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ABSTRACT

This is the second in a series of three short books on probability theory and random processes for
biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the
characteristic function. In addition, conditional expectation, conditional moments and the conditional
characteristic function are also discussed. Jointly distributed random variables are described, along
with joint expectation, joint moments, and the joint characteristic function. Convolution is also
developed. A considerable effort has been made to develop the theory in a logical manner—
developing special mathematical skills as needed. The mathematical background required of the
reader is basic knowledge of differential calculus. Every effort has been made to be consistent
with commonly used notation and terminology—both within the engineering community as
well as the probability and statistics literature. The aim is to prepare students for the application
of this theory to a wide variety of problems, as well give practicing engineers and researchers a
tool to pursue these topics at a more advanced level. Pertinent biomedical engineering examples
are used throughout the text.
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Preface

This is the second in a series of short books on probability theory and random processes for
biomedical engineers. This text is written as an introduction to probability theory. The goal was
to prepare students at the sophomore, junior or senior level for the application of this theory to a
wide variety of problems—as well as pursue these topics at a more advanced level. Our approach
is to present a unified treatment of the subject. There are only a few key concepts involved in the
basic theory of probability theory. These key concepts are all presented in the first chapter. The
second chapter introduces the topic of random variables. Later chapters simply expand upon
these key ideas and extend the range of application.

This short book focuses on expectation, standard deviation, moments, and the character-
istic function. In addition, conditional expectation, conditional moments and the conditional
characteristic function are also discussed. Jointly distributed random variables are described,
along with joint expectation, joint moments, and the joint characteristic function. Convolution
is also developed.

A considerable effort has been made to develop the theory in a logical manner—
developing special mathematical skills as needed. The mathematical background required of the
reader is basic knowledge of differential calculus. Every effort has been made to be consistent
with commonly used notation and terminology—both within the engineering community as
well as the probability and statistics literature.

The applications and examples given reflect the authors’ background in teaching prob-
ability theory and random processes for many years. We have found it best to introduce this
material using simple examples such as dice and cards, rather than more complex biological
and biomedical phenomena. However, we do introduce some pertinent biomedical engineering
examples throughout the text.

Students in other fields should also find the approach useful. Drill problems, straightfor-
ward exercises designed to reinforce concepts and develop problem solution skills, follow most
sections. The answers to the drill problems follow the problem statement in random order.
At the end of each chapter is a wide selection of problems, ranging from simple to difficult,
presented in the same general order as covered in the textbook.

We acknowledge and thank William Pruehsner for the technical illustrations. Many of the
examples and end of chapter problems are based on examples from the textbook by Drake [9].







CHAPTER 3

Expectation

Suppose that an experiment is performed NV times and the RV « is observed to take on the value
x = x; on the 7th trial, 7 = 1,2, ..., V. The average of these NV numbers is

1 N
XN = ]—v;xz (31)

We anticipate that as NV — 00, the average observed value of the RV x would converge to a
constant, say x. It is important to note that such sums do not always converge; here, we simply
appeal to one’s intuition to suspect that convergence occurs. Further, we have the intuition that
the value x can be computed if the CDF F, is known. For example, if a single die is tossed a

large number of times, we expect that the average value on the face of the die would approach

1
g(1+2+3+4+5+6)=3,5.

For this case we predict

]

6
X = ZiP(x =i)= /ozde(oz). (3.2)
=1

—00

A little reflection reveals that this computation makes sense even for continuous RVs: the
predicted value for x should be the “sum” of all possible values the RV «x takes on weighted by
the “relative frequency” or probability the RV takes on that value. Similarly, we predict that the

average observed value of a function of «, say g(x), to be

o0

2 = / 2(@) dF.(@). (3.3)

—00

Of course, whether or not this prediction is realized when the experiment is performed a
large number of times depends on how well our model for the experiment (which is based on
probability theory) matches the physical experiment.
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The statistical average operation performed to obtain g(x) is called statistical expectation.
The sample average used to estimate x with ¥y is called the sample mean. The quality of
estimate attained by a sample mean operation is investigated in a later chapter. In this chapter,
we present definitions and properties of statistical expectation operations and investigate how
knowledge of certain moments of a RV provides useful information about the CDEF.

3.1 MOMENTS
Definition 3.1.1.  The expected value of g(x) is defined by

o0

E(g(x)) = / (@) dF.@), (3.4)

—00
provided the integral exists. The mean of the RV x is defined by

o0

0, = E(x) = / o dF,(@). (3.5)

—0o0

The variance of the RV x is defined by
o7 = E((x — n.)?), (3.6)

and the nonnegative quantity o, is called the standard deviation. The nth moment and the nth

central moment, respectively, are defined by
m, = E(x") (3.7)
and

tn = E((x = nx)"). (3.8)

The expected value of g(x) provides some information concerning the CDF F,. Knowledge of
E(g(x)) does not, in general, enable F, to be determined—but there are exceptions. For any
real value of «,

Eulo — x)) = / ule — o) dF. (&) = f dF (o) = Fu(ct). (3.9)

The sample mean estimate for E(u(a — x)) is

% Z uler — x;),

=1
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the empirical distribution function discussed in Chapter 2. If @ € 9%* and « is a continuous RV
then (for all « where £, is continuous)
E((a — %)) = / S — o) fulo) da! = fila). (3.10)

Let A be an event on the probability space (S, F, P), and let

o=t st
With %(¢) = 14(¢), « is a legitimate RV with x~1({1}) = 4 and ¥ ~1({0}) = 4°. Then
E(x) = foooz dF,. () = P(A). (3.12)
The above result may also be written in ;:ms of the Lebesgue-Stieltjes integral as
BUL©)) = L 1e)aP©) = [ ap) = Pl (3.13)

The function I, is often called an indicator function.

If one interprets a PDF £, as a “mass density”, then the mean E(x) has the interpretation
of the center of gravity, E(x?) becomes the moment of inertia about the origin, and the variance
Gf becomes the central moment of inertia. The standard deviation o, becomes the radius of
gyration. A small value of o2 indicates that most of the mass (probability) is concentrated at
the mean; i.e., x(¢) &~ n, with high probability.

Example 3.1.1.  The RV x has the PMF

%, a=b—a

%, a=b+a
Pala) = T

0, otherwise,

where a and b are real constants with a > 0. Find the mean and variance for x.

Solution. We obtain

o0

. = E(x) = / a dF, (o) =

—00

b—a+b+b+a
4 2 4
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and

- 2
a
ol = B =) = [ (= n)dRle) = 5.
Example 3.1.2. The RV x has PDF
1
b—a

where a and b are real constants with a < b. Find the mean and variance for x.

Sala) = (u(a — a) — u(a — 4))

Solution. We have

1 b —a> b
E(x) = /ozdoz— @ _bta
b—a 26 —a) 2
and
P 5 (b—a)/2 5
) 1 b+a 1 3 (b —a)
o2 = o — do = —— prap ="
b—al, 2 b—a 12
—(6—a)/2
Example 3.1.3.  Find the expected value of g(x) = 2x2 — 1, where
L 1 2
—a’, -l<ac<
Sel@)=13
0, otherwise.
Solution. By definition,
2
o0 1y ., 17
E(g(x)) = gla) fila) da = 3 Qa® — Do da = =
o J

Example 3.1.4. The RV x has PDF

151 —a?), 0<a<l1
0, elsewhere.

Sala) = {

Find the mean, the second moment, and the variance for the RV x.

Solution. From the definition of expectation,

]

1
ne = E(x) = /aﬂ(oe)doz:%/(a—f)doz:%.
0

—0o0
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Similarly, the second moment is

00 1
my = E(x?) = /azfx(oz)doz _ %/(az_a“)da :%(51;53) _ %
s )

Applying the definition of variance,

2
<a — %) %(1 —a?) da.

Q
2o
Il
oY

Instead of expanding the integrand directly, it is somewhat easier to use the change of variable
B=a— %, to obtain

5/8

3 55 3

2_ 2 22 50 2,3 o4 _

ol =3 / (64,3 P ﬂ)dﬁ 0.059375.
-3/8

The following theorem and its corollary provide an easier technique for finding the variance.

The result of importance here is

1 3\? 19
2=E 2_2:__ — = — = U. 9 .
52 (%) — 2 <3 20 0.059375

The PDF for this example is illustrated in Fig. 3.1. Interpreting the PDF as a mass density
along the abscissa, the mean is the center of gravity. Note that the mean always falls between
the minimum and maximum values for which the PDF is nonzero. [ |

The following theorem establishes that expectation is a linear operation and that the

expected value of a constant is the constant.

Af(®

= = W
L
1

T 0 T i T 7%

FIGURE 3.1: PDF for Example 3.1.4.
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Theorem 3.1.1. 7The expectation operator satisfies

E(@)=a (3.14)
and
E(a1g1(x) + axg2(x)) = a1 E(g1(x)) + a2 E(g2(x)), (3.15)

where a, a1, and ay are arbitrary constants and we have assumed that all indicated integrals exist.

Proof. 'The desired results follow immediately from the properties of the Riemann-Stieltjes
integral and the definition of expectation. [ |

Applying the above theorem, we find
07 = E((x = n.)") = E(x” = 21 + 1) = E() = n, (3.16)

as promised in Example 3.1.4. The following corollary provides a general relationship between
moments and central moments.

Corollary 3.1.1. The nth central moment for the RV x can be found from the moments {my,

Mmi, ..., my,} as
= Bl =) = 3 (1) man (3.17)
£=0
Similarly, the nth moment for the RV x can be found from the central moments { Lo, |1, . .., L} as
mo= B =3 (1) many . (2.18)
£=0

Proof.  From the Binomial Theorem, we have for any real constant a:

n

(x —a)' = Z (Z) x*(—a)"*

k=0

and

n

X" =(x—a)+a) = Z (Z) (x —a)a"*.

£=0

Taking the expected value of both sides of the above equations and using the fact that expectation
is a linear operation, the desired results follow by choosing a = 7,. [
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In many advanced treatments of probability theory (e.g. [4, 5, 11]), expectation is defined in
terms of the Lebesgue-Stieltjes integral

E(g(x)) = fs 2(x(0)) dP(2). (3.19)

In most cases (whenever the Lebesgue-Stieltjes integral and the Riemann-Stieltjes integral both
exist) the two definitions yield identical results. The existence of the Lebesgue-Stieltjes integral
(3.19) requires

E(lg(x)]) = /S ()] dP(¢) < oo, (3.20)

whereas the Riemann-Stieltjes integral (3.4) may exist even though

o0

E(lg())) = / 19(@)| dF. (@) = oo. (3.21)

Consequently, using (3.4) as a definition, we will on occasion arrive at a value for E(g(x)) in
cases where E(|g(x)|) = o0o. There are applications for which this more liberal interpretation is
useful.

Example 3.1.5.  Find the mean and variance of the RV x with PDF

fla) = s
T (4 a?)
Solution. By definition,
5
ne=_lm [ afia)da,
-1

assuming the limit exists independent of the manner in which 7; — oo and 75 — 0. For this

example, we have

B

/ afila)da = %(111(1 + T,%) — In(1 + T;?)).
-1

Consequently, the limit indicated above does not exist. If we restrict the limit to the form
T = T = T (corresponding to the Cauchy principle value of the integral) then we obtain
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N = 0. Accepting 1, = 0 for the mean, we find
B
E(x?) = ; lim ozzfx(a) do = +o0,

1, —00
-4

and we conclude that 02 = oo,
The computation of high order moments using the direct application of the definition

(3.4) is often tedious. We now explore some alternatives.

Example 3.1.6. The RV x has PDF f.(a) = e “u(a). Express m, in terms of m,_1 for n =
1,2,....

Solution. By definition, we have

00
m, = E(x") = /a”e_a do.
0
Integrating by parts (with # = «” and dv = ¢™* da)
00
m, = —a”67“|go + n/a”le“ do =nm,_q, n=1,2,....
0

Note that 7o = E(1) = 1. For example, we have m4 =4 -3 -2 .1 = 41. We have used the fact
that for n > 0

Ilim a”¢e ™ = 0.
o—> 00

This can be shown by using the Taylor series for e to obtain

o« - o« (n+ 1)

R Y = B
Z— — |
=0 %! (n+1)!

The above example illustrates one technique for avoiding tedious repeated integration by parts.
The moment generating function provides another frequently useful escape, trading repeated
integration by parts with repeated differentiation.

Definition 3.1.2.  The function
M,(A) = E(e™) (3.22)

15 called the moment generating function for the RV x, where A is a real variable.
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Although the moment generating function does not always exist, when it does exist, it is useful
for computing moments for a RV, as shown below. In Section 3.3 we introduce a related
function, the characteristic function. The characteristic function always exists and can also be

used to obtain moments.

Theorem 3.1.2. Let M, (L) be the moment generating function for the RV x, and assume ]Wx(")(())

exists, where

d"M.(\)
MM (n) = —==. 3.23
06y = T2 (.23
Then
E(x") = M"(0). (3.24)
Proof: Noting that
4" Ax
€ — xne)\x
drr
we have ]%(”)(A) = E(x"¢**). The desired result follows by evaluating at A = 0. [ |

Example 3.1.7. The RV x has PDF f.(«) = e “u(a). Find ML) and E(x"), where n is a

positive integer.

Solution. We find

oo
M,(\) = / WV doy = —,
1—2
0

provided that A < 1. Straightforward computation reveals that

Y n! )

MO0) = T3
[ |

hence, E(x") = ]%(”)(O) = nl.

Drill Problem 3.1.1.  The RV x has PMF shown in Fig. 3.2. Find (a) E(x), (6)E(x?), and (c)

E((x — 2.125)3).

Answers: @, 6—1, g

64 8 8
DrillProblem3.1.2. Wegiven E(x) = 2.5 and E(y) = 10. Determine: (a) EQGQx + 4), (6) E(x +
y), and (c) E(3x + 8y +5).

Answers: 12.5,92.5, 11.5.
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' px(a)

o= ol oolw

ry
g

T

0 1 2 3 4 5 o

FIGURE 3.2: PMF for Drill Problem 3.1.1.

Drill Problem 3.1.3.  7he PDEF for the RV x is

%(«/&4—%), O<a<1

0, elsewhere.

Sfrla) =

Find (a) E(x), and (b) o2.
17 2

A P—, =.
nswers 17 c
Drill Problem 3.1.4. The RV x has variance Gf. Define the RVs y and z as y = x + b, and

2 = ax, where a and b are real constants. Find Gyz and 022.

Answers: 02, a%02.

Drill Problem 3.1.5. The RV x has PDF f,(a) = %e""“. Find (a) M,()), ()1, and (c) o2.
Answers: 2; 0; (1 — A%)71, for |A| < 1.

3.2  BOUNDS ON PROBABILITIES

In practice, one often has good estimates of some moments of a RV without having knowledge
of the CDF. In this section, we investigate some important inequalities which enable one
to establish bounds on probabilities which can be used when the CDF is not known. These
bounds are also useful for gaining a “feel” for the information about the CDF contained in
various moments.

Theorem 3.2.1. (Generalized Chebyshev Inequality) Lez x be a RV on (S, 3, P), and let
Vo W > N be strictly positive, even, nondecreasing on (0, 0o], with E(y(x)) < oo. Then for
each xg > 0 :

E(y(x))

P(|x(0)] = x0) < o)

(3.25)
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Proof: Let xg > 0. Then
@) = [ v dne
= [ e+ [ pedne
lee] <zxo er|>x0
= /| Y@@
> Yr(x0) dF,(a)
|oe|>x0
= Y (x0) P(|x(¢)] = x0).
[ |
Corollary 3.2.1. (Markov Inequality) Lez x be a RV on (S, F, P), xg > 0, andr > 0. Then
E r
P(|%(¢)| = x0) < M (3.26)
0
Proof: 'The result follows from Theorem 1 with ¥ (x) = |x|". [ |

Corollary 3.2.2. (Chebyshev Inequality) Les x be a RV on (S, 3, P) with standard deviation
Oy, and let o > 0. Then
1

. (3.27)

P(|x(¢) = ny| = aoy) <
o

Progf. 'The desired result follows by applying the Markov Inequality to the RV x — 1, with

r =2 and xy = aoy,. [ ]

Example 3.2.1. Random variable x has a mean and a variance of four, but an otherwise unknown

CDE: Determine a lower bound on P(|x — 4| < 8) using the Chebyshev Inequality.

Solution. We have

1
P(lx — 4] = 8) = P(|lx — nx| = 40,) < 16

Consequently,

1 15
P(x—4 <8)=1-P(lx—4 =8 =1- == =

11
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Theorem 3.2.2. (Chernoff Bound) Lef x be a RV and assume both M,(X) and M,(—\) exist

Jfor some A > 0, where M, is the moment generating function for x. Then for any real xo we have
P(x > xy) < e M, (L) (3.28)

and

P(x < xg) < ™ M,(—1). (3.29)
The variable ) (which can depend on xq) may be chosen to optimize the above bounds.

Proof.  Noting that e M=) > 1 for xy < a we obtain

o0
e PO = / ¢+~ gF ()

—00
oo

> / dF, (@)

= P(x > x()).

Similarly, since 0= > 1 for xy > & we obtain

o0

Soma) = [0 )
—00
X0

> f dF ()

= P(x < x).
|

Example 3.2.2. The RV x has PDF f.(a) = e “u(c). Compute bounds using the Markov In-
equality, the Chebyshev Inequality, and the Chernoff Bound. Compare the bounds with corresponding
quantities computed from the PDE

Solution. From Example 3.1.7 we have E(x") = E(|x|") = n! and M, () = (1 — A)7}, for
A < 1. Consequently, 02 =2 — 1 = 1.
Applying the Markov Inequality, we have

n!
P(lx| > x) < —, xo > 0.
X0
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For xp = 10, the upper bound is 0.1, 0.02, 3.63 x 10~* for n = 1,2, and 10, respectively.

Increasing 7 past x results in a poorer upper bound for this example. Direct computation yields
P(|x| = xp) = e, xp > 0,
so that P(|x| > 10) = ¢~ 10 = 4.54 x 10~°.
Applying the Chebyshev Inequality,

1
P(lx — 1] > a) < —.
o

a > 0;
for o = 10, the upper bound is 0.01. Direct computation yields (for o > 1)
Plx—1|>a) = / e do = e 179,
1+a
so that P(|x — 1| > 10) = ¢ 11 = 1.67 x 107°.
Applying the Chernoff Bound, we find (for any x)

—)on
P(x > xp) < = O<A<l,
and
)\.x()
F, = P(x < < , A > 0.
(x0) (% < x0) < ) >

The upper bound on F,(xg) can be made arbitrarily small for xy < 0 by choosing a large enough
A. The Chernoff Bound thus allows us to conclude that F,(xy) = 0 for xg < 0. For xy > 0, let

e 7)\960

1—2

Note that g<1)(A) =0 for A = Ao = (x9 — 1)/x9. Furthermore, g(l)(A) >0 for A > A¢ and
g(l)(k) < 0 for A < Ag. Hence, A = Ay minimizes g(A), and we conclude that

g =

X0

P(x > x) < g(ho) = xpel T, x> 0.

