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Preface

Several years ago, we were asked to give a second-year course for a Computer
Science Engineering degree at the University of Padova, with some mathematical
content about discrete mathematics: combinatorics, finite calculus, formal series,
approximation of finite sums, etc. We were unable at that time to find a suitable
book for our students: either the mathematical aspects were too profound and
abstract, or else explanations were poor and each exercise was solved by means of
some unexplainable tricks. That last aspect is particularly common in combina-
torics, where, too often, the basic results on the subject are so distant from their
applications that exercises often appear to have an “ad hoc” solution. Our first
purpose was to develop a method for explaining combinatorics to our students,
which would allow them to solve certain advanced problems with some facility. We
achieved this goal after several attempts, ultimately meeting with the approval of
our students, the involuntary guinea pigs in our experiment, to whom we express
our thanks.

In the part of the book devoted to combinatorics, roughly a third of the volume,
we begin by relating every application to a very few essential basic mathematical
concepts. A key role in this is played by the sequences and collections, terms that
we prefer to the more widely used, but more ambiguous terms of arrangements and
combinations: indeed, thinking of real life (combination locks), why should a
combination denote a non-ordered set of symbols? We spend some time on the
Basic Principles of combinatorics, like the Multiplication and Division Principles:
we strongly believe that passing over these subjects is the number one cause of
errors in the applications. We focus on the occupancy problems, where one pre-
scribes a fixed number of repetitions of the elements in a sequence or a collection,
and we thoroughly discuss the Inclusion/Exclusion Principle and its consequences
(derangements, partitions, etc.). In these first chapters, we encounter, of course,
some famous stars such as the factorials, binomials, derangements, and the Bell,
Catalan, Euler, and Stirling numbers: all of them are first defined via a combina-
torial characteristic property and only afterward explicitly computed. This allows us
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viii Preface

to prove most of their properties—Ilike the recurrence ones—with some simple
combinatorial arguments instead of the more tedious inductive method.

Chapter 6 is devoted to the techniques for computing the sums of a finite number
of consecutive terms of a sequence. They reproduce and actually can be an intro-
duction to those of the differential calculus: derivatives, primitives, the fundamental
theorem of calculus, and even the Taylor expansion find their discrete counterparts
here. We also encounter the harmonic numbers.

A substantial part of the book is devoted to power series and generating formal
series. In Chap. 7, we state the basic definitions and properties, though there are
some delicate points like closed forms and compositions of formal power series that
need more careful attention. The Basic Principle for occupancy problems explains
how the tools introduced here are useful to solve combinatorial problems.

We made an effort to keep separate as much as possible the algebraic properties
and the convergence of formal power series, which is introduced and used only in
the subsequent Chap. 8. In this chapter, we compute the generating formal series
of the sequences of famous numbers such as those mentioned above, or the
Fibonacci and the Bernoulli numbers introduced here. As a by-product, we estimate
easily the Bernoulli numbers via their relation with the famous Riemann zeta
function.

Generating formal series return in the following chapters (though the reader can
skip these without losing the main content), e.g., in Chap. 11 concerning symbolic
calculus, where they play a prominent role in finding the number of sequences, of a
prescribed length and alphabet, that do not contain a given pattern, or in computing
the odds in favor of the appearing of a pattern before another one.

Chapters 9 and 10 are devoted to recurrence relations. In the first of these, we
show how these relations arise. A section is devoted to discrete dynamical systems,
i.e., recurrence relations of the form x, 1 = f(x,). We give a thorough analysis
of the case where fis monotonic on an interval, and a simple proof of the famous
Sarkovskii’s theorem on the existence of orbits of any minimal period, once there is
a point of minimal period 3: we did not find this material in other texts. In Chap. 10,
we mainly deal with the classical theory of the linear recurrence relations. Here, the
reader can find an alternative resolution method based on generating formal series,
which turns out also to be useful in the proofs of the main results. We expect that
the average reader will skip these, and therefore, they can be found in a separate
section. The chapter ends with the divide and conquer relations and the estimates
of the magnitude of their solutions, so useful in the analysis of algorithms.

Chapters 12 and 13 are devoted to the Euler—Maclaurin formula, which relates
the sum of the values of a smooth function f on the integers of an interval with its
integral on the same interval and its consequences like: the approximation of sums
and sum of series, asymptotic estimates for the partial sums of a series, well-known
and unusual integral criteria for the convergence of a series, and integral conver-
gence, the trapezoidal methods, and the Hermite formula for the estimate of inte-
grals. We believe that this material, so rich in applications and beauty, is not given
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its due place in courses in mathematics or computer science. In Chap. 12, we have
made a strong effort to keep things as easy as possible: the chapter is devoted to the
first- and second- order Euler—Maclaurin formulas, thus leaving matters such as the
estimates of the Bernoulli polynomials, the Bernoulli numbers, and the proofs of
every technical detail to the subsequent Chap. 13. It is rather surprising how even
the first-order formula, whose proof is based on a simple integration by parts, leads
to a primitive version of Stirling’s formula for the approximation of the factorial.

Chapter 14 deals with the approximation of sums of binomials, like the
Ramanujan Q-functions. The proofs here are based on some uniform estimates on
families of sequences and may be skipped by the inexperienced reader.

Finally, a list of the main formulas and a detailed index can be found at the end
of the book.

Just to give a taste of the book, here are some of the applications that we
consider and discuss:

e The birthday problem (Example 2.30): what is the probability that two (or more)
people randomly chosen from a group of 25 people have the same birthday?

e How to count card shuffles and to perform astonishing magic tricks by means
of the Gilbreath Principle (Sect. 2.3).

e The hats problem (Example 4.25): each of the n diners entering a restaurant
leaves his hat at the checkroom. In how many ways can the n hats be redis-
tributed in such a way that no one receives his own hat? If the tipsy hatchecker
randomly distributes the hats to the exiting diners, what is the probability that no
one receives his own hat? Actually, we will be able to solve the more difficult
variant of the problem which asks for the probability that no one receives a hat
whose brand is the same as the original one.

e The Leibniz rule for the derivative of a product of functions (Theorem 3.26) and
Faa di Bruno’s formula for the derivatives of a composition of functions
(Theorem 5.23) as an application of, respectively, the concept of sharing with a
given occupancy and the concept of partition.

e The Smith College diploma problem (Example 5.68): at Smith College, diplo-
mas are delivered as follows. The diplomas are randomly distributed to the
graduating students. Those who do not receive their own diploma form a circle
and pass the diploma received to their counterclockwise neighbor. Those then
receiving their own diploma leave the circle, while the others form a smaller
circle and repeat the procedure. Determine the probability that exactly £ >0
hand-offs are necessary before each graduate has his/her own diploma.

e The Latin teacher’s random choice (Example 7.30): a teacher wants to select a
student to test in the class. He randomly opens a book, sums up the digits of the
number of the page, and chooses the corresponding student from the alpha-
betical list. What is the probability of being chosen for each student?

e The Titus Flavius Josephus problem (Example 9.14) is connected with an
autobiographical episode recounted by the historian Titus Flavius Josephus,
which we now translate into mathematical terms. The problem presents
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n persons arranged in a circle. Having chosen an initial person and the direction
of rotation, one moves multiple times along the circle, eliminating every second
person one meets in the chosen direction until only a single person remains.
Given n > 1, one seeks to determine the position of the remaining person if the
circle is initially formed by n persons.

e Given any word in any language, how many sequences of letters of a prescribed
length do not contain that word? We give a recursive answer in Corollary 11.39.

e The theorem of the monkey (Theorem 11.43): What is the average number of
chance strokes on a keyboard with m keys necessary to make a given word
appear?

e The Conway equation (Theorem 11.53): Two players select distinct sequences
of equal length ¢, with elements in a fixed set I'. They toss a dice with as many
faces as the cardinality of I', all labeled with the elements of I', until the last ¢
results match one player’s pattern. What are the odds in favor of one or the other
pattern?

e Evaluate the mysterious Euler constant y = 11_1}2100 H, — logn up to 12 decimal

o0

digits (Example 13.47) and Apéry’s constant {(3) = >_ 1/k® up to 16 decimal
k=1

digits (Example 13.51).

n
e Faulhaber’s formula (Example 13.22) for the sum ) k™ in terms of the first
k=1
m Bernoulli numbers.

e We pick a card from a deck of 52 playing cards, and we reinsert it in the deck.
After shuffling, we pick another card and we reinsert it again in the deck. How
many times, on average, must we repeat this procedure in order for a repetition
to appear?

The book includes an unusually large collection of examples and problems

whose solutions, as well as corrections and updates, can be found at:
https://discretecalculus.wordpress.com

On many occasions, we have tried to give different proofs of the same result.
This is the case, for instance, for the Inclusion/Exclusion Principle, Faulhaber’s
formula, many combinatorial results, and the estimates for the harmonic numbers
and the binomials. Thus, several paths are possible, depending on the interests
of the reader. Some independent blocks are as follows: the first five chapters on
combinatorics, the sums and the finite calculus techniques (Chap. 6), the essentials
of formal power series (Chap. 7) and their applications to the symbolic calculus
(Chap. 11), the basic facts about recurrence relations with an insight into discrete
dynamical systems including Sarkovskii’s theorem (Chap. 9), and the classical
theory on linear recurrences (Chap. 10): here, the alternative resolution method
based on generating formal series needs the content of Chap. 8. Almost all the main
tools on the approximation of sums appear in Chap. 12, whereas Chap. 13 is
reserved for those who want to master Euler—-Maclaurin formulas in the whole
generality, or need more than a second-order expansion. Finally, for most readers, it
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will be sufficient in the final Chap. 14 to read the basic definitions and the claims
of the theorems, without working through the proofs, which are the most difficult
part of the book.

The many authors and books that inspired us are listed in the references. Among
them, the books by Flajolet and Sedgewick [35] and by Graham et al. [20] were
favorite sources of interest.

We are grateful to our readers for their comments that can be sent to:

discretecalculus @ gmail.com

There are a couple of recurrent symbols in the book: s denotes an important
matter or comment, or even a warning; conversely, s denotes a difficult proof, a
boring computation, etc. These parts can be omitted, at least at first (and maybe
second) reading.

With the acronym CAS, we indicate a generic computer algebra system, i.e., a
software program that allows computation over mathematical expressions. The
famous Maple, Mathematica, Maxima, and Pari GP software are among our pre-
ferred ones. We sometimes use them to make some hard computation and to
evaluate the precision of our estimates.

A word about the authors: we are both Venetians, and this is probably the only
point in common. Mathematically, this is perhaps justified by the fact that the field
of Carlo Mariconda is analysis, whereas Alberto Tonolo’s research topic is algebra;
discrete mathematics is in any case just a hobby for both. The different points of
view, even with respect to details such as fonts, symbols, and notation, explain why
it took about 15 years to write this book. For the readers’ sake, every single page
initially proposed by one of us was then criticized and changed by the other (and
then sometimes both agreed that the initial version was better...). We sincerely
hope that this distillation process has been useful for the readers of our book.

We are indebted to our colleague Frank Sullivan, who gave us the taste for these
kinds of argument, and who translated and revised with such great enthusiasm a
large part of the book; sadly, he did not witness the final product.

Padova, Italy Carlo Mariconda
April 2016 Alberto Tonolo
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Chapter 1
Let’s Learn to Count

Abstract In this chapter, after a quick review of the basic concepts of set theory,
we introduce the fundamental notions and principles of combinatorics. Even though
its contents are elementary, we warmly suggest to take a look at the chapter. Our
approach consists in trying to describe every combinatorial problem by means of sets
of (ordered) sequences, or (unordered) collections, and their dual concepts of sharings
and compositions. Computations are successively done via some basic fundamental
tools like the Multiplication and the Division Principle. A rigorous and effective
formulation of these principles, in particular of the Multiplication Principle, is of
fundamental importance for their correct application. Indeed they constitute, at the
same time, the royal way to solve combinatorial problems, and the main source of
errors, when misused. We conclude the section with a brief discussion of uniform
probability on finite sample spaces, which is here just a way to express combinatorial
results in probabilistic terms.

1.1 Operations on Finite Sets

This section is dedicated to the basic operations and the most elementary techniques
of counting. For most readers it will be a review of known concepts, though it will
also serve to fix the notations which will be used throughout this book.

1.1.1 Review of Set Theory

We introduce the concept of set in a “naive” way: a rigorous axiomatic treatment of
set theory is beyond the goals of the present text.

A set is defined when for any given object one can decide whether or not it belongs
to the set. The objects belonging to a set are called elements of the set. They can be
anything at all: numbers, people, other sets, etc. .

The islands of the Mediterranean Sea constitute a set. Whatever object we might
choose to consider, we know how to decide whether or not it is an element of that
set: for example, the number 3, the United States, the Moon, and many other things
do not belong to it, while the islands of Cyprus, Crete and Malta certainly do.

© Springer International Publishing Switzerland 2016 1
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UNITEXT - La Matematica per il 3+2 103, DOI 10.1007/978-3-319-03038-8_1
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The sets which do not belong to themselves do not form a set: indeed, if they
did form a set I, then given the element “the set /" one would not be able to decide
whether or not it belonged to /. Indeed, if it belonged to I, then as an element
of I it would not belong to itself, and so it would not belong to I, which gives a
contradiction. If, on the contrary, it did not belong to /, then by the very definition
of I it would have to belong to 7, which again gives a contradiction.

Two sets are equal if and only if the elements lying in one also lie in the other,
and vice versa; as a particular example, the sets {1, 1,2} and {1, 2} are equal sets
because both contain the numbers 1 and 2, and nothing else.

We write a € A to say that an element a belongs to the set A.

In giving a formal description of a set we either list its elements, for example
{2,4,5,7}, or, taking care to be precise, we describe the property that characterizes
its elements, for example {n € N : 2 divides n}.

In the remainder of this text we will use the symbols ¥, N, N>, N>y, Z, Q, R and
C to indicate the empty set, the sets of natural numbers, non-zero natural numbers,
natural numbers greater or equal than k, integers, rational numbers, real numbers,
and complex numbers respectively.

We now quickly review a few well-known notions of set theory.

Definition 1.1 Given two sets A and B, we say that A is a subset of B (and we will
write A C B) if A is contained in B, that is, if

(a € A) = (a € B). O

Definition 1.2 Let X be a set. We use £2(X) to denote the set of parts of X, that
is, the set of subsets of X, including the empty subset and X itself. O

Example 1.3 Let X = {1, 2}; then the set of parts of X is
2X) =10, {1}, {2}, X}.

Note that (@) = {#} # @: in fact, & () has one element (the empty set), while ¢}
has no elements. O

Definition 1.4 Let A, B be subsets of aset X ; then the union A U B, the intersection
A N B, the difference A\ B, the symmetric difference AA B and the complement
A€ are defined as follows:

AUB={xeX:xeAorx € B};
ANB={xeX:xeAandx € B};
A\B={xeX:xeAandx ¢ B};
AAB={xeX:xeAUBandx ¢ AN B};
A={xeX:x ¢ A}

If AN B =, we say that A and B are disjoint subsets of X. O

A useful tool to verify the equality between different descriptions of the same
subset is the notion of characteristic function.
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Definition 1.5 Let X be a set and A a subset of X. The characteristic function of
A is defined setting

1 ifxeA,
xa:X —{0,1}, xalx) = .
0 otherwise. O
Clearly, if A, B are two subsets of a set X, the characteristic functions x4 of A
and xp of B coincide if and only if A = B. Moreover one easily gets xx (x) = 1 and
xp(x) = 0foreach x € X.

Lemma 1.6 Ler A, B be two subsets of X and x € X. Then:

Xang(x) = xa(x) xp(x);

XauB(x) = xa(x) + xp(x) — xa(x) xp(x);
IfANB =, then xaup(x) = xa(x) + xp(x);
xaB(x) = xa(x) — xa(x)xp(x);

xaaB(x) = xa(x) + xp(x) —2xa(x) x5 (x);
Xac(x) =1 = xa(x).

SIS

Proof . 1. The element x belongsto A N Bifandonlyif x € A and x € B; therefore
Xang(x) = lifand only if x4 (x) = 1 = xp(x), or equivalently y4(x)xp(x) = 1.
2. The element x belongs to A U B if and only if either x € Aand x ¢ B, x ¢ A and
x ¢ B,orx € A and x € B. We conclude since

140—-0=1 ifxe Aandx ¢ B,
0+1—-0=1 ifx ¢ Aand x € B,
1+41—1=1 ifx e Aand x € B,
0 otherwise.

xa(x) + xp(x) — xa(x)xp(x) =

3. It follows by Point 2: indeed, if A and B are disjoint, then x4 (x) xz(x) = 0.
4.We have AU B = (A\B) U B; since A\B and B are disjoint, by Points 2 and 3
we have

xa(x) + xp(x) — xa(x)xp(x) = xaup(x) = x@a\pus(x) = xa\p(x) + xp(x).

Therefore x4\p(x) = xa(x) — xa(x) x5 (x).
5. We have AA B = (AU B)\(A N B); by Points 4, 1 and 2 we have

xAanB(x) = xaus(x) — xaus (*) xanB (x)
= xa(®) + xB() — xa@x8(x) — (xa(x) + x5(xX) — xa@®)x5(0)) (x4 () x5 x))
= xAX) + xB(x) = xa(X)xB(x) — xa(xX)xB(x) = xa(x) + xB(x) —2xa(x)xB(x).

6.We have X = A U A“; since A and A€ are disjoint, by Point 3 we have

1= xx () = xax) + xac(x),
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and hence x4c(x) =1 — xa(x). m|

Using the characteristic functions and Lemma 1.6 it is easy to verify the following
simple properties.

Proposition 1.7 Let X be a set and A, B and C three of its subsets. One then has

AU(BNC)=(AUB)N(AUCQ);
AN(BUC)=(ANB)U(ANC);
A\(B N C) = (A\B) U (A\C);
A\(BUC) = (A\B) N (A\C);
AN(BAC)=(ANB)A(ANC);
(AN B)° = A° U BS;

(AU B)° = A° N BS;

AAB = A°ABS;

(AAB)AB = A.

00NN~

Proof . Let us prove the identities 2, 6, 8 and 9 proving that the characteristic func-
tions of the involved sets coincide; the other identities can be obtained in a similar
way. By Lemma 1.6, for any x € X we get:

2. xanmuc)(X) = xa(x)xpuc(x) = xa(x) (xp(x) + xc(x) — xp(x) xc(x)) and

XanBu@Anc)(X) = xans(x) + xanc(x) — xansnc(x)
= xa(@)xB(x) + xa(xX) xc(x) — xa(x) x5 (x)xc(x).

6. xanBy(x) =1— xanp(x) =1— xa(x)xp(x) and

Xacupe (X) = xae(x) + xpe(xX) — xac(x)xpe(x)
=1—xa(x)+1—=xp(x)— (1 —xax)) (A — xpx))
=1—-xa(x)xsx).

8. Xacape(X) = xac(x) + xpe(x) — 2xac(x)xpe(x)

=1—xa()+1—x5(x) =2(1 = xa(®))(1 = xz(x))
= xa(x) + xp(x) = 2xa(x) x5 (x)

= Xanp(x).
9. xaamap(x) = xans®) + xp(x) = 2xaaBX)xp(x) = xa(x) + xpx)+

—2xa(0) x8(xX) 4+ x8(X) =2(xa(x) + x5(xX) = 2xa(X) x5(x)) x5(xX) = xa(x).
O
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Fig. 1.1 An example of a 1
function f (yy) X Y

The following notion allows one to “connect” two sets.

Definition 1.8 A function
f:X — Y consists of:

1. A set X called the domain of f;

2. A setY called the codomain of f;

3. Alaw associating each element x in X to one and only one corresponding element
y in Y. The element of Y associated to x € X is called the image of x under f
and is denoted by f(x).

Given y € Y, the set {x € X : f(x) = y} is called the counterimage or inverse
image of y under f and is denoted by f~'(y) (see, e.g., Fig. 1.1). The subset { f (x) :
x € X} of Y is called the image of f and is denoted by Im( f). O

We also recall the following classification of functions.
Definition 1.9 A function f : X — Y is said to be:

e Injective if (f(x) = f(y)) = (x = y), that is, when distinct elements of the
domain X have distinct images in the codomain Y

e Surjective if Im(f) =Y, that is, if each element of the codomain is the image
under f of at least one element of the domain;

e Bijective if it is both injective and surjective; in this case we say that X and Y are
in one to one correspondence. O

Given two sets A and B we can consider the set of all ordered pairs realized by
taking (in order) an element of A and one from B.

Definition 1.10 Given n sets Ay, ..., A,, their cartesian product is the set A; X

-+ x A, of n-tuples (ay, ..., a,) witha; € A;,fori =1, ..., n. The cartesian prod-

uct A x --- x A is denoted by A”. O
— ———

n times
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The cartesian product is a formal construction frequently used in mathematics to
construct complex sets starting from simple ones. One notes that, given two distinct
sets A and B, the sets A x B and B x A are different. It is, however, possible to
construct a one to one correspondence (bijection) between them. Indeed,

f:AxB— BxA, f(a,b)=(b,a)

is obviously a bijective function.

1.1.2 Cardinality of a Finite Set

A fundamental characteristic of a finite set is its size.

Definition 1.11 The cardinality of a finite set X is the number of its distinct ele-
ments. The symbol | X| is used to denote the cardinality of X. m]

The cardinality of a subset of a finite set can be recovered from its characteristic
function.

Proposition 1.12 Let A be a subset of a finite set X. Then

Al =D xa®).

xeX

Proof . The characteristic function x4 (x) equals 1in every point of A and O else-
where. O

Remark 1.13 The above easy result is the discrete analogous of the fact that the
integral of the characteristic function of an interval is equal to its length.

To count the number of elements of a set, it is often convenient to interpret the
set as either a union, an intersection or a cartesian product (or some other operation)
obtained from simpler sets. Hence it is important to know how to calculate the
cardinality of a set obtained through such operations.

Proposition 1.14 Let A, B be two finite subsets of a set X. Then:

1. If A and B are disjoint, namely, if AN B =@, then |AU B| = |A| 4+ |B|;
2. |[AUB|=|A|+|B|—-|ANB|;

3. |A x B| = |A| x |B|;

4. If X is finite then |A¢| = | X]| — | A].

Proof. Let A ={ay,...,a,} and B ={by,...,b,} be two sets of cardinality
|A| = m and | B| = n respectively.

1.If A and B are disjointthen A U B = {ay, ..., ay, b1, ..., b,} hasm + n elements.
2. AU B is the union of the pairwise disjoint subsets A\ B and B; since A is the
disjoint union of A\B and A N B, one has |[A\B| = |A| — |A N B|. Then
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|AUB|=|A|—|ANB|+|B|.

Alternatively, using Proposition 1.12 together with Lemma 1.6, we get

AU Bl =D xaus(®) =D (xa®) + x5(x) = xa(¥)x5(x))

xeX xeX

= Z (xa () + xB(x¥) = xanp(x)) = |A| +|B| — |AN BI.

xeX

3. Clearly
Ax B =({a1} x B)U({az} x B)U---U({an} x B),
with the {a;} x B pairwise disjoint. The set {a;} x B has n elements:

(a1, b1), (a1, b2), ..., (a1, by).
Similarly, [{a;} x B| = n for each element a; of A. In view of Point 1 one has

[AXx Bl={a1} xB|+---+|{an} xBl=n+n+---+n=m x n.
—_—

m times

4. Since X = AU A€ and A N A° = @, it follows that | X| = |A| + |A°|, and hence
|AC] = | X] — |A] O

Proposition 1.15 Two finite sets X and Y have the same cardinality if and only if
there is a one to one correspondence between X and Y .

Proof. 1f |X| = |Y| = n, we can denote all the elements of X by xy, ..., x, and all
the elements of Y by yi, ..., y,. Then the function that sends x; to y;,i =1, ..., n,
is a bijection. Conversely, if f : X — Y is a bijection, and | X| = n, let xy, ..., x,
be the list of all the elements of X. Then f(x;),..., f(x,) are distinct (since f
is injective) and they constitute the entire set Y (since f is surjective). Therefore
Y ={f(x1),..., f(x,)} has cardinality n. |

Example 1.16 Count the number of possible committees composed of a man and a
woman selected from a set M of 8 men and a set W of 10 women respectively.
Solution. Let Y be the set of such committees. Every element of Y is uniquely
represented by an ordered pair (m, w) where m is one of the men and w one of the
women. Since Y is in one to one correspondence with M x W, we have

Y| =8 x 10 = 80. o
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1.2 Sequences, Collections, Sharings, Compositions
and Partitions

We now introduce the terminology which will allow us to give precise descriptions
of the various situations that we will encounter.

In what follows, we will deal with finite sets; for simplicity, we associate a positive
integer to each element of such a finite set X, that is, we enumerate the elements of
X so that if | X| = n we can in this way identify X with the set I, of numbers from
1 ton:

V}’lENzl In={1,...,n}, 10=®.

We will call such an identification a labeling of X. Once labeled, the set X, inter
alia, acquires an ordering: we will call the element of X with label 1 the first element
of X, that with label 2 the second element of X, and so on. By convention, writing
I, ={x,1,7 %,...,#}wemean that we label 1 the element *, we label 2 the element
I, ..., we label n the element #.

We now define the key concepts for the entire book. The reason for the exchange
of roles between k and n in the first four points of the following definition will be
clarified by Theorem 1.28.

Definition 1.17 Let n, k € N. We distinguish two classes of objects:
1. Ordered:

a. A k-sequence of [, is an ordered k-tuple (ay, ..., a;) of not necessarily
distinct elements of /,, that is, an element of the cartesian product I,’f.

b. An n-sharing of I, is an ordered n-tuple (Cy, ..., C,) of pairwise disjoint
(and possibly empty) subsets of I, whose union Cy U - - - U C,, is I.

c. An n-composition of & is an ordered n-tuple (ki, ..., k,) of natural num-
bers (possibly equal to 0) such that k; +---+k, = k; one also says
that (ky, ..., k,) is a natural solution or natural number solution of
X+ +x, =k.

2. Non ordered:

a. A k-collection of 7, is anon ordered family of k (not necessarily distinct) ele-
ments of /,,. A k-collection containing k; copies of 1, k, copies of 2, ..., k,
copies of n will be denoted by inserting those elements, in any order, each
with its multiplicity, between square brackets:

h,...,1,...,n,...,n].
——

ki kn
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Note that a k-collection of non repeated elements from 7, is nothing but a
subset of I, of cardinality k.

b. An n-partition of I} is a non ordered family of n non empty disjoint subsets
of I, whose union is /.

c. An n-partition of k is a non ordered family of [ki, . .., k,] of natural num-
bers in N-; such thatky 4+ --- + k, = k.

We use the terms sequence, sharing, composition, collection, partition, respec-
tively to describe any k-sequence, n-sharing, n-composition, k-collection, or
n-partition.! We define a binary sequence to be a sequence of {0, 1}. O

Remark 1.18 An n-sharing of I; is a particular n-sequence of & (I;), while an n-
partition of I is a particular n-collection of & (I;)\{#}. An n-composition of k is a
particular n-sequence of the set N of natural numbers, while an n-partition of & is a
particular n-collection of the set N of positive natural numbers.

Remark 1.19 (Extreme cases) With regard to the notions introduced in the Defini-
tion 1.17, we now clarify the following cases, which are, however, of little significance
when it comes to applications:

la. For every n € N there exists one and only one 0-sequence of I,: the empty
sequence. For each k > 1, there are no k-sequences of Ij.

1b. Forevery n € N there is one and only one n-sharing of Iy: (@, . . ., #). For every

——
n-times

k > 1, there are no 0-sharings of I.

lc. For every n € N there is one and only one n-composition of 0: the n-sequence
0, ...,0). For every k > 1, there are no O-compositions of k.
———

n-times

2a. Foreveryn € Nthereis one and only one 0-collection of I,,: the empty collection.
For each k > 1, there are no k-collections of 1.

2b. Thereis one and only one O-partition of /y: the empty partition. Foreachn € N
there exist neither O-partitions of I,,, nor n-partitions of /.

2c. There is one and only one O-partition of 0: the empty partition. Foreachn € N>
there exist neither O-partitions of n, nor n-partitions of 0.

One should bear in mind the difference between sharings and compositions on
one side, and partitions of sets and numbers on the other one:

e The sets forming a sharing can be empty, and are listed in order;

e The numbers forming a composition can be 0, and are listed in order;

e The sets forming a partition of a set must be non empty, and their order does not
matter;

e The numbers forming a partition of a number must be positive, and their order
does not matter.

'In many textbooks, the k-sequences of I, are called k-fold dispositions of n elements, the k-
collections of I, are referred to as combinations of n elements taken k at a time, while generally
sharings into non empty sets are called ordered partitions.
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We could have called composition of a set the sharing to have a better correspondence
with the notions of partition of a set and partition of a number. We have preferred the
present notation to avoid the risk of confusion. Indeed, the sharing of a set will play
an important role in the sequel, while we will say only few words about partitions of
numbers in Sect. 7.10.

Definition 1.20 Given a k-sequence (ay, ..., a;) of I,, we say that (by, ..., by)
is a permutation of (ay, ..., a;) if (a1, ..., ax] = [by, ..., b¢], namely when it is
obtained by re-ordering the elements ay, . .., a, in any manner whatsoever. O

We have borrowed the terms sequence, collection, sharing, composition parti-
tion, and permutation from ordinary language, and we have transformed them into
technical terms by assigning them a precise meaning. The meanings taken from a
dictionary, cited here below, seem to us to allow one to recall the technical definitions
which will be used from here on in this text:

Sequence: an ordered series of things or successive facts. A sequence of acci-
dents. A series of successive frames.
Sharing: the act of distributing or spreading or apportioning. A distribution

in shares. Sharing an inheritance.
Composition:  the way in which something is made up of different parts, things, or

members.

Collection: systematic collection of objects of the same species that have histori-
cal, artistic or scientific interest. Collection of coins, stamps, trading
cards.

Fartition: to divide into parts.

Permutation:  to interchange one thing with another.

The notions just introduced turn out to be particularly useful for giving precise
descriptions of various situations which arise frequently in combinatorial analysis.
For example, sequences and collections allow for good descriptions of various types
of lottery draws; the notions of sharing, composition and partition of numbers, not
widely used in the combinatorial literature, turn out to be useful, for example, in
the description of the distribution of objects (e.g., jelly beans to children, books to
students, . . .); partitions of sets allow one to discuss the division into subsets of sets
of objects (e.g., formation of squads, distribution of a group of people to different
tables at a restaurant, . ..); finally, permutations arise in dealing with problems of
shuffling or rearranging (e.g., anagrams or codes).

Example 1.21 A few examples of the objects defined in Definition 1.17.

e (1,1,3,2,2)and (1, 3, 1, 2, 2) are two distinct 5-sequences of 1.

e The sequence ({1, 4}, ¥, {3}, {2}, @) is a 5-sharing of I4.

e The sequence (1, 0, 1, 3) is a 4-composition of 5.

e [1,1,3,2,2]and also [1, 3, 2, 1, 2] represent the 5-collection of I, containing two
1, two 2, one 3 and zero 4.

e The collection [{2}, {1, 3, 4}] is a 2-partition of 1.
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e The collection [1, 1, 1, 2] is the only 4-partition of 5.

e The sequences (2, 2, 3, 5), (2,2,5,3),(2,3,2,5),(2,5,2,3),(2,3,5,2), (2,5,
3,2,(3,2,2,5,(5,2,2,3),(3,2,5,2),(5,2,3,2),(3,5,2,2), (5, 3,2, 2) are
precisely the permutations of the 4-sequence (2, 3, 2, 5) of Is. 0O

Example 1.22 (Extractions of numbers) Let £, m € Nx,. The extractions of £ num-
bers of I, can be either ordered or non-ordered: in the first case, to every extraction
there corresponds an £-sequence of I,,, while in the second case each extraction cor-
responds to an £-collection of I,,. Depending on whether the extractions take place
with or without replacement of the objects extracted, the resulting sequences and
collections are with or without possible repetitions.

For example, we draw 3 numbers with replacement from I;. The 3-sequence
(2,4, 2) represents an ordered extraction of the numbers 2, 4, 2. The 3-collection
[2, 2, 4] represents an extraction in which, without keeping track of the order, 2 was
extracted twice, and 4 once. O

Example 1.23 (Distribution of objects) Let £, m € N5 . The distribution of ¢ jelly
beans to m children, labeled respectively by /; and I,,,, may be distinguished accord-
ing to whether:

e The jelly beans are all different (distinguishable) from one another: in this case

every distribution uniquely determines (and is determined by) the m-sharing
(Cy, ..., Cy) of the set I, of the jelly beans, where C; is the subset of jelly beans
given to date child i.
For example, we distribute 3 jelly beans to two children. If the jelly beans are all
distinguishable (different) then the distribution of jelly bean 1 to child 2 and the
remaining jelly beans 2 and 3 to child 1 is described by the 2-sharing ({2, 3}, {1})
of I5. Similarly, the 2-sharing ({1}, {2, 3}) describes the distribution of jelly bean
1 to child 1 and the remaining two jelly beans 2 and 3 to child 2.

e The jelly beans are all alike (indistinguishable): in this case every distribu-
tion uniquely determines (and is uniquely determined by) the m-composition
(n1,...,ny) of £, where n; is the number of jelly beans given to child .

For example, if the jelly beans are indistinguishable and one gives two of them to
child 1 and one of them to child 2, then the corresponding 2-composition of 3 is
(2, 1). Similarly, the 2-composition (1, 2) of 3 describes the case in which child 1
receives a single jelly bean, while child 2 gets two of them. O

Example 1.24 (Functions between finite sets) Let £, m € N>;. Any function f :
I, — I, uniquely determines and is determined by each of the following objects:

1. The £-sequence (f(1), ..., f(£)) of I,;
2. The m-sharing (f’l(l), ooy fN(m)) of I,.

The function f is:

e Injective if and only if the sequence (f (1), ..., f(£)) has no repetitions or equiv-
alently, each component of the sharing (f~'(1), ..., f~'(m)) has cardinality at
most 1; in this case one necessarily has £ < m.
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e Surjective if and only if in the sequence (f(1),..., f(£)) every element of I,
appears at least once, or, equivalently, if and only if the empty set does never
appear in the sharing (f~'(1),..., f~'(m)) of the inverse images. In this case
one necessarily has m < £.

The permutations of (1, ..., n) can be identified with the one to one correspondences
I, — I,: each permutation a = (ay, ..., a,) uniquely determines the one to one
correspondences f, : I, — I, defined by setting f,(i) = a; fori =1,...,n. m|

Remark 1.25 Every permutation of the sequence (f(1), ..., f(£)) determined by
a function f : I, — I, again determines a function /, — I,,,. The new function so
obtained is injective (resp. surjective) if and only if the original function f was so.

Example 1.26 Let f : Is — I3 be the function defined by setting

fH =B =1 fQO=f@=r0>5=2

The sequence determined by the function f is the 5-sequence (1,2, 1,2,2) of I3
whose components are the images of the elements of /5 endowed with its natural
ordering. The sharing determined by f is the 3-sharing ({1, 3}, {2, 4, 5}, ) of the
inverse images of the elements of /3 endowed with its natural ordering (see Fig. 1.2).
The function f is not injective: in the sequence (1, 2, 1, 2, 2) there are repetitions,
just as, analogously, in the sharing ({1, 3}, {2, 4, 5}, ¥) there are components with
cardinality greater than 1. The function f is not surjective: 3 does not appear in
the 5-sequence (1, 2, 1, 2, 2) of I3, just as, equivalently, the empty set appears in
the 3-sharing ({1, 3}, {2, 4, 5}, ¥) of the inverse images of Is. Every permutation of
the sequence (1, 2, 1, 2, 2) determines a function /s — I3 which is certainly neither
surjective nor injective. O

Example 1.27 There is a sort of duality between the notions of sequence and sharing,
and between the notions of collection and composition.

1. Consider the 8-sequence (5,5, 1, 1,4,2,4, 1) of Is; let C; = {3, 4, 8} denote the
set of positions where 1 appears, C, = {6} the set of positions where 2 appears,
C3; = ) the set of positions where 3 appears, C4 = {5, 7} the set of positions
where 4 appears, and finally let Cs = {1, 2} be the set of positions where 5
appears. The sequence (Cy, . .., Cs) isa5-sharing of I3. Conversely, the 5-sharing
({3, 4, 8}, {6}, 0, {5, 7}, {1, 2}) of I3 determines the original 8-sequence of /s in

Fig. 1.2 Function

f : Is — I3 and diagram of
the corresponding 3-sharing
associated to f
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which 1 appears in positions three, four, and eight; 2 appears in position six, 3
does not appear, 4 appears in positions five and seven, and finally 5 appears in
positions one and two.

2. Consider the 8-collection [5, 5,1, 1,4, 2, 4, 1] of I5; let k; = 3 denote the number
of repetitions of 1, k; = 1 the number of repetitions of 2, k3 = 0 the number of
repetitions of 3, k4 = 2 the number of repetitions of 4, and ks = 2 the number of
repetitions of 5. The sequence (ky, ..., ks) is a 5-composition of 8. Conversely,
the 5-composition (3, 1, 0, 2, 2) of 8 determines the original 8-collection of /5 in
which 1 appears three times, 2 appears once, 3 does not appear, 4 appears twice
and 5 appears twice. O

In general, one has the following elementary but illuminating result, which estab-
lishes a correspondence between the k-sequences of I, and the n-sharings of I,
as well as between k-collections of [, and n-compositions of k. Figure 1.3 shows a
simple example of these correspondences.

Theorem 1.28 (Sequences-sharings and collections-compositions) Let n, k € N.

1. Byassociating to eachn-sharing (Cy, ..., C,) of Iy the k-sequence (ay, . . ., a;) of
I, defined by setting a; equal to the index of the subset that contains i (equivalently
a; = j if i lies in Cj) one obtains a one to one correspondence between the
n-sharings of I and the k-sequences of I,.

2. By associating to each n-composition (ky, ..., k,) of k the k-collection of I,
[,...,1,...,n,...,n]
——— ———
ki kn
formed by setting ki terms equal to 1, ..., k, terms equal to n, one obtains a one

to one correspondence between the n-compositions of k and the k-collections of
I,.

Proof. 1. Any sequence (ay, ..., ay) of I, arises uniquely from the sequence of
sets (Cy,...,C,) where C; ={j € Iy :a; =i} fori =1,...,n. The sets C;’s are
clearly disjoint and their union is I;: thus (Cy, ..., C,) is a n-sharing of I;.

2. Any k-collection of I,, with k; terms equal to 1, ..., k, terms equal to n arises
uniquely from the n-composition (ky, ..., k,) of k. 0O

Fig. 1.3 Left: diagram of a
3-sharing of /5 and the
corresponding 5-sequence of
I3. Right: a 3-composition of
8 and the diagram of the
corresponding 8-collection
of I3

B oW
DO
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Remark 1.29 In the first correspondence established by Theorem 1.28 we have that:

e The k-sequences of I,, in which there appear elements all of which are distinct
correspond to the n-sharings of I, formed by sets of cardinality < 1;

e The k-sequences of I, for which all the elements of 7, appear at least once corre-
spond to the n-sharings of I; formed by non-empty subsets.

Similarly, under the second correspondence of Theorem 1.28, we have that:

e The k-collections of I, in which the elements appearing are all distinct correspond
to the n-compositions of k£ by natural numbers < 1;

e The k-collections of I,, in which all the elements of I, appear at least once corre-
spond to the n-compositions of k by natural numbers > 1.

1.3 Fundamental Principles

In this section we will discuss two principles which will be of constant use in problems
involving counting.

1.3.1 Multiplication Principle

It often happens that one must find the cardinality of certain sets whose structure
generalizes that of the cartesian product.

Example 1.30 We extract two numbers, one after the other, from an urn containing
10 balls numbered from 1 to 10. We consider the set X of all the ordered pairs that
can be obtained in this way. The set X consists of the pairs (a, b) witha € X| =
{1,...,10}and b € X,(a) = {1, ..., 10}\{a}. Bear in mind that the set of numbers
from which one selects the second component depends on the selection made for
the first component, but its cardinality is independent of that choice and always

equal to 9. O
Definition 1.31 Let k € N-;. Given natural numbers m, ..., my, we define con-
ditional product of multiplicities (m,...,m;) to be a set X of k-sequences
(x1, ..., x;) where:

x1 belongs to a set X having exactly m, elements;
For every choice of x|, the component x, lies in a set X, (x;), which may depend
on x1, and in any case has exactly m, elements;

For every choice of xy, ..., x;—1, the component x; lies in a set X (xy, ..., Xx—1),
which may depend on xy, ..., xx_1, and in any case has exactly m; elements. 0O
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Example 1.32 1. The set X of Example 1.30 is a conditional product of multiplic-
ities (10, 9).

2. The cartesian product X X - -- x X of sets of respective cardinalities my, ...,
my is a particular case of a conditional product with multiplicities (m, ..., my);
in this case the set X; from which the i-th component is chosen does not depend
on the choices of the previous i — 1 components.

3. The set X of the order pairs of integers between 1 and 20 with neither both
even nor both odd is a conditional product of multiplicities (20, 10): indeed, X
consists of the pairs (x, xp) with x; € X| = Iy and x, € X,(x;) where, if x;
is even, then X, (x;) ={1,3,5,7,9, 11, 13, 15, 17, 19}, while if x; is odd, then
Xo(x1) ={2,4,6,8,10, 12, 14, 16, 18, 20}. The set X has cardinality 20, while
X>(x1) has cardinality 10 for every choice of x; € X;. O

Remark 1.33 If X is a conditional product with multiplicities (m, mo, ..., my) as
in Definition 1.31, then for every x; € X, the set

{2, oo x0) 0 (X1, x2, .., ) € X}
is a conditional product with multiplicities sequence (mo, . .., my).
The number of elements of a conditional product depends only on its multiplicities.

Theorem 1.34 (Multiplication Principle) A conditional product of multiplicities
(my,...,my) has my x --- X my elements.

Proof . We give the proof via induction on k. The case k = 1 is clear, since a condi-
tional product of multiplicity m; is just a set with m; elements. Now let k£ > 1 and
suppose that the statement hold for k — 1. Let X be a conditional product of multi-
plicities (m, ..., my). Weuse {xy, ..., X, } to denote the set from which we choose
the first component of the sequences constituting the conditional product X . For each
i =1,...,my,the sequences of X that start with x; are in number equal to the cardi-
nality of a conditional product of multiplicities (m,, ..., m;) (see Remark 1.33). By
the inductive hypothesis, for eachi = 1, ..., m; there are therefore my X - -+ X my
sequences in X that start with x;. The set X is the union of the m, disjoint subsets
formed by the sequences that start with x;, i = 1, ..., m;. By Proposition 1.14 one
concludes that | X| = m; X my X -+ X my. m|

Example 1.35 As a byproduct of the Multiplication Principle 1.34 it follows imme-
diately that in particular the cardinality of a cartesian product X| x --- x X} of finite
sets is equal to | X | x - -+ X | X]. O

Remark 1.36 A set A is in one to one correspondence with a conditional product
of multiplicities (m, ..., my), and so has m;| x --- x m; elements, if its elements
are the results of a procedure which is decomposable into k successive phases, for
which:
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1. The first phase has m, different possible outcomes, and, no matter what the
outcomes of the first i phases are, | <i < k — 1, there are m;; different possible
outcomes for the (i + 1)-st.

2. Distinct partial outcomes of the k phases lead to distinct elements of A (or,
equivalently, every element of A uniquely determines the partial outcomes of the
k phases that determine that element).

Indeed, Point 1 guarantees the existence of a surjective map between a conditional
product with multiplicities (m, ..., m;) and the set A, while Point 2 ensures the
injectivity of that map.

Example 1.37 Count the number of ways in which it is possible to choose a president
and a vice president from an assembly of 15 people.

Solution. Every possible choice may be obtained in two phases: in the first phase
one chooses the president, and in the second phase, the vice president. The first
phase has 15 possible outcomes, while the second has 14. Given an arbitrary pair
of people, chosen respectively as president and vice president, it is clear who was
chosen in the first phase (the president) and who was chosen in the second (the vice
president). Therefore, by Remark 1.36 the set of possible choices is in one to one
correspondence with a conditional product of multiplicities (15, 14) and so by the
Multiplication Principle 1.34 that set has 15 x 14 = 210 elements. O

Example 1.38 Three balls are successively extracted (without replacement) from an
urn containing 10 balls numbered from 1 to 10. The extraction may be naturally
divided into three phases:

(1st extraction, 2nd extraction, 3rd extraction).

The two conditions of Remark 1.36 hold; therefore the set of possible extractions is in
one to one correspondence with a conditional product with multiplicities (10, 9, 8).
Indeed, for each of the 10 possible outcomes of the first extraction, there remain 9
possible outcomes for the second and 8 for the third: the possible outcomes for the
extraction taking place depends on the outcomes of the previous extractions, but the
number of its possible outcomes does not. By the Multiplication Principle 1.34 the
set of triples obtained has 10 x 9 x 8 elements. O

Proposition 1.39 If X is a finite set, then the set & (X) of parts of X has cardinality

|2(X)| =2XI.

Proof. Set |X| = n, and label the elements of the set X with I,. We construct a
subset of I,, by deciding whether or not to include each element i in the subset. This
is a process made up of n phases (one phase for each element of I,,), and at each
phase we have two possible outcomes (either to include the element or to exclude it).
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Obviously changing the outcome at any phase leads to the construction of a different

subset of I,,. Hence by Remark 1.36 the set &?(1,) of subsets of I, is in one to one

correspondence with a conditional product of multiplicities (2,2, ..., 2) and thus
— —

n

by the Multiplication Principle 1.34 has 2" = 2!X! elements. i

A first source of errors in combinatorics is due to the misuse of the Multiplication
Principle 1.34 by overlooking the importance of checking both conditions stated in
Remark 1.36: the following two examples show how such an error can occur.

Example 1.40 A coin is tossed; if it comes up Heads a die having 6 faces numbered
from 1 to 6 is cast; if the coin comes up Tails, then the coin is tossed again. Let us
consider the set of 2-sequences that describe the possible outcomes. Each element of
this set is obtained in two phases: first the tossing of the coin, and then the tossing of,
according to the pertinent case, the die or the coin. The number of outcomes of the
second toss varies according to the outcome of the first, and so this subdivision into
phases does not respect the first condition of Remark 1.36. Therefore, the subdivision
in phases under consideration does not determine a one to one correspondence with
a conditional product.

In this case we can divide the set of 2-sequences that describe the possible out-
comes into two disjoint subsets: the 2-sequences whose first element is Heads (and
thus whose second element is an integer between 1 and 6) consisting of the pairs in
{H} x {1,2,3,4,5, 6}, and the 2-sequences whose first element is Tails (and whose
second element is “Heads” or “Tails”) consisting of the pairs in {7} x {H, T'}. The
first set has 6 elements, the second has 2, and so there are in all 6 4+ 2 = 8 possible
overall outcomes. O

Example 1.41 We wish to form a committee of two people, containing at least one
woman, with choices to be made among 5 women and 7 men. One might use the
following procedure to create a committee: first, choose a woman, and then choose
a person among the remaining people. This procedure might seem to suggest that
the committees sought form a conditional product of multiplicities (5, 11). But be
careful: this is NOT the case!

Indeed, from a committee consisting of Ellen and Paula it is not possible to recover
the choices made in the two phases into which we have divided the procedure. We
could, in fact, have first selected Paula from among the 5 women, and then have
selected Ellen from the remaining 11 people, or, vice versa, we could have first
chosen Ellen from among the 5 women and then Paula from among the remaining 11
people. In other words, the procedure followed does not respect the second condition
of Remark 1.36.

We could however proceed by distinguishing two cases: the committees contain-
ing exactly one woman, and those consisting of two women. These are two disjoint
subsets whose union gives the set of all possible committees. The committees con-
taining exactly one woman can be formed by first choosing a woman and then a
man: this corresponds to a conditional product of multiplicities (5, 7) and so gives
35 such committees. The committees with two women are 10 in number: indeed,
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the ordered pairs of women form a conditional product of multiplicities (5, 4) and
so by the Multiplication Principle 1.34 there are 20 such ordered pairs. However,
every committee with two women determines two different ordered pairs, and so the
number of committees with only women is 20/2 = 10 (see Sect. 1.3.2 below). In all
there are therefore 45 possible committees with at least one woman. O

We now consider some more involved examples of a correct application of the
Multiplication Principle 1.34.

Example 1.42 Count the number of automobiles that can be registered using the
license plates used in Italy, which consist of two letters followed by three numbers
followed by another pair of letters. How many of these license plates are there in
which there are neither repeated letters or repeated numbers?

Solution. Let L denote the set of the 26 letters of the English alphabet, and let D
denote the set of digits {0, 1, 2, ..., 9}. We must calculate the cardinality of the prod-
uct L x L x D x D x D x L x L. This is a conditional product of multiplicities
(26, 26, 10, 10, 10, 26, 26) and so by the Multiplication Principle 1.34 we have

ILxLxDxDxDxLxL|=26%x 10 = 456976 000.

The license plates without repetitions form a conditional product of multiplicities
(26, 25,10, 9, 8, 24, 23), and thus there are

26 x 25 x 10 x 9 x 8 x 24 x 23 = 258336000

of them. 0O

Example 1.43 Inhow many ways can one form a three letter word using the alphabet
{a,b,c,d,e, f}:

With possible repetitions of the letters?

Without repetitions of the letters?

Without repetitions and containing the letter e?
With possible repetitions and containing the letter ?

bl

Solution. 1. Let X = {a, b, ¢, d, e, f}. The possible words are in one to one corre-
spondence with the cartesian product X x X x X, which is a conditional product
with multiplicities (6, 6, 6); thus, by the Multiplication Principle 1.34 we have in all
6 x 6 x 6 = 216 different words of three letters.

2. The possible words without repetitions are in one to one correspondence with a
conditional product of multiplicities (6, 5, 4): indeed, there are 6 choices for the first
letter, 5 for the second, and 4 for the third. Thus, by the Multiplication Principle 1.34,
there are in all 6 x 5 x 4 = 120 three letter words without repetitions.

3. We can use the following procedure: in a first phase decide the position of the letter
e (there are 3 possibilities); in the second phase choose a letter different from e to be
placed in the first free position from the left (there are 5 possibilities); finally choose a
letter different from the two used in the preceding steps (there are 4 possibilities) and
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put it in the remaining position. The set of the words specified by this third condition
is thereby placed into one to one correspondence with a conditional product whose
multiplicities are (3, 4, 5). The Multiplication Principle 1.34 then tells us that there
are 3 x 5 x 4 = 60 words of three distinct letters and containing the letter e.
4.Let £2 be the set of all possible three letter words that can be formed using the letters
a,b,c,d,e, f and A be the subset of those words containing the letter e. By Point 1
we know that |£2| = 63 and |A¢| = 5%; in fact, A€ is the set of all possible three letter
words that can be formed using the letters a, b, ¢, d, f. Hence, |A| = 6° — 53 =09I.
O

Example 1.44 On a bookshelf there are five different books by Spanish authors, six
different books by French authors, and eight different books by English authors. In
how many ways is it possible to choose two books by authors of different nationali-
ties?

Solution. The set of possible choices of a book by a Spaniard and one by a French
author, is a conditional product of multiplicities (5, 6) and so by the Multiplication
Principle 1.34 has 5 x 6 = 30 elements. Similarly, a book by a Spanish author and
one by an English author can be chosenin 5 x 8 = 40 ways, while a book by a French
author and one by an English author can be chosen in 6 x 8 = 48 ways. The sets
formed by these three types of choices are disjoint, and so there are 30 + 40 + 48 =
118 ways in all to choose two books by authors of different nationalities. O

1.3.2 Partition and Division Principles

We illustrate here some other fundamental tools for computing the cardinality of a
set.

Theorem 1.45 (Partition Principle) Let f : X — Y be a surjective function between
two finite sets X and Y. Then

X1 =D "1 o)l (1.45.2)

yey

Proof. The family {f~'(y): y € Y} is a partition of X. Indeed the sets of the
family are pairwise disjoint and, of course, X = |J ver | ~1(y). The conclusion is
straightforward. O

Grouping together the counter images with the same cardinality one gets:

Corollary 1.46 Let X and Y be two finite sets and [Y1, ..., Y] a k-partition of Y.
Suppose that, fori =1, ..., k, each element y; of Y; corresponds to m; elements of
X via a function f : X — Y. Then | X| = m|Y|| + - - + m|Yy|.
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Proof . Grouping together the elements of the sets Y7, ..., ¥} in (1.45.a) we get

k

XI=D> 17 =2 D017 o)

yeY i=1 yeY;
k

= > mil¥i.
i=l

The celebrated Division Principle is an immediate consequence of the Partition
Principle 1.45. It simply states that, if you need 5g of ground coffee to prepare a
traditional 3-cup Moka pot, then with a packet of 250 g of ground coffee you are
allowed to prepare fifty 3-cup Moka pots.

O

Theorem 1.47 (Division Principle) Let X and Y be two finite sets. Suppose that
each element y of Y corresponds to m elements of X via a function f : X — Y.
Then |Y| = |X|/m.

Proof . We directly apply the Partition Principle 1.45: from (1.45.a) we get

X =D 1 ) =mlY].

yey O

Figure 1.4 exemplifies the Division Principle 1.47. Let us examine some other
instances of its possible applications.

Example 1.48 We wish to count the number of committees of three people chosen
from a group of 27. Let X be the set of 3-sequences of 1,7 without repeated elements
and Y the set of committees of three people. Each committee corresponds to 6
different 3-sequences without repetitions of /7. By the Multiplication Principle 1.34
the 3-sequences without repetitions of /7 are 27 x 26 x 25. Then, by the Division
Principle 1.47 there are (27 x 26 x 25)/6 different committees. O

Example 1.49 How many hands of two cards can be formed from a deck of 52 cards?
Solution. Each hand [a, b] corresponds to the two 2-sequences (a, b), and (b, a).
By the Multiplication Principle 1.34 the number of 2-sequences of distinct cards is

Fig. 1.4 An application of X

the Division Principle

Y= 1X1/3
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Fig. 1.5 An arrangement v 4,3,6,8,1,7,5,2)
and the corresponding
(3,6,8,1,7,5,2, 4)

8-sequences
6,8,1,7,5,2,4,3)
@ 8,1,7,5,2,4,3,6)

(1,7,5,2,4,3,86,8)

(7,5,2,4,3,6,8,1)

(5,2,4,3,6,8,1,7)
2,4,3,6,8,1,7,5)

52 x 51, and therefore by the Division Principle 1.47 the number of two card hands
is 26 x 51 = 326. O

Example 1.50 Determine the number of anagrams of the word ALA.

Solution. Here it is a question of calculating the permutations of the sequence
(A, L, A). If we artificially distinguish the two A’s by labeling them A; and A,,
then to each anagram of the word AL A there are associated two anagrams of the
word A;LA;. The anagrams of A;LA; form a conditional product with multiplici-
ties (3, 2, 1), and so in view of the Multiplication Principle 1.34 there are a total of
6 such anagrams. Then, by the Division Principle 1.47 one concludes that AL A has
6/2 = 3 anagrams. O

Example 1.51 In how many ways can one arrange 8 people around a round table?
Solution. Let Y be the set of arrangements of the 8 people around the table. To
each arrangement there are associated the eight 8-sequences obtained by proceeding
clockwise starting from any one of the people seated at the table (see, e.g., Fig. 1.5).
By the Multiplication Principle 1.34 the set of 8-sequences of the eight people has
8 x 7 x -+- x 2 x 1 elements. Therefore, by the Division Principle 1.47 one has

8x7x---x2x1_

Y| = A

Tx---x2x1. O

1.4 Sample Spaces and Uniform Probability

Counting problems are closely connected to the frequency of certain related phe-
nomena.

Let £2 be a set. A random experiment with sample space §2 is a procedure which
randomly determines the choice of an element of §2. The elements of §2 are called
elementary events or outcomes of the experiment; more generally, any subset of £2
defines (and is defined to be) an event of the experiment.
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Example 1.52 Tossing a die is a procedure for choosing an integer between 1 and 6
by chance. It is therefore a random experiment with sample space

2 =11,2,3,4,5,6).

The event “the die comes up even” is the subset A = {2, 4, 6}. m]

Often the sample space of a random experiment is implicitly understood. For
example, when one tosses a coin, usually it is understood that one is dealing with a
procedure for choosing either Heads or Tails, in other words, that the sample space
is2={H,T}.

Throughout the text we will, for simplicity of notation, identify an elementary
event w € §2 with the event {w} C §2 consisting of that single element.

Definition 1.53 Let 2 be a finite set. The uniform probability on £2 is the function
P 2(2)— [0,1]

which associates to each subset A of §2 the number

|A]
P(A) = —. O
1£2]

Thus the uniform probability of an event is the quotient of the number of favorable
cases (the number of elements lying in the event) by the number of possible cases
(the number of elements in the sample space). Two events A and B (elementary or
not) are said to be equi-probable if P(A) = P(B).

Theorem 1.54 Let A, B be two events of a finite sample space §2 which is endowed
with the uniform probability P. Then:

1. For each elementary event w € §2 one has

1
P = —
(w) 2

P@) =0and P(2) = 1;

P(AUB) = P(A)+ P(B)— P(AN B),

If A and B are disjoint, then P(AU B) = P(A) + P(B);
P(A9) =1— P(A).

BRI

Proof . Points 1 and 2 are immediate consequences of the definition of the uniform
probability.
3. By definition one has

JAUB| _ |A|+|B|—|AN B
[£2] [£2]

P(AUB) = = P(A)+ P(B) — P(AN B).



1.4 Sample Spaces and Uniform Probability 23

4. This follows immediately from Points 2 and 3.
5. Since A and A are disjoint, by Point 4 one has

1= P(2) = P(A°U A) = P(A°) + P(A). o

Remark 1.55 The uniform probability furnishes a correct indication of the frequency
with which a certain event takes place only when the sample space consists of equi-
probable elements. For example, the outcomes of tossing a fair die can be considered
equi-probable. On the other hand, an automobile race or a football game generally do
not have equi-probable outcomes. When one encounters an exercise in probability to
be resolved using the uniform probability, the first thing to be done is to formalize the
problem as an experiment with a sample space made up of equi-probable elements.

Example 1.56 One extracts two integers between 1 and 50 from an urn. Calculate
the probability that the larger number is equal to twice the smaller.

Solution. This may be viewed as an experiment with sample space §2; consisting
of the 2-sequences of I5y without repetitions, or as one having sample space £2,
consisting of the 2-collections of I5y without repetitions. In the first instance we bear
in mind the order in which the two choices are made, while in the second approach
the order is irrelevant. If the choices are made randomly, the elementary events of
both the spaces should be considered equi-probable. In the first case the event in
which we are interested is

Ar={(x,2x): 1 <x <25} U{Qx,x): 1 <x < 25}.

Clearly A; has 25 + 25 = 50 elements, while by the Multiplication Principle 1.34
the space £2; has 50 x 49 elements; therefore, the probability sought is

Al 50 1

P(A) = =1 = =
121 S0x49 49

In the second instance, the event in which we are interested is
Ay ={[x,2x]: 1 <x <25}.

Clearly A, has 25 elements, while £2, has (50 x 49)/2 elements (see Example 1.49);
therefore the probability sought is

|As| 25 1
P(A,) = = —
12,1 ~ (50 x 49)/2 ~ 49

Obviously the probability that in this extraction the larger number is twice the smaller
number does not depend on the sample space chosen. O

Example 1.57 One extracts (with replacement) two integers between 1 and 50 from
an urn. Calculate the probability that the two numbers extracted are equal.



24 1 Let’s Learn to Count

Solution. This can be viewed as a random experiment with sample space the set £2| of
2-sequences of Is, or as one with sample space 2, consisting of the 2-collections of
Is0. While in the former case the elements of §2; should be considered equi-probable,
in the second case the elements of §2, are not equi-probable: indeed, the 2-collection
[1, 1] is realized only if the 1 is chosen in both the first and second extractions,
whereas the 2-collection [1, 2] may be realized both when the first extraction gives
1 and the second yields 2, or also vice versa. Since we wish to use the uniform
probability, we choose the sample space §2;. The requested probability is then

Hex,x);1 <x <50} 50 1 g

1211 T 502 50

Example 1.58 What is the probability that a four digit number contains one or more
repeated digits?

Solution. The four digit numbers are the integers from 1000 to 9999, and thus there
are 9000 such numbers in all. The numbers without repeated digits form a condi-
tional product of multiplicities (9, 9, 8, 7). Indeed, one notes that the first digit (the
thousands digit) must be between 1 and 9, while the others are allowed to be between
0 and 9, but different from those already chosen. Hence, the set of such numbers that
contain one or more repeated digits has cardinality

9000 — 9 x 9 x 8 x 7 =9000 — 4536 = 4464.

4464
The probability requested is therefore equal to 9000 — 0.496. O

1.5 Problems

Problem 1.1 Prove the identities of Proposition 1.7 without using the characteristic
functions.

Problem 1.2 A store carries 8 different brands of pants. For every brand there are
10 sizes, 6 lengths, and 4 colors. How many different types of pants are there in the
store?

Problem 1.3 How many four letter words can be formed with an alphabet of 26
letters? How many of these are without a repeated letter?

Problem 1.4 Give 8 different books in English, 7 different books in French, and 5
different books in German: in how many ways can one choose three books, one for
each language?

Problem 1.5 In how many ways can one pick two cards from a deck of 52 playing
cards so that:
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The first card is an ace and the second is not a queen?
One is an ace and the other is not a queen?

The first card is a spade and the second is not a queen?
One is a spade and the other is not a queen?

Sl .

Problem 1.6 In how many ways can one toss two dice, one red and one green, so
as to obtain a sum divisible by 3?

Problem 1.7 Consider the set X of 5 digit numbers, in other words, the numbers
between 10000 and 99999.

Determine the cardinality of X.

How many even numbers are there in X ?

In how many numbers of X does the digit 3 appear exactly once?

How many 5 digit palindromic numbers are there (in other words, how many 5
digit numbers are there which remain unchanged if one inverts the order of its
digits, e.g., 15251)?

el

Problem 1.8 What is the probability that the two top cards in a deck of 52 cards do
not form a pair, that is, are not two cards with the same value (from different suits)?

Problem 1.9 A message is spread in a group of 10 people in the following way:
the first person telephones a second who in turn telephones a third, and so on in a
random way. A person of the group can pass the message to any other member of
the group, except the person whose call has just been received.

1. In how many different ways can the message be spread via three phone calls?
And via n calls?

2. What is the probability that A receives the third call, if it is known that A made
the initial call?

3. What is the probability that A receives the third call, if it is known that A did not
make the initial call?

Problem 1.10 How many three letter words without repetition of letters can be made
by using the letters a, b, ¢, d, e, f in such a way that either the letter e or the letter
f or both appear?

Problem 1.11 What is the probability that a natural number between 1 and 10000
contains both the digits 8 and 9 exactly once?

Problem 1.12 An assembly of 20 people must vote by raising hands to choose a
president from among 7 candidates A, B,C, D, E, F, G.

1. In how many different ways can the votes of the assembly be cast?
2. How many outcomes of the voting are there in which A and D receive exactly
one vote?

Problem 1.13 How many 4 digit numbers divisible by 4 may be formed using the
digits 1, 2, 3, 4, 5 (with possible repetitions)?
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Problem 1.14 In how many ways can one place two identical rooks in the same row
or column of an 8 x 8 chessboard? What is the result in the case of a chessboard
with n rows and m columns?

Problem 1.15 In how many ways can one place two identical queens on an 8 x 8
chessboard in such a way that the two queens do not lie in the same row, column, or
diagonal?

Problem 1.16 In how many ways can one invite friends (at least one!) chosen from
10 people?

Problem 1.17 Following the rules of ‘Checkers’, in how many ways can one put a
white pawn and a black pawn in two black squares of a checkerboard in such a way
that the white pawn can jump the black one? Recall that a pawn jumps diagonally,
and jumps over the pawn to be taken, and also that pawns can not move backwards.



Chapter 2
Counting Sequences and Collections

Abstract In this chapter we count sequences and sharings, collections and
compositions, furnishing many applications and examples. Factorials and binomial
coefficients are, on the one hand, indispensable tools for such counting problems,
and, on the other hand, their combinatorial interpretation gives a valuable contri-
bution in suggesting and proving many useful identities both concerning sums or
alternating sums of binomials and their products.

2.1 Sequences and Collections Having Distinct Elements

In this section we shall learn how to count sequences and collections that do not
contain repeated elements.

2.1.1 Sequences Without Repetitions

The notion of the factorial of a natural number arises very frequently in counting
problems.

Definition 2.1 Let n > 0 be a natural number. The factorial of n is

' nxm—1)x---x2x1 forn=>1,
1 forn = 0. O

Remark 2.2 (Stirling’s formula) Calculating n! for large values of n is rather tedious.
However one can prove (see Corollary 12.73) that n! is asymptotic to v/2wn(n/e)"
for n — oo, that is,
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n!

V2mrn(n/e)" B

The following table shows the accuracy of this approximation, called Stirling'
approximation, already for rather small values of n.

lim
n— o0

n n! ~ «/2nn(nfe)" "'_‘/2?—,"("/8)" in percent
1 1 0.92 7.79 %
2 2 1.92 4.05%
3 6 5.84 2.73 %
4 24 23.51 2.06 %
5 120 118.02 1.65 %
6 720 710.08 1.38%
7 5040 4980.4 1.18%
8 40320 39902.4 1.04 %
9 362 880 359536.87 0.92 %
10| 3.6288 x 10° | 3.5987 x 10° 0.83 %
11| 3.99168 x 107 | 3.9616 x 107 0.75 %
12|~4.79002 x 103| 4.7569 x 103 0.69 %
13|~6.22702 x 10°| 6.1872 x 10° 0.64 %
14|~8.7178 x 10'°| 8.6661 x 10'° 0.59 %
15|~1.3077 x 10'2| 1.3004 x 10'2 0.55%
16/~2.0923 x 103 | 2.0814 x 10" 0.52 %
17|~3.5569 x 10'*| 3.5395 x 10'* 0.49 %
18]~6.4024 x 10'%| 6.3728 x 10V 0.46 %
19|~1.2165 x 10'7| 1.2111 x 10" 0.44 %
20|~2.4329 x 10'8| 2.4228 x 10'8 0.42 %

Example 2.3 Using Stirling’s formula it is possible to obtain an estimate of the
number of decimal digits in 100!. The number of decimal digits of a natural number
k is equal to [log,, k]+ 1 where [x] denotes the integer part or floor of x. By Stirling’s
formula? one has

! James Stirling (1692—1770). We Venetians can hardly neglect to mention that he was also known
as “the Venetian” after his sojourn in Venice from 1715 to 1724. Stirling had to flee from Venice
with his life at risk after being accused of having stolen the secret method used for the industrial
production of Murano glass.

2Here one uses the fact that if a, and b, are two sequences diverging to +oo with a, ~ b,
(~ stands for “asymptotic to”) for n — 400, then log,ya, ~ log;q b,. One should bear in mind
that in general for a function f if a, ~ b, it does not necessarily follow that f(a,) ~ f(b,) for
n — +00.
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log,, 100! & log,,(+/27 x 100(100/e)'?) =

1
= 5(10g10(27r) +2) 4+ 100 x log,,(100/¢)

1
= 5 logio(2m) + 1 +200 — 100logyg e = 157.97 ...

Thus the number of decimal digits in 100! is approximately equal to 158. One can
in fact verify that 100! has exactly 158 decimal digits. O

How many sequences of prescribed length with terms from a given finite set, and
with no repetitions, are there?

Definition 2.4 Letn, k € N. We use S(n, k) to denote the number of k-sequences
of I, without repetitions, that is, the number of k-sequences of distinct elements of
I ne O

Remark 2.5 In Theorem 1.28 we have proved the existence of a one to one corre-
spondence between the k-sequences of I, and the n-sharings of I;, associating to
each k-sequence of I, the n-sharing of I, whose elements are the subsets of the
positions of 1,2, ..., n in the k-sequence. Therefore S(n, k) is also the number of
n-sharings (Cy, ..., C,) of I, with at most one element ineach C;,i =1, ...,n.

The value of S(n, k) is easily found using the notion of conditional product and
the Multiplication Principle 1.34 introduced in the preceding chapter.

Theorem 2.6 Letn,k € N. Then

n!

—' l:fk S n’
Sn, k) =1 (n—k)!
0 otherwise.

In particular S(n,0) = 1 and S(n, n) = n! for eachn € N.

Proof. If k > n, there are no k-sequences of I, without repetitions, and so
S(n, k) =0.Nowletk < n.Ifk = Oonehas S(n, 0) = 1: indeed the empty sequence
is the unique 0-sequence of 7. Suppose that k > 1. The set of such k-sequences of
I,, is a conditional product with multiplicities (n,n —1, ..., n— (k—1)): indeed, we
can choose any one of the n elements of I, as the first component of the sequence;
for the second component we have n — 1 choices, since we can not repeat the choice
made for the first component; we have n — 2 choices for the third component, and
so on. Thus by the Multiplication Principle 1.34

SR =nx (=) x o (= (k=) = o
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Corollary 2.7 (Number of injective functions) Let k,n € Nsy. The number of
injective functions Iy — I, equals S(n, k).

Proof. In Example 1.24 we have seen how every function f : I; — I, is determined
by a k-sequence of I,; the function f is injective if and only if the associated sequence
has no repetitions. The result follows from Theorem2.6. O

Example 2.8 In how many ways is it possible to make a list of n people? What is
the probability that Mr. Caruso is in the second position on the list?

Solution. Such a list is just an n-sequence without repetitions of the set of n people:
hence there are S(n, n) = n! possible lists. Therefore

number of lists with Caruso second

P(C d) =
(Caruso second) total number of lists

Every list with Caruso second is determined by the sequence of the other n — 1 people
making up the list; thus there are (n — 1)! such sublists, and so the desired probability
is(n—D!/nl=1/n. O

We end this section giving a combinatorial proof of a nice identity:

Proposition 2.9 For each natural number n > 2 we have

n—1
=1+ kkl.
k=1

Proof. The number n! = S(n, n) counts the n-sequences without repetitions of I,,,
i.e., the permutations of (1, ..., n). Let us count in a different manner the cardinality
of the same set of n-sequences. Let Ag = {(1,...,n)}and A;, 1 <k <n —1,be
the set of permutations (ay, ..., a,) of (1,...,n) such thata;, = i fori > k41
and ar1; # k + 1. Clearly |Ag| = 1. Let us compute |A;| for 1 <k <n —1.1If
(ay, ..., a,) belongsto Ay, then (ar42,...,a,) = k+2,...,n), a1 € {1,...,k},
and (ay, ..., a;) is a permutation of the elements of {1, ..., k+ 1}\{ax}. There are
k possibilities for the choice of a1 | and k! possibilities for the choice of (ay, . . ., a);
by the Multiplication Principle 1.34, one gets |Ay| = kk!foreach 1 <k <n — 1.
Since the sets A, k = 0, ...,n — 1, form a partition of the set of the n-sequences

n—1 n—1
without repetitions of [,,, we get n! = |Ag| + Z Al =1+ Zkk!. m]
k=1 k=1

2.1.2 Collections Without Repetitions, or Subsets

In addition to the notion of factorials, the concept of the binomial coefficient is also
very important.
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Definition 2.10 Let k, n € N. The binomial coefficient “n over k” is the number

n!
—— if0 <k <n,
(Z): Kn—k = K=T
0 otherwise. |

Remark 2.11 Note thatif n € N and k > 1 one has

n _n(n—l)-~-(n—k+1)'
(1) -

2.11.2)

in the numerator k consecutive factors from n to n — k 4 1 appear. Bear in mind that
foreachn e N

We shall soon see that (n

k) is an integer for each pair k, n € N.

The following symmetry formula is straightforward, but very important.

Proposition 2.12 (Symmetry of binomial coefficients) Let n € N. Then

(Z):(nfk) Vk e {0,...,n}.

Proof. One has

(n)_ n! B n! B n! _( n )
k) " kn—k! " -k m—kh—-mn-k) \n-k) B

n

It is useful to have an idea of the behavior of the function k +— (k

n e N.

) for a given

Proposition 2.13 For fixed n, the binomial coefficient grows as k varies

n
k
between 0 and the integer part [n/2] of n/2, and decreases as k varies from [n/2]+ 1
to n.
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n

Proof. Indeed, for each 1 < k < n one has (k i 1) < (k

(")

1
e, if and only if k < % O

) if and only if

Remark 2.14 For n fixed, the binomial coefficient A assumes its maximum value

at k = [n/2] (see Fig.2.1 for n = 10 and n = 100). An application of Stirling’s
formula (Remark 2.2) shows that this maximum value is asymptotic to

2n+%

Jn

for n — +o0.

Definition 2.15 Let n,k € N. We use C(n,k) to denote the number of
k-collection without repetition of /,, or equivalently the number of subsets of

I, of cardinality k. O
Fig. 2.1 Graph of the values 250 *
assumed by the binomial
10
coefficients (k ) and 200 ! !
100
( ) as k varies 150
k L ] L ]
100
50 " .
. L -
2 4 6 8 10
1x10%° ~
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L] L ]
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Remark 2.16 In Theorem 1.28 we have proved the existence of a one to one corre-
spondence between the k-collections of 7, and the n-compositions of k, associating
to each k-collection of [, the n-composition of k£ whose terms are the number of 1,
2, ..., nin the collection. Therefore C (n, k) is also the number of n-compositions
(ky,...,k,) of k withk; <1foreachi=1,...,n.

The binomial coefficients have an important combinatorial interpretation.

Theorem 2.17 Letn, k € N. Then

S, k
Cn, k) = (Z' ):(Z)'

In particular (Z

) is a natural number.

Proof. 1Ifk > n, there are no k-collections without repetitions in /,,, and so C (n, k) =
0= (Z) Now let k < n.1f k = 0, one has C(n,0) = 1 = (
collection is the unique O-collection of /. Suppose that k > 1. Consider the function
that associates to each k-sequence of 7, without repetitions the k-collection obtained
by forgetting the order of the elements (see, e.g., Fig.2.2).

By way of this function each k-collection without repetitions is the image of
exactly k! sequences without repetitions, to wit, the k-sequences that one obtains by
ordering its elements in all possible ways. By the Division Principle 1.47 it follows

that the number of k-collections of [, without repetitions is S(n, k)/k!. m]

: indeed, the empty

Example 2.18 Let 0 < k < n be integers. Using the definition of the binomial
coefficient we have seen that

Fig. 2.2 The function that 2-sequences without
associates to each repetitions of Iy
2-sequence of /3 without 2-collections without

repetitions the 2-collection
obtained by forgetting the
order of the elements

repetitions of I
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ny _ n
k)] \n—kJ)
This formula can also be found, in the light of Theorem 2.17, by noting that to choose

k objects from a set of n is equivalent to excluding n — k objects from the same

set of n. Thus the number (Z) = C(n, k) of the possible choices of k objects is

equal to the number (n Z k) = C(n, n —k) of the possible ways of excluding n — k

objects. O

The following clarifies the reason for the terminology “binomial coefficient”.
Proposition 2.19 (Binomial formula) Let 0 < k < n. The coefficient of x*y"* in
. . [n
the expansion of (x +y)" is (

k)' More, precisely, the expansion of (x +y)" is given
by

nY o0.n n n—1 ny 2 p-2 n n—1 ny . 0
(O)x y +(1)xy +(2)x y +-~+(n_l)x y+(n)x y.

Proof. The formula is trivially true for n = 0. Now let n > 1. Multiplying x + y by
itself # times one obtains a sum of monomials of the type x*y"~*; the term x*y"~*
appears every time one chooses the x term k times and the y term n — k times in
the n-fold product. The k factors in which one chooses x constitute a k-collection

of the set of n factors, and so they can be chosen in C(n, k) = (n) ways. Hence

k

the summand x¥y"~* is repeated C(n, k) = k times, and so this integer is the
coefficient of the monomial x*y" ¥ in the expansion of the binomial. O
Corollary 2.20 Letn, k and ny, ..., ny be natural numbers. Then we have:

1. z (7) =",
i=0

PUY Tk oongteebng
2. > (61) (Ek)_z .

0=<t,=n;

0<br<ny
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Proof. 1. By Proposition2.19 one has
n o__ n __ - n n—iqi __ - n
2—(1“)_2(,-)1 1_Z(i).
i=0 i=0
2. In view of Point 1 one gets

k k
np nj — n; _ ni __ Anitetng
> (@) () -1 2 () -1z =rme o

0=<t;=<n; i=1 0<¢(;<n; i=1

0<b=<ny
The following identity is another easy consequence of the binomial formula.

Corollary 2.21 Letn € Ns . Then
n (n B
D=1 (k) =0.
k=0

Proof. Indeed, by Proposition2.19 one has

o=t =S ()=o)
k=0 k=0

The following recursive formula, known also as Stifel®* formula, is frequently
used.

Proposition 2.22 (Stifel Recursive Formula) Let k, n € N,. Then

(n
k

subsets may be divided into two disjoint classes: those containing 1 and those that
do not. The first class has just as many elements as there are (k — 1)-element subsets
of {2, ..., n}: it suffices to add the number 1 to each of the latter (k — 1)-element
subsets to obtain a set of the first class. The second class consists of the subsets of k

Proof. Note that = C(n, k) is the number of k-element subsets of 7,,. Such

3Michael Stifel (1487-1567).
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elements chosen from {2, ..., n}. Thus the firstclasshas C(n — 1, k— 1) = (Z : })

elements, while the second has C(n — 1, k) = (n ; 1) elements. O

Example 2.23 (The triangle of Tartaglia—Pascal) The preceding proposition shows
that to calculate the binomial coefficients with first argument (“numerator”) equal to
n, it is sufficient to know those with first argument equal to n — 1. This observation
underlies the construction of the Tartaglia*~Pascal® triangle®

)

Since (Z) = (n ﬁ k)’ the Tartaglia—Pascal triangle is symmetric with respect to

the vertical line passing through its vertex. The values 0 and (n) on its sides are

all equal to one. Using the Stifel recursive formula (see Proposition 2.22)

n n—1 n—1
(k)=(k_1)+( . ) l<k<n—1,

one can easily find the internal values of any row when one knows the values of
the preceding row; they are, in fact, equal to the sum of the two adjacent values of
the preceding row:

n a+bﬁ

4Niccold Tartaglia (1499-1557).
SBlaise Pascal (1623-1662).

6 Actually, this triangle was known around the year 1000 by Indian, Persian and Chinese mathe-
maticians.
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Fig. 2.3 “Enological
application” of the
Tartaglia—Pascal triangle.
Reproduced with the
permission of Perrone’s
family

Using the recursion we can construct the initial rows of the Tartaglia—Pascal
triangle:

Figure 2.3 shows the popularity of this triangle among people with taste.

Example 2.24 (G. Pélya”s walk) Imagine that the following diagram describes the
network of streets of a city. Each vertex is determined by an ordered pair (n, k) where
n > 0 is the number of the row and £ > 0 is the number of the column. We wish
to determine how many different “paths” lead from the vertex (0, 0) to the generic
vertex (n, k).

:z(l) o/.\o k 1k:2
n=2 / \o/ \o k=3
NN
NN

"Gyorgy Pélya (1887-1985).
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We may describe any path joining (0, 0) to (n, k) by way of a sequence of Lefts and
Rights: for example a path connecting (0, 0) to (3, 1) is given by (L, L, R); another
path joining the same vertices is (L, R, L) or also (R, L, L). In general, in order to
arrive at the vertex (n, k) one must turn right exactly k times, and consequently also
make exactly n — k left turns. Every path is uniquely determined by an n-sequence
in {L, R} in which the symbol “R” appears exactly k times. Such a sequence is
determined by the k positions in which R appears: therefore, there are (Z) possible
paths leading from (0, 0) to (n, k). |

Example 2.25 1. How many 5 card hands can be formed from a standard 52 card
deck?
2. If one randomly chooses a 5 card hand, what is the probability that all the cards
belong to the same suit?
3. If one randomly chooses a 5 card hand, what is the probability of holding exactly
3 Aces?

Solution. 1. A'5 card hand is a 5-collection without repetitions of Is;, and so there
are C(52,5) = 52!/(47!5!) = 2598 960 hands consisting of 5 cards.

2. We must first find the number of 5-collections without repetitions made up of
cards of the same suit. The set of such collections constitutes a conditional product.
Indeed, such a collection can be obtained by the following two steps procedure:
first choose a suit, and then pick 5 cards of that suit. The first step has 4 possible
outcomes, clubs, diamonds, hearts, or spades. The second step consists in choosing
a 5-collection without repetitions from the set of the 13 cards of the suit chosen in
phase 1: this may be done in C(13,5) = 13!/(5!8!) = 1287 ways. Thus, by the
Multiplication Principle 1.34 there are 4 x 1287 = 5 148 possible hands composed
of cards all of the same suit. Hence one has
4 x C(13,5)

P (5 cards of the same suit) = m = 0.00198(~0.2 %).

3. The set of hands with three Aces is a conditional product. Indeed, a hand with
three Aces can be obtained in two phases using the following procedure: first we
choose three of the four Aces, and this may be done in C(4, 3) = 4 ways. Then
we must complete the hand by using two cards chosen from the remaining 48 cards
(non-Aces), and this may be done in C (48, 2) = 1 128 ways. By the Multiplication
Principle 1.34 there are in all 4 x 1 128 = 4 512 hands with exactly three Aces, and
thus the desired probability is

C(4,3) x C(48,2)
C(52,5)

= 0.00174(~0.17 %). O

Example 2.26 We must choose a committee of k people from a set formed by 7
women and 4 men. In how many ways can the choice be made if:

1. The committee consists of 5 people, 3 women and 2 men?
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2. The committee can have any (strictly positive) number of members but must have

an equal number of men and women?

The committee is composed of 4 people, one of whom is Mr. Jones?

The committee has 4 people, of which at least two are women?

5. The committee has 4 people, two men and two women, and Mr. and Mrs. Jones
can not both be members?

Ealie

Solution. 1. The set of committees under consideration is a conditional product. In
fact, such a committee is obtained by first choosing the 3 women, and then the 2
men. Thus it will suffice to multiply the number of 3-collections without repetitions
of women with that of the 2-collections without repetitions of men. Thus in all one
has C(7, 3) x C(4,2) =35 x 6 = 210 ways of choosing the committee.

2. To count the number of committees that have the same number of men and women
we divide the problem into 4 distinct sub-cases: committees composed of 1 woman
and 1 man, those having 2 women and 2 men, those with 3 women and 3 men, and
finally those with 4 women and 4 men (since there are only 4 men in all). The total
number of committees is then the sum of the numbers of committees obtained in
these 4 subcases: [C(7,1) x C4, )]+ [C(7,2) x C4,2)]+[C(7,3) x C4,3)]+
+[C(7,4) xC4,4)]=Tx4+21 x6+35x44+35x1=320.

3. If Mr. Jones must be a member of the committee, the problem reduces to choosing
the 3 other members from among the remaining 10 people (7 women and 3 men).
We may choose these three people in any way we desire, both for the women and
the men. Thus the number sought is C (10, 3) = 120.

4. We can split the problem into subcases by considering the exact number of men
and women composing the committee: 2 women and 2 men, 3 women and 1 man,
or 4 women. Thus the number of committees satisfying this condition is [C (7, 2) X
CA,2D]+[C(1,3) xCA, )]+ C(7,4) =21 x 6+35 x4+ 35=301.

5. It is useful to split the condition “Mr. and Mrs. Jones can not both be members of
the committee” into a series of sub-cases in which we specify the membership of Mr.
Jones or Mrs. Jones. Note that the committees from which both are absent are allowed
under the stated condition. Thus there are 3 sub-cases to consider: the first case is that
in which Mrs. Jones is on the committee but Mr. Jones is not. We can then choose
a second woman among the remaining 6, and two men from the remaining 3 (after
excluding Mr. Jones). This can be done in C(6, 1) x C(3,2) = 6 x 3 = 18 ways.
The other two cases are the one in which Mr. Jones is a member but not Mrs. Jones,
and which similar reasoning shows to give rise to C(6,2) x C(3,1) = 15x3 =45
different committees, and that in which neither Mr. Jones nor Mrs. Jones are present,
which produces C (6, 2) x C(3,2) = 15 x 3 = 45 different committees. Therefore,
the total number of committees of the desired type is 18 + 45 + 45=108.

A simpler solution of this last point can be obtained by subtracting the number of
committees in which both spouses are present from the total number of committees.
The committees formed by 2 women and 2 men are in number C (7, 2) x C(4,2).
The committees in which both spouses are present are formed by choosing a second
woman and a second man to complete the committee, and this may be done in
C(6, 1) x C(3, 1) ways. Therefore there are
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C(7,2)y xC(4,2) —C(6,1) xC(3,1) =21 x6—-6x3 =108

committees in which Mr. and Mrs. Jones are not simultaneously members. O

2.2 Arbitrary Sequences and Collections

We now consider the sequences and collections of /,, without any restriction regarding
possible repetitions.

2.2.1 Sequences and Sharings

In this section we will learn how to count the k-sequences of 7,,, without any restriction
on their particular nature.

Definition 2.27 Let n,k € N. The symbol S((n, k)) will be used to denote the
number of k-sequences of [, or equivalently (see Theorem 1.28) the number of
n-sharings of I;. O

One should beware of the fact that, unlike S(n, k), the symbol S((n, k)) is not
zero when k > n: indeed there are sequences of I, of arbitrary length.

Theorem 2.28 Letn, k € N. Then

S((n, k)) = n.

Proof. 1If k = 0, the unique O-sequence of I, is the empty sequence: therefore,
S((n,0)) = 1 = n° for every n € N. Now let k > 1. The k-sequences in I, are
exactly the elements of the cartesian product /¥, and so in all they number n*. O

Corollary 2.29 (Number of functions) Let k,n € Ns,. The number of functions
Iy — I, equals S((n, k)) = n.

Proof. In Example 1.24 we have seen how each function f : Iy — I, is determined
by a k-sequence of I,,. The conclusion follows from Theorem 2.28. O

Example 2.30 (Birthday’s problem) What is the probability that two (or more)
people randomly chosen from a group of 25 people have the same birthday?

Solution. We label the 25 people with I,s5. Their birthdays constitute a 25-sequence
of I345. The probability that the 25 people were all born on different days is
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§(365,25) 365 x 364 x --- x 341
S((365,25)) 3652

0(365,25) := ~ (0,431.

Therefore the desired probability is 1 — Q(365, 25) ~ 0,569. The numbers

S(n, k) _ n!
S((n, k)~ (n—k)lnk

Q(n, k) :=

are called Ramanujan numbers; they will be studied in Sect. 14.6, where we will give
an estimate for them for large values of k and 7. O

Example 2.31 Consider an urn containing 10 red balls and 4 black ones. Determine
the probability that the third ball extracted is red, and then the probability that the
first two extracted are both black, for extractions with replacement as well as those
without replacement.

Solution. Let A and B be the events: “A = the third ball extracted is red”, “B = the
first two balls extracted are black™. We number the red and black balls and consider
the sets R = {Ry, ..., Ryo} of red balls, and the set N = {Ny, ..., N4} of black
balls.

(1) The case of extractions with replacement: we choose the sample space £2 con-
sisting of the 3-sequences in R U N; indeed possible further extractions after the
third are of no interest for us. Clearly the elements in §2 are equi-probable and
|2] = S((14, 3)) = 143. The event A coincides with the cartesian product

(RUN)X (RUN) X R={(x,y,2): x,ye RUN, z € R}.

Hence, |A| = 14? x 10 elements and so

A
P(A) = % = 14> x 10/14> = 10/14 = 5/7 ~ 71.43 %.

Similarly, the event B coincides with the cartesian product
NxNx(RUN)={(x,y,z2): x,ye N, z€e RUN}.
Therefore, | B| = 4% x 14, and so

|B

PB) = — =
(B) 2

4% x 14/14° = 42/14* = 2% /7> ~ 8.16 %.

(2) The case of extractions without replacement: we choose the sample space 2’
consisting of 3-sequences without repetition in R U N. The elements of £2’ are equi-
probable and by the Multiplication Principle 1.34 we have |22'| = 14 x 13 x 12.
We calculate the cardinality of the event A = {(x,y,2) : x,y € RUN, z €
R with x, y, z distinct}: there are 10 choices for z, 13 for x and 12 for y; hence
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A is a conditional product with multiplicities (10, 13, 12) and consequently |A| =
10 x 13 x 12. The probability sought is

|A]

P(A) =
(4) 2

= (10 x 13 x 12)/(14 x 13 x 12) = 10/14 = 5/7 ~ 71.43 %.

Here one should note that by dividing the construction of the triples of A starting from
the first component x it would not have been possible to apply the Multiplication
Principle 1.34: for example if x and y are both red there are 8 choices for z, whereas
if they are both black the number of choices available for z becomes 10.

In a similar fashion,

B={(x,y,2):x,y €N, z€ RUN with x, y, z distinct}

has 4 x 3 x 12 elements, from which one has

B
P(B) = %:4x3x 12/(14 x 13 x 12) =4 x 3/14 x 13
=6/(7 x 13) = 6.59 %. O

Example 2.32 In Proposition 1.39 we have proved that the set of parts Z?(I) has
2 elements. We obtain the same result observing that, mapping each subset A of I;
into the 2-sharing (A, I\ A) of I, we get a bijective correspondence between & (1)
and the 2-sharings of ;. Therefore

|2 (I)| = S((2, k) = 2*. O

2.2.2 Collections and Compositions

Here we will consider the collections of finite sets in which repetitions are possible,
or equivalently, the compositions of a natural number.

Definition 2.33 Let n,k € N. We use C((n,k)) to denote the number of
k-collections of [,, or equivalently (see Theorem1.28) the number of
n-compositions of k. m]

Bear in mind that unlike the situation for C(n, k), the symbol C((n, k)) is not
zero for k > n: indeed there are collections of I, of arbitrary length.

Example 2.34 (Roman Numerals) Every 4-composition (ki, k», k3, k4) of 7 may be
represented by a (7 + 4 — 1)-sequence of {/, +} formed in order by k; “I”, a “+”,
ky “I”,a“+7, k3 “I”, a “+7, kg “I”: for example, the 4-composition (2, 1, 0, 4) is
represented by the sequence (I, I, +, I,+,+, 1, 1, I, I), while the 4-composition
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(1, 1, 3, 2) is represented by the sequence (I, +, I, +, I, I, I, +, I, I). Essentially it
is a question of writing the sums

24+140+4 and 1+1+4+3+2
in the corresponding “roman numeral notation”

IT+ 144111l and I +1+ 111411 0

Using the “roman numeral representation” of the n-compositions of k, one easily
obtains the value of C((n, k)).

Theorem 2.35 Let n, k € N. Then one has

Cn—1+kk) ifn+k>1,

C((”’k))={1 T e

Proof. 1f k = 0, the only O-collection of I, is the empty one: hence, C((n, 0)) = 1
which is exactly the value indicated in the statement of the theorem both for n = 0
and forn > 1. Now letk > 1.If n = 0O there are no k-collections of I, = (: therefore
C((0,k)) =0=C(k—1,k).If n > 1, we count the number of n-compositions of k.

Every such composition (ky, ..., k,) is uniquely determined by the corresponding
representation as “roman numerals”, that is, by the (n + k — 1)-sequence of {/, +}
formed in order by k; “I”, a “+”, k, “I”, a“+”, ..., a“+”, k, “I”. Therefore, the

number of n-compositions of k coincides with the number of (n — 1 + k)-sequences
of {1, +} with k appearances of “I” and n — 1 of “4”. Note that in order to determine
such a sequence it is sufficient to indicate the k positions where “I”” appears, and so
we have C(n — 1 + k, k) possible n-compositions of k. O

Example 2.36 In how many ways is it possible to distribute 20 identical bars of white
chocolate and 15 identical bars of dark chocolate among 5 children?

Solution. The number of possible distributions of 20 white chocolate bars among five
children is equal to the number of 5-compositions of 20, namely C((5, 20)) = C(20+
+5 —1,20) = 10626: indeed, denoted by k;, i = 1, ..., 5, the unknown number
of white chocolate bars we give to the i-th child, our problem reduces to finding the
number of natural numbers solutions of the equation k; + - - - + ks = 20, i.e., the
number of 5-compositions of 20. Similarly, the 15 identical bars of dark chocolate
can be distributed in C((5, 15)) = C(15+ 5 — 1, 15) = 3 876 different ways. By
the Multiplication Principle 1.34, we therefore have 10626 x 3876 = 41 186376
ways to carry out the overall distribution. O

Example 2.37 Grandma Emily goes to the drugstore with 10 euros to buy decorations
for a cake. The drugstore sells packages of sugar rosettes, of glazed coffee beans,
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and of birthday cake candles for 50 cents per package, and jelly beans for 2 euros
per bag. In how many ways can she spend all of the money she brings to the store?

Solution. The first step consists of taking 50 cents as the unit of measure. Thus,
Grandma Emily must spend a total of twenty of these monetary units. Bearing in
mind that a bag of jelly beans costs 4 units, our problem reduces to counting the
number of natural number solutions of the following equation:

X1+ x2 + x3 + 4x4 = 20.
Perhaps the simplest way to solve the problem consists in specifying right from the
start how many bags of jelly beans to buy. If we buy one bag, then the equation to

resolve becomes x| + x; 4+ x3 = 16, which is an equation with

153

C((3,16)) =C(16 +2,2)

solutions in natural numbers. In general, if x4 = i we obtain the equation
X1 + xp + x3 = 20 — 4i, which has C((3,20 — 4i)) = C(22 — 4i, 2) solutions,
fori =0,1,2,3,4,5. Summing these, we obtain in all

22 18 14 10 6 2
(5)+(5)+ (5)+ () + )+ ()=
possible different purchases. O

Example 2.38 In how many different ways can one choose six bottles of wine of
three different types?

Solution. Suppose that the three types of wine are Barbera, Merlot and Sauvignon.
Each possible choice corresponds to a solution in natural numbers of the equation

XB +)CM +x5:6,

where xp, x)7, xs represent respectively the number of bottles of Barbera, Merlot

8!
and Sauvignon. In all there are C((3, 6)) = C(8, 6) = (2) = ol possible choices

for the bottles of wine. O

Here are a few properties of the function C((n, k)).
Proposition 2.39 Letn € N> and k € N. Then:

1. C((n,k))=C({(k+1,n—1));
2. Ifk > 1,then C((n,k — 1)) + C((n — 1,k)) = C((n, k));
3 C((n—=1,0)+---+C((n—1,k) =C((n,k)).

Proof. 1. By Theorem 2.35 we have (see Problem2.52 for a combinatorial proof of
this identity)
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Cln,k))=Cn+k—1,k)=Cn+k—1,n—1)=C((k+1,n—1)).
2. Among the k-collections of I,, there are those that contain at least a 1 and those

that do not contain any 1. The first type are obtained by adding a 1 to an arbitrary
(k — 1)-collection of I, and so there are C((n, k — 1)) of them. The second type are

the k-collections in {2, ..., n} and so are C((n — 1, k)) in number.
3. Among the k-collections of [, there are those that contain 1 repeated exactly
k times, those containing 1 repeated exactly k — 1 times, ..., those containing 1

repeated exactly once, and those that do not contain 1. In general, the k-collections
of I, with 1 repeated j times number C((n — 1, k — j)), since it is a question of
counting the number of ways in which the elements different from 1 may be chosen.
Therefore, summing for j = k,k — 1, ..., 1, 0 one obtains the desired equality. O

2.2.3 Collections and Compositions with Constraints

We now wish to count collections that contain at least a certain number of elements
of each type, or equivalently the compositions with some constraints on its elements.
In the following result, the used strategy is more important to fix than the result itself.

Corollary 2.40 Letn € Nyyand £y, ..., ¢, € N If k > £; + --- + £, then the
number of solutions in natural numbers to

X1+ +x, =k, withx; >¥¢;,i=1,...,n,

is equal to the number C((n,k — ({1 + --- + £,))) of n-compositions of
k— (€ +--- 4.

Proof. Set x; = y; + £;. The equation x; + - - - + x, = k then becomes

U1 +€)+-+ O+ 4£,) =k,
thatis, y; +--- +y, = k — ({; + --- + £,). By associating the n-tuple (b; —
Ly, ...,b, — €, to the n-tuple (b, ..., b,) we obtain a one to one correspondence

between the natural number solutions of the equation x; + - - - 4+ x,, = k satisfying
x; > {; with the natural number solutions of

it tym=k—E+-+4),

that is, with the n-compositions of k — (£} + - - - 4+ £,). O

Example 2.41 In how many ways is it possible to fill a box with 12 chocolates of 5
different types under the restriction that there must be at least one chocolate of each

type?
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Solution. By Corollary2.40, this reduces to the problem of counting the natural
number solutions of the equation

it dys=12-(0+1+14+14+1D=7.

By Theorem 2.35 that number is C((5,7)) = C(7+5—1,7) = 330. m]

Example 2.42 How many possible choices of 10 balls from a basket containing red,
blue, and green balls (at least 10 of each color) are there if the choice must include
at least 5 red balls? What if there must be at most 5?

Solution. The first question is similar to that posed in Example 2.41: by Corollary 2.40,
it reduces to counting the natural number solutions to the equation

Vi+y+y=10-5=5.

By Theorem 2.35, the resultis C((3,5)) =CG6+3—-1,5) =21.

To handle the case in which there are at most 5 red balls, we count the number
of elements in the complementary subset; thus, we count the possible collections in
which there are at least 6 red balls. Among all the C((3, 10)) = C(10+3—1, 10) =
66 possible ways of choosing 10 balls from among those of three colors without any
restriction, there are C((3,4)) = C(4 + 3 — 1,4) = 15 ways to choose a collection
with at least 6 red balls. Thus there are 66 — 15 = 51 possible choices of 10 balls
with at most 5 red balls in the selection. O

Example 2.43 Consider the equation x; + x, + x3 + x4 = 12.

1. How many solutions does it have in natural numbers?

2. How many solutions does it have with natural numbers satisfying x; > 1, for
i=1,...,4?

3. How many natural number solutions does it have which satisfy x; > 2, x; > 2,
x3 >4, x4 >07?

Solution. 1. The number of solutions is C((4, 12)) = C(12+4 — 1, 12) = 455, by
Theorem2.35.

2. By Corollary 2.40, the question reduces to counting how many natural number
solutions of the equation

Ntyntytnu=12-4=38

there are. By Theorem 2.35 that number is C((4,8)) = C(8§ +4 — 1, 8) = 165.
3.By Corollary 2.40, one need only count the natural number solutions of the equation

Vit v+t y=12—Q2+2+4) =4.

By Theorem 2.35 the answer is C((4,4)) = C(7,4) = 35. O
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Example 2.44 How many sequences formed with the letters a, e, i, 0, u, x, x, X, X,
X, X, X, x, (8 x’s) are there if one requires that no two vowels appear consecutively?

Solution. One can construct the words requested in two phases: in the first phase
we choose a 5-sequence of vowels, and in the second we insert the x’s respecting
the restriction imposed. For the first phase we have 5! possible outcomes. We now
pass to the calculation of the outcomes of the second phase. For an arbitrary given
sequence of vowels, we write y; for the number of x’s to the left of the first vowel,
then y, for the number of x’s between the first and second vowels, ..., ys for the
number of x’s between the fourth and fifth vowel, and finally ys for the number of
x’s appearing after the last vowel. Our restriction amounts to solving the equation

vi+--+y6=8 y,¥%6=>0, y,¥y3,ys¥5> 1

By Corollary 2.40 such an equation has C((6,8 —4)) = C(6 — 1 +4,4) = 126
solutions. By the Multiplication Principle 1.34, there are a total of 5! x 126 = 15120
possible words of the type required. O

Many processes involving automatic calculations are controlled by input con-
sisting of a sequence of zeroes and ones. Certain types of sequences can be read
very quickly. Hence, it is useful to know how often these special types of sequences
appear. The sequences that appear in the next example are among those that admit
fast reading.

Example 2.45 How many binary sequences of length 10 are there if the sequence is
required to consist of a sequence of 1’s followed by a sequence of 0’s followed by a
sequence of 1’s followed by a sequence of 0’s (for example, 1110111000)?

Solution. Let x| denote the number of 1’s in the first block, x, the number of 0’s in
the second block, x3 the number of 1’s in the third block and x4 the number of 0’s in
the fourth block. This problem then corresponds to determining how many solutions
there are to the equation x; + - - - + x4 = 10 with each x; > 1. By Corollary 2.40 the
number is C((4,6)) = C(4+6 —1,6) = 84. O

We now count the natural number solutions of an inequality in several variables
with unitary coefficients.

Proposition 2.46 Let n € N- and k € N. The natural number solutions of the
inequality
Xp+ -+ x Sk

is equal to the number C((n + 1, k)) of (n + 1)-compositions of k.

Proof. By associating to every natural number solution (ky, . . ., k,) of the inequality
under consideration the (n + 1)-tuple (ky, ..., k,, kK — (k; + - - - + k,)), one obtains
a one to one correspondence with the set of natural number solutions of the equation
x1+"'+xn+xn+1=k- |


http://dx.doi.org/10.1007/978-3-319-03038-8_1

48 2 Counting Sequences and Collections

Example 2.47 How many words can be formed using three A’s and no more than
seven B’s?

Solution. We use x| to denote the number of B’s which precede the first A, x, for the
number of B’s between the first and second A, x5 for the number of B’s between the
second and third A and x4 for the number of B’s after the third A. Clearly we have

X1 +x2+x3+x4 <7,

and so there are C (7 + 4, 4) ways to create such words. O

2.3 The Gilbreath Principle s

The following trick is a very simplified version of the beautiful Schizoid Rosary
performed by the famous magician Phil Goldstein (also called Max Maven): we
refer to [19] for a suitable presentation of the effect.

The effect. Ask two students A and B to participate to the experiment: you first give
to B a closed envelope, containing a prediction. Then give a deck of 20 cards to A;
ask him to think of a number between 1 and 19, and to deal, from the deck face-down
in one hand, one by one the thought number of cards, face down on the table. You
then ask him to riffle shuffle® the pile on the table with the pile in his hands. Now the
first 10 cards of the deck are dealt off on the table, the other pile of 10 cards remains
on A’s hands. At this stage spectator B is asked to make the most important choice:
which pile he has to take, and which will be kept aside. Spectator B is asked to look
at the cards of his pile: it turns out that there are exactly two spades, and that this
corresponds to what is predicted in the envelope, once opened.

Preparation. It is enough to give to A a prearranged deck, in a repeated sequence
of 1 spade and 4 non-spades, from top to bottom (face down) as in the following:

(8,0,0.8,0,8,0,8 00,808 0,0,.860 8 0,90).

Explanation. Everything relies on the Gilbreath Principle, from the magician and
mathematician Norman L. Gilbreath, that appeared in its first version in the magic
magazine [18] in 1958. We will give all the details in Example 2.54.

In the next definition, an interval of N is a set of consecutive natural numbers.

Definition 2.48 (Gilbreath permutation) A permutation (ay, ..., a,)of (1,...,n)
is said to be a Gilbreath permutation if {ay, ..., a,} is an interval of N for each
Lel,. O

8 A riffle shuffle is obtained by holding one deck in each hand with the thumbs inward, then releasing
the cards by the thumbs so that they fall to the table interleaved; alternatively the two decks can be
put on the table and gently pushed one into the other.
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Example 2.49 The sequence (3, 4,2, 1) is a Gilbreath permutation of (1, 2, 3, 4).
Indeed the sets
(3}, {3.4}, {3,4,2}, {3.4,2,1}

are all intervals of N. Instead, (3, 4, 1, 2) is not a Gilbreath permutation of (1, 2, 3, 4)
due to the fact that {3, 4, 1} is not an interval of N. Observe that the only Gilbreath
permutation of (1, 2, 3, 4) starting with 1 is necessarily (1, 2, 3, 4) itself. O

Let us recall that (a;,, ..., a;) is said to be a subsequence of (ay, ..., a,) if we
have 1 <i; < --- < i < n.Forinstance (2, 4, 1) is a subsequence of (5, 2, 4, 3, 1),
whereas (4, 5, 1) is not a subsequence of (5, 2,4, 3, 1).

Remark 2.50 Consider the Gilbreath permutation (4,3,2,5,6,1) of (1,2,3,4,
5,6). Every term of (4,3,2,5,6, 1) belongs either to an increasing subsequence
of consecutive numbers from 4 up to 6, or to a decreasing subsequence of consecu-
tive numbers from 4 down to 1. We will show that this is a general fact.

The next result sounds as a new characterisation of the Gilbreath permutations:
some others may be found in [13, Main Theorem, Chap. 5].

Proposition 2.51 (Characterisation of the Gilbreath permutations) A permutation
(ai,...,ay) of (1,...,n) is a Gilbreath permutation if and only if every a;, i =
2, ..., n, belongs either to an increasing subsequence of consecutive numbers from
ap up to n, or to a decreasing subsequence of consecutive numbers from a; down
to 1.

Proof. We begin remarking the obvious fact that whenever I is an interval of N and
x € N\/, then I U {x} is an interval of N if and only if either x = max/ + 1 or
x =min / — 1. Let us assume that n > 2, the result being trivial if n = 1.

(«). Clearly the set {a;} is an interval of N. If a, belongs to an increasing sub-
sequence of consecutive numbers from a; up to n, then necessarily a, = a; + 1; if
it belongs to a decreasing subsequence of consecutive numbers from a; down to 1,
then necessarily a; = a; — 1. In both the cases {a;, a,} is an interval of N. Given
2 < i < n,let us assume that / := {ay, ..., a;} is an interval of N. Then if a;
belongs to an increasing subsequence of consecutive numbers from a; up to n, then
necessarily a;1; = max I + 1; if it belongs to a decreasing subsequence of consec-
utive numbers from a; down to 1, then necessarily ;1 = min/ — 1. In both the

cases {aj, as, ..., a;+1} is an interval of N.
(=). We build a pair of subsequences of (ay, . .., a,) starting from a; as follows:
foreachi € {1, ...,n—1}considertheset I := {ay, ..., a;};since{a, ..., a;, aj11}

is an interval of N, then either ;.1 = max/ + 1 or ¢;;; = min[ — 1. In the first
case we keep a; for the first subsequence, otherwise we keep it for the second sub-
sequence. This leads to an increasing and to a decreasing subsequences of consec-
utive terms starting from a;. Necessarily these subsequences end, respectively, with
nand 1. O
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Remark 2.52 By Proposition 2.51, a Gilbreath permutation of (1, ..., n) is uniquely
determined either by the choice in {2, ..., n} of the indexes i, < --- < i; such that
(a1, ai,, . .., a;) is the subsequence of increasing consecutive terms from a; to n or
the indexes j, < --- < j, suchthat (ay, aj,, ..., aj,) is the subsequence of decreas-
ing consecutive terms from a; to 1. For example, let (ay, ..., ag) be a Gilbreath
permutation of (1, ..., 8). If the increasing subsequence of consecutive terms of
(ay,...,ag) up to 8 1is (ay, a4, ay, ag) then (ay, az, as, as, ag) is the decreasing sub-
sequence of consecutive terms down to 1. Hence necessarily ag = 8,a7 = 7, a4 = 6,
ap=5andthena, =4,a3 =3,a5s =2,a¢ = 1:

(ar, az, a3, a4, as, as, a7, az) = (5,4,3,6,2,1,7,8).

Example 2.53 (The Gilbreath Principle) Proposition2.51 shows how to obtain a
Gilbreath permutation of a deck of cards, numerated from 1 to n (1 on top, n on
bottom). A Gilbreath shuffle is performed as follows: fix j € {0,1,...,n — 1, n},
and deal the top j cards face-down on a pile, thus reversing their initial order forming
the sequence (j, j — 1, ..., 1); these j cards are then riffle shuffled with the other
pile of n — j cards which forms the sequence (j + 1, ..., n). The resulting sequence,
from top to bottom, forms by Proposition2.51 a Gilbreath permutation. O

Figure 2.4 illustrates a Gilbreath shuffle.
We are now able to explain the trick described at the beginning of this section.”

Example 2.54 (Trick’s explanation) Image to enumerate from 1 to 20 the cards of
the sequence

8§ 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7
(0,0, 8.0.8,.0,80,0,080,0,86 600, 80,0

given to the student A; first he performs a Gilbreath shuffle of the deck. Hence he
dealt off on the table the first 10 cards of the deck, holding the other pile of 10 cards.
The 10 cards of the pile dealt off on the table forms an interval of N, i.e., are the
cardsi,i +1,...,i +9forasuitable 1 <i < 11.Itis easy to check that any subset
of 10 consecutive elements of the original sequence of cards and its complementary
subset both contain exactly two spades. Whatever pile B chooses, the prediction is
satisfied.

Notice that, knowing that the initial deck consists of four spades, six diamonds,
five clubs and five hearts, the probability that B has a hand with exactly two spades

(3

9See https://discretecalculus.wordpress.com for more details on the nice periodicity properties of
a Gilbreath permutation, and the explanation of more complicated tricks.

~ 0.42. O
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Fig. 2.4 A Gilbreath shuffle
(cards face up for the
convenience of the reader):
the cards from 1 to 6 are
dealt off on the right-side
thus reversing their order; the
other cards from 6 to 13
remain in their initial order
on the left-side deck. The
two decks are riffle shuffled.
The result yields a Gilbreath
permutation of (1, ..., 13)

oy @

v, in
i *zpe,,l? o)
0y g

Remark 2.55 (Counting the Gilbreath shuffles) How frequent are the Gilbreath
shuffles among shuffles? A deck of n cards can be obviously shuffled in n! ways,
the number of permutations of (1, ..., n). Among these shuffles there are however
only 2"~! Gilbreath shuffles, or equivalently Gilbreath permutations of (1, ..., n).
In order to prove this claim, let us remember that, as observed in Remark?2.52, a
Gilbreath shuffle is uniquely determined by the choice in {2, . . ., n} of the indexes of
the increasing (or decreasing) subsequence of consecutive terms. Since these indexes
could form any subset of {2, ..., n}, the Gilbreath shuffles are 271 (see Proposi-
tion 1.39). For instance, with four cards, the Gilbreath permutations of (1,2, 3,4)
are
1,2,3,4), (2,1,3,4), (2,3,1,4), (2,3,4,1),

(3,2, 1,4, (3,24 D, (3,421, 43,21.

It follows that the probability that a shuffle of n cards is a Gilbreath one is 2"~ /n!:
for instance, with n = 20, this probability is approximately equal to 2.16 x 10~'3,
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Gilbreath was proud to have created more than 150 tricks based on his Principle,
which was also applied in scientific fields: for instance Knuth used it in [24, 5.4.9] for
an “improved superblock striping” technique that allows two or more files, distributed
on discs, to be merged without possible conflicts.

2.4 Binomial Identities

In this section we study some formulas regarding binomial coefficients. It is conve-
nient to consider separately the formulas that involve alternating signs from those
that contains only positive summands.

2.4.1 Elementary Binomial Identities

In Corollary 2.20 we have proved that summing on the lower index:

B0

The next proposition provides some other interesting combinatorial identities regard-
ing sums of binomial coefficients or squares of binomial coefficients.

Proposition 2.56 Let n, k be two natural numbers. The following identities hold:

1. Sum of squares:

() +G) G+ G2 () =)

2. Summing on two indices:

(1) ()0 (1)-2)

3. Sum on the upper index:

(0) ()= () =65
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Proof. The three identities hold trivially for n = 0. Now letn > 1.
1. The number C(2n, n) = 2nn represents the number of subsets of cardinality

n of I,. Any subset of this type is formed by choosing k elements from the set
{1,...,n}and n — k elements from the set {n + 1, . . ., 2n}, for the appropriate value

of k € {0, 1, ..., n}. The first choice can be made in C(n, k) = "

( k ways, while

i ) ways. Thus one obtains

that the total number of ways to construct an n element subset of I, exactly k of

whose elements lie in 7, is
2
n n _(n
()20 - ()

The total number of n element subsets of I, is therefore given by the sum of these
terms as k varies from O to n.

the second choice can be made in C(n,n — k) = (n ﬁ

2. The binomial coefficient (” +IZ + 1) is the number of binary (n + k + 1)-
sequences with exactly k copies of “0” and n 4 1 copies of “1”: indeed, such a
sequence is determined when one knows the positions, for example, of the k zeroes.
Fix such a sequence. Then the last 1 can be in position n + 1 (if the all 1’s appear at
the beginning of the sequence), n +2, ..., n+k + 1 (if the sequence ends with a 1).
In general, the last 1 is necessarily in position n + 1 4 j for a suitable j satisfying
0 < j < k; it is followed by a sequence of zeroes, and is preceded by a binary
(n + j)-sequence that contains “1” exactly n times. The sequences that have their
last 1in position n + 1 + j are equal in number to the binary (n + j)-sequences

in which “1” appears n times. Since the latter are (n —’: J) = (n —; J ), there are

(n+ll§+1)=jz;(nj;j)

binary (n + k 4 1)-sequences in which “1” appears n + 1 times.
3. Suppose that we wish to construct a (k + 1)-collection of I, : we can do this

. (n+1 . i
in (k—i—l) ways. If n > i > k there are (k

having i + 1 as the maximum number. Thus one has the relation

(D=2 -20) :

therefore

different (k 4+ 1)-collection of I,



54 2 Counting Sequences and Collections

The following formula, attributed to Vandermonde,'® was well known to Chinese
mathematicians of the fourteenth century.

Proposition 2.57 (Vandermonde Convolution) Let k, m, n € N. Then

Z () (2)= (") A

J

Proof. The binomial men corresponds to the number of subsets of I, , of

k
cardinality k. One can get such a subset by first choosing 0 < j < k elements from
{1, ..., m},and then taking the remaining k — j elements from {m+1, ..., m+n}. For

the first phase we have rJn) possible outcomes, while for the second the possible

outcomes are kﬁ . ). By the Multiplication Principle 1.34, summing on j one

yields easily the conclusion. O

2.4.2 Alternating Sign Binomial Identities

‘We consider here identities of the form
> (=Dia; =b, (2.57.b)
iel

where [ is a finite subset of N, » € R and, foreachi € I, a; € R.

Following [5], the main argument in the combinatorial proofs of the identities
of this section is the obvious very important fact that (2.57.b) is equivalent to the
following equality:

Zai:Zai—i-b.

el iel
i even i odd

Example 2.58 In Corollary2.21 we have proved that if n € N, then

> (=1 (Z) =0. (2.58.a)
k=0

10 Alexandre-Théophile Vandermonde (1735-1796).
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The latter identity is equivalent to

> ()= ()

k even k odd

This means that, among the subsets of /,,, the number of subsets of even cardinality
equals the number of subsets of odd cardinality. This can be seen by considering the
map & defined on the subsets of even cardinality of 7, by

@A) =AA{l} VACI,.

Then @ changes the parity of the cardinality of the subsets of 7,: indeed

oA {A\{l} ifl €A,
AU ifl¢A.

Itis easy to see that @ is a bijection: indeed by Point 9 of Proposition 1.7, ®(A) = B
if and only if A = B A {1}. The subsets of I, of even cardinality thus correspond one
to one, via @, to the subsets of 7, of odd cardinality. It follows that the two families
of subsets have the same cardinality. O

The next result generalizes (2.58.a).

Proposition 2.59 Let 0 <i < n be two integers. One has

o (MY (5 = s o _ | Vifi=n
> =D (k) (i)_( 1)"8;,, where 8, ._[0 ohermive. (259

k=i

. . k
Proof. Notice that, fori < k < n, i) counts the number of 2-sequences of

n)
k
sets (S, T)withT € S C [, |T| =1i,|S| = k. For 0 <i < n we thus define the
families

&={ST): TS S, |TI=i, |S|even},
O={ST): T<SC I, |TI=i |S|odd}.

The claim is equivalent to
&1 =101+ (=1)"5; 0. (2.59.b)

We consider the following cases:

e Ifi =niseventhen & = {(I,, I,)} and O = @sothat |&| =1=|0| + 1;
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e Ifi =nisoddthen & =@ and & = {(I,, I,)} sothat |&| =0=|0| — 1;
e Assumethati < n. If (S,T) € &then T # I,: let £&(T) = max [,,\T. We set

Q(S, T)=(SAEMT) (S, T)eé.

Just to clarify, assume for instance thatn = 5,i =2, T = {1,3}and S = {1, 3, 5}.
Then £(T) = max I5\{1, 3} = max{2,4,5} = 5and &(S,T) = ({1, 3}, {1, 3}).
Notice that |S A {£(T)}| = |S| £ 1 depending whether §(T) € Sor&(T) ¢ S; thus
&S, T) C Oforall (S,T) € & Then @ : & — 0 is a bijective map, proving
that |&| = |£|: indeed, by Point 9 of Proposition 1.7, one has @ (Sy, T) = (S1, T)
if and only if Sp = S; A {&(T)}. O

Remark 2.60 Notice that, by choosing i = 0 < n in (2.59.a), we get (2.58.a).

Example 2.61 Niccolo and Tommaso have money to buy a tub with b scoops from an
ice-cream shop that sells a number of different flavours of ice cream, and b number
of different flavours of sorbets. They agree that Niccold will choose different scoops
of ice-cream and sorbets, and Tommaso will choose only ice-cream scoops. How
many different tubs can they buy? Are there more tubs in which Tommaso chooses
an even number of scoops, or an odd number of scoops?

Solution. If Tommaso takes ¢ scoops, k; of the first flavour, k, of the second one,
..., kq of the a-th, then Niccolo can choose b — ¢ different scoops of ice-cream and
sorbets among the a + b possible ones. For each 0 < ¢ < b, Tommaso and Niccolo

have C((a, ¢)) and Z i_ ZZ) different possibilities, respectively. Therefore, by the

Multiplication Principle 1.34 and Theorem 2.35 the possible tubs are
b

a+b
ZO (b M c) C((a.0)).

The next proposition will permit us to prove that the tubs in which Tommaso chooses
an even number of scoops are one more than the tubs in which he chooses an odd
number of scoops. O

Proposition 2.62 Leta, b € N. Then

b
> =1y (Z i ’C’) C((a, ) = 1. (2.62.2)
c=0

Proof. Consider the sets

& = {(S, (kq, ...,ka)) S C Ly, kiy oo kg €Nk 4+ - -+k, = b—|S] is even},
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O :={(S, ki, ... ka)) 1 S S Loypokrs oo kg € Ny Ky +- -k, = b—|S] is odd}.

For instance, if ¢ = 4 and b = 5, then ({2, 5,8}, (0,0,0, 2)) belongs to &, while
({2, 8},(0,1,0,2)) belongs to &. Any element (S, (ki, ..., k,)) of & U € with
ki +- -+ k, = c can be obtained in two phases: first one chooses a subset S of 1,
of cardinality b — ¢, and then one consider an a-composition of c. Since there are
C(a + b, b — c) ways to choose S, and C((a, ¢)) ways to choose the a-composition
of ¢, by the Multiplication Principle 1.34 one gets easily that the set & has cardinality

1] = D Cla+b.b—c)C((a.c)),

0<c<b
ceven

and the set ¢ has cardinality

|0l= > Cla+b.b—c)C((a,c)).

0<c<b
¢ odd

We denote by &* the set g\{({a +1,...,a+b},(0,..., O))}; for instance, again
——

a
witha =4and b =5, & = <§’\{({5}, 0,0,0, 0))}. Given 5 := (S, (ki, .. .,ka)) €
OU&* theset (SNI,)U{l <i <a:k; #0}isnotempty; let

i(s) =max (SNI) Ul <i<a:k #0}).
Then we define

Yo — (S\L @)}, Gk, - kior 15 ki) + 1o - ka)) ifi(s) € S,
(S U {l(ﬁ)}, (k], e 9ki(5)—17 ki(s) — 1, ey ka)) lfl(S) ¢ S.

Observe that if i(s) ¢ S, then k) > 1 and hence (ki, ..., ki@)—1, ki) — 1,
..., kq) is an a-composition of b — |S|. If 5 := (S, (ky, .. .,ka)) and ¥ (s) =
t = (T, (hy, ..., ha)), then it is easy to check that the following conditions are
satisfied:

1. i(s) =i(V);
2. T=SAli(ts)};
3. (k], ey k,'(5),1, ki(s)+l, ey ka) = (l’ll, e ]’l,‘(g),l, h[(5)+1, RN ha) and

s — hi — 1 ifi(s) € S (orequiv.i(s) ¢ T),
T N iy + 1 ifis) ¢ S (orequiv. i(s) € T).

Therefore ¥ (¥ (s)) = ((SA{i(ﬁ)})A{i(t)}, ki, ..o kiggy—1, kisy +1 —1,...,
ka)) = s. For instance, always with a = 4 and b = 5, we have
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v (¥({2,8},(0,1,0,2))) = ¥({2,4,8},(0,1,0, 1)) = ({2, 8}, (0, 1,0,2)).
Hence ¥ coincides with its inverse map and then it is a bijective map of (& U &%)

in itself, sending elements of & to elements of &, and vice versa. Hence
b
Z(—I)CC(a +b,b—0)C(a,0) =8 — 10| =6 +1-|0]=1. O
c=0

Surprisingly, the following application of Proposition2.62 will be used to prove
the formula for the n-th derivative of functions of the form 1/g(x) in Sect.5.1.4.

Corollary 2.63 Let 0 < j < n be natural numbers. Then

>t (i) ()=

k=j

Proof. Indeed, applying Proposition2.62 witha = j + 1, b =n — j we get

n—j
1= (n nl C) C((j +1.0).

c=0

n—j .
so that, by Theorem2.35, 1 = Z(—l)c ( ntl ) (j _:C)-By settingk = j+c

— n—j—c
we obtain
_ - \k—J n+1 k _ - 1yk—j l’l+1 k
=5 () () = e () ()
k=j k=j
We conclude, multiplying on both sides by (—1). O

2.5 Problems

Problem 2.1 Prove by induction Stifel recursive formula

n n—1 n—1
(k)z(k_l)—l-( k ) fork,n € N5 .

Problem 2.2 How many ways are there for ordering the 52 cards of a deck?
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Problem 2.3 How many ways are there to distribute 9 different books among 15
students, if no student receives more than one book?

Problem 2.4 How many possible anagrams are there for the word INFINITY?

Problem 2.5 If a coin is tossed 10 times, what is the probability that Heads comes
up at least 8 times?

Problem 2.6 In a weekly lottery, five balls are selected (without replacement) from
an urn containing balls numbered from 1 to 90. Calculate the probability that in a
given week:

1. The first number chosen is 37;
2. The second number chosen is 37;
3. The first and second numbers chosen are respectively 37 and 51.

Problem 2.7 How many sequences of 4 numbers are there with only one 8, and
without any digit repeated exactly twice? (Sequences starting with 0 are allowed.)

Problem 2.8 If one writes all the numbers from 1 to 10°, how many times does one
write the digit 5?

Problem 2.9 If one throws three distinct dice what is the probability that the highest
number is twice the lowest?

Problem 2.10 How many n-sequences of /3 have exactly 9 digits equal to 1?

Problem 2.11 How many possible committees can be formed from a set of 4 men
and 6 women if:

1. There are at least two men and twice as many women as men?
2. There are 4 members in all, at least two of whom are women, and Mr. and Mrs.
Jones can not simultaneously be members?

Problem 2.12 There are 6 different books in English, 8 in Russian and 5 in Spanish.
In how many ways can one arrange the books in a row on a shelf with all books in
the same language grouped together?

Problem 2.13 How many words of 10 different letters can be formed using the
5 vowels and 5 consonants chosen from among the 21 possible consonants of the
English alphabet? What is the probability that one of these words does not contain
two consecutive consonants?

Problem 2.14 In how many ways can one distribute 40 identical jelly beans to 4
children in the following cases:

1. Without any restrictions?
2. If each child receives 10 jelly beans?
3. If each child receives at least one jelly bean?
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Problem 2.15 What is the probability that in a sequence without repetitions of
{a,b,c,d, e, f} one has:

1. a, b in consecutive positions?
2. a appearing before b?

Problem 2.16 A man has n friends and each evening for a year (365 evenings) he
invites a different group of 4 of them to his home. How large must n be in order for
this to be possible?

Problem 2.17 In the first round of a tournament involving n = 2™ players, the n
players are divided into n/2 pairs each of which then plays a game. The losers are
eliminated and the winners participate in the second round, and so on, until there
remains a single player, the winner of the tournament.

1. How many outcomes are possible for the first round?
2. How many possible outcomes can the tournament have, if by “outcome of the
tournament” we mean complete information on all the rounds?

Problem 2.18 Suppose that a subset of 60 different days of the year is chosen by
extraction. What is the probability that there are 5 days for each month in the subset?
(For simplicity, assume that there are 12 months of 30 days each.)

Problem 2.19 In how many bridge hands do the players North and South have all
the spades?

Problem 2.20 What is the probability of choosing at random a 10-sequence of I}
without repetitions such that:

1. In the first position there is an odd digit and one of 1, 2, 3, 4, 5 occupies the final
position?
2. 5is not in the first position and 9 is not in the last?

Problem 2.21 What is the probability that in a hand of 5 cards taken from a deck
of 52 there is:

1. Atleast one of each of the following cards: Ace, King, Queen, Jack?
2. Atleast one of the following cards: Ace, King, Queen, Jack?
3. The same number of hearts and spades?

Problem 2.22 In how many ways can one form a group (not ordered) of four couples
chosen from a set of 30 people?

Problem 2.23 Let k be a prescribed natural number satisfying 1 < k < 17; then fix
4 numbers chosen between 1 and 20.

1. What is the probability that k appears among the four numbers chosen, and is the
smallest of the four?

2. What is the probability that k appears among the four numbers chosen and is the
second largest of them?
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Problem 2.24 What is the probability that in five tosses of a die only two different
numbers come up?

Problem 2.25 From a set of 2n objects, of which n are identical and the other » all
different from each other, how many possible selections of n objects are there?

Problem 2.26 In a lake 10 fish are tagged from a population of k. Twenty fish are
caught. What is the probability that two of them are tagged?

Problem 2.27 We wish to organize three dinners on three consecutive evenings to
each of which will be invited three friends chosen from among the n schoolmates
with whom we are still in contact. In how many ways can the guests for the three
evenings be chosen?

Problem 2.28 We have organized ten dinners on 10 consecutive evenings. To these
dinners we wish to invite, among others, the 8 schoolmates with whom we are still in
contact, but we are uncertain whether to invite them all for the first evening, or to not
invite more than one friend each evening, or to make invitations in some other way
(but with no friend invited more than once). How many possible choices are there?

Problem 2.29 What is the probability that in a hand of 5 cards from a deck of 52:

1. There is exactly one pair (not two pairs or three of a kind)?

2. There are at least two cards with the same value?

3. There is at least one spade, one heart, no club or diamond, and the face values of
the spade cards are all strictly higher than the face values of the heart cards?

Problem 2.30 How many subsets consisting of three distinct natural numbers
between 1 and 90 (extremes included) are there if the sum of the three is:

1. An even number?
2. Divisible by 3?
3. Divisible by 4?

Problem 2.31 In how many ways can one choose 10 coins from a pile of euro-coins
consisting of 1 cent, 2 cent, 5 cent, and 10 cent coins?

Problem 2.32 We must establish how many places on a commission of 15 con-
gressmen will be awarded to Democrats, Republicans, and Independents. How many
possibilities are there if each party must have at least two members of the commis-
sion? What if, moreover, no party should by itself comprise the majority of the
commission?

Problem 2.33 In how many ways can one distribute 18 chocolate donuts, 12 cin-
namon donuts and 14 honey-dip donuts to 4 pupils if each of these requires at least
two donuts of each type?

Problem 2.34 How many integer solutions of x| + x, 4+ x3 = 0 are there with each
x; > —5?
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Problem 2.35 How many electoral results are possible (number of votes for each
candidate) if there are 3 candidates and 30 voters? What if, moreover, some candidate
obtains an absolute majority?

Problem 2.36 How many numbers between 0 and 10 000 are such that the sum of
their digits is:

1. Equal to 7?
2. Less than or equal to 7?

Problem 2.37 How many natural number solutions are there for the equation
2%+ 2x0 +x3+x4 =12 72

Problem 2.38 How many natural number solutions are there to the system of
inequalities

X1+ +x6 <20 9
X1+ x2+x3 <7 ’
Problem 2.39 How many binary sequences are there in which 0 appears n times
and 1 appears m times, and having k groups of consecutive 0’s?

Problem 2.40 How many binary sequences of n terms contain the pattern 01 exactly
m times?

Problem 2.41 Letm < n and s < r be natural numbers. How many ways are there
to distribute r identical balls in n distinct boxes in such a way that the first m boxes
contain a total of at least s balls?

Problem 2.42 1. In how many ways can one seat 8 people in a row of 15 seats of
a cinema?
2. In how many of the preceding seating arrangements, do 3 given friends receive
adjacent seats?

Problem 2.43 If a coin is tossed n times, what is the probability that:

1. The first “Heads” appears after exactly m “Tails”;
2. The i-th “Heads” appears after “Tails” has come up m times?

Problem 2.44 In how many ways can one distribute 3 different teddy bears and 9
identical lollipops to four children:

1. Without restrictions?
2. Without having any child receive two or more teddy bears?
3. With each child receiving 3 “gifts”?

Problem 2.45 Find the number of binary 20-sequences with exactly 15 terms equal
to 0 and 5 terms equal to 1. How many sequences with 15 terms of one type and 5
of the other?
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Problem 2.46 If n different objects are distributed randomly into n different boxes
what is the probability that:

1. No box is empty?
2. Exactly one box is empty?
3. Exactly two boxes are empty?

Problem 2.47 In how many ways can one distribute 4 red balls, 5 blue ones, and 7
black balls into:

1. Two boxes?

2. Two boxes neither of which is empty?

3. In how many ways can one place 4 red balls, 6 blue, and 8 black ones into two
boxes?

Discuss the case in which the boxes are distinct separately from that in which they
are indistinguishable.

Problem 2.48 In a 4 story house (in addition to the ground floor) an elevator leaves
the ground floor with 5 people aboard. No one else gets on, and every person gets
off randomly at one of the four (upper) stories. Calculate the probability that the
elevator:

1. Arrives empty at the fourth (top) floor;

2. Arrives empty at the third floor;

3. Becomes empty at exactly the third floor;

4. Arrives at the fourth floor carrying 2 people.

Problem 2.49 We wish to open a locked door. We have a ring of 100 keys, of which
exactly 2 open the door in question. The keys are tried successively one by one

1. What is the probability that the 56th key opens the door?
2. What is the probability that the 56th key is the second key that opens the door?

Problem 2.50 Five marbles are extracted simultaneously from an urn containing
10 red marbles and 20 blue ones. Find the probability that only one blue marble is
extracted.

Problem 2.51 How many committees of 5 people with at least two women and at
least one man can be formed by choosing from a group of 6 women and 8 men?

Problem 2.52 Give a combinatorial proof of the equality (see Point 1 of Proposi-
tion2.39)
C((n,k)=C((k+1,n—1)) VkeN, neN5.

Problem 2.53 By using the Binomial Theorem, one sees that (2nn) is the coefficient

of x"y" in the sum giving (x + y)>*. Write (x + y)?" in the form (x + y)"(x + y)",
expand both factors (x4 y)" using the Binomial Theorem, and look for the coefficient
of x"y" that arises from expanding this product. Show that this procedure leads to
an alternative proof for Identity 2 of Proposition2.56.
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Problem 2.54 (Magnetic colors) Explain the following magic trick, published by
N. Gilbreath in [18]:

Take a complete deck of cards out of the case. Ask a spectator to give a few
straight cuts, deal off any number of cards into a pile on the table, and then riffle
shuffle the pile on the table with the pile still in his hand. You say something like
“as you know, red and black cards are magnetically attracted one to each other”.
Then, ask the spectator to pick the deck up into dealing position, and deal off the
top two cards. They will definitely be one red and one black. Deal off the next two
cards. Again, one red/one black. Keep going. You’ll find that each consecutive pair
alternates in color!

Problem 2.55 Let k, m, n be natural numbers. Prove the following identity:

() )= 0 ")+ () () -
() )@ 6)-(5")

[Hint: one can proceed in a manner similar to the proof of Identity 2 of Proposi-
tion 2.56, or use the Binomial Theorem as in Problem 2.53.]

Problem 2.56 Prove by induction on k the Point 3 of Proposition 2.56.

Problem 2.57 Prove Proposition2.59 by means of Corollary 2.21.

