereZ is the blade aerodynamic loading coefficient. Dunham (1970) subsequently
found that this equation was not correct for blades of low aspect ratio, as in small
turbines. He modified Ainley’s result to include a better correlation with aspect ratio

and at the same time simplified the flow acceleration parameter. The correlation,
given by Dunham and Came (1970), is

Y, = 0.0334<i> <C°S°‘2> z (3.49)

H cosay’/

and this represents a significant improvement in the prediction of secondary losses
using Ainley’s method.

Recently, more advanced methods of predicting losses in turbine blade rows have
been suggested which take into accounttthieknessof the entering boundary layers
on the annulus walls. Came (1973) measured the secondary flow losses end
wall of several turbine cascades for various thicknesses of inlet boundary layer. He
correlated his own results, and those of several other investigators, and obtained a
modified form of Dunham'’s earlier result, viz.,

cos l cosa
Y, = (0.2571—** 1 0.009- 2)z -y, (3.50)
cofay H cosoy’

which is the net secondary loss coefficient &ore end wall only and wheré&’; is
a mass-averaged inlet boundary layer total pressure loss coefficient. It is evident
that the increased accuracy obtained by use of eqn. (3.50) requires the additional
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effort of calculating the wall boundary layer developmentiriitial calculations of
performance it is probably sufficient to use the earlier result of Dunham and Came,
egn. (3.49), to achieve a reasonably accurate result.

(iii) The tip clearance loss coefficient, depends upon the blade loadidgand
the size and nature of the clearance gapunham and Came presented an amended
version of Ainley’s original result for:

0.78
s () ()" a5

whereB = 0.5 for a plain tip clearance, 0.25 for shrouded tips.
Reynolds number correction

Ainley and Mathieson (1951) obtained their data for a mean Reynolds number of
2 x 10° based on the mean chord and exit flow conditions from the turbine state.
They recommended for lower Reynolds numbers, down ol®*, that a correction
be made to stage efficiency according to the rough rule:

(1—1ny) x Re 1>,

Dunham and Came (1970) gave an optional correction which is applied directly to
the sum of the profile and secondary loss coefficients for a blade row using the
Reynolds numbeappropriateto that row. The rule is:

Y, + Y, oc Re™H/5,
Flow outlet angle from a turbine cascade

It was pointed out by Ainley (1948) that the method of defining deviation angle
as adopted in several well-known compressor cascade correlations had proved to
be impracticable for turbine blade cascade. In order to predict fluid outlet apgle
steam turbine designers had made much use of the simple empirical rule that

oy =Ccos1O/s (3.52a)

where® is the opening at the throat, depicted in Figure 3.26,sisdhe pitch. This
widely used rule gives a very good approximation to measured pitchwise averaged
flow angles when the outlet Mach number is at or close to unity. However, at low
Mach numbers substantial variations have been found between the rule and observed
flow angles. Ainley and Mathieson (1951) recommended that for low outlet Mach
numbers O< M, < 0.5, the following rule be used:

oy = f(costO/s) + 4s/e (deg) (3.52b)

where f(cos®/s) = —-1115+ 1.154cos'®/s and e = j2/(8;) is the mean
radius of curvature of the blade suction surface between the throat and the trailing
edge. At a gas outlet Mach number of unity Ainley and Mathieson assumed, for a
turbine blade row, that

o = COS LA, /Ao (3.52¢)



86 Fluid Mechanics, Thermodynamics of Turbomachinery
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Fic. 3.26. Details near turbine cascade exit showing “throat” and suction-surface
curvature parameters.

where A, is the passage throat area af} is the annulus area in the reference
plane downstream of the blades. If the annulus walls at the ends of the cascade
are not flared then egn. (3.52c) is the same as eqn. (3.52a). Betfyeen0.5 and

M, = 1.0 a linear variation ofr, can be reasonably assumed in the absence of any
other data.

Comparison of the profile loss in a cascade and in a
turbine stage

The aerodynamic efficiency of an axial-flow turbine is significantly less than that
predicted from measurements made on equivalent cascades operating under steady
flow conditions. The importance of flow unsteadiness originating from the wakes
of a preceding blade row was studied by Lopatitistdial. (1969) who reported
that the rotor blade profile loss was (depending on blade geometry and Reynolds
number) between two and four times greater than that for an equivalent cascade
operating with the same flow. Hodson (1984) made an experimental investigation
of the rotor to stator interaction using a large-scale, low-speed turbine, comparing the
results with those of a rectilinear cascade of identical geometry. Both tunnels were
operated at a Reynolds number afi3x 10°. Hodson reported that the turbine
rotor midspan profile loss was approximately 50 per cent higher than that of the
rectilinear cascade. Measurements of the shear stress showed that as a stator wake
is convected through a rotor blade passage, |#meinar boundary layer on the
suction surface undergoes transition in the vicinity of the wake. The 50 per cent
increase in profile loss was caused by the time-dependent transitional nature of the
boundary layers. The loss increase was largely independent of spacing between the
rotor and the stator.

In a turbine stage the interaction between the two rows can be split into two parts:
(a) the effects of the potential flow; and (b) the effects due to wake interactions.
The effects of the potential influence extend upstream and downstream and decay
exponentially with a length scale typically of the order of the blade chord or pitch.
Some aspects of these decay effects are studied in Chapter 6 under the heading
“Actuator Disc Approach”. In contrast, blade wakes are convected downstream of
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the blade row with very little mixing with the mainstream flow. The wakes tend to
persist even where the blade rows of a turbomachine are very widely spaced.

A designer usually assumes that the blade rows of an axial-flow turbomachine
are sufficiently far apart that the flow is steady in both the stationary and rotating
frames of reference. The flow in a real machine, however, is unsteady both as a
result of the relative motion of the blade wakes between the blade rows and the
potential influence. In modern turbomachines, the spacing between the blade rows
is typically of the order of 1/4 to 1/2 of a blade chord. As attempts are made to
make turbomachines more compact and blade loadings are increased, then the levels
of unsteadiness will increase.

The earlier Russian results showed that the losses due to flow unsteadiness were
greater in turbomachines of high reaction and low Reynolds number. With such
designs, a larger proportion of the blade suction surface would have a laminar
boundary layer and would then exhibit a correspondingly greater profile loss as a
result of the wake-induced boundary layer transition.

Optimum space —chord ratio of turbine blades (Zweifel)

It is worth pondering a little upon the effect of the spachord ratio in turbine
blade rows as this is a factor strongly affecting efficiency. Now if the spacing
between blades is made small, the fluid then tends to receive the maximum amount
of guidance from the blades, but the friction losses will be very large. On the
other hand, with the same blades spaced well apart, friction losses are small but,
because of poor fluid guidance, the losses resulting from flow separation are high.
These considerations led Zweifel (1945) to formulate his criterion for the optimum
space-chord ratio of blading having large deflection angles. Essentidiigifel’s
criterion is simply that the ratioyr) of the actual to an “ideal” tangential blade
loading, has a certain constant value for minimum losses. The tangential blade loads
are obtained from the real and ideal pressure distributions on both blade surfaces,
as described below.

Figure 3.27 indicates a typical pressure distribution around one blade in a turbine
cascade, curveB andS corresponding to the pressure (or concave) side and suction
(convex) side respectively. The pressures are projected parallel to the cascade front
so that the area enclosed between the cusvaasd P represents thactual tangential
blade load per unit span

Y = psce(cy2 + ¢y1), (3.53)

cf. egn. (3.3) for a compressor cascade.

It is instructive to examine the pressures along the blade surfaces. Assuming
incompressible flow the static inlet pressurepis= pg — %pcf; if losses are also
ignored the outlet static pressupe = po — %pc%. The pressure on th@ side
remains high at firstfg being the maximum, attained only at the stagnation point),
then falls sharply top,. On theS side there is a rapid decrease in static pressure
from the leading edge, but it may even rise again towards the trailing edge. The
closer the blade spacinghe smaller the load becomes (egn. (3.53)). Conversely,
wide spacing implies an increased load with pressure rising of giée and falling
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Fic. 3.27. Pressure distribution around a turbine cascade blade (after Zweifel 1945).
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on theS side. Now, whereas the static pressure can never rise ghpoa the P
surface, very low pressures are possible, at least in theory ¢hahdace. However,
the pressure rise towards the trailing edge is limited in practice if flow separation
is to be avoided, which implies that the load carried by the blade is restricted.

To give some idea of blade load capacity, the real pressure distribution is
compared with an ideal pressure distribution giving a maximum lggevithout risk
of fluid separation on th& surface. Upon reflection, one sees that these conditions
for the ideal load are fulfilled byg acting over thavhole P surface angp, acting
over thewhole Ssurface. With this ideal pressure distribution (which cannot, of
course, be realised), the tangential load per unit span is,

Yig = Spc3b (3.54)
and, therefore,
Yr = Y/Yiq = 2(s/b) cos ay(tana; + tanas) (3.55)

after combining eqgns. (3.53) and (3.54) together with angles defined by the geometry
of Figure 3.27.

Zweifel found from a number of experiments on turbine cascades that for
minimum losses the value gf; was approximately 0.8. Thus, for specified inlet and
outlet angles the optimum spaeehord ratio can be estimated. However, according
to Horlock (1966). Zweifel’s criterion predicts optimum spachord ratio for the
data of Ainleyonly for outlet angles of 60 to 70 deét other outlet angles it does
not give an accurate estimate of optimum spadwerd ratio.
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Problems

1. Experimental compressor cascade results suggest that the stalling lift coefficient of a
cascade blade may be expressed as

c 3
C, (—1) =22
C2

wherec; andc, are the entry and exit velocities. Find the stalling inlet angle for a compressor
cascade of spaeehord ratio unity if the outlet air angle is 30 deg.

2. Show, for a turbine cascade, using the angle notation of Figure 3.27, that the lift
coefficient is

Cp = 2(s/1)(tanay + tanay) cosw,, + Cp tana,,

where tany,, = 1 (tana; — tana;) and Cp = Drag/ (5 pca?l).
A cascade of turbine nozzle vanes has a blade inlet arjgie 0 deg, a blade outlet angle
o, of 65.5deg, a chord lengthof 45 mm and an axial chorbl of 32 mm. The flow entering
the blades is to have zero incidence and an estimate of the deviation angle based upon similar
cascades is thatwill be about 1.5 deg at low outlet Mach number. If the blade load ratio
defined by eqn. (3.55) is to be 0.85, estimate a suitable sypdwed ratio for the cascade.
Determine the drag and lift coefficients for the cascade given that the profile loss coefficient

A= Apo/(3pc3) = 0.035

3. A compressor cascade is to be designed for the following conditions:

Nominal fluid outlet angle oy = 30deg
Cascade camber angle 0 = 30deg
Pitch/chord ratio s/l = 10
Circular arc camberline a/l = 05

Using Howell’'s curves and his formula for nominal deviation, determine the nominal inci-
dence, the actual deviation for an incidencetd.7 deg and the approximate lift coefficient
at this incidence.

4. A compressor cascade is built with blades of circular arc camber line, a space/chord
ratio of 1.1 and blade angles of 48 and 21deg at inlet and outlet. Test data taken from
the cascade shows that at zero incidence Q) the deviations = 8.2deg and the total
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pressure loss coefficierd = Apo/(%pclz) = 0.015. At positive incidence over a limited
range (0< i < 6°) the variation of bott$ andw for this particular cascade can be represented
with sufficient accuracy by linear approximations, viz.

ds dw

— =0.06, — =0.001

di di
wherei is in degrees.

For a flow incidence of 5.0 deg determine

(i) the flow angles at inlet and outlet;
(i) the diffuser efficiency of the cascade;
(iii) the static pressure rise of air with a velocity 50 m/s normal to the plane of the cascade.

Assume density of air is 1.2 kghn

5. (a) A cascade of compressor blades is to be designed to give an outlet aircangle
of 30deg for an inlet air angle; of 50 deg measured from the normal to the plane of the
cascade. The blades are to hayEaeabolic arccamber line withu/I = 0.4 (i.e. the fractional
distance along the chord to the point of maximum camber). Determine the space/chord
ratio and blade outlet angle if the cascade is to operate at zero incidence and nominal
conditions. You may assume the linear approximation for nominal deflection of Howell's
cascade correlation:

¢ = (16— 0.203)(3 — 5/1) deg

as well as the formula for nominal deviation:

. 2a\? op* s
8§ = [0.23<7> +500 9\/7 deg.

(b) The space/chord ratio is now changed to 0.8, but the blade angles remain as they are
in part (a) above. Determine the lift coefficient when the incidence of the flow is 2.0deg.
Assume that there is a linear relationship betwegsri and (i — i*)/€* over a limited region,
viz. at(i — i*)/e* = 0.2, ¢/e* = 1.15 and ati = i*, ¢/¢* = 1. In this region take”, = 0.02.

6. (a) Show that the pressure rise coeffici€hf = Ap/(%pc%) of a compressor cascade
is related to the diffuser efficiency, and the total pressure loss coefficientby the
following expressions:

C,=np(l—seCay/seCay)=1— (seCay+¢)/seCay
where  n, = Ap/{3p(ci — )}
¢ = Apo/(3pc?)
a1, ap = flow angles at cascade inlet and outlet.

(b) Determine a suitablenaximuminlet flow angle of a compressor cascade having a
space/chord ratio 0.8 arng, = 30deg when the diffusion factdp is to be limited to 0.6.
The definition of diffusion factor which should be used is the early Lieblein formula (1956),

D 1 cosm + (S> cosn (tan tanay)
= — - o — ).
COoSwp l 2 ! 2

(c) The stagnation pressure loss derived from flow measurements on the above cascade is
149 Pa when the inlet velocity, is 100 m/s at an air density of 1.2 kg/n?. Determine the
values of
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(i) pressure rise;
(i) diffuser efficiency;
(iii) drag and lift coefficients.

7 (a) A set of circular arc fan blades, camiver 8 deg, are to be tested in a cascade wind
tunnel at a space/chord ratig,/ = 1.5, with a stagger angle = 68 deg. Using McKenzie's
method of correlation and assuming optimum conditions at an axial velocity ratio of unity,
obtain values for the air inlet and outlet angles.

(b) Assuming the values of the derived air angles are correct and that the cascade has an
effective lift/drag ratio of 18, determine

(i) the coefficient of lift of the blades;
(ii) the efficiency of the cascade (treating it as a diffuser).
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CHAPTER 4

Axial-flow Turbines:
Two-dimensional Theory

Power is more certainly retained by wary measures than by daring counsels.
(TAaciTus, Annals.)

Introduction

The simplest approach to the study of axial-flow turbines (and also axial-flow
compressors) is to assume that the flow conditions prevailing at the mean radius
fully represent the flow at all other radii. This two-dimensional analysis apiticé-
line can provide a reasonable approximation to the actual flow, if the ratio of blade
height to mean radius is small. When this ratio is large, however, as in the final stages
of a steam turbine or, in the first stages of an axial compressor, a three-dimensional
analysis is required. Some important aspects of three-dimensional flows in axial
turbomachines are discussed in Chapter 6. Two further assumptions are, that radial
velocities are zero, and that the flow is invariant along the circumferential direction
(i.e. there are no “blade-to-blade” flow variations).

In this chapter the presentation of the analysis has been devised with compressible
flow effects in mind. This approach is then applicable to both steam and gas turbines
provided that, in the former case, the steam condition remains wholly within the
vapour phase (i.e. superheat region). Much early work concerning flows in steam
turbine nozzles and blade rows are reported in Stodola (1945), Kearton (1958) and
Horlock (1960).

Velocity diagrams of the axial turbine stage

The axial turbine stage comprises a row of fixed guide vanes or nozzles (often
called astator row) and a row of moving blades or bucketsr@or row). Fluid
enters the stator with absolute velocityat anglex; and accelerates to an absolute
velocity ¢, at anglex; (Figure 4.1). All angles are measured from the axiairec-
tion. Thesign conventionis such that angles and velocities as drawn in Figure 4.1
will be taken as positive throughout this chapter. From the velocity diagram, the
rotor inlet relative velocity w,, at an angles,, is found by subtracting, vectorially,
the blade speetd from the absolute velocity,. The relative flow within the rotor
accelerates to velocitys at an angless at rotor outlet; the corresponding absolute
flow (c3, a3) is obtained by adding, vectorially, the blade spéédo the relative
velocity ws.

93
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FIG. 4.1. Turbine stage velocity diagrams.

The continuity equation for uniform, steady flow is,
P1A1Cx1 = P2A2Cx2 = P3A3C3.

In two-dimensional theory of turbomachines it is usually assumed, for simplicity,
that the axial velocity remains constant icg;y = ¢, = ¢x3 = ¢y
This must imply that,

P1A1 = poAs = p3Az = constant (4.2)

Thermodynamics of the axial turbine stage

The work done on the rotor by unit mass of fluid, the specific work, equals the
stagnation enthalpy drop incurred by the fluid passing through the stage (assuming
adiabatic flow), or,

AW = W /i = ho1 — hog = U(cy2 + ¢y3). 4.2)

In eqn. (4.2) the absolute tangential velocity componea} gre added so as
to adhere to the agreed sign convention of Figure 4.1. As no work is done in the
nozzle row, the stagnation enthalpy across it remains constant and

ho1 = hoo. (4.3)
Writing ho = h + %(cf, + cﬁ) and using eqgn. (4.3) in eqn. (4.2) we obtain,

hoz — hos = (hz — h3) + 3(c5y — ¢%3) = U(cya + ¢y3),
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hence,
(hz — h3) + 3(cy2 + ¢ya)(cy2 — U) — (cya + U)] = 0.

It is observed from the velocity triangles of Figure 4.1 thgt — U = wy2, ¢y3 +
U= Wy3 andcyz + cy3 = Wy2 + wy3. Thus,

(h2 — h3) + 5 (w2 — whg) = 0.
Add and subtracc? to the above equation
ha + %Wg = hz + %Wg Or hozrel = hozrel (4.4)

Thus, we have proved that thelative stagnation enthalpyiore) = 7 + %wz, remains
unchanged through the rotor of an axial turbomachine. It is implicitly assumed that
no radial shift of the streamlines occurs in this flow. Inaalial flow machine a

more general analysis is necessary (see Chapter 7) which takes account of the blade
speed change between rotor inlet and outlet.

A Mollier diagram showing the change of state through a complete turbine stage,
including the effects of irreversibility, is given in Figure 4.2.

Through the nozzles, the state point moves from 1 to 2 and the static pressure
decreases fronp; to p,. In the rotor row, the absolute static pressure reduces (in
general) fromp, to ps. It is important to note that the conditions contained in
eqns. (4.2} (4.4) are all satisfied in the figure.

S

Fic. 4.2. Mollier diagram for a turbine stage.
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Stage losses and efficiency
In Chapter 2 various definitions of efficiency for complete turbomachines were
given. For aturbine stagethe total-to-total efficiency is,

. actual work output
~ ideal work output when operating to same back pressure

= (ho1 — ho3)/(ho1 — hoass)-

At the entry and exit of aormal stage the flow conditions (absolute velocity and
flow angle) are identical, i.ez1 = c3 anda; = a3. If it is assumed thats,; = c3,
which is a reasonable approximation, the total-to-total efficiency becomes.

N = (h1 — h3)/(hy — hag)
= (h1 — h3)/{(h1 — h3) + (h3 — ha,) + (hay — hag)}. (4.5)

Now the slope of a constant pressure line on a Mollier diagra(d/gos), = T,
obtained from eqn. (2.18). Thus, for a finite change of enthaply in a constant pressure
processAh = T As and, therefore,

has — hags = T3(s3; — $345), (4.6a)
ha — has = Ta(s2 — s25). (4.6b)

Ner

Noting, from Figure 4.2, thats; — s3,; = s2 — 52, the last two equations can be
combined to give

hss — hass = (T'3/T2)(h2 — ha). 4.7)

The effects of irreversibility through the stator and rotor are expressed by
the differences in static enthalpie§;, — hy;) and (ks — h3;) respectively. Non-
dimensional enthalpy “loss” coefficients can be defined in terms of the exit kinetic
energy from each blade row. Thus, for the nozzle row,

ha — hay = 3c5En. (4.89)
For the rotor row,
hs — ha, = $W5¢k. (4.8b)
Combining egns. (4.7) and (4.8) with eqn. (4.5) gives
Erw3 + §NC§T3/T2] -
2(h1 — h3) '

When the exit velocity is not recovered (in Chapter 2, examples of such cases are
quoted) a total-to-static efficiency for the stage is used.

Nis = (ho1 — ho3)/(ho1 — hags)

ErWS + Ene3T3/To + C%] -
2(hy — h3) '

where, as before, it is assumed that= cs.

N = |:1 + (4.9

= {1 + (4.10)
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In initial calculations or, in cases where the static temperature drop through the
rotor is not large, the temperature rafig/T> is set equal to unity, resulting in the
more convenient approximations,

-1
ERWS + Encs
=|14+2Z=—"=| | 4.9a)
Nt |: + 2(hy — h3) ( )
-1
LrWS + Eyes + ¢
=11 4.10
Un |: + 2(hy — h3) ( 3

So that estimates can be made of the efficiency of a proposed turbine stage as part
of the preliminary design process, some means of determining the loss coefficients
is required. Several methods for doing this are available with varying degrees of
complexity. The blade row method proposed by Soderberg (1949) and reported
by Horlock (1966), although old, is still remarkably valid despite its simplicity.
Ainley and Mathieson (1952) correlated the profile loss coefficients for nozzle blades
(which give 100% expansion) and impulse blades (which give 0% expansion) against
flow deflection and pitch/chord ratio for stated values of Reynolds number and
Mach number. Details of their method are given in Chapter 3. For blading between
impulse and reaction the profile loss is derived from a combination of the impulse
and reaction profile losses (see eqn. (3.42)). Horlock (1966) has given a detailed
comparison between these two methods of loss prediction. A refinement of the
Ainley and Mathieson prediction method was later published by Dunham and Came
(1970).

Various other methods of predicting the efficiency of axial flow turbiness have
been devised such as those of Craig and Cox (1971), Kacker and Okapuu (1982)
and Wilson (1987). It was Wilson who, tellingly, remarked that despite the emer-
gence of “computer programs of great power and sophistication”, and “generally
incorporating computational fluid dynamics”, that these have not yet replaced the
preliminary design methods mentioned above. It is, clearly, essential for a design
to converge as closely as possible to an optimum configuration using preliminary
design methods before carrying out the final design refinements using computational
fluid dynamics.

Soderberg’s correlation

One method of obtaining design data on turbine blade losses is to assemble
information on the overall efficiencies of a wide variety of turbines, and from this
calculate the individual blade row losses. This system was developed by Soderberg
(1949) from a large number of tests performed on steam turbines and on cascades,
and extended to fit data obtained from small turbines with very low aspect ratio
blading (small heightchord). Soderberg’s method was intended only for turbines
conforming to the standards of “good design”, as discussed below. The method was
used by Stenning (1953) to whom reference can be made.

A paper by Horlock (1960) has critically reviewed several different and widely
used methods of obtaining design data for turbines. His paper confirms the claim
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FiG. 4.3. Soderberg’s correlation of turbine blade loss coefficient with fluid deflection
(adapted from Horlock (1960).

made for Soderberg’s correlation that, although based on relatively few parameters,
it is of comparable accuracy with the best of the other methods.

Soderberg found that for theptimum space-chord ratio, turbine blade losses
(with “full admission” to the complete annulus) could be correlated with space-
chord ratio, blade aspect ratio, blade thickressord ratio and Reynolds number.
Soderberg usedweifel’s criterion (see Chapter 3) to obtain the optimum space-
chord ratio of turbine cascades based upon the cascade geometry. Zweifel suggested
that the aerodynamic load coefficieptr should be approximately 0.8. Following
the notation of Figure 4.1

Yr = 0.8 = 2(s/b)(tana; + tana,) CoS . (4.11)

The optimum spacechord ratio may be obtained from egn. (4.11) for specified
values ofoq andos.

For turbine blade rows operating at this load coefficient, with a Reynolds number
of 10° and aspect ratidf /b = blade height/axial chord) of 3, the “nominal” loss
coefficient¢* is a simple function of the fluid deflection anglte= «; + a2, for
a given thicknesschord ratio (rmax/!). Values of¢* are drawn in Figure 4.3 as
a function of deflectiore, for several ratios ofmax/{. A frequently used analyt-
ical simplification of this correlation (formax/l = 0.2), which is useful in initial
performance calculations, is

2
£* = 0.04+ 0.06 (ﬁ) : (4.12)

This expression fits Soderberg’s curve (fary/! = 0.2) quite well fore < 120,
but is less accurate at higher deflections. For turbine rows operating at zero inci-
dence, which is the basis of Soderberg’s correlation, the fluid deflection is little
different from the blading deflection since, fturbine cascadesdeviations are
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usually small. Thus, for a nozzle row,= ey = o, + 4 and for a rotor row,
€ = eg = B, + pB5 can be used (the prime referring to the actual blade angles).

If the aspect ratidd /b is other than 3, a correction to the nominal loss coefficient
Z* is made as follows:

for nozzles,

1+ &6 =1+¢")(0.993+0.021b/H), (4.13a)
for rotors,

1+6=0A+4+¢")(0.975+0.07%/H), (4.13b)

where¢, is the loss coefficient at a Reynolds number of.10

A further correction can be made if the Reynolds number is different from 10
As used in this section, Reynolds number is based upon exit velegigand the
hydraulic mean diametdp,, at the throat section.

Re = pacaDy/ e, (4.14)
where
Dy, = 2sH coSa2/(s COSaz + H ).

(N.B. Hydraulic mean diametet 4 x flow area + wetted perimeter.)
The Reynolds number correction is

165\ V4
§2=<E> 1. (4.15)

Soderberg’s method of loss prediction gives turbine efficiencies with an error of
less than 3% over a wide range of Reynolds number and aspect ratio when additional
corrections are included to allow for tip leakage and disc friction. An approximate
correction for tip clearance may be incorporated by the simple expedient of multi-
plying the final calculated stage efficiency by the ratio of “blade” arctal area
(i.e. “blade” areat+ clearance area).

Types of axial turbine design

The process of choosing the best turbine design for a given application usually
involves juggling several parameters which may be of equal importance, for instance,
rotor angular velocity, weight, outside diameter, efficiency, so that the final design
lies within acceptable limits for each parameter. In consequence, a simple presen-
tation can hardly do justice to the real problem. However, a consideration of the
factors affecting turbine efficiency for a simplified case can provide a useful guide
to the designer.

Consider the problem of selecting an axial turbine design for which the mean
blade speed/, the specific workAW, and the axial velocity:,, have already been
selected. The upper limit of blade speed is limited by stress; the limit on blade tip
speed is roughly 450 m/s although some experimental turbines have been operated
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at higher speeds. The axial velocity is limited by flow area considerations. It is

assumed that the blades are sufficiently short to treat the flow as two-dimensional.
The specific work done is

AW = U(Cyz + Cy3).

With AW, U and ¢, fixed the only remaining parameter required to completely
define the velocity triangles is,», since

Cy3 = AW/U — Cy2. (416)

For different values of,, the velocity triangles can be constructed, the loss
coefficients determined angl,, n,; calculated. In Shapiret al. (1957) Stenning
considered a family of turbines each having a flow coefficierit/ = 0.4, blade
aspect ratioH /b = 3 and Reynolds numbeke = 10°, and calculated,,, n;, for
stage loading factoraW/U? of 1, 2 and 3 using Soderberg’s correlation. The
results of this calculation are shown in Figure 4.4. It will be noted that these results
relate to blading efficiency and make no allowance for losses due to tip clearance

and disc friction.

ExamMPLE 4.1. Verify the peak value of the total to static efficiengy shown
in Figure 4.4 for the curve markedW /U? = 1, using Soderberg’s correlation and
the same data used by Stenning in Shapiral. (1957).

Solution.From eqgn. (4.10a):

i_l+§RW§+§NC%+C§
Nis 2AW
1.0 T
— nn
:—‘:——:—:'::/:::“/l‘ .
—l\'\:: e = ]
08 /_\\ ———
~ ~
// //
-~
= .
N LN ~
g 06 Wil L~
k) s >
= s i
w 7 . ——— 2=
p P AW/U2 =1
0.4 £ /%:0_4 | ———— AWMZ=2 |
-~ H ——— AWMR=3
= =30
b
—1n5
0.2 Re=10
0 0.5 1.0 15 2.0 25
Cyp/U

FiG. 4.4. Variation of efficiency with (cy,/U) for several values of stage loading factor
AW /U? (adapted from Shapiro et al. 1957).



Axial-flow Turbines: Two-dimensional Theory 101
As AW = U? = U(c,2 + Cy3) then asc,p = U, ¢,3 = 0,
¢ = c¢,/U = cotap, = 0.4, hencea, = 682 deg.

The velocity triangles are symmetrical, so that= B3. AlsO, €z = ey = ar =
68.2°,

. £=004x (14 1.5x 0.682) = 0.0679
=1+ ¢*(;seé B3 + 0.5)
=1+ 0.4% x (0.0679x 2.6928 + 0.5)
=1+ 0.16 x (0.49235+ 0.5),

. = 0.863

=1+ ¢p?seC Bz + %¢2

This value appears to be the same as the peak value of the efficiency curve
AW /U? = 1.0, in Figure 4.4.

Stage reaction

The classification of different types of axial turbine is more conveniently described
by the degree of reactioror reaction ratio R of each stage rather than by the ratio
cy2/U. As a means of description the term reaction has certain inherent advantages
which become apparent later. Several definitions of reaction are available; the clas-
sical definition is given as the ratio of the static pressure drop in the rotor to the
static pressure drop in the stage. However, it is more useful to define the reaction
ratio as the statienthalpydrop in the rotor to the statienthalpydrop in the stage
because it then becomes, in effect, a statement of the 8taggeometryThus,

R = (h2 — h3)/(h1 — h3). (4.17)
If the stage is normal (i.e:; = c3) then,
R = (h2 — h3)/(ho1 — ho3)- (4.18)

Using eqn. (4.4)h; — hs = (w3 — w3) and eqn. (4.18) becomes,

2 _ 2
—_"sTWa (4.19)
2U(cy2 + ¢y3)
Assuming constant axial velocity through the stage
U wy2)(Wy3 + wy2) _ W3- Wy2’ (4.20)

2U(cy2 + cy3) 2U
since, upon referring to Figure 4.1, it is seen that

Cyz=wyp2+U and cy3=wy3—U. (4.21)
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Thus,
Cx
R = - (tanfs — tan 4.22a
2U( B3 B2) ( )
or
R= 1 + 5 (tangs — tanay) (4.22b)
=5t50 3 ), :

after using eqn. (4.21).
If B3 = B2, the reaction is zero; iBs = o, the reaction is 50%. These two special
cases are discussed below in more detail.

Zero reaction stage

From the definition of reaction, whet= 0, eqn. (4.18) indicates thas = k3 and
egn. (4.22a) thgé, = B3. The Mollier diagram and velocity triangles corresponding
to these conditions are sketched in Figure 4.5. Nowas = hogz.; andh, = hg for
R = 0 it must follow, therefore, thab, = ws. It will be observed from Figure 4.5
that, because of irreversibility, there ispeessure dropthrough the rotor row. The
zero reaction stage i#ot the same thing as dmpulsestage; in the latter case there
is, by definition, no pressure drop through the rotor. The Mollier diagram for an
impulse stage is shown in Figure 4.6 where it is seen that the entiadmeases

hi 02re| 03re|
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3ss

S

FiG. 4.5. Velocity diagram and Mollier diagram for a zero reaction turbine stage.
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FiG. 4.6. Mollier diagram for an impulse turbine stage.
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Fic. 4.7. Velocity diagram and Mollier diagram for a 50% reaction turbine stage.

through the rotor. The implication is clear from eqn. (4.18); the reaction is negative
for the impulse turbine stage when account is taken of the irreversibility.

50 per cent reaction stage

The combined velocity diagram for this case is symmetrical as can be seen from
Figure 4.7, since83 = a». Because of the symmetry it is at once obvious Bt
a3, also. Now withR = % egn. (4.18) implies that the enthalpy drop in the nozzle
row equals the enthalpy drop in the rotor, or

hy—hy = hy — hs. (4.23)

Figure 4.7 has been drawn with the same values, o/ and AW, as in Figure 4.5
(zero reaction case), to emphasise the difference in flow geometry between the 50%
reaction and zero reaction stages.

Diffusion within blade rows

Any diffusion of the flow through turbine blade rows is particularly undesirable
and must, at the design stage, be avoided at all costs. This is because the adverse
pressure gradient (arising from the flow diffusion) coupled with large amounts of
fluid deflection (usual in turbine blade rows), makes boundary-layer separation more
than merely possible, with the result that large scale losses arise. A compressor
blade row, on the other hand, is designed to cause the fluid pressure to rise in the
direction of flow, i.e. amadversepressure gradient. The magnitude of this gradient
is strictly controlled in a compressor, mainly by having a fairly limited amount of
fluid deflection in each blade row.

The comparison of the profile losses given in Figure 3.14 is illustrative of the
undesirable result of negative “reaction” in a turbine blade row. The use of the term
reaction here needs qualifying as it was only defined with respect to a complete stage.
From eqgn. (4.22a) the rati®/¢ can be expressed for a single row of blades if the
flow angles are known. The original data provided with Figure 3.14 gives the blade
inlet angles for impulse and reaction blades as 45.5 and 18.9 deg respectively. Thus,
the flow angles can be found from Figure 3.14 for the range of incidence given, and
R/¢ can be calculated. For the reaction bla®¢g decreases as incidence increases
going from 0.36 to 0.25 aschanges from 0 to 10 deg. The impulse blades, which it
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FiG. 4.8. Velocity diagram for 100% reaction turbine stage.

will be observed have a dramatic increase in blade profile lossk haslecreasing
from zero to—0.25 in the same range of incidence.

It was shown above that negative values of reaction indicated diffusion of the
rotor relative velocity (i.e. folR < 0, wz < wy). A similar condition which holds
for diffusion of the nozzle absolute velocity is, thatRf> 1, ¢; < c3.

Substituting tar; = tanaz + U/c, into egn. (4.22b) gives

R=1+ ZC—;](tanag — tanay). (4.22c)

Thus, wheruz = ay, the reaction is unity (alse, = c3). The velocity diagram for
R = 1is shown in Figure 4.8 with the same valuesofU and AW used forR = 0
andR = % It will be apparent that iR exceeds unity, thety, < ¢; (i.e. nozzle flow
diffusion).

ExAaMPLE 4.2. A single-stage gas turbine operates at its design condition with
an axial absolute flow at entry and exit from the stage. The absolute flow angle at
nozzle exit is 70 deg. At stage entry the total pressure and temperature are 311 kPa
and 850C respectively. The exhaust static pressure is 100kPa, the total-to-static
efficiency is 0.87 and the mean blade speed is 500 m/s.

Assuming constant axial velocity through the stage, determine

(i) the specific work done;
(ii) the Mach number leaving the nozzle;
(iii) the axial velocity;
(iv) the total-to-total efficiency;
(v) the stage reaction.

Take C, = 1.148kJ/(kdC) andy = 1.33 for the gas.

Solution (i) From egn. (4.10), total-to-static efficiency is
ho1 — hog AW
"= hor— hay  ho{L— (pa/pon) D7)’
Thus, the specific work is
AW = n,,CpTor{1 — (p3/ po)? "}
= 0.87 x 1148x 1123x {1 — (1/3.11)°29
— 276 kJ/kg
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(ii) At nozzle exit the Mach number is
M2 = c2/(yRT2)"?

and it is necessary to solve the velocity diagram to fipdnd hence to determine

T>.

As Cy3 = 0, AW = UCyz

AW 276x 10°
U 500

c2 = ¢yp/ Sina; = 588 m/s

Cy2 = =552m/s

Referring to Figure 4.2, across the nozalg = hop = hy + %cg thus
T2 = TOl_ %C%/Cp =973K

Hence,M, = 0.97 with yR = (y — 1)C,,.
(iii) The axial velocity,c, = c2 cosay = 200 m/s.
(iv) i = AW /(hoy — hass — 3¢3).
After some rearrangement,

2
N S S Y
e M 2AW 087 2x276x 10°

Thereforen,, = 0.93.
(v) Using eqn. (4.22a), the reaction is

R = 3(c,/U)(tanBs — tanpy).
From the velocity diagram, ta#y = U/c, and tang, = tanay; — U/cy
R=1- 1(c;/U)tana, = 1 — 200 x 0.27451000
= 0451

ExampLE 4.3. Verify the assumed value of total-to-static efficiency in the above
example using Soderberg’s correlation method. The average blade aspect ratio for
the stageH /b = 5.0, the maximum blade thicknesshord ratio is 0.2 and the
average Reynolds number, defined by eqgn. (4.14), s 10

Solution The approximation for total-to-static efficiency, eqn. (4.10a), is used
and can be rewritten as

1 14 ZrW3/U)Y* + & (c2/UY* + (cx/U)?

Mis 2AW /U2

The loss coefficientgg and ¢y, uncorrected for the effects of blade aspect ratio,
are determined using egn. (4.12) which requires a knowledge of flow turning angle
¢ for each blade row.

For the nozzlesy; = 0 anday = 70deg, thusy = 70 deg.

& = 0.04(1 + 1.5 x 0.7%) = 0.0694
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Correcting for aspect ratio with eqgn. (4.13a),

Zy1 = 1.06940.993+ 0.021/5) — 1 = 0.0666
For the rotor, ta, = (¢,» — U)/c, = (552— 500)/200= 0.26,

.. B2 = 1455deg
Therefore,

tanBs = U/c, = 2.5,
and B3 = 68.2deg.
Therefore er = B2+ B3 = 8275deg
&k =0.04(1+ 1.5 x 0.827%) = 0.0812

Correcting for aspect ratio with egn. (4.13b)
Zr1 = 1.08120.975+ 0.075/5) — 1 = 0.0712

The velocity ratios are:

() - (5) - 11

c2\2  (588\° €\ 2
=) =(=—) =1382;(—=) =0.16
(%) = (500) =232(3)

and the stage loading factor is,

AW ¢y, 552

=T = 500 =1.104
Therefore
1 14 0.0712x 1.16+ 0.0666x 1.382+ 0.16
Nis 2x 1104
=1+0.1515
s = 0.869,

This result is very close to the value assumed in the first example.

It is not too difficult to include the temperature rafla/7T, implicit in the more
exact egn. (4.10) in order to see how little effect the correction will have. To calcu-
late T3

AW + 3c3 276,000+ 20,000

= 1123
C, 1148

T3=To—

= 865K
T3/T» = 865/973= 0.89.
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Therefore
1 14 0.0712x 1.16+ 0.89 x 0.0666x 1.382+ 0.16
Nes 2x 1104
=1+ 0.1468
sons = 0.872

Choice of reaction and effect on efficiency

In Figure 4.4 the total-to-total and total-to-static efficiencies are shown plotted
againstc,o/U for several values of stage loading factav /U?. These curves
can now easily be replotted against the degree of readtionstead ofc,,/U.
Equation (4.22c) can be rewritten 8= 1+ (c,3 — ¢,2)/(2U) andc,3 eliminated
using eqgn. (4.16) to give

R=1+——>— -2 (4.24)

The replotted curves are shown in Figure 4.9 as presented by Sleagitd1957).
In the case of total-to-static efficiency, it is at once apparent that this is optimised,
at a given blade loading, by a suitable choice of reaction. WhefyU? = 2, the
maximum value ofy,, occurs with approximately zero reaction. With lighter blade
loading, the optimun,, is obtained with higher reaction ratios. Whaw /U? > 2,
the highest value of,, attainable without rotorelative flow diffusion occurring, is
obtained withR = 0.

From Figure 4.4, for a fixed value afW /U?, there is evidently only a relatively
small changes in total-to-total efficiency (compared wit}), for a wide range of

09 |
cx/U=04
Hb =3.0
08 |- Re=10°
Irs
07
06

Reaction

Fic. 4.9. Influence of reaction on total-to-static efficiency with fixed values of stage
loading factor.
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possible designs. Thug; is not greatly affected by the choice of reaction. However,
the maximum value ofy;, decreases as the stage loading factor increases. To obtain
high total-to-total efficiency, it is therefore necessary to use the highest possible
value of blade speed consistent with blade stress limitations (i.e. to reddigé/?).

Design point efficiency of a turbine stage

The performance of a turbine stage in terms of its efficiency is calculated for
several types of design, i.e. 50 per cent reaction, zero reaction and zero exit flow
angle, using the loss correlation method of Soderberg described earlier. These are
most usefully presented in the form of carpet plots of stage loading coeffigient,
and flow coefficientp.

(1) Total-to-total efficiency of 50 per cent reaction stage

In a multistage turbine the total-to-total efficiency is the relevant performance
criterion, the kinetic energy at stage exit being recovered in the next stage. After
the last stage of a multistage turbine, or a single-stage turbine, the kinetic energy in
the exit flow would be recovered in a diffuser or used for another purpose (e.g. as
a contribution to the propulsive thrust).

From eqn. (4.9a), where it has already been assumedthkatc; and T3 = T,
we have:

1 (CrWS + Ene)

~ -1
N * 2AW

’

where AW = yU? and, for 50 per cent reactiong = ¢, andég =&y = ¢

14y 2
T ( 2 )
as tanBs = (¥ +1)/(2¢) and tang, = (Y — 1)/(24).

From the above expressions the performance chart, shown in Figure 4.10, was
derived for specified values @f and¢. From this chart it can be seen that the peak
total-to-total efficiencyp,,, is obtained at very low values @f and. As indicated
in a survey by Kacker and Okapuu (1982), most aircraft gas turbine designs will
operate with flow coefficients in the range5& ¢ < 1.5, and values of stage
loading coefficient in the range,®< ¢ < 2.8.

wg = ci seé B3 = ci(l + tar? B3)

1 5¢? 5¢?
=14 (At tarf fy) =14 2
N1t w( a ﬂ3) 1/’

(2) Total-to-total efficiency of a zero reaction stage

The degree of reaction will normally vary along the length of the blade depending
upon the type of design that is specified. The performance&ferO represents a
limit, lower values of reaction are possible but undesirable as they would give rise
to large losses in efficiency. Fdt < 0, wz < wp, which means the relative flow
decelerates across the rotor.
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AWIU2

Stage loading coefficient, v

Flow coefficient, ¢ = ¢, /U

FiG. 4.10. Design point total-to-total efficiency and deflection angle contours for a turbine
stage of 50 per cent reaction.

Referring to Figure 4.5, for zero reactigh = 83, and from eqn. (4.21)
tana, = 1/¢ + tanp, and tarwz = tangs — 1/¢.

Also, ¥ = AW /U? = ¢(tanas + tanas) = ¢(tanp, + tanpsz) = 2¢ tans,,

: _v

c.tangy = 2(1)‘
Thus, using the above expressions:

tana, = (/24 1)/¢ and tarwz = (/2 — 1)/¢.

From these expressions the flow angles can be calculated if valugsdnd ¢ are
specified. From an inspection of the velocity diagram,

2 = ¢, Seqws, hencec = c?(1+tarf az) = ?[1 + (y/2+ 1)%/¢?],
w3 = ¢, SecBs, hencew3 = c2(1+ tarf f3) = ¢?[1 + (¥/2¢)%].

Substituting the above expressions into eqgn. (4.9a):

1 CRW§ + &ne3

Nt ! ZWUZ ’

1 1 1 5 W 2 5 1 W 2

Nt 2y R |® ( 2 ) | < 2 > '
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3.0

= AWIU?
N
o

1.0

Stage loading coefficient, v

Flow coefficient, ¢ = ¢,/U

FiG. 4.11. Design point total-to-total efficiency and rotor flow deflection angle for a zero
reaction turbine stage.

The performance chart shown in Figure 4.11 has been derived using the above
expressions. This is similar in its general form to Figure 4.10 for 50 per cent reac-
tion, with the highest efficiencies being obtained at the lowest values asfd 1,
except that higher efficiencies are obtained at higher values of the stage loading but
at reduced values of the flow coefficient.

(3) Total-to-static efficiency of stage with axial velocity at exit

A single-stage axial turbine will have axial flow at exit and the most appropriate
efficiency is usually total-to-static. To calculate the performance, eqn. (4.10a) is
used:

1, Gt )
Nis ZAW
2

=1+ f—w(steé,B3+ZNse8a2+ 1).

With axial flow at exit,c; = ¢3 = ¢,, and from the velocity diagram, Figure 4.12,

tanﬂg = U/Cx, tanﬂz = tanao — tanﬂg,
seéfz=1+tarf B3 =1+ 1/¢%
seCap = 1+tarfay = 1+ (Y/¢)%

1 1
L =14 ﬁ[zRa + 0% + v (PP + ) + ¢7].

Nts
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FiG. 4.12. Velocity diagram for turbine stage with axial exit flow.
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FiG. 4.13. Total-to-total efficiency contours for a stage with axial flow at exit.

Specifying ¢, ¥, the unknown values of the loss coefficiendg,and &y, can be
derived using Soderberg’s correlation, eqn. (4.12), in which

en = az = tan ' (Y/¢) andeg = B + B3 = tan *(1/¢) + tan [(¥ — 1)/4].
From the above expressions the performance chart, Figure 4.13, has been derived.

An additional limitation is imposed on the performance chart because of the reac-
tion which must remain greater than or, in the limit, equal to zero. From eqn. (4.22a),

R = %(tanﬁg —tangy) =1-— %

Thus at the limit,R = 0, the stage loading coefficient, = 2.
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Maximum total-to-static efficiency of a reversible
turbine stage

When blade losses and exit kinetic energy loss are included in the definition of
efficiency, we have shown, eqn. (4.10a), that the efficiency is

_ ho1— hos

-1
w2, + 38, + cg}
Nis = ME LU LU

=11
{+ 20 — ha)

ho1 — hass
In the case of thadeal (or reversible) turbine stage the only loss is due to the
exhaust kinetic energy and then the total-to-static efficiency is

-1
ho1 — hoass [1 c5 }

—_— 4.25a
2U(cy2 + ¢y3) ( )

s = ho1 — hass

since AW = hg1 — hozs = U(cy2 +¢y3) and hgzgs — hzgs = %C%

The maximum value ofj,, is obtained when the exit velocity; is nearly a
minimum for given turbine stage operating conditioRs¢ anday). On first thought
it may appear obvious that maximum, will be obtained whercs is absolutely
axial (i.e.a3 = 0°) but this is incorrect. By allowing the exit flow to have some
counterswirl (i.eas > 0deg) the work done is increased for only a relatively small
increase in the exit kinetic energy loss. Two analyses are now given to show how
the total-to-static efficiency of the ideal turbine stage can be optimised for specified
conditions.

Substitutingc,» = ¢, tanay, ¢,3 = ¢, tanas, ¢z = ¢,/ cosaz and ¢ = ¢,/U into
eqgn. (4.25), leads to

o(1+tarfag) 17"
2(tana; + tanasz)

i'e‘ nl.&‘ = fn (¢a aZ, a3)

(4.25b)

Nis =

(i) To find the optimum 5 when R and ¢ are specified

From eqn. (4.22c) the nozzle flow outlet angle can be expressed in terms of
R, ¢ andas as

tana, = tanas + 2(1 — R)/¢. (4.26)
Substituting into eqn. (4.25b)

$*(1 + tar? a3)
4(ptanaz +1—R)

Nis =
Differentiating this expression with respect to taf) and equating the result to zero,
tarf a3 + 2ktanag — 1 =0
wherek = (1 — R)/¢. This quadratic equation has the solution

tanas = —k + /(K2 + 1) (4.27)



Axial-flow Turbines: Two-dimensional Theory 113

the value ofwz being the optimum flow outlet angle from the stage wiReand ¢
are specified. From eqgn. (4.2&)= (tar, — tanas)/2 which when substituted into
eqgn. (4.27) and simplified gives

tanaz = cotay = tan(n/2 — a).
Hence, the exact result that
a3 =17/2 — ws.
The corresponding idealisegl max andR are
Mismax = [1 + (¢/2) cotaz] ™ (4.283)
R =1— ¢(tana, — cotay)/2.
(i) To find the optimum 5 when o, and ¢ are specified
Differentiating eqn. (4.25b) with respect to t@nand equating the result to zero,
tarf a3 + 2 tanas tanas — 1 = 0.
Solving this quadratic, the relevant root is
tanas = secu; — tanas.
Using simple trignometric relations this simplifies still further to
oz = (7/2 — az)/2.

Substituting this expression faer; into egn. (4.25b) the idealised maximugp
is obtained

Nismax = [1 + P(secwrz — tana;)] . (4.28b)

The corresponding expressions for the degree of rea®iand stage loading coef-
ficient AW /U? are

R=1- ¢(tanay — 3 seaxy)

AW C2

F == (f)semz = v (429)
It is interesting that in this analysis the exit swirl anglgis only half that of the
constant reaction case. The difference is merely the outcome of the two different
sets of constraints used for the two analyses.

For both analyses, as the flow coefficient is reduced towards agapproaches

/2 andag approaches zero. Thus, for such high nozzle exit angle turbine stages,
the appropriate blade loading factor for maximyncan be specified if the reaction
is known (and conversely). For a turbine stage of 50% reaction (and aith-
0deg) the appropriate velocity diagram shows tha¥ /U? = 1 for maximumy;,.
Similarly, a turbine stage of zero reaction (which is iampulse stage for ideal,
reversible flow) has a blade loading facteiV /U? = 2 for maximums,,.
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FiG. 4.14. Total-to-static efficiency of a 50% reaction axial flow turbine stage (adapted
from Horlock 1966).

Calculations of turbine stage performance have been made by Horlock (1966)
both for the reversible and irreversible cases with= 0 and 50%. Figure 4.14
shows the effect of blade losses, determined with Soderberg’s correlation, on the
total-to-static efficiency of the turbine stage for the constant reaction of 50%. It

is evident that exit losses become increasingly dominant as the flow coefficient is
increased.

Stresses in turbine rotor blades

Although this chapter is primarily concerned with the fluid mechanics and ther-
modynamics of turbines, some consideration of stresses in rotor blades is needed
as these can place restrictions on the allowable blade height and annulus flow area,
particularly in high temperature, high stress situations. Only a very brief outline
is attempted here of a very large subject which is treated at much greater length
by Horlock (1966), in texts dealing with the mechanics of solids, e.g. Den Hartog
(1952), Timoshenko (1957), and in specialised discourses, e.g. Japiske (1986) and
Smith (1986). The stresses in turbine blades arise from centrifugal loads, from
gas bending loads and from vibrational effects caused by non-constant gas loads.
Although the centrifugal stress produces the biggest contribution to the total stress,
the vibrational stress is very significant and thought to be responsible for fairly
common vibratory fatigue failures (Smith 1986). The direct and simple approach
to blade vibration is to “tune” the blades so that resonance does not occur in the
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operating range of the turbine. This means obtaining a blade design in which none
of its natural frequencies coincides with any excitation frequency. The subject is
complex, interesting but outside of the scope of the present text.

Centrifugal stresses

Consider a blade rotating about an axis O as shown in Figure 4.15. For an element
of the blade of lengthdat radiusr, at a rotational spee@ the elemetary centrifugal
load dF. is given by,

dF. = —Q%r dm,
where dn = p,,A dr and the negative sign accounts for the direction of the stress
gradient (i.e. zero stress at the blade tip to a maximum at the blade root).

do., dF

=—5 =—-Q%dr.
Pm PmA

::::;77

dr

/////’
/

Fo+dF,

f
%
/

AN

FiG. 4.15. Centrifugal forces acting on rotor blade element.
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For blades with a constant cross-sectional area, we get

r 2 2
e _ o2 [ Y li ()| (4.30a)
Pm I 2 Ty

A rotor blade is usually tapered both in chord and in thickness from root to tip
such that the area rati#; /A, is between 1/3 and 1/4. For such a blade taper it is
often assumed that the blade stress is reduced to 2/3 of the value obtained for an
untapered blade. A blade stress taper factor can be defined as:

__stress at root of tapered blade
~ stress at root of untapered blade

Thus, for tapered blades

1- <Z_’:ﬂ . (4.30b)

Values of the taper factak quoted by Emmert (1950), are shown in Figure 4.16
for various taper geometries.

Typical data for the allowable stresses of commonly used alloys are shown in
Figure 4.17 for the “1000 hr rupture life” limit with maximum stress allowed plotted
as a function of blade temperature. It can be seen that in the temperature range
900-1100K, nickel or cobalt alloys are likely to be suitable and for temperatures
up to about 1300 K molybdenum alloys would be needed.

By means of blade cooling techniques it is possible to operate with turbine
entry temperatures up to 1650700K, according to Le Grs (1986). Further
detailed information on one of the many alloys used for gas turbines blades is
shown in Figure 4.18. This materialliscone| a nickel-based alloy containing 13%
chromium, 6% iron, with a little manganese, silicon and copper. Figure 4.18 shows
the influence of the “rupture life” and also the “percentage creep”, which is the

1.0 T

0.8

0.6 Z —— Linear taper
— — - Conical taper

0.4—/ / —
/

0.2 —

| | | | |
0 0.2 04 06 08 1.0

AdA

Fic. 4.16. Effect of tapering on centrifugal stress at blade root (adapted from Emmert
1950).
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FiG. 4.17. Maximum allowable stress for various alloys (1000 hr rupture life) (adapted
from Freeman 1955).
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FiG. 4.18. Properties of Inconel 713 Cast (adapted from Balje 1981).
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elongation strain at the allowable stress and temperature of the blade. To enable
operation at high temperatures and for long life of the blades, the creep strength
criterion is the one usually applied by designers.

