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You can’t be perfect,
but if you don’t try,
you won’t be good enough.

Paul Halmos



Preface

The book is split into two parts. Part I is a first course in measure theory
with integration, consisting of a revised, corrected, enlarged, updated, and
thoroughly rewritten text based on the author’s 2007 Measure Theory: A
First Course [25]. Part II is a second course, dealing with measure and
integration on topological spaces.

Part I, Introduction to Measure and Integration, designed to be a text-
book for a first course in measure theory, gives an abstract approach to
measure and integration, in which the classical concrete cases of Lebesgue
measure and Lebesgue integral are presented as an important particular
case of the general theory. Part I contains nine chapters. Chapter 1 considers
real-valued (and extended real-valued) measurable functions with respect to
a o-algebra, and Chapter 2 introduces the concepts of measure and signed
measure. The integral of nonnegative measurable functions with respect to
a given measure is addressed in Chapter 3. The notion of integral is ex-
tended to real-valued measurable functions in Chapter 4, and LP spaces are
constructed in Chapter 5. Convergence of sequences of measurable functions
is discussed in Chapter 6, where several concepts are compared. Decompo-
sition of measures is investigated in Chapter 7, and extension theorems are
treated in Chapter 8, where the Lebesgue measure is built up and discussed
in detail. Product measures and integrals with respect to product measures
(in particular, iterated integrals) close Part I in Chapter 9.

Part II, Measures on Topological Spaces, extends the material of Part I
by equipping a nonempty set with a topology and considering o-algebras of
subsets of it containing the topology. This second part investigates measures
and integrals on such Borel o-algebras. It contains four chapters. Chapter 10
is an introduction to Part II, examining fundamental properties of integrals
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viii Preface

with respect to positive, real, and complex measures. Measures on topologi-
cal spaces are introduced in Chapter 11, whose central theme is the construc-
tion of Borel measures on a Borel o-algebra of subsets of a locally compact
Hausdorff space. Several forms of the Riesz Representation Theorem are
considered in Chapter 12 after an introduction to continuous functions with
compact support and bounded linear functionals. Invariant measures are
focused in Section 13, where the main topic is the construction of Haar
measure on a Borel o-algebra of subsets of a locally compact Hausdorff
group.

The final section of each chapter in Part I contains Problems, and is an
integral part of the chapter, not only just a set of routine exercises. The
majority of those problems consists of auxiliary results, extensions of the
theory, examples, and mainly counterexamples. The reader is encouraged
to look at these problems with the same care as expected for a conventional
theory section. Indeed, part of the theory is sometimes shifted to the prob-
lems section, and when this happens those problems are accompanied by
Hints (sometimes, by detailed hints). The intention is to motivate readers
to take an active part in the development of the theory presented in Part I.

Part II evidently is more advanced than Part I, addressed to more ex-
perienced readers. Thus, unlike Part I, the last section of each chapter of
Part IT consists of Additional Propositions, containing auxiliary and comple-
mentary results. These are followed by a set of Notes, in which each propo-
sition is briefly discussed, and references are provided indicating proofs for
all of them. These additional propositions can be viewed as a set of more
complex proposed problems, and the respective notes as hints for dealing
with them.

Each chapter in both Parts I and II ends with a collection of Suggested
Readings. This has a triple purpose: to offer a reasonable bibliography in-
cluding most of the classics as well as some recent texts, to point out where
different approaches and proofs can be found, and also to indicate alter-
nate routes towards additional results (so that some of the references are
suggested as a second or third reading on the subject).

The material in Part I was devised to be covered in a one-semester begin-
ning graduate course. Although naturally addressed to graduate students,
Part I certainly is accessible to advanced undergraduate students as well.
In fact, it is self-contained, and the prerequisites are very modest, namely,
conventional undergraduate introductory analysis and, just for Chapter 5,
linear spaces as usually taught in standard linear algebra courses. No ac-
quaintance with functional analysis is required in Part I, but elementary
set theory is obviously required. In particular, it is assumed that the reader
be familiar with the notions of cardinality, countable and uncountable sets,
and also with the following basic results: the set of all rational numbers
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is countable, countable union of countable sets is countable, infinite sets
(in particular, uncountable sets) have a countably infinite proper subset,
and countably infinite families can be reenumerated into a sequence. Part 11
was prepared to be covered in a one-semester graduate course as well, sub-
sequent to a first course based on the material of Part I. The prerequisites
for Part II is just Part I.

All in all, the resulting text of the whole book is the outcome of attempts
to meet the needs of a contemporary course in measure theory for mathema-
ticians who will also be accessible to a wider audience of students in mathe-
matics, statistics, economics, engineering, and physics, bearing a modest
prerequisite. I tried to respond to the input from those students by present-
ing a text that contains complete proofs, including answers to several ques-
tions they have raised throughout the years. The logical dependence of the
various sections and chapters is roughly linear and reflects approximately
the minimum amount of material needed to proceed further.

I have been lecturing on this subject for a long time. Thus, I benefited
from the help of many friends among students and colleagues and I am
truly grateful to all of them, in particular to Renato A.A. da Costa, Sergio
Franklin, Leonardo B. Gongalves, Johnny Kwong, André L. Pulcherio,
Luciano R. da Silveira, Alexandre Street, and Joao Zanni who helped with
the quest for typos in Part I, and Lucas Freire and Joaquim D. Garcia who
helped with the quest for typos in Part II. Special thanks are due to Jessica
Q. Kubrusly from whom I stole the notes for Section 7.3, to Adrian H.
Pizzinga who read the entire text of Part I and corrected a number of ty-
pos and inaccuracies, to Richard Delaware who (together with his students)
has scanned Part I as well and contributed with many corrections, and to
an anonymous reviewer who made sensible suggestions to improve the text.
Thanks are also due to my friend and colleague Marcelo D. Fragoso who
was indeed an accomplice in writing this book. Let me also thank Elizabeth
Loew and Ann Kostant from Springer New York for a pleasant and lasting
partnership. I am grateful to the Catholic University of Rio de Janeiro for
providing the release time that made this project possible.

Rio de Janeiro, Brazil Carlos S. Kubrusly
June 2015
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1

Measurable Functions

1.1 Measurable Space

The power set £(X) of a given set X is the collection of all subsets of X.
We will work with set functions (i.e., functions whose domains are sets of
sets) from Chapter 2 onwards. To begin with, we might assume that a nat-
ural candidate for the domain of such functions of sets would be the power
set #(X) of a given set X. This indeed would be an admissible candidate.
However, as we will see in subsequent chapters, there are instances where
the power set is too large a set to be the domain of some set functions we
wish to consider. This means that some functions may lose essential prop-
erties if their domain is too large or, in other words, some functions would
not be well-behaved when defined on a domain that is as big as a power set
(this will be discussed in detail in Chapter 8). Given an arbitrary set X, a
collection of subsets of X (i.e., a subcollection of the power set £(X)) that
will be appropriate to our purpose is a o-algebra.

Definition 1.1. An algebra A (or a field, or a Boolean algebra) of sets is a
collection of subsets of a set X (i.e., A C #(X)) fulfilling the next axioms.
(a) The whole set X and the empty set & belong to A.

(b) The complement X\E of a set E in .4 belongs to A.

(¢) The union of a finite collection of sets in A belongs to A.

(© Springer International Publishing Switzerland 2015 3
C.S. Kubrusly, Essentials of Measure Theory,
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4 1. Measurable Functions

If the restriction of finite union in axiom (c) is relaxed to allow countably
infinite unions as well, then the algebra receives a special name and notation.

A o-algebra (or a o-field, or a Borel field) on X, denoted by X, is an algebra
of subsets of a set X for which axiom (c) is extended to axiom (¢) below.

(¢) The union of a countable collection of sets in X belongs to X.

A pair (X, X) consisting of an arbitrary set X and a o-algebra X of subsets
of X is called a measurable space. Sets in X are referred to as measurable
sets (measurable with respect to the o-algebra X') or as X-measurable sets.

Axioms (c) and (€) in the preceding definition of algebra and o-algebra
can be replaced, respectively, by the following axioms.

(¢/) The intersection of a finite collection of sets in A belongs to A.
(¢’) The intersection of a countable collection of sets in X belongs to X.

Indeed, (b) and the De Morgan laws (viz., X\ (U,4a) = N.(X\A4a) and
X\ (Na4a) = U, (X\Ay) for any collection {Aq} of subsets of X) ensure
that (b) and (c) (( ) and (¢)) is equivalent to (b) and (c’) (to (b) and (¢)).

Remark: Since A\B = AN X\B for every A, B C X, axioms (a), (b), (c) are
equivalent to axioms (a), (b'), (c), where (a’) and (b') are given as follows.

(a’) X belongs to A.
(b") The difference F\F of sets F and F' in A belongs to A.

A nonempty collection of sets that satisfies axioms (b’) and (c) is called a
ring (or a Boolean ring) of sets. If it satisfies axioms (b’) and (€), then it
is a o-ring. Every algebra (every o-algebra) is a ring (a o-ring). If a ring (a
o-ring) of subsets of a set X contains X, then it is an algebra (a o-algebra).

Example 1A. Take a nonempty set X. The power set £(X) is a o-algebra
of subsets of X (it is more than that since the union of an arbitrary collection
of sets in ©(X) lies in #(X)), which is the largest o-algebra of subsets of X.
At the other end, the collection {@, X} is the smallest o-algebra of subsets
of X. (The notions of large and small are defined in terms of the inclusion
ordering). A partition of a set X is any collection of pairwise disjoint subsets
of X that cover X. If {A, B} is a partition of X (i.e., if AUB = X and
ANB=g), then X = {2, A, B, X} is also a o-algebra of subsets of X.

The intersection of any collection of o-algebras of subsets of a set X is
again a o-algebra of subsets of X. This is readily verified by the definition
of g-algebra. If C is a nonempty collection of subsets of a set X (i.e., if
C C (X)), then there exists a smallest (inclusion ordering) o-algebra A
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of subsets of X that includes C. Indeed, let X denote the collection of all
o-algebras of subsets of X that include C. Note that X¢ is nonempty be-
cause the power set £(X) is an element of X¢ (i.e., #(X) € X¢). Now set
Xe = (N Xc, the intersection of all o-algebras of subsets of X that include
C, which is itself a g-algebra of subsets of X that includes C, included in
any o-algebra of subsets of X that includes C (i.e., if X' is a o-algebra of
subsets of X such that C C X, then Az C X). This smallest o-algebra X¢
is referred to as the o-algebra generated by C.

The Borel o-algebra of subsets of R is the o-algebra R generated by the
collection of all open (or closed) intervals of the real line R, also called the
Borel algebra of subsets of R, for short. This coincides with the o-algebra
generated by the open subsets of R (see the remark following Problem 1.14).
The elements of R (i.e., the R-measurable sets) are called Borel sets. The
notion of Borel g-algebra will be extended in Chapter 11.

1.2 Real-Valued Measurable Functions

Definition 1.2. Consider a measurable space (X, X). A function f: X — R
is measurable with respect to the o-algebra X, or X-measurable, if the
inverse image of («, 00) under f is a measurable set for any real number a:

F ' ((e,00)) ={z € X: f(z) >a} € X for every a €R.

Remark: The sign > in Definition 1.2 can be replaced with >, <, or <,
yielding equivalent definitions of a measurable function (cf. Problem 1.1).
Moreover, it can verified that f: X — R is measurable if and only if the
inverse image of open sets in R are measurable sets in X' (Problem 1.7(b)
— the notion of measurable function will be extended in Chapter 11).

Example 1B. Let (X, X) be a measurable space, take any set F € ©(X),
and consider the characteristic function Xg: X — {0,1} C R of E; that is,

N 1, xzekFE,
€Tr) =
£(@) 0, z€X\E.

The characteristic function Xg of a set E C X is an X-measurable function
if and only if E is an X-measurable set (i.e., if and only if E € X). Indeed,

g, 1<a,
Xgl((oz,oo)):{xeX: Xg(z) >a} =S E, 0<a<l,
X, a<O.
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Observe that the function 1: X — R such that 1(z) =1 for all x € X
coincides with the characteristic function X x of the entire set X. Moreover,
it is also readily verified that « f is measurable for every v € R whenever
f: X —= R is a measurable function. Therefore, every constant function is
measurable (since a constant function is precisely VX x for some v € R).

Example 1C. Take the set N of all positive integers, and let N, and N, be
the subsets of N consisting of all even and odd numbers, respectively. Thus
{N,,N.} forms a partition of N. Example 1A says that N’ = {@,N,, N, N }
is a o-algebra of subsets of N. Consider the measurable space (N, ), and
take the identity function f:N — NR (i.e., f(n) = n for every n € N). This
function f is not measurable (i.e., it is not N-measurable). In fact,

f7H(1,00)) ={neN: f(n)>1} ={2,3,4,...} ¢ N.

Take a o-algebra X of subsets of a set X, and let E € X be an arbitrary
measurable set of X'. Recall that the power set #(E) of E is a o-algebra of
subsets of F C X. Thus the collection of all X-measurable subsets of F,

E=9(E)NAX,

is again a o-algebra, now of subsets of E'C X. Indeed, since X and #(X)
are o-algebras, countable unions of sets in £ lies in £. Moreover, if B € &,
then B C E and B € X, and hence E\B € £(E) and E\B = EN(X\B) =
X\[(X\E)U B] € X. Observe that the smallest o-algebra of subsets of E,
namely {F, @}, is a subcollection of £, and & itself is the largest o-algebra
of subsets of F included in X.

Proposition 1.3. Restrictions of X-measurable functions to X -measurable
sets B are E-measurable functions.

Proof. Take a o-algebra X of subsets of a set X and an X-measurable func-
tion f: X — R. Let E be an X-measurable set and consider the restriction
fle:E—Rof fto E (ie., fle(e) = f(e) for every e € E). Let a € R be
an arbitrary real number and observe that

{e€E: flp(e) >a}={zeX: f() >a}NE € E=PE)NX.

In fact, as a subset of E, this obviously lies in £(F), and it lies in X since it
is the intersection of two X-measurable sets (because f is an X-measurable
function). Therefore, f|g is an E-measurable function. O

Proposition 1.4. Consider a measurable space (X, X). Let A and B be X -
measurable sets, and take the o-algebras A= 9(A)NX and B=9(B)NX
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of subsets of A and B, respectively. Take a function f: X — R and consider
its restrictions fla:A— R and f|g:B — R to A and B, respectively. If
AUB = X, then f is X-measurable if and only if f|a is A-measurable
and f|p is B-measurable.

Proof. Proposition 1.3 ensures the “only if” part. To prove the “if” part
proceed as follows. Take an arbitrary o € R and note that since AU B = X,

{reX: f(z) >a}={acA: fla(a) >a}uU{be B: f|p(b) >a},

which is the union of an A-measurable set and a B-measurable set (because
fla is an A-measurable function and f|p is an B-measurable function).
Since the o-algebras A and B are included in X, both sets lie in X', and so
their union {z € X: f(x) > o} is an X-measurable set. This means that f
is an X-measurable function. O

There is a huge supply of measurable functions as we will see in the rest
of this chapter (see also Problem 1.2 for the particular case of real-valued
functions on R with respect to the Borel algebra $). Let X be a o-algebra
of subsets of a nonempty set X and take a pair of X'-measurable functions,
say, f: X — R and ¢g: X — R. A polynomial p(f,g) of a pair of functions f
and g is an arbitrary (finite) linear combination of products of powers of f
and g; that is, p(f,g) = Z;"kio vjk f7 gF with real coefficients ;..

Proposition 1.5.If f and g are measurable functions, then so is any p(f, g).

Proof. Consider a measurable space (X, X). Let f and g be measurable func-
tions and let v be any real number. We have already seen that - (a constant
function) and « f (a multiple of a measurable function) are measurable func-
tions. Thus it is enough to show that f + ¢ and fg are measurable func-
tions in order to ensure that each (finite) linear combination of {fg*} S E>0
is a measurable function. Let Q denote the rational field, take an arbitrary
p € Q, an arbitrary a € R, and note that f~1((p,0)) N g~ ((a — p,00)) is
a measurable set (it is the intersection of measurable sets since f and g are
measurable functions). Let E, , denote such a measurable set, viz.,

E.,={zeX: f(z) >p and g(z) >a—p}.

Recall: (f + g)(x) = f(x) + g(x). Thus for each real « € R, (f + g)(z) > «
if and only if f(x) > p and g(z) > a — p for some rational p € Q. That is,
if and only if x € E, , for some p € Q. Thus, for every o € R,

(f+9) " ((a,00) ={z e X: (f+9)(z)>a}= Upanp.
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Since each E, , is a measurable set and since Q is a countable set, it follows
that UpEQ E.,, is a measurable set for every o € R, and hence f 4+ g is

a measurable function (Definitions 1.1 and 1.2). Next note that f2 (de-
fined by f%(z) = f(z)? for every z € X) is also a measurable function. In
fact, {z € X: f%(z) >a} = X if a <0 and f(z)? > « if and only if ei-
ther f(z) > v/a or f(z) < —y/a whenever a > 0, which implies that the set
(fH) (o, 00)) = {z € X: f%(x) > a} is measurable:

X, a <0,

(f*) " ((a,00)) = FH(Ve,00) U (=)~ ((Va,)), «a>0,

where, for a > 0, we have a union of measurable sets. This ensures that f2
is a measurable function. However, since

fa=1((f+9)?%=(f—9)?).

whose expression involves multiplication by a constant, addition, and squar-
ing of measurable functions, it follows that fg is a measurable function. [

Take an arbitrary function f: X — R, set
Fr={zeX: f(z) >0} and F ={zeX: f(z) <0},

and let X1 and X _ be the characteristic functions of F' + and F'~, respec-
tively. Consider the following real-valued functions on X:

fr="Ix, and f7=—fx__.

These are the positive part of f and the megative part of f, respectively.
Note that f©: X — R and f~: X — R are both nonnegative functions (i.e.,
fT(z) >0and f~(z) > 0 for every x € X). Moreover, the functions f and
its absolute value |f]: X — R (given by |f|(z) = | f(z)| for every z € X) can
be expressed in terms of the positive and negative parts of f as follows.

f=f"—f" and |[fl=f"+f".
The above identities can be reversed yielding

fr=500+1) and f7=35(f1-1)

Proposition 1.6. The following assertions are pairwise equivalent.

(a) f is a measurable function.
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(b) f* and f~ are measurable functions.

(¢c) FT and F~ are measurable sets and |f| is a measurable function.

Proof. Consider a measurable space (X, X). Let f be a measurable function.
Thus F'* and F~ are both measurable sets (cf. Definition 1.2), and so Xr+
and XF~ are measurable functions (cf. Example 1B). Then Proposition 1.5
ensures that ft= fy p+ and f7 = —fx .- are measurable functions, and so
is |f] = f* + f~. Note that the identity f = f* — f~ ensures the converse:
if fT and f~ are measurable, then f is measurable. So far we have proved
that (a) and (b) are equivalent, and (a) implies (c). Next we verify that (c)
implies (a). Note that the restrictions of |f| to F™ and F~ coincide with
the restrictions of f to F* and with the restriction of —f to F'~; that is,

f|F+:|f||1:*+:}7+_>]R and f|F—:_|f||F7:F__>R'

Since F* U F~= X, it follows by Proposition 1.4 that if F* and F~ are
X-measurable sets and |f] is an X-measurable function, then f|.4 is F*-
measurable and — f| p— (and so f|p—) is F ~-measurable, with respect to the
o-algebras Ft = @(Ft)NX and F~ = Q(F~) N X, respectively. Another
application of Proposition 1.4 ensures that f is X'-measurable. (I

Observe that “|f| measurable” does not imply “f measurable” (i.e., (c)
does not imply (a) without the assumption that F* and F'~ are measur-
able). For instance, take a measurable space (X, X') and suppose there exists
a partition {4, A’} of X, where A and A’ are not X-measurable sets, and
consider the function f: X — R given by f(z) =1for x € A and f(z) = —1
for x € A’ so that F*= A and F’~ = A’. It is clear that f is not an X-
measurable function (A is not an X-measurable set). But |f| is a constant
function, thus measurable (with respect to any o-algebra — Example 1.B).

1.3 Extended Real-Valued Measurable Functions

When considering the notion of length of subsets of the real line R (as it
will be done from Chapter 2 onwards), it emerges the need for dealing with
the length of unbounded subsets of R (such as R itself), and also with the
notion of inf and sup of unbounded subsets of R. This lead us to introduce
the extended real number system (or the extended real line), which is the
collection R = R U {—00, 400} consisting of the real field R and a pair of
symbols, namely, —oo and +oo. These symbols are not numbers, certainly
not real numbers. We might have chosen any other pair of symbols such as,
for instance, (a,w) or (<,>) instead of the “set-down-eights” (—oo, +00).
However, we will stick with the standard notation. Regarding the natural
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ordering of the real line R, we postulate that —oco < x < +oo for all z in
R, and extend the natural order of R to R. Note that R is not a field, even
though arithmetics with the new symbols are partially defined in the usual
fashion, with some exceptions (e.g., —oo and +o00 cannot be added together
in any order; equivalently, the subtraction of +o0o with itself is not defined).

We transfer the definition of measurable function to extended real-valued
functions exactly as in Definition 1.2, namely, if (X, X) is a measurable
space, then an extended real-valued function f: X — R is measurable (with
respect to the o-algebra X) or X-measurable if the inverse image of (a, 00)
under f is a measurable set for any real number (i.e., for any « € R):

[ (e, 0)) = {z € X: f(z) >a} € X for every a €R.

As in Definition 2.1, the sign > in the above expression can be replaced
with >, <, or <, yielding equivalent definitions of an extended real-valued
measurable function (cf. Problem 1.1). If f is an extended real-valued X'-
measurable function, then it is easy to verify (cf. Problem 1.4) that

Fioo={z€X: f(z) =400} and F_o ={z€X: f(z)=—00}

are X-measurable sets. Let X X\(Fpo0UP_og) be the characteristic function
of the complement of F'; , U F_,, and consider the real-valued function

o = IXx\(py o) X 7R

(e, fr(@)=f(x)ifx & (Froo UF_) and fr(z) =0ifx € (Fioo UF_w);
in other words, fr(x) = f(z) if f(z) # too, and fr(xz) =0 if f(x) = £o0).

Proposition 1.7. Consider a measurable space (X, X). An extended real-
valued function f: X — R is measurable if and only if the real-valued func-
tion fr: X — R is measurable and both sets Fyo, and F_., are measurable.

Proof. Take a function f: X — R, and an arbitrary o € R. Observe that

{zeX: fa(x) >a}UFiw, a>0,

rexism=ab= o aen

Then f is a measurable function whenever fg is a measurable function and
F, and F_, are measurable sets (recall: A\B = X\[(X\A) U B]). Since

{z € X: f(z) > a}\ Fioo, a>0,

{xGXi fR($)>a}: {xeX:f(a:)>oz}UF_oo, a <0,
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and since Fy ., and F_,, are measurable sets whenever f is a measurable
function, it follows that fr is measurable whenever f is. O

Let S be an arbitrary set. An S-valued sequence (or a sequence of ele-
ments in ) is just an S-valued function defined on N, the positive integers
(or on Ng= {0} UN, the nonnegative integers). Take an arbitrary R-valued
sequence {ay}. Let inf, o, and sup,, o, denote the greatest lower bound
and the least upper bound of {a, }, respectively, which exist and are unique
in R (but may not exist in R). The limit inferior (notation: liminf «,) and
limit superior (notation: limsup,, a;,) of {ay,} are defined in R by

liminf o, = sup inf o and  limsup «, = inf sup ay.
n n n<k n n n<k
If lim inf,, o, = lim sup,, v, = @, then we say that {a,,} converges to a € R,
and write lim,, a, = . If {v, } is increasing (i.e., ay < apt1), or decreasing

(i.e., apt1 < ay,), then it is a monotone sequence. An R-valued monotone
sequence {«, } converges to a limit o in R. For R-valued sequences this defi-
nition of convergence is equivalent to the standard definition of convergence
(restricted to R); viz., a real-valued sequence {a,,} converges to o € R if
for every € > 0 there exists an integer n. > 1 such that |, — a| < € when-
ever n > n.. If a real-valued sequence {«, } is bounded (i.e., if sup,, |a,| lies
in R), then the sequences {inf,<x oy} and {sup,«, ax} converge in R to
liminf,, o, € R and limsup,, a,, € R, respectively. In this case,

liminf o, = lim inf o ~and  limsup a,, = lim sup ay.
n n n<k n n n<k
An R-valued monotone and bounded sequence {a;,} converges to a limit «
in R. Let {f,} be a sequence of extended real-valued functions f,: X — R
on X. Since each f,(z) lies in R for every = in X, set

gf)(fﬂ) - lgffn(x)a Qj(x) = Sl;p fn(x)a

f(x) =liminf f,(z),  f(z) = fim sup fn(2),

n

for every # € X. These values always exist as elements of R, and so they de-
fine four functions, viz., : X - R, #: X R, f: X— R, and f: X > R. If

f(x) = f(x) for every x € X, then the R-valued sequence { f,, ()} converges
in R for every € X. The common value f(z) = f(z) € R, denoted by f(z)
for each x € X, is called the limit of the R-valued sequence {f,(z)}. This
defines a function f: X — R. In this case (i.e., when f = f), we say that the
sequence of functions {f,} converges pointwise to the limit function f and

write f = lim, f,, which means that for every x € X,

fa) = lim £, ().
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For a sequence { f,, } of real-valued functions this coincides with the standard
definition of pointwise convergence (restricted to R); viz., a sequence of real-
valued functions f,: X — R converges pointwise to a real-valued function
[ X—=Rif|f,(z) — f(z)] = 0 as n — oo for every z € X. In other words,
a sequence {f,} of R-valued functions on X converges pointwise if there
exists an R-valued function f on X such that, for every ¢ > 0 and each
x € X, there is an n. , € N such that |f,(x) — f(z)| < € whenever n > ng 5.

Proposition 1.8. If each function f, is measurable, then so are the func-
tions ¢, @, f and f, and also is the limit [ = lim,, f,, if the limit exists.

Proof. Recall that arbitrary intersections of closed sets are closed, and ar-
bitrary unions of open sets are open. Take any a € R and note that

{z e X: ¢(z) > a} :ﬂn{xGX: falz) > al,

{z e X: &) > a} :Un{xeX: falz) > a}.

Suppose {f,} is a sequence of measurable functions. The preceding sets are
measurable (because they consist of countable intersections and countable
unions of measurable sets), and so ¢ and @ are measurable functions. Set

¢n(x) = inf fy(z) and &, (z) = sup fi(z)
n<k n<k

for each integer n € N and every point z € X. Since each function f, is
measurable, the same argument ensures that the functions ¢,, and &,, are
measurable too, and so are the functions f and f. In fact,

f(z) =supinf fy(z) =sup ¢,(z) and f(z)=infsup fi(z) = inf &, (x)

n n<k n n<k
for every z € X. Recall that f exists if and only if f = f. O

Appropriate versions of Propositions 1.5 and 1.6 still hold for extended
real-valued functions as we will see in Proposition 1.9. Let us first recall
some usual conventions. We declare that 0 - (00) = 0 so that if v = 0, then
vf(x) =0forall z € X (i.e., vf = 0 if y = 0) for every R-valued function f
on X.If f and g are R-valued X-measurable functions on X, then the sets

FiwNG_oo ={z € X: f(z) =400 and g(z) = —oo},

GiooNF_ oo ={z € X: g(z) =400 and f(z) = -0},
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are X-measurable (cf. Problem 1.4). However, the function f 4 ¢ is not
pointwise defined on these sets. That is, f + g is not defined by (f + ¢)(z) =
fl@)+g(z) if z liesin Fioo N G_oo or in Gioo N F_o. So we declare that

(f+9)@)=0 forall 7€ (FiooNG_ oo)U(GiooNF_).

Recall the definition of the R-valued functions f A g and f V g on X: for each
ze X, (fAg)(x) =min{f(z),g(x)} and (f V g)(z) = max{f(z), g(z)}.

Proposition 1.9. If f and g are R-valued measurable function on X, then

v f+g Y UfL Ay fVve fg,

are R-valued measurable functions on X as well.

Proof. Consider a measurable space (X, X), take a pair of measurable R-
valued functions f and g on X, and let v be any real number. The previous
conventions ensure that the functions vf and f + g are well defined, and
they are measurable as well (use the same argument in the proof of Proposi-
tion 1.5). The arguments in the first part of the proof of Proposition 1.6 still
hold for R-valued functions, so f*, f~, and |f]| also are well-defined mea-
surable functions. Similarly (cf. Problem 1.3), f A g and f V g also are well
defined and measurable. Note that fg is a well-defined R-valued function.
To show that it is measurable proceed as follows. For each pair of integers
m,n € N take the truncated functions f,: X — R and g,,: X — R given by

f(x),  [f(@)]<n, 9(@), |g(x)] <m,
fn(x) = n, f(CC) >n, gm(.%') = m, g(l‘) >m,
-n, f(l’) <-n, —m, g(l’) <—-m,

for every z € X. Since {f,} and {gm,} are sequences of R-valued X-
measurable functions (cf. Problem 1.5), it follows that f,, g, are R-valued
X-measurable functions for each pair of integers m,n € N according to
Proposition 1.5. Note that the sequences {f,} and {g.} clearly converge
pointwise to f and g, respectively. Since {f,gm} is a sequence of X-
measurable functions for each m € N, and since

fom = lim frn9m

for each m € N, it follows that fg,, is X-measurable for each m € N by
Proposition 1.8. Analogously, since each fg,, is X-measurable, and since

fg= liranfgm;

it follows by Proposition 1.8 that fg is X-measurable. O
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Remark: The argument in the proof of Proposition 1.5 can be used to show
that the function f2 is well defined and X-measurable, but the above con-
ventions are not enough to ensure the identity fg = 1((f + ¢)*— (f — 9)%).

Let M(X, X) denote the collection of all real-valued functions on X that
are measurable with respect to a o-algebra X’ of subsets of X. Write M for
M(X, X) when the measurable space (X, X)) is clear in the context; that is,

M=M(X,X)={f:X—R: fis X-measurable}.

The collection consisting of all real-valued functions on a set X is usually
denoted by R¥. It is well-known (and readily verified) that RX is a real
linear space. If X is a o-algebra of subsets of X, then Proposition 1.5 ensures
that the collection M (X, X) of all X-measurable real-valued functions on
X forms a linear manifold of the linear space R* (i.e., addition and product
by a scalar of X-measurable real-valued functions are again X’-measurable
real-valued functions). Thus M (X, X) is itself a linear space.

The collection of all extended real-valued functions on a set X that are
measurable with respect to a o-algebra X of subsets of X will be denoted
by M(X,X) (or simply by M) as well — same notation. However, in this
case, M(X, X) is not a linear space (since R is not a real linear space).

1.4 Problems

Problem 1.1. Take a measurable space (X, X). If f: X — R is a real-valued
function on X, then show that the next assertions are pairwise equivalent.
(a) f'((,o0)) ={zeX: f(z) >a} € X for every a €R,
() fHa,0) ={ze€X: f(x) >a} € X for every a€R,
(¢) f7H((~o0,0)) ={z e X: f(z) <a} € X for every a €R,
(d) f7H((—o0,0]) ={z e X: f(z) <a} € X for every a €R.

Also show that these four assertions can be equivalently stated if we replace
the assumption “for every oo € R” with “for every a € Q”.

Hint: If a € R, then a = lim,, a,, with a,411 < ay, € Q for each n>1 (de-
creasing rational sequence) so that f~!((a, 00)) = U, {z € X: f(z) > an}.

Therefore, the preceding eight assertions are equivalent forms of defining a
measurable function, and they still hold if f: X — R take values in R.

Problem 1.2. Consider the real line R and take the Borel algebra ®. By a
measurable real-valued function on R we mean an $-measurable (or Borel
measurable) function. Prove the next three assertions.
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(a) Every continuous function f:R — R is measurable.
(b) Every monotone function f:R — R is measurable.

Now consider the characteristic function Xg of the rational set Q, which is
far from being continuous or monotone. This is called the Dirichlet function.

(¢) The Dirichlet function Xg:R — R is measurable.

Problem 1.3. Let f: X — R and g: X — R be arbitrary measurable func-
tions (with respect to a o-algebra X’ of subsets of X). Define the functions
e: X — R and h: X — R as follows. For each z € X,

e(z) =min {f(z),g(x)} and h(z)=max{f(z),g(z)},
denoted by e = f A g = inf{f, g} and h = f V g = sup{f, g}. Show that
=5(f+g—1f—gl) and h=3(f+g+I[f—gl)-

Also show that e and h are X-measurable functions.

Problem 1.4. Take an extended real-valued function f: X — R, and show
that if f is measurable with respect to a o-algebra X of subsets of X, then

={zeX: f(z) =400} and F_o={z€X: f(z)=—o0}
are X-measurable sets. Hint: With n ranging over N,

F+oozﬂ {xGX: f(z) >n},
ﬂ {a:EX fx) < n} X\U {xeX flx >—n};

countable intersection and complement of countable union.

Problem 1.5. Consider a measurable space (X,X). Let f: X — R be an
arbitrary extended real-valued measurable function on X. For each posi-
tive real number § define the S-truncation of f as the real-valued function
fs: X — R on X defined for each z € X by

f@),  |f=@)] <5
fole)=9 B, [flz)> 6,
_5a (SC)

Show that fz is a measurable function.
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Problem 1.6. Let & be a o-algebra of subsets of X, and take a nonnegative
X-measurable function f: X — R on X. Show that there exists a sequence
{n} of X-measurable functions ¢,,: X — R with the following properties.

(i) Each ¢, is nonnegative (i.e., 0 < ¢, (z) for every z € X for each n).
(ii) {¢n} is increasing (i.e., @, () < @pi1(x) for every z € X for each n).
(iil) { o, } converges pointwise to f (i.e., f(z) = lim, ¢, (x) for every x € X).

)
(iv) Each ¢, has a finite range (i.e., {a € R : v = p,,(z) for some z € X}
is a finite set for each n).

Now show that if f is bounded (i.e., if sup,¢c x |f(z)] < 00), then {y,} con-
verges uniformly to f (i.e., sup,ex |¢n(z) — f(z)| = 0 as n — o0).

Hint: Take an arbitrary n € N and, for each integer 0 < k < n2", set
{reX: k2" < flx) < (k+1)27"}, k<n2",

En,k =
{z € X: f(z) = n}, k =n2m™.

Verify that { E,,  }o<k<non is a partition of X made up of X-measurable sets.
Then, for each n € N, set ¢, (z) =27" ZZiT(L) kXEnk(x) for every z € X.

Problem 1.7. Take an arbitrary complex-valued function f: X — CC on
X. Consider its Cartesian decomposition: f = fi 4+ i fa, where f1 and f; are
real-valued functions on X (called the real and imaginary parts of f, which
are and defined by f1(x) = Re f(x) and fo(x) = Im f(z) for every z € X).
We say that a complex-valued function f is measurable (with respect to the
o-algebra X') or X-measurable if its real and imaginary parts f; and fo are
both (real-valued) X-measurable functions. (Compare with Remark 10.2.)

(a) Verify that f: X — CC' is X-measurable if and only if the inverse image
of every open rectangle of the complex plane CC' is an X-measurable
set. That is, the set {z € X: a < fi(z) < f and v < fa(z) < ¢} lies in
X for all real numbers «, 3, v, and é.

(b) Generalize the above characterization: f: X — CC is X-measurable if
and only if the inverse image of every open set of CC' is an X-measurable
set.

(¢) Also verify that sums and products of complex-valued measurable func-
tions are again measurable, as well as the limit of every (pointwise)
convergent sequence of complex-valued measurable functions.

Problem 1.8. Consider two measurable spaces (X, X') and (Y, ). Let F be
a function of X into Y. We say that F is a measurable transformation (with
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respect to the o-algebras X’ and ) if the inverse image under F' of every
Y-measurable set is an X-measurable set. That is, F': X — Y is measurable
with respect to the o-algebras X' and ) of subsets of X and Y if

FYE)={zeX: FteE}€X for every E€).

Now set Y = R, ) = R (the Borel algebra) and consider a real-valued func-
tion f: X — R. Show that f is X-measurable in the sense of Definition 1.2 if
and only if it is measurable in the above sense; that is, f~1(E) € & for every
Borel set E. (Note the analogy with the definition of continuous function
between topological spaces. Such an analogy and also an alternate definition
of measurable transformation will be discussed in Theorem 11.4.)

Problem 1.9. Let F' be an arbitrary function of a set X into a set Y. Let )
be a o-algebra of subsets of Y. First show that the collection of the inverse
images under F' of each Y-measurable set, X = {F~}(E): E € Y}, forms a
o-algebra of subsets of X. Given any function F: X — Y and a o-algebra Y
of subsets of Y, also show that this X is the smallest o-algebra of subsets
of X that makes F' measurable. This is called the o-algebra of subsets of X
inversely induced by F'. (Note the similarity between this concept and that
of the topology inversely induced on X by F', which is the weakest topology
on X that makes F' continuous.)

Hint: Let F: X — Y be any function X into a set Y, and recall that the
inverse image of any subset B of Y under F' is the subset of X given by

“Y(B)={z € X: F(z) € B}.

Show that @ = F~1(2), X = F~YY), X\F~Y(B) = F~1(Y\B) for every
B CY, and that (J, F~ YB,) = F~ 1(U7 ) for every nonempty collec-
tion {B.,} of subsets of Y.

Problem 1.10. Consider three measurable spaces, namely, (X, X), (Y,)),
and (Z,2). Let F: X—Y and G:Y — Z be measurable functions (with
respect to the o-algebras X and ), and ) and Z, respectively). Show that
the composition G o F': X — Z is a measurable function (with respect to
the o-algebras X and Z) — Compare with Theorem 11.4(d).

Problem 1.11. Let f: X — R be a real-valued X-measurable function on a
set X, where X is a o-algebra of subsets of the set X, and let g:R— R be a
continuous function. Show that the composition g o f: X — R is measurable.
(Hint: Problems 1.2 and 1.10.) This will be extended in Theorem 11.4(e).

Problem 1.12. A collection 7 C #(X) of subsets of a set X is a topology
on X if it satisfies the following three axioms.
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(i) The whole set X and the empty set @ belong to 7.
(ii) The intersection of a finite collection of sets in T belongs to 7.
(iii) The union of an arbitrary collection of sets in 7 belongs to 7.

A topological space, denoted by (X, T) or simply X (if T is clear or imma-
terial) is a set X equipped with a topology T. The sets in T are called the
open sets of X with respect to 7. Let X be equipped with a topology, and
equip the real line R with its usual topology (the one induced by the usual
metric on R). Show that if a real-valued function f: X — R is continuous
(with respect to the above topologies, which means that the inverse image
under f of open sets of R are open sets of X), then f is measurable with re-
spect to the o-algebra X generated by a topology 7 on X. (In the jargon
of Section 11.1 this means that continuous functions are Borel measurable).

Problem 1.13. This is a generalization of Problem 1.12. Let X7 be the o-
algebra generated by a topology Tx on a set X and let Y7 be the o-algebra
generated by a topology 7y onaset Y. If F': X — Y is a continuous mapping
(ie., if F~Y(U) € Tx for every U € Ty ), then F is measurable (in the sense
of Problem 1.8). Note: “continuity” is with respect to the topologies Tx and
Ty, and “measurability” is with respect to the o-algebras X7 and Yr. The
notion of measurable functions will be discussed again in Section 11.1.

Problem 1.14. Take a topological space X with a topology 7. A subcol-
lection B of T is a base (or a topological base) for X if it covers every open
subset of X (i.e., every U € T is the union of some subcollection of B —
we return to this notion in Section 11.1.) If X is a metric space equipped
with the metric topology T, then it has a base of open balls (every open
set is the union of open balls). A topological space is separable if it has a
countable dense subset. A metric space is separable if and only if it has a
countable base of open balls. Show that the o-algebra Xy generated by the
metric topology T on a separable metric space coincides with the o-algebra
X generated by any countable base B of open balls.

Remark: Tt is well known that the real line R (equipped with its usual topol-
ogy) is a separable metric space. (Indeed, the set Q of all rational numbers
is countable and dense in R.) So the Borel algebra R (the o-algebra gener-
ated by the open intervals) coincides with the o-algebra generated by any
countable base of open intervals, which coincides with the o-algebra gener-
ated by the topology on R (the o-algebra generated by the open sets). For
this reason A1 is called the Borel o-algebra of subsets of a set X generated
a topology T on X. (Borel o-algebra will be revisited in Section 11.2.)
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Problem 1.15. A nonempty class (i.e., a nonempty collection) K of subsets
of a set X that contains the union of every increasing sequence in K and the
intersection of every decreasing sequence in K is called a monotone class.
That is, K is a monotone class if, whenever {E, } is an increasing sequence
(B, C Epyq) of sets in K and {F,} is a decreasing sequence (Fp,+1 C F},)
of sets in KC, then | J,, ), and [, F), are sets in IC. The remaining problems
are all about monotone classes, leading to the central result of Problem 1.18
(The Monotone Class Lemma), which will be required in the sequel. To be-
gin with, prove the following assertions (where monotone classes, algebras,
and o-algebras are supposed to consist of subsets of the same fixed set X).

(a) Every o-algebra is a monotone class.
(b) A monotone class is not necessarily a o-algebra.

A nonempty collection of subsets of a set X that is both a monotone class
and an algebra is called a monotone algebra.

(¢) Every monotone algebra is a o-algebra.

Hint: Let K be a monotone algebra and let {E,} be a sequence of sets
in IC. Since K is an algebra, {U?:l Ei} is an increasing sequence of sets
in . Since K is a monotone class, {{J;°; E;} lies in K.

Problem 1.16. Let C C ©(X) be a nonempty collection of subsets of a set
X. Prove that there exists a smallest (in the inclusion ordering) monotone
class ¢ of subsets of X that includes C. That is, there exists a monotone
class K¢ included in any monotone class that includes C.

Hint: The intersection of any collection of monotone classes of subsets of X
is again a monotone class of subsets of X.

This smallest monotone class K¢ is the monotone class generated by C.

Problem 1.17. Let C C #(X) be a arbitrary nonempty collection of subsets
of a given set X. Show that the monotone class K¢ generated by C is included
in the o-algebra X generated by C:

CCKeCAe.
Give an example where the above inclusions are all proper.

Problem 1.18. Now prove the Monotone Class Lemma, which says that if
the preceding collection is an algebra A, then

Ka=X4.
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In other words, the monotone class IC 4 generated by an algebra A of subsets
of a set X coincides with the o-algebra X4 generated by A. This is the
Monotone Class Lemma, which plays a major role in Chapter 9.

Hint: Consider an algebra A of subsets of a set X, and let K4 be the
monotone class generated by A. For each E € K 4, set

Ea={FekKs: E\FEK4, ENFeK4 and F\E€ K4} C Ka.

Show that
(i) €4 is a monotone class,
(ii) F € E4 if and only if E € Fy,

where the definition of F 4 is analogous to that of £4 (swapping E for F).
Since A is an algebra and A C [C4 (cf. Problem 1.17), also show that

(iii) @, B, X\F, and X all lie in &4,
(iv) E € A implies A C E4.

(Recall that ENF = X\((X\E)U (X\F)) and E\F = EN (X\F), and
hence E\F, ENF, and F\E all lie in A if E and F lie in A.) Now show
from (i) and (iv) that (cf. Problem 1.16)

Ea=K4 for every FE €A

Thus, if £ € A and F € K4, then F € £4, and so E € F4 by (ii). Hence
A C F 4 for every F € K 4. Then show from (i) that (cf. Problem 1.16)

Fa=K4 for every FeKa.

So,if E,F € K4, then ENF, E\F, and F\F lie in K 4. Furthermore, prop-
erty (iii) ensures that @ and X also lie in K 4. Thus verify that the intersec-
tion and the complement of sets in K 4 remain in K4, and so a finite union
of sets in K4 remain in K 4. (Recall that F U E = X\ ((X\E) N (X\F)).)
Therefore, according to Definition 1.1,

K4 is an algebra.

Finally, use Problem 1.15(c) to show that K4 is a o-algebra, and then
conclude that X4 C K 4, and therefore, by using Problem 1.17, infer that

Ka= X4

Problem 1.19. Prove that if a monotone class includes an algebra A, then
it also includes the o-algebra X4 generated by A.
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Remark: Problems 1.15 to 1.19 (and their hints) give a rather complete
account of monotone classes which will be enough for our purposes. In
particular, the Monotone Class Theorem as in Problem 1.18 will play an
important role in Lemma 9.7, which is crucial to proving Tonelli and Fubini
Theorems (Theorems 9.7 and 9.8) in Chapter 9.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Royden [35], Rudin [36]. For introduc-
tory set theory, see [19], [39], [40] and the first chapter of [9], [12], [18], [21],
[24], [26], [29], [35]. For general topology, see [9], [12], [16, Chapter 4], [21],
[24, Chapters 2 and 3], [26, Chapter 3], [29, Chapters 7 & 8], [35, Part Two].



2

Measure on a o-Algebra

2.1 Measure and Measure Space

A function whose domain is a collection of sets is called a set function.
A measure is a nonnegative extended real-valued set function satisfying
some further conditions. The domain of a measure is a subcollection of the
power set (X)) of a given set X. It is advisable to require that the empty
set @ and the whole set X itself belong to the domain, and to assign the
minimum (zero) for the value of the function at the empty set. It is also
convenient to require additivity in the following sense. Assume that every
finite union of sets in the domain is again a set in the domain. This indi-
cates that the domain might be an algebra. Then assume that the value of
the function at any finite union of disjoint sets in the domain equals the
sum of the values of the function at each set. Actually, this leads to a possi-
ble definition of a concept of measure (measures defined on an algebra will
be considered in Chapter 8). However, such an approach lacks an impor-
tant feature that is needed to build up a useful theory, namely, countable
additivity. That is, it is required that the notion of additivity also holds for
countably infinite unions of disjoint sets, and so countably infinite unions
of sets are supposed to be in the domain of a measure. This compels the
domain to be a o-algebra.

Definition 2.1. A measure is an extended real-valued set function p on a
o-algebra X of subsets of a set X,

p: X — R,

(© Springer International Publishing Switzerland 2015 23
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that fulfills the following axioms (referred to as the measure axioms).

(a) (@) =0,
(b) u(E)>0 forevery FeX,

(C) :U(Un En) = Zn ,U(En)

for every countable family {E,} of pairwise disjoint (E, NE, =@
whenever m # n) sets in X (i.e., p is countably additive).

A triple (X, X, 1) consisting of an arbitrary set X, a o-algebra X of subsets
of X, and a measure p on X is called a measure space.

Remarks: Since i takes values in R, it is possible that u(E) = +oo for some
X-measurable sets E. If the countable family {E,} in (c) is infinite, and if
w(Ey,) € R for every n (i.e., if all the sets E,, have a finite measure), then we
get an infinite sum of nonnegative real numbers in (c), and therefore either
a convergent (in fact, unconditionally convergent), or a divergent series of
nonnegative real numbers — in the latter case, u( U, En) = +00.

A real-valued measure pu: X — R is called a finite measure, which means
that u(E) < oo for all E € X. However, as we will see in Proposition
2.2(a), this is equivalent to saying that a measure u is finite if p(X) < co.
In particular, if u(X) =1, then u is called a probability measure, and
(X, X, p) is called a probability space. If there exists a countable covering of
X consisting of X-measurable sets of finite measure, then p is referred to
as a o-finite measure. Equivalently, a measure pu: X — R is o-finite if there
exists an X-valued sequence {E,} such that u(E,) < oo for every n and
X=U,, En.

An atom of a measure p: X — R on a o-algebra X of subsets of a non-
empty set X is a measurable set A € X such that (i) u(A) > 0, and (ii) either
p(E) =0 or u(E) = u(A) for every measurable subset E of A. In other
words, a measurable set A € X is an atom of a measure p: X — R if u(A) > 0
and u(E) = pu(A) whenever E € £(A) N X is such that u(E) # 0).

Example 2A. Consider any o-algebra X of subsets of a nonempty set X.
Associated to any point « € X, define a set function §,: X — R as follows.

5B 1, xe€ekFE,
o(B) = 0, zeX\E,

for every measurable set £ € X. According to Definition 2.1, ¢, is a mea-
sure, actually, a probability measure, called the Dirac measure at x (or
the unit point measure concentrated at z). Observe that any measurable
set containing x is an atom of d,. A singleton is a set containing just one
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element. If singletons are measurable sets with respect to the o-algebra X
(i.e., if {z} € X for every = € X), then {z} is an atom of each J,, and
0:({y}) is 1 if y = z and 0 if y # x for every singleton {y} in X.

Example 2B. Consider the g-algebra £(N) of all subsets of the positive
integers N. Let the symbol # stand for cardinality (for a finite set S, #(S5)
is the number of elements in S). Take the function u: #(N) — R defined by

() = { #(E), Eis finite,

00, F is infinite,

for each E € 9 (N). It is readily verified by Definition 2.1 that u is a measure.
Set E, = {n} € §(N) for each n € N so that N = |J,, ), and u(E,) = 1.
Then the measure u is o-finite, but it is not finite (there are infinite sets in
P(N); e.g., N itself). This is called the counting measure on N.

Example 2C. Consider the o-algebra R of subsets of R generated by the
collection of all open intervals. That is, consider the Borel algebra . We
will prove in Chapter 8 the existence and uniqueness of a measure A: 8 — R
such that A((«, 8)) = 8 — « for every open interval (o, ) of R. In other
words, this is the only measure on } that has the property of assigning to
each open interval its own length. It is referred to as the Lebesgue measure
on R, which is not finite (e.g., A(R) = +00) but is o-finite. In fact, for an
arbitrary € > 0 and for each integer k € Z, let Ey, = (qx — €, qx + €) be the
open interval of radius € centered at qx, where {qx }rez is an enumeration of
the rational numbers Q, so that R = J, Ex and p(Ey) = 2¢ for all k € Z.

Example 2D. Scaling the Lebesgue measure A of Example 2C leads to
another measure on R. Indeed, for any real v > 0, the function A\,: R — R
defined by Ay = v, so that A, ((a, 8)) = vA((a, B)) =v(B — @) =78 — you
for every open interval (o, ) of R, is again a measure on R. This is a
homogeneous scaling. Inhomogeneous scaling also yields new measures. For
instance, let F: R — R be a nondecreasing function (i.e., F(z) < F(y) for
2 < y), which ensures that F has a left and a right limit at each point z € R,
denoted by F(z~) = lim.0 F(z — |¢|) and F(z1) = lim.,o F(z + |¢|) —
if F' is continuous, then F(x%) = F(z~) = F(x). The same argument used
to construct the Lebesgue measure A in Chapter 8 can be readily modified
to show that there is a unique measure Ap: R — R such that Ag((«, B)) =
F(B7) — F(a™) for every open interval (a, 3) of R. This measure A is the
Borel-Stieltjes measure generated by F, which again is o-finite. Particular
cases: (i) if F' = X[g o): R— {0, 1} is the characteristic function of [0, c0),
then Ap = dp:  — {0, 1} is the Dirac measure at 0 of Example 2.A; (ii) if F
is continuously differentiable, then Ar((a, 8)) = F(8) — F(a) = [? ¢€ da.

a dx
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Recall the definition of increasing and decreasing sequences of sets: a
sequence {A,} of subsets of X is increasing if A,, C A, 1, and decreasing if
An+1 C A, for every n. It is monotone if it is either increasing or decreas-
ing. The next proposition presents some basic properties of measures.

Proposition 2.2. Let X be a o-algebra of subsets of a set X. Take arbitrary
(measurable) sets A and B in X, and an arbitrary sequence {E,} of sets
in X. The following properties hold true for every measure u: X — R.

(a) u(A)<u(B) if ACB.

B\A) = u(B) — u(A) if AC B and p(A) £ +oc.

Proof. f AC BC X, then B= AU (B\A) and AN (B\A) = . If both
A and B are X-measurable, then so is B\A = BN (X\A) according to
Definition 1.1(b,c)). Then, by Definition 2.1(b,c),

H(A) < p(A) + u(B\A) = p(AU (B\A)) = u(B),

proving (a). If, in addition, u(A) # +oo, then pu(B) — u(A) is in R so that

w(B) — p(A) = n(B\A),

which proves (b). Next let {E,} be an increasing sequence of X-measurable
sets. If one of F, has an infinite measure, then assertion (c) follows
from assertion (a). Thus suppose pu(E,) € R for every n € N, and take a
sequence {F/ } of X-measurable sets recursively defined as follows: E] = E;
and E, | = E,11\E, for each n € N, which is a sequence of pairwise dis-
joint sets, and so (cf. Definition 2.1(c) and also recall that {J,, £, = U,, E,,)

w(U,5) = (U, B2) = X2 i) = n(E0) + im S ).
n=1

It then follows from (b) that for an arbitrary integer m > 1,

m

S (E) = Y B \En)

n=1

I
NE

(N(En+1) - /J'(En)) = /J‘(Em+1) - N(El)v

Il
—

n

and hence p(J,, En) = limy, t(Epm+1), proving (c). Next suppose {E,} is
a decreasing sequence of X-measurable sets and set E/ = Ej\E,, for each
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n so that {E/'} is an increasing sequence. Thus we can apply (c), but first
note that since E,, C E; for all n and pu(F) # +oo, we get from (a) that
1(Ey) € R for all n (and hence y( (1), En) € R). Then by (b), for each n,

p(EBNE,) = (B~ p(Ba) - and (BN Ea) = (B =) En)-

Recalling De Morgan laws and applying (c), it then follows that

W(Ey) — M(ﬂnEn) = M(El\ ﬂnEn) = M(Un(El\En)) = u(UnEI{)

— lim () = lim j(B\Ey) = u(Br) — lim (),
n n n
completing the proof of (d) since u(F;) # +oo. O

Consider a measure space (X, X, p). If a statement (or a proposition)
P(z) holds for every x € X\N for some N € X such that u(N) =0 (ie.,
if it holds up to a set of measure zero), then we say that P(z) holds
u-almost everywhere (or almost everywhere with respect to u, or simply al-
most everywhere if the measure p is clear in the context, or still almost sure
if (X, X, p) is a probability space). Summing up: a proposition P(z) holds
p-almost everywhere if P(x) is true up to a set of measure zero, which
means that there exists an X-measurable set N with pu(N) = 0 such that
P(z) holds true for all z in the complement X\ N of N.

Example 2E. Let f: X — Z and ¢g: X — Z be functions from a set X to
a set Z. The standard definition of equality between functions is pointwise
interpreted: f = g if f(z) = g(x) for every x € X. That is, equality is point-
wise defined everywhere in X. Now suppose p: X — R is a measure defined
on a c-algebra X of subsets of X. The functions f and g are equal almost
everywhere with respect to u (or equal p-almost everywhere), denoted by

=9 pae,

if f(x) = g(z) for every x € X\ N for some N € X such that u(N) = 0. That
is, f(x) = g(z) for every z in the complement of a set of measure zero. For
instance, take the measure space (R, R, \) of Example 2C, and let f and g
be real-valued be functions on R. If f =0 (i.e., f(xz) =0 for all x € R), and
g(x) =0 for every x € R\{0} and g(0) =1, then f =g Aa.e., but f#g
pointwise. (If both are continuous, then f = g A-a.e. if and only if f = g.)

Example 2F. Consider a sequence { f,,} of real-valued functions f,,: X — R
on a set X. The sequence of functions {f,,} is said to converge pointwise to
a function f: X — R if the sequence of real numbers {f,,(x)} converges to
the real number f(x) for every x € X, which means convergence of { f,,(z)}
everywhere in X. Let u: X — R be a measure on a o-algebra X of subsets
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of X. The sequence of functions {f,,} converges to f almost everywhere with
respect to u (or converges u-almost everywhere to f), denoted by

fn—f pae. or lim f, = f p-ae.,

if fn(z) = f(z) for every x € X\N for some N € X such that u(N) = 0.
That is, f,(z) = f(z) for every x except perhaps in a set of measure zero.

2.2 Signed Measure

Consider a measurable space (X, X), let ;1 and A be two measures on X', and
let o be a nonnegative real number. It is readily verified that ap and p+ A
are again measures on X (pointwise defined; that is, (ap)(E) = au(E) and
(4 XN (E) = u(E) + A(E) for every E € X)). This is easily extended (by a
trivial induction) so that every (finite) linear combination Y . ; o;p; with
nonnegative coefficients «; of measures pu; on X' is again a measure on X.
The assumption of nonnegative coeflicients is imposed to ensure nonneg-
ativeness for the resulting measure (Definition 2.1(b)). If we ignore this
nonnegativeness requirement, then we might consider real coefficients. For
instance, we might consider the set function p — A on X (pointwise defined:
(L= A(E) = u(E) — A(E) for every E € X). However, if there exists a set
E in X such that pu(E) = A(E) = 400, then u(E) — A(E) is not well de-
fined. An obvious way to avoid this problem is to assume that at least one of
p or A does not take on the value +o0o0. Another (and simpler) way consists
in assuming, symmetrically, that ;4 and A are both real-valued measures.

Definition 2.3. A signed measure is a real-valued set function v on a o-
algebra X of subsets of a set X,

v: X — R,
fulfilling the next two axioms.
(a) v(@) =0, and
(b) v(U, En) =32, v(En)

for every countable family {F,,} of pairwise disjoint sets in X’ for which
the series ) | v(E,) is unconditionally convergent.

Remark: A signed measure is a real-valued function on a c-algebra that
may fail to be a measure (a finite measure, actually) because it may not
satisfy nonnegativeness in the second axiom of Definition 2.1(b). We are
now dealing with real-valued functions. Thus the series in (b) must converge
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(otherwise the left-hand side of (b) is not well defined). In Definition 2.1(c)
we had a series of nonnegative terms, where convergence coincides with
absolute convergence, which (in R) means unconditional convergence. Now
we have a series of real numbers, where unconditional convergence is not a
consequence of plain convergence. But the identity in (b) requires uncondi-
tional convergence (the union in the left-hand side is order invariant, and so
is the series on the right-hand side) or, equivalently, absolute convergence.

The properties in Proposition 2.2(b,c,d) still hold for a signed measure
(with essentially the same proof). Observe that any (finite) linear combi-
nation of signed measures is again a signed measure. If ;4 and A\ are finite
measures, then the function v = p — A is a signed measure. Such a setup
was our motivation for defining signed measures. There are other ways to
get signed measures from measures (cf. Lemma 4.6). Another important
question is how to get measures from signed measures (cf. Section 7.1).
The next example shows that what might seem the obvious way simply
fails. The following two examples exhibit measures generated by a signed
measure.

Example 2G. Take a measurable space (X, X), let v: X = R be a signed
measure, and consider a set function 7: X — R defined for each F € X’ by

This 7m: X — R may not be a measure. Actually, if the signed measure v is
not a measure itself, then there is a set B € X for which v(B) < 0. If there
isaset A € X suchthat ANB =@ and v(A) = —v(B), then v(AU B) = 0.
Thus A C AU B and n(A) £ 7(AU B), and so 7 is not a measure (Propo-
sition 2.2(a) — i.e., 7 is not increasing). Another way to see this:

(AU B) = [(AUB)| = 0 < [u(A)| + [1(B)| = 7(A) + n(B).

Hence 7 is not additive, not even finite additive, and so 7 is not a measure
(Definition 2.1(c) — a concrete example is exhibited in Problem 2.12).

Example 2H. Let (X, X’) be a measurable space. Consider the o-algebra
E = P(E)NAX for each X-measurable set E. Let v: X — R be a signed
measure. We show that the function pu: X — R defined for each E € X by

n(E) = Sup v(A),

is a finite measure on X. In fact, let {E,} be a arbitrary countable family
of pairwise disjoint sets in X, set £ = |J E,, € X, and take any n € N.
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Claim. For each € > 0 there is an X-measurable set A,, C E,, such that
v(An) < p(Ey) <v(An) + 2%

Proof. Observe that v(A,,) < u(E,) according to the definition of u. Take
an arbitrary € > 0. If v(A) + ¢ < u(E) for every A € £, then u(E) +e =
supgce V(A) + ¢ < p(E), which is a contradiction. Thus, for every ¢ > 0
and every E € X thereis an A, € € such that u(E) < v(A.) + €. Therefore,

for any integer n € N and any € > 0, set €, = 55 so that there exists an

X-measurable A,, C E,, for which u(E,) <v(An) + 5w O
Thus,

Zny(An) < Znﬂ(En) < Zny(An) +e

because Y., . 5w = 1. Since {A,} is a disjoint sequence (reason: {E,} is a
disjoint sequence) of sets in X, and since v is a signed measure, we get

V(UnAn) = ZnV(A")'

Set A={J, A, in X so that A C E =J,, E,. Hence A € £ and

v(A) < Zn#(En) <v(A) te.
This implies that
W(E) <Y pl(En) < p(E) +e

for every € > 0 because p1(E) = sup 4c¢ v(A). Therefore, since |J,, E, = E,

w(U,Bn) = n(B) =37 n(En),

so that axiom (c) of Definition 2.2 (countable additivity) is satisfied. Since
axioms (a) and (b) are trivially satisfied (#(2) N X = {@} and v(@) = 0, so
(@) =0and u(E) > 0 for every E € X), p is a measure on X'. Moreover, it
is readily verified that u is indeed a finite measure (actually, it is dominated
by the measure in the next example, which will also be shown to be finite).

Example 2I. A covering of a subset A of a set X is a collection of subsets
of X that cover A (i.e., whose union includes A). A partition of A is then
a covering of it consisting of disjoint subsets of it (i.e., a disjoint covering).
Take a o-algebra X of subsets of X and let E be any X-measurable set.
A measurable covering of E is a covering of it made up of X-measurable
sets. A measurable partition of E is a disjoint covering of it consisting of sets
in £ = P(E)NX. For each integer n € N let E(n) be the collection of all
measurable partitions of E containing precisely n sets, so that |J E(n) is the
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collection of all finite measurable partitions of E. Take any signed measure
v: X — R and consider the function p: X — R defined for each £ € X’ by

w(E) = sup Z v(E

{E;}€UE(n)

Every finite partition {E;} € |J E(n) can be written as {E;} = {E;} U {E}},
where {E;} and {E}} are disjoint collections such that v(E;) > 0 for each
j and v(Ey) < 0 for each k. Set £ = J; Fj and E~ = |J,, B}, in € so that

V(EY) = V(UjEj) =" v(E) 20,
E7) = V(UkEk> =" (B <0,

Therefore, >, |v(E;)| = v(ET) — v(E™), where {ET, E~} € E(2). Thus

wE) = sup (V(E+) — Z/(E_)) for every FE € X,
{Et,E~}e E(?2)

where the supremum is taken over all measurable partitions {ET, E~} of
E consisting of two sets such that v(E*) >0 and v(E~) < 0. This u is a
finite measure on X', called the variation of the signed measure v. Indeed, p
coincides with the “total variation” of v, which is a finite measure |v|: X — R
that will be discussed in Proposition 7.4 and Example 7A of Section 7.1.

2.3 Completion of Measure Spaces

Consider a measure space (X, X, ). It is said to be complete if the o-algebra
contains all subsets of sets of measure zero. That is, (X, X, u) is complete if

NeX, uy(N)=0and ACN imply AeAX.

If a measure space (X, X, u) is complete, then X is said to be a complete
o-algebra (with respect to a measure p) and p is said to be a complete
measure on X. Each measure space can be completed by adding up enough
subsets of measure zero to the o-algebra, as we will see next. Consider a
measure space (X, X, u), and take the collection

N ={NeXx: puN)=0}

of all sets in X of measure zero. Let X be the collection of all sets of the
form EU A, where F is a set in X and A is a subset of some set in NV:

X={ECX: E=EUA with E€ X and ACN for some N € N }.
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Consider a set function 7i: X — R defined by

for each set E € X', where E is any set in X for which E = E U A for some
subset A of some N in V. This function & is well defined. In fact, take an
arbitrary £ € X and consider any pair of possible representations of it, say,
E =FE UA, = E;,U A, where E;, E, are sets in X and A;, Ay are subsets
of some sets Ny, N in N, respectively. Since By C By UA; = E; U Ay C
E5 U Ny, and since Ey U Ny lies in X' (Definition 1.1(c¢")), it follows from
Proposition 2.2(a) and Definition 2.1(c) that pu(E1) < p(E2 U Na) = pu(Es).
Applying the same argument, p(Es) < p(E; UNy) = p(Er). So p(Ey) =
u(E2). Thus the function 7z is well defined: it assigns to each E the value
w(E), which is invariant for all representations of E = E U A. Moreover, as
it will be shown in the forthcoming Proposition 2.4,

(i) & is a o-algebra of subsets of X that includes the o-algebra X of subsets
of X (which means that X is a sub-o-algebra of X'), and

(ii) 7 is a measure on X that agrees with  on X (that is, 7z is an extension
of w over X or, equivalently, u is a restriction of T to X).

Proposition 2.4. Take an arbitrary measure space (X, X, ).
(a) X is a o-algebra of subsets of X such that X C X.
(b) 71: X = R is a measure on X such that i(E) = u(E) for every E € X.

(c) (X,X,.) is a complete measure space.

Proof. First note that X C X, since E = E U @ for every I/ € X. In partic-
ular, the empty set and the whole set trivially lie in X'. Take an arbitrary
E € X. Next we show that X\E € X. Indeed, if E = EU A, then X\E =
X\(FUA) = (X\E)Nn (X\A) = E'\A. Here E' = X\E, which lies in X
because E € X. Let N be any set in A/ C X such that A C N. Thus E'\A =
(E'\N)U (N\A) = E1 U A;, where E; = E'\N lies in X since both E’ and
N lie in X, and A; = N\A C N. Thus,

X\E=FE\A=E UA; liesin X.

Let {E,,} be an arbitrary sequence of sets in X. Thus E,, = E,, U A,,, where
E, € X and A, CN,, with N,, € N, for each n. Set £ = J,, E, in X
(Definition 1.1.(¢/)), and A = UJ,, 4» € N = |J,, N». Note that N e N/
(Definition 2.1(c)). Then X is a o-algebra (cf. Definition 1.1) since

U E= (B.u4,) = (UnEn)U<UnAn):EUA lies in X,
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completing the proof of (a). Note that the set function i agrees with the
measure f on X (i.e., G(E) = u(E) for every E € X) by the definition of

I (because E = F U @). In particular, i(@) = 0 and a(F) = u(E) > 0 for
every E € X. Moreover, suppose the arbitrary sequence {En} of sets in X'
(ie., E, = E,UA,, where E, € X and A, C N,, with N,, € ) is made
up of pairwise disjoint set. Thus {E,,} is a sequence of pairwise disjoint sets

in X, and so it follows from the above displayed identity that

(U, = (B0 a) = um) = (U, B) = X n(E) = X 7(E)

by the definition of 7, since p is a measure on A" (Definition 2.1(c)). Then
7 is a measure on X (cf. Definition 2.1). This proves (b). Finally, set

N ={NeXx: g(N)=0}.

