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Preface

This book is a text on real analysis for students with a basic knowledge of calculus
of a single variable. There are many fine works on analysis, and one must ask
what advantages a new book brings. This one contains the standard material for
a first course in analysis, but our treatment differs from many other accounts in
that concepts such as continuity, differentiation, and integration are approached via
sequences. The main analytical concept is thus the convergence of a sequence, and
this idea is extended to define infinite series and limits of functions. This approach
not only has the merit of simplicity but also places the student in a position to
appreciate and understand more sophisticated concepts such as completeness that
play a central part in more advanced fields such as functional analysis.

The theory of sequences and series forms the backbone of this book. Much of
the material in the book is devoted to this theory and, in contrast to many other
texts, infinite series are treated early. The appearance of series in Chap. 3 has the
advantages that it provides many straightforward applications of the results for
sequences given in Chap. 2 and permits the introduction of the elementary tran-
scendental functions as infinite series. The disadvantage is that certain convergence
tests such as the integral test must be postponed until the improper integral is defined
in Chap. 7. The Cauchy condensation test is used in Chap. 3 to tackle convergence
problems where the integral test is normally applied. Although much of the material
in Chap. 2 is standard, there are some unusual features such as the treatment of
harmonic, geometric, and arithmetic means and the sequential definition of the
exponential function. In Chap. 3 we present results, such as the Kummer–Jensen
test, Dirichlet’s test, and Riemann’s theorem on the rearrangement of series, that are
often postponed or not treated in a first course in analysis.

Limits of functions are introduced in Chap. 4 through the use of convergent
sequences, and this concept is then used in Chaps. 5 and 6 to introduce continuity
and differentiation. As with any analysis book, results such as the intermediate-value
theorem and the mean-value theorem can be found in these chapters, but there are
also some other features. For instance, the logarithm is introduced in Chap. 5 and
then used to prove Gauss’s test for infinite series. In Chap. 6 we present a discrete
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vi Preface

version of l’Hôpital’s rule that is seldom found in analysis texts. We conclude this
chapter with a short account of the differentiation of power series using differential
equations to motivate the discussion.

The Riemann integral is presented in Chap. 7. In the framework of elementary
analysis this integral is perhaps more accessible than, say, the Lebesgue integral,
and it is still an important concept. This chapter features a number of items beyond
the normal fare. In particular, a proof of Wallis’s formula followed by Stirling’s
formula, and a proof that � and e are irrational, appear here. In addition, there is
also a short section on numerical integration that further illustrates the definition of
the Riemann integral and applications of results such as the mean-value theorem.

Chapter 8 consists of a short account of Taylor series. Much of the analytical
apparatus for this topic is established earlier in the book so that, aside from Taylor’s
theorem, the chapter really covers mostly the mechanics of determining Taylor
series. There is an extensive theory on this topic, and it is difficult to limit oneself so
severely to these basic ideas. Here, despite the book’s emphasis on series, the authors
eschew topics such as the theorems of Abel and Tauber and, more importantly, the
question of which functions have a Taylor series. A full appreciation of this theory
requires complex analysis, which takes us too far afield.

The student encounters Newton’s method in a first calculus course as an
application of differentiation. This method is based on constructing a sequence,
motivated geometrically, that converges (hopefully) to the solution of a given
equation. The emphasis in this first encounter is on the mechanics of the method
and choosing a sensible “initial guess.” In Chap. 9 we look at this method in the
wider context of the fixed-point problem. Fixed-point problems provide a practical
application of the theory of sequences. The sequence produced by Newton’s method
is already familiar to the student, and the theory shows how problems such as error
estimates and convergence can be resolved.

The final chapter deals with sequences of functions and uniform convergence. By
this stage the reader is familiar with the example of power series, but those series
have particularly nice properties not shared generally by other series of functions.
The material is motivated by a problem in differential equations followed by various
examples that illustrate the need for more structure. This chapter forms a short
introduction to the field and is meant to prime the reader for more advanced topics
in analysis.

An introductory course in analysis is often the first time a student is exposed to
the rigor of mathematics. Upon reflection, some students might even view such a
course as a rite of passage into mathematics, for it is here that they are taught the
need for proofs, careful language, and precise arguments. There are few shortcuts
to mastering the subject, but there are certain things a book can do to mitigate
difficulties and keep the student interested in the material. In this book we strive to
motivate definitions, results, and proofs and present examples that illustrate the new
material. These examples are generally the simplest available that fully illuminate
the material. Where possible, we also provide examples that show why certain
conditions are needed. A simple counterexample is an exceedingly valuable tool
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for understanding and remembering a result that is laden with technical conditions.
There are exercises at the end of most sections. Needless to say, it is here that the
student begins to fully understand the material.

The authors appreciate the encouragement and support of their wives. They also
thank Fiona Richmond for her help in preparing the figures. The work has also
benefited from the thoughtful comments and suggestions of the reviewers.

Palmerston North, New Zealand Charles H.C. Little
Kee L. Teo

Bruce van Brunt
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Chapter 1
Introduction

1.1 Sets

To study analysis successfully, the reader must be conversant with some of the
basic concepts of mathematics. Foremost among these is the idea of a set. For our
purposes a set may be thought of as a collection of objects. This statement is too
imprecise to be regarded as a definition, and in fact it leads to logical difficulties,
but it does convey a mental image of a set that is satisfactory for our purposes. The
reader who wishes to delve into the nature of this concept more deeply is referred
to [10].

Sets are important in that they can be used to construct a host of mathematical
concepts. In fact, every mathematical object studied in this book can be constructed
from sets. We therefore begin this introductory chapter with some basic properties of
sets. Proofs are omitted because most of the properties are evident and their proofs
are straightforward.

First, the objects in a set X are called its elements or members. They are said
to be contained in X and to belong to X . If an object x is contained in X , then we
write x 2 X ; otherwise we write x … X .

We shall assume the existence of a set with no elements. This set is denoted by ;,
and it is unique. It is said to be empty.

If X and Y are sets such that every element of X is also an element of Y , then
we say that X is a subset of Y and that it is included in Y . In this case we write
X � Y ; otherwise we write X 6� Y . Note that ; � X for every set X . The reasoning
is that since ; has no elements at all, it certainly has no elements that are not in X .
Therefore we can safely say, without fear of contradiction, that each of its elements
does belong to X . In particular, ; is a subset of itself, and in fact it is its only subset.
Observe also that every set includes itself. Moreover, if X , Y , Z are sets such that
X � Y and Y � Z, then X � Z. In this case we write X � Y � Z.

© Springer Science+Business Media New York 2015
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_1
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2 1 Introduction

If X and Y are sets such that X � Y � X , then X and Y contain exactly the
same elements. In this case we say that these sets are equal, and we write X D Y .
Otherwise X and Y are distinct, and we write X ¤ Y . Any set is equal to itself,
and if X D Y , then Y D X . Furthermore, if X; Y; Z are sets such that X D Y and
Y D Z, then X D Z. In this case we write X D Y D Z. Equal sets are treated as
identical since they contain the same elements.

The collection of all subsets of a given set X is another set, called the power
set of X . It is denoted by P.X/. For example, P.;/ is a set having ; as its only
element. This set is denoted by f;g. Moreover, P.f;g/ is a set containing only the
elements ; and f;g and is denoted by f;; f;gg.

If X is any set, we may replace the elements of X by other objects and thereby
construct a new set. For example, we may replace the unique element ; of the set
f;g by any object Y . We then have a new set whose only element is Y . This set is
denoted by fY g. Similarly, if we replace the elements ; and f;g of the set f;; f;gg
by objects Y and Z, respectively, then we obtain a new set whose only elements
are Y and Z. This set is denoted by fY; Zg. The notation may be extended to an
arbitrary number of objects.

If X is a set and P is a property that may be satisfied by some elements of X ,
then we can construct a subset of X whose elements are precisely the members of
X that do satisfy P . This set is denoted by fx 2 X j P g. For example, let X and
Y be sets, and let P be the property that x 2 Y , where x 2 X . Then fx 2 X j P g
is the set whose elements are the objects that are in both X and Y . This set is called
the intersection of X and Y and is denoted by X \ Y . If this intersection happens
to be empty, then the sets X and Y are disjoint. If S is a collection of sets (in other
words, a set whose elements are themselves sets), then the sets in S are said to be
mutually disjoint if the sets A and B are disjoint whenever A 2 S and B 2 S .

On the other hand, if P is the property that x … Y , then fx 2 X j P g is the
set whose elements are the members of X that are not in Y . This set is denoted by
X � Y and is called the complement of Y with respect to X .

Let S be a collection of sets. Then we may construct another set whose elements
are the objects that belong to at least one member of S . This set is called the union
of S . For example, if S D fX; Y g for some sets X and Y , then the union of S is the
set of all objects that are in X or Y . In particular, it contains all the objects that are
in both of those sets. It is denoted by X [ Y .

We may define the intersection of S as the set of all objects in the union of S that
belong to every set in S . If S D fX; Y g for some sets X and Y , then the intersection
of S is the set of all objects that are in both X and Y . Thus it is equal to X \ Y .

1.2 Ordered Pairs, Relations, and Functions

As we said before, sets can be used to construct a large number of mathematical
concepts. In this section we show how to construct ordered pairs, relations, and
functions from sets, but once again the reader is referred to [10] for the details.
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If x and y are any objects, then the ordered pair .x; y/ is defined as the set
ffxg; fx; ygg. We refer to x and y as its components, x being the first component
and y the second. The important observation to be made here is that the definition
does not treat x and y similarly (if in fact they are distinct objects). Instead, we
are given a way of distinguishing them: y is a member of just one of the two sets
in .x; y/, but x belongs to both sets. From this observation it is easy to deduce
that the ordered pairs .x; y/ and .a; b/ are equal if and only if x D a and y D b. In
other words, for equality to hold it is not sufficient for the sets fx; yg and fa; bg to be
equal. Their elements must also be listed in the same order. This is the only property
of ordered pairs that is important to remember. Once it is grasped, the definition may
be forgotten. The definition can be extended to ordered triples by defining

.x; y; z/ D ..x; y/; z/

for all objects x; y; z. Thus .x; y; z/ technically is an ordered pair whose first
component is itself an ordered pair. This notation may be extended to an arbitrary
number of objects, as we shall see later.

If X and Y are sets, we may construct a set X �Y whose elements are the ordered
pairs .x; y/ such that x 2 X and y 2 Y . This set is called the Cartesian product
of X and Y . A subset of X � Y is called a relation from X to Y . Thus a relation is
just a set of ordered pairs. A relation from X to X is sometimes called a relation on
X . An example is the relation R on X such that .x; y/ 2 R if and only if x D y.
This relation is called the equality relation. Similarly, we may define the inclusion
relation by specifying that it contains the ordered pair .x; y/ if and only if x and y

are sets such that x � y.
If R is a relation and x and y are objects, we often write xRy to indicate that

.x; y/ 2 R. For instance, we are already accustomed to using D to denote the
equality relation and writing x D y instead of .x; y/ 2 D. We also write x 6R y

instead of .x; y/ … R.
If R and S are relations and x; y; z are objects, then we write xRySz if xRy and

ySz. This notation may be extended to arbitrarily long chains of relations.
Some kinds of relations are of particular importance, and we discuss them now.

If R is a relation on a set X , then R is reflexive if xRx for each x 2 X . Examples
include the equality and inclusion relations. The relation R is symmetric if yRx
whenever x and y are members of X satisfying xRy. Equality has this property, but
inclusion does not. We also say that R is transitive if xRy whenever there is a z 2 X

for which xRzRy. Equality and inclusion both exhibit this property. A relation with
all three of these properties is an equivalence relation. Equality is such a relation,
but inclusion is not.

Equivalence relations are closely linked to partitions. A partition of a set X is a
set of nonempty, mutually disjoint subsets of X whose union is X . The elements of
a partition are sometimes called its cells. It can be shown that with any equivalence
relation R on a set X there is an associated unique partition P of X with the
property that elements x and y of X belong to the same cell of P if and only if xRy.
Conversely, any partition P of X has associated with it a unique equivalence relation
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R on X constructed in the same way: xRy if and only if x and y belong to the same
cell of P . The cells of P are called the equivalence classes of R. For each x in X ,
we denote by Œx� the unique equivalence class to which it belongs. Thus Œx� D Œy�

if and only if y is an element of X that belongs to the equivalence class Œx�.
There is yet another kind of relation that is of paramount importance. A relation

f from a set X to a set Y is called a function from X into Y if for each x 2 X there
is a unique y 2 Y for which .x; y/ 2 f . We usually write y as f .x/. We say that f

maps x to y and that y is the image of x under f and corresponds to x under f .
We think of the function f as providing a rule for associating with each x in X a
unique corresponding element y of Y . It is this aspect of the concept that is usually
important for our purposes, but it is of interest to see how to construct the idea of a
function from sets, as we have done.

Given sets X and Y , we sometimes write f W X ! Y to indicate that f is a
function from X into Y . The set X is called the domain of the function f . The
subset of Y consisting of the images of the elements of X is the range of f . In this
book the range of f will usually be a set of real or complex numbers, in which case
we describe the function as real-valued or complex-valued, respectively. The range
of f is not necessarily the whole of Y : Some elements of Y might not correspond
to any element of X . The domain of f is denoted by Df and the range of f by Rf .
If Rf D Y , then f is described as surjective and called a surjection from X onto
Y . In the case of a surjection, each member of Y does correspond to an element of
X , but this element need not be unique.

Suppose on the other hand that each element of Rf does correspond to a unique
element of X . Then f is injective and an injection from X into Y . Thus f is
injective if and only if w D x whenever f .w/ D f .x/: Distinct elements of X

must be mapped to distinct elements of Y . An injective function is also described as
one-to-one.

Perhaps f is both injective and a surjection from X onto Y . Then f is a
bijection from X onto Y and described as bijective. In this case each member of Y

corresponds to a unique element of X . Thus there exists a function g from Y into X

such that g.f .x// D x for all x 2 X . This function is called the inverse of f and
is denoted by f �1. It is a bijection from Y onto X . Note that f �1.f .x// D x for
all x 2 X . Moreover f .f �1.y// D y for each y 2 Y , and .f �1/�1 D f:

A function f with domain X is said to be constant (on X ) if f .w/ D f .x/

for each w and x in X . The range of a constant function with nonempty domain
therefore consists of a single element.

Now let f be a function from a set X into a set Y and g a function from Y into
a set Z. Then g.f .x// is defined for each x 2 X . Letting h.x/ D g.f .x// for each
such x, we see that h is a function from X into Z. We call it the composition of g

and f and denote it by g ı f . Thus

.g ı f /.x/ D g.f .x//
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for each x 2 X . For instance, if f is a bijection from X onto Y , it follows that
.f �1 ı f /.x/ D x for each x 2 X and .f ı f �1/.y/ D y for each y 2 Y . It is
easily checked that a composition of injections is injective and that a composition
of surjections is surjective. It follows that a composition of bijections is bijective.

