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ABSTRACT
This is the second in a series of three short books on probability theory and random processes for

biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the

characteristic function. In addition, conditional expectation, conditional moments and the conditional

characteristic function are also discussed. Jointly distributed random variables are described, along

with joint expectation, joint moments, and the joint characteristic function. Convolution is also

developed. A considerable effort has been made to develop the theory in a logical manner—

developing special mathematical skills as needed. The mathematical background required of the

reader is basic knowledge of differential calculus. Every effort has been made to be consistent

with commonly used notation and terminology—both within the engineering community as

well as the probability and statistics literature. The aim is to prepare students for the application

of this theory to a wide variety of problems, as well give practicing engineers and researchers a

tool to pursue these topics at a more advanced level. Pertinent biomedical engineering examples

are used throughout the text.

KEYWORDS
Probability Theory, Random Processes, Engineering Statistics, Probability and Statistics for

Biomedical Engineers, Statistics. Biostatistics, Expectation, Standard Deviation, Moments,

Characteristic Function
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Preface

This is the second in a series of short books on probability theory and random processes for

biomedical engineers. This text is written as an introduction to probability theory. The goal was

to prepare students at the sophomore, junior or senior level for the application of this theory to a

wide variety of problems—as well as pursue these topics at a more advanced level. Our approach

is to present a unified treatment of the subject. There are only a few key concepts involved in the

basic theory of probability theory. These key concepts are all presented in the first chapter. The

second chapter introduces the topic of random variables. Later chapters simply expand upon

these key ideas and extend the range of application.

This short book focuses on expectation, standard deviation, moments, and the character-

istic function. In addition, conditional expectation, conditional moments and the conditional

characteristic function are also discussed. Jointly distributed random variables are described,

along with joint expectation, joint moments, and the joint characteristic function. Convolution

is also developed.

A considerable effort has been made to develop the theory in a logical manner—

developing special mathematical skills as needed. The mathematical background required of the

reader is basic knowledge of differential calculus. Every effort has been made to be consistent

with commonly used notation and terminology—both within the engineering community as

well as the probability and statistics literature.

The applications and examples given reflect the authors’ background in teaching prob-

ability theory and random processes for many years. We have found it best to introduce this

material using simple examples such as dice and cards, rather than more complex biological

and biomedical phenomena. However, we do introduce some pertinent biomedical engineering

examples throughout the text.

Students in other fields should also find the approach useful. Drill problems, straightfor-

ward exercises designed to reinforce concepts and develop problem solution skills, follow most

sections. The answers to the drill problems follow the problem statement in random order.

At the end of each chapter is a wide selection of problems, ranging from simple to difficult,

presented in the same general order as covered in the textbook.

We acknowledge and thank William Pruehsner for the technical illustrations. Many of the

examples and end of chapter problems are based on examples from the textbook by Drake [9].
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1

C H A P T E R 3

Expectation

Suppose that an experiment is performed N times and the RV x is observed to take on the value

x = xi on the ith trial, i = 1, 2, . . . , N. The average of these N numbers is

x N = 1

N

N∑
i=1

xi . (3.1)

We anticipate that as N → ∞, the average observed value of the RV x would converge to a

constant, say x. It is important to note that such sums do not always converge; here, we simply

appeal to one’s intuition to suspect that convergence occurs. Further, we have the intuition that

the value x can be computed if the CDF Fx is known. For example, if a single die is tossed a

large number of times, we expect that the average value on the face of the die would approach

1

6
(1 + 2 + 3 + 4 + 5 + 6) = 3.5.

For this case we predict

x =
6∑

i=1

i P (x = i) =
∞∫

−∞
α dFx(α). (3.2)

A little reflection reveals that this computation makes sense even for continuous RVs: the

predicted value for x should be the “sum” of all possible values the RV x takes on weighted by

the “relative frequency” or probability the RV takes on that value. Similarly, we predict that the

average observed value of a function of x, say g (x), to be

g (x) =
∞∫

−∞
g (α) dFx(α) . (3.3)

Of course, whether or not this prediction is realized when the experiment is performed a

large number of times depends on how well our model for the experiment (which is based on

probability theory) matches the physical experiment.
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2 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

The statistical average operation performed to obtain g (x) is called statisticalexpectation.

The sample average used to estimate x with x N is called the sample mean. The quality of

estimate attained by a sample mean operation is investigated in a later chapter. In this chapter,

we present definitions and properties of statistical expectation operations and investigate how

knowledge of certain moments of a RV provides useful information about the CDF.

3.1 MOMENTS
Definition 3.1.1. The expected value of g (x) is defined by

E(g (x)) =
∞∫

−∞
g (α) dFx(α) , (3.4)

provided the integral exists. The mean of the RV x is defined by

ηx = E(x) =
∞∫

−∞
α dFx(α). (3.5)

The variance of the RV x is defined by

σ 2
x = E((x − ηx)2), (3.6)

and the nonnegative quantity σx is called the standard deviation. The nth moment and the nth

central moment, respectively, are defined by

mn = E(xn) (3.7)

and

μn = E((x − ηx)n). (3.8)

The expected value of g (x) provides some information concerning the CDF Fx . Knowledge of

E(g (x)) does not, in general, enable Fx to be determined—but there are exceptions. For any

real value of α,

E(u(α − x)) =
∞∫

−∞
u(α − α′) dFx(α′) =

α∫
−∞

dFx(α′) = Fx(α). (3.9)

The sample mean estimate for E(u(α − x)) is

1

n

n∑
i=1

u(α − xi ),
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the empirical distribution function discussed in Chapter 2. If α ∈ �∗ and x is a continuous RV

then (for all α where fx is continuous)

E(δ(α − x)) =
∞∫

−∞
δ(α − α′) fx(α′) dα′ = fx(α). (3.10)

Let A be an event on the probability space (S, F, P ), and let

IA(ζ ) =
{

1, if ζ ∈ A

0, otherwise.
(3.11)

With x(ζ ) = IA(ζ ), x is a legitimate RV with x−1({1}) = A and x−1({0}) = Ac . Then

E(x) =
∞∫

−∞
α dFx(α) = P (A). (3.12)

The above result may also be written in terms of the Lebesgue-Stieltjes integral as

E(IA(ζ )) =
∫

ζ∈S

IA(ζ )dP (ζ ) =
∫

A

dP (ζ ) = P (A). (3.13)

The function IA is often called an indicator function.

If one interprets a PDF fx as a “mass density”, then the mean E(x) has the interpretation

of the center of gravity, E(x2) becomes the moment of inertia about the origin, and the variance

σ 2
x becomes the central moment of inertia. The standard deviation σx becomes the radius of

gyration. A small value of σ 2
x indicates that most of the mass (probability) is concentrated at

the mean; i.e., x(ζ ) ≈ ηx with high probability.

Example 3.1.1. The RV x has the PMF

px(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4
, α = b − a

1
4
, α = b + a

1
2
, α = b

0, otherwise,

where a and b are real constants with a > 0. Find the mean and variance for x.

Solution. We obtain

ηx = E(x) =
∞∫

−∞
α dFx(α) = b − a

4
+ b

2
+ b + a

4
= b
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4 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

and

σ 2
x = E((x − ηx)2) =

∞∫
−∞

(α − ηx)2 dFx(α) = a2

2
.

�

Example 3.1.2. The RV x has PDF

fx(α) = 1

b − a
(u(α − a) − u(α − b))

where a and b are real constants with a < b. Find the mean and variance for x.

Solution. We have

E(x) = 1

b − a

b∫
a

α dα = b2 − a2

2(b − a)
= b + a

2

and

σ 2
x = 1

b − a

∫ b

a

(
α − b + a

2

)2

dα = 1

b − a

(b−a)/2∫
−(b−a)/2

β2 dβ = (b − a)2

12
.

�

Example 3.1.3. Find the expected value of g (x) = 2x2 − 1, where

fx(α) =
⎧⎨⎩

1

3
α2, −1 < α < 2

0, otherwise.

Solution. By definition,

E(g (x)) =
∫ +∞

−∞
g (α) fx(α) dα = 1

3

2∫
−1

(2α2 − 1)α2 dα = 17

5
.

�

Example 3.1.4. The RV x has PDF

fx(α) =
{

1.5(1 − α2), 0 ≤ α < 1

0, elsewhere.

Find the mean, the second moment, and the variance for the RV x.

Solution. From the definition of expectation,

ηx = E(x) =
∞∫

−∞
α fx(α) dα = 3

2

1∫
0

(α − α3) dα = 3

8
.
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Similarly, the second moment is

m2 = E(x2) =
∞∫

−∞
α2 fx(α) dα = 3

2

1∫
0

(α2 − α4) dα = 3

2

(
5 − 3

15

)
= 1

5
.

Applying the definition of variance,

σ 2
x =

1∫
0

(
α − 3

8

)2 3

2
(1 − α2) dα.

Instead of expanding the integrand directly, it is somewhat easier to use the change of variable

β = α − 3
8
, to obtain

σ 2
x = 3

2

5/8∫
−3/8

(
55

64
β2 − 3

4
β3 − β4

)
dβ = 0.059375.

The following theorem and its corollary provide an easier technique for finding the variance.

The result of importance here is

σ 2
x = E(x2) − η2

x = 1

5
−

(
3

8

)2

= 19

320
= 0.059375.

The PDF for this example is illustrated in Fig. 3.1. Interpreting the PDF as a mass density

along the abscissa, the mean is the center of gravity. Note that the mean always falls between

the minimum and maximum values for which the PDF is nonzero. �

The following theorem establishes that expectation is a linear operation and that the

expected value of a constant is the constant.

a0

1

2

1

fx(a)

1

3

2

FIGURE 3.1: PDF for Example 3.1.4.
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6 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

Theorem 3.1.1. The expectation operator satisfies

E(a) = a (3.14)

and

E(a1g1(x) + a2g2(x)) = a1 E(g1(x)) + a2 E(g2(x)), (3.15)

where a, a1, and a2 are arbitrary constants and we have assumed that all indicated integrals exist.

Proof. The desired results follow immediately from the properties of the Riemann-Stieltjes

integral and the definition of expectation. �

Applying the above theorem, we find

σ 2
x = E((x − ηx)2) = E(x2 − 2ηx x + η2

x) = E(x2) − η2
x, (3.16)

as promised in Example 3.1.4. The following corollary provides a general relationship between

moments and central moments.

Corollary 3.1.1. The nth central moment for the RV x can be found from the moments {m0,

m1, . . . , mn} as

μn = E((x − ηx)n) =
n∑

k=0

(n

k

)
mk(−ηx)n−k . (3.17)

Similarly, the nth moment for the RV x can be found from the central moments {μ0, μ1, . . . , μn} as

mn = E(xn) =
n∑

k=0

(n

k

)
μk(ηx)n−k . (3.18)

Proof. From the Binomial Theorem, we have for any real constant a :

(x − a)n =
n∑

k=0

(n

k

)
xk(−a)n−k

and

xn = ((x − a) + a)n =
n∑

k=0

(n

k

)
(x − a)k an−k .

Taking the expected value of both sides of the above equations and using the fact that expectation

is a linear operation, the desired results follow by choosing a = ηx . �
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In many advanced treatments of probability theory (e.g. [4, 5, 11]), expectation is defined in

terms of the Lebesgue-Stieltjes integral

E(g (x)) =
∫

S

g (x(ζ )) dP (ζ ). (3.19)

In most cases (whenever the Lebesgue-Stieltjes integral and the Riemann-Stieltjes integral both

exist) the two definitions yield identical results. The existence of the Lebesgue-Stieltjes integral

(3.19) requires

E(|g (x)|) =
∫

S

|g (x(ζ ))| dP (ζ ) < ∞, (3.20)

whereas the Riemann-Stieltjes integral (3.4) may exist even though

E(|g (x)|) =
∫ ∞

−∞
|g (α)| dFx(α) = ∞. (3.21)

Consequently, using (3.4) as a definition, we will on occasion arrive at a value for E(g (x)) in

cases where E(|g (x)|) = ∞. There are applications for which this more liberal interpretation is

useful.

Example 3.1.5. Find the mean and variance of the RV x with PDF

fx(α) = 1

π (1 + α2)
.

Solution. By definition,

ηx = lim
T1,T2→∞

T2∫
−T1

α fx(α) dα ,

assuming the limit exists independent of the manner in which T1 → ∞ and T2 → ∞. For this

example, we have

T2∫
−T1

α fx(α) dα = 1

2π
(ln(1 + T 2

2 ) − ln(1 + T 2
1 )).

Consequently, the limit indicated above does not exist. If we restrict the limit to the form

T1 = T2 = T (corresponding to the Cauchy principle value of the integral) then we obtain
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8 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

ηx = 0. Accepting ηx = 0 for the mean, we find

E(x2) = lim
T1,T2→∞

T2∫
−T1

α2 fx(α) dα = +∞,

and we conclude that σ 2
x = ∞.

�

The computation of high order moments using the direct application of the definition

(3.4) is often tedious. We now explore some alternatives.

Example 3.1.6. The RV x has PDF fx(α) = e−αu(α). Express mn in terms of mn−1 for n =
1, 2, . . . .

Solution. By definition, we have

mn = E(xn) =
∞∫

0

αne−α dα.

Integrating by parts (with u = αn and dv = e−α dα)

mn = −αne−α
∣∣∞
0

+ n

∞∫
0

αn−1e−α dα = nmn−1, n = 1, 2, . . . .

Note that m0 = E(1) = 1. For example, we have m4 = 4 · 3 · 2 · 1 = 4!. We have used the fact

that for n > 0

lim
α→∞ αne−α = 0.

This can be shown by using the Taylor series for eα to obtain

αn

eα
= αn

∞∑
k=0

αk

k!

≤ αn

αn+1

(n + 1)!

= (n + 1)!

α

�

The above example illustrates one technique for avoiding tedious repeated integration by parts.

The moment generating function provides another frequently useful escape, trading repeated

integration by parts with repeated differentiation.

Definition 3.1.2. The function

Mx(λ) = E(e λx) (3.22)

is called the moment generating function for the RV x, where λ is a real variable.
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Although the moment generating function does not always exist, when it does exist, it is useful

for computing moments for a RV, as shown below. In Section 3.3 we introduce a related

function, the characteristic function. The characteristic function always exists and can also be

used to obtain moments.

Theorem 3.1.2. Let Mx(λ) be the moment generating function for the RV x, and assume M (n)
x (0)

exists, where

M (n)
x (λ) = d n Mx(λ)

dλn
. (3.23)

Then

E(xn) = M (n)
x (0). (3.24)

Proof. Noting that

d ne λx

dλn
= xne λx

we have M (n)
x (λ) = E(xne λx). The desired result follows by evaluating at λ = 0. �

Example 3.1.7. The RV x has PDF fx(α) = e−αu(α). Find Mx(λ) and E(xn), where n is a

positive integer.

Solution. We find

Mx(λ) =
∞∫

0

e (λ−1)α dα = 1

1 − λ
,

provided that λ < 1. Straightforward computation reveals that

M (n)
x (λ) = n!

(1 − λ)n+1
;

hence, E(xn) = M (n)
x (0) = n!.

�

Drill Problem 3.1.1. The RV x has PMF shown in Fig. 3.2. Find (a) E(x), (b)E(x2), and (c)

E((x − 2.125)2).

Answers:
199

64
,

61

8
,

17

8
.

DrillProblem3.1.2. We given E(x) = 2.5 and E(y) = 10. Determine: (a) E(3x + 4), (b)E(x +
y), and (c) E(3x + 8y + 5).

Answers: 12.5, 92.5, 11.5.
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α0 1 2 3 4 5

px(a)
3
8

2
8

1
8

FIGURE 3.2: PMF for Drill Problem 3.1.1.

Drill Problem 3.1.3. The PDF for the RV x is

fx(α) =
{

3
8
(
√

α + 1√
α

), 0 < α < 1

0, elsewhere.

Find (a) E(x), and (b) σ 2
x .

Answers:
17

175
,

2

5
.

Drill Problem 3.1.4. The RV x has variance σ 2
x . Define the RVs y and z as y = x + b, and

z = ax, where a and b are real constants. Find σ 2
y and σ 2

z .

Answers: σ 2
x , a2σ 2

x .

Drill Problem 3.1.5. The RV x has PDF fx(α) = 1
2
e−|α|. Find (a) Mx(λ), (b)ηx , and (c) σ 2

x .

Answers: 2; 0; (1 − λ2)−1, for |λ| < 1.

3.2 BOUNDS ON PROBABILITIES
In practice, one often has good estimates of some moments of a RV without having knowledge

of the CDF. In this section, we investigate some important inequalities which enable one

to establish bounds on probabilities which can be used when the CDF is not known. These

bounds are also useful for gaining a “feel” for the information about the CDF contained in

various moments.

Theorem 3.2.1. (Generalized Chebyshev Inequality) Let x be a RV on (S, �, P ), and let

ψ : �∗ �→ �∗ be strictly positive, even, nondecreasing on (0, ∞], with E(ψ(x)) < ∞. Then for

each x0 > 0 :

P (|x(ζ )| ≥ x0) ≤ E(ψ(x))

ψ(x0)
. (3.25)
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Proof. Let x0 > 0. Then

E(ψ(x)) =
∞∫

−∞
ψ(α) dFx(α)

=
∫

|α|<x0

ψ(α)dFx(α) +
∫

|α|≥x0

ψ(α)dFx(α)

=
∫

|α|≥x0

ψ(α)dFx(α)

≥ ψ(x0)

∫
|α|≥x0

dFx(α)

= ψ(x0)P (|x(ζ )| ≥ x0).

�

Corollary 3.2.1. (Markov Inequality) Let x be a RV on (S, F, P ), x0 > 0, and r > 0. Then

P (|x(ζ )| ≥ x0) ≤ E(|x(ζ )|r )

xr
0

. (3.26)

Proof. The result follows from Theorem 1 with ψ(x) = |x|r . �

Corollary 3.2.2. (Chebyshev Inequality) Let x be a RV on (S, �, P ) with standard deviation

σx , and let α > 0. Then

P (|x(ζ ) − ηx | ≥ ασx) ≤ 1

α2
. (3.27)

Proof. The desired result follows by applying the Markov Inequality to the RV x − ηx with

r = 2 and x0 = ασx . �

Example 3.2.1. Random variable x has a mean and a variance of four, but an otherwise unknown

CDF. Determine a lower bound on P (|x − 4| < 8) using the Chebyshev Inequality.

Solution. We have

P (|x − 4| ≥ 8) = P (|x − ηx | ≥ 4σx) ≤ 1

16
.

Consequently,

P (|x − 4| < 8) = 1 − P (|x − 4| ≥ 8) ≥ 1 − 1

16
= 15

16
. �



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-03 MOBK041-Enderle.cls October 27, 2006 7:20

12 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

Theorem 3.2.2. (Chernoff Bound) Let x be a RV and assume both Mx(λ) and Mx(−λ) exist

for some λ > 0, where Mx is the moment generating function for x. Then for any real x0 we have

P (x > x0) ≤ e−λx0 Mx(λ) (3.28)

and

P (x ≤ x0) ≤ e λx0 Mx(−λ). (3.29)

The variable λ (which can depend on x0) may be chosen to optimize the above bounds.

Proof. Noting that e−λ(x0−α) ≥ 1 for x0 ≤ α we obtain

e−λx0 Mx(λ) =
∞∫

−∞
e−λ(x0−α) dFx(α)

≥
∞∫

x0

dFx(α)

= P (x > x0).

Similarly, since e λ(x0−α) ≥ 1 for x0 ≥ α we obtain

e λx0 Mx(−λ) =
∞∫

−∞
e λ(x0−α) d Fx(α)

≥
x0∫

−∞
d Fx(α)

= P (x ≤ x0).

�

Example 3.2.2. The RV x has PDF fx(α) = e−αu(α). Compute bounds using the Markov In-

equality, the Chebyshev Inequality, and the Chernoff Bound. Compare the bounds with corresponding

quantities computed from the PDF.

Solution. From Example 3.1.7 we have E(xn) = E(|x|n) = n! and Mx(λ) = (1 − λ)−1, for

λ < 1. Consequently, σ 2
x = 2 − 1 = 1.

Applying the Markov Inequality, we have

P (|x| ≥ x0) ≤ n!

xn
0

, x0 > 0.
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For x0 = 10, the upper bound is 0.1, 0.02, 3.63 × 10−4 for n = 1, 2, and 10, respectively.

Increasing n past x0 results in a poorer upper bound for this example. Direct computation yields

P (|x| ≥ x0) = e−x0, x0 > 0,

so that P (|x| ≥ 10) = e−10 = 4.54 × 10−5.

Applying the Chebyshev Inequality,

P (|x − 1| ≥ α) ≤ 1

α2
, α > 0;

for α = 10, the upper bound is 0.01. Direct computation yields (for α ≥ 1)

P (|x − 1| ≥ α) =
∞∫

1+α

e−α′
dα = e−1−α,

so that P (|x − 1| ≥ 10) = e−11 = 1.67 × 10−5.

