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Preface

This book is a text on real analysis for students with a basic knowledge of calculus
of a single variable. There are many fine works on analysis, and one must ask
what advantages a new book brings. This one contains the standard material for
a first course in analysis, but our treatment differs from many other accounts in
that concepts such as continuity, differentiation, and integration are approached via
sequences. The main analytical concept is thus the convergence of a sequence, and
this idea is extended to define infinite series and limits of functions. This approach
not only has the merit of simplicity but also places the student in a position to
appreciate and understand more sophisticated concepts such as completeness that
play a central part in more advanced fields such as functional analysis.

The theory of sequences and series forms the backbone of this book. Much of
the material in the book is devoted to this theory and, in contrast to many other
texts, infinite series are treated early. The appearance of series in Chap. 3 has the
advantages that it provides many straightforward applications of the results for
sequences given in Chap. 2 and permits the introduction of the elementary tran-
scendental functions as infinite series. The disadvantage is that certain convergence
tests such as the integral test must be postponed until the improper integral is defined
in Chap. 7. The Cauchy condensation test is used in Chap. 3 to tackle convergence
problems where the integral test is normally applied. Although much of the material
in Chap. 2 is standard, there are some unusual features such as the treatment of
harmonic, geometric, and arithmetic means and the sequential definition of the
exponential function. In Chap. 3 we present results, such as the Kummer—Jensen
test, Dirichlet’s test, and Riemann’s theorem on the rearrangement of series, that are
often postponed or not treated in a first course in analysis.

Limits of functions are introduced in Chap. 4 through the use of convergent
sequences, and this concept is then used in Chaps. 5 and 6 to introduce continuity
and differentiation. As with any analysis book, results such as the intermediate-value
theorem and the mean-value theorem can be found in these chapters, but there are
also some other features. For instance, the logarithm is introduced in Chap. 5 and
then used to prove Gauss’s test for infinite series. In Chap. 6 we present a discrete
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version of I"Hopital’s rule that is seldom found in analysis texts. We conclude this
chapter with a short account of the differentiation of power series using differential
equations to motivate the discussion.

The Riemann integral is presented in Chap. 7. In the framework of elementary
analysis this integral is perhaps more accessible than, say, the Lebesgue integral,
and it is still an important concept. This chapter features a number of items beyond
the normal fare. In particular, a proof of Wallis’s formula followed by Stirling’s
formula, and a proof that 7 and e are irrational, appear here. In addition, there is
also a short section on numerical integration that further illustrates the definition of
the Riemann integral and applications of results such as the mean-value theorem.

Chapter 8 consists of a short account of Taylor series. Much of the analytical
apparatus for this topic is established earlier in the book so that, aside from Taylor’s
theorem, the chapter really covers mostly the mechanics of determining Taylor
series. There is an extensive theory on this topic, and it is difficult to limit oneself so
severely to these basic ideas. Here, despite the book’s emphasis on series, the authors
eschew topics such as the theorems of Abel and Tauber and, more importantly, the
question of which functions have a Taylor series. A full appreciation of this theory
requires complex analysis, which takes us too far afield.

The student encounters Newton’s method in a first calculus course as an
application of differentiation. This method is based on constructing a sequence,
motivated geometrically, that converges (hopefully) to the solution of a given
equation. The emphasis in this first encounter is on the mechanics of the method
and choosing a sensible “initial guess.” In Chap. 9 we look at this method in the
wider context of the fixed-point problem. Fixed-point problems provide a practical
application of the theory of sequences. The sequence produced by Newton’s method
is already familiar to the student, and the theory shows how problems such as error
estimates and convergence can be resolved.

The final chapter deals with sequences of functions and uniform convergence. By
this stage the reader is familiar with the example of power series, but those series
have particularly nice properties not shared generally by other series of functions.
The material is motivated by a problem in differential equations followed by various
examples that illustrate the need for more structure. This chapter forms a short
introduction to the field and is meant to prime the reader for more advanced topics
in analysis.

An introductory course in analysis is often the first time a student is exposed to
the rigor of mathematics. Upon reflection, some students might even view such a
course as a rite of passage into mathematics, for it is here that they are taught the
need for proofs, careful language, and precise arguments. There are few shortcuts
to mastering the subject, but there are certain things a book can do to mitigate
difficulties and keep the student interested in the material. In this book we strive to
motivate definitions, results, and proofs and present examples that illustrate the new
material. These examples are generally the simplest available that fully illuminate
the material. Where possible, we also provide examples that show why certain
conditions are needed. A simple counterexample is an exceedingly valuable tool
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for understanding and remembering a result that is laden with technical conditions.
There are exercises at the end of most sections. Needless to say, it is here that the
student begins to fully understand the material.

The authors appreciate the encouragement and support of their wives. They also
thank Fiona Richmond for her help in preparing the figures. The work has also
benefited from the thoughtful comments and suggestions of the reviewers.

Palmerston North, New Zealand Charles H.C. Little
Kee L. Teo
Bruce van Brunt
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Chapter 1
Introduction

1.1 Sets

To study analysis successfully, the reader must be conversant with some of the
basic concepts of mathematics. Foremost among these is the idea of a set. For our
purposes a set may be thought of as a collection of objects. This statement is too
imprecise to be regarded as a definition, and in fact it leads to logical difficulties,
but it does convey a mental image of a set that is satisfactory for our purposes. The
reader who wishes to delve into the nature of this concept more deeply is referred
to [10].

Sets are important in that they can be used to construct a host of mathematical
concepts. In fact, every mathematical object studied in this book can be constructed
from sets. We therefore begin this introductory chapter with some basic properties of
sets. Proofs are omitted because most of the properties are evident and their proofs
are straightforward.

First, the objects in a set X are called its elements or members. They are said
to be contained in X and to belong to X. If an object x is contained in X, then we
write x € X; otherwise we write x ¢ X.

We shall assume the existence of a set with no elements. This set is denoted by @,
and it is unique. It is said to be empty.

If X and Y are sets such that every element of X is also an element of Y, then
we say that X is a subset of Y and that it is included in Y. In this case we write
X C Y;otherwise we write X Z Y. Note that @ C X for every set X . The reasoning
is that since @ has no elements at all, it certainly has no elements that are not in X.
Therefore we can safely say, without fear of contradiction, that each of its elements
does belong to X . In particular, @ is a subset of itself, and in fact it is its only subset.
Observe also that every set includes itself. Moreover, if X, Y, Z are sets such that
XCYandY C Z,then X C Z.Inthiscasewewrite X CY C Z.

© Springer Science+Business Media New York 2015 1
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_1
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If X and Y are sets such that X € Y C X, then X and Y contain exactly the
same elements. In this case we say that these sets are equal, and we write X = Y.
Otherwise X and Y are distinct, and we write X # Y. Any set is equal to itself,
andif X = Y, then Y = X. Furthermore, if X, Y, Z are sets such that X = Y and
Y = Z,then X = Z. In this case we write X = Y = Z. Equal sets are treated as
identical since they contain the same elements.

The collection of all subsets of a given set X is another set, called the power
set of X. It is denoted by P(X). For example, P(9) is a set having @ as its only
element. This set is denoted by {#}. Moreover, P({0}) is a set containing only the
elements @ and {#} and is denoted by {d, {@}}.

If X is any set, we may replace the elements of X by other objects and thereby
construct a new set. For example, we may replace the unique element @ of the set
{@} by any object Y. We then have a new set whose only element is Y. This set is
denoted by {Y }. Similarly, if we replace the elements @ and {@} of the set {0, {?}}
by objects Y and Z, respectively, then we obtain a new set whose only elements
are Y and Z. This set is denoted by {Y, Z}. The notation may be extended to an
arbitrary number of objects.

If X is a set and P is a property that may be satisfied by some elements of X,
then we can construct a subset of X whose elements are precisely the members of
X that do satisfy P. This set is denoted by {x € X | P}. For example, let X and
Y be sets, and let P be the property that x € Y, where x € X. Then {x € X | P}
is the set whose elements are the objects that are in both X and Y. This set is called
the intersection of X and Y and is denoted by X N Y. If this intersection happens
to be empty, then the sets X and Y are disjoint. If S is a collection of sets (in other
words, a set whose elements are themselves sets), then the sets in S are said to be
mutually disjoint if the sets A and B are disjoint whenever A € S and B € S.

On the other hand, if P is the property that x ¢ Y, then {x € X | P} is the
set whose elements are the members of X that are not in Y. This set is denoted by
X — Y and is called the complement of ¥ with respect to X .

Let S be a collection of sets. Then we may construct another set whose elements
are the objects that belong to at least one member of S. This set is called the union
of S. For example, if S = {X, Y } for some sets X and Y, then the union of S is the
set of all objects that are in X or Y. In particular, it contains all the objects that are
in both of those sets. It is denoted by X U Y.

We may define the intersection of S as the set of all objects in the union of S that
belong to every setin S. If S = {X, Y } for some sets X and Y, then the intersection
of S is the set of all objects that are in both X and Y. Thusitisequalto X NY.

1.2 Ordered Pairs, Relations, and Functions

As we said before, sets can be used to construct a large number of mathematical
concepts. In this section we show how to construct ordered pairs, relations, and
functions from sets, but once again the reader is referred to [10] for the details.
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If x and y are any objects, then the ordered pair (x, y) is defined as the set
{{x},{x, y}}. We refer to x and y as its components, x being the first component
and y the second. The important observation to be made here is that the definition
does not treat x and y similarly (if in fact they are distinct objects). Instead, we
are given a way of distinguishing them: y is a member of just one of the two sets
in (x,y), but x belongs to both sets. From this observation it is easy to deduce
that the ordered pairs (x, y) and (a, b) are equal if and only if x =a and y = b. In
other words, for equality to hold it is not sufficient for the sets {x, y} and {a, b} to be
equal. Their elements must also be listed in the same order. This is the only property
of ordered pairs that is important to remember. Once it is grasped, the definition may
be forgotten. The definition can be extended to ordered triples by defining

(x, 9,2 = ((x,9),2)

for all objects x,y,z. Thus (x,y,z) technically is an ordered pair whose first
component is itself an ordered pair. This notation may be extended to an arbitrary
number of objects, as we shall see later.

If X and Y are sets, we may construct a set X XY whose elements are the ordered
pairs (x, y) such that x € X and y € Y. This set is called the Cartesian product
of X and Y. A subset of X x Y is called a relation from X to Y. Thus a relation is
just a set of ordered pairs. A relation from X to X is sometimes called a relation on
X . An example is the relation R on X such that (x,y) € R if and only if x = y.
This relation is called the equality relation. Similarly, we may define the inclusion
relation by specifying that it contains the ordered pair (x, y) if and only if x and y
are sets such that x C y.

If R is a relation and x and y are objects, we often write xRy to indicate that
(x,y) € R. For instance, we are already accustomed to using = to denote the
equality relation and writing x = y instead of (x, y) € =. We also write x R y
instead of (x, y) ¢ R.

If R and S are relations and x, y, z are objects, then we write xRySz if xRy and
¥Sz. This notation may be extended to arbitrarily long chains of relations.

Some kinds of relations are of particular importance, and we discuss them now.
If R is a relation on a set X, then R is reflexive if xRx for each x € X. Examples
include the equality and inclusion relations. The relation R is symmetric if yRx
whenever x and y are members of X satisfying xRy. Equality has this property, but
inclusion does not. We also say that R is transitive if xRy whenever thereisaz € X
for which xRzRy. Equality and inclusion both exhibit this property. A relation with
all three of these properties is an equivalence relation. Equality is such a relation,
but inclusion is not.

Equivalence relations are closely linked to partitions. A partition of a set X is a
set of nonempty, mutually disjoint subsets of X whose union is X. The elements of
a partition are sometimes called its cells. It can be shown that with any equivalence
relation R on a set X there is an associated unique partition P of X with the
property that elements x and y of X belong to the same cell of P if and only if xRy.
Conversely, any partition P of X has associated with it a unique equivalence relation



4 1 Introduction

R on X constructed in the same way: xRy if and only if x and y belong to the same
cell of P. The cells of P are called the equivalence classes of R. For each x in X,
we denote by [x] the unique equivalence class to which it belongs. Thus [x] = [y]
if and only if y is an element of X that belongs to the equivalence class [x].

There is yet another kind of relation that is of paramount importance. A relation
f from aset X toasetY iscalled a function from X into Y if for each x € X there
isaunique y € Y for which (x, y) € f. We usually write y as f(x). We say that f
maps x to y and that y is the image of x under f and corresponds to x under f.
We think of the function f as providing a rule for associating with each x in X a
unique corresponding element y of Y. It is this aspect of the concept that is usually
important for our purposes, but it is of interest to see how to construct the idea of a
function from sets, as we have done.

Given sets X and Y, we sometimes write f: X — Y to indicate that f is a
function from X into Y. The set X is called the domain of the function f. The
subset of Y consisting of the images of the elements of X is the range of f. In this
book the range of f will usually be a set of real or complex numbers, in which case
we describe the function as real-valued or complex-valued, respectively. The range
of f is not necessarily the whole of Y: Some elements of ¥ might not correspond
to any element of X . The domain of f is denoted by D s and the range of f by R ;.
If Ry =Y, then f is described as surjective and called a surjection from X onto
Y. In the case of a surjection, each member of ¥ does correspond to an element of
X, but this element need not be unique.

Suppose on the other hand that each element of R ; does correspond to a unique
element of X. Then f is injective and an injection from X into Y. Thus f is
injective if and only if w = x whenever f(w) = f(x): Distinct elements of X
must be mapped to distinct elements of Y. An injective function is also described as
one-to-one.

Perhaps f is both injective and a surjection from X onto Y. Then f is a
bijection from X onto Y and described as bijective. In this case each member of Y
corresponds to a unique element of X . Thus there exists a function g from Y into X
such that g( f (x)) = x for all x € X. This function is called the inverse of f and
is denoted by f~'. Itis a bijection from Y onto X. Note that f~!(f(x)) = x for
all x € X. Moreover f(f~'(y)) = yforeachy e Y,and (f~1)~! = f.

A function f with domain X is said to be constant (on X) if f(w) = f(x)
for each w and x in X. The range of a constant function with nonempty domain
therefore consists of a single element.

Now let f be a function from a set X into a set ¥ and g a function from Y into
aset Z. Then g( f(x)) is defined for each x € X. Letting h(x) = g(f(x)) for each
such x, we see that 4 is a function from X into Z. We call it the composition of g
and f and denote it by g o f. Thus

(g0 fHx) = g(f(x))
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for each x € X. For instance, if f is a bijection from X onto Y, it follows that

(f7'o f)(x) = xforeachx € X and (f o f~')(y) = y foreach y € Y. Itis

easily checked that a composition of injections is injective and that a composition

of surjections is surjective. It follows that a composition of bijections is bijective.
If f is a function and X € D/, then we write

JX)={f(x) eRy|x e X}

Thus /(D) = R.

If f is a real-valued function whose domain is a set of real numbers, then the
graph of f is the set of all points (x, f(x)) in the Cartesian plane, where x € D .
It is also the graph of the equation f(x) = y.

1.3 Induction and Inequalities

Natural numbers are those used to count. The set {1, 2,...} of natural numbers is
denoted by N. We assume familiarity with the basic properties of these numbers
and simply highlight those that are of particular importance for our development
of analysis. The details of the development of natural numbers, integers, rational
numbers, and real numbers in terms of sets are given in [10] and will not be repeated
here.

The main properties of N that we require are that it contains the number 1 and
that every natural number has a successor in N. The successor of a natural number
n is denoted by n + 1. For example, the successor of 1is 2 = 1 + 1 and that of 2
is 3 = 2 + 1. This notion of a successor for each natural number enables us to list
the natural numbers in order, beginning with 1. In fact, it can be shown that each
natural number n # 1 is the successor of a unique natural numbern — 1. If Y is a
set of natural numbers suchthat1 € Y andn+1 € Y foreachn € Y,thenY = N.

This observation can be applied to yield an important technique, called induc-
tion, for proving theorems about natural numbers. In this application, Y is the set
of all natural numbers for which the desired result is true. First, prove the desired
theorem for the natural number 1. (In other words, prove that 1 € Y.) Then assume
that it is true for a particular natural number n (so thatn € Y') and prove it forn 4 1
under this assumption. The conclusion that ¥ = N then shows that the theorem is
indeed true for all natural numbers. This idea is perhaps most easily visualized as
follows. Imagine a line of dominoes standing on end and close together so that the
line begins with a particular domino and extends indefinitely to the right of that first
domino. Knock the first domino onto the second. Then it is easy to see that all the
dominoes will fall over, because the first domino will fall and every other domino
has one before it that will eventually knock it over. This picture captures the essence
of induction.
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Before giving examples of induction at work, let us make some observations
about the pattern of a proof by induction. One approach to the use of induction to
prove a theorem about a natural number n, as we have seen, is to prove the theorem
for the natural number 1, then assume it for a particular natural number 7 (that is,
for a particular integer n > 1), and finally prove it for n + 1. The assumption that
the theorem holds for a particular  is commonly called the inductive hypothesis.
We can in fact strengthen it by assuming that the theorem holds for all natural
numbers less than n as well. Equivalently, one could prove the theorem first for 1,
then assume as an inductive hypothesis that it holds for a particular integer n — 1 (or
for all natural numbers less than 7) where n > 2, and finally prove it for n» under
this assumption. Another observation is that the process of induction need not begin
with the natural number 1. In fact, it should begin with the smallest integer for which
the theorem is to be proved. In other words, suppose we wish to prove a theorem for
all integers n > a for some fixed integer a. We start an inductive proof in this case
by proving the theorem for a. Then there are two equivalent ways to continue. One
is to assume as an inductive hypothesis that the theorem holds for some particular
integer n > a (or for all integers k such that ¢ < k < n) and then prove it for n + 1.
The alternative is to assume that it holds for n — 1 for a particular integer n > a (or
for all integers k such thata < k < n) and then prove it for n under this assumption.

Because of its importance, we now state the principle of induction formally as a
theorem. We denote the set of all integers by Z, so that

Z={..,-2,-1,01.2,..}

Theorem 1.3.1. Let Y C Z and a € Y. Suppose also that y + 1 € Y whenever
y € Y. Then Y contains every integer greater than a.

In applications of Theorem 1.3.1 to prove a given assertion about integers, Y is
the set of all integers for which the assertion in question is true.
We now offer an example of an inductive proof.

Example 1.3.1. We shall prove by induction that if x is a nonnegative real number,
then

nn— 1)x2

A+x)">1+nx+ 3

(1.1)

for all integers n > 0. It is easy to see that equality holds for » = 0. Assume that
inequality (1.1) holds for a particular integer n > 0. Then
I+ )" =1 +x)"(1+x)
-1
(1 + nx + sz) 1+ x)

2
n(nz— 1)) 24 n(nz— 1)x3

IV

1+(n+1)x+(n+
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2 2
31+(n+1)x+—n+; e
1
=1+(n+1)x+wx2

> ,

since n(n — 1)x3/2 > 0. The proof by induction is now complete.
It follows that

(14+x)">14+nx (1.2)

and

—1
(I4+x)" > —n(n2 )x2

(1.3)
hold for every nonnegative real number x and nonnegative integer 7. Inequality (1.2)
is known as Bernoulli’s inequality. Both of these inequalities will be found to be
useful later. A

Example 1.3.1 involved an inequality. It is assumed that the reader is conversant
with inequalities and can work with them comfortably. One of the salient points to
remember is that multiplication of both sides of an inequality by a negative number
causes a change in the direction of the inequality. For instance, if x < y, then
—x > —y. Similarly, if both sides of an inequality have the same sign, then taking
the reciprocals of both sides again induces a change in the direction of the inequality.
Thus 1/x > 1/y ifeitherx <y <0or0 < x < y.

Induction can be used to make definitions as well as to prove theorems. Let us
illustrate this point by defining finite sums inductively. Let 2 and n be integers with
n>m.Ifa,,au+t,...,a, are numbers, we define

m
E a; =dm
Jj=m

and

n n—1
E a; = E a; +ay.
j=m Jj=m
Often we write

n
Zaj =dp+amt+1 + -+ an.

Jj=m
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This quantity is called the sum of a,,,a,,+1,...,a,, and those numbers are its
terms. We also define

iaj =0
j=m

if m > n, and we regard this expression as a sum with no terms.
We may define the product of the same numbers in a similar way. Thus

m

Jj=m

and

n n—1
[T =a[Ta
j=m j=m

for all n > m. We often write
n
l_[ a; =amdm+1...4dn.
j=m

This number is the product of a,,, @, +1, . . . , a,, and those numbers are its factors.
If m > n, then we define

n
Hajzl

j=m

and regard this expression as a product with no factors.

Similarly, we obtain analogous expressions for unions and intersections of sets
by replacing ) with (_J and ("), respectively.

Induction may also be used to define exponentiation for powers that are natural
numbers: Given a real number a, set a' = a and if ¢” has been defined for a specific
natural number n, let

We may also define a® = 1, though this definition is normally made only if a # 0.
Furthermore we define

if n e Nand a # 0.
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One can easily prove by induction that
(ab)" = a"b" (1.4)

for any real numbers a and b and natural number n, and similarly that

n

-

if b # 0. 1If ab # 0, then these two equations extend to the case where n is any
integer. For each fixed m € N, it is also easy to prove by induction on » that

aa' = am-‘rn (16)
for all n € N and then that
@y = a™ (L.7)

for all n € N. If a # 0, then these two rules may also be extended to the case where
m and n are any integers.
In order to extend these ideas, we need the following definition.

Definition 1.3.1. If n is a nonnegative integer and ag, a1, . . . , a, are constants, then
the function given by

> ajx (1.8)
j =0

for all numbers x is called a polynomial. Its degree is n if a, # 0. The numbers
ap, dq, . ..,a, are its coefficients. If

n

ol —
E a;jc’ =0,
Jj=0

then c is called a root of the polynomial (1.8).

It is shown in [10] that every nonnegative number a has a unique nonnegative
square root. This square root is denoted by a'/? or /a. Thus we have (a'/?)? = a.
It is also shown in [10] that every polynomial of odd degree whose coefficients
are real has a real root. For example, if m is an odd positive integer and a is a
real number, then there is a real number c¢ satisfying the equation ¢ = a. The
uniqueness of ¢ follows from the fact that if x and y are real numbers such that
x < y, then x < y™ since m is odd. (This fact is obvious if x < O and y > 0,
for then x™ < 0, y™ > 0, and at least one of x” and y" is nonzero. If 0 < x < y,
then use induction to prove it for all positive integers m. If x < y < 0, then note
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that 0 < —y < —x and apply the previous case with m odd.) We write ¢!/ = c. In
the case where m = 1, this definition is consistent with the equation a' = a. In any
case, we have (a'/”)" = a, and so we refer to a'/™ as the mth root of a. Note that
0'/" = 0 and that a'/” has the same sign as a if a # 0.

An arbitrary positive integer can be written in the form 2¥m, where k and m are
nonnegative integers and m is odd. If n = 2¥m, then we can show by induction
on k that each a > 0 has a unique nonnegative nth root. Indeed, we have already
observed this fact if k = 0. Suppose that k > 0 and that @ has a unique nonnegative
rth root ¢, where r = 28~'m = n/2. Then

o= () = =)

On the other hand, if a = b" = b?" = (b?)", where b > 0, then b> = ¢ by the
uniqueness of ¢, and so b = ¢'/2. We conclude that /c is the unique nonnegative
nth root of a. We write it as a'/”. Hence

(a%)" —a. (1.9)

Moreover 01" = 0 and 1V/" = 1.

An alternative proof of the existence of the nonnegative nth root of a will be
given in Example 5.3.5.

Let 0 < a < b, and for some positive integer n let ¢ = a'/” and d = b'/".If
¢ > d, then we should have the contradiction that a = ¢" > d" = b. We conclude
that ¢ < d. For instance, if @ > 1, then al/" > 1.

Leta > 0, let r and s be positive integers, and let ¢ = a'/". Then

@ = (@) =< =

so that

Next, leta > 0, let n € N, and let m be a nonnegative integer. We then define

m \m
an :(an) .

This definition generalizes Eq. (1.9) and is consistent with the equation a’ = a in
the case where m = 1 or n = 1. It is also consistent with the equation a® = 1 in the
case where m = 0. If m = jk and n = jl for some positive integers j, k, [, then

1

N}
=l
Il
oS
N}
==
N—
S
Il
N
~/
oS
N}
.
N—"
~
N—
~.
\/
~
Il
oS
N}
.
N—"
~
Il
N}
=
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a result that is consistent with the equation jk/(jl) = k/I.If a > 0, then we define

_m 1 1 n\—m
an:7:—=<an> .

m 1 m
=)

We proceed to the generalization of Egs. (1.4)-(1.7). Let @ > 0, let m be an
integer, and let n € N. Since

w7 N 1\ m NN
) = () = )" = () =
it follows that
(a’”)l =an = (a%)m.
Thus if p and g are also integers and g > 0, then

@) = (@) ) = () ) = oty =

This result generalizes Eq. (1.7). Equation (1.6) also generalizes, since

m P qm  pn 1\ qm 1\pn 1 gm-+pn gm~+pn m_,’_ﬁ
anad :aqnaqnz(aqn) (aqn> :(aqn> =q m =qn"n 49,

Now suppose that b is also a nonnegative real number. As

= (@) () = (@)’
it then follows that
(ab)% =aibr.
Therefore
(ab)¥ = ((@b)")" = (@"b™)r = (@) (p")r = a¥ b,

a result that generalizes Eq. (1.4). Thus if b > 0, then

(4)° = 7 —atrh? —atnt -2

and so Eq. (1.5) generalizes as well.
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We have now defined the real number a* for every number a > 0 and every
rational power x. Later we shall extend this definition to the case where x is any real
number. In fact, similar ideas may be used to define w* for any complex numbers w
and z provided that if w is real, then it is positive.

As another example of an inductive definition, we may define the factorial n! of
a nonnegative integer n by writing 0! = 1 and

n!'=nmn-1)!
foralln € N.
Given objects x1, x5, ..., X,, Where n > 1, we may define the ordered set
(xl,x27 cee 7xn)

by induction: The ordered pair (x, x;) has already been defined, and for each n > 2
we let

(xl’x27 e 7xn) = ((xl’x27 cee 7xn—1)7 xn)'

Let X1, X5,..., X, be sets, where n > 1. We can also define the Cartesian
product X; x X, x --- x X, of X1, X»,...,X, by induction: The definition has
already been made for n = 2, and for each n > 2 define

XixXoxoxX, =(X; xXp X+ x X;—1) X X,,.

The result is the collection of all ordered sets (x1, X2, . .., x,) such that x; € X for
each j.If X; = X for each j, then we write

X”:XIXX2X~-~XX,,.

The absolute value of a real number x plays a prominent role in analysis. Denoted
by |x|, it is defined as x if x > 0 and —x otherwise. Thus it is always the case that
|x| > 0 and that

x| = vx? =] —x].

For every a > 0 it is also easy to see that |x| < « if and only if —a < x < a. From
these inequalities it follows that |x| > a if and only if x > a or x < —a, and that
|x —y| <aifandonly if y —a < x < y + a, where y is another real number. In
addition, observe that |x| > x and |x| > —x for all real x. Thus |x| + |y| > x + y
and |x| 4+ |y| = —(x 4 ), so that

|x + y| < |x] + |yl

This result is known as the triangle inequality.
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Inequalities can be used to define intervals on the real line. If @ and b are real
numbers with a < b, then we write
(a,b) ={x|a <x <b},
[a,b] ={x|a <x < b},
(a,b] ={x|a <x <b},
[a,b) ={x|a <x <b}.
These sets are called intervals. The first is open and the second closed; the others
are half-open. It should be clear from the context whether the notation (a,b)
specifies an open interval or an ordered pair. The numbers a and b are called the
ends of each of these intervals. In addition, we write
(a,00) = {x |a < x},
[a,00) = {x|a = x},
(_Oo,a) = {X | X < a}5
(=00,a] = {x | x < aj.
These sets are also reckoned as intervals, and a is regarded as an end of each.

Let f be a real-valued function whose domain includes an interval /. Then f
is said to be increasing on / if f(x;) < f(x,) whenever x; and x, are numbers
in I such that x; < x;. If, on the other hand, f(x;) < f(x;) for each such x;
and x,, then f is nondecreasing on /. We define functions that are decreasing or

nonincreasing on / similarly. All these functions are said to be monotonic on 7,
and those that are increasing on / or decreasing on / are strictly monotonic on /.

Exercises 1.1.
1. Show thatif a < b, then
a<aa+(1—-a)b<b

forall « suchthat 0 < o < 1.
2. Prove that

lxyl = x|yl
for all real numbers x and y. If y # 0, prove also that

X

y

_
[y
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3. Use the triangle inequality to prove that

x| =1yl < Ix =yl

where x and y are real numbers.
4. Solve the following equations and inequalities, where x is real:
(@ Bx—=2[=[5x+4[; (@) [Bx+4[=2;
(b) |x 44| = —4x; () [3x+2| < 3|x|.
© [|2x-=3| <4
5. Prove the following by induction for all positive integers n and real numbers
a,dy,dy,...,ay:

@ |a"] = la]"
(b) ‘]’[’j;la,-‘ = [T}= lajl.
© [)oiaj| = 2y lajl.

6. Prove that +/2 is irrational by writing ~/2 = a/b, where a and b are positive
integers with no common factor, and obtaining a contradiction by showing that a
and b must both be even.

1.4 Complex Numbers

Throughout this book we will assume that any numbers we are working with are
complex unless an indication to the contrary is given by either the context or an
explicit statement. For example, the numbers ag, ay, ..., a,, x in the definition of a
polynomial (Definition 1.3.1) need not be real. As complex numbers might not be
as familiar to the reader as real numbers, we define them here and prove some basic
properties.

The equation

x?=-1 (1.10)
has no real solution. We seek to extend the real number system to include a number
i such that i> = —1 while preserving familiar operations such as addition and
multiplication. If we put x 4+iy = 0, where x and y are real numbers, then x = —iy,
so that x> = i?y? = —y? and hence x = y = 0. Now if

X +iy=a+ib, (1.11)

where a and b are also real, then

x—a+i(y—»b)=0.
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The argument above shows that x —a = y —b = 0 and we conclude that Eq. (1.11)
holds if and only if x = a and y = b. Consequently x + iy may be identified with
the ordered pair (x, y) of real numbers.

We therefore define a complex number as an ordered pair of real numbers.
Hence every complex number can be visualized as a point in the Cartesian plane. If
z = (x,y), where x and y are real, then we define Re (z) = x, and Im (z) = y, and
we refer to x and y as the real and imaginary parts, respectively, of z. We define
addition and multiplication by the rules

u,v) + (x,y) =w+x,v+y)
and
(u,v)(x,y) = (ux — vy, uy + vx),

respectively, where u,v,x,y are all real. These rules are motivated by the
calculations

w+ivy+x+iy)y=u+x+i(v+y)

and
(u+ ) (x 4+ iy) = ux — vy + i (uy + vx).
Thus
®,0) + (x,0) = (u+ x,0)
and

(u,0)(x,0) = (ux,0).

Therefore we may identify (x,0) with the real number x. In particular, it follows
that (0,0) = 0 and (1,0) = 1. Note also that

Re (w + z) = Re (w) + Re (2)
and
Im(w+ z) = Im(w) + Im (z)
for any two complex numbers w and z. It is also worth observing that the addition of

complex numbers may be interpreted geometrically as vector addition. In Chap. 6
we will give a geometric interpretation of the multiplication of complex numbers.
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The required solution i to Eq.(1.10) is identified with the ordered pair (0, 1).
According to our definition of multiplication, it has the desired property:

i2=(0,1)(0,1) = (—1,0) = —1.

Note also that if x and y are real, then the definitions of addition and multiplication
do indeed give

x+iy=(x.0)+(0.1)(y.0) = (x.0) + (0. y) = (x.y).
These results show that the algebraic manipulation of complex numbers is identical

to that of real numbers with the additional rule that ;2 = —1. In particular, we have
the laws that

a+b=b+a, (1.12)
a+b+c)=(a+b)+c, (1.13)

and
ab+c)=ab+ac (1.14)

for all complex numbers a, b, c. We summarise Eqgs. (1.12) and (1.13) by asserting
that the addition of complex numbers is commutative and associative, respectively.
Similarly, multiplication of complex numbers is commutative and associative.
Equation (1.14) asserts that multiplication is distributive over addition.

We also define

—(x +iy) = —x — iy.
Then subtraction is defined by the equation
w—z=w+ (—2)

for all complex numbers w and z.

We have now extended the real number system to include a number i that gives
a solution to the equation x2 = —1. More generally, i /¢ gives a solution to the
equation x> = —c, where ¢ > 0. In fact, it can be shown (see [10]) that every
nonconstant polynomial with complex coefficients has at least one complex root.
This result is known as the fundamental theorem of algebra. For example, suppose
that

az? +bz+c¢ =0,
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where a, b, ¢, 7 are all complex numbers and a # 0. As the left-hand side of this
equation is a polynomial of degree 2, the equation is said to be quadratic. It can be
solved for z by the following procedure. Since a # 0, we have

b c
0=2"+ —Z + =
a
b
=\*t 2
_ b 4ac
=\t
so that
n b \? _ b* —4ac
< 2¢) 4a?
Thus

and we conclude that

b= v b? — 4ac
_T.

The expression b> — 4ac is called the discriminant of the polynomial az? + bz + c.
If a, b, ¢ are real, then the polynomial has just two real roots if its discriminant is
positive, just one if its discriminant is 0, and none otherwise.

We proceed to the exponentiation of complex numbers. As in the case of real
numbers, we define z! = z for every complex number z, and if 7" has been defined
for a specific natural number n, we write 7' = 7" - z. We also define z° = 1 if
z#0.

Next, let
z=x+1iy #0,
where x and y are real. Then
(x +iy)(x —iy) = x* + y* #0,
and so

I X — iy _ox—ly

2 x+iy (x4iy)x—iy x24y2
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Thus if we define

-1 X—iy
x2+y2’

then we have zz~! = 1. For every positive integer n we now define 77" = (z~!)" if

z # 0. This definition agrees with the equation z' = z in the case where n = 1. We
also define w/z = wz ™! for every complex number w.

We turn our attention now to two numbers that are associated with a given
complex number. The first is the conjugate of a complex number z = x + iy, where
x and y are real. The conjugate of z is defined as x — iy and is denoted by z. Thus
7 = z,and z = z if and only if z is real. Geometrically, the function that maps z to Z
is a reflection about the x-axis.

If we also have w = u + i v, where u and v are real, then

wHz=u+x+i(v+y)=u+x—i(v+y)=u—iv+x—iy=w+2.
Since

4

—x—iy=—x+iy=—(x—iy) = —7Z,

it also follows that

w—z=wt+(-z)=wt+=—Z=w+ (-2 =w—-2

Moreover
wz = ux — vy + i(uy + vx) = ux — vy — i (uy + vx),
and so
w-z=w—iv)(x —iy) = ux— vy +i(—uy — vx) = wz.
If z # 0, then
Tz = x);j:lj:z = 1/z
and it follows that
wiz=wi ' =wzl=w-1/z= %

Note also that

z+7=2x =2Re(z)
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and, similarly,

z—2z=2ilm(2);

hence
z+7z
R = —
e (z) >
and
7—2
I ) = .
m@ ==

A further observation is that
Z=(x +iy)(x —iy) = x> + y°.
We now define
ol = VaZ + 52
This number is called the modulus of z. For example, |i| = 1. We note that
zZ = |z,
2l = Va2 = |x| = [Re 2)].
and, similarly,
2l = V3? = Im ).

Moreover if z = x, then

lz| = vVx2 = |x|.

This observation shows that |z| is a generalization of the absolute value of a real
number. It follows that

74z =2Re(z) <2|Re(7)| < 2[z|.

If w is as defined in the previous paragraph, then

e—wl=Ix+iy—u—ivl=|x—u+i(y —v)| = Vx—w? + (y —v)%
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hence
lz—w| =|w—2¢]

and we perceive |z —w| geometrically as the distance between z and w. In particular,
|z| is the distance between z and the origin. Note also that

|Z_C|=rv

where ¢ is a complex number and r > 0 is the equation of a circle with center ¢ and
radius r.
We also have |z| > 0 for all z, and |z| = 0 if and only if z = 0. In addition,

lzl =|—zl = [z
Since
wzl* = wz-wz = wzwz = wwzz = |wl’[z]* = (wllz])’,

we deduce that

lwz| = |w|z].
If z # 0, it follows that
wz w
wl = |—|=|—=]lzl
z
and so
wl |wl
2|z

The triangle inequality
w+z| < |w|+ [z
also holds, as can be inferred from the calculation
w+z?P=w+w+z
=w+290Ww+72)
=ww4+wz+ 2w+ 22
= |w|* + wZ + wZ + |z]?

< |w]* +2wz| + |z?
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= |wl® + 2{wl[z] + [z
= |wl* + 2|wllzl + |2I?
= (Iwl + [z)*.
Thus
wl=1|w—z+z| <|w—z|+ 2,
so that
w—z| = |w| —[z].
But we also have
w—z| =lz—wl= |z = [w] = —=(Iw] — |2]),
and so we conclude that
lw—z[ = [[w] —z]].
Finally, the triangle inequality also shows that
|zl < [x[+ liyl = [x[ + |y| = [Re ()| + [Im (2)].

The notion of an inequality for real numbers does not extend to complex
numbers. We have x2 > 0 for all real x, but i2 < 0. It is meaningless to write
w < zif either w or z is not real. The inequality |z| < a is equivalentto —a < z < a
if and only if a and z are both real.

Throughout the book we will denote by Z, Q, R, and C the sets of integers,
rational numbers, real numbers, and complex numbers, respectively.

Let f and g be functions whose domains are subsets of C. For all z € Dy N Dy,
we define

(f +8)@ = f2) + g,
(f —9)@) = f@)—g@),
and

(f9)2) = f(2)g(2).
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We also define

He-L0
(g © g(2)

for all z € Dy N Dy such that g(z) # 0. Thus f + g, f — g, fg, and f/g are all
functions. In addition, if ¢ € C, then we define cf to be the function such that

(cf)@) =cf(2)

forall z € Dy.
Exercises 1.2.
1. Express in the form x + iy, where x and y are real,

@ 34+4i+A-D)(1+1i);
® (2-50)%
© S5
2. Compute i” for every integer 7.
3. For every complex number z, find the real and imaginary parts of the following

expressions:
@ =
(b) iz.
4, Letz = x +iyand w = a + ib, where x, y, a, b are real. Suppose that 7> = w.
Show that
¥2 = a+ |w|
2
and
y  —a+ [w]
=—
Deduce that
7= *t(a + ABi),
where
a+|wl
o= ,
2
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A=1ifb>0and A = —1if b < 0. Hence, conclude that the square root of a
complex number is real if and only if the complex number is real and positive.
Solve the following equations:

@ 22=1-—i;
b) *=1i.
Show that

ol _ Il
—_— K
lu+ o] = [Jul = vl

where u, v, z are complex numbers and |u| # |v|.
If z and w are complex numbers, show that

|z +wl = [z[ + |w]
if and only if z = aw for some real number «.
Recall that the function d(z, w) = |z — w| measures the distance between the
points representing the complex numbers z and w. Prove the inequality

d(z,w) <d(z,v) + d(v,w),

where w, v,z are complex numbers. More generally, let z;,z2,...,z, be
complex numbers. Show that

d(z1,z0) < d(z1,22) +d(22,23) + ... + d(2u—1,20)-

. Show that

|d(z,v) —d(v,w)| < d(z,w)

for complex numbers v, w, z.
Give a condition for

d(z,w) = d(z,v) + d(v,w),

where v, w, z are complex numbers.

1.5 Finite Sums

Our development of analysis is based on the concepts of sequences and series. In
order to be able to deal with series, we need to be familiar with the properties
of finite sums. This section is therefore devoted to the development of their basic
properties.
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Let m and n be integers with n > m. Recall that
n
Zaj =dam +am+1 + -+ ay,
j=m

where a,,, Ap+1, . . . , a, are numbers. Observe that j is a dummy variable. In other
words, the sum is independent of j, so that if k£ is another letter, then

Zak=2aj. (1.15)
k=m j=m

(Sometimes j is referred to as an index.) More generally, let r be any integer and
putk = j+r.Then j = k —r.Moreoverk = m+r when j = m,andk =n+r
when j = n, and so we may write

n n+r
E a; = E Aj—r.
j=m k=m+r

Using Eq. (1.15), we therefore obtain the following result.

Proposition 1.5.1. If m,n,r are integers with m < n and a; is a number for each
integer j suchthatm < j < n, then

n+r n
E aj—r = E aj.
j=m-+r j=m

Moreover the associativity of addition shows that if m, n and r are integers such
that m < r < n, then

n r n
E a; = E aj + E aj.
j=m j=m j=r+l1

The next theorem is a basic property of finite sums.

Theorem 1.5.2. Let m, n be integers withm < n, and let a; and b; be numbers for
each integer j for whichm < j < n. For all numbers s, t, we have

D (saj+thy) =5 aj+ty b (1.16)
j=m

j=m j=m
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Proof. We fix m and use induction on n. For n = m we have

Z(saj +1b;) = say, + thy,

j=m
m m
=S E aj+t E bj.
j=m j=m

Now suppose that Eq. (1.16) holds for some integer n > m. Then

n+1
Z(sa] +1hj) = Z(saj +1th;) + sant1 + thyy1
j=m j=m
=s2aj +t ij + say4+1 + thy+1
j=m j=m
Za/ +ay |+t Zb + buti
j=m
n+1 n+1
=sD aj+1) by
Jj=m j=m
and the proof by induction is complete. O

For example, by taking ¢ = 0, we obtain the distributive law:
n n
D saj=s5) aj. (1.17)
j=m j=m
Similarly, putting s = ¢t = 1, we find that
Z(af +bj) = Z“/ + Zb/’
j=m
and by setting s = 1 and = —1, we have

Z(aj—b)— Za/ ij.

j=m j=m
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Thus if m < n and a,,, dpy+1, - . . , Ayp+1 are numbers, then
n
E (aj41—a;) = E aj+1— E aj
j=m j=m
n+1
= Z aj = Z“/
j=m+1 j=m
n n
= E aj +ap41— | am + E aj
j=m+1 j=m+1
= dap+1 — am,

a result known as the telescoping property. We state it as a theorem.

Theorem 1.5.3. Let m,n be integers such that m < n, and let a; be a number for
each j suchthatm < j <n + 1. Then

n
Z(aj-i-l _aj) =dp+1 —dp
j=m
This theorem in fact is intuitively clear, since the sum can be written as
(an+l - an) + (an - an—l) +---+ (am—i-l - am)
and cancellation yields a,+; — a,,. Note also that
Z("J —dajy1) = Z(%H —aj) =—(Ant1 — ap) = Qp — Apt1.
j=m
As an example, if a; = j for each j, we obtain
21—2(1—1—1—1)—71—1-1—
_711

by the telescoping property. In particular, if m = 1 and » is a positive integer, then

n
Zl:n—l—l—l:n,
j=1

as expected, because we are simply adding n copies of the number 1.
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For a less trivial application of the telescoping property, let us evaluate

> @j+ 0.

j=1
Note first that

G+1D)2—j*=j*+2j+1-j°
=2j + 1

In the telescoping property we therefore take a; = j 2 for each j and thereby obtain

Y@+ =G+ =)D

j=l j=1
=m+1)* -1
= n? 4+ 2n.

But we also have
Y@j+n=2>j+>1
j=1 j=1 j=1
=2) j+n.
j=1

and so

n

2Y j=>_@2j+Dh-n
j=I

Jj=1
=n’4+2n—n

=n2+n.

Hence we obtain the following theorem.

Theorem 1.5.4. For every positive integer n

ij _ n(n2+1).

j=1
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A similar argument can be used to show that

“ o, nn+1)2n+1)

The next theorem also illustrates the telescoping property in action.

Theorem 1.5.5. If n is a nonnegative integer and a # b, then

n n+1 _ pn+l n+l _ . n+l
Z i a b . b a

a - - ’
a—>b b—a

J=0

where the convention that 0° = 1 is used.

Proof. By distributivity and the telescoping property, we have

(@=b)Y a/b" =Y (/' —al b
j=0 j=0

— an+1 _bn+1,

and the result follows.
Putting b = 1, we draw the following conclusion.

Corollary 1.5.6. Ifa # 1, then

an+1 -1 1— an+1

n
al = = ,
;) a—1 1—a

where 0° = 1.

1

Introduction

There is one further theorem concerning finite sums that we include in this
section. It is called the binomial theorem and gives a formula for (@ + )" for every
nonnegative integer n. It furnishes another example of a proof by induction.

First we introduce some new notation. If n and r are integers such that0 < r < n,

then we define

ny _ n!
r] o rlin—r)!

nmn—1)----(m—r+1)
r! '
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|
0 0ln!
n
()zl.
n

Because of their role in the binomial theorem, these numbers are often called the
binomial coefficients. They satisfy the following lemma.

For example,

Similarly,

Lemma 1.5.7. Ifn and r are positive integers and r < n, then
(7)-0)-()
= + .
r r r—1

Proof. By direct calculation, we have

n n\ n! n!
o I P _r!(n—r)!+(r—1)!(n—r+l)!

nln—r+1+r)
rl(n—r +1)!
_ (n+ 1)
Crlm—r 4 1)

()

Theorem 1.5.8 (Binomial Theorem). Leta and b be numbers and n a nonnegative
integer. Then

a

(a+ by = Z('})a/’b”‘% (1.18)

Jj=0

where the convention that 0° = 1 is used.
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Proof. Both sides are equal to 1 if n = 0. Assume that the theorem holds for some
integer n > 0. Then

(a+b)"t' = (a+b)a+b)

—@+n)y (".)afb"—f
j=o \/

- (’f)a.mbn—j +3 (7)a_/bn—j+1
=0 \J j=o \/
n+1 n n n
—  pn—j+1 j pn—j+1
- Z(. 1)a/b” i +j§)<j)afb" J

n
_ Z ( . n l)ajbn+1—j 1+ogmtt o prtl g Z <rf)ajbn+l—j
‘ J — ; J
Jj=1

=ty ((] i 1) n (;’)) @l b= g gt
j=l1

n
— g Z (” + l)ajbn+1—j + gt
J

j=1
n+1

_ Z (” + l)ajbn+1—j.
j=o\ J

The result follows by induction. O

The sum on the right-hand side of Eq. (1.18) is often referred to as the binomial
expansion of (a + b)". Note that the result of Example 1.3.1 can easily be deduced
by considering three terms of the binomial expansion witha = 1 and b = x.

Exercises 1.3.

1. Use induction to prove the following formulas for all positive integers n:

. 1

@ Yo, j =t

(b) Z?‘:] j2 — n(n-H)éZn—H);
n 1 _ n.

© 2= JG+D) T ntD

n J_ 1.
@) Zj=1 G+D! — - (n+1)!°

(e) Z?:l JP= (Z?:l j>2§
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(f) Z};ZI j4 _ 11(n+1)(2n+31())(3nz+3n—1);

(@ Yi2yix) = xond Heo DY o every real x # 1.

1—x2
2. Letn € Nandletay,a,,...,a, bereal numbers such that 0 < a; < 1forall j.
Prove that

n

H(l—(lj) > I—Zaj.

J=1 J=1

3. Discover and prove a theorem about the relative sizes of 3" and n!, where n is a
positive integer.

4. A function f:R — R is said to be convex if for all nonnegative real numbers o
and o, with sum equal to 1 we have

Slaixy + axz) < oy f(x1) + oz f(x2)

for each x; € R and x, € R. Prove that

S ajxs | <D e fx))
j=1 j=1

whenever 7 is an integer greater than 1 and o, ay, . .., ¢, are nonnegative real
numbers with sum 1. This result is known as Jensen’s inequality. More generally,
show that

P Z(ajxj)/zak sz(ajﬂx,-))/Zak-
j=1 k=1 j=1 k=1

5. Use the telescoping property to prove the following identities for all n € N:
1 _3_1(.1 1.
@ Yo o5 =13 G + i)
n 1 _ .
(b) Z_,:] NiEVE -1+ /n+1;
© Yo j-jl=@m+DI-1
6/ _ ptt
(d) Z?:l @I hGEi—2) — 3- 3nl_gnt1>
n 1 _ 5 1 1 1.
© Xici 75 = 122 (2 — 7a):
oY r— =1
J=LGHDVT+iViF] N
1

n J _ 1 1 .
(& = FEAH T 2T matnaz

n J _ 1 1
(h) Zj=1 4j%4+1 7 4 8n2+8n+4"
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" 1

o144+
foralln € N.
. Prove that
SUNGPHT D) =0+ 1) -1
Jj=1
foralln € N.

. Evaluate the sum

1

for all integers n > 3.

. Suppose that |na,| < M for all n > 0. Show that

1 n
Sn_nz— ja; <M
0, n_l’_lj;]a]

for all n, where S, = 3} _ya; and o, = 3, S; forall n.

1

Introduction

. Let d and a; be numbers. Define a; for each integer j > 1 by the equation
ajy+1 =aj + d, and suppose that a; # O for all j € N. Find the sum



Chapter 2
Sequences

Analysis is based on the notion of a limit, a concept that can be defined in terms of
sequences. Moreover, elementary functions, such as trigonometric, exponential, and
logarithm functions and many algebraic functions, can be approximated by using
sequences. With modern computers, such approximations can be made accurate
enough for most practical purposes.

2.1 Definitions and Examples

A sequence is a function whose domain is the set of all integers greater than or equal
to some fixed integer. More formally, we have the following definition.

Definition 2.1.1. Let a be a fixed integer and A the set of all integers greater than
or equal to a. A function s from A into a set I is called a sequence in . The images
of the members of A are called the terms of the sequence. They are ordered by
the ordering of A itself so that, for example, s(«a) is the first term of the sequence,
s(a + 1) is the second, and so forth.

Throughout this book F will denote one of the three fields Q, R, or C. The
sequence will then be said to be rational, real, or complex, respectively. Results
established for complex sequences will therefore be valid for rational and real
sequences as they are special cases.

Given a sequence s : A — I, we usually write s, instead of s(n), where n € A.
Moreover we denote the sequence by {s, },e4 or simply {s, } if A is either clear from
the context or immaterial. If A4 is the set of all integers n > a, then we also write the
sequence as {S, }»>4. Occasionally, the first few terms of the sequence may be listed
in order, so that we write s, S;+1, . . ., for instance.

© Springer Science+Business Media New York 2015 33
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_2
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We now present some examples of sequences.

Example 2.1.1 (Sign Sequence). The sequence given by {(—1)"*1},5 is

1,—-1,1,—-1,....
A
Example 2.1.2 (Harmonic Sequence). The sequence given by {1/n},> is
111
17 AN A a0
2'3 4
A

Example 2.1.3 (Complex Harmonic Sequence). The sequence givenby {i"/n},> is

i
7’

i
ag»

i
3 b

e e e

0| =

1
G’

Bl

o1
lL,—=,
2

A

Example 2.1.4 (Geometric Sequence). If we temporarily adopt the convention that
0° = 1, then for all complex numbers a and r, the sequence given by {ar"},> is

a,ar,arz,ar3,....

A

Example 2.1.5 (Arithmetic Sequence). For each complex a and d the sequence
given by {a + nd},>o is

a,a+d,a+2d,a+3d,....

A
Example 2.1.6. The sequence given by {(1 + 1/n)"},>; is
9 64 625
"472772567
We shall return to this sequence later. A

Often, particularly in computer applications, a sequence is defined inductively
by specifying the first few terms and then defining the remaining terms by means
of the preceding ones. For example, the geometric sequence {ar"} can be defined
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inductively by writing so = a and s = rsx—; for all k > 0. Likewise, the arithmetic
sequence {a + nd} can be defined by setting so = a and s = sx—; +d forallk > 0.

Example 2.1.7. A sequence that is often used in botany is the Fibonacci sequence
(see [6]). It is specified by putting Fy = F; = 1 and

Fr = F—1 + Fr—
for all k > 1. The sequence so defined is
1,1,2,3,5,8,13,21,....

We show by induction that

F_l l+\/§n+l 1_ﬁn+l
"5 2 -\ 2

for all » > 0. First, for convenience let us define ¢ = (1 + «/g) /2 and B =
(1 — +/3)/2. These are the solutions of the equation

xX—x—-1=0, (2.1

sothat @> = o+ 1 and B2 = B + 1. Since @ — B = /5, the required formula holds
forn = 0.Italso holds forn = 1,sincea®?— B2 =a+1—(f+1) =a—B = /5.
Assuming that n > 1 and that the result holds for all positive integers less than 7, it
follows that

F,=Fi—1+ F—

L(O{” _ﬁn + an—] _ﬂn—l)

V5
1
= —=@ e+ 1) =g (B+1)
V5
— _(an+1 _ ﬁnJrl),
V5
as required. It is somewhat surprising that the formula yields an integer. The number
« is known as the golden ratio. A

Example 2.1.8. Fix a positive integer k. Define s; = 1 and

Sp—1 + k

S, =
! Sn—l+1
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for all n > 1. The resulting sequence is

k+1 3k+1 k24+6k+1
2 T k437 4k+4 T

We will see later (Example 2.3.2) that its terms give a good approximation for
Vk when n is large. For k = 2, the sequence was familiar to the ancient Greeks,
having appeared in Chapter 31 of the first volume of the manuscript Expositio rerum
mathematicarum ad legendum Platonem utilium by Theon of Smyrna in 130 AD.
The reader is invited to show by induction that

2\/%‘(1+«/E)”+(1—«/%)”
(1+ Vi — (1 = Vky

for all n. A

Sﬂ

2.2)

Remark. The reader may wonder how the expressions for the general term were
obtained in the two preceding examples. One method using matrices is given in [15].
Here is another way of obtaining the formula for the Fibonacci sequence. Let us
write

F, = Ad" + BS"
for some constants A4, B, «, f such that « # 0 and 8 # 0. For the equation

Fy=Fi-1+ Fi—
to hold, we need to ensure that

Ao" + B,Bn — AO{n_l + Bﬂn_l + Aan—2 + B,B”‘z,
that is,
Aa"2(@® —a— 1)+ BB 2(B> - B —1) =0.
For this purpose it is sufficient to take o and § to be the solutions of Eq. (2.1). This
observation gives the values for & and B in Example 2.1.7. Next, the initial condition
that Fy = F; = 1 yields the equations
A+ B =1

and

Aa + B = 1.
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The solution gives

so that

o
A=1-B=—.
NG

The desired expression for F, is now obtained by substitution.
Exercises 2.1.

1. Prove Eq. (2.2).

2.2 Convergence of Sequences

We are often concerned with the limiting behavior of a sequence {s, } as n becomes
large. The process of enlarging » indefinitely is indicated by the notation n — oo.

In what follows the sequences will be assumed to be complex unless an indication
to the contrary is given.

Definition 2.2.1. Let {s,} be a sequence and L a number. We say that {s,}
converges to L, and that L is the limit of {s,}, if for each ¢ > 0 there exists an
integer N such that

lsp —L| < e

whenever n > N. If {5, } converges to L, then we also say that s, approaches L as
n approaches infinity, and we write

lim s, =L
n—>00
ors, —> Lasn — oo.
A sequence is said to be convergent if there exists a number to which it
converges. A sequence is said to diverge, and to be divergent, if it does not
converge.

In Definition 2.2.1 the integer N may of course depend on €. It is also clear that
the inequality » > N may be replaced by the corresponding strict inequality, for
n> Nifandonlyifn > N — 1.

Given L and ¢ > 0, we may define the set of all z for which |z — L| < ¢
as the e-neighborhood of L. This set is denoted by N.(L). Roughly speaking,
the definition of the convergence of a sequence to L says that for each pre-
scribed e-neighborhood of L, the terms of the sequence will eventually enter the
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neighborhood and remain there. In other words, the terms of the sequence become
arbitrarily close to L as n increases.
Note that the inequality |s, — L| < ¢ is equivalent in R to

L—e<s,<L+e.

A sequence that converges to 0 is said to be null.
Example 2.2.1. For each number a the constant sequence {a} converges to a.

Proof. Define s, = a for each integer n € N. For every ¢ > 0 and every n > 0 we
have |s, —a| = |a —a| = 0 < &, as desired.

A
Example 2.2.2. Let us show that
n

lim — = 0.
n—o00 n

Given any ¢ > 0, we need to find an integer N such that

— =0
n

<é&

foralln > N.Since |i| = 1, weneed 1/n < ¢, and so we choose any N > 1/¢ > 0.
For all n > N we deduce that

1 1

- < —<e

n~ N
and the desired result follows. A
Remark. The only property of i used in this proof is that |i| = 1. Hence the
argument can also be used to show that

lim — = 0.

n—o00 n

Example 2.2.3. We show that the sequence {(—1)"} diverges. This result is intu-
itively clear, for the values of (—1)" oscillate between 1 and —1 as n increases. The
distance between these numbers is 2, and so every number L must be at a distance
of at least 1 from one or the other of them. But if L were the limit of our sequence,
then the terms would become arbitrarily close to L as n increases. We infer that no
number can be the limit of the sequence, and the sequence therefore diverges.

We can also cast this intuitive argument in terms of neighborhoods. For every
number L we can choose ¢ so small that the e-neighborhood of L does not contain
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both 1 and —1. Therefore there is no term in the sequence beyond which the values
in the sequence remain in the e-neighborhood.

We now transform this intuition into a formal argument. Suppose the sequence
were to have a limit L, and choose any ¢ such that 0 < ¢ < 1. There would be an
integer N such that |(—1)" — L| < ¢ whenever n > N, no matter whether n is even
or odd. It would follow that

[1—-L|l<e
and
I+ Ll=|-1-L|<e.
Using the triangle inequality, we would therefore reach the contradiction that
2=1+L+1-L|<1+L|+[1-L|<2e<2.

A

Example 2.2.4. For every complex number z such that |z| < 1, we will show that

lim 7 = 0.
n—>oo

If z = 0, then the result follows from Example 2.2.1 with a = 0, and so we
assume that z # 0. Choose ¢ > 0. We must find an integer N such that |7"| < ¢ for
alln > N. Since 0 < |z] < 1, we have 1/|z| > 1. Let us write

1
|2

for some p > 0. By Example 1.3.1,
(I+p)' =z1+np

for all positive integers n. Choose N large enough so that
1
1+Np>-—.
e

Then, for all n > N, we have

1 1\" 1
—=|=) =0+p)"=1+np>14+Np>—->0,
|2"| 4 €

so that |7"| < & for each such n, as required. A
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Remark. Since 1 < /5 <3, wehave 0 > 1 — /5 > —2. Thus |1 — +/5| < 2, and
SO

1-4/5
2

< 1.

Applying the result of the last example, we conclude that

n
1—-4/5

lim < \/—) =0.

n—00 2

This observation motivates us to approximate F, in Example 2.1.7 by

L (1 n ﬁ>n+l

NAWE

In fact, this approximation turns out to be accurate to within one decimal place for
alln > 4.

Since the convergence of a sequence {s,} depends only on the behavior of the
terms s, where n is large, we would expect intuitively that the first few terms are
immaterial. This expectation is encapsulated in the following lemma.

Lemma 2.2.1. Let k be a positive integer. Then a sequence {s,} approaches a
number L as n approaches infinity if and only if {s,+1 } also approaches L.

Proof. Suppose first that s, — L as n — oo and choose ¢ > 0. Since

lim s, = L,

n—>00
there exists N such that |s, — L| < & whenever n > N. But for eachn > N we
haven +k >n > N, and so |s,4+x — L| < &. Therefore

lim Sn+k = L,
n—»00

as required.

Conversely, suppose s,+r — L as n — o0. For every ¢ > 0 there exists N such
that |s,4+x — L| < eforalln > N.Choose n > N + k. Then |s, — L| < ¢, and we
conclude that s, — L as n — oo.

In view of this lemma, every theorem or definition concerning limits that
postulates s, to satisfy a specified property for all n will remain valid if in fact
s, satisfies the specified property only for all n greater than some fixed integer.

We show next that if a sequence converges, then the limit is unique. Certainly,
our intuition leads us to expect this result. The reasoning is akin to that used in
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Example 2.2.3. If the sequence {s,} were to converge to two distinct numbers L
and L,, which are a distance | L, — L,| apart, then each term s,, would be at a distance
of at least | L — L,|/2 from one or the other of them. Therefore s,, could not become
arbitrarily close to both L; and L, as n increases. In terms of neighborhoods, we
choose ¢ so small that the e-neighborhoods of L and L, are disjoint. It is therefore
impossible that as n increases the terms of the sequence enter both neighborhoods
and remain there. The proof of the uniqueness of the limit just formalizes this
intuitive argument.

Theorem 2.2.2. A sequence has at most one limit.
Proof. Let {s,} be a sequence with limits L, and L, and choose ¢ > 0. Since s,
approaches L1, there is an integer N, such that
|s, — Li| <€
for all n > Nj. Likewise, there is an integer N, such that

ls, — La| < ¢

foralln > N,. For every n > max{Ny, N;}, both of the preceding inequalities hold.
For such nn we therefore have

|Ly— Lyl = |Ly— 8y + 8, — La| < |sp — L1| + |5, — La| < 2e.
But ¢ is an arbitrary positive number. If L # L,, then we could choose

[L1 — L]
=1 s

07
2

thereby obtaining the contradiction that [L; — L,| < |L; — L,|. We deduce that
L, = L,, as required.

The next proposition gives another way of expressing the definition of a limit of
a sequence. It is often more convenient to use

Proposition 2.2.3. Let {s,} be a sequence, L a number, and c a positive number.
Then lim, .~ S, = L if and only if for each ¢ > 0 there exists an integer N such
that

ls, — L| < ce

foralln > N.

Proof. Since ce > 0, it is immediate from the definition of the limit that the stated
condition holds if lim,—« $, = L. Let us suppose therefore that for each ¢ > 0
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there exists an integer N such that |s, — L| < ce for all n > N. Choose ¢ > 0.
Since &/¢ > 0, there exists N such that

|
|
)

e
|sy — L] <c--=
¢

foralln > N. Hence lim,, o 5, = L. O

Sometimes we wish to consider more than one sequence, in which case the
following proposition is sometimes useful.

Proposition 2.2.4. Let {s,} and {t,} be sequences with respective limits K and
L. Then for each ¢ > 0 there is an integer N such that both |s, — K| < & and
|t, — L| <eforalln > N.

Proof. Given ¢ > 0, there exists Ny such that |s, — K| < ¢ for all n > Nj.
Similarly, there exists N, such that |, — L| < ¢ for all n > N,. If we now take
N = max{N;, N>} and choose n > N, thenn > N; and n > N,, so that both
required inequalities follow. O

Remark. This result can clearly be generalized to handle situations where more than
two sequences are under consideration.

Exercises 2.2.

1. Show from the definition that the following sequences are divergent:
@ {(=D"+ 3}
o {rr,
© {i"+ 5}

2. Show that

1 i\"
lim ( +’) —0
n—00 2

3. Suppose that x,, > 0 for all » € N and that lim, . X, = 0. Show that the set
S ={x,|neN}

contains a maximum member. Must S always contain a minimum member?
4. Let

X + x"
1+ x"

sp(x) =

foralln € Nand x € R—{—1}. Find each real number x for which the sequence
{s,,} is convergent and find the limit of the sequence.
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5. Test the convergence of the real sequence
a"—=b"
el

where a and b are numbers such that a” + b" # 0 for all n.
6. Suppose that

. n — L
lim =0,
n—>00 7, —+ L

where L € C and z, € C — {—L} for all n. Show that

|zul — L] _

=0
=00 |z, | + |L]|

and lim,, o0 2, = L.
7. Let w be a complex number such that |w| # 1 and let

Wﬂ

= 1 4+ w2n

for all n. Show that the sequence {z,} converges to 0. Is this statement still true
if lw| = 1?

2.3 Algebra of Limits

Using the definition of convergence to determine whether a sequence converges, and
if so to what limit, can be a tedious process. However, if a given sequence is a sum,
difference, product, or quotient of other sequences, then the behavior of the given
sequence can be investigated by studying simpler sequences. Our next objective is
to see how this simplification is effected. We begin with some results concerning
the size of terms in a convergent sequence.

A sequence {s,} is said to be bounded if there exists M such that |s,| < M for
all n.

Theorem 2.3.1. Every convergent sequence is bounded.

Proof. Let {s,} be a convergent sequence with limit L. For each & > 0 there is an
integer N such that |s, — L| < ¢ for all n > N. For every such n we have

[Isn] = |L|| < |sp — L| <&,
so that

|L| —& < |sy| < |L|+e.
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Setting
M = max{|s|, |s2],...,|sny=1], | L] + &},

we find that |s,| < M for all n. Hence {s,,} is bounded. |

The preceding proof shows that if
lim s, = L,
n—>o00
then
lim |s,| = |L|.
n—oo

On the other hand, we observe from Example 2.2.3 that the converse does not
necessarily hold. Nevertheless, if lim, oo |5,| = 0, then for each & > 0 there exists
an integer N such that |s,| < e foralln > N, and we conclude that lim,,_, 5, = O.
We summarize these observations in the following proposition.

Proposition 2.3.2. [. Iflim,_, s, = L, then lim,_ |s,| = |L|.
2. Iflim, 0 |Sy| = 0, then lim, 00 5, = 0.

Proposition 2.3.3. Suppose {s,} is a real sequence such that

lim s, =L >c
n—oo

for some number c. Then there exist numbers N and k > ¢ such that s, > k for all
n>N.

Proof. Choose ¢ such that 0 < ¢ < L — c. There exists N such that |s, — L| < ¢
for all » > N. For each such n we have

L—e<s, <L+e.

The conclusion of the theorem is therefore satisfied by k = L — ¢ > c. O
Similarly, one can establish the following result.

Proposition 2.3.4. Suppose {s,} is a real sequence such that

lim s, =L <c.
n—>00

Then there exist numbers N and k < ¢ such that s, < k foralln > N.

Also, if {s,} is a real sequence such that

lim s, =L >0,
n—o00
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then we may take ¢ = L /2 in Proposition 2.3.3 and infer the existence of a number
N such that s, > L/2 foralln > N. A corresponding statement holds if L < 0.
Thus we have the following result.

Proposition 2.3.5. Let {s,} be a real sequence such that
lim s, = L # 0.
n—>00

1. If L > 0, then there is an integer N such that s, > L/2 foralln > N.
2. If L <0, then there is an integer N such that s, < L/2 foralln > N.

Corollary 2.3.6. Let {s,} be a (real or complex) sequence such that
nll)n;o s, =L #0.
Then there is an integer N such that |s,| > |L|/2 foralln > N.
Proof. From the hypothesis it follows that
lim |s,| = |L| > 0.
n—>oo
An appeal to Proposition 2.3.5(1) completes the proof. O

We are now ready to establish the sum, product, and quotient rules for limits.

Theorem 2.3.7. Let {s,} and {t,} be sequences, and suppose that lim, 5, = K
and lim, oo t, = L. Then

1.
lim (s, +t,) = K+ L;
n—>o0
2.
lim s,t, = KL;
n—>oo
3.
. s K
lim — = —
n—00 t, L

if L # 0andt, # 0 forall n.

Proof. 1. Choose ¢ > 0. Using Proposition 2.2.4, we find an integer N such that
both

ls, — K| < ¢
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and
lt, —L| <e

for all n > N. For every such n we deduce that

|(Sn + tn) - (K + L)| = |(sn - K) + (tn - L)|
< lsn — Kl +[tn — L]
< 2e,
and the result follows from Proposition 2.2.3.
2. Choosing ¢ > 0, we find an integer N with the property stated in the proof of

part (1). Moreover, the convergent sequence {s,} is bounded, and so there exists
M such that |s,| < M for all n. For all n > N we therefore have

|snt, — KL| = |sut, — Ls, + Ls, — KL|
< Isullta = L] + |L|]sy — K|
< Mg+ |Lle
= (M +|L))e,

and again the result follows from Proposition 2.2.3.
3. By Corollary 2.3.6 there exists an integer N; such that |z,| > |L|/2 > 0 for all
n > N;. Thus

1 2
—_—< —
el IL]
We prove next that
) 1
lim — = —.
n—00 t, L

To this end, choose ¢ > 0. There is an integer N, such that |¢, — L| < ¢ for all
n > N,. For every n > max{N;, N,} we therefore have

=

t, L Lt,
_ |tn_L|
LIl
1 2
<8-m'm
2
= W&

as required.
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We conclude the proof by using part (2) to deduce that

. Sn . o1 K
lim — = lim s, lim — = —.
n—oo t, n—00 n—oo f, L

ad

Note that the sequences {s, + t,}, {sxt,}, and {s,/t,} may converge even when
neither {s,} nor {z,} does so. For instance, {(—1)"} and {(—1)""'} both diverge,
but {(=1)" + (="'}, {(=D)"(=1)"""}, and {(=1)"/(=1)""'} are all constant
sequences and therefore converge.

Before presenting some examples, we note three corollaries.

Corollary 2.3.8. Using the notation of the theorem, we have
lim (s, —t,) = K — L.
n—o0
Proof. From parts (1) and (2) of the theorem, we infer that
lim (Sn - Z‘n) = lim (Sn + (_l)tn)
n—00 n—00

=K+ (1)L
=K-L.

Corollary 2.3.9. Let s,,t,, K, L be as in the statement of the theorem.

1. If sy > t, forall n, then K > L.
2. If s, <t, foralln, then K < L.

Proof. 1. By Corollary 2.3.8 we have
lim (s, —t,) = K — L.
n—>00

If K — L < 0, then, by Proposition 2.3.5(2), there would be an integer N such
that

L
Sy — 1, < <0

for all » > N. This contradiction shows that K — L > 0.
2. The proof of part (2) is similar.

Putting {z,} equal to a constant sequence {c} yields the following corollary.
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Corollary 2.3.10. Let {s,} be a real sequence converging to K, and let ¢ be a real
constant.

1. If s, > c forall n, then K > c.
2. If s, <cforalln, then K < c.

Remark. 1t should not be thought that if 5, > ¢ for all n then K > c. For instance,
1/n - 0asn — oo, but 1/n > 0 for all n > 0. Similarly, if s, < ¢ for all n, then
we can conclude only that K < c.

Example 2.3.1. Let

_ 4n(4n +3)
C (@n+1)(4n+2)

sﬂ

for each n € N. Dividing both numerator and denominator by 12, we obtain

4(4+2)
(4+7)@+3)

n

lim — =0,
n—>00 n

we may apply Theorem 2.3.7 to find that

s = 44+0)
n—oo " (44 0)(4+0)

Example 2.3.2. For every positive integer k we have
1—vVk|=vk—1<~vk+1=|1+ Vk|
and so

1- vk
1+ vk

< 1.

Using the result of Example 2.2.4, we therefore find that

o (1=VEY)
lim =0.
>0 \ 1+ vk

Applying an argument similar to that of the preceding example, we conclude that
the sequence in Example 2.1.8 converges to Vk. A
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Example 2.3.3. Let a and r be real numbers and suppose that |r| < 1. Let

for all n. By Example 2.2.4 and Theorem 2.3.7, we deduce that

lim s, = .
n—00 1—r

A

Moreover if p denotes a polynomial and {s,,} is a sequence converging to L, then
Theorem 2.3.7 shows that

Jim p(sq) = p(L).

If p and ¢ are polynomials such that g(L) # 0 and ¢(s,) # O for all n, then it also
follows that

PG _ p(L)
n—>c0 gq(s,)  gq(L)

We show next that the study of a complex sequence can be reduced to the study
of two real sequences.

Let {s,} be a complex sequence and suppose that s, = a, + ib, for all n, where
each a, and b, is real. Then the sequences {a,} and {b,} are called the real and
imaginary parts, respectively, of {s,,}. They satisfy the following theorem.

Theorem 2.3.11. A complex sequence converges to a number L if and only if its
real and imaginary parts converge, respectively, to the real and imaginary parts
of L.

Proof. Let s, = a, + ib, for all n, where each a, and b, is real. If the sequences
{a,} and {b, } converge to A and B, respectively, then {s, } converges to A + i B, by
Theorem 2.3.7.
Conversely, suppose that
lim s, =L =A+41iB,

n—>oo
where A and B are real. We must show that {a,} and {b,} converge to A and B,
respectively. Choose ¢ > 0. There exists N such that |s, — L| < e foralln > N.
Recalling that |Re (z)| < |z| for all z € C, we find that

la, — Al < s, —L| <e¢

for alln > N. Similarly, |b, — B| < ¢ foralln > N, and the theorem follows. O
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Corollary 2.3.12. If a complex sequence {s,} converges to a number L, then {5,}
converges to L.

The following algebraic result is also frequently used in calculations.

Theorem 2.3.13. Let {s,} be a sequence of nonnegative real numbers converging
to L. Then

lim s'/m = V"
n—oo "

for every positive integer m.

Proof. Note that L > 0 by Corollary 2.3.10.
Suppose first that L = 0. For every ¢ > 0 there exists N such thats, = |s,| < &"

foralln > N.Thus s,,l/m < ¢ for all such n, and it follows that s,,l/m — Qasn — oo.