N
[Hint: for i < n multiply (Z) (l:) by E” l;']
n—i)!

Problem 2.58 Letk,n € N;.

1. Given an n-sharing (Cy, ..., C,) of I; prove that there is a one to one correspon-
dence between & (I;) and the n-sharings (By, ..., B,) of I; with

31§C1,...,Bn§Cn.

2. Let(ky,...,k,)be a given n-composition of k. Deduce from Point 1 the value of
the sum
> (0)-G)
Gromye M1 Jn
jl Sklﬁ---ajnfku

3. Prove that

3 3 (’2) . (’J‘) =t (k e 1) . (258

(kyyeeskn) €N (1, ju) EN"
kit thky=k ji<ki,..., jn<kn



Chapter 3
Occupancy Constraints

Abstract This chapter introduces a finer level of analysis for counting sequences
or collections that are subject to some occupancy constraint, namely a constraint on
the number of repetitions of its elements. Several problems are considered. As more
unusual application in this framework, we prove the Leibniz rule for the derivatives
of a product of functions, and count, in terms of the Catalan numbers, the Dyck
sequences, i.e., the binary sequences of even length with equal number of 0’s and 1’s
where, at each position, the number of 1’s does not exceed the number of 0’s.

3.1 Sequences and Sharings with Occupancy Constraints

In this section we discuss sequences and sharings subjected to specific constraints
regarding repetitions of their elements.

3.1.1 Sequences and Sharings with Occupancy Sequences:
Permutations and Anagrams

We wish to count the k-sequences of [, with a specified number of copies of the
numbers 1, ..., n, or equivalently the n-sharings of I; into subsets of prescribed
cardinalities.

Definition 3.1 Letn € N and ky, ..., k,, k € Nbesuch thatk, +---+k, = k.
We call:

1. k-sequence of [, with occupancy sequence (ki, ..., k,) any k-sequence of I,
with k; repetitions of 1, ..., k, repetitions of n;
2. n-sharing of [, with occupancy sequence (ki,...,k,) any n-sharing

(Cy,...,C,) of I, such that |Cy| = ky, ..., |Cy| = k.

We will denote the number of k-sequences of ,,, or equivalently of n-sharings of
I, with occupancy sequence (ki, ..., k,) by S(n, k; (ky, ..., ky)). |
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Remark 3.2 Inview of Theorem 1.28 and Remark 1.29 the number of k-sequences of
I,, with occupancy (ki, ..., k;,) is the same as that of the number of n-sharings of I
with occupancy (ki, ..., k,). Note that the first n in the symbol S(n, k; (ki, ..., k,))
is redundant since the value of n may be inferred from the length of the occupancy
sequence.

Example 3.3 The 9-sequence (3,5,5,7,7,2,2,2,2) of I; is an example of a
sequence with occupancy (0,4, 1,0,2,0,2). Such a sequence corresponds to the
7—sharing (Cl, Cz, C3, C4, C5, C6, C7) of 19 defined by C1 = @, C2 = {6, 7, 8, 9},
C;={1},Cys =0,C5 ={2,3},Ce = 0,C7 = {4, 5}.Since |C1| = |C4| = |Cg| =0,
|C2l = 4, |C3] = 1, |C5| = |Cq] = 2 this is a sharing with occupancy
0,4,1,0,2,0,2). m]

Example 3.4 The possible ways of distributing 10 different prizes (labeled by the
set 119) among four people in such a way that the first person receives 3 prizes, the
second 2, the third 1 and the fourth 4 can be represented via the 4-sharings of 1)
with occupancy (3,2, 1, 4). 0O

Remark 3.5 If (ay, ..., ay) isak-sequence of I, with occupancy (k, ..., k,), the set
of all k-sequences of I,, with that same occupancy is given by the set of permutations
(see Definition 1.20) of the sequence (ajy, ..., ai).

Definition 3.6 Let (a;,...,a;) be a k-sequence of I,,. We use P(ay, ..., a;) to
denote the number of permutations of (ay, ..., a;). O

Theorem 3.7 Let (ay, ..., ar) be a k-sequence of I, with occupancy (ki, ..., ky).
Then

k!

S(n, k; (kly.-.,kn))=P(01,--~,ak)=m‘

Proof. The permutations of the sequence (ay, ..., a;) consist of precisely the k-
sequences of I, with occupancy (ky, ..., k,). Thus one certainly has P(ay, ..., ar)
equals S(n, k; (ki, ..., k,)). The construction of a k-sequence of 7, with occupancy
(ki, ..., k,) can then be carried out in n distinct steps (see Fig.3.1): in the first step
we choose the k; positions where 1 appears, in the second step, the k; positions for
2, ..., and in the last step we choose the k,, positions for n. In the first step we have
C (k, k1) choices for the position of 1, in the second step we have C (k—ky, k») choices
for placement of 2, .. ., in the last step we have C(k — (k; +- - - + k,—1), k) choices
for the positions of n. Different choices at any step lead necessarily to distinct final
results. By the Multiplication Principle 1.34 the total number of possible choices is


http://dx.doi.org/10.1007/978-3-319-03038-8_1
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k k —ky k — (k1 + k2) k—(ki+ka+-+ ko)) _
ki ko k3 ky, o

_ k! (k — ky)! k=t A k) k!
T kilk — k) ko !k — (ki + ko)) k,!0! AT
O
Remark 3.8 One sees immediately from Theorem 3.7 that S(n, k; (ki, ..., k,)) is
invariant under permutations of (ky, ..., k).

One should be careful not to confuse S(n, k; (ky, ..., k,)) with P(ky, ..., k,).
For example,

5(4,8;(2,2,3, 1)) = P(2,2,3,1) =5G,4(1,2, 1)) =

21213111

201
One gets easily the following identity:
Corollary 3.9 Letn,k € N. Then
k!
= 2
n" = _
Veoik !
Kotk =k kil kel
Proof. Any k-sequence of I, has a certain number k; of 1, k, of 2,...,k, of n

with k; + - - - 4+ k, = k. Therefore the number S((n, k)) = n* of all k-sequences is
equal to the sum of the numbers of k-sequences of /,, with all possible occupancies
ki, ... k). O

Example 3.10 Calculate the number of anagrams of BANANA.

Solution. Label the letters B, A, and N respectively with 1, 2, and 3. Then the number
of anagrams sought coincides with the number of 6-sequences of /3 with occupancy
(3, 1,2). By Theorem 3.7 that number is

S@3,6;(3,1,2)) = 6!/(3! x 2!) = 60. o
Fig. 3.1 Construction of a 11—
sequence with 1 repeated k| 1\
times, 2 repeated ky times, ... 1 \1,_\
k, IR ERNENEREN NN
o=
2~ 27
2—_’ﬁ
K, ALl [Tl [[TTTI2f []11]2]]
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Example 3.11 How many different eight-digit binary sequences are there with six
digits equal to 1 and two equal to 0?

Solution. One need only count the number of permutations of (0,0, 1, 1, 1, 1, 1, 1).
The number of such permutations is S(2, 8; (2, 6)) = 28. One notes that an alterna-
tive approach would be to count the number C (8, 6) = 28 of possible placements
for the digit 1. O

Example 3.12 A factory produces kitchen stoves. At the last stop on the assembly
line, a quality controller, after checking the appliance, marks each stove either with
the number 1 (acceptable) or with the number O (unacceptable). Every day the quality
controller examines 15 stoves. Supposing that the controller does not really verify the
presence of defects, but rather chooses his rating by chance, calculate the probability
that the 12-th stove is the third one to be marked unacceptable.

Solution. At the end of the day, the quality controller produces a binary 15-sequence.
The number of such sequences is S((2, 15)) = 215 If the 12-th stove is the third one
to be marked unacceptable, then the sequence produced by the controller must have
exactly two 0’s (and nine 1°s) in the first 11 positions, and the number of such binary
11-sequences is S(2, 11; (9,2)) = C(11,2) = 55; in the 12-th position there must
be a 0 (1 possibility), and the remaining three positions can be either 0 or 1 randomly
(2° = 8 possibilities). By the Multiplication Principle 1.34 there are 55 x 1 x 8 = 440
15-sequences with the third 0 occurring at the 12-th position, and so the probability
sought is 440/2'5 ~ 0.013 = 1.3 %. O

Example 3.13 Nine students, three from class A, three from class B and three from
class C must seat themselves in a row with 9 seats. If they take their seats randomly,
what is the probability that the three students of class A, the three from class B, and
the three from class C all find themselves in three consecutive seats?

Solution. From the terms of the problem, we need only to take into account the class
to which each student belongs. Therefore we can consider the sample space of the
3-sequences of I3 = {A, B, C} with occupancy (3, 3, 3). We seek the number of
favorable outcomes, and will divide that number by the total number of possible
outcomes to obtain the desired probability. The first question is: what is the number
of all possible outcomes here? There are S(3, 9; (3, 3, 3)) = 9!/3!3!13! = 1 680 ways
of arranging the three students of each of the three classes A, B, C in a row of nine
places. If the three students of each class must be together, we can imagine that we
have to place the three blocks AAA, BBB, CCC. Thus instead of dealing with 9
letters we really have to deal with three blocks of letters. There are 3! = 6 ways to
place these blocks. Hence the probability that the students of each class sit together
is 6/1680(~ 0.32 %). O

Example 3.14 How many ways are there to make 10 letter words using the alphabet
{a, b, c, d} if each letter must appear at least twice but not more than four times?

Solution. We divide the problem into sub-problems by fixing exactly how many a’s,
how many b’s, how many ¢’s and how many d’s there are in the word. There are two
possibilities for having a total of 10 letters with each appearing at least twice. The first
is that some letter appears four times, and the other 3 all appear twice; the second is
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that two letters appear 3 times, and the other two appear twice. In the first situation,
there are 4 choices for the letter appearing 4 times, and S(4, 10; (4,2,2,2)) =
18900 ways to place one letter 4 times and each of the other three twice. In the
second instance, there are C(4,2) = 6 choices for the two letters that appear 3
times and S(4, 10; (3,3, 2,2)) = 25200 ways of placing the two letters 3 times
and two other letters twice. Hence the solution to the problem is that there are
4 x 18900 + 6 x 25200 = 226 800 possible words of the specified type. O

Example 3.15 In how many ways can one assign 100 different diplomats to 5
embassies? In how many ways can one carry out these assignments if each embassy
must have 20 diplomats assigned to it?

Solution. The first part of the problem is equivalent to calculating the number of
5-sharings of ;9. By Proposition 2.28 there are S((100, 5)) = 5'% possible assign-
ments. The second part of the problem amounts to finding the number of 5-sharings
of I1p9 with occupancy (20, 20, 20, 20, 20), and here the number is

S(5, 100; (20, 20, 20, 20, 20)) = 100!/(20)°. O

Example 3.16 In a bridge hand, a deck of 52 cards is randomly distributed to four
players, North, South, East and West with each player receiving 13 cards. What is
the probability that West has all 13 spades? What is the probability that each player
holds an Ace?

Solution. There are S(4, 52; (13, 13, 13, 13)) ways of dealing the 52 cards to the four
players N, S, E, and O. The cardinality of the event “West has all the spades” can be
calculated by multiplying the number of ways in which West can hold all the spades
(1 way) by the number of ways of distributing all the remaining 39 non-spade cards
in the deck to the other three players (which may be done in S(3, 39; (13, 13, 13))
ways). Hence the probability that West has all the spades is

S(3,39; (13,13,13)) _ 391/(13})°
S(4,52; (13,13, 13,13))  52!/(13)*
13139

52\
o = |13) = 0:000000000002.

One could also give a more direct solution to this problem by considering only the
cards given to West, without regard to the cards dealt to the other players. Indeed, if
West is dealt 13 cards at random, there are C (52, 13) possible different hands, and
so the unique hand with 13 spades has probability 1/C (52, 13).

In order to analyze the deals in which every player receives an Ace, we can adopt
a two step procedure. The first step deals with the Aces: in all we have 4! ways to
distribute the four Aces among the 4 players. In the second step we distribute the
remaining 48 non-Aces to the 4 players: there are in all S(4, 48; (12, 12, 12, 12))
ways to do so. Hence the probability that every player holds an Ace is
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4% S(4,48; (12,12,12,12))  4148!/(12))*
S(4,52;(13,13,13,13))  521/(13)*

—1
= (13)* x (542) ~ 0.105. O

Example 3.17 A boat has 3 cabins, each of which can contain at most 4 people. The
various cabins are very different: cabin A has portholes and a bath, cabin B has no
porthole but does have a bath, cabin C is the worst: it has neither portholes nor a
bath, and moreover it smells of kerosene. Eight people take a trip on this boat. How
many ways can cabin assignments be made if the captain wants only one person in
cabin A, 3 people in cabin B and 4 in cabin C? What if he wants 3 people in A, 3 in
Band2in C?

Solution. We must count the number of 3-sharings of Ig, in the first case with
occupancy (1, 3,4), and in the second with occupancy (3, 3,2). Therefore there

!

8!
are S(3,8;(1,3,4)) = 31 cabin assignments in the first instance and S(3, §;
' 14!
(3, 3,2)) = —— in the second. O
31312!

Example 3.18 In how many ways can one distribute 4 identical oranges and 6 dis-
tinguishable apples (for example, of different type) into 5 different containers? In
how many ways is it possible to carry out the same distribution if it is required that
every container should have exactly two pieces of fruit?

Solution. The possible distributions of the oranges correspond to the 5-compositions
of 4, and the possible distributions of the apples correspond to the 5-sharings of .
Then, there are C(4 + 5 — 1,4) = 70 ways to distribute 4 identical oranges in 5
distinct jars, and 5° = 15625 ways for placing the 6 apples. By the Multiplication
Principle 1.34 there are in all 70 x 15625 = 1093 750 ways of distributing the 4
oranges and 6 apples. The requirement that there should be exactly two pieces of
fruit in each jar complicates the matter. We begin by dealing with the oranges. There
are three possible ways to distribute the 4 oranges in the 5 jars without having more
than 2 oranges for each jar:

1. Two oranges in two jars, and no oranges in the remaining three jars. The two jars
getting the two pairs of oranges can be chosen in C(5,2) = 10 ways. The six
apples can then be placed in the three jars left, two per jar,in S(3, 6; (2, 2, 2)) = 90
ways. Thus the first case consists in all of 10 x 90 = 900 possible distributions.

2. Two oranges in one jar, and the other two oranges in different jars. The jar with
two oranges can be chosen in C(5, 1) = 5 ways, while the two containers with
a single orange can be chosen in C(4,2) = 6 ways (one could also consider,
combining these two steps, of arranging the numbers 2,1,1,0,0 in the 5 jars in
S(3,5; (1, 2,2)) = 30 ways). Now the two empty jars must each get two apples,
while the two jars that already have an orange must each be given an apple. Hence
the 6 apples can be distributed in S(4, 6; (2, 2, 1, 1)) = 180 ways, giving a total
of 180 x 5 x 6 = 5400 distributions in this second case.
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3. Four oranges distributed in four different jars. This may be done in C(5,4) =5
ways, and the apples can be distributed in S(5, 6; (2,1, 1, 1, 1)) = 360 ways,
giving a total of 5 x 360 = 1 800 distributions in this case.

Summing the various cases we have in all 900 + 5400 4 1 800 = 8 100 distributions
with 2 pieces of fruit in each jar. O

3.1.2 Sequences and Sharings with Occupancy Collection

We now discuss a different type of constraint on the repetitions of the elements of a
sequence and the cardinalities of the sets that comprise a sharing.

Definition 3.19 Letn € N> and k, ky, ..., k, € Nsatisfy k = k; +--- + k,. We
define:

1. k-sequence of [, with occupancy collection [k, ..., k,] a k-sequence of I,
whose occupancy sequence is any permutation of (ky, ..., k,);

2. n-sharing of I, with occupancy collection [k, . .., k,] an n-sharing of I; whose
occupancy sequence is any permutation of (ky, ..., k).

We use S(n, k; [k1, . .., k,]) to denote the number of k-sequences of I, or equiv-
alently of n-sharings of I;, with occupancy [k, ..., k,]. O

Example 3.20 The 9-sequences (3,5,5,7,7,2,2,2,2)and (4,4,4,4,1,3, 1,6, 3)
of I; have occupancy [1, 2, 2, 4, 0, 0, 0]; indeed, in both one has one number repeated
once, two numbers repeated twice, one number repeated 4 times and three numbers
which do not appear. O

Example 3.21 The words of 10 letters constructed using the alphabet {A, B, C} and
in which one letter is repeated twice, another letter repeated three times, and still
another letter with five repetitions are precisely the set of 10-sequences of {A, B, C}
with occupancy [2, 3, 5]. O

Example 3.22 The possible distributions of 10 different pieces of candy to three
children such that one receives 2, another receives 3, and still another receives 5 can
be represented via the 3-sharings (C;, C,, C3) with occupancy [2, 3, 5] of the set of
pieces of candy. O

Theorem 3.23 Letn € N>y andk, ky, ..., k, € Nsatisfyk =k, + --- + k,. Then

S, ks [ki, ... ko) = S(n, ks (ky, .. k) X Py, ..o k).
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Proof. We must count the k-sequences of [, whose occupancy sequence is a per-
mutation of (kq, ..., k,). We proceed in two steps: first we fix a permutation of
(ky, ..., k,), and then we choose a k-sequence of I, whose occupancy sequence
is given by that permutation. By the Multiplication Principle 1.34, we have in all
S(n, k; ki, ..., k) x P(ky, ..., k,) sequences. O

Example 3.24 Let us reconsider Example 3.17 of the preceding section. A boat has
three different cabins, each of which can accommodate 4 passengers. How many
possible cabin assignments are there if the captain requires that one cabin has a
single occupant, another cabin 3 occupants, and the remaining cabin 4 occupants?
What if the captain requires that two cabins have 3 occupants each, and the third
cabin has the remaining two passengers?

Solution. Use Iy to label the set of people to be assigned cabins. The question then
reduces to calculating the number of 3-sharings of /g with occupancy [1, 3, 4] in the
first instance, and [3, 3, 2] in the second. By Theorem 3.23 we find that the number
of possible assignments in the two cases are respectively

8!
S@3,8;(1,3,4)) x P(1,3,4) =S5@3,8;(1,3,4)) x S3,3; (1,1, 1)) = 3l x 31,

8!
5(3,8;(3,3,2)) x P(3,3,2) = 8(3,8;(3,3,2)) x §(2,3;(1,2)) = TR

Example 3.25 A doctor sees 5 patients in a given week.

1. Inhow many ways can the doctor see 2 patients on Monday, 2 patients on Tuesday,
and 1 patient on Thursday?

2. Inhow many ways can the doctor see patients on Monday, Tuesday, and Thursday
so as to see 2 on one day, 2 on another day and 1 on a third day?

3. In how many ways can he see the patients in a seven-day week in such a way as
to see 2 one day, 2 another day, and 1 on a third day?

Solution. 1. The question reduces to counting the 3-sharings of /s with occupancy
(2,2, 1), and these number S(3, 5; (2,2, 1)) = 30.

2. The question reduces to counting the 3-sharings of Is with occupancy [2, 2, 1],
and in view of Theorem 3.23 in all these number

S3,5;02,2,1)) =5@3,5 2,2, 1) x P(2,2,1) =
=53,52,2,1)) x 52,3;(1,2)) =90.

3. Here we must count the 7-sharings of Is with occupancy [2, 2, 1, 0, 0, 0, 0]. In all
they are

S(7,5;12,2,1,0,0,0,0]) = S(7,5;(2,2,1,0,0,0,0)) x P(2,2,1,0,0,0,0) =

=5(7,5,(2,2,1,0,0,0,0)) x SQ3,7; (4, 1, 2)) = 3150. O
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3.1.3 The Leibniz Rule for the Derivative of a Product s

A remarkable application of the results on the sharings with occupancy is the Leibniz
formula for the n-th derivative of a product of functions, which generalizes the most
known rule for the derivative of the product of two functions.

Foreachn € N, let £ denote the n-th derivative of a function f, with f© = f.

Theorem 3.26 (Leibniz rule) Let k,n > 1 and fi, ..., fi be functions which are
n-times differentiable on an open interval J of R. The n-th derivative of the product

fi -+ fx of the functions fi, ..., fiis

i f®= > e, AU, (3.26.a)

(/PR Ci)
k-sharing of I

Therefore one has

!
(fi- fO® = Z ‘n%fl(m Lo fim), (3.26.b)

Proof. Denote by .%;(1,,) the set of the k-sharings of I,. Let us prove (3.26.a) by
induction on n. If n = 1, one has

oo fO = flfae fot ot fio fia fi

Now, the k-sharings of I} are ({1}, 0, ...,0),...,@, ..., @, {1}), and hence
— ——

k—1 k—1

S KN Y = ot i ol

(Cy,....C)eF (1)

The statement is then true for n = 1. Suppose (3.26.a) is true for a given n > 1 and
let us prove it for n + 1.

First observe that each k-sharing (Bj, ..., By) of I,, can be obtained from the k
different k-sharings of 7,1,

(BiU{n+1},Bs, ..., B),....(Bi,..., By, BeUfn + 1})
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eliminating the element n+ 1. Differentiating further the n-th derivative of the product
fi+-- fr, by the inductive hypothesis we get

i S0 = ((fre ™)
— z fl(\Bll) L fk(lBkD)/'

(By,....Br)eSF (1)

Now, the derivative (f(‘B‘D . fk(‘Bk'))/ consists of

k
(1B1]) (\B |+1) (IBk]) (IB1]) (1B;jU{n+1}] [(2:13)]
Z i .kaZZfl e f "'fkk'
j=1 j=1
Therefore
(IB1]) (IBx]) [(&1)] (ICkD
Z (I Iy - Z flav. gl
(By,....B)eS(I,) (Croeee, C)EF5(Ing1)

To prove (3.26.b), it is sufficient to group the sharings in the sumin (3.26.a), according
to their occupancy:

(fi- f)™ = S plen.pa

(C1,....CeF (1)

- z Z fl<\cl|> o fk<|ck|>. (3.26.0)

(n1.....np) e Nk (Cp,.., Cp) € F(In)
np+-+n=n ICil=np, ..., [Crl = ng

Now, if (Cy, ..., Cy) is a k-sharing of I, with occupancy (ny, ..., n;), one has

fl(|cl|) f(\CAD f(nl) . fk(nk)_

Moreover, by Theorem 3.7, there are exactly S(k, n; (ny,...,ng)) = ' '
nyl---Ng.
such sharings: therefore

|
Z (ci (ICk]) n (1) ()
fl 1 fk k Z'—flnl knk.

nyl---ng!
Cr,..., Cy) € S In)
[Cil=np,..., ACkl = ng

The formula (3.26.b) follows now easily from (3.26.c). m|
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3.2 Collections and Compositions with Occupancy
Constraints

In this section we discuss collections and compositions subject to certain constraints.
3.2.1 Collections and Compositions with Occupancy
Sequence

The situation that we consider in this section will turn out to be rather trivial.

Definition 3.27 Letk,ky,...,k, e Nwithk =k +--- + k,,. We call:

1. k-collection of /,, with occupancy sequence (i, ..., k,) any k-collection of I,
consisting of k; repetitions of 1, k, repetitions of 2, . .., k, repetitions of n;

2. n-composition of I; with occupancy sequence (i, ..., k,) the n-composition
ki+--+k, =k O

It follows immediately from the definitions that there is a unique k-collection of
I, or n-composition of k with a prescribed occupancy sequence.

3.2.2 Collections and Compositions with Occupancy
Collection

We now deal with collections or compositions in which there appears a prescribed
number of repetitions.

Definition 3.28 Letk,ky,...,k, e Nwithk = k| + - - - + k,,. We define:

1. k-collection of I, with occupancy collection [k, ..., k,] any k-collection of I,
with occupancy sequence equal to a permutation of (ki, ..., k,);

2. n-composition of £ with occupancy collection [k, ..., k,] any n-composition
(my,...,my) of k with (my, ..., m,) a permutation of (ky, ..., k).

We will use C(n, k; [ky, .. ., k,]) for the number of k-collections of I,, or equiva-
lently, the number of n-compositions of k, with occupancy [k, ..., k,]. O

Remark 3.29 Note that the first n in the symbol C (n, k; [k, .. ., k,]) is redundant
since it may be deduced from the length of the occupancy collection.

Example 3.30 Paula has asked Albert to buy packets of butter, bottles of milk, and
bars of cooking chocolate so she can do some baking. Albert, however, does not recall
the quantities of each of these to be purchased, but only that he should get 3 things of
one type, 2 of another, and 5 of yet another of the types. The possible shopping lists
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from which he must choose one can be represented as the 10-collections of /3 with
occupancy [2, 3, 5]. Alternatively, the possible outcomes of his shopping trip can be
represented by the 3-compositions (mg, my, mc) of 10 formed respectively by the
quantities of Butter, Milk, and Chocolate, such that [mg, m;, mc] =[3,2,5]. O

Theorem 3.31 Letn € N>y and k, ki, ..., k, € Nwithk =k; + -+ k,. Then

Cn, ks [k, ..., kn]) = Plky, ..., kn),

that is, the number of permutations of (ky, ..., k).

Proof. Since C(n, k; (hy,...,h,)) = 1 for every permutation (hy,...,h,) of
(ki, ..., k), the k-collections of I, with occupancy [k, ..., k,] are by definition
equal in number to the permutations of (ky, ..., k). O

Be careful not to confuse C(n, k; [k, ..., k,]) with S(n, k; (ki,...,k,)): the

first is the number P(ky, ..., k,) of permutations of (ki, ..., k,) while the second
equals the number P(ay, ..., a;) of permutations of any k-sequence (ay, ..., ai)
with occupancy (ky, ..., k,).

Example 3.32 With reference to Example 3.30, the number of possible shopping
lists among which Albert must choose is

C(3,10;[2,3,5])) = P(2,3,5) = 83,3, (1,1,1)) = 3.
Therefore, there is a probability of 1 — 1/3! & 0.83 = 83 % that Paula will get
angry. O

The following example summarizes what we have seen regarding sequences and
collections with occupancy constraints.

Example 3.33 We distribute 5 red balls amongst 8 different boxes. Determine:

The total number of possible distributions;

The number of distributions such that no box contains more than one ball;
The probability that no box contains more than one ball;

The probability that no box contains more than 2 balls.

Ll

Solution. We label the set of boxes with Ig.
1. Every distribution of the balls is specified by an 8-composition (ki, ..., kg) of 5,
where k; is the number of balls in box i: in all there are

C(8,5)=C(T+57=C12,7) =792

such distributions.
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2. The distributions that place at most one red ball into each box correspond to the
8-compositions of 5 with occupancy [1, 1, 1, 1, 1, 0, 0, 0]. There are

C(8,5;[1,1,1,1,1,0,0,0]) = P(1,1,1,1,1,0,0,0) = S(2, 8 (5,3)) = 56

such 8-compositions. Alternatively, each such distribution corresponds to a choice
of the boxes into which a red ball is to be placed, and so such distributions can be

made in C(8,5) = 2) = 56 ways.
3. The 8-compositions of 5 are not equiprobable: for instance, to realize the
8-composition (5, 0,0, ..., 0) we are forced to choose box 1 for five times among

the eight available boxes; on the other hand, if one has to realize the 8-composition
(1,1,1,1,1,0,0, 0), he can place the first ball in one of the first five boxes (5 choices)
then the second ball in one of the four remaining boxes (4 choices), and so on!

In order to have equi-probable distributions it is necessary to distinguish between
the 5 balls. Let us label the balls with /5. Then each distribution becomes equivalent
to an 8-sharing of /s, and these are equal in number to the 5-sequences of Ig, namely
83. The distributions with at most one ball per box correspond to the 8-sharings of
Is with occupancy [1, 1,1, 1, 1, 0, 0, 0], and in all they number

$(8,5[1,1,1,1,1,0,0,0D) = §8,5; (1,1,1,1,1,0,0,0)) x P(1,1,1,1,1,0,0,0) =

8!
=S5@,5(1,1,1,1,1,0,0,0)) x S(2,8;(3,5)) =5!x 330 = 8!/3\

8!
Therefore, the probability sought is 18 ~ 0.205 = 20.5 %.

4. The admissible distributions in this case are the 8-sharings of /5 with occupancy
[1,1,1,1,1,0,0,01,[2,1,1,1,0,0,0,0]or [2, 2, 1,0, 0, 0, 0, O]. The total number
of such 8-sharings is

§8,5;(1,1,1,1,1,0,0,0)) x P(1,1,1,1,1,0,0,0)+
+58,5:(2,1,1,1,0,0,0,0)) x P(2,1,1,1,0,0,0,0)+
+5@8,5;(2,2,1,0,0,0,0,0)) x P(2,2,1,0,0,0,0,0) =

| 8! 5! 8! 5! 8!
S0 23 T 2mi s

and so the desired probability is therefore

Ml Lo 1 Voosnos724
&5 \5m1 Tz Ty ) TUSEE S .
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3.3 Catalan Numbers and Dyck Sequences s

In this section we discuss the sequence of Catalan' numbers. There are many counting
problems in combinatorics in which the solution is given by the Catalan numbers: in
[36] there are descriptions of 66 different interpretations for them.

Definition 3.34 The Catalan numbers are defined by

1 2n
n+1(n),neN. O

The first 10 Catalan numbers from Cat, to Catg are

Cat, =

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862.

The 25-th Catalan number is Catyy = 1289904 147 324. Using Stirling’s formula
(see Remark 2.2) one finds that

2n

Cat, ~ forn — oo.

ny/nmw

Here we relate the Catalan numbers to Dyck sequences; we shall see other their
interpretations in Chap. 11.

Definition 3.35 We say that a binary 2n-sequence with occupancy (1, n) is a Dyck?
2n-sequence if, for each i, 1 < i < 2n, within the first i components of the 2n-
sequence, the number of 1’s is less or equal than the number of 0’s. O

Example 3.36 The following are Dyck 8-sequences:
0,1,0,1,0,1,0,1), (0,1,0,0,0,1,1,1), (0,0,1,0,1,1,0,1).

The sequences (0, 0, 1, 1), (0, 1, 0, 1) are both Dyck 4-sequences, and there are no
others. |

Proposition 3.37 The number of Dyck 2n-sequences coincides with the n-th Cata-
lan number Cat,,.

1Eugéne Charles Catalan (1814—1884)
2Walther Franz Anton von Dyck (1856-1934).
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Proof. Given any binary 2n-sequence a := (ay, ..., d,), we define i (a) to be either
the minimal index j for which (ay, ..., a;) contains more 1’s than 0’s, if such index
exists, or 2n if a is a Dyck sequence. We use (ay, . . . , az,)* to denote the 2n-sequence
(ai, ..., aiw), 1 = ai@+1, ..., 1 —ay,). Clearly one has

(ar,...,a0)" = (ai, ..., an);

and therefore * is a one to one correspondence of the set of binary 2n-sequences
with itself. In this bijection the binary 2n-sequences with occupancy (n, n) which
are not Dyck correspond to the binary 2n-sequences with occupancy (n — 1, n + 1).
Indeed, if (ay, ..., az,) is a non Dyck 2n-sequence of {0, 1} with occupancy (n, n),
then (ay, . .., aiq)) contains more 1’s than 0’s, and, more precisely, exactly one more.
The sequence (aj(q)+1, - - -, d2,) Will then contain more 0’s than 1’s (indeed precisely
one more); therefore, (ay, . .., az,)* is abinary 2n-sequence with occupancy (n — 1,
n + 1). If instead b := (by, ..., by,) is a 2n-sequence of {0, 1} with occupancy
(n — 1,n 4+ 1), then certainly i (b) is strictly less than 2n. Since there are two more
I’sin (by, ..., by,), the sequence (b;p)+1, - . - , b2,) Will again contain another 1, and
so (by, ..., by,)* is a binary 2n-sequence with occupancy (n, n) and is not a Dyck
sequence since (by, .. ., bjp)) contains more 1’s than 0’s. Therefore, the number of
Dyck 2n-sequences is obtained by subtracting the number of binary 2n-sequences
with occupancy (n — 1, n + 1) from the total number of binary 2n-sequences with
occupancy (n, n):

2n 2n 2n! 2n! 2n! 1 1
(n)_(n—l) Talnl i+ Dn—1)! (- D! (;‘m)
_ 2n!  n+l-—n 1 2n
_(n—l)!n!n(n+1)_n+1(n)‘ o
Example 3.38 A DI has to play 20 songs chosen randomly without repetitions from
a set of 10 House and 10 Electronic. What is the probability that, at every stage

in the evening, the number of soundtracks of House music does not outnumber the
Electronic ones?

Solution. The possible sequences of House and Electronic songs are (?8) Among
these, the wished ones are exactly the number of Dyck 20-sequences. By Proposi-
tion 3.37 the wanted probability is

Catyo 1
A0 L 0.09=9%. .

20 11
(10
Example 3.39 The operation of subtraction in the set of integers Z does not enjoy
the associative property. Indeed, for ¢ # 0

(a—b)—c#a—(b—oc).
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The order in which the two subtractions are performed changes, depending on the
manner in which the difference is written. To distinguish them, one could keep in
mind when the two subtractions begin and when they are completed. For example,
if we enclose the two expressions between parentheses

((@a=b)—c) (a—(b-0),

we can distinguish them by bearing in mind the sequence of “—’s”” and )’s”’: the minus
sign represents the beginning of a subtraction while the right parenthesis represents
the completion of a subtraction. For example, to “((a — b) — ¢)” we can associate
the sequence —)—), while “(a — (b — ¢))” is associated with the sequence ——)).
Representing the “—” with 0’s and the “)”” with 1’s, we obtain the Dyck 4-sequences
(0,1,0,1) and (0, 0, 1, 1). Proceeding in a similar fashion, in the general situation
it is possible to set up a one to one correspondence between the possible orders for
carrying out the subtractions in

ay —day — - —dpy

and the Dyck 2n-sequences. For example, the Dyck 6-sequence (0,0, 1,0, 1, 1)
corresponds to the sequence ——)—)) and thus to the subtraction (a; — ((a; — az) —
as)), while the subtraction ((a; — (@ —a3)) —ay) corresponds to the Dyck 6-sequence
0,0,1, 1,0, 1). O

3.4 Problems

Problem 3.1 A die is tossed six times with the outcome of each toss being recorded.
Determine the probability that the six outcomes consist of one 1, three 5’s and two 6’s.

Problem 3.2 1. How many 6 digit numbers can be formed with the numbers 3, 5,
and 77
2. How many of the numbers considered above contain two 3’s, two 5’s, and two
7°s?

Problem 3.3 Assuming that passwords are generated randomly, what is the proba-
bility that a password of 8 digits from 0 to 9 contains two 5’s and two 8’s, three 2’s
and a 4?7

Problem 3.4 What is the probability that in randomly distributing 6 indistinguish-
able objects amongst 9 distinct boxes one obtains a collection with occupancy
2,2,1,1,0,0,0,0,0]?

Problem 3.5 A waiter has taken orders for four types of drink: Martinis, Manhattans,
White Wines, and Ginger Ales. The waiter remembers only that he must serve 3 drinks
for two of these types, and 2 drinks for the other two types. What is the probability
the he correctly guesses the drinks to be served?



3.4 Problems 81

Problem 3.6 In how many ways can one distribute 20 distinct objects amongst 3
distinct boxes with 6 objects in one box and 7 in the two other boxes? What if the
objects are indistinguishable?

Problem 3.7 A program downloads and randomly distributes 15 different videos in
mp4 format in the folders of 5 different users. What is the probability that one folder
remains empty, 3 folders have 4 videos, and one folder contains 3?

Problem 3.8 The components of a group of 30 people travel in a railway car in such
a way as to have three of them in compartment 1, six travellers in compartments
2, 4, and 6, five travellers in compartment 3, and four in compartment 5. Represent
the outcome of such an arrangement in terms of sequences or collections, and then
determine the number of such possible seating arrangements.

Problem 3.9 How many permutations of the digits in 1224 666 produce numbers
less than 3 000 000?

Problem 3.10 How many 8 digit numbers are there in which all six of the digits
1,2, 3, 4,5, 6 and no others appear? How many 8 digit numbers are there with six
different (unspecified) digits?

Problem 3.11 Show that 2: S(3,10; (ki, ka, k3)) = 3'°.

ki + ks + ks = 10
kiEN

Problem 3.12 How many words can be formed using seven A’s, eight B’s, three
C’s, and six D’s if the pairs CC and CA do not appear in immediate succession.

Problem 3.13 Inabridge hand (a card game with 4 players each receiving 13 cards)
what is the probability that:

1. Player West holds 4 spades, 3 hearts, 3 diamonds and 3 clubs?

2. Players North and South each hold 5 spades, West has 2 spades, and East holds
1 spade?

3. A player holds all the Aces?

4. All the players hold 4 cards of one suit and 3 of all the other suits?

Problem 3.14 If one tosses a coin 20 times, getting 14 Heads and 6 Tails, what is
the probability that two consecutive Tails do not come up?

Problem 3.15 How many anagrams of MATHEMATICIAN are there in which two
A’s do not appear consecutively?

Problem 3.16 How many anagrams are there of ANCESTORS in which each S is
followed by a vowel?

Problem 3.17 How many anagrams of MISSISSIPPI have no two consecutive S’s?
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Problem 3.18 Among all the anagrams of UNABRIDGED how many have:

1. Four consecutive vowels?
2. At least three consecutive vowels?
3. No two consecutive vowels?

Problem 3.19 A bartender must serve drinks to 14 people seated at his bar.

1. The bartender does not remember who ordered a given drink: in how many ways
could he serve the drinks if 3 people ordered a Martini, 2 a Manhattan, 2 a beer,
3 ordered a glass of Chablis, and 4 did not order anything?

2. The bartender is even more forgetful: he remembers only that Martinis, Manhat-
tans, beers and Chablis have been ordered, and that someone made no order, and
also that he must serve 3 drinks of one of these types, 2 of another type, 2 of yet
another type, 3 of another type, and 4 of still another type (and here the “types
of drink ordered” includes the order for no drink at all). In how many ways can
these orders be served?

Problem 3.20 Nine people arrive at a restaurant with three empty dining rooms,
and each person randomly chooses a dining room. Find the probability that:

1. There are exactly three people in the first dining room;

2. There are three people in each dining room;

3. There is a dining room with 2 people, one with 3 people, and 4 people in the
remaining room.

Problem 3.21 Determine the probability that in a binary 10-sequence with four 1’s
and six 0’s there are 2 adjacent 1’s and the other 1’s are not adjacent (for example,
(1,1,0,1,0,1, 0,0, 0, 0) fits our requirement).

Problem 3.22 A teacher has decided to quiz 8 of his 27 students in English, Latin,
and History. In how many ways can he do so if he wishes to quiz 3 students in one
subject, 3 in a second subject, and 2 in yet another subject?

Problem 3.23 A class of 18 students goes on a trip accompanied by two teachers.
The evening accommodation consists of 5 rooms with 4 beds each. The two teachers
do not want to sleep in the same room. In how many ways can room assignments
satisfying this condition be made?



Chapter 4
Inclusion/Exclusion

Abstract The Inclusion/Exclusion Principle is a formula that allows us to
compute the cardinality of a finite union, or intersection, of finite sets. We present
the most popular applications of the Principle, like finding the number of surjective
applications between two finite sets, or the number of derangements, i.e., point free
permutations, of (1, ..., n): this leads us to show that, collecting at random a hat at
the wardrobe, the probability that nobody recovers their own hat tends to 1/e as the
number of people grows. The curious reader will find some more special results, like
the computation of the number of derangements of a sequence with repetitions.

4.1 Inclusion/Exclusion Principle

The material discussed in this section is indispensable in understanding how to count
the number of elements in a union of sets without missing any such element or
counting it several times.

4.1.1 Cardinality of a Union of Sets

We have seen in Proposition 1.14 that in order to calculate the cardinality of the union
of two finite subsets A, B of a subset X, one must subtract the cardinality of A N B
from |A| + | B|, since otherwise the elements of the intersection would be counted
twice. Thus one has the formula

|AUB| = [A| +|B| —|AN B|,

which is the Inclusion/Exclusion Principle for two sets.
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Example 4.1 (Inclusion/Exclusion Principle for three sets) Let A, B, C be finite
subsets of a set X. Let D = B U C, so that one has

JAUBUC| =|AUD|=|A|+|D| - |AN D,
|ID|=|BUC| = |B|+|C|—|BNC| and

IAND|=]AN(BUC)|=|(ANB)U(ANC)|
= |ANB|+|ANC|—[(ANB)N(ANC)|
—|ANB|+|ANC|—|ANBNC].

Thus,

|[AUBUC| = |A|+|B|+|C|—=(BNC|+|ANB|+ |[ANCH+|ANBNC]|. O

Let us now see how to extend the result of Example 4.1 to the general case of n
sets. The main tool is to deal with linear combinations of characteristic functions of
sets.

Lemma 4.2 Let By, ..., B, be subsets of a finite set X and a1, . . . , a, real numbers.
Then
n n
Z( aixBi<x))=Za,-|Bi|.
reX \i=1 i=1

Proof. By changing the order of summation, one has

Z( aiXB;(x)):Zai(ZXB;(x)):Zai|Bi|~ O
1 i=1 i=1

xeX xeX

i=

If Ay, Ay, ..., A, are subsets of a set X, we write G;(Aq, ..., A,) to denote
the sum of the cardinalities of all the possible intersections of k of the subsets
Al,Azp..,AnZ

Si(Ar, ..., Ap) = [A1] + |A2] + - -+ + ]Anl,
Ga(Ar, ..., Ap) = [AI N A + A N Az[ + -+ [Au1 N Ayl
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Gr(Ar,..., A= D Ay N--N A4

1<ij<---<ix<n

C(n,k) summands

Gn(Al,n-aAn):|Alm"'mAn|‘

1 In the sum defining & (A, ..., A,) there are C(n, k) = Z summands: one for

each k-collection without repetitions of the set {A, ..., A,}. When it is clear from
the context that we are dealing with a prescribed family of sets {A, Ay, ..., A,},
we will write &; rather than S, (A4, ..., A,).

Theorem 4.3 (Inclusion/Exclusion Principle for a union of sets) Let Ay, ..., A, be
subsets of X. Then

|[AjU--UA =6 -6+ 4+ (—1)"'6,.

Proof. Foreveryk =1,...,nand x € X let

X = D xaynena, ().

I<ij<--<ip<n

Notice that by Lemma 4.2 we have

G =D xu(x). (4.3.2)
xeX
Letus prove that x4,u..ua, (X) = x1(x) = x2(x)+- - A+ (=1)""x,(x) forany x € X.
e Ifx ¢ AjU-.-UA,, obviously xi(x) = 0 for all k, so that

X1(X) = x2(x) + -+ (=D, (x) = 0 = xa,0-04, (X).

e If x € A U---UA,, one may (after relabelling the A;’s) suppose without loss of
generality thatx € A N---N A, forsomem < nandthatx ¢ A; fori > m+ 1.
The intersection A;, N---NA;, contains x ifand only if iy, ..., ix < m.Thus yx(x)

equals the number of k-collections without repetitions of {Ay, ..., A,}: it

m
k
follows by Corollary 2.21 that
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X1() = xa@) + -+ (=1 (x) = (’711) - (nzl) + o (=D (Z)

=1-(00=D"=1= xau.ua, ).

Then Lemma 4.2 and (4.3.a) yield

AU U A =D g, () = D (1) = x2(x) 4+ (=" g (1))

xeX xeX

=61 =Gyt -+ (=)' 6, D

Problems asking one to count in how many ways at least one of the events
Ay, ..., A, may occur, can be solved by using the Inclusion/Exclusion Principle
4.3 to count the number of elementsin A; U---U A,,.

Example 4.4 Each student in a freshman dormitory must take at least one of the
introductory courses in Biology (B), English (E), History (H), and Mathematics (M).
There are 6 students who take all 4 courses. Moreover each course has 25 students,
and for each pair of courses 15 students take that pair, and for each triple of courses
10 students take that triple. How many students are there in the dormitory?
Solution. Let G; := &;(B, I, S, M),i =1, 2,3, 4. The given data state that

G =25x4=100, G = 15x C(4,2) =90, &3 = 10 x C(4,3) and
Gy =6x C4,4)=6.

Since each student takes at least one course, the number of students in the dormitory
is |[B U I U S U M|. By the Inclusion/Exclusion Principle 4.3, we find

IBUITUSUM| =6 -G, +6G3—G4=100—90+40—6=44. O

Example 4.5 In how many ways can one form a hand of 10 cards from a deck of 52
so that the hand contains all four suits of at least one card (value)?

Solution. Consider the set £2 consisting of the possible hands, that is, of 10 card
subsets of the deck. Let

A; = {10 card hands with 4 cards of face value i};

the problem amounts to counting the cardinality of A; U --- U Aj3 via the Inclu-
sion/Exclusion Principle4.3. If 1 <, j, k < 13 are distinct numbers, then

[A;] =C(48,6),|A;NA;| =C#44,2)and [A; N A; N A = 0.

Indeed, to realise an element in A; one has to add 6 cards to the four i; analogously an
elementin A; N A; is obtained adding two cards to the four i and the four j. Finally,
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there are no 10 card subsets with four i, four j and four k. Hence, 51 (Ay, ..., Aj3) =
13x C(48,6), ©,(A;,...,A;3) =C(13,2) xC(44,2) and S3(A;, ..., A;3) =0.
Therefore one can form a hand of the type described in

13 x C(48, 6) — C(13,2) x C(44,2) = 159455 868 ways. o

Using the same method involved in the proof of the Inclusion/Exclusion Principle
4.3, one gets the following generalisation.

Proposition 4.6 (Inclusion/Exclusion Principle for the number of elements in at
least m among n sets) Let Ay, ..., A, be subsets of X. For 1 < m < n, let
(Al ..., Ay) be the subset of X of the elements belonging to at least m among
the sets Ay, ..., A,. Then

i k=1
86 (A, .., A)| = ;(—D" (m _ 1) St

Remark 4.7 For m = 1, Proposition 4.6 gives Theorem 4.3: indeed
WA, ..., Ap) =A1U---UA,.

Proof (of Proposition 4.6). Forevery k = 1, ..., n and x € X let, as in the proof of
Theorem 4.3,
@)= D Xa,nena, ().

1<ij<--<ixy<n

o Ifx ¢ 4,(Ay,..., A,), then x does not belong to any intersection of k > m sets
among Ay, ..., A,; therefore x;(x) = O for all k > m, and hence

n

1
Z(—l)k_’" (’]; _ 1) Xk () = 0= Xu,(4,,....4,) (X).

k=m

e If, instead, x € (A, ..., A,), one may (after relabelling the A;’s) suppose
without loss of generality that x € A; N --- N A for some m < s < n and, if
s < n,that x ¢ A; fori > s + 1. The intersection A; N --- N A; contains x
if and only if each of A;, ..., A; contains x, and this is the case if and only if

s) of k-collections

i1y...,0g <s.Thus, for k > m, xx(x) equals the number (k

without repetitions of {Ay, ..., A}: it follows that
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Zn‘,m(—n""'( B )ka Z( D - m( ‘11) (;)

Now, if we set

then

()=(2) =67 (o) =(ma) = ()

and hence by (2.62.a)

;(—1)""’( i )mx) Z( 1)”(“”’) (“*g—l)

= 1 = Xthy(Apen A ().

Then by Lemma 4.2 and (4.3.a) we get

[ (A1, - A= D Xty (At () = Z(Z( D ( _ﬂ)ka)

xeX xeX
= Z((_W (,’,f,__ll) Zxk(x)) - kZ(—l)’“*'" (,’;__ 11) . o

k=m xeX

4.1.2 Cardinality of Intersections

Suppose now that we wish to count in how many ways several events By, ..., B,
can take place simultaneously, that is, the number of elements in By N --- N B,.
The general method to use here is illustrated by the following example, and then
formalized in the subsequent theorem.

Example 4.8 There are 15 students taking Mathematical Analysis, 12 taking Discrete
Mathematics, and 9 taking both courses. If there are a total of 30 students, how many
of them are not taking either of these courses? The number in question is |A¢ N D€|
where A is the set of students taking Analysis and D the set of those taking Discrete
Mathematics. Now, if X is the set of the 30 students, one has

AN D =(AUD) =X\ (AUD)
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and so )
|A°N D°| = [X| - [AUD| = |X| = (|A] +|D| = |AN DJ)

=30—-(15+12-9) =12. O
In the general case one has the following result:

Corollary 4.9 (Inclusion/Exclusion Principle for an intersection of sets) Let
A1, ..., A, be subsets of a finite set X. Then

JASNASN - NAS =X =61+ 6o 4+ (=1)" &,.

Proof. Since A{NASN---NA;, =(A1UAU---UA,), one has
[A]N---NAT|=|X|—]A;U---UA,|

The result now follows by the Inclusion/Exclusion Principle 4.3. O

As a first application of the Inclusion/Exclusion Principle 4.9 for an intersection
of sets we are now going to calculate the number of sequences in which certain
elements appear at least once.

Proposition 4.10 (Number of k-sequences of I, containing 1,...,n (g > n)) Let
k,n,qg € Nwithq > n > 1. The number of k-sequences of 1, in which all the
elements 1, ..., n appear at least once, or, equivalently, the number of q-sharings
(C1, ..., Cy) of Iy with the first n subsets Cy, ..., C, non-empty, is given by

n
i[(n g
> (=1 (,) (q—F.
i=0
In particular, forq > n > 1, and 0 < k < n one gets

Sy (’l’) (g — ik =o0. (4.10.2)
i=0

Proof. If k = 0 there are no such 0-sequences, and in fact one has

- i[(n . - i[(n n
;‘,(—1) (l.)(q—z)°=§,(—1> (l) =(1-1"=0.
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Suppose that k > 1. The correspondence between sharings and sequences described
in Theorem 1.28 induces a bijection between the ¢-sharings of I; whose firstn subsets
are non-empty and the k-sequences of I, in which 1, ..., n appear at least once. We
calculate the number of the latter. Let Ay, £ = 1, ..., n be the set of k-sequences of
I, which do not contain £. We wish to determine the cardinality of AfNASN---NAS.
By Corollary 4.9 one has

JASNASN - NAG = S(g. k) — S 1(AL, ... Ap) 4+ + (=) Gu(Al, ..., Ap)
=4¢"=> (=D tcm g - =D 1) (’f) (q—F.
i=1 i=0

Indeed, for each i with 1 <i < n, and for any choice of | < j; < --- < j; < n, the
cardinality of A; N---N A}, is equal to (g — i)*.

If k < n itis evident that there are no k-sequences of I, in which 1, ..., n appear
at least once, from which (4.10.a) follows. |

There are several consequences of Proposition 4.10.

Corollary 4.11 Let m > 1 and Q(X) be a polynomial of degree deg Q(X) < m.
Then

Z_():(—l)f (’?) 0(i) = 0. (4.11.2)

Proof. Since Q(X) is a sum of monomials of degree less than deg Q (X), itis enough
to prove the claim for Q(X) = X*, with k < m. Now

m

< if(MmY\ .k _ i m .k
> ()= e ()
i=0 i=0
=> (=" ( ) (m— =" (=1 ( ) (m — ).
- J - J
j=0 j=0
The conclusion follows directly from (4.10.a), since k < m. O

Corollary 4.12 (Number of surjective functions) Let k,n € N . The number of
surjective functions I, — I, equals
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Z( 1)’() (n— i) = Z( " ( )

Proof. As we noticed in Example 1.24, the surjective functions /; — I, are in one to
one correspondence with the k-sequences of I, for which each element of /,, appears
at least once. The conclusion follows from Proposition 4.10 with ¢ = n. O

We now give some other examples showing how to apply the Inclusion/Exclusion
Principles 4.3 and 4.9.

Example 4.13 Each of the 32 offices in the Mathematics Department is equipped
with a personal computer. Of these, 15 are laptops, 10 have a scanner, and 8 have a
wireless mouse. Moreover, 2 offices have a laptop computer with printer and wireless
mouse. Are there any offices in which the computer does not have any of these
properties? If so, give an estimate for the number of such offices.
Solution. Let us denote the set of offices having laptops, scanner and wireless mouse
by L, S and M. If r is the number of offices in which the computer does not have
any of the three properties, then one has
r=|L°NS°NM|=
=32—(LI+ S|+ M| —-(LNS|+MNOS|+|LONM)+ILONSNM]).
Since |[M N S|, |[L N S|, |P N M| > 2, one has
r=32-—-[154+104+8]+(LNS|+MNS|+|LNM|)—2>3. O
Example 4.14 Find the number of natural number solutions to
a+b+c+d=19 2<a<4,3<b=<6,4<c=<6,d=>2.
Solution. Put x = a — 2,y = b -3,z = ¢c—4,and w = d — 2. Then the

desired number of solutions coincides with the number of natural number solutions
of x + y 4+ z +w = 8, where x can be at most 2, y at most 3 and z at most 2. Let:

={(x,y.z,w)eN 1 x+y+z+w=8},
XZZ{(X,)’,Z,W)GN:X23}, Y::{(x’y,z,w)eN:yZL'_}, and

Z :={(x,y,z,w) e N:z7>3}.
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We must calculate the cardinality of X¢ N Y N Z¢. We have

IN| = C(11,3), |X|=C@8,3), [Y|=C(T7.3), |Z] = C(8,3),
IXNY|=C@,3), | XNZ|=C5,3), [YNZ=C#,3)and [ XNYNZ| =0.
By the Inclusion/Exclusion Principle 4.9 the number of solutions to our problem is:
C(11,3) = (C8,3)+C(7,3) +C(8,3)) +(C4,3) +C(5,3)+C(4,3)) -0 =

=165 —(56+35+56) 4+ (4+10+4) — 0 = 36. O

Example 4.15 In how many ways can a president! choose 12 jelly beans from 4
different types if he does not take exactly 2 jelly beans of the same type?

Solution. If one uses 14 to label the different types of jelly beans, the problem amounts
to determining the cardinality of B; N B, N B3 N B4 where:

B; = {12-collections of I; not containing exactly 2 copies of i }.
Let A; be the complement of B;; by the Inclusion/Exclusion Principle 4.9, one has
|By N B, N B3N By| = |AS N A5 N AN AG| =
=X =6i(A1, ..., As) + -+ G4(Ay, ..., Ay).

Now |X| is equal to the number of natural number solutions to the equation
X1 +x2+x34+x4 = 12, and by Proposition 2.35 this number is C (15, 3). Clearly |A;]|
is equal to the number of natural number solutions of 2 + x, + x3 + x4 = 12, that is,
of x, + x3 + x4 = 10; therefore, one has |A;| = C(12, 2). Analogously one proves
|Az| = |A3] = |A4] = C(12,2) and hence S| = 4 x C(12, 2). Similarly one finds
that S, = C(4,2) x C(9, 1), 63 = C(4,3) and G4 = 0. Hence | B; N By N B3N By|
is equal to

C(15,3) —4xC(12,2)+C4,2) x C(9,1) — C(4,3) + 0 = 241. O

Example 4.16 Count the number of anagrams of TAMTAM in which no two con-
secutive letters are equal.
Solution. Let §2 be the set of anagrams of TAMTAM. Put

Ay = {Anagrams of TAMTAM with two consecutive M’s},

1Jelly Belly beans were a favorite of U.S. President Ronald Reagan, who kept a jar of them on his
desk in the White House, at Blair House and on Air Force One. Reagan also made them the first
jelly beans in outer space, sending them on the Shuttle Orbiter Challenger during the STS-7 mission
in 1983, as a surprise for the astronauts.
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and define A7 and A 4 analogously. The question amounts to calculating | A%, N A% N
A¢|. For example, to calculate |A /| one must count the anagrams of (M M)T AT A
considering (M M) as a unique letter: thus |A,| = 5!/(2!2!)). To calculate |Ay N
A7r| one must count the anagrams of (M M)(TT)AA: in all there are 4!/2!. Finally
|[Ay NAr N Ayl = 3!, and so by the Inclusion/Exclusion Principle 4.9 the specified
type of anagrams of TAMTAM number

5! C(3,2)4!

m T
Example 4.17 Find the number of integers x, 1 < x < 600, which are not divisible
either by 3, by 5, or by 7.
Solution. If 1 < x < n, the number of multiples of x that do not exceed n is the
integer part [n/x] of n/x. If we let A, B, C respectively be the sets of integers x
with 1 < x < 600 which are divisible by 3, 5, and 7, we must then calculate
|A¢ N B¢ N C°|. The cardinality of A coincides with [600/3] = 200, that of B with
[600/5] = 120 and that of C with [600/7] = 85. The set A N B then contains the
integers 1 < x < 600 which are divisible by 15, and so |A N B| = [600/15] = 40.
Similarly one calculates that |ANC| = [600/21] = 28 and | BNC| = [600/35] = 17.
Finally, |[AN BN C| = [600/105] = 5. By the Inclusion/Exclusion Principle 4.9 we
find that

2] -6, +6,-63=15@3,6;2,2,2) -3 x —-3!'=30. o

[A°NB°NCl=600— 6+ 6, — 63 =600 — 405+ 85 -5 =275.
There are 275 numbers between 1 and 600 which are not divisible by 3, 5or 7. O

Example 4.18 Two natural numbers m and n are said to be relatively prime (or
prime to one another) if the only positive divisor which they have in common is
1. The cardinality of the set formed by the strictly positive integers less than n and
relatively prime to n is the Euler function evaluated at n, denoted by ¢ (n). For
example, ¢ (8) is the cardinality of the set {1, 3,5, 7}, and so ¢(8) = 4. Use the
Inclusion/Exclusion Principle 4.9 to calculate ¢ (60).

Solution. The distinct primes dividing 60 are 2, 3, and 5. Let A, B, and C be respec-
tively the sets of integers between 1 and 60 that are divisible by 2, 3 and 5. Then,
|A| =60/2, |B] = 60/3,|C| = 60/5. Moreover, |[A N B| =60/(2x3),|ANC| =
69/(2 x5),|BNC|=60/(3 x5) and finally [ANBNC|=60/(2 x 3 x5).

By the Inclusion/Exclusion Principle 4.9 one has

$(60) = |A°N BN C°| =

0 60+60+60 N 60 N 60 N 60 60
- 2 3 5 2x3 2x5 3x5 2x3x%x35

S [CI) S
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Remark 4.19 The preceding example may be generalized to an arbitrary positive

integer. Let n > 1 be a positive integer, and let p; fori =1, 2, ..., k be the distinct
prime factors of n. Then

on=a(i- - 2)(-2)

4.2 Derangements (Fixed Point Free Permutations)

The permutations of a sequence which “move” all of its terms are of considerable
interest.

Definition 4.20 Let n, k € N> ;. A derangement of an n-sequence (b, ..., b,) of

I is a permutation (ay, . .., a,) of (by, ..., b,) suchthata; # b; foralli = 1,...,n.

If ny, ..., ny are non-zero natural numbers such that n; + --- 4+ ny = n, we use

D, (ny, ..., ng) to denote the number of derangements of an n-sequence of [; with

occupancy (ny,...,ng). If n = kandn; = --- = n, = 1 then for simplicity we

write D,, to denote the number D, (1, ..., 1). m|
——

n

Example 4.21 e The sequence (1, 2, 4, 3) is not a derangement of (1, 2, 3, 4), since
1 and 2 are in their original positions. In contrast, the sequence (2, 1,4, 3) is a
derangement of (1, 2, 3, 4).

e The sequences (2, 3, 1, 1) and (3, 2, 1, 1) are the only derangements of (1, 1, 2, 3).

O

Remark 4.22 Tt is easy to verify that two n-sequences of I; both with occupancy
(ny,...,n;) have the same number of derangements, and so D,(ny, ..., n;) is
well defined. In particular, D, counts the number of derangements of the sequence
(1,2, ..., n). Note further that the number D, (n, ..., ny) is invariant under permu-
tations of the occupancy (ny, ..., ng).

Example 4.23 A new deck has 52 cards of which the first 13 are hearts, the next
13 are diamonds, the next 13 clubs, and, finally, the last 13 are spades. To deal the
cards in such a way that person 1 receives no hearts, person 2 receives no diamonds,
person 3 receives no clubs, and person 4 receives no spades corresponds to carrying
out a derangement of the 52-sequence of Iy = {H, D, C, S} composed of 13 hearts,
followed successively by 13 diamonds, 13 clubs, and 13 spades. 0O

4.2.1 Calculation of D,

Calculating the number D,, of derangements of the n-sequence (1, 2, ..., n) is an
easy application of the Inclusion/Exclusion Principle 4.9.
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Theorem 4.24 Letn > 1. Then

oL L 1 (—1)"
B U TR Tt TR |

Proof. Let A;, fori = 1, ..., n, be the set of permutations of (1, 2, ..., n) under
which the number i remains in the i-th position. The derangements of (1,2, ..., n)
are the elements of A{ N --- N Ay ; the total number of permutations of (1,2, ..., n)

is n!. By the Inclusion/Exclusion Principle 4.9 one therefore has
Dn =n!— GI(Als "'aAn) +62(A19 s An) -t (_l)n Gn(Als '-~aAn)'

Forany 1 <ij <--- <ij <mand1 < j < n, the intersection A;; N--- N A,-j
contains the permutations of (1, 2, .. ., n) under which the numbers iy, .. ., i; remain
in their positions; therefore [A; N--- N A;j;| = (n — j)!. Then one has

S1(Ar, ..., A) =Co, DHn— 1! =nl,
Ga(Ar, ..., A) =Cn,2)(n —2)! =
Gi(Ar, ..., A) =Cn, k)(n — k) =

Gu(AL, ..., A) =Cm)n—n)! = = = 1.
n

Summing the various terms one obtains the desired result. O

Example 4.25 (The hats problem) Each of the n diners entering a restaurant leaves
his hat at the check-room. In how many ways can the n hats be redistributed in such
a way that no one receives his own hat? If the tipsy hat-checker randomly distributes
the hats to the exiting diners, what is the probability that no one receives his own
hat?

Solution. We label the clients and hats with 7,,, assuming that hat i belongs to person i.
We denote the outcome of a distribution of hats by an n-sequence of I,,, where the
term in the i-th place is the hat received by the i-th person. The event that no one
receives his own hat consists of the set of all derangements of (1, ..., n), and there
are D, such derangements. If the distribution of hats takes place in random fashion,
then every n-sequence of I, is equally probable: thus the probability of our event is
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One notes that since

- 1
-1 _ 1: Z 1Nk
e _Vlllg;lo ( 1) k"
k=0

for large values of n the probability of this event approaches 1/e.

The problem can become more complex if one introduces the brands of the dif-
ferent hats. If we assume that, among the n hats, there are n| hats of brand 1, . . ., ny
hats of brand £, it turns out easily that the probability that no one receives a hat whose
brand is the same as the original one is

D,(ny,...,ng) n!
- = D,(ny,...,ng).
St ns (1, o)) gl
Next section is devoted to the computation of D, (n, ..., ni). O

4.2.2 Calculation of D,,(ny, ..., n;) s

The calculation of the number D, (ni, ..., n;) of derangements of an n-sequence
of Iy with occupancy (ny, ..., ng) is a bit more complicated. The general case is
obtained in an analogous fashion to that used above for D, via an application of
the Inclusion/Exclusion Principle 4.9. Problem 4.26 suggests an ad hoc method for
treating the case k = 3.

Theorem 4.26 Letk,ny,...,ny € Ns;, n =n; +--- 4+ ng. Then

). (% (n —m)!
2, (jl) (jk) (n1 — jO! - (g — jo)!

0<ji=m

Dy(ny,....m) = D (="
m=0

0<jk<ni
Jite et jk=m
(4.26.2)

Proof. We count the derangements of the following n-sequence of j:

a:=(,...,1,2,...,2, ...k, ..., k).
——— —— ——

np np Ny
Denote by §2 the set of all permutations of a and by A; the subset of §2 consisting of

the permutations of a in which the j-th element equal to i in the sequence a remains
in the same position:

AL ={(b,....by by, by b, by ) € 2 b =)

np > ny?
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The set of derangements of a is the intersection of the complements in £2 of the n
sets A’j, 1 <i <k,1 < j < n;. Thus, by the Inclusion/Exclusion Principle 4.9 one
has i
D,(ny,...,ng) = 12| — 6, ({A; riel,1<j gn,-})—}—
+& (A el 1<) <m})—- -+

+(=1)"6,({A} i e, 1 <j <n})).

Of course |£2] = E For a given m with 1 < m < n, we have that the term

I’l]! RN (7
G ({Ai. riel,1<j< ni}) is equal to the sum of the cardinalities of the sets

jEZ] jEEk
as X, ..., Xy vary respectively over the subsetsof {1, ..., ni}, ..., {1, ..., n;} with
[ X1] + -+ + | Zk| = m. Now, if
[ =Jise- s [ 2%l = Jk, 1+ F Je=m,
one has
‘A |_ (n —m)!

0| = : -

B T S TR T A
Indeed, one must count the permutations (b{, ..., b, ,bi,... by ... b}, ... b))

of a with bé = 1foreach? € X, ..., b’g = k for each £ € X}, or equivalently,
considering only the terms that one may permute, the permutations of the (n — m)-
sequence

a,...,1,2,...,2,...,k,.... k).
—_——— —— —_——
ni—ji na=j nk—Ji
For given ji, ..., ji there are (’;1) ways to choose X C {1, ...,n;} with | X]| =
1
Jlseuns (’;k) ways to choose X C {1, ..., n;} with | 2| = ji. Therefore one has
k

. —_ !
G ({Alj; ie[k’lijfni}>: z (’;11)(’;1]:) (n —m)!

— ) ... — i)
0<ir=m (np —jp!- (g — ji)!

0<jk<ni
Jittje=m

The conclusion now immediately follows. O
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Example 4.27 Itk =nandn; =--- =n, = lonehas D, = D,(1, ..., 1);indeed,

Eq. (4.26.a) becomes

- ", 1 1 (n —m)!
Dully-os D= 20" 2 (h) - (1) (=)t (= j)!

m=0 0<ji <1
0<j,=<l
it fa=m
n
=D =D" D> (m—m).
m=0 O0<ji=l
0<just
Jittja=m
Since there are :1 solutionsof ji+---+j, =mwith0 < j; <1,...,0<j, <1

it follows that

. m n - m n'
D,l(1,...,1)=§(—1) (n—m)!(m)zza(—l) —

which corresponds to the result of Theorem 4.24.

O

Example 4.28 Let us calculate the probability that in dealing 52 cards to 4 people
after having shuffled the deck, each of the four hands dealt lacks a different suit (i.e.,
one hand has no Hearts, a second has no Diamonds, a third has no Clubs, and a fourth
no Spades). Each deal of the cards produces a 52-sequence of I, = {H, D, C, S} with
occupancy (13, 13, 13, 13): these are 52!/(13!)*. The sequences that correspond to
deals of the required type are precisely the derangements of the 4! different 52-
sequences of I, = {H, D, C, S} consisting only of blocks with 13 elements equal to
a H, 13 elements equal to a D, 13 elements equal to a C, and 13 elements equal to

a S. The desired probability is thus equal to

41Ds,(13, 13,13, 13)
521/(131)

By Theorem 4.26 one has

52
Dsy(13,13,13,13) = 2(71)'"
m=0 0<j1<13
0<ja<13
Jiteetja=m
using a CAS one finds

Ds>(13,13,13,13) = 20342533966 643 026 042 641,

3 (13)“.(13) (52 —m)! .
J1 Ja) (13— jpt--- (13— jp!’
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while 51
W = 53644737765 488 792 839 237 440 000.
The desired probability is approximately equal to 0.0009 %. O

Example 4.29 A deck of 52 cards is shuffled, the cards are then dealt face up one-
by-one. One wins if when counting the 52 cards as they are dealt by calling aloud
the consecutive numbers from 1 to 13 for four times, one never encounters a card
whose face value (Jack = 11, Queen = 12, King = 13) coincides with the number

being called out. We can describe the possible outcomes of the experiment via 52-
!

13

One wins the game if after the shuffling of the deck one obtains a derangement of

the 52-sequence consisting of four repeated blocks of the form 1, 2, 3, ..., 13:inall

these are Ds;(4, 4, ..., 4). Hence the probability of winning this game is
—

sequences of /3 with occupancy (4, 4, ..., 4):in all there are such sequences.
————

13

Ds;(4,4,....4)
521/(41)13

As usual, with the assistance of a CAS we find

Ds> (4,4, ..., 4) = 1493804 444499093354 916284 290 188 948 031 229 880 469 556

while
52!
e = 92024242230271 040357 108 320 801 872 044 844 750 000 000 000.
Thus the desired probability is approximately 1.62 %. O

In Example 4.29 the CAS we used did not succeed, on the authors computer,
in calculating the sum present in the formula (4.26.a) within a reasonable period
of time. The explicit calculation of Ds;(4, 4, ..., 4) was actually done by using an

——

13
alternative formula involving the so-called Laguerre? polynomials.

Definition 4.30 Let n € N ;. The n-th Laguerre polynomial is

2Edmond Nicolas Laguerre (1834—1886).
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XZ
L(X)—Z( 1)‘1()€, o

Corollary 4.31 [14] Letk,n;,...,ny € Ns;,n =n; + -+ ny. Then
+o00 k
D,(ny,...,n) = (—1)"/ e [ ] Ln ) dx. (4.31.a)
0 i=1
Proof. We calculate the product of the polynomial functions L,, (x), ..., Ly, (x).

Using the well-known formulas for the product of polynomials, one has

k k n;
e =TT X0 (7) &
i=1 i=1
n xP
2 (Dp(a)"'(ﬂf)zn---zu’

p=0 0<¢{,<m

0=<b<ny
Li+-+l=p

n

+00
from which, bearing in mind? that / xPe™ dx = p!forall p € N, one has
0

+00 k |
—x n ng p:
/o e EL,,,(x)dx = Z Z (— 1)P( 1).. (ek) _61!'”6]{!_

0<¢1<n

0<(;<ny
Gt l=p

(4.31.b)

On replacing each index ¢; in the sum with n; — j; one obtains

+o00 k
(—1)"/ e‘xHLni(x)dx =
0 il
_ N 10)4 nk) P! .
= >Z DI )(11) (Jk (1 = jD! - (g — i)

0<j1=m

0< ji <nk
Jit+jk=n—p

3This may be seen immediately with a repeated integrating by parts or by using the basic properties
of Euler I" function [33,Theorem 8.18].
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The change of variable m = n — p yields
+00 k
(—1)”/ e []Ln ) dx =
0 i=1
—eryY Y e (”‘) (”") o= m)!
Ji Jk) (np = )l (g — i)l

m=0 0<j<m

0<ji <ny
Jitet je=m

Since (—1)"(—=D)"™ = (—=1)™ = (—1)™, by Theorem 4.26 the latter coincides
with D, (ny, ..., ng). O

Remark 4.32 Formula (4.31.a) applied to the calculation of the number
Dsy(4,4, ...,4) in Example 4.29 yields
———

13

400 23\
—Xx 2
D52(4,4,...,4)=/ e 1 —4x +3x"— —+ — dx.
S———— 0 3 24
13

Using a CAS one obtains the result in the blink of an eye.

4.3 Problems

Problem 4.1 A pastry chef prepares baskets with 6 chocolate eggs; the eggs can be
wrapped in tin-foil of any one of 5 different colors: Blue, Green, Red, White, and
Yellow. The order in which the eggs are placed in the basket does not matter.

1. What is the maximum number of distinct baskets that can be prepared under these
assumptions?

2. The chef has prepared one basket for each of the possible types. A client buys all
the baskets in which there is at least one Blue egg or exactly 2 Yellow eggs. How
many baskets does the client buy?

Problem 4.2 In how many ways is it possible to give a child 16 jelly beans when
choosing from a large bin containing (at least 13 of each type) lemon, mint, and
raspberry jelly beans if the child is to receive exactly 3 of at least one of the flavors?

Problem 4.3 Determine the number of 13 card hands that one can get from a deck
of 52 cards, if the hand has 4 Kings, or 4 Aces, or exactly four spades.

Problem 4.4 How many 5 letter words can be formed using an alphabet of 26 letters
(with repetitions allowed) if every word must begin or end with a vowel?
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Problem 4.5 In how many ways can one form a sequence of length 5 using an
alphabet of 3 letters if the sequence is to have at least two consecutive equal letters?

Problem 4.6 Suppose that in a bookstore there are 200 books, 70 in French and
100 dealing with a mathematical topic. How many books are there not written in
French and not dealing with mathematics if there are 30 books in French dealing
with mathematics?

Problem 4.7 A group of 200 students are eligible to take three Mathematics courses:
Discrete Mathematics, Analysis, and Geometry. Each course has 80 students. Each
pair of courses has 30 students in common, and 15 students are taking all three
courses.

1. How many students are not taking any of the three mathematics courses?
2. How many students are taking only Discrete Mathematics?

Problem 4.8 How many numbers between 1 and 30 are relatively prime to 30?

Problem 4.9 How many 10-sequences of Iy are there in which the digits 1, 2, and
3 all appear?

Problem 4.10 In how many ways can 20 different people be assigned to 3 rooms if
each room must receive at least one person?

Problem 4.11 How many anagrams of SINGER are there in which at least one of the
following three conditions holds: (i) S precedes I, (ii) I precedes N, (iii) N precedes
G? Here “precedes” means “occurs earlier than”, but not necessarily “immediately
before”.

Problem 4.12 The Bakers, the Vinsons and the Caseys each have 5 children. If the
15 youngsters camp out in 5 different tents, with three in each tent, and are assigned
randomly to the 5 tents, what is the probability that each family has at least two of
its children in the same tent?

Problem 4.13 What is the probability that a hand of 13 cards taken from a deck of
52 has:

1. At least one missing suit?

2. Atleast one card of each suit?

3. At least one of each type of face card and at least one Ace (that is, at least one
Ace, at least one Jack, at least one Queen, and at least one King)?

Problem 4.14 How many 9-sequences of /3 are there in which there appear three
1’s, three 2’s, and three 3’s, but without three consecutive equal numbers?

Problem 4.15 How many permutations of the 26 letters of the English alphabet are
there which do not contain any of the words SOAP, FLY, LENS, GIN?

Problem 4.16 In how many ways can one distribute 25 identical balls in 6 distinct
containers so as to have a maximum of 6 balls in any one of the first 3 containers?
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Problem 4.17 A witch doctor has 5 friends. During a long convention on black
magic he went to lunch with each friend 10 times, with every pair of friends 5 times,
with every triple of friends 3 times, with every quadruple of friends twice, and only
once with all 5 friends. If, moreover, the witch doctor lunched alone 6 times, how
many days did the convention last?

Problem 4.18 Suppose that in a mathematics department there are 10 courses to be
assigned to 5 different professors. In how many ways can one assign the 5 professors
two courses per year in two successive academic years in such a way that no professor
teaches the same 2 courses both years?

Problem 4.19 How many permutations of (1,2, ..., n) are there in which 1 is not
immediately followed by 2, 2 is not immediately followed by 3, ..., n is not imme-
diately followed by 1?

Problem 4.20 In how many ways can one distribute 10 books to 10 boys (one book
to each boy), and then collect the books and redistribute them in such a way that
every boy gets a new book?

Problem 4.21 In a city 3 newspapers (A, B, and C) are sold. A survey reveals
that 47 % of the inhabitants read newspaper A, 34 % read newspaper B, 12 % read
newspaper C. Moreover, 8 % read both A and B, 5% both A and C, and 4 % both
B and C. Finally, 4 % read all three papers. If one picks an inhabitant of the city at
random, find the probability that:

1. She/he does not read any paper;
2. She/he reads only one paper.

Problem 4.22 We must insert 9 distinct numbers between 1 and 90 (including the
extreme values) into a table of 4 rows and 6 columns.

1. How many different tables can be created?
2. How many tables have an empty row or 90 in the first row?

Problem 4.23 Consider an alphabet composed of 13 symbols.

1. How many 8 letter words containing at least one symbol repeated three times is
it possible to write?

2. How many 8 letter words containing at least two distinct symbols repeated exactly
3 times is it possible to write?

Problem 4.24 Consider the red cards (13 hearts and 13 diamonds) from a poker deck
of 52 cards. The 13 heart cards are distributed to 13 people, and then the diamonds,
with one card of each type to each person.

1. How many possible outcomes are there for such a distribution?
2. What is the probability that at least one person receives a pair (two cards with the
same face value)?
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Problem 4.25 Prove that the factorial n! and the number of derangements D,, satisfy
for n > 3 the following recurrence formulas:

1. n'=(m— 1)((n D!+ (- 2)!);
2. D, = (n— l)(anl + Dn72)-

[Hint for Part 2: Carry out every permutation of (1, ..., n) in two steps. The first step
consists of choosing the position i to which 1 is moved; the second step is to carry
out the repositioning of the other digits, distinguishing between the case where i is
moved to position 1, and when it is not ...]

Problem 4.26 Letn;, ny, n3 € N> and let n = n; + ny + n3. Show, without using
Theorem 4.26, that

nj
. ny ns n
Dy (ny, na, n3) = ; (k) (m —k) (n3 —n +k) :

[Hint: perform a derangement of the n-sequence

(,...,1,2,...,2,3,....3).
———— —— — —

n ny n3
To obtain a derangement, k elements equal to 1 are placed where the 2’s were, the

other n| — k elements equal to 1 are placed where the 3’s were. Finally, the remaining
free positions where there were 2’s are filled by n3 — (n; — k) elements equal to 3.]



Chapter 5
Stirling Numbers and Eulerian Numbers

Abstract This chapteris dedicated to counting partitions of sets and partitions of sets
into cycles, and also introduces Stirling numbers and Bell numbers. As an application
of the concepts discussed here we state Faa di Bruno chain rule for the n-th derivative
of a composite of n-times differentiable functions on R. In the last section we discuss
Eulerian numbers and as an application we solve the famous problem of the Smith
College diplomas, and we establish some notable identities like Worpitzky’s formula.

5.1 Partitions of Sets

In this section we deal with partitions of sets, that is, with dividing a set into non-
empty disjoint subsets whose union is the whole set.

5.1.1 Stirling Numbers of the Second Kind

We now introduce Stirling numbers of the second kind; just as in Stirling’s original
work [37] we find it convenient to present the Stirling numbers of the second kind
before those of the first kind, strangely enough.

Definition 5.1 (Stirling Numbers of the second kind) Let n, k € N. The Stirling
n

k 9
of I,. O

number of the second kind » over &, denoted by [ is the number of k-partitions

Remark 5.2 There is still no standard notation for the Stirling numbers. Here we
follow the most frequent one in use at the present time,! and which is due to
Karamata.2

«par cette notation les formules deviennent plus symétriques”: with this notation the formulas

become more symmetric [23].
2Jovan Karamata (1902-1967).
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Example 5.3 Bearing in mind that the elements of a partition of a set must be non-
empty disjoint subsets with union equal to the whole set, one has:

° Z =1 for all n > 0: if n = 0 the empty collection is the unique O-partition of Iy,
while if n > 0 the unique n-partition of 7, is [{1}, ..., {i}, ..., {n}];

° 8 =0 for all n > 0: there is no O-partition of I,;

° 2 =0 for all n > 0: there is no n-partition of Iy = {;

° Z =0 for all n < k: there is no k-partition of I,;

° ’11 =1 for all » > 0: the unique 1-partition of I, is [1,]. O

Example 5.4 Letn > 2. Then

=)

Indeed, an (n — 1)-partition of I, is necessarily made up of n — 2 subsets with 1
element and a single subset with 2 elements; it is, therefore, determined by the
choice of the two elements for the subset of cardinality 2: this choice can be made

inn ays |
5 ) ways.

Proposition 5.5 Let k, n € N. The number of k-sharings of I,, into non-empty sub-
n

il In particular

sets equals k! {

n n!
k!H: > — (5.5.2)

(1) EWN=
M1 t--ng=n

Proof. Every k-sharing of I, into non-empty subsets is obtained by ordering in the
k! possible ways the elements of a k-partition of 7,. By the Division Principle 1.47,
the number of k-sharings of I, into non-empty subsets is k! times the number of
k-partitions of I,.

Now, each k-sharing of 7, into non-empty subsets has an occupancy sequence of the
form (ny, ..., ng) forsome ny, ..., ny € N>y andny + - - - + nx = n. Thus

ksm = > Sk, n; (ny, ..., np).
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The Identity (5.5.a) follows then directly from Theorem 3.7. O

We now provide an explicit general formula for [n

X }; an alternative version is

given in Theorem 5.12.

Theorem 5.6 (Formula for the Stirling numbers of the second kind) Let k,n € N.
Then

1 ifk =0=n,
[ n] _ 0 ifk > n,
=1 & (K , ,
o Z(—l) (i (k—1i)" otherwise.
i=0
Proof. By Proposition 5.5 the number [Z counts the k-sharings of I, into non-
empty subsets divided by k!. The result follows from Proposition 4.10 with g = n.
O

Example 5.7 In how many ways can 14 students be divided into at most 3 groups?
Solution. The students can all be inserted into a single group, or divided into two
groups, or divided into three groups, and so there are

SHNEREENERD

ways to divide them into groups. Moreover, one has

=5 (0)2- () e+ () o) =20
=2 (G) - ()2 + Q) - (3) o) = e -2+

andso N = (33 +1)/2. o

As a consequence of Corollary 4.12 we get the number of surjective functions
between two finite sets.

Corollary 5.8 (Number of surjective functions) Let m < £ € Ns,. The number of
L-sequences of I, in which each element of I,, appears at least once, or equivalently,
the number of surjective functions I, — I, equals


http://dx.doi.org/10.1007/978-3-319-03038-8_3
http://dx.doi.org/10.1007/978-3-319-03038-8_4
http://dx.doi.org/10.1007/978-3-319-03038-8_4
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E m
i fm
| — 1\ _ e
m[m] EO( 1) (l.)(m i)°. (5.8.a)
i=

More generally, one has the following result:

Proposition 5.9 (Number of sharings with a prescribed number of non empty sets)
Given £, m € N> and an integer 1 <i < m, the

e m-sharings of I, with exactly i non empty sets,
e (-sequences of I, in which there appear exactly i elements of I,
e functions f : I, — I,, whose image has cardinality i,

have all the same cardinality given by
£ m!
i| m—i)!

Proof. We can construct an m-sharing (Cy, ..., Cy,) of I, with exactly i non empty
sets using the following two step procedure:

(1) We choose the i positions j; < --- < j; in I, corresponding to a non empty set
of the m-sharing: this can be done in (’:1) ways;
(2) We choose the i-sharing (C;,, ..., C},) of I, into non empty sets: by Proposi-

. . T B
tion 5.5, this can be done in 7! ; ways.

T o m\ ., |¢€ m! L
By the Multiplication Principle 1.34 there are L ! = ﬁ ; such m-
m—1i)!

sharings.

The Stirling numbers of the second kind may be calculated via a recursive proce-
dure.

Proposition 5.10 (Recursive formula for the Stirling numbers of the second kind)
Letk,n € N>j. Then
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Proof. We treatthe casesn — 1 <k—1,n—1=k—1andn — 1 > k — 1 in dif-
ferent ways. If n — 1 <k —1orn— 1=k — 1, by what we have seen in Exam-
ple 5.3 the equalities to be proved become respectively the identities 0 + k x 0 = 0
and 1 + k x 0 = 1. Suppose now that n — 1 > k — 1, that is, n > k. Among the k-
partitions of [, there are those that contain the singleton subset {n} consisting of n
alone, and those in which n belongs to a subset with at least two elements. The par-
titions of the first class are equal in number to the (k — 1)-partitions of 1,1, that is,

n
to k—1
of I, to obtain such a partition of I,. The partitions of the second class may be
obtained by first considering a k-partition of /,_;, and then adding the element n to

one of the k subsets of that partition. By the Multiplication Principle 1.34 there are

N 1]: indeed, it suffices to add the subset {n} to an arbitrary (k — 1)-partition

k In ; 1] such partitions. O

Example 5.11 (The triangle of the Stirling numbers of the second kind) The preced-
ing proposition shows that in order to calculate the Stirling numbers of the second
kind with first argument equal to n, it suffices to know those with first argument
equal to n — 1. This fact constitutes the basis for the construction of the triangle of

the Stirling numbers of the second kind, an analogue of the Tartaglia—Pascal triangle.
k=1

In view of Example 5.3 the values H] and [ZI along the edges are all equal

n| |n-—1 Tk n—1

K[ 7 k-1 k
proved in Proposition 5.10, we can easily obtain the internal values along a row
if we know the values of the preceding row:

to 1. Using the formula
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n—1 a b
n a+kb
Thus, one obtains the triangle
k=1
n=1 1 k=2
n=>2 1 1 k=3
n=3 1 3 1 k=4
n=4 1 7 6 1

As an application of the recursive formula found in Proposition 5.10, we propose
an explicit formula for the Stirling numbers of the second kind less known than the
one shown in Proposition 5.9 but useful in applications to the generating formal
series.

Theorem 5.12 (Formula for the Stirling numbers of the second kind) Let k, n in N.
Then

[Z] = D> 1mamepm (5.12.2)

Proof. The formula is valid for k > n or k = 0: in such cases both the members of
the equality vanish. Next, the formula is true for

e k = n: the only n-composition of n — k = 0 is the n-tuple (0,0, ..., 0)
anditis 19---n0 = 1;

e k =1 < n: indeed, [’ll

1-tuple (n — 1) and itis 1"~! = 1.

] =1, the only l-composition of n — 1 is the
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Let us prove now (5.12.a) by induction on n > 1. The case n = 1 has already
been considered. Suppose n > 2 and that the assertion holds for n — 1. We show that
it then holds for n as well. The cases k = 1 and k = n have been proved; assume
2 <k < n — 1. By Proposition 5.10 one has

=i e] S

The inductive hypothesis gives

n—1 niyny 1)1
[k_l}z z 12k — 1)

Ny, Vlkfl)ENkil
niet e =(n— )~ (k1)

= D> M2 (k= )R,

and

n—1 _ myAm mi+1
k[ f ]_ > KD L

(my,....mp)eNF
my+-+mp=(n—1)—k

= > Rk (=),

We conclude by (5.12.b). |

Remark 5.13 The formula shown in Theorem 5.6 is often more convenient of the
formula (5.12.a) for the explicit computation of the Stirling numbers of the second
kind, since the first generally involves a significantly lower number of summands.

Example 5.14 Letus compute again the numbers 124 and 134 considered in the

previous Example 5.7 by means of Theorem 5.12. We use the well-known fact that
m+1 -1

Za —— forany a # 1.

14 2
[2}: Z 1n12n2222m:213_1
m=0

(n1,n2)eN?
ny+ny,=12
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{134} — Z 1Monagns Z Dmigma

(n1,n2,n3)eN3 (my,my)eN?
ni+ny+n3=11 mi+m,p <11
11 11 m 11 m o) k
— E § omigmy E 2 2k3m—k — § 3m 2 (_)
m=0 (m;,m,)eN? m=0 k=0 m=0 k=0 3
mi+mo=m

11 11

1 — (2/3)m+l
— 237’" — Z3m+1 (l _ (2/3)m+1)
m=0 1-2/3 m=0
z 3m+1 2m+1 3312 -1 2212 -1
e 3-1 2-1

313 3 1
:7—5—213+2:§(3H—2]4+1) O

5.1.2 Bell Numbers

In this section we count the total number of partitions of a set with n elements. In
Fig.5.1 the partitions of a set with 5 elements are described.

Definition 5.15 The number of all possible partitions of 7, n € N, is said to be the
n-th Bell’ number, and is denoted by the symbol 5,,. O

The first eleven Bell numbers are

Bo=1, B, =1, By=2, B3=5, B, =15, Bs =52, B = 203,

B7 = 877, By = 4140, By = 21147, Bp = 115975.

Clearly the n-th Bell number may be expressed as a function of the Stirling
numbers of the second kind:

Proposition 5.16 (Recursive formula for the Bell numbers) Let n € N. Then

3Eric Temple Bell (1883-1960).
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» - .\ - . - 9 - 4 . f . % . & L - % -
L . L] . - LE L3 . - . ‘
. - . - . - . - & - . - . - . - 6 - . -
- Y - * . * . * . i * . * e "o
. . . . . . . . . -
- " | .« " b ¢ " - . - -
® » *a B . h— 8 . - L V) g a Sine, 8 a [
- . - - - - - - . - .l
. . L I -y . " . " . . " - y . "
., ., L. ., . | L. o [ -
. - . . - . . - . -.‘
- - od - » - » - g - d - - - - » - »
y ) * . & . el b . F e Y Yy .
. L 4 . . . o . . . .
& - ‘/ - . - . - . . -] . . - 4 - . - & -

Fig.5.1 The 52 partitions of a set with 5 elements. (Source commons wikimedia, https://commons.
wikimedia.org/wiki/File:Set_partitions_5;_circles.svg. Author Watchduck (a.k.a. Tilman Piesk)
(Own work), Creative Commons Attribution CC BY 3.0 Unported license)

Proof. Let j be a natural number with 1 < j < n + 1. A partition of 7, in which
n + 1 is contained in a subset of cardinality j may be constructed in two steps: first
one chooses j — 1 elements of /, to which n 4 1 is then adjoined; in the second step
one chooses a partition of the remaining n 4+ 1 — j elements. There are, therefore,

in all a total of (j ﬁ 1) x B, 11— such partitions. Then, by summing on the index

J one has
n+1 n n+1 n n n
%n+1=z 1 ><%n+1—j=z (i1 X%n+1—j=z ;) %i- 0O
j=l1 / j=l1 V=D i=0

It is possible to explicitly calculate the Bell numbers 8B,,. We warn the reader that
the result is expressed in terms of the sum of a series.

Theorem 5.17 Let n € N. The n-th Bell number is given by the sum of the series

Proof. By Theorem 5.6 one has


https://commons.wikimedia.org/wiki/File:Set_partitions_5;_circles.svg
https://commons.wikimedia.org/wiki/File:Set_partitions_5;_circles.svg
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B, = {Z] =Z%Z(—1>' ( )(k—z)"
k=0 Ti=0

Now, by (4.10.a), for each m < k one has

Z( 1)’()(/«—:)'"—

from which it follows that

o0 k
%FZ[ ] Zk,Z( b (’j)(k—i)"zkz(;%z(;(—l)f (’j)(k—i)”

k=0
ii( (k= i)
i kT
1 (k—=10)"
Let ay; = (—1)'- '((k l)) Then one has
ook
By = D D aw = () + (@0 +an) + (a0 + ax +an) + ...
k=0 i=0

= (app +ao+ax +---)+ (a1 +ay +ay+---)+---
o0 o0
1 (k—i)
=2 D = ZZ(— )5
i—0 k=i i—0 k=i it (k —i)!

> ; (k —i)"
=§— e Z(k_,)v

The interchange of the order of summation is justified since the series

converges.* Indeed, by [33, Theorem 3.55], on rearranging the order in which one
sums the terms of an absolutely convergent series, one again obtains an absolutely
convergent series which converges to the same value as the original series. On putting
Jj =k — i we obtain

—7 n o
4For all i the series Z ((k — ll))' ; converges. Let 7 be its sum. One then has ZO Te.


http://dx.doi.org/10.1007/978-3-319-03038-8_4
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!
i=0 k=i i=0 j=0 J j=0 J
[}
(=1) 1
sice Z = 1 = —. O
i! e
i=0

5.1.3 Partitions of Sets with Occupancy Constraints

We now consider partitions of sets formed by subsets of assigned cardinality, which
obviously must be strictly positive.

Definition 5.18 Letn, k, ny, ..., ny €Ny satisfyn; + - - - + np = n. A k-partition
of I, with occupancy collection [n, ..., ni] is a k-partition of I/, consisting of
subsets, one of which has cardinality n;, a second of cardinality n,, ..., and one

of cardinality n;. We use the symbol [Z [nyg,..., nk]] to denote the number of
k-partitions of 7, with occupancy [n, ..., n;]. m]

Example 5.19 The 2-partitions of I3 with occupancy collection [1, 2] are

H13 (2,33, [{2), {1,331, [{3} {1, 2}]. o

Example 5.20 The division of a group of 20 people into 3 groups consisting of 7, 5,
and 8 people may be represented by a 3-partition of the set of people with occupancy
collection [5, 7, 8]. 0O

Theorem 5.21 Letn,k,ny,...,n; € N5y satisfyn; + - -- 4+ ny = n. Then

1
[Z; [nl,...,nk]] = ES(k,n; [n1,...,n])

1 n! P )
= — X — X ny,...,Ng).
k! I’l]!l’lz!-'-nk! ’

Proof. To each k-sharing (Cy, ..., C) of I,, with occupancy collection [ny, ..., ni]
we associate the k-partition [Cy, ..., C¢]. Obviously [Cy, ..., Ci] also has occu-
pancy [ny, ..., ng]. Starting from the k!-sharings that one obtains by permuting the
sequence (Cy, ..., Cy) all the associated partitions are the same. By the Division

1
Principle 1.47, therefore the number of partitions with occupancy [ny, ..., ni] is o
times the number of sharings with the same occupancy. In view of Theorem 3.23 this

concludes the proof. O


http://dx.doi.org/10.1007/978-3-319-03038-8_3
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Example 5.22 In how many ways is it possible to divide 5 youngsters into three
groups, one group consisting of only one person, and the two other groups each
having two people?
Solution. We need to count the number of 3-partitions of the set /s with occupancy
collection [2, 2, 1]:

1 1

(L

5.1.4 Faa di Bruno Formula s

We conclude this section with an application of the concepts concerning partitions
to the chain-rule formula for the n-th derivative of the composition of two functions,
known also as Fad di Bruno® formula.

Theorem 5.23 (Faa di Bruno chain rule) Let n € Nxy, I and J be open intervals in
R, f:J — Randg:I1— J be n-times differentiable functions. For each x € I
one has

(fe)@= D [ [T ¢ (5.23.2)
PP partition BeZ
of I

Example 5.24 1In the 4-partition of I,
P = [{1},{2,3,4},{5,6,7}, {8,9, 10, 11}]

there are one set of cardinality 1, two sets of cardinality 3, and one set of cardinality
4: thus, one has

F170@0) I ¢/ ) = f9eE@ )@@’ @@ x). o
Be %,
Proof (of Theorem 5.23). For each partition & of I,,, n € N5, we set

9o ()= 170 ] " ).

BeZ?

We proceed by induction on n. For n = 1 one has

(8o f)(x) =g (fNf'(x).

SFrancesco Faa di Bruno (1825-1888).
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The unique partition of /; consists of the 1-partition &7, = [{1}] and

vz, = f(g(x))g'(x).

Thus in the case n = 1 the formula holds. Suppose now that the assertion holds for
a given natural number n > 1. We show that it then holds for n + 1 as well.

Note first that from every partition of I,,| one obtains a partition of I, by elim-
inating the element n + 1 (if the set containing n + 1 is the singleton {n + 1}, we
eliminate the whole set), and conversely, every partition % of {1, ..., n + 1} arises
from a k-partition & = [By, ..., B;] of {1, ..., n} by adding n + 1 according to
one of the following methods (we will suppose that in & there are b; sets with i
elements, fori =1, ...,n):

e Method 1: One adds the singleton set {n + 1} to the sets of the k-partition &7
obtaining the (k + 1)-partition #Z = [By, ..., By, {n + 1}]: in this case

0z (x) = fEV () (g )P H - (g ()

this may be done in only one way.

e Method 2: One adds the element n 4 1 to one of the sets of the partition &
consisting of i elements, 1 <i <n — 1: in this case & is a k-partition and, with
respect to &2, in Z there is one less set with i elements and one more set with
i + 1 elements. Therefore,

pa(x) = fPgeNE ) -+ gV ) (g ()t (g™ ()

this may be done in b; ways (as many ways as there are subsets with i elements).
e Method 3: In the case & = [I,], one adds the element n + 1 to the unique subset
of the 1-partition & thus obtaining the 1-partition % = [I,,4]: in this case

pz(x) = f'(g(x)g" ™ (x);

and this may be done in only one way.

Now we take the derivative of (f o g)®, and invoke the induction hypothesis:

(fo"™Mm =(fo™) M= D ¢y
& partition
of I,

Fix a k-partition & of I,, and suppose, as usual, that in it there are b; subsets
consisting of i elements, fori = 1, ..., n, so that

() = fOg) (g ) - (g™ ().

The derivative of ¢ 4 consists of the following summands:
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1. f&D(g(x))(g'(x) ... (g™ (x))b»: this is just the derivative of f® (g(x))
multiplied by (g’(x))”" --- (g™ (x))’". We recognize the function ¢z with Z
obtained from & according to Method 1.

2. bi fP (g (g @) - (P )PV o))t (@M )P =1,
n — 1: this is just the derivative of (g (x))” multiplied by

FO @ NP (gD ) (g (et - (g ()P

Here we recognize the function b; ¢4 with % obtained from & via Method 2;
there were b; possibilities for obtaining such a % using Method 2.

3. f'(g(x))g" Y (x): this is the derivative of g (x) multiplied by f’(g(x)). Here
we recognize the function ¢z with # obtained from & via Method 3.

Therefore,
1
(Fo" M= D eh@= D ez O
& partition Z partition
of I, of Iy

In practical applications it can be more convenient to use the following reformu-
lations of Faa di Bruno Theorem 5.23.

Corollary 5.25 (Faa di Bruno chain rule, explicit version) Let n € N>y, I and J be
open intervals in R, f : J — Rand g : I — J be n-times differentiable functions.
For each x € I one has

! / by (n) bn
(fo g)(n) (x) = Z .rf—'.b‘f(b1+~~.+bn)(g(x)) (#) . .(g (-x))

by, bn) e N* n!
(5.25.2)
S S LI B NCE SRS
k=1

k! ny! ng!

(1. ....ng) € (N> K
ny+---+ng=n

Remark 5.26 The reader should bear in mind that while the indices by, ..., b,
appearing in (5.25.a) vary over sets of natural numbers, the indices n; appearing in
(5.25.b) are required to satisfy n; > 1 fori =1, ..., k.
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Proof (of Corollary 5.25). Fix an occupancy [1, ..., 1,...,n, ..., n] with a certain
N—— — N— —’
hl!

b
number b; > 0 of 1’s, ..., acertain number b, > 0 of n’s. A partition with occupancy
[1,...,1,...,
——

by
.,nlis a (b; + -+ by)-partition of I, containing b; subsets of cardinality

bn
1, ..., b, subsets of cardinality n. Since the union of the sets making up a parti-

tion is equal to I,,, one must have b; + 2b; + - - - + nb,, = n. By Theorem 5.21 the
(by + - - - + by)-partitions of I, with occupancy [1,...,1,...,n,...,n]are
—— ——

by b,

1 n! b+ +b)! ol 1
(b + -+ b)) (ADP - ()b byl--byl bylee-byl (1D (nl)be

Thus, by grouping the partitions of I, according to the number of times 1, ..., n are
present in their occupancy, by formula (5.23.a) one finds that (f o g)? (x) coincides
with

> > FOE) (g () (g ()P -+ (8 ()P =
by, -, bp) € N partitions of I,, with
by +2by +---+nby, =n occupancy [1, ..., 1,..., n,..., n]
—— ———
by bn
n! 1
= > FOE () (8 )P (g ()"

byl byl (IDP1 - (nlybn
Gy e 1 ! (1) (n)
by +2by+---+nbp=n

In order to prove (5.25.b), we have (f o g)™(x) =

= 2. i 1 (1)b ...(nv)bnf(hl+ N ) - (6 )™
by, by e L neAT )
by +2by+---+nbp=n

'Z f(k)(g(x)) z - k! - (gfl(f))bl '..(g(m‘(x))bn
11 by! ! n!

Let (by,...,b,) € N" be such that by + ---+ b, =k and by +2b, + --- + nb,, =
!
n; taking by copies of 1’s, ..., b, copies of n’s we can form W different
by
k-sequences (ni,...,n;) of N>y withny +---+ny =by +2by 4+ --- + nb, = n.
Therefore
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k! g/(x) by g(n)(_x) by
2 bl!--~bn!( 1!) ( n! ) N

by +2by+---+nby, =n

_ 0y (g<m><x>),..(_g(”“<x>)
a " l’ll! }’lk! ’

and hence

(k) (n1) (i)
k
>1

I’l1! I”lk!

We now give an application of Corollary 5.25.

Example 5.27 For n = 3 the formula (5.25.a) yields

1 by (3) b3
(o090 =3 e g (47 )) (5 (552

(b1, b2, b3)
by +2by +3b3 =3

Now, the triples (by, by, b3) of natural numbers such that b; + 2b, 4+ 3b3 = 3 are
precisely
0,0, 1, (1,1,0), (3,0,0);

to these triples there correspond the summands

W( )
= f'(g(x)g® (),

g (X) g"(x)
2!

(3.0,0): —f(”( (x)) (g( )) = [P (g@)) (g'@))"

0,0, 1) : f(())

(1,1,0) f”( (x))

=3f"(x)g'(x)g"(x),

Thus one has

(f o)D) = f(g))gP () +3f"(g(x)g' (g" @) + FP(g(0) (g'0) .

Applying the formula (5.25.b) one gets
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(k) (n1) ()
(fog)®Px) = 3;2 f (g(x)) z (g nlfx)),_,(g nkfx)).

For k = 1 one has

3 g )Y gV).
( n! )_ 3

(n1) € N>y
np =3

for k = 2 one has

3 g(’“)(x)) (g("”(x)) _ g g N g (x) g'(x)

ny! ny! 2! 2! 1!

(ny,np) ENzl
ny+ny=3

for k = 3 one has

g@ N[O \[e" WY _ g 3
> , , =)= = (g'(x))°.
n! ny! n3! 1! 1! 1!
(n1,n2,n3) € N>

ny+ny+n3=3

Therefore
3) 7 3)
(Fop®x) = (f R (;’,("”g/(x)g//(wa( (x ))3)
= f (g @) + 3" (2 Mg @) + D) (€ w)’. O

Let us use now (5.25.b) to obtain the formula for the n-th derivative of 1/g.

Proposition 5.28 (Derivatives of 1/g) Let n € N>, J be an open interval in R,
g . J — Rbe an n-times differentiable functions such that g(x) # 0 foreachx € J.
Then for all x € J one has

1 (n) ,
(—) (x) = Z( ¥ (’,:i})g—k—l(x)(gk)”(x). (5.28.2)

Proof. Since g is continuous and 0 ¢ g(J), we have that either g(J) is contained

in R, or in R_g; let us assume that g(J) € R.y. The function — : J — R is
8

1
obtained by composing the function f : R.o — R, f(x) = —, with the function
X

g J — R.y. Itis easy to see that the successive derivatives of f(x) are given by
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/ 1 1" 2 3! k!
fO=—5 == fP0=—7 .. fO0=D 7.

Then (5.25.b) yields
" n j g—J—1 1 (n1) ()
— =n! —1)/ e i™ —— oMm e oD ().
(g) () =n D (=g 3 emern LA R
j=1 (ny,..., nj) e (N>p)/

(5.28.b)

We wish to prove that the right hand members of (5.28.a) and (5.28.b) coincide. By
Theorem 3.26 for x € J one has

|
O = > g g™ (). (5.28.0)

ml'mk'

The reader should beware the fact that in the last formula the indices m; can assume
the value 0, whereas the indices n; in (5.28.b) vary in N ;.

Now, after removing possible zero terms from a k-sequence (my, ..., my) € N#
withmy + - - - + my = n one obtains, for some 1 < j < ka j-sequence (ny,...,n;)
in N> with

[n1,...,n;,0,...,0] =[my,...,m], ni+---+n; =nand (5.28.d)
——
k—j

Vi<i<j—1 3<p<qg=<k:n=mynyy=my,m=0ifp <l <gq.

(5.28.e)
Note, moreover, that conversely a j-sequence (ny,...,n;) in N5y with j <k,
arises from exactly (I;) different k-sequences (m, ..., m;) that satisfy (5.28.d)
and (5.28.e): there are in fact precisely this number of ways to choose the k — j
terms to be set equal to zero out of the values m, ..., my; of the k-sequence. Since
in (5.28.c), in correspondence with each such index m; = 0, one has g(”’") =gand
m;! = 0! = 1, one finds that foreachk =1, ...,n

‘ J
j=1 (ny..... nj) € (Nxp)¥

k
" k ! A _
()" 0 =2 () > o e @ g,

Therefore, changing the order of summation one gets

S0t (1) et e () o=

k=1
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n k
1 ; !
S )z T e
k=1 k :

nj!

!
(..., nj) e Nxp)
ny+--+nj=n

n n ) |
EE ) 2 et
=J

|
onyl-ong!
(ny,..., nj)E(N>1)/‘

ny+---tnj=n

B2 ()
Thus one has

c kfn+ 1Y 1 IO
2D (k N 1) g @ ()" @) =
k=1
= i(—l)/’gﬂ”(x) > g
= Leeeng!
The conclusion then follows from (5.28.b).

5.2 Cycles and Partitions into Cycles

123

.. .g(nf)(x)

K\ _i_ n! o n
(j)g ) > AR

n n ) !
= (Z(—l)k(’;i;)(?))g“(” 2 ﬁg(”‘)(x)mg(””(x)

g™ ().

)(x).

Rather than partitioning a set into subsets, one is sometimes interested in dividing it

into cyclical sequences.

5.2.1 Cycles

How can one formalize the placement of a certain number of people around a circular

table, or the bus stops along a circular route (see Fig.5.2)?

Definition 5.29 Given two natural numbers k < n € N>, and k distinct elements

ai, ...,ai of I,, we use (aj, as, ..., ai) to denote the bijective function
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Fig. 5.2 A cycle of water-bus stops: line 5.2 makes a clockwise cyclical run starting from the
Lido, and with stops at S. Elena, Giardini, San Zaccaria, Spirito Santo, Zattere, San Basilio, Santa
Marta, Piazzale Roma, Ferrovia, Riva de Biasio, and then (passing along the Cannaregio canal) with
further stops at Guglie, Tre Archi, Sant’ Alvise, Madonna dell’Orto, Fondamente Nuove, Ospedale,
Celestia, Bacini and San Pietro di Castello, and finally returning to the Lido. (©OpenStreetMap
contributors, the data is available under the Open Database License)

(a1, a2, ...,ax) : I, => I
defined by setting a; — az, ax — as, ..., dp—| > ax, a; — a; and
i+>i foralli € I,\{a,ay,...,a}.
The bijective function {a, as, . . ., ai) is called a k-cycle of I,, and the set {ay, . . ., a;}
is called the support of the cycle. O

Remark 5.30 For each j € I, the 1-cycle (j) is the identity function I,, — I,. The
3-cycles (1,3,2), (3,2, 1) and (2, 1, 3) of I4 coincide: indeed, in each of the three
cases 1 — 3,2 — 1,3 — 2and 4 — 4. By contrast, (1, 3, 2) # (1, 2, 3):in fact, in
the first case 1 +— 3, whilstin the second 1 — 2. In general, given k distinct elements
ai, ..., a; of I, one has

(al’a2a~~'7ak) = <a2sa3s --~aakaa1) == (aksa11a27'~'aak—1>‘
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Every k-cycle may thus be written in exactly k different ways, as many as the cyclic
permutations

(ar,az,...,ar), (a2, a3, ..., a, 1), ..., (ak, ar, az, ..., Gg—1)
of(al, ...,ak).

Among the k possible representations of a k-cycle, we call canonical the one
beginning with the minimal element of its support.

Definition 5.31 Let o be a cycle. We say that (aj, as, ..., a;) is the canonical
representation of o if 0 = (a1, as, ..., a;) and a; = min{a, ..., a;}. O

If we fix an element of the support, for example a;, then every k-cycle admits
a unique representation starting from ay; in particular, every cycle has a unique
canonical representation.

Example 5.32 The number of ways in which k people out of n may be placed around
a circular table with k places corresponds to the number of k-cycles of I,. Indeed, if
we label the n people with I, we can associate to each placement around the table
the function f that associates person i to the person on his right if i is among those
seated, and otherwise associates i to himself:
£0) j if j is seated next toi on the right,
1) =
i if i is not among those seated at the table.

This describes a one-to-one correspondence between the set of possible placements
of k people (out of n) around the table and the set of k-cycles of I,,. The cycle (3, 5, 2)
of I5 describes the situation in which 1 and 4 remain standing, while 2, 3 and 5 are

seated at the table with 5 placed to the right of 3, 2 to the right of 5 and 3 to the right
of 2. O

We now give an explicit calculation for the number of k-cycles of I,.

Theorem 5.33 Let k < n € Nx . The number of k-cycles of I, equals

n!

1
3R = o

n!
In particular, the number of n-cycles of I,, is — = (n — 1)\.
n

Proof. In order to determine a k-cycle of I,, we first fix its support {a, as, ..., ar};
this may be done in C(n, k) ways. Without loss of generality, we may suppose that
a; is the minimal element of {a;, ay, ..., a;}. The canonical representations of the
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k-cycles with support {a;, as, ..., a;} are in one-to-one correspondence with the
k-sequences of {ay, ay, ..., a;} that begin with a;. The latter are obviously equal in
number to the permutations of (as, ..., a;), namely, (k — 1)!. Therefore, there are

(”)X(k_l)v_n—!
k "k x (n—k)!

k-cycles of I,. 0O

5.2.2 Stirling Numbers of the First Kind s

In how many ways is it possible to place people at round tables? How many circular
rings of children can be realized in a kindergarten?

Definition 5.34 Let k,n in N. A k-partition into cycles of I, is a collection of
cycles whose supports constitute a k-partition of I,. A partition into cycles is an
arbitrary k-partition into cycles as k varies in N. O

Example 5.35 Tommy, Francie, Jack, Emma and Katy want to play ring around the
rosy. If the boys and girls decide to split up into separate groups, we necessarily
obtain one of the following 2-partitions into cycles of {T', F, J, E, K }:

[(J,T), (EE K)], [{J,T),(EK,E)]. m]
Definition 5.36 We say that the k-sequence ((aj, ..., a, ). ..., (@, ..., ay ) isthe
canonical representation of the k-partition into cycles of I,
[ai.....ap).....(a},.... a4 )],
if the cycles (a’i, el aj,l_), i =1,...,k,are in canonical form (that is, if a‘i is equal
tominfai, ...,a} }) and a{ > af > --- > af. O

Remark 5.37 Obviously every k-partition into cycles of 7, has a unique canonical
representation. Moreover, the last cycle in a canonical representation of a partition
into cycles always begins with 1.

Remark 5.38 Ifoy, ..., o arecycles of I, with disjoint support, thenoj o - - - 0 0 =
0, o - - - o 0y, for every permutation (i1, ..., ix) of (1, ..., k). Indeed foreachi € I,
one has

o;(i) if i belongs to the support ofo;,

i if i does not belong to the support of anyo;.

oi, o~~oaik(i)=[

Definition 5.39 The composition of a k-partition into cycles [0}, ..., o] of I, is
the function f =07 0---00%. O



5.2 Cycles and Partitions into Cycles 127
Example 5.40 Consider the following 3-partition into cycles of I7:
[(6,3,5),(1,2,7), (4)].
Its composition is the bijective function f : I; — I; defined by setting
F) =2, f2)=7 fB) =5 f@A =4 fO) =6, f(6)=3, f(1)=1
Its canonical representation is the 3-sequence
((4), (3,5,6),(1,2,7)). m

Obviously, since cycles are bijective functions, also the composition of a partition
into cycles is bijective. Let us prove that, conversely, any bijective function of a finite
set onto itself is a composition of a partition into cycles.

Theorem 5.41 For n € N, every bijective function f : 1, — I, uniquely deter-
mines a partition into cycles [0y, ..., or] of I, of which it is the composition.

Proof. Put fi = fo fo---o f,and consider the (n + 1)-sequence of I,
~———————

L

(1, £, £2(1), ..., fU(1).

In this sequence, consisting of n + 1 elements, there is certainly at least one repeated
element of I,,. If f¢(1), £ > 1, is the first repetition, then ‘(1) = 1; indeed, if one
had £¢(1) = f7/(1) with 1 < j < ¢, then one would also have

U7 W)y = A = )= F77 Q)

and so, by the injectivity of f, it would follow that f¢~'(1) = f/~!(1), contradict-
ing the choice of f¢(1). Consider then the ¢-cycle oy = (1, f(1),..., f<=1(1)).
If the support of o7 does not coincide with I,, then we take an element x of
L\ {1, f(),..., f&1(1)}, that is from I, without the support of o}, and we repeat
the procedure just carried out: the (n + 1)-sequence (x, f(x), ..., f"(x)) consists of
n + 1 elements of I, and hence there is certainly at least one repeated element of 1,,.
If f™(x),m > 1, is the first repetition, then as above one has f”"(x) = x. In this way
we getacycle o, = (x, ..., f"~!(x)), whose support is disjoint from the support of
o1; indeed, arguing by contradiction, let » > 0 be the smallest natural number such
that f"(x) = f*(1) forasuitable 0 < s < ¢ — 1. By the way in which x was chosen,
one necessarily has r > 1. If s > 1, then one would have FU @) = F(F7HD)
and so, by the injectivity of f, one would have f"~'(x) = f*~'(1) which contra-
dicts the choice of r. Therefore, one must have f"(x) =1 = f(f*'(1)) whence
f~1(x) = £71(1), again contradicting our choice of r. If the union of the supports
of o1 and o, were not all of I,, we could continue with the same procedure and
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construct cycles o, j =3, ..., k, until arriving at cycles o7, ..., ox the union of
whose supports coincides with 7,,. The collection [o7, . . ., 03] is a partition of I, into
cycles whose composition coincides with f. O

Example 5.42 Consider the function f : I; — I7 defined by setting:

J =712 =4 f3) =5 A =2, f(5 =3, 1) =1 f() =6.

To the function f there is associated the partition into cycles [(1, 7, 6), (2, 4), (3, 5)].
Indeed, considering 1, (1), f(f(1)) = fz(l), f3(1), ey fs(l) the first repetition
is 1 = £3(1): thus one has the cycle (1, f(1), F2(1)) = (1,7, 6). The first element
of I7 not belonging to the support of the cycle (1, 7, 6) is 2; considering 2, f(2), ...
the first repetition is 2 = f2(2): thus one has the cycle (2, f(2)) = (2, 4). The first
element of 77 not belonging to the supports of (1,7, 6) and (2, 4) is 3; considering
3, £(3), ... the first repetition is 3 = f2(3): thus one has the cycle (3, f(3)) =
(3, 5). The canonical representation of the partition into cycles associated to f is the
sequence

((3,5),(2,4), (1,7, 6)). O

The time has now come to introduce the Stirling numbers of the first kind.

Definition 5.43 (Stirling numbers of the first kind) Let k, n € N. The Stirling num-
ber of the first kind » over k, denoted by |:Zi|, is the number of k-partitions into

cycles of 7,. O

Example 5.44 Bearing in mind the very definition of partitions into cycles one sees
easily that:

° Z =1 for all n > 0: if n = 0 the empty collection is the unique O-partition
into cycles of Iy, while if n > 0 the unique n-partition into cycles of I, is
(1), i)y ()]s

° g =0 for all n > 0: there is no O-partition into cycles of I,;

° 2 =0 for all k£ > 0: there is no k-partition into cycles of Iy;

° Z =0 for all k > n: there is no k-partition into cycles of I,;

° ’11 = (n — 1)! for all n > 0: indeed, this symbol denotes the number of n-cycles
»f 1, (see Theorem 5.33). m]

Remark 5.45 The map that associates to each k-partition into cycles
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the k-partition
1 1 k k
Hay,....a,} .. Aay, ..o a0l

is a surjective function from the set of k-partitions into cycles of I, to the set of
k-partitions of I,. Therefore, the number of k-partitions into cycles of I, is always
greater than or equal to the number of k-partitions of 7,:

n n
> .
A non-trivial case in which the Stirling numbers of the first and second kinds

coincide is illustrated by the following example.

Example 5.46 Letn > 2. Then

=G =)

Indeed, an (n — 1)-partition into cycles of I, necessarily consists of n — 2 cycles
with 1 element and a single cycle with 2 elements; it is therefore determined by the
choice of the two elements in the cycle with 2 elements, and that choice may be made

in (;) ways. The second equality was verified in Example 5.4. O

The following identities have a nice combinatorial description.

Corollary 5.47 For every n € N and m € N>, one has:

Ly [Z] =nl;

0<k<n

2. > (1 [’Z} —

1<k<m

0
n > 1;by Theorem 5.41 there is a one-to-one correspondence between the n! bijective
functions I,, — I, and the partitions into cycles of I,,. Therefore n! coincides with
the total number of k-partitions into cycles of I, as k varies from O to n.
2. Letus prove that there exists a bijective correspondence between the even partitions
into cycles and the odd partitions into cycles of 1,,; it will follow

m
N HEDAHE
I<k<m 1<k<m
k even k odd

Proof. 1. If n = 0 the statement becomes the identity 1 = [Oi| = 0! = 1. Now let
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and hence the thesis. In the sequel we write the partitions into cycles in their canonical
representation. Let

1 1 k k
(01, ..., 00) = (ay, ..., a,,), ... {aj, ...,a,.)

be the canonical representation of a k-partition into cycles. By Remark 5.37 it is

all‘ = 1. The element 2 either belongs to the support {a’l‘ =1,..., afnk} of the last
cycle, or is the first element of the penultimate cycle (a’l‘_l, ey a,’%;'] ). In the first
case, if

o) = (a]f = l,...,af,aﬂ_l =2,a§+2,...,afnk),

we split o} and set

— (] 1 kK _ o k k k _ k
U(0],...,0) = ((al,...,aml), e, <aj+l _Z,aj+2,...,aml(), (a] = 1,...,aj)).
In the second case itis oy—; = (a{ "' =2,....,af"! Y and oy = (af = 1,...,d5 );
then we join o} with o;_; and set
k=2 — k—1 -
Wor,....o0) = (af,....ap,). ... (ay > a2 tab =1 ak et T =2 e ).

It is easy to see that ¥ coincides with its inverse map and then it is a bijective map of
the set of the k-partition into cycles of I, in itself. Since ¥ changes the parity of the
number of cycles in the partitions, it induces a bijection between the even partitions
into cycles and the odd partitions into cycles of 1,,,. O

It is not difficult to give an explicit formula for the Stirling numbers of the first
kind.

Theorem 5.48 (Formula for the Stirling numbers of the first kind) Ifk <n € N5,
one has

n
k
k-sequences (o1, . .., or) of cycles whose supports constitute a k-partition of 7,,. Let

By the Multiplication Principle 1.34, the number k! |: is equal to the number of
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ny, ..., ng € Ny satisfy the equality n; + - - - + n; = n. We can associate with any
permutation (by, ..., b,) of (1, ..., n) the k-sequence of cycles

(<b17 ceey bn1)7 <bn1+la ceey bn1+l‘l2>v ceey (bn1+-~~+nk_1+1» ceey bn))

By Remark 5.30, there are n; - - - n; different permutations of (1, ..., n) with asso-
ciated the same k-sequence of cycles. By the Division Principle 1.47, the sequences
n!
of cycles of length ny, ...,n; are ———. Therefore the total number k! Z
nl ... nk

of k-sequences of cycles whose supports constitute a partition of 7, is equal to

n!
I :
ny---ng
Example 5.49 Forn = 3 and k = 1, 2 the formula found in Theorem 5.48 gives

3 3! 1
HEE PRt

3 3! 1 1 1
|:2:| 2! Z nin (1><2+2><1)
niy,ny GNZ]
ny+n,=3
Just as for Stirling numbers of the second kind, there is a recursive formula for
the Stirling numbers of the first kind.

Proposition 5.50 (Recursive formula for the Stirling numbers of the first kind) Let

k,n € Nxy. Then
n—1 n—1 n
pa X

Proof. We treat the cases n < k,n = k and n > k separately. If n < k orn = k, the
equalities to be proved become respectively the identities 0 + (n — 1) x 0 = 0 and
l+(n—1)x0=1.

Suppose now that n > k. We divide the k-partitions into cycles of I, into two
classes: those that contain the cycle (n) and those that do not. The k-partitions into
cycles of the first type are formed by (n) and by a (k — 1)-partition into cycles of

I,_1, and so they number Z : } . Those of the second type are the k-partitions into
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cycles, whose cycle containing n has support of cardinality greater than or equal to 2.
Such k-partitions into cycles may be obtained from a k-partition into cycles of I,
by inserting n into one of the cycles. The number n may be inserted into an m-cycle
(ai, ..., ay) of I,_; so as to generate distinct (1 + 1)-cycles in m ways:

(n’al""vam)a (alvn""’am)a MR (al""ynvam)’

Thus, starting from a k-partition into cycles of I,,_; formed by cycles of lengths
mi, ..., Mg, oninserting the element n one obtains m; + - - - + my = n — 1 different
n—1
k
of the second type. Summing the number of elements of the two classes one obtains
the desired result. O

k-partitions into cycles of I,,. Thus there are (n — 1) x :| different k-partitions

Example 5.51 (The triangle of the Stirling numbers of the first kind) The proposition
proved above shows that in order to calculate the Stirling numbers of the first kind
whose first argument is equal to n, it suffices to know the Stirling numbers of the first
kind with first argument equal to n — 1. This leads to the construction of the triangle
of the Stirling numbers of the first kind:

In view of Example 5.44 the values [’11] and [Z:| along the edges are respectively

equal to (n — 1)! and to 1; using the formula

R
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established in Proposition 5.50, we can easily find the internal values of a row when
the values of the preceding row are known:

ok
n—1 a b
n a+(n—1)b
Thus one obtains the triangle
k=1
n=1 1 k=2
n=2 1 I k=3
n=3 2 3 1 k=4
n=4 6 11 6 1

By Proposition 5.50 we can also deduce an explicit alternative formula for |:Z .
If I # ¢, we are used to denote the sum and the product of the elements of / by
Zi and H i. Furthermore, let us recall that always

iel iel
Zai =0 and Hai =1.
ief iep

Theorem 5.52 (Formula for the Stirling numbers of the first kind) Ifn > k > 1, one
has

i- z I
J< I, iel
[Jl=n—k

Proof. First note that for each n > 1 one has
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mzlzn,-: S 1
" i€l JC I, i€J
1] =0

We now proceed by induction on n. For n = 1 one has only the case [}] which

has already been discussed. Now letn > 1 and 1 < k < n. Again, the case n = k is
already in hand; suppose, then, that 1 < k < n. By Proposition 5.50 one has

[Z}z(n—1>[”;1+[',z:ﬂ.

The inductive hypothesis gives

—1 .

RN it

J< 1,5 ieJ
[J=n—1—k

and therefore

(n—l)x[nzl]: > w-bDx[]i= > IT:

JC I, iel JCIl_1,n—1¢eJ i
Jl=n—1—k [Jl=n—k

We now deal with the summand [n -1 .If k = 1, since there are no subsets of I,_»

k—1
having n — 1 elements, it follows that

n—1 n—1 .
fl=lot=ee 2 T

J<I,» ieJ

Jl=n—1
If k > 1 the inductive hypothesis now yields

n—1 . .
- X - 2 I

JCI, , ie/ JCI_1,n—1¢Jic/

J|=n—k [Jl=n—k

Hence it follows that
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n n—1 n—1
AR e R
IR U (R DR I €
JCI_,n—1eJicl JCIL_y,n—1¢Jisl
[Jl=n—k [Jl=n—k

2. I+ 0
JC I, ieJ
Jl=n—k

Example 5.53 We compute again, as in Example 5.49, the numbers B] and ﬁ],

following now the formula found in Theorem 5.52. We have

B}: > Jli=1+2=3

J<h ieJ
7] =1

while for k = 1 we obtain

[ﬂ: > []i=1x2=2 o

JcI i€l

J| =2
The formula stated in Theorerln |'5.52 has the disadvantage of being rather tedious
for calculation; it has a more convenient reformulation which allows one to find
the Stirling numbers of the first kind as the coefficients of an easily remembered
polynomial.

Corollary 5.54 Let n € Nxi. The Stirling number of the first kind |:Zi|

cient of the term of degree k in the polynomial X (X + 1)(X +2)--- (X + (n — 1)):

is the coeffi-

Z[Z]X"=X<X+1)(X+2)~-(X+(n—1».

k=1
Proof. Multiplying X, X +1,..., X + (n — 1) one gets:
XX+D---X+m—-1D))=Xa1+@mX+ - +a, X"
where each ai, k = 1, ..., n, is the sum of the products of all possible choices of

(n—1)—(k—1)=n —k terms of I,_; (with the convention that, as above, an
empty product equals 1). By Theorem 5.52, one has
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. n
a= > Ii=|i] ;
ngn—l iel
[J|=n—k

Corollary 5.54 permits one to calculate the Stirling numbers of the first kind by
carrying out a simple product of polynomials.

Example 5.55 In Example 5.53 we used the formula from Theorem 5.52 to calculate

the Stirling numbers k = 1, 2. Alternatively, one can obtain the same result more

k b
easily in the light of Corollary 5.54, since these numbers are the coefficients of the
terms of degree k = 1, 2 in the polynomial

XX+ DX +2) = X>+3X>+2X.

. . - L 5
We can appreciate better the new formulation determining the Stirling numbers |: k}’

fork =0, ...,5. By Corollary 5.54, the Stirling number [ﬂ is the coefficient of the

term of degree k in

X(X 4+ D(X +2)(X +3)(X +4) =24X +50X% + 35X + 10X* + X°.

[(5)}:0’ m:% m:so’ [2]235’ m=10, E}:l- o

5.2.3 Partitions into Cycles with Occupancy Constraints s

Hence,

‘We now consider partitions into cycles with a prescribed occupancy collection.

Definition 5.56 Letn, k,n;,...,n; € N5y withn; +--- 4+ np = n. A k-partition
into cycles of /,, with occupancy collection [n, ..., n;] is a k-partition into cycles
of I, consisting of cycles whose supports constitute a k-partition of 7,, with occupancy

collection [n, ..., ni]. We use the symbol Z; [nyg,..., nk]} to denote the number
of k-partitions into cycles of I, with occupancy [n4, ..., ng]. O
It is rather easy to calculate the number [Z, [ny,..., nk]i|.

Theorem 5.57 Letk,n,ny,...,n; € Noywithn, + --- +ng = n. Then
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"0 =t — 2 )
[ny, ..., n = — Ny, ..., Nk).
PeaLo! k TR 1 k

Proof. By Theorem 5.21, there are

n 1 n
k;[m,---,nk] =5 X ——— X P(ny.....m)

k! np Toos ny:
k-partitions of I, with occupancy collection [n, ..., ni]. By Theorem 5.33, every
subset of I, having cardinality n; is the support of (n; — 1)! different n;-cycles.
Thus each k-partition of 7, with occupancy collection [n, . .., n;] produces exactly
(ny — D!+ (ng — 1)! different k-partitions into cycles of I, with occupancy col-
lection [ny, ..., n;]. Hence, the total number of k-partitions into cycles of 7, with
occupancy collection [ny, ..., ng] is

[Z; [nl,...,nk]i| = [Z (1, ...,nk]] X (1) — D% - x (mp — 1Y
1 n!

= — X
k! ny---nyg

X P(ny,...,ng). O

Example 5.58 In how many ways can one seat 6 people at 3 equally-sized round
tables with at least one person per table? What if one would like that there be 1 table
with two people, 1 table with one and 1 table with three?

Solution. Two placements of the 6 people are different if they place different groups
of people at some table, or if at some table they assign some person a different
neighbor (for example, proceeding clockwise). Label the 6 people with Is. In the

.. . . 6
first case we must count the 3-partitions into cycles of I, that is, calculate |:3i|

Applying Theorem 5.52 one obtains

6 .
HEDRIE
I C s i€l
=3
=1Xx2x34+1x2x44+1x2x54+1%x3%x44+1x3x54+1x4x5+
+2x3x44+2x3x542x4x54+3x4x5=225.

In the second case we must count the 3-partitions into cycles of /s with occupancy
collection [1, 2, 3]. By Theorem 5.57 the number of such 3-partitions is

0 [1,2,3] 1 6! P(1,2,3) =120 O
5 9 &y = =X —=X y & = .
3 31 1x2x3
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5.3 Eulerian Numbers: Excesses and Ascending
Couples in a Permutation

Eulerian numbers count both the number of permutations of (1, ..., n) with a given
number of elements larger than the position they occupy (excesses) and the number
of permutations of (1, ..., n) in which a given number of elements are larger than
their predecessor (ascending couples, or ascending pairs). They will both be used in
solving some classical problems such as the Smith College diploma problem.

5.3.1 Eulerian Numbers and Excesses: The Smith College
Diplomas

We begin by formalizing what it means to say that an element is larger than the
position it occupies in a permutation:

Definition 5.59 Let a = (ay, ..., a,) be a permutation of (1, ..., n). An excess is
an element i of I, such that a; > i. A strict excess is an element i of /,, such that
a; > 1. O

Example 5.60 The permutationa = (4, 2, 3, 1) has three excesses and only one strict

excess:infactay =4 > 1,ap =2,a3 =3 andays =1 < 4. O
Remark 5.61 A permutation a of (1,...,n) has at least one excess: necessarily
a; > 1. The permutation a has no strict excesses if and only if it has n excesses: in
both cases one must have ¢; =i foralli € I, andsoa = (1,...,n).

Definition 5.62 (Eulerian numbers) Let k,n € N with n > 1. The Eulerian num-
ber n over k, denoted by <Z> is the number of permutations of (1, ..., n) with

exactly k strict excesses. O

Example 5.63 Bearing in mind that n will never be a strict excess in a permutation
of (1,...,n), foreach n > 1 one has:

° <0>= 1: (1, ..., n) is the unique permutation of (1, ..., n) without strict excesses;
n
° k>= 0 for each k > n: there is no permutation of (1,...,n) with k > n strict
excesses;

n
° < 1>: 1: (2,3,...,n,1) is the unique permutation of (1,...,n) with n — 1
n—

strict excesses. O

Next we introduce the shift of a permutation of (1, ..., n).



5.3 Eulerian Numbers: Excesses and Ascending Couples in a Permutation 139

Definition 5.64 The shift ® (a4, ..., a,) of apermutation (a4, ..., a,)of (1, ..., n)
is defined by

Oai,...,a,) = (az, ..., a, ap). O
Example 5.65 The shiftof (3,5,2,4, 1)is ©(3,5,2,4, 1) = (5,2,4,1,3). O

There is a useful and interesting relation between the number of excesses of a
permutation and the number of strict excesses of its shift.

Lemma 5.66 The permutation a = (ay, ..., a,) of (1,...,n) hask > 1 excesses if
and only if the shift ©(a) of a has k — 1 strict excesses.

Proof. Leti € I,; there are two possible cases:

i = 1: clearly 1 < a; < n; therefore 1 is an excess for a and n is not a strict excess

for ®(a).
i > 1: inthiscase i < q; ifand only ifi — 1 < a;; hence i is an excess for a if and
only if i — 1 is a strict excess for © (a). O

Example 5.67 The emperor distributes twelve bags containing respectively 1, 2, ...,
12 gold coins to 12 of his knights. Having numbered the 12 places at a round table
in the clockwise sense, he then seats the knights at the table. We use a; to denote the
number of gold coins in the bag received by the knight seated at position i. Suppose
that only 5 knights have a number of coins greater than or equal to the number of
the place they occupy. If each knight passes his bag of coins to his counterclockwise
neighbor, there will be exactly 4 knights whose money bag strictly exceeds his
place number. Indeed, if the initial distribution of money bags corresponds to the

sequence (ay, ..., a12), then the new distribution of bags corresponds to the sequence
(az, a3, ...,apn,a1) = O(a,...,an);thus, by Lemma 5.66 one obtains the desired
conclusion. O

Example 5.68 (The Smith College diploma problem [25]) At Smith College diplomas
are conferred as follows. The diplomas are randomly distributed to the graduating
students. Those who do not receive their own diploma form a circle and pass the
diploma received to their counterclockwise neighbor: those then receiving their own
diploma leave the circle, while the others form a smaller circle and repeat the pro-
cedure. Determine the probability that exactly k > 0 hand-offs are necessary before
each graduate has her/his own diploma.