Applying the Chernoff Bound, we find (for any x0)

P (x > x0) ≤ e−λx0

1 − λ
, 0 < λ < 1,

and

Fx(x0) = P (x ≤ x0) ≤ e λx0

1 + λ
, λ > 0.

The upper bound on Fx(x0) can be made arbitrarily small for x0 < 0 by choosing a large enough

λ. The Chernoff Bound thus allows us to conclude that Fx(x0) = 0 for x0 < 0. For x0 > 0, let

g (λ) = e−λx0

1 − λ
.

Note that g (1)(λ) = 0 for λ = λ0 = (x0 − 1)/x0. Furthermore, g (1)(λ) > 0 for λ > λ0 and

g (1)(λ) < 0 for λ < λ0. Hence, λ = λ0 minimizes g (λ), and we conclude that

P (x > x0) ≤ g (λ0) = x0e 1−x0, x0 > 0.

For x0 = 10, this upper bound yields 1.23 × 10−3. Direct computation yields P (x > x0) =
e−x0 = 4.54 × 10−5.

�

Drill Problem 3.2.1. Random variable x has ηx = 7, σx = 4, and otherwise unknown CDF.

Using the Chebyshev inequality, determine a lower bound for (a) P (−1 < x < 15), and (b) P (−5 <

x < 19).

Answers:
3

4
,

8

9
.



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-03 MOBK041-Enderle.cls October 27, 2006 7:20

14 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

Drill Problem 3.2.2. Random variable x has an unknown PDF. How small should σx be to

ensure that

P (|x − ηx | < 1) ≥ 15

16
?

Answer: σx < 1/4.

3.3 CHARACTERISTIC FUNCTION
Up to now, we have primarily described the uncertainty associated with a random variable using

the PDF or CDF. In some applications, these functions may not be easy to work with. In this

section, we introduce the use of transform methods in our study of random variables. Transforms

provide another method of analysis that often yields more tractable solutions. Transforms also

provide an alternate description of the probability distribution essential in our later study of

linear systems.

Definition 3.3.1. Let x be a RV on (S, �, P ). The characteristic function for the RV x is defined

by

φx(t) = E(e j tx) =
∞∫

−∞
e j tα dFx(α) , (3.30)

where j 2 = −1, and t is real.

Note the similarity of the characteristic function and the moment generating function.

The characteristic function definition uses a complex exponential:

e j tα = cos(tα) + j sin(tα).

Note that since both t and α are real,

|e j tα|2 = (e j tα)(e j tα)∗ = e j tαe− j tα = 1.

If z = x + j y , where x and y are both real, then

e z = e xe j y = e x(cos(y) + j sin(y)),

so that |e z| = e x . Hence, |e z| → +∞ as x → +∞ and |e z| → 0 as x → −∞.

Example 3.3.1. (a) Find the characteristic function φx(t) for the RV x having CDF

Fx(α) =
n∑

i=1

ai u(α − αi ),
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where ai > 0, i = 1, 2, . . . , n, and

n∑
i=1

ai = 1.

(b) Find φx(t) if the RV x has PDF fx(α) = e−αu(α).

(c) Find φx(t) if the RV x has PDF fx(α) = eαu(−α).

(d) Find φx(t) if the RV x has PDF fx(α) = 1
2
e−|α|.

(e) Find φx(t) if the RV x has PMF

px(α) =
⎧⎨⎩

e−ηηα

α!
, α = 0, 1, . . .

0, otherwise.

Solution. (a) We have

φx(t) =
n∑

i=1

ai

∞∫
−∞

e jatdu(α − αi ) =
n∑

i=1

ai e
jαi t .

Consequently, we know that any RV having a characteristic function of the form

φx(t) =
n∑

i=1

ai e
jαi t

is a discrete RV with CDF

Fx(α) =
n∑

i=1

ai u(α − αi ),

a PDF

fx(α) =
n∑

i=1

aiδ(α − αi ),

and a PMF

px(α) =
{

ai , α = αi , i = 1, 2, . . . , n

0, otherwise.

(b) We have

φx(t) =
∫ ∞

0

eα(−1+ j t)dα = 1

1 − j t
.
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(c) We have

φx(t) =
∫ 0

−∞
eα(1+ j t) dα = 1

1 − j t
.

(d) The given PDF may be expressed as

fx(α) = 1

2
(eαu(−α) + e−αu(α))

so that we can use (b) and (c) to obtain

φx(t) = 1

2

(
1

1 + j t
+ 1

1 − j t

)
= 1

1 + t2
.

(e) We have

φx(t) =
∞∑

k=0

e jkte−ηηk

k!

= e−η
∞∑

k=0

e ( j tη)k

k!

= e−η exp(e j tη)

= exp(η(e j t − 1)). �

The characteristic function is an integral transform in which there is a unique one-to-one

relationship between the probability density function and the characteristic function. For each

PDF fx there is only one corresponding φx . We often find one from the other from memory

or from transform tables—the preceding example provides the results for several important

cases.

Unlike the moment generating function, the characteristic function always exists. Like

the moment generating function, the characteristic function is often used to compute moments

for a random variable.

Theorem 3.3.1. The characteristic function φx(t) always exists and satisfies

|φx(t)| ≤ 1. (3.31)

Proof. Since |e j tα| = 1 for all real t and all real α we have

|φx(t)| ≤
∞∫

−∞
|e j tα| dFx(α) = 1.

�
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Theorem 3.3.2. (Moment Generating Property) Let

φ(n)
x (t) = d nφx(t)

dtn
(3.32)

and assume that φ(n)
x (0) exists. Then

E(xn) = (− j )nφ(n)
x (0). (3.33)

Proof. We have

φ(n)
x (t) = E

(
d ne jtx

dtn

)
= E(( j x)ne jtx)

from which the desired result follows by letting t = 0. �

Example 3.3.2. The RV x has the Bernoulli PMF

px(k) =

⎧⎪⎨⎪⎩
(

n

k

)
pkq n−k, k = 0, 1, . . . , n

0, otherwise,

where 0 ≤ q = 1 − p ≤ 1. Find the characteristic function φx(t) and use it to find E(x) and σ 2
x .

Solution. Applying the Binomial Theorem, we have

φx(t) =
n∑

k=0

(n

k

)
(e j t p)kq n−k = (pe jt + q )n.

Then

φ(1)
x (t) = n(pe jt + q )n−1 j pe jt,

and

φ(2)
x (t) = n(n − 1)(pe jt + q )n−2( j pe jt)2 + n(pe jt + q )n−1 j 2 pe jt,

so that φ(1)
x (0) = jnp and φ(2)

x (0) = −n2 p2 + np2 − np = −n2 p2 − npq . Hence, E(x) = np

and E(x2) = n2 p2 + npq . Finally, σ 2
x = E(x2) − E2(x) = npq . �

Lemma 3.3.1. Let the RV y = ax + b, where a and b are constants and the RV x has characteristic

function φx(t). Then the characteristic function for y is

φy (t) = e jbtφx(at). (3.34)

Proof. By definition

φy (t) = E(e j yt) = E(e j (ax+b)t) = e jbt E(e j x(at)).

�



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-03 MOBK041-Enderle.cls October 27, 2006 7:20

18 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

Lemma 3.3.2. Let the RV y = ax + b. Then if a > 0

Fy (α) = Fx((α − b)/a). (3.35)

If a < 0 then

Fy (α) = 1 − Fx(((α − b)/a)−). (3.36)

Proof. With a > 0,

Fy (α) = P (ax + b ≤ α) = P (x ≤ (α − b)/a).

With a < 0,

Fy (α) = P (x ≥ (α − b)/a).

�

Let the discrete RV x be a lattice RV with pk = P (x(ζ ) = a + kh) and

∞∑
k=−∞

pk = 1. (3.37)

Then

φx(t) = e jat
∞∑

k=−∞
pke jkht . (3.38)

Note that

|φx(t)| =
∣∣∣∣∣ ∞∑

k=−∞
pke jkht

∣∣∣∣∣ . (3.39)

Since

e jkh(t+τ ) = e jkht(e jhτ )k = e jkht (3.40)

for τ = 2π/h , we find that |φx(t + τ )| = |φx(t)|; i.e., |φx(t)| is periodic in t with period τ =
2π/h . We may interpret pk as the kth complex Fourier series coefficient for e− jatφx(t). Hence,

pk can be determined from φx using

pk = h

2π

∫ π/h

−π/h

φx(t)e− jate− jkht d t. (3.41)

An expansion of the form (3.38) is unique: If φx can be expressed as in (3.38) then the parameters

a and h as well as the coefficients {pk} can be found by inspection, and the RV x is known to

be a discrete lattice RV.
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Example 3.3.3. Let the RV x have characteristic function

φx(t) = e j4t cos(5t).

Find the PMF px(α).

Solution. Using Euler’s identity

φx(t) = e j4t

(
1

2
e− j5t + 1

2
e j5t

)
= e jat

∞∑
k=−∞

pke jkht .

We conclude that a = 4, h = 5, and p−1 = p1 = 0.5, so that

px(α) =
{

0.5, α = 4 − 5 = −1, α = 4 + 5 = 9

0, otherwise. �

Example 3.3.4. The RV x has characteristic function

φx(t) = 0.1e j0.5t

1 − 0.9e j3t
.

Show that x is a discrete lattice RV and find the PMF px .

Solution. Using the sum of a geometric series, we find

φx(t) = 0.1e j0.5t
∞∑

k=0

(0.9e j3t)k .

Comparing this with (3.38) we find a = 0.5, h = 3, and

px(0.5 + 3k) = pk =
{

0.1(0.9)k, k = 0, 1, . . .

0, otherwise. �

The characteristic function φx(t) is (within a factor of 2π ) the inverse Fourier transform of

the PDF fx(α). Consequently, the PDF can be obtained from the characteristic function via

a Fourier transform operation. In many applications, the CDF is the required function. With

the aid of the following lemma, we establish below that the CDF may be obtained “directly”

from the characteristic function.

Lemma 3.3.3. Define

S(β, T) = 1

π

∫ T

−T

e jβt

j t
d t. (3.42)
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Then

S(β, T ) = 2

π

∫ T

0

s in(βt)

t
dt. (3.43)

and

lim
T→∞

S(β, T ) =

⎧⎪⎨⎪⎩
−1 if β < 0

0 if β = 0

1 if β > 0.

(3.44)

Proof. We have

S(β, T ) = 1

π

0∫
−T

e jβt

j t
d t + 1

π

T∫
0

e jβt

j t
d t

= 1

π

T∫
0

e− jβτ

− jτ
dτ + 1

π

T∫
0

e jβt

j t
d t

= 2

π

T∫
0

sin(βt)

t
dt

= 2

π

βT∫
0

sin(τ )

τ
dτ .

The desired result follows by using the fact that

∞∫
0

sin t

t
dt = π

2
,

and noting that S(−β, T ) = −S(β, T ). �

Theorem 3.3.3. Let φx be the characteristic function for the RV x with CDF Fx, and assume Fx(α)

is continuous at α = a and α = b. Then if b > a we have

Fx(b) − Fx(a) = lim
T→∞

1

2π

T∫
−T

e− jat − e− jbt

j t
φx(t) dt . (3.45)
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Proof. Let

I (T ) = 1

2π

T∫
−T

e− jat − e− jbt

j t
φx(t) dt .

From the definition of a characteristic function

I (T ) = 1

2π

T∫
−T

⎛⎝ ∞∫
−∞

e− jat − e− jbt

j t
e j tα dFx(α)

⎞⎠ dt.

Interchanging the order of integration we have

I (T ) = 1

2

∞∫
−∞

(S(α − a, T ) − S(α − b, T )) dFx(α).

Interchanging the order of the limit and integration we have

lim
T→∞

I (T ) =
b∫

a

dFx(α) = Fx(b) − Fx(a).

�

Corollary 3.3.1. Assume the RV x has PDF fx. Then

fx(α) = lim
T→∞

1

2π

T∫
−T

φx(t)e− jαt d t. (3.46)

Proof. The desired result follows from the above theorem by letting b = α, a = α − h , and

h > 0. Then

fx(α) = lim
h→0

Fx(α) − Fx(α − h)

h

= lim
T→∞

1

2π

T∫
−T

lim
h→0

e jht − 1

j th
e− jαtφx(t) dt.

�

In some applications, a closed form for the characteristic function is available but the

inversion integrals for obtaining either the CDF or the PDF cannot be obtained analytically.

In these cases, a numerical integration may be performed efficiently by making use of the FFT

(fast Fourier transform) algorithm.
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The relationship between the PDF fx(α) and the characteristic function φx(t) is that of

a Fourier transform pair. Although several definitions of a Fourier transform exist, we present

below the commonly used definition within the field of Electrical Engineering.

Definition 3.3.2. We define the Fourier transform of a function g (t) by

G(ω) = F{g (t)} =
∞∫

−∞
g (t)e− jωt d t. (3.47)

The corresponding inverse Fourier transform of G(ω) is defined by

g (t) = F−1{G(ω)} = 1

2π

∞∫
−∞

G(ω)e jωt dω. (3.48)

If g (t) is absolutely integrable; i.e., if

∞∫
−∞

|g (t)| dt < ∞,

then G(ω) exists and the inverse Fourier transform integral converges to g (t) for all t where g (t)

is continuous. The preceding development for characteristic functions can be used to justify this

Fourier transform result. In particular, we note that

∞∫
−∞

g (t)e− jωt d t

should be interpreted as

lim
T→∞

T∫
−T

g (t)e− jωt d t.

Using these definitions, we find that

φx(t) = 2πF−1{ fx(α)} =
∞∫

−∞
fx(α)e jαt dα, (3.49)

and

fx(α) = 1

2π
F{φx(t)} = 1

2π

∞∫
−∞

φx(t)e− jαt d t. (3.50)
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The Fourier transform G(ω) = F{g (t)} is unique; i.e., if G(ω) = F{g (t)}, then we know that

g (t) = F−1{G(ω)} for almost all values of t. The same is true for characteristic functions.

Drill Problem 3.3.1. Random variable x has PDF

fx(α) = 0.5(u(α + 1) − u(α − 1)).

Find: (a) φx(0), (b) φx(π/4), (c ) φx(π/2), and (d) φx(π ).

Answers: 1,
2

π
,

sin(π/4)

π/4
, 0.

Drill Problem 3.3.2. The PDF for RV x is fx(α) = e−αu(α). Use the characteristic function to

obtain: (a) E(x), (b)E(x2), (c )σx , and (d) E(x3).

Answers: 2, 1, 6, 1.

3.4 CONDITIONAL EXPECTATION
Definition 3.4.1. The conditional expectation g (x), given event A, is defined by

E(g (x)|A) =
∞∫

−∞
g (α) dFx|A(α | A). (3.51)

The conditional mean and conditional variance of the RV x, given event A, are similarly defined as

ηx|A = E(x | A) (3.52)

and

σ 2
x|A = E((x − ηx|A)2 | A) = E(x2 | A) − η2

x|A. (3.53)

Similarly, the conditional characteristic function of the RV x, given event A, is defined as

φx|A(t|A) = E(e j xt | A) =
∞∫

−∞
e jαt dFx|A(α | A). (3.54)

Example 3.4.1. An urn contains four red balls and three blue balls. Three balls are drawn without

replacement from the urn. Let A denote the event that at least two red balls are selected, and let RV x

denote the number of red balls selected. Find E(x) and E(x | A).

Solution. Let Ri denote a red ball drawn on the ith draw, and Bi denote a blue ball. Since x is the

number of red balls, x can only take on the values 0,1,2,3. The sequence event B1 B2 B3 occurs

with probability 1/35; hence P (x = 0) = 1/35. Next, consider the sequence event R1 B2 B3

which occurs with probability 4/35. Since there are three sequence events which contain one



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-03 MOBK041-Enderle.cls October 27, 2006 7:20

24 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

red ball, we have P (x = 1) = 12/35. Similarly, P (x = 2) = 18/35 and P (x = 3) = 4/35. We

thus find that

E(x) = 0 · 1

35
+ 1 · 12

35
+ 2 · 18

35
+ 3 · 4

35
= 12

7
.

Now, P (A) = P (x ≥ 2) = 22/35 so that

px|A(α | A) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
18/35

22/35
= 9

11
, α = 2

4/35

22/35
= 2

11
, α = 3

0, otherwise.

Consequently,

E(x | A) = 2 · 9

11
+ 3 · 2

11
= 24

11
. �

Example 3.4.2. Find the conditional mean and conditional variance for the RV x, given event

A = {x > 1}, where fx(α) = e−αu(α).

Solution. First, we find

P (A) =
∞∫

1

fx(α) dα =
∞∫

1

e−α dα = e−1.

Then fx|A(α | A) = e 1−αu(α − 1). The conditional mean and conditional variance, given A,

can be found using fx|A using integration by parts. Here, we use the characteristic function

method. The conditional characteristic function is

φx|A(t | A) = 1

P (A)

∞∫
1

eα(−1+ j t) dα = e j t

1 − j t
.

Differentiating, we find

φ
(1)
x | A(t | A) = j e j t

(
1

1 − j t
+ 1

(1 − j t)2

)
,

so that φ
(1)
x|A(0 | A) = j2 and

φ
(2)
x|A(t | A) = −e j t

(
1

1 − j t
+ 1

(1 − j t)2

)
+ j e j t

(
j

(1 − j t)2
+ 2 j

(1 − j t)3

)
so that φ

(2)
x|A(0 | A) = −5. Thus ηx|A = − j ( j2) = 2 and σ 2

x|A = (− j )2(−5) − 22 = 1. �
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Drill Problem 3.4.1. The RV x has PMF shown in Fig. 3.2 . Event A = {x ≤ 3}. Find (a) ηx|A

and (b) σ 2
x|A.

Answers: 17/36, 7/6.

Drill Problem 3.4.2. Random variable x has PDF

fx(α) = 3

8
(
√

α + 1√
α

)(u(α) − u(α − 1)).

Event A = {x < 0.25}. Find (a) E(3x + 2 | A) and (b) σ 2
x|A.

Answers: 8879/1537900, 589/260.

3.5 SUMMARY
In this chapter, the statistical expectation operation is defined and used to determine bounds

on probabilities.

The mean (or expected value) of the RV x is defined as

ηx = E(x) =
∞∫

−∞
α dFx(α) (3.55)

and the variance of x as σ 2
x = E((x − ηx)2).

Expectation is a linear operation, the expected value of a constant is the constant.

The moment generating function (when it exists) is defined as Mx(λ) = E(e λx), from

which moments can be computed as E(xn) = M(n)
x (0).

Partial knowledge about a CDF for a RV x is contained in the moments for x. In general,

knowledge of all moments for x is not sufficient to determine the CDF Fx . However, available

moments can be used to compute bounds on probabilities. In particular, the probability that

a RV x deviates from its mean by at least α × σ is upper bounded by 1/α2. Tighter bounds

generally require more information about the CDF—higher order moments, for example.

The characteristic function φx(t) = E(e j tx) is related to the inverse Fourier transform of

the PDF fx . All information concerning a CDF Fx is contained in the characteristic function

φx . In particular, the CDF itself can be obtained from the characteristic function.

Conditional expectation, given an event, is a linear operation defined in terms of the

conditional CDF:

E(g (x)|A) =
∞∫

−∞
g (α) d Fx|A(α | A). (3.56)

Conditional moments and the conditional characteristic function are similarly defined.
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3.6 PROBLEMS
1. The sample space is S = {a1, a2, a3, a4, a5} with probabilities P (a1) = 0.15, P (a2) =

0.2, P (a3) = 0.1, P (a4) = 0.25, and P (a5) = 0.3. Random variable x is defined as

x(ai ) = 2i − 1. Find: (a) ηx , (b) E(x2).

2. Consider a department in which all of its graduate students range in age from 22 to

28. Additionally, it is three times as likely a student’s age is from 22 to 24 as from

25 to 28. Assume equal probabilities within each age group. Let random variable x

equal the age of a graduate student in this department. Determine: (a) E(x), (b) E(x2),

(c) σx .

3. A class contains five students of about equal ability. The probability a student obtains

an A is 1/5, a B is 2/5, and a C is 2/5. Let random variable x equal the number of

students who earn an A in the class. Determine: (a) px(α), (b) E(x), (c) σx .

4. Random variable x has the following PDF

fx(α) =
{

0.5(α + 1), −1 < α < 1

0, otherwise.

Determine: (a) E(x), (b) σ 2
x , (c) E(1/(x + 1)), (d) σ 2

1/(x+1).

5. The PDF for random variable y is

fy (yo ) =
{

sin(yo ), 0 < yo < π/2

0, otherwise,

and g (y) = sin(y). Determine E(g (y)).