Suppose therefore that L > 0, and choose ¢ > 0. There is an integer N such

that |s, — L| < ¢ for all n > N. For each such n define a, = sy/™ > 0, and let

b= LY™ > (. Then forall n > N it follows from Theorem 1.5.5 that

m—1
m m __ Jjpm—j—1
ay —b —(a,,—b)é a)b™ ™/
Jj=0

= (a, —b)K,

even if a, = b, where

m—1
Ki= ajpmi!
Jj=0

m—1
::bm—1+_§:aébm—j—y

j=l1
Now K, > b1 > 0 since a£ b™=/=1 > 0 for each j > 0. Therefore

jsi/" = LV = |a, = b]
_ ay 0"
= X,
< sy — L]
- bm—l

pm—1’

as required. O
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Remark. If s, > 0forall n and L > 0, then the theorem also holds for each negative
integer m, for if m < 0, then —m > 0 and

I/m __ 1 1 =Ll/m

S = —_ —
n —1/m -1
sy / L—1/m

Example 2.3.4. Using Theorem 2.3.13, we find that

n+1—n

lim («v/n +1-— n):lirn—
( n—>00 /n+1_|_ﬁ

n—o00

1
lim ———
n=>00 /n+ 1+ /n

as n — oo. Hence

n—00 /n — 1

by Theorem 2.3.13. A

We conclude this section by showing that taking an arithmetic mean does not
alter the limit. In other words, the limit of a convergent sequence is also the limit of
the arithmetic mean of the terms of the sequence. This result is due to Cauchy. We
will give a corresponding result for geometric means later.

Theorem 2.3.14. [flim,_,~ S, = L, then

1g
Jim 2 =1L

=1
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Proof. Putting t, = s, — L for all n € N, we find that

n n n n n
%ZS]Z%Z(IJ'—FL): Z[j+ZL Z%le—f‘[/.
i=1 j=1 j=1 j=1 j=1

It therefore suffices to show that
s Z’ =0

Since

lim t, = hm (s,, —L)=0,

n—>00

for each ¢ > 0 there is a positive integer N such that |t,| < & for eachn > N. For
all n > N we also have

1 n 1 n
OB D
Jj=1 Jj=1

= Z|z,|+2|z,

j=1

Since 1/n — 0, we may choose n so large that

1N—l
=Y iyl <e
n “

j=1

For large enough 7 it follows that

/\

n
>y _—Z|t|+ Zm

A

™

_l’_
S| =
5M=

™

IA
)
o

and the proof is complete. O
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Exercises 2.3.

1. Find the limits of the following sequences:

o k@ (R
(b) {% + (#f)"}? (h) k- ﬁ} where k > 0;
© (sl 0 {as+ i;ﬂ};

d {r;:;l}, @ {\/nz—i— l—n};

© {G+9"} & {(Vn+ 1 — )l

o {Zh W = Vo an+b).

2. Suppose that lim, . X, = L > 0. Show that there is a number N such that
9L < 10x, < 11L

for all » > N. Obtain a similar result for L < 0.

2.4 Subsequences

Roughly speaking, a subsequence of a sequence is obtained by discarding some
terms. Recall from the definition of an increasing function that a real sequence {s, }
is increasing if s, < s,4; for all n. In order to construct a subsequence {z,} of a
sequence {s,}, we use an increasing sequence of positive integers to pick out the
terms of {s,} that are to appear in {¢,}. Thus we define a sequence {¢,} to be a
subsequence of a sequence {s,} if there is an increasing sequence {k,} of positive
integers such that 7, = sy, for all n.

Example 2.4.1. Let {s,} be the sequence {1/n2}. Its terms are

"479716°25°36 497647

Then {s,,} is the subsequence

1 1 1 1
4’16736 64 """’
whereas {s,,—1} is the subsequence
1 1 1
1, =, —, —,....
925 49
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We show next that subsequences enjoy the same convergence behavior as the
parent sequence.

Theorem 2.4.1. If a sequence converges to a number L, then so does each of its
subsequences.

Proof. Given that {s,} is a sequence that converges to L, for every ¢ > 0 there
exists an integer N such that |s, — L| < e forall n > N.If {s;, } is a subsequence
of {s,}, then |sx, — L| < & whenever k, > N. Since {k,} is an increasing sequence
in N, we have k,, > ky > N forall n > N. For all such » it therefore follows that
|sk, — L| < &, and the proof is complete. |

This theorem provides a useful test for divergence of a sequence.

Corollary 2.4.2. Any sequence possessing subsequences that converge to distinct
limits must be divergent.

Example 2.4.2. Let s, = i" for all n. Since s4, = 1 and s4,+1 = 1 for all n, the
sequence {s,} has subsequences converging to distinct limits and hence diverges.
A

Example 2.4.3. The sequence

1
{ -+ (—1)”}
n
has subsequences
! +1
2n
and
1
-1
2n+1
that converge to 1 and —1, respectively. The sequence is therefore divergent. A

Theorem 2.4.3. Let {s,} be a sequence. If the subsequences {sy,} and {sy,+1}
converge to the same number L, then so does {s,}.

Proof. Choose ¢ > 0. There is an integer N; such that
|s2, — L] < ¢
for all n > Nj. Similarly, there is an N, such that

|52n+1 — L| <é&
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for all n > N,. Now let
N = max{2N1,2N2 + 1}
For all n > N it follows that

ls, — L| <e.

Exercises 2.4.

1. Forall n € N let

X, = { nz"ﬁ if n is divisible by 3,

(—%)” otherwise.

Show that lim,, o x, = 0.
2. Show that the sequence

n—1Y.,
i
n+1
is divergent.

3. Test the convergence of the following sequences:

@ {55
) {(=D"(1+ 1)}

2.5 The Sandwich Theorem

Sometimes a real sequence is flanked by two sequences that are known to converge
to the same limit. It is natural to expect that the given sequence also converges to
that limit. In this section we confirm that expectation. We begin with the following
special case.

Lemma 2.5.1. Let {a,} and {b,} be real sequences such that 0 < a, < b, for all
n. Iflim,— o0 b, = 0, then lim, o a, = O.

Proof. Choose ¢ > 0. There is an integer N such that |b,| < ¢ foralln > N. For
each such 7 it follows that |a,| < |b,| < e. |
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Theorem 2.5.2 (Sandwich Theorem). Let {a,}, {b,}, and {c,} be real sequences
such that a, < b, < ¢, forall n. If

lim a, = lim ¢, = L,
n—>oo n—>oo

then

lim b, = L.

n—o00

Proof. The hypotheses show that
0 = bn —ap = ¢y —ay
for all n, and that
lim (¢, —a,) =L —L =0.
n—>oo
The previous lemma therefore shows that
lim (b, —a,) = 0.
n—odo
Thus
lim b, = lim (b, —a, + a,)
—>00

n—>00 n

= lim (b, —a,) + lim a,
n—>00 n—>oo

=0+4+L

=L.

Example 2.5.1. We shall show that
lim n'/" = 1.
n—od

Let

sp=n'"—1



2.5 The Sandwich Theorem 57

for all n > 0. It suffices to prove that the sequence {s,} is null. Note that s, > 0 for
all positive n. Therefore

-1
n=_(0,+1)"> Mss
2
for all n > 0, by Eq. (1.3). Thus
2
s,f <
n—1
foralln > 1, and so
V2
0<s,<
n—1

The required result now follows from the sandwich theorem, since

1
lim =0
n—o00 n—1

by Example 2.3.5. A
Example 2.5.2. 'We show that

lim /" =1

n—o0

for each constant 5 > 0.
Let us begin with the case where b > 1. Fix an integer n > b. Then

1 Sbl/n Sl’ll/n.

The required result follows in this case by using the previous example and the
sandwich theorem.
For b such that 0 < b < 1, we have 1/b > 1. Hence

. 1 . 1 1/n
Am e = Jim (z) =1L
Therefore the desired result follows in this case as well. A

Example 2.5.3. Let0 < x < 1. We know from Example 2.2.4 that

lim x" = 0.
n—>00

We now prove this result using the sandwich theorem.
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Put

Using inequality (1.2), we conclude that

1 1 1
0<x"=

Since

1
lim — =0,
n—00 np

the desired result follows by the sandwich theorem.
If z is a complex number such that |z| < 1, it follows that

lim |Z"| = lim |z]" = 0.
n—00 n—o0

Therefore

lim 7" =0

n—o00
by Proposition 2.3.2(2).
Example 2.5.4. Given real numbers x1, x», ..., Xk, define

k 1/n
Sn = Z |xj |n
j=l1

= < < —.
(I+p"~ l+np mnp

2 Sequences

for all positive integers n. It is easy to show that the sequence {s,} converges to

M = max{|x[, [x2],.... |xel}.

Note first that

k
M" < x| < kM".

j=1
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The result now follows from the sandwich theorem applied to the inequalities
M = (Mn)l/n <gs, < (an)l/n — kl/nM
upon noting that

lim k"M = M.

n—o0

We conclude this section with more applications of the sandwich theorem.
Theorem 2.5.3. Suppose that {s, } and {t,,} are sequences such that lim,_, », s, = 0
and {t,} is bounded. Then

lim s,¢, = 0.
n—o00

Proof. Since {t,} is bounded, there exists M such that |t,| < M for all n. Hence
0 < |spty| < M|s,| — 0 as n — oo. Therefore |s,t,| — 0 as n — oo, by the
sandwich theorem, and the result follows. O

Theorem 2.5.4. Let {s,} be a sequence of nonzero real numbers and suppose that

lim |2 = <1,
n—>oo | s,
Then
lim s, = 0.
n—00
Proof. Taking
1-L
&= > 0,
2
we find that there is an integer N such that
Sn+1 . L‘ < 1—-L
Sy 2

for each n > N. For each such » it follows that

n 1-L 1+ L
Isn+11 <L+ _ I+ ’
|50 | 2 2
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and so

1+ L

0 < [sug1] < IS5 ].

An inductive argument therefore shows that

1+ L\F
0 < [syqxl < (T) Isw |

for every positive integer k. Now

1+ L\F
lim (L) =0

k—o00 2

as (1 + L)/2 < 1. The sandwich theorem therefore implies that
lim |sy4+x| =0,
k—o00

and the result in question follows immediately.

2 Sequences

ad

Example 2.5.5. Let s, = n? /c" for all positive integers n, where p is any rational

number and ¢ > 1. Then

Sn+1
Sn

n+ 1?7 "
e+l e

5
(o2

| =

A= O] =

asn — 00. As 1/c < 1, the sequence {s, } converges to 0.

Example 2.5.6. Letb > 0 and s, = b"/n! for all nonnegative integers n. Then

Sn+1 _ bn+1 n! b

0 = -— = .
= Sn mn+1D! b n+1

As the sequence {b/(n + 1)} converges to 0, so does {s,, }.
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Remark. The condition that

n
Sn =
n—1
foralln > 1. Then
lim Snp = lim — T = 1’
n—00 n—»o00 | — =

but

Sndl

Sp n n

n+1 n—l_n2—1

< 1.

n2

The sandwich theorem can be used to prove that the limit of a convergent
sequence is also the limit of the geometric mean of the terms of the sequence. First
we establish the following lemma.

Lemma 2.5.5. Let {s,} be a sequence of positive numbers. For all integers n > 0
define

H,,:n/il,
=%

1/n

(;n = Ifl S; s
j=l1
and
14,1 = ;} :éi: S
j=1

Then H, < G, < A, for all n, with equality holding for a given n if and only if
S1 =8 =...=8,.

Proof. Certainly, G; = A;. In order to prove that G,
we use induction on the number k of subscripts j <
k = 0,thens; = A, for all j < n.In this case G, =

< A, for a given n > 1,
n for which s; # A,. If
(AN = A,, as desired.

Assume therefore that k > 0 and that the result holds whenever fewer than k of the
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first n terms of a sequence are different from the arithmetic mean of those terms.
Since k > 0, we may assume without loss of generality that s; < A4,,, the argument

being similar if s; > A,. As A, is the average of sy, 5, ..., s,, we may therefore
assume, again without losing generality, that s, > A,. The n numbers A,,s; +
§p — Ay, 3, 84, . .., 5, have the same average A4, as sy, 52, . . ., 5, since they have the

same sum, but fewer than k of them are different from A,,. It therefore follows from
the inductive hypothesis that

(An(s1 + 52— Ap)s3sa...52) " < A,

But
An(Sl + 5 — An) — 81852 = Ansl + AnSZ - Ai — 5152
= (A, —51)(52 — Ay)
> 0,
and so
5182 < Ay (s1 + 52— Ay).
Therefore

G, = (SISZ cee Sn)l/n

< (An(Sl —+ 5y — An)S3S4 . Sn)l/n

< 4,,
as required.
It follows that
0 1/” n
G| 1 1
0< — < - —,
H s “n Z K
j=1" j=1"/
equality holding if and only if 51, 52, ..., s, are equal. Hence, taking reciprocals,

n 1 n 1 Un n 1/n n Vn
Jrs=/\0g) =/ /Ts)) =(0s)
j=1" j=1"/ j=1 j=1

and we have proved that H, < G,. Once again, equality holds for n if and only if
S1,82,...,S8, are equal. O
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The proof that G, < A, was suggested to us by J. Hudson and is a modification
of an argument due to Ehlers. The numbers H,, G,, and A, are, respectively, the
harmonic, geometric, and arithmetic means of the first n terms of the sequence.

Theorem 2.5.6. Let {s,,} be a sequence of positive numbers that converges to some
number L > 0. Then

1/n

n
lim Hsj =1L.
n—o00
Jj=1

Proof. With the notation of Lemma 2.5.5, Theorem 2.3.14 shows that A, — L as
n — o0o. Moreover

. 1 1
lim — = —,
n—>00 §, L

and so the same theorem shows that
1 1 1 1
_ Z s
Hn n = Sj L
as n — oo; hence lim, .o, H, = L. By the sandwich theorem it follows that

1/n

n
lim Hsj = L.
n—>00 =1

Exercises 2.5.

1. Test the sequence

for convergence.
2. Show that the sequence

{nl/” + inw”}

is convergent if |w| < 1.
3. Suppose that |a,| < b, for all n and that

lim b, = 0.

n—o00
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Show that

4. Show that the sequence

converges.
5. Show that the sequence

{(211 + 3n)l/n}

converges to 3.
6. Show that

1 n Ui
. L 1/ _
Jim o 2 =1

7. Suppose that x,, > 0 for all n» > 0 and that

. Xn+1
lim

n—>00 X,

=L >0.

Show that

lim x;/” =1L.
n—>oo

Is the converse true? (Hint: Use Theorem 2.5.6.)
8. For all k € N show that

1/n
tim (" oK
n—oo \ n (k= 1k

where 0° = 1. (Use question 7.)
9. Test the convergence of the following sequences:

(a) {23’:0 #}
& |
(© {Z?:o #}

2 Sequences
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2.6 The Cauchy Principle

Sometimes it is possible to establish that a sequence is convergent without actually
finding its limit. We shall show that a sequence is convergent if and only if its terms
are ultimately close to one another even when they are not consecutive. This idea
leads to the concept of a Cauchy sequence.

A sequence {s,} is called a Cauchy sequence if for every ¢ > 0 there is an
integer N such that

Isp —sm| <&

whenever m > N and n > N. Of course, ¢ may be replaced in this definition by ce
for any ¢ > 0.
Cauchy sequences are characterized in the next theorem.

Theorem 2.6.1. A sequence {s,} is Cauchy if and only if for all ¢ > 0 there exists
an integer N such that

[sy —sn| < e

foralln > N.

Proof. The necessity follows immediately by taking m = N in the definition. To
prove the sufficiency of the stated condition, choose ¢ > 0. By hypothesis there is
an integer N such that

ls, —sy| <e
foralln > N. Choosingm > N andn > N, we have

|Sn — Sm| =[S0 — SN + SN — S|
< sy =Sy |+ |Sm — Sn|

< 2e.

Therefore {s,} is a Cauchy sequence by definition. O
We now establish some properties of Cauchy sequences.

Theorem 2.6.2. Every Cauchy sequence is bounded.

Proof. Let {s,} be a Cauchy sequence and choose ¢ > 0. By Theorem 2.6.1 there is

an integer N such that

Is, —sny| < e
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for all n > N. The proof is now completed by the argument of Theorem 2.3.1,
replacing L by sy. O

Since the terms of a Cauchy sequence are ultimately close to one another, it is
intuitively clear that if some subsequence of the sequence converges to a number L,
then the whole sequence must converge to L.

Theorem 2.6.3. If {s,} is a Cauchy sequence with a subsequence that converges to
L, then {s,} also converges to L.

Proof. Let {si,} be a subsequence that converges to L and choose ¢ > 0. There
exist N; and N, such that
|sg, — L] < ¢
foreach n > N; and
|$y —sm| < &
whenever m > N, and n > N,. Take

N = max{Nl, Nz}

Then for eachn > N we have n > Ny and k,, > n > N, since {k,} is an increasing
sequence of positive integers. Hence
|y — L| = |8y — Sk, + Sk, — L]
< Isn — sk, | + |sw, — L]

< 2e,
and so

lim s, = L.
n—00

Theorem 2.6.4. Every convergent sequence is Cauchy.

Proof. Let {s,} be a sequence that converges to L and replace sy by L in the proof
of Theorem 2.6.1. ]

But is it true that every Cauchy sequence converges? It is possible to find a
rational Cauchy sequence that converges to an irrational number. We have already
seen this phenomenon in Example 2.3.2. (It is shown in Exercises 1.1 that +/2 is
irrational.) However, every real Cauchy sequence does converge to a real number. In
fact, one way of defining real numbers is via Cauchy sequences of rational numbers,
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as is done in [10]. The first step is to define two sequences {s,} and {¢,} to be
equivalent if the sequence {s, — 7, } is null. It can be shown that this notion defines
an equivalence relation on the set of all rational Cauchy sequences, and the real
numbers are defined as the corresponding equivalence classes. The convergence of
real Cauchy sequences and the fact that every real number is the limit of a rational
Cauchy sequence can be established as consequences. The property that all real
Cauchy sequences converge to real numbers is referred to as the completeness of
the real number system.

Let x and y be real numbers such that x < y. From the definition of the
real number field we see that (x + y)/2 is a limit of a Cauchy sequence of
rational numbers. Hence the interval (x, y) contains at least one rational number.
Consequently, the interval (x/ V2, v/ V/2) contains a rational number r. We may
assume that r # 0: If x < 0 < y, then replace y by 0. Thus the interval (x, y)
contains the irrational number /2. We conclude that every open interval (x, y),
where x < y, contains at least one rational number and at least one irrational
number. This condition is described as the density property of the real number
system.

The completeness property of real numbers is equivalent to another property
known as the supremum property. In order to explain it, we need some additional
definitions. A set S of real numbers is said to be bounded above if there exists a
real number b such that s < b for all s € S. Any number b with this property is
called an upper bound of S. For example, O is an upper bound for the set of all
negative real numbers. Any positive number is also an upper bound for that set. An
upper bound b of S is the least upper bound or supremum of S if b < ¢ for every
upper bound ¢ of S. The least upper bound of S, if it exists, is unique, for if » and
¢ are both least upper bounds of S, then » < ¢ and ¢ < b. It is denoted by sup S.
For example, if S is the set of all negative numbers, then sup S = 0. Sets that are
bounded below, lower bounds of such sets, and greatest lower bounds or infima
are defined analogously. The greatest lower bound of a set S, if it exists, is unique
and is denoted by inf S. If S is the range of a bounded sequence {s, }, then its least
upper bound is also denoted by sup{s, } and its greatest lower bound by inf{s, }.

The supremum property alluded to above asserts that every nonempty set of real
numbers that is bounded above has a least upper bound. The proof of the equivalence
of the completeness and supremum properties is our next goal. Before tackling it,
however, we insert an example of a Cauchy sequence.

Example 2.6.1. Let a and b be complex numbers. Define so = a, s; = b, and

Sy + Sp—1

Sp4+1 = 2

foralln > 0.If a = b, then s, = a for all n. Suppose a # b. It is not hard to show
by induction that
b—a

2’1

Sp+1 —Sn = (_l)n (2.3)
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for all n > 0. For every m and n such that n > m, the use of the telescoping property
combined with the triangle inequality shows that

n—1
S — S| = Z(SjJrl _Sj)

j=m

n—1
Z |sj+1— ;]
j=m

A

n—1
|b—al
-y
J=m

n—1
_|b—d 1
T oom Z 2j—m
j=m

|b—al
om—1 ’
since
n—I1 n—m—1 1
j=m j=0 =3 2

Example 2.2.4 shows that |b —a|/2"~! — 0 as m — oo, and so for each ¢ > 0 we
may choose N such that

|b—al
W<8.

Forallm > N andn > m > N, it follows that

|b—al _|b—ad]
[Sn — Sm| < 1 = N1 < E

Therefore {s,} is a Cauchy sequence. By the completeness property it converges to
some number L.

In order to find L, one might attempt to make use of the recurrence relation that
defines the sequence, but such an attempt leads to the equation

L+ L
L:LzL,
2

which does not give any information about L. Instead, we use induction to show
from Eq. (2.3) that for all k > 0,
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b—a
Sok = a+Z—22j+1

0t 2(b —a)

a—+2b
3

as k — oco. By Theorem 2.4.1 it follows that

. a+2b
lim s, = .

n—00 3

A

Theorem 2.6.5. The completeness property for real numbers implies the supremum
property.

Proof. Let S be a nonempty set of real numbers that is bounded above. We must
show that S has a least upper bound. If an element s € S happens to be an upper
bound of S, then s is in fact the least upper bound of S. We may therefore assume
that no member of S is an upper bound of §.

Since § is nonempty and bounded above, we may choose ay € S and an upper
bound by of S. By assumption, a¢ is not an upper bound of S. If (ay + bg)/2
is an upper bound of S, then let a; = ag and by = (a¢ + by)/2; otherwise let
a; = (ao + by)/2 and by = by. In both cases b; is an upper bound of S, but ¢; is
not. Proceeding inductively, we obtain a nested sequence

[a0.bo] 2 [a1,b1] 2 [az, b] 2 ...

of closed intervals such that no a, is an upper bound of S, but each b, is.
We shall establish that the sequence {b, } is Cauchy. First, an inductive argument
shows that

bo —ao
by —a, = on
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and

b()—a()
0<by—byy1 < TonEl

for all n > 0. For each positive integer p it therefore follows from the telescoping
property that

|bn+p - bn| = bn - bn+p

r—1

= Z(bn-i-j —butj+1)

Jj=0
p—1

y o
on+j+l1

Jj=0

IA

since

p—1 1 1

1 -
Z§= 1_2p <2.

1
j=0 2

Example 2.2.4 shows that 1/2" — 0 as n — oo. Given ¢ > 0, we may therefore
choose N such that

by —ao
N

For all n > N and all positive integers p it follows that

by —a by —a
0 o _ bo 0

[brsp = bal < == < == <,

and we infer that {b,} is indeed a Cauchy sequence. A similar argument demon-
strates that {a, } is also a Cauchy sequence.

By the completeness principle {a,} and {b, } converge to some numbers a and b,
respectively. For all n we have a, < a,+; < b,4+1 < b,, and so

a, <a<b=<b,,
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by Corollary 2.3.10. Therefore b, —a, > b — a. If b > a, then there is an n such
that

bo —dy
2”

<b-—a.

bn —dp =

This contradiction shows that a = b.

We shall establish that b is the required least upper bound of S. In order to show
that it is an upper bound, choose s € S and suppose that s > b. Since b, — b, we
may use Proposition 2.3.4 to choose n such that b, < s, in contradiction to the fact
that b, is an upper bound of S. Thus s < b for all s € S, and so b is indeed an upper
bound of S.

Next, choose ¢t < b = a. The proof will be completed by showing that 7 is not
an upper bound of S. Since @, — a > t, we may choose n such thatt < a,. As a,
is not an upper bound of S, neither is z. Thus b is the least upper bound of S, and
the proof is complete. O

Corollary 2.6.6. Any nonempty set of real numbers that is bounded below has a
greatest lower bound.

Proof. Let S be a nonempty set that is bounded below, and apply the supremum
property to the set {—s | s € S}. |

We now know that the completeness property implies the supremum property.
We prove next that the converse is also true. Throughout this discussion we
therefore assume that the supremum property holds. First we show that, under this
assumption, bounded real sequences always possess convergent subsequences.

Theorem 2.6.7. Every bounded sequence of real numbers has a convergent
subsequence.

Proof. Let {s,} be a bounded sequence of real numbers. If its range is a finite set,
then some term b is repeated infinitely many times. In other words, there are positive
integers ki, ko, ... such that {k,} is an increasing sequence and s;, = b for all n.
Hence lim, o0 Sk, = b.

Suppose therefore that the range R, of {s,} is infinite. Since the sequence is
bounded, we may choose m and M such that m < s, < M for all n. Let V be the
set of all x € [m, M) such that Ry N (x, M) is infinite. Certainly, m € V, so that
V # @. But V is also bounded, and so the supremum property implies that V" has a
least upper bound » < M. We distinguish two cases.

Case 1: Suppose b = M. Since b — 1 is not an upper bound of V, there is a
vy € V suchthat b —1 < vy < M. Thus Ry N (vy, M) is infinite, and so we may
choose k; such that s, € (v, M). Similarly, b —1/2 is not an upper bound of V,
and so there exists v, € V suchthatb —1/2 < v, < M. Moreover R, N (v,, M)
is infinite, so that there exists k, > k; such that s, € (vo, M). Continuing
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inductively, we construct an increasing sequence {k,} of positive integers such
that s, € (b —1/n, M) for all n > 0. Thus

1
b—— <5, <M =b.
n

By the sandwich theorem it follows that

lim s;, = b.
n—>oo

Case 2: If b < M, then we may choose N such that
b<b+ ! <M
N .
Thus

<M

1
b<b
< +N+n

for all n > 0. Furthermore, as b — 1 /(N + n) is not an upper bound of V, there
exists u,, € V such that

1
<u, <b.
N +n

b —
Since b is an upper bound of V', we have b + 1/(N + n) ¢ V, and so
RsN b+ ! M
) N + n k]
is finite since

< M.

1
<b<b
"= +N+n

But Ry N (u,, M) is infinite since u,, € V,and asb — 1/(N + n) < u,, we infer
that

1 1
RsN|(b— b
' ( N +n +N+n)

is infinite. Putting n = 0, we may therefore choose & so that

1 1
b—— b+ —,
N<sk0< +N
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and for each n > O there exists k,, > k,,—; such that

1
N+n

b < s, <b+

_N+n

It follows from the sandwich theorem that

lim sz, = b.
n—>oo
O
Corollary 2.6.8. Every bounded sequence of complex numbers has a convergent

subsequence.

Proof. Let {z,} be a bounded sequence of complex numbers. Then, for each n,
it follows that z, = x, + iy, for some real numbers x, and y,. Using the facts
that |[Re (z)| < |z| and |Im (z)| < |z| for each complex number z, we deduce that
{x,} and {y,} are also bounded. By Theorem 2.6.7 {x,} has a subsequence, {x, },
that converges to some number a. Similarly, {y, } has a subsequence, {y, }, that
converges to some number b. The subsequence {xy, } of {xy, } also converges to a,
by Theorem 2.4.1. Hence {z,, } converges to a + ib. |

We have proved that if the supremum property holds, then every bounded
sequence contains a convergent subsequence. Since every Cauchy sequence is
bounded, a Cauchy sequence {s, } therefore has a convergent subsequence. It follows
by Theorem 2.6.3 that {s,} converges as well. In other words, the supremum
property implies completeness. For real numbers these two properties therefore
imply each other. Henceforth we assume they both hold, referring the reader to [10]
for a proof.

We now have the following theorem.

Theorem 2.6.9 (Cauchy Principle). A real sequence is convergent if and only if it
is a Cauchy sequence.

In fact, by considering separately the real and imaginary parts of the terms
of a complex sequence, one can show that this principle holds even for complex
sequences. The details are left as an exercise.

Roughly speaking, the Cauchy principle tells us that convergent sequences are
those whose terms are getting closer and closer. In particular, for a sequence to
converge it is necessary that the distance between successive terms diminishes. In
fact, if {s,} is convergent, then

lim (5,41 —s,) = 0.
n—o00
However, the converse is not true, as we see in the next example.

Example 2.6.2. Let

for all n. We show that {s, } is divergent.
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Suppose that lim,, . 5, = s. Then

"1 le—1 s
M=2.57T52.7 73
= 2=
asn — oo, and
n 1 s
Uy, = — =S8y~ >SS — = = =
—~2j —1 2
j=1
as n — o0. These results cannot both hold: Since
1 1
- ——>0
2j—1 2j

for all j > 0, we have
. 1
lim (un—tn) >u—tp =—=>0.
n—odo 2

Therefore {s,} is indeed divergent. However,

1
n—+1

Sp4+1 =8 = -0

asn — oo. A

Example 2.6.3. The sequence {7"}, where z is a complex number, is convergent if
and only if |z] < lorz = 1.

Proof. We have shown in Example 2.2.4 that if |z] < 1, then the sequence is
convergent. It is certainly so if z = 1.

Conversely, suppose that |z| > 1 and z # 1. Then
= =" e =1 = |z = 1] > 0.

Therefore 7" ! — 7 does not approach 0 as n — oco. We conclude that the sequence

is divergent. A

A sequence is injective if and only if its terms are distinct. The following theorem
concerns the existence of an injective convergent sequence.

Theorem 2.6.10 (Bolzano, Weierstrass). Every bounded infinite set of numbers
contains an injective convergent sequence.
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Proof. Any infinite set S of numbers certainly contains an injective sequence. If S
is bounded, then this sequence is also bounded and therefore contains a convergent
subsequence that is necessarily injective. O

A number b is a limit point or an accumulation point of a set S if there is
an injective sequence {s,} in S that converges to b. It follows from the Bolzano—
Weierstrass theorem that every bounded infinite set of numbers has a limit point.

The following theorem gives an alternative definition of a limit point. For every
& > 0 we define

N (b) = N(b) —{b}.

Theorem 2.6.11. Let S be a set of numbers and b a number. The following two
statements are equivalent:
1. b is a limit point of S;
2. foreach e > 0,
SNNZX(b) # 0.

Proof. Let b be a limit point of S. Then there exists an injective sequence {s, } in S
converging to . Choose ¢ > 0. There exists N such that

|s, —b| < ¢

for all n > N. As {s,} is injective, there exists n > N such that s, # b. Thus
sy € N (b), as required.

Conversely, suppose (2) holds. Letting &g = 1, by hypothesis we may choose
50 € S N Nz (b). Thus 0 < [so —b| < 1. Continuing by induction, suppose that k is
a positive integer and that so, 51, .. ., Sx—; are distinct real numbers satisfying

1
0< |Sk_1—b| < F
and
Isk—1 —b| <|s; — b|

for each nonnegative integer j < k — 1. Let

[sx—1 —b]
= >
2

0.

By hypothesis, there exists sy € S N N, (b). Thus

sk —b| < & < |sgk—1 —b| <|s; —b|
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for each j < k — 1. Therefore [s; — b| < |s; — b| for each j < k, so that s # s;
for each such j. Moreover

lsk—1 —b| 1
—_— < R

0 —b .
<lsk—bl < —— o

We have now defined an injective sequence {s,} in S such that
1
0<ls,—b|<—
2n

for each n. By the sandwich theorem, the sequence {s, — b} converges to 0, and so

lim s, = b.
n—>0o0

A subset of C is closed if it contains all its limit points.

Example 2.6.4. Let a and b be real numbers with a < b. We can confirm that
the interval I = [a, b] satisfies this definition, thereby establishing agreement of
this terminology with that introduced earlier in connection with intervals. Indeed,
choose z = (x,y) e C—1.1f y # 0, then

N@NI=0 2.4)

for each positive ¢ < |y|. Suppose therefore that z is real. If 7 < a, then Eq. (2.4)
holds for every positive ¢ < a — z. If z > b, then apply the same argument with
0 < & < z— b. We conclude from Theorem 2.6.11 that [ is closed.

A similar argument may be applied to show that the rectangle R = [a, b] X [c, d]
is a closed setin R? = C. Here a < b and ¢ < d, and R is the set of points (x, y)
suchthata < x < b and ¢ < y < d. Choose a point 7z = (x, y) € C — R. Then for
some r > 0 at least one of the following cases arises:

x=b+rx=a-ry=d+r,y=c—r.
Choose such an r as small as possible, and let ¢ = r/2 > 0. Then N.(z) N R = 0,
and so z is not a limit point of R. A
Exercises 2.6.

1. Show from the definition that the sequence {1/n?} is Cauchy.
2. Show that if for each ¢ > 0 there exists N such that |x, — xy| < & whenever
n > N, then {x,} is a Cauchy sequence.
3.(a) Let {x,} be a sequence and suppose there exists a constant r € (0, 1) such
that

[Xnp1 —xu| < 1"

for all n. Show that {x,} is Cauchy.
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(b) Give an example of a divergent sequence {y, } with the property that
lim (yn+1 - yn) =0.
n—>oQ
4. Show that if

[Xp42 — Xpt1| < 7|Xug1 — X

for some r € (0, 1) and all n, then {x,} is Cauchy.
5. Show that if

nll)nolosup{|x] Xe| | jJ >k =n}=0,

then {x,} is Cauchy.
6. Let x,, # 0 for all n and suppose that lim, ., x, # 0. Prove that

inf{|x,| | n € N} > 0.

7. Show that a sequence {x,} is Cauchy if and only if for each & > 0 there exists N
such that
%0 — X

—_— < &
1+ |xn _-xml

whenevern > m > N.

2.7 Monotonic Sequences

We now study an important family of sequences whose convergence can often be
determined without any knowledge of their limits, namely, monotonic sequences.
We begin with some examples that illustrate techniques for establishing the
monotonicity of sequences. Note that a sequence {s,} is increasing if and only
if {—s,} is decreasing. Similarly, {s,} is nondecreasing if and only if {—s,} is
nonincreasing.

Example 2.7.1. Let us show that the sequence {s,} is decreasing, where

_3n+1
T 2n-3

Sn

foralln > 2.
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One approach is to show that s,4+; — s, < O for all n > 2. This result follows
from the calculation

3n+1)+1 3n+1
2n+1)—3 2n—3
3n+4 3n+1
2n—1 2n-3

B ~11
 @2n—-1)(2n-3)

< 0.

Sn+1 — Sn

An alternative is to demonstrate that s, /s, < 1 foralln > 2:

sn+1_3n+4 2n —3
s, 2n—1 3n+1
6n2—n—12
6n2—n-—1

< 1.

A

Example 2.7.2. 'We show by induction that the sequence {s,} is increasing, where
s1 = 1 and

Sy = V8sp—1 +1

foralln > 1.
Certainly, s, = V2>1= s1. Suppose s, > s,—; for some n > 2. Then

Sp+1 = \/Sn +1> \/sn—l +1=ys,,

as required. A

Our next goal is to show that a monotonic sequence is convergent if and only if
it is bounded. We need the following notions concerning unbounded sequences.

Definition 2.7.1. Let {s,} be a real sequence. We write

lim s, = 00
n—>00

if for each M there exists N such that s, > M for all n > N. We also say that s,
approaches infinity as n approaches infinity, and we write s, — 0o as n — 00.
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Likewise, we write

lim s, = —o0
n—00

if for each M there exists N such that s, < M for all » > N. In this case we say
that s, approaches minus infinity as n approaches infinity, and we write s, — —00
asn — oo.

Remark 1. Clearly, we may assume that M > 0O in the former definition and that
M < 0 in the latter. We may also replace the inequalities s, > M and s, < M by
s, > ¢M and s, < cM, respectively, for all ¢ # 0.

Remark 2. Let t, = —s, for all n. Then 1, < M if and only if 5, > —M.
Consequently s, — oo as n — oo if and only if t, - —oco asn — oo.

Theorem 2.7.1. Let {s,} be a nondecreasing sequence. Then
lim s, = sup{s,}
n—00
if {sn} is bounded, and

lim s, = 00
n—>00

otherwise.

Proof. Suppose first that {s, } is bounded. Then its range has a least upper bound L.
We must show that s, — L.

Choose ¢ > 0. Then L — ¢ is not an upper bound of {s, }. Therefore there exists
N such that sy > L — ¢. As {s,} is nondecreasing, s, > sy for all n > N. Thus
s, > L — ¢ for all such n. Hence

L—¢e<s,<L+¢
for all » > N, and we conclude that

lim s, = L.
n—00
Finally, suppose the sequence is not bounded. Since s; is a lower bound, {s,}
must not be bounded above. Thus for each M > 0 there exists N such thatsy > M.
As {s,} is nondecreasing, we have s, > sy > M foralln > N, and it follows that

lim s, = oo.
n—>o00
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The next result can be proved in a similar way or by applying the previous result
to the sequence {—s, }.

Theorem 2.7.2. Let {s,} be a nonincreasing sequence. Then
lim s, = inf{s,}
n—00
if {s,} is bounded, and

lim s, = —00
n—>00

otherwise.

Example 2.7.3. In Example 2.7.1 we saw that the sequence {s,} is decreasing,
where

_3n+1
T -3

Sn

for all n > 2. This sequence is bounded below by 0 and therefore converges to its
greatest lower bound. In fact, its limit is easily calculated:

asn — oo. A

Example 2.7.4. In Example 2.7.2 we saw that the sequence {s,} is increasing,
where s; = 1 and

Sp = Vsu—1 +1 (2.5)

for all n > 1. It is also easy to see by induction that the sequence is bounded above
by 2 and therefore converges to some number L. In order to find L, we begin by
taking limits of both sides of Eq. (2.5), thereby obtaining

Hence

and so
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But s, > 0 for all n, and so we conclude that

b

1
lim s, = +

n—00 2

A

Example 2.7.5. In Example 2.1.8 we studied the sequence {s,}, where s; = 1 and

Sp—1 + k
Sp—1 + 1

Sﬂ -

2.6)

for all n > 1. Here k is a positive integer. We saw in Example 2.3.2 that this
sequence converges to Vk. We now present a different proof. Note that the sequence
is the constant sequence {1} if k = 1, and so we assume that k > 1. Moreover
s, > 0 forall n, and 5; < Vk.

Suppose that

Vk <s ——S"_1+k
" Sp—1 + 1

for some n > 1. Then
Vk - sp_1 + Vk < o1 + k,
so that
(Vk — sy <k — vk = Vk(Vk — 1);
hence
sum1 < V.

Similarly, if 5, < \/E, then s, > Vk. Since s < \/E, it follows that s, < +/k if
nis odd and s, > +/k if n is even. Thus the subsequence {s;,} is bounded below by

Vk, whereas {$2,41} 1s bounded above by Vk. Moreover it is easy to see from the
recurrence relation (2.6) that

R A e N (R VR

= = = 2.7
Sn+2 P %le 5 k11 2.7
for all n, and so
_ (k+ s, + 2k o 2(k— s2)

Sp+2 —Sp = n

28, +k + 1 T 25,4+ k417
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Thus 5,42 > s, if s, < 'k, whereas 5,4, < s, if 5, > Vk. Hence {52} is
a decreasing subsequence and {s,,+;} is increasing. Both of these subsequences
therefore converge.

Let L be the limit of the subsequence {s,,}. From Eq. (2.7) we see that

_(k+ 1)L +2k
T 2L+ k+1

)

whence
2L + (k + )L = (k + 1)L + 2k,

so that I = ++/k. But L > (0,and so L = k. The same argument shows that
the subsequence {s,,+1} also converges to Vk. Since both subsequences converge
to vk, so does the sequence {s, }, by Theorem 2.4.3. A

In the next example we use a sequence to obtain an algorithm that was used
in Babylon around 1700 BC for finding the square root of a positive number. It is
sometimes known as the divide-and-average method and can also be derived from
Newton’s method, which we shall study in Sect. 9.3.

Example 2.7.6. Let k and a, be positive numbers, and for each n € N define

1 N k al+k
apy1 == |an+ — ) = .
+ 2 a, 2a,

We shall show that a, — +/k asn — oo.
Certainly, a, > 0 for all n. Moreover

a’ —2a,4+1a, +k = 0. (2.8)
This equation must have a real solution for a,, and so the discriminant
4al., —4k
must be nonnegative. Hence aﬁ = k, and since a, 4+ > 0, it follows that
an1 = vk 2.9)

for all n.
The sequence (excluding the first term) is nonincreasing: For all n > 1, we have

<0.
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This nonincreasing sequence, which is bounded below, therefore converges to some
number L > 0. From Eq. (2.8) we see that L? = k. Since L > 0, it follows that

L = Vk. A

Remark. Define h,, = k/a, > 0 for all n € N. Since a, — vk asn — o0, the
same is true of /,,. Moreover

a + hn
ap+1 = T
and
i k 2k 2 2
+1 = = = = .
" ap+1 an+ak7 %‘*‘% t—i—al,,

Thus a,,+1 and h, 1 are the arithmetic and harmonic means, respectively, of a,, and
hy, so that h, 11 < a,4; by Lemma 2.5.5. Note also that a,h, = k for all n. Thus
the geometric mean of a,, and h,, is /a,h, = Vk, and both {a,} and {h,} converge
to this number. The convergence of {/,} can also be confirmed by the observations
that it is a nondecreasing sequence (because {a,} is nonincreasing) and bounded
above by max{k/ay,a,}: We have h; = k/a; and h,, < a, < a, foralln > 1.

We next consider two sequences defined by arithmetic and geometric means.
These rapidly converging sequences were first studied by Lagrange and Gauss
independently in the eighteenth century and by Borchardt in 1888 in relation to
the computation of elliptic integrals. For a good discussion of this approach, see [5].

Example 2.7.7. Let ay and g be positive numbers, and for all n > 0 let

an + &n
2

ap+1 =

and

8n+1 = A/angn-

If go = ao, then a; = g = ayp and it follows by induction that a,, = g, = ao for
all n. We assume therefore that ay # go. From Lemma 2.5.5 we have a, > g, > 0
for all positive n. Hence

ay 2 Ap+1 2 gn+1 2 gn

for all n > 0. Thus {a, } is a nonincreasing sequence bounded below by min{ay, g1}
and {g,} is a nondecreasing sequence bounded above by max{go,a;}. Both
sequences therefore converge.
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Now for all » > 0 we have

0 = An41 — 8n+1
= an+1—&n
an — &n
) .

By induction we deduce that

0<a,—g
— 81
— on—l1 :

(2.10)

From the sandwich theorem we conclude that

lim a, = lim g,.
n—>oo n—00

This common limit is denoted by agm(ay, g¢) and called the arithmetic—geometric
mean of ag and gy. It is positive, since

lim a, > g > 0.
n—>oo

It cannot be written in closed form but may be expressed in terms of a certain elliptic
integral. The number 1/agm (ﬁ, 1) is known as Gauss’s constant. Its value is

approximately 0.8346268.

Although inequality (2.10) provides a means of estimating the rate of conver-
gence of the sequences, a better estimate may be obtained by comparing the values
ofa, — g, and a,+1 — gn+1. For each n define

€ = dpn — &n

(Van = v/&n) (Van + /&) -

Then

€n+1 = Ap+1 — En+1

=M_m
(Van = /8n)" JE)
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so that

&2 = (Van + V&) (Van — V&)’
=2(Va, + \/E)z €ntl-

Therefore €,+1 # 0if ¢, # 0, and since ¢y # 0, we conclude inductively that
€, # 0 for all n. Thus

€ntl 1

& 2(Jan+ JE)

so that

lim €n+1 1
n—o0 €2 8agm(ao, go)”

We leave it to the reader to show that the sequences defined by the harmonic and
geometric means also converge to the same limit. These sequences are given by

2
o1 = 4+
hn &n

and

&nt1 = vVhugnu,

respectively, for some given positive numbers hy and gy, respectively. Their
common limit is denoted by hgm(hy, g¢). In fact,

hgm(ho, g0) = ——F—-
11
agm <%, 8_0)
A

Recall that an empty product (a product with no factors) is defined to be 1. We
use this convention in the next example.

Example 2.7.8. Let
(12) -(57)
Sp = 1 + — =
n n

for all n > 0. The sequence {s,} has been presented earlier as Example 2.1.6. We
shall show that it is increasing and bounded above.
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For all n > 0 the binomial theorem shows that

= jlni
"1 1 2 —1
EH0-D(0-36-5)
/=0]' n n n
n 1
=2
=

IA
-+
(N
2
\

n—]1
ZHZE

j=0

1- 5
=1+ 21

-3
<l+2
=3.

Hence the sequence {s, } is bounded above by 3. Moreover for all n > 0 we have

n+1 .
1 1 2 j—1

:§ — 1= 1— 1=
Snt1 j!( n+l)( n+1) ( n+1)

j=0

- S5 (=) () - (-05)

j=0"’"

+
"1 1 2
- 1—= 1—=70...
o/’ n n

n»

v

I
v o~

and so {s,} is an increasing bounded sequence. Therefore it converges. Its limit
is denoted by e. Since 5, > s; = 2 for all n and the sequence is increasing and
bounded above by 3, we find that 2 < e < 3. Indeed we have s, > s; = 2, so that
e > 2. Moreover for all n > 3 we have
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1 n—l1
Sn_1+1+5+6+2;i
j=

A

Il
_l’_
M1
f=}
N
~

|
EN)
o

1
<l4+2-—=
* 12
35
12
Thus e < 35/12 < 3.
More meticulous calculations show that e is approximately 2.718. A

We now consider the more general sequence

=171

where x € R. For each x # 0 we have

(1+ ;—C)n = (1 + %)n - (1 + %)m - ((1 + %)m)x,

where m = n/x. In the case where m is a positive integer, we have

1 m
e = lim (1 + —) .
m—>00 m

It therefore seems reasonable to define

n
¢ = lim (1 + f)
n

n—00

for all real x, but first we must show that the limit exists.

Proposition 2.7.3. For all x € R the sequence

= {(1+2))

is convergent. Moreover if x # 0, then the sequence is increasing for large
enough n.
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Proof. The sequence converges to 1 if x = 0. Suppose therefore that x # 0. Letting
n > |x|, define a; = 1 and

X
a, =14+ —
n
for each k € {2,3,....,n + 1}. Thus ax # 1 = a, for each k > 1. Moreover

n > |x| = —x, so that x/n > —1; hence a; > 0 for each k. By Lemma 2.5.5 we
have

n n
((1 +£) ) = (@ay )

(e (13))

A

|
+

hence

xR X n+1
(1~|——) <(1~|——) .
n n+1

We conclude that the sequence {s, } is increasing for n > |x|.
It therefore suffices to show that {s,} is bounded. Choose an integer M > |x]|.

Then the sequence
M n
03]
n

is increasing forn > M > 0. As nM > n, we therefore have

because the sequence {(1 4+ 1/n)"} is increasing and converges to e¢. Therefore {s,}
is a bounded sequence, as required. O
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Since {(1 4+ x/n)"} is a nondecreasing sequence of positive terms for n > |x|, it

follows that e > 0 for all x € R. Note also that ¢ = 1 and ¢! = e.

Example 2.7.9. For all positive integers n define

n Xj

Iy = -
j=0 "

where x > 0. We shall show that the sequence {¢,} converges to e*.
For each n € N define
X\
Sy = (1 + —) .
n

A simple modification of the calculation in Example 2.7.8 gives

"x/ 1 2 i —1
Sn B x_' (1 - _) (1 - _) o (1 - ] )
j=0]. n n n

n.Xj
E J—

= /!

= Iy.

Moreover {t,} is certainly an increasing sequence. We shall prove it convergent
by showing that it is bounded above by e*. Let m and n be positive integers with

n > m. Then

Hence
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Thus we have s, <1, < e* for all positive integers m, and so it follows from the
sandwich theorem that

lim ¢, = e".
n—00

Since {#,} is an increasing sequence when x > 0, we find that
e >1+x>1

for all positive x.

It follows from the definition that e® = 1. The result of Example 2.7.9 therefore
holds also when x = 0 if we adopt the convention that 0° = 1. In fact, it holds for
all real x. In order to prove this result, we need the following lemma.

Lemma 2.74. Leta,,as,...,a, be nonzero numbers that are greater than or equal
to —1 and have equal sign. Then

H(l—i—aj) Zl—l—Zaj.

J=1 J=1

Proof. The result certainly holds if n = 1. Suppose therefore that » > 1 and that
the lemma holds for sets of fewer than » numbers satisfying the hypotheses. The
hypotheses imply that I +a; > 0 and aja; > O for all j > 1. Therefore, using the
inductive hypothesis, we find that

[Ta+ap=0+a)]]0+a)

Jj=1 Jj=2

IV

(I+a)|1+) a;

j=2

as required. O

Corollary 2.7.5. For each x > —1 and each nonnegative integer n, we have

14+x)" =1+ nx.
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Proof. We have already seen in Example 1.3.1 that this inequality holds for all

x > 0. Suppose that —1 < x < 0. The result holds for n = 0 if we take 0° = 1. For

all n > 0 it follows immediately from the lemma by taking a; = x forall j < n.
a

Theorem 2.7.6. For all positive integers n define

nxj

=0 /!

t, =

where x € R. Then the sequence {t,} converges to e*.

Proof. Letting

=)

for all n € N, using Lemma 2.7.4 and Theorem 1.5.4, and recalling that the empty
product is defined as 1, we have

n i n i .
x/ x/ 1 2 j—1

(0000

IA
Il B
[\ ]

-

|
=~ -
e )
~—

Pk

|
S |
N——
\_/
=
- <

IA
Il =
(38}

—_

|
—

.

|
> -
i™MI
S|
v
v
. |=
— T
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for all n > 2. We deduce that
lim |t, —s,| =0,
n—>oo
for it follows from Example 2.7.9 that the sequence
i1
j=0 J°
converges. Therefore
lim (¢, —s,) =0
n—od

and so

lim ¢, = .
n—od n

lim (¢, — s, +s,) = lim s, = e”.
—00 n—00

2 Sequences

a

We can also show that e is irrational. First let x = 1 and let m and n be positive

integers withn > m. Thene —1,, > e —t, > 0 and

1 . 1
T m+ 1)!],=2m:+1 (m+2)(m+3)---j

n—m—1
1 1
C(m+ 1) ;0 (m+2)m+3)---(m+j+1)
- (m+ 1) = (m+1)J
- 1 1
’ 1
_ 1 m+1
(m+ 1) m
1

mm’
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Thus

e—ty=e—t,+t,—ty, <e—t, + —,
m'!'m

and taking the limit as n — oo yields

1

If e were rational, then we could write e = p/q for some positive integers p
and g. Moreover e is not an integer since 2 < e < 3, and so ¢ > 1. Puttingm = ¢
in (2.11), we obtain

1
0<gle—t) <-<1
q
But

qle = p(g—1)!

by assumption, and

q
_Zq!
q!tq— ﬁ,
Jj=0

which is also an integer. We therefore have the contradiction that g!(e — 7,) is an
integer between O and 1.

Example 2.7.10. Let s, = n!/n" for all n > 0. Then

Sn+1 (l’l + 1)' n'"

S, (m+ ! ‘T

:(nil)n

o
(1+3)
1
e

—

as n — oo. Since e > 1, it follows from Theorem 2.5.4 that the sequence {s,}
converges to 0. A
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Example 2.7.11. Since

Theorem 2.5.6 implies that

1/n
n

o i1y
€= nlggo l_[ ( j )
j=1
But it is easy to show by induction that

S A
n(57) ==

j=t~

for all positive integers 7, and so

_ ((n+1)")1/"
e = lim | ————

n—00 n!

n+1
”LH(;O (n!)l/"'

Thus n! is close to (n + 1)" /e” for large values of n. A

We now show that our definition of e* satisfies at least one of the usual laws
governing exponentiation. First we prove the following useful lemma.

Lemma 2.7.7. Forevery x € R,

. X \"
lim (1+—2) = 1.
n

n—>00

Proof. For every integer n > +/|x| we have n?> > |x| > —x, so that x/n”> > —1.
Applying Corollary 2.7.5 and writing m = n?, we therefore find that

X X \n x\m\ l/n 1n
+2<(1+5) =((1+2)7) =
n n m
Using Example 2.5.2, we have
lim (1 + f) — 1= lim e'".
n—00 n n—00

The required result now follows from the sandwich theorem. O
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Corollary 2.7.8. For every real x we have

Proof. This result follows from the lemma by taking limits of both sides of the
identity

(o) 0= =0-5)

ad

Thus e*e™ = 1. This equation is a special case of the following law governing
exponents. Its proof is an adaptation of an argument due to Kemeny [9].

Theorem 2.7.9. For each x,y € R we have

Proof. The result clearly holds if x = 0 or y = 0, since ¢” = 1. We may therefore
assume that xy # 0.
Let z = —x — y and, for all positive integers n, define

n+x\"(n+y\' (n+z\"
Sy, =
! n n n
_ (n3+n2(x+y+z)+n(xy+xz+yz)+xyz)"
= p

xy +xz + yz z\"

_ (1 pEaEdy &3) ,
n n

Note that the sequence {s,} converges to e*e”e?, and therefore so does the

subsequence {s7,—1}.
Suppose that xyz > 0. Then

.
2n—-1)2 " 2n—-1)3%

and so

xy + xz +yz\ ! xy + xz + yz + xyz\ !
1+ — <Su—1 <1+ ,
2n —1)2 2n —1)2
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since 2n — 1 is odd. Therefore Lemma 2.7.7 and the sandwich theorem show that

lim Sopn—1 = 1.

n—>oo
Consequently,
e‘edet =1,
and so
X,y 1 -z x+y
elel = —=e ‘=¢".
eZ

Thus we have confirmed the theorem if xyz > 0.
We now distinguish three cases.

Case 1: Suppose x < 0 and y < 0. Then z > 0, so that xyz > 0. We conclude
that

in this case.
Case 2: If x > O and y > 0, then by case 1 we have

e vV = ¢,

Thus

1 1
eXey  exty’

and the result follows.

Case 3: If xy < 0, then we may assume without loss of generality that x < 0 < y.
Case 3.1: If —x < y, then z < 0, so that xyz > 0.

Case 3.2: If —x = y, then

e’ =e'e T =1=¢e =¢
Case 3.3: If —x > y, then z > 0. It therefore follows from case 1 that

e el =e”,

and so
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The function given by e* for all real x is called the exponential function and
often denoted by exp. Here are some of its properties.

Theorem 2.7.10. Let {a,} be a sequence of real numbers.

1. Iflim, o a, = oo, then

lim e“ = oo.
n—>oo

2. Iflim, s a, = a, then

lim e* = e“.
n—>o0o

3. Ifa, # O forall n and lim,_,», a, = 0O, then

e —1
lim
n—o00 a,

=1.

Proof. 1. We have already seen that
e*>14+x

for all x > 0. Choose M > 1. Since lim,_, o, @, = 00, there exists N such that
a, > M — 1 > 0 for each integer n > N. Thus

e >14a,>M

for all such n, and the result follows.
2. We first prove the result for a = 0, in which case we need to show that

lim e = 1.
n—0o0

Since {a,} is convergent, it is bounded. Let |a,| < M for all n. For all positive
integers m and n we have

m Jj m J
pIE ) 3L
i - |
j=0 7" =17
m

<z|an|j

=< -

=t 7
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m j—

M1
<o > A
o U=D!

m=1 .
= lanl 3 2
=0
Taking limits as m — oo, we therefore conclude from Proposition 2.3.2(1) that
0 < le —1] < [aye™.
Thus the sandwich theorem yields

lim |e® — 1] =0,
n—oo

whence

lim (¢ —1) =0

n—00
and the desired result follows.
In the general case, where lim, .o, a, = a # 0, we use the result just
established:
lim e = lim e“(e” ™) = e lim e = ¢“.
n—>oo n—oo n—oo

. As {a,} converges, there exists M such that |a,| < M for all n. Thus for all
integers m > 1 and n > 0 we have

m m j
1 J 1 J

o DS RIEPS oF o
an j=0]' an = J:
m j—1
= Zan'l -1
=t 7
B m—1 a,/l'
= . P
= U+D
m—1 J
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© la, !

IHIZ( D

m—1
M/_1
|an|2(

j=1

m—2

M/

= lau| Y T
j=0

A

We now complete the proof by an argument similar to that used in part (2): Taking
limits as m — oo yields

efn —

1
0= -1 §|an|eM

An

from which the desired result is obtained by taking limits as n — co.

O
Corollary 2.7.11. If{a,} is a null sequence of nonzero terms, then
) ex—i-an — e
lim =e".
n—00 a,
Proof. Part (3) of the theorem shows that
) ex+an —e* ) eX(edn — 1)
lim ——— = lim ——=
n—o00 ay n—0o ay
=e".
O
Theorem 2.7.12. The exponential function is increasing.
Proof. If y > x,then y — x > 0, so that e~ > 1; hence
e¥ = e et > e”
ase* > 0. O

We have already shown that every bounded sequence has a convergent subse-
quence. We conclude this section by demonstrating that such a subsequence can be
chosen to be monotonic.
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A positive integer m is called a peak index for a real sequence {s,} if 5, < s,
for all n > m. For example, consider the sequence {1 4+ (—1)"/n}. The number 1 is
not a peak index since s; = 0 and s, = 3/2. Since

N W

1
Sn§1+_§
n

for all n > 2, we see that 2 is a peak index. Similarly, 3 is not a peak index but 4 is.
Theorem 2.7.13. Every real sequence has a monotonic subsequence.
Proof. Let P be the set of peak indices for a real sequence {s,}.

Case 1: If P is finite, it must have an upper bound, N. We shall find an increasing
subsequence {si, } of {s,}. Let ky = N + 1. Then k, is not a peak index, and so
there exists k, > k; such that s, > s¢,. For some integer n > 1 we may now
assume the existence of integers ky, ks, ..., k, such that k; < k; and si ;< Sk
whenever j < [. Since k,, > N, k, is not a peak index and so there exists k,, 1 >
k, such that s, 41 > Sk, This observation completes the inductive definition of
the increasing subsequence {s, } of {s,}.

Case 2: If P is infinite, then for each positive integer n we may define &, to be
the nth peak index. It follows that s, ,, < sy, for all n € N, so that {s, } is a

nonincreasing subsequence of {s,}.
O

Exercises 2.7.

1. Let {a,} and {b,} be sequences of positive numbers, and for all positive integers
m and n define

m
— i
pa=_ajn
j=0

and

m
qn = E bin’.
j=0

(a) Show that

. DPn am
lim — = —.
n—>00 ¢, b

(b) Show that if b,, > a,,, then there exists N such that p,/q, < 1 for all
n>N.

(¢) Show that if b,, < a,,, then there exists N such that p,/q, > 1 for all
n>N.
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10.

11.
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Show that the following sequences are monotonic for large enough n:

@ {3l o (25 © (&)
Show that a monotonic sequence is convergent if it has a convergent
subsequence.
Show that the following sequences are nondecreasing and bounded above, and
find their limits:

@ x0=0x41 =22 (©) xo=1x41=3%+1;

(b) x0=0,x,41 =22 (@) xo=1,x41 = 2%, + 1.

. Consider a sequence given by

forall n > 0.

(a) Show that the sequence is nonincreasing if 1 < x; < 3.

(b) Show that the sequence is nondecreasing if 0 < x; < 1 or x; > 3.

(c) For each of the sequences in (a) or (b), find its limit if it converges.

(d) Study the convergence of the sequence for the following cases: x; = 1,
X1 = 3, X < 0.

. Let x; = b and x4 = J/ax, foralln > 0, where a > 0 and b > 0. Show that

{x,} converges and find its limit.

.Letx; = aand x,4+1 = a + x,f for all n > 0, where a > 0. Discuss the

convergence of the sequence {x, }.

. Let {a,} be increasing and {b, } decreasing, and suppose that

1
Ofbn_ani
2n

for all n. Show that {a, } and {b,} converge to the same limit.

. Let x,4+1 = +/a + x, for all n > 0, where a > 0. Discuss the convergence of

the sequence for each x; > 0.
Let x; =c¢ > 0and

6(1 + xn)
74+ x,

Xn+1

for all n > 0. Discuss the convergence of the sequence. (Consider the cases
¢ >2and 0 < ¢ < 2 separately.)
Consider a sequence given by

3x, +1
X, +3

Xn+1 =

for all n > 0. Study the convergence of the sequence for the cases x; < —1,
—1l<x;<1l,xy=1,and x; > 1.
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12.

13.

14.

15.

16.

17.

Leta > 1,0 < x; < a2, and

Xpt1 = a — vVa*—x,

foralln > 0.

(a) Show that 0 < x,, < a? for all n and that {x,,} is nonincreasing.

(b) Show that {x,} converges to 0.

(c) Show that

. Xn
lim = 2a.
n—>00 Xp41

For all n > 0 let

W= 3

k=n+1

| =

Show that {x,} is nondecreasing and converges to a limit between 1/2 and 1.
Let x; = 1 and

4+ 3x,

Xn = =
T340,

for all n > 0. Show that the sequence {x,} is nondecreasing and bounded above
by 3/2, and find its limit.
Let x; = /2 and

Xnt+1 =y 2+ X

for all n > 0. Prove that the sequence converges.
Show that the sequences

2"(n — 1)!In!
% (2m)! }

and

22=1(5 — 1)In!
{ (2n)! }

are monotonic and find their limits.
Let vk < x; < 3vk, where k > 0, and for each n > 0 define

1 k
Xnr1 =X+ —).
2 Xy
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Show that

X1 — \/E g
Xn+1— \/z) = 2k (ﬁ)

and hence that the sequence converges to Vk.
18. Let /1y and g( be positive numbers and let ag = 1/hy and by = 1/g. For all

n > 0 define
2
hn+1 =7 1
bWt
gi’l+1 = \Y, hngnv
4 _an + Dby
n+1 — ) s
and

bn-H = Vanbn'

Show that i, = 1/a, and g, = 1/b,, for all n and hence that

lim 4, = lim g, =

n—>o00 n—>00 1 1 )
agm | —, —
g (ho ’ go)

19. Let x; = 1/2 and y; = 1, and define
Xn+1 = A/ Xn¥n

and

Yn+l = —1T 1

Xn+1 + Yn

for all n > 1. Prove that x,, < x,4+1 < Yn+1 < Y, for all n and deduce that both
sequences {x, } and {y, } converge to the same limit L, where 1/2 < L < 1.
20. Let x; > 0 and y; > 0, and define

Xn + Yn
Xntl = ——F——

2

and

Yn4+1 = N/ Xn+1YVn
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for all n > 1. Prove that the sequences {x,} and {y,} are monotonic and
converge to the same limit.
21. Show that the sequence

(37

is nonincreasing and bounded below, and find its limit.

2.8 Unbounded Sequences

In the previous section we saw that a monotonic sequence is convergent if and only
if it is bounded. Specifically, if the sequence {s,} is nondecreasing and unbounded,
then lim,, .« 5, = 00, and if it is nonincreasing and unbounded, then lim,,, o 5, =
—oo. However it may be that a divergent sequence is bounded. An example is
furnished by the sequence {(—1)"}. It may also be that lim,_,~ s, = Zoo0, but
{s,,} is not monotonic.

Example 2.8.1. Let
sp =n+2(=1)"
for all n. Then
Son = 2n + 2,

So41 =2n+1—-2=2n—1,
and

S22 =2n+2+2=2n+44.
Hence {s, } is not monotonic. But for each n we have

Spzn—2,

and so

lim s, = oo.
n—>0oo

The next proposition is easy to establish.
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Proposition 2.8.1. Suppose {s,} and {t,} are sequences and there exists N such
thatt, > s, foralln > N.

1. Ifs, > ooasn — oo, thent, — 00 asn — oo.
2. Ift, > —coasn — oo, then s,, — —00 asn — o0.

Proof. The first part is immediate from Definition 2.7.1 and the fact that if, given
any number M, there exists N; such thats, > M foralln > Ny, thent, > s, > M
for all n > max{N, Ni}. The proof of the second part is similar. m]

At this point the reader may be wondering to what extent the symbols co and —co
may be treated as if they were numbers. We now attempt to answer that question by
studying the properties of limits of sums and products of unbounded sequences.

For sums we have the following theorem.

Theorem 2.8.2. Let {s,} and {t,} be sequences and L a number. If s, — oo and
eithert, — oo ort, — L asn — oo, then s, + t, — 0.

Proof. Choose a number M, and suppose first that ¢, — oo. There exists N such
that s, > M andt, > M foralln > N. Thens, + t, > 2M for all such n, as
required.

If t, — L, then there exists N} such that |t, — L| < 1 for all n > N;. For each
such # it follows that

t, > L —1.
Moreover there exists N such that
Sy >M—L +1

foralln > N. For all n > max{N, N} we deduce thats, +1, > M. O

Thus Theorem 2.3.7(1) may be extended if we write oo + co = oo + L = oo.
Because of the commutativity of addition of real numbers, we also write
L + oo = 0o. A corresponding theorem may be proved in which s, approaches
—oo and ¢, approaches L or —oo, and so we may also write —oo + (—o0) =
—00 + L = L + (—o0) = —oo. Extending the rule that x — y = x + (—y),
we simplify the left-hand side of this equation to —oo — co. Similarly, L + (—o0)
may be simplified to L — oo. On the other hand, we cannot ascribe any meaning to
oo — 0o. We may be tempted to set it equal to 0. However, suppose s, = 2n and
t, = n for all n. Then s, — oo and ¢, — oo as n — oo, but the sequence {s, — 1, }
does not approach O as n — oo since s, —t, =2n —n =n — oo.

Let us move on to products.

Theorem 2.8.3. Let {s,} and {t,} be sequences and L a positive number.
If s, — oo and either t, — oo ort, — L asn — oo, then s,t, — 00.

Proof. Choose M > 0, and suppose that ¢, — oo. There exists N such thats, > M
and t, > 1 foralln > N. For all such n we deduce that s,¢, > M, as required.
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Suppose on the other hand that 7, — L. There exists N such that ¢z, > L/2
for all n > Nj. There also exists N such that s, > 2M/L for alln > N. For all
n > max{N, N,} it therefore follows that

Spln >

2M L
L 2
O

Again we use this theorem as a pretext for extending Theorem 2.3.7, this time by
writing 0o-00 = 00-L = L-0o = 0o, where L > 0. A corresponding result may be
proved in which s, — —oo: Simply apply the theorem to the sequence {—s, }. Thus
we also write (—00) - 00 = 00 - (—00) = (—00) - L = L - (—00) = —oo. Similarly,
replacing #, by —t, gives the additional equations co - (—L) = (—L) - 00 = —00
and (—00) - (—00) = (=00) - (—L) = (=L) - (—00) = o0.

On the other hand, we cannot ascribe meanings to co-0 or (—o00)-0. For example,
let k # 0 and for all n > 0 define s, = kn and t, = 1/n. Then s, approaches oo or
—oo and ¢, approaches 0, but s,¢, = k.

We prepare ourselves for the incorporation of division into this framework by
proving the following theorem.

Theorem 2.8.4. Let {s,} be a sequence of positive numbers.

1. We have s, — 0 asn — oo if and only if 1/s, — oo as n — oc.
2. Similarly, s, — coasn — oo if and only if 1/s, — 0 as n — oo.

Proof. 1. Suppose first that s, — 0 asn — oo, and choose M > 0. There exists N
such that s, < 1/M foralln > N. Thus 1/s, > M for all such n, and we have
proved that 1/s, — oo asn — oo.

Conversely, suppose that 1/s, — oo as n — oo, and choose ¢ > 0. There
exists N such that 1/s, > 1/e for alln > N. Hence s, < ¢ for all such n, as
required.

2. Apply part (1) to the sequence {1/s,}.

The following corollary is immediate.

Corollary 2.8.5. Let {s,} be a sequence of nonzero terms. Then |s,| — oo as n —
oo if and only if 1/]s,| — 0asn — oc.

Example 2.8.2. Let {a,} be a sequence of real numbers, and suppose that

lim a, = —o0.
n—>0o0

Then

lim (—a,) = oo.
n—>o00
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It therefore follows from Theorems 2.7.10(1) and 2.8.4(2) that

lim e“ = lim =0.
n—>00 n—o00 g 4n
A
Example 2.8.3. Let s, = c¢" for all positive integers n, where ¢ is a fixed real

number. By Example 2.6.3 the sequence {s, } is convergent if and only if |c| < 1 or
¢ = 1. In fact,

lim s, = oo
n—>o00

if ¢ > 1, for in that case we have 0 < 1/c¢ < 1 so that

1
lim — = 0.
n—o0 ¢

A

Example 2.8.4. Let {s,} be a sequence of nonzero real numbers. Theorem 2.5.4
shows that if

. Sn+1
lim =L <1,
n—>o00 Sl‘l
then
lim s, = 0.
n—>00

We turn now to the case where L > 1. By Proposition 2.3.3 there exist numbers
k > 1 and N such that

S
n+1 >k
Sn
foralln > N. Hence
ISnt+1] > klsnl

for all n > N. By induction it follows that

[sn+p| > kP|sn|



108 2 Sequences

for all positive integers p. Since k > 1, we deduce from the previous example that
k? — oo as p — 00, and so

lim |SN+p| =00
p—>0Q

by Proposition 2.8.1. It follows that |s,| — oo as n — oo. A

Theorem 2.8.4(2) motivates the equation 1/0o = 0. A similar theorem may be
proved in which s, approaches —oo, where {s, } is a sequence of negative terms, and
so we also write 1/(—o0) = 0. However, we cannot use part (1) to justify writing
1/0 = oo because of the requirement that {s,} be a sequence of positive terms.
Had {s,} been a sequence of negative terms, we would have been equally tempted
to write 1/0 = —oo! By extending the rule that x/y = x(1/y) whenever y # 0,
we may write L/oo = L/(—o0) = 0 for each number L. Furthermore, if L > 0,
then we may write co/L = oo - (1/L) = oo and, similarly, (—o0)/L = —oo0.
Likewise we write co/(—L) = —oo and (—00)/(—L) = oo. Note that no meaning
is ascribed to such forms as 0/0 or co/o0o. This question will be explored later.

Exercises 2.8.

/n

1. Suppose that the sequence {x,} is increasing and that x,i > 1 foralln > 0.

Show that

lim x, = oo.
n—>oo
(Hint: Prove it by contradiction.)
2. Show thatif 0 < a < x, and lim,,—, ¥, = 00, then lim, o0 X, ¥, = 00. Does
the result remain true if we replace the inequalities by x,, > 0?
3. Find the following limits:

(@) lim,_ o0 (n? —n);

. 5
(b) hmn_mo on g3

4. Let {x,} and {y,} be sequences such that

lim x, = lim y, = oco.
n—>00 n—>00

Give examples to show that

lim (x, — yu)

n—>o0o

may be any number or £00.



Chapter 3
Series

3.1 Introduction

The theory of sequences can be combined with the familiar notion of a finite sum
to produce the theory of infinite series. The concept of a series is an attempt
to encapsulate the idea of a sum of infinitely many real or complex numbers.
Applications of series appear in many areas of pure and applied mathematics, and
the study of their properties forms a major part of analysis.

The idea of a series disturbed the ancients. In the fifth century BC, for example,
Zeno argued that it is impossible to walk from one place to another. For the walker
must first travel half the distance, then half the remaining distance, then half the
distance left after that, and so forth. The journey can never be completed, because
after each stage there is still some distance to go. The inference is that motion is
impossible!

Where did Zeno go wrong? He argued that in the first stage of the walk 1/2 of
the total distance must be covered, in the next stage 1/4 of the total distance, in the
third stage 1/8 of the distance, and so on. Zeno was thus attempting to add infinitely
many numbers, and concluded that the sum would be infinite. The absurdity of his
conclusion suggests that the sum of infinitely many numbers should not necessarily
be infinite. But at this juncture it is not really clear precisely what is meant by the
sum of infinitely many numbers. For us to be able to make progress, this notion
must be clarified. Specifically, to resolve Zeno’s paradox, we need a definition that
enables us to conclude that

1
R 3.1)

This problem is resolved through what is called the sequence of partial sums. In
other words, we construct a sequence whose first term is the first of the infinite set

© Springer Science+Business Media New York 2015 109
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of numbers to be added up, whose second term is the sum of the first two numbers to
be added up, and so forth. In general, the sum of the first » numbers in our infinite
set gives the nth term of the sequence of partial sums. The infinite sum, which is
called a series, is then defined as the limit of the sequence of partial sums, provided
of course that the limit exists.

For example, let us return to Zeno’s paradox. The sum of the first # terms on the
left-hand side of Eq. (3.1) is 27:1 1/2/ . In this case the sequence of partial sums is
therefore {Z;’:I 1/2/},>1. We now show that this sequence indeed converges to 1.
Setting @ = 1/2 in Corollary 1.5.6, we have

a8
2 Z 9+l
j=0

n

J=1

n—1

1

2J

j=0
1
-3
1
-5

N =

Thus the sequence {Z;’:I 1/27} converges to 1, as desired.

The use of series troubled many mathematicians in the 18th century. The
construction of an acceptable, rigorous theory took many decades and involved such
mathematicians as Weierstrass, Bolzano, Fourier, Cauchy, Dirichlet, Riemann, and
Dedekind. The theory did not reach its current form until the end of the 19th century.

3.2 Definition of a Series

Let us now formalize the concept of a series. Let {z,},>0 be a sequence of real or
complex numbers, and for each n let

n
Sn = sz'
J=0

The sequence {S),} is called a series and is denoted by

>z (3.2)
j=0
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or

20+ 4

We refer to zp,z1,... as the terms of the series. We consider them to be in the
order zg, 21, . .., and so we may refer to z; as the (j + 1)th term, for each j > 0.
A series is real if all its terms are real. For every series, whether real or not, the
numbers Sy, Sy, ... are the partial sums. More particularly, for each n we may
describe S, as the partial sum corresponding to z,,, or the (n + 1)th partial sum. If
{S, } converges to some number S, then we write

o0
2.5 =S
Jj=0
In other words,
o0 n
= lim
j= j=0

As in the case of finite sums, we note that the index j is a dummy variable in the
expression (3.2). Thus, if k is another index, then

o0 o0
Yo=Y
j=0 k=0

Motivated by Proposition 1.5.1, we also write

[ 00
E :Z./' = § :Z./'+m
j=m j=0

for each integer m for which z,,;, z;;+1, . . . are defined. It is also evident thatif m < r,
then

(e e) r o0
Du=2ut 2y
j=m j=m j=r+1
In writing this equation we admit the possibility that both series diverge. However,
if one of them converges, then so does the other. When testing these series for
convergence, it therefore suffices to test just one of them.