If N €N, then N € X. Thus the set N is of the form N = N’U A with
N' e X and AC N for some N € N (by the definition of X). However,

w(N") =(N) =0 (cf. definition of 7z), and so N" € . Outcome:

NeN implies N =N UA with ACN for some N,N' € N. (%)

Also,if AC N € N C X, then A = @ U A must lie in X since @ € X:
ACNeN implies AcAX. (%)

Hence, if A is any subset of an arbitrary set N in A/, then A C N = N'U A
with A C N for some pair N, N’ € N by (x). Therefore, A = A’ U A", where
A" C N and A” C AC N. But both A’ and A” lie in X by (), and so
A € X (Definition 1.1(c)). That is, X is a complete o-algebra with respect
to the measure fi, which completes the proof of (c). O

The complete measure space (X, X, 7i) is referred to as the completion of
the measure space (X, X, ). Accordingly, we say that X is the completion
of the o-algebra X (with respect to the measure p) and 7 is the completion
of the measure p on X.

Remark: Consider the Lebesgue measure A on the o-algebra } of Borel sets
as in Example 2C. The measure space (R, R, A) is not complete. That is, on
the Borel algebra 3 the Lebesgue measure A is not complete. We will see
this in Chapter 8, and also how to build its completion, where the Lebesgue
measure A on the Lebesgue algebra R (the completion of the Borel algebra
R with respect to \) makes a complete measure space (R, R, ). It is worth
noticing that the notation R is tricky; it does not mean the o-algebra gen-
erated by the collection of all open intervals of the extended real line R.
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2.4 Problems

Problem 2.1. Consider a measurable space (X, X), and let u: X — R be a
measure on the o-algebra X.

(a) Show that p is a finite measure if and only if there exists 0 < a € R
such that u(E) < a for all E € X.

Actually, it is readily verified by Proposition 2.2(a) that p is finite if and only
if ;1(X) < oo. Consider the definition of a o-finite measure and assume that
there exists an X-valued sequence {E,} and a real (nonnegative) number
a such that p(E,) < a for all n and X =J,, Ey. In this case p is said to
be uniformly o-finite.

(b) Verify that the counting measure of Example 2B is uniformly o-finite.
(c) Verify that the Lebesgue measure of Example 2C is uniformly o-finite.

(d) When (i.e., for which class of functions F') is the Borel-Stieltjes measure
Ar of Example 2D finite? When is it uniformly o-finite?

Problem 2.2. Every finite measure is uniformly o-finite, and every uni-
formly o-finite measure is o-finite. (This is clear, isn’t it?) However, the
converses fail. Indeed, consider the o-algebra #(N) of all subsets of the nat-
ural numbers N. According to the previous problem the counting measure
on #(N) is uniformly o-finite, and it is clearly not finite (the value of it at
N is not finite). Now consider the function u: ©(N) — R defined by

WE) =Yk
keE
for every E € ©(N) (by convention, the empty sum is null). Verify that this

is a measure on #(N), which is o-finite but not uniformly o-finite.

Problem 2.3. Prove that a measure p: X — R on a o-algebra X of subsets
of a set X is o-finite if and only if there exists a countable family {Fj} of
disjoint sets in X' such that p(Ej) < oo for every k and X = J, Ej.

Hint: Every sequence of sets {X,, }nen has a disjointification {Yy bnen (i-e.,

{Y. }nen is a sequence of pairwise disjoint sets and |J,, Y, = U,, X»n)-

Problem 2.4. Let X’ be a o-algebra of subsets of an arbitrary set X.
A measure pu: X — R is called semifinite if every measurable set of infinite
measure includes a measurable set of arbitrarily large finite measure.

(a) Prove that every o-finite measure is semifinite.

Hint: Suppose a measure is not semifinite but o-finite (Problem 2.3).
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Now suppose that X is an uncountable set. Let # stand for cardinality, and
take two set functions p: X — R and A\: X — R defined for each £ € X by

#(F), F is finite, 0, FE is countable,
o) - { \E) -

400, F is infinite, 400, FE is uncountable.

(b) Verify that u is a measure on X (the counting measure on an uncount-
able set) that is semifinite but not o-finite.

(¢) Verify that A is a measure on X that is not semifinite (thus not o-finite
according to (a)).

Hint: Infinite sets have countably infinite (proper) subsets. Countable
unions of countable sets are countable.

Problem 2.5. Suppose X is a o-algebra of subsets of an infinite set X for
which all singletons are measurable sets. Let 7: X — R and p: X — R be set
functions defined for each £ € X’ by

0, F is finite, 0, FE is finite,
m(E) = o p(E) = e
400, F is infinite, 1, F is infinite.

Question: Why are these functions not measures?

Problem 2.6. This is a continuation of the previous problem for an un-
countable set. Suppose X is an uncountable set, and let X be a collection
of those subsets of X that either are countable or are the complement of a
countable subset of X. First show that X is a o-algebra of subsets of X.
Next consider the set function p: X — R defined for each E € X by

0, F is countable,

n(E) = { ,
1, X\FE is countable.

Verify that u is a measure (actually, a probability measure) on X.
Problem 2.7. Consider the Lebesgue measure A\:R — R on the Borel
algebra J of subsets of R (cf. Example 2C). Prove the following assertions.
(a) Every singleton of R is R-measurable and has measure zero.

(b) Every countable subset of R is f-measurable and has measure zero.

(c) If @ < B, then the intervals («, 8), [, 8), (o, 8], o, ] are R-measurable
and A((«, B)) = Al[a, ) = A(ev, B]) = A([ev, B]) = B — a.

(d) Every nonempty open subset U of R is R-measurable and A(U) > 0.
(Hint: R has a countable base of open intervals — see Problem 1.14.)
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(e) Every bounded R-measurable subset of R has a finite measure.
(f) A closed and bounded subset K of R is R-measurable and A\(K) < oo.

Also show that A is uniformly o-finite by exhibiting a countably infinite fam-
ily {Ei } of disjoint sets in R such that A(Ej) =1 for all k and R = | J,, Ex.

Problem 2.8. Let u: X — R be a measure on a o-algebra X, and let {E,,}
be a sequence of X-measurable sets. Apply Proposition 2.2 to show that

(@) (U, En) = limp, p(UZ, Ei),
(b) 1(U, Bn) <32, i(En).

Hint: Set Ay, = ;" E; to prove (a), and set By11 = Epia\ (UL E;) so
that B,, C E,, and {B,,} is pairwise disjoint to prove (b).

Problem 2.9. The Cantor set is a rather important well-known subset of
the interval [0, 1] of the real line R, possessing striking properties, which
make it a significant source of counterexamples. The reader is referred to
the bibliography mentioned in the Suggested Reading section for many of its
aspects. Roughly speaking, the Cantor set C' is the intersection of a decreas-
ing sequence {C,} of closed subsets of Cy = [0, 1] obtained by successive
removal of the central open third. Among the main properties of the Cantor
set C'=[),,Cn C[0,1] C R we point out the following. The set C' is non-
empty, closed, and bounded; it has an empty interior and has no isolated
point; it is uncountable and totally disconnected. Consider the Lebesgue
measure A\: R — R as in Example 2C (see Problem 2.7 as well) and show
that the Cantor set has measure zero. In other words, C lies in £ and
A(C) = 0. (Hint: Each C,, consists of 2" disjoint intervals of length z5.)

Problem 2.10. Now we build up a Cantor-like set S whose Lebesgue mea-
sure is not null. Consider the setup and the construction of the previous
problem, where each set C,, (for n € N) is obtained from C,,_; by removing
2"~ ! central open subintervals, each of length 3% Now, instead of removing
27~ central open subintervals of length 3% at each iteration, remove 277!
central open subintervals of length 4% at each iteration. Let {S,,} be the re-
sulting decreasing sequence of closed subsets of the unit interval Sy = [0, 1].

Show that the length of each S, is A(S,) = 1 + ﬁ and conclude that
S=(, Sn C[0,1] C R lies in R and A(S) = 1. (Hint: Proposition 2.2(c).)

Problem 2.11. Take a measure j: X — R on a o-algebra X of subsets of a
set X. Let A be an arbitrary X-measurable set, and consider the o-algebra
A =P(A) N X of subsets of A, so that A C X. Define a pair of set functions
pa:X— R and p|a: A — R as follows:
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pa(E)=p(ENA) for every E€X,
ula(E) = p(E) for every FE € A.

Verify that the set functions pa: X — R and p|4: A — R are measures on X
and on A, respectively. (Hint: (U, En) N A = U, (E, N A).) The measure
| A is the restriction of both p and pa to A, and so p and p 4 are (different)
extensions of pla over X — all these measures coincide on A.

Problem 2.12. Consider the Lebesgue measure A:® — R on the Borel
algebra R of subsets of the real line R (cf. Example 2C and Problem 2.7). Set
A =11,2], B=[-2,-1], and take the measures A4: R — R and Ag: R = R
defined in Problem 2.11. Show that A4 and Ap are finite measures so that
their difference v = Aqg — Ag: R — R is a signed measure. Also show that

U(AUB) = )\A(AUB) — )\B(AUB) =0,
W(A)| + [v(B)| = [Aa(A) — Ap(A)| + [Aa(B) — Ap(B)| = 2.

Then conclude that the set function 7: R — R, defined for each E € R by
m(E) = [v(E)| = |Aa(E) — Ap(E)], is not a measure (cf. Example 2G).

Problem 2.13. Consider the measure space (R, R, i), where pu: % — R is
a measure on the Borel algebra R of subsets of R such that p(K) < oo for
every closed and bounded subset K of R. This is referred to as a Borel
measure (recall that all open, and so all closed, sets lie in R; that is, they
are Borel sets). The general notion of Borel measure will be the subject
of a whole chapter — Chapter 11. Verify that the Lebesgue measure of
Example 2C is a Borel measure, and that every Borel measure is o-finite.
If 1 is a Borel measure, then its support is the set [u] = R\U, where U is
the union of all open sets of measure zero. Show that [u] is a closed set
(so [u] € R), and R\[g] is the largest (in the inclusion ordering) open set
of measure zero. Show that a point o € R is not in the support of y if and
only if there exists an open subset of measure zero that contains «. Let A
be a closed set with 0 < p(A4) < oo, take the o-algebra A = £(A) N R, and
take the restriction A = p|a4: A — R of p to A, which is a finite measure.
Examples: if p is a finite measure, then A may be any closed subset of R
of nonzero measure (e.g., A =R and A = R); if x4 is the Lebesgue measure,
then A may be any closed and bounded nondegenerate interval (i.e., one
that is not a singleton). Show that the support [A] of A is the smallest (in
the inclusion ordering) closed subset of A such that A([A]) = A(A).

Problem 2.14. Take an arbitrary measurable space (X, X'). Prove the as-
sertion: the sum of o-finite measures on X is a o-finite measure on X.
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Hint: Suppose p and A are o-finite measure on X. Let {E,,} and {F,} be
sequences in X" such that p(E,) < oo, A(F,) < oo, and J,, En, = U,, Fr =
X. If M(E;) < oo, then take E;. If \(Ey) = oo, then take {Fn]} such that
E.,=U j Fnj. Show that the collection of all those E; and {Fn]} consists

of a countable collection, and so conclude that (u + \) is o-finite.

Problem 2.15. Take a measure space (X, X, ) and let (X,X,n) be a
completion of it. Suppose f: X — R is X -measurable. Show that there is an
X-measurable function f: X — R such that f = f p-almost everywhere.

Hint: Let ¢ € Q be an arbitrary rational number. Set E, = f ~*((¢,0)) in
X, write B, = E, U A, with E; € X and A, C N, € N, and set N = |J Ny,
which is a countable union, so that N € A with Ay, € N. Consider the
function f: X — R such that f(x) = f(z)ifz € X\N and f(z) =0ifz € N.
Show that f~!((g,o0)) is either in E,\N or in E, UN, and so f~!((g,00))
lies in X for all ¢ € Q, and hence f is X-measurable (cf. Problem 1.1).

Problem 2.16. Let X be a o-algebra of subsets of a set X. A complex-
valued set function n: X — C satisfying axioms (a) and (b) of Definition
2.3, with absolute convergence on the right-hand side of (b), is a complex
measure. Show that every complex measure  on X can be expressed as
n = v1 +ive, where 11 and o are (real-valued) signed measures on X.
Complex measures will be considered again in Chapter 10.

Problem 2.17. Show that for a real-valued measure (equivalently, for a fi-
nite measure) it is unnecessary to assume condition (a) in Definition 2.1
since this follows from countable additivity in condition (c¢); and verify that
condition (a) cannot be dismissed for extended real-valued measures. Sim-
ilarly, since a signed measure was defined as a real-valued set function sat-
isfying Definition 2.3, also show that for a signed measure (and so for a
complex measure) it is unnecessary to assume condition (a) in Definition
2.3 since this follows from countable additivity in condition (b).

Problem 2.18. Let (X, X,u) be a measure space, let f: X — R be an
X-measurable real-valued function, let ® be the Borel algebra, and set

p/(B) = u(f Y (E)) = p({z € X: f(z) € E}) for every EcR.

Prove that this defines a measure p/ on ® (see Problem 1.8). If (X, X, i) is a
probability space, then show that (R, R, uf) is also a probability space (i.e.,
p! is a probability measure whenever p is). In this case, the X-measurable
real-valued function f is referred to as a real random variable.

Problem 2.19.Consider the definition of an atom (preceding Example 24).
Take any measure space (X, X, u). A set E € X is atomic (or purely atomic)
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if every measurable subset of it is the union of a set of measure zero and a
disjoint collection of atoms. A set F € X' is atom-free if it has no atom as a
subset. Now take the measure space (R, R, §), where 4 is any countable sum
of Dirac measures on R (Example 2A), and verify that every measurable
set is purely atomic. Next take the measure space (R, R, \), where A is the
Lebesgue measure on R, and show that every measurable set is atom-free.

Suggested Reading

Bartle [4], Berberian [7], Brown and Pearcy [8], Halmos [18], Royden [35].
For a discussion on unconditionally convergent series (as in Definition 2.3)
see [26, Section 5.7]. For the construction and properties of the Cantor set
(as in Problems 2.9 and 2.10) see, for instance, [1], [3], [9], [26], [32], [37].
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Integral of Nonnegative Functions

3.1 Simple and Nonnegative Functions

Let X be an arbitrary set. A simple function on X is a real-valued function
@: X — R with a finite range (i.e., a function that takes on only a finite
number of distinct values). It is clear that ¢ is a simple function if and only
if it can be represented as a linear combination of characteristic functions,

n
=) aiXg,
=1

where {E;}7~, is a finite collection of subsets of X and {«a;}}, is a finite
set of real numbers. The above representation is not unique, but it becomes
unique if it is assumed that {a; } 7 is a set of distinct coefficients and {E; }7 ;
is a partition of X (i.e., a collection of disjoint sets that cover X). This is
the representation of ¢ for which the set {a; }?_; is the range of ¢, and for
each index i = 1,...,n the set F; is the inverse image of the singleton {«;},
viz., B; = ¢ '({a;}) = {x € X: ¢(z) = a;}. This unique representation is
referred to as the canonical (or standard) representation of .

Let X be o-algebra of subsets of X. Take any F C X. Its character-
istic function Xg: X — {0,1} is X-measurable if and only if the set E is
X-measurable (Example 1B). Then a simple function > ; a; X g X— R
is measurable if { F; }1_, is a collection of measurable sets (Proposition 1.5).
The converse fails: take a partition {A, B} of X made up of nonmeasurable
sets A, B € £(X)\X and note that Xx = X4+ Xp. However, a canonical
representation is a measurable function if and only if { E;}}_; is a collection

(© Springer International Publishing Switzerland 2015 41
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of measurable sets, and a simple function is a measurable simple function
if and only if its canonical representation is measurable or, equivalently, if
it has a representation such that all sets F; are measurable. Whenever we
refer to a measurable simple function, we consider only representations of
it for which all sets F; are measurable. Since sum and (real) scalar multi-
ple of measurable simple functions are again measurable simple functions,
the collection of all X-measurable simple functions forms a linear manifold
of the real linear space of all X-measurable functions, and so it is a linear
space itself (cf. notes that close Section 1.3). A simple function is nonneg-
ative if and only if all coefficients «; of any representation are nonnegative
numbers.

Definition 3.1. (The integral of a simple function). Consider a measure
space (X, X, u). Let ¢: X — R be a nonnegative measurable simple function,

The integral of p with respect to u is the nonnegative extended real number
/s@du = aiu(E).
i=1

It is clear that ¢ must be measurable, since all E; must be measurable;
otherwise the definition of the integral [ dyu (with respect to any measure 4
on X) would not make sense. In particular, [x , du = u(E) for every E € X.
It is readily verified that the integral of a nonnegative measurable simple
function is independent of its representation. So the notion of integral of a
simple function is unambiguously defined and we may assume the canonical
representation of ¢ without loss of generality. To ensure that the integral of
the null function (¢ = 0) is well defined and equal to zero for every measure,
including nonfinite measures, we declare again that 0 - 400 = 0. The next
proposition considers three fundamental properties, which will survive as
long as the notion of integral is extended. The first two point out that the
integral is nonnegative homogeneous and additive. The third one shows how
the integral with respect to a measure yields a new measure. The reader is
invited to prove Proposition 3.2 in Problem 3.2.

Proposition 3.2. Consider any measure space (X, X,pn). If ¢ and ¢ are
nonnegative measurable simple functions, and 7y is a nonnegative real num-
ber, then v¢ and ¢ + ¥ are nonnegative measurable simple functions and
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(a) [yedp=[¢dp,
(b) J(e+v)du= [edu+ [¢dp,
(¢) ME)= [oxydu for every E € X defines a measure \: X — R.

Let (X, X) be a measurable space. In Chapter 1 we adopted the notation
M(X, X), or simply M, for the collection of all X-measurable functions.
Similarly, set M (X, X)™T, or simply M™ if the measurable space is clear in
the context, for the collection of all nonnegative functions from M (X, X):

MF=M(X,X)"={f: X > R: fis X-measurable and f(z) >0 Vz € X}.

Extended real-valued functions are allowed in M and M, but note that
these collections also contain real-valued functions. In particular, nonneg-
ative X-measurable simple functions lie in M (X, X)™. Given an arbitrary
(extended real-valued) function f in M(X,X)", consider the set @}' of all
simple functions ¢ in M(X, X)T that are dominated by f,

@;{ ={p € M: gis simple and 0 < p(z) < f(z) Vo € X} C M™,

Definition 3.3. (The integral of a nonnegative measurable function). Con-
sider a measure space (X, X, u). The integral of a function f € M(X, X)
with respect to p is the extended real number

fdp = sup /@dw
<p€¢j{

The integral of f over a measurable set E with respect to p is defined by

/Efd,u:/fXEdM in R.

The function f in the definition of the integral must indeed be measur-
able (recall that the supremum of measurable functions is measurable; and
Tl a,0)={zeX:a< fla)}={z€ X: a< SUp gt ()} ). More-
over, since Xg € M(X, X)™, we get Ixg € M(X, X)), whenever E € X.

3.2 The Monotone Convergence Theorem

The Monotone Convergence Theorem is a fundamental result in the the-
ory of integration, which is due to Beppo Levi. It is indeed a basic tool for
almost everything that follows. A sequence {f,} of functions f,: X — R is
increasing if f,, < foy1 (e, fu(x) < foyi1(x) for every x € X)) and decreas-
ing if fni1 < fo (e, far1(x) < fro(x) for every x € X) for each n. If it is
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either increasing or decreasing, then it is a monotone sequence. Observe,
according to Section 1.3, that a monotone sequence of extended real-valued
functions converges pointwise (to an eztended real-valued function).

Theorem 3.4. (Monotone Convergence Theorem). Let (X, X, 1) be a mea-
sure space. If {f,} is an increasing sequence of functions in M(X,X)",
then it converges pointwise to a function f: X — R in M(X, X)), and

/fdu = 117131/fndﬂ.

Proof. Recall that {f,,} converges pointwise. Let f be its limit. Take any x in
X. Since each f,,(x) > 0, it follows that f(z) = lim,, f,(z) > 0, and so f is
in M(X,X)" by Proposition 1.8. Since f,, < fni1, we get fr < foa1 < f =
lim,, fn, and so [ fndp < [for1dp < [fdp (cf. Problem 3.3), for every n.
Then the extended real-valued increasing sequence { [ fn du} converges and

li7gn/fn dp < /fdu~ (*)

To verify the reverse inequality, take a simple function ¢ in M (X, X)* such
that 0 < ¢ < f (i.e., any ¢ € @}") Let o be any real number in (0,1) and
set 1) = ap, which is a simple function in M (X, X)T with the property that
Y(x) =01if f(z) =0and 0 < ¢(x) < f(x) if f(x) # 0. For every n set

E,={zeX: ¢(=) < fol@)} ={z € X: fulz) —v(z) > 0}.

Since f,, and v are measurable functions, f,, — v is measurable (Proposition
1.9), and so each E,, is a measurable set. Thus, for every n,

a/ pdu = [ wdu < fndus/fndu
En En En

(Proposition 3.2(a,c)). Since {f,} is increasing, it follows that {E,} is
increasing. Since f, 7 f (i.e., {fn} is increasing and converges to f) and
0 < (x) < f(x) if f(z) # 0, it follows that for every x € X there is an m
for which ¢(z) < f(x) < f(z), and so  lies in E,,. Hence X = J,, E\, so
that {E,} is an increasing sequence of sets in X’ that cover X. Then

/god,u = MX) = limA(E,) = lim [ @du
n n En

according to Proposition and 2.2(c), where X is the measure of Proposition
3.2(c). So, by the previous two displayed expressions,

a/sodu < hm/fndu,
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which implies that

/wdu = sup a/cpdu < lim/fndm
ae(0,1) n

/fdu = sup /wdu < liTILn/fn dp. ()

+
<p€45f

and therefore

The inequalities () and () ensure the identity: [ fdu =lim,, [f,dp. O

The Monotone Convergence Theorem gives us the first evidence of conti-
nuity for the integral transformation. Theorem 3.4 will also give us the first
hint of linearity (in Proposition 3.5(a,b) below). Of course, all this would
malke sense only if the domain M™T and codomain R of the transformation

/(o)du:/\/ﬁ%ﬁ

(that assigns to each function f in M™ the extended real number [ fdu)
might be equipped with a suitable algebraic and topological structure. We
will modify the domain M™ in order to endow the new domain with the
proper algebraic structure in Chapter 4 (that makes the integral transfor-
mation a linear one), and with a proper topological structure in Chapter 5
(that makes the integral transformation a continuous one as well).

As a first application of the Monotone Convergence Theorem (among
many to come) we extend in Proposition 3.5 below the results of Proposition
3.2, from measurable nonnegative simple functions to arbitrary measurable
nonnegative (extended real-valued) functions. In particular, Theorem 3.4
shows (as stated in Proposition 3.5(c)) how the integral of a nonnegative
function with respect to a measure yields a new measure, viz., the set func-
tion A: X — R given for each set E € X by A(E) = [, fdu.

Proposition 3.5. Consider a measure space (X, X, ). If f and g are
functions in M(X, X)), and if v is a nonnegative real number, then the
functions vf and f+ g lie in M(X,X)" and

(a) [vfdu=~[fdu,

(b) [(f+g)dp=[fdu+ [gdp,

(¢) ME)= [, fdu for every E € X defines a measure A\: X — R.

Proof. If f and g are in M(X, X)¥, then it follows by Proposition 1.9 that
~f and f + g also are in M(X,X)™" and, according to Problem 1.6, there
are increasing sequences {¢,} and {t,} of simple functions in M (X, X)*
for which f = lim,, ¢, and g = lim,, ¥,,.
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(a) Take v > 0so that {7y, } is an increasing sequence of simple functions in
M(X,X)t that converges to +f. Thus Proposition 3.2(a) and
Theorem 3.4 (the Monotone Convergence Theorem) ensure that

/'yfd,u = 1i7rln/vg0ndu = ’yli%n/(pnd,u = ’Y/fd,“-

(b) Note that {¢, + ¥} is an increasing sequence of simple functions in
M(X, X)* that converges to f + g. Thus, again, Proposition 3.2(b) and the
Monotone Convergence Theorem ensure that

/(f+9)du=1ign/(<pn+wn)du = lim (/wndwr/wndu)
:liy/@ndu—kligl/wndu :/fd;H—/gdu.

(c) Observe that A\(@) = 0 since X, = 0 so that [, fdu =0, and A\(E) > 0
for all E in X by the definition of the integral of f in M(X, X)™. To verify
countable additivity (Definition 2.1(c)), take any sequence { E,, } of pairwise
disjoint sets in X. Since Y ", fXEn: fXUm B set for every integer m >1

n=1

m
=3 IXp, = P
n=1
Now observe that {f,,} is an increasing sequence of functions in M (X, X)*

(Proposition 1.9) that converges pointwise to the function fy o With B =
U,, En in X. Then the Monotone Convergence Theorem ensures that

AU E.) =/Efdu =/fxEdu = lgln/fmdu = ngnn/z_jfxEndu.

Thus a trivial induction, using additivity as in item (b), ensures that the
integral of a finite sum coincides with the finite sum of each integral, so

tim [ 3 g, = tim Y [ rg, di
n=1 n=1

which completes the proof of (c). That is, A(U,, En) = >_,, M(Er). In fact,

linrlnzm:l/fXEndu = h,glzmjl Enf dp = than:lA(En) = ZHA(EH). 0
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Remarks: Theorem 3.4 deals with functions that are possibly extended
real-valued and with measures that are not necessarily finite (not even o-
finiteness is assumed). Thus infinite integrals and infinite limits are allowed.
For example, if A is the Lebesgue measure on R and f,, = X[o,n) for each inte-
ger n >1, then {f,} is an increasing sequence of functions in M(R,R)* with
finite integral ([ f,, d\ = n for each n) converging pointwise to the function
f = X[0,00) that has an infinite integral. However, the real-valued sequence
{[fndX} is unbounded (and so it does not converge in R) but it has the
limit +oo in R. Hence, [fdX\ = lim, [f,d\ = +oo. We will see in the
next section that the Monotone Convergence Theorem still holds if point-
wise convergence is weakened to almost everywhere convergence. Moreover,
it holds without monotonicity by assuming convergence from below. This
is Corollary 3.10. (Convergence from below can be dismissed if we impose
uniform convergence and finite measure — see Problems 3.6 and 3.12.)

3.3 Monotone Convergence Corollaries

The next result, Fatou’s Lemma, can be viewed as an important consequence
of the Monotone Convergence Theorem, which will be applied to prove an ex-
tension of the Monotone Convergence Theorem that does not require mono-
tonicity (as in the forthcoming Corollary 3.10). Recall from Chapter 1 that
f =liminf, f, is a measurable function for any sequence {f,} of extended
real-valued measurable functions (Proposition 1.8), and that if {f,} con-
verges pointwise to a function f (i.e., if f = lim, f,), then f = f.

Lemma 3.6. (Fatou’s Lemma). Take a measure space (X, X, p). If {fn}
is a sequence of functions in M(X,X)T, then

Proof. Let {f,} be a sequence of functions in M (X, X)*. For every n set

=1 f
®n Jnf Tk
meaning that each ¢,,: X — R is a function defined by ¢, (x) = inf, <) fx(z)
for every = € X. Proposition 1.8 ensures that each ¢, is measurable, and
so each ¢, lies in M (X, X)*. By definition {¢,} is an increasing sequence,
and it converges pointwise to f. Indeed,

lim 6, (@) = lim inf fi(x) = limnf f,(a) = f(z)



48 3. Integral of Nonnegative Functions

for each x € X. Then the Monotone Convergence Theorem ensures that

/idu = lirrln/qbndu.

But ¢,, < f, for every k > n, which implies that [¢,, du < [ fi dp for every
k> n, and so [¢, dp < inf, <y [ fi dp. Hence

lim/gbn dy < lim Héf]c /fk dp = liminf/fn dp. O

Item (a) in Proposition 3.7 below is an application of Fatou’s Lemma.
It gives the first hint of what will make the basis for defining a new concept
of equality in the spaces LP (based on the notion of equivalence classes as
introduced in Chapter 5), which reads as follows: if f € M(X,X)™, then

f=0 pae < /fduzO.

Proposition 3.7. Take a measure space (X, X, u). If f is a function in
M(X, X)T and X is the measure on X defined in Proposition 3.5(c), then

(a) f=0 p-almost everywhere if and only if [fdu =0,
(b) AM(E) =0 for every E € X such that u(E) = 0.

Proof. Take a measure space (X, X, ;1) and let f be a function in M (X, X)™.
(a) Since f is a measurable function, the set
E,={zeX: +<f()}

is a measurable one such that & Xg, < f, and so (cf. Proposition 3.5(a))
0 < % pu(En) = %/ du :/%XEndu S/fdu
En
for every n. If [ fdp =0, then pu(E,) = 0 for all n, and hence (since 0 < f)

p{ze X: f@) #0}) =p({z € X: 0< f(2)}) = u(UnEn) =0.

This means that f=0 p-almost everywhere. Conversely, set £ =J, E,
in X, and set f,, = nXg for each n. It is clear that {f,} is a sequence of
functions in M (X, X)" converging pointwise to fo, =+00 Xp: X — R, and
so f =liminf, f, =lim, f, = fo. Also, 0 < f < foo = f. Thus

0 S/fdp S/idy < liminf/fndu
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by Problem 3.3 and Lemma 3.6 (Fatou’s Lemma). If f=0 p-almost every-
where, then u(E) = 0 so that [f, du = n[x, du = nu(E) = 0 for all n.
Hence liminf,, [ f, du =0, and so [ fdu = 0 by the preceding inequality.

(b) If u(E) =0 for some E € X, and since [x, dp = p(E), it follows by
item (a) that Xp = 0, and so fx,, = 0, p-almost everywhere. Let \: ¥ — R
be the measure of Proposition 3.5(c). Another application of item (a) yields

/\(E)=/Efdu=/fxEdu=0~ O

The implication {1 (E) =0 = A\(E) =0} in Proposition 3.7(b) is referred
to by saying that the measure A is absolutely continuous with respect to the
measure u. (Absolutely continuity will be discussed in Chapter 7.) Thus, by
Propositions 3.5(c) and 3.7(b), if p is a measure on X and [ is a function
in M(X,X)", then the set function X on X defined for each E € X by

A(E) = /Efdu

is a measure that is absolutely continuous with respect to p. This is another
important consequence of the Monotone Convergence Theorem. A crucial
result of Chapter 7 (the Radon—Nikodym Theorem) asserts the converse: if
w and X are o-finite measures and \ is absolutely continuous with respect
to , then there exists a function f in M(X,X)T such that for each E € X,

ME) = /E Fdp.

Corollary 3.8. Take a measure space (X, X,u). If {fn} is an increasing
sequence of functions in M(X,X)" that converges almost everywhere to a
function f: X =R in M(X,X)T, then

/fdu = 117?1/fndu.

Proof. Suppose {f,} converges p-almost everywhere to f, so that {f,}
converges pointwise to f on EF = X\N for some N € X with p(N) =0.
Thus { X, } is an increasing sequence of functions in M(X, X )t converging
pointwise to fx, € M(X, X)*. By the Monotone Convergence Theorem,

/fxE dp = lirrln/fan dp.
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However, Propositions 3.5(b) and 3.7(a) ensure (see Problem 3.8) that

/fXEdM /fdu /fdu and /fand,u /fndu /fndu O

Corollary 3.8 is Theorem 3.4 for almost everywhere convergence, which
will also be referred to as the Monotone Convergence Theorem. It leads
to the following version of Lemma 3.6 for almost everywhere convergence,
again referred to as Fatou’s Lemma.

Lemma 3.9. Take a measure space (X, X,u). If {fn} is a sequence in
M(X, X)) that converges almost everywhere to f € M(X,X)™T, then

/fd,u < liminf/fnd,u.

Proof. Consider the setup of the previous proof, where the sequence { f,x, }
converges pointwise to fx, € M(X, X)T. By Lemma 3.6 (Fatou’s Lemma),

/fXE dp < liminf/fan du.

Again, Propositions 3.5(b) and 3.7(a) ensure that (cf. Problem 3.8)

/fXEduzfdu an /fandu /fndu O

A sequence {f,} converges from below to f if f, < f for all n and if
it converges to f in some sense. The following extension in Corollary 3.10
yields an ultimate version of the Monotone Convergence Theorem that as-
sumes just almost everywhere convergence from below.

Corollary 3.10. Let (X, X, ) be a measure space. If a sequence {f,} in
M(X, X)*T converges almost everywhere to f € M(X,X)" from below, then

/fdu = 117?1/fn dp.

Proof. Since f, < f, we get [ fn dp < [ fdp for all n. Thus, by Lemma 3.9,

/fd,u < liminf/fnd,u < limsup/fnd,u < /fd,u. (I

3.4 Problems

Problem 3.1. Consider a measurable space (X, X'). Thus, in this context,
“measurable” means X-measurable. Prove that sum, scalar multiplication,
and product of measurable simple functions are measurable simple functions.
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Next conclude that every polynomial p(p, %) of measurable simple functions
o and 1 is a measurable simple function. Moreover, also show that ¢ =
e A =min{p, ¥} and § = ¢ V) = max{y, 1} also are measurable simple
functions. (Hint: Proposition 1.5 and Problem 1.3.)

Problem 3.2. Show that the definition of integral of a nonnegative measur-
able simple function does not depend on the representation for the simple
function. Then, prove Proposition 3.2.

Hint: Verify homogeneity. To prove additivity proceed as follows. Show that

e+ = Zizj(ai +5j)XEinFj,

where ¢ = o Xg, and ¢ = Zj Bj XFj are canonical representations. So

Je+orau=3 3 (i +s)uEnE)
:Zio‘izj w(E; O F) +Zﬂjz (E; N Fy)
= Ziam(Ei) +Zjﬁju(Fj) = /wdu +/wdu

since pu(E;) =3, w(E; N Fy) and p(Fy) =3, p(E; N Fy) because {E;} and
{F;} are partltlons of X. To prove (c) note that px, =), aiXxy - Hence

MNE) :/cpr du :Ziai“(Ei NE) :Ziai”Ei(E) for every E e X,

a (finite) linear combination with nonnegative coefficients «; of measures
pg, on X (Problem 2.11), and so it is itself a measure on X'

Problem 3.3. Let 1 and A be measures on a o-algebra X’ of subsets of a
set X, let F and F be sets in X, and let f and g be functions in M (X, X)™.

Recall that [, fdu = [fx, du; in particular, [fdu= [fx, du= [y fdu
(cf. Definition 3.3). Prove the following assertions.

(&) 0< [pdu= [xydn=p(E),

(b) f<g = 0< [pfdu< [pgdp,
(c) ECF = 0< [, fdu< [, fdp,
(d) p<x = 0< [pfdu< [, fd\

Problem 3.4. Let N be the set of all natural numbers (i.e., of all positive
integers), and consider the measurable space (N, #(N)).

(a) Verify that every nonnegative function f:N — R lies in M(N, 9(N))™.
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Let p be the counting measure of Example 2B. Apply Definition 3.3 to show
that for every nonnegative function f:N — R,

(b) [z fdu=73,cp f(n) for every E € 9(N). Thus [fdu=3 "1 f(n).

Problem 3.5. Let z be an arbitrary point in R, consider the Borel algebra
of subsets of R, and take the Dirac measure é,: ® — R at x of Example 2A.
If f € M(R,R)*, then use Definition 3.3 to prove the following statements.

(a) [pfdoy=f(z)ifzre EcR and [, fdo,=0ifzgEecR
(b) [fdé, = f(x) for every x € R.

If p=>" | and, with each o, > 0, then p is a measure on R for which
() [fdu=30"C an [fdon =300, anf(n).

We will return to Dirac measures in Problem 7.15(a).
Problem 3.6. A sequence {f,} of real-valued functions on a set X con-
verges uniformly to a real-valued function f on X if, for each € > 0, there

is a positive integer n. such that sup,cx |fn(2) — f(2)| < € for all n > n..
Use Problem 3.3 and Proposition 3.5 to prove the assertion.

o If (X, X, i) is a finite measure space and { f, } is a sequence of real-valued
functions in M (X, X)" that converges uniformly to a real-valued function
f, then f lies in M(X, X)* and

/fdu = lirrln/fnd/i.

Hint: For k>1, set £ = 1, and take n > n.. Set Ej, = {z € X: + < f(z)}

in X. Uniform convergence implies (f — 7)x B, < fa < f + 1. Hence,

/(f— )Xyt < 1iminf/fndu < limsup/fndu < /fdu+ Lu(X).

Show that [(f — %)XEkdu = ffXEkdu— +1(Ey) because p(X) < co. Since
ffXEkd,u = A(E}), where A is the measure of Proposition 3.5(c), and since
{E}} is increasing, verify that limy ffXEkdu = MU Br) =XX) = [fdp
(see Proposition 2.2). Since (X) < oo, it follows that limy +u(Ex) = 0.

Problem 3.7. Prove the Beppo Levi Theorem, which says that if (X, X, u)
is a measure space and {f,} is a sequence of functions in M(X,X)™, then

/gfndugjl/fndu



3.4 Problems 53

for each positive integer m. (Hint: Use Proposition 3.5(b).) Now use the
Monotone Convergence Theorem (Theorem 3.4) to show that

[3 pwidn =3, [ dudn

Problem 3.8. Consider a measure space (X, X, u) and take two functions
frge M(X,X)". Let {E, F} be a pair measurable partition of X. Apply
Proposition 3.5(b) to show that

() [fdp = [pfdu + [ fdu.

Let N be a set in X. Use Problem 3.3(a) and Proposition 3.7(a) to show
that the following propositions hold true.

(b) u(N)=0 implies [y fdu=0,

(¢) E=X\N and u(N)=0 imply [, fdu= [fdp.

If the integrals are finite, apply Propositions 3.5(b) and 3.7(a) to show that
d) [, fdu= [, gduforevery E€X implies f=g p-almost everywhere.

Hint: Set A = {x € X: f(z) <g(x)}, B={z € X: f(z) > g(x)}, and
C ={zxeX: f(x)=g(x)}. Thus {A, B,C} is a measurable partition
of X. Since [, fdu = [, gdu, and since (g — f)x , € M(X, X)), ver-
ify that [,(9 — f)dp = 0, and so (g — f) =0 p-a.e. on A. Similarly,
(f —g9) =0 p-a.e. on B. Moreover, f = g on C trivially.

Problem 3.9. Consider a measure space (X, X, ). A (measurable) set E
in X is o-finite (with respect to the measure u) if there exists a countable
covering of E made up of measurable sets of finite measure (i.e., E C |, En
with p(E,) < oo for all n). Now take f € M(X,X)" and use Problem 3.3
and Proposition 3.5 to show that if [ fdu < oo, then

(a) u{zr e X: f(x) > ¢€}) < oo for each € > 0,
(b) p({z € X: f(x) = +oo}) =0,
(¢) {z € X: f(x) # 0} is a o-finite set.

Hints: (a) If F. = {2 € X: € < f(2)}, then ex,,_ < f. (b) Use Proposition
2.2(d) to {F,}. (c) If B, = {x € X: + < f(2)}, then £ Xg, < f.
Problem 3.10. Let (X, X, 1) be a measure space, take an arbitrary func-
tion f in M(X,X)™, and prove the following assertion.

o If [fdu < oo, then for every £ > 0 there exists a set E. € X such that
W(E:) < oo and [fdu < fEEfdu—i—s.
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Hint: Set E = {x € X: f(x)# 0}. Show that [fdu = [, fdu (Problem
3.8(a)). Set E,, = {x € X: # < f(2)}. Show that {F,} is increasing, that
E =, En, and that u(E,) =n [ f du (Problem 3.9(c)). Use Theorem 3.4
to verify that lim,, [ fxg,dp = [ f du. Conclude: for each & > 0 there is an
ne for which, with E. = E,,_, it follows that [ fdu — ffXEg du < e.

Problem 3.11. Consider a measure space (X, X, u), take f in M(X, X)+,
and let A be the measure on X' defined by

AE) :/Efdu for every E € X (%)

as in Proposition 3.5(c). Show that if (%) holds, then

/gd)\:/gfdu. for every g€ M(X,X)".

This identity is sometimes abbreviated by writing
d\ = fdpu,

where no independent meaning is assigned to the symbols d\ and du. In
this case, the function f in (*) is sometimes denoted by

which again is mere notation (with no independent meaning). We will return
to this point in Section 7.2.

Hint: If p € &/, that is, if ¢ = 71" | @; X, is a measurable simple function
such that 0 < ¢ < g, then verify that [@d\ = [pfdu =" o [, fdu.
Now use Problem 1.6 and apply Corollary 3.10.

Problem 3.12. Monotone (increasing) convergence in Theorem 3.4 was
weakened to convergence from below in Corollary 3.10, and such a version
of the Monotone Convergence Theorem cannot be improved further (even
under the assumption of uniform convergence — cf. Problem 3.6, which re-
quires finite measure). In fact, let (R, R, A) be the Lebesgue measure space,
take the functions f, = %X[moo) and g, = %X[O,n] for each positive integer
n, and set f= g =0, which are all functions in M(R,®)*. Now show that

(a) {fn} decreases and converges uniformly to f but [ f, d\ = 4oc for all
n, and so 0 = [ fdX # lim,, [ f, d\ = +o0;

(b) g < gy for all n and {g, }, which is not monotone, converges uniformly
to g but [g,d\ =1 for all n, and so 0 = [gd\ # lim,, [g, d\ = 1.
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Problem 3.13. Take a measure space (X, X, u). Let {f,} be a sequence of

functions in M(X, X) converging pointwise to f € M(X, X)" If [fdu =
lim,, [ f, du < oo, then show that for every measurable set E € X

/fdu:hm/ fd,
E n JE

and verify that this may fail without the assumption lim,, f fndp < oco.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Royden [35], Rudin [36] (see also [2]).
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Integral of Real-Valued Functions

4.1 Integrable Functions

A real-valued function f: X — R on X can be expressed as f = fT — f~,
where the nonnegative functions f: X — R and f~: X — R are the pos-
itive and negative parts of f. If f is measurable, then so are f* and f~
(Proposition 1.6). Integration of measurable real-valued functions, leading
to real-valued integrals, are considered by using the above decomposition.

Consider a measure space (X, X, 1), and let £(X, X, u) — or simply £
if the measure space is clear in the context — be the collection of all real-
valued X-measurable functions such that both positive and negative parts
have a finite integral with respect to the measure p. That is,

L=L(X, X, p)={f:X—=R: fEM(X,X), [fTdu<oo, [fdu<oo}.

Definition 4.1. (The integral of a real-valued measurable function). Take
a measure space (X, X, u). The integral of a function f € L(X, X, n) with
respect to p is the real number

[ran=[rran- [ 1 dn.

(© Springer International Publishing Switzerland 2015 57
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7_4
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The integral of f over a measurable set E with respect to p is defined by

/Efdu =[Ef+du—/Ef‘du~

A function in £(X, X, u) is called an integrable (or u-integrable) function.

The integral [fdu of a real-valued function f in M(X,X) is then de-
fined in terms of the integrals | f* du of their positive and negative parts
f* in M(X, X)*tif these integrals (as in Chapter 3) are finite. Additional
common notations: [ f(z)dp, [f(z)du(x), or [f(x)p(dx). Consider the
Lebesgue measure space (R, R, u) or (R, R, ). The Lebesgue integral of a
measurable function f: R — R is defined as the integral of f with respect to
Lebesgue measure (A on R, or A on R; see the remark that closes Chapter 2).
If the Lebesgue integral of a real-valued function f exists in R, then f is
Lebesgue integrable. Another notation for the Lebesgue integral: [ f(z) dz.

Proposition 4.2. Let (X, X, ) be a measure space.

(a) If f is a real-valued function in M(X,X) such that f=0 p-almost
everywhere (i.e., f =0 p-a.c.), then f lies in L(X, X, pu) and [ fdp =0.

(b) If fe (X, X,u) and g € M(X,X) is bounded, then fg € L(X, X, n).

Proof.

(a) For any f:R — R, consider the sets F, = {z € X: f(z) >0}, F_ =
{zr € X: f(x) <0}, and Fy = {z € X: f(z) =0}, and set
Ft=F,UFR={z € X: f()>0} and F~=F_UFy={zeX: f(z)<0}.

If fe M(X,X), then F* and F~ lie in X (Proposition 1.6) and so F,
F_, and Fj also lie in X. If f=0 p-a.e., then we have already seen that
u(Fy) = 0. Recall that f* = fx,+, and hence f* = f*x,+. Thus

/f*du:/ﬁxlﬁdu:/ f*d/»:/ f*d/Hr/ f*du:/ frdp=0
Ft Fy Fo Fy

by Problem 3.8. Similarly, [f~dp = 0. Hence f € L(X, X, p) if it is real-
valued, and [ f dp = 0 by Definition 4.1.

(b) Note that fg = (f*—=f")gT—97)=ftot+f 9 —ftg —f 9" So
(fo)"=ftet+f g and (f9) =fg"+fTg.

If g is bounded, set 8 = sup,cx |g(x)| so that g7 < 3 and g~ < 8. Then
fTgt <Bf* and so [ftgtdy < B [ftdu < oo by Proposition 3.5(a)
and Problem 3.3(b). Similarly, we get [f~ g du < oo, [fTg du < oo, and
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[ gtdp < oo. Hence, [(fg)Tdp < oo and [(fg) du < oo according to
Proposition 3.5(b), and therefore fg € L(X, X, u). O

If fi and fy are real-valued functions in M(X,X)* with fo < f; and
[fodp < oo, then [(fi — f2)dp = [fidu — [ fadu. In fact, write f; =
(f1 — f2) + f2 and apply Propositions 1.5 and 3.5(b). In the next propo-
sition we replace the assumption fo < f1 by [fidu < oco.

Proposition 4.3. Take a measure space (X, X,u). If f1 and fo are real-
valued functions in M(X, X)" with [ fidp < oo and [ fodp < oo, then

fi—fr€ L(X. X, p) and /(f1—f2)du=/f1du—/fzdu~

Proof. If f1 and f5 are real-valued functions in M (X, X)*, then f = f; — f2
lies in M (X, X) (cf. Proposition 1.5). Since f1, f2, fT, and f~ are functions
in M(X,X)"and ft— f~= f = fi — fo, it follows that f*+ fo = fi + f~
is in M(X, X)™, and so (cf. Proposition 3.5(b))

[reaus [ran = [ fian+ [ 1.

Note that f*< f; and f~< fo. Since [fidu <oo and [fodu < oo, it
follows by Problem 3.3(b) that [f*dy < co and [f~du < oo. Therefore,
(f1i — f2) = f lies in L(X, X, u) and, according to Definition 4.1,

Jon=fau = [raw= [rran—[rap= [frau—[ran O

4.2 Three Fundamental Lemmas

Absolute integrability (of measurable functions), the first property in this
section, is of crucial importance. It says that | f| is integrable if and only if f
is. This holds for every (measure-theoretic) integral, as defined in Definitions
3.3 and 4.1. In particular, absolute integrability holds for the Lebesgue
integral (but it does not hold for the Riemann integral).

Actually, the well-known result stated in Problem 4.1 ensures that if a
bounded function on a closed and bounded (i.e., on a compact) interval of R
has a Riemann integral, then it is R-measurable and Lebesque integrable, and
its Riemann and Lebesgue integrals coincide. However, there exist bounded
functions defined on closed and bounded intervals that are Lebesgue but not
Riemann integrable. For instance, fi(z) =1 for z € Q and f;(x) = —1 for
x € R\Q define a function f; = (2Xg — 1) on [0, 1] for which the Riemann
integral does not exist but the Lebesgue integral does exist (and is equal
to —1). But |fi| =1, as a constant function on [0, 1], is trivially Riemann
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integrable and so it is Lebesgue integrable. On the other hand, the situation
is different for improper Riemann integrals. If a function either is defined on
an unbounded interval or is itself unbounded, then it may have a Riemann
integral and not a Lebesgue integral. Example: fo(x) = SBZ on [1,00)
defines a Riemann integrable function fs (its improper Riemann integral
exists and is finite) but |f2| is not integrable (i.e., it has no finite integral,
in any sense) and so fy is not Lebesgue integrable.

Lemma 4.4. If f € M(X,X), then
(a) fel(X,xX,p) if and only if |f|e L(X,X,pn).

If fe (X, X, un), then

(b) ’/fdu‘ < [ 151

Proof. (a) First note that for any function f: X — R,

fIF=1fl=f"+f" and [f|” =0, (*)

and then recall from Proposition 1.6 that if f is measurable, then so are
the functions f*, f~, and |f|. If f € L£(X,X,u), then [ftdu < oo and
Jf~du < co. Hence, from () and Proposition 3.5(b), [|f|tdp < co and
J1f]7dp < oco. So |f] € L(X,X, ). Conversely, if |f| € L(X,X,u), then
J1fITdu < o0o. But fT<|[f|" and f~ < |f|* by (). Then [f*du < oo and
[ du < oo according to Problem 3.3(b), and therefore f € L
(X7 X, :u)'

(b) If fe L(X,X,u), then f € M(X,X) and so |f| € L(X,X, ) by (a).
Since | f| = fT+ f7, it follows by Proposition 3.5(b) and Definition 4.1 that

]/fdu} = '/f*du—/f—du’ < [rrap+ [ = [i51n. O

As we pointed out in Section 3.2, the Monotone Convergence Theorem
gave us the first evidences of linearity for the integral transformation in
Proposition 3.5(a,b). Linearity is definitely accomplished in the next lemma.

Lemma 4.5. L is a linear space and [: L — R is a linear functional.

Remarks: Before proving Lemma 4.5, note that what its statement says is
twofold. First it says that the collection £(X, X, 1) is a(real) linear space.
Indeed, Proposition 1.5 ensures that M (X, X) is a real linear space (when
consisting to real-valued functions only — see the last paragraphs that close
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Section 1.3). Since £(X, X, p1) is a subset of M(X, X), L(X, X, u1) is a linear
space if and only if it is a linear manifold of M (X, X’), which means that if
f and g are functions in L(X,X,u) and 7 is a any real number, then

(a) ~f and f+g¢ lie in L(X, X, pn).

Consider the transformation [:£ — R that assigns to each function f in
L(X, X, ) the value of its integral [ fdp in R. A transformation of a (real
or complex) linear space into R or C is called a (real or complex) functional.
By Lemma 4.5, [:£L— R is a (real) linear functional (i.e., a homogeneous
and additive functional), which means: (i) its domain £ is a linear space,
and (i) if f and g are functions in £(X, X, 1) and + is a real number, then

(b) /vfdu:’y/fdu and /(f+g)du:/fdu+/gdu.

Thus the proof of Lemma 4.5 is reduced to proving (a) and (b).

Proof. First note that vf € L(X, X, u) for every vy € R if f € L(X, X, p),
as is a particular case of Proposition 4.2(b). Since —f = f~ — f7, we get

W =hIf~, 120,
|7|f77|’7|f+7 7<Oa

where the functions |y|f* and |y|f~ are in M(X, X)*, with [|y|ftdp =
|v| [ftdp and [|y|f~du = |y| [ f~dp (Proposition 3.5(a)), and these inte-
grals are finite since f € L£(X, X, u). Hence, by Proposition 4.3,

/(i T = £ f7) du = Al (i/ﬁdu—i/fdu) :
and so,

| (e rdn), vzo|
/vfdﬂ o (ff‘du— fﬁd@’ Lo v/fdu.

V=0T =0 = {

Thus homogeneity is proved. Now, to prove additivity, proceed as follows.
Let f and g be in £(X,X,u). Since |f + g| < |f| + |g], and both |f + g|
and |f| 4 |g| lie in M(X, &)™ (cf. Propositions 1.5 and 1.6), it follows by
Problem 3.3(b) and Proposition 3.5(b) that [|f + g|du < [(|f] + |g|) dp =
[1fldp+ [|gldu, and so |f + g] € L(X, X, ). In fact, since f and g are in
L(X, X, ), it follows that |f| and |g| are in £(X, X, 1) by Lemma 4.4, and
so [1f + gl dp < co. By Lemma 4.4 again, it follows that f + g € £(X, X, )
(since f + g € M(X,X) according to Proposition 1.5). Now note that

frg=U"=f)+"—g)=("+g") - (f +97)
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and also that (fT +¢*) and (f~ +¢~) lie in M(X,X)T by Propositions
1.5 and 1.6, which have finite integrals by Proposition 3.5(b) — since fT¥,
f~, g%, and g~ have finite integrals because f and g lie in £(X, X, ). Thus
Propositions 4.3 and 3.5(b) and Definition 4.1 ensure that

/(f+g)du =/(f++g+)du —/(f’+g’)du

—[#ran= [ du+ [ordn=[omdn = [+ [gan O

In Proposition 3.5(c) we saw that given a measure, another measure
is generated by a nonnegative measurable function. This has a natural
extension for general real-valued (not necessarily nonnegative) functions,
but this time a signed measure is generated instead. Indeed, the next propo-
sition shows that given a measure, a signed measure is generated by a real-
valued integrable function, called the indefinite integral of f with respect
to p.

Lemma 4.6. Let (X, X, 1) be a measure space. If f € L(X,X,u), then the
real-valued set function v: X — R defined by

:/fd,u for every FE e X
E

s a signed measure.

Proof. If f = ft— f~e L(X,X,u), then fT and f~ lie in M(X,X)" and
have finite integrals. Hence v+ and v~ on X defined for each £ € X by

T(B) :/]5f+du and v (FE) :/Ef_du

are finite measures (cf. Proposition 3.5(c)). Therefore, by Definition 4.1, the
set function v on X defined for each F € X by

/fdu—/ﬁdu | du= v - ()

is such that v = v+ ~. Thus, as a linear combination of signed measures,
v: X — R is itself a S1gned measure. ([

4.3 The Dominated Convergence Theorem

A very important convergence theorem for integrable functions is the forth-
coming Dominated Convergence Theorem (also referred to as the Lebesgue
Dominated Convergence Theorem). It goes along the line of the Mono-
tone Convergence Theorem as in Corollary 3.10, now with no restriction to
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nonnegative functions, where nonnegativeness and convergence from below
are replaced with integrability and dominated convergence. Chronologically,
the original version of the Dominated Convergence Theorem was published
by Lebesgue in 1904, prior to (and independently of) the original version of
the Monotone Convergence Theorem, published by Beppo Levi in 1906 —
these refer to Lebesgue measure space (R, R, A). However, the Dominated
Convergence Theorem can be easily proved — in a general abstract measure
space (X, X, u) — as a consequence of the Monotone Convergence Theorem.
In fact, we will prove it by using Fatou’s Lemma, which in turn was proved
in Lemma 3.6 as consequence of the Monotone Convergence Theorem.

Theorem 4.7. (Dominated Convergence Theorem). Let (X, X, 1) be a mea-
sure space. If {fn} is a sequence of real-valued functions in M(X,X) con-
verging p-almost everywhere to a real-valued function f in M(X,X), and
if there exists a nonnegative function g in L(X, X, u) such that |f,| < g for
all n p-almost everywhere, then each f, and f lie in L(X, X, ) and

/fdu = 117?1/fn dp.

Proof. Suppose | f,| < g for all n p-a.e. and f,, — f p-a.e., so that |f] < g u-
almost everywhere. Thus each f,, and f are integrable functions according to
Problem 4.4(b) — which in fact is an immediate consequence of corollary of
Lemma 4.4. Since 0 < g + f, and g + f, — g = f p-a.e., use Fatou’s Lemma
(Lemma 3.9) to the sequences {g £ f,}, and apply Lemma 4.5 as follows:

/gdu i/fdu =/(gif)du < limninf/(gifn)du,

so that

/gd,u—i—/fdu < liminf (/gdu+/fndu> :/gdu+liminf/fndu,
/gduf/fdu < liminf </9du/fndu> :/gdﬂflimsup/fndu,

and hence

limsup/fn dp < /fd,u < liminf/fn dp. O

The Dominated Convergence Theorem plays a major part in integration
theory. In particular, it is essential in the proof of completeness for the space
L? (Theorem 5.6), which is the main result of the next chapter. Applications
of the Dominated Convergence Theorem will be frequent throughout the
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text from now on. As a special case, the next result, the Bounded Conver-
gence Theorem, is an immediate consequence of Theorem 4.7.

Corollary 4.8. (Bounded Convergence Theorem). Let (X, X, ) be a finite
measure space (i.e., a measure space equipped with a finite measure ).
Suppose {fn} is a sequence of real-valued functions in M(X,X) converging
wu-almost everywhere to a real-valued function f in M(X,X). If {f.} is
bounded p-almost everywhere (i.e., if there exists a real number v > 0 such
that | f,] < for all n p-a.e.) then each fn and f lie in L(X, X, ) and

[ fan =1 [ g.an

Proof. If (X, X, 1) is a finite measure space, and if there is a number v > 0
such that |f,| <~ for all n p-a.e. (i.e., if {f,} is bounded p-almost every-
where), then the function g: X — R such that g(z) = 7 for all x € X\ N for
some N € X with u(N) =0 (i.e., the constant function g = v p-a.e.) lies in
L(X, X, pn) because [gdu = ~ypu(X) < oco. Now apply Theorem 4.7. |

4.4 Problems

Problem 4.1. A real-valued bounded function defined on a closed and
bounded interval of the real line is Riemann integrable if and only if the
set of points at which it is not continuous has Lebesgue measure zero. This
is a well-known classical fundamental result (cf. Suggested Reading at the
end of this chapter). Consider the Cantor set C' and the Cantor-like set S
of Problems 2.9 and 2.10. Recall that both sets C' and S are totally discon-
nected. Let X¢ and Xg from [0, 1] to {0,1} be the characteristic functions
of C and S, respectively. Which of these functions Xo and Xg is Riemann
integrable? Are they Lebesgue integrable? What are their integrals?

Problem 4.2. Consider a sequence {f,,} of functions in £(X, X, u). If {f,.}
converges uniformly to f € L(X, X, p) and p(X) < oo, then show that

[ fn =1 [ 5.an

and also show that this identity may fail without the assumption u(X) < oc.

Hint: If f —e < fp, < f+e¢, then verify that fT—¢ < fF < f*+4¢ and
fT—e < f, < f +eforanye > 0, and so verify that uniform convergence
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of {f.} to f implies uniform convergence of {f,F} and {f, } to f* and
f~, respectively. Use Problem 3.6 and Definition 4.1 to prove the claimed
identity, and use Problem 3.12(b) to verify that it requires that u(X) < co.

Problem 4.3. Let f be a function in £(X, X, ). Show that the integral

[ f dy is unambiguously defined in terms of the integrals of any pair of func-

tions fi and f3 in M(X, X)* N L(X, X, ) — i.e., of any pair of nonnegative

real-valued measurable functions with finite integrals — such that
f=h-—rf.

Indeed, show that

[ran=[rrdu-[rau= [sdu-[rdn

Problem 4.4. Take a real-valued function f in M (X, X), and an arbitrary
function g € L(X, X, ). Show that

(a) 0< f<g pae implies f€L(X, X, pu) and [fdu<[gdu,
(b) [fI < gl p-ace. implies f € L(X,X,u) and [[fldu < [|g|dp,
(¢) f=g prae. implies fe L(X,X,p) and [fdp=[gdu.

Hints: (a) Use Problems 3.3(b) and 3.8(c) and Definition 4.1. (b) Apply item
(a) and Lemma 4.4. (c¢) Use Proposition 4.2 and Lemma 4.5 to conclude that
J(f—g)dp=0and f=(f—g)+g (since the functions are real-valued).

Problem 4.5. Take a pair of functions f and g in £(X, X, 1), a real number
v, an arbitrary measurable set F' € X', and prove the following assertions.

(a) [pyfdu=~[pfdup and  [o(f+g)dp= [, fdu+[zgdn,
(b) [pfdp>0(=0) foral E€e X <= [f>0 (=0) p-ae.,
(¢) [pfdu = [pgdufor every E€X <= [ =g p-almost everywhere.

Hint: By Proposition 4.2(b), fx, € L(X, X, u). Use Lemma 4.5 to prove (a)
and Propositions 3.7(a) and 4.2(a) and Problem 4.4 to prove (b) and (c).

Problem 4.6. Prove that if f and g are functions in £(X, X, 1), then so
are the functions f A g and f V g. (Hint: Problem 1.3, Lemmas 4.4 and 4.5.)

Problem 4.7. Let (X, X, 1) be a measure space. A complex-valued func-
tion f: X — C is measurable if its real and imaginary parts, f; and fo, are
real-valued measurable functions (Problem 1.7). A measurable complex-
valued function f = fi 41 f3 is integrable if its real and imaginary parts are
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real-valued integrable functions (f1, fo € L(X, X, u)). If a complex-valued
function is integrable, then the integral of f is defined as the complex

number
/fd,u :/fldu+i/fgdu.

Prove the complex version of Lemma 4.4. In other words, if f is measurable,
then it is integrable if and only if |f] is integrable and, in this case,

’/fdu‘ < [171dn

Conclude: f is integrable if and only if | f| € M(X, X) and [|f]du < oo (i.e.,
|f] € L(X,X, ) — also see Section 10.1). Prove the complex version of
Problem 4.4(b): if f and g are complex-valued functions, f measurable and
g integrable, and | f| < |g| p-a.e., then f is integrable and [ |f|du < [ |g|dp.

Hints: Note that |f| < |fi| + |f2l, |f1] < |f], and |f2| < |f|. Use Lemmas 4.4
and 4.5 to show that if f is integrable, then so is |f1]| + |f2], and hence |f]
is integrable by Problem 4.4(b) (since |f| = (|f1]? + |f2|2)? is measurable).
Conversely, if f is measurable and | f| is integrable, then use Problem 4.4(b)
and Lemma 4.4 to show that f; and f, are integrable. The properties f
measurable, g integrable, and |f| < |g| p-a.e. imply that f is integrable and
J1fldi < [ |g|dp. This also is a consequence of Problem 4.4(b). To prove
that | [ f du| < [|f|du proceed as follows. Write [ f dj = pe® and consider
the function g = Re (e~ f): X — R so that |g| < |e"* f| = | f|. Use Lemma
4.5 to verify that | [fdu|=p=e""[fdu= [e f du = Re [e "f du =
JRe(e™“f)dp= [gdu=|[gdu| < [lgldn < [|f|du.

Problem 4.8. Use Lemma 4.5 to prove its own complex version. That is,
show that if f and g are complex-valued integrable functions (with respect
to a measure ) and v is an arbitrary complex number, then vf and f + ¢
are again integrable complex-valued functions, and

/vfdu=7/fdu and /(f'f'g)duz/fd,u-‘r/gd,u.

Problem 4.9. Prove the complex version of the Dominated Convergence
Theorem (Theorem 4.7). If { f,, } is a sequence of complex-valued measurable
functions that converges pointwise to a complex-valued function f, and if
g is a nonnegative integrable function (with respect to a measure p) such
that | f,| < g for all n, then f is integrable and

/fdu = lirrln/fndu.
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Problem 4.10. Show that the indefinite integral of an integrable function,
as defined in Lemma 4.6, is countably additive in the following sense. If f is
in £(X,X, ) and {E,,} is a countable measurable partition of E € X, then

/Efdu =Zn/Enfdu-

Problem 4.11. Consider a measure space (X, X, u). Suppose a sequence
{fn} of real-valued functions in M(X, X) is such that > | f, — f almost
everywhere to a real-valued function f in M(X, X). Let g be a nonnegative
function in £(X, X, ). If } > fn| < g for all m almost everywhere, then
f and each f,, are integrable (i.e., they lie in £(X, X, 1)) and

[raw =3, [fadn.

Problem 4.12. Take a sequence { f,,} of functions in £(X, X, ). If the se-
ries Y07, [|fn] dp of positive numbers converges (i.e., Y oo, [|fnl dp < 00),
then show that the sequence {}" | f,} of functions in £(X,X,u) con-
verges p almost everywhere as m — oo to a function f in £(X, X, u), and

[ran=3 [udn

Hint: Since the sequence {31 [ |fn|du} of positive numbers is bounded,
it converges in R. Apply the corollary of the Monotone Convergence Theo-
rem stated in Problem 3.7 (i.e., the Beppo Levi Theorem) to verify that the
sequence of positive numbers {f Sl d,u} converges in R, and that
the sequence {37 | |f,|} of functions in M(X,X)" converges pointwise
to a function h in M(X, X)* such that [hdu =" [|fnldu. Set N =
{r € X: h(x) =+4o0}. Also set g(z) = h(z) if x € X\N, and g(z) =0 if
x € N. Apply Problems 3.8 and 3.9 to show that the nonnegative real-valued
function g lies in £(X, X, 1), and the sequence {>_" | |f,|} in M(X, X)"
converges almost everywhere to g, and so the sequence of real-valued func-
tions {Enmzl fn} in M(X,X) converges almost everywhere to a function
fin M(X,X) (because it converges absolutely almost everywhere). Show
that |Z:;"':1 fn| < g and apply the Dominated Convergence Theorem.

Problem 4.13. Let f € M(X, X) be a real-valued function. For each posi-
tive integer n consider its n-truncation f,, € M(X, X) as defined in Problem
1.5. Prove that (i) if f € L(X, X, u), then

[ an =i [ fudn.

Conversely, prove that (ii) if sup,, [ |fn|dp < oo, then f € L(X, X, p).
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Hint: Show that {f,} is a sequence of real-valued functions in M(X, X)
that converges pointwise to the real-valued function f, and that {|f.|} is
an increasing sequence of real-valued functions in M (X, X)T that converges
pointwise to | f| (which implies that | f,,| < |f| for all n). To prove (i) verify
that | f| lies in £(X, X, ) and apply the Dominated Convergence Theorem.
To prove the converse in (ii) apply the Monotone Convergence Theorem
and conclude that f lies in £(X, X, p) since [ |f]dp < oo.

Problem 4.14. If {f,} is a sequence of functions in £(X, X, u), and if f is
a real-valued function in M (X, X), then prove that

lim/|fn—f|du:O implies fe L(X,X,u) and /|f|d,u:1im/|fn|du.