For xy = 10, this upper bound yields 1.23 x 1073. Direct computation yields P(x > xp) =
e = 4.54 x 107°. "
Drill Problem 3.2.1. Random variable x has n, = 7, 0, = 4, and otherwise unknown CDF.
Using the Chebyshev inequality, determine a lower bound for (a) P(—1 < x < 15), and (5) P(=5 <
x < 19).

Answers:

9’

AW
O | 0
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Drill Problem 3.2.2. Random variable x has an unknown PDE How small should o, be to

ensure that
15
P(lx — n, 1) > —>
(Jx —ne] <1) = 1

Answer: o, < 1/4.

3.3 CHARACTERISTIC FUNCTION

Up to now, we have primarily described the uncertainty associated with a random variable using
the PDF or CDF. In some applications, these functions may not be easy to work with. In this
section, we introduce the use of transform methods in our study of random variables. Transforms
provide another method of analysis that often yields more tractable solutions. Transforms also
provide an alternate description of the probability distribution essential in our later study of
linear systems.

Definition 3.3.1. Let x be a RV on (8, 3, P). The characteristic function for the RV x is defined

by
8.0 = B = [ e i), (3.30)
where j2 = —1, and ¢ is real.

Note the similarity of the characteristic function and the moment generating function.
The characteristic function definition uses a complex exponential:

e/ = cos(tar) + jsin(zar).
Note that since both # and « are real,
|67 |? = (¢77) (eI = ity =1,
If z = x + 7y, where x and y are both real, then
eF = e¥elV = e”(cos(y) + s sin(y)),
so that |e?| = ¢*. Hence, |¢*| — 400 as x — +00 and |¢*| — 0 as x — —o0.

Example 3.3.1. (a) Find the characteristic function $(t) for the RV x having CDF

n

Fa) =) ajula —a)),

i=1
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wherea; > 0,1 =1,2,...,n, and

Z a;, = 1.

=1
(6) Find ¢(2) if the RV x has PDF f(a) = e u().
(c) Find ¢, (¢) if the RV x has PDF f.(a) = e®u(—a).
(d) Find $,.(2) if the RV x has PDF f,(a)) = 3¢,
(¢) Find ¢,(t) if the RV x has PMF

o

ey
Px(a)={a!’ a=0,1,...

0, otherwise.

Solution. (a) We have

e¢]

$:l2) = i”i / e/ du(a — ;) = Zn:a,‘ef“”.

i=1 =1
—00

Consequently, we know that any RV having a characteristic function of the form

n

¢x(t) = Z ﬂiejait

=1

1s a discrete RV with CDF
Fla) =) aule — ),
i—1
a PDF
fela) =) a;d(a — a;),
=1
and a PMF
(Ol)— a;, (X=Oti,i=1,2,...,n
Pel) = 0, otherwise.
(b) We have

1
1—jt

o0 .
0.0) = [ 1 =
0

15
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(c) We have

1
1— ¢

0
6.0 = [ o000 du =

(d) The given PDF may be expressed as

fula) = %@“u(—a) + e u(a)

so that we can use (b) and (c) to obtain

¢(z‘)—1 ! + ! _ !
T2 \14yr 1—j) 142

(e) We have

00 piktg=npk

¢.(8) = Z T

=0
oGk
2 a
= e "exp(e’'n)

= exp(n(e’’ — 1)). L]

-1

=e¢

The characteristic function is an integral transform in which there is a unique one-to-one
relationship between the probability density function and the characteristic function. For each
PDF £, there is only one corresponding ¢,. We often find one from the other from memory
or from transform tables—the preceding example provides the results for several important
cases.

Unlike the moment generating function, the characteristic function always exists. Like
the moment generating function, the characteristic function is often used to compute moments
for a random variable.

Theorem 3.3.1.  The characteristic function ¢,(¢) always exists and satisfies

| (£)] < 1. (3.31)

Proof. Since |e/*| = 1 for all real # and all real o we have

|¢x(f)|5/ le/| dF (o) = 1.
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Theorem 3.3.2. (Moment Generating Property) Lez

d"¢.(2)
(M) () —
o) =% (3.32)
and assume that qbfc”) (0) exists. Then
E(x") = (—7)"¢"(0). (3.33)

Proof: ' We have
dnejtx
dt”

o () = E( ) _ B((jx)'e’™)

from which the desired result follows by letting # = 0. [ |

Example 3.3.2. The RV x has the Bernoulli PMF

h) = (Z)pkg”, E=01,....n

0, otherwise,
where0 < g =1 — p < 1. Find the characteristic function ¢(t) and use it to find E(x) and 2.

Solution. Applying the Binomial Theorem, we have

7

¢ =" (Z) (' p)'g" ™ = (pe’" + ).

=0
Then
00@0) = n(pe’ + gy jpe"
and

2B = n(n — D(pe’ + )" (pe!Y + n(pe’" + ¢)" 7' > pe”,

so that (f)fcl)(O) = jnp and ¢§C2)(O) = —n?p? + np? — np = —n’p> — npq. Hence, E(x) = np
and E(x?) = nzpz + npg. Finally, 2 = E(x?) — E(x) = npq. [ |

Lemma3.3.1. Letthe RVy = ax + b, wherea and b are constants and the RV x has characteristic
Sfunction ¢,(t). Then the characteristic function for y is

¢,(t) = e/ p(at). (3.34)
Proof: By definition
¢y(t) — E(ejyt) — E(ej(aerb)t) — ejth(ejx(az‘))'
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Lemma3.3.2. Letthe RVy = ax + b. Then ifa > 0

Fy(e) = F((e — 8)/a). (3.35)
Ifa < 0 then
Fy(a) =1 - F(((e — 6)/a)7). (3.36)
Proof Witha > 0,
Fy(a) = Plax + b < &) = P(x < (a« — b)/a).
With @ < 0,
Fy(@) = P(x = (o — 8)/a).

[ |
Let the discrete RV x be a lattice RV with p, = P(x(¢) = a + £4) and
> =1 (3.37)
k=—00
Then
$u(t) = &7 Y prelt (3.38)
k=—00
Note that
m .
() = | D pue|. (3.39)
k=—00
Since
pIRIAT) . jRE(JHTYE — pjRbE (3.40)

for v = 27/ b, we find that |@,(z + 7)| = |¢.(2)]; i.e., |P(#)| is periodic in # with period T =
27/ h. We may interpret p; as the £th complex Fourier series coefficient for e~/ $.(¢). Hence,
& can be determined from ¢, using
b w/h ) )
pr = b (£)e 74 e IR 4y, (3.41)
27 ) _5/p

An expansion of the form (3.38) is unique: If ¢, can be expressed as in (3.38) then the parameters
a and 4 as well as the coefficients {p;} can be found by inspection, and the RV «x is known to
be a discrete lattice RV.
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Example 3.3.3. Let the RV x have characteristic function

() = e/¥ cos(5¢).
Find the PMF p, ().
Solution. Using Euler’s identity
bu(1) = eI <le—j5z N }eﬂz) _ it i st
2 2 W=
We conclude that e =4, 5 =5, and p_1 = p1 = 0.5, so that

(@) = 05, a=4—-5=-1, a=4+5=9
Pel) = 0, otherwise. ]

Example 3.3.4. The RV x has characteristic function
0.1¢795¢
W\f) = —————.
¢+(2) 1 —0.9e/3
Show that x is a discrete lattice RV and find the PMF p,.

Solution. Using the sum of a geometric series, we find

o]

() = 0.1e775 ) (0.9¢7)*.

k=0

Comparing this with (3.38) we find @ = 0.5, 5 = 3, and

_}0.1(0.9)%, &=0,1,...

0.5+ 3%) = .
505 +38) = pu 0, otherwise. ]

The characteristic function ¢,(¢) is (within a factor of 27) the inverse Fourier transform of
the PDF f. (). Consequently, the PDF can be obtained from the characteristic function via
a Fourier transform operation. In many applications, the CDF is the required function. With
the aid of the following lemma, we establish below that the CDF may be obtained “directly”
from the characteristic function.

Lemma 3.3.3. Define

T ,jBt
S8, T) = 1 / ejidz‘. (3.42)
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Then

T .
SB.T) =2 / $inB) 4, (3.43)
T Jo A
and
-1 ifg<0
Jim SB,T)=1 0 ifp=0 (3.44)
= 1 if B> 0.
Proof.  'We have
1 : Jp? 1 - Jp?
SB.T)=— [ " ar+ = [ s
4 Jt T Jt
-T 0

T . T
1 [ e /Pt 1 [ /P
= —/ dt + — v dt

bug —JT T Jt
0

2 s

t
__/sm(ﬂ )dt

4 t
0
BT .

and noting that §(—8, T') = —8(B, T). |

Theorem3.3.3. Let ¢, be the characteristic function for the RV x with CDF F,, and assume F, (o)

15 continuous at & = a and o = b. Then if b > a we have

p—Jat _ ,—ibt
Tqﬁx(z‘) dt. (3.45)

1
£(6) = Fila) = Tim P

'lﬂ\q
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Proof.  Let

T
1 efjat _ efjbz‘
T)=— | ————¢.(r)dr.
@) =5 [ =000
-T

From the definition of a characteristic function

1 r x fat i
—Jar _ ,—J .
I(T)=—/ /%wam(a) dt.
2 Jjt
-T 00

Interchanging the order of integration we have
1 oo
(1) =5 [ (Sla=a. 1)~ Sta— 4. 7)) )
Interchanging the order of the limit and integration we have

b
Jim I(7) = f dF(@) = Fu(b) — Fila).

[ |
Corollary 3.3.1. Assume the RV x has PDF f,. Then
1 T
Jfrla) = Tlgrgogf b (H)e 7 dt. (3.46)
-7

Progf. 'The desired result follows from the above theorem by letting & = o, @ = o — 4, and
h > 0. Then

Fx(a)_Fx(a _}-7)

=1li
fx(a) /yl—>mo h
e/t —1 .
— i _ M —jat
Mo | B gm0

-7
|

In some applications, a closed form for the characteristic function is available but the
inversion integrals for obtaining either the CDF or the PDF cannot be obtained analytically.
In these cases, a numerical integration may be performed efficiently by making use of the FFT
(fast Fourier transform) algorithm.
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The relationship between the PDF £, («) and the characteristic function ¢,(#) is that of
a Fourier transform pair. Although several definitions of a Fourier transform exist, we present
below the commonly used definition within the field of Electrical Engineering.

Definition 3.3.2.  We define the Fourier transform of a function g(t) by

[o.¢]

G(w) = Flg(t)} = / g@)e™7 de. (3.47)

—00

The corresponding inverse Fourier transform of G(w) is defined by

10
gl) = FHGWw)) = e / G(w)e’* dw. (3.48)
4
If g(#) is absolutely integrable; i.e., if
f g dt < oo,
—00

then G(w) exists and the inverse Fourier transform integral converges to g(#) for all # where g(#)
is continuous. The preceding development for characteristic functions can be used to justify this

Fourier transform result. In particular, we note that
o0
/ g(t)e_ja’l dt
should be interpreted as
T
7lim f g(z‘)eﬁw dr.

-T

Using these definitions, we find that
8.0 =27 M fa) = [ filee da. (3.49)

and

1

fle) = 2

1 [ .
Figuld) = 5 / bu(De 7 dt. (3.50)
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The Fourier transform G(w) = F{g(#)} is unique; i.e., if G(w) = F{g(#)}, then we know that
2(8) = FH{G(w)} for almost all values of #. The same is true for characteristic functions.
Drill Problem 3.3.1. Random wvariable x has PDF
fola) = 0.5(u(a + 1) — u( — 1)).

Find: (a) $(0), (6) ¢ (1 /4), (¢) ¢p.(7/2), and (d) ¢..(rr).
Answers: 1, %, sin(n/4)’
T m/4

Drill Problem 3.3.2. The PDF for RV x is f.(a) = e “u(e). Use the characteristic function to
obtain: (a) E(x), (0) E(x?), (¢)oy, and (d) E(x®).

0.

Answers: 2,1, 6, 1.

3.4 CONDITIONAL EXPECTATION
Definition 3.4.1.  The conditional expectation g(x), given event A, is defined by
Blg@l) = [ ¢(e) dFsla) . (3.51)

The conditional mean and conditional variance of the RV x, given event A, are similarly defined as
Neja = E(x | A) (3.52)
and
2 2 _ 2 2
05a = E((x — ny0)” | 4) = E(x* | 4) — 15, 4- (3.53)

Similarly, the conditional characteristic function of the RV x, given event A, is defined as
oo
Bualld) = B 1 ) = [ e dFyala) 2, (3.54)
—o0
Example 3.4.1. An urn contains four red balls and three blue balls. Three balls are drawn without

replacement from the urn. Let A denote the event that at least two red balls are selected, and let RV x
denote the number of red balls selected. Find E(x) and E(x | A).

Solution. Let R; denote ared ball drawn on the 7th draw, and B; denote a blue ball. Since x is the
number of red balls, x can only take on the values 0,1,2,3. The sequence event By B, B3 occurs
with probability 1/35; hence P(x = 0) = 1/35. Next, consider the sequence event R; B, B3
which occurs with probability 4/35. Since there are three sequence events which contain one
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red ball, we have P(x = 1) = 12/35. Similarly, P(x = 2) = 18/35 and P(x = 3) = 4/35. We

thus find that
1 1 18 4 12
E(x) =0 — 41 -—=42.043. - 2=
(W) =0-otl oo+ 2- 3543 5=+

Now, P(A) = P(x > 2) = 22/35 so that

18/35 9
— = —, a=2
22/35 11
prale| )= 435 2,
22/35 11°
0, otherwise.
Consequently,
9 2 24
Ex|A)=2- 3 =

[TRAAETRRETE

Example 3.4.2. Find the conditional mean and conditional variance for the RV x, given event

A= {x > 1}, where f(a) = e “u(a).

Solution. First, we find

P(4) = /oofx(a)da :fooe—“ do = e
1 1

Then fyala| A) = e *u(a — 1). The conditional mean and conditional variance, given 4,

can be found using £ 4 using integration by parts. Here, we use the characteristic function

method. The conditional characteristic function is

(] A) = — /°° ao(=1+j1) 4 e’
x = —_— o = —.
4 P4 ) ¢ 1— s
1
Difterentiating, we find
: 1 1
1) -t
t|A) = je’ ,
d)xlzfl( | ) Je (1—]'1‘—’_(1—]'1‘)2)

so that ¢i1|34(0 | A) = 72 and

2) ’ . gt J J
$ / 14 — 5] J
x\A( | ) = —¢ (1 ]'[ (1 J't)z) - Jj€ ( +

Q=yn* A-j2’

)

so that ¢7,(0| 4) = —5. Thus s = —j(j2) = 2and 02 ; = (= /)*(=5) - 2> = 1. |
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Drill Problem 3.4.1.  The RV x has PMF shown in Fig. 3.2 . Event A = {x < 3}. Find (a) 44
and (b) O’flA.

Answers: 17/36, 7/6.
Drill Problem 3.4.2. Random variable x has PDF

3 1
Sla) = §(«/5 + ﬁ)(u(a) — ula — 1)).

Event A = {x < 0.25}. Find (a) EQx + 2| A) and (b) 03|A'
Answers: 8879/1537900, 589/260.

3.5 SUMMARY

In this chapter, the statistical expectation operation is defined and used to determine bounds
on probabilities.

The mean (or expected value) of the RV « is defined as

[o.¢]

Ne = E(x) = / a dF,(a) (3.55)

—00

and the variance of x as 02 = E((x — 1,)%).

Expectation is a linear operation, the expected value of a constant is the constant.

The moment generating function (when it exists) is defined as M, (L) = E(¢**), from
which moments can be computed as E(x") = ]\49(6")(0).

Partial knowledge about a CDF for a RV « is contained in the moments for x. In general,
knowledge of all moments for «x is not sufficient to determine the CDF F,. However, available
moments can be used to compute bounds on probabilities. In particular, the probability that
a RV «x deviates from its mean by at least & x o is upper bounded by 1/a?. Tighter bounds
generally require more information about the CDF—higher order moments, for example.

The characteristic function ¢, () = E(e/**) is related to the inverse Fourier transform of
the PDF f,. All information concerning a CDF F, is contained in the characteristic function
¢.. In particular, the CDF itself can be obtained from the characteristic function.

Conditional expectation, given an event, is a linear operation defined in terms of the

conditional CDF:

o]

EWIA) = [ ga@)dFyla ) (3.56)

—00

Conditional moments and the conditional characteristic function are similarly defined.
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3.6

1.

PROBLEMS

The sample space is § = {a1, a2, a3, as, as} with probabilities P(a1) = 0.15, P(az) =
0.2, P(a3z) = 0.1, P(ay) = 0.25, and P(as) = 0.3. Random variable x is defined as
x(a;) = 2i — 1. Find: (a) n., (b) E(x?).

Consider a department in which all of its graduate students range in age from 22 to
28. Additionally, it is three times as likely a student’s age is from 22 to 24 as from
25 to 28. Assume equal probabilities within each age group. Let random variable x
equal the age of a graduate student in this department. Determine: (a) E(x), (b) E(x?),
(c) 0.

A class contains five students of about equal ability. The probability a student obtains
an A is 1/5, a B is 2/5, and a C is 2/5. Let random variable x equal the number of
students who earn an A in the class. Determine: (a) p.(a), (b) E(x), (c) o,.

Random variable x has the following PDF

) = {0.5((x0+ ), —-l<a<l

otherwise.
Determine: (a) E(x), (b) 02, (c) E(1/(x + 1)), (d) af/(x+1).
The PDF for random variable y is

0, otherwise,

£ = {sin(yo), 0<y, <m/2

and g(y) = sin(y). Determine E(g(y)).