It is seldom easy to determine the number, if any, to which a given series
converges. However, we do have the following theorem, which follows easily from
our earlier work on finite sums.
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Theorem 3.2.1. If z is a complex number such that |7| < 1, then

where 0° = 1, but if |z| > 1, then the series diverges.

Proof. Let n be a nonnegative integer. If z = 1, then

n

szzi‘lzwrl,
j=0

j=0
and so the series diverges. Suppose therefore that z 7 1. Then
n _ n+1
S = 11_Z
j=0 e

by Corollary 1.5.6. Using the results of Examples 2.2.4 and 2.6.3, we find that the
series converges to 1/(1 — z) if |z| < 1 but diverges if |z| > 1. |

The series considered in Theorem 3.2.1 is said to be geometric.

Example 3.2.1. The repeating decimal 0.22 . .. can be written as

o0
0.2+0.02+0002+...= ZZaj
j=1

o0
=2 Zaj—l ,
j=0

where a = 0.1 = 1/10. By Theorem 3.2.1 this series converges to
1 10 2
2 -l =2l—--1)==.
-1 9 9

The telescoping property can also sometimes be used to deduce the number to
which a given series converges. Specifically, we have the following result.

A

Theorem 3.2.2. The series

o0
> @1 —2)
j=0
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converges if and only if the sequence {z,} converges, and in that case

o0

E (zj+1—2z;) = lim z, — 2.
= n—00
=

Proof. By the telescoping property,
D @1 —2) = 2t — 2
j=0

for every n, and the result follows immediately. O

A series of the type contemplated in Theorem 3.2.2 is said to be telescoping or
to telescope. Note that

oo (o]
Z(Zj —Zj+1) = _Z(Zj—H —-27j) =20 —nlggoz,,
Jj=0 j=0

if the series converges.

Example 3.2.2. Since

for all j > 0, the series
i 1
=G +D
telescopes. It convergesto 1 — 0 = 1. A

Example 3.2.3. Let a and b be complex numbers, and let zo = a, z; = b, and

7, = Zn—1 + Zn—2
n— - 5
2

for all n > 2. In Example 2.6.1 we showed that this sequence is Cauchy and

converges to (a + 2b)/3. We now give another way to find its limit.
Note first that

1
n —n—1 = _E(Zn—l — Zp—2)
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for all n > 2. By induction it follows that

1 n—1
n —n—1 = (_5) (b _a)v

for all » > 1, so that

- (Y _ b—a _2(b-a)
Z(Zn_Zn—l)_Z(_E) (b_a)_ 1_(_%) - 3 .

n=1 n=0

But the series on the left-hand side is telescoping, and so

2(b —a)
3

lim z, —z9 =
n—>oo

s

whence

2b — 2b
limz, =ay 204 _a+2b

n—>00 3 3

A

Suppose a series 27021 zj converges to some number S. Then, by definition, the
sequence {S,} also converges to S, where

Sn = ZZJ'
j=l1

for each n > 0. So does the subsequence {S; }, where {t,} is any increasing
sequence of positive integers. (See Theorem 2.4.1.) Now

ty n—1 lk+1
Su=2.5u=2. 2. u
j=l k=0 j=t.+1
where we define typ = 0. Thus
[} oo k41
Yu=Y Y o 63
j=1 k=0 j=t+1

This result shows that the terms of a convergent series may be grouped together by
means of parentheses without affecting the convergence of the series. In Eq. (3.3)
we group together first the terms

21,225+ -5 211
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followed by the terms

2ty +15 2425 -+ -5 Zps

and so forth, giving

@+t +z)+@ntum+2t++z)+o

On the other hand, if some terms are already grouped together, then removal of the
parentheses used to group them may change a convergent series into a divergent
one. For example,

dYa-n=>o0=o
j=0 j=0

but the series obtained by removing the parentheses is

Y =1y,
j=0

which diverges because its partial sums alternate between 1 and 0. However, if the
series with the parentheses removed does converge to a number S, then the original
series must also converge to S, as we have just seen.

There is one important circumstance under which the removal of parentheses
does not alter the convergence of the series: let us suppose that a; > 0 for each ;.
Assuming that the series on the right-hand side of (3.3) converges when z; = a;
for all j > 0, by definition the sequence {S;,} also converges to some number L,
where

n
Sn = E a;
j=1

for each n > 0. Hence {S,,} is bounded above. Now the sequences {S, } and {S;,}
are nondecreasing, since a; > 0 for each j. Therefore both sequences are bounded
above by L because for each n there exists an integer k such that n < #;, and so
Sy, < S;, < L. Being nondecreasing, the sequence {S,} converges to some number
M < L. In other words, the series 27‘;1 a; converges to M. But we also have
L < M because S, < S, < M forall n > #;. Thus we have proved the following
fact.

Theorem 3.2.3. Suppose that a; > 0 for each j. If the series

00 lk+1

2. 2 4

k=0 j=t+1

converges to some number L, then so does Z‘/X):l aj.
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Exercises 3.1. 1. Find the limits of the following series:
(a) Z?io 3% (e Z?io Wm
b Y55, 5 O Y
© Xijgm ©® Xiiormms

[’ 2j+1 00 6/
@ Yitimtme W YiloyT i

2. Show that if lim,, . X, = 00, then

i_o:( x/+1)

converges.
3. A decimal number is said to be repeating if there is a finite sequence of digits
that is repeated indefinitely.

(a) Express the repeating decimal 1.2323 ... as a fraction.
(b) Show that every repeating decimal number is rational.

4. For alln € N let

%

Show that

S2n - Sn >

N =

and hence that {S),} is not Cauchy.
5. Let {x,} be a sequence of positive terms, and suppose that {S, } diverges, where
S, = Z?:o x; for all n.

(a) Show that

25

K le

is Cauchy and hence converges.
(b) Is the above true for
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6. Show that

Mg

«j(J +1) “(j+k)

where k € N, is telescoping and hence find the sum.

7. Find the sum
Z( 1 )
J+i+1 J+i .

8. Let {x,} be a sequence of positive terms. Show that Z_;.o:o x; converges if and
only if the sequence {Z'} —o X/} is bounded.

3.3 Elementary Properties of Series

Since the behavior of a series is determined by its sequence of partial sums, many
theorems about series can be derived from the analogous theorems about sequences.
For instance, our next theorem follows immediately from Theorem 1.5.2.

Theorem 3.3.1. Ler ) 72, w; and Zj‘;o z; be convergent series. Then, for all
numbers s and t,

Z(sw/—i—tz])—sij—i-t ZZI (3.4)

j=0

Note that the convergence of the series on the left-hand side of Eq.(3.4)
constitutes part of the conclusion of the theorem. However, as for sequences, the
series on the left-hand side may converge while the series on the right do not. For
instance, for s = ¢ = 1 the series on the right-hand side both diverge if w; = 1 and
zj = —1 for all j, but the series on the left-hand side converges to 0.

The following theorem also is immediate from Theorem 2.3.11 and the definition
of series in terms of sequences of partial sums.

Theorem 3.3.2. A series 2710 z; converges if and only if the series Zf/’ozo Re (z;)
and Y32 Im (z;) both converge.

The following result gives a necessary condition for a series to be convergent.
Theorem 3.3.3. If the series Z;‘;o zj converges, then lim, oz, = 0.

Proof. For eachn > 0 let
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Thenz, = S, — S,,—| foreachn > 0. If

then

lim S,y = lim §, = S,
n—>0o0

n—>00

so that
lim z, = lim (S, — S,—1))=5S—-S5=0.
n—>o0 n—oo

a

The contrapositive of the theorem above is particularly useful in establishing the
divergence of a series. It is known as the nth-term test.

Corollary 3.3.4 (nth-Term Test). Iflim,_. o 2, does not exist or is nonzero, then
the series Z?‘;o z; diverges.

For example, if |z| > 1, then the series )7, z/ must diverge since
li "l = i " £ 0.
25 1= g, e

This argument gives an alternative proof of part of Theorem 3.2.1.

However, convergence of the sequence {z,} to 0 does not imply convergence of
the series Z?o:o z;j. This point is illustrated in the following example. The series in
this example is called the harmonic series.

Example 3.3.1. The series

>
j=1 J
diverges. A proof has been given in Example 2.6.2. We now present an alternative
proof.

LetS, ="

=1l /j for all positive integers n. We use induction to show that

n+1
2

Szn >

for all nonnegative integers n. It will then follow that {S,} diverges, as it has a
divergent subsequence. Since S; = 1 > 1/2, the required inequality certainly holds
for n = 0. We may therefore assume that n > 0 and that the result holds for n — 1.
Then
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2
Sy =3 =

2n—| 1

,
-yl vl
=17

Jj=2""141 J

%

on
1
S2n—l + Z 5

j=21"141

on

n 1
>§+2—n Z 1
j=2141
n 2n—onl
_n+1
=

Remark. For every positive integer n we have
>
Sy=> -
=17
i
- 1431
j=27
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n—1
1+>°1

k=0
=14+n.

Thus the divergence of the harmonic series is extraordinarily slow.

Exercises 3.2. 1. Can Z?‘;O(x j + ;) converge when at least one of Z?‘;o x; and

> 0oy diverges?
2. Show that if Z?’;O z; converges, where z; # 0 for all j, then

>
j=0%
diverges.
3. Is
oo
Z (=1)/ 21
j=1
convergent?

4. Show that Z;’il aj converges if and only if a = 0.
5. Prove that

s
P2
=77+ 11

diverges.
6. Evaluate the following sums:

—1)/ 42/,
(@) 352, 5
o] 2 1

(b) Z:j=1 (57' - j(j+1)) :

7. Let {x,} be a decreasing sequence of positive terms and suppose that Z?OZO X
converges. Show that

lim nx, = 0.
n—00

This result is known as Pringsheim’s theorem. [Hint: Define m = n/2 for even
nandm = (n + 1)/2 for odd n. Then

Sy — S > nx,.]
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8. Show that if an 4+ b # 0 for all nonnegative integers 7, then

o0

1
Zaj—i—b

=0

diverges. (Use question 7.)

3.4 The Comparison Test

Often it is difficult or impossible to compute the partial sums for a series, and so it
is necessary to have some tests for convergence that do not depend on knowledge
of the partial sums. Many such tests require the series to contain only nonnegative
terms (which of course must be real). We devote the next few sections to such tests.
One of them is the comparison test, in which we compare the terms of a given series
with the corresponding terms of a series whose behavior is already known.

Theorem 3.4.1 (Comparison Test). Ler Y 72 a; and Y 72b; be two series of
nonnegative terms, and suppose that a; < b; for all j greater than or equal to
some nonnegative integer N. If the latter series converges, then so does the former.

Proof. We may assume that N = 0, since the series Z?O:o b; converges if and
only if Y72\ b; does so, and similarly for Y72 a;. Since the series Y 72, b;
converges, so does the sequence {Z;’:o b} of partial sums. This is a nondecreasing
sequence since b; > 0 for all j. If its limit is L then, since a; < b; for all j, it
follows that

n

ia/‘ <) bj=L
=0

Jj=0

for each n. Thus the nondecreasing sequence {Z’;:o a;} is bounded above and
hence converges. We conclude that the series Z?ozo @ CONVerges. ]

Corollary 3.4.2. Let Z;io aj and Z;O=o b; be series of nonnegative terms, and
suppose that aj < b; whenever j > N > 0. If the former series diverges, then so
does the latter.

Remark. If a series of nonnegative terms converges, then the corresponding
sequence of partial sums is convergent and therefore bounded. Conversely, if
the sequence of partial sums is bounded, then, being nondecreasing, it converges
and so the series is convergent.

Example 3.4.1. Let us test the series

1
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Seta; = 1/(3/j) and b; = 1/3/ foreach j > 1. Then a; < b; for each j. But
Z?‘io b; is the convergent geometric series

2 (5)

Thus Z =, b; converges, and therefore so does Z "_,a; by the comparison
test. A

Exercises 3.3. 1. Show that

1

converges.
2. Show that
y L
=
diverges.

3. Let{x,} bea sequence of positive terms and suppose that Zfozo X; COnverges.
Show that Y72 x7

4. Let {x,} be a sequence of positive terms. Show that Z?:o x; converges if and
only if

COI‘lVCI‘gCS

00 X
Z: 1+x
j=0

converges.
. o0 2
5. Show that if Z_/ —o X converges, then so does

x|
27

6. Suppose that 0 < a,+; < aa, for all n, where @ < 1. Show that

ad a
E(ljfl 0 .

04
Jj=0

7. Let {x,} be a sequence of positive terms. Show that if Z;io X ; converges, then
so does
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10.

11.
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o0
)IRVEIEIEE

J=0

(Hint: Use Lemma 2.5.5.)
Let {x, } be a sequence of positive terms, and suppose that {S,, } diverges, where
Sy = > o x, forall n. Show that

oo
25

converges if and only if m > 1. (See question 5 at the end of Sect. 3.2.)
Let {a,} be an increasing sequence of positive terms. Show that

> (1- %)

=0 aj+1

converges if and only if {a, } is bounded. (Apply question 5 with

Xy = Qpy1 — Ay.)

Show thatif m > 0 and p > 0, then

(& g )
nll>nolo Zl+jm+1/zl+jp+1 =1
J=1 j=1

Let {y,} be a bounded sequence of positive terms. Suppose that Z?OZO x; is
a convergent series of nonnegative terms. Show that the series Zc;o:o X;yjis
convergent.

3.5 Cauchy’s Condensation Test

Given the series ™2 a;, the series

oo
Z 2ka2k
k=0

is called the corresponding condensed series. We may write it as

ay+ (ar +ax) + (as +as +as +ag) + -+
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The importance of the condensed series is revealed by the following theorem. It is
remarkable in that it enables us to settle the convergence of a series by considering
only a very thin sample of its terms.

Theorem 3.5.1 (Cauchy’s Condensation Test). If {a,} is a nonincreasing
sequence of nonnegative terms, then the series 27020 a; converges if and only
if its condensed series does so.

Proof. Tt suffices to check the convergence of the series Z?’;l a; and its condensed
series. We may write the sum of the first 2”1 — 1 terms of the former series as

ai+ (ay+as)+(as+as+asg+a;) +...+ (@n +amseg + ... + apmti_y).

Thus
g n 2kt
=) ) a4
j=1 k=0 j=2k
Since a; < ay whenever 2k < j < 2k+1 we find that
ok+1_1 ok+1_1
E a; < E Aok
j=2k J=2k
2k+1—g
= azk E 1
j=2
= zkazk.

It therefore follows from the comparison test and Theorem 3.2.3, because of the
assumption that ¢; > 0 for all j, that if the condensed series converges, then so
o0
does - a;.
On the other hand, for all » > 0 we can also write

on

2.4

Jj=1

ap + as + (Cl3 + a4) + e + (azrx—l+1 + a2n—1+2 + e + Clzll)

n 2k
a1+Z Z aij.

k=1 j=pk=141

As a; > ay whenever 2871 < j < 2% it follows that

2k 2k

E aj > E 2523

j=2k"141 j=2k—1+41
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and so

n n 2k
ZZka2k§22 Z a;.
k=1

k=1 j=2k=14]

If the series 2711 a; converges, then so does

[oe] 2k
Z Z 261]',

k=1 j=2k—141

and consequently the comparison test shows that the condensed series also con-
verges. a

Remark. We observe from the proof above that if

o0
Zaj =S
j=l

and

o0
Y 2ay =T,
j=0

then S < T <28§.

The next theorem, which generalizes Example 3.3.1, is an application of the
condensation test.

Theorem 3.5.2. For every rational number p, the series
1
j=1 jr

converges if p > 1 and diverges otherwise.

Proof. If p < 0, then 1/j7 > 1 for all positive integers j. Thus the sequence
{1/n?} does not converge to 0 and the series diverges by the nth-term test.

For each p > 0 the sequence {1/n”} is decreasing and Cauchy’s condensation
test can be applied. The condensed series is

ol Sal | 1y
g)zjﬁzzg)zj(p—n ZZ(F) '
Jj= Jj=

j=0
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This is a geometric series and converges if and only if 1/27~! < 1. Hence the
condensed series, and therefore the given series, converges if and only if p — 1 > 0,
as required. O

The series given in Theorem 3.5.2 is generally referred to as the p-series.
Exercises 3.4. 1. Using the knowledge gained so far, discuss the convergence of

the following series:

@ Y75, 7=

(b) Z(;OZO ﬁ where a > O and b > 0;

© X720 -

2. Let {a, } be a nonincreasing sequence of nonnegative terms. Prove that the series
Z?OZO a; converges if and only if the series

[e'9)
E 3'/a3j
=0

converges. (This result is in fact true if we replace 3 by any integer greater than
2[12].)
3. (a) The following result is a special case of a theorem in [1]. Let Z;”;l aj bea
series of positive terms. Suppose that the set

max{dsn, Arn41}
an

neN}

is bounded below and above by [ and L, respectively. Then the series
converges if L < 1/2 and diverges if [ > 1/2.

Fill in the details in the following brief sketch of the proof. Suppose that
L < 1/2. As in Cauchy’s condensation test,

n+1_q n

Sonti_y = Z a; =a +ZTk’
j=1 k=1

where

2kF1—g

Tk= Z aj

j=2

2k—1

= Z (azj + azj+1)

j=2k—l
2LT—
< (2L)ka;.

IA
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Deduce that the sequence {S,.+1_; } converges, and hence that {S,} does so.
Similarly, prove the theorem for the case where [ > 1/2.

(b) Use the theorem of part (a) to prove the convergence of the following
series:
1. Z?ozl ]l,, for all rational p > 1;

.. 00 j—1)!
iy 2T —DIG D!

[Hint: If a,, denotes the nth term of the series, then

. 1 1 n—1
G (1-=—) ]
a, 2 4n

4. Test the convergence of the series

= (2j =1
2i—1 s oy "
jzzlzf (j — D!

[Hint: If a,, denotes the nth term of the series, then a, > 1/(2n).]

3.6 The Limit Comparison Test

Our next test for convergence is often easier to apply than the comparison test. First,
however, we require some new notation.

Definition 3.6.1. Let {a,} and {b, } be sequences of positive terms. Then a, and b,
are said to be of the same order of magnitude if there is a positive number L such
that

In this case we write a, ~ Lb,. We say that q,, is of a lesser order of magnitude
than b,,, and write a,, << b,, if

We then write a,, >> b,,.
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The basic intuitive idea is that if a, << b, then b, increases with n much faster
(or decreases much more slowly) than does a,,. Theorem 2.8.4 shows that a,, << b,
if and only if b, >> a,. Moreover if {c,} is another sequence of positive terms
and a, << b, << ¢y, then @, << c¢,. This result follows immediately from the
observation that

Observe also that if a, ~ Lb,, then b, ~ a, /L.
The following example is worth noting.

Example 3.6.1. If p is a rational number and ¢ > 1, then
n? << c" << n! << n".

Proof. These results are immediate from Examples 2.5.5, 2.5.6, and 2.7.10. A

We are now ready for our next convergence test, which is known as the limit
comparison test.

Theorem 3.6.1 (Limit Comparison Test). Ler Y72 a; and Y 72 b; be series of
positive terms.

1. If a,, ~ Lb, for some L > 0, then both series converge or both diverge.
2. Ifay << b, and y 52, b; converges, then so does Y 72y a;.
3. If ay >> by and Y 52 b; diverges, then so does Y2 a;.

Proof. 1. We are given that

lim & = 1 > o0.

n—o00 n
Proposition 2.3.5 shows the existence of a number N; such that a, /b, > L/2
for all > Nj. Similarly, there exists N, such thata, /b, < L + L/2 = 3L/2
for all n > N,. Take N = max{N;, N>} and choose n > N. Then

L a, 3L
2 b, 2
hence
3Lb,
a, < .
2

We now apply the comparison test. Suppose Z;OZO b; is convergent. By
Theorem 3.3.1 the series

> 3Lb;
>

Jj=0
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o0 B . . .

also converges, whence »_ j=oa; converges by the comparison test. Similarly, if
o0 o0

>_j—oa; converges, then so does } 72 b;

2. Suppose
- =0
Then there exists N such that
an
— <1
by,

for all n > N. Hence a, < b, for all n > N, and we conclude from the
. o0 . o0
comparison test that Z j=0@j converges if 3720 b; does so.
3. This statement is equivalent to the previous one. O

Example 3.6.2. Test the series

2:: J+1)(J +2)

for convergence.
Solution. Let
1
ap = ————
n+1H(n+2)

for all n > 0. We show that a, has the same order of magnitude as 1/n?.
Accordingly, we put

for all n» > 0. Then

a, n

by i Dnt2

as n — oo. Thus a, ~ b,. As Zj‘;l b; converges by Theorem 3.5.2, so does
Zj’;o a; by the limit comparison test. A
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Example 3.6.3. Test the series

2 Wi+1=Vir
j=0

for convergence.

Solution. For all n > 0 let

anz(\’n"'l_ﬁ)z

W+ 1=+ 1+ )
B Vn+1+4/n

1
T (Wt T+ )

and let

for all n > 0. Since

by _ (Vn+1+ny

a, n

1 1
=24+ —42,/1+—
n n

— 4

2n+142y/nn+1)
n

3 Series

asn — oo, it follows that a,, ~ b, /4. As Z;’c’:l b; is the divergent harmonic series,

Z?’;O a; diverges by the limit comparison test.

Example 3.6.4. Test the series

21
Z e

j=tJ

Solution. Taking

A
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and
1
b, = —
n
for all n > 0, we have
bn H—%
on 0 =nl/" 51
a, n

asn — oo. Since )77, b; diverges, so does ) 72 a;.
The reader should compare this result with that of Theorem 3.5.2. A

Exercises 3.5. 1. Test the convergence of each of the following series:
oo il
(a) Z j=0 5/——j’

(by Y52, L=

j=1
oo elli
(©) Zj:l j_z;
0] 1 .
@ X)jms Ty
) Y72 (e'/7” — 1) for every rational p [use Theorem 2.7.10(3)];
() Z?‘;l(el/j — 1)? for every rational p;

@ X7Vt 1—j)

IFI=\7 .
0 X7 2oy

M X572 =
2. Find all integers ¢ such that

e 1

2 v

Jj=1

is convergent.
3. Leta > 0 and b > 0. Find all rational p such that

i 1
= @+ by

is convergent.
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4. Test the convergence of the series
> o
Pl +bj+ ¢
where a, b, c are all positive.
5. Prove that

lim (n)"/" = oo.
n—00

3.7 The Ratio Test

In order to use the comparison or limit comparison test effectively, we need a supply
of series whose convergence or divergence has already been established. We shall
therefore develop another test which involves only the terms of the series being
tested. Its proof uses the comparison test.

Theorem 3.7.1. Let Z,o.;o a; be a series of positive terms and suppose there exist
numbers r and N such that

An+1
an

<r<l

foralln > N. Then the series converges. On the other hand, if
ntl 1
a,
foralln > N, then the series diverges.

Proof. In the first case we have a,+; < ra, for alln > N. It follows by induction
that

ant+j <rlay

for each positive integer j. Now the series Z?OZO ayr/ converges since 0 < r < 1,
and so Z‘/’ozo ay+; converges also, by the comparison test. Hence Z?’;O aj;
converges.

In the second case we have a,,+; > a, for all n > N and the series diverges by
the nth-term test. O
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Corollary 3.7.2 (Ratio Test). Let Z;O=o a; be a series of positive terms and let

. Ap+1
lim

n—o00 @,

=L

for some number L. Then the series converges if L < 1 and diverges if L > 1.

Proof. If L < 1, then by Proposition 2.3.4 there exist numbers N and r < 1 such
that

An+1
oy
ap

for all n > N;. The result therefore follows immediately from Theorem 3.7.1 in this
case.

On the other hand, suppose L > 1. There exists N, such that a,;/a, > 1 for
all n > N,, and again the result follows from Theorem 3.7.1. O

Remark. No conclusion can be drawn when L = 1 in the ratio test. For example,
this is the case for both the series ) 72, 1/j and }~72, 1/j?, but the former series
diverges whereas the latter converges.

Example 3.7.1. Test the series

o (j +3)2*
2
j=0

Solution. Putting

_ (n +3)2n+1
TR
for all n > 0, we have
i _ 42y
a, - 3n+1 (n + 3)2n+1
_ 2(n+4)
T 3(m+3)
2
% [—
3

as n — oo. Hence the series converges by the ratio test. A
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Example 3.7.2. Test the series

o
221

!’

where x # 0.
Solution. With
x2n

= 2n)

for all n, we have

ap+1 _ x2n+2 (21’!)'
a,  (Qn+2)! x>

2

X

 2n+2)2n+ 1)

— 0,
and so the series converges.

A similar argument shows that
¥ 2i+1
= 2; + 1!

also converges for all x > 0. A

Example 3.7.3. The results of Example 3.6.1 can also be achieved by using the ratio
test. For instance, let us show that n! << n". If we set @, = n!/n" foralln > 0,
then the calculation in Example 2.7.10 shows that

1 1
dnt1 _ — — < 1.

T E

Hence the series

— Jj!
g—/
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converges by the ratio test. We deduce that

as required. A

Exercises 3.6. 1. Let Z?’;O a; be a series of positive terms. Show that if a,4+ >
a, for all n, then the series diverges.
2. Test the convergence of the following series:

@ TG @ X ok
® T @ I fé})fv;
© X2 2/]_]'2’ 0 X5, (2/)"
3. (a) Suppose that a, > 0, b, > 0, and a,+/a, < b,+1/b, for all n. Show that

3% j=oa,; converges if 3% j=obj does. (Hint: Show that the sequence {a, /b, }
is decreasing and use question 11 in the exercises at the end of Sect. 3.4.)

(b) Use part (a) to test the convergence of the following series:
. 00 j/ .
1. ZJ =1 W,
.. 00 j/
11. ZJ =1 el_/'

Note that the ratio test yields no conclusion in these examples.
4. Test the convergence of the series

for all x > 0.

5. The result in question 3 at the end of Sect. 3.5 is known as the second ratio test.
Here is a special case that can be proved by using Cauchy’s condensation test.
Let {a, } be a decreasing sequence of positive terms. By applying the ratio test to
the condensed series, show that Z?’;O a; converges if

. Aaop 1
lim < =
n—o00 a, 2

and diverges if

a1 1
m — >

n—o0o a, 2
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3.8 The Root Test

A somewhat different application of the comparison test gives us another test called
the root test. Again, it is applicable only to series of nonnegative terms. Its proof is
similar to that of the ratio test.

Theorem 3.8.1. Let ij;o a; be a series of nonnegative terms, and suppose that

there exist numbers r and N > 0 such that a,l,/" <r <lforalln > N. Then the
series converges.

Proof. The hypothesis implies that a, < r” for all n > N. Hence the series
Z?’;O a; converges by comparison with the convergent geometric series Zj’;o r/.
a

Corollary 3.8.2 (Root Test). Let Z;’OZO a; be a series of nonnegative terms and let

lim al/" = L
n—oo

for some number L. Then the series converges if L < 1 and diverges if L > 1.

Proof. If L < 1, then there exist numbers N; > 0 and r < 1 such that a,l/ " < r for
all n > Nj. In this case the result follows immediately from Theorem 3.8.1.

On the other hand, suppose L > 1. There exists N, such that a,l,/ " > 1 for all
n > N,. For each such n it follows that a,, > 1. Hence {a,} cannot converge to 0

and the given series diverges. O

Remark. As in the ratio test, no inference may be drawn if L = 1. Consider the

series Z;’il 1/j and Z?ozl 1/;? as in the remark following the introduction of the

ratio test. Using the fact that n'/” — 1 as n — oo (Example 2.5.1), we see that

L =1 for both series, but one series diverges and the other converges.

Example‘ 3.(3.]. TeSt the Series

Solution. Setting
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for all n > 0, we obtain

" 1 1
al/n = . = - — — < 1.
n-+1 (1—}—%) e

Hence the series converges by the root test. A

Remark. 1If a,l/ " < 1foralln > 0, it does not necessarily follow that the series
Z?‘;O a; converges. Indeed, the harmonic series provides an example of a divergent
series where this inequality holds for all n > 1.

We now show that if the ratio test is applicable, then so is the root test. In fact,
the root test is stronger.

Theorem 3.8.3. Let {a,} be a sequence of positive terms. If

. Ap+1
lim L — 1.

n—o0o a,

where L may be a number or 0o, then

lim a)/" = L.
n—odo

Proof. Since a, > 0 for all n, it follows that if L is a number then it must be
nonnegative.

Case 1: Suppose L > 0, and choose ¢ € (0, L). There exists N; such that

an+1
L—s<t o +¢
a”

forall n > N;. Thus
(L—¢8)a, <ap+1 < (L + &)ay (3.5)
for all such #n. In particular,
(L —¢&)an, <an+1 < (L +&)an,.
Suppose that
(L —9)"an, <an,+m < (L + &)"an, (3.6)

for some m € N. Then, using inequality (3.5) and the fact that L — ¢ > 0, we
find that

(L—&)" ay, < (L=&)ay,4m < anj4m+1 < (L+8)ay,4m < (L+&)" ay,.
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Therefore inequality (3.6) holds for all positive integers m, by induction. Any
integer n > Nj can be written as n = N; + m, where m = n — N; > 0, and so
inequality (3.6) can be rewritten as

n an, n an,
(L—E)m<an<(l/+€) m
Thus,
1/n 1/n
_o 1/n _am
(L 8)((L—3)N1) <a, <(L+8)((L+8)N1) (3.7)

for all n > Ny, since L — ¢ > 0. Denoting the left- and right-hand sides of
inequality (3.7) by s, and ¢,, respectively, and using the result of Example 2.5.2,
we find that s, > L —eandt, — L + ¢ as n — oo. Therefore there exist N,
and N5 such that

—e<s,—L+e<e
foralln > N, and
—e<t,—L—¢e<e¢
for all n > Nj. For all n > max{N;, N,, N3} it follows that
L—2e<s,<a/" <t, <L +2s,
and so

lim al/" = L,
n—o0

as required.
Case 2: Suppose L = 0. For every ¢ > 0 there exists NV such that

an+1
<
an

whenever n > N. For all such n we therefore have
ap+1 < &ay.
Arguing as in case 1, we see by induction that

ayym < "ay
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for all positive integers m, and therefore that

_ an
a, <& Nay =¢"- —
oN

for allm > N. Hence

for all such n. Denoting the right-hand side of this inequality by s,, we see that
s, — & asn — oco. We then argue as in case 1 to show that

0<al/"<s, <2e

for large enough 7, and the result follows in this case also.
Case 3: Suppose finally that
. Ap+1
lim = o0,

n—o00 @,

and choose a number M . There exists N such that

An+1
an

>M +1

forall » > N. Thus
dp+1 > (M + a,

for all such n. Arguing as in the previous cases, we see by induction that

an

a, > (M + l)nm

for all » > N and hence that

1/n
1/n an
a, >(M+1)(—(M+1)N) .

If we denote the right-hand side of this inequality by s,, then s, — M + 1 as
n — oo. For large enough n we therefore have

1/n
an/ >5, > M,

and the proof is complete. O
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Example 3.8.2. Consider the series

oo

1
2 3

j=0

Letting

1

W = S

for all n, we find that

T if n is even,

a, =
L ifnis odd.

Thus, if n is even so that n + 1 is odd, then

Ani 2n+1

a, "

)

but if n is odd, then

A _ 211—1 1

a, T oont2 T g

Therefore lim,, o0 @, +1/a, does not exist. However,

1

| 007 if nis cven,
an/n =
2l/n . .
5 if n is odd.
Hence
lim a;/” = 1 <1,
n—00 2

so that the series converges by the root test.
Note that the comparison test could also have been used, since a, < 1/ 2n=1 for
every n. A

Exercises 3.7. 1. Prove that

n11>nc;lo (n!)l/” -

(Hint: Apply Theorem 3.8.3.)
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2. Apply the root test to investigate the convergence of the series

=

3. Test the convergence of the following series:

SN/ .
(a) Z?il (2,1_—1> ; () Z;’il (/L:)/Z for every x > 0;
i
-1/ i 2 J
b) X5L,G" -1 O X2 (Fh)
/2 i?
© Yo% @ Y2 (1-1)
(d) Z?"z | j2e% foreveryrealo;  (h) Zj“;l 2’}—;

4. Consider the series

(a) Show that the root test is not applicable.
(b) Test the convergence of the series. (Hint: You may find Proposition 2.7.3
useful.)

5. Let 0 < o < B < 1, and for each nonnegative integer n define

a, =

o" if nis odd,
p" if nis even.

Determine the convergence of Z?":O a ;. (Note that the ratio and root tests both
fail.)

3.9 The Kummer-Jensen Test

The ratio test is an application of the comparison test. In fact, it is a special case of
a more general application due to Kummer and Jensen.

Theorem 3.9.1 (Kummer-Jensen Test). Let Z?‘;o a;j be a series of positive terms
and {b,} a sequence of positive terms. Let

an+1

cn = by — bp+1

n

forall n.
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1. Iflim, o ¢, > 0, then Z?:o aj converges.
2. IfZ?o:O 1/b; diverges and there exists N such that ¢, < 0 for alln > N, then
Z?io a; diverges.

Proof. 1. Suppose that

limc,=L>0
n—>oo

and choose r such that 0 < r < L. Then there exists N > 0 such that

an+1

anbn— b,,+1>r

n

forallm > N. Hence
anbn - an-i-lbn+l > ray (38)

for each such n.
Define

n
Sn = E a_,
Jj=0

for all n > 0. Since a; > O for all j, the sequence {S,} of partial sums is
increasing. It therefore suffices to show that it is bounded above. Using (3.8) and
the telescoping property, for all integers m > N we have

r(Sm—Sy-)=rY_ ay
n=N

m
< Z (anbn - an+1bn+l)
n=N

=anby — am41bmyi

< aNbN.

Hence

anby
Sy <

+ Sn-i

for all such m, and the sequence {S,} is indeed bounded above, as desired.
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2. By hypothesis, we have
anbn - an+lbn+l = 0

for all n > N. Hence the sequence {a,b,} is nondecreasing when n > N, and
so a,b, > anby for all such n. Thus

anby

= al‘u

n

and the divergence of Z?OZO 1/b; implies that of Z?‘;o a; by the comparison
test. a

The ratio test is obtained immediately by putting b, = 1 for all n. In view of
the limit comparison test, the divergence of the harmonic series shows that another
possibility is to have b, = n — 1 for all n. We then obtain

An+1
an

=n(1—a”+l)—1
ay

for all n, and so we deduce the following result, due to Raabe.

cph=n—1-—

n

Corollary 3.9.2 (Raabe’s Test). Let Z?c’:() a; be a series of positive terms and

suppose that
lim n (1 - @) =L
n—o00 a,
for some number L. Then the series converges if L > 1 and diverges if L < 1.

In fact, the Kummer—Jensen test shows that in order to establish divergence, it
suffices to find an N such that
a
n (1 _ n-H) < 1
a

whenever n > N. Such an N certainly exists if L < 1.

Example 3.9.1. Test the series

o (_ @2j-D "
% (s to)

=1

~.

for convergence, where m € N.
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Solution. Writing

o @ea—1 "
ap = (m)

for all n € N, we compute

ant1 2n + 1)! 22 (p — )nh\"
a,  \22*lnl(n + 1)! 2n —1)!

2n + 1\"
2n+2/)

. ap+1
lim

n—oo q,

Thus

=1,

so that the ratio test is inconclusive.
Let us try Raabe’s test. We have

1 m
nf1=44) — (1= (1=
a 2n + 2

. m 2 (m\ (=1)/
=nfl- 1_2n+2+z<j)(2n+2)f

j=2
m i
—1)/
_ _nm _”Z m i
2n +2 = Jj ] @2n+2)
m
9_
2

3 Series

as n — o0o. Raabe’s test therefore shows that the series diverges for m = 1 and

converges for m > 2.
We now apply the Kummer—Jensen test to the case m = 2, where Raabe
not applicable. Taking b, = n for all n, we find that

Ay Qn+ 1) n+1)
by — bpp1 =n— ————>—
Qn 4(1’1 + 1)2
_ 1
4+ 1)

< 0.

’S test is
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Testing 3, a,,, @, >0
Y
no
a,—0? - .
> divergent
v yes or uncertain
a, contains !, y\es Find lim ¥ _ 1
cror n? > n—e0 "
and try ratio test
y L>1 Y L<1 Y Ldoes not exist or L= 1
Yy no
. Ap+1
divergent convergent ~a, >1?
Yy yes
a,is a ratio of yes Try limit divergent by
fale? < comparison test
polynomials? P nth term test
y no
y no
Try comparison test or Try root test. yes .
Cauchy’s condensation test Conclusion? > Finished
vy no
Try Raabe’s test. yes i
Conclusion? > Finished
Y no

Try the Kummer-
Jensen test

Fig. 3.1 Testing a series of positive terms for convergence

Recalling that the harmonic series diverges, we conclude by the Kummer—Jensen

test that the given series diverges.

A

Figure 3.1 suggests a procedure for testing a series of positive terms for

convergence.
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Exercises 3.8. 1. Test the following series for convergence:

(a)
(b)
©
(d)
©)

®

9]

(h)

®

5

/’

0/ .
=0 1
Jt5.
j=1 jz ’
00 1

=0 @i+’
ZOO Jj+1,
j=0 2317

oo (+1)',

j=1 Jj s

.

1

(¥}

el
8 78 8

™ ™

3o 3j+5/7+7 .
J=0 j343j3245°

3o 14244/
j=1 FER

ZOO 1 .
J=1stni

2. For each real o define

and

for each n € N. Show that the series

° . (04
—1)/
sev(,2)

o)

G
&)
@
(m)
()

(0)

(P

@

(@)

S0
J=0 pj+=ni >
S5l g

j=1 ejz ’

o @) .
iz wig

oo  (2j—1!,
Zj:] 22/‘(]'!)2’

3o (2j—1)!
J=1 271G -DIG+D)!’

0 2513
2520 Grne+n

3 Series

j _
3o My Fa=b) g3 0 S 0and b > 0:

I=VT_ e+b—1)

5o [T, Gk—1)2(3k+1)? .

j=1 I} _,Gk*

Zoo a(a+1)-(a+j—1)
j=1 J!

:a(a—1)~-~(a—n+1)

n!

converges if ¢ > 0 and diverges if @ < 0.
3. Let Z;’io a; be a series of positive terms and let {5, } be a sequence of positive
terms. For all n define

and

Cn =

ap

bn _bn-H

an+1

a
rn:n( L —1).
An+1

for every real «.
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Prove the following variants of the Kummer—Jensen test and Raabe’s test:

(a) If ¢, > t > 0 for all n and some fixed ¢, then the series converges.
(b) If 27’;0 1/b; diverges and ¢, < 0 for all n, then the series diverges.
(c) If r, > ¢t > 1 for all n and some fixed 7, then the series converges.
(d) If r, <1 for all n, then the series diverges.

3.10 Alternating Series

In the previous several sections we dealt with series of nonnegative terms. Clearly,
the results can be applied also if the terms are all negative. If neither of these
conditions obtains, the series may be difficult to handle. However, there is a
convenient test, due to Leibniz, that can be applied to what is known as an alternating
series.

Definition 3.10.1. The series
o0
> (=1)/b; (3.9)
i =0

is alternating if each b; is positive.

Theorem 3.10.1 (Leibniz’s Test). The alternating series (3.9) is convergent if {b, }
is a nonincreasing sequence of positive terms converging to 0.

Proof. For each integer n > 0 let

Sp =Y (=1)/b;.
j=0

We need to show that the sequence {S,, } converges. We achieve this result by proving
that the subsequences {S,,} and {S,,+1} both converge to some number S and then
appealing to Theorem 2.4.3.

First we have

2n+1

Sowt1 = Y (=1)/b;
j=0

2n

= by + ) _(=1)/bj —bays1

Jj=1

= by + Z(sz —bj—1) = brpt1.
=1
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Note that b, > 0 and, since {b, } is nonincreasing, b»; < b,;_; for all j. Hence,
the sequence {S,+1} is bounded above by by. It is nondecreasing, because for all
n > 0 we have

Son+1— San—1 = bay — bop41 = 0.
We conclude that {S,,+;} converges to some number S It follows that

lim S5, = lim (S2n+1 - b2n+l)
n—>00 n—00

=5-0
=3,

and the proof is complete. O
Example 3.10.1. Consider the series

- J
Sy
= G+
Setting

n

KT

for all n > 0, we observe that the sequence {b, } converges to 0. To show that it is
nonincreasing, note first that

_ n+1 n
42?2 (n+1)

(41’ —nn+2)?
(12 +2)?

bn+l _bn

As the denominator of this expression is positive, in order to determine the sign of
by+1 — b, it suffices to inspect the numerator. Since

n+1>—nmn+2>=-n*>-n+1<0

for all n > 0, we confirm that the sequence {b,} is in fact decreasing. Hence the
given series converges by Leibniz’s test. A

Example 3.10.2. Let a, = i"/n for all n > 0. Then Re (a,) is equal to 0 if n is
odd, to 1/n if n is divisible by 4, and to —1/n otherwise. Thus
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oo .7 (e9)
i/ =D
Re| — | = s
2 (5) -2 %
J
which converges by Leibniz’s test. Similarly,

Ee()- £

which also converges. Hence the series Z?O:] i/ /j converges by Theorem 3.3.2.
The conjugate series

o (i)’
>
j=1

also converges, by the same argument. A

Our next example shows that the condition that the sequence {b,} of Leibniz’s
test be nonincreasing cannot be dropped.

Example 3.10.3. Consider the series Y2, (—1)/'b;, where

1
byi | = ——
2j—1 ]+1

and

1

R TEE

for all j > 0. The sequence {b,} converges to 0, but it is not monotonic.
If the series were to converge, then we could obtain another convergent series by
grouping its terms in any way. However, by grouping the terms in pairs, we obtain

oo

Z‘:(Hl <J‘+1)2)_,§(1+1)2’

and this series is divergent by the limit comparison test applied to the harmonic
series. A

Often it is difficult to determine to what number S a convergent series converges,
but in the situation where Leibniz’s test is applicable it is possible to approximate .
Indeed, we see in the following theorem that if we attempt to approximate S by
taking the sum of the first few terms of the series, then the error is bounded above
by the absolute value of the first term omitted from the sum.
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Theorem 3.10.2. Let {b,} be a nonincreasing sequence of positive terms, and let

o0
> (=1ib; =5.
j=0
Then
|S - Sn| =< bn+1

for each n > 0, where

S, = i(—l)fbj.
j =0

Proof. We saw in the proof of Theorem 3.10.1 that the sequence {S»,+i1} is
nondecreasing. Similarly, {S,} is nonincreasing, since

Son42 — Son = bongr —brpy1 <0

for all n. Therefore S is an upper bound for {S,+1} and a lower bound for {S5,}.
Hence

S2n—1 = Su41 =5 = 8y (3.10)
for all n > 0, so that
0=<8—58u1

< 82 — Son—i

= b2n s
as desired. The last two inequalities of (3.10) hold even if n = 0. Therefore

0 < S2n -5
< S — Sopt1
= —(—=ban+1)

= b2n+1

for all n > 0, and the proof is complete. O

Remark. The theorem shows that

Sn _bn-H = S =< Sn +bn+1
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for all » > 0. Moreover it is easily seen that the inequalities are strict if the sequence
{b,} is decreasing. In particular, since we then have by > by, it follows that S > 0.

Example 3.10.4. Consider

o (—1)/
>
j=1

J

This series converges to some number S by Leibniz’s test, since the sequence {1/n?}
is decreasing and converges to 0. We approximate S by the partial sum

Sn = Z (_.1)j

2
=1 J

for some n > 0. If we require accuracy to within a given positive number &, then
according to Theorem 3.10.2, we need to choose 7 so that

1

—_— < E.
m+12 °

Thus we must have
, 1
n+1)">—,
£

and to ensure that this inequality holds, we take

1
n>——1.

JeE
The exact value of the sum requires ideas that are beyond the scope of this book. A

Exercises 3.9. 1. Determine the convergence of the following series:

2

@ Y52, (=1
(b) Y52, (—1)/+1 2

© Y51/ s

@) Y5, (=Dt —1);

(€ Y52, (=1 (@' — 1), where a > 0;

o T ((1+) " )
(8 2711 (_lgﬂ.
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2. Show that the series

converges. Letting S, be the nth partial sum of the series, find an upper bound
for |S15 - S|
3. Let {a,} be a decreasing null sequence. Show that
o0
Z(—])-/+lal +a2+...+aj
J

j=1
converges.

4. 1f 372, a; converges, does it follow that Y 72 (—1)/a; converges? Give a
proof or a counterexample.

5. Determine the convergence of

= ()t

T2t (=1)/
[Hint:
1 _J+2- (=1)/

J+24+ (=1 (G+22-1"

3.11 Dirichlet’s Test

All the tests we have learned so far help us to determine the convergence of series
whose terms are all positive or alternate in sign. In this section we provide a useful
test that does not require these assumptions. The proof relies on Abel’s partial
summation identity.

Lemma 3.11.1 (Abel’s Partial Summation Identity). Ler {u,} and {v,} be two
sequences of complex numbers, and let {U, } be a sequence such that U,—U,_| = uy,
foralln € N. Then

n n—1
Z Ujv; =Unvn_Umvm+l_ Z Uj(ijrl_vj) (3.11)

j=m—+1 j=m+1

whenever m < n.
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Proof. Since U; —U;— = u;, we have

n

Y owi= Y v (U —Uj)

j=m+1 j=m+1
n n
= E UjUj — E UjUj_l
j=m+1 j=m+1
n—1 n
= E ijj+ann—vm+1Um— E UjUj_l
j=m+1 j=m+2

n—1

n—1
=ann_vm+1Um+ Z UjUj_ Z vj+1Uj

j=m+1 j=m+1
n—1
= U, — Unvpg1 — Z Ui(js1 —vy).
j=m+1

The next result is due to Shiu [14].

Theorem 3.11.2. Let {u,} and {v,} be sequences of complex numbers and suppose
that

1. Z_‘;O:O |vj 41— vj| converges,
2. {v,} converges to 0, and
3. there is a constant K such that

n
E Uuj <K
Jj=0

foralln > 0.
Then Z;.;o ujv; is convergent.

Proof. Choose ¢ > 0. The convergent sequence

n
> v — vyl
j=0
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is Cauchy. Therefore by hypotheses (1) and (2) there exists N such that for all
n > N we have

n

Z |vj+1—vj <¢e¢

j=N+1
and
|v,| < e.

For eachn > 0 let
n
Sn = Zujvj
Jj=0
and
n
Un = Zuj.
Jj=0

Thus |U,| < K for all n > 0, by hypothesis. For all integers m and n such that
n > m > N, Abel’s identity therefore gives

|Sn _Sml = Z I/tjl)j

n—1

< UnVn| + [UnOmrtl + D 1Ujlvj41 = v;
j=m+1

n—1
< K|Un| =+ K|vm+1| + K Z |Uj_|_1 —V;
j=m+1

< 3Ks,
as it may be assumed that K > 0. The desired conclusion follows from Cauchy’s
criterion. O

Corollary 3.11.3 (Dirichlet’s Test). Let {u,} be a complex sequence and let {v,}
be a real sequence. Suppose that

1. {v,} is monotonic and converges to 0, and
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2. there is a constant K such that

n
E Uuj <K
Jj=0

foralln > 0.
Then Z?’;O ujv; is convergent.

Proof. According to Theorem 3.11.2, it is enough to show that

oo
Z|Uj+l — v
j=0

converges. Choose ¢ > 0. By condition (1), there exists N such that
lva| <&

foralln > N. For each such n, define

n

Tn :Z|vj+1—vj .

J=0

We must show that {7}, } is convergent.

Since {v; } is monotonic, either {v,; 1 — v;} is a sequence of nonnegative terms
or it is a sequence of nonpositive terms. Therefore for all integers m and n such that
n > m > N, it follows that

n

Ty — Tl = Z [vj+1—v;
j=m+1

n

> Wi —vy)

j=m+1

= [Vp+1 — Um+1l
< |vpt1] + [Vm+1]

< 2e.

The desired conclusion thus follows from Cauchy’s criterion. O

Remark. We obtain Leibniz’s test by taking u, = (—1)" for all n in Dirichlet’s test.
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Example 3.11.1. Let |z| = 1 and z # 1. We show that

o0
T
=17

is convergent for every rational p > 0.
Let us take v, = 1/n” and u, = 7" for all n. Then

L+ [z"tt 2

11—z  [1—¢

for all n. Therefore the series converges by Dirichlet’s test.

3 Series

A

Exercises 3.10. 1. (a) Let {v,} be a monotonic sequence, and let {u,} be a

sequence for which there is a constant K such that

n

dou|=K

j=0
for all n > 0. Prove that

n

Z ujvj < 2K(|vm+l| + |Un|)
j=m+1

for all positive integers m and n such that m < n.
(b) Use part (a) to prove Dirichlet’s test.

2. Suppose that {v, } is a monotonic bounded sequence and that Z?’;O u; converges.

Prove that Z?’;O u;v; converges. (This result is known as Abel’s test.)

3.12 Absolute and Conditional Convergence

We have seen the advantages of considering series whose terms are all nonnegative.
Given an arbitrary series, we may obtain a series of nonnegative terms by replacing
each term with its absolute value. If the resulting series converges, then so does the
original series. That is the content of our next theorem. We begin its proof with a

useful lemma.

Lemma 3.12.1. Let {z,} be a sequence of complex numbers. Then Zi’io |z

converges if and only ifZ?o:O [Re (z;)| and Z?‘;O [Im (z;)| converge.
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Proof. Recalling that |Re (z,)| < |z,| and [Im (z,)| < |z,| for all n, we find that the
lemma holds by the comparison test if Z;io |z;j| converges. The converse follows
from the fact that

20| < IRe (za)| + [Im (z,)]

for all n, by the triangle inequality. O

Theorem 3.12.2. Let {z,} be a sequence (not necessarily real). If Z?‘;o |zj1
converges, then so does Z?‘io Zj.

Proof. Inview of Lemma 3.12.1, we may assume that each z, is real. Thus we write
X, = z, for each n. Certainly,

0 < x, + |xa] < 2|x,]

for each . Given that 372, |x;| converges, so does

o0
>+ 1x50),
=0

by the comparison test. As

o0 o0 o0
PRI B CTR LT BT
J=0 J=0 j=0

by Theorem 3.3.1, the result follows. O

Remark. The converse of the theorem above is not always true. For example, the
alternating series

— (—1)/
2 j
j=1

converges by Leibniz’s test, but the harmonic series diverges.

A series Z?‘;o Z; is said to be absolutely convergent if Z?‘;o |z;| converges.
Thus every absolutely convergent series does in fact converge, according to
Theorem 3.12.2. A series that is convergent but not absolutely is said to be
conditionally convergent.

Example 3.12.1. The series

i
>
=t/
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is absolutely convergent since the series

>

Jj=1

21
:;j_z

l ./
w2
J
converges. A

Example 3.12.2. Test the series

Solution. Note that the series

converges by the ratio test, since

n+1 2" n+1 1
C— = —
ntlp 2n

- < 1.
2

Hence the given series converges absolutely. A

The work in this example suggests that the ratio test can be extended to series
whose terms are not necessarily positive or even real. In fact, we can prove the
following theorem.

Theorem 3.12.3 (Generalized Ratio Test). Let Z;OZO zj be a series (not neces-

sarily real) and suppose that

Zn+1
Zn

lim

n—oo

=L

for some number L. Then the series converges absolutely if L. < 1 but diverges
if L > 1.

Proof. If L < 1, then the series Z?OZO |zj| converges by the ratio test, and so
the given series is absolutely convergent. If L > 1, then, arguing as in the proof
of the ratio test, we see that the sequence {|z,|} cannot converge to 0. Hence the
sequence {z,} cannot converge to O either. Thus the given series fails the nth term
test and therefore cannot converge. O

There is also a generalized root test, which has a similar proof.
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Theorem 3.12.4 (Generalized Root Test). Let Z?’;O zj be a series and let
lim |z,]'" = L
n—>o00

for some number L. Then the series converges absolutely if L < 1 but diverges if
L>1.

Proof. If L < 1, then the series is absolutely convergent by the root test. If L > 1,
then, as in the proof of the root test, the sequence {z,} cannot converge to 0. O

Theorem 3.12.5. Let {x,} and {y,} be real sequences, and suppose that = =0 j

and Y72 i=0 y? ; converge. Then the series > j=0XjY; is absolutely convergent.

Proof. Note first that
(Ix;l =1y D*=0

for all j. Hence

1
E(xf + 7)) = |xyjl-

The result now follows from the comparison test. O

Exercises 3.11. 1. Use Cauchy’s principle to prove that if a complex series is
absolutely convergent, then it is convergent.
2. (a) Show thatif > %2 ;=0 X; converges absolutely, then so does 3%
(b) Is the converse true?
(c) Isit true that if )72 x; converges, then so does 72, x7?
3. Show that if Z;”;O z; and Z?OZO w; are absolutely convergent complex series,
then so are Z?‘;o zjw; and Z;’io(azj + Bw;) for all complex numbers « and .
4. Show that if Z?’;O z; is an absolutely convergent complex series, then

10/

o o0
ZZ/‘ SZ|Z/|'
j=0 j=0

5. Test the following series for absolute convergence and conditional conver-
gence:

1)j+1

@ Zf =2 / Vi A

®) 52017 ($2) 5

© Y5200 + 1) (555)’ forall real x # —2;
(@) L5211

© Y52, 4
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3.13 Rearrangements of Series

The notion of a conditionally convergent series was introduced in the previous
section. Part of the reason for this terminology is an unpleasant and perhaps
counterintuitive property: The convergence turns out to depend on the order in
which the terms of the series are written. In fact, we have the following remarkable
theorem, due to Riemann.

Theorem 3.13.1 (Riemann). For each conditionally convergent real series and
given number S, the terms of the series may be rearranged to yield a series that
converges to S. There is also a rearrangement of the terms so that the resulting
series diverges.

Before proving Theorem 3.13.1, we make some important observations. Given a
real sequence {a, }, let us define two new sequences { P, } and {Q,}, where

and
a,| —a,
0, = % (3.13)

for all n. Thus, if ¢, > 0, then P, = a, = l|a,| and Q, = 0, butif a, < 0,
then P, = 0 and Q, = —a, = |a,|. We can therefore think of Z;’il P;
and — Z?ozl Q; as the series composed of the nonnegative and negative terms,
respectively, of the series Y72 | a;. It is easy to see that if Y72 | a; is conditionally
convergent, then both Z‘IX’ZI P; and Z_‘;ozl Q; diverge. Indeed, we have

la,| = 2P, —a,

for all n, and so if Z;’o:l P; were to converge, then it follows from Theorem 3.3.1
that Z;’il |a ;| would converge. This conclusion would contradict the conditional
convergence of Z;’il a ;. The proof that Z;’ozl Q diverges is similar.

Note also that if n > 1 and x1, x5, . .., x,, are numbers such that

n—1
D% =S,
j=1

then

n n—1
ij—S=xn+ij—S§xn. (3.14)
j=1

j=1
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Similarly, if
n—1
PIEERE
j=1

then

n n—1
S—ijzS—ij—xnf—xn. (3.15)
ji=1 ji=1

The proof of the theorem involves some technical details, but the idea is simple.
From the terms of the series Zi’;l a;, we construct a series converging to S
as follows. First, we take just enough positive terms to obtain a partial sum that
exceeds S. Next, we throw in just enough negative terms to produce a partial sum
below S. Then we add some more positive terms, just enough to bring the partial
sum above S once more. We continue in this fashion, so that the partial sums
oscillate about S. The resulting series converges to S.

Proof of Theorem 3.13.1. Let us first try to use the terms of a conditionally conver-
gent series Zj‘;l a; to construct a series that converges to §. For all n > 0 define
P, and Q, as in (3.12) and (3.13), respectively. Let M, be the smallest positive
integer such that

M,
ZP]' > S.
j=1

Certainly M, exists: The sequence {Z;;l P;} is nondecreasing and therefore
cannot be bounded above since it diverges. Next let N; be the smallest positive
integer such that

M, N
Sh =30 <s:
j=1 j=1

N, also exists since Zj’;l 0 diverges. In fact, the choice of N shows that
N1—1

M,
Y Pi—-) 0,=5S;
j=1 j=1

hence

M, N
0<S—[>_P=) 0, | ==(-0n) =0,

Jj=1 Jj=1

by (3.15).
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Continuing by induction, suppose that n > 0 and that
Ml’MZ»"'»MVMNl)NZ»"'»Nn

have been defined so that

0<S§S—-T, <0n,. (3.16)
where
n—1 M+ Ni+1
=X 2 P— > Q
k=0 \j=M;+1 J=Np+1

and My = Ny = 0. Continue by letting M, 4 be the smallest integer greater than
M, such that

My
T,+ Y P >S5

Jj=M,+1

and letting N, be the smallest integer greater than N, such that

n+l n+1
n+l - Tn + Z P - Z Qj < S
j=M,+1 j=N,+1

both M, 4+ and N, 4 exist. The choice of N, implies that

n+1 Nn+1 1
T,+ Y, Pi— > 0;=8
J=Mp+1 J=Ny+1
so that
0< S_Tn—H < QNn+l’
by (3.15).

We must show that the resulting series converges to S. This goal is achieved by
studying the partial sum 7, and those between T, and T,+;. From the choice of
M, 4+, and inequalities (3.16) it follows that

0<S-T,— >  P;<Qy, (3.17)
j=M,+1
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for each m such that M,, < m < M, 1y, since P; > 0 forall j. Moreover the choice
of M, 4+ also shows that

Mn+l
0<T,+ Y. Pj—S<Py,,. (3.18)
J=My+1
by (3.14), whence
Mn-‘rl m
0<T,+ Y, Pi— > Q;—S<Puy,, (3.19)
Jj=M,+1 J=Ny+1

for all m such that N, < m < N,4+;. From (3.16-3.19) we find that the partial sums
in question all differ from S by an amount no greater than

maX{PMn+l ’ QN" }

But the sequence {a, } converges to 0 by the convergence of Z?ozl aj.Hence {|a,|}
also converges to 0 and therefore so do its subsequences { Py, .} and {Qy,}, as
required.

It’s easier to construct a divergent series from the terms of the series Z?ozl aj.
Defining P, and Q, as before, let K; be the smallest positive integer such that

K,
> Pi-01>1
j=1

Suppose that K, K>, ..., K, have been defined for some positive integer n so that
n—1 Kj+1
2| 2 PO >
k=0 \ j=Ki+1

where Ky = 0. Let K, be the smallest integer greater than K, such that

n Ki+1

Z Z Pi— Q1| >n+1.

k=0 \ j=Ki+1

The series defined inductively by this procedure diverges. O

By contrast, Dirichlet proved that an absolutely convergent series converges to
the same number regardless of the order in which the terms are written. In order to
make the discussion rigorous, let us first introduce the following definition.
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Definition 3.13.1. Let {k,} be a sequence of nonnegative integers in which each
nonnegative integer appears exactly once. Then the sequence {ay, } is a rearrange-
ment of a sequence {a, } and the series Z?O:o ag; is a rearrangement of the series

Z?‘io aj.

Theorem 3.13.2 (Dirichlet). All rearrangements of an absolutely convergent
series are absolutely convergent and converge to the same number.

Proof. Let Z‘;":O w; be a rearrangement of an absolutely convergent series
> 720z Foralln € N write

n
Su=2_%:
j=0
n
Sr=_lzl,
j=0

n
Tn= E Wi,
=0

and
n
Ty =" |wil
=0

Every convergent sequence is bounded, and so there exists M such that S, < M
for all n. As Z?’;O |w;| is a rearrangement of Z?io |z;|, we also have T, < M for

all n. Hence Z?‘;o w; is absolutely convergent.
Let

o0
S = ZZJ‘
j=0
and

(o]
T = ij'
j=0

It remains only to show that S = T'. Choose ¢ > 0. We can find N such that
IS — Syl <e
and

/ /
S,—S, <e¢
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whenever m > n > N.Fixn > N and choose p large enough so that

T, —T|<e¢
and the sum 7, includes zo, z1, . . ., 7, among its terms. Now choose m > n so large
that every term of T, is also a term of S,,. Thus S,, — T, is a summation whose
terms form a subset of {z,+1, Zu+2, - - - » Zm }» SO that

|Sm - Tp| 5 S,; _S,;

<e.
Hence
IS =TI < IS = Sul + |Sn = T,| + 1T, = T|
< 3e.
Since ¢ is arbitrary, we conclude that S = T, as required. O

3.14 Products of Series

In order to understand products of series, we must first carefully consider the
process of multiplying finite sums. Suppose that a,,, apy1,...,8,,bp, bpy1, ..., by
are numbers and we wish to form the product

n q
Dlai | 1D b |- (3.20)
j=m k=p

In fact, this product may be written without the parentheses, as we now show. Using
the distributive law (1.17) twice, first with s = Z G=mdj and then with s = by,
gives

n q
Yol (Ln]=% Yo
j=m k=p
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aobo a0b1 aobg aobq,1 aobq
7 Ve Ve

a1b0 albl albg leq_l albq
7 7 Ve

a2b0 agbl agbg agbq_l a2bq

anflbO anflbl an71b2 anflbqfl anflbq

7 / /

anbo anby anbo aanfl aan

Fig. 3.2 The terms of (3 _,, a;)(3_{_, bx)

As multiplication is commutative, we conclude that

q n
2D ah

k=pj=m

q n
Db || 2w
k=p j=m
n q

Z Zajbk.

Jj=mk=p
It now follows that
n

2.4

j=m

n q
=22 abh

Jj=mk=p

n q
=2 |@ 2 b
j=m k=p

q
Db
k=p

=

q
IS
j=m  k=p

3 Series

where the penultimate line was obtained by another application of distributivity.

In order to understand better how to evaluate the expression (3.20), let us begin by
considering the case where m = p = 0. Basically, the product (3.20) is calculated
by adding up the products of the form a; by for all relevant j and k. In other words,
we simply add all the entries in Fig.3.2. In the calculation above, the terms a by
are ordered so that all those containing a are listed first, then all those containing
ay, and so forth. In other words, the entries of the figure are added row by row. The

sum of the entries in the (j + 1)throwisa; Y 7_, bx.
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However, there is another way of performing this calculation which is of some
importance. Let us assume first that n = g, so that Fig.3.2 gives a square array.
Instead of ordering the terms in Fig. 3.2 row by row, we may order them as indicated
by the arrows. In other words, we begin with the term ayby in the top left corner,
followed by the terms in the diagonal from ayb; to a,by, then those in the diagonal
from apb; to a,by, and so on, up to and including the diagonal that contains agb, =
aob,, the entry in the top right corner. As the array is assumed to be square, this
diagonal also contains a, by. We then continue with the diagonal from a5, to a, b,
then that from a,b, to a,b,, and so on. The last diagonal consists only of the term
anby. In each diagonal the sum of the subscripts is a constant between 0 and 2n
(inclusive), and this constant is different from the corresponding constant for each
other diagonal. For the diagonal where this constant is ¢, the sum of the terms in the
diagonal is

t
§ aSbt—S9
s=0

provided we agree that a;, = 0 whenever s > n and b,_; = 0 whenever t — s > n.
With this understanding, we conclude that

2n t
Zaj Zbk = Zza‘vbt—s-
j=0 k=0

t=0 s=0

If n > ¢, then we may set by = 0 for all k > ¢ and apply the result of the
calculation above. Similarly, if n < g, then we set a; = 0 for all j > n. In both
cases we reach the conclusion that

n+q t

Zaj Zbk - Zzasbt—s,
j=0 k=0

t=0 s=0

since agb;—y = 0 whenevert = s + (t —s) > n + ¢. In general,

n—m

Za/ Zbk = Za/+m Zbk-i-p
j=m

j=0

n—m+q—p t

Z Zas+mbt—s+p-
t=0 s=0

Settingv = s +m and u =t + m + p, we therefore obtain

n+q u—p
E a; E bk - Z E avbu—v»
j=m u=m-+p v=m

sincet +p—s=u—m—s=u—0.
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Using Eq.(1.15), we may summarize the result of this calculation in the
following theorem.

Theorem 3.14.1. For integers m,n, p,q such that m < n and p < ¢, we have

n+q j=p
za,m— > > abi,
j=m j=m+pk=m

where a; = 0 foralll > n and by = 0 for alll > q. In particular,

n+q j

Za] Zbk =Y "> abj.
Jj=0 k=0

J=0k=0

for all nonnegative integers n and q.

We now turn our attention to the multiplication of absolutely convergent series
o
A= Z a;
Jj=0

and

Thus we need to find the sum of all products of the form a;b; for nonnegative
integers j and k. This sum may be written as the series

Z (Za,bk + Zalb ) (3.21)

j=0 \k=0
= aobo + Cllbo +ab; + Clob] + a2b0 + aby + arbr + Clobz +ab, +---

For each nonnegative integer n let 4,, B,, S, be the nth partial sums of A, B, and
the series (3.21), respectively. Thus,

n—1

An = Zaj
j=0

and
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The product A, B, has n? terms, and it follows that
S,2 = A, B,.

For each nonnegative integer n let 7, be the sum of the absolute values of the
first n terms of series (3.21). Since A and B are absolutely convergent, we find that

YL = 7}2

n—1 n—1
= _la;1 ) 1bjl
Jj=0 J=0

[e.]

o0
< la;l Y 1bjl-
j=0

Jj=0

Thus the series (3.21) converges absolutely. Since {S,2} is a subsequence of {S,},
we find that

00 J J=1
(Z ajby + Za;b_,) llm Sy
=0

j=0 \k=0

= lim S,
n—o00

= lim A4,B,

n—>0o0

= AB.

Because of the absolute convergence of this series, Dirichlet’s theorem shows that
every rearrangement must also converge absolutely to AB. We have now proved the
following theorem.

Theorem 3.14.2. If Z?OZO aj and Zj’io b; converge absolutely to A and B,
respectively, then

oo

Zzakbj_k = AB

j=0k=0

and the convergence is absolute.

3.15 Introduction to Power Series

A power series in a variable z is defined as a series of the form

> ejz—c), (3.22)
j=0
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where ¢, cg, ¢y, ... are constants, not necessarily real. Throughout this discussion
we shall take 0° to be 1. Thus the first term of the power series is co. We refer to ¢
as the center of the power series.

Each term of a power series is therefore a function of z. Series of functions played
a major role in the development of analysis in the nineteenth century. Their study
was a driving force behind the development of a satisfactory standard of rigor. The
general theory of series of functions is by no means simple.

Our first task is to find all z for which the power series converges. Often the ratio
test is very useful. Let us try some examples.

Example 3.15.1. Discuss the convergence of the series
. 2 b
o U+D

where x is a real variable.
Solution. Certainly the series converges if x = 0. Suppose x # 0. Setting

nx"
a, = ———
T (n+1)?

for all n > 0, we find that

anpr1| _ A+ DX" (n 4 1)
a | (n+2)? nlx|"
(n+1)3
= —— x|
nn+2)

— |x]

as n — oo. Hence the series converges absolutely if [x| < 1.If |x| > 1, then there
exists N such that |a, 41| > |a,| foralln > N. Thus the series fails the nth-term test
and therefore diverges. (If x is not real, it is also immediate from these arguments
that the series converges absolutely if |x| < 1 and diverges if |x| > 1.)

It remains to check the cases where x = =+1. With x = —1, we obtain the
alternating series

SR
; G+D*

whose convergence has already been confirmed in Example 3.10.1.
Suppose therefore that x = 1. Then the series becomes

= J
;(HI)Z'
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We use the limit comparison test, comparing this series with the harmonic series.
Putting @, = n/(n + 1)?> and b, = 1/n for all n > 0, we find that

an I’lz

= — 1
b, (n+1)2_)

as n — oo. Hence a, ~ b, and our series diverges by the limit comparison test.
We conclude that the given series converges if and only if —1 < x < 1. The
convergence is absolute if |x| < 1 but not if x = —1. A

Example 3.15.2. Test the series
oo
Z jlz=1).
j=0

Solution. The series converges if z = 1. Suppose z # 1. Then for all n > 0 we

have
n+1n+lz_1n+l n+1n
( L ) =m+D|——) |z—1]
n"(z—1)" n
> (n+1)|z—1|
— 00
as n — oo. Hence the series converges if and only if z = 1. A

Example 3.15.3. Consider the series
o
>
=
The series converges if z = 0. If 7 # 0, then

n+1

n n|z|

_n+1

Z
n+1 z”

— |z

as n — o0o. Hence the series converges absolutely by the ratio test if |z] < 1 and
diverges by the nth-term test if |z| > 1. We have already seen in Example 3.11.1
that the series converges if |z| = 1 and z # 1. If z = 1, then the series is harmonic
and therefore diverges. A

Example 3.15.4. We have already seen in Theorem 2.7.6 that the series

[e.]

converges to e* for all real x. A
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Our next theorem shows that there are three possibilities: The power series (3.22)
converges absolutely for all z; it converges only when z = c¢; or there exists a
positive number r such that the power series converges absolutely if |z —¢| < r
and diverges if |z — ¢| > r. The number r in the third case is called the radius of
convergence of the power series. We write 7 = 0 in the second case, and in the
first case we say that the power series has an infinite radius of convergence. Thus
every power series in a real variable has associated with it an interval on which it
converges (provided we consider each real number to constitute an interval and the
set R of all real numbers also to be an interval). This interval is called the interval
of convergence of the power series. In our four examples above, the respective
intervals of convergence are [—1,1), {1}, [-1, 1), and R. Similarly, a power series
in a complex variable has associated with it a circle of convergence in the interior
of which the power series is absolutely convergent and in the exterior of which it
diverges.

But we are getting ahead of ourselves. The result referred to in the previous
paragraph still needs to be proved. First, though, observe that we can simplify the
expression (3.22) by substituting w = z — c¢. This change of variable shows that
there is no loss of generality in assuming that ¢ = 0.

Theorem 3.15.1. For the power series Zjio a ij one of the following possibilities
must hold:

1. the series converges only when 7 = 0;

2. the series is absolutely convergent for all z;

3. there exists r > 0 such that the series converges absolutely whenever |z| < r and
diverges whenever |z| > r.

Proof. Certainly the power series converges when z = 0. We may also choose a
particular w # 0 for which it converges, for if no such w exists, then possibility (1)
obtains.

We show first that

oo
> a; (3.23)
j=0
converges absolutely for each z such that |z| < |w|. Since
o0
2
j=0
converges, it follows that

lim |a,w"| = 0.
n—oo
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Thus the sequence {|a,w"|} is bounded above by some number M. Therefore

1 n Zn
la,2"| = |a,W'| | —| <M |—| .
w

But |z/w| < 1, and so the series
> ml|
= "
converges. Hence

o0
> laj|
j=0

also converges, by the comparison test.

173

One conclusion to be drawn is that if the series (3.23) converges for all z, then it
converges absolutely for all z, because for every z there exists w, of modulus greater
than |z|, for which the series converges. In this case possibility (2) holds. We may
therefore suppose that there exists zo for which (3.23) diverges. The series must then
diverge for every wy such that |wg| > |zo|. Therefore the set of moduli of all z such
that (3.23) converges is bounded above by |zy|, and since it contains 0, it must have
a supremum, r. The series therefore converges absolutely for all z such that |z| < r
(because there exists w for which |z| < |w| < r and for which the series converges)

and diverges for all z such that |z| > r by the definition of r.
Example 3.15.5. Find the radius of convergence for the power series

(e ¢]

2+ (=i)
2
=7
Solution. Set
2+ (-0)" ,
ap = ——5——2
n

foreach n > 0. If |z| < 1, then |a,| < 3/n?. Since

00
3

>

J=1

J

ad

converges, the given series is absolutely convergent by the comparison test. Suppose

therefore that |z| > 1. Since
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for all n > 0, it follows from Example 2.5.5 that the sequence {a,} does
not converge to 0 and the given series therefore diverges. Hence the radius of
convergence is 1.

Note that the ratio test could not have been applied in this example, since

ap+1
[25%

lim
n—>o0

does not exist. A

We conclude this section with some simple observations about the addition and
multiplication of power series. Given numbers s and ¢ and convergent power series
> Gepa;z/ and 372, b;z/, Theorem 3.3.1 shows that

o0 o0 o0
sZajz’ +thjZ] = Z(sasz +1tb;7’)
j=0 j=0

Jj=0

° .
= Z(saj +1tbj)z’.

j=0
Similarly, Theorem 3.14.2 gives

%) 0 oo J
Sad Sobd = 3D by
Jj=0 Jj=0

j=0k=0
oo J

=3 Y
j=0k=0

Exercises 3.12. 1. Consider the power series Zj’;o cj(z— )/, where ¢ ; # 0 for
all j.

(a) If

prove that the radius of convergence of the series is 1/L (take 1/L = oo if
L=0and 1/L =0if L = 00).
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(b) If

lim |c,|V/" = L,
n—>oo

prove that the radius of convergence of the series is 1/L.

2. Let the radii of convergence of

o0 00 00
Zajzj,ijzj,Z(aj + bj)Zj
=0 =0 =0

be Ry, Ry, R, respectively.

(a) Show thatif R; # R, then R = min{R], R,}.
(b) Give an example with the property that R > R} = R,.

W

. Can the power series Y7 ¢;(z — 2)/ converge at 0 but diverge at 3?
4. For each of the following series find all real x for which the series converges:

@ YOI B T (mer o) X
b X5 2 @ X5 h
(©) Z?"_o(—1>f‘572.§,; (h) Y32 (~1) ke

o (V. - o0 i 3
@ X5 gy O 275 gang s
X/ . . xJ
© 25 O XL
5. For each of the following series find all complex z for which the series converges:
@ Y5, (@ Y32,
b) Y52, O X5 (=) -0

© Y2HGc-0 @ T
@ Y76+ (D).