(In the jargon of Chapter 5 this means: f,, — f in L' = ||full; = [If]l1-)

Hint: Recall that ||| —|B|| < |a — B for all a, 3 € R. Since f and f, are
real-valued functions, then apply Problem 3.3(b) and Proposition 3.5(b)
to show that if lim,, [|f, — f|dp = 0, then limsup,, [|f.|dp < [|fldp <
liminf,, [|f,|dp. Also, since lim, [|f,— f| dp = 0 implies that |f, — f| lies
in L(X, X, n), and since f, lies in £(X, X, u), then use Lemmas 4.4 and 4.5
to conclude that the function f lies in L(X, X, u).

Problem 4.15. Consider the statement of the Dominated Convergence
Theorem. Show that in addition to the results stated there we also have

i [ 12—l dy = 0.
Hint: |fn, — fl = 0 and |f,, — f] < 2g for all n almost everywhere.

Problem 4.16. Consider again the statement of the Dominated Conver-
gence Theorem. Verify that the dominance assumption (viz., |f,| < ¢ for
all n almost everywhere for some g € £(X, X, 1)) cannot be dropped from
the theorem statement (even under the assumption of uniform convergence
— see Problem 4.2). In fact, take the Lebesgue measure space (R, %, \), set
f=h=0,set f, = nX,1], and set h,, = + X[o,n] for every integer n>1 —
all real-valued functions in £(R, R, A\). Show that

(a) {fn} converges pointwise to f but 0 = [ fdX\ # lim,, [ f, d\ =1,
(b) {hn} converges uniformly to g but 0 = [hd\ # lim,, [h, d\ = 1.
Problem 4.17. Let (X, X, 1) be a measure space, and consider a function

f: X x[0,1] — R such that, for each s € [0, 1], the function f(-,s): X — R is
X-measurable. If, for some sg € [0,1], f(z,s0) = lims_,s, f(z,s) for every
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x € X, and if |f(z,s)| < g(x) for every x € X and all s € [0, 1], for some g
in £(X, X, u), then use the Dominated Convergence Theorem to show that

/f(fvSO du—slggo/fxs

If, in addition, the function f(z,-):[0,1] — R is continuous for each z € X,
then show that the function F': [0 1] — R, defined for each s € [0,1] by

e

is continuous as well. (Continuity is with respect to the usual metric on R).

Suggested Reading

Bartle [4], Berberian [7], Brown and Pearcy [8], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36]. For the basic classic result stated in
Problem 4.1, see [33, p. 23] (also see [1, p. 206], [41, p. 53]).
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Banach Spaces LP

5.1 Construction of L!

A topology to equip the linear space £(X, X, u) which will turn it into a
Banach space is investigated in this chapter. Section 5.1 summarizes the ba-
sics on normed spaces that will be required in Chapter 5 (as well as in parts
of Chapters and 6, 10, and 12). We assume the reader has been introduced
to linear spaces (or vector space) before — see e.g., Lemma 4.5.

Definition 5.1. Let £ be an arbitrary linear space over F, where I stands
either for the real field R or the complex field C. A real-valued function

I: £L—=R

is a norm on L if the following conditions (referred to as the norm azioms)
are satisfied for all vectors f and g in £ and all scalars « in F.

i) |Ifll=0 (nonnegativeness),

(i) [fIl>0 if f#0 (positiveness),

i) sl = Wil (absolute homogeneity),

iv)  If+gll <IfIl+ gl (subadditivity — triangle inequality).

(© Springer International Publishing Switzerland 2015 71
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7_5
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Any linear space £ equipped with a norm || || on it is a normed space (or a
normed linear space, or a normed vector space). A linear space is a real or
a complex linear space if F = R or F = C and, when equipped with a norm,
it is called a real or complex normed space.

Elements of any linear space L are called vectors, and elements of a
field F are called scalars. If £ is a linear space equipped with a norm || ||,
then the resulting normed space is denoted by (L, || ||) or simply by L if the
norm is clear in the context. Observe from axioms (i), (ii), and (iii) that if
a function || ||: £ — R is a norm, then

Ifl=0 if and only if f=0.

If a function || ||: £ — R satisfies the three axioms (i), (iii), and (iv) but not
necessarily axiom (ii), then it is called a seminorm (or a pseudonorm). In
other words, a seminorm does vanish at the origin (as a norm does) but a
seminorm may also vanish at a nonzero vector (as a norm never does). A
linear space L equipped with a seminorm is called a seminormed space.

Definition 5.2. A sequence of vectors {f,} in a normed space (L, | ||)
converges to a vector f in L if for each real number ¢ > 0 there exists a
positive integer n. such that

n>mn. implies | f,— f| <e.

If a sequence of vectors {f,} converges to a vector f € L, then it is said
to be a convergent sequence and f is said to be the limit of {f,}. In order
to distinguish it among other convergence modes, we refer to the preceding
concept as norm convergence (or convergence in the norm topology). A se-
quence {f,} is a Cauchy sequence in (L, || ||) (or satisfies the Cauchy crite-
rion) if for each real number € > 0 there is a positive integer n. such that

n,m >n. implies | fm — ful <e.

A common notation for the Cauchy criterion is im , p, || fr — fnll = 0. A se-
quence {f,} is a bounded sequence in (L, ] ||) if sup,, || fr]l < co.
Proposition 5.3. Consider an arbitrary normed space (L, | ||)-

(a) Every convergent sequence in (L, ||) is a Cauchy sequence.

(b) Fvery Cauchy sequence in (L, || ||) is bounded.

(¢) If a Cauchy sequence in (L, || ||) has a subsequence that converges in
(L,]| 1), then the sequence itself converges in (L, ||) and its limit co-
incides with the limit of that convergent subsequence.
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Proof. Take a normed space (L, ] ||) and a sequence { f,} of vectors in L.

(a) Take any € > 0. If { f,,} converges to f € L, then there exists n. > 1 such

that || f, — f|| < § foralln > ne. Since || foo — full < [[fm — fIIH]f = ful by
the triangle inequality, it follows that || f,, — fn|| < & whenever m,n > n..

(b) Suppose { f,,} is Cauchy. Then there is an nq >1 such that || f,, — fn || <1
for all m,n > ny. Let 5 € R be the maximum of {|| f, — fnl| € R: m,n < n;}
(a finite Set). Thus [[fou — fall < in— fo, |+ oy Fill < 2max{L, 5} for
all m,n by the triangle inequality. But || fu, || < ||fmn — f1ll + || f1]| for all m.

(c) Consider a subsequence { f,,, } of a Cauchy sequence {f,,} that converges
to feL (e, [[fn,— fll = 0 as k — oo). Take any € > 0. Since {f,} is a
Cauchy sequence, there is a positive integer n. such that || f,,, — fn|| < § for
all m,n > n. Since {f”k} converges to f, there is a positive integer k. such
that || fn, — f|| < § for all k& > k.. Therefore, if j is any integer for which
j > ke and n; > n. (for instance, if j = max{n., k.}), then ||f, — f| <
1fa = fu; I+ fn; — fIl < & for every n > n. by the triangle inequality, which
implies that the sequence {f,} converges to f. O

By Proposition 5.3(a), every convergent sequence is a Cauchy sequence.
However, the converse may fail (see Problems 5.13 and 5.15). But there are
normed spaces with the crucial property that every Cauchy sequence con-
verges. Normed spaces possessing this special property are called complete:
a normed space L is complete if every Cauchy sequence in L is a convergent
sequence in L. A Banach space is precisely a complete normed space.

Proposition 5.4. Set £ = L(X, X, ). The function || ||: L — R defined by

Hmz/mw for every  f € £(X, X, )

is a seminorm on the linear space L(X, X, 1), which is such that

Ifl=0 if and only if f=0 p-almost everywhere.

Proof. Recall from Lemma 4.5 that £(X, X, ) is a real linear space. Set
L= L(X,X,pn). Observe that the function || ||: £ — R is well defined since
the integral [|f|dp exists in R for every f € L(X, X, u) by Lemma 4.4. Let f
and g be arbitrary functions in £(X, X, i), and take any scalar 7 in R. Note
that |y f(z)| = |y]|f(x)| for every x € X, which means |y f| = |y||f]. Since
the triangle inequality holds in R, that is, since |a+ 3| < |a| 4 |3| for every
pair {a, 8} of real numbers, it follows that | f(z) 4+ g(z)| < |f(z)] + |g(=)| for
every € X, which means |f + g| < |f| + |g|. Now verify the norm axioms.
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Axiom (i) in Definition 5.1, || f|| > 0, is immediate (Problem 3.3). For axioms
(iii) and (iv) recall that [:L£ — R is a linear functional (Lemma 4.5). Thus,

I fll = / Il d = / Il = b / Fldu = I,
I£+9l = [15-+gldn < [(71+1ol) du = [1f1du+ [ lgldu = 51+ o]

(cf. Problem 3.3). Therefore || || is a seminorm on £. Moreover, Proposition
3.7(a) ensures that ||f|| = 0 if and only if f =0 p-almost everywhere. [

Nevertheless, this seminorm || || is not a norm on £(X, X, it). In fact, it
does not satisfy axiom (ii) in Definition 5.1: there may be a function f in
L(X, X, 1) such that f# 0 and || f|| =0 (e.g., take a Lebesgue integrable
function f in £L(R, R, A) such that f(x) = 0 for all z € R except at the origin,
where f(0) = 1). In order to make this seminorm on £(X, &, u) into a norm
we need to redefine the concept of equality between functions in £(X, X, u)
(other than the usual pointwise definition) so that axiom (ii) is satisfied.

Take a measure space (X, X, u), and let f and g be arbitrary real-valued
functions in M (X, X). We say that f and g are equivalent (or u-equivalent),
denoted by f ~ g, if f = g almost everywhere (i.e., y-a.e.). This ~ is in fact
an equivalence relation on M(X, X). For every real-valued function f in
M(X,X), let [f] be the equivalence class of f (with respect to u),

[f1={f e M(X, X): f'~ [}.

This [f] is the subset of M(X,X) consisting of all functions in M (X, X)
that are p-equivalent to f. The following necessary and sufficient conditions
for equality between equivalence classes are readily verified. Indeed,

[fl=ly) — f~g < [f=g p-almost everywhere.

Problem 4.4(c) says that if f is a function in £(X, X, i), then so is every f’
in [f] and [f'dp = [ f dp. Therefore, if f is in £(X, X, i), then so is every
¢ in [g] whenever [f] = [g] and [¢'du = [ f dp. Thus set

L' = LMp) = L' X ) = {[f) © M(X,X): f € £(X, X, )},

which is the collection of all equivalence classes of functions in £(X, X, p1).
This collection L'= L*(X, X, ) is also referred to as the quotient space of
L(X, X, 1) modulo ~ and is also denoted by L£(X, X, u)/~. Since L(X, X, u)
is a linear space, it can be shown that L'(X, X, i) is made into a linear space
when scalar multiplication and vector addition are defined by

YIfl=0Wfl and [fl+[g]=[f+d]
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for every [f] and [g] in L'(X, X, ) and every scalar 4. Observe that the
origin [0] of the linear space L'(X, X, 1) is a linear manifold,

0] ={feLl(X,X,u): f=0 pae.},

of the linear space £(X,X,u), and L'(X, X, ) can still be viewed as the
quotient space of L(X,X,u) modulo [0], also denoted by L(X,X,u)/[0].
The seminorm on L£(X, X, u) given in Proposition 5.4 induces a norm in
LY(X, X, ). In fact, consider the function || ||;: L' — R defined by

1Al = /mcm for every  [f] € LM(X, X, ),

where f € L(X, X, u) is any representative of the equivalence class [f].

Proposition 5.5. The function || ||, is a norm on the linear space L.

Proof. Consider the seminorm || || on £(X, X, u) of Proposition 5.4. Thus the
function || ||;: L* — R is well defined. Actually, for any [f] in L (X, X, p),

LA = A1)

whose value does not depend on the representative f of the equivalence class
[f]. Indeed, if f and f’ are functions in £(X, X, ) such that f = f' p-a.e.,

then |f'| = |f| p-a.e. (since ||f| — |f'|| < |f — f']), and so [|f'|du = [|f|dp
(Problem 4.4(c)). Note that || ||; satisfies all the axioms (i), (ii), (iii), and (iv)
of Definition 5.1. In fact, take arbitrary classes [f] and [g] in L}(X, X, ),
and an arbitrary scalar v € R so that, by Proposition 5.4,

1A = 11F1l = 0,
Al =0 <= [[fll =0 < f=0 p-ae < [f]=]0],
IV = AT = v A= = T
AT+ Ll = I + gl = W+ gl < A+ Nlgll = N+ Hgll- O

5.2 Spaces LP and L°°

Consider a measure space (X, X, u). Extending the construction of L! in
the previous section, we now define the linear spaces LP for each p>1 and
L°° equip them with norms, and show that they are Banach spaces.

We begin with the spaces LP. Take an arbitrary real number p>1.
A real-valued function f in M(X, X) is p-integrable if fP € L(X, X, u) or,
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equivalently, if [|f[Pdu < oo (cf. Lemma 4.4). Along the same line used to
construct L' (which is the particular case of LP for p = 1), set

1P = LP(u) = L (X, X ) = {[f] C M(X, X): f7 € L(X, X, 1)}

the collection of all equivalence classes of p-integrable functions. In other
words, LP(X, X, i) is the collection of all equivalence classes of real-valued
functions f in M(X,X) for which [|f[Pdu < oo for every representative f
of [f]. Thus consider the function || [|,: L” — R defined by

i, = ( Iflpdu)’l’ for every  [f] € LP(X, X, ),

where f is any representative of the equivalence class [f] in L (X, X, u).

Now we consider the space L*>. An extended real-valued function f in
M(X, X) is essentially bounded if it is bounded almost everywhere. Roughly
speaking, if sup,¢ x |f(z)] < oo p-a.e. on X. Precisely this means that there
is a real number S > 0 such that |f| < 8 p-almost everywhere. If an ex-
tended real-valued function f in M(X, X)) is essentially bounded, then set

esssup | f| :inf{ﬂz(): lfl<pB u—a.e.} :A}ni s;1(1\3N|f(z)|
S S

in R, where infyex is taken over all N € X such that p(N) = 0. Next set

L = L®(p) = L®(X, X, p) = {[f] € M(X, X): Sg@(lf(x)\ < oo p-ae.},

the collection of all equivalence classes of essentially bounded extended real-
valued functions. In other words, L>°(X, X, i) is the collection of all equiv-
alence classes of extended real-valued functions f in M(X,X) for which
esssup | f| < oo for every representative f of [f]. Thus consider the function
: L°° — R defined by

I loo

[l = esssup|f|  for every [f] € L™(X, X, p),

where f is any representative of the equivalence class [f] in L®(X, X, p).

We have seen in the previous section that since £(X, X, ) is a linear
space, then L'(X, X, ) was made into a linear space, with scalar multi-
plication and vector addition of equivalence classes defined as before. This
extends immediately to LP (X, X, u), so that LP(X, X, i) is made into a lin-
ear space as well. Similarly, L>°(X, X, ;1) is also made into a linear space
under the same definition of scalar multiplication and vector addition.

Note that the elements of LP(X, X, u) and L>°(X, X, u) are equivalence
classes of functions (and not functions themselves). If f is any function of
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an equivalence class [f], then it is usual and convenient to write f for [f].
Since the common usage is simpler, we follow it, and refer to a “function f”
in LP(X, X, ) or in L*°(X, X, ) instead of “an equivalence class [f] that
contains f”. Thus we write || f[|, and || f||,, instead of |[[f][|, and ||[f]]|,-

Take any real number p > 1. Let ¢ = %5 > 1 be the unique solution to

the equation 3 + é = 1 (or, equivalently, the unique solution to the equation
p+¢q=pgq). In this case p and g are Holder conjugates of each other. We
will show that [| [|, and || ||, are norms on the linear spaces L and L,
respectively, but first we need the following fundamental inequalities, which
the reader is asked to prove following the hints to Problems 5.1 and 5.3.

Proposition 5.6. (Holder inequality). If p,q>1 are Holder conjugates,
and if f € LP and g € LY, then fg € L' and

If fe L' and g € L™, then fg € L' and

1fglly < 11l llglloo-

Remark: A very special case. For p = ¢ =2, the Holder inequality leads to
the Schwarz (or Cauchy-Schwarz) inequality. An inner product on the real
linear space L? is a bilinear functional ( , ): L?xL? — R given by (f;g) =
[ fgdu for every f,g € L2 Indeed, If f and g lie in L? then fg € L' and

(rsahl =| [ fadu| < [1saldn = 1501, < 11slals

where (f;g) = [fgdu is the inner product of f and g in L?. If u(X) =1,
then [(f5x ) < [Ifllx < [Ifll2, and so ([ fdp)? < ([1f]dp)* < [If]? dp.

Proposition 5.7. (Minkowski inequality). Take any real number p>1. If
fog € LP, then f+ge€ LP and

1f +gll, < Ifll, + llgll,-
If f,ge L™, then f+ g€ L™ and

1+ 9lloe < 1l + N9l oo

Lemma 5.8. The functions || ||, and || ||, are norms on LP and L.

Proof. Consider the real linear spaces LP for each p >1 and L°°. Proposition
5.5 ensures that || ||; is a norm on L' Exactly the same argument shows
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that || ||, is a norm on LP for each p >1, where the triangle inequality is
precisely the Minkowski inequality of Proposition 5.7. To verify that || ||
is a norm on L, note that properties (i) and (iii) of Definition 5.1 are trivi-
ally verified, (iv) is again the Minkowski inequality of Proposition 5.7, and
(ii) follows since esssup |f| = 0 means |f| = 0 p-almost everywhere. O

5.3 The Riesz—Fischer Completeness Theorem

A central result in integration theory is the Riesz Theorem, also referred
to as the Riesz—Fischer Theorem, or the Completeness Theorem (Theorem
5.9). It says that the linear spaces L? and L*° equipped with the norms || ||,
and || ||, are complete normed spaces (where Cauchy sequences converge).

Theorem 5.9. (L7, | ||,,) for each p>1 and (L*,|| | ) are Banach spaces.

Proof. Take any real number p>1. According to Lemma 5.8, consider the
normed spaces (LP(X, X, u), | ||,) and (L>(X, X, u), || [[»)- The proof is
split into two parts. Part (a) shows that (L?,]| ||,) is complete, and part (b)
shows that (L, || ||.) is also complete.

(a) Let {f.} be an arbitrary Cauchy sequence in LP (Definition 5.2). Thus
for any integer k > 1 there is another integer ny > 1 for which

[ fm — full, < (3)*  whenever m,n > n.
Then there exists a subsequence {f,, } of {f,} such that
||f"k+1 o f"kH:D < (%)k
for each k>1. Let g: X — R be a function defined for each 2 € X by
9(@) = [ fay (@] + Y | gy (@) = fop (@)
k=1
First note that g is a well-defined extended real-valued nonnegative X'-meas-

urable function on X (i.e., a function in M(X,X)" — cf. Proposition 1.8).
Thus the Monotone Convergence Theorem as in Corollary 3.10 ensures that

/gpdu = hrrln/(|fnl| _,_i ’f”k+1_ fnk|)pd,u.
k=1

Recall that each |f,, | is in LP, and so |fn | + 320 [fny, = fn,| is in the
linear space LP for each integer n >1. The Minkowski inequality of Propo-
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sition 5.7 (i.e., the triangle inequality) plus a trivial induction ensure that
1> 1 9ll, < iy lgrll, for every n>1if {gy} is a sequence in LP. Then

( [ (il +i|fnk+1fnk|)”du>’l’ = Ul 43 s~ J
k=1 k=1

< Nl + D (3)* = Il +1
k=1

‘ P

for every integer n > 1. The preceding two expressions ensure that [¢” dp <
(I fnqll, + 1)P < oo, and so the set ' = {z € X: g(x) < oo} lies in X' with

w(X\E) = 0 by Problem 3.9(b). This implies that EZL(fnkH (z) = fny (2))
converges for every x € E (since it converges absolutely). Thus set

f(l‘) _ fn1 (:C) + 2;0:1 (f”kJrl (:E) - fnk (x)) = limy, fnk+1 (l’), z € E,
0, r ¢ F,

defining a real-valued function f € M(X,X) in L. Indeed, |f| < g, and so

/Ifl”du < /g”du < (I ll, + 1) < oo

(cf. Problem 3.3(b)). Hence f € LP. Observe that

(i) {fn, } converges almost everywhere to f (i.e., |fn, — f| = 0 p-a.e.),

(ii) | fn,, [P < gP for all k, where g is a nonnegative function in L(X, X', ).
In fact, fn, (r) — f(x) for every z € E and, for all k,

|fnk| S ‘Z (|f’n]| - |fnj+1‘)‘ S Z|f"j+1_ fn_]| S Z|f"j+1_ .f’nj| S g.
j=k j=k J=1

Also, since [fpy = fIP < (Ifoy [+ 1FDP < (g + |F])P by (i), and |f] < g,
(iii) [ fn, — fIP < (2g)? for all k, where (2¢)" lies in L(X, X, p).

Therefore, since |f,, — f|’ — 0 p-a.e. by (i), and according to (iii), it follows
by the Dominated Convergence Theorem (Theorem 4.7) that

ank_fng :/|fnk—f|pd,u—>0 as k‘—)OO,

and so the subsequence {f,, } of {f,} converges in (L% || [|,) to f € LP.
Use Proposition 5.3(c) to infer that the arbitrary Cauchy sequence {f,}
converges in (L%, | [|,), and so the normed space (L7, | ||,,) is complete.

(b) Let {f.} be any sequence of functions in L. Recall that a countable
collection of sets of measure zero is again a set of measure zero. Thus, there
exists a set N € X with pu(N) = 0 such that
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[fn(@)] <l fnlloe and | fim(2) = fo(@)] < [fm = falleo

for all z € X\N, for every m,n > 1. If {f,} is a Cauchy sequence, then for
each € > 0 there exists a positive integer n. such that

| fin — fullo <€ whenever n,m > ne,

and hence

sup |fm(x) — fn(x)‘ <e.
€ X\N
m,mn > ng

Therefore, the scalar sequence {f,(x)} is a real-valued Cauchy sequence for
every x in X\N. Since R (with its usual norm | |) is a complete normed
space, it follows that {f,(z)} converges in R for every € X\N. Thus set

_ lim,, f,(z), x€ X\N,
J(@) = { 0, z € N.

This defines a real-valued function f in M(X, X’) which, in fact, lies in L.
Actually, take x,y arbitrary in X\ N, and an arbitrary n > n.. Note that

[f(@) = )l < [f(@) = fu(@)| + [ ful@) = fu@)] + [fuly) = F(W)I-

Since the function | |: R — R is continuous, it follows that
and since each f, lies in L™, it also follows that

|fa() = fa)] < |fa(@)] + | fa(@)] < 2| foll o
Thus

F@)] < 1fWl+1f(@) = FWI < 1FW+2(e + [[fnelloo)s
which implies that f € L. Moreover, for all n > n,,

If = fallo = sup [f(z) = fu(2)] < e
X\N

zEX\

Outcome: the arbitrary Cauchy sequence {f,} converges in (L™ || ||.) to
f € L™, and so the normed space (L™, || || .) is complete. O
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5.4 Problems

Problem 5.1. Prove the Holder inequality. Let (X, X, u) be a measure
space and take a pair of real-valued measurable functions f and ¢ in
M(X, X). If fPe L(X,X,u) and g7 € L(X, X, u), where p>1 and ¢ > 1
are Holder conjugates, then show that fg € £(X, X, ) and

Jisatan < (fisvau)’ ( floman)t.

Hint: First prove the Young inequality which says that af < O]‘Tp + ’%q for
every positive real numbers « and 8 whenever p and ¢ are Holder conjugates.

If fe L(X,X,u) and g is essentially bounded, then fg € £(X, X, u) and

[1ss1dn < esssuplg| [111dn
Hint: Proposition 4.2(b) and Problem 4.4 (or Problem 3.8(c)).

Problem 5.2. Consider the second inequality of Problem 5.1. If f? lies in
L(X, X, ) for some p>1 (orif f is essentially bounded) and g is essentially
bounded, then (fg)P lies in £L(X, X, u) (or fg is essentially bounded) and

/\fgl” dp < ess sup |g|P/|f|P dp (or esssup|fg| < esssup|f| esssup|g|).

Problem 5.3. Prove the Minkowski inequality. Let (X, X, u) be a measure
space and take p-integrable functions f and g (i.e., real-valued functions in
M(X, X) such that [|f|Pdu < oo and [|g|P du < 0o) for an arbitrary real
number p >1. Show that f + g is p-integrable (i.e., [|f + g|P du < 00) and

</|f+g|pdu>’l’ < </|f|pdu>’1’+ (/g|pd/¢>}) .

Hint: The special case of p =1 was proved in Proposition 5.4. To prove the
case of p > 1 proceed as follows. Take any a and 3 in R. Since |a + B|P <
2(|a]? + |8[P), show that [|f + gl? dy < oc. Since | + B < (|a] + |B])? =
(lal + 18))7~tal + (la] + [8)P~1]], and recalling that (p— 1)q = p if q is
the Holder conjugate of p, use Problem 5.1 to prove the claimed inequality.

Moreover, show that if f and g are essentially bounded, then

esssup|f + g| < esssup|f|+ esssup|g|.
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Problem 5.4. The Littlewood second principle says that “every” function is
nearly simple. That is, if f€ LP(X, X, u) for some p >1, then for every € >0

there is a measurable simple function ¢. such that ||f — .||, < . Prove it.

Hint: If 0 < | f| € LP, then Problem 1.6 ensures the existence of an increasing
sequence {¢,} of measurable simple functions converging pointwise to |f|.
So (|f] — ¢n)? — 0 pointwise and 0 < (|f| — ¢n)? < |f|P. Use the Domi-
nated Convergence Theorem (Theorem 4.7) to infer that ||f — ¢y, — 0.
Problem 5.5. Let £? be the set of all scalar-valued (real or complex) se-
quences z = {&} such that >, |&|P < oo (i.e., the set of all scalar-valued
p-summable sequences), for each real number p > 1. Let £°° be the set of all
scalar-valued sequences z = {{;} such that sup,s,|&x| < oo (i.e., the set
of all scalar-valued bounded sequences). These are (real or complex) linear
spaces. Consider the measure space (N, £(N), u), where u is the counting
measure of Example 2B. Use Problem 3.4 and show that we may identify

(P =LP(N,9(N),n) and €% =L>(N,Q(N),p),
where each equivalence class in LP and L°° contains just one element.

Problem 5.6. Use the previous problem and Lemma 5.8 to show that

o0
1
]|, = (Z \fk\p)? for every sequence x = {¢} € (7,
k=1
|2]l oo = sup |kl for every sequence z = {&} € £*°,
k>1

define norms || ||, and || ||, on 7 and on £°°, and then apply Theorem 3.9
to verify that (¢7, || ||,) for every p>1 and (£* | ||,) are Banach spaces.

Problem 5.7. In particular, the Holder and Minkowski inequalities (Propo-
sitions 5.6 and 5.7) hold for sequences in ¢? and £°° equipped with the norms
of the previous problem. Now prove the Jensen inequality for sequences,
which says that if p and ¢ are real numbers such that 0 < p < g, then

(i |§k|q>% < (i |§k|p)’%

for every scalar-valued sequence z = {&;} such that > ., |& [P < oc.

Hint: Prove that Y 7o af < (Z,;“;lak)T for each real r >1 if the sequence
of nonnegative real numbers {ay} is such that >~ o < oo (i.e., whenever
the series Y r- ,ay converges).
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Moreover, for real numbers ¢ and p show that
l1<p<gq implies ¢'cC P cc .
Hint: Take {1} € (P\¢* for p>1 to verify that these are proper inclusions.

Problem 5.8. Let p, ¢, r be real numbers such that 1 < r < min{p, ¢} and
1 1 1

p q T

Prove the generalized Holder inequality, which reads as follows. If f € LP
and g € LY, then fg € L", and

19l < 11,19l
Hint: Show that £ and # are Holder conjugates.

Also, if (X, X, u) is a finite measure space (i.e., u(X) < 00), then prove that

1<r<p implies L*CcIPCL" CL'.
Hint: || fIl, < |Ifll, u(X)pP;TT by the generalized Holder inequality.

Problem 5.9. Consider an arbitrary measure space (X, X, u). Prove that
the following assertions are pairwise equivalent.

(a) p(X) < oo.

(b) L% C LP for every p>1.

(¢) L C L? for some p>1.

Problem 5.10. Prove that if (X, X, 1) is a finite measure space, then
lim [[fl, = |floc for every fe L™
p—o0

Hint: Problem 5.9. |f[P < |f[P~L|f| implies [|f|Pdp < | f|[55" [|f]dp, and

1l < 11 PNAR = 1o U112/ 1 £lloc) /2 So limsup | £, < [1£]l -
For v in (0, || f|lo) theset E = {x € X: v < |f(x)|} is such that u(E)Y/?~ <
([ If P dp) /P < || f]l,- So v <liminf|f], and || f[|., = supy <liminf || f||,.

Problem 5.11. Let (X, X, 1) be an arbitrary measure space. Prove that

L"NLTCLP whenever 1<7r<p<gq.
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Hint: Take E = {r € X: |[f(z)| <1} and F = {z € X: 1 <|f(x)|} in X
(cf. Proposition 1.6). Show that [, |f[Pdu + [n|fIPdp < [4|f]"du +
Jp 11 dp.

Problem 5.12. Let (R, R, \) be the Lebesgue measure space. Take an arbi-
trary J-measurable set E and consider the restriction A|g of the Lebesgue
measure A to the o-algebra £ = ©(E) N R of all Borel subsets of F as in
Problem 2.11. Take any real number p >1 and consider the Lebesque spaces:

IP(E)=LP(E, & Ng) and L®(E)=L®(E, & Ng).

(a) For each p>1 (or p=o00), a function f € M(R,R) is locally LP if
f € LP(E) for every bounded set E € R. Verify that, if f € LP(R, R, \)
for some p, then f is locally LP, and show that the converse fails.

(b) Set E = [0, 1]. Show that the inclusions of Problem 5.8 are proper:
L>([0,1]) € LP([0,1]) € L7([0,1]) < L*([0,1])
whenever 1 <r < p, by exhibiting functions in

L2([0,)\L>([0,1]) and  L'([0,1)\L*([0,1)).

(c) On the other hand, for an unbounded f-measurable set E we get the
opposite. Exhibit functions in

L2([1,00)\L?([1,00)) and  L*([1,00))\L([1, 00)).
Hints: f% =2yz, [% =log(x), and [%% = -1

Problem 5.13. Consider the set C0, 1] consisting of all real-valued con-
tinuous functions f:[0,1] — R defined on the closed and bounded interval
[0,1]. First verify that C[0,1] is a linear space when vector addition and
scalar multiplication are pointwise defined. Now show that the functions
| ll,:C[0,1] = R for each real p>1 and || [|.: C[0,1] — R, given by

11, = ( /[ .

)

1

If(:ﬂ)l”d:v>p and | fll. = max [f(z)],

z€[0,1]

are well defined for every f € C[0, 1], and are norms on C[0, 1] (cf. Minkowski
inequality). Also show that it makes no difference whether the preceding in-
tegral is Riemann or Lebesgue. Next prove the following assertions.

(a) The normed space (C[0, 1], | ||,,) is not complete for any p >1.
Hint: Take the sequence {f,,} of functions in C[0,1] given by
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1, z € [0,3],

— 1 n+1
fo(x)=14q n+1-2nz, z€cl; %]
0, S [”2—4;1,1]

Show that {f,} is a Cauchy sequence in (C[0,1],| ||,,) but does not
converge in (C[0,1],] [|,) to any (continuous) function in C[0,1].

(b) However, (C[0,1],] ||o,) is @ Banach space. (Hint: Proof of Theorem 5.9.)

Problem 5.14. Take an arbitrary p >1. Now consider the Lebesgue Space
L?([0,1]) of all p-integrable functions on [0, 1] (defined in Problem 5.12). Let
RP[0, 1] denote the subset of L?[0, 1] consisting of all (equivalence classes of)
Riemann integrable functions f for which | f|P has a finite Riemann integral.
RP[0,1] is a linear manifold of LP[0,1], and so it is a linear space. Equip
it with the norm || ||, and consider the normed spaces (RP[0,1], | ||,). Let
{fn} be a sequence of real-valued functions on [0, 1] defined by

£0(2) 1, z= % € [0,1] for some integer k > 0,
n\T) = ’
0, otherwise.

Verify that each f, lies in RP[0,1]. (Hint: Problem 4.1.) Apply the same
argument to show that the Dirichlet function f on [0, 1],

1, z€][0,1]NnQ,
0, z€][0,1\Q,

lies in LP[0, 1]\ RP[0,1]. (Hint: [0,1]\Q is totally disconnected and of mea-
sure 1 — cf. Problems 2.7(b) and 4.1.) Then show that

f@) = Xpane(@) = {

fn— f pointwise.

Hint: If fo(z) =1, then x = £ sox = ’(i(ﬁ:)l? and hence f,11(z) = 1.

Can we infer from this problem that (RP[0,1]

s |I'll,) is not complete?
Problem 5.15. Consider the setup of Problem 5.14, where (R?[0, 1], ] |[,,)
is a linear manifold of the Banach space (L”[0,1], || ||,). We show that the
normed space (RP[0,1], | ||,,) is not complete for any p>1. To begin with,
take the decreasing collection {S,} of closed subsets of Sy = [0,1] used to
build up the Cantor-like set S =1, S,, of Problem 2.10. Observe that

n—1 .

ASn)=1=) Fr =15+ 5T
i=0
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is the length of S, (and so the Lebesgue measure of S,,) for each n >1. Take
the sequence {f,} of characteristic functions of S,, for every n >1,

X 1, z€8,,
fﬂ('r) - Sn(x) - 0’ = S()\Sn,

and verify that each f, belongs to RP[0, 1] for every p >1 (see Problem 4.1).
Let f be the characteristic function of S; that is,

1, xz€b8,

0, ze€ So\S

(a) Show that {f,} is a Cauchy sequence in (RP[0,1], | [[,)-

Hint: Verify that || fy, — fullb < ﬁ whenever m < n.

(b) Show that f € LP[0,1] and {f,,} converges in (LP[0,1], ] ||,) to f.
Hint: Verify that || f,, — f|[b = A(Sn\S) = ﬁ since f, — f = Xg\s-

(c) Show that f ¢ RP[0,1]. (Hint: Problems 2.10 and 4.1.)

Use (a), (b), (c) to infer that there is a Cauchy sequence {f,} of functions
in (RP[0,1], [|,) that does not converge in (RP[0,1],]| [|,). Thus conclude
that for any p >1 the normed space (R?[0,1],]| ||,) is not a Banach space:

(RP[0,1],] [|,,) is an incomplete normed space.

Remark: We have promised in Chapter 3 to show that the integral

/(-)d,u:Ll—HR

is a continuous linear functional. In fact, linearity follows from Lemma 4.5
(since linearity of £ was extended to L'in Proposition 5.5, and so linearity of
the integral functional on L' follows by using the same argument of Lemma
4.5). We will now verify continuity for the integral functional (cf. Problem
5.16(a)) — this will be extended in Proposition 10.G). Recall that a map
between metric spaces is continuous if and only if it preserves convergence.
In particular, the integral [(-)du: L' = R is a continuous functional if and
only if, whenever a sequence {f,} of functions in L' converges in L' to
f € L', then the real sequence {ffn d,u} converges in R to [ f, du € R.

Problem 5.16. Let (X, X, 1) be a measure space and take any p > 1.

(a) If a sequence {f,} of functions in L' converges in L! to f € L!, then

/fdy = lirrln/fnd/i.
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Hint: |ffndufffdu| < Jfo = fldp = |1 fu = fll;-

(b) If a sequence {f,} of functions in LP converges in LP to f € LP, then

/If\pdu B liy/lfn\pdu.

Hint: Verify that, by the triangle inequality, ||| fnll, — I £Il,| < [lfn = fll,-
If, in addition, pu(X) < oo, then

/fdu - liin/fndu.

Hint: Holder inequality with a constant function g, and the hint to (a).

Problem 5.17. Prove the Riesz Theorem, which reads as follows. Consider
a measure space (X, X, 1), take an arbitrary p > 1, and suppose a sequence
{fn} of functions in L? converges u-almost everywhere to f € LP. Then

Jiapdn =t 15, d

if and only if {f,} converges in L? to f. In other words,

fn€lP > fel?r pae = {|fal, = Il = lfa—fl,}.

Hint: 0 < hy, = 2P(|ful? + | f|P) — | fn — fIP € LP — 2PTY|f|P € LP a.e. (hint
to Problem 5.3 ensures 0 < h,, f, — f a.e. implies a.e. convergence).
If || full, = I fIl, then, by Lemma 3.9, 2% [|f|P dp < liminf, [h,dy =
201 [ f1P dp — limsup,, [|f, — f|P du. This implies lim,, [|f, — f|? du = 0.
See Problem 4.14. Now give another solution to Problem 4.15: under the
assumption of the Dominated Convergence Theorem, f,, — f in L.

Suggested Reading

Bartle [4], Bauer [6], Brown and Pearcy [8], Halmos [18], Royden [35], Rudin
[36]. See also [7], [13], [16], [17], [41], [42] and, for an introduction to Banach
spaces, e.g., [26, Chapter 4].



6

Convergence of Functions

6.1 Four Basic Convergence Notions

Major convergence concepts for sequences of real-valued functions will be
considered in this chapter. We have already met four convergence concepts
so far (viz., pointwise, uniform, almost everywhere, and convergence in L?).
These are reviewed and compared in this section. Further concepts, namely,
convergence in measure, uniform almost everywhere, and almost uniform
convergence, will be discussed and compared in subsequent sections.

Definition 6.1. Take a sequence {f,} of real-valued functions f,: X — R
on a set X. The sequence { f,} converges pointwise to a real-valued function
f: X — R on X if the real-valued sequence {f,(x)} converges in R to the
real number f(x) for every x € X. That is, if | f,(z) — f(z)] = 0asn — oo
for every x € X. In other words, {f,} converges pointwise to f if for every
€ > 0 and each 2 € X there is a positive integer n. , such that

n>n., implies |[f,(z)— f(z)] <e.

In this case we write f, — f pointwise. If the integer n. , does not depend
on z, then {f,} converges uniformly to f, and we write f, — f uniformly.
Thus a sequence of functions {f,} converges uniformly to a real-valued
function f: X — R if sup,c x | fn(z) — f(z)| = 0 as n — oo or, equivalently,
if for every € > 0 there is a positive integer n. such that

n>n. implies sup|f.(z)— f(z)] <e.
reX
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Observe that pointwise convergence is convergence in the normed space
(R,| ]). Since (R,| |) is a Banach space (cf. Section 5.1), a real-valued
sequence {f,(z)} converges to f(x) in R for every z € X if and only if
{fn(z)} is a Cauchy sequence in (R,| |) for every z € X. This means that
for every € > 0 and each x € X there is a positive integer n. , such that

m,n > ne, implies |fn(x) — fu(2)] <e,

which is denoted as im , , | fr () — fn(z)| = 0 for every z € X. If such an
ne o does not depend on z, then {f,} is a uniform Cauchy sequence. This
means that for every € > 0 there is a positive integer n. such that

m,n >n. implies  sup |fin(z) — fu(z)| <€,
rzeX

which is denoted as lim, » sup,ex [fm(2) — fu(z)] = 0. It is clear that if
fn— f uniformly, then {f,} is a uniform Cauchy sequence. Actually, by
the triangle inequality, for every m and n,

sup [ fm(z) = fn(z)| < sup [fm(z) = f(2)| + sup | f(z) — fu(2)].
zeX zeX zeX

Conversely, if {f,} is a uniform Cauchy sequence, then {f,(z)} is a real-
valued Cauchy sequence, and so it converges in R to a real number, say
f(x), for every x € X. This defines a function f: X — R such that f, — f.
Since {f,} is a uniform Cauchy sequence, it follows that f,, — f uniformly.
In fact, for arbitrary z € X and € > 0 there is a positive integer n. for which

m >ne implies | fr(z) = f(2)] = lim | fn(2) = fu(2)] <e.

Examples throughout the chapter will compare the several convergence
notions. Problems 6.6 and 6.7 summarize all possible implications among
some convergence notions that are based on measure-theoretical concepts.

Example 6A. f,— f uniformly z fn— [ pointwise.

It is clear that uniform convergence implies pointwise convergence (to the
same and unique limit). It is readily verified that the converse fails. For
instance, for each integer n>1 let f,,:[0,1] — R be given by f,(z) = =™ if
x €[0,1) and f,(z) = 0if = 1. The sequence {f,} converges pointwise to
the null function 0 (i.e., 0:[0,1] — R such that 0(z) =0 for all z € [0,1])
but it does not converge to 0 uniformly (since sup,cp 1) [fn(z)| =1 for all
n >1). Hence it does not converge uniformly to any function.

The previous convergence notions are all measure free. The next notions
require a measure space. So, from now on, take a measure space (X, X, ),
and by a measurable function we mean an X-measurable function on X.
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Definition 6.2. A sequence {f,} of real-valued functions f,: X — R con-
verges almost everywhere with respect to the measure j: X — R (or p-almost
everywhere) to a real-valued function f: X — R if the real-valued sequence
{fn(z)} converges in R to the real number f(x) for every z except in a set
of measure zero. In this case we write f, — f p-a.e. (or f,— f a.e. if the
measure /4 is clear or is not relevant in the context). That is, { f,} converges
almost everywhere to f if there exists a set N € X with u(N) = 0 such that
for every € > 0 and each x € X\N there is a positive integer n. , such that

n 2> Ney implies |fn(gj) - f(l’)| <é.

A sequence { f,,} of real-valued functions on a set X converges in LP(X, X, i)
for some p > 1 if it converges in the Banach space (L7, || ||,,). In this case we
write f,— f in LP. In other words, {f,} converges in L if | f,, — fl, — 0
as n — oo for some real-valued function f € LP. That is, for each € > 0 there
is a positive integer n. such that

n>n. implies || f, — f, <e.

Example 6B. {f,} converges pointwise z {fn} converges a.e.,
where, for any measure space (X, X, ), the implication
fn— f pointwise = f,— f a.e.

holds trivially, since u(@) = 0 for every measure p on any o-algebra X. We
will now see how the converse fails. Recall that the limit of a sequence that
converges pointwise or uniformly is unique, and so is the limit of a sequence
that converges in LP, where in this case uniqueness is understood almost
everywhere (the class of equivalence [f] containing f is unique). But unlike
pointwise, uniform, and convergence in LP, the notion of almost everywhere
convergence does not imply uniqueness of the almost everywhere limit. For
instance, take the function f:R — R defined by f(z) = 0 for all x € R\{0}
and f(0) =1. Let {f,} be a constant sequence with f,, = f for all n>1.
Consider the Lebesgue measure space (R, R, \). The sequence {f,} trivially
converges pointwise to f (which is its unique pointwise limit of {f,}), and
{fn} converges a.e. to any function f’:R — R such that f' = f a.e. (i.e.,
f'(z) = f(x) for every x € R\N for some N € R such that A(N) =0). In
particular, it converges almost everywhere to the null function 0: R — R
(since A({0}) = 0 and f(x) =0 for all z € R\{0}), and also to f itself (since
A(2) =0). Thus, f,— 0 Aae. and f, — f # 0 pointwise (and so A-a.e.).
Now note that we might argue that such an example would be meaningless
had we decided to work with equivalence classes of functions,

[f1={f "R =R: f' = frae},
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rather than with single functions. In fact, this would yield uniqueness for
the almost everywhere limit in this particular example, but would not be
enough to avoid the failure of the converse in the preceding implication; the
converse in the preceding implication fails anyway. Indeed, if g, = (=1)"f,
then g, — 0 A-a.e. and {g,,} does not converge pointwise (to any function).

In general, the notions of uniform convergence and convergence in LP
are not related (see Problem 6.1):

{fn} converges uniformly ZZ {fn} converges in LP.

However, if {f,} converges both uniformly and in LP, then the limits coin-
cide almost everywhere. Moreover, in a finite measure space uniform con-
vergence implies convergence in L to the same (a.e.) limit.

Proposition 6.3. Take any p>1. Consider a sequence {f,} of functions
in LP, and let f, f', f" be real-valued measurable functions.

(a) If fn— [ uniformly and fp,— f"in LP, then f'= f" almost everywhere.
(b) If u(X) < oo and fr,— f uniformly, then f € LP and f,— f in LP.

Proof. Take real-valued X-measurable functions f,, f, f’, and f” on X.

@) If = 1" < f = fal+ 1o =[] < suppex |f(2) = ful@)[+]fo — f]
for each n. Since f,, = f' uniformly, we get |f' — f”| < limsup,, |fn—f"|-
Since f, — f" in LP, it follows (cf. Problem 3.3(b) and Theorem 4.7) that

b /If’ — ' dp < limsup/lfn = "1 dp = T fu = £ = 0,
n n
and so f' = f” a.e. (cf. Propositions 1.5, 1.6, and 3.7(a)).
(b) If each f, lies in L? for an arbitrary p >1, then

= £ully = [ 1= £l i < 500 (o) = Fu@)” 1(X)

for every pair of positive integers m and n. Since {f,,} is uniformly Cauchy
(because f, — f uniformly) and u(X) < oo, it follows that {f,,} is a Cauchy
sequence in the Banach space (L?, | ||,,), and so it converges in LP; and the
L? limit coincides a.e. with the uniform limit f (i.e., it is in [f]) by (a). O

According to Problem 6.2(a), observe that even if u(X) < oo,

{fn} converges pointwise =~ {f,} converges in LP.
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But under the assumption of dominated convergence, just convergence al-
most everywhere is enough to ensure convergence in LP.

Proposition 6.4. Take any p>1. Consider a sequence {fn} of functions
in LP, let f be a real-valued measurable function, and take g in LP.

|fnl < g for all n and f,— f ae. = f € LPand f,— f in LP

Proof. The dominance assumption, namely, |f,| < g for all n, is equivalent
to almost everywhere dominance; that is, |f,| < g for all n a.e., since the
functions f,, and g are in L?, where inequalities (and equalities) are under-
stood in the sense of equivalence classes (and so they are always interpreted
almost everywhere). Since |f,,|P < ¢? for all n a.e. and f, — f a.e., it follows
that |f|P < gP almost everywhere. Thus, if g € LP, then f? is integrable (cf.
Problem 4.4(b)); that is, f € LP. Moreover,

o = FIP < (Ifal +1f))P <(2g)P €Lt and  |f, — f]" = 0 p-ace.,

s0 fn— f in LP by the Dominated Convergence Theorem (Theorem 4.7):
i, = 11 =t [17, = 1P dn = .

Remark: All constant functions lie in every LP if the measure is finite. This
yields the following uniformly bounded version of the previous proposition.

sup,, |fnl < 00, u(X)< oo and f,— f prae. = f,— f € LPin L~

Convergence in LP is of crucial importance since it is convergence in the
norm topology of the Banach space (L?,|| [|,). Generally, it does not imply
uniform convergence, nor is it implied by uniform convergence (cf. Problem
6.1), although in a finite measure space it is weaker than uniform conver-
gence (Proposition 6.3). Even in a finite measure space it is not implied by
almost everywhere convergence, and not even by pointwise convergence (cf.
Problem 6.2(a)). But, under the dominance hypothesis it becomes weaker
than almost everywhere convergence (Proposition 6.4). However,

{fn} converges in L? =~ {f,} converges a.e.,

even under finite measure and dominance condition (cf. Problem 6.2(b)).
On the other hand, convergence in measure (defined in the next section) is
weaker than LP-convergence.
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6.2 Convergence in Measure

Throughout this section, let (X, X, i) be a measure space and let {f,} be
a sequence of real-valued X-measurable functions (which means that each
function f,: X — R lies in M(X, X)).

Definition 6.5. A sequence {f,} of real-valued functions in M(X, X) con-
verges in measure to a real-valued function f in M(X, X) if

limp({z € X+ |fu(z) - f(2)| = a}) =0

for every av > 0. In this case we write f,, — f in measure. The sequence {f,}
is Cauchy in measure if for every o > 0,

lim p({ € X |fn(e) = fulw)| = a}) 0.

Since the functions f,, and f lie in M(X, X), the set

Fu(a) = {z € X: |fa(2) = f(2)] > o}

lies in X for every integer n>1 and each real a > 0. Thus convergence
in measure means lim, u(F,(a)) =0, which implies that the sequence
{(Fn(a))} is eventually real-valued. So f, — f in measure if and only if
for every € > 0 and every a > 0 there is a positive integer n. o such that

n>n.o implies p({ze X:|fu(z) - flz)] >0a}) <e.

Similarly, the sequence {f,} is Cauchy in measure if and only if for every
€ > 0 and every o > 0 there exists a positive integer n. , such that

m,n>ne, implies p({z € X: |fm(z) — fu(z)] > a}) <e.

Example 6C. f,— fin LP z fn— f in measure.

Convergence in LP implies convergence in measure to the same limit. In
fact, for every o > 0 and every integer n >1,

auFn@)= [ araus [ V= gpdns 1= 2= 1051
Fp(a) Fn(a)

The converse, however, fails even under the assumption that p(X) < co.

Actually, the sequence {f,} of Problem 6.2(a) does not converge in L? but

it is readily verified that it converges in measure to the null function.
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Example 6D. f, — f uniformly z fn— f in measure.

Indeed, if f,, — f uniformly, then for any € > 0 there is an n. such that

nzne = Sup|fa(z) — fl)l <& = Fule) =2 = p(Fn(e)) = 0.

This means that the sequence {u(F,(«))} not only converges to zero but
is eventually null for every a > 0. Again, the converse fails. For example,
the sequence {f,} of Problem 6.1(b) converges in LP, and so it converges in
measure, but it does not converge uniformly. Observe that the sequence { f,, }
of Problem 6.1(a) also yields another example of a sequence that converges
in measure (since it converges uniformly) but not in LP.

Proposition 6.6. Let { f,,} be a sequence of real-valued measurable functions.
(a) If {fn} converges in measure, then it is Cauchy in measure.
(b) If { fn.} converges in measure, then the limit is unique almost everywhere.

(¢) If {fn} is Cauchy in measure and has a subsequence that converges in
measure, then it converges in measure itself and its limit coincides with
the limit of that subsequence.

Proof. Take real-valued measurable functions f,, f, and f" Set F,(a) =
{2 € X: [ful@) - f(2)] = o} and Fl(a) = {z € X: |fulz) — ()| = a}.

(a) Since [ fn () = fn(@)| < [fm(2) = f(2)| + [fn(z) — f(2)], by the triangle
inequality, we get {z € X: |f(z) — fu(2)] > o} C Fin(§) U Fo(5), and so

1({2 € X: [fun(@) = fu(@)] > a}) < p(Fn(2)) + n(Fu(2)).

Suppose f, — f in measure. Then, by definition, lim, u(F,(5)) =0, and
hence lim;, , p({z € X: |fm(x) — fn(z)] > a}) =0, for every a > 0.

(b) Since |f(z) — f'(2)] < |fulx) = f(2)|+]|fu(z) = f'(z)| (triangle inequal-
ity again), we get {z € X: |f(z) —f'(z)] > a} C F.(§) U F/(5), and so

p({z € X: |f(x) — f'(@)] > a}) < p(Fa(2)) + n(F(2)).

Suppose {fn} converges in measure to both f and f/, then lim, u(F,(5))
= lim, u(F/(5)) =0. This  implies that pu({z e X:|[f(z)—
f'(x)] > a}) =0 for every o > 0. Thus, f’ = f a.e. (which is a consequence
of the inclusion {z € X: |f(z) — f'(z)| > 0} C e {z € X: |f(z) — f'(2)]
> 5}

(c) Take a subsequence {fy, } of a sequence {f,}. Let @ >0 and € > 0 be
arbitrary positive numbers. Suppose { f,, } is Cauchy in measure. Thus there
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is an integer n. o for which p{z € X: |fin(z) — fu(z)] > §} < § whenever
m,n > ne o If {fn, } converges in measure to f, then there is an integer k. o
such that p{r € X: [f,, (z) — f(z)| > §} < § for every k > k. o. Hence, if
J is an integer such that j > k. o and n; > n. o, then

p{w € Xz |ful@) = fu; (@) > $} < 5
pla € X: |fu; (@) = f(2)] 2 §} < 5,
for n > n. 4. Since |fn(z) — f(2)] < |fn(2) —fnj ()] + |fnj (z) — f(2)],

{z e X: |fa(z) = f(2)] > a}

C {o € X: [fule) — fu,(@)] > 3} U {2 € X: [f,(2) - fla)] >
so that

p({z € X:|fu(z)—f(2)] > a})

< p({z e X:|fu(@) = fu; (@) 2§ }) +u({e € Xe|fo; ()= f(2) 25 }),

and hence p({r € X: |fu(z) — f(z)| > a}) < e for all n>n.,. Then
lim,, p(F,(a)) =0, and so {f,} converges in measure to f. O

[N}

}

Convergences in measure and almost everywhere are not related.
{fn} converges in measure == {f,} converges a.e.,

even in the case of u(X) < co. Indeed, the sequence {f,,} of Problem 6.2(b)
acts on a finite measure space, converges in measure (since it converges
in LP) to the null function, but {f,(x)} fails to converge for every z, and
so {fn} does not converge a.e. (thus it does not converge pointwise). Even
though uniform convergence implies convergence in measure (Example 6D),

{fn} converges pointwise =~ {f,} converges in measure

(and, consequently, convergence a.e. does not imply convergence in mea-
sure). In fact, the sequence {f,} of Problem 6.3(a,b) converges pointwise
(i.e., everywhere in R, and so a.e.) to the null function, but it is not Cauchy
in measure and so it does not converge in measure by Proposition 6.6(a). Ob-
serve that if a sequence does not converge in measure, then it does not con-
verge both in LP and uniformly (see Examples 6C and 6D). But convergence
almost everywhere implies convergence in measure whenever u(X) < oo, as
it will be verified in the forthcoming Propositions 6.12 and 6.13.

Proposition 6.7. If a sequence of real-valued measurable functions is
Cauchy in measure, then it has a subsequence that converges both in mea-
sure and almost everywhere.
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Proof. Let (X,X,un) be a measure space, and take a sequence {f,} of
real-valued functions in M(X,X’). Suppose {f,} is Cauchy in measure.
Take an arbitrary integer k£ >1. Thus there is another integer n; > 1 such
that

p({z e X: [fm(z) = fu(@) = (3)*}) < (3)F  whenever m,n > ny.
This implies that there is a subsequence {f,, } of {f,} for which

n({w € X |fupyy () = fu (@) = (3)F}) < ().

Now, for each integer k> 1, consider the set Ey € X given by

oo

Be = {2 € X: 11 (@) = fu (@) > (3)7),

=k

so that u(Ey) < Y202, (5)7 = (3)" 1 Set N = N2, Ex € &, which is such
that u(N) =0 (because N C Ej, and so u(N) < M(Ek) for all k>1). Since

Fi (@) = f anl o1 (®) = Fny wa — fuy (@)

for every 1 < j < i, it follows that if x € X\Fy and k < j < 4, then

|fnz(l‘> - fn](-'lf)| < i |fnz+1($) — fnf(l‘” < i (%)Z < (%)j—l.
= Py

Thus, if z lies in X\N = X\ (o—; Ex = Uz (X\Ex) or, equivalently, if
lies X\ E) for some k>1, then the above inequality holds for every pair of
distinct integers ¢,j > k. This leads to the following two results: The one
in (i) ensures that {f,, } converges almost everywhere, and the one in (ii)
ensures that {f,, } converges in measure (to the same limit f).

(i) By the above inequality {fn, ()} is a Cauchy sequence in R, and so it
converges in R for every = in X\N. Since u(N) = 0, we get
limg fn, (), x € X\N,
foy, = f prae,  where  f(z) = b Jg (%) \
0, x €N,

defining the real-valued measurable function f on X.

(ii) Take any k>1. The above convergence ensures that In, (x) = f(x) for
every x in X\ Fj, and this implies that for every j > k

[y () = f(@)] = lim [ £, (2) = fu; (@) < (3)77F < (5)F

Moreover, since pu(Ejy) < (3)*7! for each k>1, it follows that for every
€ > 0 and « > 0 there exists an integer k' = k. o > 1 such that
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w(Ey) < (3)¥-1 < min {e,a}.
However (since [fy (z) — f(z)| < (3)¥-1for every j > k'), if j > K/, then

{z € X:|fn;(@) = f(@)| > a} € {x e X: |fu;(z) = f(@)| > (3)¥'} C By

Therefore,
p({x € X: [fuy(@) — F@)] = ) < u(Bp) <

for all j > k' = k¢ o, which means that fnj — f in measure. O

The following theorem is an important consequence of Proposition 6.7,
which is referred to as the Riesz—Weyl Theorem. It says that a sequence
converges in measure if and only if it is Cauchy in measure.

Theorem 6.8. If a sequence of real-valued measurable functions is Cauchy
in measure, then it converges in measure.

Proof. Propositions 6.6(c) and 6.7. O

We have already seen that convergence in LP implies convergence in
measure, but the converse fails even in a finite measure space (see Example
6C). However, dominated convergence in measure implies convergence in
LP as a consequence of another application of Proposition 6.7.

Proposition 6.9. Take any p>1. If {f,} is a sequence of functions in LP,
if f is a real-valued measurable function, and if g lies in LP, then

|fn] < g for all n and f, — f in measure = f € LP and f,— f in LP.

Proof. Consider the dominance assumption, and note that in this context
plain dominance (i.e., |f,| < g for all n) is equivalent to almost everywhere
dominance (i.e., |f,| < g for all n a.e.) — cf. proof of Proposition 6.4. We
carry on a proof by contradiction. If {f,} does not converge in L? to f,
then there is a subsequence {h;} of {f,} and a real ¢ > 0 such that

|hr — fll, > for every k>1. (%)

Suppose {f,} converges in measure to f. Thus every subsequence of {f,}
converges in measure to f. In particular, {hx} converges in measure to f.
Propositions 6.6(a) and 6.7 ensure that {h;} has a subsequence {hkj} that

converges both in measure and almost everywhere. Since {hkj} converges
in measure, Proposition 6.6 ensures that it must converge to f. Since {hkj}
also converges almost everywhere to f, and since |hkj| < g€ LP for all j, it
follows by Proposition 6.4 that f lies in L? and {hkj} converges in LP to f,
which contradicts the assertion in (x). Then {f,} converges in L? to f. O
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6.3 Almost Uniform Convergence

Consider a measure space (X, X, ). Let {f,} be a sequence of real-valued
functions on X, and let f be a real-valued function on X. We say that {f,}
converges uniformly almost everywhere f {f,} converges uniformly to f on
X\N (ie., lim, sup,ex\n [fn(z) — f(x)] = 0) for some set N in X' with
1(N) = 0. Equivalently, if there exists a set N in X with p(N) =0 such
that for every € > 0 there is a positive integer n. for which

n >mn. implies sup |fa(z) — f(z)] <e.
z€X\N
In other words, if the sequence converges uniformly on the complement of
a set of measure zero. However, we will be dealing in this section with a
weaker notion of convergence, which requires uniform convergence on the
complement of sets that have arbitrarily small measure. Actually, we have
already met this notion in the proof of Proposition 6.7, part (ii).

Definition 6.10. A sequence {f,} of real-valued functions f, on X con-
verges almost uniformly (with respect to ) to a real-valued function f on
X if for each § > 0 there is a set E5 in X with p(E5s) < 6 such that {f,} con-
verges uniformly to f on X\Es (i.e., lim, SUP,e x\ gy | fn (@) — f()| = 0).
Equivalently, if for every § > 0 and every & > 0 there is a set Es in X with
p(Es) < and a positive integer ne s such that

n >nes implies sup | fu(x) — f(2)] <e.
:L’GX\E(S

In this case write f, — f a.u. (or f,, = f p-a.u.). A sequence {f,} is almost
uniformly Cauchy if for each § > 0 there is a set Fs in X with u(Ejs) < ¢
such that {f,} is a uniform Cauchy sequence on X\ FEs (which means that
iy p SUP € X\ 15 | fm(x) — fn(x)] = 0). Equivalently, if for every § > 0 and
every € > 0 there is an E5 € X with u(Es) < ¢ and an ne 5 > 1 such that

m,n >n.s implies sup | fm(x) — fu(z)] < e.
zGX\Eé

Example 6E. Consider the string of implications,
fo— fumiformly =7 f,— f uniformly ae. 2 fo— fau,

where uniform convergence trivially implies uniform almost everywhere con-
vergence (set N = &), which in turn trivially implies almost uniform conver-
gence (set Es = N). The converses, however, fail even if p(X) < oo. Actually,
take the finite Lebesgue measure space ([0,1], ©([0,1]) N R, A) and let {f,.}
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be a sequence of real-valued functions on [0,1] such that f,(z) =0 for all
x # 0 and f,(0) = (—1)" for every n >1. It is clear that {f,} does not con-
verge pointwise, and so it does not converge uniformly, but it converges
uniformly almost everywhere. It is also clear that the sequence {f,} of Ex-
ample 6A converges almost uniformly to the null function 0, but it does not
converge to 0 uniformly almost everywhere since supy 1\ n [fn(z)| =1 for
any Borel set N C [0, 1] with A(N) = 0, for all n.

Note that if f, — f almost uniformly, then {f,} is an almost uniform
Cauchy sequence. In fact, for each m and n,

sup |fm(x)7fn(x)| < sup |fm(x)*f(x)| + sup |f(x)7fn(x)|

QIGX\E(S IEX\E§ ZEEX\E§

The next result ensures the converse, and therefore a sequence converges
almost uniformly if and only if it is an almost uniform Cauchy sequence.
Proposition 6.11. Let {f,} be a sequence of real-valued functions.

(a) If {fn} is almost uniformly Cauchy, then it converges almost uniformly,
and it also converges almost everywhere to the same real-valued limit f.

(b) If each function f, is measurable, then so is the limit function.

Proof.

(a) Take a measure space (X, X, u). Suppose a sequence { f,, } of real-valued
functions on X is almost uniform Cauchy (with respect to p). Then for each
integer k >1 there is a set Ej in X with u(Ey) < & such that

lim sup |fm(x)— fo(z)] =0.
m,n ;1cEX\E’1C

Set N =(o2y Ex in X so that u(N) < u(Ey) <  for every k>1, and so
p(N)=0.Ifz € X\N = X\ Ny~ Ex = Upey (X\Ey), then the real-valued
sequence {f,(z)} is Cauchy in R, and hence it converges in R. Thus,
lim,, fr(z), x € X\N,
fn— [ ae., where f(z)= Ju(@) \
0, x € N.
This convergence defines a real-valued function f: X — R on X,

Since {f,} is almost uniformly Cauchy, and since f,(z) — f(x) for every z
on each X\Fy C X\N, it follows that f,(x) — f(x) uniformly on X\E}.
In fact, for £>1 and ¢ > 0 arbitrary there exists n. ; > 1 for which
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m,n >n.y implies sup | fm(x) — fu(z)] <,
zEX\E},

and so, for every © € X\ Ey,
m > ey implies  |[fm(2) — f(z)] = lim|fr(z) = fu(2)] <e,
which implies sup,¢ x\ g, |fm(2) — f(2)| <e. This ensures that

fn— fau,

since, for each § > 0, take k large enough so that % < d and set Es = E in
X so that pu(Es) < ¢ and {f,} converges uniformly on X\ Ej.

(b) Since f = lim, f, wp-a.e., it follows by Propositions 1.8 and 1.9 that f

is X-measurable whenever each f;, is X-measurable. O

So almost uniform convergence implies almost everywhere convergence,

fn— [ au. z fn— [ ae.,

but the converse fails in general. Indeed, even pointwise convergence does
not imply almost uniform convergence (cf. Problem 6.3). However, the con-
verse holds in a finite measure space, as it will be seen in Proposition 6.13.

Proposition 6.12. Consider a sequence {fn} of measurable functions. If
fn— f almost uniformly, then f,— f in measure.

Proof. Let (X, X, ) be a measure space. For each « > 0, consider the set
Folo) = {z € X: |fulz) — f(z)] > a} in X. If f,— f a.u., then for each
0 >0 there is a set E5 € X’ with p(Es) < ¢ and an integer nq s >1 such that
n>mnges implies sup | fu(z) — f(2)| < .
IEX\E(;
Thus F,(o) C Ej, and hence p(F, (o)) < p(Es) < for every n>mngs.
Therefore lim,, u(F,,(«)) = 0, which means that f, — f in measure. d

So almost uniform convergence also implies convergence in measure,
— .
fn— f au v fn— [ in measure,

but the converse fails even if u(X) < oco. In fact, the sequence of Problem
6.2(b), which acts on a finite measure space, converges in measure (since
it converges in LP), but does not converge a.u. (since it does not converge
a.e.). Furthermore, convergences almost uniform and in L? are not related,

{fn} converges a.u. ZZ {fn} converges in LP,
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even if u(X) < oco. Take the finite measure space of Problem 6.2(a). If f,, =
(n 4+ 1) X(1/(m+1), 2/(n+1)] for each n>1, then {f,} converges almost uni-
formly to the null function but it does not converge in L? (Problem 6.2(a)).
Conversely, we saw above that convergence in L? (in a finite measure space)
does not imply almost uniform convergence. However, almost uniform dom-
inated convergence implies convergence in LP by Propositions 6.9 and 6.12.

By Proposition 6.11, almost uniform convergence implies almost every-
where convergence. We close this chapter by showing that the converse holds
in a finite measure space. This is referred to as the Egoroff Theorem (Propo-
sition 6.13). The finite measure assumption in the Egoroff Theorem can be
replaced with dominated convergence (Corollary 6.14).

Proposition 6.13. Consider a sequence {f,} of measurable functions. If
w(X) < oo and f,— f almost everywhere, then f,— f almost uniformly.