Sketch these PDF’, and, for each, find the variance of x: (a) fi(a) = 0.5¢71%1) (b)
fular) = 5e10d,

The grade distribution for Professor S. Rensselaer’s class in probability theory is shown
in Fig. 3.3. (a) Write a mathematical expression for f,(«a). (b) Determine E(x). (c)
Suppose grades are assigned on the basis of: 90-100 = A = 4 honor points, 75-90 =
B = 3 honor points, 6075 = C = 2 honor points, 55-60 = D = 1 honor point, and
0-55 = F = 0 honor points. Find the honor points PDF. (d) Find the honor points

average.

A PDF is given by
1 1 3
Fala) = 58((1 +1.5)+ §5(a) + §8(a - 2).

Determine: (a) E(x), (b) o2
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0 40 80 100 a

FIGURE 3.3: Probability density function for Problem 7.

9.

10.

11.

12.

13.
14.

A PDF is given by

Jrlo) = —6 (@+1)+ = 6(0;) + —B(a -1+ —8(0{ —2).

Determine: (a) E(x), (b) E(x?).
A mixed random variable has a CDF given by

0, a <0
F.(a) = a/4, O<a<l1
1— 6—0‘693101 1<a.

Determine: (a) E(x), (b) o2
A mixed random variable has a PDF given by
1 3 1
frla) = Z(S(a +1)+ §8(a -1+ Z(u(a +1) — u(a — 0.5)).
Determine: (a) E(x), (b) o2.
Let RV x have mean 1, and variance o2, (a) Show that
E(lx — al’) = 0} + (. — a)’

for any real constant a. (b) Find a so that E(|x — a|?) is minimized.
The random variable y has 1, = 10 and ayz = 2. Find (a) E(yz) and (b) E((y — 3)?).
The median for a RV x is the value of o for which F,(«) = 0.5. Let x be a RV with

median 7. (a) Show that for any real constant a:
E(lx —a|) = E(|lx — m|) + 2/ (¢ —a)dF.(a).

(b) Find the constant @ for which E(]x — a|) is minimized.
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15.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.

27.

Use integration by parts to show that
00 0
B = [ (- Aa)da - [ F)de
0 —00

Show that
0 00
E(lx)) = | Flo)da + | (1 - F.(a))da.
[ o]

Random variable x has 1, = 50, o, = 5, and an otherwise unknown CDF. Using the
Chebyshev Inequality, find a lower bound on P(30 < x < 70).

Suppose random variable x has a mean of 6 and a variance of 25. Using the Chebyshev

Inequality, find a lower bound on P(|x — 6| < 50).

RV «x has a mean of 20 and a variance of 4. Find an upper bound on P(|x — 20| > 8).
Random variable x has an unknown PDF. How small should o, be so that P(|x — n,| >
2)<1/9?

RVs x and y have PDFs f, and f), respectively. Show that

E(In fi(x)) = E(In f,(x)).

Find the characteristic function for random variable x if

2B a=1

0, otherwise.
RV & has PDF f.(«) = u(a) — u(oc — 1). Determine: (a) ¢,. Use the characteristic
function to find: (b) E(x), (c) E(x?), (d) o,.
Random variable x has PDF f.(a) = 3¢3*u(—c). Find ¢,.
Show that the characteristic function for a Cauchy random variable with PDF

1
FO = v

is ¢ (¢) = 7M.
Given fi(a) = 0.58 exp(—Bla|). Find (a) ¢,.. Use ¢, to determine: (b) E(x), (c) E(x?),
and (d) o,.

Random variable x has the PDF £, (o) = 20(u(ar) — u(a — 1)). (a) Find ¢,. (b) Show
that ¢,(0) = 1. (¢) Find E(x) using the characteristic function.
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29.

30.

31.
32.

33.

34.
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Suppose

1, 0<a«

Fla) = {exp(f’sa), a < 0.

Use the characteristic function to determine: (a) E(x), (b) E(x?), (c) E(x*), and (d) o2

Suppose «x is a random variable with

o, =0,1,2,...
px(a)={ﬁy o

0, otherwise.

where B and y are constants, and 0 < ¥ < 1. As a function of y, determine: (a) 8, (b)
M, (1), (c) ¢x(2), (d) E(x), (e) o2

RV x has characteristic function
¢.(2) = (pe?" + (1 — p))",

where 0 < p < 1. Find the PMF p. ().
The PDF for RV x is fi(er) = e ~“u(e). Find (a) ¢, (b) 1., and (c) o2.

RV x has characteristic function

1-4 4 <a

¢x([) = { ¢

0, otherwise.

Find the PDF f,.
RV x has PDF

0, otherwise.

lox|
ﬁc(a)z{C(la)’ o] < a

Find the constant ¢ and find the characteristic function ¢,.

The random variable x has PMF

2/13, a=-1
3/13, a=1
(@) = :/13, a=2
/13, a=3
1/13, a =4
0, otherwise.




30 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

35.

36.

37.

38.

39.

Random variable z = 3x + 2 and event 4 = {x > 2}. Find (a) E(x), (b) E(x|A), (c)
E(2), (d) azz.

The head football coach at the renowned Fargo Polytechnic Institute is in serious
trouble. His job security is directly related to the number of football games the team
wins each year. The team has lost its first three games in the eight game schedule. The
coach knows that if the team loses five games, he will be fired immediately. The alumni
hate losing and consider a tie as bad as a loss. Let x be a random variable whose value
equals the number of games the present head coach wins. Assume the probability of
winning any game is 0.6 and independent of the results of other games. Determine: (a)
E(x), (b) 0y, () E(x]x > 3), (d) o

x|x>3"*

Consider Problem 35. The team loves the head coach and does not want to lose him.
The more desperate the situation becomes for the coach, the better the team plays.
Assume the probability the team wins a game is dependent on the total number of
losses as P(W|L) = 0.2L, where W is the event the team wins a game and L is the
total number of losses for the team. Let 4 be the event the present head coach is fired
before the last game of the season. Determine: (a) E(x), (b) o, (¢) E(x|A).

Random variable y has the PMF

1/8, «=0
3/16, a=1
1/4, a=2
HO=\5116  g=3
18, a=4

0, otherwise.

Random variable w = (y — 2)? and event A = {y = 2}. Determine: (a) E(y), (b)
E(y | A), (c) E(w).

In BME Bioinstrumentation lab, each student is given one transistor to use during one
experiment. The probability a student destroys a transistor during this experiment is
0.7. Let random variable x equal the number of destroyed transistors. In a class of five
students, determine: (a) E(x), (b) oy, (c) E(x | x < 4), (d) 0xx<4-

Consider Problem 38. Transistors cost 20 cents each plus one dollar for mailing (all
transistors). Let random variable z equal the amount of money in dollars that is spent

on new transistors for the class of five students. Determine: (a) p.(«), (b) Fy(a), (c)
E(2), (d) 0.
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41.

42.

43.

44,

45.
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An urn contains ten balls with labels 1, 2, 2, 3, 3, 3,5, 5, 7, and 8. A ball is drawn
at random. Let random variable x be the number printed on the ball and event 4 =
{x is odd}. Determine: (a) E(x), (b) E(x?), (c) o, (d) E(5x — 2), () 034, (f) E(5x —
3x2), (g) E(x| A), (h) E(x*| A4), (i) EGQx* —2x| A).

A biased four-sided die, with faces labeled 1, 2, 3 and 4, is tossed once. If the number
which appears is odd, the die is tossed again. Let random variable x equal the sum of
numbers which appear if the die is tossed twice or the number which appears on the first
toss if it is only thrown once. The die is biased so that the probability of a particular face
is proportional to the number on that face. Event 4 = {first die toss number is odd}
and B = {second die toss number is odd}. Determine: (a) p.(«), (b) E(x), (c) E(x|B),
(d) o2, (e) afl > (f) whether events 4 and B are independent.

Suppose the following information is known about random variable x. First, the values
x takes on are a subset of integers. Additionally, F.(—1) =0, F.(3) =5/8, F.(6) =
1, px(O) =1/8, px(l) = 1/4, px(é) =1/8, E(x) = 47/16, and E(x|x > 4) = 16/3.
Determine (a) p.(a), (b) F.(a), (c) o2, (d) af‘x>4.
A biased pentahedral die, with faces labeled 1, 2, 3, 4, and 5, is tossed once. The die
is biased so that the probability of a particular face is proportional to the number on
that face. Let x be a random variable whose values equal the number which appears
on the tossed die. The outcome of the die toss determines which of five biased coins is
flipped. The probability a head appears for the 7th coinis 1/(6 —7),7 =1, 2, 3,4, 5.
Define event 4 = {x is even} and event B = {tail appears}. Determine: (a) E(x), (b)
oy, (¢) E(x|B), (d) afl > (€) whether events 4 and B are independent.

Given
0, a <0
F(a)=133a—-a’+a%/3), 0<a<1
1, 1<a,

and event 4 = {1/4 < x}. Determine: (a) E(x), (b) E(x?), (c) E(5x*> — 3x + 2), (d)
E(4x? — 4), (e) EGBx + 2| A), (f) E(x* | 4), (g) EGx* — 2x + 2| A).
The PDF for random variable x is

1/a, 1<a<2.7183

0, otherwise,

Sula) =

and event 4 = {x < 1.6487}. Determine: (a) E(x), (b) 02, (c) E(x | 4), (d) O'ilA.
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47.

46. With the PDF for random variable x given by

4
—_ " 0 1

@ =0+ "7
0, otherwise,

determine: (a) E(x); (b) E(x|x > 1/8); (c) EQx — 1);(d) EQx — 1| x > 1/8); (e) the
variance of x; (f) the variance of x, given x > 1/8.

A random variable x has CDF
1 «

F.(a) = (a + %) u (oz + %) —au(a) + %au(a -1)+ (5 — Z) u(lo — 2),

and event 4 = {x > 1}. Find: (a) E(x), (b) 03, (c) E(x|A), and (d) Gflzf‘



CHAPTER 4

Bivariate Random Variables

In many situations, we must consider models of probabilistic phenomena which involve more
than one random variable. These models enable us to examine the interaction among variables
associated with the underlying experiment. For example, in studying the performance of a
telemedicine system, variables such as cosmic radiation, sun spot activity, solar wind, and receiver
thermal noise might be important noise level attributes of the received signal. The experiment
is modeled with 7 random variables. Each outcome in the sample space is mapped by the » RV's
to a point in real z-dimensional Euclidean space.

In this chapter, the joint probability distribution for two random variables is considered.
The joint CDF, joint PMEF, and joint PDF are first considered, followed by a discussion of two—
dimensional Riemann-Stieltjes integration. The previous chapter demonstrated that statistical
expectation can be used to bound event probabilities; this concept is extended to the two-
dimensional case in this chapter. The more general case of #-dimensional random variables is
treated in a later chapter.

4.1 BIVARIATE CDF

Definition 4.1.1. 4 two-dimensional (or bivariate) random variable z = (x, y) defined on a
probability space (8,3, P)isa mapping from the outcome space S to W* x W i.e., to each outcome
¢ € §corresponds a pair of real numbers, 2(¢) = (x(¢), y(¢)). The functions x and y are required to be
random variables. Note that 7 : § — N* x N, and that we need 271 ([—o00, a] x [—00, B]) € I
Jfor all real o and B.

The two-dimensional mapping performed by the bivariate RV zis illustrated in Fig. 4.1.

Definition 4.1.2.  The joint CDF (or bivariate cumulative distribution function) for the RVs x
and y (both of which are defined on the same probability space(S, I, P)) is defined by

Foy(o, B) = P({¢ € §:x(¢) <, y(7) = B). (4.1)

Note that F, , : W* x RN* > [0,1]. With A={¢ € S:x(¢) <a}and B={¢ € §:y(¢) <
B}, the joint CDF is given by F, ,(a, B) = P(4 N B).

33




34 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS
z(-)

aa

|

Q) °

FIGURE 4.1: A bivariate random variable z(-) maps each outcome in § to a pair of extended real
numbers.

Using the relative frequency approach to probability assignment, a bivariate CDF can be
estimated as follows. Suppose that the RVs x and y take on the values x; and y; on the 7th trial
of an experiment, with 7 = 1, 2, ..., 7. The empirical distribution function

n

Foyler )= 2 3 ula — w)ulf — 3) (+2)

i=1

is an estimate of the CDF F, ,(«, B), where u(-) is the unit step function. Note that F, y(a, B) =
n(a, B)/n, where n(c, B) is the number of observed pairs (x;, y;) satisfying x; < &, y; < B.

Example 4.1.1.  The bivariate RV z = (x, y) is equally likely to take on the values (1, 2), (1, 3),
and (2, 1). Find the joint CDF' F, .

Solution. Define the region of 0* x N*:
Ale, ) ={(, ) : &/ <, B’ < B,
and note that
Feyla, B) = P((x, y) € Ale, B)).

We begin by placing a dot in the o’ — B’ plane for each possible value of (x, y), as shown in Fig.
4.2(a). Fora < 1or B < 1 there are no dots inside A(a, B) so that F, ,(a, B) = 0 in this region.
Forl <a <2and2 < B < 3, only the dot at (1, 2) is inside A(a, B) so that F, ,(a, B) = 1/3
in this region. Continuing in this manner, the values of F, , shown in Fig. 4.2(b) are easily
obtained. Note that F, ,(«, ) can only increase or remain constant as either o or B is
increased. u

Theorem 4.1.1. (Properties of Joint CDF) The joint CDF F, , satisfies:

(i) F.,(a, B) is monotone nondecreasing in each of the variables o and B,
(i1) F.,(a, B) is right-continuous in each of the variables a and B,
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B B
2
3 1
3L . 3+ 0
1 2
Bl . .l 3 3
1
11 . 1+ 0 S
0
0 1a¢ 2 3 o« 0 1 2 3 a

FIGURE 4.2: Possible values and CDF representation for Example 4.1.1.

(lll) Fx,y(_oov :3) = Fx,y(av _OO) = Fx,y(_ooa —OO) =0,
(iv) F,,(a, 00) = F.(a), F, (o0, B) = F,(B), F. ,(00,00) = 1. The CDFs F, and F, are
called the marginal CDFs for x and y, respectively.

Proof. (i) With ay > a1 we have
x<a,y=pil={x=ar,y=pr}U{on <x =,y = p1}.
Since
{x<a,y<Bi}N{or <x =<,y < p1} =0,
we have

F. (a2, p1) = Fo (a1, B1) + P(¢ € {on < x <z, y < B1})
> (e, pr).

Similarly, with B > f1 we have
x<an,y=Bl={x=<a,y<piU{x <ai,p1 <y =< Ba}.
Since
x<o,y<pyN{x <o, p1<y=<p}=0,
we have

F. (a1, o) = Foy(an, pr) + P(E €{x < a1, B1 <y < Ba})
= Fx,y(ala /31)

(ii) follows from the above proof of (i) by taking the limit (from the right) as ay — o7 and
B2 — Bi1.




36 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS
(111) We have

{e8:x()=—00,y(¢)<B)C{¢ e 8:x(¢)=—00)}

and

{e8:x() <a y()=—o0} C{¢e§:y()=—o0k
result (iii) follows by noting that from the definition of a RV, P(x(¢) = —o0) = P(y(¢) =
—00) = 0.
(iv) We have
F,y(a,00) = P({¢ : x(¢) <a} N §) = P(x(¢) < a) = Fi(a).

Similarly, £, (0o, B) = F,(B), and F, (00, 00) = 1. |

Probabilities for rectangular-shaped events in the x, y plane can be obtained from the
bivariate CDF in a straightforward manner. Define the left-sided difference operators A; and
AZ by

A(B)F, y(a, B) = Fiyla, B) — Fiyla — 5, B), (4.3)

and

AZ(b)Fx,y(av ﬂ) == Fx,y(as ﬂ) - Fx,_y(a7 :8 - /7)7 (44)

with » > 0. Then, with 41 > 0 and 4, > 0 we have

AZ(bZ)Al(bl)Fx,y(av ﬂ) = Fx,y(aa IB)_(Fx,y(a - bl» IB)_(Fx,y(a9 IB - bZ)
- x,y(a _/91’:3 _52))
=Pla—hi<x<a,y<B)—Pla—hi<x<a,y<p—h)
=Pla—h <x@) <a,B—h < y() < B). (4.5)

With a1 < 41 and a5 < 4, we thus have

Play < x < b1,ay < y < by) = Do(by — ax) A1(b1 — a1) . (61, b3)
= F, (b1, 63) — F, (a1, 3) (4.6)
— (F (b1, a2) — F, y(a1, a2)).
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Example 4.1.2. The RVs x and y have joint CDF

0, a <0
0, B <0
0.5a8, 0<a <1,
0.58, 1<a<?2,
Fx,y(oe, B) = 10.25+0.58, 2 < q,
0.5, 0<a<l,
0.5, 1<a<?2,
0.75, 2<ua <3,
1, 3<a,

Find:(a) P(x =2,y =0),(6)P(x =3,y =1),(c)P(0.5 < x <2,0.25 < y < 3),(d)P(0.5 <

x<1,025<y<1).

Solution. We begin by using two convenient methods for representing the bivariate CDF
graphically. The first method simply divides the « — B plane into regions with the functional
relationship (or value) for the CDF written in the appropriate region to represent the height of
the CDF above the region. The results are shown in Fig. 4.3. The second technique is to plot
a family of curves for F, (e, B) vs. a for various ranges of B. Such a family of curves for this

example is shown in Fig. 4.4.

(a) We have

Plx=2,y=0=P2 <x<2,0 <y<0)
= A2(0+)A1(0+)Fx‘y(2’ 0)

0<B<1
0<pB<1
0<pB<1

1<8
1<p
1<p
1<8.

= x,y(zv 0) - Fx,y(z_v 0) - (ny(z, 0_) - Fx,y(z_’ O_))

= 0.25.

0|
N | —
Bw

3
[l ke

1
—+
4

[Slkey

0 1 2 3

o

FIGURE 4.3: Two-dimensional representation of bivariate CDF for Example 4.1.2.
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F, (B, 0<B<1

— 025+0.58
—0.58

F, (@B, 1<B

1+ —_—
0.75 1+ —_—
05+
t f f >
0 1 2 3 a

FIGURE 4.4: Bivariate CDF for Example 4.1.2.

(b) Proceeding as above

Plx =3,y =1) = Ay(07)A,(0M)F, ,(3. 1)
= F.,(3,1) = £.,(37,1) = (£,(3,17) = F,(37,17))
=1-0.75— (0.75 — 0.75) = 0.25.