6. Find the radius of convergence of the series Z?OZO a;z/, where a; = 1 and
azjy1 = 2forall j > 0.
3.16 The Exponential, Sine, and Cosine Functions

We now use the work of the previous section to generalize our earlier results
concerning the exponential function. Recall that, for real x,

=25
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by Theorem 2.7.6. More generally, for every complex z let us define
=

noting that the series converges absolutely by the ratio test, since

Zn+1 n!

CEENEa

Z
n+1

‘—>O.

With this definition it is easily seen that parts (2) and (3) of Theorem 2.7.10 are valid
also for complex sequences. In addition, we define exp(z) = e° for all z € C, and
refer to exp as the exponential function.

Because of the absolute convergence of the series for e?, we may apply
Theorem 3.14.2 to prove that

|
|'M8
i M\
5 N
3

Al
]=0J' k=0
_ i (w+ z)/
= I
— ew+z

for all complex numbers w and z. This result generalizes Theorem 2.7.9. It follows
by an easy induction that

(eZ)n — eﬂZ

for every positive integer 7.
Now suppose that z = ix for some real x. Then

2+
_Z(( n3 2 )v +i=1)’ (2);+1)!)‘ (3:24)

Jj=0
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Let cos(x) = Re () and sin(x) = Im (e*). It follows from Theorem 2.3.11 that

00 ; 2
cos(x) = ;}(—1) )

and

2]+1

sin) = Y1) S S

j=0

for all real x, and the convergence of these power series is absolute. (See also
Example 3.7.2.) Thus

e™ = cos(x) + i sin(x)

for all real x. We refer to cos and sin as the cosine and sine functions, respectively.
They will be given a geometric interpretation later.

We may generalize the definitions of the sine and cosine functions to complex
numbers. Thus

- N Al
B Z;((_ Yam T & 1)!)

= cos(z) + i sin(z),

where

o0 ) Z2

and

2/+1

sin(z) = Z( ),(2 O

for all complex numbers z. Both series are absolutely convergent.
It is clear from the definition that sin(0) = 0, but cos(0) = 1 by the convention
that 0° = 1. It is also immediate that
sin(—z) = —sin(z)

and

cos(—z) = cos(z)
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for all z. We define

sin(z)
cos(z)

tan(z) =

for all z for which cos(z) # 0. The function so defined is called the tangent function.

Given a real- or complex-valued function f, let g be the function defined by

1

glz) = m

for all z such that f(z) is defined and nonzero. The function g is called the
reciprocal of f. The sine, cosine, and tangent functions and their reciprocals are
said to be trigonometric. The reciprocals of the sine, cosine, and tangent functions
are called the cosecant, secant, and cotangent functions, respectively. They are
denoted, respectively, by csc, sec, and cot. The parentheses around the arguments of
the trigonometric functions are usually omitted.

Since

e =cosz+isinzg
for all z, we also have

e~ =cosz—1isinz.
Thus e” + e = 2 cos z, and so

eiz + e—iz eZiz + 1

cosz = = .
2 ek
Similarly,
eiz _ e—iz eZiz -1
sing = - = —
2i 2ie"*
For instance, if x is real, then
. X + e—X
CoS ix =
2
and
e —e* i(e*—e™)
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since —i% = 1. Moreover
(eZiw _ 1)(62iz + 1) N (eZiw + 1)(62iz _ 1)
4ije™eiz 4jeeiz

eZi(w+Z) + e2iw _ p2iz _ | 4 eZi(w-l—Z) — p2iw + ediz _ 1

sinwcosz + coswsinz =

4l~ei (w+2)
621'(w+z) -1
2iei (w+z)

= sin(w + z) (3:25)
and

. ) (eZiw + 1)(821'1 + 1) (e2iw _ 1)(621'1 _ 1)
COSWCOSZ—SIwsSinzg = —

4eiweiz _4eiweiz
B eZi(w+z) + 2w + o2z +14+ e2i(w+z) — e2iw _ p2iz +1
- 4ei(w+z)
B eZi(w+z) +1
T 2eivtr)
= cos(w + 2) (3.26)

for all complex numbers w and z. Thus
sin2z = sinzcosz + coszsinz = 2sinzcosz
and, similarly,
cos 2z = cos’>z —sin’ z.

It also follows by induction that if sinz = 0, then sinnz = 0 for every n € N, for if
this equation holds for a particular n € N, then

sin((n + 1)z) = sin(nz + 2)

sinnzcosz + cosnzsinz

=0.

Furthermore

1 = cos0 = cos(z — z) = coszcos(—z) — sinzsin(—z) = cos’ z + sin’z
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for all z. If x is a real number, we infer that
|sinx| <1
and
|cosx| < 1.
In any case we also have
cos2z = cos’z — (1 —cos’z) = 2cos’z — 1;

hence

1 + cos2z

2
cos“z =
2

In addition,

le?| = Vcos?z + sin’z = 1.
Thus e # 0, and it follows that % # 0 for each z € C. Notice, however, that

x_efx|

| sinix| =
2

We therefore infer from Theorem 2.7.10(1) that the function |sinz| is unbounded.
Similarly, | cos z| is unbounded.

Note that if z = x + iy, where x and y are real, then

sinz = sin(x + iy)

= sinx cos iy 4 cos x sin iy
1 i ,
= E(ey + e Y)sinx + E(ey —e Y)cosx.
Similarly,
1 _ i Coe .
cosz = E(ey + e 7)cosx — E(ey —e ) sinx.
If w and z are numbers such that tan wtanz = 1, then cos wcos z # 0 and

sinw sinz

CoOSw COSZ



3.16 The Exponential, Sine, and Cosine Functions 181

so that
sinwsinz = cos wcos z,
whence
cos(w + z) = coswcosz —sinwsinz = 0.
Conversely, if cos(w + z) = 0 # coswcosz, then tanwtanz = 1. If neither

cos w cos z nor cos(w + z) is equal to 0, then

sin(w + z)

1 =
an(w + z) cos(v 1 2)

sinwcos z + coswsinz

COS W COSs z — Sinwsin z

sin wcos z+coswsinz

___cosweosz

€Os WCos Z—sinwsinz
COS WCOS Z

tanw + tanzg
l —tanwtanz

In particular, if tan z is defined and | tanz| # 1, then

tan?2 2tanz
an2z = ———.
¢ 1 —tan?z
Note also that
tan(—z) = M = —tanz.
cos(—z)
Proposition 3.16.1. 1. If x > 0, then
sinx < x. (3.27)
2. If x € R, then
x2 2 4
]—— < <l—-—=4+ —. 3.28
5 = cosx < 7 + 7 ( )

Proof. 1. We may assume that x < 1 since sinx < 1 for all real x. Then the
sequence {x*"*1/(2n 4 1)!} is decreasing, and we may invoke inequality (3.10)
in the proof of Theorem 3.10.2, with n = 0, to conclude that sinx < x.

2. We may assume that x > 0, since cos(—x) = cos x for all x and cos0 = 1.
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In regard to the first inequality, we may assume also that x < 2,ascosx > —1
for all real x. Then the sequence {x>"/(2n)!},> is decreasing, since

x2nt2 (2n)! B x2

whenn > 1 and 0 < x < 2. Consequently,

cosx —1 = i(—l)j

Jj=1

0 2j
= it
2055

Jj=1

x%
)

2j+42

:_oo i
;( )(2j+2)!

2__

< ! <1
@n+1! x  @2n+2)2n+1) 3

again using inequality (3.10) with n = 0. The first of the required inequalities

follows.

For the second inequality we may assume that x < 2+/3, since cosx < 1.
The sequence {x?"/(2n)!},> is still decreasing, and we may appeal to

Theorem 3.10.2 to conclude that

2

2

~

0<cosx—1+ <

2]

ad

For ease of reference, in the following theorem we summarize some of the more
important results we have proved.

Theorem 3.16.2. Let w and z be complex numbers. Then

o NS A BN~

iz —iz
cosz = %

)iz iz

sing = ¢ 5>

sin(w + z) = sinwcosz + coswsinz,

cos(w + z) = coswcosz — sinwsinz,

tan(w + z) = % if coswcoszcos(w + z) # 0,
sin2z = 2sinzcosz,

cos2z = cos?z — sin z,

tan2z = lit;';§z if coszcos 2z # 0,
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9. cos’z +sin’z = 1,
10. COSZZ — 1+(:20522,

11. |e%] = 1.
In addition, if x is real, then |sinx| < 1 and |cos x| < 1.

Example 3.16.1. Since

1

= p

sinn

np?

foralln € Nand p € Q, the comparison test shows that the series

o0 . .
sin j

> = (3.29)
J p

j=1

is absolutely convergent if p > 1. We now prove that it is conditionally convergent
when 0 < p < 1.
We showed in Example 3.11.1 that

o

=g

(3.30)

converges for each p > 0 and each z # 1 such that |z| = 1. In particular, if
z=¢ =cosl+isinl,
then |z] = 1 and z # 1 since cos 1 # 1. [If cos 1 = 1, then

|sinl] = v/1—cos?21 =0.

However, sin 1 > 0 by the remark following Theorem 3.10.2, as the sequence

1
% 2n + 1)!%
is decreasing.] Therefore the series (3.30) converges for this z, and since
n in

7' =e'" =cosn +isinn,

it follows by Theorem 3.3.2 that the series (3.29) converges.
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It remains to show that this series is not absolutely convergent if 0 < p < 1. As

sinn

npP

sinn

n

whenever 0 < p < 1, the comparison test shows that it is enough to establish the
divergence of

o0 . .
Z | sin j |
=

For each n > 0 let us write

[sinn|  a, + by
n 2

where

_|sinn| —[sin(n — 1)|
y =
n

and

|sinn| + |sin(n — 1)|
by = .

n

It suffices to show that )72, a; converges and )72, b; diverges.
In regard to the former series, define

u, = |sinn| —|sin(n — 1)]

and

1
vy = —
n

for each n > 0. Then {v, } is a decreasing null sequence. Moreover

D uj| =D (Isinj| —|sin(j — D))
j=1

J=1
= |sinn|

1

IA

for all n > 0, by the telescoping property. We conclude from Dirichlet’s test that

Y4,
j=1 a; converges.
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In order to verify the divergence of Z?il b, note first that for all real numbers
a and 8 we have
| sin(oe — B)| = | sina cos § — cos « sin B
< |sina|| cos B| + | cos «| sin B

< |sina| + | sin B|.
Therefore
sinl = |sinl] = |sin(n — (n — 1))| < |sinn| + |sin(n — 1)|.
Consequently,

in 1
sin >0

by =
n

for all n > 0, and the series Z?ozl b; diverges by comparison with the harmonic
series. A

Example 3.16.2. Consider the series
o0

Z sin jx

=

for any x € R. It converges to O if sin(x/2) = 0. Suppose therefore that
sin(x/2) # 0. The trigonometric identity (3.26) implies that

(x+) X . LoX L
COS | — = COS — COS — S1n — S1in
y T 7 CO* o S
and
<x ) X osint sin sind
COS|{— —JX) = COS —COSJXx Sin — S1n JXx;
2 7 €%/ 2 S

hence

2 X ., (X . ) (x +i )
sin — s =cos|{= —jx)—cos|= .
1n2 injx > Jx > Jx
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cor (5 ) =eos ((3-7))
~((-3))
—eon((0-n+2)).

> (cos (; — jx) = cos (g +¥))
_ ; (cos (G -1+ 5)x) =eos ((7+3)))
- cos%—cos((’l + %)x)€

i .. cosj —cos((n+ Dx)
sinjx = —
2sin 7

it follows that

M=

~

hence

=1

for all n € N, since sin(x/2) # 0. Consequently,

[cos 3| + [cos ((n + 3) x)|
2|sin§’

A

n
E sin jx
j=1

1

sin

=

3 Series

Dirichlet’s test therefore implies that the series converges. (In fact, the previous

example shows that it is conditionally convergent if x = 1.)

A

Example 3.16.3. Let {a,} be a null sequence of real numbers. We show that

. sina,
lim =1.
n—>oo dy
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From the definition we have

oo
sindy Z—)/ = 1+aR

for all n, where

2]1

For= Z( VG o Qi+ D

Since {a,} is convergent, there is an M such that |a,| < M for all n. Hence

) i
R,| < —_—
Rl ; 2j + 1!
o M1
=< YCY BTy
o @i=D
o0 M2/+l
< eM.
Thus
lim 2 _ 1 4 lim a,R, = 1.
n—>o00  dy, n—00

Exercises 3.13. 1. If # and v are any complex numbers, prove that

u+v . u—v
sin
2

sinu — sinv = 2cos

and

u+v . u—v
sin

cosu —Ccosv = —2sin

Hence show that

2sina sin B = cos(a + B) — cos(a — B)
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and
2cosa sin f = sin(x + B) — sin(a — B)

for all real numbers « and 8.
2. Use the inequality

1

sin

n
E sin j| <
Jj=1

for all n € N, to verify the convergence of series (3.29) for all rational p > 0.
3. Prove that if {a,} is a decreasing null sequence, then

o
E ajsin j
Jj=1

and

oo
E ajcos j
j=1

converge.
4. Let {a,} be a null sequence of real numbers. Show that

lim cosa, =1
n—>o00

and
. tana,
lim =
n—o00  a,

5. The functions given by

sinhx = —¢
2
and
X —X
coshx = i,
2

for each x, are called the hyperbolic sine and hyperbolic cosine functions,
respectively.
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(a) Show that
cosh? x —sinh? x = 1
for all x.
(b) Letz = x + iy, where x and y are real.
i. Prove the following:

A. sinz = sinx cosh y + i sinh y cos x.
B. |sinh y| < |sinz| < |cosh y|.
C. |sinz|> = sin® x + sinh? y.

ii. For every ¢ € R, show that the function f(z) = sinz maps the line y = ¢
to an ellipse and the line x = ¢ to a hyperbola.

6. Express sini and cosi in the form x + iy where x and y are real.
7. Find the sum

[o.¢]

(Hint: Rewrite it as a telescoping series.)
8. Determine the convergence of
St 1
Z 1—cos—|.

j=1 J

(Hint: Write each term in terms of the sine function.)
9. Show that | cos z| is unbounded, where z € C.



Chapter 4
Limits of Functions

The concept of a limit of a function is central to the study of mathematical analysis.
It generalizes the notion of the limit of a sequence (a function whose domain is a
set of integers). Indeed, the former can be defined in terms of the latter. Unless an
indication to the contrary is given or it is evident that a restriction to real numbers
is required, the domain and range of a given function are assumed to be sets of
complex numbers.

4.1 Introduction

We start by looking at an example. Consider the real functions f, g, h given by

2x% —2x

f) =g) =hx) = ——

forall x # 1, g(1) = 1, and 2(1) = 2 (see Fig.4.1). Thus Dy = R — {1} and
Dy = D; = R. Foreach x # 1,

fx)=gx)=h(x) = %

= 2Xx.

Let us first contemplate the function f. As x becomes close to 1, f(x) becomes
close to 2 provided that x # 1. More formally, we say that the limit of f, as x
approaches 1, is 2. In this case we write

lim f(x) = 2.

Likewise lim,—; g(x) = 2 and lim,_,; 2(x) = 2; the values of these functions at 1
are immaterial.

© Springer Science+Business Media New York 2015 191
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X

A 4

Fig. 4.1 Graphs of f, g and h

Roughly speaking, we can ensure that the distance between f(x) and 2 is as
small as we please by choosing x close enough to 1 but distinct from 1. In other
words, given any sequence {s, } in R —{1} that converges to 1, the sequence { f(s,)}
converges to 2.

4.2 Definition and Examples

We now define the concept formally.

Definition 4.2.1. Let f be a function, ¢ an accumulation point of Dy, and L a
number. We write

lim /(z) = L A.1)

if the sequence {f(s,)} converges to L for every sequence {s,} in Dy — {c}
converging to ¢. We call L a limit of f at ¢c. We also say that f(z) approaches
L as 7 approaches ¢, and we write f(z) — L asz — c.

Remark I. The number ¢ may or may not be a member of D .

Remark 2. The symbol z in Definition 4.2.1 represents a dummy variable. Thus if
lim,_,,. f(z) = L, then we also have lim,,_,. f(w) = L for any other symbol w.

Remark 3. The assumption that ¢ is an accumulation point of D guarantees the
existence of a sequence in Dy — {c} that converges to c.

We have seen that a sequence has at most one limit. This observation leads
immediately to the following theorem.

Theorem 4.2.1. A function has at most one limit at a given accumulation point of
its domain.
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Example 4.2.1. Tt follows from Theorem 2.7.10(2) that

lim e* = e“
xX—>a

for all @ € R. Similarly, Theorem 2.7.10(3) shows that

h_q
lim & = 1. A
h—0 h

Example 4.2.2. Let f(x) = i'/* for each x in the range of the sequence {1/n}.
Because this sequence is null, we see that O is an accumulation point of D . We
now demonstrate that

lim f(x)

does not exist. For each positive integer n take

L L
" 4n
and
t, = ! )
4n 42
Thus
lim s, = lim ¢, = 0.
n—00 n—00
However,
R A L
and
R VS R
Therefore the desired limit does not exist. A

Proposition 4.2.2. Suppose that f(z) = k for all z € Dy. Then for every
accumulation point ¢ of Dy we have

lim £(2) = k.
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Proof. Let {s,} be any sequence in D s — {c} converging to c. Since { f(s,)} is the
constant sequence {k}, it converges to k. |

The next two propositions can be proved in a similar way. In both propositions
we take ¢ to be an accumulation point of Dy.

Proposition 4.2.3. Suppose that f(z) = zforallz € Dy. Then
lim f(z) = c.
7—>C

Proposition 4.2.4. If f(z) = |z| forall z € Dy, then
lim f(z) = lc].

From Example 3.16.3 we obtain the following result.

Proposition 4.2.5.

4.3 Basic Properties of Limits

We now present an equivalent formulation of the definition of a limit. Recall that if
¢ is an accumulation point of D, then there is an injective sequence {s, } in D that
converges to c.

Theorem 4.3.1. Let f be a function, ¢ an accumulation point of Dy, and L a
number. The following statements are equivalent:

1.
lim f(z) = L;
2. for every € > 0 there exists § > 0 such that

|f@)—Ll<e

for each z € Dy satisfying 0 < |z —c| < 8.

Proof. Suppose that condition (2) holds. Let {s,} be a sequence in Dy — {c}
converging to ¢. Choose & > 0. There exists § > 0 such that

|f) =Ll <e
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for each z € D satisfying 0 < |z — ¢| < §. Moreover there exists N such that
ls, —c| <6
for alln > N. For all such n we have 5, € Dy and s, # ¢ by hypothesis, and so
| f(sn) — L| <&
Hence { f(s,)} converges to L, and we conclude that condition (1) holds.
Conversely, suppose that condition (2) does not hold. Then, for some ¢ > 0,
every § > 0 has the property that there exists z € D satisfying 0 < [z —¢| < § and

| f(z) = L| > e. In particular, for each positive integer n we can choose s, € Dy
such that

1
0<lsy—c|<—
n

and | f(s,) — L| > e. The sequence {s,} evidently converges to ¢, by Lemma 2.5.1.
However,

Jim f(sq) # L;

otherwise there would exist N such that | f(s,)—L| < e foralln > N. We conclude
that condition (1) does not hold. O

Remark 1. If we use the notation
Nr(@a) ={z||z—a| <r}
and
N (@) = N, (@) - {a}.

where a is any number and r is a positive (real) number, then Theorem 4.3.1 shows
that

lim f(z) = L
7—>C
if and only if for every ¢ > 0 there exists § > 0 such that
J(N§(c)NDy) S Ne(L).

The two parts of Fig. 4.2 depict N, (a) in R and C, respectively.
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v

Fig. 42 N,(a)inR and C

Remark 2. We can clearly assume that ¢ < M and § < M for some constant M .
And, as in Proposition 2.2.3, we can replace ¢ by ke, where k is a positive constant.

Remark 3. 1f x and c are real numbers, we often write the inequality |[x —c| < § as

c—6<x<c+38.

Example 4.3.1. Let us prove from Theorem 4.3.1 that
;i_r)lr}(z2 +1)=2.
Proof. Choose ¢ > 0. We need to find a corresponding § > 0 such that
12 +1-2| = |22 = 1| < ke,

for some constant k > 0, whenever 0 < |z — 1] < 6.
Now
=1 = |+ DE-1)]
= lz+ 1z 1]
=le—=1+2[lz—-1]
< (lz=1]+2)|z—1]
< (B+2)8
whenever |z — 1| < 8. Thus, if § < 1, then |22 — 1| < 38, and if in addition § < e,

then it follows that |72 — 1| < 3&. Hence we can guarantee that |7> — 1| < 3¢ if we
take

8 = min{l, &}.
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We conclude that

lim(z* + 1) = 2. A
z7—1
Example 4.3.2. Now let us prove that

|
lim - = 1.
=1 Z

Proof. Choose ¢ > 0. We need to find § > 0 such that

1
-—1
Z

< ke, (4.2)

for some constant k > 0, whenever 7 # 0 and 0 < |z — 1| < 8. If z # 0, then

1 l':|1—z|<i

z |z] |z]

whenever
§>lz—1]=|lz] = 1| = 1=z

Taking § < 1/2, we therefore have

1
>1—-6> -,
|z] Z 3
so that
1
— < 2.
Iz]
If in addition § < ¢, then
1
- —1| <26 < 2.
Z

Thus we can guarantee that inequality (4.2) holds with k = 2 if we take
1
8 = min % -, s} .
2

lim — = 1.
z—1 Z A

We conclude that
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Motivated by our study of sequences, we say that a function f satisfies the
Cauchy condition at an accumulation point ¢ of Dy if, for every ¢ > 0, there
exists § > 0 such that

|f@) = fw) <e

for all zand win Ny (c) N Dy.

Theorem 4.3.2. Let ¢ be an accumulation point of the domain of a function f.
Then lim,_,. f(z) = L for some number L if and only if f satisfies the Cauchy
condition at c.

Proof. Suppose first that
lim f(z) = L.
—>C

Choose ¢ > 0. There exists § > 0 such that | f(z) — L| < ¢ for all z € D satisfying
0 < |z—c|] < 8. Choose z and w in N;*(c) N Dy. Then | f(z) — L| < & and
| f(w) — L| < e. Hence

[ f@)— fW)| < |f(@)—L|+|L— fw)| < 2e.

We conclude that f satisfies the Cauchy condition at c.
Conversely, suppose that f satisfies the Cauchy condition at ¢. Choose & > 0.
There exists § > 0 such that

|f@@—fw) <e (4.3)

for all zand win N*(c) N Dy.
Since ¢ is an accumulation point of D, we can find an injective sequence {z,}
in D that converges to ¢. Choose N such that

0<lzy—c|<$
forevery n > N. Thus z, € Na* (¢) N Dy for each such n, and so

| f(zn) = fam)] < &

whenever m > N and n > N. Consequently, the sequence { f(z,)} is Cauchy and
therefore converges to some number L.

We conclude that there exists M| such that | f(z,) — L| < ¢ forall n > M,.
Now let {w,} be any sequence in Dy — {c} converging to c. There exists M, >
max{N, M} such that 0 < |w, —c¢| < § foralln > M,. Choose n > M, > N.
Then we also have 0 < |z, —c¢| < §, and so | f(w,) — f(z,)| < & by the Cauchy
criterion. Therefore
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| fwn) = LI < [f(wWa) = f@)| + | f(z0) — L| < 2e,

since n > My, and we deduce that { f(w,)} also converges to L.
Hence

lim f(z) = L,
7—>C

by definition. O

Exercises 4.1. 1. Let f be a function, ¢ an accumulation point of Dy, and L a
number. Suppose there exists a real K such that

|f(z) = L| = Kl|z—c|

for all z € C. Show that lim,_,. f(z) = L.

2. Leta > 0 and lim,_,¢ f(x) = L. Show that lim,_,¢ f(ax) = L.

3. Suppose that lim,_,. f(x) = L for some numbers ¢ and L. Show that the
function f is bounded on some neighborhood of c.

4. Use Theorem 4.3.1 to prove that limy—1 4/x = 1.

5. Show that lim,,(z/z) does not exist for any z € C.

4.4 Algebra of Limits

We shall now write down some theorems that are useful for calculating limits. Most
of them follow from the corresponding theorems for sequences. In each theorem
we shall assume that the limit is being evaluated at an accumulation point for the
domain of the relevant function.

Theorem 4.4.1. Let f and g be functions, let K and L be numbers, and let ¢ be an
accumulation point of Dy N Dg. Suppose that

lim £(:) = K

and
limg(z) = L.
7—>C

Then

1.

lim(f(z) + 8(z)) = K + L,
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2.
lim f(z)g(z) = KL,
3.
. f@ K
im¥—= = —
7—>cC g(z) L

if L # 0 and there exists a neighborhood Ns(c) such that g(z) # 0 for all
z € N§'(c) N Dy.

Proof. 1. Tt follows from the hypothesis that the sequence { f (s, )} converges to K
for every sequence {s, } in Dy —{c} converging to c. Similarly, {g(#,)} converges
to L for every sequence {t,} in D, — {c} converging to c.
Choose a sequence {s, } in

Dytg—{c} =(Dy NDy,) —{c}
converging to c¢. Then, for all n,

(f +8)su) = f(sn) +g(sy) > K+ L

as n — oo, and the result follows.
2. The proofs of parts (2) and (3) are similar. O

Remark 1. Sometimes the limits in the left-hand sides in the conclusion of the
theorem exist even if lim,_,. f(z) or lim,_,. g(z) do not. For example, let f(z) =
1/z and g(z) = —1/z for all z # 0. Neither of these functions has a limit at 0, yet
their sum and quotient do.

Remark 2. The insistence on ¢ being an accumulation point of Dy N D, is
inserted in order to guarantee that the limits in question are well defined. (See
Theorem 4.2.1.) For instance, if f(x) = 4/x forall x > 0 and g(x) = /—x
for all x < 0, then 0 is not an accumulation point of D r N D, since Dy N D, = {0}.
In this case the desired limits are undefined.

Corollary 4.4.2. Let n be a positive integer. Using the notation of the theorem, we
have

1.

: n _ n
lim f*(z) = L",
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. 1 1
m--——— = —
2 fr@) L

if L # 0 and there exists a neighborhood Ns(c) such that f(z) # 0 for all
Z€ NS*(C) NDy.

Using parts (1) and (2) of the theorem, we also obtain the following corollary.
Corollary 4.4.3. Let

n
p(@) = Z aka
k=0

for all z, where n,ag,ay,...,a, are constants. Then

}i;rg (@) = p(o).

The following theorem is an analog of the sandwich theorem for sequences.

Theorem 4.4.4. Let f, g, h be functions and let ¢ be an accumulation point of the
set Dy N Dy N Dy. Suppose there exists § > 0 such that

£(x) < g(x) < h(x)
foreach x € Dy N'Dgy NDy, for which0 < |x —c| < 8. If
lim f(x) = lim h(x) = L,
then

lim g(x) = L.
X—>c

Proof. Let {s,} be a sequence in D s — {c} converging to c. There exists N such that
0 < |sy —c| < forallm > N. For every such n we have

S(sn) = g(sn) =< h(sn).

The hypotheses imply that f(s,) — L and h(s,) — L as n — oo, and the result
now follows from the sandwich theorem. O

Example 4.4.1. Since

0< < |x|

1
X sin —
X
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for all x # 0, and lim,_|x| = 0, the sandwich theorem for functions
(Theorem 4.4.4) shows that

lim x sin — = 0.
x—0 X

Similarly,

1
lim x cos — = 0.
x—0 X A

The next theorem is also analogous to a theorem on sequences from which it
follows immediately.

Theorem 4.4.5. If f is a function such thatm < f(x) < M and lim,_,. f(x) =
L, thenm <L <M.

Theorem 4.4.6. Let [ be a function and let L and ¢ be numbers such that L is
real. Suppose

lim /() = L #0.

1. If L > 0, then there exists § > 0 such that f(z) > L/2 forall z € N§'(c) N Dy.
2. If L <O, then there exists § > 0 such that f(z) < L/2forallz € NJ(c) N Dy.

Proof. 1. There exists § > 0 such that

L

fo-Ll<3

for all z € Dy for which 0 < |z — ¢| < 8. For all such z it follows that

L L
f(Z)>L—5=E-

2. The proof of part (2) is similar. O

Theorem 4.4.7. Let u and v be real-valued functions. Define

f@ =uz) + iv(z)
for each z € D, ND,. Let ¢ be an accumulation point of D,, N D,. Then

lim f(z) = A +iB (4.4)

if and only if lim,,. u(z) = A and lim,_,. v(z) = B.
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Proof. 1If lim,—,. u(z) = A and lim,,. v(z) = B, then the result follows from
Theorem 4.4.1. Conversely, suppose that Eq. (4.4) holds. Considering the real and
imaginary parts of f(z) — A — iB, we see that

lu(z) — Al < | f(2) — (A +iB)|
and
lv(z) — B| < | f(2) — (A +iB)|.

The proof now follows by an argument similar to the proof of Theorem 2.3.11. O

Exercises 4.2. 1. Find the following limits if they exist, giving reasons for any that
do not:

. — . —1
(@)  lim,o 5 (M limy—y %;
(b) limy_ 2:;“/;; for B # 0; (g) limy_g 5“}‘(“ for ¢ € R;
© limy === forn e Nandc € R; (h) lim,q <2=1;
. —1)2— . . 2
(d)  Tim,oo S @) lim; 25
() limy_ox (sin % + cos %) (G)  lim,_g ‘)”x_l .

2. If z = x + iy, where x and y are real, find lim,_,o(x?/z).

4.5 One-Sided Limits

In this section we restrict the domain of our function to a subset of R. For instance,
sometimes a function does not have a limit at a point a, but it would if the domain
were restricted to a set of numbers greater than a.

Example 4.5.1. Suppose that

h(x)z{l ifx >a,

0 ifx <a.

The function % is known as a Heaviside function. If we restrict x to the interval
[a, 00), we obtain a function f given by

f(x)=§1 if x > a,

0 ifx=a.
Then

lim f(x) = 1.
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We say that the limit of 4 at a from the right is 1, and write

lim A(x) = 1.

x—>at

Likewise the limit of / at a from the left is 0. We write
lim h(x) = 0.
X—>a

Notice that

lim h(x) # xE)IEL h(x).

x—at
We shall see later that this observation implies that lim,_,, #(x) does not exist. We

can also prove this fact by considering the sequences {s, } and {z,}, where

Sp=a+ —
n

and
h=a——

for all n > 0. Then

lim s, = lim ¢, = a,
n—00 n—00

but i(s,) = 1 and &(t,) = O for all n. Therefore lim,_,, & (x) does not exist. A

Example 4.5.2. Let | x| be the largest integer less than or equal to a real number x.
The function f given by f(x) = |x] for all x is called the floor of x (see Fig.4.3).
For every n € N we have

lim x| =n

X—>n
and

lim x| =n—1. A

xX—>n—

Example 4.5.3. Tt is easy to show from the definition that

lim +/x =0.

x—0t
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Fig. 4.3 Graph of the floor
function

It is also true that
x—0

even though ./x is not defined for x < 0. A
Let us now define the notion of a one-sided limit formally.
Definition 4.5.1. Let f be a function of a real variable. Let a be an accumulation
point of {x € Dy | x < a}. Then
lim f(x)=1L
x—=>a—

if the sequence { f(s,)} converges to L for each sequence {s,} in{x € D | x < a}
that converges to a.
The notation

lim+ fx)=L

X—>a

can be defined in a similar way.

The following theorem is analogous to Theorem 4.3.1 and can be proved in a
similar manner.

Theorem 4.5.1. Let f be a function of a real variable and let a and L be
numbers.

1. If a is an accumulation point of {x € Dy | x < a}, then
lim f(x)=L

if and only if for every ¢ > O there exists § > 0 such that | f(x) — L| < ¢ for all
x € Dy satisfying 0 < a —x < 6.
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2. If a is an accumulation point of {x € Dy | x > a}, then

lim f(x)=1L

x—>a~t

if and only if for every ¢ > 0 there exists § > 0 such that | f(x) — L| < ¢ for all
x € Dy satisfying 0 < x —a < 6.

Note that 0 <a —x < §ifandonlyifa —§ < x <aandthat 0 < x —a < § if
andonly ifa < x <a + 6.

Theorem 4.5.2. Let f be a function and L a number. Let a be an accumulation
pointof {x € Dy | x > a} and {x € Dy | x < a}. Then

lim f(x) = L (4.5)

ifand only iflim _, + f(x) and lim,_,,— f(x) exist and

lim f(x)= gmi f(x)=L. (4.6)

x—>at

Proof. Suppose first that Eq. (4.5) holds, and choose ¢ > 0. There exists § > 0 such
that

|f(x)— L <e 4.7)

for all x € D such that 0 < |x —a| < §. In particular, inequality (4.7) holds for all
x € Dy such that 0 < x —a < §. Therefore

lim f(x)=L.

x—at

A similar argument shows that
lim f(x)=1L.

Conversely, suppose that Eq. (4.6) holds, and choose ¢ > 0. There exist §; > 0
and 8§, > 0 such that inequality (4.7) holds for all x € D/ satisfying either 0 <
X —a <d0r0<a—x < §. Thus inequality (4.7) holds for all x € D such that

0 < |x —al| < min{é, 6,}.

Consequently, Eq. (4.5) holds. O
The work in Sect. 4.4 also holds for one-sided limits.

Example 4.5.4. Let f be the function given by

fo)=eh
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for all x # 0. Then lim,_,,+ f(x) does not exist, for if we set s, = 1/n for all
n € N, thens, — 0asn — oo but

f(sy) =e€" > 0

asn — oo.
On the other hand, for each x > 0 we have x < ¢*. Thus if # < 0, then

1
0<_; <e_1/[,

whence
0<e <—1.
It therefore follows from the sandwich theorem that

lim ¢/ = 0. A

t—>0—

Exercises 4.3. 1. Find the following limits if they exist, giving reasons for any that
do not:

. 2 _— 1
@ fime - ZEEE @) lim, e S
(b)  lim, - % (M) lim, s S8

. 1 1/’—1
© lim,_+ +2_W, (g) lim, o+ s T

(d) llmx_>0 1+2 Tro—1/x 5 (h) limx_)]_ |_le71 :

4.6 Infinite Limits

Some functions increase or decrease without bound as their arguments approach a
given number. We now define this concept formally.

Definition 4.6.1. Let f be a function and ¢ an accumulation point of D . We write
lim /) =

if f(s,) — oo as n — oo for every sequence {s,} in D — {c} converging to c.
The equation

lim f(x) = —

may be defined similarly.
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Thus
lim f(x) = o0
X—>C

if and only if for every N there exists § > 0 such that f(x) > N forall x € Dy
satisfying 0 < |x — ¢| < §. Similarly,

lim f(x) = —oo

if and only if this condition holds with the inequality f(x) > N replaced

by f(x)<N.
We now discuss the behavior of a function f as its argument approaches +oco.

Definition 4.6.2. Let f be a function and L a number. Suppose that D is not
bounded above. We write

i, 100 =1L

if f(s,) = L asn — oo for every sequence {s,} in D such that s, — oo as
n— oo.
The notation

dim f) =L
may be defined in a similar manner.
Note that if D is not bounded above, then
lim f(x)=1L
x—00

if and only if for every & > 0 there exists M such that | f(x)—L| < eforallx € Dy
satisfying x > M. Moreover

dim f(x) = L

if and only if this condition holds with the inequality x > M replaced by x < M,
provided that D is not bounded below (though it may be bounded above).
Of course, we also have such notations as

lim f(x) =00 (4.8)

X—>00

and

lim f(x) = —oo0,
X—>00
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and so forth. We leave it to the reader to list the possibilities and to formulate
appropriate definitions for them. For example, Eq. (4.8) holds if and only if Dy
is not bounded above and for every sequence {s, } in D such that

lim s, = oo,
n—>0o0

we have
Jim_ £ (s,) = oo.
Thus it follows from Theorem 2.7.10(1) that

lim e* = co.
X—>00

Similarly,
lim e* =0,
X—>—00
by Example 2.8.2.
Example 4.6.1. Prove that
o1
lim — =0.
X—00 X

Proof. Let {s,} be a sequence of positive numbers such that lim,_, 5, = co. Then

1
lim — =0,
n—>00 §,

by Theorem 2.8.4(2). The result follows. A
Example 4.6.2. We have seen in Example 2.7.8 that

1 n
lim (1 + —) =e.
n—00 n

We now show that lim,_, +, f(x) = e, where

fx) = (1 + %)

for all x € Q — [—1,0]. (Later we shall extend this result to the set R — [—1, 0].)
First let {s, } be any sequence in Q such that s, > 1 for all » and

lim s, = oo.
n—>0o0
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For each k let ny = |si|. Then
0<np <sp <ng+1.

Thus

and so

1 ny 1 Sk 1 ng+1
(1+ ) <(1+—) <(1+—) .
ni + 1 Sk ng

Letting ny — oo and using Lemma 2.2.1, we obtain

1 ng 1 ng+1 1 —1
1+ =\|1+ 1+ —e-l=e
ng +1 n +1 ni +1

and

Hence

We conclude that

In order to show that

1 X
lim (1 + —) =e,
x—>—00 X

choose a sequence {x,} in Q such that

lim x, = —o0
n—00
and x, < —1 for all n. Let y, = —x,, for all n. Then

lim y, = o0
n—>oo
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and y, > 1 for all n, and so

(+5)
1+ —
Xn

asn — oo. A
Theorem 4.6.1. Let f and g be functions, let L be a number, and let a be an
accumulation point of both {x € Dy | x > a} and {x € D, | x > a}. Suppose that

lim f(x)=L>0

x—a~t

and

lim g(x) =0.

x—at

Suppose also that there exists § > 0 such that g(x) > 0 for all x € Dy satisfying
0<x—a<3$. Then

fo _

m =
x—at g(x)

Proof. Choose N > 0. The first limit given shows the existence of §; > 0 such that

f@) > 2

forall x € Dy satisfying 0 < x —a < 4. It also follows from the second hypothesis
that there exists §, > 0 such that

L
< PR
lg ()] N

for all x € D, for which 0 < x —a < 6.
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Now let §3 = min{$, 8, §»}, so that 63 > 0, and choose x € Dy N D, such that
0 < x —a < 85. Then

L
f(x)>—=>0.
2
Moreover
0 < g(x) = Ig(x)] < —
x) = |g(x —,
g g N
so that
1 - 2N 50
glx) L
Hence
S LN
g(x) 2 L
and the result follows. ad

Example 4.6.3. 1t follows immediately from Theorem 4.6.1 that
lim — = oo. A

Theorem 4.6.2. Let f and g be functions and let a be an accumulation point of
Dog. If

lim f(x) =1L,

X—>00
for some number L, and

lim g(x) = oo,
then

lim f(g(x)) = L.
Proof. Note that a is an accumulation point of Dy, since D ro, € D,.
Choose ¢ > 0. By hypothesis, there exists M such that | f(x) — L| < & for all

x € Dy satistying x > M. Similarly, there exists § > 0 such that g(x) > M for all

x € Dy for which 0 < |x —a| < §. Choose x € Do, such that 0 < [x —a| < 6.
Then x € Dy, so that g(x) > M, and g(x) € D. Therefore
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| f(g(x)) —L| <e,

and the result follows. O

Clearly, a and L may each be replaced by co or —oo. Moreover the limits as x
approaches a may be replaced with one-sided limits. Thus Example 4.6.3 yields the
following corollary.

Corollary 4.6.3. Iflim,_.co f(x) = L, then

i f ()=t

Corollary 4.6.4. Iflim,_,, g(x) = oo, where a is an accumulation point of

{x € Dg [ glx) # 0},

then

lim — = 0.
x—a g(x)

Proof. Define f(x) = 1/x for all x # 0. Then limy— f(x) = 0, by
Example 4.6.1. It therefore follows from Theorem 4.6.2 that

lim L hm f(g(x)) =0. 0

x—a g( )

Once again a may be replaced by co or —oo and the limits may be replaced by
one-sided limits.

Example 4.6.4. From Example 4.6.3 and Theorem 4.6.2 we have

lim e/ = oco.
x—0t

Consequently

1
lim ———— =0,
x—ot+ el/¥ 41

using Corollary 4.6.4. On the other hand, Example 4.5.4 shows that

1 1
x—»0—el/x +1 041
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Example 4.6.5. We show that lim,_,q f(x) = e, where

o) =(1+x)"

for all nonzero rational numbers x > —1. Since

1\*
lim (1 + —) =e
X—>00 X

by Example 4.6.2, it follows from Corollary 4.6.3 that

lim (14 x)/* =e.
x—0t

A similar argument shows that

lim (1 + ) =e.

4 Limits of Functions

The result now follows from Theorem 4.5.2. A
Exercises 4.4. 1. Find the following limits:

@  limy_o <2, (e) limy_ oo ﬁ

() limyeo «/#T-H; (f)  limyo ﬁ;

©  limisee(VXZ+x F1-1; () limisoo (14+ 1)

(d) lim,_ oo X sin %; (h)  lim,— - ﬁ

2. Give examples of functions f and g to show that if
lim f(x) = lim g(x) = 0
then

fim £
=0 g(x)

may be any real number or 00 or may not exist.




Chapter 5
Continuity

5.1 Definition and Examples

We now come to a most important concept in analysis, one that has many
applications, notably in optimization. Roughly speaking, we are talking about those
functions that have no gaps in their graphs. Such functions are said to be continuous.
For example, the functions f and g, such that

2x2 —2x
fx) =g(x) = ———
x—1
for all x # 1 and g(1) = 1, are not continuous at 1 since the graphs of both

functions have a gap where x = 1. On the other hand, the function %, such that
h(x) = f(x) forall x # 1 and k(1) = 2, is continuous (see Fig.5.1).
The function given by

k(x) =e'/*,

for all x # 0, is not continuous at 0, for Example 4.5.4 shows that lim,_,+ e!/*¥ =

oo but lim, o e'/* = 0, and so the graph of k will have a gap no matter how we
define k(0) (see Fig.5.2).
Similarly, the function given by

1
el/x +1°

for all x # 0, is not continuous at 0 no matter how we define its value at 0 because
Example 4.6.4 shows that

Iim —— =
ot el/X 4+ 1

© Springer Science+Business Media New York 2015 215
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S(x) A g(x) A h(x) A
21 2+ 2+
1+ 1+ / @ 1+
f > X f > X f > X
1 1 1

Fig. 5.1 Graphs of f, g and h

Fig. 5.2 Graph of ¢!/~ k(x)t

but
. 1
lim — =1
x—0— el/x 41
(see Fig.5.3).

A function f fails to be continuous at a certain point if its limit at that point is not
equal to its value there. In particular, f is not continuous at a given point if either
it or its limit is not defined at that point. We now make the concept of continuity
precise.

Definition 5.1.1. A function f is continuous at an accumulation point ¢ of D if
lim f(z) = f(c).
—>C

In view of the fact that | f(z) — f(c)| = 0 when z = ¢, the following theorem is
immediate from Theorem 4.3.1.
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Fig. 5.3 Graph of
(e +1) .

\/

Theorem 5.1.1. A function f is continuous at an accumulation point ¢ of Dy if
and only if for all ¢ > 0 there exists § > 0 such that

If(2) = flo)] <e

for each z € Dy satisfying |z — c| < 4.
Of course, the notion of continuity can also be formulated in terms of sequences.

Theorem 5.1.2. Let f be a function and c¢ an accumulation point of Dy. Then f
is continuous at ¢ if and only if { f(s,)} converges to f(c) for every sequence {s,}
in Dy converging to c.

The next theorem follows immediately from Theorem 4.4.7.

Theorem 5.1.3. Let u and v be real-valued functions, and define

f(@) = u() +iv(z)

for each 7 € D, N'D,. Then f is continuous at an accumulation point ¢ of D, N D,
if and only if u and v are continuous at c.

It is an immediate consequence of Propositions 4.2.2 and 4.2.3 that constant
functions and the identity function (the function that maps each number to itself)
are continuous everywhere, as is the absolute value function, by Proposition 4.2.4.
It follows from Theorem 4.4.1 that the sum or product of functions f and g that
are continuous at a point ¢ is also continuous at ¢ if ¢ is an accumulation point
of Dy N Dg. Thus polynomial functions are continuous everywhere. The quotient
f/g is also continuous at ¢ provided that in addition g(x) # O for all x in some
neighborhood of ¢. Theorem 2.3.13 shows that for each m € N the function given
by x!'/™ for all x > 0 is continuous at each such x.

Sometimes a function is not continuous but its product with another function
is continuous. For example, the functions given by e'/* and e™!/*, for all x # 0,
are not continuous at 0. However, e!/* . ¢~1/* gives the constant function 1 for all
x # 0, and if we define its value at 0 to be 1, then the resulting function is continuous
everywhere.
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Theorem 5.1.4. Let f and g be functions and let ¢ and L be numbers. Suppose that
¢ is an accumulation point of D yog, that lim,_,. g(z) = L, and that [ is continuous
at L. Then

tim f(¢(@) = /(1) = £ (lime@) = tim, /(560

Proof. As ¢ is an accumulation point of Do, and Dyog S De, it is also an
accumulation point of D,.
Choose ¢ > 0. There exists §; > 0 such that

|f@) = fD)] <e

for all z € D satisfying |z — L| < ;. Similarly, there exists § > 0 such that
|g(2) — L] < &

for all z € D, satisfying 0 < |z — ¢| < §. For each such z we therefore have

|f(g@) - fL)] <&

if g(z) € Dy, and the first equation follows. The proof is completed with the
observation that f(L) is equal to the two rightmost expressions, respectively, by
substitution and the continuity hypothesized for f. O

Remark. Clearly, the limits as z approaches ¢ may be replaced by one-sided limits.
Moreover the accumulation point ¢ of D ., may be replaced by oo or —oo.

Corollary 5.1.5. If g is continuous at an accumulation point ¢ of D oq and f is
continuous at g(c), then f o g is continuous at c.

Proof. Apply the theorem with L = g(c). O

Corollary 5.1.6. Let f be a function and L and ¢ numbers. Suppose that ¢ is an
accumulation point of Dy. If lim,_,. f(z) = L, then

lim | /)| = |LI.
—>C

Corollary 5.1.7. Let f be a real function and L and a real numbers. Suppose that
a is an accumulation point of Dy and

lim f(x) = L.
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Then, for every positive integer m,
lim (f(x))"/" = L'/
xX—>a

if for each § > 0 there exists x € Ny (a) N Dy such that f(x) > 0.
The next result is a corollary of Theorem 4.4.6.
Theorem 5.1.8. Let [ be a real-valued function that is continuous at a number c.

1. If f(c) > O, then there exists § > 0 such that f(z) > 0 forall z € Ns(c) N Dy.
2. If f(c) <O, then there exists § > 0 such that f(z) <0 forall z € Ns(c) N Dy.

Example 4.2.1 establishes the continuity of the exponential function.
Theorem 5.1.9. The function e* is continuous at all x.

We now give a famous example of a discontinuous function that is due to
Dirichlet.

Example 5.1.1. Let

1 if x is rational,

0 otherwise.

f@)=§

We show that f is not continuous anywhere. First let ¢ be a rational number. By the
density theorem, for each n € N we can find an irrational number

(c=5et3)
sp€lc——,c+—-].
n n

nllg)lo S(sn) =0# f(c),

Thus f(s,) = 0, and so

yet the sequence {s, } converges to c¢. Consequently, f is not continuous at c.
The case where c is an irrational number can be handled in a similar manner. A

The following function is a modification of the Dirichlet function. It is known as
Thomae’s function or the popcorn function.

Example 5.1.2. Let f:(0,1) — R be defined by

0 if x is irrational,
=1

~ if x = 2, where m and n are relatively prime positive integers.
n n

We show that f is continuous at irrational points but not at rational points.
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Let ¢ be a rational number in (0, 1). As in the previous example, we can construct
a sequence {s, } of irrational numbers in (0, 1) such that s, — ¢. Hence f(s,) = 0
for all n. But f(c) # 0; hence f is not continuous at c.

Now let ¢ be an irrational number in (0, 1). Choose any ¢ > 0 and let

1
B:%n—ie(o,l)’meN,neN,—zs
n n

Then B is finite, as m < n < 1/g, and ¢ ¢ B. Choose § > 0 such that Ns(c) C
(0,1) and

Ns(c)N B = 0.
Hence f(x) < ¢ for all x € Ns(c). Consequently,

lim f(x) = 0= f(c).

We conclude that f is continuous at c. A

However, we can prove the following theorem. The proof is due to Volterra
(1881).

Theorem 5.1.10. There is no function f:(0,1) — R that is continuous at all
rational numbers in (0, 1) but not at any irrational number.

Proof. Let g:(0,1) — R be defined by

) 0 if x is irrational,
&) = . . . o

L if x = ™ where m and n are relatively prime positive integers.
n n

We have shown in Example 5.1.2 that g is discontinuous on A = Q N (0, 1) and
continuous on B = (0, 1) — A.

Suppose there is a function f:(0,1) — R that is continuous on A but
discontinuous on B. Let ¢ € A. Then f is continuous at ¢. Hence there exists
8 > 0 such that (¢ —6,¢ + 6) < (0, 1) and

@)~ @) <

forall x € (c—6, c+6). We may assume that § < 1/4. Choose ay, b; € (c—8,c+96)
such that a; < by; hence by —a; < 1/2. Then for all x, y € (ay, b;) we have

F@ = fON =170~ fOI+ 1)~ @l <+ =5 6D
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Now g is continuous at some point in (ay, b;). Therefore by the preceding argument
with (0, 1) replaced by (ay, b,), there exist a}, b] € (ai, b)) such that

1
lg(x) —g(y)| < 3 (5.2)

forall x,y € (aj, b}).

In summary, inequalities (5.1) and (5.2) both hold for all x,y € (a},b)).
Moreover (a}, b}) contains a point at which f is continuous and a point at which g is
continuous. Therefore we may repeat the argument inductively to obtain a sequence
of nested intervals

(|, b)) D () by) D ...

in which each interval (a},, b)) has length less than 1/2" and satisfies the condition
that

@~ fO < 5

and

800~ 801 < 5

whenever x,y € (a,, b ). Moreover the sequence {a)} is increasing and bounded
above. Therefore it converges. Similarly, {b,} converges. Since

1
O<b,’1—a,’1<2—n

for all n, it follows from the sandwich theorem that {a/,} and {b,} both converge to

some number d that belongs to every interval in the sequence. Therefore for every
n € Nand every x € (a,,, b)), it follows that

F0) = f@)] < 5
and
500 8] < 5,

It is now easy to show that f is continuous at d. Choose ¢ > 0. Since 1/2" — 0
as n — oo, there exists N such that 1/2" < ¢ for alln > N. Choose x such that

|x —d| < min{d —dy,byy —d}.
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Then x € (aly. b)), and so

1
If() = fD)] < 55 <&,
as required. A similar argument shows that g is continuous at d. Hence we reach
the contradiction thatd € AN B = @. |
Exercises 5.1.

1. Study the continuity of each of the following functions:

Bojrx £0
@ fay=1 7
0 ifx=0.
x2 ifx <1,
b) f(x)= o
2—x ifx > 1.
i(e*—1) .
if x #0,
© fo=] * ™7
—1 ifx =0.
x if x is rational,
@ f(x)= e
0 if x is irrational.
2. Find c for which the following functions are continuous:
1 .
xsin= ifx # 0,
@ f(x) = { v
c if x =0.
x2—x+1 ifx<l1,
b fx) =", ,
cx-+1 if x > 1.

3. Let f be continuous on an interval /. Suppose that f(r) = r? for every rational
number r in I. Prove that f(x) = x2forallx € I.

4. Let f and g be continuous functions. Show that the functions f Vv gand f A g
are also continuous, where

(f v g)(x) = max{f(x),g(x)}
and
(f A g)(x) = min{ f(x), g(x)}

for all x.
(Hint:

a+b+|a—>b

max{a,b} = 5
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and

a+b—|a—>b|

min{a,b} = 5

)

5. A subset S of C is open if for every ¢ € S there exists § > 0 such that Ns(c) C
S.Let f:C — C be continuous. Show that if S is open in C, then

zeCl f@ €S

is open.

5.2 One-Sided Continuity

The concept of one-sided continuity is analogous to that of a one-sided limit.

Definition 5.2.1. A function f is continuous on the right at an accumulation point
cof {x €Dy |x>c}if

lim f(x) = f(c).

X—>C

The definition of a function that is continuous on the left at ¢ is analogous.

Example 5.2.1. 1f

f(x)zm

for all x # 0, then we have already seen that
Jm, 19=0
and
i =1,
Therefore, if we were to define f(0) = 0, then f would be continuous on the right

at 0, and if we were to define f(0) = 1, then f would be continuous on the left
at 0. A

Example 5.2.2. Let f be the function given by

fx)=Vx
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for all x > 0. Then f is continuous on the right at 0. It is not continuous on the left
at 0 since it is undefined at each x < 0. Nevertheless f is continuous at 0 according
to our definition. A

5.3 Continuity over an Interval

Definition 5.3.1. A function is continuous over a given set if it is continuous at all
points in the set.

We shall show that if a function is continuous over a closed set, then it reaches a
maximum and a minimum somewhere in that set.

In many applications the domain of a function is assumed to be closed and
bounded. A closed bounded set is said to be compact.

Theorem 5.3.1. Let f: X — C be a continuous function, where X is a compact
subset of C. Then f(X) is compact.

Proof. Suppose that f(X) is not bounded. Choose w € f(X). Forevery n € N, we
can find w, € f(X) such that

Wy, —w| > n.

There exists z, € X such that f(z,) = w,. As X is bounded, Theorem 2.6.10 shows
that {z,} contains an injective convergent subsequence {z, }. Let

z= lim z,.
n—>o0

Since X is closed, we have z € X.
The continuity of f shows that

lim we, = lim f(z,) = f(2),
n—>o00 n—od
by the remark following Theorem 5.1.4. Thus there exists N such that
Wi, — f@)] <1
forall n > N. For each such 7 it follows that

n <k,
< |wg, —wl
< wk, = f@I +1f(2) —wl
<14+ [f(@)—wl
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Fig. 5.4 Graph of f in f(x)A
Example 5.3.1

L

=)

Y S
v
=

W Y

However this conclusion is impossible, as the right-hand side of the inequality above
is a constant. Consequently f(X) is bounded.

In order to show that f(X) is closed, choose a limit point w of f(X). There exists
a sequence {w, } in f(X) such that lim,_, o, w, = w. For each n there exists z, € X
such that f(z,) = w,. As before, {z,} contains a subsequence {z, } converging to a
number z € X. Theorem 2.4.1 and the continuity of f show that

w= lim w, = f(2).
n—oo

Thus w € f(X), and we conclude that f(X) is closed. O

Corollary 5.3.2 (Maximum- and Minimum-Value Theorem). Let f: X — R be
a continuous function, where X is a compact set. Then f(X) contains a maximum
and a minimum value.

Proof. The result follows from the theorem since the supremum and infimum of
f(X) are necessarily limit points. |

In particular, a function that is continuous on a closed interval reaches a
maximum and a minimum value in that interval. If a function is not continuous
on a closed interval, then it may or may not have a maximum or a minimum on that
interval.

Example 5.3.1. Let

x if—-1l<x<l,
S(x) =

0 otherwise.

Here f is not continuous on the closed interval [—1, 1] although it is continuous on
the open interval (—1, 1). In this case f has neither a maximum nor a minimum on
[—1, 1], since there is no largest number less than 1 and no smallest number greater
than —1. Note that neither —1 nor 1 is a value of the function (see Fig. 5.4). A

Example 5.3.2. Let

x if—-l<x<l1,

TOY=0 0 = 1.
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Fig. 5.5 Graphof f in fix) A
Example 5.3.2 5
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Fig. 5.6 Graph of f in Ax)

Example 5.3.3

Here f is not continuous on the closed interval [—1, 1], though it is continuous on
the open interval (—1, 1). It has no minimum on [—1, 1], but it has a maximum of 2,
attained at 1 (see Fig. 5.5). A

It is not only discontinuities at endpoints of intervals that may invalidate the
conclusion of the theorem.

Example 5.3.3. Let
ifx <0,

Sy =47

1—x ifx>0.
This function is not continuous on [—1, 1] as it is not continuous at 0. It has a
minimum of —1 on [—1, 1], attained at —1, but no maximum (see Fig. 5.6). A

Our next theorem asserts the existence of a zero of a continuous function where
the values of the function are not all of the same sign.

Theorem 5.3.3 (Bolzano). Suppose that f:[a,b] — R is a continuous function
such that f(a) f(b) < 0. Then there exists £ € (a, b) such that f(§) = 0.

Proof. We assume that f(a) < 0 and f(b) > 0, as the proof in the other case is
similar.
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Suppose there is no § € (a,b) such that f(§) = 0. Let a9 = a and by = b.
Suppose now that a; and b; have been defined for some nonnegative integer j,
that they are both in [a, b], that f(a;) < O, that f(b;) > 0, and that b; —a; =

(b—a)/2/.1f
f (%) >0,

thenleta;41 = a; and bj41 = (a; + b;)/2; otherwise define a; 11 = (a; +
bj)/2 and bj 11 = b;. Then {a,} is a nondecreasing sequence in [a, b], {b,} is a
nonincreasing sequence in [a, b], and for all n we have f(a,) <0, f(b,) > 0 and

bn —ay = —(/—

As the sequences {a,} and {b,} are bounded and monotonic, they both converge.
Moreover their limits are equal, since b, — a, — 0. Let

lim a, = lim b, = §.
n—00 n—oo

Since f is continuous, we have
0> lim f(a,) = f(§) = lim f(b,) = 0.
n—oo n—>o0

Hence (&) = 0. Moreover £ € (a, b) since f(a) f(b) # 0. |

Corollary 5.3.4 (Intermediate-Value Theorem). Let f:[a,b] — R be a contin-
uous function such that f(a) # f(b). For each number k between f(a) and f(b)
there exists & € (a,b) such that f(§) = k.

Proof. Apply Bolzano’s theorem to the function
gx) = f(x)—k

for all x € [a, b]. |
Example 5.3.4. We show that the equation

e* =4x
has a solution between 0 and 1. Let

f(x) =e* —4x

for all x. Then f(0) =1 > Oand f(1) = e —4 < 0. By Bolzano’s theorem, the
equation f(x) = 0 has a solution between 0 and 1, and the result follows. A
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Example 5.3.5. Ifa > 0andn € N, then we can use the intermediate-value theorem
to prove the existence of a positive nth root of a. Choose ¢ > max{1,a}, and let
f(x) = x" for all x € R. This function is continuous on [0, ¢] and

f(0)=0<c" = f(c).
As 0 < a < ¢ < c", the intermediate-value theorem confirms the existence of £ > 0
such that " = f(£) = a. Thus £ is an nth root of a. A
A fixed point for a function f is a number x € D/ such that f(x) = x.
Corollary 5.3.5 (Fixed-Point Theorem). Let f:[a,b] — [a,b] be a continuous
function. Then f has a fixed point.

Proof. 1f either f(a) = a or f(b) = b, then f has a fixed point. The remaining
possibility is that f(a) —a > 0and f(b) —b < 0. Let

glx) = flx)—x

for all x € [a, b]. Then g is continuous on [a, b], g(a) > 0 and g(b) < 0. Therefore,
by Bolzano’s theorem, there exists £ € (a, b) such that f(§) — & = 0. The result
follows. O

By combining the maximum-value theorem, the minimum-value theorem, and
the intermediate-value theorem, we obtain the following corollary.

Corollary 5.3.6. If f:[a,b] — R is continuous and m and M are its minimum and
maximum values, respectively, then

f(la.b]) = [m, M].

Theorem 5.3.7. A continuous real function is injective if and only if it is strictly
monotonic.

Proof. Clearly, every strictly monotonic function is injective.

Let f be a continuous injective function that is not strictly monotonic. We
shall complete the proof by finding a contradiction. Since f is injective but not
monotonic, there exist «, 8,y € D such that o < 8 < y and either

Sf(B) > max{f(a). f(y)}

or

J(B) <min{ f(a), f(y)}.

We may suppose that the former inequality obtains, the argument in the other case
being similar. Choose k such that
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max{f(a), f(¥)} <k < f(B).

Then the intermediate-value theorem establishes the existence of ¢ and d such that
a<c<fB<d<vyand f(c) =k = f(d), contradicting the assumption that f
is injective. O

Theorem 5.3.8. Let f:[a,b] — R be an increasing (respectively, decreasing) con-
tinuous function. Then f~' exists and is also increasing (respectively, decreasing)
and continuous.

Proof. We confine our attention to the case where f is increasing, as the argu-

ment in the other case is analogous. Our previous results (Corollary 5.3.6 and

Theorem 5.3.7) show that f~! exists with domain [, M], where m = f(a) and

M = f(b). Now choose yi, y, € [m, M], where y; < y,. Then y; = f(x;) and

y2 = f(x,) for some x1,x, € [a,b]. Thus x; = f~'(y1) and xo = ' (y,). If

X1 > Xz, then y; = f(x;) > f(x2) = y,, acontradiction. Hence ! is increasing.
Let ¢ € [m, M] and choose ¢ > 0. We want to find § > 0 such that

7o) =Nl <e (5.3)

for all y € Ns(c) N [m,M]. If weset x = f~'(y) and B = f~'(c), then
inequality (5.3) becomes

Ix — Bl <e.
which is equivalent to
p-e<x<p+e (5.4)
As f is increasing, inequality (5.4) is equivalent to
f(B—e) < f(x) < f(B+e)
and therefore to
f(B—e)=f(B) < f(x)= f(B) < f(B+e)— f(B)
Since
f)=fB)y=y—c

whenever y € [m, M], the proof is completed by choosing

§ = min{f(B) — f(B—¢). f(B+e)— f(B)}:
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For each y € [m, M] such that |y — ¢| < § we have

JB—-e)=f(B) <0=y—c<f(B+e)—f(B)

if y —c > 0, whereas if y — ¢ < 0, then

c—y <f(B)—f(B—oe,

so that

JB—e)=f(B)<y—c<0<f(B+e)—[f(B) 0

Exercises 5.2.

1. Let f:[a,b] — R be continuous. Show that
M = max{| f(x)| | x € [a, D]}

exists. Show also that for every ¢ > 0 there is an interval [«, 8], included in [a, b],
such that

lf()]> M —¢

for all x € [, B].

2. Let f, g:[a,b] — R be continuous functions. Suppose that f(a) < g(a) and
f(b) > g(b). Show that there exists ¢ € (a, b) such that f(c) = g(c).

3. Let f:(a,b) — R be continuous. Show that for any ¢y, ¢3, ..., c, € (a,b) there
exists ¢ € (a, b) such that

@ =23 fe).
j=1

4. Let p be a nonzero polynomial. Show that e = | p(x)| has a real solution.

5. Let f:[a,00) — R be continuous and suppose that lim,_,~, f(x) exists and is
finite. Show that f" is bounded on [a, 00).

6. Let f be continuous on R and suppose that

lim 709 = lim_f0) =0

Show that f attains a maximum value or a minimum value.

7. Let f be a function and ¢ a number. We say that f(c) is a local maximum
(respectively, local minimum) of f* if there exists § > O such that f(c) > f(x)
[respectively, f(c) < f(x)] for all x € Ns(c).
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Let f:[a,b] — R be continuous. Suppose that f(«) and f(B) are local
maxima of f, where & < . Show that there exists ¢ € («, B) such that f(c) is
a local minimum.
8. Let f:[a,b] — R be continuous. Show that if f* does not have a local maximum
or a local minimum, then it must be monotonic on [a, b].

5.4 The Logarithm Function

Recall that the exponential function is increasing (Theorem 2.7.12) and continuous
everywhere (Theorem 5.1.9). Therefore it has a continuous increasing inverse. This
inverse is called the logarithm function and is denoted by log. (The reader is
cautioned that some authors use a different notation.) The logarithm of a number
x is often written as logx rather than log(x). Since limy,_e* = oo and
lim,_,_ e* = 0, the continuity of the exponential function, together with the
intermediate-value theorem, shows that log x is defined for all x > 0. Theorem 5.3.8
shows that it is increasing and continuous on (0, 00).

As the logarithm and exponential functions are inverses, log x = y if and only if
e’ = x. Therefore

elngx

=x
and

loge” = y.

In particular, loge = 1, so that e® = e* loge We use this observation to motivate the
following definition for every @ > 0 and every real x:

at = exloga. (55)

In particular,

and
a' =8 = ¢,

We also define 0 = 0 for all x > 0.
If a, x, y are real numbers with a > 0, then

atab = exlogaeyloga — exloga+yloga — e(x+y)]oga — ax—i—y'
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Thus, for every number w we have

Therefore

Applying this result with a and w replaced by e and y loga, respectively, we find
that
a* exloga

i — exlogae—yloga — e(x—y)loga = a5
aV eVloga :

Moreover Eq. (5.5) shows that
loga™ = xloga
for all @ > 0 and all real x. If y is also a real number, it follows that
log(a*)” = yloga® = xyloga = loga®™,
and we deduce that
(a*) =a”.
In addition,
log1 = loga® = 0loga = 0.
Hence
1¥ = e¥logl — ,0 _

for all real x.
Note that

Since we also have a® = 1, it follows by induction that our definition of a* agrees
with our previous understanding in the case where x is a nonnegative integer. As
a— = 1/a*, the same can be said if x is a negative integer. Note also that if m and
n are integers and n > 0, then (a'/ mm = a™'" In particular,

@/m" =a' =a.
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Thus our definition also agrees with our previous understanding in the case where x
is rational.
Now suppose that a > 0 and b > 0. Since

elnga+logb — elogaelogb = ab,
it follows that
logab = loga + logb.

One consequence is that

ath* = exlogaex logh _ ex(loga—i—logb) — exlogab — (ab)x
for every real x. Similarly,

log% = loga — logh,

since
eloga a
loga—logh __ _loga ,—logh __ _
e = e %% = =T
elog b
Hence
X xloga
a_ — € — p~(loga—logh) _ exlog% — z ¥
bhx exlogb b :

We also observe that the result of Example 4.6.2 holds for all real x ¢ [—1,0].
Indeed, the argument used in that example extends to the case of such an x. The
result of Example 3.6.1 may similarly be extended to all real p.

Since log1 = 0 and log is increasing and continuous on (0, c0), we see that
log x is negative for all x € (0, 1) and positive for all x > 1. Moreover if we choose
M > 0and x > e™, then

logx > loge™ = M.
Hence

lim logx = oo.
X—>00

Also, logx < —M for all x such that 0 < x < e™ and so

lim logx = —oo0.
x—0t
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Example 5.4.1. By continuity we see that

1
lim -2 — lim logn'/" =10g<11m n'/ ) logl = 0.

n—00 n n—00 n—

In other words, logn << n. A

Example 5.4.2. We show that

is divergent. This series is known as Abel’s series.
We observe that {1/(nlogn)} is a decreasing sequence of positive terms. Hence
Cauchy’s condensation test is applicable. The condensed series is

7 logj

oo oo

1
2; 2klog2k:k§klog2
o0

log g

which is divergent. Hence Abel’s series is also divergent. A

Logarithms are used in the proof of a test, due to Gauss, for the convergence of a
series.

Theorem 5.4.1 (Gauss’s Test). Let Z?ozl a; be a series of positive terms. Suppose
there exist a bounded sequence {s,} and a constant ¢ such that

=1--+— (5.6)

forall n > 0. Then the series is convergent if ¢ > 1 and divergent if ¢ < 1.

Proof. Case 1: Suppose ¢ # 1. From Eq. (5.6) we see that

and the expression on the right-hand side approaches ¢ as n approaches infinity
since {s,, } is bounded. The required result therefore follows from Raabe’s test.

Case 2: Suppose ¢ = 1. We apply the Kummer-Jensen test to the sequence

{(n =1 log(n —1)}.
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We already know that Abel’s series diverges, and so it remains only to investigate
the limiting behavior of

1 "
cp = (n—l)log(n—l)—(l——+S—;)nlogn
non
Sn
= (n—l)log(n—l)—(n—l—i——)logn
n

w1
= (n—1)(log(n — 1) —logn) — Sn 081
n

Since {s, } is bounded, we have

. Splogn
lim ———

n—00 n

=0.

(See Theorem 2.5.3 and recall that logn << n.) Moreover, using the analog of
Theorem 5.1.4 with ¢ replaced by oo, we obtain

lim ¢, = lim (n — 1)(log(n — 1) — logn)
n—od

n—>00
n—1\""
= lim log( )
n—00 n

' n 1\"
= log lim 1—--
n—oo\n—1 n

= log (1 -e_l)
=—1.

As the result of this calculation is negative, there exists N such that ¢, < 0 for
all n > N. Consequently, the theorem follows from the Kummer-Jensen test.
O

Example 5.4.3. Test the series
i( 2j —1)! )2
= 2271 = 1)yt

for convergence.

Solution. As in Example 3.9.1 we write

B Cn—1)! \>
n = (22n—1(n - 1)!n!)
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for all n > 0. Then

a,,+1_ 2n~|—1 2
a, " \2n+2
11 5n2 + 4n
:1——+— N ,
n n2\4n?2+48n+4

the last step being obtained upon division of 4n” + 4n + 1 by 4n” + 8n + 4 to give
a quotient of 1 — 1/n and a remainder of 5 4+ 4/n. Since the sequence

5n% + 4n
4n? +8n + 4

converges (to 5/4), it is bounded. The divergence of the given series now follows
from Gauss’s test with ¢ = 1.

A
Exercises 5.3.

1. Let a, = log'®®"n for all n > 1. Show that @, = n'°¢'°¢" and hence that
> 7, 1/a; converges.
2. Determine the convergence of the following series:

(@) Y52, (log(j + 1) —log j)? where p > 0;
(b) 352, =5
© 252, Hlog (14 4):

@ 37, @ where p € R;
© X520 o Tiogmor

(Hint: Try Cauchy’s condensation test.)
3. Find the interval of convergence of the power series

4. Let {a,} be a sequence of positive terms and {s,} a bounded sequence. Let ¢ be

a constant such that
a c s
—=1+-+=
Ap+1 n n

for all n > 0. Prove that the series Z?ozl a; converges if ¢ > 1 and diverges if
c<1.
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5. (Bertrand’s test) Let Z;’il a; be a series of positive terms, and for each n € N

let
Bn = (n (_an+1 — 1) — 1) logn.
ap

(a) Show that if lim, oo B, > 1, then the series converges.
(b) Show that if lim, o, B, < 1, then the series diverges.

(Hint: Take
b, = (n—1)log(n — 1)

in the Kummer-Jensen test.)

5.5 Uniformly Continuous Functions

Let f be a continuous function and let ¢ be an accumulation point of D s. Then for
each & > 0 there exists § > 0 such that

@)= flo) <&
for all z € Ns(c) N Dy. It may be that § depends on c. If not, then we say that f is
uniformly continuous.

Definition 5.5.1. A function f is uniformly continuous if for each ¢ > 0 there
exists 6 > 0 such that

/@) = f) <&
for all z;, zp € Dy satisfying |z — 22| < 4.
Remark. Thus a uniformly continuous function must be continuous at every point
in its domain.
We can prove the following sequential characterisation of uniform continuity.
Proposition 5.5.1. A function f is uniformly continuous if and only if for each pair

of sequences {s,} and {t,} in Dy such that

lim (s, — ;) =0,

n—>o0
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we have
Tim (f(s0) = /() = 0.

Proof. Suppose there exist sequences {s,} and {t,} in D such that {s, — ¢, } is null
but { f(s,) — f(z,)} is not. Some ¢ > 0 therefore has the property that for every M
there exists n > M satisfying

| f(sn) — fta)| = &, (5.7)
but on the other hand, for every § > 0 there exists N such that
[y —t,] <8

for all n > N. Some such n must satisfy inequality (5.7), and so f cannot be
uniformly continuous.

Conversely, suppose f is not uniformly continuous. Then for some ¢ > 0 and all
§ > 0 there exist s,¢ € Dy such that |s — 7| < § and | f(s) — f(t)| > &. Thus for
each n € N there exist s,,#, € Dy such that

1
I$p —ta| < —
n

and

| f(sn) — ftn)] = e.

The sandwich theorem shows that the sequence {s,, —t, } is null, but { (s,) — f(z,)}
is evidently not. o

Example 5.5.1. Consider the function f: (0,2] — R defined by
1
fx)=-.
X
Lete = 1/2 and, for each n € N, define s, = 1/n and t, = 2/n. Then
|Sn - ln| =-——0
n

as n — oo, but

|ﬂm—fmn=§ze

for all n € N. We conclude that f is not uniformly continuous. A
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We also deduce the following theorem.

Theorem 5.5.2. Every function that is continuous over a compact set is uniformly
continuous.

Proof. Suppose that a function f is continuous over a compact set X but not
uniformly. Then we can find ¢ > 0 with the property that for each n € N there
exist s, and 7, in X satisfying

lim |s, — 2, =0
n—o0
and
| f(sn) = ft)] = €. (5.8)
Since {s, } is bounded, by Corollary 2.6.8 it has a subsequence {s, } that converges
to some number s. If s;, = s for some number m, then s € X. In the remaining
case s is a limit point of X by Theorem 2.6.11, and once again s € X since X is
closed. Now
ltx, — 5| < ltx, — sk, | + |5, —s[ =0
as n — oo. Hence
lim #, =s.
n—o00
As f is continuous at s € X, we obtain
lim f(s,) = lim f(x,) = f(s).
n—>oo n—00

Therefore

|f (se,) = S @) < 1 f(sw,) = fOI+ 1 () = f($)] =0

as n — oo. We now have a contradiction to inequality (5.8). O

Theorem 5.5.3. A continuous function f is uniformly continuous on an open
interval (a, b) if and only iflim,_, ,+ f(x) and lim,—,— f(x) exist and are finite.