If f is a function and X � Df , then we write

f .X/ D ff .x/ 2 Rf j x 2 Xg:

Thus f .Df / D Rf .
If f is a real-valued function whose domain is a set of real numbers, then the

graph of f is the set of all points .x; f .x// in the Cartesian plane, where x 2 Df .
It is also the graph of the equation f .x/ D y.

1.3 Induction and Inequalities

Natural numbers are those used to count. The set f1; 2; : : :g of natural numbers is
denoted by N. We assume familiarity with the basic properties of these numbers
and simply highlight those that are of particular importance for our development
of analysis. The details of the development of natural numbers, integers, rational
numbers, and real numbers in terms of sets are given in [10] and will not be repeated
here.

The main properties of N that we require are that it contains the number 1 and
that every natural number has a successor in N. The successor of a natural number
n is denoted by n C 1. For example, the successor of 1 is 2 D 1 C 1 and that of 2
is 3 D 2 C 1. This notion of a successor for each natural number enables us to list
the natural numbers in order, beginning with 1. In fact, it can be shown that each
natural number n ¤ 1 is the successor of a unique natural number n � 1. If Y is a
set of natural numbers such that 1 2 Y and n C 1 2 Y for each n 2 Y , then Y D N.

This observation can be applied to yield an important technique, called induc-
tion, for proving theorems about natural numbers. In this application, Y is the set
of all natural numbers for which the desired result is true. First, prove the desired
theorem for the natural number 1. (In other words, prove that 1 2 Y .) Then assume
that it is true for a particular natural number n (so that n 2 Y ) and prove it for n C 1

under this assumption. The conclusion that Y D N then shows that the theorem is
indeed true for all natural numbers. This idea is perhaps most easily visualized as
follows. Imagine a line of dominoes standing on end and close together so that the
line begins with a particular domino and extends indefinitely to the right of that first
domino. Knock the first domino onto the second. Then it is easy to see that all the
dominoes will fall over, because the first domino will fall and every other domino
has one before it that will eventually knock it over. This picture captures the essence
of induction.
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Before giving examples of induction at work, let us make some observations
about the pattern of a proof by induction. One approach to the use of induction to
prove a theorem about a natural number n, as we have seen, is to prove the theorem
for the natural number 1, then assume it for a particular natural number n (that is,
for a particular integer n � 1), and finally prove it for n C 1. The assumption that
the theorem holds for a particular n is commonly called the inductive hypothesis.
We can in fact strengthen it by assuming that the theorem holds for all natural
numbers less than n as well. Equivalently, one could prove the theorem first for 1,
then assume as an inductive hypothesis that it holds for a particular integer n � 1 (or
for all natural numbers less than n) where n � 2, and finally prove it for n under
this assumption. Another observation is that the process of induction need not begin
with the natural number 1. In fact, it should begin with the smallest integer for which
the theorem is to be proved. In other words, suppose we wish to prove a theorem for
all integers n � a for some fixed integer a. We start an inductive proof in this case
by proving the theorem for a. Then there are two equivalent ways to continue. One
is to assume as an inductive hypothesis that the theorem holds for some particular
integer n � a (or for all integers k such that a � k � n) and then prove it for n C 1.
The alternative is to assume that it holds for n � 1 for a particular integer n > a (or
for all integers k such that a � k < n) and then prove it for n under this assumption.

Because of its importance, we now state the principle of induction formally as a
theorem. We denote the set of all integers by Z, so that

Z D f: : : ; �2; �1; 0; 1; 2; : : :g:

Theorem 1.3.1. Let Y � Z and a 2 Y . Suppose also that y C 1 2 Y whenever
y 2 Y . Then Y contains every integer greater than a.

In applications of Theorem 1.3.1 to prove a given assertion about integers, Y is
the set of all integers for which the assertion in question is true.

We now offer an example of an inductive proof.

Example 1.3.1. We shall prove by induction that if x is a nonnegative real number,
then

.1 C x/n � 1 C nx C n.n � 1/

2
x2 (1.1)

for all integers n � 0. It is easy to see that equality holds for n D 0. Assume that
inequality (1.1) holds for a particular integer n � 0. Then

.1 C x/nC1 D .1 C x/n.1 C x/

�
�

1 C nx C n.n � 1/

2
x2

�
.1 C x/

D 1 C .n C 1/x C
�

n C n.n � 1/

2

�
x2 C n.n � 1/

2
x3
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� 1 C .n C 1/x C 2n C n2 � n

2
x2

D 1 C .n C 1/x C n.n C 1/

2
x2;

since n.n � 1/x3=2 � 0. The proof by induction is now complete.
It follows that

.1 C x/n � 1 C nx (1.2)

and

.1 C x/n >
n.n � 1/

2
x2 (1.3)

hold for every nonnegative real number x and nonnegative integer n. Inequality (1.2)
is known as Bernoulli’s inequality. Both of these inequalities will be found to be
useful later. 4

Example 1.3.1 involved an inequality. It is assumed that the reader is conversant
with inequalities and can work with them comfortably. One of the salient points to
remember is that multiplication of both sides of an inequality by a negative number
causes a change in the direction of the inequality. For instance, if x < y, then
�x > �y. Similarly, if both sides of an inequality have the same sign, then taking
the reciprocals of both sides again induces a change in the direction of the inequality.
Thus 1=x > 1=y if either x < y < 0 or 0 < x < y.

Induction can be used to make definitions as well as to prove theorems. Let us
illustrate this point by defining finite sums inductively. Let m and n be integers with
n > m. If am; amC1; : : : ; an are numbers, we define

mX
j Dm

aj D am

and

nX
j Dm

aj D
n�1X
j Dm

aj C an:

Often we write

nX
j Dm

aj D am C amC1 C � � � C an:
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This quantity is called the sum of am; amC1; : : : ; an, and those numbers are its
terms. We also define

nX
j Dm

aj D 0

if m > n, and we regard this expression as a sum with no terms.
We may define the product of the same numbers in a similar way. Thus

mY
j Dm

aj D am

and

nY
j Dm

aj D an

n�1Y
j Dm

aj

for all n > m. We often write

nY
j Dm

aj D amamC1 : : : an:

This number is the product of am; amC1; : : : ; an, and those numbers are its factors.
If m > n, then we define

nY
j Dm

aj D 1

and regard this expression as a product with no factors.
Similarly, we obtain analogous expressions for unions and intersections of sets

by replacing
P

with
S

and
T

, respectively.
Induction may also be used to define exponentiation for powers that are natural

numbers: Given a real number a, set a1 D a and if an has been defined for a specific
natural number n, let

anC1 D an � a:

We may also define a0 D 1, though this definition is normally made only if a ¤ 0.
Furthermore we define

a�n D 1

an

if n 2 N and a ¤ 0.
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One can easily prove by induction that

.ab/n D anbn (1.4)

for any real numbers a and b and natural number n, and similarly that

�a

b

�n D an

bn
(1.5)

if b ¤ 0. If ab ¤ 0, then these two equations extend to the case where n is any
integer. For each fixed m 2 N, it is also easy to prove by induction on n that

aman D amCn (1.6)

for all n 2 N and then that

.am/n D amn (1.7)

for all n 2 N. If a ¤ 0, then these two rules may also be extended to the case where
m and n are any integers.

In order to extend these ideas, we need the following definition.

Definition 1.3.1. If n is a nonnegative integer and a0; a1; : : : ; an are constants, then
the function given by

nX
j D0

aj xj (1.8)

for all numbers x is called a polynomial. Its degree is n if an ¤ 0. The numbers
a0; a1; : : : ; an are its coefficients. If

nX
j D0

aj cj D 0;

then c is called a root of the polynomial (1.8).

It is shown in [10] that every nonnegative number a has a unique nonnegative
square root. This square root is denoted by a1=2 or

p
a. Thus we have .a1=2/2 D a.

It is also shown in [10] that every polynomial of odd degree whose coefficients
are real has a real root. For example, if m is an odd positive integer and a is a
real number, then there is a real number c satisfying the equation cm D a. The
uniqueness of c follows from the fact that if x and y are real numbers such that
x < y, then xm < ym since m is odd. (This fact is obvious if x � 0 and y � 0,
for then xm � 0, ym � 0, and at least one of xm and ym is nonzero. If 0 < x < y,
then use induction to prove it for all positive integers m. If x < y < 0, then note
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that 0 < �y < �x and apply the previous case with m odd.) We write a1=m D c. In
the case where m D 1, this definition is consistent with the equation a1 D a. In any
case, we have .a1=m/m D a, and so we refer to a1=m as the mth root of a. Note that
01=m D 0 and that a1=m has the same sign as a if a ¤ 0.

An arbitrary positive integer can be written in the form 2km, where k and m are
nonnegative integers and m is odd. If n D 2km, then we can show by induction
on k that each a � 0 has a unique nonnegative nth root. Indeed, we have already
observed this fact if k D 0. Suppose that k > 0 and that a has a unique nonnegative
r th root c, where r D 2k�1m D n=2. Then

a D cr D
��

c
1
2

�2
�r

D
�
c

1
2

�2r D
�
c

1
2

�n

:

On the other hand, if a D bn D b2r D .b2/r , where b � 0, then b2 D c by the
uniqueness of c, and so b D c1=2. We conclude that

p
c is the unique nonnegative

nth root of a. We write it as a1=n. Hence

�
a

1
n

�n D a: (1.9)

Moreover 01=n D 0 and 11=n D 1.
An alternative proof of the existence of the nonnegative nth root of a will be

given in Example 5.3.5.
Let 0 � a < b, and for some positive integer n let c D a1=n and d D b1=n. If

c � d , then we should have the contradiction that a D cn � d n D b. We conclude
that c < d . For instance, if a > 1, then a1=n > 1.

Let a � 0, let r and s be positive integers, and let c D a1=r . Then

�
c

1
s

�rs D
��

c
1
s

�s�r

D cr D a;

so that

a
1
rs D c

1
s D

�
a

1
r

� 1
s

:

Next, let a � 0, let n 2 N, and let m be a nonnegative integer. We then define

a
m
n D

�
a

1
n

�m

:

This definition generalizes Eq. (1.9) and is consistent with the equation a1 D a in
the case where m D 1 or n D 1. It is also consistent with the equation a0 D 1 in the
case where m D 0. If m D jk and n D jl for some positive integers j; k; l , then

a
jk
jl D

�
a

1
jl

�jk D
 ��

a
1
l

� 1
j

�j
!k

D
�
a

1
l

�k D a
k
l ;
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a result that is consistent with the equation jk=.jl/ D k=l . If a > 0, then we define

a� m
n D 1

a
m
n

D 1�
a

1
n

�m D
�
a

1
n

��m

:

We proceed to the generalization of Eqs. (1.4)–(1.7). Let a � 0, let m be an
integer, and let n 2 N. Since

�
a

m
n

�n D
��

a
1
n

�m�n

D
�
a

1
n

�nm D
��

a
1
n

�n�m

D am;

it follows that

.am/
1
n D a

m
n D

�
a

1
n

�m

:

Thus if p and q are also integers and q > 0, then

�
a

m
n

� p
q D

 ��
a

1
n

�m� 1
q

!p

D
 ��

a
1
n

� 1
q

�m
!p

D
�
a

1
nq

�mp D a
mp
nq :

This result generalizes Eq. (1.7). Equation (1.6) also generalizes, since

a
m
n a

p
q D a

qm
qn a

pn
qn D

�
a

1
qn

�qm �
a

1
qn

�pn D
�
a

1
qn

�qmCpn D a
qmCpn

qn D a
m
n C p

q :

Now suppose that b is also a nonnegative real number. As

ab D
�
a

1
n

�n �
b

1
n

�n D
�
a

1
n b

1
n

�n

;

it then follows that

.ab/
1
n D a

1
n b

1
n :

Therefore

.ab/
m
n D ..ab/m/

1
n D .ambm/

1
n D .am/

1
n .bm/

1
n D a

m
n b

m
n ;

a result that generalizes Eq. (1.4). Thus if b > 0, then

�a

b

�m
n D .ab�1/

m
n D a

m
n .b�1/

m
n D a

m
n b� m

n D a
m
n

b
m
n

;

and so Eq. (1.5) generalizes as well.
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We have now defined the real number ax for every number a > 0 and every
rational power x. Later we shall extend this definition to the case where x is any real
number. In fact, similar ideas may be used to define wz for any complex numbers w
and z provided that if w is real, then it is positive.

As another example of an inductive definition, we may define the factorial nŠ of
a nonnegative integer n by writing 0Š D 1 and

nŠ D n.n � 1/Š

for all n 2 N.
Given objects x1; x2; : : : ; xn, where n > 1, we may define the ordered set

.x1; x2; : : : ; xn/

by induction: The ordered pair .x1; x2/ has already been defined, and for each n > 2

we let

.x1; x2; : : : ; xn/ D ..x1; x2; : : : ; xn�1/; xn/:

Let X1; X2; : : : ; Xn be sets, where n > 1. We can also define the Cartesian
product X1 � X2 � � � � � Xn of X1; X2; : : : ; Xn by induction: The definition has
already been made for n D 2, and for each n > 2 define

X1 � X2 � � � � � Xn D .X1 � X2 � � � � � Xn�1/ � Xn:

The result is the collection of all ordered sets .x1; x2; : : : ; xn/ such that xj 2 Xj for
each j . If Xj D X for each j , then we write

Xn D X1 � X2 � � � � � Xn:

The absolute value of a real number x plays a prominent role in analysis. Denoted
by jxj, it is defined as x if x � 0 and �x otherwise. Thus it is always the case that
jxj � 0 and that

jxj D
p

x2 D j � xj:

For every a > 0 it is also easy to see that jxj < a if and only if �a < x < a. From
these inequalities it follows that jxj > a if and only if x > a or x < �a, and that
jx � yj < a if and only if y � a < x < y C a, where y is another real number. In
addition, observe that jxj � x and jxj � �x for all real x. Thus jxj C jyj � x C y

and jxj C jyj � �.x C y/, so that

jx C yj � jxj C jyj:

This result is known as the triangle inequality.
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Inequalities can be used to define intervals on the real line. If a and b are real
numbers with a < b, then we write

.a; b/ D fx j a < x < bg;
Œa; b� D fx j a � x � bg;
.a; b� D fx j a < x � bg;
Œa; b/ D fx j a � x < bg:

These sets are called intervals. The first is open and the second closed; the others
are half-open. It should be clear from the context whether the notation .a; b/

specifies an open interval or an ordered pair. The numbers a and b are called the
ends of each of these intervals. In addition, we write

.a; 1/ D fx j a < xg;
Œa; 1/ D fx j a � xg;

.�1; a/ D fx j x < ag;

.�1; a� D fx j x � ag:

These sets are also reckoned as intervals, and a is regarded as an end of each.
Let f be a real-valued function whose domain includes an interval I . Then f

is said to be increasing on I if f .x1/ < f .x2/ whenever x1 and x2 are numbers
in I such that x1 < x2. If, on the other hand, f .x1/ � f .x2/ for each such x1

and x2, then f is nondecreasing on I . We define functions that are decreasing or
nonincreasing on I similarly. All these functions are said to be monotonic on I ,
and those that are increasing on I or decreasing on I are strictly monotonic on I .

Exercises 1.1.