(c) We have

P05 <x<2,025<y<3)=F,,Q2,3)— F,(05,3)
— (F,(27,0.25) — F, ,(0.5,0.25))

11 1 111\ 3
T2 4 8 224) 16

P05 <x<1,025<y<1)=F,011) - F,05,1)
— (F,,(1,0.25) — F, (0.5, 0.25))

101 1 1) 3
T2 4 8 16/ 16 u

Definition 4.1.3.  The jointly distributed RVs x and y are independent

(d) As above, we have

F.y(a, B) = F.(a)F,(B) (4.7)

for all real values of o and .
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In Chapter 1, we defined the two events 4 and B to be independent iff P(4N B) =
P(A)P(B).WithAd={¢ € §:x(¢) <a}and B={¢ € §: y(¢) < B},theRVsxand y arein-
dependent iff 4and B are independent for all real values of & and . In many applications, physi-
cal arguments justify an assumption of independence. When used, an independence assumption
greatly simplifies the analysis. When not fully justified, however, the resulting analysis is highly
suspect—extensive testing is then needed to establish confidence in the simplified model.

Note that if x and y are independent then for a1 < 41 and @ < 4, we have

Play < x < b1,ay <y < b)) = F, (b1, 02) — Fyy(a1, b2) — (F, (b1, a2) — F. (a1, a2))
= (£:(61) — F(a1))(F(62) — Fy(a2)). (4.8)

4.1.1 Discrete Bivariate Random Variables

Definition 4.1.4.  The bivariate RV (x, y) defined on the probability space (S, 3, P) is bivariate
discrete if the joint CDF F. , is a jump function; i.e., iff there exists a countable set D, C R X N
such that

P({¢ € §: (x(£), y(¢)) € Dyy}H) = 1. (4.9)

In this case, we also say that the RVs x and y are jointly discrete. The function

px,y(av ﬂ) = P(x =,y = :8) (4]0)

is called the bivariate probability mass function or simply the joint PMEF for the jointly distributed
discrete RVs x and y. We will on occasion refer to the set D, , as the support set for the PMF p., .
The support set for the PMF p. , is the set of points for which p, ,(a, B) # 0.

Theorem 4.1.2.  The bivariate PMF p, , can be found from the joint CDF as
px,y(a» IB) = bliTO bliTO A2(62)A1(/71)Fx,y(aa /3) (411)
= Fx,y(aa ,8) - Fx,y(aiv ,8) - (Fx,y(aa ﬁi) - Fx,y(aia :87))7

where the limits are through positive values of by and hy. Conversely, the joint CDF F, , can be found
from the PMF p, , as

Foyloa B) =Y puyle. B). (4.12)
B'=Ba'<a
The probability that the bivariate discrete RV (x, y) € A can be computed using
P(x.y) ed)= Y puyla.B). (4.13)
(a,B)eAd

All summation indices are assumed to be in the support set for p, .
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Proof. The theorem is a direct application of the bivariate CDF and the definition of a

PME. ]
Any function p, , mapping R* x R* to N x N with a discrete support set D, , = D, x D,
and satisfying
pxy(a, B) =0 forall real @ and B, (4.14)
Px(a) = Z Px,y(a’ :8)» (415)
BeD,
and
2y(B) =" puyla. B, (4.16)
aeD,

where p, and p, are valid one-dimensional PMF', is a legitimate bivariate PMF.

Corollary 4.1.1.  The marginal PMFs p.. and p., may be obtained from the bivariate PMF as

Px(a) = pr,y(av IB) (4]7)
B

and

2B = puyla. p). (4.18)
Theorem 4.1.3.  The jointly discrete RVs x and y are independent iff

Px,y(aa ,3) :Px(a)Py(,B) (419)
Sfor all real o and B.
Proof. 'The theorem follows from the definition of PMF and independence. [ |

Example 4.1.3. The RVs x and y have joint PMF specified in the table below.

a B puyla, B)
-1 0 1/8
-1 1 1/8

0 3 1/8

1 -1 2/8

1 1 1/8

2 1 1/8

3 3 1/8
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! 3 3|7
34,1 3 8 4 8
8
2+ 2 l é
4 8
oé 1+ o% o% 1
1 3
ﬁ — =
o8 — o4—2 5
-1 0 1 2 0 l
14 ol -1 ; 4 -
o 4 0 o

FIGURE 4.5: PMF and CDF representations for Example 4.1.3.

(a) Sketch the two-dimensional representations for the PMF and the CDF. (b) Find p.. (c) Find p,.
(d) Find P(x < y). (¢) Are x and y independent?

Solution. (a)From the previous table, the two—dimensional representation for the PMF shown
in Fig. 4.5(a) is easily obtained. Using the sketch for the PME, visualizing the movement of the
(er, B) values and summing all PMF weights below and to the left of («, ), the two-dimensional
representation of the CDF shown in Fig. 4.5(b) is obtained.

(b) We have

Px(a) = pr,y(a’ :8)7
B

so that

Px(=1) = p. ) (=1,0) + p.,(—=1,1) = 2/8,
2:(0) = p.,(0,3) =1/8,
2(1) = po (1, =1) + p,,(1,1) = 3/8,
2+(2) = pay(2,1) =1/8,

2x(3) = px,(3,3) =1/8.
(¢) Proceeding as in part (b),

£y(=1) = p.,(1, 1) = 2/8,

24(0) = p,(—1,0) =1/8,
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Py(]-) = Px,y(_la 1) + Px,y(la 1) + Px,y(za 1) = 3/8’

2y(3) = pxy(0,3) + p.,(3,3) =2/8.
(d) We have
P(x < y) = puy(=1,0) + pyy(=1,1) + p, ,(0,3) = 3/8.
(e) Since p, ,(1,1) = 1/8 # p,.(1)p,(1) = 9/64, we find that x and y are not independent. W
Example 4.1.4. The jointly discrete RVs x and y have joint PMF

&y 12—e
A=t

4
Pryk O) = { 0

%, ¢ nonnegative integers
otherwise,

where 0 <y < 1,and 0 < A < 1. Find: (a) the marginal PMF p,, () the constantc, (c) P(x < y).

Solution. (a) For2=0,1, ...,

Px(é): Z ])x,y('é7£)

l=—00

k
=yt (MZA—Z + 17t i M)
=0

L=k+1

. 1_)\‘k+1+ A
=
Y\ T1o

eyt 4 =AM
o 1—2

(b) We have

s ¢ 1+ X A
1= L(2) = — .
;P() 1—x(1—x 1—Ay)

so that

L (1 -1 -y)2-2ry)
B 1— A2y ’
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(c) We find

P(x<y):i i t(%)é)f

k=0 l=k+1
00 » )\é—&-l
=2 (3)
= A1 —A
< 1
T 1—-Al1-—2

4.1.2 Bivariate Continuous Random Variables

Definition 4.1.5. A bivariate RV (x, y) defined on the probability space (S, 3, P) is bivariate
continuous if the joint CDF F, , is absolutely continuous. 1o avoid technicalities, we simply note that
if Fy , 1s absolutely continuous then F, , is continuous everywhere and F,. , is differentiable except
perhaps at isolated points. Consequently, there exists a function f, y satisfying

B o
Foep = [ [ pepraap (4.20)
The function f. , is called the bivariate probability density function for the continuous RV (x, y),
or simply the joint PDF for the RVs x and y.

Theorem 4.1.4. The joint PDF for the jointly distributed RVs x and y can be determined from the
joint CDF as

P F, (@ p)
— xy\=
_/;C,y(a’ :8)_ 3,380(
— L lLm Ay (h2) A1(h1) . (e, ,3), (4.21)
hry—051—0 hah1

where the limits are taken over positive values of h1 and h», corresponding to a left-sided derivative

in each coordinate.

The univariate, or marginal, PDFs f,. and fy may be determined from the joint PDF f y as

fila) = f Foylet, B) dB, (4.22)
and

£(B) = / Fuylos ) da. 4.23)
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Furthermore, we have

Sy, B) =0 (4.24)
and
/ /fx,y(m B)dadp = 1. (4.25)

The probability that (x, y) € A may be computed from

P((x,y) € A) = f( s Foy(at, B)dadp. (4.26)

This integral represents the volume under the joint PDF surface above the region A.
Proof. By definition,

@) = tm (/a)nym 00)

h—>0h
-0 a—h

= lim - //f”(a B)do’ dp

= / Foslet B)dB.
The remaining conclusions of the theorem are straightforward consequences of the properties
of a joint CDF and the definition of a joint PDF. [ |

We will often refer to the set of points where the joint PDF £, , is nonzero as the support
set for f, ,. For jointly continuous RVs «x and y, this support set is often called the support
region. Letting R, , denote the support region, for any event 4 we have

P(A) = P(AN R, ). (4.27)
Any function f, , mapping i* x R* toN x R withasupportset R, , = R, x R, and satisfying

Sreyla, B) = 0 for (almost) all real & and B, (4.28)

Fila) = /ﬁ _ fslep)dp (4.29)
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and
fH(B) = / Freyla, B)dB, (4.30)
aE€R,

where f, and f are valid one-dimensional PDFs, is a legitimate bivariate PDF.
Theorem 4.1.5.  The jointly continuous RVs x and y are independent iff

Sy, B) = fule) £,(B) (4.31)
Jor all real o and B except perbaps at isolated points.
Progf. 'The theorem follows directly from the definition of joint PDF and independence. M
Example 4.1.5. Ler A= {(x,y): -1 < x <0.5,0.25 < y < 0.5}, and

daf, 0<a=<1,0<pB<1

0, otherwise.

ﬁc,y(aa ,3) =

Find: (a) P(A), (b) fx. (¢) fy. (d) Are x and y independent?

Solution. Note that the support region for f; , is theunitsquare R = {(a, 8) : 0 <@ < 1,0 <
B < 1}. A three-dimensional plot of the PDF is shown in Fig. 4.6.

(a) Since A represents a rectangular region, we can find P(A4) from the joint CDF and
(4.27) as

P(A4) = P(AN R) = A5(0.5 - 0.25)A1(0.5 - 0)F, ,(0.57,0.57).

FIGURE 4.6: Three-dimensional plot of PDF for Example 4.1.5.




46 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

B B
o? 1
1 1
4 a/ B/ a2 ﬁz BZ
B
0 o 1 o 0 1 o

FIGURE 4.7: PDF and CDF representations for Example 4.1.5.

ForO <a <1and0 < B <1 we have

B«
Fy(a, B) = / / 4o/ B do'dB = o .
0 0
Substituting, we find
P(A) = A(0.25)(F, ,(0.5,0.5) — F, ,(0,0.5))
= F,,(0.5,0.5) — F, ,(0.5,0.25)
3
= 6—4‘

Alternately, using the PDF directly, P(A4) is the volume under the PDF curve and above
A:

0.5 0.5

P(A) = / f4ozﬁ dadf = 63—4.

025 0

Two-dimensional representations for the PDF and CDF are shown in Fig. 4.7.
(b) We have

1
Fla) = /(;fx,y((x,ﬁ)dﬁ:2a, O<a<l1

0, otherwise.

(c) We have

1
fy(ﬂ): /Ofx’y(a,ﬂ)dﬂ:%z, 0<a<l

0, otherwise.
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(d) Since f,(a, B) = fila)f,(B) for all real o and B we find that the RVs x and y are
independent. [ |

Example 4.1.6. The jointly distributed RVs x and y have joint PDF

6(1—a/B), 0<a<p=<1

0, otherwise,

f;c,y(aa ﬂ) =
Find (a) P(A), where A= {(x,y): 0 < x <0.5,0 < y <0.5};(2) fx; (c) fy, and (d) F,,.
Solution. (a) The support region R for the given PDF is

R={(a,B):0<a<p <1}

A two-dimensional representation for f; , is shown in Fig. 4.8. Integrating with respect to «
first,

(=}

S5 B

0.5
1
fé(l—\/a/ﬂ)dadﬂ =2/,8d/8 =
0 0

P(A4) = P(ANR) =

o —

One could integrate with respect to f first:

0.50.5

P(A) = P(ANR) = //6(1 — Jo/B)dB da.
0 o

This also provides the result—at the expense of a more difficult integration.

B

6(1-,Jo/B )

FIGURE 4.8: PDF representation for Example 4.1.6.
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(b) For0 < < 1,

1
fl@) :/6(1—,/a/,3)dﬁ —6(1— 2@ + ).

(c)For0 < B <1,

B
£B) = f 6(1 — \/a/B) da = 2P.
0

(d) For (o, B) € R, (e, 0 <a < B <1),
a p
Fo ). B) =6 / / (1 — Ja'/B) dp do’
0 o

= 6[ (B—2Ja'B+d)da
0
= 6af — S8a/aB + 3a>.

ForO<B<1landB <a,

B B
Foy@.f) =6 f / (1 — Ja'7B) dp dt
0

’

ﬂa
= 6/(,8—2«/0[’/3—1—0/)410/
0
= B2.

ForO0<a <1land B > 1),

a 1
Fo e f) =6 f / (1 — Vo'/B) d dol
0 o

=6/(1—2ﬁ’+a/)da’
0

= 60 — 8’2 + 3.
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4.1.3 Bivariate Mixed Random Variables

Definition 4.1.6. The bivariate RV (x, y) defined on the probability space (S, S, P) is a mixed

RV if it is neither discrete nor continuous.

Unlike the one-dimensional case, where the Lebesgue Decomposition Theorem enables
us to separate a univariate CDF into discrete and continuous parts, the bivariate case requires
either the two-dimensional Riemann-Stieltjes integral or the use of Dirac delta functions along
with the two-dimensional Riemann integral. We illustrate the use of Dirac delta functions
below. The two-dimensional Riemann-Stieltjes integral is treated in the following section. The
probability that (x, y) € A can be expressed as

mmﬁem:/

(a,B)ed

dF, (e, ) = /A iF, (@, f). (4.32)

Example 4.1.7. The RVs x and y have joint CDF

0, a <0

0, B <0
aB/4, 0<a<1l, 0=<B<2
B/4, 1<a, 0<p<2
a/2, 0<a<l, 2<pB
1, 1<a, 2<p.

Fx,y(aa IB) =

(a) Find an expression for F, , using unit-step functions. (b) Find F, and F,. Are x and y indepen-
dent? (c) Find f, f,, and f. , (using Dirac delta functions). (d) Evaluate

=

1= [ [ r@pe) dads.

2

(¢) Find P(x < y).

Solution. (a) A two-dimensional representation for the given CDF is illustrated in Fig. 4.9.
This figure is useful for obtaining the CDF representation in terms of unit step functions. Using
the figure, the given CDF can be expressed as

Fuylas B) = (u(e) — ulo = D)apu(B) + Qo — a)u(p ~ 2)
+gule = 1)Bu(B) + (4~ Bulp — 2)
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B
“ 1
2
2
1w B
4 4
0 1 o

FIGURE 4.9: CDF representation for Example 4.1.7.

(b) The marginal CDFs are found as

Fu(a) = F, (o, 00) = %u(a) n (1 - %)u(a ~1)

and

B

B) = Fuyloe, ) = up)+ (1= )ats - 2

Since F, ,(0.5,0.5) = 1/16 # 1/32 = F,(0.5)F,(0.5), we conclude that x and y are not inde-
pendent. (c) Differentiating, we find

Jfrela) = 0.5(u(a) — u( — 1)) + 0.58(c — 1)
and
£(B) = 0.25(u(B) — u(B —2)) +0.55(8 — 2).
Partial differentiation of £, ,(«, ) with respect to & and § yields
Fuyla, B) = 0.25(u(e) — ula — 1)) (u(B) — u(B — 2)) + 0.58(@ — 1)3(8 — 2).

This differentiation result can of course be obtained using the product rule and using #V() =
8(ar). An easier way is to use the two-dimensional representation of Fig. 4.9. Inside any of the
indicated regions, the CDF is easily differentiated. If there is a jump along the boundary, then
there is a Dirac delta function in the variable which changes to move across the boundary. An
examination of Fig. 4.9 reveals a jump of 0.5 along B = 2, 1 < «. Another jump of height 0.5

occurs along @ = 1,2 < B. Since errors are always easily made, it is always worthwhile to check

the result by integrating the resulting PDF to ensure the total volume under the PDF is one.



(d) The given integral is

Substituting, we find

(e) We have

Substituting,

y
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e¢]

_ / F.(B)f,(B) dp.

—00

L)~ B~ 2) + 308 - z)) i

1 1
¥ (Zw B = ulp—2) + 536 -2)) dp

o™ H\g [\_)|‘o°

e[l i3
o f
://fx’y(a,ﬁ)dozdﬁ.

1 B 2 1
1 1 1 7
0 0 1 0

As an alternative, P(x < y) =1 — P(x > y), with

1 «
1 1
0 0

51

Drill Problem4.1.1.  Consider the experiment of tossing a fair coin three times. Let the random vari-
able x denote the total number of heads and the random variable y denote the difference between the num-

ber of heads and tails resulting from the experiment. Determine: (a) p (3, 3), (8) px. (1,

P2, 1), (d) a5 (0, =3), (e) £, (0, 0), (/) Fr,y (1, 8), (¢) Fr. (2, 1), and (B) F,. (3, 3).

Answers: 1/8, 3/8,1/8,3/8,1,1/2,7/8, 1/8.

—1), ()
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Drill Problem 4.1.2.  The RVs x and y have joint PMF specified in the table below.

Pxy(@, B)
1/8
1/8
2/8
1/8
1/8
1/8
1/8

W NN R R R o R
LW WD W PRy

Determine: (a) p.(1), (6) py(2), (¢)px(2), (d) p(3).
Answers: 1/8,1/4,1/2, 3/8.

Drill Problem 4.1.3.  Consider the experiment of tossing a fair tetrahedral die (with faces labeled
0,1,2,3) twice. Let x be a RV equaling the sum of the numbers tossed, and let y be a RV equaling the
absolute value of the difference of the numbers tossed. Find.: (a) F,(0), () F,(2), (¢) p,(2), (d) p,(3).

Answers: 1/4, 14/16, 4/16, 2/16.
Drill Problem 4.1.4.  The joint PDF for the RVs x and y is

B

- 0 1
ﬁc,y(%ﬂ)z 20!’ <p=a<

0, elsewhere.

Find: (a) f.(0.25), (6) f,(0.25), (c) whether or not x and y are independent random variables.

Answers: 1, In (4), no.

Drill Problem 4.1.5.  With the joint PDF of random variables x and y given by

acd’f, 0<a<3,0<B=<1

0, otherwise,

ﬁc,y(a’ /3) =

where a is a constant, determine: (a) a, (b))P(0 < x < 1,0 <y <1/2),(c)P(xy < 1), (d)P(x +
y<1).