Proof. Suppose that f is uniformly continuous on (a, b). Choose ¢ > 0. There
exists § > 0 such that

|f(x)=fOWl<e (5.9)

for all x and y in (a, b) satisfying |x — y| < §. Choose x and y in N;}z(a) N (a,b).
Then
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=yl <l —al+la—yl <2+ 2 =5,
- 2 2
so that inequality (5.9) holds. Thus f satisfies Cauchy’s condition at a, and we
conclude from Theorem 4.3.2 that lim,_, ,+ f(x) exists and is finite. The limit as
x — b~ is dealt with in a similar manner.
Conversely, suppose that both limits exist and are finite. Then f can be extended
to a continuous function on [a, b] that is uniformly continuous by Theorem 5.5.2.

Hence f is also uniformly continuous. O
Example 5.5.2. Let f(x) = e~/ forall x # 0. Then lim,_ o+ f(x) = 0. Hence
f is uniformly continuous on (0, b] for each b > 0. A

A function is uniformly continuous over a closed interval if and only if it is
continuous over that interval. Thus if functions f and g are uniformly continuous
over an interval [a, b], then so are f + g, fg, and «f for all « € R. In view of
Theorem 5.5.3, this result is also true if we replace the interval by (a, b). However,
it is in general not true if we replace the interval by [a, c0).

Example 5.5.3. Let f(x) = g(x) = x for all x. Then, clearly, f and g are
uniformly continuous over [0, o0). However, we show that the function given by
x? is not uniformly continuous over that interval. For all n > O let s, = +/n + 1
and 1, = /n. Then

Sp—ty = n+1—n
(WVn+1—n)(n+1+ /n)

Sn+ 1+ n
_ 1
Jn+1+n
— 0.
However,
s2—12=1

for all n. Hence according to Proposition 5.5.1, the function x? is not uniformly

continuous over [0, 00). A

The family of uniformly continuous functions includes an important subfamily,
which we define below.

Definition 5.5.2. A function f is said to be Lipschitz continuous if there exists a
positive constant M such that

[ f(z1) = f(z2)| < M|z1 — 22|

for all z; and z; in Dy.
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Example 5.5.4. The modulus function is Lipschitz continuous since
|lz1] = lz2ll < |21 — 22|

forall z;,z, € C. A

It follows from Proposition 5.5.1 and the sandwich theorem that every function
that is Lipschitz continuous is also uniformly continuous. However, the converse is
not always true.

Example 5.5.5. The function f given by
fx) = Vx

is continuous and therefore uniformly continuous over [0, 1]. We show that it is not
Lipschitz continuous. Suppose there exists M > 0 such that

| f(x1) = f(x2)| = Mx1 — xaf

for all xy, x; € [0, 1]. In particular,

|f(x) = f(0)] = M|x|
for every x € (0, 1]. Thus

Jx < Mx,
so that 1 < M \/x. However, this result is contradicted for x such that 0 < x <
1/M?2. A
Exercises 5.4.
1. Show that the following functions are uniformly continuous:

(a) +/x, where x € [0, 00);
(b) xsin )'—(, where x € (0, 1).

2. Show that the following functions are not uniformly continuous:

(a) logx, where x € (0, 1);
(b) e*, where x € [0, 00).

3. Suppose that f is uniformly continuous on (a, b] and on [b, ¢). Show that f is
uniformly continuous on (a, ¢).

4. Let f be continuous on [a, co) and suppose that lim,_, o, f(x) exists and is finite.
Show that f is uniformly continuous on [a, 00).



Chapter 6
Differentiability

The notion of a derivative is motivated by studying two kinds of problems: finding
instantaneous velocities and determining slopes of tangents to curves. Here we
shall not dwell on these problems. Rather, we undertake a study of the general
mathematical properties of derivatives. We assume all functions to be of a complex
variable and complex-valued unless an indication to the contrary is given.

6.1 Derivatives

Definition 6.1.1. Let f be a function and ¢ an accumulation point of D ;. Define

f@) = f(e)
prp—

c

£'(c) = lim

—>C

If the limit exists and is a number, then f is said to be differentiable at ¢ and f'(c)
is the derivative of f atc.

Remark 1. We sometimes write
d
TS@=f '(2)
z

if f is differentiable at z.

Remark 2. In the case where f is a real-valued function of a real variable x, the
quotient

f(x) = f(e)
X —c
© Springer Science+Business Media New York 2015 243
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gives the slope of the line joining the points (¢, f(c)) and (x, f(x)) on the graph
of . We may interpret f’(c) geometrically as the slope of the graph of f at the
point (c, f(c)).

Example 6.1.1. Let f(z) = az + b for all z € C, where a,b € C. Then, for each
ceCandz#c,

f@)— f(c) (az+b)—(ac+b)
z—cC o z—cC
_alz—o)

z—c¢
=a.
Hence f'(c) = a. A

In particular, if f(z) = b forall z € C, then f’(c) = 0 for all ¢. If f(z) = z for
all z € C, then f'(c) = 1 forall c.

Example 6.1.2. Let f(z) = z? for all z € C. Then, for each ¢ and z # c,

f@—flo) _2-¢

z—c z—c
=z+c

— 2¢

as 7z — c. Hence f’(c) = 2c. A
Definition 6.1.1 may be rewritten using the limit in the next theorem.
Theorem 6.1.1. Let f be a function that is differentiable at a number c. Then

. fle+h)—flo)

! = lim —————~.
SO ==,
Proof. Let k(z) = ¢ + z for all z. Then lim,—¢ k(z) = c¢. Define

_ [ f(©)

z—¢C

g(@

forallz € Dy —{c},and let g(c) = f'(c). Then 0 is an accumulation point of Dok
and g is continuous at c¢. Notice also that

(k) = 1=,
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It therefore follows from Theorem 5.1.4 that

fle) =limg(@) = lim gk() = lim w

as required. O

Example 6.1.3. Recall that exp(z) = e for all complex z. We have seen that The-
orem 2.7.10 holds also for complex numbers. Therefore so does Corollary 2.7.11,
and we can use the latter, together with Theorem 6.1.1, to show that

c+h _ e¢
’ : c
exp(c) =lm — =e¢
p ( ) h—0 h
for all c. In other words, the exponential function is its own derivative. A

The following theorem is clear from the sequential formulation of limits.
Theorem 6.1.2. Let f be a function. If there exist sequences {s,} and {t,} in Dy
such that

lim s, = lim t, =c¢
n—o0 n—00

and

i LOD =S, fa) = @)

n—00 Sp—C n—>00 t,—c¢

then f'(c) does not exist.

Example 6.1.4. Consider the function f(z) = Z, defined on C. We show that f”(0)
does not exist. For each n € N, take s, = 1/n and ¢, = i/n. Clearly,

lim s, = lim ¢, = 0.
n—>0o0

Now
fe) = 1O _,
s, —0 o
and
f)=fO _
t,—0
Hence
i LSO S = SO
n—00 s, —0 n—00 t, —0

Therefore f/(0) does not exist. A
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Example 6.1.5. Consider the real function

x? ifx <0,
S(x) =

if x > 0.

We show that f/(0) does not exist. For each x # 0 let

00— L) =IO
x—0
_/®
X

x ifx <0,

1 ifx>0.
Thus
lim Q(x) =0
x—>0—
and
lim Q(x) =1.
x—0T

6 Differentiability

Hence lim,_,o Q(x) does not exist. In other words, f”(0) does not exist. Note that
the function is continuous but its graph has a “corner” at O (see Fig. 6.1). A

We now show that if f is differentiable at ¢, then f is continuous at c.
Examples 6.1.4 and 6.1.5 show that the converse is not always true.

Theorem 6.1.3. [fafunction f is differentiable at a number c, then f is continuous

atc.

Fig. 6.1 Graph of f
in Example 6.1.5

Sx) 4
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Proof. Let f be differentiable at c. Then, for each z € Dy — {c},

f@- s =20 g

As z approaches c, the right-hand side approaches f’(c) - 0 = 0. Hence
lim £(2) = £().

Our next example shows that, even for a real function f, the existence of

lim f'(x)

X—>C

does not guarantee the existence of f'(c).

Example 6.1.6. Let

x+1 ifx <0,
fx) =

x if x > 0.
Then f’(x) = 1 for all x # 0. Thus
lim 7'(x) = 1.
x—>0

But f is not continuous at 0, since lim,—o— f(x) = 1 and lim,_,o+ f(x) = 0.
Therefore, by Theorem 6.1.3, f7(0) does not exist. A

Our next theorem gives an idea of the behavior of a function in the vicinity of a
point where its derivative exists. The result is stronger than Theorem 6.1.3.

Theorem 6.1.4. Let f be differentiable at c. Then there exist 5§ > 0 and M > 0
such that

1@ = f(e)l < M|z—c|
forallz € Nf(c) N Dy.

Proof. There exists § > 0 such that

V@ O _ ol <1
z—c
for all z € Ny (c) N Dy. Hence

z—c
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Setting M = | f’(c)| + 1 > 0, we obtain

| /(@) = fle)l < Mz —c|
forallz € N (c) N Dy. |

The condition given in the conclusion of Theorem 6.1.4 is called the Lipschitz
condition at c¢. Functions that satisfy it are continuous at ¢ but not necessarily
differentiable there.

Example 6.1.7. The absolute value function |x| satisfies the Lipschitz condition at 0
but can be shown to be not differentiable there. Hence the converse of Theorem 6.1.4
is in general not true. A

We end this section by defining f© = £, where f is a function, and if /) has
been defined for some nonnegative integer 7, then £+ = (f™) We call ™
the nth derivative of f. If f is a function of a variable z, then its nth derivative is
sometimes written as % f(z). These higher-order derivatives will be used later to
study approximations of functions by polynomials.

Exercises 6.1.
1. Find the derivatives of the following functions:

(a) %, where x # 0;
(b) x", wheren € N;
(©) x|x|.

2. Show that the absolute value function is not differentiable at 0.

. Show that the function /x, where x > 0, is differentiable at all x > 0.

4. Use the properties of the sine and cosine functions to prove that sin’ x = cos x
and cos’ x = —sinx for all x.

5. Let

(O8]

2 ifx e,

X
Jy = {0 if x ¢ Q.

Show that f is differentiable only at 0.

x? ifx <0,
3

f(x)z{x ifx > 0.

Find f/(x) and f”(x) for all x.
7. Let f(x) = |x|? for all x. Find f'(x) and f”(x) for all x and show that " (0)
does not exist.
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6.2 Differentiation Formulas

We now present some results that are helpful in finding derivatives of functions.

Theorem 6.2.1. If f and g are functions and c is an accumulation point of Dy N
Dy, where f and g are differentiable, then

1.
(f+8)'=f)+¢ .
2.
(f8)'(c) = f()g'(c) + f'(e)g(o),
3.

(f)’( _ fe)gle) — fle)g'(c)
. c) = >
g g*(c)

if there is a neighborhood Ns(c) such that g(z) # 0 for all z € N;s(c).

Proof. 1. We compute

(f +9@) - (f +8)()

(f +2)'(c) = lim

¢ z—¢C
zhm(ﬂ@—f@x+ﬂa—aw)
7—>¢ z—¢ i—¢C
= f'(c) + &' (c).
2. Since
(f8)(2) — (fe)(c) = f(2)g(2) — f(c)g(c)
= f(2)g(@) — f(2)g(c) + f(2)g(c) — f(c)g(c)
= f(2)(g(2) —g(c) + (f(2) — f(c))g(c),
we have

§Q -8 SO-SE)
Z—cC Z—cC

—>C

(f2)'(c) = lim £(z) lim
= f(©)g'(c) + f'(c)g(c)

because f is continuous at c.
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3. We deal first with the function 1/g, recalling that g is continuous at c:

1 1

_ 2@ 2
( ) (C) }—n zZ—cC
 fim ( 1 gl - g(z))

—e\z—c  g(2)glc)

— lim i £ 8@
e g(z)gle) e z—c

_ =8
g (c)

An application of part (2) therefore gives

f / _ 1 !
(E) ©= (f | g) (©
= f (c>ﬂ 4 f(c)( ) (©)
SO @)
@ 20
_ S50 ~ 00
= 20)

a

Remark. Again, the hypothesis that ¢ be an accumulation point of Dy N D, is
essential (see Remark 2 after Theorem 4.4.1).

Corollary 6.2.2. Let f be a function and a and ¢ numbers. If f is differentiable
at c, then

(@) (c) = af'(c).
Proof. Let g(z) = a for all z. Thus g’(c) = 0 for all ¢. Hence
(@) (c) = af'(c) +0- f(c) = af'(c),

by Theorem 6.2.1(2). O

Example 6.2.1. Let f(z) = 7" for all z, where n is a positive integer. We show by
induction that

f/(z) — nzn—l
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for all z, where 0° = 1. Certainly, f'(z) = 1 forall zif n = 1. Assume thatn > 1
and that the result holds with n replaced by n — 1. Then 7" = z- 7"~!, and so

@ =zn—D"2+1-2""!

n—1

for all z, by Theorem 6.2.1(2), as required.

Suppose now that z # 0. Then the result just proved holds also when
n = 0. In fact, we can extend it to the case where n is a negative integer, using
Theorem 6.2.1(3) and the fact that 7* = 1/z7". Thus if f(z) = 7" for all z # 0 and
n is a negative integer, then —n > 0, and so

7" 1
Sy =TT
<

for all z # 0. A
Our next theorem, known as the chain rule, deals with compositions of functions.

Theorem 6.2.3 (Chain Rule). Suppose that f and g are functions such that both
g'(c) and f'(g(c)) exist, where ¢ € D yoq. Suppose also that c is an accumulation
point of D roq. Then

(fog)(c)= f'(g(c)g'(c).

Proof. Define

u(Z)_g(Zi g(c) —¢(0)

for all z € Dy — {c}. Thus
limu(z) = g'(c) — g'(c) = 0.
—>C

Define u(c) = 0. Then u is continuous at c.
Similarly, let b = g(c) and define

LSO f1b) ifz e Dy — (b},

v\Z
@ = ifz=>.

Then v is continuous at b.
From the definitions of u(z) and v(z), we have

8@ —b=(z—0c)g' () +u@)
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for all z € D, (even for z = ¢) and

f@ = f(b) = (z—=b)(f'(b) +v(2)
for all z € Dy. Hence
f(g@)— f(glc) = f(g(2) — f(b)
= (g = b)(f'(b) +v(2(2)))
= (z—o)(g'(c) +u@)(f'(b) + v(g(2)))

for all z € Dyog, so that

(/ 0 g)'(c) = lim(g'(c) + u(@)(f'(b) + v(g(2))

=g'() f'(b),
for v o g is continuous at ¢ by Corollary 5.1.5 since g is continuous at ¢ and v is
continuous at b = g(c). O
Example 6.2.2. Since
. o _ iz
sing = —-—

for all z € C, we have

o, ie'? + je % eiz + e—iz
sin’ z = - = = Cos z,
2i 2

by Theorems 6.2.1 and 6.2.3. Similarly,

, ie? —ie™  j2(eft —eTH) .
cos'z = = - = —sinz.
2 2i

Thus the sine and cosine functions are continuous everywhere.
Recall also that secx = 1/cosx and tanx = (sinx)/(cosx) whenever
cos x # 0. We therefore have

, cos? x + sin® x 1 5
tan' x = 3 = > = Ssec” x.
cos? x cos? x

It follows that the tangent function is continuous wherever it is defined. Note also
that

sec’ x = — (—sinx) = sec x tan x

cosZ x

for all x such that cos x # 0. A
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Theorem 6.2.4 (Inverse Function Theorem). Let f:[a,b] — R be an increasing
differentiable function. Let ¢ be a number in [a, b] such that f'(c) # 0. Then f !
is differentiable at f(c) and

iy 1
) V@ =55

Proof. Note first that f is continuous, by Theorem 6.1.3. Therefore f ! exists and
is continuous and increasing on its domain, by Theorem 5.3.8. Let g = f~!. Thus
Dy = [f(a). f(D)].

According to Theorem 6.1.1, we must show that

i 8@ +R) —c 1
k>0 k ey

since g(f(c)) = c. It is therefore enough to prove that

N k
N Py e

For each k such that f(c) + k € D, define
h(k) = g(f(c) +k)—c.
Thus k € Dy, if and only if f(a) < f(c) + k < f(b). Consequently,
Dy = [f(a) = f(c). f(b) — f(o)].
Therefore 0 € Dy, since f is increasing, and

h(0) = g(f(c)) —c=c—c=0.

Furthermore,
F7Hf(©) + k) = ¢+ h(k):
hence
@) +k = flc+ h(k)),
so that

k= flc+hk)) = f(c).
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Thus it suffices to show that

flet+hk) - flo)

f'(c) = lim

h(k)
But
i Jle+h(k))— f(c)
fe) = lim h(k) '

We therefore introduce the function j defined by j(0) = f’(c) and

= LD =f©
j) = e

forall x € [a —c,b — c] — {0}, so that
fle) = fim (o).

We now check that the hypotheses of Theorem 5.1.4 are satisfied by the functions
j and h. As h is evidently continuous on its domain, we see that

lim h(k) = h(0) = 0.

Moreover j is continuous at 0 by definition. Finally, we have k € D, if and only
ifk € Dy and h(k) € [a—c,b —c]. Butif k € Dy, then h(k) € [a — ¢, b — ¢] since
R, = [a, b]. We conclude that D;.; = D}, and therefore that 0 is an accumulation
point of Doj,. We can thus apply Theorem 5.1.4 to show that

£1(e) = lim j(h(k)).

as required. O

The inverse function theorem also holds for functions of a complex variable with
continuous derivatives (see [11]).
Since the logarithm and exponential functions are inverses, we have

x = exp(log x) (6.1)
for all x > 0. Moreover the logarithm function is differentiable at all x > 0
by Theorem 6.2.4, since the exponential function is nonzero, differentiable, and

increasing everywhere. Differentiation of Eq. (6.1) therefore yields

1 = exp(log x) log’ x = xlog’ x,
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and so
, 1
log'x = —
X

for all x > 0. This calculation provides another confirmation that the logarithm
function is continuous at all x > 0.
Let us now define f(x) = x% = e%1°2* > 0 for all x > 0, where a is any real
number. Then
a a
f/(x) — ealogx L= xa -
X

Similarly, let g(x) = a* = e*'°¢¢ for all x, where a > 0. Then

g'(x) = e Joga = a* loga.

Exercises 6.2.

1. Show that log’ x = 1/x for all x > 0 by evaluating

. log(x +h) —logx
lim .
h—0 h

2. Let f:[a,b] — R be differentiable at ¢ € (a, b). Let {a,} and {b, } be sequences
such that

a<a,<c<b,<b
for all positive integers n. If

lim a, = lim b, = c,
n—o00 n—oo

prove that

f(b) = f@n)

n — dn

reN 1
£t = lim,
[Hint: Use the fact that

fba) = f(@n)

b 1)

n — dn

_ ;n—c (f(bn)—f(C) —f’(c))— ap —¢ (f(an)—f(C) _f,(c))
n — dn bn_c bn_an ay —¢C

foralln € N.]
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3. Let f and g be functions having nth derivatives. Prove that

(fo)™ = Xn: (j)f(n—j)g(j)_

j=0

(This result is known as Leibniz’s rule.)
4. Let F = fifa--- fu and F; = F/f; whenever f;(x) # 0. Show by induction
that we then have

F'(x) =Y Fj(x) f](x).

j=1
5. Let

b if x € Q,

&) %—x ifx ¢ Q.
Show that (f o f)(x) = x for all x. What can you say about the chain rule?

6. Let f be as in Exercise 6.5 and let g = — f. Show that (fg)(x) = —x? for all x.
What can you say about the product rule?

7. Let m and n be positive integers. An m X n matrix is defined as an array of
numbers arranged in m rows and n columns. The array is usually enclosed in

parentheses. The determinant P 9| of the 2 x 2 matrix (p q) is defined by the
rs rs
equation
Pa|_ ps —rq.
rs

Let (a, b) be an open interval, and for all x € (a, b) define

Si(x) fa(x)

FO =100 o)

)

where f1, f>, g1, &> are functions that are differentiable on (a, b). Show that

S1(x) fa(x)

) A
F = ¢1() gh(x)

g1(x) g2(x)

for all x € (a,b).
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6.3 The Mean-Value Theorem for Derivatives

The first theorem to be discussed in this section is important in its own right but is
even more important as the basis for a number of other theorems that are among the
most useful in the theory of functions.

Theorem 6.3.1 (Rolle). Let f:[a,b] — R be continuous on |a,b] and differ-
entiable on (a,b), and suppose that f(a) = f(b). Then f'(§) = 0 for some
& €(a,b).

Proof. If f is a constant function, then f’(x) = O for all x € [a, b]. Hence we
assume that f(x;) # f(a) for some x| € (a, b). We may also assume that

Jf(x) > f(a),

as the argument for the other case is similar.
By the maximum-value theorem, there exists £ € [a, b] such that f(x) < f(§)
for all x € [a, b]. Since

f&) =z f(x) > fla) = f(b),

we have £ ¢ {a,b}. Thus & € (a,b).
We claim that f/(§) = 0. Define

o) = 1=/ ®
x—§
for all x € [a,b] — {£}. Then
tim 0(x) = f'(€).

As f(x) < f(&) forall x € [a,b], it follows that f(x) — f(£) < O for all such x.
Hence Q(x) > Oforall x € [a,§) and Q(x) < O forall x € (§,b]. Thus

lim Q(x) >0
x—>£—

and
lim Q(x) < 0;
x—>§+
consequently, lim, ¢ Q(x) = 0, as required. O

Remark 1. The number £ in Rolle’s theorem need not be unique. For example, let
f(x) = x> —x forall x € [—1,1]. Then f satisfies the hypotheses of the theorem.
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However, f/(x) = 3x? — 1 forall x € (-1, 1), so that
1 1
i ’
— | = ——]=0.
/ (ﬁ ) / ( NE] )

Remark 2. The conditions in Rolle’s theorem cannot be relaxed. For instance, for
all x € [0, 1] let

fx) = x,
g(x) =x—[x],
and
h(x) = |2x —1].

The function f" is continuous and differentiable everywhere, yet f'(x) = 1 # 0 for
all x. Note that f(0) # f(1). The function g satisfies g(x) = x for all x € [0, 1)
and g(1) = 1—1 = 0 = g(0). It is differentiable on (0, 1), but g’(x) = 1 # 0 for
all x € (0, 1). Note that g is not continuous at 1. Finally, / is continuous everywhere
and h(0) = h(1) = 1. Its derivative is —2 # O atall x € (0,1/2) and 2 # O at all
x € (1/2,1). It is not differentiable at 1/2.

Remark 3. The converse of Rolle’s theorem is not, in general, true. In fact, the
conclusion of the theorem does not imply any of its hypotheses. Take, for example,
the function f such that

f(x) =2 = |x*]

for each x € [—1,3/2]. Here we have f(3/2) = 9/4—2 =1/4 # 0 = f(-1).
Moreover f is not continuous (and therefore not differentiable) at 1. Nevertheless,
f(x) =x%forall x € (—1,1),and so f’(0) = 0. Note that 0 € (—1,3/2).

By maneuvering the x-axis, we can generalize Rolle’s theorem to one of the most
fundamental theorems of real analysis—the mean-value theorem.

Theorem 6.3.2 (Mean-Value Theorem). Let f be a function of a real variable
and suppose that f is continuous on a closed interval [a, b] and differentiable on
(a,b). Then there is a number & € (a, b) such that

fb) = fl@)

& === (62)

Discussion: Notice that the right-hand side of Eq. (6.2) is the slope of the chord
of the graph of f joining the points (@, f(a)) and (b, f(b)). The theorem asserts
that some tangent to the graph between these points is parallel to the chord. We may
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rotate and translate the chord, if necessary, until it is superimposed on the x-axis.
The mean-value theorem then becomes identical to Rolle’s theorem.

Proof. The equation of the chord joining (a, f(a)) and (b, f(b)) is

vy =10y,
a
Thus
v=f@+ 1Oy
Define
80 = f0) —y = f(0) — fla) - TOZTD ()

for each x € [a,b]. Then g is continuous on [a, b] and differentiable on (a, b).
Moreover g(a) = 0 and

gb) = f(b) = fla) = (f(b) — f(a)) = 0.

Thus Rolle’s theorem may be applied to find a number § € (a,b) such that
g’'(§) = 0. But

¢ = ro- 101D

The result follows. O

Example 6.3.1. If f(x) = e* for all x, then f'(x) = e* for all x. We can use this
result and the mean-value theorem to show that

e*>1+x

for all real x. Indeed, equality holds if x = 0. Suppose that x > 0. By the mean-
value theorem, there exists £ € (0, x) such that

e —e¥ = ef(x —0).
Since £ > 0, we conclude that
e —1=c¢efx > x,

and the result follows.
The case where x < 0 is handled in a similar way. A
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We now establish some theorems that are plausible intuitively but difficult to
prove without invoking the mean-value theorem.

Theorem 6.3.3. Let f:[a,b] — R be a function that is continuous on [a, b] and
differentiable on (a,b). If f'(x) = 0 for all x € (a,b), then f is a constant
function.

Proof. Suppose f is not a constant function. Then there exist ¢ and d in [a, b] such
that f(c) # f(d). Suppose without loss of generality that ¢ < d. By the mean-
value theorem, there exists £ € (c, d) such that

d) —
1O _ gy o
—c
Thus we reach the contradiction that f(d) = f(c). |

Corollary 6.3.4. Let f,g:[a,b] — R be functions that are continuous on [a, b]
and differentiable on (a,b). Suppose that f'(x) = g'(x) for all x € (a,b). Then
there is a constant ¢ such that

J(x) =gx) +c

forall x € [a,b].
Proof. Apply Theorem 6.3.3 to the function f — g. O

The next two theorems relate the sign of the derivative of a function to the
monotonicity of the function.

Theorem 6.3.5. Let f:[a,b] — R be a function that is continuous on [a, b] and
differentiable on (a,b). If f'(x) > 0 for all x € (a,b), then f is increasing on
[a, b].

Proof. Choose ¢ and d in [a, b] such that ¢ < d. The function f satisfies the
hypotheses of the mean-value theorem on [c, d]. Therefore there exists £ € (¢, d)
such that

d) — .
IO _ iy g

d —
Consequently, f(d) > f(c), since d — ¢ > 0. We conclude that f is increasing on
[a, b]. O

Theorem 6.3.6. Let f:[a,b] — R be a function that is continuous on [a, b] and
differentiable on (a,b). If f'(x) < 0 for all x € (a,b), then f is decreasing on
[a, b].

Proof. Apply Theorem 6.3.5 to the function — f. O
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Corollary 6.3.7. If [’ is continuous at some ¢ € (a,b) and f'(c) # 0O, then f is
strictly monotonic in some neighborhood of c.

Proof. Suppose first that f'(c) > 0. Since f’ is continuous at ¢, Theorem 5.1.8
confirms the existence of § > 0 such that f’(x) > 0 for all x € Nj(c). By
Theorem 6.3.5, f is increasing on Ns(c).

The argument is similar if f’(c) < 0. O

Example 6.3.2. Let f(x) = x? for all x > 0, where a € R. Then f’(x) = ax*~!
for all x > 0. Thus f is increasing if @ > 0 and decreasing if a < 0. A

Example 6.3.3. Let f(x) = a* forall x € R, where a > 0. Then f'(x) = a*loga
for all x, so that f is increasing if @ > 1 and decreasing if 0 < a < 1. A

Example 6.3.4. Let
f(x)=ax* +bx+c
for all real x, where a, b, ¢ are real and a > 0. Then
f(x) =2ax+b
for all x, and so f/(x) = 0if and only if x = —b/(2a). Moreover f'(x) < 0 for
all x < —b/(2a) and f'(x) > O forall x > —b/(2a), since a > 0. It follows from
Theorems 6.3.6 and 6.3.5 that f is decreasing on (—oo, —b/(2a)] and increasing

on [—b/(2a), 00). Therefore, by Theorem 5.3.7, the equation f(x) = O can have at
most two real solutions, one in the former interval and one in the latter. In fact, since

f(x)=a(x2+b—x+£)
a a

+b 2 b2+c
=allx+—) ——+-—-],
2a 4a?  a
we have

im0 = Jim /() = o

and so there are two real solutions if f(—b/(2a)) < 0, none if f(—b/(2a)) > 0,
and just the solution x = —b/(2a) if f(—b/(2a)) = 0. Note that

f—b _ bz_b2+
2a - 4a2  2a ¢

B 4ac — b?
T 4a
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As we saw in Sect. 1.4, the number b2 —4ac is called the discriminant of (x). Since
a > 0, the equation has two distinct real solutions if the discriminant A is positive,
just one if A = 0, and none if A < 0. We also observe that the equation has two
distinct real solutions if and only if there exists a number & such that f(§) < 0.

If a < 0, similar arguments show that once again the equation has two distinct
real solutions if A > 0, just one if A = 0, and none if A < 0. In this case,
however, two distinct real solutions exist if and only if there is a number & such that

f( >o. A

Definition 6.3.1. Let f be a real-valued function. The value of f at a number
¢ € Dy is called a local maximum if there exists a neighborhood Ns(c) such
that f(z) < f(c) for all z € Ns(c). A local minimum of f is defined analogously.
A number c is an extremal point or extremum of f if f(c) is a local maximum or
local minimum, and f(c) is then an extremal value of f.

Our next result gives a sufficient condition for the existence of an extremum.

Theorem 6.3.8 (First Derivative Test). Let f:[a,b] — R be a continuous
function and let ¢ € (a, b). Suppose there exists § > 0 such that f is differentiable
atall x € N{(c).

1. If f'(x) = Owheneverc —§ < x < cand f'(x) < 0 whenever c < x < c¢ + 6,
then f has a local maximum at c.

2. If f'(x) < 0 whenever c — 8§ < x < c and f'(x) > 0 wheneverc < x < c + 6,
then f has a local minimum at c.

Proof.

1. The mean-value theorem shows that for each x € (¢ —§, ¢) there exists £ € (x,¢)
such that

fle)= f(x) = f'E)c—x) = 0.

Hence f(c) > f(x). Likewise, f(c) > f(x) for each x € (¢, ¢ + ). Therefore
f(c) is a local maximum.
2. The proof of part (2) is similar. O

Example 6.3.5. This theorem shows that the function |x|, for all x € R, has a local
minimum at (. Note that this function is not differentiable at 0. A

The following theorem is often of assistance in locating local maxima and
minima.

Theorem 6.3.9. Let f:[a,b] — Rand c € (a,b). If f(c) is an extremal value of
f and f'(c) exists, then f'(c) = 0.

Theorem 6.3.9 is an immediate consequence of the following lemma, which
asserts that an extremal point of a function f is a “turning” point of the graph of f.
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Lemma 6.3.10. Let f:[a,b] > Randc € (a,b).

1. If f'(c) > O, then there exists § > 0 such that f(x) < f(c) forall x € Dy for
whichc —8 < x < cand f(x) > f(c) forall x € Dy for whichc < x < c +3.
2. If f'(c) <O, then there exists § > 0 such that f(x) > f(c) for all x € Dy for
whichc -8 < x < cand f(x) < f(c) forall x € Dy for whichc < x < c +3.

Proof. If f’(c) > 0, then by Theorem 4.4.6 there exists § > 0 such that

fO-1© _,

X —cC

forall x € N{(c). Thus f(x) > f(c)if x > c,but f(x) < f(c)ifx <c.
The case where f’(c¢) < 0 follows by considering the function — 1. O

A number ¢ such that f'(c) = 0 is sometimes called a critical point of the
function f.

Our next theorem shows that derivatives satisfy the conclusion of the
intermediate-value theorem even though they may not be continuous. First, we
establish a special case.

Lemma 6.3.11. If f:[a, b] — R is differentiable and f'(a) f’(b) < 0, then there
exists £ € (a,b) such that f'(§) = 0.

Proof. We may assume that f’(a) > 0 [and therefore that f'(b) < 0] as the
argument is similar if f’(a) < 0. The differentiable function f is continuous and
therefore has a maximum value at some £ € [a, b]. By Lemma 6.3.10, there exists
8 > Osuch that f(x) > f(a) for each x such that a < x < a + 6. Therefore £ # a.
Similarly, & # b, so that £ € (a, b). Finally, f’(§) = 0 by Theorem 6.3.9. O

Theorem 6.3.12 (Darboux). If f:[a,b] — R is differentiable and f’(a) #
f'(b), then for each v between f'(a) and f'(b) there exists £ € (a,b) such that

1@ =v.
Proof. Apply Lemma 6.3.11 to the function g such that

glx) = f(x) —wx

for all x € [a, b]. O

Remark. If the derivative f’ is continuous, then Darboux’s theorem follows
immediately from the intermediate-value theorem.

Corollary 6.3.13. Let [ be continuous on [a, b] and differentiable on (a,b), and
suppose that ' (x) # 0 for all x € (a,b). Then f is strictly monotonic on [a, b).

Proof. 1If there exist x and y such thata < x < y < b and f'(x)f'(y) < O,
then we may apply Darboux’s theorem to the interval [x, y] to produce a number
& € (x, y) for which f/(&) = 0. This finding contradicts the hypothesis. Therefore
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either f/(x) > Oforall x € (a,b) or f/(x) < 0forall x € (a, b). The conclusion
is immediate in both cases, by Theorem 6.3.5 or Theorem 6.3.6, respectively. O

Remark. The condition hypothesized for the continuity of f in this corollary may
be relaxed provided that a corresponding change is made to the conclusion. For
example, suppose that the interval [a, b] is replaced by [a, b), and choose y such
thata < y < b. Then f is continuous on [a, y] and therefore strictly monotonic on
that interval. As y is any number in (a, b), we conclude that f is strictly monotonic
on [a,b).

Exercises 6.3.

1.(a) Show that

2 2 3

X X X
— — < log(1 <X——=4 =
X 5 og(l1+x) <x 2—1-3
for all x > 0.
(b) Let
n2
(1+3)
Sp = 1
e

for each n > 0. Show that

SRR B
—— <logs, < —=+ —.
p S8 =TT

(c) Compute lim,— oo ;-
2.(a) Show that

2x

5 < log(1 + x)

for any x > 0. (Hint: Try using Theorem 6.3.5 or 6.3.6.)
(b) Show that

lim n(@"" —1) = loga.
n—>o0

3. Prove that
2

log(1 -
og(l+x) <x 20+

if x > 0 and that the inequality is reversed if —1 < x < 0.
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1 X
fx) = (1 + ;)
gx) = (1 — l)_x.

X

Show that f is increasing on (0, co) and g is decreasing on (1, co). [Hint: Study
the signs of the derivatives of log f(x) and log g(x).]

. Forall x > 0let

and

. Use the mean-value theorem to show that the following functions are uniformly

continuous on [0, 00):

(a) cos kx for every real k.
(b) log(1 + x).

. Use the mean-value theorem to show that

for every n € N.

. Show that the equation

x*+dx+c=0

has at most two real roots for every real ¢ and exactly two if ¢ < 0.

. Show that x> 4+ 7x — 2 = 0 has exactly one real root.
. Suppose that f is differentiable on R and has two real roots. Show that f’ has

at least one root.

Let p(x) be a polynomial of degree n > 2. Suppose that the equation p(x) = 0
has n real roots (which may be repeated). Show that p’(x) = 0 has n — 1 real
roots.

Let f be a function such that f” is continuous on [a, b] and differentiable on
(a, b), and suppose that

fla) = f(b) = f'(a) = 0.

Show that there exists « € (a, b) such that f”(a) = 0.

Suppose that f” exists and is bounded on (a,b). Show by the mean-value
theorem that f’ is also bounded on (a,b) and hence that f is uniformly
continuous on (a, b). [Note that the function /x is uniformly continuous and
differentiable on (0, 1), but its derivative is not bounded on (0, 1).]
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13. Let f be a function that is continuous on [0, 1] and differentiable on (0, 1), and
suppose that f(0) = f(1) = 0. Show that there exists ¢ € (0, 1) for which
f’(¢) = f(c). [Hint: Apply the mean-value theorem to f'(x)/e*.]

14. Let f be a differentiable function. Suppose that | f'(x)| < M forall x € Dy.
Show that f is Lipschitz continuous.

15. Show that +/x2 + 1 and sin x are Lipschitz continuous on R.

6.4 Periodicity of Sine and Cosine

The sine and cosine functions may be used to define another important mathematical
constant. First, we derive the following proposition.

Proposition 6.4.1. There exists ¢ € (1,2) such that cos ¢ = 0.

Proof. Proposition 3.16.1 shows that

%2
cosx >1——
2

for every real x. Hence

1 1
cosl>1—-=-=>0.
2 2
Similarly,
2 4
<1—— —,
cosx < > +24
so that
4 16 1
cos2<]l—-—4+—=—<0.
2 24 3

An appeal to continuity and the intermediate-value theorem completes the proof. O
For the sine function we have the following result.
Proposition 6.4.2. If x € (0, 2), then sinx > 0.

Proof. The proposition follows from the facts that

2j+1

o0
X
sinx = —1 S —
/‘Z:o( )(2j+1)!
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x4+l x4 +3
: 0((4,‘ 1) @) +3)!)

x4+l | x2
“(4j +1)! ( 4+ 3 +2))

M

<
Il

M

j
for all real x and
(47 +3)(4j +2) > 6> x>

for all x € (0,2). O
Thus

cos’x = —sinx <0

for all x € (0, 2), so that cos is decreasing on the interval [0, 2]. We infer that the ¢
of Proposition 6.4.1 must be unique. Since sin ¢ > 0, it follows that

sing = /1 —cos?2¢p = 1.

Furthermore,
sin2¢ = 2sin¢ cos¢ = 0.

We also have the following proposition.
Proposition 6.4.3. If x € (0,2¢), then sinx > 0.

Proof. Since ¢ € (1,2), we already know that sinx > 0 for all x € (0, ¢] by
Proposition 6.4.2. It remains to consider the case where ¢ < x < 2¢.Lety = x—¢;
hence 0 < y < ¢. Moreover

sinx = sin(y + ¢) = siny cos ¢ + cos y sin¢ = cos y.

We therefore need to show that cos y > 0. But this result is immediate from the
facts that cos¢p = 0,0 < y < ¢, and cos is decreasing on [0, ¢]. O

We now define @ = 2¢. This is the new mathematical constant whose
introduction was foreshadowed earlier. Our results therefore show that 2 < 7 < 4,
cos(m/2) = 0, sin(r/2) = 1, and sin x = 0. In fact, we see from Proposition 6.4.3
that 7 is the smallest positive number whose sine is 0. Moreover it follows from
Proposition 6.4.3 and the formula cos’ x = —sinx that cos is decreasing on [0, 7].
In addition,
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. T . T .
sin (x + —) = sin X cOS — 4+ COS X Sin — = COS X (6.3)
2 2 2
and
s v . . T .
cos (x + —) = COSX COS — — SinXx Sin — = —sin x (6.4)
2 2 2
for all x. Therefore
in(x + ) '(+”+”) (+”) i
sin = sin — + — ) =cos —) = —sinx.
X+ by > > X > X

It follows that sinx < O for all x € (i,27) and hence that cos is increasing on
[, 27]. Furthermore,

cos(x + ) = —sin (x + %) = —CcosX
and
sin(x + 27) = —sin(x + ) = sinx
for all x. Similarly,
cos(x + 2m) = cos x.

Since cos0 = 1 and cosm = —cos0 = —1, an appeal to the continuity of the
cosine and the intermediate-value theorem shows that the cosine, restricted to the
interval [0, r], is a bijection between that interval and the interval [—1, 1]. Note
also that cos(37/2) = —cos(z/2) = 0. Since the cosine is decreasing on [0, ]
but increasing on [, 2], we see that cosx < 0 if 7/2 < x < 3m/2. Therefore
cosx > 0if —n/2 < x < m/2. We deduce that the sine function is increasing on
[—7/2, /2] and decreasing on [r/2, 37 /2]. Since sin(rr/2) = 1 and sin(—x/2) =
—sin(r/2) = —1, it follows that the sine, restricted to the interval [—x /2, /2], is
a bijection between that interval and the interval [—1, 1].

A function f defined for all x and not constant is said to be periodic if there
exists 6 > 0 such that

fx+0)=f(x)

for all x. The smallest such 6 is called the period of /. We have now shown that
the sine and cosine functions are both periodic with period 2.

We have observed that sin is continuous everywhere, and it is also increasing
on [—m/2, /2]. Consequently, if its domain were restricted to that interval, then
the resulting function would have an inverse. This inverse is called the inverse sine
function and is denoted by arcsin. Its domain is [—1, 1], since sin(—x/2) = —1 and
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sin(/2) = 1. As cosx # O for all x € (—m/2,7/2), we see from the inverse
function theorem (Theorem 6.2.4) that arcsin is differentiable on (—1, 1). In fact, if
y € (—1,1), then y = sinx for some x € (—n/2,7/2), and

1 1 1

arcsin’(y) = —— = =
s’ x COS X 1— y2

since cos x > 0.
A similar argument shows that if the domain of cos were restricted to the interval
[0, 7], then the resulting function would have an inverse. This inverse is called the
inverse cosine function and denoted by arccos. It is also differentiable on (—1, 1).
If y € (—1,1), then y = cos x for some x € (0, ), and
1 1

arccos’ (y) = ——— = — )
sin x 1— 2

Since tan x = sin x/ cos x for all x for which cos x # 0, we have

2 2
cos” x + sin” x
tan’ x = — S =1 +tan*x > 0
cos? x
for all such x. We infer that tan is continuous and increasing on each interval over
which it is defined. An example of such an interval is (—x/2, 7w/2). Since

. . sin x
lim tanx = lim =00
x—>%_ x—>%_ COS X
and, similarly,
lim tanx = —o0,
xaf%Jr

it follows that for all y there exists a unique x € (—x/2, 7w /2) for which tanx = y.

We write x = arctan(y) and refer to x as the inverse tangent of y. For instance,

arctan(0) = 0. This function is differentiable, by the inverse function theorem. Since
tanarctan(y) = y,

differentiation yields

1 = (1 + tan? arctan(y)) arctan’(y) = (1 4+ y?) arctan’(y),
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so that

1
1+ y2

arctan’(y) =

The parentheses around the arguments of the inverse sine, inverse cosine, and
inverse tangent functions are usually omitted.

Let & = arcsin(—x), where x € [—1,1]. Then sinf = —x and —7/2 < 6
/2. Hence —/2 < —60 < m/2 and sin(—8) = —sinf = x, so that —0
arcsin x. We deduce that

1A

arcsin(—x) = —arcsin x.

On the other hand, let § = arccos(—x), where x € [—1,1]. Then cos§ = —x
and0 <60 <mw.Hence0 <mw —0 <mand

cos(r — 0) = —cos(—60) = —cos O = x,
so that w — 6 = arccos x. Therefore
arccos(—x) = m — arccos x.

Example 6.4.1. 'We now show that

lim cos —
x—0 X

does not exist. For each positive integer n take

Sy = ——
" 2nmw
and
P 2
" @en+ D’
Then
lim s, = lim ¢, = 0.
n—>o0 n—>oo
However,

1
cos — =cos22nmw =1
Sn
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and
1 b4
cos — =COS(I’!]‘[+—) =0#1.
" 2
Therefore the limit in question does not exist. In fact, this argument shows that
lim cos —
x—0+ X
does not exist. Neither does lim,_,o— cos(1/x), by a similar argument. A

In the next example, we use the sine and cosine functions to show that the
derivative of a differentiable function might not be continuous.

Example 6.4.2. Let f be the real function defined by

2 . l .
x“sin - if x #0,

ﬂx)z{o if x = 0.

By the product and chain rules, f is differentiable at all x # 0. Moreover for all
x # 0 we have

— (0
0< S(x)— f( )‘ _ |/ _ xsin L] < x|,
x—0 X X
It therefore follows from the sandwich theorem that
— f(0
x—0 x—0
Hence f is differentiable at all x.
On the other hand, for all x # 0 we have
, ! ) 1 1
S (x) =2xsin— 4+ x7 | —— ] cos -
X X X

o1 1
= 2xsin — — cos —.
b X

1
lim 2xsin— =0
x—0 X

by Example 4.4.1 but lim,_ocos(1/x) does not exist, we conclude that
lim,_o f'(x) does not exist. Therefore f’ is not continuous at 0. A
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Our next example shows that a function may have a local extremum at some
point ¢, yet the values of its derivative might not have equal sign throughout the left
or right half of any neighborhood of c.

Example 6.4.3. Let

2x4+x4sin% if x #0,

1= 0 ifx =0.

Since
4 s |1 4 1 4
2x"+x"sin—=x"(2+sin— ] >x">0
X X

for all x # 0, we find that f(0) = 0 is a local minimum.
Now f is differentiable at all x # 0. In fact,

1 1
f'(x) = 8x> + 4x>sin — — x% cos —
x x

for all x # 0. Thus for all integers n > 2 we have

1 1 1 4 —
(o)t =

2nmw 33 4n2q? 4n3n3
whereas
1 12
I ( n) = = > 0.
2nmw + 2 (2}17[ + %)
Since
1
-
2nm
and
1
_— 0
2nw + 5

as n — 0, we find that each neighborhood N;(0) of O contains positive numbers a
and b such that f'(a) f'(b) < 0. We can also find negative numbers in Ns(0) with

the same property, because
1
"-—] <0
! ( 2nn)
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and
1 8 1
(- =- +
@2n+ Dm @2n+ 1’73 (2n + 1)?xn2
8+ (2n+Dr
T @2n41)3A3
>0
for all integers n > 1. A

We now give an example showing that f’(c) may be nonzero, but f is neither
increasing nor decreasing on any interval containing c.

Example 6.4.4. 1f

2 oin A1 X
x“sin - + 7 forx #0,

S = 0 forx =0,

then

1 1
f'(x) = 2xsin— —cos — + =
X x 2

for all x # 0. In order to compute f”(0), for each x # 0 define

Jfx) = f(0)
X

0 = ===

_f®
- X

1 + 1
= xsin— + —.
X 2

Thus
F(0) = lim 0(x) = 3.

But for each n € Z — {0} we have
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and

1\ 3
/ ((2n+1)7t)_2'

Thus f is neither increasing nor decreasing on any interval containing 0. A
The mean-value theorem may be used to sharpen inequality (3.27).

Example 6.4.5. We shall show that sinx < x for all x > 0. This inequality is
certainly true if x > 1, and so we may suppose that 0 < x < 1. As the sine function
is differentiable everywhere, we may apply the mean-value theorem to it on the
interval [0, x] to find & € (0, x) such that

sinx —sin0 = (x — 0) cos§.
Therefore
sinx = xcos§ < x,

forcosé < 1since0 <& <x <1 <2m. A
The next example presents a result known as Jordan’s inequality.

Example 6.4.6. For all x € [-n/2, /2] — {0} we shall show that

sin x

2
=<
T X

Define

f(x) = mwsinx —2x
for all such x. Then

f'(x) =mcosx —2
and

f"(x) = —msinx.
The last equation shows that f” is decreasing on [0, 7z /2]. Since f'(0) =7 —2 >0
and f'(x/2) = —2 < 0, it follows from the intermediate-value theorem that there
is a unique £ € (0,7/2) such that f'(§) = 0. Thus f'(x) > 0 for all x € [0, §)
and f’(x) < 0forall x € (§ 7/2], so that f is increasing on [0, £] and decreasing

on [§,7/2]. As f(0) = f(r/2) = 0, we conclude that f(x) > 0 for all x €
(0,7/2). Thus
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msinx > 2x
for all such x and the desired inequality follows in this case upon division by

x> 0.
If x € (—m/2,0), then —x € (0, w/2). The previous result therefore shows that
7 sin(—x) > —2x,

whence 7 sinx < 2x and the desired result again holds.

Clearly, equality holds if x = +m/2.
Jordan’s inequality spawns several other results. For instance, let 0 < x < /2.

Then

Moreover

2 _ sin(%¥ —x)  cosx
= T T :
T T =X T =X

Thus

for all x € (0, /2). This inequality is due to Kober. Since

X
l—cosx < —,

b4
Kober’s inequality may be rewritten as
I —cosx 2
_ << — .
X B 1
Note that equality holds for x = 7 /2.
A

Further information about these inequalities may be found in [18].

As an illustration of the computation of a sine or a cosine of a real number, we

offer the following example.
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Example 6.4.7.

Proof. First, observe that
big big b4
1 =sin — = 2sin — cos —.
2 4 4

Since 0 < /4 < 7/2, we also know that cos(r/4) > 0. Hence

1 7 = T LT
— = 8in — CoSs — = (sm—) 1 —sin® —,
2 4 4 4 4
so that
1
- = (sin2 E) (1 — sin? z) = sin? r_ sin* Z
4 4 4 4 4
Thus
2
0=4sin*Z —4sit 4 1= (2sinzz - 1) ,
4 4 4
whence
1
sin? = = =
2
and the result follows.
A
Hence
T | 1 1
cos — = —— = —.
4 2 A2

Note that cos x = 0 if and only if x = (2k 4 1)7r/2 for some integer k. For all
other values of x we have

sin x

tan x .
COS X

For instance,

tan0 = 0
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and

T 1
tan— = — -2 =1.
4 V2

Theorem 6.4.4. Ifcosx = cosy and sinx = siny, then x = y + 2k for some
integer k.

Proof. First we reduce the problem to values of x and y in [0, 27). There exists an
integer / such that

2t <x <2(l + D) =2lx + 27.
Let x; = x —2[m; hence 0 < x; < 2. Similarly, let m be the integer such that
2mm <y <2(m+ )7

and let y; = y — 2mum, so that 0 < y; < 2m. Note also that cos x; = cos y; and
sinx; = sin yy.

Suppose that sin x; = sin y; = 0. Then {x;, y;} € {0, r}. Since cos 0 # cos 7,
it follows that x| = y.

Suppose sin x; > 0. Then x; and y; are both in (0, ). Since cos is decreasing
on that interval and cos x; = cos y;, we deduce that x; = y;.

Suppose sinx; < 0. Now {x1, y;} C (i, 27). Since cos is increasing on (7, 27)
and cos x| = cos y;, we again have x| = y;.

Thus x; = y; in every case. Hence

x—=2lr =y—-2mn,
and so
x=y+2r—-2mr =y+2(—m)m,

as required. O

We now give a geometric interpretation of the sine and cosine functions for real
numbers. The idea is to establish a bijection between the interval [0, 27) and the
unit circle

the circle that is centered at the origin and has radius 1. Given a point (x, y) on the
circle, we observe that |x| < 1. Therefore there is a unique number « € [0, ] for
which cos ¢ = x. Moreover

y2 =1-x>=1-cos’w :sinzoz,
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Fig. 6.2 singp = y and V4
cosQ = x

sothat y = +sinw. We define f(x, y) = aif y = sina. Otherwise y = —sina #
0.Inthiscase o # 0,x = cos(—a) = cos(2r—a), and y = sin(—a) = sin(27r—a),
and we define f(x,y) = 27 — «. In each case we find that f(x, y) is the unique
(see Theorem 6.4.4) number in [0, 277) with cosine x and sine y. The function f is
a surjection onto [0, 277): Given ¢ such that 0 < ¢ < 27, if we put x = cos¢ and
y = sing, then f(x,y) = ¢ and x? 4+ y? = 1. We see that it is also injective, for
if f(u,v) = f(x,y) = ¢, then u = cos ¢ = x and similarly v = y.

The bijection f manifests itself geometrically as the measurement of an angle by
means of a number in the interval [0, 277). Thus for every point P = (x, y) on the
circle x2 + y? = 1 there is a unique angle ¢ € [0, 27), measured from the positive
x-axis in the counterclockwise sense to the line joining the origin O to P, such that
x =cospand y =sing.If0 < ¢ < 7/2,then x > 0and y > 0. In this case let Q
be the foot of the perpendicular from P to the positive x-axis. Then sin ¢ and cos ¢
are the lengths of PQ and OQ, respectively (see Fig. 6.2). If ¢ = /2, then P is on
the positive y-axis and ¢ is a right angle.

If we now multiply all coordinates by some factor r > 0, then the unit circle is
replaced by a circle C of radius r but still centered at the origin. Its equation is

If 0 < ¢ < m/2, then the triangle OPQ is replaced by a right triangle with
hypotenuse of length r extending from the origin to a point (x,y) on C. The
remaining vertex of the triangle is the point (x, 0) on the positive x-axis. The angle
from the positive x-axis to the hypotenuse, measured in the counterclockwise sense,
is still ¢ > 0. The length of the side coincident with the x-axis is x = r cos ¢, and
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Fig. 6.3 sing = s/r and
cosp =t/r

¢ []

that of the side parallel to the y-axis is y = r sin¢. We therefore perceive that, for
an angle ¢ < /2 in a given right triangle, sin ¢ is the ratio of the length s of the
side opposite ¢ to the length r of the hypotenuse. Similarly, cos ¢ = ¢/r, where ¢
is the length of the side adjacent to the right angle and ¢ (see Fig. 6.3). In fact, the
triangle may be positioned anywhere in the plane and oriented in any manner, so that
the angle ¢ may be measured, geometrically, from any line. However, since ¢ > 0,
we use the convention that the angle is measured in the counterclockwise sense.
Negative numbers may similarly be perceived as angles measured in the clockwise
sense. Thus the numbers ¢ and —¢ measure the same angle but in opposite senses.
The numbers ¢ and ¢ + 2k, for each integer k, also measure the same angle.

Foreach ¢ € [0,27) wedefine § = ¢ —2r7 if w1 < ¢ < 27 and 6 = ¢ otherwise.
Then 6 € (—m, 7], cos @ = x/r,and sinf = y/r. Moreover 0 € (—x/2,7/2) if
and only if x > 0, whereas 6 € (0, 7) if and only if y > 0.If x = 0, then 0 = 7/2
if y>0and 8 = —x/2if y < 0. On the other hand, for y = 0 we have 8 = 0 if
x>0andf =mifx <O.

We now give a geometric interpretation of the multiplication of complex num-
bers. Suppose that z = x + iy, where x and y are real and |z| = 1. Geometrically,
z is therefore a point on the unit circle centered at the origin. There exists a unique
number 6 € (—m, 7], which we will call the argument of z, such that x = cos 6 and
y = sin 6. Thus

z=cosf +isinf = ¢'?.

For example,
e =cosm +isinm =—1.
Note also that

7 = oi(0+2km)
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for every integer k, and that

Z=rcosf —isinh = cos(—0) + i sin(—0) = e~**.

Now let us multiply two complex numbers w and z with modulus 1 and respective
arguments « and §:

wz = el%e? = ¢! @Th),
Thus the multiplication of two complex numbers on the unit circle centered at the

origin manifests itself geometrically as a rotation about the origin. We easily obtain
a corresponding result for division:

= — =€

ia
w_¢ i@=p).
z et

Furthermore, since
( eia)n — eina
for every integer n, we obtain the following theorem, which is due to de Moivre.

Theorem 6.4.5 (de Moivre). For each integer n and each real «,
(cosa +isina)" = cosna + i sinno.
More generally, for every z # 0 we have

Z

|z

:H:
|z]

9

and so there is a unique number 6 € (—, 7] for which

z ot

|z]
Hence

z= reig,

where r = |z|. This expression is called the polar form of z. The number 6 is the
argument of z and is written as arg z.

There are various formulas for arg z. Let z = (x, y) # 0, where x and y are real.
If 0 € [0, /2], then sin@ = y/r, so that

-
argz = 6 = arcsin —
,
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in this case. If 0 € (7/2, 7], then0 < 7 — 0 < 7/2 and

sin(r — ) = —sin(—6) = sin 6 = Y
r
Hence
7 — 60 = arcsin Z,
r
so that
.y
argz = 6 = m — arcsin =.
r

If0 € [-7/2,0),then 0 < —0 < 7/2 and sin(—0) = —y/r, whence

0 — arcsi ( y)_ Y
—60 = arcsin (—= ) = —arcsin =,

r r
so that

— -
argz = arcsin —.
r
If0 € (—m,—m/2),then 0 < 0 + 7w < /2 and sin(6 + 7) = —y/r, so that
_ . ( Y> _ .y
argz = arcsin (—=) — 7w = —m — arcsin =.
r r

Note that if z is real, then argz = 0if z > Oand argz = 7w if z < 0.
We have already observed that

z=|zle!’ = |z|(cos 6 + i sin6)
for all z # 0, where 0 = arg z. If we also have
z=|z|(cosy +isiny)
for some y, then
|z|(cos 6 + i sin6) = |z](cosy + i siny).
Hence cos # = cos y and sin = sin y, and so
y =0 +2knr =argz + 2kn

for some integer k.
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If w is another nonzero complex number, then

wz = |wz|e' "8 = |wz|(cosa + i sina),

where o = argwz. If argw = ¢, then we can also write

wz = |wle'?|z|e’?

= |wz|e! @0

= |wz|(cos(¢p + 0) + i sin(¢p + 9)).
Hence
cosa = cos(¢p + 0)
and
sina = sin(¢ + 0).
We conclude that « = ¢ + 6 + 2k for some integer k. In other words,
argwz = argw + argz + 2k .

A similar argument shows that
w
arg — = argw — argz + 2km
Z

for some integer k.
There are many expressions for 7. Several can be obtained by using the argument
of a complex number. For instance, starting with the equation

Q+i)3+i)= (2.3, 1) = (5,5) = 5(1, 1), (6.5)

observe that the components of the complex numbers (1,1),(2,1),(3,1) are all
positive. Therefore the arguments of these numbers are all in the interval (0, /2).
In fact, the argument of the number on the right-hand side is equal to arg(1, 1),
which is arcsin(1/+/2) = /4. Letting

1
6 = arg(2,1) = arcsin —,

V5

we find that sin § = 1/+/5, so that
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and therefore tan & = 1/2. Thus arg(2, 1) = arctan 1/2. Similarly, since

1
arg(3, 1) = arcsin ——

V10

we have cosarg(3, 1) = 3/+4/10, and we deduce that arg(3, 1) = arctan 1/3. As
arg(2,1) + arg(3,1) < m,

it follows that

1 1
arg((2,1)(3, 1)) = arctan 3 + arctan 3

Hence
1 T
arctan — + arctan - = —,
2 3 4
so that
1 1
m = 4| arctan — + arctan — | .
2 3

The power series expansion for arctan x, which we will derive later, therefore
provides a means of estimating rr. More efficient formulas with which to begin can
be found in the exercises. The approximate value of 7 is 3.14159.

In contrast to the injective nature of the exponential function for real variables,
for complex arguments we have the following theorem.

Theorem 6.4.6. For complex w and z we have e¥ = e* ifand only if 7 = w+ 2kmi
for some integer k.

Proof. 1If z = w + 2kni, then, since
e = cos2km + i sin2km = 1,
we have

7 _ ew+2km — eweka — oW

e e .

To prove the converse, suppose first that e = e® = 1, where z = x + iy for some
real numbers x and y. Then

1l =e" =e Y = ¢%e” = e"(cos y + i sin y),
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so that e cos y = 1 and e* siny = 0. Since e* # 0, it follows that sin y = 0, and
so y = nmu for some integer n. Hence

1 =e"cosnm = (—1)"e",

and since e¢* > 0, it follows that n is even and e* = 1. The former condition shows
that n = 2k for some integer k, and from the latter we have x = 0, so that

z=1Iiy=nni = 2kmi,

as required.
The general case now follows easily, for if ¢ = e?, then ¢*™" = 1, so that

z—w=2kmi

for some integer k. Hence z = w + 2kmi. O

For all integers n we have cos2nm = 1 and sinnw = 0. Thus {cosnx} is
convergent if x = 2km for some k € Z, and {sinnx} is convergent if x = k.
We now show that these are the only cases where the sequences are convergent and
x is real.

Theorem 6.4.7. 1. The sequence {cos nx} is convergent if and only if x = 2k for
some k € 7.
2. The sequence {sinnx} is convergent if and only if x = kn for some k € Z.

Proof. Suppose that x # 2k for every integer k. Clearly, {cos nx} is divergent if
x = (2k + 1)m, for in that case we have cosnx = 1 if n is even and cos nx = —1 if
n is odd. We therefore assume further that x # kx for every k € Z.

Now

cos(n + 1)x — cos nx = COSnxCOS X — sinnxsin X — cos nx

for all n. If {cos nx} were convergent, then the left-hand side would converge to 0.
Therefore {sinnx} would converge as well (sinx # 0 since x # kn for each
integer k), and therefore so would {¢"} since

e™ = cosnx + i sinnx.

We now find a contradiction by showing that the difference between consecutive
terms of this sequence does not approach 0 as n — oo. First,

|e(l1+1)xi _ enxi| — |enxi(exi _ 1)| — |exi _ 1|
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But
e =cosx +isinx # 1,

for cos x # 1 since x # 2k for each integer k. Therefore |e¥ — 1| is a positive
constant.

By Cauchy’s principle, we have now reached the contradiction that the sequence
{e™} does not converge. Part (1) of the theorem follows. The proof of part (2) is
similar, using the identity

sin(n + 1)x — sinnx = sinnx cos x + cos nx sin x — sinnx

for all n. O

We conclude this section with the observation that the mean-value theorem does
not hold in general for functions of a complex variable. For example, let f(z) = e
forallze C.Ifa = 0and b = 27, then

f(b)—f(a)_ezni—eo_l—l_o
b—a T 2z 2w 7

but f7(z) = ie™ # 0 for every z.
Exercises 6.4.

1. Use the equation

eix + e—ix
COSX = ——,

2

for all x, to express cos 3x in terms of cos x.

2. Use the result of Example 6.4.5 to show that
%2
cosx >1——
2

for all x # 0.
3. Show that

for all x such that0 < x < 7/2.
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4. Prove that the following strengthening of Kober’s inequality holds for all x such
that 0 < x < 7 /2:

1—cosx tan%
<

2
= = -
X X i

[Hint: 1 — cosx = 2sin?(x/2).]
5. For each real @ and §, show that

sinx cos(a + B — x) + cosx sin(a + B — x)

is a constant function. Deduce the addition rules for the sine and cosine
functions from this fact.
6. Differentiate the identity

LT
sin (— — x) = cosx
2
to deduce that

T .
COS E — X ) =S8Inx.

7. Show that cos x + x sin x is increasing on [0, 7/2] and hence deduce that
cosx + xsinx > 1

for all x € (0,7/2].
8. Let 6 and r be real numbers and suppose that |r| < 1.

(a) Show that

. oo j 0 — 1—rcosf .
L. Zj=0 r/ cos jO 1-2r cosg+r2 >
i e8] J 0 — 7 sin

1. Zj=1 r/ cos jO 1—2rcos+r2"

(Hint: Write z = re'? and investigate Z?:o )
(b) Find the sums Zj‘:o cos jO and Zj‘:l sin jO. Are they convergent?
(Hint: See Theorem 6.4.7.)

9. Prove that

oo

Z cos jo

=

converges if and only if 6 is not an integer multiple of 2.
10.(a) Establish the following identities:

i. cos(j £ 1) 60 =cos jfcos s Fsin jfsin§;
ii. cos(j — 1)@ —cos(j + 1) 0 =2sin jOsin§.
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11.

12.

13.

14.

15.
16.

17.

(b) Use part (a) to find the sum

n
S, = Zsinj@.
j=1

Show also that the sequence {S,} is bounded.
Show that

. sin|g]
lim
x—>0 Z
does not exist.
Show that
T \/3
cos — = —.
6 2

Compute (5 —i)*(1 + i) and hence show that

b4 1 1
— = 4arctan — — arctan —.
4 5 239
This formula is due to Machin.
Compute
4 +0)3Q0+10)
141

and hence show that

1 1 1
% = 3arctan 4_1 -+ arctan 2—0 4+ arctan 1985

Show that sin z = 0 if and only if z is an integer multiple of .

Solve the following equations:

(a) cosz=0.
(b) cosz = 1.

Let n be a positive integer.

2% x in terms of cos kx, where k € Z.
2n+1 v in terms of sin kx, where k € Z.

(a) Express sin
(b) Express sin

287
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6.5 L’Hopital’s Rule

The concept of a derivative may be applied to the calculation of limits that do not
succumb to the methods of Chap. 4. First we need a generalized version of the
mean-value theorem. This generalization is due to Cauchy.

Consider two functions f and g that satisfy the hypotheses of the mean-value
theorem on some interval [a, b]. Then there exist numbers & and &, in (a, b) such
that

S)—fl@

a4 S Er)
and

g(bz = gla) _ 7).
Thus

fb) = fla) _ f'(E))
gb)—gla)  g'&)

(6.6)

if g(b) # g(a) and g'(§,) # 0. It is natural to wonder whether there is a number
& € (a,b) such that Eq. (6.6) holds with £, = &, = &. Cauchy’s mean-value
formula satisfies our curiosity in this regard.

Theorem 6.5.1 (Cauchy’s Mean-Value Formula). Ler f and g be functions that
are continuous on a closed interval [a, b] and differentiable on (a, b). Suppose also
that g'(x) # 0 for all x € (a,b). Then there exists & € (a, b) such that

fb) — fla) _ £ ()
gb)—gla) g

Proof. Notice first that g(b) — g(a) # 0, for if g(a) = g(b), then Rolle’s theorem
would reveal the existence of a number ¢ € (a, b) for which g’(c) = 0. Such a ¢
cannot exist, however, by hypothesis.

Now define a function F such that

F(x) = (f(b) = f(a))g(x) — (g(b) — g(a)) f(x)
= f(b)g(x) — fla)g(x) — f(x)g(b) + f(x)g(a)

for all x € [a, b]. This function is continuous on [a, b] and differentiable on (a, b).
Since

F(a) = f(b)g(a) — f(a)g(b) = F(b),
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it satisfies all the hypotheses of Rolle’s theorem. Therefore there is a number & €
(a, b) such that

0=F'(§) = (f(b) = f(@)g'(€) — (g(b) — g(@) [ (§)

Hence

(f(b) = f(a)g'(€) = (g(b) — g(@) f').

and the result follows upon division by the nonzero number (g(b) — g(a))g’(§). O

Remark. The mean-value theorem is the special case where g(x) = x for all x €
la, b].

Corollary 6.5.2. Let f and g be functions that are differentiable on an open
interval (a, b) and suppose that g'(x) # 0 for all x € (a, b). Suppose also that

flo _,

wat g(x)

for some real number L. Then for every € > 0 there exists § € (0,b — a) such that
fO-fo
g(y)—g)

for all x and y satisfyinga < x <y <a 4+ 4.

Proof. Choose ¢ > 0. By hypothesis we have (a,b) € D/, and

/
'@,
x—at g/(x)
Therefore there exists § > 0 such that
!
f/(y)—L'<s (6.7)
g

for each y € (a, b) satisfying a < y < a + §. For each such y we therefore have

f'(c)
g'(c)

<L+e (6.8)

for all ¢ € (a, y). We may assume that § < b — a.
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Now fix x and y such thata < x < y < a + §. Functions f and g satisfy
the hypotheses of Cauchy’s mean-value formula on [x, y]. Therefore there exists
& € (x, y) such that

fO) ~f@) _ 11®
g —gx)  gE)
As £ € (a, ), it follows from inequality (6.8) that

S() = f(x)
g(y)—gx)

<L +e.

A similar argument shows that

J) - fx)

> L —e¢,
g(y) —g(x)
and the conclusion follows. O

Remark. Corresponding results may be obtained by replacing L with +oo. For
instance, if

/')

x—at g'(x) N

)

then for each number M there exists § € (0,5 — a) such that

S —fx)

o —g M

for all x and y satisfyinga < x <y <a + 6.

We now discuss several closely related theorems known collectively as
I’Hopital’s rule. Suppose first that f and g are functions of a real variable x
and that they both approach 0 as x approaches some value (finite or infinite). The
limit, which may be one- or two-sided, of f(x)/g(x) is then described as being of
the indeterminate form 0/0. L’Hopital’s rule can sometimes be applied to find this
limit. We deal first with the case of one-sided limits.

Theorem 6.5.3. Let f and g be functions that are differentiable on an open interval
(a, b) and suppose that g'(x) # 0 for all x € (a, b). Suppose also that

lim f(x)= lim g(x)=0

x—>at x—at
and

')

x—at g'(x) N
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for some real number L. Then

lim M—L

x—at g(x) -
Proof. Choose ¢ > 0. By Corollary 6.5.2 there exists § € (0, b — a) such that

J&x) - f»)

L—¢<
gx)—g)

<L+e (6.9)

for all x and y satisfyinga < y < x < a 4+ §. Thus § > 0. Choose x such that
0 <x—a<§and g(x) # 0. Then

a<x<a+dé<a+b—a=h,

so that x € Dy/,. Moreover inequality (6.9) holds for each y € (a, x). Taking limits
as y — a™, we find that

8<&<L+8,

L_
Tglx) T

so that

DACI

L
g(x)

<eg<2¢

and the result follows. a

Remark. A similar argument shows that L may be replaced by co or —oo. Similar
results also hold for limits as x — b, and therefore for two-sided limits as well.

Example 6.5.1. Evaluate

. sinx
lim
x—>0 X

Solution. Since sinx — 0 as x — 0, we have

. sinx .

lim = lim cosx =1

x—=>0 X x—0
by 1I’Hopital’s rule.

A
Example 6.5.2. Evaluate
r—1
lim <

x—0 sinx
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Solution. Note first that

lim(e®* — 1) = 0 = lim sin x.
x—0 x—0

Therefore 1’Hopital’s rule may be applied. We conclude that

et —1 . e
lim — = lim =1.
x—>0 SInXx x—>0 COS X

Example 6.5.3. L’Hopital’s rule is not applicable to the evaluation of

. logx
lim
x—0t X

because

lim logx = —oo.
x—>01

An attempt to apply ’Hopital’s rule would yield a wrong answer, since

|= 1=

lim =
x—o0t 1 x—=0t X

yet for each x € (0, 1) we find that log x is negative and x positive. A

Example 6.5.4. Evaluate

. sinx —tanx
lim ——.
x—0 x2

Solution. Since

lim (sin x — tan x) = 0 = lim x?,
x—0 x—>0

we may apply I’Hopital’s rule. Therefore

. sinx —tanx . cosx —sec’x
lim —~ = lim ————— —
x—0 x2 x—0 2x

lim (cos x — sec’ x) = 0 = lim 2x,
x—0 x—0
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we must apply I’Hopital’s rule once again. We conclude that

sin x — tan x . cosx —sec’x
im— = = |ijm ———~
x—0 x2 x—0 2x
. —sinx —2sec? xtanx
= lim
x—0 2
=0.

A

The next theorem also concerns the indeterminate form 0/0, but the limit is taken
as x — oo.

Theorem 6.5.4. Let f and g be functions that are differentiable at all x > a for
some positive number a, and suppose that g'(x) # 0 for all x > a. Suppose also
that

lim f(x) = lim g(x) =0
X—>00 X—>00

and

J'(x)

xi>oo g’(x) -

’

where L may be any real number, oo, or —oo. Then

. fx)
xll>nc}o g(x) =L

Proof. For each x > a > 0 we may define t = 1/x. Thus 0 < ¢ < 1/a. For
each ¢ satisfying these inequalities, define F(t) = f(1/¢) and G(¢t) = g(1/¢t). By
Corollary 4.6.3 we then have

lim F(t) = lim f (;) = xli)rglof(x) =0

=0t =0t

and

1
lim G(t) = lim g (—) = lim g(x) =0.
=07+ t X—>00

=0t

Moreover F and G are differentiable on (0, 1/a), and for each ¢ € (0, 1/a) we have
1/t > a, so that
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1 1
Gt)=—-=g¢g|- 0
()= (t) #
by hypothesis. Therefore Theorem 6.5.3 is applicable. We conclude that

o fe S
Ay T m g((%))
F()

- t—1>r0n+ m

= lim F@)

>0+ G'(t)

O
Remark. A similar proof establishes a corresponding theorem in which x — —oo.
Sometimes an application of these theorems makes matters worse.

Example 6.5.5. Suppose we wish to evaluate

lim xlogx.
x—0t

We may convert this limit to the indeterminate form 0/0 by writing

X
xlogx = ——
log x
for all x > 0 such that x # 1, because
lim =0
x—0+ log x

since log x — —oo as x — 0T. An application of I'Hopital’s rule then shows that

1
im — = lim —— = — 1im

a0t o= a0t L1 x>0+ —
og X X log? x log” x
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Although the limit on the right-hand side is still of the indeterminate form 0/0, it is
more complicated than the limit on the left-hand side. The appeal to Theorem 6.5.3
has therefore failed to solve the problem. However, we can also write

log x
xlogx = >
x
for all x > 0, and note that
lim 1 =—
o, logax = —oo
and
. 1
lim — = o0
x—=0tT X

A

The observation at the end of the example above motivates a study of other
indeterminate forms. We prepare for the resulting theorem with a helpful lemma
concerning limits.

Lemma 6.5.5. Let f be a function defined on an interval (a,b) and let L be a
number. Suppose that for each q, > L there exists c; € (a,b) such that f(x) < q;
whenever x € (a,cy). Suppose similarly that for each q; < L there exists ¢; €
(a,b) such that g, < f(x) whenever x € (a, c;). Then

lim f(x)=L.

x—at

Proof. Choose ¢ > 0. Then L —¢ < L < L + . Consequently, there exist numbers
¢y and ¢; in (a, b) such that f(x) < L 4 ¢ whenever x € (a,cy) and L —e < f(x)
whenever x € (a, ¢;). If we choose x such that

0 <x—a <min{c; —a,c, —a},
thena < x < ¢y anda < x < ¢;, so that

L—e< f(x)<L+e.