Proof. Let (X, X, ) be a measure space. Suppose {f,} converges almost
everywhere to f. This means that f,(z) — f(z) for every x in X\N € X for
some N € X with p(N) = 0. That is, f,, — f pointwise on the complement
X" = X\N of a set of measure zero, which implies that f] — f’ pointwise
on X with f), = f,, xy for each n and f' = fx /. That is, f; (z) — f'(x) for
every x € X. Take an arbitrary positive integer m and set, for each n >1,

F)(m) = {:17 e X' |fulz) = f(2)| > %} = {:17 eX: |fl(x)— fl(x)| > %}

Recall that f’ and f], are measurable (since f and f, are). Thus |f, — f/|
is a measurable function. Then each F (m) is a measurable set, and so

E;(m) = (] Fi(m)
k=n

is a measurable set for each n >1. Hence {E/,(m)} is a decreasing sequence
of sets in X' (i.e., £, (m) C E} (m) € X). Take an arbitrary 2 in X. Since
fl(x) — f'(z), it follows that there exists an integer n,, , > 1 such that

k>nme = |fi(2) = f'(@) <7 = 2 ¢ Fi(m) = z¢E,, (m),

and so z € (), E/,(m). Thus
ﬂ E/(m) =@, which implies u( ﬂ E;L(m)) =0.
n=1 n=1

From now on suppose p is a finite measure. Proposition 2.2(d) ensures that

w(X)<oo = p(Ei(m)) <occ = hﬁnu(E;(m)) =0.
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£

Then for every € > 0 there is an integer n. ,, > 1 such that u(E],(m)) < 5
whenever n > ng ,,. Since this happens for an arbitrary integer m >1, set

o

EL= ] B ,.(m)
m=1
in X so that
( U ’ﬂem ) ( nsm < Z 2s
m=1 m=1
Suppose « € X\E[, so that = ¢ £}, (m). Hence

nZnem = agF(m) = |fi(@)-f(@)]<m

Thus {f],} converges uniformly to f’ on X\E.. Take E. in X given by
E.=E.UN.
Since X\E. = X\(ELUN) = (X\E.) N (X\N) = (X\E.) N X', we get

sup | fu(z) = f(2)| = sup |fy(z) = f'(2)]

zeX\Ee z€X\EL

Then {f,} converges uniformly to f on X\ E. (because {f},} converges uni-
formly to f' on X\ E.). Since p(E;) < u(EL) + pu(N) = p(EL) < ¢, it follows
that {f,} converges almost uniformly. O

Corollary 6.14. Take a sequence {f,} of measurable functions. Suppose
|fnl < g€ LPand f,— f almost everywhere. Then f, — [ almost uniformly.

Proof. Consider the proof of Proposition 6.13. The assumption u(X) < oo
was used there only to ensure that p(Ej(m)) < co. We now show that
p(E1(m)) < oo still holds if we assume dominated convergence instead, and
so we are reduced to the previous proof. If |f,| < g € LP and f,— f a.e.,
then |f| < g (so that f,, f € L?) and |f, — f| < |fal + |f] < 2g (see Propo-
sition 6.4). By setting G'(m) = {z € X': 2¢g(v) > &} in X, we get

Fl(m)={z e X" & <|fu(z) — f(x)|} C{z € X" & <2g(z)} = G'(m)
for all n, and hence
U E!(m) C G'(m).

Since [¢Pdu < oo, it follows that u({z € X: gP(z) > €}) < 0o for every
€ > 0 (Problem 3.9), and so u(G’'(m)) < co. Thus u(Ej(m)) < O
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6.4 Problems

Problem 6.1. Let (R, R, ) be the Lebesgue measure space.

(a) If f, =n-1/pr Xjo,n) for each n>1, then {f,} converges uniformly to
the null function but does not converge in LP for any p >1.

Hint: If n = 2m, then show that || f, — fm |/} > 252 = 3.

(b) If f, =nl/p Xin nt(1/n2y for each n>1, then {f,} converges in L? to
the null function 0 for every p >1 but does not converge uniformly.

Hint: Show that {f,,} converges pointwise to 0 but sup,cp|fr(z)] = nl/».

Problem 6.2. Take the finite measure space ( [0, 1], ([0,1]) N R, A), where
A is the restriction of Lebesgue measure on the o-algebra £([0,1]) N (cf.
Problem 2.11). In other words, let A be the Lebesgue measure acting on the
Borel subsets of [0, 1], which is a probability measure.

(a) If fr = (n+ 1)X[1/(nt1),2/(mn+1)) for n>1, then {f,} converges point-
wise to the null function 0 but does not converge in LP for any p>1.

Hint: If n. > 2m + 1, then || fr, — fm |5 > (2071 +1)(m + 1)P7 1.

Observe that the sequence {f,} does not converge uniformly (since it
converges pointwise to 0 but sup,c(o 7 [fn(z)] = (n+ 1)), which is a
consequence of Proposition 6.3(b) since {f,,} does not converge in LP.

(b) Consider the intervals Ej, ; = [%, %] for each pair of integers j and k
such that 1 < j < k. For each k >1 take the finite sequence {Ej ; }1<j<k-
Stack these finite sequences to get the infinite sequence of intervals

{En}nZI = {{Ek,j}lﬁjﬁk}k21
= {{E11},{E2.1, B2}, {E3.1,E32, B33}, {E11, E12, Ea3, Eaa}, ... }
= {[0.1], [0, 3], [3. 11, [0, 3], [3. 31, (3. 11, 10, 1, (3. 3. 13, 0. (3. 11, ...}

Show that if f,, = Xpg,, for each n >1, then {f,} converges in LP to the
null function for every p >1, but the real-valued sequence { f,,(z)} does
not converge for every x in [0,1] (i.e., {fn} does not converge pointwise
everywhere, and so it does not converge almost everywhere).

Hint: First note that the real-valued sequence {A(E,)} is bounded and
decreasing, thus convergent. For every m >1 there is an n,, such that
MEn,,) < . Hence || fnl|, — 0. Next take an arbitrary z in [0, 1]. The
real-valued sequence {f,(z)} has a subsequence constantly equal to 1
and another constantly equal to 0. Thus {f,(x)} does not converge.
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Problem 6.3. Consider the Lebesgue measure space (R, R, A) and, for each
n >1, take the characteristic function f,, = X{;, ,,4+1]. Prove the assertions.

(a) {fn} converges pointwise (and so a.e.) to the null function.
(b) {fn} does not converge in measure (so not uniformly and not in LP).

Hint: Verify that A\({z € X: |fn(z) — fu(x)| = £}) = 2 for every m # n.
Thus conclude that {f,} is not Cauchy in measure (Proposition 6.6(a)).

(¢) {fn} does not converge almost uniformly (and so not uniformly a.e.).

Problem 6.4. Let g:R — R and f,:R — R for each positive integer n be
real-valued functions on R given by

0, r < 07
1 n, g(l’) Z n,
z) — £ Z‘E(O,I]a nlx) = nlx) =
9(@) \/f fn(@) = fon(x) { 0, otherwise.
5, @ €[l,00),

Consider the Lebesgue measure space (R, R, \). Show that g € L, and
(a) {fn} is dominated by g and converges pointwise to the null function 0,

(b) {fn} converges to 0 almost uniformly but does not converge uniformly
almost everywhere.

Hint: sup,e x\n |fn(z)| = 0o for every set N of Lebesgue measure zero.

Problem 6.5. The symmetric difference of two sets A and B is the set
AVB = (A\B)U (B\A) = (AUB)\(AN B).

Consider a measure space (X, X, ) and let E and F be arbitrary sets in X.
We say that the sets E and F are equivalent (or p-equivalent), denoted by
E ~ F,if u(EVF) = 0. The relation ~ is in fact an equivalence relation on
X. Define the function d: ¥ xX — R by d(E, F) = u(E VF) for every E, F
in X. Verify that d(E, F) >0, d(E, F) = d(F, F), and (triangle inequality)
d(E,F) <d(E,G)+d(G,F) for every E,F,G in X. (Observe that d is a
pseudometric on X — cf. Section 11.1 — and so it induces a metric on
the quotient space X'/ ~.) Take a sequence {E,} of sets in X and, for each
n>1, set f, = Xg,,: X — R, the characteristic function of E,,. Show that
{Xg, } is Cauchy in measure if and only if lim, ,, u(E,;, VE,) = 0. That is,

{fn} is Cauchy in measure if and only if lim, , d(E,,, E,,) = 0.

Problem 6.6. The following diagrams show the relationship among almost
everywhere convergence, almost uniform convergence, convergence in LP,
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and convergence in measure. These will be denoted by (a.e.), (a.u.), (L?),
and (u), respectively. The first diagram considers the general case (with no
additional assumption), the second one considers the case of finite measure
(i.e., if pu(X) < 00), and the third diagram considers the case of dominated
convergence (i.e., when |f,| < g € L?).

(ae.) <= (au) (a.e.) <= (au.) (a.e.) < (a.u.)
L) = () (LP) = () (LP) = (w
General Finite Dominated

case measure convergence

As usual, the arrows mean implication. Show that the above diagrams are
correct and complete in the sense that all arrows are true and no arrow can
be added except for the trivial ones (i.e., up to modus ponens — for example,
it is obvious from those diagrams that (a.e.) implies (1) in a finite measure
space and also that (a.e.) implies (LP) under the dominance assumption).

Problem 6.7. Now let (u.a.e.) denote uniform convergence almost every-
where. Show that the implications

(va.e.) = (a.e.) and (na.e.) = (a.u.)

hold true, and their converses fail even under finite measure and dominance
assumptions. Also, (u.a.e.) implies (L?) under finite measure or dominance
but not in general, and the converse fails even under both assumptions.

Problem 6.8. Show that the Dominated Convergence Theorem holds if
almost everywhere convergence is replaced with convergence in measure.
Hint: Consider the Dominated Convergence Theorem (Theorem 4.7). Use

Problem 6.6 (specifically, Proposition 6.9) and Problem 5.16 for p = 1.

Problem 6.9. Prove the Vitali Convergence Theorem, which reads as fol-
lows. Take an arbitrary p >1. If { f,, } is a sequence of real-valued function in
LP(X, X, u), then f, — f in L? for some f € L? if and only if the following
three assumptions hold true.

(a) fn— f in measure.

(b) For each € > 0 there is an F. € X with u(E.) < oo such that for all n>1

/ |frlP dp < €P for every F € X for which FNE,=@.
F
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(c) For each € > 0 there is a . > 0 such that for all n>1

/ |fulP dp < eP for every FE € X with p(E) < ..
E

Hint: To prove that assumptions (a), (b), (¢) imply f, — f in L? proceed as
follows. Use the Minkowski inequality to show that assumption (b) implies
[ fn = full,= (fEs |fn — fm|?)# +2¢ for every m,n > 1. By the Minkowski
inequality also show that (a) and (c) imply (f’ Ee | fro = fm[P) ¥ < 3¢ for every
m,n > n. for some n. > 1. Thus conclude that {f,} is Cauchy in LP. Apply
Proposition 6.6 for uniqueness of the limit f.

Problem 6.10. Take any p >1. If a sequence {f,} of functions in L? is
such that f, — f € LPa.e. and ||fy |, — [|fl|,, then f, — f in LP. Prove.

Hint: Use Proposition 6.4. (Compare with Problems 4.14 and 5.17.)

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Kingman and Taylor [23], Munroe [30].
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Decomposition of Measures

7.1 The Jordan Decomposition Theorem

Take a signed measure v: X — R on a o-algebra X of subsets of a set X.
According to Definition 2.3, signed measures are real-valued set functions.
We saw in Section 2.2 that if ;4 and A are finite measures, then v =y — A is
a signed measure. In this section we show that all signed measures v admit
a decomposition into a difference of two finite measures.

Definition 7.1. Consider a signed measure v on a o-algebra X. A set A™ in
X is positive with respect to v if (AT NE) >0 for all E in X. A set A~
in X is negative with respect to v if v(A7"NE) <0 for all £ in X. A set
N in X is null with respect to v if (NN E) =0 for all E.

In other words, let v be an arbitrary signed measure on an arbitrary
o-algebra X of subsets of an arbitrary set X. A measurable set is positive,
negative, or null if each measurable subset of it has nonnegative, nonpos-
itive, or null measure, respectively. The set X always has a measurable
partition consisting of a positive and a negative set with respect to v.

Theorem 7.2. (Hahn Decomposition Theorem). Let X be a o-algebra of
subsets of a set X. If v is a signed measure on X, then there exists a
measurable partition {AY, A~} of X such that AT is positive and A~ is
negative with respect to v.

Proof. Consider a signed measure v on X. We show that there exists a
pair of sets AT and A”in X such that ATUA =X, ATNA =0, ATis

(© Springer International Publishing Switzerland 2015 109
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positive, and A~ is negative. Let AT C X be the collection of all positive
sets with respect to v, which is not empty (since it contains the empty set).
Set v = sup 4 4+ V(A) and take a sequence {A,} of sets in A* such that
sup,, ¥(A4,) = a. Thus At =, A, is a positive set (Problem 7.2(b)) with
0<v(A") = a < oo (since v(A,) < v(AT) <« for all n — Problem 7.3).
Take its complement A== X\ A™T. If A~ is a negative set, then we are done.

Claim. A~ = X\AT is a negative set.

Proof. Suppose A~ is not negative. Then it has a measurable subset Ej
such that v(Ep) > 0. If Ey is a positive set, then v(ATU Ey) > a (because
AT N Ey = @), which is a contradiction (v = sup 4¢ 4 ¥(A)). Thus Ej is not
positive, so it has measurable subsets of negative measure. Let ng be the
smallest positive integer such that E, has a measurable subset of measure
not greater than —nk, say Ey with v(E;) < — . Observe that

I/(EQ\El) = I/(E()) — I/(El) > I/(EQ) >0

(cf. Problem 7.1(a)). If Eg\E; is a positive set, then v(AT U (Ep\E1)) > «
(because AT N (Ey\F1) = @), which is again a contradiction. Thus Eg\E;
is not positive, so it has measurable subsets of negative measure. Let n; be
the smallest positive integer such that Fy\E; has a measurable subset of
measure not greater than —%, say Fy with v(Fs) < —%. Again, note that

V(Eo\(El UEQ)) :V(Eo) 71/(E1 UEQ) :l/(E()) — (V(E1)+I/(E2)) > I/(Eo) >0

(because F1 N Ey = @). As before, Eg\(E; U E3) is not positive, so it has
measurable subsets of negative measure. Let ny be the smallest positive
integer such that Ey\(E; U E2) has a measurable subset of measure not
greater than — >, say Es with v(F3) < —r5. This leads to the inductive
construction of a sequence {Ej}7°, of pairwise disjoint measurable sets
and a sequence {ny}7>; of integers with each n; being the smallest pos-
itive integer for which Fy\|J¥_; E; has a measurable subset of measure

not greater than f%. Moreover, v(Ej41) < f% for every k>0, and so

> oneg e < 0. In fact, by setting E = (J;—; E), in X we get

—00 < v(E) = Y w(Ey) < =) a <0,
k=1 k=0

since {Ej}32, consists of disjoint sets. Thus # — 0 as k — co. Note that
v(Eo\E) = v(Fy) —v(E) > v(Fy) > 0.

The set Ep\F is indeed positive. In fact, suppose Ep\FE has a measurable
subset of negative measure, say F with v(F) < 0. Since ny — oo as k — o0,
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take k large enough so that ﬁ < —v(F); that is, v(F) < *nk%l- But
F C E)\E C Eo\Ur_, E;, so Eo\UE_, E; has a measurable subset of mea-
sure less than —nk%l, which contradicts the fact that ny is the smallest pos-
itive integer for which Ep\ |J¥_, F; has a measurable subset of measure not
greater than —%. Thus every measurable subset of Ep\ E has a nonnegative
measure, and so Fo\F is a positive set. Therefore, since AT™N (Ep\E) = @
(because Ey C A7) and v(Ep\E) > 0, it follows that v(ATU (Ep\FE)) > a,
which is again a contradiction. Outcome: A~ must be a negative set. a

Let (X, X) be a measurable space. A measurable partition {AT, A~} of
X, where AT € X is positive and A~ € X is negative with respect to a signed
measure v on X, is called a Hahn decomposition of X with respect to v.
Given a signed measure v on X', a Hahn decomposition of X is not unique
(if there exists a nonempty null set with respect to v). In fact, if {41, A~}
is a Hahn decomposition of X and N is a null set, then {ATU N, A~\N}
and {AT\N, AU N} are also Hahn decompositions of X (all with respect
to v). However, this lack of uniqueness is indistinguishable for the signed
measure v, and so it is not a disadvantage of the Hahn decomposition.

Proposition 7.3. Suppose { A, AT } and { A, A5 } are Hahn decompositions
of X with respect to a signed measure v on X. Then, for every E € X,

V(AT NE)=v(AT NE) and v(A] NE)=v(4A; NE).

Proof. If A, B, C are arbitrary sets, then { AN(B\C), ANBNC'} is a partition
of ANB.In X, if v(AN(B\C)) =0, then v(AN B) =v(AN BNC). Since
EN(AN\AS) C AT nA; and EN(AJ\A]) C AF N A, it follows that

V(EN(Af\AT)) =0 and v(EN(AF\A])) =0.
Thus

VENAT) =v(ENATNAT) and v(ENAJ)=v(ENA]NAD),
and so
v(ENAT) =v(ENAY).
Analogously, replacing AT with A, and AJ with A5, we get
v(ENAT)=v(ENAy). O

Consider a Hahn decomposition { AT, A~} of X with respect to a signed
measure v on X. Problem 2.11 ensures that the set functions v+: X — R
and v~ : X — R defined for every set E in X by

vI(E)=v(ATNE) and v (E)=-v(A"NE)
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are finite measures on X. The measures v and v~ are called positive vari-
ation and negative variation of v, respectively. Note: (1) v and v~ are
unambiguously defined (their definitions do not depend on the Hahn decom-
position {A*, A~} by Proposition 7.3), and (2) vT (A7) = v~ (AT) =0, sig-
nifying that v and v~ are singular (as it will be defined in Definition 7.9).

Theorem 7.4. (Jordan Decomposition Theorem). Let (X, X') be a measur-
able space. Suppose v is a signed measure on X. Then

v=uvT— v,
where vT and v~ are the positive and negative variations of v. If
v=A—p,
where A\ and p are finite measures on X, then
vt <X and v- <p.

Proof. Take an arbitrary Hahn decomposition {A*, A~} of X with respect
to a signed measure v on X. Since {AT, A~} is a partition of X, it follows
that (AT NE)U(A”NE)=FE and (AT NE)N (A~ NE) =@, and hence

v(E)=v(ATNE)+v(A~NE)=vH(E)-v (E),
for every E € X. If A and p are finite measures on X (so that 0 < A\(E) < oo
and 0 < p(F) < oo for every E € X) such that v = A\ — u, then

vI(E)=v(ATNE)=AMATNE) - u(ATNE) < AATNE) < \E),

v (E)=-v(A"NE)=-XA"NE)+uwATNE) < u(A* NE) < p(E),
for every E € X (Proposition 2.2(a)). Therefore, v+ < Xand v~ <p. O

The sum of finite measures is again a finite measure. The total variation
of a signed measure v: X — R is the finite measure |v|: ¥ — R defined by

lv|=vt+ v,

Example TA. Let v be a signed measure on X. The total variation |v|
coincides with the (ordinary) variation p discussed in Example 2I. In fact,
as in Example 2I, the (ordinary) variation p is the measure defined by

wWE) = sup (v(EY) —v(E™)) for every E€X,
{ET,E~}€ E(2)

where the supremum is taken over all measurable partitions {ET, B~} of E/
consisting of two sets such that v(E*) >0 and v(E~) < 0. If {AT, A~} is
any Hahn decomposition of X with respect to v and £ = ©(E) N X, then
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vI(E)+v (E) = v(ATNE)—v(A”NE) < uE)

sup v(F) — jnf v(F) = vH(E) + v (B),

IN

where the last identity follows from Theorem 7.4 (via Problem 7.5), and so
wE)=v|(E)=vT(E)+v (E) for every E€X.

Proposition 7.5. Consider a measure space (X, X, ), and take a function
fel(X, X, u). If v:X— R is the signed measure defined in Lemma 4.6,

v(E) :/ fdu for every FEe€X,
E
then the measures vt, v™, and |v| are given for each E € X by
B = [ fran v E) = [ e ad )= [ (flde
E E E
Proof. Take the sets F. = {zx € X: f(x) >0}, F. = {z € X: f(z) <0},
and Fy = {z € X: f(z) =0}, and set

F+:F+UF0:{m6X:fZO} and F_:F,UFoz{xeX:f§0}.

Thus {F'*, F_} is a measurable partition of X such that v(F'* N E) > 0 and
v(F-NE) <0 for each E € X, and so {F'T, F_} is a Hahn decomposition
of X with respect to v. Since [, pfdu = [y fdu (cf. Proposition

3.7(a), Problem 3.8(a), and Definition 4.1), it follows for every E € X that

B =P 0B = [ = [ = [ rran

F+tnE

v (B) = g = = [ gap= [ —pdn= [ ran

pIB) = v (B)+ v (E) = [ (1 + e = [1fldn. O

7.2 The Radon—Nikodym Theorem

Definition 7.6. Take a measurable space (X,X) and let £ € X be an
arbitrary measurable set. A measure A on X is absolutely continuous with
respect to a measure p on X if

w(E)=0 1implies A(E)=0
(i.e., A(E) =0 for every E € X such that u(F) = 0). Notation: A < p.
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Let A and p be measures on X, let E be an arbitrary measurable set in
X, and consider the following statements.

(a) For every € >0 there is a 6. > 0 (which does not depend on FE) such that
u(E) < . implies A (E) <e.
(b) The measure A is absolutely continuous with respect to p (i.e., A < p).

These are equivalent if A is a finite measure, as it will be shown in
Proposition 7.7 below, thus justifying the terminology “absolute continuity”.

Proposition 7.7. Consider the above assertions.
Claim: (a) implies (b), and (b) implies (a) if X is finite.

Proof. Suppose (a) holds. If u(E) = 0 for some E € X, then A(E) < ¢ for all
€ > 0, which means that A(E) = 0. Therefore (a) implies (b). Conversely,
Suppose (a) fails. Thus there exists an € > 0 such that for every § > 0 there
exists an Fs € X for which pu(Es) < d and A(Es) > e. In particular, for
every n >1 there exists an E,, € X such that u(E,) < Qin and \(E,) > e.
Set F, = Up—,, Ex in X so that u(F,) < > oo w(Ey) <> pe, 2% =
and \(F),) > A(Ey) > € for every n>1. Set F =, F,, in X. Since {F,}
is a decreasing sequence of sets in X, and since p(Fy) <1 and A(F}) < 0o
if A is a finite measure, it then follows by Proposition 2.2(d) that

w(F) =limu(F,) =0 and A(F)=lmA(E,) > e,

and so (b) fails. Equivalently, (b) implies (a) if A is a finite measure. O

Propositions 3.5(c) and 3.7(b) ensure that if u is a measure on X and f
is a function in M(X,X)" (a nonnegative extended real-valued measurable
function), then the set function A on X defined by

AE) :/ fdu  for every EeX
E

s a measure which is absolutely continuous with respect to p. What comes
as a nice and perhaps unexpected result is that the converse holds if the
measures A and p are o-finite. That is, in this case, there exists a function f
in M(X, X)" such that X is expressed as an integral of f with respect to p.
Also, the function f is unique p-a.e. (which means that if g in M (X, X)%"is
such that A\(E) :fE gdu forevery E € X, then g = f p-almost everywhere).
This converse is a fundamental result in measure theory, which we see next.

Theorem 7.8. (Radon-Nikodym Theorem). Take any measurable space
(X, X). If X\ and p are o-finite measures on X, and if X\ is absolutely con-
tinuous with respect to p, then there exists a unique (p-almost everywhere
unique) real-valued function f in M(X,X)T such that
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AME) :/fd,u for every E € X.
E

Proof. Suppose A\ and p are measures on X such that A < u. We split the
proof into two parts. Part (a) proves the theorem for finite measures. Part
(b) extends the proof for o-finite measures.

(a) Take an arbitrary real number « > 0. Suppose A and p are finite mea-
sures. Thus v, = A — ap is a (real-valued) signed measure. Let {A}, A}
be a Hahn decomposition for X with respect to the signed measure v,.
Consider a sequence {Ej }i>1 of sets in X recursively defined by

k
Ey = A(_k+1)oz\ U E; with FE;=A,.
j=1

It is immediately verified by induction that

(1) {Ek}r>1 is a sequence of disjoint sets,
k k

(ii) U E; = U Aj_a for every k>1,

j=1 j=1

and hence

k-1 k—1
E, = A,;a\ U A=A N ﬂ A;‘a for every k>2.

j=1 j=1

Then Ey € (A, N A&q)a)’ which implies that for each set £ C (X N Ey),

AME) —kap(E) <0and AM(E) — (k—1)au(E) >0, and so
(i) (k—au(E) < A(E) < kap(E),
for every E C (X N Ey) and every k > 2. Set (cf. property (ii))

(oo} (oo} (oo}
F=x\UB=x\U4. =A% € 4f, foral k>1
j=1 j=1

j=1

so that A(F) — kau(F) > 0, equivalently, 0 < kau(F) < A(F), for all k > 1.
Since A is a finite measure, it follows that u(F) = 0. Since A < u, we get

(iv) AF)=0.
Take the nonnegative real-valued function f, in M*= M(X, X)* given by

(k—1)a, =€ E} for some k>1,

fa@=1 " veF=X\UZ>, B
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Observe that {F, Ey; k>1} is a measurable partition of X by property (i).
Take an arbitrary E € X so that {E N F, EN Ey; k>1} is a measurable
partition of E. Thus (cf. Problems 3.3(a) and 4.10)

/foz dp = /Uk - fadp = Z/Emkfa dp
= Z(k— 1) / dp = Z(k‘—l)a,u(EﬁEk)

k=1 ENEy k=2

< i)\(EmEk) = MUplo(ENE,)) < ME)

by properties (iii) and (i). Similarly, by properties (i), (iii), and (iv) we get

/d/\ —/ d\ = AN(U;2, (ENEy)) = i)\(EﬂEk)

| (BNEy)

SZka,u(EﬂEk):Z/ kozd,u*Z/ (fa+a)d
k=1 k=1" ENEg 2

NE},

(EﬁEk) E E

o]
k=1

Take an arbitrary integer n>1, set o = (3)" and f,, = f(1/2)n. The previ-
ously displayed inequalities ensure that

v) [ et < 3®) < [ pau () x)

for all n>1. Hence, for an arbitrary pair of positive integers m and n,

/fndu< A(E /fmdu+ " u(X),
/fmdu</\ /fnd/Hr% (),

/fndu /fmdu < \(E /fmdu
[ twin= [ fudn < 3@~ [ foan <

which implies

so that

IA
Gl
3
=
s

N
—
N[ =
~—

3
=

s

/| (fmfn)du‘ < ()" u(x)



7.2 The Radon—Nikodym Theorem 117

whenever m < n. Since this holds for all £ € X', we get

/|fm fn|d/~L = /( fn) dp +/(fm_fn)_du
/ (fm = fn)dp — / (fm — fn)dp
Fm F'r;,,n

/ fm fn) dp / (fm — fn)dp
Fon, F;L,n

for each m, n such that m < n, with F} | = {z € X: (f;n — fn)(z) > 0} and

={z e X: (fm — fn)(x) <0} Slnce property (v) holds for all E in X,
)\ is a finite measure, and f,, is a real-valued function in M, it follows that
each function f, lies in L'(u) = L*(X, X, u). Thus, by the above inequality,

”fm_fn”l —( )m IN(X)

if 1 <'m < n. Since p is a finite measure, the above inequality says that {f,, }
is a Cauchy sequence in the Banach space L' (u), and so it converges in L (1)
to, say, f € L'(i1). Then the real-valued sequence { [, fn du} converges in
R to [, fdp for every E € X. In fact (cf. Problem 5.16),

+ < 2(3)"wX)

[ twin= [ sau] < [ 15, fiaw < [15. = 1w = g = 110
Recall that f = lim,, f,, € L'(u) is real-valued. Therefore, by property (v),

)\(E):lim/ fndu:/fd,u for every E € X.
" JE E

Note that we may take a nonnegative function f in the equivalence class
[f], that is, we may take f € M. Indeed, since 0 < X\(E) = [, fdu for
every E € X, it follows by Problem 4.5(b) that f > 0 p-a.e. (and also A-a.e.
because A < p) for every f € [f]. Moreover, such an f is p-a.e. unique. In
fact, if g € L' () (and g € M) is such that A(E) = [, fdu = [, gdu for
every F € X, then f = g p-a.e. by Problem 3.8(d) (or Problem 4.5(c)).

(b) Next assume that the measures A and p are o-finite. Thus there are two
sequences of X-measurable sets, say {A,} and {B,}, such that A\(4,) < oo
and p(B,) < oo for every n, both covering X. Actually, by considering
successive unions of them if necessary, we may assume that these sequences
are increasing. Set X,, = A, N By, so that {X,} is an increasing sequence
of X-measurable sets such that | X,, = |J A, N U B, = X and, for each n,

AMX,) <o and  p(X,) < oo.
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Take an arbitrary index n. Consider the o-algebra X,, = ©(X,,) N X'. By part
(a) there is a function g, € M(X,, X,) " such that A(E') = [,/ gndpl|x,, for
every E' € X, (cf. Problem 2.11). Let f,, be a function on X defined as fol-
lows: fn(2) = gn(z) if 2 € X, and f,(2) = 0 if x € X\ X,,. This function
fn lies in M+ = M(X, X)* and, for every E'€ X,, C X,

ME') = Indp.
Er
Recall that X,, C X}, for every n < k. Then E’ € X}, for every k > n when-
ever B’ € X,. So the above identity holds for all k& > n. That is, the sequence
{fn} of functions in M™ is such that if £’ € X, for some n >1, then

NE) = [ fudi= [ pian
! I

for every k > n. Again from part (a), g, is unique p-a.e., then so is f,, for
each n. Thus the previous identity ensures that fr = f,, p-a.e. on X, for all
k > n. (Same uniqueness argument: see Problem 3.8(d) or Problem 4.5(a)
— nonnegative functions in L!(x).) Hence, since each f,, vanishes outside
X, and since {X,,} is an increasing sequence of sets, it follows that {f,}
is an increasing sequence of functions in M such that

NEOX) = [ pdu = [ fux i = [ fodn

ENXn

for each F € X (since ENX,, € X,, and f, = f"XXn) and for each n>1.
Take an arbitrary set E in X and note that {E'NX,} is an increasing
sequence of sets in X that covers E (because {X,,} is an increasing sequence
of sets in X' that covers X). Thus, by Proposition 2.2(c),

ANE) = A(Un(Ean)) = lim(E N X,) = li7rln/Efn dp.

The Monotone Convergence Theorem completes the existence proof. In-
deed, since {f,,} is an increasing sequence of functions in MT, it converges
pointwise to a function f in M, and so it follows by Theorem 3.4 that

A(E) :ligl/fnduzligl/fnx]; du:/liglnfan du:/fxE du:/fdu-
E E

The function f € M™ is the pointwise limit of an increasing sequence of
functions in M. Thus it may possibly be extended real-valued; but, it is
p-a.e. real-valued. Equivalently, the set F,o = {z € X: f(z) = +oo} has
measure zero (i.e., u(Fy) = 0). Indeed, recall that {X,,} is an increasing
sequence of sets that cover X, each f,, is null outside X,,, and fi, = f, p-a.e.
on X, for all £ > n. Thus, since f(x) = lim,, f,(z) for every z € X it follows
that fn, = fx  p-ac., and so oo N Xp) = p({z € Xyt fu(x) = +00}),



7.3 The Lebesque Decomposition Theorem 119

for each n. However f,, € L'(X, X, 1), because g, = fn Xx, € LY X, X, 1)
and f, = 0 on X\X,,. Hence u(Fyo N X,) = 0 for all n by Problem 3.9(b).
Since Fioo = F1oo N X = Fioo N, Xn = U,,(Froo N Xy,), it follows that
P(Fioo) <3, w(FroeN Xy) = 0 (Problem 2.8(b)), and so pu(Fyo) = 0. Set
f=fx X\ @ real-valued function in M™ such that (see Problem 3.8)

A(E)=/fdu=/ fdu+/ fdu=/fo\F+oodu=/fdu
E BA(X\Fqo0) ENFy o0 E E

for every E € X. Such an f € M is unique p-a.e. by Problem 3.8(d). O

The real-valued function f € M(X,X)™" in the statement of the Radon—
Nikodym Theorem was not claimed to be integrable. Actually, f is u-
integrable (i.e., f lies in £(X, X, p)) if and only if A is a finite measure.
This function f is called the Radon—Nikodym derivative of A with respect
to p, which it is often written as f = g—}’) (or d\ = fdu). As noticed in Prob-
lem 3.11, no independent meaning is assigned to the symbols d\ and du.
So, if A and u are o-finite measures such that A < u, then there is a unique

(n-a.e.) real-valued function % in M(X, X)" such that for every E in X

d\
AE:/—d.
(E) an

Remark: A major applications of the Radon—Nikodym Theorem is the Riesz
Representation Theorem. One of the versions of it say that if @: LP(u) — R
is a bounded linear functional on the Banach space LP(u), then there is a
unique g € L(p) such that &(f) = [fgdp for every f € LP(u) and ||®| =
lgll, (where g is the Hélder conjugate of p; if p =1 so that ¢ = oo, then p
is supposed to be o-finite). See Proposition 12.A. The Riesz Representation
Theorem holds in every Hilbert space, and so it can be proved for p =2
without using the Radon—-Nikodym Theorem and, perhaps surprisingly, this
can be used to prove the Radon—Nikodym Theorem itself. Chapter 12 is
entirely dedicated to the Riesz Representation Theorem.

7.3 The Lebesgue Decomposition Theorem

If A is absolutely continuous with respect to p, then they act synchronized in
the sense that sets of small y-measures have small A-measures (Proposition
7.7). At the opposite end there are measures A and p which act complemen-
tary in the sense that sets of small g-measure may have large A-measure.
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Definition 7.9. Take a measurable space (X, X). A measure A on X is
singular with respect to a measure p on X' (notation: A L u) if there exists
a measurable partition {A, B} of X such that

The notion of singular measures means that A and p have disjoint sup-
ports (see Problem 2.13), which is also referred to by saying that A is concen-
trated on a set of p-measure zero. It is clear that L is a symmetric relation
on the collection of all measures on X (i.e., A L p if and only if pu L ).
Thus we say that A and u are mutually singular, or simply singular, instead
of A is singular with respect to p (or vice versa). Note that singularity may
be equivalently restated as follows: A L p if there exists a partition {A, B}
of X such that AN E and BN FE lie in & for every E € X and

MANE)=uBNE)=0.

Observe that the preceding two expressions are equivalent. In fact, A and
B must be measurable (because AN X and BN X lie in X since X lies
in X), ANE C A, and BN E C B. The next result is another important
consequence of the Radon—-Nikodym Theorem.

Theorem 7.10. (Lebesgue Decomposition Theorem). Consider a measur-
able space (X, X). If X and u are o-finite measures on X, then there exists
a unique pair of measures Aq and As on X such that Ay < p, As L p, and

A=A+ As.

Proof. Let A and p be o-finite measures on X. Set v = p+ A, which is
again o-finite measure on X' (Problem 2.14). Both p and A are absolutely
continuous with respect to v (i.e., v(E) = 0 implies u(E) = A(E) =0, and
so p < v and A < v). Then the Radon—Nikodym Theorem says that there
are real-valued functions f and g in M(X, X)" such that for every E € X,

M(E):/Efdl/ and )\(E):/Egdy.

Take the measurable partition {Fy, Fy } of X, with Fy = {x € X: f(z) =0}
and I = {z € X: f(z) > 0}. Set A\s = A, and A\ = Ap,_, where the mea-
sures Ap, and Ap, on X are defined as in Problem 2.11, namely,

M(E) = Ap(B) = MENF) and  A(E) = Ap, (E) = \(ENFy)



7.3 The Lebesque Decomposition Theorem 121
for every E € X. Since pu(Fp) :fFOOdz/ =0and A\, (Fy) = N@) =0, we get
As L.

If E € X is such that u(FE) =0, then [fx,dv = [ fdv =0, and hence
Ixg =0 v-ae. (cf. Proposition 3.7(a)). That is, f = 0 v-a.e. on E, and so
v(ENF;) =0. Since A < v, it follows that \,(E) = A(E N Fy) = 0. Thus,

Ao L .

Now note that A(E) = A((E N Fy) U (E N FL)) = MENFo) +A(ENFy) =
As(E) + Ao (E) for every E € X, and therefore

A= As + Ao

To prove uniqueness, suppose A = A; + A2, where A\; and Ay are (o-finite)
measures on X such that A\; L p and Ay < pu. Take the signed measures
As — A1 and Ay — A2 on X so that As — Ay L pand A\, — A2 < p (cf. Prob-
lems 7.10 and 7.11). Since As + Ay = A1 + Ag, it follows by Problem 7.12
that A;s — A1 = Ay — A2 =0, and so \; = Ag and Ay = A,. O

Remark: The signed measures A;— A1 and A\, — Ao are well defined if we allow
extended real-valued signed measures, and declare that (A;—A;)(E) =0 if
E in X is such that A\;(E) = A\ (F) = 400, and (Ag—A2)(E) =01if Fin X
is such that A\, (E) = A2(E) = 4o00. Also note that Problems 7.10, 7.11, and
7.12 are naturally extended to extended real-valued signed measures.

Theorem 7.10 decomposes every o-finite measure A into two parts: an
absolute continuous and a singular, both with respect to a o-finite reference
measure 1 (e.g., such a reference measure may be the Lebesgue measure in
the particular case of (X, X) = (R, R)). Next we refine this decomposition.

Definition 7.11. Take a measurable space (X, X). A measure A on X is
continuous with respect to a measure p on X if, for {z} € X,

pw({z}) =0 implies A({z})=0

(i.e., A\({z}) = 0 for every measurable singleton {2z} such that u({z}) =0).

Definition 7.12. Let (X, X) be a measurable space. A measure A on X
is discrete with respect to measure p on X if there exists a measurable
partition {A, B} of X such that (i) B is a countable set whose all subsets
are measurable (equivalently, B = {b,, },c; with each singleton {b,} lying
in X, where the index set I is either finite or I = N), and (ii)
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That is, A is concentrated on a countable set of y-measure zero; and so, if A
is discrete with respect p, then A and p are singular — see Problems 7.13
and 7.14. In the very particular case where p is the Lebesgue measure on the
Borel algebra of subsets of the real line things get considerably simplified.

Proposition 7.13. Consider a measurable space (X, X). Suppose A and p
are measures on X. If X is o-finite and measurable singletons of X have
p-measure zero, then there is a unique pair of measures A, and A\g on X
such that A. is continuous and Ag is discrete, both with respect to u, and

A=A+ Ag.

Proof. If X is o-finite, then there is a sequence {E,} of sets in X’ that cover
X such that each E,, has finite y-measure. For each integer k >1 set

B {ern {;l:}EXand)\{I} —k}

Suppose By (n) is an infinite set. Thus it has a countably infinite subset,
say Cr(n) = U,,{bm} C Bxk(n), consisting of distinct points by, of Bj(n).
Since each singleton {b,,} is X-measurable, Cj(n) also lies in X, and hence
AMCr(n)) = 3, A({bm}) = oo because A({b;,}) > £ for all m. But this
contradicts the fact that A(Ci(n)) < A(E)) < co. Therefore, each By(n) is
a finite set in X'. Thus, since X =J,, En,

By, = U Bi(n) = {z € X: {z} € X and A\({z}) > 1}
is a countable set in X" for every k >1, and so
B= UkBk ={z € X: {z} € X and \({z}) # 0}

is again a countable set (recall: a countable union of countable sets is count-
able) in X. Indeed, B is measurable (because, after all, B is a countable
union of measurable singletons). Take the measurable partition {A, B} of
X so that A = X\B. Set A = A4 and Ay = Ap, where the measures A4 and
Ap on X are defined as in Problem 2.11. That is, for each ' € X,

M(E)=Ap(E)=MNENB) and A(E)=Ma(E) = AE N A).

Since B = {by}ner is a countable set consisting of measurable singletons,
and since measurable singletons have py-measure zero, we get

M(A) =AANB) =0 and  u(B) = p(|J, {ba}) =3 pl{bah) =0,

and so Aq is discrete with respect to p. If {z} is an X-measurable singleton
of X, then either A({z}) = 0 or A({z}) # 0. In the former case, {z} C A so
that A.({z}) = A({z}) = 0. In the latter case, {x} C B so that A\.({z}) =
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A(@) =0. Thus A.({z}) =0 for all {z} € X, and hence A. is continuous
with respect to pu (because p({z}) = 0 for all {x} € X'). Now observe that

ME)=A(ENA)U(ENB)) =XENA)+AXENB) =X(E) 4+ X\a(E)
for every F € &, and therefore
A=A+ Mg

To prove uniqueness, suppose A = A1 + Ao, where \; and A, are measures on
X such that \; is continuous and A5 is discrete, both with respect to u. Take
a singleton {z} in X. Since p({z}) = 0, it follows that A\; ({z}) = A ({z}) =
0, and so Ao({z}) = A({z}) = Aa({z}). Thus A2 = Ay by Problem 7.14. If
A1 # A, then there is a measurable set F C A such that A\ (E) # A.(E).
But A2(E) = Ag(E) =0 because E C A and Ay = A\g, and hence A\(E) =
M (E) = A(F), which is a contradiction. Then A; = A.. O

Corollary 7.14. Consider a measurable space (X, X). If p is a o-finite
measure on X such that measurable singletons of X have p-measure zero,
then every o-finite measure A on X has a unique decomposition

A= )\a+)\sc+)\sda

where the measures \g, Asc, Asq on X are absolutely continuous, singular
and continuous, singular and discrete, respectively, all with respect to p.

Proof. By Theorem 7.10, A\ = A\, + A, where )\, is absolutely continuous
and A4 is singular, with respect u. If A is o-finite, then so is As (the same
countable covering of X that makes A o-finite, works for Ag). Thus \s =
Asc + Asq by Proposition 7.13, where A4 is continuous and Agg is discrete,
with respect to p. Since Ag L p, there exists a measurable partition {A, B}
of X such that As(A) = Ase(A) + Asa(4) = 0 = p(B), and so As.(A) =
Asa(A) = 0. Hence Ag. and Agq also are singular with respect to u. O

The identity A = Ay + Ase + Asq is called the canonical decomposition of
A with respect to a reference measure p, and the measures g, and Azq are
called singular-continuous, and singular-discrete (with respect to ).

7.4 Problems

Problem 7.1. Consider a signed measure v: X — R on X. If A and B are
X-measurable sets and {E,,} is a sequence of sets in X', then show that

(a) v(B\A) = v(B) — v(A) if AC B,
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() v(U, En) = lim, v(E,) if {E,} is increasing,
(¢) v(N, En) = lim, v(E,) if {E,} is decreasing.
Hint: Proof of Proposition 2.2 and Definition 2.3.

Problem 7.2. Prove the assertions. (a) A measurable subset of a positive
set is positive. (b) A countable union of positive sets is a positive set.

Hint: (b) Let {A,,} be a sequence of sets. Set A1 = A1\ (U;_; A;) with
Al = A,. This {A,} is a sequence of disjoint sets such that | J,, 4, =,, 4»
(i.e., {AL} is a disjointification of {A,,}). Suppose each A, is a positive set.
Each A, is a measurable subset of A4,, and so is a positive set by (a). Thus,
(20U, A) = (BN U, 4,) = v(U,(E0 4,)) = 5, v(E0 4,) > 0.

Problem 7.3. Take a signed measure v on a o-algebra X. If A and B lie
in X and B is positive with respect to v, then

ACB implies 0<v(A)<v(B).
Hint: Problems 7.1(a) and 7.2(a).

Problem 7.4. This is the signed-measure version of Problem 2.8. Suppose
v: X — R is a signed measure on a o-algebra X, and let {E,,} be a sequence
of X-measurable sets. Show that

(a) v(U, En) =lim,v(U;_, E;).
If each FE, is positive with respect to v, then
Hints: (a) Problem 7.1(b). (b) Disjointification and Problem 7.3.

Problem 7.5. Take a signed measure v on X. For an arbitrary E € &X', set
€ =P(E)NX (the o-algebra of all measurable subsets of E). Show that

vi(E)=supv(F) and v (E)=— inf v(F).
Fe& Feé&

Hint: Theorem 7.4: v(F) =vH(F)—v~(F) <vH(F) <vH(E)=v(ATNE).

Problem 7.6. Again, take a signed measure v on X'. Prove that
N € X is a null set with respect to v if and only if |v|(N) = 0.
Hint: Definition of |v| on the one hand; Problem 7.5 on the other hand.
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Problem 7.7. Consider a measurable space (X, X). Suppose v, vy, and vy
are signed measures on X. Let o be any real number. Verify that 14 + v
and av are again signed measures on X', where for each E' € X,

(av)(E) =av(E) and (v1+w)(E)=v(E)+ (E).

Now let § = S(X, X,R) stand for the collection of all signed measures on
X. Since addition and scalar multiplication of signed measures are again
signed measures, it follows that S is a (real) linear space (in fact, a linear
manifold of the real linear space RY of all real-valued set functions on X).
Consider the total variation of signed measures in S. Prove that

(a) |av| = |allv|
and
(b) [v1 +rva| < vi| + [l

Hint: Take a Hahn decomposition {A}, A7} of X with respect to v. Show
that {AF,, A5, } is a Hahn decomposition of X with respect to av, where

av?

Al‘V:Aj' and A, = A, ifazOorAj;y:A; andA;V:A;*' if a <0.

Then show that (av)™ = avt and (av)” = av™ if a >0 or (av)T =
—av™ and (av)” = —avt if @ <0. Thus conclude the identity in (a):
lav| = (av)t + (av)” = |a|(vT + v7) = |al|v|. To verify the inequality in

(b) note that vy + 9 = (v +v5 ) — (vf +v5 ), apply Theorem 7.4 again
to show that (v1 +19)T < v + 15 and (11 +1v2)” < vy +v;, and hence
i+ val =+ v2) "+ 02)” < O + )+ 0 ) = [l + [,

Next consider the function || ||: S — R defined by
vl = [vI(X)

for every v € §. This is a norm on S. In other words, show that
(¢) (S,]l'1]) is a normed space.
Hint: Use (a) and (b) to verify axioms (iii) and (iv) of Definition 5.1.
Also show that this normed space is complete. That is, show that
(d) (S,] ||) is a Banach space.

Hint: Consider the following well-known result from elementary functional
analysis. A normed space is a Banach space if and only if every absolutely
summable sequence is summable (cf. Suggested Readings for Chapter 5).
Observe that if {v,,} is a sequence of signed measures in S, then

max{v, (E),v, (B)} < v, (E) + v, (E) < v (X) + v, (X) = [vn[(X),
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where 0 < min{v;" (E),v, (E)}, so that v,(F) = v, (E) — v, (E) makes a
summable sequence for every E in X (i.e., {v,,} is summable in §) whenever
{l|lvn]|} is @ summable in R (i.e., whenever {v,} is absolutely summable).

Problem 7.8. Take a measurable space (X, X). Show that absolute con-
tinuity < is a reflexive and transitive but not a symmetric relation on the
collection of all measures on &X'. That is, if A\, u, and v are measures on X,
then show that p < p (reflexivity), and that A < pand p < v imply A < v
(transitivity), but A < g does not imply p < A If A < p and p < A, then
A and p are called equivalent measures (common notation: A = p or A ~ p).

Problem 7.9. Consider a measure space (X, X). Let A, u, and v be o-finite

measures on X. Prove the following propositions.

(a) If A<y and ge M(X, X)*, then [ gd\ :ng%d,u for every E€ X.
Hint: Theorem 7.8 and Problem 3.11 (recall: gx, € M(X, X)").

(b) If A < v and p < v, then w = % + Z—“ v-almost everywhere.

Hint: Theorem 7.8, Proposition 3.5(b), and Problem 3.8(d).
(¢) f A< < v, then % = %% v-almost everywhere.

Hint: Recall that A < v. Apply Theorem 7.8 for each relation < fol-
lowed by Problem 3.11 as in part (a). Then use Problem 3.8(d).

(d) f A< prand p < A, then % = (Z—’;)_l almost everywhere.
Note: A < < A means A =y (i.e., A and p are equivalent measures)
so that p-almost everywhere is equivalent to A-almost everywhere.

Hint: % is the identity. Use part (a) with v = A. Swap A and p.

Problem 7.10. Let v and u be signed measures on a o-algebra X. The
signed measure v is absolutely continuous with respect to p if, for £ € X,

|u|/(E) =0 implies v(E)=0
(i.e., v(E) = 0 for every E € X such that |u|(E) = 0). Same notation as for
measures: v < p. Show that the following assertions are pairwise equivalent.
(a) v < p.
(b) v" < p and v~ < p.
(©) vl < lul
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Hint: Take a Hahn decomposition {A4;}, A, } of X with respect to v. Verify
that |u|(E) = 0 implies |pu|(ATNE) = |u[(A~ NE) = 0 and, if (a) holds,
this implies v (E) = v~ (F) = 0. Thus conclude that (a) implies (b). That
(b) implies (a) follows from the fact that v = vt — v~ (Theorem 7.4).
Similarly, verify that (b) and (c) are equivalent because |v| = vT + v~

Consider a third signed measure A on X and show that

(d) A< p and v < p imply (A+v) < p.

Hint: |X + v| < |A| + |v| according to Problem 7.7(b).

Problem 7.11. Let v and p be signed measures on a o-algebra X. One is
singular with respect to the other (or mutually singular, or simply singular)

if their total variations |v| and |u| are singular measures on X (according
to Definition 7.9). Same notation as for measures: v L p. That is,

v L p if and only if |v| L |ul.
Since |v| = vt + v~ show that
(a) v1p implies vt Ly and v~ L pu.
Consider a third signed measure A on & and show that
(b) Alpand v Lpg imply (A+v)Lp.

Hint: It |A|(A) = |p|(B) = 0 and |v|(C) = |p|(D), where {A, B} and {C, D}
are measurable partitions of X, then {E, F'} forms another measurable par-
tition of X, with E = (ANC) and F = (BNC)U(AND)U (BN D), such
that [A|(E) = |[v|(E) = |u|(F) = 0. Now recall from Problem 7.7(b) that
A+ v| <A+ |v], and so |A + v|(E) = u(F) = 0.

Problem 7.12. Let (X, X') be a measurable space. If A and p are measures
(or signed measures) on X such that A < g and A L p, then A = 0.

Problem 7.13. Consider a measurable space (X, X). Let A and p be mea-
sures on X. Prove the following propositions.

(a) If A < p, then A is continuous with respect p.

(b) If X is discrete with respect to p, then A L p.

(c) If X is continuous and discrete with respect to g, then A = 0.

Note that the converses are not true. In particular, although discrete implies
singular; singular does not imply discrete. See examples in Problem 7.15.
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Hint: Definitions 7.6, 7.9, and 7.11. (c) If A is discrete and continuous with
respect to p, then A(X) = A(A) + A(B) = A(B) = )_,, A(bn) = 0, since each
{bn} is measurable and u({b,}) < u(B) =0, so A({b,}) =0.

Problem 7.14. Let A and p be measures on a o-algebra X. For each F € X
take the o-algebra E= ©(F) N X. If A is discrete with respect to p, then

ME) = Z A{z}) for every FEe€X,
{z}e&

and p({z}) = 0 whenever {z} in X is such that A({z}) # 0.
Hint: \(E) = A(ENB), where B is a countable set of measurable singletons.

Problem 7.15. Let u, A\,v: ® — R be measures on the Borel algebra R of
subsets of R, where p is the Lebesgue measure (Example 2C, Problem 2.7).
Consider the components of the canonical decomposition in Corollary 7.14.

(a) Set F'=X[; y:R—{0, 1}, the characteristic function of [z, o) for some
x € R (Example 1B). Set A = up = 0,: % —{0, 1}, the Borel-Stieltjes
measure generated by F (Example 2D), which is the Dirac measure
at  (Example 2A). Show that A L u. Actually, show that A =4, is
singular-discrete with respect to Lebesgue measure (and so is 3 ¢ 0q).

(b) Let f, F:R—R be measurable functions. Define \,v: R—R as follows.
AME) = [ fdu (if f is nonnegative) and v(E) = pp(E) = [, % du(x),
the Borel-Stieltjes measure generated by F' (if F' is nondecreasing and
continuously differentiable), for each E € R. Prove: A and v are absolute-
ly continuous with respect to Lebesque measure p, and o-finite (if f is
locally L'). (Hint: Example 2D, Propositions 3.5 and 3.7, Theorem 7.8.)

(¢) Consider the Cantor set C' C [0, 1] obtained by successive removal of the
central open third of [0, 1] (Problem 2.9). Writing each point of [0, 1] in
its ternary (i.e., base 3) expansion, it can be shown that z lies in C if
and only if it has only 0’s and 2’s, and no 1’s, in its ternary expansion.
Moreover, it can be verified that the map @: C' — [0, 1] that changes the
2’s into 1’s, and interprets the result in its binary expansion (i.e., as a
base 2 number), is a one-to-one correspondence between C' and [0, 1]
(i.e., @ is injective and surjective, which shows that C' is uncountable).
It can also be verified that @ is increasing, uniformly continuous, and
assumes the same values at the end points of every bounded open in-
terval in the complement [0, 1]\C' of the Cantor set. Thus the function
&:C — [0,1] has a unique extension F': [0, 1] — [0, 1] over the closed in-
terval [0,1] (i.e., F|c = @) such that F is piecewise constant (constant
on each successively removed open third remaining in [0, 1]\C' — e.g.,
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F(z) = § for all  in the central open third (3, 2) of [0,1]), contin-
uous, increasing (F(0) =0, F(1) =1), and differentiable with % =0
p-a.e. (since p(C) =0). This F:[0,1] — [0,1] is the Cantor function
(or Cantor—Lebesgue function, or Lebesgue singular function — whose
graph is sometimes referred to as Devil’s Staircase). Now set A = up,
the Borel-Stieltjes measure generated by F (Example 2D). Recalling
that every singleton in R is f-measurable (Problem 2.7), and that F is
continuous, show that A({z]}) = 0 for every singleton {z} C [0, 1], and
so verify that X is continuous with respect to Lebesgue measure p (Def-
inition 7.11). Also show that A is concentrated on C; that is, \(C') =
A([0.1]), and hence verify that A and p are singular (i.e., A L ). So con-
clude: A = pp is singular-continuous with respect to Lebesgue measure.

Suggested Reading

Bartle [4], Berberian [7], Halmos [18], Kelley and Srinivasan [22], Royden
[35], Rudin [36], Shilov and Gurevich [38]. See also [29, Section 6.8]. For
construction of the Cantor function (Problem 7.15(c)) see [4], [9], [32], [37].
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Extension of Measures

8.1 Measure on an Algebra and Outer Measure

In Chapter 2 (see Example 2C) we considered the Lebesgue measure A\ on
the Borel algebra R, which is the o-algebra of subsets of the real line R gen-
erated by the collection of all open intervals; and we have been using the
notion of Lebesgue measure since then, although it has not been properly
constructed so far. Indeed, in Example 2C we promised to prove existence
and uniqueness of the Lebesgue measure A:# — R in Chapter 8. We will
comply with that promise in Section 8.3, as a special case of the following
program. (1) First we introduce the concept of a measure p on an algebra A
(rather than on a o-algebra) of subsets of set X. (2) Then we consider the
notion of an outer measure u* generated by that measure p on an algebra
A, which is a set function on the power set £(X). (3) Finally, we show that
this outer measure p* induces a o-algebra A* of subsets of X (such that
A C A*) upon which the restriction p*| 4+ is a measure on the o-algebra A*.
This is the Carathéodory Extension Theorem, which is the central result of
this chapter, whose applications go as far as Chapters 9, 11, and 13.

The difference between an algebra and a o-algebra of subsets of a set X
is that in an algebra A any finite union of sets in A is required to remain
in A, while in a g-algebra X it is imposed, in addition, that any countable
union of sets in X must remain in X (see Definition 1.1). We will now define
the notion of a measure p on an algebra A. Since a countable union of sets
in A is not necessarily in A4, countable additivity for pu will be restricted to
countable families of sets in .4 whose union still lies in A.

(© Springer International Publishing Switzerland 2015 131
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Definition 8.1. A measure on an algebra is an extended real-valued set
function g on an algebra A of subsets of a set X,

wA— R,
that fulfills the following axioms.
(a) p(@) =0,
(b) w(E)>0 forevery FE €A,
(©) n(U, En) =32, i(En)

for every countable family {E,} of pairwise disjoint sets in .A for which
U,, En lies in A.

Remarks: Similarly to the remarks that follow Definitions 2.1 and 2.3, if
the countable set {u(E,)} of nonnegative (extended) real numbers in (c)
is infinite (countably infinite), then the (infinite) series > u(E,) either
converges unconditionally to a real number (i.e., the real value of the sum
does not depend on the order of the summands) or diverges to infinity.
Properties of measures on a o-algebra are naturally transferred to measures
on an algebra up to the assumption (J,, F,, € A in axiom (c), which is not
necessary for a measure on a o-algebra.

Let A be any algebra of subsets of a set X. A measure p on A generates

a set function p* on the power set #(X) as follows.

Definition 8.2. Suppose u: A — R is a measure on an algebra A of subsets
of a set X. For each subset S of X (i.e., for each S € (X)) consider the
collection Cg of all countable families {E,} of sets in A that cover S,

Cg = {{En} E,cA and SC UnEn}
The extended real-valued set function p* on the power set £(X),
p:P(X) = R,
defined for each S € £(X) by
pH(S) = it S u(B,).

{En} €Cg

is the outer measure generated by the measure p on the algebra A.

In spite of the terminology, an outer measure p* may be far from being a
measure (in the sense of Definitions 2.1 or 8.1) since it is not necessarily ad-
ditive. Actually, it may happen that pu*(A U B) # p*(A) + p*(B) for some
disjoint sets A and B in £(X) — we will comment on this in Problems 8.16
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and 8.22. Additivity is weakened to subadditivity. In fact, outer measures
are countably subadditive (Proposition 8.3(e) below). On the other hand, p*
has the advantage of being defined for every subset of X and inherits some
properties of a measure, such as p*(&) = 0 and p*(S) > 0 for every subset
S of X and, what is more important, p*(E) = u(E) for every E € A.

Proposition 8.3. Let u*:9(X) — R be the outer measure generated by a
measure u: A — R on an algebra A of subsets of a set X. Then

(a) p*(2) =0,

(b) w*(S) >0 for every S € ®(X),

(¢) w*(S1) < p*(S2) whenever S; C Sy C X,

(@) w*(B) = W(E) for cvery BE€A (i p*lu = 1)
© 1 (U, Ea) < X0 1 (En)

for every countable family {E,} of subsets of X.

Proof. Observe that properties (a), (b), and (c) are trivially verified by the
definition of outer measure (Definition 8.2). To verify property (d) take an
arbitrary F € A, and let {E!} be a sequence of subsets of A such that
E{ =F and E], = @ for all n # 1. Since {E],} € Cg, we get
(E) = f E,) < El) = u(E).
w(E) = inf Do B < Y0 u(E) = p(E)
To verify the reverse inequality proceed as follows. If { E,,} is any countable

family in Cg, then {E N E,} is again a countable family in Cg such that
E=,(ENE,), and so (cf. Problem 2.8(b) and Proposition 2.2(a))

E)<Y wENE) <Y uE

Since this holds for all {E,} € Cg, we get

pE) < inf N p(E) = wi(E),

{En}e CE

completing the proof of (d): the restriction ©*| 4 of the outer measure p* to
the algebra A coincides with measure p on the algebra A. Finally we verify
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countable subadditivity. Take an arbitrary € > 0. Let {E,, } be an arbitrary
countable family of subsets of X, and recall that for each E,,

p(E) = it ().

{Fk?} € CE’I’L
Then for each n >1 there is a countable family {F} ,} in Cp, for which
S (B ) < i (B + 5.

Note that {F], .} = U, U}, x is a countable family of sets in A covering
U,, En, which means that {F} ,} lies in Cy,, ,, - Since

M* (UnEn) = (r inf Zn7k/’l/(Fn,k)’

n,k} € cUn En
it follows that

w (U, Bn) < Do E) =0 > mlFn) <30 (B + ey

and so, since this holds for every ¢ > 0, and since ) 7712 < 00,

(U, Bn) < inf (32 i (B 430 B ) =3 (B,

which completes the proof of (e). O

8.2 The Carathéodory Extension Theorem

Consider the outer measure p* generated by a measure p on an algebra A of
subsets of a set X. A set E € ©(X) is said to be p*measurable (or satisfies
the Carathéodory condition) if

W (8) = 1 (S N B) + 4 (S\E)
for every S € #(X). This means that p* behaves additively on E. Let
A* = {F € 9(X): E is p*measurable}

be the collection of all p*~measurable subsets of X. The next result is a
decisive one for constructing measures out of set functions that are not mea-
sures on c-algebras. It says that this A* is a o-algebra such that A C A%
and the restriction of the outer measure p* to A* is a measure (on the
o-algebra A*) that extends the measure p (on the algebra A) over A*

Theorem 8.4. (Carathéodory Extension Theorem). A* is a o-algebra that
includes the algebra A, and the restriction of p* to A* is a measure on A*.
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Proof. Note that the empty set @ and the whole set X clearly lie in A*
(i.e., they are p*measurable). Also, since SN E = S\(X\F) for every pair
of sets F and S in #(X), it follows that the complement of every set in A*
is again in A* Next take an arbitrary S € (X). If F € A* then

§H(S) = 1 (S N F) + p(S\F),
and if £ € A* then
p(SNFE)=p (SNFNE)+ u ((SNF)\E).

Now observe that [S\(ENEF)|NF = (SNF)\(ENF) = (SNF)\E, and
also that [S\(E N EF)\F = (S\F)\(ENF) = S\F. Thus, if F € A%
pw(S\(ENF)) = p*([S\(ENF)]NF) + p* ([S\(ENF)]\F)
— (SN F)\E) + 1 (S\F).
The above three displayed identities ensure that if E and F lie in A% then
pi(S) = p (SNFNE)+p*(SNF)\E) 4+ p*(S\F)
=p (SNENF)+p (S\(ENF)),
and so E N F lies in A* Therefore, since intersection of sets in A* and com-
plements of sets in A* are both again in A% it follows that union of sets
in A* also lie in A* (because EU F = X \[(X\E) N (X\F)] — De Morgan

Laws). Then a trivial induction ensures that any finite union of sets in A*
remains in A* and hence A* is an algebra. That is,

(a) Ui, F; lies in A* for every finite family {F;}!, of sets in A*

Furthermore, if S and F' are sets in £(X), if E' is a set A* and if F and F
are disjoint (so that SN (E U F)\E = SN F), then

p(SN(EUER)=p (SN(EUF)NE)+ p* (SN(EUF)\E)
= W (SNE)+p* (SN F),

and so u* acts additively on the intersection of any set in ©(X) with every
pair of disjoint sets in A4* Thus another trivial induction ensures that

(b) p* (SN (Uil Bi)) = X0, w* (SN E;) for every finite family {E;}1",
of pairwise disjoint sets in A* and every set S in ©(X).

In particular, for S = X, this shows that p* is finitely additive on A*:

(¢) p* (Ui, Bi) = X1, p*(E;) for every finite family {E;}7_, of pairwise
disjoint sets in A*
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Next these results on finite families are extended to countably infinite fam-
ilies, which shows that A* is a o-algebra and p* is countably additive on
A* and hence the restriction of u* to A* is a measure (by Definition 2.1).
Thus take any (infinite) sequence {F,,} of sets in A* and consider the dis-
jointification {E,} of {F,} given by F; = F} and E, 41 = Fn+1\( UL, Fi)
(see Hints to Problems 2.3 and 7.2). Clearly, {E,} is a sequence of pairwise
disjoint sets in A* (each E,, lies in A* because finite union and difference
of sets in an algebra remain in the algebra). For each integer n>1 set

=, E; = U}_, Fi, which lies in .A* (finite union of sets in A*), and
set G=U,_, E, =U,_, F, in (X). Take an arbitrary S in £(X). Note
by the countable subadditivity of Proposition 8.3(e) that

W(SNG) = (SmUE) —u (U (SN E;) ) Zﬂ SN E;)
and hence, since S = (S N G) U (S\G), subadditivity ensures again that

pH(S) < (SNG) +p*(S\G) < Y u (SN Ei) + 1 (S\G).

i=1

On the other hand, since each G, = |J;_, E; lies in A*, and since the
sequence {E,} consists of pairwise disjoint sets in A* it follows by (b) that

W(S) = (SN Gr) + p(S\Gn) = D u* (SN Ey) + 5 (S\Gn)

i=1

for all n. Since G,, C G, we get S\G C S\G,, so p*(S\G) < u*(S\G,) by
Proposition 8.3(c). Therefore,

Y (SN E) + 7 (S\G) < w(S)

i=1

for all n, which implies that

> wH(SNE) + pt(S\G) < p*(9).

i=1
Hence, for every S € (X)),
pi(S) = (SNG) +p*(S\G) = > _ p (SN Ey) + 1" (S\G).
i=1

The first identity in the above expression says that G lies in A* that is,

a’) U,, Fn lies in A* for every countable family {F,,} (not necessarily pair-
wise disjoint) of sets in A%
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proving that the algebra A* is, in fact, a o-algebra. Furthermore, taking
S =G (so that p*(S\G) =0 and SN E; = E; for every i >1), we also get

G) = iu*(E

If {F,} is a sequence of pairwise disjoint sets, then E,, = F,, for each n, and
so the above identity ensures that p* is countably additive on A*:

() w (U, En) =3, 1 (Ey) for every countably infinite family {E,} of
pairwise disjoint sets in A™*

Properties (a’) and (c) ensure that the restriction of u* to A* is a measure
on the o-algebra A* Finally we verify the inclusion A C A* Take an arbi-
trary A € A, an arbitrary S € £(X), and an arbitrary € > 0. According to
Definition 8.2, there exists a sequence {4, } of sets in A such that

SclJ Av and Y u(An) < pt(S) +e.