Answers: 1/108, 7/27, 2/9, 1/270.
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Drill Problem 4.1.6.  With the joint PDF of random wvariables x and y given by

aaf(l—a), 0<a<l-B8<1
0, otherwise,

ﬁc,y(av ﬁ) =
where a is a constant, determine: (a) a, () £,(0.5), (¢) F,(0.5), (4) F;(0.25).
Answers: 13/16, 49/256, 5/4, 40.
4.2 BIVARIATE RIEMANN-STIELTJES INTEGRAL

The Riemann-Stieltjes integral provides a unified framework for treating continuous, discrete,
and mixed RVs—all with one kind of integration. An important alternative is to use a standard
Riemann integral for continuous RVs, a summation for discrete RVs, and a Riemann integral
with an integrand containing Dirac delta functions for mixed RVs. In the following, we assume
that £ is the joint CDF for the RVs x and y, that a1 < 41, and that a; < 4,.

We begin with a brief review of the standard Riemann integral. Let

=y <o <oy <---<a,=b,
aa=p<Pr<Pr<-<PBn=by,
aim1 <& <a, 1=1,2,...,n,
Bi—1 < V¥ < B, j=12,...,m,

A1, = max{a; —a;_1},

1<i<n
and
Ay = 1g?§><m{,3j — Bj-1}
The Riemann integral
by by

/ /b(a, B) do dp

@ @
is defined by

m

lim lim Z Z/J(Ei, V)i —ai_1)(B; — Bj-1),
=1

A2 om0 D10 < -
J=1

53
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provided the limits exist and are independent of the choice of {£;} and {/;}. Note that » — oo
and m — oo as Ay, = 0and A, ,, — 0. The summation above is called a Riemann sum. We
remind the reader that this is the “usual” integral of calculus and has the interpretation as the

volume under the surface (o, B) over the region a1 < o < b1, a2 < B < bs.

With the same notation as above, the Riemann-Stieltjes integral
by b
| [ st praria. prota. p da ap

az ai

is defined by

m n

lim  lim YY" g, ¥,)A(B), Bj1) Al — i 1) Flas, B)),

Ag =0 A1~
2,m0 Bln 0]21 i1

provided the limits exist and are independent of the choice of {§;} and {v/;}.

Applying the above definition with g(a, B) = 1, we obtain

by by
[ [ arep)= tim Y sap;~ b1 ) - Flea 57)
ay a1 R j:1

= F(bl952) - F(alabZ) - (F(élvaZ) - F(ﬂl,ﬂz))
=P(ﬂ1 <x<b,a <_y§bz)

Suppose F'is discrete with jumps at (o, 8) € {(e;, 8;) : 1 =0, 1, ... N} satisfying
=y <o <---<oay=<b

and
ay=Po <P1 <+ <Py =t

Then, provided that g and /" have no common points of discontinuity, it is easily shown that

by by

N
| [ stwparap =3 g e . (4.33)
=1

az ai

where

plo, B) = Fla, p) — Fla™, B) — (Fla, B7) — Fla™, B7)). (4.34)
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Note that a jump in F' at (a1, a2) is not included in the sum whereas a jump at (41, 43) is
included. Suppose F is absolutely continuous with

2 o
S, B) = % (4.35)
Then
by by by by
/ / g(a. B)dF(a, p) = / / g(a. B) f(c. B) dat dB. (4.36)

Hence, the Riemann-Stieltjes integral reduces to the usual Riemann integral in this case. For-

mally, we may write

dF(a, ) = lim lim Ba(h2)Aslh) Fle B) B
hry—051—0 h1hy
_ #Fa. p)

0B du

da dp, (4.37)

provided the indicated limits exist. The major advantage of the Riemann-Stieltjes integral is
to enable one to evaluate the integral in many cases where the above limits do not exist. For

example, with
Fla, ) = ula — Du(B — 2)
we may write
dF(a, B) = du(e — 1) du(B — 2).

The trick to evaluating the Riemann-Stieltjes integral involves finding a suitable approximation
for

Ay(h2) A1(h1) Fle, B)
which 1s valid for small 41 and small 4,.

Example 4.2.1. The RVs x and y have joint CDF

Foye.B) = %(1 — (1 — e Pu(@)u(p)

+ gl +2)+ Sule — Du(h —4).

Find P(x > y).
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Solution. For this example, we obtain
dF, (o, B) = 3¢ e Pu(a)u(p) do dp

+% du(a) du(B + 2) + gdu(a —1)du(B — 4).

Consequently,

dF, (o, B)

1
3¢ %38 do dB +3

Example 4.2.2. The RVs x and y have joint CDF with two-dimensional representation shown
in Fig. 4.10. The CDF F, ,(a,B) =0 for a« <0 or B < 0. (a) Find a suitable expression for
dF, ,(a, B). Verify by computing F, ,. (b) Find P(x = 2y). (c) Evaluate

[, olee]
= / f af dF, ,(, ).
B
1

o

1+ 2
p

0 : : —

FIGURE 4.10: Cumulative distribution function for Example 4.2.2.
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Solution. (a) Careful inspection of Fig. 4.10 reveals that the CDF is continuous (everywhere)
and that 4 F, ,(«, B) = 0 everywhere except along 0 < o = 28 < 2. We conclude that

o
dF, ,(, B) = dFy(e)du (ﬂ - 5) = dF,(B) dule — 2B).
To support this conclusion, we find

fjﬁmw4g:9:]

—00 —00 —00

~ [ u(9-%) ari)

—00

= Fx(min({aa 2:8}) = Fx,y(aa :8)

B
/ a/ /
(/ du (,B 2)) JE.()

]

Similarly,

fﬂ (fa a’u(ot’Z,B/)) dF,(B') = /ﬂ u(a — 28 dFy(B)

—00 —00 —00

= F,(min({0.5¢, B}) = F. (e, B).

(b) From part (a) we conclude that P(x = 2y) = 1.
(c) Using results of part (a),

o0 2
2 2 8§—0
I= / ¥ 4F.(a) =/a—doe=—=g.
2 4 12 3
—00 0

We note that

1
I = E(xy) = EQ2y*) = 2/,92 dp = %
0

4.3 EXPECTATION
Expectation involving jointly distributed RV is quite similar to the univariate case. The basic

difference is that two-dimensional integrals are required.
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4.3.1 Moments
Definition 4.3.1.  The expected value of g(x, y) is defined by

E(g(x, y) = f f ¢(0. B) dF, (@, B). (4.38)

—00 —O0

provided the integral exists. The mean of the bivariate RV z = (x, y) is defined by

Nz = (nxa ny)- (439)
The covariance of the RVs x and y is defined by
0uy = E((x — n.)(y — ). (4.40)

The correlation coefficient of the RVs x and y is defined by

Oy,
Pry = —=. (4.41)
0.0,
The joint (m,n)th moment of x and y is
M = E(x"y"), (4.42)

and the joint (m,n)th central moment of x and y is
Wmn = E((x = 1:)"(y = n,)"). (4.43)
Definition 4.3.2. The joint RVs x and y are uncorrelated if
E(xy) = E(x)E(y), (4.44)
and orthogonal if
E(xy) = 0. (4.45)
Theorem 4.3.1. If the RVs x and y are independent, then
E(g(x)h(y)) = E(g(x))E(5(y)). (4.46)

Proof.  Since x and y are independent, we have £, ,(a, B) = F.(a) F,(B) so that 4 F,, (a, B) =
d F,(a) d F,(B). Consequently,

E(g(x)h(y)) = f f 2(@)B(B) dF,(@) dFy(B) = Eg(x) E(()).

—00 —00
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Theorem 4.3.2. The RVs x and y are uncorrelated iff o, , = 0. If x and y are uncorrelated and
Nx = 0 and/orn, = 0, then x and y are orthogonal.

Note that if x and y are independent, then x and y are uncorrelated; the converse is not true,
in general.

Example 4.3.1. RV x has PDF

fila) = J(ule) — ula — 4)

and RV y = ax + b, where a and b are real constants with a # 0. Find: (a) E(xy), ()02,
(€)oy, (d)ps.y-

Solution. (a) We have

1 16
E(x):Z/adot:§:2,
0
1 ; 64 16
E(x2)=2/a2d ZEZ?,

so that
) 16
E(xy) = E(ax” + bx) = 34 + 25.

Note that x and y are orthogonal if

16
—a+2b=0.

(b) o2 = E(x?) — E*(x) =% —4 =1
(c) 6; = E((ax + b — 2a — b)?) = a’02.

(d) Noting that o, , = a2 we find
g sy X

Oy a
Px,y = = T
0,0y |a|

Note that p,, =—1if a <0 and p =1 if 2 > 0. The correlation coefficient provides

information about how x and y are related to each other. Clearly, if ¥ = y then p,., = 1. This
example also shows that if there is a linear relationship between x and y then p = +1. ]
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Example 4.3.2. RVs x and y are uncorrelated, and RV z = x + y. Find: (a) E(2), (b)o?.
Solution. (a) Using the properties of expectation,
E(z*) = E(x* + 2xy + y*) = E(x*) + 2n.n, + E(3%)
(b) With z=x + y,
2

0l =E(x—n.+y—n))=0l+20,, +0y2.

Since x and y are uncorrelated we have o, , = 0 so that ol=02+ cryz ; 1.e., the variance of the
sum of uncorrelated RVs is the sum of the individual variances. [ |

Example 4.3.3. Random variables x and y have the joint PMF shown in Fig. 4.5. Find E(x +
¥), Or,ys ANd Py .

Solution. We have

E(x +;V) = Z(a + IB)Px,y(Olv ﬁ)

(a, )
Substituting,
Ee+y)=0-2—1.240.242.243. 5.1 1B
YTy =Ey 8 8 8 8 8 8 8’
In order to find o, ,, we first find 1, and n,:
1 1 3 1 1 3
=—1-240-241-242.243.- =",
1 YT gt T
and
1 1 3 2
- _1.= I i
M j PO gt gt g=g
Then
1 1 1 1 1 37 15
o= FExy) =y =—1--—1--4+1.= Z49.- 2.2 .
Ory = Elay) =1y 8 R I R Rl
We find
1 1 3 1 1 9
Ex)=1-240--4+1-+4+4.-+4+9.-=2,
(=130 gtl-ghdg+95=4
and
1 1 3 2 23
EGpH=1-240-—+1-2+49.2 ==,
OI=1-3+0g+l-g+95=73
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so that o, = /27/16 = 1.299 and 0, = |/135/64 = 1.4524. Finally,

O
ey = —2 = 0.2485.
Pz,y 0.0, [ |

Example 4.3.4. Random variables x and y have joint PDF

2 2
Foyle ) = {1.5(ao+ﬁ ), 0<a<1,0<pB <1,

elsewhere.
Findo,,.

Solution. Since o, , = E(xy) — n,1n,, we find
11
E(x) = f / al.5(a? + %) dadp = g
0 0
Due to the symmetry of the PDEF, we find that E(y) = E(x) = 5/8. Next

11
3
E(xy) = / / aBl.5(a? + B?) dadp = g
0 0
. |
Finally, o, , = —3/192.
The moment generating function is easily extended to two dimensions.
Definition 4.3.3.  The joint moment generating function for the RVs x and y is defined by
M, (1, ha) = E(eM 1), (4.47)
where A and Ay are real variables.
Theorem 4.3.3. Define
0" M, (A1, A2)
M (hg, ha) = e 4.48
ey O, 22) AT OAL (448)
The (m,n)th joint moment for x and y is given by
E(x"y") = M7"(0, 0). (4.49)

Example 4.3.5. The joint PDF for random variables x and y is given by

ae Pl 0<pB <1

0, otherwise.

ﬁc,y(av /3) =

Determine: (a) M, ,; (6) a; (¢) M, (X) and M,(A); (d) E(x), E(y), and E(xy).
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Solution. (a) Using the definition of moment generating function,

1/ -p o
M y(h1, 22) = ﬂ/ / @Mt go / @M=D= go | 2P 4.
0 — 00 _/3

The first inner integral converges for —1 < A1, the second converges for A; < 1. Straightforward
integration yields (—1 < 41 < 1)

M, (A1, 22) = 2ag (k1 — 22)h(A1),
where g(A) = (1 — e™*)/A and 5(2) = 1/(1 — 2?).

(b) Since M, ,(0,0) = E(e®) = 1, applying L'Héspital’s Rule, we find M, 4(0,0) = 24, so that
a=0.5.

(c) We obtain M, (1) = M, (%, 0) = g(1)A(A). Similarly, M,(X) = M, ,(0, 1) = g(—21).
(d) Differentiating, we have

MY = gDWs0) + gWsV0),

MYG) = —g (-2,

and
MEP (g, h) = =P — 22)h(00) — g0 = 22)50000).
Noting that
AA3
W=1-242_2
g) ste ot

we find easily that g(0) = 1, g(0) = —0.5, and ¢g@(0) = 1/3. Since 4(0) = 0, we obtain
E(x) = —0.5, E(y) = 0.5, and E(xy) = —1/3. [ ]

4.3.2 Inequalities
Theorem 4.3.4. (Holder Inequality) Les p and g be real constants with p > 1, q > 1, and

1 1
—4+-=1 (4.50)
? 9

Ifx and y are RVs witha = EV?(|x|?) < 0o and b = EY1(|y|?) < 00 then

E(lxyl) < EY2(lx|2)EM1(1y17). (4.51)
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Proof. Ifeithera = 0or b = 0 then P(xy = 0) = 1 so that E(|xy|) = 0; hence, assume a > 0
and 4 > 0. Let

74 q
c@ =L+ B,
? q
for « >0,8>0. We have g(0)> 0, g(c0) = o0, g(l)(a) =a? 1 — B, and g(z)(oeo) =
(p— 1)01(;;_2 > 0, where g satisfies g(l)(ao) = 0. Thus, g(a) > g(@o), and g = gy =1 =

B?/?. Consequently,

a?  pY é’
—+——af>—+——af =
? q ?
The desired result follows by letting & = |x|/a and 8 = [y|/b. |

Corollary 4.3.1. (Schwarz Inequality)
EX(lxy|) < E(x1)E(|yl?). (4.52)

If y = ax, for some constant a, then

E*(Ixy]) = lal*E*(1x?) = E(|x*) E(]y]?).

Applying the Schwarz Inequality, we find that the covariance between x and y satisfies

ol , = EX(x = n)y —my) < olo;.

Hence, the correlation coefficient satisfies
|0xyl < 1. (4.53)

If there is a linear relationship between the RVs x and y, then |p, ,| = 1, as shown in Exam-
ple 4.3.1.

Theorem 4.3.5. (Minkowski Inequality) Lez p be a real constant with p > 1. If x and y are
RVs with E(|x|?) < 00 and E(|y|?) < 00 then

EV(jx + y17) < EV2(1x1?) + EV2(1y17). (4.54)
Progf.  From the triangle inequality (|x + y| < |x| + |y]),

E(lx + y|?) = E(|x + yllx + y|?7h)
< E(lxllx + y127) + E(lyllx + y|27h),
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which yields the desired result if p = 1. For p > 1,let ¢ = p/(p — 1) and apply the Holder
Inequality to obtain

E(|x + yl?) < EV2(xI?)EV (12 + y|?) + EV2(ly12) EVE(|x + y17),
from which the desired result follows. ]
Theorem 4.3.6. With o, = EY*(|x|*) we have ayy1 > oy fork = 1,2, ...
Proof Let B; = E(|x|). From the Schwarz inequality,
B = E*(1x|" V2 1x| V2 < E(|x "D E(x) ) = BioaBisa

Raising to the ith power and taking the product (noting that By = 1)

[ S L =1
[187 <188 =118 118 " =881 [ [ 87
i=1 i=1 i=0 =2 i=1
Simplifying, we obtain ,Bf“ < ﬂ,f 15 the desired inequality follows by raising to the 1/(£(% + 1))
power. u

4.3.3 Joint Characteristic Function
Definition 4.3.4.  The joint characteristic function for the RVs x and y is defined by

¢x,y(fla Z(2) - E(ejxl‘1+jyl‘z)’ (455)
where t and ty are real variables, and ]-2 = —1.

Note that the marginal characteristic functions ¢, and ¢, are easily obtained from the joint
characteristic function as ¢, () = ¢., (¢, 0) and ¢, (¢) = ¢.,(0, 7).

Theorem 4.3.7. The joint RVs x and y are independent iff
bry(t1, 12) = ¢:(11)9,(22) (4.56)
for all real £, and 1.
Theorem 4.3.8. Ifx and y are independent RV, then
Pury(£) = Pu()B, (7). (4.57)

Theorem 4.3.9.  The joint (m,n)th moment of the RVs x and y can be obtained from the joint
characteristic function as

E(x"y") = (=7)""¢{7(0, 0). (4.58)
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The joint characteristic function ¢, , contains all of the information about the joint CDF F, ,;

the joint CDF itself can be obtained from the joint characteristic function.

Theorem 4.3.10. If the joint CDF F, , is continuous at (a1, ay) and at (b1, b3), with a1 < by
and ay < by, then

T . . . .
—Jnh _ ,—jbhh pmjmt _ = jbah
bry(t1, 12) dty dby.

T
p < b4, < by))= 1
(a1 <x 1La<y = 2)= lim / i2nh it
-T-T

(4.59)

Proof. 'The proof is a straightforward extension of the corresponding one-dimensional
result. [ |

Corollary 4.3.2. Ifx and y are jointly continuous RVs with ¢, , then

T T
Foyle, ) = (W [ [erene. o mands. (4.60)
-7-T

The above corollary establishes that the joint PDF is 1/(27)? times the two-dimensional Fourier
transform of the joint characteristic function.

Drill Problem 4.3.1.  The joint PDF for RVs x and y is

2

4 2
ﬁc,y(avﬁ)= 90(;3, 0<a<3,0<B8<1

0, otherwise.

Findo, .
Answer: 0.

Drill Problem 4.3.2.  Suppose the RVs x and y have the joint PMF shown in Fig. 4.11. Determine:
(a) E(x), (6)E(y), (¢)E(x + y), and (d) Oy

Answers: 0.54, 1.6, 3.2, 1.6.

Drill Problem 4.3.3.  Supposen, = 5,n, =3, 0., = 18,0, = 3, and o, = 6. Find: (a) E(x?),
(0)E(xy), (C)O':;Zx, and (d) Gf+y.

Answers: 81, 81, 33, 34.
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B
1 2
3 g .W
1 1
2 *T0 *T0
1 2
1 *T0 *70
LU : : -
0 1 2 3 o

FIGURE 4.11: PMF for Drill Problem 4.3.2.