1. Show that if a < b, then

a � ˛a C .1 � ˛/b � b

for all ˛ such that 0 � ˛ � 1.
2. Prove that

jxyj D jxjjyj

for all real numbers x and y. If y ¤ 0, prove also that

ˇ̌
ˇ̌x
y

ˇ̌
ˇ̌ D jxj

jyj :
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3. Use the triangle inequality to prove that

jjxj � jyjj � jx � yj;

where x and y are real numbers.
4. Solve the following equations and inequalities, where x is real:

(a) j3x � 2j D j5x C 4j; (d) j3x C 4j � 2;
(b) jx C 4j D �4x; (e) j3x C 2j < 3jxj.
(c) j2x � 3j < 4;

5. Prove the following by induction for all positive integers n and real numbers
a; a1; a2; : : : ; an:

(a) janj D jajn.

(b)
ˇ̌̌Qn

j D1 aj

ˇ̌̌
D Qn

j D1 jaj j.
(c)

ˇ̌̌Pn
j D1 aj

ˇ̌̌
� Pn

j D1 jaj j.

6. Prove that
p

2 is irrational by writing
p

2 D a=b, where a and b are positive
integers with no common factor, and obtaining a contradiction by showing that a

and b must both be even.

1.4 Complex Numbers

Throughout this book we will assume that any numbers we are working with are
complex unless an indication to the contrary is given by either the context or an
explicit statement. For example, the numbers a0; a1; : : : ; an; x in the definition of a
polynomial (Definition 1.3.1) need not be real. As complex numbers might not be
as familiar to the reader as real numbers, we define them here and prove some basic
properties.

The equation

x2 D �1 (1.10)

has no real solution. We seek to extend the real number system to include a number
i such that i 2 D �1 while preserving familiar operations such as addition and
multiplication. If we put xCiy D 0, where x and y are real numbers, then x D �iy,
so that x2 D i 2y2 D �y2 and hence x D y D 0. Now if

x C iy D a C ib; (1.11)

where a and b are also real, then

x � a C i.y � b/ D 0:
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The argument above shows that x � a D y � b D 0 and we conclude that Eq. (1.11)
holds if and only if x D a and y D b. Consequently x C iy may be identified with
the ordered pair .x; y/ of real numbers.

We therefore define a complex number as an ordered pair of real numbers.
Hence every complex number can be visualized as a point in the Cartesian plane. If
z D .x; y/, where x and y are real, then we define Re .z/ D x, and Im .z/ D y, and
we refer to x and y as the real and imaginary parts, respectively, of z. We define
addition and multiplication by the rules

.u; v/ C .x; y/ D .u C x; v C y/

and

.u; v/.x; y/ D .ux � vy; uy C vx/;

respectively, where u; v; x; y are all real. These rules are motivated by the
calculations

.u C iv/ C .x C iy/ D u C x C i.v C y/

and

.u C iv/.x C iy/ D ux � vy C i.uy C vx/:

Thus

.u; 0/ C .x; 0/ D .u C x; 0/

and

.u; 0/.x; 0/ D .ux; 0/:

Therefore we may identify .x; 0/ with the real number x. In particular, it follows
that .0; 0/ D 0 and .1; 0/ D 1. Note also that

Re .w C z/ D Re .w/ C Re .z/

and

Im .w C z/ D Im .w/ C Im .z/

for any two complex numbers w and z. It is also worth observing that the addition of
complex numbers may be interpreted geometrically as vector addition. In Chap. 6
we will give a geometric interpretation of the multiplication of complex numbers.
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The required solution i to Eq. (1.10) is identified with the ordered pair .0; 1/.
According to our definition of multiplication, it has the desired property:

i 2 D .0; 1/.0; 1/ D .�1; 0/ D �1:

Note also that if x and y are real, then the definitions of addition and multiplication
do indeed give

x C iy D .x; 0/ C .0; 1/.y; 0/ D .x; 0/ C .0; y/ D .x; y/:

These results show that the algebraic manipulation of complex numbers is identical
to that of real numbers with the additional rule that i 2 D �1. In particular, we have
the laws that

a C b D b C a; (1.12)

a C .b C c/ D .a C b/ C c; (1.13)

and

a.b C c/ D ab C ac (1.14)

for all complex numbers a; b; c. We summarise Eqs. (1.12) and (1.13) by asserting
that the addition of complex numbers is commutative and associative, respectively.
Similarly, multiplication of complex numbers is commutative and associative.
Equation (1.14) asserts that multiplication is distributive over addition.

We also define

�.x C iy/ D �x � iy:

Then subtraction is defined by the equation

w � z D w C .�z/

for all complex numbers w and z.
We have now extended the real number system to include a number i that gives

a solution to the equation x2 D �1. More generally, i
p

c gives a solution to the
equation x2 D �c, where c � 0. In fact, it can be shown (see [10]) that every
nonconstant polynomial with complex coefficients has at least one complex root.
This result is known as the fundamental theorem of algebra. For example, suppose
that

az2 C bz C c D 0;



1.4 Complex Numbers 17

where a; b; c; z are all complex numbers and a ¤ 0. As the left-hand side of this
equation is a polynomial of degree 2, the equation is said to be quadratic. It can be
solved for z by the following procedure. Since a ¤ 0, we have

0 D z2 C bz

a
C c

a

D
�

z C b

2a

�2

� b2

4a2
C c

a

D
�

z C b

2a

�2

� b2 � 4ac

4a2
;

so that

�
z C b

2a

�2

D b2 � 4ac

4a2
:

Thus

z C b

2a
D ˙ 1

2a

p
b2 � 4ac;

and we conclude that

z D �b ˙ p
b2 � 4ac

2a
:

The expression b2 � 4ac is called the discriminant of the polynomial az2 C bz C c.
If a; b; c are real, then the polynomial has just two real roots if its discriminant is
positive, just one if its discriminant is 0, and none otherwise.

We proceed to the exponentiation of complex numbers. As in the case of real
numbers, we define z1 D z for every complex number z, and if zn has been defined
for a specific natural number n, we write znC1 D zn � z. We also define z0 D 1 if
z ¤ 0.

Next, let

z D x C iy ¤ 0;

where x and y are real. Then

.x C iy/.x � iy/ D x2 C y2 ¤ 0;

and so

1

z
D 1

x C iy
D x � iy

.x C iy/.x � iy/
D x � iy

x2 C y2
:
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Thus if we define

z�1 D x � iy

x2 C y2
;

then we have zz�1 D 1. For every positive integer n we now define z�n D .z�1/n if
z ¤ 0. This definition agrees with the equation z1 D z in the case where n D 1. We
also define w=z D wz�1 for every complex number w.

We turn our attention now to two numbers that are associated with a given
complex number. The first is the conjugate of a complex number z D x C iy, where
x and y are real. The conjugate of z is defined as x � iy and is denoted by Nz. Thus
Nz D z, and z D Nz if and only if z is real. Geometrically, the function that maps z to Nz
is a reflection about the x-axis.

If we also have w D u C iv, where u and v are real, then

w C z D u C x C i.v C y/ D u C x � i.v C y/ D u � iv C x � iy D Nw C Nz:

Since

�z D �x � iy D �x C iy D �.x � iy/ D �Nz;

it also follows that

w � z D w C .�z/ D Nw C �z D Nw C .�Nz/ D Nw � Nz:

Moreover

wz D ux � vy C i.uy C vx/ D ux � vy � i.uy C vx/;

and so

Nw � Nz D .u � iv/.x � iy/ D ux � vy C i.�uy � vx/ D wz:

If z ¤ 0, then

1=z D x C iy

x2 C y2
D 1=Nz;

and it follows that

w=z D wz�1 D Nwz�1 D Nw � 1=z D Nw
Nz :

Note also that

z C Nz D 2x D 2Re .z/



1.4 Complex Numbers 19

and, similarly,

z � Nz D 2i Im .z/I

hence

Re .z/ D z C Nz
2

and

Im .z/ D z � Nz
2i

:

A further observation is that

zNz D .x C iy/.x � iy/ D x2 C y2:

We now define

jzj D
p

x2 C y2:

This number is called the modulus of z. For example, ji j D 1. We note that

zNz D jzj2;

jzj �
p

x2 D jxj D jRe .z/j;

and, similarly,

jzj �
p

y2 D jIm .z/j:

Moreover if z D x, then

jzj D
p

x2 D jxj:

This observation shows that jzj is a generalization of the absolute value of a real
number. It follows that

z C Nz D 2Re .z/ � 2jRe .z/j � 2jzj:

If w is as defined in the previous paragraph, then

jz � wj D jx C iy � u � ivj D jx � u C i.y � v/j D
p

.x � u/2 C .y � v/2I
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hence

jz � wj D jw � zj

and we perceive jz�wj geometrically as the distance between z and w. In particular,
jzj is the distance between z and the origin. Note also that

jz � cj D r;

where c is a complex number and r � 0 is the equation of a circle with center c and
radius r .

We also have jzj � 0 for all z, and jzj D 0 if and only if z D 0. In addition,

jzj D j � zj D jNzj:
Since

jwzj2 D wz � wz D wz NwNz D w NwzNz D jwj2jzj2 D .jwjjzj/2;

we deduce that

jwzj D jwjjzj:
If z ¤ 0, it follows that

jwj D
ˇ̌
ˇ̌wz

z

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌w

z

ˇ̌
ˇ̌ jzj;

and so ˇ̌̌
ˇwz
ˇ̌̌
ˇ D jwj

jzj :

The triangle inequality

jw C zj � jwj C jzj
also holds, as can be inferred from the calculation

jw C zj2 D .w C z/w C z

D .w C z/. Nw C Nz/
D w Nw C wNz C z Nw C zNz
D jwj2 C wNz C wNz C jzj2
� jwj2 C 2jwNzj C jzj2
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D jwj2 C 2jwjjNzj C jzj2
D jwj2 C 2jwjjzj C jzj2
D .jwj C jzj/2:

Thus

jwj D jw � z C zj � jw � zj C jzj;

so that

jw � zj � jwj � jzj:

But we also have

jw � zj D jz � wj � jzj � jwj D �.jwj � jzj/;

and so we conclude that

jw � zj � jjwj � jzjj :

Finally, the triangle inequality also shows that

jzj � jxj C jiyj D jxj C jyj D jRe .z/j C jIm .z/j:

The notion of an inequality for real numbers does not extend to complex
numbers. We have x2 � 0 for all real x, but i 2 < 0. It is meaningless to write
w < z if either w or z is not real. The inequality jzj < a is equivalent to �a < z < a

if and only if a and z are both real.
Throughout the book we will denote by Z, Q, R, and C the sets of integers,

rational numbers, real numbers, and complex numbers, respectively.
Let f and g be functions whose domains are subsets of C. For all z 2 Df \ Dg,

we define

.f C g/.z/ D f .z/ C g.z/;

.f � g/.z/ D f .z/ � g.z/;

and

.fg/.z/ D f .z/g.z/:
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We also define
�

f

g

�
.z/ D f .z/

g.z/

for all z 2 Df \ Dg such that g.z/ ¤ 0. Thus f C g, f � g, fg, and f =g are all
functions. In addition, if c 2 C, then we define cf to be the function such that

.cf /.z/ D cf .z/

for all z 2 Df .

Exercises 1.2.

1. Express in the form x C iy, where x and y are real,

(a) 3 C 4i C .1 � i/.1 C i/;
(b) .2 � 5i/2;
(c) 1�2i

3C4i
.

2. Compute in for every integer n.
3. For every complex number z, find the real and imaginary parts of the following

expressions:

(a) zC2
z�2i

;
(b) iz.

4. Let z D x C iy and w D a C ib, where x; y; a; b are real. Suppose that z2 D w.
Show that

x2 D a C jwj
2

and

y2 D �a C jwj
2

:

Deduce that

z D ˙.˛ C �ˇi/;

where

˛ D
r

a C jwj
2

;

ˇ D
r

�a C jwj
2

;
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� D 1 if b � 0 and � D �1 if b < 0. Hence, conclude that the square root of a
complex number is real if and only if the complex number is real and positive.

5. Solve the following equations:

(a) z2 D 1 � i ;
(b) z4 D i .

6. Show that

jzj
ju C vj � jzj

jjuj � jvjj ;

where u; v; z are complex numbers and juj ¤ jvj.
7. If z and w are complex numbers, show that

jz C wj D jzj C jwj

if and only if z D ˛w for some real number ˛.
8. Recall that the function d.z; w/ D jz � wj measures the distance between the

points representing the complex numbers z and w. Prove the inequality

d.z; w/ � d.z; v/ C d.v; w/;

where w; v; z are complex numbers. More generally, let z1; z2; : : : ; zn be
complex numbers. Show that

d.z1; zn/ � d.z1; z2/ C d.z2; z3/ C : : : C d.zn�1; zn/:

9. Show that

jd.z; v/ � d.v; w/j � d.z; w/

for complex numbers v; w; z.
10. Give a condition for

d.z; w/ D d.z; v/ C d.v; w/;

where v; w; z are complex numbers.

1.5 Finite Sums

Our development of analysis is based on the concepts of sequences and series. In
order to be able to deal with series, we need to be familiar with the properties
of finite sums. This section is therefore devoted to the development of their basic
properties.
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Let m and n be integers with n � m. Recall that

nX
j Dm

aj D am C amC1 C � � � C an;

where am; amC1; : : : ; an are numbers. Observe that j is a dummy variable. In other
words, the sum is independent of j , so that if k is another letter, then

nX
kDm

ak D
nX

j Dm

aj : (1.15)

(Sometimes j is referred to as an index.) More generally, let r be any integer and
put k D j C r . Then j D k � r . Moreover k D mC r when j D m, and k D nC r

when j D n, and so we may write

nX
j Dm

aj D
nCrX

kDmCr

ak�r :

Using Eq. (1.15), we therefore obtain the following result.

Proposition 1.5.1. If m; n; r are integers with m � n and aj is a number for each
integer j such that m � j � n, then

nCrX
j DmCr

aj �r D
nX

j Dm

aj :

Moreover the associativity of addition shows that if m; n and r are integers such
that m � r < n, then

nX
j Dm

aj D
rX

j Dm

aj C
nX

j DrC1

aj :

The next theorem is a basic property of finite sums.