6. Sketch these PDF’s, and, for each, find the variance of x: (a) fx(α) = 0.5e−|α|, (b)

fx(α) = 5e−10|α|.

7. The grade distribution for Professor S. Rensselaer’s class in probability theory is shown

in Fig. 3.3. (a) Write a mathematical expression for fx(α). (b) Determine E(x). (c)

Suppose grades are assigned on the basis of: 90–100 = A = 4 honor points, 75–90 =
B = 3 honor points, 60–75 = C = 2 honor points, 55–60 = D = 1 honor point, and

0–55 = F = 0 honor points. Find the honor points PDF. (d) Find the honor points

average.

8. A PDF is given by

fx(α) = 1

2
δ(α + 1.5) + 1

8
δ(α) + 3

8
δ(α − 2).

Determine: (a) E(x), (b) σ 2
x .
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a0 40 100

fx(a)

c

80

FIGURE 3.3: Probability density function for Problem 7.

9. A PDF is given by

fx(α) = 1

5
δ(α + 1) + 2

5
δ(α) + 3

10
δ(α − 1) + 1

10
δ(α − 2).

Determine: (a) E(x), (b) E(x2).

10. A mixed random variable has a CDF given by

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α/4, 0 ≤ α < 1

1 − e−0.6931α, 1 ≤ α.

Determine: (a) E(x), (b) σ 2
x .

11. A mixed random variable has a PDF given by

fx(α) = 1

4
δ(α + 1) + 3

8
δ(α − 1) + 1

4
(u(α + 1) − u(α − 0.5)).

Determine: (a) E(x), (b) σ 2
x .

12. Let RV x have mean ηx and variance σ 2
x . (a) Show that

E(|x − a |2) = σ 2
x + (ηx − a)2

for any real constant a . (b) Find a so that E(|x − a |2) is minimized.

13. The random variable y has ηy = 10 and σ 2
y = 2. Find (a) E(y2) and (b) E((y − 3)2).

14. The median for a RV x is the value of α for which Fx(α) = 0.5. Let x be a RV with

median m. (a) Show that for any real constant a :

E(|x − a |) = E(|x − m|) + 2

m∫
a

(α − a) d Fx(α).

(b) Find the constant a for which E(|x − a |) is minimized.
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15. Use integration by parts to show that

E(x) =
∞∫

0

(1 − Fx(α)) dα −
0∫

−∞
Fx(α) dα.

16. Show that

E(|x|) =
0∫

−∞
Fx(α) dα +

∞∫
0

(1 − Fx(α)) dα.

17. Random variable x has ηx = 50, σx = 5, and an otherwise unknown CDF. Using the

Chebyshev Inequality, find a lower bound on P (30 < x < 70).

18. Suppose random variable x has a mean of 6 and a variance of 25. Using the Chebyshev

Inequality, find a lower bound on P (|x − 6| < 50).

19. RV x has a mean of 20 and a variance of 4. Find an upper bound on P (|x − 20| ≥ 8).

20. Random variable x has an unknown PDF. How small should σx be so that P (|x − ηx | ≥
2) ≤ 1/9?

21. RVs x and y have PDFs fx and fy , respectively. Show that

E(ln fx(x)) ≥ E(ln fy (x)).

22. Find the characteristic function for random variable x if

px(α) =

⎧⎪⎨⎪⎩
p, α = 1

q , α = 0

0, otherwise.

23. RV x has PDF fx(α) = u(α) − u(α − 1). Determine: (a) φx . Use the characteristic

function to find: (b) E(x), (c) E(x2), (d) σx .

24. Random variable x has PDF fx(α) = 3e 3αu(−α). Find φx .

25. Show that the characteristic function for a Cauchy random variable with PDF

fx(α) = 1

π (1 + α2)

is φx(t) = e−|t|.

26. Given fx(α) = 0.5β exp(−β|α|). Find (a) φx . Use φx to determine: (b) E(x), (c) E(x2),

and (d) σx .

27. Random variable x has the PDF fx(α) = 2α(u(α) − u(α − 1)). (a) Find φx . (b) Show

that φx(0) = 1. (c) Find E(x) using the characteristic function.
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28. Suppose

Fx(α) =
{

1, 0 ≤ α

exp(3α), α < 0.

Use the characteristic function to determine: (a) E(x), (b) E(x2), (c) E(x3), and (d) σ 2
x .

29. Suppose x is a random variable with

px(α) =
{

βγ α, α = 0, 1, 2, . . .

0, otherwise.

where β and γ are constants, and 0 < γ < 1. As a function of γ , determine: (a) β, (b)

Mx(λ), (c) φx(t), (d) E(x), (e) σ 2
x .

30. RV x has characteristic function

φx(t) = (pe jt + (1 − p))n,

where 0 < p < 1. Find the PMF px(α).

31. The PDF for RV x is fx(α) = αe−αu(α). Find (a) φx , (b) ηx , and (c) σ 2
x .

32. RV x has characteristic function

φx(t) =
{

1 − |t|
a
, |t| < a

0, otherwise.

Find the PDF fx .

33. RV x has PDF

fx(α) =
⎧⎨⎩ c

(
1 − |α|

a

)
, |α| < a

0, otherwise.

Find the constant c and find the characteristic function φx .

34. The random variable x has PMF

px(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2/13, α = −1

3/13, α = 1

4/13, α = 2

3/13, α = 3

1/13, α = 4

0, otherwise.
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Random variable z = 3x + 2 and event A = {x > 2}. Find (a) E(x), (b) E(x|A), (c)

E(z), (d) σ 2
z .

35. The head football coach at the renowned Fargo Polytechnic Institute is in serious

trouble. His job security is directly related to the number of football games the team

wins each year. The team has lost its first three games in the eight game schedule. The

coach knows that if the team loses five games, he will be fired immediately. The alumni

hate losing and consider a tie as bad as a loss. Let x be a random variable whose value

equals the number of games the present head coach wins. Assume the probability of

winning any game is 0.6 and independent of the results of other games. Determine: (a)

E(x), (b) σx , (c) E(x|x > 3), (d) σ 2
x|x>3.

36. Consider Problem 35. The team loves the head coach and does not want to lose him.

The more desperate the situation becomes for the coach, the better the team plays.

Assume the probability the team wins a game is dependent on the total number of

losses as P (W |L) = 0.2L, where W is the event the team wins a game and L is the

total number of losses for the team. Let A be the event the present head coach is fired

before the last game of the season. Determine: (a) E(x), (b) σx , (c) E(x|A).

37. Random variable y has the PMF

py (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1/8, α = 0

3/16, α = 1

1/4, α = 2

5/16, α = 3

1/8, α = 4

0, otherwise.

Random variable w = (y − 2)2 and event A = {y ≥ 2}. Determine: (a) E(y), (b)

E(y | A), (c) E(w).

38. In BME Bioinstrumentation lab, each student is given one transistor to use during one

experiment. The probability a student destroys a transistor during this experiment is

0.7. Let random variable x equal the number of destroyed transistors. In a class of five

students, determine: (a) E(x), (b) σx , (c) E(x | x < 4), (d) σx|x<4.

39. Consider Problem 38. Transistors cost 20 cents each plus one dollar for mailing (all

transistors). Let random variable z equal the amount of money in dollars that is spent

on new transistors for the class of five students. Determine: (a) pz(α), (b) Fz(α), (c)

E(z), (d) σz.
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40. An urn contains ten balls with labels 1, 2, 2, 3, 3, 3, 5, 5, 7, and 8. A ball is drawn

at random. Let random variable x be the number printed on the ball and event A =
{x is odd}. Determine: (a) E(x), (b) E(x2), (c) σx , (d) E(5x − 2), (e) σ3x , (f ) E(5x −
3x2), (g) E(x | A), (h) E(x2 | A), (i) E(3x2 − 2x | A).

41. A biased four-sided die, with faces labeled 1, 2, 3 and 4, is tossed once. If the number

which appears is odd, the die is tossed again. Let random variable x equal the sum of

numbers which appear if the die is tossed twice or the number which appears on the first

toss if it is only thrown once. The die is biased so that the probability of a particular face

is proportional to the number on that face. Event A = {first die toss number is odd}
and B = {second die toss number is odd}. Determine: (a) px(α), (b) E(x), (c) E(x|B),

(d) σ 2
x , (e) σ 2

x|B , (f ) whether events A and B are independent.

42. Suppose the following information is known about random variable x. First, the values

x takes on are a subset of integers. Additionally, Fx(−1) = 0, Fx(3) = 5/8, Fx(6) =
1, px(0) = 1/8, px(1) = 1/4, px(6) = 1/8, E(x) = 47/16, and E(x|x > 4) = 16/3.

Determine (a) px(α), (b) Fx(α), (c) σ 2
x , (d) σ 2

x|x>4.

43. A biased pentahedral die, with faces labeled 1, 2, 3, 4, and 5, is tossed once. The die

is biased so that the probability of a particular face is proportional to the number on

that face. Let x be a random variable whose values equal the number which appears

on the tossed die. The outcome of the die toss determines which of five biased coins is

flipped. The probability a head appears for the ith coin is 1/(6 − i), i = 1, 2, 3, 4, 5.

Define event A = {x is even} and event B = {tail appears}. Determine: (a) E(x), (b)

σx , (c) E(x|B), (d) σ 2
x|B , (e) whether events A and B are independent.

44. Given

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

3(α − α2 + α3/3), 0 ≤ α < 1

1, 1 ≤ α,

and event A = {1/4 < x}. Determine: (a) E(x), (b) E(x2), (c) E(5x2 − 3x + 2), (d)

E(4x2 − 4), (e) E(3x + 2 | A), (f ) E(x2 | A), (g) E(3x2 − 2x + 2 | A).

45. The PDF for random variable x is

fx(α) =
{

1/α, 1 < α < 2.7183

0, otherwise,

and event A = {x < 1.6487}. Determine: (a) E(x), (b) σ 2
x , (c) E(x | A), (d) σ 2

x|A.
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46. With the PDF for random variable x given by

fx(α) =
⎧⎨⎩

4

π (1 + α2)
, 0 < α < 1

0, otherwise,

determine: (a) E(x); (b) E(x|x > 1/8); (c) E(2x − 1); (d) E(2x − 1 | x > 1/8); (e) the

variance of x; (f ) the variance of x, given x > 1/8.

47. A random variable x has CDF

Fx(α) =
(

α + 1

2

)
u

(
α + 1

2

)
− αu(α) + 1

4
αu(α − 1) +

(
1

2
− α

4

)
u(α − 2),

and event A = {x ≥ 1}. Find: (a) E(x), (b) σ 2
x , (c) E(x|A), and (d) σ 2

x | A.
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C H A P T E R 4

Bivariate Random Variables

In many situations, we must consider models of probabilistic phenomena which involve more

than one random variable. These models enable us to examine the interaction among variables

associated with the underlying experiment. For example, in studying the performance of a

telemedicine system, variables such as cosmic radiation, sun spot activity, solar wind, and receiver

thermal noise might be important noise level attributes of the received signal. The experiment

is modeled with n random variables. Each outcome in the sample space is mapped by the n RVs

to a point in real n-dimensional Euclidean space.

In this chapter, the joint probability distribution for two random variables is considered.

The joint CDF, joint PMF, and joint PDF are first considered, followed by a discussion of two–

dimensional Riemann-Stieltjes integration. The previous chapter demonstrated that statistical

expectation can be used to bound event probabilities; this concept is extended to the two-

dimensional case in this chapter. The more general case of n-dimensional random variables is

treated in a later chapter.

4.1 BIVARIATE CDF
Definition 4.1.1. A two-dimensional (or bivariate) random variable z = (x, y) defined on a

probability space (S, �, P ) is a mapping from the outcome space S to �∗ × �∗; i.e., to each outcome

ζ ∈ S corresponds a pair of real numbers, z(ζ ) = (x(ζ ), y(ζ )). The functions x and y are required to be

random variables. Note that z : S �→ �∗ × �∗, and that we need z−1([−∞, α] × [−∞, β]) ∈ �
for all real α and β.

The two-dimensional mapping performed by the bivariate RV z is illustrated in Fig. 4.1.

Definition 4.1.2. The joint CDF (or bivariate cumulative distribution function) for the RVs x

and y (both of which are defined on the same probability space(S, �, P)) is defined by

Fx,y (α, β) = P ({ζ ∈ S : x(ζ ) ≤ α, y(ζ ) ≤ β}). (4.1)

Note that Fx,y : �∗ × �∗ �→ [0, 1]. With A = {ζ ∈ S : x(ζ ) ≤ α} and B = {ζ ∈ S : y(ζ ) ≤
β}, the joint CDF is given by Fx,y (α, β) = P (A ∩ B).
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S

z(⋅ )

y(ζ )

x(ζ )

ζ

b

a

FIGURE 4.1: A bivariate random variable z (·) maps each outcome in S to a pair of extended real

numbers.

Using the relative frequency approach to probability assignment, a bivariate CDF can be

estimated as follows. Suppose that the RVs x and y take on the values xi and yi on the ith trial

of an experiment, with i = 1, 2, . . . , n. The empirical distribution function

F̂x,y (α, β) = 1

n

n∑
i=1

u(α − xi )u(β − yi ) (4.2)

is an estimate of the CDF Fx,y (α, β), where u(·) is the unit step function. Note that F̂x,y (α, β) =
n(α, β)/n, where n(α, β) is the number of observed pairs (xi , yi ) satisfying xi ≤ α, yi ≤ β.

Example 4.1.1. The bivariate RV z = (x, y) is equally likely to take on the values (1, 2), (1, 3),

and (2, 1). Find the joint CDF Fx,y .

Solution. Define the region of �∗ × �∗:

A(α, β) = {(α′, β ′) : α′ ≤ α, β ′ ≤ β},
and note that

Fx,y (α, β) = P ((x, y) ∈ A(α, β)).

We begin by placing a dot in the α′ − β ′ plane for each possible value of (x, y), as shown in Fig.

4.2(a). For α < 1 or β < 1 there are no dots inside A(α, β) so that Fx,y (α, β) = 0 in this region.

For 1 ≤ α < 2 and 2 ≤ β < 3, only the dot at (1, 2) is inside A(α, β) so that Fx,y (α, β) = 1/3

in this region. Continuing in this manner, the values of Fx,y shown in Fig. 4.2(b) are easily

obtained. Note that Fx,y (α, β) can only increase or remain constant as either α or β is

increased. �

Theorem 4.1.1. (Properties of Joint CDF) The joint CDF Fx,y satisfies:

(i) Fx,y (α, β) is monotone nondecreasing in each of the variables α and β,

(ii) Fx,y (α, β) is right-continuous in each of the variables α and β,
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FIGURE 4.2: Possible values and CDF representation for Example 4.1.1.

(iii) Fx,y (−∞, β) = Fx,y (α, −∞) = Fx,y (−∞, −∞) = 0,

(iv) Fx,y (α, ∞) = Fx(α), Fx,y (∞, β) = Fy (β), Fx,y (∞, ∞) = 1. The CDFs Fx and Fy are

called the marginal CDFs for x and y, respectively.

Proof. (i) With α2 > α1 we have

{x ≤ α2, y ≤ β1} = {x ≤ α1, y ≤ β1} ∪ {α1 < x ≤ α2, y ≤ β1}.
Since

{x ≤ α1, y ≤ β1} ∩ {α1 < x ≤ α2, y ≤ β1} = Ø,

we have

Fx,y (α2, β1) = Fx,y (α1, β1) + P (ζ ∈ {α1 < x ≤ α2, y ≤ β1})
≥ Fx,y (α1, β1).

Similarly, with β2 > β1 we have

{x ≤ α1, y ≤ β2} = {x ≤ α1, y ≤ β1} ∪ {x ≤ α1, β1 < y ≤ β2}.
Since

{x ≤ α1, y ≤ β1} ∩ {x ≤ α1, β1 < y ≤ β2} = Ø,

we have

Fx,y (α1, β2) = Fx,y (α1, β1) + P (ζ ∈ {x ≤ α1, β1 < y ≤ β2})
≥ Fx,y (α1, β1).

(ii) follows from the above proof of (i) by taking the limit (from the right) as α2 → α1 and

β2 → β1.
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(iii) We have

{ζ ∈ S : x(ζ ) = −∞, y(ζ ) ≤ β} ⊂ {ζ ∈ S : x(ζ ) = −∞}

and

{ζ ∈ S : x(ζ ) ≤ α, y(ζ ) = −∞} ⊂ {ζ ∈ S : y(ζ ) = −∞};

result (iii) follows by noting that from the definition of a RV, P (x(ζ ) = −∞) = P (y(ζ ) =
−∞) = 0.

(iv) We have

Fx,y (α, ∞) = P ({ζ : x(ζ ) ≤ α} ∩ S) = P (x(ζ ) ≤ α) = Fx(α).

Similarly, Fx,y (∞, β) = Fy (β), and Fx,y (∞, ∞) = 1. �

Probabilities for rectangular-shaped events in the x, y plane can be obtained from the

bivariate CDF in a straightforward manner. Define the left-sided difference operators �1 and

�2 by

�1(h)Fx,y (α, β) = Fx,y (α, β) − Fx,y (α − h, β), (4.3)

and

�2(h)Fx,y (α, β) = Fx,y (α, β) − Fx,y (α, β − h), (4.4)

with h > 0. Then, with h1 > 0 and h2 > 0 we have

�2(h2)�1(h1)Fx,y (α, β) = Fx,y (α, β)−(Fx,y (α − h1, β)−(Fx,y (α, β − h2)

−Fx,y (α − h1, β − h2))

= P (α−h1 <x ≤ α, y ≤ β)− P (α−h1 <x ≤ α, y ≤ β − h2)

= P (α − h1 < x(ζ ) ≤ α, β − h2 < y(ζ ) ≤ β). (4.5)

With a1 < b1 and a2 < b2 we thus have

P (a1 < x ≤ b1, a2 < y ≤ b2) = �2(b2 − a2)�1(b1 − a1)Fx,y (b1, b2)

= Fx,y (b1, b2) − Fx,y (a1, b2) (4.6)

− (Fx,y (b1, a2) − Fx,y (a1, a2)).
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Example 4.1.2. The RVs x and y have joint CDF

Fx,y (α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α < 0

0, β < 0

0.5αβ, 0 ≤ α < 1, 0 ≤ β < 1

0.5β, 1 ≤ α < 2, 0 ≤ β < 1

0.25 + 0.5β, 2 ≤ α, 0 ≤ β < 1

0.5α, 0 ≤ α < 1, 1 ≤ β

0.5, 1 ≤ α < 2, 1 ≤ β

0.75, 2 ≤ α < 3, 1 ≤ β

1, 3 ≤ α, 1 ≤ β.

Find: (a) P (x = 2, y = 0), (b)P (x = 3, y = 1), (c )P (0.5 < x < 2, 0.25 < y ≤ 3), (d )P (0.5 <

x ≤ 1, 0.25 < y ≤ 1).

Solution. We begin by using two convenient methods for representing the bivariate CDF

graphically. The first method simply divides the α − β plane into regions with the functional

relationship (or value) for the CDF written in the appropriate region to represent the height of

the CDF above the region. The results are shown in Fig. 4.3. The second technique is to plot

a family of curves for Fx,y (α, β) vs. α for various ranges of β. Such a family of curves for this

example is shown in Fig. 4.4.

(a) We have

P (x = 2, y = 0) = P (2− < x ≤ 2, 0− < y ≤ 0)

= �2(0+)�1(0+)Fx,y (2, 0)

= Fx,y (2, 0) − Fx,y (2−, 0) − (Fx,y (2, 0−) − Fx,y (2−, 0−))

= 0.25.

1

0 1

2
1

2 3

2 2

1

4 2
+

3

4

1

2

b

b

a

a

ab b

FIGURE 4.3: Two-dimensional representation of bivariate CDF for Example 4.1.2.
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Fx , y(a ,b),  0 ≤ b < 1

Fx , y(a ,b), 1 ≤ b

a

a

FIGURE 4.4: Bivariate CDF for Example 4.1.2.

(b) Proceeding as above

P (x = 3, y = 1) = �2(0+)�2(0+)Fx,y (3, 1)

= Fx,y (3, 1) − Fx,y (3−, 1) − (Fx,y (3, 1−) − Fx,y (3−, 1−))

= 1 − 0.75 − (0.75 − 0.75) = 0.25.

(c) We have

P (0.5 < x < 2, 0.25 < y ≤ 3) = Fx,y (2−, 3) − Fx,y (0.5, 3)

− (Fx,y (2−, 0.25) − Fx,y (0.5, 0.25))

= 1

2
− 1

4
−

(
1

8
− 1

2

1

2

1

4

)
= 3

16
.