44 CONVOLUTION

The convolution operation arises in many applications. Convolution describes the basic in-
put/output relationship for a linear, time-invariant system, as well as the distribution function
for the sum of two independent RVs.

Theorem 4.4.1. If x and y are independent RVs and z = x + y then

o]

Fy) = / Fiy — BdF,(B) = / F(y - a)dFy(a). (4.61)

The above integral operation on the functions F, and F, is called a convolution.

Proof. By definition,

Fy) = Pz < y) = / dF, (e, f).

at+p=y
Since x and y are independent, we have
oo y—B 00
rn = [ [ an@ang = [ mo-pane.
—00 00 “o0
Interchanging the order of integration,
o y—a %
e = [ [ angarw = [ By -wodbe.
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Corollary 4.4.1. Let x and y be independent RVs and let z = x + y.

(1) If x is a continuous RV then z is a continuous RV with PDF

£y = / £y — BYAE,(B). (4.62)

(i) If y is a continuous RV then z is a continuous RV with PDF

Ay = f £y — @) dFy(a). (4.63)

(1i1) If x and y are jointly continuous RVs then 2 is a continuous RV with PDF

Fy) = / £y — BVA(B) dB = / £y — o) fule) da. (4.64)

(1v) If x and y are both discrete RVs then z is a discrete RV with PMF
2= 5y = D5 B =Y 1,y — 0)pala). (465)
B o

All of these operations are called convolutions.

Example 4.4.1. Random variables x and y are independent with f.(a) = 0.5(u(a) — u(a — 2)),
and f,(B) = e Pu(B). Find the PDF for z = x + y.

Solution. We will find f; using the convolution integral

Fly) = / LB £y — B) dB.

It is important to note that the integration variable is 8 and that y is constant. For each fixed
value of y the above integral is evaluated by first multiplying £,(8) times f.(y — B) and then
finding the area under this product curve. We have

Sfely = B) =0.5(uly — B) —uly — B —2)).

Plots of f(«a) vs. @ and f,(y — B) vs. B, respectively, are shown in Fig. 4.12(a) and (b).
The PDF for y is shown in Fig. 4.12(c). Note that Fig. 4.12(b) is obtained from Fig. 4.12(a)
by flipping the latter about the o« = 0 axis and relabeling the origin as y. Now the integration
limits for the desired convolution can easily be obtained by superimposing Fig. 4.12(b) onto
Fig. 4.12(c)—the value of y can be read from the B axis.
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folo) f.(v-B)
05 0.5
0 2 o (y-2) Y B
) f.(o) vs. o (b) f.(y — B) vs. B.
f,B
11+
0 2 4 B
(c)fy(ﬁ) vs. f.
A
05+
0 2 4 Y

(d) £.(7) vs. 1.

FIGURE 4.12: Plots for Example 4.4.1.

For y <0, we have f.(y — B)f,(B) = 0 for all B; hence, fi(y)=0fory <0.
For0 <y <2,

14

Sfy) = / 0.5¢ P dB =0501—e¢77).

—00

For2 <y,

14
fuly) = / 0.5 dB =0.5¢77(%—1).
-2

14
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Since the integrand is a bounded function, the resulting £; is continuous; hence, we know that
at the boundaries of the above regions, the results must agree. The result is

0, y <0
fz()/) =143 051 —-¢7), 0<y<2
0.5¢77(e?—1), 2<y.

[ |
The result is shown in Fig. 12.2(d).

One strong motivation for studying Fourier transforms is the fact that the Fourier trans-
form of a convolution is a product of Fourier transforms. The following theorem justifies this

statement.

Theorem 4.4.2. Let F; be a CDF and
o0
6:(6) = / e 4 (@), (4.66)

fori =1,2,3. The CDF F3 may be expressed as the convolution

oo

By) = f Fi(y — B) dFy(B) (4.67)

—0o0

iff $3(¢) = p1()pa(2) for all real t.

Proof.  Suppose F3 is given by the above convolution. Let x and y be independent RV's with
CDFs Fi and £, respectively. Then z = x + y has CDF F3 and characteristic function ¢3 =

P12
Now suppose that ¢3 = ¢1¢,. Then there exist independent RVs x and y with charac-

teristic functions ¢ and ¢, and corresponding CDFs F and F. The RV z = x + y then has
characteristic function ¢3, and CDF F3 given by the above convolution. [ |

It is important to note that ¢, , = ¢.¢, is not sufficient to conclude that the RV x and
y are independent. The following example is based on [4, p. 267].

Example 4.4.2. The RVs x and y have joint PDF

0.25(1+afle* = p%), lal<1,1Bl <1

0, otherwise.

ﬁc,y(a’ IB) =

Find: (a) f;c andjrya QL ﬂnd¢ya (C)¢x+y» (d)ﬁchy
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Solution. (a) We have

0.5, o<1

0, otherwise.

1
Sule) = %/(1 +af(a? — pH)dB = {
-1

Similarly,

0.5, IBl=1

0, otherwise.

1
H(B) = %/(1 + af(a? — B2) da = {
21
(b) From (a) we have

1
8.0 = ,(0) = 5 [ et = 2.
e}

(c) We have
11
Gryy(2) = %//ejwejﬂ’ dadf + 1,
-1-1
where
11
I= % / / af(a® — e’ e/P da dB.
-1-1

Interchanging o and B and the order of integration, we obtain

11

1 o
I= y / / Ba(B? — a?)e’Pe’* da df = —1I.
-1 -1

Hence, I = 0 and

: 2
t
¢x+y(f) = (%) >

so that ¢, = ¢.¢, even though x and y are not independent. (d) Since ¢, = ¢.¢, we have

Fon ) = / £y — B £, () dB.
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For -1 <y +1 < 1wefind
y+11 5
Yy +
x = —d = —
fertn) = [ a8 ="
-1
For -1 <y —1 <1 wefind
; 1 2
R
X = — d = —
fet) = [ qap ="
y—1
Hence
_J@=1lyD/4 Iyl =2
ﬁcﬂ(y) o { 0, otherwise. [ ]

Drill Problem 4.4.1.  Random wvariables x and y have joint PDF

4ap, 0 1,0 1
fx’y(a,ﬂ):{gé <o < <B<

otherwise.

Random wvariable z = x + y. Using convolution, determine: (a) f,(—0.5), (6) £(0.5), (¢) fx(1.5),
and (d) f(2.5).

Answers: 1/12, 0, 13/12, 0.

4.5 CONDITIONAL PROBABILITY
We previously defined the conditional CDF for the RV «, given event 4, as

Pt e§:x()<a,l€d)
P(4) ’

Fyala)d) = (4.68)
provided that P(A) # 0. The extension of this concept to bivariate random variables is imme-
diate:

P(Ce§S:x()<a,y()<B, e

Fx,y\A(O{’ ,B|ﬂ) = P(/f)

(4.69)

provided that P(A4) # 0.

In this section, we extend this notion to the conditioning event 4 = {¢ : y(¢) = B}.
Clearly, when the RV y is continuous, P(y = B) = 0, so that some kind of limiting operation
is needed.

71
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Definition 4.5.1.  The conditional CDF for x, given y = B, is

Fx ) - Fx ) - b

Pyl §) = lim L@ PV = Pyl p 2 5) (4.70)
—0  F,(B)— F,(B—h)

where the limit is through positive values of h. It is convenient to extend the definition so that Fy, (a|B)

is a legitimate CDF (as a function of &) for any fixed value of B.

Theorem 4.5.1. Let x and y be jointly distributed RV:.
If x and y are both discrete RVs then the conditional PMEF for x, given y = B, is

Px‘y (aa ﬁ)
Pely 2,B)
Jor py(B) # 0.
If 'y is a continuous RV then
1 9F,. ,(a, B)
Fyy(a| B) = - , (4.72)
V LB 9B
Sor f,(B) # 0.
If x and y are both continuous RV then the conditional PDF for x, given y = B is
(@, B)
el p) = L2 %) 4.73)
f ly f;/(ﬁ)
Sor f,(B) # 0.
Proof. The desired results are a direct consequence of the definitions of CDF, PMEF, and
PDF. [ |
Theorem 4.5.2. Let x and y be independent RVs. Then for all real o,
If x and y are discrete independent RV then for all real a,
If x and y are continuous independent RV then for all real o,
Sepy(a|B) = fila). (4.76)

Example 4.5.1.  Random variables x and y have the joint PMF shown in Fig. 4.5. (a) Find the
conditional PMF p. 4(a, BI A), if A={¢ € §:x(¢) # y(¢)}. (b) Find the PMF p,.(B|1).
(¢) Are x and y conditionally independent, given event B = {x < 0}?




BIVARIATE RANDOM VARIABLES
Solution. (a) We find

1
P(A) = P(x # y) = pey(1,1) + p.,(3,3) = e

hence, P(4) =1 — P(A°) = 3/4. Let D, , denote the support set for the PMF p,. ,. Then

Pry(@. B)
o 1) = pay - @B €L NEER)
0, otherwise.

The result is shown in graphical form in Fig. 4.13.

(b) We have
xy(1, B)
x 1) = - s
and
3
P =3 Poy(1, B) = Poy(1, =1 + Py (1, 1) = 2.
B
Consequently,

13, p=1

0, otherwise.

O\T'—‘ =

-1-¢ *o—

FIGURE 4.13: Conditional PMF for Example 4.5.1a.
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(¢) The support set for p, , is {(—=1, 0), (=1, 1)}, and we find easily that P(B) = 1/4. Then

0.5, (a,p)=(-1,0)
pryisle, BIB) =105, (o, )= (-1,1)

0, otherwise.
Thus
1 a=-1
x B) = ’
Peip(e] B) 0, otherwise,
and

0.5, =0
pys(BIB) =105 =1

0, otherwise.

We conclude that x and y are conditionally independent, given B.
Example 4.5.2. Random wvariables x and y have joint PDF

2
sl B) = [0.25a(1()+3,3 ) 0<a<20<p<1

otherwise.
Find (a) P(0 < x < 1|y = 0.5) and (8) f. yjalct, B| A), where event A= {x + y < 1}.

Solution. (a) First we find

2
o7 7
0
Then for0 < o < 2,
0.2507/4 «
fx|y(01|0-5) = T = 5,

and

P00 1ly = 0.5) /Oad 1
<x < = U. = —do = —
J ) 4

(b) First, we find

P(A4) = / » / Feyle, B)dadp;
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substituting,

B
13

1 _
(1+38) dadp = 240"

NS

11—
o]

The support region for the PDF £, , is
R={(a,B8):0<a<2,0<pB <1}
Let B= RN{a + B < 1}. For all («, B) € B, we have

Sayla, B) 60
P(4) 13

and f ,4(e, B| A) = 0, otherwise. We note that

Feytale, B1.4) = a(1+3p%),
B={(o,;8):0<a<1-8<1}.
Example 4.5.3. Random wvariables x and y have joint PDF

6, O<a<l1—-8<1

fx’y(a’ p) = 0, otherwise.
Determine whether or not x and y are conditionally independent, given A ={¢ € §:x > y}.
Solution. The support region for f; , is
R={(,p):0<a<1-p<1}
the support region for f; 4 is thus

B={,pB):0<a<1-B<la>Bl={0<B<a<1-pB<1).

The support regions are illustrated in Fig. 4.14.

AB AB
1- 1+
05+ 05—
R
B
; ; f ;
0 05 1 « 0 05 1 @

FIGURE 4.14: Support regions for Example 4.5.3.
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W]
1 1 1
3+ o — *— *o—
8 8 8
1 1
21 °— o —
8 4
1 1
1+ *o— °o—
8 8
O 1 2 3 «
FIGURE 4.15: PMF for Drill Problem 4.5.1.
For («, B) € B,
Sey(@,B)  6a
X ’ A — : - .
The conditional marginal densities are found by integrating f ,.4:
For0 < 8 < 0.5,
T (1-2p)
1 31-28
A)=—— [ bada = ———.
Sy1a(B14) ) / o do )
B
For0 < a < 0.5,
1 60
" A)=—— [ 6adp = .
e = 5 [ 608 = 05
0
For05 <a <1,

1«

1 6a(1 —a)
ﬁC|A((X|A):m/6Old(¥ :W
0

We conclude that since P(4) is a constant, the RVs x and y are not conditionally independent,
given A. |

Drill Problem 4.5.1. Random wvariables x and y have joint PMF shown in Fig. 4.15. Find (a)

Answers: 1/2, 1/4, 3/8, 1/3.



0

FIGURE 4.16: PMF for Drill Problem 4.5.2.

Drill Problem 4.5.2. Random wariables x and y have joint PMF shown in Fig. 4.16. Event
A={t € S:x+y <1}. Find (a) P(A), (0) psy1a(1, 1| A), (¢) pra (1| 4), and (d) py4(1] 4).

Answers: 0, 3/8, 1/3, 1/3.

Drill Problem 4.5.3. Random variables x and y have joint PMF shown in Fig. 4.17. Determine
if random variables x and y are: (a) independent, (b) independent, given {y < 1}.

Answers: No, No.

Drill Problem 4.5.4.  The joint PDF for the RVs x and y is

ﬂc,y(av /3) =19
, otherwise.
Ap
34 .-
8
2 il
1
1+ e
8
1/
———————t—
0 1 o

FIGURE 4.17: PMF for Drill Problem 4.5.3.

2
Zo?B, 0<a<3,0<B<1
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Find: (a) f,(110.5), (2) /;1x(0.5|1), (c)P(x <1,y <0.5|x +y < 1), and (d) P(x < 1|x +
y<1.

Answers: 1/9, 1, 1, 13/16.
Drill Problem 4.5.5.  The joint PDF for the RVs x and y is

Seyla, B) = e Pu(a)u(p).
Find: (a) f.,(1|1), (6)F,,(1]1), () P(x = 5|x > 1), and (d) P(x < 0.5|x +y < 1).

1—¢05-05¢71
Answers: 1 — e el 74

1—2¢71
Drill Problem 4.5.6. The joint PDF for the RVs x and y is
2p
—, 0 1
Sfeyla. B) =1 a <P<vas<
0, otherwise.

Find: (a) P(y <0.25|x =0.25), (6)P(y = 0.25|x = 0.25), (c)P(x < 0.25|x < 0.5), and
(@) P(x < 0.25|x + y < 1).

Answers: 0, 1/2, 1/4, 0.46695.
Drill Problem 4.5.7.  The joint PDF for the RVs x and y is

ﬂ,yw,ﬁ):[“gﬂ 0ca<10<p<1

otherwise.
Determine whether or not x and y are (a) independent, (b) independent, given A = {x + y > 1}.
Answers: No, Yes.

4.6 CONDITIONAL EXPECTATION

Conditional expectation is completely analogous to ordinary expectation, with the unconditional
CDF replaced with the conditional version. In particular, the conditional expectation of g(x, y),

given event 4, is defined as

E(glx, y)| 4) = / / g(a. B dF, yuler. B1 ). (4.77)

—00 —00

When the conditioning event A4 has zero probability, as when 4 = {x = 0} for continuous

RVs, the conditional CDF, PME, and PDF definitions of the previous sections are used.
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Definition 4.6.1.  The conditional expectation of g(x, y), given y = B, is defined by

E(g(x. y) |y = ) = / (o, B)dFyy (| B). (4.78)

In particular, the conditional mean of x, given y = B, is

oo oo

E(xly = f) = fadFm(am) _ fa (@) da. (4.79)

—00 —00

Itis important to note that if the given value of y(8) is a constant, then E(x | y = B) is also
a constant. In general, E(x |y = B) is a function of 8. Once this function is obtained, one may
substitute B = y(¢) and treat the result as a random variable; we denote this result as simply
E(x] y). It is also important to note that conditional expectation, as ordinary expectation, is a
linear operation.

Definition 4.6.2. The conditional mean of x, given y = P, is defined by

Neyep = Elxly = B), (4.80)
note that the RV 1y, = E(x|y). The conditional variance of x, given y = P, is defined by
02yp = E((x = ny)’ly = B). (4.81)
The RV o7y, = E((x = n4,)*1)-
Example 4.6.1. Random wvariable y has PMF

0.25, a=1

0.5, o=2

PO=9 025 4=3
0, otherwise.

Find the variance of y, given event A = {y odd}.
Solution. We easily find P(4) = 0.5 so that
0.5, a=1

p},‘A(O{|A) = 05, a=3
0, otherwise.
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Then

Nyla = E(}’|14) = Zazpyla(alﬂ) =2

and

EQ’1A) =) o’ pyaleld) =5.

Finally,
ol =EQA) - EX(ylA) =5-4=1
Example 4.6.2. Random wvariables x and y have joint PDF

ﬁc,y(avﬂ):{é’ a>0,0<B<1—«

, otherwise.
Find’lm = E(x|y), E(nx\y); andE(x)
Solution. We first find the marginal PDF

1-p

£(B) = /fx,y(a, B)da — /2da _ 21— p),
— 00 0

for0 < B <1.Thenfor0 < B <1,

ﬁCIy(O‘LB)— fy(ﬂ) =11

0, otherwise.

f<ﬂ>|1 D<a<ip

Hence, for0 < 8 < 1,

1-8
o 1-58
E = = do = ——
(xly = B) f 5 3
0
We conclude that
1—
may = Blxly) = —2.

Now,

o (1=y\ _ ['1-8 1
E(’?xy)—E<T)—/O Tz(l—ﬂ)dﬂ—g—E(x)-
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Example 4.6.3. Find the conditional variance of y, given A = {x < 0.75}, where

fayla, B) = 1.5(” + B*)(w(@) — ula — D))(w(B) — u(p — 1))

Solution. First, we find

1 0.75
_ 2 g2 _5
P(A)_//l.S(a ) dadp =
0 0

so that

64
Seyala, Bl A) = fx}y)((A)ﬁ) _ [25(0‘24‘/32), 0<a<0750<B<1

0, otherwise.

Then for0 < 8 < 1,

07> 64 9 48
A) = 0% 2 2 _ 7 2
14814 /0 o (@ ) da = o+
Consequently,
F (9 4 66
E(y|4) = — 4+ —p? =—
(1) /’3(25+25’3)d“ 100°
0
and
378
E(y*|4) = /13 (25 ,3) =750
Finally,
513
ol =EQ4) - EXy|d) = 500" n

There are many applications of conditional expectation. One important use is to simplify
calculations involving expectation, as by applying the following theorem.