Solution. Label the graduating students with 7,,. There are n! possible distributions
of the diplomas. We now count the initial distributions for which after exactly kK > 0
hand-offs the procedure terminates. Suppose that graduate i has been given the
diploma of graduate a;. We eliminate from (ay, ..., a,) the £ graduates who have
received their own diplomas; let i; < --- < i,_; be the remaining graduates. Rela-
belingi; with 1, i, with2, . .., and i,_, withn — £, the distribution of the diplomas is
now represented by a permutation (by, ..., b,—¢) of (1, ..., n — £). By construction
J#bjfor j=1,...,n— £ and so the excesses of the permutation (b, ..., b,—_¢)
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are all strict; moreover (b, ..., b,_;) has the same number of strict excesses as
(ai,...,ay): indeed, i, < a;, if and only if i < bj,. At the first hand-off the distri-
bution of the diplomas is represented by the permutation ® (b, ..., b,_): in view
of Lemma 5.66 the number of strict excesses decreases by one. We repeat the same
procedure eliminating the graduates who have received their own diplomas and rela-
belling the remaining ones. Proceeding in this way, in order that & hand-offs should
be required before every graduate has her own diploma, it is necessary and sufficient
that the permutation (ay, ..., a,) of (1, ..., n) which represented the initial distrib-
ution of the diplomas should have exactly k strict excesses. The number of favorable

1
cases is therefore <Z>, and so the desired probability is —'<Z> O
n!

5.3.2 Eulerian Numbers and Ascending Couples: Recursive
and Explicit Formulas

We introduce the notion of an ascending couple (sometimes also called an ascending
pair) of a permutation.

Definition 5.69 Letn € N> ,.If (ay, ..., a,) is a permutation of (1, ..., n), we say
that (a;, a;+1), 1 <i < n,is an ascending couple if a; < a;;. O

Example 5.70 The permutation (4, 6, 1, 3, 5, 2) of (1, 2, 3, 4, 5, 6) has three ascend-
ing couples: (4, 6), (1,3) and (3, 5). The permutations of (1, 2, 3, 4) that have 2
ascending couples are

(1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,3,4, 1),
(2,3, 1,4, (2,4,1,3), 3,4,1,2), 3,1,2,4), 4, 1,2,3). O

The Eulerian number <Z> also counts the permutations of (1, . . . , n) with k ascend-
ing couples.

Theorem 5.71 Let k,n € N with n > 1. Then the number of permutations of

n
(1, ..., n) with k ascending couples coincides with the number <k of permutations
of (1,...,n) with k strict excesses.
Proof. In every permutation of (1, ..., n) both the number of strict excesses and

the number of ascending couples is greater than or equal to O and less than or equal
ton — 1. Now let 0 < k < n — 1. We construct a bijection 7 from the set of per-
mutations of (1,...,n) to itself in such a way as to induce a one-to-one corre-
spondence between the permutations with k strict excesses and the permutations
with k ascending couples. As we have seen in Example 1.24, to a permutation
a=(ay,...,a,) of (1,...,n) we can associate the bijective function f, : I, — I,
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defined by setting f,(i) = a; fori =1, ..., n. By Theorem 5.41, the bijective func-
tion f, determines a partition into cycles of I, of which it is the composition:

let ((all, R a,ll DI (7 1 L a,’é’ﬁ)) be its canonical representation (see Defini-

tion 5.36). We then set

1 1 2 2

T(a) := (al,...,akl,al,...,akz,...,a;",...,aZf").
We first verify that T is a surjective function: let b = (b, ..., b,) be a permutation
of (1,...,n); there are m > 0 and integers ko, ki, . .., k, such that

ko: 1, k] =m1n{z >k02bi <bk0}, k2 =m1n{l >k1 Ib,‘ <b/<1}""’

km =min{i > ky,_1 :b; < by, ,} and by, <b; Vi 1k, <i <n.

Consider the cycles (b; = by, ..., bk,—1), ..., {(bk, - .., by); by construction
(b1 =brys -3 biy—1)s ooy (biys - -5 b))
is the canonical representation of a partition into cycles of 1,,. Let f : I, — I, be the
composition of that partition into cycles; clearly one has T(f(1),..., f(n)) =b.
Since the domain and codomain of T have the same cardinality, 7 is therefore a
bijective function. We now verify that a permutation a of (1, ..., n) has the same
number of strict excesses as there are ascending couples in the permutation 7 (a).
Leta=(aj,...,a,) eT(a) = (xy,...,x,). By construction one has
1 12 2
(X1 ooy Xn) = (@1 ey @y Yy ooy Gy ey @Yoy A )
with
o a;=fa(j)=(af,....a ) 0---olal',....af)(j) foreach j =1,....n;
o aj =min{a§ cj=1,...,k}foreachs =1,...,m;
eal>al>--->a"=1.
Giveni € I, let (af, ey a,f[) be that cycle of the partition into cycles determined

by the function f, which contains x;. There are two possible cases:

(a) If x; = af; with 1 <h < k¢, theni <n and x;4 = a,fﬂ = fu(af) = falx;) =
dy, .

(b) If x; = af{ then

l l 4
Ay, = falxi) = fa(ake) =ap < ap, =X

and eitheri = n or

e+1 ¢ ¢
Xipl =a; <a) <ag =x.
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If x; is a strict excess for a, then a,, > x; and necessarily we are in case (a) thus, one
has x; < a,, = x;4+1 and so (x;, x;41) is an ascending couple in T (a). Conversely, if
(xi, x;+1) is an ascending couple in T'(a), then since i < n and x; < x;4|, we again
find that we are necessarily in case (a) hence one has x; < x;+; = a,, and so x; is a
strict excess for a. It follows that the number of permutations of (1, ..., n) with k
ascending couples coincides with that of permutations with k strict excesses. O

Example 5.72 One should beware that the preceding result does not state that a per-
mutation having k ascending couples has & strict excesses: for example, the permu-
tation (2, 3, 4, 1) has 2 ascending couples but has 3 strict excesses! The permutation
(2, 3,4, 1) determines the partition into cycles [(1, 2, 3, 4)] consisting of a single
cycle; the image of (2, 3, 4, 1) under the map 7 constructed in the preceding proof is
therefore the permutation (1, 2, 3, 4) which does indeed have 3 ascending couples.

O
Theorem 5.71 allows us to obtain the following useful relations rather easily.

Proposition 5.73 Let n € N, then one has:

n n
1. = for0 <k <n;

k n—1—k

—1 -1

2. <Z>=(n—k)<’]:_ 1>+(k+1)<"k >f0r1 <k<n
Proof. 1.To each permutation a = (ay, ..., a,-1,a,) of (1, ..., n) we can associate

the permutation b obtained by reading the components of the permutation a from
right to left:
b = (anva}’lfl’ . '7a1) .

Obviously the ascending couples in a become descending in b and vice versa; there-
fore, if there are k ascending couples in a, then in b there are (n — 1) — k. Thus
we have obtained a one-to-one correspondence between the permutations with k
ascending couples and those with (n — 1) — k ascending couples.

2. To each permutation a of (1, ..., n) we associate the permutation m,(a) of the
sequence (1,...,n — 1) obtained from a by making the element n “disappear”:
thus, for example m3(2, 3, 1) = (2, 1). To a permutation a of (1,...,n) with k
ascending couples the map m, associates the permutation ,(a) = (by, ..., b,—1)
of (1,...,n — 1) with a number of ascending couples that varies according to the
position of n in the permutation a. There are four possible cases to be considered:

(a) n occupies the first position of a, that is a = (n, by, ..., b,—1); since surely
n > by, the permutation i, (a) has k ascending couples.

(b) noccupiesthelastpositionof a,thatisa = (by, ..., b,—1, n);certainly b, < n,
and so in 7, (a) there are k — 1 ascending couples, one less than in a.

(c) n is located “inside” a, that is a = (b1, ..., b;,n,biy1,...,b,) for some
1<i<n-—1.
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(cl) If b; < b;41, then since the couple (b;, n) is ascending, while (n, b; 1) is
not, it follows that in 7, (a) there are k ascending couples, just as many as
there are in a.

(c2) If b; > b;;, then since the couple (b;, n) is ascending while (n, b; 1) is not,
in 7, (a) there are k — 1 ascending couples, one less than in a.

Every permutation (by,...,b,—1) of (1,...,n — 1) with k ascending couples is
the image under m, of 1+ k permutations of (1,...,n) with k ascending cou-
ples: one of these is the permutation (n, by, ..., b,—;) (case (a)) and there are
k permutations of (1,...,n) obtained by inserting n between two elements b;
and b;;; of an ascending couple of (by, ..., b,_1) (case (cl)). Every permutation
by, ...,by—1) of (1,...,n — 1) with k — 1 ascending couples is the image under
m, of 1 +n —1—k =n — k permutations of (1, ..., n) with k ascending couples:
one is the permutation (b1, ..., b,_1, n) (case (b)) and the n — 1 — k others are the
permutations of (1, ..., n) obtained by inserting n between two elements b; and b; ;|
of anon-ascending couple of (by, ..., b,_) (case (c2)). Therefore, by Corollary 1.46

one has . !
n n— n—
<k>=(k+l)< X >+(n—k)<k_1>. O

Example 5.74 (The triangle of the Eulerian numbers) Proposition 5.73, 2, shows
that in order to calculate the Eulerian numbers with first argument equal to n it
suffices to know those with first argument equal to n — 1. This observation permits
one to construct the triangle of Eulerian numbers.

I I

For all n one has <g> = < " l> = 1: thus, along non-horizontal sides of the Eulerian
n—

triangle all elements are equal to one. Using the formula

n n—1 n—1
()=~ J+arn"]")
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proved in Point 2 of Proposition 5.73, we can easily obtain the internal values of a
row once the values of the preceding row are known:

k
n—1 a b
n (n—k)a+(k+.ijb
Thus one obtains the triangle
k=0
n=1 1 k=1
n=2 1 1 k=2
n=3 1 4 1 k=3
n=4 1 11 11 1
No.t.e. that ir; .v.iew of .the pr.(.)[.)erty -
n n
<k> - <n —1- k>
it is sufficient to complete the first half of each row. O

We conclude this section by giving an explicit calculation of the Eulerian number
<Z> Here we give an elementary but rather long and tedious proof; a quick proof, but

making use of more elaborate techniques like generating formal series and Worpitzky
formula (Proposition 5.84), is given in Corollary 8.45.

Proposition 5.75 Letk,n € Nwithn > 1. Then

ul n+1
V> z(—w( ,)@+1—U”#O§k<m
= {4 i
k i=0

0 otherwise.

Proof. The equality is obvious if k > n; for k = 0 one has
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n\ 1= (" +1
oo\ 0 )
The case n = 1 is part of that with k = 0. We now prove the statement for 1 < k <

n — 1 using induction on n. Suppose that the equality holds for a given n > 1. We
prove that it then also holds for n + 1. By Point 2 of Proposition 5.73 one has

n—+1 — 1n Lk n
i B )RR B

The induction hypothesis gives

n+1 k n+1 o
< N >=(k+1>2(—1)( ,- )(k+1_1) +

i=0

A
k—1

F (1 —k)Z(—n"("Jr ])(k—i)”.

4 i
i=0

B

Now one has

k—1

; . fn+1 o
B:iz(;(—l)(n+l—l—k+l)( i )(k—z)

k
=S D+ 1-i —k+i)(nj_ 1)(k—i)”

i=0

k k
=> Dn+1- i)("j 1)(k — i)' = D (=D k - i)(” l+ 1)<k -0

i=0 i=0
Since
(r+1Y L (D (m+ D!
(”H_l)( i )_(n+1_l)i!(n+1—i)!_i!(n—i)!
. (n+1)! . n+1
_(l+1)(i+1)!(n—i)!_(l+1)(i+1)’

it follows that
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k ‘ 1
B = Z( DG +1>( )(k—i)”—Z(—l)’(”f )(k—i)"“
i=0

i=0
k+1 ) 1 k ' 1
=—Z(—1>'i(”j )(k—(i—l))"—Z(—l)'(”:’ )(k—i)"“
i=1 i=0
‘ 1n+1 N7 ‘ i I’l+1 -\n+1
== > (=) i k+1—0i)"=> (1) (k — i)y,
i=0 i=0

Therefore we have

n+1 n
<k> A+B= Z( 1)(k+1)( )(k—i—l D"+

i=0

k
—Z< 1)’( )<k+1 —Z(—l)"("fl)w—i)"“:
i=0

. i . n+1 NG : i n+1 \n+1
:Z(—l)(k+l—1)( i )(k+1—z) —Z(—l)( ; )(k—z)
—Z< 1)'(’1+ )(k+1 z)"+‘+Z< (”+ )(k—(z D)"!

i=0 i=l

= (k+ )"+‘+Z< 1)![(”l+1)+(’l’fl)](k+1 iy

(k+1)”“+2( 1)'( )(k+l s

- Z(—nf (" ;L 2) (k+1—i)*.
i=0

5.3.3 The Key of a Sequence and Some Notable Identities s

The Eulerian numbers appear in a variety of notable identities. A key role in the
verification of such identities is played by the concept of key of a sequence: it is
simply the sequence of the positions of the elements taken in order of increasing,
respecting the initial order in case of repetitions.

Definition 5.76 Letn € N and (xy, ..., x,) be an n-sequence of natural numbers.
There exists a unique permutation o = (o7, ..., 0,) of (1, ..., n), called the key of
the sequence (xy, ..., x,), such that
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Xy < - < X5, and X, = Xo,,, = 0} < Ojy].

In this case we write

o =key(xy, ..., x). 0O

More formally, the key o of a sequence (xy, ..., x,) is defined recursively by
setting
oy =min{j € I, : x; = min{x; : i € I,,}}

and, for k > 2,

or=min{jel, \ {o1,...,0k_1}:x; = min{x; :i €l, \ {o1,..., 0k_1}}.

Remark 5.77 The key o of a sequence (xi, ..., x,) is therefore the permutation
whose values are given by the list of the positions of the elements of the sequence
in increasing order; in the case of equal values in different positions by convention
the key lists the lowest position first. Thus one has o; = j if, under the foregoing
convention, x; is the i-th element in increasing order of the sequence. Note that while
an n-sequence can very well have various repeated elements, its key is an n-sequence
without repetitions of I, that is to say, a permutation of (1, ..., n).

Example 5.78 The key of the 6-sequence (4, 2,5, 3, 1, 3) of Is is the permutation
(5,2,4,6,1,3)0of (1, ..., 6). In fact, in the given sequence:

1 is in position 5;

2 is in position 2;

3 is in positions 4 and 6;

4 is in position 1;

5 is in position 3.

Obviously various sequences can have the same key: for example (5, 2,4, 6, 1, 3) is
also the key of the 6-sequence (4, 2,4, 2, 1,2) of Is. O

Remark 5.79 The permutation 0 = (o1, ..., 0,) is the key of the n-sequence of I,
that has 1 in position oy, 2 in position o7, ..., n in position o,. For example the
permutation o = (4, 2, 3, 5, 1) is the key of (5, 2, 3, 1, 4). Thus, every permutation
of (1, ..., n) is the key of at least one n-sequence of I,,.

Example 5.80 We seek a 5-sequence of Is whose keyiso = (3, 2, 5, 4, 1). Proceed-
ing as indicated in Remark 5.79, it is easy to obtain the 5-sequence (5, 2, 1, 4, 3).
Given that in o we have the ascending couple (2, 5), repeating in position 5 the value
located in position 2 we obtain another 5-sequence (5, 2, 1, 4, 2) of Is withkeyo. O
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We now count the number of sequences that have a given key and that are com-
posed of a given number of distinct elements: they are obtained once one knows the
number of ascending couples of the key.

Proposition 5.81 Let n,m € N>, and o be a permutation of (1,...,n) with
k < n — 1 ascending couples.

1. An n-sequence (xi, ..., x,) of I, such that o = key(xy, ..., x,) has at least
n — k distinct elements; in particular k > n — m.

2. Foreach !l < n, there are (’?) X (n f g) different n-sequences of I,, composed

of exactly £ distinct values with key o.

Proof. 1.Leto = (o1, ..., 0,);byhypothesis k outofthen — 1 couples (o1, 02), ...,
(041, 0y) are ascending. In correspondence tothen — 1 —kvalues 1 < j; < --- <
Jn—k—1 < n — 1 for which o, > o4 one must have n — k distinct values
Xojy <HXoj, <00 <oy <Koy

Indeed, for each i one necessarily has x,(j,) < X5(j,,); if then the equality were to
hold, one would have x5,y = Xo(j+1) = * -+ = Xo(j,,) ANd SO 0}, < 0, 41.
Therefore (xy, ..., x,) has at least n — k distinct elements, and thus, since n — k <
m,onehas k > n —m.

2.ByPoint 1,if £ < n — k or £ > m the claim is true: indeed (’?) X (n i@) =0

and there are no n-sequences of I, composed of ¢ distinct elements and having key
o.Now let n — k < £ < m; we wish to construct an n-sequence (xi, ..., x,) of I,
with € distinct elements and key o. We do so in three steps. In the first step we choose

£ distinct elements of [,,: clearly, there are ways to carry out this step. In the

m
L
second step we decide for which of the k ascending couples o; < ;11 we will set
X5, < Xg;,, and for which we will set x,, = x,,,,. As noted in the proof of part (1),
corresponding to the n — k values j; < --- < j,—x—1 for whicho;, > o1, we have
n — k distinct elements

Xoj < Xgy <00 < Xg .

So we must choose £ — (n — k) ascending couples 0; < o074 for which we set x,, <

Xo,,,: this may be done in (E _ (zli _ k)) = (k B (S B Z)) ways. In the third step
we construct the sequence (xy, .. ., x,) using the £ elements chosen from 1,,, and the
instructions furnished by the key o, with the specifications established in the second
step. This can be done in only one way. By the Multiplication Principle 1.34, the
number of n-sequences of I,, consisting of £ distinct elements and having key o is

()50 :
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Example 5.82 The permutation o = (2, 5, 3, 1,4) of (1, 2, 3,4, 5) has 2 ascending
couples. Each 5-sequence of [,,, m > 1, having o as its key has at least 5 —2 = 3
distinct elements. Indeed, if (x;, x, x3, x4, X5) is a sequence with key o one must
have

X2 < X5 < X3 < X1 < X4.

For each ¢ < 5 with 3 < £ < m there are (’Z) X ( 5 E Z) different 5-sequences of

I, with £ distinct elements and with key o . For example, there are (;L) X ( 5 E 3) =

4 different 5-sequences of 14 with 3 distinct elements and key o':
(3,1,2,3,1),(4,1,2,4,1),(4,1,3,4,1), (4,2,3,4,2). O

One has the following relation between the Stirling numbers of the second kind
and the Eulerian numbers:

Proposition 5.83 Letn > m > 1. Then
n—1
| n _ n k _ n k 583
m[m %;‘k n—m Z k|\n—m)" (>-83.a)

Proof. Since <Z> = (0fork > nand ( ) = 0 fork < n — m, one certainly has

n—m

(0= 2 ()

k=n

We now give a combinatorial demonstration of the first equality. An alternative
one is suggested in Problem 6.10. In Corollary 5.8 we have verified that there are
m! ’:; different n-sequences of I,, composed of m distinct elements. By Point 1 of

Proposition 5.81, each such sequence has a key whose number of ascending couples

lies between n — m and n — 1. Since there are <Z> keys with k ascending couples,

and for each of these there are (Z) ( k ) = ( k ) different n-sequences of

n—m n—m
I,, with m distinct values (see Point 2 of Proposition 5.81), there are

> )

k=n—m


http://dx.doi.org/10.1007/978-3-319-03038-8_6

150 5 Stirling Numbers and Eulerian Numbers

different n-sequences of 7,, composed of m distinct elements. O

The same combinatorial technique used to prove Proposition 5.83 permits us to
obtain an easy proof of the so-called Worpitzky® Identity.

Proposition 5.84 (Worpitzky Identity) Let m,n € Nandn > 1; then

n—1 7 k
m"* = < >(’"+ ) (5.84.2)
k n
k=0

Proof. The equality holds easily form = 0.Incasem > 1, we carry out acombinato-
rial proof of the identity, leaving the proof by induction as an exercise (Problem 5.12).
The number m" coincides with the number of n-sequences of /,,. By Proposition 5.81

there are ;
1 ( )( ‘ )
z L n—~¢
=0

different n-sequences of I, with a given key, having k < n — 1 ascending couples;
in view of the Vandermonde convolution (Proposition 2.57) that number is equal to

(m : k). Since there are Z permutations of (1, ..., n) withk < n — 1 ascending

couples, one immediately obtains the identity. O

Remark 5.85 Observe that (5.83.a) counts the number of the surjective functions
I, — I,,, whereas (5.84.a) counts the number of all functions I, — I,,.

5.4 Problems

Problem 5.1 In how many ways can one distribute 23 different objects into 8 iden-
tical boxes, in such a way as to have no box left empty?

Problem 5.2 The members of a group of 30 tourists decide to go for jeep rides; in
how many ways can they split up into 6 groups in such a way as to have 3 groups
consisting of 6 people, one group of 3 people, one of 4, and one of 5 people?

6Julius Worpitzky (1835-1895).
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Problem 5.3 A rescue team of 14 people is searching for a missing person. They
decide to split into 5 squads: 3 squads with 2 people and 2 squads with four people.
In how many ways is it possible to perform this division into squads?

Problem 5.4 In how many ways can a deck of 52 cards be divided into:

(a) 4 decks of 13 cards?
(b) 3 decks of 8 cards and 4 decks of 7 cards?

Problem 5.5 A class of 18 students goes on a trip accompanied by two teachers.
They will spend the night in 5 quadruple rooms; the two teachers do not wish to sleep
in the same room. Under this condition, in how many ways can the entire group be
split up into 5 groups of exactly 4 people?

Problem 5.6 In how many ways is it possible to split up 20 people into 5 squads,
of which two consist of 5 people, two of three people, and one of 4 people?

Problem 5.7 Inhow many ways is it possible to fill a Ferris wheel with 30 one-place
seats from a school group of 100 people?

Problem 5.8 Twenty guests are to be seated around a large circular table. Find the
probability that Carlo, Alberto, Elena and Paola are neighbors.

Problem 5.9 Inhow many ways can one seat 40 people in a banquet hall containing
8 equally sized round tables if no table is to be left empty?

Problem 5.10 We wish to place 100 students on 4 Ferris wheels with one-place
seats, two of the wheels having 25 seats, one with 20 seats and one with 30 seats.
Calculate the probability that Nicky, Tommy, and Francies sit in three consecutive
places on one of the Ferris wheels.

Problem 5.11 Letk € N> and by, ..., by be natural numbers such that
by +2by+---+ kb, = k.

Prove that the number of partitions into cycles of I; with occupancy collection
[1,...,1,...,k, ..., k]isequal to
—— ——

by by

k! 1
(1)1 (kNP byl byl

Problem 5.12 Prove the Worpitzky Identity (see Proposition 5.84) by induction
on n.



Chapter 6
Manipulation of Sums

Abstract This chapter deals with the calculus of finite sums: after examining some
special techniques, we develop the general theory of finite calculus, the discrete
analogue of differential calculus. The discrete primitives are the tool that enable
to compute finite sums. We examine in detail the case of the sums of powers of
consecutive natural numbers: quite surprisingly this leads to the Stirling numbers
of second kind. A section is devoted to the inversion formula, a powerful tool in
many mathematical fields: we use it here to obtain the discrete analogue of the
Taylor expansion, an alternative short proof of both the number of derangements of
a sequence and of surjective functions between two finite sets, and, finally, a more
general version of the inclusion/exclusion principle.

6.1 Some Techniques

Explicitly determining the sum of a given number of summands is not always a
simple matter; sometimes, however, some simple but astute adjustments allow one
to solve the problem rapidly.

6.1.1 Gauss Method

The story goes that when Gauss’s' elementary school teacher punished the class of
the 9-year old Gauss by requiring the pupils to find the sum of the first 100 natural
numbers, the future great mathematician easily, rapidly (and disdainfully) solved the
problem. Rather than summing 1 + 2 and then adding 3 to the result, and so on,
Gauss observed that if S denoted the desired sum, then S could be expressed in two
ways:

§=100 +99 +98 + .- + 3+ 2+ 1

S=1 +2  +3 + -+ 98+ 994 100.

!Carl Friedrich Gauss (1777-1855).
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Adding the terms column by column one obtains

25 =1004+1)+O9+2)+---+(2+99) + (1 +100) = 101 x (100) = 10100,
whence S = 5050. With the same method one sees that more generally one has

nn+1)

14+24--. =
+24---+n 2

6.1.2 Perturbation Technique

Given a sequence (a;)ren of real numbers, suppose that we wish to calculate the n-th
term of the sequence of partial sums

n
Sy = E Aj.
k=0

Adding a,; to both the terms of the equality we get
n
Sp + Any1 = ao + Zak+1;
k=0

now one attempts to express the right hand side of the equation as a function of s,
so as to obtain an equation for s,.

Example 6.1 Letr € R, and suppose that we wish to calculate

n
=S
k=0
Directly applying the method introduced above one has
n
s+t =14 ZrkJr1 =1+ rs,.
k=0

Therefore, (1 — r)s, = 1 — " and so, for r # 1,onehas s, = (1 — "+t /(1 — r).
Note that when r = 1 one sees immediately that s, = n. m]

Example 6.2 'We now use the method of perturbation to calculate the value of

n

Sp = ZkZ".

k=0
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Again, applying the above reasoning, one has

Sit (D2 =04 Dk + D2 =2 (k2 25 =25, +2 > 2",
k=0 k=0 k=0

Since Z 2k = 2"*! _ | by Example 6.1, we get
k=0

sp+ (n+ D2 =25, + 22" — 1),

and hence s, = 2"t (n — 1) + 2. ]

Example 6.3 We calculate the sum
n
Sy = Zkrk
k=1

n
1
for any given real number r. If r =1 one has s, = Zk = @ as seen in

k=1
Sect.6.1.1. If r # 1, then applying the method of perturbation we find that

sn+ (n+ Drit! =F+Z(k—|— 1! =r+rsn+rZrk

k=1 k=1
! -7
_ 2 k _ 2L
=r+rs,+r Zr—r—i—rsn—i—r =
k=0
(I—=r) +r—r! 1—
=7rs,+r =718 +r——m
1—r 1—r
Therefore one has
1 n+1 rn+1
Sn r(l_ )2—(n+1)1_ O

6.1.3 Derivative Method

Let r € R and (a¢ ), be a sequence of real numbers. We observe that if p(r) is the
polynomial function p(r) = ag + a;r + - - - + a,r", then its derivative is

pr) = (Zakrk) =a; +2ayr + - +na,r" = Zkakrk_'.
k=0 k=1
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n

We now apply this elementary remark to the calculation of the sum Z krk, which
k=1
has already been discussed in Example 6.3 where the perturbation technique was

employed. Factoring » from the sum gives

ikrk = rikrk*1 = r(zn:rk) .
k=1 k=1

k=1

For r # 1 we have

‘ . 11—  p—pt]
E r=r E r=r = ;
1—r 1—r
k=1 k=0
and so ,
n n r_rn+1 ’
St () = (L
1—r
k=1 k=1

A—@m+ DA —r)— (=D —r*h
' (I—rp?

r 4+t — (n+ D!
(1—r7?

6.1.4 Changing the Order of Summation

In discussing finite sums it is often useful to be able to interchange the order of the
summation; this is a simple consequence of the commutative and associative laws
for addition. Nevertheless, it is worthwhile to dedicate a few lines to a definitive
confirmation of this fact.

Proposition 6.4 (Interchanging the order of summation) Let m, n be two natural
numbers, and as i varies in {0, ..., m} and k varies in {0, ..., n}, let a; be real
numbers. Then

> (Z a,-,k) = Z( ai,k) : (6.4.2)
k=0 i=0

i=0 k=0
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In particular

n k n n
Z (Z “i,k) = Z ( ai,k) : (6.4.b)
k=0 \i=0 i=0 \ k=i

Proof. Grouping together the terms with second index equal to 0, then those with
second index equal to 1,..., then those with second index equal to n one has:

m n
Z( ai,k) = ((l()’() + -+ a(),n) + -+ (am.O + -+ am,n)
0

i=0 \k=

n m
= (0,0 + -+ amo) + -+ (o + -+ amn) = Z(Zai,k)-

k=0 \i=0

To establish the second identity we put a; ; = 0if i > k; applying (6.4.a) one obtains

n k n n
2. (Z au«) = Z( au«)
k=0 \i=0 k=0 \i=0
n n n n
= Z(Z a,,k) = (Z au«)- 0
i=0 \k=0 i=0 \ k=i

6.2 Finite Calculus

In the preceding section we have seen some techniques that yielded explicit calcula-
tions for certain sums. However, these were particular techniques that can be fruitfully
applied only in special situations. We now attempt a more systematic approach which
introduces the discrete analogue of differential calculus.

6.2.1 Shift and Difference Operators

Itis convenient here to represent any sequence of real numbers (ay )k as the function
f : N — R defined by
fk) =a;, VkeN.
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Given two functions f, g : N — R and r € R we consider the functions
(f +8)(k) =f(k) +g(k), and (rf)(k) =1f(k) VkeN.

Endowed with these operations, the set of functions from N to R is an R-vector space.
We will also consider the function

(fo) (k) = f(k)g(k) Vk € N.

A linear map from the space of functions from N to R in itself is an operator.

Definition 6.5 Consider the space of the functions from N to R. For any function
f : N — R the identity operator 1 and the shift operator 6 are defined by

1(f)=f and O(f)(k) =f(k+1) VkeN. O

One verifies immediately that the identity and the shift operator are indeed linear.

Proposition 6.6 (Linearity of the identity and shift operators) Let f, g : N — R and
¢ € R. Then one has:

1 1(f + ) (k) = L(F) (k) + L(g) (k) and O(f + g) (k) = O(f) (k) + 0(2)(k);
2. W(cf)(k) = cL(f) (k) and 6(cf) (k) = cO(f) (k).

Proof. Letk € N; then
Of +ok) =+ k+1) =flk+1)+gk+1)=0()(k) +0(g)(k);
O(cf)k) = (cf)k+ 1) =cf(k+1) =cO(f)Kk).
Checking the linearity of 1 is immediate. O

For any operator T, it will be convenient, at the price of a slight abuse of notation,
to write T f (k) instead of T'(f)(k). Moreover in some cases, for example when f
depends on other parameters, one writes Ty f (k) rather than 7 f (k) to avoid ambiguity.
Thus, for instance, denoted by 1y : N — N the function defined by 1y(k) = k for
each k € N, we will write 0 k = k + 1 rather than 6(1y)(k) = k + 1. Analogously
0k> = (k+ 1)2, 6, k% = (k+ 1)* and 6, a* = a**! for each a € R.

For real valued functions of a natural number variable we now introduce the
analogue of the usual derivative for real valued functions of a real variable:

Definition 6.7 The difference operator is the operator A which to each function
f N — R assigns the function Af : N — R defined by setting
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Af(k) =f(k+1) —f(k) VkeN. O
Remark 6.8 Using the shift operator, one has A =6 —1, i.e.
Af=0f—f, Vf:N—>R.

Remark 6.9 Clearly, for a function f : N — R, one has

k+1)—fk
NOEED G

and so Af : N — R is a function that measures the difference quotient of f over
the smallest possible interval of natural numbers, namely, an interval of length one.
In this sense, the difference operator constitutes the discrete analogue of the notion
of derivative for functions of a real variable. In what follows, the reader will have
occasion to note analogies and contrasts between these two notions.

Just like the derivative, the difference operator is linear: indeed, it is a difference
of two linear operators.

Proposition 6.10 (Linearity of the difference) Let f, g : N — R and ¢ € R. Then
one has:

1. Af+9=Af+Ag
2. Alef) =cAf.

Proof. Since A = 6 —1 one gets:

LA+ =0-D(Ff+g =0(f+g —1(f+=0()—f +6() —g=
A(f) + A(®):

2. Aeh)=(0 —1)(cf) = 0(ef) — L(ef) = cO() — ¢f = c@ —1)(f) = c Af). T
We now see how the difference operator acts on some simple functions with

domain N.

Example 6.11 1. Constant Functions: Just as in the case of the derivative of con-
stant functions with domains in R, here too we have that the difference of
a constant function (with domain N) is equal to the zero function: indeed, if
f(k) = c € R for every k in N, then

Afky=fk+1)—fk) =c—c=0.
2. Identity Function on the natural numbers: Just as in the continuous case, the
difference of the identity function 1y : N — N is the constant function k +— 1

for all k in N: indeed

Alnt) = In(k+1) — In(k) =k +1 —k = 1.



160 6 Manipulation of Sums
3. Powers: (a) Given m € N, consider the function
N—-R, k— k"

In view of the binomial formula (2.19), one has that for each k € N

m—1

m __ m __pm __ m i
Ak = (k+ 1" —k _%“(i)k Vk € N.
(b) Given k € N, consider the function

N—> R, m— k"

One has
Ay k™ = K" — k™ Vm e N.

The differences of k +— k™ and m +— k™ do not at all resemble the formulas for
the derivatives of a power and of an exponential in the continuous case. O

In Sect. 6.5 we will use the following simple commutation property between the
shift and difference operators to derive the discrete analogue of Taylor formula.

Example 6.12 The shift and difference operators commute. More explicitly, one has
Aol =00A.
Indeed for each k € N and each function f : N — R one has
AOf)(k) = 6f (k4 1) = 0f (k) =f(k+2) — f(k + 1),

while
AN k) = Afk+ 1) =fk+2)—fk+1).

Thus one has A(0f) (k) = 0(Af) (k). m|

The formula for the difference of a product resembles that for the derivative of a
product, except for the introduction of the shift operator:

Proposition 6.13 (Difference of a product) Iff, g : N — R then

A(fg) = AfOg+fAg.

Remark 6.14 One should note the obvious fact that despite the apparent lack of
symmetry, one has A(fg) = A(gf).
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Proof. Given k € N, one obtains

A(f(k)gk)) =f(k+ Dglk + 1) — f(k)g(k)
=fk+ Dglk+ 1) —f(k)glk + 1) +f(k)gk + 1) — f(k)g(k)
= (flk+1) —fk)gk + 1) +f(k)(g(k + 1) — g(k))
= Af(k) 0 gk) +f(k) Ag(k). O

Example 6.15 Let us calculate A 3% and then, using the product formula, A (k3¥).
One easily calculates that

A3k =31 _ 3k =3K3 1) =2 x 3~
By Proposition 6.13 one has
A3F) = Ak 35+ k A3F =31 4 k(3 — 3% = 3%(3 4 2k). O

As we have seen also in Point 3 of Example 6.11, the presence of the shift operator
in the formula for the difference of a product makes the calculation of the difference
of a power considerably less straightforward than in differential calculus.

6.2.2 Descending Factorial Powers

In the finite calculus the “good” analogue for the ordinary powers x — x" of differ-
ential calculus is given by the notion of a descending factorial power.

Definition 6.16 (Descending factorial power) Foreachk € Nand m € Z, we define
the descending factorial power k™ by setting:

ktk—1)---(k—m+1) if m > 0,

kmz 1 1fm=0,
1

ifm < 0. O
(k+1Dk+2)---(k+|m|)

The term descending powers derives from the expression of k> when m > 0; note
that in that case k™ coincides with the number S(k, m) of m-sequences of I; without
repetition (see Theorem 2.6).
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Remark 6.17 1t is easy to verify that

k!

K= 1 (k —m)!
0 otherwise.

ifk > m,

In the case m > 0 the equality is obvious if k > m, while if k < m, then
kk—1)---(k—m+1)=0

since one of the terms of the product under consideration is zero. If, on the other
hand, m < 0 one has

K = K = ! Vk € N.
k=m! = G+ ImD! ~ G+ DE+2)- (k+ Iml)

Finally, the case m = 0 is obvious.

Example 6.18 A factorial is a particular case of a descending power. Indeed, ifk € N

one has
e k!

k= — =k!.
0!
Notice also that
0 ifn>0,
0P=11 ifn=0,
L ifn<0. m]

Tnl!

Remark 6.19 Bear in mind the fact that in general K+ does not coincide with
k™ k™; actually, for m, n € Z and k > m, one has (see Problem 6.3)

R — Kk — )™,

The difference operator acts on descending powers of natural numbers in a manner
analogous to the derivative on ordinary powers.

Proposition 6.20 For any given m € Z one has

Ay k2 = mk™=L Vk e N.
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Proof. One has Ay k™ = (k + 1)™ — k™. We consider the following three cases:

m>0:(k+ D2k =Gk+1)---(k+1-m+1)—k---(k—m+1)
=k (k=m+2)((k+1) = (k—m+1))
m=0:Gk+1D2—%k0 =1-1=0=0k=L

m<0:((k+D2 - = ! - !
(k+2)~-1~(k+1—|—|m|) (1k+1)"'(k1+|m|)

T k+2) Gkt mh \k+ 14 im  k+1
1 —|m|

- (k+2)---(k+|ml]) (k+ 1)k + |m| + 1)
= mkm=1 0O

6.2.3 Discrete Primitives and Fundamental Theorem
of Finite Calculus

We now investigate the discrete analogue of the concept of primitive (or antideriva-
tive) for a function.

Definition 6.21 If f : N — R is a function defined on the natural numbers, we say
that F : N — R is a discrete primitive of f if A F = f. O

Example 6.22 (Discrete primitive of 0) The discrete primitive of 0 are the constant
functions. Indeed, clearly the difference of a constant is zero. Conversely, let F :
N — R be such that A F = 0. Then, one has

0=F(1)—F0)=---=Fn+1)—F@n) VneN;

sothat F(0) = F(1) =--- = F(n) foralln € N. O

Remark 6.23 The linearity of the operator A, proved in Proposition 6.10, yields the
linearity of the primitives: letf, g, F, G : N — R with F, G discrete primitives of f,
g, respectively, and ¢ € R. Then F + G is a discrete primitive of f + g and cF is a
discrete primitive of cf.

Every function defined on the natural numbers admits discrete primitives.

Proposition 6.24 (Existence of discrete primitives) Given any f : N — R, the func-
tion F : N — R defined by

ifk =0,

0
F(k)=[f(0)+...+f(k—l) ifk>1

is a discrete primitive for f.
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Proof. Indeed, A F(0) = F(1) — F(0) = f(0) and, for k > 1,
AFk)=Fk+1D—-F&) =FO) + - +f()—-(FO) +---+fk-1)=fk). n

In complete analogy with the known result from differential calculus, two func-
tions are discrete primitives of the same function if and only if they differ by a
constant.

Proposition 6.25 Letf, F : N — R be functions such that F is a discrete primitive
for f. Then the function G : N — R is a discrete primitive for f if and only if G =
F + c for some constant ¢ € R.

Proof. The function G is a discrete primitive of f if and only if A G = A F; by the
linearity of the operator A, this occurs precisely when A(G — F) = 0. We conclude
by Example 6.22. O

Example 6.26 Let us calculate the difference of f(k) = k> and the primitives of
g(k) = 2k. Clearly,

Af(k)y= Ak =k +1)?—k>=2k+1.
Therefore, f (k) = Kisa primitive of 2k 4 1; since 1 = A k, we have
2k = Ak — Ak = A(K*> —k).

Hence the discrete primitives of g(k) = 2k are the functions G.(k) = k* —k + c,
with ¢ constant. m|

The following result is the discrete analogue of the Fundamental Theorem of
Differential Calculus: discrete primitives allow to compute sums.

Theorem 6.27 (Fundamental Theorem of Finite Calculus) Let F,f : N — R. The
function F is a discrete primitive of f if and only if

> fk) =F@n) — Fm) = [F())}_, ¥Ym<neN. (6.27.2)

m<k<n

Proof. Let F be a discrete primitive for f. If m < n € N one has
[F(K) ey = F(n) — F(m) =
=Fn) -Fn-1)+Fn-1)—-Fn-2)+ -+ EFm+1) - F(m))

=AFn—D+---+AFm) =fa—-D+fn—=2)+---+f(m) = Z f&).

m<k<n
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Conversely, if (6.27.a) holds, then for all natural numbers n we get

fy= 2> fl)=Fn+1)~F@n=AF®),

n<k<n+1

proving that F is a discrete primitive of f. O

Definition 6.28 (The symbol »_f) Let f : N — R. We use the symbol »_f, or

Z f (k) if we wish to emphasize the variable k, to denote the set of the discrete

k
primitives of f:

D f={F:N>R:AF=f}. .

Clearly this notation is the discrete analogue of the usual symbol / f(x) dx for

the indefinite integral of classical analysis.

Remark 6.29 1In light of the notation just introduced, Proposition 6.25 can be stated
in the following concise form:

AF=f < D> f=F+R.

6.3 Discrete Primitives of Some Important Functions

In order to make the Fundamental Theorem of Finite Calculus 6.27 an effective tool,
it is now useful to understand how one finds the discrete primitives of a function
whose domain is the set of natural numbers.

6.3.1 Discrete Primitive of the Descending Factorial Powers
with Exponent # —1

The case of the exponent equal to —1 will be discussed in Sect. 6.3.4. In Proposi-
tion 6.20 we have seen that for each m € 7Z one has

Ay K™ = mk™=L,
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As a consequence, one has

Vm # —1 Zk’” = km+1 +R. (6.29.a)

Example 6.30 Let us calculate Z k% In view of (6.29.a) one gets

1<k<n

>kt = k5+R

By the Fundamental Theorem of Finite Calculus 6.27 we have

1.7 1 1 1
> k= |:§k5:| = gni— gliz gn —n(n— ---(n—4). O
1<k<n k=1 1

Example 6.31 (Telescopic sums) Consider the sum ——— . The usual
P ( P ) Oén k+ Dk +2)

trick to compute it is to use the fact that

1 1 1
k+Dk+2)  k+1 k+2

n 1 1 _1 1
n n+1)" n+1°

1
We recognize that ——————— = k=2, Using the Fundamental Theorem of Finite
(k+ 1)k +2)
Calculus 6.27 one can more generally compute, for any m > 2,

1 _ 1 —m+l}n
z S+ (k+m) z [—m+1k k=0

0<k< O0<k<n

— 1 (n—m-H _ O—m-H)

—m—+1

and hence

i (oYL (L
> arnan-(-3)+(G3)

0<k<n

1 1 1
T m+1 ((n+1)~-~(n+m—l) _(m—l)!)'
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Notice in particular that we immediately get the sum of the series

— 1 1
2 @D wm DD .

k=0

6.3.2 Discrete Primitive of Positive Integer Powers

The first powers k° and k' coincide, respectively, with the descending powers k2
and kL.

Example 6.32 Calculate the sum

> k.

0<k<n

1
Solution. Since k = k', the function ~k? is a discrete primitive for k. By the Funda-

mental Theorem of Finite Calculus 6.27 one has

k27" 2 nn—1)
> =5 25" :
0<k<n k=0
Fix now £ € N5 ,. There are a couple of methods to find the discrete primitive
of k — k¢, k € N. The first one is recursive and is more suitable for lower values
of the exponent £: it allows to find a discrete primitive of k > k* once one has the
primitives of the lower powers. Indeed, since

AL = U+ DkE =+ Dktk—1) -+ (k— £+ 1) = (£ + DK + p(k),

where p(k) is a polynomial function of degree ¢ — 1, the knowledge of the discrete

primitives of k — K,i=0,...,0—1, provides a discrete primitive P (k) of p(k), so
1

that | (kL — P(k)) turns out to be a discrete primitive of k — k‘. We illustrate

this method with the computation of the discrete primitives of k> and of k.

Example 6.33 (The recursive method) We know that k is a discrete primitive of 1.
We look for a discrete primitive of k. Since

k2
Ak3=3k2=3k(k—1)=3k2—3k=3k2—3A(7),

k2 1 1
we deduce that A (k3 + 3?) = 3k2, so that gki + Ek; is a primitive of k2. We

now look for a discrete primitive of k. Since
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AkY =4k = dk(k — 1) (k — 2) = 4k> — 12k> + 8k

=43 —12A 1k3+1k% +8A K
- 3 2 2 ’

=4k} — A (43 + 2k?)

1 1
we deduce that A (ki + 4k3 + 2k;) = 413, thus Zki + K2+ Ek; is a primitive
of k3. O

The other method is based on the fact that the usual powers k* can be written as a
linear combination of descending factorial powers. To that end, the Stirling numbers
of the second kind (introduced in Sect. 5.1) prove to be very useful. Recall that given

£,ieN, [ } denotes the number of i-partitions of /,.

Proposition 6.34 (Positive powers in term of descending powers) Fix £ € Nx,. For
all k € N one has

Z[ }k’:Ze:[ lk’ (6.34.a)

i=1 i=0

Hence the discrete primitives of k — k' are
A 3] [ PR

Proof. If k = 0 the Identity (6.34.a) is trivial, so we suppose that k > 1. The inte-
ger k' = S((k, £)) represents the number of £-sequences of ;. Now in every such
sequence, for some i between 1 and k there appear exactly i elements of I;. In Propo-
sition 5.9 we verified that if 1 < i < k, there are

[l
i| k=i~ |

£-sequences of [; in which there appear exactly i elements of I;. Thus

k

S((k, ) = k* = Z [f] K. (6.34.b)

i=1


http://dx.doi.org/10.1007/978-3-319-03038-8_5
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Since ki = 0 for i > k and f] =0 for i > ¢ then f]ki=0ifi>k0ri>ﬁ,so
that (6.34.b) may be rewritten as

l

Stk ) =k = [f

i=1

By linearity and (6.29.a) we get

¥4 1 . l 1 ;
: ML R) = g S ¥e 2 RV - S
(] (st ar) = 8] et +

L 14
1 i=1

LSNPS

i=1

i=

Example 6.35 In Example 6.33 we found the primitives of k > k2 and k +> k> via
the recursive method. We use here instead Proposition 6.34. We have

2 3
k222[21k12k2+k1 and k322[3]kl=k3+3k2+k1

i i
i=1 i=1

In particular we get the following celebrated identities:

Zn:kzz S k= D> W+
k=0

0<k<n+1 0<k<n+1

[l L] e mrD?
—[5ege] S
4+ Dr2e =1 +3) a4+ DH@n+1)

6 6

and

Zn:k3: D= D> (E+3kE 4k
k=0

O<k<n+1 O<k<n+1
1 1,7+ (n+ 1)
— | K 22 — 12
[4 the A+ . 7 Tetbhi+—
(4 Du((r—1)(n—2) +4(n — 1) +2) _ ni(n+ 1)?
= 7 = YR

Example 6.36 1tis easy to find a discrete primitive of k*. Indeed, by Proposition 6.34

we have
4

)

i=1

= k' + 7k% + 6k + k2.
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It follows from (6.29.a) that

1 7 3 1
K= k24 -k + 2k + -+ R,

In particular we get the sum of the first n fourth powers

k= 3 K
k=0

O0<k<n+1

1, 7, 3 1
S R I < BTy . ST ]
[2 + 3 * 2 + 5 oo

= %(n + Dr[154+70(n— 1) +45(n — 1)(n — 2)+
+6(n—1)(n—2)(n—3)]

2
- ”;(;n[—l+n+9n2+6n3]

6n° + 15n* + 10n° — n
B 30 ' H
We have seen in Proposition 6.34 that every (ordinary) power is a linear combina-
tion of descending factorial powers. It is remarkable that, conversely, the descending
factorial powers may also be expressed as linear combinations of ordinary powers,
and that the coefficients appearing in those combinations are, up to their sign, the
Stirling numbers of the first kind (see Sect.5.2.2).

Proposition 6.37 (Descending powers in terms of natural powers) Fix £ € Nx;.
Then for each k € N one has

4 - 4 C+igi
Kt = ZH (=D,

Proof. In view of Corollary 5.54 we know that

14
X(X+1)-~-(X+E—1)=Z[f]xi.
i=1

Let k € N; evaluating both sides of this identity at —k yields

?
D% -1 k—€+1D =(=k)(=k+1)- - (=k+£—1) = Z(—l)" m K.

i=1


http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_5
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The desired conclusion is now immediate on multiplying both sides of the preceding
equality by (—1). i

6.3.3 Discrete Primitive of the Discrete Exponential Function

Given a real number a > 0, the function N — R, k > a*

nential. One has

, is called discrete expo-
Apd' = dt — gk = (a — 1)ak,

and so

1
Ya # 1 Zakz 1ak+R.
7 —
k

It is well known that the differentiable functions f of a real variable whose deriva-

tive R -f coincides with f are given by constant multiples of the exponential function
X

x — €*. In the discrete case we have:

Example 6.38 (A f = f) We seek the functions f : N — R thatsatisfy Af =f,1i.e.,

Af(k) =fk+1) —f(k) = f(k).

One easily deduces that necessarily f'(k + 1) = 2f (k), and hence, setting ¢ := f(0),
one has f (k) = 2kc, for all k € N. Such functions are solutions of Af = f:

A2ke = 2ktle _oke — 2k¢,

Thus, the functions N — R that coincide with their difference are given by constant
multiples of the base 2 exponential function. O

Example 6.39 For given natural numbers m < n and a € R, calculate the value of

ar

Solution. If a = 1 one has z d=n—mlfa # 1, the function k —
m=<k<n
discrete primitive of k > a*: hence

isa
1

n m
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6.3.4 Harmonic Numbers and Discrete Primitives
of the Descending Factorial Power with Exponent = —1

The function that associates each natural number £ € N with the harmonic number
Hj, will turn out to be the discrete analogue of the usual logarithm function.

Definition 6.40 The harmonic numbers Hy, as k varies in N, are defined by

1 1 1 1
Hy=0, Hi=-+4+-+-+---+-, keN. o
0 k 1+2+3+ -I-k € Ny

Example 6.41 The first eleven harmonic numbers (see also Fig.6.1) are:

T | I £
0_7 1_3 2_27 3_67 4_127 5_607
49 363 761 7129 7381
He=—, Hi=—, Hg= —, Ho= ——, Hjo= —. o
20 140 280 2520 2520
Hp
30
o °
L ]
25 i
°
20 *
°
1.5 [ ]
1.0 °
05
n

1 2 3 4 E] 6 7 8 9 10

Fig. 6.1 Plotting the first eleven harmonic numbers
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Proposition 6.42 A discrete primitive of the function k — k=L =

the function F defined by F (k) := Hy for all k € N, that is,

> kL =H+R.
Proof. For each k € N one has
1 -1
AF(]() = Hk+l —Hk = k—i—_l = kf;

Proposition 6.25 then provides the desired conclusion.

Example 6.43 Let us calculate

1
2 Ty

1<k<n

173

P is given by

In view of the decomposition of rational functions into simple fractions (see, for
example, Theorem 7.110) we know that there exist real numbers a, b such that

1 a b

k(k +5) :k+k+5'

From this equation it is easy to calculate thata = 1/5 and b = —1/5. Hence one has
Sarscsl i X
1<k<n k(k + 5) 5 1<k<n k 1<k<n k + 5
1 -1 -1
=3 D =D = > k+ 4t
1<k<n 1<k<n
1 -1 -1
iz e 3 e
0<k<n—1 5<k<n+4
1 _ " 1
= 5 (HiZg — ML) = < (M —Hupa +Hs) . O

The function k +— Hy and the function x — log x, respectively the discrete prim-
itive of the function k — k= (defined on the natural numbers) and the classical
primitive of the function x — x~! (defined on reals x > 0), have the same asymp-

totic behavior (see also Fig.6.2).


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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Fig. 6.2 Comparing H,, and in
lo Hp YL L
gn quunnn®®
4 aun® A
un® AAAAAL
L et “glaaAA;Al“““‘
3 " o aaddt log(n)
[ ] “A
-'-- a“‘“‘
al w4t
Wk
™ '
A
1im &
A
N n
10 20 30 40 50
Proposition 6.44 (Harmonic numbers and logarithms are asymptotic) One has
logn <H, <logn+1 VneN; (6.44.a)

whence

H
H, ~logn forn — oco: lim = =1
n—+oo logn

Proof. The harmonic number H,,_; is the sum of the values assumed by the function
1/x on the natural numbers 1, 2, ..., n — 1 or, equivalently, the sum of the areas of
the rectangles with base [k, k + 1] and height 1/k, fork =1,...,n — 1. Since for
x € [k, k 4+ 1] one has 1/x < 1/k it follows that H,,_; is greater than or equal to the
area of the trapezoid on the function 1/x between 1 and n, and thus one has

1 1 1 "1
HnZH,,——zH,,_1=1+—+-~-+—Z/ —dx = logn.
n 2 n—1 1 X

In particular, it follows that lim H, = oo. Similarly, for each x € [k, k 4 1] one has
n—oo

1/x > 1/(k+1) and so
1 1
H,—1==+--+—
2+ +n

is less than or equal to the trapezoid on 1/x between 1 and n, so that (see Fig. 6.3)

1 1 "]
H,1—1=—+~-~~|——§/ —dx = logn.
2 n 1 X

Hence we obtain
H, -1 <logn < H,,
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0.7
0.6
0.5
0.4

0.3

0.2 e

0.1 ——

1 2 3 4 5 6 7 8 9 10

Fig. 6.3 H, -1 < / L
1 X

implying (6.44.a). Dividing the three terms of the inequality by log n one yields

H, 1
<14+

1<
~ logn

logn’

and hence H,, ~ logn. O

Remark 6.45 One of the fundamental inequalities on logarithm is
Y <log(l4x) <x V 1
— <lo > —1.
e g x) <x Vx

Setting x = 1/n, n € N5, one gets

! <1 1+1 !
—_— O p— p—
n+1 "~ g n) " n

and hence
Hn+1 —H, < log(n +1) - logn <H,—H,_.

We end this section with a couple of representation formulas of the harmonic
numbers. The first one, an integral formula due to Euler, leads to express H,, in terms
of a sum of binomials. The second one links the harmonic numbers and the Stirling
numbers of the first kind.
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Proposition 6.46 (Euler formula for harmonic numbers) For all n € N, one has
the following integral formula for H,:

1 1 —x"
H, = / I dx. (6.46.a)
0

As a consequence the following formula holds:

n
(k) . (6.46.)

| =

H, = i(—l)k—l
k=1

Proof. For each x € R one has
A+x4+-+2"Hl—-x)=1-x"

and so, for x # 1,
n—1 1 —x"
I4+x+---+x"" =

1—x"

Note that in (6.46.a) the integrand may be extended continuously to 1 by setting it

equal to lim

=lim(l4+x+---+ x"’l) = n. One sees immediately that:
x—1 —X x—1

— X

ll_xn 1 i 1 1
dv=[ Q4+x+--+x"Ddx=1+-+---+-=H,.
0 0 2 n

On setting x = 1 — u in the integral formula just obtained one finds that

Py 01— (1 —uy P — (1 =)
Hn:/ xdx:/ M(W):/ 12A=w g,
0 1—x 1 u 0 u

n

l—(1—w'=1- Z (Z) (—u)f = — Z (Z) (—D*uk

k=0 k=1

Now
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and therefore

1 n
Hn =/ (_l)kfl (n) Mk71 du

n 1 n
1
e () [ Teri () e
k=1 0 k=1
Proposition 6.47 For each n € N one has
In+1
w= 1)
Proof. By Theorem 5.52 one has
1 I
H=1+-+-+-= -
2 n n!
1 . In+1
- X M= :
JC I, ieJ
J=n-1

6.4 Formula for Summation by Parts

In this section we introduce the technique of summation by parts which is a direct
consequence of the formula for the difference of a product proved in Proposition 6.13.

Theorem 6.48 (Summation by parts formula) Let F, G be discrete primitives of
f,g: N — R, respectively. Then

ZFg:FG—Zf@G, that is form < ninN :

> Fgk) = [FOGRT_, — > fRGK+1).

m=<k<n m<k<n

Proof. By Proposition 6.13 one has A(FG) = Fg + f 0 G; therefore FG is a dis-
crete primitive of Fg 4+ f 6 G. In particular by the Fundamental Theorem of Finite
Calculus 6.27 one gets

> (Fgk) +£ (k) G (k) = [Fh)GK;,, - H

m<k<n


http://dx.doi.org/10.1007/978-3-319-03038-8_5
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The formula just proved resembles the well know integration by parts formula.
One should, however, beware the presence of the shift operator in the sum on the
right side of the equation evaluated on the primitive G.

Example 6.49 Calculate » | k2.
0<k<n

Solution. Since A2¥ =2% and Ak = 1, summation by parts with F(k) = k and
(k) = 2 yields

z K2k = Z k A2F = [k2];_ z k!

O<k<n O<k<n 0<k<n

=n2" — 257, = n2" — 2" = 2) =2"(n — 2) + 2. O

Example 6.50 Calculate » Hyand > kH.

0<k<n 0<k<n

Solution. Since A Hy = k=L and A k = 1, summation by parts with F (k) = H; and
g(k) =1 gives

D Hi= D> HiAk=[kHl_y— > AH(k+1)

O<k<n O<k<n O0<k<n

=[kHJj_y— D K k+1) =nH,— > 1=n(H,—1).

O0<k<n O0<k<n

Since n(H, —1) = [hHy —k];_,, by the Fundamental Theorem of Finite Calcu-
lus 6.27, from the previous equality we have that k Hy —k is a discrete primitive
of Hy. Since Ak?Z = 2k! = 2k, summation by parts then yields

> kHe= > HkA(%kz)

0<k<n 0<k<n
_ 2
_[szk] Zk— (k+1)*
= O<k<n
=—nH Zk_ nH—lk;n
2 k=0
0<k<n

I
SIS
~—~

T

=

|
Nl —
~
O

6.5 Discrete Taylor Series s

Many readers will certainly be aware of representations of functions of a real variable
using Taylor or Maclaurin series. In this section we shall see that there are analogous
representations for functions whose domain is N.
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If « is an operator, then for all n € N we set

1 ifn =0,
«"=logoao - -ou otherwise,
~—
n
where as usual 1 is the identity operator.
Example 6.51 Letf : N — R. For all a € N one has

07f(@) = (0 o0)f(@ =0f(a+1)=f(a+2).
More generally, for all n € N one has

0" f(a) = f(a+n). O

In order to prove the discrete version of Taylor formula we need a couple of
technical results.

Lemma 6.52 Let o,  be two operators on functions with domain N. If a and B

commute, i.e., a o B = B o«, then:

1. If m,n € None has o™ o " = B" o a™;

n

2. (@+p)=> (Z) ok o gk,
k=0

Proof. 1. For n = 0 the identity is equivalent to & = & and similarly for m = 0 it
amounts to §" = B". Fix m > 1. We prove the statement by induction on n. If n = 1,
using several times that « o 8 = 8 o &, one gets

ad"of=ao0---oxof=ao0---oacBoa=---=aoBfoao---oa=poa”.
———— —_——— —

m m—1 m—1

Let n > 1; by the inductive hypothesis one has

amoﬁnJrl :(amoﬂ")oﬁ
=(f"oa"op=p"0@" 0p)
=pg"o(Boa")=(B"oBp)oa" =B oa",

and this proves the desired identity.

2. The proof of this point parallels that of the proof of the binomial formula in Propo-
sition 2.19. Composing « + B with itself n times we obtain a sum of 2" operators of
the type

yioyso---o¥y Vi€ {a, B}

In view of the fact that the operators o and 8 commute, if in the composition con-
sidered above the operator o appears k times then one has


http://dx.doi.org/10.1007/978-3-319-03038-8_2
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y]o)/20~-~o]/n=(xko,3”_k.

Such a term appears whenever the operator « is chosen k times and the operator
is chosen n — k times from the n factors (o + ). The k terms (o + ) in which «
is chosen form a k-collection of the set of n factors, and so they may be selected

in C(n, k) = (Z) ways. The term o o " is therefore repeated C(n, k) = (Z)
times and so this is the coefficient of the operator a* o f"~* in the expansion of
(a+p)". O

Theorem 6.53 (Discrete Taylor formula) Let f : N — R be a function, and a € N.
Then

n

f(a+n)=z

k=0

k
A%f(a) nk

0 Vn € N.

Proof. Since the operators A and 1 commute, by Lemma 6.52 one has

n

9”=(A+]1)”=Z(Z)Ako]1”k:Z(Z)Ak
k=0

k=0

from which it follows that

n n

Ak
fla+m=0"fay = (Z) A= 2D |

k!
k=0 k=0

To make full use of the discrete Taylor formula one need to understand how the
operator A acts.

Example 6.54 Let us calculate A2, If f : N — R, then for each k € N one has
Af (k) = AAf(K) = Af (k+ 1) — Af (k)
=(fk+2)—fk+1)—(fk+1) —fk)
=flk+2)=2f(k+1)+f(k). o
In general, the iterations of the operator A act as follows.

Proposition 6.55 (The operator A”) For every function f with domain N one has
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A'f(a) =D (—=1)"* (’,Z) fla+k) VaneN.
k=0

Proof. Since A = 6 —1 and the two operators 6 and 1 commute, by Lemma 6.52
one has

A= (O -1)" =D (~1)"* (Z) ok 01" = (= 1)+ (Z) ot
k=0

k=0

Therefore,

n

A'f@) =D (=" * (Z) 0 f@) =D (—1)"* (Z) fla+k). o

k=0 k=0

Remark 6.56 Note that, on one hand to compute f(a + n) in the Taylor formula
(Theorem 6.53) it is necessary to know AKf(a) for each k = 1, ..., n; on the other
hand in Proposition 6.55 to compute A”f one has to know f(a + n), going round
in circles. The interest of the discrete Taylor formula resides mainly in its formal
analogy with the similar formula of differential calculus.

6.6 An Inversion Formula

The inversion formulas are very useful in many different fields. In this section we
present one version for the partially ordered set of the finite subsets of a set, ordered
by inclusion and some interesting consequences.

Proposition 6.57 (Inversion formula for set functions) Let ¢, W be two functions
defined on the subsets of I,,, for some n € N . Assume that

(T =D Y VI CI,

SCT

Then

Y(T) =D (D" Flg(s)  vr i, (6.57.a)

SCT
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Proof. Let T C I,,. By changing the summation order, we get

D (=DTElg(s) =D (=DM Dy (R)

scT scr RCS

=2 V® D (=Dl

RCT RCSCT

(6.57.b)

Now, as § varies among the subsets of 7' that contain R, T \ S varies among the
subsets of T \ R. It follows that

Z (_1)\T\S| — Z (_I)IS'\'

RCSCT S'CT\R

Foreach 0 < k < m :=|T \ R| there are (’Z) subsets of cardinality k of 7'\ R, and

therefore

m

PIRCHEEDY > =t

S'CT\R k=0 \{S'ST\R, |S'|=k}

= (m)(_l)k_ (1-=1D"=0 ifm=>=1R#T),
= e =

“ 1 ifm=0(R=T).

By (6.57.b) one has

2D Ees) = w® D (=n™

SCT RCT RCSCT
=D U@ D D =y(@). O
RCT S'CT\R

Corollary 6.58 (Inversion formula for natural functions) Let f and g be two func-
tions defined on N. Assume that

n

fay=>" (’]Z) ¢(k) VneN.

k=0

Then

gy =D (=1)"* (Z) fk) VneN. (6.58.a)
k=0
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Proof. Let n € N; for any subset S of I, we define ¥ (S) = g(|S]). We set ¢(T) =

Z ¥ (S) for every subset T of I,. Grouping together the sets of same cardinality, we

scT
get

7] 7]

PN =Dy = elSh=> > gh=> ('Z')g(k) =f(T)).

SCT SCT k=0 {SCT, |S|=k} k=0

Then by Proposition 6.57 one has

g) =yl = D (=" Plgs) = D (=1 SIF(Is)

S<I, SCI,

—Z D> DR = Z( Dis "( )f(k) .

k=0 {SCI,, |S|=k}

We now give some applications of the inversion formula. Let us start proving that
Theorem 6.53 and Proposition 6.55 are one consequence of the other through the
inversion formula.

Example 6.59 Let f:N— R and a € N. Set f(k) =fla+k) and g(k) =
A¥f (a). Then Taylor formula from Theorem 6.53 yields

fay=>" (Z) gk)  VneN,
k=0

Applying the inversion formula (6.58.a) one obtains

A"f (a)=g(n)= Z(—l)" "( )f(k) Z( " "( )f(a+k> Vn eN,

thus re-establishing the formula of Proposition 6.55. O

We now apply the inversion formula to calculate the number of derangements
(fixed point free permutations) on n elements. In Theorem 4.24 we have already
calculated this number using the Inclusion/Exclusion Principle 4.9.

Example 6.60 (Number of derangements) Let n € N and consider the n! permuta-
tions of (1, ..., n). In each permutation there are elements that are moved and others

that remain fixed. Fix an integer k between 0 and n. Then there are ways of

(n
k
choosing n — k elements which are not moved, and D; ways of moving all of the
remaining k elements (Dy := 1). Thus one has
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k=0

Set f(n) = n! and g(n) = D, for each n € N. Then from the inversion formula
(6.58.a) one obtains

n

_ n n—kgpy| _ $ n—k 1
Dn_Z(k)(—l) k!_n!(g;(—l) (n_k)!)

k=0
— ” 1 k 1
=nl 205 )
k=0
just as we found in Theorem 4.24. O

Example 6.61 (Number of surjective functions) Let n € N and ¢ > 1. In Corol-
lary 5.8 we found the number n! f; of surjective functions from I, onto I, as a

consequence of the inclusion-exclusion principle: we get it here by means of the
inversion formula. Remind that, from (6.34.a), we have

nt = Z [i] nk. (6.61.2)

Since

then (6.61.a) may be rewritten as

2D )

Set f(n) =n® and g(n) = n! [f;] Then from the inversion formula (6.58.a) one

n! [ﬁ] =2 (’,Z) D=2 (’j) (=D'n =)',

k=0 i=0

obtains

which is exactly (5.8.a). |
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The Inclusion/Exclusion Principle 4.3 can be read as a formula for the uniform
A
probability P(A) = ||,Q_|| on the subsets A of a finite set £2; namely if A}, ..., A, are

subsets of a finite set £2 then

Ay U---UA,| 6 =64+ (=)',
|£2] 1£2]

PAU---UA,) =

=& =G+ + (="',

where

S| =P@A)+ -+ P@A,,
&, =PA1NAY) +PA NA+ -+ PA,-1 NA,),

S,= D, P@A;,N-NAy,

1<ij<--<ir<n

C(n,k) summands

S, =PAIN---NA,).

Given an arbitrary set £2, an algebra .7 of subsets of §2 is a subset % C Z(£2)
containing the empty set ¥, and closed under the set-theoretic operations of union
and intersection. A real function u defined on the algebra .% is additive if u(¢) = 0,
and for any finite number of disjoint sets Ay, ..., A,

M(U Ai) =D ).
i=1 i=1

All probability functions are possible examples of additive real functions on an
algebra of subsets.

Let us show as the inversion formula yields a proof of the Inclusion-Exclusion
formula for any additive function.

Proposition 6.62 (Inclusion/Exclusion Principle for finitely subadditive functions)
Let 1 be an additive function defined on an algebra F of subsets of a space 2. Let
A, ..., A, bein F. Then
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pAL U UA) = (—D"%(ﬂAi)

p#£ICl, ieJ

:Zn:(—l)"" > u@, N4
k=1

I<ij<--<ix<n

(6.62.b)

Proof. For every subset S of I, let

ﬂ Ai\ UA,- ifS #1,,
Ag := {iel\S ieS
] ifS =1,
Notice that we have:

° AQ =Alﬂ'~'ﬂA,,;
o If S; # S, are two different subsets of I, then As, N As, = ). Indeed, assume
Sy € Sysifi € Sy \ Sy, then Ag) NA; = ¥ whereas Ag, C A;.

Forany T C I, let

Y(T) = pu@Ar),  o(T) =D ¥

scT
The sets (As)scy, being disjoint, we have

$(T) =D u(As) = u(U AS)-

scr ScT

ﬂ A, it T+ I,

U Ag = ieh\T

scr AU UA, IfT =1,

Indeed if S € T C I, then

As C ﬂAiE ﬂAi§

i€l \S iel\T

conversely, ifx € ﬂie,n\TAi andS={iel,:x ¢ A;},thenS C T andx € Ag. Onthe
other side, if S € T =1, then Ag C A; U---UA,; conversely, if x e Ay U---UA,
and S = {i € I, : x ¢ A;}, then x belongs to Ag. It follows that, for any subset T of I,,,
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wl A T #L,
o) = iel,\T
WA U---UA,) ifT =1,.

The inversion formula (6.57.a) now yields

0=pn@) =y = > (-1)"1gs)

NA

=D DBl ) A ) +r@ v 04y

SGI, i€l \S
=2 (—D”u(ﬂAi) +HAL U UAy),
W+J I, ieJ
thus proving the validity of (6.62.b). O

(L

6.7 Abel-Dirichlet Convergence Test s

In this last section we abandon finite sums, and consider an application of the tech-
niques of finite calculus to the study of the convergence of a class of numerical series.
It is not surprising that the techniques employed to calculate the partial sums

S, =ap+ -+ a,

of a given sequence (a;); can also provide convergence criteria for series: indeed,
o0

by definition the series Z ay converges if the limit lim s, exists and is finite.
n—o0

k=0
Most of the best known convergence criteria for series concern series with posi-

tive terms; thus in general they furnish criteria for absolute convergence. A notable
exception is provided by the Leibniz” test for convergence of an alternating series,
which is, indeed, often the only criterion given for non-absolute convergence. The
summation by parts formula given in Theorem 6.48 allows us to obtain a more gen-
eral test for non-absolute convergence, from which the Leibniz one may be deduced
as a special case (see Corollary 6.67).

Definition 6.63 We say that a sequence (by); has bounded partial sums if there
exists an M > 0 such that

lbo+---+bi| <M VkeN. ]

2Gottfried Wilhelm von Leibniz (1646-1716).
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oo
Remark 6.64 1f the series Z by converges, then the sequence (by); has bounded
k=0
partial sums (in fact, the sequence of partial sums (by + - - - + by); converges, and is
therefore bounded). However the sequence (by); can very well have bounded partial
sums without being convergent, as is illustrated by the sequence (by); = ((—1)") .

Proposition 6.65 (Convergence test of Abel>~Dirichlet*) Let (ay)x be a decreasing
sequence in R-o with lim a;, = 0, and let (by); be a sequence whose partial sums

k— 00
Sk = bg + - - - + by are bounded. Then the series

o0
E arby
k=0

converges.

Proof. Let a(k) = a; and B(k) = by + - - - + bx—; (with B(0) = 0). Then one has
A B(k) = by. The summation by parts formula (Theorem 6.48) yields

> abe= Y alk) ABK) = [a()BM)]j_y — D Aa(k)o B(k)

0<k<n 0<k<n 0<k<n

= a,B() — D (a1 — a)Bk+1).

0<k<n

(6.65.a)

Let M > 0 be such that |B(k)| < M for all k € N. Since |a,B(n)| < Ma, and (ay);
has limit zero, one has

lim a,B(n) = 0.

n—o0

Moreover, since (ay)y is decreasing, one obtains

> Nacpr —a)Bhk+ DI <M D" (acer — ap)l

O<k<n O0<k<n
=M Z (ax — ag41) = M(ap — a,) < May.
0<k<n
o0
If follows that the series z |(ar+1 — ax)B(k + 1)| converges; indeed, we recall that
k=0

a series with positive terms either converges or diverges to +o00. But then the series

D (ks —a)Bk +1)

k=0

3Niels Henrik Abel (1802-1829).
4Johann Peter Gustav Lejeune Dirichlet (1805-1859).
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converges (absolute convergence implies convergence). The conclusion now follows
immediately from (6.65.a). O

Remark 6.66 Rereading the proof, one notes that Proposition 6.65 continues to hold
if, instead of supposing that (a); is decreasing with limit zero, one supposes only
that (ay ), has limit zero, and that it is of bounded variation, that is,

e¢]

Dl — al

k=0
converges.

The well-known Leibniz test for alternating series may be deduced as a special
case of Proposition 6.65.

Corollary 6.67 (Leibniz test) Let (a)i be a decreasing sequence of positive terms
with lim a; = 0. Then the series

k—+00
[o.¢]
> (—Da
k=0
converges.
Proof. It suffices to set by = (—1)* and apply the Abel-Dirichlet test. O

The summation by parts formula, and most of the material expounded in this
chapter, continues to hold in the case of functions with domain N and codomain
C. In particular, the Abel-Dirichlet test also holds for sequences (by); of complex
values.

Example 6.68 Lett € R with t ¢ 2 Z. Verify that the series

>, cos(kt) >, sin(kr)
Z f and Z T

k=1 k=1

are convergent.

Solution. Using the complex exponential function one has

2 ekt & cos(kt)+zsm(kt) > cos(kt) >, sin(kz)
2T =2 =2 ;

k b
k=1 k=1 k=1 k=1

hence it is equivalent to verify the convergence in C of the series
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The sequence 1/k is decreasing and has limit 0. For a given ¢ ¢ 27 Z, the sequence
of partial sums of (e, is bounded: indeed for each m € N one has

m .
ez(erl)t

. "o 1-—
. ikt __ itk __ _
sm.—ze = 1+E(6)_—1_eit 1
k=0

k=1
and thus
1— ei(m+l)t
ml < |———— 1< - 1.
Snl < || P =Tt
An application of Proposition 6.65 then gives the desired conclusion. O

6.8 Problems

Problem 6.1 Leta, b € R. Use Gauss method to calculate
S= (a+Dbk).
k=0

Problem 6.2 Letx be a given real number. Calculate, using the perturbation method
and the result of Example 6.3, the sum

n
T, = Zkzxk.
k=0
From this deduce, for |x| < 1, the sum of the series
o0
Z k2xk.
k=0

Problem 6.3 Let k € N and m, n € Z with k > m. Prove that
kA — kM (k — m)™.

k

Problem 6.4 Find a discrete primitive of k —— .
(k+ 1Dk +2)(k+3)

Problem 6.5 Calculate

> K2k

0<k<n
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Problem 6.6 Calculate
> kst

0<k<n

Problem 6.7 Verify that A log k! = log(k + 1), and then calculate

> klog(k + 1).

0<k<n

Problem 6.8 Prove the following equality for all n > 1:

VR ny 1
2V (k) = ——Hu.

k=0

Problem 6.9 We propose an alternative proof for Proposition 5.83. Let n > 1 and
k € N. Consider the functions

n (m+k)
me—m", m— " .

1. Foreachi € N calculate A'm" := (Ao--- o A)m". [Hint: use the representation
e
i times
formula for ordinary powers in terms of descending factorial powers stated in
Proposition 6.34.]
2. Calculate A’ m’—l—k .

3. Use the Worpistzky Identity (Proposition 5.84) to conclude.

Problem 6.10 Foreveryn € Nands € R, s > 1 let

© 1 1
HY =14+—+--+—.
25 n#
Prove that
n 1 l
HY —1< [ —dx<HY ——;
I n
deduce that | |
1+ —4+ i+ — < Vs > 1. (6.10.2)
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Chapter 7
Formal Power Series

Abstract We begin here the subject of formal power series, objects of the form

[e.¢]
Z a, X" (a, € R or C) which can be thought as a generalization of polynomials.

n=0
We focus here on their algebraic properties and basic applications to combinatorics.

The reader must not be confused by the many technical, though simple, details that
are needed in a book to justify rigorously every step. In Chap. 3, we have learned
how to count sequences and collections with occupancy constraints: the number of

possible codes of 10 digits that use only four 1’s, five 2’s and one 3 is easily obtained:
10!
——. What about counting the possible codes of 10 digits that use an even number

151
gfsi’s, an odd number of 2’s and any number of 3’s? What about the validity of
the “Latin teacher’s random choice” which selects the students to test by opening
randomly a book and summing up the digits of the page? Many counting problems
can be solved using the formal power series! These are extremely useful in studying
recurrences, notable sequences, probability and many other arguments. Moreover,
they constitute a rich and interesting environment in their own right. The chapter

ends with a combinatorial proof of the celebrated Euler pentagonal theorem.

7.1 Formal Power Series: Basic Definitions

Formal power series generalize the notion of polynomial in one indeterminate.

Definition 7.1 A formal power series in the indeterminate X with real coefficients
is an expression of the form

oo
AX)=ay+aX +@mX>+ - +a, X"+ =D a,X"
n=0
© Springer International Publishing Switzerland 2016 193
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where the coefficients a,, n € N, of the series belong to R. We use:

e [X"] A(X) to denote the coefficient a, of X" in A(X);
° [XS”] A(X) to denote the polynomial ay + a; X + mX* 4 Fa, X"
o [X>"] A(X) to denote A(X) — [X="] A(X).

The element ay = [X 0] A(X) is called the constant term of A(X). Two formal

power series A(X) and B(X) are equal if and only if [X"] A(X) = [X"] B(X) for

alln € N. O

Remark 7.2 Extending the notation introduced in Definition 7.1, foreach0 # a, b €
Xl’l Xﬂ

R, it will be useful to denote by [ab } A(X) the coefficient of aT in the formal

series A(X). Observe that

bA(X)

o5 ot

The set of all the formal power series with real coefficients is denoted by the
symbol R[[X]]. Similarly, the symbol C[[ X]] denotes the set of formal power series
with complex coefficients. Most of the results do not depend on choosing R or C
as set of coefficients. Nevertheless we will concentrate on formal power series with
real coefficients.

Example 7.3 The polynomials in the indeterminate X are particular examples of
formal power series: indeed, they are precisely the formal power series having only
a finite number of non-zero coefficients. In particular, the real numbers themselves
are polynomials, and thus constant formal power series in R[[X]]. |

Remark 7.4 Tt will occasionally be useful to note the obvious fact that if A(X) is a
formal power series, then for each 0 < i < n one has

[X'TAX) = [X] ([x="] AX)).
This reduces the calculation of the coefficient of X in formal power series to that of

the degree i term in the polynomial obtained by truncating the formal power series
atadegreen > i.

7.1.1 Sums, Products, and Derivatives

It is possible to define operations of sum and product on R[[X]] which are natural
extensions of the corresponding operations for polynomials.
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Deﬁn1t10n75 (Sum and product of two formal power series) Given A(X) =

ZanX and B(X) = Zb X" in R[[X]], the sum and the product of A(X) and

n=0
B(X ) are defined respectively by

AX) +B(X) 1= D (an +b)X"

n=0

A(X)B(X) : = apby + (aohy + a1bo) X + (aohs + arby + asbg) X> + - - -

o n
= z (z a,-b,,_,-) X",
n=0 \i=0

oo
The additive inverse of A(X) = z a, X" is the formal power series
n=0

—AX) =D (—a)X"

n=0

which satisfies A(X) + (— A(X)) = 0. o

It is evident that the sum and product of formal power series with real coefficients
are commutative operations, in other words, that for all A(X), B(X) € R[[X]] one
has

A(X)+ B(X) =B(X)+ A(X) and A(X)B(X) = B(X)A(X).

Remark 7.6 If A(X) and B(X) are two formal power series, when there is no
risk of confusion, we will write [X"]A(X)B(X), rather than the less ambiguous
[X"] (A(X)B(X)), to denote the coefficient of X" in the product A(X)B(X).

The sum and product may be extended inductively in the obvious way to sums
and products of a finite number of formal power series.

Definition 7.7 (Sum and product of several formal power series) Let m € N and let

o0 o0
Za,gl)X", e, Za,(l’”)X"
n=0

n=0

be m formal power series. One sets
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(o.¢] o0 o
Za,(ll)X" + .4 Za,(l’")X" = Z (a,(ll) 4+ 4 a,(l’")) X" (7.7.a)
n=0 n=0 n=0

o0 o0 o0
(z a,(,l)X") .. (Z a’(lm)xn) = chx" (7.7.b)
n=0 n=0 n=0

with ¢, = Z algll)--‘a,ij), n e N.

Ifm=1,2,3,... we will denote the m times iterated product of A(X) with itself
by A" (X). We say that A(X) is an m-th root of B(X) € R[[X]] if A" (X) = B(X).
O

Remark 7.8 (Changing the order of summation) In a more concise fashion, one
can express (7.7.a) as

m 00 00 m
ar(lk)Xﬂ — ar(lk) X"
B(5er)-2(5)

k=1 n=| n=0

and one speaks of a change in the order of summation, by analogy with the language
used for finite sums. One should note that here we are dealing with a definition,
whereas Proposition 6.4 regarding finite sums was a consequence of the properties
of sums of real numbers.

The notion of the derivative of a formal power series will play an important role
in what follows, and it is inspired by the derivative of polynomials too.

o0
Definition 7.9 (Derivative of a formal power series) Given A(X) = Z a, X", we
n=0

use A’(X) (or A(X)") to denote the series
o
A'X) =D (na)x""
n=1

called the derivative formal power series of A(X). We thenuse A® (X) (or A” (X)),
AP (X)), ... to denote the derivatives of the formal power series A’(X), A”(X), .. ..
O
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Example 7.10 One sees easily that for all £, m € N,

(m + £)!

— XA (7.10.)

O

[X"AO(X) = (m +€) - (m + Dagm =

The linearity of the derivative for formal power series is a straightforward verifi-
cation.

Proposition 7.11 (Linearity of the derivative for formal power series) Let A(X),
B(X) be two formal power series. Then:

1. (A(X)+ B(X)) =A(X)+ B (X);
2. For every ¢ € R one has (cA(X))/ = cA'(X).

Proof. Set

AX) =D a, X", B(X)= ) b,X".
n=0 n=0
Then one has

(AX) + B(X)) =D n(ay, +b) X"

n=1

o0 o0

= Z:nanX”_l + Z:nb,lX”_1
n=1 n=1

= A'(X) + B'(X).

Moreover,

[e¢]

(cAX)) =D nlcan X" =c> na,x""' = cA'(X). O

n=1 n=1

7.1.2 The Codegree of a Formal Power Series

In the setting of formal power series, the following notion, dual to that of the degree
of a polynomial, is of particular interest. It indicates the first term of a formal power
series which is effectively present.

Definition 7.12 The codegree of a non-zero power series A(X) is the degree of the
first non-zero term:
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codeg A(X) = min{m : [X"] A(X) # 0}.

We set, for convenience, codeg 0 = +o00. O

o
Example 7.13 The codegree of Z X3 is 3. O

n=1

Analogously to the degree for polynomials, the codegree of a product of formal
power series is the sum of their codegrees; here, and in what follows, we set

a + oo = o0 forevery a € N.

Proposition 7.14 Let A|(X) and A,(X) be two formal power series. Then one has
codeg (A1(X)A>(X)) = codeg A;(X) + codeg A>(X).
More generally, if A\(X), ..., A,(X) are formal power series, then
codeg (A1(X) -+ Ay(X)) = codeg A;(X) + - - - + codeg A, (X).

In particular, for all n € N one has codeg A" (X) = n codeg A(X).

Proof. The equalities are trivial if one of the power series is 0; we thus assume
A;(X) # Oforalli. If codeg A;(X) = £ and codeg A>(X) = m then

oo o0
AX) =D a'x* and AyX) =D aPx*
k=t k=m

with a"” # 0 and a® # 0. The first non-zero term in the product A;(X)A(X) is
a”a@ X'+ The remaining assertions are obtained immediately by induction on 7.

O

The following properties are an easy consequence of Proposition 7.14.
Corollary 7.15 If A(X) and B(X) are two formal power series, then:

1. codeg A(X)B(X) = 0ifand only if codeg A(X) = 0 = codeg B(X);
2. codeg B (X) = codeg B(X) — m for all m < codeg B(X);
3. codeg B(X) > i ifand only if [ X='] B(X) = 0.



7.2 Generating Series of a Sequence 199

7.2 Generating Series of a Sequence

In the sequel a sequence (a,),cy of real numbers will be denoted simply by (a,),.
Therefore (a,), with a double n will denote a sequence, whereas a, with a single n
will denote its n-th term.

oo
Every formal power series with real coefficients A(X) = E a, X" determines the
. . n:() .
sequence (a, ), of its coefficients. To each sequence (a, ), we can, however, associate
several formal series.

7.2.1 OGF and EGF of a Sequence

There are various types of formal series associated to a sequence. In this section we
study those which appear most frequently in applications.

Definition 7.16 Let (a,), be a sequence of real numbers.

1. The ordinary generating formal series or OGF of the sequence (a,), is the
formal power series

o0
OGF(a,), = Za,,X”.
n=0

2. The exponential generating formal series or EGF of the sequence (a,), is the
formal power series

n

— X
EGF(a,), = Zan

n!’
n=0

n

X
Of course a,, = [X"] OGF(a,), and |:—'i| EGF(a,), = a,. m|
n!

Remark 7.17 Note that EGF’s are particular types of OGF’s and vice versa:

EGF(a,), = OGF (“—') . OGF(a,), = EGF(na,),.
n.

n
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Indeed
OGF (“—) - X” - Zan  _ EGF(,),:
l’l’ n .
n= O n=0
EGF (n'a,), = Zn'an = ZanX" = OGF(ay), .
' n=0

Example 7.18 Consider the sequence of factorials (n!),,. Its ordinary generating for-

mal series is
o0

OGF(n!), = »_n!X",
n=0

while its exponential generating formal series is

00 X 00
EGF(n!), = Zn!7 = Zx O

n=0 ’ n=0
When applied to generating formal series, the operations of sum and product
produce generating formal series associated to new sequences of real numbers.

Definition 7.19 Let a'V = (a(1),, ..., a™ = (a™), be sequences of real num-
bers.
1. The convolution product of aV, ..., a®™ is the sequence a'" - - - x a™ whose

n-th term is defined by

(a(l)*---*a(’”))n = Z a,ﬁll) a,ﬁm), neN.

2. The binomial convolution product of aV, ..., a is the sequence a'” < --
<& a™ whose n-th term is defined by

|
1 _ 0 (1) (m)
@V o oa™), E P Ty, e, neN. O

Example 7.20 For m = 2, Definition7.19 yields

(a(l)*a(Z))n =a(l)a(2)+a(l) ’(12)1 +. (1) (2) Za(l) (2)
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1 2 n 1 @ (1) (2) D (2)
(aV©a®), = (0)% a,g)+(1) ap_y + - +(n)a( ag
_ ( ) O
l

For example, if /"’ and a® are both the constant sequence equal to 1, the n-th terms
of a” xa® and aV & a® are

n

aV%a?) =n+1 and @V ¢ a?), = ") = 2"(see Proposition 2.56).
( n l b

i=0
O

The operations on sequences described above have their counterparts on the cor-
responding ordinary and exponential generating formal series.

Proposition 7.21 (Operations on OGF’s and EGF’s) Let (a,), and aV := (aV) .
La™ = (a,(lm))n be sequences. Then the following properties hold:

Sums:

1. OGF@®") +---+ OGF(a"™) = OGF (aV + - -- 4+ a™);
2. EGF(@a") + --- + EGF(a™) = EGF (a'V + - - + a™).

Products:

3. OGF(@")---OGF(a™) = OGF (aV %+ -xa™);
4. EGF(a")---EGF(a™) = EGF (a'V ¢+ - - &a™).

Derivatives:

5. (OGF(ay),)" = OGF ((n 4+ Dayy1),;
6. (EGF(an)n)" = EGF (au11),.

Proof. Points 1 and 2 are immediate consequences of the definition of sum for formal
power series.

3. One has
00 00 0
(z a;l)X") . (Z a’(lm)Xn) — chxn = OGF(cy),
n=0 n=0 n=0
where ¢, = Z a]gll) .. a]if) — (a(l) - *a(m))n.
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4. By Point 3 and Remark 7.17 one has

oo
XV!
a2 (m) n
(Zan n,) (Z ) 3" X" = OGF(), = EGF(nlcy),
n=0

n=0
a (m)
n
where (¢,), = *
n!'J,

a
* (L') . Therefore, for each n € N, one has
n. n

a a n!
2 ki kin § : [N (m)
Vl!cn =n! — T = —ak . ak
. P k! k! . P kil k! ™ m
Iovens m Toeves m
k1 + +hkm =n ki + +hknm=n

5. The derivative of OGF(a,,), is the formal power series

n=0 n=0

(OGF(ay),) = (Z a,,x") => na, X" =" (n+ Day X"
n=1

6. The derivative of EGF(a,), is the formal power series

[e.¢] oo

00 )& xn-1 X"
(EGF(an)n), = zan ! Znan = Zan-‘rlF- =
n=0 ’ ! n=0 :

We now see a first application of formal power series to combinatorics.

Example 7.22 1. Consider the formal power series
AX) =X+ X0+ XY AX) =X+ X"+ X+ X°,
AX) =X+ X0+ X0 AX) =X+ X3+ X+
These are the OGF’s of the sequences
aV =(0,0,1,1,1,0,0,...), a® =(0,0,0,1,1,1,1,0,0,...),
a® =1(0,0,0,0,1,1,1,0,0,...), a® =(0,0,1,1,1,1,1,...).

By Point 3 of Proposition7.21, the product A;(X)A>(X)A3(X)A4(X) is the
OGF of the convolution product ¥ xa® xa® xa™® where

2 4
(a(l) *a( )*a( ) (4)) — Z a]((:)a](cz)al(j)al(q)
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Now, since

1 ifk; €{2,3,4}, ky € {3,4,5,6},
aalal a)) = ks € {4,5,6), ks> 2
0 otherwise,

the n-th term (@ *a® »a® xa™®), coincides with the sum of as many 1’s as
there are natural number solutions to the equation

ki+ky+ks+ks=nwith2 <k; <4, 3<k;<6,4=<k3 <6, ky>2.
In Example 4.14 the reader was asked to find the number of natural solutions of
a+b+c+d=19with2<a<4,3<b<6,4<c<6,d>2.

By what we have noted above, that number is precisely the coefficient of X'° in
the product A (X)A»(X)A3(X)A4(X):

X1+ X+ xH P+ X+ X+ xHX XO x4+ =
=XIXM A+ X+ XA+ X+ X2+ XA+ X+ XA+ X+ X2+ )

XA+ X+ X0+ X+ X2+ XU+ X+ XHA+ X+ X2+ )
= [X8](1 +4X +10X2 + 18X> 4+ 26X* +32X° + 35X + 36X7 +36X8 + .. ).

Thus the desired number of solutions is 36.
2. Consider the formal power series
x> x* x¢

Here one is dealing with the exponential generating formal series of the sequence
b=1(0,0,1,1,1,0,0,...). By Point 4 of Proposition7.21, B*(X) is the EGF of
the binomial convolution product b <> b <> b <> b where

n!
bObObOb), = > mbk,bkzbk3bk4.

Now, since
1 if ki, ko, k3, k4 € {2,3,4)

bra biabia i = [O otherwise

by Theorem 3.7 the n-th term (b < b <>b < b), coincides with the number of n-
sequences in I, with occupancy sequence (ki, ky, k3, k4), where ki, ko, k3, kq vary
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in {2, 3, 4}. In Example 3.14 the reader was asked to calculate in how many ways
one could form a word of 10 letters using an alphabet {a, b, c, d} if each letter

is required to appear at least twice and at most 4 times. Here the answer to the
10

question amounts precisely to the coefficient of Tor in B*(X):

XlO X2 X3 X44 'XIO . 1 X X2

[rm]( +3'+4—!) =_1—0JX(—+;+—)

[ X2 1 X Xx?

[]e3+5)

_‘)(241)(2412)(2

-[)(+() %+ 6) @) G)
N x2 a1\ x?

bejro (4 () %+ () &) W)

10! 10!
=4 + (4) = 226 800.

21212141 21213131
3. We apply generating formal series to rediscover a formula proved in Proposi-

n 2
tion2.56. Given n € N, we calculate the sum Z (Z) . Put g, = (Z) Since
k=0
ay, = a,_i, one has

E( ) zakan .

n 2

hence, setting a := (a,),, one has Z (Z) = (a xa),. By Proposition7.21, if
k=0

A(X) denotes the OGF of the sequence a = (a,),, onehas (a xa), = [X"]A%*(X).

Since

A(X):1+(?)X+~~~+(Z)X”=(1+X)",

oneﬁndsthatAz(X) =(1+ X)z",andtherefore (axa), = [X"]AZ(X) = (Znn)
O

7.2.2 Basic Principle for Occupancy Problems

We seek to formalize what is suggested by Example 7.22 regarding the possible use
of formal power series in combinatorics.


http://dx.doi.org/10.1007/978-3-319-03038-8_3
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Definition 7.23 (Characteristic OGF and EGF of a set) Let E be a subset of N.
1. The characteristic OGF of E is the formal power series /2°F (X) defined by

%) =>" x".

nekE

2. The characteristic EGF of E is the formal power series IEGF(X ) defined by

n
=3~ o

nekE

In Point 1 of Example7.22 we made use of the characteristic OGF of the sets
{2,3,4},{3,4,5,6},{4,5,6} and {2, 3,4, 5, ...}, while in Point 2 we used the char-
acteristic EGF of the set {2, 3, 4}.

Remark 7.24 For each subset E C N, denoted by y the characteristic function of
E (see Definition 1.5), one has

Xn
P =2 xemX" and 0 =3 xem
neN neN :

We formulate now one of the fundamental links between generating formal series
and combinatorics: occupancy problems with multiplicities in prescribed sets.

Example 7.25 Let E; = {0,2,4,...}, E» ={3,6,9,...}, E5 = {0, 1, 10}. Then

(2,2,1,2,3,1) and [1,1,2,2,2,3]

are, respectively, a 6-sequence and a 6-collection of I3 with 2 € E| repetitions of 1,
3 € E, repetitions of 2, 1 € E; repetition of 3. O

Definition 7.26 Given n subsets Eq, ..., E, € Nand k > 1 we denote by

e C(n,k; (Ey, ..., E,)): the number of k-collections of I,, with k; € E| repetitions
of 1,...,k, € E, repetitions of n;

e S(n,k; (Ey,..., E,)): the number of k-sequences of I, with k; € E| repetitions
of 1,...,k, € E, repetitions of n.

We will often use the fact that, in view of Theorem 1.28, C(n, k; (E|, ..., E,))

coincides also with the n-compositions (ki, ..., k,) of k withk; € Ey, ..., k, € E,.

O
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Theorem 7.27 (Basic Principle for occupancy problems) Let k, n € N and
Ei, ..., E, be subsets of N.

1. OGF (C(n, k; (Eq, ..., En))k) = Ig]GF(X) e Igl(}F(X),' more precisely one has

C(n,k; (Er, ..., Ep) = [X*] 1% (X) - 129" (X) Vk > 0.

2. EGF (S(n, k; (Eq, ..., En))k) = IE]GF(X) . IESF(X); more precisely one has

Xk
S(n,k; (Ey, ..., Ey) = [F} 15 (X) - IE9R(X) Yk > 0.
Proof. 1. By Sect.3.2.1 one has
C(n,k; (Ey, ..., Eyp) = > Cln ks (ki k)
ke E,....,k, € E,

k4ot ky =k

= > 1.
kIEEl,...,knGEn
ki +---+k, =k

In view of Definition 7.19 and Proposition 7.21 this number is the coefficient of X* in
the product Ig]GF(X) s ISMGF(X) of the characteristic OGF’s of the sets E1, ..., E,.
2. By Theorem 3.7 one has

S, k; (Ey, ..., Ey) = > S, ks (ki ey k)

Xk
In view of Definition 7.19 and Proposition 7.21 this number is the coefficient of o

in the product IEIGF (X)--- IE”GF(X) of the characteristic EGF’sof Ey, ..., E,. 0O
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Example 7.28 In how many ways is it possible to distribute 18 mint gum drops to
6 youngsters, if Charlie must receive no more than 5 (< 5) and Al must receive at
least4 (> 4)?

Solution. Consider the sets Ec = {0, 1,...,5}, Ex ={4,5, ...}, N. The number
of gum drops that can be given to Charlie belongs to E¢; the number that can
be given to Al belongs to E4; the other 4 youngsters can receive any number of
gum drops. Each distribution of the gum drops thus corresponds to a 6-composition
(xc, X4, X3, X4, X5, Xg) 0Of 28 With xc € Ec, x4 € Eqand x; € N,i = 3,...,6. The
product

129" (X 129" (X) 19" (X) I (X) I () IR°F (X) =

= I (X) 129" (X) I (X)*

is, by the Basic Principle 7.27, the OGF of the sequence (C(6,k; (Ec, E4, N,
..., N, )))x of 6-compositions of k with the restrictions that have been imposed.
We must therefore determine
(X129 () 125F 0 1997 (x0)* =
=X+ X+ X2+ -+ X)X+ X+ X0+ A+ X+ X2+ X+ )
=XBA+ X+ X+ XX A+ X+ X2+ X+ A+ X+ X2+ X5+
=XMA+X+ X2+ -+ XA+ X+ X2+ X3+ ).

In Example7.91 we will see how to complete the calculation by means of closed
forms. For now, using a CAS for calculating the product of polynomials, one finds

XU+ X+ X2+ XA+ X+ X2+ X3+ =
=XNA+X+ X7+ + XA+ X+ X2+ X+ 4+ X2
= [X2M (1 4+6X +21X2 4+ - +85106X%* + ... 4 X12%),

There are, therefore, 85 106 ways to distribute the gum drops according to the given
instructions. O

Example 7.29 Calculate the number of possible codes of 10 digits that use only the
digits 1, 2, and 3, and in which 1 appears at least 4 times but not more than 7 times,
while 3 appears an even number of times.

Solution. Consider the sets £y = {4,5,6,7}, E; =N, E3 ={0,2,4,6,...}. The
number of 1’s present in the code belongs to E; the number of 3’s present in the
code belongs to Ej3; there can be an arbitrary number of 2’s. Thus each such code
corresponds to a 10-sequence of I3 with occupancy (ky, k2, k3) with k; € E;, i =
1, 2, 3. By the Basic Principle 7.27 the product

IEOR (O IEF (O 1597 (X)

is the EGF of the sequence S(3, k; E1, E», E3)r. We must therefore determine
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XIO
[W} 15 COIFF XOIET (X) =

XIO X4 X7 X2 X2 X4
[10!}(4!+ +7z)(+ T )(+2z+4!+ )

In Example 7.83, we will see how to complete the calculation. For the moment, using
again a CAS for calculating the product of polynomials, one finds that

Xl() X4 X7 XZ X2 X4
[10!](4!+ +7!)(+ T )(+2!+4!+ )

10 X4 X7 X2 Xl() X2 X4 XlO
=xno (G ) (xS T ) U T Tar

X4 5 X6 XlO
= [x'°] 10! S FAT g e 1201250 e ) = 12012,

There are, therefore, 12912 codes of the desired type. O

Example 7.30 (The Latin teacher’s random choice) The Latin teacher wants to select
a student to test in the class. The teacher randomly opens the book dedicated to the
philosophical writings of Cicero,! sums up the digits of the number of the page and
chooses the corresponding student from the alphabetical list. If the book has 999
pages, and the class has 27 students, determine for each student the probability of
being chosen.

Solution. The pages of the book correspond to the 3-sequences of I, = {0, 1,2, ...,
9}, except the sequence (0, 0, 0). The number of pages corresponding to the student
k, 1 <k <27, coincides with the number C (3, k; 1,0, 119, I19) of 3-compositions
(ki1, ko, k3) of k with ky, ks, ks € I)o = {0, 1,2, ..., 9}. Consider the sample space
2= 1130 {(0,0,0)}. Foreachk € {1, ..., 27}, the probability that student k will be
the unlucky one equals

C(@3, k; (Lo, 110, 10)) _ C@3, k; (110, 110, 110))
[£2] 999 :

Thanks to the Basic Principle 7.27, we have

C3, k; (1o, Lo, Lo)) = [X¥] (199 (x))° .

Now

"Marcus Tullius Cicero (106 BC—43 BC).
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A+ X+ X2+ X3+ x4 4 x5+ x5 1 xT 4 x84 x93 =

= X% +3x%0 4 6X% +10X%* +15%23 +21x2% +28x2! +36X20 + 45x19+
+55x"8 1 63x17 4 69x10 + 73X 15 4 75x 14 + 75X 13 + 73x12 + 69x ! + 63x 10+
+55x% +45x8 +36x7 +28x% +21X° + 15x* +10X3 + 6X% +3X + 1.

We see how unjust this method is: for instance student 11 is expected to be chosen
23 more times than student 1! O

7.3 Infinite Sums of Formal Power Series

As surprising as it may sound, we will sometimes need to consider infinite sums of
formal series.

7.3.1 Locally Finite Families of Formal Power Series

Let us recall how we sum formal power series. If Ag(X), ..., Ay(X) € R[[X]], then
the formal power series Ag(X) + - - - + Ay (X) is defined by setting

[X"] (Ao(X) +--- + Ay (X)) = [X"] Ao(X) +--- + [X"] An(X)

for all n € N. The coefficient of X" in a finite sum of formal power series is thus
the sum of their coefficients of X”. It is precisely the finiteness of the sum of the
coefficients of X" (rather than the finiteness of the number of formal power series)
that makes it possible to define Ag(X) + - - - + An(X).

Definition 7.31 We say that a countable family {A;(X) : i € N} of formal power
series is locally finite if for each n € N one has codeg A; (X) > n for all but a finite
number of i, or equivalently,

{i e N: [X="] Ai(X) # 0} is finite Vn € N. O

15> Remark 7.32 1t is worth noticing that a countable family of formal power series is
locally finite if and only if for each n € N all but a finite number of power series have
the term of degree n equal to zero. This is also equivalent to

lim codeg A;(X) = +o0. (7.32.a)
i—>+00
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Indeed, (7.32.a) holds if and only if for each n € N there exists ©, € N such that
codeg A;(X) > n foreachi > w,.

A particularly interesting case of a locally finite but infinite family of formal power
series is illustrated in the following result.

Proposition 7.33 Let B(X) be a non-zero formal power series in R[[ X]]. The family
{B'(X) : i € N} ofthe powers of the formal power series B(X) is locally finite if and
only if B(X) has constant term equal to zero, that is, [XO] B(X)=0.

Proof. Suppose that [X°] B(X) =0, i.e., codeg B(X) > 0. For each i € N, by
Proposition 7.14, one has
codeg B' (X) = i codeg B(X) > i

for each i € N, and hence

lim codeg B (X) = +o0.

i——+o00

Then, (7.32.a) shows that the family {B’(X) : i € N} is locally finite.
Suppose now that [XO] B(X) # 0. Then

codeg B'(X)=1i codeg B(X) =0 Vi,

therefore the family {B’(X) : i € N} is not locally finite. m|

Corollary 7.34 Let (a;); be a sequence of real numbers and B(X) € R[[X]]. The
family {a; B'(X) : i € N} of formal power series is locally finite if and only if one of
the following conditions holds:

1. All but a finite number of the a;’s are equal zero;
2. [X"1B(X) =0.

Proof. Ifa; # 0forafinite numberof i € N, then {a; B'(X) : i € N} is afinite family
of formal power series and hence clearly locally finite. Otherwise, {a; B'(X) :i €
N} is locally finite if and only if {B(X) : i € N} is locally finite: we conclude by
Proposition 7.33. O

7.3.2 Infinite Sums of Formal Power Series

Using the notion of a locally finite family of formal power series, we can define the
concept of an infinite sum of formal power series.

Definition 7.35 Let{A;(X) : i € N}bealocally finite family of formal power series.
The sum of the infinitely many formal power series A;(X), i € N, is defined to be
the formal power series
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gAi(X) = (Z [x"] Ai (X)) X",

n=0

oo
In other words, the formal power series ZAi(X ) is the formal power series
i=0

o0

whose coefficient of X" is equal to Z [X”] A;(X) (which is a finite sum by
i=0

Definition 7.31). O

Remark 7.36 1t is a simple exercise to check that the sum of a finite number
Ao(X), ..., Ay(X) of power series coincides with the infinite sum of the locally
finite family of power series {A¢(X), ..., Ax(X),0,0,0,...}.

Remark 7.37 Let0 # B(X) e R[[X]]. If [X°]B(X) = 0, and (4;); is a sequence of
real numbers, then for each i € N, one has codeg a; B/ (X) > i and so the coefficient

of X" of the formal power series Z a; B (X) is given by
i=0

oo n

[x"] (Z a,-Bf(X)) = Z a; [X"] B'(X).
i=0 i=0

Remark 7.38 The following interchange of order of summations for a locally finite

family {A;(X) : i € N} is a consequence of the given definition:

o0 o0

p”48

>

(I (IX"A: (X)) X
i=0 n=0

(IX"14; (X)) X" =D Ai(
i=0

(L
i=0

Il
S

n

Remark 7.39 1f the family {A; (X) : i € N} is locally finite, for each n € N the sum
o0

of real numbers Z [X "] A; (X) isindeed well defined, because it has a finite number
i=0
of summands. One could, in fact, extend the definition of an infinite sum of formal
power series from the case of a locally finite family to that of a family {A; (X) : i € N}
o0

of formal power series in which for each n € N the numerical series Z [X ”] A (X)
i=0

converges (absolutely); here we choose to forego a deeper discussion of this approach

since in the present text we shall have no need for such generality.
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Example 7.40 Every formal power series A(X) =ap+ a1 X +---+a, X" +--- is
the infinite sum of the monomials

Ao(X) = ag, A1(X) = a1 X, Ax(X) = X2, ..., Ap(X) = au X", . ...

The family {A; (X) : i € N} is obviously locally finite since codeg A; (X) > i for all
i and hence lim codeg A;(X) = +o0. |
i——+o0

7.4 Composition of Formal Power Series

The result obtained in Proposition7.33 allows us to define the composite of two
formal power series:

o0
Definition 7.41 Let A(X) = Za,lX” and B(X) be two formal power series. If
n=0
A(X) is a polynomial or if the constant term [X 0] B(X) of B(X) is equal to zero,
we define the composite formal power series of A(X) with B(X) to be the formal
power series obtained by formally replacing each appearance of X in A(X) with the
formal power series B(X):

oo
A(B(X)) := Y a;B'(X). o
i=0
Example 7.42 Let
AX)=14X+X++X"+--, BX)=X+X’, CX)=1+X.

Since B(X) and C(X) are polynomials and [X°]B(X) = 0, we can certainly define
B(A(X)), B(C(X)), C(A(X)), C(B(X)) and A(B(X)). By contrast, it makes no
sense to consider A(C(X)). Indeed, formally replacing each appearance of X in
A(X) with C(X), one would obtain

I+0+X)+A+X)7>+--

in which, for example, the “constant term” would involve summing an infinite number
of 1’s. Let us rather explicitly calculate

ABX)) =1+ X+X)+ X+ X 4+ X+ X+

By definition this amounts to the formal power series D(X) :=dy +d1 X +--- +
+ d, X" + - - - where for each n one has
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dy = [X"](1+ X+ XY+ + X+ XD+
=[X"]1+X+X)+-+X+X)).

Fix n. For each k € N one has

k

k
3\k __ k i v3k—i) __ k 3k—2i,
(X + X% —Z(l. X'x => L)X

i=0 i=0

therefore [X"](X + X>)* is different from zero if and only if 3k —2i =n for a
suitable integeri = 0, ..., k. This means that 3k — n is even, and 0 < 3k — n < 2k,
so that n/3 < k < n. Specifically, one has

k
[X"](X + X) = 3k2—n if 3k —nisevenandn/3 <k <n,
0 otherwise.

Therefore

" k
d =D XX +x) = > xx+xH= > (3k-n).

k=0 n/3<k<n n/3<k<n 2

3k — n even 3k —n even

Thus, for example, one has

e () orm () () ()o2o

Example 7.43 (The formal power series A(cX)) Let A(X) = ZanX” e R[[X]]
n=0

and ¢ € R. Since [X°](cX) = 0 we may compose A(X) with cX and thus obtain the

formal power series

o0 o0
A(cX) = Zan(cX)” = Zanc"X”.
n=0 n=0
In particular, for c = —1, one has
o0
A(=X) := Z(—l)”anX”. O
n=0

We can now give the definition of odd and even formal power series.
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Definition 7.44 (Odd and even formal power series) A formal power series A(X)
is said to be even if A(—X) = A(X) and odd if A(—X) = —A(X). O

The even (resp. odd) formal power series are those that have non-zero coefficients
at most for the terms of even (resp. odd) degree.

Proposition 7.45 (Coefficients of even/odd formal power series) Let A(X) be a
Jformal power series.

1. A(X) is even if and only if [X"] A(X) = O for all odd n.
2. A(X) is odd if and only if [ X"] A(X) = 0 for all even n.

Proof. Put A(X) = > a,X". One then has

n=0
o)

A(=X) = Z(—l)"anX".

n=0

Consequently A(X) is even if and only if (—1)"a, = a, for each n, or equivalently
if and only if @, = 0 for all odd n; A(X) is odd if and only if (—1)"a, = —a, for all
n, or equivalently if and only if @, = 0 for all even n. O

The following rule for “substitution of the X in a product of formal power series
holds:

Proposition 7.46 (Change of variable) Let A(X), B(X), C1(X), C2(X) and D(X)
in R[[X]] with
AX)+ B(X) =Ci(X) and A(X)B(X) = Cr(X).

If A(X), B(X) are polynomials or [XO] D(X) =0, then it is possible to replace X
with D(X) in the preceding equations, thereby obtaining

A(D(X)) + B(D(X)) = Ci(D(X)) and A(D(X))B(D(X)) = C2(D(X)).

Proof. If A(X), B(X) are polynomials, then A(D(X)) + B(D(X)) = C1(D(X))
and A(D(X))B(D(X)) = C,(D(X)) are consequences of the properties of sums

and products in R[[X]].
Suppose now that [ X°] D(X) = 0: we set

o0 o0 o o0
AX) =D aiX!, BOO =D biXI, C1(X) =D X", CX) =D ey X",
i=0 j=0 m=0 m=0

By hypothesis one has ¢ = a,, + b, and ¢? = Z a;b,,_;. It is easy to check the
i=0
first equality:



7.4 Composition of Formal Power Series 215
o0 oo
Ci(D(X)) = D e’ D™(X) = D (an + bu) D" (X) = A(D(X)) + B(D(X)).
m=0 m=0
For the second, let us fix n in N; we wish to show that
[X"T(A(D(X))B(D(X))) = [X"](C2(D(X))) -
By Remark 7.37 one has
n m
[X"] C2(D(X)) = Z P [X"]D"(X) =D aibu—i [X"] D"(X). (146.2)
m=0 m=0 i=0

We now examine [X"] (A(D(X))B(D(X))):

[X"] (A(D(X))B(D(X))) = D_[X*] A(D(X)) [X"*] B(D(X)).
k=0

Since k, n — k < n one has

[X*]A(D(X)) = Za, | D'(X) and
i=0

[x"*] B(D(X)) = ij [x"*] D! (X).

j=0

Hence

[X"] A(DX)B(D(X)) =D (Z a; [X¥] D' (X)) (Z b; [X"*] D (X))

k=0 \i=0 j=0
_ZZa,b Z | D ) [x"*] D (X)
i=0 j=0
— Zzaibj [x"] D" (X).
i=0 j=0

Bearing in mind that whenever i 4 j is greater than n one has [X"] D't/ (X) =0
and setting m =i + j, the latter equals

n

> aib; [X"] D (X) = ZZa mi [X"] D™ (X).

i+j=0 m=0 i=0
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We have thus proved that A(D (X)) B(D (X)) = C2(D(X)). |

Locally finite families of formal power series behave well with respect to sums
and products.

Proposition 7.47 Let C(X) be aformal power series, and {A;(X) : i € N}, {B;(X) :
i € N} two locally finite families of formal power series. Then {A;(X) + B;(X) : i €
N} and {C(X)A;(X) : i € N} are two locally finite families of power series and
one has

D AX) + D Bi(X) = D (Ai(X) + Bi(X)) (7.47.2)
i=0 i=0 i=0

C(X) (Z Ai(X)) =D CX)A(X). (7.47.b)

i=0 i=0
Proof. Since for eachn € N
[X"](Ai(X) + Bi(X)) = [X"]A;(X) + [X"]Bi(X)

one sees easily from the definition that {A;(X) 4+ B;(X) : i € N} is a locally finite
family of formal power series. Next one has

lim codeg(C(X)A;(X)) = codeg C(X) + lim codegA;(X) = +oo.
Jj—>+0o0 Jj—>+0o0

Therefore, by (7.32.a) {C(X)A;(X) : i € N} is also a locally finite family of formal
power series. Finally, since for eachn € N

[X"] (Z A,-(X)) +X"] (Z B; (X)) = D IX"A(X) + D [X"1Bi(X)

i=0 i=0 i=0 i=0

= > IX"I(Ai(X) + Bi(X))
i=0
= [X"]D (Ai(X) + B;(X)) and
i=0
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[X"]C(X) (Z Ai(X)) = > X IC(XO)IX" ] (Z A,-<X))

i=0 k=0 i=0

= D IXMCX) D X" 4;(X)

k=0 i=0
=2 2 IXCOIX"4:(x)
i=0 k=0

= D IX"ICOOAX) = [X"] D CX)A(X),

i=0 i=0

one obtains (7.47.a) and (7.47.b). |

7.5 Invertible Formal Power Series

o0
Consider the formal power series A(X) = 1 — X and B(X) = Z X". One checks

n=0
immediately that

AXBX)=01-X)A+X+X>+--9)
=14+(0-DX+(A-DX*+...=1.

We will say that A(X) is invertible, and that B(X) is its inverse.

Definition 7.48 A formal power series A(X) is said to be invertible if there exists
B(X)in R[[X]] such that A(X)B(X) = 1;if such a formal power series B(X) exists,
it is unique and is called the inverse of A(X); we will denote it by A~ (X). m|

Example 7.49 Let A(X) be the formal power series
=X +X— 4+ (=D)"X" .

Prove that A(X) = 1 — XA(X); deduce that A(X) is the inverse of 1 4+ X. Use this
to calculate the inverse of 1 — 3X as well.

Solution. One has

AX)=1-XU0—-X+---4+D'X"+--)=1—-XAX).
Therefore A(X)(1 + X) = 1 from which it follows that A(X) = (1 + X)~'. Since
[X°](=3X) =0, on substituting —3X for X in A(X)(1 + X) =1 by Proposi-

tion 7.46 one obtains

1= A(=3X)(1 + (=3X)) = A(=3X)(1 — 3X)
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andthus (1 —3X)™' = A(-3X) =1+3X +9X?>+ - +3"X" 4+ ... m]
It is very easy to recognize invertible formal power series.

Proposition 7.50 A formal power series in R[[X]] is invertible if and only if it has
non-zero constant term, that is, if and only if its codegree is zero.

Proof. The constant term of a product of two formal power series is the product of
the constant terms of the factors; therefore, if a formal power series is invertible, then
necessarily its constant term multiplied by the constant term of its inverse must give
1, and so certainly must be different from O.

o]
Conversely, let A(X) = ZanX" € R[[X]] with ay # 0. We must establish the
n=0
existence of another formal power series B(X) which gives 1 when multiplied by
A(X). Put

B(X) = ib,,x".
n=0

The equation A(X)B(X) = 1 is then equivalent to the infinite set of equations

Cl()b() =1
apb; +a1bg =0

Now the first of these yields by = a;, ! the second then yields
by = —ay (arbo) = —ay ' (ara; "),

and so on: in general, once one has found by, by, . .., b,_; using the first n equations,
from the (n + 1)-th equation apb,, + a1b,— + - - - + a,bp = 0 one immediately cal-
culates the value of b,,:

by = —ay (a1by_1 + - - - + ayby).

Therefore the equation A(X)B(X) = 1 has a unique solution B(X), which is pre-
cisely the inverse of A(X). m]

One obtains the following interesting result as an immediate consequence:

Corollary 7.51 Every non-zero formal power series A(X) is the product of a power
of X times an invertible formal power series.

Proof. Letm = codeg A(X). Then A(X) = X" C(X) where C(X) is a formal power
series with codeg C(X) = 0. Proposition7.50 then gives the desired conclusion. O
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Example 7.52 The formal power series A(X) =3 — X — X?is clearly invertible in
view of [XO] A(X) =3 # 0. Let us calculate its inverse A~ (X) = Z b, X" using

the method developed in the proof of Proposition 7.50. We must solve the following
system of equations

3by =1

3by —bp=0

3by —by —by=0

3bn - bn—l - bn—2 =0

or equivalently

by =1/3
by = by/3
= (b1 +by)/3

It is easy to get bg = 1/3, by = 1/3%, by = (1/32+1/3)/3 =4/3%, b3 =3+
4)/3* =7/3% by =3 x4+7)/3 =19/3, bs = (3 x 7+ 19)/3% = 40/36,..

We will get a complete description of the coefficients of A~'(X) further ahead in
Example7.55. O

The existence of the inverse allows one to obtain the following important property
with ease:

Proposition 7.53 (Vanishing of a product) Let A(X), B(X) be two formal power
series. Then A(X)B(X) = 0 if and only if A(X) =0 or B(X) =0.

Proof. Suppose that A(X) # 0; by Corollary 7.51 we may write A(X) = X" C(X)
for some m € N and invertible C (X). Therefore one has

0=AX)B(X)=X"B(X)C(X);

multiplying both terms by the inverse of C(X) one obtains 0 = X" B(X), whence
[X"] B(X) = [X"""] X" B(X) = 0 for all n € N and hence B(X) = 0. o

The following result furnishes an explicit formula for the inverse of a formal
power series with non-zero constant term: observe that any invertible formal power
series A(X) = ag+ a; X + --- can be written in the form A(X) = ay(1 — B(X))
where B(X) = 1 —a, ' A(X).

Proposition 7.54 (Inverse of a formal power series) Let B(X) be a formal power
series with [X°]B(X) = 0. Then
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(- B(X)™'=> B"(X).
n=0

Proof. The formal power series B(X) has constant term [XO] B(X) = 0; thus by
Proposition7.33 the family {B'(X) :i > 0} is locally finite. In Example7.49 we
obtained

A-X)"'"=14+X4+X>+ 4+ X"+

replacing X with B(X), in view of Proposition 7.46, we obtain:

A=BX) '=1+BX)+B*X)+---+B"(X)+---. O

Example 7.55 We again consider the formal power series A(X) =3 — X — X?
examined in Example 7.52. We now calculate its inverse using the method described
in Proposition 7.54. Isolating the constant term 3 one has

AX)=3 (1 — %(X + Xz)) =3(1 — B(X))

1
with B(X) = §(X + X?). Hence one obtains

—1 _l _ —l_loo n
A (X)_3(1 B(X)) _3§B(X).

We now explicitly determine the coefficients of A~!'(X). For each n € N we have

n

1 1
B'(X) = (X +X7)" = = > (Z) Xk (x2ynk
k=0

_ I < (n 2n—k
=% > (k) Xk,
k=0
Fix m € N. Then [X"]B"(X) = 0 foreachm < n, and, ift m > n,
m n _ m 1 $ n 2n—k __ 1 $ m n 2n—k
[X"1B"(X) = [X ]372(k)x = 3—n§[x ](k)x

k=0

U n \_ 1 n
"3 \2n—m) " 3 \m—n)"

Therefore, we have
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m —1 _ m l = n _l - m n
[X"ATN(X) = [X ]3;‘;3 (X) = 3§[x 1B"(X)

1 m e n
=_Z3n( _n)=3m+1§3 (m_n)

et (7 ()
aoo =5 (3 (D) +(5)) = 5
=5 (70« () () -5 o

It is natural to introduce the following notion in R[[ X]].

Thus, for example,

W | =

Definition 7.56 (Divisibility between formal power series) A formal power series
B(X) divides a formal power series A(X) in R[[X]] if and only if there exists a
formal power series C(X) such that A(X) = B(X)C(X). |

Remark 7.57 Aninvertible formal power series B(X) divides any other formal power
series. Indeed, given A(X) € R[[X]] one has A(X) = B(X) (B’1 (X)A(X)).

Proposition 7.58 Let A(X) and B(X) be two non-zero formal series. Then B(X)
divides A(X) if and only if

codeg B(X) < codeg A(X).
Proof. 1If A(X) = B(X)C(X) for some formal power series C(X), then
codeg B(X) < codeg B(X) + codeg C(X) = codeg A(X).
Conversely, assume ¢ := codeg B(X) < codeg A(X) := s; by Corollary 7.51 one has
AX) =X*D(X) and B(X) = X'F(X) with D(X) and F(X) invertible formal

power series. Since s > ¢, one has

AX) = X*'D(X) = X'X*'DX)F(X)F~'(X) = BX)(X*'D(X)F~'(X)).0

7.6 Fractions of Formal Power Series and Applications

A rational fraction is given by the quotient of two rational integers, a numerator
a € Z and a denominator b € Z\{0}. Two such fractions, for example 1/2 and 2/4,
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can represent the same rational number even though they have different numerators
and denominators.

One easily convinces himself that two fractions a/b and c/d represent the same
rational number if and only if ad = bc.

In a similar way it is possible to define fractions of formal power series.

7.6.1 Quotients of Formal Power Series

Let us extend the set R[[X]] of formal power series to the larger set of quotients of
formal power series.
Definition 7.59 Given two formal power series A(X) and B(X) # 0, we consider
A(X
BEX; If A (X), A2(X), 0 # Bi(X), 0 # B>(X) belong to R[[X]], we
. . A (X) Ax(X) .
identify the symbols and whenever A1 (X)B,(X) = A>(X)B;(X) in
, Bi(X) " By(X)
R[[X]]: we will say that they represent the same fraction of formal power series.
The set of all fractions of formal power series is denoted by R((X)). m]

the symbol

X ,the set R[[X]]

of formal power series becomes a subset of R((X)). We call proper fractions of
formal power series the elements of R((X)) which do not belong to R[[ X]].

We can extend the operations of sum and product defined on R[[X]] to all of
R((X)) as follows:

Definition 7.60 (Sum and product in R((X))) The sum and the product of two

AX) . C(X)
an
B(X)  D(X)

A
Identifying each formal power series A (X) with the fraction

fractions of formal power series

are defined respectively by

AX)  C(X)  AX)D(X)+ C(X)B(X)
B(X) DX) B(X)D(X)

AX) CX)  AX)C(X)

B(X) D(X)  BX)D(X)

Note that the product of fractions of formal power series is well defined in view
of Proposition7.53: indeed, it guarantees that the product of the two denominators
is never zero.

Remark 7.61 These definitions of the sum and product of fractions of formal power
series effectively extend the corresponding definitions for the sum and product of
power series: indeed,

A(X) n CX) AX)-1+C(X)-1

AX) +CX0) = — 1 -

and
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A(X) . CX) AX)CX)

AXCX) == 1 11

Remark 7.62 The motivation behind the construction of the fractions of formal

power series is that in this larger setting every non-zero element is invertible: if
A(X)

m # 0, then A(X) # 0 and
AX)B(X) 1
BX)AX) 1

X
Thus X is not an invertible formal power series, but X = T becomes invertible in
R((X)):
X1
11X

1
1

On the other hand, if A(X) is an invertible formal power series, then it is easy to

A~ N(X 1
verify that X) and are the same fraction, and hence
1 A(X)
A*I( X) = L
AKX

The following result allows us to determine and give a clear description of the
boundary between the set of formal power series and that of the proper fractions of
power series.

. . AX)
Proposition 7.63 A fraction BOX)
only if B(X) divides A(X) in R[[X]], i.e., if and only if

of formal power series belongs to R[[X]] if and

codeg B(X) < codeg A(X).

: A(X)
If instead codeg B(X) > codeg A(X), then

BX) is a proper fraction of formal

power series and one has

AX) C(X)
B(X) - Xcodeg B(X)—codeg A(X)

for a suitable invertible formal power series C(X).

Proof. The fraction 282 equals C(X) € R[[X]]ifand onlyif A(X) = B(X)C(X),

i.e., if and only if B(X) divides A(X); by Proposition 7.58 this is equivalent to the
condition on the codegrees. On the other hand, if # := codeg B(X) > codeg A(X) :=
s, then for »r = t — 5 one has, for suitable invertible series D(X) and F(X),
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AX)  X'D(X) C(X)
B(X) X'F(X) X’

’

where C(X) := D(X)F~'(X) is invertible in as much as it is a product of two
invertible formal power series. O

_ Xn+1
Example 7.64 By Preposition 7.63, foreachn € N the fraction T—x belongs to

R[[X]]. It is a polynomial. Indeed, since (1 + X + --- + X")(1 — X) =1 — X"*+!
one has " O
1-X" 1+ X4+ 4+ X"
A =1+X+---+X"

l-X ! . 1—2X —3X2
Example 7.65 By Preposition7.63, the fraction irx

is a formal power

series; let us find it. We have

1 —2X —3x? oo 1
— = (1-2X-3X)——
1+ X 1+ X

=(1-2X-3X)(1-X+X*—X"+--")
=(1+(2-DX+(-3+42+DX*+3-2-DX’+--+)
=1-3X. O

7.7 The Closed Forms of a Formal Power Series

In this section we introduce and develop the concept of a closed form for (or of) a
formal power series. This notion will allow us to make significant simplifications in
our calculations with series.

7.7.1 Maclaurin Formal Power Series and Closed Forms
Jor Formal Power Series

We recall that a real-valued function f is said to be of class ¥ around zero (in
brief f € €°°(0)), if there exists a neighborhood of 0 in R on which the function is
defined and admits derivatives of all orders.

Definition 7.66 Let f be a function in ¢ (0). We use the symbol f(X) to denote
the Maclaurin? series of the function f, more specifically, f(X) is the formal power
series

2Colin Maclaurin (1698-1746).
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f Oy 7Oy f(n)(O)X”
1! 2! n!

f(X):=f(0)+ 4+ o

Remark 7.67 The Maclaurin formal power series f(X) of a function f € €°°(0) is
the EGF of the sequence of the derivatives of f calculated at 0.

One should avoid confusion of the symbol f(X) which denotes the Maclaurin
series of the function f with the symbol f(x) which, as usual, denotes the value of
the function f calculated at the real (or complex) number x.

Example 7.68 1. The Maclaurin formal power series of the polynomial function
f(x) =ap+ax + - - + apx* is the polynomial

fX)=ay+a X +-- +axt
Indeed, one easily checks that
fO) =ay, f O =ay, ..., fP0) =klagand f™©0)=0Vn > k.

2. The Maclaurin formal power series of f(x) = e* is
2 X"

X X
et =14+ X4+ — 4+ — -
2! n!

In fact, for each n € N one has " (x) = ¢*, and consequently £ (0) = 1.

is

3. The Maclaurin formal power series of f(x) = I

1
14+ X+ X P4 X"
T—x +X+X 4+ X"+

(1 — x)n+!
F®(0) = n!. o

Here, for each n € N one has f™ (x) = from which it follows that

Remark 7.69 The equality 7

several ways:

1
X=1+X+X2+--~+X”+--- can be read in

oo
) z X' is the inverse of the formal power series 1 — X;

i=0
00

° ZXi is the Maclaurin formal power series of the polynomial function
i=0
1

1—x

X =

[l
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1 >,
e The fraction of formal power series coincides with E X'
1-X P

Definition 7.70 We say that f in °°(0) is a closed form for (or of) the power series
A(X) if f(X) = A(X), that is, if A(X) coincides with the Maclaurin formal power
series of f. O

Remark 7.71 A closed form of a formal power series is a function, NOT a formal
power series! To say that a function f in €°°(0) is a closed form of ag + a; X +
+ ---4a, X"+ ---, that is, to write

fX)=a+a X+ - +a, X"+
means precisely that

AV

VneN a,=[X"Na+a X+ - -+a,X"+--) p

Example 7.72 (Notable closed forms) Here is a list of some important closed forms;
they arise from the well-known Maclaurin series expansions of some elementary
functions.

|
4+ X4+ X244 Xy
T = LXK X
X2 X"
eX =14+ X+ 4. 4= 4.
21 7
X2 2n
Xl — 2 (=]
€08 o T ED G T
X3 X2n+1
sin Tt O Syt
€X+€_X X2 X2n
o8 2 tatotam T
eX_e—X X3 X2n+1 .
mhx— & ¢y A A
S 2 ty Tt Ty T

Example 7.73 Consider the function log(1 4 x), x > —1;foreachn € N5, its n-th

derivative is
(n—1)

_1n+1 .
=D (14 x)"

Thus one has
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o0 X"
log(1 + X) = Z(—l)"+17. N
n=1

Example 7.74 Determine a closed form for

X2 X"
X4+ —4+ i+ — 4.
2 n
Solution. For |x| < 1 the function log(1 + x) is of class ¥’*°; one has

X2 n+1Xn
log(14+X) = X = - oo (<)

from which it follows that

X2 xn
—log(l—X):X+7+-~-+7+~-~

and so x > —log(1 — x) is a closed form for the formal power series under consid-
eration. O

7.7.2  Properties of Closed Forms

Knowing a closed form for a formal power series is important in applications of the
theory since the derivatives of the closed form furnish its coefficients. It is clear that
with a CAS itis possible to find, if not a general formula, at least any desired number
of coefficients of the series.

It follows from the definition that, given a function f € €*°(0), there is exactly
one formal power series of which f is a closed form.

Example 7.75 One should beware, however, the fact that, conversely, a formal power
series does not uniquely determine a closed form. Two functions in *°(0) all of
whose corresponding derivatives have the same value at 0 yield the same Maclaurin
formal power series, and so are closed forms of the same formal power series. For
example, the function f : R — R defined by setting

—1/,\:2 if # 0
e if x ,
fx) = .
0 otherwise
is of class ¥ and all its derivatives at 0 are equal to 0. Therefore, not only the
identically zero function, but the function f also are closed forms for the zero power
series. O
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In the foregoing example we have seen that the zero power series admits a non-
zero closed form; the presence of such “spurious” closed forms spoils the uniqueness
of the closed form of a given formal power series.

Proposition 7.76 Two function in €°°(0) are closed forms of the same formal power
series if and only if their difference is a closed form of the zero formal power series.

oo
Proof. If f and g are closed forms of a formal power series A(X) = Z a, X", then
n=0

for each n € N one has
(f =)0 = f"(©0) = g"(0) = nla, — a) =0

and so f — g is a closed form of the zero formal power series. O

Theorem 7.77 Every formal power series A(X) admits a closed form. If, moreover,
r = codeg A(X), then every closed form for A(X) is of the type x — x"h(x) with h
in €*°(0), and h(0) # 0.

[o¢]
Proof. Given the formal power series A(X) = Z 1719.¢ k, by aresult of Emile Borel®
k=0
[30, pp. 300-301] there exists a function in €>°(0) such that f™(0) = nla, for
each n € N: hence one has f(X) = A(X). If codeg A(X) = r, then the derivatives
£%(0) are zero fork =0, ..., r — 1, while £ (0) # 0. Suppose that f is of class
€ on]—§,d[, with § > 0. Taylor’s formula with remainder in integral form (see
[2, Theorem 7.6]) then yields

(r—1)
FG) = FO + FOx 4 IO

(r—1)!
1 ' r—1 p(r)
=m/o(x—t) FPdr Vx| <.

i T O de
=y

Putting ¢+ = xu one obtains

1
fx) = xr/ (1 —w) O xu) du.
0
1
Since f is of class €, the function /(x) := / (1 —uw) ™' FOxu) du is, by well-

0
known results on derivation under the integral symbol, of class 4> on ] — 8, §[;
furthermore,

70

r

U= "0
[0 -] =10

# 0,

r

1
h(0) = / 1 —w) 0 du = —
0

3Emile Borel (1871-1956).
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and f(x) = x"h(x) for each x €] — 6, §[. |

Remark 7.78 We will see in Theorem 8.7 that whenever the formal power series
converges in some non-zero point, then its sum function is one of its closed forms.

It is convenient to recall the definition of the extension by continuity of a function.

Definition 7.79 (Extension by continuity) Let f be a continuous function defined on
I\ {x1,...,xn}, where [ is an interval and x1, ..., x,, € I. Assume that the limits
{; == lim f(x),i =1,...,m,exist and are finite. The extension by continuity of

X—>X;

f to [ is the continuous function defined by

[f(x)ifxel\{xl,...,xm}
s

L if x = x; (i=1,...,m). O

The following result will allow us to make profitable use of the notion of closed
form for a formal power series.

Proposition 7.80 (Conservation laws of closed forms) Let f be a closed form for
the formal power series A(X) and g a closed form of the formal power series B(X).

1. f + g is a closed form for the formal power series A(X) + B(X):
(f + &) (X) = A(X) + B(X).
2. fg is a closed form for the formal power series A(X)B(X):
(f&)(X) = A(X)B(X).

3. If B(X) is an invertible formal power series then 1/ g is a closed form for B~ (X):
1 —1
—(X) =B (X).
8

4. If A(X)/B(X) is a formal power series, then the extension by continuity of f/g
is one of its closed forms:

(f/89)(X) = A(X)/B(X).
5. f'is a closed form for the formal power series A'(X):
(X)) =A'(X).

6. If B(X) = A'(X), then the primitive of g(x) which equals [X°]A(X) in 0 is a
closed form for A(X).
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7. If the composition A(B(X)) is defined, then f o g is one of its closed forms:

(f 0 8)(X) = A(B(X)).
8. Ifc € R, then f(cx) is a closed form for A(cX).

Proof. We set

oo oo
AX) = Zaka, B(X) = Zka".
k=0 k=0
By the definition of closed forms one has

n —

(n) (n)
[P0, 8O,

, b, = Vn € N.
n! n!