(d) As above, we have

P (0.5 < x ≤ 1, 0.25 < y ≤ 1) = Fx,y (1, 1) − Fx,y (0.5, 1)

− (Fx,y (1, 0.25) − Fx,y (0.5, 0.25))

= 1

2
− 1

4
−

(
1

8
− 1

16

)
= 3

16
. �

Definition 4.1.3. The jointly distributed RVs x and y are independent

Fx,y (α, β) = Fx(α)Fy (β) (4.7)

for all real values of α and β.
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In Chapter 1, we defined the two events A and B to be independent iff P (A ∩ B) =
P (A)P (B). With A = {ζ ∈ S : x(ζ ) ≤ α} and B = {ζ ∈ S : y(ζ ) ≤ β}, the RVs x and y are in-

dependent iff A and B are independent for all real values of α and β. In many applications, physi-

cal arguments justify an assumption of independence. When used, an independence assumption

greatly simplifies the analysis. When not fully justified, however, the resulting analysis is highly

suspect—extensive testing is then needed to establish confidence in the simplified model.

Note that if x and y are independent then for a1 < b1 and a2 < b2 we have

P (a1 < x ≤ b1, a2 < y ≤ b2) = Fx,y (b1, b2) − Fx,y (a1, b2) − (Fx,y (b1, a2) − Fx,y (a1, a2))

= (Fx(b1) − Fx(a1))(Fy (b2) − Fy (a2)). (4.8)

4.1.1 Discrete Bivariate Random Variables

Definition 4.1.4. The bivariate RV (x, y) defined on the probability space (S, �, P ) is bivariate

discrete if the joint CDF Fx,y is a jump function; i.e., iff there exists a countable set Dx,y ⊂ � × �
such that

P ({ζ ∈ S : (x(ζ ), y(ζ )) ∈ Dx,y}) = 1. (4.9)

In this case, we also say that the RVs x and y are jointly discrete. The function

px,y (α, β) = P (x = α, y = β) (4.10)

is called the bivariate probability mass function or simply the joint PMF for the jointly distributed

discrete RVs x and y. We will on occasion refer to the set Dx,y as the support set for the PMF px,y .

The support set for the PMF px,y is the set of points for which px,y (α, β) �= 0.

Theorem 4.1.2. The bivariate PMF px,y can be found from the joint CDF as

px,y (α, β) = lim
h2→0

lim
h1→0

�2(h2)�1(h1)Fx,y (α, β) (4.11)

= Fx,y (α, β) − Fx,y (α−, β) − (Fx,y (α, β−) − Fx,y (α−, β−)),

where the limits are through positive values of h1 and h2. Conversely, the joint CDF Fx,y can be found

from the PMF px,y as

Fx,y (α, β) =
∑
β ′≤β

∑
α′≤α

px,y (α′, β ′). (4.12)

The probability that the bivariate discrete RV (x, y) ∈ A can be computed using

P ((x, y) ∈ A) =
∑

(α,β)∈A

px,y (α, β). (4.13)

All summation indices are assumed to be in the support set for px,y .
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Proof. The theorem is a direct application of the bivariate CDF and the definition of a

PMF. �

Any function px,y mapping �∗ × �∗ to � × � with a discrete support set Dx,y = Dx × Dy

and satisfying

px,y (α, β) ≥ 0 for all real α and β, (4.14)

px(α) =
∑
β∈Dy

px,y (α, β), (4.15)

and

py (β) =
∑
α∈Dx

px,y (α, β), (4.16)

where px and py are valid one-dimensional PMFs, is a legitimate bivariate PMF.

Corollary 4.1.1. The marginal PMFs px and py may be obtained from the bivariate PMF as

px(α) =
∑

β

px,y (α, β) (4.17)

and

py (β) =
∑

α

px,y (α, β). (4.18)

Theorem 4.1.3. The jointly discrete RVs x and y are independent iff

px,y (α, β) = px(α)py (β) (4.19)

for all real α and β.

Proof. The theorem follows from the definition of PMF and independence. �

Example 4.1.3. The RVs x and y have joint PMF specified in the table below.

α β px,y (α, β)

−1 0 1/8

−1 1 1/8

0 3 1/8

1 −1 2/8

1 1 1/8

2 1 1/8

3 3 1/8
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FIGURE 4.5: PMF and CDF representations for Example 4.1.3.

(a) Sketch the two-dimensional representations for the PMF and the CDF. (b) Find px. (c) Find py .

(d) Find P (x < y). (e) Are x and y independent?

Solution. (a) From the previous table, the two–dimensional representation for the PMF shown

in Fig. 4.5(a) is easily obtained. Using the sketch for the PMF, visualizing the movement of the

(α, β) values and summing all PMF weights below and to the left of (α, β), the two-dimensional

representation of the CDF shown in Fig. 4.5(b) is obtained.

(b) We have

px(α) =
∑

β

px,y (α, β),

so that

px(−1) = px,y (−1, 0) + px,y (−1, 1) = 2/8,

px(0) = px,y (0, 3) = 1/8,

px(1) = px,y (1, −1) + px,y (1, 1) = 3/8,

px(2) = px,y (2, 1) = 1/8,

px(3) = px,y (3, 3) = 1/8.

(c) Proceeding as in part (b),

py (−1) = px,y (1, −1) = 2/8,

py (0) = px,y (−1, 0) = 1/8,
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py (1) = px,y (−1, 1) + px,y (1, 1) + px,y (2, 1) = 3/8,

py (3) = px,y (0, 3) + px,y (3, 3) = 2/8.

(d) We have

P (x < y) = px,y (−1, 0) + px,y (−1, 1) + px,y (0, 3) = 3/8.

(e) Since px,y (1, 1) = 1/8 �= px(1)py (1) = 9/64, we find that x and y are not independent.�

Example 4.1.4. The jointly discrete RVs x and y have joint PMF

px,y (k, �) =
{

c γ kλ|k−�|, k, � nonnegative integers

0, otherwise,

where 0 < γ < 1, and 0 < λ < 1. Find: (a) the marginal PMF px, (b) the constant c , (c )P (x < y).

Solution. (a) For k = 0, 1, . . . ,

px(k) =
∞∑

�=−∞
px,y (k, �)

= c γ k

(
λk

k∑
�=0

λ−� + λ−k
∞∑

�=k+1

λ�

)

= c γ k

(
1 − λk+1

1 − λ
+ λ

1 − λ

)
= c γ k(1 + λ − λk+1)

1 − λ
.

(b) We have

1 =
∞∑

k=0

px(k) = c

1 − λ

(
1 + λ

1 − λ
− λ

1 − λγ

)
.

so that

c = (1 − λ)(1 − γ )(1 − λγ )

1 − λ2γ
.
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(c) We find

P (x < y) =
∞∑

k=0

∞∑
�=k+1

c
(γ

λ

)k

λ�

= c
∞∑

k=0

(γ

λ

)k λk+1

1 − λ

= c λ

1 − λ

1

1 − λ
�

4.1.2 Bivariate Continuous Random Variables

Definition 4.1.5. A bivariate RV (x, y) defined on the probability space (S, �, P ) is bivariate

continuous if the joint CDF Fx,y is absolutely continuous. To avoid technicalities, we simply note that

if Fx,y is absolutely continuous then Fx,y is continuous everywhere and Fx,y is differentiable except

perhaps at isolated points. Consequently, there exists a function fx,y satisfying

Fx,y (α, β) =
∫ β

−∞

∫ α

−∞
fx,y (α′, β ′)dα′dβ ′ (4.20)

The function fx,y is called the bivariate probability density function for the continuous RV (x, y),

or simply the joint PDF for the RVs x and y .

Theorem 4.1.4. The joint PDF for the jointly distributed RVs x and y can be determined from the

joint CDF as

fx,y (α, β) = ∂2 Fx,y (α, β)

∂β∂α

= lim
h2→0

lim
h1→0

�2(h2)�1(h1)Fx,y (α, β)

h2h1

, (4.21)

where the limits are taken over positive values of h1 and h2, corresponding to a left-sided derivative

in each coordinate.

The univariate, or marginal, PDFs fx and fy may be determined from the joint PDF fx,y as

fx(α) =
∞∫

−∞
fx,y (α, β) dβ, (4.22)

and

fy (β) =
∞∫

−∞
fx,y (α, β) dα. (4.23)
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Furthermore, we have

fx,y (α, β) ≥ 0 (4.24)

and

∞∫
−∞

∞∫
−∞

fx,y (α, β) dαdβ = 1. (4.25)

The probability that (x, y) ∈ A may be computed from

P ((x, y) ∈ A) =
∫

(α,β)∈A

fx,y (α, β)dαdβ. (4.26)

This integral represents the volume under the joint PDF surface above the region A.

Proof. By definition,

fx(α) = lim
h→0

�1(h)Fx,y (α, ∞)

h

= lim
h→0

1

h

∞∫
−∞

α∫
α−h

fx,y (α′, β) dα′ dβ

=
∞∫

−∞
fx,y (α, β) dβ.

The remaining conclusions of the theorem are straightforward consequences of the properties

of a joint CDF and the definition of a joint PDF. �

We will often refer to the set of points where the joint PDF fx,y is nonzero as the support

set for fx,y . For jointly continuous RVs x and y , this support set is often called the support

region. Letting Rx,y denote the support region, for any event A we have

P (A) = P (A ∩ Rx,y ). (4.27)

Any function fx,y mapping �∗ × �∗ to � × � with a support set Rx,y = Rx × Ry and satisfying

fx,y (α, β) ≥ 0 for (almost) all real α and β, (4.28)

fx(α) =
∫

β∈Ry

fx,y (α, β) dβ, (4.29)
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and

fy (β) =
∫

α∈Rx

fx,y (α, β) dβ, (4.30)

where fx and fy are valid one-dimensional PDFs, is a legitimate bivariate PDF.

Theorem 4.1.5. The jointly continuous RVs x and y are independent iff

fx,y (α, β) = fx(α) fy (β) (4.31)

for all real α and β except perhaps at isolated points.

Proof. The theorem follows directly from the definition of joint PDF and independence. �

Example 4.1.5. Let A = {(x, y) : −1 < x < 0.5, 0.25 < y < 0.5}, and

fx,y (α, β) =
{

4αβ, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1

0, otherwise.

Find: (a) P (A), (b) fx, (c ) fy . (d) Are x and y independent?

Solution. Note that the support region for fx,y is the unit square R = {(α, β) : 0 < α < 1, 0 <

β < 1}. A three-dimensional plot of the PDF is shown in Fig. 4.6.

(a) Since A represents a rectangular region, we can find P (A) from the joint CDF and

(4.27) as

P (A) = P (A ∩ R) = �2(0.5 − 0.25)�1(0.5 − 0)Fx,y (0.5−, 0.5−).

4
fx,y ( a, b)

a = 0

b = 1

b = 0

a = 1

FIGURE 4.6: Three-dimensional plot of PDF for Example 4.1.5.
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FIGURE 4.7: PDF and CDF representations for Example 4.1.5.

For 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 we have

Fx,y (α, β) =
β∫

0

α∫
0

4α′β ′ dα′dβ ′ = α2β2.

Substituting, we find

P (A) = �2(0.25)(Fx,y (0.5, 0.5) − Fx,y (0, 0.5))

= Fx,y (0.5, 0.5) − Fx,y (0.5, 0.25)

= 3

64
.

Alternately, using the PDF directly, P (A) is the volume under the PDF curve and above

A:

P (A) =
0.5∫

0.25

0.5∫
0

4αβ dαdβ = 3

64
.

Two-dimensional representations for the PDF and CDF are shown in Fig. 4.7.

(b) We have

fx(α) =
⎧⎨⎩

∫ 1

0

fx,y (α, β)dβ = 2α, 0 ≤ α ≤ 1

0, otherwise.

(c) We have

fy (β) =
⎧⎨⎩

∫ 1

0

fx,y (α, β)dβ = 2α, 0 ≤ α ≤ 1

0, otherwise.
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(d) Since fx,y (α, β) = fx(α) fy (β) for all real α and β we find that the RVs x and y are

independent. �

Example 4.1.6. The jointly distributed RVs x and y have joint PDF

fx,y (α, β) =
{

6(1 − √
α/β), 0 ≤ α ≤ β ≤ 1

0, otherwise,

Find (a) P (A), where A = {(x, y) : 0 < x < 0.5, 0 < y < 0.5}; (b) fx ; (c ) fy , and (d) Fx,y .

Solution. (a) The support region R for the given PDF is

R = {(α, β) : 0 < α < β < 1}.

A two-dimensional representation for fx,y is shown in Fig. 4.8. Integrating with respect to α

first,

P (A) = P (A ∩ R) =
0.5∫

0

β∫
0

6(1 −
√

α/β) dαdβ = 2

0.5∫
0

β dβ = 1

4
.

One could integrate with respect to β first:

P (A) = P (A ∩ R) =
0.5∫

0

0.5∫
α

6(1 −
√

α/β) dβ dα.

This also provides the result—at the expense of a more difficult integration.

0

6(1  -           )

1

2

 

a  b

b

a

FIGURE 4.8: PDF representation for Example 4.1.6.
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(b) For 0 < α < 1,

fx(α) =
1∫

α

6(1 −
√

α/β) dβ = 6(1 − 2
√

α + α).

(c) For 0 < β < 1,

fy (β) =
β∫

0

6(1 −
√

α/β) dα = 2β.

(d) For (α, β) ∈ Rx,y (i.e., 0 ≤ α ≤ β ≤ 1),

Fx,y (α, β) = 6

α∫
0

β∫
α′

(1 −
√

α′/β ′) dβ ′dα′

= 6

α∫
0

(β − 2
√

α′β + α′) dα′

= 6αβ − 8α
√

αβ + 3α2.

For 0 ≤ β ≤ 1 and β ≤ α,

Fx,y (α, β) = 6

β∫
0

β∫
α′

(1 −
√

α′/β ′) dβ ′dα′

= 6

β∫
0

(β − 2
√

α′β + α′) dα′

= β2.

For 0 ≤ α ≤ 1 and β ≥ 1),

Fx,y (α, β) = 6

α∫
0

1∫
α′

(1 −
√

α′/β ′) dβ ′dα′

= 6

α∫
0

(1 − 2
√

α
′ + α′) dα′

= 6α − 8α3/2 + 3α2. �
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4.1.3 Bivariate Mixed Random Variables

Definition 4.1.6. The bivariate RV (x, y) defined on the probability space (S, �, P ) is a mixed

RV if it is neither discrete nor continuous.

Unlike the one-dimensional case, where the Lebesgue Decomposition Theorem enables

us to separate a univariate CDF into discrete and continuous parts, the bivariate case requires

either the two-dimensional Riemann-Stieltjes integral or the use of Dirac delta functions along

with the two-dimensional Riemann integral. We illustrate the use of Dirac delta functions

below. The two-dimensional Riemann-Stieltjes integral is treated in the following section. The

probability that (x, y) ∈ A can be expressed as

P ((x, y) ∈ A) =
∫

(α,β)∈A

dFx,y (α, β) =
∫

A

dFx,y (α, β). (4.32)

Example 4.1.7. The RVs x and y have joint CDF

Fx,y (α, β) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, α < 0

0, β < 0

αβ/4, 0 ≤ α < 1, 0 ≤ β < 2

β/4, 1 ≤ α, 0 ≤ β < 2

α/2, 0 ≤ α < 1, 2 ≤ β

1, 1 ≤ α, 2 ≤ β.

(a) Find an expression for Fx,y using unit-step functions. (b) Find Fx and Fy . Are x and y indepen-

dent? (c) Find fx, fy , and fx,y (using Dirac delta functions). (d) Evaluate

I =
∞∫

−∞

β∫
−∞

fx(α) fy (β) dαdβ.

(e) Find P (x ≤ y).

Solution. (a) A two-dimensional representation for the given CDF is illustrated in Fig. 4.9.

This figure is useful for obtaining the CDF representation in terms of unit step functions. Using

the figure, the given CDF can be expressed as

Fx,y (α, β) = 1

4
(u(α) − u(α − 1))(αβu(β) + (2α − αβ)u(β − 2))

+1

4
u(α − 1)(βu(β) + (4 − β)u(β − 2)).
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2

0 1

1

2

4 4

1

b
a

ab b

a

FIGURE 4.9: CDF representation for Example 4.1.7.

(b) The marginal CDFs are found as

Fx(α) = Fx,y (α, ∞) = α

2
u(α) +

(
1 − α

2

)
u(α − 1)

and

Fy (β) = Fx,y (∞, β) = β

4
u(β) +

(
1 − β

4

)
u(β − 2).

Since Fx,y (0.5, 0.5) = 1/16 �= 1/32 = Fx(0.5)Fy (0.5), we conclude that x and y are not inde-

pendent. (c) Differentiating, we find

fx(α) = 0.5(u(α) − u(α − 1)) + 0.5δ(α − 1)

and

fy (β) = 0.25(u(β) − u(β − 2)) + 0.5δ(β − 2).

Partial differentiation of Fx,y (α, β) with respect to α and β yields

fx,y (α, β) = 0.25(u(α) − u(α − 1))(u(β) − u(β − 2)) + 0.5δ(α − 1)δ(β − 2).

This differentiation result can of course be obtained using the product rule and using u(1)(α) =
δ(α). An easier way is to use the two-dimensional representation of Fig. 4.9. Inside any of the

indicated regions, the CDF is easily differentiated. If there is a jump along the boundary, then

there is a Dirac delta function in the variable which changes to move across the boundary. An

examination of Fig. 4.9 reveals a jump of 0.5 along β = 2, 1 ≤ α. Another jump of height 0.5

occurs along α = 1, 2 ≤ β. Since errors are always easily made, it is always worthwhile to check

the result by integrating the resulting PDF to ensure the total volume under the PDF is one.
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(d) The given integral is

I =
∞∫

−∞
Fx(β) fy (β) dβ.

Substituting, we find

I =
1∫

0

β

2

(
1

4
(u(β) − u(β − 2)) + 1

2
δ(β − 2)

)
dβ

+
∞∫

1

(
1

4
(u(β) − u(β − 2)) + 1

2
δ(β − 2)

)
dβ

=
1∫

0

β

8
dβ +

2∫
1

1

4
dβ + 1

2
= 13

16
.

(e) We have

P (x ≤ y) =
∞∫

−∞

β∫
−∞

fx,y (α, β) dα dβ.

Substituting,

P (x ≤ y) =
1∫

0

β∫
0

1

4
dα dβ +

2∫
1

1∫
0

1

4
dα dβ + 1

2
= 7

8
.

As an alternative, P (x ≤ y) = 1 − P (x > y), with

P (x > y) =
1∫

0

α∫
0

1

4
dβdα = 1

8
.

�

Drill Problem 4.1.1. Consider the experiment of tossing a fair coin three times. Let the random vari-

able x denote the total number of heads and the random variable y denote the difference between the num-

ber of heads and tails resulting from the experiment. Determine: (a) px,y (3, 3), (b)px,y (1, −1), (c )

px,y (2, 1), (d )px,y (0, −3), (e )Fx,y (0, 0), ( f )Fx,y (1, 8), (g )Fx,y (2, 1), and (h) Fx,y (3, 3).

Answers: 1/8, 3/8, 1/8, 3/8, 1, 1/2, 7/8, 1/8.
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Drill Problem 4.1.2. The RVs x and y have joint PMF specified in the table below.

α β px,y (α, β)

0 1 1/8

1 1 1/8

1 2 2/8

1 3 1/8

2 2 1/8

2 3 1/8

3 3 1/8

Determine: (a) px(1), (b)py (2), (c )px(2), (d )px(3).

Answers: 1/8, 1/4, 1/2, 3/8.

Drill Problem 4.1.3. Consider the experiment of tossing a fair tetrahedral die (with faces labeled

0,1,2,3) twice. Let x be a RV equaling the sum of the numbers tossed, and let y be a RV equaling the

absolute value of the difference of the numbers tossed. Find: (a) Fy (0), (b)Fy (2), (c )py (2), (d )py (3).

Answers: 1/4, 14/16, 4/16, 2/16.

Drill Problem 4.1.4. The joint PDF for the RVs x and y is

fx,y (α, β) =
⎧⎨⎩2

β

α
, 0 < β ≤ √

α < 1

0, elsewhere.

Find: (a) fx(0.25), (b) fy (0.25), (c) whether or not x and y are independent random variables.

Answers: 1, ln (4), no.

Drill Problem 4.1.5. With the joint PDF of random variables x and y given by

fx,y (α, β) =
{

aα2β, 0 ≤ α ≤ 3, 0 ≤ β ≤ 1

0, otherwise,

where a is a constant, determine: (a) a, (b)P (0 ≤ x ≤ 1, 0 ≤ y ≤ 1/2), (c )P (xy ≤ 1), (d )P (x +
y ≤ 1).

Answers: 1/108, 7/27, 2/9, 1/270.
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Drill Problem 4.1.6. With the joint PDF of random variables x and y given by

fx,y (α, β) =
{

aαβ(1 − α), 0 ≤ α ≤ 1 − β ≤ 1

0, otherwise,

where a is a constant, determine: (a) a, (b) fx(0.5), (c )Fx(0.5), (d )Fy (0.25).