Theorem 4.6.1. Let x and y be jointly distributed RVs. Then
E(g(x, y)) = E(E(g(x, y)1y)) (4.82)
Proof. Note that

de,y(av ;8) = deU,(O{“g) dFy(IB)
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Special cases of this are

Seyle, B) = fuy(alB) £,(B)

and
Px,y(a’ ,8) = ley(a | ﬂ) Py(,B)
We thus have
[o¢] [o¢]
) = [ | [ gwpar,@p) e,
Hence
Blgtr ) = [ Bl 0ly = B)dFy(5).

from which the desired result follows. [ |

The conditional mean estimate is one of the most important applications of conditional
expectation.

Theorem 4.6.2. Let x and y be jointly distributed RVs with o < 0o. The function g which
minimizes E((x — g(9))?) is

g(y) = E(x1y). (4.83)
Proof.  'We have

E((x — g(0)1y) = E((x = 0y + 0y — £0)) 1)
=07, + 2E((x — 1)1y — gONNY) + (1 — g())?

= O_jb; + (nxly - g(_y))z

The choice g(y) = 7., is thus seen to minimize the above expression, applying the (uncondi-
tional) expectation operator yields the desired result. [ |

The above result is extremely important: the best minimum mean square estimate of a
quantity is the conditional mean of the quantity, given the data to be used in the estimate.
In many cases, the conditional mean is very difficult or even impossible to compute. In the
important Gaussian case (discussed in a later chapter) the conditional mean turns out to be easy
to find. In fact, in the Gaussian case, the conditional mean is always a linear function of the

given data.
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Example 4.6.4. Random variables x and y are independent with

) = {1/20, | < 10,

0, otherwise,
and
)12, 1Bl =1,
fy('B) B [ 0, otherwise.

The random variable z = x + y. Find (a) f,(y) and (b) x = g(z) to minimize E(x — g(2))?).
Solution. (a) We find f; using the convolution of £, with f;:

Fly) = / £y — @) fu(@) da

For-11 <y < -9,

y+1 1
Y+
z —duo =
Sy) 20T 40
-10
For—9 <y <9,
v+
Sfly) = / =
For9 <y < 11,
11 —

Fly) = / —da =

Finally, £(y) =0if|y| > 11.

(b) From the preceding theorem, we know that & = ¢(z) = 1,,. Using the fact that 7, .(«, y) =

Sfele) f,(y — @), we find

1
ST —10<a<y+1,
Sola) £, (v 1
Llo]y) = y——< 5, —l<a<y+1,
1
11 , y —1<a<10.
-V

83
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Notes that for each fixed value of y with |y| < 11, we have that f,.(«|y) is a valid PDF (as a
function of ). Consequently,

o0
Elelz=7) = faﬂ|z<a|y)da
12 -1
()/—i_)—oo, _11 < y < _9’
2(y +11)
_Jorr-o-1 ;
- 4 =Y, |)/| <7,
100 — (y — 1)?
_— 9 11.
2011 — ) =r=
We conclude that
1?2 -1
D7 -100 0 .,
2(z+11)
x=g(x)= 2, lyl <9,
100 — (z — 1)
ﬁ, 9 < z<11.

Drill Problem 4.6.1. Random variables x and y have joint PMF shown in Fig. 4.18. Find (a)
E(x |_y = 3), (b) 03|y=2’ and (C) O ylxty=5-

Answers: 24/25, —3/16, 2.

A B
1
3T o—
9
2 1
2+ *o— *o—
9 3
2 1
1-e— °o—
9 9
: : —
0 1 2 3«

FIGURE 4.18: PMF for Drill Problem 4.6.1.
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Drill Problem 4.6.2.  The joint PDF for the RVs x and y is

2
60(2/3, O0<a<3,0<B8<1

ﬁc,y(aa ﬂ) =
0, otherwise,

and event A = {x + y < 1}. Find: (a) E(x|y = 0.5), (0) E(x | A), and (c) 0, y 4.

Answers: 9/4, —1/42, 1/2.

Drill Problem 4.6.3.  The joint PDF for the RVs x and y is

2B

—, 0 1
fslapy=1a 0P V<

0, otherwise.

Determine: (a) E(y|x = 0.25), (0)E(x|x+y < 1), (c)E(4x —2|x +y < 1), and(d)ajm:m?
Answers: —0.86732, 1/72,0.28317, 1/3.
Drill Problem 4.6.4. The joint PDF for the RVs x and y is

4aB, 0<a<1,0<B<1

0, otherwise.

ﬁc,y(aa /3) = [

Determine whether or not x and y are (a) independent; (b) independent, given A = {x + y > 1}.

Answers: No, Yes.

4.7 SUMMARY
In this chapter, jointly distributed RV are considered. The joint CDF for the RVs «x and y is
defined as

Foyla, B) = P € §:x(¢) =a, y(£) = ). (4.84)

Probabilities for rectangular-shaped regions, as well as marginal CDFs are easily obtained

directly from the joint CDF. If the RVs x and y are jointly discrete, the joint PMF
pry(a. B) = P € §:x(s) = . y(0) = B) (4.85)

can be obtained from the joint CDEF, and probabilities can be computed using a two-dimensional
summation. If the RVs are jointly continuous (or if Dirac delta functions are permitted) then

the joint PDF is defined by

9 Fy y (o, B)

_fx,y(av IB)= 8,3 I ,

(4.86)
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where left-hand derivatives are assumed. The two-dimensional Riemann-Stieltjes integral can
be applied in the general mixed RV case.
The expectation operator is defined as

o0

Eg(x, 9)) = f ¢(a. B dF.(a. B). (4.57)

—00

Various moments, along with the moment generating function are defined. The correla-
tion coefficient is related to the covariance and standard deviations by p, , = 0%,/ (axay), and
is seen to satisfy | o, ,| < 1. Some important inequalities are presented. The two-dimensional
characteristic function is seen to be a straightforward extension of the one—dimensional case.

A convolution operation arises naturally when determining the distribution for the sum
of two independent RVs. Characteristic functions provide an alternative method for computing

a convolution.

The conditional CDE, given the value of a RV, is defined as

Fx,y(a’ ﬂ) - Fx,y(av :8 - b)
EB) - FB—h

the corresponding conditional PMF and PDF follow in a straightforward manner. The condi-

Fay(@]§) = lim (4.88)

tional expectation of x, given y = f, is defined as

E(xly = f) = / wdFyyal|f). (4.89)

—00

As we will see, all of these concepts extend in a logical manner to the 7#-dimensional
case—the extension is aided greatly by the use of vector—matrix notation.

4.8 PROBLEMS
1. Which of the following functions are legitimate PDFs? Why, or why not?
(a)

o> +05a8, 0<a<1,0<pB<2
0, otherwise.

gl(a’ IB) = {

(b)

2@+ B—-2aB), 0<a<1,0<pB<1
2a, ) = 0

otherwise.
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(©)
e % b, a>0,8>0
gsa, B) = { 0, otherwise.
(d)
@ p) = |@es(B) 0=a=10=p=x
galo, p) = 0, otherwise.

Find the CDF £, (o, B) if

fx,y(a,ﬂ)={0‘§5’ 0<p<2,p<as<pf+2

otherwise.
Random variables x and y have joint PDF

ac?, 0<B<ll<a<e’

ﬁc,y(av /3) = { 0,

otherwise.

Determine: (a) 4, (b) fi(a), (¢) £,(B), (d) P(x < 2).
. With the joint PDF of random variables x and y given by

(@®+p?), -1 1,0< B <2
fxﬁy(a’ﬂ):{aao’ <a< < p<

otherwise.

Determine: (a) 4, (b) P(-0.5<x<050<y<1), (¢) P(—-0.5<x<0.5),
(d) P(jxy| > 1).

The joint PDF for random variables x and y is

ﬁ’y(a’ﬁ):{ﬂ(az;ﬂz), O<Ol<2’1<13<4

otherwise.

Determine: (a) a, (b) P(1 <x <2,2<y <3),(c) Pl <x <2),(d) Plx +y > 4).

Given

Feyla, B) = {a(aZO—i—,B), 0<a<1l,0<B<1

otherwise.

Determine: (a) a, (b) P(0 < x < 1/2,1/4 < y <1/2),(c) £,(B), (d) fi().
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7. The joint PDF for random variables x and y is

_JaleBl, lel< 1,81
fx'y(a’ B = [ 0, otherwise.
Determine (a) 4, (b) P(x > 0), (c) P(xy > 0), (d) P(x —y < 0).
8. Given
B
Fonler B) = aa, O<pB<ax<l
0, otherwise.

Determine: (a) 4, (b) P(1/2 <x <1,0 <y <1/2),(c) P(x +y < 1),(d) fi(a).
9. The joint PDF for random variables x and y is

fura ﬁ)_l;o(a2+,82), O<a<2,1<B<4
x,y\&s -

0, otherwise.

Determine: (a) P(y < 4|x =1),(b) P(y <2|x=1),(c) P(y <3|x+y > 4).
10. Random variables x and y have the following joint PDF.

a Xp(— 1+ , 0, 0
fx»y(“vﬂ)Z{aep( (())i( B), a>0,p8>

otherwise.

Find: (a) 4, () fi(a), () £3(B), (d) fuy(|B), () f1:(B|cx).
11. Random variables x and y have joint PDF

1 1
P o= 1’ — =< <o
fuyle. B = | 2278 2 =P
0, otherwise.

Event 4 = {max(x, y) < 2}. Find: (a) f., 4(e, B14), ©) frale|A), () f514(B14),
(d) fay(@lB), (e) fy1x(Bla).
12. Random variables x and y have joint PDF

e ,3)[332(("3+4ﬁ)’ O<a<2o?<B<2
x,_y ’ -

0, otherwise.

Event 4 = {y < 2}.Find: (a) fx4(cx, B), (b) fijaler| 4),(c) f514(B1 A), () fupy(e|B),
(e fy=(Bla).
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The joint PDF for random variables x and y is

a, *<B<a

ﬁc,y(a’ ﬁ) = {O,

Determine: (a) a, (b) P(x <1/2,y <1/2), (c) P(x <1/4), (d) P(y <1/2—x),
(e) P(x <3/5|y =3/4).

Random variables x and y have joint PDF

otherwise.

fﬂa@z{m a+B<1,0<a,0<p
X, ) 0’

Determine: (a) 4, (b) F (@, B), () P(x <3/4), (d) P(y <1/4|x <3/4),
(e) P(x > y).
The joint PDF for random variables x and y is

3
Feyle, B) = { g

0, otherwise.

otherwise.

0<B<a=x<2

Event 4 = {x < 2 — y}. Determine: (a) f.(a), (b) £,(B), (c) fiy(e]B), (d) fy1x(B ),
(€) furala|A), (£) f14(B1A).

Random variables x and y have joint PDF

8uB, 0<o?+pB2<1,0a>0,8>0

Let event 4 = {x > y}. Determine: (a) P(A), (b) fiyjaler, B|A), (¢) fujaler| A).
Random variables x and y have joint PDF

otherwise.

Sryla, B) = {é(oﬂ —B)ep(-a), a=0|flza

0, otherwise.

(a) Determine fy.(B |e). (b) Write the integral(s) necessary to find the marginal PDF
for y (do not solve). (c) Given the event B = {x* + y* < 1}, write the integral(s)
necessary to find P(B) (do not solve).

Random variables x and y have joint PDF

2 p—
ﬂ,y(a,ﬂ)z[ﬂaﬂ(g ,3)7 050{52’051352

Determine: (a) a, (b) f,(B), (¢) fxy(a|B), (d) whether or not x and y are independent.

otherwise.




90 INTERMEDIATE PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

19.

20.

21.

22.

23.

24.

Given
2

fx,y(a,ﬂ)—{gazﬁ, 0<a<30<pB<1

0, otherwise,
and event 4 = {x < y}. Determine: (a) fi,(a|B); (b) fy1(Bla); (c) Plx < 2|y =
3/4); (d) P(x <1,y <0.5|4); (e) P(y <0.5|4); (f) whether or not x and y are

independent; (g) whether or not x and y are independent, given 4.

Determine if random variables x and y are independent if

_Jobla+ Y., 0<a<1,Bl<1
ey (o, ) = { 0, otherwise.
Given
1008, 0<B<a=<1
Juyles B) = { 0, otherwise,

and event 4 = {x + y > 1}. Determine: (a) f,1.(813/4); (b) fy14(B|4); (c) whether

x and y are independent random variables, given 4.

The joint PDF for x and y is given by

1
ﬁc,y(a,ﬂ)Z{(Z)’ O<a<p<

otherwise.

Event 4 = {1/2 < y < 3/4,1/2 < x}. Determine whether random variables x and y
are: (a) independent; (b) conditionally independent, given A.

Random variables x and y have joint PDF

2, a+p<1l,aa>0,6>0
0

, otherwise.

f;c,y(a’ ﬂ) = [

Are random variables x and y: (a) independent; (b) conditionally independent, given
max(x, y) <1/2?

Given

fx’y(“,ﬂ)={6(1_g_ﬁ)’ a+p<1a>08>0

otherwise.

Determine: (a) fi,(e|B), (b) Fyy(a|p), (c) Plx <1/21y =1/2), (d) f1(Bla),
(e) whether x and y are independent.
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Random variables x and y have joint PDF

Bsin(w), 0<p<1,0<ac<m

f;c,y(av :3): { 0,

otherwise.

Event 4 = {y > 0.5} and B = {x > y}. Determine whether random variables x and
y are: (a) independent; (b) conditionally independent, given 4; (c) conditionally inde-
pendent, given B.

With the joint PDF of random variables x and y given by

(@®+ 8%, || <1,0 2
fx,y(“aﬁ)={aa0,ﬂ o < <p <

otherwise,

determine (a) fi(a), (b) £,(B), (¢) fuy(a|B), (d) whether x and y are independent.
The joint PDF for random variables x and y is

leBl, ol <1,18] <1
= o 218

otherwise.

Event 4 = {xy > 0}. Determine (a) a; (b) fijale|A); (c) f,14(B|A); (d) whether x
and y are conditionally independent, given A.
Let the PDF of random variables x and y be

(—(a + B)), 0,>0
Fr(@. B) = {aa exp 0’01 o > >

otherwise.

Determine (a) 4, (b) fi(a), (c) £,(B), (d) fi,(ex|B), (e) whether x and y are indepen-
dent.

Given

6’8, 0<a<1,0<B<1
fx,yw,ﬂ):[ 7 ’

otherwise,
and event A ={y <wx}. Determine: (a) P0<wx<1/2,0<y <1/2|A4);
(b) fujale | A); (c) fy14(B | A); (d) whether x and y are independent, given A.

Determine the probability that an experimental value of x will be greater than E(x) if

2 p—
Furlaa B) = [a(oz €+1), @>0,0<p<2-05a

otherwise.
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31.

32.

33.

34.

35.

Random variables x and y have joint PDF

, otherwise.

fx,m,m:[év wrp=laz0p20

Determine: (a) E(x), (b) E(y|x < 3/4), (c) o2, (d) ayzlA, where 4 = {x > y}, () 0,,.
The joint PDF for random variables x and y is

120(1 — B), >0,a2<B<1

otherwise.

Event 4= {y > x1/2}. Determine: (a) E(x); (b) E(y); (c) E(x|A4); (d) E(y|4);
(e) E(x + y|A); (f) E(x*| 4); (g) EGQx* + 4x + 3y | A); (h) the conditional covari-
ance for x and y, given 4; (i) whether x and y are conditionally independent, given A;

(j) the conditional variance for x, given 4.

Suppose x and y have joint PDF

168
Forla, ) = e a>2,0<B8<1
x,y\ K> —
0, otherwise.

Determine: (a) E(x), (b) E(y), (c) E(xy), (d) os,,-
The joint PDF of random variables x and y is

(@+p8%, 0 1, 1
fx,y(a,ﬁ)={aa0"3 <a<1,|8] <

otherwise.

Event 4 = {y > x}. Determine: (a) a; (b) fi(a); (¢) f,1(Bla); (d) E(y|x = a); (e)
E(xy); (f) feyala, B A); (g) E(x| A); (h) whether x and y are independent; (i) whether

x and y are conditionally independent, given 4.

Suppose
fula) = %ww) — ule — 4))

and

lja, 0<p=<acx<4
0, otherwise.

Determine: (a) £, (e, B), (b) £,(B), (c) E(x — y),(d) P(x < 2|y < 2),(e) P(x —y <
11y <2).
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38.

39.

40.

41.
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The joint PDF of random variables x and y is

ao, a>0,-1<pB—-—a<pB<0

ﬁc,y(aa IB) = [ O,

otherwise.

Event 4 = {0 > y > —0.5}. Determine (a) 4, (b) f.(a), (c) £,(B), (d) E(x), (e) E(y),
() E(x?), (2) E(y?), (h) E(xy), () 02, () 05, (&) 0y, (D) fryraler, B1A), (m) E(x| A).
Random variables x and y have joint PDF

2
Sy, B) = {0'6(a0+ﬁ ), 0<a<1fl<1

otherwise.
Determine: (a) E(x), (b) E(y), (c) o2,(d) a2, (e) Ouy, (£) E(y | % = ), (g) E(x|y = B),

(h) cryzlx, (1) Gfly'

Given

2
ﬁc,y(a,ﬂ): [1.2(0(0+/3), 0<a<1,0<p<1

otherwise.

Event 4 = {y < x}. Determine: (a) n,, (b) nxy=1/2, (¢) E(x|4), (d) 0., (€) 0 145
() Uf\y:m) (2) "3|A-

Random variables x and y have joint PDF

Bsin(e), 0<a<m0<pB<1

_ﬁc,y(‘xv /8) = { 0,

otherwise.

Event 4 = {y > 0.5} and B = {x > y}. Determine: (a) E(x | A4), (b) E(y | 4), (c) E(x|
B)7 (d) E(}’ | B)7 (C) px,y; (f) px,y|A-
If random variables x and y have joint PDF

ﬂJW¢0={&ﬂ”?“ﬂl a>0,0<p<2

otherwise,

determine: (a) 0y, (b) px.,, (¢) E(y |x = a), (d) o).
The joint PDF for random variables x and y is

10a?B, 0<B<ac<l

0, otherwise.

f;c,y(av :3) = [

Event 4= {x + y > 1}. Determine: (a) E(y|x = 3/4), (b) E(y|A), (c) E(y*|A),
(d) E(5y* — 3y +2]4), (e) cry2|A, (f) cryzlx=3/4.
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42.

43.

44,

45.

46.

47.

48.