Note that {(4, N A),(A,\A)} is a partition of A, for every n, which is
made up of sets in the algebra A. Thus, according to Proposition 8.3(c,e,d),

WS N A) < (Un(An N A)) <Y p AN A) = a4 4),
pr($\A) < (U, (An\D) < 37 1 (4\4) = 37 4\,
and so, by using the additivity of Definition 8.1(c),
(S NA) + ur(S\A) < Z (A, N A) + p(An\A))
= (AN A UANA) =D p(An) < p*(S) +e.
Since € > 0 is arbitrary, this implies that
p(SNA)+ pr(S\A) < 7 (S).
On the other hand, since S = (SN A) U (S\A),
pr(S) < p(SNA)+ p"(S\A)
by the subadditivity of Proposition 8.3(e). Hence,
p(S) = (SN A)+ p*(S\4)

for every S € #(X), which means that A lies in A* Thus A C A* O
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The Carathéodory Extension Theorem is sometimes referred to as
the Carathéodory—Fréchet—-Hahn—Kolmogorov Extension Theorem. Since
the restriction of the outer measure p* to the algebra A coincides with
the measure p on A (i.e., u*| 4 = p), since the restriction p*| 4+ of the outer
measure p* to the o-algebra A* is a measure, and since A C A* C 9(X), it
follows that the measure p*| 4+ on the o-algebra A* extends the measure p
on the algebra A over A* This measure u*| 4+ is complete in the sense of
Section 2.3. Equivalently, the o-algebra A* is complete with respect to it.
This means that if N € A* and p*(N) = 0, then every subset E of N lies
in A* (and so p*(E) = 0 according to Proposition 8.3(b,c)). More is true:
all sets with outer measure zero are p*~measurable (and so A* is complete).

Proposition 8.5. Consider the outer measure p* on £(X) (induced by a
measure on A). Let A* be the o-algebra of all p*-measurable sets in £(X).

(a) If N € 9(X) is such that p*(N) =0, then N € A*
(b) If EC N € ®(X) and p*(N) =0, then E € A* and u(E) = 0.

Proof. Assertion (b) follows from assertion (a) and Proposition 8.3(b,c).
Assertion (a) says that every set with outer measure zero is p*measurable.
To verify this take arbitrary sets S and N in #(X) such that u*(N) = 0.
Since SUN = (SN N) U (S\N), we get from Proposition 8.3(c,e) that

WH(S) < (S UN) < (S 1 N) 4 (S\N) < " (N) 4+ () = i (S),
and so p*(S) = p*(SNN) + p*(S\N); that is, N € A* O

A measure on an algebra inherits most of the attributes of a measure on
a o-algebra. For instance, a measure p on an algebra A of subsets of a set X
is finite if p(X) < oo. Similarly, p is o-finite if X is covered by a countable
family of sets in A of finite measure, that is, if there exists a sequence {A, }
of sets in A such that p(A,) < oo for every n and X = |J,, Ay. Finiteness
and o-finiteness are naturally extended from a measure p on an algebra A
to the associated outer measure p* on the power set £(X) by Proposition
8.3(d) since X € A C ©(X) — just replace p with p* The next result says
that if u is o-finite, then its extension over the o-algebra A* is unique.

Theorem 8.6. (Hahn Extension Theorem). If a measure p on the algebra
A is o-finite, then its extension to a measure on the o-algebra A* is unique.

Proof. Consider the outer measure p* generated by a measure g on an
algebra A of subsets of a set X. The collection A* of all p*-measurable
subsets of X is a g-algebra such that A C A% and the restriction of pu* to
A* is a measure that extends p over A* (Theorem 8.5). Let v is a measure
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on A* that extends p over A* (i.e., suppose v is a measure on A* such
that v(E) = u(E) for every E € A). The proof will be split into two parts.
The claimed result is proved supposing p is a finite measure in part (a).
This is extended to the case when p is o-finite in part (b).

(a) Assume that 4 is a finite measure on the algebra A. Thus any extension
v of p to A* is again finite (because X € A C A* C 9(X) implies p*(X) =
v(X) = pu(X) < 00). Take an arbitrary set F in A*, and an arbitrary se-
quence {4,} in Cg. That is, let {4, } be any sequence of sets in A such that
E C |, An. (These sequences do exist; trivial example: A; = X.) Thus

v(B) <v(J An) <3 v(Aa) = 3 uldn).

(See Proposition 2.2(a) and Problem 2.8(b).) Since this holds for every
{A,} € Cg, it follows by the definition of the outer measure p* induced by
the measure p on the algebra A (Definition 8.2) that

E) < inf E,) = u*(E).
v( )_{Enl}necE Znu( ) = W(E)

Recall that p*| 4+ (p* restricted to A*) and v are measures on the o-algebra
A* so that they are additive by Definition 2.1(c). Moreover, also recall that
pw*(X) =v(X) = u(X) < oo. Thus the above inequality leads to

1 (E) = u* (X) = p* (X\E) = v(X) — p* (X\E) < v(X) = v(X\E) = v(E).

Hence v(E) = p*(E) for all E € A* which proves uniqueness if x is finite.

(b) Assume that g is o-finite. Thus any extension v of y to A* is again
o-finite. In fact, if u is o-finite, then there exists a sequence {A,} of sets in
A C A* C 9(X) for which pu*(A,) = v(A,) = u(A,) < oo for every n>1
and X =J, Ay, and so p* and v are o-finite as well. Set A}, = I, 4,
so that {A]} is an increasing sequence of sets of finite measure that cover
X. Take an arbitrary F in A* Since {E N A/} is a sequence of sets in A*
(intersection and finite union of sets in A* remain in A*) of finite measure
(since p*(ENAL) < p*(A)) <ooand v(ENA]) <v(A)) < o0), it follows
from part (a) that for every n>1,

W (BNA) = v(ENA).

Thus, since {E N A} is an increasing sequence of sets in A* such that
E =J,(ENA]), and since both v and the restriction p*| 4+ of u* to the
o-algebra A* are measures on A* we get by Proposition 2.2(c) that

p(E)=limu*(ENA,) =limv(ENA,) =v(E).
n n
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Hence v(E)=p*(E) for all E € A% proving uniqueness if p is
o-finite. O

Let A\* denote the measure on the o-algebra A* obtained by the restric-
tion of the outer measure p*: 9(X) — R to A* That is,

A :ILL*|A*Z.A**>@.

The previous results are summarized as follows. If u: A — R is a o-finite
measure defined on an algebra A, then there exist a o-algebra A* including
A and a unique extension of i to a measure over the o-algebra A*. This
measure on A* is o-finite and, by uniqueness, coincides with \*: A* — R.
That is, there exists a unique measure \* on the o-algebra A* such that

p=N4 A= R;

equivalently, such that \*(E) = u(FE) for every E € A. Moreover, the mea-
sure space (X, A* \*) is complete. This means that the o-algebra A* is
complete with respect to the measure \* or, equivalently, the measure \* is
complete on the o-algebra A*

8.3 Construction of Lebesgue Measure

Consider the following classes of (left-open) intervals of the real line.
Class Cy: {(a,ﬁ] CR: a,BER, a< ﬁ}

Class Co: {(—o0,8] CR: B€R}.

Class C3: {(a,+00) CR: a€R}.

Class Cy: {(—o00,+00)}.

These four classes are exhaustive. Let Z be the family of all (left-open) in-
tervals of the real line; each of them belonging to one of the above classes.
The empty set & is of class C; (for the case of @ = f8), and the only interval
of class C4 is R itself. It is clear that the intersection of any two sets in Z is
again a set in Z and that the complement of any set in Z is a finite union
of disjoint sets in Z. This means that 7 is a semialgebra. But the finite
union of sets in Z is not necessarily a set in Z, and so Z is not an algebra.
However, the collection & of all finite unions of sets in Z is an algebra

(Problem 8.3).
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Definition 8.7. Consider the collection & C #(R) consisting of all finite
unions of (left-open) intervals of the real line (i.e., of all finite unions of
intervals from the semialgebra 7),

= {F C R: F'is a finite union of intervals from 7 }

Let ¢: 3 — R an extended real-valued set function with following properties.

(a) Z((a,ﬁ) — « for any a, 5 € R such that o < 3,
(b) Z((_Oo’ﬁ]) = ((O[,-I-OO)) = g((_oov"_oo)) = 00,
(c) E(Uz Ii) = (1)

for every finite family {I;} of pairwise disjoint intervals in Z.
A function with these properties is referred to as the length function on

We show that properties (a), (b), and (c) are enough to make the length
function £:  — R well defined (and so unique) on the collection ¥, which is
an algebra, and /¢ is a measure on it. For the prove we proceed as follows.
First we check that ¢ is well defined at every set in & (Problem 8.2). Next
we show that & is an algebra (Problem 8.3), and so we conclude that the set
function ¢ is increasing (Problem 8.4). This is applied to prove an auxiliary
result in Proposition 8.8 that is used to prove in Lemma 8.9 that the length
function ¢ is countably additive, and so it is a measure on the algebra &

Proposition 8.8. Let (a,b] be an interval of class Ci. If {(ak,Bk]} is a
countable family of disjoint intervals of class Cy, then

(a) (a,b] = Uk(almﬂk] implies  £((a,b]) = Zkg((ak,ﬁk])~

If {(a;,b;]} is a finite set of disjoint intervals of class Cy, then
) @t =, (i) implies ¢(|J (@i bi]) = 37 €((an. Bi])-

Proof. First note that if the countable family {(ay, S|} of disjoint intervals
is finite, then the results in (a) and (b) are trivially verified by Definition
8.7(c). Thus suppose the countable family {(oy,Bk]} is infinite. To avoid
trivialities, assume that all intervals {(ay, Bx]} are nonempty, which means
that ay < By for every k.

(a) Suppose (a,b] = U, (ar, Bx]. Take an arbitrary finite subfamily { (o, 8;]}
of the infinite family {(ay, 8x]}. Since {(a;, 8;]} has a finite number of subin-
tervals of (a, b], it follows that a < min{«;} and max{s;} < b, and so

Zig((aiaﬁi}) = Zi(ﬁi —q)<b—a= 6((@, b])
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This holds for all finite subfamilies {(«a;, 3;]} of {(ax, Bx]}. By taking the
supremum over all finite subsets of the countably infinite set {¢((ay, Bk])}
of positive numbers we get

(a1) Z ((Oékyﬁk *SUPZ 061,61 ((aab])'

To verify the reverse inequality, proceed as follows. Take an arbitrary € > 0
and let {e} } be any sequence of positive numbers such that } ", €, < €. Since
(a,b] = Uy (ar, Be], it follows that b € (au,, Br,] for some index ki, and so
b = B, . Furthermore, it also follows that a = infr{a}, which ensures the
existence of an index ko # k1 such that ax, < a + &g. Hence the following
infinite family of open intervals

{(ako — €0, Byt €0) , (o, B +€x) for every k # ko with ko # kl}

covers the closed and bounded interval [a,b] (i.e., it covers the compact in-
terval [a, b] — by the Heine—Borel Theorem). The definition of compactness
(cf. Definition 11.1(c)) says that this family of open intervals has a finite
subfamily of open intervals that still covers [a, b],

{(ako— €0, Bry + €0) 5 (v, Bj +¢&5) for every j e J},

with J being a finite index set such that kg € J and k1 € J. If the intervals in
{(ax, B]} are pairwise disjoint, then we may assume that o, < a; < ag,
for all j € J\{k1}. Note that J is not empty (k1 € J). Let n € N be the
cardinality of the finite set J (i.e., the number of elements of J), and relabel
this finite family of open intervals with nonnegative integers i € [o, 1, ...,n].
Since the intervals in {(ay, Bk]} are disjoint, we can order the endpoints of
the intervals that appear in the above finite family as «; < 8; < ;41 < Bit1
for each i € [o, 1, ...,n—1], identifying ko with 0 and k; with n, so that

ap—eo<a<ag<fo<a; <Bi <aipr < PBiv1 <an <Pp=b<Bhten
for ¢ € [1,...,n—2]. This finite family of open intervals is then rewritten as
{(Olo — €0, B0 +€0), (o, Bi +€;) for every i€ [1, ...,n]},

which covers [a, b], and so it covers the interval (a, b] of class Cy:

(a7b] c [a, b] - (ao — €0, B0 +50) U U(Oéi,ﬁi —|—8i)

i=1 n

< (o — €0, o] U (@0, Bo] U (Bo, Bo+ 0] U | (e, Bi] U | (Bi, Bi+ il
=1

i=1
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Let 4 be an arbitrary index in |o, ..., n—1]. Since {(ay, Bk]} consists of disjoint
intervals, it follows that §8; < a;41. Also, since the above union of intervals
of class C; covers [a, b], it follows that a; 11 < §; + &;. Then consider a finite
sequence {d;} of nonnegative numbers given by

0<d; =041 — B <eg; foreach i €lo,...,n-1] and 0<d, =c¢y,.

Replacing {e;} with {;} in the intervals of the form (8;, 8; + €;] we get a
finite covering for (a, b] consisting of disjoint intervals of class Cy, viz.,

(v — €0, 0] U (a0, Bo] U (Bo, Bo + o] U | (as, Bi1 U | (Bs, Bi + 6.
=1

i=1

Hence, according to Definition 8.7(a,c) and Problem 8.4,

0((a.b]) <eo+ Y L((ei Bil) + 0 <Y (o, Bel) +2¢
i=0 i=0
for Z?:o d; < Y i€k < €. Since this holds for an arbitrary € > 0, we get

(a2) 0((a,b]) <> €((cw, Be])

Therefore the result in (a) follows by (a;) and (as).

(b) The disjointness assumption on both {(ag, 8x]} and {(a;, b;]} ensures
that, if U, (a:, bs] = Uy (a, Bel, then (a;, b;] = U, (e 5, 8 5] for each 4, where

{(ei,j, Bi;]} = {(cow, Bx]}. Thus, applying Deﬁmtlon 8.7(c) and the result
in item (a), we get

K(Uk(ak,ﬁk}) :E(Ui(aiybi}) = Z az,b] Z Z (@ J7/B’LJ]

Since the summands {¢((c,;, 8;,;])} are nonnegative real numbers, the dou-
bly indexed sum is unconditionally convergent, and hence

Z Z (@i, Bis]) = Zkf((ak,ﬂk])- O

Lemma 8.9. The collection & of all finite unions of (left-open) intervals of
the real line is an algebra of subsets of R, and the length function £: 3 — R
1s a measure defined on the algebra

Proof. Take the collection & of all finite unions of intervals from Z as in
Definition 8.7. It is readily verified that & is an algebra of subsets of R
(cf. Problem 8.3). We claim that the length function ¢ is a measure on the
algebra 3. Note that (@) = 0 by Definition 8.7(a). Next note that every set
n § can be expressed as a finite union of disjoint intervals from Z so that
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((F) > 0 for every F' € § by Definition 8.7(a,b,c). Indeed, every countable
family of intervals in 7 admits a disjointification consisting of intervals in
T (see Hints to Problems 2.3 and 7.2). To complete the proof, it remains to
verify axiom (c¢) of Definition 8.1, viz.,

(c) E( Un Fn) = Zn (Fy)
for every countable family {F,,} of pairwise disjoint sets in & for which
U,, Fr lies in &

Recall that every set in the algebra & can be expressed as a finite union

of disjoint intervals from Z. Hence the identity in property in (c) is readily
verified by Definition 8.7(c) if {F;} is a finite family of pairwise disjoint
sets in §. Thus suppose {F,} is a countably infinite family (equivalently,
an infinite sequence) of pairwise disjoint sets in & such that J,, F), lies in &
Take the extended nonnegative-valued sequence {{(F,)}. If >~ ((F,) <

then Z(U F) =Y, UF,) <X, U(F,) < oo for every finite subumon U, F
of |J,, F. because (c) holds for finite families of disjoint sets in 3. So

K(UnFn) = sup K(U ) Z ((F,

where the supremum is taken over all finite subunions of the countably
infinite union J,, F,,. Hence, if £(|J,, F) = oo, then axiom (c) holds:

e(UnFn) =3 uF,

Thus suppose £(J,, Fi) < 0o so that ((F,) < oo for each n by Problem 8.4,
and recall that each F), and also |J,, F), are sets in . Then each set F), is
a finite union of disjoint intervals of class Cq,

Fn = Uj(an,jyﬂn,j]-

Since {F,} is a sequence of disjoint sets, this implies that

U P = U anJ“B”,J] Uk(ak,ﬁkL

where {(apn j, Bn j]} = {(ak, Bx]} is an infinite family of disjoint intervals of
class C1, which also is a finite union of disjoint intervals of class Cy,

U F”_U (as, bs].

Therefore, |J,(a;, bi] = Uy (o, Bi). Using Proposition 8.8(b) and recalling
the unconditional convergence argument that closed that proof, we get
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K(UnFn) :é(U a;, Z) > e, B]) =D ot (@ B sl)
=33 @i Badl) =D, (U (@ngsBuil) =37 4F)
by Definition 8.7(c), so that (c) holds, thus completing the proof. a

Now we can to apply the Carathéodory Extension Theorem of Sec-
tion 8.2 to build up the Lebesgue measure.

Theorem 8.10. There exists a o-algebra S* of subsets of R that includes
the algebra & and extends the length function £: S — R uniquely to a mea-
sure \*: §* — R, which is o-finite and complete on the o-algebra I*

Proof. Lemma 8.9 says that £: & — R is a measure on the algebra 3. Let
*:9(R) — R be the outer measure generated by ¢ (as in Definition 8.2),
and let I* be the collection of all sets in £(R) that are £*~measurable:

* = {F € 9(R): £*(S) = (*(SNF) + *(S\F) for every S € 9(R)}.

*

According to Theorem 8.4, is a o-algebra of subsets of R that includes
the algebra &, and the restriction of £* to I* is a measure. In other words,
I C I CPMR) and £*|g+ is a measure on F*. Thus this measure £*|g+ ex-
tends ¢ over * according to Proposition 8.3(d). Also, it is readily verified
that the measure £ on the algebra < is o-finite. Indeed, the real line R is cov-
ered by the countably infinite family of intervals {(¢x — &, qr + €]} of class
Cy of length 2¢ for any € > 0, where {g;} (with & running over all integers
7) is an enumeration of the rational numbers Q (see Example 2C). Since ¢
is o-finite, it Theorem 8.6 ensures that there is a unique measure on I say
A*: $* — R, that extends ¢ over 3% which is again o-finite. By uniqueness,
this extension of ¢ over & coincides with the restriction of £* to &*; that
is, A* = £*|g+. Thus Proposition 8.5 ensures that A* is a complete measure
on the o-algebra §* (i.e., the measure space (R, 3% A*) is complete). O

The o-algebra &* of Theorem 8.10 is referred to as the Lebesgue algebra.
Sets in §* are called Lebesgue sets (or S*measurable). The measure A* on
J* of Theorem 8.10 is also called Lebesgue measure. We close the section
by considering a collection of a few basic properties of Lebesgue measure.

Consider the Borel algebra R, consisting of the Borel sets (i.e., f-meas-
urable sets), which is the o-algebra generated by the open intervals of the
real line R or, equivalently, by the left-open intervals in Z, which means that
R is the intersection of all o-algebras of subsets of R that include the family
7 (so R is the smallest o-algebra including Z — see also the remark following
Problem 1.14). Since any o-algebra that includes the family Z necessarily
includes the algebra < (finite union of intervals from 7), it follows that
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(P1) R is the smallest o-algebra including the algebra .
Thus R properly includes the algebra & (because & is not a o-algebra

— Problem 8.3). Moreover, R is included in the o-algebra I* (since *

includes ). This leads to the following chain if inclusions:
FCRCI CPMR).

It is clear that the restriction of the Lebesgue measure A\: ® — R of Example
2C to the algebra S is the length function £: & — R (Problem 2.7(c)). Recall
that the restriction of the outer measure £*: £(R) — R to the Lebesgue alge-
bra §* is the Lebesgue measure \*: §* — R (Proof of Theorem 8.10). So

Mg =€ and £F|gx =A%

Since the length function ¢ on & extends to the measure A* on 3* so that
M*|g = £ = Mg, and since this extension is unique (Theorem 8.10), we can
infer that the restriction of the Lebesgue measure A*: 3* — R to the Borel
algebra R is the Lebesgue measure A\: ® — R of Example 2C. That is,

(P2) Mg =\
Summing up,
L= ANg = Xg =g, A= Np =g, A =0 g

Recall that A is a Borel measure in the sense of Problem 2.13 (which implies
that all bounded sets in R have finite measure). Then so is its extension
A* over &% Since R-measurable sets are &*-measurable, all the Borel sets
of Problem 2.7 are Lebesgue sets, and their A*measures (as Lebesgue sets)
coincide with their A-measures (as Borel sets), which in turn coincide with
their £*~outer measures. In particular, the Cantor set in 3 of Problem 2.9
is an uncountable set with Lebesgue measure zero. Also, the measure space
(R, % \*) is the completion of the measure space (R, R, \). Equivalently,
the o-algebra 3™ is the completion of the o-algebra R with respect to A, or
the measure A* is the completion of the measure A on R. That is,

(P3) F*=R and N =)

(see the remark that closes Section 2.3). In fact, since (R, 3% A*) is a com-
plete measure space, and according to Problem 8.6(b), it follows that

S*={FECR: E=EUA, with E€c®, ACNecR and A(N)=0}.

This is precisely the definition of ®. So, according of Problem 2.15, every
S*-measurable function is a.e. equal to an R-measurable functions. That
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is, if f:R — R is an *measurable (or Lebesgue measurable) function, then
there is an R-measurable (or Borel measurable) function g: R — R such that
g = f A-a.e. Observe that the Borel-Stieltjes measure on R of Example 2D
can be naturally extended to a complete Lebesgue—Stieltjes measure on ™
The above properties are easily verified. However, I* is neither the smallest
nor the largest o-algebra including ¥, so the inclusions below are proper:

(P4) R C I C P(R).

These proper inclusions are all but trivial. They have been quite critical in
many aspects (including historical aspects). Completeness of the measure
space (R, 3% A*) can be used to give an existential proof for the first proper
inclusion. Indeed, let Zg be the subfamily of Z consisting of those intervals
from Z with rational endpoints. It is readily verified that this is a countably
infinite set (#Zg = #N, where # stands for cardinality), and also that the
smallest o-algebra of subsets of R that includes Zy is the smallest o-algebra
that includes Z, and so it is the smallest o-algebra that includes the algebra
3, which is precisely the Borel algebra #. Then R is the o-algebra generated
by Zg. Since #Zg = #N < #R, it follows that #R < #R [18, Problem 9(c),
p. 22]. But #R < #R trivially (for each € R, (z,z + 1) € R). Hence,

#RN = #R.

Now recall that the Cantor set C € ® C 3* of Problem 2.9 is uncountable
(actually, #C = #R) and has measure zero. Since A* is a complete measure
on §* and A*(C) = 0, it follows that all subsets of C' are measurable; that
is, #(C) C S* Thus, recalling that #X < #8£(X) for every set X, we get

#R = #C < #9(C) < #S™
Therefore #R < #3* and R C I* so that
RC I

This proves the first proper inclusion in P4 and, en passant, it also proves
that ¥ is not complete (as anticipated in the remark the closes Section 2.3)
since §* is the completion of . As for the second proper inclusion,

3" C P(R),

a proof of it is worked out in Problem 8.14 based on translation invariance
(an important property that we discuss later). It is also worth noticing that
by Properties P3 and P4 the o-algebra R is not complete with respect to A,
and this implies that there are Lebesgue sets of measure zero that are not
Borel. However, every Lebesque set of measure zero is a subset of a Borel
set of measure zero:
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(Ps) NeS and M(N)=0 imply NCGeR and A(G) = 0.

In fact, since N € &* and A*(N) = 0 imply N € #(R) and £*(N) = 0, Prop-
erty P5 is an immediate consequence of Problem 8.8(c), which also says that
the Borel set G of measure zero actually is a Gs5. Next we focus on the trans-
lation invariance property. For every a € R and every S C R, set

S+a={+aecR: £S5} C R
If £ €S then EF+ «a € $* and
(Ps) A(E +a) = X(E)

(cf. Problem 8.12). Translation invariance plays a central role when we set
about to build up a nonmeasurable set (as we do in Problem 8.14). Another
important consequence of it reads as follows.

(P7) Sets with positive outer measure include nonmeasurable subsets.

(See Problem 8.18.) Special case: every Lebesgue set of positive measure
includes a nonmeasurable set. Translation invariance is the central topic of
Chapter 13 (see, in particular, Proposition 13.F).

Remarks: In the first paragraph of Chapter 1 we observed that “the power
set is too large a set to be the domain” of some measures. Now (and only
now) are we ready to offer a proper explanation of that assertion. In fact, we
have the following problem. It is not possible to construct a set function with
the following four properties: (1) defined on the whole £(R), (2) assigning
to each interval the value of its length, (3) countably additive, and (4)
translation invariant, as we can infer from Problem 8.14. Indeed, properties
(2), (3), and (4) were all we needed in the proof of Problem 8.14. Weakening
property (1) is a possible approach to face this problem (as we have, in fact,
done in Chapters 2 and 8), supplying a measure \* defined on a proper o-
algebra §* which retains the useful properties (2), (3), and (4). However,
there are other approaches (e.g., if we keep (1), (2), and (4) but replace (3)
with subadditivity, then we get the outer measure £* on ©(R)). Assuming
the Continuum Hypothesis (i.e., the hypothesis that every uncountable sub-
set of R has the same cardinality as R itself), then it can be shown that
there is no set function satisfying properties (1), (2), and (3) only. (See the
references in the Suggested Reading section.)

8.4 Problems

Problem 8.1. Axiom (c) of Definition 8.1 is referred to as countable addi-
tivity (same as in axiom (c) of Definition 2.1 for a measure on o-algebra).
Let p: A — R be a set function on an algebra A and consider the assertion:
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o u(U, Ei) =3, u(E;) for every finite family {E;} of pairwise disjoint
sets in A.

This is referred to as finite additivity. It is clear that countable additivity
implies finite additivity. Verify that the converse fails. (Hint: Problem 2.5.)
Suppose the set function p is such that

(i) w(E) >0 for every E € A

and, if {A,} is a sequence of sets in A,
(i) T (U g An) = (U7 An)

whenever |7, A, lies in A. Prove the following proposition. If yu is finitely
additive, then it is countably additive. In other words, take an arbitrary
sequence {E,} of pairwise disjoint sets in A. If

(U B =Y i)
n=1 n=1

for every m >1 (i.e., finite additivity) and (i) and (ii) hold, then show that

n=1 n=1
whenever | J)7 | E, lies in A (i.e., countable additivity).

Hint: First use the proof of Proposition 2.2(a), recalling that p is finitely
additive now acting on an algebra 4, to show that if (i) holds, then

(i) A, Be A and ACB imply u(A) < pu(B).

Now take an arbitrary sequence {E,} of pairwise disjoint sets in A such
that (J,~, B, € A. Use finite additivity, the fact that {|J"; E,} is an
increasing sequence of sets in.4, and the result in (i’) to check that

i,u(En) = u( 6 En) < ,u( D En) for all m>1.
n=1

n=1 n=1
Next apply the same argument, recalling from (i’) that {N(U:?:l En)} is
an increasing sequence of nonnegative elements from R, to show that

m

ﬂ( ij E) < li;ln,u( U En) - 11731%#(]3”) - iﬂ(En) for all k>1.
n=1 n=1

n=1 n=1

Problem 8.2. The notion of length function ¢: & — R was introduced in
Definition 8.7. Show that properties (a), (b), and (c) in Definition 8.7 are
enough to ensure that £: 3 — R is defined on the whole collection 3.
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Hint: Every countable family of intervals in 7 admits a disjointification
consisting of intervals in T (use the Hints to Problems 2.3 and 7.2). Use
Definition 8.7(c) to verify that a length is defined for every set in &

Problem 8.3. Consider again the setup of Definition 8.7.
(a) First show that & is an algebra of subsets of the real line R.

Hint: In order to show that axiom (b) of Definition 1.1 holds true; that
is, to check that the complement of a set in & belongs to ¥, proceed as
follows. Verify that (i) if 7 is an interval in Z, then R\I is the union

of no more than two intervals in Z, and therefore it is a set in &, and

(i) if E and F are sets in &, then ENF is again a set in & (since

the intersection of any pair of intervals in Z is again an interval in 7).
According to De Morgan laws, R\ |J, I; = ;(R\;) lies in & for every
finite union |J; I; of intervals I; from 7.

(b) Now verify that & is not a o-algebra of subsets of R.
Hint: |~ (2n —1,2n] = (1,2] U (3,4] U ... is not a set in §

Problem 8.4. Let < be the algebra of Problem 8.3(a). Verify that
ECF with E,FeS implies ((E)<{(F).
Hint: F = EU(F\FE) and F\E € S. Recall the Hint to Problem 8.2.

Problem 8.5. Consider the union in the Hint to Problem 8.3(b). Observe
that it suggests the following infinite union in & (which in fact is in class C3)
of disjoint intervals of class Cq,

[j(k:,k:—i—l] = (1,2]U(2,3]U (3,4]U ... = (1,400),
k=1

which has an infinite subunion (> ;(2n—1, 2n] not inS. Show that this can
happen even if the original infinite union is of class C; (thus having finite
length) by exhibiting a sequence {(ay, Sk]} of intervals of class C; such that

o0

Uak,ﬁk 0,1 but | J(an, B, €S

n=1

for some subsequence {(an, Bn]} of {(ak, Bk]}.  Hint: {<2k, = 1} }

Problem 8.6. Take the Borel algebra R and the Lebesgue algebra $* which
are o-algebras of subsets of R with 8 C 3™ Prove the following assertions.
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(a) If F € $* then there exists E € R such that A*(F\E) = 0.

Hint: Since \*(F) = M (FNE)+A*(F\E), it follows that, if \*(F\E) > 0
for every E € R, then A*(FNE) < A*(F) (whenever \*(F) < oo) for
every E € R, which is a contradiction since R € R.

(b) If F' € Q¥ then there exist £ € f® and N € $* such that FF = EUN
and EN N = @, where A*(N) = 0 and so A\*(F) = A\(E).

Problem 8.7. Take the outer measure £*:$(R) — R generated by the
length function ¢: § — R, which is a measure on the algebra & (by Lemma
8.6). Apply Definitions 8.2 and 8.7 to verify that ¢* is written as

(a) £*(S) = inf Z (1)

{In} EIS

for every S € ¥(R), where
Is ={{l,}: I, €Z and SC,I.}

is the collection of all countable families {I,,} of intervals in Z that cover S.
Let I € 7 be an arbitrary interval, and let I° and I~ denote interior and
closure of I, respectively (with respect to the usual topology of the R).
Suppose A\: ® — R is the Lebesgue measure on the o-algebra R. Recall that
R includes the algebra < (i.e., & C R). Verify that I° € R and I~ € R, and

(b) AL%) = A1) = A(I7)

for every I € Z. (Hint: Problem 2.7.) Recall that I° C I C I~ and show that

(c) 0*(S) inf Z A(Iy) = inf Zn)\(l‘)

{In}GIO {In}eIS

where the infimum is taken over all countable coverings of S consisting
either of open intervals (equivalently, of the interior of intervals in T),

I = {{In}: I,€Z and S C UnIZ}7
or of closed intervals (equivalently, of the closure of intervals in 7),
I = {{In}: I, €7 and S C Unlg}

Hint: Covering by closed intervals is a consequence of item (b) since I C I~
and ¢(I) = M\(I). For the case of covering by open intervals, take an arbi-
trary € > 0 and observe that for each I,, € T there exists an open interval
Jn € R such that I, C J, and A(J,) < U(I,) + 5. Thus U, In € U, Jn
and > A(Jp) <>, U(I,) + € (if n runs over N).
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Problem 8.8. Take a measure £: § — R on an algebra 3, let £*: 9(R) — R
be the outer measure generated by ¢ (Definition 8.2), let \: ® — R be the
Lebesgue measure on the o-algebra $, and let A\*: 3* — R be the Lebesgue
measure on the o-algebra &% Recall that £ C * and A(E) = A*(E) for
every F € R, and also that open sets are measurable (open sets are Borel
sets by Problem 2.7(d), and so they are Lebesgue sets). Take any S € #(R)
and an arbitrary € > 0. Show that there is an open set U C R such that

(a) SCU:, and AU:) </l*(S)+e.
Then, since £*(S) < A(U,) and infimum is the maximum of all lower bounds,

(b) () = inf {AU): S CUY,

where T is the topology (i.e., the collection of all open sets) of R.

Hint: Take the first identity in Problem 8.7(c) with the infimum taken over
Z%. Thus there is {J,} € Zg such that Y A(J;) < £*(S) + e. Since every
union of open sets is again an open set, set U = (J,, J;, in R and verify that
AU) =XU)=0(U) <>, 0(J7) = >, AMJy5;) — Proposition 8.3(e).

Finite intersections of open sets is an open set, but a countable intersection
of open sets, which is referred to as a Gy, is not necessarily an open set,
although always measurable (i.e., a G is a Borel set). Show that there exists
a Gg, say G € R, such that

(c) SCG and (£7(9) = AG).

Hint: Ttem (a) ensure the existence of a sequence {U,} of open sets such
that S C U,, and A(U,) < €*(S) + # for all n. Set G =, U, in R and
verify that S C G C U, and so £*(S) < £*(G) = MG) < A(U,,) for all n.

Problem 8.9. Apply Problem 8.8(c) and the fact that the measure \* is
complete to show that every set with outer measure zero is a Lebesque set:
(a) Ne®R) and ¢*(N)=0 imply N €* and \*(N)=0; and

(b) E;N € ®(R), ECN and ¢*(N) =0 imply F € $* and \*(E) =0.

Take an arbitrary set S € ©(R). According to Problem 8.8(c), S C G with
*(S) = A(Q) for some G € R. Since G = S U (G\S) and S = G\(G\S), use

item (a) to prove the following assertion.

(c) If £*(S) < oo, then S € $* if and only if ¢£*(G\S) = 0.



8.4 Problems 153

Problem 8.10. Consider the setup of Problem 8.8. Prove that

N(E)= inf {A\({U): Uisopenand ECU} for every E €S~

This means that \* is outer reqular (see Section 11.2).

Hint: Problem 8.8(b) and Property Ps.

Problem 8.11. Consider again the setup of Problem 8.8. Prove that

M(E) = 18;29?% {A(F): Fisclosed and F C E} for every E € 3"

This implies that A* is inner regular (see Section 11.2).

Hint: Take an arbitrary E € §* and an arbitrary € > 0. Set B/ = R\E € $*
(the complement of E lies in $*). According to Problem 8.8(a), there is an
open set U, such that E' C U, and A(U:) < A*(E’) + . First prove that

N (U\E') < e.

If \*(E') < oo, then the above inequality is an immediate consequence of
Proposition 2.2(b). If \*(E’) = oo, then proceed as follows. Since A\* is a o-
finite measure on $% every set in §* is o-finite, and so there is a countable
covering of E', say {E! }, made up of measurable subsets of E’ of finite mea-
sure. Since A\*(E),) < oo, there is an open set Ue ,, such that E/, C U, ,, and
N (Uen\E]) < 57. Take the open set U. =J,, U 2 U,, E}, = E. Show
that A*(UA\E') <Y, A (U:n\E},) < €. This proves the claimed inequality.
Now take the closed set F. = R\U. C E, verify that E\F. = U.\E’, and
hence A*(E\F:) <e. Thus \*(E) = M (ENF.) + A*(E\F.) < M*(F.) +e.
But A\*(F.) < A*(F) (and supremum is the minimum of all upper bounds).

Problem 8.12. Prove the translation invariance property (i.e., prove Pg).
Hint: Take an arbitrary real number o € R. Verify that
I+ a) =¢(1)
for every I € Z. Apply Problem 8.7(a) to show that
(S +a)=10(S)
for every S € £(R). Recall that F € $* if and only if
r(S)y=0"(SNE)+¢*(S\E) for every S € #(R).

Take arbitrary A, B € #(R). Verify that (A4+ao)NB = (AN(B—a))+«
and (R\B) + a« = R\(B + «a), and so (A + a)\B = (A\(B — @)) + «. Thus
show that if F € &% then
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(S) =4S —a) = E*((S —a)n E) + E*((S — a)\E)
=0 ((SN(E+a)—a)+((S\(E+a) - a)
=0(SN(E+a)) +5(S\(E +a)).
Hence E + « also lies in S Since A* = £*|g+, conclude the result in Pg:

EeQ" implies E+acS and MN(E+a)=\(E).

Problem 8.13. Consider a binary operation +: [0,1)x[0,1) — [0, 1) defined
as follows. If @ and § lie in the interval [0,1), then

) o+ 3, a+p <1,
a+p=
a+p—-1, a+pg>1
This is called sum modulo 1. For every a € [0,1) and every S C [0, 1), set
Sta={{+aeR: ¢S} C [0,1).
This is called translation modulo 1, Prove translation invariance modulo 1;
that is, prove translation invariance with respect to sum modulo 1.
(a) If S C[0,1), then £*(S+ )= £*(9).
(b) If EC[0,1) and F € $* then F + a € $* and M\*(E + a) = \*(E).
Hint: Take an arbitrary real number « € [0,1), and take an arbitrary set
E C[0,1) such that E € $* Consider the sets F1 = EN[0,1—«) and Ey =
EN[l—a,1). Show that F; and Fs lie in $*. Since £ + a < 1 for every
€ Fy, and £ +a > 1 for every £ € Es, verify that £1 +a = E; + « and
E; +a = Ey + (o —1). Therefore, conclude that F; + a and Es + « lie
in §* Finally, using translation invariance again (for ordinary sums, as in
Problem 8.12), show that
MN(E+a)=X(EL+a)+ X (F2+ )
= N(E1 +a)+ N (Ea+ a) = X(Ey) + M (E2) = X (E).

Problem 8.14. Let ~ be a relation on the interval [0,1) defined by

a~p if and only if a—p€Q.

In other words, a and § in [0, 1) are related if their difference is a rational
number. This is an equivalence relation. That is, ~ is reflexive (i.e., a ~ a),
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transitive (i.e., a ~ 8 and § ~ v imply «a ~ ), and symmetric (i.e., « ~ 8
implies 8 ~ «). Thus ~ induces a partition of [0, 1) into equivalence classes

[a] ={a'€[0,1):a' ~a} ={a’€[0,1): &/ — a € Q}.

The Aziom of Choice ensures the existence of sets consisting of elements
from every equivalence class (one and just one from each equivalence class).
These are the Vitali sets. Let V C [0,1) be a Vitali set and let {g,} be
an enumeration of Q N [0,1). For each n set V,, = V4 ¢, C [0, 1); rational
translations modulo 1 of V. Show that {V,,} forms a partition of [0, 1).

(a) VinNV, =@ whenever m # n.

Hint: Take an arbitrary £ € V,, N V,,,. Show that £ = a + ¢, = 8+ ¢m,
with a, 8 €V, a+ ¢, € V,, and 8+ qn € V. Then a— B € Q (ie.,
a ~ ), so a and 8 come from the same equivalence class. Since V has
only one element from each equivalence class, « = 8. Hence m = n.

(b) UpVa =1[0,1).

Hint: Take an arbitrary « € [0,1). Thus « is in some equivalence class
(since these classes form a partition of [0,1)), and so o ~ § for some
B €V CI0,1) (since V has one element from each class), which means
a— B € Q so that a = 8+ ¢ for some ¢ in Q. First show that if 8 < «,
then o = 8+ gy, for ¢, in QN [0,1) so that & = 3+ ¢, and therefore
a €V, for some n. Next verify that if « < g, then a = 8 — ¢y, for g,
in QN (0,1) so that & = B + py,, with p,=1— g, in QN (0,1), and so
a € V,,, for some m. Then conclude that [0,1) C |J,, Va.

Now use Problem 8.13 to prove that
V&3
Hint: If V € 3% then A*([0,1)) = >, X*(Vy,) = >, A (V) # 1.

Outcome: Vitali sets are not measurable, thus completing the proof of Py.
This was the first example of a nonmeasurable set, given by Giuseppe Vitali
in 1905. The use of the Axiom of Choice is essential here.

Problem 8.15. Exhibit a sequence {V,,} of disjoint sets in ¥(R) such that
c(Uya) <X v,

Problem 8.16. Exhibit a pair of disjoint sets A and B in #(R) such that

0*(AU B) # £*(A) + *(B).
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Hint: According to Propositions 8.3(c) and 8.5(a), the outer measure of a
Vitali set V' is such that 0 < £*(V') < 1. Take the sequence {V,,} of Problem
8.14. Set gy = 0 so that Vj = V. Note that the equivalence class containing
zero is [0] = QN 0,1). Use the same argument as in the Hint to Problem
8.14(b) and show that | J,,V,,\Vo = (0,1). Set A =1, and B =J,,V,,\Vb.

Problem 8.17. Show that measurable subsets of Vitali sets have measure
zero. In other words, prove that

EcQ  and ECV imply M(E)=0.

Hint: Consider the setup of Problem 8.14. Set E,, = E + ¢, C V,,. Show
that {E),} is a sequence of disjoint sets in S* with A*(E,) = A\*(E) and

> N (E) = A(UnEn) < ¢ (Unvn) = (j0,1)) = 1.

Problem 8.18. Prove Property Pr.
If S € P(R) and £*(S) > 0, then there exists Sy C S such that Sy & I*

Hint: Suppose £*(S) > 0. Then use Problem 8.7(c) to show that there is
a translation of S, say ', such that ¢*(S’ N (0,1)) > 0. Set A=5"N(0,1)
and A, = ANV,, with {V,} as in Problem 8.14. If all subsets of S are
measurable, then show that A,, is measurable. Since A,, C V, Problem 8.17
ensures that A*(A,) = 0. Thus verify the following contradiction:

o<y <e(an va) =0 (U An) <3 040 =30 M (4,) = 0.

Problem 8.19. Take E € * and S € £(R) arbitrary. Show that

(a) *(EUS)+(ENS) =X (E)+£2(9),

(b) EC S and \*(E) < oo imply ¢*(S\E) = £*(S) — A*(E).
Hint:0*(EUS) =L (EUS)NE)+£((EUS)\E) = \*(E)+£*(S\E) and
*(ENS)+£*(S\E) = £*(S), proving (a). Replace S with S\E in (a).
Problem 8.20. If § € £(R) is such that £*(S) < oo, then show that

(a) S € §* if and only if A\*(E) = £*(S) for some E € $* such that E C S,
(b) S € &* if and only if £*(S\E) = 0 for some F € $* such that E C S.

Hint: For the nontrivial part of (a): £*(S\E) = ¢*(S) — A(E) = 0 by Prob-
lem 8.19(b); use Problem 8.9(a) to conclude that S = (S\E)U E € $*.
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Problem 8.21. Prove that if £ € % A*(E) < oo, and S C F, then
Seq* if and only if A(E)=£(S)+ £ (E\S).

This is a special application of the Carathéodory condition for measurabil-
ity. It gives a necessary and sufficient condition for a subset of a Lebesgue
measurable set of finite measure to be Lebesgue measurable.

Hint: If S € 3% then the claimed equation follows from the Carathéodory
condition. Conversely, note that E\S C G with ¢*(E\S) = A(G) for some
G € R by Problem 8.8(c). Thus show that £*(E\S) < M (ENG) < AG) =
*(E\S), and hence \*(E) = A (E N G)+A*(E\G) = £*(E\S)+\*(E\G). If
the claimed equation holds, then A*(E\G) = £*(S) < oo, since A\*(E) < 0.
Verify that E\G C S, apply Problem 8.20(a), and conclude that S € $*

Problem 8.22. Prove the following proposition. Every measurable £ € &*
with 0 < A*(E) < oo has a nonmeasurable partition, A and B in £(R)\S*
with AUB = E and AN B = @, such that

N(E) = N (AU B) < £*(A) + *(B).

Hint: According to Problem 8.18, there is a nonmeasurable A C E. Thus
{A, B} with B = F\ A is a nonmeasurable partition of E so that, by subad-
ditivity, \*(E) < £*(A) + £*(B). The inequality is strict by Problem 8.21.

Problem 8.23. Now prove the converse. Take any nonmeasurable set with
finite outer measure, say A € P(R)\S* with £*(A) < oo, and let G € R

be such that A C G and ¢*(A) = A(G) as in Problem 8.8(c). Show that
B =G\A € (R)\S* is such that ¢*(B) > 0 (by Problem 8.9), and hence

A(G) = M(AU B) < £*(A) + £*(B).

Suggested Reading

Bartle [4], Cohn [10], Halmos [18], Royden [35]. See also [29, Part Two].



9

Product Measures

9.1 Construction of Product Measure

Let X xY denote the Cartesian product of two sets X and Y, which is the
set of all ordered pairs (z,y) where 2z € X and y € Y. Consider two measure
spaces (X, X, p) and (Y, Y, v). In this section we construct a o-algebra of
subsets of the Cartesian product X xY, denoted by X' x), which is induced
by the o-algebras X and ), such that a measure m on X' x) is given by
the product of the measures g on X and v on ). Since we will be dealing
with the product of measures, we must consider the problem of defining the
product “zero times infinity” because these are possible values for extended
real-valued measures. Therefore we declare again (see Sections 1.3 and 3.1)
that 0400 =400-0=0.

Consider an arbitrary pair of subsets of X and Y, AC X and BCY.
The Cartesian product AxB C X xY is called a a rectangle from X xY. If
(X,X) and (Y,)Y) are measurable spaces, and if F and F are measurable
subsets of X and Y, respectively (i.e.,if E € X and F € )), then ExF is re-
ferred to as a measurable rectangle from X xY (i.e., a rectangle Ex F' from
X XY consisting of an X-measurable set £ C X and a )-measurable set
F CY). Let Xx) denote the o-algebra generated by the measurable rec-
tangles from X xY (i.e., the smallest o-algebra of subsets of X xY contain-
ing all measurable rectangles ExF with £ € X and F € )), and consider
the measurable space (X xY, X'x)), which is referred to as the Cartesian

(© Springer International Publishing Switzerland 2015 159
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product of the measurable spaces (X, X) and (Y, ). In particular, it is clear
that E'x F' is a measurable rectangle from X xY if and only if ExXF € X'x ).

Example 9A. Take the Borel algebra R of subsets of R and consider the
Cartesian product (RxR, RxR) of two copies of the same measurable space
(R, R). Note that open subsets of R? = RxR lie in RxR. In fact, since R? is a
separable space, it follows by Problem 1.14 that open sets of R? are counta-
bly covered by the topological base consisting of open rectangles made up of
open intervals. Indeed, it can be shown that the o-algebra xR coincides
with the o-algebra generated by the open sets of R% and so ®xR is the
Borel algebra of subsets of R? (see the remark that follows Problem 1.14).

Proposition 9.1. The collection P of all finite unions of measurable rec-
tangles is an algebra of subsets of X XY, included in X'x).

Proof. Every finite union of measurable rectangles admits a disjointification
(cf. Hints to Problems 2.3 and 7.2) consisting of measurable rectangles. Thus
finite unions of sets in P are in P. It is readily verified that the complement
of a measurable rectangle lies in P, and that a finite intersection of sets in P
is a set in P. Applying De Morgan Laws we conclude that the complement
of a set in P lies in P. So P is an algebra. It is clear that P is included in
the o-algebra X' x) generated by measurable rectangles. ]

As we have observed in the previous proof, any set in P admits a dis-
jointification consisting of measurable rectangles. This means that any set
in P can be expressed as a finite union of disjoint measurable rectangles.

Definition 9.2. Take an arbitrary set P = |, E; x F; in P, where {E; < F; }
is an arbitrary finite partition of P consisting of measurable rectangles from
XxY. Let u: ¥ = R and v:)Y — R be measures on X and Y, respectively,
and define a set function w:P — R by the following finite sum: for P € P,

(a)  w@(P)= W(UEMFZ) =Y B v(F) =) @(ExF).
In particular, for each measurable rectangle £ x F' from X XY,

(b) @(EXF) = p(E)v(F).

In (a) we have three identities. The first identity just reminds us that
{E;x F;} is a partition of P, the second identity is the definition of the set
function @w on P, and the third identity is a consequence of the second,
according to the particular case in (b). By additivity of the measures p
and v, it is easy to verify that the sums in (a) are “partition invariant”:
they remain the same for every finite partition of P made up of measurable
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rectangles. We show that the set function w is a measure on the algebra P,
and then we extend this to a measure on the o-algebra X' x). But first we
need the following auxiliary result to prove that w is countably additive.

Proposition 9.3. Let {E;x F}.} be a countable family of disjoint rectangles
in XxY, and let AxB be a rectangle in Xx). Then

(a) AxB:UkEkka implies w(AxB):ka(Ekka).

If {A;xB;} is a finite set of disjoint rectangles in X'x)), then
) |J, AixBi = BexF  implies w(UiAixBi) =" @(BixFy).

Proof. Let Ax B be any measurable rectangle with A € X and B € ), and
let { By x Fi} be an arbitrary countable partition of Ax B with Ej in X and
F}, in Y so that {Fx} and {F}} are countable partitions of A and B, respec-
tively. If {EpxF)} is a finite partition, then the results in (a) and (b) are
trivially verified by Definition 9.2(a). Thus suppose it is countably infinite.

(a) As usual, let Xg denote the characteristic function of a set S. Then
Xa(2) Xp(y) = Xaxn(( Z B,x7, ((2,9))

:Z xEk ka ),

for every pair (z,y) € XxY. (The second identity holds since {EjxFj} is
a family of disjoint sets that cover Ax B.) Fix x, integrate with respect to
v, and apply the Monotone Convergence Theorem (cf. Problem 3.7) to get

= Zk Xg, (@) v(FE).
Next, integrate with respect to u, repeating the same argument, to get
u(A) (B) = 3 ulE) v(Fe).

Thus we get the result in (a) by Definition 9.2(b), namely,

w(AXB) = ka(Ekka).

(b) The disjointness assumption on both {FEyxFy} and {A;xB;} ensures
that if Uz AiXBi = Uk E‘]CXB]C7 then A,LXBl = Uj Ei,jXFi,j for each ’L',
where {E; jxF; ;} = {E,xFy}. Hence, using Definition 9.2(a) and the re-
sult in (a), we get
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w(UkEkXFk) = w(UlAZXBl) Zzlw(Alel)
= Zizjw(Ei’j XEi7j).
If w(A;xB;) = oo for some i, then @w(J; AixB;) = Y, w(EpxF;) = 0o
and the result in (b) holds. Suppose w(A;xB;) < oo for every 4. Then the

summands {w(E; ; X E; ;)} are nonnegative real numbers by (a), and so the
doubly indexed sum is unconditionally convergent. Therefore,

Ziij(Ei’jXEi’j) = ka(EkXFk),
and the result in (b) still holds. (Compare with Proposition 8.8.) O

Lemma 9.4. The set function w is a measure on the algebra P.

Proof. Observe that w(@) = 0 and w(P) > 0 for every P € P, trivially. Con-
sider an arbitrary countable family {P,} of pairwise disjoint sets in P for
which Un P, lies in P. Then, as we have seen before, each set P, is a finite
union of disjoint measurable rectangles,

P, = UjEn,ijn,j.
Since {P,} is a sequence of disjoint sets, this implies that

UnPn = Un,jwaij = UkEkka,

where {E,, ;xF,, ;} = {E,xFy} is a countable family of disjoint measurable
rectangles, and also a finite union of disjoint measurable rectangles,

UnPn = UlA" XBZ‘.

Therefore, | J; AixB; = |J,, ExxF}. Using Proposition 9.3(b), and recalling
the unconditional convergence argument that closed that proof, we get

w(UnPn> W(Uifh'XBi) = ka(Ekka) = Zn,jw(Enyj xF, ;)
anjw(En,j XFy ;) = an (UjE”’j anyj) :an(pn>

by Definition 9.2(a). This shows that w is countably additive. O

Theorem 9.5. (Product Measure Theorem). Let (X, X,u) and (Y,Y,v)
be measure spaces. Then there exists a measure m: Xx) — R such that

T(ExF) = p(E) v(F)
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for every measurable rectangle EXF with E € X and F € ). Furthermore,
if u and v are o-finite, then the measure 7 is unique and o-finite as well.

Proof. Recall that w is a measure on the algebra P (Lemma 9.4). Then it
follows by the Carathéodory Extension Theorem (Theorem 8.4) that there
exists an extension of w to a measure 7* on an g-algebra P* that includes
the algebra P. Furthermore, it is readily verified that if u and v are o-finite
on X and ), then w is o-finite on P, and so the Hahn Extension Theorem
(Theorem 8.6) says that 7* is unique on P* and o-finite. Recall that X' xY
is the smallest g-algebra including P. Let 7 be the restriction of 7* to X'x ),
so that 7 is a o-finite measure on X'x) (since 7* is o-finite), which (by the
uniqueness of ) must be the extension of @ over X'x). Summing up:

P CXxY CP, m=1"xxy, and w=n|p=7"|p.

Observe from Definition 9.2(b) that w(Ex F) = u(E) v(F) for each measur-
able rectangle EXF. Since w = 7|p, it follows that w(ExF) = m(ExF),
and therefore the measure 7m: X x) — R is such that

m(ExF)=pu(E)v(F) for every ExF € Xx). O

The value of 7 at each Cartesian product ExF in X'x) is the product
of the values of 4 at ' in X and v at F' in Y. This motivates the notation

T=UXU,

which is referred to as the product measure (or as the product of the mea-
sures p and v). Accordingly, (X xY, Xx), uxv) is the (Cartesian) product
space of the measure spaces (X, X, p) and (Y, Y, v).

9.2 Sections of Sets and Functions

Let S be an arbitrary subset of the Cartesian product X xY. Associated to
each point x € X, consider the set

Se={yeY: (z,y) € S},
which is called the z-section of S. Similarly, for each y € Y, consider the set
SY={reX: (z,y) €S},

which is called the y-section of S. The reason for this notation with subscript
and superscript is to distinguish x-sections (subsets of Y for each z € X)
from y-sections (subsets of X for each y € Y). Observe that sections are
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not “slices”, which means that S, CY (or SY C X) and {z}xS, C XxY
(or S¥x{y} C X xY) are, in general, different sets. Also note that sections
of a rectangle AxB C X XY are either empty or “sides” of the rectangle:

B, z€A,
2, x¢A,

A, y€B,

(AxB)a = { o, y¢B.

(AxB)Y = {
In particular,
(XxY), =Y and (XxY)¥=X.

Now let f: XxY — R be an arbitrary extended real-valued function on
X xY. For each x € X consider the function f,:Y — R defined by

f=(y) = f(z,y) for every ye (XxY), =Y,

which is called the z-section of f. Similarly, for each y € Y consider the
function f¥: X — R defined by

fYx) = f(z,y) for every z€ (XxY)Y =X,

which is called the y-section of f. If f: Ax B — R is defined on a rectangle
AxB C X xY, then its z-sections and y-sections are defined on B C Y and
A C X, respectively: f,: B — R and f¥: A — R.

Proposition 9.6. Fvery section of a measurable set is measurable:

(a) E € XXY implies EY € X and E, € ) for every x € X and y €Y.
(i.e., if E€ XxY is Xx)Y-measurable, then EY € X is X-measurable
and E, €Y is Y-measurable).

Every section of a measurable function is measurable:

(b) If f: XxY — R is XxY-measurable, then f¥: X — R is X-measurable
and f.:Y — R is Y-measurable for every v € X and y €Y.

Proof. Take a pair of measurable spaces (X, X) and (Y,)), and consider
their Cartesian product (X xY, Xx)).

(a) The assertion in (a) is an immediate consequence of Problem 9.5. In
fact, X' x) is included in the collection (X' x))x of all subsets of X xY for
which all z-sections are )Y-measurable. Hence, if E € X'x)), then E, € ).
Similarly, £ € X'x) also implies EY € X. (See Problem 9.5.)

(b) To prove assertion (b) proceed as follows. Take any « € R. If a function
fi:XxY—R is Xx)Y-measurable, then the set {(z,y)€ XxY:
f(z,y) > a} is XxY-measurable, and so every z-section {(z,y) € XxY:
f(z,y) > a}, is Y-measurable by item (a). Note that for each z € X,
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{(z,y) € XxXY: f(z,y) > oz}w ={yeY:f(z,y)>a}
={yeY:fu(y)>a}.

Therefore the set {y € Y: f,(y) > a} is Y-measurable. This means that the
function f,:Y — R is measurable. Similarly, using the same argument, the
function f¥: X — R is measurable. O

Next we apply the Monotone Class Lemma (cf. Problems 1.18 and 1.19)
to prove an important result that will play a crucial role in Section 9.3.

Lemma 9.7. Let (X, X, ) and (Y,Y,v) be measure spaces. For each mea-
surable set E in X x)) consider the nonnegative functions fg: X — R and
ge:Y — R defined by

fp(@)=v(E:) and g,(y) = p(EY)

for every x € X and every y € Y, respectively. If p and v are o-finite mea-
sures, then fg: X — R and gg:Y — R are measurable functions such that

/XfEd,u = n(E) :/YgEdV.

Proof. Consider the collection K of all sets E in X'x) such that

{fE € M(X,X)*, g, € MY, V)", and [y f, dp=7(E) = [, g, dz/}.

Thus K is the subcollection of X' x) for which the conclusion of the lemma
holds true. We split the proof into two parts. In part (a) we apply the
Monotone Class Lemma to prove that if u and v are finite measures, then

K=XxY
(i.e., the stated assertion holds true for finite measures). In part (b) we apply
the Monotone Convergence Theorem to extend it to o-finite measures.

(a) Let AxB in X'x) be any measurable rectangle. Recall that z-sections
(AxB), are B if x € A and empty otherwise, and y-sections (Ax B)Y are
A if y € B and empty otherwise. Thus, for each x € X and each y € Y set

Farp (@) =v((AXB),) = v(B) X4(x),
9ar W) = n((AxB)Y) = u(A) Xp(y).

If 1 and v are finite measure, then these define real-valued functions on X
and on Y such that (cf. Example 1B and Proposition 1.5) faxp = v(B) X4
is in M(X, X)T, gaxp = u(A)Xp isin M(Y, )", and (cf. Problem 3.3.(a))



166 9. Product Measures

/ Farpdn = v(B)u(A) = m(AxB) = u(A)v(B) :/YgAde“

Consider the algebra P of Proposition 9.1. Let P be an arbitrary set in P.
Since P = |J;"_; A;xB; is a finite union of disjoint measurable rectangles
{A;xB;}, the above results ensure that P € K, and so P C K. Indeed,

fpx) = v(P:) = v((UZ1AixBi).) = v(UiZ (A% Bi)s)
=2V ((AixBi)a) = 3oL, v(Bi) Xa(w) = 3011 fy o, (2),

9p() = n(PY) = n((U,AixB;)Y) = p(Ur, (AixB;)Y)
= S (A BY) = S0 (A X ) = S, (),

for every x € X and y € Y. Hence (cf. Proposition 1.5) fp = > 1, fa;xB; 18
in M(X,X)%, gp =31 ga;xB; is in M(Y,Y)*, and (cf. Problem 3.7(a))

/Xfpdﬂ :iAfAixBidu
_ZM z”: (A;xB;) _W(OAiXBi)_Tr(P)

i=1

—Z/gAdeV—/gde

Therefore, P € K and so
(i) P CK.

First suppose {E,} is an increasing sequence of sets in K. For each n set

fp @) = v((B)s) and gy () = n((En)?)

for every x € X and every y € Y. Since E,, € K, this defines two sequences
{fe,} and {gg, } of functions in M(X,X)" and in M(Y,Y)" such that

/XfEndu — (E,) :/YgEndy.

But {fg, } and {gg,, } are increasing sequences of extended real-valued func-
tions, because {F,,} is an increasing sequence of sets. Thus these sequences
of functions converge pointwise. Set E' = (J,, Ey,, which lies in the o-algebra
XxY. Since the sequences {(E,).} and {(E,)Y} of sections in J and X
are increasing with | J,,(Ey), = E, in Y and {J,,(E,)Y = EY in X for each
z € X and each y €Y, it follows by Proposition 2.2(c) that the functions
fE: X — R and gg:Y — R are the pointwise limits of {fg,, } and {gg, }:
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lim f,, (2) = lim v (Bn)s) = v({, (Ea)e) = v(Es) = Ty (@),
lim g, (y) = lim p(Ba)*) = i (|J (Ba)?) = 0(BY) = g, (),

for every € X and y € Y. Still by Proposition 2.2.(c) we get

hm7r _W(U E, )

Note from Proposition 1.8 that fr € M(X,X)" and g € M(Y,Y)*. Use
the Monotone Convergence Theorem (Theorem 3.4) to conclude that

/fEd,uzlim/ Is du:ﬂ'(E):lim/gE dV:/gEdu.
X noJx " nJy " Y

This implies that
Eek.

Next suppose {F,, } be a decreasing sequence of sets in KC and set F' =, F),
in Xx)Y. Proceeding as before, consider the similarly defined functions fr,
in M(X,X)" and gg, in M(Y,Y)" such that

t[;f;ndu — (F,) :(/;andu

for each n. Still under the assumption that g and v are finite measures,
which implies that the product measure 7 = pxv is finite as well, we may
apply Proposition 2.2(d) for the finite measure 7 (instead of Proposition
2.2(c) for general measures) to verify that { g, } and {gr, } are both decreas-
ing sequences of real-valued functions so that they converge pointwise, and

lim f, () = fp(x) and  limg, (y) = g,(y)

for every z € X and y € Y, which define the real-valued limit functions
fr € M(X,X)" and gr € M(Y,Y)™ . Proposition 2.2(d) also ensures that

lim7(F,) = F(ﬂ Fn) =n(F).
Recall that {fr,} and {gr, } are decreasing sequences of nonnegative real-
valued measurable functions, and that f Jr, dp and f gr, dv are bounded by
T(XXY) = p(X)v(Y), which is finite since u(X) < oo and v(Y') < oo, it
follows by the Dominated Convergence Theorem (Theorem 4.7) that

ngzﬂmzﬁ%w
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This implies that
Fek.

Hence (cf. Problem 1.15), under the finite measure assumption,
(i) K is a monotone class.

According to (i) and (ii) the Monotone Class Lemma (see Problems 1.18
and 1.19) ensures that if ¢ and v are finite measures, then

K=Xx).

(b) If the measures p and v are o-finite, then that there is a pair of increasing
sequences { X, } and {Y,,} of X-measurable and Y-measurable sets covering
X and Y, respectively, such that u(X,)< co and v(Y;)< co. For each n
consider the o-algebras X, = #(X,,)NX and V,, = ©(¥,) NY so that u
and v are finite measures when restricted to them. Let E be an arbitrary
set in X'xY. For each n set E, = EN (X, xY,,) in X, x),. Hence

(Bn)e = (BN (XuxYy)), = By 0 (XuxY,)y = B, N Yy € Vo,
(Bn)Y = (BN (X, xYy)) = BY N (XoxY,)! =EVNX, € X,.
Take the functions fg,: X — R and gg,: Y — R defined for each n by

fEn (JC) = V((En)x) = V((En)x) XXna

95, (@) = 1((En)") = p((En)?) Xy,

for every x € X and y € Y. Let u,, = pi|x,, and v,, = vly,, be the restrictions
of p and v to X, and Y, so that (X,, X, un) and (Y, Vn,vs) are finite
measure spaces. Since the stated assertion holds for finite measures (as we
saw in item (a)), it follows that fg, € M(X,X)", gg, € M(Y,))™, and

/ fEnd,U :/ fEnd,LLn = W(En) :/ gEndV” :/ gEndV'
X Xn Yn v

Since {X,,} and {Y,,} are increasing sequences of X'-measurable and Y-meas-
urable sets covering X and Y, conclude that {E,, }, {(E,).}, and {(E,,)Y} are
increasing sequences of X' X Y-measurable, YV-measurable and X-measurable
sets that cover E, E,, and EY, respectively, so E =J,, En, Ez =U,,(En)a,
and EY = J,,(Ey)Y% Then Proposition 2.2(c) ensures that lim, 7T(En) =
(U, En) = 7(E) and

lim £, (2) = tim v ((Ba)e) = v (| (Ba)e) = v(B2) = £, (@),

lim g,,, (y) = lim p((En)*) = (|, (Bn)") = n(BY) = g,,(v),
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for every x € X and y € Y. But {fg, } and {gg, } are increasing sequences
(since {X,,} and {Y,} are increasing) of nonnegative measurable functions
(according to item (a)), so that by the Monotone Convergence Theorem
(Theorem 3.4) we get fr € M(X,X)", gp € M(Y,Y)", and

/fEdu—hm/ fE dp = n(E —hm/gE dV:/YgEdV. (]

9.3 Fubini and Tonelli Theorems

The following two theorems give sufficient conditions for interchanging the
order of integration. The first deals with extended real-valued nonnegative
functions. The second dismisses nonnegativeness but assumes integrability.

Theorem 9.8. (Tonelli Theorem). Consider two measure spaces (X, X, 1)
and (Y,Y,v). If u and v are o-finite and h € M(X XY, XxY)*, then the
extended real-valued functions f, and gn defined by

fue) = [ hodv and gn) = [ W

are in M(X,X)" and in M(Y,Y)", respectively, and

/fhdﬂ =/ hdm :/ghdu.
X XxY Y

Proof. Let H be the set of all functions h € M(X xY, XxY)" such that
{fh eEM(X, X)) ghe MY, V), and [y fadp = [,y hdr = [, gn dV}-

In other words, H is the subcollection of M(X xY, XxY)* for which the
conclusion of the theorem holds true. The program is to prove that

H=M(XxY, XxP)*.
Equivalently, to prove that M(X xY, XxY)*C H. Let Xg be the charac-

teristic function of E in X'x Y. Recall that Xg € M(XxY, XxY)* (Exam-
ple 1B). Note that (Xg), = Xg_ and (Xg)? = Xy (Problem 9.8). Set

fip@ = [ v = [ X, v = u(),

9x 9) =/X(XE)ydu :/X Xy dp = p(EY),
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for every z € X and y € Y. Since p and v are o-finite measures, Lemma 9.7
ensures that fXEG M(X, X)), Ixp, € M(Y, V), and

f d,u:/ XEdW:/g dv.
/XXE XxY y ¥E

Hence every characteristic function of sets in X' x) lies in H. Therefore, by
additivity and positive homogeneity in the set of positive measurable func-
tions (Proposition 1.9), and also for the integral itself (Proposition 3.5(a,b)),
we can conclude that every simple function (Definition 3.1) lies in H. Now let
h be an arbitrary function in M(X xY, X'x))™. Problem 1.6 says that there
exists an increasing sequence {,, } of simple functions in M(X XY, XxY)*
converging pointwise to h. For each n and for every z € X and y € Y, set

m@=£@MWamsm@=LWNW ()

Since ,, € H (simple functions lie in #), the above identities define a pair
of functions f,,, and g, such that f,, € M(X,X)", g,, € M(Y,Y)*, and

/f#?nd/’(‘ :/ o dm =/ Gom AV. ()
X XXY Y

Since ¢, — h, it follows that (v,). — hy and ()Y — hY for every x € X
and y € Y, where these convergences are pointwise. Since {,, } is an increas-
ing sequence of nonnegative functions, it is clear that the sequences { (¢ ).}
and {(p,)¥} are also increasing and consist of nonnegative functions for
each z € X and y € Y. Furthermore, since ¢,, is measurable, then so are all
sections (¢n,). and (¢n)Y, for each n, by Proposition 9.6. Thus, applying
the Monotone Convergence Theorem (Theorem 3.4) we get from (x) that

li7rlnf¢n(x) = li7rln/y(<pn)x dv = /Ylim (on)zdv = /{hz dv = fr(z),

n

lim gy, (y) = 1im/ (n)¥ dp =/ lim (¢,,)¥ dp =/ hY dp = gn(y),

for every x € X and every y € Y, so that f,,— f» and g,, — gn pointwise.
Recall that {f,,} and {g,,} are increasing sequences (because {y,} is
increasing). Using the Monotone Convergence Theorem once again we get
from (%*) that f, € M(X,X)", gn € M(Y,Y)T, and

/nw:/ hm:/%w
X XxXY Y

and hence h € H. Then M(XxY, XxY)* C H. O
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The conclusion of the Tonelli Theorem can be rewritten as

/}((/Yhdy>du=/Xxyhd7r:/y(/xhdu)du

This is a significant result. It says that the order of the integrals can be inter-
changed. The same applies to the next theorem, which has exactly the same
conclusion but a different hypothesis, where the function h is not necessarily
nonnegative but should be integrable with respect to the product measure.