Answers: 13/16, 49/256, 5/4, 40.

4.2 BIVARIATE RIEMANN-STIELTJES INTEGRAL
The Riemann-Stieltjes integral provides a unified framework for treating continuous, discrete,

and mixed RVs—all with one kind of integration. An important alternative is to use a standard

Riemann integral for continuous RVs, a summation for discrete RVs, and a Riemann integral

with an integrand containing Dirac delta functions for mixed RVs. In the following, we assume

that F is the joint CDF for the RVs x and y , that a1 < b1, and that a2 < b2.

We begin with a brief review of the standard Riemann integral. Let

a1 = α0 < α1 < α2 < · · · < αn = b1,

a2 = β0 < β1 < β2 < · · · < βm = b2,

αi−1 ≤ ξi ≤ αi , i = 1, 2, . . . , n,

β j−1 ≤ ψ j ≤ β j , j = 1, 2, . . . , m,

�1,n = max
1≤i≤n

{αi − αi−1},

and

�2,m = max
1≤ j≤m

{β j − β j−1}.

The Riemann integral

b2∫
a2

b1∫
a1

h(α, β) dα dβ

is defined by

lim
�2,m→0

lim
�1,n→0

m∑
j=1

n∑
i=1

h(ξi , ψ j )(αi − αi−1)(β j − β j−1),
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provided the limits exist and are independent of the choice of {ξi} and {ψ j }. Note that n → ∞
and m → ∞ as �1,n → 0 and �2,m → 0. The summation above is called a Riemann sum. We

remind the reader that this is the “usual” integral of calculus and has the interpretation as the

volume under the surface h(α, β) over the region a1 < α < b1, a2 < β < b2.

With the same notation as above, the Riemann-Stieltjes integral

b2∫
a2

b1∫
a1

g (α, β) dF(α, β)h(α, β) dα dβ

is defined by

lim
�2,m→0

lim
�1,n→0

m∑
j=1

n∑
i=1

g (ξi , ψ j )�2(β j , β j−1)�1(αi − αi−1)F(αi , β j ),

provided the limits exist and are independent of the choice of {ξi} and {ψ j }.
Applying the above definition with g (α, β) ≡ 1, we obtain

b2∫
a2

b1∫
a1

d F(α, β) = lim
�2,m→0

m∑
j=1

�2(β j − β j−1)(F(b1, β j ) − F(α1, β j ))

= F(b1, b2) − F(a1, b2) − (F(b1, a2) − F(a1, a2))

= P (a1 < x ≤ b1, a2 < y ≤ b2).

Suppose F is discrete with jumps at (α, β) ∈ {(αi , βi ) : i = 0, 1, . . . N } satisfying

a1 = α0 < α1 < · · · < αN ≤ b1

and

a2 = β0 < β1 < · · · < βN ≤ b2.

Then, provided that g and F have no common points of discontinuity, it is easily shown that

b2∫
a2

b1∫
a1

g (α, β) d F(α, β) =
N∑

i=1

g (αi , βi )p(αi , βi ), (4.33)

where

p(α, β) = F(α, β) − F(α−, β) − (F(α, β−) − F(α−, β−)). (4.34)
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Note that a jump in F at (a1, a2) is not included in the sum whereas a jump at (b1, b2) is

included. Suppose F is absolutely continuous with

f (α, β) = ∂2 F(α, β)

∂β ∂α
. (4.35)

Then

b2∫
a2

b1∫
a1

g (α, β) dF(α, β) =
b2∫

a2

b1∫
a1

g (α, β) f (α, β) dα dβ. (4.36)

Hence, the Riemann-Stieltjes integral reduces to the usual Riemann integral in this case. For-

mally, we may write

d F(α, β) = lim
h2→0

lim
h1→0

�2(h2)�1(h1)F(α, β)

h1h2

dα dβ

= ∂2 F(α, β)

∂β ∂α
dα dβ, (4.37)

provided the indicated limits exist. The major advantage of the Riemann-Stieltjes integral is

to enable one to evaluate the integral in many cases where the above limits do not exist. For

example, with

F(α, β) = u(α − 1)u(β − 2)

we may write

d F(α, β) = du(α − 1) du(β − 2).

The trick to evaluating the Riemann-Stieltjes integral involves finding a suitable approximation

for

�2(h2)�1(h1)F(α, β)

which is valid for small h1 and small h2.

Example 4.2.1. The RVs x and y have joint CDF

Fx,y (α, β) = 1

2
(1 − e−2α)(1 − e−3β)u(α)u(β)

+ 1

8
u(α)u(β + 2) + 3

8
u(α − 1)u(β − 4).

Find P (x > y).
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Solution. For this example, we obtain

d Fx,y (α, β) = 3e−2αe−3βu(α)u(β) dα dβ

+1

8
du(α) du(β + 2) + 3

8
du(α − 1) du(β − 4).

Consequently,

P (x > y) =
∞∫

−∞

∞∫
β

d Fx,y (α, β)

=
∞∫

0

∞∫
β

3e−2αe−3β dα dβ + 1

8

=
∞∫

0

3
0 − e−2β

−2
e−3β dβ + 1

8

= 3

2

0 − 1

−5
+ 1

8
= 9

40
.

�

Example 4.2.2. The RVs x and y have joint CDF with two-dimensional representation shown

in Fig. 4.10. The CDF Fx,y (α, β) = 0 for α < 0 or β < 0. (a) Find a suitable expression for

d Fx,y (α, β). Verify by computing Fx,y . (b) Find P (x = 2y). (c) Evaluate

I =
∞∫

−∞

∞∫
−∞

αβ dFx,y (α, β).

1

0 1

2

1

2 3

b

a

b

a

FIGURE 4.10: Cumulative distribution function for Example 4.2.2.
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Solution. (a) Careful inspection of Fig. 4.10 reveals that the CDF is continuous (everywhere)

and that d Fx,y (α, β) = 0 everywhere except along 0 < α = 2β < 2. We conclude that

d Fx,y (α, β) = d Fx(α) du
(
β − α

2

)
= d Fy (β) du(α − 2β).

To support this conclusion, we find

β∫
−∞

α∫
−∞

d Fx(α′) du

(
β ′ − α′

2

)
=

α∫
−∞

⎛⎝ β∫
−∞

du

(
β ′ − α′

2

) ⎞⎠ d Fx(α′)

=
α∫

−∞
u

(
β − α′

2

)
d Fx(α′)

= Fx(min({α, 2β}) = Fx,y (α, β).

Similarly,

β∫
−∞

⎛⎝ α∫
−∞

du(α′ − 2β ′)

⎞⎠ d Fy (β ′) =
β∫

−∞
u(α − 2β ′) d Fy (β ′)

= Fy (min({0.5α, β}) = Fx,y (α, β).

(b) From part (a) we conclude that P (x = 2y) = 1.

(c) Using results of part (a),

I =
∞∫

−∞

α2

2
d Fx(α) =

2∫
0

α2

4
dα = 8 − 0

12
= 2

3
.

We note that

I = E(xy) = E(2y2) = 2

1∫
0

β2 dβ = 2

3
.

�

4.3 EXPECTATION
Expectation involving jointly distributed RVs is quite similar to the univariate case. The basic

difference is that two-dimensional integrals are required.
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4.3.1 Moments

Definition 4.3.1. The expected value of g (x, y) is defined by

E(g (x, y)) =
∞∫

−∞

∞∫
−∞

g (α, β) dFx,y (α, β), (4.38)

provided the integral exists. The mean of the bivariate RV z = (x, y) is defined by

ηz = (ηx, ηy ). (4.39)

The covariance of the RVs x and y is defined by

σx,y = E((x − ηx)(y − ηy )). (4.40)

The correlation coefficient of the RVs x and y is defined by

ρx,y = σx,y

σxσy

. (4.41)

The joint (m,n)th moment of x and y is

mm,n = E(xm yn), (4.42)

and the joint (m,n)th central moment of x and y is

μm,n = E((x − ηx)m(y − ηy )n). (4.43)

Definition 4.3.2. The joint RVs x and y are uncorrelated if

E(xy) = E(x)E(y), (4.44)

and orthogonal if

E(xy) = 0. (4.45)

Theorem 4.3.1. If the RVs x and y are independent, then

E(g (x)h(y)) = E(g (x))E(h(y)). (4.46)

Proof. Since x and y are independent, we have Fx,y (α, β) = Fx(α)Fy (β) so that d Fx,y (α, β) =
d Fx(α) d Fy (β). Consequently,

E(g (x)h(y)) =
∞∫

−∞

∞∫
−∞

g (α)h(β) d Fx(α) d Fy (β) = E(g (x))E(h(y)).

�
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Theorem 4.3.2. The RVs x and y are uncorrelated iff σx,y = 0. If x and y are uncorrelated and

ηx = 0 and/or ηy = 0, then x and y are orthogonal.

Note that if x and y are independent, then x and y are uncorrelated; the converse is not true,

in general.

Example 4.3.1. RV x has PDF

fx(α) = 1

4
(u(α) − u(α − 4))

and RV y = ax + b, where a and b are real constants with a �= 0. Find: (a) E(xy), (b) σ 2
x ,

(c ) σ 2
y , (d )ρx,y .

Solution. (a) We have

E(x) = 1

4

4∫
0

α d α = 16

8
= 2,

E(x2) = 1

4

4∫
0

α2 d α = 64

12
= 16

3
,

so that

E(xy) = E(ax2 + bx) = 16

3
a + 2b.

Note that x and y are orthogonal if

16

3
a + 2b = 0.

(b) σ 2
x = E(x2) − E2(x) = 16

3
− 4 = 4

3
.

(c) σ 2
y = E((ax + b − 2a − b)2) = a2σ 2

x .

(d) Noting that σx,y = aσ 2
x we find

ρx,y = σx,y

σxσy

= a

|a | .

Note that ρx,y = −1 if a < 0 and ρ = 1 if a > 0. The correlation coefficient provides

information about how x and y are related to each other. Clearly, if x = y then ρx,y = 1. This

example also shows that if there is a linear relationship between x and y then ρ = ±1. �



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-04 MOBK041-Enderle.cls October 27, 2006 7:23

60 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

Example 4.3.2. RVs x and y are uncorrelated, and RV z = x + y. Find: (a) E(z2), (b)σ 2
z .

Solution. (a) Using the properties of expectation,

E(z2) = E(x2 + 2xy + y2) = E(x2) + 2ηxηy + E(y2).

(b) With z = x + y ,

σ 2
z = E((x − ηx + y − ηy )2) = σ 2

x + 2σx,y + σ 2
y .

Since x and y are uncorrelated we have σx,y = 0 so that σ 2
z = σ 2

x + σ 2
y ; i.e., the variance of the

sum of uncorrelated RVs is the sum of the individual variances. �

Example 4.3.3. Random variables x and y have the joint PMF shown in Fig. 4.5. Find E(x +
y), σx,y , and ρx,y .

Solution. We have

E(x + y) =
∑
(α,β)

(α + β)px,y (α, β).

Substituting,

E(x + y) = 0 · 1

4
− 1 · 1

8
+ 0 · 1

8
+ 2 · 1

8
+ 3 · 1

8
+ 3 · 1

8
+ 6 · 1

8
= 13

8
.

In order to find σx,y , we first find ηx and ηy :

ηx = −1 · 1

4
+ 0 · 1

8
+ 1 · 3

8
+ 2 · 1

8
+ 3 · 1

8
= 3

4
,

and

ηy = −1 · 1

4
+ 0 · 1

8
+ 1 · 3

8
+ 3 · 2

8
= 7

8
.

Then

σx,y = E(xy) − ηxηy = −1 · 1

8
− 1 · 1

4
+ 1 · 1

8
+ 2 · 1

8
+ 9 · 1

8
− 3

4
· 7

8
= 15

32
.

We find

E(x2) = 1 · 1

4
+ 0 · 1

8
+ 1 · 3

8
+ 4 · 1

8
+ 9 · 1

8
= 9

4
,

and

E(y2) = 1 · 1

4
+ 0 · 1

8
+ 1 · 3

8
+ 9 · 2

8
= 23

8
,
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so that σx = √
27/16 = 1.299 and σy = √

135/64 = 1.4524. Finally,

ρx,y = σx,y

σxσy

= 0.2485. �

Example 4.3.4. Random variables x and y have joint PDF

fx,y (α, β) =
{

1.5(α2 + β2), 0 < α < 1, 0 < β < 1,

0, elsewhere.

Find σx,y .

Solution. Since σx,y = E(xy) − ηxηy , we find

E(x) =
1∫

0

1∫
0

α1.5(α2 + β2) dαdβ = 5

8
.

Due to the symmetry of the PDF, we find that E(y) = E(x) = 5/8. Next

E(xy) =
1∫

0

1∫
0

αβ1.5(α2 + β2) dαdβ = 3

8
.

Finally, σx,y = −3/192.
�

The moment generating function is easily extended to two dimensions.

Definition 4.3.3. The joint moment generating function for the RVs x and y is defined by

Mx,y (λ1, λ2) = E(e λ1x+λ2 y ), (4.47)

where λ1 and λ2 are real variables.

Theorem 4.3.3. Define

M(m,n)
x,y (λ1, λ2) = ∂m+n Mx,y (λ1, λ2)

∂λm
1 ∂λn

2

. (4.48)

The (m,n)th joint moment for x and y is given by

E(xm yn) = M (m,n)
x,y (0, 0). (4.49)

Example 4.3.5. The joint PDF for random variables x and y is given by

fx,y (α, β) =
{

a e−|α+β|, 0 < β < 1

0, otherwise.

Determine: (a) Mx,y ; (b) a; (c )Mx(λ) and My (λ); (d )E(x),E(y), and E(xy).
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Solution. (a) Using the definition of moment generating function,

Mx,y (λ1, λ2) = a

1∫
0

⎛⎜⎝ −β∫
−∞

eα(λ1+1)+β dα +
∞∫

−β

eα(λ1−1)−β dα

⎞⎟⎠ e λ2β dβ.

The first inner integral converges for −1 < λ1, the second converges for λ1 < 1. Straightforward

integration yields (−1 < λ1 < 1)

Mx,y (λ1, λ2) = 2ag (λ1 − λ2)h(λ1),

where g (λ) = (1 − e−λ)/λ and h(λ) = 1/(1 − λ2).

(b) Since Mx,y (0, 0) = E(e 0) = 1, applying L’Hôspital’s Rule, we find Mx,y (0, 0) = 2a , so that

a = 0.5.

(c) We obtain Mx(λ) = Mx,y (λ, 0) = g (λ)h(λ). Similarly, My (λ) = Mx,y (0, λ) = g (−λ).

(d) Differentiating, we have

M(1)
x (λ) = g (1)(λ)h(λ) + g (λ)h (1)(λ),

M(1)
y (λ) = −g (1)(−λ),

and

M(1,1)
x,y (λ1, λ2) = −g (2)(λ1 − λ2)h(λ1) − g (1)(λ1 − λ2)h (1)(λ1).

Noting that

g (λ) = 1 − λ

2
+ λ2

6
− λ3

24
+ · · · ,

we find easily that g (0) = 1, g (1)(0) = −0.5, and g (2)(0) = 1/3. Since h (1)(0) = 0, we obtain

E(x) = −0.5, E(y) = 0.5, and E(xy) = −1/3. �

4.3.2 Inequalities

Theorem 4.3.4. (Hölder Inequality) Let p and q be real constants with p > 1, q > 1, and

1

p
+ 1

q
= 1. (4.50)

If x and y are RVs with a = E1/p(|x|p) < ∞ and b = E1/q (|y |q ) < ∞ then

E(|xy |) ≤ E1/p(|x|p)E1/q (|y |q ). (4.51)
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Proof. If either a = 0 or b = 0 then P (xy = 0) = 1 so that E(|xy |) = 0; hence, assume a > 0

and b > 0. Let

g (α) = α p

p
+ βq

q
− αβ,

for α ≥ 0, β > 0. We have g (0) > 0, g (∞) = ∞, g (1)(α) = α p−1 − β, and g (2)(α0) =
(p − 1)α

p−2
0 > 0, where α0 satisfies g (1)(α0) = 0. Thus, g (α) ≥ g (α0), and α0 = β1/(p−1) =

βq/p . Consequently,

α p

p
+ βq

q
− αβ ≥ α

p
0

p
+ βq

q
− α0β = 0.

The desired result follows by letting α = |x|/a and β = |y |/b. �

Corollary 4.3.1. (Schwarz Inequality)

E2(|xy |) ≤ E(|x|2)E(|y |2). (4.52)

If y = ax, for some constant a, then

E2(|xy |) = |a |2 E2(|x|2) = E(|x|2)E(|y |2).

Applying the Schwarz Inequality, we find that the covariance between x and y satisfies

σ 2
x,y = E2((x − ηx)(y − ηy )) ≤ σ 2

x σ 2
y .

Hence, the correlation coefficient satisfies

|ρx,y | ≤ 1. (4.53)

If there is a linear relationship between the RVs x and y , then |ρx,y | = 1, as shown in Exam-

ple 4.3.1.

Theorem 4.3.5. (Minkowski Inequality) Let p be a real constant with p ≥ 1. If x and y are

RVs with E(|x|p) < ∞ and E(|y |p) < ∞ then

E1/p(|x + y |p) ≤ E1/p(|x|p) + E1/p(|y |p). (4.54)

Proof. From the triangle inequality (|x + y | ≤ |x| + |y |),
E(|x + y |p) = E(|x + y ||x + y |p−1)

≤ E(|x||x + y |p−1) + E(|y ||x + y |p−1),
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which yields the desired result if p = 1. For p > 1, let q = p/(p − 1) and apply the Hölder

Inequality to obtain

E(|x + y |p) ≤ E1/p(|x|p)E1/q (|x + y |p) + E1/p(|y |p)E1/q (|x + y |p),

from which the desired result follows. �

Theorem 4.3.6. With αk = E1/k(|x|k) we have αk+1 ≥ αk for k = 1, 2, . . . .

Proof. Let βi = E(|x|i ). From the Schwarz inequality,

β2
i = E2(|x|(i−1)/2|x|(i+1)/2) ≤ E(|x|i−1)E(|x|i+1) = βi−1βi+1.

Raising to the ith power and taking the product (noting that β0 = 1)

k∏
i=1

β2i
i ≤

k∏
i=1

β i
i−1β

i
i+1 =

k−1∏
i=0

β i+1
i

k+1∏
j=2

β
j−1
j = βk−1

k βk
k+1

k−1∏
i=1

β2i
i .

Simplifying, we obtain βk+1
k ≤ βk

k+1; the desired inequality follows by raising to the 1/(k(k + 1))

power. �

4.3.3 Joint Characteristic Function

Definition 4.3.4. The joint characteristic function for the RVs x and y is defined by

φx,y (t1, t2) = E(e j xt1+ j yt2 ), (4.55)

where t1 and t2 are real variables, and j 2 = −1.

Note that the marginal characteristic functions φx and φy are easily obtained from the joint

characteristic function as φx(t) = φx,y (t, 0) and φy (t) = φx,y (0, t).

Theorem 4.3.7. The joint RVs x and y are independent iff

φx,y (t1, t2) = φx(t1)φy (t2) (4.56)

for all real t1 and t2.

Theorem 4.3.8. If x and y are independent RVs, then

φx+y (t) = φx(t)φy (t). (4.57)

Theorem 4.3.9. The joint (m,n)th moment of the RVs x and y can be obtained from the joint

characteristic function as

E(xm yn) = (− j )m+nφ(m,n)
x,y (0, 0). (4.58)
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The joint characteristic function φx,y contains all of the information about the joint CDF Fx,y ;

the joint CDF itself can be obtained from the joint characteristic function.

Theorem 4.3.10. If the joint CDF Fx,y is continuous at (a1, a2) and at (b1, b2), with a1 < b1

and a2 < b2, then

P (a1 <x ≤ b1, a2 < y ≤ b2)= lim
T→∞

T∫
−T

T∫
−T

e− ja1t1 − e− jb1t1

j2π t1

e− ja2t2 − e− jb2t2

j2π t2
φx,y (t1, t2) dt1 dt2.

(4.59)

Proof. The proof is a straightforward extension of the corresponding one-dimensional

result. �

Corollary 4.3.2. If x and y are jointly continuous RVs with φx,y , then

fx,y (α, β) = lim
T→∞

1

(2π )2

T∫
−T

T∫
−T

e− jαt1− jβt2φx,y (t1, t2) dt1 dt2 . (4.60)

The above corollary establishes that the joint PDF is 1/(2π )2 times the two-dimensional Fourier

transform of the joint characteristic function.

Drill Problem 4.3.1. The joint PDF for RVs x and y is

fx,y (α, β) =
⎧⎨⎩

2

9
α2β, 0 < α < 3, 0 < β < 1

0, otherwise.