Fix n € N. We proceed to verify the various points.

(O () M
1'(f+i? O _f ():’g ()=an+bn=[X"](A(X)+B(X)).

2. Using the Leibniz formula for the n-th derivative of a product (see Theorem 3.26,
(3.26.b)) one immediately obtains

n

> (Z) FO 8" (0)

YW _ i L0050
nto n! Kln — !

k=0
n (k) 0 (n—k) 0 n
f k'( )%/E)v) =" @b,y = [X"] (AX)B(X)).

k=0

k=0

3. Foras much as g(0) = [XO] B(X) # 0, the function 1/g belongs to €*°(0). Since
(1/g)g = 1 by Point 2 one has (1/g)(X)g(X) = 1, thatis, (1/g)(X)B(X) =1, so
that (1/g) is a closed form for B~!(X).

4. By Proposition7.63 A(X)/B(X) is a formal power series if and only if s :=
codeg A(X) > codeg B(X) =: r. By Theorem7.77 one has f(x) = x*fj(x) and
g(x) =x"g1(x) with f1, g1 € €°°(0), f1(0) #0 and g(0) # 0. There exists a
neighborhood U of zero such that for all x € U one has g;(x) # 0 and hence
g(x) = x"g1(x) # Oforall x € U\{0}. Then the functionx — f(x)/g(x) isdefined
in U\{0} and

im L9 i e 160
im = limx
x—0 g(x) x—=0 g1(x)

exists and is finite. It is easy to verify that the extension by continuity & of f/g
X

coincides on U with the function x +> x*~" % and it is of class €*° in U. Then
81X
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one has ¥ ¥ Alx
h(X)ZXﬁrfl( )zf( ): ( ).
g1(X)  gX) B(X)
(fH™©0)  fUD(0) SOT(0) n . .
5. - = . =mn+ l)m = (n+ 1) [X""'] A(X) which coin-

cides with [X"] A'(X) by (7.10.a).
o0

6. One has B(X) = A'(X) = Z kap X*~'. Since g(x) is a closed form for B(X) =

k=1
g*“ D (0)
A’(X), for each k > 1 the identity ka; = W holds, and from this it follows
) ' '
that a;, = TR Define £(x) := / g(x)dx + [XO]A(X); one then has
: 0

2(0) = [X°]JA(X) and
e 0) = g“7V(0) = klax = KI[X" A,

so that £ is a closed form for A(X).
# 7. Since g(0) = [X°]B(X) = 0, clearly one has

(f 09)@(0) = f(g(0) = £(0) = [X"]A(X) = [X"]A(B(X)).
We now check that

(f 08)™(0)

—— = [X"JA(B(X))
n:

for all n > 1. Faa di Bruno’s chain rule (5.25.b) yields

(f 08)™(0) _ Z”: F®(0) > g™ g™0)

n! k! n! ng!

(7.80.2)

=>a D byby.

k=l (..., ny) € Nx
ny+---+ng=n

Now, since by = 0, foreach k = 1, ..., n one has precisely
k
[X"B*(X) = Z by, - by, = z by, -+ by,
(ng,..., ng) €N (nl,”.,nk)eNzl
ny+--+ng=n np+---+ng=n

and thus from (7.80.a) we find that for each n > 1


http://dx.doi.org/10.1007/978-3-319-03038-8_5
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(I’l) n n
LoOT -3 alx "B 00 = DX (@B 0)
: k=1 k=1
=[x"] (Z akBk<X>) =[x"] (Z akBk<X>) = [X"]A(B(X)).
k=0 k=0
8.Indeed, A(cX) = Z c"a, X" while, for each n, the n-th derivative of the function
f(cx) is given by nzodn
M(0) =c"f"M(0) = c"ayn!. o
dx"

Remark 7.81 Proposition7.80 is of fundamental importance. In fact, it allows one
to pass from the equality between sums, products, composites, and inverses of formal
power series to an equality between the corresponding closed forms, and vice versa.

Example 7.82 Let
2 X3
AX)=1-X+X>—-X*+-.., and B(X)=X+7+?+-~- )
Given that [ X°] B(X) = 0, the formal power series A(B(X)) is well defined: let us
calculate it. On setting

ABX) =co+caX+-+c, X"+ ---

one has

e =[X"1 D (=DFBE) =D (=D [x"] B
k=0

k=0

n X2 k n X2 X" k
=Z<—1>’“[X"](x+2—!+---) =Z(—1)"[X"](x+?+m+ﬁ) :
k=0 k=0

Proceeding in this way, the calculation of the coefficients ¢, appears to be rather
complicated. If, however, we use the concept of a closed form, the calculation turns

and ¢* — 1 are closed forms for

out to be immediate. Indeed, the functions
A(X) and B(X) respectively, and so

+x

AX) = and B(X)=e%X — 1.

1+ X

By Point 5 of Proposition 7.80, the function e " is aclosed form for

A(B(X)) and so

T+ -1
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2

X n+1Xn
AB(X) =" =1=X+ ot DT

from which it follows immediately that ¢, = (—1)"*!/n!. m]

Here are some examples illustrating the usefulness of the closed forms machinery
in applications.

Example 7.83 We reconsider Example 7.29. To determine the number of possible
10-digit codes using the symbols 1, 2 and 3in which 1 appears at least 4 times but
not more than 7 times, while 3 appears an even number of times, we were led to
calculate the coefficient of X'°/10! in the product of the characteristic EGF’s of the
sets £y ={4,5,6,7}, N, E5 ={0,2,4,6,...}. Now by Example7.72 and Point 2
of Proposition 7.80 one has

X7 g EGF v JEGF
[W] (IESF (X IFSF (O TESF (X)) =

'XIO X4 X7 X2 X2 X4
S SV (e x+ 4+ 2+ 2 4.
_10!}(4'+ +7')(+ T )(+2'+4'+ )

X0 e X3 y X
= 170' E—’—"—T e CoS

B L X3 Y+l
~ 1o att 2
1T x° 1(2)()6 X(2X)5 X2 2x)* X3 2x)3
~ 2170 o T s 6! 4! 71 3!
_1 X6 10\ X° 10\ x° 10\ x°
A 95 2404 293 A
[10]( ( )1ov+ (5)10!Jr (6)10!+ (7)101)

l\)\>~ N\

AEE) (@)

Example 7.84 Let us determine the inverse in R[[X]] of the formal power series

X2 X"
Y= 14X+ +. +7+~-~

21
. 1 . . . .
Given that — = e™, one deduces immediately from Proposition7.80 (Points 3 and

8), that
2

- X npr X"

Yl =X+ (D) —
2! n!

is the inverse in R[[X]] of eX. m|

Proposition 7.85 Let f be a closed form for a formal power series A(X).

1. If f is even then A(X) is even.
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2. If f is odd then A(X) is odd.

Proof. By Point 8 of Proposition7.80 we know that f(—x) is a closed form for
A(—X).If f iseven one has f(x) = f(—x) for all x and so A(X) = A(—X), that
is, A(X) is even; if f is odd one has — f(x) = f(—x) for all x and thus —A(X) =
A(—X), thatis, A(X) is odd. O

X

Example 7.86 Letus determine the coefficients of the formal power series e " cos X.

Since the function x — e* cos x is even, by Proposition 7.85 one has

[X”]eX2 cos X = 0 for all odd n.

2n

Then [Xz"]eX2 cos X = Z[Xi]ex_ [X?"~'] cos X since both the functions x > e
i=0

and x — cos x are even, we have

1

" ‘ ‘ "1 ‘
XZn X2 X = XZz X2 XZn—Zz X = (=1 .
[X“"]e” cos E [X“]e® [ ] cos EO i!( ) —(2n 201

i=0
Definition 7.87 Let (a,), be a sequence.

1. The sequence of the partial sums of (a,), is the sequence

().

2. The binomial transform of (a,), is the sequence

(20)-) :

The following result allows us to find the OGF of the sequence of partial sums
and the EGF of the binomial transform of a sequence without difficulty.

Proposition 7.88 Let (a,), be a sequence. Then
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OGF (Z a,») = ﬁ OGF(a,), EGF (Z (Z’) ai) = ¢X EGF(ay), .
i=0 n n

i=0

Proof. 1t suffices to note that the n-th terms of the partial sums and of the binomial
transform are respectively the n-th terms of the convolution product and of the bino-
mial convolution product of the given sequence (a,), and the constant sequence (1),,.

Since and e* are respectively the OGF and the EGF of the latter sequence,

the conclusion follows immediately from Proposition7.21. O

Example 7.89 Let us determine a closed form for the formal power series

e¢] o0

nn+1)_, 1-—a)"+ (1 +a) X"
AX) = Z — X and B(X) = Z > ~
n=0 n=0
where a is any real parameter. Since
1
1+2+~-~+n=@,

A(X) is the OGF of the sequence of partial sums of (n),. Hence
1 oo

X & x (&)
AX [ Xl‘l=— Xn—l:_ Xn
X =1x 2" 1—X§" 1—)((Z )

n=0

X 1y X
T1=x\1=-Xx/)  a=-x)%¥

Consider now the formal power series B(X). One has

()3 0)e

I-a)"+(0+a)" X e ~(n .
2 a 2 _1_:0 i)

where (¢,)), = (1,0, a%,0,a* 0,a° 0, ...). Hence B(X) is the EGF of the binomial
transform of (c,),. Since EGF(1, 0, a2, 0, a*, 0, a%, 0, ...) = cosh(aX), one con-
cludes that B(X) = ¢* cosh(aX). ]
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7.7.3 OGF of the Binomials

n

The binomials ( 3

) involve two indexes k, n € N. In this section we study the OGF

n

when k is a fixed natural number, and ( X

of the sequences (Z) ) when 7 is a fixed
k

natural number.

n

Proposition 7.90 (OGF of the binomial coefficients (Z) ) Let k € N. Then

— (k+n\ o -~ (k+n\ o, 1

n=0

Hence,
OGE (" _S (7 X"—Oo ") xn = Xt 7.90.b
) =20 )X =2 )X = o 090D

Proof. We prove formula (7.90.a) by induction on k. The assertion holds for k = 0:
indeed in Example 7.68 we found that

;_1+X+X2+...—i O+tn X"
1-Xx _n=0 n :

We now suppose that the assertion holds for £ > 0, and prove that it then holds for
k + 1. By Proposition 7.88 one knows that

1 1 1

(1 = X)&+D+1 7 1 — X (1 — X)k+!

is the OGF of the partial sums of the sequence (k Z l) . By Point 3 of Proposi-
ieN

tion2.56
—(k+i\ _~ (k+i\ _ (k+n+1\ _ (k+1+n).
<\ k) =\i)~ n “\ k+1 )
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(k+”)x"
Z( )
('

i k + l—l—n)xn

n=0

therefore
1 1 B
- X(A=X)x1 " 1-X

= :
~

completing the induction.
As to (7.90.b), on multiplying each term of (7.90.a) by X* one has

Xk - k—"_ n - n - n
(I_X)kH:Zé( kn)Xk+ ZHZ;(Z)X ZZ(Z)X’

n=. n=0
which is the desired result. O

Example 7.91 We reconsider Example 7.28, the problem of determining in how
many ways it is possible to distribute 28 mint gum drops to 6 “kids” if Charlie must
receive no more than 5 gum drops (<5) while Al must receive no fewer than 4 gum
drops (>4). The solution of the problem was reduced to the calculation of the coeffi-

cient of X8 in the product of the characteristic OGF’s of the sets Ec = {0, 1, ..., 5},
_ yn+l
Es={4,5,...}, N. Remembering that T—x =1+4+---+ X" foreachn € N,

one has

[XZS]IEGF(X)IE_)SF(X)IOGF(X)At
=X+ X+ X+ 4+ X)X+ X+ X0+ A+ X+ X2+ X+ )t
1-x% , 1 1
X =
1-X" 1-X1-Xx)* (1—X)°

— [X24] ( 1 X6 _ [X24] 1 ' 18]
1-X° (1-Xx)° (1-X)° a X)6
by Proposition 7.90 the latter equals
5+24 5+18) (29 23\
( 24 )_( 18 )_(24)_(18)_85106' .

In the next example we shall see how to use the relation between the derivative
of a formal power series and the derivative of one of its closed forms.

- (X2

Example 7.92 (The derivative method) Let us find a formula for the sum s, = 12 +
+22 4 ... 4 n? of the first n squares, using the properties of formal power series.
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Let S(X) be the OGF of (s,),; by Proposition7.88 one has S(X) = —Q( )
where Q(X) is the OGF of the sequence of squares of natural numbers By Point 3

of Proposition 7.80, since

1
%= g X", the formal power series ;nxn—l has

1 ' 1
as closed form the function x — = :
1 —x (1 —x)?2

1 n—
(1—x>2:(1— ) Z”X -

Multiplying both terms by X one has
o0
(1— X)z ann ann‘
n=1 n=0

Taking the derivative once again one obtains

( X)z) z"zxnl

Finally, multiplying both sides of the last equation by X one has

oo

X /_X2+X 2 n_oo 2yn __
X((l—X)Z)_ % => n’X an = 0(X).

n=1

Therefore one finds that

2
: 0X) _ rym X+ X

=[X"]SX) =[X m_[ ”]m.

On applying Proposition 7.90 one obtains

X +X ., 00 3+ ,'
=l A = e 0> (P ) X

i=0

so that s =0, 51 = (8) =1and, forn > 2,
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3+n-—-2 34+n—1
w= (002 00)
. (n+1)n(n—1)+(n+2)(n+l)n _n(n+1)(2n+l) 0
N 6 6 N 6 '

The OGF of the sequence (Z) is straightforward when n is a fixed natural

k
number.

n

Proposition 7.93 (OGF of the binomial coefficients ( X

) )Letn € N. Then
k

OGF (’;) = (X + D"
k

Proof. Tt is enough to remark that (X 4 1)" = Z (Z) x*. O
k=0

Let us study a useful extension of the binomial symbol. In Chap. 2 we defined the

a

symbol ( ) fora, k € N; we now allow a to vary over the entire set of real numbers:

k
this will lead us to the binomial series.

Definition 7.94 (The binomial “a choose k” with a € R.) Leta € R and k € N.

The binomial quotient (or symbol) “a choose k” is the number

a@—1)---(a—k+1)

(a) if k>1,
)= k!
1 if k=0. O

Example 7.95 Given k € N, let us compute (1 22) If £ = 0, by definition one has

(1(/)2) =1.Assume k > 1.
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(')- ] G L G I ).

\S}

| —
I
| =
N——"
|
W
N
S
[\]
E
1
(98]
N

_(_l)k—lixzxzx”' 2 _(_])k_11><3><5x X (2k=3)
h k! - K12k

Multiplying both numerator and denominator by

2x4x - x2k=2)=2"""Tx (I x2x%x--x(k—=1)=2"k-1)

12\ _ o Qk=2)
(k)_kn kl(k — 1)12F x 251
1 21 (20— 1)
- 4’<k k-1

= (—1)k_] = Caty_y,

we get

1
where Cat;_| = — (

. 2(k — 11)) isthe (k — 1)-th Catalan number (see Definition 3.34).

k —
O

Example 7.96 Let j, k € N. Then

()= ()

Indeed
-\ _ —J=j=D(=j—(k=1) (_1)kj(j+1)-~-(j+k—1)
k) k! N k!
(k+( —1)! cfk+j—1
= 1M—————— 1 :
DG =0
Notice in particular that
-1\ _ k =2\ _ k
(k)_(—l) and (k)_(—l) (k+1). O
Clearly, if a € N then (i) = 0 if £ > a. Otherwise, the following estimate at

infinity holds.
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Proposition 7.97 (Order of magnitude of the sequence (2) ) Let a € R\N. There
k
is a constant* C, > 0 such that

k ka+1

(“)‘ ~Leh s e (7.97.2)

An elementary proof of the above proposition is provided in Sect.7.7.5. A shorter
proof of this result is obtained also in Example 12.75 using the asymptotic Euler-
Maclaurin formula.

Remark 7.98 1t follows from Proposition7.97 that lim k° “V=o0ifa>—1.

k—+00 k
Actually the direct proof of this fact is much simpler: indeed if —1 < a < 0 we have

(i) -
()
() -

a@—=1---(a—k+1|
k! B

a—1 a—k+1
2 k

a
1

’<1

1
< — — 0 as k > +o00. Otherwise, ifa >0and k >a + 1

and hence k“
Xlal

we have

aa—1)---(a—k+1)
k! ‘
a(a—1)---(a —[a])
k(k—1)---(k —[a])

(k—[a]—1)---2-1

(a—[a]—l)'-'(a—k—i—l)’

_a(a—1)~o(a—[a]) (a—1[a]l—1 a—k+1
_k(k—l)-~-(k—[a]) 1 k—la]—1
_a@—1)---(a—la)) f[ ja —j +1
k=1 (k—[a) 1 j—lal—1
Now, for [a] +2 < j <k,
o4l joazl
j—lal—-1 j—la]—1
and thus
4Actually, C, = _ for negative integers and Euler’s formula for the Gamma function [38,

(lal = D!
12.11] shows that C, =

) fora ¢ {0, —1,-2,...}.
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a a@a—1)---(a—[al)
(k)‘ =Dk qa)
k4 k[a]+1

T Rk — 1) - (k — [a])

ka

aa—1)---(a —la)).

k[a]-H a

We conclude since Kk~ —aD — 1 and larti — 0ask — +o0o.

Proposition 7.99 (The binomial series) Let a € R. The function x — (1 + x)% isa
closed form of the formal series

a = a 2 ... a k DR
OGF(k)k._l+aX+(2)X+ +(k)x+ :

that is

(1+X)“=1+aX+<;)X2+~--+(Z)Xk+--~. (7.99.2)

Proof. For each k € N, the k-th derivative of the function x — (1 + x)“ is

ata—1)---(a—k+ DA +x)"* =k (Z) (1 4 x)47k,

which takes the value ! (Z) for x = 0. o

1/2

Example 7.100 The explicit expansion of the formal series (1 + X)'/~ is often use-

ful. The calculation done in Example 7.95 to compute (1]/62) and Proposition 7.99
imply

e
2
I+ X2 =14+ (=D 27 Catey X" u
k=1

7.7.4 Second Degree Equations in R[[X]]

When is a formal power series the square of another series? or of a fraction of formal
power series?
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Lemma 7.101 A formal power series A(X) is a square in R((X)) if and only if
it is a square in R[[X]]. This happens if and only if m := codeg A(X) is even and
[X™]A(X) belongs to R..

Proof. Let us start proving that if A(X) is a square in R((X)), then it is a square also
in R[[X]]. If

F(X)\°
G(X)) ’

AX) = (

then on putting G(X) = X" Go(X) with G¢(X) invertible in R[[X]], one has

( FX) Y F2(X)(Gy'(X))?
A(X) - (X"’G()(X)) - X2m :

Since A(X) is a formal power series and G, 1(X ) is not divisible by X, necessarily

F(X
X% must divide F2(X), so that X" must divide F(X). If we set F|(X) := );m)
then

)

F(X)

2
AN —1 2
G(X)) = (F1(X)G, (X))

A(X) = (
and so A(X) must be a square in R[[X]].

Now, suppose that A(X) = B*(X) for some B(X) € R[[X]] and codeg B(X) =
¢. Then m = codeg A(X) =codeg B>(X) =2¢ is even and [X"]A(X)=
(IX“1B(X))* > 0.

Conversely, let A(X) = X2 C(X) with ¢y := [X°]C(X) € R-y. Then the func-
tion f, : x > /co +x belongs to €>°(0); as usual, we use f, (X) to denote
the formal Maclaurin series of f,,. Since [X°](C(X) —co) =0 we may con-
sider the composite formal power series f,(C(X) — cp). Since Cf}(C(X ) —cp) =
co+ (C(X) — ¢p) = C(X), one has

AX) = X"C(X) = X" f2(C(X) — o) = (X" o, (C(X) —¢))’. O

We can now take up the study of second degree equations in R[[X]]:
AX)Y? + B(X)Y + C(X) = 0.

Proposition 7.102 (Equations of second degree) Let A(X) # 0, B(X) and C(X)
be three formal power series. The equation

AX)Y?* + B(X)Y+C(X) =0

has a solution in the set of fractions of formal power series R((X)) if and only if the
discriminant
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A(X) = BX(X) — 4A(X)C(X)

is a square in R[[X]]. In this case, on setting A(X) = D*(X), the solutions may be
expressed as

_ —B(X)£D(X)

Y2 = 2AK) e R((X)).

Proof. Exactly as it is done in handling ordinary algebraic equations of degree two,
we can write that in R((X)) one has

ACOY? + BOOY + C(X) = A(X) (Yz MEICOVN C<X))

AX) T AX)
3 B(X) \* A(X)
- A ((Y i 2A<X)) - (2A<X>>2)

and so, by Proposition7.53, A(X)Y? + B(X)Y + C(X) = 0 if and only if

BX)\  AX)
(y i —ZA(X)) = AR (7.102.2)

or, equivalently,
AX) = QAX)Y + B(X))>.

Therefore, in order for the equation to have a solution in R((X)), the formal power
series A(X) must be a square in R((X)) and hence, by Lemma7.101, a square in
R[[X]]. Finally, if A(X) = D*(X) with D(X) € R[[X]], then from (7.102.a) one
deduces that

2 2
O:(Y—i— B(X)) _ DX)

24)) T @A)
B B(X) D(X) B(X) D(X)
- (Y+ 2A) 2A(X>) (Y+ 240 2A<X>)

—B(X)+ DX
from which it follows that Y, , = M O
’ 2A(X)

Example 7.103 Theequation (1 — X)Y? 4+ 2+ X?)Y + (1 — X?) = Ohasnosolu-
tions in R((X)). Indeed, its discriminant

AX) = Q2+ X)) —4(1 = X)(1 = X7) = 4X +4X* +4X° - 3x*
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has codegree 1 and so can not be a square in R[[X]]: we conclude by Proposi-
tion7.102. O

Example 7.104 Let us solve the equation
XY’ -Y+1=0

in R((X)). The discriminant A(X) = 1 — 4X is a square in view of Lemma7.101.
The formal Maclaurin series of the function x — (1 — 4x)!/2, is one of the square
roots of A(X). The solutions of the equation in R((X)) are therefore

1+ (1 —4X)1/2

Yi2(X) = X

In view of Proposition 7.99, one has

I+ —4X)"2=2+>" (122) (—4)"X" and
n=1

I—(-a0 =3 (122) (—4)" X",
n=l1

Since codeg(1 + (1 —4X)!'/?) =0 < 1 = codeg X, by Proposition7.58 X does not
divide 1+ (1 — 4X)'/? and so the solution Y;(X) does not belong to R[[X]]. By
contrast, since codeg(1 — (1 — 4X)12y =1 = codeg X, the solution Y, (X) belongs
to R[[X]]:
L (172 (_aynynet
YZ(X)=—§Z(H)(—4)X : o

n=1

7.7.5 A Proof of Proposition7.97 s

We give here an elementary proof of the estimate of the order of magnitude of the
a

k
k
e-translation of the first k integers:

sequence . We consider first the ¢ —defocused factorial, i.e., the product of the

k
[[o-o=k-e)k—D—e)--Q-e)1-2). 0=<e<l.
j=1

Lemma 7.105 (Defocusing the factorial) Let 0 < ¢ < 1. There exists £ €]0, 1] such
that
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k
. [TG-9

. k! . : =1
Jl:[l(]—e)~zk—£ k= +oo, ie, lim k"= — =¢.

k
[Td-2
1

Proof. We consider the sequence a; = k°® = ,k € N5, and we set

k!

k k k
by = log ay =8logk+210g(j —¢) —Zlogj =£10gk+210g (l — E)
J

j=1 j=1 j=1

To prove the thesis it is enough to show that (b;); is an increasing sequence of
negative numbers.

e by <0 forall k > 1. Indeed, since log(1 4+ x) < x for all x > —1, from (6.44.a)
we have

k
1

by SSIng—az—, = ¢(logk — Hy) < 0.
J

j=1

e The sequence (by)i>1 is increasing. Indeed

biy1 — by = elog(k + 1) — elogk + log (1 — —)

1 e
=c¢l 1+ - 1 1——).
eog( +k)+ og( k+1)

Now, given k > 1, consider the function

1 X
=x1 14+ - I ] — —— 0, 1].
@(x) xog(+k)+0g( k—i—l)’ x €[0,1]

Clearly by — by = ¢(€). Then ¢(0) = 0 = ¢(1) and for each x € [0, 1]

1

1 1
‘)=log|{l+-)——— and ") =———— <0
@ (x) Og( +k) Koy oo @ (x) TS

Therefore ¢(x) > 0 for each x € [0, 1]. Thus by — by = ¢(e) > 0. O

Proof (of Proposition 7.97). Let k> |a|+ 1. We have ’(Z)' =

la@ —1)---(a —k+ 1|
k!

. Two cases may be considered.
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e a>0:
a\| _lata—1)---(a—k+1)|
k)| k!
(la=fal=1)---(a —k+ D]
=aa—1)--(a—[al) o
k—[a]—1
[T -9
=a(a— 1)"'(0_[a])jZIT, & :=a—la].
k
Since a ¢ N then ¢ < 1; dividing and multiplying by H (j — &) yields
Jj=k—la]
k
- [TG-o
T i
[T -9
Jj=k—la]
Jlal+1
Since ) liT P = 1, from Lemma7.105 we get
[T G-9
Jj=k—la]
lim k*! (a)‘ =C,i=ala—1)--(a—[a]t,
k— 400 k

k
[1G-o
with £ = lim k° = €]0,1]. Clearly 0 < C, <a(a—1)---(a — [a]).

k—+00 k!
ea<0: set b=—a>0 and e:=1-—(b—[b]) €[0,1]. Then, since

k > lal| +1 = b+ 1, one has

a\| _1=D)(=b—=1)---(=b—k+ 1| (b]+1—¢e)---([b]+k—¢)
k]|~ k! - k! '

Since k! = 1/kb~! = 1/k!P1¢ we get
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[b]

k
[[e+i-o ] G-»
j=I

(Z)‘ _J ge =0 (7.105.2)

a+1
k kl) k!

[b]
agreeing that H(k +j—¢):=1if [b] =0. If a < 0 is an integer, then b € N

Jj=1
and ¢ = 1, therefore

k k
. . (k—1!
|| (J—e)= || (J—l)=—(b_1)!

j=Ibl+1 j=b+1

and hence for k — 400,

b
[Te+i-e
e (4] = = 1 N 1 _ 1
k kb b»-1! b-1!"  (la| =DV
Otherwise, if a is not an integer, then b ¢ N and ¢ < 1: dividing and multiplying
[b]
both terms of (7.105.a) by H( Jj — &) (we again set this quantity equal to 1 if
j=1

[b] = 0), we get

[b] k

[Te+i-o []G-2

j=1 e J=1 1

K101 k k! 5] :
[ -2
j=1
[b]
[[e+i-2
Since lim = 1, from Lemma7.105 we obtain
k—+o00 k[b]
k
[1G -2
lim kot! (“)‘ - Iim k2 = = C,.
k—+00 k [b] k—+00 k! [b]

[1G-o [[i-9
j=1 j=1

If [b] = 0 we have C, = £ €]0, 1]; otherwise
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12 1
<
[b] = llall

[Ii-o Jli-o
j=1 j=1

0<C, =

il

7.8 Rational Fractions of Polynomials s

In this section it turns out to be particularly useful to conduct our discussion over
the field of complex numbers. We recall that if P(X) =a9+a1 X + -+ a,X",
a, # 0, is a polynomial with complex coefficients and o € C, we denote by P («)
the evaluation of P(X) in «:

P(@)=ay+aa+ -+ aa".
If P(x) = 0, then « is a root of the polynomial P (X). By the Fundamental Theorem
of Algebra, every polynomial with complex coefficients may be decomposed into a
product of polynomials of degree one; precisely one has

P(X) :an(X —(X1)'°'(X—Oln)

where «p, . . ., a, are the, not necessarily distinct, roots of P (X). We call multiplicity
ofw;,i =1, ..., n, the number of factors equal to (X — «;).

7.8.1 The Method of Decomposition into Simple Fractions

Let us consider the subclass of C((X)) of fractions of polynomials.

Definition 7.106 We call rational fraction of polynomials the elements of C((X))
with P(X) and 0 # Q(X) polynomials in C[X]. m|

of the type PX)
P o)

. X+ XX
Example 7.107 The fraction of formal power series coin-
X—-X>+X3—-X*+---

1+ X
cide with the rational fraction ;: indeed
(1-X)X

A+X+X2+ X+ )1 -X)X=X=X0+XX -X>+X>—X*+...).

Definition 7.108 A rational fraction is said to be:

P(X
e Proper if it is of the form % with deg P(X) < deg Q(X);
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° SimpleifitisoftheformﬁwithaE(C,O;«éce(CandmeN. O
_aﬂl
1+ X -3x2+2x3

Example 7.109 Consider the rational fraction X

. By the Euclid-

ean division of polynomials we get
1+ X -3X* 42X = (X* - X)X — 1) + 1

1+ X —-3X>+2X3
and hence + e + =2X—-1+
fraction is the sum of a polynomial and a proper rational fraction. O

X In the same way, any rational

Hermite’s® Theorem, for which we give only the statement, asserts that every
proper rational fraction of polynomials may be decomposed into a sum of simple
ones.

Theorem 7.110 (Hermite decomposition) Let P(X)/Q(X) be a proper rational
fraction. If, for each root o of Q(X), the symbol |1, denotes the multiplicity of @ as a

root of Q(X), there exist uniquely determined complex numbers cy j, j = 1,..., [ty
such that

P(X

MO s s o

0X) & K

. . X+2 .
Example 7.111 1. Let us decompose the rational fraction —————— into sim-
X2 -3X+2

ple fractions. The roots of X?> — 3X + 2 are 1, 2 both with multiplicity 1. Thus
there exist a, b such that

a n b _ X+2
-1 X-2 X2-3X+2

The latter equality is equivalent to a(X —2) +b(X — 1) = X + 2, that is, to
(a+b)X —2a — b = X + 2 which, on equating coefficients, gives the system

a+b=1, 2a+b=-2.

Solving the system one finds that a = —3, b = 4 so that

X+2 =3 N 4
X2-3X+2 X-1 X-2

5Charles Hermite (1822-1901).
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is the desired decomposition.
1
2. Let us now decompose X1 into simple fractions. The roots of X> + 1 are i
and —i, both with multiplicity one. Thus there exist complex constants a, b such
that
a b 1

X—i  X+i X241

The equality is equivalent to the validity of the equation a(X +1i) + b(X — i) =
1, which gives rise to the system

a+b=0, ai —bi=1.
Solving the system, one finds that a = i/2, b = —i /2 whence

1 i/2 i/2

X2+1 X+4+i X-—i

X

(X2 4+ (X —1)?
fractions. The roots of the denominator are i, —i, both of multiplicity 1, and —1
of multiplicity 2. Hence there exist constants a, b, ¢, d such that

3. Finally, let us decompose the rational fraction

into simple

a n b n c n d _ X
X—i X+4+i X—-1 (X-=-1D2 X24+DX-1)2

This equality determines the following linear system

a+b+c =0
—2a—-2b—c+d+ib—a)=0
a+b+c+2ia—>b) =1
d—c+i(b—a) =0

which has as its solutiona = —i/4,b =i/4,c = 0,d = 1/2; therefore

—i/4 i/4 12 X
X—i X+4+i X-D2 X2+DX-1?*

[lustrating methods for easily deriving such decompositions is not among our
goals since they can in fact be found as the output of various CAS’. We mention only
the particularly simple case of distinct roots.

Proposition 7.112 Let P(X)/Q(X) be a proper rational fraction. If Q(X) has all
roots of multiplicity 1, and Q'(X) denotes the derivate of Q(X), then one has
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PO _ 5 P@/Q@

Q(X) a:Q(a)=0 X—a

X -5
Example 7.113 We use the preceding result to decompose ———— —  — into
(X —D(X —3)
simple fractions. Here

PX)=X—-5  0X)=(X—-1(X—-3)=X2—4X+3

and Proposition7.112 gives

X-5 _P()/O'() n P(3)/0'(3)
X-DX-=3  XxX-1 X-3

Since Q'(X) = 2X — 4 one has

X-5 A=Y =22 2] q

X-DX-=3  XxX-1 X-3 X-1 X-3

Q(f(; belongs to C[X]

if and only if codeg Q(X) < codeg P(X); in such a case we can always assume
codeg Q(X) =0, i.e., Q(0) # 0: indeed, for some P;(X), Q;(X) in R[[X]],

By Proposition7.63 a rational fraction of polynomials

P(X . P (X
PX) — xcodeg P(X)—codeg oco PrX) and codeg P;(X) = 0 = codeg Q;(X).
o(X) 01(X)

We now see how to deduce the coefficients of the corresponding formal power
series. First, as we have observed above, the rational fraction of polynomials is a sum
of apolynomial and a proper rational fraction. The delicate aspect is the determination
of the coefficients of the formal power series corresponding to the proper rational
fraction, since one then need only to add the coefficients of the polynomial in the
appropriate degrees.

. P(X)
Theorem 7.114 Let A(X) = a, X" = M be a formal power series with

0(0) # 0 and deg P(X) < deg Q(X). Then
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1 (&S (=7 D"y
VieN a= > = Z(n])a—,] , (7.114.2)

o:Q(a)=0 j=1

where the cq ; are the coefficients of the decomposition illustrated in Theorem7.110
and [y is the multiplicity of the root o. If, moreover, Q(X) has all its roots of
multiplicity 1, then

Ca,1 P(a)
VneN a=- 3 —t5=- 3 sig@ (4D
a:Q()=0 a:Q(a)=0

Remark 7.115 Note that a CAS allows one to immediately obtain a,,.

Proof. By Theorem7.110 one has

— . POO < Ca
A(X):Za,,X 000 Z Z —]a)/

n=0 a:Q(@)=0 j=I1

For a given root « (necessarily # 0) of Q(X) and for 1 < j < u,, one has (see
Example7.72)

L _ e 5)‘!’_(—1)/' “(—j) (—X)"
X —a) al (_a Y n an

n=0
l = ( ) X"
= Z (= 1)J+” n’
(2 = o

Therefore, on setting the coefficients of X" equal, one obtains

Mo

o
a, = [X"AX) = X" —
¥l a-Q%;—O[ ];(X_a)]
<1>f+" i (—i) 1
- 3y et ()

a:Q(x)=0 j=I1

which is what we wished to prove.
In the case for which all roots of Q(X) have multiplicity 1, one easily obtains the
simplified formula. Indeed, one has
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(=D'""cor (1) 1 (=D'"""cy
Gn = Z a \n)a Z Tttt

a:Q(a)=0 a:Q(a)=0
- Y -y 2
- ontl T AL O ()
o:Q(a)=0 o a:Q(a)=0 o Q (O[)
since cq,1 = Q(( )) by Proposition7.112. O

Remark 7.116 Since in practice we will only rarely have to deal with roots of high
multiplicity, it is worth the effort to make (7.114.a) explicit in the case of roots of
multiplicity less than or equal to 2. Bearing in mind that (see Example 7.96)

Vi eN (‘nl) = (-1, (‘nz) = (=" + 1),

from (7.114.a) one immediately obtains that when all roots have multiplicity at most

two
1 Ca,l

VneN a,= > a—n(——+( +1)—) (7.116.2)
a:Q()=0

In the case of simple roots it is not necessary to remember formula (7.114.b): it is

very easy to recover it from the decomposition in simple fractions. Indeed, once one

has written

P(X) Cm,1
oX) X —a X —a,
with «y, ..., «,, distinct non-zero roots of Q(X) it suffices to develop each single

fraction using the identity

1 00
-1 _ _ n

In fact, foreachi = 1, ..., m one has
Ci1 Ci1
X — o a;(1 — X/a;)

from which one immediately finds that

" P(X) Cil
VneN [X"] Q(X)——Z o
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Example 7.117 Determine the coefficients of the formal power series A(X) =
- X34+ X2-3Xx -1

ZanX" when A(X) =

s X+DHX -2
Solution. First, one has
X3+ Xx?-3Xx-1 X+3
= + X +2,
X+ DX —-2) X+DHX -2
. X+3
and so we calculate the formal power series B(X) = —————. We use
(X +D(X -2)

the formula (7.114.b), after having set P(X) = X +3, 0 X) =X+ )X —-2) =
X? — X — 2, sothat Q'(X) = 2X — 1. Since the roots of Q(X) are equal to —1 and
2, one has

n _ P(_l) _ P(2) _(_ n+1% _ é —n—1
B =~ Cheigen g - Y 3T
Hence one obtains
A) = BOXO) + X422 24X 4 i (- 1)”+l 2‘”“)X O
2t g '

7.8.2 The Recursive Method

Here we illustrate an alternative method for finding the coefficients of a formal power

P(X
series A(X) = % with Q(0) # 0. This method will be extended and elaborated
upon in Sect. 10.4. By setting some coefficients equal to zero if necessary, we may

suppose without loss of generality that
P(X)=po+pi X+ +p, X" and Q(X)=qo+q X+ - +gnX",

where we have set m equal to the larger of the degrees of P(X) and Q(X). Then,
since A(X)Q(X) = P(X), we have

[X"]AX)Q(X) = [X"] P(X),

that is,
aoqo = Po
apqi + aiqo = pi

(7.117.2)
aogm + -+ amqgo = Pm

de%—k =0 Vn > m.
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Note moreover that since ¢; = 0 if i > m in reality the latter equation is equiva-
lent to
Vn >m anqo + an—1q1 + - - - + an—mqm = 0. (7.117.b)

Since go # 0, Egs.(7.117.a) and (7.117.b) can be solved one at a time, obtaining the
values ag, ..., Ay, Apt1, Guia, - .. and so on.

Example 7.118 Consider once again the formal power series of Example7.117:

X+3 X+3

A= i a2y " xv-x-2

On setting A(X) = ZanX”, from the relation A(X)(—2 — X + X?) =3+ X we

n=0

deduce that
—2610 = 3, —2611 —ayg = 1

and, for eachn > 2,
—2a, —ay,_1 + a,—» =0.

Thus one has ag = —3/2, a; = 1/4 and, forn > 2,

an = % (7.118.2)

and hence

—3/2—1/4
2

/44723

a2= :—7/23’ a3_T:9/24,.... O

7.9 Linear Differential Equations s

In this section we present another useful application of closed forms for a formal
power series.

Proposition 7.119 Let A(X) = ZanX" be a formal power series and gy(x),
g1(x), ..., g.(x), g(x) functions in €*°(0), with g,(0) # 0. If in R[[X]] one has

n

> AR X)gu(X) = g(X),

k=0
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then a solution function f in € (0) of the Cauchy® problem

>y Pgx) = g )
k=0

] (0) = 0lag = ao
y'(0) = lla; = a4

[Y"P(0) = (n = D',

is a closed form for A(X).

Proof. Since the function f € €°°(0) is a solution of the differential equation under
n

consideration one has Z FRx)gr(x) = g(x). By Proposition7.80 we have the

k=0
following equality between formal power series

n

> P X)g(x) = g(X).

k=0
Consequently, on setting B(X) = A(X) — f(X) one has

n n

> BYX)g(X) =D (AYX) — fP X)) gu(X) = 0. (7.119.)

k=0 k=0

We prove that all the coefficients of the series B(X) are equal to 0, and so B(X) = 0.
The initial conditions on the function f imply that

i [X’] B(X) = i! [xi] ACX) — ! [X’] FX) =ila — FO0)=0for0<i<n—1

and so
[X]BX)=[x"]|BX)=---=[X""] B(X)=0.

Then we get

n—1 n—1
[x°] (Z B(k)(X)gk(X)) = > [X°] (B (X)gu(X))

k=0 k=0

=5 (] 890) (3] ) 0.

k=0

6 Augustin—Louis Cauchy (1789-1857).
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It then follows from (7.119.a) that [X°] B®™(X)g,(X) = 0; since [X°] g,(X) =
2,(0) # 0, one deduces that

n![X"] B(X) = [X°] B"(X) =0,

and thus [ X"] B(X) = 0. Taking the derivatives of the terms in (7.119.a) one obtains

0=">" (BYX)g(X)) =D (B (X)g(X) + BX (X)g,(X)):
k=0 k=0
since [XY1B® (X) = 0 for 0 < k < n one has
0=[x"1D" (BY(X)&(X)) = [X°1B") (X)gu(X).
k=0
Given that [ X°] g,(X) = g,(0) # 0, one has
(n + DIX"TBX) = [X"1B"D(X) =0,
and so [X"*!]B(X) = 0. Proceeding in this way we obtain
0=[X"]B"™(X)=m![X"] B(X) Vm €N,
and hence B(X) = 0. |

Example 7.120 We determine a closed form for a formal power series A(X) satis-
fying the relation
(1= X)A(X) = A(X)
and the initial condition [X 0] A(X) = 1. The differential equation
(1-x)y' =y, »0) =1

has as a solution the function f € €*°(0) defined by

fx) = ;, x €] — o0, 1.
1—x

1
By Proposition7.119 one has A(X) = T—x O
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7.10 Infinite Products of Formal Power Series s

In some applications it is useful to deal with infinite products of formal series. In this
section we study which countable families of formal series allow one to define such
a product. Notice that if By(X) and B, (X) are formal power series then

(I + Bo(X))(1 + Bi(X)) = 1+ Bo(X) + Bi(X) + Bo(X)B1(X).

More generally, if Bo(X), ..., By(X) are formal power series then
A+ By(X) - (1 +By(X) =1+ > Biy(X) -+ Bi(X).
0<k<N

0<ip<ij<---<ix <N
(7.120.a)
Consider now a countable family of formal power series {B;(X) : i € N}. In order
to extend (7.120.a), we need to be sure that the sum

> By(X)---By(X)
0<k

0<ip<i|<--<iy
is well defined, i.e., the countable family of formal power series
{Bi,(X)---Bi(X):0<ip<iy <--+<ig, keN}

is locally finite.

Lemma 7.121 Let {B;(X) : i € N} be a countable family of formal power series.
The family
{Biy(X)---B;(X):0<ip<iy<---<ik, keN}

is locally finite if and only if {B;(X) : i € N} is locally finite.
Proof. Since{B;(X) :ieN}C{B;(X)---B;,(X):0<ip<ij <---<it, keN},
clearly if the latter family is locally finite, also the smaller one is locally finite.
Conversely, let us now assume that { B; (X) : i € N} is locally finite, i.e.,

lim codeg B; (X) = +o0.

1—>00
Fix n € N; there exists i, € N such that

codeg B;(X) > n foreachi > u,,

or, equivalently, such that
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codeg Bi(X) <n = i < [iy.

k
Given k € N, since codeg B;,(X) - - - B;,(X) = Z codeg B;; (X), if
j=0

codeg (B;,(X) -+ B;, (X)) <n

then, necessarily, i, ..., iy < u,. Moreover, since 0 < iy < i; < --- < i} one has
k < iy < u,. Therefore

{Bjy(X) -+ Biy(X) : 0 <ip < i <+ < ik, k € N, codeg (Bj,(X) - B;; (X)) < n}
is a subset of the finite set
{Biy(X) -+ Bj,(X):0<ip<iy < <ix <y, 0 <k < up}s

hence {B;,(X) --- B;,(X) : 0 < iy <ij <:-- <, k € N}islocally finite. m|
The validity of Lemma7.121 ensures the consistency of the following definition.

Definition 7.122 (Infinite products of power series) Let{B;(X) : i € N}bealocally
finite family of power series. The product of the infinitely many formal power
series A;(X) := 1+ B;(X), i € N, is defined by

[Tax =]Ja+Bx):=1 +Z( > [X"]BiO(X)---Bik(X))X"EI
i=0 i=0 n=0 0<k

0<ip<iy <---<ig

Remark 7.123 1f the family {B;(X) : i € N} is locally finite, we are able to deal
with infinite sums of families of the form {0 4+ B;(X) : i € N} and infinite products
of the form {1 + B;(X) : i € N}: by chance 0 is the neutral element for sums of
formal power series, and 1 is the neutral element for product of formal power series
in R[[X]].

We will focus our interest in products of characteristic generating formal series
of sets.

Example 7.124 Let (E;);> be a family of subsets of N. The families
IEF(X)—1:ieN}, (IFF(X)—1:ieN}

are locally finite if and only if:

1. 0 belongs to all but a finite number of E;’s;
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2. Each j > 1 belongs to a finite number of E;’s.

Indeed,

in(E; \ {0}) if0 e E;
deg(129F (X) — 1) = codeg(IEFF(x) — 1) = | ™™
codeg(/; " (X) — 1) = codeg(I,” (X) — 1) 0 if0 ¢ E;

is less or equal than j € N if and only if
0 € E; and min(E; \ {0}) < j, or 0 ¢ E;. (7.124.a)

The set of i’s satisfying (7.124.a) is finite if and only if 0 € E; and min(E; \ {0}) > j
for all but a finite number of i’s, and this occurs if and only if Conditions 1 and 2
both hold. In this case, following Definition 7.122, we are thus allowed to define the
products

[o.¢] oo
[T22%F ) and [ T 159 (X). O
i=0 i=0
A remarkable fact about infinite products is that they allow one to extend Theo-
rem7.27, namely the Basic Principle for occupancy problems in 7,,. We shall deal
here with collections and sequences with terms not just in a prescribed /,,, butin N> .
Since finite sequences or collections can have non-zero repetitions fur just a finite
number of elements of N, we shall restrict ourselves to sets (E;); > of multiplicities
of i > 1 that all but a finite number contain 0.

Example 7.125 Let E, = {0, 1,n + 1} for all n > 1. Then
(3,2,2,57,3,3,2,3), [2,2,2,3,3,3,3,57]

are, respectively, a 8-sequence and a 8-collection of N> with 0 € E| repetitions of
1, 3 € E, repetitions of 2, 4 € Ej repetitions of 3, 1 € Es; repetition of 57,0 € E;
repetitions of 7, for every i € N\ {1, 2, 3, 57}. O

Definition 7.126 Let (E;);>; be a sequence of subsets of N, with 0 € E; for all but
a finite number of i > 1,and k > 1.

e C(00,k; (E;)i>1) denotes the number of k-collections of N> with k; € E; repe-
titions of i, for eachi > 1.

e S(00, k; (E;)i>1) denotes the number of k-sequences of Nx; with k; € E; repeti-
tions of i, foreachi > 1.

Notice that, for each k-collection or k-sequence with the above occupancies, then

k= Z k;; whence k; = O for all but a finite number of i. In particular, assigning
i=0

a k-collection with k; € E; repetitions of i for each i is equivalent to have what we

shall call a infinite composition of k, namely a sequence (k;);>; with k; € E; for all

iandk = k;. O

i>1
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Theorem 7.127 (Basic Principle for occupancy problems in Ns;) Let {E; : i €
N} be a countable family of subsets of N, satisfying the following properties:

1. 0 € E; for all but a finite number of i > 1;
2. Each j € Nx belongs to a finite number of the sets E;’s.

Then the products of the characteristic OGF and EGF of the E;’s are defined, and

C(00,k; (Eniz) = [X ] [T 12°F () vk =0,

i=1

k o0
] HIEFF(X) Yk > 0.

i=1

X
S(00, k; (Ei)i=1) = [F

Proof. Tt follows from Points 1 and 2 that the family {/29F(X) — 1 : i € N} (resp.
{1597 (X) — 1 :i € No}) is locally finite (see Example7.124).

Fix k > 0. Our conditions imply the existence of u; € N such that E, does not
contain natural numbers up to k other than 0, and O € E,, for n > u;. Consider

o0
a sequence (k,),>1 in N such that Zk” = k with k, € E, for each n > 1: since

n=1

k, < k for each n then k, = 0 for all n > p. It follows that C (o0, k; (E;)i>1) =
C(uk, k; (Ey, ..., E,)); therefore the Basic Principle 7.27 yields

Mk
C (o0, k; (Epi=1) = [X*] [ ] 12°F (X).

i=1

Now, for each n > pu; one has [Xj] IglGF(X) =0 for each 1 < j <k, so that
IgnGF (X) = 1 + X**1C,(X) for a suitable formal power series C,,(X): we conclude
that

1233 [ee}
C(oo. ki (Ei=1) = [X*] [ 12" 00 = [X*] [ ] 1297 (X).

i=1 i=1

Consider a k-sequence of N>, with k, € E, repetitions of n, for all n € N. Then,
necessarily, k, = Oforn > p.Itfollowsthat S(co, k; (E;)i>1) = S(uk, k; (E1, ...,
E,.,)); therefore the Basic Principle 7.27 yields

K

Xk 1223
S(00, k; (Ep)is1) = [ } I:9° (X).
i=1



7.10 Infinite Products of Formal Power Series s 263

Since for each n > p one has IF%(X) = 1 + X**'C,(X) for a suitable formal
power series C, (X), we get

Xk = EGF Xk = EGF
S(00, k; (Ei)i=1) = [F:| HIE,» X) = [F} H]E,» (X). O

Example 7.128 Let {F; : i € N>} be a countable family of subsets of N, such
that lim min F; = +o00. From Theorem 7.127 we get

i—00

o0
[t + 129F(x)) = OGF (C (o0, k; (Fi U {0})i=1)), - O
We see now what happens if, in Example7.128, we replace 1+ IP°F(X) with
1 — I99%(X).

Corollary 7.129 Let {F; : i € N-} be a countable family of subsets of Nx, such
that lim min F; = +o00. Then

i—00

[T(1— 129 X)) = OGF (e

i=1

where ¢y = 1 and, for every k > 1, ¢ is the difference of the number of the composi-
tions of k of even length and the number of the compositions of k of odd length, with
terms in the sets F;’s.

o0
Proof. Since {—IgGF(X) i € N} is locally finite, the product H (1 — IgGF(X)) is
i=1
well defined. Foreach k > 1, let u; € N such that min F; > k foreachi > . Since
[X*] (1 — IP°F(X)) = 0 for each i > ju;, we get

Ik

o = [Xk]H(l — 129 (X)) = [X¥] H — I12°F (X)) .

It is an easy computation to verify that

Mk

oo oo
[T -12%00) =14+> ax* = > bex*,
k=1 k=1

where
a = Z [X*] IglGF(X) e IgSF(X), and

1=2j = m
l<ip<ip<---<inj<p
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. k7 7yOGF OGF
by = § [X ] 1207 (X) -+ 1297 (X).
i 2j+1
1<2j+1=<p
I<ip<ip <. <ipjy1 =14k

I
Therefore ¢y = [X H — Iy OGF (X) = 1 and, foreachk > 1,

o = [X4] H — 129 (X)) = a — by.

By the Basic Principle 7.27, a; is the number of even compositions of k with terms
in the set F;’s and by is the number of odd compositions of k£ with terms in the set
F;’s. m]

7.10.1 Integer Partitions

An application of infinite products of formal series is the study of the integer partition
problem, first studied, as is often the case, by Euler. Given a natural number k, we
recall that a n-partition of k is a collection [k, ..., k,] of numbers in N>, satisfying
ki +--- 4+ k, = k (see Definition 1.17) and a partition of k is any n-partition of k,
n e N.

Example 7.130 The partitions of 5 are the following seven collections:
(L1, 1L 111, (1,1, 12], [1,1,3], [1.4], [1,2,2], [2,3], [5]. O

Proposition 7.131 (OGF of integer partitions) The number py of partitions of k > 0
coincides with the number C (00, k; (iN);>) of the infinite compositions (k;);>| of k
with k; € iN ={0,1,2i,...} for each i > 1. The ordinary generating formal series
of the sequence (i) is

oo e’}
OGF(p)i = [ [ 125 X) = [J( + X"+ X + x¥ +..).
i=1 i=1

Proof. Given a partition [xy, ..., x,] of k, let us denote by j; the number of i in
[x1, ..., x,] foreachi € N. Clearly

o0
=Zij,~.
i=1
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Set k; = ij;, we get a bijection between the partitions of k and the infinite composi-
tions (k;);>; of k with k; € iN for each i > 1. Each element in iN is either O or an
element greater or equal than i; therefore we can apply Theorem 7.127 obtaining

pe = X[ 1275 (0. o
i=1

The computation of the values of the p;’s is not a simple matter; we mention the
asymptotic formula due to Hardy and Ramanujan [22], stating that

1 2k
~ ——exp| 7,/ — k — “+o0. (7.131.a)
TV p( V'3 )

We will be able to say something more in Corollary 7.134, after we acquire some
additional tools.

Example 7.132 Since [X='] IFF(X) = 1, it follows from Proposition7.131 that

pe=[X[Ja+ X + X+ X% +.)
i=1
k

=T 2 x

i=1 \O0<m<k/i

For instance, we get

ps = [X°] (14 X+ X2+ X3+ X XA+ X2+ XD+ XA+ X5+ X7)

:[XS](1+X+2X2+3X3+5X4+7X5+7x6+---):7

as we found directly in Example 7.130. Notice that the right-hand term of the asymp-
totic formula (7.131.a) for k = 5 equals 8.9.. . ., with an error of more than 27 %. O

7.10.2 Euler’s Pentagonal Theorem s

oo
In Proposition7.131 we showed that the ordinary generating formal series z prX*

k=0
of the number p; of integer partitions of k € N equals

(o] [e9]
[T =Tla+x +x*+x* +...
=1 =1
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1
Since 1 + X+ X>+ X3 +... = T by Point 7 of Proposition 7.80 we get

[o.¢] [o.¢]
1
o= [ T 199700 = [ [ -
=1 =1

Euler’s celebrated Pentagonal Theorem allows one to obtain an explicit description
of the inverse of the latter formal power series

o0 o0
H(l — X)) = ZAka.
i=1 k=0

Clearly Ay = 1. Henceforth, the following notation will be used.
Notation. For any & > 1, denote by %, the compositions (i,, ..., i;) of k such that
1<i,<---<i.

By Corollary 7.129, with F; = {i}, i € N1, the coefficient Ay is the difference
between the numbers of the compositions of even and odd length in Zj. It is worth
noticing that, equivalently, A; equals the difference of distinct partitions of k into
an even number of (distinct) terms, with that of the number of distinct partitions

of k into an odd number of terms. Euler proved that Ay = 0 except when k is a

n(Bn 1) .
pentagonal number, namely of the form — for some n > 1; notice that

mBm—1) £3BL+1)
2 7 2

for any £, m € N : indeed,

0=m@Bm—-1)—L@BL+1)=3m—-0Om+L) —(m+L€) =m+L[3m—L)—1]

has no solutions in N ;.
The adjective pentagonal derives from the fact that the sequence

(nBn—-1/2),-;= 1,5,12,22, 35,...
can be obtained via the sequence of pentagons of Fig.7.1.

12 5 1
.A..

oo

Fig. 7.1 The construction of the first pentagonal numbers 1, 5, 12, 22 (Source: commons wikime-
dia, https://commons.wikimedia.org/wiki/File:Polygonal_Number_5.gif. Author: Aldoaldoz (Own
work), Creative Commons Attribution-Share Alike CC BY-SA 3.0 Unported license)
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Theorem 7.133 (Euler’s Pentagonal Theorem)

(o¢] (o.¢]
H(l _ Xl) =1 + Z(_l)n (Xn(3n71)/2 4L Xn(3ﬂ+1)/2) .

i=1 n=I1

Proof. Foreach compositiono = (iy, ..., i) belonging to Z; we denote by L(c) =
n its length, by m(o) := i, its minimum element, and we set s(o) to be the number
of decreasing consecutive terms from the last term i; in the sequence o, namely

s(0) = nifionb+1=i;,i3+1=ir, ..., 0, +1=1i,_q;
~ | min{j € {1,...,n— 1} : ij11 + 1 < i;} otherwise.

For instance, (3, 6, 7) belongs to #¢ and we have L(3,6,7) =3, m(3,6,7) =3

and 5(3, 6, 7) = 2. The set % is the disjoint union of the following three sets:

o Sy :={oeZ:s(0) <m(o)}\{o €% : s(c)=Lo)=m(o) —1};

o Ty :={oc €% :m(o)<s()\{o €eZ : m)=s(o)=Lo)};
e Zy={o €% :s(o)=Lo)=m(o)—1lorm(oc) =s(oc) = L(0)}.

Foreacho = (i,, ..., i) € S; we define
Do) = (s(o), zn el i‘v(g)fl, isoy—1,...,i1 = 1) %fs(o) < L(o) =n,
(s(o),ip,—1,...,i1—1) if s(o) = L(o) = n.

For example, one has that (3, 6, 7) belongs to Sjs and @(3,6,7) = (2, 3, 5, 6). Rep-
resenting o = (i,,...,11) as a Ferrer’s diagram, namely with n = L(o) rows of
iy > iy > -+ > i, points, @ (o) is obtained moving the rightmost points of the first
s(o) lines in a new row at the bottom of the diagram (see Fig.7.2). We will prove
that @ is a bijection S, — T. Let us start verifying step by step that @ is an injective
map Sy — Tx.

1. @(Sx) € %y giveno = (i, ..., 101)in S, we have s(0) < m(0) = i,_s(). Let
us distinguish the cases s(0) < L(o) and s(o) = L(0) <m(o) — 1.

® ®© ¢ © ® @0 ® © ¢ o o o

® ® ® ® ©o:0 (I) > ® © ® o o

® o o ® © o o
<

Fig. 7.2 ©(3,6,7) = (2,3,5,6)
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a. If s(0) < L(0) = n, then is)4+1 < ise) — 1; hence
$(O) <ip <+ <lgo)gl <lso)y — 1 <---<iy—1,

and therefore @ (o) belongs to .
b. If s(c)=L(c)=n<m(oc)—1=1i,—1,then ®(0) = (s(o) =n,i, — 1,
..., i1 — 1) belongs to Z;.
2. @ : S — Zyisinjective: indeed if o1 := (i, ..., i1), 02 := (jp, ..., j1) belong
to Sy and @ (01) = P (0,) then

(S(Ul)v ina ey is(al)Jrl»is(al) - ls ey il - l) =

=(5(02), Jps -+ s Js(on)+1s Js(on) — Ly oo oy 1 — 1),

and hence n = p and 01 = 03.

3. @(S;) C Ty:foreacho € Sy wehaves(® (o)) > s(o) = m(P(0)).Ifs(@(0)) =
m(P (o)), then, since s(o) = m(P (o)), both terms are less or equal to L(o) =
L(® (o)) — 1.

Actually, @ : Sy — T; is abijection. Indeed, if T = (j,+1, ju, - - -, j1) belongs to T,
then j,1 = m(t) < s(t),andeitherm(t) < s(r)orm(r) =s(r) < L(t) =n+ 1.
Consider

o= (]nv .. ~vjm(1:)+1» jm(r) + 17 B jl + 1) ifjnJrl = m(t) <n,
(jn+ls~-~ajl+1) ifjn+1=m(t)=n.

Let us check again step by step that o belongs to S (i.e., it belongs to %y, s(o) <
m(o), and s(o0) = L(o) implies s(0) < m(c) —1)and @ (o) = 7.
4. o belongs to %y indeed

Jnt ot i+t T Un+ D+ + 1+ D =
=jut+-Fh+m@)=ji+- -+ ji + jur1 =k,
and j, < < jmo+1 < Jne@) < Jmow 1 << ji+ L
5. s(o) =m(t) < m(o): let us distinguish the cases m(t) < n and m(tr) = n.

a. m(t) < n: juma+1 < jm) implies s(o) < m(r); since m(r) < s(r) then
jm(r) +1= jm(r)fla---e j2 +1= jl and hence S(O-) = m(T) = jn+1 < jn =

m(o).
b. m(r) = n: then s(t) > m(r) =nimplies s(o) =n =m(1) = juy1 < jp <
ju+1=m(0).

6. s(o) = L(o) implies s(0) < m(c) — 1: assume by contradiction that s(c) =
Lc)=n=m(oc)—1.Thenoc =(n+1,n+2,...,n+n=2n). Let us dis-
tinguish the cases m(t) < n and m(tr) = n.
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a. m(t) < n: we would have
m+1,n+2,....,n+n=2n)=0=n, -, jm@)+1> Jme@x) + L, ..., j1 + 1),

and hence jy(r)+1 = Jjm(r) contradicting v € Z.
b. m(t) = n: we would have

m+1,n+2,....n4n=2n)=0c=Uu+1,.... 51+ 1),

and hence n = m(t) = j,1 = Jj, contradicting T € %;.
7. @ (o) = t: let us distinguish the cases m(r) < n and m(t) = n.
a. m(t) <n:wehave @(0) = @ (ju, ... jm@)+1> Jmex) + 1, ..., j1 + 1); since
m(t) = s(o), we get
(p(]na e jm(r)-&-]v jm(r) + 1’ B jl + 1) =
= (S(U)vjn1-~-7jS(U)+17jS(G) +1- 1»~--7j1 +1- 1) =
= (Jutls v Jso)41s Js@@)s -+ 5 J1) = T.

b. m(r) =n:wehave ®(0) = @(j, + 1,..., j1 + 1);sincen = m(r) = s(0),
we get

P(n+ 1.t + 1D =((0) =m(T), ju,.... ) =T.

It follows that @ : Sy — T} is one to one and sends n-compositions of k in (n + 1)-
compositions of k, switching the parity of their length. Since @ maps even (resp.
odd) compositions in S; into odd (resp. even) compositions in 7y, it follows that
the difference A; between even and odd compositions in % equals the difference
between even and odd compositions in Zj.

e Ifo € Z; withs(oc) =L(oc) =m(oc) =nthenoc = (n,n+1,...,2n — 1) and

n(3n—1)

k=n+m+1)+0+2)+---+m+n—-1)) = >

In the case where n = L(o) is even (resp. odd), then o counts +1 (resp. —1) in
Ay therefore it counts (—1)(@) = (—1)" in A.
o Ifo € Z, withs(oc) =L(c) =m(c)—1=nthenoc =n+1,...,2n) and

nn+1) _ n(Bn+1)

k=m+D)+m+2)+---+m+n)=nxn+ 5 5

In the case where n = L(0) is even (resp. odd), then o counts +1 (resp. —1) in
Ay therefore it counts (—1)©@) = (—1)" in A;.
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We thus conclude that

1 ifk =0,
3n—1
GaT i (=D ifk = %’
[X]H(l—X): . n(Bn+1)
i=1 (=" ifk= —
0 otherwise. o

We are now ready to describe the number p; of the integer partitions of k € Nx ;.

Corollary 7.134 Set p, = 0 for each £ < 0 and po = 1, the numbers pi, k € N5,
satisfy the following relation:

o0
P = Z(-D"H (Pk=nGn—1)/2 + PrnGn+1)/2)-

n=1
Proof. At the beginning of this section we have observed that

oo

- 1
Zkak:HI_Xl'

k=0 =1

o]

Since the formal power series H

o]
i Xt and H(l — X") are the inverse one
another, by Theorem 7.133 we get

(ikak)(l + i(_l)n (Xn(3n71)/2 + Xn(3n+l)/2))
k=0

H
|

n=1

o0
(Zpkxk)(l—x—X2+X5+X7—X12—X15+X22+X26_...)_
k=0

Therefore one gets
1=po, 0=p; —po, 0=p> —p1 —Po, ... andforanyk > 1
O=pt—Pe1 — P2+ Pis+Pr7—Pr12—Pi15s+---

o0
=pr+ Z(—l)n (Pk=nGn—1)/2  Pren(Gnt1)/2)-

n=1

Hence
po=1, py =po, p2 =p1 +po, ... andforanyk > 1
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Pk = Pk—1 + Pk—2 — Pr—5 — Pr—7 + Pk—12 + Pr—15 — - -

o0
= Z:(—l)wrl (Pk=nGn-1y/2 + Ph—nGn+1)/2)

n=1
n(3n+1)/2
= Z (=" (Pe-nGn-1)/2 + PknGni1)/2)- m

n=1

7.11 Problems

Problem 7.1 Let A(X) be a formal power series and m € N. Prove that for each
n>m € None has [X"] (X"A(X)) = [X"™™"] A(X).

Problem 7.2 Let A(X) be a formal power series. Prove that A’(X) = 0 if and only
if A(X) is a constant.

Problem 7.3 Let A(X) and B(X) be two formal power series and m, n € N. Prove
that
(IX"AX)) (IX"1B(X)) = [X"] (([X"]A(X)) B(X)) .

oo o0
1 k k—1 vk .
Problem 7.4 Let A(X) = ; EX and B(X) = ;(—1) X". Determine a
closed form for A(B(X)) and calculate the coefficient of X2.

Problem 7.5 Calculate a closed form for the formal power series

AX) = ann, B(X) = Zn(n +1)X".
n=0

n=0

o0

Problem 7.6 Let A(X) = Z2”X ", decide whether or not A(X) is invertible in
n=0
R[[X]] and, if so, determine its inverse.

Problem 7.7 Prove that the derivative of a formal power series has the same prop-
erties (as far as sums and products are concerned) as the derivative of a function: if
A(X) and B(X) are two formal power series, then

(A(X) + B(X))' = A'(X) + B'(X) and
(A(X)B(X)) = A'(X)B(X) + A(X) B'(X).
Problem 7.8 Let 0 < m € N and A(X) be a formal power series in R[[X]]. Prove

that if A”(X) = 1, then A(X) is constant, equal to 1 if m is odd, and to 1 if m is
even.
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Problem 7.9 Calculate a closed form for the formal power series
(o]
AX)=> (n—DX".
n=2

Problem 7.10 In view of the upcoming elections, the leader Kingnzi is in the process
of choosing candidates. In this first phase it must be decided how many and which
positions of the 10 available spots on the ballot should be awarded to various cate-
gories of potential candidates; only later will the names of the candidates be selected.
The choice will be made respecting the following constraints regarding the four dis-
joint categories of potential candidates:

1. An even number of party functionaries;

2. An odd number of former council members;
3. Atleast 5 declaredly traditional conservatives;
4. At most one clearly progressive candidate.

How many possible choices are there in this preliminary phase?

Problem 7.11 How many 6 digit numbers are there having an even number of 7’s,
an odd number of 9’s, and two 5’s?

Problem 7.12 Prove that for each n > 0 one has

—1/2\ _ (1) (2n
n B 4 njt’
Problem 7.13 Calculate the number of ways in which it is possible to distribute 25

identical liquorice sticks to Carl, Roberta, Joe, Steve, and Al if Carl wants at least 8
but not more than 12 of them, Roberta no more than 4, and Joe and Al at least 1.

Problem 7.14 A certain pastry shop located in Calle de San Pantalon in Venice
displays in its shop windows some “frittelle” with pastry cream (crema) filling,
some with egg-nog (zabaione) filling, and others which are traditional Venetian style
“frittelle” with no filling at all. In how many ways can one choose 15 frittelle if
one wishes to have an even number >2 with pastry cream, an odd number >1 with
egg-nog filling, and at least 3 traditional Venetian frittelle? (For the readers’ benefit it
may be of interest, though of no help in solving the problem, that “frittelle” [singular
“frittella”] are a generalization of donuts without holes, but considerably better than
their Anglo-Saxon counterpart in the view of many who have tried both.)

Problem 7.15 Calculate the number of ways one can prepare a tray of 12 hors
d’oeuvres of five different types with at most four of any given type, and assuming
that there must be at least one of each type.

Problem 7.16 In how many ways is it possible to assign 20 mint gum drops and 10
licorice ones to 10 children so that each child receives exactly three gum drops.
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Problem 7.17 In a supermarket a lunatic named Pascal throws items at a man,
choosing them at random from the supermarket shelves. In the end, before anyone
is able to stop him, Pascal manages to throw 11 items. The witnesses present furnish
incompatible descriptions of the items thrown at the man; in the end, however, all
agree that the items thrown satisfied the following conditions:

1. An even number (>0) of cans of tomato paste;
2. At least 2 bottles of olive oil;

3. Between 4 and 7 cans of beer;

4. A souvenir of the Cathedral of Milan.”

Bearing in mind that all possible versions of the story coherent with the conditions
given above were actually furnished by witnesses, at least how many people were
present in the supermarket besides the man and Pascal?

Problem 7.18 Using Theorem7.114, compute the coefficients of the formal series

1+ X
1—X—Xx2%

"This exercise was inspired by a true story that took place in Milan on December 13, 2009.



Chapter 8
Generating Formal Series and Applications

Abstract We deepen here the insight on formal power series. We temporarily aban-
don formality and consider the notion of the convergence of a power series; we’ll
see in particular how a smart choice of a closed form of a given power series is
useful to recover the sum of the power series. A large part of the chapter is devoted
to determining the generating formal series for some notable sequences, including
sequences of binomial coefficients, harmonic numbers, Stirling and Bell numbers,
Eulerian numbers, as well as sequences of integral powers. One section is devoted to
the Bernoulli numbers: not only do they allow us to express the sum of consecutive
m-th powers of the natural numbers (Faulhaber’s formula), but they turn out to be
useful, as we shall see in Chap. 13, in approximating the sum of the consecutive
values on the natural numbers of any given smooth function. Some useful estimates
of the Bernoulli numbers are given via the Riemann zeta function, namely the sum
of the series of the inverses of a given real power of the natural numbers. Finally, a
section is devoted to the applications of formal power series to probabilities.

8.1 Formal Power Series and Their Sum Function

This section contains plenty of insights that will be of interest to the experienced
reader but are by no means essential to the understanding of a large part of the
remainder of the book. It should be accessible by students with an understanding of
the basic notions of convergence of a power series.

In the study of the relations between formal power series and their closed forms,
n

the notion of convergence of a series arises naturally. If P(X) = Z a, X" is a poly-

n=0
N

nomial it makes sense, for every x € R or C, to evaluate the finite sum E a,x": we

n=0
N

may then consider the polynomial function x — P (x) := Z a,x" which s clearly a

n=0
closed form for P (X) (see Example 7.68). We shall establish here something similar
for a class of formal series more general than polynomials.
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o0

Definition 8.1 We say that a formal power series A(X) = Zan X" converges at
n=0

x € R if the so called sum of the formal series A(X) at x, i.e., the limit

00 N

E a,x" ;= lim E a,x" (8.1.a)
N—o00

n=0 n=0

exists and is finite. We shall denote the value in (8.1.a) by A(x), hoping no

ambiguity occurs. The power series A(X) is said to converge absolutely at x
o0

if the power series E |a,| X" converges at |x|. m]
n=0

Remark 8.2 We recall that absolute convergence of a power series at x implies its
convergence at x.

We assume that the reader is familiar with the main results concerning the con-
vergence of power series, the essentials of which are recalled here; the details and
the proofs of the results formulated can be found in [33].

Proposition 8.3 (Radius and domain of convergence of a power series) Let A(X)
be a formal power series. There exists Rxxy € R>o U {400} such that:

o A(X) converges absolutely on {x : |x| < Rax)};
e A(X) does not converge on {x : |x| > Rax)}

This value Ra(x) is called the radius of convergence of the formal power series
A(X). The convergence set of A(X) is the set Da(x) of points at which the formal
power series converges; it is an interval since

{x: |x] < Racx)} C Daxy C{x: x| < Raxy}-

Example 8.4 In order to find the radius of convergence of a power series A(X) =
o0

Z a, X" with non-zero coefficients, one often resorts to the quotient method: since,
n=0

for x # 0,
apyrx" ! pt1
S = |,
apX n
it turns out that
. |, |
RA(X) = lim
n—=>+00 |dy 41|

whenever the limit exists.
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e The radius of convergence of the series

X X2 X"
K=l X+
2! n!

is +o00: indeed

1/n! '

n—+00

e The radius of convergence of the series

o0

DX =14 X 42X 431X 4
n=0
is 0: indeed
n!
lim = lim =0.
n—+oo | (n + 1)! n—+oon + 1
e The radius of convergence of
1 oo
=) X"=14+ X+ X+ X+
— Z:(; FX+XP X+
equals 1: indeed
1
lim —‘ =1.
n—-+oo | |
e Leta € R\ {0}. The radius of convergence of the series
> (:)
n
n=0
is 1. Indeed
a
) n+1 ) a—n
lim |———~|= lim |——|=1. 0O
n—400 a n—>+oo |n + 1
(2
oo
Definition 8.5 A formal power series A(X) = Z a, X" that converges for at least
n=0

one point different from O is said to be summable. The function x — A(x) defined
on the convergence set D4(x) by
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o0
x> AXx) = Zanx"

n=0

is called the sum function of the formal power series A(X). O

o0
Remark 8.6 1If A(X) = ZanX" is summable, by [33, Theorem 8.1] for each x
=0

n=
belonging to the interior of the convergence set D 4(x) one has

d oo oo
= (Z anx") = Z:nanx”_l =A'(x).
x
n=0 n=1

The sum function of a summable power series is one of its closed forms.

Theorem 8.7 If A(X) is a summable power series, then the sum function of A(X)
is a closed form of A(X).

Proof. We have
A0) = ap = [X"1A(X);

d o0
since T (nzz(; anx”) = A’(x), then

A(0) = a; = [X"AX).
By applying the above differentiation formula to the power series A’(X) we get
A"(0) = 2a, = 2[X*]A(X).
We understand (and we invite the reader to prove it by induction) that
A™(0) = mla, =m![X™A(X) Vm eN,

proving that x — A(x) is a closed form for A(X). m|

We now consider the following problem: let A(X) be a summable power series,
and let f be one of its closed form. Is it true that f(x) = A(x) in a neighborhood of
0? The answer is negative, of course.

Example 8.8 Let A(X) = 0 and f be the closed form of 0 defined in Example 7.75.
Then, for x # 0, f(x) > 0 whereas A(x) = 0. m]
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We are naturally led to the notion of an analytic function: we formulate just the
essentials of the theory, the details of which are beyond the scope of our textbook: we
refer to [34] for a thorough treatise on the subject. Essentially, a function is analytic
if its Taylor expansion at every point converges to the function in a neighborhood of
that point.

Definition 8.9 (Analytic functions) A € function defined in an open set U is said
to be analytic if, for every xo € U there is r > 0 such that

> (n)
fo=>" f nfx‘)) (x —x0)"  VIx —xo| <r (8.9.2)
n=0 : O

Example 8.10 The function f defined in Example7.75 is not analytic: indeed its
derivatives in O are all equal to 0, however f(x) > 0 if x # 0, thus (8.9.a) does not
hold around 0. O

Remark 8.11 Actually, it is enough, instead of (8.9.a), that for each x( in the open
set U there exists a sequence (a,),, depending on xy, such that

f) =D anx —x0)"  VIx —xol <7.
n=0

Indeed the differentiation theorem for power series [33, Theorem 8.1] shows that if

. . 1 (x0)
the above equality holds, then necessarily a, = — for all n.
n!

Example 8.12 The function x — ¢* is analytic. Indeed let xo € R. Since the radius
of convergence of eX is +00, one has

o0

_ n
&5 — 0 — M (exfxo -= &0 Z (x — xp)
n!
n=1
whence
o0 %0
exzz—'(x—xo)” Vx € R.

— n!

The conclusion follows from Remark 8.11 or from the fact that £ (xy) = e* for
all n. O

Example 8.13 Here is a list of useful analytic functions on their domain:

e Polynomials;
e log(x);
e COSX, sinx;
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e coshx, sinh x;

o (1+x) foraeR,x > —1. =

Analytic functions are the best possible closed form for a given summable power
series: they allow one to pass from the equality among power series f(X) = A(X)
to the pointwise equality f(x) = A(x): a dream for the lazy student that is asked to
compute sums of power series. We omit the proof of the following important result,
based on some well-known facts concerning analytic functions (such as the Identity
Principle) that are beyond the scope of the book.

Theorem 8.14 Let A(X) be a summable power series.

1. The sum function of A(X) is analytic on | — Ra(xy, Racxl.
2. Let f be a closed form of A(X), and assume that f is analytic in an open interval
I containing 0. Then f(x) = A(x) for each x €] — Rax), Racx)[N 1.

Example 8.15 In Example 8.4 we showed that the radius of convergence of the for-

1
mal power series is 1. Since the function I is analytic on ] — 1, 1] it
— X
follows from Theorem 8.14 that

1
——=14+x+---+x"+--- Vx| <l
1—x

Analogously we obtain the following sums of series:

x3 0 x2n+1
sy =x— g+ +CEVG o T *
x2 x2n
— 1= 4. (=) Vx € R,
COS X 2!+ =+ ( )(Zn)!+ X
3 2+
SlnhX=X+§++m+ VXGR,
x2 x2n
hx =1 - Y. GR,
cosh x aF o aF aF @n)! aF X
x2 n+1xn
log(l +x) =x = = oo (=)™ Vx| < 1,
o0 i i
a __ n
(1+x) —Z(n)x Vix|<1. g

n=0

In order to apply Theorem 8.14 it is essential to recognize analytic functions at
just a glance. The functions listed in Example 8.13 provide, together with the next
result, tons of analytic functions.
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Proposition 8.16 1. Sums, products, quotients and composite of analytic functions
are analytic on their domains.
2. Extension by continuity of analytic functions are analytic. More precisely let f

be analyticon I \ {xy, ..., x,,}, where I is an open interval and x1, . .., x,;, € I.
Assume that the limits lim f(x), i = 1,...,m, exist and are finite. Then the
X—>X;

extension by continuity of f to I is analytic on I.

X

Example 8.17 The function f(x) = ¢ is a quotient of two analytic functions
X

on R: it follows from Point 1 of Propo;tion 8.16 that f is analytic on its domain
R\ {1}. Moreover lim1 f(x) = I:it follows from Point 2 of Proposition 8.16 that the

extension by continuity of f on R defined by

[f(x) ifx # 1,
o
1 ifx=1

is analytic in R. O

The reader will not be surprised at this stage to know that given an analytic
closed form of a summable power series, one can in principle determine the radius
of convergence of the series. We now formulate a result in this direction concerning
rational fractions.

Proposition 8.18 Ler P(X) and Q(X) be two polynomials without common factors,
P(X

with [X°1Q(X) # 0. The radius of convergence of A(X) = QEX;

the root (possibly complex) of the polynomial Q(X) which is closest to the origin,

that is,

is the modulus of

Raxy = minf{|e| : @ € Cand Q(«x) = 0}.

Remark 8.19 For the advanced reader, let us say that the proof of Proposition 8.18,
P(x)

that we omit, relies on the fact that the function x — can be seen as a complex

X
valued function on the complex disk of radius || centered in the origin; the Cauchy
formula for holomorphic functions yields the result, see [34, Theorem 10.16] for
other details.

Example 8.20 (The sum function of the OGF of the binomials) Let k € N; from
Xk
(7.90.b) a closed form of the OGF of the sequence " is ——————, aquotient of
k ) (1— X)k“
two polynomials without common factors. Since 1 is the unique root of (1 — X)**1,

it follows from Proposition 8.18 that the radius of convergence of this OGF is 1; so
that by Theorem 8.14
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s k
My —2 x| <1 O
2 () T q—p)e '

n=k

X? -1
X24+H(X -7
The zeros of (X? +4)(X —7) are 42i and 7: by Proposition8.18 the radius of
convergence of A(X) is |2i| = 2 and so, by Theorem 8.14, one has

Example 8.21 Let A(X) be a formal power series with A(X) =

x2—

:m Vx e]—2,2[

A(x)

O
5

5
Example 8.22 Let A(X) be a formal power series with A(X) = 19 The zeros
of X% + 9 are £3i: by Proposition 8.18 the radius of convergence of A(X)is|3i| =3
and thus, by Theorem 8.14, one has

3

-5
Ax) = Vx €] —3,3[.
) x2+9 v el [ H
We end this section with a continuity property of the sum function of a power
series, that we motivate through the following example.

0 n
Example 8.23 Weknow that the radius of convergence of log(1 + x) = Z(— 1! al
n
n=1
is 1; therefore

2

X a1 X
log(1+x)=x——2 + e (=D —= 4 Vx| < 1. (8.23.a)
n

Now by Leibniz test 6.67 the series
1 1
l—— 4+ (=D ...
2 n

converges: does the equality in (8.23.a) continue to hold for x = 1? The answer is
yes, thanks to Abel’s theorem that we formulate below. O

Theorem 8.24 (Abel’s Theorem) Let A(X) be a summable formal power series.

The sum function of A(X) is continuous on the convergence set D (x):

Alx) = Ell;r,lr A(y) Vx € DA(X)-

YE€DA(x)

‘We omit the proof of Abel’s Theorem, that can be found in [33, Theorem 8.2]. We
see now how to apply Abel’s Theorem to prove the claim formulated in Example 8.23.
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Example 8.25 We come back to Example 8.23 considering

x> et X"
AX) =X = o (D

We know that A(x) = log(1 + x) for all |x| < 1. Now
1 n+1 1
A =154+ (=)=
2 n
exists and is finite. By Abel’s Theorem 8.24 we get
A(l) = linll A(y) = lirrll log(1 +y) =log2,
y—1- y—>1-

due to the continuity of the logarithm function. We thus get the following identity
1 w1 1
1— = oo+ (—1)"1= ... = log2. o
2 n

oo
Example 8.26 (Convergence of the binomial series) Let A(X) = Z (Z) Xk ae
k=0
R. We know from Example 8.4 that A(x) = (1 4+ x)* for all |x| < 1. We study now
its convergence at 1.

1. The absolute convergence of A(X) at 1 is equivalent to the convergence of the
series
o0
>
(5)!
k=0

does definitively vanish and hence we have trivially the

k
k

convergence. Otherwise, if a € R \ N, by Proposition7.97 there exists C, > 0

such that

If a € N, then (a

(o
(Z)‘ ~ g ask = oo (8.26.2)

it follows that the absolute convergence of A(X) at 1 occurs if and only if
a + 1 > 1. Putting together the two cases, we have the absolute convergence of
A(X) at £1 if and only if a > 0.

2. Convergence of A(X) at —1. Notice that (—1)* i) has definitively a constant

sign: the convergence of A(X) at -1 is thus equivalent to its absolute convergence,
and this occurs if and only if a > 0.
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3. Convergence of A(X) at 1. It follows by (8.26.a) that klim (Z) = 0 just for
—+00

a > —1: thus A(X) does not converge at 1 if @ < —1. Notice that (i) =

a@a—1)---(a—k+1)
k!
gence of the series is thus equivalent to that of

@)
k=0

Let us remark that, assuming a > —1, we have

a
(k+1) la—k| k—ua
a T k+1 k41
(0)

is definitively decreasing: Leibniz test 6.67 thus

has an alternating sign from k& > a + 1: the conver-

<1 Vk>a> -1,

so that the sequence k —

a
k
yields the convergence of the series A(X) at 1 if and only ifa > —1.

When A(X) converges at +1 Abel’s Theorem 8.24 tells us what the sum of the series
is. Namely:

e If a > 0 then A(X) converges absolutely at —1 and

A(-1)= lim A(y)= lim (1+y)*=0"=0.
(D= lim AQ)= Tlim 1+

We thus get the following identity
[o¢]
S -1 (z) -0 Va>0,
k=0

which extends the formula (see Corollary 2.21)

S =1 (’Z) =0 VneN..
k=0
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e Ifa > —1 then A(X) converges at 1 (absolutely if and only if @ > 0) and
A(l) = linl1 A(y) = linl1 (I+ =2
y—>1- y—=>1-

We thus get the following identity

[o¢]
2 (Z) =2 Va> —1,

2

an extension of the formula (see Corollary 2.20)

n

Z(Z):z” Vn e N. o

k=0

Abel’s Theorem has an impact also on the situation illustrated in Proposition 8.18.

Corollary 8.27 Let P(X) and Q(X) be two polynomials, with [X°]Q(X) # 0. Let
P(X
A(X) be the power series A(X) = L Assume that A(X) converges at r € R.

o(X)
Then
. P
A(r) = lim .
xX—r Q(_x)

Proof. 1t is not restrictive to assume that P(X) and Q(X) have no common factors:

erasing common factors modifies neither A (X) nor the limit of x) ata given point.
X

If A(X) converges at r then its radius of convergence is R (x) > |r|. It follows from

P(x)
Theorem 8.14 that A(x) =
Q(x)

P(r)

forall |x| < Rax). If [r| < Rax) we immediately

getthe equality A(r) = from Proposition 8.18. Otherwise, if r = R4 (x) then,

-
by Abel’s Theorem 8.24 and Theorem 8.14, we get

. . Px)
0= = :

Remark 8.28 Notice that, unlike Proposition 8.18, in Corollary 8.27 we do not need
that the polynomials be without common factors, quite a useful fact in applications.
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8.2 Generating Formal Series for Some Notable Sequences

In this section we calculate some closed forms for ordinary or exponential gener-
ating formal series associated to particularly important sequences. For the various
sequences discussed here we choose the generating formal series that are most fre-
quently used and easiest to derive.

8.2.1 EGF of the Reciprocals of the Natural Numbers

We have seen in Example 7.74 that — log(1 — X) is the OGF of the sequence of the
inverses of the natural numbers greater or equal than 1. It is also sometimes useful to
have a closed form for the EGF of the same sequence. In this regard we first introduce
the integer exponential integral function.

Definition 8.29 (Integer exponential integral function Ein(x)) The integer expo-
nential integral function Ein : R — R is defined by setting, for each x € R,

) X 1 __e—t
Ein(x) = / dt. m|
0 t

Proposition 8.30 (EGF of the reciprocals of the natural numbers) The EGF of the
1
sequence ((—1)"l —) is
n>1

n

EGF ((—1)”“%) = Z(_nn—l%X—n = Ein(X). (8.30.2)
nzl n=1

n!

1
Thus, the EGF of (—) is
n n>1

1 21 X" ,
EGF ( - =D —— =—Ein(-X).
n>1

n n n:
n=1
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Proof. On setting

-~ L 1x"
D=,
n n!

n=1

A(X) := EGF ((—1)"—1%)

n>1 B
one sees immediately that
oo o0
Xn—l 1 X"
/ _ _1yn—1 _ _1yn—1
A(X)—E(l) T —XE(I) o

n=1 n=1

—-X

l < (=X)" 1 l—e
= —_—— = —_—— - —1 =
X Z:l: ! x ¢ ) X

—X

The extension by continuity of x is a closed form for the formal power

X
series A’(X); by Point 6 of Proposition 7.80 the function x +— Ein(x) is then a closed
form for A(X). |

1
In the next example we study the convergence of EGF (—) .
N/ n>1

Example 8.31 (The sum function of the EGF of the reciprocals of natural numbers)

It can be shown that the function Ein(x) is analytic: this is due to the fact that
—t

the derivative of Ein(x), i.e., the extension by continuity of , is analytic. The

o0
1 n
radius of convergence of the power series E - is +o00: indeed (see Example 8.4)
n n!
n=1

1

. nn! (D2
Jim —2— — lim 2 = o
(n+ 1D+ 1)!
It follows from Theorem 8.14 that
0 n
1x .
i —Ein(—x) Vx e R. O

n=1
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8.2.2 OGF and EGF of the Harmonic Numbers

The sequence of harmonic numbers (H,,), introduced in Chap.6 is the sequence

1 1
H0=O,H,1=T+-~-+—f0rnzl.
n

Proposition 8.32 (OGF of the harmonic numbers) The OGF of the sequence of
harmonic numbers is

log(l — X)

—— (8.32.2)

o
OGF (H,), = > H, X" =
n=0

Proof. By Example7.74 one has
o0 1 )
—log(l — X) = Z;X ;
n=1

since the harmonic numbers are the partial sums of the sequence O, 1, 1/2,1/3, ... the
formula follows immediately from Proposition 7.88. O

Example 8.33 (The sum function of the OGF of the reciprocals of harmonic numbers)

log(l — X
From (8.32.a), % is the OGF of the sequence (H,),. The function x +—
log(1 — x)

is by Proposition 8.16 analyticon ] — 0o, 1[. The radius of convergence of

oo
the power series Z H,, X" is 1: indeed, since by Proposition 6.44 the n-th harmonic

n=0
number H,, is asymptotic to logn as n — +o00, one has

. H, logn
lim = lim ———— =
n—oo H, | n—oo log(n + 1)

It follows from Example 8.4 and Theorem 8.14 that

log(1 —
Zan"=M Vx| < 1. O
x—1

Let us see some other useful OGF of sequences involving harmonic numbers.
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Proposition 8.34 Given m € N, one has

< n X .
Z(;n(Hn —DX" = —mlog(l - X);

— m+n _ log(1—X)
;(Hm-ﬁ-n_ m)( )X =T a—x)t

Proof. Taking the derivative of both sides of (8.32.a) one has

> 1 1
H, X" '=———log(1 — X) + ————.
don T e =0+

In view of Proposition 7.90, multiplication by X then gives

Z H,X"=-— X —log(1 — X).,.L
" x -2 ® X 17

_ X n+1 n
=5 )log(l X)+XZ( . )X

X n
- _mlog(l -X) +an ,

n=1

from which it follows that

- n - n X
nzz(;n(Hn—l)X :nZ:l:n(H,,—l)X - —mlog(l - X).

The second formula may be verified via induction on m. For m = 0 it is equivalent
to the formula (8.32.a). By the inductive hypothesis we may assume that for a given
m > 0 one has

log(1 — X)

- m-—+n _
Z;(HW— m)( )X =G _xp

Taking derivatives, one obtains

ad 1 log(1
D iy m)(’"”)X”‘:m—( +1)%~

n=1


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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1
Changing the index of summation and using the expression for m obtained
in Proposition 7.90 one has
= m+n+1
Zo(n + 1) (Hyne —Hm>( 1 )X =
— (m+n+1 log(1 — X)
= X" — )———.
Z_(;( n ) o+ DT
oo Jogd —X) . .
Hence the formal power series ——————— coincides with
(1 — X)m+2
- 1) G “H,) m+n+1) (m+n+1 X"
m + 1 — m—+n—+1 m n + 1 n .

It is now easy to verify that

(n+ 1) (Hpyn1 —Hy) (m+”+1) _ (m+n+1) _

n+1 n
- 1 m+1(m+n+1 m+n+1\
—(n+1)(Hm+n+1—HmH+—m+1)n+1( " )—( ! )_
m+n+1
= ( n ) Hptn+1 —Hpr)(m 4+ 1).
Therefore

log(1 — X) X (m+n+1 )

Ta—xym2 Z_(; n Hpsni1 —Hpp) X",
which proves the desired formula for m + 1. o

In Proposition 8.32 we determined the OGF of the sequence of harmonic numbers.
Let us determine now its EGF.

Proposition 8.35 (EGF of the harmonic numbers) The EGF of the sequence of
harmonic numbers is

o0 Xn
EGF (H,), = > _H, — = e Ein(X). (8.35.a)
n=1 :


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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Proof. Tt follows from Proposition6.46 that the sequence (H,),>; is the bino-
mial transform of the sequence ((—1)”1—) : the result now follows from
nJ p=1

Propositions 7.88 and 8.30. - o

Next we see how the EGF of the harmonic numbers gives a new proof of the
binomial identity of Problem 6.9.

Example 8.36 Let us prove that for each integer m > 0 one has
k m 1
— = ——Hyy.
kg‘( )(k+1)2<) m+1 "

One recognizes that the sum under consideration is the m-th term of the binomial

1
transform of the sequence 1" On settin
1 (( ST +1)2) £
o0
1 X"
AX) = -1 ———,

then Proposition 7.88 gives

k n _ X
EGF(Z(—I) T ( )) =X A(X). (8.36.2)

n

. o o a1 X"
Clearly A(X) is the derivative of B(X) = Z(—l) — — - Now
o n* n!

Xn—l
B/X lnl
(00 = 2( o
1 X" 1 1
= S22 = ZEBinX = —e XEGF(H,), .
XZ_}( P T x X = e (H)n

by Proposition 8.35. One then has

; — k; n _ X _ Xp/ _l
GF(Z;( RTENE (k)) = ¢¥A(X) = ¢"B/(X) = 1 EGF (H,),

o 0 ! ’
xn-1 H, X" H,
= E H, = E — — ) =(EGF{ — ,
= n! ( — n n!) ( ( n )n)

n=1



http://dx.doi.org/10.1007/978-3-319-03038-8_6
http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_6
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H,
which in view of Point 6 of Proposition7.21 equals EGF ( _:11 ) . O
n n

Example 8.37 (The sum function of the EGF of the reciprocals of harmonic numbers)

From (8.35.a), it follows that eX Ein(X) is a closed form of the EGF of the sequence

H,,),. The function e* Ein(x) is a product of two analytic functions, and hence it is
n p y
o n

analytic on R. The radius of convergence of Z H, — is +o0: indeed, since H,, is
n!

asymptotic to logn as n — 400 (see Proposit?on 6.44),

. H, /n! . logn
Iim ————————— =1limn+1)————— = +4o00.
n—oo Hyyy /(n+ 1) n—>oo log(n + 1)
It follows from Theorem 8.14 that
o0 xn
ZH,, — =¢'Ein(x) VxeR. O
n!

n=0

8.2.3 Generating Formal Series for the Stirling
and Bell Numbers

We recall that the Stirling number of the first kind Z (see Definition 5.43) is the
number of k-partitions into cycles of 1, (k, n € N> ). Forfixedn > 1, the closed form

of the OGF of the sequence |:n

k:| is obtained by simply reformulating Corollary 5.54.
k

Proposition 8.38 (OGF of the Stirling numbers of the first kind) For fixed n > 1
one has

OGF[Z] =Z[Z]Xk = [Z]X"=X(X+1)(X+2)--'(X+(n—1))~
k=0

In Sect.5.1.1 we introduced the Stirling numbers of the second kind. The Stirling

number [Z} represents the number of k-partitions of /. For fixed k, we now deter-

mine a closed form for the EGF of the sequence [Zl of Stirling numbers of the

second kind. "


http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_6
http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_5
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Proposition 8.39 (EGEF for the Stirling numbers of the second kind) For fixed k > 1
one has

Proof. For k > 1 one has (see Theorem 5.6)

n 1 a i k \n
=50 (o

Since

=S Y % — Y i (S i X
@ -1 =Z(l.)<—1)e =Z(i)(—1) gac—l);

i i=0

k
k X
;(‘_o (5)(‘1) (k — i) );

1

(=]

one finds that

o0 o0 k
n| X" 1 [k n X”_(eX—l)k
NS EZ(Z(_” (i) oo )H -
n=0 n=0 \i=0

Finally, we recall that the Bell number B, (n € N), introduced in Sect.5.1.1, is

the number of partitions of 7,,: we now determine the exponential generating formal
series of the sequence (°8,,),.

Proposition 8.40 (EGF of the Bell numbers) The exponential generating formal
series of the Bell numbers is

S X" (e*=1)
BX) =D By =€V,
n=0 .

n

Proof. We give two different proofs: the first uses the fact that 8, = Z [Z
k=0

applies the formula for the EGF of the Stirling numbers of the second kind (see
Proposition 8.39); the second, on the other hand, uses the recursive formula for the

I and


http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_5
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Bell numbers (see Proposition 5.16) and Proposition 7.119 to determine a closed form
for a formal power series that satisfies a differential equation.

1. (First proof) Fix m € N. We prove that
[X"]B(X) = [X"] e V. (8.40.2)

One has
%m m 1
[X"]BX) = =2 = I’"] —

m! = k

and by Proposition 8.39

SRS

k=0

2. (Second proof) By Proposition 5.16 one has

%n-ﬁ-l = Z (7;) %i .

i=0

Therefore (¥98,,41), is the binomial transform of the sequence (8,),. Thus by
Proposition 7.88 one has

0 X" o X"
E %thl 7 = EX E %n F
n=0 : n=0 ’

On the other side, by Point 6 of Proposition 7.21, the EGF of the sequence (28,,+1),
also coincides with the derivative of the EGF for the sequence (¥8,,),, and therefore
one has

B'(X) = ¥ B(X).

e’ —1

The function e is a solution to the Cauchy problem

Y(x) =e"yx),
y(0) =By =1;

hence in view of Proposition7.119 one has B(X) = e =D, O


http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_5
http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_7
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8.2.4 OGEF of Integer Powers and Eulerian Numbers

In this section we calculate the OGF of the integer power sequences; more precisely,
for fixed n in N, we determine the OGF of the sequence

0", 1", 2", 3", 4" .. k", .

In order to express the closed form of that OGF in a concise manner, it is convenient to
introduce Eulerian polynomials first. We recall that the Eulerian number <k> counts

the number of permutations (ay, ..., a,) of (1, ..., n) with exactly k strict excesses,
i.e., with k indexes i such that a; > i.

Definition 8.41 Letn € N . The n-th Eulerian polynomial A, (X) is the polyno-
mial of degree n — 1 defined by

n

A (X) = OGF<n> =1+<n>x+--.+<
k 1 n—1

>X"—1 (n>1). o
k

I
~ (D)
R k2
a@ﬂ
e, 9
T onag(p-1)d
3=P’-‘+11p’+11p+1
2.3.4(p—1)*
p4+26p3 + 66p2~26p + 1
1020 3 40 3 (p=—1)3
— 3+ s7ps - 302pt +302p> +57p 1

1.2.3.4.5.6 (p—1)*
PeLx20p3 L 1101p4 ] 2416p3 L 1101 +I20p4+ 1
1234567@~ﬁ?

n ==

Fig. 8.1 The first few Eulerian polynomials in Euler’s original text “Institutiones calculi differen-
tialis” of 1755 (in reality, with the present terminology, what we have here is actually a list of the

A
ﬂforn: 1,....7)
nl(p— D"

quotients
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Example 8.42 The first few Eulerian polynomials (see also Fig.8.1) are

AlX) =1, Aa(X) =14 X, A3(X) =1 +4X + X2, Ag(X) =14+ 11X + 11X% + X3,
As(X) = 1 +26X + 66X +26X° + X%,

Ae(X) =1+ 57X +302X2% 4+ 302X> +57X* + X°,

A7(X) =1+ 120X + 1191X2 +2416X> + 1191X* + 120X° + Xx°. O

The OGF of the powers (k") is easily expressed in terms of the Eulerian poly-
nomials; the proof is an application of Worpitzky’s formula (Proposition 5.84).

Proposition 8.43 (OGF of the powers (k")) For a fixed integer n > 1 one has

> XA, (X) X
OGF(k"); = § k' xk = —— = - 2 < >x’°. (8.43.a)
pr (1 =X (=X &k

Proof. Given k € N, Worpitzky’s formula (see Proposition 5.84) yields
n—1 n k +i
n o__ l
=200

gknxk _ i(im (k:’))x";

k=0 \i=0

Then one obtains

using the definition of sum of formal power series, one immediately obtains the
interchange of the order of summation

gk"x" = i<?>(g (k : i) Xk).

i=0
Now, in view of (7.90.b), for each giveni € {0, ..., n — 1} one has
o0 o0 o0
j 1 j . 1 i .
Z(k+l)xk= _'Z(k—i_l)xkﬂ _ __Z(])Xj
n Xi n Xi n
k=0 k=0 j=i
1 [ee) . .
- TYx7 Gtisi+1<nand (1) =0if j <n)
Xi 4 n - n
j=n
1 X" Xn—i

X (1= X+~ (1= Xy



http://dx.doi.org/10.1007/978-3-319-03038-8_5
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thanks to (7.90.b). Therefore
o0 n—1 i
n XV!*I
k" Xx* = _
IR 3] (j
k=0 i=0

Changing the index to j = n — 1 — i in the last formal power series we obtain

[oe) n—1 .

3 3 X/t
Kt = < ’I > 1 — X)n+l’

k=0 = t=J (1-X)

The conclusion now follows from the fact that < ’I > = <n> (see Proposi-
n—1—yj J
tion5.73). m]

Example 8.44 Applying Proposition 8.43 for n = 3 we obtain

i/éxk _ XA3(X) X +4X24+X° 0
purs G O LR ok

Note that in order to prove Proposition 8.43 we have made no use of the explicit
expression for the Eulerian numbers obtained in Proposition5.75. We now see how
Proposition 8.43 allows us to recover an explicit expression for the Eulerian numbers
in a more expeditious fashion than the considerably longer and tedious inductive
proof carried out in Proposition 5.75.

Corollary 8.45 Letn € Ny . The explicit formula for the Eulerian numbers is

k i=0
0 otherwise.

‘ n+1 o
<n>= Z(—l)( ; )(k—i—l—z) if0 <k <n,

Proof. By Proposition 8.43 one has
o0
Ay (X) = (1 — X)"t! Zk"X’H.
k=1

Now

n+1 1
(1= Xy =3 (=1 (” i ) X';

i=0

and so it follows that


http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_5
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n+1 n+1 [}
_ _ 1\ nyk+i—1
An(X) =D (=1 ( l. )(Zk X )
i=0 k=1

Fixiin{0, ..., n + 1} and make the change of index j = k 4+ i — 1 inthe summation
between the two parentheses of the foregoing formula:

n+1 o)
Ap(X) = D (=1 (" i 1) SG+1—i)x
i=0

j=i

Changing the order of summation, since 0 <i < j andi < n + 1 one has that for
each given j, the index i varies between 0 and min{j, n + 1}, whence

00 min{j, n+1}
i + 1) . n ;
An(X) = Z( > -1 (” ,- )(] +1-1) )Xf,

j=0 i=0
from which it follows that Vk € {0, ..., n — 1},

k
<Z>: [X*] A, (X) = D (=1) (”Tl) (k+1—1i)". 0

i=0

8.2.5 OGEF of Catalan Numbers

In this section we calculate the OGF of the Catalan numbers (see Sect. 3.3). We recall
that the Catalan numbers are

|
Cat, = (2”) . neN.

n+1\n
i . o 1—(1—4x0)'?
Proposition 8.46 The extension by continuity of x — is a closed
X
form for the OGF of the Catalan numbers, that is, one has
o0
1—(1—4Xx)l/2
OGF(Cat,), = Cat, X"= ————.
(Cat,) go a o
. . 1—(1—-4x)'?
Proof. Let us explicitly calculate the coefficients of —————————. One has

2X


http://dx.doi.org/10.1007/978-3-319-03038-8_3
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1—(1—4x)? = — Z (1’(12) (—4)" X",
n=1

We have seen in Example 7.95 that

2
(1,/12) = (1" Caty

Consequently,
1—(1—4x)2 i 1 .
— == > (=) —nCat,,,l(—4)”X”
2X o 4
o0 oo
= ZCatn_l X! = ZCatn X", O
n=1 n=0

8.3 Bernoulli Numbers and Their EGF

Bernoulli' numbers appear often in many formulas: they serve, for example, in
expressing the sum of the m-th powers of integers which we shall calculate in Exam-
ple 8.52; we will again find them in the general Euler-Maclaurin formula of Chap. 13.
The inquisitive reader will find motivation for them in Proposition 13.1.

8.3.1 Bernoulli Numbers

The Bernoulli numbers are recursively defined as follows:

Definition 8.47 The Bernoulli numbers B,,, m € N, are defined by the relations
By =1and, form > 1,

> (’" ;L 1) B, = 0. (8.47.2)

j=0
Therefore, once By = 1,By, ..., B,,_; are known one can find B,, by using the
formula
1 m—1 m+ 1
Bm = - ( . ) Bj . O
m+ 14 J
j=0

1Jacob Bernoulli (1654—1705).
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http://dx.doi.org/10.1007/978-3-319-03038-8_13
http://dx.doi.org/10.1007/978-3-319-03038-8_13

300 8 Generating Formal Series and Applications

Example 8.48 We write the first Bernoulli numbers. Applying the definition one
finds By = 1; then

B=—1By=—L B,= l(B+313)—1
1= 20— 27 2 = 3 0 1—67

and so on, until one obtains

1 1 1 1
Bo=1, Bj=—=, By=-, B3=0, By=——, B5=0, Bg=—,
0 1= =p B BRI S S BR S s,
1 5 691
B;=0, Bg=—=—, Bg=0, Bp=—, B =0, Bp=——r.
7 8 30 9 10 66 11 12 2730

Example 8.49 For each m > 2 one has

> (’7) B;=B,. (8.49.2)

j=0

Indeed, by definition, since m — 1 > 1 one has

i(?)BJ=§(7)Bj+(Z)Bm=o+Bm=Bm.

j=0 j=0

This formula is equivalent to the definition of the Bernoulli numbers. It has the
advantage of being easy to remember by way of the formula

B, = (1 +B)mv

where (1 + B),, is expanded like (1 + B)™, but replacing each occurrence of a B/
with the Bernoulli number B;. O

8.3.2 The EGF of the Bernoulli Numbers

Let us calculate the EGF of the Bernoulli numbers:

Proposition 8.50 (EGF of the Bernoulli numbers) One has



8.3 Bernoulli Numbers and Their EGF 301

o0 n X
EGF(B,), = Z_:B,, —=a (8.50.2)
It follows that
o0
X X
Bo + ,Z;‘Bn — =3 coth > (8.50.b)

cosh(x)
sinh(x)

where coth(x) is the hyperbolic cotangent coth(x) :=

Proof. We set

AX) = iBn % (X —1) = (iBn %)(i %)

n=0 n=0 n=1

_X(iB X)(Z (n)fl),)

One has [X°]A(X) =0, [X]A(X) = 1, and forn > 2

X" 1 n—1 N
[H—!]A(X):n!(z(; ,»n_l)v)—;(l.)B,:o

0

X
and so A(X) = X, from which one obtains (8.50.a). By adding the term 5= —B1 X
to both terms of (8.50.a) one gets

o0
n X X X 2 XeX+1
B B, — = Z=2(1 ==
°+n§ Al X112 2(+ex—1) 2 eX — 1

X XX 4 e X12) X X2 4 o= XN2
2 XX — ¢ X2 T X2 _ X2

An immediate consequence of Proposition 8.50 is the vanishing of the Bernoulli
numbers of odd index, from 3 onward.

Corollary 8.51 The Bernoulli numbers B, with m > 3 odd are zero.
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o n
Proof. Tt follows by (8.50.b) that By + Z B, — is even. By Proposition 7.45 one
n!
n=2
has B, = 0 for all odd n greater than or equal to 3. O

Proposition 8.50 yields the calculation of the sum of the m-th powers of the nat-
ural numbers (m € N) known as Faulhaber’s? formula; later we shall give another
derivation of the same result using the Euler-Maclaurin formula (Chap. 12).

Example 8.52 (Faulhaber’s formula) For eachm € Nand n € N>, we use Sy, (n) to
denote the sum of the m-th powers of 0, 1, ..., (n — 1), that is,

Su(m) = 0" + 1" + -+ (n — D",

where we set 0° = 1. Note that Sy(n) = 0° +1° 4. + (n — 1)° = n. We verify
the formula

I :
Su@)=0"4+1"+- +(n—1)" = —— (’”Jfl)Binm“’.
m+1 i=0 !

(8.52.a)

Observe that, using the notation introduced in Example 8.49, the foregoing formula
may easily be remembered by writing

_ (B + n)erl - Bm+1

S =0" + 1" + -+ (n— D"
) LTI b e — 1 pe

)

where (B + n),,+1 is expanded like (B + )™t but replacing each occurrence of
B/ with the Bernoulli number B;.

For fixed n, we determine the EGF of the sequence (S,,(n)),,. Here is the trick:
recall that

kX 2)(2 me
et =14+kX+k—+---+kK"—+---. (8.52.b)
2! m!
Summing this formula for k = 0, ..., n — 1 one obtains

X2 xm
T4 eX 42X 4= DX = g5(n) + UM X + () S A S

Now

2Johann Faulhaber (1580-1635).
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X 2X DX X X\2 X\n—1 X —1
i e e G e e e e
e f—
and therefore
X? X — 1
S S X+ S Z L=
o(m) + 51X + S(n) = + X1
Obviously one has
nX 1 _ enX 1 X
eX—1 X eX—1
and moreover
nX _ 1 1 S Xk S X
()2
X X = k! k+ 1!
while, by Proposition 8.50, one has
X = Xt
=S B, —
X _ Z ko
e 1 P k!
It follows that for each m € N
xm enX -1 X xm 0 0 Xk
Sm N e — k+1 B, =—
o [m'] X X1 [ LZ(;" (k+1)'zkk!
_ ' m E nm—i-H _ i m—l—l m+l l
Ll (m—i+ 1) m+1
i=0 i=0
proving (8.52.a).
It must be said that Faulhaber [15] computed the formula for m € {1, ..., 23}

without knowing the Bernoulli numbers that allowed Bernoulli [7] to prove the
general formula about 70 years later. We may now calculate the sum S,, (1), involving
n terms, by way of a sum with m + 1 terms; of course, the greater n is compared
to m, the more useful this result becomes. Thus, for example, since Bo = 1, B; =
—1/2,B, = 1/6 one immediately obtains the sum S;(n) of the integers from 1 to n

and the sum S (n) of the squares of integers between 1 and n:

1 2 2 1 1
Sl(n) = 5 ((O) B0n2 + (1) Bl Vll) = 51’12 — En,
1 3 3 3 1 1 1
SZ(ﬂ) == 5 ((0) B()l’l3 + (1) Bl l’l2 + (2) B2 nl) = §n3 — §n2 + gn



304 8 Generating Formal Series and Applications

Bernoulli amazed his contemporaries by calculating “in seven and a half minutes”

the sum
999

S10(1000) := Zk'o :
k=0

indeed, in view of Example 8.52 one has

10

Syo(1 000) = % Z (11) Bi(lOOO)”_i,

i
i=0

To calculate the sum it suffices to have available the first 11 Bernoulli numbers (half
of which are zero): the sum turns out to be

91409924 241424 243 424 241 924 242 500. O

8.3.3 An Estimate of the Bernoulli Numbers

The Riemann® zeta function appears in many fields in Mathematics and is still a big
source of open problems, in particular the celebrated Riemann hypothesis concerning
the zeros of the (complex) Riemann zeta function. Let us recall its definition.

Definition 8.53 (The Riemann ¢ function) The (real) Riemann ¢ function is defined
in |1, +o00[ by

o0

£(s) = kl (8.53.0)
k=1

O

Remark 8.54 Tt is of course well known that the series (8.53.a) converges for s > 1.
This is, for instance, a consequence of the integral test (see, e.g., Theorem 12.108 or

+00 1
Corollary 12.78) since the integral / — dx is finite if and only if s > 1.
X

The Bernoulli numbers of even index can be expressed in terms of the Riemann
¢ function: the following equality will be proved in Corollary 13.9.

n !
B,= (=) '12—2_¢(n) V¥n>2, neven (8.54.2)
2m)"

3Bernhard Riemann (1826-1866).
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A rough estimate of the values of the Riemann ¢ function yields immediately a
subsequent estimate of the Bernoulli numbers of even index (remind that those of
odd index are zero, except B).

Proposition 8.55 (Estimate of Bernoulli numbers) One has
It = — Vs> 1, (8.55.2)
s —

n!
<|B,| <4

VneN, n>2, neven, 2 " .
2m)" 2m)n

(8.55.b)

Proof. Regarding (8.55.a), the estimate from below follows from the fact that, obvi-
ously,
o0
1 1
=227 =

The upper estimate follows immediately from (6.11.a) by passing to the limit for

n — +ooin
1+1+ +1< a
25 nt " s—1"

Finally, from (8.54.a) and (8.55.a), for every even n > 2 we have

2

n! n n!
<IB,l = <4 ,
(27r)” (271)” n—1 )"

proving (8.55.b). O

The radius of convergence of the EGF of the Bernoulli numbers series can be
easily deduced from Proposition 8.55.

Example 8.56 (The sum function ofthe EGF of the Bernoulli numbers) The radius of
o0

B, .. . .
convergence of the series B(X) := E —’X " is 27r. Indeed, the estimate in (8.55.b)
n:

n=0
and the comparison principle implies that the series B(X) is absolutely convergent

at x € R as soon as the series
l‘l

> oy (8.56.a)

n=0

converges absolutely at x. It follows that the radius of convergence of B(X) is the
same of that of (8.56.a), which is actually equal to 27. Since x and e* — 1 are
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analytic functions, and lim XLI = 1, then from Proposition 8.16 the extension by
X

—0 et —

continuity of

" al 7 is analytic in R. Theorem 8.14 yields the equality
e —

00 if 0 < |x| < 2m,

B, -

PIEEUES R (8.56.b)
n!

n=0 lifx =0.

As an application, we suggest in Problem 8.4 to prove that

. k\" 1
lim — = T O
metes O<k<m [ e=

The list of the first Bernoulli numbers (see Example 8.48) may lead one to believe
that they remain bounded, and perhaps tend to O at infinity, but this is not the case:
the even indexed Bernoulli numbers diverge quite fast to infinity, with alternating
signs.

Corollary 8.57 The sequence (By,,), has alternating signs; moreover

lim |By, | = +00.
m—+00

Proof. The fact that the given sequence has alternate signs follows from (8.54.a):

_12@2m)! . 1 .
By, = (=)™ an)? ¢(2m) has the sign of (—1)"~". From the lower estimate
T m
(8.55.b), we get
2(2m)!
———- =<IBuw| Vm=1
(27-[)2m
(Zm)! . :
Now, the sequence | x,, := ——— ) diverges to +oc: indeed
(2n)2m "

. Xm+1 . (2}’}’! + 2)(21’” + 1)
lim —— = lim =
m—>400 X, m——+00 (27‘[)2

The conclusion is straightforward. O
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8.3.4 Explicit Form for the Bernoulli Numbers s

In view of Proposition 8.50 and Point 4 of Proposition7.80, a closed form for the
EGF of the Bernoulli numbers is given by the extension by continuity of the function

X to R. The formula for the successive derivatives allows us to give an

er —
explicit description of the Bernoulli numbers.

X
Lemma 8.58 Let f be the extension by continuity of x +—> 1 For eachn € N
e —

one has
(n) _ “ Ty n—+1 k'n! n+k
f (0)—;( b (k +1) aeoll &I (8.58.2)

Proof. Clearly f = 1/g where g is the function defined by

X

e* —1 ifx £ 0
g(x) :=[ x F
1 if x =0.

The formula (5.28.a) for the n-th derivative of functions of the type 1/g here yields

FP0) =D (=1f (Z I i) g0 (8" ). (8.58.b)
k=1

For each k € N5 one then has
(e = D* Fr £ 0
go=1 & 1
1 if x =0.

To determine the derivatives, recall that the function (e* — 1) appears in the for-

mula furnishing a closed form for the EGF of the sequence : more precisely

n
k n

Proposition 8.39 states that
imx (= DF
k] n! k!

from which

o) n X"
(eX—l)kzk!Z“{k]H.

n=k
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Reasoning as above (to obtain the expansion of g) and making the change of variable
m = n — k, one obtains

Xnk +k X"
g(X)_k'Z[ ] 'Z[mk ]<m+k>'

m=0

Then by definition of a closed form one gets

(8™ (0) r k! n+k
o 7 T [xn X) = v N
o [x"] ¢ (X) axor |k neN,
from which it follows that
k'n! n+k
N 0) = ——— Vn e N.
(&)™ (0) (n+k)![k ] n e

Bearing in mind that g(0) = 1, relation (8.58.b) then yields

BN P U AL In+k]
f <0>—k§< ) (kH)(Hk)! R O

Corollary 8.59 (Explicit form for the Bernoulli numbers) For each n € N one
has

. - fn+1 k! n+k
_n!;(_l) (k+l) (n+k)![ k ]

— " n+1 1 . i (K n+k
_n!;(k-i-l) (n—l-k)!]Z::‘(_l)](j)J '

(8.59.2)

Proof. Letn > 1. By Proposition 8.50, and Point 4 of Proposition 7.80, the function

if x # 0,
ex —
fx) =
1 ifx=0
is a closed form for the EGF of the Bernoulli numbers, namely, one has

") =B

Since by Lemma 8.58
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n) _ . 1k n—I—l k! l’l+k
! (O)—”’;( b (k+1)(n+k)! ko[

one obtains the first equality in (8.59.a). The second follows from the explicit formula
for the Stirling numbers of the second kind stated in Theorem 5.6: since

k
[”Z"] - %Z(—l)i (’l‘) (k —i)"t* Vk e N,
T i=0

the change of variable j = k — i in the summation yields

+k] 1< k
[” . ] - EZ(—U’H’ (J) J" ke,
| &

and then one immediately obtains the second equality. O

8.4 The Probability Generating Formal Series s

The material in this section assumes some familiarity with the theory of discrete
random variables. Given a sample space £2, a discrete random variable Y : 2 — N
and a probability function P : Z2(£2) — R, we use (p,), to denote the sequence of
values assumed by the discrete density of Y, that is,

YneN p,:= P =n).

To the sequence (p,), we associate the formal power series

Py(X) := anx" — Z P(Y =n)X",

n=0 n=0

called the probability generating formal series of Y.

Example 8.60 (The problem of the two dice) Can one create two 6-sided dice such
that when one throws with both dice and sums their values the probability of any
sum (from 2 to 12) is the same? Clearly at least one of the two dice should not be
fair: indeed if one considers the usual uniform probability on each outcome (i, j)
of the two dice (say the red first, the green second), with 7, j in {1, ..., 6}, then the
probability that the sum of the two dice equals 5 is 4/36, whereas the probability
that their sum equals 6 is 5/36. It turns that, actually, having the sums with equal
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probability is an impossible task. We give a proof of this statement by means of
probability generating formal series. Let Y} and Y, the random variables denoting
the score shown on the top face of the two dice. Clearly

6 5
Pr(X)=2 PY;=)X' =XD PY;=j+DX/, i=12

j=1 Jj=0

are X times a polynomial of fifth degree. Assuming that the throws of the two dice
are independent, for each k = 2, ..., 12 the probability that the sum of the two dice
equals k is given by

6
pei=PYi+Ya=k =D P =P, =k—i),

i=1

so that, from Proposition7.21,

12
Py iy, (X) = D peX* = Py (X) Pr,(X). (8.60.a)
k=2
Assuming that the outcomes of the experiment are equally probable, then necessarily
1
pr=---=pp= H,sothat
Py iy, (X) = ! X+ 4+ X" = X2(1 + X4+ X0 = Xo1- X8
nee T Tl T 1-x
It follows from (8.60.a) that
X*(1 = X"y = 11(1 = X) Py, (X) Py,(X)
5 5
=11(1 — X)XzzP(Yl =j+ DX/ Z P(Y,=j+ DX/,
j=0 j=0
and hence
5 5
1—x"=1101 - X)ZP(Yl =+ 1))(/‘21)(1/2 =j+ DX/,
j=0 j=0

This equality of polynomials is not possible! Indeed the roots of 1 — X' are the
eleventh roots of 1, given by

2k 2k
cosl—f—i—icosl—lﬂ (k=0,...,10).
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Now all of these roots, except 1, are not reals. It follows that the roots of the fifth
5

degree polynomials Z PY,=j+ DX I i=1,2, areall complex, contradicting
Jj=0
the fact that any polynomial of odd degree has at least one real root. O

Example 8.61 (Uniform discrete variable) Let Y be a uniform discrete variable with
parameter 7 € Nx;: here one is dealing with a variable that assumes each of the
values 0, 1, 2, ..., n — 1 with equal probability 1/n. One has

PAX)=PY =0+P¥ =DX+---+PY¥ =n—-DHX""!
11—Xx"
I’ll—X m}

1
:;(1+X+---+X”‘1):

Example 8.62 (Bernoulli variable) Let Y be a Bernoulli variable with parameter
p € [0, 1]. It assumes the values O, 1 respectively with probabilities g := 1 — p and
p. One has

Py(X)=PY =0)+ P(Y =1)X =q+ pX. o

Example 8.63 (Binomialvariable)Let Y be abinomial variable of parameter (N, p),
with N € N and p € [0, 1]. It assumes the values O, 1, ..., N. On setting g =

1 — p, the value i is assumed with probability (11\7) pig™~". One has

N N
_ Ay — N\ i N-iyi _ N
PﬂX)-ZP(Y-z)X—Z(Z.)pq X' =(q+pX)". O

i=0 i=0
Example 8.64 (Geometric variable) Let Y be a geometric variable of parameter

p € [0, 1]. It assumes the non-zero natural numbers as values. On settingg = 1 — p,
the value i is assumed with probability ¢'~! p. One has

pX
1—gX’

oo 9] oo
Pr(X) =D P(Y=DX'= pg 'X'=pX Y 4'X' = 0
i=1 i=1 i=0

Example 8.65 (Poisson variable)Let Y be a Poisson* variable of parameter A > 0. It
assumes as values all the positive integers, and the value i is assumed with probability
i

A
e One has
i!

00 00 X [ A
Py(X)=> P¥ =X =>" i—'e_AXi =y i—‘X‘ =D 4
i=0 i=0 i=0

4Siméon Denis Poisson (1781-1840).
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8.4.1 Expected Value and Variance for Random Variables

Let us recall the definitions of the expected value and variance of a random variable
with non-negative integer values.

Definition 8.66 Let Y be a random variable with natural integer values.

oo
1. If the series z i P(Y =1i) converges, we say that the expected value of Y is the
i=1
number

E[Y]:= iiP(Y =i)= iip,-.
i=1 i=1

o0
2. If Y admits expected value u := E[Y] and the series z i2 p; converges, then the
i=0
variance of Y is the number

Var(Y) := E[Y?] — E[Y)? = Zﬂpi —u o
i=1

The generating formal series of probability facilitates the calculation of the
expected value and the variance of a discrete random variable.

Proposition 8.67 Let Y be a random variable with non-negative integer values, and
let Py(X) be its probability generating formal series.

1. If Y admits its expected value, then Py, (X) converges in 1 and one has

E[Y] = Py(1).
2. IfY has finite variance, then Py, (X) and P; (X) converge in 1 and one has

Var(Y) = PJ(1) + Py(1) — (Py(1))°.
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o0 o0

Proof. Note that Py(X) = > np,X"~" and P}/(X) = > n(n —1)p,X" "> Thus,
n=1 n=2

Point 1 follows immediately from the definition. As to Point 2, one has

oo [e9] oo
Py =D n(n—Dpy =D n*pu— D np,
n=2 n=2 n=2

0 ) 00
= Zn2pn - ann = anpn — K
n=1 n=1

n=1
and so
o0 o0
Var(Y) = > n’p, — i* = (Z n*pn — M) +u—p?
n=1 n=1
= PJ(1)+ Py(1) — (Py(1)’. o

We calculate now the expected values and variances for the random variables
given in the preceding examples.

Example 8.68 (Uniform discrete variable) Let Y be a uniform discrete variable with
parameter n € N (see Example8.61) and Py (X) its probability generating formal
series. One then has

Py(X) = %(l—}—X-F..._}.X"—l)’
! ! n—2
PY(X)ZZ(1+2X+"'+(H—1)X )’
1
P;///(X)z;(2+(2x3)X+...+(n_2)(n_1)Xn—3)’

from which, in view of what has been seen in Sect.6.1.1 and Example 6.30,

ln(n—l)_n—l
no 2 2

1
Pyl = —(1 424+ —1)=

’

Py (1) %(2+(2x3)+-~-+(n—2)(n—1))

n—1
! > k= %(n — D —2).

n
k=2
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Therefore

n?—1
12

n—1

E[Y]= P)(1) = and VarY = PJ(1) + Py(1) — P,(1)> = .o

Example 8.69 (Bernoulli variable) Let Y be a Bernoulli variable with parameter p
and Py (X) its probability generating formal series (see Example 8.62). One has

Pr(X)=(1-p)+pX. Py(X)=p. P}(X)=0,
from which it follows that

E[Y]= Py(1)=p, Var(Y) = P/(1)+ Pj(1) = Pj(1)* = p— p* = p(l — p)D.

Example 8.70 (Binomial variable) Let Y be a binomial variable with parameter
(N, p) and let Py(X) be its probability generating formal series (see Example 8.63).
Setting ¢ = 1 — p, one has Py(X) = (pX + ¢q)". Therefore one finds

Py(X) =Np(pX +)V™', PJ(X)=NWN - D)p*(pX +q)" 2,

so that
E[Y]= Py(1) = Np(p+q9) =Np and

Var(Y) = Py(1) + Py(1) = Py(1)> = N(N — )p> + Np = N’p*> = Npq. o
Example 8.71 (Geometric variable) Let Y be a geometric variable of parameter p

and let Py(X) be its probability generating formal series (see Example 8.64). On
setting g = 1 — p, one has

rX / )4 " 2pq
Py(X) = , P X)=——, P, X)=——7—.
V=175 O =g 5 HO= G2 5
Therefore,
E[Y]:p/(l):L:l
! (I1—¢g? p’

2pqg 1 1 1—p

Var(Y) = P/(1) + P;(1) — Py(1)* = 3

Example 8.72 (Poisson variable) Let Y be a Poisson variable of parameter A and let
Py (X) be its probability generating formal series (see Example 8.65). In this case
one has
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Py(X) =XV pLX) = 2D PU(X) = 22PED,
so that

E[Y]=Pj(1) =2 and Var(Y)=P/(1)+ P,(1) = Py(D)>=A. O

8.4.2 Functions of Independent Random Variables

Let us see how to use the results we have developed in the previous sections to carry
out some calculations with discrete random variables with values in N.

Definition 8.73 Given a sample space £2, a family of n discrete random variables
YiIQ—>N, i=1,...,l’l
is independent if for each n-sequence (ay, ..., a,) of natural numbers one has

PYy=ay,....Y,=a,)=PY1=a)) x--- x P(Y, =a,). O

Given the probability generating formal series Py (X) and Pz (X) of two indepen-
dent discrete random variables it is easy to obtain the probability generating formal
series of their sum Y + Z:

Proposition 8.74 The probability generating formal series Py, z(X) of the sum of
two independent discrete random variables Y, Z with values in N is the product of
the generating formal series Py(X) and Pz(X).

Proof. Since Y and Z are independent one has
n n
PY+Z=n)= P(U{Y =k}ﬁ{Z=n—k})=ZP(Y =kP(Z=n—k).
k=0 k=0
Then, by Definition 7.5, we have

0]
Priz(X)=D P(Y +Z=mX"
n=0

[o¢] n
= Z(Z P(Y =k)P(Z=n— k)) X" =Py(X)Pz(X). O
n=0 \k=0

Corollary 8.75 Given a family of n independent discrete random variables

Y, >N, i=1,...,n

then Py, ...y, (X) = Py, (X) -~ Py, (X).
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Proof. Observe that if three random variables Y;, Y, Y3 are independent, then
Y, + Y, and Y3 are also independent. Therefore

Py, 1v,17,(X) = Py 4y, (X) Py,(X) = Py, (X) Py,(X) Py,(X).

The general case follows easily. O

Example 8.76 Letus compute the probability generating formal series of the sum of
N > 1 independent Bernoulli variables Y1, ..., Yy of parameter p. Since Py, (X) =
q + pX, withg := 1 — p, we have

N

N n —n n
Prisrry(X) = (g + pX)N = (n) rax
n=0
Therefore Y; + - - - + Yy is a binomial variable of parameters (N, p). m|

Also the composite of two probability generating formal series has an interesting
probabilistic interpretation.

Proposition 8.77 LetT : 2 — Nbeadiscrete randomvariable, andYy, ..., Y,, ...
independent and identically distributed discrete random variables with values in N.
Assume either:

1. T assumes a finite number of values;
2. P(Y,=0)=0.

Then, denoted by Yr the random variable 2 — N, w — Y7, (), one has
PY,+~~+YT (X) = PT(PYI (X))

Remark 8.78 Observe that under assumptions 1 or 2 in Proposition 8.77 the com-
posite of formal series Pr(Py, (X)) is well defined (see Definition7.41).

Proof (of Proposition8.77). By definition one has

PY]J’».“J’,YT(X) = Z PYi+ ---+Yr = n)Xn
n=0

o0
Since P(Y1+~-~+YT=n):ZP(Y1+~-+YT =n|T = k)P(T = k), then
k=0

one obtains

)
PY1+---+YT(X) = Z PY\+--+Yr = n)Xn
n=0

0o
=0

(Z PY,+-+Yr=n|T =k)P(T = k))X".
k=0
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oo
Under our assumptions, thenz P(Y,+---4+ Yy =n|T =k)P(T = k)hasafinite
k=0
number of summands: indeed, if Condition 1 holds, then P(T = k) is different
from zero for a finite number of k € N, while, if Condition 2 holds, then P(Y; =
0)=---=PXr =0)=0andhence P(Y; + --- + Y7 = n|T = k) equals zero for
k > n. Therefore, the sums commute and one gets

Priviry(X) = D P(T =k) D P(Yi+ -+ Y7 =n|T = X"
k=0 n=0
oo oo
=D P(T =k D P+ + Y =nX",
k=0 n=0
which, by Corollary 8.75, coincides with

> P(T =k)(Py,(X))* = Pr(Py,(X)). O
k=0

Example 8.79 A die whose faces are numbered from 1 to 6 is tossed until the outcome
is 1. We want to determine the expected value of the discrete random variable which
computes the sum of all the outcomes. Denote by Y;, i € N, the discrete random
variable that assumes each of the values 1, 2, ..., 6 with equal probability 1/6 and
by T the geometric variable of parameter 1/6. Similarly to Example 8.61, one gets

X+ 4+ X 1. 1-—Xx°
PLX) = T = X

Let us compute the probability generating formal series of Y; + - - - + Y7. By Propo-
sition 8.77 we have

PY1+-~~+YT (X) = PT(PYl (X))

Thus from Examples 8.61, and 8.64 we get

1P X0 X1 - X%

6 I 1—-X
PY1+"~+YT (X) = 6 3 - 32;(1 — )}(6)
l——Pp(X) 1-——"2
6 36(1 — X)

X1 -X9
75X — 41X + 36
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Testing the limits of our patience (or perhaps, more sensibly, using a CAS), we
get
(7 X)) = —6X°+1—-Xx° (1—X° (35X°—41)X
Yttty T 5X7 — 41X + 36 (5x7 —41X+36)2
36 (6X° 4+ 5X* +4X3 +3X2 +2X +1)
(5X6 4+ 5X5 4+ 5X4 +5X3 + 5X2 4+ 5X — 36)"

Then by Proposition 8.67 we obtain

366 +5+4+3+24+1)
ElY,+. .. .4+ Y] = =2I.
Mt = e s s 5151536y =

8.5 Problems

Problem 8.1 Let f(x) be a closed form for the derivative A’(X) of a formal power
series A(X) and let A(0) = 0. Then g(x) = / f(t)dt is a closed form for A(X).
0
Problem 8.2 Calculate the following sums:
149 299 9999

ZkS; Zk7; Z K.
k=1 k=1 k=1

Problem 8.3 Use generating formal series to give an alternative proof of the formula

(2.57.a):
r K _ r+s
E (m—l—k) (n—i—k) = (r—m—i—n) Vm,n,r,s € N.

keZ

Problem 8.4 1. Prove, from (8.52.a), that

1 m =\ B; 1
— "= —— —(1+0|(— .
mn Z m+1+;i!(+ (m)) " e

1<k<m

k\" 1
2. Ded that i — = .
cduce that_tim > (m) _—

O0<k<m
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Chapter 9
Recurrence Relations

Abstract In the upcoming chapter we introduce recurrence relations. These are
equations that define in recursive fashion, via suitable functions, the terms appearing
in areal or complex sequence. The first section deals with some well-known examples
that show how these relations may arise in real life, e.g., the Lucas Tower game
problem or the death or life Titus Flavius Josephus problem. We then devote a large
part of the chapter to discrete dynamical systems, namely recurrences of the form
Xn+1 = f(x,) where f is a real valued function: in this context the sequence that
solves the recurrence, starting from an initial datum, is called the orbit of the initial
point. We thoroughly study the case where f is monotonic, and the periodic orbits.
The last part of the chapter is devoted to the celebrated Sarkovskii theorem, stating
that the existence of a periodic orbit of minimum period 3 implies the existence of
a periodic orbit of arbitrary minimum period: we thus give to the reader the taste of
a chaotic dynamical system, although that notion is not explicitly developed in this
book.

9.1 Basic Definitions and Models

In this section we present to our readers the basic notions underlying recurrence
relations, as well as several examples of such relations.

9.1.1 First Definitions

A recurrence relation is a countable family of equations that define sequences in a
recursive fashion. The sequences thus arising are called solutions of the recurrence,
depending on one or more of the initial data: every term that follows the initial data
in such sequences is defined as a function of the preceding terms.

© Springer International Publishing Switzerland 2016 319
C. Mariconda and A. Tonolo, Discrete Calculus,
UNITEXT - La Matematica per il 3+2 103, DOI 10.1007/978-3-319-03038-8_9
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Example 9.1 1. The system of equations with real coefficients in the infinite col-

lection of unknowns xg, x, ..., X, ...
X1 = 3)60
Xy = 3)C1
X1 = 3xn

which may be indicated more concisely by x,+1 = 3x,,n > 0, is a recurrence
relation. The sequence (3"),>0 is a solution of the given recurrence with initial
datum xy = 1.Itis easy to convince oneself that in general, for every real number
c € R, the sequence (c3"),>0 is the unique solution of the given recurrence
having initial datum xo = c.