An estimate of the average rotor blade temperafyecan be made using the
approximation,

Ty = T2+ 0.85w3/(2C ), (4.31)
i.e. 85% temperature recovery of the intetative kinetic energy

ExAmMPLE 4.4. Combustion gases enter the first stage of a gas turbine at a stag-
nation temperature and pressure of 1200K and 4.0 bar. The rotor blade tip diameter
is 0.75m, the blade height is 0.12m and the shaft speed is 10500 rev/min. At the
mean radius the stage operates with a reaction of 50 per cent, a flow coefficient of
0.7 and a stage loading coefficient of 2.5.

Determine:

(1) the relative and absolute flow angles for the stage;

(2) the velocity at nozzle exit;

(3) the static temperature and pressure at nozzle exit assuming a nozzle efficiency
of 0.96 and the mass flow;

(4) the rotor blade root stress assuming the blade is tapered with a stress taper factor
K of 2/3 and the blade material density is 8000 k§/m

(5) the approximate mean blade temperature;

(6) taking only the centrifugal stress into account suggest a suitable alloy from the
information provided which could be used to withstand 1000 hr of operation.

Solution (1) The stage loading is

¥ = Aho/U? = (w3 + w,2)/U = $(tanfs + tanp,).

From egn. (4.20) the reaction is
R = ¢(tanBs — tanBy)/2.

Adding and subtracting these two expressions, we get
tangs = (¥/2+ R)/¢ and tang, = (¥/2—R)/¢.

Substituting values of/, ¢ andR into the preceding equations we obtain
B3 = 68.2°, B, = 46.98°

and for similar triangles (i.e. 50% reaction)
ap = fz andaz = B2

(2) At the mean radiusy,, = (0.75—0.12)/2 = 0.315m, the blade speed is
U, = Qr, = (1050030) x = x 0.315= 10996 x 0.315= 34636 m/s. The axial
velocity ¢, = ¢U,, = 0.5 x 34636 = 24245 m/s and the velocity of the gas at
nozzle exit is,c, = ¢/ COSap = 24245/ cos 682 = 65286 m/s.
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(3) To determine the conditions at nozzle exit, we have
Tp = Top — 3¢5/C, = 1200— 65286°/(2 x 1160 = 10163K
From eqgn. (2.40), the nozzle efficiency is
_ho—hy _ 1-To/Ton
hor — has 1= (p2/ por)’=b/7

. (g)”‘”/y _q, 1-To/Tor _
"\ po1 n~
. p2 = 4 x 0.840052:%%03 — 1,986 bar

nn

1-(1-10163/1200//0.96 = 0.84052

The mass flow is found from the continuity equation:

. P2
m = ,OzAzcxz = <ﬁ> Azcyo
2

) ( 1.986x 10°
=

(4) For a tapered blade, egn. (4.30b) gives

om 3 2

o, 2 4123 0.51
- " x 1— ([ ==
0.75

2
> ] = 304635 n¥/s?

whereU, = 10996 x 0.375= 4123 m/s.
The density of the blade material is taken to be 8000 Rgind so the root stress is

0. = 8000x 304635 = 2.437 x 10° N/m? = 2437 MPa
(5) The approximate average mean blade temperature is

Ty = 10163 + 0.85 x (24245/ cos 46975)2/(2 x 1160)
— 10163 + 46.26 = 10626 K

(6) The data in Figure 4.17 suggests that for this moderate root stress, cobalt or
nickel alloys would not withstand a lifespan of 1000 hr to rupture and the use of
molybdenum would be necessary. However, it would be necessary to take account
of bending and vibratory stresses and the decision about the choice of a suitable
blade material would be decided on the outcome of these calculations.

Inspection of the data for Inconel 713 cast alloy, Figure 4.18, suggests that it
might be a better choice of blade material as the temperastiress point of the
above calculation is to the left of the line marked creep strain of 0.2% in 1000 hr.
Again, account must be taken of the additional stresses due to bending and vibration.

Design is a process of trial and error; changes in the values of some of the
parameters can lead to a more viable solution. In the above case (with bending and
vibrational stresses included) it might be necessary to reduce one or more of the
values chosen, e.g.
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(1) the rotational speed,
(2) the inlet stagnation temperature,
(3) the flow area.

NB. The combination of values fay and¢ at R = 0.5 used in this example were
selected from data given by Wilson (1987) and correspond to an optimum total-to-
total efficiency of 91.9%.

Turbine blade cooling

In the gas turbine industry there has been a continuing trend towards higher
turbine inlet temperatures, either to give increased specific thrust (thrust per unit
air mass flow) or to reduce the specific fuel consumption. The highest allowable
gas temperature at entry to a turbine with uncooled blades is-128ID K while,
with blade cooling systems, a range of gas temperatures up to 1800 K or so may be
employed, depending on the nature of the cooling system.

Various types of cooling system for gas turbines have been considered in the past
and a number of these are now in use. Wilde (1977) reviewed the progress in blade
cooling techniques. He also considered the broader issues involving the various
technical and design factors influencing the best choice of turbine inlet temperature
for future turbofan engines. Le Gig (1986) reviewed types of cooling system,
outlining their respective advantages and drawbacks, and summarising important
analytical considerations concerning their aerodynamics and heat transfer.

The system of blade cooling most commonly employed in aircraft gas turbines
is where some cooling air is bled off from the exit stage of the high-pressure
compressor and carried by ducts to the guide vanes and rotor of the high-pressure
turbine. It was observed by Le G#s that the cooling air leaving the compressor
might be at a temperature of only 400 to 450K less than the maximum allowable
blade temperature of the turbine. Figure 4.19 illustrates a high-pressure turbine rotor
blade, cut away to show the intricate labyrinth of passages through which the cooling
air passes before it is vented to the blade surface via the rows of tiny holes along
and around the leading edge of the blade. Ideally, the air emerges with little velocity
and form a film of cool air around the blade surface (hence the term “film cooling”),
insulating it from the hot gases. This type of cooling system enables turbine entry
temperatures up to 1800K to be used.

There is a rising thermodynamic penalty incurred with blade cooling systems as
the turbine entry temperature rises, e.g. energy must be supplied to pressurise the
air bled off from the compressor. Figure 4.21 is taken from Wilde (1977) showing
how the net turbine efficiency decreases with increasing turbine entry temperature.
Several in-service gas turbine engines are included in the graph. Wilde did question
whether turbine entry temperatures greater than 1600 K could really be justified in
turbofan engines because of the effect on the internal aerodynamic efficiency and
specific fuel consumption.

Turbine flow characteristics

An accurate knowledge of the flow characteristics of a turbine is of considerable
practical importance as, for instance, in the matching of flows between a compressor
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FIiG. 4.19. Cooled HP turbine rotor blade showing the cooling passages (courtesy of
Rolls-Royce pic).
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FiG. 4.20. Turbine thermal efficiency vs inlet gas temperature (adapted from le Grives
1986).

and turbine of a jet engine. When a turbine can be expected to operate close to its
design incidence (i.e. in the low loss region) the turbine characteristics can be
reduced to a single curve. Figure 4.21, due to Mallinson and Lewis (1948), shows a
comparison of typical characteristics for one, two and three stages plotted as turbine
overall pressure ratigg / por against a mass flow coefficient(./To1)/ poi. There

is a noticeable tendency for the characteristic to become more ellipsoidal as the
number of stages is increased. At a given pressure ratio the mass flow coefficient,
or “swallowing capacity” tends to decrease with the addition of further stages to
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the turbine. One of the earliest attempts to assess the flow variation of a multistage
turbine is credited to Stodola (1945), who formulated the much used “ellipse law”.
The curve labelled “multistage” in Figure 4.21 is in agreement with the “ellipse
law” expression

m(y/To1)/ poi = k[1 — (pon/ po)*]*2, (4.32)

wherek is a constant.

This expression has been used for many years in steam turbine practice, but an
accurate estimate of the variation in swallowing capacity with pressure ratio is of
even greater importance in gas turbine technology. Whereas the average condensing
steam turbine, even at part-load, operates at very high pressure ratios, some gas
turbines may work at rather low pressure ratios, making flow matching with a
compressor a difficult problem. The constant value of swallowing capacity, reached
by the single-stage turbine at a pressure ratio a little above 2, and the other turbines
at progressively higher pressure ratios, is associated with choking (sonic) conditions
in the turbine stator blades.

Flow characteristics of a multistage turbine

Several derivations of the ellipse law are available in the literature. The derivation
given below is a slightly amplified version of the proof given by Horlock (1958). A
more general method has been given by Egli (1936) which takes into consideration
the effects when operating outside the normal low loss region of the blade rows.

Consider a turbine comprising a large number of normal stages, each of 50%
reaction; then, referring to the velocity diagram of Figure 4.22as ¢3 = w, and
c2 = wa. If the blade speed is maintained constant and the mass flow is reduced, the
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FiG. 4.21. Turbine flow characteristics (after Mallinson and Lewis 1948).
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FiG. 4.22. Change in turbine stage velocity diagram with mass flow at constant blade
speed.

fluid angles at exit from the rotord§) and nozzlesd>) will remain constant and
the velocity diagram then assumes the form shown in Figure 4.22b. The turbine,
if operated in this manner, will be of low efficiency, as the fluid direction at inlet
to each blade row is likely to produce a negative incidence stall. To maintain high
efficiency the fluid inlet angles must remain fairly close to the design values. It is
therefore assumed that the turbine operates at its highest efficieatiyo&tdesign
conditionsand, by implication, the blade speed is changed in direct proportion to the
axial velocity. The velocity triangles are similar at off-design flows but of different
scale.

Now the work done by unit mass of fluid through one stag&s,, + c,3) so
that, assuming a perfect gas,

C,ATg = C,AT = Uc,(tana; + tanaz)
and, therefore,
AT cf..

Denoting design conditions by subscriftthen

2
AT _ < C ) (4.33)

AT, \cu

for equal values ot,/U.
From the continuity equation, at off-desigi,= pAc, = p;A;cy, and at design,
tig = pgAca = p1Aicy, hence

G _Pal P (4.34)

Cxd P Cxd P My

Consistent with the assumed mode of turbine operation, the polytropic efficiency
is taken to be constant at off-design conditions and, from egn. (2.37), the relationship
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between temperature and pressure is therefore,
T/p" =YY = constant

Combined withp/p = RT the above expression gives, on eliminatipgp/T" =
constant, hence

o T\"

L i 4.35

Pd (Td) (4:35)
wheren = y/{n,(y — 1} — 1.

For an infinitesimal temperature drop egn. (4.33) combined with egns. (4.34) and
(4.35) gives, with little error,

dr e \2 (Ti\? [ m\?
= (=) =(24 — . 4.36
.~ () - (7) () s
Integrating eqgn. (4.36),
LN 2
m
T2]’l+1= (_> T‘21’1+1+K,
mg

whereK is an arbitrary constant.

To establish a value foK it is noted that if the turbine entry temperature is
constantTy; = T, andT = T, also.

Thus,K = [1 — (in/nig)?]T?* and

2n+1 . 2 2n+1
<1> : 1= (ﬂ) l<ﬂ> : _1]. (4.37)
T mgq T,

Equation (4.37) can be rewritten in terms of pressure ratio Sifigé =
(p/p)" Y As 2n + 1= 2y/[n,(y — 1)] — 1 then,

i [ 1= (p/pPe T
ia { 1— (pa/pr)? =1y }

With n, = 0.9 andy = 1.3 the pressure ratio index is about 1.8; thus the approxi-
mation is often used

o {M}m (4.38b)
mg 1= (pa/p1)? ’ '

which is ellipse law of a multistage turbine.

(4.38a)

my

The Wells turbine
Introduction

Numerous methods for extracting energy from the motion of sea-waves have
been proposed and investigated since the late 1970s. The problem is in finding an
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Fic. 4.23. Arrangement of Wells turbine and oscillating water column (adapted from
Raghunathan et al. 1995).

efficient and economical means of converting an oscillating flow of energy into
a unidirectional rotary motion for driving an electrical generator. A novel solu-
tion of this problem is the Wells turbine (Wells 1976), a version of the axial-flow
turbine. For countries surrounded by the sea, such as the British Isles and Japan to
mention just two, or with extensive shorelines, wave energy conversion is an attrac-
tive proposition. Energy conversion systems based on the oscillating water column
and the Wells turbine have been installed at several locations (Islay in Scotland
and at Trivandrum in India). Figure 4.23 shows the arrangement of a turbine and
generator together with the oscillating column of sea-water. The cross-sectional area
of the plenum chamber is made very large compared to the flow area of the turbine
so that a substantial air velocity through the turbine is attained.

One version of the Wells turbine consists of a rotor with about eigicembered
aerofoil section blades set at a stagger angle of ninety degrees (i.e. with their chord
lines lying in the plane of rotation). A schematic diagram of such a Wells turbine
is shown in Figure 4.24. At first sight the arrangement might seem to be a highly
improbable means of energy conversion. However, once the blades have attained
design speed the turbine is capable of producing a time-averaged positive power
output from the cyclically reversing airflow with a fairly high efficiency. According
to Raghunathamt al. (1995) peak efficiencies of 65% have been measured at the
experimental wave power station on Islay. The results obtained from a theoretical
analysis by Gato and Falo (1984) showed that fairly high values of the mean effi-
ciency, of the order 7680%, may be attained in an oscillating flow “with properly
designed Wells turbines”.

Principle of operation

Figure 4.25(a) shows a blade in motion at the design speéda flow with an
upward, absolute axial velocity;. It can be seen that thelative velocityw; is
inclined to the chordline of the blade at an angleAccording to classical aerofoil
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FiG. 4.24. Schematic of a Wells turbine (adapted from Raghunathan et al. 1995).

theory, anisolated aerofoil at an angle of incidenceto a free stream will generate

a lift force L normal to the direction of the free stream. In a viscous fluid the aerofoll
will also experience a drag force in the direction of the free stream. These lift
and drag forces can be resolved into the components of formed Y as indicated

in Figure 4.253a, i.e.

X = Lcosa + Dsina, (4.39)
Y = Lsina — D cosa. (4.40)

The student should note, in particular, that the forcacts in the direction of blade
motion giving positive work production.

For a symmetrical aerofoil, the direction of the tangential farces the same for
both positive and negative valuesafas indicated in Figure 4.25b. If the aerofoils
are secured to a rotor drum to form a turbine row, as in Figure 4.24, they will
alwaysrotate in the direction of the positive tangential force regardless of whether
the air is approaching from above or below. With a time-varying, bi-directional air
flow the torque produced will fluctuate cyclically but can be smoothed to a large
extent by means of a high inertia rotor/generator.

It will be observed from the velocity diagrams that a residual swirl velocity is
present for both directions of flow. It was suggested by Raghunathah (1995)
that the swirl losses at turbine exit can be reduced by the use of guide vanes.
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FiG. 4.25. Velocity and force vectors acting on a blade of a Wells turbine in motion:
(a) upward absolute flow onto blade moving at speed U; (b) downward absolute flow
onto blade moving at speed U.

Two-dimensional flow analysis

The performance of the Wells turbine can be predicted by means of blade element
theory. In this analysis the turbine annulus is considered to be made up of a series of
concentric elementary rings, each ring being treated separately as a two-dimensional
cascade.
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The power output from an elementary ring of area @r is given by
dW = ZU dy,
whereZ is the number of blades and the tangential force on each blade element is
dY = C,(pwihdr.
The axial force acting on the blade elements at radiissZ dX, where
_ 1 2
dX = Cx(5powil)dr,

and whereC,, C, are the axial and tangential force coefficients. Now the axial force
on all the blade elements at radiugan be equated to the pressure force acting on
the elementary ring:

2rr(p1 — p2)dr = ZC.(3pwi)ar,

C(pi—p2)  ZCi
o %pc§ 27rsifa;’

wherew; = ¢,/ sinas.

An expression for the efficiency can now be derived from a consideration of all
the power losses and the power output. The power lost due to the drag forces is
dW ; = wydD, where

dD = ZCp(3pwihdr
and the power lost due to exit kinetic energy is given by
dWy = (3c5)drin,

where diz = 27rpc, dr andc; is the absolute velocity at exit. Thus, the aerodynamic
efficiency, defined as power output/power input, can now be written as

B [, dw
AW+ dW +dwy)

n

The predictions for non-dimensional pressure dpd@and aerodynamic efficienay
determined by Raghunathat al. (1995) are shown in Figure 4.26a and b, respec-
tively, together with experimental results for comparison.

Design and performance variables

The primary input for the design of a Wells turbine is the air power based upon the
pressure amplitudéps — p») and the volume flow rat@ at turbine inlet. The perfor-
mance indicators are the pressure drop, power and efficiency and their variation with
the flow rate. The aerodynamic design and consequent performance is a function of
several variables which have been listed by Raghunathan. In non-dimensional form
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FiG. 4.26. Comparison of theory with experiment for the Wells turbine: theory
----- experiment (adapted from Raghunathan 1995). (a) Non-dimensional pressure
drop vs flow coefficient; (b) Efficiency vs flow coefficient.

these are:
flow coefficient ¢ =c/U
- . 217
solidity at mean radius o= ——.
7D, (1 + v)
hub/tip ratio v = D;,/D,
blade aspect ratio AR = blade length/chord

blade tip clearance ratio  =t./D;
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and also blade thickness ratio, turbulence level at inlet to turbine, frequency of waves
and the relative Mach number. It was observed by Raghunahah (1987) that

the Wells turbine has a characteristic feature which makes it significantly different
from most turbomachines: the absolute velocity of the flow is only a (small) fraction
of the relative velocity. It is theoretically possible for transonic flow conditions to
occur in the relative flow resulting in additional losses due to shock waves and an
interaction with the boundary layers leading to flow separation. The effects of the
variables listed above on the performance of the Wells turbine have been considered
by Raghunathan (1995) and a summary of some of the main findings is given below.

Effect of flow coefficient

The flow coefficientp is a measure of the angle of incidence of the flow and the
aerodynamic forces developed are critically dependent upon this parameter. Typical
results based on predictions and experiments of the non-dimensional pressure drop
p* = Ap/(pw?D?) and efficiency are shown in Figure 4.26. For a Wells turbine
a linear relationship exists between pressure drop and the flowrate (Figure 4.26a)
and this fact can be employed when making a match between a turbine and an
oscillating water column which also has a similar characteristic.

The aerodynamic efficiency (Figure 4.26b) is shown to increase up to a certain
value, after which it decreases, because of boundary layer separation.

Effect of blade solidity

The solidity is a measure of the blockage offered by the blades to the flow of air
and is an important design variable. The pressure drop across the turbine is, clearly,
proportional to the axial force acting on the blades. An increase of solidity increases
the axial force and likewise the pressure drop. Figure 4.27 shows how the variations
of peak efficiency and pressure drop are related to the amount of the solidity.

Raghunathan gives correlations between pressure drop and efficiency with
solidity:

p*/ps=1—0%andn/no = (1 -0,

where the subscript O refers to values for a two-dimensional isolated aerofoil
(o0 = 0). A correlation between pressure drop and solidity @dos 0) was also
expressed as

whereA is a constant.

Effect of hub to tip ratio

The hubftip ratiov is an important parameter as it controls the volume flow rate
through the turbine but also influences the stall conditions, the tip leakage and, most
importantly, the ability of the turbine to run up to operating speed. Values<0D.6
are recommended for design.
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FiG. 4.27. Variation of peak efficiency and non-dimensional pressure drop (in
comparison to the values for an isolated aerofoil) vs solidity: - - -  pressure
efficiency (adapted from Raghunathan et al. 1995).
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FiG. 4.28. Self-starting capability of the Wells turbine (adapted from Raghunathan
et al. 1995).
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The starting behaviour of the Wells turbine

When a Wells turbine is started from rest the incoming relative flow will be at
90 degrees to the rotor blades. According to the choice of the design parameters
the blades could be severely stalled and, consequentially, the tangentialYforce
will be small and the acceleration negligible. In fact, if and when this situation
occurs the turbine may only accelerate up to a speed much lower than the design
operational speed, a phenomenon cakedwling. The problem can be avoided
either by choosing a suitable combination of hub/tip ratio and solidity values at the
design stage or, by some other means such as incorporating a starter drive. Values
of hubf/tip ratio and solidity which have been found to allow self-starting of the
Wells turbine are indicated in Figure 4.28.
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Problems

1. Show, for an axial flow turbine stage, that theative stagnation enthalpy across the
rotor row does not change. Draw an enthalpyptropy diagram for the stage labelling all
salient points.

Stage reaction for a turbine is defined as the ratio of the static enthalpy drop in the rotor
to that in the stage. Derive expressions for the reaction in terms of the flow angles and draw
velocity triangles for reactions of zero, 0.5 and 1.0.

2. (a) An axial flow turbine operating with an overall stagnation pressure of 8 to 1 has a
polytropic efficiency of 0.85. Determine the total-to-total efficiency of the turbine.

(b) If the exhaust Mach number of the turbine is 0.3, determine the total-to-static efficiency.

(c) If, in addition, the exhaust velocity of the turbine is 160 m/s, determine the inlet total
temperature.

Assume for the gas thal, = 1.175kJ/(kg K) andR = 0.287 kJ/(kg K).

3. The mean blade radii of the rotor of a mixed flow turbine are 0.3m at inlet and 0.1 m
at outlet. The rotor rotates at 20,000 rev/min and the turbine is required to produce 430 kW.
The flow velocity at nozzle exit is 700 m/s and the flow direction is dttédhe meridional
plane.

Determine the absolute and relative flow angles and the absolute exit velocity if the gas
flow is 1kg/s and the velocity of the through-flow is constant through the rotor.
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4. In a Parson’s reaction turbine the rotor blades are similar to the stator blades but with
the angles measured in the opposite direction. The efflux angle relative to each row of blades
is 70 deg from the axial direction, the exit velocity of steam from the stator blades is 160 m/s,
the blade speed is 152.5m/s and the axial velocity is constant. Determine the specific work
done by the steam per stage.

A turbine of 80% internal efficiency consists of ten such stages as described above and
receives steam from the stop valve at 1.5 MPa and@0Determine, with the aid of a
Mollier chart, the condition of the steam at outlet from the last stage.

5. Values of pressure (kPa) measured at various stations of a zero-reaction gas turbine
stage, all at the mean blade height, are shown in the table given below.

Stagnation pressure Static pressure
Nozzle entry 414 Nozzle exit 207
Nozzle exit 400 Rotor exit 200

The mean blade speed is 291 m/s, inlet stagnation temperature 1100 K, and the flow angle
at nozzle exit is 70deg measured from the axial direction. Assuming the magnitude and
direction of the velocities at entry and exit of the stage are the same, determine the total-
to-total efficiency of the stage. Assume a perfect gas With= 1.148kJ/(kgC) andy =
1.333.

6. In a certain axial flow turbine stage the axial velocity is constant. The absolute
velocities entering and leaving the stage are in the axial direction. If the flow coefficient
¢./U is 0.6 and the gas leaves the stator blades at 68.2 deg from the axial direction, calcu-
late:

(i) the stage loading facto\W/U?;

(i) the flow angles relative to the rotor blades;
(iii) the degree of reaction;
(iv) the total-to-total and total-to-static efficiencies.

The Soderberg loss correlation, eqn. (4.12) should be used.

7. An axial flow gas turbine stage develops 3.36 MW at a mass flow rate of 27.2 kg/s. At
the stage entry the stagnation pressure and temperature are 772 kPa ‘@d@rectively.
The static pressure at exit from the nozzle is 482 kPa and the corresponding absolute flow
direction is 72 to the axial direction. Assuming the axial velocity is constant across the
stage and the gas enters and leaves the stage without any absolute swirl velocity, deter-
mine:
(1) the nozzle exit velocity;
(2) the blade speed;
(3) the total-to-static efficiency;
(4) the stage reaction.

The Soderberg correlation for estimating blade row losses should be used. For the gas assume
that Cp = 1.148 kJ/(kg K) andr = 0.287 kJ/(kg K).

8. Derive an approximate expression for the total-to-total efficiency of a turbine stage in
terms of the enthalpy loss coefficients for the stator and rotor when the absolute velocities
at inlet and outlet ar@ot equal.

A steam turbine stage of high hub/tip ratio is to receive steam at a stagnation pressure and
temperature of 1.5MPa and 3Z5respectively. It is designed for a blade speed of 200 m/s
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and the followingblade geometry was selected:

Nozzles Rotor
Inlet angle, deg 0 48
Outlet angle, deg 70.0 56.25
Space/chord ratics/1 0.42 -
Blade length/axial chord ratid{ /b 2.0 2.1
Max. thickness/axial chord 0.2 0.2

The deviation angle of the flow from the rotor row is known to be 3 deg on the evidence
of cascade tests at the design condition. In the absence of cascade data for the nozzle row,
the designer estimated the deviation angle from the approximatk99€§! whereo is the
blade camber in degrees. Assuming the incidence onto the nozzles is zero, the incidence onto
the rotor 1.04 deg and the axial velocity across the stage is constant, determine:

(i) the axial velocity;
(ii) the stage reaction and loading factor;
(i) the approximate total-to-total stage efficiency on the basic of Soderberg’s loss correla-
tion, assuming Reynolds number effects can be ignored;
(iv) by means of a large steam chart (Mollier diagram) the stagnation temperature and
pressure at stage exit.

9. (a) A single-stage axial flow turbine is to be designed for zero reaction without any
absolute swirl at rotor exit. At nozzle inlet the stagnation pressure and temperature of the
gas are 424 kPa and 1100 K. The static pressure at the mean radius between the nozzle row
and rotor entry is 217 kPa and the nozzle exit flow angle s 70

Sketch an appropriate Mollier diagram (off'a-s diagram) forthis stage allowing for the
effects of losses and sketch the corresponding velocity diagram. Hence, using Soderberg’s
correlation to calculate blade row losses, determine for the mean radius,

(1) the nozzle exit velocity,
(2) the blade speed,
(3) the total-to-static efficiency.

(b) Verify for this turbine stage that the total-to-total efficiency is given by

1 1 (¢>2
Nt B Nis 2
where¢ = ¢,/U. Hence, determine the value of the total-to-total efficiency.
Assume for the gas that, = 1.15kJ/(kg K) andy = 1.333.

10. (a) Prove that the centrifugal stress at the root of an untapered blade attached to the
drum of an axial flow turbomachine is given by

Oc = JT/),,,NZA,,/]_BOQ

where p,, = density of blade materialy = rotational speed of drum antl, = area of the
flow annulus.
(b) The preliminary design of an axial-flow gas turbine stage with stagnation conditions at

stage entry ofpo; = 400 kPa,Tp; = 850K, is to be based upon the following datfaplicable
to the mean radius

Flow angle at nozzle exity, = 63.8 deg

Reaction,R = 0.5

Flow coefficient,c,/U,, = 0.6
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Static pressure at stage exit; = 200 kPa
Estimated total-to-static efficiency,, = 0.85.

Assuming that the axial velocity is unchanged across the stage, determine:

(1) the specific work done by the gas;
(2) the blade speed;
(3) the static temperature at stage exit.

(c) The blade material has a density of 7850 kyy/amd the maximum allowable stress
in the rotor blade is 120 MPa. Taking into account only the centrifugal stress, assuming
untapered blades and constant axial velocity at all radii, determine for a mean flow rate of
15kg/s:
(1) the rotor speed (rev/min);
(2) the mean diameter;
(3) the hubttip radius ratio.
For the gas assume th@p = 1050 J/(kg K) andR = 287 J/(kg K).

11. The design of a single-stage axial-flow turbine is to be based on constant axial velocity
with axial discharge from the rotor blades directly to the atmosphere.

The following design values have been specified:

Mass flow rate 16.0kg/s
Initial stagnation temperatur&; 1100K

Initial stagnation pressurgig; 230 kN/n?
Density of blading materialp,, 7850 kg/ni
Maximum allowable centrifugal stress at blade root, 7 % 108 N/m?
Nozzle profile loss coefficientp = (po1 — po2)/(po2 — p2) 0.06

Taper factor for blade stressing, 0.75

In addition the following may be assumed:

Atmospheric pressurgss 102 kPa
Ratio of specific heatsy 1.333
Specific heat at constant pressufe, 1150 J/(kg K)

In the design calculations values of the parameters at the mean radius are as follows:

Stage loading coefficienty = AW/U? 1.2

Flow coefficient,p = ¢,/U 0.35
Isentropic velocity ratiol/ /cq 0.61
whereco = +/[2(ho1 — hass)]

Determine:

(1) the velocity triangles at the mean radius;

(2) the required annulus area (based on the density at the mean radius);
(3) the maximum allowable rotational speed;

(4) the blade tip speed and the hub/tip radius ratio.



[ N

CHAPTER 5

Axial-flow Compressors and
Fans

A solemn, strange and mingled air, 't was sad by fits, by starts was wild.
(W. CoLLINS, The Passions.)

Introduction

The idea of using a form afversed turbineas an axial compressor is as old as
the reaction turbine itself. It is recorded by Stoney (1937) that Sir Charles Parsons
obtained a patent for such an arrangement as early as 1884. However, simply
reversing a turbine for use as a compressor gives efficiencies which are, according to
Howell (1945), less than 40% for machines of high pressure ratio. Parsons actually
built a number of these machinesir¢a 1900), with blading based upon improved
propeller sections. The machines were used for blast furnace work, operating with
delivery pressures between 10 and 100 kPa. The efficiency attained by these early,
low pressure compressors was about 55%; the reason for this low efficiency is now
attributed to blade stall. A high pressure ratio compressor (550 kPa delivery pressure)
was also built by Parsons but is reported by Stoney to have “run into difficulties”.
The design, comprising two axial compressors in series, was abandoned after many
trials, the flow having proved to be unstable (presumably dumtopressor surge
As a result of low efficiency, axial compressors were generally abandoned in favour
of multistage centrifugal compressors with their higher efficiency of &b.

It was not until 1926 that any further development on axial compressors was
undertaken when A. A. Griffith outlined the basic principles of his aerofoil theory
of compressor and turbine design. The subsequent history of the axial compressor
is closely linked with that of the aircraft gas turbine and has been recorded by
Cox (1946) and Constant (1945). The work of the team under Griffith at the Royal
Aircraft Establishment, Farnborough, led to the conclusion (confirmed later by rig
tests) that efficiencies of at least 90% could be achieved for ‘small’ stages, i.e. low
pressure ratio stages.

The early difficulties associated with the development of axial-flow compres-
sors stemmed mainly from the fundamentally different nature of the flow process
compared with that in axial-flow turbines. Whereas in the axial turbine the flow
relative to each blade row iaccelerated in axial compressors it islecelerated
It is now widely known that although a fluid can be rapidly accelerated through a
passage and sustain a small or moderate loss in total pressure the same is not true for
a rapid deceleration. In the latter case large losses would arise as a result of severe
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stall caused by a large adverse pressure gradient. So as to limit the total pressure
losses during flow diffusion it is necessary for the rate of deceleration (and turning)
in the blade passages to be severely restricted. (Details of these restrictions are
outlined in Chapter 3 in connection with the correlations of Lieblein and Howell.)

It is mainly because of these restrictions that axial compressors need to have many
stages for a given pressure ratio compared with an axial turbine which needs only a
few. Thus, the reversed turbine experiment tried by Parsons was doomed to a low
operating efficiency.

The performance of axial compressors depends upon their usage category.
Carchedi and Wood (1982) described the design and development of a single-shaft
15-stage axial-flow compressor which provided a 12 to 1 pressure ratio at a mass
flow of 27.3kg/s for a 6 MW industrial gas turbine. The design was based on
subsonic flow and the compressor was fitted with variable stagger stator blades to
control the position of the low-speed surge line. In the field of aircraft gas turbines,
however, the engine designer is more concerned wigiximisingthe work done
per stage while retaining an acceptable level of overall performance. Increased stage
loading almost inevitably leads to some aerodynamic constraint. This constraint will
be increased Mach number, possibly giving rise to shock-induced boundary layer
separation or increased losses arising from poor diffusion of the flow. Wennerstrom
(1990) has outlined the history of highly loaded axial-flow compressors with special
emphasis on the importance of reducing the number of stages and the ways that
improved performance can be achieved. Since about 1970 a significant and special
change occurred with respect to one design feature of the axial compressor and
that was the introduction of low aspect ratio blading. It was not at all obvious why
blading of large chord would produce any performance advantage, especially as the
trend was to try to make engines more compact and lighter by using high aspect
ratio blading. Wennerstrom (1989) has reviewed the increased usage of low aspect
ratio blading in aircraft axial-flow compressors and reported on the high loading
capability, high efficiency and good range obtained with this type of blading. One
early application was an axial-flow compressor that achieved a pressure ratio of
12.1 in only five stages, with an isentropic efficiency of 81.9% and an 11% stall
margin. The blade tip speed was 457 m/s and the flow rate per unit frontal area was
192.5 kg/s/m. It was reported that the mean aspect ratio ranged from a “high” of 1.2
in the first stage to less than 1.0 in the last three stages. A related later development
pursued by the US Air Force was an alternative inlet stage with a rotor mean aspect
ratio of 1.32 which produced, at design, a pressure ratio of 1.912 with an isentropic
efficiency of 85.4% and an 11% stall margin. A maximum efficiency of 90.9% was
obtained at a pressure ratio of 1.804 and lower rotational speed.

The flow within an axial-flow compressor is exceedingly complex which is one
reason why research and development on compressors has proliferated over the
years. In the following pages a very simplified and basic study is made of this
compressor so that the student can grasp the essentials.

Two-dimensional analysis of the compressor stage

The analysis in this chapter is simplified (as it was for axial turbines) by assuming
the flow is two-dimensional. This approach can be justified if the blade height is
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small compared with the mean radius. Again, as for axial turbines, the flow is
assumed to be invariant in the circumferential direction and that no spanwise (radial)
velocities occur. Some of the three-dimensional effects of axial turbomachines are
considered in Chapter 6.

To illustrate the layout of an axial compressor, Figure 5.1(a) shows a sectional
drawing of the three-shaft compressor system of the Rolls-Royce RB211 gas-turbine
engine. The very large blade on the left is part of the fan rotor which is on one shatft;
this is followed by two, six-stage compressors of the “core” engine, each on its own
shaft. Acompressor stagis defined as a rotor blade row followed by a stator blade
row. Figure 5.1b shows some of the blades of the first stage of the low-pressure
compressor opened out into a plane array. The rotor blades (black) are fixed to the
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Fic. 5.1. Axial-flow compressor and blading arrays. (a) Section of the compression
system of the RB211-535E4 gas-turbine engine (courtesy of Rolls-Royce pic).
(b) Development of the first stage-blade rows and inlet guide vanes.
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rotor drum and the stator blades are fixed to the outer casing. The blades upstream
of the first rotor row are inlet guide vanes. These are not considered to be a part of
the first stage and are treated separately. Their function is quite different from the
other blade rows since, by directing the flow away from the axial direction, they act
to acceleratethe flow rather than diffuse it. Functionally, inlet guide vanes are the
same as turbine nozzles; they increase the kinetic energy of the flow at the expense
of the pressure energy.

Velocity diagrams of the compressor stage

The velocity diagrams for the stage are given in Figure 5.2 and the convention
is adopted throughout this chapter of accepting all angles and swirl velocities in
this figure as positive. As for axial turbine stagesp@mal compressor stage is
one where the absolute velocities and flow directions at stage outlet are the same
as at stage inlet. The flow from a previous stage (or from the guide vanes) has a
velocity ¢; and directionxy; substracting vectorially the blades spgédyives the
inlet relative velocityw; at angleg; (the axial direction is the datum for all angles).
Relative to the blades of the rotor, the flow is turned to the direg@joat outlet with
a relative velocityw,. Clearly, by adding vectorially the blade spe&don to w,
gives the absolute velocity from the rotep, at anglex,. The stator blades deflect
the flow towards the axis and the exit velocityds at angleas. For the normal
stagecs = ¢; andasz = «3. It will be noticed that as drawn in Figure 5.2, both the
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- Wy1 _4 cy1 -——

Rotor blade row

Stator blade row

a3

FiG. 5.2. Velocity diagrams for a compressor stage.
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relative velocity in the rotor and the absolute velocity in the stator are diffused. It
will be shown later in this chapter, that the relative amount of diffusion of kinetic
energy in the rotor and stator rows, significantly influences the stage efficiency.

Thermodynamics of the compressor stage

The specific work done by the rotor on the fluid, from the steady flow energy
equation (assuming adiabatic flow) and momentum equation is

AW = Wp/l’h:/’loz—hol: U(Cyz—cyl). (51)

In Chapter 4 it was proved for all axial turbomachines thgti=h + 3w? is
constant in the rotor. Thus,

hi+ 3wé = ho + 1wl (5.2)

This is a valid result as long as there is no radial shift of the streamlines across the
rotor (i.e.U1 = Uy).
Across the statorg is constant, and

hy + %C% =h3+ %C% (53)

The compression process for the complete stage is represented on a Mollier diagram
in Figure 5.3, which is generalised to include the effects of irreversibility.
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FiG. 5.3. Mollier diagram for an axial compressor stage.
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Stage loss relationships and efficiency

From eqgns. (5.1) and (5.3) the actual work performed by the rotor on unit mass
of fluid is AW = hgz — hoz. The reversible ominimumwork required to attain the
same final stagnation pressure as the real process is,

AW in = hozss — ho1
= (hoz — ho1) — (hozs — hoass) — (hoz — hoas)
= AW — (To3/T2)(h2 — has) — (Tos/T3)(h3 — ha),
using the approximation thath = T As.

The temperature rise in a compressor stage is only a small fraction of the absolute
temperature level and therefore, telaseapproximation.

AWmin = AW — (ha — hy) — (ha — hsy). (5.4)

Again, because of the small stage temperature rise, the density change is also small
and it is reasonable to assume incompressibility for the fluid. This approximation is
appliedonly to the stage and meanstage density is implied; across a multistage
compressor an appreciable density change can be expected.

The enthalpy losses in eqn. (5.4) can be expressed as stagnation pressure losses
as follows. Ashg, = ho3 then,

hs —hy = 3(c3 — 3)
= [(po2 — p2) — (po3 — p3)l/ps (5.5)

since po — p = 3pc? for an incompressible fluid.
Along the isentrope 2 3, in Figure 5.3,7ds = 0 = dh — (1/p)dp, and so,

has — ha = (p3s — p2)/p. (5.6)
Thus, subtracting eqgn. (5.6) from eqn. (5.5)

hz — hzs = (poz2 — pos)/p = (1/p)A postator (5.7)
Similarly, for the rotor,

ha — has = (powrel — pozrel)/ P = (1/P)A porotor- (5.8)

The total-to-total stage efficiency is,

= W min i1 (ho — hog) + (ha — h3y)
! W, (hos — ho1)
-1 A postator+ A Porotor (5.9)

p(ho3 — ho1)

It is to be observed that eqn. (5.9) also has direct application to pumps and fans.
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Reaction ratio

For the case oincompressible and reversiblow it is permissible to define the
reactionr, as the ratio of static pressure rise in the rotor to the static pressure rise
in the stage

R = (p2 — p1)/(p3s — p1). (5.10a)

If the flow is bothcompressible and irreversibla more general definition ot is
the ratio of the rotor static enthalpy rise to the stage static enthalpy rise,

R = (h2 — h1)/(hs — hy). (5.10b)
From eqn. (5.2)h — hy = 2(w? —w2). For normal stagesc{ = c3), hs — hy =
hoz — ho1 = U(cy2 — cy1). Substituting into egn. (5.10Db)

_ wi—wj
2U(cy2 — cy1)

_ (Wyl + WyZ)(Wyl - Wy2)
2U(cy2 — cy1)

(5.100

where it is assumed thaf, is constant across the stage. From Figure b,2—=
U —wy andcy; = U — w1 SO thatc,, — cy1 = wy1 — wyo. Thus,

R = (Wy1 +wy2)/(2U) = (c,;/U)tanp,, (5.11)
where
tang, = 3(tanpy + tanpy,). (5.12)

An alternative useful expression for reaction can be found in terms of the fluid
outlet angles from each blade row in a stage. With = U — c,1, egn. (5.11) gives,

R =31+ (tanp, — tanay)c,/(2U). (5.13)

Both expressions for reaction given above may be derived on a basis of incompress-
ible, reversible flow, together with the definition of reaction in egn. (5.10a).

Choice of reaction

The reaction ratio is a design parameter which has an important influence on stage
efficiency. Stages having 50% reaction are widely used as the adverse (retarding)
pressure gradient through the rotor and stator rows is equally shared. This choice
of reaction minimises the tendency of the blade boundary layers to separate from
the solid surfaces, thus avoiding large stagnation pressure losses.

If R =0.5, thenay = B> from eqn. (5.13), and the velocity diagram is symmet-
rical. The stage enthalpy rise is equally distributed between the rotor and stator rows.



144  Fluid Mechanics, Thermodynamics of Turbomachinery

B o
v
(a) R>50%
B2 >0y
Bo Oy
u

(@) R< 50%

ﬂ2<(x1

Fic. 5.4. Asymmetry of velocity diagrams for reactions greater or less than 50%.

If R > 0.5theng, > a3 and the velocity diagram is skewed to tight as shown
in Figure 5.4a. The static enthalpy rise in the rotor exceeds that in the stator (this
is also true for the static pressure rise).

If R < 0.5 thenpB, < a1 and the velocity diagram is skewed to tleft as indi-
cated in Figure 5.4b. Clearly, the stator enthalpy (and pressure) rise exceeds that in
the rotor.

In axial turbines the limitation on stage work output is imposed by rotor blade
stresses but, in axial compressors, stage performance is limited by Mach number
considerations. If Mach number effects could be ignored, the permissible tempera-
ture rise, based on incompressible flow cascasde limits, increases with the amount of
reaction. With a limit of 0.7 on the allowable Mach number, the temperature rise and
efficiency are at a maximum with a reaction of 50%, according to Horlock (1958).

Stage loading

The stage loading facta¥ is another important design parameter of a compressor
stage and is one which strongly affects the off-design performance characteristics.
It is defined by

hos—hor ¢y —cCy1
v U2 U (5.14a)

With ¢, = U — w, this becomes,
¥ = 1— ¢(tanay + tanpy), (5.14b)

where¢ = ¢,/U is called theflow coefficient
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The stage loading factor may also be expressed in terms of the lift and drag
coefficients for therotor. From Figure 3.5, replacing,, with 8, the tangential
blade force on thenovingblades per unit span is,

Y = LcosB,, + Dsing,

C
= L cosB,, (1 + C_D tanﬁm> )
L

where targ,, = 1(tanp; + tanp,).
Now C, = L/(3pw2]) hence substituting fok above,

Y = 3pcIC sech,(1+ tanp,Cp/Cp). (5.15)

The work done byeach moving blade per second BU and is transferred to the
fluid throughone blade passage during that period. ThUS] = psc,(hoz — ho1).
Therefore, the stage loading factor may now be written

hog—hoa Y

= . 5.16
U2 osc,U (5.16)

1[/‘:

Substituting eqn. (5.15) in eqn. (5.16) the final result is
Y = (¢/2)secBu(l/s)(CL + Cptanpy,). (5.17)

In Chapter 3, the approximate analysis indicated that maximum efficiency is obtained
when the mean flow angle is 45 deg. The corresponding optimum stage loading factor
atg,, = 45deg s,

Vopt = (/+/2)(1/5)(CL + Cp). (5.18)

SinceCp « C; in the normal low loss operating range, it is permissible to drop
Cp from egn. (5.18).

Simplified off-design performance

Horlock (1958) has considered how the stage loading behaves with varying flow
coefficient,¢ and how this off-design performance is influenced by the choice of
design conditions. Now cascade data suggests that dluildt anglesg, (for the
rotor) anduy (= «3) for the statordo not change appreciablipr a range of incidence
up to the stall point. The simplication may therefore be made that, for a given stage,

tanay + tanBs = ¢+ = constant (5.19)
Inserting this expression into eqn. (5.14b) gives
v =1—¢t. (5.20a)

An inspection of egns. (5.20a) and (5.14a) indicates that the stagnation enthalpy
rise of the stage increases as the mass flow is reduced, when running at constant
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Fic. 5.5. Simplified off-design performance of a compressor stage (adapted from Horlock
1958).

rotational speed, providedis positive. The effect is shown in Figure 5.5, where
is plotted againsy for several values of.
Writing ¢ = ¥, and¢ = ¢, for conditions at the design point, then

Y =1— ¢at. (5.20b)

The values off; and¢, chosen for a particular stage design, determines the value of
t. Thust is fixed without regard to the degree of reaction and, therefore, the variation
of stage loading at off-design conditions is not dependent on the choice of design
reaction. However, from eqn. (5.13) it is apparent that, except for the case of 50%
reaction wherw; = B, the reactionrdoeschange away from the design point. For
design reactions exceeding 50%  «1), the reaction decreases towards 50% as
¢ decreases; conversely, for design reactions less than 50% the reaction approaches
50% with diminishing flow coefficient.

If zis eliminated between eqgns. (5.20a) and (5.20b) the following expression results,

1/,21_(;5(1_%,)' (5.21)
Ya Ya  Gu Ya

This equation shows that, for a given design stage loadinghe fractional change

in stage loading corresponding to a fractional change in flow coefficient is always
the same, independent of the stage reaction. In Figure 5.6 it is seen that heavily
loaded stagesy(; — 1) are the most flexible producing little variation ¢f with
change of¢. Lightly loaded stagesy, — 0) produce large changes i with
changingg. Data from cascade tests show tljgtis limited to the range 0.3 to 0.4

for the most efficient operation and so substantial variationg cbin be expected
away from the design point.

In order to calculate the pressure rise at off-design conditions the variation of
stage efficiency with flow coefficient is required. For an ideal stage (no losses) the
pressure rise in incompressible flow is given by

Ah Ap

V= = (5.22)
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Fic. 5.6. Effect of design stage loading (¥4) on simplified off-design performance

characteristics (adapted from Horlock 1958).

Stage pressure rise

Consider first thédeal compressor stage which has no stagnation pressure losses.
Across the rotor rowpgye is constant and so

p2 — p1= 3p(W§ — w5). (5.23a)
Across the stator rowg is constant and so
p3— p2 = 3p(c — c5). (5.23b)

Adding together the pressure rise for each row and considering a normal stage
(c3 = c1), gives

(p3 — p1)2/p = (c3 — w3) + (Wi — c3). (5.24)

For either velocity triangle (Figure 5.2), theosine rule gives ¢? — U? + w? =
2Uwco9r/2 — B) or

c? —w? = U? - 2Uw,. (5.25)
Substituting egn. (5.25) into the stage pressure rise,
2(ps— p1)/p = (U = 2Uwyp) — (U* — 2Uwy1)
= 2U(wy1 — wy2).
Again, referring to the velocity diagram;,; — wy2 = ¢y2 — ¢,1 and
(p3— p1)/p=Ul(cy2 — cy1) = hz — hy. (5.26)

It is noted that, for an isentropic procegals = 0 = dh — (1/p)dp and therefore,
Ah = (1/p)Ap.
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The pressure rise in a real stage (involving irreversible processes) can be deter-
mined if the stage efficiency is known. Defining the stage efficieficgs the ratio
of the isentropic enthalpy rise to the actual enthalpy rise corresponding to the same
finite pressure change, (cf. Figure 2.7), this can be written as

ns = (Ahis)/(Ah) = (1/p)Ap/Ah.
Thus,
(1/p)Ap = nsAh = n,UAc,. (5.27)

If ¢1 =c3, thenn, is a very close approximation of the total-to-total efficiency
n.. Although the above expressions are derived for incompressible flow they are,
nevertheless, a valid approximation for compressible flow if the stage temperature
(and pressure) rise is small.

Pressure ratio of a multistage compressor

It is possible to apply the preceding analysis to the determination of multistage
compressor pressure ratios. The procedure requires the calculation of pressure and
temperature changes for a single stage, the stage exit conditions enabling the density
at entry to the following stage to be found. This calculation is repeated for each stage
in turn until the required final conditions are satisfied. However, for compressors
having identical stages it is more convenient to resort to a simple compressible flow
analysis. An illustrative example is given below.

ExampLE 5.1. A multistage axial compressor is required for compressing air
at 293K, through a pressure ratio of 5 to 1. Each stage is to be 50% reaction
and the mean blade speed 275 m/s, flow coefficient 0.5, and stage loading factor
0.3, are taken, for simplicity, as constant for all stages. Determine the flow angles
and, the number of stages required if the stage efficiency is 88.8%. 0ake
1.005kJ/(kgC) andy = 1.4 for air.

Solution From eqgn. (5.14a) the stage load factor can be written as,
¥ = ¢(tanpy — tanpy).
From egn. (5.11) the reaction is
R= %(tanﬁl + tangy).

Solving for tang; and tang; gives
tangy = (R + ¢/2)/¢ and tamd; = (R — ¢/2)/¢.

Calculating 81 and 8, and observing forR = 0.5 that the velocity diagram is
symmetrical,

B1 = ap =5245 deg andB; = o3 = 35 deg
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Writing the stage load factor ag = C,ATo/U? then the stage stagnation
temperature rise is,

ATo = yU?/C, = 0.3 x 27%/1005= 225°C.

It is reasonable to take the stage efficiency as equal to the polytropic efficiency since
the stage temperature rise of an axial compressor is small. Denoting compressor inlet
and outlet conditions by subscripts | and Il respectively then, from eqn. (2.33),

To NAT, (Pon ) =iy
=1+ = (== :
To To o

whereN is the required number of stages. Thus
T (v=/npy 203
o <@> ~1| = 2251311 _ 1] - g 86,

- ATO Pol B 225

A suitable number of stages is therefore 9.
The overall efficiency is found from eqn. (2.36).

=[] /)

— [51/3.5 _ 1]/[51/3'11 — l] = 86.3%.

Estimation of compressor stage efficiency

In egn. (5.9) the amount of the actual stage w@dg — ho1) can be found from
the velocity diagram. The losses in total pressure may be estimated from cascade
data. This data is incomplete however, as it only takes account of the blade profile
loss. Howell (1945) has subdivided the total losses into three categories as shown
in Figure 3.11.

(i) Profile losses on the blade surfaces.
(i) Skin friction losses on the annulus walls.
(iii) “Secondary” losses by which he meant all losses not included in (i) and (ii)
above.

In performance estimates of axial compressor and fan stagesvtrall drag
coefficient for the blades of each row is obtained from

Cp=Cpp+ Cps+ Cps
= Cp, +0.02s/H + 0.018C2 (5.28)

using the empirical values given in Chapter 3.

Although the subject matter of this chapter is primarily concerned with two-
dimensional flows, there is an interesting three-dimensional aspect which cannot
be ignored. In multistage axial compressors the annulus wall boundary layers
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Fic. 5.7. Axial velocity profiles in a compressor (Howell 1945). (Courtesy of the
Institution of Mechanical Engineers).

rapidly thicken through the first few stages and the axial velocity profile becomes
increasingly peaked. This effect is illustrated in Figure 5.7, from the experimental
results of Howell (1945), which shows axial velocity traverses through a four-stage
compressor. Over the central region of the blade, the axial velocity is higher than
the mean value based on the through flow. The mean blade section (and most of
the span) will, therefore, do less work than is estimated from the velocity triangles
based on the mean axial velocity. In theory it would be expected that the tip and
root sections would provide a compensatory effect because of the low axial velocity
in these regions. Due to stalling of these sections (and tip leakage) no such work
increase actually occurs, and the net result is that the work done by the whole blade
is below the design figure. Howell (1945) suggested that the stagnation enthalpy
rise across a stage could be expressed as

hog — hor = AU (cy2 — ¢y1), (5.29)

wherel is a “work done”. For multistage compressors Howell recommended éor
mean value of 0.86. Using a similar argument for axial turbines, the increase in axial
velocity at the pitch-line gives ancreasein the amount of work done, which is then
roughly cancelled out by the loss in work done at the blade ends. Thus, for turbines,
no “work done” factor is required as a correction in performance calculations.

Other workers have suggested thashould be high at entry (0.96) where the
annulus wall boundary layers are thin, reducing progressively in the later stages
of the compressor (0.85). Howell (1950) has given mean “work done” factors for
compressors with varying numbers of stages, as in Figure 5.9. For a four-stage
compressor the value af would be 0.9 which would be applied to all four stages.