Find σx,y .

Answer: 0.

Drill Problem 4.3.2. Suppose the RVs x and y have the joint PMF shown in Fig. 4.11. Determine:

(a) E(x), (b)E(y), (c )E(x + y), and (d) σx,y .

Answers: 0.54, 1.6, 3.2, 1.6.

Drill Problem 4.3.3. Suppose ηx = 5, ηy = 3, σx,y = 18, σx = 3, and σy = 6. Find: (a) E(x2),

(b)E(xy), (c )σ 2
3x , and (d) σ 2

x+y .

Answers: 81, 81, 33, 34.
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FIGURE 4.11: PMF for Drill Problem 4.3.2.

4.4 CONVOLUTION
The convolution operation arises in many applications. Convolution describes the basic in-

put/output relationship for a linear, time-invariant system, as well as the distribution function

for the sum of two independent RVs.

Theorem 4.4.1. If x and y are independent RVs and z = x + y then

Fz(γ ) =
∫ ∞

−∞
Fx(γ − β)d Fy (β) =

∫ ∞

−∞
Fy (γ − α)d Fx(α). (4.61)

The above integral operation on the functions Fx and Fy is called a convolution.

Proof. By definition,

Fz(γ ) = P (z ≤ γ ) =
∫

α+β≤γ

d Fx,y (α, β).

Since x and y are independent, we have

Fz(γ ) =
∞∫

−∞

γ−β∫
−∞

d Fx(α) d Fy (β) =
∞∫

−∞
Fx(γ − β) d Fy (β).

Interchanging the order of integration,

Fz(γ ) =
∞∫

−∞

γ−α∫
−∞

d Fy (β) d Fx(α) =
∞∫

−∞
Fy (γ − α) d Fx(α).

�
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Corollary 4.4.1. Let x and y be independent RVs and let z = x + y .

(i) If x is a continuous RV then z is a continuous RV with PDF

fz(γ ) =
∞∫

−∞
fx(γ − β) d Fy (β). (4.62)

(ii) If y is a continuous RV then z is a continuous RV with PDF

fz(γ ) =
∞∫

−∞
fy (γ − α) d Fx(α). (4.63)

(iii) If x and y are jointly continuous RVs then z is a continuous RV with PDF

fz(γ ) =
∞∫

−∞
fx(γ − β) fy (β) dβ =

∞∫
−∞

fy (γ − α) fx(α) dα. (4.64)

(iv) If x and y are both discrete RVs then z is a discrete RV with PMF

pz(γ ) =
∑

β

px(γ − β)py (β) =
∑

α

py (γ − α)px(α). (4.65)

All of these operations are called convolutions.

Example 4.4.1. Random variables x and y are independent with fx(α) = 0.5(u(α) − u(α − 2)),

and fy (β) = e−βu(β). Find the PDF for z = x + y .

Solution. We will find fz using the convolution integral

fz(γ ) =
∞∫

−∞
fy (β) fx(γ − β) dβ.

It is important to note that the integration variable is β and that γ is constant. For each fixed

value of γ the above integral is evaluated by first multiplying fy (β) times fx(γ − β) and then

finding the area under this product curve. We have

fx(γ − β) = 0.5(u(γ − β) − u(γ − β − 2)).

Plots of fx(α) vs. α and fx(γ − β) vs. β, respectively, are shown in Fig. 4.12(a) and (b).

The PDF for y is shown in Fig. 4.12(c). Note that Fig. 4.12(b) is obtained from Fig. 4.12(a)

by flipping the latter about the α = 0 axis and relabeling the origin as γ . Now the integration

limits for the desired convolution can easily be obtained by superimposing Fig. 4.12(b) onto

Fig. 4.12(c)—the value of γ can be read from the β axis.
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(a) fx(a) vs. a.

(c) fy(b) vs. b.

(d) fz(g ) vs. g.

(b) fx(g  - b) vs. b.

0.5 0.5

20

xf (a ) xf ( g−b)

2

yf (b)

1

40

2

zf (g)

0.5

40

a b g(g - 2) 

b 

g

FIGURE 4.12: Plots for Example 4.4.1.

For γ < 0, we have fx(γ − β) fy (β) = 0 for all β; hence, fz(γ ) = 0 for γ < 0.

For 0 < γ < 2,

fz(γ ) =
γ∫

−∞
0.5e−β dβ = 0.5(1 − e−γ ).

For 2 < γ ,

fz(γ ) =
γ∫

γ−2

0.5e−β dβ = 0.5e−γ (e 2 − 1).
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Since the integrand is a bounded function, the resulting fz is continuous; hence, we know that

at the boundaries of the above regions, the results must agree. The result is

fz(γ ) =

⎧⎪⎨⎪⎩
0, γ ≤ 0

0.5(1 − e−γ ), 0 ≤ γ ≤ 2

0.5e−γ (e 2 − 1), 2 ≤ γ.

The result is shown in Fig. 12.2(d).
�

One strong motivation for studying Fourier transforms is the fact that the Fourier trans-

form of a convolution is a product of Fourier transforms. The following theorem justifies this

statement.

Theorem 4.4.2. Let Fi be a CDF and

φi (t) =
∞∫

−∞
e jαt dFi (α), (4.66)

for i = 1, 2, 3. The CDF F3 may be expressed as the convolution

F3(γ ) =
∞∫

−∞
F1(γ − β) dF2(β) (4.67)

iff φ3(t) = φ1(t)φ2(t) for all real t.

Proof. Suppose F3 is given by the above convolution. Let x and y be independent RVs with

CDFs F1 and F2, respectively. Then z = x + y has CDF F3 and characteristic function φ3 =
φ1φ2.

Now suppose that φ3 = φ1φ2. Then there exist independent RVs x and y with charac-

teristic functions φ1 and φ2 and corresponding CDFs F1 and F2. The RV z = x + y then has

characteristic function φ3, and CDF F3 given by the above convolution. �

It is important to note that φx+y = φxφy is not sufficient to conclude that the RVs x and

y are independent. The following example is based on [4, p. 267].

Example 4.4.2. The RVs x and y have joint PDF

fx,y (α, β) =
{

0.25(1 + αβ(α2 − β2)), |α| ≤ 1, |β| ≤ 1

0, otherwise.

Find: (a) fx and fy , (b)φx and φy , (c )φx+y , (d ) fx+y .
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Solution. (a) We have

fx(α) = 1

4

1∫
−1

(1 + αβ(α2 − β2)) dβ =
{

0.5, |α| ≤ 1

0, otherwise.

Similarly,

fy (β) = 1

4

1∫
−1

(1 + αβ(α2 − β2)) dα =
{

0.5, |β| ≤ 1

0, otherwise.

(b) From (a) we have

φx(t) = φy (t) = 1

2

1∫
−1

e jαt dα = sin t

t
.

(c) We have

φx+y (t) = 1

4

1∫
−1

1∫
−1

e jαte jβt dα dβ + I,

where

I = 1

4

1∫
−1

1∫
−1

αβ(α2 − β2)e jαte jβt dα dβ.

Interchanging α and β and the order of integration, we obtain

I = 1

4

1∫
−1

1∫
−1

βα(β2 − α2)e jβte jαt dα dβ = −I.

Hence, I = 0 and

φx+y (t) =
(

sin t

t

)2

,

so that φx+y = φxφy even though x and y are not independent. (d) Since φx+y = φxφy we have

fx+y (γ ) =
∞∫

−∞
fx(γ − β) fy (β) dβ.
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For −1 < γ + 1 < 1 we find

fx+y (γ ) =
γ+1∫
−1

1

4
dβ = γ + 2

4
.

For −1 < γ − 1 < 1 we find

fx+y (γ ) =
1∫

γ−1

1

4
dβ = 2 − γ

4
.

Hence

fx+y (γ ) =
{

(2 − |γ |)/4, |γ | ≤ 2

0, otherwise. �

Drill Problem 4.4.1. Random variables x and y have joint PDF

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Random variable z = x + y. Using convolution, determine: (a) fz(−0.5), (b) fz(0.5), (c ) fz(1.5),

and (d) fz(2.5).

Answers: 1/12, 0, 13/12, 0.

4.5 CONDITIONAL PROBABILITY
We previously defined the conditional CDF for the RV x, given event A, as

Fx|A(α|A) = P (ζ ∈ S : x(ζ ) ≤ α, ζ ∈ A)

P (A)
, (4.68)

provided that P (A) �= 0. The extension of this concept to bivariate random variables is imme-

diate:

Fx,y |A(α, β|A) = P (ζ ∈ S : x(ζ ) ≤ α, y(ζ ) ≤ β, ζ ∈ A)

P (A)
, (4.69)

provided that P (A) �= 0.

In this section, we extend this notion to the conditioning event A = {ζ : y(ζ ) = β}.
Clearly, when the RV y is continuous, P (y = β) = 0, so that some kind of limiting operation

is needed.
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Definition 4.5.1. The conditional CDF for x, given y = β, is

Fx|y (α |β) = lim
h→0

Fx,y (α, β) − Fx,y (α, β − h)

Fy (β) − Fy (β − h)
, (4.70)

where the limit is through positive values of h. It is convenient to extend the definition so that Fx|y (α |β)

is a legitimate CDF (as a function of α) for any fixed value of β.

Theorem 4.5.1. Let x and y be jointly distributed RVs.

If x and y are both discrete RVs then the conditional PMF for x, given y = β, is

px|y (α |β) = px,y (α, β)

py (β)
, (4.71)

for py (β) �= 0.

If y is a continuous RV then

Fx|y (α |β) = 1

fy (β)

∂ Fx,y (α, β)

∂β
, (4.72)

for fy (β) �= 0.

If x and y are both continuous RVs then the conditional PDF for x, given y = β is

fx|y (α |β) = fx,y (α, β)

fy (β)
, (4.73)

for fy (β) �= 0.

Proof. The desired results are a direct consequence of the definitions of CDF, PMF, and

PDF. �

Theorem 4.5.2. Let x and y be independent RVs. Then for all real α,

Fx|y (α |β) = Fx(α). (4.74)

If x and y are discrete independent RVs then for all real α,

px|y (α |β) = px(α). (4.75)

If x and y are continuous independent RVs then for all real α,

fx|y (α |β) = fx(α). (4.76)

Example 4.5.1. Random variables x and y have the joint PMF shown in Fig. 4.5. (a) Find the

conditional PMF px,y |A(α, β | A), if A = {ζ ∈ S : x(ζ ) �= y(ζ )}. (b) Find the PMF py |x(β |1).

(c) Are x and y conditionally independent, given event B = {x < 0}?
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Solution. (a) We find

P (Ac ) = P (x �= y) = px,y (1, 1) + px,y (3, 3) = 1

4
;

hence, P (A) = 1 − P (Ac ) = 3/4. Let Dx,y denote the support set for the PMF px,y . Then

px,y |A(α, β | A) =
⎧⎨⎩

px,y (α, β)

P (A)
, (α, β) ∈ Dx,y ∩ {α �= β}

0, otherwise.

The result is shown in graphical form in Fig. 4.13.

(b) We have

py |x(β |1) = px,y (1, β)

px(1)
,

and

px(1) =
∑

β

Px,y (1, β) = Px,y (1, −1) + Px,y (1, 1) = 3

8
.

Consequently,

px|y (β |1) =

⎧⎪⎨⎪⎩
1/3, β = 1

2/3, β = −1

0, otherwise.

2 31

-1 1

3

1 6

2

1

1

6

1
6

-1

1
6

 

a

b

FIGURE 4.13: Conditional PMF for Example 4.5.1a.
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(c) The support set for px,y is {(−1, 0), (−1, 1)}, and we find easily that P (B) = 1/4. Then

px,y |B(α, β | B) =

⎧⎪⎨⎪⎩
0.5, (α, β) = (−1, 0)

0.5, (α, β) = (−1, 1)

0, otherwise.

Thus

px|B(α | B) =
{

1, α = −1

0, otherwise,

and

py |B(β | B) =

⎧⎪⎨⎪⎩
0.5, β = 0

0.5, β = 1

0, otherwise.

We conclude that x and y are conditionally independent, given B.
�

Example 4.5.2. Random variables x and y have joint PDF

fx,y (α, β) =
{

0.25α(1 + 3β2), 0 < α < 2, 0 < β < 1

0, otherwise.

Find (a) P (0 < x < 1|y = 0.5) and (b) fx,y |A(α, β | A), where event A = {x + y ≤ 1}.
Solution. (a) First we find

fy (0.5) =
2∫

0

α

4

7

4
dα = 7

8
.

Then for 0 < α < 2,

fx|y (α |0.5) = 0.25α7/4

7/8
= α

2
,

and

P (0 < x < 1|y = 0.5) =
∫ 0

1

α

2
dα = 1

4
.

(b) First, we find

P (A) =
∫

α+β≤1

∫
fx,y (α, β)dαdβ;
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substituting,

P (A) =
1∫

0

1−β∫
0

α

4
(1 + 3β2) dαdβ = 13

240
.

The support region for the PDF fx,y is

R = {(α, β) : 0 < α < 2, 0 < β < 1}.
Let B = R ∩ {α + β ≤ 1}. For all (α, β) ∈ B, we have

fx,y |A(α, β | A) = fx,y (α, β)

P (A)
= 60

13
α(1 + 3β2),

and fx,y |A(α, β | A) = 0, otherwise. We note that

B = {(α, β) : 0 < α ≤ 1 − β < 1}. �

Example 4.5.3. Random variables x and y have joint PDF

fx,y (α, β) =
{

6α, 0 < α < 1 − β < 1

0, otherwise.

Determine whether or not x and y are conditionally independent, given A = {ζ ∈ S : x ≥ y}.
Solution. The support region for fx,y is

R = {(α, β) : 0 < α < 1 − β < 1};
the support region for fx,y |A is thus

B = {(α, β) : 0 < α < 1 − β < 1, α ≥ β} = {0 < β ≤ α < 1 − β < 1}.
The support regions are illustrated in Fig. 4.14.

0.5

1

0 1

0.5

0.5

1

0 1

0.5
R

B

b

a

b

a

FIGURE 4.14: Support regions for Example 4.5.3.
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FIGURE 4.15: PMF for Drill Problem 4.5.1.

For (α, β) ∈ B,

fx,y |A(α, β | A) = fx,y (α, β)

P (A)
= 6α

P (A)
.

The conditional marginal densities are found by integrating fx,y |A:

For 0 < β < 0.5,

fy |A(β | A) = 1

P (A)

1−β∫
β

6α dα = 3(1 − 2β)

P (A)
.

For 0 < α < 0.5,

fx|A(α | A) = 1

P (A)

α∫
0

6α dβ = 6α2

P (A)
.

For 0.5 < α < 1,

fx|A(α | A) = 1

P (A)

1−α∫
0

6α dα = 6α(1 − α)

P (A)
.

We conclude that since P (A) is a constant, the RVs x and y are not conditionally independent,

given A. �

Drill Problem 4.5.1. Random variables x and y have joint PMF shown in Fig. 4.15. Find (a)

px(1), (b)py (2), (c )px|y (1 |2), (d )py |x(3 |1).

Answers: 1/2, 1/4, 3/8, 1/3.
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FIGURE 4.16: PMF for Drill Problem 4.5.2.

Drill Problem 4.5.2. Random variables x and y have joint PMF shown in Fig. 4.16. Event

A = {ζ ∈ S : x + y ≤ 1}. Find (a) P (A), (b)px,y |A(1, 1 | A), (c )px|A (1 | A), and (d) py |A(1 | A).

Answers: 0, 3/8, 1/3, 1/3.

Drill Problem 4.5.3. Random variables x and y have joint PMF shown in Fig. 4.17. Determine

if random variables x and y are: (a) independent, (b) independent, given {y ≤ 1}.
Answers: No, No.

Drill Problem 4.5.4. The joint PDF for the RVs x and y is

fx,y (α, β) =
⎧⎨⎩

2

9
α2β, 0 < α < 3, 0 < β < 1

0, otherwise.
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FIGURE 4.17: PMF for Drill Problem 4.5.3.
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Find: (a) fx|y (1 |0.5), (b) fy |x(0.5 |1), (c )P (x ≤ 1, y ≤ 0.5 |x + y ≤ 1), and (d) P (x ≤ 1 |x +
y ≤ 1).

Answers: 1/9, 1, 1, 13/16.

Drill Problem 4.5.5. The joint PDF for the RVs x and y is

fx,y (α, β) = e−α−βu(α)u(β).

Find: (a) fx|y (1 |1), (b)Fx|y (1 |1), (c )P (x ≥ 5 |x ≥ 1), and (d) P (x ≤ 0.5 |x + y ≤ 1).

Answers: 1 − e−1, e−1, e−4,
1 − e−0.5 − 0.5e−1

1 − 2e−1
.

Drill Problem 4.5.6. The joint PDF for the RVs x and y is

fx,y (α, β) =
⎧⎨⎩

2β

α
, 0 < β <

√
α < 1

0, otherwise.

Find: (a) P (y ≤ 0.25 |x = 0.25), (b)P (y = 0.25 |x = 0.25), (c )P (x ≤ 0.25 |x ≤ 0.5), and

(d) P (x ≤ 0.25 |x + y ≤ 1).

Answers: 0, 1/2, 1/4, 0.46695.

Drill Problem 4.5.7. The joint PDF for the RVs x and y is

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Determine whether or not x and y are (a) independent, (b) independent, given A = {x + y ≥ 1}.
Answers: No, Yes.

4.6 CONDITIONAL EXPECTATION
Conditional expectation is completely analogous to ordinary expectation, with the unconditional

CDF replaced with the conditional version. In particular, the conditional expectation of g (x, y),

given event A, is defined as

E(g (x, y) | A) =
∞∫

−∞

∞∫
−∞

g (α, β) d Fx,y|A(α, β | A) . (4.77)

When the conditioning event A has zero probability, as when A = {x = 0} for continuous

RVs, the conditional CDF, PMF, and PDF definitions of the previous sections are used.
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Definition 4.6.1. The conditional expectation of g (x, y), given y = β, is defined by

E(g (x, y) | y = β) =
∞∫

−∞
g (α, β) d Fx|y (α |β). (4.78)

In particular, the conditional mean of x, given y = β, is

E(x | y = β) =
∞∫

−∞
α d Fx|y (α |β) =

∞∫
−∞

α fx|y (α |β) dα . (4.79)

It is important to note that if the given value of y(β) is a constant, then E(x | y = β) is also

a constant. In general, E(x | y = β) is a function of β. Once this function is obtained, one may

substitute β = y(ζ ) and treat the result as a random variable; we denote this result as simply

E(x | y). It is also important to note that conditional expectation, as ordinary expectation, is a

linear operation.

Definition 4.6.2. The conditional mean of x, given y = β, is defined by

ηx|y=β = E(x|y = β), (4.80)

note that the RV ηx|y = E(x | y). The conditional variance of x, given y = β, is defined by

σ 2
x|y=β = E((x − ηx|y )2|y = β). (4.81)

The RV σ 2
x|y = E((x − ηx|y )2|y).

Example 4.6.1. Random variable y has PMF

py (α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.25, α = 1

0.5, α = 2

0.25, α = 3

0, otherwise.

Find the variance of y, given event A = {y odd}.
Solution. We easily find P (A) = 0.5 so that

py |A(α | A) =

⎧⎪⎨⎪⎩
0.5, α = 1

0.5, α = 3

0, otherwise.
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Then

ηy |A = E(y |A) =
∑

α

α2 py |a (α|A) = 2

and

E(y2|A) =
∑

α

α2 py |A(α|A) = 5.

Finally,

σ 2
y |A = E(y2|A) − E2(y |A) = 5 − 4 = 1. �

Example 4.6.2. Random variables x and y have joint PDF

fx,y (α, β) =
{

2, α > 0, 0 < β < 1 − α

0, otherwise.

Find ηx|y = E(x|y), E(ηx|y ), and E(x).

Solution. We first find the marginal PDF

fy (β) =
∞∫

−∞
fx,y (α, β) dα =

1−β∫
0

2 dα = 2(1 − β),

for 0 < β < 1. Then for 0 < β < 1,

fx|y (α |β) = fx,y (α, β)

fy (β)
=

⎧⎨⎩
1

1 − β
, 0 < α < 1 − β

0, otherwise.

Hence, for 0 < β < 1,

E(x | y = β) =
1−β∫
0

α

1 − β
dα = 1 − β

2
.

We conclude that

ηx|y = E(x | y) = 1 − y

2
.

Now,

E(ηx|y ) = E

(
1 − y

2

)
=

∫ 1

0

1 − β

2
2(1 − β)dβ = 1

3
= E(x). �
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Example 4.6.3. Find the conditional variance of y, given A = {x ≤ 0.75}, where

fx,y (α, β) = 1.5(α2 + β2)(u(α) − u(α − 1))(u(β) − u(β − 1)).