Hence | f(x) — L| < &, and the result follows. |
Theorem 6.5.6. Let f and g be functions that are differentiable on an open interval

(a, b) and suppose that g'(x) # 0 for all x € (a, b). Suppose also that

lim g(x) =00
x—at
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and

J'x)

1m =
x—at g'(x)

for some real number L. Then

Discussion: One obvious way to attempt a proof of this theorem is to try to show
that lim,_, .+ f(x) = oo and then to convert the limit to the indeterminate form 0/0

by writing f(x)/g(x) as

1
g(x
_1
f(x)

N

Using Theorem 6.5.3 together with the chain rule, we should then obtain

1
m S ) = lim 8

x—at g(x) N x—a+t 7o

_g;(x)

T g% (x)
= T
f2(x)

[RGB 0)

im - lim
v—at g2(x) x—at f(X)

(i 20 1
N x—at g(x) L’

We now encounter several problems, the most obvious of which is that L might
be 0. Furthermore, lim,_,,+ f(x)/g(x) might not exist. Even if it were to exist, it
would have to be nonzero in order for us to be able to deduce the required result
as a consequence of the calculation above. The following proof circumvents these
difficulties.

Proof. Choose q; > L. The density property shows that there is a g satisfying
L < g < ¢;.By Corollary 6.5.2 there exists § € (0, b — a) such that

f&)=f)
g(x)—g()

Li<q—-L

for all x and y satisfyinga < x < y < a + 6. Fix a y for which

a<y<a+3d§<b.
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It follows that

S =)

s —g(y) Ltab=a

forall x € (a, y).
Since

lim g(x) = oo,
x—a~t

there exists §; > 0 such that
g(x) > max{0, g(y)}
for all x € (a, b) satisfying 0 < x —a < §;. Let
¢ =min{y,a + §,} > a.

Thus ¢ € (a,b), since y < b.
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(6.10)

(6.11)

Now choose x € (a,c). Thena < x < ¢ < y, so that inequality (6.10) holds.

But we also have
O<x—a<c—a<?ié,
so that g(x) — g(y) > 0 by inequality (6.11). Therefore
J) = f() <q(gx) =gk,
and so
f(x) < f(y) + q8(x) —q8(y).

Moreover g(x) > 0. We conclude that

S(x)
7 < h(x)
for all x € (a, c), where
AC) RN {0))]
M= T )

for all such x.
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Now

hm+ h(x) =gq

xX—>a

since

xgr(?+ g(x) -
by Corollary 4.6.4. Therefore there exists §, > 0 such that
|h(x) —ql <q1—q (6.12)

for all x € (a, c) satisfying 0 < x —a < ;. Define

¢y = min{c,a + §,} > a.
Thus ¢ € (a,b). Choose x € (a, cy). Then x € (a,c) and

O<x—a<c—ac=<?é.
Therefore inequality (6.12) holds, so that

h(x) <qg+q1—q=q.

We conclude that

& < h(x) < q.

g(x)

In summary, we have now shown that for each ¢; > L there exists ¢; € (a,b)
such that

f(x)
g(x)

< {1

whenever x € (a,c;). A similar argument shows that for each ¢, < L there exists
¢y € (a, b) such that

f(x)
g(x)

q2 <

whenever x € (a, c2). An appeal to Lemma 6.5.5 therefore completes the proof. O



6.5 L’Hopital’s Rule 299

Example 6.5.6. Evaluate

lim xlogx.
x—0t

Solution. We have

log x

lim xlogx = lim —;
x—07F x—>ot -

Since lim,_, o+ 1/x = o0, it follows from Theorem 6.5.6 that

1

lim xlogx = lim —4 = — lim x =0.
x—0t x>0t —2 x—01

A
Theorem 6.5.6 may be extended to limits as x approaches a™, a, 0o, or —o0.

Remark. If lim f/(x)/g’(x) does not exist, then we cannot draw any conclusion
about lim f(x)/g(x).

Example 6.5.7. If f(x) = sinx and g(x) = x for all x, then f'(x) = cosx and
g'(x) = 1,so that lim,_.o f'(x)/g’(x) does not exist. A

When applying 1’Hépital’s rule to find lim,_,, f(x)/g(x), we must make sure
that all the hypotheses are satisfied, as we may get spurious results otherwise.
For instance, if g’ has a zero in each neighborhood of a, then we must not apply
1’Hopital’s rule. Corresponding remarks hold if x approaches a™*, a™, oo, or —o0. In
a case where f/(x) = a(x)h(x), g'(x) = a(x)k(x), and «(x) does not approach
a limit but h(x)/k(x) does, then we must resist the temptation to cancel ¢(x) in
f'(x)/g'(x). In 1879, Stolz gave an example to illustrate this point. In 1956, Boas
constructed infinitely many examples, including the one constructed by Stolz. We
present an example here.

Example 6.5.8. For all x let

sin2x + 2x

fo = 22T

and let ¢ be any function such that the functions ¢(sinx) and ¢’(sinx) are
positive and bounded for all x. For instance, the exponential function satisfies these
conditions. Let

g(x) = f(x)p(sinx)
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for all x. Thus
lim g(x) = lim f(x) = oo.
X—>00 X—>00

Moreover g(x) > 0 forall x > 1/2.
Now let us attempt to apply I’Hopital’s rule to compute lim,_,o f(x)/g(x).
First we check that the hypotheses are satisfied. For all x we have

2 1
f(x) = % = cos’ x

and

g'(x) = @(sinx) cos> x + f(x)¢’(sin x) cos x
= (p(sinx) cosx + f(x)¢’(sin x)) cos x.

Thus g’(x) = 0 whenever cos x = 0. Consequently, for every a there exist values
of x > a such that g’(x) = 0. We conclude that ’H6pital’s rule cannot in fact be
applied.

Note that cos x is a common factor of f/(x) and g’(x). Canceling this factor, we
obtain

fx) COS X
g'(x) B p(sinx)cosx + f(x)g’(sinx)

for 1all x such that g’(x) # 0. The properties hypothesized for ¢ and the fact that
lim, o f(x) = oo therefore show that

AN
im =0
x—>o00 g’(x)
However,
S 1
g(x)  (sinx)
for all x > 1/2, and this quotient does not approach 0 as x — oo. A

It is easy to use I’Hopital’s rule to prove that log x << x:

] 1
lim —2% = fim = =o.
X—>00 X X—>00 X

In fact, it can be proved by induction that log* x << x for every positive integer k,
for if we assume that

logk X

lim =0
x—o00 X
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for some fixed k, then, using 1’Hopital’s rule, we obtain

. logk+1 X . k+D logk X
lim ———— = lim ————
X—>00 X X—>00 X

= 0.

Exercises 6.5.
1. Show that the conclusion of Theorem 6.5.1 does not hold for the functions
f(x) =4x> + 6x% — 12x
and
g(x) = 3x* + 4x° — 6x?

on the interval [0, 1]. Which of the conditions of the theorem is not satisfied in
this case?
2. Show that Theorem 6.5.6 may not be applied to evaluate

. X +cosx
lim ————
x—00 X + SIn x

directly.
3. Let

f(x) = x 4+ cosx sinx
and
glx) = e f(x)
for all x. Show that I’Hopital’s rule does not apply to the evaluation of

ACY

X—>00 g(x) ’

Does the limit exist?
4. Show that ’Hopital’s rule does not apply to the evaluation of

. 2x + sin2x
lim —mM8M8.
x—00 X Sin X + CoS X

Does the limit exist?
5. Evaluate the following limits:

: e*—1 .

(a) hmx_>0 m,
. xlogx ,

(b) limy 00 _x24g-1 ;
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. X __
() lim,_,+ e=l.

x—1"

. Tog sin.
(d) lim, o+ 255
(e) limy_oo x(log(x + 2) —log x);
() limy_ o0 x(a'/* — 1), where a > 0.
(@) lim,, py+ (x + 1) log(x + 1);
(h) lim, 4+ x*;
(1) limy oo (VX2 + X — X);
G) limy—s (2~ (xr— Z) tan x;

. X 1 J
(k) lim,— (XJ'__Z) .

. The determinant

ap dpz ags
dp) dpp Az3
asp azp asj
of the 3 x 3 matrix
ap dpz aps
dp) dpp Az3
asp asp asj
is defined by the equation
ai ap as
_ Az a;s azg
azy dx dyz | = di —dan
aszp asjz asg
asy aszp asj

Let f, g:[a,b] — R. Apply Rolle’s theorem with

1 1

azs
ass

F(x) = f(a) f(x) f(b)
g(a) g(x) g(b)

6 Differentiability

daz; ax
asp as

to prove Cauchy’s mean-value formula. (See question 7 of the exercises for

Sect. 6.2.)

. Let f and g be functions that are continuous on [a, b] and differentiable on

(a,b). Then, as in the proof of Cauchy’s mean-value formula, there exists & €

(a, b) satisfying the equation

(f(b) = f(a)g'(€) = (g(b) — g(@) f'(§).

(6.13)
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Show that Cauchy’s mean-value formula does not apply in the case where
flx)=3x*—2x3—x? +1
and
g(x) = 4x> —3x? —2x

for all x € [0, 1] but that there exists & € (0, 1) satisfying Eq. (6.13).

8. [17] Let o, a2, 3 be real numbers with sum equal to 1. Let fi, f>, f3 be
functions that are continuous on [a, b] and differentiable on (a, b), and suppose
that fiy(a) # fix(b) for each k € {1, 2, 3}. Show that there exists £ € (a, b) for
which

o o2

Ji) = fi(a) fo(b) = fala)

[Hint: Apply Rolle’s theorem with

F(x) = ai1(f2(b) = f2(@)(f3(0) = f3(a)) (/i(x) = fi(@))
+a2(f1(0) = fi(@)(f3(B) = f3(a))(f2(x) = fa(a))
+a3(f1(b) = f1(@)(2(b) — (@) (f3(x) — f3(a)).]

Obtain an expression for f{(§) by taking &; = —1, and derive Cauchy’s mean-
value formula by taking ¢y = —1, o, = 1, and a3 = 0.

The result can be generalized to an arbitrary number of functions. Use it to
show that the equation

o3

Hi@®+ 76— @

/) + i) =o.

X
1
f(x)=—3x+zcosﬂ+ c + =0
2 2 e—1 (x+1)log2

has at least one solution in (0, 1). [Note that f(0) and f(1) are both positive
and so the conclusion is not an obvious consequence of the intermediate-value
theorem.]

9. [2] Let @ and b > a be real numbers and suppose that f and g are
functions that are continuous on [a, b] and differentiable on (a, b). Suppose
also that g’(x) # 0 for all x € (a,b). Show that if f'(x)/g’(x) is increasing
(respectively, decreasing), then so are

S(x)— f(a)

g(x) —g(a)
and

S(x)—f(b)

g(x)—gb)
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10.

6 Differentiability

[Hint: Note that Corollary 6.3.13 implies that either g’(x) < 0 for all x € (a, b)
or g’(x) > Oforall x € (a,b). Assuming that f”/(x)/g’(x) is increasing, show
that the derivative of

S(x) = f(a)
g(x) —g(a)
is nonnegative.]

This problem concerns the following question. Suppose that f and g are
functions such that

lim L&)

x—>at g(x)

(6.14)

is of the indeterminate form 0/0, where a is a real number. It follows from
Theorem 6.5.3 that if

S'x)

m
x—at g'(x)

(6.15)

exists, then so does the limit (6.14). The question is whether we can extend this
observation to say that if f’(x)/g’(x) exists throughout some interval (a, a +§),
where § > 0, but the limit (6.15) does not exist, then the limit (6.14) also does
not exist.

(a) Show that the answer to the question posed is “no” by considering the
functions defined by
2
f(x) = x"sin —,
x

for all x # 0, and g(x) = sin x. Use the facts that

lim xsin— =20
x—=0t X

(see Example 4.4.1),

. 1
lim cos —
x—0t X

does not exist (Example 6.4.1) and
sin x

lim
x—0t X

=1
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(Example 6.5.1) in order to demonstrate that f”(x)/g’(x) exists throughout
the interval (0, 7r/2) and that

J'(x)

im
x—0t g'(x)

does not exist but

f0) _

m =
x—0t g(x)

(b) i. Show thatif f’(x)/g’(x) exists throughout some interval (a, a + §), where
8 > 0, then for each x € (a,a + §) there exists £ € (a, x) such that

S _ @)
gx) &'
ii. Why is it therefore not valid to conclude that the answer to the question
posed is “yes” by using the following argument?

If the limit (6.15) does not exist, then

G
x—at g'(§)

does not exist since a < £ < x for each x. Because

f@) _ f1®
gx) g’

it therefore follows that the limit (6.14) also does not exist.

6.6 A Discrete Version of I’Hopital’s Rule

L’Hopital’s rule is a powerful tool for calculating limits of indeterminate forms.
However, in applications one may encounter an indeterminate form f(x)/g(x)
whose limit exists even though functions f and g are not differentiable or the
limit of f’(x)/g’(x) does not exist. In 1988, Huang [8] dealt with this problem
by proving a discrete version of 1’Hopital’s rule.

Let f be a function defined at all x > a for some number a. For each x > a and
h > a — x let us define

Apf(x) = fx+h)— f(x).
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Then
Ap f(x)

/ T
110 = Jim =

Huang’s result shows that, under certain circumstances,

tim L _ iy A0S
x—00 g(x) x—>00 Apg(x) ’

Theorem 6.6.1. Let [ and g be functions defined at all x > a for some number a.
Suppose that
1.

lim f(x) = lim g(x) =0,
X—>00 X—>00

and

2. for some h > 0,
(a) either Apg(x) > 0 forall x > a or Apg(x) <0 forall x > a, and
(b)

m Ay f(x) _ 7
x—>00 Apg(x)

)

where L may be any real number, 0o, or —o0.

Then

W
Mg~ F

Proof. Let us assume that A, g(x) > 0 for all x > a; the argument in the other case
is similar.
Case 1: Suppose that L is a real number. Choose ¢ > 0. By assumption there
exists N > a such that

Sx+h—fx)

SRR TP s pprye

<L+¢

for all x > N. Fix x > N. Then for all positive integers k we have
x+ (k—1)h > N, and so

fx +kh)— f(x + (k—1)h)

L=< /) —g(x + (k= D)

<L +e.
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Since
gx+kh)—gx+ (k—1h) >0,
it follows that

(L —e)(g(x + kh) — g(x + (k — 1)h))
< f(x+kh)— f(x + (k—1)h)
< (L +¢e)gx+kh)—g(x+ (k—1)h)).

Summation from k = 1 to k = n, where n is a positive integer, gives
(L —e)(g(x +nh) —g(x)) < f(x +nh)— f(x) < (L +e)g(x +nh)—g(x)),
by the telescoping property. Taking limits as n — oo, we obtain

(L —e)(=g(x)) = —f(x) = (L +&)(—g(x)).

by Theorem 4.6.2. Our initial assumption shows that the sequence {g(x + nh)}
is increasing. Since

lim g(x 4+ nh) =0,
n—o00

it follows that g(x) < 0. Thus

from which the required result follows.
Case 2: If L = oo, then for each M > 0 there exists N > a such that

Jx+h) = f(x) > M(g(x + h) — g(x))

whenever x > N. Fix such an x. Using the method employed in the previous
case, we find that

J(x 4 nh) = f(x) > M(g(x + nh) — g(x))
for all positive integers n. By letting n — oo, we see that

s
g =M

and the result follows.
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Case 3: The case where L = —oo can be dealt with by applying the argument of
case 2 to the functions — f and g.

ad

By applying the proof of this theorem to sequences, we obtain the following
result.

Corollary 6.6.2. Let {a,} and {b,} be sequences that converge to 0. Let h be a
positive integer for which there exists a real number N such that the sign of b, +,—by,
is constant for alln > N. Suppose that

. Ap+h — A
Iim ——

=L,
n—00 bn+11 —b,

where L may be any real number, 0o, or —oo. Then

sin 27w x
o)==
and
1
g(x): VX + _\/_:m.
Then

xll)ngo f(x) = lim g(x) =0.

X—>00

We wish to evaluate lim,_,.o, f(x)/g(x). Evidently, I’Hopital’s rule is not
applicable. Taking &7 = 1 in Theorem 6.6.1, we obtain

Ag(x) =gx+1)—gx)

=Vx+2-Jx
2
- Vx+24x

>0
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and
A f(x) = flx+1)— f(x)
sin2m(x +1) sin2mwx
T+ 1
1 1Y .
= (m — m) sin 2w x
_ sin 2 x
IEEIEIE)
so that
Arf(x) (VX 42+ /X)sin2nx
Agx) 2l + D
hence
‘Alf(x) - 2Vx +2 o
Ag(x) | 2(x—1)?

as x — 0o. We conclude that

lim M=O

5 g (x)

We now establish another version of the theorem.

Theorem 6.6.3. Let f and g be functions defined at all x > a for some number
a, and suppose that they are bounded on every finite subinterval of (a, 00). Suppose
also that

1.
lim g(x) = oo,
X—>00

and

2. for some h > 0,
(a) either Apg(x) > 0 forall x > a or Apg(x) <0 forall x > a, and
(b)

Apf(x)
im =L
x—>00 Apg(x)

’

where L may be any real number, 0o, or —o0.
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Then

. f(x)
xlggo g(x) =L

Proof. Let us assume that A,g(x) > O for all x > a, as the argument in the other
case is similar. Since lim,_,, g(x) = 00, we may also assume that g(x) > 0 for
all x > a.

Case 1: Suppose L is a real number. Choose ¢ > 0. Arguing as in the proof of
Theorem 6.6.1, we deduce the existence of N > a such that

fx+nh)— f(x)
g(x +nh) — g(x)

Ll <e (6.16)

for all x > N and all positive integers 7.
Choose x > N +h,and write x = N +6h.Let j = || andr = N +(0—j)h.
Thus j > 0, x =r 4 jh,and r € [N, N + h). Furthermore,

g(x)—g(r) =g(r +jh) —g(r) >0,

so that
gr)y .
0< E < 1,
hence
'1 _ g
gy
and so
'@ _L‘ _ ‘f(r) —Lg)| | S0 —f0)
g(x) B g(x) g(x)—g(r)
because
S(x) = S(x) — Lg(x)
g(x) g(x)
_ ) = Lg(r) + f(x) = f(r) = Lg(x) + Lg(r)
g(x)

_ J(r) = Lg(r) N g(x)—g(r) (f(X) — f(r)— L(g(x) — g(r)))
g(x) g(x) g(x) —g(r)
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O () (H0=S0) )
g(x) g(x)) \ g(x) —g(r) '

Note that

ﬂm—ﬂﬂ_q__ﬂwwm—ﬂﬂ_

=g F T e+ =gt L'<8

by inequality (6.16). Furthermore, since f and g are bounded on [N, N + h) and
lim, o0 g(x) = 00, there exists N; > N such that

J(r) —Lg(r)

g0 | =F

for all x > N;. For all such x we therefore have

S (x)
2(0) — L| < 2e,
and so
. fx)
xlggo g(x) =L

Case 2: Suppose that L = oo.
We first show that Aj, f(x) > O for sufficiently large x. Choose M > 0. There
exists N > a such that

F4 ) — f(x)
s g M

for all x > N. Hence

Apf(x) = f(x+h)— f(x)> M(g(x+h)—g(x)) >0
for all x > N, as claimed.
As in Theorem 6.6.1, we see that

Fx 4 nh) — £(x)
st gy

for all x > N and all positive integers n. Choose x > N + h, and write x = r + jh,
where r € [N, N + h) and j is a positive integer. Thus

SO = fO) _ SO +jh) = f()
gx)—g(r)  g(r+jh)—gr) ’
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so that

J(x) > M(g(x) —g(r)) + f(r).

Hence

lim f(x) = oo,
X—>00

and so we may assume also that f(x) > 0 for all x > a.

Finally,
m Brg () = lim ——
a0 TR
and
Apfx) _
m = o0
r—>o0 Ay g(x)
Consequently,

im Ang(x) =0
X—=>00 Ahf(x)

It therefore follows from case 1 that

6 Differentiability

N {CI N
x—o00 f(x) ’
whence
f 1
lim y = lim 2 — %
X—>00 X—>00
gl &)
because f(x)/g(x) > 0 forall x > a.
Case 3: The case where L = —oo can be handled by the same argument with f
replaced by — f.

We immediately obtain the corresponding result for sequences.

Corollary 6.6.4. Let {a,} and {b,} be sequences, where lim,_,, b, = oco. Let h
be a positive integer for which there exists a real number N such that the sign of

bu+n — by is constant for alln > N. Suppose that
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. Ap+nh — Ap
lim ——

= L,
n=00 by yp — by

where L may be any real number, 0o, or —oo. Then

By taking & = 1, we obtain the following result, which is due to Stolz.

Corollary 6.6.5. Let {a,} be a sequence and {b,} an increasing sequence such that
lim,, 00 b, = 00. If

. dp+1 — dp
Iim ——

=1L
n—o00 b, — by,

for some real L, then

Example 6.6.2. Let x; = 1/2 and
Xnp1 = X (1 = xn)

for all n > 1. It is easy to see by induction that 0 < x, < 1 for all n, and so
Xu41 < X, for all n. Thus the sequence {x,} is decreasing. It therefore converges to
some number L. From the recurrence relation we obtain

L=L(1-1)

by taking limits, and we infer that L. = 0. Thus the sequence {1/x,} is increasing
and approaches infinity as # does so. Noting first that

2

Xn — Xn4+1 = Xy _xn(l _xn) =X,

for all n, we conclude from Stolz’s theorem, with a,, = n and b, = 1/x, for all n,
that

. . n
lim nx, = lim -
n—oo n—>o00 —
Xn
n+1)—n
= lim
n—>o00 1 1
Xn41 Xn
XnXn+1
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A

Corollary 6.6.6. Let a be a positive number and let k be a function that is defined
and positive at all x > a and bounded on every finite subinterval of (a, 00). Suppose
that

k(x+1)
x—00  k(x) -

’

where L may be any positive number or co. Then
lim (k(x)"* = L.
X—>00
Proof. Let f(x) = logk(x) and g(x) = x for all x > a. Then

Sx+1)— f(x) k(x+1)

=logk(x + 1) —logk(x) =log———= — log L
g+ 1) —gx) k(x)
as x — oo. It therefore follows from Theorem 6.6.3 that
logk
lim 28K oo
xX—>00 X
Hence
! logk
lim (k(x))"/* = lim explog(k(x))"* = lim exp og—(x) =explogL = L.
X—>00 X—>00 X—00 X

a

As a consequence of Corollary 6.6.6, we obtain the corresponding result for
sequences.

Corollary 6.6.7. If{a,} is a sequence of positive terms and

. ap+1
lim =L,
n—o0o ay

then

lim a!/" = L.
n—>oo
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Exercises 6.6.

1. Use the work of this section to show that

n n
. . 2 .2 —
jm (e /37| <4
J= J=

2. Use the work of this section to show that
R 1
ng&nm4§;k"k+1
i=
for all positive integers k.

3. Use Theorem 6.6.3 to find

. sinx + x
lim ——.

xX—>00 X

4. For each x > 0 let k(x) be the integer such that
x = y(x) +2k(x)mw
for some number y(x) € [0, 27), and let

g(x) =siny(x) + k(x).
Show that

lim =
x—00 g(x)
5. Use the work in this section to find

. logx
lim
xX—00 X

and

6. If {a, } and {b, } are sequences such that

lim a, = lim b, =0
n—>00 n—>oo

315
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and

n
n—oo b,

for some number L, show that
n n
i (e /3] =1
7. Prove that if
lim (x, —x,41) = L,
n—>o00
then

X
lim — = L.
n—oo n

6.7 Differentiation of Power Series

We move on to consider derivatives of power series. Let us define

f@ =) ajz—c)

J=0

6 Differentiability

for each z within the circle of convergence of the power series on the right-hand
side. If we differentiate the power series term by term, we obtain a new series,

o0
Zjaj(z—c)/_l,
j=1

which is said to be the corresponding derived series. It is natural to ask whether the
derived series has the same circle of convergence and, if so, whether the function it
defines is f”. It turns out that the answers to these questions are affirmative within

the interior of the circle of convergence.
First we investigate the radius of convergence.

Theorem 6.7.1. A power series and its derived series have the same radius of

convergence.



6.7 Differentiation of Power Series 317

Proof. 1Tt suffices to consider power series with center 0. Let r; and r, be the radii
of convergence of the power series

oo

o
> a;z
j=0

and its derived series, respectively. For each positive integer n we have

lanZ"| < |na,7"| = |Z||nanzn_l|~

Thus if the derived series converges, then so does the given series by the comparison
test. We deduce that r| > r,.

It remains to show that r, > ry. This inequality certainly holds if r; = 0. Assume
therefore that r; > 0. Choose z and r such that 0 < |z| < r < ry. Then

o0
2 _la;r/|
j=0

is convergent, and so
0= lim |a,|r" =r lim |a,|r""".
n—o00 n—>oo

As it therefore converges to 0, the sequence {|a,|r"~'} is bounded above by some
number M. Thus

n—1

_ 11z
na,""'| = nla,|r" 1‘—
.
z n—I1
<Mn‘—
,

Now the series
[z
il
. r
j=1
converges by the ratio test, since

(n+ D" " n+1 g
rn nlzlm=1 " n r

and this quantity approaches |z|/r < 1 as n — oo. Therefore the derived series
converges at |z| by the comparison test. We conclude that , > ry, as required. O



318 6 Differentiability

By applying the theorem k times, we see that the series Z?‘io a;7/ has the same
radius of convergence as

G =1 (G—k+ a7 =5 L g,k
,;j(j )+ () )z Z(J_k)! iz

j=k

The theorem cannot be applied to deduce information about convergence on
the circle of convergence or, in the real case, at the end points of the interval of
convergence. For instance, the real series

o0 _ j—l
Z(Lx/
=t

is convergent when x = 1, by Leibniz’s test. Therefore the radius of convergence,
r, is at least 1. The derived series,

o0
BEIRG
j=0
diverges when x = 1. Thus, r = 1. However, the two series exhibit different

behaviour in regard to convergence at at least one endpoint of the interval of
convergence.

Theorem 6.7.2. Let
o0
f@ =Y a;7
j=0

for all 7 such that |z| < r, where r is the radius of convergence of the power series
and is nonzero. Then f is differentiable at all 7 such that |z| < r, and

f@=Yjajz™"
j=1

for all such z.

Proof. Choose w such that |w| < r. Also, choose ¢ such that |w| < ¢t < r, and z
such that |z| < ¢ and z # w. Define

s {0210 Z @
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o0
o o
A(Z/ _w])_ E ]ajW'/
j=1

oo

J—wi
:Zaj (Z Y jwit 1)-

z—w

The challenge is to show that A — 0 as z — w. It will be met by finding an upper
bound for |A|.

We begin by investigating the expression in parentheses. Noting that

—

k=0 w
for all j > 0, by Theorem 1.5.5, and that
]'7

1 j—1
E w/ml = i1 E 1= jw!
k=0

for all j > 0, we find that

j—1

d-w _
—_JW11=§ZWJ/€1 E:Wfl
z—Ww

j—1

— Z(kaj—k—l _ Wj—l)

k=0

j—1
— ij—k—l(zk_wk)
k=1
ZZW/ —k— I(Z_W)sz k—m—1

m=0
j—=1 k-1
WY Y
k=1 m=0

Since t > max{|z|, |w|}, for every nonnegative s and u we have

[0 = i

IA

tstu
— ts+u
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Thus
o (Z/ —wi _jw-j_l)‘ ~ 4| = wi —jwj_l)
—Ww — W
j—1 k-1
= laj||z=w)Y_ Y 2w/
k=1m=0
j—1 k-1
< lajllz=wl YD 2w/ =2
k=1m=0
J=1 k=1
<lajllz=wl Y > 1/
k=1m=0
j=1 k-1
= |aj||z—w|tj_222 1
k=1m=0
j—1
= lajllz—wlt' ) Tk
k=1
JjG -1

j—2
= =5l —wlla;t’ |

for all j > 1, since

by Theorem 1.5.4. As 0 < ¢ < r, the series Z?‘io lajt’| converges, and it follows
by two applications of Theorem 6.7.1 that

o0
> 1iG = Dati

j=2

also converges. Writing

o
S =>"1j(j = Da;t/™?|

j=2
o0

=Y j( = Dlajt/ 7,
j=2
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we obtain
o ) .
7 —wi :
Al < aj; - 'w]_l)‘
||_;](?W J
< |Z—W| > .. 1 j=2
< 55— i =Dla;t’?
j=2
_Jz—w[S
==
Hence A — 0 as z — w, as required. ad

Corollary 6.7.3. Let r be the radius of convergence of the series Zj’io a ij . Then
the series

o+l
Zaj / + 1
=0/

converges for all 7 such that |z| < r.

Proof. This result is immediate from the theorem, for the first series is the derivative
of the second. O

The application of Theorem 6.7.2 is sometimes referred to as term-by-term
differentiation and that of Corollary 6.7.3 as term-by-term integration. We will study
the general concept of integration in the next chapter.

Theorem 6.7.2 implies that the limit of a power series is continuous within the
interior of the interval of convergence.

Example 6.7.1. Theorem 3.2.1 shows that

> 1
—1 ij —
S0 =

for all z such that |z| < 1, since (—1)/z/ = (—z)/. For all such z differentiation
gives

(1+z)2 Z( 1)/ 7]

oo

=Y (=DM + D,
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so that

Z( D/ (j + D2
<1+ +2? =

for all z such that |z| < 1.
For instance, take z = —1/3. Then

Iy [\'j 3
I I
INRVC

Hence

8
Ef|“~
M8
VR
~.
2+
(%)
~.
N——
|
RN Ne)
|
W =
I
| W

j=1 j=0
A
Example 6.7.2. Since
o
7
exp(z) = e* = -
j=07"
for all z, it follows that
0 . i 00 i—1 oo
7 7/ z/
exp'(z) = / 3 =Z : =Z——e = exp(z),
; J! — (j =1 4 !
j=1 j=1 j=0
as we saw earlier. A

It is possible to express the logarithm function as a power series. Indeed, we have
the following theorem.

Theorem 6.7.4. Forall x € (—1,1)

log(l + x) = Z( 1)/+1x .

j=1

Proof. Note first that the power series is absolutely convergent, by Example 3.15.3.
Its derivative is

-1

Z( 1)1“’ Z( X/ ;O(—x)f =
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by Theorem 3.2.1. This expression is also the derivative of log(1 + x), and so there

exists ¢ such that

o

) J
Y1yt XT — log(1 + x) + .

J=1

Substituting x = 0 gives
O=logl+c=c
a

and the theorem follows.

If x = —1, then the series above diverges since the harmonic series does so. Thus
the radius of convergence is 1. If x = 1, then the series is alternating and converges.
We would naturally expect it to converge to log 2. We will confirm this fact later.

Since | — x| = |x| < 1 forall x € (—1, 1), we also have

ooxj

log(1 — x) = Z(_l)jﬂ(__)f)j __ -
J =

Jj=1

We proceed to extend this result. For all x € [—1, 1) let

+ al 6.17)
x

1(x) =

Note that #(x) > 0 for all x € (—1, 1) and that ¢ is continuous at all x € [—1,1)
Since t(—1) = 0 and
. 1+ x
lim

x—>1 1 — X

- )

the range of # must be the set of all nonnegative real numbers. Furthermore, for all

x e (-1,1),

1
logt(x) = log 1+ al

= log(1 + x) — 10g(1 — x)

= Z( 1)J+1 + 7

Jj=1 j=

o0 2k+1
(6.18)

X
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But if we write ¢ instead of ¢ (x) for convenience, Eq. (6.17) shows that
t—tx=1+x,
whence
t—1=x(@+1).

Since ¢t > 0, it follows that

t—1
X =—,
t+1
and so we obtain the following theorem.
Theorem 6.7.5. Forallt > 0
00 1 f— 1)\ 2+
logt =2 —_— . 6.19
o8 sz+1(z+1) (6.19)
k=0
For instance,
> 1
k=0

Equation (6.20) may be used to approximate log 2 to a high level of accuracy. Even
if we use only five terms of the series, we obtain 0.6931 .. ., which is correct to two
decimal places.

Theorem 6.7.5 can be used to find a quick way of approximating log¢ for each
positive ¢. First find an integer k such that

2k < ¢ < 2FFL
Thus
t
1 < 2_k < 2,
so that Theorem 6.7.4 can be used to approximate log(¢/2¥). But
t
log % = logt —klog2,

and so log# may be calculated from the formula

t
logt = logz—k + klog?2.
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This method is particularly effective for large values of 7.

The logarithm function features in the definition of an important mathematical
constant. Note first that for every j > 0 the mean-value theorem yields the existence
ofa¢ € (j,j + 1) such that

log(j + 1) —logj

= log’ €.
JH1—j gt
In other words,
log(j +1)—1logj = -
Since 0 < j < & < j + 1, it follows that
1 ) .1
T < log(j +1)—logj < — (6.21)
J
forall j > 0. Thus for all » > 1 we have
n—1 1 n—1 n—1 1
> - <Y (log(j + 1) —log j) < Y —. (6.22)
— j+1 = — J
j=l1 j=l1 j=l1
Now let
n 1 n—1 1
jﬂ] =

for all n > 0. Then Eq. (6.22) yields
Sy —1<logn < S,

for all n > 1, where the telescoping property was used to evaluate the middle
summation. Thus

1 1
logn+—-<S,-1+—=3S, <1+ logn. (6.23)
n n
Let

a, =S, —logn
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for all n € N. We shall prove the sequence {a,} convergent. First, since

1
Si _Sn=—a
n+1 n+]
we have
a —a, = —— —log(n +1 logn,
n+1 n n+1 g(+)+ g

and it follows that a,,+1 < a, because
log(n + 1) > : +1
og(n —— +logn
& n—+1 &

by Eq. (6.21). Thus {a,} is a decreasing sequence. It is bounded below by O:
Inequalities (6.23) give

1
a,,=Sn—10gn>;>O.

Hence {a,} converges to some number y, which is called Euler’s constant. Thus

n

. . 1
y=nlingoan=nli>ngo Z;]—,—logn
j=

From inequalities (6.23) we have
1
- <S,—logn <1,
n
so that 0 < y < 1. In fact, y is approximately 0.577.
We can use these ideas to obtain a convenient power series expansion for log 2.
Define
en =S, —logn —y
foralln > 0. Thene, — 0asn — oo, and
S, =logn + vy + ¢,.

Now we put
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for all n > 0. Thus

2n P
—1)/t1
T2n = ZL
=
2n 1 n 1
= Z_. ) on
= =
= S2n _Sn

= log2n+y + ey —logn —y — ¢,
= log2 + &y, — &p
— log2

as n — o0, so that

© _1yit!

log2 = Z (L
=
We have now extended Theorem 6.7.4 to the case x = 1. However, this result does
not provide an efficient method for approximating log 2. For instance, by taking 20
terms of the series we obtain the approximation 0.6669, rounded to four decimal
places. This result is much worse than that reached by taking only five terms of the
series given in Eq. (6.20).

The next theorem gives a power series expansion, due to Gregory, for arctan x
that is valid for all x such that |x| < 1.

Theorem 6.7.6. For all x such that |x| < 1,

K2+

2j +1°

o0
arctan x = Z(—l)j
j=0

Proof. Tt follows from Example 3.15.3 that the power series is absolutely conver-
gent. Its derivative is

DD xY =) (—x)
j=0 j=0

1
1+ x2

= arctan’ x
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for all x such that |x| < 1. By Corollary 6.3.4 there is a constant ¢ such that

2/ +1
Z( I)J = arctanx + ¢
Jj=0
for all such x. Since arctan 0 = 0, we have ¢ = 0 and the theorem follows. a

We finish this section with an example of an application of the differentiation of
power series to the solution of a certain type of differential equation. Such equations
arise, for instance, in wave mechanics.

Example 6.7.3. The differential equation
y" —2xy' + 21y =0, (6.24)

where A > 0, is known as Hermite’s equation of order A. We aim to find a power
series solution.
Let

R .
yx) =Y a;x!
j=0

be a solution. From Eq. (6.24) we obtain

O—Zj(j—l)a xI 72 ZxZ]a x/~ 1+2)&Za/xf

j=2

[e.]

=) (j+2)( + Dajqox’ —2Zja x/ +2)LZa]xf
0 j=0 j=0

8

= Z((, +2)(j + Daji2—2ja; + 2ra;)x’
j =0

for all x for which the series converges. Therefore
(+20G +Daj+2+2(A—j)a; =0
for each j, so that

20—,
G+2G+D 7

Aj+2 = —
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Note that y(0) = ay. Similarly, since

[e.]

) = Yjay

Jj=1

we have y’(0) = a;. These two equations are called the initial conditions for the
differential equation. The series for y is uniquely determined if @y and a; are known.
In fact, an inductive argument shows that

YRR =8 (A =2 +2)
ar; = (=1) i ao

and

ar; —(—1);2/(/\—1)()&—3)(1—5)...()&_2]._H)a
T (27 +1)! |

for all j > 0. Recalling the convention that the empty product is 1, we therefore
obtain

°° 2Ty =2K) & YTy =2k=1) 5.

y(x)=aoj§0<—1)fo +a1§0(—1)f TS

In the case where A is a positive integer, the first series is a polynomial if A is
even and the second series is a polynomial if A is odd. The solution is therefore a
polynomial of degree A if either A is even and (ap,a;) = (1,0) or A is odd and
(ap,a;) = (0,1). In either case it is called the Hermite polynomial of degree A
and is denoted by H). For example, for all x we have

Hi(x) = x,
Hy(x) = 1—2x2%,

2 3
Hy(x) = x — =,

3

4 4
Hi(x) =1—4x2+%,
Hi(x) 4x3 n 4x°
X)=X——+ —,
> 3 15

8 6
He(x) = 1 — 6x% + 4x* — %
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There are other ways of defining the Hermite polynomials. For instance, it can
be shown [16] that they satisfy the recursive relation

Hn+l(x) = ZXHn(x) - 2}'1H,1_1(X)

foralln > 1 and all x.

It is not hard to see that the solution converges absolutely for all real x. This
fact also follows from the following beautiful result, which is due to Fuchs [13].
Consider the differential equation

V' '+ p(x)y +q(x)y =0,

where y(0) and y’(0) are given. Let r > 0. If p and g can be represented by
power series on the interval (—r,r), then the differential equation has a unique
power series solution and this solution also converges on (—r, r). In other words,
the radius of convergence of the solution is at least as big as the minimum of the
radii of convergence of p and ¢. A

Exercises 6.7.

1. Verify the formulas for the derivatives of the sine and cosine functions by
differentiating their power series.
2. Let

/@ ‘;0(31)!‘

(a) Find the radius of convergence of the series.
(b) Show that

f@Q+ f'@+ f'@) =¢

for all z within the circle of convergence.

3. Suppose that the radius of convergence of
o0
f@ =) a;7
j=0
is r > 0. Show that

o0 .
(n+ J)! <
7@ =y —q 7
Jj=0 ’

for all nonnegative integers n and all z such that |z| < r.
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4. Suppose that
oo
f@=1+ Zajzf
j=1
is the series solution of the differential equation f'(z) = f(z). Show that

J— an
T+ 1

ap+1

for all n € N and hence that f(z) = e* for all z.

5. Suppose that f(x) = Y72, a;x/ is the series solution of f'(x) = 1 + x* and
that f(0) = 0. Show that f(x) = tan x for all x for which cos x # 0.

6. Suppose that f(x) = ZC;OZO a;7/ is the series solution of f”(z) = — f(z) and
that £(0) = 0 and f/(0) = 1. Show that f(z) = sinz for all z.

7. Suppose that f(x) = Z?C):o a;7/ is the series solution of f”(z) = — f(z) and
that £(0) = 1 and f’(0) = 0. Show that f(z) = cos z for all z.

8. Is the solution of Hermite’s equation satisfying the following conditions a
polynomial:

A= 3,610 = l,al =0?
9. (Airy’s equation) Suppose that f(x) = Z?‘;O a;x/ is the series solution of

J"(x) = xf (x) = 0.

First, show that a, = 0 and

an—1

an+2 = i+ D)(n +2)

for all n € N. Hence for all k € N, show that
ao
2.3.-5-6---(3k — )3k’
a
a = ,
FH T 3467 3kBk + 1)

aszp =

azy+2 = 0.

10. (Legendre’s equation) Suppose that Z?’;O a jxj is the series solution of

(1= x%) f"(x) = 2f"(x) + a(@ + 1) f(x) = 0.
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11.
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Substitute the power series for f(x) into the differential equation to obtain a
series p(x). Show that the constant term of the latter series satisfies the equation

2a; + a(o 4+ 1)ag =0,

that the coefficient of x satisfies
6as + (=2 + a(a + 1))a; =0,
and that, for all n > 1, the coefficient of x” satisfies
(n+2)(n+ Day4r + (—n(n — 1) = 2n + a(a + 1))a, = 0.
Writing
p(x) = aopi(x) + ai p2(x),
show that the series p(x) converges absolutely whenever |x| < 1.
When 7 is a nonnegative integer, either p; or p; is a polynomial. Show that

if n = 0, then p;(x) = 1 and

14+ x
1—x

1
pa(x) = 3 log

and that if n = 1, then p,(x) = x and

1 1+ x
pi(x) =1—=log .
2 1—x

Use the fact that
"1
i (4 -teen) =
i=

to show that

1 1
li - =1.
nggo logn;j

Derive this result also from Stolz’s theorem.



Chapter 7
The Riemann Integral

In this chapter we use the idea of an area to motivate a concept called an integral of a
function, and we show that the process of finding an integral of a function is closely
related to that of obtaining an antiderivative of the function, that is, a function whose
derivative is the given function. Some techniques for finding integrals are derived
and the use of integrals for testing the convergence of certain types of series are
discussed. All functions under consideration are assumed to be real-valued functions
of one or more real variables.

7.1 Area Under a Curve

Suppose we wish to approximate the area bounded by the curve y = f(x) and the
lines x = a, x = b, and y = 0 (see Fig. 7.1. For the sake of clarity, the figure is
drawn for a function f such that f(x) > 0 for all x € [a, b].)

We approximate the area using small rectangular regions. Let us first introduce a
few definitions and notation.

Definition 7.1.1. Let [a, b] be a closed interval. By a partition of [a, b] we mean a
(finite) sequence xg, X1, .. ., X, of numbers such that

a=xp<x1<...<x,=>b.

(More formally, xo = a, x, = b,and x; | > x; forall j <n.)

This partition P is denoted by (xg, X, . .., X,). The numbers xg, x1, ..., X, are
called the division points of P. The set of division points of P is denoted by P.
We say that P determines P. If (xo, x1, ..., X,) is a partition P of [a, b], we define

the norm or mesh of P to be the maximum of the quantities x; | — x;, where

© Springer Science+Business Media New York 2015 333
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Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_7
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y=1

Fig. 7.1 Area under the graph of f between a and b

0 < j < n. This number is denoted by w(P). Each interval [x;, x; ] is called
a subinterval of P, and the elements of (x;,x; ) are called interior points of

[Xj ) xj+1]-
Recall that a function f mapping [a, b] into R is bounded if there exist m and M
suchthatm < f(x) < M forall x € [a, b]. If (x¢, X1, ..., X,) is a partition of [a, b]

and f is bounded on [a, b], then f is also bounded on each subinterval [x, x; 1]
of [a, b], where j < n. Foreach j < n we set

M;(f) =sup{f(x)|x € [x;,x;+1]}

and

m;(f) =1inf{f(x) | x € [x;.x;41]}.

If f and g are functions that are defined and bounded on [a, b] and f(x) < g(x)
for all x € [a, b], then it is clear that M;(f) < M;(g) and m;(f) < m;(g) for
each j. For the rest of this chapter, unless we state otherwise, we assume that f
is a function that is defined and bounded on a closed interval [a, b]. Given such a
function f and a partition (xo, x1, ..., x,) of [a, b], we shall also take M; () and
m(f) to be defined as above.

Remark. There might not exist ¢ € [x;,x;1] such that f(c) = M;(f), and
similarly for m; (f'). For example, let f: [0, 2] — R be defined by

x—|x]ifx €][0,1]
fx) =
x| —xifx € (1,2]
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Fig. 7.2 Graph of x — | x] f(x) 4
for x € [0,1] and | x| — x for
x €(1,2]

1__

(see Fig. 7.2). Let P be the partition (0, 1,2) of [0,2]. Then My(f) = 1 and
mi(f) = —1. It is clear that there is no ¢ € [0, 1] such that f(c¢) = 1 and no
¢ € [1,2] such that f(c) = —1. However, if f is continuous on [a, b], then there is
always a number ¢ € [x;, x;4] such that f(c) = M;(f) (see Corollary 5.3.2).
A corresponding statement holds for m;(f). The number ¢ also exists if f is
nondecreasing or nonincreasing on [a, b]. For instance, if f is nondecreasing on

[a,b], then M; (f) = f(xj+1) andm;(f) = f(x;).

Let (xo, X1, ..., X,) be a partition P of some closed interval J C [a, b]. Then we
define

n—1
UP. f) =Y M;(f)(xj+1—x;).

J=0
The number U(P, f) is called the upper (Riemann) sum of f over J relative to P.
An upper sum of f over the whole of [a, b] can be thought of geometrically as the
shaded area in Fig. 7.3. This sum is an approximation, from above, for the area A
bounded by the curve y = f(x) and the lines x = a, x = b, and y = 0. It is clear
that if ¢ € (a, b) and Py and P, are partitions of [a, ¢] and [c, b], respectively, then

U(P, f) =U(P, f) + U(P. f),
where P is the partition of [a, b] for which P =P UP,.

The sum

n—1

L(P, f) =Y m;(f)(xj+1—x))

Jj=0
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7 — =/

> X

Fig. 7.3 Illustration of an upper Riemann sum

Vi

y=/x)

X0 X1 X2 Xn

a b

Fig. 7.4 Illustration of a lower Riemann sum

is called the lower (Riemann) sum of f over J relative to the partition P of J. If
J = [a, b], then this lower sum gives the shaded area in Fig. 7.4 and constitutes an
approximation for A from below. Note also that

L(P, f) = L(P\. f) + L(Ps. f),

where Py and P; are partitions of [a, ] and [c, b], respectively, for some ¢ € (a,b),
and P is the partition of [a, b] for which P = P; U P;.
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We also have

n—1

n—1
UP. f) = L(P. f) = Y M;(f)(xj41—x;)) = Y_mj(f)(xj41 = x;)

Jj=0 Jj=0

n—1

- Z(M/(f) —m;(f)(Xj+1—x;).

=0

In addition, if f and g are functions that are defined and bounded on J and satisfy
f(x) < g(x)forall x € J,then L(P, f) < L(P,g)and U(P, ) <U(P, g).

Example 7.1.1. If P is the partition (a, b) of [a, b] determined by {a, b}, then

L(P, f) =m(b —a)

and
U(P, ) =M —a),
where M = sup{ f(x) | x € [a,b]} and m = inf{ f(x) | x € [a, b]}. A
The sum
n—1
S(P.f) =) fle)(xj41—x)). (7.1)
j=0

where ¢; € [x;,x;41] for all j < n, is called a Riemann sum of f over J
relative to P and the intermediate points ¢g, ¢, . . ., ¢,—1. It gives the shaded area in
Fig. 7.5 if J = [a, b]. Observe that the notation does not indicate the dependence
of the Riemann sum S(P, f) on the intermediate points. Whenever we need to
make this dependence explicit, then we write S(P, f, ¢) instead of S(P, f), where
¢ =1(€o,C1y--sCpei)-

Example 7.1.2. If f(x) = k for all x € [a, b], then
n—1

S(P. f) = k(xj+1—x;)

j=0
= k(b —a),

by the telescoping property. In this case we also have

UP, f)=L(P. [) =S(P. ).
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=/
(N —
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a b

Fig. 7.5 Illustration of a Riemann sum

If f and g are functions defined and bounded on J, and k and / are constants,
then

n—1
S(P.Kf +1g) = Y (Kf(cj) + lg(c))(xj—1 — X;)
j=0

n—1 n—1

=k flep)xjm—x) +1Y gle))(xjp1 — x))
Jj=0 j=0

=kS(P, f) +IS(P, g).

It is also clear that

L(P. f)=S(P. f) = U, /). (7.2)

Intuitively, as the partition becomes “finer,” we expect the Riemann sum to
provide a better approximation for the required area. However, it is not always the
case that if u(P;) < u(P,); we necessarily obtain a better approximation for the
area by using P rather than P;.

Definition 7.1.2. We say that a partition Q of [a, b] is a refinement of a partition
Pif P C Q; that is, every division point of P is a division point of Q.

Let P and Q be partitions of [a,b]. We define P U Q to be the partition
determined by the set PU Q of division points.

It is clear that if P and Q are partitions of [a, b], then P U Q is a refinement of
both P and Q and that if Q is a refinement of P, then u(Q) < u(P).
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Theorem 7.1.1. Suppose P and Q are partitions of [a,b] and that Q is a
refinement of P. Then for each function f defined and bounded on [a, b] we have

L(P. f)=L(Q.f)

and

UCP. )= U, f).

Proof. To establish the first inequality, it suffices to prove the result for the case
where Q contains exactly one more point than P. An easy induction then gives us
the general case.

Suppose Q =PuU {y}, where P = (x9,x1,...,x;) and x; < y < x4 for
some integer j < n. Let

mh = inf{ () | x € [x;. y]}

and

mly = inf{ £ (x) | x € [y, x4
Clearly, m| > m;(f) and m, > m;(f). Thus
L(Q. f) = L(P, f) = my(y—x;)+m5(xj41=y)=m; (f) (X +1—x;)

> mi(f)y—x;)+m;(f)(xj+1=y)=m;(f)(xj+1—x;)
=0.

The proof of the second inequality is similar.

Corollary 7.1.2. Let P and Q be any two partitions of [a,b). Then L(P, f) <
U, f).

Proof. Since P U Q is arefinement of both P and Q, Theorem 7.1.1 implies that

LP.f)=L(PUQ.[)=URPUQ.[)=UW,[).

Exercises 7.1.

1. Prove that, for any partitions P and Q of an interval [a, b],
m(b—a) < L(P. f) =U(Q. f) = M(b —a).
where M = sup{ f(x) | x € [a,b]} and m = inf{ f(x) | x € [a, b]}.
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2. Consider the function f defined by f(x) = x for all x € [0, 1]. For each positive
integer n, the partition
1 2
Pn = 03_7_7~~71
nn

divides the interval [0, 1] into n subintervals of length 1/#x. Find

lim U(P,, f)

n—o0

and

lim L(P,, f).
n—>o00

7.2 Upper and Lower Integrals

The collections of upper and lower sums of f over [a, b] are nonempty and bounded
below and above, respectively. Hence we can make the following definition.

Definition 7.2.1. The lower integral [ f of a bounded function f over [a,b] is
the least upper bound of the set of lower sums of f relative to partitions of [a, b].

Similarly, the upper integral 7 f of f over [a, b] is the greatest lower bound of the
set of upper sums of f relative to partitions of [a, b].

From Corollary 7.1.2 it is clear that

MRﬂs/fE/fEWRﬁ (1.3)

for every partition P of [a, b]. Moreover, if f and g are bounded functions such that
f(x) <g(x)forall x € [a,b],then [ f < [gand [f < [g.Itis also clear from

inequalities (7.2) that
[r=swn=[r

for every Riemann sum S(P, f) of f over [a, b] relative to P.

Example 7.2.1. Let f : [0, 1] — R be defined by

0 if x is irrational,
1 if x is rational.

ﬂm={
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For each partition P = (xo,x1,...,x,) of [0,1] we have M;(f) = 1 and
m;(f)=0forall j <n.Hence

n—1

UP. f) = (xj4+1— X))
j=0

= X, — Xo
=1
and
L(P, f)=0.
Thusiszandezl. A

7.3 The Riemann Integral

In this section we define the (Riemann) integral of a function and show that when
the integral exists, it coincides with both the upper and lower integrals.

Definition 7.3.1. Let f be a bounded function from [a, b] into R. We say that the
Riemann sums of f over [a, b] converge to a number / if for every ¢ > 0 there is a
8 > 0 such that if P is a partition of [a, b] with norm w(P) < §, then

ISP, f)—1I|<e
for every Riemann sum S(P, f) of f over [a, b] relative to P.
Remark 1. As in Proposition 2.2.3, convergence will follow if this inequality can

be established with ¢ replaced by ce for some ¢ > 0.

Remark 2. 1f the Riemann sums of f over [a, b] converge to I, then S(P, f) < I +
¢ for every Riemann sum S(P, f) of f over [a, b] relative to P. Thus [ f < I +¢,

and since ¢ is arbitrary it follows that [ f < I. Similarly, / < 7 f.

Example 7.3.1. If f(x) = k for each x € [a, b], then the Riemann sums of f over
[a, b] converge to k(b—a), the value of each such Riemann sum (cf. Example 7.1.2).
A

The proof of the following theorem is analogous to that of Theorem 2.2.2 and
therefore omitted.

Theorem 7.3.1. Let f be a bounded function on [a,b] whose Riemann sums
converge to I and I,. Then I, = I,.
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Definition 7.3.2. Let f be a function that is bounded on [a, b]. If the Riemann sums
converge to some number 7, then we say that f is (Riemann) integrable over [a, b].
We call [ the (Riemann) integral of f over [a, b], and write

/ab fyde=1.

or simply [, b f =1Tor [ f=1I.Thefunction f is called the integrand of /.

For instance, it follows from Example 7.3.1 that

b
/ kdx = k(b — a).

In particular,

b
/ 0dx = 0.
a

For typographical convenience, an integral of the form fab

written as | ab féf—lfx

Theorem 7.3.2. Let f:[a,b] — R be integrable. Then every sequence {S(P,, )}
of Riemann sums for f over [a, b] satisfying lim, oo (P,) = 0 must converge to

I

Proof. Let I = [ f.Foreach & > 0, there exists § > 0 such that

f(x)
g(x)

dx is sometimes

ISP, f)—1|<e

for every partition P of [a, b] with u(P) < §. For every sequence {S(P,, f)} of
Riemann sums for f over [a, b] satisfying lim, o, i(P,) = 0, there is an N such
that u(P,) < & whenever n > N. Therefore |[S(P,, f) —I| < eforeachn > N,
and so

lim S(P,, f) = I. O
n—00

The converse of this theorem is given as an exercise.

Definition 7.3.3. We say that U(P, f) — L(P, f) converges to 0 over a closed
interval [a, b] if for every ¢ > O there is a § > 0 such that if P is any partition of
[a, b] satisfying u(P) < &, then

U(P, f)— L(P, f) < .



7.3 The Riemann Integral 343

Remark 1. Again, to establish convergence it suffices to prove the preceding
inequality with ¢ replaced by ce for some ¢ > 0.

Remark 2. Suppose that U(P, f) — L(P, f) converges to O over [a,b]. By
inequalities (7.3) we see that

U(P, )~ L(P. f) sz —[f

for every partition P of [a, b]. However, if 7 f > [f,then

7f—/f>0,

and so we may find § > 0 such that

U(P, f) = L(P, f) < 7f - [ f

for every partition P of [a, b] with norm less than §. This contradiction shows that
if U(P, f)— L(P, f) converges to 0, then [ f = [ f.

Theorem 7.3.3. Let f be a function that is bounded on [a, b]. Then the following
two statements are equivalent:

1. U(P, f)— L(P, f) converges to 0 over [a, b];
2. f is integrable over |a, b].

Proof. Suppose (1) holds. Given ¢ > 0, there exists § > 0 such that
U, f)—L(P. ) <e

for every partition P of [a, b] with u(P) < §. Now

U(P, f)=L(P, f) = (U(P, ) —7f)+ <7f —[f) +<lf —L(P, f)) .

Since each term in parentheses is nonnegative,
[1-[r=ven-rn <

whenever w(P) < 8. As ¢ is arbitrary, 7 f = [f.LetI = [f.1It follows that
L(P,f)<I<U(P,f),and as we also have L(P, f) < S(P, f) < U(P, f) for
each Riemann sum S (P, f), we deduce that

ISP, f) =1 =U(P, f) = L(P, f) <e,

as required.
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Conversely, suppose that (2) holds, and let I = f f. Then given any ¢ > 0, there
isad > 0 such that

I —e<SP, f)y<I+e¢

for each partition P of [a, b] with norm less than § and each Riemann sum S(P, f)
of f over [a,b] relative to P. Fix such a P = (xo, x1,...,x,) and choose ¢; €
[xj,x;41] foreach j < n. Since M;(f) — ¢ is less than the least upper bound of f
on [x;,x;41], we may choose each c; so that f(c;) > M;(f) — e. Therefore

n—1

UP, f) = ZMj(f)(xj-H —x;)

=0

n—1 n—1
<D e —x) + &> (xj41 —x))

j=0 Jj=0
=SSP, f)+ebb—a)
<Il+4+eb—-a+1).

Similarly,
L(P,f)>1—eb—a+1).
and so
U(P. f)— L(P.f) <2s(b—a+1)

whenever p(P) < 8. Therefore U(P, f)— L(P, f) converges to 0, as required. O

From Remarks 2 after Definitions 7.3.1 and 7.3.3 we obtain the following
corollary.

Corollary 7.3.4. If f is integrable over [a,b), then [ f = 7 f=/7r
The proof of the next result is adapted from [7].

Lemma 7.3.5. Let f:[a,b] — R be a bounded function. Then for every ¢ > 0
there is a § > 0 such that

U(P,f)</f+8

and
L(P,f)>/f—e

for every partition P of [a, b] for which u(P) < 6.
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Proof. The lemma is certainly true if f(x) = 0 for all x € [a, b], for in that case we
have U(P, f) = Tf = L(P, f) = [f = 0. We therefore assume that f(x) # 0
for some x € [a, b]. B

Choose ¢ > 0. By the definition of the upper integral there exists a partition P,
such that

U(Pl,f)</f+§.

Suppose that P; contains k interior points. Theorem 7.1.1 shows that P; may be
refined if necessary so that k > 0. Let § be the minimum length of any subinterval
of P;. In view of Theorem 7.1.1, we may also assume that

where M = sup, [, ) | f(x)] > 0.
Now let P be any partition with w(P) < &, and let Q = P U P;. Then
Theorem 7.1.1 shows that

U0, f) < UP,. f) < /f +5 (7.4)

We wish to obtain an upper bound for U(P, f) — U(Q, f). By the choice of
8, there is at most one point of P; in each subinterval of P. Let S be the set of
subintervals J of P such that some interior point of J belongs to P;. These are
precisely the subintervals of P that are not subintervals of Q. Rather, each such
subinterval of P is the union of just two subintervals of Q. The contributions to
U(P, f)and to U(Q, f) of each subinterval of P notin S are equal and therefore
cancel in the expression U(P, f) — U(Q, f). Now choose an interval J = [r,¢] in
S and let s be its unique interior point in P;. Thus J; = [r,s] and J, = [s,] are
subintervals of Q. The contribution of J to |U(P, f)| is no greater than M (¢ —r) <
M §. Similarly, the contribution of each of J; and J, to |U(Q, f)| is less than M§.
Therefore the sum of these contributions to |U(P, f)| and |U(Q, f)| is less than
3M . Moreover since P; has just k interior points, we see that |S| < k. Using the
triangle inequality, we therefore conclude that

U(P,f)—U(Q,f)SIU(P,f)—U(Q,f)I§3kM5<g. (7.5)
Combining inequalities (7.4) and (7.5), we obtain
UGP.£) = U(Q. ) + UP. /)~ U(Q.) < [ f +e

and the first of the required inequalities is proved. The proof of the second is similar.
O
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Theorem 7.3.6. A bounded function f is integrable if and only if [ f = 7 f.

Proof. We have already observed the necessity of the equation. Suppose therefore

that [ f = Tf = I, and choose ¢ > 0. By Lemma 7.3.5 there exists § > 0 such
that

I—e<L(P.f)sUP f)<I+e
for every partition P for which u(P) < §. Hence
U(P, f) = L(P, ) <e+e =2,

so that f is integrable by Theorem 7.3.3. O

Corollary 7.3.7. A bounded function defined on [a, b] is integrable if and only if
for every € > O there is a partition P of [a, b] such that

UP, f)— L(P, f) <. (7.6)

Proof. The necessity is clear from Theorem 7.3.3.
Given a partition P of [a, b] satisfying Eq. (7.6), we have

L(P, f) E[f 57f < U(P, f).
Hence
7f—[f§U(P,f)—L(P,f) e

Since ¢ is arbitrary, it follows that T f =< [f. Therefore 7 f = [f, and so the

result is a consequence of Theorem 7.3.6. O

The next corollary is obtained by translating the previous one into terms of
sequences and is often useful.

Corollary 7.3.8. Let f:[a,b] — R be a bounded function. Then f is integrable if
and only if there exists a sequence { P, } of partitions of [a, b] such that

lim (U(P,. f) = L(Py. /) = 0.

If f is integrable, then

[ 7= tim B ) = tim L(P 1),
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Theorem 7.3.9. If a function f is integrable over closed intervals [a, c] and [c, b],
then f is integrable over [a, b].

Proof. We must show that U(P, f) — L(P, f) converges to 0 over [a, b]. Choose
e > 0. Since f is integrable on [a, c], there exists §; > 0 such that

U(Plsf)_L(Plsf)<€

for every partition P of [a, c] satisfying u(P;) < §;. Similarly, there exists §; > 0
such that

U(Py, [) = L(Py, f) <e

for every partition P, of [c, b] satisfying u(P;) < §,. Let § = min{§;, 6}, and
choose a partition P of [a, b] such that u(P) < §. We may refine it if necessary to
ensure that ¢ € P. Then P N [a, c] is the set of division points of a partition P; of
[a, c] with norm less than §;. Similarly, Pn [c, b] is the set of division points of a
partition P, of [c, b] with norm less than §,. Moreover

UP, f)=UP, f)+UP, f)

and

L(P,f)=L(P, f)+ L(P, f):

hence

UPP,f)—L(P. f)=U(P1, f)—L(P1, /)+U(Ps, f)—L(P>, f) <e+e =2¢,

as required. O
By means of an easy inductive argument, we obtain the following corollary.

Corollary 7.3.10. Let (xo, X1, ..., X,) be a partition of a closed interval [a, b]. Let
[ be a function defined on [a, b], and suppose that f is integrable over [x, X t1]
foreach j < n. Then f is integrable over [a, b].

We shall show that if f is continuous on [a, b], then it is integrable over [a, b].
In fact, we prove the following more general theorem.

Theorem 7.3.11. If f is continuous on (a,b) and bounded on [a,b], then f is
integrable over [a, b).

Proof. We suppose first that f is continuous at a (but not necessarily at ). Choose
esuchthat0) < e <b —a,andletc = b —¢e > a. Then f is continuous on [a, c],
and Theorem 5.5.2 implies the existence of § > 0 such that

[f() = f)l <e

whenever |[x — y| < §and x, y € [a,c].
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Take any partition P = (xo, X1, ..., X,) of [, b] withnorm u(P) < §, and refine
it if necessary so that ¢ = x, for some r such that 0 < r < n. By Theorem 7.3.3 it
suffices to show that

UP, ) — L(P, f) < ke

for some k> 0. Let P, and P, be the partitions of [a, ¢] and [c, b], respectively,
such that P, and P, are the intersections of P with [a,c] and [c, b], respectively.
The function f is continuous on [x;, x;4] for each j such that 0 < j < r, so
that M;(f) = f(c;) for some ¢; € [x;,x;41] and m;(f) = f(d;) for some
dj (S [Xj,Xj_H]. Thus

r—1

U(Py, )= L(Py, f) = ) (M;(f) =m;(f)(x+1 = X))

=0

r—1
=Y (f(c)) = fd))(xj1— X))
=0

r—1
< 8Z(xj+l —Xj)
j=0

=¢e(c —a).

Since f is bounded on [c, b], there exists M such that | f(x)| < M for all x €
[c, b]. Note also that

M;(f) =m;(f) = IM;(f) =m; (O] < [M;()] + m; (/)] <2M

for each j such that r < j < n, by the triangle inequality. It follows that

n—1
U(Py. ) = L(Py, f) = Y (M;(f) = m;(f)(xj41 — x))
j=r
<2M(b —c)
=2Me.

We therefore deduce that

UP, f) = L(P, f) = U(P\, f) = L(P1, f) + U(P2, f) = L(P2, f)
<(c—a)e+2Me
=(c—a+2M)e,

as required.
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We have now proved the theorem in the case where f is continuous at a.
Similarly, the theorem holds if f is continuous at . The remaining case is dealt with
by noting that f is continuous at ¢ and applying these results and Theorem 7.3.9 to
the intervals [a, ¢] and [c, b]. |

Corollary 7.3.12. Let f be a function that is continuous over an interval [a, b]
except at a finite number of points. If f is bounded on [a, b), then f is integrable
over [a, b].

Proof. Let P be a partition (xg, Xq,...,x,) of [a,b] such that P contains all
points in [a, b] where f is not continuous. By Theorem 7.3.11, f is integrable on
[x;,x;41] for each j < n. Now apply Corollary 7.3.10. O

By applying Theorems 5.3.1 and 7.3.11, we also obtain the following result.

Corollary 7.3.13. If a function f is continuous over an interval [a, b, then f is
integrable over [a, b].

Lebesgue showed that a function may be discontinuous at infinitely many points
yet be integrable.

Example 7.3.2. Consider the function f: [0, 1] — R defined by

xL%J if x #0,

f(X):%O if x = 0.

Thus for each

1 1
X € = |
n+1 n

where n € N, we have | 1/x| = n. In this case it follows that f(x) = nx, so that

n
n+1

<flx) =1L
Thus f is bounded on (1/(n + 1), 1/n] for all n € N. Consequently it is bounded
on [1/n,1] for all n € N. Moreover

n
n+1

lim  f(x) = <1,
()"

whereas

1 1
f(n“):ml’””:]'

Hence f is discontinuous at 1/(n + 1) for each n € N.
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Choose ¢ > 0 and N € N so large that 1/N < &. By Corollary 7.3.12, f
is integrable on [1/N,1]. Let P = (xo,X1,...,X,) be a partition of [0, 1]. By
Theorem 7.3.3, we may refine P so that x; = 1/N, for some k < n, and

n—1

Z(Mf(f) —m;(f)(xj41—x;) <e.

j=k

Now foreach x < 1/N we have x € (1/(M +1),1/M] for some M € N such that
M > N, so that

N
>

1>
A v T v

since the sequence {n/(n + 1)} is increasing. [This observation is easily checked
for all n > 0 by dividing both sides of the inequality

n?>nP—1l=m-Dmn+1)

by n(n 4+ 1).] As

it follows that

k—1

D M) = mp(f)(xj1 = x))

k—1 |
1—(1——))(% —X;)
Jj=0 ;)( N " '

1
N(xk — Xo)

A

1
N2

< 82.

We conclude that
UPP.f)—L(P, f) <& +e=¢e(s+1);

therefore f is integrable over [0, 1]. A

Two more important classes of integrable functions are the increasing and
decreasing bounded functions.
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Theorem 7.3.14. A bounded function that is increasing on an interval [a,b] or
decreasing on [a, b] is also integrable over [a, b].

Proof. Let f be a bounded function that is increasing on [a, b]. Given ¢ > 0, let P
be a partition (xg, X1, ..., X,) of [a, b] with u(P) < &. Then

n—1

U(P, f) = L(P, ) = Y (M;(f) —m;(/)(xj41 —x;)

=0

n—1

< SZ(f(xj+l) = f(x;))

j=0
= &(f(b) — f(a)).
Moreover f(b) > f(a) since f is increasing on [a, b]. Thus U(P, f) — L(P, f)

converges to 0, and so f is integrable over [a, b].
The argument is similar if f is decreasing on [a, b]. |

Exercises 7.2.
1. Let f:[a,b] — R. Prove that the following statements are equivalent:

(a) f isintegrable over [a, b].
(b) Foreach e > 0 there exists § > 0 such that if P and Q are partitions of [, b]
with norm less than §, then

ISP, ) =S(Q. Nl <&

for all Riemann sums S(P, f) and S(Q, f) of f over [a, b] relative to P
and Q, respectively.

This result is known as the Cauchy criterion for integrability.
2. Let f:[a,b] — R. Suppose that for each ¢ > 0 there exist integrable functions
g and & from [a, b] to R such that

/(g—h)<s

gx) = f(x) = h(x)

and

for all x € [a, b]. Show that f is integrable.
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This result is called the sandwich theorem for integrals. In particular it shows
that if there are integrable functions g and & mapping [a, b] into R such that
g(x) < f(x) <h(x)forall x € [a,b]and [ g = [h = I, then f is integrable
and [ f =1.

3. Let

nxn—l

1+ x

Ja(x) =

forallnm > 1 and x # —1. Define 4, = fol f» for all n > 1, and show that

. 1
Jim Ay =2

[Hint: nx"~'/2 < f,(x) < nx""%/2foralln > 2.]
4. Let f:]0, 1] — R be defined by

1 ifx =1L forsomen eN,
f(x)={ "

0 otherwise.

Show that f is integrable and | f = 0. [Hint: Choose ¢ > 0 and an integer

m > 1/e. Let
1
07 — X2, X3, ..., X2om—1, 1
m

be a partition P of [0, 1] satisfying the inequalities

Xof > ————— > Xok—1|
m—k+1

and

e
Xok — Xog—1 < —
m

for each integer k such that 1 < k < m. Compute U(P, f)— L(P, f).]
5. Let f:[a,b] — R be a function. Suppose that any sequence {S(P,, )} of
Riemann sums of f over [a, b] is convergent if lim, o t(P,) = 0. Prove that
f is integrable.
This result is the converse of Theorem 7.3.2 and therefore completes a
sequential characterization of integrability.
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7.4 Basic Properties of Integrals

The next theorem summarizes the fundamental properties of integrals. We prepare
for it with the following lemma.

Lemma 7.4.1. Let f be a real-valued function defined on an interval [a, b], and let
M = sup Ry and m = inf Ry. Define

glx,y) = f(y) = f(x)
forall (x,y) € D%. Then
sup Rg = M —m.
Proof. For each x,y € [a,b] we have f(y) < M and f(x) > m. Hence
glx.y) =M —m,
so that M — m is an upper bound of R.

Now choose & > 0. We must show that M — m — ¢ is not an upper bound of R.
Since M = sup Ry, there exists d € [a, b] such that

fdy>M—-L.
2

Similarly there exists ¢ € [a, b] such that
fle) <m+ g

Hence

gle.d) = f(d)— flc) >M —m—e,

as required. O
Theorem 7.4.2. Let f, g be functions and [a, b] an interval.

1. If f is integrable over [a, b, then for every constant k, the function kf is also

integrable over [a, b] and
b b
fresf's

2. If f and g are integrable over [a, b), then so is f + g and
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Lﬂf+@=lff+£§.

3. If f is integrable over [a,b] and ¢ € (a,b), then f is integrable over [a, c¢] and

[c, b] and
[f=l?+[@i

4. If f and g are integrable over [a, b], then so is fg.

Proof. 1. The result is clear if K = 0. Suppose therefore that k # 0.
Let (xo, X1, ..., X,) be a partition P of [a, b]. Choose c; € [x;,x; 1] for each
j <n,andlet c = (co,cy,...,cn—1). It is immediate from Eq. (7.1) that

S(P,kf,c) = kS(P, f,c).
The desired result now follows from the observation that if
ISP, f.o) — 1] <e,
then

IS(P.kf.c) —kI| = |k||S(P. f.c) — I| < |kle.

2. Letl; = fab fand I, = fab g. Choose ¢ > 0. There is a §; > 0 such that if P is
a partition of [a, b] with norm less than §;, then

ISP f)— Nl <e

for every Riemann sum S(P, f) of f over [a, b] relative to P. Similarly, there
is a 8, > 0 such that

IS(P.g) — L] <e

for every partition P of [a, b] with u(P) < 8, and every Riemann sum S(P, g)
of g over [a, b] relative to P. Let § = min{d, §,}, and choose a partition P of
[a, b] with norm less than 8. Let P = (xo, x1,...,X,), choose ¢; € [x;,X;41]
foreach j < n,andletc = (co,cq,...,Cy—1). Since w(P) < §; and u(P) < 8,
we have

|S(P»f+g’c)_(ll +12)| = |S(P,f,C)+S(P,g,C)—(Il +12)|
= |S(P»f7€)_ll|+ |S(P,g,C)—Iz|

< 2¢,

as required.



7.4 Basic Properties of Integrals 355

3. Choose ¢ > 0. Then
n—I1
S M(f) =mi(fNi =) <e
j=0

for every partition @ = (Yo, y1,...,ys) of [a,b] with small enough norm.
Choose such a partition Q with y; = ¢ for some /. Then we have both

-1
S M(f) =mi (N — ) <e
j=0

and
n—I1
D M(f) =m0 —y)) <&
j=l

and we deduce that f is integrable over both [a, ¢] and [c, b].
Let fub f =1, f; f =1, and be f = I. There exists 8y > 0 such that

IS(P, f)—1|<e

for every Riemann sum S(P, f) of f over [a, b] relative to any partition P of
[a, b] satisfying u(P) < &y. Similarly, there exist §; > 0 such that

IS(P. f)—hl<e¢

for every Riemann sum S(P, f) of f over [a, c] relative to any partition P of
[a, c] satisfying u(P) < 8; and &, > O such that

ISP f)— DLl <e

for every Riemann sum S(P, ) of f over [c, D] relative to any partition P
of [c, b] satisfying u(P) < 8. Let § = min{o, 8,62}, and let Py and P,
be partitions of [a,c] and [c, b], respectively, with norm less than §. Let P
be the partition of [a,b] for which P = P, U Py; then w(P) < 8. Let

Py = (xo,x1,...,x¢) and P, = (X, Xg41,...,%,). Choose ¢; € [x;,x;41]
for each j < n, and let ¢ = (cp,¢1,...,¢n—1), ¢’ = (co,C15...,Cr—1) and
¢” = (¢k,Crt1,--.,Cn—1). Then

S(P, f.c) = S(Py, f.') + S(Pa, f.").
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Hence
I — (I + Ip)|
=|I =S(P. fic) + S(Pi, f.c') + S(Po. f.¢") = (I + D)
< =S(P, f.o)l +|S(Pr, f.c") = Li| + |S(Pa, f.¢") = I

< 3e.