Smith (1970) commented upon the rather pronounced deterioration of compressor
performance implied by the example given in Figure 5.7 and suggested that things
are not so bad as suggested. As an example of modern practice he gave the axial
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Fic. 5.9. Mean work done factor in compressors (Howell and Bonham 1950). (Courtesy
of the Institution of Mechanical Engineers).

velocity distributions through a twelve-stage axial compressor, Figure 5.8(a). This
does illustrate that rapid changes in velocity distribution still occur in the first few
stages, but that the profile settles down to a fairly constant shape thereafter. This
phenomenon has been referred tauliBnate steady flow

Smith also provided curves of the spanwise variation in total temperature,
Figure 5.8(b), which shows the way losses increase from midpassage towards
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the annulus walls. An inspection of this figure shows also that the excess total
temperature near the end walls increases in magnitude and extent as the flow
passes through the compressor. Work on methods of predicting annulus wall
boundary layers in turbomachines and their effects on performance are being
actively pursued in many countries. Although rather beyond the scope of this
textbook, it may be worth mentioning two papers for students wishing to advance
their studies further. Mellor and Balsa (1972) offer a mathematical flow model
based on the pitchwise-averaged turbulent equations of motion for predicting axial
flow compressor performance whilst Daneshgaal (1972) review and compare
different existing methods for predicting the growth of annulus wall boundary layers
in turbomachines.

ExaMmPLE 5.2. The last stage of an axial flow compressor has a reaction of 50%
at the design operating point. The cascade characteristics, which correspond to each
row at the mean radius of the stage, are shown in Figure 3.12. These apply to a
cascade of circular arc camber line blades at a spetverd ratio 0.9, a blade inlet
angle of 44.5deg and a blade outlet angle-di.5deg. The blade heighthord
ratio is 2.0 and the work done factor can be taken as 0.86 when the mean radius
relative incidencei — i*)/e* is 0.4 (the operating point).

For this operating condition, determine

(i) the nominal incidencé* and nominal deflection*;
(ii) the inlet and outlet flow angles for the rotor;
(i) the flow coefficient and stage loading factor;
(iv) the rotor lift coefficient;

(v) the overall drag coefficient of each row;
(vi) the stage efficiency.

The density at entrance to the stage is 3.5Kgand the mean radius blade
speed is 242 m/s. Assuming the density across the stage is constant and ignoring
compressibility effects, estimate the stage pressure rise.

In the solution given below theelative flow onto the rotor is considered. The
notation used for flow angles is the same as for Figure 5.2. For blade afglss,
therefore used instead af for the sake of consistency.

Solution (i) The nominal deviation is found using egns. (3.39) and (3.40). With
the cambep = p| — B, = 445’ — (-0.5") = 45 and the space/chord ratig;,/ =
0.9, then

8* =[0.23+ B5/500p(s/1)*?
But B =8"+p8,=6"-05
. 8% =[0.234 (8* + B,)/500] x 45 x (0.9)"/2
= [0.229+ §*/500] x 42.69 = 9.776+ 0.08545*
. 8" = 1069
o By =8+ g, =1069— 05
~10.2°
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The nominal deflectiors* = 0.8¢max and, from Figure 3.12¢max = 37.5°. Thus,
¢* = 30° and the nominal incidence is

= py+et— B
=102+30-445=-43".

(i) At the operating pointi = 0.4¢* + i* = 7.7°. Thus, the actual inlet flow
angle is

Br= By +i=522".
From Figure 3.12 at = 7.7°, the deflectiore = 37.5° and the flow outlet angle is
Bo=p1—e=14T".

(iif) From Figure 5.2,U = c,1(tanay + tanBy) = co(tanas + tang,). For ¢, =
constant across the stage ahd- 0.5

,31 =0y = 52.2° and ,32 =] = 147

and the flow coefficient is

Cy 1
¢="

=——— =0.644
U tana1 + tang;

The stage loading factory = Ahg/U? = Ap(tana, — tanay) using egn. (5.29).
Thus, withA = 0.86,
¥ = 0.568
(iv) The lift coefficient can be obtained using eqgn. (3.18)
Cr. = 2(s/l)cosg,,(tanB; — tangy)

ignoring the small effect of the drag coefficient. Now fan= (tang; + tangz)/2.
Hencep,, = 37.8° and so

C, =2x0.9x%x0.7902x 1.027= 1.46.
(v) Combining eqgns. (3.7) and (3.17) the drag coefficient is

cp=? (Apo> cos’ B,

I\ 3ow? ] cogpy’

Again using Figure 3.12 ai = 7.7°, the profile total pressure loss coefficient
Apo/(%,owf) = 0.032, hence the profile drag coefficient for the blades of either
row is

Cp, = 0.9 x 0.032x 0.7902/0.612F = 0.038

Taking account of the annulus wall drag coeffici€hs, and the secondary loss
drag coefficientCp;

Cpa = 0.02(s/1)(I/H) = 0.02 x 0.9 x 0.5 = 0.009
Cps = 0.018C% = 0.018 x 1.46* = 0.038
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Thus, theoverall drag coefficient,Cp = Cp, + Cp, + Cp, = 0.084 and this
applies to each row of blades. If the reaction had been other than 0.5 the drag
coefficients for each blade row would have been computed separately.

(vi) The total-to-total stage efficiency, using egn. (5.9) can be written as

SApo/p _ ., TApo/Gecd) _ G+
yuz 29/¢2 2y

where ¢z and s are the overall total pressure loss coefficients for the rotor and
stator rows respectively. From eqn. (3.17)

& = (l/S)CD Seé Q.
Thus, withgg = &g
_ ¢*Cp(l/s)
Y coS a,

0.644 x 0.084
=1- = 0.862
0.568x 0.7903 x 0.9

From egn. (5.27), the pressure rise across the stage is

Ny =

Ap = nuypU? = 0.862 x 0.568 x 3.5 x 242
= 100kPa

Stall and surge phenomena in compressors
Casing treatment

It was discovered in the late 1960s that the stall of a compressor could be delayed
to a lower mass flow by a suitable treatment of the compressor casing. Given the
right conditions this can be of great benefit in extending the range of stall-free
operation. Numerous investigations have since been carried out on different types
of casing configurations under widely varying flow conditions to demonstrate the
range of usefulness of the treatment.

Greitzer et al. (1979) observed that two types of stall could be found in a
compressor blade row, namely, “blade stall” or “wall stall”. Blade stall is, roughly
speaking, a two-dimensional type of stall where a significant part of the blade has
a large wake leaving the blade suction surface. Wall stall is a stall connected with
the boundary layer on the outer casing. Figure 5.10 illustrates the two types of stall.
Greitzeret al. found that the response to casing treatment depended conspicuously
upon the type of stall encountered.

The influence of a grooved casing treatment on the stall margin of a model axial
compressor rotor was investigated experimentally. Two rotor builds of different
blade soliditiesg, (chord/space ratio) but with all the other parameters identical,
were tested. Greitzer emphasised that the motive behind the use of different solidities
was simply a convenient way to change the type of stall from a blade stall to a wall
stall and that the benefit of casing treatment was unrelated to the amount of solidity
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Fic. 5.11. Position and appearance of casing treatment insert (adapted from Greitzer
et al. 1979).

of the blade row. The position of the casing treatment insert in relation to the rotor
blade row is shown in Figure 5.11a and the appearance of the grooved surface
used is illustrated in Figure 5.11b. The grooves, described as “axial skewed” and
extending over the middle 44% of the blade, have been used in a wide variety of
COmpressors.

As predicted from their design study, the high solidity bladiang= 2) resulted in
the production of a wall stall, while the low solidity = 1) blading gave a blade
stall. Figure 5.12 shows the results obtained for non-dimensionalised wall static
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Fic. 5.12. Effects of casing treatment and solidity on compressor characteristics
(adapted from Greitzer et al. 1979 and data points removed for clarity).

pressure riseAp/(%pUZ), across the rotor plotted against the mean radius flow
coefficient,¢ = ¢, /U, for the four conditions tested. The extreme left end of each
curve represents thensetof stall. It can be seen that there is a marked difference
in the curves for the two solidities. For the high solidity configuration there is
a higher static peak pressure rise and the decline does not occup ustinuch

lower than the low solidity configuration. However, the most important difference in
performance is the change in the stall point with and without the casing treatment.
It can be seen that with the grooved casing a substantial change in the range of
¢ occurred with the high solidity blading. However, for the low solidity blading
there is only a marginal difference in range. The shape of the performance curve is
significantly affected for the high solidity rotor blades, with a substantial increase
in the peak pressure rise brought about by the grooved casing treatment.

The conclusion reached by Greitzral. (1979) is that casing treatment is highly
effective in delaying the onset of stall when the compressor row is more prone to
wall stall thanblade stall However, despite this advantage casing treatment has not
been generally adopted in industry. The major reason for this ostensible rejection
of the method appears to be that a performance penalty is attached to it. The more
effective the casing treatment, the more the stage efficiency is reduced.

Smith and Cumsty (1984) made an extensive series of experimental investigations
to try to discover the reasons for the effectiveness of casing treatment and the
underlying causes for the loss in compressor efficiency. At the simplest level it was
realised that the slots provide a route for fluid to pass from the pressure surface
to the suction surface allowing a small proportion of the flow to be recirculated.
The approaching boundary layer fluid tends to have a high absolute swirl and is,
therefore, suitably orientated to enter the slots. Normally, with a smooth wall the
high swirl would cause energy to be wasted but, with the casing treatment, the flow
entering the slot is turned and reintroduced back into the main flow near the blade’s
leading edge with its absolute swirl direction reversed. The re-entrant flow has, in
effect, flowed upstream along the slot to a lower pressure region.



Axial-flow Compressors and Fans 157

Rotating stall and surge

A salient feature of a compressor performance map, such as Figure 1.10, is the limit
to stable operation known as therge line This limit can be reached by reducing the
mass flow (with a throttle valve) whilst the rotational speed is maintained constant.

When a compressor goes into surge the effects are usually quite dramatic. Gener-
ally, an increase in noise level is experienced, indicative of a pulsation of the air
flow and of mechanical vibration. Commonly, there are a small number of predomi-
nant frequencies superimposed on a high background noise. The lowest frequencies
are usually associated withtelmholtz-type of resonanaaf the flow through the
machine, with the inlet and/or outlet volumes. The higher frequencies are known
to be due taotating stall and are of the same order as the rotational speed of the
impeller.

Rotating stall is a phenomenon of axial-compressor flow which has been the
subject of many detailed experimental and theoretical investigations and the matter
is still not fully resolved. An early survey of the subject was given by Emmons
et al. (1959). Briefly, when a blade row (usually the rotor of a compressor reaches
the “stall point”, the blades instead of all stalling together as might be expected, stall
in separate patches and these stall patches, moreover, travel around the compressor
annulus (i.e. they rotate).

That stall patchesnust propagate from blade to blade has a simple physical
explanation. Consider a portion of a blade row, as illustrated in Figure 5.13 to be
affected by a stall patch. This patch must cause a partial obstruction to the flow
which is deflected on both sides of it. Thus, the incidence of the flow on to the blades
on the right of the stall cell is reduced but, the incidence to the left is increased.
As these blades are already close to stalling, the net effect is for the stall patch to
move to the left; the motion is then self-sustaining.

There is a strong practical reason for the wide interest in rotating stall. Stall
patches travelling around blade rows load and unload each blade at some frequency
related to the speed and number of the patches. This frequency may be close to
a natural frequency of blade vibration and there is clearly a need for accurate
prediction of the conditions producing such a vibration. Several cases of blade
failure due to resonance induced by rotating stall have been reported, usually with
serious consequences to the whole compressor.

ccc

Fic. 5.13. Model illustrating mechanism of stall cell propagation: partial blockage due to
stall patch deflects flow, increasing incidence to the left and decreasing incidence to
the right.
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FiG. 5.14. Stability of operation of a compressor (adapted from Horlock 1958).

It is possible to distinguish between surge and propagating stall by the unsteadi-
ness, or otherwise, of the total mass flow. The characteristic of stall propagation is
that the flow passing through the annulus, summed over the whole area, is steady
with time; the stall cells merely redistribute the flow over the annulus. Surge, on the
other hand, involves an axial oscillation of the total mass flow, a condition highly
detrimental to efficient compressor operation.

The conditions determining the point of surge of a compressor have not yet been
completely determined satisfactorily. One physical explanation of this breakdown
of the flow is given by Horlock (1958).

Figure 5.14 shows a constant rotor speed compressor charact@fisti¢ pres-
sure ratio plotted against flow coefficient. A second set of cur¥gs,, etc.) are
superimposed on this figure showing the pressure loss characteristics of the throttle
for various fixed throttle positions. The intersection of curfesvith compressor
curve C denotes the various operating points of the combination. A staftowf
stability exists if the throttle curves at the point of intersection have a greater
(positive) slope than the compressor curve. That this is so may be illustrated as
follows. Consider the operating point at the intersectiorgfwith C. If a small
reduction of flow should momentarily occur, the compressor will produce a greater
pressure rise and the throttle resistance will fall. The flow rate must, of necessity,
increase so that the original operating point is restored. A similar argument holds
if the flow is temporarily augmented, so that the flow is completely stable at this
operating condition.

If, now, the operating point is at poirif, unstable operation is possible. A small
reduction in flow will cause a greater reduction in compressor pressure ratio than the
corresponding pressure ratio across the throttle. As a consequence of the increased
resistance of the throttle, the flow will decrease even further and the operating point
U is clearly unstable. By inference, neutral stability exists when the slopes of the
throttle pressure loss curves equal the compressor pressure rise curve.

Tests on low pressure ratio compressors appear to substantiate this explanation
of instability. However, for high rotational speed multistage compressors the above
argument does not seem sufficient to describe surging. With high speeds no stable
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operation appears possible on constant speed curves of positive slope and surge
appears to occur when this slope is zero or even a little negative. A more complete
understanding of surge in multistage compressors is only possible from a detailed
study of the individual stages performance and their interaction with one another.

Control of flow instabilities

Important and dramatic advances have been made in recent years in the under-
standing and controlling of surge and rotating stall. Both phenomena are now
regarded as the mature forms of the natural oscillatory modes of the compression
system (see Moore and Greizer 1986). The flow model they considered predicts
that an initial disturbance starts with a very small amplitude but quickly grows
into a large amplitude form. Thus, the stability of the compressor is equivalent to
the stability of these small amplitude waves that exist just prior to stall or surge
(Hayneset al. 1994). Only a very brief outline can be given of the advances in the
understanding of these unstable flows and the means now available for controlling
them. Likewise only a few of the many papers written on these topics are cited.

Epsteinet al. (1989) first suggested that surge and rotating stall could be prevented
by using active feedback control to damp the hydrodynamic disturbances while they
were still of small amplitude. Active suppression of surge was subsequently demon-
strated on a centrifugal compressor by Ffowcs Williams and Huang (1989), also
by Pinsleyet al. (1991) and on an axial compressor by Day (1993). Shortly after
this Paduancet al. (1993) demonstrated active suppression of rotating stall in a
single-stage low-speed axial compressor. By damping the small amplitude waves
rotating about the annulus prior to stall, they increased the stable flow range of
the compressor by 25%. The control scheme adopted comprised a circumferential
array of hot wires just upstream of the compressor and a set of 12 individually
actuated vanes upstream of the rotor used to generate the rotating disturbance struc-
ture required for control. Haynest al. (1994), using the same control scheme as
Paduanocet al., actively stabilised a three-stage, low-speed axial compressor and
obtained an 8% increase in the operating flow range.

Gysling and Greitzer (1995) employed a different strategy using aeromechanical
feedback to suppress the onset of rotating stall in a low-speed axial compressor.
Figure 5.15 shows a schematic of the aeromechanical feedback system they used.
An auxiliary injection plenum chamber is fed by a high pressure source so that high
momentum air is injected upsteam towards the compressor rotor. The amount of
air injected at a given circumferential position is governed by an array of locally
reacting reed valves able to respond to perturbations in the static pressure upstream
of the compressor. The reeds valves, which were modelled as mass-spring-dampers,
regulated the amount of high-pressure air injected into the face of the compressor.
The cantilevered reeds were designed to deflect upward to allow an increase of the
injected flow, whereas a downward deflection decreases the injection.

A qualitative explanation of the stabilising mechanism has been given by Gysling
and Greitzer (1995):

Consider a disturbance to an initally steady, axisymmetric flow, which causes a
small decrease in axial velocity in one region of the compressor annulus. In this
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FiG. 5.15. Schematic of the aeromechanical feedback system used to suppress the
onset of rotating stall (adapted from Gysling and Greitzer 1995).

region, the static pressure in the potential flow field upstream of the compressor
will increase. The increase in static pressure deflects the reed valves in that
region, increasing the amount of high momentum fluid injected and, hence, the
local mass flow and pressure rise across the compressor. The net result is an
increase in pressure rise across the compressor in the region of decreased axial
velocity. The feedback thus serves to add a negative component to the real part
of the compressor pressure rise versus mass flow transfer function.

Only a small amount (4%) of the overall mass flow through the compressor was used
for aeromechanical feedback, enabling the stall flow coefficient of the compression
system to be reduced by 10% compared to the stalling flow coefficient with the
same amount of steady-state injection.

It is claimed that the research appears to be the first demonstration of dynamic
control of rotating stall in an axial compressor using aeromechanical feedback.

Axial-flow ducted fans

In essence, an axial-flow fan is simply a single-stage compressor of low pressure
(and temperature) rise, so that much of the foregoing theory of this chapter is valid
for this class of machine. However, because of the high spauward ratio used in
many axial fans, a simplified theoretical approach baseitaated aerofoil theory
is often used. This method can be of use in the design of ventilating fans (usually of
high spacechord) in which aerodynamic interference between adjacent blades can
be assumed negligible. Attempts have been made to extend the scope of isolated
aerofoil theory to less widely spaced blades by the introduction ahtenference
factor, for instance, the rati@ of the lift force of a single blade in a cascade to the
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Fic. 5.16. Weinig's results for lift ratio of a cascade of thin flat plates, showing
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lift force of a single isolated blade. As a guide to the degree of this interference,
the exact solution obtained by Weinig (1935) and used by Wislicenus (1947) for
a row of thin flat plates is of value and is shown in Figure 5.16. This illustrates
the dependence df on spacechord ratio for several stagger angles. The rather
pronounced effect of stagger for moderate spat®rd ratios should be noted as
well as the asymptotic convergencekdbwards unity for higher spaeehord ratios.

Two simple types of axial-flow fan are shown in Figure 5.17 in which the inlet
and outlet flows are entirely axial. In the first type (a), a set of guide vanes provide a
contra-swirl and the flow is restored to the axial direction by the rotor. In the second
type (b), the rotor imparts swirl in the direction of blade motion and the flow is
restored to the axial direction by the action of ouigighteners(or outlet guide
vanes). The theory and design of both the above types of fan have been investigated
by Van Niekerk (1958) who was able to formulate expressions for calculating the
optimum sizes and fan speeds using blade element theory.

Blade element theory

A blade element at a given radius can be defined as an aerofoil of vanishingly
small span. In fan-design theory it is commonly assumed that each such element
operates as a two-dimensional aerofoil, behaving completely independently of condi-
tions at any other radius. Now the forces impressed upon the fluid by unit span of
a single stationary blade have been considered in some detail already, in Chapter 3.
Considering arelement of a rotorblade d, at radiusr, the elementary axial and
tangential forces, Xl and d respectively, exerted on the fluid are, referring to
Figure 3.5,

dX = (Lsing,, — D cosp,,)dr, (5.30)
dY = (L cospB,, + Dsinp,,)dr, (5.31)
where targ,, = %{tanﬂl +tang,} andL, D are the lift and drag on unit span of a

blade.
Writing tany = D/L = Cp/Cy, then,

dX = L(singB,, — tany cosp,,)dr.

Introducing the lift coefficienC, = L/(%pw,il) for the rotor blade (cf. egn. (3.16a))
into the above expression and rearranging,

_ pcAlCrdr sin(Bn — )

~ 2co2 B, cosy (5.32)

wherec, = w,, COSf,,.
The torque exerted bgne blade element at radiusis rd Y. If there areZ blades
the elementary torque is

dr = rZdY
= rZL(cosB,, + tany sin8,,)dr,
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after using egn. (5.31). Substituting fbrand rearranging,

_ pc2lZCrrdr  coSB, — y)
~ 2co2 B, cosy

(5.33)

Now the work done by the rotor in unit time equals the product of the stagnation
enthalpy rise and the mass flow rate; for the elementary ring of aredr?2

Qdr = (C,ATo)drn, (5.34)

where2 is the rotor angular velocity and the element of mass flow=d poc, 27rdr.
Substituting egn. (5.33) into eqn. (5.34), then

UCxl COgﬂm - V)

C,ATo=C,AT =C .
porO= L"25co2 B,, cosy

(5.35)

wheres = 27r/Z. Now the static temperature rise equals the stagnation temperature
rise when the velocity is unchanged across the fan; this, in fact, is the case for both
types of fan shown in Figure 5.17.

The increase in static pressure of tlvbole of the fluid crossing the rotor row
may be found by equating the total axial force on all the blade elements at radius
r with the product of static pressure rise and elementary ateer2or

ZdX = (p2 — p1)27TrdI".
Using eqn. (5.32) and rearranging,

pc2lL sin(B, — )

5.36
L25co2 B, cosy (5.36)

P2—p1=

Note that, so far, all the above expressions are applicable to both types of fan shown
in Figure 5.17.

Blade element efficiency

Consider the fan type shown in Figure 5.17a fitted with guide vanes at inlet. The
pressure rise across this fan is equal to the rotor pressurepise 1) minusthe
drop in pressure across the guide vangs— p1). The ideal pressure rise across
the fan is given by the product of density a@g AT,. Fan designers define a blade
element efficiency

np = {(p2 — p1) — (pe — p1)}/(pC ,ATo). (5.37)
The drop in static pressure across the guide vanes, assuratignless flow for
simplicity, is

Pe— P1= %p(c% - cf) = %pcil. (5.38)

Now since the change in swirl velocity across the rotor is equal and opposite to the
swirl produced by the guide vanes, the work done per unit mass flowT is
equal toUc,1. Thus the second term in eqn. (5.37) is

(pe — P1)/(pC ,ATo) = cy1/(2U). (5.39)
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Combining eqgns. (5.35), (5.36) and (5.39) in egn. (5.37), then
N = (Cx/U) tar(,gm - V) - Cxl/(ZU) (5403.)

The foregoing exercise can be repeated for the second type of fan having outlet
straightening vanes and, assuming frictionless flow through the “straighteners”, the
rotor blade element efficiency becomes,

M = (cx/U)tan(Bn — y) + ¢y2/ (2U). (5.40b)

Some justification for ignoring the losses occurring in the guide vanes is found
by observing that the ratio of guide vane pressure change to rotor pressure rise is
normally small in ventilating fans. For example, in the first type of fan

(Pe — p1)/ (P2 — p1) = (3pc31)/ (pUcy1) = c,1/2(U),

the tangential velocity,; being rather small compared with the blade sp&ed

Lift coefficient of a fan aerofoil

For a specified blade element geometry, blade speed and lift/drag ratio the temper-
ature and pressure rises can be determined if the lift coefficient is known. An
estimate of lift coefficient is most easily obtained from two-dimensional aerofoil
potential flow theory. Glauert (1959) shows for isolated aerofoils of small camber
and thickness, that

Cp = 2rsiny, (5.41)

Zero lift line

Camber line Maximum camber

Zero lift line

(b) \

Fic. 5.18. Method suggested by Wislicenus (1947) for obtaining the zero lift line of
cambered aerofoils.
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where is the angle between the flow direction aitk of zero lift of the aerofoil.

For an isolated, cambered aerofoil Wislicenus (1947) suggested that the zero lift line
may be found by joining the trailing edge point with the point of maximum camber
as depicted in Figure 5.18a. For fan blades experiencing some interference effects
from adjacent blades, the modified lift coefficient of a blade may be estimated by
assuming that Weinig's results for flat plates (Figure 5.15) are valid for the slightly
cambered, finite thickness blades, and

Cp = 2rtksiny. (5.41a)

When the vanes overlap (as they may do at sections close to the hub), Wisli-
cenus suggested that the zero lift line may be obtained by the line connecting the
trailing edge point with the maximum camber of that portion of blade which is not
overlapped (Figure 5.18b).

The extension of both blade element theory and cascade data to the design of
complete fans is discussed in considerable detail by Wallis (1961).
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Problems

(Note In questions 1 to 4 and 8 take= 287 J/(kgC) andy = 1.4.)

1. An axial flow compressor is required to deliver 50kg/s of air at a stagnation pressure
of 500 kPa. At inlet to the first stage the stagnation pressure is 100 kPa and the stagnation
temperature is 2&. The hub and tip diameters at this location are 0.436 m and 0.728 m. At
the mean radius, which is constant through all stages of the compressor, the reaction is 0.50
and the absolute air angle at stator exit is 28.8 deg for all stages. The speed of the rotor is
8000 rev/min. Determine the number of similar stages needed assuming that the polytropic
efficiency is 0.89 and that the axial velocity at the mean radius is constant through the stages
and equal to 1.05 times the average axial velocity.

2. Derive an expression for the degree of reaction of an axial compressor stage in terms
of the flow angles relative to the rotor and the flow coefficient.

Data obtained from early cascade tests suggested that the limit of efficient working of an
axial-flow compressor stage occurred when

(i) arelative Mach number of 0.7 on the rotor is reached;

(ii) the flow coefficient is 0.5;
(i) the relative flow angle at rotor outlet is 30 deg measured from the axial direction;
(iv) the stage reaction is 50%.

Find the limiting stagnation temperature rise which would be obtained in the first stage
of an axial compressor working under the above conditions and compressing air at an inlet
stagnationtemperature of 289 K. Assume the axial velocity is constant across the stage.
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3. Each stage of an axial flow compressor is of 0.5 reaction, has the same mean blade speed
and the same flow outlet angle of 30 deg relative to the blades. The mean flow coefficient is
constant for all stages at 0.5. At entry to the first stage the stagnation temperature is 278K,
the stagnation pressure 101.3kPa, the static pressure is 87.3kPa and the flow ared.0.372m
Using compressible flow analysis determine the axial velocity and the mass flow rate.

Determine also the shaft power needed to drive the compressor when there are 6 stages
and the mechanical efficiency is 0.99.

4. A sixteen-stage axial flow compressor is to have a pressure ratio of 6.3. Tests have
shown that a stage total-to-total efficiency of 0.9 can be obtained for each of the first six
stages and 0.89 for each of the remaining ten stages. Assuming constant work done in each
stage and similar stages find the compressor overall total-to-total efficiency. For a mass
flow rate of 40 kg/s determine the power required by the compressor. Assume an inlet total
temperature of 288 K.

5. At a particular operating condition an axial flow compressor has a reaction of 0.6, a
flow coefficient of 0.5 and a stage loading, defined\#g,/U? of 0.35. If the flow exit angles
for each blade row may be assumed to remain unchanged when the mass flow is throttled,
determine the reaction of the stage and the stage loading when the air flow is reduced by
10% at constant blade speed. Sketch the velocity triangles for the two conditions.

Comment upon the likely behaviour of the flow when further reductions in air mass flow
are made.

6. The proposed design of a compressor rotor blade row is for 59 blades with a circular
arc camber line. At the mean radius of 0.254m the blades are specified with a camber
of 30deg, a stagger of 40deg and a chord length of 30 mm. Determine, using Howell’'s
correlation method, the nominal outlet angle, the nominal deviation and the nominal inlet
angle. The tangent difference approximation, proposed by Howell for nominal conditions
(0 < o} < 40°), can be used:

tane) — tane; = 1.55/(1 + 1.55/1).

Determine the nominal lift coefficient given that the blade drag coeffiadignt 0.017.

Using the data for relative deflection given in Figure 3.17, determine the flow outlet
angle and lift coefficient when the incidence- 1.8 deg. Assume that the drag coefficient is
unchanged from the previous value.

7. The preliminary design of an axial flow compressor is to be based upon a simplified
consideration of the mean diameter conditions. Suppose that the stage characteristics of a
repeating stage of such a design are as follows:

Stagnation temperature rise 75

Reaction ratio 0.6
Flow coefficient 0.5
Blade speed 275m/s

The gas compressed is air with a specific heat at constant pressure of 1.008RJ/(kg
Assuming constant axial velocity across the stage and equal absolute velocities at inlet and
outlet, determine the relative flow angles for the rotor.

Physical limitations for this compressor dictate that the space/chord ratio is unity at the
mean diameter. Using Howell's correlation method, determine a suitable camber at the mid-
height of the rotor blades given that the incidence angle is zero. Use the tangent difference
approximation:

tang] —tang; = 1.55/(1 + 1.5s/1)
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for nominal conditions and the data of Figure 3.17 for finding the design deflechimt. (
Use several trial values @fto complete the solution.)

8. Air enters an axial flow compressor with a stagnation pressure and temperature of
100kPa and 293K, leaving at a stagnation pressure of 600kPa. The hub and tip diameters
at entry to the first stage are 0.3m and 0.5m. The flow Mach numfter the inlet guide
vanes is 0.7 at the mean diameter. At this diameter, which can be assumed constant for all
the compressor stages, the reaction is 50%, the axial velocity to mean blade speed ratio is
0.6 and the absolute flow angle is 30 deg at the exit from all stators. The type of blading used
for this compressor is designated “free-vortex” the axial velocity is constant for each stage.

Assuming isentropic flow through the inlet guide vanes and a small stage efficiency of
0.88, determine:

(1) the air velocity at exit from the IGVs at the mean radius;

(2) the air mass flow and rotational speed of the compressor;

(3) the specific work done in each stage;

(4) the overall efficiency of the compressor;

(5) the number of compressor stages required and the power needed to drive the compressor;

(6) consider the implications of rounding the number of stages to an integer value if the
pressure ratianust be maintained at 6 for the same values of blade speed and flow
coefficient.

NB. In the following problems on axial-flow fans the medium is air for which the density is

taken to be 1.2 kg/fh

9. (a) The volume flow rate through an axial-flow fan fitted with inlet guide vanes is
2.5nP/s and the rotational speed of the rotor is 2604 rev/min. The rotor blade tip radius is
23cm and the root radius is 10cm. Given that the stage static pressure increase is 325 Pa
and the blade element efficiency is 0.80, determine the angle of the flow leaving the guide
vanes at the tip, mean and root radii.

(b) A diffuser is fitted at exit to the fan with an area ratio of 2.5 and an effectiveness of
0.82. Determine the overall increase in static pressure and the air velocity at diffuser exit.

10. The rotational speed of a four-bladed axial-flow fan is 2900 rev/min. At the mean
radius of 16.5cm the rotor blades operateCat= 0.8 with Cp = 0.045. The inlet guide
vanes produce a flow angle of 2tb the axial direction and the axial velocity through the
stage is constant at 20 m/s.

For the mean radius, determine:

(1) the rotor relative flow angles;

(2) the stage efficiency;

(3) the rotor static pressure increase;

(4) the size of the blade chord needed for this duty.

11. A diffuser is fitted to the axial fan in the previous problem which has an efficiency
of 70% and an area ratio of 2.4. Assuming that the flow at entry to the diffuser is uniform
and axial in direction, and the losses in the entry section and the guide vanes are negligible,
determine:

(1) the static pressure rise and the pressure recovery factor of the diffuser;
(2) the loss in total pressure in the diffuser;
(3) the overall efficiency of the fan and diffuser.
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CHAPTER 6

Three-dimensional Flows in
Axial Turbomachines

It cost much labour and many days before all these things were brought to
perfection. (DEFOE, Robinson Crusoe.)

Introduction

IN CHAPTERS 4 and 5 the fluid motion through the blade rows of axial turboma-
chines was assumed to be two-dimensional in the sense that radial (i.e. spanwise)
velocities did not exist. This is a not unreasonable assumption for axial turboma-
chines of high hubtip ratio. However, with hubtip ratios less than about 4/5, radial
velocities through a blade row may become appreciable, the consequent redistribu-
tion of mass flow (with respect to radius) seriously affecting the outlet velocity
profile (and flow angle distribution). It is the temporary imbalance between the
strong centrifugal forces exerted on the fluid and radial pressures restoring equi-
librium which is responsible for these radial flows. Thus, to an observer travelling
with a fluid particle, radial motion will continue until sufficient fluid is transported
(radially) to change the pressure distribution to that necessary for equilibrium. The
flow in an annular passage in which there is no radial component of velocity,
whose streamlines lie in circular, cylindrical surfaces and which is axisymmetric, is
commonly known asadial equilibrium flow.

An analysis calledthe radial equilibrium method widely used for three-
dimensional design calculations in axial compressors and turbines, is based upon
the assumption that any radial flow which may occur, is completighin a blade
row, the flowoutsidethe row then being in radial equilibrium. Figure 6.1 illustrates
the nature of this assumption. The other assumption that the flow is axisymmetric
implies that the effect of the discrete blades is not transmitted to the flow.

Theory of radial equilibrium

Consider a small element of fluid of mass,dshown in Figure 6.2, of unit depth
and subtending an angle cat the axis, rotating about the axis with tangential
velocity, ¢y at radiusr. The element is in radial equilibrium so that the pressure
forces balance the centrifugal forces;

(p+dp)(r + dr)dd — prdd — (p + 3dp)drdd = dimc}/r.

169
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FiG. 6.1. Radial equilibrium flow through a rotor blade row.

l p+dp  Mass/unit depth
= prdadr

A

Velocity = ¢,
P+3dp

FiG. 6.2. A fluid element in radial equilibrium (¢, = 0).

Writing dm = prdddr and ignoring terms of the second order of smallness the
above equation reduces to,
1d 2
9P _ % (6.1)
o dr r

If the swirl velocity ¢, and density are known functions of radius, the radial pressure
variation along the blade length can be determined,

tip dr
Dtip — Proot = / ,ch_- (6.2a)
root r
For an incompressible fluid
e dr
Dtip — Proot = ,0/ c(f*- (6.2b)
root T
The stagnation enthalpy is written (with = 0)
ho=h+ 3(cZ+ch) (6.3)
therefore,

dho  dh de, dcg

E—E—FCXEJFCQE. (64)
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The thermodynamic relatiofids = dh — (1/p)dp can be similarly written

ds dn 1d
e (6.5)

Combining eqgns. (6.1), (6.4) and (6.5), eliminating/dr and d:/dr, the radial
equilibrium equationmay be obtained,

dhg ds dc,

dr Ta d_ + ——(rCQ) (66)

If the stagnation enthalpyp and entropy remain the same at all radiizg/dr =
ds/dr = 0, eqgn. (6.6) becomes,
de,

di + —_(VCG) = (6.62)
Equation (6.6a) will hold for the flow between the rows of an adiabatic, reversible
(ideal) turbomachine in which rotor rows either deliver or receive equal work at
all radii. Now if the flow is incompressible, instead of eqn. (6.3) ugse= p +
p(c2+ c2) to obtain

l1dpo 1dp dc dcg

7
pdr pdr T Tar .0
Combining egns. (6.1) and (6.7), then
1dpo _ dey ¢ d
;W —Cxa'i'?a(rce). (68)

Equation (6.8) clearly reduces to egn. (6.6a) in a turbomachine in which equal work
is delivered at all radii and the total pressure losses across a row are uniform with
radius.

Equation (6.6a) may be applied to two sorts of problem as follows: (i) the design
(or indirect) problem- in which the tangential velocity distribution is specified and
the axial velocity variation is found, or (ii) the direct problenin which the swirl
angle distribution is specified, the axial and tangential velocities being determined.

The indirect problem

1. Free-vortex flow

This is a flow where the product of radius and tangential velocity remains constant
(i.e. rcg = K, a constant). The term “vortex-free” might be more appropriate as the
vorticity (to be precise we meaaxial vorticity component) is then zero.

Consider an element of an ideal inviscid fluid rotating about some fixed axis,
as indicated in Figure. 6.3. Tharculation T, is defined as the line integral of
velocity around a curve enclosing an argaor I' = § cds. Thevorticity at a point
is defined as, the limiting value of circulatiéir divided by aredA, aséA becomes
vanishingly small. Thus vorticityp = dI"/dA.
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Co+dg

r+ar o

de

Fic. 6.3. Circulation about an element of fluid.

For the element shown in Figure 6&,= 0 and

dI’ = (cg + deg)(r + dr)dd — cerdd

= <% + ﬁ) rdodr
dr r

ignoring the product of small terms. Thus,= dI'/dA = (1/r)d(rcy)/dr. If the
vorticity is zero, drcg)/dr is also zero and, therefore;, is constant with radius.
Putting rc¢y = constant in eqn. (6.6a), therc,ddr = 0 and soc, = a constant.
This information can be applied to the incompressible flow through a free-vortex
compressor or turbine stage, enabling the radial variation in flow angles, reaction
and work to be found.
Compressor stagegConsider the case of a compressor stage in whigh= K,
before the rotor andcyg, = K> after the rotor, wherd&', K> are constants. The work
done by the rotor on unit mass of fluid is

AW = Ulcygz — co1) = Qr(K2/r — K1/7)
= constant.

Thus, the work done is equal at all radii.
The relative flow angles (see Figure 5.2) entering and leaving the rotor are

U Qr—Kq/r
tangy = — —tana; = 41/

Cx Cx

U Qr—Ko/r
tang, = — —tanap = 42/

Cy Cy

in which ¢,1 = ¢,2 = ¢, for incompressible flow.
In Chapter 5, reaction in an axial compressor is defined by

__ static enthalpy rise in the rotor
~ static enthalpy rise in the stage
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For a normal stagexf = «3) with ¢, constant across the stage, the reaction was
shown to be

R= ;—g](tanﬂl +tangy). (5.11)

Substituting values of tafy and tarns, into egn. (5.11), the reaction becomes

r

where
k= (K14 K>2)/(29).

It will be clear that a% is positive, the reaction increases from root to tip. Likewise,
from eqn. (6.1) we observe that a§/r is always positive (excepting, = 0), so
static pressure increases from root to tip. For the free-vortex flow= K, the
static pressure variation is obviousy/p = constant- K/(2r?) upon integrating
egn. (6.1).

ExampPLE 6.1. An axial flow compressor stage is designed to give free-vortex
tangential velocity distributions for all radii before and after the rotor blade row.
The tip diameter is constant and 1.0 m; the hub diameter is 0.9 m and constant for
the stage. At the rotor tip the flow angles are as follows

Absolute inlet anglew; = 30deg.
Relative inlet angleg; = 60deg.
Absolute outlet angley, = 60deg.
Relative outlet angleg, = 30deg.

Determine,

() the axial velocity;
(ii) the mass flow rate;
(i) the power absorbed by the stage;
(iv) the flow angles at the hub;
(v) the reaction ratio of the stage at the hub;

given that the rotational speed of the rotor is 6000 rev/min and the gas density is
1.5 kg/m? which can be assumed constant for the stage. It can be further assumed
that stagnation enthalpy and entropy are constant before and after the rotor row for
the purpose of simplifying the calculations.

Solution (i) The rotational speed2 = 27N /60 = 6284 rad/s.
Therefore blade tip speedj, = Q2r, = 3142 m/s and blade speed at hulj, =
Qr, = 2825m/s.
From the velocity diagram for the stage (e.g. Figure 5.2), the blade tip speed is

U, = c,(tan 60 + tan 30) = c,(v/3+ 1//3).

Thereforec, = 136 m/s, constant at all radii by eqn. (6.6a).
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(i) The rate of mass flows = 7(r? — r2)pc,
= (0.5 — 0.45%)1.5 x 136 = 30.4kg/s
(iii) The power absorbed by the stage,
W = mU,(coz — con)
= mU,c,(tanay;, — tanoy,)
=304 x 3142 x 136(+~/3 — 1//3)
=15MW.

(iv) At inlet to the rotor tip,
con = cxtanay = 136/+/3 = 786 m/s

The absolute flow is a free-vortex;y = constant.
Thereforecyy, = co1,(r;/rp) = 78.6 x 0.5/0.45 = 87.3 m/s.
At outlet to the rotor tip,

Cozr = ¢y tanay = 136 x +/3 = 2356 m/s

Thereforecgy, = coo,(r;/ry) = 2356 x 0.5/0.45 = 262 m/s.
The flow angles at the hub are,

tanay = cp1p/cy = 87.3/136= 0.642
tanBy = Uy/c, —tana; = 1.436
tanay = copn/cy = 262/136= 1.928
tang, = Uy /cy — tanay = 0.152

Thusa; = 3275, B = 5515, ap, = 62.6°, B, = 8.64° at the hub.
(v) The reaction at the hub can be found by several methods. With eqgn. (6.9)

R=1—k/r?
and noticing that, from symmetry of the velocity triangles,
R=05atr =r, thenk =052
Therefore R;, = 1— 0.5(0.5/0.45)* = 0.382

The velocity triangles will be asymmetric and similar to those in Figure 5.4(b).

The simplicity of the flow under free-vortex conditions is, superficially, very
attractive to the designer and many compressors have been designed to conform to
this flow. (Constant (1945, 1953) may be consulted for an account of early British
compressor design methods.) Figure 6.4 illustrates the variation of fluid angles and
Mach numbers of a typical compressor stage designed for free-vortex flow. Charac-
teristic of this flow are the large fluid deflections near the inner wall and high Mach
numbers near the outer wall, both effects being deleterious to efficient performance.
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FiG. 6.4. Variation of fluid angles and Mach numbers of a free-vortex compressor stage
with radius (adapted from Howell 1945).

A further serious disadvantage is the large amount of rotor twist from root to tip
which adds to the expense of blade manufacture.

Many types of vortex design have been proposed to overcome some of the disad-
vantages set by free-vortex design and several of these are compared by Horlock
(1958). Radial equilibrium solutions for the work and axial velocity distributions of
some of these vortex flows in an axial compressor stage are given below.

2. Forced vortex

This is sometimes called “solid-body” rotation becaugearies directly withr.
At entry to the rotor assumk; is constant andy; = Kqr.
With eqn. (6.6a)

E Cil = K E(K 2)
dar\ 2 /) Yar o
and, after integrating,

¢% = constant— 2K22, (6.10)

After the rotorcg, = Kor andhop — hor = U(cpo — co1) = QUK — K1)r?. Thus, as
the work distribution is non-uniform, the radial equilibrium equation in the form
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egn. (6.6) is required for the flow after the rotor.

dhoz d sz d 2
W = ZQ(KZ - Kl)r = a <? +KZE(K2” )

After rearranging and integrating
%, = constant— 2[K2 — Q(K, — K1)]r2. (6.11)

The constants of integration in egns. (6.10) and (6.11) can be found from the conti-
nuity of mass flow, i.e.

U =/ cxlrdrz/ cyordr, (6.12)
2np J,

’ rh
which applies to the assumed incompressible flow.
3. General whirl distribution
The tangential velocity distribution is given by
cg1 = ar" — b/r (before rotor) (6.13a9
cg2 = ar" + b/r (after rotor) (6.13b)

The distribution of work for all values of the indexis constant with radius so that
if hoy is uniform, hg; is also uniform with radius. From eqns. (6.13)

AW = hgp — hor = U(cer — cg1) = 2bS2. (6.14)

Selecting different values af gives several of the tangential velocity distributions
commonly used in compressor design. With= 0, or zero power blading, it leads
to the so-called “exponential’ type of stage design (included as an exercise at the
end of this chapter). Witk = 1, or first power blading the stage design is called
(incorrectly, as it transpires later) “constant reaction”.

First power stage designFor a given stage temperature rise the discussion in
Chapter 5 would suggest the choice of 50% reaction at all radii for the highest
stage efficiency. With swirl velocity distributions

cgpr=ar —b/r, copp=ar+b/r (6.15)

before and after the rotor respectively, and rewriting the expression for reaction,
egn. (5.11), as

R=1- ;—;](tanal + tanay), (6.16)
then, using eqn. (6.15),
R=1-a/Q = constant (6.17)

Implicit in egn. (6.16) is the assumption that the axial velocity across the rotor
remains constant which, of course, is tantamount to ignoring radial equilibrium.
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The axial velocitymustchange in crossing the rotor row so that eqn. (6.17) is only
a crude approximation at the best. Just how crude is this approximation will be
indicated below.

Assuming constant stagnation enthalpy at entry to the stage, integrating
egn. (6.6a), the axial velocity distributions before and after the rotor are

c?, = constant— 4a(3ar® — binr), (6.18a)
c2, = constant— 4da(3ar? + binr), (6.18b)

More conveniently, these expressions can be written non-dimensionally as,

2 2 2

) 2a 1/r b r

(&) =n-(5) 2(7) -2 (‘)] (6152
2 2 2

2\ 2a 1/r b r

in which U; = Qr, is the tip blade speed. The constadts A, are not entirely
arbitrary as the continuity equation, eqn. (6.12), must be satisfied.

ExAMPLE 6.2. As an illustration consider a single stage of an axial-flow air
compressor of hub-tip ratio 0.4 with a nominally constant reaction (i.e. according to
egn. (6.17)) of 50%. Assuming incompressible, inviscid flow, a blade tip speed of
300 m/s, a blade tip diameter of 0.6 m, and a stagnation temperature rise tf,16.1
determine the radial equilibrium values of axial velocity before and after the rotor.
The axial velocity far upstream of the rotor at the casing is 120 m/s. Takéor
air as 1.005 kJ/(K&).

Solution The constants in egn. (6.19) can be easily determined. From eqgn. (6.17)
Combining eqgns. (6.14) and (6.17)

b AW _C, AT
ar2  2Q2(1—R)yr?2  2U%(1—R)
1005x 16.1
=———_-""=018
30¢

The inlet axial velocity distribution is completely specified and the constant
solved. From eqn. (6.19a)

2
<%> = A1 — [3(r/r)? — 0.18In(r/r,)].
t
At r =1, ¢x1/U, = 0.4 and hencel; = 0.66.
Although an explicit solution for, can be worked out from eqn. (6.19b) and
eqgn. (6.12), it is far speedier to use a semigraphical procedure. For an arbitrarily
selected value od,, the distribution ofc,,/U, is known. Values ofr/r;) - (cx2/U;)
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FiG. 6.5. Solution of exit axial-velocity profile for a first power stage.

and (r/r;) - (cx1/U,) are plotted against/r, and the areas under these curves
compared. New values of, are then chosen until eqn. (6.12) is satisfied. This
procedure is quite rapid and normally requires only two or three attempts to give
a satisfactory solution. Figure 6.5 shows the final solution,9fU, obtained after
three attempts. The solution is,

(i) =oso- [ (7) voron()]

It is illuminating to calculate the actual variation in reaction taking account of
the change in axial velocity. From eqn. (5.10c) the true reaction across a normal
stage is,

/ W% B W%
2U (co2 — co1)
From the velocity triangles, Figure 5.2,

2 2 2 2
w1 — w5 = (Wa1 + we2)(We1 — We2) + (Cip — Cio)-

AS wo1 + wo2 = 2U — (cp1 + cg2) andwgr — wea = ca2 — Co1,

Co1 t+ Co2 Cfl — sz
2U 2U(C92 — Cg]_) ’
For the first power swirl distribution, egn. (6.15),

R=1-

Ro1_% =
Q 4Qb
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From the radial equilibrium solution in egns. (6.19), after some rearrangement,

- =A1—A2+ 2a\, (1
4Qb 20, Q n )

where

g AW C,ATs
‘T Uz T ez

In the above example, X a/Q = 1, yr = 0.18
R =0.778+ In(r/r)).

The true reaction variation is shown in Figure 6.5 and it is evident that egn. (6.17)
is invalid as a result of axial velocity changes.

The direct problem

The flow angle variation is specified in the direct problem and the radial equi-
librium equation enables the solution af and ¢y to be found. The general radial
equilibrium equation can be written in the form

dhg ds cg de
——_Tr1T=—=2 -
dr dr r + Cdr
2 sir? d
_osre S (6.20)
r dr

ascyg = cSina.
If both dho/dr and d/dr are zero, eqn. (6.20) integrated gives

. dr
loge = — [ sirfa— + constant
r

or,ifc=c¢, atr =r,, then

g d
- exp(—/ sinzoz—r> . (6.21)
Cm T r
If the flow angle« is held constant, eqn. (6.21) simplifies still further,
—sin®a
&% <r> (6.22)
Cm Cxm Com 'm

The vortex distribution represented by eqn. (6.22) is frequently employed in practice
as untwisted blades are relatively simple to manufacture.

The general solution of egn. (6.20) can be found by introducing a suitafge
grating factor into the equation. Multiplying throughout by eprZSin2 adr/r] it
follows that

% {czexp {Z/Sinzadr/r} } =2 (dd}if) — ng) exp [Z/Sinzadr/r} .
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After integrating and inserting the limit= c,, atr = r,,, then

c?exp [2 /r sir? ozdr/r} — c,zn exp [2 /fm sir? ozdr/r]

= 2/}. <dh0 — Tds> exp [Z/Sin2 otdr/r] dr. (6.23)
ry \ OF dr

Particular solutions of eqn. (6.23) can be readily obtained for simple radial distri-
butions of«, hg ands. Two solutions are considered here in which bothdr =
ke2 /r,, and &/dr = 0, k being an arbitrary constant

(i) Let a = 2sirfa. Then exp[2[ sirf adr/r] = r* and, hence

¢ 2 r a k r 1+a
(&) (5) =11 | () ‘1]' (©:258)

Equation (6.22) is obtained immediately from this result wita: 0.
(ii) Let br/r,, = 2sirf«. Then,

c2exp(br/ry,) — c2 exp(b) = (kc2 /1) / exp(br/ry)dr

and eventually,
2
<i> Ky (1 . 5) exp {b <1 . L)] . (6.23b)
Cm b b T'm

Compressible flow through a fixed blade row

In the blade rows of high-performance gas turbines, fluid velocities approaching,
or even exceeding, the speed of sound are quite normal and compressibility effects
may no longer be ignored. A simple analysis is outlined below for the inviscid flow
of a perfect gas throughfiaxed row of blades which, nevertheless, can be extended
to the flow through moving blade rows.

The radial equilibrium equation, eqgn. (6.6), appliectmnpressibldlow as well
as incompressible flow. With constant stagnation enthalpy and constant entropy, a
free-vortex flow therefore implies uniform axial velocity downstream of a blade row,
regardless of anglensitychanges incurred in passing through the blade row. In fact,
for high-speed flows themmustbe a density change in the blade row which implies
a streamline shift as shown in Figure 6.1. This may be illustrated by considering
the free-vortex flow of a perfect gas as follows. In radial equilibrium,

2 2
}d—p =% _ K with ¢y = K/r.
o dr r r3

For reversible adiabatic flow of a perfect gag,= EpY”, where E is

constant. Thus

/p_l/ydp = EK? / r~3dr + constant
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therefore

-1 EK2 y/(y—=1)
p = |constant- r—- (6.24)
2
2y r

For this free-vortex flow the pressure, and therefore the density also, must be larger at
the casing than at the hub. The density difference from hub to tip may be appreciable
in a high-velocity, high-swirl angle flow. If the fluid is without swirl at entry to the
blades the density will be uniform. Therefore, from continuity of mass flow there
must be a redistribution of fluid in its passage across the blade row to compensate
for the changes in density. Thus, for this blade row, the continuity equation is,

m= p1Ai1c,1 = 27TCx2/ pordr, (6.25)

T'n

where p; is the density of the swirling flow, obtainable from eqgn. (6.24).

Constant specific mass flow

Although there appears to be no evidence that the redistribution of the flow across
blade rows is a source of inefficiency, it has been suggested by Horlock (1966) that
the radial distribution oty for each blade row is chosen so that the product of axial
velocity and density is constant with radius, i.e.

drir/dA = pcy = pc COSa = p,,c,y COSK, = constant (6.26)

where subscriptz denotes conditions at = r,,. This constant specific mass flow
designis the logical choice when radial equilibrium theory is applied to compressible
flows as the assumption that = 0 is then likely to be realised.

Solutions may be determined by means of a simple numerical procedure and, as
an illustration of one method, a turbine stage is considered here. It is convenient
to assume that the stagnation enthalpy is uniform at nozzle entry, the entropy is
constant throughout the stage and the fluid is a perfect gas. At nozzle exit under
these conditions the equation of radial equilibrium, eqgn. (6.20), can be written as

de/c = — sir adr/r. (6.27)

From eqn. (6.1), nothing that at constant entropy the acoustic velecity
V/(dp/dp),

1dp 1 /dp dp a’dp  ? .
—_— = — _— —_— = —— = —SII’IZOl,
pdr p\dp dr o dr r

~.dp/p = M?sir? adr/r (6.28)
where the flow Mach number

M =c/a = c//(yRT). (6.28a)
The isentropic relation between temperature and density for a perfect gas is

T/Tw = (p/pm) "
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which after logarithmic differentiation gives
dT/T = (y — D)dp/p. (6.29)

Using the above set of equations the procedure for determining the nozzle exit
flow is as follows. Starting at = r,,, values ofc,,, «,,, T,, and p,, are assumed to
be known. For a small finite intervalr, the changes in velocitic, density A p,
and temperature\T can be computed using eqgns. (6.27), (6.28) and (6.29) respec-
tively. Hence, at the new radius= r,, + Ar the velocityc = ¢,, + Ac, the density
o = pm + Ap and temperatur@ = T, + AT are obtained. The corresponding flow
anglex and Mach numbeM can now be determined from egns. (6.26) and (6.28a)
respectively. Thus, all parameters of the problem are known at radius,, + Ar.