Solution. First, we find

P (A) =
1∫

0

0.75∫
0

1.5(α2 + β2) dαdβ = 75

128
,

so that

fx,y |A(α, β | A) = fx,y (α, β)

P (A)
=

⎧⎨⎩
64

25
(α2 + β2), 0 < α < 0.75, 0 < β < 1

0, otherwise.

Then for 0 < β < 1,

fy |A(β | A) =
∫ 0.75

0

64

25

(
α2 + β2

)
dα = 9

25
+ 48

25
β2.

Consequently,

E(y | A) =
1∫

0

β

(
9

25
+ 48

25
β2

)
dα = 66

100
,

and

E(y2 | A) =
1∫

0

β2

(
9

25
+ 48

25
β2

)
dα = 378

750
.

Finally,

σ 2
y |A = E(y2 | A) − E2(y | A) = 513

7500
. �

There are many applications of conditional expectation. One important use is to simplify

calculations involving expectation, as by applying the following theorem.

Theorem 4.6.1. Let x and y be jointly distributed RVs. Then

E(g (x, y)) = E(E(g (x, y) | y)) (4.82)

Proof. Note that

d Fx,y (α, β) = d Fx|y (α |β) dFy (β).
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Special cases of this are

fx,y (α, β) = fx|y (α |β) fy (β)

and

px,y (α, β) = px|y (α |β) py (β).

We thus have

E(g (x, y)) =
∞∫

−∞

⎛⎝ ∞∫
−∞

g (α, β) d Fx|y (α |β)

⎞⎠ dFy (β).

Hence

E(g (x, y)) =
∞∫

−∞
E(g (x, y) | y = β) dFy (β),

from which the desired result follows. �

The conditional mean estimate is one of the most important applications of conditional

expectation.

Theorem 4.6.2. Let x and y be jointly distributed RVs with σ 2
x < ∞. The function g which

minimizes E((x − g (y))2) is

g (y) = E(x | y). (4.83)

Proof. We have

E((x − g (y))2 | y) = E((x − ηx|y + ηx|y − g (y))2 | y)

= σ 2
x|y + 2E((x − ηx|y )(ηx|y − g (y))|y) + (ηx|y − g (y))2

= σ 2
x|y + (ηx|y − g (y))2.

The choice g (y) = ηx|y is thus seen to minimize the above expression, applying the (uncondi-

tional) expectation operator yields the desired result. �

The above result is extremely important: the best minimum mean square estimate of a

quantity is the conditional mean of the quantity, given the data to be used in the estimate.

In many cases, the conditional mean is very difficult or even impossible to compute. In the

important Gaussian case (discussed in a later chapter) the conditional mean turns out to be easy

to find. In fact, in the Gaussian case, the conditional mean is always a linear function of the

given data.
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Example 4.6.4. Random variables x and y are independent with

fx(α) =
{

1/20, |α| ≤ 10,

0, otherwise,

and

fy (β) =
{

1/2, |β| ≤ 1,

0, otherwise.

The random variable z = x + y. Find (a) fz(γ ) and (b) x̂ = g (z) to minimize E((x̂ − g (z))2).

Solution. (a) We find fz using the convolution of fx with fy :

fz(γ ) =
∞∫

−∞
fy (γ − α) fx(α) dα .

For −11 < γ < −9,

fz(γ ) =
γ+1∫

−10

1

40
dα = γ + 11

40
.

For −9 < γ < 9,

fz(γ ) =
γ+1∫

γ−1

1

40
dα = 1

20
.

For 9 < γ < 11,

fz(γ ) =
10∫

γ−1

1

40
dα = 11 − γ

40
.

Finally, fz(γ ) = 0 if |γ | > 11.

(b) From the preceding theorem, we know that x̂ = g (z) = ηx|z. Using the fact that fx,z(α, γ ) =
fx(α) fy (γ − α), we find

fx|z(α |γ ) = fx(α) fy (γ − α)

fz(γ )
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

γ + 11
, −10 < α < γ + 1,

1

2
, γ − 1 < α < γ + 1,

1

11 − γ
, γ − 1 < α < 10.
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Notes that for each fixed value of γ with |γ | < 11, we have that fx|z(α |γ ) is a valid PDF (as a

function of α). Consequently,

E(x|z = γ ) =
∞∫

−∞
α fx|z(α |γ ) dα

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(γ + 1)2 − 100

2(γ + 11)
, −11 < γ < −9,

(γ + 1)2 − (γ − 1)2

4
= γ, |γ | < 9,

100 − (γ − 1)2

2(11 − γ )
, 9 < γ < 11.

We conclude that

x̂ = g (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(z + 1)2 − 100

2(z + 11)
, −11 < z < −9,

z, |γ | < 9,

100 − (z − 1)2

2(11 − z)
, 9 < z < 11.

�

Drill Problem 4.6.1. Random variables x and y have joint PMF shown in Fig. 4.18. Find (a)

E(x | y = 3), (b) σ 2
x|y=2, and (c) σx,y |x+y≥5.

Answers: 24/25, −3/16, 2.
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FIGURE 4.18: PMF for Drill Problem 4.6.1.
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Drill Problem 4.6.2. The joint PDF for the RVs x and y is

fx,y (α, β) =
⎧⎨⎩

2

9
α2β, 0 < α < 3, 0 < β < 1

0, otherwise,

and event A = {x + y ≤ 1}. Find: (a) E(x | y = 0.5), (b)E(x | A), and (c) σx,y |A.

Answers: 9/4, −1/42, 1/2.

Drill Problem 4.6.3. The joint PDF for the RVs x and y is

fx,y (α, β) =
⎧⎨⎩

2β

α
, 0 < β <

√
α < 1

0, otherwise.

Determine: (a) E(y |x = 0.25), (b)E(x |x + y ≤ 1), (c )E(4x − 2 |x + y ≤ 1), and (d) σ 2
y |x=0.25.

Answers: −0.86732, 1/72, 0.28317, 1/3.

Drill Problem 4.6.4. The joint PDF for the RVs x and y is

fx,y (α, β) =
{

4αβ, 0 < α < 1, 0 < β < 1

0, otherwise.

Determine whether or not x and y are (a) independent; (b) independent, given A = {x + y ≥ 1}.
Answers: No, Yes.

4.7 SUMMARY
In this chapter, jointly distributed RVs are considered. The joint CDF for the RVs x and y is

defined as

Fx,y (α, β) = P (ζ ∈ S : x(ζ ) ≤ α, y(ζ ) ≤ β). (4.84)

Probabilities for rectangular-shaped regions, as well as marginal CDFs are easily obtained

directly from the joint CDF. If the RVs x and y are jointly discrete, the joint PMF

px,y (α, β) = P (ζ ∈ S : x(ζ ) = α, y(ζ ) = β) (4.85)

can be obtained from the joint CDF, and probabilities can be computed using a two-dimensional

summation. If the RVs are jointly continuous (or if Dirac delta functions are permitted) then

the joint PDF is defined by

fx,y (α, β) = ∂2 Fx,y (α, β)

∂β ∂α
, (4.86)



P1: IML/FFX P2: IML/FFX QC: IML/FFX T1: IML

MOBK041-04 MOBK041-Enderle.cls October 27, 2006 7:23

86 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

where left-hand derivatives are assumed. The two-dimensional Riemann-Stieltjes integral can

be applied in the general mixed RV case.

The expectation operator is defined as

E(g (x, y)) =
∞∫

−∞
g (α, β) d Fx,y (α, β) . (4.87)

Various moments, along with the moment generating function are defined. The correla-

tion coefficient is related to the covariance and standard deviations by ρx,y = σx,y/(σxσy ), and

is seen to satisfy |ρx,y | ≤ 1. Some important inequalities are presented. The two-dimensional

characteristic function is seen to be a straightforward extension of the one–dimensional case.

A convolution operation arises naturally when determining the distribution for the sum

of two independent RVs. Characteristic functions provide an alternative method for computing

a convolution.

The conditional CDF, given the value of a RV, is defined as

Fx|y (α |β) = lim
h→0

Fx,y (α, β) − Fx,y (α, β − h)

Fy (β) − Fy (β − h)
; (4.88)

the corresponding conditional PMF and PDF follow in a straightforward manner. The condi-

tional expectation of x, given y = β, is defined as

E(x | y = β) =
∞∫

−∞
α d Fx|y (α |β) . (4.89)

As we will see, all of these concepts extend in a logical manner to the n-dimensional

case—the extension is aided greatly by the use of vector–matrix notation.

4.8 PROBLEMS
1. Which of the following functions are legitimate PDFs? Why, or why not?

(a)

g1(α, β) =
{

α2 + 0.5αβ, 0 ≤ α ≤ 1, 0 ≤ β ≤ 2

0, otherwise.

(b)

g2(α, β) =
{

2(α + β − 2αβ), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1

0, otherwise.
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(c)

g3(α, β) =
{

e−αe−β, α > 0, β > 0

0, otherwise.

(d)

g4(α, β) =
{

α cos(β), 0 ≤ α ≤ 1, 0 ≤ β ≤ π

0, otherwise.

2. Find the CDF Fx,y (α, β) if

fx,y (α, β) =
{

0.25, 0 ≤ β ≤ 2, β ≤ α ≤ β + 2

0, otherwise.

3. Random variables x and y have joint PDF

fx,y (α, β) =
{

aα2, 0 ≤ β ≤ 1, 1 ≤ α ≤ eβ

0, otherwise.

Determine: (a) a , (b) fx(α), (c) fy (β), (d) P (x ≤ 2).

4. With the joint PDF of random variables x and y given by

fx,y (α, β) =
{

a(α2 + β2), −1 < α < 1, 0 < β < 2

0, otherwise.

Determine: (a) a , (b) P (−0.5 < x < 0.5, 0 < y < 1), (c) P (−0.5 < x < 0.5),

(d) P (|xy | > 1).

5. The joint PDF for random variables x and y is

fx,y (α, β) =
{

a(α2 + β2), 0 < α < 2, 1 < β < 4

0, otherwise.

Determine: (a) a , (b) P (1 ≤ x ≤ 2, 2 ≤ y ≤ 3), (c) P (1 < x < 2), (d) P (x + y > 4).

6. Given

fx,y (α, β) =
{

a(α2 + β), 0 < α < 1, 0 < β < 1

0, otherwise.

Determine: (a) a , (b) P (0 < x < 1/2, 1/4 < y < 1/2), (c) fy (β), (d) fx(α).
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7. The joint PDF for random variables x and y is

fx,y (α, β) =
{

a |αβ|, |α |< 1, |β |< 1

0, otherwise.

Determine (a) a , (b) P (x > 0), (c) P (xy > 0), (d) P (x − y < 0).

8. Given

fx,y (α, β) =
⎧⎨⎩a

β

α
, 0 < β < α < 1

0, otherwise.

Determine: (a) a , (b) P (1/2 < x < 1, 0 < y < 1/2), (c) P (x + y < 1), (d) fx(α).

9. The joint PDF for random variables x and y is

fx,y (α, β) =
⎧⎨⎩

1

50
(α2 + β2), 0 < α < 2, 1 < β < 4

0, otherwise.

Determine: (a) P (y < 4 |x = 1), (b) P (y < 2 |x = 1), (c) P (y < 3 |x + y > 4).

10. Random variables x and y have the following joint PDF.

fx,y (α, β) =
{

aα exp(−α(1 + β)), α > 0, β > 0

0, otherwise.

Find: (a) a , (b) fx(α), (c) fy (β), (d) fx|y (α |β), (e) fy |x(β |α).

11. Random variables x and y have joint PDF

fx,y (α, β) =
⎧⎨⎩

1

2α2β
, α ≥ 1,

1

α
≤ β ≤ α

0, otherwise.

Event A = {max(x, y) ≤ 2}. Find: (a) fx,y |A(α, β | A), (b) fx|A(α | A), (c) fy |A(β | A),

(d) fx|y (α |β), (e) fy |x(β |α).

12. Random variables x and y have joint PDF

fx,y (α, β) =
⎧⎨⎩

3

32
(α3 + 4β), 0 ≤ α ≤ 2, α2 ≤ β ≤ 2α

0, otherwise.

Event A = {y ≤ 2}. Find: (a) fx,y |A(α, β), (b) fx|A(α | A), (c) fy |A(β | A), (d) fx|y (α |β),

(e) fy |x(β |α).
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13. The joint PDF for random variables x and y is

fx,y (α, β) =
{

a, α2 < β < α

0, otherwise.

Determine: (a) a , (b) P (x ≤ 1/2, y ≤ 1/2), (c) P (x ≤ 1/4), (d) P (y < 1/2 − x),

(e) P (x < 3/5 | y = 3/4).

14. Random variables x and y have joint PDF

fx,y (α, β) =
{

a, α + β ≤ 1, 0 ≤ α, 0 ≤ β

0, otherwise.

Determine: (a) a , (b) Fx,y (α, β), (c) P (x < 3/4), (d) P (y < 1/4 |x ≤ 3/4),

(e) P (x > y).

15. The joint PDF for random variables x and y is

fx,y (α, β) =
⎧⎨⎩

3

8
α, 0 ≤ β ≤ α ≤ 2

0, otherwise.

Event A = {x ≤ 2 − y}. Determine: (a) fx(α), (b) fy (β), (c) fx|y (α |β), (d) fy |x(β |α),

(e) fx|A(α | A), (f ) fy |A(β | A).

16. Random variables x and y have joint PDF

fx,y (α, β) =
{

8αβ, 0 ≤ α2 + β2 ≤ 1, α ≥ 0, β ≥ 0

0, otherwise.

Let event A = {x ≥ y}. Determine: (a) P (A), (b) fx,y |A(α, β | A), (c) fx|A(α | A).

17. Random variables x and y have joint PDF

fx,y (α, β) =
⎧⎨⎩

1

8
(α2 − β2) exp(−α), α ≥ 0, |β |≤ α

0, otherwise.

(a) Determine fy |x(β |α). (b) Write the integral(s) necessary to find the marginal PDF

for y (do not solve). (c) Given the event B = {x2 + y2 ≤ 1}, write the integral(s)

necessary to find P (B) (do not solve).

18. Random variables x and y have joint PDF

fx,y (α, β) =
{

aα2β(2 − β), 0 ≤ α ≤ 2, 0 ≤ β ≤ 2

0, otherwise.

Determine: (a) a , (b) fy (β), (c) fx|y (α |β), (d) whether or not x and y are independent.
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19. Given

fx,y (α, β) =
⎧⎨⎩

2

9
α2β, 0 < α < 3, 0 < β < 1

0, otherwise,

and event A = {x < y}. Determine: (a) fx|y (α |β); (b) fy |x(β |α); (c) P (x < 2 | y =
3/4); (d) P (x ≤ 1, y ≤ 0.5 | A); (e) P (y ≤ 0.5 | A); (f ) whether or not x and y are

independent; (g) whether or not x and y are independent, given A.

20. Determine if random variables x and y are independent if

fx,y (α, β) =
{

0.6(α + β2), 0 < α < 1,|β |< 1

0, otherwise.

21. Given

fx,y (α, β) =
{

10α2β, 0 ≤ β ≤ α ≤ 1

0, otherwise,

and event A = {x + y > 1}. Determine: (a) fy |x(β |3/4); (b) fy |A(β | A); (c) whether

x and y are independent random variables, given A.

22. The joint PDF for x and y is given by

fx,y (α, β) =
{

2, 0 < α < β < 1

0, otherwise.

Event A = {1/2 < y < 3/4, 1/2 < x}. Determine whether random variables x and y

are: (a) independent; (b) conditionally independent, given A.

23. Random variables x and y have joint PDF

fx,y (α, β) =
{

2, α + β ≤ 1, α ≥ 0, β ≥ 0

0, otherwise.

Are random variables x and y : (a) independent; (b) conditionally independent, given

max(x, y) ≤ 1/2?

24. Given

fx,y (α, β) =
{

6(1 − α − β), α + β ≤ 1, α ≥ 0, β ≥ 0

0, otherwise.

Determine: (a) fx|y (α |β), (b) Fx|y (α |β), (c) P (x < 1/2 | y = 1/2), (d) fy |x(β |α),

(e) whether x and y are independent.
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25. Random variables x and y have joint PDF

fx,y (α, β) =
{

β sin(α), 0 ≤ β ≤ 1, 0 ≤ α ≤ π

0, otherwise.

Event A = {y ≥ 0.5} and B = {x > y}. Determine whether random variables x and

y are: (a) independent; (b) conditionally independent, given A; (c) conditionally inde-

pendent, given B.

26. With the joint PDF of random variables x and y given by

fx,y (α, β) =
{

a(α2 + β2), |α| < 1, 0 < β < 2

0, otherwise,

determine (a) fx(α), (b) fy (β), (c) fx|y (α |β), (d) whether x and y are independent.

27. The joint PDF for random variables x and y is

fx,y (α, β) =
{

a |αβ|, |α| < 1, |β| < 1

0, otherwise.

Event A = {xy > 0}. Determine (a) a ; (b) fx|A(α | A); (c) fy |A(β | A); (d) whether x

and y are conditionally independent, given A.

28. Let the PDF of random variables x and y be

fx,y (α, β) =
{

aα exp(−(α + β)), α > 0, β > 0

0, otherwise.

Determine (a) a , (b) fx(α), (c) fy (β), (d) fx|y (α |β), (e) whether x and y are indepen-

dent.

29. Given

fx,y (α, β) =
{

6α2β, 0 < α < 1, 0 < β < 1

0, otherwise,

and event A = {y < x}. Determine: (a) P (0 < x < 1/2, 0 < y < 1/2 | A);

(b) fx|A(α | A); (c) fy |A(β | A); (d) whether x and y are independent, given A.

30. Determine the probability that an experimental value of x will be greater than E(x) if

fx,y (α, β) =
{

a(α2β + 1), α ≥ 0, 0 ≤ β ≤ 2 − 0.5α

0, otherwise.
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31. Random variables x and y have joint PDF

fx,y (α, β) =
{

2, α + β ≤ 1, α ≥ 0, β ≥ 0

0, otherwise.

Determine: (a) E(x), (b) E(y |x ≤ 3/4), (c) σ 2
x , (d) σ 2

y |A, where A = {x ≥ y}, (e) σx,y .

32. The joint PDF for random variables x and y is

fx,y (α, β) =
{

12α(1 − β), α ≥ 0, α2 ≤ β ≤ 1

0, otherwise.

Event A = {y ≥ x1/2}. Determine: (a) E(x); (b) E(y); (c) E(x | A); (d) E(y | A);

(e) E(x + y | A); (f ) E(x2 | A); (g) E(3x2 + 4x + 3y | A); (h) the conditional covari-

ance for x and y , given A; (i) whether x and y are conditionally independent, given A;

(j) the conditional variance for x, given A.

33. Suppose x and y have joint PDF

fx,y (α, β) =
⎧⎨⎩

16β

α3
, α > 2, 0 < β < 1

0, otherwise.

Determine: (a) E(x), (b) E(y), (c) E(xy), (d) σx,y .

34. The joint PDF of random variables x and y is

fx,y (α, β) =
{

a(α + β2), 0 < α < 1, |β| < 1

0, otherwise.

Event A = {y > x}. Determine: (a) a ; (b) fx(α); (c) fy |x(β |α); (d) E(y | x = α); (e)

E(xy); (f ) fx,y |A(α, β | A); (g) E(x | A); (h) whether x and y are independent; (i) whether

x and y are conditionally independent, given A.

35. Suppose

fx(α) = α

8
(u(α) − u(α − 4))

and

fy |x(β |α) =
{

1/α, 0 ≤ β ≤ α ≤ 4

0, otherwise.

Determine: (a) fx,y (α, β), (b) fy (β), (c) E(x − y), (d) P (x < 2 | y < 2), (e) P (x − y <

1 | y < 2).
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36. The joint PDF of random variables x and y is

fx,y (α, β) =
{

aα, α > 0, −1 < β − α < β < 0

0, otherwise.

Event A = {0 > y > −0.5}. Determine (a) a , (b) fx(α), (c) fy (β), (d) E(x), (e) E(y),

(f ) E(x2), (g) E(y2), (h) E(xy), (i) σ 2
x , (j) σ 2

y , (k) σx,y , (l) fx,y |A(α, β | A), (m) E(x | A).

37. Random variables x and y have joint PDF

fx,y (α, β) =
{

0.6(α + β2), 0 < α < 1, |β| < 1

0, otherwise.

Determine: (a) E(x), (b) E(y), (c) σ 2
x , (d) σ 2

y , (e) σx,y , (f ) E(y |x = α), (g) E(x | y = β),

(h) σ 2
y |x , (i) σ 2

x|y .

38. Given

fx,y (α, β) =
{

1.2(α2 + β), 0 ≤ α ≤ 1, 0 ≤ β ≤ 1

0, otherwise.