Theorem 9.9. (Fubini Theorem) Consider two measure spaces (X, X, 1)
and (Y, Y, v). If X\ and v are o-finite measures and h € L(X XY, XxY, 7),
then there are real-valued functions fr and g defined a.e. on X and Y by

fn(@) :/Yhzdl/ and  gn(y) :/thdﬂa

which are in L(X, X, u) and in L(Y,V,v), respectively, and

/fhdu:/ hdw:/ghdu.
X XxY Y

Proof. Take an arbitrary h in M(X XY, Xx)), and consider its positive
and negative parts h™ and h™ in M(X xY, XxY)T such that h = h™ — h™
(Proposition 1.6), and also its z-section h, in M(Y,Y) and y-section hY in
M(X, X) (Proposition 9.6). Now consider the parts of the sections (h;)* in
MY, )t and (h¥)* in M(X, X)*, which coincide with the sections of the
parts (h*), and (h*)¥ (Problem 9.9). Since the positive and negative parts
ht and h~ liein M(X xY, XxY)", since (h*), = (h,)* and ()Y = (h¥)*,
and since the measures p and v are o-finite, the Tonelli Theorem ensures
that the functions f,+ and g,+ defined on X and Y by

ft () = /Y (ho)*dv  and  gua(y) = /X W) dp (¥

are in M(X,X)* and in M(Y,))™, respectively, and

/ [t du = / h*dr = / gy dv. (%)
X XxXY Y

In addition, if h € L(X XY, XxY, ), then the parts h™ and h~ are nonneg-
ative functions in L(X xY, Xx)), w) by Definition 4.1. Even though their
sections are real-valued, the nonnegative measurable functions f;+ and g+
are not necessarily real-valued (cf. Problem 9.11) but have finite integrals
according to (xx). Then they are real-valued almost everywhere by Problem

3.9(b), and the differences fy+ (z) — f,— (z) and g,+ (y) — g~ (v) are defined
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almost everywhere with respect to x4 and v. Thus take real-valued functions
frn and gy, defined almost everywhere on X and Y, respectively, as follows.

fo=Tfu+—fp— and  gn = gu+ — g

and zero otherwise, which lie in £(X, X, u) and L(Y,Y,v). In fact (Prob-
lems 3.8 an 3.9), there is an X-measurable set N with pu(N) = 0 such that
Jx frzlxwdi = [y e Xxowdi = [y oz di = [ e dp < oo for
which f,+|x\n is real-valued, and hence fj+|x\n lies in £(X, X, u). Thus
the function f;, defined by f;+|x\n — f4—[x\~ on X\N and zero on N is
real-valued and lies in £(X, X, u) — see Lemma 4.5. Similarly, the function
gp, is real-valued and lies in £(Y, Y, v). Then, by (%) and Definition 4.1,

fua) = [ oyt o= [ ho)mav = [ noa

() = [ (ytav— [ wyav = [ g,

for p-almost every z in X and v-almost every y in Y. Also, by (xx) and
applying Definition 4.1 again, and since f, = f,+ — f,— on X\NV so that
Jx frndp = fX\N [+ dp —fX\N [1,—du (see Proposition 4.3), it follows that

/ hd7r=/ h+d7r—/ h7d7r:/f,ﬁd,u—/fhfd,uZ/fhdu,
XxY XxXY XxY X X X

and similarly
/ hdﬂ=/gh+du—/ gh—du=/ghdu- U
XxY Y Y Y

Suppose N is an X-measurable set such that (V) = 0 for which f,(z) =
Jyhe(y)dv on X\N and zero on N (as in the preceding proof). Observe that

fxfh Jdp = fX\th z)dp = fX\N(fY ydv)du = [ ( [y h(z,y)dv)du.

Similarly, [,-gn(y)dv = [, ( [ h(z y)du)dy Thus, as we have commented
before, the conclusion of the Fubini Theorem can also be rewritten as

[ (o) pae - ([ )

The middle integral, fXXY hdmr, is the double integral of h. The left and right
integrals, [ (fy hdv)dp and [, ([ hdp)dv, are the iterated integrals of h.
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9.4 Problems

Problem 9.1.Let RxR be the Borel algebra of subsets of R? (Example 9A).
If £ € R, then show that the difference set Dg is RxR-measurable: that is,

Dp = {(z,y) ER* y—z € E} € RxR.

Hint:

(a) The “smart” way: f(z,y) = y — « defines a continuous function f from
R? to R, thus a measurable function (Section 11.1), and Dg = f~'(E).

(b) The “tour de force” way: Take E' € R so that E U {5} + a € R for every
«, f € R. If E is unbounded, then consider a countable partition of E made
up of bounded measurable sets. If F is bounded, then write F as a countable
union of measurable triangles as follows. Let diam £ = sup, ,cp [z — y| < o0
be the diameter of the bounded set £ C R. For each integer k € Z set

E, = (EU{sup E}) + k diam E,

F,=FE,+infFE = [(E U{sup E}) + infE] + k diam F,

which are subsets of R. Now consider the following subsets of R?:

L= {(:c,y) eR?: y< supE—l—J;} or L= {(amy) eR?: y< SupE—&-x}
whether sup FE lies or does not lie in F,

U={(z,y) eR* y>infE+z} or U={(z,9) €R* y>infE+az}
whether inf E' lies or does not lie in E, and

A = (EkXFk) NU and V= (Ekka+1) NL

for each k € Z. Verify that the above triangles cover the “strip-shape” set
Dg (as suggested in the sketch below) (Fig.9.1):

Dg = {(I,y) € R?%: Yy—xc E} = Uk(Ak ka)
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Problem 9.2. If f:R — R is R-measurable, then the function h:R?— R
given by h(z,y) = f(y — x) for (z,%) in R? is RxR-measurable. Prove it.

9. Product Measures

y=z+p5
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(67

8

Fig. 9.1. Problem 9.1(b)

Hint: See Problem 9.1.

Problem 9.3. Consider the Cartesian product (X xY, Xx)) of the mea-
surable spaces (X, X) and (Y, ). If f € M(X,X) and g € M(Y, D) are real-
valued functions, then show that the real-valued function A on X xY defined

by h(z,y) = f(x)g(y) for every (x,y) in X xY lies in M(X xY, Xx)).

Problem 9.4. Take an arbitrary subset S of the Cartesian product X xY
of two sets X and Y. Let {S,} be an arbitrary collection of subsets of X xY,
and take any = in X. Use the definition of z-section to show that
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(b) (Ua Sa):c = Ua(sa)m-

Problem 9.5. Let (X, X) and (Y,Y) be measurable spaces, and take the
measurable space (X xY, X'x)) of their Cartesian product. Consider the
collections of all subsets of X XY for which all z-sections are }-measurable,

(XxW)x = {E CXxY: E, €)Y forevery x € X},
and of all subsets of X xY for which all y-sections are X'-measurable,
(XxY)y ={EC XxY: EY€ X forevery yeY}.

Show that (Xx))x and (X¥x))y are o-algebras of subsets of X xY (use
Problem 9.4), and that they contain all measurable rectangles (recall that
sections of rectangles are either empty or sides of them), and conclude that

AxY C(XxY)x and XxY C(Xx))y.

Problem 9.6. Consider the unit interval X = [0,1] C R and let X be the
collection of all subsets of X that are either countable or are the complement
of a countable set. Show that X is a o-algebra of subsets of X and take the
measurable space (X xX, XxX) of the Cartesian product of two copies of
the measurable space (X, X). For each o > 0 consider the line segments

In ={(z,y) € XxX: y=axz}.

Show that every I, is nonmeasurable (i.e., I, € X xX for every o > 0).

Hint: Let Iy = {(z,y) € XxX: y =0} =[0,1]x{0} be the horizontal line
segment. Take an arbitrary line segment I, distinct from Iy and consider
the intersection of their complements, which is the sector

(X\1o) N (X\1s) = {(z,y) € XxX: 0 <y < az}.

Show that such a sector is not X x X-measurable (use Proposition 9.6(a),
or Problem 9.5). Also show that Iy is X xX-measurable. If I, is A'xX-
measurable, then verify that the intersection of their complements is mea-
surable, which is a contradiction. Thus I,, is not X x X-measurable.

Problem 9.7. Use Proposition 9.6(a) to prove the failure of its own con-
verse: There exist nonmeasurable sets for which all sections are measurable.

Hint: See Problem 9.6.
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Problem 9.8. Consider the characteristic function Xg of a subset S of the
Cartesian product X xY of two sets X and Y. Show that for each x € X
and each y € Y, the sections (Xg), and (Xg)¥ of the function Xg are the
characteristic functions of the sections S, and SY of the set S. That is,

(XS)Q,’: XSI and (Xs)y: XSy,
Thus conclude that if Ax B is any rectangle from X XY, then

Xaxp(x,y) = Xa(x)Xp(y) for every (x,y)€ XXY.

Problem 9.9. Let f: X xY: — R be an arbitrary extended real-valued func-
tion on the Cartesian Product X xY. Take its positive and negative parts,
fT and f~, and its z-sections and y-sections, f, and f¥. First show that

(fe= ()" (Fa=(fz)" and (FOY=(f)", (F) ="

Hint: Recall that f* = fx,+, where F*= {(x,y) € XxY: f(x,y) >0},
a‘nd Verify that (f+)a: = (fXF“‘)Z = fI(XF+)1E = fZEXF"r = (fz)+

Next show that the z-sections and y-sections of f = f+ — f~ are given by
fo=(fD)e = (f)e and f¥=(f7)V—(f7)

Problem 9.10. Consider the Borel algebra R (or the Lebesgue algebra $*)
and take the Lebesgue measure A on # (or on §*), which is referred to as
the linear Lebesgue measure or as the length on R. Consider the product of
A with itself; that is, the measure m = AxA on the o-algebra RxR (or on
I* x3*) of subsets of the plane R? = RxR. This measure is referred to as
the planar Lebesque measure or as the area on R% Note that RxR C I* x 3%
so R x R-measurable sets are I* x F*-measurable. Thus the area of a measur-
able rectangle Ex F in R%is A(E)A(F). Give an example of an uncountable
measurable subset of [0, 1]x[0, 1] with area zero such that all sections of it
(z and y-sections) are either empty or uncountable with length zero.

Problem 9.11. Take the Lebesgue measure space (R, R, A) and the product
space (R% RxR, 7), where m = Ax\ is the area on R? as in Problem 9.10.
Give an example of a real-valued function f:R?— R satisfying (1) and (2).

(1) f =0 m-almost everywhere.

That is, f = 0 up to a measurable set of area zero, and so verify that this
f is RxR-measurable, and apply Proposition 4.2(a) to infer that this f is
also integrable with ng fdm = 0. Moreover,

(2) fR fzd\ = oo for some x-section f.:R — R of f.
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Problem 9.12. Set E = [0,1] C R. Let £ = ©(E) N R be the o-algebra of
all Borel subsets of [0,1]. Take the Lebesgue measure A on £ (i.e., the
restriction of the Lebesgue measure to £ as in Problem 2.11). Let u be the
counting measure on £ as in Problem 2.4(b), which is not o-finite. Consider
the measure spaces (E, &, \) and (E, &, ). Apply Example 9A to verify that
the identity segment, or the diagonal set, of the rectangle [0,1]x[0, 1], viz.,
the set I = {(z,y) € EXE: © =y}, is £xE-measurable, and show that

Juttix 2 [ xyan

Hence the assumption of o-finiteness cannot be omitted from Lemma 9.7.

Problem 9.13. Consider the setup of the previous problem. Use the char-
acteristic function X; € M(ExE, ExE, Axu)T of the set I to show that the
assumption of o-finiteness cannot be omitted from the Tonelli Theorem.

Problem 9.14. Let (X, X,u) and (Y,),v) be o-finite measure spaces.
Take their product space (X xY, XxY, ). If E and F are sets in A'xY
such that v(E,) = v(F,) for (almost) every z € X (or u(EY) = u(FY) for
(almost) every y € Y), then show that 7(E) = 7 (F).

Hint: Apply the Tonelli Theorem to the characteristic functions Xg and X g
of the X' xY-measurable sets E and F'. Use the results of Problem 9.8.

Problem 9.15. Take a pair f,g € L(R, R, \) of Lebesgue integrable func-
tions. Define a function h:R?— R by h(z,y) = f(z —y) for every (z,y)
in R%Z According to Problem 9.2, h is R®xR-measurable. Verify that the
function hg: R? — R mapping each (z,y) € R? into f(z — y)g(y) € R is also
R x R-measurable. Now apply the Fubini Theorem to show that there is a
real-valued function fxg € L(R,R, \) defined almost everywhere on R by

(F*9)(z) = / he dy = / F(z — y)a(y) dy.

This function f*¢g:R — R is the convolution of f and g. Also show that

Jiredtas < ([in1ac) ([1alan).

Problem 9.16. Let {c, ,} be a countable family of nonnegative real num-
bers, doubly indexed by (m,n) € NxN.

(a) Use elementary analysis to show that

oo 00 oo 00
DD Gma =,

m=1n=1 n=1m=1
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Hint: Recall that a family of real numbers is absolutely summable if and
only if it is unconditionally summable.

Take the product space (NxN, ©(NxN), uxu) of two copies of the measure
space (N, ©(N), u), where u is the counting measure of Example 2B. Con-
sider the integral of the function a, ,: NXN — R with respect to the prod-
uct measure ™ = X (see Problem 3.4). That is, for every E € §(NxN),

/Oém’ndﬂ: E O -
5 E

(b) If >y Qm,n < 00 (i.e., under the assumption of finite integral), then
show that the result in (a) can be proved by using the Fubini Theorem.

Problem 9.17. Consider the setup of the previous problem, but now sup-
pose {am ) is an arbitrary countable family of real numbers (not neces-
sarily nonnegative). Suppose . m= 1 and @y m+1 = —1 for every integer
m € N, and oy, , = 0 otherwise. Show that

i iam,nzo and iiammzl-

m=1n=1 n=1m=1

Conclude that the nonnegativeness assumption (i.e., ay, , > 0 for all (m,n)
in NxN) cannot the dropped in the Tonelli Theorem, and integrability (i.e.,
Y nxn [@mon| < 00) cannot be omitted from the Fubini Theorem.

Hint: 1 -1 0
0 1 -1 0
{am,n} - 0 1 -1
0 1

Problem 9.18. Let ([0,1]x[0,1], #([0,1]x[0,1]) N (RxR), AxA) be the
product space obtained by two copies of the finite Lebesgue measure space
([0,1], #([0,1]) N R, X). Consider the functions f € £([0,1], £([0,1]) N R, A)
and the real-valued g € M([0,1], ([0, 1]) N R) T given by

y =0,
y € (0,1].

-
jen}
IN

S I
g\y) =
<z 1 %7

IN

b

(SIS

Let the function h € M([0,1]x[0,1], £([0,1]x[0,1]) N (RxR)) be given by

h(z,y) = f(x)g(y)
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for every (x,y) € [0,1]x[0, 1], which is real-valued (Problem 9.3). Show that

/01 (/01 h(z, ?/)dm) dy = 0.

What is the value of the other iterated integral of h? Is h integrable?

Problem 9.19. Recall that an integrable function f (i.e., fin L(X, X, pn))
is a real-valued measurable function with a finite integral (i.e., ffi dp < oo;
equivalently, [ |f|du < co — see Lemma 4.4). Theorem 9.9 assumes that
h is integrable and concludes that there are integrable functions f; and
gn such that [y fndp = [, hdr = [, gndv, where p and v are o-finite
measures. As integrable functions, these h, fj,, and g; are real-valued. Show
that if p and v are o-finite and if h is an extended real-valued X xY-meas-
urable function with a finite integral, then there are extended real-valued
X-measurable and Y-measurable functions fp, and g, (defined as in Theorem
9.9) with finite integrals such that [y fndp = [y , hdr = [, gndv.

The Fubini Theorem holds if we allow extended real-valued functions
but retain the assumption of finite integrals (i.e., [y |h|dr < 00).

Problem 9.20. Take a pair of measure spaces (X, X, u) and (Y, Y, v) and
consider their product space (X xY, Xx), 7), where m = uxv. Let f and g
be real-valued functions on X and Y, and let h be the real-valued function
on X XY defined by h(z,y) = f(x) g(y) for every (x,y) in X XY. Show that
if fel(X,X,u)and ge L(Y,V,v), then h € L(XXY, Xx), 7) and

oot = (o) (o)

even if the measures 1 and v are not o-finite.

Hint: Take the kernels of the f and g, namely, N(f) = {x € X: f(z) =0} in
X and N(g9) ={y €Y:g(y) =0} in Y so that X'= X\N(f) e ¥ and V' =
Y\WN(g) € Y are o-finite sets with respect to p and v (Problem 3.9(c)). Set
X'=0(X')NX and Y'=®(Y')N Y, the sub-c-algebras of X and ) made
up of subsets of X’ and Y. Verify that u and v (in fact, their restrictions
to X' and V') are o-finite measures on X’ and Y. Since h = fg, get

[ wawar = [ f@gwn
XXY X<y’
Apply the Fubini Theorem for o-finite measures on X’ and Y".

Suggested Reading

Bartle [4], Bauer [6], Berberian [7], Halmos [18], Lang [28], Royden [35].
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Remarks on Integrals

10.1 Positive Measures

This is an introductory chapter to Part II, dealing with basic properties of
integrals with respect to a positive, signed, and complex measure that will
be required in the sequel. It does not yet deal with measures on topological
spaces. We will not equip the underlying set X with a topology in this
chapter, but we will do it from the next chapter onwards. However, to
avoid trivialities, we assume that the underlying set X is nonempty. By a
positive measure we simply mean a measure pu: X — R on a o-algebra X of
subsets of a nonempty set X (so that u(X) > 0). (Sometimes this is used to
specify a nonzero measure; that is, a measure p such that p(X) > 0, but we
allow the zero measure here.) The term positive measure is employed just to
distinguish it from signed measure (also called real measure) and complex
measure. In this section we summarize the basic properties of integrals with
respect to a positive measure, as discussed in Chapters 3, 4, and 5. These
basic properties will be extended to integrals with respect a signed measure
and with respect to a complex measure in the forthcoming sections.

Remark 10.1. Consider a real-valued function f: X - Ron X. If p: ¥ - R
is a finite positive measure on a o-algebra X of subsets of X, then the char-
acteristic function Xg: X — R is integrable for every measurable set E € X,
and so is the constant function 1: X — R such that 1(x) = 1 for every x € X
(reason: [du = p(X) < oc0). If f: X — R is an integrable function, then

(© Springer International Publishing Switzerland 2015 183
C.S. Kubrusly, Essentials of Measure Theory,
DOI 10.1007/978-3-319-22506-7-10
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‘/ fdu‘</|fdu<sup|fu(E)
E E

for every E € X by Lemma 4.4 and Problem 5.1 (where sup|f| € R is de-
fined as usual: sup |f| = sup,cx | f(2)|). Therefore,

/fdu‘éu(X)—/du—/ldu—‘/du‘—‘/ldﬂ

and so (since sup|1| = 1, trivially),

/ﬁmLJﬁgjﬂmﬁﬂ/MA—/LM—uwx

where the supremum is taken over all real-valued integrable functions f on
X such that |f| < 1. The set £ = L(X,X,u) of all real-valued integrable
functions on X with respect to the measure p is a linear space, and the
integral [(-)dp: £ — R is a linear functional (cf. Lemma 4.5). For every
positive measure u, the integral is a positive functional in the sense that it
takes positive functions to positive numbers:

sup
[fI<1

)

sup
[fI<1

Og/fdu whenever 0< f € L.

(e, if f: X — Rin £(X, X, p) is such that 0 < f p-a.e., then 0 < [ fdu —
cf. Proposition 4.2(a) and Problem 4.4(b)). That sup ¢ <, | [f du| = | [1dpu|
(i.e., the supremum is actually attained by the function 1, which lies in £
whenever p is finite) is a consequence of the positivity of the linear functional
J(-)dp: £ — R with respect to a positive measure p. Another consequence
of the positivity of the integral with respect to a positive measure is this
(see Problem 4.4(a)). If f and g are functions in £, then

ngWMS/NM/ML

(In fact, since the integral is a positive functional, 0 < [(g — f) du whenever
f < g p-a.e., and since it is linear, [fdp < [gdu.)

Remark 10.2. Consider a complex-valued function f: X — C on X and its
Cartesian decomposition f = f1+ ¢ f, where fi = Re f: X — R and fo; =
Im f: X — R are real-valued functions on X (the real and imaginary parts
of f). A complex-valued function f is measurable if f; and fy are meas-
urable (Problem 1.7); and f is integrable with respect to a positive measure
w: X — R if f; and fo are integrable with respect to p, and its integral is

/fdu :/f1du+i/f2du,

where f is integrable if and only if | f| is (Problem 4.7), and for every E € X,
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\/ fdu\ < [ 1fldu < suwlslp(E).
E E

The proof of the first inequality in the above expression requires a little
care (cf. Hint to Problem 4.7). However, as a consequence, we get the same
result obtained for real-valued functions, namely,

/fdu /1du =/1du=u(X),

where the supremum is taken over all complex-valued integrable functions f
on X such that |f| < 1. The supremum is actually a maximum, attained by
the real-valued function 1: X — R, which is integrable whenever p is finite,
and this is a consequence of the positivity of the integral with respect to a
positive measure p (when applied to a real-valued positive function).

sup
[fl1<1

10.2 Real Measures

If :X— R and u: X — R are finite positive measures on a o-algebra X
of subsets of a set X, then consider the (finite real-valued) signed measure
v:X— R on X defined by v = A — p, and recall that v = v — v~ where
vT:X— R and v—: X — R are finite positive measures on X (singular to
each other), referred to as the positive and negative variation of v, which
are such that v < X and v~ < u. The total variation of v is the finite
(positive) measure |v|: X — R defined by |v| = v+ v~ (Example 7.A).

Remark 10.3. A real-valued function f: X — R on X is integrable with
respect to a signed measure v = \ — p for arbitrary finite positive measures
A and p, if it is integrable with respect to the positive measures A and p (and
so if it is integrable with respect to the positive measures v and v, since
vt <Xand v~ <y, so that [|f|dvt < [|f|d\ and [|f|dv™ < [|f|dp; cf.
Problem 3.3(d) and Lemma 4.4(a)). The integral of f: X — R with respect
to a signed measure v is unambiguously defined by

/fdz/ :/fd/\—/fdp :/fdzﬁ—/fdui

Note that Xg: X — R is integrable for every E € X since v is finite, and so

V(E) = v (E) — v (E) = /Edﬁ_/Edf = /Edz/.

Equivalently,

V(E) = ME) — u(E) :/de—/Edu :/Edy.
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This ensures that the integral with respect to a signed measure v is equiva-
lently defined as the difference of the integrals with respect to the positive
measures v and v, or with respect to the positive measures A\ and .
Similarly, the integral with respect to the positive measure |v| is defined by

/fﬂﬂ:i/ﬂw++/fmﬁ

Again, set sup | f| = sup,cx |f()|. Thus (cf. Lemma 4.4), for every E € X,

‘/;fdy

so that

zﬂL A v 3 v
s/Emd +/E|f\d /Elfldl | < sup ] [7|(E),

/}dy

where the supremum is taken over all real-valued integrable functions f on
X such that |f| < 1. Since v and v~ are singular, there is a measurable par-
tition {AT, A~} of X such that vT (A7) =v=(4AT) =0, vT(A") = v (X),
and v~ (A7) = v~ (X) (e.g., any Hahn decomposition of X with respect v
— see Section 7.1). Consider the function X ,4+ — X, : X — R for which

/(XA+—XA_)d1/ :/XA+d1/++/XA_dV’:/+dV++/ dv~
A _

=vi(AN) +r (A7) = vI(X) +v (X) = [(X)
Therefore, since | X ,+ — X, | =1,

[v|(X /d\u| /1du++/1du :/ a+—X,—)dv < sup /fdl/
[fl<t

and so the supremum is actually attained by the function X ,+—X ,_, which
is a consequence of the positivity of the integrals [(-)dv and [(-)dv~ with
respect to the positive measures v and v~. Summing up:

/}du

Next we show another proof of the above identity. This alternate proof will
be required in the sequel. Suppose f is a real-valued integrable function on
X such that Xp<f <Xg, where Xp and Xg are characteristic functions
of measurable sets F,G € X. If F C G C A", then 0 < v(F) = prdV <
[fdv < [Xgdv = v(G); on the other hand, if F C G C A~ then v(G) =

sup < |v[(X),

[f1<1

= ().

sup
[f1<1
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[Xgdv < [fdv < [Xpdv = v(F) < 0. Outcome: If either F C G C AT,
or FCGC A, and Xp<f <Xg, then

v(F)| < ‘/fdv < 1nG)l.

Note: this fails without the assumption that F° C G are subsets of either
At orof A= (e.g.,set F=A"T, G=X, 0<-v(A")=v(A"),and f =1).
However, if {4;} is any measurable covering of X, then consider the mea-
surable covering { E)} of X defined as follows: { E},} = {AF} U {A; }, where
Al =A;NAY and A; = A; N A~ for each index i. Thus {Ej} consists of
subsets of either A* or A~ So, if Fj C Gy, C Ej, and Xp, < fi <Xg, , then

(Rl < | [feav| < (G

for each k. If {4;} is an arbitrary finite measurable partition of X, then so
is {E}. Take Gy = E}, and set f = XEk-' In this case,

SUPZk ‘/XEk dv

according to Examples 2I and TA, where the supremum is taken over all
finite measurable partitions of X. Recalling that ), Xg, = Xx = 1 (and
) ‘ZkXEk‘ =1) and 0 < X, <1, we may infer that

SUka‘/XEde /fdl/

where the supremum on the right-hand side is taken over all real-valued
integrable functions f on X such that |f| < 1. Hence

YI(X) = sup Y, ‘ [ an [

Thus we get another proof that

/fdu

Remark 10.4. A complex-valued function f: X — C on X is integrable
with respect to a signed measure v: X — R if f; = Re f and fy = Im f are
integrable with respect to v, and the integral of f = f; +ifs: X — C with
respect to a signed measure v = v* — v : X — R is defined by

= sup)_ |v(Ex)| = [vI(X)

< sup
[f1<1

b

< sup
[fI<1

< (X))

sup — |(X).

[f1<1
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/fdu:/fldqui/deu
:/fldu+—/f1du_+i[/fgdu+—/f2du_]
:/f1du++i/f2dy+—/fldf—z'/fzdf
:/fdyt/fdf,

so that, by the inequalities in Remark 10.2 and according to the definition
of the integral with respect to || in Remark 10.3 we get, for every E € X,

/Efdv S‘/Efdzﬁ /Efdu’

< /E fldvt+ /E fldv = /E Fldiv] < suplf|1v](B).

+

By the above inequality we get sup| ;< |[fdv]| < |v|(X). However, as we
saw in Remark 10.3, such a supremum is attained by the real-valued (as a
particular case of a complex-valued) function X4t — Xa=: X — R C C for
any Hahn decomposition {A*, A~} of X with respect to v. Therefore,

/fdu

where the supremum is taken over all complex-valued integrable functions
f on X such that |f]| < 1.

sup
[fI<1

= v[(X),

10.3 Complex Measures

Now recall the definition of complex measure (cf. Problem 2.16): a complex
measure 7: X — C is a complex-valued set function on a c-algebra X of
subsets of a set X such that n = 11+ i1, where 11 = Ren: X - R and
vo = Im n: X = R, the real and imaginary parts of 7, are (finite real-valued)
signed measures on X'. We say that a positive measure pu: X -+ R dominates
a complex measure 1: X — C if |n(E)| < u(E) for every E € X (warning:
see Example 2G)). Set pu = |v1] + |v2]. Tt is clear that pu: X — R is a finite
positive measure (since it is the sum of finite positive measures), and it is
readily verified that p dominates 7. Indeed, [n(E)| < |11 (E)| + |ve(E)| <
|1 [(E) + |v2|(E) = (Jv1] + [12])(E) < oo for every E € X (cf. Examples 21
and 7A). Consider the total variation |n|: X — R of n: X — C defined along
the same line of Example 2I: for each n € N let E(n) be the collection of
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all measurable partitions of F € X' containing n sets so that | J E(n) is the
collection of all finite measurable partitions of E. For each F € X set

nl(E) =  sup Zj|77(Ej)|'

Again, following the same steps of Examples 21 and 7A, we can show that
the total variation |n|: X — R of the complex measure n: X — C is a finite
positive measure, which is the least positive measure that dominates 7 (i.e.,
if ;1 dominates 7, then |n| < p).

Remark 10.5. A real-valued function f: X — R on X is integrable with
respect to a complex measure = v1+ivy: X — C if it is integrable with
respect to both signed measures vy and vy, and the integral of an inte-
grable real-valued function f:X — R with respect to a complex measure
1 = v1+ 1 vy is defined by

/fdn :/fdul+i/fdyg.

Observe that since Xg: X — R is integrable for each E € X because v; and
vy are finite, it follows that (see Remark 10.3), for every E € X,

N(E) = ni(E) +iv(E) :/Edul —l—i/Edl/g :/Edn.

Also note that | [, fdn | < | [ fdvi|+ | [ fdve| < sup|f| (jva|+|v2|)(E)
for every F € X'. But we can get a tighter inequality as follows. Take an arbi-
trary F € X. Let g: X — R be a nonnegative measurable function, and con-
sider the collection @ (E) of all positive simple functions ¢ =3 ; Xy, for
all finite measurable partitions {E;} € |JE(n), such that 0 < ¢ < g. Note
that | [ odn| =|>, a5n(E;) | <325 a5 [n(E;)| < [ @dlnl, and therefore
| [59dn| = sweeaym) | [prdn| < sweeaym) [pednl = [gdnl. By
linearity of the integral, and recalling that f = f* — f~ and |f| = fT + f7,
where fT and f~ are nonnegative and measurable, we get

ool o ]| o

+d ~d = d FE
/Ef |n|+/Ef ) /Elfl Inl < sup | nl(E)

IA

for every F € X, so that

’/fdn‘ < sup || nl(X).
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Let {A], AT} and {A], A} be Hahn decompositions of X with respect to
the signed measures v; and vs, respectively. Consider the collection Ai; =
{AT NAS, AT N A, AT N AT, AT N A}, which is a measurable covering
of the nonempty set X. Suppose f is a real-valued integrable function on
X such that Xp < f <Xg, where Xz and Xg are characteristic functions of
measurable subsets F, G of X. If F C G C A for an arbitrary set A € Af{,

then vy (F)[? + [vo(F)[> < | [fdvn|? + | [fdve]® < [ (G)]? + |v2(G)]? by
Remark 10.3. Outcome: f FC G C A € Af; and Xp < f <Xg, then

n(F)| < ’/fdn‘ < (@)

Consider Remark 10.3. A similar argument shows that for every measurable
covering of X there is a measurable covering { E} } of X consisting of subsets
of the four sets in Af;, and so if Fj, C G}, C E}, and ka <fr SXGk, then

n(Fo)| < ‘/f dn] < 10(G)l

for every k. Again, as in Remark 10.3, for every finite measurable partition
of X there exists a finite measurable partition {Ej} of X such that

Y, | [Xeydn| = 5w 3, InE0)] = 1(x)

where the supremum is taken over all finite measurable partitions of X.
Thus, following the same argument in Remark 10.3, since ) 5, Xp, = Xx =1
(and so |ZkXEk du| =1)and 0 < XEk <1, we may infer that

SUPZk‘/XEkdU‘S sup /fdn’7

[fI<1
where the supremum on the right-hand side is taken over all real-valued inte-
grable functions f on X such that |f| < 1. So, |n|(X) = sup 3, | [Xg,dn| <

sup|fj<1 | [ fdn|. Since sup < | [ fdv| < |nl(X), it follows that

up ’/fdn‘ — l(x).

[fl1<1

Remark 10.6. A complex-valued function f = f; +i fo: X — C on X is
integrable with respect to a complex measure n = v+ ivy: X — C if the
real-valued functions f; and fo (the real and imaginary parts of f) are inte-
grable with respect to n, and the integral of an integrable function f: X — C
with respect to a complex measure 77: X — C is given by
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/fdn:/f1d77+i/f2d77
:/fldyl—f—i/fldug—H'[/fgdul—i—i/fgduz}
:/fldu1+i/f2dul+i [/flduﬁz'/frzdug}
:/fdz/1+i/fdz/2.

Note that | [ fdn|*=| [5 frdn|*+]| [5 f2 dn|? < (sup | fi]*+sup | f2]*) [ 1] (E)
for every E € X, by Remark 10.5. However, we can again get a tighter in-
equality, with sup | f1[2-+ sup /2|2 replaced by sup |f[2 = sup(|fi[>+ |f2]2).
Indeed, write [fdn = pe®, which implies that e~ [fdn = p>0. Set
g=¢ePf: X C and h = Reg: X— R, and so |h| < |g| and |g| = |f]-
Then 0 < | [fdn| = p= [e"®fdn = [gdn = Re[gdn < [Regdn. (To
verify the final inequality note, by the above displayed identity, that 0 <
Re [gdn = [g1dvi — [g2 dvs, so that [godve < [g1 dvy; thus |Refgd17} =
Re [gdn < [g1dv and, since [Re gdn= [gidn= [g1dvy +i [g1 dva, we
get Re [ Re gdn = [¢1dv1, and so Re [gdn < [ Re gdn.) Moreover, since h
is real-valued, we get by Remark 10.5 that | [fdn| < [Re gdn = [hdn =
| [hdn| < [|h]dn. So, using the same argument, | [, fdn| =|[fXgdn| <
J1hXEgdn = [,|h|dn < [, |f|dn. Therefore, for every E € X,

/fdn] < [ 191an < sl (o)
E E
so that

‘/fdn‘ < sup 7] ] (X),

and hence sup /< | [ fdv| < |n|(X), where the supremum is taken over all
complex-valued integrable functions f on X such that |f| < 1. However, as
we saw in Remark 10.5, this inequality becomes an identity even for the
particular case where the supremum is taken over the real-valued functions;
and so it holds for the general case. That is,

/fdn‘ — Inl().

sup
[fI<1

10.4 Additional Propositions

Observe that a finite positive measure (whose range lies in [0, 00)) is a par-
ticular case of a signed measure (whose range lies in R), and that a signed
measure is a particular case of a complex measure (whose range lies in C).
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However, if a positive measure is not finite, then it is not a particular case of
any of the above measures since its range is [0, +00], where the symbol +oo
(which is not a number; in particular, not real number) is included in it.
Thus a signed measure ¥ = v+ — v~ and a complex measure = vy + i vy =
vif— vy +i(vy — vy ) are always finite in the sense that |v(E)| < oo and
[n(E)| < oo for every measurable set E. So they are, in particular, o-finite
in the sense that vT, v~ I/;— 2 V;_ , U5, being all finite positive measure,
are tautologically o-finite. Let A and p be arbitrary measures (positive,
finite positive, signed, or complex) on the same o-algebra. Exactly as in
the case of positive measures (cf. Definition 7.6), A is absolutely continuous
with respect to p (notation: A\ < ) if, for an arbitrary measurable set E,
w(E) = 0 implies A(E) = 0. Similarly, as in the case of positive measures (cf.
Definition 7.9), A and p are singular (notation: A L u) if A(A) = u(B) =0
for some measurable partition {4, B} of X.

With the above extended definitions in mind, the Radon-Nikodym The-
orem (Theorem 7.8) has an immediate extension to integrable functions
(instead of nonnegative measurable functions), where the o-finite positive
measure \ is replaced by a (finite) signed measure v, as follows: Let (X, X)
be a measurable space. If v is a signed measure and u is a positive o-finite
measure, both on X, and if v is absolutely continuous with respect to u,
then there exists a unique (u-almost everywhere unique) real-valued func-
tion [ in L(X, X, pu) such that v(E) = fE fdu for each E € X. The proof
follows naturally by Theorem 7.8 for f = f*— f~ with vT(E) = [, fTdu
and v~ (E) = [ f~du (cf. Proposition 7.5). The original version in Theo-
rem 7.8 is not a particular case of the above version. However, the above
version a particular case of the following.

Proposition 10.A. Let (X,X) be a measurable space. If n is a complex
measure and p is a positive o-finite measure, both on X, and if n is ab-
solutely continuous with respect to u, then there exists a unique (u-almost
everywhere unique) complez-valued p-integrable function f on X such that

n(E):/fdu for each F € X.
E

Along the same lines, a similar approach extends the Lebesgue Decom-
position Theorem (Theorem 7.10), which in fact is a corollary of the pre-
ceding Radon—Nikodym Theorem, as follows. Let F denote either R or C
so that an F-valued measure means either a finite positive measure, or a
signed measure, or a complex measure.
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Proposition 10.B. Let (X, X) be a measurable space. If p is a positive
o-finite and n is an F-valued, both measures on X, then there is a unique
pair of F-valued measures 1, and ns on X such that ng, < p, ns L p, and

1N = Na +7s.

The Fundamental Theorem of Calculus of elementary calculus asserts that
integration and differentiation are the inverse of each other as follows. Sup-
pose, for instance, that f is a continuously differentiable real-valued function
on the interval [o, 5] C R. The derivative of the indefinite (Riemann) inte-
gral coincides with the function, f(z) = ([ f(t)dt)" for every z € [a, f],
and conversely the function is recovered by integrating its derivative f’
(which being continuous on [a, 3] is integrable), f(z) — f(a) = [ f'(t)dt
for every z € [«, f]. Perhaps it might come as no big surprise that such an
inverse relationship between differentiation and integration may be prop-
erly stated in a measure-theoretical framework; in particular, in the context
of the Lebesgue measure. As expected, the Radon-Nikodym Theorem (The-
orem 7.8 — Proposition 10.A) plays a crucial role in establishing this with
the help of the Lebesgue Decomposition Theorem (Theorem 7.10 — Propo-
sition 10.B), where the reference measure y is the Lebesgue measure.

We now proceed along the lines of the following propositions towards
the Lebesgue version of the Fundamental Theorem of Calculus. In what fol-
lows, p: R — R will denote the Lebesgue measure on the Borel o-algebra
R generated by the open sets of R, equipped with its usual topology, as in
Section 8.3 (see the remark that follows Problem 1.14). Recall that a com-
pact subset of R is precisely a closed and bounded subset of R, and also
that a Borel measure on R is a positive measure A\:f — R that assigns a
finite value to every compact set of R (i.e., A(K) < oo for every compact
K C R; cf. Problem 2.13). Tt is readily verified that the Lebesgue measure
(which assigns its finite length to every bounded interval) is a Borel mea-
sure, and also that every Borel measure is o-finite (cf. Problem 2.13 again).
Also recall that a finite positive measure on $ (which is tautologically a
Borel measure) is a particular case of a signed measure on R, which in turn
is a particular case of a complex measure on . Thus we actually have es-
sentially two distinct cases: a positive nonfinite (possibly o-finite) measure,
or an F-valued measure — complex, signed (i.e., real-valued), or positive
finite measures. Similarly, a real-valued function on R can be viewed as a
particular case of a complex-valued function on R, and so we will refer to an
F-valued function, meaning either a real-valued or a complex-valued func-
tion. Some of the next results can be stated for measures on the o-algebra
generated by the open sets of R”, or for functions on R". However, we will
consider only measures on # and functions on R.
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Let X be a nonempty open subset of F (particular case, X = R). Take a
function f: X — F, and an arbitrary point z € X. Let f’(z) be a number in
F with the following property. For every € > 0 there exists a § > 0 such that

0<l|y—z|<d implies w —fl(z)| <e.

If there exists such a number f’(z) € F, then it is called the derivative of
f at x, and the function f is said to be differentiable at x.

Proposition 10.C. Let n be an F-valued measure and let p be the Lebesgue
measure, both on R, and consider the function f:R — F defined by

f(x) =n((—oc0,x)) for every x € R.

The function f is differentiable at © € X (so that there exists f'(x) € F)
and f'(x) = « if and only if for every € > 0 there exists a § > 0 such that

TR (=) _
u(I(x)) <d implies ‘#(I(I)) 04‘ <e

for every open interval I(x) that contains .

Given an arbitrary « € I(z) = (o, 8), we say that the open interval I(z)
shrinks to x (notation: I(x) — {z}) if for every ¢ > 0 there exists an interval
Is(z) = (as,8s5) C I(x) = (o, B) containing x (i.e., a < as <z < f5 < f)
such that |85 — as| < d. Proposition 10.C suggests the following definition.
Take any point = € I(z) = (a, ). Let (Dn)(x) be a number in F with the
following property. For every € > 0 there exists a § > 0 such that

. . n(Is(x
|Bs — as| <6  implies JEIZEI% —(Dn)(z)| < e

whenever the interval I5(x) = (as,8s) C I(x) = (a, 8) contains x. If this
number (Dn)(x) € F exists, then it is called the derivative of the measure
1 at a point x with respect to Lebesgue measure p. In other words, (Dn)(x)

is the limit of Zggg; as the open interval I(z) containing z shrinks to x:

- 1 (I(x))
(Dn)(z) = leg?m} Z([(w))

for every x € R at which this limit exist. If the limit exists for every x € R,
then the function Dn: R — F defined by the preceding limit is referred to as
the derivative of the measure n with respect to Lebesgue measure p. Recall
that 7 is an F-valued measure on R, which may be a finite positive measure,
or a signed measure, or a complex measure.

The next result says that the Radon—Nikodym derivative Z—Z of a measure
1 with respect to Lebesgue measure yu coincides with the derivative Dn of
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the measure 7 with respect to Lebesgue measure p. (Warning: all measures
on R and the reference measure must be the Lebesgue measure.)

Proposition 10.D. Let i be an F-valued measure and let p be the Lebesque
measure, both on R. Suppose n is absolutely continuous with respect to
(n < p). Let g—z be the Radon—Nikodym derivative of n with respect to u.

Claim: Dn = 3—;’ (u-almost everywhere), so that
n(E) = / (Dn)du  for every E €.
E

A further form of Proposition 10.D, representing the first part of the
Fundamental Theorem of Calculus extended to Lebesgue integrals, is con-
sidered in Proposition 10.E below. It requires the notion of Lebesgue points
of an integrable function, which is defined as follows. If f:R — F is inte-
grable with respect to Lebesgue measure p, then every z € R for which

. 1 _
IIILH{;} ) /Iz |f = f@)ldp=0
is called a Lebesgue point of f.

Proposition 10.E. Let f:R — F be p-integrable, where u is the Lebesgue
measure on K. For each x in R set

F(x) :/;fdu

in F. This defines a function F:R — F, which is differentiable at every
Lebesgue point x, whose deriwative at x is F'(x) = f(z).

A function f: [, 8] — F is called absolutely continuous on the interval
[a, B] if for every € > 0 there exists a & > 0 such that

Zi(ﬂi — ;) <6 implies Zilf(/ji) — fla)| < e

for every finite disjoint collection of open intervals («;, 5;) C [, 5]. As a
particular case, if the above holds, then it holds for every collection con-
taining just one interval (i.e., 8; — o; < § implies |f(5;) — f(ay)| < e for
every of open subinterval (a;, 3;) of [a, f]), leading to the standard notion
of continuity. Thus absolute continuity trivially implies continuity.

The first part of the Fundamental Theorem of Calculus extended to
Lebesgue integrals in Proposition 10.E asserted that the derivative of the
indefinite integral coincides with the function. Conversely, the second part
of the Fundamental Theorem of Calculus extended to Lebesgue integrals
asserts that the function is recovered by integrating its derivative, as follows.
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Proposition 10.F. Take f:[a, 5] — F on the interval [a, 8] and let p be
the Lebesque measure on R. If either f is absolutely continuous (so that it
is differentiable p-almost everywhere on [, B] and f' is u-integrable), or
f is differentiable at every point of [, 8] and f' is p-integrable, then

f(x)—f(oz):/ f'du  for every =z € [a,f].

Recall again that by an F-valued function F': X — F on a nonempty set
X we mean either a complex-valued function or the particular case of a real-
valued function. Similarly, by an F-valued measure n: X — F on a o-algebra
of subsets of X we mean either a complex measure or the particular cases
of a signed measure or a finite positive measure. Since the notion of integral
has been extended in this chapter to F-valued functions and F-valued mea-
sure, the notion of the Banach space L'(X, X, n) is naturally extended from
the case of real-valued functions and positive measures, considered in Chap-
ter 5, to F-valued functions and measures. In particular, exactly the same
expression for the norm in L! holds for F-valued functions and measures
due to the upper bounds obtained in Remarks 10.1 to 10.6,

\/fdn\s/|f|d|n—||f1<oo for every  f € L'(X, X.n),

so that the results in Propositions 5.5 to 5.9 (see also Lemmas 4.4 and
4.5) still remain in force for F-valued functions and measures. The above
inequality says that the integral, as a transformation from the normed space
(LY(X,X,m),] |l;) of integrable functions to the normed space (F,| |) —
equipped with its usual norm | | — is bounded (a contraction, actually).
Since for linear transformations boundedness is equivalent to continuity,
we get the next proposition (for the particular case of F =R and n =y, a
positive measure, see the remark that precedes Problem 5.16).

Proposition 10.G. The integral [(-)dn: L*(X,X,n) = F, as a functional
between the Banach spaces L'(X,X,n) and F, is linear and continuous
(i-e., the integral is a continuous linear functional).

Extending the notion of integral of scalar-valued (either real or complex)
functions to vector-valued functions on a finite-dimensional (real or com-
plex) normed space seems quite natural and, in fact, it is quite natural.
Things become more delicate if we consider vector-valued functions on
infinite-dimensional spaces.

Let Y be a normed space and let || || denote the norm on Y (cf. Definition
5.1), either as a finite or an infinite-dimensional, real or complex, normed
space. Let Y7 be the o-algebra generated by the collection T of all open
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subsets of Y (i.e., the o-algebra generated by a topology T on Y — cf.
Proposition 1.12 — which is called a Borel o-algebra of subsets of Y — see
the remark following Problem 1.14). Now let X be a nonempty set, and let
X be a o-algebra of subsets of X. Note that in accordance with the first
paragraph of this chapter, no topology is being assigned to the set X.

A Y-valued function F: X —»Y on X is said to be measurable if the in-
verse image of sets in Yy are sets in X (i.e., F~}(E) € X for every E € Vr
— cf. Problem 1.8). Consider the real-valued function f:X — R defined
by f(z)=|F(z)| for every x € X. When we say that ||F(-)| is measur-
able, we mean in the sense of Definition 1.2, which coincides with the above
sense (inverse image of sets in the Borel algebra R lie in X — cf. Problem
1.8 again). Let u: X — R be a positive measure on the o-algebra X" of sub-
sets of the nonempty set X, and consider a measure space (X, X, ). Let
L(X,Y)=L(X,X,1;Y) denote the collection of all those measurable func-
tions F': X —Y for which the function ||F(-)|: X — R is integrable; that is,
for which ||F(-)|| is measurable and [||F(-)|| dp < oc.

Proposition 10.H. Let (X, X, 1) be a measure space and let Y be a normed
space. (a) If a Y-valued function F: X —Y on X is measurable, then the
real-valued function ||F(:)]: X — R on X is also measurable. (b) The set
L(X,Y) is a linear space, and the function || ||: L(X,Y) — R defined by

171 = [IFOI i for every  F e £(X.Y)

is a seminorm on the linear space L(X,Y).

Compare with Lemma 4.5 and Proposition 5.4. Note that we are using
the same notation || || for the norm || F(z)|]y of F(z) on the linear space Y
for each x € X, and for the seminorm ||F||z(x,y) of ' on the linear space
L(X,Y). Now suppose Y is a Banach space (i.e., a complete normed space
— see the paragraph that precedes Proposition 5.4; also see Theorem 5.9).

A Banach-space-valued function F: X —Y on X is said to be Bochner
integrable if it lies in £(X,Y) (i.e., F is measurable and [||F(-)|| dp < o)
and its range F'(X) is separable (i.e., F(X) C Y has a countable dense sub-
set, which means that F'(X) has a countable subset whose closure coincides
with the closure of F(X) in Y — the notion of denseness and separabil-
ity will be discussed in the first section of the next chapter). Since F(X)
is separable whenever Y is (i.e., whenever Y has a countable dense subset;
equivalently, if Y has a countable subset whose closure coincides with Y'),
it follows that if Y is a separable Banach space, then F: X —Y is Bochner
integrable if and only if F € L(X,Y). It is worth noting that F equipped
with its usual norm (as well as F” equipped with any norm) is a separable
Banach space. Just as in Sections 5.1 and 5.2, consider the equivalence class
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[F] of all functions in £(X,Y") that are equal to F' pi-a.e., and denote the set
of these equivalence classes by L'(X,Y) = LY (X, X, ;Y). As in Lemma
5.8, the seminorm of Proposition 10.H becomes a norm | ||; on L*(X,Y),

11 = IIE = /IIF(')IIdu,

which does not depend on the exemplar F in [F], so that (L'(X,Y),] ;)
(or simply L*(X,Y’) when the norm || ||; is clear in the context) is a normed
space. A function &: X —Y is a simple function if its range is finite, and
it is an integrable simple function if it is simple and lies in £(X,Y) (i.e.,
#P(X) < oo, P is measurable, and [||B(-)|| du < 00).

Proposition 10.1. If (X, X, u) is a measure space and Y is a Banach space,
then LY(X,Y) is a Banach space. Moreover, if Y is a separable Banach
space, then the collection of all Y-valued integrable simple functions on X
is a dense linear manifold of L*(X,Y).

The first part of the Proposition 10.1 is the counterpart of Theorem 5.9;
the second part (which extends Problem 5.4) allows us to define an integral
for functions in L'(X,Y). Let Y be a separable Banach space and write a
measurable simple function @ as a weighted sum of characteristic functions
Xp;: X =Y of a finite measurable partition {E;} of X with a finite set of
distinct elements {a;} from Y (the finite set {a;} is the range of @), say

n
¢ =3 a XE;
i=1

and define the integral of @ in Y with respect to p as in Definition 3.1:

[odun = ante
=1

which is a vector in Y whenever @ € L'(X,Y). Since the collection of all
Y-valued integrable simple functions on X is a dense linear manifold of
LY(X,Y), every F € L}(X,Y) is the limit (with respect to the norm on
L'(X,Y)) of a sequence {@;} of integrable simple functions in L}(X,Y).
That is, for every F' € L*(X,Y), there exists a sequence {®;} such that
|®r — F|l; — 0 as k — oco. In other words, a Bochner integrable function
F: X —Y of X into a separable Banach space Y (i.e., F € L'(X,Y), where
Y is a separable Banach space) is, according to Proposition 10.1, the limit in
L' (X,Y) of a sequence of integrable simple functions in L!(X,Y); that is,

F = hm@k
k
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This leads to the next result, which defines the integral of F' as the limit in
Y of the integrals of ®;: for each F in L'(X,Y) there exists a unique vector
s(F) in Y, denoted by s(F) = [F du, such that || [&r du — s(F)|| = 0 as
k — oo (where || || is the norm on Y'), which is written as

/qu :/liinékdu :hin/ékdu.

Such a limit in Y is ensured by the next proposition. Indeed, since the inte-
gral transformation [(-)dp: LY(X,Y) =Y is linear and continuous (which
means that it is linear and bounded, as in Proposition 10.J below), and
since F' = limy, @, in L'(X,Y), we get [Fdp = [limy, @ du = limy, [P, dp
(see e.g., [26, Corollary 3.8 and Theorem 4.14]).

Proposition 10.J. If (X,X,u) is a measure space and Y is a separa-
ble Banach space, then there exists a unique bounded linear transformation
J()du: LN X,Y) =Y such that [®du =Y., a;pu(E;) for every integrable
simple function & =3 aiXp, € LY(X,Y). Moreover,

H/quH < [1POldu = 171,

Thus the integral [(-)du:L'(X,Y) =Y from the Banach space L*(X,Y)
to the separable Banach space Y is a continuous linear transformation.

The value of this bounded linear transformation from L!'(X,Y) to a
separable Banach space Y, namely, f Fdy, is called the Bochner integral of
F: X —Y with respect to the positive measure u. Extensions from positive
to F-valued measures follow essentially the same path of Proposition 10.G.

For an exposition on further notions of integral, extended in a differ-
ent direction from what has been done here (also referred to as generalized
Riemann integral, Kurzweil-Henstock, or gauge integral), restricted to func-
tions on the real line, that corrects some defects in the classical Riemann
theory simplifying and extending the Lebesgue theory, see, for instance, [5].

Notes: The whole chapter, in particular the propositions in Section 10.4,
comprise a set of basic results on integration that will be required in the
sequel. The F-valued versions of the Radon—Nikodym Theorem and of the
Lebesgue Decomposition Theorem in Propositions 10.A and 10.B are natu-
ral and immediate consequences of their positive versions in Theorems 7.8
and 7.10 (e.g., also see [36, Theorem 6.10]). For the discussion on the Funda-
mental Theorem of Calculus extended to Lebesgue integrals, along the lines
we have approached here, the reader is referred to [36, Chapter 7]. In partic-
ular, see [36, Theorems 7.1, 7.8, and 7.11] for Propositions 10.C, 10.D, and
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10.E; and [36, Theorems 7.20, 7.21] for Proposition 10.F. Since the integral
remains linear for F-valued functions and measures (naturally extending
the result for real-valued functions and positive measures of Lemma 4.5 and
Section 5.1), it follows that Proposition 10.G is an immediate consequence
of the fact that for linear transformations boundedness coincides with con-
tinuity (see e.g., [26, Theorem 4.14]). Propositions 10.H, 10.I, and 10.J lead
to the notion of Bochner integral of Banach-space-valued functions (see e.g.,
[8, Theorems 17.8, 17.9, 17.11, 17.13, 17.14]).

Suggested Reading

Berberian [7], Brown and Pearcy [8], Cohn [10], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36], Weir [42].
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Borel Measure

11.1 Topological Spaces

A topological space was defined in Problem 1.12: a set equipped with a
topology. A topology on a set X is a collection T of subsets of X satisfying
the following axioms: (i) the whole set X and the empty set @ lie in T, (ii)
finite intersections of sets in 7 lie in 7, and (iii) arbitrary unions of sets in
T lie in 7. The sets in T are called the open sets of X (with respect to T).

A metric space is a set equipped with a metric. A metric in a set X
is a function d: X xX — R such that for every z,y,z € X, (i) d(z,y) >0
and d(z,z) =0, (ii) d(x,y) =0 if and only if z =y, (ili) d(z,y) = d(y, x),
and (iv) d(z,y) < d(z,z) +d(z,y) (the triangle inequality) — these are
the metric axioms. (If d: X x X — R satisfies axioms (i), (iii), and (iv), but
not necessarily axiom (ii), then it is called a pseudometric.) An open ball
(centered at zp € X with radius ¢) in a metric space X is the set B.(z) =
{r € X:d(x,x0) <e}. A set Uis open in a metric space X if U includes a
nonempty open ball centered at each one of its points. Open balls are open
sets in a metric space. The collection 7 of all open sets in a metric space
X satisfies the three axioms of topology; this is referred to as the metric
topology on X, or the topology induced (or generated, or determined) by a
metric d. (Whenever we refer to the topology of a metric space, it will be
understood that this is the metric topology, unless otherwise stated.) Thus
every metric space is a topological space, where the topology (the metric
topology) is that induced by the metric. This topology T induced by the
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metric d, and the topological space obtained by equipping X with 7, are
said to be metrized by d. If X is a topological space with topology 7, and if
there exists a metric d on X that metrizes T (i.e., if X is a metric space with
respect to a metric d, and if the collection of all open sets in X with respect
to d coincides with 7), then the topological space X and the topology T
are called metrizable. The notion of topological space is broader than the
notion of metric space. Every metric space is a topological space, but the
converse fails: there are topological spaces that are not metrizable.

Definition 11.1. Let X be a topological space (i.e., a nonempty set X
equipped with a topology T, whose elements are the open subsets of X).

(a) Aset V C X is closed if its complement X\V is open.

(b) The closure A~ of A C X is the smallest closed subset of X that includes
A. (The intersection of all closed subsets of X that include A.)

(¢) Aset AC X is dense if A== X.
(d) A topological space is separable if it has a countable dense subset.

(e) The interior A° of A C X is the largest open subset of X included in
A. (The union of all open subsets of X included in A.)

(f) A covering of a set A C X is a collection of subsets of X whose union
includes A. An open covering of A is a covering of A consisting entirely
of open subsets of X.

(g) A set K C X is compact if every open covering of K includes a finite
subcovering. If X is a compact set itself, then X is a compact space.

(h) A set in X is o-compact if it is a countable union of compact sets.

(i) Aset A C X is relatively compact (or conditionally compact) if its closure
A~ is compact.

(j) A base (or a topological base) for X is a subcollection of T that covers
each open subset of X (i.e., covers each set in 7). Equivalently, B C T
is a base for a topology T of subsets of X if, for each U € T and each
x €U thereisa G e Bwithx e GCU.

(k) A neighborhood of a point x in X is any subset of X that includes an
open set which contains . An open neighborhood of x € X is any open
subset of X that contains z.

(¢) A Hausdorff space is a topological space X such that for every pair of
distinct points « and y in X there exist neighborhoods IV, and NV, of =
and y, respectively, such that N, N N, = @.

(m) A locally compact space is a topological space X such that every point
of X has a compact neighborhood.
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The concepts of closed and open are dual of each other in the sense that
a set is open if and only if its complement is closed, and vice versa. The
three axioms of topology say that @ and X are open, intersection of a finite
collection of open sets is open, and union of an arbitrary collection of open
sets is open. It is readily verified that the dual result for closed sets reads
as follows: @ and X are closed, union of a finite collection of closed sets is
closed, and intersection of an arbitrary collection of closed sets is closed.
If a set is both open and closed, then its is said to be a clopen set. The
standard properties stated in the next lemma will be required in the sequel.

Lemma 11.2. Let A, B, G, U, V, K be subsets of a topological space X.

(a) A closed subset of a compact set is compact.

(b) If AC B and B~ is compact, then A~ is compact.

(¢c) A nonempty subset of a topological space is open if and only if it is
(or includes) a neighborhood of each one of its points.

(d) Ewvery metric space is Hausdorff.

(e) Ewvery singleton in a Hausdorff space is closed.

() If K is compact, X is Hausdorff, and x € X\K, then there is an open
set U with K CU and a neighborhood N, of x such that UNN, =&.

(g) Every compact subset of a Hausdorff space is closed.

(h) If X is Hausdorff, V is closed, and K is compact, then VNK is
compact.

(i) If intersection of an infinite (not necessarily countable) collection of
compact subsets of a Hausdorff space is empty, then there is a finite
subcollection whose intersection is also empty.

Proof. Let X be topological space.

(a) If VC K, where K is compact and V is closed, then V is compact. In
fact, suppose V is a closed subset of a compact set K C X. Take an arbitrary
covering of V, say U, consisting of open subsets of X. So U/ U{X\V} is an
open covering of K. Since K is compact, this covering includes a finite
subcovering, say U, so that U'\{X\V} CU is a finite subcovering of V.
Therefore, every open covering of V' has a finite subcovering.

(b) This is a direct consequence of (a), since A C B implies A~ C B™.

(c) If AC X is open and nonempty, then A trivially is (and so A trivially
includes) an open neighborhood of each one of its points. Conversely, take
A C X. If A includes (or if A is) a neighborhood N, of every a € A, then
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there is an open set U, C N, C A such that a € U, for every a € A. Since
A=, caUa, it follows that A is open (cf. axiom (iii) of a topological space).

(d) Tt is readily verified (by the triangle inequality) that for every pair of
distinct points x and y in a metric space X there are nonempty open balls
B.(x) and B,(y) centered at x and y (which clearly are neighborhoods of
z and y), respectively, such that B.(z) N B,(y) = @.

(e) Take an arbitrary € X, consider the singleton {z} C X and its comple-
ment X\{z} C X, and take an arbitrary y € X\{z}. If X is Hausdorff, then
there exists a neighborhood Ny of Y such that
N, € X\{z}. Hence there exists an open U, C X\{z} such that y € U,.
Thus X \{z} is itself a neighborhood of each one of its points, and so X \{z}
is open by item (c).

(f) Let K be a compact proper subset of X. If K = &, then the result is
trivially verified for U = @. Thus suppose K # @ and take an arbitrary
point  in X\ K. Since z is distinct from every point in K, it follows that
for every y € K there exists an open neighborhood K, of y and an open
neighborhood X, of x such that K, N X, = & (reason: X is a Hausdorff
space). But K C (J, ¢ x Ky so that {Ky}yex is a covering of K consisting of
nonempty open subsets of X. If K is compact, then there is a finite subset
of K, say {y;}i;, such that K C U = {J;_, K,,, which is open (each K,
is open). Set N, = ﬂ?leyi, which is a neighborhood of z (in fact an open
neighborhood of z since it is a finite intersection of open neighborhoods X,
of z). Since K, N X, =@, it follows that K, N N, = @, for each i, and
therefore (|J;_, Ky,) N N, = @. That is, U NN, = @.

(g) Let K be a compact subset of a Hausdorff space X. If either K = @ or
K = X, then K is trivially closed in X. Thus suppose @ # K # X. Accord-
ing to (f), for every x € X\K there exists an open set U with K C U and
a (open) neighborhood N, of x such that U N N, = @. Hence N, C X\ K.
Thus X\ K includes a (open) neighborhood of each one of its points, which
means by (c) that X\ K is open, and so K is closed.

(h) If X is Hausdorff, then V N K is compact whenever K is compact and
V' is closed. Indeed, let K be a compact subset and V a closed subset of a
Hausdorff space. By item (g), K is closed. Thus V' N K is a closed subset of
the compact K, and therefore compact itself according to (a).

(i) If an infinite collection {K.,} of compacts sets in a Hausdorff space X
is such that [\, K, = @, then there exists a finite subcollection {K;} of
{K,} such that (; K; = @. Indeed, set U, = X\K,, which is open if X is
Hausdorff according to (g). Take an arbitrary K from the collection {K }.
If ﬂ,y K., = @, then there is no point of K that belongs to every K. Hence
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{U,} is an open covering of K. Since K is compact, there is a finite sub-
collection {U;} of {U,} such that K C|J,U;. Thus X\ {J,U; € X\K, so
that (), K; =, X\Ui= X\, U; € X\K. Then K N, K; = @. O

Remarks on Boundedness: (a) METRIC SPACES. A set B in a metric space
(X, d) is bounded if sup, ,cpd(z,y) < oo (i.e., if it has a finite diameter);
and B is totally bounded if for every € > 0 there exists a finite e-net B,
for B (a subset B, of B is an e-net for B if for every point  of B there
exists a point y in B, such that d(x,y) < ). It is readily verified that total
boundedness implies boundedness, but the converse fails (the unit ball in £?
equipped with the usual metric is bounded but not totally bounded). The
Compactness Theorem says that in a metric space, a set is compact if and
only if it is complete and totally bounded (see, e.g., [26, Corollary 3.81] — a
set in a metric space is complete if every Cauchy sequence in it converges to
a point in it — Section 5.1). Since metric spaces are Hausdorff, compact sets
in a metric space are closed (Lemma 11.2(d,g)). Therefore, compact sets in
a metric space are closed and bounded. The Heine—Borel Theorem states the
converse for the metric space F" (where F denotes either R or C) equipped
with their usual metric — see, e.g., [26, Theorem 3.83 and Corollary 4.32]):
i F", compact means closed and bounded. Since F" is a complete metric
space, it follows by the Compactness Theorem that what the Heine—Borel
Theorem says is that in F boundedness implies total boundedness (i.e., in
F" boundedness coincides with total boundedness). Note that the metric
(thus Hausdorff) space F™ is locally compact (but the metric space P is
not). In fact, F" is a prototype of a locally compact Hausdorff space.

(b) LocarLrLy CompacT SPACES. In light of these facts, a set in a locally com-
pact space is said to be bounded (or topologically bounded) if it is included in
a compact set. So, also in this case, every compact set is bounded (i.e., topo-
logically bounded); actually, every relatively compact set is bounded. Thus,
in this case, a closed and bounded set is a closed set included in a compact
set, and hence (by Lemma 11.2(a)) a closed and bounded set is compact.
The converse holds in a locally compact Hausdorff space, where compact
sets are closed (Lemma 11.2(g)): in a locally compact Hausdorff space, com-
pact means closed and bounded (where bounded means relatively compact
— Lemma 11.2(b)). A set in a locally compact space is o-bounded if it is in-
cluded in a o-compact set. Finally, note that in a locally compact complete
metric space, topologically bounded means totally bounded. Indeed, B to-
tally bounded = B~ closed and totally bounded <= B compact (reason:
in a complete metric space a set is complete if and only if it closed) = B
topologically bounded = B~ closed and topologically bounded <= B~
compact = B~ totally bounded = B totally bounded.



206 11. Borel Measure

Remarks on Denseness: It is readily verified (cf. Proposition 11.B) that if a
topological space has a countable base, then it is separable. The converse is
not true in general. Example: if X is uncountable with topology consisting
of the empty set and the complements of the finite sets, then X is separable
but has no countable base — cf. [21, p. 49]. However, the converse holds in
a metric space: a metric space is separable if and only if it has a countable
base (see, e.g., [26, Theorem 3.35]).