This procedure is repeated for further increments in radius to the casing and again
from the mean radius to the hub.

Figure 6.6 shows the distributions of flow angle and Mach number computed
with this procedure for a turbine nozzle blade row o8 Gub/tip radius ratio. The
input data used waa,, = 70.4deg andM = 0.907 at the mean radius. Air was
assumed at a stagnation pressure of 859 kPa and a stagnation temperature of 465K.
A remarkable feature of these results is the almost uniform swirl angle which is
obtained.

With the nozzle exit flow fully determined the flow at rotor outlet can now be
computed by a similar procedure. The procedure is a little more complicated than
that for the nozzle row because the specific work done by the rotor is not uniform
with radius. Across the rotor, using the notation of Chapter 4,

ho2 — ho3 = U(co2 + cp3) (630)
1.4
1.2
f=))
D
= ©
2 o
[S -
2 10} M - 80 %
§ &
= 3
[T
o
0.8 \_ 70
0.6 ] 1 1 60
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Radius ratio, r/r,

FiG. 6.6. Flow angle and Mach number distributions with radius of a nozzle blade row
designed for constant specific mass flow.
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and hence the gradient in stagnation enthalpy after the rotor is
dh,3/dr = —d[U(cy2 + c3)]/dr = —d(Ucyp)/dr — d(Ucz sinag)/dr.
After differentiating the last term,
—dh, = d(Ucgp) + U(csinadr/r + sinadc + ¢ cosada) (6.30a)

the subscript 3 having now been dropped.
From eqgn. (6.20) the radial equilibrium equation applied to the rotor exit flow is

dh, = ¢?sir? adr/r + cdc. (6.30b)
After logarithmic differentiation ofoc cose = constant,
dp/p + dc/c = tana do. (6.31)

Eliminating successively i between eqns. (6.30a) and (6.30b)/d between
egns. (6.28) and (6.31) and finallg drom the resulting equations gives

L1+ D) = _sinza{d(”"“ (1 ) d} (6.32)

c rco

whereM, = M cosa = c cosa/+/(yRT) and the static temperature
T=T3=T,— 03/(2Cp)
= Top — [Ulcop + coa) + 3¢31/C . (6.33)

The verification of eqn. (6.32) is left as an exercise for the diligent student.
Provided that the exit flow angles; at r = r,, and the mean rotor blade speeds
are specified, the velocity distribution, etc., at rotor exit can be readily computed

from these equations.

Off-design performance of a stage

A turbine stage is considered here although, with some minor modifications, the
analysis can be made applicable to a compressor stage.

Assuming the flow is at constant entropy, apply the radial equilibrium equation,
egn. (6.6), to the flow on both sides of the rotor, then

dhog d/’loz d dng Co3 d
S _ T o =c, “8 =
dr dr dr (rcoz + rcga) = €3 dr + r dr (rcea)
Therefore
deya  fco2 d de,s Co3 d
Cx2 ar + (7 - Q) a(”cez) = Cx3 ar + (7 + Q) a("Ces)-

Substitutingegs = cyztanBs — Qr into the above equation, then, after some simpli-
fication,

dc, c d dc, c
Coo—2 + (%2 - Q) *(Vcez) =3 g : 4 ﬂtanﬂg—(rcxgtanﬂg)

dr
— 2Qc,3 tangs. (6.34)
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In a particular problem the quantities, cg2, B3 are known functions of radius
and Q2 can be specified. Equation (6.34) is thus a first order differential equation in
which ¢,z is unknown and may best be solved, in the general case, by numerical
iteration. This procedure requires a guessed valugzadit the hub and, by applying
egn. (6.34) to a small interval of radiusr, a new value ot,3 at radiusr, + Ar is
found. By repeating this calculation for successive increments of radius a complete
velocity profilec,s can be determined. Using the continuity relation

Tt Tt
/ c3rdr = / ceordr,
Th Y

this initial velocity distribution can be integrated and a new, more accurate, estimate
of ¢,3 at the hub then found. Using this value @f the step-by-step procedure is
repeated as described and again checked by continuity. This iterative process is
normally rapidly convergent and, in most cases, three cycles of the calculation
enables a sufficiently accurate exit velocity profile to be found.

The off-design performance may be obtained by making the approximation that
the rotor relative exit anglg; and the nozzle exit angle, remain constant at a
particular radius with a change in mass flow. This approximation is not unrealistic
as cascade data (see Chapter 3) suggest that fluid angles at outlet from a blade row
alter very little with change in incidence up to the stall point.

Although any type of flow through a stage may be successfully treated using this
method, rather more elegant solutions in closed form can be obtained for a few
special cases. One such case is outlined below for a free-vortex turbine stage whilst
other cases are already covered by eqns. (6.&123).

Free-vortex turbine stage

Suppose, for simplicity, a free-vortex stage is considered where, at the design
point, the flow at rotor exit is completely axial (i.e. without swirl). At stage entry
the flow is again supposed completely axial and of constant stagnation entpalpy
Free-vortex conditions prevail at entry to the rotaty, = rc,ptana, = constant.

The problem is to find how the axial velocity distribution at rotor exit varies as the
mass flow is altered away from the design value.

At off-design conditions the relative rotor exit anghg is assumed to remain
equal to the valugg* at the design mass flow @denotes design conditions). Thus,
referring to the velocity triangles in Figure 6.7, at off-design conditions the swirl
velocity cy3 is evidently non-zero,

co3 = cztanfz — U

= catang; — Qr. (6.35)
At the design conditiong}; = 0 and so
ciytang; = Qr. (6.36)
Combining egns. (6.35) and (6.36)
con = Qr <2 - 1) : (6.37)
€x3
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FiG. 6.7. Design and off-design velocity triangles for a free-vortex turbine stage.

The radial equilibrium equation at rotor outlet gives

dh dc)C C d
=% :i —93 —(rc93> —Q—(rcea), (6.38)
dr d dr

after combining with egn. (6.33), nothing thaipg/dr = 0 and thatd/dr)(rcg2) = 0
at all mass flows. From eqgn. (6.37),

Co3 Cx3 Cx3
Q-‘ri Q*,rC93=Qr2<*—l>,
r Cx3 Cx3

which when substituted into eqn. (6.38) gives,

_ deys _ S'Z_z [Zr (% B 1> r? dcxg]
dr 3 Cx3 ¢y dr

After rearranging,

de, —d(Q?r?
< 2( ) (6.39)
ca—cly (5 + Q%2
Equation (6.39) is immediately integrated in the form
o —Cy _ Gf+ Q) (6.40)

Cam — Cly 2+ Q22

where ¢,z = c,3, at r = r,,. Equation (6.40) is more conveniently expressed in a
non-dimensional form by introducing flow coefficients= ¢,3/U,;, ¢* = cl3/Up
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FiG. 6.8. Off-design rotor exit flow coefficients.

and¢,, = ¢,3u/U. Thus,

¢/¢p*—1 @241
Su/b — 1§72+ (r/r)?

If r,, is the mean radius thens, = c,1 and, thereforeg,, provides an approximate
measure of the overall flow coefficient for the machine (N:B.is uniform).

The results of this analysis are shown in Figure 6.8 for a representative design
flow coefficient¢* = 0.8 at several different off-design flow coefficients, with
r/r, = 0.8 at the hub and/r,, = 1.2 at the tip. It is apparent for values ¢f, < ¢*,
that c,3 increases from hub to tip; conversely foy, > ¢*, c,3 decreases towards
the tip.

The foregoing analysis is only a special case of the more general analysis of free-
vortex turbine and compressor flows (Horlock and Dixon 1966) in which rotor exit
swirl, rc}5 is constant (at design conditions), is included. However, from Horlock
and Dixon, it is quite clear that even for fairly large valueswgf, the value ofg
is little different from the value found whes} = O, all other factors being equal.

In Figure 6.8 values op are shown whem}, = 31.4° at ¢,, = 0.4(¢* = 0.8) for
comparison with the results obtained whejn= 0.

It should be noted that the rotor efflux flow at off-design conditionsdsa free

vortex.

(6.40a)

Actuator disc approach

In the radial equilibrium design method it was assumed that all radial motion
took place within the blade row. However, in most turbomachines of low-kipb
ratio, appreciable radial velocities can be measured outside the blade row. Figure 6.9,
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FiG. 6.9. Variation of the distribution in axial velocity through a row of guide vanes
(adapted from Hawthorne and Horlock 1962).

taken from a review paper by Hawthorne and Horlock (1962), shows the distribution
of the axial velocity component at various axial distances upstream and downstream
of an isolated row of stationary inlet guide vanes. This figure clearly illustrates the
appreciable redistribution of flow in regions outside of the blade row and that radial
velocities must exist in these regions. For the flow through a single row of rotor
blades, the variation in pressure (near the hub and tip) and variation in axial velocity
(near the hub) both as functions of axial position, are shown in Figure 6.10, also
taken from Hawthome and Horlock. Clearly, radial equilibrium is not established
entirely within the blade row.

A more accurate form of three-dimensional flow analysis than radial equilibrium
theory is obtained with thactuator discconcept. The idea of an actuator disc is
quite old and appears to have been first used in the theory of propellers; it has
since evolved into a fairly sophisticated method of analysing flow problems in
turbomachinery. To appreciate the idea of an actuator disc, imagine that the axial
width of each blade row is shrunk while, at the same time, the spde®d ratio,
the blade angles and overall length of machine are maintained constant. As the
deflection through each blade row for a given incidence is, apart from Reynolds
number and Mach number effects (cf. Chapter 3 on cascades), fixed by the cascade
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FiG. 6.10. (a) Pressure variation in the neighbourhood of a rotating blade row. (b) Axial
velocity at the hub in the neighbourhood of a rotating blade row (adapted from
Hawthorne and Horlock 1962).

geometry, a blade row of reduced width may be considered to affect the flow in
exactly the same way as the original row. In the limit as the axial width vanishes, the
blade row becomes, conceptuallypkane discontinuityof tangential velocity- the
actuator disc. Note that while the tangential velocity undergoes an abrupt change in
direction, the axial and radial velocities are continuous across the disc.



Three-dimensional Flows in Axial Turbomachines 189

Equivalent actuator disc

ey

01 /02
4

Tip

—————— 3
————————p

L Hub
/-
Streamlines

c.l.

FiG. 6.11. The actuator disc assumption (after Horlock 1958).

An isolated actuator disc is depicted in Figure 6.11 with radial equilibrium estab-

lished at fairly large axial distances from the disc. An approximate solution to the
velocity fields upstream and downstream of the actuator can be found in terms
of the axial velocity distributionsfar upstreamand far downstreamof the disc.
The detailed analysis exceeds the scope of this book, involving the solution of the
equations of motion, the equation of continuity and the satisfaction of boundary
conditions at the walls and disc. The form of the approximate solution is of consid-
erable interest and is quoted below.

For convenience, conditions far upstream and far downstream of the disc are
denoted by subscriptsol andoco2 respectively (Figure 6.11). Actuator disc theory
proves that at the disa & 0), at any given radius, the axial velocity is equal to the
meanof the axial velocities atol andoo2 at thesameradius, or

Cx01 = Cx02 = %(Cxool + Cro02)- (641)

Subscripts 01 and 02 denote positions immediately upstream and downstream
respectively of the actuator disc. Equation (6.41) is known asrtban-value rule

In the downstream flow fieldx = 0), the differencein axial velocity at some
position (, r4) to that at positionix = oo, r4) is conceived as a velocity perturbation.
Referring to Figure 6.12, the axial velocity perturbation at the dise- 0, r4) is

Cy 4
Cxx1 l
Ag—A Cy. _Cy
[ Ao= q . 0
Cxacz —f T
X |—
Actuator located at
x=0
Fan
Nt

FiG. 6.12. Variation in axial velocity with axial distance from the actuator disc.



190 Fluid Mechanics, Thermodynamics of Turbomachinery

denoted byAg and at position(x, r4) by A. The important result of actuator disc
theory is that velocity perturbatiordecay exponentiallaway from the disc. This
is also true for the upstream flow fietd < 0). The result obtained for the decay
rate is

A/Ao =1 — explEmx/(r, — )], (6.42)

where the minus and plus signs above apply to the flow regioesO and
x < 0 respectively. Equation (6.42) is often called thettling-rate rule Since
e =co1+ A, ¢z = o2 — A and noting thatho = 3 (Cxoo1 — Cro02), €QNS. (6.41)
and (6.42) combine to give,

Cx1 = Cxool — %(Cxocl — Cxoo2) €XPlTx/ (re — 14)], (6.433
Cx2 = Cxo02 + %(Cxocl — Cxo02) eXp[_”x/(Vz - rh)]- (6.43b)

At the disc,x = 0, eqgns. (6.43) reduce to eqn. (6.41). It is of particular interest to
note, in Figures 6.9 and 6.10, how closely isolated actuator disc theory compares
with experimentally derived results.

Blade row interaction effects

The spacing between consecutive blade rows in axial turbomachines is usually
sufficiently small for mutual flow interactions to occur between the rows. This
interference may be calculated by an extension of the results obtained from isolated
actuator disc theory. As an illustration, the simplest case of two actuator discs
situated a distanc&apart from one another is considered. The extension to the case
of a large number of discs is given in Hawthorne and Harlock (1962).

Consider each disc in turn as though it were in isolation. Referring to Figure 6.13,
disc A, located atc = 0, changes the far upstream velocity,; t0 cyo02 far down-
stream. Let us suppose for simplicity that the effect of désdocated atx = 3,
exactly cancels the effect of digc(i.e. the velocity far upstream of di®iS cyo02
which changes te,..1 far downstream). Thus, for dist in isolation,

1 —77 | x|
Cx = Cxool — E(Cxool — Cxo02) EXP |: :| , x=0, (6.44)
H
1 —77 | x|
Cx = Cxoo2 t+ E(Cxool — Cxo02) exp|———1, <X 3 0, (6.45)
H
where|x| denotes modulus of andH = r; — ry,.
For discB in isolation,
1 —7 |x — 4|
Cx = Cxo02 — E(CXOOZ — Crool) exp |:4:| , X g 3, (646)
H
1 —7 |x — §|
Cx = Cxool + E(CXOOZ - Cxool) exp |:T:| s X Z 8. (647)

Now the combined effect of the two discs is most easily obtained by extracting
from the above four equations the velocity perturbations appropriate to a given
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FiG. 6.13. Interaction between two closely spaced actuator discs.

region and adding these to the related radial equilibrium velocity xEe10, and to
Croo1 the perturbation velocities from eqgns. (6.44) and (6.46).

1 [—7 x| [—7 |x — 8]
Cr = Crool — E(cxwl — Croo2) {exp H —exp T } . (6.48)
For the region & x < 6,
1 [— | [— — 8|
Cx = Cxo02 + E(Cxool - CxooZ) {exp I 7;le| ] + exp _%'_ } . (649)
For the regiont 2 §,
1 [—7 x| ] [—7 |x — 8]
x = Cxco A Cxo01 — Cxeo eX —exp|—— . 6.50
&=c¢ 1+2(C 1—¢ 2){ p_ " p_ I } (6.50)

Figure 6.13 indicates the variation of axial velocity when the two discs are
regarded assolated and when they areombined It can be seen from the above
equations that as the gap between these two discs is increased, so the perturba-
tions tend to vanish. Thus in turbomachines whie is fairly small (e.g. the front
stages of aircraft axial compressors or the rear stages of condensing steam turbines),
interference effects are strong and one can infer that the simpler radial equilibrium
analysis is then inadequate.

Computer-aided methods of solving the through-flow
problem

Although actuator disc theory has given a better understanding of the complicated
meridional (the radial-axial plane) through-flow problem in turbomachines of simple
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geometry and flow conditions, its application to the design of axial-flow compressors

has been rather limited. The extensions of actuator disc theory to the solution of
the complex three-dimensional, compressible flows in compressors with varying

hub and tip radii and non-uniform total pressure distributions were found to have

become too unwieldy in practice. In recent years advanced computational methods
have been successfully evolved for predicting the meridional compressible flow in

turbomachines with flared annulus walls.

Reviews of numerical methods used to analyse the flow in turbomachines have
been given by Gostelowt al. (1969), Japikse (1976), Macchi (1985) and Whitfield
and Baines (1990) among many others. The literature on computer-aided methods
of solving flow problems is now extremely extensive and no attempt is made here
to summarise the progress. The real flow in a turbomachine is three-dimensional,
unsteady, viscous and is usually compressible, if not transonic or even supersonic.
According to Macchi the solution of the full equations of motion with the actual
boundary conditions of the turbomachine is still beyond the capabilities of the most
powerful modern computers. The best fully three-dimensional methods available are
still only simplifications of the real flow.

Through-flow methods

In any of the so-callethrough-flowmethods the equations of motion to be solved
are simplified. First, the flow is taken to be steady in both the absolute and relative
frames of reference. Secondly, outside of the blade rows the flow is assumed to
be axisymmetric, which means that the effects of wakes from an upstream blade
row are understood to have “mixed out” so as to give uniform circumferential
conditions. Within the blade rows the effects of the blades themselves are modelled
by using a passage averaging technique or an equivalent process. Clearly, with these
major assumptions, solutions obtained with these through-flow methods can be only
approximations to the real flow. As a step beyond this Stow (1985) has outlined the
ways, supported by equations, of including the viscous flow effects into the flow
calculations.

Three of the most widely used techniques for solving through-flow problems are:

(1) Streamline curvature, which is based on an iterative procedure, is described in
some detail by Macchi (1985) and earlier by Smith (1966). It is the oldest and
most widely used method for solving the through-flow problem in axial-flow
turbomachines and has with the intrinsic capability of being able to handle
variously shaped boundaries with ease. The method is widely used in the gas
turbine industry.

(2) Matrix through-flow or finite difference solutions (Marsh 1968), where computa-
tions of the radial equilibrium flow field are made at a number of axial locations
within each blade row as well as at the leading and trailing edges and outside
of the blade row. An illustration of a typical computing mesh for a single blade
row is shown in Figure 6.14.

(3) Time-marching (Denton 1985), where the computation starts from some
assumed flow field and the governing equations are marched forward with time.
The method, although slow because of the large number of iterations needed to
reach a convergent solution, can be used to solve both subsonic and supersonic
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FiG. 6.14. Typical computational mesh for a single blade row (adapted from
Macchi 1985).

flow. With the present design trend towards highly loaded blade rows, which
can include patches of supersonic flow, this design method has considerable
merit.

All three methods solve the same equations of fluid motion, energy and state
for an axisymmetric flow through a turbomachine with varying hub and tip radii
and therefore lead to the same solution. In the first method the equation for the
meridional velocityc,, = (c? + ¢2)/? in a plane (at = x,) contain terms involving
both the slope and curvature of the meridional streamlines which are estimated by
using a polynominal curve-fitting procedure through points of equal stream function
on neighbouring planes &k, — dx) and (x, 4+ dx). The major source of difficulty
is in accurately estimating the curvature of the streamlines. In the second method a
grid of calculating points is formed on which the stream function is expressed as a
quasi-linear equation. A set of corresponding finite difference equations are formed
which are then solved at all mesh points of the grid. A more detailed description of
these methods is rather beyond the scope and intention of the present text.

Secondary flows

No account of three-dimensional motion in axial turbomachines would be
complete without giving, at least, a brief description of secondary flow. When a
fluid particle possessingtation is turned (e.g. by a cascade) its axis of rotation is
deflected in a manner analogous to the motion of a gyroscope, i.e. in a direction
perpendicular to the direction of turning. The result of turning the rotation (or
vorticity) vector is the formation o$econdary flowsThe phenomenon must occur
to some degree in all turbomachines but is particularly in evidence in axial-flow
compressors because of the thick boundary layers on the annulus walls. This case
has been discussed in some detail by Horlock (1958), Preston (1953), Carter (1948)
and many other writers.
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FiG. 6.15. Secondary vorticity produced by a row of guide vanes.

Consider the flow at inlet to the guide vanes of a compressor to be completely
axial and with a velocity profile as illustrated in Figure 6.15. This velocity profile
is non-uniform as a result of friction between the fluid and the wall; the vorticity
of this boundary layer is normal to the approach veloeityand of magnitude

w1 = % (6.51)
dz
wherez is distance from the wall.

The direction ofw; follows from the right-hand screw rule and it will be observed
thatw; is in opposite directions on the two annulus walls. This vector is turned by
the cascade, thereby generatisgcondary vorticityparallel to the outlet stream
direction. If the deflection angle is not large, the magnitude of the secondary

vorticity w;, is, approximately,

ws 2¢ & (6.52)
A swirling motion of the cascade exit flow is associated with the vortigify as
shown in Figure 6.16, which is in opposite directions for the two wall boundary
layers. This secondary flow will be thtegrated effect of the distribution of
secondary vorticity along the blade length.

Now if the variation ofc; with z is known or can be predicted, then the distri-
bution of w; along the blade can be found using eqn. (6.52). By considering the
secondary flow to be small perturbation of the two-dimensional flow from the vanes,
the flow angle distribution can be calculated using a series solution developed by
Hawthorne (1955). The actual analysis lies outside the scope (and purpose) of this
book, however. Experiments on cascade show excellent agreement with these calcu-
lations provided there are but small viscous effects and no flow separations. Such
a comparison has been given by Horlock (1963) and a typical result is shown in
Figure 6.17. It is clear that the flow @verturnednear the walls andinderturned
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FiG. 6.16. Secondary flows at exit from a blade passage (viewed in upstream direction).
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FiG. 6.17. Exit air angle from inlet guide vanes (adapted from Horlock 1963).

some distance away from the walls. It is known that this overturning is a source of
inefficiency in compressors as it promotes stalling at the blade extremities.
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Problems

1. Derive the radial equilibrium equation for an incompressible fluid flowing with axisym-
metric swirl through an annular duct.

Air leaves the inlet guide vanes of an axial flow compressor in radial equilibrium and
with a free-vortex tangenital velocity distribution. The absolute static pressure and static
temperature at the hub, radius 0.3m, are 94.5kPa and 293K respectively. At the casing,
radius 0.4 m, the absolute static pressure is 96.5kPa. Calculate the flow angles at exit from
the vanes at the hub and casing when the inlet absolute stagnation pressure is 101.3 kPa.
Assume the fluid to be inviscid and incompressible. (TRke 0.287 kJ/(kgC) for air.).

2. A gas turbine stage has an initial absolute pressure of 350kPa and a temperature
of 565C with negligible initial velocity. At the mean radius, 0.36 m, conditions are as
follows:

Nozzle exit flow angle 68 deg
Nozzle exit absolute static pressure 207 kPa
Stage reaction 0.2

Determine the flow coefficient and stage loading factor at the mean radius and the reaction
at the hub, radius 0.31m, at the design speed of 8000 rev/min, given that stage is to have a
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free vortex swirl at this speed. You may assume that losses are absent. Comment upon the
results you obtain.
(Take C, = 1.148kJ(kgC) andy = 1.33.)

3. Gas enters the nozzles of an axial flow turbine stage with uniform total pressure at a
uniform velocity c; in the axial direction and leaves the nozzles at a constant flow angle
to the axial direction. The absolute flow leaving the rateis completely axial at all radii.
Using radial equilibrium theory and assuming no losses in total pressure show that

coL ap
(C% - C%)/Z = Umcé’mz |:1 - (L) :|

T'm

whereU,, is the mean blade speed,
comz 1S the tangential velocity component at nozzle exit at the mean radius,,.
(Note The approximate; = c; atr = r,, is used to derive the above expression.)

4. Gas leaves an untwisted turbine nozzle at an aadtethe axial direction and in radial
equilibrium. Show that the variation in axial velocity from root to tip, assuming total pressure
is constant, is given by

¢,r5" o = constant

Determine the axial velocity at a radius of 0.6 m when the axial velocity is 100 m/s at a
radius of 0.3 m. The outlet angteis 45 deg.

5. The flow at the entrance and exit of an axial-flow compressor rotor is in radial equilib-
rium. The distributions of the tangential components of absolute velocity with radius are:

cer = ar — b/r, before the rotar

co2 = ar + b/r, after the rotor

wherea andb are constants. What is the variation of work done with radius? Deduce expres-
sions for the axial velocity distributions before and after the rotor, assuming incompressible
flow theory and that the radial gradient of stagnation pressure is zero.

At the mean radiusy = 0.3m, the stage loading coefficient; = AW/U? is 0.3, the
reaction ratio is 0.5 and the mean axial velocity is 150 m/s. The rotor speed is 7640 rev/min.
Determine the rotor flow inlet and outlet angles at a radius of 0.24 m given that thdipub
ratio is 0.5. Assume that at the mean radius the axial velocity remained unch@apgedc,,
atr =0.3m).

(Note AW is the specific work and/, the blade tip speed.)

6. An axial-flow turbine stage is to be designed for free-vortex conditions at exit from
the nozzle row and for zero swirl at exit from the rotor. The gas entering the stage has a
stagnation temperature of 1000K, the mass flow rate is 32Kkg/s, the root and tip diameters
are 0.56 m and 0.76 m respectively, and the rotor speed is 8000 rev/min. At the rotor tip the
stage reaction is 50% and the axial velocity is constant at 183 m/s. The velocity of the gas
entering the stage is equal to that leaving.

Determine:

(i) the maximum velocity leaving the nozzles;
(ii) the maximum absolute Mach number in the stage;
(i) the root section reaction;
(iv) the power output of the stage;
(v) the stagnation and static temperatures at stage exit.

(TakeR = 0.287 kJ/(kgC) andC, = 1.147 kJ/(kgC).)
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7. The rotor blades of an axial-flow turbine stage are 100 mm long and are designed to
receive gas at an incidence of 3deg from a nozzle row. A free-vortex whirl distribution is
to be maintained between nozzle exit and rotor entry. At rotor exit the absolute velocity is
150 m/s in the axial direction at all radii. The deviation is 5deg for the rotor blades and zero
for the nozzle blades at all radii. At the hub, radius 200 mm, the conditions are as follows:

Nozzle outlet angle 70deg
Rotor blade speed 180m/s
Gas speed at nozzle exit 450 m/s

Assuming that the axial velocity of the gas is constant across the stage, determine

(i) the nozzle outlet angle at the tip;

(i) the rotor blade inlet angles at hub and tip;
(iii) the rotor blade outlet angles at hub and tip;
(iv) the degree of reaction at root and tip.

Why is it essential to have positivereaction in a turbine stage?

8. The rotor and stator of an isolated stage in an axial-flow turbomachine are to be repre-
sented by two actuator discs located at axial positiors0 andx = § respectively. The
hub and tip diameters are constant and the-higbradius ratior,,/r; is 0.5. The rotor disc
considered on its own has an axial velocity of 100 m/s far upstream and 150 m/s downstream
at a constant radius = 0.75r,. The stator disc in isolation has an axial velocity of 150 m/s
far upstream and 100 m/s far downstream at radius0.75r,. Calculate and plot the axial
velocity variation between-0.5 < x/r, < 0.6 at the given radius for each actuator disc in
isolation and for the combined discs when

(i) 8 = 0.1r,, (ii) 8 = 0.25r,, (iii) 8 = r;.
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CHAPTER 7

Centrifugal Pumps, Fans and
Compressors

And to thy speed add wings. (MILTON, Paradise Lost.)

Introduction

This chapter is concerned with the elementary flow analysis and preliminary
design ofradial-flow work-absorbing turbomachines comprising pumps, fans and
compressors. The major part of the discussion is centred around the compressor
since the basic action of all these machines is, in most respects, the same.

Turbomachines employing centrifugal effects for increasing fluid pressure have
been in use for more than a century. The earliest machines using this principle
were, undoubtedly, hydraulic pumps followed later by ventilating fans and blowers.
Cheshire (1945) recorded that a centrifugal compressor was incorporated in the build
of the whittle turbojet engine.

For the record, the first successful test flight of an aircraft powered by a
turbojet engine was on August 27, 1939 at Marienebe Airfield, Waruemunde,
Germany (Gas Turbine News (1989). The engine, designed by Hans von Ohain,
incorporated an axial flow compressor. The Whittle turbojet engine, with the
centrifugal compressor, was first flown on May 15, 1941 at Cranwell, England
(see Hawthorne 1978).

Development of the centrifugal compressor continued into the mid-1950s but, long
before this, it had become abundantly clear (Campbell and Talbert 1945, Moult and
Pearson 1951 that for the increasingly larger engines required for aircraft propulsion
the axial flow compressor was preferred. Not only was the frontal area (and drag)
smaller with engines using axial compressors but also the efficiency for the same
duty was better by as much as 3 or 4%. However, at very low air mass flow rates
the efficiency of axial compressors drops sharply, blading is small and difficult to
make accurately and the advantage lies with the centrifugal compressor.

In the mid-1960s the need for advanced military helicopters powered by small gas
turbine engines provided the necessary impetus for further rapid development of the
centrifugal compressor. The technological advances made in this sphere provided
a spur to designers in a much wider field of existing centrifugal compressor appli-
cations, e.g. in small gas turbines for road vehicles and commercial helicopters as
well as for diesel engine turbochargers, chemical plant processes, factory workshop
air supplies and large-scale air-conditioning plant, etc.

199
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Centrifugal compressors were the reasoned choice for refrigerating plants and
compression-type heat pumps used in district heating schemes described by Hess
(1985). These compressors with capacities ranging from below 1 MW up to nearly
30 MW were preferred because of their good economy, low maintenance and abso-
lute reliability. Dean (1973) quoted total-to-static efficiencies of 80 per cent for
small single-stage centrifugal compressors with pressure ratios of between 4 and 6.
Higher pressure ratios than this have been achieved in single stages, but at reduced
efficiency and a very limited airflow range (i.e. up to surge). For instance, Schorr
et al (1971) designed and tested a single-stage centrifugal compressor which gave
a pressure ratio of 10 at an efficiency of 72 per cent but having an airflow range of
only 10 per cent at design speed.

Came (1978) described a design procedure and the subsequent testing of a 6.5
pressure ratio centrifugal compressor incorporating 30u#exdx swept vanegiving
an isentropic total-to-total efficiency for the impeller of over 85 per cent. The overall
total-to-total efficiency for the stage was 76.5 per cent and, with a stage pressure
ratio of 6.8 a surge margin of 15 per cent was realised. The use of back swept
vanes and the avoidance of high vane loading were factors believed to have given
a significant improvement in performance compared to an earlier unswept vane
design.

Palmer and Waterman (1995) gave some details of an advanced two-stage
centrifugal compressor used in a helicopter engine with a pressure ratio of 14, a
mass flow rate of 3.3kg/s and an overall total-to-total efficiency of 80 per cent. Both
stages employed back swept vanes (approximately 47 deg) with a low aerodynamic
loading achieved by having a relatively large number of vanes (19 full vanes and
19 splitter vanes).

An interesting and novel compressor is the “axi-fuge”, a mixed flow design with a
high efficiency potential, described by Wiggins (1986) and giving on test a pressure
ratio of 6.5 at an isentropic efficiency (undefined) of 84 per cent. Essentially, the
machine has a typical short centrifugal compressor annulus but actually contains
six stages of rotor and stator blades similar to those of an axial compressor. The
axi-fuge is claimed to have the efficiency and pressure ratio of an axial compressor
of many stages but retains the compactness and structural simplicity of a centrifugal
compressor.

Some definitions

Most of the pressure-increasing turbomachines in use are of the radial-flow type
and vary from fans that produce pressure rises equivalent to a few millimetres of
water to pumps producing heads of many hundreds of metres of water. The term
pumpis used when referring to machines that increase the pressure of a flowing
liquid. The termfan is used for machines imparting only a small increase in pressure
to a flowing gas. In this case the pressure rise is usually so small that the gas can
be considered as being incompressiblec@mpressorgives a substantial rise in
pressure to a flowing gas. For purposes of definition, the boundary between fans
and compressors is often taken as that where the density ratio across the machine is
1.05. Sometimes, but more rarely nowadays, the talower is used instead of fan.
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A centrifugal compressor or pump consists essentially of a rotatmagller
followed by diffuser Figure 7.1 shows diagrammatically the various elements of
a centrifugal compressor. Fluid is drawn in through itlet casinginto the eye of
the impeller. The function of the impeller is to increase the energy level of the fluid
by whirling it outwards, thereby increasing the angular momentum of the fluid. Both
the static pressure and the velocity are increased within the impeller. The purpose
of the diffuser is to convert the kinetic energy of the fluid leaving the impeller into
pressure energy. This process can be accomplished by free diffusion in the annular
space surrounding the impeller or, as indicated in Figure 7.1, by incorporating a row
of fixed diffuser vanes which allows the diffuser to be made very much smaller.
Outside the diffuser is acroll or volute whose function is to collect the flow from
the diffuser and deliver it to the outlet pipe. Often, in low-speed compressors and
pump applications where simplicity and low cost count for more than efficiency,
the volute follows immediately after the impeller.

The hub is the curved surface of revolution of the impeller b; the shroudis
the curved surface — d forming the outer boundary to the flow of fluid. Impellers
may be enclosed by having the shroud attached to the vane ends (called shrouded
impellers) or unenclosed with a small clearance gap between the vane ends and
the stationary wall. Whether or not the impeller is enclosed the surtace] is
generally called the shroud. Shrouding an impeller has the merit of eliminating
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Fic. 7.1. Centrifugal compressor stage and velocity diagrams at impeller entry and exit.
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Fic. 7.2. Radial-flow pump and velocity triangles.

tip leakage losses but at the same time increases friction losses. NACA tests have
demonstrated that shrouding of a single impeller appears to be detrimental at high
speeds and beneficial at low speeds. At entry to the impeller the relative flow has a
velocity wy at anglep; to the axis of rotation. This relative flow is turned into the
axial direction by thénducer sectioror rotating guide vaness they are sometimes
called. The inducer starts at the eye and usually finishes in the region where the
flow is beginning to turn into the radial direction. Some compressors of advanced
design extend the inducer well into the radial flow region apparently to reduce the
amount of relative diffusion.

To simplify manufacture and reduce cost, many fans and pumps are confined
to a two-dimensional radial section as shown in Figure 7.2. With this arrangement
some loss in efficiency can be expected. For the purpose of greatest utility, relations
obtained in this chapter are generally in terms of the three-dimensional compressor
configuration.

Theoretical analysis of a centrifugal compressor

The flow through a compressor stage is a highly complicated, three-dimensional
motion and a full analysis presents many problems of the highest order of difficulty.
However, we can obtain approximate solutions quite readily by simplifying the flow
model. We adopt the so-callezhe-dimensionabpproach which assumes that the
fluid conditions are uniform over certain flow cross-sections. These cross-sections
are conveniently taken immediately before and after the impeller as well as at inlet
and exit of the entire machine. Where inlet vanes are used to give prerotation to the
fluid entering the impeller, the one-dimensional treatment is no longer valid and an
extension of the analysis is then required (see Chapter 6).



Centrifugal Pumps, Fans and Compressors 203

& &
< Q o
02 / 03 /
A
h 4
QA
2
/ 3¢
Rt
2
2 Y
| = constant

A )

Fic. 7.3. Mollier diagram for the complete centrifugal compressor stage.

Inlet casing

The fluid is accelerated from velocity to velocityc; and the static pressure falls
from po to p; as indicated in Figure 7.3. Since the stagnation enthalpy is constant
in steady, adiabatic flow without shaft work thégy = Ao, or,

1.2 1.2

Some efficiency definitions appropriate to this process are stated in Chapter 2.

Impeller

The general three-dimensional motion has components of velogity, andc,
respectively in the radial, tangential and axial directions ehe ¢ + ¢3 + c2.
Thus, from egn. (2.12e), the rothalpy is

I=h+ %(cf—l—cg —i—cf — 2Ucy).
Adding and subtractiné U? this becomes

I=h+3{U-c)?+ 2+ -U?. (7.1)
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From the velocity triangle, Figure 7.1, — ¢, = wy and together withw? = ¢2 +
w3 + c2, eqn. (7.1) becomes

I=h+ 3w —U?

or

I = horel — %UZ,
since

horel = h + %Wz.

Sincel, = I, across the impeller, then
hy —hy = 3(U5 — U + 1(wi — w)). (7.2)

The above expression provides the reason why the static enthalpy rise in a
centrifugal compressor is so large compared with a single-stage axial compressor.
On the right-hand side of egn. (7.2), the second té(wﬁ — w?), is the contribution
from the diffusion of relative velocity and was obtained for axial compressors also.
The first term,%(U% — U?), is the contribution due to the centrifugal action which
is zero if the streamlines remain at the same radii before and after the impeller.

The relation between state points 1 and 2 in Figure 7.3 can be easily traced with
the aid of eqn. (7.2)

Referring to Figure 7.1, and in particular the inlet velocity diagram, the absolute
flow has no whirl component or angular momentum apgd= 0. In centrifugal
compressors and pumps this is the normal situation where the flow is free to enter
axially. For such a flow the specific work done on the fluid, from eqn. (2.12c), is
written as

AW = Uacyo = hgp — ho1 (7.36)
in the case of compressors, and
AW = U2C92 = gH,' (73b)

in the case of pumps, wheié; (the “ideal” head) is the total head rise across
the pump excluding all internal losses. In high pressure ratio compressors it may
be necessary to impapterotation to the flow entering the impeller as a means of
reducing a high relative inlet velocity. The effects of high relative velocity at the
impeller inlet are experienced as Mach number effects in compressors and cavitation
effects in pumps. The usual method of establishing prerotation requires the installa-
tion of a row of inlet guide vanes upstream of the impeller, the location depending
upon the type of inlet. Unless contrary statements are made it will be assumed for
the remainder of this chapter that there is no prerotation dj;e= 0).

Conservation of rothalpy

A cornerstone of the analysis of steady, relative flows in rotating systems has, for
many years, been the immutable nature of the fluid mechanical promehnigipy.
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The conditions under which the rothalpy of a fluid is conserved in the flow through
impellers and rotors have been closely scrutinised by several researchers. Lyman
(1993) reviewed the equations and physics governing the constancy of rothalpy in
turbomachine fluid flows and found thah increasein rothalpy was possible for
steady, viscous flow without heat transfer or body forces. He proved mathematically
that the rothalpy increase was generated mainly by the fluid friction acting on the
stationary shroud of the compressor considered. From his analysis, and put in the
simplest terms, he deduced that:

ho2 — hor = (Ucs)2 — (Uco)r + Wy /mn, (7.4)

whereW ; = (I, — I1) = [ n-t-W dA is the power loss due to fluid friction on the
stationary shroudn is a unit normal vectorr is a viscous stress tensM is the
relative velocity vector andAlis an element of the surface area. Lyman did not
give any numerical values in support of his analysis.

In the discussion of Lyman’s paper, Moore disclosed that earlier viscous flow
calculations of the flow in centrifugal flow compressors (see Magiral. 1984)
of the power loss in a centrifugal compressor had shown a rothalpy production
amounting to 1.2 per cent of the total work input. This was due to the shear work
done at the impeller shroud and it was acknowledged to be of the same order
of magnitude as the work done overcoming disc friction on the back face of the
impeller. Often disc friction is ignored in preliminary design calculations.

A later, careful, order-of-magnitude investigation by Bosman and Jadayel (1996)
showed that the change in rothalpy through a centrifugal compressor impeller would
be negligible under typical operating conditions. They also believed that it was not
possible toaccurately calculate the change in rothalpy because the effects due to
inexact turbulence modelling and truncation error in computation would far exceed
those due to non-conservation of rothalpy.

Diffuser

The fluid is decelerated adiabatically from velocityto a velocitycs, the static
pressure rising fronp, to pz as shown in Figure 7.3. As the volute and outlet
diffuser involve some further deceleration it is convenient to group the whole
diffusion together as the change of state from point 2 to point 3. As the stagna-
tion enthalpy in steady adiabatic flow without shaft work is constagt—= ho3 or
ha + 3¢% = h + 3c3. The process 2 to 3 in Figure 7.3 is drawn as irreversible, there
being a loss in stagnation pressyig — pos during the process.

Inlet velocity limitations

The inlet eye is an important critical region in centrifugal pumps and compressors
requiring careful consideration at the design stage. If the relative velocity of the inlet
flow is too large in pumps, cavitation may result with consequent blade erosion or
even reduced performance. In compressors large relative velocities can cause an
increase in the impeller total pressure losses. In high-speed centrifugal compressors
Mach number effects may become important with high relative velocities in the
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inlet. By suitable sizing of the eye the maximum relative velocity, or some related
parameter, can be minimised to give the optimum inlet flow conditions. As an
illustration the following analysis shows a simple optimisation procedure for a low-
speed compressor based upon incompressible flow theory.

For the inlet geometry shown in Figure 7.1, the absolute eye velocity is assumed
to be uniform and axial. The inlet relative velocityyg = (¢, + U?)Y/? which is
clearly a maximum at the inducer tip radiyg. The volume flow rate is

0 = cuAr = n(r3 — i3 — Q¥r2)Y2, (7.5)
It is worth noticing that with bothQ andr,; fixed:
() if ry is made large then, from continuity, the axial velocity is low but the blade

speed is high,
(ii) if r;1 is made small the blade speed is small but the axial velocity is high.

Both extremes produce large relative velocities and there must exist some
optimum radius; for which the relative velocity is a minimum.

For maximum volume flow, differentiate eqn. (7.5) with respect;io(keeping
w1 constant) and equate to zero,

100
T arxl

= 0=2ra(wW} — Q%32 — (4 — r2)QPra/ (Wl — QPr3)Y?

After simplifying,
2(W§1 - erszl) = (rszl - r/?l)Qz’
L 25 = kU,

wherek = 1 — (r,1/r1)? and U1 = Qry1. Hence, the optimum inlet velocity coef-
ficient is

¢ = cx1/Ug = CotBy = (k/2)Y2. (7.6)

Equation (7.6) specifies the optimum conditions for the inlet velocity triangles in
terms of the hub/tip radius ratio. For typical values of this ratio (i.8.0 rj1/ra

< 0.6) the optimum relative flow angle at the inducer gp lies between 56 deg
and 60 deg.

Optimum design of a pump inlet

As discussed in Chapter 1, cavitation commences in a flowing liquid when the
decreasing local static pressure becomes approximately equal to the vapour pressure,
Py TO be more precise, it is necessary to assume that gas cavitation is negligible
and that sufficient nuclei exist in the liquid to initiate vapour cavitation.

The pump considered in the following analysis is again assumed to have the
flow geometry shown in Figure 7.1. Immediately upstream of the impeller blades
the static pressure ip; = po1 — %pcfl where po; is the stagnation pressure and
¢,1 1S the axial velocity. In the vicinity of the impeller blades leading edges on the
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suction surfaces there is normally a rapid velocity increase which produces a further
decrease in pressure. At cavitation inception the dynamic action of the blades causes
the local pressure to reduce such that= p, = p; — ab(l/z,owf). The parameter

o Which is theblade cavitation coefficientorresponding to the cavitation inception
point, depends upon the blade shape and the flow incidence angle. For conventional
pumps (see Pearsall 1972) operating normally this coefficient lies in the rahge 0

op < 0.4. Thus, at cavitation inception.

p1= por— 3pc5 = pv+ 0p(3ow3)

s 8Hs = (po1— p)/p = 3¢5 + 0,(3wd) = 25 (1 + 0p) + 30,U7
whereH is the net positive suction head introduced earlier and it is implied that
this is measured at the shroud radius: ry;.

To obtain the optimum inlet design conditions consider the suction specific
speed defined a2, = Q0Y?/(gH,)%*, where Q = Uy1/ry1 and Q = cA1 =
mkrZc1. Thus,

Q4 UZica ¢

= = (7.7)
mk {51+ 0p) + 30pURI2 (5L 0p)d? + 505132

where¢ = c,1/U;1. To obtain the condition of maximur,, egn. (7.7) is differ-
entiated with respect t¢ and the result set equal to zero. From this procedure the
optimum conditions are found:

o 1/2

= — , 7.88

¢ {2<1+ab)} (53

gH, = 30,(3U2), (7.8b)
o 27k(2/3)t° 3.420k

= = . 7.8C
oL+ 0,05 0p(14 0p)08 (780

ExampLE 7.1. The inlet of a centrifugal pump of the type shown in Figure 7.1 is
to be designed for optimum conditions when the flow rate of water is Z#damd
the impeller rotational speed is 1450 rev/min. The maximum suction specific speed
Q,; = 3.0(rad) and the inlet eye radius ratio is to be 0.3. Determine

(i) the blade cavitation coefficient,
(ii) the shroud diameter at the eye,
(i) the eye axial velocity, and
(iv) the NPSH.

Solution (i) From egn. (7.8c),
02(1+ op) = (3.42k)%/Q% = 0.1196

with k =1 — (r1/r1)? =1—0.32=0.91. Solving iteratively (e.g. using the
Newton-Raphson approximationy; = 0.3030.

(i) As Q = nkrszlcxl andc, = ¢Qrg1
thenrd = Q/(7kQ¢) andQ = 14507/30 = 15184 rad/s.
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From eqn. (7.8a)p = {0.303/(2 x 1.303)}%° = 0.3410,
rf’l = 0.025/(7 x 0.91 x 15184 x 0.341) = 1.689x 1074,
o rs1 = 0.05528 m

The required diameter of the eye is 110.6 mm.
(iii)) cy1 = ¢pQ2rs1 = 0.341x 15184 x 0.05528= 2.862m/s.
(iv) From eqn. (7.8b),

0.750,¢%  0.75x 0.303 x 2.8622
g2 9.81x0.34R

H, = =1.632m

Optimum design of a centrifugal compressor inlet

To obtain high efficiencies from high pressure ratio compressors it is hecessary
to limit the relative Mach number at the eye.
The flow area at the eye can be written as

Al = IT}’_Yzlk, wherek =1 — (rhl/rﬂ)z.

Hence A; = mkU?/Q? (7.9)
with U = Qry1.
With uniform axial velocity the continuity equation ig = p1A1¢,1.

Noting from the inlet velocity diagram (Figure 7.1) that; = w,; cosp,1 and
U,1 = wy Sinfq1, then, using eqgn. (7.9),

Q2

p1km

For a perfect gas it is most convenient to express the static densityterms of
the stagnation temperatufg; and stagnation pressupg; because these parameters
are usually constant at entry to the compressor. Now,

= w3 Sir? B1 COSBy1. (7.10)

p _rTo

po po T’
With  C,To=C,T + 3c* andC, = yR/(y — 1)

T _
then — =14+ Mm% ==2

where the Mach numbebdf = ¢/(yRT)Y? = c/a, ag anda being the stagnation and
local (static) speeds of sound. For isentropic flow,

p T /(-1
me(m)

Thus,

T\ 17/0-D -1 -1/(y-1)
() e
£0 Ty 2
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where
po = po/(RTo).
The absolute Mach numbéf, and the relative Mach numbef,; are defined as
M1 = cy/a; = M,1C08B,1 andwg = M ,1a;.
Using these relations together with egn. (7.10)
mQ2RTo; M3 a3

= — sir? B,1 COSBy1
kT[p01 [1 + %()/ . 1)Mﬂ 1/(y-1)

Sinceapy/ay = [1+ 3(y — LHM?] Y2 and agy = (yRTo1)Y? the above equation is
rearranged to give

m$? B M2, sir? B3 cosf
1/2 — 1/(y—1)+3/2
mkypor(YRTo0Y? (14 1(y — DM cog B V7"

(7.11)

This equation is extremely useful and can be used in a number of different ways.
For a particular gas and known inlet conditions one can specify valugsRfpo;
andTo; and obtainiQ?/k as a function of/,; and ;1. By specifying a particular
value ofM,; as a limit, the optimum value g8,; for maximum mass flow can be
found. A graphical procedure is the simplest method of optimigiaas illustrated
below.

Taking as an example air, with= 1.4, eqgn. (7.11) becomes

M3, sir? By cospa
Z
(14 tM? cog B,1)

f(M,1) = mQ%/ (mkporagy) = (7.11a)

The rhs of egn. (7.11a) is plotted in Figure 7.4 as a functiof,pfor M,; = 0.8
and 0.9. These curves are a maximungat= 60 deg (approximately).

Shepherd (1956) considered a more general approach to the design of the
compressor inlet which included the effect of a free-vortex prewhirl or prerotation.
The effect of prewhirl on the mass flow function is easily determined as follows.
From the velocity triangles in Figure 7.5,

c1 = ¢,/ COSx; = w1 COSP1/ COSx1,

Cc1 w1 COSf1 Cosf;
Mi=—=——"—""=Mn .
COsSor1

ai aji COSoy

Also,
Ui = wySinB:1 + c1Sinag = wi cospz(tans; + tanay),
and
m = p1A1C,

mkp1

§22> w3 cos gi(tangy + tanap)?.  (7.11b)

.ok,
Som = @,O]_Ulwl cosfy =
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f(Mr1) = mQ2I(Ttk poy aos®)

0 | | | | | | |
10 20 30 40 50 60 70 80

Relative flow angle at shroud, 8,1, deg

FiG. 7.4. Variation of mass flow function for the inducer of a centrifugal compressor with
and without guide vanes (y = 1.4). For comparison both velocity triangles are drawn to
scale for M,; = 0.9 the peak values or curves.
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(¢) Velocity diagram at hub

FiG. 7.5. Effect of free-vortex prewhirl vanes upon relative velocity at impeller inlet.
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Thus, using the relations developed earlier®er/T1, po1/ p1 @andpoe1/ p1, We obtain
m§22 M3, cos By (tanB; + tanay)?

fM,1) = e i < . (7.12)

NIw

1
-1 1T
1+ VTMfl cog B/ co§a1> ’

Substitutingy = 1.4 for air into egn. (7.12) we get:
Q% M2 cos pi(tanp; + tanay)?
wkporag, (1+ %M 2 co? B/ coZ a1)4.

The rhs of eqn. (7.12a) is plotted in Figure 7.4 with) = 30 deg forM,; = 0.8 and
0.9, showing that the peak values @f2?/k are significantly increased and occur
at much lower values of;.

fMp) = (7.12a)

ExampLE 7.2. The inlet of a centrifugal compressor is fitted with free-vortex guide
vanes to provide a positive prewhirl of 30 deg at the shroud. The inlet hub/shroud
radius ratio is 0.4 and a requirement of the design is that the relative Mach number
does not exceed 0.9. The air mass flow is 1 kg/s, the stagnation pressure and temper-
ature are 101.3kPa and 288 K. For air take- 287 J/(kg K) andy = 1.4.

Assuming optimum conditions at the shroud, determine:

(1) the rotational speed of the impeller;

(2) the inlet static density downstream of the guide vanes at the shroud and the
axial velocity;

(3) the inducer tip diameter and velocity.

Solution (1) From Figure 7.4, the peak value of(M,;) =0.4307 at a
relative flow angleB; = 49.4deg. The constants needed agg = +/(yRTo1) =
3402 m/s, po1 = po1/(RTo1) = 1.2255 kg/n?? andk = 1 — 0.4%2 = 0.84. Thus, from
eqn. (7.12a)Q? = w fkpoiad, = 5.4843x 107. Hence,

Q = 74056 rad/s andV = 70 718 rev/min

o1 1.2255
(2) p1 = = = 0.98464 kg/n.

The axial velocity is determined from eqn. (7.11b):

o COSBLR — ¢ Q2 B 5.4843x 107
WS e pi(tanBy + tanay)2 | 7 x 0.84 x 0.98464x 3.0418
— 6.9388x 1CF,

c.oce =19073m/s

(3) A1 = = mkr?,

P1Cx
B mo 1
YT gpiek T m x 0.98464x 19073 x 0.84
o 11 = 0.04492 m andi;; = 8.984cm

U = Qrg = 74056 x 0.04492= 3327 mls

= 2.0178x 1073,
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Use of prewhirl at entry to impeller

Introducing positive prewhirl (i.e. in the direction of impeller rotation) can give a
significant reduction of the inlet Mach numhb#f,; but, as seen from eqn. (2.12c),
it reduces the specific work done on the gas. As will be seen later, it is necessary
to increase the blade tip speed to maintain the same level of impeller pressure ratio
as was obtained without prewhirl.

Prewhirl is obtained by fitting guide vanes upstream of the impeller. One arrange-
ment for doing this is shown in Figure 7.5a. The velocity triangles, Figure 7.5b
and c, show how the guide vanes reduce the relative inlet velocity. Guide vanes are
designed to produce either a free-vortex or a forced-vortex velocity distribution. In
Chapter 6 it was shown that for a free-vortex flow the axial velogcitys constant
(in the ideal flow) with the tangential velocity varying inversely with the radius.