2. With suitable care it is easy to verify that the real sequence

xo=1,x1=1, =2, x3=2, xa=4, ..., x7=4, ..., xpn=2", ...
is the solution of the recurrence relation with real coefficients

2x,2 ifn > 2iseven,
Xn = . .
X,—1 ifnisodd,

and initial datum xo = 1.
3. The real sequence

1/2 12"
xo=2,x=1Lx=2"x=1... x5 1=1x,=2""
is the solution of the recurrence relation with real coefficients

Xn = A/Xn—2, N > 2’

and having initial data xo = 2, x; = 1. O

The question that now naturally arises is that of defining general recurrence rela-
tions. We seek to expound in a rigorous fashion what we have just inferred from the
preceding examples.

Definition 9.2 A recurrence relation in the unknowns x;, i € N, is a family of
equations

Xn = fu(X0, ..., Xpt), nZ=T,
where r € N5y, and (f,,),>, are functions

fun:D,— R, D, CR"or f,, : D, - C, D, CC".
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Depending on the case encountered, we will speak either of real recurrences or
complex recurrences. The unknowns xo, ..., x,_ are called free. Their number r
is the order of the relation. O

By replacing n with n + r, the recurrence relation of order r

Xp = fu(Xo, ..., Xno1), B =T,

can also be rewritten as
Xngr = foar(Xo, ooy Xpgr—1), n>0.
Definition 9.3 A sequence (a,), is a solution to the recurrence relation of order r
Xy = fu(x0y ..., Xp—1), n>T, (9.3.2)
with f, : D, — R, D, € R", if
(ag, ...,a,—1) € D, a, = fu(ag,ay,...,a,—1) Yn>r.

The sequence (ay, ..., a,—1) of values assigned to the r free unknowns is called the
r-sequence of initial data or of the initial conditions of the solution. We define
the real (resp. complex) general solution of the recurrence to be the family of all
the solutions with elements belonging to R (respectively, to C). O

Example 9.4 Consider the first order recurrence relation defined by

1
Xp=—, n>1.
Xn,1—1

The 1-sequence (2) is NOT the sequence of initial data of a solution; indeed 2

belongs to the domain of fy(x) = but (2, fo(2)) = (2, 1) does not belong to

x—1
1
the domain of fi(xg, x1) = T On the other hand, the 1-sequence (3) is indeed
X1 —

1
the sequence of initial data of the solution (sequence)

(an), == @3,1/2,-2,-1/3,-3/4,-4/7, =T/11,...).

Note that forn > 2 onehasa, < Oandsoa,+; = < Oisdifferentfrom1. 0O

n
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Example 9.5 In many occasions a recurrence relation of order r involves just the
last r items and is of the form

Xn :gn(xnfrs---,xnfl), n=r,

where (g,),>, are functions defined on a subset E,, of R" or C". The latter is indeed

a recurrence relation: it is enough to set f, (xo, ..., Xp—1) := &u(Xp—r, ..., Xy—1) for
(X05 - s Xp—1) € Dy :=R"7" x E, (or C"™" x E,) in order to fulfill the require-
ments of Definition9.2. O

9.1.2 Some Models of Recurrence Relations

‘We now give a series of examples illustrating how to reduce the solution of a problem
to that of finding the solutions of an appropriate recurrence relation.

Example 9.6 A child decides to climb a staircase with n > 1 steps in such a way
that with each pace he clears one or two of the steps of the staircase (see Fig.9.1).
Find a recurrence relation that serves to calculate the number of different possible
ways of climbing the staircase.

Solution. We use the unknown variable x,, to denote the number of ways in which
the child can climb the staircase of n > 1 steps. It is easy to observe that x; = 1
and x, = 2 (two paces each of length one, or one pace of length two staircase steps)
Now let n > 3: if with the first pace the child moves only one staircase step, there
are clearly x,,_; possible ways to climb those remaining. If instead with the first pace
two staircase steps are climbed, there are then x,_, ways to climb the remaining
steps of the staircase. Thus one has the recurrence relation

Xp = Xp—1 + Xp—2, N = 3,

in the unknown variables x|, x,, . .. with initial data x; = 1, x, = 2. Thus one meets
a recurrence relation of order 2: the free unknowns (variables) are x; and x,. m]

Remark 9.7 The recurrence relation

A

Fig. 9.1 The 5 ways of climbing a staircase with 4 steps
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Xy = Xp—1 + Xp—2, n>2, (9.7.a)
in the unknowns xg, X1, . . . is the Fibonacci' recurrence. The numbers generated
by the Fibonacci recurrence with initial data xo = x; = 1 are called the Fibonacci
numbers: the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. The
solution to (9.7.a) with initial data xo = 2, x; = 1 is called the Lucas’ sequence; the
first few Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123. A bit further on in
our discussion (in Example 10.19) we shall find an explicit description of the n-th
Fibonacci and Lucas numbers.

Example 9.8 A bank gives a yearly payment of 8 % interest on the money deposited
there. Find a recurrence relation for the total sum of money one succeeds in accu-
mulating after n years if one follows an investment strategy of the type:

1. Invest 1000 euro and leaves them in the bank for n years;
2. Invest 100 euro at the beginning of the first year, and then 100 euro at the end of
each year for n years.

Solution. We use the unknowns x, and y,, n > 0, to indicate the total sum accu-
mulated after n years by following investment strategies 1 and 2 respectively. One
has

x, =1.08x,_y and y, =1.08y,_1+ 100, n>1,

with initial data xo = 1000 and yo = 100. It is obviously possible, though boring,
to recursively deduce the terms of the solutions of the two recurrence relations by
repeatedly applying the functions that define them. We shall find an explicit descrip-
tion of the n-th terms of such solutions in Example 10.37 which will appear in the
next chapter. O

Example 9.9 We now use recurrence relations to calculate the number of
n-sequences without repetition of I, = {1, ..., n}. We employ the unknown vari-
able x, to indicate the number of n-sequences without repetition of I, for every
n > 0.If n > 1, one must have x, = nx,_;: indeed, having chosen the position of
1 among the n possible, we have x,,_; possibilities for placing the other n — 1 ele-
ments. Since the empty sequence is the unique 0-sequence of I,, one must have
xo = 1; therefore one has

Xp=nx,_1=nn—Dx, o=---=nn—1)n—-2)---2x1=n!, n>0.
O

Example 9.10 (Number of regions of a plane divided by n lines) Suppose that we
have designed n > 0 lines in general position in a given plane: by “general position”
we mean that no pair of the lines designed are parallel, and moreover that no three
of our lines meet in just a single point. Into how many regions does the plane turn
out to be divided?

"Leonardo Pisano called Leonardo Fibonacci (1170-1240).
2Fran(;ois Edouard Anatole Lucas (1842-1891).
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Solution. We use the unknown variable x,, to indicate the number of regions in which
the given plane is divided by 7 lines in general position. Let us examine the situation
for small values of n: if no line is present in the given plane then the plane is clearly
divided into a single region, if there is one line present, then there are two regions,
while the presence of exactly two lines produces a division into four regions, and the
presence of exactly three lines divides the plane into seven regions.

Now let n > 2. Tracing the n-th line, we will intersect our preceding n — 1 lines.
In reaching each new point of intersection, we divide an already existing region into
two parts; and, finally, leaving the last point of intersection we divide another pre-
existing region into two parts. Thus by the tracing the n-th line the number of regions
of decomposition of the plane increases by n units: thus the recurrence relation that
describes the problem is

Xp =Xp—1+n, n>2,

with initial datum x¢ = 1. It is rather easy to use recursion in order to obtain the first
few terms of a solution for this recurrence relation:

1,2,4,7,11, 16,22,29,37, 46, ....

In Example 10.36 we shall find an explicit description for the n-th term of such a
solution. O

Example 9.11 (Lucas Tower) The Lucas (or Hanoi or Brahma) Tower game consists
of n rings of various size and three poles; at the start of the game the rings are all
positioned on pole A, the most leftward of the three poles, and the rings appear in
decreasing order, that is, starting from the largest ring at the bottom of the pole up to
the smallest ring at the highest level used on pole A (see Fig.9.2). By shifting the
rings among the three poles one wishes to reconstruct the same tower as that specified
by the initial condition of rings on pole A to the most rightward pole C: however,
every time that a ring is shifted onto a pole it must be smaller than all the rings
already present on that pole. In other words, at each step in the game there must be
a decreasing pile of rings (or no ring at all) on each pole.

The problem of finding the minimal number of steps in order to conclude the
game was proposed in Europe by the mathematician Lucas, under the pseudonym
of N. Claus de Siam, actually an anagram of Lucas d’ Amiens, his birth town. There
are many legends about this game, all of them concern a temple (either in Hanoi, or
in Kashi Vishwanath, ...) which contains a large room with three time-worn posts

Fig. 9.2 Lucas Tower A B C



http://dx.doi.org/10.1007/978-3-319-03038-8_10

9.1 Basic Definitions and Models 325

in it surrounded by 64 golden disks. Priests or monks, acting out the command of
an ancient prophecy, have been moving these disks since that time. According to the
legend, when the last move of the puzzle will be completed, the world will end.

We set out to find a recurrence relation that describes the minimal number of
moves necessary to shift the » rings from pole A to pole C. We use the unknown
X, to denote the number of moves necessary to complete the Lucas Tower game
involving 7 rings. For n = 1 a single move is obviously sufficient. Now let n > 2.
The fundamental observation to be made is that if the » rings are on A and we wish
to move them to C, we must first “liberate” the largest ring on A by shifting all of
A’s other rings on to pole B: at that point the largest ring of A can be moved to pole
C with one further move. To shift the n — 1 smallest rings from A to B is equivalent
to ending the Lucas Tower game based on n — 1 rings. Thus, this configuration may
be reached in x,,_; + 1 moves. We must then shift the tower with n — 1 rings from B
onto C: this requires x,_; additional moves. Thus one obtains the recurrence relation
involving the unknowns x;, i > 1,

Xy =2x-1+1, n>2,

with initial datum x; = 1. Itis easy to verify that x, = 2" — 1, n > 1, is the solution
for this recurrence relation. Therefore, if the above legends were true, and if the priests
were able to move disks at a rate of one per second, using the smallest number of
moves, it would take them 24 — 1's or roughly 585 billion years, i.e., about 127 times
the current age of the sun [26]. m]

Example 9.12 We use the unknown variable x,, to denote the number of n-sequences
of I3 that do not contain the subsequence (1, 2, 3). If n < 2, no n-sequence of I3
contains the subsequence (1, 2, 3): thus, one has

x0=3"=1,x=3 =3 x,=3=09.

Let n > 3. If the first figure is 2 or 3, then the remaining figures form an arbitrary
(n — 1)-sequence of I3 which does not contain the subsequence (1, 2, 3): in both
cases we have x,_ possibilities. If instead the first digit is 1, the remaining digits
form an (n — 1)-sequence of /3 that does not contain the subsequence (1, 2, 3) and
that does not begin with the subsequence (2, 3). The (n — 1)-sequences of /5 that do
not contain the subsequence (1, 2, 3) are x,,_; in number; among these, the ones that
begin with the subsequence (2, 3), being formed by the 2-sequence (2, 3) followed
by an (n — 3)-sequence that does not contain the subsequence (1, 2, 3), are x,,_3 in
number. Thus the n-sequences that begin with 1 and do not contain the subsequence
(1, 2, 3) are in number x,_; — x,,_3. Hence, one has

Xp = Xp_1 + Xp—1 + Xyt — Xp-3) = 3%, — X3, h >3,
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with sequence of initial data (1, 3, 9). Repeatedly applying the functions of the recur-
rence relation we find that

x3=3x9—-1=26, x4=3x26—-3=75, x5 =3x75—-26=199,

and so on. In the Example 10.21 we shall find an explicit description of the n-th term
of this solution. O

Example 9.13 We use the unknown variable x,, to denote the number of n-sequences
of I, that contain the subsequence (1,2, 3,4). One has xo = x; = x; =x3 =0 in
view of the fact thatifn < 4 non-sequence of 1, contains the subsequence (1, 2, 3, 4).
Now let n > 4. The n-sequences that contain the subsequence (1, 2, 3, 4) are of two
types: those that contain it among their first » — 1 terms, and those that end with the
subsequence (1, 2, 3, 4), but do not contain it in an earlier position. There are 4x,,_;
sequences of the first type: indeed, an (n — 1)-sequence that contains (1, 2, 3, 4) must
be completed by one of the 4 elements of /4 to form a n-sequence. The sequences
of the second type number the same as the (n — 4)-sequences of I, which do not
contain (1, 2, 3, 4) and thus are in number 4"~* — x,,_4: therefore, one has

Xn = 4xn—l — Xp—4 + 4”_4’ n = 4’5

with initial data sequence (0, 0, 0, 0). Repeatedly applying the functions of the recur-
rence relation one finds that

x=4"4+4x0-0=1,xs=4"44x1-0=8,xs=4>+4 x 8 —0 =48,

and so on. We shall find an explicit description of the n-th term of the solution in
Example 10.38. O

Example 9.14 (The Titus Flavius Josephus problem) The Josephus problem or the
Josephus permutation is a problem connected with an autobiographical episode
recounted by the historian Titus Flavius Josephus,® and which we now translate
into mathematical terms. The problem presents n people arranged in a circle. Having
chosen an initial person and direction of rotation, one moves multiple times along
the circle eliminating every second person that one meets in the chosen direction
until there no longer remains a single person. Given n > 1, one asks for the determi-
nation of the initial position of the remaining person if the circle is initially formed
by n people. For example, if n = 10 the order of elimination of the people located
in positions 1,2, ..., 10 is

2,4,6,8,10,3,7,1,9,

3Titus Flavius Iosephus (37—100).
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and so it is the person in position 5 who will be the last remaining. We use the
unknown variable x, to denote the initial position of the last person remaining on a
circle of n people with n > 1. Obviously x; = 1; then, for n > 2, we distinguish two
cases:

e n = 2m is even, with m > 1: on executing the first circuit the people in positions
2,4,...,2m are all eliminated. At this point the new circle is formed by the m
people who were located in positions 1, 3, ..., 2m — 1. In the new circle the person
who first occupied position 2i — 1, now occupies position i, wherei = 1, ..., m.
The last remaining person is the one who occupies position x,, of the new circle, or,
in other words, the one who occupied position 2x,, — 1 = 2x,,» — 1 in the initial
circle: therefore, x,, = 2x, 2 — 1.

e n =2m + lisodd, withm > 1: on making a first circuit the people who occupied
positions 2,4, ..., 2m are eliminated; on making a second pass one eliminates
also who was in position 1. At this point there remain the m people who occupied
the positions 3, ..., 2m + 1. In the new circle the person who began by occupying
position 2i + 1 of the original circle, now occupies positioni, wherei =1, ..., m.
Hence the last person to remain is the one who occupies position x,, of the new
circle, namely the person who occupied position 2x,, + 1 = 2x(,—_1),> + 1 and thus
is Xp = 2)6(,1,1)/2 —1.

Thus we obtain the following recurrence relation for the unknowns x;, i > 1,

2x,0 — 1 if n > 2 is even;

Vn>2 x,= [Zx(n_l)/zjt 1 if n > 3 1is odd.

On repeatedly applying the functions giving the recurrence relation, starting from
the initial datum x; = 1, we find that

Xo=2x1—1=1,x3=2x14+1=3,x4=2x—1=1, x5 =2x, + 1 =3;

for example, continuing up to n = 16 we find that:

n|[1|2(3(4]5]6(7(8]9]10({11|12{13|14|15|16
X |[1{1]3]1(3(5]7({1|3| 5|7 |9 |11|13[15] 1

It is possible to describe the terms of the solution with an explicit formula. Indeed,
one has

VmeN x,=1ifn=2" x, =20+ 1ifn=2"+0,1<¢ < 2"

We leave as an exercise for the reader a proof of the fact that this is effectively the
solution of the recurrence relation which we found above (Problem9.9). O
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9.2 Discrete Dynamical Systems

In mathematical physics and in the theory of systems, the concept of a dynamical
system arises from the requirement of constructing a mathematical model capable
of describing the temporal evolution of a system. The discrete dynamical systems
comprise a subclass of the class of recurrence relations.

9.2.1 Terminology and Notation

A notable class of recurrence relations is constituted by the dynamical discrete sys-
tems, namely, by the recurrence relations of the type

Xn+1 = f(xn)’ neN,

in which the function f : D — D C R that permits one to obtain x,,; starting from
X, remains the same for every n > 0. Here we limit ourselves to a brief illustration of
some notable facts regarding dynamical systems. Those readers interested in greater
detail in this regard are invited to consult [12, 11].

In the context of dynamical systems, the solution of the recursion relation

Xpn+1 = f(xn)s ne N7

with initial datum x is called the orbit of x, with respect to f. Notice that x,, =
f"(x0) where, here and henceforth in this chapter, /" denotes the n times composition
fofo---ofof fwithitself (and not the n-th power of f).
~——

n times

The graph of f often allows one to understand how the orbit of a point x; evolves
through the use of a procedure called graphical analysis.

Graphical Analysis. We use A to denote the diagonal {(x, x) : x € R} of the
plane. The vertical line through (xg, xo) meets the graph of f at (xo, f(xo)). The
horizontal line through (xo, f(xp)) meets A in (f(xg), f(xo)). Proceeding in this
way, a vertical line that goes from the diagonal to the graph followed by a horizontal
line that goes from the graph to the diagonal specifies the points (/" (xo), f"(x0))
on A, with the variation of n = 1, 2, .. .. The Fig. 9.3 describes the orbit of xy = 0.1
with respect to the function f : R — R defined by setting f(x) = 2x — x2.

Definition 9.15 Let f : D — D be a function, and let ¢y € D.

e The point ay is a fixed point for f if f(ag) = aop. In this case the constant sequence
(a, := ap), 1s a solution of the dynamical system

Xn+1 = f(xn)a neN.
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Fig. 9.3 Graphical analysis o’
of the orbit of xg = 0.1 for 1 ’
Xpgl = 2x, — x,zl ﬁ,ﬂ’h\
X3 = i
X3 7
X2 >
P 2x-x
X4 ; if e X
X0 4 !
0 xp X1 X2 X3 X4 1

e The point q is said to be periodic if there exists £, called a period of ag, such that
ag = f*(ap) = ap: we also say that ag is £-periodic. The minimum period aj is
the minimum among the natural numbers m > 0 such that a,, = f" (ap) = ap. It
is not difficult (Problem9.17) to verify that the periods of a are all multiples of
the minimum period. If ag is £-periodic, then its orbit is the sequence

(ao, f(ao), ..., . fap)) = (ao, f(ao), ..., f* " (ao), ao. f(ao). ..., . o), ao, . ..)

In this case, every point a; of the orbit of ay satisfies f Y(ap) = ag: we thus also
say that the orbit of « is periodic of period ¢. O

Remark 9.16 1t is easy to convince oneself that, in the graphical analysis, the fixed
points are the coordinates of the intersections of the graph of f with the diagonal:
the fixed points of f are the solutions to f(x) = x. Analogously, the points of period
¢ are the coordinates of the intersections of the graph of f* with the diagonal.

11
Example 9.17 Let f(x) = x* — o We wish to find the periodic points of f: we

thus have to solve the second degree equation

x“—x——=0, (9.17.a)

whose solutions are

5-3J15 54315
o = ————, 052:1—0.

9.17.b
0 ( )
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We now look for the points of period 2, namely the solutions to f2(x) = x. Now

11 11\2 11 22 11
fz(x)—xzf e —)—x=(xt-—) —— —x =t - —
10 10 10 10 100

is a polynomial function of degree 4. We can however easily find its roots: indeed, the

11
solutions of f(x) = x satisfy f%(x) —x = 0, so that the polynomial X*> — X — T
.22 1 o
divides X* — — X — X — ——. The division yields
10 100
22 11 11 1
X* - XX - — =X -x-— )X +x-—).
10 100 10 10
4 22, 11 )
Therefore, the roots of X* — EX . Too are o1, @, found in (9.17.b), and the
1
roots B, B of X> + X — T given by
IB_—S—«/35 ,3_—54-\/35
1= 10 ) 2 = 10 B
which correspond to the 2-periodic points of f that are not fixed (Fig.9.4). O

Example 9.18 The point xo = 0 is a periodic point of minimum period 2 for
the dynamical system x4y = %cos(x,,), n € N. Indeed, one has

T T b4 T . .
X = X Xy = Ecos(xl) = ECOS > = 0. The orbit of xo =0 is the sequence
b4 b4 T
(O, % = (O, > 0, X 0, T .); its graphical analysis is described in Fig.9.5.

O

2_U1

—_—y=f(X)=x o

11
Fig. 9.4 The fixed points o}, o and the 2-periodic non fixed points B, B2 of the function x2 — I
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Fig. 9.5 Graphical analysis r ¢
of the orty)rit of xg = 0 for 2 )
Xl = = COS Xy .
p \ = 1rcos(x)
N, | e X
0 ; LS

Example 9.19 We look for the orbits of minimum period 3 of the dynamical system

3 5
Xntl = f(xn), neN, f(x) = —E)Cz + EX + 1.

We know that the points of period 3 correspond to the intersections of the graph of
f3 with the diagonal y = x. It seems from Figs. 9.6 and 9.7 that x, := 0 is not a fixed
point of f and is of period 3, thus of minimum period 3 since the periods of a point
are all multiples of the minimum period. This graphical conjecture turns out to be
true: indeed one has

3 5 3 5 3 5
xlz—ixg—i-ixo—l—l:l, x2:—§x12+§x1+1:2, X3:—§x%+5x2+1=0.

3 5
As we shall see in Theorem 9.41, since the function f(x) = ~x? + —x + 1 is con-

tinuous, the existence of periodic points of minimum period 3 implies the existence
of periodic points having minimum period an arbitrary natural number. O

One of the main issues of discrete dynamical systems is that of understanding the
behavior of its solutions. In the next result we see that, when the orbit of a point with

--"-.
ol
o o

=
=)

2
3L BX

3 5
Fig. 9.6 Fixed and 3-periodic points of — Exz + Ex +1
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Fig. 9.7 Graphical analysis
of the orbit of xo = 0 for 2 v

3,5
xn+1=—5xn+§xn+1

respect to a continuous function f is a convergent sequence, its limit is then a fixed
point.

Proposition 9.20 Let I be areal intervalandlet f : I — I be a continuous function.
Let ayg € I and suppose that liT f"(ag) =L € 1. Then ¢ is a fixed point of f.
n——+0oo

Proof. Indeed, one has

= lim f"@) = lm_ f(f"(@) = f ( lim f"(ao)) = /. o

n—+o0o

We now see an example of a discrete dynamical system whose orbits always
converge.

Example 9.21 (Approximation of square roots) Here we give a recurrence that has
been known since Babylonian times, and which is useful for approximating the
square root of a given number. Let p be a strictly positive real number. In an attempt
to approximate its square root, we construct the following recurrence relation.

We begin by giving an arbitrary estimate ap > 0 for ,/p. If ayp = ,/p we have

finished, and otherwise
ap < /porelseay > /p,

or equivalently (on multiplying both terms of the inequality by ,/p) one has either
)4 p

ap < i/p < —orelseay > \/p > —.

ao ao

Hence we consider, always in our effort to approximate ,/p, the midpoint of the

points ay and £: thus we set
ao
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1 p
al_E(ao-i—%).

Proceeding in this way we are induced to define the recurrence relation

1
e = fn). 20, [ =3 (x n f) : (9.21.2)

with initial condition xy = ay. Clearly we are considering a discrete dynamical sys-
tem. It is not difficult to show that whatever the value of ay # 0 may be, the orbit of
ag converges to some £ > 0. By what has been seen in Proposition9.20 ¢ is a fixed

= .

one has ¢ = p and so £ = /P- For example, in searching for V5 we begin the
preceding recurrence by setting xo = 1. One thus obtains

7 47 2207
X1=3, xo==, x3=—, x4=——~2.23607,;
3 21 987

note that in reality one has V5 ~ 2.2360679. The graphical analysis of the sequence
is illustrated in Fig.9.8. O

In general the orbits of apparently very similar dynamical systems can actually
behave in extremely different fashions.

Example 9.22 Consider the dynamical systems

Xn+1 = fa(xn)a ne N»

obtained from polynomial functions of the type f,(x) = ax(l — x) witha > 0. We
can graphically “represent” the orbits of a value xy = ¢ by indicating on the hori-
zontal axis the integers n and, in correspondence with them, on the vertical axis the
values a,, that constitute the terms of the solution sequence for the dynamical system
with initial datum xy = ag. The graphs that follow were obtained by taking xo = 0.2

Fig. 9.8 Graphical analysis

1 5
of Xp 41 =§ xn+; s
n

xg =1
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Fig. 9.9 The system Xn
Xp+1 = 2x,(1 — x,,) with 0.5} .
xo =0.2 04 .

03}°

02}

0.1

n
10 20 30 40 50

Fig. 9.10 The system Xp
xn+1 :3.839)(”(1_)‘-") 10 R se s s BB EEBREEERBERS
with xg = 0.2 08t * =

06t ...,

0.4

0'2. '...ll-l‘lull.l.l...-

n
10 20 30 40 50 60 70

Fig. 9.11 The system
Xp+1 = 4x, (1 — x,) with
xo = 0.2

as initial point; one can see explicitly that the various behaviors of the dynamical
systems turn out to be quite diverse as one varies the parameter a.

e In the case a = 2 the values reported in Fig.9.9 suggest that the orbit converges
to 0.5; effectively the orbit does indeed converge to 0.5 which is therefore a fixed
point.

e In the case a = 3.839 the values reported in Fig.9.10 suggest that the orbit tends
to be 3-periodic. One proves that actually there is a 3-periodic point close to 0.149.

e In the case a = 4 the values reported in Fig.9.11 reveal a much more chaotic
situation.

The situation described above does not depend on the given value of x(, but remains
substantially the same if in the place of 0.2, one chooses an arbitrary value for xg
from the open interval ]0, 1[. O
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In the next example we will deal with Newton’s* celebrated method of tangents
for determining the solutions of an equation of the type f(x) = 0, where f is a given
function.

Example 9.23 (Newton’s method of the tangents) Let f : R — R be of class ! and
fix a9 € R. The equation of the tangent line to the graph of f in the point (ao, f(ap))
is

y = f(ao)(x — ap) + f(a).
Therefore, if f'(ag) # 0, the tangent line intersects the x-axis in the point

_ J(ao)
f'(ag)”

a; = qp

Next, we consider the equation of the tangent line to the graph of f in the point
(a1, f(a1)):
y = fl@a)x —a) + flar).

If f'(ay) # 0, the tangent line intersects the x-axis in the point

flap)
fa)’

a) =dady; —

Iterating the preceding procedure, we can construct, as in Fig. 9.12, a sequence (a, ),
assuming that the derivative of f does not vanish in the points of the sequence thus
obtained. The sequence so constructed provides a solution of the recurrence relation

S
)’

>0, (9.23.2)

Xn+1 = Xn

with initial datum x¢ = ay. The recurrence (9.23.a) is clearly the discrete dynamical
f(x)

Jx)

system associated to the function x — x —

f'(x) #0.

If asolution (a,), of the recurrence relation (9.23.a), or, in the language of dynam-
ical systems, the orbit of ag, converges to a finite number ¢ with f/(£) # 0, then on
passing to the limit in (9.23.a) one obtains

defined on the points x where

LG

= ;
110

from which it follows that f(¢) = 0: the sequence (a,), thus converges to a zero of
f. For example, if f(x) = x3 4+ 2x — 1, one obtains the recurrence relation

4Sir Isaac Newton (1642-1727).
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1 5 6

Fig. 9.12 Newton’s method of tangents (adapted from “Learning Newton’s Method” from the
Wolfram Demonstrations Project http://demonstrations.wolfram.com/LearningNewtonsMethod.
Contributed by: Angela Sharp, Chad Pierson, and Joshua Fritz. Creative Commons
AttributionNonCommercial-ShareAlike CC BY-NC-SA 3.0 Unported License)

X+ 2x, -1

> 1;
3x2+2 "

’ ol

Xn+1 = Xp —

starting from xo = 1 one gets
x; = 0.6, x,~0.46493, x3=0.453467, x4~ 0.45339765

and f(0.45339765) ~ —3.96799 x 1077 is already very close to zero.
If f(x) = x% — p with p > 0, one obtains the recurrence relation

2 2
_ _xn_p_xn+p_l ﬁ
Akl = A 2%, 2x, 2 (xn + x,,)'

This is the recurrence relation already studied in Example 9.21 in order to determine
the square root of p.
It is not always the case that the solutions of the recurrence relation

f(xn)
Ty MY

Xn+1 = Xn
are convergent sequences: for example, if f(x) = x + 1, then no solution of

x2+1
2x,

Xp+l = Xp — B nZO,

is a convergent sequence, in view of the fact that any possible limit would be a zero
of x2 4 1. In Fig.9.13 one sees the corresponding graphical analysis and the graph
of the values of the orbit of xy = 0.2.


http://demonstrations.wolfram.com/LearningNewtonsMethod
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Xn

T26. . 4p e Ber 100"

-5

Fig. 9.13 Values of the orbit of xy = 0.2 for (9.23.a) with f(x) = x> + 1

O initial/end point
O initial point 3
@ end point

10 05 05 10 15 \20 1
1 L
05 10

2

Fig. 9.14 Newton’s method of tangents for f(x) = —x2 + sin(12x) + 4 with two different initial
data

Also functions f that have real zeroes can give rise to more variable behaviors: in
Fig.9.14 the case f(x) = —x? + sin(12x) + 3 is discussed with two different sets
of initial data: in the first case the sequence converges to a zero of the function, in
the second case the sequence is a periodic orbit and so does not converge. O

9.2.2 Dynamical Systems Generated by Monotonic Functions

Itis quite common to encounter dynamical systems of the formx,,; = f(x,),n € N,
where f is monotonic. We first introduce some notation.

e Let (x,), be a sequence. We write x,, 1 £ € [a, b] (resp. x, | £) if the sequence
(xn)n 1s increasing (resp. decreasing) and tends to £ as n — +o00, where £ €
R U {—o0} U {4+00}.

o If S C RU {#o0} weset M = max S if M is the maximum of S,i.e.,if M € S and
M > s forall s € S, with the agreement that M = +o0 if +00 € S. Analogously
we set m = min S if m is the minimum of S, i.e.,if m € Sandm < sforalls € §,
with the agreement that m = —oo if —oco € S.

We recall the important fact that monotonic sequences do always admit a limit, finite
or infinite [33]. We first consider the easiest case where f isincreasing (f(x) < f(y)
whenever x < y).
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Proposition 9.24 Let I be an interval, with a := inf I and b := sup I, possibly not
finite (and even not in I). Assume that f : 1 — I is continuous and increasing.
Consider the discrete dynamical system

xo €1, Xnt1 = f(xn) Vn e N.

The following cases may arise:

1. If f(xo) > xo thenx, 1 B := min{{x el: f(x)=x,x zxo}U{b}};
2. If f(xg) < xothenx, | o :=max{{x el: fx)=x, x Sxo}U{a}}.

Proof. We prove only Point 1; Point 2 follows similarly. Since f(x¢) > xo one
has f 2(xp) > f(xo) and, by induction, f”“(xo) > f"(xp) for every n. Thus the
sequence (x,), is increasing; therefore there exists, either finite or infinite, £ =

lirf Xxn. Suppose that there is a fixed point x of f which is larger than x(: then
n——+00

by the hypothesis of monotonicity one has
X0 <x,x1=f(x0) < fx)=x, 0= f(x0) < f(X) =x,.... xp = f"(x0) <x,neN

and consequently, ¢ < x: by Proposition9.20 ¢ is a fixed point of f, and it is nec-
essarily the minimum among those that are larger than x,. If instead f does not
have fixed points in the interval / which are larger than x,, then the sequence tends
necessarily to b. O

Remark 9.25 (How to find the limit: a recipe when f is increasing) Following Propo-
sition9.24, here is how to proceed, when f : I — I is continuous and increasing,
in order to find the limit point £ of the sequence defined by x,+1 = f(x,):

1. Compare f(xq) with xp;
2. (listhenearest fixed pointof f from x, on the same side of f (x(), whenever
it exists; otherwise £ is the endpoint of / on the same side of f (xp).

Example 9.26 Discuss the existence and the value of the limit of the sequence
XY =Vx+ 1, xo=1,

whose first terms are depicted in Fig. 9.15. The function f(x) = +/x + 1isincreasing
on the open interval | — 1, +oo[; its fixed points are those x > —1 such that x =

+ +/5
[.Now

1 5
f(1) =+/2 > 1, and the unique fixed point of f greater than 1 is 8 := +2«/_ It

follows from Proposition9.24 that x,, 1 . In some texts this fact also is described
as follows:

1
x + 1 from which it follows that Xr—x—1= 0, which yields x =
y




9.2 Discrete Dynamical Systems 339

Fig. 9.15 Graphical analysis
of the sequence

Xpal = /1 +xp, x0 =1

1+\[§l

\/1+\/1+\/1+W=1+2‘/§. O

We consider now the case where the function f is decreasing; here the argu-
ment is based on the fact that f2 = f o f is increasing, so one is allowed to apply
Proposition9.24 to f2.

Proposition 9.27 Let I be an interval, with a := inf I and b := sup I, possibly not
finite (and even not in I). Assume that f : 1 — I is continuous and decreasing.
Consider the discrete dynamical system

xp €1, Xp+1 = f(x,) VmneN. (9.27.a)

The following cases may arise:

1. If f2(x0) = xo then
X Amin{{x € I: f2(x) =x, x = xo} U {b}},
Xoppr b max {{x € 11 f2(0) =x, x <xi}Ufa}};
2. If f2(x0) < xo then
X dmax {{x € I : f2(x) =x, x <xo}Uf{a}},

X A min{{x € I: f2(x) =x, x = x1}U{b}}.
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Fig. 9.16 The convergence K
to the 2-periodic orbit of B =1

Moreover, a :== lim xp, € I if and only if B := lim xy,4 € I, in which case
n—-+00 n—-+00

f() =B, f(B) = a:aand B are periodic of period 2. If o = B then (x,), converges
to «, otherwise we say that the orbit of xo converges to the 2-periodic orbit of
(Fig.9.16).

Proof. The first part of the claim follows from the fact that f2 is increasing: indeed
if y; < y, belongs to 1, we have f(y;) > f(y,) and hence

F2o0 = (o) = fF(FO2) = 200
Therefore applying Proposition9.24 to the discrete dynamical system
Yo:=x0 €I, yy1= fz(yn) Vn € N

we get y, = X, for each n and thus:

o If f 2(xp) > xo, then the sequence (xy,), is increasing and converges to
min {{x el: fA(x)=x, x > xp}U {b}};

e if f2(xo) < xo then (x,), is decreasing and converges to
max {{x € I : f*(x) =x, x < xo}U{a}}.

Analogously, applying Proposition 9.24 to the discrete dynamical system
Yor=x1 €L yur1 = f2() YneN

we get that y,, = xp,+ for each n and thus:
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o If f 2(x;) > x, then the sequence (x,+1), is increasing and converges to
min {{x el: fAx)=x,x>x}U {b}};
o If f2(x1) < xi, then the sequence (x2,+1), is decreasing and converges to
max {{x el: fz(x) =x,x>x}U {a}}.
Now observe that, since f is decreasing, we have
f?(x0) = xo if and only if > (x1) = f(f*(x0)) < f(x0) = x1

we thus get in one fell swoop both Points 1 and 2.
Finally, assume that « = lim xp, € I. Then 8 = 1irf fxo) = fla) el
n—+0oo

n—+oo

thanks to the continuity of f, and analogously f(8) = «. O

Proposition9.27 yields a simple characterization of the convergence of the
sequence defined by (9.27.a).

Corollary 9.28 Let I be an interval, with a := inf I and b := sup I, possibly not
finite (and even not in I ). Assume that f : I — I is continuous and decreasing and
xo belongs to I and consider the sequence (x,), defined by x,+\ = f(x,), n € N.
The sequence (x,), has a limit if and only if, denoted by I, ., the closed interval
whose endpoints are x( and x1, the following conditions are satisfied:

1. xy and a fixed point £ of f belong to I, +,;
2. I, x, does not contain any 2-periodic point of f different from (.
In this case lim x, = ¢ € R.
n—+00
Proof. Assume that the sequence has a limit £. If f 2(x0) > xo, from Proposition9.27

we have
X0 <xp <<= <x3 =Xy

thus x, and ¢ belongs to I, ,, and £ is a fixed point of f (Proposition9.20). If ¢; is
any 2-periodic point of f in I, ,, then, by Proposition9.27, for any n we have

Xon <41 < Xopy1-

Passing to the limit as n — +oo we get £; = £. The case where f 2(xy) < xo can be
treated similarly and yields the same conclusion.

Conversely, assume that Conditions 1 and 2 are satisfied. Suppose, for instance,
that x; < x, = f2(x0) < xo. Since by hypothesis the set {x € I, ,, : f>(x) = x} of
2-periodic points in I, ,, coincides with {£}, by Point 2 of Proposition9.27 both
(x21)n and (x2,41), converge to £. The case where xy < x; can be treated similarly.

O
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Remark 9.29 (A recipe when f is decreasing) Following Proposition9.27, here is
how to proceed, when f : I — I is continuous and decreasing, in order to study
the orbits of the system x,,+; = f(x,).

1. Compare xq with f?(xp).
2. Find the fixed points of f2 from x, on the same side of f?(xp):

a. If these points do not exist then the limit of (x;,), is the endpoint of
I on the same side of f2(xp), and the limit of (x2,41), is the other
endpoint of /;

b. Otherwise (x,), converges to the minimum point « among of the
above fixed points, and (x;,+1), converges to f (o). If f(a) = o then
(xn)n converges to «, otherwise the orbit of xy converges to the 2-
periodic orbit of «.

Remark 9.30 (A necessary condition) Assume that f : I — [ is continuous and
decreasing. It follows from Corollary 9.28 that a necessary condition for the con-
vergence of the sequence (x,), is that x, belongs to the closed interval I, ,, whose
endpoints are x¢, x; (see Problem9.15 for a generalization). We weren’t able to find
a reference for the necessary and sufficient condition formulated here in the same
corollary.

Example 9.31 Discuss the behavior of the sequence, the existence and possibly the
value of the limit of the sequence

xn+1=1+x—, X0 =1,
n

whose first iterations are depicted in Fig.9.17. The function f :]0, +oo[—]0, +o0o[
defined by f(x) = 1+ (1/x) is decreasing. Now x; = f(1) = 2and x, = f2(0) =

Fig. 9.17 Graphical analysis
of the sequence
Xnt1 =1+ (1/xy), x0 =1
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f(2) =3/2 € [x0, x1] = [1, 2]. It follows from Proposition9.27 that the sequence
(x2n)n 1s increasing, whereas (xz,+1), 1S decreasing. We study the behavior of the
sequence, by following the procedure of Remark 9.29.

2 1
e We look for the 2-periodic points of fin[1,2]: f?(x) = x if and only if s =
X
1++/5
x,ie., x> —x — 1 =0sothat x = 2\/_. Thus the unique 2-periodic point of
1 5
fin[l,2]isa := +\/—.
2
o+ 1 .
e f(a) = = «: it follows that the sequence (x,), converges to «.
o
It is now clear what is meant by the frequently used written statement
1 1+ /5
1+ = O
I+ ——

Example 9.32 Discuss the behavior, the existence and possibly the value of the limit

of the sequence

5 1
Xpp1 = (1 —x)7, x0= 5

The function f(x) = (1 — x)? is not monotonic on R. However it is easy to see,
inductively, that x,, € [0, 1] for every n and f is decreasing on [0, 1]. So that actually
(x,), satisfies

Xn+l = f(xn) ne N’

with f : [0, 1] — [0, 1]. Now x¢ = l,xl = l and x, = 26 ¢ [x1, xo]: the neces-
sary condition formulated in Corollary 9.28 shows that the sequence does not con-
verge. Since xo < X, it follows from Proposition9.27 that the sequence (x3,), is
increasing and that (x;,1), is decreasing. For sure both converge, since the points
of both the monotonic sequences are all in [0, 1]: in order to find their limits we
proceed as suggested in Remark 9.29:

1
e We look for the 2-periodic points of f in the interval |:§ lj|: f2(x) = x as long

as (1 — (1 —x)?)? = x, ie., if and only if x* — 4x> + 4x?> — x = 0. In order to
find the solutions to this fourth degree equation we use the fact that the solutions
to f(x) = x, namely the roots of x> — 3x 4+ 1 = 0, solve the given equation. It
follows that x> — 3x + 1 divides x* — 4x3 4 4x? — x: the polynomial division
yields

xt—dxd 44t —x = (x2 — Jc)(x2 —3x+1).
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1
= Xnp1 = (1 — x,)?

Fig. 9.18 Graphical analysis and graph of the sequence xo = >

Therefore the 2-periodic points of f? are the zeroes 0, 1 of x> — x and the zeroes

3+45
2

ofx2 —3x + 1; only @ := 1, among these numbers, belongs to the interval

1]
-, 1.
2

e Since f(o) = f(1) = Othen x,, 1 1, whereas x,,+; | 0, as itis confirmed by the

graphical analysis in Fig.9.18. The orbit of 2 thus converges to the 2-periodic
orbit of 1. O

9.2.3 Periodic Orbits: Sarkovskii Theorem

We now introduce an ordering of the natural numbers different from that usually
employed, but which will be particularly useful in the study of the existence of orbits
with an assigned period in a discrete dynamical system. This ordering takes its name
from Oleksandr Mykolaiovych Sarkovskii,’ the mathematician who first came up
with this ingenious notion.

Recall that every natural number different from O is the product of a power of 2
and an odd integer.

Definition 9.33 (Sarkovskii Order) The Sarkovskii order > on N, from the great-
est to the smallest, is as follows:

e First are the odd numbers greater than 3 in increasing order:

357>

30Oleksandr Mykolaiovych Sarkovskii (1936-).
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e Then are 2 times the above numbers, in the same order:
2X3D2X5>2XxT>---;

e Then are 22 times the numbers of Point 1, in the same order:

22 %3522 x522 X T> - ;

e Then are 2" times the numbers of Point 1, in the same order:

2" x 32" x5>2" xT>--- (n>1);

e Finally, one lists the powers of 2in decreasing order:
222 1.

Formulated in more concise fashion, one has

357> 2 X3>2X5>2XT>---

22 %3522 %5522 xT>---22 22261 O

Remark 9.34 Notice that 1 is the minimum of Ns; both in the usual and in the
Sarkovskii order; however (N>, I>) has a maximum, namely the number 3, whereas
a maximum of N, does not exist for the usual order.

Theorem 9.35 (Sarkovskii) Let I be an interval of R and let f : I — I be contin-
uous. Suppose that the dynamical system

Xn+1 = f(xn)» neN,

admits a periodic point of minimum period £ > 1. Then, for each k with £ > k, f has
a periodic point of minimum period k.

Example 9.36 Suppose that the function f : I — I C R admits a point of minimum
period 56 = 2% x 7. Now:

e 2 x7>23 x m for every m > 9 odd;
e 23 x 71>27 x m forevery p > 4 and m odd;
e 23 x 71>2” forevery p > 0.

Therefore f has points of minimum period 2° x m with m > 9 odd, points of min-
imum period 27 x m for every p > 4 and m odd and points of minimum period 27
for every p > 0. O
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Remark 9.37 e The conclusion of Theorem9.35 does not remain true in general
if the domain and codomain of f is not an interval of R. For example, the map

F : R\{0} — R\{0}, x — —l has 2-periodic points (any r € R\{0}), but does
not have fixed points. *

e The statement of Theorem 9.35 is optimal: if £ > k (k # £) there exists a function
f continuous on an interval that has a point of minimum period k, and that is
without points of minimum period ¢; Problem9.21 discusses the case in which
k=5and ¢ =3.

e Under the hypotheses of Theorem 9.35:

— If f has no fixed points then f has no periodic points;
— If the set of periodic points of f is finite, then their minimum periods are powers
of 2.

We limit ourselves to proving only some particular cases of Theorem 9.35, direct-
ing the reader to [11] for a complete proof of the theorem. The simplest case is the
passage from an arbitrary period to the period 1 (that is, to the existence of a fixed
point).

Example 9.38 (Periodic Point = existence of a fixed point) If the continuous map
f : 1 — I has a point of minimum period k > 1, then Theorem 9.35 guarantees the
existence of a fixed point: we give a direct proof of this fact. Let wy, ..., w; be all
the distinct values of a periodic orbit with minimum period k listed from the smallest
to the largest values, that is, with w; < wy < --- < wy, as in Fig.9.19. Necessarily

Jw) €{wa,ooomid, fw) € fwis oo wie )

Therefore f(w;) > w; and f(wi) < wy: by the Intermediate Zero Theorem,
f(x) —xhasazero& in I, and hence itis f(§) =&. O

A particularly relevant case of Theorem 9.35 regards the passage from period 3,
the maximum of the natural numbers according to the Sarkovskii ordering, to every
other period. We state this result and we prove it, given its importance.

We first prove the following well-known properties of continuous functions.

/\

Fig. 9.19 The orbit {wy, wa, w3, wg, ws} of a point of minimum period k = 5
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Lemma 9.39 Let f : [a, b] = R be a continuous map.

1. Ify <6 € f(la, b)), then there exista < B € [a, b] suchthat f([«, B]) = [y, §].
2. Ifa,b € f(la, b)), then f has at least one fixed point in [a, b].

Proof. 1.Letc,d € [a, b] be suchthat f(c) = y and f(d) = §. Suppose thatc < d;
the case ¢ > d can be proved in the same way. Let

a:=max{x € [c,d]: f(x) =y};

this maximum exists since the set under consideration is closed and bounded. For
the same reason there exists

B :=min{x € [a,d] : f(x) =6}

By the Intermediate Value Theorem, the image under a continuous function of an
interval contains all the values included between the images of the endpoints of
the interval; thus, [y, §] € f([c,d]) € f([a, B]). If there were an x € [«, B8] with
f(x) <y, since f(B) = 8, again by the Intermediate Value Theorem, there would
exista’ > x > « such that f(«’) = y, which would contradict the maximality of «.
Analogously, one proves that f(x) < é for each x € [«, 8] and hence f([«, B]) =
[y, &1, as depicted in Fig. 9.20.

2.Letc,d in [a, b] be such that f(c¢) =a and f(d) = b.If c = a ord = b we are
done. Otherwise

a=f()<c and b= f(d) > d.

The continuous function f(x) — x assumes values of opposite sign in the points ¢
and d, and so it has a zero & € [c, d] C [a, b]: clearly & is a fixed point for f. O

Remark 9.40 Point 2 of Lemma 9.39 ensures the existence of a fixed point once f is
continuous and f([a, b]) 2 [a, b]. This is somewhat similar to the more celebrated
result of the existence of a fixed point once f([a, b] C [a, b] (Problem9.10).

\

Fig. 920 f([e. B]) = [y, 0]
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Theorem 9.41 (The period 3) Let I be an interval of R and let f : I — I be con-
tinuous. Suppose that the dynamical system

Xpn+1 = f('xl’l)v ne N’

admits a periodic point of minimum period 3. Then f has points of arbitrary minimum
period.

Proof. Let a in I be a point of minimum period 3. We set

b= fla), c=f(b).

Necessarily a, b, c are distinct, and one has f(c¢) = a. It is not restrictive to suppose
that a = min{a, b, c}. Two cases are then possible: eithera < b < cora < c¢ < b.
Here we will suppose that

a<b<c

the proof in the other case is carried out in analogous fashion, and we leave it as an
exercise for the reader. The initial setting is illustrated in Fig. 9.21. The Intermediate
Value Theorem applied to Iy := [a, b] and I, := [b, c] yields

fU) 215, fU)2la,c]21, fh)2]a,c]2 1.

Let n € N> ;: we prove the existence of a point of minimum period n for f.

e n = l:since f(I;) 2 I, by Point 2 of Lemma9.39 one deduces the existence of
a fixed point for f in I;.

e n = 2:since f(I;) 2 Iy, by Point 1 of Lemma9.39 there exists a closed interval
B; C I, such that f(B;) = Iy. The situation is depicted in Fig.9.22.

Fig.9.21 f(a) =0, f(b) = c
c, f(c)=a
b
ar
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Fig. 9.22 Thecasen =2 ct

Fig. 9.23 The case n > 3:
the closed intervals A; and

A

As a consequence one has

f2B) = f(f(B)=fy) 21, 2 By :

applying Point 2 of Lemma9.39 to the continuous function f> = f o f one
obtains the existence of p € B; such that f?(p) = p. If it were the case that
f(p) = p then

pEBNf(B)=BNIl<IiNIl={b},

from which it would follow that p = b, which, however, is absurd because b is
not of period 2. Hence, as a consequence p has minimum period equal to 2.
Now let n > 3. Since f(I;) 2 I, by Point 1 of Lemma9.39 there exists a closed
interval A; C I; such that f(A;) = I;. But then, since f(A;) =1 2 Ay, for
the same reason there exists a closed interval A; € A; such that f(A,) = A,
(Fig.9.23).

Proceeding inductively one obtains a sequence of closed intervals

Ay 2 CA 3C---CACI
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Fig. 9.24 The construction f

of the sets Ay
f
a .//;\\ Po=p ¢
I, H"') fwﬁ\\\\ll
! . A

"

'-'.n,:-. £ £

satisfying
f(An2) = Aps, f(Ar3) = Apas ., f(A) = Ay, f(AD) = 1.
One notes then that
[ A = [P Ay) = = fAD = 1, (941.a)

sothat f"~1(A,_,) = f(I;) 2 Iy: by Point 1 of Lemma9.39 applied to f"~! there
exists a closed interval A,_; with the property that

Apst S A, A = D

From this it follows that f"(A,—;) = f(ly) 2 I} 2 A,_;: applying Point 2 of
Lemma9.39 to f” one deduces the existence of p € A,_; such that f"(p) = p,
namely the existence of a point having period n: we invite the reader to give a look
at Fig. 9.24 before going on.
There remains to prove that p has minimum period n. It will be useful to observe
that, since

peAnfl EA,1,2§~-~§A1 glla

from relation (9.41.a) one deduces that

p; f(p)’ fz(P)»~--’.f”72(P) Ell; (941b)

while
" Np) e A = D (9.41.¢)
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Wenote that p ¢ {a, b, c}: if instead that were the case, then from (9.41.b) it would
follow that fk(p) € I, for k =0, 1, 2 and from that one would have {a, b, ¢} C
I, = [b, c], which is absurd.

Assume that f*(p) = p for some 1 < k < n — 1. By applying f®~D=* to both
sides of the equality we get f"~'(p) = fi(p), withi =(n—1)—k <n—2.
Now fi(p) € I, whereas f"~!(p) e Iy implying that f"~'(p) € Iy N I, = {b}
and p = f"(p) = f(f""'(p)) = c, acontradiction. Thus the minimum period of
pisn. O

9.3 Problems

Problem 9.1 Find a recurrence relation for the number of possible distributions of
n distinct objects on 5 shelves of a closet. What is the initial condition?

Problem 9.2 Find a recurrence relation for the number of sequences of automobiles
of 3 different types—Audi, Fiat and Mercedes—in a row of n parking spaces, bearing
in mind that an Audi or a Mercedes occupies two parking spaces while a Fiat occupies
only one parking space.

Problem 9.3 Suppose that during every month from the second month on, every pair
of rabbits generates a new couple (a male and a female) of rabbits. Find the recurrence
relation that describes the number of couples of rabbits month after month (assuming
that all the couples survive). If initially there is only a single couple of newly born
rabbits, what is the number of pairs of rabbits after 5 months?

Problem 9.4 Fix k € N . Find the recursive relation for the number of regions of
the plane created by » lines if all the following conditions are satisfied:

1. Exactly k of these lines are parallel;

2. Each of the n — k non-parallel lines among themselves intersect all the other
lines;

3. Three distinct lines never have a point in common.

Find the number of such regions if n = 9, k = 3.

Problem 9.5 Find a recursive relation for the accumulation of the money deposited
in a bank account after n years if the interest is a rate of 6 % and in each year 50 euro
are added to the bank account.

Problem 9.6 Find a recurrence relation to count the number of binary n-sequences
with at least a pair of consecutive 0 digits.

Problem 9.7 Find a recurrence relation to count the number of Gilbreath permuta-
tions (see Definition 2.48) of a deck of n cards. [Hint: Think at who could be the last
card in a Gilbreath permutation.]
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Problem 9.8 If 500 euros are invested in a fund that gives 8 % annual interest, find
a formula for calculating the quantity of money accumulated after n years.

Problem 9.9 Prove that the sequence (a,),>; defined by setting

1 ifn =2",
a, =
26+1 ifn=2"4+¢1=<£<2"

is a solution of the recurrence relation

2xp2 — 1 if n > 2 is even,
Xn = . .
2)C(n_1)/2 +1 ifn > 3isodd

with initial datum x; = 1.

Problem 9.10 Let f : [a, b] — [a, b] be continuous. Prove that f has at least a
fixed point.

Problem 9.11 Discuss the existence and the value of the limit of the sequence
Xn4+1 = Sinxn +xn’ X0 = 77‘[/2’

whose first iterations are shown in Fig.9.25.

Problem 9.12 Let (a,), be the sequence defined by

ay=~2, a1=+24+a,.

Fig. 9.25 Graphical analysis
of the sequence x, | =
Xy +sinx,, xo = 77/2

3 —_—
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1. Prove that (a,), is bounded above by 2.
2. Study the existence of the limit of the sequence.

1
Problem 9.13 1. Prove that f(x) = Xt
x+2

f ([0, +o0]) < [0, +ool.
2. Study the existence of a limit for the sequence

is monotonic on |—2, +oo[ and that

_xn+1
Tx, 42

X0 = 07 Xn+1

Problem 9.14 Discuss, depending on the value of A > 0, the existence of a limit for
the sequence defined by

1, 1
X0 = A, Xn41 zgxn‘i‘g .

Problem 9.15 Let / be an interval of R, and f : I — I be continuous and decreas-
ing. Let (a,), be a solution of

Xxo € 1, Xp+1 = f(x,) VYneN.

Assume that the sequence (a,), converges to £ € R. Show that, for any k even, m
odd and N larger than both, the point ay is between a; and a,,.

Problem 9.16 Let [a, b] be a closed and bounded interval of R, and f : [a, b] —
[a, b] be continuous and decreasing. Let (b,), be the solution to

xp €1, Xp+1 = f(x,) VYneN.

Assume that f has no points of minimum period 2. Show that the sequence (b,),
does converge.

Problem 9.17 Let f : I — I be a function from an interval / into itself. Suppose
that p is periodic of period N > 1. Prove that then the minimum period of p divides
N.

Problem 9.18 Let f : R — R be continuous, with a periodic point of minimum
period 20. Prove that f has a point of minimum period 48.

Problem 9.19 Let f : R — R be continuous, with a periodic point of minimum

period 40. Does this necessarily imply that f has a point of minimum period 30?

Problem 9.20 Let f : [a, b] — R be strictly decreasing (as in Fig. 9.26). Show that
f has at most a single fixed point.
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Fig. 9.26 A strictly
decreasing function has at
most a unique fixed point

Fig. 9.27 The function f
defined in Problem9.21
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Problem 9.21 In this exercise we give an example of a function that has a point of
minimum period 5 but does not have points of minimum period 3.

Let f :[1,5] — [1,5] be such that

J) =3, f@) =4 fA =2 f2)=5 fO =1

and be affine on each interval [1, 2], [2, 3], [3, 4], [4, 5] (see Fig.9.27).

1. Prove that f has a point of minimum period 5.

2. Determine f3([1, 2]), f3([2, 3]), f3([4, 5]): deduce that f does not have points
of minimum period 3 in the intervals [1, 2], [2, 3], [4, 5].

3. Show that f 3 s strictly decreasing on the interval [3, 4], and deduce that f 3 has
a unique fixed point in [3, 4], and that the uniquely determined point is indeed a

fixed point of f.

4. Deduce that f does not have points of minimum period 3.



Chapter 10
Linear Recurrence Relations

Abstract In the following chapter we address the techniques for the resolution of
some celebrated recurrence relations. We will discuss in detail the linear recurrences
with constant coefficients. Our emphasis goes to the application of the theory: the
proofs, though elementary, are relegated to the end of the chapter. We proceed step
by step in showing first how to solve just homogeneous recurrences, then how to
find a particular solution in some special cases and only finally how to obtain all the
solutions to the original problem. We also consider linear recurrences with variable
coefficients and the divide and conquer recurrences: here we focus on the order of
magnitude of the solutions, a fact which has an impact in the analysis of algorithms.
There are about 40 examples and 50 classified problems.

10.1 Linear Recurrences with Constant Coefficients

In this section we will try to present the main results on the resolution of linear
recurrence relations with constant coefficients and their applicability by presenting
several examples. We leave the more technical proofs for Sect.10.5, as they are
non-essential in the first reading.

Definition 10.1 A linear recurrence relation of order r with constant coefficients
is a recurrence of the type

CoXp +C1Xy—1 + -+ CXpp =h,, n=r, (R)

where ¢, ¢y, ..., c, are real or complex constants, with ¢y and ¢, both different
from zero (this will always be assumed in the chapter, even if not stated explicitly),
and (h,),>, is a sequence of real or complex numbers called the sequence of non-
homogeneous terms of the recurrence. The recurrence is called homogeneous if
the sequence of non-homogeneous terms is the null sequence, non-homogeneous if
h,, # 0 for some n.
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The recurrence relation

coXp +C1Xy—1 + -+ Xy =0, n>r, (R,)

is called the associated homogeneous recurrence, or the homogeneous part of the
recurrence (R). O

As we have already noted, the recurrence
coXp +C1Xy—t + -+ CXpp = hy, n=r,
can be written equivalently as
CoXntr + C1Xpt(r—1) T -+ CrXp = hpyr, n>0.

It makes no difference which formulation one uses.

Remark 10.2 Each r-sequence of values assigned to the r free unknowns of the
linear recurrence relation

coxp +C1Xy—1 + - Xy =hy, n>r,

uniquely determines a solution.

When solving a linear recurrence relation, the following principle is of funda-
mental importance.

Proposition 10.3 (Superposition Principle)

1. Let (uy),, (vu)n be respectively solutions of the linear recurrence relations
coXp +C1Xy—1 + -+ Xy =hy, n>r, and
CoXp +C1Xp—1+ -+ Xy = km nz=r,
with equal homogeneous part and sequences of non homogeneous terms (hy),
and (k,),. For any pair of constants A and B, the sequence (Au, + Bv,), is a
solution of the recurrence relation
Coxp +C1Xp—1 + -+ CXp—y = Ahn + Bk,,, n=x=r.

2. The general solution of the linear recurrence relation

coXy +C1Xy—1 + -+ CXyp =h, n>r, (R)
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is obtained by adding a particular solution to the general solution of the associated
homogeneous recurrence.

Proof. 1. One has easily

co(Au,+Bvy) + c1(Aupy_y + Bvy_) + - - + ¢, (Auy—p + Bv,y_,) =
= A(coun + Crity—1 + -+ -+ city—r) + B(covy + €11 + -+ + Vi)
= Ah, + Bk,.
2. Let (u,), be a particular solution of (R). By the previous point we know that
V) = (Wy)n + (v, — uy,), is asolution of (R) if and only if (v,, — u,), is a solution

of the associated homogeneous recurrence. Therefore each solution of (R) is obtained
by adding a solution of the associated homogeneous recurrence to (u,),. m]

10.1.1 Homogeneous Linear Recurrence Relation
with Constant Coelfficients

The null sequence is a solution of any homogeneous linear recurrence relation. The
structure of the general solution of a homogeneous recurrence relation corresponds
to the structure of the general solution of a system of homogeneous linear equations.

Proposition 10.4 Consider the homogeneous linear recurrence relation of order r,
coXp +C1Xy—1 + -+ Xy =0, n>7r (cocr #0). (R,)

1. Any linear combination of solutions of (R,) is again a solution of (R,).
2. There existr solutions of (R,) such that any other solution of (R,) can be expressed
uniquely as their linear combination.

Proof. 1. This follows immediately by the Superposition Principle 10.3.
2.Foreveryi € {0,...,r — 1} let (ufq),, be the solution of (R,) with r-sequence of
initial data equal to O at places j # i, equal to 1 at places i, that is

Wiy =0if j#i, uj=1 je{0,....r—1}

1

Consider now any solution (a,), of (R,); the linear combination

a()(ug)n + al(u,ll)n +- ar—l(uzil)n
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is a solution of (R,) with sequence of initial data (ay, . . ., a,—;). Since by Remark 9.4
the sequence of initial data determines the solution of a recurrence relation, one has

(@n)n = ao2)y +ar @by + -+ a1 "), o

The reader who is familiar with the concept of a vector space can easily deduce
from Point 2 of Proposition 10.4 that the general solution of a homogeneous linear
recurrence relation of order r is a vector space of dimension r: the family of solutions
considered in the proof is one of the bases of this vector space.

Definition 10.5 We define characteristic polynomial of the linear recurrence rela-
tion with constant coefficients of order r

coXp + C1Xy—1 + -+ Xy = hy, n =71 (cocr #0),

to be the polynomial of degree

Pohar (X) := C()Xr—i-Cer_l_{_..._i_cr. o

Remark 10.6 A way torecover easily the characteristic polynomial of the recurrence
relation
CoXy + C1Xp—1 + -+ CrXp—r =h117 n=r,

is that to replace formally in the left-hand side of the above equality each x; with X?,
and to divide the resulting polynomial by X”~" (the minimum exponent of X).

Remark 10.7 Obviously, a given polynomial co X" + ¢; X"~ + .- + ¢, withcpc, #
0, is the characteristic polynomial of any linear recurrence relation of the form (R),
and is the characteristic polynomial of just one linear homogeneous recurrence rela-
tion, namely (R,).

Each polynomial of degree r has exactly » complex roots counted with their
multiplicity. We see now that the sequence of the natural powers of a given root
of the characteristic polynomial of a linear recurrence relation is a solution to the
corresponding homogeneous relation.

Proposition 10.8 Ler A € C. The sequence (A"), of the powers of X is a solution of
the homogeneous linear recurrence relation

CcoXp t+C1Xp—1+ -+ CXpr = 0, n >r (COCr 5& 0)7 (Ro)

if and only if A is a root of its characteristic polynomial.
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Proof. Since ¢, # 0, the roots of the characteristic polynomial must necessarily be
non-zero. Substituting the values of the sequence (A"),, in the recurrence, one has

oM+ N AT =0
and, dividing by A"~ # 0,
coM e e =0.

Therefore the sequence (1"), is a solution of (R,) if and only if X is a root of the
polynomial co X" + ¢ X"~ + -+ +¢,. O

In general, it is not easy to find the roots of a polynomial of degree greater than
two, though one can always use a suitable CAS for the purpose. The following simple
criterion, however, demonstrates how to find the rational roots of a polynomial with
integer coefficients.

Proposition 10.9 (The rational roots of a polynomial with integer coefficients)

Let P(X) = coX" +c1 X"+ -+ ¢,_1 X + ¢, be a polynomial with integer coef-
a

ficients cq, ..., c, € Z, with co # 0. If the fraction —, with a, b integers with no

common factors, is a root of P(X), then a divides ¢, and b divides cy. In particular,

if co = %1 the rational roots of the polynomial P(X) are integers dividing c,.

Proof. Since ¢ (;—l)r +c (;_Z)"l 4+t (

%) + ¢, = 0, multiplying by b"
one obtains

cod +crad b+ -+ crab ™ + ¢, b =0.

As a divides coa” + cja”'b + - - - 4+ ¢,_1ab’~ !, then it has to divide ¢,b" too, and
hence, not having @ and b common factors, a divides ¢, ; analogously b divides coa”
and hence it divides ¢g. O

Remark 10.10 (Roots of a polynomial with real coefficients) It is well known that
each polynomial P(X) = coX" 4+ ¢ X"~ + ... + ¢, factors in a product of linear
polynomial with complex coefficients:

PX)=coX +cX "4 o= (X —z)M - (X — )

Since the conjugate of a product of two polynomials is equal to the product of the
two conjugates, if P (X) has real coefficients one has

P(X)=PX)=X-z)" - (X =70)".
Thus, if z; = a; +ib; is a root of P(X), also z; =a; —ib; is a root of P(X).

Therefore the non real roots of a polynomial with real coefficients are pairs of complex
conjugate roots with the same multiplicity.
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Remark 10.11 (Trigonometric form of a complex number) We recall that the complex
numbers of modulus 1 can be written as cosa + i sina =: ¢'® for an appropriate
0 < @ < 2x. Therefore any complex number can be written in its trigonometric form
as p(cosa + i sina) = pe'® with p € R-pand 0 < @ < 27. For example, consider
the complex number 2 + i 24/3; one has

2423
2+i2\/§=|2+i2\/§|+’—‘/_
2 +i24/3]
24023 1 3
=4+ZT\/—=4(§+i§)=4(cos%+isin%).

Proposition 10.8 gives a way to find some solutions to a homogeneous recurrence
relation once one knows the roots of its characteristic polynomial. Actually it turns
out that, if A is a root of multiplicity u > 1 of the characteristic polynomial of (R,)
then

W)y (A" s (0711,

are solutions to (R,), and actually, they generate the space of solutions to (R,). The
proof of the next Theorem 10.12, somewhat technical, is postponed in Sect. 10.5.

Theorem 10.12 (Basis-solutions) Consider the homogeneous linear recurrence
relation of order r

coXp +C1Xp_1+--+cx,r =0, n>r (coc, #0). (R,)
1. Let Ay,..., Ay be the distinct complex roots of the characteristic polynomial
and |y, ..., Wy their multiplicity. The general complex solution of the recur-

rence (R,) is given by the linear combinations with complex coefficients of the
r =+ -+ Wy Sequences

WD won @71, =1 m

called basis-solutions of the recurrence (R,).

2. Suppose that the coefficients c,..., ¢, are real numbers. Let

e pi(cosay isinwy), ..., pp(cosay, £ isinay) the pairs of the non real com-
plex conjugate roots of the characteristic polynomial and i1, ..., i, their
multiplicity.

® A, ..., A¢ be the real roots of the characteristic polynomial and p, . . ., ,uz
their multiplicity.
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Then, the general real solution of the recurrence (R,) is the set of all linear
combinations with real coefficients of ther = 2y + -+ - +2up + () + - + 1
sequences

(p;‘ cos(na;)n, - - » (n"/'_l,o;Z cos(na;)), j=1,...,h,
(0] sin(netj)u, - ... (W~ pf sinma))y j=1,....h,

()\’;’)n:---,(nﬂ;'—l)»’})n j=1,...,¢,

called real basis-solutions of the recurrence (R,).

Remark 10.13 (Structure of the solutions to (R,)) By referring to Point 1 of
Theorem 10.12, denoted by 11, ..., A, the distinct complex roots of the characteristic
polynomial and by w1, ..., 4, their multiplicity, (a,), is a solution of (R,) if and
only if there are polynomials P;(X) of degree strictly less than p; (j =1,...,m)
satisfying

an =P )X +---+ Py(n)A;, Vn eN. (10.13.a)

The general solution of a homogeneous linear recurrence of order » depends on r
parameters Aj,..., A,. Such parameters are bijectively determined by the assignation
of the sequence of initial data.

Example 10.14 The second-order recurrence relation

Xn = an—l - 6xn—2’ n= 25
has characteristic polynomial X?> — 5X + 6 whose roots are A; = 2 and A, = 3. The
sequences (2"), and (3"), are the basis-solutions of the recurrence. The general real

(resp. complex) solution of the recurrence is then x, = A12" + A,3", n > 0, with
A and A, varying among the real (resp. complex) numbers. O

Example 10.15 Determine the general solution of the recurrence relation
Xn = 3xn—l - 4xn—3a n= 3a

and next its solution with initial data xo = 4, x; = 1 and x, = 15. The characteristic
polynomial of the recurrence is

X3 —3X 44 =(X-2XX +1).
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The basis-solutions of the recurrence are (2"),,, (n2"), and ((—1)"),,: thus, the general
solution is
xp, = A12" 4+ Aon2" + A3(—1D)", neN,

with the variation of A;, A, and As in R. Imposing the initial data, we obtain the
linear system

A+ As =4

2A1 +24A, — A5 =1

4A, + 8A, + Az = 15,

which has the unique solution A; = 1, A, = 1 and A3 = 3. Thus, the required solu-
tionis x, =2"(1 +n) +3(—-1)",n > 0. m]

Example 10.16 Let us compute the solution of the recurrence
Xp = —Xp—2, N = 2a

with initial data xo = 0, x; = 1. Clearly, in this case, without using the above results,
one can easily get

X0 =O,X1 = l,xz = —Xp =O,X3 = —X] = —I,X4 = —X2 =0
and hence deduce the solution

0 ifniseven,
X, =11 ifn=1+4k, ke N, (10.16.a)
—1 ifn=3+4k, keN.

Let us solve now the same recurrence relation using Theorem 10.12. The character-

.. . . . . s ... T
istic polynomial X 2 4+ 1 has =i as roots; since £i = cos > + i sin > the sequences

ni . nmw . .
(cos —) and (sm —) are the real basis-solutions of the recurrence. Therefore
n n

the real general solution is
niw . nmw
X, :A10057+A25m7, n=>0,

with the variation of A, A, in R. By imposing the initial data one has

b4 big
0=x9p=A;cos0+ A,sin0=A; and 1 =x; :AlcosE+A2sinE=A2.

Therefore the solution we were looking for is x,, = sin %, n > 0, as we found in
(10.16.a). O
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Example 10.17 The second-order homogeneous recurrence

Xn = 2xn—l - 2xn—2» n>2,
has characteristic polynomial X* — 2X + 2 whose roots are A; = 1 —i and A, =
1 4 i. The sequences ((1 —i)"), and ((1 +i)"),, are the basis-solutions of the recur-
rence. The general complex solution of the recurrence is

xp=A1(1=0D)"+ A0 +)", n=0,

with the variation of A; and A, among the complex numbers. Let us look for the
general real solution. One has

A2_1+1=A_=\/§<cos(%)—isin(%)).

nmw . (hT .
Then the sequences (2”/ 2 cos (T)) and (2”/ 2 sin (T)) are the real basis-

n n
solutions of the recurrence. Therefore, the general real solution of the recurrence

is
x, = A 2" cos( 1 ) + A,2"?sin (HZ) , n>0,

with the variation of A} and A, among the real numbers. O

Example 10.18 Let us compute the general real solution of the recurrence relation
Xpta + 8xy43 + 48x,40 + 128x,41 + 256x, =0, n > 0.

Its characteristic polynomial is
(X2 +4X +16)% = (X +2+2ivV/3)2(X +2 - 2iv/3)%

Since —2 F2iv/3 =4 (cos =t Fisin ) the sequences

(e (57), (o (), (0 (7)), (o0 (57)),

are its real basis-solutions and thus the general real solution is

n 2mn n 27n n 2mn n 27n
x, = A14” cos = + Ap4" sin =5 + A3n4” cos = + Agnd” sin =)

n € N, with the variation of A, A,, A3, A4 in R. O
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Example 10.19 Determine the general real solution of the Fibonacci recurrence rela-
tion
Xp = Xp_1 +Xp—2, n=>2.

The characteristic polynomial X?> — X — 1 of the recurrence has roots

1+v5 145
2 ’ 2_ 2 )

A=
the general real solution is therefore
X, =AM+ A)), neN,

with the variation of Aj, A, in R. Imposing the initial data (xo = 0, x; = 1), one
obtains the famous Fibonacci numbers (F},),. One has

substituting these values in the general solution we obtain
1 [(1+v5Y (1-v5Y)
F,=— V5 — Vs , neN,
V5 2 2
1 n
—=()

1 (1-v5Y)
#(=0) <l
tion assumes values in N, one has that each F, is the closest integer number to

1 (1+5)
A

Imposing the initial data (xo = 2, x; = 1), one has A} = A, = 1. Substituting
these values in the general solution one obtains the famous Lucas numbers (L,),:

1+ (1-vY)
an( > )+( ) ), n e N.

1 5
It turns easily out that L, is the closest integer to ( +2\/—) . O

Notice that, since < < 0.5 and the required solu-

Example 10.20 Inthe Example 7.52 we have seen that the inverse of the formal series

o0

A(X)=3—X — X%is B(X) = ) b,X", where the coefficients (b,), satisfy the
n=0

recurrence relation:
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3bn = bn—l + bn—2 n = 2,

with initial data by = 1/3, b; = 1/9. The characteristic polynomial 3X*> — X — 1 of

1++13 1 —+/13

the recurrence has roots A = and A, = T: thus, the general real

6
solution is ., )
(1 +«/13) (1 —«/13)
bn - Al 6 + A2 6" B

with the variation of A, B € R. The initial data impose

1
Ail+A,=1/3, Al —A)=—,
1 2 =1/ 1 2 Wik

from which one obtains

14413 A_«/1_3—1
6v13 0 6eJ13

Substituting these values in the general solution we obtain the required solution

b 1 1 + m n+1 1 B m n+1 _ N
= - — , n .
J13 6 6 =

Itis not always possible to determine in an explicit way the roots of the characteris-
tic polynomial of a recurrence relation. Nevertheless, one can compute approximated
roots, which can give an idea of how the solution evolves.

Ay

Example 10.21 In this example we deal with approximate solutions to a recurrence
relation. It follows from Theorem 10.12 that each term of a solution to a recurrence
relation is a continuous function of the roots of its characteristic polynomial: thus
approximate roots of the characteristic polynomial provide approximate solutions of
the recurrence. We wish here to determine the general real solution of the recurrence
relation

Xn =3xn—l —Xp-3, N >3,

and next the solution with initial data xo = 1, x; = 3 and x, = 9. The characteristic
polynomial of the recurrence is X> — 3X? + 1; by Proposition 10.9, the possible
rational roots would be integers dividing 1. Since neither 1 nor —1 are roots, the
polynomial has no rational roots. Using an adequate CAS we have computed the
approximate values of the roots:

A1~ —0.532089, A, ~0.652704, Az~ 2.879385.
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The approximate basis-solution of the recurrence are
((—0.532089)"),,,  ((0.652704)"),,, ((2.879385)"),.

By Theorem 10.12, the approximate general solution is

X, = A1(—0.532089)" + A,(0.652704)" + A5(2.879385)", n €N,
with the variation of A;, A, and A3 among the real numbers. Imposing the initial
data, one has A; ~ 0.070046, A, ~ —0.161485 and A3 ~ 1.091439. We are now
able to calculate the approximate values of the sequence that solves the recurrence
relation: for each n > 0 one has

xn ~ 0.070046 x (—0.532089)" — 0.161485 x (0.652704)" + 1.091439 x (2.879385)".

Taking into account that the solution is a sequence of integer numbers, one can guess
the exact values. For example

x3 A 0.070046 x (—0.532089)° — 0.161485 x (0.652704)%+
+1.091439 x (2.879385)% 2 26.0000006,

from which we deduce x3 = 26 (as an immediate analysis of the recurrence confirms).
Analogously one obtains x; = 1791. O

We end this section with an obvious, though useful, remark: an immediate conse-
quence of Theorem 10.12 is that a sort of converse is also true: any sequence (a,),
of the form (10.13.a) is a solution to a suitable linear recurrence relation.

Corollary 10.22 Let Py (X), ..., P,(X) be m polynomials in C[X]and 7y, . .., Ay
be non zero complex numbers. The sequence

is a solution to a suitable linear homogeneous recurrence.

Proof. Fix natural numbers n; > deg P|(X), ..., n,, > deg P,,(X). By Theorem
10.12 and Remark 10.13, the solutions to the homogeneous recurrence relation whose
characteristic polynomial is

(X = 2" e (X = )™

are precisely all the sequences of the form

(Q1MA] + -+ Qm(M)Ay ),
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for any choice of polynomials Q(X),..., Q,(X) with deg Q;(X) < n;,
i=1,...,m. O

Remark 10.23 In the particular case of a polynomial Q(X), Corollary 10.22 shows
that for each m > deg Q(X), (Q(n)), solves the homogeneous recurrence whose
characteristic polynomial is

X =" =>"(=1) (’:1) xXm=i,
i=0

“ i[m N - c ifm N
Thus Z.;(—l) (l) QO(m — i) = 0, or equivalently Z(;(—l) (l) Q(i) = Oforall
polynomial Q(X) with deg Q(X) < m, which is what we obtained with different
methods in Corollary 4.11.

Example 10.24 The sequence ((n* —Tn 4+ 1)3" — 5n), is, for instance, a solution
to the linear homogeneous recurrence whose characteristic polynomial is

(X =3)X -1>=X>—11X*+46X> —90X* + 81X — 27,

i.e., of
X, — 11x,_1 +46x,_» — 90x,,_3 + 81x,_4 — 27x,_5 = 0. O

10.1.2 Particular Solutions to a Linear
Recurrence Relation

By Proposition 10.3, the general solution of the order r linear recurrence relation
coxp +C1Xy—1 + - Xy =hy, n>r,

is obtained by adding a particular solution to the general solution of the associated
homogeneous recurrence. Imposing the initial data, one obtains the values of the r
parameters on which the general solution depends and thus determines univocally
the solution.

Example 10.25 As we have seen in Example 9.11, the minimum number x,, of steps
to end the Lucas Tower game with n rings satisfies the recurrence

Xn = 2xn71 +1, n>2,

with initial data x; = 1. The characteristic polynomial is X — 2 and therefore the
basis-solution of the associated homogeneous recurrence is the sequence (2"),,. Since
the constant sequence (—1),, is a particular solution of x, = 2x,,_; + 1, the general


http://dx.doi.org/10.1007/978-3-319-03038-8_4
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real solution of the recurrence is the family of sequences (A2" — 1), with the vari-
ation of A € R. Next, imposing the initial data x; = 1 we get A = 1, and thus the
desired solution is
X, =2"—-1, n>1. 0

It is not always as straightforward as in the preceding example to find a particular
solution of a linear recurrence relation just by following one’s nose. At the end of
this section (see Proposition 10.41) we will give a general formula to find a particular
solution of a recurrence relation; nevertheless it has the caveat of being difficult to
apply.

Let us see now a simple recipe to find a particular solution in case the non homo-
geneous term is the product of a polynomial Q(n) in n by an exponential ¢", for
some constant g. We return to the proof of the following proposition in Sect. 10.5.

Proposition 10.26 (Particular solution with non homogeneous term Q (n)q") Given
a constant g and a polynomial Q (X)), let us consider the recurrence relation of order
r with constant coefficients

coXp + C1Xp—1 + -+ xper = Q()q", n=r (cocr #0).  (R)

The above recurrence relation have a particular solution of the type

(n"Q(m)g"), .

where:

° Q(X) is a polynomial of degree less or equal than the degree of Q(X);
e [ is the multiplicity of q as root of the characteristic polynomial (u = 0 if q is not
a root).

Remark 10.27 1. To find Q(X) one sets Q(X) = ax X* + - - - + a1 X + ap; then
one looks for coefficients «y, . . ., o such that the sequence

((aka + -t X+ ao) n“q")n

is a solution of the recurrence.

2. By the Superposition Principle 10.3, Proposition 10.26 guarantees to find partic-
ular solutions also when the non homogeneous term is a sum of terms of the type
Q(n)q": indeed, one can simply add the solutions which correspond to each of
the terms of the sum.

Remark 10.28 The conclusion of Proposition 10.26 holds true also if one considers
a recurrence of the form



10.1 Linear Recurrences with Constant Coefficients 369
CoXpir + -+ xy = Q(m)g", n=0.
Indeed the latter can be rewritten in the equivalent form
CoXn + Xy = O —1)g" = Q(m)q", n=r.

where Q(X) = q~ " Q(X —r) is a polynomial of the same degree of Q(X).
Example 10.29 Compute a particular solution of each of these linear recurrences:

1. x, =4x,_1 —4x,o+53"), n>2;
2. x, =4x,_1 —4x, , + 72", n=>2;
3. Xpyo =4xy01 —4x, +74+3n, n>0.

Solution. The characteristic polynomial of all the three recurrences is
X2 —4X+4=(X-2)>

1. Since 3 is not aroot of the characteristic polynomial and 5 is a polynomial of degree
0, one looks for a particular solution of the form («3"),,, where « is a polynomial of
degree 0, i.e., a constant. Substituting this in the recurrence we obtain

a3" = 43" — 43" 4+ 5(3").
Dividing by 3" we have

o o
=4— —4—+5,
o 3 9+

and hence o = 45. Thus, a particular solution is the sequence (45 x 3%),,.

2. Since 2 is a root of multiplicity 2 of the characteristic polynomial and 7 is a
polynomial of degree 0, we look for a particular solution of the form (an?2"),.
Substituting this in the recurrence we obtain

an®2" =da(n — 1)*2" ' —da(n —2)22" 2 +7(2").
Dividing by 2" we have
an’ =2a(n— 1> —an —2)>+7,
and hence o = 7/2. Thus, a particular solution is the sequence (7n22"~1),.
3. Since 7+ 3n = (7 + 3n)1" and 1 is not a root of the characteristic polynomial,
we look for a particular solution of the form (o + «n),. Substituting this in the
recurrence we get

at+a(n+2)=4qag+ao(n+1)) —4(axog + yn) + 7+ 3n,

or equivalently
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oy — 201 +oyn =74 3n,

and hence oy = 3and op = 7 + 2« = 13. Thus, a particular solution is the sequence
(13 + 3n),. O

Proposition 10.26 also allows to determine particular solutions of recurrences
with real coefficients whose non-homogeneous term is of the form Q(n)p" cos(ny)

or Q(n)p" sin(ny).

Remark 10.30 Suppose we have a linear recurrence relation with real coefficients
of one of the following types

CoXp + C1Xp—1 + -+ + Xy = Q(m)p" cos(ny), n=r, (10.30.a)
Coyn + C1Yn—1 qFoocaF Cr¥Yn—r = Q(n)pn sin(ny), n=r, (1030b)
with ¢g, ..., ¢, € R(coc, #0), v, p € Rand Q(X) is a polynomial with real coef-

ficients. Then one obtains a particular real solution of (10.30.a) (resp. (10.30.b))
considering the real (resp. imaginary) part of a particular solution of the recurrence

€oZn +C1Zn—1+ -+ CrZn—r = Q(n)qn7 nzr q:= ,O(COS]/ + i sin )/)
(10.30.¢)

By Proposition 10.26, the recurrence (10.30.c) has a particular solution of the form
zp = n*Q(n)g" where p is the multiplicity of g as root of the characteristic poly-
nomial and Q(X) has the same degree of Q(X).

Example 10.31 Let us find a particular solution of the recurrence
Xpp1 = 2x, + 3" cos(5n). (10.31.a)
Remark 10.30 suggests to take the real part of the solution (z,), to
Zup1 = 22, + 3"(cos(5n) + i sin(5n)) = 2z, + (3™)". (10.31.b)

The basis-solution of the homogeneous recurrence associated with (10.31.b) is (2"),,.
By Proposition 10.26, the recurrence (10.31.b) has a particular solution of the type

(«(3e™)") = (o3" cos(sm) + i sin(5n)))

n n

To compute the parameter «, we substitute in the recurrence (10.31.b):
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. +1 . .
o (365’)n =2« (3e5’)" + (365’)n .

Dividing by (3¢°)", one obtains

3ae” =2a + 1
and hence
1 3cos5—2—3isin5 3cos5—2—3isin5
o = " = = .
3¢ =2 (3cos5—2)? 4 9sin’5 13 —12cos 5

Thus, a particular solution of the recurrence (10.31.b) is

L (esiyr = 26083 22730803 30 5 1 isin5)", n e N
— (3¢ = i , n .
3¢5 —2 13 —12cos5
Its real part,
3cos5—2 3sin5
_ 3" 5 ——3"sin(5n), e N,
3= 12c0s5° OO F 3 5coss0 SO 1
is therefore a particular solution to (10.31.a). O

Example 10.32 We want to determine a particular solution of the recurrence
) b4
Xnp2 = Qi1 — 200 + (V/2)" sin (nz) . n>0.
Observe that the non homogeneous term is the imaginary part of ¢”, where
b4 b4
=2 (eos () s () =14

q V2 (cos 2 + i sin 2 + i
The characteristic polynomial X2 — 2X 42 = (X — 1)? + 1 has the two complex
conjugate roots 1 % i, so that g is a root of multiplicity 1 of the characteristic poly-
nomial. By Proposition 10.26 the complex recurrence

Zny2 = 2Zp41 — 220+ 4", n >0,

has a particular solution of the form («ng"), where « is a suitable constant. Substi-
tuting in the recurrence, one has

an+2)¢" " =2a(m + g™t —2ang" + ¢".
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Dividing by ¢", one obtains
a(n+2)q* =2a(m + 1)g — 2an + 1,

or equivalently
an(g® —2q +2) + 2ag* — 2ag — 1 = 0.

Since ¢ is a root of the characteristic polynomial X — 2X + 2, one has

1 1 1 1+i

YT —q¢) 4-20+i) —2+2i 4

therefore a particular solution of the recurrence

Znt2 =22Zp41 — 22, +q¢" n=0

is given by
1+ 1+
- Ilnq” = — Iln(\/i)" (cos (?) + i sin (%))

1 s () s (1) < o () ()

with n € N. Now, a particular solution of the initial recurrence is the imaginary part:

_n(«fY‘ (COS (%) 4 sin (%)) . neN.

Observe that

cos (%) + sin (%) =2 (cos (%) % + sin (%) %)

=2 (cos (%) sin % + sin (%) cos %)

= ﬁsin (M)
2 .

Thus, we can then write the particular solution of the initial recurrence in the follow-
ing more compact form

—%(\/5)"“ sin (@) , neN, -
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10.1.3 General Solution to a Linear Recurrence

We know now how to find a particular solution to a linear recurrence. Unless we
are very lucky, its initial terms do not match with the given initial conditions: we
need to find the general solution of the recurrence, which will depend on as many
parameters as is the order of the recurrence, and finally choose them in the convenient
way. Let us recap, for the convenience of the reader, the strategy we have developed
for determining the solutions of linear recurrence relation.

Remark 10.33 (Method for resolving a linear recurrence relation) Given a linear
recurrence of order r with constant coefficients, one proceeds with the following
plan:

1. Determine the general solution of the associated homogeneous recurrence:
this is a family of sequences, depending on r parameters, obtained by con-
sidering the linear combinations of the r basis-solutions of the associated
homogeneous recurrence;

2. Determine a particular solution of the recurrence;

3. The general solution of the recurrence is the sum of a particular solu-
tion and the general solution of the associated homogeneous recurrence;
one obtains a family of sequences which depend on the r parameters of
Point 1.

Next, if initial data are given:

4. Obtain the values of the r parameters, forcing the general solution to satisfy
the 7 initial data.

Example 10.34 In Example 10.31 it turned out that a particular solution to the recur-
rence
Xpa1 = 2x, + 3" cos(5n), n €N,

is
3cos5—-2 3sin5
—_ 3 5 ————3"sin(5n), N.
13 —12cos5 cos(5m) + 13 —12cos5 sin(Sn), n €

Let us find the general solution. The basis-solution of the homogeneous recurrence
relation x,, 1 = 2x,,n € N, is (2"),.. Thus, the solution of the given recurrence is

_ A2 4 202 sy £ =0 3nGin(sm), neN
AT T T 2cess T Y T3 T 12coss T o ES

with A} varying in R. O
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Example 10.35 In Example 10.32 we found that

— Z(‘/E)Hl sin (@) . neN, (10.35.2)

is a particular solution of the recurrence
Xpo = 2Xp41 — 2%, + («/E)” sin (n%) .
Let us find the solution of the above recurrence, with initial data
xo=0, x; = 1.
First, we settle the set of solutions of the homogeneous recurrence
Xp42 = 2Xp41 — 2x,, n > 0.

The characteristic polynomial X2 —2X + 2 = (X — 1)? + 1 has the two complex
conjugate roots 1 &= i. We write the roots in their trigonometric form:

liizx/_(T:I:z\/_) ﬁ(cos(%):&isin(%)).

By Theorem 10.12, the space of real solutions of the associated homogeneous recur-
rence is generated by the basis-solutions

((ﬁ)” cos (%))n and ((ﬁ)" sin (%))n )

Therefore, taking (10.35.a) into account, the general real solution of the recurrence

is

xn—A(«/_)”cos( 2 )+B(x/_)”sm( 4) 22yt ((”'21)77)’

with the variation of A, B in R. In order that xo = 0, it must be A = 0; moreover
x; = 1 only if

1 2
B+/2sin (%) - Z(\/E)zsin (T’T) =1,
. 1 .
or equivalently B — 3= 1,i.e., B =3/2. Thus

= —(\/_)" sin( ) (\/_)"+1 (—(n q;l)n)
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is the desired solution. O

Example 10.36 In the Example 9.10 we found that the sequence whose n-th term is
the number of regions of the plane created by n lines in general position, is a solution
of the recurrence relation

Xy =Xp—1+n, n>1,

with initial datum xo = 1. To find a solution we follow the pattern described in
Remark 10.33.

1. The characteristic polynomial is X — 1; thus, the sequence (1"), = (1), is the
basis-solution of the associated homogeneous recurrence. Its general solution is
(A),, with variation of the constant A.

2. Letusnow compute a particular solution. Observe that the non homogeneous term
of the recurrence is n = n - 1" and 1 is a root of the characteristic polynomial.
Therefore there exists a particular solution of the form

n'(ao + a1n)1" = n(ey + ayn) = aon + an’.
Let us compute the parameters o and o;:
aon + oan’ = aoln — 1) +a1(n — l)2 +n,

n? (o — ay) + (g — g + 201 — 1) + g — g = 0,

and hence o} = 1/2 = «p.
3. Thus, the general solution of the recurrence relation is the sequence

1
x,,:A—i—E(n—i—nz),nzO,

with variation of the constant A.
4. At this stage, imposing the initial datum xy = 1 yields

1

1
therefore the desired solution is x,, = 1 + E(n + n?). O

Example 10.37 The recurrence relations
X, = 1.08x,_; and y, =1.08y,_1+100 n >1,

respectively with initial datum xy = 1000 and yo = 100 describe the total sum of
money one will succeed in accumulating after n years if one follows the two different
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investment strategies considered in Example 9.8. The characteristic polynomial is in
both the cases X — 1.08; thus the general solution of the homogeneous part is the
family of sequences (A(1.08)"),, with the variation of the constant A. In the first
recurrence, imposing the initial datum one obtains

xo = A(1.08)° = 1000

and hence the solution is the sequence (1000 - (1.08)"),. To solve the second
recurrence, we have to find a particular solution. The non homogeneous part is
100 = 100 - 1"; since 1 is not a root of the characteristic polynomial, the recurrence
has a particular solution of the form («), where « is a real constant. To compute «,
we substitute in the recurrence, obtaining

a = 1.08c 4 100

and hence « = —100/0.08. Thus, the general solution of the second recurrence is

the family of sequences
100
A(1.08)" — —) ,
0.08/,

with the variation of A in R. Imposing the initial datum

—a- 190 0o
Y=AT 008

108
we obtain A = 0.08 and hence the solution

1
. = —— (108 - (1.08)" — 100), .
X 0.08( ( ) ), neN

We have obtained explicitly the money we would have accumulated in n years fol-
lowing the two investment strategies. O

Example 10.38 (Approximate solutions) Let us solve the recurrence relation
Xp = 4xn—1 — Xp—4 + 4n74’ n= 4v

obtained in the Example 9.13 to compute the number of n-sequences of I, containing
the subsequence (1,2, 3,4). The characteristic polynomial X* —4X3+1 has no
rational roots; using an appropriate CAS we have computed the approximate values
of the roots:

A1~ 0.669632, A, ~ 3.984188
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and the conjugate complex roots
A~ —0.32691 — 0.51764i, X4~ —0.32691 4+ 0.51764i.

Since | — 0.32691 — 0.51764i| ~ 0.612226, one has

—0.32691 — 0.51764i
032691 — 0.51764i :0.612226( 0.32691 — 0.5176 l)

0.612226

~ 0.612226(cos2 + i sin 2).
Thus, by Theorem 10.12, the family of sequences

(A1(0.669632)" + A,(3.984188)"+

+ A3(0.612226)"cos(2n) + A4(0.612226)"sin(2n)),
(10.38.a)

with the variation of A, A,, A3 and A4 among the real numbers, is an approxima-

tion of the general solution of the homogeneous recurrence. Let us now compute a
n

particular solution. Since the non homogeneous term is yrS we look for a particular

solution of the form w4”. Substituting in the recurrence we get
ad" = 44" — @4 44
hence o = 1. Therefore the family of sequences
(A1(0.669632)" 4 A,(3.984188)" +
+ A3(0.612226)" cos(2n) + A4(0.612226)" sin(2n) + 4"),,
with the variation of the constants A, A,, A3 and A4 in R, is the (estimated) general
solution of the recurrence. Imposing the initial data we obtain a linear system; using
a CAS we get
A} =0.0718, A, = —1.012, A3 = —0.0598, A4 = —0.0685.
Thus, the desired solution is

x, = 0.0718(0.669632)" — 1.012(3.984188)" +

— 0.0598(0.612226)" cos(2n) — 0.0685(0.612226)" sin(2n) + 4", n e N.
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Taking into account that the solution is a sequence of integer values, one can guess
the exact values of the solution. For example

x4 =1,x5=8,x¢ =48, x7 =257, ....

Observe that x4, x5 and x¢ are the correct values, while the exact value for x;
is 256. =

. Tp—1FE
Example 10.39 We solve the recurrence relation z, = 221 with initial datum

zo = 1. The characteristic polynomial is X — 1/2; then, the general solution of the
homogeneous part of the recurrence is A(1/2") with the variation of A € C. Since
the non homogeneous term is a constant and 1 is not a root of the characteristic poly-
nomial, the recurrence admits a particular solution of the form («), for a suitable

constant «. To compute the value of «, let us force the sequence («), to be a solu-

. o+ . . .
tion: « = ——, hence o = i. Therefore, the general solution of the recurrence is

z, = A(1/2") 4 i. Imposing the initial datum zo = 1, one obtains A = 1 — i; thus
—i
the wished solution is z, = —-— + i. The geometric representation of the sequence

in the complex plane is depicted in Fig.10.1. Geometrically, z, is the midpoint
between i and z,,—;, starting from zo = 1. O

Example 10.40 We wish to compute the sum of the squares of the first n positive
integers. Setting x, = 0% + - -- +n?, one has x, = x,_; +n? for all n > 1, with
initial datum x¢ = 0. The characteristic polynomial of this recurrence is X — 1.
Therefore, the family of sequences (A),, with variation of the constant A, is the
general solution of the homogeneous part. The non homogeneous term is n> = n? x
1; since 1 is a root of the characteristic polynomial of multiplicity 1, a particular

solution of the recurrence has the form (n(ag + a1 + ayn?)), for suitable values of

Fig. 10.1 Geometric
interpretation of the Yy
Zn—1+1

recurrence z, = .
2 le

"o Z4
. Z3

‘\l~ Zy

e Z1

Z
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the parameters o, 1, o». To compute such parameters, let us force the sequence to
be a solution:

n(ay + on + aznz) =m—-—D(xo+a(n—1)4+ao(n — 1)2) +n>.

Comparing the coefficients of n°, n', n?, n® we get: g = 1/6, 0y = 1/2, 0 = 1/3.

1 1
Therefore the general solution is x, = A + gn + Enz + §n3. The initial datum
1 1

xo = 0 implies A = 0 thus, the desired solution is x, = " + Enz + §n3. ]

We have thus seen some techniques that allow us to find a particular solution of
a linear recurrence relation when the non-homogeneous term belongs to a particular
class of sequences. For completeness we insert a formula valid for any non homo-
geneous term. However, satisfaction with the generality of the result is countered by
the difficult application of the same; we will postpone the proof to Sect. 10.5.

Proposition 10.41 (Anexplicit particular solution) Consider the recurrence relation
of order r

coXn +C1xy—1+---+cxpr =h,, n=>r (coc, #0). (10.41.a)

Let (wy,),, be the solution of the associated homogeneous recurrence with initial data
x0 =0, ..., x,_0 =0, x,_; = 1. Then the sequence (a,), defined by

0 ifn<r—1,
h
or ifn=r,
n = €0 n n—r
1 1
- Wn—khk+r—1 = hn + E Wn—khk+r—1 lf”l >,
€0 = co k=1

is a particular solution of the recurrence relation (10.41.a).

Example 10.42 We wish to determine a particular solution of the recurrence relation
of order 1
X, —Xp_1=n n>1.

The characteristic polynomial is X — 1; therefore the family of constant sequences
(A), with A € R is the general solution of the homogeneous part. Let us try to
use Proposition 10.41 to find a particular solution of the recurrence. The constant
sequence (1), is the solution of the homogeneous part with initial datum xy = 1.
Therefore the sequence (a,), defined by
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0 ifn=0,
1 ifn=1,
=11 nn+1)
- lk+1—-1)= —= ifn>1,
1 2
k=1
1
actually equal to —n(n +1) for all n, is a particular solution. The verification is
1 —1
immediate: n(n2+ ) — (n > n =nforeachn > 1. O

10.2 Linear Recurrences with Variable Coefficients

A linear recurrence with variable coefficients of order r > 1 is a recurrence of the
form

Xn + Cl,nXn—1 qFeooAF CrnXn—r = hna n=r,

where (¢1.4)nzrs ---» (Cr.n)n>r and (h,),>, are sequences, with ¢, , # O foralln > r.
If h,, = O for each n > r, the above recurrence is said to be homogeneous. Clearly
the recurrence has a unique solution once the sequence of the initial data is given.
Due to the linearity of the recurrence, the set of solutions keeps the same structure
as that of the linear recurrences with constant coefficients: a particular solution plus
the space of solutions of the associated homogeneous recurrence.

We limit ourselves to studying the case of linear recurrences with variable coef-
ficients of order 1.

Proposition 10.43 (Linear recurrence of order 1) Let us consider the linear recur-
rence of order 1 with variable coefficients

Xn = CpXp—1 +hns n>1,

where (cp)n>1 and (h,)n>1 are fixed sequences with ¢, # 0 for alln > 1.
1. The sequence (u,), defined setting
1 ifn=20,

n

U, = .
||Cj:C1"'Cn ifn>1,
j=1

is a basis-solution of the associated homogeneous recurrence.
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2. The sequence (b,), defined by

0 ifn=0,

n

= h
b, unz_] lfl’l > 1,

u;
=1

is a particular solution of the recurrence.
3. The solution with initial datum xy = ay is the sequence (a,), whose n-th term is

ap ifn =0,

a, = upag + b, = ! hj ! hj
una0+un2—=clcz--~cn ao—i-z
= u; = GIEERIG)

ifn>1.

Proof. 1.1f xo = 1 = uy, one has
X1=c1-l=ci=uj,xo=cct =Un,...,Xp =CpCp_1-+-C1 = Uy.

Thus, the sequence (Au,), is the solution with initial datum xo = A.
2. Itis easy to verify that by = h; =c¢; -0+ h; =c¢; - bg+ hy and foreachn > 1

-1 -1
" h <~ hj h, < K
bn = Uy E M_ = Up 2 M_ Lt_ = Chpllp—1 E ;"‘hn =bn—l +hn~
j=1 J j=l1 J n j=1 J

3. By the Superposition Principle 10.3, the general solution of the recurrence is the
family of the sequences (Au, + b,), with the variation of the constant A; imposing
the initial datum xy = ay, taking into account that ug = 1 and by = 0, one finds
A = ay. O

Example 10.44 Let us determine the solution of
X, =nx,_;+n!, n>1,
with initial datum xo = 5. Following Proposition 10.43, one has that
U,=nxm—1yx---x2x1=n!

is a basis-solution,

n .
J!

bn:n!g F:nxn!
=1
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is a particular solution and hence the desired solution is

5 ifn =0,
_ n '
B s> L = 54wl ifn = 1.
—~ j!
j=1
Notice that, actually, x,, = (5 4+ n)n! foralln > 0. O

Example 10.45 (Quicksort) The quicksort is one of the most important algorithms
for ordering data in a computer. Given a list of n > 0 distinct numbers, let us denote
by x,, the average number of steps made to put them in ascending order. The algorithm
starts by choosing randomly a number p, called the pivor. We compare then each
of the other n — 1 numbers in the list with the pivot p, putting on his left elements
strictly less p, and on his right elements strictly greater than p: this first phase is

composed of n — 1 steps. At this point we are left to sort the i € {0,...,n — 1}
numbers to the left of the pivot (x; steps) and the n — 1 — i numbers to the right of
n—1

the pivot (x,_;_; steps); on average, we will have to make — Z(x,- + X,—1-i) steps
n
i=0
to end this second phase. We obtain for x, the recurrence relation

n—1 n—1
1 2
xn:n—l—}——g xi+xn,,[:n—1+—2x,-, n>1.
ni:O( . iz

Multiplying by n both sides of the equality one obtains

n—1

nx, =nn—1) +22x,~, n>1.
i=0

Then, for each n > 2 one has

n—1 n—2
nx, —(n—Dx,_y=nn—-1)—m—-—1)n-2) +2(Zx,- — Zx,-)

i=0 i=0
=2(n—1)+2x,1;
therefore we obtain

n+1 2n —2
Xn = Xn—1 + , n>2.
n n

Bearing in mind that a set of zero numbers or of one number need O steps to be
sorted, the above recurrence is also true for n = 1 with the initial condition xo = 0.
By Proposition 10.43, set uy = 1 and
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T+l D!
unZHL=(n+ ) =n+1,

!
P n!

it turns out that the desired solution is the sequence (a,), defined by

0 ifn=0,

a, = 1252 . (10.45.2)
" n+1 ——  otherwise.
; JG+1D

Now, denoted by H,, the harmonic numbers (see Definition 6.40), for each n > 1,
one has

noni_9 n 1 n ) 1
=i+ FHZiG+h U+
= 2(2(Hn+1 -1)—-H,) = 2(Hn+1 +Hn+1 —H,-2)

1 1—2(n+1)
—2(H,,, +———-2)=2(H,,, +—"""
( S ) ( S —— )

4n
n+1

=2H, -

It follows from (10.45.a) that
a,=2(mn+1)H, —4n Vn € N.

Note in particular that, since H,, ~ log n by Proposition 6.44, the number of steps to
reorder a set of n elements is asymptotic to 2n logn for n — co. We will solve the
recurrence of the quicksort also in the Example 10.69, using the alternative method
of the generating formal series. O

10.3 Divide and Conquer Recurrences

In this section we introduce a special class of recurrence relations that appear fre-
quently in the analysis of recursive algorithms, especially in computer science. These
recurrences aim to calculate the number of steps of an algorithm constructed with an
approach known by the name divide and conquer. This approach consists in breaking
a problem of size n into two (resp. b € N, b > 2) problems of size n/2 (resp. n/b).


http://dx.doi.org/10.1007/978-3-319-03038-8_6
http://dx.doi.org/10.1007/978-3-319-03038-8_6
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10.3.1 Examples and definition

Example 10.46 We wish to calculate the number of operations required to determine
the minimum and maximum of a set S of n = 2% (k > 1) distinct integers. If n = 2
one comparison is sufficient to solve the problem. If n > 22, suppose we have found
the minimum m; and the maximum M, of the first half of S (formed by the first
n/2 numbers) and the minimum m, and the maximum M, of the second half of S
(formed by the last n/2 numbers). It is sufficient at this point to make 2 comparisons:
the minimum of § will be the smallest between m; and m,, the maximum of S will
be the greatest between M| and M.

Denoting by y, the number of comparisons needed to solve the problem using the
method described above with |S| = n = 2%, one obtains

Yo =2 +2, n=25k>2,

with y, = 1.

Strictly speaking we have not obtained a recurrence relation according to the
definition; it in fact involves only indices that are powers of two. But it certainly looks
like a lot! For each n = 2K, set x; = y, = yu; the previous recurrence is transformed
into the linear recurrence relation

Xp=2x,1+2, k=2,
with initial datum x; = 1. The sequence (2¥); is a basis-solution of the associated

homogeneous recurrence. A particular solution instead is of the type («);; substitut-
ing in the recurrence one has

o =20+2
and hence « = —2. Thus, the general solution of the recurrence is
Xp = A2k —2:

3
imposing the initial datum x; = 1 one obtains A2' —2 =1, and hence A = >
Recalling that x; = yy, one obtains

3 3
ynzyzkzxk=§2k—2=§n—2, n=2k,k21 O

Example 10.47 Generally, one need n*> multiplications of numbers with a figure to
make the product of two numbers with n digits. We use the approach of divide and
conquer to develop an alternative algorithm. Suppose as in the previous example that
n is a power of 2. If m is a number of n digits, denote by m its first n/2 digits and
by m, its last n/2 digits; then we have m = m 10"2 4+ m,. Let also £ be an n-digit
number; similarly, one has £ = ¢, 10"2 4 ¢,. Consequently we have
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ml = (m1€1)10" + (m1 > + mxl) 10" + my05.

Since
mily +maly = (my +my)(€y + £2) —mily — mals,

it is sufficient to include just the 3 products of numbers with n/2 digits
(my+m2)(€y + £€2), mily, maly,

to obtain xy (actually m; 4+ m, and ¢, + £, could have (n/2 + 1) figures, but this
small difference does not alter the order of magnitude of the solution). If y, is the
number of products of single digits required to multiply two n-digit numbers with
the procedure described above, we have

Yo =3ynp, n=2k>1,
with y; = 1. Setting n = 2%, and x; = y« one obtains the recurrence
Xk =3x3-1, k=1,

with initial datum xo = 1. This is a homogeneous recurrence that, by Theorem 10.12,
has the general solution
x = A3,

with the variation of the constant A; the initial datum implies A = 1. Taking into
account that x; = y, one has

yo=yx =x =3 =3"8"" n=2 k>0

since log, (3'°%") = (log, n)(log, 3) = log, 3, we obtain y, = n'°%23, Observe that
log, 3 ~ 1.58496 < 1.6; thus y, < n'®. The described algorithm for the product of
numbers therefore requires less than the n? steps of the traditional method. O

Example 10.48 (Binary Search) Imagine having to find Matilde in a list of n names
alphabetically ordered. A sequential search involves browsing all the names, and

from time to time comparing them with Matilde: it requires at worst n comparisons

I+--+n n+l . . .
and on average = comparisons. An alternative method, assuming

that n is a power of tvgo, consists in dividing the list into two and figuring out in which
of the two parties lies Matilde. To do this, just compare Matilde with the first name
of the second part; depending on whether this name follows or precedes Matilde
in alphabetical order, the name we are looking for will wither be in the first or in
the second part. In all, we have made two steps: first, we divided the list, then we
have established what part contains Matilde. We continue in the same manner in the
identified part, dividing it into two new parts and identifying in which part is the
name Matilde. Denoting by y, the maximum number of steps that may be needed to
find Matilde, we have
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Yo =yup+2, n=25k=>1,
with initial datum y; = 1. Setting n = 2¥ and x; = y», we get the recurrence relation
Xk =Xp1+2, k>1,
with initial datum xy = 1. The sequence (1%)x = (1) is a basis-solution of the asso-
ciated homogeneous recurrence. Since the non homogeneous term is 2 - 1” and 1 is
a root of the characteristic polynomial, there exists a particular solution of the form
(ka)g. Substituting in the recurrence, one obtains ko = (k — 1)« + 2, and hence
o = 2. Thus, the general solution of the recurrence is
xp = A+ 2k,
with the variation of the constant A. Imposing the initial datum 1 = x;, one obtains
xp =1+ 2k.

Since x; = y,«, we have

Vo=yr =x, =14+2k=1+2logyn, n=2%k=>0.

2log, n + 1 P .
Observe that W tends to 0 as n tends to infinity: the method of binary
n
search is therefore more advantageous than that of the sequential search. O

We formalize the type of recurrences we have seen in the previous examples.

Definition 10.49 A ‘“divide and conquer” recurrence of order » is a family of
equations of the form

€OV + C1Yusp + CoYupr + -+ CoVupr = hny n=nobt, k>r, (10.49.2)

where b € N>y, ngp € N>y, r € N, coc # 0 and (h,), is a sequence.

We say that (a,),enb*: ken) (most often we write (a,),, withn = nob*) is a solu-
tion of (10.49.a) if (a1t )ren solves the linear recurrence of order r induced by
(10.49.a) defined by
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CoXg + C1Xk—1 + -+ CXj—p = hnobk, k>r. (10.49.b)
The r-sequence of the initial data (a,,, dnyp, - - . , Guepr-1) of (10.49.b) is called the
sequence of the initial data of (10.49.a). m|

Remark 10.50 In order to solve the recurrence (10.49.a) with initial conditions
(Vngs - - > Yughr—1) it is enough to set xx = ypp¢ (k € N) and find the solution (ay )«
of (10.49.b) with initial conditions (Yy,, ..., Yn,r—1). The solution of (10.49.a) is
yp = ay, where n = nob* for some k € N.

Example 10.51 Consider the recurrence relation
Y = 5Ynjp +6Vua=n, n=2%k>2.

Determine the general solution and solve it with initial data y; = 2 and y, = 1.

Solution. Setting n = 2% and x; = yx, the previous recurrence becomes the linear
recurrence of order 2

Xp = Sxpo1 + 6,0 =28, k>2,

with initial conditions xy = 2, and x; = 1. The roots of the characteristic polynomial
X? —5X + 6 are 2 and 3. Therefore, the general solution of the induced homoge-
neous recurrence is x; = A2 + B3* with the variation of the constants A and B.
Since 2 is a root of the characteristic polynomial, we look for a particular solution
of the form x;, = ak2*. Substituting in the recurrence x; — Sx;—1 + 6x;_p = 2k one
deduces

ak2® = Sa(k — D28 — 6o (k — 2)252 4 2K;

hence 4ak = 10a(k — 1) — 6a(k — 2) + 4, or equivalently 2o +4 =0, i.e., ¢ =
—2. Thus, the general solution is x; = A2k 4+ B3k — 2Ktk with variation of the
constants A and B. The initial data impose that 2 =xp= A+ B and 1 = x| =
2A + 3B —4: hence A =1 and B = 1. Thus, the solution of the linear recurrence
induced by the “divide and conquer” one is

xp = 2k 4 38 — 2k = (1 — 2k)2% + 3%,
Recalling that x; = yy, one obtains

Yo =y = x; = (1 — 2k)2% 4+ 3% = (1 — 2log, n)n + 3'°&"
:(1—2]Og2n)n—|-n]0g237 n=2k’ kZO O
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10.3.2 Order of Magnitude of the Solutions

Often, rather than the explicit solution of a “divide and conquer” recurrence, we are
more interested in the order of magnitude of the solutions.

Recall that if (a,), and (b,), are two sequences, we say that a, = O (b,) (we say
that a, is “big O” of b,) as n — 400 if there exists a constant M > 0 such that

lan| < M|b,| Vn € N.

. . . .. . a . . .
In particular, if b, is definitively non-zero and lim :bn: exists and is finite, then
n—00 n

a, = O(b,) as n — +o0o. For instance:

. . n
e n=0(®?) asn — +oo, since lim — =0;

n—+o0o n
nlog'®p

e nlog'n=0m"1%asn - +oo,since lim o =0
n—+o00 n

e nsin(n’® + log(n? +5)) = O(n) as n — oo since |nsin(n? + log(n> +5))| <n
for every n € N.

We refer to Sect. 14.1 for more details on this concept. We introduce a further notation,
more suitable for the solutions to the divide and conquer recurrences.

Definition 10.52 Given b € N>, let (a,), and (B,), be two sequences. We write
a, = O(B,) forn = b*, k — +oo0,

if apx = O(Byr) as k — +oo0. |

Using the results on the linear recurrence relations with constant coefficients, one
immediately obtains the following estimate.

Theorem 10.53 Let A > 0,c € R\ {0}, p > 0and b € Ns,.
1. Let (ay),, n = b*, be a solution to the divide and conquer recurrence

Yn = )‘yn/h +cn?, n= bk, k>1.
Then
Oo@n?) ifA < b?,

a, = { O(n”logn) if, =b", forn=>br k — +oo.
on'°%*y  ifx > b*,


http://dx.doi.org/10.1007/978-3-319-03038-8_14
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2. Let (ay),, n = b*, be a solution to the divide and conquer recurrence
Yn = Ay +clog,n n=>b"k>1.

Then

O(logn) ifir <1,
a, =1 0(log’>n) ifr=1, forn=>br k— +oo.
O(n'°%ry ifa > 1,

Proof. 1. Setting x; = yu+, k € N, one obtains the linear recurrence of order 1
xp=Ax_1 +cb” k=1

The family of sequences (AAX), with variation of A in R, is the general solution of
the induced homogeneous recurrence. The non homogeneous term is c(b”)*. To find
a particular solution of the recurrence we distinguish two cases:

e )\ # b”: the linear recurrence has a particular solution of the type (a(h”)*); for
some « € R; in this case the general solution of the recurrence is of the type
(AM* 4+ ab?*), with variation of A € R and for a suitable & € R;

e )\ = b”: the linear recurrence has a particular solution of the type (ak (b)) for
some « € R; in this case the general solution of the recurrence is of the type
(AKX + akb?*),, with variation of A € R and for a suitable « € R.

Setting n = b, or equivalently k = log, n, one has Ak = 718" = plozs* and prk =
n”; therefore the general solution of the recurrence is:

o L #£DbP:y, = An'°%* 4+ an?, for suitable A, o € R, and n = b*, k > 0. The con-
clusion follows from the fact that if A < b”, then p > log, A and no%* = 0 (nr);
while, if A > b”, then p < log, A and n” = O (n'o%*y;

e L =0":y, = An" +a(log,n)n” = An” + a(log, n)n® for suitable A, o € R,
and n = b*, k > 0. The conclusion follows from

An” + a(log, n)n” = O(n”logn), n — +oo.
2. Setting x; = yp«, k € N, one obtains the linear recurrence of order 1
Xp = AXp—1 +ck, k>1.
The family of sequences (AA*),, with the variation of A in R, is the general solution

of the induced homogeneous recurrence. The non homogeneous term is ck.To find a
particular solution of the recurrence we distinguish two cases:
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e )\ #~ 1: the linear recurrence has a particular solution of the type («1k + «»); for
some «, ap € R; in this case the general solution of the recurrence is of the type
(AM* 4+ ok + a2)g, with variation of A € R and for suitable «;, oy € R;

e ) = 1: the linear recurrence has a particular solution of the type k(a1k + ;) for
some o, oz € R; in this case the general solution of the recurrence is of the type
(A + a1k? + ask)y, with variation of A € R and for suitable o, a; € R.

Setting n = b*, or equivalently k = log, n, one has A¥ = 108" = p°%*; therefore
the general solution of the recurrence is:

e AF£ 1L y, = An'ost 4 o log,n+ay for suitable A,oa;,a; € R, and
n=>b*k>0. The conclusion follows from the fact that if A < 1, then
n'°%* = 0(1) € O(logn); while, if A > 1, then log, n = O (n'°%*).

o A=1: yn=A+oz110g§n+a210gbn=0(log2n) for A,a;,ar € R, and
n=>b"k=>0. O

Example 10.54 We wish to determine the order of magnitude of the solutions of the
“divide and conquer” recurrence

Yo =93 +5 n=3" k=1,

with initial datum y; = 2. Applying Point 1 of Theorem 10.53 with A =9,
b=3,p=0,c=5,sinceA=9>3"=1=>5", we immediately obtain the esti-
mate y, = 0(n'°%°%) = 0m?).

Alternatively, one could solve the recurrence. Setting x; = ys, one has

=91 +5 k>1.

The characteristic polynomial of this linear recurrence is X — 9; then the family of
sequences (A9%),, with the variation of the constant A, is the general solution of
the homogeneous part. The recurrence has a constant solution («),; substituting in
the recurrence, one obtains o« = 9« + 5, and hence o« = —5/8. Thus, the general
solution of the induced linear recurrence is

P
xp =A% — -, k>0.
8
Setting n = 3, one has k = log, n; then
P
Yn =y = x, = A9 3
= A9lomn _ § = Anlos? — § = An® — §, n=3 k>0,
8 8 8

showing again that y, = O (n?) for n = 3, k — +o0.
Imposing the initial condition y; = 2, or equivalently xo = 2, to the general solu-
tion, one has
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5 . 21
2=X0=A—§, 1.e.,A=§;

thus, we obtain the solution

21 5 21 5
)’n=y3k=xk=§k—§=§n2—§, n=3k,k20. o

Example 10.55 Let us determine the order of magnitude of the solutions of the
“divide and conquer” recurrence

1
Ya = g2 0 n=2k>1.

1
By applying Point 1 of Theorem 10.53 with A = T b=2,p=1,c=1,since A =

1
- < 2! = b”, we immediately get that y, = O(n), n = 2*, k — +o0. Alternatively
one could solve the recurrence. Setting x; = y one has

1
Xy = Zxkq +2k k=>1.

This is a linear recurrence whose characteristic polynomial is X — 1/4: the family

A . . . .
of sequences (47) , with the variation of the constant A, is the general solution of
k

the homogeneous part. A particular solution is of the form («2¥);; substituting this
in the recurrence we have
PR k
a2t = Za2 +2

8
and hence o = 5 Therefore, the general solution of the linear recurrence is

Al k+82’<
X = - =25,
k 4 7
Setting n = 2k one has k = log, n; thus

8
yn =y =0 = A4TE 4 ok

8 8 A 8
= A4~ logan 4 7 = An~lozd 4 =5 + Zn= om), n=2* k- +oo.
O

Example 10.56 Let us determine the order of magnitude of the solutions of the
“divide and conquer” recurrence

Yo = Syuss +4logsn, n=5k>1,
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and its solution with initial datum y; = 1. By applying Point 2 of Theorem 10.53
withA =5,b =5, c =4,sinceA = 5 > 1, weimmediately obtain the estimate y, =
0 (n'°%3) = O(n),n = 5%,k — +o0. Alternatively, one could solve the recurrence.
Setting x; = ys« we have

Xy = Sxp_1 + 4k, k>1.

It is a linear recurrence whose characteristic polynomial is X — 5: the family of
sequences (AS5%),, with variation of the constant A, is the general solution of the
homogeneous part. A particular solution is of the form (ojk 4 «;)x. Substituting
this in the recurrence one has

ok +op =5k — 1) + ) + 4k,

or equivalently k(a; — Sy —4) = 0 and @y + 5o — Sy = 0; hence o} = —1 and
ar = —5/4. Therefore, the general solution of the linear recurrence is
5

xp = ASF —k — =,
4
Setting n = 5%, we have k = logs n; thus

5
Yn=y5k=Xk=A5k—k—Z

5 5
= A5'ogsn —logsn — 7 = An —logsn — 7 =0m), n =5 k > +o0.

Imposing to the general solution the initial condition y; = 1, or equivalently xo = 1,
one obtains A = 9/4; thus, one gets the solution

9 509 5
yn:ysk=xk:15k_k—Z=Zn—log5n—Z, n=>5 k>0. o

Example 10.57 Let us determine the order of magnitude of the solutions of the
“divide and conquer” recurrence

Yn = Yuss +4logsn, n=5"k>1,
and its solution with initial datum y; = 1. By applying Point 2 of Theorem 10.53 with
A=1,b=35,c=4,since A = 1 we immediately get that y, = 0(10g2 n), n = 5%,

k — +oo. Alternatively, one could solve the recurrence. Setting x; = ys« one has

Xy = Xp—1 +4k, k>1.
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It is a linear recurrence whose characteristic polynomial is X — 1: the family of
sequences (A 1% = (A);, with variation of the constant A, is the general solution of
the homogeneous part. Since 1 is a root of the characteristic polynomial, a particular
solution is of the form (k (o 1k + «2))x. Substituting this in the recurrence one has

k> 4+ ook = a1 (k — 1)? + aa(k — 1) + 4k,

or equivalently k(ay + 2y — o —4) = 0 and o; = «»; hence o) = ap = 2. There-
fore, the general solution of the linear recurrence is

xp = A+ 2k + 2k.
Setting n = 5% we have k = logs n; thus
Yn=Ysk =X = A +2k* 42k =A +210g§n +2logsn = 0(log2n), n=5 k- +oc.
Imposing to the general solution the initial condition y; = 1, or equivalently xo = 1,
one obtains A = 1; thus, one obtains the solution
Yo =y =x; = 1 +2k> + 2k = 1 4+ 2log2n + 2logsn, n=>5" k>0.

O

10.4 Recurrences and Generating Formal Series

In this section we will see how to use formal series to determine the solutions of a
linear recurrence relation.

10.4.1 Linear Recurrences with Constant Coefficients
and Their OGF

Let us consider the linear recurrence of order r > 1

CoXp +C1Xy_1 + -+ CXpr =h,, n=r, (R)

where ¢y, ¢y, ..., ¢, are constants with coc, # 0, and (h,),>, is a given sequence.

The characteristic polynomial of (R) is Pehar(X) = co X + aX '+ . +ec.
The OGF of a solution of the given recurrence admits a closed form that is easily
obtained from the data of the recurrence itself. The solution is then found by using
Theorem 7.114 or a CAS.
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oo
Proposition 10.58 The formal series A(X) = Za,, X" is the OGF of a solution
n=0
of the linear recurrence (R) if and only if there exists a polynomial S(X) with
deg S(X) < r satisfying

S(X) + ihx

AX) = s . (10.58.a)
cot+ca X+ -+ X"

In that case S(X) is uniquely determined by the initial data and the coefficients
€Oy weey Crel”

SX) =X (co+a X+ -+ X ") AX)

! ! 10.58.b
= [X=1] (Z CX)(Z a,,X"). ( )
n=0

n=0

oo

Proof. Consider the recurrence (R). Let A(X) = Z a, X" be any formal series. For
n=0

each n > r, the coefficient of the term of degree n in the product A(X)(co + 1 X +

+ ot XN)is
[X'l] A(X)(C() +aX+---+ CrXr) =coay +ciap-1+ -+ crap—y.

Therefore
[X"|AX)(co+ 1 X+ +c:X)=h,, Vn=r

if and only if
coy + C1ap—1+ -+ CrQp—y :hna Vn >,

or equivalently, if and only if the sequence (a,), is a solution of (R). In this case we
have

AX)(co+aX+--+eX) =
=X (co+eaX++eX)AX) +[XT ] (co+ a1 X+ + ¢ X") AX)

=[x=""] (i ch")(;;:)anX") + ihnx”,

n=0 n=r

from which we obtain (10.58.a) and (10.58.b). O
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We will see in Sect. 10.5 that Proposition 10.58 is very useful in proving most of

the example left open in Sect. 10.1.

Remark 10.59 About Proposition 10.58, observe that:

1.

2.

The order r of the recurrence relation is the degree of the polynomial in the
denominator of the formula (10.58.a);

The polynomial S(X) is formed from the terms of degree strictly less than r of
the formal series that appears in the numerator of (10.58.a) and its coefficients
depend only on ¢y, ..., c,—; and ag, ..., a,_1;

. The non homogeneous terms 4, n > r, of the recurrence relation are the coef-

ficients of the terms of degree greater or equal than r of the formal series in the
numerator of (10.58.a);

The polynomial Q(X) :=cop+c; X + -+ + ¢, X" appearing in the denominator
of (10.58.a) is not the characteristic polynomial P (X) = coX" + ¢/ X! +
+ - -+ + ¢, of the linear recurrence (R). The roots of P, (X) and Q(X) have a
strict link: indeed A is a root of P, (X) (necessarily # 0, since ¢, # 0) if and
only if

coM + e T+t =0.

Multiplying by 1/A", this equality holds if and only if one has
1 \"
CotcryF-to |- =0,

or equivalently, if and only if 1/A is a root of Q(X); in this case the roots A and
1/A have the same multiplicity.

Proposition 10.58 becomes particularly simple in the case of homogeneous recur-

rence relations.

oo
Corollary 10.60 The formal series A(X) = Z a, X" is the OGF of a solution of

n=0

the homogeneous linear recurrence

coXp +C1Xy—1 + -+ X, =0, n >,

if and only if

S(X)

AX) = )
X cot+caX+--+c X"

deg S(X) <.
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10.4.2 Applications

Solving Recurrence Relations

A first use of Proposition 10.58 is that of solving linear recurrence relations.

Example 10.61 We want to determine the ordinary generating formal series A(X)
of the solution of the recurrence relation

X,1:Xn_1+l, n>1,

with initial datum xo = 0. It follows by Proposition 10.58 that

S(X)+ > x*
k=1

AX)=——%

with S(X) = [X°]1(1)(ap) = ap = 0. Now, we have

o0

> X
Zx":x%x":m,

k=1

and hence

AX) = o

From formula (7.90.b), we obtain

o0

X )
—(1 X = Z (7) X" = Z(;an

n=0
and thus the sequence (n), is the desired solution of the recurrence. O

Example 10.62 Let us determine the solution of the Fibonacci recurrence using the
generating formal series. The Fibonacci numbers are the solution of the homogeneous
recurrence

Xp =Xp—1 + X2, N =2,

with initial data xo = 0, x; = 1. Let A(X) be the OGF of Fibonacci numbers. By
Corollary 10.60, we have that

AX) = ECICON
)_I—X—Xf
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X
with S(X) = [X=!](1 — X)(0 + X) = X; hence A(X) = T—x_x2 The roots
of 1 — X — X% are
—1++/5 1++/5
M= — A= — B

By formula(7.114.b) with P(X) = X and Q(X) = 1 — X — X2, we get that for each
neN

n o P(a)
[X ]A(X) =an = Z Ol"'HQ/(Ol)

a:Q(a)=0
B (—1++5)/2 B
(=14 +/5)/2 (=1 = 2(=1 4+ 5)/2)
B (—1-+5)/2
(=1 =5)/2 1 (=1 = 2(=1 = V/5)/2)
1L A=V L L (1++/5)/2
V5 (=1 ++/5)/2) V5 (=1 —/5) /2

1 1445 1 1-v5

Since = and = , one has
(—1++5)/2 2 (-1 =+5))2 2
L (Va+1Y 1 (1=V5Y)
X'NAX)=—\—7F—") ——= ,
5\ 2 3\ 2
as we had already obtained in Example 10.19. O

Example 10.63 Let us solve the homogeneous linear recurrence
Xy =2Xp1 + X2 —2Xp3, n >3,

with initial data xo = 0, x; = x, = 1. By Proposition 10.9, the possible rational
roots of the characteristic polynomial X? — 2X? — X + 2 are integer numbers (the
coefficient of X? is 1) dividing 2: thus we have to look at the divisors {£1, £2} of 2.
Evaluating the polynomial at these values one finds that the roots are 1, —1, 2: the
general real solution of the recurrence is the family of sequences

(A] 4 Ay (=D)" 4 A32"),,

with the variation of A;, A, and A3 in R. Imposing the initial data we obtain the
linear system
Al+A+A3=0
Al — Ay +2A3 =1
A+ Ay +4A5 = 1.
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We obtain easily A3 = 1/3 and hence A; = 0 and A, = —1/3: the desired solution
is the sequence

=g (- 1)

We could also solve the recurrence using generating formal series. By Corol-
lary 10.60, the OGF of the solution we are looking for is the formal series

S(X)
AX) = ,
(X 1 —2X — X2 +2X3
with
SX)=[X=11 =2X —XHO0+ X+ X>) =X — X%
therefore

X — X2

AX) = .
X 1—2X —X242X3

It is easily seen, using Proposition 10.9 or the fact that the roots of the denominator
are the inverse of the roots of the characteristic polynomial, that

1-2X - X>42X°=(1—=X)(1+ X)(1 —2X)

and hence
X X

AX) = I+ X)(1-2X) 1-x_—2x2

By formula(7.114.b) with P(X) = X and Q(X) = 1 — X — 2X?, we find that for
eachn € N

P(a)
X'"MAX) =— _
[ ] ( ) a;Q(Za):Oan+1Q/(a)

_ -1 1/2 1 » h”
__((_1)"+13+(]/2)n+l(_3/2))_§( - (=D ) 0

Example 10.64 Consider the recurrence of Example 10.63, changing only the initial
data:

Xp =2Xp_1 + Xy — 2Xp_3, n =3,
with initial data xo = x; = x, = 1. By Proposition 10.58, the OGF of the solution is

S(X)

AX) = ,
X 1 —-2X — X2 42X3

where
S(X) = [X=2(1 —2X — X (1 + X + X?)

=1-X-2Xx>%


http://dx.doi.org/10.1007/978-3-319-03038-8_7

10.4 Recurrences and Generating Formal Series 399
Therefore, we have

1—X—2Xx2 (1+X)(1 —2X) 1 o
AX) = 2 3 = ZZX‘
I=2X - X24+2X3  (1-X)0+X)0-2X) 1-X

Thus the constant sequence (1), is the solution of the recurrence relation. Observe
that while in Example 10.63 the solution of the recurrence is a sequence that
grows exponentially, here, changing only the initial data, the solution is a constant
sequence. O

Finding the Coefficients of a Rational Power Series

Another use of Proposition 10.58 is that of finding the coefficients of a formal power
series equal to a rational fraction of polynomials.

Remark 10.65 Assume that

B(X)
cot+aX+--+c X"

ianX” = A(X) =

n=0

, (10.65.a)

o0

where B(X) := anx" € R[[X]] and cq, . . ., ¢ with coc, # O are given. It fol-
n=0

lows from Proposition 10.58 that:

e (a,), solves the linear recurrence
coXy + -+ Cexyr =b,, Yn>r;
e The first r values ay, ..., a,—; can be recovered uniquely from the equality
AX)(co+a X+ +c¢X") = B(X),

due to the fact that ¢ + ¢1 X + - - - + ¢, X" is invertible.

The above holds in particular when A (X) is expressed as a quotient of polynomials:
indeed in this case it follows from Proposition 7.63 that A(X) can be written as in
(10.65.a), for a suitable polynomial B(X).

Example 10.66 Let us consider the formal series A(X) of Example 7.117:

3+ X X+3

AX) = = .
X+DX-2) —2-X+4X?

Let us calculate explicitly the coefficients of the powers of X in A(X). By Corol-
lary 10.60, the formal series A(X) :=ag + a1 X + a, X> + - - is the OGF of the
solution of the linear recurrence —2x, — x,—; + x,—» = 0, n > 2, with sequence of
initial data (ag, a;). Since


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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S(X) =3+ X = [X="1(=2 - X)(ap + a1 X)
= —2ap — (ag +2a1) X,

we get the initial data ¢y = —3/2 and a; = 1/4.
The characteristic polynomial of the recurrence is

“2X2— X+ 1=-2X+1)(X —1/2);
therefore the family of sequences
(A (=D)" + A2 (1/2)"),

is the general solution of the recurrence. Imposing the initial data we get

3 1 1
A1+A2=—§, —A1+§A2=Z

and hence A} = —2/3, A, = —5/6. Therefore the coefficients of the formal series

A(X) are
[X"]A(X) = —%(—l)" -2 (l> - g(—l)”“ -3 (1)"“
3 6\2) 3 3\2 ’

confirming what was found in Example 7.117. O
2

. B
2+3x
Proposition 10.58, the coefficientsof A(X) :=ap +a; X + --- + a, X" + - - - satisfy

arecurrence relation of order 1 (i.e., the degree of the polynomial in the denominator
24 3X):

Example 10.67 We want to determine the coefficients of A(X) =

2%y +3x,-1 =h,, n>1,

with initial datum ag. Since S(X) = 2ay is formed by terms of degree strictly less
2

than 1 of the formal series appearing in the numerator of A(X) = 3% one has

2ay = [X~'](X*) =0,

and hence ay = 0. The non homogeneous terms 4,, n > 1, of the recurrence relation
are the coefficients of the terms of degree greater or equal than 1 of the formal series
2

:hence hy =0, h, = 1 and h,, = 0 for each
243X

n > 3. Thus, the desired recurrence relation is

in the numerator of A(X) =

Oifn#2,

2xn + 3xn,1 = hn = lifn = 2’ =
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10.4 Recurrences and Generating Formal Series 401

with initial datum x¢ = ag = 0; therefore x; = 0, x, = 1/2 and

3
Xp = —=<Xnp—1, n23

2

The general solution of this recurrence is x,, = A(—3/2)"; imposing the initial datum
x, = 1/2, one obtains A = 2/9. Thus, the desired formal series is

1 2 3 3 002 -3 ! n

n=2

Example 10.68 (Fibonacci convolution) We have seen in Example 10.62 that the
OGF of the Fibonacci sequence is the formal series

X

A(X):—I—X—Xz'

The coefficients (a,), of A(X) satisfy the homogeneous recurrence
Xy = Xp—1 +Xp—2, N = 2»

with initial data xo = 0, x; = 1. We now calculate the sequence (b,), obtained by
the convolution product of the Fibonacci sequence with itself. This sequence occurs
in the analysis of some important algorithms. By Proposition 7.21, the ordinary
generating formal series B(X) of (b,), is

XZ

PO =G %3

By Corollary 10.60, the sequence of coefficients (b,), satisfies a linear homoge-
neous recurrence relation. Since (1 — X — X%)2 =1—2X — X2+ 2X3 + X*, this
recurrence is

Xp — 2Xp—1 — Xp—2+2x,3+x,_4=0, n=>4.