Theorem 11.3. If K C U, where K is compact and U is open in a locally
compact Hausdorff space X, then there exists an open set G with compact
closure such that

KCGCG CU.

In particular, for each x € U there exists an open neighborhood N of x and
a compact C, such that N C C C U.

Proof. Since X is locally compact, every point of X, in particular, every
point x of K C X has a compact neighborhood, and therefore an open neigh-
borhood B, with a compact closure. Thus, K C |, B,. Since K is compact,
this open covering has a finite subcovering {B;} such that K C |J, B;. Set
B =, Bi, so that B is open and K C B, and hence B~ = J, B; (recall:
the closure of a finite union of sets coincides with the union of their clo-
sures). Since each B; is compact, and since a finite union of compact sets
is clearly compact, it follows that B~ is compact. If the open set U is such
that U = X, then the result is verified with G = B (i.e., K C BC B~ C X).
Thus suppose U C X, and take an arbitrary y in the closed set V = X\U.
Since K C U, it follows that y € X\ K. Thus, since X is Hausdorff, Lemma
11.2(f) ensures that there exists an open set U, with K C U, and y ¢ U, .
Set K, = V.Nn B~ NU,~, which is compact by Lemma 11.2 (h) — B~ is
compact and X is Hausdorff. Since {K},cx\v is a collection of compact
sets such that (), K, = @ (because (), U, = @ — if there exists z € X\U
such that z € (), Uy, then z € U, which is a contradiction), it follows by
Lemma 11.2 (i) that there exists a finite subcollection, say, {K;} such that
N, Ki = @. Hence (X\U)N B~ N, U/” = @sothat B~ N(),U;” C U.Re-
call that K C BN, U;. Thus, by setting G = BN (), U/, which is open
(finite intersection of open sets), we get G~ C B~ N[, U;”, and so

KCGCG CU.

In particular, since a singleton is clearly compact, the above inclusion en-
sures that {} C N C C CU for every z € U, where {z} = K is compact,
N = @G is an open neighborhood of x, and C = G~ is compact. O

Remarks on Borel o-algebras: Let X be a topological space with topology
T. Let X5 be the o-algebra generated by the topology 7. That is, X7 is the
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smallest o-algebra of subsets of X that includes 7. The elements of X (i.e.,
the Xr-measurable sets) are referred to as the Borel sets of X — see the
remark that follows Problem 1.14. A Borel o-algebra of subsets of X is any
o-algebra A of subsets of X that includes X7. Observe that all open and all
closed subsets of X are Borel sets (i.e., they belong to the Borel o-algebra
X7). A subset of X is a G5 (read: G-delta) if it is a countable intersection
of open subsets of X, and an F, (read: F-sigma) if it is a countable union
of closed subsets of X. These are also Borel sets. In a Hausdorff space, all
compact sets are Borel sets, since they are closed by Lemma 11.2(g).

A function F' between topological spaces X and Y is continuous if the
inverse image of open (closed) sets is open (closed), and measurable if the
inverse image of open (closed) sets is measurable (with respect to a o-algebra
X of subsets of X). In other words, if X and Y are topological spaces with
topologies Tx and Ty, and if F': X = Y is a function of X into Y, then

F:X — Y is continuwous <= F~}(U) € Tx for every Ue Ty
and, if X' is an arbitrary o-algebra of subsets of X, then
F:X —Y is X-measurable <= F~1(U) € X for every U€ Ty.

Theorem 11.4(b) says that a measurable function is precisely a measurable
transformation (in the sense of Problem 1.8) if Y = Y7 (i.e., if Y is the
Borel o-algebra Y1 of subsets of Y generated by the topology Ty on Y):

FYU)e X forevery U € Ty < F~YE)e€ X for every E € V7.

In particular, if A O X7 is a Borel o-algebra of subsets of X (where X7 is
the o-algebra generated by a topology Tx on X), and if Ty is a topology
on Y, then a function F: X — Y is Borel measurable if it is A-measurable
(ie., if F~1(U) € A for every U € Ty). So the implication below is clear.

Continuous functions are Borel measurable.

(Since Tx C X7, F~1(U) € Tx for every U € Ty implies F~1(U) € X7 C A
for every U € Ty.) A Borel function is simply a Borel measurable function.

Theorem 11.4. Let X be a o-algebra of subsets of a set X, let Y and Z
be topological spaces, and consider the functions F: X —Y and G:Y — Z.
(a) The collection Y ={E CY: F~Y(E) € X} is a o-algebra.

(b) If F is X-measurable, then Y7 C Y (i.e., Y is a Borel o-algebra). In other
words, if F is X-measurable, then F~Y(E) € X for every E € Y.
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(¢) If Y =R (equipped with the usual topology), then F is X-measurable
if and only if F~'((a,0)) € X for every a € R.

(d) If G is a Borel function and F is X-measurable, then the composition
H=GoF:X— Z is X-measurable.

(e) If G is continuous and F is X-measurable, then the composition H =
GoF: X — Z is X-measurable.

Proof. Let X be a o-algebra of subsets of X.

(a) Observe that F~1(@) = @ and F~}(Y) = X. Moreover, F~1(Y\E) =
X\F~Y(E) for every E€ X and F~'(U, E,) = U, F'(E,) for every
countable collection {E, } of X-measurable sets. Thus ) is a o-algebra ac-
cording to Definition 1.1.

(b) If F is X-measurable (inverse image of open sets are measurable), then
the o-algebra Y of item (a) includes all open sets of Y. That is, it includes
the topology Ty on Y: Ty C ). Thus, since ) is a o-algebra that includes
Ty, and Y7 is the smallest o-algebra that includes Ty (i.e., the o-algebra
generated by the topology Ty ), it follows that Y7 C ).

(¢) Let Y =R equipped with the usual topology, take F: X — Y, and set
Y={ECY: F1(E) € X}. Take an arbitrary o € R. Suppose F'~!(a, )
lies in X, so that (o, c0) lies in Y. Let {a,,} be a real-valued sequence con-
verging to o and such that o, < « for each n. Since (i) each (o, 00) € Y, (ii)
(=00, ) =, (=00, o] = J,, Y\ (ap, 00), and (iii) Y is a o-algebra accord-
ing to (a), it follows that (—oo,a) € Y. So («, ) = (=00, ) N (a,0) € Y
for every g € R, which means that every interval of the real line is Y-
measurable. Since every open set of R is a countable union of open inter-
vals — every separable metric space has a countable topological base of
open balls (see, e.g., [26, Corollary 3.16 and Theorem 3.35]), and since Y
is a o-algebra, it follows that every open set in R lies in ), and therefore,
according to the definition of Y, F~1(U) € X for every open set U C R,
which means that F' is X-measurable. Outcome: if F~1(a,00) € X, then F
is X-measurable. The converse is trivial since (a,00) is open in Y: if F' is
X-measurable, then F~!(a,00) € X.

(d) Take U € Tz; an arbitrary open subset U of Z. If G:Y — Z is a Borel
function, then G=1(U) € Y7, where Y1 is the Borel o-algebra generated by
the topology Ty. Thus, if F is X-measurable, then F~}(G~1(U)) € X by
(b). f H=GoF:X— Z, then H-1(C) = F~1(G71(C)) for every C C Z.
(Indeed, z € H-}(C) & H(z) e C & G(F(z)) e C & F(z) e G7(0) &
r € F71(G71(C)).) Hence H=}(U) € X, and so H is X-measurable.

(e) This is a particular case of (d), since every continuous function is a Borel
function (i.e., continuous functions are Borel measurable). O
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11.2 Regular Measures

Set X =R, the real line equipped with its usual (metric) topology, and
take X7= R, the Borel algebra (i.e., the o-algebra generated by the open
intervals, which coincides with the o-algebra generated by the topology of
R — the o-algebra of subsets of R generated by the open sets of R; see the
remark following Problem 1.14). When dealing with a measure u: % — R on
the Borel algebra i we always assume the usual topology of R. If u(K) <oo
for every compact (i.e., closed and bounded) subset K of R, then p is called
a Borel measure (note: K € R since closed subsets of R lie in ; see Problem
2.13). We generalize the notion of Borel measure from the concrete space R
to general topological spaces and, in particular, to Hausdorff spaces.

Remarks on Borel Measures: Let X be the Borel o-algebra of subsets of a
topological space X generated by a topology 7 on X. Every closed subset of
X is a Borel set. Suppose X is Hausdorff. Thus every compact set is a Borel
set (Lemma 11.2(g)). Take any Borel o-algebra A of subsets of X (i.e., any
o-algebra A that includes X'r; in particular, X7 itself, or its completion). A
Borel measure is a (positive) measure p: A — R on A such that p(K) < oo
for every compact set K € A. Every finite measure on a Borel o-algebra A
is a Borel measure. If X is o-compact, then every Borel measure is o-finite.

Let A be a Borel o-algebra of subsets of a Hausdorff space X (where
compact sets are Borel sets, so that if U is an open subset of X and K is a
compact subset of X, then U and K lie in A). An arbitrary set E in A is
outer reqular with respect to a measure pu: A — R on A if

pw(E) = inf {u(U): E C U, U openin X},
and inner reqular with respect to a measure u: A — R on A if
1(E) = sup {u(K): K C E, K compact in X }.

A set FE in A is regular with respect to p if it is both outer and inner regular
with respect to p. A measure p on a Borel o-algebra A is regular (outer
reqular, inner regular) if every set FE in A is regular (outer regular, inner
regular) with respect to it. A set E in A is quasiregular with respect to u
if it is outer regular, and, if it is open, then it is inner regular; that is,

w(E) =sup {u(K): K C E, K compact in X} if F is open in X.

The difference between regular and quasiregular is that a nonopen quasireg-
ular set may not be inner regular. A measure p on a Borel o-algebra A is
quasireqular if every F set in A is quasiregular with respect to it. Clearly,
regularity implies quasiregularity: a regular measure is quasiregular.
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Lemma 11.5. Take the Borel o-algebra Xy of subsets of a Hausdorff space
X. All sets below are Borel sets, and measures are Borel measures on Xr.

(a) A set of infinite measure is outer regular.
b) A set of measure zero is inner regular.

c) An open set is outer reqular.

)
d) A compact set is inner regular.

f) A finite intersection of compact sets is inner regular.

(

(

(

(e) A countable union of open sets is outer regular.
(f)

(g) A finite intersection of open sets is outer regular.

The analogous result for inner regular sets reads: A finite union of compact
sets is inner regular. However, more is true as stated in (i).

(h) A countable intersection of open sets of finite measure is outer reqular.
(i) A countable union of compact sets is inner reqular.

(j) A finite disjoint union of inner reqular sets of finite measure is inner
regular.

The analogous result for outer regular sets reads: A finite disjoint union of
outer reqular sets of finite measure is outer reqular. However, more is true.

(k) A countable union of outer regular sets is outer regular.

() A countable intersection of inner regular sets of finite measure is inner
regular.

(m) An increasing countable union of inner reqular sets is inner reqular.

(n) A decreasing countable intersection of outer regular sets of finite mea-
sure is outer regular.

Proof. Consider the definitions of outer and inner regular Borel sets with
respect to a Borel measure p on Xy

(a) This is immediate by the definition of outer regular sets: X is an open
Borel set, and p(F) = co implies u(X) = oo for every Borel set £ C X.

(b) This is the dual of item (a) since @ is a compact Borel set with p(@) = 0,
and @ C F for every Borel set E.

(c) This is trivial by the definition of outer regular sets (set E = U).

(d) This is the dual of item (c). Also trivial by the definition of inner regular
sets (set E = K).
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(e) A countable union of Borel sets is a Borel set, an arbitrary union of
open sets is an open set, and open sets are outer regular by (c).

(f) This is the dual of item (e). A countable intersection of Borel sets is a
Borel set, a finite intersection of compact sets is a compact set, and compact
sets are inner regular by (d).

(g) A countable intersection of Borel sets is a Borel set, a finite intersection
of open sets is an open set, and open sets are outer regular by (c).

(h) Let { Ex } 32, be a sequence of open sets with p(Ej) < oo. Take a sequence
{U,}52, of open sets with U,, = (i, E;. Set E = (Ny—y Ex = Noey Uns
which is a Borel set. Since {U, }22 ;is a decreasing sequence with p(U,) <

miny <;<, u(E;) < oo for each n, it follows by Proposition 2.2(d) that

p(E) = lim u(Un),

where {U,}22 is a decreasing sequence of open sets such that E C U,.
This implies that F is outer regular.

(i) This is the dual of item (h). Let { E}}2, be a sequence of compact sets.
Take a sequence {K,}52 of compact sets with K,, = |J_, E;. Set E =
Urey Ex = U,~; K,,, which is a Borel set. Since {K,,}22,is an increasing
sequence, it follows by Proposition 2.2(c) that

p(E) = lim p(Ky),

where { K, }52 , is an increasing sequence of compact sets such that K,, C E.
This implies that F is inner regular.

(j) Take an arbitrary € > 0. If {E;}, is a finite collection of disjoint inner
regular Borel sets of finite measure, then there is a compact set K; C E;
such that u(E;) < p(K;)+ & for each i. Set K= J!_, K;, which is compact
(finite union of compact sets), and E = |J;_; E;. These are Borel sets such
that K C E. Since {E;}}_; is a disjoint collection,

E) =3 () < 3 p(Ki) +& = p(K) + e,

which implies that F is inner regular.

(k) Again take an arbitrary € > 0. If {E}}7°, is a sequence of outer reg-
ular Borel sets, then there exists an open set Uy such that Ej C U, and
pw(Ur) < p(Eg) + o for each k. Set U = Ure; Uk, which is open, and
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E = U;Z, Ex. These are Borel sets (countable union of Borel sets) such
that E C U. If u(E) = oo, then E is outer regular by (c). If u(E) < oo, then

u(U) = u(B) = p(U\B) < (| Ui\Ex.)

k=1
S WICAVIES ST <3 -e
k=1 k=1 k=1

Thus u(U) < u(E) + &, which implies that F is outer regular.

(¢) This is the dual of item (k). Take an arbitrary e > 0. If {E}}72, is a se-
quence of inner regular Borel sets such that u(Ey) < oo for every k, then
there exists a compact set K}, such that Ky C Ey and p(Fy) < p(Ky) + 2%
for each k. Set K = (-, K, which is compact, and E = [, Ex. These
are Borel sets (countable intersection of Borel sets) such that K C E. More-
over, since E\K = (r—; Ex\ Nie; Ki) C Ure 1 (Ex\Ky), we get

w(E) = u(K) = p(B\K) < (UEk\Kk)

SZ (Ex\Ky) :Z 1(Ky)) SZ%:

k=1 k=1
Thus u(E) < u(K) + €, which implies that E is inner regular.

(m) Suppose {Ej}72, is a increasing sequence of inner regular Borel sets.
Set E = {J,—, E), which is a Borel set. If u(E) = 0, then F is inner regular
by item (b). Thus suppose u(E) > 0. Take any real number § such that
0 < d < p(E). Since {Ex}32, is increasing, it follows that § < sup, u(Ey) =
limy, (Ex) = p(Uz—, Ex) = p(E) — cf. Proposition 2.2(c). Since each Ej, is
inner regular (and recalling again that {E};}72, is increasing), there exists
a compact set K such that K C sup, By = ;o Ex = F and § < p(K) <
supy #(Ex) = p(E). Summing up: for every 0 < § < p(E) there exists a
compact set K such that K C E and

6 < u(K) < p(E).
This implies that F is inner regular.

(n) This is the dual of item (m). Suppose { Ej } 72 ; is a decreasing sequence of
outer regular Borel sets with p(Ej) < co. Set E = (-, E, which is a Borel
set with u(E) < co. Take any 6 > 0 such that p(F) < 6. Since {Ex}32,
is decreasing, w(E) = p(Npey Ex) = limg(Ey) = infy p(Er) < 6 — cf.
Proposition 2.2(d). Since each Ej, is outer regular (and since {Ep}72, is
decreasing), there is an open set U such that E = ﬂZ’;l E,=inf, B, CU
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and p(E) = infy, p(Fy) < p(U) < 4. Summing up: for every u(E) < d there
is an open set U such that £ C U and

u(E) <uU) <0

This implies that E is outer regular. O

Theorem 11.6. Let p be a Borel measure on the Borel o-algebra X1 of
subsets of a locally compact Hausdorff space X. The following assertions
are pairuise equivalent.

(a) Every compact set is outer reqular.

(

b)
(¢) Every bounded set is regular.
(d)

If X is o-compact, then the above equivalent assertions are also equivalent
to the following assertion.

FEvery bounded open set is inner reqular.

Every o-bounded set is regqular.

(e) The Borel measure pu: X7 — R is reqular.

Proof. Sets are subsets of a locally compact Hausdorff space (where compact
means closed and bounded, and bounded means relatively compact), and p
is a Borel measure, thus finite at every Borel set included in a compact set.

(a) =(b) Take an arbitrary € > 0. Let U be an arbitrary bounded open set.
Thus U C K for some compact set K. Note that K\U is compact (intersec-
tion of a compact with a closed set in a Hausdorff space — Lemma 11.2(h)).
If every compact set is outer regular, then K\U is outer regular, so that
there exists an open set G such that K\U C G and u(G) < u(K\U) + €.
Note that K\G is compact and that K\G C K\(K\U) = U. Thus

w(U) = p(K\G) = p(U\(K\G)) = p(U N G) = p(G N (K\[K\UJ)
< p(G\[K\U]) = u(G) — p(K\U) < e.

Hence u(U) < u(K\G) + ¢, which implies that U is inner regular.

(b) =(a) Dually, again take an arbitrary € > 0. Let K be an arbitrary com-
pact set. Let U be a bounded open set such that K C U. Note that U\K is
a bounded open set (intersection of a bounded open set with an open set). If
every bounded open set is inner regular, then U\ K is inner regular, so that
there exists a compact set C' such that C' C U\K and u(U\K) < u(C) +e.
Note that U\C is open and that K = U\(U\K) C U\C'. Thus

u(U\C) = w(K) = p((U\NC)\K) = u((U\NK)\C)
< WU\K) = p(C) <e.
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Hence p(U\C) < u(K) + €, which implies that K is outer regular.
(d) =(c) =(a,b) Trivial.

(c)=(d) Let E = |J, Ex be an arbitrary o-bounded Borel set, where each
Ej, is a Borel bounded set. If (¢) holds, then each Fj is, in particular, outer
regular. Thus Lemma 11.5(k) ensures that E is outer regular. Now set F,, =
U, E;, so that {F,}52, is an increasing sequence of bounded Borel sets,
which are, in particular, inner regular according to (c). Since E = J,, F,, it
follows by Lemma 11.5(k) that F is inner regular. Therefore, E is regular.

(a,b) =(c) Take an arbitrary € > 0. Let F be any bounded Borel set, so
that £° C E C E~, where the interior E° is open and bounded, and the
closure E~ is compact. If (a,b) holds, then E° and E~ are regular (cf.
Lemma 11.5(c,d)). Therefore, since u(E~) < oo, Proposition 11.F(a) en-
sures that there exist compact sets C and K and open sets G and U such
that C C E° C G and K C E~ C U, for which u(G\C) = u(G) — p(C) < ¢
and p(U\K) = p(U) — u(K) < e. In fact, we may take K and G such that
w(K) < u(G) (e.g.,set G=FE°and K = E~). Thus C C E C K and

p(U) = p(C) = p(U) = p(K) + p(K) — u(C)
< pU) = p(K) + p(G) = p(C) < 2¢,
which means by Proposition 11.F(a) that E is regular.

(d)<(e) Assertion (e) implies (d) trivially and, if X is o-compact, then
every Borel set is o-bounded, so that (d) implies (e). O

11.3 Construction of Borel Measures

An outer measure (or a plain outer measure) is an extended real-valued set
function p*: #(X) — R on the power set £(X) of a given set X such that

(a) p*(2) =0,

(b) p*(S) >0 for every S € P(X),

(¢) p*(S1) < p*(S2) whenever S; C Sy C X,

(d) (U, Sn) <X, #*(Sn) for countable families {S,} of sets in £(X).

Note that the outer measure generated by a measure on an algebra, as in
Definition 8.2, is a (plain) outer measure according to Proposition 8.3. By
analogy with Section 8.2, given an outer measure p*:#(X) — R, we say
that a set F € ©(X) is p*-measurable if

p(S) = p (SN E)+ p*(S\E)
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for every S € £(X). Observe that S\E = SN (X\E) = S\(SNE) so that
S =(SNE)U(S\E) and (SNE)N(S\E) = @. Since u* is subadditive
(i-e., since (d) holds for the sets SN E and S\E), it follows that E € ©(X)
is p*-measurable if and only if

P (SN E) +p(S\E) < p*(5)

for every S € 9(X). A quasiregular outer measure (or a topologically regular
outer measure) on the power set £(X) of a locally compact Hausdorff space
X is an outer measure p* such that

(i) p*(S)=inf{p*(U):S CU, Ue ®(X)open} for every S € P(X),
(ii) p*(GUU) = p*(G) + p*(U) if G and U are disjoint open in £(X),
(iii) p*(U) = sup{p*(K): K CU, K € ¥(X) compact} for U open in £(X).

Property (iii) justifies the terminology quasiregular. It is readily verified that
(iii) is equivalent to the following property: for each open set U € £(X),

(iii’) p*(U) = sup{p*(G): G- C U, G € 9(X) open with G~ compact}.

The next theorem is the counterpart of Theorem 8.4, building a Borel
measure from an outer measure (instead of building a measure on a
o-algebra from an outer measure generated by a measure on an algebra).

Theorem 11.7. If u*:9(X) — R is a quasiregular outer measure on the
power set of a locally compact Hausdorff space X, then the collection A* of
all pw*-measurable subsets of X,

A*={FE € 9(X): E is p*-measurable},
is a Borel o-algebra (i.e., it includes the o-algebra X7). The restriction
N =pt a4 A= R

of p*to A* is a quasiregular complete measure. Moreover, If u*(S) < oo
for every bounded set S C X, then \*: A*D X7 — R is a Borel measure.
Furthermore, the restriction of p* to the Borel o-algebra X7,

)\:)\*‘XT :M*|XT:XT_>ﬁa

is a quasireqular measure on X, which is a Borel measure if p*(S) < oo
for every bounded set S C X. (However ) is not necessarily complete.)

Proof. Let p*:#(X) — R be a quasiregular outer measure on £(X), where
X is a locally compact Hausdorff space.
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(a) That the class A*={FE € #(X): FE is p*~measurable} of all y*~measurable
sets form a o-algebra has already been verified in the proof of Theorem 8.4.

(b) Thus we proceed to show that every Borel set in the Borel o-algebra
X7 is p*-measurable (i.e., X7 C A*). Let X be a locally compact Hausdorff
space. It can be verified by property (i) of quasiregular outer measures that
aset E € ©(X) is p*-measurable if and only if, for every open set U € ©(X),

p(UNE)+p (U\E) < p*(U).

Since this holds trivially if u*(U) = oo, it follows that a set E in #(X) is
w*-measurable if and only if the above inequality holds for every open set
U € ©(X) with p*(U) < co. Since X7 is a o-algebra generated by 7, and
since A* is a g-algebra, in order to show that X+ C A* it is enough to verify
that the above inequality holds for every open set F in 7 C X (instead of
for every set E € X7). That is, it suffices to show that each open set E is
p*-measurable. Thus take arbitrary open sets E and Uin T C Xy C 9(X)
with p*(U) < oo, and take an arbitrary e > 0. Property (iii’) of quasiregular
outer measures says that for each open set U/,

p*(U") =sup {p*(G): G~ CU’', G open with G~ compact}.

Since U N E is an open set such that p*(U N E) < oo, there exists an open
set G for which G CUNE and p*(UNE) < pu*(G) + €. Note that U\E =
UN(X\E)CU\G and (U\G)NG=o (and hence p*(G)
+u*(U\G) = p*(GU (U\G)) by property (ii) of quasiregular outer mea-
sures). Therefore,

p(UNE)+p"(U\E) < p*(G) + p"(U\G) + & = " (GU (U\G)) + ¢
=p*(UUG)+e=p"U) +e.
Thus p*(UNE) + p*(U\E) < p*(U), and so E is p*-measurable.

(c) That the restriction A* = p*| 4%: A* — R of u* to A* is a complete mea-
sure has been verified in the proofs of Theorem 8.4 and Proposition 8.5.

(d) Now we show that A* = p*| 4+: A* D Xr — R is a quasiregular measure.
Take an arbitrary set E € A* Since every open set U lies in Xy C A% it
follows by property (i) of quasiregular outer measures that
N(E) = p*(E) = inf {p*(U): EC U, U open}
= inf {)\*(U): ECU U open}.

Moreover, since every compact set K lies in X7 C A* it follows by property
(iii) of quasiregular outer measures that
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N(E) = p*(E) = sup {p*(K): K C E, K compact}
= sup{)\*(K): KCE, K compact}
whenever E is open (and so F lies in X C A*).

(e) That \*: A* D X7 — R is a Borel measure goes as follows. If u*(S) < oo
for every bounded subset S of X (i.e., for every S € #(X) with compact
closure), and since every compact set lies in X7 and is closed (because X
is Hausdorft), we get A\*(K) = p*(K) < oo for every compact set K.

(f) Finally, observe that all properties of the measure \* except for com-
pleteness are readily transferred to the measure . (|

A content on a topology (or simply a content) is an extended real-valued
set function u#:7 — R on the topology 7T of a topological space X such
that for arbitrary open sets U, G, and U,, in T,

) p#(2) =0,
2 U
3

) p
) p
4) p
) w
) w

#(U) =

#(U) < oo whenever U~ is compact,

#(G) < pu#(U) whenever G C U,
5) p#(GUU) = pu#(G) + p#(U) whenever GNU = g,
#(U,

(
(
(
(
(
( Un) <3, u#(U,) for countable families {U,, }.

6

It is an inner content if, in addition,
(7) p#(U) =sup{p#(G): G- C U, G~ compact}.
Lemma 11.8. Let u#: T — R be an inner content. If X is a locally compact
Hausdorff space, then the set function p*:9(X) — R given by
p*(S) = inf {u#(U): S CU, U open} for every S € 9(X)
is a quasireqular outer measure such that pu*(S) < oo for every bounded S.

Proof. Properties (a), (b), (c), and (d) in the definition of an outer measure
w* follow at once by properties (1) — null measure of the empty set, (2) —
nonnegativeness, (4) — monotonicity, and (6) — countable subadditivity in
the definition of the content u#, respectively.

Thus p* is an outer measure.
Property (4) in the definition of the content pu# ensures that

p*(U) = p#(U) for every open set U.
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Thus property (i) in the definition of a quasiregular outer measure holds by
the definition of p*. Moreover, the above identity also shows that property
(7) in the definition of an inner content ensures that property (iii’) in the
definition of a quasiregular outer measure holds. Observe that property (5)
in the definition of an inner content trivially implies property (ii) in the
definition of a quasiregular outer measure.

Thus the outer measure p* is quasiregular.

Finally, property (3) in the definition of the content u# and property (c) in
the definition of an outer measure p* imply that

1*(S) < oo for every bounded set S € ©(X)
(i.e., for every S € #(X) with compact closure). O

The combination of Lemma 11.8 and Theorem 11.7 concludes the pro-
gram of constructing a Borel measure out of an inner content: an inner
content pu# generates a quasiregular outer measure p* which is finite at
bounded sets, and this in turn generates a quasiregular Borel measure A.

11.4 Additional Propositions

A collection C of sets has the finite intersection property if every finite
subcollection of C has a nonempty intersection.

Proposition 11.A. A space is compact if and only if every family of closed
sets that has the finite intersection property has a nonempty intersection.

A Lindeldf space is a topological space X such that every open covering
of X includes a countable subcovering.

Proposition 11.B. If a topological space has a countable base, then it is
a Lindelof space and separable. Every o-compact space is a Lindelof space.
Every locally compact space with a countable basis is o-compact. A locally
compact Hausdorff space is Lindeldf if and only if it is o-compact.

Proposition 11.C. Take the Borel o-algebra X7 of subsets of a locally com-
pact Hausdor(f space. If (ENK) € Xy for every compact K, then E € X7.

Proposition 11.D. Let K and Ko be distinct compact sets in a Borel
o-algebra of subsets of a locally compact Hausdorff space.

(a) If every compact set is outer regular, then so is K1\ Ko.

(b) If every bounded open set is inner regular, then so is K1\Ks.
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Proposition 11.E. Let u be a finite Borel measure on a Borel o-algebra
of subsets of a locally compact Hausdorff space. If every Borel set is inner
regular, then p is regular.

Proposition 11.F. Let p be a Borel measure on a Borel o-algebra of
subsets of a locally compact Hausdorff space.

(a) A Borel set E of finite measure is reqular if and only if for every e > 0
there exists a compact set K and an open set U such that K C E CU
and p(U\K) < e.

(b) If E and F are regular Borel sets of finite measure, then E\F is also
reqular of finite measure.

Proposition 11.G. Let p be a Borel measure on a Borel o-algebra of sub-
sets of a locally compact Hausdorff space. If every open set is o-compact,
then p is reqular.

Proposition 11.H. Lebesgue is a reqular Borel measure — either viewed
as a measure on the Borel algebra R generated by the usual topology of R,
or as a measure on its completion % the Lebesgue algebra. (See Section 8.3
— compare with Problems 8.10 and 8.11.)

Recall from Problem 2.13 the definition of support of a measure on
the Borel algebra R generated by the open sets from R, and extend it to
the o-algebra X7 of Borel sets of a locally compact Hausdorff space X. The
support [u] of a measure pu: X7 — R is the (unique) set [u] = X\U, where
U is the union of all open sets of measure zero, so that [u] is a closed set in
X7 such that X\[u] is the largest open set of measure zero:

X\[4] =sup{U€ Xr: Uisopen in X and u(U) = 0}.

Proposition 11.I. If u is a reqular Borel probability measure (i.e.,
w(X) = 1) on a compact Hausdorff space X, then its support [u] is the
smallest compact set such that p([p]) =1 and pw(K) < 1 for every compact
set K C [u].

If X is a locally compact Hausdorff space, then let X denote the o-
algebra of subsets of X generated by the compact Gs’s in X. The sets in
Xg are referred to as Baire sets. Since every G5 in X is a Borel set, it
follows that X C X7: every Baire set is a Borel set. The notions of outer,
inner, regular, and quasiregular extend naturally to Baire sets. A measure
w: Xg — R which is finite for every compact set is called a Baire measure.

Proposition 11.J. If E € X, then E or X\E is o-bounded. Every Baire
set is o-bounded if and only if X is o-compact.
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Proposition 11.K. A o-bounded Baire set is the countable disjoint union
of bounded Baire sets.

Proposition 11.L. Compact Baire sets are Gg; open Baire sets are F.

Proposition 11.M. Let p be a measure on a o-algebra including Xq. If u
s inner reqular or quasireqular, then for each measurable set E with finite

measure there is a Baire set B such that u(EAB) = 0. (See Problem 6.5.)

Proposition 11.N. If X is a separable locally compact metric space, then
Xo = X7 (i.e., every Borel set is a Baire set).

Proposition 11.0. If X is a o-compact locally compact Hausdorff space,
then every Buaire set is reqular (i.e., every Baire measure is regular).

Let p: X — R be a Baire measure on the o-algebra Xg of all Baire sets
in a locally compact Hausdorff space X, and let [u] € X be the support
of p, now with respect to Xg; that is, the set [u] = X\U, where U is the
union of all open Baire sets of measure zero.

Proposition 11.P. Consider the support [u] of a Baire measure p.

(a) If U is an open Baire set such that U N [p] # @, then u(U) > 0.
(b) If K is a compact Baire set such that K N[u] = @, then u(K) = 0.
(¢) If E is a o-bounded Baire set such that E N [u] = @, then u(E) = 0.

A measure on a Borel o-algebra of subsets of a locally compact Hausdorff
space X is a locally finite measure if every x € X has an open neighborhood
of finite measure (i.e., a measure y : A — R, where A is a Borel o-algebra of
subsets of a locally compact Hausdorff space X, is locally finite if for every
x € X there exists an open set U C X such that x € U and p(U) < o0).
A measure p on a Borel o-algebra of subsets of a locally compact Hausdorff
space is a Radon measure if it is both locally finite and inner regular.

Proposition 11.Q. Every locally finite measure is a Borel measure.

A neighborhood base of a point x in a topological space (or a local base
at x) is a family of neighborhoods of x such that every neighborhood of x
includes a member of the family (e.g., the family of all open neighborhoods
of x is trivially a neighborhood base of x). Note that if a topological space
has a countable base, then it is a topological space for which every point has
a countable neighborhood base (see Definition 1.1 and Proposition 11.B).

Proposition 11.R. Consider a Borel o-algebra of subsets of a locally com-
pact Hausdorff space X. Suppose every point in X has a countable neigh-
borhood base (in particular, if X has a countable base; more particularly, if
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X is separable). In this case, every inner reqular Borel measure is locally fi-
nite, and so is a Radon measure. Equivalently, under the above hypothesis,
a Radon measure is precisely an inner reqular Borel measure.

Consider a metric space (X,d). The diameter diam(S) of a nonempty
subset S of X is defined by diam(S) = sup, , cg d(z,y). Thus a nonempty
set S is bounded in a metric space (X, d) if and only if diam(S) < co. By con-
vention the empty set @ is bounded and diam(@) = 0. Take an arbitrary
€ > 0. An e-covering of a set S C X is a covering of S made up of subsets
of X of diameter not greater than e.

Proposition 11.S. Let X be a locally compact metric space. For every pair
of real numbers p > 0 and € > 0 consider the nonnegative extended real

pz ,(S) = inf Zidiam(Si)p for every S € 9(X),

where the infimum is taken over all finite open e-coverings {S;} of S. This
defines an outer measure pf ,:9(X) — R. Set py(S) = lim. o pf ,(S) for
every S € 9(X). The limit exists in R and coincides with sup..q pZ ,(S).
This defines another outer measure fiy: P(X) — R. Following the setup of
Theorem 11.7, let Ay be the Borel o-algebra of all ji;-measurable sets (so
that A% includes the Borel o-algebra X1). The restriction Ay of puy to Ay,
and the restriction A, of p,, to X7, viz.,

Xy = it s A — B,
)\P = A;'XT = /’(‘;;lXTXT — Ea

are measures on Ay and on X7. The outer measure ji;, and the measures A,
and Ap, are called p-dimensional Hausdorff measures. Both A}, and A, are
Borel measures if i3(S) < oo for every bounded set S € 9(X), and A is
complete. For each set S € 9(X) there is a unique real number dimg(S) =
inf{p > 0: y1;,(S) =0} = sup{p > 0: 1;;(S) = 0o}, called the Hausdorff dimen-
sion of S, such that py(S) = oo if p < dimg(S), Waimy(s)(S) € [0, 00], and
pyp(S) = 0 if dimp (S) < p. Examples: If X =R, then pj coincides with the
outer measure {* generated by the length function ¢ (and so A\ coincides with
the Lebesgue measure); if C is the Cantor set, then dimg(C) = log2/log3
and p*gim 0y (C) = 1; if U is an open set in X = R", then dimy (U) = n.

If X=R" (or X=C") equipped with the usual (Euclidean) topology
(or any equivalent topology), then X is a o-compact locally compact metric
(thus Hausdorff) space with a countable base (thus separable), and so it
satisfies all the assumptions in every of the preceding propositions.

Notes: For the general topology summarized in Section 11.1 see, e.g., [12],
[21]. This final section contains standard results on measures on topologi-
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cal spaces whose proofs can be found in many texts. For instance, Propo-
sition 11.A can be found in [21, Theorem 5.1] and Proposition 11.B can
be found in [21, Theorems 1.14, 1.15, Problem 5.Y(b)], [35, Problem 8.16,
Theorem 9.21], and [6, Example IV.29-2(c)]. For Proposition 11.C see, e.g.,
[35, Lemma 13.9], and for Proposition 11.D see, e.g., [18, Theorem 52.A].
Propositions 11.E and 11.F are related to regular Borel measures (see, e.g.,
[35, Proposition 13.10] and [8, Problem 10,F]). Proposition 11.G (see, e.g.,
[36, Theorem 2.18]) is a first step towards Proposition 11.H, which says that
Lebesgue measure is a prototype of a regular Borel measure (see, e.g., [35,
Proposition 3.15]). Proposition 11.I deals with support of probability mea~
sures; see, e.g., [36, Exercise 2.9]. Proposition 11.J, 11.K, 11.L,, and 11.M
introduce Baire sets and measures (see, e.g., [35, Lemmas 13.6, 13.7, Prob-
lem 13.12(e,f), Proposition 13.15]). Proposition 11.N shows when Baire and
Borel coincide, and Proposition 11.0 gives a necessary condition for regu-
larity (see, e.g., [35, Problem 13.1, Corollary 13.12]). Proposition 11.P deals
with supports of Baire measures (see, e.g., [35, Problem 13.24]). Proposi-
tions 11.QQ and 11.R on locally finite and Radon measures establish the
connection between Borel and Radon measure. For the Hausdorff measures
of Proposition 11.S see, e.g., [14, Chapter 1], [15, Chapter 3], and also [34].

Suggested Reading

Bauer [6], Brown and Pearcy [8], Halmos [18], Royden [35], Rudin [36].
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Representation Theorems

12.1 Continuous Functions and Compact Support

Let F denote either the real field R or the complex field C. A scalar-valued
function f: X — F on a nonempty set X is called real-valued if F = R, and
complez-valued if F = C. If it is immaterial whether a scalar-valued function
is real-valued or complex-valued, then we refer to it as F-valued. The kernel
N(f) and range R(f) of a function f: X — F are the sets

N(f)=f1({0}) = {z € X: f(z) =0},
R(f)=f(X)= {’yEIF‘: v = f(z) for some z € X}.

The support [f] of an F-valued function f: X — F on a topological space X
is the closure of the complement of its kernel:

1= (X\W(f)" ={z € X: f(z) #0} .

From now on suppose X is a topological space and consider the usual (met-
ric) topology of F. Let C.(X) denote the collection of all F-valued continuous
functions on X with compact support; that is,

Ce(X) ={f: X— F: fis continuous and [f] is compact in X }.

If it is necessary to make it clear whether a collection of scalar-valued con-
tinuous functions on X consists of real-valued functions only, or whether it
may contain complex-valued functions as well, then we may use the notation

C.(X,R) = {f:X—> R: f is continuous and [f] is compact in X},
(© Springer International Publishing Switzerland 2015 223
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or
Ce(X,C) = {f: X — C: f is continuous and [f] is compact in X }.

It is worth noticing that if X is a locally compact Hausdorff space, then
the class of Baire sets coincides with the smallest o-algebra of subsets of X
upon which every function in C,(X,RR) is measurable (see e.g., [35, p. 331]),
which in turn is included in the Borel o-algebra X7 (cf. Section 11.4).

Lemma 12.1. The range of a function f € C.(X) is a compact subset of F
(either the complex plane C or the real line R equipped with usual topology).

Proof. Let K be the support of f € C.(X). Since f is continuous and K is
closed, it follows that f(X) = f(K). We show that f(K) is compact in F.

Claim. Let F: X — Y be a continuous mapping of a topological space X
into a topological space Y. If K is compact X, then F(K) is compact in Y’
(i.e., continuous image of a compact set is compact).

Proof. Let U be a covering of F(K) (i.e., F(A) CJycy U) consisting of
open subsets U of Y. If F is continuous, then F~!(U) is an open subset of
X for every Ue U. Set F~1(U) = {F~1(U): Ue U}, a collection of open
subsets of X. Since K C F(F(K)) € F(Upeu U) = Uyey FH(U),
it follows that F~1(i) is a covering of K made up of open subsets of X.
If K is compact, then there exists a finite subcollection of F~*(i) covering
K; that is, there exists {U;}?_, C U such that K C |J]_, F~}(U;) C X. So
F(K)C F(U/_,F~*(U;)) €U, U; €Y, and hence F(K) is compact. [

Consider the collection C.(X) of all continuous F-valued functions f on
X with compact support [f]. Let K be a compact subset, and U an open
subset, of the topological space X (with topology 7). For each K and U set

Ce(X)k = {f € Ce(X): f(X)C[0,1] and f(K) =1},
Co(X)Y = {f € Co(X): f(X)C[0,1] and [f] CU}.

Observe that when dealing with C.(X)x or C.(X)Y we work only with
functions in C.(X,R), since f(X) C [0, 1]R. A real-valued (or extended real-
valued) function f: X — R (or f: X — R) on a topological space X is said
to be lower semicontinuous if the inverse image of the open interval (o, o0)
under f is an open subset of X for every real number «,

fﬁl((oz,oo)—{xeX f(z) >a} € T for every acR

(see Definition 1.2), and upper semicontinuous if the inverse image of the
open interval (—oo, ) under f is an open subset of X for every real a,

[ (~o0,0)) ={z€X: f(z)<a} € T for every a€R.
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Equipping R with its usual topology, it is readily verified that f is con-
tinuous if and only if it is both lower and upper semicontinuous. Examples
of functions that are either lower or upper semicontinuous (but possibly
not both): a characteristic function Xy: X — R of an open set U C X is
lower semicontinuous (compare with Example 1.B) and, dually, a charac-
teristic function Xy : X — R of a closed set V' C X is upper semicontinuous
(both of which are not continuous if X = R is equipped with its usual topol-
ogy). Consider the definition of sup., f, and of inf, f, for any family {f+}
of functions f,: X — R (or f,: X — R) as in Section 1.4. It is also readily
verified that sup,, fy: X — R is lower semicontinuous whenever each f is,
and inf, f,: X — R is upper semicontinuous whenever each f, is.

Thus we can interpret continuity of functions in C.(X)x and in C,(X)V

as functions being both lower and upper semicontinuous. Urysohn Lemma
(stated below) is the result that says that C.(X)x N C.(X)V # @ if K C U.

Lemma 12.2. If U and K are open and compact sets in a locally compact
Hausdorff space X such that K C U, then there ezists f € Co(X) g N Co(X)Y
(i.e., then there exists a function f € C.(X) such that X < f < Xy).

Proof. Let U and K be open and compact subsets of X such that K C U.

Claim. There exists a countable family of open subsets of X with compact
closure, say {G}4eqn(o,1] indexed by the rationals in [0, 1], such that

KCGy, GyCU, and G, CG, whenever p<gq.

Proof. Let {qx}72, be an enumeration of the countable set Q N (0,1)[0, 1]R
of all rational numbers in the open interval (0,1). Set ¢o = 0 and g, = 1.
According to Theorem 11.3, there exist open subsets Gy and Gy of X with
compact closures such that

KCG, CGy CG,CGy CU.

Take any ¢ € Q N (0,1). Using Theorem 11.3 again, there is an open set
with compact closure G, associated with ¢ such that

Gy CG,CG, CG,.

Take any ¢’ € Q N (0, 1) such that ¢’ # ¢. Use Theorem 11.3 and get an open
set with compact closure G, such that if ¢’ < ¢, then G, C G, and

G CG,CG, CG,CG,CGy;
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if ¢ < ¢, then Gy C G4 and
G;QGq,QG;QGqQG(;QGO.

Proceeding along this line, if we already have a finite set {g;}_; of rational
numbers from Q N (0, 1), and an associated set of open sets with compact

closure {Gg, }7; such that Gg, | C G, for ¢; < ¢i+1 and

qu+1 < Gq_i+1 € Gy, € Gy
then take any ¢n+1 € QN (0,1) such that g¢,41 # ¢q; for every integer
€ [1,n]. Using Theorem 11.3 once again we get an open set with com-
pact closure G, 41 such that

— “4n+1 — Td4n+1 —

Gy € G € Gy S GCy,

where ¢y is the largest number from {g; }?_; which is smaller than ¢, 41, and
g; is the smallest number from {g;}}_; which is greater than g,1. Continu-
ing this way we obtain, for each ¢ € {gx}72, U {0,900} = QN [0, 1], an open
set with compact closure Gy, such that K C G;, Gy CU, and G, C G,
whenever p < ¢. This concludes the proof of the claimed statement. [

For each ¢ € {gr}72 U {qo0, goo } = Q N [0, 1] take the characteristic functions
of G4 and X\G, and consider the following functions of X into R:

fa=aXac,, g = qXx\Gg + Xay,
[= sup Jag g =infgg.

As we saw before, characteristic functions of open sets are lower semicon-
tinuous, and so are the sup of lower semicontinuous functions; dually, char-
acteristic functions of closed sets are upper semicontinuous, and so are the
inf of upper semicontinuous functions. Therefore, it is readily verified that
each f; and f are lower semicontinuous functions, while each g, and g are
upper semicontinuous functions. Now we show that

f<g and g¢g<f, andhence f=g.

Indeed, if g,(z) < fy(z), then g <p, x€ G, and x € G (i.e., z €(G,\GY)).
But ¢ < pimplies G, C G, so that G,\G; = @. So f; < g, for every p and ¢
in Q N [0, 1], which implies that f < g. On the other hand, if f(z) < g(x) for
some z € X, then there are p,q € Q N[0, 1] such that f(z) < p < ¢ < g(z).
But f(r) < pimplies that x ¢ G,,, and ¢ < g(x) implies that » € G/, so that
r € G,\G,. Again, p < g implies G C G, so that G \G, = @. Then we
get g < f. Hence f = g. Therefore, since f is lower semicontinuous, g is
upper semicontinuous, and f = g, it follows that

f: X — R is continuous.
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Clearly, f, has a compact support G5 C [0, 1] and f,(X) C [0, 1] for every ¢
in QN 0, 1], and so (i) f has compact support and (ii) f(X) C [0, 1]. Since
K C[f,] forall g € @N[0,1] and sup(Q N [0,1]) = 1, we get (iii) f(K) = 1.
Since |J, G4 € Go C U, it is also follows that (iv) [f] C U. Outcome:

feC(X)gnC.(X)Y. O

Corollary 12.3. Let U; and K be subsets of a locally compact Hausdorff
space. If {U;}r_, is a open covering of a compact set K, then there exists
fi € Co(X)Yi for each i € [1,n] such that >;| fi(x) =1 for every x € K.

Proof. Since K CU = U?zl U;, where K is compact and U is open, there
exists an open set G with compact closure (cf. Theorem 11.3) such that

KCcGCG CU.

Take an arbitrary integer i € [1,n]. Set G; = GNU; C U;, which is an open
set (intersection of two open sets) with compact closure (since (GNU;)~ C
G, which is compact — see Lemma 11.2). Let K; be the finite union of all
sets G; such that G C U;. Thus Kj; is compact (since each G; is compact
and K is a finite union of them) and K; C U;, where U; is open. Therefore,
by Lemma 12.2, there exists a function g;: X — R such that

gi € OC(X)KZ' N CC(X)Ui'

Now set )
i—1

fi=g and f;= H(l —g;)g; if i>2.
j=1
Since g; € C.(X)Y, it follows by the definition of C,.(X)Yi that
fi S CC(X)Ui.

It is readily verified by induction that

n

n

o fi=1-]J =g

i=1 i=1
Next note that K C |J;_, K;. Indeed, since J;_, G; = U}, K, it follows
that K C G CU_(GNUi) =U_, Gi CU_, G =U, Ki. If gi(z) < 1
for every i € [1,n] for some x € K C U?:l K, then g; ¢ Co(X)k;, which
is a contradiction. Thus for every x € K there exists an integer i’ € [1,n]
such that g, (x) = 1. Hence 1 — gy (z) =0, and so []"_, (1 — g;(z)) = 0, for
every x € K. Therefore,

Zfi(x)zl for every € K. O
i=1
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The preceding consequence of the Urysohn Lemma (i.e., Corollary 12.3),
together with the Urysohn Lemma itself (i.e., Lemma 12.2), will play an
important role for proving the first version of the Riesz Representation
Theorem, namely, Theorem 12.5 in Section 12.3.

12.2 Bounded Linear Functionals

Let S be a nonempty set and consider the set F* of all functions f: S — F of
S into F (i.e., of all F-valued function on S). It is readily verified that Fis
a linear space (over the field F) where addition and scalar multiplication in
F* are defined pointwise (thus the linear structure of F* is inherited by that
in F). Let L(S) C F¥ be any linear manifold of the linear space F°. (That is,
L(S) C F¥is such that f + g and of — defined as (f + g)(s) = f(s) + g(s)
and (af)(s) = af(s) for every s € S and every o € F — lie in L(S) when-
ever f,g € L(S) and a € F.) So L(S) is itself a linear space over F; if F = C
or F =R, then L(S) is referred to as a complex linear space or a real linear
space and, when necessary, it will be denoted by L(S, C) or L(S,R), respec-
tively — see the remarks that follow Lemma 4.5. Take a linear functional
@: L(S) — F on the linear space L(S), which means that @ is additive and
homogeneous (i.e., P(f + g) = D(f) + P(g) and P(af) = aP(f) for every
pair of functions f, g € L(S) and every scalar o € F). A functional ¢ on L(.S5)
is said to be positive if ¢(f) > 0 for every f >0 (i.e., for every f € L(S)
with nonnegative range f(S)); in other words, if

@(f) > 0 for every f € L(S) such that f(s) > 0 for every s € S.

Let @: L(S) — F be a positive linear functional on the linear space L(S). If
fyg € L(S) are such that f < g, then 0 < &(g — f) = P(g9) — D(f). So

&(f) < P(g) whenever f<g.

Moreover, if f:S — R is a real-valued function in L(S), then (considering
the decomposition f = f* — f~ of Section 1.2 where f+ >0 and f~ > 0)

[2()) = 2(fT = f)l =2(f7) = 2(f7)
<@+ =2(f) +2(f7) =2(f "+ f7) = 2(f]-

Also, if the function 1: S — F (i.e., 1(s) = 1 for all s € S) lies in L(5), and
if f: S — F is such that |f] <1, then 0 < §(1 — |f|) = @(1) — &(|f]). Thus

O(|f]) <P(1) whenever |f| <1.

Summing up: If L(S) is a linear space of F-valued functions on a nonempty
set S, if @:L(S) — F is a positive linear functional, if f:S — R is a real-
valued function in L(S), and if the constant function 1 lies in L(S), then

2(f) < 2(If]) < $(1)  whenever || < 1.
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An important particular case: A bounded function f:S — F is a func-
tion such that its range f(S) is a bounded subset of the metric space F
(equipped with the usual metric — i.e., a function f:S — F such that
sup,es |f(s)] < 0o — cf. Remarks on Boundedness in Section 11.1). Now
consider the collection B(S) of all F-valued bounded functions on S,

B(S)={f:S —F: f is bounded},

which is a linear space (sum and scalar multiplication of bounded functions
are again bounded functions); in fact, it is a normed space with sup-norm

[flloe = sup|f(s)]-
ses

Note that the constant function 1 lies in B(S). If a function f lies in B(S),
then |f| <1 means |f(s)| < 1 for every s € S, which is equivalent to saying
that sup,cg |f(s)| < 1. Therefore,

Ifllec <1 ifandonlyif |f] <1.

If L(S) C B(S) is a linear manifold of B(S), then L(S) inherits the norm
of B(S) and (L(S), || - |loo) is & normed space. A bounded linear functional
@: L(S) — F on the normed space L(S) is a linear functional such that
Sup f2o % < 00. (It is worth noticing that, if & # 0, then the image of @,
viz., @(L(S)), is not bounded in F — indeed, ¢(L(S)) = F: nonzero linear
functionals are surjective.) The induced uniform norm of a bounded linear
functional (in fact, the induced uniform norm on the normed space of all
F-valued bounded linear functionals on L(S) — the dual of L(S5)) is

o(f
2l = sup PN =y ()] = sup ().
170 Iflle sl <t If1<1
Hence, if the bounded linear functional & is positive and if 1 € L(S), then
(1) < [|2|| = supy<1 [2(f)], and also sup, ;<1 P(|f]) < &(1). Moreover, if
f € L(S) is real-valued, then |®(f)| < &(|f|). Therefore, if F = R, then

®(1) < [|2] = sup |2(f)] < sup &(|f]) < B(1).
If1<1 f1<1

Summing up: If L(S) is a real linear space of real-valued bounded functions
on a nonempty set S, if @ is a real-valued positive bounded linear functional

on L(S), and if 1 € L(S), then
2] = &(1).
Again, the complex linear space of all complex-valued bounded functions

on S, and the real linear space of all real-valued bounded functions on S
will, when necessary, be denoted respectively by
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B(S,C)={f:S — C: fis bounded},
and
B(S,R) = {f:S — R: fis bounded}.

A linear lattice is a linear space equipped with a partial ordering such
that every pair of elements has an infimum and a supremum in it. That is,

fAg=imf{fg} and fVg=sup{f g}

lie in the linear space for every f and g in the linear space. Set F = R and
let L(S,R) be a real linear space of real-valued functions on S. For f, ¢ in
L(S,R) let fAgand fV g be defined by (fA g)(s) = min{f(s),g(s)} and
(fVg)(s)=max{f(s),g(s)} for each s € S. If L(S,R) has (in addition to the
linear properties) the property that fA g and f V g lie in L(S,R) whenever
fyg lie in L(S,R), then L(S,R) is a linear lattice of real-valued functions
on S. Example: the linear space B(S,R) of all real-valued bounded functions
on S equipped with the partial ordering < (defined by f < g if f(s) < g(s)
for every s € S), which induces the above binary operations A and V, is a
linear lattice that contains the constant function 1(s) =1 for all s € S.

Now we equip S with a topology. Let S = X be a topological space and
consider the set C(X) of all F-valued continuous functions on X:

C(X)={f:X—TF: fis continuous}.

Since sum and scalar multiples of continuous functions are again continuous
functions, C'(X) is a linear manifold of the linear space F~ of all F-valued
functions on X, and so C'(X) is itself a linear space. Clearly, C.(X) C C(X).
Since the support of a sum of two functions in C,.(X) is the union of their
support (because finite union of compact sets is compact), we can infer that
C.(X) is a linear manifold of C(X), and hence C.(X) is itself a linear space.
If X is a compact space, then closed subsets of X are compact sets (Lemma
11.2(a)) so that C.(X) = C(X) by the definition of C.(X); that is,

C.(X)=C(X) whenever X is a compact topological space.
By Lemma 12.1 (recalling that in F compact means closed and bounded),
Ce(X) € B(X),

and so the linear space C.(X), and also C(X) if X is compact, is again a

normed space equipped with the sup-norm || - || .

Once again, the complex linear space of all complex-valued continuous
functions on X, and the real linear space of all real-valued continuous func-
tions on X will, when necessary, be denoted respectively by
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C(X,C)={f:X— C: fis continuous},
and
C(X,R) = {f: X — R: fis continuous}.

Note that C'(X,R) has the additional property that if f, g lie in C(X,R),
then so does the functions fA g and fV g. This means that C'(X,R) is a
linear lattice of real-valued functions on X. Moreover, the constant function
1(z) =1 for all z € X lies in C'(X). Also, if X is compact, then C(X)C B(X)
(F-valued continuous functions on a compact space are bounded — cf. Claim
in the proof of Lemma 12.1 plus Remarks on Boundedness in Section 11.1).

Lemma 12.4. Let L(S,R) be a linear lattice of real-valued bounded func-
tions on a nonempty set S. If @:L(S,R) =R is a real-valued bounded linear
functional on L(S,R), then there are two positive real-valued bounded linear
functionals &*: L(S,R) =R and &: L(S,R) =R on L(S,R) such that

b=t -9,
If L(S,R) contains the function 1, then ||®|| = &T(1) + d~(1).
Proof. Let @: L(S,R) — R be a bounded linear functional. Set

UH(f) = sup ®(p) foreach 0< fe L(SR).
0<p<f

Thus ¥1(0) = 0 (since ¢(0) = 0 by linearity of #) and hence ¥*(f) > 0 for
every 0 < f € L(S,R), and sup o< ; ¥*(f) < oo (since @ is bounded). Note
that since @ is linear, for every 0 < o € R and every 0 < f € L(S,R),

(i) vt (af) = a?"(f).

Now take an arbitrary pair of functions 0 < f,g in L(S,R). Let ¢,v¢ be
functions in L(S,R) such that 0 < ¢ < f and 0 < ¢ < g. Thus, by the def-
inition of ¥, since @ is additive, ®(p) + P(Y) = S(p + ) < ¥ (f +g),
and so (definition of ¥+ again — taking the sup for all such ¢ and 1)

)+ (g) <ET(f +9).

Conversely, take any function h € L(S,R) such that 0 < h < f + g. Since
O0<hAf = inf{h,f} = f, and since 0 < hA f < h < f+g, it follows
that 0 < h — (h A f) <g. (Indeed, (h— (h A f))(s) =0 if h(s) < f(s) and
h—(hAf)(s)=(h—f)(s) <g(s)if f(s) < h(s).) Again, by the definition
of U, since @ is linear, #(h) = P(h A f)+P(h— (h A f)) <TH(f)+¥T(g)
and so (definition of ¥+ again — taking the sup for all such h)

TEH(f+9) STH(f) + T (g).
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Therefore, for every 0 < f,g € L(S,R),

(i) TH(f+9) =" (f) + T (g).
Since every real-valued function f € L(S,R) can be written as f = f*— f~,
where fT= fVv0 and f~=—fAO0 (positive and negative parts of f) are

nonnegative functions in L(S,R), the values ¥ (f*) and *(f~) are well
defined. Thus consider the functional &*: L(S,R) — R defined on the whole
L(S,R) as follows. For every f € L(S,R),

PE(f) =T () w7

First we show that &T is homogeneous. Take any f € L(S,R). Since o > 0
implies (af)t = aft and (af)” = af~, we get by (i) that #*((af)") =
a¥T(fT) and ¥ ((af)”) = a¥F(f7), and hence T (af) = adT(f)
whenever a > 0. Next observe that since f~ = (—=f)* and f*= (—f)7,

OH(=f) =TT (=) —w((=)") =T () - (f") = -27 (/).

So & (af) = &F(—|alf) = =2 (lalf) = —[a|2T(f) = a®*(f) if a <0.
Therefore, for every @ € R and every f € L(S,R),

(i) T (af) = ad™(f).

In order to show additivity, take any f in L(S,R), and let ¢, ¢ in L(S,R)
be such that 0 < ¢, 0 <, 0< f+ ¢ and 0 < f + 9. Note that by (ii),

P+ o)+ 0T () =0 (f+o+¢) =¥ (f+9) + P (),

and so
TH(f+¢) = () =T (f +9) =0T ().

In particular, with ¢ = f~ (so that f + ¢ = f), we get
() =T (fF) 0T () =0T+ ) - T ().
Summing up: For every f € L(S,R),
D) =0 (f+4) - ()

whenever 0 < 1 is such that 0 < f 4 . Thus take any g € L(S,R), and let
1 be such that, in addition, 0 < g + . Then

O (g) =¥ (g+ ) — TH ().

Therefore, by using (i) and (ii),
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() +P(9) =¥ (f+ ) + T (g +1) — 207 ()
=UT(f+g+29) - (29).

But 0 < f+ 1 and 0 < g + 1 imply that 0 < f + g + 2¢. Hence
OH(f+9) =0t (f+g+2¢) - T (2y).

Outcome: For every f, g € L(S,R),

(it") PH(f+9) =P (f) + 27 (9).

Properties (I’) and (ii’) mean that the functional *: L(S,R) — R is linear.
It is also bounded since sup ;> Ut (f) < oo. Indeed,

sup  DF(f) = sup  (T(fT) - PT(f7)) < 2sup¥F(f) < oo
FEL(SR) FEL(SR) £0

Moreover, observe that &% is positive as well:
T (f)=v"(f) >0 forevery f>0.
Next consider the functional : L(S,R) — R defined on L(S,R) by
b =t —

which is trivially linear and bounded (since @ and & are). Since &(f) <
Ut (f) for every f > 0 by the definition of ¥, it follows that @~ is positive:

O (f) =07 (f) —D(f) =" (f) —2(f) =0 forevery f>0.

Finally, suppose L(S,R) contains the function 1. Since L(S,R) is a real lin-
ear space of real-valued bounded functions, since $* and &~ are real-valued
positive bounded linear functionals on L(S,R), and since 1 € L(S,R),

[@F]|=&7(1) and [&7| = (1),
so that
@] = [|&F — &~ || < |87 + |87 || = 67 (1) + S(1).

On the other hand, take any ¢ € L(S,R) such that 0 < ¢ < 1, equivalently,
such that |2¢ — 1| < 1. First recall by the definition of ¢~ that

PT()+ & (1) =201 (1) + D(1).
Next observe that according to the definitions of ¥+ and &,

ot (1) = v (1) zoiu;il@(ap).
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Moreover, since |2 — 1| < 1, and since @ is linear,

20(p) — (1) = 229 —1) S‘fg‘lfll\@(f)ll < ol
Hence, )
(1) +07(1) = sup 28(p) + (1) < |9
0<p<1

Therefore, &1 (1) + &~ (1) = ||| O

12.3 The Riesz Representation Theorem

Recall that continuous functions are Borel measurable. So every f € C.(X)
is Xr-measurable. Actually, f € C.(X) is integrable with respect to a Borel
measure (and so is f € C(X) = C.(X) if X is compact), since these func-
tions are bounded (C.(X) C B(X)), and since Borel measures are finite on
compact sets (cf. Lemma 4.4(b) and Problem 3.3(a,b)).

This section contains the central theme of the chapter. The next theorem,
Theorem 12.5, is one of the forms of the celebrated Riesz Representation
Theorem, which might be called Riesz—Markov—Radon—Banach—Kakutani—
Halmos Theorem, since many versions of it have traveled a long way from
Riesz’s original 1909 paper to the general form on locally compact Hausdorff
space developed in Halmos’s book [18]. For a short account of such a long
story see [35, p. 354]. We will see further versions up to Section 12.4.

Theorem 12.5. Let X be a locally compact Hausdorff space. If @ is a
positive linear functional on C.(X), then there exists a unique quasiregular
Borel measure i on the Borel o-algebra X1 of subsets of X such that

d(f) :/fdu for every f € C.(X).

Proof. Let X be a locally compact Hausdorff space. Take the linear space
of all F-valued continuous functions on X with a compact support,
Ce(X) ={f: X— F: fis continuous and [f] is compact in X},
and let @: C.(X) — F be a positive linear functional,
&(f) > 0 for every f € C.(X) such that f(z) > 0 for every z € X,

and consider the set function p#:7 — R on the topology of X defined by

p#(U) = sup  @(f),
fFeCe(x)V
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where C.(X)Y is a collection of positive functions for every open set U € T:
Co(X)V ={fe€C(X): f(X)C[0,1] and [f] CU} C Co(X,R).

First we show that u# satisfies the properties (1) to (7) in the definition of
an inner content (Section 11.3). Let G and U be arbitrary sets in 7. Clearly,

(1) wp#@)=0, (2 p#(U)=0,
since @ positive, and it is readily verified that

(3) u#(U) < oo whenever U~ is compact,
(4) p#(G) < p#(U) whenever G CU.

Before verifying property (5) we need to show property (6). Let {Ux} be a
countable family of open sets and set U = |J,, Ui, which is open. Take an
arbitrary f € C.(X)V. Thus {Ux} is an open covering of the compact set
[f], and hence there exists a finite open subcovering {U;}?_; C {Ux} of [f].
In this case, Corollary 12.3 ensures that there exists f; € C.(X)Yi for each
i € [1,n] such that Y., fi(x) =1 for every = € [f]. Thus

f= if,f where each f; f lies in C.(X)Y.

i=1

Hence, by the definition of u#, and since & is linear,

B(f) = B(fif) <Y p#(U) < ZM#(Ui),

i=1 i=1
and so

pt(U) = sup () <> p#(U).
feCe(x)V i=1

Therefore,

(6)  p#(UpUn) <Xpu#(Ux) for every countable family {Uy} C T.

Now suppose that GNU =@. If fec C.(X)V and if g € C.(X)%, then
f+g € C.(X)VYC Thus (cf. definition of u#),

(f) +2(9) = 2(f +9) < p#(UUG)

for every f € C.(X)V and every g € C.(X)%. This implies that

p#(U) +p#(G) = sup  O(f) + sup  P(g)
feCe(X)U geC(X)CG
< sup (@(f) +®(9)) < p#(UUG).

 fece(x)U, geCe(x)C
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Since we have already verified that p#(U U G) < p#(U) + p#(G) (inde-
pendently of the disjointness assumption), it follows that

(5) pw#(GUU) = pu#(G) + p#(U)  whenever GNU = 2.
Thus p# is a content, which in fact is an inner content, since

sup p#(G) = sup sup  O(f) = sup @(f) = p#(U),
Geg(U) GeG(U) feCe(X)C fece(x)U

with G(U) = {G € T: G~ C U, G compact} for each U € T, so that
(7) p# (U) = sup {p#(G): G~ C U, G~ compact}.
Therefore, by Lemma 11.8, the set function pu*: #(X) — R defined by
p*(S) =inf {u#(U): SCU} forevery S € 9(X)
is a quasiregular outer measure such that p*(S) < oo if S is bounded. So
po=p | Xy = R

is a quasiregular Borel measure on the Borel o-algebra X' generated by the
topology 7T according to Theorem 11.7. Next we show that

&(f) :/fdu for every f € C.(X).

Any complex-valued function f in C.(X) can be written as f = f1 + i fo,
where fi =Re f and fo = Im f (the real and imaginary parts of f) are real-
valued functions in C.(X), and any real-valued function f in C.(X) can
be written as f = f*— f~, where f* and f~ (positive and negative parts
of f) are nonnegative functions in C.(X). In fact, such a decomposition is
possible since every function in C.(X) is bounded (reason: f(X) is com-
pact by Lemma 12.1 and so it is bounded — cf. Remarks on Boundedness
in Section 11.1). Therefore, since ¢ and [(-)dp are linear functionals, it
is enough to consider nonnegative functions. That is, if the above identity
holds for every nonnegative function f in C.(X), then it holds for every
F-valued function f in C.(X). Thus take an arbitrary nonnegative func-
tion f in C.(X). Since @ and [(-)dp are linear functionals and f(X) is
bounded, we may assume without loss of generality that f < 1. Thus sup-
pose f(X) C[0,1]. Take an arbitrary bounded open set U € T such that
[f] CU. In other words, take an arbitrary bounded open set U such that

fec.(x)V
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Take an arbitrary positive integer n and set, for each integer k£ >0,
Up =0, Up={zeX: & < f(x)} = fF (5, 0)) for k>1,
which are open (inverse image of open sets under a continuous function).