It was shown by Wallacet al. (1975) that the use of free-vortex prewhirl vanes
leads to a significant increase in incidence angle at low inducer radius ratios. The
use of some forced-vortex velocity distribution does alleviate this problem. Some of
the effects resulting from the adoption of various forms of forced-vortex of the type

r n
Co =A|—
<Vsl>

have been reviewed by Whitfield and Baines (1990). Figure 7.6a shows, for a
particular case in whichyy, = 30 deg, 81, = 60 deg andg;; = 60 deg, the effect

of prewhirl on the variation of the incidence angies= 81 — 8; with radius ratio,

r/ry, for various whirl distributions. Figure 7.6b shows the corresponding varia-
tions of the absolute flow angley. It is apparent that a high degree of prewhirl
vane twist is required for either a free-vortex design or for the quadratic 2)
design. The advantage of the quadratic design is the low variation of incidence with
radius, whereas it is evident that the free-vortex design produces a wide variation of
incidence. Wallacest al. (1975) adopted the simple untwisted blade shape: Q)

which proved to be a reasonable compromise.

o
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(a) Radius ratio, r/r 4 (b) Radius ratio, r/r ¢

Fic. 7.6. Effect of prewhirl vanes on flow angle and incidence for «;s = 30 deg,
B1s = 60 deg and g}, = 60 deg. (a) Incidence angle. (b) Inducer flow angle.
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Slip factor

Introduction

Even under ideal (frictionless) conditions the relative flow leaving the impeller
of a compressor or pump will receive less than perfect guidance from the vanes and
the flow is said toslip. If the impeller could be imagined as being made with an
infinite number of infinitesimally thin vanes, then an ideal flow would be perfectly
guided by the vanes and would leave the impeller at the vane angle. Figure 7.7
compares the relative flow anglg,, obtained with a finite number of vanes, with
the vane angleg,. A slip factor may be defined as

o="22 (7.13a
Co2
where ¢y, is the tangential component of the absolute velocity and related to the
relative flow angles,. Thehypotheticaltangential velocity componen}, is related
to the vane anglg,. The slip velocity is given bycg = ¢, — cp2 SO that the slip
factor can be written as

c=1-2 (7.13b)
Co2

The slip factor is a vital piece of information needed by pump and compressor
designers (also by designers of radial turbines) as its accurate estimation enables the
correct value of the energy transfer between impeller and fluid to be made. Various
attempts to determine values of slip factor have been made and numerous research
papers concerned solely with this topic have been published. Wiesner (1967) has
given an extensive review of the various expressions used for determining slip
factors. Most of the expressions derived relate to radially vaned impefiges Q)
or to mixed flow designs, but some are given for backward swept vane (b s v)
designs. All of these expressions are derived from inviscid flow theory even though
the real flow is far from ideal. However, despite this lack of realism in the flow
modelling, the fact remains that good results are still obtained with the various
theories.

Bo' is the vane angle

B, is the average
relative flow angle

Cr2

Fic. 7.7. Actual and hypothetical velocity diagrams at exit from an impeller with back
swept vanes.
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The relative eddy concept

Suppose that an irrotational and frictionless fluid flow is possible which passes
through an impeller. If the absolute flow enters the impeller without spin, then at
outlet the spin of the absolute flomust still be zeroThe impeller itself has an
angular velocityQ2 so that, relative to the impeller, the fluid has an angular velocity
of —Q; this is the termed theelative eddy A simple explanation for the slip effect
in an impeller is obtained from the idea of a relative eddy.

At outlet from the impeller the relative flow can be regarded as a through-flow
on which is superimposed a relative eddy. The net effect of these two motions is
that the average relative flow emerging from the impeller passages is at an angle to
the vanes and in a direction opposite to the blade motion, as indicated in Figure 7.8.
This is the basis of the various theories of slip.

Slip factor correlations

One of the earliest and simplest expressions for the slip factor was obtained by
Stodola (1927). Referring to Figure 7.9 thlp velocity cg = cj, — cp2, is consid-
ered to be the product of the relative eddy and the radiji® of a circle which
can be inscribed within the channel. Thag = Qd/2. If the number of vanes is
denoted byZ then an approximate expressiehy (2rrp/Z) cosp, can be written
if Z is not small. Since&2 = U,/r, then

cos = ”U%osﬂz (7.130)
Now ascj, = Uz — c,otanpg; the Stodola slip factor becomes
o= 1 s (7.14)
Co2 Uz — cotang,
or,
_ (m/Z)cosp, (7.15)
1— ¢otanp;

whereg, = ¢,2/U>.

Q- Q)

|
__|__ ___i___

| (@ | (b)

FiG. 7.8. (a) Relative eddy without any throughflow. (b) Relative flow at impeller exit
(throughflow added to relative eddy).



Centrifugal Pumps, Fans and Compressors 215

Fic. 7.9. Flow model for Stodola slip factor.

A number of more refined (mathematically exact) solutions have been evolved
of which the most well known are those of Busemann, discussed at some length
by Wislicenus (1947) and Stanitz (1952) mentioned earlier. The volume of mathe-
matical work required to describe these theories is too extensive to justify inclusion
here and only a brief outline of the results is presented.

Busemann'’s theory applies to the special case of two-dimensional vanes curved
as logarithmic spirals as shown in Figure 7.10 Considering the geometry of the vane
element shown it should be an easy task for the student to prove that,

y =tang'In(rz/ry) (7.173)

i rdd = tan g’dr di=drsecg’
v o= 6,6,

FiG. 7.10. Logarithmic spiral vane. Vane angle g’ is constant for all radii.
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that the ratio of vane length to equivalent blade pitch is

.z (rz) (7.17b)

s 2n cosp’ r
and that the equivalent pitch is
27t(ry — r1)
YT ZnGa/rn)

The equi-angular or logarithmic spiral is the simplest form of radial vane system
and has been frequently used faump impellersin the past. The Busemann slip
factor can be written as

op = (A — Bz tanps)/ (1 — ¢z tanpy), (7.16)

where bothA and B are functions ofrp/r1, B, and Z. For typical pump and
compressor impellers the dependenceAadnd B on r,/r1 is negligible when the
equivalent/ /s exceeds unity. From eqgn. (7.17b) the requirement fer> 1, is that
the radius ratio must be sufficiently large, i.e.

rz2/r1 > exp(2m cosp'/Z). (7.170

This criterion is often applied to other than logarithmic spiral vanes and ghés

used instead of’. Radius ratios of typical centrifugal pump impeller vanes normally
exceed the above limit. For instance, blade outlet angles of impellers are usually
in the range 56< B, < 70 deg with between 5 and 12 vanes. Taking representative
values of g, = 60 deg andZ = 8 the rhs of eqgn. (7.17c) is equal to 1.48 which is
not particularly large for a pump.

So long as these criteria are obeyed the valu& ¢ constant and practically
equal to unity for all conditions. Similarly, the value dfis independent of the
radius ratior,/r; and depends o, andZ only. Values ofA given by Csanady
(1960) are shown in Figure 7.11 and may also be interpreted as the valydaf
zero through flow ¢, = 0).

The exact solution of Busemann makes it possible to check the validity of approx-
imate methods of calculation such as the Stodola expression. By pu#tiag0 in
egns. (7.15) and (7.16) a comparison of the Stodola and Busemann slip factors at
the zero through flow condition can be made. The Stodola value of slip comes close
to the exact correction if the vane angle is within the rangecS}, < 70 deg and
the number of vanes exceeds 6.

Stanitz (1952) applied relaxation methods of calculation to solve the potential
flow field between the blades (blade-to-blade solution) of eight impellers with blade
tip anglesp, varying between 0 and 45 deg. His main conclusions were that the
computed slip velocity,, was independent of vane angg and depended only
on blade spacing (number of blades). He also found that compressibility effects did
not affect the slip factor. Stanitz's expression for slip velocity is,

Cos = O.63U27T/Z (7.18)

and the corresponding slip facter using eqn. (7.14) is
0.637/Z

1—¢otang,’ (7.183

0x=1—
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Fic. 7.11. Head correction factors for centrifugal impellers (adapted from Csanady
(1960)).

For radial vaned impellers this becomes= 1 — 0.637/Z but is often written for
convenience and initial approximate calculationsras- 1 — 2/Z.

Ferguson (1963) has usefully compiled values of slip factor found from several
theories for a number of blade angles and blade numbers and compared them with
known experimental values. He found that for pumps, y#itbetween 60 deg and
70 deg, the Busemann or Stodola slip factors gave fairly good agreement with
experimental results. For radial vaned impellers on the other hand, the Stanitz
expression, eqn. (7.18a) agreed very well with experimental observations. For inter-
mediate values of, the Busemann slip factor gave the most consistent agreement
with experiment.

Wiesner (1967) reviewed all the available methods for calculating values of slip
factor and compared them with values obtained from tests. He concluded from
all the material presented that Busemann'’s procedure was still the most generally
applicable predictor for determining the basic slip factor of centripetal impellers.
Wiesner obtained the following simple empirical expression for the slip velocity:

Us./C0s53,
Cos = %- (7.199
and the corresponding slip factor
/ ZO.7
o, =1 VCOF2/ (7.19b)

(1—¢ztanpy)’

which, according to Wiesner, fitted the Busemann results “extremely well over the
whole range of practical blade angles and number of blades”.
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The above equation is applicable to a limiting mean radius ratio for the impeller
given by the empirical expression:

£ = <rl> = exp<_8'16cosﬂz> . (7.190)
"2/ lim Z

For values ofr1/r; > ¢ the slip factor is determined from the empirical expression:

3
ol =0, [1— <”/’"27_8) ] . (7.19d)
1-—¢

Head increase of a centrifugal pump

The actual delivered heall measured as thieead differencebetween the inlet
and outlet flanges of the pump and sometimes calledrtheometric headis less
than the ideal hea#l; defined by eqn. (7.3b) by the amount of the internal losses.
The hydraulic efficiency of the pump is defined as

H gH
= = _ (7.20)
"THi U
From the velocity triangles of Figure 7.2
co2 = Uz — cptanpy.
Therefore  H = n,U5(1 — ¢ptanpy)/g (7.20a)

where ¢, = ¢,2/U» and B, is the actual averaged relative flow angle at impeller
outlet.

With the definition of slip factorg = cgo/c),, H can, more usefully, be directly
related to the impeller vane outlet angle, as

H = n,oU5(1— ¢otanpy)/g. (7.20b)

In general, centrifugal pump impellers have between five and twelve vanes inclined
backwards to the direction of rotation, as suggested in Figure 7.2, with a vane tip
angle g, of between 50 and 70 deg. A knowledge of blade numiggrand ¢,
(usually small and of the order 0.1) generally enahleto be found using the
Busemann formula. The effect of slip, it should be noted, causes the relative flow
angle B, to become larger than the vane tip angle

EXAMPLE 7.3 A centrifugal pump delivers.Dm®/s of water at a rotational speed
of 1200 rev/min. The impeller has seven vanes which lean backwards to the direction
of rotation such that the vane tip angtg is 50 deg. The impeller has an external
diameter of 0.4m, an internal diameter of 0.2m and an axial width of 31.7 mm.
Assuming that the diffuser efficiency is 51.5%, that the impeller head losses are
10% of the ideal head rise and that the diffuser exit is 0.15m in diameter, estimate
the slip factor, the manometric head and the hydraulic efficiency.
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Solution Equation (7.16) is used for estimating the slip factor. Since
exp(2r cosB, /Z) = exp(2r x 0.643/7) = 1.78, is less tham,/r1 = 2, thenB =1
and A ~ 0.77, obtained by replotting the values df given in Figure 7.11 for
B, =50 deg and interpolating.

The vane tip speed/, = nND,/60 = 7 x 1200x 0.4/60 = 25.13 m/s
The radial velocityc,o = Q/(xD2b2) = 0.1/(r x 0.4 x 0.0317)
=251m/s
Hence the Busemann slip factor is

op =(0.77—-0.1 x 1.192)/(1 - 0.1 x 1.192) = 0.739,

Hydraulic losses occur in the impeller and in the diffuser. The kinetic energy leaving
the diffuser is not normally recovered and must contribute to the totalAbsgrrom
inspection of eqn. (2.45b), the loss in head in the diffusétis np)(c3 — c2)/(2g).

The head loss in the impeller is10x Uacyz/g and the exit head loss i$/(2g).
Summing the losses,

Hp = 0.485(c5 — ¢3)/(2¢) + 0.1 x Uacga/g + ¢5/(29).
Determining the velocities and heads needed,

co2 = opU2(1 — ¢ptanB,) = 0.739x 2513 x 0.881= 16.35m/s

H; = Upcyr/g = 2513 x 16.35/9.81 =418 m.

c3/(2g) = (16.35* 4 2.51%)/19.62 = 13.96 m

c3 = 4Q/(7d?) = 0.4/( x 0.15%) = 5.65m/s

Thereforec3/(2g) = 1.63m

ThereforeH; = 4.18+ 0.48513.96— 1.63) + 1.63=11.8m.
The manometric head is

H=H,—H;, =418-118=300m
and the hydraulic efficiency

nn=H/H; = T17%.

Performance of centrifugal compressors
Determining the pressure ratio

Consider a centrifugal compressor having zero inlet swirl, compressing a perfect
gas. With the usual notation the energy transfer is

AW = W/ = hop — ho1 = Uscep.
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The overall or total-to-total efficiency, is

_ hoas —ho1  CpTo1(Toass/Tor — 1)

Ne =

hog — h01 a h02 - hOl
= CpT01(To3ss/Tor — 1)/ (Uzcep). (7.21)

Now the overall pressure ratio is
T y/(y=1)
Pos _ <°3Y> . (7.22)
po1 To1

Substituting eqn. (7.21) into eqgn. (7.22) and noting igf'o1 = yRT01/(y — 1) =
a2;/(y — 1), the pressure ratio becomes

— D) Uzc,ptanay 170
pos _ [1+ = Dnelacro “2} (7.23)
po1 doy
From the velocity triangle at impeller outlet (Figure 7.1)
2 = c;2/Uz = (tanaz + tanpy)
and, therefore,
-1 CU2 tan v/(y—1)
pos _ {1 v~ DneUz “2} (7.242)
po1 aol(tanaz + tanpgy)

This formulation is useful if the flow angles can be specified. Alternatively, and
more usefully, agy, = ocy, = o(Uz — ¢,2tanpy), then

P9 _ 114 (v — Dineo(1 — g tanppm?]/0—Y (7.24b)

po1
whereM, = Us/ap1, is now defined as a blade Mach number.

It is of interest to calculate the variation of the pressure ratio of a radially
vaned {3, = 0) centrifugal air compressor to show the influence of blade speed
and efficiency on the performance. With= 1.4 ando = 0.9 (i.e. using the Stanitz
slip factor,oc = 1 — 1.98/Z and assuming = 20, the results evaluated are shown
in Figure 7.12. It is clear that both the efficiency and the blade speed have a strong
effect on the pressure ratio. In the 1970s the limit on blade speed due centrifugal
stress was about 500 m/s and efficiencies seldom exceeded 80 per cent giving, with a
slip factor of 0.9, radial vanes and an inlet temperature of 288 K, a pressure ratio just
above 5. In recent years significant improvements in the performance of centrifugal
compressors have been obtained, brought about by the development of computer-
aided design and analysis techniques. According to Whitfield and Baines (1990)
the techniques employed consist of “a judicious mix of empirical correlations and
detailed modelling of the flow physics”. It is possible to use these computer packages
and arrive at a design solution without any real appreciation of the flow phenomena
involved. Inall compressors the basic flow process is one of diffusion; boundary
layers are prone to separate and the flow is extremely complex. With separated
wakes in the flow, unsteady flow downstream of the impeller can occur. It must
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Pressure ratio, py; /Py,

111 I 1 I

1.1 1.2 1.3 1.4
Blade tip speed _ Up
Inlet stagnation speed of sound 8y,

FiG. 7.12. Variation of pressure ratio with blade speed for a radial-bladed compressor
(B, = 0) at various values of efficiency.

be stressed that a broad understanding of the flow processes within a centrifugal
compressor is still a vital requirement for the more advanced student and for the
further progress of new design methods.

A characteristic of all high performance compressors is that as the design pressure
ratio has increased, so the range of mass flow between surge and choking has
diminished. In the case of the centrifugal compressor, choking can occur when the
Mach number entering the diffuser passages is just in excess of unity. This is a
severe problem which is aggravated by shock-induced separation of the boundary
layers on the vanes which worsens the problem of flow blockage.

Effect of backswept vanes

Came (1978) and Whitfield and Baines (1990) have commented upon the trend
towards the use of higher pressure ratios from single-stage compressors leading to
more highly stressed impellers. The increasing use of back swept vanes and higher
blade tip speeds result in higher direct stress in the impeller and bending stress in
the non-radial vanes. However, new methods of computing the stresses in impellers
are being implemented (Calvert and Swinhoe 1977), capable of determining both
the direct and the bending stresses caused by impeller rotation.

The effect of using back swept impeller vanes on the pressure ratio is shown in
Figure 7.13 for a range of blade Mach number. It is evident that the use of back
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FiG. 7.13. Variation of pressure ratio vs blade Mach number of a centrifugal compressor
for selected back sweep angles (y = 1.4, n. = 0.8, 0 = 0.9, ¢, = 0.375).

sweep of the vanes at a given blade speed causes a loss in pressure ratio. In order to
maintain a given pressure ratio it would be necessary to increase the design speed
which, it has been noted already, increases the blade stresses.

With high blade tip speeds the absolute flow leaving the impeller may have a
Mach number well in excess of unity. As this Mach number can be related to the
Mach number at entry to the diffuser vanes, it is of some advantage to be able to
calculate the former.

Assuming a perfect gas the Mach number at impeller tcan be written as

2 2
C5 Cy T01 T2 _ (&) T01

M2=22_ . . = —, (7.25)
2 a% TOl T2 a% a(z)l T2
sincead; = yRTo1 anda3 = yRT.
Referring to the outlet velocity triangle, Figure (7.7)
5 = ch+chy = ch + (oc)y)?,
where
C;Z =Uyz—c¢» tanﬂ’z,
2
C
(72) = ¢5 + 0°(1— p2tanp;)”. (7.26)
2

From egn. (7.2), assuming that rothalpy remains essentially constant,
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1 1
hy —hy = E(Ué - U?+ E(wi —wd),

1 1 1 1
.-.h2=<h1+§w§—§U§)+§(U§—w§)=hm+§w§—w§)
hence,
T U2 — w2 2
2 (22—W2)=1+(y—1)M§<1—W—22), (7.27)
To1 agy/ y—21 U;

sincehgy = C,To1 = a3,/ (y — 1).
From the exit velocity triangle, Figure 7.7,

Wi = c% 4 (Uz — cg2)? = ¢ + (Uz — oc))?

= %+ [Uz — 0(Uz — catangy)]?,

2
1- <g—z> =1-¢5—[1—-o(l-gatansy)]*. (7.28)

Substituting egns. (7.26), (7.27) and (7.28) into eqgn. (7.25), we get:
2 M? [02 (1- gotanpy)” + d)%}
2 = .
1+ 3 (y —HM21— ¢2 [1— o(1 — ¢ptanpy)]’}

(7.29)

Although eqgn. (7.29) at first sight looks complicated it reduces into an easily
managed form when constant values are inserted. Assuming the same values used
previously, i.e.y =14, 0 = 0.9, ¢, = 0.375 andg, = 0, 15,30 and 45deg, the
solution forM, can be written as

AM,,

M2 = —7
\/(1+BM§)

(7.29a)

where the constants andB are as shown in Table 7.1, and, from which the curves
of M, againstM, in Figure 7.14 have been calculated.

According to Whitfield and Baines (1990) the two most important aerodynamic
parameters at impeller exit are the magnitude and direction of the absolute Mach
numberM,. If M, has too high a value, the process of efficient flow deceleration
within the diffuser itself is made more difficult leading to high friction losses as well
as the increased possibility of shock losses. If the flow anglés large the flow
path in the vaneless diffuser will be excessively long resulting in high friction losses

TaABLE 7.1. Constants used to evaluate M,

B, (degrees)
Constant 0 15 30 45

A 0.975 0.8922 0.7986 0.676
B 0.2 0.199 0.1975 0.1946
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FiG. 7.14. Variation of impeller exit Mach number vs blade Mach number of a centrifugal
compressor for selected back sweep angles (y = 1.4, 0 = 0.9, ¢, = 0.375).

and possible stall and flow instability. Several researchers (e.g. Rodgers and Sapiro
1972) have shown that the optimum flow angle is in the rande<68, < 70°.

Backswept vanes give a reduction of the impeller discharge Mach nuibeat
any given tip speed. A designer making the change from radial vanes to back swept
vanes will incur a reduction in the design pressure ratio if the vane tip speed remains
the same. To recover the original pressure ratio the designer is forced to increase the
blade tip speed which increases the discharge Mach number. Fortunately, it turns
out that this increase M, is rather less than the reduction obtained by the use of
backsweep.

Illustrative Exercise.Consider a centrifugal compressor design which assumes
the previous design data (Figures 7.13 and 7.14), togetherglyith 0° and a blade
speed such tha¥, = 1.6. From Figure 7.13 the pressure ratio at this point is 6.9
and, from Figure 7.14, the value &1, = 1.27. Choosing an impeller with a back
sweep angleg, = 30°, the pressure ratio is 5.0 from Figure 7.13 at the same value
of M. So, to restore the original pressure ratio of 6.9 the blade Mach number must
be increased td/,, = 1.8. At this new condition a value dff, = 1.125 is obtained
from Figure 7.14, a significant reduction from the original value.
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The absolute flow angle can now be found from the exit velocity triangle,
Figure 7.7:

— ¢t 4 1
tana, = <2 = oU2 — c2tanfy) _ o (— - tanﬁ’2> .
Cr2 Cr2 o2
With o = 0.9, ¢, = 0.375 then, forg, = 0°, the value ofa, = 67.38. Similarly,
with g8, = 30", the value ofx, = 62, i.e. both values o, are within the prescribed
range.

Kinetic energy leaving the impeller

According to Van den Braembussche (1985) “the kinetic energy available at the
diffuser inlet easily amounts to more than 50 per cent of the total energy added by
the impeller”. From the foregoing analysis it is not so difficult to determine whether
or not this statement is true. If the magnitude of the kinetic energy is so large then
the importance of efficiently converting this energy into pressure energy can be
appreciated. The conversion of the kinetic energy to pressure energy is considered
in the following section on diffusers.

The fraction of the kinetic energy at impeller exit to the specific work input is

re = 3¢5/ AW, (7.30)

where

2 2
AW = oU3(1 — ¢ tanp,) and (%) = <C_2 N @)
2

:<M2>2<£.@>2 (7.31)
M, a2 ao1) '

Define the total-to-total efficiency of the impeller as

T o2s
h -1 (y=1/y
_hops —hoy < To1 ) _ o (pR B 1)

ho2 — hoy ho2 — ho1 AW

where p, is the total-to-total pressure ratio across the impeller, then

2
ap2 T02 ATO AW 1 -1
) =14 =1+ =14 —(p¥ " 1), (7.32)
(6401> To1 To1 CyTor no
doz Z—E—Hl( EWE (7.33)
“ =T, = sy 5 .

Substituting egns. (7.30), (7.31) and (7.32) into eqn. (7.30) we get

1
Ma/M,)? |1+ —(pr—Y/r —1
c%/U% B (M2/M,) nl(P )

= = . 7.34
20(1 - ¢2tanpy)  20(1— gotanBy)[1l + 5(y — HMP (7:39

TE
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Exercise.Determinerg assuming thaig, =0, 0 = 0.9, n, = 0.8, p, =4 and
y =14.

N B. It is very convenient to assume that Figures 7.13 and 7.14 can be used
to derive the values of the Mach numbeus, and M,. From Figure 7.13 we get
M, = 1.3 and from Figure 7.14M, = 1.096. Substituting values into eqn. (7.34),

1 1
= (41/35 _
1 /1096\2 [H R
=5 (T : — 0512
e ' 1+ £ x 109

Calculations ofr; at other pressure ratios and sweepback angles show that its value
remains about 0.51 provided thatand»; do not change.

EXAMPLE 7.4. Air at a stagnation temperature of°’@2enters the impeller of a
centrifugal compressor in the axial direction. The rotor, which has 17 radial vanes,
rotates at 15,000 rev/min. The stagnation pressure ratio between diffuser outlet and
impeller inlet is 4.2 and the overall efficiency (total-to-total) is 83%. Determine the
impeller tip radius and power required to drive the compressor when the mass flow
rate is 2kg/s and the mechanical efficiency is 97%. Given that the air density at
impeller outlet is 2 kg/rh and the axial width at entrance to the diffuser is 11 mm,
determine the absolute Mach number at that point. Assume that the slip factor
o, =1—2/Z, whereZ is the number of vanes.

(For air takey = 1.4 andR = 0.287 kJ/(kg K).)

Solution.From egn. (7.1a) the specific work is
AW = hgp — hoy = Uzcer = UsU%
sincecgy = 0. Combining egns. (7.20) and (7.21) with the above and rearranging
gives
Cme(r(y—l)/y -1
Osc
wherer = po3/ po1=4.2;, C, = yR/(y —1)=1.005kJ/kg kpy =1 —2/17=0.8824.
1005x 295(4.20-286 _ 1)

0.8824x 0.83

ThereforeU; = 452 m/s.
The rotational speed is

€ = 15,000 x 27/60= 1570rad/s

U3 =

ThereforeUs = =205 x 10%

Thus, the impeller tip radius is
rr = Uy/Q = 452/1570= 0.288 m
The actual shaft power is obtained from
Wact= We/nm = mAW /n,, = 2 x 0.8824x 4522/0.97
= 373 kW.
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Although the absolute Mach number at the impeller tip can be obtained almost
directly from eqgn. (7.28) it may be instructive to find it from
€2 c2
M _—_—
T a (RRT)V2

where 2 = (& + c5)?

cro = m/(p227rby) = 2/(2 x 21 x 0.288x 0.011) = 50.3m/s
co2 = o;Us = 400 m/s
Therefore ¢, = /(40 + 50.3%) = 4025 m/s
Since hop = hor + AW
hy = hop + AW — 3c5.
Therefore T, = To1+ (AW — 1c$)/C, = 295+ (18.1 — 8.1)10%/1005
= 3945K.

Hence,
4025

- =  _101
/(402 x 3945)

M>

The diffuser system

Centrifugal compressors and pumps are, in general, fitted with either a vaneless
or a vaned diffuser to transform the kinetic energy at impeller outlet into static
pressure.

Vaneless diffusers

The simplest concept of diffusion in a radial flow machine is one where the swirl
velocity is reduced by an increase in radius (conservation of angular momentum) and
the radial velocity component is controlled by the radial flow area. From continuity,
sincem = pAc, = 2nrbpc,, Whereb is the width of passage, then

_ rabapacer

= 7.30
op (7.30)

Assuming the flow is frictionless in the diffuser, the angular momentum is constant
and cy = cgoro/r. Now the tangential velocity componeey is usually very much
larger than the radial velocity component therefore, the ratio of inlet to outlet
diffuser velocitiesc,/c3 is approximatelyrs/r,. Clearly, to obtain useful reduc-
tions in velocity, vaneless diffusers must be large. This may not be a disadvantage
in industrial applications where weight and size may be of secondary importance
compared with the cost of a vaned diffuser. A factor in favour of vaneless diffusers
is the wide operating range obtainable, vaned diffusers being more sensitive to flow
variation because of incidence effects.

For a parallel-walled radial diffuser in incompressible flow, the continuity of mass
flow equation requires that, is constant. Assuming that, remains constant, then
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the absolute flow angle, = tarm*(cy/c,) is also constant as the fluid is diffused
outwards. Under these conditions the flow path isgarithmic spiral. The relation-
ship between the change in the circumferential argleand the radius ratio of the
flow in the diffuser can be found from consideration of an element of the flow geom-
etry shown in Figure 7.15. For an increment in radiusaeé have df = drtanas
which, upon integration, gives:

AG = 63 — 6, = tanaz I (5> . (7.31)
r2

Values of A6 are shown in Figure 7.16 plotted agaimstr, for several values of

az. It can be readily seen that when > 70°, rather long flow paths are implied,

friction losses will be significant and the diffuser efficiency will be low.

Vaned diffusers

In the vaned diffuser the vanes are used to remove the swirl of the fluid at a
higher rate than is possible by a simple increase in radius, thereby reducing the
length of flow path and diameter. The vaned diffuser is advantageous where small
size is important.

There is a clearance between the impeller and vane leading edges amounting to
about 004D, for pumps and betweenID, to 0.2D, for compressors. This space

rde

/,__

dr

o2

FiG. 7.15. Element of flow path in radial diffuser.
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FiG. 7.16. Flow path data for paralled-walled radial diffuser (incompressible flow).

constitutes a vaneless diffuser and its functions are (i) to reduce the circumferential
pressure gradient at the impeller tip, (ii) to smooth out velocity variations between
the impeller tip and vanes, and (iii) to reduce the Mach number (for compressors)
at entry to the vanes.

The flow follows an approximately logarithmic spiral path to the vanes after
which it is constrained by the diffuser channels. For rapid diffusion the axis of
the channel is straight and tangential to the spiral as shown. The passages are
generally designed on the basis of simple channel theory with an equivalent angle
of divergence of between 8deg and 12 deg to control separation. (See remarks in
Chapter 2 on straightwalled diffuser efficiency.)

In many applications of the centrifugal compressor, size is important and the
outside diameter must be minimised. With a vaned diffuser the channel length can
be crucial when considering the final size of the compressor. Clements and Artt
(1988) considered this and performed a series of experiments aimed at determining
the optimum diffuser channel length to width ratio,W. They found that, on the
compressor they tested, increasitygV. beyond 3.7 did not produce any improve-
ment in the performance, the pressure gradient at that point having reached zero.
Another significant result found by them was that the pressure gradient in the diffuser
channel wherL./W > 2.13 was no greater than that which could be obtained in a
vaneless diffuser. Hence, removing completely that portion of the diffuser after this
point would yield the same pressure recovery as with the full diffuser.

The number of diffuser vanes can also have a direct bearing on the efficiency
and surge margin of the compressor. It is now widely accepted that surge occurs at
higher flow rates when vaned diffusers are used than when a simple vaneless diffuser
design is adopted. Came and Herbert (1980) quoted an example where a reduction
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of the number of diffuser vanes from 29 to 13 caused a significant improvement in
the surge margin. Generally, it is accepted that it is better to have fewer diffuser
vanes than impeller vanes in order to achieve a wide range of surge-free flow.

With several adjacent diffuser passages sharing the gas from one impeller passage,
the uneven velocity distribution from that passage results in alternate diffuser
passages being either starved or choked. This is an unstable situation leading to
flow reversal in the passages and to surge of the compressor. When the number of
diffuser passages Iessthan the number of impeller passages a more uniform total
flow results.

Choking in a compressor stage

When the through flow velocity in a passage reaches the speed of sound at some
cross-section, the flowhokes For the stationary inlet passage this means that no
further increase in mass flow is possible, either by decreasing the back pressure or
by increasing the rotational speed. Now the choking behaviour of rotating passages
differs from that of stationary passages, making separate analyzes for the inlet,
impeller and diffuser a necessity. For each component a simple, one-dimensional
approach is used assuming that all flow processes are adiabatic and that the fluid is
a perfect gas.

Inlet

Choking takes place whet? = a® = yRT. Since ho = h+ 3¢?, then C,To =
C,T + 3¥RT and

T R\ ! 2
S (142 - (7.32)
To 2Cp Y+ 1

Assuming the flow in the inlet is isentropic,

o pTo [ 1 2
=——=|1+-(y-1M
po  poT 2

] 1-y/(y=1

and whenc = a, M = 1, so that

/(-1
o 2 >
— = — 7.33
00 <7/ +1 ( )

Substituting egns. (7.31), (7.32) into the continuity equatiom/A = pc =
p(YRT)Y2, then

" 2\ 0+D/20-D

Thus, sincepy, ap refer to inlet stagnation conditions which remain unchanged, the
mass flow rate at choking is constant.
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Impeller

In the rotating impeller passages, flow conditions are referred to the faetor
h+ 3(w? — U?), which is constant according to eqn. (7.2). At the impeller inlet
and for the special casey =0, note thatl; = hy + 2c2 = ho;. When choking
occurs in the impeller passages it is thedative velocity wwhich equals the
speed of sound at some section. New= a?> = yRT andTo, = T + (yRT/2C,) —
(U?/2C ), therefore

T 2 U?
T _ <_> <1+ ) (7.34)
To1 y+1 2C,To1

Assuming isentropic flowp/po1 = (T/To1)Y*~Y. Using the continuity equation,

i T > (y+D/2(y-1)

N = poi1do1 <T—01

2 U2 (y+1/2(y-1)
= 1
pordon L’ +1 < * 2CpT01)}

2 4 ()/ _ 1)U2/a%l y+1)/2(y-1)
y+1 }

(7.36)

= poido1 {

If chocking occurs in the rotating passages, eqn. (7.36) indicates that the mass flow
is dependent on the blade speed. As the speed of rotation is increased the compressor
can accept greater mass flow, unless choking occurs in some other component of
the compressor. That the choking flow in an impeller can vary, depending on blade
speed, may seem at first rather surprising; the above analysis givesatan for

the variation of the choking limit of a compressor.

Diffuser

The relation for the choking flow, eqn. (7.34) holds for the diffuser passages,
it being noted that stagnation conditions now refer to the diffuser and not the
inlet. Thus

i 5\ 020D
— = po2ao2 | —— . 7.37
= (2 (7.37

Clearly, stagnation conditions at diffuser inlet are dependent on the impeller
process. To find how the choking mass flow limit is affected by blade speed it
is necessary to refer back to inlet stagnation conditions.

Assuming a radial bladed impeller of efficiengythen,

Toz — Tor = 1:(Toz — Tor) = 1ni0U3/C .
Hence

P02/ po1 = (Toas/Tor)" Y™ = [1 + n;oU3/C,To)]”/ "™V
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and
To2/To1 = [1 + oU3/(C,To1)).
Now

002002 = P01a01(002/ Po1)(aoz/ao1)

= poraoil poz/ por(To1/To2)"?],
therefore,
m 1 + ( _ 1) l'O'UZ aZ y/(y—1) 2 (y+1/2(y-1)
- = ,0016101[ Y L 22/ o 173 (7.38)
A2 [1+ (y — DoUs/ao]Y y+1

In this analysis it should be noted that the diffuser process has been assumed to
be isentropic but the impeller has not. Eqn. (7.38) indicates that the choking mass
flow can be varied by changing the impeller rotational speed.
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Problems

NOTE. In problems 2 to 6 assume and R are 1.4 and 287 J/(R§) respectively. In
problems 1 to 4 assume the stagnation pressure and stagnation temperature at compressor
entry are 101.3kPa and 288 K respectively.)

1. A cheap radial-vaned centrifugal fan is required to provide a supply of pressurised air
to a furnace. The specification requires that the fan produce a total pressure rise equivalent
to 7.5cm of water at a volume flow rate of 0.3/;1 The fan impeller is fabricated from 30
thin sheet metal vanes, the ratio of the passage width to circumferential pitch at impeller exit
being specified as 0.5 and the ratio of the radial velocity to blade tip speed as 0.1.

Assuming that the overall isentropic efficiency of the fan is 0.75 and that the slip can be
estimated from Stanitz’s expression, eqn. (7.18a), determine

(1) the vane tip speed,;
(2) the rotational speed and diameter of the impeller;
(3) the power required to drive the fan if the mechanical efficiency is 0.95;
(4) the specific speed.
For air assume the density is 1.2 kgim
2. The air entering the impeller of a centrifugal compressor has an absolute axial velocity
of 100 m/s. At rotor exit the relative air angle measured from the radial directior’ 826

the radial component of velocity is 120 m/s and the tip speed of the radial vanes is 500 m/s.
Determine the power required to drive the compressor when the air flow rate is 2.5kg/s and
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the mechanical efficiency is 95%. If the radius ratio of the impeller eye is 0.3, calculate

a suitable inlet diameter assuming the inlet flow is incompressible. Determine the overall
total pressure ratio of the compressor when the total-to-total efficiency is 80%, assuming the
velocity at exit from the diffuser is negligible.

3. A centrifugal compressor has an impeller tip speed of 366 m/s. Determine the absolute
Mach number of the flow leaving the radial vanes of the impeller when the radial component
of velocity at impeller exit is 30.5m/s and the slip factor is 0.90. Given that the flow area at
impeller exit is 0.1 and the total-to-total efficiency of the impeller is 90%, determine the
mass flow rate.

4. The eye of a centrifugal compressor has a hub/tip radius ratio of 0.4, a maximum
relative flow Mach number of 0.9 and an absolute flow which is uniform and completely
axial. Determine the optimum speed of rotation for the condition of maximum mass flow
given that the mass flow rate is 4.536 kg/s. Also, determine the outside diameter of the eye
and the ratio of axial velocity/blade speed at the eye tip. Figure 7.4 may be used to assist
the calculations.

5. An experimental centrifugal compressor is fitted with free-vortex guide vanes in order
to reduce the relative air speed at inlet to the impeller. At the outer radius of the eye, air
leaving the guide-vanes has a velocity of 91.5m/s at 20 deg to the axial direction. Determine
the inlet relative Mach number, assuming frictionless flow through the guide vanes, and the
impeller total-to-total efficiency.

Other details of the compressor and its operating conditions are:

Impeller entry tip diameter, 0.457 m

Impeller exit tip diameter, 0.762m

Slip factor 0.9 ) ) )

Radial component of velocity at impeller exit, 53.4 m/s

Rotational speed of impeller, 11 000 rev/min

Static pressure at impeller exit, 223 kPa (abs.)

6. A centrifugal compressor has an impeller with 21 vanes, which are radial at exit, a

vaneless diffuser and no inlet guide vanes. At inlet the stagnation pressure is 100 kPa abs.

and the stagnation temperature is 300 K.

(i) Given that the mass flow rate is 2.3kg/s, the impeller tip speed is 500 m/s and the
mechanical efficiency is 96%, determine the driving power on the shaft. Use eqn. (7.18a)
for the slip factor.

(ii) Determine the total and static pressures at diffuser exit when the velocity at that position
is 100 m/s. The total to total efficiency is 82%.

(iii) The reaction, which may be defined as for an axial flow compressor by eqn. (5.10b),
is 0.5, the absolute flow speed at impeller entry is 150 m/s and the diffuser efficiency
is 84%. Determine the total and static pressures, absolute Mach number and radial
component of velocity at the impeller exit.

(iv) Determine the total-to-total efficiency for the impeller.

(v) Estimate the inlet/outlet radius ratio for the diffuser assuming the conservation of angular
momentum.

(vi) Find a suitable rotational speed for the impeller given an impeller tip width of 6 mm.

7. A centrifugal pump is used to raise water against a static head of 18.0m. The suction
and delivery pipes, both 0.15m diameter, have respectively, friction head losses amounting to
2.25 and 7.5times the dynamic head. The impeller, which rotates at 1450 rev/min, is 0.25m
diameter with 8 vanes, radius ratio 0.45, inclined backwargs, at 60 deg. The axial width
of the impeller is designed so as to give constant radial velocity at all radii and is 20 mm
at impeller exit. Assuming an hydraulic efficiency of 0.82 and an overall efficiency of 0.72,
determine
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(i) the volume flow rate;

(i) the slip factor using Busemann’s method;
(iii) the impeller vane inlet angle required for zero incidence angle;
(iv) the power required to drive the pump.

8. A centrifugal pump delivers 50 difs of water at an impeller speed of 1450 rev/min.
The impeller has eight vanes inclined backwards to the direction of rotation with an angle at
the tip of 8, = 60°. The diameter of the impeller is twice the diameter of the shroud at inlet
and the magnitude of the radial component of velocity at impeller exit is equal to that of
the axial component of velocity at the inlet. The impeller entry is designed for the optimum
flow condition to resist cavitation (see eqn. (7.8)), has a radius ratio of 0.35 and the blade
shape corresponds to a well tested design giving a cavitation coeffigien.3.

Assuming that the hydraulic efficiency is 70 per cent and the mechanical efficiency is
90 per cent, determine:

(1) the diameter of the inlet;
(2) the net positive suction head;
(3) the impeller slip factor using Wiesner's formula;
(4) the head developed by the pump;
(5) the power input.
Also calculate values for slip factor using the equations of Stodola and Busemann,
comparing the answers obtained with the result found from Wiesner’'s equation.

9. (a) Write down the advantages and disadvantages of using free-vortex guide vanes
upstream of the impeller of a high pressure ratio centrifugal compressor. What other sorts of
guide vanes can be used and how do they compare with free-vortex vanes?

(b) The inlet of a centrifugal air compressor has a shroud diameter of 0.2m and a hub
diameter of 0.105 m. Free-vortex guide vanes are fitted in the duct upstream of the impeller
so that the flow on the shroud at the impeller inlet has a relative Mach nuimbek- 1.0,
an absolute flow angle @f, = 20° and a relative flow anglg; = 55°. At inlet the stagnation
conditions are 288K and ¥®a.

Assuming frictionless flow into the inlet, determine:

(1) the rotational speed of the impeller;
(2) the air mass flow.
(c) At exit from the radially vaned impeller, the vanes have a radius of 0.16 m and a design
point slip factor of 0.9. Assuming an impeller efficiency of 0.9, determine:
(1) the shaft power input;
(2) the impeller pressure ratio.
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CHAPTER 8

Radial Flow Gas Turbines

I like work; it fascinates me, | can sit and look at it for hours. (JEROME
K. JEROME, Three Men in a Boat.)

Introduction

The radial flow turbine has had a long history of development being first conceived
for the purpose of producing hydraulic power over 170 years ago. A French engineer,
Fourneyron, developed the first commercially successful hydraulic turbii80)
and this was of theadial-outflow type. A radial-inflow type of hydraulic turbine
was built by Francis and Boyden in the U.S.A. (L847) which gave excellent
results and was highly regarded. This type of machine is now known dg#éneis
turbine a simplified arrangement of it being shown in Figure 1.1. It will be observed
that the flow path followed is from the radial direction to what is substantially an
axial direction. A flow path in the reverse direction (radial-outflow), for a single
stage turbine anyway, creates several problems one of which (discussed later) is
low specific work. However, as pointed out by Shepherd (1956) radial-outflow
steam turbines comprising many stages have received considerable acceptance in
Europe. Figure 8.1 from Kearton (1951), shows diagrammaticallyljhegstom
steam turbinewhich, because of the tremendous increase in specific volume of
steam, makes the radial-outflow flow path virtually imperative. A unique feature of
the Ljungstr@m turbine is that it does not have any stationary blade rows. The two
rows of blades comprising each of the stages rotate in opposite directions so that
they can both be regarded as rotors.

The inward-flow radial (IFR) turbine covers tremendous ranges of power, rates of
mass flow and rotational speeds, from very large Francis turbines used in hydroelec-
tric power generation and developing hundreds of megawatts down to tiny closed
cycle gas turbines for space power generation of a few kilowatts.

The IFR turbine has been, and continues to be, used extensively for powering
automotive turbocharges, aircraft auxiliary power units, expansion units in gas lique-
faction and other cryogenic systems and as a component of the small (10 kW) gas
turbines used for space power generation (Anon. 1971). It has been considered
for primary power use in automobiles and in helicopters. According to Huntsman
(1992), studies at Rolls-Royce have shown that a cooled, high efficiency IFR turbine
could offer significant improvement in performance as the gas generator turbine of a
high technology turboshaft engine. What is needed to enable this type of application
are some small improvements in current technology levels! However, designers of
this new required generation of IFR turbines face considerable problems, particularly
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Fic. 8.1. Ljungstrom type outward flow radial turbine (adapted from Kearton®).

in the development of advanced techniques of rotor cooling or of ceramic, shock-
resistant rotors.

As indicated later in this chapter, over a limited range of specific speed, IFR
turbines provide an efficiency about equal to that of the best axial-flow turbines.
The significant advantages offered by the IFR turbine compared with the axial-flow
turbine is the greater amount of work that can be obtained per stage, the ease of
manufacture and its superior ruggedness.

Types of inward flow radial turbine

In the centripetal turbine energy is transferred from the fluid to the rotor in passing
from a large radius to a small radius. For the production of positive work the product
of Ucy at entry to the rotor must be greater th&8a, at rotor exit (egn. (2.12b)).
This is usually arranged by imparting a large component of tangential velocity at
rotor entry, using single or multiple nozzles, and allowing little or no swirl in the
exit absolute flow.

Cantilever turbine

Figure 8.2a shows aantilever IFR turbine where the blades are limited to the
region of the rotor tip, extending from the rotor in thgial direction. In practice
the cantilever blades are usually of the impulse type (i.e. low reaction), by which
it is implied that there is little change in relative velocity at inlet and outlet of the
rotor. There is no fundamental reason why the blading should not be of the reaction
type. However, the resulting expansion through the rotor would require an increase
in flow area. This extra flow area is extremely difficult to accommodate in a small
radial distance, especially as the radius decreases through the rotor row.

Aerodynamically, the cantilever turbine is similar to an axial-impulse turbine and
can even be designed by similar methods. Figure 8.2b shows the velocity triangles
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Nozzle blades

Rotor blades

- — Axis of rotor

Fic. 8.2. Arrangement of cantilever turbine and velocity triangles at the design point.

at rotor inlet and outlet. The fact that the flow is radially inwards hardly alters the
design procedure because the blade radius rafia is close to unity anyway.

The 90 degree IFR turbine

Because of its higher structural strength compared with the cantilever turbine, the
90 degree IFR turbine is the preferred type. Figure 8.3 shows a typical layout of a
90 degree IFR turbine; the inlet blade angle is generally made zero, a fact dictated
by the material strength and often high gas temperature. The rotor vanes are subject
to high stress levels caused by the centrifugal force field, together with a pulsating
and often unsteady gas flow at high temperatures. Despite possible performance
gains the use of non-radial (or swept) vanes is generally avoided, mainly because
of the additional stresses which arise due to bending. Nevertheless, despite this
difficulty, Meitner and Glassman (1983) have considered designs using sweptback
vanes in assessing ways of increasing the work output of IFR turbines.

From station 2 the rotor vanes extend radially inward and turn the flow into the
axial direction. The exit part of the vanes, called thaucer is curved to remove
most if not all of the absolute tangential component of velocity. The 90 degree
IFR turbine or centripetal turbine is very similar in appearance to the centrifugal
compressor of Chapter 7 but with the flow direction and blade motion reversed.

The fluid discharging from the turbine rotor may have a considerable velocity
c3 and an axial diffuser (see Chapter 2) would normally be incorporated to recover
most of the kinetic energy%cg, which would otherwise be wasted. In hydraulic
turbines (discussed in Chapter 9) a diffuser is invariably used and is called the
draught tube

In Figure 8.3 the velocity triangles are drawn to suggest that the inlet relative
velocity, w,, is radially inward, i.e. zero incidence flow, and the absolute flow
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Fic. 8.3. Layout and velocity diagrams for a 90 deg inward flow radial turbine at the
nominal design point.

at rotor exit,cs, is axial. This configuration of the velocity triangles, popular with
designers for many years, is called thaminal desigrcondition and will be consid-
ered in some detail in the following pages. Following this the so-callgiimum
efficiency desigmwill be explained.

Thermodynamics of the 90 deg IFR turbine

The complete adiabatic expansion process for a turbine comprising a nozzle blade
row, a radial rotor followed by a diffuser corresponding to the layout of Figure 8.3,
is represented by the Mollier diagram shown in Figure 8.4. In the turbine, frictional
processes cause the entropy to increase in all components and these irreversibilities
are implied in Figure 8.4.

Across the nozzle blades the stagnation enthalpy is assumed congtaathg,
and, therefore, the static enthalpy drop is,

hy—hy = 3(c5 — %) (8.1)

corresponding to the static pressure change fganto the lower pressure,. The
ideal enthalpy changef — hy,) is between thessametwo pressures but at constant
entropy.

In Chapter 7 it was shown that the rothalgys= hgre| — %UZ, is constant for an
adiabatic irreversible flow process, relative to a rotating component. For the rotor
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FiG. 8.4. Mollier diagram for a 90deg inward flow radial turbine and diffuser (at the
design point).

of the 90 deg IFR turbine,
hozrel — 3U% = hogrel — 3U3
Thus, ashorel = 1 + 3w?,
ha — h3 = 3[(U3 — U3) — (w5 — w3)] (8.2)

In this analysis the reference point 2 (Figure 8.3) is taken to be at the inlet radius

r, of the rotor (the blade tip speed, = Qr;). This implies that the nozzle irre-

versibilities are lumped together with any friction losses occurring in the annular

space between nozzle exit and rotor entry (usually scroll losses are included as well).
Across the diffuser the stagnation enthalpy does not chanrges o4, but the

static enthalpyincreasesas a result of the velocity diffusion. Hence,

ha — h3 = 3(c5 — 3) (83)
The specific work done by the fluid on the rotor is
AW = hoy — hog = Uzco2 — Uscos (8.4)
As  ho1 = hog,
AW = hop — hog = hp — h3 + 3(c3 — ¢3)
= 3[(U3 = U%) — W] — wh) + (5 — )] (8.42)

after substituting eqgn. (8.2).
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Basic design of the rotor

Each term in eqn. (8.4a) makes a contribution to the specific work done on the
rotor. A significant contribution comes from the first term, naméwg - U?),
and is the main reason why the inward flow turbine has such an advantage over
the outward flow turbine where the contribution from this term would be negative.
For the axial flow turbine, wher&, = U3, of course no contribution to the specific
work is obtained from this term. For the second term in eqgn. (8.4a) a positive
contribution to the specific work is obtained whes > w,. In fact, accelerating
the relative velocity through the rotor is a most useful aim of the designer as this
is conducive to achieving a low loss flow. The third term in egn. (8.4a) indicates
that the absolute velocity at rotor inlet should be larger than at rotor outlet so as to
increase the work input to the rotor. With these considerations in mind the general
shape of the velocity diagram shown in Figure 8.3 results.

Nominal Design

The nominal designis defined by a relative flow of zero incidence at rotor inlet
(i.e.w2 = ¢,2) and an absolute flow at rotor exit which is axial (ice. = c,3). Thus,
from eqn. (8.4), withegs = 0 andcy, = U, the specific work for the nominal design
is simply

AW = U3. (8.4b)

ExampLE 8.1. The rotor of an IFR turbine, which is designed to operate at the
nominal condition, is 23.76 cm in diameter and rotates at 38 140 rev/min. At the
design point the absolute flow angle at rotor entry is 72 deg. The rotor mean exit
diameter is one half of the rotor diameter and the relative velocity at rotor exit is
twice the relative velocity at rotor inlet.

Determine the relative contributions to the specific work of each of the three
terms in eqn. (8.4a).

Solution The blade tip speed 8/, = tND,/60= 7 x 38 140x 0.2376/60 =
4745 m/s.
Referringto Figure 8.3y, = U, cota, =154.17 m/s, and, = U, Sinax =4989 m/s.

3 =w§— Uj = (2 x 154177 — (} x 4745)* = 38786 /5",

Hence,(U2 — U2)=U2(1 — 1/4)=168 863 /s, w2 — w2=3 x w2=71305m/s"
and c2 — 2 = 210115 m/s’. Thus, summing the values of the three terms and
dividing by two, we getAW = 225 142 /s’
The fractional inputs from each of the three terms are: fortiRgerms, 0.375;
for the w? terms, 0.158; for the? terms, 0.467.
Finally, as a numerical check, the specific workAsy = U3 = 4745%= 225150
m?/s? which, apart from some rounding erors, agrees with the above computations.
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Spouting velocity

The termspouting velocitycy (originating from hydraulic turbine practice) is
defined as that velocity which has an associated kinetic energy equal to the isen-
tropic enthalpy drop from turbine inlet stagnation presspgeto the final exhaust
pressure. The exhaust pressure here can have several interpretations depending upon
whether total or static conditions are used in the related efficiency definition and
upon whether or not a diffuser is included with the turbine. Thus, wiwediffuser
is used

%Cg = ho1 — ho3zss (8.59)
or,
36 = ho1 — has, (8.5b)
for the total and static cases respectively.
In anideal (frictionless) radial turbine with complete recovery of the exhaust
kinetic energy, and witlg, = U,
AW = U3 = 3c§
U2
— =0.707
o

At the best efficiency point of actual (frictional) 90 deg IFR turbines it is found that
this velocity ratio is, generally, in the ranget8 < U,/co < 0.71.

Nominal design point efficiency

Referring to Figure 8.4, the total-to-static efficiency in the absence of a diffuser,
is defined as

_ hoi—hoz AW

_ _ - (8.6)
hor — hass AW + 5¢3 + (hg — has) + (has — hags)

Nis

The passage enthalpy losses can be expressed as a fragtmntlfe exit kinetic
energy relative to the nozzle row and the rotor, i.e.

hs — ha, = Switr (8.79)
ha, — hay = 2c5¢n (T3/T2) (8.7b)

for the rotor and nozzles respectively. It is noted that for a constant pressure process,
ds = di/T, hence the approximation,

has — hass = (h2 — hs)(T3/T2)
Substituting for the enthalpy losses in eqn. (8.6),

s = [1+ 2(c3 + witr + c2enT3/T2)/ AW] ! (8.8)
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From the design point velocity triangles, Figure 8.3,
c2 = Uy coseaqrp, w3 = Uz cose®s, c3 = Uzcotfs, AW = U%.