Theorem 1.5.2. Let m; n be integers with m � n, and let aj and bj be numbers for
each integer j for which m � j � n. For all numbers s; t , we have

nX
j Dm

.saj C tbj / D s

nX
j Dm

aj C t

nX
j Dm

bj : (1.16)
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Proof. We fix m and use induction on n. For n D m we have

mX
j Dm

.saj C tbj / D sam C tbm

D s

mX
j Dm

aj C t

mX
j Dm

bj :

Now suppose that Eq. (1.16) holds for some integer n � m. Then

nC1X
j Dm

.saj C tbj / D
nX

j Dm

.saj C tbj / C sanC1 C tbnC1

D s

nX
j Dm

aj C t

nX
j Dm

bj C sanC1 C tbnC1

D s

0
@ nX

j Dm

aj C anC1

1
AC t

0
@ nX

j Dm

bj C bnC1

1
A

D s

nC1X
j Dm

aj C t

nC1X
j Dm

bj ;

and the proof by induction is complete. ut
For example, by taking t D 0, we obtain the distributive law:

nX
j Dm

saj D s

nX
j Dm

aj : (1.17)

Similarly, putting s D t D 1, we find that

nX
j Dm

.aj C bj / D
nX

j Dm

aj C
nX

j Dm

bj ;

and by setting s D 1 and t D �1, we have

nX
j Dm

.aj � bj / D
nX

j Dm

aj �
nX

j Dm

bj :
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Thus if m � n and am; amC1; : : : ; anC1 are numbers, then

nX
j Dm

.aj C1 � aj / D
nX

j Dm

aj C1 �
nX

j Dm

aj

D
nC1X

j DmC1

aj �
nX

j Dm

aj

D
nX

j DmC1

aj C anC1 �
0
@am C

nX
j DmC1

aj

1
A

D anC1 � am;

a result known as the telescoping property. We state it as a theorem.

Theorem 1.5.3. Let m; n be integers such that m � n, and let aj be a number for
each j such that m � j � n C 1. Then

nX
j Dm

.aj C1 � aj / D anC1 � am:

This theorem in fact is intuitively clear, since the sum can be written as

.anC1 � an/ C .an � an�1/ C � � � C .amC1 � am/

and cancellation yields anC1 � am. Note also that

nX
j Dm

.aj � aj C1/ D �
nX

j Dm

.aj C1 � aj / D �.anC1 � am/ D am � anC1:

As an example, if aj D j for each j , we obtain

nX
j Dm

1 D
nX

j Dm

.j C 1 � j / D n C 1 � m

by the telescoping property. In particular, if m D 1 and n is a positive integer, then

nX
j D1

1 D n C 1 � 1 D n;

as expected, because we are simply adding n copies of the number 1.
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For a less trivial application of the telescoping property, let us evaluate

nX
j D1

.2j C 1/:

Note first that

.j C 1/2 � j 2 D j 2 C 2j C 1 � j 2

D 2j C 1:

In the telescoping property we therefore take aj D j 2 for each j and thereby obtain

nX
j D1

.2j C 1/ D
nX

j D1

..j C 1/2 � j 2/

D .n C 1/2 � 1

D n2 C 2n:

But we also have

nX
j D1

.2j C 1/ D 2

nX
j D1

j C
nX

j D1

1

D 2

nX
j D1

j C n;

and so

2

nX
j D1

j D
nX

j D1

.2j C 1/ � n

D n2 C 2n � n

D n2 C n:

Hence we obtain the following theorem.

Theorem 1.5.4. For every positive integer n

nX
j D1

j D n.n C 1/

2
:
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A similar argument can be used to show that

nX
j D1

j 2 D n.n C 1/.2n C 1/

6
:

The next theorem also illustrates the telescoping property in action.

Theorem 1.5.5. If n is a nonnegative integer and a ¤ b, then

nX
j D0

aj bn�j D anC1 � bnC1

a � b
D bnC1 � anC1

b � a
;

where the convention that 00 D 1 is used.

Proof. By distributivity and the telescoping property, we have

.a � b/

nX
j D0

aj bn�j D
nX

j D0

.aj C1bn�j � aj bn�j C1/

D anC1 � bnC1;

and the result follows. ut
Putting b D 1, we draw the following conclusion.

Corollary 1.5.6. If a ¤ 1, then

nX
j D0

aj D anC1 � 1

a � 1
D 1 � anC1

1 � a
;

where 00 D 1.

There is one further theorem concerning finite sums that we include in this
section. It is called the binomial theorem and gives a formula for .a C b/n for every
nonnegative integer n. It furnishes another example of a proof by induction.

First we introduce some new notation. If n and r are integers such that 0 � r � n,
then we define

 
n

r

!
D nŠ

rŠ.n � r/Š

D n.n � 1/ � � � .n � r C 1/

rŠ
:
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For example,

 
n

0

!
D nŠ

0ŠnŠ
D 1:

Similarly,

 
n

n

!
D 1:

Because of their role in the binomial theorem, these numbers are often called the
binomial coefficients. They satisfy the following lemma.

Lemma 1.5.7. If n and r are positive integers and r � n, then

 
n C 1

r

!
D
 

n

r

!
C
 

n

r � 1

!
:

Proof. By direct calculation, we have

 
n

r

!
C
 

n

r � 1

!
D nŠ

rŠ.n � r/Š
C nŠ

.r � 1/Š.n � r C 1/Š

D nŠ.n � r C 1 C r/

rŠ.n � r C 1/Š

D .n C 1/Š

rŠ.n � r C 1/Š

D
 

n C 1

r

!
:

ut
Theorem 1.5.8 (Binomial Theorem). Let a and b be numbers and n a nonnegative
integer. Then

.a C b/n D
nX

j D0

 
n

j

!
aj bn�j ; (1.18)

where the convention that 00 D 1 is used.
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Proof. Both sides are equal to 1 if n D 0. Assume that the theorem holds for some
integer n � 0. Then

.a C b/nC1 D .a C b/.a C b/n

D .a C b/

nX
j D0

 
n

j

!
aj bn�j

D
nX

j D0

 
n

j

!
aj C1bn�j C

nX
j D0

 
n

j

!
aj bn�j C1

D
nC1X
j D1

 
n

j � 1

!
aj bn�j C1 C

nX
j D0

 
n

j

!
aj bn�j C1

D
nX

j D1

 
n

j � 1

!
aj bnC1�j C anC1 C bnC1 C

nX
j D1

 
n

j

!
aj bnC1�j

D bnC1 C
nX

j D1

  
n

j � 1

!
C
 

n

j

!!
aj bnC1�j C anC1

D bnC1 C
nX

j D1

 
n C 1

j

!
aj bnC1�j C anC1

D
nC1X
j D0

 
n C 1

j

!
aj bnC1�j :

The result follows by induction. ut
The sum on the right-hand side of Eq. (1.18) is often referred to as the binomial

expansion of .a C b/n. Note that the result of Example 1.3.1 can easily be deduced
by considering three terms of the binomial expansion with a D 1 and b D x.

Exercises 1.3.

1. Use induction to prove the following formulas for all positive integers n:

(a)
Pn

j D1 j D n.nC1/

2
;

(b)
Pn

j D1 j 2 D n.nC1/.2nC1/

6
;

(c)
Pn

j D1
1

j.j C1/
D n

nC1
;

(d)
Pn

j D1
j

.j C1/Š
D 1 � 1

.nC1/Š
;

(e)
Pn

j D1 j 3 D
�Pn

j D1 j
�2

;
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(f)
Pn

j D1 j 4 D n.nC1/.2nC1/.3n2C3n�1/

30
;

(g)
Pn�1

j D1 jxj D x�nxnC.n�1/xnC1

1�x2 for every real x ¤ ˙1.

2. Let n 2 N and let a1; a2; : : : ; an be real numbers such that 0 � aj � 1 for all j .
Prove that

nY
j D1

.1 � aj / � 1 �
nX

j D1

aj :

3. Discover and prove a theorem about the relative sizes of 3n and nŠ, where n is a
positive integer.

4. A function f WR ! R is said to be convex if for all nonnegative real numbers ˛1

and ˛2 with sum equal to 1 we have

f .˛1x1 C ˛2x2/ � ˛1f .x1/ C ˛2f .x2/

for each x1 2 R and x2 2 R. Prove that

f

0
@ nX

j D1

˛j xj

1
A �

nX
j D1

˛j f .xj /

whenever n is an integer greater than 1 and ˛1; ˛2; : : : ; ˛n are nonnegative real
numbers with sum 1. This result is known as Jensen’s inequality. More generally,
show that

f

0
@ nX

j D1

.˛j xj /

� nX
kD1

˛k

1
A �

nX
j D1

.˛j f .xj //

� nX
kD1

˛k:

5. Use the telescoping property to prove the following identities for all n 2 N:

(a)
Pn

j D1
1

j.j C2/
D 3

4
� 1

2

�
1

nC1
C 1

nC2

�
;

(b)
Pn

j D1
1p

j Cp
j C1

D �1 C p
n C 1;

(c)
Pn

j D1 j � j Š D .n C 1/Š � 1;

(d)
Pn

j D1
6j

.3j C1�2j C1/.3j �2j /
D 3 � 3nC1

3nC1�2nC1 ;

(e)
Pn

j D1
1

j 2C4j C3
D 5

12
� 1

2

�
1

nC2
� 1

nC3

�
;

(f)
Pn

j D1
1

.j C1/
p

j Cj
p

j C1
D 1 � 1p

nC1
;

(g)
Pn

j D1
j

j 4Cj 2C1
D 1

2
� 1

2n.nC1/C2
;

(h)
Pn

j D1
j

4j 4C1
D 1

4
� 1

8n2C8nC4
.
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6. Let d and a1 be numbers. Define aj for each integer j > 1 by the equation
aj C1 D aj C d , and suppose that aj ¤ 0 for all j 2 N. Find the sum

nX
j D1

1

aj aj C1

for all n 2 N.
7. Prove that

nX
j D1

j Š.j 2 C j C 1/ D nŠ.n C 1/2 � 1

for all n 2 N.
8. Evaluate the sum

nX
j D3

1

j 2 � 4

for all integers n � 3.
9. Suppose that jnanj � M for all n � 0. Show that

Sn � �n D 1

n C 1

nX
j D1

jaj � M

for all n, where Sn D Pn
j D0 aj and �n D Pn

j D0 Sj for all n.



Chapter 2
Sequences

Analysis is based on the notion of a limit, a concept that can be defined in terms of
sequences. Moreover, elementary functions, such as trigonometric, exponential, and
logarithm functions and many algebraic functions, can be approximated by using
sequences. With modern computers, such approximations can be made accurate
enough for most practical purposes.

2.1 Definitions and Examples

A sequence is a function whose domain is the set of all integers greater than or equal
to some fixed integer. More formally, we have the following definition.

Definition 2.1.1. Let a be a fixed integer and A the set of all integers greater than
or equal to a. A function s from A into a set F is called a sequence in F. The images
of the members of A are called the terms of the sequence. They are ordered by
the ordering of A itself so that, for example, s.a/ is the first term of the sequence,
s.a C 1/ is the second, and so forth.

Throughout this book F will denote one of the three fields Q;R; or C. The
sequence will then be said to be rational, real, or complex, respectively. Results
established for complex sequences will therefore be valid for rational and real
sequences as they are special cases.

Given a sequence s W A ! F, we usually write sn instead of s.n/, where n 2 A.
Moreover we denote the sequence by fsngn2A or simply fsng if A is either clear from
the context or immaterial. If A is the set of all integers n � a, then we also write the
sequence as fsngn�a. Occasionally, the first few terms of the sequence may be listed
in order, so that we write sa; saC1; : : :, for instance.

© Springer Science+Business Media New York 2015
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We now present some examples of sequences.

Example 2.1.1 (Sign Sequence). The sequence given by f.�1/nC1gn�1 is

1; �1; 1; �1; : : : :

4

Example 2.1.2 (Harmonic Sequence). The sequence given by f1=ngn�1 is

1;
1

2
;

1

3
;

1

4
; : : : :

4
Example 2.1.3 (Complex Harmonic Sequence). The sequence given by fin=ngn�1 is

i; �1

2
; � i

3
;

1

4
;

i

5
; �1

6
; � i

7
;

1

8
; : : : :

4
Example 2.1.4 (Geometric Sequence). If we temporarily adopt the convention that
00 D 1, then for all complex numbers a and r , the sequence given by farngn�0 is

a; ar; ar2; ar3; : : : :

4

Example 2.1.5 (Arithmetic Sequence). For each complex a and d the sequence
given by fa C ndgn�0 is

a; a C d; a C 2d; a C 3d; : : : :

4

Example 2.1.6. The sequence given by f.1 C 1=n/ngn�1 is

2;
9

4
;

64

27
;

625

256
; : : : :

We shall return to this sequence later. 4
Often, particularly in computer applications, a sequence is defined inductively

by specifying the first few terms and then defining the remaining terms by means
of the preceding ones. For example, the geometric sequence farng can be defined
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inductively by writing s0 D a and sk D rsk�1 for all k > 0. Likewise, the arithmetic
sequence faCndg can be defined by setting s0 D a and sk D sk�1 Cd for all k > 0.

Example 2.1.7. A sequence that is often used in botany is the Fibonacci sequence
(see [6]). It is specified by putting F0 D F1 D 1 and

Fk D Fk�1 C Fk�2

for all k > 1. The sequence so defined is

1; 1; 2; 3; 5; 8; 13; 21; : : : :

We show by induction that

Fn D 1p
5

0
@
 

1 C p
5

2

!nC1

�
 

1 � p
5

2

!nC1
1
A

for all n � 0. First, for convenience let us define ˛ D .1 C p
5/=2 and ˇ D

.1 � p
5/=2. These are the solutions of the equation

x2 � x � 1 D 0; (2.1)

so that ˛2 D ˛ C 1 and ˇ2 D ˇ C 1. Since ˛ � ˇ D p
5, the required formula holds

for n D 0. It also holds for n D 1, since ˛2 �ˇ2 D ˛ C1� .ˇ C1/ D ˛ �ˇ D p
5.

Assuming that n > 1 and that the result holds for all positive integers less than n, it
follows that

Fn D Fn�1 C Fn�2

D 1p
5

.˛n � ˇn C ˛n�1 � ˇn�1/

D 1p
5

.˛n�1.˛ C 1/ � ˇn�1.ˇ C 1//

D 1p
5

.˛nC1 � ˇnC1/;

as required. It is somewhat surprising that the formula yields an integer. The number
˛ is known as the golden ratio. 4

Example 2.1.8. Fix a positive integer k. Define s1 D 1 and

sn D sn�1 C k

sn�1 C 1
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for all n > 1. The resulting sequence is

1;
k C 1

2
;

3k C 1

k C 3
;

k2 C 6k C 1

4k C 4
; : : : :

We will see later (Example 2.3.2) that its terms give a good approximation forp
k when n is large. For k D 2, the sequence was familiar to the ancient Greeks,

having appeared in Chapter 31 of the first volume of the manuscript Expositio rerum
mathematicarum ad legendum Platonem utilium by Theon of Smyrna in 130 AD.
The reader is invited to show by induction that

sn D
p

k � .1 C p
k/n C .1 � p

k/n

.1 C p
k/n � .1 � p

k/n
(2.2)

for all n. 4
Remark. The reader may wonder how the expressions for the general term were
obtained in the two preceding examples. One method using matrices is given in [15].
Here is another way of obtaining the formula for the Fibonacci sequence. Let us
write

Fn D A˛n C Bˇn

for some constants A; B; ˛; ˇ such that ˛ ¤ 0 and ˇ ¤ 0. For the equation

Fn D Fn�1 C Fn�2

to hold, we need to ensure that

A˛n C Bˇn D A˛n�1 C Bˇn�1 C A˛n�2 C Bˇn�2;

that is,

A˛n�2.˛2 � ˛ � 1/ C Bˇn�2.ˇ2 � ˇ � 1/ D 0:

For this purpose it is sufficient to take ˛ and ˇ to be the solutions of Eq. (2.1). This
observation gives the values for ˛ and ˇ in Example 2.1.7. Next, the initial condition
that F0 D F1 D 1 yields the equations

A C B D 1

and

A˛ C Bˇ D 1:
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The solution gives

B D ˛ � 1

˛ � ˇ
D

p
5 � 1

2
p

5
D � ˇp

5
;

so that

A D 1 � B D ˛p
5

:

The desired expression for Fn is now obtained by substitution.