Random variables x and y have joint PDF

(@p+1), 0 1,0<p <1
fx’y(a’ﬂ):{aaO’ <o < < B <

otherwise.

Event 4= {x > y}. Find: (a) a, (b) f£,(B), () fu,([B), (d) E(y), () E(x]y),
(£) E(xy), (g) P(A), (h) foyala, B14), (1) E(xy|A).

Let random variables x and y have joint PDF

1/16, 0=a =8,/ =1

0, otherwise.

ﬂc‘y(av /3) = [

Random variable z = yu(y). Determine: (a) o, (b) 0y, (¢) 0.
Random variables x and y have joint PDF

2 2
fx,y(a,ﬂ)={3(“ ;ﬂ)’ 0<p<a<l

otherwise.

Event 4 = {x*> + y2 < 1}. Determine: (a) o, (b) px.y, (¢) 0% y14, (d) P y14-
The joint PDF for random variables x and y is

9
f (01,3)—{2080[2’32’ 0<Bp=<21=<a=3
x, y\ s =

0, otherwise.
Determine: () o2, (b) E(x|y), (c) whether x and y are independent, (d) E(g(x)) if
g(x) = 265sin(mx)/3, (e) E(h(x, y)) if h(x, y) = xy.

Suppose random variables x and y are independent with

u 1
Sy, B) = {ZGXPE) 20), ¢>0,0<p<

otherwise.

Determine E(y(x + y)).

Prove the following properties: (a) Given random variable x and constants 2 and 2,
E(ax + b) = aE(x) + 4. (b) Given independent random variables x and y, E(xy) =
E(x)E(y). (¢) Given random variable x, constants @ and 4, and an event 4, E(ax + & |
A) = aE(x| A) + 4. (d) Given that random variables x and y are conditionally inde-
pendent, given event 4, E(xy | A) = E(x | A)E(y|A).

Random variables x and y have the joint PDF

Sy, B) = %(u(a) —u(e = 2))w(B) — u(B — 2)).

If z = x + y, use convolution to find £;.
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50.

51.

52.

53.
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Random variables x and y are independent with

Sfala) = e u(ar)

and

S(B) =2 u(p).
If z = x + y, use convolution to find £,.

Independent random variables x and y have PDFs

fala) = 2¢ 2% u(er)

and

S(8) = 5B +1) = u(p ~ 1)

Find £, if z = x + y. Use convolution.

Random variables x and y are independent and RV z = x 4 y. Given

Felo) = (o — 1) — u(a — 2)

and
1

ﬁ(u(ﬂ) — u(B—2)),

S (B) =

use convolution to find £;.

Random variables x and y are independent with

fala) = 2¢ 2%y (er)

and
S(8) = 5B +1) = u( ~ 1)

With z = x + y, use the characteristic function to find £,.

An urn contains four balls labeled 1, 2, 3, and 4. An experiment involves draw-
ing three balls one after the other without replacement. Let RV x denote the sum
of numbers on first two balls minus the number on the third. Let RV y denote
the product of the numbers on the first two balls minus the number on the third.
Event 4 = {either «x or y is negative}. Determine: (a) p.,(c, B); (b) p.(); (c) p,(B);
(@ y1e(B15%(€) pay | 5% (6) Ely | = 5% (€ 02, g5 (0) pryyaler, B1.405 G) B A
(j) whether or not x and y are independent; (k) whether or not x and y are independent,

given 4; (1) 0y.y; and (m) O,y d-

95
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54.

55.

56.

57.

58.

59.

60.

61.

TABLE 4.1: Joint PMF for Problems 54-59.

0 6/56 18/56 6/56
1 12/56 11/56 1/56
2 1/56 0 1/56

Random variables x and y have the joint PMF given in Table 4.1. Event 4 = {x + y <
2} Determine: (a) Px) (b) Py; (C) ley(a | 0), (d) Pylx(ﬁ I 1), (C) Px,ylA(aa :8 IA); (f) Px\A;
() py145 (h) whether or not x and y are independent; (i) whether or not x and y are
independent, given A.

Random variables x and y have the joint PMF given in Table 4.1. Event 4 = {x +
9 < 2}. Determine: (a) E(x), (b) E(x?), (c) 02, (d) E(5x), (e) 0'22x+1, (f) E(x — 3x2),
(g) E(x| A), (h) E(x*| A), i) EGx* — 2x| A).

Random variables x and y have the joint PMF given in Table 4.1. Event 4 = {x + y <
2}. Determine: (a) E(y), (b) E(yz), (c) oyz, (d) EG5y —2), (e) 032}" (f) E(5y —yz),
(g) E(y|A), (h) E(y*|4), () EGy* —2y|4).

Random variables x and y have the joint PMF given in Table 4.1. Event 4 = {x + y <
2}. If w(x, y) = x + y, then determine: () poy, (b) poys, (¢) E(w), (d) E(w| A), (e) 02,
(f) 034/4'

Random variables x and y have the joint PMF given in Table 4.1. Event 4 = {x 4+ y <
2}. If 2(x, y) = x* — y, then determine: (a) Do (b) paa, (©) E(2), (d) E(z| A), (e) o2,
(f) O'ZZ‘A‘

Random variables x and y have the joint PMF given in Table 4.1. Event B = {zw > 0},
where w(x, y) = x + y, and 2(x, y) = x* — y. Determine: (a) prw, (b) pz (©) pu
d) pee(¥12), © pus, ) 0 (& ngz () 02, () 0lp () 0w K
Gz,w\B-

Random variables x and y have joint PMF shown in Fig. 4.19. Event 4 = {xy > 1}.
Determine: (a) px; (b) py; (€) pupy(@|1); (d) py1x(B11); (€) puyialer, BIA); (£) puias
(2) y145 (h) whether or not x and y are independent; (i) whether or not x and y are
independent, given A.

Random variables x and y have joint PMF shown in Fig. 4.19. Event 4 = {xy >
1}. Determine: (a) E(x), (b) E(x?), (c) 02, (d) E(x — 1), (e) 032x, (f) E(5x — 3x2),
(8) E(x|4), (h) E(x*| 4), (1) E(x* + 2x | 4).
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FIGURE 4.19: PMF for Problems 60-65.

62.

63.

64.

65.

66.

67.

68.

69.

Random variables x and y have joint PMF shown in Fig. 4.19. Event 4 = {xy >
1}. Determine: (a) E(x + y), (b) E(yz), (c) o2, (d) E(5y — x), (e) of’y, (£) 0 y45
(g) E(x + y|A4), (h) E(x? +y2|A), (1) E(?)y2 —2x| A).

Random variables x and y have joint PMF shown in Fig. 4.19. Event 4 = {xy > 1}.
If w(x, y) = |x — y|, then determine: (a) pu, (b) puja, (¢) E(w), (d) E(w]|A), (e) o2,
(f) Uilﬂ.

Random variables x and y have joint PMF shown in Fig. 4.19. Event 4 = {xy > 1}.
If 2(x, y) = 2x — y, then determine: (a) p, (b) py4, (¢) E(2), (d) E(z| A4), (e) o2,
(f) 0z2|A'

Random variables x and y have joint PMF shown in Fig. 4.19. Event B = {z + w < 2},
where w(x, y) = |« — yl, and z(x, y) = 2x — y. Determine: (a) pyw, (b) pz, (©) pu,
(d) pyw(y 10), (€) pan, () 0z () nyp, (h) 02, (1) Gzzug, () 0w (k) 0 ) B-

Random variables x and y have joint PMF shown in Fig. 4.20. Event 4 = {x > 0, y >
0} and event B = {x + y < 3}. Determine: (a) p.; (b) p,; (¢) pujy(|2); (d) py(B14);
(e) Pylanple, Bl 4N B); (£) puans; (g) Pyl4nB (h) whether or not x and y are
independent; (i) whether or not x and y are independent, given 4° N B.

Random variables x and y have joint PMF shown in Fig. 4.20. Event 4 = {x > 0, y >
0} and event B = {x + y < 3}. Determine: (a) E(x), (b) E(x?), (c) 02, (d) E(x — 2y),
(e) 04, (f) E(5x — 3x%), (g) E(x| AN B), (h) E(x*| AN B), (i) EGx* —2x| AN B).
Random variables x and y have joint PMF shown in Fig. 4.20. Event 4 = {x >
0,y > 0} and event B = {x + y < 3}. Determine: (a) E(y), (b) E(y%), (c) o*yz, (d)
E(5y — 2x%), (e) 032y, (f) E(5y —3y%), (g) E(x + y|AN B), (h) E(x* + y*| 4N B),
(i) EGy* —2y|4N B).

Random variables x and y have joint PMF shown in Fig. 4.20. Event 4 = {x > 0, y >
0}. If w(x, y) = y — «, then determine: (a) pu, (b) pus, (¢) E(w), (d) E(w|A4),

(e) O',i, (f) Ufuw.
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71.

72.

B
1 2
4+ o— o—
19 19
1 1
33— *o—
19 19
2 2 1
24 *— *— *o—
19 19 19
1 1
1+ *o— *o—
19 19
0 M2 | —
1 2 3 4 @
3
14 P
19
1 2
-2 4 *— *—
19 19

FIGURE 4.20: PMF for Problems 66—71.

70. Random variables x and y have joint PMF shown in Fig. 4.20. Event 4 = {x > 0, y >

0}. If x(x, y) = xy, then determine: (a) p,, (b) pya, (¢) E(2), (d) E(zx| A), (e) o2,

(f) (TZZM.

Random variables x and y have joint PMF shown in Fig. 4.20. Event B = {z + w < 1},
where w(x, y) = y — x, and z(x, y) = xy. Determine: (a) pyw, (b) pz (¢) puw, (d)
P4w(710), (€) pz5, () 0z (8) nayp, (h) 02, (1) 025, () 02wy (K) 0y 5.

Random variables x and y have joint PMF showninFig. 4.21. Event 4 = {2 < x + y <

5}. Determine: (a) py, (b) py, () payia> (A) paias (€) pyia

A\
1 1
69— *o—
8 8
1
4+ o
4
1 1
24 o-— o
8 4
| o8 e
0 1 2 3«

FIGURE 4.21: PMF for Problems 72-77.
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73. Randomvariables x and y have joint PMF shownin Fig. 4.21. Event A = {2 < x + y <
5}. Determine: (a) E(x), (b) E(x?), (c) 02, (d) E(3x + 45> — 5), (e) 022x+5, (f) E(x| A),
(g) E(x*| 4), (h) EGx + 4x? — 5| A).

74. Randomvariables x and y have joint PMF shownin Fig. 4.21. Event A = {2 < x + y <
5}. Determine: (a) EQ3x + y), (b) E(y? + x%), (c) E(4y + 3y* — 1), (d) oyz, (e) 0x.y)
(£) 05100 (@) Elx +y14), (h) E(y|x =2), () B+ y*| ), () 0} 4 (&) 0x 14,
M UangylA'

75. Randomvariables x and y have joint PMF showninFig. 421.Event 4 = {2 < x 4+ y <
5}. If w(x, y) = max(x, y), then determine: (a) pu, (b) pua, (¢) E(w), (d) E(w]|A),
(e) o,i, (f) U«i\A-

76. Randomvariables x and y have joint PMF shownin Fig. 4.21. Event A = {2 < x + y <
5}. If z(x, y) = min(x, y), then determine: (a) ps, (b) p.4, (c) E(2), (d) E(z| A4), (e) o2,
(f) 0z2|A'

77. Random variables x and y have joint PMF shown in Fig. 4.21. Event B = {z — 2w >
1}, where w(x, y) = max(x, y), and z(x, y) = min(x, y). Determine: (a) p w, (b) p,
(©) pe» (d) pages(¥10), (€) paip, () N2y (8) Nays () 02, (1) 02 5, () Oy (K) 0 -

78. Random variables x and y have the joint PMF shown in Fig. 4.22. Event 4 = {x < 4},
event B = {x + y < 4}, and event C = {xy < 4}. (a) Are x and y independent RVs?
Are x and y conditionally independent, given: (b) 4, (c) B, (d) C, (e) B?

79. Prove that if

glx, y) = a1g1(x, y) + asga(x, y)

then

E(g(x, y)) = a1 E(g1(x, y)) + a2 E(g2(x, y)).

AB

6__ .L .L .l
16 16 8
4—— .L .L .l
16 16 8
2__ .l .l .l
8 8 4

| | | | -

0 1 2 3 R

FIGURE 4.22: PMF for Problems 78.
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80.

81.

82.

83.

84.

85.

86.

Prove that if z = g(x) then
E(@) =) _gla)p(a).
Let event 4 = {g(x, y)}, where g(x, y) is an arbitrary (measurable) function of the

discrete RVs x and y. Prove or give a counter example:

pxl@)
PA)

prala| A) =

Let event 4 = {g(x, y)}, where g(x, y) is an arbitrary (measurable) function of the
discrete RVs x and y. The RVs x and y are conditionally independent, given event A.

Prove or give a counter example:

px@)
P(A)°

pujala]| A) =

Random variables x and y are independent. Prove or give a counter example:

x\ _ E(x)
E(J) z0)

Random variables x and y are independent with marginal PMF's

1/3, a=-1
4/9, a=0
Px(a)—‘z/g’ o=1
0, otherwise,
and
1/4, B=0
] 1/4, B=1
2y(B) = 12, p=2
0, otherwise.

Event 4 = {min(x, y) < 0}. Determine: (a) p,.,; (b) whether or not x and y are inde-
pendent, given 4; (c) E(x + y); (d) E(x + y | A); (&) E(xy); (f) px.y5 () Lx.yla-
Random variables x and y satisfy: E(x) = 10, 0, = 2, E(y) = 20,0, = 3,and 0, , =
—2. With z = z(x, y) = x + y, determine: (a) py., (b) 02, (¢) E(2), and (d) o..
Random variables x and y satisty: n, = 5,7, =4, 0., =0,0, =4,and 0, = 5. De-
termine: (a) E(3x* + 5x + 1), (b) E(xy), (c) 03x42y, (d) whether or not x and y are
independent RVs.



87.

88.
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A course in random processes is taught at Fargo Polytechnic Institute (FPI). Due to
scheduling difficulties, on any particular day, the course could be taught in any of the
rooms A, B, or C. The following a priori probabilities are known

P(4) = % P(B) = % P(C) = %

where events 4, B, and C denote the events that the course is taughtin room A, B,and C,
respectively. Room A contains 60 seats, room B contains 45 seats, and room C contains
30 seats. Sometimes there are not enough seats because 50 students are registered for the
course; however, they do not all attend every class. In fact, the probability that exactly
n students will attend any particular day is the same for all possible » € {0, 1, ..., 50}.
(a) What is the expected number of students that will attend class on any particular
day? (b) What is the expected number of available seats in the class on any particular
day? (c) What is the probability that exactly 25 seats in the class will not be occupied
on any particular day? (d) What is the probability that there will not be enough seats
available for the students who attend on any particular day?

Besides having trouble with scheduling, FPI is also plagued with heating problems.
The temperature # in any room is a random variable which takes on integer values (in
degrees Fahrenheit). In each room, the PMF p,(7) for # is constant over the following
ranges:

Room A: 70 < 7 < 80,

Room B: 60 < 7 < 90,

Room C: 50 < 7 < 80;

outside these ranges, the PMF for # is zero.

(e) What is the PMF for the temperature experienced by the students in class? (f) Given
that the temperature in class today was less than 75 degrees, what is the probability that
today’s class was taught in room A?

Random variables x; and x; are independent, identically distributed with PMF

a/az, Ol:_3, _29 1a47

0, otherwise.

le (O[) =

Random variable y = %1 + x3 and event 4 = {x; + x3}. Find: (a) a, (b) P(x1 > x3),
(©) py, (d) E(y), (&) E(y| ), (f) 07, () 0}, 4.
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89.

90.

91.

Random variables x; and x; are independent, identically distributed with PMF

) (2)(0.3)%(0.7)3-'%,&:0,1,2,3

0, otherwise.

Find: (a) E(x1), (b) 02, () E(x1|x; > 0), (d) o} (e) P(x1 < x4+ 1).

x1]|x1 >0
The Electrical Engineering Department at Fargo Polytechnic Institute has an out-
standing bowling team led by Professor S. Rensselear. Because of her advanced age, the
number of games she bowls each week is a random variable with PMF

a=0,1,2

otherwise.

Px(a) = {a _0’1(1_2’

To her credit, Ms. Rensselear always attends each match to at least cheer for the
team when she is not bowling. Let x1, . .., x, be 7 independent, identically distributed
random variables with x; denoting the number of games bowled in week 7 by Prof.
Rensselear. Define the RVs z = max(x1, x;) and w = min(xy, x3). Determine: (a) 4,
(b) P(x1 > x2), (c) Plar + 22 + -+ + &, < 1), (d) prws (€) (), () E(w), (g) 02.-
Professor S. Rensselear, a very popular teacher in the Electrical Engineering Depart-
ment at Fargo Polytechnic Institute, gets sick rather often. For any week, the probability
she will miss exactly o days of days of lecture is given by

1/8, «a=0
12, a=1
pule)=11/4, =2
1/8, a=3

0, otherwise.

The more days she misses, the less time she has to give quizzes. Given that she was sick
« days this week, the conditional PMF describing the number of quizzes given is

1
Py\x(ﬁla) =34—-«

0, otherwise.

Let y1, y2, - - -, y» denote 7 independent, identically distributed RV, each distributed
as y. Additionally, the number of hours she works each week teaching a course on
probability theory is w = 10 — 2x + y, and conducting research is z = 20 — x? + .
Determine: (a) gy, (b) pu.y, (©) papy(@|2), (d) P(y1 > y2),(e) P(y1+y2+ -+ yn >



92.

93.
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1), () prws () Pos (1) Py () prwlzm2ws () E(2), (k) E(w), (1) E(z] 2> 2w), (m) o7,
(n) O_z2‘z>2‘w, (0) Oz (P) Oz, w|z>2w> (q) Pz, w> (1') Pz, w|z>2w-

Professor Rensselaer has been known to make an occasional blunder during a lecture.
The probability that any one student recognizes the blunder and brings it to the attention
of the class is 0.13. Assume that the behavior of each student is independent of the
behavior of the other students. Determine the minimum number of students in the
class to insure the probability that a blunder is corrected is at least 0.98.

Consider Problem 92. Suppose there are four students in the class. Determine the
probability that (a) exactly two students recognize a blunder; (b) exactly one student
recognizes each of three blunders; (c) the same student recognizes each of three blunders;
(d) two students recognize the first blunder, one student recognizes the second blunder,

and no students recognize the third blunder.
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