As ¢ is arbitrary, we conclude that I = I + I, as required.
4. First we prove the result for the special case where f = g. Choose & > 0. There
exists § > 0 such that

n—1

UP, f) = L(P, ) =Y (M;(f) =m;(f)(xj41—x;) <&
j=0

for all partitions P = (xo, X1, ..., Xx,) of [a, b] with norm less than §. Choose
such a partition P and let

M = sup{|f(X)| | x € [a.D]}.

We may assume that M > 0, the required result being clear if f(x) = 0 for all
x € [a, b]. Note that

M;(f?) —m;(f?) = sup{f>(c;) — f>(d;) | {c;.d;} C [xj.xj11]}
for each j < n, by Lemma 7.4.1. Moreover
f2ey) = f2d)) = (f(cj) + fd)(f(c;)— f(d)))

< (f eI+ 11 @NDIf(ej) = fld))l
< 2M|f(cj) = f(dj)l.

and so
M;(f?) —m;(f?) <2M -sup{| f(c;) — f(dj)| | {c;.d;} C [xj. x;41]}
=2M -sup{f(c;) — f(d)) | {cj,d;} C[x;,x;41]}
=2M(M;(f)—m;(f)),

again by Lemma 7.4.1. Hence

U(P, f2) = L(P, f?) < 2M(U(P, f) — L(P, f))
<2Me
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whenever (P) < §. Thus U(P, f2) — L(P, f?) converges to 0 and so f?2 is
integrable over [a, b].
The general case follows from this special case, the equation

_(f+er—(f g
4

fg

and parts (1) and (2).

We now introduce the conventions that

fre
foeef

whenever b < a. With these conventions we can extend Theorem 7.4.2(3) as
follows. In this theorem no assumption is made about the sizes of a, b, and c.

for every a, and

Theorem 7.4.3. If a, b, c are any real numbers and f is integrable over a closed
interval containing a, b, c, then

/ubf=/:f+/cbf~

Proof. The definitions above imply the theorem immediately if a = b, a = ¢, or

b=c.Ifc <a < b, then
b a b
[re[re]r

/jf=[f—[f=[f+[f-

The argument is similar if @ < b < c. The case where a < ¢ < b is covered by
Theorem 7.4.2(3). If b < a, then

/abf=—fbaf=—/bcf—/caf=/acf+/cbf. 0

so that
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Theorem 7.4.4. If m < f(x) < M for all x € [a,b] and f is integrable over
[a, b), then

b
m(b —a) 5/ f<M®b-a).

Proof. Let P be a partition (x, x1, ..., X,) of [a, b]. Since

n—1
UP, f) = ZMj(f)(le —Xx;)

=0

n—1

M Z(X_/+1 —x;)

j=0
=M —a),

IA

it follows that

/fs]fsM(b—a)-

The remaining inequality is proved similarly. O
The following corollary is immediate.

Corollary 7.4.5. If f(x) > O forall x € [a,b] and f is integrable over [a, b], then

fabfzo.

Corollary 7.4.6. If f(x) > g(x) forall x € [a,b] and f and g are integrable over

[a,b], then
/abf > /ab g

Proof. This result is immediate from the fact that

Offab(f—g)=/abf—/abg- =
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Corollary 7.4.7. Suppose that f is continuous on [a,b]. If f(x) > 0 forall x €
[a,b] and f(x) > O for some x € [a,b], then

/(;bf>0.

Proof. The continuous function f is integrable on [a, b]. Choose ¢ € [a, b] such
that f(c) > 0, and without loss of generality suppose that ¢ # b. By Theorem 4.4.6
and the continuity of f there exists anumber § € (0, b—c) such that f(x) > f(c)/2
for all x € [c, d], where d = ¢ + §. Hence

d
f r2 %050

and so

/abf=/acf+fcdf+/dbf>0,

sincefacfEOandfdbsz. |

If f:[a,b] — R is a function, then we define | f| to be the function given by

|f1(x) = [f ()]

for all x € [a, b].

Theorem 7.4.8. If a function f is integrable over [a, b], then so is | f|. Moreover

/abf §Lb|f|.

Proof. Choose ¢ > 0. There exists a partition P = (xg, x1,...,X,) of [a, b] such
that

U(P, f)— L(P, f) <e.

Forall j <nandallt,t’ € [x;,x;41] we have

A

LfOI=1fEI] = 1f@) = fE)
sup{ f(x) = f(x") [ {x.x"} C [xj.x; 1]}
= M;(f)—m;(f),

IA
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by Lemma 7.4.1. Hence
M;(1f D) =m; () = sup{l fC) = | fGD ] {x,x} C g x4}
< M;(f)—m;(f)

so that

UP.[f) = L(P.[f]) =UP, [) = L(P. f) <e.

We conclude that | f]| is integrable over [a, b]. The desired inequality follows
from Corollary 7.4.6, since |fab fl==+ j;lb f. O

Theorem 7.4.9 (Mean-Value Theorem for Integrals). Suppose that f and g are
continuous on [a, b] and that g(x) > 0 for all x € [a, b]. Then there exists £ € [a, b]

such that
([k=f@l%-

Proof. Since f is continuous on [a, b], f(x) attains a minimum m and a maximum
M on [a,b]. As g(x) > 0 for all x € [a, b], it follows that

ofe=rn

Therefore the theorem holds for every § € [a, b] if [ g = 0. In the remaining case
we have

By the intermediate-value theorem there exists £ € [a, b] such that

_ Ik
fO) = Fy

and the result follows. O
By taking g(x) = 1 for all x, we obtain the following corollary.

Corollary 7.4.10. If f is continuous on [a, b], then there exists € € [a, b] such that

b
/f=f@w—m
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Fig. 7.6 Illustration for f(x) A
Corollary 7.4.10

S e¢-------
\
=

oo oo

Remark. This corollary asserts that, for a function f that is continuous on [a, b],
the area bounded by the curve y = f(x) and the lines x = a,x = b,and y = 0 is
equal to the area of some rectangle with side [a, b] (see Fig.7.6).

Exercises 7.3.

1. For all x in a closed interval [a, b], define

ST (x) = max{f(x),0}
and
/7 (x) = min{ f(x), 0}.
Show that f is integrable over [a, b] if both £+ and f~ are.

2. Prove that if both f and g are integrable over a closed interval [a, b], then so are
max{ f, g} and min{ f, g}. [Hint: Note that

maxt f.g) = 5(/ +&+1f ~ g

Find a similar formula for min{ f, g}.]
3. Let f:[a,b] — R be continuous. Show that

1 1/p
Tim (/0 If(x)lp) = max /00

and

1 1/p
Jim ([Cireor) = min 1000
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4. Let f:[a,b] — R be a continuous function, and suppose that f(x) < 0 for all
x € [a,b]. Show that [ f = 0if and only if f(x) = O forall x € [a,b].

5. Let f:[a,b] — R be an integrable function such that f(x) > 0 for all x € [a, b].
Show that \/7 is integrable on [a, b].

7.5 The Fundamental Theorem of Calculus

This section develops some techniques of integration. First we establish a relation-
ship between the concepts of an integral and an antiderivative.

Theorem 7.5.1 (Fundamental Theorem of Calculus). Let f be continuous on
[a, b], and for each x € [a, b] define

Foo= [ s

Then F'(x) = f(x) for all x € [a,b]. Moreover, if G is any function on [a, b] such
that G' = f, then

b
f f = G(b) - G(a).

Proof. Since f is continuous on [a, b], the function F indeed exists. We show that
F'(t) = f(¢t) forallt € [a, b]. By definition,

P =ty S

) 1 Py t
Zilg}x—t(/a f_/a f)
zyintxl—t txf
iSOG -0
= lm —

xX—>t X —1
= lim /(§)

for some number £ between x and ¢. (In the penultimate step of the above calculation
we used the mean-value theorem for integrals.)
In order to prove that F'(t) = f(t), it therefore suffices to show that

lim /() = f(1).



7.5 The Fundamental Theorem of Calculus 363

Choose ¢ > 0. Since f is continuous at ¢, there exists § > 0 such that | f(x) —
f()| < e whenever |x —t| < §. Choose x such that 0 < |x —¢| < §. Since &
lies between x and ¢, we have |§ —t]| < |[x —t] < §,and so | f(§) — f(?)| < &, as
required.

Now suppose G is another antiderivative of f. Then G'(x) = F'(x) = f(x) for
all x € [a, b], so that

(F-G)(x)=0

for each such x. Hence F(x) — G(x) is a constant. Thus

G(b)—G(a)=F(b)—F(a)=/abf—/aaf=/ahf-

O
We sometimes write F(b) — F(a) as F(x)|.

Example 7.5.1. Since F'(x) = 1/x if F(x) = logx for all x > 0, we have

/Xth = F(x)— F(1) =logx
1

for all x > 0. This integral is sometimes used as a definition of the logarithm
function. A

Example 7.5.2. Let

xn-H

n+1

flx) =
for all x € [a, b], where n # —1. Then
S0 = e D =
= =
for all such n. The fundamental theorem therefore implies that

b n+1
/ x"dx = ol
p n+1

for all n # —1. Similar arguments show that

b
/ sinx dx = —cosxlz,
a

b
/ cosxdx = sinx|Z,
a
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and

b
/ et dx = e*|b.
a A

The fundamental theorem of calculus asserts that if we differentiate the integral
of a continuous function, then we recover the original function. It is pertinent to ask
the following question: Is it always true that

b
/ £'= 1)~ fla)?

The answer is no, for f/ might not be integrable.

Example 7.5.3. Let f be defined by

Fx) = xzsinxl2 if x #0,
0 if x =0.
Then
1 2 1
'(x) = 2xsin = — = cos —
f
xz x x2

for all x # 0. It is easy to see that f” is not integrable on any interval that contains
0 and has positive length as it is not bounded on any such interval. A

However, we do have the following theorem.

Theorem 7.5.2. If f is differentiable on |a, b] and f' is integrable over |a, b], then

b
/ £ = fb) ~ f(@).

Proof. Take any partition P = (xg,Xxy,...,X,) of [a,b]. By the mean-value
theorem, there exist numbers &, &1, ...,§,-1 such that&; € (x;,x;11) and

fleja) = f(xj) = f1E)(xj41— X))
for each j < n. Therefore
n—1

L(P, f) = Zm/'(f/)(xﬁl —x;)

Jj=0
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n—1

< fENE 11— x))

Jj=0

n—I1
=Y (f(xj41) = f(x)))

j=0
= f(b) - f(a),

by the telescoping property. Similarly,

U, 1)z f(b) - fa).

Hence
[1r=r-r@=[r
As f’ is integrable over [a, b], it follows that

b
/ £ = 1) - f@.

Theorem 7.5.3. Suppose that
o0
fx) = Z ajx’
j=0

for all x such that |x| < r, where r is the radius of convergence of the power series
and is nonzero. Then f is integrable over every closed subinterval of (—r,r), and
for each x € (—r,r) we have

/ it (7.7)
0] —|—1

Proof. Being differentiable at all x € (—r,r) by Theorem 6.7.2, f is continuous,
and therefore integrable, on every closed subinterval of (—r, r).

By Theorem 6.7.1, r is also the radius of convergence for the series on the right-
hand side of Eq. (7.7). We may therefore define

[e9)
a;
G(x =E — Lyt
) j=0j+l
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for each x € (—r,r). It follows from Theorem 6.7.2 that G is differentiable on
(=r,r) and G'(x) = f(x) for each x € (—r, ). We conclude that G’ is integrable
over every closed subinterval of (—r, r). Therefore Theorem 7.5.2 shows that

[O f = G(x)— G(0) = G(x). .

The technique implicit in the following theorem is called integration by
substitution.

Theorem 7.5.4. Let g be a function that is differentiable on an interval [c, d] and
assume that g’ is continuous on [c, d]. Let f be a function that is continuous on the
range of g. Suppose that g(¢) = a and g(d) = b. Then

/abf=/cd(fog)g’-

Proof. Note that since f o g and g’ are continuous, (f o g)g’ is also continuous,
and therefore integrable, over every interval on which it is defined.
For each x € R, define

H(x)=/:f

and for each x € [c, d] let

X
6 = [ (foar
C
Then, by the chain rule and the fundamental theorem of calculus,

(Hog)(x) = H'(g(x))g'(x)
= f(g(x)g'(x)
= G'(x).

Hence the functions H o g and G differ by a constant, and so
G(d) —G(c) = H(g(d)) — H(g(c)) = H(b) — H(a).

The required result now follows since H(a) = G(c) = 0. O
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Example 7.5.4. In order to evaluate

/'d dx

. xlogx’

where ¢ > land d > 1, set f(x) = 1/x for all x # 0 and g(x) = logx for all
x > 0. Then g’(x) = 1/x for all x > 0. For all such x it follows that

L _ 80 reang' o).
x log x g(x)

Hence

d dx logd dx
/C x logx _/1 x

oge X

logd
loge

= loglogd —loglogc. A

= log x|

The use of the next theorem is a technique called integration by parts.

Theorem 7.5.5. If f and g are both differentiable over an interval |a,b] and f’
and g’ are integrable over [a, b), then

b b
f f¢ = fB)gb) — f@)g(a) - f g,

Proof. Tt is clear that both the integrals concerned exist. Let

F(x) = f(x)g(x)
for all x € [a, b]. Then

FB)g(b) — fl@)gla) = Fb) — F(a)
= /F/
- [ ¢+ f')

=/fg/+/f’g,

and the result follows.
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Example 7.5.5. For each nonnegative integer n, define
/2
I, = / sin” x dx.
0
For instance, Iy = 7/2 and
/2 )
11:/ sinxdx = —cosx|1/* = 1.
0

For the case where n > 1, put f(x) = sin"~!' x and g(x) = — cos x for all x. Thus

/2 /2

I, = —sin" ! x cos x\o +m-1) / sin" 2 x cos? x dx
0

/2
=(n-— 1)/0 sin"~2(x)(1 — sin® x) dx

=n-1D)Up——1).

Hence
nl, = (n—1)1,—,
so that
n—1
I, = I
Easy inductions now show that
T 2m—1
Ly, = —
T2 El 2m

and

n

2m
by = 1_[ Y

m=1

for each positive integer n. For example,

/2 T
/ sinfxdx = =
0 4
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and

/2 2
/ sin® x dx = =.
0 3

/2
/ cos" xdx =1,
0

for every nonnegative integer n. This formula can be verified either similarly or by
replacing x with /2 — x. A

Note also that

Integration by parts has a number of interesting applications. We illustrate this
point by using the preceding example to derive a famous formula due to Wallis:

i 22n(n!)2
m ——— =
n—=>00 (2n)!\/2n

When 0 < x < m/2andn € N, we have

(7.8)

|

2n+1 2 2n—1

0 < sin x < sin”™ x < sin X.

Using the notation of Example 7.5.5, we therefore deduce that

0=l = Iy < Ippa,

and so
n n n—1 n
1—[ 2m Szl—[2m—lS 2m =2n+11—[ 2m.
2m + 1 2 2m 2m + 1 2n 2m + 1

m=1 m=1 m=1 m=1

Applying the result
[[em-Dem+1)=1-3-3-5-....2n=1)2n + 1)
m=1 n
=@n+ 1D []em-17
m=1

we find that

n
T - 1—[ 2m-2m
2 - ol 2m—-1)(2m+1)
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1 = (2m)?
_2n+11_[(2m—1)2

m=1

where

In other words,

where a, = P,/(2n + 1) and b, = P,/(2n) for each positive integer n. Therefore

b P, P, P, a - T
—ad, = — — = = — -,
"o 241 2n@n4+1)  2n T 4n

so that b, — a, — 0 as n — oo by the sandwich theorem. As
T
0 S ~— —a f bn — dy,
2
the sandwich theorem also shows that

. . s
lim a, = lim b, = —.
n—00 n—00 2

Since
n
[[2m=2-4-....@2n) = 2"n!
m=1
and

(2n)! _ @2n)!
4....-2n) 2!’

H(Zm—l)=1-3-...-(2n—1)=2‘

m=1
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we find that

Therefore

) 22n(n!)2
= lim —,
n—>00 \/2n(2n)!

as required.
We can use Wallis’s formula to establish a formula, attributed to Stirling, for
approximating factorials:

V2rn 2t

n! ~
el’l
If we write
nle”
Cn = 2n+1
n 2

for all positive integers n, then our goal is to show that
lim ¢, = +/2m. (7.9)
n—oo

Note that

2n+3
Cn nle"  (n+1)72

2,
Cn+1 nnTﬂ (l’l + 1)!en+l

2n+1
2

Now define d, = logc, for all n € N. Then

dy, —dy+1 = logc, —logc,41
Cn

= log
Cn+1

2n + 1 n—+1
5 log

—1.




372 7 The Riemann Integral

Next we introduce a change of variable. Let

1
=

2n+1°
Noting that 0 < ¢ < 1, we have
1
2n+1=—,
t
so that
1/1 1—1t¢
n=-|\--1})=——
2\t 2t
and
1—1¢ 14+1¢
nt 2t + 2t
hence
n+l_1+t
n 1—t

1 1+1¢
d, —dy+1 = —log———1
n n+l1 2t0gl—t
1 0 Z12j-|-1
2 2/ +1
J_=121+1
> 0.

Therefore the sequence {d, } is decreasing. In order to show that it is bounded below,
we resume the calculation above:

dn—dn+1=2:2j_l_1

Jj=l1

o0
< tZthf‘z
j=1
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(e9)
=07y 1Y
j=0

12
1—1¢2
1
@n + 1) (1 - —(Znil)z)
1

T Cn+ 121

B 1

T 4n(n+1)

1 1

C4n Am+ 1)

Hence

d ! dyy1 + ! <0
"Tan "M T4+

and we conclude that the sequence {d, — 1/(4n)} is increasing. Therefore

] 1
dy>d— — >dj — -
nZ Ty =Ty

for all positive integers 7.
Decreasing but bounded below, the sequence {d, } converges. Let C be its limit.
Then

dy c

lim ¢, = lim e“ =e",

n—o00 n—o00

and it remains only to show that e = /2. We have already proved that

2n+1 _
nl~n 2 "

Using Wallis’s formula, we therefore find that

22n n2n+leZC —2n eC

(zn)‘”’;lec—Zn /2 27

NS

Consequently e¢ ~ /27, and the required equation follows because C is constant.
The proof of the next theorem also uses integration by parts.



374 7 The Riemann Integral

Theorem 7.5.6. Let I be an open interval and let a € I. Let f:I — R be
a function. Let n be a nonnegative integer and suppose that fY) exists and is
continuous for each nonnegative integer j < n + 1. Then for each x € I we
have

f(x) = Pn(x) + Rn(X),

where
n ) )
Py =3 LWy,
j=o I
1 X
R = o [ oy 0
n!J,
and 0 = 1.
Proof. For every j € {0,1,...,n + 1}, the function f(j) is continuous, and

therefore integrable, on the closed interval with ends a and x. Consequently R, (x)
exists, by Theorem 7.4.2(4).
We proceed by induction on n. First, for all x € I we have Py(x) = f(a) and

Rix) = [ S 0di = 1)~ f@)
a
by Theorem 7.5.2. Therefore the theorem holds for n = 0.
Suppose therefore that » > 0 and the theorem holds for » — 1. Integration by
parts yields

R0 = (=0 £l e [ )
@)
Wil

(x—a)" + /x(x — t)”_lf(”)(t) dt

1
(n—1)!

for all x € I. By the inductive hypothesis, it follows that
f(x) = Proi(x) + Ry (x)
) )

Z S (a) —a) +

* _ n\n—1 r(n)
(n—l)!/a(x )" fU() de

=l ()
ij @ a)f+¥<x—a>"+zen(x)
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J

H N
j'((l) (x _a)j + %/ ()C _ t)nf(n-l-l)(t) dl,

n f(
=2
j=0

as required. O

In 1947, Niven proved that 7 is irrational. In 1986, Parks proved a more general
result from which the irrationality of both 7 and e follows. We present this result
now. Its proof uses integration by parts.

Theorem 7.5.7. Let ¢ be a positive number and let f:[0,c] — R be a differen-
tiable function such that f(x) > 0 for all x € (0, ¢). Suppose there exist functions
fi, fa. ... that are differentiable on [0, c] and satisfy the conditions that f| = f,
fi = fimi forallk > 1 and fi(0) and fi(c) are integers for all k. Then c is

irrational.

Proof. Let S be the set of all real polynomials p such that p® (0) and p®(c) are
integers for all nonnegative integers k. In other words, p and all its derivatives yield
integers when evaluated at O and at c. The set S is closed under multiplication: If
p and g are polynomials in S, then so is pg, for it is easily seen by induction that
(pq)® is a sum of products of derivatives of p and ¢q. (We consider p and ¢ to be
zeroth derivatives of themselves.) Note also that p € S if p(0) and p(c) are integers
and p’ € S.

We show next that if p € S, then foc Jp is an integer. To this end, we first claim
that it is an integer if and only if foc f1p' is. Indeed, using integration by parts, we
find that

/ o= H©)p(e) — /(0)p(0) — [ i
0 0

From the hypotheses and the assumption that p € S we see that the first two terms
on the right-hand side are integers, and our claim follows. Proceeding inductively,
we find that [; fp is an integer if and only if f; fap®) is an integer, where A is
the degree of p. Note that p® is a constant function, and the constant is an integer
since p € S. Moreover the differentiable function fy = fx,, is continuous, and
hence integrable, on [0, c]. Therefore, by the fundamental theorem of calculus, we
have

[ 10 =0 [ 52
0 0

= pM(©)(far1(c) — fa+1(0)),
an integer. We conclude that fOL fp is an integer.

Assume now that ¢ is rational. Then there are positive integers m and n such that
¢ = m/n. Define
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x*(m — nx)k

Pr(x) = A

for all x € [0, c] and all nonnegative integers k, where 0° = 1.

We shall show that P, € S for all k. First, it is clear that the constant polynomial
Py is in S. Suppose therefore that & > 0 and that Py_; € S. Observe first that
P (0) = 0, and that P, (c) = 0 since m = nc. For all x € [0, ¢] we have

k= (m — nx)* — knx* (m — nx)*!
k!

. k=1 (m — nx)*~(m — 2nx)

B k!

= Pr_i1(x)(m — 2nx).

Pi(x) =

The first factor is a polynomial in S by the inductive hypothesis. The second is
in S since m, m — 2nc = —m, and —2n are all integers. Since S is closed under
multiplication, we conclude that Pk’ € S and therefore that P, € S for all k as
Py (0) and Pi(c) are integers.

Next observe that Px(x) > 0 for all x € (0,c) and all k, a property shared by
f(x). Thus foc fP, > 0. But this integral must be an integer, since P, € S. Hence

c
/ S(x)Pr(x)dx > 1 (7.10)
0
for all nonnegative integers k. However, setting
M = max{x(m —nx) | x € [0, c]}

and
L =max{f(x) | x €]0,c]},

we obtain

c c k
/Of(x)Pk(x)dxffo L%dx

cLM*
k!
This result gives a contradiction, for
k
lim — =0

by Example 2.5.6. O
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Corollary 7.5.8. If 0 < |0| < 7 and cos6 and sinf are rational, then 0 is
irrational.

Proof. Since cos 6 and sin 6 are rational, so are cos |f| and sin |#]. Hence we can
find a positive integer n such that n cos |0 and n sin |8]| are integers. Now apply the
theorem with ¢ = |0 and f(x) = nsinx for all x € [0, |6]] to conclude that |6],
and hence 8, is irrational. m|

Corollary 7.5.9. For every positive rational number a # 1, loga is irrational.

Proof. Suppose first that @ > 1, so that loga > 0. Write @ = m/n for positive
integers m and n, and apply the theorem with ¢ = loga and f(x) = ne* for all
x € [0,loga], noting that ne¢ = ne'°¢* = na = m.

If0 < a < 1, then 1/a > 1 and we conclude that log 1/a is irrational by the
previous case. That loga is irrational now follows from the equation

1
log — = —loga.
a

Remark 1. By taking & = 7 in Corollary 7.5.8, we find that 7 is irrational.

Remark 2. Let a, b, ¢ be positive rational numbers and suppose that a? + b = 2.
There is a number 8 such that 0 < 8 < /2, sinf = a/c, and cos = b/c. Then
both sin 6 and cos 6 are rational, so that @ is irrational. In other words, arctan(a/b)
is irrational.

Remark 3. Corollary 7.5.9 confirms the irrationality of e, since loge = 1. In fact,
e“ is irrational for every nonzero rational number a.

In Sect. 6.4 we introduced the number 7. We now give it a geometric interpre-
tation by showing that the circumference of a unit circle is 2. For this purpose we
need the notion of arc length.

Let f be a continuous real-valued function defined on a closed interval I with
partition (xo, X1, ..., X,). For each j let P; be the point (x;, f(x;)). Foreach j <n
the distance between P, and P; is | P; 4| — P;|. The sum of these distances gives
an approximation for the length of the graph of f.If

n—1

nll?;oZ|Pj+l — Py

j=0

exists and is finite, then we define it to be the (arc) length of the graph of f over I.
It is evaluated in the following theorem.

Theorem 7.5.10. Let f be a differentiable function from an interval [a, b] into R.

Suppose that [’ is continuous on [a,b). Then the length of the graph of f over
[a,b] is

[ i



378 7 The Riemann Integral

Proof. By applying the mean-value theorem to f over [x;, x; 4], where j < n, we
discovera §; € (x;,x;4) for which

fxje) = f(x)) = f1ED)xj41 = X))

Therefore

n—1 n—1
S 1P = Pil = 3 G =) + (e — £
j=0 Jj=0

n—1

=> \/(Xj+1 —x;)? 4+ (SN2 (xj 41 — x))?
=0

n—l1
=Y (1 =X)L+ (f)E)).
j=0

which is a Riemann sum for the function /1 + (f’)2. This function is continuous,
and therefore integrable, on [a, b]. Its Riemann sums converge to the required arc
length, and the result follows. m|

Example 7.5.6. Since arccos(1/+/2) = /4, the length of the graph of the function
f(x) =1 —x2,

where x € [0,1/+/2], is an eighth of the circumference of the unit circle. In order
to evaluate it, we first use the chain rule to compute

1
241 —x2

x
NI

This function is continuous at all x # +1. Therefore

1/4/2 1/4/2 2
/ \/1+(f’)2:/ ,/1+1xx2dx
0 0 -

1/4/2 dx
0 V1 —x2

YV
= arcsmx|0/‘[

f(x) = - (—2x)

T

1

Consequently the circumference of the unit circle is 8 - 7 /4 = 2. A
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Exercises 7.4.
1. Use the result of Example 7.5.1 to prove the following:

(a) If F(x) = logx for all x > 0 and cx > 0 for some constant ¢, then
, 1
F'(ex) = —
X

for all x > 0.
(b) If x > 0 and y > 0, then

logxy = logx + log y.
(c) If x > 0 and p is a rational number, then

logx? = plogx.

(d)
lim logx = o0
X—>00
and
lim 1 = —o0.
X_l)r(l;lJr og x 00

2. Let f be a function that is integrable over [a, b] and let F(x) = fax f for all
x € [a,b].

(a) Show that for all x, y € [a, b] satisfying x < y we have
|[F(x) = F())| < M(y —x),

where M is the least upper bound of | f| on [a, b].
(b) Hence show that F is continuous on [a,b]. (Note that f need not be

continuous, and therefore the fundamental theorem of calculus cannot be
used.)

3. By choosing a particular type of partition of the interval [1,2] and suitable

Riemann sums for
/ 2 dx
X2 '
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evaluate

n

1
lim n E —_—
n—00 = n+j)?

(The evaluation of this limit is due to Darboux.)

. By choosing a particular type of partition of the interval [0, 1] and suitable

) 1
Riemann sums for fo e~ dx, evaluate

n
. 1 i=1
lim — E e n .
n—o0o n

Jj=1

. By choosing a particular type of partition of the interval [0, 1] and suitable

. 1
Riemann sums for fo x™ dx, evaluate

n

1
lim E i
n—oo pm+l J
j=1

Let f:[a,b] — R be integrable. Show that if f is continuous at a point
¢ € (a,b), then fax f is differentiable at c. (Note that this result implies the
fundamental theorem of calculus.)

Let f:[a,b] — R be a continuous function such that f(x) > 0 for all x €
[a, b]. Show that fax f is increasing on [a, b].

. Suppose that f” is continuous on [a, b]. Show that

b
/ xf"(x) dx = bf'(b) — f(b) — (af'(a) — f(a)).

a

Let f be a continuous real-valued function and let u and v be differentiable
functions. Define
v(x)
F(x) = f(t)dr.

u(x)
Show that

Fl(x) = fx)v'(x) = f(ux)u'(x).

Let f and g be functions from [a,b] to R such that g is continuous, f
monotonic, and f” integrable. Show that there exists ¢ € [a, b] for which

/abfg=f(a>/;g+f(b)/fg.
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This result is known as the second mean-value theorem. [Hint: Let

G(x) = /x g(t)dt

for each x € [a, b]. Apply integration by parts to

/ubfg = /abfG/

and then use the mean-value theorem. ]
11. For each m,n € N evaluate the following integrals:

(@) (7 sinmxsinnxdx;
(b) [7_ cosmxcosnxdx;
(¢) J7_ sinmxcosnxdx.

7.6 The Cauchy-Schwarz Inequality

Another theorem about integrals is known as the Cauchy—Schwarz inequality.

Theorem 7.6.1 (Cauchy—Schwarz Inequality). If f and g are integrable on a

closed interval, then
2
(o) <[ [

Proof. Note that the functions fg, f2, and g are integrable by Theorem 7.4.2(4).
For all real x we have

/(Xf+g)2=x2/f2+2x/fg+/g2-

The polynomial on the right-hand side of this equation is therefore nonnegative for
all real x. Thus its discriminant cannot be positive, by the results of Example 6.3.4.

In other words,
2
4(/fg) —4/f2/g2§0.

The required inequality follows. O

Let f:[a,b] — R be integrable. We define the norm || /|| of f by the equation

11 = ([ﬁ);
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With this notation we may rewrite the Cauchy—Schwarz inequality as

/@swww

The norm of a function satisfies the triangle inequality.
Corollary 7.6.2. Let f, g:[a,b] — R be integrable. Then
If+gl I+ lgll

Proof. Note first that || || > 0 for every integrable function f. Now

w+mv=/u+@2

=/f2+2/fg+/g2

< AP+ 201 1gl + gl
= (I/11 + llglh?,

and the result follows by taking square roots of both sides. O

A similar argument to that used to prove Theorem 7.6.1, combined with
Theorem 3.12.5, yields the following corresponding result for series. The details
of the proof are left as an exercise.

Theorem 7.6.3. Let {x,} and {y,} be sequences such that Z?ozo x? and Z?‘io ng
converge. Then Zjio |x;y;| converges and

2

o0 oo o0

2 2
> iyl =D x> i
j=0 j=0  j=0

Exercises 7.5.

1. If f and g are integrable functions, prove that

1A =llglh =1 =gl

and

leef 1l = leel LAl

for every number «.
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2. Let f and g be integrable over an interval [a, b]. Prove that
b b
/a /;
(Note that the integrand on the left-hand side is the square of a determinant.)

Deduce the Cauchy—Schwarz inequality from this equation.
3. Let f and g be integrable over an interval [a, b].

f(x) g(x)
S() gy)

2 b 2
dydx =21 fIPgl? - ( [ F(0g(x) dx)

(a) Prove that

b b
f [ () — F)(E() — g(0) dyds

b b b
=2<(b—a) / F()g(x) dx — / () dx / g(x)dx).

(b) Suppose that f and g are both increasing or both decreasing. Deduce that

/abf/abgf(b—a)/abfg.

4. Prove Theorem 7.6.3.

7.7 Numerical Integration

The fundamental theorem of calculus is a very useful tool for evaluating integrals.
However, it is not always applicable, as there are integrable functions such as
¢~ and sinsinx whose antiderivatives cannot be expressed explicitly in terms
of such elementary functions as polynomials, the trigonometric functions, and the
exponential and logarithm functions. In this section we therefore investigate the
question of approximating a definite integral by means of a Riemann sum. We also
wish to estimate the accuracy of the resulting approximations.
We begin with a lemma.

Lemma 7.7.1. Let f be a function with continuous derivative on an interval [a, D).
For every ¢ € [a, D] let

b
: =/ f— b —a).

Then

b — 2
el = 2 wp 1770l

x€la,b]
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Proof. Since f’ is continuous on the closed interval [a, b], we may define

M = sup |f'(x)].

x€la,b]

By the mean-value theorem (for differentiation), for every x € [a,b] — {c} there
exists £ between x and ¢ such that

|fx) = fl =1 E)x =)

< M|x —c|.
Hence
b
o] = [ (f() — f(e))dx
b
< / 1f(@) — £(©)]dx
b
SM/ |x —c|dx
c b
:M(—/ (x—c)dx—i—/ (x—c)dx)
o (_(x—c)2 CL = ”)
2 a 2 C
_ (a—c)*  (b—c)?
_M( 2 T2 )
< Do —ay
since

(b—a)*=(b—c)+ (c—a))
=b-c)l+2b—-c)c—a)+ (c—a)’
> (b—c)* + (c —a)

a

Theorem 7.7.2. Let f be a function with continuous derivative on an interval [a, b]
with partition P = (xg, X1, ..., X,). Then every Riemann sum S(P, f) of f over
[a, b] relative to P satisfies the inequality
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sup | f'(x)|u(P).

x€la,b]

/abf—S(Rf) <

Proof. As in the proof of the lemma, let

M = sup |f'(x)].

x€[a.b]

For any Riemann sum S(P, f,c) of f over [a, b] relative to P and intermediate
points ¢, ¢y, . .., Cp—1, We have

n—1

n—I1 Xj41
[ = Y renta -
j=0"% j=0

n—1

b
/ Fx)dv— S(P. f.c)

Xj+1
=Y |[ 7 e pepen -
j=01"%
n—1
< Z?(xj-i-l _xj)
j=0
M n—1
= 5 2 HP) = X))
j=0
1
= 5 Mu(P)(b —a). O

Although the upper bound this theorem provides for the error may seem crude,
the following example shows that it cannot be improved.

Example 7.7.1. Let f(x) = x for all x € [0, 1]. Then fol f =1/2.Foreachn € N

let P, be the partition
1 2
(07_»_9"'31) )
non

so that u(P,) = 1/n. By choosing as intermediate points the leftmost end of each
subinterval of P, or the rightmost end of each such subinterval, we obtain the lower
sum L(P,, f) or the upper sum U(P,, f), respectively, of f over [0, 1] relative to
P,. Now for each j the jth subinterval of P, is [(j — 1)/n, j/n], so that

n—1 .

L(P,. f) = Zj_m %_%
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and
I/ nm+1) 1 1
UP,, f)=— = — == —
(Fu /) n j; n 2n? 2 + 2n
Hence
1 1 1
[ rwa-ran|=| [ rwa-ven| =5
0 0 2n
and this number is the upper bound provided by the theorem for the error. A

We now consider the case where a Riemann sum is obtained by using the
midpoints of each subinterval of a partition.

Lemma 7.7.3. Let f be a function with continuous second derivative on an interval
[a,b]. Let ¢ = (a + b)/2 and define

b
e=/“f—ﬂow—w.

Then

b_3
O qup 170

le] <
2 xefa.b]

Proof. Using Theorem 7.5.6 with n = 1, we obtain

0= fe = fOw-o+ [ «-nsoa
for all x € (a, b). Thus

8=Lzﬂﬁ—f@»ﬁ

= /ub f/(c)(x—c)dx—i—/ab /Cx(x—t)f”(t)dtdx.

But

b b b
/ F1(0)(x = ¢) dx = f’(c)/ (x— “JZF )dx

b
=f@(/xw—&i2¥;2)
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, bz_az bz_az
ARGl

= 0.
Setting

M = sup [f"(x)],

x€la,b]

we therefore conclude that

le| < /ab
/ab /;X(x —t)M dtdx
M /ab @ —2x)2
%/ﬂb(x—c)zdx

= % ((b—c)3 —(a —c)3)

()

dx

/ -0 ) di

IA

dx
4

M 1
=—.—(b-a—(@-h)’
— (-0 —@-b))
M
= —(b—a)’. O
22~
Theorem 7.7.4. Let | be a function such that " exists and is continuous on an
interval [a, b] with partition (xg, X1, ..., x,). Let ¢ = (co, 1, ..., Cn—1), where
SEETE 27}
2

forall j < n. Then

b —

L sup [0 ((P))?.

x€la,b]

=

/abf—S(P,f,c)
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Proof. Letting

M = sup |f"(x)]

x€la,b]
and using Lemma 7.7.3, we obtain

n—1

55

j=0

Xj+1
[ FO)dr— £ ()41 — %))

J

b
/ f(x)dx—S(P, F,c)

n—1

M
> 5 K+ —x;)°

Jj=0

IA

n—1

M
23 (WPD? D _(xj1 =)
J=0

IA

-1 2 —
= ZMP)(b - a).

Again, the bound is sharp.

Example 7.7.2. Let f(x) = x? for all x € [0, 1], so that fol f = 1/3. For each
n € Nlet P, be the partition used in Example 7.7.1. Defining cg, ¢y, ..., Cy—1,C as
in the theorem, we find that

1(j Jj+1 j+3
o=5 (i) =

n n n

for each j < n. Therefore
11 1’
S 1%’ 5 = - ) i =
(Pu. f.0) n,§nz (J +2)

1S 1
.2 .
_EE 0:(1 +]+Z)
i=

1 (n(n —D2n-1) n nn—1) n z)

n3 6 2 4
_ 4n? — 1
To1262

1 1

3 1202
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Hence

1
'L FE)de=S(Py, f.0)] = .

the bound given by the theorem. A
The reader is referred to [3] for more on numerical integration.
Exercises 7.6.

1. Let f:[a,b] — R be monotonic. For eachn € Nleth = (b —a)/n and
P,=(a,a+ h,a+2h,...,b).

For each Riemann sum S(P,, f) of f over [a, b] relative to P,, show that

b bl
[ rwa=s@.n| <=2 - s,
2. Letbh > 0 and
NUEO

for some function f.If | f”(x)| < M forall x € [0, b], show that

b 1
‘/0 f(x)dx—S §EM(b—a)3.

[Hint: Apply integration by parts twice to evaluate fob t(b—1)f"(t)dr]
3. Using four subintervals and choosing their midpoints as the intermediate points,
approximate log2 = || 12 ‘%‘ by means of a Riemann sum and estimate the error.

7.8 Improper Integrals

Although there are several types of improper integrals, here we remove only the
condition that the domain of the function is a finite interval. Let f be a function that
is integrable over [a, n], for every integer n > a. We define

/;ooleim nf,

n—00 a
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provided the limit exists. In this case we say that the integral converges; otherwise
it diverges. If « < b < n, then

/aoof= im [ f

I

s
R
a\@

~

+

~
N———

I
a\&
~
+

3
~

Example 7.8.1. We show that the integral

o0
/ x Pdx
1

converges if and only if p > 1.

If p # 1, then
o0 n
/ x"?dx = lim / x~Pdx
1 n—>o00 1
1

_pn

If p = 1, then the integral becomes
/‘ ® dx . " dx
— = lim —
1 X n—oo f1 X
= lim log x|}
n—>00
= Jim logn

One of the basic tools for establishing convergence of an improper integral is the
comparison test. It is analogous to the comparison test for convergence of a series.
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Theorem 7.8.1 (Comparison Test). Ler a € R. Suppose that f and g are
integrable functions over [a, b] for all b > a and that | f(x)| < g(x) forall x > a.
If [ g converges, then so does [° f. Moreover

/aoof S/Lloog.

Proof. First note that |f| is also integrable over [a,b] for all b > a, by
Theorem 7.4.8.
Suppose that f(x) > 0 for all x > a. Then the sequence

[

is nondecreasing and bounded above by f:o g, according to Corollary 7.4.6. In this
case the result follows from Theorem 2.7.1.
For the general case, let

po Wit
and
Pty

Then f; and f; are integrable over [a, b] for all b > a. Furthermore, for each x > a
and j € {1,2} we have

0= fi(x) = /()] = gx).

Hence [ fiand [ f> both converge. As f = fi — fo, [ f also converges.
Finally, by Theorem 7.4.8 and Corollary 7.4.6,

/abf s/ab|f|s/abg.

The proof is completed by taking the limit as b — oo. O

A corresponding result holds for integrals of the form ff ot
The theorem immediately implies the following corollary.

Corollary 7.8.2. Suppose f is an integrable function over [a, b] for all b > a. If
[ | f| converges, then so does [~ f.
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Example 7.8.2. 'We show that the integral

o0
/ t*~le™ dr
1

converges for all x > 0. We first locate the maximum of the function f defined by
(1) = 5 Hle
for all # > 1. Note that
i) =@+ Dt¥e™ —t" e =Y (x +1—1)

for all such . Hence f/(¢t) = 0 if and only if t = x + 1. Since f’(¢) > 0 when
t <x+land f/(r) < O whent > x + 1, the maximum of f occurs at x + 1. Let
M = f(x + 1). Then

/tx‘le‘fdtzf f(t)t_zdtSM/ 12 dt
1 1 1

for all n € N. By Example 7.8.1, || 1°° =2 dt converges. Hence

o0
/ el dt
!

converges by the comparison test. A

The improper integral [ f is said to be absolutely convergent if [ | f| is
convergent.

The following example, which is due to Dirichlet, shows that a convergent
improper integral need not be absolutely convergent.

Example 7.8.3. 'We show that the integral

00 :
s
/ inx dr
1 X
is convergent but not absolutely.
Using integration by parts (Theorem 7.5.5), we obtain

" sin x CcoS X | " cosx
dx = — — > dx
1 X X 1 1 X

for all » € N. Now

Ccosx |1 cosn

= +cosl — cos 1
n

X 1
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as n — oo, and since

IA

‘cosx‘ 1
x2 x2’

the integral

* cos x
5—dx
1 X
converges by the comparison test. Hence the integral in question is convergent.
We show next that the integral is not absolutely convergent. For all

err+, 3JT+_
X — T, — |,
g Ty

where j € N, we have

g
|sinx| > sin — =
4

L
V2

and x < (j + 1)z. Hence

& |s1nx| GG+ |s1nx|
/1 Z/( dx

/+4)”

v
|H
)

M8

—
<
-+
e

S

=&

=1/ G+
1 (7w 1
>_ —_
2; 2 (]+1)n)
1 il
2215

As Z;’OZZ 1/ diverges, we deduce that

| sin x|
—dx
L=

also diverges. A
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Exercises 7.7.
1. Test the following integrals for convergence:
@ fy o
®) [0 e™dx;
(©) [y sinx?dx.

2. Evaluate
o0
1
/ 08X
1 x2
3. (a) Suppose that f(x) > 0 and g(x) > 0 for all x > a, and let

. fx)
xlglc}o g(x) =L

Prove that

i. If 0 < L < oo, then fa * f and faoo g both converge or both diverge.
ii. If L =0, then faoo f converges if [ °° g converges.
iii. If L = oo, then faoo g converges if faoo f converges.

(b) The result of part (a) is called the limit comparison test for integrals. Use it

to prove that
/ o dx
a4+ x?

is convergent.

7.9 Integral Test for Convergence of a Series

Since an integral is defined in terms of Riemann sums, there are many similarities
between the theories of integrals and series. One of the most important connections
between the two theories is the integral test for the convergence of a series. It
involves improper integrals.

Theorem 7.9.1 (Euler, Maclaurin). Let f be a nonincreasing continuous function
on the interval 1, 00), and suppose that f(x) > 0 forall x > 1. Let

4 =31 —[ f
Xro-

for all n € N. Then the sequence {d,} converges.
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Proof. Tt suffices to show that {d, } is nonincreasing and bounded below. Since f is
nonincreasing, for every positive integer j we have

JG 41D =min{f(x) [ x € [j.j+ 1]

and
f() =max{f(x)|xel[jj+1]}
Hence
j+1
fG+H = f=r10).
J
so that

n+1 1

=y = | 210~ - s
n+1
=f(n+1)—/ £

s fr+D)=fln+1)
=0

for eachn € N.
We have now proved that {d,} is nonincreasing. It is also bounded below by O,
since

+1
d, —Zm)—Z/] 7
J
n n—I1
=IO EDINI0)
j=1 j=1

= f(n)
>0

foreachn € N. O
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Corollary 7.9.2. Under the hypotheses of Theorem 7.9.1 we have

n+1 n n
[ S EN R )
1 = 1

foralln € N.

Proof. From the proof of the theorem we have

j+1
SGHD< | f=fU)

J
for all j € N. From the second inequality we obtain
n+1 noopjtl n
[ =2 sy
! j=177 j=1
The first inequality gives

n—1 n—1

Jj+l1 n
i+ 1) < = 7
X1 )}2[ r=[r

Consequently
n n n—1 n
>SN = W+ Y S = fO+ L G0+ [ £ g
j=1 =2 j=1

Corollary 7.9.3 (Integral Test). Let f be a nonincreasing continuous function on
the interval [1,00], and suppose that f(x) > 0 for all x > 1. Then the series
Z?’;l f(j) and the integral |, loo f both converge or both diverge.

Remark. The Euler—Maclaurin theorem and the integral test are clearly true if there
exists a fixed number N such that the function satisfies all the conditions for each
x> N.

Example 7.9.1. Use the integral test to show that Zj’;l 1/j? is convergent if and
only if p > 1.

Solution. Let

f(x)=xip>0

forall x > 0.
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If p <0, we have

lim i #0
n—oo np
and the series is divergent by the nth term test.
Suppose p > 0. Then f is clearly nonincreasing and continuous at all x > 1
and the integral test can be applied. Therefore, by the integral test and the result of
Example 7.8.1, the series is convergent if and only if p > 1. A

Example 7.9.2. Use the integral test to confirm the divergence of Abel’s series

Solution. Let

for all x > 1. Then as xlogx is increasing at all x > 2, it follows that f is
decreasing at all x > 2. Moreover f is continuous at all x > 2. Hence the integral
test can be applied.

Using the result of Example 7.5.4, we have

*® dx
/ = lim (loglogn —loglog2) = oco.
2 xlogx n—oo

Therefore the series is divergent by the integral test. A

Series for which the kth term involves log k are often suitable for the use of the
integral test. One problem with the integral test is that the required integral may not
be easy to evaluate. A comparison test is often used to modify the series so that the
corresponding integral may be found easily.

Example 7.9.3. Test the convergence of

s 1

Zjlog(j2+3j +1)

j=1
Solution. Let

1
nlog(n? +3n+1)

a, =
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and

1
nlogn

n —

for all integers n > 1. Then, using I’"Hopital’s rule,

. ap . nlogn
lim — = lim
w n—ooonlogn? +3n + 1)
. logn
lim ——————
n—o0 log(n? + 3n + 1)
1

— i n
- nli>nc;lo 2n+3
n243n+1

n*+3n+1
im ———
n—>oo 2n2 4 3n
1

E .
Since Z?:z b; is divergent by the previous example, 27‘;1 a; is also divergent by
the limit comparison test. A
Exercises 7.8.
1. Test the convergence of the following series:
00 1 o} 1
@ i mer © Xt fogriener
00 1
(b) Z.f=2 (j+5)log? j *

2. Does the result

contradict the argument used in the proof of the integral test?
3. Apply the integral test to test the convergence of




Chapter 8
Taylor Polynomials and Taylor Series

8.1 Taylor’s Theorem

Because polynomials are so easy to study, it would be very convenient if they
were the only functions with which we had to deal. Although this is not the case,
it turns out that many functions that are not polynomials can be approximated as
accurately as we please by polynomials. In this section we present a theorem that
gives conditions under which such an approximation is possible.

Given a function f that is not a polynomial, we are interested in finding a
polynomial, in a variable x, that gives a good approximation for f(x) at values
of x near some number a. It is convenient to write the polynomial in powers of
x — a rather than x. If we take the polynomial to be of degree n > 0 and denote it
by P,, then we can write

n
Py(x) =) a;(x —a) 8.1
j=0
for all x, where ag, ay,...,a, are constants and we take 0° = 1. We also assume

that the graph of f is smooth at @ in the sense that f(a), f'(a), ..., f " (a) exist
and are known. This may seem to be rather a strong requirement, but in fact it is
satisfied for every n > 0 by many important functions, such as e* and sin x at 0 and
log x at 1.

It is reasonable to expect that at a the approximation is exact and the derivatives
of P, and f are equal. In fact, we shall require that

PO (a) = fO(a)

for all integers k such that 0 < k < n.

© Springer Science+Business Media New York 2015 399
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We begin by deriving a formula for the coefficients of P,. By differentiating the
sides of Eq. (8.1) k times, where 0 < k < n, we obtain

POy = "a;j(j =1 —k+ Dx—a)™*
j=0

n ]' .
Y a L e ay
Z G0

n jt -
=aqk!+ Y aj———(x—a)
j=k+1 (=Kt

for all x. Therefore
F®a) = PP (a) = ark!,
and so

_ /%

a =
k k!

Substitution into Eq. (8.1) yields

n (
Pn(x) = Z f
=0

;)'(a) (x —a)’

for all x. This polynomial is called the Taylor polynomial of order n for f
about a.

Example 8.1.1. Find the Taylor polynomial of order 5 for cos x about 0.

Solution. Taking f(x) = cos x for all x and ¢ = 0, we have f(0) = 1. Moreover
f/(x) = —sinx

for all x, and so f”(0) = 0. Similarly, we find that @ (0) = —1, f¥(0) = 1, and
F@(0) = f®(0) = 0. Therefore

xz  x*

P =1-—=+ —.
5() LT
Notice that in this case the Taylor polynomial of order 5 is actually of degree 4
because the term in x° has a coefficient of 0. A
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We now prove Taylor’s theorem, which gives a means of estimating the error
incurred in using a Taylor polynomial as an approximation for the value of a function
at some number.

Theorem 8.1.1 (Taylor). Let a be a real number, n a nonnegative integer, and f a
function such that f"+V(x) exists for all x in some open interval I containing a.
Let P, be the Taylor polynomial of order n for [ about a. Then for each x € I —{a}
there exists a number & between a and x such that

A 3)

TES a)™.

f(x) = Py(x) =

Proof. Fix x € I — {a}, and for all ¢ € [ define

f(j.)'(l‘) (x — l)j

F@)y=/f(x) =)
=0/

f(j.)'(r) 1),

= f@) - fO-Y
=t

Since f"*T1(t) exists for all t € I, we infer that £/) must be continuous on I for
all j such that 0 < j < n. Hence F is continuous on the closed interval with ends
a and x and differentiable on the corresponding open interval. Note that

F(x) = f(x) = f(x) =0

and

() ;
f]j!(a)(x_a)l = f(x) = P,(x).

Fla)= f(x)=)_
j=0

Thus we need to show that

_ U@

ETEE (x—a)"™!

F(a)

for some £ between a and x.
Using the product rule, the chain rule, and the telescoping property, we obtain

n (J+D ()
Fiy=—f'0-Y (%(x i+ %j(x - r)f”(—l))
2\ |
, — (SUTD@) SO0 .
-0 (e - e 0)

Jj=1
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=~ (L
= B2 pung,
Now let
G(t) = (x—1

forall t € I. Then

8 Taylor Polynomials and Taylor Series

- f/(t))

)n+l

G'(t) =—(n+ D(x—1)"

for all such ¢. Note also that G(x) =

0 and that G'(t) # 0 for all t # x. By

Cauchy’s mean-value formula there exists £ between a and x such that

F'¢) _

F(a)— F(x) _

F(a)

G'(§)
Hence

F'(§)

Fa) =5e

Ga) —G(x)

G(a)

_ = E)" f(n+1)(§-)(x _a)n+1

—(n + D> —§)"

£ (E)
BCES)

as required.

As a consequence of this theorem we have

. FeteE)
Jx) = n+ 1)

Z f(f)(a) r—a) +

(x —

Py(x) + ——(x -

)n+l

)n—i-l

SUE)
(n+ 1)!

for all x € I — {a}. Note also that the value of £ depends on the choice of x. For

each x € I — {a} we define

R, (x) =

SUE)
(n+1)!

(8.2)



8.1 Taylor’s Theorem 403
Thus

R, (x) = f(x) — Pu(x)

for each such x. The function R, is called the Taylor remainder of degree 7.

Example 8.1.2. Use the Taylor polynomial of order 5 for cos x about 0 to obtain an
approximation for cos 0.1 and use Taylor’s theorem to show that the approximation
gives the first eight digits in the decimal expansion of cos 0.1 correctly.

Solution. From Example 8.1.1 we have

xz  x*

Ps(x)=1->" 4%
5(¥) 2 T

for all x. The required approximation for cos 0.1 is therefore
P5(0.1) = 0.9950041666. . ..

Since the sixth derivative of cosx is —cos x, Taylor’s theorem shows that there
exists a number £ between 0 and 0.1 such that

0.1)°
cos0.1 — P5(0.1) = %(— cos &) = —0.0000000013888 ... (cos §).

Since 0 < cos & < 1, we have
—0.0000000013888 ... < cos 0.1 — P5(0.1) < 0.

Hence
—0.0000000014 < cos 0.1 — P5(0.1) <0,
and so
P5(0.1) — 0.0000000014 < cos0.1 < P5(0.1).
We conclude that
0.99500416526. .. < cos 0.1 < 0.9950041666. ...

Thus P5(0.1) gives the first eight digits in the decimal expansion of cos 0.1 correctly
as 0.99500416. A

A function f is said to be smooth over an interval I if f® (x) exists for all
x € I and all nonnegative integers k. We write C °°(1) for the set of functions that
are smooth over /.
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Example 8.1.3. Let f € C°(I), where I is an open interval containing 1, and
suppose that (1) =0, f'(1) =1, f”(1) = 2, and

x2

e
14+ x

) =

for all x € I — {—1}. Write down the Taylor polynomial of order 3 for f about 1.
Suppose that this polynomial is used to approximate f(0.5). Find an upper bound
for the error and write down the approximate value of f(0.5).

Solution. The Taylor polynomial is

(x—1)°
3!

’ (X— )2 "
Py(x) = f()+ (x =D f()+ —— /") +

l "
2! £y

e(x —1)3

_ _ _ 2
= (=D + (= 1)+ =

The error incurred by the approximation is given by | R3(0.5)|. Now,

et (282 + 26— 1)

@ gy =
FO®) = e

where 0.5 < £ < 1, and since 2£2 + 2§ — 1 is increasing at all £ > 0.5, it follows
that

3e
@ =—e <4
FOOI< e =75 <
We thus have
&) 05—1* 4
|R3(0.5)] = /@] | < — < 0.011.

41 4124

The approximation given by P3(0.5) is

P5(0.5) = —0.5 + 0.25 —

0.125

with error less than 0.011. A

A common problem in the approximation of numbers or functions is to make
the approximation correct to within a specified error tolerance. If we use the Taylor
polynomial of order n about a point a to approximate a function f at a point x near
a, then the error depends on 7, the distance |x — a|, and the absolute values of the
derivatives of f between x and a. The next example illustrates the problem and a
solution strategy.
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Example 8.1.4. Let f(x) = log(x + 1) for all x > —1. What degree Taylor
polynomial about 0 is required to approximate log 1.1 with a maximum error of
0.001? What degree Taylor polynomial about 0 is required to approximate log 1.5
with the same maximum error?

Solution. Foralln > 1 and all £ > 0 we have

- _ (n—1)!
PO = e
< (m-0D

To approximate log 1.1, we note that x = 0.1 and

|f D (€)[(0.1)" !
(n + 1)!
n!

= T Do

B 1

C (n 4 D10+

|R,(0.1)] =

We thus seek a value of n such that
(n + 110"+ > 1000.

Evidently the preceding inequality is satisfied for n = 2 but not for n = 1. We
conclude that a Taylor polynomial of degree 2 suffices for the approximation.
To approximate log 1.5, we have

1
R, (0.5 R E——
| Vl( )| < (l’l + 1)2n+1

We seek a value of n such that
(n + 1)2"*! > 1000.
Forn =6,
7(27) = 896,
and forn =7,
8(2%) = 2048.

A Taylor polynomial of degree 7 thus suffices to make this approximation. A
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A function f € C°°(I) is said to have a zero of order k at a number a € [
if fU(a) =0forj =0,1,....k—1and f®(a) # 0. If f has a zero of order
k > 0 at a, then Taylor’s theorem implies that

(k) (k+1)
! k!(a) (r—a) + {k n 1()51) -

= (x —a)fF(x) (8.3)

fx) =

for all x € I — {a}, where £ is a number between a and x and

[P | fEEDE)
FoO ===+ =9

for all x € I. Thus
S (")(a)

F(a) = # 0.

Conversely, if f(x) is given by Eq. (8.3) forall x € I — {a} and F(a) # 0, then f
has a zero of order k at a.

Example 8.1.5. Let f(x) = sinx for all x and leta = 0. Then f(0) = sin0 = 0
and f'(0) = cos0 = 1. The function f thus has a zero of order 1 at 0. From the
definition of sin x we know that

( 1)]x2j+1

sinx = Z (2] T l)'

Z (- 1)Jx2/
(2] +1)!
= xF(x),
where
Z (- 1)1x2/
< (2j +1)!
for all x. Note that F(0) = 1 # 0. A

Taylor’s theorem provides an alternative perspective on I’Hopital’s rule. Suppose
that f and g are functions that are smooth over an interval / and have zeros of order
m > 0 and n > 0, respectively, at a number a € I. Let

EACY)

M=
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for all x € I — {a} for which g(x) # 0. Now, lim,_,, i(x) is of the indeterminate
form 0/0, and I’Hopital’s rule can be invoked to evaluate the limit, if it exists.
Equation (8.3), however, shows that the functions f and g can be expressed as

f(x)=(x—-a)"F(x)
and
g(x) = (x —a)"G(x),

where F and G are continuous functions such that

(m)
Fla) = S"(a) £0
m!
and
()
G(a) = §"a) £0.
n!
Thus
_ F(x)
h =x—a)""——=.
(0 = (=) s
Evidently
F(x) _F(a) _n!'f"™(a)
im = = #0.
x—=a G(x) G(a) m!lg®(a)
We thus have
lim J 0 ifm>n,
Jim A(x) = Q::))((Z)) if m = n.

If n > m, it s clear that |h(x)| — o0 as x — a.

In practice, this approach to evaluating limits is not notably shorter than using
I’Hopital’s rule. It does, however, indicate how many applications of 1’Hopital’s
rule are needed, and in the case where the Taylor polynomials are known, it can
prove a shorter calculation.

In determining the order of a zero it is useful to observe that if f and g are
smooth functions that have zeros of order m > 0 and n > 0, respectively, at a then
the function p = fg can be expressed as

p(x) = (x —a)" " F(x)G(x),
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where

f™@) g™ (a)
==

F(a)G(a) = ! o

#0;

consequently, p has a zero of order m 4 n at a.

Example 8.1.6. Evaluate

. xsin’x

lim ————.

x=>01—cosx
Solution. Let f(x) = xsin®x for all x and let g(x) = 1 — cos x for all x such
that cos x # 1. We know from Example 8.1.5 that sin x has a zero of order 1 at 0;
consequently sin® x has a zero of order 2 at 0 and therefore f has a zero of order 3
at 0. Now g(0) = 1 —cos0 = 0, g’(0) = sin0 = 0, and g”"(0) = cos0 = 1. The
function g thus has a zero of order 2 at 0. Since 3 > 2,

xsin® x

lim —— = 0.
x—>0 1 —cosx

Example 8.1.7. Evaluate

.o x(1—eY)
lim ———=.
x—>0 1 —cosx

Solution. Let f(x) = x(1 — e¥) for all x and let g(x) = 1 — cos x for all x for
which cos x # 1. It can be readily verified that 1 — e* has a zero of order 1 at 0,
and therefore f must have a zero of order 2 at 0. We know from Example 8.1.6
that g has a zero of order 2 at 0. In this case m = n = 2, so that the limit exists
and is nonzero. We also know that two applications of I’Hdpital’s rule are required
to evaluate this limit. The limit can also be found by using Taylor polynomials. In
detail,

o0

f(x) =x 1—2%

j=0""

o0 xj_l
=x 1—1—x—xZ 7
j=2

= x% (=1 +5(x))
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and
m=1-y E0
g(x) =
= @
( 1)1x2/—2
=1-1 + x2
Z 2))!
= x? 1 + t(x)
= 5 ,
where s and ¢ are functions such that lim,_os(x) = lim,_ot(x) = O.
Consequently
x(I=e) . x*(=1+5(x))

lim —= = lim —————= = -2,
x>0 1 —cosx  x—0 xz( + t(x))

A

If f has azero of order k > 0 at a, then Eq. (8.3) implies that, near a, the function
f behaves like (x — a)* F(a). For example, if k = 3 and @ = 0, then the graph of
f near 0 would be almost the same as that of x* F(0). Thus in a neighborhood of 0
the graph would look like the cubic curve y = Cx*, where C is a nonzero constant.
The local shape of a curve near a critical point provides a key insight into the nature
of the critical point. Recall that if a smooth function f has a relative extremum at
a, then f’(a) = 0. The nature of the critical point depends on the higher-order
derivatives at a. It is the first nonzero derivative at a that determines whether the
critical point corresponds to a relative extremum. Briefly, suppose g has a critical
point at a. Then a is a zero of f(x) = g(x) — g(a) of order k > 1. The graph of
f near a is nearly the same as that of C(x — a)*: If k is even, the critical point will
yield a local extremum; if k is odd, then the critical point cannot correspond to a
relative extremum. This simple observation is formalized in the next result.

Theorem 8.1.2. Let I be an open interval containing some number a, and let
n € N. Let f be a function such that f® is defined and continuous on I for each
positive integer k < n. Suppose that f®) (a) = 0 for all positive integers k < n but

£ (a) # 0.

1. If nis even and f"™(a) > 0, then f(a) is a relative minimum.
2. Ifnisevenand ™ (a) < 0, then f(a) is a relative maximum.
3. If n is odd, then f(a) is not a relative extremum.

Proof. Since f™(a) # 0and £ is continuous, we may choose I so that

0 f™ (@) >0
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for all x € I. Taylor’s theorem shows that for each fixed x € I — {a} there exists &
between x and a such that

f(x) = Pnfl(x) + Rnfl(x)

f (”)(E) n
= fla) + (x—a)".
Thus
@ f" @) > 0.
1. In this case ™ (£) > 0. Hence R,_;(x) > 0, so that f(x) > f(a).
2. The proof is similar in this case.

3. Since n is odd, (x — a)" has the same sign as x — a. Thus the sign of R,_;(x)
when x > a is different from its sign when x < a. Consequently f(a) is not a
relative extremum.

O

Example 8.1.8. Let
g(x) =14+ x(1 —cosx)
for all x. It is readily verified that g has a critical point at 0. Let

S(x) =g(x) —g(0) = x(1—cosx).

Since 1 — cos x has a zero of order 2 at 0, f has a zero of order 3 at 0. We conclude
that f, and therefore g, does not have a relative extremum at 0. A

Example 8.1.9. Let

g(x) =1+ xsinx — x> — x°

2 _ x5 forall x,

for all x. Then g has a critical point at 0. Here f(x) = xsinx — x
and the definition of sin x gives

o

f(x) = - —x +x°L(x),
where L is some smooth function. This expression shows that f has a zero of order
4 at 0 and so the critical point yields a relative extremum. Since g (0) = —4 < 0,
this extremum is a relative maximum. A

Exercises 8.1.
1. Let f(x) = e*/x¢ forall x > 0.

(a) Show that the only relative minimum of f is at e.
(b) Deduce that e™ > 7°.
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2. Use the Taylor polynomial of order 6 for sin x about O to obtain an approximate
value for sin 0.3 and then use Taylor’s theorem to prove that this approximation
gives the first seven digits in the decimal expansion of sin 0.3 correctly.

3. Use the Taylor polynomial of order 3 for log x about 1 to obtain an approximate
value for log 1.06 and then use Taylor’s theorem to prove that this approximation
gives the first four digits in the decimal expansion of log 1.06 correctly.

4. Suppose f is a function that satisfies f(0) = 1, f/(0) = 0, and

() +xf(x) =0

for all x € R. Find the Taylor polynomial of order 9 for f about 0. (The function
f is called an Airy function.)
5. Let f be a function such that f(1) =0, f/(1) =1, f”(1) = 2, and
2% log(x +2)
" _
) = ==
for all x > —2 satisfying x # —1.

(a) Write down the Taylor polynomial of order 3 for f about 1.
(b) Find upper bounds for the error if the Taylor polynomial of order 2 for f
about 1 is used to approximate f(1.2) and £(0.5).

8.2 Taylor Series

Let f be a function, in a real variable x, given by

o0
f) =Y aj(x—a) (8.4)
j=0
for all x in the interior of the interval of convergence. Thus
Yy - fYUa)
J ]'
for all j, as in Sect. 8.1, so that
X () )
=3 %(x ). (8.5)
j=0 7

The series on the right-hand side is called the Taylor series for f about a. When
a = 0, itis also called the Maclaurin series for /. Note that the Taylor series about
a is the only possible representation of f* as a power series with center a.
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One application of a Taylor series gives a proof of the binomial theorem. Recall

that
ny n!
J jln = v

where j and n are integers such that 0 < j < n.

Theorem 8.2.1. For every nonnegative integer n and every x and y,

(x+y)' = Z (j)xjy”_j.

j=0

Proof. For y = 0 we have

as required.
Suppose y = 1, and let

fx)=x+1)"

for all x. Then f is a polynomial of degree n, and so we may write

oo
x+1)'= Zajxj
=0

for some integers ao, ay, ..., where a; = 0 for all j > n. Therefore
_ f(j )(0)
aj = ] |

for each j. But for all j < n and all x we have

D yy — n—j
SO = Gk 0,

so that

Q) = "+
SO= G
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4 = n! _[n
T jim= G )

and substitution into the summation yields

o= (i)

j=0

Hence

as required.
In the general case with y # 0 we therefore have

x n
(x+y)" =y (; + 1)

- 2()6)

Taking x = y = 1 yields the following corollary.

Corollary 8.2.2. For every nonnegative integer n,

2(0)-

We now give an example of an infinitely differentiable function f whose Taylor
series converges but to a sum different from f.

Example 8.2.1. Let

flx)=e

for all x # 0, and let f(0) = 0. This function is known as Cauchy’s function. We
show that its Maclaurin series does not converge to f(x) for any x # 0.
First we prove that if n is a positive integer, then

/42

) e 1/x
lim
x—=0 X"

=0. (8.6)
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We start with the case where 7 is even. Suppose therefore that n = 2k, where k is a
positive integer. Then
el /x? 1

x2k

xn - el/X2

and

. . 2
lim — = lim e'/* = oco.
x—0 x2k x—0

Therefore we may apply 1’Hopital’s rule.
At this point we apply induction. For k = 1 we have

1 =2 1
lim - = lim —*— = lim — = 0.
x—0 el/x x—=0 =Zel/x x—0 el/x
X
Now assume that k > 1 and
1
. 2k—1)
lim *—— = 0.
x—0 el/x
Then
1 —2k 1
. 2k . K1 . 20—1)
lim == = lim =—= =k lim *—— =k -0=0,
x—0 el/x x—0 _—32e1/x x—>0 el/x
X

as required.
If n is odd, we may write n = 2k + 1, where k this time is a nonnegative integer.

We then have
li e 1i e 0-0=0
e T\ S ) T VYT

since 2k + 2 is even and positive. The proof of Eq. (8.6) is now complete.
Next we show by induction that for every x # 0 and every positive integer n we
have

n —1/x2
FOx) = e gu(x), (8.7)
where
m
A .
8n (X) = Z _j
="
for some positive integer m and constants Ay, A5, ..., A,,. For every x # 0 we have
fay=et X

x3°
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Thus f/(x) is of the required form, with m = 3, Ay = A, = 0, and 4; = 2.
Suppose that the desired result holds for 7. Note that

; 2 0 e
fON@) = ZeT g () + 7 g (x)
2 f 2
= W/x (an(x)—i—g;l(x)).

Since

’ _ - jAj
&n(x) = _Z N
j=1
it follows that
2 /
—8n(X) + g,(x)
X

- ij+3 _ij+1

j=1 j=1
m—+3 m+1 /.
_ Z 243 _ Z (J—DAj—
B xJ xJ
j=4 j=2
_ A 24 +’”Z“ 24j3 (G =DAjm1) | 24no | 24
x2xd X xJ 2 xmt3
i=
Hence
"\ B
(n+1) o —1/x? P
fotx) =e X; 5
i=

where r = m + 3, By =0, B, = —Ay, Bs = =245, Bjyy2 = 2Am—1, Bu+s =
2A4,,, and

Bj =24; 3—(j — DA~

for all integers j such that 4 < j < m 4 1. The proof that £ (x) is of the desired
form is now complete.
Now we prove by induction that £ (0) = 0 for all positive integers 7. First

—1/x2
fim 9 _ i €
x—>0 X x—0 X

70 = tig 10O _
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by Eq. (8.6). Suppose that f)(0) = 0 for some positive integer r. Then, using

Eq. (8.7), for some positive integer m and constants A, Az, ..., A, we have
") (x
f(r+1)(o) — lim w
x—0 X
m
A

1 —1/x2 J

- il_r)r})e Z xJ+1
j=1

=0,

by Eq. (8.6).

We have now completed the proof that f(0) = 0 for all positive integers 7. We
deduce that the Maclaurin series for f converges to 0 regardless of the value of x.
Since f(x) # 0 for all x # 0, it follows that the Maclaurin series for f converges
to f(x) only when x = 0.

It is shown in complex analysis that functions that can be represented by a Taylor
series about a given point are precisely those that are differentiable throughout some
neighborhood of that point. If we consider the function f of this example as a
function in the complex plane, then it is not differentiable at 0. Indeed it is not even
continuous at 0: If we take

_1
n/i

for all n > 0, then {z,} converges to 0, but the sequence { f(z,)} does not converge
to £(0) = 0 since |e_1/22| = |e_i”2| =1. A

Zn

Exercises 8.2.

1. Let f be a function such that £ (x) exists for all nonnegative integers n and for
all x in an open interval / containing a number a. Show that if there is a number
M such that | £ (x)| < M for all n and for all x € I, then f is representable
by a Taylor series about a.

2. Find the Maclaurin series for (1 4+ x)* for each « € R and give its radius of
convergence.

8.3 Some Shortcuts for Computing Taylor Series

If a function f has a Taylor series about a number a, then the coefficients of the
series can be determined by evaluating the derivatives of f at a. Finding these
derivatives, however, can prove tedious and awkward. In this section we look at
some shortcuts when the functions involved are closely related to known Taylor
series.
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If f has a Taylor series about a, then the series is unique. If we can establish by
any means that a power series of the correct form represents f in a neighborhood
of a, then the power series must be the Taylor series. Often simple substitutions,
algebraic identities, differentiation, or integration can be used to facilitate the
computation of a Taylor series. The examples that follow illustrate how this is done.

Example 8.3.1. Find the Maclaurin series for cos x*.

Solution. For each w € R the definition of cos w gives

w2 owt o wd

cosw=1—2—!+4—!—a+---

Let w = x*. Then

42 44 N
O € 50 S € 20 M €9
sy =l T T e T
B X8 )C16 X24
ST tw e
o 8
X
— (-1)/ A
; 2j)!

Example 8.3.2. Find the Taylor series for e* about 1.

Solution. Forallw € R,

W2 1/1)3
€= 1w o S

Letw = x — 1. Then

12 _1\3
PRCER s

x—1 __ _
e =1+6-D 2! 3! ’

and hence

N
I

12 13
x e(l—l—(x—l)—f-(xz!l) L& 3!1) +)

rI‘i
|‘M
=

Example 8.3.3. Find the Taylor series for 1/x about 2.
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Solution. For all x # 0 we have

1 1

1
X 24x-2 21—ty

Now for all w such that |w| < 1,

1
—— =l wtw w4

1—w

hence for all x such that

|x — 2]
<1,
2
we have
1 1 x—=2 (x=22 (x-=2)°
—=—_(1= _ ..
X 2( 2 + 22 23 +
0o .
(-1)/
_22/+l (x —2)/

Example 8.3.4. Find the Maclaurin series for

x
(14 x)%

Solution. For all w such that |w| < 1 we have
1 [o9)

- J

1l—w ZW ’
j=0

and since power series can be differentiated term by term,

1
.-
E ]W] =
= (1 —W)2

Let w = —x. Then
o0

1 -
= YT
(1+x) e
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so that

(=

j=l1
Example 8.3.5. Find the Maclaurin series for
log(1 + x?).
Solution. The Maclaurin series can be readily obtained from the Maclaurin series
for log(1 + w). We derive the series from the geometric series to illustrate the use

of integration.
Integration by substitution yields

X9
dt = log(1 + x>
[

and for each x such that |x| < 1, a simple substitution in the geometric series gives

oo
=3 1y,
j=0

so that

o0
X o
2j+1
> =2§ (=1 x¥ ™
Jj=0
We know that power series can be integrated term by term within the interval of

convergence. We thus have

2t
1+ ¢2

© X
= 22/ (—=1)/ 12+ gy
j=0"0

o (=1 y2+2
Jj+2

log(1 + x?) = / dt
0

2

\S]

0

j=
i( 1/ w2+2.
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Example 8.3.6. Find the Maclaurin series for cos? x.