Exercises 2.1.

1. Prove Eq. (2.2).

2.2 Convergence of Sequences

We are often concerned with the limiting behavior of a sequence fsng as n becomes
large. The process of enlarging n indefinitely is indicated by the notation n ! 1.

In what follows the sequences will be assumed to be complex unless an indication
to the contrary is given.

Definition 2.2.1. Let fsng be a sequence and L a number. We say that fsng
converges to L, and that L is the limit of fsng, if for each " > 0 there exists an
integer N such that

jsn � Lj < "

whenever n � N . If fsng converges to L, then we also say that sn approaches L as
n approaches infinity, and we write

lim
n!1 sn D L

or sn ! L as n ! 1.
A sequence is said to be convergent if there exists a number to which it

converges. A sequence is said to diverge, and to be divergent, if it does not
converge.

In Definition 2.2.1 the integer N may of course depend on ". It is also clear that
the inequality n � N may be replaced by the corresponding strict inequality, for
n � N if and only if n > N � 1.

Given L and " > 0, we may define the set of all z for which jz � Lj < "

as the "-neighborhood of L. This set is denoted by N".L/. Roughly speaking,
the definition of the convergence of a sequence to L says that for each pre-
scribed "-neighborhood of L, the terms of the sequence will eventually enter the
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neighborhood and remain there. In other words, the terms of the sequence become
arbitrarily close to L as n increases.

Note that the inequality jsn � Lj < " is equivalent in R to

L � " < sn < L C ":

A sequence that converges to 0 is said to be null.

Example 2.2.1. For each number a the constant sequence fag converges to a.

Proof. Define sn D a for each integer n 2 N. For every " > 0 and every n > 0 we
have jsn � aj D ja � aj D 0 < ", as desired.

4
Example 2.2.2. Let us show that

lim
n!1

in

n
D 0:

Given any " > 0, we need to find an integer N such that

ˇ̌
ˇ̌ in

n
� 0

ˇ̌
ˇ̌ < "

for all n � N . Since ji j D 1, we need 1=n < ", and so we choose any N > 1=" > 0.
For all n � N we deduce that

1

n
� 1

N
< ";

and the desired result follows. 4
Remark. The only property of i used in this proof is that ji j D 1. Hence the
argument can also be used to show that

lim
n!1

1

n
D 0:

Example 2.2.3. We show that the sequence f.�1/ng diverges. This result is intu-
itively clear, for the values of .�1/n oscillate between 1 and �1 as n increases. The
distance between these numbers is 2, and so every number L must be at a distance
of at least 1 from one or the other of them. But if L were the limit of our sequence,
then the terms would become arbitrarily close to L as n increases. We infer that no
number can be the limit of the sequence, and the sequence therefore diverges.

We can also cast this intuitive argument in terms of neighborhoods. For every
number L we can choose " so small that the "-neighborhood of L does not contain
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both 1 and �1. Therefore there is no term in the sequence beyond which the values
in the sequence remain in the "-neighborhood.

We now transform this intuition into a formal argument. Suppose the sequence
were to have a limit L, and choose any " such that 0 < " < 1. There would be an
integer N such that j.�1/n � Lj < " whenever n � N , no matter whether n is even
or odd. It would follow that

j1 � Lj < "

and

j1 C Lj D j � 1 � Lj < ":

Using the triangle inequality, we would therefore reach the contradiction that

2 D j1 C L C 1 � Lj � j1 C Lj C j1 � Lj < 2" < 2:

4
Example 2.2.4. For every complex number z such that jzj < 1, we will show that

lim
n!1 zn D 0:

If z D 0, then the result follows from Example 2.2.1 with a D 0, and so we
assume that z ¤ 0. Choose " > 0. We must find an integer N such that jznj < " for
all n � N . Since 0 < jzj < 1, we have 1=jzj > 1. Let us write

1

jzj D 1 C p

for some p > 0. By Example 1.3.1,

.1 C p/n � 1 C np

for all positive integers n. Choose N large enough so that

1 C Np >
1

"
:

Then, for all n � N , we have

1

jznj D
�

1

jzj
�n

D .1 C p/n � 1 C np � 1 C Np >
1

"
> 0;

so that jznj < " for each such n, as required. 4
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Remark. Since 1 <
p

5 < 3, we have 0 > 1 � p
5 > �2. Thus j1 � p

5j < 2, and
so

ˇ̌
ˇ̌̌1 � p

5

2

ˇ̌
ˇ̌̌

< 1:

Applying the result of the last example, we conclude that

lim
n!1

 
1 � p

5

2

!n

D 0:

This observation motivates us to approximate Fn in Example 2.1.7 by

1p
5

 
1 C p

5

2

!nC1

:

In fact, this approximation turns out to be accurate to within one decimal place for
all n � 4.

Since the convergence of a sequence fsng depends only on the behavior of the
terms sn where n is large, we would expect intuitively that the first few terms are
immaterial. This expectation is encapsulated in the following lemma.

Lemma 2.2.1. Let k be a positive integer. Then a sequence fsng approaches a
number L as n approaches infinity if and only if fsnCkg also approaches L.

Proof. Suppose first that sn ! L as n ! 1 and choose " > 0. Since

lim
n!1 sn D L;

there exists N such that jsn � Lj < " whenever n � N . But for each n � N we
have n C k > n � N , and so jsnCk � Lj < ". Therefore

lim
n!1 snCk D L;

as required.
Conversely, suppose snCk ! L as n ! 1. For every " > 0 there exists N such

that jsnCk � Lj < " for all n � N . Choose n � N C k. Then jsn � Lj < ", and we
conclude that sn ! L as n ! 1.

In view of this lemma, every theorem or definition concerning limits that
postulates sn to satisfy a specified property for all n will remain valid if in fact
sn satisfies the specified property only for all n greater than some fixed integer.

We show next that if a sequence converges, then the limit is unique. Certainly,
our intuition leads us to expect this result. The reasoning is akin to that used in
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Example 2.2.3. If the sequence fsng were to converge to two distinct numbers L1

and L2, which are a distance jL1�L2j apart, then each term sn would be at a distance
of at least jL1 �L2j=2 from one or the other of them. Therefore sn could not become
arbitrarily close to both L1 and L2 as n increases. In terms of neighborhoods, we
choose " so small that the "-neighborhoods of L1 and L2 are disjoint. It is therefore
impossible that as n increases the terms of the sequence enter both neighborhoods
and remain there. The proof of the uniqueness of the limit just formalizes this
intuitive argument.

Theorem 2.2.2. A sequence has at most one limit.

Proof. Let fsng be a sequence with limits L1 and L2 and choose " > 0. Since sn

approaches L1, there is an integer N1 such that

jsn � L1j < "

for all n � N1. Likewise, there is an integer N2 such that

jsn � L2j < "

for all n � N2. For every n � maxfN1; N2g, both of the preceding inequalities hold.
For such n we therefore have

jL1 � L2j D jL1 � sn C sn � L2j � jsn � L1j C jsn � L2j < 2":

But " is an arbitrary positive number. If L1 ¤ L2, then we could choose

" D jL1 � L2j
2

> 0;

thereby obtaining the contradiction that jL1 � L2j < jL1 � L2j. We deduce that
L1 D L2, as required.

The next proposition gives another way of expressing the definition of a limit of
a sequence. It is often more convenient to use

Proposition 2.2.3. Let fsng be a sequence, L a number, and c a positive number.
Then limn!1 sn D L if and only if for each " > 0 there exists an integer N such
that

jsn � Lj < c"

for all n � N .

Proof. Since c" > 0, it is immediate from the definition of the limit that the stated
condition holds if limn!1 sn D L. Let us suppose therefore that for each " > 0
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there exists an integer N such that jsn � Lj < c" for all n � N . Choose " > 0.
Since "=c > 0, there exists N such that

jsn � Lj < c � "

c
D "

for all n � N . Hence limn!1 sn D L. ut
Sometimes we wish to consider more than one sequence, in which case the

following proposition is sometimes useful.

Proposition 2.2.4. Let fsng and ftng be sequences with respective limits K and
L. Then for each " > 0 there is an integer N such that both jsn � Kj < " and
jtn � Lj < " for all n � N .

Proof. Given " > 0, there exists N1 such that jsn � Kj < " for all n � N1.
Similarly, there exists N2 such that jtn � Lj < " for all n � N2. If we now take
N D maxfN1; N2g and choose n � N , then n � N1 and n � N2, so that both
required inequalities follow. ut
Remark. This result can clearly be generalized to handle situations where more than
two sequences are under consideration.

Exercises 2.2.

1. Show from the definition that the following sequences are divergent:

(a)
˚
.�1/n C 1

n

	
;

(b)
n

1C.�1/n

2

o
;

(c)
˚
in C 1

2n

	
.

2. Show that

lim
n!1

�
1 C i

2

�n

D 0:

3. Suppose that xn > 0 for all n 2 N and that limn!1 xn D 0. Show that the set

S D fxn j n 2 Ng

contains a maximum member. Must S always contain a minimum member?
4. Let

sn.x/ D x C xn

1 C xn

for all n 2 N and x 2 R�f�1g. Find each real number x for which the sequence
fsng is convergent and find the limit of the sequence.
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5. Test the convergence of the real sequence



an � bn

an C bn

�
;

where a and b are numbers such that an C bn ¤ 0 for all n.
6. Suppose that

lim
n!1

zn � L

zn C L
D 0;

where L 2 C and zn 2 C � f�Lg for all n. Show that

lim
n!1

jznj � jLj
jznj C jLj D 0

and limn!1 zn D L.
7. Let w be a complex number such that jwj ¤ 1 and let

zn D wn

1 C w2n

for all n. Show that the sequence fzng converges to 0. Is this statement still true
if jwj D 1?

2.3 Algebra of Limits

Using the definition of convergence to determine whether a sequence converges, and
if so to what limit, can be a tedious process. However, if a given sequence is a sum,
difference, product, or quotient of other sequences, then the behavior of the given
sequence can be investigated by studying simpler sequences. Our next objective is
to see how this simplification is effected. We begin with some results concerning
the size of terms in a convergent sequence.

A sequence fsng is said to be bounded if there exists M such that jsnj < M for
all n.

Theorem 2.3.1. Every convergent sequence is bounded.

Proof. Let fsng be a convergent sequence with limit L. For each " > 0 there is an
integer N such that jsn � Lj < " for all n � N . For every such n we have

jjsnj � jLjj � jsn � Lj < ";

so that

jLj � " < jsnj < jLj C ":
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Setting

M D maxfjs1j; js2j; : : : ; jsN �1j; jLj C "g;

we find that jsnj � M for all n. Hence fsng is bounded. ut
The preceding proof shows that if

lim
n!1 sn D L;

then

lim
n!1 jsnj D jLj:

On the other hand, we observe from Example 2.2.3 that the converse does not
necessarily hold. Nevertheless, if limn!1 jsnj D 0, then for each " > 0 there exists
an integer N such that jsnj < " for all n � N , and we conclude that limn!1 sn D 0:

We summarize these observations in the following proposition.

Proposition 2.3.2. 1. If limn!1 sn D L, then limn!1 jsnj D jLj.
2. If limn!1 jsnj D 0, then limn!1 sn D 0.

Proposition 2.3.3. Suppose fsng is a real sequence such that

lim
n!1 sn D L > c

for some number c. Then there exist numbers N and k > c such that sn > k for all
n � N .

Proof. Choose " such that 0 < " < L � c. There exists N such that jsn � Lj < "

for all n � N . For each such n we have

L � " < sn < L C ":

The conclusion of the theorem is therefore satisfied by k D L � " > c: ut
Similarly, one can establish the following result.

Proposition 2.3.4. Suppose fsng is a real sequence such that

lim
n!1 sn D L < c:

Then there exist numbers N and k < c such that sn < k for all n � N .

Also, if fsng is a real sequence such that

lim
n!1 sn D L > 0;
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then we may take c D L=2 in Proposition 2.3.3 and infer the existence of a number
N such that sn > L=2 for all n � N . A corresponding statement holds if L < 0.
Thus we have the following result.

Proposition 2.3.5. Let fsng be a real sequence such that

lim
n!1 sn D L ¤ 0:

1. If L > 0, then there is an integer N such that sn > L=2 for all n � N .
2. If L < 0, then there is an integer N such that sn < L=2 for all n � N .

Corollary 2.3.6. Let fsng be a (real or complex) sequence such that

lim
n!1 sn D L ¤ 0:

Then there is an integer N such that jsnj > jLj=2 for all n � N .

Proof. From the hypothesis it follows that

lim
n!1 jsnj D jLj > 0:

An appeal to Proposition 2.3.5(1) completes the proof. ut
We are now ready to establish the sum, product, and quotient rules for limits.

Theorem 2.3.7. Let fsng and ftng be sequences, and suppose that limn!1 sn D K

and limn!1 tn D L. Then

1.

lim
n!1.sn C tn/ D K C LI

2.

lim
n!1 sntn D KLI

3.

lim
n!1

sn

tn
D K

L

if L ¤ 0 and tn ¤ 0 for all n.

Proof. 1. Choose " > 0. Using Proposition 2.2.4, we find an integer N such that
both

jsn � Kj < "
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and

jtn � Lj < "

for all n � N . For every such n we deduce that

j.sn C tn/ � .K C L/j D j.sn � K/ C .tn � L/j
� jsn � Kj C jtn � Lj
< 2";

and the result follows from Proposition 2.2.3.
2. Choosing " > 0, we find an integer N with the property stated in the proof of

part (1). Moreover, the convergent sequence fsng is bounded, and so there exists
M such that jsnj < M for all n. For all n � N we therefore have

jsntn � KLj D jsntn � Lsn C Lsn � KLj
� jsnjjtn � Lj C jLjjsn � Kj
< M" C jLj"
D .M C jLj/";

and again the result follows from Proposition 2.2.3.
3. By Corollary 2.3.6 there exists an integer N1 such that jtnj > jLj=2 > 0 for all

n � N1. Thus

1

jtnj <
2

jLj :

We prove next that

lim
n!1

1

tn
D 1

L
:

To this end, choose " > 0. There is an integer N2 such that jtn � Lj < " for all
n � N2. For every n � maxfN1; N2g we therefore have

ˇ̌̌
ˇ 1

tn
� 1

L

ˇ̌̌
ˇ D

ˇ̌̌
ˇL � tn

Ltn

ˇ̌̌
ˇ

D jtn � Lj
jLjjtnj

< " � 1

jLj � 2

jLj

D 2

jLj2 ";

as required.
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We conclude the proof by using part (2) to deduce that

lim
n!1

sn

tn
D lim

n!1 sn � lim
n!1

1

tn
D K

L
:

ut
Note that the sequences fsn C tng, fsntng, and fsn=tng may converge even when

neither fsng nor ftng does so. For instance, f.�1/ng and f.�1/n�1g both diverge,
but f.�1/n C .�1/n�1g, f.�1/n.�1/n�1g, and f.�1/n=.�1/n�1g are all constant
sequences and therefore converge.