Event A = {y < x}. Determine: (a) ηy , (b) ηx|y=1/2, (c) E(x | A), (d) σx,y , (e) σx,y |A,

(f ) σ 2
x|y=1/2, (g) σ 2

x|A.

39. Random variables x and y have joint PDF

fx,y (α, β) =
{

β sin(α), 0 ≤ α ≤ π, 0 ≤ β ≤ 1

0, otherwise.

Event A = {y ≥ 0.5} and B = {x > y}. Determine: (a) E(x | A), (b) E(y | A), (c) E(x |
B), (d) E(y | B), (e) ρx,y , (f ) ρx,y |A.

40. If random variables x and y have joint PDF

fx,y (α, β) =
{

0.5β exp(−α), α ≥ 0, 0 ≤ β ≤ 2

0, otherwise,

determine: (a) σx,y , (b) ρx,y , (c) E(y |x = α), (d) σx|y .

41. The joint PDF for random variables x and y is

fx,y (α, β) =
{

10α2β, 0 ≤ β ≤ α ≤ 1

0, otherwise.

Event A = {x + y > 1}. Determine: (a) E(y |x = 3/4), (b) E(y | A), (c) E(y2 | A),

(d) E(5y2 − 3y + 2 | A), (e) σ 2
y |A, (f ) σ 2

y |x=3/4.
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42. Random variables x and y have joint PDF

fx,y (α, β) =
{

a(αβ + 1), 0 < α < 1, 0 < β < 1

0, otherwise.

Event A = {x > y}. Find: (a) a , (b) fy (β), (c) fx|y (α |β), (d) E(y), (e) E(x | y),
(f ) E(xy), (g) P (A), (h) fx,y |A(α, β | A), (i) E(xy | A).

43. Let random variables x and y have joint PDF

fx,y (α, β) =
{

1/16, 0 ≤ α ≤ 8, |β| ≤ 1

0, otherwise.

Random variable z = yu(y). Determine: (a) σx , (b) σy , (c) σz.

44. Random variables x and y have joint PDF

fx,y (α, β) =
{

3(α2 + β2), 0 ≤ β ≤ α ≤ 1

0, otherwise.

Event A = {x2 + y2 ≤ 1}. Determine: (a) σx,y , (b) ρx,y , (c) σx,y |A, (d) ρx,y |A.

45. The joint PDF for random variables x and y is

fx,y (α, β) =
⎧⎨⎩

9

208
α2β2, 0 ≤ β ≤ 2, 1 ≤ α ≤ 3

0, otherwise.

Determine: (a) σ 2
x , (b) E(x | y), (c) whether x and y are independent, (d) E(g (x)) if

g (x) = 26 sin(πx)/3, (e) E(h(x, y)) if h(x, y) = xy .

46. Suppose random variables x and y are independent with

fx,y (α, β) =
{

2 exp(−2α), α > 0, 0 ≤ β ≤ 1

0, otherwise.

Determine E(y(x + y)).

47. Prove the following properties: (a) Given random variable x and constants a and b,

E(ax + b) = a E(x) + b. (b) Given independent random variables x and y , E(xy) =
E(x)E(y). (c) Given random variable x, constants a and b, and an event A, E(ax + b |
A) = a E(x | A) + b. (d) Given that random variables x and y are conditionally inde-

pendent, given event A, E(xy | A) = E(x | A)E(y | A).

48. Random variables x and y have the joint PDF

fx,y (α, β) = 1

4
(u(α) − u(α − 2))(u(β) − u(β − 2)).

If z = x + y , use convolution to find fz.
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49. Random variables x and y are independent with

fx(α) = e−αu(α)

and

fy (β) = 2e−2βu(β).

If z = x + y , use convolution to find fz.

50. Independent random variables x and y have PDFs

fx(α) = 2e−2αu(α)

and

fy (β) = 1

2
(u(β + 1) − u(β − 1)).

Find fz if z = x + y . Use convolution.

51. Random variables x and y are independent and RV z = x + y . Given

fx(α) = u(α − 1) − u(α − 2)

and

fy (β) = 1√
2

(u(β) − u(β −
√

2)),

use convolution to find fz.

52. Random variables x and y are independent with

fx(α) = 2e−2αu(α)

and

fy (β) = 1

2
(u(β + 1) − u(β − 1)).

With z = x + y , use the characteristic function to find fz.

53. An urn contains four balls labeled 1, 2, 3, and 4. An experiment involves draw-

ing three balls one after the other without replacement. Let RV x denote the sum

of numbers on first two balls minus the number on the third. Let RV y denote

the product of the numbers on the first two balls minus the number on the third.

Event A = {either x or y is negative}. Determine: (a) px,y (α, β); (b) px(α); (c) py (β);

(d) py |x(β |5); (e) px|y (α |5); (f ) E(y |x = 5); (g) σ 2
y |x=5; (h) px,y |A(α, β | A); (i) E(x|A);

(j) whether or not x and y are independent; (k) whether or not x and y are independent,

given A; (l) σx,y ; and (m) σx,y |A.
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TABLE 4.1: Joint PMF for Problems 54–59.

α β = 0 β = 1 β = 2

0 6/56 18/56 6/56

1 12/56 11/56 1/56

2 1/56 0 1/56

54. Random variables x and y have the joint PMF given in Table 4.1. Event A = {x + y ≤
2}. Determine: (a) px ; (b) py ; (c) px|y (α |0); (d) py |x(β |1); (e) px,y |A(α, β | A); (f ) px|A;

(g) py |A; (h) whether or not x and y are independent; (i) whether or not x and y are

independent, given A.

55. Random variables x and y have the joint PMF given in Table 4.1. Event A = {x +
y ≤ 2}. Determine: (a) E(x), (b) E(x2), (c) σ 2

x , (d) E(5x), (e) σ 2
2x+1, (f ) E(x − 3x2),

(g) E(x | A), (h) E(x2 | A), (i) E(3x2 − 2x | A).

56. Random variables x and y have the joint PMF given in Table 4.1. Event A = {x + y ≤
2}. Determine: (a) E(y), (b) E(y2), (c) σ 2

y , (d) E(5y − 2), (e) σ 2
3y , (f ) E(5y − y2),

(g) E(y | A), (h) E(y2 | A), (i) E(3y2 − 2y | A).

57. Random variables x and y have the joint PMF given in Table 4.1. Event A = {x + y ≤
2}. If w(x, y) = x + y , then determine: (a) pw, (b) pw|A, (c) E(w), (d) E(w | A), (e) σ 2

w,

(f ) σ 2
w|A.

58. Random variables x and y have the joint PMF given in Table 4.1. Event A = {x + y ≤
2}. If z(x, y) = x2 − y , then determine: (a) pz, (b) pz|A, (c) E(z), (d) E(z| A), (e) σ 2

z ,

(f ) σ 2
z|A.

59. Random variables x and y have the joint PMF given in Table 4.1. Event B = {zw > 0},
where w(x, y) = x + y , and z(x, y) = x2 − y . Determine: (a) pz,w, (b) pz, (c) pw,

(d) pz|w(γ |2), (e) pz|B , (f ) ηz, (g) ηz|B , (h) σ 2
z , (i) σ 2

z|B , (j) σz,w, (k)

σz,w|B .

60. Random variables x and y have joint PMF shown in Fig. 4.19. Event A = {xy ≥ 1}.
Determine: (a) px ; (b) py ; (c) px|y (α |1); (d) py |x(β |1); (e) px,y |A(α, β | A); (f ) px|A;

(g) py |A; (h) whether or not x and y are independent; (i) whether or not x and y are

independent, given A.

61. Random variables x and y have joint PMF shown in Fig. 4.19. Event A = {xy ≥
1}. Determine: (a) E(x), (b) E(x2), (c) σ 2

x , (d) E(x − 1), (e) σ 2
3x , (f ) E(5x − 3x2),

(g) E(x | A), (h) E(x2 | A), (i) E(x2 + 2x | A).
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FIGURE 4.19: PMF for Problems 60–65.

62. Random variables x and y have joint PMF shown in Fig. 4.19. Event A = {xy ≥
1}. Determine: (a) E(x + y), (b) E(y2), (c) σ 2

y , (d) E(5y − x), (e) σ 2
x,y , (f ) σx,y |A,

(g) E(x + y | A), (h) E(x2 + y2 | A), (i) E(3y2 − 2x | A).

63. Random variables x and y have joint PMF shown in Fig. 4.19. Event A = {xy ≥ 1}.
If w(x, y) = |x − y |, then determine: (a) pw, (b) pw|A, (c) E(w), (d) E(w | A), (e) σ 2

w,

(f ) σ 2
w|A.

64. Random variables x and y have joint PMF shown in Fig. 4.19. Event A = {xy ≥ 1}.
If z(x, y) = 2x − y , then determine: (a) pz, (b) pz|A, (c) E(z), (d) E(z| A), (e) σ 2

z ,

(f ) σ 2
z|A.

65. Random variables x and y have joint PMF shown in Fig. 4.19. Event B = {z + w ≤ 2},
where w(x, y) = |x − y |, and z(x, y) = 2x − y . Determine: (a) pz,w, (b) pz, (c) pw,

(d) pz|w(γ |0), (e) pz|B , (f ) ηz, (g) ηz|B , (h) σ 2
z , (i) σ 2

z|B , (j) σz,w, (k) σz,w|B .

66. Random variables x and y have joint PMF shown in Fig. 4.20. Event A = {x > 0, y >

0} and event B = {x + y ≤ 3}. Determine: (a) px ; (b) py ; (c) px|y (α |2); (d) py |x(β |4);

(e) px,y |Ac ∩B(α, β | Ac ∩ B); (f ) px|Ac ∩B ; (g) py |Ac ∩B ; (h) whether or not x and y are

independent; (i) whether or not x and y are independent, given Ac ∩ B.

67. Random variables x and y have joint PMF shown in Fig. 4.20. Event A = {x > 0, y >

0} and event B = {x + y ≤ 3}. Determine: (a) E(x), (b) E(x2), (c) σ 2
x , (d) E(x − 2y),

(e) σ 2
2x , (f ) E(5x − 3x2), (g) E(x | A ∩ B), (h) E(x2 | A ∩ B), (i) E(3x2 − 2x | A ∩ B).

68. Random variables x and y have joint PMF shown in Fig. 4.20. Event A = {x >

0, y > 0} and event B = {x + y ≤ 3}. Determine: (a) E(y), (b) E(y2), (c) σ 2
y , (d)

E(5y − 2x2), (e) σ 2
3y , (f ) E(5y − 3y2), (g) E(x + y | A ∩ B), (h) E(x2 + y2 | A ∩ B),

(i) E(3y2 − 2y | A ∩ B).

69. Random variables x and y have joint PMF shown in Fig. 4.20. Event A = {x > 0, y >

0}. If w(x, y) = y − x, then determine: (a) pw, (b) pw|Ac , (c) E(w), (d) E(w | Ac ),

(e) σ 2
w, (f ) σ 2

w|Ac .
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FIGURE 4.20: PMF for Problems 66–71.

70. Random variables x and y have joint PMF shown in Fig. 4.20. Event A = {x > 0, y >

0}. If z(x, y) = xy , then determine: (a) pz, (b) pz|Ac , (c) E(z), (d) E(z| Ac ), (e) σ 2
z ,

(f ) σ 2
z|A.

71. Random variables x and y have joint PMF shown in Fig. 4.20. Event B = {z + w ≤ 1},
where w(x, y) = y − x, and z(x, y) = xy . Determine: (a) pz,w, (b) pz, (c) pw, (d)

pz|w(γ |0), (e) pz|B , (f ) ηz, (g) ηz|B , (h) σ 2
z , (i) σ 2

z|B , (j) σz,w, (k) σz,w|B .

72. Random variables x and y have joint PMF shown in Fig. 4.21. Event A = {2 ≤ x + y <

5}. Determine: (a) px , (b) py , (c) px,y |A, (d) px|A, (e) py |A.
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FIGURE 4.21: PMF for Problems 72–77.
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73. Random variables x and y have joint PMF shown in Fig. 4.21. Event A = {2 ≤ x + y <

5}. Determine: (a) E(x), (b) E(x2), (c) σ 2
x , (d) E(3x + 4x2 − 5), (e) σ 2

2x+5, (f ) E(x | A),

(g) E(x2 | A), (h) E(3x + 4x2 − 5 | A).

74. Random variables x and y have joint PMF shown in Fig. 4.21. Event A = {2 ≤ x + y <

5}. Determine: (a) E(3x + y), (b) E(y2 + x2), (c) E(4y + 3y2 − 1), (d) σ 2
y , (e) σx,y ,

(f ) σ 2
3y+2x , (g) E(x + y | A), (h) E(y |x = 2), (i) E(x2 + y2 | A), (j) σ 2

y |A, (k) σx,y |A,

(l) σ 2
x+y |A.

75. Random variables x and y have joint PMF shown in Fig. 4.21. Event A = {2 ≤ x + y <

5}. If w(x, y) = max(x, y), then determine: (a) pw, (b) pw|A, (c) E(w), (d) E(w | A),

(e) σ 2
w, (f ) σ 2

w|A.

76. Random variables x and y have joint PMF shown in Fig. 4.21. Event A = {2 ≤ x + y <

5}. If z(x, y) = min(x, y), then determine: (a) pz, (b) pz|A, (c) E(z), (d) E(z| A), (e) σ 2
z ,

(f ) σ 2
z|A.

77. Random variables x and y have joint PMF shown in Fig. 4.21. Event B = {z − 2w >

1}, where w(x, y) = max(x, y), and z(x, y) = min(x, y). Determine: (a) pz,w, (b) pz,

(c) pw, (d) pz|w(γ |0), (e) pz|B , (f ) ηz, (g) ηz|B , (h) σ 2
z , (i) σ 2

z|B , (j) σz,w, (k) σz,w|B .

78. Random variables x and y have the joint PMF shown in Fig. 4.22. Event A = {x < 4},
event B = {x + y ≤ 4}, and event C = {xy < 4}. (a) Are x and y independent RVs?

Are x and y conditionally independent, given: (b) A, (c) B, (d) C , (e) Bc ?

79. Prove that if

g (x, y) = a1g1(x, y) + a2g2(x, y)

then

E(g (x, y)) = a1 E(g1(x, y)) + a2 E(g2(x, y)).
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FIGURE 4.22: PMF for Problems 78.
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80. Prove that if z = g (x) then

E(z) =
∑

α

g (α)px(α).

81. Let event A = {g (x, y)}, where g (x, y) is an arbitrary (measurable) function of the

discrete RVs x and y . Prove or give a counter example:

px|A(α | A) = px(α)

P (A)
.

82. Let event A = {g (x, y)}, where g (x, y) is an arbitrary (measurable) function of the

discrete RVs x and y . The RVs x and y are conditionally independent, given event A.

Prove or give a counter example:

px|A(α | A) = px(α)

P (A)
.

83. Random variables x and y are independent. Prove or give a counter example:

E

(
x

y

)
= E(x)

E(y)
.

84. Random variables x and y are independent with marginal PMFs

px(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/3, α = −1

4/9, α = 0

2/9, α = 1

0, otherwise,

and

py (β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/4, β = 0

1/4, β = 1

1/2, β = 2

0, otherwise.

Event A = {min(x, y) ≤ 0}. Determine: (a) px,y ; (b) whether or not x and y are inde-

pendent, given A; (c) E(x + y); (d) E(x + y | A); (e) E(xy); (f ) ρx,y ; (g) ρx,y |A.

85. Random variables x and y satisfy: E(x) = 10, σx = 2, E(y) = 20, σy = 3, and σx,y =
−2. With z = z(x, y) = x + y , determine: (a) ρx,y , (b) σ2x , (c) E(z), and (d) σz.

86. Random variables x and y satisfy: ηx = 5, ηy = 4, σx,y = 0, σx = 4, and σy = 5. De-

termine: (a) E(3x2 + 5x + 1), (b) E(xy), (c) σ3x+2y , (d) whether or not x and y are

independent RVs.
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87. A course in random processes is taught at Fargo Polytechnic Institute (FPI). Due to

scheduling difficulties, on any particular day, the course could be taught in any of the

rooms A, B, or C. The following a priori probabilities are known

P (A) = 1

2
, P (B) = 1

3
, P (C) = 1

6
,

where events A, B, and C denote the events that the course is taught in room A, B, and C,

respectively. Room A contains 60 seats, room B contains 45 seats, and room C contains

30 seats. Sometimes there are not enough seats because 50 students are registered for the

course; however, they do not all attend every class. In fact, the probability that exactly

n students will attend any particular day is the same for all possible n ∈ {0, 1, . . . , 50}.
(a) What is the expected number of students that will attend class on any particular

day? (b) What is the expected number of available seats in the class on any particular

day? (c) What is the probability that exactly 25 seats in the class will not be occupied

on any particular day? (d) What is the probability that there will not be enough seats

available for the students who attend on any particular day?

Besides having trouble with scheduling, FPI is also plagued with heating problems.

The temperature t in any room is a random variable which takes on integer values (in

degrees Fahrenheit). In each room, the PMF pt(τ ) for t is constant over the following

ranges:

Room A: 70 ≤ τ ≤ 80,

Room B: 60 ≤ τ ≤ 90,

Room C: 50 ≤ τ ≤ 80;

outside these ranges, the PMF for t is zero.

(e) What is the PMF for the temperature experienced by the students in class? (f ) Given

that the temperature in class today was less than 75 degrees, what is the probability that

today’s class was taught in room A?

88. Random variables x1 and x2 are independent, identically distributed with PMF

px1
(α) =

{
a/α2, α = −3, −2, 1, 4,

0, otherwise.

Random variable y = x1 + x2 and event A = {x1 + x2}. Find: (a) a , (b) P (x1 > x2),

(c) py , (d) E(y), (e) E(y | A), (f ) σ 2
y , (g) σ 2

y |A.
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89. Random variables x1 and x2 are independent, identically distributed with PMF

px1
(k) =

⎧⎪⎨⎪⎩
(

3

k

)
(0.3)k(0.7)3−k, k = 0, 1, 2, 3

0, otherwise.

Find: (a) E(x1), (b) σ 2
x1

, (c) E(x1|x1 > 0), (d) σ 2
x1|x1>0, (e) P (x1 ≤ x2 + 1).

90. The Electrical Engineering Department at Fargo Polytechnic Institute has an out-

standing bowling team led by Professor S. Rensselear. Because of her advanced age, the

number of games she bowls each week is a random variable with PMF

px(α) =
{

a − α
12

, α = 0, 1, 2

0, otherwise.

To her credit, Ms. Rensselear always attends each match to at least cheer for the

team when she is not bowling. Let x1, . . . , xn be n independent, identically distributed

random variables with xi denoting the number of games bowled in week i by Prof.

Rensselear. Define the RVs z = max(x1, x2) and w = min(x1, x2). Determine: (a) a ,

(b) P (x1 > x2), (c) P (x1 + x2 + · · · + xx ≤ 1), (d) pz,w, (e) E(z), (f ) E(w), (g) σz,w.

91. Professor S. Rensselear, a very popular teacher in the Electrical Engineering Depart-

ment at Fargo Polytechnic Institute, gets sick rather often. For any week, the probability

she will miss exactly α days of days of lecture is given by

px(α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1/8, α = 0

1/2, α = 1

1/4, α = 2

1/8, α = 3

0, otherwise.

The more days she misses, the less time she has to give quizzes. Given that she was sick

α days this week, the conditional PMF describing the number of quizzes given is

py |x(β |α) =
⎧⎨⎩

1

4 − α
, 1 ≤ β ≤ 4 − α

0, otherwise.

Let y1, y2, · · ·, yn denote n independent, identically distributed RVs, each distributed

as y . Additionally, the number of hours she works each week teaching a course on

probability theory is w = 10 − 2x + y , and conducting research is z = 20 − x2 + y .

Determine: (a) py , (b) px,y , (c) px|y (α |2), (d) P (y1 > y2), (e) P (y1 + y2 + · · · + yn >
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n), (f ) pz,w, (g) pz, (h) pw, (i) pz,w|z>2w, (j) E(z), (k) E(w), (l) E(z|z > 2w), (m) σ 2
z ,

(n) σ 2
z|z>2w, (o) σz,w, (p) σz,w|z>2w, (q) ρz,w, (r) ρz,w|z>2w.

92. Professor Rensselaer has been known to make an occasional blunder during a lecture.

The probability that any one student recognizes the blunder and brings it to the attention

of the class is 0.13. Assume that the behavior of each student is independent of the

behavior of the other students. Determine the minimum number of students in the

class to insure the probability that a blunder is corrected is at least 0.98.

93. Consider Problem 92. Suppose there are four students in the class. Determine the

probability that (a) exactly two students recognize a blunder; (b) exactly one student

recognizes each of three blunders; (c) the same student recognizes each of three blunders;

(d) two students recognize the first blunder, one student recognizes the second blunder,

and no students recognize the third blunder.
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