Solution. We know the Maclaurin series for cosx, but it is clear that simply
squaring this series involves a multiplication of infinite series that in itself can prove
awkward. Instead, we exploit the trigonometric identity

2 1 + cos2x
Ccos“ X = —

The Maclaurin series for cos 2x can be derived by a simple substitution; hence

(—
cos2x =
Z oh
We thus have

GV (—1)722-!
SERER M b A

Exercises 8.3.

1. Use the geometric series to determine the Taylor series for the following
functions about the indicated point a:
(a) ﬁ, a=-—1; (c) arctanx, a=0;

1 —1- 1 —
(b) eI a=1; (d) 103 a=0.

2. Use the Maclaurin series for sinx and cos x along with trigonometric identities
to determine the Taylor series for the following functions about a:

(a) sinx sin2x, a=0; (¢c) cosx, a=

.
R
(b) H%, a=0; (d) cosxsinx, a

=0.

(O8]

. Show that x'/3 is representable by a Taylor series about 1 in the interval (0, 2).

. Show that cos x is representable by a Taylor series about any real number.

5. Let f(x) = (sinx)/x for all x # 0 and let f(0) = 1. Estimate fol f by using
five terms of the Maclaurin series for f, and find an upper bound for the error.

6. For the following functions f, find the Maclaurin series for fox f(t) dt and give

the intervals of convergence:

N

(a) sint?;

(b) e

7. Find the Maclaurin series for sinhx and coshx and give the intervals of
convergence.
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8. Find the Maclaurin series for sin* x by expressing the function in terms of sin kx
and cos kx, where k € Z.
9. Let

F(x) = /axt’dt.

Show that
F"(x) = (1 +logx)F'(x).
Use this result to obtain the Taylor expansion
(x—1)+%(x—1)2+%(x—1)3+é(x—1)4+...

for F about 1.



Chapter 9
The Fixed-Point Problem

9.1 The Fixed-Point Problem

The theory of sequences finds many applications in the study of numerical
techniques for solving equations, since many numerical methods involve the
construction of a sequence of successively better approximations for the desired
solution. In this chapter we show how analysis can help in the study of a numerical
approximation technique for solving nonlinear equations. The work in this chapter
is to a large extent based on the lecture notes of Michael Carter.

Suppose we are given a nonlinear equation, such as

3x? —3x +1=0. ©.1)
Such an equation can always be written in the form
x = g(x)
for some function g. For example, Eq. (9.1) can be rewritten as
x=3x*-2x+1 9.2)
or

3x3 + 1
X =—,
3
and there are many other possibilities.
A number x satisfying the equation x = g(x) is called a fixed point of the
function g because an application of g to x leaves x unchanged. For instance, the

© Springer Science+Business Media New York 2015 423
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_9
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function given by x? for all x has the two fixed points 0 and 1. Evidently if we can
find a good technique for determining the fixed points of a function, then we will
have a good technique for solving equations, for if an equation is written in the form
x = g(x), then its solutions are precisely the fixed points of g.

9.2 Existence of Fixed Points

The first question to be considered is whether a given function has any fixed points
at all. Once we have that information, we can consider how the fixed points may
be found. We can gain considerable insight by looking at the problem graphically,
because a fixed point of a function g is simply a value of the argument x at which
the graph of g intersects the line y = x (see Fig.9.1).

Clearly, a function need not have a fixed point. The exponential function, whose
graph is drawn in Fig. 9.2, is an example of a function with no fixed point.

The next theorem establishes a useful set of conditions under which we can be
sure that a given function has a fixed point.

Theorem 9.2.1. Let a and b be real numbers with a < b. Let g be a function such
that g(a) > a and g(b) < b and g is continuous on [a, b]. Then g has a fixed point
in [a, b].

y =X

gx)=Xof - = — = — — -

=
4
=

| X2
~ - qg(x1)/= X

y=2gKx)

Fig. 9.1 Graph of a function g with two fixed points
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Fig. 9.2 The exponential VA
function has no fixed points y=eX
y=x
1
__//
> X

Proof. Define

h(x) = x — g(x)

for all x € [a,b]. If either h(a) = 0 or h(b) = 0, then a or b, respectively, is
a fixed point of g. We may suppose, therefore, that g(a) > a and g(b) < b and
consequently that i(a) < 0 < h(b). Then the intermediate-value theorem shows
that there is a number & € (a, b) such that 2(§) = 0. Thus £ is a fixed pointof g. O

Under the conditions of Theorem 9.2.1 the function g may have many fixed
points, for its graph may touch the line y = x several times. It is often important
to know that g has only one fixed point in a particular interval. Geometric intuition
suggests that this will be the case if g(x) does not vary too rapidly as x changes, for
then the graph of g will not oscillate rapidly enough to cross the line y = x more
than once. It therefore seems that one way of guaranteeing uniqueness of the fixed
point in a particular interval is to restrict the size of g’. The next theorem makes this
idea precise.

Theorem 9.2.2. If a function g satisfies the hypotheses of Theorem 9.2.1 and in
addition |g'(x)| < 1 for all x € (a,b), then g has a unique fixed point in [a, b].

Proof. The existence of a fixed point of g in [a, b] follows from Theorem 9.2.1.
Suppose that x; and x, are fixed points of g in [a, b] such that x; < x;. By the
mean-value theorem applied to the interval [x;, x;], there exists & € (x1, x3) such
that

g(x2) — g(x1)
X2 — X1 ’

g =

As x; and x; are fixed points, it follows that g’(§) = 1, despite the hypothesis
that |g’(x)| < 1 for all x € (a, b). This contradiction shows that the fixed point in
question is indeed unique. O
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9.3 Fixed-Point Iteration

We suppose now that we are given a function g and we wish to find, as accurately
as may be required, the fixed points of g. The method we shall use is called fixed-
point iteration. It involves making an initial guess, x( say, and then constructing
a sequence {x,} of successive approximations for the desired fixed point, using the
formula

Xpt1 = g(xp)

for all nonnegative integers n. The process is illustrated graphically in Fig. 9.3.

If the sequence {x,} so constructed converges to some number s and g is
continuous, then it is easily seen that s is a fixed point of g. Indeed, since x,, — s
as n — oo and g is continuous, it follows that g(x,) — g(s). Therefore, taking
limits on both sides of the equation x,+; = g(x,) yields s = g(s), as required.
However, the sequence {x,} need not converge. The following example illustrates
this and other difficulties.

Example 9.3.1. Suppose we wish to solve Eq. (9.1) given at the beginning of this
chapter. First we sketch the graph of the function on the left-hand side of the
equation. For instance, if we draw the graph of 3x* — 3x and move it one unit
up, then Fig. 9.4 makes it appear that there are solutions near —1.1, 0.4, and 0.7.

Now let us try to solve the equation by writing it in the form (9.2) and looking
for the fixed points of the corresponding function given by

gx) =3x"—2x +1
for all x. We show graphically in Fig. 9.5 the fates of seven iterations that start with

initial guesses near one of the three values obtained above.
The following facts should be clear from the figure.

y y
y=x )= x
y=g(x)

glxg)=x)f oo 8(Xo) =Xy | C /
g(xp)=x3F------ - gxg) =Xy f=mmmmm -
gx)= X = === -~ V4R n E

1 " = [

N y=g) b

1 oy 1 h 1

1 L ! 1

[ [

[ |: 1

I o

X0 X3 8 X3X| X S\Xz X1 X0 X

fixed point of g fixed point of g

Fig. 9.3 Illustration of fixed-point iteration
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Fig. 9.4 Graph of 3
33 —3x +1 y=3x" = 3x+l

1. No iteration can converge to the fixed points located near —1.1 and 0.7.

2. Iterations such as 3—5, which start close enough to the remaining fixed point, will
converge to that fixed point. The value obtained for the fixed point by this means
is 0.3949 (correct to four decimal places). A closer study of the graph shows that
in order for an iteration to converge to this fixed point, the initial guess must lie
in the interval [0.14, 0.74], approximately. Even then, the convergence is so slow
that it takes many steps of an iteration to get a good approximation for the fixed
point.

3. Some iterations that start near —1.1, such as iteration 7, which might be expected
to diverge like iteration 2, actually converge to 0.3949...because the third term
in the iteration falls in the interval [0.14,0.74] referred to in (2), instead of
overshooting or undershooting it. The figure shows how this happens. N

It is clear from this example that trying to solve Eq. (9.1) by applying fixed-point
iteration to version (9.2) is an approach whose value is very limited. Only one of the
three solutions can be found this way, and that at the cost of considerable calculation
because of the slow convergence of the iterations. Furthermore, the interval within
which the initial guess must be placed in order for us to be sure the iterations will
converge is not large. It would be helpful to know what sorts of conditions the
function g must satisfy if the fixed-point iterations are to converge and to have a
better understanding of what governs the rate of convergence of the iterations. The
next theorem deals with these questions. As well as giving conditions under which
a fixed-point iteration will converge to a fixed point of g, it also gives a bound on
the error incurred by stopping the iterations after a given number of steps.

Theorem 9.3.1. Suppose the function g satisfies the following conditions:

1. g is continuous on the closed interval [a, b];
2. a<g(x)<bforall x € |a,b]; and
3. there is a number L < 1 such that |g'(x)| < L for all x € (a, b).
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Q |®

Fig. 9.5 Tterations for fixed points of 3x3 — 2x + 1

Then

1. for any initial value xoy € [a,b], the sequence {x,} defined by x,+1 = g(x,)
for each n > 0 converges to a number s, which is the unique fixed point of g in
la, b]; and

2. the error e, = s — X, satisfies

n

1-L

len| < |x1 — xo

foreachn € N.
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Proof.

1. Taking x = a and x = b in hypothesis (2) gives g(a) > a and g(b) < b, respec-
tively, so that g satisfies the hypotheses of Theorem 9.2.1. By hypothesis (3), g
also satisfies the conditions of Theorem 9.2.2, and so we know that g has exactly
one fixed point s in [a, b]. Choose any x¢ € [a, b], and let the sequence {x,} be
defined by

Xn+1 = g(xn)

for each n > 0. Then, by hypothesis (2), x, € [a,b] for all n. We may also
assume that x, # s for all n. The mean-value theorem shows that for every
positive integer n there is a number &, between x,—; and s such that

_g(xp—1) — g(s)
- Xn—1—8§ .

g'(n)
Thus
Xp =5 =g (&) (Xn—1 = 9),
so that
|x, —s| < L|xy—1 —s
by hypothesis (3). In particular,
|x1 —s|] < L|xo—s],
and if
X — 5| < L¥|xo — 5]
for some k > 0, then
|xke1 —s| < Llxg —s| < ¥ xo — s].
Consequently
|Xa — 5] < L"[xo — 5]
for all n € N, by induction. Since 0 < L < 1, we have

lim L" =0,

n—00
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and so
lim |x, —s| =0.
n—>o0

It follows that

lim x, = s,
n—>oo
as required.
2. We may assume that x, # x,—; foralln € N, as x, = s otherwise. By the
mean-value theorem, for every positive integer n there is a number £, between
X,—1 and x,, such that

g(xn) — g(xn—1)
Xn — Xn—1

g'E) =
Arguing as in the proof of (1), we obtain
[Xn+1 = x| = 18" (n) (xn — Xu—1)] < LIxy = xp1].
We conclude by induction that
|Xn41 — xn| < L"x1 — Xof
foralln € N.
Now fix n and let m be an integer such that m > n. Using the telescoping

property, we have

m—1

X = Xa| =D (xjp1 —x))
j=n

m—1
Z|xj+l — X

Jj=n

IA

m—1

X1 —x0| ZLj

j=n

IA

m—1

n—1
sl [T -0
j=0 j=0

1-L" 1-L"
=|x1—x0|(1_L - l—L)
L"—L"

1-L

=[x — X0
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since 0 < L < 1. Now lim,;, 0 X, = §, as proved in part (1), and so

n

len| = |s —xu| < 1—L

|x1 —Xo|,

as required. O

Example 9.3.2. Let us return to Eq. (9.1) discussed in the previous example, but
this time we shall write it in the form

3x —1\"? 1\'"?
X = = X — —
3 3

and look for fixed points of the function g given by

1/3
¢(x) = (x - é)

for all x, using the information provided by Theorem 9.3.1. In order to apply the
theorem we need to know for what values of x we have |g’(x)| < 1, and so we first

sketch the graph of
1 1\"2/3
4 —_ - —_—
g'x) = 3 (x 3) .

This graph is given in Fig. 9.6.

We can see from the graph that |g'(x)| < 1if x < 0.1409...or x > 0.5258....
Now we must look at the graph of g to find suitable intervals [a, b] satisfying
the condition that ¢ < g(x) < b for all x € [a, b] as well as the condition that
lg’(x)| < L for some L < 1 and all x € [a, b]. We can recognize intervals [a, b]

N ey

Y

Fig. 9.6 Graph of (1/3)(x —1/3)7%/3
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Fig. 9.7 Aninterval [a, b] y A
wherea < g(x) <b y=Xx
bl--
Ly =g(x)
al — —
I I
I I
: ! > X
a b
yﬂ
= (x- L3 y=x
y=r-3
0.8} - -
0.6 - -

|
-13-1 '

I
I

; 1 > X

| 0.60.8

I

I

| fixed point at x = (0.3949...

I

already known

S |

_____ 13

Fig. 9.8 Graph of (x — 1/3)!/3

where a < g(x) < b for all x € [a, b] by noting that in such a case the graph of g
on the interval [a, b] must lie entirely within the square box shown in Fig.9.7. The
graph of g is drawn in Fig. 9.8.

It is clear that the fixed point 0.3949 ... obtained by the method of the previous
example lies in a region of the graph where g’(x) > 1, so that Theorem 9.3.1 cannot
be applied to locate that fixed point in the present case. In fact, graphical analysis or
numerical experimentation indicates that in the present case no fixed-point iteration
will converge to the fixed point 0.3949 ..., and so that fixed point cannot be located
by the present method. In fact, iterations started just above 0.3949 . .. will converge
to the fixed point near 0.7, while those started just below 0.3949 ... will converge to
the fixed point near —1.1. However, both the fixed point near —1.1 and that near 0.7
can be enclosed in intervals on which Theorem 9.3.1 may be applied, for example,
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the intervals [—1.3, —1] and [0.6, 0.8], as shown. Analysis of the graph of g’ shows
that |g'(x)| < 0.276forall x € [-1.3,—1] and |g’(x)| < 0.805 forall x € [0.6,0.8],
so that we may apply Theorem 9.3.1 on these intervals with L = 0.276 and L =
0.805, respectively. This method therefore locates the two solutions of Eq. (9.1) not
found by the method of Example 9.3.1. By combining the two methods, we can say
that, correct to four decimal places, the solutions of Eq. (9.1) are —1.1372, 0.3949,
and 0.7422. A

Considering the amount of work involved in obtaining the solutions in this
example, one cannot help feeling that there must be an easier way. One point that
will be noticed is the relatively rapid convergence of the iterations in the interval
[—1.3, —1]. Note that |g’(x)| is smaller in this interval, so that L is smaller and
therefore L” tends to O relatively fast as n — oo. Thus the error bound given
by Theorem 9.3.1 will also tend to O relatively quickly. This observation suggests
more rapid convergence of the iterations than in the case of iterations in the interval
[0.6, 0.8]. Thus one way of speeding up the process might be to seek functions g for
which |g’(x)| is very small near a fixed point of g. This idea is the reason for the
success of the following method.

Suppose we are given the nonlinear equation f(x) = 0 for all x, and we wish to
write it in the form x = g(x) in order to apply fixed-point iteration. One approach
is to write f(x) = 0 in the equivalent form

J(x)h(x) =0,

where £ is any differentiable function with the property that the equation z(x) = 0
has no real solutions, so that f(x) = 0 if and only if f(x)A(x) = 0. Then we can
rewrite f(x) = 0asx = x + f(x)h(x), so that

g(x) =x+ f(x)h(x)

for all x.

Now let s be a fixed point of g, that is, a solution of f(x) = 0. In view of our
previous discussion, we should like |g’(x)| to be small when x is near s. If, in fact,
g’'(s) = 0, then as long as g’ is continuous, we can be sure that |g’(x)| will be small
if x is close enough to s. Now

g'(x) =1+ f()h'(x) + h(x) f'(x)

for all x, and since f(s) = O this equation gives

g'(s) =1+ h(s)f'(s).
Therefore g’(s) = 0if f'(s) # 0and h(s) = —1/f"(s). Thus we define

1

"=
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for all x such that f/(x) # 0, for then the value of s does not need to be known. In
other words, we write the equation f(x) = 0 in the equivalent form

IO )

f'(x)
and then use fixed-point iteration. This procedure is called Newton’s method. If
the fixed-point iteration starts close enough to a solution of f(x) = 0, then L

in Theorem 9.3.1 will be small and so the iteration will converge rapidly to the
desired solution. Difficulties arise in certain cases, most obviously if f’/(s) = 0,
but Newton’s method is very useful in cases where f’(x) is easily calculated and a
reasonably good initial guess at the solutions can be made.

Example 9.3.3. Newton’s method applied to Eq. (9.1) requires the equation to be
rewritten in the form

3x¥—3x +1
X=X———"
9x2 -3
for all x such that 9x> # 3. Applying fixed-point iteration with starting values
near the solutions guessed at the beginning of Example 9.3.1 leads to iterations that
converge relatively rapidly compared with those in the previous examples. A

Exercises 9.1.

1. Let g(x) = x? for all x. From a graph similar to that used to trace the fates
of fixed-point iterations in Example 9.3.1, determine for what values of x( the
sequence {x,}, defined by x,+; = g(x,) for all nonnegative integers n, will
converge to a fixed point of g and for what values of x it will diverge.

2. Suppose Eq. (9.1) discussed in Examples 9.3.1-9.3.3 is rewritten as x = (3x3 4
1)/3. Putting g(x) = (3x3+1)/3 for all x, sketch the graphs of g and g’ and use
the approach illustrated in Example 9.3.2 to find suitable intervals within which
Theorem 9.3.1 can be applied to locate fixed points. Use fixed-point iterations,
starting at each end of the intervals you have found, to locate the corresponding
fixed points correct to four decimal places. If there are any fixed points that
cannot be located in this way, use the graph of g to describe what will happen to
iterations that start near these fixed points.

3. Do the same as for the previous exercise but for the function g given by

3x—1

glx) = i

for all x # 0. Note that in investigating the graph of g’ it is not necessary to find
exactly the values of x for which g’(x) = =1; just locate these values roughly
by calculating a few values of g’(x) on either side of the apparent location of
these values of x.
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4. Show that Newton’s method applied to the equation x> = ¢, where ¢ > 0, leads
to the fixed-point problem

x> +c
2x

’

and use graphical methods to show that Theorem 9.3.1 can be applied on the
interval [3+/c, 5+/c] to locate the fixed point \/c. Find the smallest poss1bl§:

value of L for this interval. In the case ¢ = 2, use the fact that | < +/2 < 5

to show that 1 lies in the interval [%«/5 i«/5] and hence locate +/2 correct
to six decimal places by fixed-point iteration. Calculate, for each step in the
iteration, the size of the actual error and the theoretical bound on the error given
by Theorem 9.3.1.

5. For the fixed-point problem x = cos x for all x, use graphical methods to show
that Theorem 9.3.1 can be applied on the interval [0, 1]. If your calculator can
evaluate trigonometric functions, use the initial value x, = 0.5 and locate the
fixed point correct to four decimal places. Also, solve the equation by Newton’s
method with the same initial value and note the rapid convergence in this case.

6. Suppose

Jx) =& —=r)x—ry)-(x—ry)

for all x, where m > 2 and r; < r, < ... < ry. Then f is a polynomial
of degree m with the coefficient of x™ equal to 1, and the equation f(x) = 0
has only real solutions, none of which exceeds the solution r,,. Let {x,} be a
sequence produced by Newton’s method applied to the equation f(x) = 0.

(a) Explain why f(x) > O for all x > r,,, and show by direct differentiation
that f/(x) > Oand f”(x) > O for all x > r,,.

(b) Suppose that x; > r, for some integer k > 0. Show that x;4+; < xi. By
using the mean-value theorem applied to f on the interval [r,, xi], show
also that f(xy) < (xx — rp) f'(xx) and deduce that x; — xp4+1 < Xk — I'm
and hence that x5 > 7.

(c) From (b) it follows that if xo > r,, then the sequence {x,} is a decreasing
sequence bounded below by r,,. Hence the sequence {x,} converges to a
limit s > r,,. Prove that in fact s = r,,. Illustrate this conclusion for the
function given by

f() = (x+ 1D’ (x - 2),

for all x, by taking xo = 3, xop = 10, and xo = 30 and carrying out the
iterations correct to four decimal places.

(d) In some cases the convergence of the sequence {x,} may be exceedingly
slow. For example, if f(x) = (x — s)" for all x, show that

(=)=
Xpp1 = (1= = xp + —
m m
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for all n € N, and deduce that

§— Xpp1 = (1 - l) (s — xn).
m

[Thus if m is large, so that 1 — 1/m is close to 1, then the decrease in the
error at each step of the iteration is slight. For example, if m = 100, then
en+1 = 99¢,/100. Note that this is a case where f’(s) = 0, since m > 2,
and so we might expect that Newton’s method could run into difficulties.]



Chapter 10
Sequences of Functions

10.1 Introduction

The representation of a function as the limit of a sequence or, equivalently, an
infinite series is central to many topics in advanced analysis. In this chapter we
concentrate on sequences of functions and certain properties of limits that can be
gleaned from properties of the sequence terms. We begin with an application that
not only motivates the study of sequences of functions, but also highlights some key
questions regarding limits.

A first-order ordinary differential equation for a function y is an equation of the
form

Vv = f(x,y). 10.1)

where f is a given function of a variable x and y. The equation is usually
supplemented with an initial condition

y(a) =c, (10.2)

where a and ¢ are given numbers. The initial-value problem consists of determin-
ing a function y that satisfies Egs. (10.1) and (10.2) for all x in some open interval
that contains a.

We gloss over the fundamental questions of the existence and uniqueness of
solutions to initial-value problems. It turns out that for most choices of f the
problem cannot be solved explicitly. Nonetheless, it can be shown, for example,
that if f is differentiable in a neighborhood of (a, ¢) with respect to x and y, then
the initial-value problem has a unique solution. The proof of this result requires
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the use of a sequence of functions, and the solution is the limit of this sequence.
Picard proved this result by the method of successive approximations. Specifically,
the problem can be recast as an integral equation

Y =+ [ FE Y (®) dE,

and this formulation motivates the sequence defined by

yo(x) = ¢

and

) =+ [ C P ) de

for all nonnegative integers n. It is then shown that {y,(x)} converges to a limit
y(x) that solves the initial-value problem. The result is local in character: To
ensure convergence of the sequence, x is usually restricted to a small open interval
containing a.

Convergence questions aside, the claim that the limit is the solution of the
differential equation brings to the fore certain questions concerning the properties of
the function that is the limit of the sequence. The problem is that more than one limit
process is involved, and the order in which these limits are taken must be changed.
To prove that the function defined by

y(x) = lim y,(x)
n—>oo

is a solution to the integral equation, we need to justify the following calculation:

Jim 3,0 =+ fim [ 7€ ©)ds

e+ [ lim @) dt

e+ [ 1 tim voe de

o+ | " fE v (®) de.

In this calculation, the sequence limit migrates from outside the integral to inside
the integrand. There are two limits involved in this manipulation: the limit defining
y and the limit defining the integral. The problem in the second line is that we
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must change the order in which the sequence limit and the integral limit are taken.
Intuitive as the calculation seems, it turns out that changing the order of these limits
is not always valid.

Indeed, there is a third limit process in the background that stems from the
continuity of f and the functions y,. Given that f is differentiable with respect to
x and y in some neighborhood A of (a, ¢), a fortiori f is continuous with respect
to y (and x) for each (x, y) € N. Certainly, if {w,} is a sequence of numbers such
that (x, w,) € A and lim, o, w, = y, then the definition of continuity implies that

nli)rgo flx,wy) = f(X,nl_i)rgloWn) = f(x,y).

The sequence {y,} consists of functions continuous near a, but is the limit function
¥ continuous near a? For that matter, if y is not continuous, is f(x, y(x)) integrable
with respect to x in some neighborhood of a?

Suppose that the problems with the calculation above are resolved. The function
y thus represents the solution to the integral equation. The original problem,
however, involved a differential equation. The integral equation is well defined for
every continuous function y; the differential equation requires y to be differentiable
near a. It is clear from the definition of the sequence that each y, is differentiable,
but is the limit y differentiable?

The initial-value problem highlights the need to examine conditions under which
the order of certain limiting processes can be changed. On a more fundamental
level it also raises questions as to whether properties of the sequence terms, such as
continuity and differentiability, are preserved in the limit.

Let / C R be an interval and suppose the sequence { f,(x)} converges to f(x)
for all x € I. We have, in summary, the following questions concerning limits of
sequences of functions.

1. If f, is continuous on [ for all n, is f continuous on [/ ?
2. If f, is integrable on [ for all n, is f integrable on I ? If so, is

b b
/ lim f,(x)dx = lim / fn(x)dx,
a n—>o0 n—>oo a

where I = [a, b]?
3. If f, is differentiable on [ for all n, is f differentiable on I ? If so, is

/
(tim £) = lim £
n—o0 n
In this chapter we develop conditions under which the order of limit processes can
be changed. We end this section with a few simple examples to illustrate that, in
general, the order of these processes cannot be changed.
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Example 10.1.1 (Continuity). Let { f,} be the sequence defined by

Ja(x) =

1+ nx?

for all n and all x € [—1, 1]. For every n, f, is continuous on [—1, 1]. If x # 0, then
it is plain that f,(x) — 0 asn — oo; however, f,(0) = 1 for all n and consequently
f2(0) — 1 as n — oo. The limit of the sequence is thus given by

0ifx € [-1,1] — {0}

f(x)={1ifx:0;

hence f is not continuous on [—1, 1]. Note that

lim(lin;ofn(x)> =0# lim (ng})fn(x)) = 1.

x—0

Example 10.1.2 (Differentiation). Let { f,} be the sequence defined by

X

Ja(x) = m

for all n and all x € [0, 1]. Then
f(x) = lim f,(x) =0
n—od

for all x € [0, 1], so that f/(x) = O for all such x. However,

1 — nx?
/ —_—
I = e
so that
lifx =0
]- / — ’
nl>ngo Jn(¥) % 0 otherwise.
Hence

s 0% (i, 00)

when x = 0. A
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Example 10.1.3 (Differentiation). Let { f,} be the sequence defined by

sin nx

Ja(x) =

n

foralln € Nand x € R. Now, |sinnx| < 1; consequently f,(x) — 0asn — oo
for all x € R.

For every n € N we see that f, is differentiable on R. The limit f = 0 is also a
differentiable function on R. The derivative of f,, however, is defined by

f/(x) = cosnx,

so that the sequence { f,'} converges only for special values of x such as 0 and 2z
and diverges for most x € R. A

Example 10.1.4 (Integration). Let { f,} be the sequence defined by
fulx) = 2nxe ™™

for all n and all x € [0, 1]. For each x € [0, 1], f,(x) — 0 as n — o0o; hence

1 1
/ lim f,l(x)dxzf 0dx = 0.
0 n—>0o0 0
On the other hand,
1
/ fix)dx=1—e",
0

so that

lim /lfn(x)dx: 1 ;é/l lim f,(x)dx=0.
n—o0 0 0 n—o00

10.2 Uniform Convergence

The examples in the previous section show that the order in which limits are taken is
important. We thus seek sufficient conditions under which this order can be changed.
In this section we present the key concept of uniform convergence. In the next
section we show that the order of limits for sequences that converge uniformly can
be changed.
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Let I be a set of real numbers and let { f,} be a sequence of functions defined
on [. Suppose that for each x € I the sequence { f,,(x)} converges to f(x). For all
x € I, the definition of convergence implies that for every ¢ > 0 there is an integer
N such that

| fu(x) — f(O)] <&

whenever n > N. The value of N, in general, depends not only on the choice of ¢
but also on x. Suppose that we consider two distinct values x; and x, in /. Since
{f:(x1)} and { f,,(x2)} are convergent sequences, for every ¢ > 0 there exist integers
N(e, x1) and N (g, x;) such that

| fa(x1) = f(x)] <e (10.3)

whenever n > N(g, x1) and

| fn(x2) = f(x2)] <& (10.4)

whenever n > N(g, x,). Integers N(g, x1) and N(e, x;) are not necessarily equal,
but we could use N = max{N(e, x1), N(&, x2)} to ensure that inequalities (10.3)
and (10.4) are satisfied for all n > N. Evidently, for any finite number of points
X1, X2,...,x; in I we can always choose N so thatif n > N, then

[ fo(xk) — f(xp)] < €

foreach k € {1,2,..., j}. Itis not clear, however, that we can find an N such that,
forall x € I,

| fo(x) = f(x)] <&

whenever n > N. Generically, it is not possible to find such an N, and this situation
leads to the concept of uniform convergence.

Let { f,} be a sequence of functions defined on a set / C R. The sequence is
said to converge uniformly to the function f on [ if for each ¢ > 0 there exists
an integer N, which may depend on ¢ but not on any particular x € I, such that if
n > N, then

[fo(x) = f(X)] <e (10.5)

for all x € I. Clearly, ¢ in inequality (10.5) may be replaced by ce for any constant
¢ > 0. In applications we usually take I to be a closed interval. We always assume
it to be nonempty.

Note that if there exists a function f such that f,(x) = f(x) foreach x € I and
each n, then the sequence { f,,} converges uniformly to f on /.
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Suppose that f,(x) = a, for each x € I and each n, and that the sequence {a,}
converges to L. Choose ¢ > 0. There exists N such that

| fa(x) = L| = an—L| <¢

for all n > N. Therefore the sequence { f,} of functions converges uniformly on /
to the constant L.

The geometric interpretation of uniform convergence is straightforward. If the
graph of f is drawn for all x € 7, then a ribbon of width 2¢ can be constructed by
curves offset a distance of ¢ from the graph of f. If { f,} converges uniformly to f
on I, then for each & > 0O there is an N such that the graph of f, lies in the ribbon
for all n > N. The quantity limiting N is the maximum difference between f, (x)
and f(x) for x € I. This observation motivates the investigation of the sequence
{M,} of numbers defined by

M, = sup | fu(x) — f(X)].

xel

Inequality (10.5) shows that M, necessarily exists for all n if {f,} is uniformly
convergent on /.

Theorem 10.2.1. The sequence { f,,} converges uniformly on I to f if and only if
M, - 0asn — oc.

Proof. Suppose that { f,, } converges uniformly on I to f. Choose ¢ > 0. Since { f,,}

converges uniformly, there is an integer N that is independent of x such that

| fo(x) = f(x)| <&

for all n > N; hence M,, exists and
M| = M, = Sur;lfn(X) —f)|=<e
X€E

foralln > N. Thus M, — 0 as n — oo from the definition of convergence.
Suppose that M,, — 0 asn — oo. For each ¢ > 0 there isan N such that M, < ¢
whenever n > N ; therefore, forall x € I,

|fu(¥) — f(O) = M, <&

for each n > N. The choice of N is independent of x and we thus conclude that
{ fu} converges uniformly to f on /. O

Corollary 10.2.2. Suppose that { f,} converges uniformly on I to f. If M is a
number such that | f,,(x)| < M for all n and all x € 1, then | f(x)| < M for all
xel.
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Proof. Suppose that | f(x)| > M for some x € I. Then | f(x)| = M + & for some
& > 0. Thus for all n we have

[/o() = fOI = [ f) = /u()] > M + e - M =e.
Therefore
sup [fu(x) = f(X)] > ¢
for all n, and so we have the contradiction that
ngrrgoilglﬁ(ﬂ —f(x)|=e>0.

a
Of course, a corresponding result holds if | f;,(x)| > M foralln and all x € I.
Example 10.2.1. Let { f,,} be the sequence defined by
1 — x"t!
Jn(x) = 1_x

X

foreach x € [-1/2,1/2] = I.Forall x € I, x"*' — 0 as n — o0, and therefore

Fo) = lim fo) =

I —x
Now
|x|n+l
) = f)] = S
- X
consequently
M, = sup[fy(x) — f(x)]
x€l
|x|n+1
= sup
xel l—x
1
= o

Since M,, — 0 as n — oo, { f,,} converges uniformly to f on / by Theorem 10.2.1.
A
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Example 10.2.2. Let { f,} be the sequence defined by

Ja(x) =

1+ nx?

forall x € [—1,1] = I. Example 10.1.1 shows that f, — f asn — oo, where

_ | 0ifx eI —{0},
Sx) = { l1ifx =0;
therefore
L ifx el —{0}
— — 1+nx? L ’
) = £ @) {O NS
Now

M, = Sl;ll)|ﬁt(x)_f(x)| =1,

and it is clear that lim,_,o, M, # 0 as n — oo. Theorem 10.2.1 thus implies that
the sequence does not converge uniformly to f on /. A

Remark. A sequence { f,} of functions fails to be uniformly convergent to a function
f onaset I if and only if there is an ¢ > 0 such that for all N there exist an integer
k > N and an x;, € I for which

| fie Cex) — f(xr)] = e

We illustrate this remark in the next example.

Example 10.2.3. Let { f,} be the sequence defined by
x
Ju(x) = —
n
foralln € N and all x € R. Since
f(x) = lim f,(x) =0
n—>oo

for all x € R, the sequence converges to a continuous function. However, it is not
uniformly convergent: For all n € N let x,, = n, so that f,(x,) = 1 and hence

|fn(xn) _f(xn)| =1>0.



446 10 Sequences of Functions

Note also that
1 /
lim f/(x) = lim — =0= <lim fn(x)>
n—>oo n—->oo n n—>00

and

b bz _ az
lim fu(x)dx = lim
n—>o00 a n—>00

b
=0 :/ lim f,(x) dx.
2n @ N0

A

Our next example shows that a sequence of functions may converge uniformly
on every closed subinterval of an open interval yet fail to be uniformly convergent
on the open interval.

Example 10.2.4. Let

Ju(x) = x"
for each n and each x € (0, 1). We will show that if 0 < @ < b < 1, then {f,}

converges uniformly on [a, b], but it does not do so on (0, 1).
For each x € (0, 1) we have

f(x) = lim f,(x) =0.
n—>oo
Therefore

sup | fu(x) = f(x)] = sup [fu(x)| = sup x" =b"—0

x€la,b] x€la,b] Xx€la,b]

as n — oo. Hence { f,,} converges uniformly on [a, b].
For each n > 0 let

1
Xp =1——.
n
Then
| fu(xn) — f(xn)| = (1 — l) N l
n e

as n — oo. Hence
1
sup [ fu(x) — f(x)] = = > 0.
xel e

We conclude from Theorem 10.2.1 that { f, } does not converge uniformly on (0, 1).
A
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Theorem 10.2.1 is a useful characterization of uniform convergence, but one must
find the supremum of | f;,(x) — f(x)|. The problem can sometimes be mitigated by
using the sandwich theorem (Sect. 2.5). If there is a sequence { K, } such that

| fu(x) = f(X)] < K,

foreachn € Nandeach x € I,then 0 < M, < K, foreachn. If K, — 0
as n — oo, then M,, — 0 as n — oo. To show that a sequence is not uniformly
convergent on /, it suffices to establish a nonzero lower bound for the sequence
{M,}, valid for all n sufficiently large.

A more serious problem with this characterization of uniform convergence is that
it requires a candidate for f. Often there is not an obvious candidate and hence we
cannot use Theorem 10.2.1 directly. We thus seek an alternative characterization
that does not require a limit candidate. This line of thought leads to a generalization
of the Cauchy principle for convergence (Theorem 2.6.9).

Theorem 10.2.3 (Cauchy Principle). Let { f,} be a sequence of functions defined
on the set 1. The sequence { f,} converges uniformly on I if and only if for each
& > 0 there is an integer N, which may depend on € and I but not on any x € I,
such that for all x € I we have

| fu(x) = S ()| <€

whenevern > N andm > N.

Proof. Necessity: Suppose { f,, } converges uniformly on / to f. Then foreache > 0
there is an integer N such that for all x € I we have

|fo(x) = f(x)| <&

whenevern > N.If n > N and m > N, then, forall x € I,

| fo(x) = fn )| = [fa(X) = SO + | f(x) = S (X)]

< 2s.

The result follows.
Sufficiency: Suppose that for each ¢ > 0 there is an N such that for all x € I we
have

|fn(x) - fm(x)| <e¢€

whenever n > N and m > N. For every x € I, { f,(x)} is a Cauchy sequence of
numbers and therefore convergent. Define

£ = lim £,()

forallx € I.
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Choose any ¢ > 0 and x € I. There is an N, independent of x, such that

| fo () = ) = [ /a(x) = S ()] + [fn (%) = [ (x)]
<&+ |fu(x) = f0)

whenever m > N and n > N. Since f,(x) — f(x) asm — oo, we can choose
m > N (m may depend on € and x) so that

[fm(x) = f(X)] <&

Therefore

|fn(x) = f()| <e+e=2¢
whenever n > N. This inequality is valid for all x € I, and N is independent of x.
We thus conclude that { f,,} converges uniformly to f on I. O

Note the similarity between the proof of necessity in Theorem 10.2.3 and the
proof of Theorem 2.6.1.

In order to prove the uniform convergence of a sequence { f,,} of Theorem 10.2.3
on an interval 7, it is of course enough to prove the existence of a positive constant
¢ such that

[ fu(x¥) = fn(O)] < ce

whenevern > N andm > N.
The following result provides a sequential characterization of uniform conver-
gence of a sequence of functions.

Theorem 10.2.4. Let {f,} be a sequence of functions on a nonempty set 1. Then
the sequence converges uniformly to f on I if and only if

Tim (fo () = £ () = 0 (10.6)

for each sequence {x,} in I.

Proof. Suppose that { f,} converges uniformly to f on /. Then for each sequence
{x,}in I we have

0 =<|fu(xn)— fxn)| < Sléf]’|fn(x) - f(x)|—0

as n — oo. Equation (10.6) follows by the sandwich theorem.
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Suppose on the other hand that { f,,} does not converge uniformly to f. Then
there is an € > 0 such that for all N there exist an integer k > N and an x; € [ for
which

| fi(xi) — f(xi)] = e.

In particular, there exist k; > 1 and xx, € I for which

| fie, (o) — f )| = e

Moreover, suppose that positive integers k1, ks, ..., k,, have been defined for some
n € N, and that Xk; € I and

| fiej Cex;) = f ()| = &

for all j. Suppose also that k; < k;; for each j < n. Then there exist an integer

knt+1 =k, + 1 and an xy, ., € I such that

| flwr k) — F Xk )] > &0

We have now constructed a subsequence { fi, } of { f,} by induction. Let {x, } be any
sequence in / having {x,} as a subsequence. For instance, since / # @ we may
choose a € I and set x,, = a for each positive integer n ¢ {ky, k5, ...}. Then the
subsequence {| fx, (xx,) — f(xx, )|} of {| fu(xn) — f(xn)|} does not converge to 0,
and the proof is complete. O

The contrapositive of this theorem is often easier to use.

Corollary 10.2.5. If there exists a sequence {x,} in I such that
B (fy () — f(50) # 0.

then { f,} does not converge uniformly to f.
Exercises 10.1.

1. For each of the following sequences defined on [0, 1], show that the sequence
is convergent and determine whether the convergence is uniform:

(a) {x"}.
(b) { sm(nx+") } )
© T

oy
@ {fm}
e

(e)



450

10 Sequences of Functions

Show that the sequence
{sin"/" x}

converges uniformly on every closed proper subinterval of [0, 7] but not on

[0, ] itself.
sinx\ /"
()

converges on (0, 7r) but not uniformly.
Show that the sequence
nx
1 + n2x2

is uniformly convergent on [c, 1], where 0 < ¢ < 1. Does the sequence
converge uniformly on (0, 1)?
Use differentiation to find the maximum value of the function

. Show that the sequence

n2x

1+ n3x2

Ju(x) =

for all n € N and x € R, and hence show that the sequence {f,} is not
uniformly convergent on [0, 1].

. Let

n*x

P = T

foralln € Nand x € R, where 8 > « > 0. Show that the sequence { f,}
converges uniformly on [0, 1] if and only if 8 > 2.
Let

nx

) =<+

e’

foralln € Nand x € (0, 1]. Show that

1
00 = fim f(x) = .

Use differentiation to find the maximum value of | f,,(x) — f(x)| and hence
show that the sequence { f;, } is not uniformly convergent on (0, 1].
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10.

11.

12.

13.

. Let {f,} be a sequence of functions defined on an interval /. Show that if

{ fu} converges uniformly to f, then {| f,,|} converges uniformly to | f|. Is the
converse true?

Let {a,} be a convergent sequence and for each n let f,,: I — R be a function.
Suppose there exists N such that

ng[)“fn(x) — fm O} = lan — am|

forallm > N and n > N. Show that Z?":O /j(x) converges uniformly on /.
Suppose f:R — R is uniformly continuous. Let

1) =f(x+1)
n

forall n € N and x € R. Show that { f,,} converges uniformly to f.
Let f:[a, b] — R be continuous.

(a) Explain why, for each n € N, there exists §, > 0 such that

@ = O <

whenever |x — y| < §,.
(b) Let (xo,x1,...,Xk,) be a partition of [a, b] such that x; | —x; < §, for
each j < k,. For each n and each x € [a, b] define

| fxp)ifx; < x < x;
f”(x)_{f(bf tx—b

Show that { f, } converges to f uniformly.

Show that the sequence

o]

converges uniformly on (—a, a) for every a. Is the convergence uniform on R?
For all n € N let

x/n if x is even,

Feo = { 1/n if x is odd.

Show that { f,} converges on R but not uniformly.
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10.3 Properties of Uniformly Convergent Sequences

The examples in Sect. 10.1 illustrate the need for conditions under which it is valid
to change the order in which limits are taken. In this section we show that uniformly
convergent sequences are well behaved in the sense that the order in which limits
are taken is not important. We begin with continuity.

Theorem 10.3.1. Let I < R and let {f,} be a sequence of functions that
is uniformly convergent on I. Let ¢ be a limit point of I, and suppose that
limy—. f,(x) exists for alln € N. Then

lim lim f,(x)

n—>00 xX—>¢

exists if and only if

lim lim f,(x)

X—>C n—>00

exists, and in this case those limits are equal.

Proof. As {f,} is uniformly convergent on /, we may define
f(x) = lim f,(x)
n—oo

foreach x € I.
Suppose first that

lim f(x) =L,
X—>C
and choose ¢ > 0. There exists § > 0 such that

|f(x)—L|<e

whenever x € [ and 0 < |x —¢| < §. The uniform convergence of { f,,} on I shows
the existence of an N for which

[fa(x) — f(X)| <e
whenever n > N and x € /. Hence
| fu(x) — L] < [fu(x) = f(O)[+ | f(x) = L| <2¢

whenevern > N, x € [ and 0 < |x — ¢| < §. Therefore, since lim,_. f,(x) exists
for all n, we have

lim f,(x)— L| <2e <3¢
X—>c
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for all n > N. We conclude that

lim lim f,(x) = L. (10.7)

n—>00 x—>¢

On the other hand, suppose that Eq. (10.7) holds. For each n € N, write
gn(c) = lim £, (x).

Thus
lim g,(c) = L.
n—00

Choose ¢ > 0. There exists M; such that
lgn(c)—L| <e

for all n > M;. Moreover, for each such n there exists §,, > 0 such that

| /u(x) = gu(c)| <&

whenever x € I and 0 < |x — ¢| < §,, and the uniform convergence of { f,} shows
the existence of M, such that

| fo(x) = f(X)| <&

whenever n > M, and x € I. Fix n > max{M;, M;}. Then

|f () = LI < | f(x) = fu)] + [ fu(x) = gu(c)| + |gn(c) — L] < 3¢

for each x € [ such that 0 < |x —¢| < §,. Thus
lim f(x) = L,

as required. O

Remark. The hypothesis that ¢ be a limit point of I is needed only to ensure that
the limits in question are defined.

Corollary 10.3.2. Let {f,} be a sequence of functions that is uniformly convergent
to a function f on a set I < R. If f, is continuous on I for each n, then f is
continuous on 1.

Proof. Tt is immediate from the hypotheses that for each ¢ € I we have
lim f(x) = lim lim f,(x)
X—>C X—>Cc n—>00

= lim lim f,(x)

n—>00 Xx—>¢
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= nlggo Ja(©)
= f(o).

ad

The result above gives a sufficient condition for a sequence of continuous
functions to converge to a continuous function. The next example shows that it is
not a necessary condition.

Example 10.3.1. Let { f,} be the sequence defined by

fu(x) = nx(1 —x)"

for all x € [0, 1] = I. It is clear that for all x € I, we have f,(x) — 0asn — oo.
The function defined by f(x) = 0 for all x € [ is continuous on / and hence the
sequence converges pointwise to a continuous function.

This sequence, however, is not uniformly convergent to f on /. Consider the
sequence {x,} in I defined by

for all n € N.! Since

1 1
= > —>0

(1 + 1)}1+l 26

n

o) — f )| = ’m (1 - in)

for all n € N, Theorem 10.2.1 shows that the sequence indeed fails to be uniformly
convergent on I. A

Example 10.1.4 shows that there are sequences { f,} of integrable functions such
that f,(x) — f(x) for all x in an interval I = [a, b] but

tim [ nacs [ e

Indeed, it may be that the limit f is not even integrable over /. The next result
shows that if { f,,} converges uniformly to f on 7, then f is integrable and the order
in which the limits are taken can be changed.

I'The reader may wonder what prompts the choice of this sequence. In fact, it can be shown using
elementary calculus that f, has a global maximum in / at x,,.
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Theorem 10.3.3. Let { f,} be a sequence of functions that are integrable over the
interval 1 = [a, b] and suppose that { f,,} converges uniformly to f over I. Then f
is integrable on 1, and

b b
lim fn:/ f (10.8)

—
n—>oo [,

Proof. Choose ¢ > 0. Since { f,} converges uniformly to f on I, there exists N
such that

Ja(x) —e < f(x) < fulx) + ¢

foralln > N and x € [I. Taking the lower integrals over I of both sides of the first

inequality, we obtain
[h-cto-a= [

since f;, is integrable over /. Similarly,

Zfsyve;[ﬂ+w@_ay

Consequently,

0§7f—/f§%w—m,

and since these inequalities must hold for every ¢ > 0, it follows that

7f=[ﬁ

so that f is integrable on 7.

We now have
/fn_S(b—a)S/fiffn—}-s(b—a).

Hence

~t-as [ - [ fzet-a
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foralle > 0andn > N, and so

i [ 5= | 1
a

Theorems 7.3.11 and 7.3.14 provide sufficient conditions under which a function
is integrable. These results can be used with Theorem 10.3.3 to glean the following
corollaries.

Corollary 10.3.4. Let { f,} be a sequence of functions that are continuous on the
interval [a, b], and suppose that { f,} converges uniformly to f on [a,b). Then f is
integrable over [a, b] and Eq. (10.8) is satisfied.

Corollary 10.3.5. Let {f,} be a sequence of functions that are bounded and
monotonic on the interval [a,b). If { f,} converges uniformly to f on [a,b), then
f is integrable over [a, b] and Eq. (10.8) is satisfied.

Example 10.3.2. Consider the sequence { f,,} defined by

xn® ifx €[0,1/n)
fux) =1 (3 =x)n*ifx €[1/n,2/n)
0 ifx e[2/n,1]

for all n > 0, where & > 0 is a fixed number. The functions f, are continuous on
the interval [0, 1] and hence integrable by Theorem 7.3.11.

We show first that f,(x) — 0 as n — oo for each x € [0, 1]. The result is
obvious if x = 0. Suppose x € (0, 1]. Let N be any integer such that N > 2/x.
Then for all n > N, we have x > 2/n; hence f,(x) = 0 and thus f,(x) — 0 as
n — oo.

Evidently,

1
/ fu(x)dx =n""2, (10.9)

0

sothatif 0 < a < 2,
1 1
lim fn(x)dx = / lim f,(x)dx = 0; (10.10)
n—>oo 0 0 n—>o0

however, if ¢ = 2,

1 1
lim fax)dx=1# / lim f,(x)dx,
n—oo 0 0 n—o00
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and the sequence {n%~2} diverges if o > 2. Now,

sup | £ ()] = n*"",
x€[0,1]

and Theorem 10.2.1 implies that {f,} is uniformly convergent to the constant
function 0 on [0,1] only if ¢ < 1. Corollary 10.3.4 can be used to deduce
relation (10.10), whenever 0 < « < 1, without calculating the integral of f,. None
of the results concerning integration of uniformly convergent sequences, however,
can be applied when 1 < o < 2. This example thus shows that uniform convergence
is not a necessary condition for changing the order of the limits. A

If { f,} is a convergent sequence of functions that are differentiable on an interval
I, Example 10.1.3 shows that the sequence { f,(x)} may diverge even forall x € I.
It is of interest to examine the relationship between these sequences when uniform
convergence is imposed. Uniform convergence of { f,,} on I does not guarantee the
convergence of { f,/} on I, but the next theorem shows that uniform convergence of
{f,)} on I guarantees uniform convergence of { f,} on I, provided thereisac € I
such that { f,,(c)} converges.

Theorem 10.3.6. Let {f,} be a sequence of functions that are differentiable on
an interval I = |a, b]. Suppose that the sequence {f,} converges uniformly on I
and that there exists ¢ € I such that lim,_,« f,(c) exists. Then { f,} converges
uniformly on I to a differentiable function f, and

£/ = lim f1(x) (10.11)

forallx € 1.

Proof. Choose ¢ > 0. As { f,(c)} converges, there exists N; such that

| fu(€) = fm(©)] < &

whenever m > N and n > N, and the uniform convergence of the sequence { f }
on [ implies the existence of an N, such that

L0 = fa0)] < 5—
—a

whenever m > N>, n > Ny andt € I.

Let N = max{Ni, N} and choose m > N, n > N and x € [I. For each
t € I —{x} we may apply the mean-value theorem to the function f, — f,, to
establish the existence of a £ between x and ¢ such that

| £o(8) = fn(®) = fu(x) + S ()] = [t = x| £,/ (§) = £, ()]
|t — x|
b—a
<e. (10.12)
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Note that this inequality holds even if + = x. Substituting ¢ for x, we therefore
obtain

| fa(0) = SO = [Ju(@) = fin @) = fale) + fn(O)] + [fulc) = fn(O)]
< 2e.
Thus { f,,} satisfies the Cauchy criterion for uniform convergence. Let this sequence

converge to a function f.
Next, foreachn € N, x € I,and ¢t € I — {x} define

hy < 210 = So0).
r—Xx
also let
LGRS IC)
t—Xx

Fix x € I. Since f,, is differentiable, we have
lim /2, (1) = £,(x).
Inequality (10.12) shows that
| fa(0) = fu(¥) = fn(®) + (X))

|7n (£) = hon (1)

|t — x|
|t — x| 1
b—a |t—x
I
- b—a

forallm > N,n > N,and ¢t € I — {x}. Therefore the sequence {h,} converges
uniformly to 2 on I —{x}. As x is a limit point for / — {x} and lim,_,, &, () exists,
we may therefore apply Theorem 10.3.1 to {4, }:

lim f/(x) = lim lim &, (z)
n—oo n—>o0t—>x

= lim lim A, (¢)

[—>X n—>00
= lim A(2).

—>x

We conclude that f”(x) exists and

@) = lim £/,
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In Example 10.1.2 we found a sequence { f,,} of functions that converges to the
constant function 0 but

Jim £(0) # 0.

In view of Theorem 10.3.6, we conclude that { f,/} cannot be uniformly convergent.
The following example shows that Eq. (10.11) may hold even if {f,} is not
uniformly convergent.

Example 10.3.3. Foralln > 0and x € [0, 1] let

log(1 + n’x?)

Su(x) = m

Using 1’Hoépital’s rule, we find that { f,, } converges to 0. Furthermore

nx
1+ n2x2

fa(x) =

for all x € [0, 1], so that { f,} also converges to 0. Hence
/
( lim f, (x)) = lim f/(x).
n—00 n—>oo

However, we can show that { f,’} is not uniformly convergent on [0, 1]. Since
(1—nx)* >0,
we have
1 + n2x? > 2nx,

so that f,/(x) < 1/2 for each relevant n and x. Moreover f,/(x) attains its maximum
value of 1/2 at 1/n. Hence

1

up 17000 = sup /()] = 5
x€[0,1] x€[0,1]

for all n. As this result is nonzero, Theorem 10.2.1 shows that { '} is not uniformly
convergent. A

Exercises 10.2.
1. Let

n’x
1 4+ n2x2

Su(x) =

foralln € Nand x € R.
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(a) For each x find
f(x) = lim f,(x).
n—00

(b) Is f continuous?
(c) Is the convergence uniform?

2. Show that {sin” x} converges on [0, x]. Is the convergence uniform?
3. Let f,(x) = x"/nforalln € Nand x € [0, 1].

(a) Does the sequence { f,,} converge uniformly?
(b) Is

1 1
. I LN
Jm /0 n /0 i Jo?
(c) Is
A
lim f/ = (lim fn)?
n—>00 n—>00

4. In view of Corollary 10.3.2 we can say that uniform convergence preserves
continuity. Use the following example to show that it does not necessarily
preserve discontinuity: For all n € N, let

= if x is rational,
— n
Fn®) % 0 if x is irrational.
5. Foreachn € N, let
1—nxif0<x <4,
f”(x)_{o ifx> 1,

(a) Does the sequence { f,} converge uniformly?
(b) Show that f, is continuous for each n but the limit function is not
continuous.

6. Let

2n2x

Sa(X) = ——
e

n2x2

foreachn € N and x € [0, 1].

(a) Show that the sequence { f, } is not uniformly convergent on [0, 1].
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(b) Ts
1 1
lim n =/ lim f,?
n—o0 0 0 n—o0
7. Let
2nx
A e

for eachn € Nand x € [0, 1].

(a) Use differentiation to find the maximum value of each function and hence
show that the sequence { f;, } is not uniformly convergent on [0, 1].
(b) Is

1 1
lim/ fa =/ lim f,?
n—oo 0 0 n—>oo

8. Show that

converges uniformly on [0, 1] but the sequence of derivatives does not.

9. Let {f,} be a sequence of uniformly continuous functions that is uniformly
convergent to a function f on an interval /. Show that f is uniformly
continuous on /.

10. Let f, and g, be continuous on an interval /, and suppose that {f,} and
{gn} converge uniformly to f and g, respectively. Show that { f, g,} converges
uniformly to fg and that fg is continuous.

11. Let { f,} be a sequence of functions on an interval /. Suppose that f,(c) = 0
for all n and some ¢ € I, and that { f,/} converges uniformly on /. Show that
{ fu} converges uniformly and

lim f/(x) = f'(x).
n—>0oo
12. It is crucial that the interval of integration be finite in Theorem 10.3.3. For all
n € Nlet
1

Ju(x) ="

0 ifx>n.

if0<x <n,

(a) Show that { f,,} is uniformly convergent on [0, co) and that f; is integrable
on [0, o0) for each n € N.
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(b) Show that

o0
lim =1
n—>00 0
but
(o]
/ lim f, =0.
0 n—00

(c) Construct a similar example where

o0
/ lim f, =0
0 n—00

JA

but

diverges.

10.4 Infinite Series

The results of Sect. 10.3 can be readily adapted to infinite series of functions. Let
{fn} be a sequence of functions defined on a set / and let {S,} be the sequence of
partial sums defined by

Sn(x) = Z fj (x)
j=0

for all x € I. The series Z?io fj(x) is said to converge uniformly on / if {S,}
converges uniformly on /. Properties of uniformly convergent sequences can be
used to derive analogous results for uniformly convergent series. Moreover the
comparison, ratio, and root tests are applicable for uniformly convergent series.

Theorem 10.4.1. Let Zj’;o | fi(x)| be a series that converges uniformly on a set
1. For all € > 0 there is an integer N such that | fi (x)| < & whenever k > N and
xel.

Proof. Noting that the sequence {Z_’;ZO | fj(x)|} converges uniformly on /, we
apply the Cauchy principle. Thus for each ¢ > 0 there exists N; such that

n

n Ny
DT L@I=)Y1L@I=Y 1@ <e

J=Ni+1 J=0 =0

whenever x € [ and n > Ny, and the result follows by taking N = N; + 1. O
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Theorem 10.4.2. Let Z;’o:o | fi(x)| be a series that converges uniformly on a set I .
Then Z;io [ (x) converges uniformly on I.

Proof. By the Cauchy principle, for each & > 0 there exists N such that

DAL= 1A@I= ) Ifil<e

j=m+1 j=0 j=0
whenever x € [ and n > m > N. For each such x, n, m we have

n

Y@= fil=] Y fi]= Y 1fHiml<e
j=0 j=0

j=m+1 j=m+1

and the result therefore follows from the Cauchy principle. O
The next result follows immediately from Theorem 10.3.1.

Theorem 10.4.3. Suppose { f,} is a sequence of functions such that Z;io fi(x)
converges uniformly on some set I C R. Let ¢ be a limit point of 1. Then

2 lim £506) = fim 3 £ 0,
j=0 j=0

provided either side of the equation exists.

Corollary 10.4.4. If Z?":O [ (x) converges uniformly on I and f; is continuous
on I foreach j, then Z?o:() [ (x) is continuous on I.

Proof. The hypotheses and Theorem 10.4.3 show that
o o0 o0
ih“%,zoff(x) = Z;);lgg,fj(m = Zoff'(“)
j= j= j=

foreachc € I. O

The function S, is integrable or differentiable on / if each f; is integrable
or differentiable, respectively, on I. These simple observations coupled with
Theorems 10.3.3 and 10.3.6 give the following results immediately.

Theorem 10.4.5 (Term-by-Term Integration). Let {f,} be a sequence of func-
tions that are integrable on the interval 1 = |[a,b]. Suppose that the series
Z_C;io [ (x) is uniformly convergent on I. Then

o] b b 00
> fj(x)dxzf > fi) ] ax.
a j=0

j=0"4
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Theorem 10.4.6 (Term-by-Term Differentiation). Ler {f,} be a sequence of
functions that are differentiable on the interval I. Suppose that

1. the series Z?io £ (x) is uniformly convergent on I and
2. there exists ¢ € I such that the series Zj‘;o fj(c) converges.

Then the series 27’;0 fj(x) is uniformly convergent on I to a differentiable
function, and

Y| =)
Jj=0 j=0

forallx € 1.

Although the results concerning the uniform convergence of sequences can be
readily exported to get analogous results for series, the tests for uniform convergence
given in Sect. 10.2 rely on the use of the sequence of partial sums. The sequence
{S, } of partial sums can prove to be an elusive quantity to obtain in a form conducive
to evaluating limits. Indeed, {S,} can be found in closed form only for a few types
of series such as the geometric series. If {S,} is difficult to procure in a useful form,
then identifying a candidate for the limit is yet another potentially formidable task.
Ideally, one desires a test that avoids these problems and relies directly on the terms
of the series. The next result is a comparison test for uniform convergence.

Theorem 10.4.7 (Comparison Test). Let { f,} and {g,} be sequences of nonneg-
ative functions defined on the set I, and suppose that for all x € I and k € N we
have

Jie(x) = gi(x).

If the series Z?":O g (x) is uniformly convergent on I, then the series Z?o:o fi(x)
is uniformly convergent on 1.

Proof. Choose ¢ > 0, and let
n
Sa(x) =Y fi(x)
j=0
and
T,(x) =) g;(x)
Jj=0

foralln > 0 and x € I. Since {T,} is uniformly convergent on I, the Cauchy
criterion implies that there is an integer N such that

| T, (x) = Th(x)| <e
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for all x € I whenevern > N and m > N. Thus wheneverx € [ andn >m > N,
we have

S0 (X) = S () = | Y fi(x)

j=m+1

= ) i
j=m+1

= Z gj(x)
j=m+1

= Tu(x) — Tu(x)

< €.

The integer N does not depend on x € I, and therefore {S,, } is uniformly convergent
on / by Theorem 10.2.3. O

The next result, although limited in applications as we shall explain later,
nonetheless proves to be one of the most useful and convenient tests for uniform
convergence of series. It is an immediate consequence of Theorem 10.4.7.

Corollary 10.4.8 (Weierstrass M-Test). Let {f,} be a sequence of functions
defined on a set 1. Suppose there exists a sequence {M,} of constants such that
| fn(x)| < M, for all x € I and all n. Iij-czO M; converges, then Zjio fi(x)
converges uniformly on I.

Example 10.4.1. Let { f,} be the sequence of functions defined by

sin nx
n? + |x|’

Sa(x) =
for alln € N and x € R. We have |sinnx| < 1 for all x € R; consequently,

il < -5

forall n € N. Now, _72, 1/ is convergent, and therefore the series Y2 f;(x)
is uniformly convergent on R.

We know that power series define functions that are differentiable within the
interval of convergence of the series and that the derivative can be obtained by
differentiating the series term by term. A power series can also be integrated term
by term within the interval of convergence. It should thus occasion little surprise
that a power series is uniformly convergent within the interval of convergence.
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Theorem 10.4.9. Suppose that the power series

Zaj(x —a)’
Jj=0

has a radius of convergence r > 0 and let a and B be any numbers such that
a—r<a<f<a+r.

Then Z?O:O a;(x —a)’ converges uniformly on [a, f].

Proof. Without loss of generality we can assume that a = 0 and r = 1 since the
general case can be obtained by a translation and scaling of the variable. Let

p = max{|e|, [B]}.

The hypotheses show that p < 1, so that the series Z;’io aj; o/ is absolutely
convergent. Moreover, if x € I = [a, ], then |x| < p. Therefore

lanx"| < |an|p"
for all x € [ and all n. The uniform convergence of the power series thus follows

from the Weierstrass M-test with M,, = |a,|p". |

The Weierstrass M-test is a comparison test for uniform convergence. The key
feature is that the comparison series consists of terms that are constants. Other series
tests that spawn from the comparison test can also be adapted to test for uniform
convergence. We give two such results now.

Theorem 10.4.10 (D’Alembert Ratio Test). Let { f,,} be a sequence of functions
defined on a set 1. Suppose there exist numbers r < 1 and N such that fy is
bounded and for all x € I andn > N we have f,(x) # 0 and

@] _

Hel

Then the series Z?:o [ (x) converges uniformly on 1.

Proof. Arguing as in the proof of Theorem 3.7.1, we see by induction that

| vt ()] < | fv(x)]

forall x € I and j € N. The result now follows from the comparison test since fy
is bounded and r < 1. |

The reader should have no trouble proving the next theorem.
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Theorem 10.4.11 (Cauchy Root Test). Let {f,} be a sequence of functions
defined on a set I, and suppose that there exist numbersr < 1 and N € N such that

| Lol <7

forall x € I andn > N. Then the series Z?‘;o [ (x) converges uniformly on I.

The Weierstrass M-test is perhaps the most frequently used test for the uniform
convergence of series. Indeed, Bromwich ([4] p. 124) notes that series satisfying
the Weierstrass M-test were called “normally convergent” by Baire and that this
“terminology has the advantage of emphasizing the fact that the M-test can be
applied to nearly all series in ordinary everyday use.” A major limitation of the
test, however, is that a series must be absolutely convergent at each point in the set
I in order to apply the test successfully. More delicate tests are needed to cope with
series that are uniformly convergent in a set but conditionally convergent at points
in the set. However, we note the following result due to Baire that simply says that
every uniformly convergent series of bounded functions on a set I can be made into
a “normally convergent” series by a judicious grouping of terms. The proof of this
theorem may be found in [4].

Theorem 10.4.12 (Baire). For every uniformly convergent series of functions
bounded on some set, there exists a regrouping of terms such that the resulting series
satisfies the Weierstrass M-test.

Exercises 10.3.

1. Determine whether the following series Zj‘;z f (x) converge uniformly on the
set [:

@ fu(x) =302 ] = [—x,7].
b) fulx) = 3,1 =R

2

(C) fn(x) = (1_37)17’ 1 :R
@ fu(x) =251 = 1o, 1].

erxxz/l ’
(e) fulx) = log(nlx—f"x), I = [c, 00) for some ¢ > 1 [hint: log(1 + &) < h when
h > 0].
) f.(x) =log (1 + nk;Zn), I = [—c, c] for some ¢ > 0.

@ fi(x) = 5. 1 = (0.1].

(h) fy(x) = B2 [ = [0,27]

1 fulx) = (—1)”“’%, I = [c, 00) for some ¢ > 0 [hint: n* = n*"ins].
2. Let

sin nx

Ju(x) =

n2
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6.

10 Sequences of Functions

foralln > 0 and x € R. Show that Z;’o:l Jj(x) converges uniformly over R
whereas Zj‘;l S (x) diverges at 0.

. Foralln > 0 let

0 ifx =0,
f”(x) =) logx .
rlogx g <x <.
(a) Show that the supremum of | £, (x)| on [0, 1] occurs at e™!/".
(b) Show that Z;’o:l fj (x) converges uniformly on [0, 1].
Foralln > 0 and x € R let
n’x?
Ju(x) = PR
(a) Show that
4
igglfn(ml =
(b) Show that Y-2, f;(x) converges uniformly on R.
For alln > 0 and x € R let
1 a1 1
Sy =7 N =
0 otherwise.
Show that Zj’;l [ (x) converges uniformly but
(o)
> sup | f5(x)] (10.13)
R

i=1%¢€
diverges. Note that in general if (10.13) converges, then Zc/x’:l [ (x) converges

uniformly (why?).
Show that if Z?’;O a; is absolutely convergent, then

(oY)
E a; sin jx
j=1
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10.

and
o0
E a; cosjx
Jj=0

converge uniformly on R.
Suppose that Z(;o:() fj (x) converges uniformly on an interval / to a bounded
function f: 1 — R. Show that Z?o:o f(x) fj(x) converges uniformly on /.

. Let { f,} be a sequence of functions defined on an interval /, and suppose that

fau(x) = 0 for all n and all x € I. Suppose also that { f,(x)} is a decreasing
sequence for all x € I and that

lim sup f,(x) = 0.
n—00 xel

Show that

o0

D =1 ()

j=0

converges uniformly on 7.
Let

Sa(x) = (=D)"(1 = x)x"

for all n and all x € [0, 1]. Show that Zjio fj (x) converges uniformly but

Z?OZO | fj (x)| does not.
Show that

i 1
2 1 2
=/ +x

is differentiable on R.
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nth term test, 118
p-series, 126

A

Abel’s partial summation identity, 152
absolute value, 12

accumulation point, 75

addition, 15

addition of complex numbers, 15
Airy function, 411

Airy’s equation, 331

arc length, 377

area, 333

arithmetic mean, 51, 63
arithmetic—geometric mean, 84
associativity, 16

B

Baire’s theorem, 467

bijection, 4

binomial coefficient, 29

binomial expansion, 30

binomial theorem, 29, 412
Bolzano’s theorem, 226
Bolzano—Weierstrass theorem, 74
bounded above, 67

bounded below, 67

C
Cartesian product, 3
Cauchy condition, 198

Cauchy principle, 73

uniform convergence, 447
Cauchy’s condensation test, 124
Cauchy’s function, 413
Cauchy’s mean-value formula, 288
Cauchy—Schwarz inequality, 381
cell, 3
chain rule, 251
closed set, 76
commutativity, 16
comparison test, 121

uniform convergence, 464
completeness, 67
complex number

argument of, 280

polar form of, 280
component

first, 3

second, 3
composition of functions, 4
convergence

uniform, 442

D
Darboux’s theorem, 263
de Moivre’s theorem, 280
density, 67
derivative, 243

nth, 248
Dirichlet’s test, 154
discriminant, 17, 262
disjoint sets, 2
distinct sets, 2
distributive, 25
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distributivity, 16
division point, 333

E
equal sets, 2
equation

quadratic, 17
equivalence class, 4
equivalent sequences, 67
Euler’s constant, 326
Euler-Maclaurin theorem, 394
exponentiation, 8, 94,231

F
factorial, 12
first derivative test, 262
fixed point, 228
fixed point iteration, 426
fixed-point theorem, 228
Fuchs’s theorem, 330
function, 4
Airy, 411
bijective, 4
Cauchy’s, 413
complex-valued, 4
constant, 4
continuous, 216
continuous on the left, 223
continuous on the right, 223
continuous over a set, 224
cosecant, 178
cosine, 177
cotangent, 178
critical point of, 263
decreasing, 13
differentiable, 243
domain of, 4
exponential, 97, 176
extremal point of, 262
extremal value of, 262
extremum of, 262
fixed point of, 423
floor, 204
graph of, 5
arc length of, 377
Heaviside, 203
increasing, 13
injective, 4
integrable, 342
inverse cosine, 269
inverse of, 4
inverse sine, 269

inverse tangent, 269
limit of, 192

Lipschitz continuous, 240
local maximum of, 262
local minimum of, 262
logarithm, 231
monotonic, 13
nondecreasing, 13
nonincreasing, 13
one-to-one, 4

order of zero of, 406
periodic, 268

popcorn, 219

range of, 4

real-valued, 4
reciprocal of, 178
secant, 178

sine, 177

smooth, 403

strictly monotonic, 13
surjective, 4

tangent, 178
Thomae’s, 219
trigonometric, 178
uniformly continuous, 237

fundamental theorem of calculus, 362

G

Gauss’s constant, 84
Gauss’s test, 234
generalised ratio test, 158
generalised root test, 159
geometric mean, 61, 63
golden ratio, 35

greatest lower bound, 67

H

harmonic mean, 63
Hermite polynomial, 329
Hermite’s equation, 328

I
image, 4
indeterminate form, 290
induction, 5
inductive hypothesis, 6
inequality
Bernoulli’s, 7
triangle, 12
infimum, 67
initial-value problem, 437
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injection, 4
integral, 342

improper

absolutely convergent, 392
comparison test, 391

lower, 340

upper, 340
integral test, 396
integrand, 342
integration by parts, 367
integration by substitution, 366
interior point, 334
intermediate-value theorem, 227
intersection of sets, 2
interval, 13

closed, 13

ends of, 13

half open, 13

open, 13
inverse function theorem, 253

J
Jordan’s inequality, 274

K
Kummer-Jensen test, 142

L
I’Hopital’s rule, 290
least upper bound, 67
Legendre’s equation, 332
Leibniz’s rule, 256
Leibniz’s test, 147
limit
infinite, 208
one-sided, 205
limit comparison test, 128
limit point, 75
Lipschitz condition, 248
Lipschitz’s theorem, 247
lower bound, 67
lower sum, 336

M

maximum- and minimum-value theorem, 225

mean-value theorem, 258

mean-value theorem for integrals, 360

mesh, 334

method of successive approximations, 438

multiplication, 15

multiplication of complex numbers, 15

mutually disjoint sets, 2

N
neighborhood, 37
Newton’s method, 434
norm, 334
number
complex, 15
conjugate of, 18
exponentiation of, 17
imaginary part of, 15
modulus of, 19
real part of, 15
natural, 5

(0]

order of magnitude, 127

ordered pair, 3
component of, 3

ordered triple, 3

P

partition, 3,333
refinement of, 338

peak index, 100

polynomial, 9
coefficient of, 9
degree of, 9
root of, 9

product, 8, 165
Cartesian, 12
factors of, 8

product of sums, 165

R
Raabe’s test, 143
ratio test, 132
uniform convergence, 466
relation, 3
equality, 3
equivalence, 3
inclusion, 3
reflexive, 3
symmetric, 3
transitive, 3
Riemann sum, 337
convergence of, 341
Riemann’s theorem, 160
Rolle’s theorem, 257
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root test, 136
uniform convergence, 467

S
sandwich theorem, 56, 201
sequence, 33

approaches infinity, 78

approaches minus infinity, 79 set, 1
arithmetic, 34 compact, 224
bounded, 43 complement of, 2
Cauchy, 65 element of, 1
complex, 33 empty, 1
complex harmonic, 34 member of, 1
convergent, 37 ordered, 12
decreasing, 77 power, 2
divergent, 37 subset of, 1
Fibonacci, 35 subinterval, 334
geometric, 34 subsequence, 53
harmonic, 34 subtraction, 16
imaginary part of, 49 subtraction of complex numbers, 16
increasing, 53 sum, 8
limit of, 37 terms of, 8
monotonic, 77 supremum, 67
nondecreasing, 77 supremum property, 67
nonincreasing, 77 surjection, 4
null, 38
partial sum of, 111
rational, 33 T
real, 33 Taylor polynomial, 400
real part of, 49 Taylor remainder, 403
rearrangement of, 164 Taylor’s theorem, 401
sign, 34 telescoping property, 26
term of, 33

series, 111
Abel’s, 234 U
absolutely convergent, 157 uniform convergence, 442
alternating, 147 series, 462
condensed, 123 union of sets, 2
conditionally convergent, 157 upper bound, 67
derived, 316 upper sum, 335
geometric, 112
harmonic, 118
Maclaurin, 411 w
power, 170 Weierstrass M-test, 465

addition of, 174
center of, 170
circle of convergence, 172 VA

multiplication of, 174
radius of convergence, 172

real, 111

rearrangement of, 164

Taylor, 411

telescoping, 113

term of, 111

uniform convergence of, 462

interval of convergence, 172 Zeno’s paradox, 109
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