Before presenting some examples, we note three corollaries.

Corollary 2.3.8. Using the notation of the theorem, we have

lim
n!1.sn � tn/ D K � L:

Proof. From parts (1) and (2) of the theorem, we infer that

lim
n!1.sn � tn/ D lim

n!1.sn C .�1/tn/

D K C .�1/L

D K � L:

ut
Corollary 2.3.9. Let sn; tn; K; L be as in the statement of the theorem.

1. If sn � tn for all n, then K � L.
2. If sn � tn for all n, then K � L.

Proof. 1. By Corollary 2.3.8 we have

lim
n!1.sn � tn/ D K � L:

If K � L < 0, then, by Proposition 2.3.5(2), there would be an integer N such
that

sn � tn <
K � L

2
< 0

for all n � N . This contradiction shows that K � L � 0.
2. The proof of part (2) is similar.

ut
Putting ftng equal to a constant sequence fcg yields the following corollary.
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Corollary 2.3.10. Let fsng be a real sequence converging to K, and let c be a real
constant.

1. If sn � c for all n, then K � c.
2. If sn � c for all n, then K � c.

Remark. It should not be thought that if sn > c for all n then K > c. For instance,
1=n ! 0 as n ! 1, but 1=n > 0 for all n > 0. Similarly, if sn < c for all n, then
we can conclude only that K � c.

Example 2.3.1. Let

sn D 4n.4n C 3/

.4n C 1/.4n C 2/

for each n 2 N. Dividing both numerator and denominator by n2, we obtain

sn D 4
�
4 C 3

n

�
�
4 C 1

n

� �
4 C 2

n

� :

As

lim
n!1

1

n
D 0;

we may apply Theorem 2.3.7 to find that

lim
n!1 sn D 4.4 C 0/

.4 C 0/.4 C 0/
D 1:

4
Example 2.3.2. For every positive integer k we have

j1 �
p

kj D
p

k � 1 <
p

k C 1 D j1 C
p

kj;

and so
ˇ̌̌
ˇ̌ 1 � p

k

1 C p
k

ˇ̌̌
ˇ̌ < 1:

Using the result of Example 2.2.4, we therefore find that

lim
n!1

 
1 � p

k

1 C p
k

!n

D 0:

Applying an argument similar to that of the preceding example, we conclude that
the sequence in Example 2.1.8 converges to

p
k. 4
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Example 2.3.3. Let a and r be real numbers and suppose that jr j < 1. Let

sn D
nX

j D0

rj D 1 � rnC1

1 � r

for all n. By Example 2.2.4 and Theorem 2.3.7, we deduce that

lim
n!1 sn D 1

1 � r
:

4
Moreover if p denotes a polynomial and fsng is a sequence converging to L, then

Theorem 2.3.7 shows that

lim
n!1 p.sn/ D p.L/:

If p and q are polynomials such that q.L/ ¤ 0 and q.sn/ ¤ 0 for all n, then it also
follows that

lim
n!1

p.sn/

q.sn/
D p.L/

q.L/
:

We show next that the study of a complex sequence can be reduced to the study
of two real sequences.

Let fsng be a complex sequence and suppose that sn D an C ibn for all n, where
each an and bn is real. Then the sequences fang and fbng are called the real and
imaginary parts, respectively, of fsng. They satisfy the following theorem.

Theorem 2.3.11. A complex sequence converges to a number L if and only if its
real and imaginary parts converge, respectively, to the real and imaginary parts
of L.

Proof. Let sn D an C ibn for all n, where each an and bn is real. If the sequences
fang and fbng converge to A and B , respectively, then fsng converges to A C iB , by
Theorem 2.3.7.

Conversely, suppose that

lim
n!1 sn D L D A C iB;

where A and B are real. We must show that fang and fbng converge to A and B ,
respectively. Choose " > 0. There exists N such that jsn � Lj < " for all n � N .
Recalling that jRe .z/j � jzj for all z 2 C, we find that

jan � Aj � jsn � Lj < "

for all n � N . Similarly, jbn � Bj < " for all n � N , and the theorem follows. ut
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Corollary 2.3.12. If a complex sequence fsng converges to a number L, then fsng
converges to L.

The following algebraic result is also frequently used in calculations.

Theorem 2.3.13. Let fsng be a sequence of nonnegative real numbers converging
to L. Then

lim
n!1 s1=m

n D L1=m

for every positive integer m.

Proof. Note that L � 0 by Corollary 2.3.10.
Suppose first that L D 0. For every " > 0 there exists N such that sn D jsnj < "m

for all n � N . Thus s
1=m
n < " for all such n, and it follows that s

1=m
n ! 0 as n ! 1.

Suppose therefore that L > 0, and choose " > 0. There is an integer N such
that jsn � Lj < " for all n � N . For each such n define an D s

1=m
n > 0, and let

b D L1=m > 0. Then for all n � N it follows from Theorem 1.5.5 that

am
n � bm D .an � b/

m�1X
j D0

aj
nbm�j �1

D .an � b/Kn

even if an D b, where

Kn D
m�1X
j D0

aj
nbm�j �1

D bm�1 C
m�1X
j D1

aj
nbm�j �1:

Now Kn � bm�1 > 0 since a
j
nbm�j �1 > 0 for each j > 0. Therefore

js1=m
n � L1=mj D jan � bj

D jam
n � bmj

Kn

� jsn � Lj
bm�1

<
"

bm�1
;

as required. ut
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Remark. If sn > 0 for all n and L > 0, then the theorem also holds for each negative
integer m, for if m < 0, then �m > 0 and

s1=m
n D 1

s
�1=m
n

! 1

L�1=m
D L1=m:

Example 2.3.4. Using Theorem 2.3.13, we find that

lim
n!1

�p
n C 1 � p

n
�

D lim
n!1

n C 1 � np
n C 1 C p

n

D lim
n!1

1p
n C 1 C p

n

D lim
n!1

q
1
nq

1 C 1
n

C 1

D 0p
1 C 0 C 1

D 0:

4
Example 2.3.5. For all integers n > 1 we have

1

n � 1
D

1
n

1 � 1
n

! 0

as n ! 1. Hence

lim
n!1

1p
n � 1

D 0

by Theorem 2.3.13. 4
We conclude this section by showing that taking an arithmetic mean does not

alter the limit. In other words, the limit of a convergent sequence is also the limit of
the arithmetic mean of the terms of the sequence. This result is due to Cauchy. We
will give a corresponding result for geometric means later.

Theorem 2.3.14. If limn!1 sn D L, then

lim
n!1

1

n

nX
j D1

sj D L:
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Proof. Putting tn D sn � L for all n 2 N, we find that

1

n

nX
j D1

sj D 1

n

nX
j D1

.tj C L/ D 1

n

0
@ nX

j D1

tj C
nX

j D1

L

1
A D 1

n

nX
j D1

tj C L:

It therefore suffices to show that

lim
n!1

1

n

nX
j D1

tj D 0:

Since

lim
n!1 tn D lim

n!1.sn � L/ D 0;

for each " > 0 there is a positive integer N such that jtnj < " for each n � N . For
all n � N we also haveˇ̌̌

ˇ̌̌1
n

nX
j D1

tj

ˇ̌̌
ˇ̌̌ � 1

n

nX
j D1

jtj j

D 1

n

0
@N �1X

j D1

jtj j C
nX

j DN

jtj j
1
A :

Since 1=n ! 0, we may choose n so large that

1

n

N �1X
j D1

jtj j < ":

For large enough n it follows that

ˇ̌
ˇ̌̌
ˇ
1

n

nX
j D1

tj

ˇ̌
ˇ̌̌
ˇ � 1

n

N �1X
j D1

jtj j C 1

n

nX
j DN

jtj j

< " C 1

n

nX
j DN

"

D " C n � .N � 1/

n
"

� 2";

and the proof is complete. ut
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Exercises 2.3.

1. Find the limits of the following sequences:

(a)
np

n�1p
nC1

o
; (g)

np
nC.nC1/i

nC3

o
;

(b)
n

nC3i
n

C �
1

1Ci

�no
; (h)


qp
n C k � p

n

�
where k � 0;

(c)
˚

in
nC2i

	
; (i)

n
2n

nC2
C in

p
n

nC1

o
;

(d)
˚

nCin

nC1

	
, (j)

np
n2 C 1 � n

o
;

(e)
n�

1
4

C i
2

�no
; (k)

˚
.
p

n C 1 � p
n/

p
n
	
;

(f)
n

.2n�1/Š

.2nC1/Š

o
; (l)

n
n �p

.n C a/.n C b/
o
.

2. Suppose that limn!1 xn D L > 0. Show that there is a number N such that

9L < 10xn < 11L

for all n � N . Obtain a similar result for L < 0.

2.4 Subsequences

Roughly speaking, a subsequence of a sequence is obtained by discarding some
terms. Recall from the definition of an increasing function that a real sequence fsng
is increasing if sn < snC1 for all n. In order to construct a subsequence ftng of a
sequence fsng, we use an increasing sequence of positive integers to pick out the
terms of fsng that are to appear in ftng. Thus we define a sequence ftng to be a
subsequence of a sequence fsng if there is an increasing sequence fkng of positive
integers such that tn D skn for all n.

Example 2.4.1. Let fsng be the sequence f1=n2g. Its terms are

1;
1

4
;

1

9
;

1

16
;

1

25
;

1

36
;

1

49
;

1

64
; : : : :

Then fs2ng is the subsequence

1

4
;

1

16
;

1

36
;

1

64
; : : : ;

whereas fs2n�1g is the subsequence

1;
1

9
;

1

25
;

1

49
; : : : :

4
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We show next that subsequences enjoy the same convergence behavior as the
parent sequence.

Theorem 2.4.1. If a sequence converges to a number L, then so does each of its
subsequences.

Proof. Given that fsng is a sequence that converges to L, for every " > 0 there
exists an integer N such that jsn � Lj < " for all n � N . If fskng is a subsequence
of fsng, then jskn � Lj < " whenever kn � N . Since fkng is an increasing sequence
in N, we have kn � kN � N for all n � N . For all such n it therefore follows that
jskn � Lj < ", and the proof is complete. ut

This theorem provides a useful test for divergence of a sequence.

Corollary 2.4.2. Any sequence possessing subsequences that converge to distinct
limits must be divergent.

Example 2.4.2. Let sn D in for all n. Since s4n D 1 and s4nC1 D i for all n, the
sequence fsng has subsequences converging to distinct limits and hence diverges.

4
Example 2.4.3. The sequence



1

n
C .�1/n

�

has subsequences



1

2n
C 1

�

and



1

2n C 1
� 1

�

that converge to 1 and �1, respectively. The sequence is therefore divergent. 4
Theorem 2.4.3. Let fsng be a sequence. If the subsequences fs2ng and fs2nC1g
converge to the same number L, then so does fsng.

Proof. Choose " > 0. There is an integer N1 such that

js2n � Lj < "

for all n � N1. Similarly, there is an N2 such that

js2nC1 � Lj < "
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for all n � N2. Now let

N D maxf2N1; 2N2 C 1g:

For all n � N it follows that

jsn � Lj < ":

ut
Exercises 2.4.

1. For all n 2 N let

xn D
(

n
n2C1

if n is divisible by 3;�� 1
2

�n
otherwise.

Show that limn!1 xn D 0.
2. Show that the sequence


�
n � 1

n C 1

�
in

�

is divergent.
3. Test the convergence of the following sequences:

(a)
n

1C.�1/n

2Cin

o
;

(b)
˚
.�1/n

�
1 C 1

n

�	
.

2.5 The Sandwich Theorem

Sometimes a real sequence is flanked by two sequences that are known to converge
to the same limit. It is natural to expect that the given sequence also converges to
that limit. In this section we confirm that expectation. We begin with the following
special case.

Lemma 2.5.1. Let fang and fbng be real sequences such that 0 � an � bn for all
n. If limn!1 bn D 0, then limn!1 an D 0.

Proof. Choose " > 0. There is an integer N such that jbnj < " for all n � N . For
each such n it follows that janj � jbnj < ". ut
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Theorem 2.5.2 (Sandwich Theorem). Let fang, fbng, and fcng be real sequences
such that an � bn � cn for all n. If

lim
n!1 an D lim

n!1 cn D L;

then

lim
n!1 bn D L:

Proof. The hypotheses show that

0 � bn � an � cn � an

for all n, and that

lim
n!1.cn � an/ D L � L D 0:

The previous lemma therefore shows that

lim
n!1.bn � an/ D 0:

Thus

lim
n!1 bn D lim

n!1.bn � an C an/

D lim
n!1.bn � an/ C lim

n!1 an

D 0 C L

D L:

ut
Example 2.5.1. We shall show that

lim
n!1 n1=n D 1:

Let

sn D n1=n � 1
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for all n > 0. It suffices to prove that the sequence fsng is null. Note that sn � 0 for
all positive n. Therefore

n D .sn C 1/n >
n.n � 1/

2
s2

n

for all n > 0, by Eq. (1.3). Thus

s2
n <

2

n � 1

for all n > 1, and so

0 � sn <

p
2p

n � 1
:

The required result now follows from the sandwich theorem, since

lim
n!1

1p
n � 1

D 0

by Example 2.3.5. 4
Example 2.5.2. We show that

lim
n!1 b1=n D 1

for each constant b > 0.
Let us begin with the case where b � 1. Fix an integer n � b. Then

1 � b1=n � n1=n:

The required result follows in this case by using the previous example and the
sandwich theorem.