Thus substituting all these expressions in egn. (8.8) and notingthat Uars/ro,
then

Nis =

—1
T 2
1+3 {;NTz coseéay + (2) (¢g coseé B3 + cof? ﬁg)H (8.9)

Usually r3 and 83 are taken to apply at the arithmetic mean radiusy4e- %(r3, +
r3). The temperature rati@l's/T>) in eqn. (8.9) can be obtained as follows.

At the nominal design condition, referring to the velocity triangles of Figure 8.3,
w3 — U3 = ¢3, and so eqn. (8.2) can be rewritten as

ha — hy = (U3 — w3 + ). (8.2a)

This particular relationship, in the fori = Aoz e — %U% = hpz can be easily iden-
tified in Figure 8.4.

Again, referring to the velocity trianglesy, = U, cota, and c3 = Uz cotfs, a
useful alternative form to egn. (8.2a) is obtained,

hy — hg = SUS[(1 — cof ap) + (r3/r2) COF B3, (8.2b)

where Usj is written asU»,rs/r,. For a perfect gas the temperature raligy T, can
be easily found. Substituting= C,T = yRT/(y — 1) in eqn. (8.2b)

2
1-Is _ %Ug(y_ D ll—cotzaﬁ <?> cotzﬂgl
2 2

T, YyRT
T3 1 U2 2 r3 2

T—=1-3(y-1 (—) 1—cofay+ (—) cof B3| , (8.20)
T> o2 r2

wherea, = (yRT,)%? is the sonic velocity at temperatufe.
Generally this temperature ratio will only have a very minor effect upon the
numerical value ofy,; and so it is often ignored in calculations. Thus,

-1

2
1+13 {g‘N coseCay + <%’> (¢g cosel Baay + cOE ﬂgav)H (8.9a)
2

Nts -

is the expression normally used to determine the total-to-static efficiency. An alter-
native form foryn,;, can be obtained by rewriting egn. (8.6) as

_ ho1 — hos _ (ho1 — hags) — (hoz — h3) — (ha — hay) — (has — hag)
ho1 — hags (ho1 — hass)
=1— (c5+ &nes + Lrwi)/ch (8.10)

Nts

where the spouting velocity, is defined by,

ho1 — hass = %Cg = CpT01[1 - (P3/P01)(V_1)/y] (811)
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A simple connection exists between total-to-total and total-to-static efficiency
which can be obtained as follows. Writing

AW = U3 = 0 AW, = ny5(hor — has)

then,
AW 1
M AW, —1EdT 1 4
N 2AW
1 1 c%

o Nis Nts B 2AW

1 1 2
SERE YN

(8.12)
Nts 2 r2

ExampLE 8.2. Performance data from the CAV type 01 radial turbine (Benson
et al 1968) operating at a pressure ratigr/ ps of 1.5 with zero incidence relative
flow onto the rotor, is presented in the following form:

i/Tor/ por = 1.44 x 107°, ms(deg. K¥/?
N//To1 = 241Q (rev/imin)/(deg. K¥/?
7/ po1=459x 10°¢, m?

wherert is the torque, corrected for bearing friction loss. The principal dimensions
and angles, etc. are given as follows:

Rotor inlet diameter, 72.5mm
Rotor inlet width, 7.14mm
Rotor mean outlet diameter, 34.4mm
Rotor outlet annulus width, 20.1mm
Rotor inlet angle, Odeg
Rotor outlet angle, 53deg
Number of rotor blades, 10
Nozzle outlet diameter, 74.1 mm
Nozzle outlet angle, 80deg
Nozzle blade number, 15

The turbine is “cold tested” with air heated to 400 K (to prevent condensation erosion
of the blades). At nozzle outlet an estimate of the flow angle is given as 71 deg and
the corresponding enthalpy loss coefficient is stated to be 0.065. Assuming that the
absolute flow at rotor exit is without swirl and uniform, and the relative flow leaves
the rotor without any deviation, determine the total-to-static and overall efficiencies
of the turbine, the rotor enthalpy loss coefficient and the rotor relative velocity ratio.

Solution.The data given is obtained from an actual turbine test and, even though
the bearing friction loss has been corrected, there is an additional reduction in
the specific work delivered due to disk friction and tip leakage losses, etc. The
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rotor speedV = 2410,/400= 48 200 rev/min, the rotor tip spedth, = TND,/60 =
183 m/s and hence the specific work done by the rattv = U5 = 33.48 kJ/kg.
The corresponding isentropic total-to-static enthalpy drop is

hoy — hays = C,Toa[1 — (p3/ pon)" /"]
= 1.005 x 400[1— (1/1.5)"/%°] = 4397 kJ/kg

Thus, the total-to-static efficiency is
Nes = AVV/(hOl - ths) = 76.14%

The actual specific work output to the shaft, after allowing for the bearing friction
loss, is

) T N po1 > b4
AWat=1Q/m= | — - ==To1
ot / < P01) VTo1 <m\/T01 30

=459 x 107% x 2410x 7 x 400/(30 x 1.44 x 107°)
= 32.18kJ/kg

Thus, the turbine overall total-to-static efficiency is
no = AWac/ (ho1 — hag) = 73.18%
By rearranging eqn. (8.9a) the rotor enthalpy loss coefficient can be obtained:
&k = {2(1/mis — 1) — &y €0S€8 o} (r2/r3ay)” SIMF Baay — COS Baay
= {2(1/0.7613— 1) — 0.065x 1.118G x 4.442 x 0.6378

—0.3622
= 1.208

At rotor exit ¢z is assumed to be uniform and axial. From the velocity triangles,
Figure 8.3,

c3 = Uz cotBz = UszyyCOtB3ay = CONstant

2 .2, 2
w3 = Uz +c3

2
<£> + cof ,33av‘|
I3av

woav = Uj COtan

2
= Uszay

ignoring blade to blade velocity variations. Hence,

W2av r2 I'3av

) 1/2
"3 B anas, l<£> + cof ﬂga\,] . (8.13)
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The lowest value of this relative velocity ratio occurs whenis least, i.e.rz3 =
ra, = (344 — 20.1)/2 = 7.15mm, so that

< s ) = 0.475 x 2.904[041% + 0.7536]%2 = 1.19.
min

W2av
The relative velocity ratio corresponding to the mean exit radius is,

W3av

= 0.475x 2.904[1+ 0.753¢]%2 = 1.73.

W2av

It is worth commenting that higher total-to-static efficiencies have been obtained
in other small radial turbines operating at higher pressure ratios. Rodgers (1969) has
suggested that total-to-static efficiencies in excess of 90% for pressure ratios up to
five to one can be attained. Nusbaum and Kofskey (1969) reported an experimental
value of 88.8% for a small radial turbine (fitted with an outlet diffuser, admittedly!)
at a pressure ratipg;/ p4 of 1.763. In the design point exercise given above the high
rotor enthalpy loss coefficient and the corresponding relatively low total-to-static
efficiency may well be related to the low relative velocity ratio determined on the
hub. Matters are probably worse than this as the calculation is based only on a simple
one-dimensional treatment. In determining velocity ratios across the rotor, account
should also be taken of the effect of blade to blade velocity variation (outlined in this
chapter) as well as viscous effects. The number of vanes in the rotor (ten) may be
insufficient on the basis of Jamieson’s theo(¥955) which suggests 18 vanes (i.e.
Zmin = 21 tanay). For this turbine, at lower nozzle exit angles, egn. (8.13) suggests
that the relative velocity ratio becomes even less favourable despite the fact that the
Jamieson blade spacing criterion is being approached. £Ferl0, the optimum
value ofay is about 58 deg.)

Mach number relations

Assuming the fluid is a perfect gas, expressions can be deduced for the important
Mach numbers in the turbine. At nozzle outlet the absolute Mach number at the
nominal design point is,

2

U,
My, = — = — coSeQxs.
az az

Now, To = To1 — c%/(ZC,,) =To1— %U%COSE&OQ/C],.

T
Lo =1 2(y = D(U2/ao1)? coseéa
01

wherea, = ag1(T2/To1)Y/?. Hence,

Uz/ao1

= 8.14
>~ Sinag[l — 2(y — 1)(Uz/ao1)? coseé o] V/2 (®19

*Included in a later part of this Chapter.
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At rotor outlet the relative Mach number at the design point is defined by,
ws  r3U»

Mr3 = =
as raasg

coses.

Now,
hs = hoy — (U3 + 2c%) = hoy — (U5 + 3U5 cof Bs)

2
1+1(53 cotfs
2 o

2
.
1+3 (72 cotﬁ3> ]

Mg = (Uz/ao)(r3/r2) (8.15)

) 112
sinfs [l — (v — D(U2/a01)? {1 +3 (r_z COtﬂ3> H

= ho1 — U3

Loss coefficients in 90 deg IFR turbines

There are a number of ways of representing the losses in the passages of 90 deg
IFR turbines and these have been listed and inter-related by Benson (1970). As well
as the nozzle and rotor passage losses there is, in addition, a loss at rotor entry at
off-design conditions. This occurs when the relative flow entering the rotor is at
some angle of incidence to the radial vanes so that it can be calléacialence
loss It is often referred to as a “shock loss” but this can be a rather misleading
term because, usually, there is no shock wave.

(i) Nozzle loss coefficients

The enthalpy loss coefficient, which normally includes the inlet scroll losses, has
already been defined and is,

ey = (ho — hay)/(3cD). (8.16)
Also in use is thevelocity coefficient

N = c2/cas (8.17)
and thestagnation pressure loss coefficient

Yy = (po1— po2)/(poz — p2) (8.18a)
which can be related, approximately, 4o by

Yy == ov(1+ Lym?) (8.18D)

Since,ho1 = hy + %C% = hy, + %Ci, thenhy, — hyy = %(Ci — c%) and
1

= — —1. 8.19
o5 (6.19)

SN
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Practical values opy for well-designed nozzle rows in normal operation are usually
in the range M0 < ¢y < 0.97.

(i) Rotor loss coefficients

At either the design condition (Figure 8.4), or at the off-design condition dealt
with later (Figure 8.5), the rotor passage friction losses can be expressed in terms
of the following coefficients.

The enthalpy loss coefficient is,

¢r = (hza — hav)/(%wg)- (8.20)
The velocity coefficient is,
dr = wa/wa, (8.21)
which is related ta; by
1
r=——1 (8.22)
o

The normal range ap for well-designed rotors is approximately70 < ¢ < 0.85.

Optimum efficiency considerations

According to Abidatet al. (1992) the understanding of incidence effects on the
rotors of radial and mixed flow turbines is very limited. Normally, IFR turbines are
made with radial vanes in order to reduce bending stresses. In most flow analyses
that have been published of the IFR turbine, including all earlier editions of this text,
it was assumed that treveragerelative flow at entry to the rotor was radial, i.e. the
incidence of the relative flow approaching the radial vanes was zero. The following
discussion of the flow model will show that this is an over-simplification and the flow
angle for optimum efficiency is significantly different from zero incidence. Rohlik
(1975) had asserted that “there is some incidence angle that praptesum flow
conditionsat the rotor-blade leading edge. This angle has a value sometimes as high
as 40 with a radial blade.”

The flow approaching the rotor is assumed to be in the radial plane with a velocity
¢, and flow anglex, determined by the geometry of the nozzles or volute. Once the
fluid enters the rotor the process of work extraction proceeds rapidly with reduction
in the magnitude of the tangential velocity component and blade speed as the flow
radius decreases. Corresponding to these velocity changes there is a high blade
loading and an accompanying large pressure gradient across the passage from the
pressure side to the suction side (Figure 8.5a).

With the rotor rotating at angular velocit and the entering flow assumed to
be irrotational, a counter-rotating vortex (or relative eddy) is created in the relative
flow, whose magnitude is-2, which conserves the irrotational state. The effect
is virtually the same as that described earlier for the flow leaving the impeller of
a centrifugal compressor, but in reverse (see Chapter 7 under the heading “Slip
factor”). As a result of combining the incoming irrotational flow with the relative
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FiG. 8.5. Optimum flow condition at inlet to the rotor. (a) Streamline flow at rotor inlet; p
is for pressure surface, s is for suction surface. (b) Velocity diagram for the pitchwise
averaged flow.

eddy, the relative velocity on the pressure (or trailing) surface of the vane is reduced.
Similarly, on the suction (or leading) surface of the vane it is seem that the relative
velocity is increased. Thus, a static pressure gradient eagstssthe vane passage
in agreement with the reasoning of the preceding paragraph.

Figure 8.5b indicates thaveragerelative velocityw,, entering the rotor at angle
B2 and giving optimum flow conditions at the vane leading edge. As the rotor vanes
in IFR turbines are assumed to be radial, the amgles an angle of incidence, and
as drawn it is numerically positive. Depending upon the number of rotor vanes this
angle may be between 20 and 40 degrees. The static pressure gradient across the
passage causes a streamline shift of the flow towards the suction surface. Stream-
function analyzes of this flow condition show that the streamline pattern properly
locates the inlet stagnation point on the vane leading edge so that this streamline is
approximately radial (see Figure 8.5a). It is reasoned that only at this flow condi-
tion will the fluid move smoothly into the rotor passage. Thus, it isdkeraged
relative flow that is at an angle of incidengg to the vane. Whitfield and Baines
(1990) have comprehensively reviewed computational methods used in determining
turbomachinery flows, including streamfunction methods.
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Wilson and Jansen (1965) appear to have been the first to note that the optimum
angle of incidence was virtually identical to the angle of “slip” of the flow leaving
the impeller of a radially bladed centrifugal compressor with the same number of
vanes as the turbine rotor. Following Whitfield and Baines (1990)inaidence
factor, A, is defined, analogous to the slip factor used in centrifugal compressors:

A =cg2/U>.

The slip factor most often used in determining the flow angle at rotor inlet is that
devised by Stanitz (1952) for radial vaned impellers, so for the incidence factor

A=1-063r/Z~1-2/Z. (7.18a)
Thus, from the geometry of Figure 8.5b, we obtain
tang, = (2/Z2)Uz/c2. (823)

In order to determine the relative flow anghs, we need to know, at least, the values

of the flow coefficientg, = ¢,,2/U, and the vane numbef. A simple method of
determining the minimum number of vanes needed in the rotor, due to Jamieson
(1955), is given later in this chapter. However, in the next section an optimum
efficiency design method devised by Whitfield (1990) provides an alternative way
for deriving 8,.

Design for optimum efficiency

Whitfield (1990) presented a general one-dimensional design procedure for the
IFR turbine in which, initially, only the required power output is specified. The
specific power output is given:

w R
AW = — = ho1 — hoz = y—(T01 —To3) (8.24)
m y—1

and, from this a non-dimensionpbwer ratig S, is defined:
S = AW/hol =1- T03/T01. (825)

The power ratio is related to the overall pressure ratio through the total-to-static
efficiency:

S
1= (ps/po) " DI1]’

If the power output, mass flow rate and inlet stagnation temperature are specified,
then S can be directly calculated but, if only the output power is known, then an
iterative procedure must be followed.

Whitfield (1990) chose to develop his procedure in terms of the power fatio
and evolved a new non-dimensional design method. At a later stage of the design
when the rate of mass flow and inlet stagnation temperature can be quantified, then
the actual gas velocities and turbine size can be determined. Only the first part of
Whitfield’s method dealing with the rotor design is considered in this chapter.

Mrs (8.26)



Radial Flow Gas Turbines 251

Solution of Whitfield’s design problem

At the design point it is usually assumed that the fluid discharges from the rotor
in the axial direction so that withygs = 0, the specific work is

AW = U2€92
and, combining this with egns. (8.24) and (8.25), we obtain,
Uacoa/agy = S/(y — 1), (8.27)

whereag; = (yRT01)Y/? is the speed of sound corresponding to the temperéigire
Now, from the velocity triangle at rotor inlet, Figure 8.5b,

Uy — cop = cpptanfy = cop tany/ tanas. (8.28)
Multiplying both sides of eqn. (8.28) byyy/c2,, we get
U2C92/c,2n2 — c922/c§12 — tanaytang, = 0.
But,
U2€92/C,2n2 = (U2C92/c§) Se(,zozg =c(l+ tar? a%),
which can be written as a quadratic equation foratgn
tarf as(c — 1) — btanay +c =0,
where, for economy of writinge = U2c92/c§ andb = tang,. Solving for tany,,
tana, = {b & /[b2 + 4c(1 — o)]}/[2(c — 1)]. (8.29)

For a real solution to exist the radical must be greater than, or equal to, zero;
i.e. b2+ 4c(1—c¢) > 0. Taking the zero case and rearranging the terms, another
quadratic equation is found, namely

2—c—b*/4=0.
Hence, solving for,
= (1 £/1+ bz) /2 = L(14 sechy) = Uscos/c2. (8.30)

From eqgn. (8.29) and then eqgn. (8.30), the corresponding solution fap tian
tanas = b/[2(c — 1)] = tanB,/(—1 + secBy).
The correct choice between these two solutions will give a valuefor 0, thus:

Sinﬁz

= coof; (8.31)

tano; =

It is easy to see from Table 8.1 that a simple numerical relation exists between these
two parameters, namely

ap = 90— B2/2. (8.31a)
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TaBLE 8.1. Variation of o, for several
values of 8,.

B> (deg) 10 20 30 40
a, (deg) 85 80 75 70

From eqgns. (8.27) and (8.30), after some rearranging, a minimum stagnation Mach
number at rotor inlet can be found:

S 2c0sB;
y—1/ 14 cosp;

M, = c3/ag, = ( (8.32)

and the inlet Mach number can be determined using the equation

2 2

M

M2 = <2> =2 (8.33)
az 1- Ly — DM,

assuming thaf'o, = Tz, the flow through the stator is adiabatic.
Now, from eqn. (8.28)

Cy2 _ 1
U, 1+tangy/tanas’

After rearranging eqn. (8.31) to give

tanB,/tana, = secB, — 1 (8.34)
and combining these equations,

co2/Up =cosBr=1—-2/Z. (8.35)

Equation (8.35) is a direct relationship between the number of rotor blades and the
relative flow angle at inlet to the rotor. Also, from eqn. (8.31a),

cos v, = c09180— B2) = — c0SB,
so that, from the identity cos2 = 2 cog oy — 1, we get the result:

cofay = (1—cospy)/2=1/Z, (8.31b)
using also egn. (8.35).

ExampLE 8.3. An IFR turbine with 12 vanes is required to develop 230 kW from
a supply of dry air available at a stagnation temperature of 1050 K and a flow rate of
1kg/s. Using the optimum efficiency design method and assuming a total-to-static
efficiency of 0.81, determine:

(1) the absolute and relative flow angles at rotor inlet;
(2) the overall pressure ratigo:/ ps,
(3) the rotor tip speed and the inlet absolute Mach number.
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Solution (1) From the gas tables, e.g. Rogers and Mayhew (1995],,at
1050K, we can find values far ,=1.1502 kJ/kg K and, = 1.333. Using eqn. (8.25),

S = AW/(C,To1) = 230/(1.15 x 1050 = 0.2.
From Whitfield’s egn. (8.31b),
cofay =1/Z =0.083333 . ap = 7322 deg
and, from eqgn. (8.31a}3, = 2(90 — ap) = 33.56 deg.
(2) Rewriting eqn. (8.26),
L5 _ <1 - i)y/(y_l) - (1 - £>4 = 032165 - 2% _3109
pot Mis 0.81 D3
(3) Using egn. (8.32),

M2 :< S ) 2cosp, 0.2 2 x 0.8333
02

_ — 0.5460
1+cosB; 0333 1+08333

y—1
M02 = 0.7389
Using eqn. (8.33),

M5, 0.546
= = =0.6006 . M,=0.775
1-I(y—-1MZ, 1-(0.333/2) x 0.546 2

M3
To find the rotor tip speed, substitute egn. (8.35) into eqn. (8.27) to obtain:
U3 S
<72> cospy = ——
ag, y—1

s 02
- Up = aory| —————— = 6338/ —————__ —5381m/
279N & = Dcosps 0.333 0.8333 m's

whereag; =/yRTo1 =+/1.333 x 287 1050= 6338 m/s, andl'go= Ty is assumed.

Criterion for minimum number of blades

The following simple analysis of the relative flow in a radially bladed rotor is
of considerable interest as it illustrates an important fundamental point concerning
blade spacing. From elementary mechanics, the radial and transverse components
of acceleration,f, and f, respectively, of a particle moving in a radial plane
(Figure 8.6a) are:

fr=w—Q% (8.36a)
fi=rQ+2Qw (8.36h)
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Radial velocity, W
Radial acceleration, f,

=——= Tangential velocity, Qr
Tangential acceleration, f,

(a) Motion of particle in a radial plane

Insufficient blades
at this radius

—— Region of flow reversal

(b) Optimum radius to avoid
flow reversal, ryy,

FiG. 8.6. Flow models used in analysis of minimum number of blades.

wherew is the radial velocityy = (dw)/(dt) = w(ow)/(dr) (for steady flow),2 is
the angular velocity an& = d2/dr is set equal to zero.

Applying Newton’s second law of motioto a fluid element (as shown in
Figure 6.2) of unit depth, ignoring viscous forces, but putting= w, the radial
equation of motion is,

(p+dp)(r+dr)do — prdd — pdrdd = — f,.dm

where the elementary mass: &= pordodr. After simplifying and substituting for,
from eqn. (8.25a), the following result is obtained,

19 9
“P WY 2 (8.37)
p or or

Integrating eqn. (8.37) with respect toobtains
p/p+ iw? —1U? = constant (8.38)

which is merely thenviscid formof eqgn. (8.2).
The torque transmitted to the rotor by the fluid manifests itself as a pressure
difference across each radial vane. Consequently, there must be a pressure gradient
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in the tangential directionin the space between the vanes. Again, consider the
element of fluid and apply Newton’s second law of motion in the tangential direction

dp.dr = f,dm = 2Qw(prdodr).

Hence,

1
190 _ oo (8.39)
p 90

which establishes the magnitude of the tangential pressure gradient. Differentiating
egn. (8.38) with respect @,

lop ow

- =—w—. (8.40)
p 30 90

Thus, combining eqgns. (8.39) and (8.40) gives,
w = -2Qr (8.41)
90

This result establishes the important fact thla¢ radial velocity is not uniform
across the passagas is frequently assumed. As a consequence of this fact the
radial velocity on one side of a passage is lower than on the other side. Jamieson
(1955), who originated this method, conceived the idea of determiningithienum
number of blades based upon these velocity considerations.

Let the mean radial velocity b@ and the angular space between two adjacent
blades beAd = 27r/Z whereZ is the number of blades. The maximum and minimum
radial velocities are, therefore,

Wmax =W+ 5Aw = w 4 QrA6 (8.42a)

NI NI

Wmin =W — sAw =W — QrAf§ (8.42h)
using eqgn. (8.41).
Making the reasonable assumption that the radial velocity should not drop below
zero, (see Figure 8.6b), then the limiting case occurs at the rotor $ipy, with
wmin = 0. From egn. (8.42b) witl/, = Qr,, the minimum number of rotor blades is

Zmin = 27U32/w2 (8.43a)
At the design conditionl/, = w, tana,, hence

Jamieson’s result, eqn. (8.43b), is plotted in Figure 8.7 and shows that a large
number of rotor vanes are required, especially for high absolute flow angles at
rotor inlet. In practice a large number of vanes are not used for several reasons,
e.g. excessive flow blockage at rotor exit, a disproportionally large “wetted” surface
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Number of rotor vanes, Z

| | | |
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Absolute flow angle, «, (deg)

FiG. 8.7. Flow angle at rotor inlet as a function of the number of rotor vanes.

area causing high friction losses, and the weight and inertia of the rotor become
relatively high.

Some experimental tests reported by Hiett and Johnston (1964) are of interest
in connection with the analysis presented above. With a nozzle outlet apgte
77 deg and a 12 vane rotor, a total-to-static efficiengy= 0.84 was measured at
the optimum velocity ratio/,/co. For that magnitude of flow angle, eqn. (8.43b)
suggests 27 vanes would be required in order to avoid reverse flow at the rotor tip.
However, a second test with the number of vanes increased to 24 produced a gain
in efficiency of only 1%. Hiett and Johnston suggested that the criterion for the
optimum number of vanes might not simply be the avoidance of local flow reversal
but might require a compromise between total pressure losses from this cause and
friction losses based upon rotor and blade surface areas.

Glassman (1976) preferred to use an empirical relationship bet@esmd o5,
namely

Z = % (110— ap) tanas, (8.44)

as he also considered Jamieson’s result, eqn. (8.43b), gave too many vanes in the
rotor. Glassman’s result, which gives far fewer vanes than Jamieson’s is plotted in
Figure 8.7. Whitfield's result given in egn. (8.31b), is not too dissimilar from the
result given by Glassman’s equation, at least for low vane numbers.

Design considerations for rotor exit

Several decisions need to be made regarding the design of the rotor exit. The flow
angle 83, the meridional velocity to blade tip speed ratigg/U>, the shroud tip to
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rotor tip radius ratioys;/r2, and the exit hub to shroud radius ratio= rg;,/rs;, all
have to be considered. It is assumed that the absolute flow at rotor exit is entirely
axial so that the relative velocity can be written:

2_ 2 2
wz =c,3+ Us.

If values ofc,,3/U, andrsa,/r, can be chosen, then the exit flow angle variation
can be found for all radii. From the rotor exit velocity diagram in Figure 8.3,

Ems _ Tsav COtB3ay = s cotBs. (8.45)

U, r2 r2
The meridional velocity,,3 should be kept small in order to minimise the exhaust
energy loss, unless an exhaust diffuser is fitted to the turbine.

Rodgers and Geiser (1987) correlated attainable efficiency levels of IFR turbines
against the blade tip speed/spouting velocity ratig/co, and the axial exit flow
coefficient,c,,3/U2, and their result is shown in Figure 8.8. From this figure it can
be seen that peak efficiency values are obtained with velocity ratios close to 0.7 and
with values of exit flow coefficient between 0.2 and 0.3.

Rohlik (1968) suggested that the ratio of mean rotor exit radius to rotor inlet
radius, raay/7r2, should not exceed 0.7 to avoid excessive curvature of the shroud.
Also, the exit hub to shroud radius ratig; /r3;, should not be less than 0.4 because
of the likelihood of flow blockage caused by closely spaced vanes. Based upon the
metal thickness alone it is easily shown that,

(2mr3n/Z) cOSPa; > ta,

wherets, is the vane thickness at the hub. It is also necessary to allow more than
this thickness because of the boundary layers on each vane. Some of the rather
limited test data available on the design of the rotor exit, comes from Rodgers and
Geiser (1987), and concerns the effect of rotor radius ratio and blade solidity on
turbine efficiency (see Figure 8.9). It is thelative efficiency variation;/nept, that

is depicted as a function of the rotor inlet radius/egitt mean squareadius ratio,

0.8
=~
A7 7SN
< Kpé /
D0.6 - " Sc/
="
0501 0.2 03 0.4 06 08 10

Cal Uy

Fic. 8.8. Correlation of attainable efficiency levels of IFR turbines against velocity ratios
(adapted from Rodgers and Geiser 1987).
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FiG. 8.9. Effects of vane solidity and rotor radius ratio on the efficiency ratio of the IFR
turbine (adapted from Rodgers and Geiser 1987).

r2/rams fOr various values of a blade solidity parametét,/D, (whereL is the
length of the blade along the mean meridion). This radius ratio is related to the

rotor exit hub to shroud ratio;, by

rSrms_@ <1+U2>1/2
2

2 2

From Figure 8.9, forrp/rsms @ value between 1.6 and 1.8 appears to be the
optimum.

Rohlik (1968) suggested that the ratio of the relative velocity at the mean exit
radius to the inlet relative velocityysay/w2, should be sufficiently high to assure a
low total pressure loss. He gave,,/w» a value of 2.0. The relative velocity at the
shroud tip will be greater than that at the mean radius depending upon the radius

ratio at rotor exit.

ExampLE 8.4. Given the following data for an IFR turbine:
Cmg/Uz = 0.25 v =04, r3s/r2 =07 andW3aV/W2 = 2.0,
determine the ratio of the relative velocity ratiez;/w, at the shroud.

Solution As wzs/cu3 = SeCBsz; andwszay/cu3 = S€CB3av, then

W3 SeC,Bgs
W3av SeCfBzay

B 11 4v) =07 and 2 = BV _ g7, 07=049
I'3s ra r3s 12
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From egn. (8.45):

Cn3 12 0.25
cot = ——=——=05102 = 6297 de
,33av Us r3ay 0.49 .. ,33av g
Cm3 2 0.25
cotfzy = —— = —— =0.3571 - B3 = 70.35 de
P =, e = 07 P g
. W_&; _ W35 W3av _ SGC,B&; 92— 0.4544 <2 =2702
W2 Waay W2 secBzav 0.3363

The relative velocity ratio will increase progressively from the hub to the shroud.

ExampLE 8.5. Using the data and results given in the examples 8.3 and 8.4
together with the additional information that

(a) the static pressure at rotor exit is 100 kPa, and

(b) the nozzle enthalpy loss coefficiegt; = 0.06, determine:
(1) the diameter of the rotor and its speed of rotation;
(2) the vane width to diameter ratib,/D, at rotor inlet.

Solution (1) The rate of mass flow is given by

2
. P3 Cm3 r3g 2. 2

= == — = 1- .
m = p3cm3A3 (RT3> (U2> U27T<r2> A —=v)r5

From eqgn. (8.25)703 = To1(1 — S) = 1050x 0.8 = 840K.

ema\2 U?
T3=Tozs— c23/(2C,) =Tz — | — | -2
3 03— €3/ (2C)p) 03 <U2) 2C,

= 840— 0.25° x 5381%/(2 x 1150Q2).

Hence,T3 = 8321K.
Substituting values into the mass flow equation above,

1=[10°/(287 x 8321)] x 0.25x 5381 x 0.7% x 7 x (1 — 0.4%)r%
-.r5=0.01373 and, = 0.1172m .. D, = 0.2343m
Q= Uy/rp = 45913 rad/s(N = 43 843 rev/min.

(2) The rate of mass flow equation is now written as

m = pacp2As, WhereAs = 2mroby, = 47'[7'5(192/[)2)

by i

"Dy Ampacpors
Solving for the absolute velocity at rotor inlet and its components,

cg2 = SCpTo1/U = 0.2 x 11502 x 1050/5381 = 4489 m/s
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Ccm2 = co2/ tanay = 4489/3.3163= 1354 m/s
c2 = cg2/ Sinap = 4489/0.9574= 4688 m/s

To obtain a value for the static density, we need to determing, and p»:

T2 = Toz — ¢5/(2C,) = 1050— 4688°/(2 x 11502) = 9545K,
hoz — h2=3c5 and asty = (hy — hzs)/(5¢5), thenhoy — hay= 31+ &),

) Tor — T _ C%(l—f—é'/v) _ 46882 x 1.06

= = = 0.096447
Toz2 2C ,To2 2 x 11502 x 1050

T

D2 (y=1)/y
= <> =1 - 0.09645= 0.90355
To1

po1
Toy y/(y=1)
P2 (—2) — 0.90358 = 0.66652
po1 To1
- p2 = 3.109x 10° x 0.66652= 2.0722x 10° Pa

by 1 (RT5\ [
D, B 4 b2 Cer%

1 287 x 9545 1
2.0722x 10° ) 1354 x 0.01373

= = 0.0566
4xm -

Incidence losses

At off-design conditions of operation with the fluid entering the rotor at a relative
flow angle, g,, different from the optimum relative flow anglggy opt, an addi-
tional loss due to an effective angle of incidenges= po — B2.opt, Will be incurred.
Operationally, off-design conditions can arise from changes in

(a) the rotational speed of the rotor,
(b) the rate of mass flow,
(c) the setting angle of the stator vanes.

Because of its inertia the speed of the rotor can change only relatively slowly,
whereas the flow rate can change very rapidly, as it does in the pulsating flow of
turbomachine turbines. The time required to alter the stator vane setting angle will
also be relatively long.

Futral and Wasserbauer (1965) defined the incidence loss as equal to the kinetic
energy corresponding to the component of velocity normal to the rotor vane at inlet.
This may be made clearer by referring to the Mollier diagram and velocity diagrams
of Figure 8.10. Immediatelypefore entering the rotor the relative velocity ig,’.
Immediatelyafter entering the rotor the relative velocity is changkypothetically
to wp. Clearly, in reality this change cannot take place so abruptly and will require
some finite distance for it to occur. Nevertheless, it is convenient to consider that the
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Fic. 8.10. (a) Simple flow model of the relative velocity vector (1) immediately before

entry to the rotor, (2) immediately after entry to the rotor. (b) Mollier diagram indicating

the corresponding entropy increase, (Sss — Szs), and enthalpy “loss”, (h, — hy) as a
constant pressure process resulting from non-optimum flow incidence.

change in velocity occurs suddenly, at one radius and is the basis of the so-called
“shock loss model” used at one time to estimate the incidence loss.

The method used by NASA to evaluate the incidence loss was described by
Meitner and Glassman (1980) and (1983) and was based upon a re-evaluation of
the experimental data of Kofskey and Nusbaum (1972). They adopted the following
equation devised originally by Roelke (1973) to evaluate the incidence losses in
axial flow turbines:

Ah; = hy — hy = 3w3(1— cod' ip). (8.46)

Based upon data relating to six stators and one rotor, they found values for the
exponent: which depended upon whether the incidence was positive or negative.
With the present angle convention,

n=25fori>0andn =175 fori <O.

Figure 8.11 shows the variation of the incidence loss functibr cog' i) for a
range of the incidence angleusing the appropriate values of
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Fic. 8.11. Variation of incidence loss function at rotor inlet as a function of the incidence
angle.

ExampLE 8.6(a): For the IFR turbine described in Example 8.3, and using the
data and results in Example 8.4 and 8.5, deduce a value for the rotor enthalpy loss
coefficient, g, at the optimum efficiency flow condition.

(b) The rotor speed of rotation is now reduced so that the relative flow enters the
rotor radially (i.e. at the nominal flow condition). Assuming that the enthalpy loss
coefficients,&y and &g remain the same, determine the total-to-static efficiency of
the turbine for this off-design condition.

Solution (a) From egn. (8.10), solving fd,
tr = [(1 = mi)e§ — ¢5 — Gne3]/wi.

We need to find values far, ¢z, wz andc,.
From the data,

c3=cm3 = 0.25x 5381 = 1345m/s
W3ay = 2wy = 2¢,2/ COSBr = 2 x 1354/ cos 33560 = 32497 m/s
15 = AW /n, = 230x 10°/0.81 = 28395 x 10°
c» = 4688 m/s
. Cr = (2% 28395 x 10° x 0.19— 1345% — 0.06 x 4688?%)/32497>
= 76,624/105 605
=0.7256
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(b) Modifying the simplified expression for,, eqn. (8.10), to include the incidence
loss term given above,

s = 1 — [c2 + gned + zrwl + (1 — cod' ip)wi]/c2.

As noted earlier, egn. (8.10) is an approximation which ignores the weak effect of
the temperature rati@s;/7, upon the value of);. In this expressiom, = ¢, the
relative velocity at rotor entryj = —p, oot = —33.56 deg. andn = 1.75. Hence,

(1 — c0s-7°33.56) = 0.2732.

oM = 1 —[1345% 4 0.06 x 46882
+0.7256 x 32497% + 0.2732x 1354%]/567 900
=1—[18090+ 13 186+ 76 627+ 5008)/567 900
. = 0.801

This example demonstrates that the efficiency reduction when operating at the
nominal design state is only one per cent and shows the relative insensitivity of
the IFR turbine to operating at this off-design condition. At other off-design condi-
tions the inlet relative velocityv, could be much bigger and the incidence loss
correspondingly larger.

Significance and application of specific speed

The concept of specific speéd;, has already been discussed in Chapter 1 and
some applications of it have been made already. Specific speed is extensively used
to describe turbomachinery operating requirements in terms of shaft speed, volume
flow rate and ideal specific work (alternatively, power developed is used instead of
specific work). Originally, specific speed was applied almost exclusiveigdom-
pressibleflow machines as a tool in the selection of the optimum type and size of
unit. Its application to units handlingompressibleluids was somewhat inhibited,
due, it would appear, to the fact that volume flow rate changes through the machine,
which raised the awkward question of which flow rate should be used in the specific
speed definition. According to Balje (1981), the significant volume flow rate which
should be used for turbines is that in the rotor e@#, This has now been widely
adopted by many authorities.

Wood (1963) found it useful to factorise the basic definition of the specific speed
equation, egn. (1.8), in terms of the geometry and flow conditions within the radial-
inflow turbine. Adopting the non-dimensional form of specific speed, in order to
avoid ambiguities,

1/2
Ny = NOs (8.47)

AR

whereN is in rev/s, Qs is in m®/s and the isentropic total-to-total enthalpy drop
Ahg, (from turbine inlet to exhaust) is in J/kg (i.e.2fef).
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For the 90 deg IFR turbine, writinj, = 7N D, and Ahg, = 3cZ, eqn. (8.47) can
be factorised as follows:

* (3c3)¥4 \ D2 ) \nND;

3/2 3/2 1/2
_ (ﬁ) <2> (9_33) (8.48)
b4 co ND;

For theideal 90 deg. IFR turbine and withy, = U, it was shown earlier that the
blade speed to spouting velocity ratitiy/co = 1/+/2 = 0.707. Substituting this
value into eqgn. (8.34),

0s \"?

i.e. specific speed is directly proportional to the square root of the volumetric flow
coefficient.
To obtain some physical significance from eqgns. (8.47) and (8.48a), define a

rotor disc areaA, = 7D3/4 and assume a uniform axial rotor exit velocity so
that O3 = Ascs, then as

CO\/Z
27TD2
Qs Asca2nD;  Azcs m°

ND3 V2¢oD3 T Agco2y/2

N =Uz/(xD2) =

Hence,
Y2 /4N V2
NS=0.336<9) <—3) . (rev) (8.48b)
Co Ad
or,
1/2 1/2
95:2.11(9> (@> . (rad) (8.48c)
co Aq

In an early study of IFR turbine design for maximum efficiency, Rohlik (1968)
specified that the ratio of the rotor shroud diameter to rotor inlet diameter should be
limited to a maximum value of 0.7 to avoid excessive shroud curvature and that the
exit hub to shroud tip ratio was limited to a minimum of 0.4 to avoid excess hub
blade blockage and loss. Using this as data, an upper limi4§p4, can be found,

Az (D3 ? 1 D \?
As  \ Dy D3,
Figure 8.12 shows the relationship betwe®y) the exhaust energy factofcs/co)?
and the area ratidz/A; based upon egn. (8.48c). According to Wood (1963), the

=0.72x (1—0.16) = 0.41
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limits for the exhaust energy factor in gas turbine practice add Q (cz/cg)? <
0.30, the lower value being apparently a flow stability limit.

The numerical value of specific speed provides a general index of flow capacity
relative to work output. Low values of2; are associated with relatively small
flow passage area and high values with relatively large flow passage areas. Specific
speed has also been widely used as a general indication of achievable efficiency.
Figure 8.13 presents a broad correlation of maximum efficiencies for hydraulic and
compressible fluid turbines as functions of specific speed. These efficiencies apply
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to favourable design conditions with high values of flow Reynolds number, efficient
diffusers and low leakage losses at the blade tips. It is seen that over a limited range
of specific speed the best radial-flow turbines match the best axial-flow turbine
efficiency, but from; = 0.03 to 10, no other form of turbine handling compressible
fluids can exceed the peak performance capability of the axial turbine.

Over the fairly limited range of specific spe€@.3 < Q; < 1.0) that the IFR
turbine can produce a high efficiency, but it is difficult to find a decisive performance
advantage in favour of either the axial flow turbine or the radial-flow turbine. New
methods of fabrication enable the blades of small axial-flow turbines to be cast
integrally with the rotor so that both types of turbine can operate at about the same
blade tip speed. Wood (1963) compared the relative merits of axial and radial gas
turbines at some length. In general, although weight, bulk and diameter are greater
for radial than axial turbines, the differences are not so large and mechanical design
compatibility can reverse the difference in a complete gas turbine power plant. The
NASA nuclear Brayton cycle space power studies were all been made with 90 deg
IFR turbines rather than with axial flow turbines.

The design problems of a small axial-flow turbine were discussed by Dunham and
Panton (1973) who studied the cold performance measurements made on a single-
shaft turbine of 13 cm diameter, about the same size as the IFR turbines tested by
NASA. Tests had been performed with four different rotors to try and determine the
effects of aspect ratio, trailing edge thickness, Reynolds number and tip-clearance.
One turbine build achieved a total-to-total efficiency of 90 per cent, about equal to
that of the best IFR turbine. However, because of the much higher outlet velocity,
the total-to-static efficiency of the axial turbine gave a less satisfactory value (84 per
cent) than the IFR type which could be decisive in some applications. They also
confirmed that the axial turbine tip-clearance were comparatively large, losing two
per cent efficiency for every one per cent increase in clearance. The tests illustrated
one major design problem of a small axial turbine which was the extreme thinness
of the blade trailing edges needed to achieve the efficiencies stated.

Optimum design selection of 90 deg IFR turbines

Rohlik (1968) has examined analytically the performance of 90 deg inward flow
radial turbines in order to determiraptimum design geometry for various appli-
cations as characterised by specific speed. His procedure, which extends an earlier
treatment of Balje (1981) and Wood (1963) was used to determine the design point
losses and corresponding efficiencies for various combinations of nozzle exit flow
angleay, rotor diameter ratid, /D34, and rotor blade entry height to exit diameter
ratio, b,/D3ay. The losses taken into account in the calculations are those associ-
ated with,

(i) nozzle blade row boundary layers,
(ii) rotor passage boundary layers,
(i) rotor blade tip clearance,
(iv) disc windage (on the back surface of the rotor),
(v) kinetic energy loss at exit.
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Fic. 8.14. Calculated performance of 90deg IFR turbine (adapted from Rohlick 1968).

A mean-flowpath analysis was used and the passage losses were based upon the
data of Stewaret al. (1960). The main constraints in the analysis were:

(a) Waay/w2 = 2.0

(0) cs3=0

() B2 = Boopis I.€. ZETO inCidence
(d) rgs/rz =0.7

(€) ran/r3s = 0.4.

Figure 8.14 shows the variation in total-to-static efficiency with specific speed
(%25) for a selection of nozzle exit flow angles,. For each value of, a hatched
area is drawn, inside of which the various diameter ratios are varied. The envelope of
maximumy;, is bounded by the constraint, /D3, = 0.4 in all cases and)z;/D, =
0.7 for 2, > 0.58 in these hatched regions. This envelope isapgmum geometry
curve and has a peak,, of 0.87 atQ; = 0.58 rad. An interesting comparison is
made by Rohlik with the experimental results obtained by Kofskey and Wasserbauer
(1966) on a single 90 deg IFR turbine rotor operated with several nozzle blade row
configurations. The peak value gf from this experimental investigation also turned
out to be 0.87 at a slightly higher specific spe@d,= 0.64 rad.

The distribution of losses for optimum geometry over the specific speed range
is shown in Figure 8.15. The way the loss distributions change is a result of the
changing ratio of flow to specific work. At lov2; all friction losses are rela-
tively large because of the high ratios of surface area to flow area. Atthjghe
high velocities at turbine exit cause the kinetic energy leaving loss to predominate.
Figure 8.16 shows several meridional plane sections at three values of specific speed
corresponding to the curve of maximum total-to-static efficiency. The ratio of nozzle
exit height to rotor diameteby,/D,, is shown in Figure 8.17, the general rise of this



268 Fluid Mechanics, Thermodynamics of Turbomachinery

> Exit
5/9 N —1 kinetic

N energy

\———-”ts
0.6

Nozzle

1.0
§§ A

0.9

Rotor

0.5 - - }

& “{Clearance

Windage
|

Distribution of losses as a fraction of (hgy—hs,)

0.4
0.150.2 0.3 04 06 0810 15
Specific speed, Q4 (rad)

Fic. 8.15. Distribution of losses along envelope of maximum total-to-static efficiency
(adapted from Rohlik 1968).

Nozzle exit
Flow angle,
%«w % y

a) Qs=0.23rad (b) Qs—054 rad (c) Qs=1.16rad
Us/cy=0.68 U,/cy = 0.70 Uao/co = 0.62

FiG. 8.16. Sections of radial turbines of maximum static efficiency (adapted from Rohlik

1968).
0.74
0.70 L -~ 0.18
/UQ/CO
0.66 /’ — 0.16
b
U, 082 < = 0.12 D2
<, ar: \ D,
0.58 // \ 0.08
0.54 bd 0.04
//
0.50 0

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Specific speed, Qg (rad)

FiG. 8.17. Variation in blade speed/spouting velocity ratio (U,/c¢;) and nozzle blade
height/rotor inlet diameter (b,/D,) corresponding to maximum total-to-static efficiency
with specific speed (adapted from Rohlik 1968).



Radial Flow Gas Turbines 269

ratio with increasing; reflecting the increase in nozzle flow ateccompanying
the larger flow rates of higher specific speed. Figure 8.17 also shows the variation
of Uy/co with @ along the curve of maximum total-to-static efficiency.

Clearance and windage losses

A clearance gap must exist between the rotor vanes and the shroud. Because
of the pressure difference between the pressure and suction surfaces of a vane, a
leakage flow occurs through the gap introducing a loss in efficiency of the turbine.
The minimum clearance is usually a compromise between manufacturing difficulty
and aerodynamic requirements. Often, the minimum clearance is determined by
the differential expansion and cooling of components undansient operating
conditions which can compromise the steady state operating condition. According to
Ronhlik (1968) the loss in specific work as a result of gap leakage can be determined
with the simple proportionality:

Ah, = Aho(c/bay) (8.49)

where Ahg is the turbine specific work uncorrected for clearance or windage losses
and c/byy is the ratio of the gap to average vane height (bg.= %(b2+b3)).
A constant axial and radial gap,= 0.25 mm, was used in the analytical study
of Rohlik quoted earlier. According to Rodgers (1969) extensive development on
small gas turbines has shown that it is difficult to maintain clearances less than about
0.4 mm. One consequence of this is that as small gas turbines are made progressively
smaller therelative magnitude of the clearance loss must increase.

The non-dimensional power loss due to windage on the back of the rotor has
been given by Shepherd (1956) in the form:

AP,/ (p29°D3) = constant x Re™/®

whereQ is the rotational speed of the rotor aRd is a Reynolds number. Rohlik
(1968) used this expression to calculate the loss in specific work due to windage,

Ah,, = 0.56p,D5(U2/100)%/ (i1 Re) (8.50)

wherem is the total rate of mass flow entering the turbine and the Reynolds number
is defined byRe = U,D,/v,, v, being the kinematic viscosity of the gas corre-
sponding to the static temperatufe at nozzle exit.

Pressure ratio limits of the 90 deg IFR turbine

Every turbine type has pressure ratio limits, which are reached when the flow
chokes. Choking usually occurs when the absolute flow at rotor exit reaches sonic
velocity. (It can also occur when theelative velocity within the rotor reaches sonic
conditions.) In the following analysis it is assumed that the turbine first chokes when

* The ratiob,/D; is also affected by the pressure ratio and this has not been shown.
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the absolute exit velocitys reaches the speed of sound. It is also assumed-that
is without swirl and that the fluid is a perfect gas.

For simplicity it is also assumed that the diffuser efficiency is 100% so that,
referring to Figure 8.4, g4, = Toass(Po3 = pos). Thus, the turbine total-to-total
efficiency is,

Tor—Tos

= — 8.51
G To1 — T3z ( )

The expression for the spouting velocity, now becomes
5 = 2C ,(To1 — Toay),
is substituted into eqn. (8.51) to give,
1 2C ,To3
n = — p2 . (8.52)
— (Tozss/To1) c§

The stagnation pressure ratio across the turbine stage is givepodyor =
(Toss/To1)”Y~V; substituting this into egn. (8.52) and rearranging, the exhaust
energy factor is,

c3 2 1 c2
(-) = [ — — ] s (8.53)
co 1— (po3/ por)r=V/r 2C,To3

Now Toz = T3[1 + 2(y — HM3] and

C2

2C

y—1 1
=Toz—To1=T3 — M3,

therefore,
3 sy — M3
2C,Tos 1+ i(y—1M3

(8.54)

With further manipulation of eqn. (8.53) and using eqgn. (8.54) the stagnation pres-
sure ratio is expressed explicitly as

<@><y—“/y (ca/co)® + [5(v = DMGn]/[1 + (v — DM
Po3 (ca/co)? — [3(y — M3 — n)]/[L + 3(y — DM3]

Wood (1963) has calculated the pressure rghig/ po3) using this expression, with
n, = 0.9,y =14 and forM3 = 0.7 and 1.0. The result is shown in Figure 8.14. In
practice, exhaust choking effectively occurs at nominal valued £ 0.7 (instead
of at the ideal value oM 3 = 1.0) due to non-uniform exit flow.

The kinetic energy ratiqcs/co)? has a first order effect on the pressure ratio
limits of single stage turbines. The effect of any exhaust swirl present would be to
lower the limits of choking pressure ratio.

It has been observed by Wood that high pressure ratios tend to compel the use of
lower specific speeds. This assertion can be demonstrated by means of Figure 8.12
taken together with Figure 8.18. In Figure 8.12, for a given valuaifHfa,, Q;

(8.55)
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FiG. 8.18. Pressure ratio limit function for a turbine (Wood 1963) (By courtesy of the
American Society of Mechanical Engineers).

increases with(cs/co)? increasing. From Figure 8.18po1/ pos) decreases with
increasing values afcs/co)?. Thus, for a given value ofcz/co)?, the specific speed
mustdecreaseas the design pressure ratio is increased.

Cooled 90 deg IFR turbines

The incentive to use higher temperatures in the basic Brayton gas turbine cycle is
well known and arises from a desire to increase cycle efficiency and specific work
output. In all gas turbines designed for high efficiency a compromise is necessary
between the turbine inlet temperature desired and the temperature which can be
tolerated by the turbine materials used. This problem can be minimised by using
an auxiliary supply of cooling air to lower the temperature of the highly stressed
parts of the turbine exposed to the high temperature gas. Following the successful
application of blade cooling techniques to axial flow turbines (see, for example,
Horlock 1966 or Fullagar 1973), methods of cooling small radial gas turbines have
been developed.

According to Rodgers (1969) the most practical method of cooling small radial
turbines is by film (or veil) cooling, Figure 8.19, where cooling air is impinged on
the rotor and vane tips. The main problem with this method of cooling being its
relatively low cooling effectivenesslefined by

o Tor— (T + ATp)
Tor— (To. + ATo)

(8.56)
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Fic. 8.19. Cross section of film-cooled radial turbine.

whereT,, is the rotor metal temperature,

ATo = 3U5/C,, is half the drop in stagnation temperature of the
gas as a result of doing work on the rator

To.is the stagnation temperature of the cooling air

Rodgers refers to tests which indicate the possibility of obtairirg0.30 at the

rotor tip section with a cooling flow of approximately 10% of the main gas flow.
Since the cool and hot streams rapidly mix, effectiveness decreases with distance
from the point of impingement. A model study of the heat transfer aspects of
film-cooled radial flow gas turbines is given by Metzger and Mitchell (1966).
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Problems

1. A small inward radial flow gas turbine, comprising a ring of nozzle blades, a radial-
vaned rotor and an axial diffuser, operates at the nominal design point with a total-to-total
efficiency of 0.90. At turbine entry the stagnation pressure and temperature of the gas is
400 kPa and 1,140K. The flow leaving the turbine is diffused to a pressure of 100 kPa and
has negligible final velocity. Given that the flow is just choked at nozzle exit, determine the
impeller peripheral speed and the flow outlet angle from the nozzles.

For the gas assume= 1.333 andrR = 287 J/(kg°C).
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2. The mass flow rate of gas through the turbine given in Problem No. 1 is 3.1kg/s, the
ratio of the rotor axial width/rotor tip radius®{/r,) is 0.1 and the nozzle isentropic velocity
ratio (¢,) is 0.96. Assuming that the space between nozzle exit and rotor entry is negligible
and ignoring the effects of blade blockage, determine:

(i) the static pressure and static temperature at nozzle exit;
(i) the rotor tip diameter and rotational speed;
(i) the power transmitted assuming a mechanical efficiency of 93.5%.

3. A radial turbine is proposed as the gas expansion element of a nuclear powered Brayton
cycle space power system. The pressure and temperature conditions through the stage at the
design point are to be as follows:

Upstream of nozzles, po; = 699kPaTy; = 1, 145K;
Nozzle exit, p2 =5272kPa T, =1,029K;
Rotor exit, p3 =3847kPa T3 = 9145K, To3 = 9247K.

The ratio of rotor exit mean diameter to rotor inlet tip diameter is chosen as 0.49 and the
required rotational speed as 24,000 rev/min. Assuming the relative flow at rotor inlet is radial
and the absolute flow at rotor exit is axial, determine:

(i) the total-to-static efficiency of the turbine;
(ii) the rotor diameter;
(i) the implied enthalpy loss coefficients for the nozzles and rotor row.