Note that U; = X\ f~'({0}) = X\N(f) so that U, = [f], U, , C U, and
Uy = @ for every k > n + 1. Set, for each integer k € [1,n],

1; S Uk+1 (i'e'a if % < f(x))v
fe(x) = nf(z)—(k—1), x€U\Ury1 (e, if Aol < f z) < %),
0, x € X\Uyg (ie., if f(z) < k),

which defines a collection of n real-valued (since f is real-valued) functions

fr on X with compact support. In fact, [fix] C U, C Ui_1. Each f is con-

tinuous (reason: nf(z) — (k—1) = 0if f(z) = &L, nf(z) — (k—1) =1 if

f(z) =% and f is continuous). Thus f;(X) C [0,1], and so fi, € C.(X)%k

for each k € [1,n] and each open set G}, such that [fi] € Gy. In particular,
fr € CC(X)Uk—l.

Thus, according to the definitions of the inner content p#: 7 — R and of the
quasiregular outer measure p*: ©(X) — R induced by it, and recalling that
the quasiregular Borel measure p: X7 — R generated by them is such that
wlr = ptlr = p#, we get, for each integer k € [1,n],

p# (Ut1) = 1" (U41) = p(Ug1) S/fk dp < p(Ux) = p* (Uy) = p# (Uy).

Since fr, =1 on Ugq1 C Uy, and [fi] € U, C Ug—1, it also follows that

p#(Ugs1) = sup  @(g9) < O(fx) < sup  D(g9) = p#(Ur-1).
QECC(X)U’C+1 QECC(X)kal

Hence,

/ feardu < O(fi)  and  B(fyea) < / fedn

for every integer k € [1,n — 1] if n > 1, and for every integer k € [1,n — 2]
if n > 2, respectively.

Claim. nf(x) = Z fe(x) for every =z € X.
k=1

Proof. If n =1, then f = f1. Thus suppose n > 1. Take an arbitrary z € X.
If ‘51 < f(x) < & for some integer i in (1,7n), then
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o) 1, if 1<k<i-—1,
RN 00 i it1<k<n,

for every integer k # ¢ in [1,n]. Hence,

> ful) ka )+ filx +ka D+nf(z)=(i-1) =nf(n). O
k=1

k=i+1

Now suppose n > 1 so that [ fr+1 du < @(fy,) for each integer k € [1,n — 1].
Since @ and [(-) du are linear functionals, we get

w [fan= [ in= [of = ) du—= /(kadu f) du
Z/Tifk+1dﬂzrlz:l/fk+1d/~t<Zé(fk):@(ka)
; j i=1 i=1

(Z fi= fa) = ®(nf = fu) = nd(f) = B(f,).

Recall that [f1dp < p(Uyp), with Uy = U, where U is bounded, and so
w(U) < oo, and also that &(f,) > 0 (because @ is positive). Then

/ fdu < B(f) + 3 / Frdi— 26(f) < B(f) + u(Us).

Since the preceding inequality holds for every integer n > 1, it follows that

[rin< o)

Next suppose n > 2 so that @(fr12) < [ fi dp for each integer k € [1,n — 2].
Again, since @ and [(-) du are linear functionals, we get

n®(f) = 2(fr) = @(f2) = P(nf ~ fi - (ka—fl )
72 (i) < /fkdu /ka—fnfl—fn)du

:/(nfk—fn,1—fn)du:n/fdﬂ—/fnfldﬂ_/fnd#'

Recall that @(f1) + &(f2) < pw(Uo) + p(U1) < 2u(U) < oo, and also that
each [ fidp > 0. Then

< [raue k(o) votr) - [ fordn- [ foau) < [ fans fuw)
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Since the preceding inequality holds for every integer n > 2, it follows that

a(f) < / fdp.

Outcome:

Finally, we show that the quasiregular measure p: X7+ — R on the Borel o-
algebra X7 of subsets of the locally compact Hausdorff space X generated by
the topology T on X, which satisfies the above identity, is unique. Suppose
wand p' on X7 are quasiregular measures that satisfy the above identity.
Observe by the definition of quasiregular measures on X7 that they are
determined by their values on open sets, which in turn are determined by
their values on compact sets. So, in order to show that u' = p on Xr, it
suffices to verify that p/(K) = p(K) for every compact set K. Thus take
an arbitrary compact set K C X and an arbitrary € > 0. Since y’ is outer
regular, there exists an open set U such that K C U and ¢/ (U) < p/(K) +e.
By Lemma 12.2, let f be any function in C.(X)x N C.(X)Y. Therefore, since
f(X) C[0,1], f(K) =1, and [f] C U, it follows that

u(K) < /fdu — a(f) = /fdu’ < /() < H(K) + e,

and hence u(K) < p/(K). Swapping p with ' we get pu(K)" < p(K). Thus
p(K) = pu(K), so that p/ = p. O

A major application of Theorem 12.5 occurs in the proof of the Spectral
Theorem for normal operators (see, e.g., 27, Proof of Theorem 3.11]). Com-
paring with the previous version, the next one exchange positiveness with
boundedness for the linear functional @, and the positive Borel measure is
replaced with a finite signed measure. The price for it is that the domain on
which such a functional acts is the real linear space C(X,R) for a compact
X, rather than the linear space C.(X) on a locally compact X.

Theorem 12.6. Let X be a compact Hausdorff space. If @ is a real-valued
bounded linear functional on the real linear space C(X,R), then there is a
unique signed measure v on the Borel o-algebra X1 of subsets of X such that

&(f) = /fdu for every  f e C(X,R).
Moreover, ||®| = |v|(X).
Proof. Let X be a compact Hausdorff space. Recall that the real linear space

C(X,R) = {f: X — R: f is continuous}
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of all real-valued continuous functions on X is a linear lattice, and let
¢:C(X,R) - R be a real-valued bounded linear functional on C(X,R).
Lemma 12.4 ensures that there exist two positive real-valued bounded linear
functionals #7: C(X,R) — R and &7:C(X,R) — R on C(X,R) such that

P=0" .

Take an arbitrary f € C(X,R). Since X is compact, C(X) = C.(X), and
so Theorem 12.5 says that there is a Borel measure A\, and a Borel measure
i, both unique on X7 (which are finite because X is compact), for which

:/fd)\ and @‘(f):/fdu.

Thus, the (finite) real-valued signed measure v = A — u on X7 is such that

o(f) =" (1)~ 07(f) = [far— [fdu = [ta.

which proves the existence. To verify uniqueness suppose v and v’ are (finite)
real-valued signed measures on X7 such that for an arbitrary fe C(X,R),

/fdzx— ) :/fdy’.

Set 7 = v — v/ This is a (finite) real-valued signed measure on X7 for which

/fdz/—/fdz/ /fdy‘: ,

where T and 7~ are finite positive measures on X5 associated with the
decomposition 7 = 0T — 7~ : the positive and negative variations of 7. Now
consider the (real-valued) positive linear functional ¥ on C'(X,R) such that

/fd“"—/fdu_.

By uniqueness of the Borel measure in Theorem 12.5 we get 77 = 7~ so
that 7 = 0, and hence v = v/, which proves uniqueness. Finally, recall that
C(X) € B(X) whenever X is compact, and so sup |f| < oo, and also that

o

for every f € C(X,R) (as we saw in Remark 10.3). Hence

< / fldlv| < sup|f]|](X)

2] = sup |2(f)] < [v[(X).
If1<1



12.3 The Riesz Representation Theorem 241

On the other hand, according to Example 7A and Theorem 7.4,
V|(X) = vH(X) + v (X) S MX) +p(X) =27 (1) + 97 (1) = |2
by Lemma 12.4 since C'(X,R) contains the function 1. Therefore,
2] = |v|(X). O

The next result extends Theorem 12.6 to bounded linear functionals on
C(X,C), where finite signed measures are replaced with complex measures.

Theorem 12.7. Let X be a compact Hausdorff space. If @ is a complez-
valued bounded linear functional on C(X,C), then there exists a unique
complex measure 11 on a Borel o-algebra X7 of subsets of X such that

o(f) :/fdn for every f e C(X,C).
Moreover, ||®|| = |n|(X).
Proof. Let X be a compact Hausdorff space, let
C(X,C)={f:X— C: f is continuous}

be the complex linear space of all complex-valued continuous functions on
X, and let ¢: C(X,C) — C be a complex-valued bounded linear functional
on C(X,C). A function f in C(X,C) can be written as f = f1 + i fo, where
f1 and f5 (real and imaginary parts of f) are real-valued continuous func-
tions in the real linear space C'(X,R) = {p: X— R: ¢ is continuous}. More-
over, write the complex numbers @(f1) and @(f2) in its Cartesian represen-
tation, @(f1) = Re &(f1) + ¢ Im &(f1) and D(f2) = Re D(f2) + i Im P(f2),
where Re @(f;) and Im @(f;) are real numbers. Thus, for each complex-
valued functional @¢:C(X,C) — C on the complex linear space C(X,C),
we can associate two real-valued functionals, say, ¢1:C(X,R) = R and
®5:C(X,R) — R on the real linear space C'(X,R), defined as follows.

) P1(p) =Re P(p) and  D2(p) = Im P(p),
so that
D(p) = D1(p) +iD2(p),

for every ¢ € C(X,R). These real-valued functionals ¢; and @ on C(X,R)
are linear and bounded. Indeed, since @ is linear, it follows that for every
a € R and every ¢, ¢ € C(X,R),
adi(p) +iady(p) = aP(p) = P(ayp) = Pi(ap) +idy(ay),
Pi(p+v) +iPap+¢) = Pe + ) = (@) + D(¢)
= (P1(p) + D1(¥)) +i(P2(p) + P2(¥)),
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and so @1 and &, are linear, which are also bounded since @ is bounded:

max{ 212,102} = max { sup [@1()[2, sup |@5()[?
lol<1 [¥|<1

< s (I21(2) ] + [P2(0) %)
= sup |D1(p) +iDa(p)|

lp|<1
< sup [D(p)|* < sup [B(f)]* = |||
lp|<1 Ifl1<1

Therefore, according to Theorem 12.6, there exist unique finite signed mea-
sures 1 and v, on X7 such that

1(f1) :/fldl/h 451(f2)=/f2d1/1,
2(f1) :/fl dva, ‘152(f2) :/fz dvs.

Observe that by the linearity of @ we get for each f € C(X,C),

D(f) = D(f1 +ife) =D(f1) +iP( f2)
=01(f1) +iPa(f1) +i (D1(f2) + i Pa(f2))
= &1(f1) +iP1(f2) — P2(f2) +iPa(f1).

Hence, since [(-)dp is a linear functional, for every f € C(X,C),

f):/fldu1+i/f2du1—/fgdug+i/f1d1/2

:/(fl +if2)d1/1+i/(f1+if2)d1/2

:/fdu1+i/de2=/fd77a

where 11 = 11 + i 15 is a complex measure on X', which is unique since the
finite signed measures v, and v5 on X are unique. Finally, to verify that

2] = [nl(X)

we proceed as follows. First recall that since C(X) C B(X) whenever X is
compact, we get sup | f| < oo for every f € C(X) = C(X,C), and also

- ’/fdn‘ g/|f|d|n\ < sup | f] [n](X)
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for every f € C(X) = C(X,C) (as we saw in Remark 10.6), which implies

[ = sup |&(f)[=  sup
feCc(x),|fI<1 feC(X), [fI<1

/fdn‘ < nl(x).

Next we show the reverse inequality, so that

/fdn] — nl().

In fact, we have already seen in Section 10.3 that the above identity holds
when the supremum is taken over all complex-valued integrable functions f
on X such that |f| < 1. We now show that this actually happens (i.e., the
above identity holds) even when the supremum is taken over the subcollec-
tion of all complex-valued continuous functions f on X such that |f] < 1.
Indeed, since X is a compact Hausdorff space, we can apply Lemma 12.2
and Corollary 12.3. By Lemma 12.2 it follows that if {U;} is any finite open
covering of X, then there is a finite compact covering {K;} of X such that
K; CU; and, for each index i, there exists a function f; € C.(X) = C(X)
such that X, < f; < Xy,. Let {A7, A7 } and {A3, A5 } be arbitrary Hahn
decompositions of X with respect to the signed measures vy and vs, and
consider the collection Aj, = {A] NA;, A] NA, ,A] NA5, Ay N4y},
which also is a covering of X. An argument similar to that in Remark 10.3
shows that for every Xr-measurable covering of X there is a A'7-measurable
covering of X consisting of subsets of the four sets in A} 5. Thus take a finite
open covering {U;} C A5 of X. Hence (cf. Remark 10.5),

sup
feC(X), |fI1

In(K)| < \ / fz-dn‘ < Wy,

and so
Do InE) < ‘ / fi dn‘ <> Il

Observe that 7n is quasiregular in the sense that n = v; +ivy where 1y
and vs are quasiregular (finite) signed measure (i.e., they are differences of
quasiregular finite positive measures, which are Borel measures 1 on Xy
such that u(U) = sup{u(K): K C U, K compact} for open sets U). Then

sup 3 ()| = supY" \ & dn| — sup > 0,

where the supremum is taken over all finite open coverings {U;} C Afg of
X, and so over their corresponding compact coverings {K;} with K; C U;,
and over all finite collections {f;} of continuous functions on X such that
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Xk, < fi < Xy,. Since [n|(X) = sup ) ;|n(E;)|, where the supremum is
taken over all finite Xr-measurable partitions {F;} of X (cf. Section 10.3),

we may infer that
s Y| [1an| = o)

Now, arguing as in Corollary 12.3, we may take {f;} such that ) . f; = 1.
Indeed, set f =, fi, which is a real-valued continuous function on X such
that f > 1. By setting f’ = f;/f we get a finite collection { f/} of functions in
C(X) such that X, < f{ < Xy, and ), f{ = 1. Such a system of functions
is referred to as a partition of the unity on X corresponding to an open
covering {U;} of X. Thus, with Y, fi =1 € C(X) (and so |, fi| = 1)
and 0 < f; < Xy, for each index 4, it is readily verified (taking again the
supremum over all finite open coverings {U;} C A7 of X) that
< sup

Supzi ’/fl dn’ B Supzi ‘/U, fudn fec(x), |f1<1 /fdn’-

Thus we get the reverse inequality,
[san

mlx) = sup Y \ & dn‘ < e
/fdn]=n|(X>. 0

- fec(x), Iflst
Therefore,

|l = sup |B(f)] =  sup
fec), IfI<1 fecx), If|<1

12.4 Additional Propositions

Take the Banach space LP = LP(u) = LP (X, u) = LP(X, X, ) of all (equiv-
alence classes of) F-valued functions f: X — F on a nonempty set X that
are p-integrable if p > 1, or essentially bounded if p = oo, where pu: ¥ - R
is a positive measure on a o-algebra X of subsets of X (Chapter 5). If
p > 1, then the Holder conjugate ¢ > 1 of p is the solution to the equation
% + % = 1; for p = 1, set ¢ = oo (and vice versa). In Section 7.2, after prov-
ing the Radon-Nikodym Theorem, we remarked that “an application of
the Radon-Nikodym Theorem is the Riesz Representation Theorem”. The
referred version of the Riesz Representation Theorem reads as follows.

Proposition 12.A. If p > 1 and &: LP — F is a bounded linear functional,
then there is a unique g € L9, where q is the Holder conjugate of p, such that

P(f) :/fgd,u for every f € LP.

Moreover, ||®|| = ||gll,- If p=1 (so that q = co) then the (positive) meas-
ure 1 is supposed to be o-finite.
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A particularly important especial case is that of p = ¢ = 2. As we have
also noticed in Section 7.2, such a particular case can be proved without
using the Radon—Nikodym Theorem. Indeed, recall that a Hilbert space is
a Banach space (i.e., a complete normed spaces, as in Chapter 4) whose
norm is induced by an inner product. In other words, let £ be an arbitrary
(abstract) linear space over a field F. A functional { ; ):LxL — F is an
inner product on L if the following conditions hold for all vectors f, g, and
hin £ and all scalars ain F: (i) (f+g;h) = (f;h)+(g;h), (ii) (af;g) =
olfsg), (i) (F19) = (9 /), () (f5f) >0, (v) (f3f) =0 only if f=0.
An inner product space (L, { ; )) is a linear space L equipped with an inner
product ( ;). If £ is a real or complex linear space, so that F =R or
F = C, equipped with an inner product on it, then it is referred to as a real
or complex inner product space, respectively. Every inner product induces a
norm. The norm || ||: £ — R induced by an inner product { ; ) is defined by
IfII? = (f; f) for every f € L. A Hilbert space H is an inner product space
(L,{(;)), which is complete in the sense that the normed space (L, || - ),
whose norm is induced by the inner product ( ; ), is complete. The Riesz
Representation Theorem in an abstract Hilbert space H reads as follows.

Proposition 12.B. Let H be an arbitrary Hilbert space. For every bounded
linear functional ®:H — F, there exists a unique vector g € H such that

&(f) = (f;g) for every feH.

Moreover, ||®|| = ||g||. Such a unique vector g in H is called the Riesz rep-
resentation of the functional @.

The space L? is a concrete Hilbert space. Among the Banach spaces LP,
for every p > 1 and for p = oo, the only one which is a Hilbert space is L?
(only || ||5 is induced by an inner product). The inner product in L? is

(f;9) Z/fﬁdu for every f,g € H.

Thus the Riesz Representation Theorem in L? can be independently ob-
tained either by Proposition 12.A or by Proposition 12.B. In fact, we can
get it through Proposition 12.B, and use it to yield another proof of the
Radon—Nikodym Theorem (different from our proof of Theorem 7.8), and
the Radon—Nikodym Theorem is, in turn, used to prove Proposition 12.A
(see e.g., [36, Remark 6.17] or [4, Exercise 8.V]).

The next result extends Theorem 12.5 from the linear space C.(X) of
all continuous functions with compact support to the linear space Cy(X) of
all continuous functions that vanish at infinity. A function f: X — F on a
topological space X is said to vanish at infinity if for every € > 0 there is a
compact set K. C X such that |f(z)| <e whenever z € X\ K,. Recall that a
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reqular (quasiregular) signed measure v= v — v~ is one such that the finite
positive measures v and v~ are regular (quasiregular); a regular (quasi-
regular) complex measure n = v+ ivs is one such that the (finite) signed
measures vq and vy are regular (quasiregular) — cf. Proof of Theorem 12.7.

Proposition 12.C. Let X be a locally compact Hausdorff space. If & is an
F-valued bounded linear functional on Cy(X), then there is a unique quasi-
reqular F-valued measure n on a Borel o-algebra X1 of subsets of X such that

&(f) :/fdn for every  f € Co(X).

Moreover, ||®|| = |n|(X).

Let X be a topological space. Observe that C.(X) C Co(X) C B(X) C
L%°(X, u). Also, C.(X) C LY(X,p) if LY (X, X7, ) is given in terms of a
positive Borel measure p on X7, as we had noticed at the opening of
Section 12.3. Thus (Problems 5.8 and 5.12), C.(X) C LP(X, u) for every
p>1if LP(X, X7, u) is given in terms of a Borel measure p on X7 Note
that the inclusions in LP(X,pu) or L*°(X,u) are interpreted in terms of
the equivalence classes of each representative in C.(X) or B(X). The next
proposition shows a denseness result of fundamental importance for the
linear spaces upon which the Riesz Representation Theorems were built,
viz., Cc(X), Co(X), and LP(X, ) (recall: Co(X) = Cp(X) = C(X) if X is
compact).

Proposition 12.D. Let X be a locally compact Hausdorff space. If u is a
positive quasiregular Borel measure on a Borel o-algebra X7 of subsets of X,
then the linear space C.(X) is dense in the Banach space (LP(X,p),|l [[,)
for every real p > 1 and for p = co.

Notes: These are classical and crucial results in functional analysis, which
extend the original form of the Riesz Representation Theorem (Theorem
12.5) in many directions. Proposition 12.A is the standard form of it in the
concrete Banach spaces LP (for proofs using somewhat different approaches
see, e.g., [4, Theorems 8.14 and 8.15], [35, Theorems 11.29 and 11.30], or
[36, Theorem 6.16]). Proposition 12.B is the traditional version for abstract
Hilbert spaces, which does not depend on any measure-theoretical concept
(see, e.g., [26, Theorem 5.62]). For the extension to the concrete linear space
Co(X) in Proposition 12.C see, e.g., [36, Theorem 6.19], and for the pivotal
denseness result of Proposition 12.D see, e.g., [6, Theorem 29.41].

Suggested Reading

Bauer [6], Brown and Pearcy [8], Conway [11], Halmos [18], Kingman and
Taylor [23], Royden [35], Rudin [36].



13

Invariant Measures

13.1 Topological Groups

A binary operation on a set X is a mapping x: X x X — X of the Cartesian
product X xX into X. It is usual to write z = z x y instead of z = *(z,y)
to indicate that z in X is the value of x at the point (z,y) in X xX. In this
context it is convenient to interpret the binary operation x multiplicatively,
so that z % y is interpreted as the product of z and y, and it is written in a
simplified form as z y. If a binary operation on X has the property that

r(yz) = (zy)z

for every z, y, and z in X, then it is said to be associative. So we can drop
the parentheses and write x y z. If there exists an element e in X such that

re = exr =&

for every x € X, then e is said to be the identity element (or the neutral
element) with respect to the binary operation on X. It is easy to show that
if a binary operation has a neutral element e, then e is unique. If an asso-
ciative binary operation on X has an identity element e in X, and if for
some x € X there exists z7! € X such that

then 271 is called the inverse of x with respect to the underlying binary

operation. It is also easy to show that if the inverse of x exists with respect
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to an associative binary operation, then it is unique. Note that (zy)~! =

y~lz7! (indeed, zyy la~! =e).

A group is a nonempty set X on which is defined a binary operation
that is associative, has an identity element e € X, and every = in X has
an inverse in X. In general, the binary operation is not commutative in the
sense that there may exist a pair of elements x,y € X for which xy # yx. If
the binary operation on a group X is such that zy = y z for every z,y € X,
then X is said to be a commutative group (or an Abelian group). A nonempty
subset M of a group X is a subgroup of X if M is itself a group; that is,
if e€ M, and 27! and zy lie in M for every z and y in M; equivalently,
if xy~'€ M whenever x and y are in M. Suppose A and B are arbitrary
subsets of a group X. Let A~! and AB stand for the subsets of X consisting
of all elements of the form 2~! and x y, respectively, for z € A and y € B.
Thus a nonempty subset M of a group X is a subgroup of X if and only if
MM~ C M. Note that AN A™1 = (AN A=1)~! for every A C X.

We write A% for AA. Observe that (AA)A = A(AA), and so we write
A3 for AAA = (AA)A = A(AA). Generalizing, we write A" for the multi-
plication of A with itself n times, A... A C X, for every positive integer n.
If e € A, then {A™} is an increasing sequence (with respect to the inclusion
ordering) since, in this case, A" = A"{e} C A" A = A™*! for every positive
integer n. For each z € X, let A and Az denote {x}A and A{z}, which
are referred to as left translation and right translation of the set A C X,
respectively. If M is a subgroup of X, then the sets M and Mz are re-
ferred to as left coset and right coset of M. An invariant subgroup M of
X is one for which M = Mz for every x € X. A homomorphism is a map
@: X — Y of a group X into a group Y such that

P(zy) =P(x)P(y) for every =z,y€ X.

A topological group is a group X that is also a topological space for which
the map (z,y) — zy~ ! is continuous from X x X (equipped with the usual
product topology) to X or, equivalently, for which the multiplication map
(z,y) — xy from XxX to X and the inversion map z — z~! from X to
X are both continuous. Take an arbitrary x¢ € X. The maps y — oy and
y— yxo from X to X are referred to as the left multiplication by x¢ and
right multiplication by xq, respectively. These are sections of the multiplica-
tion map (x,y) — zy (see Section 9.2). Since a restriction of a continuous
map is continuous, it follows that a section of a continuous function is con-
tinuous, and so the right and left multiplication maps are both continuous.
It is readily verified that the map y — Ly from X to X is the inverse of
the left multiplication y — zgy, and the map y +— ywo_l from X to X is
the inverse of the right multiplication y — y x, which are again continuous
(since these inverses are precisely the left and right multiplications by z, 1).
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A symmetric neighborhood in a topological group is a neighborhood N of
the identity e such that N = N~!. Topological qualifications are naturally
attributed to topological groups. We refer to compact, or locally compact,
or Hausdorff groups if, as topological spaces, they are compact, or locally
compact, or Hausdorff. A map between topological spaces is continuous if
the inverse image of open (closed) sets is open (closed). A homeomorphism
¥: X — Y of a topological space X onto a topological space Y is an invertible
map that is continuous and has a continuous inverse. So a homeomorphism
between topological spaces maps open (closed) sets into open (closed) sets,
and the inverse image of open (closed) sets is an open (closed) set. That is,
W(A) is open (closed) in Y if and only if A = ¥~1(¥(A)) is open (closed) in
X. Observe that the left and right multiplication maps are homeomorphism
of a topological group X onto itself (and so is the inversion map).

Next we exhibit four classical examples of topological groups.

(1) Let F denote either the set of all real or complex numbers, and consider
the set F\{0} of all nonzero real or complex numbers. Both F and F\{0}
are commutative locally compact Hausdorff groups, when equipped with the
usual metric topology, where F\{0} is equipped with the binary operation
defined by the usual multiplication in F with identify e = 1 (a multiplicative
group), and F is equipped with the binary operation defined by the usual
addition in F with identify e = 0 (an additive group).

(2) The unit circle about the origin T = {z € C:|z| = 1} in the complex
plane C, equipped with the usual metric topology, is a commutative compact
Hausdorff (multiplicative) group with identify e = 1.

(3) Let GL(n) be the collection of all (real or complex) nxn invertible
matrices equipped with the ordinary matrix operations and the uniform
topology induced by the usual topology of the normed space F". This is
a noncommutative locally compact Hausdorff (multiplicative) group with
identity e = I, where I denotes the identity nxn matrix.

(4) Consider the collection of all unitary operators on a Hilbert space H.
That is, consider the collection of all operators U in the Banach space B[H]
of all bounded linear operators of H into itself, equipped with the uniform
topology, such that U*U= UU* = I, where [ is the identity operator and
U* denotes the adjoint of U. This is a noncommutative Hausdorff (multipli-
cative) group, which is not locally compact if H is infinite-dimensional, with
identity e = I. Here multiplication means composition. For continuity of the
inversion and multiplication maps, see, e.g., [20, Problems 100 and 111].

The following lemma collects standard results on topological groups that
will be required in the sequel. The result in item (c) is central.
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Lemma 13.1. Let X be a topological group.
(a) If K and C are compact sets in X, then K~! and CK are compact.

(b) Take x € X and U C X arbitrary. The set U is open if and only if ©U
is open if and only if Ux is open if and only if U~ is open.

(¢) If G is an open (bounded) neighborhood of the identity e, then there is
a decreasing sequence {U,} of open (bounded) symmetric neighborhoods
U, of e such that, for each integer n>1, U¥ C G for every1 <k <n+1.

(d) If K is compact and G is open (bounded) in X such that K C G, then
there is an open (bounded) symmetric neighborhood U of e such that
KU CG, UK CG. If X is locally compact and Hausdorff, UKU C@G.

(e) If X is locally compact and Hausdorff, and if C and K are disjoint
compact subsets of X, then there exists an open bounded symmetric
neighborhood U of the identity e such that each of UC, CU and UCU
is disjoint with each of UK, KU and UKU.

(f) X is Hausdorff if and only if {e} is a closed set.

Proof. Let X be a topological group.

(a) Recall: continuous images of compact sets are compact (cf. Claim in the
Proof of Lemma 12.1). Since inversion is continuous, it follows that K ! is
compact if K is. Since the Cartesian product of compact sets is compact,
it follows that C'x K is compact in X x X whenever C' and K are compact
in X; since multiplication is continuous, it follows that C' K is compact.

(b) Since the left and right multiplication maps are homeomorphism, x U is
open if and only if U is, and Uz is open if and only if U is. Since inversion
also is a homeomorphism, U~! is open if and only if U is.

(c) Since G = e(@, it follows that G lies in the range of the multiplication
map. Since G is open in X, and since the multiplication map from X xX
to X is continuous (in particular, it is continuous at (e,e)), the inverse
image of G under this map is open in X x X, and contains the point (e,e)
because G contains e. Thus there exist A C X and B C X such that Ax B is
open in Xx X, (e,e) € AxB, and AB=G. Sincee€ ANB and AB = G,
it follows that A C G and B C G. Therefore, since Ax B is open in X x X
there exist open neighborhoods of e, say, W3 C A C G and Wy C B C G,
such that W1Wy C AB = G. Hence the set W = W7, N W, C G is open in
X (intersection of open sets), contains e, and W2 =WW C W1 W, CG.
Since W1 is open (according to (b)) and contains e, it follows that U; =
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WNW-1 CW C G is a symmetric (U; = Ul_l) open neighborhood of e
(intersection of open sets containing e), and UZ = U1U; C WW = W2 C G.

Outcome 1: For every open neighborhood G of the identity e there is a
symmetric open neighborhood Uy of e such that Uy C G and U? C G.

Thus, applying the above result to U; itself (which is an open neighborhood
of e), it follows that there exists a symmetric open neighborhood Us of e
such that Uy C U; C G and U2 C U; C G. Therefore, since e € Us,

U3 = UsyUsUy C UpyUsUsUy = Uy = (U2)(U2) C UL U, = UE C G.

Outcome 2: For every open neighborhood G of the identity e, there is a sym-
metric open neighborhood Us of e such that U C G, U22 C @G, and U23 CG@.

Again, applying the above result to Us (which is an open neighborhood of
e), it follows that there exists a symmetric open neighborhood Us of e such
that Us C U, C G, Ug? CUy, CG@G, and Ug C U; C G. Since e € Us, we get

Uy C U3 = (U (UF) C UUs = U3 C G

Outcome 3: For every open neighborhood G of the identity e, there is a sym-
metric open neighborhood Us of e such that UY C G for every 1 < k < 4.

Proceeding this way, if G is an open neighborhood of e, we eventually get
down to a pair of symmetric open neighborhoods U, and U,y of e such
that (i) Up41 C U, € G, (ii) UY C G for 1 <k <n+1, and (iii) U, C G
for 1 < j < n+ 2, for each integer n > 1. Thus {U,, } is a decreasing sequence
of open symmetric neighborhoods of e such that UX C G for every k such
that 1 <k <n+ 1. Note that U C G is bounded whenever G is.

(d) Take an arbitrary z € K C GC X, where K is compact and G is open
(bounded). Thus Gx~! and 271G are open (bounded) neighborhoods of e.
Then, by (c¢), there are open (bounded) symmetric neighborhoods V, and
W, of e such that V2 C Gz=! and W2 C 7 'G. Since e € V, N W, we get
that K C |J,cx Ve and K C (J,cx ©We. Since K is compact, there exist
finite open subcoverings such that K C (Ji_, V,,z; and K C ", z;W,,
with z; in K. Set V = (;_; V,;, and W = (), W,,, which are again open
(bounded) symmetric neighborhoods of e (because each V,, and W,, are).
Since x € K, it follows that x € V, z; and x € ;W,, for some z;, and so

Vo CVyx CVy, Vi = Vﬁixi - Gx;la:i =G forevery zé€K,

eW CaW,, CaW, Wy, = :cZWfl - x;lxiG =G forevery ze K.



252 13. Invariant Measures

Thus VK C G and KW C G. If X is locally compact and Hausdorff, then
(by Theorem 11.3) there is an open neighborhood N of e and a compact C
such that {e} C N C C' C V.Set V' = NN N~ an open (cf. (b)) symmetric
neighborhood of e such that V/ C C' C V. Hence CK C VK C G. Recall that
CK is compact by (a). Then the preceding result ensures that there is an
open (bounded) symmetric neighborhood W’ of e such that CKW’'C G. Set
U=V'NnVNWnNW’ an open (bounded) symmetric neighborhood of e. So
UK CVKCG, KUCKWCG,and UKUCV'KW'CCKW' CG.

(e) Suppose X is Hausdorff. If C' and K are compact, then C' and K are
closed (Lemma 11.2(g)), and so X\C and X\ K are open. If CNK = &, then
C C X\K and K C X\C. Since X is Hausdorff, it follows by Lemma 11.2(f)
that for every € X\C there is an open set G; and an open neighborhood
N, of x such that C C G; and G; N N, = @. In particular, this holds for
every x € K C X\C, and so there is an open set Ga = (J,c; N, so that
K C Gy and Gy NGy = @. If the Hausdorff X is also locally compact,
then we can take G; and G5 bounded by Theorem 11.3. Thus, by item (d),
there are open bounded symmetric neighborhoods U; and U, of e such that
UlCQ Gl, CUl - Gh UlCUl - Gl, U2K - GQ, KU2 - GQ, UQKUQ QGQ
Set U = U; N Us, an open bounded symmetric neighborhood of e such that
UCCUCCG, CUCCU; CGy, UK CUK C Goy KUC KU, C Go,
UCU CU,CU; C Gy, and UKU C Uy KU; C Gy. Since G; NGy = @, each
of UC, CU, and UCU is disjoint with each of UK, KU and UKU.

(f) Lemma 11.2(e) ensures that if a topological space X is Hausdorff, then
{e} is closed. Conversely, suppose X is a topological group, and suppose {e}
is closed. Consider the left multiplication map, so that {x} = x{e} is closed
for every x € X (reason: the left multiplication map is a homeomorphism
so that it maps open sets into open sets and, dually, closed sets into closed
sets). Suppose z # e. Since {z} is closed, its complement X\{z} is open,
so that there exists an open neighborhood G of e included in X\{z}, and
so x € G. By item (c) there exists an open symmetric neighborhood U of e
such that U? C G. This ensures that

UnzU = 2.

Indeed, if y € UNazU, then y =z z for some z € U, which implies that
r=yz 1 €UU =U? C G (because U is symmetric; i.e., U = U~!), which
is a contradiction (z € G). Hence U Nz U is empty. Thus, since e € U and
z € x U, it follows that there exist neighborhoods NN, of x and N, of e such
that N, N N, = @. Take any distinct points  and y in X. Since z # y, we
get x7 1y # e, and so there exist neighborhoods N,-1, of z7'y and N, of
e such that Nx_ly N N, = @, which implies that ach_ly NaN, = @. Since
Yy E me,ly and x € zN,, it follows that X is Hausdorft. [
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13.2 Haar Measure

Let X be a locally compact Hausdorff group, and let A be a Borel o-algebra
of subsets of X (i.e., a o-algebra that includes X7). A measure p on A is left
invariant or right invariant if u(zE) = w(E) or u(Ex) = p(F) for every E
in A and every z € X, respectively. It is called an invariant measure if it is
left invariant. In other words, a measure on a Borel g-algebra of subsets of
a topological group is left invariant or right invariant if it is invariant under
left or right translations; for commutative groups a measure is left invariant
if and only if it is right invariant (called a translation invariant measure, or
a measure satisfying the translation invariance property).

A left (right) Haar measure is a left (right) invariant nonzero positive
Borel measure on a Borel o-algebra of subsets of a locally compact Hausdorff
group. A Haar measure is a left Haar measure.

Remarks on Haar Measure: To begin with, observe that there is an asym-
metry in our definition of invariant and Haar measures. Left and right
translations are naturally distinct but symmetrical properties in a (non-
commutative) group. So why favoring “left” when defining Haar measure?
The point is that in this context, as we might have already guessed when
considering the proofs of items (d) and (e) in Lemma 13.1, the left-right sym-
metry of the invariance property preserves the pertinent algebraic (group)
and topological properties. The reason for this is that the inversion map
x +— ! on X interchanges left and right (i.e., (rA)~! = A=tz~!) and, be-
ing a homeomorphism, also preserves topological properties. In other words,
a result on left translation naturally implies and is implied by a correspond-
ing result on right translation. In particular if p is a left Haar measure on
a Borel g-algebra, then the set function A on the same Borel o-algebra ob-
tained by the composition of inversion and u (i.e., A(E) = pu(E~1)) is a
right Haar measure (and vice versa). Another point that is worth noticing
is that under the inner regularity assumption the “nonzero” condition in
the definition of a Haar measure is equivalent to saying that it assigns a
positive value to every nonempty open set. This is shown in the next result.

Lemma 13.2. Let u: A — R be a positive measure on a Borel o-algebra of
subsets of a locally compact Hausdorff group. Suppose u is left invariant.

(a) If w(U)=0 for some open U+# @, then u(K)=0 for every compact K.
(b) If w(K) >0 for some compact K, then p(U) >0 for every open U+# &.

If, in addition, p is an inner reqular Borel measure, then
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(¢) u#0if and only if u(U) > 0 for every nonempty open set U € A,
and, in this case (i.e., if u #0), then

(d) 0< [fdu < oo for every fe Ce(X) such that 0 < f 0 (for every non-
zero nonnegative continuous functions on X with compact support).

Proof. If K and U are nonempty subsets of X, then for every k& € K and
every ug € U there exists x = kual € X such that k = xug, and so UzGX xU
is a covering of K. (If U contains the identity e, then we can take uy = e
and, in this case, |, U is a covering of K.) Thus, if u(U) = 0 for some
open set U # @, and if K # @ is any compact set, then | J . x #Uis an open
covering of K, and therefore there exists a finite set of points in X, {x;}? 4,
such that K C |J'_, #;U. Since p is left invariant,

p(K) <> plaU) = p(U) = nu(U) =0.
=1 =1

This proves (a), which is equivalently stated as in (b): if u(K) > 0 for some
compact K, then u(U) > 0 for every open U # @. Suppose, in addition, that
w is an inner regular Borel measure. Since p(U) = 0 for some open U # @
implies p(K) = 0 for every compact K, and recalling that an inner regular
measure is one for which u(E) = sup{u(K): K CE, K compact} for every
Borel set E| it follows that u(U) = 0 for some nonempty open set U implies
w(E) =0 for every E € A; that is, u = 0. In other words, if every compact
set has measure zero, and if the measure is inner reqular, then = 0. Thus
w # 0 implies u(U) > 0 for every open U # @, proving (c) — the converse
is trivial. For (d) note that if 0 < f # 0 in C.(X), then there is an ¢ > 0
and an open @ # U C [f]° such that eXy < f and so, according to (c),
0<uU)= [Xydu < [fdu < p([f]) < oo, since p is Borel. O

A program to build a Haar measure on a locally compact Hausdorff group
is similar to that of building a Borel measure in a locally compact Hausdorff
space as in Section 11.3, where it was shown that an inner content on
a topology generates a quasiregular outer measure (Lemma 11.8) that is
finite at bounded sets, which in turn generates a Borel measure (Theorem
11.7). Now we define the notion of outer content on the collection of all
compact sets, which is dual to the notion of inner content on a topology
as in Section 11.3, and show in Lemma 13.3 how an outer content on the
compact sets generates a quasiregular outer measure, which is the dual of
Lemma 11.8.
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Let X be a topological space, and let K denote the class of all compact
subsets of X. A content on the compact sets is a real-valued set function
M :K— R on K such that for arbitrary compact sets K, C, and K; in K,

(1) M#(2) =0,

(2) M (K) >0,

(3) M (K) < o0

(4 M (C) < \# (K) whenever C' C K,
(

(6

AA/—\A

5) M#(CUK) = M (C) 4+ M (K) whenever CNK = g,
N M (U, Ki) <3, M#(K;) for finite families {K;}.
It is an outer content if, in addition,
(7) M (K) =inf{\#(C): K CC° CeK}.
Lemma 13.3. Let A#: K — R be an outer content. If X is a locally compact
Hausdorff space, then the set function p*:9(X) — R given by
p(S) =sup {\#(K): K C S, K compact} for every S € 9(X)
is a quasireqular outer measure such that pu*(S) < oo for every bounded S.

Proof. Properties (1), (2), and (4') in the definition of the content A# imply
the properties (a), (b), and (c) in the definition of an outer measure p* (see
Section 11.3). Property (¢’) in the definition of the content A# implies that

US ) < sup A#( UK ) < sup Z)\# i)gzi,u*(S

K;CS; K;CS;

for every finite family {S;} of sets in #(X), which leads to property (d) in
the definition of an outer measure .

Thus p* is an outer measure.
Property (4') in the definition of the content A# ensures that
w*(K) =M (K) for every compact set K.

Thus property (iii) in the definition of a quasiregular outer measure (Sec-
tion 11.3) holds by the definition of p* Moreover, the above identity also
shows that property (7’) in the definition of an outer content ensures that

p*(K) =inf {p*(C): K CC° C €K}

for every compact set K which, by the definition of p* implies that
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p*(S) = sup p*(K) = sup inf p*(C°) = inf p(C°)
KCS KCS KCC° scco

for every bounded set S, which leads to property (i) in the definition of a
quasiregular outer measure. Property (5') in the definition of an outer con-
tent implies property (ii) in the definition of a quasiregular outer measure,
according to the definition of p*:

p (GUU) = sup M (CUK)= sup M (C)+ M (K)=p*(G)+u"(U)
CUKCGUU cca, KCU

whenever G N U = @. (Indeed, according to the definition of p* property (ii)
of a quasiregular outer measure becomes, in this case, a consequence of the
condition p*(CUK) = p*(C) + p*(K) whenever CN K = @ — property
(5"), since this p* coincides with A# on K so that p*(S) = supgcg p*(K).)

Thus the outer measure p* is quasiregular.

Finally, property (3/) in the definition of the content A\# and property (c)
in the definition of an outer measure p* imply that

w*(S) < oo for every bounded set S € #(X)

(i.e., for every S C K for some K € K). O

13.3 Construction of Haar Measures

In a locally compact Hausdorff group X, a bounded set means a relatively
compact set (i.e., one whose closure is compact) and so a compact set is
precisely a closed and bounded set (see Remarks on Boundedness in Sec-
tion 11.1). Let B C X be bounded (i.e., B~ is compact), and let A C X have
a nonempty interior (i.e., the open set A° is nonempty). Since (J, . x 7A°is
an open covering of B~ there is a finite set {x;}7; C X such that

BQB_Q LTLJ.Z',LAOQ LnJ.’IJ,LA

i=1 i=1

The covering number [B: A] of a bounded set B by a set A with nonempty
interior is the least number of translates of A required to cover B. That is,

[B:A] = min{neN: BCJ;_z;A} >0
whenever B # @. Actually, [@: A] = 0. Observe that

[B:A] = min {[C:A]: B C C°, C bounded} € N.
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Also, the covering number is translation invariant: for every z € X,
[xB:A] = [B:A] = [B:zA].
If D € X is bounded with nonempty interior (D~ compact and D° # @), then
[B:A] < [B:D)[D: 4]

(reason: cover B with [B: D] translates of D and cover each translate of D
with [D: A] translates of A), and

[D:D] =1.

If B is a bounded set and U is a nonempty open set, then the covering
number [B:U] can be thought of as a comparison between the sizes of B
and U. This is our starting point for constructing a Haar measure. For a
given B, the covering number [B:U] gets larger as U gets smaller. To control
this growing process we consider instead the covering ratio [B : U]/[D : U]
for some reference bounded set D with nonempty interior, and define some-
how a limit of this covering ratio as U gets smaller and smaller. This will
lead us to a left invariant nonzero positive inner regular Borel measure.

From now on we assume the following setup. Let X be a locally compact
Hausdorff group and consider the inclusions

TCXrCACKX) and KC(BNXr),

where T is a topology on X, X7 is the Borel o-algebra of subsets of X gen-
erated by T, A is any Borel o-algebra subsets of X, ©(X) is the power set
of X, K C X7 is the class of all compact subsets of X, and B C #(X) is the
class of all bounded subsets of X. Let D be a bounded set with nonempty
interior (i.e., D € B and D° # @). Take an arbitrary nonempty open set
U € T and consider the rational-valued function Ay: B — Q defined by

Au(B) = % for every B € B.

Lemma 13.4. The covering ratio function A\y:B — Q has the following
properties. For arbitrary bounded sets B, By, Ba, and B; in B,

(a) Av(@) =0,

(b) 0 < A\y(B) whenever B # @,

() 0< A\y(B) < [B: D] < o0,

(d) X\u(B1) < Ay (B2) whenever By C By,
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e) A\u(B1UBz) = Ay(B1) + Au(Bs) whenever BiU ' N BU ™! = &,
) A (U;Bi) <X, Au(B;) for finite families {B;},
Av(B) =min{Ay(C): BC C°, C € B} €Q,
Av(xB) = )\U( ) for every z € X,

D)
U— A (B) is a bounded map for each B.

k) If K1 and Ky are disjoint compact sets, then there is an open bounded
symmetric neighborhood U of the identity e such that

Ag(Kl U Kg) = Ag(Kl) + Ag(Kg)

for every open neighborhood G of e such that G C U.

Proof. Properties (a) to (f) are readily verified except, perhaps, for (e).
To show (e) take z € X and observe that if By N2U # @, then z € BiU L
(Indeed, if b= zu, then bu~! =2z, so that x € ByU~!.) Similarly, if
ByNzU # @, then € BoU L Thus, if BiU ' N ByU ! = @, then there
is no x such that By NzU # & and By NaU # @; that is, no left translate
of U meets both By and Bs, and so [By U By :U] = [B;:U] + [By: U], prov-
ing property (e). Property (e) leads to property (k). Indeed, if the K7 and
K are disjoint compact sets, then there exists an open bounded symmetric
neighborhood N of the identity e such that K1 N N Ko N = @ by Lemma
13.1(e). Set U= N~1 again an open bounded symmetric neighborhood of
e. Let G be an arbitrary open (bounded) neighborhood of e such that
G C U. Set N' = G™1, an open (bounded) neighborhood of e. Since N'~1 =

GCU=N1Lit follows that N/ C N, and so Ki1N' N KyN' = @, equiv-
alently, K1G71 N K2G™! = @. Thus A\g(K1 U K3) = A\g(K1) + Aa(K2) by
(e), proving property (k). Properties (g) and (h) follow from the facts that
[B:U] = min{[C:U]: BC C° C € B} and [zB:U] = [B:U], (i) is trivial,
and (j) follows from (c) as a consequence of [B:U| < [B:D][D:U]. O

Observe from properties (a) to (f) in the preceding lemma that Ay (ac-
tually, the restriction of it to K) is nearly a content; it fails to be a content
on K just because additivity in property (e) may not hold for every pair of
disjoint compact sets — property (k) is an attempt to establish additivity
that will actually succeed in the next lemma.

The next lemma plays a central role in proving the existence of Haar
measures. There are distinct ways of approaching its proof. Some authors
use the Hahn-Banach Theorem (on extension of bounded linear func-
tionals), others use the Arzela—Ascoli Theorem (on compact subsets of
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continuous functions), and some use the Tychonoff Theorem, which says
that the Cartesian product nyel“ X, of compact sets X, is compact (in the
product topology — see e.g., [21, Theorem 5.13]).

Lemma 13.5. The covering ratio function Ay: B — Q generates a nonzero
left invariant outer content A\#:K— R on K.

Proof. Let U denote the collection of all open neighborhoods of the identity
e € X. Fix an arbitrary compact set D € K C B with nonempty interior,
and consider the covering ratio function Ay : B — R for an arbitrary U € U.
Take the restriction of each Ay to IC, denoted again by Ay: K — R, so that
Av(K) = [K:U]/[D: U] for every K € K. Let

A= {J{w}

veu

be the collection of the covering ratio functions Ay : K — R restricted to K
for all U € U. Take the Cartesian product

=[] [o[K: D]

KeK

of the closed intervals [0, [K : D]]. Since closed (and bounded) intervals are
compact sets in R, the Tychonoff Theorem says that the Cartesian product
[1xeicl0, [K: D]} is compact in the product topology. But the elements of
the Cartesian product [, [0, [K: D]] are interpreted as real-valued func-
tions on K. Indeed, by the definition of Cartesian product, [ ][0, [K: D]]
consists of all indexed families {p(K)} ke such that ¢(K) € [0, [K: D]] for
each K € K; equivalently, of all real-valued functions ¢:/C— R on K such
that 0 < p(K) < [K: D] for every K € K. Since 0 < A\y(K) < [K: D] < o0
by Lemma 13.4(c), the function Ay: K— R lies in [ ], [0, [K: D]] for each
UeU. That is, A C II. For each U € U consider the set of functions

AU) ={d¢eA: GCU}CIIL

Let {U;}?, be an arbitrary finite family of open neighborhoods of e (i.e.,
each U; lies in U). Observe that ()_, U; is again a set in U, and also that

o # A(OU) c ﬁA(Ui).

(Reason: (_,U; CU; so that A(N_,U;) C A(U;) for all U; € {U;}1,
— cf. Lemma 13.4(d) — and A(U) # @ for every U € U because \y € A(U).)
Hence the family {A(U) C II: U € U} of subsets of A C I has the finite in-
tersection property (i.e., every finite subcollection of it has a nonempty
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finite intersection). In particular, the family {A(U)~ C II: U € U} of closed
subsets of the compact space IT has the finite intersection property (since
@ # Nz, AU;) €N, A(U;)™). Therefore, Proposition 11.A ensures that
{A(U)-CH:UelU} has a nonempty intersection. Hence there exists

Moe (VA (U) = () {reed GCU} C I,

UelUu veu

where A# is a real-valued function on I, as is every element of the set
II = [T excl0, [K: D]]. Thus, for an arbitrary K € K, the value \# (K) € R
is approached by taking a Ay(K) = [K:U]/[D: U] € Q for some U € U,
and letting U get smaller and smaller in the above sense. We show that
such a function A#:JC— R is a nonzero left invariant outer content on K.

(i) First note that properties (a) to (c) in Lemma 13.4 trivially imply prop-
erties (1) to (3’) in the definition of a content on K.

(ii) To verify property (4') in the definition of a content on K proceed as
follows. For each K € K take the projection @ : IT — [0, [K : D]] defined by
Pk (p) = o(K) for every function ¢: K — [K: D] in II = []xcx[0, [K: D]].
The product topology on [] ¢k [0, [K : D]] makes the projections @ con-
tinuous (see e.g., [21, p. 90]). Take arbitrary sets K, Ky € K. Thus the
difference @k, = Pr,— Px,: Il — R is continuous. Consider the set

Sky-riy = {9 € IT: p(Ky) < p(Ko)}
={p €M 0< Dy, ()} = D, _ge, ([0,00)) C 1T,

which is closed (since @, x, is continuous, so that the inverse image of
a closed set is closed). If K1 C Ko, then Ay (K1) < Ay(K3) for every Ue U
by Lemma 13.4(d), so that Ay € Yk, K, for every U e U, and hence we
get A(U) C Yk, i, for every Uc U. Thus M\ € (o, AU)” C Yk, -k,
(since YKy Ky is closed). Then ME(KY)
< M (K3). That is, property (d) in Lemma 13.4 implies property (4') in
the definition of a content on K.

(iii) Take K1, Ko € K. Since @ is continuous for each K € K, it follows that
Prytk, = Pry + P — Pr UK, [T — R is continuous. Consider the set

Prork; = {9 € II: (K1 U Ky) = (K1) + ¢(K2) }
= {QO ST g151(24-1(1 (90) = 0} = 451_(;-5-[(1({0}) cnu
which is closed (since @k, yx, is continuous and every singleton is closed

in R). If K1 N Ky = @, then there exist Uy € U such that A\g(K; U Ks) =
A (K1) + Ag(K2) for every G € U such that G C Uy by Lemma 13.4(k).
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That is, there exists Uy € U such that A(Uy) € Yk, +k,. Therefore, since
YKkyvk, 18 closed, it follows that A# € Nueu AU)™
- A(U())_ - 2K2+K1' Then )\#(KlUKz) = )\#(Kl) + )\#(KQ) That
is, property (k) in Lemma 13.4 implies property (5') in the definition of a
content on K.

(iv) Property (¢') of a content on K results from property (f) in Lemma 13.4
by the same argument of (ii) with the map @, i, of (iii). Indeed, the set

Skgrry = 19 € 11 p(K1 U Kp) < (K1) + p(K2) }
={p eI 0 < Preyii) ()} = Pil 4 1, ([0,00)) C 1T

is closed. Since Ay (K7 U K3) < Ay (K1) + A(K3) for every U € U by Lemma
13.4(f), Av € X, 4 g, and hence A(U) € L | ., for every U € U. Thus
M € Nyey AU)™ € X, 4k and so M (K1 U Ka) < A#(Kq) + M (K2),
which extends by induction to finite unions of compact sets. Then property
(f) in Lemma 13.4 implies property (¢') in the definition of a content on K.

(v) Property (g) in Lemma 13.4 leads to Property (7’) of an outer content on
K. In fact, take K € KC arbitrary. Let C' be any set in K such that K C C°.
Recall that §x and ¢ are continuous, and so {Pc_x = P — @K}Kgco is
a family of continuous maps. Take the set Y¥o_x = {9 € [I: 0 < Pe_k(¢)}
of item (ii), which is closed, and consider the set
Ti = {p € Mip(K)= inf_o(C)}={p € II: Px(p)= inf Po(p)}
= M i _ = = i _ = _ C
{(p ell Klélgo Do_k () 0} Klggoﬂc e KQOEC x C II,

which is closed as well (intersection of closed sets). Thus, as before, since
A (K) = infgceo Ay (C) by Lemma 13.4(g), so that Ay € Xk, for every
UcU, we get \# € (¢, A(U)™ C Xk (because Yk is closed). Therefore,
M (K) = inf gcco A#(C'). Then property (g) in Lemma 13.4 ensures prop-
erty (7’) in the definition of an outer content on K.

Hence, according to (i)-(v), the function A#: K — R is an outer content on
K. That A# is nonzero follows from the fact that A\# (D) = 1. Indeed the
same continuity argument ensures that since @p is continuous, the set

Sp={pell:p(D)=1} ={pell: dp(p) =1} =o' ({1}) C I

is closed. Since Ay € X'p by Lemma 13.4(i), we get that A(U)~ C X', C Xp,
for every U € U, and so A\# € Yp. Finally, take x € X, K € K, and consider
the continuous map @, x_ g = P,.x — Px: Il — R. Then the set

Sok-x={¢ € I p(zK)=p(K)}={p € II: D,x=0}=P, - ({0}) C I
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is closed, and so, according to Lemma 13.4(h), the same argument ensures
that \# € X,k , which means that A\# is left invariant. O

The preceding lemma allows us to apply Theorem 11.7 to ensure the
existence of a Haar measure on a Borel o-algebra of subsets of an arbitrary
locally compact Hausdorff group.

Theorem 13.6. There exists a quasireqular Haar measure on a Borel o-
algebra of subsets of every locally compact Hausdorff group.

Proof. We will prove the following statement that leads to the above one.

A left invariant outer content A\#: K— R on K (generated by a covering ratio
function A\y: B— Q) generates a quasiregular outer measure p*: #(X) —R,
finite on B, which in turn generates a quasireqular complete Haar measure
(i.e., a left invariant nonzero positive quasiregular complete Borel measure)
X:A*— TR on a Borel a-algebra A* of subsets of a locally compact Hausdorff
group X. Its restriction \: X7 — R to the Borel o-algebra Xt generated by
T is again a quasireqular Haar measure although A may not be compete.

Indeed, consider the covering ratio function
Au:B — Q

defined by Ay (B) = [B:U]/[D:U] for every B € B, which is nonzero and
left invariant by Lemma 13.4(h,i). This Ay generates a nonzero left invariant
outer content on I (whose existence was proved in Lemma 13.5),

ML= R,
which in turn generates a quasiregular outer measure
p (X)) - R

defined by p*(S) = sup{\#(K): K C S, K € K} for every S € (X)), which
is finite on B, according to Lemma 13.3. Therefore, by Theorem 11.7, there
exists a quasiregular complete Borel measure

A = i A R

on a o-algebra A* that includes the Borel o-algebra X'r. It remains to verify
that the (positive) Borel measure A* is nonzero and left invariant.

(a)] The measure A\* is nonzero. In fact, A# is nonzero by Lemma 13.5, and
hence p* is nonzero according to its very definition in Lemma 13.3. Thus
w*(X) > 0. Then, since X € A* we get A\*(X) = pu*|4+(X) = p*(X) > 0.
(b) The measure A* is left invariant. Indeed, since A# is left invariant by
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Lemma 13.5 (i.e., M (zK) = A# (K) for every z € X and every K € K), it
follows by the definition of p* in Lemma 13.3 that

pr(x7lS) = sup M(K) = sup M (K)

KCaz—lgs zKCS
= sup M (zK) = sup M\ (K') = u*(S)
2KCS K'CS

for every x € X and S € #(X), so that p* is left invariant, and so is the
restriction A* = p*| 4+ of it to A* so that for every x € X and E € A%

X (@B) = u* (¢B) = u* (E) = N (B).

Again, as in the proof of Theorem 11.7, the above properties of the quasi-
regular complete Haar measure A\* except for completeness, are transferred
to all restrictions of it to any Borel o-algebra of subsets of X included in A*;
in particular, to its restriction A = \*| x7 to the smallest Borel o-algebra
X7 of subsets of X, so that A is a quasiregular Haar measure on Xy. [

It is clear that a Haar measure on a Borel o-algebra of subsets of a given
locally compact Hausdorff group X is not unique. Reason: p is Haar if and
only if v u is Haar for every positive number ~. However, this is essentially
the only way they can differ.

Theorem 13.7. If X and p are quasiregular Haar measure on the same
Borel o-algebra of subsets of a given locally compact Hausdorff group, then
there exists a positive constant v such that

A=vpU.

Proof. Let p and v be quasiregular Haar measures on a Borel o-algebra A
of subsets of a locally compact Hausdorff group X. Take the product uxv
on AxA as in Theorem 9.5. Recall that continuous functions with compact
support are integrable with respect to Borel measures. Consider the set

C(X)* = {g € CuX,R): g(X) > 0}

consisting of all nonzero and nonnegative continuous real-valued functions
g: X — R on X with compact support (see Section 12.1). Take an arbi-
trary p-integrable Borel function f € £(X, A, 1), and an arbitrary function
g€ C.(X)™, so that [fdp < oo and 0 < [gdv < oo by Lemma 13.2(d).
Consider the function h: X x X — R defined by

f(x)g(yx)

To(ze) du(a) for every x,y € X,

h(x,y) =
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which is again a pxwv-integrable Borel function: h € L(X XX, Ax A, uxv)
(cf. Problem 9.20). Now recall that the Fubini Theorem (Theorem 9.9) al-
lows us to interchange the order of the iterated integrals (cf. Problem 9.20
again). The translation invariance property in Proposition 13.E says that we
can swap x with zx in the argument of integrable functions when integrating
them. (In particular, we can replace x with y~!lz if the argument is x, and
y with zy if the argument is y, and so we can replace y~'x = (y) "'z with

(vy)~lx = y~tx~lz =y~ if the argument is y.) Therefore,

[ (J i avt) aute) = [ ([t auto) vt
— [ ([ e aute) avt = [ ([rota.0) o) aute)
~ [([1amavt) aute)

(where we reverse the integration order, then we replace x with y 'z, reverse

the integration order again, and replace y ' with y~! and y with zy). Since
1
h(y™% xy M for every z,y € X,
fg dv(z)

it then follows that
Jotwe) dvw) @)

/ /f (fg(zz) dv(z) g(zz) du(z) ) du(l’)

—/(/h@ ) dvly ) /(/h ))du()

_ Jrw He@ [ JreTHaw

B /(fg(zy—1>d»<z> dvv) | dule) = Jotzy=av() 9(@) dy(z).
Set v = a(f,g,v) =([fly~ )/ ([g(zy~1) dv(z)), which is a real num-
ber that does not depend on ,u such that [fdu = afgdu. Thus, if X also

is a quasiregular Haar measure on the same Borel o-algebra A of subsets of
X, then [fd\ = afgd\ whenever f € L(X, A, )). Hence,

fda fd . dA
bj/j,g = Lj/’,g d:j, which implies /f d\ = (fj du) /f du,

for every f € L(X, A, pn) NL(X, A, N), for an arbitrary g € C.(X)*. Then
there is a positive constant v = [gd\/[gdp such that [fd\=~[fdu
for every f e L(X, A, u) N L(X, A, N). Therefore, since p and A are Borel
measures on the Borel o-algebra A, it follows that for every compact set
K, its characteristic function Xg lies in £(X, A, u) N L(X, A, ), and so
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/\(K):/KdA:/XKd/\ZV/XKduZV/Kdﬂ:w(K)

for every compact set K (all of them lie in \A). Since the Borel measures A
and 1 on the Borel o-algebra A are quasiregular, the argument that closes
the proof of Theorem 12.5 (which uses Lemma 12.2) ensures that if the
above identity holds for every compact set K, then A = v p. ]

13.4 Additional Propositions

Recall that a discrete space is a topological space X whose topology T is
the largest topology on X; that is, whose topology coincides with the power
set of X, so that every subset of X is open (and closed). Such a topology
T = $(X) is called the discrete topology.

Proposition 13.A. If u is a Haar measure on a Borel o-algebra of subsets
of a locally compact Hausdorff group X, then X is discrete if and only if
w({x}) # 0 for at least one point x € X.

Proposition 13.B. Let A be a Borel o-algebra of subsets of a locally com-
pact Hausdorff group X. If a Haar measure on A is finite, then X is compact.

Proposition 13.C. If p is a Haar measure on a Borel o-algebra of subsets
of a locally compact Hausdorff group X, then the following assertions are
pairwise equivalent.

(a) The measure p is o-finite.

(b) The space X is o-compact.

(¢c) Every disjoint family of nonempty open sets is countable.
(

d) For every nonempty open set U, there exists a sequence {x,} of points
in X such that the family {x, U} covers X (ie., X =, znU).

Proposition 13.D. If u is a Haar measure on a Borel o-algebra of subsets
of a locally compact Hausdorff group X, and if f and g are real-valued
continuous functions on X, then f = g everywhere if and only if f=g
w-almost everywhere.

Proposition 13.E. Let X be a locally compact Hausdorff group. For each
real-valued function f: X —R on X and each y € X let f,: X = R be de-
fined by f,(z) = f(y~'z) for every x € X. Let u: A — R be a nonzero pos-
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itive quasiregular Borel measure on a Borel o-algebra A of subsets of X.
The measure p is Haar (i.e., it is left invariant) if and only if

[ty = [ 1

where f,€ L(X, A, p), for every y € X and every f € L(X, A, pn); that is,
for every p-integrable Borel function f: X — R.

A Haar integral is an integral with respect to a Haar measure. The above
property, namely, f, € L(X, A, u) whenever f € L(X, A, p) and the integrals
coincide, is referred to as the translation invariance property for the Haar
integral (which, according to Proposition 13.E, characterizes the Haar mea-
sure). Recall again that continuous functions with compact support are
integrable with respect to Borel measures. A positive linear functional @ on
the linear space C.(X,R) (where X is a locally compact Hausdorff group)
with the above translation invariance property is also referred to as a Haar
integral. Example: if X = R, which is a locally compact Hausdorff additive
group, then Proposition 13.E ensures that one can make the substitution
r — x—1y under the integral sign.

Proposition 13.F. Lebesgue measure is invariant under addition on R —
either viewed as a measure on the Borel algebra R generated by the usual
topology of R, or as a measure on its completion I, the Lebesgue algebra.
Since it is a reqular Borel measure (see Proposition 11.H), it follows that it
is a regular Haar measure (see the remarks that close Section 8.3).

Proposition 13.G. Consider the Lebesgue measure pu: % — R on the Borel
o-algebra R of subsets of R generated by the usual topology of R. Take the
set RT = (0,00) of all the positive real numbers, which is a locally compact
Hausdorff multiplicative group. The set function \:RT— R on the Borel
o-algebra R = RN O(R™) of subsets of RT defined by

)\(E'):/ Ldu(z) for every E'e Rt
E/

is a Haar measure. (Reason: [4 = log(z) and log(B)—log(a) = 1og(§).)

The notion of absolute continuity on the same o-algebra (cf. Definition
7.6) is naturally extended to a couple of measures, one of them acting on a
sub-o-algebra of the g-algebra upon which the other measure acts. Indeed,
if 1: X — R is a measure on a o-algebra X, and A: £ — R is a measure on the
o-algebra & = X NP(F), for some E € X, then A is absolutely continuous
with respect to u (same notation: A < pu) if, for an arbitrary E' € £ C X,

w(E')y =0 implies AE')=0
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(i.e., A(E') =0 for every E'€ £ C X such that u(E’) = 0). Now consider
the setup of the previous proposition, and observe that R+ = RN P(R7) is
a sub-c-algebra of the o-algebra . We know from Propositions 3.5(c) and
3.7(b) that the Haar measure A on R is absolutely continuous with respect
to Lebesgue measure p on R, and therefore (recall the Radon—Nikodym
Theorem — Theorem 7.8) the function f:RT— R defined by f(z) = % for
every x € RT is the RadonNikodym derivative of A with respect to pu.
Now consider the sub-o-algebra o= R N ©(Ry) of the o-algebra R, where
Ry = R\{0} is the set of all nonzero real numbers, which is again a locally
compact Hausdorff multiplicative group.

Proposition 13.H. The same Haar measure \ on the o-algebra Ry of sub-
sets of the multiplicative group Rq is absolutely continuous with respect to
Lebesgue measure [ on the o-algebra R of subsets of the additive group R.

Observe that the Radon—Nikodym derivative of A with respect to p is the
function f:Ro— R given by f(z) = ﬁ for every z € Ry. (Proposition 3.G
— note that Rp = RTU(R™)~! and so f]Ro ﬁ dX = [+ % dA —f(R+)_1 +dA).

Notes: Translation invariance was first mentioned at the end of Chapter 8,
and it was fundamental to build nonmeasurable sets there. The propositions
in this section complement the results on invariant measures discussed along
the chapter. For Propositions 13.A, 13.B and 13.C see, e.g., [18, Problems
5.6, 5.8, 5.9], and for Proposition 13.D see, e.g., [10, Exercise 9.2.3]. Propo-
sition 13.E plays an important role in the proof of Theorem 13.7 (see, for
instance, [7, Theorem 79.1]). We have already met those properties in the
previous propositions when we looked at Lebesgue measure. In fact, Propo-
sition 13.F says that Lebesgue measure is a prototype of a regular Haar
measure (see, e.g., [35, Proposition 14.24] or [6, Corollary 8.2]). Proposi-
tions 13.G and 13.H show that Haar measures on the Borel sets generated
by the multiplicative groups R™ and Ry are absolutely continuous with re-
spect to Lebesgue measure on the Borel sets generated by the additive group
R (see e.g., [10, Exercise 9.2.3] and [18, Problem 60.1]).

Suggested Reading

Berberian [7], Cohn [10], Halmos [18], Nachbin [31], Royden [35]
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