For b such that 0 < b < 1, we have 1=b > 1. Hence

lim
n!1

1

b1=n
D lim

n!1

�
1

b

�1=n

D 1:

Therefore the desired result follows in this case as well. 4
Example 2.5.3. Let 0 < x < 1. We know from Example 2.2.4 that

lim
n!1 xn D 0:

We now prove this result using the sandwich theorem.
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Put

p D 1 � x

x
> 0:

Then xp D 1 � x, so that x.1 C p/ D 1; hence

x D 1

1 C p
:

Using inequality (1.2), we conclude that

0 < xn D 1

.1 C p/n
� 1

1 C np
<

1

np
:

Since

lim
n!1

1

np
D 0;

the desired result follows by the sandwich theorem.
If z is a complex number such that jzj < 1, it follows that

lim
n!1 jznj D lim

n!1 jzjn D 0:

Therefore

lim
n!1 zn D 0

by Proposition 2.3.2(2). 4
Example 2.5.4. Given real numbers x1; x2; : : : ; xk , define

sn D
0
@ kX

j D1

jxj jn
1
A

1=n

for all positive integers n. It is easy to show that the sequence fsng converges to

M D maxfjx1j; jx2j; : : : ; jxkjg:

Note first that

M n �
kX

j D1

jxj jn � kMn:
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The result now follows from the sandwich theorem applied to the inequalities

M D .M n/1=n � sn � .kMn/1=n D k1=nM

upon noting that

lim
n!1 k1=nM D M:

4
We conclude this section with more applications of the sandwich theorem.

Theorem 2.5.3. Suppose that fsng and ftng are sequences such that limn!1 sn D 0

and ftng is bounded. Then

lim
n!1 sntn D 0:

Proof. Since ftng is bounded, there exists M such that jtnj < M for all n. Hence
0 � jsntnj � M jsnj ! 0 as n ! 1. Therefore jsntnj ! 0 as n ! 1, by the
sandwich theorem, and the result follows. ut
Theorem 2.5.4. Let fsng be a sequence of nonzero real numbers and suppose that

lim
n!1

ˇ̌̌
ˇsnC1

sn

ˇ̌̌
ˇ D L < 1:

Then

lim
n!1 sn D 0:

Proof. Taking

" D 1 � L

2
> 0;

we find that there is an integer N such that

ˇ̌̌
ˇ
ˇ̌̌
ˇ snC1

sn

ˇ̌̌
ˇ � L

ˇ̌̌
ˇ <

1 � L

2

for each n � N . For each such n it follows that

jsnC1j
jsnj < L C 1 � L

2
D 1 C L

2
;
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and so

0 < jsnC1j <
1 C L

2
jsnj:

An inductive argument therefore shows that

0 < jsN Ckj <

�
1 C L

2

�k

jsN j

for every positive integer k. Now

lim
k!1

�
1 C L

2

�k

D 0

as .1 C L/=2 < 1. The sandwich theorem therefore implies that

lim
k!1 jsN Ckj D 0;

and the result in question follows immediately. ut
Example 2.5.5. Let sn D np=cn for all positive integers n, where p is any rational
number and c > 1. Then

0 <
snC1

sn

D .n C 1/p

cnC1
� cn

np

D 1

c

�
n C 1

n

�p

D 1

c

�
1 C 1

n

�p

! 1

c

as n ! 1. As 1=c < 1, the sequence fsng converges to 0. 4
Example 2.5.6. Let b > 0 and sn D bn=nŠ for all nonnegative integers n. Then

0 <
snC1

sn

D bnC1

.n C 1/Š
� nŠ

bn
D b

n C 1
:

As the sequence fb=.n C 1/g converges to 0, so does fsng. 4
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Remark. The condition that
ˇ̌̌
ˇ snC1

sn

ˇ̌̌
ˇ < 1

for all n does not suffice to ensure that limn!1 sn D 0. For example, let

sn D n

n � 1

for all n > 1. Then

lim
n!1 sn D lim

n!1
1

1 � 1
n

D 1;

but

snC1

sn

D n C 1

n
� n � 1

n
D n2 � 1

n2
< 1:

The sandwich theorem can be used to prove that the limit of a convergent
sequence is also the limit of the geometric mean of the terms of the sequence. First
we establish the following lemma.

Lemma 2.5.5. Let fsng be a sequence of positive numbers. For all integers n > 0

define

Hn D n

� nX
j D1

1

sj

;

Gn D
0
@ nY

j D1

sj

1
A

1=n

;

and

An D 1

n

nX
j D1

sj :

Then Hn � Gn � An for all n, with equality holding for a given n if and only if
s1 D s2 D : : : D sn.

Proof. Certainly, G1 D A1. In order to prove that Gn � An for a given n > 1,
we use induction on the number k of subscripts j � n for which sj ¤ An. If
k D 0, then sj D An for all j � n. In this case Gn D .An

n/1=n D An, as desired.
Assume therefore that k > 0 and that the result holds whenever fewer than k of the
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first n terms of a sequence are different from the arithmetic mean of those terms.
Since k > 0, we may assume without loss of generality that s1 < An, the argument
being similar if s1 > An. As An is the average of s1; s2; : : : ; sn, we may therefore
assume, again without losing generality, that s2 > An. The n numbers An; s1 C
s2 � An; s3; s4; : : : ; sn have the same average An as s1; s2; : : : ; sn since they have the
same sum, but fewer than k of them are different from An. It therefore follows from
the inductive hypothesis that

.An.s1 C s2 � An/s3s4 : : : sn/1=n � An:

But

An.s1 C s2 � An/ � s1s2 D Ans1 C Ans2 � A2
n � s1s2

D .An � s1/.s2 � An/

> 0;

and so

s1s2 < An.s1 C s2 � An/:

Therefore

Gn D .s1s2 : : : sn/1=n

< .An.s1 C s2 � An/s3s4 : : : sn/1=n

� An;

as required.
It follows that

0 <

0
@ nY

j D1

1

sj

1
A

1=n

� 1

n

nX
j D1

1

sj

;

equality holding if and only if s1; s2; : : : ; sn are equal. Hence, taking reciprocals,

n

� nX
j D1

1

sj

� 1

�0
@ nY

j D1

1

sj

1
A

1=n

D
0
@1

�0
@1

� nY
j D1

sj

1
A
1
A

1=n

D
0
@ nY

j D1

sj

1
A

1=n

;

and we have proved that Hn � Gn. Once again, equality holds for n if and only if
s1; s2; : : : ; sn are equal. ut
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The proof that Gn � An was suggested to us by J. Hudson and is a modification
of an argument due to Ehlers. The numbers Hn, Gn, and An are, respectively, the
harmonic, geometric, and arithmetic means of the first n terms of the sequence.

Theorem 2.5.6. Let fsng be a sequence of positive numbers that converges to some
number L > 0. Then

lim
n!1

0
@ nY

j D1

sj

1
A

1=n

D L:

Proof. With the notation of Lemma 2.5.5, Theorem 2.3.14 shows that An ! L as
n ! 1. Moreover

lim
n!1

1

sn

D 1

L
;

and so the same theorem shows that

1

Hn

D 1

n

nX
j D1

1

sj

! 1

L

as n ! 1; hence limn!1 Hn D L. By the sandwich theorem it follows that

lim
n!1

0
@ nY

j D1

sj

1
A

1=n

D L:

ut
Exercises 2.5.

1. Test the sequence



2n

nŠ
C in

2n

�

for convergence.
2. Show that the sequence

˚
n1=n C inwn

	

is convergent if jwj < 1.
3. Suppose that janj � bn for all n and that

lim
n!1 bn D 0:
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Show that

lim
n!1 an D 0:

4. Show that the sequence


�n

2

�1=n
�

converges.
5. Show that the sequence

f.2n C 3n/1=ng

converges to 3.
6. Show that

lim
n!1

1

n

nX
j D1

j 1=j D 1:

7. Suppose that xn > 0 for all n � 0 and that

lim
n!1

xnC1

xn

D L > 0:

Show that

lim
n!1 x1=n

n D L:

Is the converse true? (Hint: Use Theorem 2.5.6.)
8. For all k 2 N show that

lim
n!1

 
nk

n

!1=n

D kk

.k � 1/k�1
;

where 00 D 1. (Use question 7.)
9. Test the convergence of the following sequences:

(a)
nPn

j D0
n

n2Cj

o
;

(b)
nPn

j D1
j

n2Cj

o
;

(c)
nPn

j D0
n2

n3C2nCj

o
.
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2.6 The Cauchy Principle

Sometimes it is possible to establish that a sequence is convergent without actually
finding its limit. We shall show that a sequence is convergent if and only if its terms
are ultimately close to one another even when they are not consecutive. This idea
leads to the concept of a Cauchy sequence.

A sequence fsng is called a Cauchy sequence if for every " > 0 there is an
integer N such that

jsn � smj < "

whenever m � N and n � N . Of course, " may be replaced in this definition by c"

for any c > 0.
Cauchy sequences are characterized in the next theorem.

Theorem 2.6.1. A sequence fsng is Cauchy if and only if for all " > 0 there exists
an integer N such that

jsn � sN j < "

for all n � N .

Proof. The necessity follows immediately by taking m D N in the definition. To
prove the sufficiency of the stated condition, choose " > 0. By hypothesis there is
an integer N such that

jsn � sN j < "

for all n � N . Choosing m � N and n � N , we have

jsn � smj D jsn � sN C sN � smj
� jsn � sN j C jsm � sN j
< 2":

Therefore fsng is a Cauchy sequence by definition. ut
We now establish some properties of Cauchy sequences.

Theorem 2.6.2. Every Cauchy sequence is bounded.

Proof. Let fsng be a Cauchy sequence and choose " > 0. By Theorem 2.6.1 there is
an integer N such that

jsn � sN j < "
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for all n � N . The proof is now completed by the argument of Theorem 2.3.1,
replacing L by sN . ut

Since the terms of a Cauchy sequence are ultimately close to one another, it is
intuitively clear that if some subsequence of the sequence converges to a number L,
then the whole sequence must converge to L.

Theorem 2.6.3. If fsng is a Cauchy sequence with a subsequence that converges to
L, then fsng also converges to L.

Proof. Let fskng be a subsequence that converges to L and choose " > 0. There
exist N1 and N2 such that

jskn � Lj < "

for each n � N1 and

jsn � smj < "

whenever m � N2 and n � N2. Take

N D maxfN1; N2g:

Then for each n � N we have n � N1 and kn � n � N2 since fkng is an increasing
sequence of positive integers. Hence

jsn � Lj D jsn � skn C skn � Lj
� jsn � skn j C jskn � Lj
< 2";

and so

lim
n!1 sn D L:

ut
Theorem 2.6.4. Every convergent sequence is Cauchy.

Proof. Let fsng be a sequence that converges to L and replace sN by L in the proof
of Theorem 2.6.1. ut

But is it true that every Cauchy sequence converges? It is possible to find a
rational Cauchy sequence that converges to an irrational number. We have already
seen this phenomenon in Example 2.3.2. (It is shown in Exercises 1.1 that

p
2 is

irrational.) However, every real Cauchy sequence does converge to a real number. In
fact, one way of defining real numbers is via Cauchy sequences of rational numbers,
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as is done in [10]. The first step is to define two sequences fsng and ftng to be
equivalent if the sequence fsn � tng is null. It can be shown that this notion defines
an equivalence relation on the set of all rational Cauchy sequences, and the real
numbers are defined as the corresponding equivalence classes. The convergence of
real Cauchy sequences and the fact that every real number is the limit of a rational
Cauchy sequence can be established as consequences. The property that all real
Cauchy sequences converge to real numbers is referred to as the completeness of
the real number system.

Let x and y be real numbers such that x < y. From the definition of the
real number field we see that .x C y/=2 is a limit of a Cauchy sequence of
rational numbers. Hence the interval .x; y/ contains at least one rational number.
Consequently, the interval .x=

p
2; y=

p
2/ contains a rational number r . We may

assume that r ¤ 0: If x < 0 < y, then replace y by 0. Thus the interval .x; y/

contains the irrational number r
p

2. We conclude that every open interval .x; y/,
where x < y, contains at least one rational number and at least one irrational
number. This condition is described as the density property of the real number
system.

The completeness property of real numbers is equivalent to another property
known as the supremum property. In order to explain it, we need some additional
definitions. A set S of real numbers is said to be bounded above if there exists a
real number b such that s � b for all s 2 S . Any number b with this property is
called an upper bound of S . For example, 0 is an upper bound for the set of all
negative real numbers. Any positive number is also an upper bound for that set. An
upper bound b of S is the least upper bound or supremum of S if b � c for every
upper bound c of S . The least upper bound of S , if it exists, is unique, for if b and
c are both least upper bounds of S , then b � c and c � b. It is denoted by sup S .
For example, if S is the set of all negative numbers, then sup S D 0. Sets that are
bounded below, lower bounds of such sets, and greatest lower bounds or infima
are defined analogously. The greatest lower bound of a set S , if it exists, is unique
and is denoted by inf S . If S is the range of a bounded sequence fsng, then its least
upper bound is also denoted by supfsng and its greatest lower bound by inffsng.

The supremum property alluded to above asserts that every nonempty set of real
numbers that is bounded above has a least upper bound. The proof of the equivalence
of the completeness and supremum properties is our next goal. Before tackling it,
however, we insert an example of a Cauchy sequence.

Example 2.6.1. Let a and b be complex numbers. Define s0 D a, s1 D b, and

snC1 D sn C sn�1

2

for all n > 0. If a D b, then sn D a for all n. Suppose a ¤ b. It is not hard to show
by induction that

snC1 � sn D .�1/n b � a

2n
(2.3)
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for all n � 0. For every m and n such that n > m, the use of the telescoping property
combined with the triangle inequality shows that

jsn � smj D
ˇ̌
ˇ̌̌
ˇ

n�1X
j Dm

.sj C1 � sj /

ˇ̌
ˇ̌̌
ˇ

�
n�1X
j Dm

jsj C1 � sj j

D
n�1X
j Dm

jb � aj
2j

D jb � aj
2m

n�1X
j Dm

1

2j �m

<
jb � aj
2m�1

;

since

n�1X
j Dm

1

2j �m
D

n�m�1X
j D0

1

2j
D 1 � 1

2n�m

1 � 1
2

<
1
1
2

D 2:

Example 2.2.4 shows that jb � aj=2m�1 ! 0 as m ! 1, and so for each " > 0 we
may choose N such that

jb � aj
2N �1

< ":

For all m � N and n > m � N , it follows that

jsn � smj <
jb � aj
2m�1

� jb � aj
2N �1

< ":

Therefore fsng is a Cauchy sequence. By the completeness property it converges to
some number L.

In order to find L, one might attempt to make use of the recurrence relation that
defines the sequence, but such an attempt leads to the equation

L D L C L

2
D L;

which does not give any information about L. Instead, we use induction to show
from Eq. (2.3) that for all k � 0,
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s2k D a C
k�1X
j D0

b � a

22j C1

D a C b � a

2

k�1X
j D0

1

4j

D a C b � a

2

 
1 � 1

4k

1 � 1
4

!

D a C b � a

2
� 4

3
�
�

1 � 1

4k

�

! a C 2.b � a/

3

D a C 2b

3

as k ! 1. By Theorem 2.4.1 it follows that

lim
n!1 sn D a C 2b

3
:

4
Theorem 2.6.5. The completeness property for real numbers implies the supremum
property.

Proof. Let S be a nonempty set of real numbers that is bounded above. We must
show that S has a least upper bound. If an element s 2 S happens to be an upper
bound of S , then s is in fact the least upper bound of S . We may therefore assume
that no member of S is an upper bound of S .