The gas employed in this cycle is a mixture of helium and xenon with a molecular
weight of 39.94 and a ratio of specific heats of 5/3. The universal gas constaty 4s,
8.314 kJ/(kg-mol K).

4. A film-cooled radial inflow turbine is to be used in a high performance open Brayton
cycle gas turbine. The rotor is made of a material able to withstand a temperature of 1145K at
a tip speed of 600 m/s for short periods of operation. Cooling air is supplied by the compressor
which operates at a stagnation pressure ratio of 4 to 1, with an isentropic efficiency of 80%,
when air is admitted to the compressor at a stagnation temperature of 288 K. Assuming that
the effectiveness of the film cooling is 0.30 and the cooling air temperature at turbine entry
is the same as that at compressor exit, determine the maximum permissible gas temperature
at entry to the turbine.

Take y = 1.4 for the air. Takey = 1.333 for the gas entering the turbine. Assume-

287 J/(kg K) in both cases.

5. The radial inflow turbine in Problem 8.3 is designed for a specific sgeedf 0.55
(rad). Determine:

(1) the volume flow rate and the turbine power output;
(2) the rotor exit hub and tip diameters;
(3) the nozzle exit flow angle and the rotor inlet passage width/diameter bafiD;.

6. An inward flow radial gas turbine with a rotor diameter of 23.76 cm is designed to
operate with a gas mass flow of 1.0kg/s at a rotational speed of 38 140rev/min. At the
design condition the inlet stagnation pressure and temperature are to be 300 kPa“&hd 727
The turbine is to be “cold” tested in a laboratory where an air supply is available only at the
stagnation conditions of 200 kPa and 102

(a) Assuming dynamically similar conditions between those of the laboratory and the
projected design determine, for the “cold” test, the equivalent mass flow rate and the speed
of rotation. Assume the gas properties are the same as for air.
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(b) Using property tables for air, determine the Reynolds numbers for both the hot and
cold running conditions. The Reynolds number is defined in this context as:

Re = potND?/ 1101

where pp; and i1 are the stagnation density and stagnation viscosity of the air, N is the
rotational speed (rev/s) ard is the rotor diameter.

7. For the radial flow turbine described in the previous question and operating at the
prescribed “hot” design point condition, the gas leaves the exducer directly to the atmosphere
at a pressure of 100kPa and without swirl. The absolute flow angle at rotor inlet i® 72
the radial direction. The relative velocity; at the the mean radius of the exducer (which is
one half of the rotor inlet radiugy) is twice the rotor inlet relative velocity,. The nozzle
enthalpy loss coefficienty = 0.06.

Assuming the gas has the properties of air with an average value=0f.34 (this temper-
ature range) an@& = 287 J/kg K, determine:

(1) the total-to-static efficiency of the turbine;

(2) the static temperature and pressure at the rotor inlet;

(3) the axial width of the passage at inlet to the rotor;

(4) the absolute velocity of the flow at exit from the exducer;

(5) the rotor enthalpy loss coefficient;

(6) the radii of the exducer exit given that the radius ratio at that location is 0.4.

8. One of the early space power systems built and tested for NASA was based on the
Brayton cycle and incorporated an IFR turbine as the gas expander. Some of the data available
concerning the turbine are as follows:

Total-to total pressure ratio (turbine inlet to turbine exit), po1/poz = 1.560

Total-to-static pressure ratio, po1/p3z = 1.613
Total temperature at turbine entry, Tor = 1083K
Total pressure at inlet to turbine, Tor = 91kPa
Shaft power output (measured on a dynamometer) Pret = 22.03 kW
Bearing and seal friction torque (a separate test), 7y = 0.0794Nm
Rotor diameter, D> = 15.29cm
Absolute flow angle at rotor inlet, o =72
Absolute flow angle at rotor exit, a3 =0

The hub to shroud radius ratio at rotor exit, rp/r, = 0.35

Ratio of blade speed to jet speed, v =Uy/co = 0.6958

(co based on total-to-static pressure ratio)

For reasons of crew safety, an inert gas argbn=(2082 J/(kg K), ratio of specific heats,
y = 1.667) was used in the cycle. The turbine design scheme was based on the concept of
optimum efficiency.

Determine, for the design point:

(1) the rotor vane tip speed;
(2) the static pressure and temperature at rotor exit;
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(3) the gas exit velocity and mass flow rate;
(4) the shroud radius at rotor exit;

(5) the relative flow angle at rotor inlet;

(6) the specific speed.

NB. The volume flow rate to be used in the definition of the specific speed is based on the
rotor exit conditions.
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CHAPTER 9

Hydraulic Turbines

Hear ye not the hum of mighty workings? (KEaTs, Sonnet No. 14).
The power of water has changed more in this world than emperors or kings.
(Leonardo da Vinci).

Introduction

To put this chapter into perspective some idea of the scale of hydropower devel-
opment in the world might be useful before delving into the intricacies of hydraulic
turbines. A very detailed and authoritative account of virtually every aspect of
hydropower is given by Raabe (1985) and this brief introduction serves merely to
illustrate a few aspects of a very extensive subject.

Hydropower is the longest established source for the generation of electric power
which, starting in 1880 as a small dc generating plant in Wisconsin, USA, developed
into an industrial size plant following the demonstration of the economic transmis-
sion of high voltage ac at the Frankfurt Exhibition in 1891. Hydropower now has a
worldwide yearly growth rate of about five per cent (i.e. doubling in size every 15
years). In 1980 the worldwide installed generating capacity was 460 GW according
to the United Nations (1981) so, by the year 2000, at the above growth rate this
should have risen to a figure of about 1220 GW. The main areas with potential for
growth are China, Latin America and Africa.

Table 9.1 is an extract of data quoted by Raabe (1985) of the distribution of
harnessed and harnessable potential of some of the countries with the biggest usable
potential of hydro power. From this list it is seen that the People’s Republic of
China, the country with the largest harnessable potential in the world had, in 1974,
harnessed only 4.22 per cent of this. According to Cotillon (1978), with growth
rates of 14.2 per cent up to 1985 and then with a growth rate of eight per cent, the
PRC should have harnessed about 26 per cent of its harvestable potential by the
year 2000. This would need the installation of nearly 4600 MW per annum of new
hydropower plant, and a challenge to the makers of turbines around the world! One
scheme in the PRC, under construction since 1992 and scheduled for completion
in 2009, is the Xanxia (Three Gorges) project on the Yangtse which has a planned
installed capacity of 25000 MW, and which would make it the biggest hydropower
plant in the world.

Features of hydropower plants

The initial cost of hydropower plants may be much higher than those of thermal
power plants. However, the present value of total costs (which includes those of
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TasLE 9.1. Distribution of harnessed and harnessable potential of hydroelectric power.

Country Usable potential, Amount of potential Percentage of usable
TWh used, TWh potential
1 China (PRC) 1320 55.6 4.22
2 Former USSR 1095 180 16.45
3 USA 701.5 277.7 39.6
4 Zaire 660 4.3 0.65
5 Canada 535.2 251 46.9
6 Brazil 519.3 126.9 24.45
7 Malaysia 320 1.25 0.39
8 Columbia 300 13.8 4.6
9 India 280 46.87 16.7
Sum 1-9 5731 907.4 15.83
Other countries 4071 843 20.7
Total 9802.4 1750.5 17.8

TABLE 9.2. Features of hydroelectric powerplants.

Advantages Disadvantages

Technology is relatively simple and
proven. High efficiency. Long useful
life. No thermal phenomena apart
from those in bearings and generator.

Number of favourable sites limited and
only available in some countries. Problems
with cavitation and water hammer.

Small operating, maintenance and
replacement costs.

High initial cost especially for low head
plants compared with thermal power plants.

No air pollution. No thermal pollution of Inundation of the reservoirs and displace-

water. ment of the population. Loss of arable
land. Facilitates sedimentation upstream
and erosion downstream of a barrage.

fuel) is, in general, lower in hydropower plants. Raabe (1985) listed the various
advantages and disadvantages of hydropower plants and a brief summary of these
is given in Table 9.2.

Hydraulic turbines
Early history of hydraulic turbines

The hydraulic turbine has a long period of development, its oldest and simplest
form being the waterwheel, first used in ancient Greece and subsequently adopted
throughout medieval Europe for the grinding of grain, etc. It was a French engi-
neer, Benoit Fourneyron, who developed the first commercially successful hydraulic
turbine (circa 1830). Later Fourneyron built turbines for industrial purposes that
achieved a speed of 2300 rev/min, developing about 50 kW at an efficiency of over
80 per cent.



Hydraulic Turbines 279

The American engineer James B. Francis designed theddtl-inflow hydraulic
turbine which became widely used, gave excellent results and was highly regarded.
In its original form it was used for heads of between 10 and 100 m. A simplified
form of this turbine is shown in Figure 1.1d. It will be observed that the flow path
followed is essentially from a radial direction to an axial direction.

The Pelton wheel turbine, named after its American inventor Lester A. Pelton, was
brought into use in the second half of the nineteenth century. This is an impulse
turbine in which water is piped at high pressure to a nozzle where it expands
completely to atmospheric pressure. The emerging jet impacts onto the blades (or
buckets) of the turbine producing the required torque and power output. A simplified
diagram of a Pelton wheel turbine is shown in Figure 1.1f. The head of water used
originally was between about 90 m and 900 m (modern versions operate up to heads
of 2000 m).

The increasing need for more power during the early years of the twentieth century
also led to the invention of a turbine suitable for small heads of water, i.e. 3m to
9m, in river locations where a dam could be built. It was in 1913 that Viktor Kaplan
revealed his idea of the propeller (or Kaplan) turbine, see Figure 1.1e, which acts
like a ship’s propeller but in reverse At a later date Kaplan improved his turbine
by means of swivelable blades which improved the efficiency of the turbine in
accordance with the prevailing conditions (i.e. the available flow rate and head).

Flow regimes for maximum efficiency

Although there are a large number of turbine types in use, only the three mentioned
above and variants of them are considered in this book. The efficiencies of the three
types are shown in Figure 9.1 as functions of the power specific sprgadyhich
from eqgn. (1.9), is

o — QP/p
sp = 5/4
(gHE)

where P is the power delivered by the shafi is the effective head at turbine
entry andQ2 is the rotational speed in rad/s.

(9.1)
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Fic. 9.1. Typical design point efficiencies of Pelton, Francis and Kaplan turbines.
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TaBLE 9.3. Operating ranges of hydraulic turbines.

Pelton turbine Francis turbine Kaplan turbine
Specific speed (rad) .05-04 04-—-22 18-5.0
Head (m) 1061770 2G6-900 6-70
Maximum power (MW) 500 800 300
Optimum efficiency, per cent 90 95 94
Regulation method Needle valve and Stagger angle of Stagger angle of rotor
deflector plate guide vanes bades

NB. Values shown in the table are only a rough guide and are subject to change.

The regimes of these turbine types are of some significance to the designer as they
indicate the most suitable choice of machine for an application once the specific
speed has been determined. In general low specific speed machines correspond
to low volume flow rates and high heads, whereas high specific speed machines
correspond to high volume flow rates and low heads. Table 9.3 summarises the
normal operating ranges for the specific speed, the effective head, the maximum
power and best efficiency for each type of turbine.

According to the experience of Sulzer Hydro Ltd., of Zurich, the application ranges
of the various types of turbines and turbine pumps (including some not mentioned
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Fic. 9.2. Application ranges for various types of hydraulic turbomachines, as a plot of
Q vs H with lines of constant power determined assuming no, = 0.8. (Courtesy Sulzer
Hydro Ltd., Zurich).
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here) are plotted in Figure 9.2 on adhvs In H diagram, and reflect the present state
of the art of hydraulic turbomachinery design. Also in Figure 9.2 lines of constant
power output are conveniently shown and have been calculated as the pjoglDEL,
where the efficiency) is accorded the value of 0.8 throughout the chart.

Capacity of large Francis turbines

The size and capacity of some of the recently built Francis turbines is a source of
wonder, they seem so enormous! The size and weight of the runners cause special
problems getting them to the site, especially when rivers have to be crossed and the
bridges are inadequate.

The largest installation now in North America is at La Grande on James Bay
in eastern Canada where 22 units each rated at 333 MW have a total capacity of
7326 MW. For the record, the Itaipu hydroelectric plant on the Rarxer (between
Brazil and Paraguay), dedicated in 1982, has the greatest capacity of 12870 MW in
full operation (with a planned value of 21 500 MW) using 18 Francis turbines each
sized at over 700 MW.

The efficiency of large Francis turbines has gradually risen over the years and
now is about 95 per cent. An historical review of this progress has been given
by Danel (1959). There seems to be little prospect of much further improvement
in efficiency as skin friction, tip leakage and exit kinetic energy from the diffuser
now apparently account for the remaining losses. Raabe (1985) has given much
attention to the statistics of the world’s biggest turbines. It would appear at the
present time that the largest hydroturbines in the world are the three vertical shaft
Francis turbines installed at Grand Coulee Il on the Columbia River, Washington,
USA. Each of these leviathans has been uprated to 800 MW, with the delivery
(or effective) headH = 87 m, N = 85.7 rev/imin, the runner having a diameter of
D = 9.26 m and weighing 450 ton. Using this data in eqn. (9.1) it is easy to calculate
that the power specific speed is 1.74 rad.

The Pelton turbine

This is the only hydraulic turbine of the impulse type now in common use. It
is an efficient machine and it is particularly suited to high head applications. The
rotor consists of a circular disc with a number of blades (usually called “buckets”)
spaced around the periphery. One or more nozzles are mounted in such a way that
each nozzle directs its jet along a tangent to the circle through the centres of the
buckets. There is a “splitter” or ridge which splits the oncoming jet into two equal
streams so that, after flowing round the inner surface of the bucket, the two streams
depart from the bucket in a direction nearly opposite to that of the incoming jet.

Figure. 9.3 shows the runner of a Pelton turbine and Figure 9.4 shows a six-
jet vertical axis Pelton turbine. Considering one jet impinging on a bucket, the
appropriate velocity diagram is shown in Figure 9.5. The jet velocity at entry is
and the blade speed s so that the relative velocity at entryig = ¢1 — U. At exit
from the bucket one half of the jet stream flows as shown in the velocity diagram,
leaving with a relative velocityw, and at an angle, to the original direction of
flow. From the velocity diagram the much smaller absolute exit velagitgan be
determined.
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FiG. 9.3. Pelton turbine runner (Courtesy Sulzer Hydro Ltd, Zurich).

Fic. 9.4. Six-jet vertical shaft Pelton turbine, horizontal section. Power rating 174.4 MW,
runner diameter 4.1 m, speed 300rev/min, head 587 m. (Courtesy Sulzer Hydro Ltd.,
Zurich).
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Fic. 9.5. The Pelton wheel showing the jet impinging onto a bucket and the relative
and absolute velocities of the flow (only one-half of the emergent velocity diagram is
shown).

From Euler’s turbine equation, eqgn. (2.12b), the specific work done by the water is
AW = Uicgr — Uacoo.
For the Pelton turbinel/; = Uy = U, cg1 = c1 SO we get
AW = U[U + wy — (U + w, €c0SB2] = U(wi — w2 COSB2)

in which the value oty < 0, as defined in Figure 9.5, i.e5» = U + w» C0OSp).

The effect of friction on the fluid flowing inside the bucket will cause the relative
velocity at outlet to be less than the value at inlet. Writing= kw;, wherek < 1,
then,

AW = Uwi(1 — kcosBz) = U(cr — U)(1 — k cospy). 9.2)

An efficiencyny for the runner can be defined as the specific work daiédivided
by the incoming kinetic energy, i.e.

nr = AW/(3c%) (9.3)
= 2U(c1 — U)(1 — kcospp)/c3
< g = 20(1 — v)(1 — kCOSp,) (9.4)

where the blade speed to jet speed ratie; U/c;.
In order to find the optimum efficiency, differentiate eqn. (9.4) with respect to
the blade speed ratio, i.e.
dng _ zg(u —1?)(1 — k cospy)
dv dv
=2(1-2v)(1—-kcospy) =0.

Therefore, the maximum efficiency of the runner occurs when 0.5, i.e. U =
c1/2. Hence,

Nrmax = (1 — kC0SPo)/2. (9.5)
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FiG. 9.6. Theoretical variation of runner efficiency for a Pelton wheel with blade speed
to jet speed ratio for several values of friction factor k.

Figure. 9.6 shows the variation of the runner efficiency with blade speed ratio for
assumed values @f = 0.8, 0.9 and 1.0 withg, = 165 deg. In practice the value of
k is usually found to be between 0.8 and 0.9.

A simple hydroelectric scheme

The layout of a Pelton turbine hydroelectric scheme is shown in Figure 9.7. The
water is delivered from a constant level reservoir at an elevajjofabove sea
level) and flows via a pressure tunnel to the penstock head, down the penstock to
the turbine nozzles emerging onto the buckets as a high speed jet. In order to reduce
the deleterious effects of large pressure surgaesyge tankis connected to the flow
close to the penstock head which acts so as to damp out transients. The elevation
of the nozzles igy and the gross head; = zz — zv .

Controlling the speed of the Pelton turbine

The Pelton turbine is usually directly coupled to an electrical generator which
must run at synchronous speed. With large size hydroelectric schemes supplying
electricity to a national grid it is essential for both the voltage and the frequency
to closely match the grid values. To ensure that the turbine runs at constant speed
despite any load changes which may occur, the rate offlasichanged. A spear (or
needle) valve, Figure 9.8a, whose position is controlled by means of a servomecha-
nism, is moved axially within the nozzle to alter the diameter of the jet. This works
well for very gradual changes in load. However, when a sudden loss in load occurs
a more rapid response is needed. This is accomplished by temporarily deflecting
the jet with a deflector plate so that some of the water does not reach the buckets,
Figure 9.8b. This acts to prevent overspeeding and allows time for the slower acting
spear valve to move to a hew position.

It is vital to ensure that the spear valdees move slowlas a sudden reduction
in the rate of flow could result in serious damage to the system from pressure surges
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FiG. 9.7. Pelton turbine hydroelectric scheme.

(a) Full load

(b) Deflector in normal position Fully deflected position

FiG. 9.8. Methods of regulating the speed of a Pelton turbine: (a) with a spear (or needle)
valve; (b) with a deflector plate.

(called “water hammer”). If the spear valve did close quickly, all the kinetic energy

of the water in the penstock would be absorbed by the elasticity of the supply
pipeline (penstock) and the water, creating very large stresses which would reach
their greatest intensity at the turbine inlet where the pipeline is already heavily
stressed. The surge chamber, shown in Figure 9.7, has the function of absorbing
and dissipating some of the pressure and energy fluctuations created by too rapid a
closure of the needle valve.
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Sizing the penstock

It is shown in elementary textbooks on fluid mechanics, e.g. Shames (1992),
Douglaset al. (1995), that the loss in head with incompressible, steady, turbulent
flow in pipes of circular cross-section is given by Darcy’s equation:

2f1V?

;= od
where f is the friction factor/ is the length of the pipe{ is the pipe diameter and
V is the mass average velocity of the flow in the pipe. It is assumed, of course, that
the pipe is running full. The value of the friction factor has been determined for
various conditions of flow and pipe surface roughness and the results are usually
presented in what is called a “Moody diagram”. This diagram gives valugs ax
a function of pipe Reynolds number for varying levels of relative roughness of the
pipe wall.

The penstock (the pipeline bringing the water to the turbine) is long and of large
diameter and this can add significantly to the total cost of a hydroelectric power
scheme. Using Darcy’'s equation it is easy to calculate a suitable pipe diameter for
such a scheme if the friction factor is known and an estimate can be made of the
allowable head loss. Logically, this head loss would be determined on the basis of
the cost of materials, etc. needed for a large diameter pipe and compared with the
value of the useful energy lost from having too small a pipe. A commonly used
compromise for the loss in head in the supply pipes is to atbw< 0.1H .

A summary of various factors on which the “economic diameter” of a pipe can
be determined is given by Raabe (1985).

From eqn. (9.6), substituting for the velocity,= 4Q/(7d?), we get

32f1 2
n= (22 o7

(9.6)

EAMPLE 9.1. Water is supplied to a turbine at the réte= 2.272 /s by a single
penstock 300m long. The allowable head loss due to friction in the pipe amounts
to 20 m. Determine the diameter of the pipe if the friction facfoe 0.1.

Solution Rearranging eqgn. (9.7):
s 3L (0 ?_ 32x0.01x 300 (2.272)°
gH, \m 9.81x 20 T
= 0.2559

..d=0.7614m

Energy losses in the Pelton turbine

Having accounted for the energy loss due to friction in the penstock, the energy
losses in the rest of the hydroelectric scheme must now be considered. The effective
head,H g, (or delivered head) at entry to the turbine is the gross head minus the
friction head lossH, i.e.

Hp=H¢—Hy=zr—zv—Hy
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and the spouting (or ideal) velocityg, is
co=/2gHE.

The pipeline friction losg ; is regarded as an external loss and is not included in
the losses attributed to the turbine system. The efficiency of the turbine is measured
against the ideal total hedd.

The nozzle velocity coefficienKy, is

actual velocity at nozzle exit c¢1
N — . . — .
spouting velocity at nozzle exit cq

Values ofKy are normally around 0.98 to 0.99.

Other energy losses occur in the nozzles and also because of windage and friction
of the turbine wheel. Let the loss in head in the nozzleA¥, then the head
available for conversion into power is

Hp — AHy = c2/(29). (9.8)
energy at nozzle exit c?

energy at nozzle inlet 2gH

nozzle efficiencyny = (9.9
Equation (2.23) is an expression for the hydraulic efficiency of a turbine which, in
the present notation and using eqgns. (9.3) and (9.9), becomes

AW AW [ ic2
== = = . 9.10
Nh <Hp ( %ci) <gHE NRNN ( )

The efficiencyng only represents the effectiveness of converting the kinetic energy
of the jet into the mechanical energy of the runner. Further losses occur as a result
of bearing friction and “windage” losses inside the casing of the runner. In large
Pelton turbines efficiencies of around 90 per cent may be achieved but, in smaller
units, a much lower efficiency is usually obtained.

The overall efficiency

In Chapter 2 the overall efficiency was defined as

__mechanical energy available at output shaft in unit time
~ maximum energy difference possible for the fluid in unit time

No = NmNh = NmNRNIN

no

wheren,, is the mechanical efficiency.

The external losses, bearing friction and windage, are chiefly responsible for
the energy deficit between the runner and the shaft. An estimate of the effect of
the windage loss can be made using the following simple flow model in which
the specific energy loss is assumed to be proportional to the square of the blade
speed, i.e.

loss/unit mass flows K U?

whereK is a dimensionless constant of proportionality.
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The overall efficiency can now be written as

AW — KU? KU? UN? /[ ¢?
770=—=71h_—=’7h_2K<_> < : )
gHg gH, c1 2gH g

.10 = nrny — 2Knyv? = ny(ng — 2K1V?). (9.11
Hence, the mechanical efficiency is,
nm = 1 — 2Kv?/np. (9.12)

It can be seen that according to eqgn. (9.12), as the speed ratio is reduced towards
zero, the mechanical efficiency increases and approaches unity. As there must be
somebearing friction at all speeds, however small, an additional term is needed in
the loss equation of the forac3 + kU2, whereA is another dimensionless constant.
The solution of this is left for the student to solve.

The variation of the overall efficiency based upon egn. (9.11) is shown in
Figure 9.9 for several values &f. It is seen that the peak efficiency:

(1) is progressively reduced as the valuekofs increased;
(2) occurs at lower values of than the optimum determined for the runner.

Thus, this evaluation of overall efficiency demonstrates the reason why experimental
results obtained of the performance of Pelton turbines always yields a peak efficiency
at a value ofv < 0.5.

Typical performance of a Pelton turbineder conditions of constant head and
speedis shown in Figure 9.10 in the form of the variation of overall efficiency
against load ratio. As result of a change in the load the output of the turbine must
then be regulated by a change in the setting of the needle valve in order to keep the
turbine speed constant. The observed almost constant value of the efficiency over
most of the load range is the result of ttmedraulic lossegeducing in proportion to
the power output. However, as the load ratio is reduced to even lower values, the
windage and bearing friction losses, which have not diminished, assume a relatively
greater importance and the overall efficiency rapidly diminishes towards zero.

1.0 I
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- & _
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| Locus of maxima o X |
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FiG. 9.9. Variation of overall efficiency of a Pelton turbine with speed ratio for several
values of windage coefficient, K.
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FiG. 9.10. Pelton turbine overall efficiency variation with load under constant head and
constant speed conditions.

ExAMPLE 9.2. A Pelton turbine is driven by two jets, generating 4.0 MW at
375rev/imin. The effective head at the nozzles is 200 m of water and the nozzle
velocity coefficient,Ky = 0.98. The axes of the jets are tangent to a circle 1.5m in
diameter. The relative velocity of the flow across the buckets is decreased by 15 per
cent and the water is deflected through an angle of 165 deg.

Neglecting bearing and windage losses, determine:

(1) the runner efficiency;
(2) the diameter of each jet;
(3) the power specific speed.
Solution (1) The blade speed is:
U=Qr=375x n/30) x 1.5/2
=39.27x 1.5/2=2945m/s
The jet speed is:
c1=Ky+/2gHe = 0.98 x /(2 x 9.81 x 200) = 61.39 m/s
s.v=U/c1 =0.4798
The efficiency of the runner is obtained from egn. (9.4):
ng =2 x 0.4798x (1 — 0.4798(1 — 0.85 x cos 165)
= 0.9090

(2) The “theoretical” power iPy, = P/ng = 4.0/0.909 = 4.40 MW where Py, =
pgQH .

5.0 = Pw/(pgH,) = 4.4 x 10°/(9810x 200) = 2.243n?/s.

Each jet must have a flow area of,

Aj= 22 = 2.243/(2 x 61.39) = 0.01827 nf.
€1

-.d;=0.1525m
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(3) Substituting into eqn. (9.1), the power specific speed is,

4.0 x 10°

1/2
5/4
e ) /(9.81 x 200)

Q,, = 39.27 x (

=0.190rad

Reaction turbines

The primary features of the reaction turbine are:

(1) only part of the overall pressure drop has occurred up to turbine entry, the
remaining pressure drop takes place in the turbine itself;

(2) the flow completely fills all of the passages in the runner, unlike the Pelton
turbine where, for each jet, only one or two of the buckets at a time are in
contact with the water;

(3) pivotable guide vanes are used to control and direct the flow;

(4) a draft tube is normally added on to the turbine exit; it is considered as an
integral part of the turbine.

The pressure of the water gradually decreases as it flows through the runner and
it is the reaction from this pressure change which earns this type of turbine its
appellation.

The Francis turbine

The majority of Francis turbines are arranged so that the axis is vertical (some
smaller machines can have horizontal axes). Figure 9.11 illustrates a section through
a vertical shaft Francis turbine with a runner diameter of 5m, a head of 110m and
a power rating of nearly 200 MW. Water enters via a spiral casing calleduge or
scroll which surrounds the runner. The area of cross-section of the volute decreases
along the flow path in such a way that the flow velocity remains constant. From
the volute the flow enters a ring of stationary guide vanes which direct it onto the
runner at the most appropriate angle.

In flowing through the runner the angular momentum of the water is reduced
and work is supplied to the turbine shaft. At the design condition the absolute flow
leaves the runner axially (although a small amount of swirl may be countenanced)
into the draft tube and, finally, the flow enters thiil race. It is essential that the
exit of the draft tube is submerged below the level of the water in the tail race in
order that the turbine remains full of water. The draft tube also acts as a diffuser;
by careful design it can ensure maximum recovery of energy through the turbine
by significantly reducing the exit kinetic energy.

Figure. 9.12 shows a section through part of a Francis turbine together with the
velocity triangles at inlet to and exit from the runner at mid-blade height. At inlet
to the guide vanes the flow is in the radial/tangential plane, the absolute velocity is
c; and the absolute flow angle ég. Thus,

o1 = tan_l(Cgl/Crl). (913)
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Fic. 9.11. Vertical shaft Francis turbine: runner diameter 5 m, head 110 m, power 200 MW
(courtesy Sulzer Hydro Ltd, Zurich).

The flow is turned to angle, and velocityc,, the absolute condition of the flow

at entry to the runner. By vector subtraction the relative velocity at entry to the
runner is found, i.ew, = ¢; — Uo. The relative flow angl¢8, at inlet to the runner

is defined as

B2 =tan ™ [(co2 — Ua)/cr2] - (9.14)

Further inspection of the velocity diagrams in Figure 9.12 reveals that the direction
of the velocity vectors approaching both guide vanes and runner blades are tangential
to the camber lines at the leading edge of each row. This is the ideal flow condition
for “shockless” low loss entry, although an incidence of a few degrees may be
beneficial to output without a significant extra loss penalty. At vane outlet some
deviation from the blade outlet angle is to be expected (see Chapter 3). For these
reasons, in all problems concerning the direction of flow, it is clear that it is the
angle of the fluid flow which is important and not the vane angle as is often quoted
in other texts.

At outlet from the runner the flow plane is simplified as though it was actually in
the radial/tangential plane. This simplification will not affect the subsequent analysis
of the flow but it must be conceded that some component of velocity in the axial
direction does exist at runner outlet.

The water leaves the runner with a relative flow angieand a relative flow
velocity ws. The absolute velocity at runner exit is found by vector addition, i.e.
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B2

FiG. 9.12. Sectional sketch of blading for a Francis turbine showing velocity diagrams
at runner inlet and exit.

c3 = W3 + Us. The relative flow anglegs, at runner exit is given by
Bs = tan* [(cos + Us)/cra) - (9.15)

In this equation it is assumed that some residual swirl velagiys presentd;s is

the radial velocity at exit from the runner). In most simple analyses of the Francis
turbine it is assumed that there is no exit swirl. Detailed investigations have shown
that some extr@ounter-swirl (i.e. acting so as to increagec, ) at the runner exit
does increase the amount of work done by the fluid without a significant reduction
in turbine efficiency.

When a Francis turbine is required to operate at part load, the power output
is reduced by swivelling the guide vanes to restrict the flow, @eis reduced,
while the blade speed is maintained constant. Figure. 9.13 compares the velocity
triangles at full load and at part load from which it will be seen that the relative
flow at runner entry is at a high incidence and at runner exit the absolute flow has
a large component of swirl. Both of these flow conditions give rise to high head
losses. Figure. 9.14 shows the variation of hydraulic efficiency for several types of
turbine, including the Francis turbine, over the full load range at constant speed and
constant head.
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Fic. 9.13. Comparison of velocity triangles for a Francis turbine for full load and at part
load operation.
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FiG. 9.14. Variation of hydraulic efficiency for various types of turbine over a range of
loading, at constant speed and constant head.

It is of interest to note the effect that swirling flow has on the performance
of the following diffuser. The results of an extensive experimental investigation
made by McDonaldet al. (1971), showed that swirling inlet flowoes notaffect
the performance of conical diffusers which are well designed and give unsepa-
rated or only slightly separated flow when the flow through them is entirely axial.
Accordingly, part load operation of the turbine is unlikely to give adverse diffuser
performance.
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Basic equations
Euler’s turbine equation, eqgn. (2.12b), in the present notation, is written as
AW = Ugcgo — Uscys. (9.16)
If the flow at runner exit is without swirl then the equation reduces to
AW = Uacgy. (9.16a)

The effective head for all reaction turbinds, is the total head available at the
turbine inletrelative to the surface of the tailracét entry to the runner the energy
available is equal to the sum of the kinetic, potential and pressure energies, i.e.

P2 — Pa

g(Hp — AHy) = + 3¢5+ g2, (9.17)
where AH y is the loss of head due to friction in the volute and guide vanes and
p2 is theabsolutestatic pressure at inlet to the runner.

At runner outlet the energy in the water is further reduced by the amount of
specific work AW and by friction work in the runnergAHz and this remaining
energy equals the sum of the pressure potential and kinetic energies, i.e.

g(Hg — AHy — AHg) — AW = 3¢5+ pa/p — pa/p + 823 (9.18)

where p3 is the absolutestatic pressure at runner exit.
By differencing eqgns. (9.17) and (9.18), the specific work is obtained

AW = (poz2 — po3)/p — gAHR + g(z2 — 23) (9.19)

where po2 and po3 are the absolute total pressures at runner inlet and exit.
Figure 9.15 shows the draft tube in relation to a vertical-shaft Francis turbine. The
most important dimension in this diagram is the vertical distdnee z3) between the

Draft tube

FiG. 9.15. Location of draft tube in relation to vertical shaft Francis turbine.
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exit plane of the runner and the free surface of the tailrace. The energy equation
between the exit of the runner and the tailrace can now be written as

pa/p+ ick + gz — gAHpt = 3¢5+ pa/p. (9.20)

where AHpr is the loss in head in the draft tube angdis the exit velocity.
The hydraulic efficiency is given by
AW U —-U
ng = _ 2C62 3C63 (9.21)
gHE gHE

and, if cy3 = 0, then

Uaco2
nu Hp (9.21a)
The overall efficiency is given by = n,,ny. For large machines the mechanical
losses are relatively small ang, ~ 100 per cent and sgy ~ ny.

For the Francis turbine the ratio of the runner speed to the spouting velocity,
v=U/cp, is not as critical for high efficiency operation as it is for the Pelton
turbine and, in practice, it lies within a fairly wide range, i.e6 & v < 0.9. In
most applications of Francis turbines the turbine drives an alternator and its speed
must be maintained constant. The regulation at part load operation is achieved by
varying the angle of the guide vanes. The guide vanes are pivoted and, by means of
a gearing mechanism, the setting can be adjusted to the optimum angle. However,
operation at part load causes a whirl velocity component to be set up downstream of
the runner causing a reduction in efficiency. The strength of the vortex can be such
that cavitation can occur along the axis of the draft tube (see remarks on cavitation
later in this chapter).

ExampLE 9.3. In a vertical-shaft Francis turbine the available head at the inlet
flange of the turbine is 150m and the vertical distance between the runner and
the tailrace is 2.0m. The runner tip speed is 35m/s, the meridional velocity of the
water through the runner is constant and equal to 10.5 m/s, the flow leaves the runner
without whirl and the velocity at exit from the draft tube is 3.5m/s. The hydraulic
energy losses estimated for the turbine are as follows:

AHy =6.0m AHgr =100m, AHpr =1.0m.
Determine:

(1) the pressure head (relative to the tailrace) at inlet to and at exit from the runner;
(2) the flow angles at runner inlet and at guide vane exit;
(3) the hydraulic efficiency of the turbine.

If the flow discharged by the turbine is 26 and the power specific speed of the
turbine is 0.8 (rad), determine the speed of rotation and the diameter of the runner.

Solution From eqgn. (9.20)
P3 — Pa

=Hj3= i(C‘zzl—cg)-i-AI‘IDT—Z.
pg 2g
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NB. The headd; is relative to the tailrace.
(3.5% — 10.5%)
SHy=—p———
2x9.81

i.e. the pressure at runner outlethslow atmospheric pressure, a matter of some
importance when we come to consider the subject of cavitation later in this chapter.
From egn. (9.18),

+1-2=-6.0m,

Hy=Hg— AHy — c3/(2g) = 150— 6 — 38.73/(2 x 9.81) = 67.22m
From egn. (9.18),
AW =g(Hp — AHy — AHg_;) — 3¢5 — gH3
=9.81x (150— 6 — 10— 2) — 10.5%/2 4+ 9.81 x 6 = 12987 n?/s’
. cop = AW /U, = 12987/35 = 37.1m/s
C 37.1
ap = tan! <i2> =tan! (ﬁ) =742 deg

Cr2

371-35
Bo=tamt [ 2} —tant ( 252 2) — 1131 deg
cr2 10.5

The hydraulic efficiency is

AW
ng = —— = 12987/(9.81 x 150) = 0.8826
gHE
From the definition of the power specific speed, eqgn. (9.1),
Q- QSP(gHE)5/4 i 0.8 x 9114
- JOAW /20 12987

Thus, the rotational speed # = 432 rev/min and the runner diameter is

= 45.24rad/s

D, = 2U»/Q = 70/45.24 = 1.547m

The Kaplan turbine

This type of turbine evolved from the need to generate power from much lower
pressure heads than are normally employed with the Francis turbine. To satisfy
large power demands very large volume flow rates need to be accommodated in the
Kaplan turbine, i.e. the produ@H ¢ is large. The overall flow configuration is from
radial to axial. Figure 9.16 is a part sectional view of a Kaplan turbine in which the
flow enters from a volute into the inlet guide vanes which impart a degree of swirl
to the flow determined by the needs of the runner. The flow leaving the guide vanes
is forced by the shape of the passage into an axial direction and the swirl becomes
essentially a free vortex, i.e.

rcg = a constant
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FiG. 9.16. Part section of a Kaplan turbine in situ (courtesy Sulzer Hydro Ltd, Zurich).

The vanes of the runner are similar to those of an axial-flow turbine rotor but
designed with a twist suitable for the free-vortex flow at entry and an axial flow
at outlet. Because of the very high torque that must be transmitted and the large
length of the blades, strength considerations impose the need for large blade chords.
As a result, pitch/chord ratios of 1.0 to 1.5 are commonly used by manufacturers
and, consequently, the number of blades is small, usually 4, 5 or 6. The Kaplan
turbine incorporates one essential feature not found in other turbine rotors and that
is the setting of the stagger angle can be controlled. At part load operation the
setting angle of the runner vanes is adjusted automatically by a servo mechanism to
maintain optimum efficiency conditions. This adjustment requires a complementary
adjustment of the inlet guide vane stagger angle in order to maintain an absolute
axial flow at exit from the runner.

Basic equations

Most of the equations presented for the Francis turbine also apply to the Kaplan
(or propeller) turbine, apart from the treatment of the runner. Figure 9.17 shows
the velocity triangles and part section of a Kaplan turbine drawn for the mid-blade
height. At exit from the runner the flow is shown leaving the runner without a whirl
velocity, i.e.cs3 = 0 and constant axial velocity. The theory of free-vortex flows was
expounded in Chapter 6 and the main results as they apply to an incompressible fluid
are given here. The runner blades will have a fairly high degree of twist, the amount
depending upon the strength of the circulation functioand the magnitude of the
axial velocity. Just upstream of the runner the flow is assumed to be a free-vortex
and the velocity components are accordingly:

ce2 =K/r ¢, =a constant
The relations for the flow angles are

tang, = U/c, — tanay = Qr/c, — K/ (rcy) (9.22a)
tanBs = U/c, = Qr/cy. (9.22h)
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Blade motion

Exit U
flow

Fic. 9.17. Section of a Kaplan turbine and velocity diagrams at inlet to and exit from the
runner.

ExAMPLE 9.4. A small-scale Kaplan turbine has a power output of 8 MW, an
available head at turbine entry of 13.4 m and a rotational speed of 200 rev/min. The
inlet guide vanes have a length of 1.6 m and the diameter at the trailing edge surface
is 3.1 m. The runner diameter is 2.9m and the hub to tip ratio is 0.4.

Assuming the hydraulic efficiency is 92 per cent and the runner design is “free-
vortex”, determine:

(1) the radial and tangential components of velocity at exit from the guide vanes;

(2) the component of axial velocity at the runner;

(3) the absolute and relative flow angles upstream and downstream of the runner at
the hub, mid-radius and tip.

Solution As P = ny pgQH g, then the volume flow rate is

Q=P/(nupgHr) = 8 x 10°/(0.92 x 9810x 134) = 66.15m/$
- e = 0Q/(2nriL) = 66.15/(27 x 1.55 x 1.6) = 4.245m/$

40

— = =4 x66.15/(7 x 2.9° x 0.84) = 11.922m/$.
nD3,(1 - v?)

Cx2 =

As the specific work done iAW = U,cyp andny = AW /(gHE), then at the tip

_nugHp 092x9.81x 134

_ — 3.892m/
U5 30.37 mis

Co2

where the blade tip speed 8, = Q2D,/2 = (200x 7/30) x 2.9/2 = 30.37 m/s

cor = Copra/r1 = 3.892x 1.45/1.55 = 3.725 m/2

3.725
—tan ! () —tan ! [ 2222) =412
o = tal - ta 4245 6 deg
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TABLE 9.4. Calculated values of flow angles for

Example 9.4.
Ratior/r,
Parameter 0.4 0.7 1.0
co2 M/S 9.955 5.687 3.982
tana; 0.835 0.4772 0.334
a (deg) 39.86 25.51 18.47
U/cyo 1.019 1.7832 2.547
B2 (deg) 10.43 52.56 65.69
B3 (deg) 4554 60.72 68.57

80 T T T T T

Flow angle, deg
i
o

0 | | | |
0.4 0.6 0.8 1.0

Radius ratio, r/rt

FiG. 9.18. Calculated variation of flow angles for Kaplan turbine of Example 9.4.

Valuesay, B2 and B3 shown in Table 9.4 have been derived from the following
relations:

_ Co2 _ Co2r 1
ap = tanmt (—) —tan? (—’—t>
Cx2 Cx2 ¥

Q U
B, = tanm* <—r - tana2> =tan?! ( 2 _ tanoe2>

Cx2 Cx2 It

U U
B3 = tan? < ) =tan?! (z’r) )
C x2 Cx2 It

Finally, Figure 9.18 illustrates the variation of the flow angles, from which the large
amount of blade twist mentioned earlier can be inferred.

Effect of size on turbomachine efficiency

Despite careful attention to detail at the design stage and during manufacture
it is a fact that small turbomachines always have lower efficiencies than larger
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geometrically similar machines. The primary reason for this is that it is not possible
to establish perfect dynamical similarity between turbomachines of different size.
In order to obtain this condition, each of the the dimensionless terms in eqn. (1.2)
would need to be the same for all sizes of a machine.

To illustrate this consider a family of turbomachines where the loading term,
W = gH /N?D? is the same and the Reynolds numlgr,= ND?/v is the same for
every size of machine, then

H N2Dp* HD?
lpRe2 = & . = &
N2D? V2 V2

must be the same for the whole family. Thus, for a given fluids(a constant),
a reduction in sizeD must be followed by an increase in the hedd A turbine
model of% the size of a prototype would need to be tested with a head 64 times that
required by the prototype! Fortunately, the effect on the model efficiency caused by
changing the Reynolds number is not large. In practice, models are normally tested
at conveniently low heads and an empirical correction is applied to the efficiency.
With model testing other factors effect the results. Exact geometric similarity
cannot be achieved for the following reasons:

(a) the blades in the model will probably be relatively thicker than in the prototype;

(b) the relative surface roughness for the model blades will be greater;

(c) leakage losses around the blade tips of the model will be relatively greater as a
result of increased relative tip clearances.

Various simple corrections have been devised (see Addison 1964) to allow for the
effects of size (or scale) on the efficiency. One of the simplest and best known is
that due to Moody and Zowski (1969), also reported by Addison (1964) and Massey
(1979), which as applied to the efficiency of reaction turbines is

1- D \"
=T _ (—> (9.23)
11—, D,

where the subscriptp, m refer to prototype and model, and the indexis in

the range 0.2 to 0.25. From comparison of field tests of large units with model
tests, Moody and Zowski concluded that the best valuenfavas approximately

0.2 rather than 0.25 and for general application this is the value used. However,
Addison (1964) reported tests done on a full-scale Francis turbine and a model made
to a scale of 1 to 4.54 which gave measured values of the maximum efficiencies of
0.85 and 0.90 for the model and full-scale turbines, respectively, which agreed very
well with the ratio computed witlk = 0.25 in the Moody formula!

ExampLE 9.5. A model of a Francis turbine is built to a scale of 1/5 of full
size and when tested it developed a power output of 3kW under a head of 1.8 m of
water, at a rotational speed of 360 rev/min and a flow rate of 0.21% Bstimate the
speed, flow rate and power of the full-scale turbine when working under dynamically
similar conditions with a head of 60 m of water.

By making a suitable correction for scale effects, determine the efficiency and
the power of the full-size turbine. Use Moody’s formula and assuree0.25.
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Solution From the groupy = gH /(ND)? we get:

N, = Nu(Du/D,)(H ,/H )% = (360/5)(60/1.8)° = 4157 rev/min
From the groupp = Q/(ND®) we get:
0, = 0u(N,/N,)(D,/D,)* = 0.215x (360/4157) x 5° = 23.27 /s,

Lastly, from the group? = P/(pN3D°) we get:
P,=Pu(N,/Nu)3D,/Dy)°= 3 x (4157)% x 5°= 14430 kW= 14.43 MW.

This result has still to be corrected to allow for scale effects. First we must calculate
the efficiency of the model turbine. The efficiency is found from

m = P/(pQgH) = 3 x 10°/(10° x 0.215% 9.81 x 1.8) = 0.79.
Using Moody’s formula the efficiency of the prototype is determined:
(1—1n,) = (1 —nm) x 0.2°2° = 0.21 x 0.6687
hence
n, = 0.8596

The corresponding power is found by an adjustment of the original power obtained
under dynamically similar conditions, i.e.

CorrectedP, = 14.43 x 0.8596/0.79 = 157 MW.

Cavitation

A description of the phenomenon of cavitation, mainly with regard to pumps, was
given in Chapter 1. In hydraulic turbines, where reliability, long life and efficiency
are all so very important, the effects of cavitation must be considered. Two types
of cavitation may be in evidence,

(a) on the suction surfaces of the runner blades at outlet which can cause severe
blade erosion; and

(b) atwisting “rope-type” cavity that appears in the draft tube at off-design operating
conditions.

Cavitation in hydraulic turbines can occur on the suction surfaces of the runner
blades where the dynamic action of the blades acting on the fluid creates low
pressure zones in a region where the static pressure is already low. Cavitation will
commence when the local static pressure is less than the vapour pressure of the
water, i.e. where the head is low, the velocity is high and the elevatjoof, the
turbine is set too high above the tailrace. For a turbine with a horizontal shaft the
lowest pressure will be located in the upper part of the runner, which could be of
major significance in large machines. Fortunately, the runners of large machines are,
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in general, made so that their shafts are orientated vertically, lessening the problem
of cavitation occurrence.

The cavitation performance of hydraulic turbines can be correlated with the
Thoma coefficienty, defined as

Hs _ (pa—pu)/(pg) —z
Hg Hg ’

(9.24)

whereH is the net positive suction head (NPSH), the amount of head needed to
avoid cavitation, the difference in elevatianjs defined in Figure 9.15 ang, is the
vapour pressure of the water. The Thoma coefficient was, strictly, originally defined
in connection with cavitation in turbines and its use in pumps is not appropriate (see
Yedidiah 1981). It is to be shown thatrepresents the fraction of the available head
H g which is unavailable for the production of work. A large valuesaheans that a
smaller part of the available head can be utilised. In a pump, incidentally, there is no
direct connection between the developed head and its suction capabilities, provided
that cavitation does not occur, which is why the use of the Thoma coefficient is not
appropriate for pumps.

From the energy equation, eqn. (9.20), this can be rewritten as

Pa — P3

1 2 2
= —(c5 — — AH s 9.25
Z 2 ( 3 C4) DT ( )

so that whenpsz = p,, thenHg is equal to the rhs of egn. (9.24).

Figure 9.19 shows a widely used correlation of the Thoma coefficient plotted
against specific speed for Francis and Kaplan turbines, approximately defining the
boundary between no cavitation and severe cavitation. In fact, there exists a wide
range of critical values o for each value of specific speed and type of turbine
due to the individual cavitation characteristics of the various runner designs. The
curves drawn are meant to assist preliminary selection procedures. An alternative
method for avoiding cavitation is to perform tests on a model of a particular turbine
in which the value ofps is reduced until cavitation occurs or, a marked decrease in
efficiency becomes apparent. This performance reduction would correspond to the
production of large-scale cavitation bubbles. The pressure at which cavitation erosion
occurs will actually be at some higher value than that at which the performance
reduction starts.

For the centre-line cavitation that appears downstream of the runner at off-design
operating conditions, oscillations of the cavity can cause severe vibration of the
draft tube. Young reported some results of a “corkscrew” cavity rotating at 4 Hz.
Air injected into the flow both stabilizes the flow and cushions the vibration.

ExaMPLE 9.6. Using the data in Example 9.3 and given that the atmospheric
pressure is 1.013 bar and the water is dt@Sletermine the NPSH for the turbine.
Hence, using Thoma's coefficient and the data shown in Figure 9.19, determine
whether cavitation is likely to occur. Also using the data of Wislicenus verify the
result.

Solution From tables of fluid properties, e.g. Rogers and Mayhew (1995), or
using the data of Figure 9.20, the vapour pressure for water corresponding to a
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temperature of 2% is 0.03166 bar. From the definition of NPSH, eqn. (9.24), we
obtain:

H,=Pa" P _ (1013 0.03166 x 107/(9810 — 2 = 8.003m

194
Thus, Thoma's coefficient isy = Hg/H = 8.003/150= 0.05336.

At the value of2gp = 0.8 given as data, the value of the critical Thoma coefficient
o. corresponding to this is 0.09 from Figure 9.19. From the fact ¢hato,., then
the turbinewill cavitate.

From the definition of the suction specific speed

. QQY?  449x 202
"~ (gHs)¥*  (9.81x 8.003)3/4

According to egn. (1.12b), whefigs exceeds 4.0 (rad) then cavitation can occur,
giving further confirmation of the above conclusion.

Qg5

= 2008/26.375= 7.613

Connection between Thoma'’s coefficient, suction specific speed and
specific speed

The definitions of suction specific speed and specific speed are

QQ]‘/Z QQ1/2
Q= ———— Qo= ——
= Gatgri M = e
Combining and using eqgn. (9.24), we get:
19 3/4
95 _ <_8HS> !
Qss gHE
O\ Y3
co= (—S> : (9.26)
Qs

Exercise Verify the value of Thoma’s coefficient in the earlier example using
the values of power specific speed, efficiency and suction specific speed given or
derived.

We use as datgs = 7.613,Q5p = 0.8 andny = 0.896 so that, from eqgn. (1.9c¢),
Qs = Qsp//nu = 0.8/+/0.896= 0.8452
.o = (0.8452/7.613"3 = 0.05336
Avoiding cavitation

By rearranging eqgn. (9.24) and putting= o, a critical value ot can be derived
on the boundary curve between cavitation and no cavitation. Thus,
Pa — DPv
P8

This means that the turbine would need to be submerged at a depth of 3.5m or
more below the surface of the tailwater and, for a Francis turbine, would lead to

7=z = —o.Hg = (1013 -3.17)/9.81 - 0.09 x 150= —-3.5m.
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problems with regard to construction and maintenance. Equation (9.24) shows that
the greater the available he&t}; at which a turbine operates, the lower it must be
located relative to the surface of the tailrace.

Sonoluminescence

The collapse of vapour cavities generates both noise and flashes of light (called
sonoluminescengeYoung (1989) has given an extended and interesting review of
experiments on sonoluminescence from hydrodynamic cavitation and its causes.
The phenomenon has also been reported by Pearsall (1974) who considered that the
collapse of the cavity was so rapid that very high pressures and temperatures were
created. Temperatures as high as 10000 K have been suggested. Shock waves with
pressure differences of 4000 atm have been demonstrated in the liquid following the
collapse of a cavity. The effect of the thermal and pressure shocks on any material
in close proximity causes mechanical failure, i.e. erosion damage.

Light has been reported in large energy distributions in field installations. An
example again quoted by Young is that of the easily visible light observed at night
in the tailrace at Boulder Dam, USA. This occurs when sudden changes of load
necessitate the release of large quantities of high-pressure water into an energy-
dissipating structure. Under these conditions the water cavitates severely. In a further
example, Young mentions the light (observed at night) from the tailrace of the
hydroelectric power station at Erochty, Scotland. The luminescence appeared for
up to ten seconds shortly after the relief valve was opened and was seen as a blue
shimmering light stretching over an area of the water surface for several square
metres.
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Problems

1. A generator is driven by a small, single-jet Pelton turbine designed to have a power
specific spee®spr = 0.20. The effective head at nozzle inlet is 120 m and the nozzle velocity
coefficient is 0.985. The runner rotates at 880 rev/min, the turbine overall efficiency is 88 per
cent and the mechanical efficiency is 96 per cent.

If the blade speed to jet speed ratio= 0.47, determine:

(1) the shaft power output of the turbine;
(2) the volume flow rate;
(3) the ratio of the wheel diameter to jet diameter.

2. (a) Water is to be supplied to the Pelton wheel of a hydroelectric power plant by a pipe
of uniform diameter, 400 m long, from a reservoir whose surface is 200 m vertically above
the nozzles. The required volume flow of water to the Pelton wheel is®80 i the pipe
skin friction loss is not to exceed 10% of the available head Ard 0.0075, determine the
minimum pipe diameter.

(b) You are required to select a suitable pipe diameter from the available range of stock
sizes to satisfy the criteria given. The range of diameters (m) available are: 1.6, 1.8, 2.0, 2.2,
2.4, 2.6, 2.8. For the diameter you have selected, determine:

(1) the friction head loss in the pipe;

(2) the nozzle exit velocity assuming no friction losses occur in the nozzle and the water
leaves the nozzle at atmospheric pressure;

(3) the total power developed by the turbine assuming that its efficiency is 75% based upon
the energy available at turbine inlet.