Again by Corollary 10.60, we have

X2 = [X=1(1 = 2X — X2 42X (bo + b1 X + b, X? + b3 X?)
= by + (=2by + b)) X + (—=bg — 2by + b2)X* + (2bg — by — 2by + b3) X°,

from which we get the initial data
X():b():(), X1 :bl :O, XZ:bzz 1, X3:b3:2.
The characteristic polynomial of the recurrence is

X -2XP - X 42X +1=(XP-X -1
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its root are

both with multiplicity 2. Therefore, the general solution of the

(A, +A2n)(1 _2‘/5) +(As +A4n)(1 J”/g) ,

recurrence is

2

with the variation of A, A,, Az, A4 in R. Imposing the initial data we get the linear
system
AL+ As =0

1—-+/5 1 5
(A1+A2)( 2f)+(A4—A1)( +2f) =0

2 2
1-45 1+45
(A]+2A2)( 2“/_) +(2A4—A1)( +2“/_) =1

3 3
1-4/5 1++/5
(A1+3A2)( 2‘/_) +(3A4—A1)( +2*/_) =2

Using a suitable CAS for solving linear systems we get A} = V525, Ay = 1/5,
Az = —+/5/25 and A4 = 1/5. Thus, the solution we are looking for is

. Vi1 \[(1-v5) V5o \[(1+v5)
[X ]B(X):b’1:(25+5n)( 5 ) +(—25+SH)( ) ) . O

10.4.3 The Quicksort OGF s

The method of generating formal series shown in Proposition 10.58 also applies
(with a bit of luck) to other types of recurrence, such as those which are non-constant
with linear coefficients. We shall just treat the example of the quicksort algorithm.

Example 10.69 We solve, as an example of using the generating formal series, the
quicksort recurrence, which was introduced and solved by a stratagem in Exam-
ple 10.45. The number a, of steps needed to sort a list of n > 1 distinct names is the
n-th term of the solution of the linear recurrence relation

nx,,:ZZx,-—i—n(n—l), n >0,

0<i<n

with initial datum xy = 0. Let us consider the OGF of the sequence (a,),:

A(X) = ianX".
n=0
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The terms of the sequence (a,), satisfy by hypothesis

na, =2 Zai—i—n(n—l), n>1.

0<i<n

Multiplying both sides by X" and formally summing we get

ZnanX” = 22( Z ai)X” + in(n - X"

n=1 0<i<n n=1

Let’s now evaluate each term that appears in the above formula.
o0

Since A'(X) = Z na, X" !, the left side of the equality is equal to X A’(X). Next,

n=0
by Proposition 7.88 we have

Z(Z )X X;A(X)

n=1 0<i<n

Finally, thanks to the formula(7.90.b), we obtain

n n X2
Zn(n—l)X _22( )X :Zm'

n=2

Therefore

A'(X 21AX 2X
()—1 ()+m

Let us solve the Cauchy problem

2x
y(x) +

1
y(x)_21 W,

y(©0) =0,

(the choice of y(0) = 0 is due to the fact that ay = 0). Multiplying both sides of the
differential equation by (x — 1) = (1 — x)* we get

(x — D2y (x) +2(x — Dy(x) = —
— X

or equivalently

((x — )2y(x) = ——

Integrating, taking in account that y(0) = 0, we get that for x < 1
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yx) =-2 r 2 log(1 — x).
x=D* (1-x)?

By Proposition 7.119 we have

X 2
X-12 (1-X)?

AX) = =2 log(1 — X).

Now, thanks to the formula (7.90.b), for each n € N we obtain

X = =

By Propositions 7.88, 8.32, and Example 6.50, we get

log(1 — X) 1 log(l —X) -
— X" =—> Hy = 1— DH,
1_X) [ ]1—X % kg;‘ r=n+ (n+ 1) H,q

[X"]

and therefore
a, = [X"JA(X) = -2n—-2(n+1—(n+ 1)Huy1)
=2mn+ 1H,y; —4n —2=2(n+ 1)H, —4n,

as we have found in Example 10.45. O

10.5 Proofs s

In this section we give, for completeness’ sake, the proofs of Theorem 10.12, of
Proposition 10.26 and of Proposition 10.41; all these results have been widely used
in the examples of the previous sections. The reading will certainly allow for a better
understanding of the theory; at the same time its omission will not in any way affect
the study of the book.

10.5.1 Proof of Theorem 10.12

In this section we use the difference and shift operators A and 6 introduced in Chap. 6.
We show first that the difference operator A somewhat preserves the sequences of
the forms (P (n)A"),, when P(X) is a polynomial.

Lemma 10.70 Let P(X) # 0 be a polynomial and ) € C \ {0}. Then there exists a
polynomial Q(X) such that A(P(n)\") = Q(n)A", where:


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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o IfA #£ 1 thendeg Q(X) = deg P(X) and Q(X) # 0O
o [fL=1thendeg O(X) =degP(X)—1>0ifdegP(X)>1 O(X)=0
otherwise.

Proof. By Proposition 6.13 one has

A(P(mA") = A"AP(n) + 0 P(n) AL
=(AP(n)+ (A —1DPm+1)A".

If P(X) = c is constant then
APV =AY =cA—DA"' =0 A= 1.

V~Ve thus henceforth assume that deg P(X) > 1. We have AP(n) = ﬁ(n) where
P(X)=P(X+1)—P(X)and P (n) = P(n + 1). It it easy to see that

deg(P(X + 1) — P(X)) =deg P(X)—1, degP(X+1)=degP(X).
Now

deg P(X + 1) = deg P(X) ifAr # 1;

deg(P(X)+ (A — DP(X + 1)) = [deg P(X)=degP(X)—1 ifra=1 0o

The following result, showing the linear independence of the basis-solutions to
(R,), has an interest in itself.

Proposition 10.71 (Linear independence of the basis-solutions) Foreverym € N,
and non-zero distinct complex numbers Ay, . .., Ay, the sequences

A D s oo, X)), Sly.. S €N
are linearly independent, i.e., whenever
Pi(m)Al +---+ Py(n)A, =0 Vn eN,

for some polynomials P)(X), ..., P,(X), then necessarily P (X)=---=
P,(X)=0.

Proof. We use the technique used in [9] for the independence of the quasi polynomi-
als functions #*¢*'. Assume by contradiction that the claim is not true: letm € N the
minimal integer for which a counterexample exists. Then we can find non-zero com-
plex distinct numbers A4, . .., A, and, by the minimality of m, non-zero polynomials
P (X), ..., P,(X) satisfying
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Pim)A} +---+ Py(mA,, =0 VneN. (10.71.a)
Certainly m > 1, because the equality (P; (n)A}), = (0), implies P;(n) = Oforeach

n € Nandhence P;(X) = 0.Setn; = A; /1, fori =1, ..., m,theformula (10.71.a)
is equivalent to

—Pyu(n) = Pr(m)n} + -+ Pp1(m)n,,_, Vn e N.

Let d be the degree of P, (X). By applying the operator A?*! to both members of
the latter equality we get

AT (=P, () = ATTH P D) + -+ AT (P (00" _) Ynoe N

Since n; # 1 fori =1,...,m — 1, Lemma 10.70 shows that A?(— P,,(n)) is a con-
stant so that AY*!(—P,,(n)) = 0 and there are non-zero polynomials Q,(X), ...,
O n—1(X) satisfying

AT P! = Qimynf, neN,i=1,...,m—1,

whence
Ql(n)nY + -+ mel(n)n,r;;fl =0 Vne N»

where Q;(X) are non-zero polynomials, thus violating the minimality of m, a con-
tradiction. O

Proof (of Theorem 10.12). 1. We first show that the elements of the basis-solutions
are indeed solutions of the recurrence (R,). Let f : N — N. Notice that (f(n)), is
a solution to (R,) if and only if
(c)b"+---+c¢)f(n)=0 VneN.

Moreover,

cof" 4+ F o =co(@ — A (0 — M) (10.71.b)
Let P(X) be a polynomial. For A € C we have

O — (PMA) = P(n + DA — P)r™! = 1 AP(n),

and AP(n) = Q(n) where, from Lemma 10.70, Q(X) is a polynomial of degree
deg P(X) — 1 if deg P(X) > 1, or Q(X) =0 if P(X) is a constant. Therefore, if

u € N5y, inductively we have

O — VNH(P(m)A") = AT AP P (n),
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where A" P(n) is a polynomial in n of degree deg P(X) — p if deg P(X) > u or
A*P(n) = 0if deg P(X) < w. In particular, for 0 <s < p in N we have deg X* =
s < so that
O — DM@ A" = A" AF@F) = 0.
It follows from (10.71.b) that (n*A"), is a solution to (R,) whenever A is a root of
the characteristic polynomial of (R,) of multiplicity i, and s < p. The conclusion
follows since the space of solutions to (R,) has dimension r (Proposition 10.4) and,
by Proposition 10.71, the r solutions
WD @70, j=1m,

are independent.
2. By Point 1, the sequences

nsp;'(cosaj:tisinaj)” O<s<p; j=1,....h
n'l, 0§s<u;- j=1,...,¢,
generate the set of complex solutions of (R,). Now we have

(cosaj £isina;)" = cos(na;) % isin(na;).

Therefore every basis-solution of the type nf pi(cosaj £ isina;)" is the sum of
nkp;? cos(na;) and of +i nk,o;? sin(ne;); at the same time

1 1
nk,o;‘ cos(naj) = Enkp;l(cos(notj) + i sin(na)) + Enk,o;' (cos(naj) — i sin(nej)) and
nkp;-’ sin(naj) = %lnkp;’ (cos(naj) + i sin(na)) + %nkp;-l (cos(naj) — i sin(na))

are linear combinations of the basis-solutions n* p’; (cosaj £ isina;)". It follows
that the sequences

(' P cos(na))y, O<s <py 1<j<h,
(n'pf}sin(ne)),, 0<s <w;, 1<j<h,
(m* A, 0<s <y}, 1=<j=U,
are r generators of the space of the complex solutions of (R,). Since these are

all real sequences, each real solution is obtained via their combination with real
coefficients. m]
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10.5.2 Proof of Proposition 10.26

The idea of the proof is to show that any solution of (R) is actually a solution to a
suitable homogeneous linear recurrence with constant coefficients. We will need the
following preliminary result.

Lemma 10.72 (Composition of linear recurrences) Let (b,), be a solution of the
linear homogeneous recurrence

r
ch,kxn,k =0, n>r (croc1,, #0), (10.72.a)
k=0

and let (a,), be a solution to the linear recurrence

2

> erxue=by. n=ry (cr00, #0). (10.72.b)
=0

Then (a,), solves the linear homogeneous recurrence whose characteristic polyno-
mial is the product of the characteristic polynomials of the recurrences (10.72.a) and
(10.72.D).

Proof. Since
!

E Cixbp—r =0, Vn>r
k=0

and, foreach k € {0, ..., r},

2

by_x = E C2,00n—k—p, YN >k +r,
=0

then

I r
E Cl,k( 2 CZ,Kan—k—K) =0, Vn>r+nr,
k=0 =0

or equivalently,

ri+ry
E E Lk an—m =0, VYn=>ri+nr.

m=0 \k+{=m
Therefore (a,), solves the linear homogeneous recurrence

ri+r

E cmxn—m=07 nz=ry+r,

m=0
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where ¢, := E c1.x¢2.¢- The characteristic polynomial of the latter recurrence is
k+t=m

ri+r ri+ry

2 Cm Xr1+r2—m — E E Cl,kCZ,ZXr] +ry—k—2

m=0 m=0 \k+l=m

r L)
= E creX 7k E ce X0,
k=0 =0

proving the claim. m]

Proof (of Proposition 10.26). Let d := deg Q(X); it follows from Corollary 10.22
that (Q(n)g™), is a solution to the homogenous recurrence whose characteristic
polynomial is (X — q)d+‘. Let (a,), be a solution of (R): by Lemma 10.72 (a,), is
a solution to the linear homogeneous recurrence whose characteristic polynomial is
P(X)(X — q)d“, where P(X) is the characteristic polynomial of (R). Two cases
may occur, in each of them we invoke Theorem 10.12 and Remark 10.13.

e If g is not a root of P(X), there are polynomials Py(X), ..., P,(X) and Q(X)
with deg P;(X) < u; fori =1,...,m, and deg Q(X) < d such that

@y = P WA 4 - + Py (WA, + O(n)g" Vn € N.

Since Pi(n)A] + - - + P, (n)A;, is a solution to the associated homogeneous rela-
tion (R,), the Superposition Principle 10.3 implies that (Q(n)q"), is a solution of
(R).

e If g is aroot of P(X), say ¢ = A, then g is a root of multiplicity u,, +d + 1 of
P(X)(X — q)‘“'l: there are polynomials P;(X), ..., P,—1(X) and Q(X) with
deg Pi(X) < i=1,...,m—1),deg Q1(X) < u; + d such that

ay = Pi)A) + -+ + Py i(mA_ + Q1()g" Vn € N.

m—1

We may write B
QI(X) = Pm(X) + Xt Q(X),

with deg P, (X) < ., deg Q(X) <d, so that
an = Py(m)A] + -+ - + Py (), + n'" é(n)q” Vvn € N.

Since Pi(n)A] + -+ Pu(n)Ay, is a solution to (R,), the Superposition Princi-
ple 10.3 implies that (n* Q(n)q"), is a solution of (R). O
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10.5.3 Proof of Proposition 10.41

Proof (of Proposition 10.41). First we observe that since wp = - -+ = w,_, = 0 and
w,_1 = 1, we have that for eachn > 1

1 n 1 n—r
- Z Wik kyr—1 = — Z Wik hkyr—1 +Wr—1hy +Wr2hpi1 + -+ wohpyr—1
gy €0 \i=

1 ("=
= — (Z Wn—hyr—1 + hn) .

B
0 \x=i

Let W(X) and H(X) be the OGF of the sequences (w,), and (h,4,—1)n>1- By
Proposition 10.58, we have

C()Xril
W(X) = .
cot+taX+---+c X"
Therefore
1 X TH(X)
—W(X)H(X) = .
Co co+aX+- 4o X"
Since

oo oo 0]
XTTHX) = X7 b X = b X =Y X

k=1 k=1 n=r

then it turns out that
o0
>y

1 n=r
—W(X)H(X) = .
Co cot+aX+--+oX

1
Again by Proposition 10.58, one sees that — W (X) H (X) is the OGF of a particular
co

solution of the recurrence
CoXp + C1Xp—1 + -+ Xyp =hy, n=r.
The conclusion follows from the fact that the sequence of the coefficients of

W (X)H (X) is the convolution product of the sequences of the coefficients of W (X)
and H(X). O
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10.6 Problems

Homogeneous recurrences

Problem 10.1 Solve the following recurrence relations:

(@) x, =3x,—1 +4x,-2, n > 2, with initial data xo = x| = 1;

(b) x, = x,_2, n > 2, with initial data xo = x; = 1;

(C) Xp = 2)(,1,1 — Xp—2, 11 = 2, with initial data Xp =X = 2;

(d) x, =3x,-1 — 3x,2 + x,_3,n > 3, with initial data xo = x; = 1, x, = 2.

Problem 10.2 Find and solve a recurrence relation to compute the number of possi-
ble ways of filling a row of n places in a parking using blue cars, red cars and trucks,
taking into account that the trucks take up two spaces, whilst the cars will occupy
one.

Problem 10.3 A multinational pharmaceutical company decides to double the
increase in the price of its flagship product every year. Find and solve the recurrence
relation for the price p, of the product in the year n, supposing that py = 1, p; = 4.

Problem 10.4 Assume the recurrence relation x,, = c1x,_1 + ¢2x,_» (n > 2) has
general solution x, = A 13" + B 26" with A, B € R: determine the constants ¢y, c;.

Problem 10.5 Find the real and complex solutions to the recurrence
Xpt2 —6x,401 +9x, =0, n>0.
Problem 10.6 Compute the general real solution of the recurrence relation
Xpio +4x,01 + 16x, =0, n>0.
Problem 10.7 Compute the general real solution of the recurrence relation
X, = Xp_1 + 8xp0 — 12x,_3, n > 3.
Problem 10.8 Determine the real solutions of the recurrence
Xy, —9%,,=0, n>2,

with initial data:

1. )C()=6, X1 =12;
2. x3 =324, x4 = 486;
3. X0 = 6, Xy = 54;
4, X0 = 6, Xy = 10.
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Problem 10.9 Solve the recurrence relation
Xy = 3x,-1 +4x,_0 — 12x,_3, n >3,

with initial data xo = 2, x; = 5, x, = 13.

Problem 10.10 Solve the homogeneous linear recurrence of order 3
Xn+3 = 6xn+2 - 1an-H +8x,, n>0,

with initial data xo = 1, x; = 0, x, = 4.

Particular solutions

Problem 10.11 Determine a particular solution of the recurrence x,, = cx,—; + h,
with ¢ € R and:

(a) hn =1
(b) hn =n;
(©) hn = n2;

(d) hy=q" (g €R).

Problem 10.12 Assume the characteristic polynomial of a given recurrence relation
is (X — 1)%(X — 2)(X — 3)?; determine the general solution of the induced homoge-
neous recurrence. Determine the type of a particular solution of the given recurrence
if its non homogeneous part %, is defined by one of the following:

(@) h, = 4n> + 5n;
(b) h, =4";
(c) h, =3".

General solutions

Problem 10.13 Let (4,), be a sequence and ¢ a constant. Determine the solution of
X, = cXy_1 + h, (n > 1) with initial datum x, = 1.

Problem 10.14 Solve the following recurrence relations:

@ x, =x,—1+3(n—1),x=1;
(b) Xp = Xp—1 + n(” - 1)7 X0 = 3;
(©) xp, = x,_1 + 3n%, x0 = 10.
: : Xn + Xp—1
Problem 10.15 Determine (x,),cy knowing that xo = 3 and — = 2n+5
foreachn > 1.
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Problem 10.16 Find the general solution of the recurrence
Xp = 5x,_1 — 6x,_» +6(4").
Problem 10.17 Find the general solution of the recurrence
X, = 2x,-1 +2" +n.

Problem 10.18 Solve the following recurrence relations:

(@) x, =3x,1—2,x9=0;

(b) x, =2x,1 + (D", x0 =25
©) xp=2x,1+n,x =1;

(d) x, = 2x,_1 + 2n% xo = 3.

Problem 10.19 Solve the recurrence relation x, = 3x,,_; — 2x,,_, + 3, with initial
dataxyg = x; = 1.

Problem 10.20 Find and solve a recurrence relation for the profit of a company if
the growth rate of the profit in the n-th year is 10 x 2" euros more than the growth
rate of the previous year and in the first year the profit is of 20 euros, while in the
second year the profit is 1020 euros.

Problem 10.21 Find the general solution of the recurrence relation
X, — Sx,_1 +6x,_0 =2+ 3n.
Problem 10.22 Solve the following recurrence relation with initial datum yy = 1:
y3=2y571+1 n>1.

(Hint: set x,, = y,f).

Problem 10.23 Determine the general solution of the recurrence
Xp =4x,_1 —4x,_0 +2", n>2.

Problem 10.24 Solve the recurrence x, = x,_; + 12n2, with initial datum xo = 5.

Problem 10.25 Determine the general solution of the recurrence
Xp =3x_1 —4n+3x2" n>1.

Find the solution with initial datum x; = 8.

Problem 10.26 Find the real solution of the recurrence

X, = —Xp—2+1, x0=0, x; =0.
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Problem 10.27 Determine the solution of the following recurrences:
1. xp41 = 5x, +2"cos (n%) , X0 =0;
7
2. Vi1 = S5ya + 2" sin (ng) . v =0.

Problem 10.28 Determine the general solution of the recurrence:
: b4
Xps1 = %0 + (1 4+1)2" sin (ng) Coxo=1.
Problem 10.29 Determine the solution of the recurrence
b4
Xpra — 4330001 + 163, = 32 x 4" cos (ng) ,

with initial data xo = 0, x; = 0.
Divide and conquer

Problem 10.30 Determine the solution of the following “divide and conquer” recur-
rences:

@ ypn=2y,2+35 n= 2k k > 1 with initial datum yi=1;
(b) Yo =2¥ua+n, n= 4%k > 1 with initial datum y; = 3;
(©) Yu =2yu+2n, n =25 k > 1 with initial datum y; = 5;
(d) yo=yupz+4, n= 3%, k > 1 with initial datum y, = 7.

Problem 10.31 Determine the solution of the following “divide and conquer” recur-
rences:

@ yo=Yup+2,n=4x 3%, k > 1 with initial datum vy =5;

b) yo=2yp3+2,n= 3%, k > 1 with initial datum y; = 1;

©) Yn=Yup3+2n,n= 3%, k > 1 with initial datum y; = 5;

(d) yo =2yu3+2n, n=2x 3%, k > 1 with initial datum v, = —1.

Problem 10.32 Describe an approach of type “divide and conquer” to determine
the maximum among the elements of a set of n numbers. Write a recurrence relation
for the number of necessary comparisons and solve it.

Problem 10.33 Describe an approach of type “divide and conquer” to determine the
first and second largest among the elements of a set of # numbers. Write a recurrence
relation for the number of necessary comparisons and solve it.

Problem 10.34 Determine an estimate for the order of magnitude (i.e., y, =
O(- - -)) of the solution (y,), of the “divide and conquer” recurrence

Yn = 3yn/2 +4I’12 n = 2k9 k>1,
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with initial datum y; = 5 in two different ways: (1) Use Theorem 10.53 (2) Solve
the recurrence.

Problem 10.35 Determine an estimate for the order of magnitude (i.e., y, =
O(--+)) of the solution (y,), of the “divide and conquer” recurrence

Yo =2 +2, n=25 k=>1,

with initial datum y; = 2 in two different ways: (1) Use Theorem 10.53 (2) Solve
the recurrence.

Problem 10.36 Determine an estimate for the order of magnitude (i.e., y, =
O(---)) of the solution (y,), of the “divide and conquer” recurrence

Yn =2y +2logyn, n =2 k>1,

with initial datum y; = 1 in two different ways: (1) Use Theorem 10.53 (2) Solve
the recurrence.

Problem 10.37 Determine an estimate for the order of magnitude (i.e., y, =
O(---)) of the solution (y,), of the “divide and conquer” recurrence

1
yn=§yn/4+310g4n, n=4k, k>1,

with initial datum y; = 0 in two different ways: (1) Use Theorem 10.53 (2) Solve
the recurrence.

Problem 10.38 Determine an estimate for the order of magnitude (i.e., y, =
O(---)) of the solution (y,), of the “divide and conquer” recurrence

Yo = Yupp +2logyn, n=25 k>1,

with initial datum y; = 1 in two different ways: (1) Use Theorem 10.53 (2) Solve
the recurrence.

Recurrences and generating formal series

Problem 10.39 Solve the following recurrence relation using the generating formal
series:
X, =2x,1+1, n>1,

with initial datum x¢ = 1.

Problem 10.40 Solve the following recurrence relation using the generating formal
series:
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Xy =2Xp_1 — Xp2 +2xp3, n >3,

with initial data xo = 1, x; = 0, x, = —1.

Problem 10.41 Solve the following recurrence relations using the generating formal
series:

@ x,=—x,_1+6x, o n>1 xg=0,x;,=1;

Md) x,=3x,_1—4x, » n>1 x0=0, x; = 1.

Problem 10.42 Solve the following recurrence relation using the generating formal
series:
(n+ Dx,+1 = (n+ 100)x,, n>0 xy=1.

Problem 10.43 Solve the following recurrence relation using the generating formal
series:
X, =11x, o —6x,.3, n>2, xg=0,x;=x,=1.

Problem 10.44 Solve the following recurrence relation using the generating formal
series:
Xp =3x,-1 —3xp2+ X3, n>2, xo=x1=0, xp, =1.

Problem 10.45 Solve the following recurrence relations using the generating formal
series:

@ x, =5x,—1 = 8xp2+4x,3, n>2, xo=1,x1=2, =4
b)) x, =2x,0— X4, n>4, xg=x1=0, x, =x3 = 1.

Problem 10.46 Letm € N . Solve the following recurrence relation using the gen-
erating formal series:

m

m
E(k)xn_k=0, n>m, xg=--=Xu2=0,x,_1=1
k=0

Problem 10.47 Solve the following recurrence relation using the generating formal
series:

Xnt6 — 21xp45 + 175x, 44 — 735x,43 + 1624x, 40 — 1764x,41 + 720x, =0, n >0,
with initial data

X()=0, x1=1,x2=0, X3=1, X4=0, X5=1.
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Problem 10.48 Letr € R, ¢ # 2. Solve the following recurrence relations using the

generating formal series:
[ n
xn=n+1+_2xk—l, nzly x0=07
g

with t = 2 — ¢ and then with r = 2 + ¢, for a sufficiently small positive constant ¢.



Chapter 11
Symbolic Calculus

Abstract The notion of combinatorial class provides a deep method in order to solve
ahuge class of combinatorial problems: indeed we shall see a very efficient technique
for calculating, by way of generating formal series, the cardinality of various sets.
In particular we will concentrate on the number of sequences containing a given
pattern, the number of triangulations of a convex polygon, and the number of rooted
plane trees.

11.1 Combinatorial Classes

The objects of the symbolic calculus are sets where the elements are divided into
finite subsets, according to their size.

Definition 11.1 A combinatorial class is a couple (%, v) formed by a set % and
a function v : ZZ — N, called valuation or size, such that

v~ (n) := {x € % : v(u) = n} is finite for every n > 0.

The finite subset v~ ! () is called the n-fibre of % and its elements are said to be of
size n. O

Remark 11.2 From the definition it follows immediately that if (%, v) is a combi-
natorial class then % is finite or countable: indeed, % = |,y v~!(n) and the fibres
v~!(n) are finite. Furthermore, one notes that any finite or countable set always admits
a valuation (it suffices, in fact, to list the elements and assign them their position as
value); in general there can be various valuations on the same set. The choice of one
valuation over another depends on the combinatorial problem under consideration.

Example 11.3 1. Givenn € N5, consider the set of sequences of I,. The function
v that associates to every sequence its length (the empty sequence has length 0)
is a valuation that makes the set of sequences of /, into a combinatorial class.
The function ¢’ that associates to every sequence the number of 1’s appearing in
it does not make the set of sequences of ,, into a combinatorial class: indeed, for
all m € N there are infinite sequences of /, with m entries equal to 1 and hence
the fibres are not finite.
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2. A trivial valuation on N that makes the set of natural numbers into a combina-
torial class is the identity function; a different valuation which makes N into a
combinatorial class may be obtained, for example, by associating to every n the

number v(n) of its digits.
O

Once the valuation on a combinatorial class (%, v) is specified, we often indicate
both the set as well as the combinatorial class with the same symbol %/ .

Definition 11.4 (The class 1) We speak of a neutral combinatorial class 1 as being
a class consisting of a set with a single element of size 0. O

To every combinatorial class we can associate a sequence of natural numbers:

Definition 11.5 We define the sequence of the fibres of a combinatorial class
(% , v) to be the sequence (u,), defined by setting

u, = v~'(n)] VneN. O

The sequence of the fibres describes, size by size, the width of the combinatorial
class.

Example 11.6 Given n € N, we consider the combinatorial class formed by the set
of sequences of I,, and by the valuation function that associates to every sequence its
length. For every k € N, the number of elements of size k is S((n, k)) = nk; therefore
("), is the sequence of fibres associated to this combinatorial class. O

Definition 11.7 Let (%, v) be a combinatorial class, and let ¥ be a subset of % .
The restriction vy of v to ¥ is called the induced valuation and yields (¥, v;) a
combinatorial class, called the combinatorial subclass of %/. O

In what follows, except where explicitly stated, the subsets of a combinatorial
class will be considered as combinatorial subclasses.

11.2 Operations Between Combinatorial Classes

We introduce some operations between combinatorial classes.

Definition 11.8 Let (%, v;), 1 < i < n,n € N5, and (%, v) be combinatorial
classes.

1. The product of the classes %; is the couple
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i=1

formed by the Cartesian product % x --- X %, and the valuation
vima, P U X - X Uy —> N, (X1, x) = vp(xn) + s V(X))

In particular one sets

e 1}% ifn>1,

1 if n =0,

where 1 represents the neutral combinatorial class. The elements of %" with
n € N, are said to be n-sequences of % . The element in % 0 — 1 is said to be
the empty sequence of %/ and is indicated with ().

2. Suppose that % N % = § for every i # j. Then the direct sum of the classes %
is the couple

@% =/ U---U,, V@ioz/i),
i=1

formed by the set % U - - - U %, and the valuation 7 U U---U% — N
defined by putting

v, (x) == v (x) if x € %.

3. If % does not have elements of size 0, the class of the sequences of 7% is the
couple

SEQZ = (U wk, VSEQ?/)a

k=0
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formed by the set of all the finite sequences of % and by the valuation vsgq %
defined by setting

vseq (0) =0,
Z/SEng/(xl, o X)) =vxg) 4+ uvxg) Ve > 1.

4. If 7 does not have elements of size 0, and £2 € N we use SEQ, % to indicate
the subclass of SEQ % defined by

SEQe % = | %",

ke$2

formed by the sequences of %/, with length varying in 2. If m € N we
shall write SEQ,,,; % (resp. SEQ ., %) in place of SEQ,, ;41 % (resp.
SEQo,1,..m) %) ]

.....

Remark 11.9 If 7% is a combinatorial class without elements of size 0, then Z* is
a subclass of SEQ % for each k € N: indeed the valuation v« coincides with the
restriction of vspq 4 to .

Example 11.10 Let % be a combinatorial class without elements of size 0. The
class SEQg 5 % is formed by 1 % 2, that is, by the empty sequence and by the 2-
sequences of elements of 7. One notes that, given x|, x, € %, the elements (x1, x»)
and () belong to 1 € %2, while the triple ((), x;, x2) is not an element of 1 ) %2,
but it belongs to 1 x %/2. i

The operations of product, direct sum, and sequence introduced above result in
combinatorial classes.

Proposition 11.11 [. Let %, i =1, ..., n, be combinatorial classes. Then, Hl- U,
and @, «; have finite fibres, and so are combinatorial classes.

2. Let % be a combinatorial class without elements of null size. Then SEQ % has
finite fibres, and so is a combinatorial class. In particular, for every 2 C N, the

set SEQg % endowed with the valuation induced by vsgq 9, is a combinatorial
subclass of SEQ % .

Proof 1. Let us verify that uﬁ/_l%[ (m) and uél w, (m) are finite for each m € N. Given
Xiy ooy Xn) € U X -+ - X Uy, if Vs (X1, ..., X,) = m, then certainly each u; has
size <min%;,i =1, ..., n. Since there are only a finite number of elements of size
< m in every %;, one concludes that 1/1;_1% (m) 1is finite.

The set uél 2, (m) of the elements of size m in €, %; is the union of the sets of

elements of size m in the various %;. Since the sets of elements of size m in the
various %; are finite, VE_B" o, (m) 18 also finite.
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2. Let us verify that Z/S_EIQ% (m) is finite for each m € N. If m = 0, then the unique
element of size 0 in SEQ %/ is the empty sequence () belonging to 1. Let m > 1.
Not having % elements of size 0, if a k-sequence (xy, . .., x;) of % (k > 1) belongs
to I/S}:lQ o, (m), then one has

m = vsgqa (X1, ..., Xk) = Vg (x1) + -+ + Vg (xx) > k.

Therefore, the set VS_EIQ 4, (m) of the elements of size m is the union of the subsets of
elements of size min %, ..., ™. Since each of these subsets is finite, it follows that
uglilQ 4, (m) is also finite. u]

Remark 11.12 Tt is essential for SEQ % to be a combinational class that %/ has no
elements of size 0. If there were an element X € % of size 0, for every m € N one
would have

vsEQ (X, ..., X) = Vg (X) + -+ - + vo (X) = mrgy (X) =0,
———

and there would be infinitely many elements of size 0.

Different sets can have substantially the same valuation structure; they are differ-
ent, but have the same form.

Definition 11.13 Two combinatorial classes % and # are isomorphic (we will
write % = W), if there exists a bijective application ¢ : % — % which preserves
the fibres, that is, such that

Vx e U vy (o) = vy ). o

A combinatorial class is determined, up to isomorphisms, when one knows the
cardinality of its n-fibres, for every n € N.

Proposition 11.14 (Characterization of the isomorphisms) Let % and W be two
combinatorial classes. The following assertions are then equivalent:

1. U and W are isomorphic classes;
2. The fibres of % and W have the same cardinality.

Proof A function ¢ : % — # induces an isomorphism between %/ and % if
and only if for each n € N it induces a bijection between the n-fibres u; (n) and
u;,/l (n). Therefore % and # are isomorphic if and only if for every n one has
va, ()| = v (). O

Thanks to the proposition just proven, every sequence (ay,), of natural numbers
uniquely determines, up to isomorphisms, the combinatorial class of which it is
the sequence of the fibres (see Definition 11.5), that is, in which the n-fibre has a,
elements.
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Example 11.15 (Role of the neutral class in the product) Let % be a combinatorial
class and let 1 be the neutral class. Then % x 1 = 1 x % = % . Indeed, if we
indicate the unique element of 1 with x, then the bijective applications

U X1 ——IAXU —— U

(e, x) 1 (x,u) t u
are isomorphisms of combinatorial classes:

varx1 (i, x) = vy () + 0 = vo (u) = 0+ voy (u) = vixa (x, u).

The name “neutral class” for 1 derives from the fact that it plays the role of a neutral
element in the product of combinatorial classes. O

Example 11.16 A finite set I" endowed with the constant function equal to 1 as valu-
ation is a combinatorial class. Then the combinatorial class SEQ I” of the sequences
of I' is endowed with the valuation which measures the length of the sequences.
Indeed, one has vsgq () = 0 and

UsEQr(Xi, ..., x) =vrx) +---+vrg) =1+---+1=k, Vk>1
k

It is easy to verify the following isomorphism:

Indeed, the bijective application
SEQI" x I' —— SEQ(>y I
((al, ..,ak),b) | — (al,..,ak,b)

(0:0) ———— ()
induces an isomorphism of combinatorial classes:
vseQrxr((ar, ..., a),b) =k +1=vspq_, r(ai, ..., a,b),

vseQrxr(0,b) =0+ 1 = vsgq.,, r (D).

11.3 OGTF of Combinatorial Classes

The generating formal series studied in Chaps.7, and 8 allow one to calculate the
cardinality of the subsets of a given size of a combinatorial class in an efficient
fashion.
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Definition 11.17 We define the OGF of a combinatorial class 7/ to be the ordinary
generating formal series of its sequence of the fibres:

U (X) := OGF(u)y = D X", uy:= v (). O
n=0

Lemma 11.18 Two combinatorial classes % and W are isomorphic if and only if
their ordinary generating formal series % (X) and W (X) coincide.

Proof By Proposition 11.14 two classes are isomorphic if and only if they have the
same sequence of fibres, and that occurs if and only if they have the same OGF. O

The operations of product, direct sum, and sequences of combinatorial classes
correspond to appropriate operations between the OGF of the associated sequences
of the fibres.

Proposition 11.19 (OGF and operations on the combinatorial classes) Let %;, i =
1,...,m, and % be combinatorial classes.

m

1. The sequence of the fibres of H U; is the convolution product of the sequences

i=1

of the fibres of the %;. Therefore,

(H %) X) = [T#%x).
i=1 i=1

2. If U NU = ) fori # j, the sequence of the fibres of@ Y; is the sum of the

i=1

sequences of the fibres of the %;. Therefore,
(EB %) X) = % X) + -+ U (X).
i=1

3. If % does not have elements of size 0, then the OGF of SEQ % is
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— 2 e = —
SEQZ)YX)=1+wX)+U"X)+--- = 70

4. If % does not have elements of size 0, and 2 C N, then the OGF of SEQq, % is

(SEQq %) (X) = > %" (X).

kes2

Proof We verify 1 and 2 for m = 2; the general case may then be obtained with a
simple inductive argument.

L. If (x,y) € 24 x %, then vey, xa,(x,y) = n if and only if v, (x) = k and
Vay, (y) = n — k for some 0 < k < n. Therefore one has

Vit = (Jva) (k) x vy — ko).
k=0

Since the sets of the preceding union are two by two disjoint, one has

Vo xan I = D W 0] vy, (n = K.
k=0

Consequently, the sequence of the fibres of % x % is the convolution product of the
sequences of the fibres of % and of %5, and hence, by Point 3 of Proposition 7.21,
the OGF of 2 x %, is the product of the ordinary generating formal series of 7
and of %.

2. For every n € N one has

—1 —1 —1
Voo, (n) = Vo, (n) U Vo, (n).

Since %, N %, = ¥, one deduces that |v;/1] ESALIES |vo;/1l )| + |v;[12 (n)|. Con-
sequently, the sequence of the fibres of % @ % is the sum of the sequences of
the fibres of % and of %, and hence, by Point 1 of Proposition 7.21, the OGF of
U, @ % is the sum of the ordinary generating formal series of %, and of %5.

3. Since %* is the product of k > 1 copies of %, one immediately obtains that the
ordinary generating formal series of %% is % (X)¥; moreover, 1(X) = 1 = % (X)°
given that 1 is constituted by aunique element of size zero. Since there are no elements
of size 0 in %, one has that [X°]% (X) = 0 and therefore, by Proposition 7.33, the
family of formal power series {% (X)* : k € N} is locally finite and every % (X)
has only terms of degree > k. So, for every k > m > 0 one has
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—1 k
vy m)| = [X"1% (X)" = 0;

and therefore, for every m > 0

o0 m m o
stz (W1 = D Wl = D" 1w, )] = D IXM % (0F = X" " % 0k
k=0 k=0 k=0 k=0

(o]
1
Thus one concludes that Z UX = ———
— 1 —%X)

4. It follows immediately from what was observed in Point 3 that

is the OGF of SEQ % .

Vg, 2 (M = D 1 m)| = (X" % (0.

kes2 kes2

Thus, one concludes that Z % (X)* is the OGF of SEQ, % . O
kes2

Example 11.20 Let us try to recalculate, in order to undertake a bit of practice with
the ordinary generating formal series of combinatorial classes, the number of binary
sequences of length n by way of the symbolic calculus. The combinatorial class
{0, 1} with constant valuation equal to 1 has as its OGF the formal power series 2X:
indeed, the 1-fibre has two elements, while there are no elements with size # 1. The
binary n-sequences are exactly the elements of the n-fibre of SEQ{O0, 1}. Since by
Proposition 11.19 one has

l o0

SEQ{0, 1}(X) = = > 2X),
0

1—-2X
k=

the number of binary n-sequences is [X"] SEQ{0, 1}(X) = 2" foreveryn e N. O

Example 11.21 Givenn € N>, letususe symbolic calculus to determine the number
of binary n-sequences that have exactly k > 0 elements equal to 1. We consider the
combinatorial class {0, 1} with valuation v that counts the number of ones, that is,
defined by setting v (0) = O and v; (1) = 1. We must determine the cardinality of the
k-fibre in the product of combinatorial classes {0, 1} x - - - x {0, 1}: every element of

n times
size k is in fact a binary n-sequence with k elements equal to 1. The OGF associated

to the combinatorial class {0, 1} is 1 4+ X: there is, in fact, 1 element with zero ones
and 1 element with a one. By Proposition 11.19 one has

- n . n i.
(H{o, 1}) X =0+X)"=>" (l.)x ;

i=1 i=0
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thus, the number of binary sequences of length n that have exactly k ones is

n .
[X] (1 +X)" = (k) tk=n,

0 otherwise,

as we could have deduced easily via our combinatorial calculus. O

11.4 Patterns in Strings

In this section we determine the number of sequences of a given length that contain
or do not contain a determinate pattern, that is, a prescribed subsequence. We begin
with some examples.

Example 11.22 (Binary sequences without two consecutive zeroes) Letus determine
the number of binary n-sequences in which two consecutive zeroes do not appear
(one such subsequence of only consecutive zeroes is called a strip or run of zeroes).
We use SEQ™% {0, 1} to indicate the combinatorial class formed by the binary
sequences in which there do not appear two consecutive zeroes and whose valu-
ation function measures the length of the sequences.

The sequences in SEQ™ 00 {0, 1} can be the empty one, that formed by only 0, or
else they can begin with 1 or with (0, 1) followed by a sequence (possibly empty)
that does not contain two consecutive zeroes. In other words, one has

SEQ™" 10. 1) = {0} D)) D (1(D. (0. 1)} x SEQ™™ (0. 1))

Since the OGF’s of the subclasses {()}, {(0)}, and {(1), (0, 1)} are 1, X, and X + X?
respectively, by Proposition 11.19 one has that

SEQ—\OO {0’ 1}(X) =14+X+X —{—X2) SEQ_'OO {O, 1}(X),

from which it follows that

I+X

=00 _
SEQ™™ (0. H(X) = -———.

The coefficient of X” in the formal power series SEQ ™% {0, 1}(X) is the number of the
binary n-sequences in which two consecutive zeroes do not appear. As we have seen

o0

in Sect. 7.8 we can determine the coefficients (s,), of SEQ™% {0, 1}(X) := Z spX"
n=0

with a recursive method. From the relation found above one has


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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SEQ™ {0, }(X)(1 — X —X>) =1+ X.
Therefore,
Vn>2 0=[X"]SEQ™"{0, 3OO —X — X*) =5, — 541 — Sy_2,
from which one obtains the relation
Sp = Sp—1 + Sp—2, Yn=2.

Bearing in mind that s = 1 and s; = 2 one immediately deduces the first coefficients
and finds that

so=14+2=3,53=3+2=5,54=5+3=8,....

The recurrence relation can be easily solved using the techniques developed in
Chap. 10 determining the general formula for s,,:

53V (1445) | 5-3V5(1-V5Y
10 2 + 10 2 '

Sn

As an alternative, we could have used Theorem 7.114 which allows one to find (in
principle) the coefficients of every rational fraction of polynomials. O

Let us take inspiration from Example 11.22 in order to determine the number of
binary sequences of a given length that do not contain a strip formed by a prescribed
number of zeroes.

Example 11.23 (Sequences without strips of zeroes) Let k, n € N; let us determine
the number of binary n-sequences in which there do not appear k 4+ 1 consecutive
zeroes. Let us use SEQ™ s {0, 1} to indicate the combinatorial class formed by the
set of binary sequences in which there do not appear k 4 1 consecutive zeroes and
with the valuation function that measures the length of the sequences. The sequences

in SEQ™""" {0, 1} can be of the following types:

(a) The empty one, or that formed by a sequence of i zeroes withi =1, ..., k;
(b) A sequence of type (a) followed by a 1 and by a sequence (possibly empty) that
does not have k + 1 consecutive zeroes.

In other words, one has

ok+!

SEQ™"" {0, 1} = {0. (0, (0,0)..... (0.....0} P

k

P [, ©.1.....0.....0. D} x SEQ™"" {0, 1}
~——

k


http://dx.doi.org/10.1007/978-3-319-03038-8_10
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Since the OGF’s of the classes

{0, (0),(0,0),...,(0,...,0)}, and {(1), (0, 1), ..., (O, ..., 0, 1)}
———— ——
k k

are | +X +---+X*and X + - - - + X**1, respectively, by Proposition 11.19 one has
SEQ™"™0, 1}(X) = (1 + X +X2+- - -+ X+ (X +- - -+ X1 SEQ™" {0, 1}(X),

from which it follows that

e 1+X 4 +X*
SEQ™" 0. () = -y (11.23.2)
Given that
. I_XkJrl
1+X 4+ X =_——""
+X+-+ T x
and k+1
1-X
1—X—-~-—Xk“=1—X(1+-~-+X")=1—X(ﬁ)
_1—2X 4+ x?
N 1-x
— xk+1
one obtains SEQ_‘OkJrl {O, 1}(X) = w

Using a CAS one finds the initial terms of SEQ™ 0! {0, 1}(X) inthecasesk = 0, 1, 2:

X =14+X+X+ XX+ X+ X0+ X+
1—2X+Xx2 ;

1-x 2 3 4 5 6 7
T e = L 23X 5K 48X 4 13X 4 21X 34X -

1=-Xx3 , \ \ . . 7
1_2X+X4=1+2X+4X +7X3 +13X* +24X° +44X° + 81X + - .

For example, the binary 7-sequences without three consecutive zeroes number 81
in total. =
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11.4.1 Sequences that Do Not Contain a Given Pattern

In Example 11.23 we calculated the number of binary strings of a given length which
do not contain a prescribed number of consecutive zeroes. Now let us consider the
more general problem of counting the number of sequences of a given length which
do not contain a certain string of pre-assigned characters.

In all this section I" # ¢ is a finite set endowed with the constant function equal
to 1 as valuation, which makes it a combinatorial class.

Definition 11.24 We use the word pattern of I" for a given element of SEQ I". In

this situation, we agree to indicate with the symbol a9 . . . a,, the sequence (ay, . . . , a,)
of elements of I". Then, having seta :=ay...a, and b := by .. . b,,, we will denote
with ab the sequence ab :=ay...a,by ... by. m]

The number of sequences that do not contain a given pattern will change depending
on the pattern under consideration. For example, there are five binary 3-sequences
that do not contain the pattern 00, while there are only four that do not contain the
pattern O1:

111, 011, 101, 110, 011 do not contain the pattern 00,
111, 110, 100, 000 do not contain the pattern O1.

Hence it is necessary to distinguish between the various patterns.

Definition 11.25 Let k € Nand p = py...p; be a pattern of I" of length £(p) :=
k + 1. The autocorrelation polynomial of the pattern p is the polynomial of degree
less than or equal to k defined by

G =1+aX +- -+ X,

where, forevery i = 1,...,k, ¢; = 1 if the tail of the last k + 1 — i elements of p
(from p; onwards) coincides with the first k + 1 — i elements from the beginning of
p, ¢; = 0 otherwise; that is to say

i =

Viell,... k}. O

1 ifp;...px=po...P ki,
0 otherwise,
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Example 11.26 The pattern 00 has autocorrelation polynomial 14X, while the pat-
tern 01 has autocorrelation polynomial 1. The autocorrelation polynomial of a strip
p formed by k + 1 consecutive zeroes is

C(X)=1+X+---+ X O

Remark 11.27 The autocorrelation polynomial of a pattern pg ... py of I" does not
depend on I, but only on the symbols that make up the pattern. One notes that if
pi # po then necessarily ¢; = 0 given that one certainly has p;...pr—1 #

Po---Pk—1)—i-

Remark 11.28 1In order to avoid making errors with the indices, we suggest to pro-
ceed in the exercises as follows: write the pattern pg...p; on a line; on a lower
line, write 1 under pg, and O under any p; # po, and then complete the sequence of
the coefficients ¢; in correspondence to the other symbols p;’s. The autocorrelation
polynomial is obtained by taking as coefficients of the growing powers of X those
that appear in the second line. Let us consider, for example, the pattern

P = PoP1P2P3P4PsPe ‘= H@ x ##@ x .

1. We write 1 under py = #:

pattern p |#|@| * | # |# | @] *

coefficient c|1

X X2 X3 (x4 x3|x°

—_

power of X

2. Foreveryi > 1, if p; # po we write ¢; = 0:

patternp |#|@|* | # | # | @
0|0 0/0
X (X2 X3 x4 x3|x°

—_—

coefficient ¢

—_

power of X

3. Then to compute c¢;, i = 3, 4, we start by considering the block p; . . . pg from p;
onward, and then we compare it with the block of equal length starting from py;
if the two coincide, we write ¢; = 1, while otherwise we write ¢; = 0:

patternp |#|@| * |# |# |@]| *
o[(ojo|1(0|0
X |X? (X3 |x4|x3| X6

[

coefficient ¢

—_

power of X

The autocorrelation polynomial is 1 + X*.
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Example 11.29 Determine the autocorrelation polynomial of the pattern
p = z@axbz@ax.

Proceeding as indicated above, one has

patternp |[z|@|a|x |b |z |@|a|x
coefficient ¢|[1{0[0]|0[0|1]0|0|0
power of X ||1|X [X?|X3|x*| X3 |x®|x7|x8

Indeed, c; = ¢ = ¢3 = ¢4 = ¢¢ = ¢;7 = cg = 0, given that p; # py for
i =1,2,3,4,6,7 and ¢s = 1 since the tail z@ax from ps = z coincides with
the beginning of the same size. The autocorrelation polynomial of p is therefore
C,(X)=1+X°. ]

In general, the more symbols are present in the pattern the more rare is that there
are tails coinciding with beginnings: in such a case it is rather common to encounter,
via autocorrelation, polynomials reduced to the constant 1.

Example 11.30 Let p be a pattern formed by distinct symbols. Then C,(X) = 1.
Indeed, it is p; # po for each i > 1. O

The autocorrelation polynomial can be equal to 1 whilst not being made up of
distinct symbols.

Example 11.31 Determine the autocorrelation polynomial of the pattern
p = MATHEMATICS.

Proceeding as indicated above, one has

patternp M|A|T|H|E M|A|T|I1|C| S
coefficientc| 1|0[{0 {0 [{0[0O|0O|0]|]0|0O]| O
power of X |1 [X|X?[X3|X*|x°|x0|x7|x3|x°|x10

Indeed, c; = ¢ = 3 = ¢4 = ¢c6 = ¢7 = g = ¢c9g = cjop = 0, giVCI’l that
pi Zpofori=1,2,3,4,6,7,8,9, 10 and c5 = 0 since MATICS # MATHEM. The
autocorrelation polynomial of p = MATHEMATICS is therefore C,(X) = 1. O
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Example 11.32 Determine the autocorrelation polynomial of 101001010. Proceed-
ing as indicated above one has

—_—

ojrfofojrjoj1fo
ojofofojrjoj1fo
X X2 X3 x4 x| x6|x7|x3

pattern p

—_—

coefficient ¢

—_—

power of X

Indeed, c; = ¢3 = ¢4 = ¢ = 0 given that p; # po fori = 1,3,4,6; then c, = 0
since the tail 1001010 is different from the beginning 1010010, and ¢s = ¢7 = 1, the
corresponding tails being equal to the beginnings. The autocorrelation polynomial
of 101001010 is therefore 1 + X + X, O

Example 11.33 Determine the autocorrelation polynomial of
TOBEORNOTTOBE.

Proceeding as above we obtain the table

TIOIB|E|O|R|N|O|T|T|O |B|E
1/0/0(0[0]0O|0O|O|O|1]0O0]O0]|O
11x X2 X3 X4 XS X6 X7 X8 X9 XIO Xll X12

The autocorrelation polynomial of the pattern is thus given by C(X) = 1+ X°. O

We here introduce the class of sequences that do not contain a given pattern p.

Definition 11.34 (The class SEQ™ I') Given a pattern p = py ...pi, k € N, let us
consider the following combinatorial subclasses of SEQ I":

e The set SEQ™” I" of sequences in SEQ I” that do not contain p as a subsequence;
e The set SEQ” I of the sequences in SEQ I which terminate with the pattern p
and which do not contain p in any other position. O

We want to analyze the class SEQ™” I'; the set SEQ” I" will merely be a useful
tool in studying the formal series SEQ ™ I" (X) associated to the combinatorial class
SEQ™ I

Example 11.35 The first k 4+ 2 coefficients of SEQ™ I (X) are immediate. Indeed,
there not being sequences of length less than k 4+ 1 which contain p, one has

_ |\r|" if0 <n <k,
X"ISEQ? I'X) =
[X"ISEQ *) [|F|”—1 ifn=k+1. O

Lemma 11.36 Let p = py...py be a pattern of length k + 1 of I'. If C,(X) =
1+ ci1X +-- -+ X%, one has the following isomorphisms of combinatorial classes:
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SEQ” I (PSEQ” I' = 1 (P (SEQ" I' x I') , (11.36.2)

SEQ™I' x {p}) ZSEQ” I @ ( D SEQYTI X {prini ... pk}).
(1<i<k:ci=1}
(11.36.b)

Proof We prove that (11.36.a) holds. First one observes that certainly
SEQ”I'NSEQ”I =¥ =10N(SEQ"I x I');

therefore the direct sums of the combinatorial classes considered in (11.36.a) are
well defined. There remains to verify that

SEQ "I USEQ”I =1 U (SEQ"I x I').

Observe first that one can identify the elements of SEQ™I" x I" with the sequences
(ai, ..., ay—1,a,) of I' for which (ay, ..., a,—1) belong to SEQ™”I". Then let us
prove separately the two inclusions.

e SEQPI'USEQ*I C1U (SEQﬂPF X F): a sequence in SEQ 7" either is the
empty sequence () that belongs to 1, or else has length greater than or equal to 1
and is in that case an element of SEQ 71" x I". A sequence in SEQ 7 I" has length
greater than or equal to 1: in every case it belongs to SEQ™”I" x I" given that it
contains the pattern p only in its final part.

e 1 U (SEQﬂpF X F) C SEQ™I" USEQ”TI": certainly () € SEQ™”[; finally, a
sequence of SEQ™”I" x I" either does not contain p, and therefore belongs to
SEQ ™I, or else contains p only up to its final part, and so belongs to SEQ”I".

Now in order to prove (11.36.b), we verify that

SEQ™I x {p} =SEQ?I U( | J SEQ”’I x {pi—is1...pi})-

(1<i<kic;=1}

e SEQPI'x{p} C SEQ”’I U( U SEQ "I x{px_it1 .- .pk,l}): asequence
(1<i<kici=1)
in SEQ™PI" x {p} either belongs to SEQ”I", or else is of the type

q ‘= apPk—i+1 - - - Pk »

with py...pr—i = pi...pr, 1.e.,, ¢; = 1, forsome i € {1,...,k}, for a suitable
sequence a of elements of I". In the last case the initial part ap of g is in SEQ "I,
sothatg € SEQ I x {(Pr—iv1--.-pr_1} with¢; = 1.
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e SEQ”I' U ( U SEQ?T" x {px_i+1 -- .pk_l}) C SEQ™TI x {p}: having
{1<i<k:c;=1}

choseni € {1, ..., k} such that ¢c; = 1, asequence ¢ in SEQ”I" X {px_i+1...pr}

is necessarily of the type ¢ = appi—i+1 - .. pr Withapy .. . pr—; in SEQ™" I". Since

ci=1,onehasp;...px =po...pk—i, and so, being i — 1 < k — 1, the sequence

qg =apy...pi—1p belongs to SEQ™’I" x {p}. O

We can now give an explicit description of the OGF of SEQ™ I, as a function of
the autocorrelation polynomial.

Theorem 11.37 Let p be a pattern of I' of length £(p) > 1. Then the OGF of the
combinatorial class SEQ™" I is

G X)

where C,(X) is the autocorrelation polynomial of p.

Proof By Lemma 11.36 and Proposition 11.19, set m := || and £(p) = k + 1, one
has
SEQ”?I'(X)+SEQ?”TI'(X) =1+ SEQ”I'(X)-mX and

SEQ™” I'(X) - X**' = SEQ” I'(X) + Z X'SEQ I'(X)
{I<i<k:c;=1}

= C,(X)SEQ” I'(X).
Multiplying both members of the first equation by C,(X) we obtain
C,(X)SEQ™ I'(X) 4+ C,(X)SEQ"" I'(X) = C,(X) 4+ mXC,(X)SEQ™ I'(X).
Substituting C,(X)SEQ” I' (X) with SEQ™” I" (X)X*+1 one gets
C,(X)SEQ™ I'(X) + SEQ™” I' X)X = C,(X) + mXC,(X)SEQ™” I'(X),

and easily concludes. O

Remark 11.38 One notes that, differing from the autocorrelation polynomial, the
formal series SEQ™ I"(X) depends explicitly on the cardinality |I"| of the set I"
under consideration.

It follows from Theorem 11.37 that the coefficients of SEQ™” I"(X) satisfy a linear
homogeneous recurrence relation.

Corollary 11.39 Let p be a pattern of I' of length £(p), and c;, i = 1, ...,£(p) — 1,
be the coefficient of X' in the autocorrelation polynomial of p. Set for convenience
co = Cy(p) := 1, the sequence (a,), of the fibres of SEQ™ I' satisfies the recurrence
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£(p)
ay = [ |ci—1 — ¢i)an—i Yn = £(p),
2. ) »

i=1

with initial data a; = ||\, i =0, ..., L(p) — 1.

[e.¢]

Proof 1t follows from Theorem 11.37 that SEQ™” I'(X) = Za,,X" is a proper

n=0
rational fraction whose denominator is

)
XP 4 (1= |FIX)C(X) =14 D (e — [T eio1) X!
i=1

We deduce from Corollary 10.60 that (a,), satisfies
£(p)
an+z —ITlei-1)an-i =0 ¥n = £(p).

Since all sequences of length strictly less than £(p) do not contain the pattern p,
clearly a; = |I"| fori =0, ..., £(p) — L. ]

Example 11.40 In the context of binary strings, if p is a strip formed by ¢ > 1
consecutive zeroes, let SEQ ™ {0, 1}(X) := ap + a1X + a»X> + - - -. Here

IFl=10, 1} =2, C,X)=1+X+---+X""
Corollary 11.39 shows that (a,), satisfies the generalized Fibonacci relation
anZan—l+"'+an—€’ Vnzga

with initial dataag = 1, a; = 2, a = 22, ..., as—; = 2¢~!. We can then find all the
other coefficients a, recursively. Let us calculate, for example, a;, a,+; and ag4;:

ag=ap+ -+a_=142+4224+... 421 =201,
i =a+--+a=2+22+... 4252 -1
=2(1 424 - +2h) 1 =202 = 1) = 1 =201 — 3,
Qor=ar 4+ +ap =22+ 420 2L = )+ 2 = 3)
=221 42+ +2H) —a4 =222t — 1) —4 =242 _g, q


http://dx.doi.org/10.1007/978-3-319-03038-8_10
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Example 11.41 Consider the pattern p = aba in the sets I} := {a, b} and I, :=
{a, b, c}. In both sets the autocorrelation polynomial is equal to C,(X) = 1 + X2
However, from Theorem 11.37 one has

SEQ™ I (X) = X*+1
MT X a2+ 1)
while
_ X241
SEQ " I(X) =

X3+ (1-3X)X2+1)
Using a CAS one gets

SEQ P IM(X) =1 +2X +4X> +7X° + 12X* +21X° +37X° + 65X + - - -,
SEQ” In(X) = 1 43X +9X> +26X> 4+ 75X* +217X° 4+ 628X + 1817X" + - - - .
Alternatively, by Corollary 11.39 the coefficients of SEQ™ I'; (X) satisfy the recur-
rence relation

anp = 2'an—l — ay—2 + ap-3, Vn = 3

with initial data ag = 1, a; = 2, a, = 4, whereas the coefficients of SEQ™” I>(X)
satisfy the recurrence relation

ay =3ap—1 — ap_2 +2a,_3, Yn>3

with initial dataag = 1, a; = 3,a, = 9. O

Example 11.42 Let us compute the number of n-sequences of the Dutch alphabet
I of 26 letters which do not contain the name RADEMAKER. The autocorrelation
polynomial of p = RADEMAKER is C,(X) = 1 + X 8, Corollary 11.39 shows that
the coefficients (a,), of SEQ ™" I" satisfy

a, = 26a,_1 — a,—g + 25a,_9, VYn > 9.
Given that
a;=26ifi=0,1,...,8,
one recovers successively from the previous relation the values of ag, aj, . ... For
high values of n, it is more convenient the use of a CAS: for example, one gets that the

number of 20-sequences of the Dutch alphabet that do not contain RADEMAKER,
i.e., the coefficient of X% in SEQ ™ I'(X) is



11.4 Patterns in Strings 439
19928 148895165 365018496418 424.

The probability that a word of 20 letters written by chance does not contain
RADEMAKER is therefore equal to

19928 148895 165365018496 418 424

e ~ 0.999999999998. O

11.4.2 The Monkey’s Theorem s

‘We conclude this section with an application that uses the notion of the expected value
of a random variable. Here we give a formula for the average number of random
keystrokes on a keyboard with m keys necessary to make a given word appear.

Theorem 11.43 Let p be a pattern of a non-empty set I' of length £(p), whose
autocorrelation polynomial is C,(X). The expected length of a randomly selected
sequence of I in which appears the pattern p is |I"|*“?C,(1/|I"]).

Proof Let |I'| = mand £(p) = k 4+ 1 > 1. Consider the random variable Z which
counts the number of attempts so that, choosing at random (k + 1)-sequences of I,
one obtains the pattern p. The function Z is a geometric variable of parameter 1 /m**!
and so is E[Z] = m**!. Let Y be the length of a randomly selected sequence of I" in
which appears the pattern p. It is now easy to see that Y < (k + 1)Z and therefore
E[Y] < (k + D)m**! is finite. The expected value of Y is given (see [31, Chap. IV])
by

E[Y] = inP(Y =n) = iP(Y > n).
n=0

n=0

Now one has that Y > n if and only if after having selected the first n symbols, the
pattern p does not appear in the obtained sequence. Therefore, the probability that
Y > nis given by the quotient between the number of n-sequences of I" in which
the pattern p does not appear and the total number of n-sequences of I":

P(Y >n) = IXUSEQ ™ I'(X) = (IX"ISEQ™" I' (X)) (%) )

ml’l
Therefore,

oo

E[Y] = ZP(Y >n) = Z (IX"ISEQ ™ I'(X)) (%) =SEQ™” I"(1/m).
n=0

n=0
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Since E[Y] is finite, the formal power series SEQ™ I" (X) converges at 1/m; more-
over, by Theorem 11.37, one has

G (X)

SEQY I'(X) = S (= T

It follows from Corollary 8.27 that

E[Y] = lim G0
x=1/m x4 (1 — mx)Cp (x)
C,(1/m) G /m)

= k+1
= W+ (= mmnCy(jm) — Qymyert = G /M- o

Remark 11.44 Tt follows easily from Theorem 11.43 that, given the alphabet I" and
the length k + 1 of the pattern, one maximises the expected length of a randomly
selected sequence of I" in which appears the pattern choosing to repeat k + 1 times
the same symbol: in such a way indeed the autocorrelation polynomial is equal to
1+ X + -+ X* and the expected length is

1 1
I-Vk+1 1 o — ).
|| +|F|+ +|r|k

Conversely, one minimises the expected length in particular choosing the last k sym-
bols of the pattern different from the first one: in such a case surely the autocorrelation
polynomial is equal to 1 and the expected length is | I"|F*1.

Example 11.45 How many binary characters must one write on average in order to
obtain the sequence 1111? How many for the sequence 1000?

Solution. The polynomial of autocorrelation of 1111 is C(X) = 1 +X + X2 + X3;
Theorem 11.43 furnishes an average value of 24C (1/2) = 30 characters. In the
second case, for 1000 one has that C(X) = 1 from which an average value of
2% = 16 characters are needed in order to obtain the pattern 1000. O

Example 11.46 A monkey bashes the keys of a keyboard with 32 characters at ran-
dom. What is the average number of keys that must be hit in order for the monkey
pictured in Fig. 11.1, a fan of Shakespeare’s Hamlet, to write the famous phrase TO
BE OR NOT TO BE?

Solution. The pattern in this case is the sequence p = TOBEORNOTTOBE, and is
composed by 13 letters. The autocorrelation polynomial of p is C,(X) = 1 +X° (see
Example 11.33). By Theorem 11.43 one has that the average number searched for
has value 32'3(1 + 1/32%) = 323 + 32% ~ 368 x 10!7: even if the monkey strikes
3 keys per second, the time required to type our pattern is equal to approximately 20
times the age of the universe! O


http://dx.doi.org/10.1007/978-3-319-03038-8_8

11.4 Patterns in Strings 441

Fig. 11.1 Chimp does Hamlet. A monkey who wasn’t hanging about waiting for his cousins to
pass him the manuscript hot off the typewriter (https://www.flickr.com/photos/33122834 @NO06/
3601626998. Author: Rhys Davenport. Creative Commons Attribution CC BY 4.0 International
License)

11.4.3 The Overlapping Word Paradox

In this section we consider a generalization of the coin flipping game Penney Ante,
invented in 1969 by Walter Penney. Here, given a finite set I” # {J, two players
select distinct patterns in SEQ I" of length k 4 1; then they toss a |I"|-sided dice,
whose faces are labelled with the elements of I”, until the last k + 1 results match one
player’s pattern. At first glance it looks like the two players have the same chance,
since the two patterns have the same probability to be selected. It is not difficult to
realize that this is not: imagine to select the sequence HHH of 3 Heads, whereas
your opponent selects THH (Tail, Head, Head). Now in a run of coin tosses, either
the pattern HHH appears at the beginning of the sequence (with probability 1/8) or,
whenever HH appears, it is preceded by T: the odds in favor of pattern HHH, i.e., the
ratio of the probability that HHH appears before THH to the probability that THH
appears before HHH, are 1/7! We will compute here the odds in favor of one of two
patterns, in the general case.

Definition 11.47 Let I" # W be afinite set, k € Nandp =po...pr. ¢ = qo - -Gk
be two patterns of the same length £(p) = €(¢q) = k + 1 in SEQ I". The correlation
polynomial of (p, g) is the polynomial of degree less than or equal to k defined by


https://www.flickr.com/photos/33122834@N06/3601626998
https://www.flickr.com/photos/33122834@N06/3601626998
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CoppX)=co+cX+---+ Cka,

where, forevery i =0, ..., k, we set ¢; = 1 if the tail of the last k + 1 — i elements
of p (from p; onwards) coincides with the first k 4+ 1 — i elements from the beginning
of ¢, and ¢; = 0 otherwise; that is to say

1 ifp;...pk=qo...qi
=1 BP D= A0y g gy o
0 otherwise,

Remark 11.48 Tt is easy to verify the following useful properties of the correlation
polynomial of a pair (p, g) of patterns of length k 4 1:

1. Cg p)(X) coincides with the autocorrelation polynomial C,(X) of the pattern p;
0 ifp#gq.

2. [XO]C(,,,q)(X) = {1 ifp—g

k
Given the correlation polynomial C, 4 (X) = Zc,-Xi, let c;, ..., ¢;; with i} <
i=0

- < ij, the coefficients equal to 1. Let us denote by %, 4 the combinatorial class
of binary sequences

%(P,q) = {(C()a ) cl’]*l)s ey (CO’ ey cij*l)}

endowed with the valuation which measures the length of the sequences (if, e.g.,
i1 = 0, then the corresponding binary sequence is the empty one ()). Then C, 4 (X)
is the OGF of the combinatorial class %, . In particular observe that:

o 1 ={(0} €S bpgifandonlyif co = 1,i.e., if and only if p = ¢;
e C(.(X) = 0if and only if 6, 4 = ¥.

Example 11.49 Let us consider, for example, the patterns

D = PoP1P2P3DaPsPe = #@ x ##@# and
q = 9091929394q5q¢ ‘= #Q@# % @@ x .

1. Foreveryi > 0, if p; # qo we write ¢; = O:

patternp |#|@| * | # | # | @ | #

patterng |#|@| # | * |@|@ | *
coefficientc| (0|0 0
power of X 1| X |X?|X3|x*|Xx°|x6
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2. Thento compute ¢;, i = 0, 3, 4, 6, we start by considering the block p; . . . pg from
pi; onward, and then we compare it with the block of equal length starting from
qo; if the two coincide, we write ¢; = 1, while otherwise we write ¢; = 0:

patternp |#|@| * |# |# | @ | #
patterng |#|@| # | * |@|@ | *
coefficient c|0{0| 0|0 | 1[0 |1
power of X [1|X |X?|X3|Xx*|Xx°|x6

The correlation polynomial of (p, ¢) is C(, 4 (X) = X* + X and
cg(p,q) = {(09 0’ 07 0)7 (0’ 07 O’ 07 1’ 0)}'

Analogously we have:

pattern ¢ |#|@ *l@ @] *
patternp |#|@| * |# |# | @ | #
coefficient c|0{0|0|0|0 |0 |0
power of X [1|X |X?|X3|x*|Xx°|x6

The correlation polynomial of (g, p) is C, ) (X) = 0 and

Cg(q,p) =4.

*lH H @ #

*lH H @ #

0/(0|0]|0]1
X2 X3 X4 XS X6

pattern p

coefficient ¢

#
pattern p |#
1
1

x| |o|®|®

power of X

The correlation polynomial of (p, p) is C(, ) (X) = C,(X) =1+ X ¢ and

%(p,l’) = {()7 (17 O’ O, O’ 0’ 0)}

patterng |#|@| # | * |@|@ | *
patterng |#|@| # | * |@|@ | *
coefficient ¢c|1{0| 0|0 |0 |0 |0
power of X 1| X |X?|X3|Xx*|Xx°|x6
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The correlation polynomial of (g, g) is C,,4)(X) = C4(X) = 1 and

Cg. =10} O

Following [27] we give the following definitions:

Definition 11.50 Let p and g be two patterns of the same length. A sequence
re SEQI is a:

e p-victory over ¢ if it does not contain g and p appears only at the end as suffix of
r, i.e., following Definition 11.34, r belongs to SEQ” I" N SEQ™ I;

e p-previctory over g if 7p is a p-victory;

e no-victory over p and ¢ if it contains neither p nor g.

We denote by ., ;) € SEQ I" the set of all p-previctories over ¢, by -7, ) € SEQ I
the set of all g-previctories over p, and by .4, ;) € SEQ I the set of all no-victories.
O

The combinatorial class .4{, 4 can be seen in two different ways.

Theorem 11.51 The following isomorphisms of combinatorial classes hold:

Nop.g = (y(p,q) X (g(pqp)) @ (fy(q,p) X %(q,p)) )

Noa = (S % Ca0) P (Fia x Con) -

Proof Let n be an element of .4{, 5. The sequence np has certainly an initial part
which is a p-victory over g or a g-victory over p.

If np has an initial part which is a p-victory over ¢, then n = n'n? and p = p'p?
with n?p! = p first occurrence of p in the sequence np. Since n'p is a p-victory, then
n' is a p-previctory over q. Since n’p' = p'p? = p, then p has a tail and a beginning
equal to p': therefore if as tail p! = p; ... py, then the i-th coefficient c; in C,(X) is
equal to 1 and hence (co, ..., ¢;—1) belongs to €, ;). In such a case we associate to
n = n'n? the equal-length sequence n'cy, ..., ci-1 € Fpq X Cpp)- Observe that
in this case ¢y = 1.

If np has an initial part which is a g-victory over p, then we have n = n'n? and
p = p'p? with n?p' = ¢ first occurrence of ¢ in the sequence np. Since n'g = n'n’p!
is a g-victory, then n' is a g-previctory. Since n’p' = g, then ¢ has a tail and p a
beginning equal to p': therefore if p! = ¢;...q;, then the i-th coefficient ¢; in
C.»(X) is equal to 1 and hence (co, ..., ci—1) belongs to %, ;). In such a case
we associate to n = n'n* the equal-length sequence n'cq...ci1 € Hyp) X Clgp)-
Observe that in this case ¢o = 0. It is easy to verify that in such a way we have
defined an isomorphism of combinatorial classes

Npg) — (L) X Cp.p) B (Llgip) X Clap)) -
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Analogously, distinguishing if the sequence nq has an initial part which is a p-victory
over g or a g-victory over p, one proves the existence of the other isomorphism of
combinatorial classes. O

We are now ready to prove the key result of this section.

Corollary 11.52 In R[[X]] the following equality holds
X)) (Co(X) = Cip.p (X)) = Fgp(X) (Co(X) = Cigpy(X)) .

Proof From Proposition 11.19 and Theorem 11.51, passing to the corresponding
OGF, one has

’/V(P»q) X) = y(pqq) (X)CP(X) + 5”(4»19) (X)C(qvp) X)
= g X Cq(X) + Fp.9) X) Cp.q) (XD

then we get

y(p,q) X) (CP(X) - C(p,q) (X)) = 5’(,“,) &) (Cq(X) - C(q,p) (X)) : O

John Conway' was the first to discover the following elegant formula, though his
proof was never published. Martin Gardner (see [17]) wrote about it:

[...] I have no idea why it works. It just cranks out the answer as if by magic, like so many
of Conway’s other algorithms.

Theorem 11.53 (Conway equation) Let p # q be two patterns of the same length.
The odds in favor of the appearing of q before p are equal to

G /I = Copgp (/117D
Cq(1/IT) = Cqp (/1T

Proof We follows the proof given in [27] in the case |I"| = 2. Any p-victory over g
is a sequence v = xp with x € .7, ,), the set of all p-previctories over ¢. For each
n € N, the pattern p appears before g for the first time in a sequence of length n with
probability equal to the quotient of the number of the p-victories over g of length n,
by the number of all possible n-sequences of I". The number of p-victories over g of
length nis equal to the number of p-previctories over g of lengthn—£(p) = n—(k+1),
i.e., the cardinality of the (n—k —1)-fibre of the combinatorial class ., 4. Therefore,
denoted by (s,,), the sequence of the fibres of ., ), the probability that p appears
before g is

o0
S0 S1 1 1 1 1

—_t = — — = — _— 0.
|F|k+1 + |F|k+2 + |p|k+1 ;S || |F|k+1 P9 (|F| #

1John Conway (1937-).
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1 1
Analogously the probability that g appears before p is |]"|—k+l<5ﬂ(q"") (m) #0
Therefore the odds in favor of g are

|1~|++1«5ﬂ(q»17> (ﬁ) — Zlan (ﬁ)
|1"I++‘y(p’q) (ﬁ) L .9 (ﬁ) |

Since |I"| does not divide the coefficient of the leading term of C,(X) — C(, ) (X)
(the coefficients of this non-zero polynomial are only —1, 0, and 1), the rational
number 1/|I"| is not a root of Cy(X) — C(y ) (X). The conclusion then follows from
Corollary 11.52. O

Remark 11.54 1f the pattern p is declared in advance, how can the pattern g be
chosen in order to maximize its odds? It is proved in [21] that if p = pop; ... pk,
then choosing g := qopy . . - pr—1 for some appropriate gy € I is the best strategy to
maximize the odds of g. More (see [16, Theorem 4.1]), the optimal leading symbol
qo 1s any minimizer of

1
Wp(y) = Z C([’Ow[’k—lxay,"u---[’k—l) (m) ’
xel’
asy varies in I".

Example 11.55 Consider again the patterns p = #@ x ##@# and ¢ = #@# x @ @x
with I' = {#, @, %x}. Since

C,X)=1, CyupX) =0, C,(X) =1+X°, CppX) =X*+X°,
the odds of ¢ are equal to
GU/IID = Coo /1D _ - (i) B (l) B (i)
C,(1/|T|) — Ciypy(1/1T]) 36 34 36

1 3—1 80
=1—-(=)= = —~0.9876 < 1.
34 34 81

Therefore pattern p has an edge over pattern g. Following Remark 11.54, an optimal
choice for the pattern g is to choose, instead of #@# x @ @, the pattern go#@ * ##@
with go € I' = {#, @, *} which minimizes

1
W, (y) == Z Cla@tit@x, yh@sih@) 3) yer.
x€e{#, @, x}
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One obtains that the element of I" which minimizes this sum is gg = *. Therefore
the pattern ¢ = *#@ % ##@ is an optimal choice: one gets that the odds of g are

CUNID = Cpg(/ITD _ 14+5-0 146 . q
C,(1/IT) = Cm(/ITH 1= +4) 97 77 7

Example 11.56 (A bar trick for three-bit sequences) We consider here a three-bit
sequence, say of Heads and Tails. Assuming that the first player chooses the sequence
P = pop1p2, With po, p1, p2 € {H, T}, a bar trick suggests that the second player, in
order to optimize her/his odds, should play ¢ = pipop1, where we set H = T and

T = H. Let us show the validity of this strategy. Remark 11.54 suggests to choose a
pattern of the form gopop;, where go minimizes the function

W) = Z Cpoprxypopn (1/2), y e {H, T}.
xe{H,T}

Since I' = {H, T} = {p1, p1}, just two cases may occur:
1. p1 = po;
W) = Wpo) = C(PUPUPO,ITUPUPO)(l/z) + C(I’OI’UITUJTOI’OPU)(I/Z)
1 1
Wp1) = W(po) = C@oﬁoﬁo,ﬂuﬁoﬁo)(l/z) + C(POPUITUsPoPoPu)(l/z)

= 1+1+1 +0—1+1+1~
o 2 22 o 2 22

2. pl

Il
=
S

W(p1) = W(po) = C(Popiopowpopop*o)(l/z) + C(POITOITWPOPOITO)(I/Z)
1 1
W 1) = W©o) = Coupipo.pipor (1/2) + Copupspapoors) (1/2)
(1 n 1y 1 n 1
2 22) 2 " 2%
In both situations it turns out that W(py) < W (p;): it follows from Remark 11.54

that ¢ = pipop: is indeed an optimal choice for the second player. Notice that the
odds in favor of the second player depend, in any case, on the pattern p. For instance:
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e If p = HHH then ¢ = THH is optimal for the second player and the odds in her/his
favor are | )
C,(1/2) = Cppp(1/2)  1+35+ %

Cy(1/2) = Cyqp(1/2) 11 -1

e If p = HTH then ¢ = HHT is optimal for the second player and the odds in her/his

favor are
C,(1/2) = Cip,y(1/2) _ 1

Cy(1/2) = Cgp(1/2) 11

=2.

By considering the 8 possible patterns p, one sees that the odds in favor of the second
player may just take the values 2, 3, 7 whenever ¢ is optimal with respectto p. O

Example 11.57 In Example 11.46 we left a monkey bashing the keys of a keyboard
with 32 characters at random, waiting for the appearance of the pattern TOBE-
ORNOTTOBE. We want to choose, in an optimal way, a pattern of the same length
which has a better chance to appear. Let I" be the set of 32 characters of the key-
board. Following Remark 11.54, we can choose a pattern ggTOBEORNOTTOB with
qo € I’ minimizing

1
W) = Z C(TOBEORNOTTOBx.,yTOBEORNOTTOB) (5) , yeI. (11.57.a)

xel’

Let us compute the correlation polynomials. Comparing the patterns leaving as
unknown x and y one easily gets

B|E|O|R[N|O T T|O B X
O|B|E|O|R|N O T|T (0] B
0[0[0[0[0]0[csCx,»)|0] 0 [c11(x,y)|cralx,y)
X2 X3 X4 XS X6 X7 X8 X9 XIO Xll X12

— o< |-
>|o|—3|0O

where cg(x,y) = lifandonlyifx =Eandy =T, ¢;;(x,y) = 1 if and only if x =
Tandy = B, ¢, = 1 if and only if x = y. Therefore to mimimize the sum (11.57.a)
it is sufficient to choose y ¢ {B, T}: for such a choice of y we get

0 ifx #y,
C(TOBEORNOTTOBx,yTOBEORNOTTOB) (X) =1 |, .
X if x = y.

Therefore the minimal value of W is

1

1\2
W (y) = C(TOBEORNOTTOBy, TOBEORNOTTOB) (ﬁ) = (5) Vy e I'\ {B, T}.
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For instance, let us choose y = E; if
p := TOBEORNOTTOBE, q:= ETOBEORNOTTOB,

then C,(X) = 1+ X°, C,(X) = 1, Cppp(X) = X', and Cy (X)) = X + X'°.
Therefore the odds in favor of g are

1
GUID = CopoU/ITD _ 15w —5m _32 o

1
212
Cy/IT) = Cigp(/ITH ~ T— (L4 ) ~ 31

il

11.5 Triangulations of a Convex Polygon s

Historically, the application that follows here initiated the birth of symbolic combi-
natorics.

Definition 11.58 (7riangulations) For every n € N, let P,;, be a given convex
polygon with n 4 2 consecutive vertices (1, ..., n + 2). We call:

1. Diagonal of P,,, any segment ]i, j[ (excluding the extremes) that conjoins two
non-consecutive vertices i, j;

2. Triangulation of P, ., any decomposition of P, in triangles (i, j, k), with dis-
tinct vertices i, j, k, by way of diagonals which do not intersect two by two. O

The polygon P, with two vertices, that is, a segment, admits only the empty
triangulation.

Remark 11.59 Tt is easy to verify that for each n € N one has that in P, »:

1. Every triangulation is formed by 7 triangles;
2. If n > 3, given a triangulation of the polygon, every side of the border of
the polygon lies in a single triangle of the triangulation.

Figure 11.2 depicts the five triangulations of Ps. The problem of calculating the
number of triangulations of a given convex polygon dates back Euler, who in 1751
spoke of it in a letter to his colleague Goldbach,? referring to a solution, without,
however, furnishing the proof.

There are various ways of resolving the problem; here we will use the method
of symbolic calculus. The following result furnishes a further interpretation of the
Catalan numbers.

2Christian Goldbach (1690—1764).
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Fig. 11.2 The case n = 3:
the triangulations of Ps are 5

Proposition 11.60 For every n € N, the number of triangulations of P, is equal

1
to the n-th Catalan number Cat, = —— (2}1)
n+1

Proof The idea of the proof consists in proving that every triangulation of P,
consists of the union of a triangle that contains the side (1, 2) and the triangulations
of the two convex polygons obtained by “removing” the aforementioned triangle
from the initial polygon.

We introduce the combinatorial class .7 of the triangulations of all the polygons
with valuation equal to the number of triangles. For each n € N, the n-fibre of .7
is the set of all triangulations of P, ,; the O-fibre of 7 contains only the empty
triangulation t4. Given a triangulation t € .7 of P,1», the triangle that contains the
side of vertices 1, 2 is uniquely determined: we indicate by i, 3 < hy < n + 2,
the third vertex of that triangle. The convex polygon P,.,, deprived of the side of
vertices 1, 2, is the union of two convex polygons Q;(t) and Q,(t) of consecutive
vertices respectively (1, h¢, hy + 1,...,n 4+ 2) and (2,3, ..., h): one notes that
effectively the two polygons both have at least 2 vertices. The triangles of t with
vertices at {1, h¢, b+ 1, ..., n+ 2} form a triangulation of Q, (t) (possibly empty if
h¢ = n + 2); in similar fashion the triangles of t with vertices at {2, 3, ..., i} form
a triangulation of Q5 (t) (possible empty if hy = 3). Renaming in ordered fashion the
vertices of Q;(t) from 1 to k(t) := (n +2) — hy + 2 = n + 4 — h¢ and the vertices
of Q> (1) from 1 to m(t) := hy — 1, the triangulations on Q;(t) and Q(t) induce a
triangulation t; (t) on P and a triangulation t;(t) on Py,).
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Fig. 11.3 The action of the h hetl he
map & on a triangulation N
Q.(t
n+9 n+2 3
1 2 1 2
3 2 m(t)
Pm(t
k(t) 2
1 2 1 1

Having indicated with A the unique triangulation of P3, we define the map @ :

T\ {ty} = {A} x 72 which to t € .7 associates the triple

Q(h) = (A, (V). (V).

The action of @ on a triangulation is depicted in Fig. 11.3. Let us prove now that the
map @ is an isomorphism of combinatorial classes.

One sees immediately that @ conserves the valuations, given that the number of
triangles of tis equal to one plus the number of triangles of t; (t), plus the number
of triangles of t (t).

The map @ is injective: if s and t are two triangulations of P,,;, that have the same
image, then #,(t) and #,(s) are the same triangulation of P,y = Py(s). From

hy—1=m®t) =m(s) =hs; — 1

it follows that iy = hg and so s and t have the same triangle with side (1, 2). Since s
and t must then induce the same triangulations on Pty = Pi(s) and Pty = Pps),
they necessarily coincide.

The map @ is surjective: let t;, t, be two triangulations of the polygons P; and
P,, respectively with k > 2 consecutive vertices (1, ..., k) and with m > 2
consecutive vertices (1,...,m). We invite the reader to follow the proof by
looking at Fig.11.4. One substitutes the names of the vertices in t; replacing
in ordered fashion (1, ..., k) with (1, m+1,m+2, ..., m+ k — 1): in this fash-
ion one obtains a triangulation t; of a convex polygon of consecutive vertices
(I,m+1,m+2,...,m+k—1). One substitutes the names of the vertices in t, by
replacing in ordered fashion (1, 2, ..., m) with (2, ..., m + 1): thus one obtains
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Fig. 11.4 The surjectivity of 3 2 m
the map @

m+1

a triangulation t, of a convex polygon with consecutive vertices (2, ..., m + 1).
Having set n +2 = m + k — 1, the triangulation t of P,, formed by the triangles
in t}, by the triangles in t, and by the triangle of vertices (1,2, m + 1) has as its
own image (t;, t;, A).

Passing to the corresponding OGF, thanks to the isomorphism @ just established
between .7 \ {t5} and {A} x .72, one obtains the equality

TX)—1=XT X%
therefore, .7 (X) is a solution in R[[X]] of the equation
XY’ —Y+1=0.
As has been seen in Example 7.104, the unique solution in R[[X]] of that equation is

1 —4/1—-4X

Yo (X) = e

and one has [X"]Y,(X) = Cat, for every n. Therefore, the number of triangulations

of the convex polygon P, is equal to Cat,,. O

11.6 Rooted Trees s

A graph consists of a finite set of vertices and one of edges that connect some
couples of vertices. If there is at most one edge connecting any two vertices, the
graph is said to be simple. Such graphs are generally represented with points (the


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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Fig. 11.5 The vertices d, g b d
have degree 1; a, e, f have
degree 2; b, ¢ have degree 3;
h has degree 4. The sum of
the degrees is 18: twice the
number of edges

h

vertices) connected by arcs or lines (the edges). The degree of a vertex is the number
of distinct edges of which it is an extreme. Since every edge has two extremes, it is
easy to verify that the sum of the degrees of the vertices is equal to twice the number
of edges (see Fig. 11.5).

Rooted plane trees are a class of simple graphs that appear often in the study of
numerous algorithms; they are defined recursively.

Definition 11.61 A rooted plane tree is a simple graph consisting of a vertex, called
the root, possibly linked by way of edges to the roots of a finite sequence of rooted
plane trees, called the sequence of the maximal sub-trees. The tree consisting of
the root alone is said to be trivial. The vertices of degree < 1 are said to be external,
while those of degree > 1 are said to be internal. O

Remark 11.62 By definition, a rooted plane tree has at least one vertex, namely
its root. If the rooted tree is not trivial, all its external vertices have degree equal
to 1. The root can be both an internal vertex or an external vertex. Two rooted plane
trees are equal if they are both trivial or if both their sequences of maximal subtrees
coincide.

An important subfamily of the rooted plane trees is that of the binary trees:

Definition 11.63 A binary tree is a plane tree consisting of a vertex called root
possibly connected by two edges to the roots of two binary trees (Fig. 11.6). O

Remark 11.64 The sequence of maximal subtrees of a non trivial binary tree have
length 2. It is easy to show by induction on the number of vertices that a binary tree
has an odd number of vertices: indeed, the trivial tree has one vertex; if the binary
tree is not trivial, its two maximal subtrees have, by the induction hypothesis, odd
numbers np, ny of vertices and so the binary tree from which we have started has
(n1 + ny) + 1 vertices.

Fig. 11.6 Two binary trees o (O]
with root, indicated by w.

The external vertices are

indicated with white squares
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Fig. 11.7 All the possible

rooted plane trees that have 4

vertices. The root is

indicated with a white circle

How many distinct rooted plane trees with a given number of vertices are there?
And what about binary trees? It is easy to see that there is only a single rooted plane
tree having one or two vertices, and that there are two with three vertices. There is,
instead, a unique binary tree with one or three vertices and none with two vertices.
The rooted trees with four vertices are listed in Fig. 11.7. None of these is a binary
tree. The symbolic calculus allows us to answer the question in general. Here, too,
the Catalan numbers intervene once again.

Proposition 11.65 Let n € N, there are:

1. Cat,_; rooted plane trees having n vertices;
2. Cat = binary trees with an odd number n of vertices.

Proof 1. Let Z be the combinatorial class formed by the rooted plane trees having
valuation that counts the number of vertices for every tree. We indicate with w the
tree formed by the single root. Every rooted plane tree consists of the root and
the sequence (possibly empty) of its maximal subtrees. For every A in %, we use
(Ay, ..., A,,) to denote the sequence of its maximal subtrees, possibly reduced to
the empty sequence if A = w. On putting

(w, Ay, ..., Ay )) ifA #w,
(w, ) ifA =w,

A @A) :=
we define a bijective function

D X — {w} x SEQZ

which induces an isomorphism of combinatorial classes.
Passing to the corresponding OGF, by Point 3 of Proposition 11.19 one obtains

1
Z(X) =X (SEQZ (X)) :XI——%"(X)’

which is to say,

RZX)(1 — B(X)) = X.
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Therefore, Z(X) is a solution in R[[X]] of the equation Y> — Y 4+ X = 0. By
Proposition 7.102, the solutions of that equation are

1+ (1 —4x)12 1 — (1 —4x)1?
Yi(X) = — Yo(X) = I w—

Let us develop (1 — 4X)'/? using Proposition 7.99:
1+ —-4x)'72 1 = (1/2 ok
Vi) = — = —aytxt ),
1(X) 5 5 +§ p )

which, in particular, gives us
[X°] Y, = 1.

Now there are no trees in & having 0 vertices, so that

1 — (1 —4x)12

ZX) =Yo2(X) = 5

It follows that the number of rooted plane trees having n vertices is

1—(1—4x)'72
e = e S
We recall that by Proposition 8.46 one has
1 — (1 —4x)'? i
_— = Cat, X",
2X —
so that
1—(1—-4x)1?2 & o
T o> caxrt =3 caty x
n=0 n=1

Consequently, the number of rooted plane trees having n > 1 vertices is

1—(1—4x)!2
a0 = xS~ cay .
2. Let us indicate with % the combinatorial subclass of &% formed by the binary
trees. The restriction to the binary trees of the correspondence @ considered in the
previous point produces

(W, (A1, A2)) if A # w,

AP @A):=1,0) ifA = w.


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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It induces the following isomorphism of combinatorial classes:
DB — {w) x (]1@%2).
Passing to the corresponding OGF’s, one obtains
BX) =X(1+ BX)*).

It follows that Z(X) is a solution in R[[X]] of the equation XY?-Y+X=0. By
Proposition 7.102, the solutions of this equation in R((X)) are

1+ (1 —4x?)12 1 — (1 —4x2)172
Y1 (X) = —ax Yr(X) = —x

Using the expansion of (1 + X)!/? found in Example 7.100 one sees immediately

that
[X°] (1 + 1 —4x'?) =2,

and hence X does not divide 1 + (1 — 4X%)!/2: it follows that Y;(X) is not a for-
mal power series. Consequently one must have #(X) = Y,(X). We know from
Proposition 8.46 that
1—(1—4x)!2
2X

Cat,, X".

Mz

3
Il
=}

By “replacing” X2 for X one finds immediately that

1 — (1 —4x2)12
2X2

Cat,, X 2m

Nk

0

3
Il

from which it follows that

1 — (1 —4x%)12 G R Y —
( ) _x ( ) =ZCath2m+'.

BX) = 2X 2X?

m=0

In particular, we reobtain that there are no binary trees with an even number of
vertices, and that for every m € N the number of binary trees with n = 2m + 1
vertices is equal to

[X*" 1] Y5 (X) = Cat,, = Catus . o

Remark 11.66 1t follows from Proposition 11.65 and from Proposition 3.37 that the
number of plane trees with n+ 1 vertices coincides with the number of 2n-sequences
of Dyck. One establishes an isomorphism between these two classes of objects by
associating to every rooted plane tree formed by n+-1 vertices, the 2n-sequence which


http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_7
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(0,0,1,1,0,1,0,1,0,0,1,0,1,0,1,1)

Fig. 11.8 The correspondence between a plane tree with root w having 9 vertices and the 16-
sequence of Dyck (0,0,1,1,0,1,0,1,0,0,1,0,1,0, 1, 1)

is derived as follows, as in Fig. 11.8: one runs over the edges of the tree starting from
the root “keeping the tree at one’s left”, running over every edge first in one direction
and then in the opposite direction when coming back; attributing sequentially the
value 0 each time that one moves over a edge the first time, and 1 the second time,
one obtains a 2n-sequence of Dyck. We leave the verification of these statements to
the careful reader (Problem 11.14).

One can deal with the same problem using various combinatorial classes: here we
shall recover the number of binary trees using an alternative combinatorial class to
that in the proof of Proposition 11.65.

Example 11.67 1t is not too difficult to prove that in a binary tree the number of
internal vertices determines the total number of vertices: more precisely, a binary
tree with n internal vertices has exactly 2n + 1 vertices (Problem 11.15). To calculate
the number of binary trees with a given number of vertices is therefore equivalent to
finding the number of binary trees with a given number of internal vertices. Let us
indicate by 2™ the combinatorial class formed by the binary trees, with valuation
v equal to the number of internal vertices.

For each A in %™, let us denote by (A, A,) the sequence (possibly empty) of
the maximal subtrees of A. The trivial binary tree w formed by the single root does
not have internal vertices; a non-trivial binary tree has an internal vertex (its root) of
degree 2, and the other internal vertices have degree 3. These last vertices are internal
vertices also of the maximal subtrees. Indicated with A the binary tree with three
vertices (a root connected to two vertices), it is easy to verify that the position

w ifA =w,
(A, (A1, Ay)) otherwise,

A
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defines an isomorphism of combinatorial classes
B = (W} PUAY x B x B™).
By Proposition 11.19 one recovers
B"(X) =1+ XB"(X)".

Therefore 2™ (X) is a solution in R[[X]] of the equation XY?> — Y 4+ 1 = 0. By what
has been seen in Example 7.104, such an equation has only one solution in R[[X]]
and so necessarily

1—-4/1—-4X

intX=
BT 2X

and [X™%#™(X) = Cat,,, Vm € N.
Thus there are Cat,, binary trees of vi"_size m > 0, or with 2m + 1 vertices.
In particular, having set n = 2m + 1, there are Cat% binary trees with n vertices,
which is in agreement with what we have found in Proposition 11.65.
Alternatively, one could have proceeded by considering the class of the binary
trees A" with valuation equal to the number of the external vertices: in this case
[X™] (X)) is the number of binary trees that have m external vertices, or 2m — 1
vertices. Proceeding as above one finds that 2" (X) is aroot in R[[X]] of the equation
Y? — Y + X = 0: we leave the simple verification to the reader. O

Example 11.68 Let us consider the subclass & of the class Z of the rooted plane
trees containing the trivial plane tree with the single root w and the rooted plane trees
having a number > 2 of maximal subtrees, all belonging to & (Fig.11.9).

1. Prove that the class &7 is isomorphic to a suitable subclass of {w} x SEQ Z.

2. Deduce that the OGF of & satisfies an equation of second degree with coefficients
in R[[XT].

Determine the OGF of £2.

4. Find the number of trees of & with 10 vertices.

»

Fig. 11.9 A tree of the class ®
2, the root is indicated by w


http://dx.doi.org/10.1007/978-3-319-03038-8_7
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Solution. 1. Given that every tree A of & consists of a unique root w, or of the
root connected to a sequence (A;, As, ..., A,) with m > 2 maximal subtrees, the
correspondence @ established in the proof of Proposition 11.65 allows one to obtain
the following isomorphism of combinatorial classes

P = w) x (11 D SEQ,.. ,92) .
2. Passing to the corresponding OGF’s, one obtains that

PX) =X (14+ 22X+ 2X)° +--)
=X+X2X)? (1 4+ 2X) + PX)? +---)
=X +X—{@(X)2

- 1—2X)

It follows that £2(X) is a solution in R[[X]] of the equation

X+DY’—(1+X)Y+X=0.

The solutions in R((X)), are

1+ X ++/-3X2-2X +1 1+X —/-3X2-2X+1
Y (X) = . Yo(X) = )
2(1 +X) 2(1 +X)

Since the formal power series 2(1 + X) is invertible, both the solutions belong to
R[[X]]. Now the first term of the expansion of

V=3X2-2X + 1
+ =vV-3X2-2X+1(1—-X+X>+--.)

I1+X

is 1 (the calculation is carried out in Example 7.65), and therefore

[X°]Y X)) ==+ % =1

| =

If one had 22(X) = Y/ (X) one would then have [X°] 22(X) = 1, but that is absurd
(the number of trees of &2 with zero vertices is equal to 0, not to 1!). Consequently,

I1+X—+/-3X2-2X+1

PX) =Y2(X) = 20+ %)

o0
3. We set 2(X) = »_ p,X". From the relation
n=0
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X+DZ2X)P? - (1+X)PX)+X =0,
we obtain
X' (X+D2X)*-1+X)2X)+X)=0 VneN. (11.68.2)

Now, for a given n € N one has

[x"] 2X)* =D pivnse

k=0
n n—1
(X" T +X) P> =D pupuic+ D pibn1-+
k=0 k=0

[Xn] (1 +X)<@(X) =Pn+DPn-1-

The relation (11.68.a) then gives

! ! 1 ifn=1
e+ k= Pn— Pnol = o
Z(;Pkpn k Z(;Pkpn 1—k — Pn — Pn—1 {O Vi > 2.

Bearing in mind that py = 0 one obtains p; = 1, p, = 0 and

n—1 n—2
Pn= Zpkpnfk + Zpkpn—l—k —Pn—1 Yn =3
k=1 k=1

Thus we have

3= Q2pip2) +pi —p2 =1,
pa=Qpips+p3) +Qpipr) —p3=2+0—-1=1,
ps = (2p1pa +2pap3) + Qpips +p3) —pa=2+2—1=3.

Proceeding patiently, or making use of a CAS one obtains the first 11 terms of the
expansion of Z(X):

[X="]2X) =X + X* + X* +3X° + 6X° + 15X" + 36X* + 91X° + 232X 7.

In particular in the class & there are 232 trees with 10 vertices. O
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11.7 Problems

Problem 11.1 Consider the combinatorial class SEQ>,{0, 1} of the non-empty
binary sequences with valuation function that associates to each sequence its length.
Every such sequence can be either a sequence of length 1 ((0) or (1)), or else a
longer sequence beginning with 0 or with 1. Using this fact, prove the following
isomorphism of combinatorial classes

SEQ(= {0, 1} = {(0)} DI EP (10, 1} x SEQ;»){0, 1}) .

Problem 11.2 Consider the combinatorial class SEQ{0, 1} of the binary sequences
with the valuation function that associates to every sequence its length. Prove the
following isomorphism of combinatorial classes:

SEQ{0, 1} = {0} D ({0, 1} x SEQ{0, 1}).

Problem 11.3 Determine the autocorrelation polynomial of the pattern p = (0, 1)
and then the OGF of the combinatorial class SEQ7{0, 1} of the binary sequences
which do not contain p. In particular, deduce the number of binary 4-sequences that
do not contain p.

Problem 11.4 Find the autocorrelation polynomial of the pattern p = (1,0, 1, 0)
and then the OGF of the combinatorial class of the binary sequences that do not
contain p. In particular deduce the number of binary 6-sequences which do not
contain p.

Problem 11.5 Find the autocorrelation polynomial of the pattern p = (0, 0, 0, 0, 0)
and thus the OGF of the combinatorial class of the binary sequences that do not
contain p. In particular, deduce the number of binary 7-sequences which do not
contain p.

Problem 11.6 What is the number of binary sequences of length 8 which do not
contain a strip of 3 consecutive zeroes?

Problem 11.7 Determine the number of binary 5-sequences that do not contain the
pattern 010.

Problem 11.8 Determine the autocorrelation polynomial of the pattern p = (1, 1)
of I' = {1, 2, 3} and thus the OGF of the combinatorial class of the sequences that
do not contain p. In particular, deduce the number of 4-sequences of I” which do not
contain p.

Problem 11.9 What is the probability that a word of 6 letters written by chance
from an alphabet I" of 26 letters contains the Indian name p := TATA? And with the
alphabet I'" = {A, T}?
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Problem 11.10 Determine the number of 6-sequences of I" = {a, b, c, d, e} which
do not contain the pattern p = abc.

Problem 11.11 Determine the number of 4-sequences of I" = {0, 1, 2, 3} that con-
tain the pattern p = 11.

Problem 11.12 We toss a coin until when one of the following two patterns appears:
p:=HTHTTHH, q:=THTTHTH.

1. Compute the odds in favor of p.
2. Change the pattern p in order to maximize the odds in its favor.

Problem 11.13 Prove that a rooted plane tree with n vertices has n — 1 edges.

Problem 11.14 Let n > 1. Prove that the correspondence between rooted plane

trees with n 4 1 vertices and the 2n-sequences of {0, 1} established in Remark 11.66
is a bijection between rooted plane trees and the 2n-sequences of Dyck.

Problem 11.15 Prove that, in a binary tree, the number of external vertices is exactly
one plus the number of internal vertices.

Problem 11.16 A ternary tree is a plane tree constituted by a vertex called its root
possibly connected by way of three edges to the roots of three ternary trees, as the
one depicted in Fig. 11.10. We use .75 to indicate the combinatorial class formed by
the ternary trees, with the valuation equal to the number of vertices.

1. Prove that the class .7 is isomorphic to a suitable subclass of {w} x SEQ .75.

2. Deduce that the OGF of .7 satisfies an equation of third degree with coefficients
in R[[X]].

3. Verify the correctness of the result on the number of ternary trees that have 7
vertices.

Problem 11.17 A unary-binary tree is a plane tree consisting of a vertex, called
its root, possibly connected by 0, 1 or 2 edges to the roots of unary—binary trees
(Fig.11.11). Let 7% indicate the combinatorial class formed by the unary-binary
trees, with the valuation equal to the number of vertices.

Fig. 11.10 A ternary tree; -
the root is indicated with w
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Fig. 11.11 A unary-binary
tree; the root is indicated
with w

1. Prove that the class % is isomorphic to a suitable subclass of {w} x SEQ % .

2. Deduce that the ordinary generating formal series % (X) of % satisfies an equation
of second degree with coefficients in R[[X]].

3. Determine the OGF of 7.



Chapter 12
The Euler-Maclaurin Formulas
of Order 1 and 2

The Euler—-MacLaurin summation formula is one of the most
remarkable formulas of mathematics.
G.C. Rota [32]

Euler’s summation formula and its relation to Bernoulli

numbers and polynomials provides a treasure trove of interesting

enrichment material suitable for elementary calculus courses.
T.M. Apostol [3]

Abstract Let a < b be two integers and f : [a, b] — R a function. In Chap.6 we
saw how to calculate the sum Z f (k) through the notion of a discrete primitive. In

a<k<b
this chapter we instead study the problem of estimating such a sum. It is well known

that when f is a monotonic function one can make such an approximation by way of
b

the integral | f(¢) dt: in this case the modulus of the difference between the sum

and the integraal of f is at most equal to |f(b) — f(a)|. The integral formula may be
extended for non-monotonic functions provided that they are regular, and is referred
to as the Euler—Maclaurin formula. The Euler—Maclaurin formula represents both a
method for calculating the sum Z f (k) by means of the integral of f, and also a

a<k<b

b
way of calculating the integral / f (x) dx once one knows the sum Z f(k). These
a

a<k<b
two different points of view gave Euler and Maclaurin their respective motivations

for establishing the formula bearing their names, which was subsequently treated
in detail [28] by Poisson. In this chapter we deal only with the Euler—Maclaurin
formulas of order 1 and 2 for functions that are, respectively, of class &' or €2
these cases are the source of most of the subsequent applications in the book. We
treat the Euler—Maclaurin formula in full generality for functions of class ¢ in the
next chapter. In the last section we recover Euler—Maclaurin type formulas assuming
just the monotonicity (no smoothness) of the function: the methods employed there
are very different from those concerning regular functions and arise from the proof of
the celebrated integral test for the convergence of series with monotonic terms. Last
but not least, in many cases we make use of a CAS to perform hard computations
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(like difficult integrals, sums, sums of series). Some remarks about the notation used
throughout the following chapters: remainders in formulas will be typically denoted
by a letter R; we will replace the R by ¢ if the remainder may tend to 0 by passing to
the limit in some parameter, i.e., when the formula truly provides an approximation.

12.1 Decimal Representations, Basic Integral Estimates

This chapter deals with estimates of various kinds. Most of the time, however, we
will truncate decimal numbers and give an upper bound for integrals (that may be
difficult to compute). We now spend some time clarifying these procedures.

12.1.1 Decimal Representation and Approximations
of a Real Number

We will often formulate the results of examples by means of decimal numbers. We
begin with a universally well-known notation. We consider only positive numbers:
for negative numbers one applies the same arguments to the opposite ones.

Definition 12.1 (n-digit numbers) Let xo € N and xq, ..., x, € {0, ..., 9}. We set

+
X0 . X1 ... Xy i= X — 4+ .
0 T} 107

Such a number is called a n-digit number. O

Remark 12.2 Notice that xq . x; . .. x, defined above is a rational number.

3 4
E. le 12.3 For inst , 314 =3+ — + —. m]
xample or 1nstance + 0 + 102
Example 12.4 The sequence (0.9...9), converges to 1 as n — +oo. Indeed
~——
n times
1
0.9...9 0 14 ! + -+ ! o . 10 1
—— 10 10 1071 10 1
n times 1——
10
asn — +o0. O

Proposition 12.5 Let x € R . There exist xy € N and a (unique) sequence (x,),>1
in {0, ..., 9} such that

Vn e N. (12.5.2)

X0 X1 ... X, SX<X).X1...Xp

L
10}1
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Thus (xo . X1 ...X,), converges to x. We write x = xo.Xy ...X, ... and say that the
latter is the decimal representation of x.

Proof. Let xy = [x], the floor of x. Then xyp < x < xo + 1. Let x; = [10(x — x¢)]:
then x; < 10(x — xg9) < x; + 1 so that

X0.-X] <Xx<X09.X] +—

10°
Assume that for n > 1 we find x, .. ., x,, satisfying
1
xo.xl...xm§x<xo.x1...xm+10—m Ym=1,...,n.
X1 Xn

Set X1 1= [10”‘H (x —Xp— — — e — )] Then

n+1 0 10 107

1
X0 X1 oo Xpgp] SX < XQ.X].. Xpp1 T+ W

Inductively, we obtain the desired conclusion. O

Remark 12.6 Small dots makes the difference: in general
X=X0.X] .o Xpeoo ZEX0X] oo Xpe

For instance m = 3. 14 ... is not equal to the rational number 3.14.

Remark 12.7 The decimal representation of a real number never ends with an infinite
sequence of 9. Indeed if, say, x = x¢.x1...x,999... for some n > 1 then we would
have

1
10"

’

= 9
X0 X1 X S X=X0.X1...X, + E W:xo.xl...xn—i—
k=n+1

thus violating the strict inequality in (12.5.a). Any sequence (x,,), of natural numbers
not definitively equal to 9 is the unique decimal representation of the positive real
number

The n-digit numbers can be characterized as follows.
Proposition 12.8 A real number x is a n-digit number if and only if 10"x € N.

Proof. Ifx =x¢.x1...x, withxg € Nand xy, ..., x, € {0, ..., 9} then

10"x = 10"x9 + 10" 'x; + -+ + 10x,_; + x, € N.
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Conversely, assume that 10"x € N and let xy . x; ...x, ... be the decimal represen-
tation of x. Then, by (12.5.a), we have

10"x = [10"x] = 10" (xg . X1 . . . Xp),

whence x = xp.x1...x,. m]

Example 12.9 The sum of two n-digit numbers is an n-digit number. Indeed if x =
Xo.X1...x,andy = yg.y; ...y, then

10" +y) = 10" (o +yo) + 10" "Gy +y) + -+ (@ +y) €N O
The conclusion follows from Preposition 12.8

Definition 12.10 (Decimals) Letx € R>p and xp.x] ...x, ... be its decimal repre-
sentation. The number x is the integer part or floor of x, the numbers xy, ..., x,, . ..
are the decimals of x and x, is the n-th decimal of x, or the decimal of x in
the n-th place (n > 1). The truncation of xy.x;...x,... to the n-th decimal is
X0 . X1 ... Xy O

Two numbers with the same integer parts whose first n > 0 decimals are equal
differ by at most 107".

Proposition 12.11 Letx = x¢.X1...Xy... andy =Yy .¥1 ... Yn ... be two decimal
numbers together with their decimal representation. Assume that

X0 =Y0, X1 =Y, -5 Xp=DYn-

Then |x —y| < 107",

[o.¢]
Proof. Since x —y = Z xklokyk then
k=n+1
o M o =l
k — Yk k — Yk
roi=| 3 < - bl
k=n+1 k=n+1
[o.¢]
- 10k 1071 9 10"
k=n+1

Notice that, in the above inequality, the equality cannot hold, otherwise

Xk —w=9 Vk>nory,—x=9 Vk>n,

and this occurs if and only if the decimal representation of x or y has a queue ending
with a sequence of 9, contradicting Remark 12.7: thus [x — y| < 107", O

Remark 12.12 Notice that the converse of Proposition 12.11 does not hold. For

1
instance 1.01 — 0.99 = 0.02 < To but the two numbers have different corresponding

decimals.
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Everybody is supposed to know that the rounding of 1.45799 to the 3rd decimal is
1.458 and that this number should be the decimal number with 3 digits that is nearest
to 1.45799. We now justify and clarify these notions.

Lemma 12.13 Let x € Rx, and let xy . Xy ... X, . .. its decimal representation. The
1

107"
Proof. 1t follows from (12.5.a) that 10" (xg . x; ...x,) = [10"x]. Let y be a n-digit

number. Then, by Proposition 12.8, 10"y is an integer. It follows that either 10"y <
10" (xp . x1...x,) or 10"y > 10" (xp . x; ...x,) + 1: in any case y < xp.Xxj...X, Or
1

n-digit number nearest to x is either xo . Xy ... X, O Xo . X1 . .. X, +

yzxo.xl...xn+ﬁ. O

Definition 12.14 (Rounding decimals) Letx € R>g and xp.x; ...x, ... its decimal
representation. The rounding of x to the n-th digit is the n-digit number y closest to
x. Thus, from Lemma 12.13:

e y=x0.X]...X, if x4 <5
° y:xo.xl...xn—i—l—()nifxnﬂ > 5.

L.
Wesety:xo.x1...xn+W1fxn+1=5. O

Here is the trick in order to get the explicit form of the rounding of a decimal
number.

Proposition 12.15 Letx € Rogandxo . Xy ...x, ... its decimal representation. The
rounding of x to the n-th digit is the truncation of xo . Xy ... XuXpe1 + % to the
n-th digit.

Proof. Indeed, if x,,11 < 5 then x,,.1 + 5 < 9 and thus

X0 X1+ XpXne1 + =Xx0.X1...%, (X1 +9),

10n+1
so that its truncation xy . x; . . . x, coincides with the rounding of x to the n-th digit.

If x,41 > 5 then

1
SXQ X XXl < XL Xp .. Xy

5
xo.xl...xn—i—W_ W

so that, adding 5/10"*! to the terms of the above inequalities, we get

1 5 1 5
xo.xl...xn—l—ﬁfxo.xl...x,,x,1+l+w< (xo.xl...x,,~|——n)+

10 10n+1°
. 1 L . 5
proving thatxp . xj ...x, + — which is the truncation of xg . x; . . . X, X, 41 + Tomt

to the n-th digit, is the rounding of x to the n-th digit. O
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Example 12.16 Forinstance, consider m = 3.1415926535897932385 ... . It follows
from Definition 12.14 that:

The rounding of 7 to the second digit is 3.14;

The rounding of 7 to the fourth digit 3.1416;

The rounding of 7 to the fifth digit 3.14159;

The rounding of 7 to the twelfth digit is 3.141592653590.

bl

O

Remark 12.17 As it is common in many books we will also use the symbol ~
as a substitute for the word “approximates”: namely if x, y € R>o we write x & y
with an error less than ¢ > 0 whenever |x — y| < e. Also, the relative error in
approximating x # 0 with y is the quotient |x — y|/x.

Example 12.18 We write 6.9876. .. ~ 6.95 with an error less than 4/100: indeed
[6.9876... —6.95| < 6.9877 — 6.95 = 0.04.

The relative error in approximating 6.9876 ... with 6.95 is

6.9876...—6.95]  0.04
<
6.9876. .. 6.9876

Remark 12.19 A word on negative numbers: if x, y < 0 we will write x &~ y when-
ever —x &~ —y. For instance —6.346 ~ —6.35 since 6.346 ~ 6.35.

<0.6%. 0

12.1.2 Integrals and Their Estimates

We will often deal with integrals and their estimates. We now set the notation and
the basic necessary facts.

Definition 12.20 (The sup-norm) Let f : I — R be a bounded function on a set /.
The sup-norm of f on [ is

If Ly = sup{lf ()| : x € I}. (12.20.a)

We will simply write ||f || instead of ||f||L~( if there is no risk of ambiguity. O

Example 12.21 If f : [a, b] — R is continuous then by Weierstrass' Theorem the
supremum in (12.20.a) is actually a maximum, i.e.,

W1l appy = max{|[f(x)| : x € [a, b]}. O

The integral norm of a function on an interval may be estimated easily by means
of its sup-norm.

IKarl Theodor Wilhelm Weierstrass (1815-1897).
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Proposition 12.22 Let f : [a, b] — R be an integrable function. Then

b
/ Fe)ldx = (b = )f Iz~ (a.p)- (12.22.a)

Proof. Indeed for all x in [a, b] we have |[f (x)| < ||f ||: it is enough to integrate both
terms of the inequality to get the conclusion. O

Remark 12.23 The inequality (12.22.a) is strict, unless |f| is not constant. Actually
the right-hand side of (12.22.a) can be much bigger than the left-hand side term, even
when f is regular.

b — D f L= (a,b1)
[P0 dx

In the following example we see that the quotient

may be as
big as one wishes.

Example 12.24 Let g be a € function on R, equal to 0 out of [—1, 1], with
/11 gx)dx=1,g(0)=1and0 < g < 1.Letn € N5; and f,,(x) := ng(nx). Then

1 1 n 1
/ ()| dx = / n|g(nx)| dx = / g(x)dx = / gx)dx =1,
-1 -1 —n -1

whereas ||f;|lco = 1. O

There is no need for integral estimates in (12.22.a) if f is the derivative of a
monotonic function g.

Lemma 12.25 Let g: [a, b] be of class €' and monotonic. Then

b
/ lg' )| dx = |g(®) — g(a)].

Proof. Indeed either |g'| = g’ or |g'| = —g’ depending on the fact that g is, respec-
tively, increasing or decreasing. In the first case we have

b b
/ lg' ()| dx = / g'(x)dx = g(b) — g(a) = [g(b) — g(a)|,
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whereas, in the second,

b b
t/kﬁﬂﬁ=—/ghMm?£®+ﬂw=w®—ﬂM. |

12.2 The Euler-Maclaurin Formulas

In this chapter we will consider, if not explicitly stated otherwise, functions defined
on intervals of the form [a, b] or [a, +oo[, where a, b are natural numbers. If f :
[a, b] — R is a function of class €™, that is, differentiable up to order m with
its m-th derivative continuous on the interval [a, b], then we use f’, f” and f™
respectively to denote the first, second, and m-th derivatives of f.

In what follows we will make use of the Bernoulli polynomials.

Definition 12.26 The Bernoulli polynomials of degrees 0, 1 and 2 are respectively

1 1
Bo(X):=1. Bi(X):=X—_. may:ﬁ—x+a

We use the notation x — By(x), x — B;(x) and x — B,(x) to indicate the corre-
sponding polynomial functions. O

We set

10 :=r) —f@.

Theorem 12.27 (First- and second- order Euler—Maclaurin formulas) Let a, b € N
and f : [a, b] — R be a function.

e First-order Euler-Maclaurin formula. Iff is of class €' on [a, b] one has

b 1 ,
> flo =/ fOydr =[], +Ri.

a<k<b

b 1 b
Ry =/ Bi(x — [xDf'(x) dx, |Ri| < 5/ If'()ldx.  (12.27.a)
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e Second-order Euler-Maclaurin formula. Iff is of class € on [a, b] one has

S r = /f(x)dx—— 1+ 35 1+ e

a<k<b

1 /b 1
&:—E/BﬂwﬁmWMﬁ,mﬂ<—/FW®Mﬁ (12.27.b)

Proof. Let g : [0, 1] — R be of class ¢"'. Give that B} (x) = 1, integration by parts
gives

1 1 1
/0 g(x)dx:/0 gx) By (x)dx = [g(X)B1(X)](1)—/O g (x) By (x) dx,

and since B;(0) = —1/2 and B (1) = 1/2 one obtains

1 1 1 1
/ g(x) dx = / gx) B (x)dx = 5(8(1) +£(0) —/ g (x) By (x) dx.
0 0 0

It follows that
1 0 1 1
&%;Q:/g@ﬁ+/§@&@ﬁ. (12.27.¢)
0 0
On applying (12.27.c) to g(x) = f(x 4 k), one finds that, fork =a,..., b — 1,

k+1 k+1
w: | Swdr [ B =k d

If x € [k, k + 1[, one has x — k = x — [x] where [x] represents the integral part or
floor of x. Therefore, summing both the terms of the preceding equation over k as it
varies from a to b — 1 one obtains

b b
@, 5 ro+2- /f(x)a’x—i—/f'(x)Bl(x—[x])dx,

a+1<k<b

from which, on adding f(a)/2 and subtracting f(b)/2 to both terms of the inequal-
ity one obtains (12.27.a). Since | B;(x)| < 1/2 for x € [0, 1], one gets the desired
estimate of R;.
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Now let g be a function of class %? on [0, 1]. Given that B, (x) = 2B (x), inte-
gration by parts yields

1 B | B
/g’(x)B,(x)dx /g() 2 [ ') z<x>} /g,,(x) 22(x) 0
0 0 0

B2 (x)

1 / 1//
=E[g (X)](l)—/og () —— dx,

since B»(0) = B,(1) = 1/6. By substituting what was found above into (12.27.c)
1

for the term / g’ (x) B{ (x) dx one obtains
0

1
0150 [Cewas+ 5[], - /”uzwx. (1227.4)

If f is of class €% on [a, b], applying the formula (12.27.d) to g(x) = f(x + k) one
obtains that, fork =a, ..., b — 1,

f)+fk+1 [

k+1 B —k
5 f()dx+—[f()]k+l /k f”(x)%dx

Summing for k as it varies from a to b — 1 one has

b
Y 2= /f()dx+ ') —7/ Ba(r — [x)f”(x) di.

a+1<k<b

from which, on adding f(a)/2 and subtracting f (b)/2 to both terms of the equation
one obtains relation (12.27.b). Since | B, (x)| < 1/6 for x € [0, 1], one thus gets the
desired estimate for R». O

The terms in (12.27.a) and (12.27.b), apart the remainders, deserve to be named
after Euler and Maclaurin.

Definition 12.28 (The first- and second- order Euler—Maclaurin expansions)

e Letf : [a, b] — R be an integrable function, with a, b € N. The term

b 1
EMWH&H%=/f®m—§UK

is called the first-order Euler—-Maclaurin expansion of f on [a, b].
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e Let f be of class €' on [a, b]. The term

b

b Low 1.,
EMa(f:fa. b)) = [ fdx— ST+ 5 0T,

is called the second-order Euler—Maclaurin expansion of f on [a, b]. O

Most of the time we will deal with monotonic functions; in this case the estimates
of the remainders in the Euler—Maclaurin formulas are particularly simple.

Remark 12.29 (Estimates of the remainder under the hypothesis of monotonicity) If
[ is monotonic then, from (12.27.a) together with Lemma 12.25, one immediately
obtains

1 1
Ril < 5 |[F1o| = 50®) —r@L.

Analogously, if f’ is monotonic then from (12.27.b) one has

1

= S If'®) ~f @|. (12.29.2)

1 b

Rol < = |[F'],

Note that in both cases, the remainder R; or R, turns out to be at its maximum (worst)
equal to the last term of the Euler—Maclaurin expansion.

12.2.1 Examples of First-Order Expansion
In the following examples we compute the first-order Euler—Maclaurin expansions
of some functions.

Example 12.30 In Sect.6.1.1 we computed the sum

nn—1)
1+2+~--+(n—1)=T,

but we ask that one forgets this result for the moment. The application of (12.27.a),
with f(x) = x, yields


http://dx.doi.org/10.1007/978-3-319-03038-8_6
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n 1 "
Zk /lxdx—z[f]1+R1

1<k<n

r ., 1 nn—1)
- —1)—=-m—1)+R, = ——= +Ry,
2(” ) 2(” ) + Ry > + Ry

1 [ 1
with a remainder R; such that |R| < 3 / ldx = E(n — 1); actually we know that
1
R, =0. O

Example 12.31 Let us give an estimate of the sum of the first 999 inverses of the
square roots of the natural numbers

1
> L

1<k<1000

It follows from (12.27.a), with f(x) = 1//x, that

1 1000 1 1

i —dx——[f]1000+R1
155000‘/% 1 e 2 !

1
= 2(+/1000 — 1) — 5(1/\/1000 ~1)+R
= 2/1000 — 3/2 — 1/(2+/1000) + R; ~ 61.73 + R,

and

1000) Fa 1
T2 T

1
Rl =< 5[]

Actually the given sum equals®> 61.76938...; we obtained one correct digit, and a
relative error of (61.76938 — 61.73)/61.76938 ~ 0.06 %. O

1
Example 12.32 We wish to estimate the value of Hjgp = Z A the sum of the
1<k<100
first 100 inverses of the natural numbers. The first-order Euler—Maclaurin expansion

of f(x) = 1/x on[1, 101] equals
1 101
EM, (—; [1, 101]) = [logx — —} ~ 5.1102.
X 2x |,

Theorem 12.27 ensures that the difference R| between H (g and the current expansion
satisfies

IRi| = %(f(l) —f(101)) ~ 0.495.

2This can be seen with a CAS.
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Actually it turns out that Hjpp = 5.17737...: we obtained one correct digit in our
estimate. O

Example 12.33 We compare the value of the sum Z K3 =179717.06142 . ..

1<k<100
with the first-order Euler—-Maclaurin expansion, equal to

3 1 100
EM, (x/3; [1, 100]) = [§x8/3 — §x5/3] =79714.20... .
1

We know from Theorem 12.27 that, a priori, the difference R; between the given
sum and the above expansion satisfies the estimate

1
IRi| = 5(f(100) — f(1)) ~ 1077.
Actually here R; ~ 2.86: much smaller in norm than the upper bound above. O

Example 12.34 (Estimate of H,) Let f (x) =
of (12.27.a) yields

1
—, x> landn € N5;. The application
X

L TR
Zk_/lxx_2|:x:|l+]n)

1<k<n

1 1
=1 —— 4+ —-4+R ,
ogn 2n+2+ 1(n)

. 1717" 1 1
with |[Ri(n)| < |= | — = — — —. Thus
21x], 2 2n
1 1 , ,
H,= > LT =logn+ R, IRl < 1.
1<k<n
We shall see in Example 12.64 that R} (n) tends to a constant, as n — +00. |

In the next example we see how the first-order Euler—-Maclaurin formula, as simple
as it is, yields already a simplified version of the celebrated Stirling formula.

Example 12.35 (A first step towards Stirling’s formula) We wish to study the behav-
ior of n! as n — +00. Notice that the logarithm of n! is a sum of terms, namely

logn! =log1 +1log2 + --- + logn.
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We are thus in a situation where we are able to apply the first-order Euler—Maclaurin
formula. Let f(x) = logx, x > 1. By (12.27.a) we have

n 1 "
10g1+---+10g(n—1)=/ logxdx—z[logx]l—i-Rl(n)
1
no 1
:[xlogx—x]l—zlogn—i-Rl(n)
1
:(n—z)logn—n—i—l—}—Rl(n),

1 n 1
with |R; (n)| < 3 [logx]}| = %. It follows that

1 logn
logn!=n+ 7 )logn—n+1+Rim), R =<——.

The composition with the exponential function yields

n! =" =" /ne"g(n), |gn)| = TRM < e/n. (12.35.a)
O

Remark 12.36 The previous examples may lead one to think that the Euler—Mac-
laurin expansions are a good approximation of the sum Z f(k): actually the

a<k<b
remainders in (12.27.a) and (12.27.b) may be quite large in general, as the next

example shows.

Example 12.37 Letb > 0 and set S := Z ¢*. Of course we know that
0<k<b

b
—1
S ottt =]
e—1
0<k<b

The first-order Euler—Maclaurin expansion EM; (e*; [0, b]) is

b e’ —1 e’ —1 e—1
e dx — = = S.
0 2 2 2

The relative error in approximating S is thus

e—1
2 J—
S 2

-5
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12.2.2 Examples of Second-Order Expansion

In the following examples we compute the second-order Euler—Maclaurin expansions
of some functions.

Example 12.38 In Example 12.30 we estimated the sum Z k using the first-order
1<k<n

Euler—Maclaurin expansion. Given that the second derivative of f (x) = x is zero, the

second-order expansion permits one to determine the exact value of the sum. Indeed,

from (12.27.b) one obtains

Zk_/xdx “IFI+ [ ] +0

I<k<n

nz —n

2

— D=2 1) =
= 5 n 5 n =

Example 12.39 Let us reconsider Example 12.31, where we used the first-order

Euler-Maclaurin expansion applied to f(x) = 7 in order to estimate the sum
X
Z finding a value of 61.73. The second-order Euler—Maclaurin expan-
1<k<1000 \/_

1
sion EM, (—; [1,1000] ) yields
Vx )

1000
1000de_ l[ _1/2]1000 1 _lx_m _
L2 2] 2 |

1 1 1000
—|ova—x 12 32| —617714... .
-]

Given that f”(x) is monotonic, by Remark 12.29 this expansion allows one to approx-
imate the given sum up to an error R, satisfying

]1000

R =0.11....
|z|_12[f

In reality the sum is equal to about 61.76938... and the relative error here is
(61.7714 — 61.76938)/61.76938 ~ 0.003 %: much better than the 0.06 % found in
Example 12.31. O

Example 12.40 In Example 1233 we found that EM,;(x*/3;[1, 100]) =

79714.20..., whereas »_ k** =79717.06142.... with an a priori bound of
1<k<100

the remainder R; given by |R;| < 1077. The second-order Euler-Maclaurin expan-

sion of x°/3 on [1, 100] is
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100 1 00 173 100
EMz(x5/3;[1,100])=/ x5/3dx—f[x5/3] + — | =483 =79717.0608.. .. ,
1 2 1128 :
with a remainder R, satisfying
113 100
Ro| < |— | =x*° <29....
1218 |

We see here how in this case the second-order expansion, despite the above esti-
mate of the remainder R, surprisingly gives a quite accurate approximation of
the value of the original sum: actually the two terms coincide up to the first two
decimals. O

Example 12.41 In Example 12.37 we saw that the relative error of the sum S :=

Z ¢ (b > 0) with respect to the first-order Euler—Maclaurin expansion of f (x) =
0<k<b

e* is about 14 %. Things go better with the second-order expansion of f on [0, b],
given by

b -1 1, b 11
e dx — +—=E@-D=E-DH{l-—=+—
0 12

2 2 12
T 4 T(e—1)
= —(’ —1) = ——=85 ~ 1.0023S.
p@ b o S
Thus the relative error is
T(e—1
‘ (612 )S_S‘ Te —19
= ~ 0.2 %. g
|S| 12

Example 12.42 In Example 12.32 we furnished an estimate of Hjoy through use

of the first-order Euler—Maclaurin expansion of the function f(x) = 1/x (x > 0),

obtaining an approximate value equal to 5.1102 whereas the value of Hj is equal
5.18737 — 5.1102

~ 1.49 %. By

5.18737
Remark 12.29 and the monotonicity of ' (x), we know that the difference R, between

the value of the sum H;(y under consideration and the second-order expansion of f
on [1, 101] a priori satisfies the inequality

1 10
|: x2:|1

Actually, the second-order expansion is given by

to 5.18737...: we thus got a relative error of

1

IRy| < — —0.0833....

1 1 I
EM, ({ —;[1,101] ) = |1 - — =5.1935....
: (x [ ]) [ng 2x 1242 ]1
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5.18737 — 5.1935
The relative error here is therefore ~ 0.1 %. O
5.18737
Example 12.43 (A further step towards Stirling’s formula) In Example 12.35 the
first-order Euler—Maclaurin formula applied to f(x) = logx, x > 1 gave (12.35.a),
a simplified version of Stirling’s formula, namely

n! =" = p"/ne"g(n), |g(n)| < ev/n.

The application of (12.27.b) yields

. 1 . 117"
10g1+---+10g(n—1):/ logxd ——[logx]l—i-ﬁ[—} + Ry (n)

1 1
logx — ”——1 R —
= [xlogx — x]} ogn +12 12+ R>(n)

1 11 1
=\"—3 logn—n+ — + — 4+ Rx(n),

12 12n
117" 1 1
— | = 1 — —). Thus
12 | x|, 12 n

1
logn! =log1+---+log(n—1) +logn = (n+ 5) logn —n+Rs(n), [Ry(n)| <1,

with [Ry(n)| =

so that
nl = et = n"/ne "g(n), lg(n)| <e, (12.43.2)

giving us more details on the behavior of the sequence g(n). We will see in Propo-
sition 12.71 that g(n) has a limit as n tends to infinity, and in Corollary 12.73 that it
actually equals +/27. O

Remark 12.44 The explicit differences R| and R, found in Theorem 12.27 are linked

to the first- and second- order derivatives of the function f; if these happen to be

“large”, the expansions turn out to be of little significance for the purpose of the

approximation. For example, consider the sum § := Z ket ~ 1.14 x 10'%: on
10<k<20

setting f(x) = xe*’, the first-order Euler—-Maclaurin expansion of f gives

1 20
xe* dx — — [xexz]
2 10

20

EM, (xe* ; [10, 20]) = /

10

1
— 5 (96‘100 19¢ 40()) —4.96 x 10174

a negative number! The second-order Euler—Maclaurin expansion of f yields
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) U 1 , 710 1 5 , 10
EM, (xe* : [10, 20]) =/ xe dx — = [xex ] +— [(Zx + e ]
| 2 12 1

1
= Ze“’o (2296’ — 49) ~2.98 x 10'".

Both the results are very far away from the correct value of S.

12.3 First- and Second- Order Euler-Maclaurin
Approximation Formulas

‘We have seen that the Euler—Maclaurin expansion of a function f on an interval [a, b]
does not allow one, in general, to approximate the sum Z f (k). However, it does
a<k<b

allow, for integers a < n < N, to approximate Z f (k) in terms of the briefer sum

a<k<N
> ).

a<k<n

Corollary 12.45 (First- and second- order approximations) Let f : [a, +00[— R
andn,N € Nwitha <n <N.

1. Iff € €, then it satisfies the following first-order approximation

N 1
> =3 s+ [ f@rdc- ST+ e,
a<k<N a<k<n L
1 N 1 +00
ler(n, N)| < 5/ I (x)| dx < 5 If' (x)| dx. (12.45.a)

n

2. Iff € €7, then it satisfies the following second-order approximation

Y 1 1
S =3 w0+ [ swdc= 3 [+ 5 [T e,
a<k<N a<k<n "

+00

1 [N 1
lea(n, N)| < E/ IF” ()] dx < - If” (x)| dx. (12.45.b)
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Proof. 1t is sufficient to apply (12.27.a) and (12.27.b) to the sum
D fo= D fh— D . .
n<k<N a<k<N a<k<n

Here we introduce a notation that will be used quite frequently in this context.

Definition 12.46 (The notation g(co)) Let g : [a, +00[— R be a function. Its limit
at +o0, if it exists (finite or infinite), will be denoted by g(c0). m]

Remark 12.47 (The remainders under monotonicity assumptions) If f is monotonic
then (12.45.a) offers, thanks to Lemma 12.25,

1 1
le1 (0. N)| = S 1f (m) —=f )] = 5 [f (n) —f(c0)].

Analogously if f’ is monotonic, from (12.45.b) one obtains

lea(n, N)| < E If' () —f'(N)| < o lf (n) — f'(c0)]| .