3. A multi-jet Pelton turbine with a wheel 1.47 m diameter, operates under an effective
head of 200m at nozzle inlet and uses ¥svof water. Tests have proved that the wheel
efficiency is 88 per cent and the velocity coefficient of each nozzle is 0.99.

Assuming that the turbine operates at a blade speed to jet speed ratio of 0.47, determine:

(1) the wheel rotational speed;

(2) the power output and the power specific speed;

(3) the bucket friction coefficient given that the relative flow is deflected’;165

(4) the required number of nozzles if the ratio of the jet diameter to mean diameter of the
wheel is limited to a maximum value of 0.113.

4. A four-jet Pelton turbine is supplied by a reservoir whose surface is at an elevation of
500 m above the nozzles of the turbine. The water flows through a single pipe 600 m long,
0.75m diameter, with a friction coefficient = 0.0075. Each nozzle provides a jet 75mm
diameter and the nozzle velocity coefficidtiy = 0.98. The jets impinge on the buckets of
the wheel at a radius of 0.65m and are deflected (relative to the wheel) through an angle
of 160deg. Fluid friction within the buckets reduces the relative velocity by 15 per cent.
The blade speed to jet speed ratio= 0.48 and the mechanical efficiency of the turbine is
98 per cent.
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Calculate, using an iterative process, the loss of head in the pipeline and hence, determine
for the turbine:

(1) the speed of rotation;

(2) the overall efficiency (based on the effective head);

(3) the power output;

(4) the percentage of the energy available at turbine inlet which is lost as kinetic energy at
turbine exit.

5. A Francis turbine operates at its maximum efficiency poinjgat 0.94, corresponding
to a power specific speed of 0.9rad. The effective head across the turbine is 160 m and the
speed required for electrical generation is 750 rev/min. The runner tip speed is 0.7 times the
spouting velocity, the absolute flow angle at runner entry is 72 deg from the radial direction
and the absolute flow at runner exit is without swirl.

Assuming there are no losses in the guide vanes and the mechanical efficiency is 100 per
cent, determine:

(1) the turbine power and the volume flow rate;

(2) the runner diameter;

(3) the magnitude of the tangential component of the absolute velocity at runner inlet;
(4) the axial length of the runner vanes at inlet.

6. The power specific speed of a 4 MW Francis turbine is 0.8, and the hydraulic efficiency
can be assumed to be 90 per cent. The head of water supplied to the turbine is 100m. The
runner vanes are radial at inlet and their internal diameter is three-quarters of the external
diameter. The meridional velocities at runner inlet and outlet are equal to 25 and 30 per cent,
respectively, of the spouting velocity.

Determine:

(1) the rotational speed and diameter of the runner;
(2) the flow angles at outlet from the guide vanes and at runner exit;
(3) the widths of the runner at inlet and at exit.

Blade thickness effects can be neglected.

7. (a) Review, briefly, the phenomenon of cavitation in hydraulic turbines and indicate
the places where it is likely to occur. Describe the possible effects it can have upon turbine
operation and the turbine’s structural integrity. What strategies can be adopted to alleviate
the onset of cavitation?

(b) A Francis turbine is to be designed to produce 27 MW at a shaft speed of 94 rev/min
under an effective head of 27.8 m. Assuming that the optimum hydraulic efficiency is 92 per
cent and the runner tip speed to jet speed ratio is 0.69, determine:

(1) the power specific speed;
(2) the volume flow rate;
(3) the impeller diameter and blade tip speed.

(c) A 1/10 scale model is to be constructed in order to verify the performance targets of
the prototype turbine and to determine its cavitation limits. The head of water available for
the model tests is 5.0 m. When tested under dynamically similar conditions as the prototype,
the net positive suction hedds of the model is 1.35m.

Determine for the model:

(1) the speed and the volume flow rate;
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(2) the power output, corrected using Moody's equation to allow for scale effects (assume
a value forn = 0.2);
(3) the suction specific speed,;.

(d) The prototype turbine operates in water at@@hen the barometric pressure is 95 kPa.
Determine the necessary depth of submergence of that part of the turbine mostly likely to be
prone to cavitation.

8. The preliminary design of a turbine for a new hydro-electric power scheme has under
consideration a vertical-shaft Francis turbine with a hydraulic power output of 200 MW
under an effective head of 110 m. For this particular design a specific sfaeed0.9 (rad),
is selected for optimum efficiency. At runner inlet the ratio of the absolute velocity to
the spouting velocity is 0.77, the absolute flow angle is 68 deg and the ratio of the blade
speed to the spouting velocity is 0.6583. At runner outlet the absolute flow is to be without
swirl.

Determine:

(1) the hydraulic efficiency of the rotor;

(2) the rotational speed and diameter of the rotor;
(3) the volume flow rate of water;

(4) the axial length of the vanes at inlet.

9. A Kaplan turbine designed with shape factor(power specific speed) of 3.0 (rad), a
runner tip diameter of 4.4m and a hub diameter of 2.0 m, operates with a net head of 20m
and a shaft speed of 150rev/min. The absolute flow at runner exit is axial. Assuming that
the hydraulic efficiency is 90% and the mechanical efficiency is 99%, determine:

(1) the volume flow rate and shaft power output;
(2) the relative flow angles at the runner inlet and outlet at the hub, the mean radius and at
the tip.
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APPENDIX 1

Conversion of British Units to

Sl Units

Length
linch = 0.0254 m
1 foot = 0.3048m
Area
1in? = 6.452 x 104 m?
1ft? = 0.09290 n?
\Volume
1in® = 16.39cn?
113 =28.32dn?
=0.02832n}

1gall (UK) = 4.546 dn?

Velocity
1ft/s = 0.3048 m/s
1mile/h =0.447m/s
Mass
1lb = 0.4536 kg
1ton (UK) = 1016kg
Density
1 Ib/ft3 = 16.02 kg/n?
1slug/ff = 5154kg/nT

Force

1 1bf =4.448N

1lton f (UK) = 9.964 kN
Pressure

1 Ibf/in? = 6.895 kPa

1ft H,O = 2.989 kPa

lin Hg = 3.386 kPa

1 bar = 1000kPa
Energy

11t Ibf =1.356J

1Btu = 1.055kJ
Specific energy

11t Ibf/lb = 2.989J/kg
1Btu/lb = 2.326 kJ/kg

Specific heat capacity

11t Ibf/(I6F) =5.38J/(kgC)

11ft Iof/(slug’F) = 0.167 J/(kg°C)

1Btu/(Ib °F) = 4.188kJ/(kg°C)
Power

1lhp = 0.7457 kW
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APPENDIX 2

Answers to Problems

Chapter 1

1. 6.29n¥/s.

2. 9.15m/s; 5.33 atmospheres.

3. 551 rev/min, 1:10.8; 0.885%s; 17.85 MN.
4. 4,030rev/min; 31.4Kkg/s.

Chapter 2

1. 88.1 per cent.

2. (1) 704K; (2) 750K; (3) 668K.

3. (1) 500K, 0.313r/kg; (2) 1.042.

4. 49.1kg/s; 24 mm.

5. (1) 630kPa, 278C; 240kPa; 201C; 85kPa, 128C; 26 kPa,q = 0.988; 7 kPa,

q = 0.95; (2) 0.638, 0.655, 0.688, 0.726, 0.739; (3) 0.739, 0.724; (4) 1.075.
Chapter 3

. 49.8 deg.

. —1.3 deqg, 9.5deg, 1.11.

. (1) 53deg and 29.5deg; (2) 0.962; (3) 2.17 kR/m

. (@) s/l = 1.0, ap = 24.8 deg; (b)C, = 0.872.

. (b) 57.8deg; (c) (1) 357 kPa; (2) 0.96; (3) 0.0218, 1.075.
(@) a1 = 732", ap = 68.1°.

NoO oo~ WDNPRE

Chapter 4

. 88 per cent; (b) 86.17 per cent, (c) 1170.6 K

. ap = 70 deg,B, = 7.02 deg,x318.4 deg,B3 = 50.37 deg.

. 22.7kJ/kg; 420kPa, 11C.

. 91 per cent.

. (1) 1.503; (2) 39.9deq, 59deg; (3) 0.25; (4) 90.5 and 81.6 per cent.

. (1) 488 m/s; (2) 266.1 m/s; (3) 0.83; (4) 0.128.

. (1) 215m/s; (2) 0.098, 2.68; (3) 0.872; (4) 265 0.75 MPa.

. (@) (1) 601.9m/s; (2) 282.8m/s; (3) 79.8 per cent. (b) 89.23 per cent.

. (b) (1) 130.9kJ/Kkg; (2) 301.6 m/s; (3) 707.6 K (c) (1) 10 200 rev/min; (2) 0.565 m
(3) 0.845.

. (2) 0.2166; (3) 8740rev/min. (4) 450.7 m/s, 0.846.
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Chapter 5

1. 14 stages.

2. 30.6C.

3. 132.5m/s, 56.1 kg/s; 10.1 MW.

4. 86.5 per cent; 9.28 MW.

5. 0.59, 0.415.

6. 33.5deg, 8.5deg, 52.9deg; 0.827; 34.5deg, 1.11.

7. 56.9deg, 41deg; 21.8deg.

8. (1) 244.7m/s; (2) 25.42 kg/s, 16 866 rev/min; (3) 38.33 kJ/kg; (4) 84.7 per cent;

(5) 5.135 stages, 0.9743 MW, (6) With five stages and the same loading, then
the pressure ratio is 5.781. However, to maintain a pressure ratio of 6.0, the
specific work must be increased to 39.37 kJ/kg. With five stages the weight and
cost would be lower.
9. (a) 16.22deg, 22.08deg, 33.79deg. (b) 467.2Pa, 7.42m/s.
10. (1) By = 70.79, B = 68.24 deg; (2) 83.96 per cent; (3) 399.3Pa; (4) 7.144cm.
11. (1) 141.1 Pa, 0.588; (2) 60.48 Pa; (3) 70.14 per cent.

Chapter 6

1. 55 and 47 deg2. 0.602, 1.38,-0.08 (i.e. implies large losses near hub)
4. 70.7m/s.5. Work done is constant at all radii;

¢? = constant- 24[(r? — 1) — 2(b/a)Inr]
¢%, = constant- 2a%[(r? — 1) — 2(b/a)Inr]
B1 =432 deg , = 10.4 deg.

6. (1) 480 m/s; (2) 0.818; (3) 0.08; (4) 3.42MW; (5) 906.8K, 892.2K.
7. (1) 62deg; (2) 61.3 and 7.6 deg; (3) 45.2 and 55.9 deg;—@1L75, 0.477.
8. See Figure 6.13. For (1) afr, = 0.05, ¢, = 1132m/s.

Chapter 7

. (1) 27.9m/s; (2) 880rev/min, 0.604 m; (3) 182W; (4) 0.0526 (rad)

. 579kW; 169 mm; 50.0.

. 0.875; 5.61kg/s.

. 26,800 rev/min; 0.203m, 0.525.

. 0.735, 90.5 per cent.

. (1) 542.5kW; (2) 536 and 519 kPa; (3) 586 and 240.8 kPa, 1.20, 176 m/s; (4) 0.875;
(5) 0.22; (6) 28,400 rev/min.

. (1) 29.4dni/s; (2) 0.781; (3) 77.7 deg; (4) 7.82kW.

. (1) 14.11cm; (2) 2.635m; (3) 0.7664; (4) 17.73m; (5) 13.8ki;=0.722,
op = 0.752.

9. (a) See text (b) (1) 32,214 rev/min; (2) 5.246 kg/s; (c) (1) 1.254 MW; (2) 6.997.

OO~ WNE

o

Chapter 8

1. 586 m/s, 73.75 deg.
2. (1) 205.8kPa, 977K; (2) 125.4 mm, 89,200 rev/min; (3) 1 MW.
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(1) 90.3 per cent; (2) 269 mm; (3) 0.051, 0.223.

1593 K.

2.159 n#/s, 500 kW.

(a) 10.089kg/s, 23,356 rev/min; (b)0®3 x 10°, 1.879x 10°.

(1) 81.82 per cent; (2) 890K, 184.3kPa; (3) 1.206 cm; (4) 196.3m/s; (5) 0.492;
(6) ri3 = 6.59cm,r,3 = 2.636 cm.

Chapter 9

~N o O A WNPFP

©

. (1) 224kw; (2) 0.2162 riis; (3) 6.423.

. (8) 2.138m; (2) Fod = 2.2m, (1) 17.32m; (2) 59.87 m/s, 40.3 MW.

. (1) 378.7rev/imin; (2) 6.906 MW, 0.252 (rad); (3) 0.783; (4) 3.

. Head loss is pipline is 17.8 m. (1) 672.2 rev/min; (2) 84.5 per cent; (3) 6.735 MW,

(4) 2.59 per cent.

. (1) 12.82MW, 8.69r#s; (2) 1.0m; (3) 37.6 m/s; (4) 0.226 m.
. (1) 663.2rev/min; (2) 69.55deg, 59.2deg; (3) 0.152m and 0.169m.
. (b) (1) 1.459 (rad); (2) 107.6%s; (3) 3.153m, 15.52m/s; (c) (1) 398.7 rev/min,

0.456 nt/s; (2) 20.6 kW (uncorrected), 19.55kW (corrected); (3) 4.06 (rad); (d)
Hy—H,=-218m.

. (a) (1) 0.94; (2) 115.2rev/min, 5.068 m; (3) 197.2/m (4) 0.924 m.
. (1) 11.4n¥/s, 19.47MW; (2) 72.6deg, 75.04deg at tip; 25.73deg, 59.54deg

at hub.
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Index

Actuator disc:
theory 186-91
blade row interaction effects 190
comparison with radial equilibrium
theory 187
concept of 187
mean-value rule 189
plane of discontinuity 188
settling-rate rule 190
Aerofoil:
theory 612, 162-5
zero lift line 164
Ainley and Mathieson correlation 7,
81-7
Aspect ratio of cascade blade 65
Axial flow compressors Ch. 5.
casing treatment 154
choice of reaction 143
control of flow instabilities 159
direct problem 17980
estimation of stage efficiency 1484
flow coefficient 144
low aspect ratio blades 138
multistage pressure ratio 148
normal stage 140
off-design stage performance 188
reaction of stage 143
simplified off-design stage performance
145-6
stability 154-60
stability criterion 158
stage loading 1445
stage loss relationships 142
stage pressure rise 148
stage velocity diagrams 140
total-to-total efficiency 142
velocity profile changes through stages
150-2
work done factor 1501
Axial flow ducted fans 16@t seq.
Axial flow turbines, two dimensional analysis
Ch. 4
Soderberg’s loss correlation 99, 100
stage losses and efficiency 9B

315

thermodynamics of stage 9%
types of design 99
velocity diagrams 934

Basic thermodynamics Ch. 2
Basic units in SI 3
Bernoulli’'s equation 26, 27
Blade:
angles 57
cavitation coefficient 207
criterion for minimum number
efficiency 163-4
element theory 162t seq.
interference factor 1662
Mach number 17
profile loss coefficient
row interaction 1961
surface velocity distribution 72
zero lift line 165
Boundary layer
effect on secondary losses (turbine
blade) 84-5
separation 44
stall control in a cascade 63

253

71

Camber line 56

Cascade, two-dimensional Ch. 3
blade chord 56
camber angle 57
circulation and lift 61
choking 789
definition of stall point
deviation angle 75
drag coefficient 661
efficiency 62
flow measurement instrumentation

65-8

forces exerted 578
lift coefficient 60-1
Mach number effects
negative incidence stall
nomenclature used 56
off-design performance 76t seq.
operating problems 63

69

69
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Cascade, two-dimensional Ch—3continued Circulation 61, 171

performance law 63

pressure rise coefficient 59

profile losses 69

profile thickness distribution 56
reference incidence angle 69
space-chord ratio 57

stagger angle 57

stall point 69

tangential force coefficient 59

test results 6%t seq.

turbine correlation (Ainley) 8%t seq.
wind tunnel 56, 63

working range of flow incidence 69

Cavitation 8-12, 3014

avoidance 304

corkscrew type 302

effect on pump performance 8
erosion caused by 13, 301
inception 1213

limits 13

net positive suction head 14
pump inlet 206-7

tensile stress in liquids 14
Thoma’s coefficient 302, 304
vapour formation 14

vapour pressure 302

Centrifugal compressor Ch. 7

choking of stage 23@t seq.

condition for maximum flow 20%t seq.

conservation of rothalpy 204
diffuser 201, 205, 22730

effect of prewhirl 209-10, 211, 212
effect of backswept vanes 225
impeller 203-4

inducer section 202, 210

inlet analysis 20811

inlet casing 203

kinetic energy leaving impeller 22%
limitations of single stage 206%
Mach number at impeller exit 223!
pressure ratio 21922

scroll 201

slip factor 213-18

uses 199200

use of prewhirl 212

vaned diffusers 22830

vaneless diffusers 228

volute 201

Centrifugal pump characteristics -9

head increase 28

Choked flow 19,20

Coefficient of
cavitation 207, 303
contraction 65
drag 60-1
energy transfer 6
flow 6
head 6
lift 60-1
power 6
pressure rise 59
profile loss 82
pressure loss 68
tangential force 59
total pressure loss 59
volumetric flow 6
Compressible fluid analysis 1@0
Compressible flow through fixed row
180-1
Compressible gas flow relations 156
Compressor:
control of instabilites 15960
fluctuating pressure in blade rows 20,
21
losses in a stage 70
off-design performance 14%
pressure ratio of a multistage 148
reaction ratio 1434
stage loading 1445, 148
stage losses and efficiency 142
stage pressure rise 148
stage thermodynamics 141
stage velocity diagrams 140
stall and surge 19, 137, 154
Compressor cascade
characteristics 6970
equivalent diffusion ratio 74
Howell’s correlation 6870, 74-9
Lieblein’s correlation 714
Mach number effects 780
McKenzie's correlation 801
off-design performance 78
performance 68, 719
wake momentum thickness ratio 73
ultimate steady flow 151
work done factor 1501
Constant specific mass flow 183
Continuity equation 234
Control surface 5
Control variables 5
Corresponding points 7
Cosine Rule 147



Deflection of fluid
definition 68
nominal 69, 70
Design point efficiency (IFR)
at nominal design point 24&t seq.
Deviation of fluid 75
Diffusers 43et seq.

analysis with a non-uniform flow 53153

conical and annular 44
design calculation 4951
effectiveness 46
ideal pressure rise coefficient 46
maximum pressure recovery 49
two-dimensional 44
optimum diffusion rate 44
optimum efficiency 49
stall limits 48
Diffusion:
in compressor blades 74
in turbine blades 103
optimum rate 49, 1378
Dimensional analysis -45
Dimensional similarity 67
Dimensions 3
Direct problem 17980
Drag 59-60, 126
Draft tube 290, 294, 301
Dynamically similar conditions 7

Efficiency definitions
compressor cascade 62
compressors and pumps 33, 34
definitions of 30et seq.
diffuser 45
hydraulic turbine 30, 33
isentropic 30
maximum total-to-static 100, 1t2
mechanical 31,33
nozzle 41, 43
overall 30
overall isentropic 38
polytropic or small stage 35
total-to-static (turbine) 33
total-to-total (turbine) 323
turbine 30

Energy transfer coefficient 6

Entropy 29

Equivalent diffusion ratio 74

Euler's equation of motion 26

Euler's pump equation 28

Euler’s turbine equation 28

Index 317

Exducer 238

Exercises on
logarithmic spiral vanes 216
radial flow turbine 244
turbine polytropic efficiency 39
units 4

Fans:
aerofolil lift coefficient 1623, 164-5
blade element theory 162 seq.
centrifugal 200
ducted, axial-flow 16t seq.
First law of thermodynamics 23, 24
First power stage design 176
Flow coefficient 6
Flow instabilities, control of 15960
Fluid properties 5
Force, definition of 34
Forced vortex design 17%
Francis turbine 2, 279, 302, 303
capacity of 281
vertical shaft type 291, 294, 295
Free-vortex flow 171 et seq.

General whirl distribution 176
Geometric variables 6
Geometrical similarity 7

Grand Coulee large turbines 281

Head 4,5

coefficient 6

effective 286

gross 286

loss in penstock 286
Heat transfer sign convention 24
Helmholtz type resonance 157
Hertz, unit of frequency 4
Howell

correlation method 749

deviation rule 756

Mach number effects 780

off-design performance 73

tangent difference rule 75
Hydraulic mean diameter 99
Hydraulic turbines, Ch. 9
Hydropower plant

features 27%#8

largest 281
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lllustrative examples
annular diffuser
axial compressor
173-4, 177-9
axial turbine 43, 1001, 104-7, 118-20
centrifugal compressor stage 211, 2726
centrifugal pump 2078, 218-9
compressor cascade 78
compressor cascade off-design 77
conical diffuser 561
fan blade design 801
Francis turbine 2956
free-vortex flow 1734
multistage axial compressor
Pelton turbine 28990
Penstock diameter 286
radial flow gas turbine 241, 24,
252-3, 259-60, 262-3
scale effects (Francis turbine) 300
three dimensional flow 1734, 177-9
Impeller analysis
for centrifugal compressor
Impulse turbomachines 2
Impulse blading 761
Impulse turbine stage 102
Incidence angle 68
loss 260et seq.
nominal 68
optimum 70
reference 68
Inducer 202
Inequality of Clausius 29
Interaction effect of closely spaced blade
rows 191
Internal energy 24
Isolated actuator disc 189

523
389, 148-9, 152-4,

148

203

Joule, unit of energy 4

Kaplan turbine 2, 9, 279, 280, 296
Kelvin, unit (thermodynamic temperature) 4
Kinematic viscosity 7

Kutta—Joukowski theorem 61

Lieblein correlation 714

Lift 59-60, 61, 126
coefficient 60, 76, 145, 153, 162, 168
relation to circulation 61

Lift to drag ratio 61, 623

Ljungstidom steam turbine 2367

Logarithmic spiral 215, 216, 229
Loss coefficients in IFR turbine 24B

Mach number
blade 17
critical 78
eye of centrifugal compressor
impeller exit 222-5
inlet to a cascade 67
radial flow turbine 2467
relative 209
Manometric head of a pump 218
Mass flow rate 17
Matrix through-flow computation 192
Mixed flow turbomachines 2
Mollier diagram:
axial compressor stage 141
axial turbine stage 95
centrifugal compressor stage 203
compressors and turbines 32
inward flow radial turbine 240
Momentum:
moment of 27
one-dimensional equation of 23, 25

206

National Advisory Committee for
Aeronautics (NACA) 70, 73

National Aeronautics and Space
Administration (NASA) 70, 71

National Gas Turbine Establishment
(NGTE) 137

Net energy transfer 6

Net hydraulic power 7

Net positive suction head 14, 302

Newton, unit of force 4

Newton’s second law of motion 25

Number of impeller blades in IFR turbine
253-6

Nominal conditions 69, 746

Nozzle efficiency 4let seq.

Off-design operation of IFR turbine 260
et seq.

Off-design performance of compressor
cascade 768

One-dimensional flow 24

Optimum efficiency
IFR turbine 248et seq.
variable geometry turbomachine 9



Optimum space-chord ratio 8B

Optimum design selection (IFR turbines)
26 et seq.

Overall performance
compressor characteristic 180
turbine characteristic 180

Pascal, unit of pressure 4
Pelton wheel turbine 2, 3, 279, 2800
energy losses 286
nozzle efficiency 287
overall efficiency 28%8
speed control 284
Penstock 285
diameter 286
Perfect gas 16, 17
Performance characteristics of
turbomachines 7
Pitch-line analysis assumption
axial compressor 1389
axial turbine 93
Polytropic index 38
Power coefficient 6, 18, 301
Prerotation, effect on performance 202
Pressure head 4
Pressure ratio limits of centripetal turbine
269-71
Pressure recovery factor 46
Pressure rise coefficient 45
Primary dimensions 6
Profile losses in compressor blading 69
Profile thickness 56
Propagating stall 64
Pump:
centrifugal 79, 200, 201, 2068, 218-9
efficiency 7
head increase 21®
inlet, optimum design 2068
mixed flow 2,9, 12
simplified impeller design 202
supercavitating 14, 15
vane angle 2156

Radial equilibrium
direct problem 17980
equation, theory 168t seq.
forced vortex 1756
free-vortex 1715
general whirl distribution 1769
Radial flow 169

Radial flow compressors and pumps, Ch. 7

Index 319

Radial flow turbines, Ch. 8
basic design of rotor 2412
cantilever type 23%8
criterion for number of vanes 25%
cooled 2712
effect of specific speed 268
inward flow types 23%9
Mach number relations 24&
nominal design point efficiency 245
nozzle loss coefficients 24B
optimum design selection 26®
optimum flow considerations 24&
seq.
rotor loss coefficients 248
velocity triangles 238, 239
Reaction
blade 706-1
compressor stage 143, 172-3, 176
effect on efficiency 1078
fifty per cent 103
true value 179
turbine stage 1044, 290
zero value 1023
Reheat factor 40
Relative eddy 214
Reynolds number
critical value 67
Rotating stall 157
cause 1578
control 159-60
Rothalpy 29, 2045
Royal Aircraft Establishment (RAE) 137
Royal Society 3

Scroll 201, 290
Second law of thermodynamics 23, 29
Secondary flow 64
losses 845

vorticity 64
Secondary flows 1935
gyroscope analogy 193
overturning due to 194
Shroud 201, 238
Shape number 10
Sl units 3-4
Similitude 6et seq.
Slip:

definition 214

factor 213-18

in IFR turbines 24850
velocity 214
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Soderberg’s correlation 71, 97, 105
aspect ratio correlation 9®
Reynolds number correction 99

Sonoluminescence 305

Specific speed 10
application and significance 2%% seq.
highest possible value 12
power specific speed 11
suction 14

Specific work 28

Spouting velocity 242

Stage loading factor 100, 106, 107, 108,
144-5

Stagger angle 57, 162

Stagnation properties:
enthalpy 15, 17
pressure and temperature 16

Stall and surge phenomena 18&tseq.
propagating stall 64
rotating stall 1579
wall and blade 156

Stall at negative incidence 69

Steady flow,
energy equation 24
momentum equation 23
moment of momentum equation 27

Stodola’s ellipse law 122, 124

Streamline curvature 192

Supercavitation 14

Surge, definition 20

Surge occurrence 137, 159

Systme International d’'Unés (SI) units
3-4, 310

Index

Temperature 4, 16, 17
Thoma's coefficient 302

ellipse law 122, 124

flow characteristics 19, 122

normal stage definition 96

reversible stage 1124

stage losses and efficiency -989

stage reaction 1044, 107

stage thermodynamics @t seq.

taper factor of blades 116

thermal efficiency 121

types of design 9@t seq.

velocity diagrams of stage 93,
102-3, 104, 111, 123

Turbine cascade (2 dimensional)

Ainley’s correlation 76-1, 81-7

Dunham and Came improvements
84-5

flow outlet angle 856

loss comparison with turbine stage
86-7

optimum space to chord ratio 83

Reynolds number correction 85

tip clearance loss coefficient 85

Turbine (radial flow):

cantilever type 2378

centripetal (IFR) type 236t seq.

clearance and windage losses 269

cooled 27%2

cooling effectiveness 271

diffuser 238-9

exhaust energy factor 264

Francis type 2, 279, 302, 303

incidence losses 26@®

loss coefficients (90 deg IFR) 2438

number of impeller blades

optimum design selection

optimum geometry

outward flow type

Three dimensional flow in axial turbomachines, pressure ratio limits

Ch. 6

Three dimensional flow in turbine stage 186

et seq.
Three Gorges project 277
Through-flow problem 192
Total pressure loss correlation (Ainley) 82
Transitory flow in diffusers 48
Turbine (axial flow):
blade cooling 1261
blade materials 1169
blade speed limit 99
centrifugal stress in rotor blades 1420
choking mass flow 19, 20
diffusion in blade rows 1034

specific speed application 2580,
263-4
Turbomachine:
as a control volume 5
definition of 1
Two-dimensional cascades, Ch. 3
Two-dimensional analysis
axial compressors, pumps and fans ,
Ch. 5
axial turbines, Ch. 4

Ultimate steady flow 151
Unsteady flow 20



Units
Imperial (English) 3
S| (Syseme International d’Unis)
3-4
Universal gas constant 17, 274

Vapour cavities 13, 305
Vapour pressure of water 14, 302
Velocity coefficients 247
Velocity perturbations 190
Volute (see Scroll)
Vortex design 56, 171 et seq.
Vortex free 1715
Vorticity 172

secondary 64, 194

Watt, unit of power 4

Index 321

Well's turbine  124et seq.
blade aspect ratio 129
design and performance variables
128-31
flow coefficient (effect of) 130
hub to tip ratio (effect of) 130
operating principle 125
solidity 129, 130
starting behaviour 1312
two-dimensional flow analysis 128
velocity and force diagrams 127
Whittle turbojet engine 199
Work-done factor 150
Work transfer sign convention 25

Zero lift line 164-5
Zero reaction turbine stage 1063
Zweifel criterion 878
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APPENDIX 1

Conversion of British and US
Units to Sl Units

Length Force
linch =0.0254m 1 Ibf = 4.448N
1foot =0.3048m 1lton f (UK) = 9.964 kN
Area Pressure
1in? =6.452x 1074m?  1lbf/in? = 6.895kPa
1 ft? = 0.09290 n? 1ft H,O = 2.989kPa
lin Hg = 3.386 kPa
1bar = 1000kPa
latm = 1013kPa
Volume Energy
1in® = 16.39cn? 1ft Ibf =1.356J
11t3 = 28.32dn? 1Btu = 1.055kJ
= 0.02832n?
1 gall (UK) = 4546 dn?
1gall (US) = 3.785dn?
Velocity Specific energy
1ft/s = 0.3048 m/s 1ft Ibf/lb = 2.989 J/kg
1 mile/h =0.447m/s 1Btu/lb = 2.326 kJ/kg
Mass Specific heat capacity
1lb = 0.4536 kg 11t Ibf/(IGF) =5.38J/(kgC)
1ton (UK) = 1016kg 1ft Ibf/(slug’F) = 0.167 J/(kgC)
1ton (US) = 907.2kg 1Btu/(Ib°F) = 4.188kJ/(kgC)
Density Power
1 Ib/ft3 = 16.02 kg/n? 1hp = 0.7457 kW
1 slug/ft = 5154 kg/n?
Some other units in use
1tonne = 1000 kg 1TwWh = 10° MWh
=3.6x 10°MJ

310
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APPENDIX 2

Answers to Problems

Chapter 1

1. 6.277 nils.

2. 9.15m/s; 5.33 atmospheres.

3. 551 rev/min, 1:10.8; 0.8865%s; 17.85 MN.
4. 4,035rev/min; 31.22 kg/s.

Chapter 2

1. 88.1 per cent.
2. (1) 703.1K; (2) 751.9K; (3) 669K.
3. (1) 500K, 0.313rkg; (2) 1.045.
4. 49.2kg/s; 24 mm.
5. (1) 620kPa, 274C; 240kPa, 20°C; 85kPa, 12&; 26 kPa,q = 0.988; 7 kPa,
g =0-95; (2) 0.619, 0.655, 0.699, 0.721, 0.750; (3) 0.739, 0.724; (4) 1.075.

Chapter 3
1. 49.8deg.
2. 0.767;Cp = 0.048 C; = 2.245.
3. —1.17 deg., 9.5deg, 1.11.
4. (1) 53deg and 29.5deg; (2) 0.962; (3) 2.079 kR/m
5. (a) s/l= 1.0, o, = 24.8 deg; (b)C, = 0.82.
6. (b) 57.8deg; (c) (1) 3.579kPa; (2) 0.96; (3) 0.0218, 1.075.
7. (@) a1 =732, ap = 681°, (b) (1) C, = 0.696, (2)np = 0.8824
Chapter 4
2. (a) 88 per cent; (b) 86.17 per cent, (c) 1170.6 K
3. ap =70 deg.,B2 = 7.02 deg.,a3 = 184 deg.,B3 = 50.37 deg.
4. 22.62kJ/kg; 420kPa, 17C.
5. 90.2 per cent.
6. (1) 1.50; (2) 39.9deg, 59deg; (3) 0.25; (4) 90.5 and 81.6 per cent.
7. (1) 488 ml/s; (2) 266.1m/s; (3) 0.83; (4) 0.128.
8. (1) 213.9m/s; (2) 0.10, 2.664; (3) 0.872; (4) 269 0.90 Mpa.
9. (a) (1) 601.9m/s; (2) 282.8 m/s; (3) 79.8 per cent. (b) 89.23 per cent.
10. (b) (1) 130.9kJ/kg; (2) 301.6 m/s; (3) 707.6 K (c) (1) 10,200 rev/min; (2) 0.565m
(3) 0.845.
11. (2) 0.2166 m; (3) 8,740 rev/min. (4) 450.7 m/s, 0.846.

311



312 Appendix 2

Chapter 5

1. 14 stages.

2. 30.35C.

3. 132.1m/s, 56.1kg/s; 10.0 MW.

4. 86.5 per cent; 9.27 MW.

5. 0.59, 0.415.

6. 33.5deg, 8.5deg, 52.9deg; 0.827; 34.5deg, 0.997.

7. 56.9deg, 41deg; 21.8deg.

8. (1) 229.3m/s; (2) 23.47 kg/s, 15,796 rev/min; (3) 33.614 kJ/kg; (4) 84.7 per cent;

9.
10.
11.

(5) 5.856 stages, 0.789 MW; (6) With six stages and the same loading, the pres-
sure ratio is then 6.209. However, to maintain a pressure ratio of 6.0, the specific
work must be decreased to 32.81 kJ/kg which requires an absolute flow angle
a,, to change from 30to 30.26. With five stages and a pressure ratio of six
the weight and cost would be lower but the stage loading would increase to
39.37 kJ/kg which would require,, to be changed to 28.08 deg.

(a) 16.22deg., 22.08deg., 33.79deg. (b) 467.2Pa, 7.42m/s.

(1) B1 = 7079, B, = 68.24 deg.; (2) 83.96 per cent; (3) 399.3Pa; (4) 7.144 cm.
(1) 141.1 Pa, 0.588; (2) 60.48 Pa; (3) 70.14 per cent.

Chapter 6

1.
4.

6.
7.
8.

55 and 47 deg2. 0.602, 1.38—-0.08 (i.e. implies large losses near hub)
70.7m/s.5. Work done is constant at all radii;

2 =k — 2a?[r® — 2(b/a) In7]

2 =ky — 2a?[r® + 2(b/a) In 7]

B1 =432 deg B, = 10.4 deg.
(1) 469.3m/s; (2) 0.798; (3) 0.079; (4) 3.244 MW; (5) 911.6K, 897K.

(1) 62deg; (2) 55.3 and 1.5deg; (3) 45.2 and 66 deg;{@)L75, 0.477.
See ‘Solutions Manuél

Chapter 7

OO~ WDN PR

0

. (1) 27.9m/s; (2) 882rev/min, 0.604 m; (3) 182 W; (4) 0.333(rad)

. 579kW; 169 mm; 5.273.

. 0.8778; 5.62 kg/s.

. 24,430 rev/min; 0.203m, 0.5844.

. 0.7324, 90.84 per cent.

. (1) 542.5kW; (2) 536 and 519kPa; (3) 608.2 and 244kPa, 1.22, 193.2m/s;

(4) 0.899; (5) 0.22; (6) 31,770rev/min.

. (1) 29.4dnd/s; (2) 0.781; (3) 77.7 deg; (4) 7.8 kW.
. (1) 14.11cm; (2) 2.635m; (3) 0.7664; (4) 17.73m; (5) 13.8kW;= 0.722,

og = 0.752.

. (a) See text. (b) (1) 32,214 rev/imin; (2) 5.246 kg/s; (c) (1) 1.254 MW; (2) 6.997.
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Chapter 8

©

NogrwNE

587.4m/s, 73.88 deg.

(1) 203.8kPa, 977K; (2) 0.40 m, 28,046 rev/min; (3) 1 MW.

(1) 90.54 per cent; (2) 0.2694 m; (3) 0.05316, 0.2009.

1594 K.

(1) 2.159 ni/s, 500 kW; (2) 0.0814 m and 0.1826 m; (3) 77 deg, 0.0995.

(a) 1.089kg/s, 23,356 rev/min; (b)@3 x 10°, 1.879x 10°.

(1) 81.82 per cent; (2) 890K, 184.3kPa; (3) 1.206 cm; (4) 196.3m/s; (5) 0.492;
(6) rs3 =6.59cm,r,3 = 2.636 cm.

(1) 308.24m/s; (2) 56.42kPa, 915.4K; (3) 113.2m/s, 0.2765Kkg/s; (4) 5.472cm,;
(5) 28.34deg; (6) 0.7385rad.

Chapter 9

~N o 01 A WNPE

©

. (1) 224kW; (2) 0.21621is; (3) 6.423

. (@) 2.138m; (2) Fod = 2.2m, (1) 17.32m; (2) 59.87 m/s, 40.3 MW

. (1) 378.7 rev/imin; (2) 6.906 MW, 0.252 (rad); (3) 0.793; (4) 3

. Headloss in pipelineis 17.8 m. (1) 672.2 rev/min; (2) 84.5 per cent; (3) 6.735 MW,

(4) 2.59 per cent.

. (1) 12.82 MW, 8.691s; (2) 1.0m; (3) 37.6 m/s; (4) 0.226m
. (1) 663.2rev/min; (2) 69.55deg., 59.2deg; (3) 0.152m and 0,169 m.
. (b) (1) 1.459rad; (2) 107.6%s; (3) 3.153m, 15.52m/s; (c) (1) 398.7 rev/min,

0.456 n¥/s; (2) 20.6 kW (uncorrected), 19.55 kW (corrected); (3) 4.06 (rad); (d)
z=1748m

. (a) (1) 0.94; (2) 115.2rev/min, 5.068 m; (3) 197.¥m (4) 0.924 m.
. (1) 11.4ndls, 19.47 MW; (2) At hub, mean and tip radii the flow angles (deg)

are as follows: Inlet 25.81, 62.99, 72.59; Outlet 59.55, 69.83, 75.04.
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Index

Actuator disc:
theory 186-91
blade row interaction effects 190
comparison with radial equilibrium
theory 187
concept of 187
mean-value rule 189
plane of discontinuity 188
settling-rate rule 190
Aerofoil:
theory 612, 162-5
zero lift line 164
Ainley and Mathieson correlation 7,
81-7
Aspect ratio of cascade blade 65
Axial flow compressors Ch. 5.
casing treatment 154
choice of reaction 143
control of flow instabilities 159
direct problem 17980
estimation of stage efficiency 1484
flow coefficient 144
low aspect ratio blades 138
multistage pressure ratio 148
normal stage 140
off-design stage performance 188
reaction of stage 143
simplified off-design stage performance
145-6
stability 154-60
stability criterion 158
stage loading 1445
stage loss relationships 142
stage pressure rise 148
stage velocity diagrams 140
total-to-total efficiency 142
velocity profile changes through stages
150-2
work done factor 1501
Axial flow ducted fans 16@t seq.
Axial flow turbines, two dimensional analysis
Ch. 4
Soderberg’s loss correlation 99, 100
stage losses and efficiency 9B

315

thermodynamics of stage 9%
types of design 99
velocity diagrams 934

Basic thermodynamics Ch. 2
Basic units in SI 3
Bernoulli’'s equation 26, 27
Blade:
angles 57
cavitation coefficient 207
criterion for minimum number
efficiency 163-4
element theory 162t seq.
interference factor 1662
Mach number 17
profile loss coefficient
row interaction 1961
surface velocity distribution 72
zero lift line 165
Boundary layer
effect on secondary losses (turbine
blade) 84-5
separation 44
stall control in a cascade 63

253

71

Camber line 56

Cascade, two-dimensional Ch. 3
blade chord 56
camber angle 57
circulation and lift 61
choking 789
definition of stall point
deviation angle 75
drag coefficient 661
efficiency 62
flow measurement instrumentation

65-8

forces exerted 578
lift coefficient 60-1
Mach number effects
negative incidence stall
nomenclature used 56
off-design performance 76t seq.
operating problems 63

69

69



316 Index

Cascade, two-dimensional Ch—3continued Circulation 61, 171

performance law 63

pressure rise coefficient 59

profile losses 69

profile thickness distribution 56
reference incidence angle 69
space-chord ratio 57

stagger angle 57

stall point 69

tangential force coefficient 59

test results 6%t seq.

turbine correlation (Ainley) 8%t seq.
wind tunnel 56, 63

working range of flow incidence 69

Cavitation 8-12, 3014

avoidance 304

corkscrew type 302

effect on pump performance 8
erosion caused by 13, 301
inception 1213

limits 13

net positive suction head 14
pump inlet 206-7

tensile stress in liquids 14
Thoma’s coefficient 302, 304
vapour formation 14

vapour pressure 302

Centrifugal compressor Ch. 7

choking of stage 23@t seq.

condition for maximum flow 20%t seq.

conservation of rothalpy 204
diffuser 201, 205, 22730

effect of prewhirl 209-10, 211, 212
effect of backswept vanes 225
impeller 203-4

inducer section 202, 210

inlet analysis 20811

inlet casing 203

kinetic energy leaving impeller 22%
limitations of single stage 206%
Mach number at impeller exit 223!
pressure ratio 21922

scroll 201

slip factor 213-18

uses 199200

use of prewhirl 212

vaned diffusers 22830

vaneless diffusers 228

volute 201

Centrifugal pump characteristics -9

head increase 28

Choked flow 19,20

Coefficient of
cavitation 207, 303
contraction 65
drag 60-1
energy transfer 6
flow 6
head 6
lift 60-1
power 6
pressure rise 59
profile loss 82
pressure loss 68
tangential force 59
total pressure loss 59
volumetric flow 6
Compressible fluid analysis 1@0
Compressible flow through fixed row
180-1
Compressible gas flow relations 156
Compressor:
control of instabilites 15960
fluctuating pressure in blade rows 20,
21
losses in a stage 70
off-design performance 14%
pressure ratio of a multistage 148
reaction ratio 1434
stage loading 1445, 148
stage losses and efficiency 142
stage pressure rise 148
stage thermodynamics 141
stage velocity diagrams 140
stall and surge 19, 137, 154
Compressor cascade
characteristics 6970
equivalent diffusion ratio 74
Howell’s correlation 6870, 74-9
Lieblein’s correlation 714
Mach number effects 780
McKenzie's correlation 801
off-design performance 78
performance 68, 719
wake momentum thickness ratio 73
ultimate steady flow 151
work done factor 1501
Constant specific mass flow 183
Continuity equation 234
Control surface 5
Control variables 5
Corresponding points 7
Cosine Rule 147



Deflection of fluid
definition 68
nominal 69, 70
Design point efficiency (IFR)
at nominal design point 24&t seq.
Deviation of fluid 75
Diffusers 43et seq.

analysis with a non-uniform flow 53153

conical and annular 44
design calculation 4951
effectiveness 46
ideal pressure rise coefficient 46
maximum pressure recovery 49
two-dimensional 44
optimum diffusion rate 44
optimum efficiency 49
stall limits 48
Diffusion:
in compressor blades 74
in turbine blades 103
optimum rate 49, 1378
Dimensional analysis -45
Dimensional similarity 67
Dimensions 3
Direct problem 17980
Drag 59-60, 126
Draft tube 290, 294, 301
Dynamically similar conditions 7

Efficiency definitions
compressor cascade 62
compressors and pumps 33, 34
definitions of 30et seq.
diffuser 45
hydraulic turbine 30, 33
isentropic 30
maximum total-to-static 100, 1t2
mechanical 31,33
nozzle 41, 43
overall 30
overall isentropic 38
polytropic or small stage 35
total-to-static (turbine) 33
total-to-total (turbine) 323
turbine 30

Energy transfer coefficient 6

Entropy 29

Equivalent diffusion ratio 74

Euler's equation of motion 26

Euler's pump equation 28

Euler’s turbine equation 28

Index 317

Exducer 238

Exercises on
logarithmic spiral vanes 216
radial flow turbine 244
turbine polytropic efficiency 39
units 4

Fans:
aerofolil lift coefficient 1623, 164-5
blade element theory 162 seq.
centrifugal 200
ducted, axial-flow 16t seq.
First law of thermodynamics 23, 24
First power stage design 176
Flow coefficient 6
Flow instabilities, control of 15960
Fluid properties 5
Force, definition of 34
Forced vortex design 17%
Francis turbine 2, 279, 302, 303
capacity of 281
vertical shaft type 291, 294, 295
Free-vortex flow 171 et seq.

General whirl distribution 176
Geometric variables 6
Geometrical similarity 7

Grand Coulee large turbines 281

Head 4,5

coefficient 6

effective 286

gross 286

loss in penstock 286
Heat transfer sign convention 24
Helmholtz type resonance 157
Hertz, unit of frequency 4
Howell

correlation method 749

deviation rule 756

Mach number effects 780

off-design performance 73

tangent difference rule 75
Hydraulic mean diameter 99
Hydraulic turbines, Ch. 9
Hydropower plant

features 27%#8

largest 281
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lllustrative examples
annular diffuser
axial compressor
173-4, 177-9
axial turbine 43, 1001, 104-7, 118-20
centrifugal compressor stage 211, 2726
centrifugal pump 2078, 218-9
compressor cascade 78
compressor cascade off-design 77
conical diffuser 561
fan blade design 801
Francis turbine 2956
free-vortex flow 1734
multistage axial compressor
Pelton turbine 28990
Penstock diameter 286
radial flow gas turbine 241, 24,
252-3, 259-60, 262-3
scale effects (Francis turbine) 300
three dimensional flow 1734, 177-9
Impeller analysis
for centrifugal compressor
Impulse turbomachines 2
Impulse blading 761
Impulse turbine stage 102
Incidence angle 68
loss 260et seq.
nominal 68
optimum 70
reference 68
Inducer 202
Inequality of Clausius 29
Interaction effect of closely spaced blade
rows 191
Internal energy 24
Isolated actuator disc 189

523
389, 148-9, 152-4,

148

203

Joule, unit of energy 4

Kaplan turbine 2, 9, 279, 280, 296
Kelvin, unit (thermodynamic temperature) 4
Kinematic viscosity 7

Kutta—Joukowski theorem 61

Lieblein correlation 714

Lift 59-60, 61, 126
coefficient 60, 76, 145, 153, 162, 168
relation to circulation 61

Lift to drag ratio 61, 623

Ljungstidom steam turbine 2367

Logarithmic spiral 215, 216, 229
Loss coefficients in IFR turbine 24B

Mach number
blade 17
critical 78
eye of centrifugal compressor
impeller exit 222-5
inlet to a cascade 67
radial flow turbine 2467
relative 209
Manometric head of a pump 218
Mass flow rate 17
Matrix through-flow computation 192
Mixed flow turbomachines 2
Mollier diagram:
axial compressor stage 141
axial turbine stage 95
centrifugal compressor stage 203
compressors and turbines 32
inward flow radial turbine 240
Momentum:
moment of 27
one-dimensional equation of 23, 25

206

National Advisory Committee for
Aeronautics (NACA) 70, 73

National Aeronautics and Space
Administration (NASA) 70, 71

National Gas Turbine Establishment
(NGTE) 137

Net energy transfer 6

Net hydraulic power 7

Net positive suction head 14, 302

Newton, unit of force 4

Newton’s second law of motion 25

Number of impeller blades in IFR turbine
253-6

Nominal conditions 69, 746

Nozzle efficiency 4let seq.

Off-design operation of IFR turbine 260
et seq.

Off-design performance of compressor
cascade 768

One-dimensional flow 24

Optimum efficiency
IFR turbine 248et seq.
variable geometry turbomachine 9



Optimum space-chord ratio 8B

Optimum design selection (IFR turbines)
26 et seq.

Overall performance
compressor characteristic 180
turbine characteristic 180

Pascal, unit of pressure 4
Pelton wheel turbine 2, 3, 279, 2800
energy losses 286
nozzle efficiency 287
overall efficiency 28%8
speed control 284
Penstock 285
diameter 286
Perfect gas 16, 17
Performance characteristics of
turbomachines 7
Pitch-line analysis assumption
axial compressor 1389
axial turbine 93
Polytropic index 38
Power coefficient 6, 18, 301
Prerotation, effect on performance 202
Pressure head 4
Pressure ratio limits of centripetal turbine
269-71
Pressure recovery factor 46
Pressure rise coefficient 45
Primary dimensions 6
Profile losses in compressor blading 69
Profile thickness 56
Propagating stall 64
Pump:
centrifugal 79, 200, 201, 2068, 218-9
efficiency 7
head increase 21®
inlet, optimum design 2068
mixed flow 2,9, 12
simplified impeller design 202
supercavitating 14, 15
vane angle 2156

Radial equilibrium
direct problem 17980
equation, theory 168t seq.
forced vortex 1756
free-vortex 1715
general whirl distribution 1769
Radial flow 169

Radial flow compressors and pumps, Ch. 7

Index 319

Radial flow turbines, Ch. 8
basic design of rotor 2412
cantilever type 23%8
criterion for number of vanes 25%
cooled 2712
effect of specific speed 268
inward flow types 23%9
Mach number relations 24&
nominal design point efficiency 245
nozzle loss coefficients 24B
optimum design selection 26®
optimum flow considerations 24&
seq.
rotor loss coefficients 248
velocity triangles 238, 239
Reaction
blade 706-1
compressor stage 143, 172-3, 176
effect on efficiency 1078
fifty per cent 103
true value 179
turbine stage 1044, 290
zero value 1023
Reheat factor 40
Relative eddy 214
Reynolds number
critical value 67
Rotating stall 157
cause 1578
control 159-60
Rothalpy 29, 2045
Royal Aircraft Establishment (RAE) 137
Royal Society 3

Scroll 201, 290
Second law of thermodynamics 23, 29
Secondary flow 64
losses 845

vorticity 64
Secondary flows 1935
gyroscope analogy 193
overturning due to 194
Shroud 201, 238
Shape number 10
Sl units 3-4
Similitude 6et seq.
Slip:

definition 214

factor 213-18

in IFR turbines 24850
velocity 214



320

Soderberg’s correlation 71, 97, 105
aspect ratio correlation 9®
Reynolds number correction 99

Sonoluminescence 305

Specific speed 10
application and significance 2%% seq.
highest possible value 12
power specific speed 11
suction 14

Specific work 28

Spouting velocity 242

Stage loading factor 100, 106, 107, 108,
144-5

Stagger angle 57, 162

Stagnation properties:
enthalpy 15, 17
pressure and temperature 16

Stall and surge phenomena 18&tseq.
propagating stall 64
rotating stall 1579
wall and blade 156

Stall at negative incidence 69

Steady flow,
energy equation 24
momentum equation 23
moment of momentum equation 27

Stodola’s ellipse law 122, 124

Streamline curvature 192

Supercavitation 14

Surge, definition 20

Surge occurrence 137, 159

Systme International d’'Unés (SI) units
3-4, 310

Index

Temperature 4, 16, 17
Thoma's coefficient 302

ellipse law 122, 124

flow characteristics 19, 122

normal stage definition 96

reversible stage 1124

stage losses and efficiency -989

stage reaction 1044, 107

stage thermodynamics @t seq.

taper factor of blades 116

thermal efficiency 121

types of design 9@t seq.

velocity diagrams of stage 93,
102-3, 104, 111, 123

Turbine cascade (2 dimensional)

Ainley’s correlation 76-1, 81-7

Dunham and Came improvements
84-5

flow outlet angle 856

loss comparison with turbine stage
86-7

optimum space to chord ratio 83

Reynolds number correction 85

tip clearance loss coefficient 85

Turbine (radial flow):

cantilever type 2378

centripetal (IFR) type 236t seq.

clearance and windage losses 269

cooled 27%2

cooling effectiveness 271

diffuser 238-9

exhaust energy factor 264

Francis type 2, 279, 302, 303

incidence losses 26@®

loss coefficients (90 deg IFR) 2438

number of impeller blades

optimum design selection

optimum geometry

outward flow type

Three dimensional flow in axial turbomachines, pressure ratio limits

Ch. 6

Three dimensional flow in turbine stage 186

et seq.
Three Gorges project 277
Through-flow problem 192
Total pressure loss correlation (Ainley) 82
Transitory flow in diffusers 48
Turbine (axial flow):
blade cooling 1261
blade materials 1169
blade speed limit 99
centrifugal stress in rotor blades 1420
choking mass flow 19, 20
diffusion in blade rows 1034

specific speed application 2580,
263-4
Turbomachine:
as a control volume 5
definition of 1
Two-dimensional cascades, Ch. 3
Two-dimensional analysis
axial compressors, pumps and fans ,
Ch. 5
axial turbines, Ch. 4

Ultimate steady flow 151
Unsteady flow 20
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Units
Imperial (English) 3
S| (Syseme International d’Unis)
3-4
Universal gas constant 17, 274

Vapour cavities 13, 305
Vapour pressure of water 14, 302
Velocity coefficients 247
Velocity perturbations 190
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