Remark 12.48 If f is €%, the Corollary 12.45 proposes us two distinct approxima-

tions for the sum z f(k); clearly the (12.45.b) is convenient, in terms of precision,

a<k<N
with respect to (12.45.a) if

1 N 1 1 N /
_2/n lf(x)ldxiz/n ' () dx.

12.3.1 Examples of First-Order Approximation

Example 12.49 We wish to approximate the sum

1
2. 7

1<k<1000

1
within an error of 10~!. Let f(x) = —=, forx > 1. Since f is monotonic and f (c0) =
x

0, it follows from (12.45.a) that, for all n < 1000, we may approximate the given

sum with
1000 1 1 1
Z / («/100 NG )

1<k<n

1
and an error less than ——. Thus it is enough that n satisfies

2/n
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1 -1
— < 10

2n ~
or, equivalently, n > 25. For n = 25 we get the following approximated value:

> ! > 1+/10001d 1( ! 1) 61.7691
— — —dx— = —— - — ) =6l
Vk Vk o s Jx 2 \J/1000 /25

1<k<1000 1<k<25

1
with an error of at most 10~!. Actually Z — &~ 61.7694 . . .: two digits are

1<k<1000 vk
correct. O
Example 12.50 By means of a CAS we check easily that

1
z z = 5.177377518.... .
1<k<100

1
For n = 100 and N > n, (12.45.a) and the monotonicity of x — — yield
X

1 1 N 1 /1 1
- = - —dx— =~ —- - — 100, N
> T > k+/100x u 2(N 100)+81( )

1<k<N 1<k<100

1 1
=5.17737...+1logN —log 100 — — + — 100, N
+ log og 2N + 200 +e1( )

1
=0.57720... 4+ logN — — 100, N),
+ log N +&1( )
1
with |, (100, N)| < 200" For instance, with N = 1000'°% we get

1
~ (0.57720...+ 1000log 1 - — = .33198...
0.57720. ..+ 1000 log 1000 2000 6908.33198... .,

| =

1<k<10001000

with an error at most equal to 1/200. Notice that, actually, it turns out that

1
Z — = 6908.33249 . .. . O
1<k<10001000

1
Example 12.51 Consider the sum Z — - Inorder to approximate it with an error
1<k<100
within 1073 it is enough to apply (12.45.a) with N = 100 and n < 100 in such a way
that
1 -3
— < 1077,
2n3 ~
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i.e., n > 8. With the choice of n = 8 we obtain

1 1 1004 1717
> 5r X Et] weeg|E)

1<k<100 1<k<8 8
9822481 [ 1 7™ 171 7™
T 8232000 [ 2x2 [ 2 [ a3 g
19788833693
= —1.201%...,
16464000000

1
with a precision of 1073, Now using a CAS we get Z — = 1.20200. . .: our
1<k<100
approximation is thus precise up to 0.00007 < 1074, O

12.3.2 Examples of Second-Order Approximation

1

Example 12.52 In Example 12.49 we saw how to approximate the sum Z —
1<k<1000

with an error within 10~! by means of (12.45.a); there we had to compute the first

24 terms of the sum. Now, the function f(x) = 7 is of class €°°; moreover f’ is
x

monotonic and f'(c0) = 0. Then (12.45.b) allows us to approximate the given sum
with an error of at most 10~! with the formula

1000

Zf(k)+ ’ f(x)dx_%[f]:looo_i_L[f/]looo

12 n
1<k<n
1
if just - [f’(n) —f’(1000)| < 10~". For this purpose it is sufficient that

1 -
T _ ! - 5 /2 < 1071
12|f (x) — f (c0)] " = ,

and this happens forn > (5/12)*/3 & 0.56. At this point we might try a better approx-
imation, say with an error of at most 1072, In this case it would be enough that

ﬂn_m < 1072, or equivalently n > (25/6)%/3 ~ 2.6: with the choice of n = 3 we

get, with an error of at most 1072,
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Z 1 N /1000 1 p 1 |: 1 ]1000 N 1 |: 11 ]1000
i —dx— - | — PR
Vi Jx 2 [Vx 13 120 267 3

&

Z 1
1<k<1000 vk

1<k<3
=61.76943... .
It can be shown that the sum equals 61.76938...: we obtained the first 3 digits of
1
Z — with just the first two terms of the sum! O
1<k<1000

Example 12.53 We wish to compute

1
S = Z %

1<k<10001000

1
with an error within 1073, The function f(x) = — is of class €, both f and f” are
X

monotonic on [1, +oo[, and tend to O at infinity. Equation (12.45.a) gives, for all
n < 1000'%% an approximation of S with an error

1
le1 (n, 1000'%%)| < >
n

and |&; (n, 1000'°9)| < 1073 whenever n > 500. Instead, (12.45.b), gives an approx-
imation of S with an error

le2(n, 1000')| < ——

~ 1202
1000
In particular |e,(n, 1000'°%0)| < 1073 as soon as n > ETR ~9.1. With n = 10
we thus get
1 1 1000]000 1 1 1 10001000 1 1 10001000
2 L ]
15k<1%)0‘0°“ k 15kz<10 k 10 * 2 Lx dyo A i)

= 6908.332495476.. .. ,

1
with an error of at most 107, Actually, ~ > £ = 06908.332494647 .. to

1<k<10001000
obtain 5 correct digits we just needed to add the first ten terms of the sum. Notice

that, in order to approximate S with an error within 1072 by means of (12.45.b) it is

1
enough to choose n in such a way that o <1072 ie.,n=3. |
n
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12.4 A Glimpse at Infinity: The Euler Constant
and the Asymptotic Formulas of Euler-Maclaurin

In this section we want to study the asymptotic behavior of the difference

>0~ [ swa
k=a a

n
to get a better estimate of Z f(k). We need first to introduce the reader to some
k=a
basic facts about improper integrals and asymptotic comparison.

12.4.1 Generalized Integrals and Summable Functions

We recall here when and how is possible to integrate functions up to +o00o; we refer
to [33] for more insights on the subject. We will need to integrate functions up to
+o00.

Definition 12.54 (Improper integrals and summable functions) A function
g : [a, +oo[— R is said to be integrable in a generalized sense on [a, +oo[ if
g is locally integrable, i.e., integrable on every bounded interval, and if the limit

b +00
lim gx)dx := / g(x) dx

b—>+o0 J,
exists and is finite. In this case the limit is called the generalized integral or
improper integral of f in [a, +oo[. In this case we also say that the integral

+00
/ g(x) dx is convergent; whereas if the above limit exists but is not finite we
a

+00
sometimes say that the integral g(x) dx diverges at infinity. The function g is

said to be summable if |g| is intggrable in a generalized sense: in this case we will
write that g € L' ([a, +00[). m|

The following comparison test holds.

Proposition 12.55 (Comparison test) Let f, g be two locally integrable functions
on [a, +ool, with |f| < g. If g € L'(la, +o0|) then f is integrable in a generalized
sense.

Remark 12.56 1t follows from Proposition 12.55 that a summable function is inte-
grable in a generalized sense. The converse, however, is not true: we quote, as an

. sin x
example, the function f(x) = —— on [1, +o0].
X
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For a smooth function there are some useful links between the existence of a finite
limit at 400 and the summability of its derivative. Remember that a property holds
definitively if it holds on an interval [b, +o0[, for some b > 0.

Lemma 12.57 Let g € €' ([a, +o0[).

1. If ¢ is integrable in a generalized sense on [a, +00[ then the limit g(c0) exists
and is finite;
2. If g is definitively monotonic, and g(c0) € R then g’ € L'([a, +00]).

Proof. 1. For all b > a we may write

b
g(b) = g(a) +/ g (x) dx;

we obtain the desired conclusion by passing to the limit as b — +-00.
2. Assume that g is monotonic on [b, +oo[, for some b > a. For every ¢ > b, thanks
to Lemma 12.25, we have

/b 180 dx = [g(c) — g(B)] < |g(00) — g(®)],

so that the integral
+00 c
| wia= tin_ [ gl
b >+ Jp

is finite, due to the fact that the limit of a bounded monotonic function does always
exist and is finite. |

12.4.2 The Euler-Maclaurin Asymptotic Formulas

Let us investigate, for a given locally integrable functionf : [a, +0o[— Randn > a,
the asymptotic behavior of the difference

> flk) - / f ) dx

a<k<n
for n — +o0.

Definition 12.58 (Euler constant of a function) Let f : [a, +00[— R be a locally
integrable function, with a € N. For every n € N we denote by y,’: the difference

between z f (k) and the integral / fx)dx:

a<k<n
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vi= D flo —/nf(x)dx Vn € Nz,

a<k<n

Whenever the sequence (y,f)n converges, its limit, denoted by yf , is called the Euler
constant of f:

y = lim y,{. O

n——+00

Remark 12.59 Just to be clear: the Euler constant is defined only when the above
limit exists and is finite.

Let us briefly recall the asymptotic comparisons “big O” among sequences; further
details, that we will not use at the moment, can be found in Sect. 14.1.

Definition 12.60 (Big O relation) Let (a,), and (b,), be two sequences. We write
a, = O(b,), and say “a, is big o of b,”, as n — 400, if there is M > 0 satisfying
la,| < M|b,| for all nin N. m|

12.4.3 The First-Order Asymptotic Formula

By Theorem 12.27, if f : [a, +o0o[— R s a locally integrable function (a € N), then

vi= > f —/anf(x)dxz —% [ 1.+ Ri).

a<k<n

Iffisa %! function and moreover f” is summable, or if f is unbounded and monotonic
then the sequence ;/,,‘ converges.

Theorem 12.61 (First-order criterion for the existence of the Euler constant and
Euler-Maclaurin asymptotic formula) Let f : [a, +00[— R be afunction of class €.

1. Iff' € L'(la, +o0[) the Euler constant y! exists and the following first-order
asymptotic formula holds:

+00

Zf(k):/ f(x)dx+yf+0(

a<k<n

U”(x)ldx) n— +oo. (12.61.a)

n

Moreover; for n € Ns, the following first-order estimate of y/ holds:


http://dx.doi.org/10.1007/978-3-319-03038-8_14
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1 i 1 +00 ,
y =yl — 3 [f], +em, lem] < > If' (x)| dx. (12.61.b)

n

1'. Iff isbounded and definitively monotonic, thenf' € L' ([a, +o0[), and (12.61.a)
may be rewritten as

> f) = /nf(x)dx + 9 L O () —f(0)) n— +oo. (12.61.)

a<k<n
Moreover in the first-order estimate (12.61.b) of y* we have:

[f (n) —f(00)|

ler(n)| = 2

(12.61.d)

2. Assume now that f is unbounded and definitively monotonic. The following first-
order asymptotic formula holds:

> flk) = /nf(x) dx+ 0 (f(n)) n— 4oo. (12.61.¢)

a<k<n

Remark 12.62 1t follows from Theorem 12.61 that:

1> o The Euler constant of f exists whenever f’ € L' ([a, +00[);
e A first-order asymptotic Euler-Maclaurin formula holds if f* € L'([a, +o0[) or if
f 1is definitively monotonic.

The proof of Theorem 12.61 is based on the explicit integral form of the remainder
R; in the Euler—Maclaurin formula.

Proof (of Theorem 12.61). Let n > a. It follows from the Euler—Maclaurin formula
(12.27.a) that
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n 1 " n
Zﬁm:/}md—zvh+/Bm—myma. (12.62.2)

a<k<n

1.Iff" € L'([a, +00[) we have

+00 +00

Uﬁz/fmwz £ (x) dx — £/ (x) dx

a n

400 “+o00

= f@yu+0(

a

[f’(x)|dx) n — +00.

n

Since B; is bounded on [0, 1], then By (x — [x])f’(x) € L' ([a, +oo[): following the
lines of the first part of this proof we obtain

+oo

n “+o00
/ B (x — [x])f" (x) dx = / By (x — [x])f(x) dx — / By (x — [x])f(x) dx

a a n

+oo +00
=/ B (x — [xf'(x)dx + O (/ v/(x)|dx) n— +o0.
a n

We deduce from (12.62.a) that

Zf@:/fmw+d+o(

a<k<n

+00
lﬂmw)na+m,(m&m

n

where we set

1
Ccl=—-

+00 +00
| Fwac / By (x — [¥])f (x) d.

It follows from (12.62.b) that

d:hm<
n——+00

whence 3/ = C]. Next, by formula (12.62.a) we have

> k) - / f(x)dx>,

a<k<n
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1 +00
v =5+ / By (x — [x)f () dx

+00 +00

1 / /
=3 : f(x)dx—z ’ [ () dx+

+00 +oo
+ / By (x — Del)f' () dx — / B, (x — [¥])f () dx
1 a +oo n
= + 5l - / By (x — [x])f' () .

Since | B;(x)| < 1/2in [0, 1], one gets

+00 1 +00
e1(n) :=/ Bi(x — [xDf'(x) dx < 5/ (o)l .

1’. Assume now that f is monotonic on [b, +oo[, for some b > a, and bounded. Then

f(00) € R and thus, from Point 2 of Lemma 12.57, f € L'([a, +o00[). At this stage
(12.61.c) and (12.61.d) follow directly from (12.61.a), (12.61.b), and Lemma 12.25.
2. Assume now that f is monotonic on [b, +o0o[, with b > a, and that |f (c0)| = 4-00.
It follows from Lemma 12.25 that for n > b we have

/b '@ dt = If () = fB)] < IF )] + [FB)]. (12.62.c)

By (12.27.2) R, (n) = / ' B (x — [x])f(x) dx satisfies

1 n 1 b 1 n
IRy(n)] < 5/ /00l dx < 5/ 00 dx + 5/ (0 dx
a a b

<c+ %lf(n)l,

1 b
where ¢ = 7 / If" )| dx + |f (b) |) is a constant that depends justonf, in any case

not on n. Of cmfrse |f(n)], and every constant, are O(f (n)) as n — +oo: (12.62.a)
thus yields

> = [ fewdtogmy  n— e .

a<k<n

Remark 12.63 1If f' € L'([a, +00[) then Theorem 12.61 yields the existence of

Y = lim_ ; £ — / ") dr
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x +00
Of course, if both the series Z f (k) and the integral f(x) dx converge, then

k=a

a

> +00
=D f— [ fldx.
k=a

It may happen however that neither the series nor the integral converge, as it is

1
described in the following Example 12.64, with f(x) = —, x > 1.
X

The next example illustrates the difference between (12.27.a) and the asymptotic
formulas (12.61.a)—(12.61.c).

Example 12.64 (The Euler—Mascheroni constant y, part I) We saw in Exam-
ple 12.34 that

1
H, = logn + R|(n), IR|(n)| < X (12.64.a)

from which we deduce the following asymptotic estimate for H,:
H, ~logn n— +oo.

The above estimate, though important, was already deduced out by means of the
elementary methods of the discrete calculus in Proposition 6.44. However we cannot
deduce from (12.64.a) any information on the behavior of the sequence (R} (1)),

other than the fact that it is bounded by 1/2. If, instead, we apply Theorem 12.61

1
to the function f(x) = —, x > 1, we find something more. The Euler constant of the

3

=

function x +— 1/x, x > 1, is denoted simply by y and called Euler-Mascheroni
constant. By applying (12.61.c) we get

1 "1 1

Z—: -dx+y+0|- n — 400,
k 1 X n

1<k<n

which, in terms of H,,, may be rewritten as

n

1
H,=logn+y+0 ( ) n— +oo. (12.64.b)

We now wish to approximate the Euler—Mascheroni constant with an error at most
1

equal to 1072 by means of (12.61.b) it is enough that g, (n) < o <1072, 0r equiv-
n

alently n > 50. For n = 50, from (12.61.b) we have

3Lorenzo Mascheroni (1750—1800).


http://dx.doi.org/10.1007/978-3-319-03038-8_6
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11

V“’VSO‘FE%,

with an error within 1072, Now, using a CAS, we get

—log50 =0.56718...,

1 50 1 13881256687139135026631
Y50 = Z - = —dt =
kK Ji ot 3099044504245996706400

1<k<50

whence
y ~0.57718 ...,

with an error within 1072, Actually y = 0.57721 ..., we thus got the first 3 digits of
y. This Euler—-Mascheroni constant appears in many formulas* and is still a source
of mathematical challenges: it is not known for instance, at the date of publication
of this book, whether y is rational nor whether y is an algebraic number. m|

12.4.4 The Second-Order Asymptotic Formula

The second-order asymptotic formula for a function f holds whenever f is of class
at least € and if either its second derivative f” is summable or its derivative f’
is definitively monotonic. The Euler constant of f exists under the more severe
conditions that f” is summable and the limit f (co) is finite. We postpone the proof
of Theorem 12.65 to that of the general case of order m > 1 in Theorem 13.45.

Theorem 12.65 (Second-order criterion for the existence of the Euler constant and
Euler—-Maclaurin asymptotic formula) Let f : [a, +00[— R be of class %2 aeN.

1. Iff" € L'([a, +o0|) there exists a constant C’; satisfying

+
Z f(k):/nf(x)dx+CJ2C—J%+0(/ oo|f”(x)|dx) n — +o0.

a<k<n

(12.65.2)

One has f'(c0) € R; assuming further that f(c0) € R, the Euler constant y' of f
f(o0)

is defined and it is given by y/ = CJ; - Moreover, for n € N, we have the

following second-order estimate of y’ :

“http://en.wikipedia.org/wiki/Euler-Mascheroni_constant.
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1 e} 1 A (%% 1 oo 11
vV=r s+l +am. leml =5 If" ()] dx.

12/,
(12.65.b)

I'. Iff'isbounded and definitively monotonic thenf” € L' ([a, +0o0|), and (12.65.a)
may be rewritten as

Z flk) = / fx)dx+ ¢l — @ + 0 (f'(n) — f'(0)) n— +oo.
a<k<n L
(12.65.c)
Moreover in the second-order estimate (12.65.b) of y/ we have
le2(m)| < W (12.65.d)

2. Iff’ is unbounded and definitively monotonic then

> fo) = /anf(x) dx — @ +0(f'() n— +oo. (12.65.¢)

a<k<n

Remark 12.66 Notice that, if f’ is monotonic then, thanks to Lemma 12.25, the
estimate in (12.65.b) may be rewritten as

F"(n) —f" (o)

<
le2(m)] < o

Remark 12.67 1In the first-order asymptotic formula (12.61.a) the summability of
the first derivative ensures both the validity of the formula and the existence of
the Euler constant. By way of contrast, the second-order conditions that ensure the
existence of the Euler constant are more severe than those that ensure the validity
of the asymptotic formula. In general, the summability of f” is not enough for the
existence of the Euler constant: we refer the skeptical reader to Example 12.69.

Example 12.68 (The Euler—Mascheroni constant y, part II) In Example 12.64 we

found that . " .
Z—:/ —dx+y+0(—) n — 400.
k 1 X n

1<k<n
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Since f(00) = 0 and f’ is monotonic, in (12.65.c) we have C’; = y/ = y and thus

1 1 1 1
H"=Z§+Z:10gn+y+ﬂ+0(n_2) n— +oo. (12.68.a)

1<k<n

In Example 12.64 we got an estimate of y with an error below 10~2 by means
of (12.61.b): actually this required some work, namely the computation of ysy =
0.5671823329. .., the sum of the first 50 terms of the original sum. Now, for each

1
n, the modulus of the remainder &, () in (12.65.b) is bounded above by T If'(n)] =

5
: theref <10 2ifjustn > — ~2.89.F = 3th licati f
o erefore |e,(n)| < if justn > 7 orn e application o

(12.65.b) yields, with an error within 1072:

L LT
YEVBTox]L Tl

1YY gz Ly LB 5~ 0.577314
— — —lo — —_—— = — — |0 = U.
2 BT e T 1232 T Tog 8

Notice that y = 0.577215664901 . . .: we obtained 3 digits of y, without hard com-

putations. We can also benefit from our computation of ys(, that was carried out in
Example 12.64. For n = 50 the application of (12.65.b) yields

N e, 1
YER T, T2l 2y

11 11
= 0.5671823329... + = — + — = = 0.57721566623 . ..
250 12502
—4
The error here is at most equal to £,(50) < T2 <502 < T; actually, by compar-
X
ison with the correct value of y we now correctly obtained its first 8 digits. O

In the next example we see that it may happen that a function f whose second
derivative is summable might not admit the existence of the Euler constant even
though the constant Cé in (12.65.a) is non-zero. We recall that the Riemann zeta

function is defined by
1
(s) = Z prs s> 1.
n=1

Example 12.69 (Second-order asymptotic formula and non existence of the Euler
constant) Let f (x) = +/x, x > 0. By (12.61.¢) we get the asymptotic estimate
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> Vk= / Vxdx + 0(/n) = 3/2+0(«/’) n— +oo.  (12.69.a)

I<k<n

1
Since f'(x) = Ex“/ 2 is decreasing and tends to O at infinity, (12.65.c) yields the

existence of Cg € R satisfying

> V= / fdx+cf—‘/—_+0(1/f)
I<k<n (12.69.b)

2 2
=§n3/2—§+c§—*/7ﬁ+0(1/ﬁ) n— +oo.

This constitutes a refinement of (12.69.a). The Euler constant of f does not exist here

since, from (12.69.b),
= > k- / Jrds

1<k<n

is asymptotic to —% and thus tends to —oo as n — +00. Notice that, since 1/4/n

tends to O at infinity, the constant Cé is given by

2

=1 W24 «/_ <

nas oo lzk:“/— 2 ]7t3
<k<n

£(3/2)
A 3
The next example, a generalization of Example 12.69, yields some asymptotic
estimates for the sum Z k*.
1<k<n

Example 12.70 Leta € R\ {—1, 0}, and consider the function f, (x) = x* (x > 1).
‘We look for an asymptotic estimate of Z k“ and the existence of the Euler constant

It can be shown that® C‘g = — |

1<k<n
of f,. The case a = 0 is trivial since fy(x) = 1, Vx > 1, and hence y)°’ = Z 1=
I1<k<n
1 dx = 0 for each n € N. The case « = —1 was considered in Examples 12.64

1
and 12.68. We are generalizing here the case @« = 1/2 considered in Example 12.69.
Both f,, and £, are monotonic and either converge to 0 or diverge to infinity for x —

5We obtained this with a CAS; the proof of the result is due to Ramanujuan [29], [6, Chap. VII,
Corollary 7], decades before the advent of computers.
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+00: Theorems 12.61 and 12.65 yield an asymptotic estimate of the sum Z k“
1<k<n
with a remainder that is O(n%) or O(n®~") as n — +oo0. Since an®~! = O(n®) as
n — +ooitis clear that the first-order formulas can be derived from the second-order
ones (12.65.¢)—(12.65.e) (see Problem 12.21). It is convenient to consider few cases,
depending on the fact that f,, (x) = x*, f(x) = ax®~! converge or diverge at infinity.

o a < 0:fy(00) = f(c0) = 0.From (12.65.a) and (12.65.b) we deduce the existence
of the Euler constant 3/ of f,, and

Z ka_ Dt+1 1)+yu+0(nol l)

1<k<n

from which we get

P a+4 __1

— If o < —1 then

f 1i :E: kﬂ a+ -1 ( )4_ 1

* = lim ={(— —

: e 1<k<n o+ 1 { o+ 1
na+& -1
— If -1 < a < Othenboth Z k% and ————— diverge to 400, their difference
I<k<n o+l

however converges to y/«: we are in a situation similar to that of Example 12.69,
and the explicit computation of ¥/ is usually very difficult.

e a €]0, 1[: fo(00) = 400 and f (c0) = 0: from (12.65.c) we deduce
oz 1 nO(
ka _ C{ 0 a—l’
Z w1 + > +0(n*)

1<k<n

and the remainder O(n*~") tends to O at infinity.
e o > 1:|fy(0c0)| = |f,(00)| = +o0: from (12.65.e) we have

Z ka _ ncH—l_l n® +0( (x—l)
T att1 2 7V
1<k<n
1 n*

= a+1na+1 —?—i—O(n"‘_l) n— +o0o.
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Finally, we notice that, if ¢ € N, the sum Z k“ is a polynomial of degree « + 1

1<k<n
in n: this case was considered in Example 8.52. O

12.4.5 Estimates of the Factorials and the Binomials

An important consequence of the second-order asymptotic formula is a better esti-
mate of the factorial than the one found in Example 12.43.

Proposition 12.71 (Stirling’s formula, up to a multiplicative constant) There exists
a real constant C such that

n
1
log(n)) = > logk = nlogn — n+ % +C+0(/n)  n—> oo,
k=1
(12.71.a)
from which one obtains the formula
n! ~ en'ne™" n— +o0o, (12.71.b)
n!
e, llm — = e

n4>+ooiﬂﬂvﬁze_”

Proof. Let f(x) =logx, x > 1; then f’'(x) = 1/x is decreasing and tends to O at
infinity. Through the application of the second-order asymptotic formula (12.65.c)
we get, for some Cé e R,

anlogk = z logk + logn
k=1

1<k<n

" logn y
= logxdx—i—T—i—Cz—i—O(l/n) n — +00.
1
Integration by parts yields

/ logxdx =nlogn—n—+1,
1


http://dx.doi.org/10.1007/978-3-319-03038-8_8
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from which it follows that

“ logn
Zlogk:nlogn—n+T+C+0(l/n) n— +00,
k=1

with C = C‘; + 1. Given that n! = exp(logn!) = exp {Zlog k}, one finds that
k=1

logn
n!=expinlogn —n+ ——+C+ O(1/n)

2
1 1
nn+5 nl‘l“rf
=eC——0Wm ~ O n— 400,
e e
given that a function that is O(1/n) tends to 0 as n — +o00. O

We need Wallis® formula in order to determine C in (12.71.b).

Proposition 12.72 (Wallis formula)

. 22.4%...(2n)? 1 b4
lim

-z 12.72.
noieo 1-32-@n—122n+1 2 (12.72.2)

Proof. We consider the sequence
/2
a, :=/ sin"xdx VneN.
0
For all n > 2 integration by parts gives
2 /2
an = [—(sinx)""" cosx]"" + / (n — 1)(sinx)"~2 cos? x dx
0

/2 /2

= / (n — 1)(sinx)" "% cos® x dx = / (n — 1)(sinx)""2(1 — sin® x) dx
0 0

= (n - 1)(&,,,2 - an)a

so that

s n>2. (12.72.b)

6John Wallis (1616-1703).
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Notice that

. o
lim
n—+00 dy, +1

= 1. (12.72.¢)

Indeed (a,), is decreasing (due to the fact that (sin” x),, is decreasing for all 0 < x <
1 /2), so that from (12.72.b)

| < Gon <azn_1<2n+1

< < < — lasn — 4o00.
Ant1 Aoyl 2n

Since ay = %, we deduce from (12.72.b) that

T 1 3 2n —1
Ay = — X = X — X -+ X Vn > 1;
2 2 4 2n
since a; = 1, again from (12.72.b) we get
2 4 2n
1 = I X = X = X --- X Vn > 1
3 5 2n+1

Therefore we obtain

wn w 1.3 2n—1)?
= — X 2n+1) Vn=>1;
aA2p+1 2 22.42... (2}1)2

the conclusion follows then directly from (12.72.c). m]

We are now able to determine C in Proposition 12.71.

Corollary 12.73 (Stirling’s formula) The constant C in (12.71.b) equals log +/2,
and thus

n
1 1
10g(n!)=210gk=nlogn—n+ﬂ+zlog2n’+0(1/n) n — +0oo,

2
k=1
(12.73.2)

n! ~ 2xn"/ne™" n— +oo. (12.73.b)
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Proof. 1t turns out easily that Wallis formula is equivalent to

(2"n!)? _2n2n-2)---2  [@n+Dx

ol Qn—1)---3-1 S ~WEn n—foo. (1273.0)

Thus, knowing that n! ~ ¢“n"/ne™" as n — +00 we obtain
2n)! ~ € 2n) "V 2ne " = V227 0¥ e n — 400,

whereas
2"nN)?* ~ (2"“n"ne™? = 2% ne™" n — +o0.

It follows that

(2"”')2 €2C22ni’l2nl’l€_2n eC
= —=+/n n— +00.

(2}’1)' ﬁeC22nn2tlﬁe—2n ﬁ

c
Comparing with (12.73.c), we conclude that % = /7, so that e€ = +/27. O
Remark 12.74 The application of the first-order asymptotic Euler—Maclaurin for-
mula is not enough to get (12.71.a). Indeed, (12.61.e) applied to the function

fx) =logx, x > 1 yields

Z logk+logn=/ logxdx+ O (logn) n— +o0,
1

1<k<n

whence
logn! =nlogn—n+ O(logn) n— +o0.

By composing both members of the inequality with the exponential function we
obtain
n! =n"e "h(n),

where h(n) = ¢%1°¢"™ as n — +o0. Proposition 12.71 states, more precisely, that
h(n) is asymptotic to e /n as n — +00.

a

n

stant times —7 asn — oo the proof was based on elementary argument upon the

estimate of the defocused factorial (n —e)(n — 1 —¢) --- (1 — &). The asymptotic
Euler—Maclaurin formula provides a direct shorter proof of the result.

In Proposition 7.97 we showed that, fora € R\ N, is asymptotic to a con-
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Example 12.75 Let a € R\ N. We prove that (7.97.a) holds, i.e., there is C, > 0

such that
a
n

Since _nl = 1, the claim is true for a = —1: we henceforth assume a # —1. Let
anla@=1-@=nt 1]

()=

_enl@tD—1ll@+ D=2 |@+1)—n

~

n — 400.

natl

n > [a] + 2. Then

na+1

Xp o=

1 2 n
Thus
n
1) —k
logx, = (a+ 1)logn + ZIOg M
k=1 k
1 1
=(a+1)logn+ C; + z log(l — i) +log(l _at )
k n
la]4+2<k<n
(12.75.a)
lal+1
. (a+1)—k
with C| = k; log —
1 1
Let f(x) :=1log|1l — @t ; then the derivative f'(x) = _atl is
X x(x—(a+1))
monotonic and tends to O at infinity. Therefore (12.65.c) yields
n 1 ,
> f = / Fydx = 5f () + ch+0(f'm) (12.75.b)
[al+2

[a]l+2<k<n

a+1 a+1
nin—(a+1)) n?

asn — +o00. Now f'(n) = asn — +o00, and

/f(x)dx:/(log(x—(a+ 1)) — logx) dx
=@x—(a+1)logx—(@+1) —(x—(a+1)—(xlogx —x) +R

:xlog(l— al—l)—(a+l)10g(x—(a+1))+R.
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It then follows from (12.75.b) that

Z log (l - %1) =nlog (1 — anj) —(a+ Dlog(n — (a+ 1))+

[a]l4+2<k<n
1 a+1 1
—=<log|{l——)+G+0(=) n— +oo,
2 n n?

for a suitable constant C3. By (12.75.a) we finally obtain

n a+1
logx, =@+ Dlog{ ——— = ) +nlog|{1 — —— )+ Cs+e(n)
n—(a+1) n
1 n
zlog(l—i) + Cy + €' (n),
n

for some constant C4 and &(n), €' (n) converging to 0 as n — +oo. Passing to

the limit we obtain lim logx, =Cs— (a+1), whence Ilim x,=C,
n—-+00 n——+o0o

.— Ca—(at]) O

12.5 A True Step to Infinity: The Integral Test s

The celebrated integral test for the convergence of a series states that if a function
f : [a, +oo[— R is bounded and monotonic the series

> flk) (12.75.0)
k=a

converges if, and only if, the generalized integral

+00
f(x)dx (12.75.d)

a

is finite. The precise statement and proof of the result can be found in Corol-
lary 12.108. It is a rather frequent error among students to sustain the validity of
the result even without assuming the monotonicity of the function. In the following
two examples we see that in reality such belief is completely lacking in justification.

Example 12.76 (The integral converges, the series does not) Let f : [1, +00[— R

be the continuous function that, for each n € N>, equals — at n, 0 at n + o and
n n
1
n+1) — m, and is affine elsewhere (Fig. 12.1). Then:
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o0
Fig. 12.1 )£ (k) diverges
k=1

+o00
but / fx)dx < +o0
J1

o0
Fig. 12.2 f >0, > f(k)
k=1
converges but

+00
f() dx = 400 \/ V

1. f > 0 is continuous and hIJP f(x)=0;
X—+00

—
[\
w
~
at

21

> oo 11 &1
2. D fhy =2 7 =+oo, f(x)dx=§(§+zk—2)<+oo. o
k=1 k ! k=2

=1

Example 12.77 (The series converges, the integral does not) Let f : [1, +oo[— R

be the continuous function whose values are, for eachn € N>, 0 atn, 1 at n + n
n

1
and (n+ 1) — m, affine elsewhere (Fig. 12.2). Then:
1. f > 0 is continuous;
o0 o0 +o00
2. D> fl=>0=0, f(x)dx = +00. O
k=1 k=1 1

At the same time, there are conditions on a function, others than monotonicity, that
ensure the validity of the integral test, i.e., that relate the convergence of the series
(12.75.¢) to that of the integral (12.75.d): they are the very same that ensure the
existence of the Euler constant.

Corollary 12.78 (First-order integral test and approximation of the sum of a series)
Let f : [a, +0o[— R be of class €', a € N, and assume that

e f' € L'([a, +00]).
Then:

0 +00
1. The series Z f(k) and the generalized integral / f(x)dx have the same
k=a a
behavior (both convergent, divergent, or do not exist);
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o0
2. If the series Z f (k) converges, then for all n € N5, the following first-order
k=a
approximation holds:

€9 +00
>rw= 3w+ / Feds— 3 [FI7 + 0o,

a<k<n

+00

1
ler(m)| < 3 If' (x)| dx. (12.78.2)

n

Proof. 1. There exists, from Theorem 12.61, the Euler constant yf € R satisfying

> 0= [fedvty b, e,

a<k<n a

o0
with g, converging to 0 as n — +o00; therefore the series Zf (k) and the limit
k=a
n
11111 / f(x) dx have the same behavior. Lemma 12.57 ensures the existence of
n——+0o0
neN “4

n +00
f(0c0) € R:the behavior of 1ir3 / f (x) dx then coincides with that of f(x)dx

neN a

(see Problem 12.15).

2. Since there exists the Euler constant of f, for all n > a (12.61.b) may be rewritten
as

i o +00 n 1 o
Y =2rh- [ fewd= 3 w0 [ fwac- ST +aom.
k=a a

a a<k<n

—+00
By adding f(x) dx to both terms of the last equality, we deduce that

a

> flk) =
k=a

> fk +/noof(X)dx— % P17+ e

a<k<n

The estimate of ¢ (n) was established in Theorem 12.61. O
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Remark 12.79 Ttis worth noticing that, if f is monotonic, then in (12.78.a) we obtain
1
ler(m)] < Elf(n)l-

1
Indeed Lemma 12.25 implies that |g;(n)]| < E[f(n) — f(00)|, and the convergence

oo
of the series Z f (k) implies that f(co0) = 0.

k=a
Remark 12.80 In view of Lemma 12.57, a smooth (e.g., ¢") monotonic function
f satisfies the assumption of Corollary 12.78 if, and only if, f(co) is finite. As we
pointed out, the smoothness assumption can be dropped in this case: the proof of the
result is of course different and involves an Euler—Maclaurin first-order type formula,
we refer to Corollary 12.108 for the details. At the same time, if f is smooth, the
only existence of a finite limit at oo is not, in general, sufficient for the validity of
Corollary 12.78: an example to illustrate this situation may be built by smoothing
the function defined in Example 12.76.

Let us now see some applications of Corollary 12.78.

o0
1
Example 12.81 (The value £(2)) We wish to approximate ¢ (2) = Z o With an

1
error within 1072: by Corollary 12.78, with f(x) = —, x > 1, it is enough that
x
in (12.78.a) the remainder ¢, (n) satisfies |¢;(n)| < 10~2; this occurs as soon as if
1 1
E[f(n) —f(o0)| = o < 1072, i.e., for n > 8. With the choice of n = 10 we get,
n

with an error within 1072,

Z Z /+°°1 1 °°_9778141+ 1°°+ 1
[ Lok 10 2 |, 6350400 tl, 200

10444933

=———— =1.64476... .
6350400

2
b4
It seems that this approximation led Euler to conjecture that ((2) = — =

1.64493 . . .; notice that he was not aware of the estimate of the remainder, which is
due to Poisson years later. Note that we obtained the 3 digits of ¢(2) by means of
just the first nine terms of the series. O

Example 12.82 (Apéry’s constant £ (3)) We wish to approximate ¢ (3) = »_ — with

1
an error within 10~2: by Corollary 12.78, with f(x) = =X 1 it is enough that,
X
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1 1
in (12.78.a), |¢;(n)| < 1072; this occurs if Elf(n) —f(o0)] = o <1072, i.e., for
n

(just!) n > 4. With n = 4 we obtain, with an error at most equal to 1072,

ilwzl_i_/*wldt L I 2 D S
KB B, 8 21|, ~ 216 212 2 x 43
k=1 1<k<4 4 4
4151

= ——=1.20109....
3456 0109

The value of ¢ (3) is, approximately, 1.20205 . . .: two digits are correct in our approx-
2

imation. Unlike the case of ¢(2) = %, the explicit form of ¢ (3) is still unknown;

its value is also called Apéry’s’ constant in honour of R. Apéry who proved in [1]
the irrationality of this number. It is worth noticing that its inverse is the limit, as n
goes to infinity, of the probability that three natural numbers less than or equal to n
be coprime.? O

In the next example we apply Corollary 12.78 to a function that is not monotonic,
so the integral test for monotonic function (Corollary 12.108) does not apply.
oo .
sin(v'k
Example 12.83 We study the convergence of the series Z ! (]:/_)
k=1

. It is easy to

see that the generalized integral

/+oo sin (/x) e — 2/4-00 sin u du
1 X 1

u

is finite, since an integration by parts gives

T sinu T cosu
—— du = cos(1) — 5 du,
1 u 1 u

and Coszu is summable, due to the fact that its absolute value is bounded above by
u
| .
— € L'([1, +00[). Set f(x) = M Then we have:
u X
e f(00) =0;
COS (/X sin (4/x 1
o f/(x) = Zx(;/é_) - )E;/_) is summable since |f'(x)| < ot €
L'([1, +oo0).

"Roger Apéry (1916-1994).
8http://en.wikipedia.org/wiki/ Ap%C3%A9ry%27s_constant.
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The application of the first point of Corollary 12.78 allows to conclude that the series
i sin(+v/k)
k

converges. O
k=1

We formulate here the second-order integral test and approximation for the sum
of a convergent series; its proof is carried out in greater generality in Corollary 13.49.
Here, again, the assumptions that ensure the validity of the test are those that guarantee
the existence of the Euler constant.

Corollary 12.84 (Second-order integral test and approximation of the sum of a
series) Let f : [a, +00[— R be a function of class €7, a € N, such that:

e f(00) is finite;
o " € L'([a, +o0l).

Then:
0 +00
1. The series Z f(k) and the generalized integral f(x)dx have the same
k=a a
behavior (both convergent, divergent, or do not exist);

2. Ifthe series Z f (k) converges, then for all n € Nx,,, the following second-order

k=a
approximation holds:

+00 1 o 1 100
D2+ [ f@ar =S [T+ S ]+ e,
a<k<n Z

> f) =
k=a

+00

1
le2(n)| < D " (x)|dx. (12.84.a)

Remark 12.85 Assume that a function f is of class 2. The conditions that ensure the
validity of the first-order and the second-order integral tests are of different nature:
it is convenient, due to the simplicity of its assumption on the first derivatives, to use
the first-order test if f” is summable. If not, one has to check the validity of the more
complex assumptions of Corollary 12.84.

We come back to some examples considered at a first-order level.

Example 12.86 (The value ¢(2)) In Example 12.81 we found an approximated value
1

1.64476. .. of £(2) by means of (12.78.a) withn = 10 and f (x) = =, x= 1L Since
X

f(00) =0, and f’ is monotonic and tends to zero at infinity, by Lemma 12.57
f" e L'(la, +00[). One can then apply (12.84.a) to approximate ¢(2) within 10~*
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12 4/3
if [ex(n)| < 107%, or equivalently, E_3 < 1074, ie., for n > 617 ~ 11.86. For
n

n = 12 we obtain, with an error of at most 10~4,

1 T 17* 1 2 1%
(e z i / _d __[;}124_5[_;}12

I1<k<I12
168528641
= ———— = 1.6449342,
102453120
72
which actually shares 6 digits with ¢(2) = = 1.6449340. ... O

Example 12.87 (Apéry’s constant ¢(3)) In Example 12.82 we obtained an approx-
imated value of Apéry’s constant ¢(3) with an error of at most 1072 by means

of (12.78.a), with f(x) = 1 ,x>1 and n =4. We wish here to push forward
the approximation and get the value of ¢(3) with an error of at most 1079,
Since f'(x) = —i is monotonic and f'(co) =0 € R, by Lemma 12.57 we get
f"elLl(a, +oo[))c, and hence we can apply Corollary 12.84. From (12.84.a) it is

13
enough to find n in such a way that |¢;(n)| < 107, and this occurs if s <1079,

100 /¢
i.e., forn > (T) ~ 7.94. With n = 8 we obtain, with an error below 10~°,

+°OI 17 1 31*
o~ gt e alw ]l

1<k<8
2533205761

= —— ~ 1.202057216... ,
2107392000

which actually differs from ¢(3) = 1.2020569031 ... for at most 4 x 1077, O

12.6 Estimates of the Integral of a Function
and the Trapezoidal Method

So far, we have considered the Euler—-Maclaurin formula from the Eulerian point
of view, namely as a way to approximate finite sums. We consider here the dual
approach, followed initially by Maclaurin, to view these formulas as a way to approx-
imate integrals.
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12.6.1 First- and Second- Order Euler—Maclaurin
Approximations of an Integral

Let g : [a, B] — R be a function with o < € R (and not necessarily integers!).
For any n > 0 we consider the subdivision ¢« = xp < x; < --- < x, = B of [«, B]

fa , defined by

into 7 intervals of length

xx=a+hk k=0,...,n—1, h, =

Definition 12.88 Let g € €([a, B]), with e < B € R, and n € N5 ;. We denote by
TS the sum of the areas of the trapezes with vertices

(.Xk, 0) ’ (.Xk, g(-xk)) ) (Xk+],g(.Xk+])) ) (Xk+], 0) k= 07 e, — 17

represented in Fig. 12.3, and given by

TS : = hng(xo) -;g(xl) +hng(x1) -;g(xz) I g(xnfl)z'i‘ 8(xn)

Iy 1
= 3 (8x0) +28(x1) + -+ + 28 05um) + 8x) = hy (Ozkj @) + 5 [g]f) - o

The last equality in the above definition shows, incidentally, how T¢ is related to
the Euler—-Maclaurin expansions:

Fig. 12.3 The sum 7% of the
areas of the trapezes g

Xy X4 Xy
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TE=h, | D f)+ 5 f]0 (1) = gl + thy). (12.88.a)

0<k<n

Itis not surprising, from (12.88.a), that one may use the Euler—Maclaurin formulas
to deduce an approximation of the integral of g.

Theorem 12.89 (First- and second- order Euler—-Maclaurin approximation of inte-
grals) Leta < B € R.

1. Ifg € €' ([a, B]) then

_ B N2
« / g@ide = LoDl
o n
(12.89.2)

s B
/ ) dr = T8 + e1(n), |ev()] <

2. Ifg € €*([a, B]) then

B
/ g(x)dx =T% — ('3—

= [¢ ]’3+82(n)

2 3
() (n)l_ o 2) / lg" ()l dx < ('812 2) 18" loo- (12.89.b)

Proof. Setf(t) = g(o + th,), t € [0, n]. The change of variables x = o + th, gives

B n
/ gx)dx =h, | f(r)dt.
o JO

1. Assume that g is of class €’!. The first-order Euler—Maclaurin formula (12.27.a),
applied to f on [0, n] yields

/ fyde= D" fk)+ = [f] — R\ (n), (12.89.c)
0<k<n

with -
Ry < 5 / ol d.
0
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Now

n ﬁ
VE=kE,ALﬁmm=L|ﬂmma

By rewriting (12.89.¢) in terms of g we get

I 1
h—/ gydr= > g(xk)+§[g]g —Ri(n), (12.89.d)

0<k<n
with

1 18
IR (n)| < 5/ |g'(x)| dx.

If we multiply both members of (12.89.d) by 4, we obtain

B
/ gx)dx =TS — h,R (n).

o

Set €1 (n) = —h,R|(n); the following estimate holds:

h, [P,
ler(m] < hp|R (n)] < 7/ lg"(x)| dx,

showing the validity of (12.89.a).
2. Let g be of class €. The second-order Euler—Maclaurin (12.27.b) applied to f on
[0, n] yields

n 1 " 1 o
[roa= 3 s S0 Ih-rm. 020
with .
WWSEAVmW.

Now

n ﬁ
D”/]("):hn[g/]f’ /O " ()l dt = h, /a |g” (x)| dx.

By rewriting (12.89.e) in terms of g we get

17 1 Bo ¢,
h—/ gydv=| > 0w + 5 [¢]” ] - s I —Rm,  (12.89.0)
nJe 0<k<n
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with
hn A "
R = T2 / 1" (o)) .

If we multiply both members of (12.89.f) by 4, we get

g Y
/ g dv = T = 2 [¢'], = huRo().

Set e,(n) = —h,R,(n); the following estimate holds:

h2 ﬁ 7
le2(m)] = lhnRo(m)| < 2 / 18" ()l dx.

showing the validity of (12.89.b). O

Remark 12.90 Here, the second-order approximation formula (12.89.b) does always
give a better approximation of the integral of a function with respect the first-order
one (12.89.a), at least for high values of n: indeed

_ w2 B _ B
% / g @ldr < b -~ / €' dr.

for sufficiently large values of n.

The reader will not be surprised to see that the remainders in (12.89.a) and
(12.89.b) have a much simpler upper estimate under certain monotonicity assump-
tions.

Remark 12.91 (Estimates of the remainders under monotonicity assumptions) If g
is monotonic, in (12.89.a) we have

B—a
2n

ler(m)] < lg(B) — g(a)l; (12.91.2)

if g’ is monotonic then in (12.89.b) we have

2
le2(n)] < % lg'(B) — &' (@)] . (12.91.b)

1
Example 12.92 Let g(x) = x* on [0, 1]; we compare here the integral I := / x% dx
0

=3 with its first- and second- order approximations. Subdividing the interval into
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10 intervals of width 1/10 the first-order approximation (12.89.a) of I is given by

1 k 1 g(1)—gO) 1 k2 1 67
¢ L Yy 28—l 1 S = —0335;
10770 0<kz<mg (10) T 2 10 0</<Z<:10 102 720 = 200

whereas the second-order approximation of (12.89.b) is given by

1

g 1 1l e
[¢'], =0.335 00 = /3

78 — ——
101200

and thus equals the integral /. O

1
Example 12.93 We wish to approximate here the integral / := / ¢ dx with an
0

error less than 1072, motivated by the fact that ¢ is not elementarily integrable.
Since g is monotonic, (12.89.a) together with (12.91.a) yield

e—1

1
= 7, 18 =8O = ——

1
/ () dx — T%
0 2n

e—1

1
= 100 < n>50(e— 1)~ 85.9. For
n = 86 we find T§, = 1.46271 . ... Now, g is actually of class €: the application of

(12.89.b) and (12.91.b) with n = 86 yield

Thus, T8 approximates / within 1072 if

1

2
e 8]y = T — g = 1:462651745 ...
X

I~TS —
86 12 x 862

with an error at most equal to

e

¢ _ —0.00003... < 1074,
% 862 88752

] ’ /
lea(m)| < m|g () —g'0)| = <

Notice that, by means of (12.89.b), in order to get an approximation with an error at
most equal to 1072 itis enough that
For n = &, from (12.89.b) we get

5 < 1072, and this occurs just forn > 6.73!
X n

1 1 e
~ T8 — 78 —

It can be shown, for instance with the help of a CAS, that

1
/ e dx = 1.462651746. .. :
0

the approximation / &~ 1.462651745 ... is thus correct up 8 digits. O
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1
Example 12.94 The function g(x) = x sin (—) is not elementarily integrable. Let
X

us approximate the value of the integral

10 1
1 :=/ xsin (—) dx,
1 X

with an error at most equal to 10~". Since lg'llLec.10) < 14+ 1 x 1 =2, it follows

from (12.89.a) that
10 2
‘/ glx)dx — TS
1

=—,
n

92
and — < 107! if n > 810: it would take quite a lot of time to compute Té"lo with

n
a pocket calculator! With a CAS we get 7§, = 8.85273.. .. If, instead of (12.89.a)
we make use of (12.89.b), we get an approximation of / within 107! if

3

< —1g"leo < 1071
le2(m)] < 518" o <
Now 1
, sin (| 1
|g’<x)|—‘ 5 )| < -,
X~ X

93
so that ||g” || .=q,10) < 1. Therefore |e;(n)| < 107" if o
n

Justn > /5 x 93/6 ~ 17.43. With n = 18 we get

<107, or equivalently,

9? 10
e €

— T8 _i —sin(1) + sin i +cos(1)—icos i
=187 49 10 10 10

= 8.85297....

I'~Tj—

Again, by means of a suitable CAS, we find

10

1

/ X sin (—) dx = 8.8527357087 . .. .
1 X

With the first-order approximation we got 4 digits of /, whereas just 3 with the
second-order approximation. However, in the first case we needed a subdivision of
[1, 10] into 810 intervals, whereas in the second case 18 intervals were enough.
Notice that, with n = 810, (12.89.b) yields
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9? 10
~T8 / —
T30~ g 191 =

1 . (1 1 1
=T5o — 57300 (— sin(1) + sin (1—0) + cos(1) — To < (E))

= 8.8527357088... :

we achieve precision up to 9 digits. O

12.6.2 The Reduced Euler—Maclaurin Formula &

We now study the effect, on the Euler—Maclaurin formulas, of getting rid of the
last term of the first- and second- order expansions. This will lead us to the famous
rectangle and trapezoidal methods for the approximation of integrals.

Remark 12.95 More precisely, assume that f € €' ([a, b]). We may add the term

1
-5 [f ]Z of the first-order Euler-Maclaurin expansion of f to the remainder R; in
(12.27.a), and obtain

b
> f) =/ f(x)dx +Ro, Ry:= —%[f]g—i—Rl. (12.95.2)

a<k<b a

1
Analogously, if f € ¢ ([a, b]) we may add the last term T [f/]:' of the second-order

expansion of f to the remainder R, in (12.27.b) and write

b 1 1
> fk =/ feode -3 /1L +Ri, R = 5 [P+ R (12.95b)

a<k<b

Notice that R here is exactly the remainder that appears in (12.27.a), with a different
representation that makes use of the fact that f is of class €.

A rough estimate of R and of R;, written as above, may be carried out without
difficulty as it is illustrated in the following example.

Example 12.96 (A naive estimate of Ry and Ry in formulas (12.95.a) and (12.95.b))
Letf : [a, b] — R be a function, with a, b € N.

1. Iff is of class €' on [a, b] then

b b
Zf(k):/ f(x)dx + Ry, |R0|§/ I/ ()| dx. (12.96.a)

a<k<b

Indeed, from (12.95.a) we have
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1 b 1 b b /
Ro=—§[f]a+R1 =—§[f]a+ Bi(x — [x])f (x) dx.
a
The integral estimate of R, follows directly from the fact that

b
/ F(x) dx

and for the same upper estimate of |R;| established in Theorem 12.27.
2. Iff is of class € on [a, b] then

1t
fi/a (0] dx

Lo 1
‘g[f]a =5

b 1 1 b
Z fk) =/ fx) dx — E[f]2+1e1, IR| < 6/ If” (x)|dx. (12.96.b)

a<k<b

1
Indeed from (12.95.b) we have Ry = T [f/]z + R; as above the estimate follows
directly from the integral upper estimate of R, established in Theorem 12.27. 0

It is not often easy to compute integrals: it may be convenient sometimes to
replace the estimates in terms of integrals (12.27.a) and (12.27.b), or in (12.96.a) and
(12.96.b), in terms of the sup-norms of the functions that are involved by means of
Proposition 12.22. For instance, in (12.96.a) and (12.96.b), one gets

/ b—a /
[Rol = (0= DIf oo, Rl = T”f lloo- (12.96.0)

It is quite surprising, though not trivial, that the above upper bounds can be halved.
In order to show it, we need an improved version of the well-known (first) Mean
Value Integral Theorem.

Lemma 12.97 (The 2nd Mean Value Theorem for integrals) Let f, ¢ : [a, b] - R
be continuous, with ¢ of constant sign (i.e., ¢ >0 or ¢ <0 on [a, b]). There is
& € [a, b] satisfying

b b
/f(X)fﬂ(X)dX=f($)/ @(x) dx.

Proof. 1t is not restrictive to assume that ¢ > 0 on [a, b]: if not one applies the

forthcoming proof to —¢. The claim is also obvious if ¢ vanishes identically, so we
b

may assume that @(x)dx > 0. Let m and M be, respectively, the minimum and

the maximum of f ?)n [a, b]. Then
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b b b
/ me(x) dx < / F@E) dx < / Mo (x) dx

and hence

b
/ J)e(x) dx
m<=t—

b
/ @(x) dx

The Intermediate Value Theorem implies that there is & € [a, b] such that

<M.

b
/ @(0)f (x) dx

 —
/ o (x) dx

thus proving the claim. O

[ =

9

Proposition 12.98 (The first- and second- order reduced Euler—Maclaurin formulas)
Letf : [a, b] — R be a function, with a, b € N.

1. Iff € €'([a, b]) then

b bh—
ICE / f@dv+Ro. |Rol = I llc- (12.98.2)

a<k<b

2. Iff € €*([a, b)) then

2 1 b b—a /"
Zf(k>=/ f@dx = [f],+ R Rl < ="l (12.98b)

a<k<b

Proof. From (12.27.a) we have

1 1 b
Ro= =5l + R = =3[+ [ By wa

If we write that

b
1= [ £
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b 1
Ro = / (Bl(x— [x]) — z)f’(X) dr.

Here comes the key argument that enables us to halve the estimates in (12.96.c).

we get

1 1
Recall that By (x) = x — o implying that B (x) — 7 <0 on [0, 1]. Lemma 12.97
yields the existence of & € [a, b] satisfying

b 1 b 1
Ry =/ (Bl(x —[x]) — z)f’(x) dx =f’($)/ (Bl(x —[x]) — 5) dx.

1
Since / B(x) dx =0, we get
0

’ 1 b1
/ (BI(X—[X])—E) dx:—/ EZ_E(”_“)'

Thus
mol = L2 @1 = 20
2. In (12.27.b) we have
R = [r1) - l/b Bo(x — [x])f” (x) dx
12 2/,

1 b1 B ") da
_E/a (6_ z(x—[x]))f (x) dx.

1
Now B, (x) — 3 =x(x—1)<0on]0, 1] and

1 1 1
/ Bz(x)dx:/ (xz—x—i——) dx = 0.
0 0 6

The proof goes now on as in Point 1. In any case the curious reader can follow
all the details in the proof of the general case of any order, formulated in Proposi-
tion 13.37. O

Remark 12.99 e If one does not care to the estimate of the remainder term, formula
(12.98.b) is the Euler—-Maclaurin formula of order 1 established in (12.27.a): the
new fact concerns the upper estimate of R; that is here carried now in terms of f”.

e The upper estimate of the remainder R; in (12.98.b) equals the estimate in terms
of the sup-norm of f” that one could get, in (12.27.b):


http://dx.doi.org/10.1007/978-3-319-03038-8_13
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Ryl < - / (0 dx < —uf”noo (12.99.2)

This, however, does not mean that the estimate of »  f (k) given in (12.98.b) is

a<k<b

as good as the one given in (12.27.b): indeed the second inequality in (12.99.a) is
strict, in general (see Remark 12.23). For instance, in Example 12.30 withf (x) = x,

the sum
9 x 10

2

Zf(k)=1+-~-+9= =45

0<k<10

coincides with the Euler—-Maclaurin expansion of order 1, whereas the reduced
expansion of order 1 in (12.98.a) equals

10

fx) dx = 50.
0

12.6.3 The Rectangle and the Trapezoidal Method s

B
In Sect. 12.6.1 we presented the approximation of the integral / g(x) dx of a func-

o
tion g, by means of the sum T} of the trapezes built upon the graph of g. The rectangle
method, obtained in a similar way for a function of class %!, gives an approximation
of the integral in terms of the sum D¢ of the areas of the rectangles of side [xg, xxt1]
and height g(x;), as k varies in {0, ..., n — 1}.

Definition 12.100 For any n > 1 we define

xx=a+hk k=0,...,n—1, h, =

DEi=h, . g(x). O

0<k<n

The following result gives the classical approximation of a definite integral by
means of rectangles and trapezes.
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Theorem 12.101 (The rectangle and the trapezoidal methods)
1. Let g € €' ([, B]). Then

B )2
/ g(x)dx = D§ + go(n), |eo(n)] < %Ilg/lloo- (12.101.a)

2. Letg € €*([a, Bl). Then

B 3
/ g) dx=T; +e1(n), lei(m)| < %Ilg"llw- (12.10L.b)

Remark 12.102 1f one ignores the estimates in the remainder terms, the equality in
(12.101.b) is exactly the approximation formula (12.89.a). The difference between
the two formulas relies on the estimate of the remainder ¢;(n). The advantage of
(12.101.b) with respect to (12.89.a) is due to the fact that the further regularity of f

1
ensures in (12.101.b) that & (n) = O (—2) as n — +o00, whereas in (12.89.a) we
n

1
are just supposed to know that ¢, (n) = O | — ) asn — +4o00. At the same time, there
n

is a price to pay if one adopts (12.101.b) instead of (12.89.b). Indeed the upper bound
of the estimate of &) (n) in (12.101.b) is bigger than that of &, (n) in (12.89.b):

1 (B- a)?
12 n?

G 1 (f—a)
a d < " ,
/a g @ldc = = F g

and the inequality is usually strict, as we realized in Remark 12.23. The advantage of
the rectangle and trapezoidal methods, with respect to the Euler—Maclaurin approx-
imations of the integral in Theorem 12.89, is to deal with some simpler expres-
sions without being significantly less accurate. We may approximate the integral

b
/ g(x) dx by means of the following formulas, in an increasing order of precision:
a

1. The approximation formula (12.89.a);
2. The trapezoidal method formula (12.101.b);
3. The approximation formula (12.89.b).

The proof of Theorem 12.101 is similar to that of Theorem 12.89; the only differ-
ence is to use the reduced Euler—-Maclaurin formulas (12.98.a) and (12.98.b) instead
of the original ones (12.27.a) and (12.27.b).
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Proof. [of Theorem 12.101] Let f(¢) = g(« + th,), t € [0, n]. The change of vari-

ables x = o + th,, leads to
B n
/ g(x)dx:hn/ f(t)dt
o 0

1. Assume that g is of class ¢"'. The reduced first-order Euler-Maclaurin formula
(12.98.a) applied to f on [0, n] yields

/fmm > fk) — R, (12.102.a)

O<k<n

n
with |Ry| < §|[f/||oo. Since
I lloo = Anllg lloo>

if we rewrite (12.102.a) in terms of g we obtain

—/ gx)dx = Z g(x) — Ry, (12.102.b)
0<k<n
with
=P %
- 2 g [elel)

Identity (12.101.a) follows by multiplying both members of (12.102.b) by 4,,.
2. Assume that g is of class ¢%. The second-order reduced Euler-Maclaurin formula
(12.98.b) applied to f on [0, ] yields

/fmm Zﬁ@+ Io = Ru. (12.102.c)

0<k<n

with |R| < 1’1—2|[f”||oo. Now [[f”lec = h2||g" || oo: if we rewrite (12.102.c) in terms of
g we get

1 [P 1
h—/ g(x) dx = Zg(xk)+§[g]f — Ry, (12.102.d)

0<k<n

with 5
B—a)
12n

18" llco-

IRil = 75 ,,Ilg lloo =

Identity (12.101.b) follows by multiplying both members of (12.102.d) by #,. O
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Remark 12.103 As a consequence of (12.101.a) we obtain the well-known interpre-
tation of the integral as a limit of the Riemann sums [33, Theorem 6.7]:

p . B—a B—a
/g(x)dxzngglwz Tg(oe—i—k _ ) (12.103.2)

o 0<k<n

12.7 Formulas for Non-Smooth Monotonic Functions

As surprising as it might be, every first-order Euler—Maclaurin type formula estab-
lished for ¢! functions may be formulated for functions that are just monotonic,
without assuming any kind of differentiability. The only difference is, of course, in
the remainder term, which has an explicit formula in terms of the derivatives in the
smooth case, and is merely estimated here. The Euler—Maclaurin type formula for
monotonic functions in particular implies the celebrated integral test for the conver-
gence of a series that inspired the one that we formulated for smooth functions in
Corollary 12.78.

12.7.1 Euler-Maclaurin Type Formula

The following formula looks like the first-order Euler—Maclaurin formula; it is
obtained immediately by proceeding just as in the proof of the integral test for
series with decreasing terms [33]. We recall that a monotonic function is integrable
on every closed and bounded interval [33, Theorem 6.9].

Theorem 12.104 Leta,bin N andf : [a, b] — R be a monotonic function. Then

(12.104.2)

o= fea— LT 4R, R <7
> = [ r@a =3[R wi<5]IrL

a<k<b

Proof. Suppose that f is decreasing. On every interval [k, k + 1] (k € N) contained
in [a, b] one has (see Fig. 12.4)

fy=f@® =fk+1) Vielkk+1],
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Fig. 12.4 The idea used in
the proof of Theorem 12.104
f(k) 4
f(k+1) =+
k k+1
|
1
£(k) | k+
| If(t}dt 1
: K I fk+1)
from which it follows that
k+1 k+1 k+1

k) = flk)dt > f@)dt > fk+ Ddt =flk+1).
k k k

Summing the terms of the foregoing inequalities, as k varies between a and b — 1,
one obtains

b
S0z [fwd= Y 10450 @,

a<k<b a<k<b

1
Subtracting the term E(f (b) — f(a)) from the various members of the preceding
inequalities one finds

b
> fk) - %(f(b) —f(@) = / Fydi — %(f(b) ~f(@)

a<k<b

1
> D f0+ 5 ®B) —fla),

a<k<b

and hence

b

al”

b | 1
IRi| = Zf(k)—/f(r)dt+5(f(b)—f(a)) 55‘[]‘]

a<k<b

If f is an increasing function it suffices to apply the obtained result to —f. O
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Remark 12.105 Theorem 12.104 may be paraphrased by affirming that if f is
monotonic, the Euler-Maclaurin expansion of order 1 of f is an estimate of the

sum Z f(k), up to a remainder whose modulus is less than the last term of that
a<k<b
expansion. In particular, from (12.104.a), we deduce the following estimate

b
> - [ foa] < re) - s, (12.105.2)

a<k<b

More precisely, from the proof of Theorem 12.104 it turns out that:

b
e Iff is decreasing then 0 < Z fk) —/ f@dt < f(a) —fb);

a<k<b

b
e If f is increasing then f(a) — f(b) < Z f(k) —/ f®)dt <O0.

a<k<b

12.7.2 The Approximation Formula for Finite Sums

Similarly to what we achieved for regular functions in Corollary 12.45 we can deduce
an approximation formula of the sums Z f(k) in terms of Z f(k), whenever

a<k<N a<k<n
n<N.

Corollary 12.106 (The approximation formula for finite sums) Let f : [a, +oo[—
R be monotonic, a € N. For every N > n the following approximation formula
holds:

N 1
S ro =3 rwo+ / e =S [T + e N,
a<k<N a<k<n " (12.106.a)

1 1
et If(m) —f(N)] = 3 If () — f(c0)].

Proof. Tt is enough to remark that

St = D fy= > flo

a<k<N a<k<n n<k<N

and to apply (12.104.a) witha =nand b = N. O
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12.7.3 The Integral Test for the Convergence of a Series
with Bounded Monotonic Terms

We assume here that, given a € N, the monotonic function f : [a, +-0co[— R is also
bounded: the function f being monotonic, it is equivalent to suppose that f(c0) € R.
We see from (12.105.a) that

vli= D Sk - / fede vneN.,

a<k<n

remains bounded. We prove here that, similarly to the case of a smooth function as
stated in Theorem 12.61, the sequence y,{ tends to a finite value as n goes to infinity.

Theorem 12.107 (The Euler constant) Let f : [a, +oo[— R be monotonic and

bounded, a € N. The Euler constant y' of f is defined and the following estimate of
/" holds:

y! holds:

| 1
=yl - 7 [f]n +e1(m), lei(m)] = 3 [f(n) —f(c0)| Vn € Ns,.
(12.107.a)

Proof. Assume that f is decreasing. For all n > a we have
n+1
V= =f0 = [ ez,
thus proving the monotonicity of (y,f ). From (12.104.a) we have

. 1 n
yr{ = _5 [f]a +Rls

so that | |
AR SV =f@l+ 31 ) = f@] = f ) = f(@),

which is bounded, due to the convergence of (f(n)),. It follows that the lim y,{

n——+00
exists in R and hence y/ is defined.

Let us prove now (12.107.a). Applying (12.104.a) between n and N > n we get:
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N
wWwvi= > f(k)—/ f@)dx

n<k<N

[aNE

N =

1
=73 [f],.N +e1(n,N), |ei(n,N)| <

By passing to the limit for N — 400 we obtain

‘y-f - (y;{ - % [f]f)' < % If (n) — f(o0)],

proving (12.107.a). Finally, if f is increasing, it is enough to apply the above results
to the decreasing function —f. O

An immediate consequence of Theorem 12.107 is the well-known integral test
o0
for the convergence of the series Z f(k), as f is bounded and monotonic.
k=a

Corollary 12.108 (The integral test) Let f : [a, +oo[— R be monotonic, a € N.
o —+00

Then the series Z f(k) and the generalized integral f(x) dx have the same
k=a a

behavior: both are either convergent or divergent.

Proof. 1f f(c0) is oo or not 0, then both the series and the integral do diverge.
Henceforth we assume now that f(co0) = 0. We know from Theorem 12.107 that
there exists y/ € R such that

y =i (2w - [roa

a<k<n

S n
us and the limit m Xx)dx have the same behavior. Since
Th (k) and the limi 1'+ (x)dx h h behavi Si
n——+00
k=a neN a

f(0c0) =0 belongs to R, the value of lirll / f(x)dx coincides with that of
n——+00
neN a

+00
f(x) dx (Problem 12.15): the conclusion follows. m]

12.7.4 The Approximation of the Sum of a Convergent Series

We now see how one may approximate the sum of a convergent series with monotonic
terms: the result was obtained in Corollary 12.78 for functions of class %'
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Corollary 12.109 (Approximation of the sum of a series) Let a € Nand

oo
f i la, +oo[— R be a monotonic function such that the series Z f (k) converges.

k=a
The following approximation holds:

€9 +00 1 o
D=3 sw+ [ b= [T+ a0,
k=a a<k<n " (12.109.a)

1)l < 3 f]  Vn e N,

oo
Proof. The convergence of the series Z f (k) implies that f (oo0) = 0. It follows from
k=a
(12.106.a) that for every N > n we have

N 1
Do fl= D fk)+ / fdy =S [f]) +ern N, (12.109.5)

a<k<N a<k<n

1 1
with |e1(n, N)| < Elf(n) —f(o0)] = E[f(n)|. It follows from Corollary 12.108 that

f is integrable in a generalized sense on [a, +00[. Passing to the limit for N — 400
in (12.109.b) we deduce that ;(n) := Nlim &1(n, N) is finite, and the validity of
—+00

(12.109.a). o

12.7.5 Asymptotic Formulas

We are now in the position to study the asymptotic behavior of the difference

= X s [ e

a<k<n

as n — 400, for a monotonic function f : [a, +-00[— R. We get nothing more than
a reformulation of some results of the previous sections, and are analogous to the
claim of Theorem 12.61, that was established for functions of class %’!.

Theorem 12.110 (Asymptotic formulas) Letf : [a, +0o[— R be a monotonic func-
tion, a € N.

1. Iff(co) = %00, then for every n € Ns, we have
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> f) = /nf(x) dx + O (f(n)) n— +oo. (12.110.2)

a<k<n

2. Iff(c0) € R then for every n € Nx, we have

S fk) = f+/f(x)dx+81(n),

a<k<n

e} ()] < [f()) —f(00)] = O (F(n) — f(00)) n— +oo.  (12.110.b)

Proof. 1. It follows from Theorem 12.104 that, for every n € N>, we have

n 1
>0 = [ feds = S0~ @)+ R,

a<k<n
. 1 . .
with |[R;(n)| < E[f(n) — f(a)|. Since 1121 f(n) = £o0, then
n——+00

fm) —f@=0(fm) n— +oo,

whence —(f (n) — f(a))/2 + Ry (n) = O(f (n)) forn — —+o0: the conclusion follows.
2. From (12.107.a) we obtain

y;{ =y + &) (n),

1
where &/ (n) 1= 3 lf ]:c — &1(n) and the following estimate holds

= [f(n) = f(o0)].

S
ley(m)| = ‘5 IF1, —em

The conclusion follows. O

Remark 12.111 Theorem 12.104, and all the subsequent results of this section, can
be easily extended to functions f that are of bounded variation: indeed any such a
function is the difference of two increasing functions. Namely, (12.104.a) does still
hold with

1
[R| < EPV(f, [a, b)),
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where pV(f, [a, b]) is the pointwise variation of f, given by

n
pV(f,la, b)) = SUP{Z Vi) —fOlta=x0 <xp <+ <xp <xpy1:=b¢.
i=0

The interested reader can find the details in [10].

12.8 Problems

Problem 12.1 Let xo € N and (x,),>1 be a sequence in {0, ..., 9}. Show that the
sequence Xxg . Xi . . . X, converges.

Problem 12.2 Letxp € Nand x;,...,x, € {0,...,9} and n € N5 ;. Prove that
1 X0.X1 ... Xp_1(x, + 1) ifx, <9,
xo.xl...xn—i—l—o” =1x+1ifx,=x,1=---=x1 =9,
X0 X1 X1+ Difx; 9, xip1=---=x,=9.

Problem 12.3 Using the Euler—Maclaurin expansion of first-order for a suitable
function, estimate the following sums and the error made:

1. Z logk;

1<k<10
2. Z kfz;
1<k<10
3. Z ek (compare this also with the exact sum);
0<k<10
4. Z \/%;
1<k<10

S e

0<k<10

9

Problem 12.4 Find the minimum value of n such that the first-order Euler—Maclaurin

approximation formula yields an approximation of the sum z — by means of
1<k<10000

I .
Z — with an error at most equal to 10~!; for such a value compute the approxi-
1<k<n

mated value of the given sum.

Problem 12.5 Using the Euler—-Maclaurin expansion of second-order estimate the
sums and the errors made in the sums of Problem 12.3.
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Problem 12.6 Find the minimum value of n such that the second-ordfr Euler—
o0

Maclaurin approximation formula yields an approximation of the sum Z @ by
k=1

.
means of Z @ with an error at most equal to 10~2; for such a value compute the
1<k<n
approximated value of the given sum.

Problem 12.7 Prove the existence of the Euler constant for f(x) := 1;

1
—, X =
Jx

give its first-order approximation with an error less than 107"

Problem 12.8 Approximate the integral

8
_,08
/xex dx
1

with an error of at most 10~ by means of:

1. The integral approximation of order 2 (12.89.b);
2. The trapezoidal method.

Compare the results with the numerical approximation given by a CAS: which of
the two results gives the best approximation?

Problem 12.9 Prove that
1 2 5 3n
n+— ) +1)=n"+—+40() n— 4o0.
2n 2

Problem 12.10 Show that

2oE) (D) (o(2)) re o

Problem 12.11 Let a, and b, be two sequences, and suppose furthermore that
b, # 0 for every n. Prove that a, = O(b,) if and only if there exists a C > 0 such
that |a,| < C|b,| for every n.

Problem 12.12 In each row, which of the two statements implies the other, for
n— +oo?

l.a) a, = n* + O(nlogn) 1.b) a, = n* + 2nlogn + O(n).
2.a) a, =n* +om?) 2.b)a, =n*>+2n logn — 6n+ O(n).

Problem 12.13 Letw, 8 € R,a > 0 and a, ~ an® for n — 400 and b, ~ Bn* for
n — +oo, with « + 8 # 0. Prove that a, + b, ~ (@ + B)n® forn — +o0.
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Problem 12.14 Let a, be a sequence such that lirf a, =f € R. Then
a, = £+ O(1) forn — +4o0.

Problem 12.15 Letf : [a, +00[— Rbelocally integrable, and assume that the limit
{ = liT f(x) exists in R U {£o0}. Prove that the limit liT f(t)dt and the
X—>1+00 n——+00

neN ¢
+00
generalized integral / f(#) dt have the same behavior: both exist and are equal

a
or both do not exist.

Problem 12.16 The function g is summable on [1, +oo[, due to the fact that
X

sin ¢

. —+00

sin x ) | .

<1/x> e L ([1,+o0o[). Set a :=/ t—zdt; it can be shown that a ~
1

x2

Ysint —a

0.504067. Letf (x) := / dt,forx > 1. Study the convergence of the series
1

> fk):
k=1

1. Prove that f is not monotonic, f(c0) = 0, and f’ € L'([1, 400]);

0 n
2. Deduce that Z f(k) and lim / f(x) dx have the same behavior;
n—+o00 1

k=1
n

3. Prove that lim fx)dx = +o0.

n——+00 1
Problem 12.17 Prove relation (12.65.¢) in the case f'(c0) € {0, Fo00}.

Problem 12.18 Furnish a first-order asymptotic estimate for:

1. Z logk;

1<k<n

2. Z k2

1<k<n

3. Z e_k;

0<k<n
4. Z Vk;
O<k<n
5. > K2
0<k<n
Problem 12.19 Using the asymptotic versions of the Euler—-Maclaurin formula
(Theorem 12.61), provide approximations for Z klogk.

1<k<n
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Problem 12.20 Let p > 0. Show that

log? (k 1 log?
Z M =—log"'(n) + O M n — +oo.
k p+1 n

I1<k<n

Problem 12.21 Assume thatf : [a, +oo[— Risofclass €', definitively monotonic
and tends to 0 at infinity, and moreover thatf’(n) = O(f (n)) asn — +o0.If (12.65.c)
holds true, deduce the validity of (12.61.c).



Chapter 13
The Euler-Maclaurin Formula of Arbitrary
Order

Abstract In this chapter we extend the results formulated in Chap. 12 to order m,
i.e., to functions of class €™, for any m € N5;. Namely, we formulate the Euler—
Maclaurin formula, its asymptotic version, its applications to the approximation of
finite sums and of sums of convergent series in great generality. The reader will
find here not only the general statements of the formulas of order m, but also their
detailed proofs, some of which were just sketched out or even skipped entirely in
the previous sections. Among the applications, we discover the Hermite formula for
the approximations of integrals: it is a refinement of the trapezoidal method which
is even more accurate than Simpson’s method.

Throughout this chapter we assume, if not explicitly stated otherwise, that the
functions are defined on an integer interval, i.e., an interval whose extreme points
are natural numbers.

13.1 Bernoulli Polynomials

The Bernoulli polynomial functions enter naturally into the general Euler—Maclaurin
formulas. We introduce them by way of one of their characteristic properties which
also allows us to motivate the definition of Bernoulli numbers already presented in
Definition 8.47. First we recall that the Bernoulli numbers are defined recursively by
the formula

m—1
1
Bo=1,B,=—— (’”ﬂ)B,» Vim > 1.
m+1 4 J

Jj=0

The first few Bernoulli numbers are
B—lB—lB—lB—OB—lB—OB—l
0o— 1 1 = 27 2_67 3 =Y, 4 = 307 5—Y, 6_42
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13.1.1 Recursive Definition of the Bernoulli Polynomials
Let us introduce the Bernoulli polynomials: they will be the key tool in studying the
remainder term in the Euler—Maclaurin formulas.

Proposition 13.1 There exists a unique sequence of polynomials (B, (X)),,en Such
that:

1. By(X) =0and B/, (X) = mB,,_i(X) for every integer m > 1;
2. Bo(0) = 1 and B,,(0) = B,,,(1) for every integer m > 2.

The sequence (B,,(X)),,en is called the sequence of Bernoulli polynomials. For
eachm € N, one has

m

Bu(X)=> (’Z) B X",

k=0

In particular B,,(0) = B,,.

Proof. Conditions 1 allows for a recursive determination of the polynomials B,, (X).
up to an additive constant y,,. Indeed:

e From B;,(X) = 0, it follows that Bo(X) = yp € R;
e From B/ (X) = By(X) = y, it follows that B; (X) = yoX + 13
e From B, (X) = 2B1(X) = 29X + 2y, it follows that

2 2 2
By(X) = 0 X> +2nX + 1, = (0) X + (1) nX + (2) ¥ai
e From B;(X) =3B,(X) = 310X? 4 6y1 X + 3y; it follows that

3 3 3 3
B3(X) = X + 371X + 37X + 3 = (o) ni+ (1) nit+ (2) i (3> r

It is now easy to prove by induction that

Bm(X) = (’g) J/OXm + (nl/l) Vle_] +--- (mni 1) melX + (Z) Y-

Thanks to Condition 2 one obtains that yy = 1 = By and form > 1

0= Bu+1(1) = Bpuy1(0)

_(m+1 m+1 m+1 m+1
—( 0 )VO+( 1 )V1+"'+(m_1)7/m—1+( m )Vm,
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or equivalently

1 m+ 1 m+ 1 m+ 1
ym__m—-i—l(( 0 )V0+( 1 )V1+"'+(m_1 Vin—11] -

This is in fact the recursive relation that defines the Bernoulli numbers (see Sect. 8.3);
thus one has y,, = B,, for every m > 0. O

Remark 13.2 Note that Condition 2 of Proposition 13.1 does not hold if m = 1:
indeed B;(0) = —1/2 while B;(1) = 1/2. This difference between the case m = 1
and the cases m > 1 will have a key role in the proof of the Euler—Maclaurin formula
(Theorem 13.15).

It is useful to list the first instances of the Bernoulli polynomials.

Example 13.3 (The first few Bernoulli polynomials)

Bo(X) =1, B;(X) = l+x Bs(X) = X+5X3 5XA+X5
0 =1, 1 = ) 5 - 6 3 2

B(X)—l X + X2 B(X)—1 X2+5X4 3X° + Xx°

=6 R ) 2
Bs(X) = = 3Xz+x3 Bo(X) = & 7X}+7XS 7X6+x7
T T MTE T e 2 2
1 1 2x% 7x*  14x°
Bs(X)=—— + X2 —2X3 + X*[Bg(X) = —— + — — —4x7 + x8
4(X) 30+ + 8(X) 30+ 3 3 + +
|

13.1.2 Qualitative Behavior of the Bernoulli Polynomial

(L

Functions on [0, 1] =

We study here the qualitative behavior of the Bernoulli polynomial functions on the
interval [0, 1]; the graphs of the first Bernoulli polynomial functions on [0, 1] are
depicted in Fig. 13.1.

Proposition 13.4 Let m € Ns.
1. Assume that m is even. Then:

e The graph of B, (x), for x € [0, 1], is symmetric with respect to the line x =
1/2;


http://dx.doi.org/10.1007/978-3-319-03038-8_8
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Fig. 13.1 Graphs of the 0.2 B;(®)
Bernoulli polynomial y
functions B (x), Ba(x),
B3(x). B4(x) and Bs(x) on oaf B
[0, 1] ., By®)
L B -
L - '-'_: “_;_:.-.-}"-:___‘_""“-\_\
i ~ 06 e 10
B4(X) ........ i
-0.1 B2(x)
-02

e B, (x) has a unique zero and is monotonic (in the opposite directions) on both
[0, 1/2]) and [1/2, 1].

2. Assume that m is odd. Then:

e The graph of B,,(x), for x € [0, 1], is symmetric with respect to the point
(1/2,0);

e B, (x) vanishes only for x = 1/2 on 10, 1[;

o I[fm > 3thenB,,(0) = B,,(1) = 0, andthere existsx €]0, 1/2[ suchthatB,,(x)
is monotonic on [, 1 — «], and monotonic (in the opposite directions) on [0, o]
and [1 — «, 1].

Proof. We prove the two points by induction on m. The statement is true for m = 1

in view of the fact that B;(x) = x — > Suppose now that both the statements are

true up to a given m > 1.

If m + 1iseven, then, by the induction hypothesis, the polynomial function B, (x)
does not change sign on [0, 1/2] and on [1/2, 1]; furthermore by the symmetry
with respect to the point (1/2, 0), B,,(x) has opposite signs on the two intervals.
Since B, | (x) = (m + 1) B,,(x) (see Condition 1 in Proposition 13.1), one has that
B,;+1(x) is monotonic (in the opposite directions) on both [0, 1/2] and on [1/2, 1].
Moreover, by the symmetry of the graph of B,,(x) with respect to (1/2,0), it is
B,.(1 — x) = — B,,(x) and hence

d
E(Bmﬂ(l —x)=Bx)=-m+1)B,(01-x)—m+1)B,(x) =0.

Therefore B, 1 (1 — x) — B, .1 (x) is constant; since B,,, . (1 — 1/2) = B,,.1(1/2),
one gets B, 1 (1 —x) — B,,,41(x) = O0forevery x € [0, 1], i.e., B4 (x) is symmet-
ric with respect to the axis x = 1/2. In view of Proposition 13.1, one has

1
1 1 1
B, dx = ——|By, = —— Bus2—Bui2) =0;
/0 +1(x) dx m+2[ 200 ], m+2( +2 +2)
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therefore B,,+1(x) can not have a constant sign on [0, 1] and hence, in view of its
symmetry with respect to the axis x = 1/2, B,,1;(x) can not have a constant sign on
[0, 1/2]. Thus, by the monotonicity of B, (x) there exists a unique internal point
of the interval [0, 1/2] at which B,,; vanishes.

If m 4+ 1 is odd, then B,,(x) changes its sign exactly once on [0, 1/2]: let o be
the unique zero of B,, (x) on that interval. Since B/, +1(x) = (m + 1) B, (x), one has
that B,,+1(x) is monotonic in the opposite directions on both [0, «] and [«, 1/2].
Moreover, by the symmetry of the graph of B,, (x) with respect to the axis x = 1/2,
itis B,,(1 — x) = B,,(x) and hence

%(Bmﬂ(l —X) +Bus1(x)) = —(m + 1By (1 —x) + (m + 1) By (x) = 0.

Therefore B,,.1(1 —x) + B,,11(x) is constant. By Proposition 13.1 and Corol-
lary 8.51 one has B,,;;(1) = B,,+1(0) =B,,+1 =0. Then B,,+ (1 —x) 4+ B,41
(x) =0 for every x € [0, 1], i.e., B,;+1(x) is symmetric with respect to the point
(1/2,0). In particular, for x = 1/2 we get B,,+1(1/2) = 0. Since B,;,+1(0) = B,,,11
(1) =0, then B,,;(x) does not vanish on both ]0, 1/2[ and ]1/2, 1[: indeed, it
vanishes at 0, 1/2 and 1, and it is monotonic on [0, «], [, 1/2], [1/2, 1 — «] and
[1—a,l]. m|

Remark 13.5 The above Proposition 13.4 shows that the behavior of the Bernoulli
polynomial functions B,, (x) on [0, 1] changes drastically depending on the parity of
m. Actually, one can obtain a more subtle classification depending on the divisibility
of m by 4: the interested reader may find the details in Problem 13.1.

In the following example we take a look at the behavior of the Bernoulli poly-
nomial functions with odd index, investigating the sup-norm of B3(x), Bs(x) and
B7(x) in [0, 1].

Example 13.6 By Proposition 13.4, the function | B3(x)| on [0, 1] reaches its maxi-
mum value in a point a €]0, 1/2[ and, by symmetry, in 1 — a. The function

B (x) = 3By(x) =3 (x2 —x+ é)

+3

vanishes at x = ; then

| B3(X) 20,17y =

3+43 1 1
B3 = < —.
6 123 21

Analogously one can prove
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I I
I B0 = 55 (5ﬁ+ «/15) 15— 2v/30 < 0.02446 < .

1
| B7(x) |l 20,17 < 0.02607 < TR

The sup-norms || B3(x) (0,1, [ Bs()llz=qo.1p, [IB7(x)|lL(o,1)) are irrational
numbers: we shall see now that the sup-norm of the even indexed Bernoulli poly-
nomial functions B,,(x) on [0, 1] is a rational number, precisely the absolute value
| B,, | of the m-th Bernoulli number. m]

13.1.3 The Sup-Norm of the Bernoulli Polynomials on [0, 1]

The estimate of the sup-norm of the Bernoulli polynomials is a key tool to understand
the magnitude of the remainder term in the Euler—Maclaurin formulas. We find very
convenient here to consider the Fourier expansions of the Bernoulli polynomials:
the reader may skip the details with no risks and jump directly to the claim of
Corollary 13.9.

Let us recall the following basic facts about Fourier series [33].

e The Fourier' series of a locally integrable periodic function f : R — R of period
1 is the series

a S -
?0 + ; ay cos(2kx) + ;bk sin(2kx),

where the Fourier coefficients of f are given by

1
a = 2/ f(x)cosrkx)dx (k> 0),
0
1
by = 2/ F(x)sin@rkx)dx (k> 1).
0

Notice that, since f is periodic of period 1, a; = 0 if f is odd, and by = 0 if f is
even.

e (Fourier pointwise convergence). The Fourier series of f converges to f(x) at
every point x where f is continuous and has left and right derivatives [33, Theorem
8.14].

Lemma 13.7 (Fourier expansion of the Bernoulli polynomials) The following iden-
tities hold:

1 Jean Baptiste Joseph Fourier (1768—1830).
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1 <= sin(2mk
Bl(x)z——zM Vx €10, 1[; (13.7.2)
T k

- ! <= cos(2k
m = 2evns Byo) = 2D TS OO e ct0.11 137b)

2
k

| = si k
m =2 o0dd: B,(x) =2(~1)"F 3" SINQ27EX) 10,11, (13.7.0)
Qmyn &=k

Proof. Forevery m > 1let B? (x) be the extension by periodicity to R of the restric-
tion of B,,(x) to [0, 1[. Since B? (x) = B,,(x) on [0, 1[, in the computation of the
Fourier coefficients of B? (x) we can substitute B? (x) with B, (x). By Proposi-

tion 13.4 the function B? (x) is even if m is even, and odd if m is odd. In particular,
o0

the Fourier series of BY (x) is of the form Z b,l sin(2mkx), where
k=1

1 1
bl = 2/0 B (x) sin(27kx) dx = 2/0 B (x) sin(2kx) dx

! 1 1
= 2/0 (x — 5) sin(2ekx) dx = o

Since Bf (x) is piecewise ¢! and continuous on ]0, 1[, Fourier pointwise convergence
theorem yields (13.7.a). For each m > 2 one has

1 1 1 2
m—=2[ B,(x)dx=2| ——B dx = ——[B,, L =0;
ag /0 (x)dx /0 p— 1 (X) dx m+1[ +1()]p

therefore the Fourier series of B? is of the form

o o
> ) cos2mkx) if meven, > by sin(2rkx) if m odd.
k=1 k=1

Integration by parts, for m > 3 odd, yields
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1 1
bl = 2/ B2 (t) sin(2rkt) dt = 2/ B, (t) sin(2mkt) dt
0 0

1 oot
=2|—B,,(t)— cos(2mkt) +—/ Bin(t)cos(2yrkt)dt
2wk o Tk Jo
1

- ﬁ (1) cos(2rke) d = ——ap™!
=k ), B 2k
Similarly, for m > 2 even one gets a;' = —Zm—kb,i"*l. Thus, for m > 3 odd,
b/
pr = gt = _mm—1) n=2,
2k 2mk)?

so that, recursively, we obtain

LA R R
Qmk)ym= 1 - (znk)m'
On the other side, for m > 2 even, again recursively, we get
m.o . m wa (m—1)!
m=_———p" - ——2 +1_ = (-1 12
R g 2D Qi1 — D2 (27Tk)’” O

Figures 13.2, 13.3 and 13.4 depict, respectively, B;(x), B»(x) and Bs(x) on [0, 1]
and some of their Fourier expansions.

Definition 13.8 (The sup-norm [,,) In the sequel we denote by w,, the sup-norm
| B,y ()1l 0,17y of the polynomial functions B,,(x) on [0, 1]. m]

Let us see an important upper estimate (4, and a relation of the Bernoulli numbers
B,, of even index m with ¢ (m).

Corollary 13.9 (Fundamental estimates) The following identities hold:

Um = || B (x)||Loo([0 m = 4(2 )m Vm € Nzl; (139&)
Um = | B ) |lzeqo1) = |Bm|  Ym > 2 even; (13.9.b)
+1 1 2m)™
t(m) =(—1)2 — — B, Vm > 2 even. (13.9.¢c)
m!
1 41 1!
Proof. If m =1 then u; = 3 < =3 = 4—, due to the fact that 7 < 4. Assume
T T
now that m > 2. By Lemma 13.7, for each x in [0, 1] we have
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Fig. 13.2 B;(x) and its
Fourier expansions of order
3and 7

Fig. 13.3 Bj(x) with its 2nd
order Fourier expansion and
its 6th order Fourier
expansion

04

02+

Bi(x)

3" order Fourier

By(x)
7th order Fourier

— By(x)

----- 2™ order Fourier

----- 6th order Fouri
02, 04 06

543

10

1.0
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Fig. 13.4 Bs(x) and its t
Fourier expansion of order 1: 0.02 |
they almost coincide! o

0.01}

-0.01"

-0.02}

----- 5th order Fourier o0 T,
0.02} . 5
0.01! K
I S LA S G S T ST i S T
1% 0.2 04 0.6 0.8 1.0
-001} %,
-002} . L

m = 1 m!
| By (x)] < 2(2n)m kZ:]: = Z(zn)mg(’") < 4(271),,,,

since, from (8.55.a), ¢ (m) < 2. Then we get (13.9.a).
Assume now that m > 2 is even. Then by (13.7.b)

2

"o L B0 = 1B
. T m = m |5
2n) k:lk

therefore w,, = | B,,(0)| = | B,, |. Finally, applying (13.7.b) at x = 0, for all m > 2
even we get

m 1 m m!
B, =B,(0)=2(-D2"—= > — =2(-1)2"——¢(m). o
2m)m k; k™ ot

Corollary 13.10 The following identity relates B,,(1/2) with B,,:

Bn(1/2) = 2" —1)B,, Vm € N.,. (13.10.2)
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Proof. Form = 1onehasB(1/2) =0 = (2'~' — 1) B;. Assume thatm > 2.Ifm is
odd then, since sin(kmr) = O foreachk > 1,itfollows from (13.7.c) thatB,,(1/2) = 0
as well as B,, = 0. Assume now that m is even: we deduce from (13.7.b) that

gy _m! S )
Bu(1/2) =20 kZ:: (13.10.b)
B,, = B,,(0) = 2(—1)%"! (;:)m > kim (13.10.¢)

_1)/<

1 .
We now use a standard way to recover Z from Z T By regrouping the
k=1 k=1
terms of different parity we get

> 1)'< 1 1 1 e 1
>4 ot 2 T 2w Y

k=1 k odd k>2 even k odd

we use here the fact that every even natural is of the form 2k for some natural k.
Similarly

1 3 __ZLH—mOOL
km km - km km’

1 k odd k>2 even k odd k=1

M e
I
X

~
Il

Thus

and therefore

oo( l)k - ~ 00 1 ~ o0 1
Z —(—(1—2'")+2'")Zk—m:(2 m-l)z—. (13.10.d)

k=1 k=1 k=1
Equalities (13.10.b) and (13.10.c) yield the conclusion. m]

Remark 13.11 (The Dirichlet n function at even numbers) In (13.9.c) we found the
sum of the harmonic series of even powers in terms of the Bernoulli numbers. We
are now able to express the sum of the alternating harmonic series of even powers,
namely the eta Dirichlet? function 7, defined by

2Johann Peter Gustav Lejeune Dirichlet (1805-1859).
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o0

k—1
n(m) :=Z 1)

k=1

Indeed, let m > 2 be even. It follows from (13.10.b) that

SO that

n 2m)™ n (2m)™
nom) = (-1 T ) Bma/z)—(—l)*(”)

= (—1)%”—'(1 —2"1)B,, Vm >2even.
m!

2™ -2"HB,

Notice that, from (13.10.d), we get the well-known relation between the eta and the
zeta function
n(m) = (1 —2""¢(m) Vm > 2 even.

We mention that the expression of the eta function for odd values of m is unknown,
except form = 1:

11
D=1--+-+---=log2.
n(l) sta T og

13.2 The Euler-Maclaurin Expansion of Order m

In Sect. 12.2 we have seen the first- and second- order Euler—-Maclaurin formulas
and some of their notable applications. In this section we write the Euler—-Maclaurin
expansions of arbitrary order.

Definition 13.12 Let f be of class m=1on[a, b], where a, b are natural numbers.
The Euler-Maclaurin expansion of order m of f on [a, b] is

b m B: .
EM,, (; [a, b)) i= / foyde+ > =[OV 0
& i=1

In the applications, we will no go further than m = 8: the Euler—-Maclaurin expan-
sions of order less than 8 can be obtained easily from the one of order 8.

Example 13.13 (The first terms in the Euler—Maclaurin expansion) The Euler—
Maclaurin expansion EMg( f; [a, b]) of order 8 of a function f on an integer interval
[a, b] is
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b 1 1, 1 1 1 ’
1 1., 1 3 3) _ @)
/a f(x)dx+[ 2 Tl 7 T 020’ T Ta09e00” ]a' i

13.2.1 The Euler—Maclaurin Formula
of Order m

We are now ready to generalize the Euler—Maclaurin formula established for func-
tions of class €' or € in Theorem 12.27.

Remark 13.14 Note that in the Euler—Maclaurin expansion of order m of a function
there are involved the function’s derivatives up to order m — 1, and the Bernoulli
numbers By, ..., B,,. For each ¢ > 1, the Euler—-Maclaurin expansion of order 2¢
of a function coincides with its Euler-Maclaurin expansion of order 2¢ + 1: indeed
Byey1 = 0.

Theorem 13.15 (Euler—Maclaurin formula of order m) Given two integers a < b,
consider a function f : [a,b] — R of class €™, withm > 1. Then

b " B. .
> f<k>=/ f(X)derZ%[f(’_l)]b+Rm=EMm(f; [a. b]) + R,
a - v a

a<k<b

B (_1)m+1

b
Ry = / B (x — [x]) £ (x) dx. (13.15.2)

m!

Moreover, denoted by (v, the sup-norm || B, (x)|l 1=(0,17), the following estimates of
R,, hold:

4(b —a)
m!(2m)™

b
iz iz
IRl < 5 / F™ @)ldx < =5 (b = )l f ™l qap) < 17z tap-

(13.15.b)

Remark 13.16 Since for each £ > 1, the Euler—Maclaurin expansion of order 2¢ of
a function coincides with its Euler—Maclaurin expansion of order 2¢ + 1, we get

(_])ZF,-H

b
W/ Boe(x — [xD) 7 (x) dx = Ry =


http://dx.doi.org/10.1007/978-3-319-03038-8_12

548 13 The Euler—-Maclaurin Formula of Arbitrary Order

(_1)2€+2

= Rt = 5

b
/ Bogi1(x — [x]) £ * P (x) dx.

When estimating the remainder in the Euler—Maclaurin formula, one of these two
descriptions will typically be more useful than the other.

Example 13.17 Example 13.6 and Corollary 13.9 yield the following values of 1, =
Il B () Il Lo 0,1y

1 1 1 1 1
= - =|Bq]|, = - =|By|, = <, =|By| = —,
"1 B} [Brl, m2 6 [B2|, w3 lZﬁ < 20 n4 [Bg | 30

1 1 1
me=1Bgl=—, w7 <>, ug=|Bg|l= . O

1
M5 =300 2 38 30

The following remark will be used whenever the remainder term contains the
integral of the modulus of the derivative of a monotonic function.

Remark 13.18 (The remainder if £~ is monotonic) In the relevant applications
it is often the case that ™ has a constant sign, or in other words that £ =1 is
monotonic; in this case from Lemma 12.25 we get

b
/ |f@ldx = "0 0) = f V@),

In particular it follows from (13.15.b) that

b
|Rm| < 2 ‘[f(m—”] . (13.18.2)
m! a

If m = 2¢ is even, then wy; = | By, | (Corollary 13.9) and hence the sum Z £ k)
a<k<b

differs from the Euler—-Maclaurin expansion of order 2¢ on [a, b] for at most the

B
modulus of its last term ——— [ FGD ]h.
20)! a
Proof (of Theorem 13.15). We begin by considering the case a = 0,b = 1. Let g :
[0, 1T — R be of class €. Given that B (x) = 1, integration by parts gives

1

1 1
/ g(x)dX=/ g(X)B'](X)dX=[g(X)Bl(x)]é—/ g (x)Bi(x)dx

0 0 0
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and since B;(0) = —1/2 = B; and B;(1) = 1/2 = — B, one obtains

1 1 1
/0 g(x)dx = 5(8(1)4-8(0))—/ g (x) By (x)dx.

0

From B} (x) = 2B (x) one obtains, (again integrating by parts) that

1 1 B/ B 1 B
/ g'(x)Bi(x) dx = / g’(x)%” [ () 2(")] / g”<x>—22(x) dx,
0 0 0 0

from which, on recalling that B,,(0) = B,,(1) = B,, for m > 2, it follows that

g0 +g(1) By, b Ba)
/ gy dx = S 22g](1)+/0g(x) 22 dx.

At this point it is now easy to prove by induction that one has
1 1 X 5
J s - £0750 Z< B g i [ g o P gy
0 0 m!

or, equivalently,

g +gm [ <« mBi[ -1 m [Ny, B
== ewds+ T[] - | e

Applying this last relation to g(x) = f(x + k) fork = a, ..., b — 1, and taking into
account that B,, = 0 if m > 3 is odd, one obtains

fO+ fE+D e

5 ) dx+

k+1
Z L A R e

Summing for k that varies from a to b — 1 one gets

f(a) f(b)

+ Z fk) +—=

k=a+1

b
/ f(x)dx+2 [F V], - =D — / B, (x — [x]) f " (x) dx,

from which it follows that
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> fo = —f(a)— —f(b)+/ £ dx +

a<k<b

1 b
+Z o A G / By (x — [x]) £ (x) dx.

Recalling that B; = —1/2, one immediately obtains relation (13.15.a). The estimate
of the remainder in (13.15.b) follows directly. m]

Example 13.19 If f € €>([a, b)) it follows from (13.15.a), with m = 5, that

D fly= /f(X)dx+[——f+65f_304'f<3>} +Rs,

a<k<b

and

I 1P
Rs=g | Bs—LDfP@dx=Ri=~7 | Bilx =) f P dx. o
Example 13.20 If f(x) = x?>onehas f'(x) = 2x, " =2, f® = f® =0, and so,
since Rz = 0, one has
" 1 1 1 1 1
2 2 27" n 3 2
lénk /xdx—i[x ]1+E[2x]1:§” —En +8n. O

More generally, if f is a polynomial function of degree less than or equal to m,
then the (m + 1)-st derivative of f is zero, and so the remainder R, in (13.15.a)
is equal to 0 and the m-th derivative of f is a constant.

Corollary 13.21 Let f be a polynomial function of degree m > 1. Then

> k) =EM,(f;la, b])—/ f(x)dx+2 Lo v

a<k<b

In particular, Faulhaber’s formula for the sum of the successive m-th powers of the
integers (that we saw in Example 8.52) is rather simply expressed via the Bernoulli
numbers.

Example 13.22 (Faulhaber’s formula) Let n € N. For each m > 1 one has
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e L N SN L

O0<k<n i=0 i=0
(13.22.2)

Indeed, if f(x) = x™, for each integer 1 < i < m one has

V@) =mm =1y (m —i +2)x" !
__ 1 D i
ComA1(m+1—0) '

By Corollary 13.21 one gets

kaz/ x dx+z S A

0<k<n
_; m+1 ; m+1 Com+1—i
_m—}—ln +m+1§( i )B,n

1 m+1 B m+ll O
m+1i:0 i

The remainder R,, in the Euler—-Maclaurin formula (13.15.a) can be very large,
rendering it useless. Considering longer Euler—-Maclaurin expansions of a function
do not constitute in general a solution. Here is an example illustrating how things
can get worse as the order of the expansions increases.

1
Example 13.23 Consider f(x) = el x > 1. One can easily compute

9778141
> fl) = =153976....
= 6350400

For all i > 1, the derivative f of f is given by

@ =

thus the Euler—Maclaurin expansion of order m of f on [1, 10] is
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1 10 “\ B; I
EM,, (xz,[l 10]) /1 ;dx+zllﬁ[(—l) Fi|1
1Oz+1 ’
i=1

The values of

(_1)m+] 10 (m) 1
Rp=—-—[ Bulc—LDf™wdr= > fk) —EMu|—:01,101),
m! 1 X

1<k<10
form =1, ..., 12 seem to oscillate between —0.75 and —0.96; then for m > 12 the
values become also larger in module. We list here the values of R,, form =1, ..., 25:
[n] U T 213456 789wl i1 ]i2]i3]
[Rm [—0.76]=0.92]=0.92|—0.89| —0.89| —0.91|—0.91| —0.88|—0.88|—0.95| —0.95| —0.70| —0.70|
[m] 14 [ 15 [16]17] 18 | 19 [ 20 [ 21 | 22 [ 23 [ 24 | 25 |

[Ro |~ 1.87[—1.87]5.22[5.22[—49.76| —49.76|479.54| 479.54| —5712.46 | —5712.46 | 80867.54 | 80867.54

From m = 26 the values of |R,,| are greater than 10°. m]

13.2.2 The Euler-Maclaurin Approximation Formula
of Order m

We now extend to arbitrary order the approximation formulas established in Corol-
lary 12.45.

Corollary 13.24 Let f : [a, +oo[— R be of class €™, with m > 1 and a € N. If
n, N are naturals, witha <n < N, then

NCEDY f<k>+/ f(x)dx+2 DT 4wt ),

a<k<N a<k<n
(13.24.a)

(_1)m+1

where g,,(n, N) =
m!

N
/ B, (x — [x]) £ (x) dx and

W +o00
—’"/ [F™(x)|dx,  (13.24.b)

m!

N
lem(n, N)| < —’"/ | ()| dx <

where i, = || By (X) |2~ (0,17)-
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Proof. 1t is enough to apply (13.15.a) to the sum

> ftky= > f— > fk). .

n<k<N a<k<N a<k<n
Example 13.25 In Example 12.53 we found an approximated value of
> g
1 <k<10001000

with an error within 1073, by means of the approximation formula of order 2, with

1
x) = —, x > 1. Choosing n = 10 in 45.b), we got
(x) 1. Choosing n = 10 in (12.45.b), we g
X
1 1 10001000 1 1 1 1000'000 1 1 1000'000
- T b
15k<120:‘)01000 k lskz<10 k 10 X 2 X 10 12 _x2 10

= 6908.332495476.. . ..

We now wish to apply the approximation formula of order 4, i.e., (13.24.a) with
N = 1000'%° and m = 4. The remainder satisfies

400
Jeatn, 1000)] < = / 1F9 ()] dx.

—6
Now @ (x) = — is monotonic: it follows from Remark 13.18 that
X

+o00 6
/ IfP ) dx = fP(00) — fO )| = et

thus
, 1000 < :
lea(n )< o
1
Therefore, with n = 10, the error is at most equal to ———— actually we get
1200 000
1 10001000 4 B, oo
PRI NIRRT 3 Y A I
1 <k<10001000 1<k<10 10 i=1

7129 1 1 1 10001000
= —— +1og (1000'%%°/10 —— I 1€}
2520 o /10)+ 2Tl !

= 6908.3324946431112603,

10
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whereas the exact value of the given sum is 6908.3324946470385849 . ... Notice
that, if one just wants an approximation up to 1072, it is enough that

;4 < 10_2’

, 10001000 <
lea(n )| = 20m

and this occurs for n > (5/6)'/4, thus for n > 1. We do not have to make too many
calculations to get the result: for n = 1 the 4th order approximation yields

1 1000'0%0 LB, 100000
—%/ f@dx+> =[]

k 1 ; l!

1<k <10001000 i=1

7129 1 1 1 10001000
= —— +1og (1000'9%°/10 —— I A 1€}
2520 o /10)+ 2Tl !

= 6908.330278.....

10

Notice that in this case we did not need any term of the original sum in order to
obtain its approximation! O

Example 13.26 Let N € N> ;. We wish to compute Z vk with an error up to
1<k<N
1076, If we set f(x) =%, x > 1,(13.24.a) with m = 4 yields

E N 1 1 1 N
=2 e —f = — D
1<k<N = 1<k<nf(k)+/n faydx+ |: 2f+ 12f 720f i|n +e4(n, N),

with, due to the fact that f D (x) = is decreasing,

8x3/2

1 1 !
N < OV = O] < = fO) = s
leatn, NI = =5 |fEN) = fOm] = 55 V) = 557

6

1920

2/5
It turns out that |e4(n, N)| < 10~® whenever n > ( ) ~ 12.2. By taking

n =13 < N, we thus get

S vir Y \/E+[§x3/2r+[—%ﬁ+

1 x12 1 3x5/2]N
1<k<N 1<k<13 n 13

12 2 720 8

2N3/2 1 VN 1

= —0.20788622 - - - — ,
T3 T oNvE T 2 T aun

with an error within 107°. 0O
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13.2.3 The Convergence of the Euler—Maclaurin Series s

Let f € €°°([a, b]). Then we can consider the Euler-Maclaurin expansions
. b - B (i-11°
EM,(fila,b) = | feodx+3 —[F"],,
@ i=1

for each m € N5 ;. Thus, it is the natural to question the behavior of the Euler—
Maclaurin series.

Definition 13.27 (Euler—-Maclaurin series) Let f € €°°([a, b]). The Euler-Mac-
laurin series of f on [a, ] is:

O

b (o) B. -
EM.o(f: [a, b)) 1= / Faydx+> B,
a o=

We invite the reader not to confuse the following Euler—Maclaurin series with the
Maclaurin formal power series of Definition 7.66.
Here is a formal motivation of the Euler—Maclaurin series.

Example 13.28 (Formal motivation for the Euler—Maclaurin series) The appearance
of the Bernoulli numbers in the Euler—Maclaurin formula may seem surprising.
However, in reality one can infer such a formula via an argument due to Lagrange.
That discussion is once again indicated here for interested readers, although it is
offered without a formally rigorous proof. We have seen in Remark 6.29 that the

difference operator A is the inverse of the sum operator X, just as the integral / is

the inverse of the derivation operator D. If f is developable into a power series over
R, then for every n € Z one has

O ORI

fn+ D= fm)+ f(n)+ T 3 .,

from which it follows that
Af@) = fn+1) = f() = (D/1+D?/21+ D331+ ) f(m) = (¢ = D f (),
where we use e? to indicate the operator
e?=14D+D*/21+D/31 +---.

Thus one has A = e” — 1 and so ¥ is the inverse of e — 1. Now, since by Propo-
sition 8.50


http://dx.doi.org/10.1007/978-3-319-03038-8_7
http://dx.doi.org/10.1007/978-3-319-03038-8_6
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Since the operator D is invertible with inverse D~! = / we get

1 B B
k ~k—1 k ~k—1
>y o— — E iy 5 — E —=pk-1,
D = k! / o k!

from which it follows that

b o] B
z f (k) = EMx(f; la, b]) :/ f(x)dx + Zk_’; [f(kfl)]z_
a =1 .

a<k<b

It seems that Euler and Maclaurin deduced the Euler—Maclaurin formula with a
similar piece of reasoning, without, however, determining the most important part
constituted by the remainder R,, in (13.15.a): Poisson [28] explicitly calculated the
remainder R,, at a much later date. O

The motivation of the Euler—Maclaurin formula may lead one to believe that the
Euler-Maclaurin series of f in [a, b] converges to Z f (k). In reality things do

a<k<b
not quite go as we might wish; the following example based on Example 13.23 shows

that such a series may not converge.

1
Example 13.29 We consider again the function f(x) = —, X € [1, 10], considered
X

i+ 1!

in Example 13.23. Since f@(x) = (=1) )

Euler—Maclaurin series of f on [1, 10] is

1 107 o B; it 7"

1

for all i > 1 it turns out that the

The absolute value of the general term of the series is given by

1 1°_|B| X 1 |Bi |
xi+l | - t 10i+1 — 2 ’

\

| B; |
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1

Corollary 8.57 shows that lim |By; | = +00, proving that the EM, (—2; [1, 10])
i——+o00 X

does not converge. O

In Example 13.29 the derivatives of the function blow up too quickly: we see now
how some growth conditions on the derivatives of a function ensure the convergence
of the Euler—Maclaurin series.

Theorem 13.30 (Convergence of the Euler—-Maclaurin series) Let f € €*°([a, b)),
with a, b € N. Assume that there exist M € N, C > 0and 0 < L < 27 such that

||f(m)(x)||[‘oc([a,b]) < C L™ Vm > M. (13303)

Then the Euler—-Maclaurin series EMy (f; [a, b]) converges to Z fk):

a<k<b

S 0 =Ml ) = [ f(x)dx+2 rT

a<k<b

Proof. From (13.15.b) for every natural m > M we have

Rl < / £ @) dx

2y

4(b (m) L "
"N Lo (apy < 4C (b — .

=~ ||f 2> (1a,0)) < 4C (b —a) I
. . L\" . . .
Then since 11r4r_1 (2—) = 0, we get also IIIE |R,,| = 0, proving the claim. O
m——+00 T m——+00

Some simple conditions ensure the validity of (13.30.a).

Example 13.31 Let f € €*°([a, b]). Let us illustrate some case in which Condition
(13.30.a) is fulfilled.

e The derivatives of f are definitively equibounded, i.e., there exists M € N and
C > 0 such that || f™ Il 2> (a,py < C for m > M. Indeed in this case (13.30.a) is
satisfied with L = 1.

e f(x)= e with 0 < L < 27: indeed in this case, for every m € N, we have

L
1™ e s = L™l iman-

e f is a polynomial: we saw in Corollary 13.21 that the Euler—Maclaurin series is
actually a finite sum.
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e f(x)=e*P(x),where0 < Ly < 27 — 1 and P(X) is a polynomial. Indeed, for
any natural m the Leibniz rule for the derivatives of a product (see Theorem 3.26)

yields
m - m X m—
OEDY (k) (eh )P ) h.
k=0
Now, for every k = 0, ..., m we have

Loxy (k ki L Ky L
(") | = Lile™*| < Llle™ || Lqa.pp-
whereas, if N is the degree of P (X),
—k ) N
|P)" 0] < K == max {| Pllz=qapn 1P Ixqapns - 1PN Neqasn}

from which

m
L my ;k L
1 e anp < Kl im ey D (k) Lo = Klle""[|L~qas) (1 + Lo)"-
k=0 ]

13.3 Approximation of Integrals

In this section we will present the Euler—Maclaurin approximation formula for inte-
grals and the trapezoidal method for functions of class €.

13.3.1 The Euler-Maclaurin Approximation Formula
of an Integral

We consider here the Euler—-Maclaurin formula from Maclaurin’s point of view,
namely the approximation of integrals. We saw in Sect. 12.6 how the Euler—Maclaurin
formulas of order 1 and 2 allow one to prove the rectangle and the trapezoidal method.
‘We follow here a similar approach based on the general Euler—Maclaurin formula; we
will see that the more the function is regular, the more precise is our approximation
of its integral.

Given a function g € € ([, B]), with@ < 8 € R (and not necessarily integers!),
set for each n € Ny

B—a

n

xx=oa+h,k k=0,...,n—1, h, =
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In Definition 12.88 we have introduced the sum 7;¥ of the areas of the trapezes with
vertices

(-xkv O) ) (-xka g(xk)) ) (-xk+1’ g(-xk+1)) ) (xk+17 O) k = 07 cee, 1 — 1

given by
TS = hng(xo) er g(x1) + hng(xl) er g(x2) R hng(x,,_l)z—{- 2(xy)

hﬂ
7 (8(x0) +2g(x1) + -+ + 28(xn-1) + g(Xn))

1
= h( 2 g+ [g]fi)-

O<k<n

The following result follows readily from the order m Euler—-Maclaurin formula
(13.15.a).

Theorem 13.32 (m-th order Euler—Maclaurin approximation of integrals) Let g €
" ([, B]), witha < B € Rand m > 2. For every n > 1 we have

m

p B, .. .
/ g)dx =Tf = > —h [¢“"1 + ent),

i!
& i=2

i (B =)™ [P o (B =)™
lem(m)] <~ —— / 8™ ()l dx < =5 ———11g ™ (e
(13.32.2)

where (u, = || B, (X) |2 (0,1))-

1
Remark 13.33 The remainder in (13.32.a) is O { — ) as n — +o0: for n suffi-
nWl

ciently big it is thus more convenient to raise the values of m in order to get better
approximations.

Proof (of Theorem13.32). Set f(t) = g(o + th,), t € [0, n]. The change of vari-

ables x = o + th,, yields
B n
/ gx)dx = h,,/ f()dte.
a 0

The Euler—Maclaurin formula (13.15.a) applied to f on [0, n] yields

m

" | Bi iy
/Of(t)dtz 2 fW U= 2 [ = Rutn, (13.33.)

O<k<n i=2
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with |R,,(n)| < —/ | £ (t)| dt. Now

[£OD]0 = hi! [g(i—l)]f i=2,...,m
and

n B
/ @) di = B! / 8™ ()] dx.
0 o

By translating (13.33.a) in terms of g we get

T 4
_/ gx)dx = ( Z g(xx) + ) Zi_'h;—l [g(z—l)]g — R, (n),
0<k<n i=2
(13.33.b)

B
with |R,, (n)| < h’" ! / |g"™ (x)| dx.If we multiply both members of (13.33.b)
by h,, we get (13 32 a) with ¢,,(n) = —h, R,,(n). Clearly

I'LI’H

B m. rp
Hom o m Mm (:3 B Ol) m
len ()] = ha|Ru ()] < —hj / 8 (0 dx = 5 / g™ (x)] dx;

the last inequality in (13.32.a) follows directly. O

Remark 13.34 (Integral approximation of order 8) For the convenience of the reader
it may be useful to write explicitly the term in (13.32.a) involving Bernoulli polyno-
mials for m = 8:

8 2 4 6 8 B
Z Bl (l 1) _ hn / h g(3) _ hn g(S) 4 hn g(7) )
i! ' "‘ 12 720 30240 1209 600 a

i=

Example 13.35 In Example 12.93 we dealt with the problem of approximating the
1
integral/ g(x)dx,where g(x) = et By means of (13.32.a) withm = 2andn = §

0
we got 1.46263 . .., whereas the true value of the integral is

1
1 :=/ e dx = 1.4626517459071816088 . . ..
0

If we still consider n = 8 in formula (13.32.a), with m = 4, we get the value

1

1 1
I~TE+|— ! 3| =1.4626518.. .,
8+[ nxef T noxet |,
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which is thus an improvement of two more exact decimals, with a total of 6 exact
decimals. We now wish to obtain the value I, with an error below 10730, by means
of (13.32.a) with m = 8. We have

¢® (x) = 13440¢" x2 + 680" + 256¢* x% + 3 584¢* x° + 13 440¢* x*,

so that ||g® | Lxq0.17) = (13440 + 680 + 256 + 3 584 + 13440) = 32400e. If in
(13.32.a) we wish that |eg(n)| < 107, it is sufficient that

1 By 1 32400
Hs 1o 400e = B8 L 35 4000 = 32900 530,
81 1 8l nd 1209 60078

or, equivalently,

32400e x 1030 "/* 3
n> (22T ) = 100092 x 534 2 A 4052.98.
1209600 7

By choosing n = 4053 we get the approximated value of 1

3
g()

1 1 1 '
I~TS 4+ | — / _ ) a| _
nt [ 12228 T 7200 30240055 T T209600°% |,

— 1.462651745907181608804048586856988155128887 . . .,
(13.35.2)

whereas I =1.462651745907181608804048586856988155120870 . . .: 38 decimals
are now correct. We actually obtained an approximation up to 10738, O

13.3.2 The Trapezoidal Method of Order m

Similarly to what we established in Theorem 12.101, we now want to show that it is

possible to drop the term /" [g(m*”]i in (13.32.a), with no essential loss of sup-norm
precision in our estimates.

Example 13.36 (A naive estimate of R,,—; in terms of f) Let m > 2 be and
f € €"(la, b]). The Euler-Maclaurin formulas (13.15.a), applied at orders m — 1
and m, yields

b m—1 B .
S rw = [ sedet XL R
a i=1

a<k<b

b m B; .
= / feydx+ 2 =[] 4 R
“ i=1
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whence the equality

B pm-npp B " n
Ryt =Ry+—[f""] =Ru+—1[ f™xdx. (13.36.a)
m! a m! J, -~

The estimate of R, in (13.15.b) yields
Mm m
|Rn| < ﬁ(b — )|l F "L (ta.on»

where (,, = || By, (x) || 2= (0,17)- It follows from (13.36.a) that

Um + | B | -
IRyu—1] < T(b — )l " Nl (ap)- (13.36.b)
Since | B, | < w, we get
[Ry—1] < W(b =)l " N e ta.o)- (13.36.c)

O

We show now that, actually, we can halve the upper estimate in (13.36.c). The
following smarter estimate of the remainder in the Euler—-Maclaurin formula of order
m — 1 holds if one assumes that f is of class €.

Proposition 13.37 (The reduced Euler-Maclaurin formula) Let f € €™ ([a, b)),
withm > 2, and a, b € N. Then

"
> K =EMy_ 1 (fila D) + Ryt [Ru—1] <~ = )lf ™ lloa b))
a<k<b ’

(13.37.2)

where i, = || By (X) |2~ (0.17)-

Proof. Let R,, be the remainder in the Euler—Maclaurin formula (13.15.a). As in
(13.36.a2) we get

_ Bt pm-1ypt
Rm—l - Rm+m[f ]a

_

m!

b B b
/ B, (x — [x]) £ (x) dx + m—"j / f™x)ydx  (13.37.b)

m!

b
= i/ (Bu +(=1)"*" B,y (x — [x]) £ (x) dx.
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If m > 3 is odd, then B,, = 0 and hence by (13.15.b)
Mm m
[Rn1l = Rnl < =26 = )|l £l ta,p-
m:
Assume now that m = 2¢ is even; then from (13.9.b) it follows that the term

Boy +(=1)2*! By (x — [x]) = By — By (x — [x]) has a constant sign. We are thus
allowed to use the 2nd Mean Value Theorem 12.97: there exists & € [a, b] satisfying

b b
/ (Bae —Boe(x — [x])) 0 (x)dx = £ (&) / (Bar — Bay(x — [x])) dx.
’ (13.37.¢)

Now, B, | (x) = (2€ 4 1) B¢ (x), so that

b 1 bh—
/ Bog(r — [x])dx = (b — a) / Bog(x) dx = 35— (Bor1 (1) = Bag1(0) =0,
a 0 £+ 1

dueto the factthat By¢41 (0) = Byyi1 (1) = Bygyy = 0. Therefore, thanks to (13.37.c),
(13.37.b) yields

(26) b B
|Rae-1] = % / By dx’ =1/20®I®b —a) '(22;'
Bl b (1337.4)
2 b — eoy M, @0
= (2@!(19 Al f oo = (%)!(b N F %o 0

Remark 13.38 Ifm > 2iseventhenB,,_; = Oand u,, = | B, | (see (13.9.b)): there-
fore EM,,,_(f; [a, b]) = EM,,_>(f; [a, b]) and (13.37.a) becomes:

B,
> fk) =EMyu o(fila,b) + Ry-1. |Ruoi| < | — L6 = 1™ gy

|
a<k<b :

We can now state, and easily prove, the generalization of the trapezoidal method.

Theorem 13.39 (Trapezoidal method of order m) Let g € €™ ([«, B]), with o <

B e Randm > 2. For everyn > 1, set h,, = p a’ one has:

n


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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8 i
/ g0 dx =T =3, 7ol [¢7"], A-enaa (0,
o i=2
tm (B — )"
lem—1(n)] < —”’n—ng( Nzeqapy,  (13.39.2)
where py, = || By (X) || =0, 1))-

Remark 13.40 If m = 2¢ > 4 is even, then B,,_; = 0 and (13.39.a) becomes

B 2¢-2 B p
/ g(x) dx = Tng - Z ! hi’ [ - 1)](! + 82[—1(”)7
o i=2
| Bae | (B — a)*"!
|82£ l(n)| = (ZZ)' I/ZZZ ”g(zz)”]‘w(m’ﬂ]).

Remark 13.41 1If one does not care for the estimates of the remainder terms, the
formula (13.39.a) of order m is exactly the approximation formula (13.32.a) of order
m — 1. The difference between the two formulas relies on the estimate of the remain-
der ¢,,_1(n). The advantage of (13.39.a) of order m with respect to (13.32.a) of order
m — 1 is due to the fact that the further regularity of f ensures in (13.39.a) that

1
Em—1(n) =0 (—) as n — 400, whereas in (13.32.a) we are just supposed to
nm

know that ¢, _(n) = O as n — +00. Nevertheless, the formula (13.39.a)

nm—l
of order m is less precise than (13.32.a) of the same order m. Indeed the upper bound
of the estimate of ¢, (n) in (13.39.a) is bigger than that of ¢,,(n) in (13.32.a):

1w (B _a) U (B — )]
Vo (P~ / g @ldx = 22 By,

and the inequality is usually strict, as we noticed in Remark 12.23. Thus, for a given
B
m > 1, we may approximate the integral g(x)dx by means of the following

o
formulas, in an increasing order of precision:

1. The approximation formula (13.32.a) of order m — 1;
2. The trapezoidal method formula (13.39.a) of order m;
3. The approximation formula (13.32.a) of order m.


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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We prove Theorem 13.39 following the lines of the proof of Theorem 13.32 by
replacing the Euler—-Maclaurin formula (13.15.a) with the reduced formula estab-
lished in Proposition 13.37.

Proof (of Theorem13.39). Let f(t) = g(a + th,), t € [0, n]. The change of variable

X =« + th, yields
B n
/ (o) dx = h, / £y,
o 0

Now (13.37.a) applied to f on [0, n] gives

m—1

n Bi . n
/0 fydt= > f(k)—zi—![f(’ D1 = Rt (13.41.2)

0<k<n i=1

with i
|Rm—l| = m_”;n”f(m)”Lw([a»b])‘
We now write (13.41.a) in terms of g. Fori =1, ..., m — 1 we have
i—1)1" i—1 1
[0y =m0
Moreover

1L N asn = Ay 18 ™ g

Equation (13.41.a) thus becomes

1 B m—1 Bi ‘ )
) swdx= ( > g+ = [g]ﬁ) 2 [¢"]) — R,

O<k<n i=2
(13.41.b)
with

w Um
|Rn—1] < ﬁmnllf( Niegapy = m—nhmﬂg('")llm([a B)- (13.41.c)

By multiplying by /,, both members of (13.41.b) we get

B m— 1B P
/ g dx =T = > — iy [¢"7], = bRy
o i=2 i!
Set ¢,,—1(n) = —h, R,,—1, from (13.41.c) the following estimate holds:
lem—1(0)] = hp|Rn—1] < l}:" nhy g™ | oo rapy) = Ml%“ ot gy O
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The special case of Theorem 13.39 with m = 4 is known as the Hermite rule

1
it follows directly from (13.39.a) by taking into account that B, = & B; =0 and

1
s =|By]| 30
Corollary 13.42 (Hermite’s rule) Let g € €*([a, B]) with a < B € R. For every
B—a

n>1,seth, = , the following formula holds:

B—a)

4
20 llg" )||L°°([a,/3])~

(13.42.2)

B 1
/a gx)dx =T — Ehﬁ [€]° +e3tm), le3(m)] <

Remark 13.43 Tt is worth noticing that the estimate in Hermite’s formula (13.42.a)
is one fourth of the upper estimate of the remainder of the most popular Simpson’s
rule [4].

Example 13.44 We use Hermite’s rule (13.42.a) in order to approximate the value of

10 1
1 ::/ X sin (—) dx,
1 X

1
with an error at most equal to 10719, Set g(x) = xsin (—), 1 < x < 10. Since
X

@ 1. /1 8 1 12 . (1
gV(x)=—=sin{—) — —cos{—) — —=sin{ —},
x7 X X0 X x5 X

then [|g® || zq1.109 < 1 + 8 + 12 = 21. In order to be sure that |e3(n)| < 1071 in
(13.42.a) it is enough that

95 21 % 95 x 1010
21 x <107, a> ]2 X0 003716
7201 720

By choosing n = 2038, we obtain the following approximate value:

92

B 0E [¢'], = 8.8527357087656. ..,
X

~ T8
I~ T2038 -

whereas I = 8.8527357087640. . .. O
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13.4 The Asymptotic Formulas of Euler-Maclaurin
of Order m

In Sect. 12.5 we studied the first-order and second-order tests for the convergence of
400

the series Z f (k). Here we give the corresponding test of order m.
k=0

13.4.1 The Euler—-Maclaurin Asymptotic Formulas of Order
m and the Euler Constant of a Function

Let us recall (see Definition 12.58) that, for a given locally integrable function f :
[a, +o0o[— Rand n € N5,, we set

v o= Z f(k)—/nf(x)dx, Vn € N.

a<k<n

Whenever the sequence (y,if ) converges to a real number, its limit, denoted by yf s
is called the Euler constant of f.

The asymptotic formula of order m > 1 for a function f holds whenever f is
of class at least " and if either its derivative £ is summable or its derivative
f™=D is definitively monotonic. The Euler constant of f exists under the more
severe conditions that f (m) is summable and the limits f D(00),i=0,....,m—2
are finite.

Theorem 13.45 (Criterion of order m for the existence of the Euler constant and
Euler—-Maclaurin asymptotic formula) Let f : [a, +0o[— R be of class €™ for some
m > 1landa € N.

1. If f'" e L'([a, +0o0|) there exists a constant C,‘f, satisfying

n m—1 . '
> W= [ serdr+ Y 2w+
a i=1

a<k<n (13.45.a)
+o00
+0</ |f(’”)(x)|dx) n — 4o00.

One has "D (oco) € R; assuming further that, for i =1,...,m, the limit
fi=1(00) belongs to R, the Euler constant v/ of f is defined and it is given by


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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m—1

B, ..
f—cf Lop(i=1)
y _C’"+Zl:i!f (00).

Moreover for n € Nx, we have the following estimate of order m of y'

foo Bi [ -] o [T
rl =l + 2 [ emt, feml < 22 [T 17 Goa
i=1 s Jn

(13.45.b)

1. If ™=V is bounded and definitively monotonic then f™ € L'([a, +o0l), and
(13.45.a) may be rewritten as

n m—1 5 .
> @ = [ sedx+che X 200+ 0 (1700 - £ D)
¢ i=1

a<k<n
(13.45.¢)
asn — +o0.

Moreover in the estimate (13.45.b) of v/ we have
K  om— m—
lem (] = =70 00) = f7P(00)].

2. If £V is unbounded and definitively monotonic then

n m—1 ;
S fw= [ fwdxt ¥ 2V + o (5 V)
¢ i=1

a<k<n
(13.45.d)
asn — +oQ.

Remark 13.46 1. Notice that in (13.45.a) the remainder tends to 0 as n — +00:

+00

400 n
lim | £ (x)| dx =/ | £ (x)| dx — 11111 / | £ (x)|dx = 0.
a n——+00 a

N
n—+oo J,

2. AtPoint 2 of Theorem 13.45 the remainder is a “big O” of the last term f =1 (n)
of the Euler—Maclaurin expansion.
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Proof (of Theorem13.45). 1t follows from the Euler—-Maclaurin formula (Theo-
rem 13.15) that

n m Bl ) .
Z f(k):/ f(x)dx+zi_'[f(l—l)]a+
a i-1

a<k<n
(_1)m+1

+
m!

/ "B — [¥) £ (x) dix.
‘ (13.46.2)

1. Assume that f e L'([a, +-00[): since B,,(x — [x]) is bounded on [a, +oc[,
then also B,, (x — [x]) f""(x) € L'([a, +00[). From

/ ” B, (x — [x]) f™(x) dx =

+00 +oo
= / B, (x — [x]) f ™ (x) dx — / B, (x — [x]) £ (x) dx,

we get

> f(k)=/ f(x)dx-i-D,{,+Z%f(i_l)(n)+em(n), (13.46.b)
a i=1

a<k<n

where we set

D= C [ - tp - 3B v
T m) . " — ! ’
. (_l)m /+OO )
em(n) = ' B,(x —[x]) f" (x)dx. (13.46.c)
m! n
NOW +00 +00
lem ()] < %/ | (x)|dx = O (/ If(’")(x)ldx).

Moreover, it follows from Lemma 12.57 that £~ (c0) is finite and that

+00 +00
£y = f 0 (00) — / M @ydx = "D (o0) + 0 ( / I.f(’”)(x)ldx)

: : Bm .
for n — +oo. Then, equation (13.46.b) with C}, = D}, + —% [~ (00) yields
m:
(13.45.a).


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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If, moreover, f@~Y(c0) e R fori =1,...,m — 1 then passing to the limit as
m—1

B;
n — +o0 in (13.45.a), we get y/ = C}} +Z LD (00),

i=1
From (13.46.a), for every n € N>, we have

m

m+1 n
ZE V] + & ’1; / B, (x — [x]) f "™ (x) dx.

i!
i=1

By passing to the limit as n — 400 in the above equality we get

d (—1!

Bi 1) oo oo
yli= tim oyl =2 SV +T/a B, (x — [x]) f ™ () dx.

n—+00
i=1

We thus obtain that

m

Bi i—
v =l =2 L e,

i=1

with
(_ l)m-H

Em(n) = m!

o0
[ But = 1xn s ax.
The estimate of &,,(n) follows directly from the fact that 1, = || B,, (x) || L j0,17)-
I’. For sure f™ e L'([a, +o0[): indeed, if £~ is monotonic on [b, +oo[ for
some b > a, then

n b
lim / | £ )| dx:/ || dx + | £ P (00) = f Vb))

n——+00

is finite. The assumptions of Point 1 are thus satisfied; moreover in (13.45.a) we have
that for eachn > b

+00
/ @) dx = 1 £7 D (o0) — FT D)),

and therefore (13.45.c) follows.
2. Assume that £~ is monotonic on [b, +oo[ for a suitable b > a. Forn > b we
have

/n | (x0)| dx = ’/n ™ (x) dx
b b

= 1" Vn) — D). (13.46.d)
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We deduce from (13.46.a) that

I G- (_])m+l n -
D f= / f(x)dx+Dm+2 o] T/b By (x =[x f ™ (x) dx,

a<k<n

where
C_1)m+l

f—
by = m!

b
/ By (x — [xr]) £ (x) dx.

Now, since f"~1 diverges at infinity, any constant is O (f"~" (n)) for n — +o0;

in particular
m

B; i _
D=3 % @ = 0",

i=1
Since £ has a constant sign on [b, +o00[ we get

I’L m

—1 m+1 n
'( n)r /}, B (x = DS ™ () dx| < 2 £ D) — £V D)) = 01" ()

as n — +o00, whence (13.45.d) follows. O

As applications we compute the Euler—Mascheroni constant and the asymptotic
expansion of the harmonic numbers H,,.

Example 13.47 (The Euler—Mascheroni constant y, part IlI) By means of the
second-order approximation formula (12.65.b) we got, in Example 12.68, with
n = 50 the first 8 decimals of the Euler—Mascheroni constant y. By applying, again
with n = 50, the approximation formula (13.45.b) of order m = 4 with f(x) = —
we obtain

1 1., 1
v 2y =S IS5+ 5 (s — 70 [r9% =

_4347609509229065787892880539
~968451407576873970750000000

—log 50 = 0.57721566490127 . . .,
(13.47.a)

whereas y = 0.57721566490153 . . .. O

Example 13.48 (Asymptotic expansion of H,) In Example 12.68 we showed that

11 1 1
= Z —+—=10gn—|—y+—+0(—2) n — +00,
k n n

2n
1<k<n


http://dx.doi.org/10.1007/978-3-319-03038-8_12
http://dx.doi.org/10.1007/978-3-319-03038-8_12
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where y is the Euler—Mascheroni constant. For m = 9, (13.45.c) applied to f(x) =
1

—,x>1,and C} = y yield

X

n 8 .
S f0 = [ fedsty+ Xm0 (F0m) . s o,
a i=1

1<k<n

. 1!
Since f@(x) = (—l)ll.— we get
xit+l

8
1 B 1 1

I<k<n i=1

o 1 1 1 1
—1 L - o(=). .
Y T T 12w T T20n% 25246 T 24058 T (n9) e

By adding 1/n to both members of the above inequality we thus obtain the following
asymptotic formula for H,:

I 1 1 1
Hy =1 LI _ o(=). :
R Y T 12w T 12008 25245 T 24008 T (n9) " e

The very same reasoning shows that, for every m > 2 we have

1 B; 1
H, =logn+y + — — ——+0
2n

— , n— +o0. O
1 n'

nm+1
2<i<m

13.4.2 Series: The Integral Test and the Approximation
Formula of Order m

We present now the following version of order m of the integral test for the conver-
gence of a series stated in Corollaries 12.78 and 12.84.

Corollary 13.49 (The integral test of order m) Let f : [a, +oo[— R be a function
of class €" (m > 2, a € N) and such that:


http://dx.doi.org/10.1007/978-3-319-03038-8_12
http://dx.doi.org/10.1007/978-3-319-03038-8_12
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o The limits f(i)(oo), i=0,...,m—2, are finite;
o £ e L'([a, +o0]).

The following properties hold:

> +00
1. The series Z f (k) and the generalized integral f(x)dx have the same

k=a a
behavior (both convergent, divergent or do not exist);

o0
2. If the series Z f (k) converges, then for every n in N=, we have the following
k=a
approximation of order m

&9 +00 U Bi . o
D2 fR =2 fE+ [ f@dx+ 2 [V e,
k=a a<k<n Z i=1 :

+00
|8m(n)|§%/ [ £ (x)|dx, (13.49.a)

where [y, = || By (X))l 0,17

Remark 13.50 Notice that, if £~V is monotonic on [b, +oo[ for a suitable b > a,
then the fact that £~ (co) € R is by Lemma 12.57 equivalent to the property that
™ e L'([a, +o0[); moreover in (13.49.a), thanks to Lemma 12.25, we have

lem ()] < % |f™ D) — £ P(co)|, n=>b. (13.50.2)

Proof. 1. From Theorem 13.45 the sequence

¥ =( > o - / f(x)dx)

a
<
a<k<n n

converges to y/ € R. Therefore the sequences( Z f (k)) and ( / f(x) dx)

a<k<n

are both convergent, divergent or do not admit limit. Now, if ( / f(x) dx) does
a

n

X
not admit limit or diverges, then also lim / f(t)dt does not exist or diverges.
x—>+oo [,


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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If (/ fx) dx) converges, then f(oco) =0 and hence also liril / f(t)dt
a X—>+00 a

converges (see Pronblem 12.15).

2. It follows from (13.24.a) that, for alla < n < N, we have

N m Bi )
> flo= f(k)+/ f(x)derZi—,[f(””],l,ersm(n,N),
n i=1

a<k<N a<k<n

(—1ymt
with g, (n, N) = ——
m! n
the generalised integral of f exists on [n, +00[: by passing to the limitas N — 400

we get

B,,(x — [x])f(”‘) (x) dx. We know from Point 1 that

+00 400 m B ) o
D fo= ] f(k)+/ f@yde+ 3 = [FOV]T + entn),
k=a n i=1

a<k<n

(_1)m+1

+o00
' / B, (x — [x]) £ (x) dx. The conclusion follows. 0O
m! n

with €,,(n) =
Example 13.51 (The series ¢(3) and Apéry’s constant) In Example 12.87 we com-
puted the approximate value of Apery’s constant ¢ (3) up to an error of 107; in that
case we used the approximation formula of order 2, namely (12.84.a). Now, imagine
you are in the middle of the sea with this book, a pocket calculator and no access
to software or internet. For some reason (the Riemann ¢ function almost certainly
has some useful applications in navigation) you need to calculate Apery’s constant
up to an error of 10~', In order to minimize the number of summands you are led
to solve the problem by means of some high order Euler—Maclaurin approximation
formula: observe that the derivatives of f(x) = 1/x3,x > 1 become smaller and
smaller. Let us try the formula of order 8: it follows from Remark 13.50 that, for
n > 1, the remainder eg(n) in (13.49.a) satisfies the inequality

IBs| | ) ™ _ 1 @
sl = == | £ ) = f7(00)| = 35— [F7 )]
) . (=D (i +2)! 1 9!
(i) _ S = O T
Since f%(x) = > P then |eg(n)| < 608l a0 = 20,10° therefore

1/10
|eg(n)] is less than 10~ whenever n > (%) 10%/2 ~ 26.16. By taking n = 27

we get the following approximation:


http://dx.doi.org/10.1007/978-3-319-03038-8_12
http://dx.doi.org/10.1007/978-3-319-03038-8_12
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+00
(A~ D fl+ | fdet
1<k<27 2
! Lo 1o I 6 ! o l”
+[ 2Tl Tl a0z T 12006007 »”
= > Ly
= 2T axon
kT 2x2T
[ L, Lo, 567 1%
2x3 4x* 0 12x6 12x% 0 655x10 ],
_ 2561097446355634460847287110189 1 1
T 2131858131361319942957376000000 2 x 272 ' 2 x 273
1 1 1 567

Y a2l 12x278 T 12X 27 655 x 2710

= 1.20205690315959428263 . . ..

Notice that £ (3) = 1.2020569031595942854 . . .. O

The following example shows how to deal with (13.49.a), if one cannot precisely
+00

compute the integral f(x)dx.
n
[o¢] .
. sin vk
Example 13.52 We want to compute the sum of the convergent series Z 2
k=1
whose partial sums are depicted in Fig. 13.5, with an error below 1072,
sin 4/x
Set f(x) = X = 1. From (13.49.a), with m = 4, for every n > 1 we get
X
Fig. 13.5 The values of the s/
n : k 1.288
sum Z SH;({ as n varies [
k=1 1.286 |

from 1 to 300
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Z Zf(kH— f(x)dx+|:——f+ —f - f<3>] + &4(n),

k=1 1<k<n

1 +o0
lea(n)] < m/ | F@(x)|dx.
(13.52.2)

Now (here a CAS helped us quite a lot)

((x = 207)x + 1920) sin (v/x) + +/x(22x — 975) cos (/X)

(C)) —
fra = 16x6

By means of some very rough estimates it follows that for x > 1

((x +207)x + 1920) + /x(22x + 975)

“ <
9] < -
_22x7 4 X%+ 207x 4 975/x + 1920
N 16x°
(22 + 14207 4+ 975 + 1920)x> 3125
16x6 T ol6x*T
We thus get
1 3125 625 1
< — dx = < —. 13.52.b
leal = 735 16x* T 691203 = ( )
. . 1nf
We are not able to compute explicitly the integral / dx that appears in
x2

(13.52.a); in view of (13.52.b) we wish to estimate its value with an error that is at

1
most O ( ) for n — +o0. The change of variables y = /x yields

n3
+00 1 +00
/ Sm;/;dx = 2/ y3sinydy. (13.52.¢)
n X

n

Repeated integration by parts yields

/y_3sinydy =—y3cosy —3/y_4cosydy,
—4 I -5 .
/y cosydy =1y smy+4/y sinydy,

/y’5 sinydy = —y > cosy — S/y’6 cosydy,
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/y_ﬁcosydy=—y_ﬁsiny+6/y_7sinydy.

It follows that

sin
/ 3y dy =—y 3cosy—3y *siny+ 12y cosy + 60y Osiny + 360/ y 7 sinydy.
y

We deduce from (13.52.c) that

7

n
;— To),

/+oo Sin;/;dx _ 2cos\/ﬁ +6sinﬁ _24cosﬁ B 12Osin
n n

X n3/2 n2 132

with

o 120
oo <720 [y dy=—".
N n

n

Thus (13.52.a) becomes

00 1 1 1 >
0 — k 1 e e )
;f() lénﬂH[ SEARTY AT A
2“'053/*2/5 + 65“1;/5 . 24C085f - 1208“1;/z +o(n) + ea(n),
n n n "
with
120 1 121
lo(n) +e4sm)| = — + 5 =—.
n n- n-

121
Now — is less or equal than 10~ whenever n > 121'/3 x 10 ~ 49.5. For n = 50

3
n

we thus get, with an error certainly within 1073,

- 1 1 1 o

k) ~ k - — - —f®
PRI >+[ LT T A s
k=1 1<k<50
n 2cos /50 6sin /50 _ 24cos /50 — 120 sin /50
503/2 502 505/2 503

= 1.28266.... O
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13.5 Problems

Problem 13.1 Prove that the Bernoulli polynomial functions B,,(x) with m > 2
have the following properties:

1. If m is divisible by 4 then there exists a real number a such thata < 1/2 and

B,.(x) <0on]|0,al;
B,,(x) >0onla,1—al;
B,,(x) <Oon]l —a,l].

2. If m — 1 is divisible by 4 then

B,,(x) <0on]0, 1/2[;
B, (x) > 0on]l1/2, 1.

3. If m — 2 is divisible by 4 then there exists a < 1/2 such that

B,.(x) > 0on|0,al;
B,,(x) <Oonla,1—al;
B,,(x) >0on]l —a,l].

4. If m — 3 is divisible by 4 then

B,,(x) > 0on]0, 1/2[;
B, (x) <0Oon]l/2,1].

Problem 13.2 Find the Euler—Maclaurin expansions of order 2 and 4 of f(x)
1 /)c3 on [1, 100], and give in both cases an estimate of their difference with S :=

1
2 &

1<k<100

Problem 13.3 Let f : [a, +oo[— R a function of class " for some m > 1, and

+00
a € N. Suppose moreover that the integral / | £ (x)| dx exists and is finite and
a

o0
that the series Z f (k) converges. Prove that there exists a constant c,{;, depending

k=a
only on m and on f, such that

/n f(x)dx —(chi —Zl?—:f("_”(n))e 0 forn — 4o0.
p i!

i=1



Chapter 14

Cauchy and Riemann Sums, Factorials,
Ramanujan Numbers and Their
Approximations

Abstract After a short recall of the basic asymptotic relations “big O” and “small

0”, we consider the Cauchy sums of the form Z g (—a ,where @ > 0;inthe case
n

a<k<n
where « = 1 these are strictly related to the celebrated Riemann sums. After having

learned how to approximate such sums, we apply the results to the approximation of
sums of the form Z e~*/" this involves of course the Gauss integral. The second

0<k<n
n!

(n —k)lnk’
with uniform estimates on families or sequences, this analysis is by far the most
difficultin the book. The Ramanujan Q-distribution appears in many applications: for
instance if n = 365 then Q (365, k) is the probability that at least two people among
k are born the same day. One of the goals of the chapter is to approximate Q(n, k)
as n goes to infinity. In addition, we will meet sums of the Ramanujan distribution
Q(n, k) as k varies. For the reader who is mainly interested in the applications we
recommend looking at the main claims, without delving into the proofs.

part is dedicated to the Ramanujan Q-distribution Q(n, k) = Dealing

14.1 A Revision of the “Big O” and the “Small 0”
Asymptotic Relations

We recall here the basic properties of the asymptotic relations among functions and
sequences: the readers, depending on their background, can either skip it or come
back to it later, if necessary.

Definition 14.1 Leta € R U {Zo00} and let f, g be two real valued functions defined
in a deleted neighborhood of a, i.e., a neighborhood of a minus {a}. (The neigh-
borhoods of 400 are the subsets of the real line that contain open intervals of the
type ]c, 400, while those of —oo are the subsets of the real line that contain open
intervals of the type ] — oo, c[).

© Springer International Publishing Switzerland 2016 579
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UNITEXT - La Matematica per il 3+2 103, DOI 10.1007/978-3-319-03038-8_14
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1. f is “small 0” of g for x that tends to a if there exists a function o defined
in a neighborhood W of a, with lim o (x) = 0, such that f = og; in this case

X—a

one writes f(x) € o(g(x)) or f(x) = o(g(x)) for x — a.If g # 0 in a suitable
deleted neighborhood of a, then f(x) = o(g(x)) for x — a if and only if

o
m =
x—a g(x)

0.

2. f and g are asymptotic for x thattendstoa if f(x) = g(x) + o(g(x)) forx — a;
in this case one writes f(x) ~ g(x) for x — a. If g # 0 in a suitable deleted
neighborhood of a, one has that f(x) ~ g(x) for x — a if and only if

LW
1m =
x—a g(x)

1.

3. fissaid to be “big O” of g for x that tends to a if there exists a deleted neigh-
borhood U of a and a constant C > 0 such that

lf(0)] = Clg)| Vx eU;

in that case one writes f(x) € O(g(x)) or f(x) = O(g(x)) forx — a. O

Remark 14.2 Traditionally it is common to write f(x) = o0(g(x)) or f(x) =
0O(g(x)). It would, however, be preferable to use the notation with the sym-
bol “e”! in place of the equal sign “=" given that use of o(f(x)) or O(f(x))
does not indicate a single function but rather a set of functions, and the nota-
tion using the equal sign may well result in an error. Note that if g(x) = o(f(x))
and h(x) = o(f(x)) for x — a one has g(x) — h(x) = o(f(x)) for x — a and
not, as the equal sign seems to suggest, g(x) — A(x) = 0: for example, x> = o(x),
x* = o(x) and x> — x* = o(x) for x — 0, but x> — x> # 0 in every deleted neigh-
borhood of zero. We generally do not adopt this “more reasonable” notation out
of respect for a well-consolidated traditional terminology. Nevertheless, following
the “€” notation, we prefer to write g;(x) + o(f1(x)) € g2(x) + o(f2(x)) rather
than g;(x) + o(f1(x)) = g2(x) + o(f2(x)) (and analogously for the big O) when
the relation is not symmetric, as in

x +o(x) Csinx +o(x?) x — 0.

exists and is finite, then one has

Example 14.3 1f lim 7%
x—a g(x)

@1
mm =

c € R.p;
x—~a |g(x)| =

IThis is the choice made in the book [1].
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therefore there exists a deleted neighborhood V of a such that

Lf ()]
lg ()]

Thus, | f(x)] < (c 4+ 1)|g(x)]| for each x € V and so

€le —1,c+ [ forevery x € V.

f(x) = 0(gx)) forx — a.

In particular, if f(x) = o(g(x)) or f(x) ~ g(x) then f(x) = O(g(x)) forx — a.
O

Example 14.4 A function is O(1) for x — a if and only if it is bounded in a deleted
neighborhood of a. O

In what follows we will make use of these simple properties, whose proofs follow
immediately from the definitions.

Proposition 14.5 Let f, g, h be real valued functions of a real variable defined on
a deleted neighborhood of a € R U {£o0}.

1. If f(x) = O(g(x)) for x — a and liin g(x) =0 then

lim f(x) = 0.
2. If f(x) = 0(g(x)) for x — a then
F)h(x) = 0(g(x)h(x) S o(g(x)h(x)) x —a.
3. If f(x) ~ g(x) for x — a then
J)h(x) ~ g(x)h(x) x—a.
4. If f(x) = O(g(x)) for x — a then

F)h(x) = 0(g(x)h(x) S O(g(x)h(x)) x —a.

In the asymptotic estimates that we will discuss we will make use of the following
simple expansions, which we recall here for completeness.
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Proposition 14.6 Letn € N.

e Expansion of e* with remainder in the form “small 0”:

2

2!

n

ex:1+x+ ++x_'+0(x,,) X—)O.
n:

e Expansion of log(1 + x) with remainder in the form “small 0”:

2

X n—lxn n
log(1+x)=x—?+---+(—1) — 4+ o(x") x — 0.
n

e Expansion of e* with remainder in the form “big O ”:

2 xn—l

x—+---+—'+0(x") x — 0.

X:1
e =ltxty n—1)

e Expansion of log(1 + x) with remainder in the form “big O”:

2

X ni X"
logl+x)=x——+---+ (1
2 n—1

-1

+0x") x—0.

We limit ourselves to the observation that the expansions in the big O version
are a consequence of the more refined small o versions; indeed, one obviously has
x" 4+ o0(x") € O(x™).The advantage of using the big O version consists in not having
to pay attention to the coefficient of degree n which is neglected; such a series
expansion is often sufficient for the applications we make in our discussions.

One also has quite analogous notions that apply to sequences, where one makes
obvious appropriate minor adaptations of the above properties.

Definition 14.7 Let (a,),, (b,), be two sequences.

1. One says that a,, is “small 0” of b, for n — +o0 if there exists a sequence (c,),
converging to 0 such that
a, = c,b, VYn eN;
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in that case one writes a, = o(b,). If (b,), is definitively non-zero this is equiv-
alent to

2. One says that a, and b, are asymptotic forn — +o0 if
a, =b, +o(b,) n— 4o0;

in this case one writes a,, ~ b,. If (b,), is definitively non-zero this is equivalent
to

. a
lim — =1.
n—+00 b,

3. One says that a, is “big O” of b, for n — 400 if there exist a constant C > 0
and ng € N such that
lan| = Clby| Vn = no;

in this case one writes a, = O (b,,). m]

As we have already seen for functions, the asymptotic relations behave well with
regard to products of sequences:

Proposition 14.8 Ler a,, b,, ¢, be three sequences.

1. Ifa, = o(b,) forn — +o0, then a,c, = o(b,)c, = o(b,c,) forn — 4o00.
2. Ifa, ~ b, forn — 400, then a,c, ~ b,c, forn — 4o0.
3. Ifa, = O(by) forn — 400, then a,c, = O (b,)c, < O(b,c,) forn — +o0.

Example 14.9 Leta,, b, be two sequences and suppose that b, — 0 forn — +o0.
By Proposition 14.6 one then has

et = e¥el = e (1 + b, + O(by)) = €™ + b,e” + O(bye™)
forn — +o0. |

Proposition 14.10 (Substitution of the independent variable) Let f be a function
defined in a deleted neighborhood of O such that for some o > 0

f@) =0(@% t — 0.
If a, — 0 forn — 400, then
f(an) = 0(|an|a) n — +o00.

Proof. Let § > 0 be such that | f(¢)| < M|t*| for |t] < §. If m is such that |a,| < §
for n > n, for such n one has f(a,) < Mla,|*. m]
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Example 14.11 Let us verify that for every m > 1

1 m—1 1
e””:l—i—l/n—i—---—f-(/L‘i‘O( ) n — +00.

(m — 1)! nm

In view of Proposition 14.6 one has that

m—1
Folox—m e =0G™ x>0,
By Proposition 14.10 one then has
1 m—1 1
TN 110 Cuuipy 8 SN
(m—1)! nm

The following example is elementary, but we report it here since we will meet it
in the proof of some estimates involving binomials.

Example 14.12 Leta,, b, be two sequences such that, forsome @« > 0,a, = b, (1 +
O(1/n%)) forn — +o00. Thena, ~ b, forn — +4o0; indeed, for n — +o00 one has

ay zbn+ O(bn/na) gbn +0(bn) O

14.2 Approximation of Cauchy and Riemann Sums

Leta € N, @ > 0 areal number and g : [0, +00[— R a function of class &' or 6.
In this section we deal with the asymptotic estimates for n — 400 of

e Cauchy sums: namely sums of the type
k

Z § pr ;
a<k<n
e Riemann sums: namely sums of the type

1 [k
2. ¢ ly)
a<k<n

The problem is complicated both because sums do not preserve the asymptotic rela-
tion and because the number of summands increases with 7.
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14.2.1 The Case() <o <1

This case 0 < o < 1 will be the only one used in our future applications. Therefore,
omitting the reading of the other two cases will not undermine the understanding of
the remainder of the chapter.

Proposition 14.13 Let o €]0, 1[ and a € N. Let g : [0, +0oo[— R be a function of
class €', with both g and |g'| integrable in the generalized sense on [0, +oo[. Then

+00
Z g (i) = n“/ gt)dt +o(n*) n — +00. (14.13.a)
0

no
a<k<n

+00
In particular, lf/ g(®)dt # 0, one has
0

k +o00
Z g (—) ~ n"‘/ g(t)dt n — +oo.
n“ 0

a<k<n

Proof. Given n, we set f(x) = g(x/n%) for each x € [a, n]. The Euler—Maclaurin
formula (12.27.a) applied to f yields

> = [ rwax- IO g

ask<n (14.13.b)

= [ () a3 (e (o) e () + o
¢ (o) e

1o e
mn§5L|fuwu=§L
1—a

1 n l —+00
—2 |ﬂmms—/ g0l dr,
Z/a/,,u 2 Jo

which is finite since g’ is summable. One notes that g is bounded on its domain.

where

Indeed for each x one has g(x) = g(0) + / g’ (t) dt from which one sees that
0
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+00
lg(x)] < [g(0)] +/0 lg'(O)ldt =2 M

and therefore the term of (14.13.b) that follows the integral is bounded by a constant:

3l (o) = (52)

The change of variable t = x/n® yields

1 +00
VIR < M+ 5/ 18’0 di = 0(1) S o(n®) n — +o0.
0
(14.13.c)

/ g (i) dx =n“/ g(t)dr. (14.13.d)
a na a

/n®

Now

nl=« +00 a/n% +00
/ g(t)dt:/ g(t)dt—/ g(t)dt—/ g()dr.
a/n® 0 0 nl-«

Since 0 < a < 1 one has

a/n* +00
/ g®)dt =o0(1) :/ g(®)dt n — o0,
0 nl-a

from which it follows that

I—a

n +o00
n“/ g)dt = no‘/ g@)dt + o(n*) n— 4o0;
a 0

/n®
the desired conclusion is now immediate. 0O

Remark 14.14 The hypotheses of Proposition 14.13 are satisfied if, for example, the
function g : [0, +00o[—]0, +00[ is of class €', definitively decreasing, and inte-
grable in the generalized sense on [0, 4-00].

Indeed, the generalized integrability implies XETM g(x) = 0; moreover if g is

decreasing on [b, +ool, then

"+00 b +00
/ |g’<x>|dx=/ |g’(x>|dx+/h 18’0l dx

Ja a

b +o00 b
=/ Ig’(x)ldx—/b g/(x)dx=/ lg' ()| dx + g(b) < +oc.

+00
Moreover, since g(x) > 0 for every x > 0, one also has / g®)dt #0.
0
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14.2.2 The Case a2 = 1: Riemann Sums s

Let us now consider the case « = 1. The following result is a well-known conse-
quence of the fact that the integral of a continuous function g defined on [0, 1] is for
any a € N approximated by the sequence of Riemann sums

(x<()

The proof of next proposition is based on the trapezoidal method; in Problem 14.4
we ask the reader to look for a proof based on the expansions of Euler—Maclaurin.

Proposition 14.15 (Riemann Sums) Leta € N.
1. Ifg : [0, 1] = R is a function of class €, then

1
Z g (S) = n/ gx)dx + 0() n — +o0o. (14.15.a)
0

a<k<n

2. Ifg : [0, 11 = Ris a function of class €2, then

1
Z g(é)zn/ g(x)dx—l[g]é—ag(0)+0(l) n — +oo.
n 0 2 n

a<k<n
(14.15.b)

Proof. Fixn > aandset f(x) =g (f), one has
n
Z g(é)z Z fk) Vn>a.
n
a<k<n a<k<n
1. The first-order Euler—Maclaurin reduced formula (12.98.a) gives
" n—a_
D f0= [ f@dx+ Rom). IRy < == If .
a<k<n a

In terms of g we get
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> g(%) :/a"g(%) dx + Ro(n).

a<k<n

with |Ro(n)| < —— llg'llsc = O(1) as n — +o0. The change of variables ¢ = d
n
yields
k 1 1
E g (—) =n/ g®)dt 4+ O(1) =n/ g®)dt+0O(1) n— 4o0,
n
a<k<n a/n 0

a/n
due to the fact that lim n / g(®)dt = ag(0).
n——+oo 0
2. The second-order Euler—Maclaurin reduced formula (12.98.b) gives
" 1 n. .,
S £ = [ feodx = 300 = FO) + R, IR0 = 751
0<k<n 0
In terms of g we get
k "orx 1
>oe(z)=/ ¢(5) dx =36 — g0+ R,
0<k<n n 0 n 2

. n 1 . Loo(*
with [R100] = = [1g"lc = O () as n — +oo: indeed f7(x) = —g" ().
12n2 n’

n n

The change of variables ¢ = d yields
n

k ! 1 1
z g (_) = n/ gt)ydr — =(g(1) —g(0)) + O (—) (14.15.¢)
n 0 2 n

O0<k<n
as n — +00. Now we take into account the fact that the sums start from a. Notice
that . ' '
> g(_) => g(_)_ > g(—). (14.15.d)
n n n
a<k<n 0<k<n 0<k<a

Since, by the Mean Value Theorem,
1g(1) —g(0)] <t]lg'llc vt €[0,1],

we have ' :
VO<k<a g(—):g(O)—i—O(—) n — +oo.
n n
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By adding a finite number a of terms as above, we get
k 1
Zg —)=ag®)+0 |- n — +oo.
n n
O0<k<a
The conclusion now follows immediately from (14.15.c) and (14.15.d). O

Example 14.16 Applying (14.15.a) one obtains

1 b
~ dx =nlog2 .
Zl—i—k/n n/o T x = nlog n— +0o

0<k<n

For example, when n = 100 one has 1001log2 ~ 69.31. Relation (14.15.b) yields

>

O0<k<n

1 1 1
—nlog2+-+0(- .
Trijn Mogstgt (n) n oo

For example, with n = 100 we get

1 1
A 100log2 + - ~ 69.56.
) 1+ &/100 08ty

0<k<100

The real sum has value close to 69.57: using relation (14.15.b) in place of (14.15.a)
we have thus succeeded in gaining in precision. O

Example 14.17 Let us consider the sum

Z ok/100

5<k<100
The approximation furnished by relation (14.15.a) yields
1
> M0~ 100/ e dt =100(e" — &) ~ 171.83,
5<k<100 0
while that furnished by (14.15.b) gives
: 1
> M0~ 100/ e dt — E(el —¢% —5¢° ~ 165.97.
5<k<100 0

This latter approximation is closer to the true value of the sum which is approximately
165.87. O
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14.2.3 The Case o > 1 s

We conclude our study of Cauchy sums with the case o > 1.

Proposition 14.18 Leto > 1,a € Nand g : [0, 1] — R be a function.
1. Ifgis of class €' then

S ¢ (ia) — ¢ —a)+ O ( (3_2) n— +oo.  (14.18.a)
n n

a<k<n

2. If g is of class €? then

kY _ g0 g0  g0-ad)
a;ng (n_“) =8O —a)+ 5 -7t R

1
+0 (m) n— 4oo.  (14.18.b)
n

Remark 14.19 Notice that,if g is of class %2, then (14.18.b) implies (14.18.a). Let
us also point out that, since for all > 1, « — 2 < 2« — 3, then

1 1
a7 0 (n2a3) n = +00,

’
thus the term

a2 does really count in (14.18.b). Instead, the relevance of the terms
n—

80 gO)(a— a?)
2pe—1’ 2nv
ora > 3.

in (14.18.b) depends, respectively, upon the fact that ¢ > 2

Proof (of Proposition 14.18). Given the integer n, we put f(x) = g(x/n%).
1. The Euler—Maclaurin reduced formula (12.98.a) applied to f on [a, n] yields

Z fk) = /nf(x)dx + Ro(n), (14.19.a)

a<k<n


http://dx.doi.org/10.1007/978-3-319-03038-8_12

14.2 Approximation of Cauchy and Riemann Sums 591

where |
[Ro(m)] < 5(" — @) f lloo-

The change of variable t = x gives
nOt

l—a

/" fx)dx = /" gx/n%)ydx = n* /" g(t)dt. (14.19.b)
a a a/n“

Now, using the fact that |g(t) — g(0)] < t]|g||oc (Mean Value Theorem), we get
n'= n'— n? — g2
| @O sdr il [ =g

/n® a/n® 2n2

we have

I—a I—a I—a

/ ¢y di = / 20 di + / (5(0) — g(0)) ds
a/n® a/n® a/n®

1
(nhz) , n— 4o00.

Multiplying both terms of the equality by n* we obtain

n n 1
[ s = [ et =00 -0+ 0 (5

a

) n — 4+00.
(14.19.¢)

1 X
Moreover, since f'(x) = —g’ (—) we get
n“ nv

1 1
ne—1 < 0 ne—2 ’
and (14.18.a) follows.

2. Assume now that g is of class 4. Taking into account (14.19.b), the reduced
formula (12.98.b) applied to f on the interval [a, n] yields

( ) /f(x)d A f(")+R1<n)
(14.19.d)

=n* /ama g(t)dr + ; ( (na—a) -8 (:—Q)) + Ri(n),

Ry(n)| < ——

a<k<n

with

n—a. ., 1
|R1(ﬂ)| < 12n2a ”g ”oo =0 (W) n — —4o0. (14196)
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Since both a/n® and n' =

order Maclaurin formula

= n/n® tend to zero at infinity, by mean of the second-

g(t) = g(0) + g (0)t + O(t*) t — 0,

and by Proposition 14.10, we get
a Lo a 1
¢(5) =20 +g@% +0( ) n— +o,
n n n

n 1
g(n—)—g(0>+g(0>—+0( — 2) n — +o0.
Thus

g(a)_g("):g’(O)an;an-l-O(nzd%) n — +00. (14.19.1)

na
Again by mean of the second-order Maclaurin formula, we obtain

I—a I—a

n“/ gt)dt = n“/ (8(0) + &' (0 + O(t?)) dt
a/n® a/n%

22 1

= g(O)(l’l — Cl) + gl(o)n Znaa +0 (n2a—3)
’ 25/

=g(0)(n—a)+g(0) ag(0)+0( :

2ne—2 2n«

n — 4o00.

(14.19.g)
Rewriting (14.19.d) by taking (14.19.e)—(14.19.g) into account, we deduce

kY g0  d’g'(0) , a—n 1
Z 8 (n_) g(O)(n _a) R 2ne— 2 2n® +g 2n® +0 (n2a3)

a<k<n

_ g0 g0  ¢0)a—a’) 1
= g(O)(i’l — d) + 2}10‘72 - 2}’1“71 + e =+ [0 (m) n — +o0o.

n2a—3

Example 14.20 Let g(x) = 3x + 5. With the choice of @ = 50, a CAS easily yields

k 107" — 701°° 4 3n% — 3n — 126
Z E\ 30 ) = 2750

T<k<n

2048 2149 n50°
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which of course implies (14.18.b). In particular we have

k 1
> g(ﬁ)=5n—35+0(ﬁ) n — 400,

T<k<n
which is exactly (14.18.a). O

Example 14.21 Let g(x) = 3xlog(x> 4+ 1) — 67 cos(x) + 2x. Then g(0) = —67
and g’(0) = 2 so that by (14.18.b) we have

k 1 1 1

0<k<n

The approximation turns out to be here excellent even for small values of n. For
instance, for n = 5 we get

k
Z g (W) = —334.99999795199.. .. ,
0<k<5

whereas

1 1
—67 x5+ — — = = —334.99999795200. . . . O
58 59

1
Since, for o« > 1, — €0 (n) as n — 400, as an immediate consequence of
ne-
(14.18.a) we obtain the following asymptotic result.

Corollary 14.22 Leta > 1,a € Nand g : [0, 1] — R be a function of class €. If
2(0) # 0 then

o

S g (nﬁ) =) @ A (14.22.2)

a<k<n

Moreover, for o > 2 we get

k
Vez2 > g (n—a) =g —a)+01) n— 4oco. (1422b)

a<k<n
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Example 14.23 We provide an asymptotic estimate for Z ¢ ¥/"* The sum under

0<k<n

k
consideration is equal to z g (—2) where one has set g(x) = e¢™*. By (14.22.a)
n
0<k<n
such a sum is asymptotic to ng(0) = n for n — +-o00. For example, when n = 10,
carrying out the calculations, one finds that

> e~ 956,

0<k<10
while 10 is the value of the approximation. O

Remark 14.24 The result furnished by Proposition 14.18 justifies the intuitive idea
k

that, given o > 1, summing the terms of the type g (—) fork=0,...,n—1,all
na

of which are “close to” g(0), one obtains something close to ng(0). However, it

may escape one’s intuition that the validity of this result depends on the assumption

that g belongs to ‘51([0, 1]). Let us consider, for example, g(x) = ﬁ for x > 0,

and o = 2. Observe that this function belongs to %'(10, 1]), is defined in 0, but

1
g'(x) = ——= is not defined in 0. One then has

2%
k Vi
> ()= 3
0<k<n n® 0<k<n n
Now, by (12.103.a), from the continuity of g it follows that
k ! 2
Z \/an/ \/)_cdx'v—n n — 400
O<k<n n 0 3

and therefore

k 1 k 2
> Vi _ 1 > \/jw *3/’7 (14.24.2)
0<k<n n ﬁ0§k<n n

If relation (14.18.a) holds, then from (14.22.b)

> %%:Oxn—i—O(l):O(l) n — 400

0<k<n

is bounded, thus contradicting the relation (14.24.a): therefore, in this case, relation
(14.18.a) does not hold.
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14.3 The Gauss Integral

It will be useful to recall the value of the integral of Gauss, which gives rise to the
famous gaussian, the density of the normal variable in probabilistic calculus.

Lemma 14.25 (The Gaussian integral) The function e is integrable in the gen-
eralized sense on the interval [0, +oo[ and is

Moreover, for every sequence (a,) of positive terms one has

/ ’ e dx = JTE + 0 (e*“*%) n — 4o00.
0

+o0
#® Proof. Onsetting [ = / e~ dx, the reduction formulas for multiple integrals
0

y s +o00 , +o0 ,
/ e Y dxdy :/ e dx/ e Vdy =1
[0,4-00[x[0,+00[ 0 0

On the other hand, the change to polar coordinates also yields

400 /2
I* = / ey dxdy =/ / ,oe_”zdé’d,o =
[0,400[x[0,+00[ 0 0

+ +00
- z / ) 'Oeipzdlo = z _leipz = za
2 Jo 2] 2 . 4

JT

from which, since I > 0, I = -

yield

Furthermore one notes that if (a,), is a sequence of positive terms one then has

+00 5 . 00 /2 5
(/ e~ dx) =/ e dxdy 5/ / pe " dodp =
an [an, o0l X [an,+00[ a, J0O

2
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Hence

a 00 00
/ eV dx = / e dx —/ e dx = ? + 0(67”'2*/2) n — 4o00.
0

0

An

O

The following big O comparison test furnishes a criterion which will be useful to
us in what follows.

Example 14.26 Let g be continuous on [0, +oo[. If g(x) = O(1/x?) for x — +00
then g € L'([0, +-o0[). Indeed, one has |g(x)| < M/x?* for every x greater than a
suitable a € R; thus, for every b > a one has

b a b a b 1
/|g<x>|dx=/ |g(x>|dx+/ |g(x>|dxs/ |g<x>|dx+M/ S
0 0 a 0 a

Now

oo . b . 11 1
—2dx = lim —dx=lim (——+-) = -
a X b—+o00 J, x2 b—+00 b a a

b
exists and is finite; therefore the increasing function b +— / |g(x)|dx is bounded
0

and so its limit for b — 400 is finite. O

The following asymptotic expansions will be used in the sequel; they are based
on Proposition 14.13.

Corollary 14.27 Let ¢ > 0. One then has:

> el ~ @nlﬂ n — +00; (14.27.2)
0<k<n
> ke Flen ~ gn n — +o0; (14.27.b)
O0<k<n
> kPeken ~ ‘MT‘/En3/2 n — +o0; (14.27.0)
0<k<n
> kPeken ~ C—22n2 n — +oo. (14.27.d)

0<k<n
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Proof. 1. Having set g(x) = e™*"/¢, the sum under consideration coincides with
> +(ir2)
O<k<n \wiz)
Now, g is decreasing and of class € then since for any k € N
gy = e =0(1/x") x > +oo,

by Example 14.26 it is integrable in a generalized sense on [0, +o00[. In view of
Remark 14.14 and Proposition 14.13 one then has

—K2/cn k 2172 +oo
Z e = Z g i /0 g(x)dx 4+ o(/n) n — +oo.

O0<k<n 0<k<n

By Lemma 14.25 one immediately obtains

+00 +00 +oo </
/ g(x)dx =/ e/ dx = «/E/ e dt = cn’
0 0 0

whence (14.27.a).
2 . . . . .
2. Set g(x) = xe /¢, the sum under consideration coincides with

i % ()

O<k<n

2
Now g'(x) = (1 - 2x—) e=/¢ < 0 for x > /cJ2; since g(x) = xe /¢ =
C

o(1/x*) for every k € N, by Example 14.26 it is integrable in the generalized
sense on [0, +o0l.
By Remark 14.14 and Proposition 14.13 one then has

k +00
Z g (,117) = nl/z/ gx)dx +0(n1/2) n — 400
0

0<k<n
C e
=n'? [—ze_"z/‘] +o(n'?) n— +oo
0
cf

= +o(n'?) n — 400,

from which (14.27.b) follows.
3. The sum under consideration coincides with
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E()

0<k<n

where g(x) = x2e™'/¢, One verifies that the function g is definitively decreasing;
integrating by parts and using Lemma 14.25 one obtains

+0o0 1
/ g(x)dx = ZCS/Z\/E.
0

Thus (14.27.c) is then an easy consequence of Remark14.14 and
Proposition 14.13.
4. Having set g(x) = x3e™* */¢ the sum under consideration is

7 %+ m)

0<k<n

Since g is definitively decreasing and integrable in a generalized sense on
[0, +oo[, by Remark 14.14 and Proposition 14.13, one has

Z ke K/en ~ cp? n — +oo,

0<k<n
+o0
C :/ xle e dx.
0
Setting ¢ = x?/c in the integral one obtains

+00 /2 +00
C:/ (ct)y e~ 1712E— 2 dt = / te”"dt
0

2

R (B e

where

[\)

from which (14.27.d) follows. O

In (14.27.a) we have seen that, if ¢ > 0, the sum Z e K en g asymptotic to
0<k<n
Jern /2 forn — +oo. Inreality we obtain the same conclusion if we limit ourselves
to summing the integers k up to [n"], for a given r satisfying 1/2 < r < 1, in the
place of “up to n”.2

2For r = 1/2 the formula continues to hold, but we do not give its proof which makes use of a
different path of reasoning.
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Proposition 14.28 Let ¢ > 0 and r €]1/2, 1]. Then

z o—Rren V;”nlﬂ n — 4o00. (14.28.a)

0<k<[n"]

#® Proof. We fix n € N and apply the Euler—Maclaurin formula (12.27.a) to the
monotonic function f(x) = e=*'/<" on the interval [0, [n"]]: one obtains

[n"] 1 [n"]
Z e—kz/Cn — / f(x)d.x _ I:e_xz/on:l + Rl(n),
0 2 0

0<k<[n"]

where
1 —x%/cn ']
Rio)| < 5 ([ ] T

0

Analyzing the terms of the expansion, one has, after setting r = x/\/cn,

[n"] [n"] 5 [n"1//en s
f(x)dx = / e/ dx = \/cn/ e " dt;
0 0

0
[n"]
|:e—x2/cn ]
0

from which it follows that

=1 —e e <,

5 [n"]/cen 5
E e K en — «/cn/ e dt+0(Q) n — +o0.
0<k<[n"] 0

As a consequence of Lemma 14.25 one has

[n"1//en s T .
/ e—tz dt = g + O(e—[n ]‘/cn) — % + O(e_”z /cn) n — 400
0

and so

Z e~klen —  Jen (JT; + O(e_”zr/c'")) +0() n = too.

0<k<[n"]

. - . 1
Now «/cnO(e_"z femy = O( cne " femy € O(1) for n — 400, given that r > o
and hence


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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Z e*kz/cn _ A/ cn

T
00 n— o O
0<k<[n"]

Remark 14.29 One notes that the estimate (14.27.a) is no longer valid if r < 1/2:

. . _72
indeed since e ¥/" < 1 one has
12
E e k=/cn < E 1 < n'.
0<k<n" 0<k<n"
It follows that
—k?/cn
E e
0<k<n”"
- =L
n

if the relation (14.27.a) held, passing to the limit for » — +00 one would obtain

Z €7k2/m

. A/ CTTn 0<k<n”"
400 = lim = lim <1.
n—+oo0 2n’ n——4o00 n"

14.4 Families of Sequences and Their Estimates

In this section we furnish the tools needed to understand what follows. We suggest that
the reader attempts to understand the definitions and essential examples, disregarding,
on first reading, the individual technical propositions, whilst reserving, of course, the
right to return to them when they are invoked in later sections.

14.4.1 Families of Sequences

Let us introduce some supplementary notions that will allow us to handle sequences
depending on two natural parameters.

Definition 14.30 Let «, 8 € N. A family of sequences
(ak,n)nzav k > :37

is the sequence of sequences

((aﬁ,n)nzou (aﬂ+l,n)n2a’ (aﬂ+2,n)nzon co)e (14.30.a)
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This means thattoeach k > B corresponds a sequence (ay ,),>«. We will occasionally
omit the «, and sometimes the B, if they are obvious (most of the time « equals O or
1) or not essential for our purposes. O

k
Remark 14.31 Do not be fooled by the names of the indices. For instance (—) s
n n>1

k > 1, is the sequence (of sequences)

(G). G ())

k
whereas the family (—) ,n > 1, is the sequence (of sequences)
nJ k=1

k k
Kis1, | = , = .
(( = (2)k>l (3)k>1 )

14.4.2 Uniform Estimates of Families of Sequences

The following examples motivate the definition of a uniform estimate of a family of
sequences.

Example 14.32 Given k € N, one has
k 1
; =0 m n — +o0.

2
Indeed, lim /"

= 0. Moreover, for each given k € N, one has
n—-+4o00 1/n3/2

2k
lim =
n——+o00 1/1/13/2 -

and hence
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If instead we allow k to vary with n (that is, kK = k(n) is a function of n), then the
preceding assertion may well be false. For example

k (n—1Dn 1
0<k<n
Example 14.33 Suppose that we wish to give an estimate of Z ek

0<k<n

. The problem

1 1
is easily resolved by (14.18.b): the considered sum is equal to n + 5 + O\ — | for
n

n — +00. Here we wish to obtain the same result with another approach, based on the
asymptotic estimate of the exponential function around the origine’ = 1 + ¢ + O(t?)
for t — 0. From this estimate, since (k/n?), is a sequence converging to O for each
given k, by Proposition 14.10 one obtains that e¥/"* = 1 + (k/n?) + O (k*/n*) for
n — 4o00. Therefore

DM = (14 (k/n®) + 0K /n*) 0 — +oo;

0<k<n O0<k<n

now, how behaves the sum of the O (k?/n*) as k varies between 1 e n? We will give
an answer to this problem in Example 14.44. O

Definition 14.34 (Uniform estimate) Let (ax,), and (bg,), be two families of
sequences and let (k,), be a sequence of positive terms. We say that a; , = O (by. )
for n — +o0, uniformly for k < k,,, and write

ak,n = O(bk,n) k UIISIf kn’ n— +OO,
if there exist M and n such that

Vn>7n  lakal < Mlbgal Vk <k, (14.34.2)
O

Remark 14.35 What matters here in (14.34.a) is the fact that the constant M not
only does not depend on n once the inequality n > 7 holds, but indeed it neither
depends on k, provided that k < k,,.

k 1 .
Example 14.36 ¢ —— = O (—) k it /n, n — 4o0.
k+n =

Jn
Indeed if k < /n then
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k i

=<

k J—
T k+n k+n—

k+n

k 7&0 1 kunif n — 400
° — e - n .
k+n Jn =2

Indeed assume, by contradiction, that there are M > 0 and 7 € N such that

1
<M— Vk<n/2.
\/_

Then, for k = [g], we get n—2 <

k
Example 14.37 One has — = O ( 3/2) for n — +o00, uniformly for k < /n:
n n

| =

k
indeed, if k < \/n, then = —75 for every n > 1. O

k
Example 14.38 Theestimate — = O ( )forn — 400, holds uniformly for k <
n

n: indeed, in such a case

k

n

k_ VEVE _ R

= — ——— < — O
nooJnn T n
We now state some simple properties of the uniform estimates that will be used
later on. Among other things we see that if the estimates a; , = O (by,) forn — 400
are uniform for k£ < k,, then the comparison remains valid for sums of at most &,
terms.

Proposition 14.39 Let (ar )n, (Di.n)n, (Ck.n)n be three families of sequences, (m,,),,
(kn)n two sequences of positive terms, and ax, = O (by.,) for n — 400, uniformly
for k < k,. The following properties hold:

1. Product: ay , ck.n = O (by., ck.n) for n — +o00, uniformly for k < k,;
2. Transitivity: if by, = O(cr.n) for n — 400, uniformly for k < k, then ay, =
O (ck.n) for n — 400, uniformly for k < k,;
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3. Composition of the index k: if m, <k, then one has the following relation
between sequences
Am,,.n = O(bm,,.n) n — +00;

15 4. Sum of a variable number of terms.: if m, < k,, then one has

D an=0(> bl | n— +oc.

k<m, k<m,

Proof. Let M, and n be such that |ay ,| < M,|by | for k < k,, and n > ny; for such
k and n one obviously has |ak , cx.n| < M|by , ck.n|, from which follows Point 1.
Next, if one has |by ,| < Ms|ck,| forn > 1, and k < k,, it follows immediately, for
n > max{n,, n,} and k < k,, that

|ar.nl < MiMs|ckul,

which establishes Point 2. For m, < k, andn > n; one then has |a,,, ,| < Mi|by, |,
from which Point 3 follows; finally Z lak.n| < M) Z |bk.n| gives Point 4. O

k<m, k<m,

14.4.3 Uniform Limits of Families of Sequences

The concept of uniform convergence of a family of sequences is closely related to
the notion of a uniform estimate.

Definition 14.40 (Uniform convergence) Let (ax ), be a family of sequences and
let (k,), be a sequence of positive terms. We say that (ax ,), — £ € Rforn — +o0,
uniformly for k < k, if for every ¢ > 0 there exists a natural number 7z such that

Vn >n, Vk<k, lakn — L] < e.

Analogously we say that (ax ,), diverges to 400 (resp. —o0), uniformly for k < k,,,
if for every M € R there exists 7 such that a; , > M (resp. ax, < M) forn>ne
k < k,. We will write
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lim a,=1¢
unif, k<k, "
n——+00

whenever (ay ,), tends to £ € R U {£o00}, uniformly for k < k,,. m|

Example 14.41 1t follows immediately from the definition of uniform convergence
that if (ay ,), converges to £ for n — +oo, uniformly for k£ < k, then, for every
sequence of integers m, with m, < k,, one has nkrfoo an.m, = L. O
Example 14.42 The family of sequences (k/n), converges to 0 for n — +oo for
every given value of k; it converges uniformly to O for k < n” if and only if r < 1:
indeed, if k < n" onehas 0 < k/n < l/n"’, and the latter converges to 0 for n —
+ooifand onlyif r < 1. O

Proposition 14.43 (Substitution of the independent variable) Let f be a function
defined on a neighborhood of 0 such that for some o > 0

f(H=0@1" t—0.

Suppose that  lim ay, = 0 (k and k,); then
unif. k<k,
n——400

flaxn) = O(lag|") k unsif. ky, n — +o0.

Proof. Let$ > 0 be such that | f(¢)| < M|t*| for |¢t| < 6. If m is such that |ag ,| < §
forn > n and k < k,, then for such k, n one has f(ax,) < Mlay ,|*. O

‘We now investigate how the notions just introduced allow one to obtain the same
estimate as that of Example 14.33 without getting one’s hands dirty.

Example 14.44 Letus give an estimate of Z /" forn — 400, using the asymp-
0<k<n
totic estimate ¢ = 1 + 1 + O(t?), for t — 0, of the exponential function. Clearly
lim (k/ nz)n = 0; by Proposition 14.43, one has

unif. k<n
n——+o0o

M =14 k/n® + O /n*) k" n, 0 — oo

Since k?/n* = O(1/n?) forn — 400, uniformly for k < n, one deduces from Point
2 of Proposition 14.39 that

Hm =1 +k/n*+ 00/ &k unif- . n — +oo.
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From Point 4 of Proposition 14.39 one then obtains

0<k<n

1 1

:n+—+0(—) n — +o0. O
2 n

The following example will be used in our subsequent discussion.

Example 14.45 LetO < r < 1.ByProposition 14.6onehaslog(1 + ¢) =t — /2 +
O(#3) for t — 0; by Proposition 14.43 and Point 2 of Proposition 14.39 one obtains

k k k2 k3 unif. 7
k k2 1 unif. ,r
=;_2n2+0 o k'S n', n— +oo.

The reader can also verify in analogous fashion that

k k k? k3 .
— unif. r
k k2 1 unif. ,r
Z_Z_W-’_O n3—3r k < n,n—)+OOD

Proposition 14.46 (Composition of sequences with family of sequences) Let (a,),
and (by), be two sequences such that a, = O (b,) for n — +00, and (xy.,), be a
family of sequences with values in N such that

lim x,(kandk,) = 4o00.
unif. k<k,
n—+00

Then ay,,, = O(by,,) for n — 400, uniformly for k < k,,.

Proof. Let M and n, be such that |a,| < M|b,| for n > n;. Then if n, is such that
Xk, = nyforn > nyandk < k,, for suchn and k one obviously has |a,, ,| < M|by, ,|.
]
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We will need the following technical result.

Lemma 14.47 Leta, = O(1/n) forn — oo andlet0 < r < 1. Then
aptr = O(1/n) k ““Sif' n", n — +oo.
Proof. If k < n” one has
ntk>n—-—n"— +o00 n— +o00o

and so n £k — 400 for n — 400, uniformly for k <n”. Applying Proposi-
tion 14.46 with x; , = n =k and b, = 1/n one deduces that

1
a"ikzo(n:l:k) n — 400,

1 1
uniformly for k < n”. Since (0] uniformly for k < n”, by Point
ntk n—n"
2 of Proposition 14.39 one obtains that

1 .
aptr = O ( ) k "8 n", n — 4o0.

n—n"

Now, 1/(n —n") ~ 1/n forn — +o00; hence 1/(n —n") = O(1/n) forn - +o0
and therefore the desired conclusion follows by Proposition 14.39. O

14.5 Uniform Asymptotic Estimate of Binomials

In Proposition 12.71 we have determined a version of Stirling formula up to a mul-
tiplicative constant. Precisely in (12.71.b) we have obtained

nl~efn'ne  n— +oo. (14.47.2)

In Corollary 12.73 we established that e = /27 by means of Wallis formula. This
give us the possibility to prove the following estimate:

Theorem 14.48 (Estimate of the binomials) Let 0 < r < 2/3. Having set

1 ifr <1/3,

a:min{1,2—3r}=I2_3r ifr>1/3


http://dx.doi.org/10.1007/978-3-319-03038-8_12
http://dx.doi.org/10.1007/978-3-319-03038-8_12
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one has
2n 2 —k2/n 1 unif. 7
(nik)_m 1+ 0 - k'S n', n— +oo.
(14.48.a)
In particular for every sequence k, < n" one has
2n 22" _k2/n
(n 1 kn) ez e n — +o0. (14.48.b)

Proof. In order to reduce the problem to approximation of sums it is convenient to
consider the logarithm

log ( 2jzk) = log(2n)! — (log(n —k)! + log(n + k)!). (14.48.¢)
From (14.47.a) one obtains

= 1 1
lognlzz logk:nlogn—n—k%—i—C—i—O(—) n — +oo.
n
k=1

(14.48.d)
Consequently, one has
2 lo (Zn) 1

log@m)! = > logk = 2nlog(2n) —2n + =22 4 €4 0 (—)
p ") (14.48.e)

logn log2 1

=2nlogn +2nlog2 —2n + —— > + — 5 +C+0
n

forn — 400. Sincer < 2/3 < 1, from Lemma 14.47 and (14.48.d) one has that for
n — 400, uniformly for k < n”,

log(n—k)!=(n—k)log(n—k)—(n—k)—#w—l—C—FO(%)

2
k
(+(1-2)) o))
=m—klog{n{l—=))—(—k + +C+0|-
n 2 n
:(n—k)logn+(n—k)1og(1—f)—n+k+1°§"+
n

—|—%log (1— E)+C+0( ) (14.48.1)
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In Example 14.45 we obtained that

k k k2 k3 .
log{1l+-)=%+- - +0 kit n” n— 4oo. (14.48.9)
n n 2n? =

Thus, one has, for n — 400, uniformly for k < n’,

(n — k) log (l — E)
n

I
—_
)

I
Pl
N
|

| =
|

N|;\N
) ™o
_l’_

Q
~—
37
w2 (95)
N~
~

k2 K k2 I k*
=—k——+0 —+ —+0(—

2n+ (n2)+ n +2n2+ (n*)

k2 k3 k4
=—k+-—-+0 +0

2n n®

Therefore, by (14.48.g) we get

k 1 k k? k3 k4
n—~klog\l——)+zlog{l—=)=—k+—+0 +0(—= )+
n 2 n 2n n3

k k2 K .
————+O(—) kUit n— too.

2n  4n? n?
(14.48.h)
Substituting in (14.48.f), one obtains
logn Kook k2
log(n —k)! = (n —k)logn —n+k + +C—k+————-——+
2n  2n  4n?

co(2)vo(5) o) o)

logn K2 k 1 k2
=nlogn —klogn—-n+ —4+C+ ———4+0|-)+0| = |+
2 2n  2n n n?

IS K k? it
+0( )+0( )+0( kWit o oo
i’l I’l -

In analogous fashion one finds that

logn Kk 1 k2
0 -
2 2n  2n ( )+' (n2)+
K3 K k? -
+0( )+0( )+0( R N
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Thus one gets

k? 1 k?
log(n — k)! +1log(n + k)! = 2nlogn —2n + logn +2C + — + O (7) + 0(2)+
n n

n
k3 k4 k% .

+0( )+0( )-}—0(3 k‘"gf'nr,n—>+oo.
n? n =

Now, if £k < n” one obtains
2 3 4 3
k < p2r=2 k < 32 k k
—2 =n . —2 =n
n n n

Since0 <r <2/3 <1,onehas3r —2>4r —3,3r —2>3r —3,and 3r —2 >
2r — 2. Consequently we get

k2
log(n — k)!'4log(n + k)! = 2nlogn — 2n +logn + — +2C+
n

1 1 .
+0()—|—0(22r) kit n” n — 4o0.

Having set « = min{1, 2 — 3r}, one finds that

o) olet)-o(2)

Therefore, for n — +o00, uniformly for k < n”,

k2 1
log(n — k)! + log(n + k)! = 2nlogn — 2n 4+ logn + — +2C + O (—) .
n n“
(14.48.1)

Bearing in mind (14.48.e) and (14.48.1), the relation (14.48.c) then yields

2n logn  log?2 1
log ntk =2nlogn+2nlog2 —2n + —— > + — > +C+0 o +

n

logn log2 k> 1
=2nlog2— + —C——+0 ,
2 2 ne

k? 1
—2nlogn+2n —logn — — —2C+ O (—)
n(){
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uniformly for k < n". Applying the exponential function to both terms of the
preceding equation one obtains

2n _ 22nﬁe—k2/n60(1/11“)
ntk eCn

Since r < 2/3, one has « = min{l,2 — 3r} > 0; then 1/n* — 0 for n — 4o0.
Thanks to Proposition 14.43, from ¢’ = 1 4+ O(¢) for t — 0 one has

kwif p" n — 4o00.

o 1
eo(l/")=1+0(—) n — +o0.
nC(

Therefore one gets that

2n 2'V2 e 1 unif.

The conclusion follows since, from Corollary 12.73, e€ = 27, 0O

Remark 14.49 (A local version of the Central Limit Theorem) The estimate (14.48.a)
has a strong connection with the Central Limit Theorem. Indeed, consider the bino-

1
mial random variable X, with parameters (2n, E) The Central Limit Theorem

asserts that, in distribution, the variable tends to the normal random variable N,, of
same mean n and variance > whose density at x € R is given by

1 2
. —(x—n)"/n
X) (= —e .
S ) Jn

If £ < n the probability that X,, equals n + k is given by

2 1

so that, by (14.48.a) we get
1 —k%/n
P(X,,:n:l:k)Nﬁe = fy,(n£k) n— 4oo.

Thus it turns out that the density of the normal variable N,, approximates the discrete
density of the binomial variable X,,. This fact is known as a local version of the
Central Limit Theorem.


http://dx.doi.org/10.1007/978-3-319-03038-8_12
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14.6 (Q-Ramanujan Distribution and Function, and Their
Uniform Estimate

The Ramanujan® Q-distribution and Q-function are very much used in analysing
algorithms.

Definition 14.50 The Ramanujan Q-distribution is defined by

n!
k)= ——— 0 <k <n);
0k = —pr n)
the Ramanujan Q-function is defined by
n!
k S
Q(n) = Z Q(n, k) = ; A o

The quantities defined above arise naturally in combinatorial calculus and in
probability theory.

Example 14.51 (The birthdays problem)Inagroup of k < 365 people the probability
that no two of them are born on the same day (of a year having 365 days) is

365(365 — 1) -~ (365 — (k — 1))

365, k) =
00365, k) 3654

Indeed (see also Example 2.30), labelled with I the k people and with I345 the days
of the year, we can describe the dates of birth by a k-sequence of I345, indicating in
the i-th place the date of birth of the person i: there are 365 such sequences. Among
them, the k-sequences that correspond to two by two distinct dates are

365 x (365 —1) x -+ x (365 — (k —1)).

Let us now pretend to admit people to a birthday party. The “average” number of
people to be admitted in order that at least two of them have the same birthday is
given by the number Q(365).

The proof of this fact is reserved to those having some familiarity with the basic
notions of random variables. Let X be the random variable that counts the number of
people to be admitted to the party in order for two of them to have the same birthday
(not necessarily in the same year, however). Since X assumes integer values, its
expected value is given by the sum of the series

3Srinivasa Ramanujan (1887-1920).


http://dx.doi.org/10.1007/978-3-319-03038-8_2
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E[X]=0xP(X=0)+1xPX=1)4+2xPX=2)+--
—PX=1D)+PX=2)+PX=3)+--
+PX=2)+P(X=3)+--
+PX =3+

=PX>0)0+PX>D+PX>2)+;

the latter series actually stops at P(X > 365) in view of the fact that P(X > k) =0
if k > 366. Now, for every k < 365, P(X > k) is the probability that in a group
of k people no two of them are born on the same day, and therefore P(X > k) =
Q(365, k); it follows that

E[X]= 0(365,0)+---+ 0365, 365) = Q(365). O
Example 14.52 The probability that a word of k letters formed by chance from an

alphabet of n > k letters does not contain some letter twice is given by

n'

Q. by =

In the same manner of Example 14.51, the average number of letters to list from an
alphabet of 7 letters in order that a repetition should appear is given by

n n n!
Om) = O, k) = —_—. =
g ; (n — k)!Ink

We end the section, and the book, proving an uniform asymptotic estimate of the
Ramanujan distribution and the Ramanujan function.

Theorem 14.53 (Uniform asymptotic estimates of Ramanujan Q’s) Let 0 <r <
2/3. Then

Qn, k) = e ¥/ (I4+ O0k/n) + Ok /n») k" 1", n — +oo.
(14.53.a)

In particular if k,, is a sequence such that k, < n" one has

O, ky) ~e M/ > too. (14.53.b)
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Furthermore,

Q) ~/an/2 n — +oo0. (14.53.¢)

Remark 14.54 We make a comment on why we need both O’s in formula (14.53.a).
If k is given, then one certainly has that O(k*/n?) € O(k/n) for n — 4o0;
however, this fact no longer holds if one makes k vary with n: thus, for exam-
ple, if k, = n*? one has k2 /n* = 1 while k,/n = 1/n'/? — 0 for n — 400 so
that in this case O (k;/n*) = O(1) but O(k}/n*) ¢ O(k,/n) for n — 4o0. Note
that (k3/n?)/(k/n) = k*/n — 0 for n — o0, uniformly for k < n" provided that
r < 1/2; in this case by Proposition 14.39 one has that O (k3/n?) € O(k/n) for
n — 400 uniformly for k < n".

Proof (of Theorem 14.53). For k = 0 one has Q(n,0) = 1 = ¢~%"; thus, in what
follows we may suppose k > 1. Given that

_ =D =2)---(n—(k=1)
Qn, k) = Ik k1

1 2 -1
(-0
n n n
one obtains
1 2 k—1
logQ(n,k):log(l——)+log(l——)+--~+10g(1——).
n n n

Recalling that log(l —1) = —t + O@?) for t - 0 (see Proposition 14.6), by
Example 14.45 it follows

— _ 2
logQ(n,k)=—(%+-~-+kn—1)+0(n_12+...+(k ) )

n2

(14.54.a)

for n — +o0, uniformly fork <n”.Since | +---+ (k — 1) = k(k — 1)/2 and
14224+ k=D>< (k= Dk —1)*=(k— 1),

one finds that

k(k —1 k3 .
log Q(n, k) = _% + 0 (;) k unSlf. n", n - +oo.
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Passing to the exponential function one obtains

0. k) =e—k(k—l)/2n60(k3/n2) _ e—k2/2nek/2n60(k3/n2) k un<if. W n — +oo,

where we use ¢?**/") to indicate a family of sequences of the type (e%"),, parame-
terised by k, with a; , = 0(k3/n2) for n — 400, uniformly for k < n". Forasmuch
as 0 < r < 2/3, we have

" 1 3 1
o Lok
n nlfr

— 0 k ”“Sif' n", n - +oo.

SRS

— =
n2 = p2ar

Since e/ = 14 O(¢) for t — 0, by Proposition 14.43 one has /" = 14 O(k/n)
and eO® /) = | + 0(k3/n2) for n — +o0, uniformly for k < n". Therefore

Qn, k) = e ¥/ (1 +0 (5)) (1 +0 (k—B)) R N
T n n? = '

Since k4/n3 < k3/n2, one then has

(=oEN(o(E)-ro o) ()

k k3 if. r
=1+0(-)+0|—= k" pn"n — 400,
n <

from which (14.53.a) follows.

By Point 3 of Proposition 14.39 and from the fact that if k, < n”, then k,/n and
k2 /n* both tend to zero for n — +00 one obtains easily (14.53.b) from (14.53.a).

To prove relation (14.53.c), we fix r €]1/2,2/3[ in such a way as to make valid
both (14.53.a) and (14.28.a).
(A) Estimates of " Q(n, k). In view of (14.50) it follows immediately that the
[n"]<k=n
function k — Q(n, k) is decreasing and, in particular, that Q(n, k) < Q(n, [n"]) for
every [n"] < k < n. By relation (14.53.b) with k,, = [n"], one has

Q(n, [n']) ~ e /2 n— 400

and consequently there exists 77 such that Q(n, [n"]) < 2e~"1'/2" for n > 7. Thus,
for n > 7 one has

S omb s Y Q) Q. [n']) < 2ne I

[n"]<k=n [n"1<k<n
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Since 1/2 <r <2/3 < 1,onehas2r —1 > 0 < 1 — r and hence

—"=1%/2n _ n

2
ne "V < e = o o
e ' /2p1/2n pn

—- 0 forn — +4o0;

therefore

) EIPOO[ %{L On, k) =0. (14.54.b)

(B) Estimate of . Q(n. k). From (14.53.a) and Point 4 of Proposition 14.39,
0<k<[n"]
one gets

> omk= > Fric, (14.54.¢)

0<k<[n"] 0<k<[n"]
with
1 e 1 en
ICul <M | = Z kek/2n+ﬁ Z k3ek/n

n 0<k<[n"] 0<k<[n"]

for sufficiently large n and a suitable M > 0. From relations (14.27.b)—(14.27.d) one
has

2
Z ke ™F/2n ~ p and Z ke K2 ~ 2p? n — +oo.
0<k<[n"] 0<k<[n"]

Then, for suitable constants c¢; and c¢5, it is

k2 2
E ke /" < cin and E Be ™ < con?.
0<k<[n"] 0<k<[n"]

Therefore, |C,,| < M(c| + ¢») is bounded. By Proposition 14.28

Z e R/~ Jvrn/2 n — 400;

0<k<[n"]

consequently by (14.54.c) one deduces that

> 0.k~ Jrn/2 n — +oo. (14.54.d)

0<k<[n"]

Finally, if 1/2 < r < 2/3, one has

Q) =Y 0 k= D> Qm b+ D, Q0@mk),
k=0

0<k<[n"] [n"]<k<n
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and so by (14.54.b)—(14.54.d) it follows

Qn) ~/mn/2 n — +oo. O

Example 14.55 The number k of people necessary to have a probability greater
than 50 % that there are at least two people who have the same birthday is 23.
Indeed, by Example 14.51 the probability is equal to 1 — Q(365, k) and, carrying
out the calculations, one finds that Q (365, 22) &~ 0.52 while Q(365, 23) ~ 0.49.
Approximating Q (365, k) as in (14.53.a), one finds that

0(365, k) ~ ¢~k'/730

which is less than 1/2 for k > /7301log 2 ~ 23. Again by Example 14.51, the aver-
age number of people to allow admission to the party in order to have at least two
people born on the same day is equal to Q(365). One has Q(365) ~ 24.62; using

relation (14.53.c) one gets
365
0(365) ~ ,/T” ~ 23.94. q

Example 14.56 We pick a card from a deck of 52 playing cards and we reinsert it in
the deck. After shuffling the deck, we pick another card and we reinsert it again in
the deck. How many times, on average, must we repeat this procedure in order for a
repetition to appear? The answer is

52

52!
0(52) = ; s ST

Using relation (14.53.c) one gets
~ 2
0082~ ,|/m x 7~ 9.04. o

14.7 Problems

Problem 14.1 Provide asymptotic estimates for the following Cauchy sums:

1. Z e’k/”z;

1<k<n

2. z e’k/ﬁ;

1<k<n
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n

3. ;
l;n (k + nl/z)(k + an/z)
B 4

n
4 Z (k +n?)(k +2n?)’

1<k<n

Problem 14.2 Let (ax ), and (bx ), be two families of sequences, with by, # 0 for

all k, n, and such that lim —"
n—400 k.n

= 0 uniformly for k < k,, where k,, is a sequence

of positive terms. Prove that O(bk,n) = O(b,,) forn — 400, uniformly for k < k,,,
or, in other words, that if ¢x, = O(ax ) for n — 400 uniformly for k < k,, then
cxn = O(by,) for n — 400 uniformly for k < k,.

Problem 14.3 (Ramanujan R-distribution) Ramanujan R-distribution is

nink

(n+k)!

Ink 1
( nfky = et (1 +o (_)) " e
n ! n

Problem 14.4 Prove Proposition 14.15 using the Euler—Maclaurin expansion of first
rank (that is, of order 1) to replace the role played by the trapezoidal method.

Vn,keN, k<n, R(n, k) =

Show that

Problem 14.5 Give asymptotic estimates for both the first- and second- order for the
following Riemann sums:

1. Z ek,

1<k<n
2
P S —
1<k<n (k + l’l)(k + 27’!)
1
Problem 14.6 Furnish timate of —— b f (14.15. d
urnish an estimate o 0;’1 PR y means of ( a) an

(14.15.b). Compare, for n = 10, the approximations with the actual value of the
sum.

Problem 14.7 Estimate the following sums by means of (14.15.b):
> e
1+ k2/n?’

O<k<n

1
2 e

0<k<n
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Formulas and Tables

Basic Combinatorial Definitions (k, n € N>)

Symbol Number of Value
k-sequences n!
S(n, k) ——_=nk
without repetition of 7, (n—K)!
n k-collections n!
Cn, k) = ( ) ) . —_—
k without repetition of 7, k!(n — k)!
k-sequences of 1, or
S((n. k) “ " nt
n-sharings of Ix
k-collections of 1,, or — —
Cln. 1) " n ((n l)+k):((n l)+k)
n-compositions of k k (n—1)
k-sequences or n-sharings of k!
S(n, ks (ki, ... kn)) . ; ,
I, with occupancy (ki, ..., ky) kil k!
permutations of the k-sequence k!
P(ay,...,ax) . 0 ‘
(a1, ..., ar) with occupancy (ki, ..., k) kil ky!
k-sequences or n-sharings of
S(n, ks [ki, ... kn]) . S(n, ks ki, ... kn)) X Plki, ... kn)
1,, with occupancy [ky, ..., k,]
k-collections of/, or n-compositions
C(n, k; lkt, ... knl) . . Pk, ... kn)
di k with occupancy [k, ..., k]
© Springer International Publishing Switzerland 2016 621
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Symbol Number of Value
111 (="
D, derangements of n! (1 -0 + 53 ot -
(1,....n)
Dy(ny, ..., nk) derangements of I

m=0

with occupancy (11, ..., ng)

z ni Nk (n —m)!
PICUENDY ()()ﬁ
it ji=m \J1 Jk ) (i = Jot-- (g = jio)!

0=<ji=m
0= ji <nk

k-partitions of 1,

k
1 .
DI (’f) ®—iy
T i=0

n>=k=>1
Stirling number of the II type = Z A
nyp+-+ng=n—k
1 . _
k-partitions of ,, ES(k, nlng,..omd) =
Mk, n; [n1, . .onk]) ) | ,
with occupancy [ny, ..., ng] LN n! « Pln )
K7 gt b Tk
1 n!
k-cycles of 1, ~ S(n, k) =
cycles of I, i (n, k) ey

k-partitions into cycles I,

> I

IS, iel
[I|=n—k
L . n! 1
Stirling number of the II type = Z
1 1Nk
ny+etng=n
ni=1
k-partitions into cycles of 7, 1 n!
Meye(k, s [ny, .., ng]) X Pl ; x P(np, N3]
with occupancy [ni, ..., ng] k ni n
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Combinatorial Identities (k, m, n € N)

n.....ong €N 3 (2)...(';:) P

0<t1<n;

w0 )6 () 0 =)
sz 0T () ()00

k,m,n >0 ]Z:;(’j)(kij):(m:n)
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Alternating Sign Binomial Identities (i, k, j, m, n, q € N)

n .
0<i<neN (=D (" ’f =(—1"8i,, 8in:= 1”._n’
— k) \i ' ' 0, .

b

a.b,ceN D=0 (ZJ_F'Z) C((@,c) =1

c=0

0<j=n > (ZI%) (’;) = (-1
k=)

>n - i[n .
0=k - Z(;(—l) (l.)(q_,)kzo

0 (X) polynomial “ i (m N
0 < deg Q(X) <m §‘” (l‘)Q(’)_O

()

nzl H, = > (=D
k=1

=
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Triangles of Classes of Numbers

1 The empty boxes correspond to the value 0.

Binomial Triangle

n n n n n n n n n n n
16, 0)])|6)]G) ()66 6)]6) ()
0 1
11 ]1
2[1 2|1
31331
4146 1
S| 1|5 |10[10]5 1
6] 1 |6 |15]20[15] 6 |1
701 [ 7 |21 3535 217 |1
8] 1 | 8 | 28|56 70]56] 28 1
9 1 | 9 | 36|84 [126]126]84[36] 9 | 1
10| 1 | 10 | 45 [120]210252[210[120] 45 | 10 | 1

Triangle of the Stirling Numbers of the 1st Type

n n n n n n n nl|(n|{{n|{|n
) BB BL BT GT BT
0] 1
1{0 1
2|0 1 1
3|0 2 3 1
4|0 6 11 6 1
510 24 50 35 10 1
6|0 120 274 225 85 15 1
710 | 720 1764 1624 735 175 21 1
8| 0| 5040 | 13068 | 13132 | 6769 | 1960 | 322 | 28 | 1
9| 0 | 40320 | 109584 | 118124 | 67284 | 22449 | 4536 | 546 | 36 | 1
10| 0 |362880(1026576|1172700|723680(269325|63273({9450({870| 45 | 1




626

Triangle of the Stirling Numbers of the 2nd Type

Formulas and Tables

n n n n n n n n n n n
e of D 5 1]l L] s )
01
1[0 |1
2[0 1 [1
3[0 1 [3]1
d[o 1 [7[6] 1
5[0 |1 [15[25[ 10| 1
6] 0| 1 [31]9 | 65 | 15| 1
700 | 1 [63[301] 350 | 140 | 21 | 1
8] 0 | T [127[966 [ 1701 [ 1050 266 | 28 | 1
90 | 1 [255[3025[7770 | 6951 [ 2646 | 462 | 36 | 1
10| 0 | 1 [511]9330[34105(42525]22827]5880[ 750 45 | 1

Triangle of the Eulerian Numbers

n\| [n n n n n n n n\ |[n
ol G B G G| )] B
1(1
2|1 1
3|11 4 1
41| 11 11 1
5111 26 66 26 1
6|1 | 57 | 302 302 57 1
711 (120|1191 | 2416 1191 120 1
8| 1 |247 {4293 |15619| 15619 | 4293 247 1
9| 1 |502|14608| 88234 | 156190 | 88234 | 14608 | 502 1
10| 1 [1013|47840({455192|1310354|1310354|455192{47840|1013| 1
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Discrete Primitives

m<n > gk =[GH_,, & AG =g
m<k<n
m#—1,keN Zk”‘— k’"+‘+R
keN > kL =H 4R
Y
L _ i
t.keN K=>" Hk
i=0
“ e
L __ I+igi
¢,k eN k_ZH( Dtk
i=0
4 ) 1
kK — kt-H R
tkeN > iz(;[l]—iH +
a#1 Zak = ! a +R
a—1
m<n Z u(k) Av(k) = [u(kyv()1_,, — Z Au(k)6 v(k)
m<k<n m<k<n

627
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OGPF’s Rules and Properties

Sequence OGF Operation

(an +by), |OGF (a,), + OGF (by,), OGF of a sum/sum of OGF

(an), * (bp), | OGF (a,), - OGF (b,),, |OGF of a convolution/product of OGF

((n + Dap+t1), OGF (ay),, derivative of a OGF (ay),,

1
(@nt1), e (OGF(au)n — ao) OGEF of the shift

EGF’s Rules and Properties

Sequence EGF Operation

(an + by), |EGF (an), + OGF (by), EGEF of a sum/sum of EGF

(an), < (bu), | EGF (ay), - EGF (b,), |EGF of a binom. convolution/product of OGF

(@n+41), EGF (an),, EGF of a shift/derivative of a EGF

1
(@ns1/(n+ 1), X (EGF(an)n — ao) EGF of (ant1/(n + 1)),
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Frequent Use OGFs
o0 ; ]
HZ:(‘;X = OGF(1),
i a k _ a a
> (k) X =(1+X¢ @eR) OGE (k)k

A+x0”2=3 (122) x*

n=0

o0
2 1/2
12 _ k12 k
1+ X) _1+k§_l( D! o Catey X OGF(k)k

— (k+n n 1 k+n
Z( : )x = a0 (m e N) OGF( . )n

n=0

— (n n Xk n
> (3) %= = e | oor(()

n

Mz

(1/]:”) X"=(1+X)Y% meN) | OGF (12’“)
k

~
Il
o

0 n _1yn—1
> =nr! X7 =log(l + X) OGF (( D )
n=1 n

n
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< . log(1—X) .
Z H, X" = >_1 OGF harmonic numbers H,
n=1

ad . Llog(1—X)
> nH, —)X _—XW

n=1

< log(l — X
%(Hmen)(”Zk) =

(o] n ] o0
z (Z ak) X" = T—x Z(:) a, X" OGF partial sums
=

n=0 \k=0

ad L L= (1—4x)12
z Cat, X" = — ox OGF Catalan numbers Cat,,
n=0

00 X n—1 n
Xk = x* OGF k"
,; T X §<k> powers (k")

n

[Z] XF=XX+1DX+2)--(X+@m—1) (n=>1)| OGF Stirling Ist ["]
k=0 k

k

xn = X! k>1 OGF Stirling 2nd | "
;[k] Sa-oa-m-a-rn “=Y e [k]
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Frequent Use EGF's
i X EGF
= (D
n=0
Z(*l)" o= cos X cos X
n
n=0
0 X2n+l
Z( ) sin X sin X
prt 2n + 1)!
0 XZn
Z @ =cosh X cosh X
n):
n=0
0 2n+1
X
GrESTA sinh X sinh X
n
n=0

ad k
n] X" 1 1 o »
Zo |:k:| P |:10g (ﬁ)] (k> 1)| EGEF Stirling 1st [k]

n

EGF Stirling 2nd ‘Z]
n

oo

S, e
!

s n:

EGF Bell %8,

.
nov T OOX
= n! e 1

EGF Bernoulli B,

T

zoo (-1! X Ein(X)
n
n=1

_1yn—1
EGF(( Dl )
n n

1 x" )
— — = —Ein(—X)
n n!

n=1

1
ar (1)
n n

n

o) X .
> H, = =X Ein(X)
~ n!

EGF harmonic numbers H,,

631



632

Formulas and Tables

Recurrence Relations

Basis-Solutions to Homogeneous Relations

Consider the homogeneous linear recurrence relation of order r

1.

coXp +c1xp1+---+cxpr =0, n>r. (coc, #0) (R,)

Per(X) i=coX" +c1 X'+t
Let Ay, ..., A, be the distinct complex roots of the characteristic polynomial
and g, ..., U, their multiplicity. The general complex solution of the recur-

rence (R,) is given by the linear combinations with complex coefficients of the
r=pu1+---+ uy sequences

WDns o 9710, j=1,....m.

. Suppose that the coefficients cy, .. ., ¢, are real numbers. Let
e pi(cosay isinwy),..., pp(cosay £ i sinay) the pairs of the non real com-
plex conjugate roots of the characteristic polynomial and with w, ..., uy
their multiplicity;
® Ap, ..., A be the real roots of the characteristic polynomial and w1, ..., u}

their multiplicity.

Then, the general real solution of the recurrence (R,) is the set of all linear
combinations with real coefficients of the r = 2y + -+ - +2pp +p) + -+ 11
sequences

(0 cos(na;))n, ..., (7" ptcos(nay)), j=1,....h,
(p;’ sin(nej))n, - - - (n”f_lp;l sin(ne;)), j=1,...,h,

n —1yn .
W s 72, =1, L
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Particular Solutions to a Non Homogeneous Linear Equation

Complex Solutions

Let Q(X) be a polynomial, g € C, ¢y, ..., c, € C. Consider the linear recurrence
relation of order r

coXy +C1Xp—1 + -+ Xy = Qm)g", n=r (cocr #0).  (R)

The above recurrence relation have a particular solution of the type

(n*Qmn)q"),

where

e O(X)isa polynomial of degree less or equal than the degree of Q(X);
e 1 is the multiplicity of g as root of the characteristic polynomial (u© = 0 if g is
not a root).
Real Solutions
Suppose we have a linear recurrence relation with real coefficients of one of the
following types
CoXp + C1Xp—1 + -+ + Xy = Q(n)p" cos(ny), n=>r, (R1)

CoYn + C1Yn—1 + -+ Yy = Qm)p" sin(ny), n=>r, (R2)

with cg, ..., ¢, € R(coc, #0), v, p € Rand Q(X) is a polynomial with real coef-
ficients. Then one obtains a particular real solution of (R;) (resp. (R;)) considering
the real (resp. imaginary) part of a particular solution of the recurrence

C0Zn + C1Zn—1 + -+ 20—y = Q(n)q", n>7, g = p(cosy +isiny).
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Divide and Conquer Relations

1. Let (a,),, n = b*, be a solution to the divide and conquer recurrence
Yo = Ayusp +cn?, n=bk k> 1.
Then
O(n®) if A < b”,

a, =4 Om’logn) if A=0b", forn= b*, k — +oo.
omo°s*) if A > bP,

2. Let (ay)n, n = b*, be a solution to the divide and conquer recurrence
Yu = Ay +clogyn n = bk,k > 1.
Then
O(logn) if A <1,

a, =1 0(og’>n) if =1, forn=>0" k - +oo.
O(n'°%*y if A > 1,

OGF of a Linear Recurrence

Consider the recurrence relation

coXn +C1xXp_1+-- -+ Xy =h,, n>=r (coc, #0). (R)
o0

The formal series A(X) = z a, X" is the OGF of a solution of the linear recurrence
n=0

(R) if and only if there exists a polynomial S(X) satisfying
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In that case, necessarily, S(X) is given by
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Symbolic Calculus

The OGF of the combinatorial class SEQ™” I" of sequences in SEQ I' that do not
contain p as a subsequence is

Cpr(X)
XU 4+ (1= T X)Cp(X)

SEQ™” I'(X) =

Set for convenience ¢y = ¢y, := 1, the sequence (a,), of the fibres of SEQ™” I"
satisfies the recurrence

£(p)
a, = Z (IT|ci—1 — ci)an—i VYn = £(p),
i=1
with initial data @; = |I'|',i =0, ..., £(p) — 1.

The expected length of a randomly selected sequence of I" in which appears the
pattern p is

|T)“P'C,(1/IT)).

Let p # g be two patterns of the same length. The odds in favor of the appearing
of ¢ before p are equal to

Co/II7) = Cip.pp (/171
Co(1/IT) = Cqp/ITD)

(Conway equation)
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Bernoulli Polynomials

637

Bo(X) =1, Bi(X) = ! X Bs(X) = X+5X3 5xt X3
0(X) =1, Bi( )——2+ 5 =% 3 2
By (X _ ! X + X2 Bg(X) = ! X2+5X4 3X° + X6
2( )_8_ + 6 Y5} 5 )

X 3x2 X 7x3 71x°>  7X°
Biy(X)= = - — + X3 B7(X)= > — — - x7
3(X) 5 >t 7(X) 6 5 5 5

1 1 2x%2 7x*  14x°

=—— 4+ X2 2X3 4 X By(X) = —— + — — — —4x7 + x38
B4(X) 0+ + 8(X) 03 3 3 +
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Euler—-Maclaurin Formulas

The Basic Euler—-Maclaurin Formulas

Formulas and Tables

First-order formulas

f monotonic

b 1 1
Z f(k)=/ f(t)dt—i[f]Z+R1, |Rl|55|f(a)_f(b)|

a<k<b

1 1
Bernoulli numbers Bo=1,B =—=,By= 3 B3 =0, By = 30" Bs; =0,
Bo= . By=0,B L Bo=0,Big=_
6= 75> B7=0,Bs = —35, Bo =0, Bio = =
Sup-norm of 1Byl A m!
Km = X ([0, <4—-
the Bernoulli polynomials " " L. Qm)m

1
Hn1 = 7 Hm = |Bpu | Vmeven

Formula of order m
f e € (a, b))

Remainder R,,

£=1 monotonic

b m ) )
> @ = [ swax X2 [r00] v v,
Ja i=1 -

a<k<n

b
W
(Ral = 28 717 )1
m: Ja

M _
[Rn| < ;’f =D

Estimate of partial sums
fe€"(la, b))

N m .
> =3 @+ [ rwars X2 [1] e
" i=1 "

a<k<N a<k<n

Hom

N
lew(n, N)I < =20 [ 1f " ()] dx
m! J,




Formulas and Tables

639

Asymptotic Versions of the Euler—Maclaurin Formula

First-order asymptotic formula

f monotonic and bounded

> sw= [ swdi+ oo - o)

a<k<n

First-order asymptotic formula

f monotonic and unbounded

> f(k):/ fdi+0(f(n)

a<k<n

Asymptotic formula of order m > 2
fe? and f™ e L

> f=

a<k<n

+00
1o ( / £ o) dx)

n m
f B; (i—1)
/a f(x)dx + C}, +;Ff (n)+

Asymptotic formula of order m > 2
fe€™, £V bounded

and definitively monotonic

> =

a<k<n

n _ m—1 . )
/ f@ydx +Ch+ > %f“*”(nwr
a i=1

+0 (£ D) = £ D (o)

Asymptotic formula of order m > 2
fe€™, £V unbounded

and definitively monotonic

> =

a<k<n

n m=1 o .
[ rea X 2w+ o (s V)
@ i=1
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Euler Constant of a Function

Formulas and Tables

Euler number of f

W= f(k)—/ f@)dx

a<k<n
S

y/ = lim

n—+o0

f monotonic and bounded

1
v =vl - ST e

1
ler(m] = 5 1.f(00) = f(m)]

f c e, f(m) e Ll ,

f(0), ..., f"=D(c0) € R

convergentseﬂes
k=a

y/

) +
Srw=3 f<k>+/

a<k<n n

m
_ Bi u—l)]“’
=Vn +Z i |:f B + & (n)

i=1

Y fwdan+ Y % (£ ] +emtm
i=1

+00
lem ()] < %/ L0 () dx

Approximation of Integrals

S P :=hn(3<x0)+g“”
n

g(x1) + g(x2) 8(rn—1) + g(xp)
2 2 ot f)

Df=hy D glx)

0<k<n

First-order approximation

g € €' (e, B1)

8
/ g(x) dx =T +e1(n)
: 8

705)2
ler(n)] < T”g/”oc

Rectangle method
§ €€ (o BD

B
/ g(x) dx = Df + ¢} (n)

Y
B e,

lej ()| < ™
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Approximation of order m > 2

g € ¢"(la, B])

B < Bi .1 1B
dx = Tg—Z—’h’ [ ([—1)] "
/a g(x)dx n o 8 a+8 (n)

i=2
tom (B — )™t
m!

|

lem(n)] <

8™ oo

Trapezoidal method of order m > 2

g €¢"(la, BI)

B
/ gydx =T = >

m—2
B;
il

hi

n
i=2

lem—1(m)] <

i—n1P
[¢0]. + en-1m)

o (B =yt
Wimﬂg lloo

Riemann and Cauchy Sums

Riemann sums

ge €'

1
Z g(E)an/ g(x)dx n — 400
n 0

ask<n

ge €?

n

1
)~n/ g(x)dx—%[g]},—ug(owo(l) 1 — 400
0

Cauchy sums

O<a<l

-
ge%‘,/o lel +1¢'l < +oo

k +00
Z g(n—u) :n”/ g)dt +o(n®) n — +oo
JOo

a<k<n

ask<n

a>1 k
. > g(—a):ng<0>+o<1> n— 400
geEE a<k<n "
a>1 k g'(0) g' O g 0)(a—ad?) 1
ce @ Z g (17’) =g0)(n—a)+ Es Sl ey M H + 0 (7n2”‘*3) n — +oo
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Approximation of Combinatorial Numbers

Factorial and Binomial

Formulas and Tables

n! ~ 2mn (f) n— oo (Stirling’
e

s Formula)

1 1
logn!=n10gn—n+%+log(v2n)+0( ) n — 400

n

22:1
A/Tn

(24 =G (40 ()

n — 400

Ramanujan Q’s

2
— oK/

Q(n, k) =

(oo

(n — k)!nk n

) o

Q) :=> Q. k)~Jmn/2 n
k=0

— 400
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Symbols

0,421

Gr(Al, ..., Ap), 84
0, 139

~, 470

a

(k>,a € R, 239
n

(k>,n e N, 31

XA, 3
(ar,a,...,a), 123
=,423

<, 200

A, 158

D fk), D £, 165
k

lim , 604
unif. k<k,
n——400
o0
> 4i(X),210
i=0
n, 545

n

L) 138
v, 493, 495, 571
yf, 489
vl 488,527
[X"] A(X), 194
[X>"] A(X), 194
[X="] A(X), 194

{Z; [n1, ...,nk]], 136

[f15,472
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{Z; [nl,...,nk]}, 115
unif.

<,602

C[[X]], 194

Nzl, 2

N>y, 2

R[[X]], 194

R((X)), 222

Ky, 266

1, 158, 420

B,, 112

W, 542

v, 419

@, 421

0,158

~, 583

B30Df B30Dp (), B30Df B30D, 470
*, 200

n
X , 105

w, 425
X, 454
7,450

n
[k]’ 128

Z,304
¢(2), 509

¢(3), 507, 510, 574
ay = O(by), 583
an = o(by), 582
ay ~ by, 583
F(X), 226

f(00), 483

645

UNITEXT - La Matematica per il 3+2 103, DOI 10.1007/978-3-319-03038-8



646

f(x) ~ g(x),580
o, s

A(—X), 213

A(B(X)), 212

AcX), 213

A(x), 276

ANB,2

AUB,2

AAB,?2

A\B, 2

A€, 2

A~1(X), 217

A, (X), 295

By, 299

B, (X), 536

C((n,k)), 42

C (00, k; (Ei)i>1), 261
C(n,k), 32

C(n, k; ki, ..., k], 75
C(n,k; (Ey,..., Ep)), 205
Cp(X), 431

Cip.g(X), 441

Cat,, 78

codeg A(X), 197
cothx, 301

Df, 521

Dy, 94,95
D,(ny,...,nr), 94,96
DA(X)s 276

EGF(a,)n, 199
EM|(f; [a, b)), 474
EM(f; [a, b]), 475
EM,, (f; [a, b]), 546
Ein(x), 286

Ein(X), 286, 287

H,, 172, 477, 493, 496, 572
126F (X), 1ESF(X), 205
key(xy, ..., xp), 147
LY(I), 487

o (small 0), 580

O (big 0), 388, 580

O (by), 489

OGF(ay),, 199
P(ay,...,ar), 66
Pehar, 358

0n), 612

O(n, k), 612-614
R(n,k), 618

S((n, k)), 40

S(n, k), 29

S(00, k; (Ei)ix1), 261
S(n, k; ki, ..., kq]), 71
S(n,k; (Eq, ..., Ep)), 205

Index

S(n, k; (ki ..., kn)), 65
SEQ%, 421

SEQI0, 1}(X), 427
SEQ-?, 434

SEQ™, 434

SEQq%, 422
SEQ(o %, 422
SEQ(cp %, 422
78,511

[x], 28

A
Abel, Henrik, 188
Abel-Dirichlet
convergence test, 188
Algorithm
binary search, 385
Analytic
function, 279
Apéry’s constant £ (3)
first-order approximation, 507
m'" order approximation, 574
second-order approximation, 510
Apéry, Roger, 508
Ascending couple, 140
Asymptotic
functions, 580
Asymptotic formula
Euler-Maclaurin for monotonic func-
tions, 529
Euler-Maclaurin of order m, 567
first-order Euler-Maclaurin, 489
second-order Euler-Maclaurin, 494
Autocorrelation
polynomial of a pattern, 431

B
Basic Principle
for occupancy problems, 206
for occupancy problems in N> 1, 262
Basis-solution
linear recurrence relation, 360
Bell number 98,,, 112
recursive formula, 112
Bell, Eric Temple, 112
Bernoulli
polynomial, 536
estimates of ju,, := B30DB,,(x) B30D (0,1}
542
qualitative behavior, 537
sup-norm /[y, on [0, 1], 542



Index

Bernoulli number B,,, 299
EGF
sum function, 305
estimate, 305
explicit form, 308
in terms of the ¢ function, 304
limit for n — +o00, 306
Bernoulli, Jacob, 299
Big O, 388, 580
Binary
tree, 453
Binary search
algorithm, 385
Binomial (Z) ,a € R, 239
asymptoticity as k — 400, 240
Binomial Z ,neN,3l
formula for (x + y)”, 34
identities, 52
identities with alternating signs, 55, 56,
58, 90
recursive formula, 35
triangle, 36
Binomial convolution, 200
EGF, 201
Binomial series, 242
convergence at 1, 283
Binomial transform of a sequence, 234
EGF, 234
Birthday’s problem, 40
Borel, Emile, 228
Brahma towers puzzle, 324, 367

C
Cardinality

of a set, 6
CAS, computer algebra system, 98
Catalan number Cat,,, 78, 449, 454
Catalan, Eugene Charles, 78
Cauchy sums, 584

the case @ < 1, 585

the case @ = 1, 587

the case @ > 1, 590
Cauchy, Augustin-Louis, 257
Central Limit Theorem

local version, 611
Chain rule

Faa di Bruno, 118

Faa di Bruno for the derivatives of a com-

position, 116

Change of variable

647

formal power series, 214
Characteristic
EGF of a set /ESF(X), 205
OGF of a set 126F(X), 205
polynomial, 358
Characteristic function, 3
Cicero, Marcus Tullius, 208
Class
combinatorial, see combinatorial class,
419
Closed form
formal power series, 226
Codegree
formal power series, 197
Collection, 9
k-collection, 8
empty, 9
number C((n, k)), 42, 43
of I, with repetitions in prescribed sets,
205
of N> with repetitions in prescribed sets,
261
with occupancy collection, 75
with occupancy in sets
OGF, 206
with occupancy sequence, 75
without repetition
number C (n, k), 32, 33
Combination, 9
Combinatorial class, 419
combinatorial subclass, 420
empty sequence (), 421
induced valuation, 420
isomorphism, 423
neutral class 1, 420
OGF, 425
operation, 420
sequences, 421
sequences of %
SEQ% , 421
with length in Q: SEQq %, 422
size, 419, 420
valuation v, 419
Combinatorial subclass, 420
Comparison test for generalized integrals,
487
Complex number
trigonometric form, 360
Composition, 9
n-composition, 8
formal power series, 212
infinite composition of &, 261
natural number solution, 8
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natural solution, 8
number C((n, k)), 42, 43
of a partition into cycles, 126
with elements in prescribed sets, 205
with elements in sets
OGEF, 206
with occupancy collection, 75
with occupancy sequence, 75
Constant
Apéry, 507, 510, 574
Euler, see Euler constant, 489
Euler-Mascheroni: y, 493, 495, 571
Continuity
extension by continuity, 229
analytic functions, 281
Convergence
2-periodic orbit, 340
of a formal power series at x, 276
of a series, 187
radius of convergence, 276
set of a formal power series, 276
test for series
Abel-Dirichlet, 188
integral first-order, 505
integral first-order for monotonic
functions, 528
integral second-order, 509
Leibniz, 189
Convex polygon
triangulation, 449
combinatorial class .7, 450
number, 449
Convolution
* of sequences, 200
binomial <> of sequences, 200
OGEF, 201
Vandermonde, 54
Conway, John, 445
Correlation polynomial
of a pair of patterns, 441
Correspondence
collections-compositions, 13
one to one, 5
sequences-sharings, 13
Counterimage, 5
Couple
ascending, 140
Cycle, 124
number, 125
support, 124
Cyclic permutation, 125

Index

D
Decimal
n-th, 468
representation, 467
rounding, 469
truncation to the nth decimal, 468
Defocused factorial, 245
Degree
vertex in a graph, 453
Derangement
of (1,...,n)
number, 94, 95, 183
of a sequence, 94
number, 94, 96
Derivative
n-th derivative of 1/g, 121
composite function, 116, 118
formal power series, 196
Leibniz rule for the n-th derivative of a
product, 73
method for formal power series, 237
method for sums, 155
Descending factorial power, 161
discrete primitive, 166
in terms of natural powers, 170
Dices problem, 309
Difference
operator A, 158
linearity, 159
of a product, 160
Digit
n-digit, 466
Dirichlet, 545
Dirichlet eta function 7, 545
at even numbers, 546
Dirichlet, Johann Peter Gustav Lejeune, 188
Discrete exponential, 171
Discrete primitive, 163
discrete exponential ak, 171
existence, 163
natural power k¢, 168

set of primitives of f: Z fs Z S k),
k

165
Discriminant
second order degree equation in R[[X]],
243
Disposition, 9
Distribution
Q Ramanujan, 612
approximation, 613
R Ramanujan, 618
Distribution of objects, 11
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Divide and conquer recurrence relation, 386
first-order
estimates of solutions, 388
Division
formal power series, 221
of the plane by lines, 323
Dyck
sequence, 78, 456
number, 78
Dyck, Walther Franz Anton, 78
Dynamical system, 328
fixed point, 328, 332
orbit, 328
period, 329
period, 329
minimum, 329
periodic point, 329

E
EGF, 199
Bell numbers (28,),, 293
Bernoulli numbers (B;,),,, 300
even, 301
binomial convolution, 201
binomial transform, 234
characteristic of a set / EGF (X), 205
harmonic numbers (H,),
sum function, 292
harmonic numbers (Hy),, 290

inverses of the natural numbers 7) s
n>1

n
286
sum function, 287
operations, 201
shift, 201
n

Stirling numbers of ond kind{ k} ,293
n

sum, 201
Elementary event, 21
Empty sequence
of a combinatorial class, 421
Error
~, 470
relative, 470
Eta Dirichlet function, 545
at even numbers, 546
Euler
formula for H,,, 176
function, 93
Pentagonal Theorem, 266
Euler constant, 489, 567
estimate

649

first-order, 489
monotonic functions, 527
m'™ order, 568
second-order, 494
existence
criterion for monotonic functions,
527
first-order criterion, 489
m™ order criterion, 567
second-order criterion, 494
Euler-Maclaurin
first-order expansion EM;(f; [a, b]),
474
m'™ order expansion EM,,(f; [a, b]),
546
second-order expansion EM, (f; [a, b]),
475
series EMoo (f; [a, b]), 555
convergence, 557
Euler-Maclaurin formula for monotonic
functions, 524
approximation
sum, 526
sum of a series, 529
asymptotic, 529
Euler constant, 527
integral convergence test for series, 528
Euler-Maclaurin formula of order m, 547
approximation
sum, 552
sum of a series, 573
approximation of integrals, 559
asymptotic, 567
Euler constant, 567
integral convergence test for series, 572
reduced, 562
trapezoidal method, 563
Euler-Maclaurin formula of order 1
approximation
sum, 482
sum of a series, 506
approximation of integrals, 512
asymptotic, 489
Euler constant, 489, 494
integral convergence test for series, 505
reduced, 519
rectangle method, 522
remainder under monotonicity assump-
tions, 475
Euler-Maclaurin formula of order 2
approximation
sum, 482
sum of a series, 509
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approximation of integrals, 512
asymptotic, 494
Euler constant, 494
integral convergence test for series, 509
reduced, 519
trapezoidal method, 522
remainder under monotonicity assump-
tions, 475
Euler-Mascheroni
constant y, 493
first-order approximation, 493
m'" order approximation, 571
second-order approximation, 495
Eulerian
polynomial A, (X), 295
Eulerian number Z , 138
recursive formula, 142
triangle, 143
Even
formal power series, 214
Event, 21
elementary, 21
Excess
of a permutation, 138
strict, 138
Expansion
Euler-Maclaurin
first-order, 474
order m, 546
second-order, 475
Expected value of a random variable, 312
Exponential
discrete, 171
discrete primitive, 171
generating formal power series EGF, see
EGF
Extension by continuity, 229
analytic function, 281
Extractions of numbers, 11

F
Faa di Bruno

chain rule, 116

explicit version, 118

Faa di Bruno, Francesco, 116
Factorial k!

g-defocused, 245
Factorial n!, 27

Stirling’s formula, 27
Family

formal power series

Index

locally finite, 209
of sequences, 600
Faulhaber’s formula, 302, 550
Faulhaber, Johann, 302
Fibonacci
generalized recurrence relation, 437
number, 323, 396
explicit formula, 364
recurrence relation, 323, 396
general solution, 364
sequence, 396
Fibonacci, Leonardo, 323
Finite calculus
Fundamental Theorem, 164
Flavius problem, 326
Flavius, Josephus, 326
Floor, 28
Form
closed form of a formal power series, 226
Formal power series, 193
A(cX), 213
additive inverse, 195
binomial, 242
binomial series
convergence, 283
change of variable, 214
closed form, 226
codegree codeg A(X), 197
composite of, 212
composition, 212
constant term, 194
convergence, 276
convergence set, 276
derivative, 196
linearity, 197
method, 237
division, 221
even, 214
exponential generating, see EGF
fraction
proper, 249
simple, 250
generating
exponential, see EGF
ordinary, see OGF
infinite product, 260
infinite sum, 210
change of summation order, 211
inverse, 217
explicit construction, 219
invertible, 217
locally finite, 209
Maclaurin, 224
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m'" root, 196
odd, 214
ordinary generating, see OGF
product, 195
proper fractions, 222
quotient, 221
radius of convergence, 276
rational fraction, 249
Hermite decomposition, 250
second order degree equations in R[[X]],
243
discriminant, 243
sum, 195
change of order, 196
infinite, 210
sum function, 278
summable, 277
vanishing of a product, 219
Formula
binomial for (x + y)", 34
Euler function, 94
Euler-Maclaurin for monotonic func-
tions, 524
Euler-Maclaurin formula of order m, 547
reduced, 562
Faa di Bruno for the n-th derivative of a
composition, 116
Faulhaber, 302, 550
first-order Euler-Maclaurin, 472
reduced, 519
inversion for natural functions, 182
inversion for set functions, 181
second-order Euler-Maclaurin
reduced, 519
Stirling, 27
1" order, 477
2" order, 481
proof, 501
up to a multiplicative constant, 499
summation by parts, 177
Taylor
discrete version, 180
Wallis, 500
Worpitzky, 296
Fourier
series, 540
coefficients, 540
pointwise convergence, 540
Fourier, Baptiste Joseph, 540
Fraction
proper of polynomials, 249
simple of polynomials, 250
Function, 5, 11
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Q Ramanujan, 612
approximation, 614
analytic, 279
asymptotic, 580
Bernoulli polynomial B, (x), 536
bijective, 5
characteristic, 3
codomain, 5
composite
n-th derivative, 116, 118
counterimage, 5
descending power, 161
Dirichlet eta ), see eta Dirichlet function
discrete exponential, 171
domain, 5
Euler, 93
formula, 94
harmonic numbers, 172
image, 5
image of an element, 5
injective, 5
number, 30
integer exponential integral Ein(x), 286
integrable
generalized sense, 487
inverse, 5
number, 40
polynomial, 275
Riemann zeta ¢, see zeta Riemann func-
tion
smooth, 507
summable, 487
surjective, 5
number, 90
Fundamental Theorem of Finite Calculus,
164

G
Game
Penney Ante, 441
best strategy for 2" player, 447
Gauss
integral, 595
method for sums, 153
Gauss, Carl Friedrich, 153
Gilbreath
permutation, 48
Principle, 50
shuffle, 50
number, 50, 351
Gilbreath Principle
magnetic colors, 63
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Goldbach, Christian, 449
Graph, 452
degree of a vertex, 453
simple, 452

H
Hanoi towers
recurrence relation, 324, 367
Harmonic number H,,, 172, 477
asymptotic approximation, 174
Euler formula, 176
Euler-Mascheroni constant, 493
first-order expansion, 493
m'" order expansion, 572
second-order expansion, 496
Hats
problem, 95
Hermite
decomposition of rational fractions, 250
rule, 566
Hermite, Charles, 250

I
Identity

operator 1, 158

linearity, 158

Worpitzky, 150
Image, 5
Inclusion/Exclusion Principle, 85

for probabilities, 185

number of elements in at least m sets, 87
Independent random variables, 315
Induced

valuation of a combinatorial subclass,

420

Infinite

composition of k, 261

product of formal power series, 260
Injective

number of injective functions, 30
Integer

interval, 535
Integer part, 28
Integer partition

OGF, 264
Integer powers

sum, 302
Integral

27d Mean Value Theorem, 518

convergence test for series

first-order, 505

Index

first-order for monotonic functions,
528
m'" order, 572
second-order, 509
Euler-Maclaurin approximation formula
first-order, 512
order m, 559
second-order, 512
Gauss, 595
generalized
divergent at infinity, 487
improper, 487
rectangle method, 522
trapezoidal method
order m, 563
second-order, 522
Integration
Hermite rule, 566
Interchange of summation order, 156
Internal vertex of a rooted plane tree, 453
Interval
integer, 535
Inverse
formal power series, 217
explicit construction, 219
Inverse image, 5
Inversion
formula for natural functions, 182
formula for set functions, 181
Invertible
formal power series, 217
Isomorphism
combinatorial class, 423

K
Karamata, Jovan, 105
Key of a sequence, 146

L
Labeling, 8
Laguerre polynomial, 99
Laguerre, Edmond Nicolas, 99
Latin’s teacher random choice, 208
Leibniz
convergence test, 189
rule for the n-th derivative of a product,
73
Leibniz, Gottfried Wilhelm, 187
Limit
of a function f at infinity: f(c0), 483
Locally finite
family of formal power series, 209
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Lucas
number, 323
explicit formula, 364
towers, 324, 367
Lucas, Frangois Edouard Anatole, 323

M
Maclaurin
expansion, 224
formal power series, 224
Maclaurin, Colin, 224
Magnetic colors, 63
Mean Value 2" Theorem, 518
Method
derivative for formal power series, 237
derivative for sums, 155
Gauss, 153
Newton’s method of the tangents, 335
perturbation for sums, 154
rectangle, 522
trapezoidal
order m, 563
second-order, 522
Monkey’s theorem, 439

N
Natural number
composition, 8
partition, 264
Newton
method of the tangents, 335
Newton, Isaac, 335
Non-homogeneous
recurrence relation, 355
term, 355
Number
Bell %8, 112
Bernoulli B,;, 299
esplicit form, 308
binomial Z) 31
Catalan Cat,,, 78, 449, 454
complex
trigonometric form, 360

Eulerian Z>, 138

Fibonacci, 323, 396, 401
explicit formula, 364

harmonic H,,, 172, 477
asymptotic approximation, 174
Euler formula, 176
Euler-Mascheroni constant, 493
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Lucas, 323
explicit formula, 364
n-digit, 466
of k-collections of N>; with k; € E;
repetitions of i, for each i > 1:
C (00, ki (Ep)iz1), 261
of k-collections of 1,
with occupancy collection
ki, ... knl: C(n, ks [ky, ... kn D), 75
of k-collections of I, with k| € E| repe-
titionsof 1, ..., k, € E, repetitions of
n:C(n,k; (Eq, ..., Ep)), 205
of k-collections of 7, without repetition:
C(n,k),32
of k-collections of I,,;: C((n, k)), 42, 43
of k-collections without repetition of 7,:
C(n,k),33
of k-partition into cycles of /,, with occu-

. n
pancy collection |:k; [n1,..., nk]],
136
of k-partitions into cycles of /,,: |:nj|’ 128,

k
133
of k-partitions of I,
with occupancy collection

(1, ..., nxl: lZ; [nl,‘..,nk]], 115

of k-partitions of I,: [ " ] 107

in terms of k-sharings, 106

of k-sequences of N>; with k; € E;
repetitions of i, for each i > 1:
S(00, k; (Ei)i=1), 261

of k-sequences of I,

with occupancy collection
k1, ... knl: S(n, k; [ky, ..., ky]), 71
with occupancy sequence

(k1 ..oy kn): S(n, k; (ki ..., ky)), 65
of k-sequences of /,, with k; € E| repe-

titionsof 1, ..., k, € E, repetitions of
n:Sn, k; (Eq, ..., Ep)), 205

of k-sequences of I,: S((n, k)), 40

of k-sequences of I, containing 1, ..., n,
89

of k-sequences without repetition of 7,:
S(n, k), 29
of k-sharings of 1,
in terms of k-partitions, 106

of n-compositions (kj,...,k,) of k
with ky € Ei,..., k, € Ej:
C(n, k; (Ey, ..., Ep)), 205

of n-compositions of k
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with occupancy collection
[k, ... knl: C(n, k; [k1, ..., kal), 75
of n-compositions of k with elements
>1:C(n, k), 33
of n-compositions of k: C((n, k)), 42,43
of n-sharings of Ij
with at most one element in each set:

S(n, k), 29
with occupancy collection
ki, ... knl: S(n ks ks ..o ka D), 71
with occupancy sequence

ki, ... kp): S(n, k; (ky, ..., ky)), 65
of n-sharings of I: S((n, k)), 40
of g-sharings of [ with the first n subsets
non empty, 89
of derangements of (1,...,n): D,, 94,

95,183
of derangements of a n-sequence of
Iy with occupancy (ny,...,ng):

D,(ny,...,ng), 94,96
of Dyck sequences, 78
of elements in at least m sets, 87
of functions, 40
of Gilbreath shuffles, 50, 351
of injective functions, 30
of partitions of 1,,;: 98, 112
of permutations of (1,...,n) with k

ascending couples: <n , 140

of permutations of (1,...,n) with k
excesses: <Z >, 138

of permutations of (aj,...,af):
P(ay,...,ax), 66

of subsets, 16

of subsets of 7, of cardinality k: C(n, k),
32

of surjective functions, 90

Stirling of 1** kind [Z] 128,131, 170

Stirling of 2" kind { } 105, 108, 168

n
k

(0}
O (big 0)
functions, 580
sequences, 388, 489
O (small 0)
functions, 580
Odd
formal power series, 214
OGE, 199

Index

(1 + Days1),, 201
SEQ{0, 1}(X), 427
SEQ™PI'(X), 436
binomials (Z)k

sum function, 283
binomials (Z)n

sum function, 281

binomials (Z) ,236
n

binomials (u) ,242
k)

k
Catalan numbers (Cat,,),,, 298
characteristic of a set ISGF(X ), 205
combinatorial class % (X), 425
convolution, 201

Eulerian numbers <Z> , 295
k

binomials (n) ,239
k

harmonic numbers (H,),, 288
sum function, 288

integer partition, 264

number of collections with occupancy in
sets, 206

operations, 201

partial sum, 234

powers (k")x, 296

probability, 309

rooted plane trees Z(X), 454

sequences that do not contain a pattern
p: SEQ7P I (X), 436

solution to linear recurrence, 394

Stirling numbers of 1% kind [Z] ,292

sum, 201 g

triangulations of a convex polygon
T(X), 452

Operator

difference A, 158
linearity, 159

identity 1, 158
linearity, 158

shift 6, 158
linearity, 158

Order

interchange of summation order, 156

Ordered partition, 9
Ordinary

generating formal power series OGF, see
OGF

Overlapping word paradox, 441
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P
Paradox
overlapping word, 441
Partial sums, 154
bounded, 187
Partition, 9
cyclic
number, 130
empty, 9
into cycles, 126
canonical representation, 126
composition, 126
number, 128, 133
with occupancy collection, 136
n-partition of a number, 9
OGEF, 264
n-partition of a set, 9
number of k-partitions
alternative explicit formula, 110
of a natural number, 264
ordered, 9
principle, 19
with occupancy collection, 115
Parts
set of, 2
cardinality, 16
Pascal, Blaise, 36
Pascal-Tartaglia triangle, 36
Pattern, 431
autocorrelation polynomial C,(X), 431
correlation polynomial C(p, 4)(X), 441
sequences that contain a pattern just in
final position, 434
sequences that do not contain a pattern,
434
Penny Ante game, 441
best strategy for 2"¢ player
bar trick for three-bit sequences, 447
Pentagonal
theorem, 266
Period
of a point, 329
minimum, 329
Periodic
{-periodic point, 329
Permutation
ascending couple, 140
cyclic, 125
excess, 138
Gilbreath, 48
number, 66
shift ®, 139
strict excess, 138
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Perturbation method for sums, 154
Plane
divisions of the plane by lines, 323
Plane tree
rooted, 453
combinatorial class, 454
number, 454
Poisson, Siméon Denis, 311
Pélya, Gyorgy, 37
Polygon
triangulation, 449
number, 449
Polynomial
autocorrelation, 431
Bernoulli, see Bernoulli polynomial
characteristic, 358
correlation, 441
Eulerian, 295
function, 275
Laguerre, 99
real coefficients
roots, 359
root, 249
Power
descending factorial, 161
discrete primitive, 166
in terms of natural powers, 170
natural
discrete primitive, 168
in terms of descending powers, 168
Power series
formal, see formal power series
Prime
numbers relatively prime, 93
Primitive, discrete, 163
existence, 163
exponential ak 171
natural power k¢, 168

set of primitives of f: z f z [k,
3

165
Principle
Basic Principle for occupancy problems,
206
Basic Principle for occupancy problems
inN>p, 262
Division, 20
Gilbreath, 50, 63
Inclusion/Exclusion, 85
for probabilities, 185
number of elements in at least m sets,
87
Multiplication, 15
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Partition, 19

superposition, 356
Probability

OGF, 309

uniform, 22
Problem

birthday, 40

dices, 309

hats, 95

Latin’s teacher random choice, 208

monkey, 439

overlapping word paradox, 441

Smith College diploma, 139
Product

cartesian, 5

conditional, 14

cardinality, 15
difference, 160
formal power series, 195
vanishing property, 219

infinite of formal power series, 260

of combinatorial classes, 420
Proper

fraction of formal power series, 222

fraction of polynomials, 249
Puzzle

Brahma towers, 324, 367

Q
Q-distribution, 612
Ramanujan
approximation, 613
Q-function, 612
Ramanujan
approximation, 614
Quicksort
recurrence relation, 382, 402
Quotient
formal power series, 221

R
Ramanujan
Q-distribution, 612
approximation, 613
Q-function, 612
approximation, 614
R-distribution, 618
Ramanujan, Srinivasa, 612
Random experiment, 21
outcome of, 21
Random variable

expected value, 312

independent, 315

variance, 312
Rational fraction

of polynomials, 249

Hermite decomposition, 250

R-distribution, 618
Rectangle method for integrals, 522
Recurrence relation, 320

Index

Brahma puzzle, 324, 367

divide and conquer, 386
induced linear recurrence, 386

divisions of the plane by lines, 323

Fibonacci, 323, 396
general solution, 364
generalized, 437

general solution, 321

Hanoi towers, 324, 367

linear, 355
associated homogeneous, 356
characteristic polynomial, 358
general solution, 373
homogeneous, 355
homogeneous part, 356
induced by a divide and conquer, 386
non-homogeneous term, 355
OGF of a solution, 394
order of, 355
particular solution, 368
variable coefficients, 380

Lucas towers, 324, 367

order of, 320

quicksort, 382, 402

solution, 321
initial conditions, 321
initial data, 321

superposition principle, 356

Titus Flavius Josephus problem, 326

Recursive formula

Bell numbers 93, 112
binomials (’;) 35

. n
Eulerian numbers <

X >, 142

Stirling numbers of 1 kind [Z] 131

n

Stirling numbers of 2"¢ kind {k}’ 108

Reduced

Euler-Maclaurin formula of order m, 562

first-order Euler-Maclaurin formula, 519

second-order Euler-Maclaurin formula,
519
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Relatively prime
numbers, 93
Riemann
sum, 587
zeta function ¢, see zeta Riemann func-
tion
Riemann, Bernhard, 304
Root
m-th root of a formal power series, 196
of a polynomial, 249
tree, 453
Rooted
plane tree, 453
combinatorial class, 454
number, 454
Rounding
decimal representation, 469
Rule
Faa di Bruno, 116, 118
Hermite for the estimate of an integral,
566
Leibniz for the derivatives of a product,
73

S
Sample space, 21
Sarkovskii
order on N>, 344
theorem, 345
Second order
degree equations in R[[X]], 243
discriminant, 243
Sequence, 9
asymptotic, 583
asymptotic relation big O, 489
binary, 9
binomial convolution <>, 200
binomial transform, 234
convolution , 200
Dyck, 78, 456
number, 78
empty, 9
family of sequences, 600
uniform big O, 602
uniform convergence, 604
Fibonacci, 396
convolution, 401
in SEQI that contain p just in final posi-
tion
class SEQ-7, 434
in SEQI" that do not contain p
class SEQI", 434
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key, 146
k-sequence, 8
number S((n, k)), 40
O (big 0), 583
of I, containing {1, ..., n}
number, 89
of a combinatorial class, 422
of I,, with repetitions in prescribed sets,
205
of N> with repetitions in prescribed sets,
261
o (small 0), 582
partial sums, 154, 234
bounded, 187
subsequence, 49
with occupancy collection, 71
with occupancy sequence, 65
with strips of 0’s, 429
without repetition
number S(n, k), 29
Series
Abel-Dirichlet test, 188
binomial formal power series, 242
binomial series
convergence, 283
convergence, 187
Euler-Maclaurin EM (f; [a, b]), 555
convergence, 557
Fourier, 540
integral convergence test
first-order, 505
monotonic functions, 528
order m, 572
second-order, 509
Leibniz test, 189
sum
approximation for series with
monotonic terms, 529
first-order approximation, 506
m'" order approximation, 573
second-order approximation, 509
Set, 1
cardinality of, 6
complement, 2
difference, 2
intersection, 2
labeling of, 8
of parts, 2
subset, 2
subsets
number, 16
union, 2
Sharing, 9
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n-sharing, 8
number S((n, k)), 40
of I; with the first n subsets non empty
number, 89
with occupancy collection, 71
with occupancy sequence, 65
Shift
EGF, 201
operator 6, 158
linearity, 158
permutation, 139
Shuffle, Gilbreath shuffle, 49
number, 50, 351
Simple
fraction of polynomials, 250
graph, 452
Size in a combinatorial class, 419
Small o, 580
Smith College
diploma problem, 139
Space
sample, 21
Stifel, Michael, 35
Stirling
number of 1% kind, 128, 170
explicit formula, 130, 133
recursive formula, 131
triangle, 132
number of 2"¢ kind, 105, 168
alternative explicit formula, 110
formula, 107
formula in terms of k-sharings, 106
recursive formula, 108
triangle, 109
Stirling formula, 27
Stirling’s formula
1" order, 477
2" order, 481
proof, 501
up to a multiplicative constant, 499
Stirling, James, 28
Strict excess of a permutation, 138
Strips of 0’s
sequences with, 429
Subclass
of a combinatorial class, 420
Subsequence, 49
Sum
approximation
Euler-Maclaurin formula for
monotonic functions, 526
first-order Euler-Maclaurin formula,
482

Index

second-order Euler-Maclaurin for-
mula, 482
approximation of order m, 552
. . n
binomials k
alternating signs, 55
on the index k, 52
on the index n, 52
onk and n, 52
sum of squares on the index k, 52
Cauchy, 584
the case o < 1, 585
the case @ > 1, 590
derivative method, 155
EGF, 201
formal power series, 195
infinite, 210
radius of convergence, 276
formal power series at x, 276
function of a formal power series, 278
Gauss method, 153
integer powers (Faulhaber’s formula),
302
interchange of summation order, 156
OGF, 201
partial sums, 154
OGF of the sequence, 234
sequence, 234
perturbation method, 154
Riemann, 587
Sum function
EGF
Bernoulli numbers (B,,),,, 305
harmonic numbers (Hy,),, 292
inverses of the natural numbers
l , 287
n n>1
OGF
binomials (Z)n, 281
harmonic numbers (H,),, 288
Summable
formal power series, 277
function, 487
Summation
interchange of order, 156
Summation by parts, 177
Sup-norm
Mm = B30DB,, (x)B30D < 0,17), 542
fundamental estimates, 542
definition, 470
Superposition principle, 356
Surjective
number of surjective functions, 90
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T
Tartaglia
Pascal-Tartaglia triangle, 36
Tartaglia, Niccolo, 36
Taylor
expansion
discrete version, 180
Ternary tree, 462
root, 462
Test
comparison for generalized integrals,
487
convergence for series, see series, 188
Theorem
27d Mean Value Theorem, 518
Central Limit
local version, 611
Fundamental of Finite Calculus, 164
monkey, 439
pentagonal, 266
Sarkovskii, 345
Towers
Hanoi, Brahma, Lucas, 324, 367
Trapezoidal method
order m, 563
second-order, 522
Tree
binary, 453
root, 453
root, 453
rooted plane tree, 453
combinatorial class %, 454
number, 454
ternary, 462
root, 462
unary-binary, 462
root, 462
Triangle

binomials (Z) , 36

Eulerian numbers Z
triangle, 143

Stirling numbers of 1% kind |:Z:|, 132
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n

Stirling numbers of 2"¢ kind l k

], 109

Tartaglia—Pascal, 36
Triangulation
convex polygon, 449
combinatorial class .7, 450
number, 449
Trivial
rooted plane tree, 453
Truncation
of a decimal representation, 468

U
Uniform probability, 22

\%
Valuation in a combinatorial class, 419
induced, 420
Vandermonde convolution, 54
Vandermonde, Alexandre Théophile, 54
Vanishing of a product
formal power series, 219
Variance of a random variable, 312

W

‘Wallis formula, 500

Wallis, John, 500
Worpitzky’s identity, 150, 296
Worpitzky, Julius, 150

V/
Zeta Riemann function, 304
4y
first-order approximation, 507
second-order approximation, 509
Apéry’s constant £ (3)
first-order approximation, 507
m'" order approximation, 574
second-order approximation, 510
estimate, 305
formula for the Bernoulli numbers, 304



	Preface
	Acknowledgements
	Contents
	1 Let's Learn to Count
	1.1 Operations on Finite Sets
	1.1.1 Review of Set Theory
	1.1.2 Cardinality of a Finite Set

	1.2 Sequences, Collections, Sharings, Compositions  and Partitions
	1.3 Fundamental Principles
	1.3.1 Multiplication Principle
	1.3.2 Partition and Division Principles

	1.4 Sample Spaces and Uniform Probability
	1.5 Problems

	2 Counting Sequences and Collections
	2.1 Sequences and Collections Having Distinct Elements
	2.1.1 Sequences Without Repetitions
	2.1.2 Collections Without Repetitions, or Subsets

	2.2 Arbitrary Sequences and Collections
	2.2.1 Sequences and Sharings
	2.2.2 Collections and Compositions
	2.2.3 Collections and Compositions with Constraints

	2.3 The Gilbreath Principle 75
	2.4 Binomial Identities
	2.4.1 Elementary Binomial Identities
	2.4.2 Alternating Sign Binomial Identities

	2.5 Problems

	3 Occupancy Constraints
	3.1 Sequences and Sharings with Occupancy Constraints
	3.1.1 Sequences and Sharings with Occupancy Sequences: Permutations and Anagrams
	3.1.2 Sequences and Sharings with Occupancy Collection
	3.1.3 The Leibniz Rule for the Derivative of a Product 75

	3.2 Collections and Compositions with Occupancy Constraints
	3.2.1 Collections and Compositions with Occupancy Sequence
	3.2.2 Collections and Compositions with Occupancy Collection

	3.3 Catalan Numbers and Dyck Sequences 75
	3.4 Problems

	4 Inclusion/Exclusion
	4.1 Inclusion/Exclusion Principle
	4.1.1 Cardinality of a Union of Sets
	4.1.2 Cardinality of Intersections

	4.2 Derangements (Fixed Point Free Permutations)
	4.2.1 Calculation of Dn
	4.2.2 Calculation of Dn(n1, �,nk) 75

	4.3 Problems

	5 Stirling Numbers and Eulerian Numbers
	5.1 Partitions of Sets
	5.1.1 Stirling Numbers of the Second Kind
	5.1.2 Bell Numbers
	5.1.3 Partitions of Sets with Occupancy Constraints
	5.1.4 Faà di Bruno Formula 75

	5.2 Cycles and Partitions into Cycles
	5.2.1 Cycles
	5.2.2 Stirling Numbers of the First Kind 75
	5.2.3 Partitions into Cycles with Occupancy Constraints 75

	5.3 Eulerian Numbers: Excesses and Ascending  Couples in a Permutation
	5.3.1 Eulerian Numbers and Excesses: The Smith College Diplomas
	5.3.2 Eulerian Numbers and Ascending Couples: Recursive and Explicit Formulas
	5.3.3 The Key of a Sequence and Some Notable Identities 75

	5.4 Problems

	6 Manipulation of Sums
	6.1 Some Techniques
	6.1.1 Gauss Method
	6.1.2 Perturbation Technique
	6.1.3 Derivative Method
	6.1.4 Changing the Order of Summation

	6.2 Finite Calculus
	6.2.1 Shift and Difference Operators
	6.2.2 Descending Factorial Powers
	6.2.3 Discrete Primitives and Fundamental Theorem  of Finite Calculus

	6.3 Discrete Primitives of Some Important Functions
	6.3.1 Discrete Primitive of the Descending Factorial Powers with Exponent = -1
	6.3.2 Discrete Primitive of Positive Integer Powers
	6.3.3 Discrete Primitive of the Discrete Exponential Function
	6.3.4 Harmonic Numbers and Discrete Primitives  of the Descending Factorial Power with Exponent = -1

	6.4 Formula for Summation by Parts
	6.5 Discrete Taylor Series 75
	6.6 An Inversion Formula
	6.7 Abel--Dirichlet Convergence Test 75
	6.8 Problems

	7 Formal Power Series
	7.1 Formal Power Series: Basic Definitions
	7.1.1 Sums, Products, and Derivatives
	7.1.2 The Codegree of a Formal Power Series

	7.2 Generating Series of a Sequence
	7.2.1 OGF and EGF of a Sequence
	7.2.2 Basic Principle for Occupancy Problems

	7.3 Infinite Sums of Formal Power Series
	7.3.1 Locally Finite Families of Formal Power Series
	7.3.2 Infinite Sums of Formal Power Series

	7.4 Composition of Formal Power Series
	7.5 Invertible Formal Power Series
	7.6 Fractions of Formal Power Series and Applications
	7.6.1 Quotients of Formal Power Series

	7.7 The Closed Forms of a Formal Power Series
	7.7.1 Maclaurin Formal Power Series and Closed Forms  for Formal Power Series
	7.7.2 Properties of Closed Forms
	7.7.3 OGF of the Binomials
	7.7.4 Second Degree Equations in mathbbR[[X]]
	7.7.5 A Proof of Proposition7.97 75

	7.8 Rational Fractions of Polynomials 75
	7.8.1 The Method of Decomposition into Simple Fractions
	7.8.2 The Recursive Method

	7.9 Linear Differential Equations 75
	7.10 Infinite Products of Formal Power Series 75
	7.10.1 Integer Partitions
	7.10.2 Euler's Pentagonal Theorem 75

	7.11 Problems

	8 Generating Formal Series and Applications
	8.1 Formal Power Series and Their Sum Function
	8.2 Generating Formal Series for Some Notable Sequences
	8.2.1 EGF of the Reciprocals of the Natural Numbers
	8.2.2 OGF and EGF of the Harmonic Numbers
	8.2.3 Generating Formal Series for the Stirling  and Bell Numbers
	8.2.4 OGF of Integer Powers and Eulerian Numbers
	8.2.5 OGF of Catalan Numbers

	8.3 Bernoulli Numbers and Their EGF
	8.3.1 Bernoulli Numbers
	8.3.2 The EGF of the Bernoulli Numbers
	8.3.3 An Estimate of the Bernoulli Numbers
	8.3.4 Explicit Form for the Bernoulli Numbers 75

	8.4 The Probability Generating Formal Series
	8.4.1 Expected Value and Variance for Random Variables
	8.4.2 Functions of Independent Random Variables

	8.5 Problems

	9 Recurrence Relations
	9.1 Basic Definitions and Models
	9.1.1 First Definitions
	9.1.2 Some Models of Recurrence Relations

	9.2 Discrete Dynamical Systems
	9.2.1 Terminology and Notation
	9.2.2 Dynamical Systems Generated by Monotonic Functions
	9.2.3 Periodic Orbits: Sarkovskii Theorem

	9.3 Problems

	10 Linear Recurrence Relations
	10.1 Linear Recurrences with Constant Coefficients
	10.1.1 Homogeneous Linear Recurrence Relation  with Constant Coefficients
	10.1.2 Particular Solutions to a Linear  Recurrence Relation
	10.1.3 General Solution to a Linear Recurrence

	10.2 Linear Recurrences with Variable Coefficients
	10.3 Divide and Conquer Recurrences
	10.3.1 Examples and definition
	10.3.2 Order of Magnitude of the Solutions

	10.4 Recurrences and Generating Formal Series
	10.4.1 Linear Recurrences with Constant Coefficients  and Their OGF
	10.4.2 Applications
	10.4.3 The Quicksort OGF 75

	10.5 Proofs 75
	10.5.1 Proof of Theorem 10.12
	10.5.2 Proof of Proposition 10.26
	10.5.3 Proof of Proposition 10.41

	10.6 Problems

	11 Symbolic Calculus
	11.1 Combinatorial Classes
	11.2 Operations Between Combinatorial Classes
	11.3 OGF of Combinatorial Classes
	11.4 Patterns in Strings
	11.4.1 Sequences that Do Not Contain a Given Pattern
	11.4.2 The Monkey's Theorem 75
	11.4.3 The Overlapping Word Paradox

	11.5 Triangulations of a Convex Polygon 75
	11.6 Rooted Trees 75
	11.7 Problems

	12 The Euler--Maclaurin Formulas  of Order 1 and 2
	12.1 Decimal Representations, Basic Integral Estimates
	12.1.1 Decimal Representation and Approximations  of a Real Number
	12.1.2 Integrals and Their Estimates

	12.2 The Euler--Maclaurin Formulas
	12.2.1 Examples of First-Order Expansion
	12.2.2 Examples of Second-Order Expansion

	12.3 First- and Second- Order Euler--Maclaurin Approximation Formulas
	12.3.1 Examples of First-Order Approximation
	12.3.2 Examples of Second-Order Approximation

	12.4 A Glimpse at Infinity:The Euler Constant�
	12.4.1 Generalized Integrals and Summable Functions
	12.4.2 The Euler--Maclaurin Asymptotic Formulas
	12.4.3 The First-Order Asymptotic Formula
	12.4.4 The Second-Order Asymptotic Formula
	12.4.5 Estimates of the Factorials and the Binomials

	12.5 A True Step to Infinity: The Integral Test 75
	12.6 Estimates of the Integral of a Function  and the Trapezoidal Method
	12.6.1 First- and Second- Order Euler--Maclaurin Approximations of an Integral
	12.6.2 The Reduced Euler--Maclaurin Formula 75
	12.6.3 The Rectangle and the Trapezoidal Method 75

	12.7 Formulas for Non-Smooth Monotonic Functions
	12.7.1 Euler--Maclaurin Type Formula
	12.7.2 The Approximation Formula for Finite Sums
	12.7.3 The Integral Test for the Convergence of a Series with Bounded Monotonic Terms
	12.7.4 The Approximation of the Sum of a Convergent Series
	12.7.5 Asymptotic Formulas

	12.8 Problems

	13 The Euler--Maclaurin Formula of Arbitrary Order
	13.1 Bernoulli Polynomials
	13.1.1 Recursive Definition of the Bernoulli Polynomials
	13.1.2 Qualitative Behavior of the Bernoulli Polynomial Functions on [0, 1] 75
	13.1.3 The Sup-Norm of the Bernoulli Polynomials on [0, 1]

	13.2 The Euler--Maclaurin Expansion of Order m
	13.2.1 The Euler--Maclaurin Formula  of Order m
	13.2.2 The Euler--Maclaurin Approximation Formula  of Order m
	13.2.3 The Convergence of the Euler--Maclaurin Series 75

	13.3 Approximation of Integrals
	13.3.1 The Euler--Maclaurin Approximation Formula  of an Integral
	13.3.2 The Trapezoidal Method of Order m

	13.4 The Asymptotic Formulas of Euler--Maclaurin  of Order m
	13.4.1 The Euler--Maclaurin Asymptotic Formulas of Order m and the Euler Constant of a Function
	13.4.2 Series: The Integral Test and the Approximation Formula of Order m

	13.5 Problems

	14 Cauchy and Riemann Sums, Factorials, Ramanujan Numbers and Their  Approximations
	14.1 A Revision of the ``Big O'' and the ``Small o'' Asymptotic Relations
	14.2 Approximation of Cauchy and Riemann Sums
	14.2.1 The Case 0<α<1
	14.2.2 The Case α=1: Riemann Sums 75
	14.2.3 The Case α>1 75

	14.3 The Gauss Integral
	14.4 Families of Sequences and Their Estimates
	14.4.1 Families of Sequences
	14.4.2 Uniform Estimates of Families of Sequences
	14.4.3 Uniform Limits of Families of Sequences

	14.5 Uniform Asymptotic Estimate of Binomials 
	14.6 Q-Ramanujan Distribution and Function, and Their Uniform Estimate
	14.7 Problems

	Appendix  Appendix 
	Appendix  Formulas and Tables
	Basic Combinatorial Definitions (k,ninmathbbNge1)
	Combinatorial Identities (k,m,ninmathbbN)
	Alternating Sign Binomial Identities (i,k,j, m,n,qinmathbbN)
	Triangles of Classes of Numbers
	Binomial Triangle
	Triangle of the Stirling Numbers of the 1st Type
	Triangle of the Stirling Numbers of the 2nd Type
	Triangle of the Eulerian Numbers
	Discrete Primitives
	OGF's Rules and Properties
	EGF's Rules and Properties
	Frequent Use OGFs
	Frequent Use EGFs
	Recurrence Relations
	Basis-Solutions to Homogeneous Relations
	Particular Solutions to a Non Homogeneous Linear Equation
	Divide and Conquer Relations
	OGF of a Linear Recurrence
	Symbolic Calculus
	Bernoulli Polynomials
	Euler--Maclaurin Formulas
	The Basic Euler--Maclaurin Formulas
	Asymptotic Versions of the Euler--Maclaurin Formula
	Euler Constant of a Function
	Approximation of Integrals
	Riemann and Cauchy Sums 
	Approximation of Combinatorial Numbers
	Factorial and Binomial
	Ramanujan Q's
	Appendix  References
	
	Index