Since S is nonempty and bounded above, we may choose a0 2 S and an upper
bound b0 of S . By assumption, a0 is not an upper bound of S . If .a0 C b0/=2

is an upper bound of S , then let a1 D a0 and b1 D .a0 C b0/=2; otherwise let
a1 D .a0 C b0/=2 and b1 D b0. In both cases b1 is an upper bound of S , but a1 is
not. Proceeding inductively, we obtain a nested sequence

Œa0; b0� � Œa1; b1� � Œa2; b2� � : : :

of closed intervals such that no an is an upper bound of S , but each bn is.
We shall establish that the sequence fbng is Cauchy. First, an inductive argument

shows that

bn � an D b0 � a0

2n
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and

0 � bn � bnC1 � b0 � a0

2nC1

for all n � 0. For each positive integer p it therefore follows from the telescoping
property that

jbnCp � bnj D bn � bnCp

D
p�1X
j D0

.bnCj � bnCj C1/

�
p�1X
j D0

b0 � a0

2nCj C1

D b0 � a0

2nC1

p�1X
j D0

1

2j

<
b0 � a0

2n
;

since

p�1X
j D0

1

2j
D 1 � 1

2p

1 � 1
2

< 2:

Example 2.2.4 shows that 1=2n ! 0 as n ! 1. Given " > 0, we may therefore
choose N such that

b0 � a0

2N
< ":

For all n � N and all positive integers p it follows that

jbnCp � bnj <
b0 � a0

2n
� b0 � a0

2N
< ";

and we infer that fbng is indeed a Cauchy sequence. A similar argument demon-
strates that fang is also a Cauchy sequence.

By the completeness principle fang and fbng converge to some numbers a and b,
respectively. For all n we have an � anC1 < bnC1 � bn, and so

an � a � b � bn;
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by Corollary 2.3.10. Therefore bn � an � b � a. If b > a, then there is an n such
that

bn � an D b0 � a0

2n
< b � a:

This contradiction shows that a D b.
We shall establish that b is the required least upper bound of S . In order to show

that it is an upper bound, choose s 2 S and suppose that s > b. Since bn ! b, we
may use Proposition 2.3.4 to choose n such that bn < s, in contradiction to the fact
that bn is an upper bound of S . Thus s � b for all s 2 S , and so b is indeed an upper
bound of S .

Next, choose t < b D a. The proof will be completed by showing that t is not
an upper bound of S . Since an ! a > t , we may choose n such that t < an. As an

is not an upper bound of S , neither is t . Thus b is the least upper bound of S , and
the proof is complete. ut
Corollary 2.6.6. Any nonempty set of real numbers that is bounded below has a
greatest lower bound.

Proof. Let S be a nonempty set that is bounded below, and apply the supremum
property to the set f�s j s 2 Sg. ut

We now know that the completeness property implies the supremum property.
We prove next that the converse is also true. Throughout this discussion we
therefore assume that the supremum property holds. First we show that, under this
assumption, bounded real sequences always possess convergent subsequences.

Theorem 2.6.7. Every bounded sequence of real numbers has a convergent
subsequence.

Proof. Let fsng be a bounded sequence of real numbers. If its range is a finite set,
then some term b is repeated infinitely many times. In other words, there are positive
integers k1; k2; : : : such that fkng is an increasing sequence and skn D b for all n.
Hence limn!1 skn D b.

Suppose therefore that the range Rs of fsng is infinite. Since the sequence is
bounded, we may choose m and M such that m < sn < M for all n. Let V be the
set of all x 2 Œm; M/ such that Rs \ .x; M/ is infinite. Certainly, m 2 V , so that
V ¤ ;. But V is also bounded, and so the supremum property implies that V has a
least upper bound b � M . We distinguish two cases.

Case 1: Suppose b D M . Since b � 1 is not an upper bound of V , there is a
v1 2 V such that b � 1 < v1 < M . Thus Rs \ .v1; M/ is infinite, and so we may
choose k1 such that sk1 2 .v1; M/: Similarly, b �1=2 is not an upper bound of V ,
and so there exists v2 2 V such that b �1=2 < v2 < M . Moreover Rs \ .v2; M/

is infinite, so that there exists k2 > k1 such that sk2 2 .v2; M/. Continuing
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inductively, we construct an increasing sequence fkng of positive integers such
that skn 2 .b � 1=n; M/ for all n > 0. Thus

b � 1

n
< skn < M D b:

By the sandwich theorem it follows that

lim
n!1 skn D b:

Case 2: If b < M , then we may choose N such that

b < b C 1

N
< M:

Thus

b < b C 1

N C n
< M

for all n � 0. Furthermore, as b � 1=.N C n/ is not an upper bound of V , there
exists un 2 V such that

b � 1

N C n
< un � b:

Since b is an upper bound of V , we have b C 1=.N C n/ … V , and so

Rs \
�

b C 1

N C n
; M

�

is finite since

m � b < b C 1

N C n
< M:

But Rs \ .un; M/ is infinite since un 2 V , and as b � 1=.N C n/ < un, we infer
that

Rs \
�

b � 1

N C n
; b C 1

N C n

�

is infinite. Putting n D 0, we may therefore choose k0 so that

b � 1

N
< sk0 < b C 1

N
;
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and for each n > 0 there exists kn > kn�1 such that

b � 1

N C n
< skn < b C 1

N C n
:

It follows from the sandwich theorem that

lim
n!1 skn D b:

ut
Corollary 2.6.8. Every bounded sequence of complex numbers has a convergent
subsequence.

Proof. Let fzng be a bounded sequence of complex numbers. Then, for each n,
it follows that zn D xn C iyn for some real numbers xn and yn. Using the facts
that jRe .z/j � jzj and jIm .z/j � jzj for each complex number z, we deduce that
fxng and fyng are also bounded. By Theorem 2.6.7 fxng has a subsequence, fxkng,
that converges to some number a. Similarly, fykng has a subsequence, fykln

g, that
converges to some number b. The subsequence fxkln

g of fxkng also converges to a,
by Theorem 2.4.1. Hence fzkln

g converges to a C ib. ut
We have proved that if the supremum property holds, then every bounded

sequence contains a convergent subsequence. Since every Cauchy sequence is
bounded, a Cauchy sequence fsng therefore has a convergent subsequence. It follows
by Theorem 2.6.3 that fsng converges as well. In other words, the supremum
property implies completeness. For real numbers these two properties therefore
imply each other. Henceforth we assume they both hold, referring the reader to [10]
for a proof.

We now have the following theorem.

Theorem 2.6.9 (Cauchy Principle). A real sequence is convergent if and only if it
is a Cauchy sequence.

In fact, by considering separately the real and imaginary parts of the terms
of a complex sequence, one can show that this principle holds even for complex
sequences. The details are left as an exercise.

Roughly speaking, the Cauchy principle tells us that convergent sequences are
those whose terms are getting closer and closer. In particular, for a sequence to
converge it is necessary that the distance between successive terms diminishes. In
fact, if fsng is convergent, then

lim
n!1.snC1 � sn/ D 0:

However, the converse is not true, as we see in the next example.

Example 2.6.2. Let

sn D
nX

j D1

1

j

for all n. We show that fsng is divergent.
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Suppose that limn!1 sn D s. Then

tn D
nX

j D1

1

2j
D 1

2

nX
j D1

1

j
! s

2

as n ! 1, and

un D
nX

j D1

1

2j � 1
D s2n � tn ! s � s

2
D s

2

as n ! 1. These results cannot both hold: Since

1

2j � 1
� 1

2j
> 0

for all j > 0, we have

lim
n!1.un � tn/ > u1 � t1 D 1

2
> 0:

Therefore fsng is indeed divergent. However,

snC1 � sn D 1

n C 1
! 0

as n ! 1. 4
Example 2.6.3. The sequence fzng, where z is a complex number, is convergent if
and only if jzj < 1 or z D 1.

Proof. We have shown in Example 2.2.4 that if jzj < 1, then the sequence is
convergent. It is certainly so if z D 1.

Conversely, suppose that jzj � 1 and z ¤ 1. Then

jznC1 � znj D jzjnjz � 1j � jz � 1j > 0:

Therefore znC1 � zn does not approach 0 as n ! 1. We conclude that the sequence
is divergent. 4

A sequence is injective if and only if its terms are distinct. The following theorem
concerns the existence of an injective convergent sequence.

Theorem 2.6.10 (Bolzano, Weierstrass). Every bounded infinite set of numbers
contains an injective convergent sequence.
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Proof. Any infinite set S of numbers certainly contains an injective sequence. If S

is bounded, then this sequence is also bounded and therefore contains a convergent
subsequence that is necessarily injective. ut

A number b is a limit point or an accumulation point of a set S if there is
an injective sequence fsng in S that converges to b. It follows from the Bolzano–
Weierstrass theorem that every bounded infinite set of numbers has a limit point.

The following theorem gives an alternative definition of a limit point. For every
" > 0 we define

N �
" .b/ D N".b/ � fbg:

Theorem 2.6.11. Let S be a set of numbers and b a number. The following two
statements are equivalent:

1. b is a limit point of S ;
2. for each " > 0,

S \ N �
" .b/ ¤ ;:

Proof. Let b be a limit point of S . Then there exists an injective sequence fsng in S

converging to b. Choose " > 0. There exists N such that

jsn � bj < "

for all n � N . As fsng is injective, there exists n � N such that sn ¤ b. Thus
sn 2 N �

" .b/, as required.
Conversely, suppose (2) holds. Letting "0 D 1, by hypothesis we may choose

s0 2 S \ N �
"0

.b/. Thus 0 < js0 � bj < 1. Continuing by induction, suppose that k is
a positive integer and that s0; s1; : : : ; sk�1 are distinct real numbers satisfying

0 < jsk�1 � bj <
1

2k�1

and

jsk�1 � bj < jsj � bj

for each nonnegative integer j < k � 1. Let

"k D jsk�1 � bj
2

> 0:

By hypothesis, there exists sk 2 S \ N �
"k

.b/. Thus

jsk � bj < "k < jsk�1 � bj < jsj � bj
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for each j < k � 1. Therefore jsk � bj < jsj � bj for each j < k, so that sk ¤ sj

for each such j . Moreover

0 < jsk � bj <
jsk�1 � bj

2
<

1

2k
:

We have now defined an injective sequence fsng in S such that

0 < jsn � bj <
1

2n

for each n. By the sandwich theorem, the sequence fsn � bg converges to 0, and so

lim
n!1 sn D b:

ut
A subset of C is closed if it contains all its limit points.

Example 2.6.4. Let a and b be real numbers with a < b. We can confirm that
the interval I D Œa; b� satisfies this definition, thereby establishing agreement of
this terminology with that introduced earlier in connection with intervals. Indeed,
choose z D .x; y/ 2 C � I . If y ¤ 0, then

N �
" .z/ \ I D ; (2.4)

for each positive " < jyj. Suppose therefore that z is real. If z < a, then Eq. (2.4)
holds for every positive " < a � z. If z > b, then apply the same argument with
0 < " < z � b. We conclude from Theorem 2.6.11 that I is closed.

A similar argument may be applied to show that the rectangle R D Œa; b� � Œc; d �

is a closed set in R
2 D C. Here a < b and c < d , and R is the set of points .x; y/

such that a � x � b and c � y � d . Choose a point z D .x; y/ 2 C � R. Then for
some r > 0 at least one of the following cases arises:

x D b C r; x D a � r; y D d C r; y D c � r:

Choose such an r as small as possible, and let " D r=2 > 0. Then N".z/ \ R D ;,
and so z is not a limit point of R. 4
Exercises 2.6.

1. Show from the definition that the sequence f1=n2g is Cauchy.
2. Show that if for each " > 0 there exists N such that jxn � xN j < " whenever

n > N , then fxng is a Cauchy sequence.
3.(a) Let fxng be a sequence and suppose there exists a constant r 2 .0; 1/ such

that

jxnC1 � xnj � rn

for all n. Show that fxng is Cauchy.
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(b) Give an example of a divergent sequence fyng with the property that

lim
n!1.ynC1 � yn/ D 0:

4. Show that if

jxnC2 � xnC1j � r jxnC1 � xnj

for some r 2 .0; 1/ and all n, then fxng is Cauchy.
5. Show that if

lim
n!1 supfjxj � xkj j j > k � ng D 0;

then fxng is Cauchy.
6. Let xn ¤ 0 for all n and suppose that limn!1 xn ¤ 0. Prove that

inffjxnj j n 2 Ng > 0:

7. Show that a sequence fxng is Cauchy if and only if for each " > 0 there exists N

such that

jxn � xmj
1 C jxn � xmj < "

whenever n > m � N .

2.7 Monotonic Sequences

We now study an important family of sequences whose convergence can often be
determined without any knowledge of their limits, namely, monotonic sequences.
We begin with some examples that illustrate techniques for establishing the
monotonicity of sequences. Note that a sequence fsng is increasing if and only
if f�sng is decreasing. Similarly, fsng is nondecreasing if and only if f�sng is
nonincreasing.

Example 2.7.1. Let us show that the sequence fsng is decreasing, where

sn D 3n C 1

2n � 3

for all n � 2.
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One approach is to show that snC1 � sn < 0 for all n � 2. This result follows
from the calculation

snC1 � sn D 3.n C 1/ C 1

2.n C 1/ � 3
� 3n C 1

2n � 3

D 3n C 4

2n � 1
� 3n C 1

2n � 3

D �11

.2n � 1/.2n � 3/

< 0:

An alternative is to demonstrate that snC1=sn < 1 for all n � 2:

snC1

sn

D 3n C 4

2n � 1
� 2n � 3

3n C 1

D 6n2 � n � 12

6n2 � n � 1

< 1:

4
Example 2.7.2. We show by induction that the sequence fsng is increasing, where
s1 D 1 and

sn D
p

sn�1 C 1

for all n > 1.
Certainly, s2 D p

2 > 1 D s1. Suppose sn > sn�1 for some n � 2. Then

snC1 D
p

sn C 1 >
p

sn�1 C 1 D sn;

as required. 4
Our next goal is to show that a monotonic sequence is convergent if and only if

it is bounded. We need the following notions concerning unbounded sequences.

Definition 2.7.1. Let fsng be a real sequence. We write

lim
n!1 sn D 1

if for each M there exists N such that sn > M for all n � N . We also say that sn

approaches infinity as n approaches infinity, and we write sn ! 1 as n ! 1.
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Likewise, we write

lim
n!1 sn D �1

if for each M there exists N such that sn < M for all n � N . In this case we say
that sn approaches minus infinity as n approaches infinity, and we write sn ! �1
as n ! 1.

Remark 1. Clearly, we may assume that M > 0 in the former definition and that
M < 0 in the latter. We may also replace the inequalities sn > M and sn < M by
sn > cM and sn < cM, respectively, for all c ¤ 0.

Remark 2. Let tn D �sn for all n. Then tn < M if and only if sn > �M .
Consequently sn ! 1 as n ! 1 if and only if tn ! �1 as n ! 1.

Theorem 2.7.1. Let fsng be a nondecreasing sequence. Then

lim
n!1 sn D supfsng

if fsng is bounded, and

lim
n!1 sn D 1

otherwise.

Proof. Suppose first that fsng is bounded. Then its range has a least upper bound L.
We must show that sn ! L.

Choose " > 0. Then L � " is not an upper bound of fsng. Therefore there exists
N such that sN > L � ". As fsng is nondecreasing, sn � sN for all n � N . Thus
sn > L � " for all such n. Hence

L � " < sn < L C "

for all n � N , and we conclude that

lim
n!1 sn D L:

Finally, suppose the sequence is not bounded. Since s1 is a lower bound, fsng
must not be bounded above. Thus for each M > 0 there exists N such that sN > M .
As fsng is nondecreasing, we have sn � sN > M for all n � N , and it follows that

lim
n!1 sn D 1:

ut
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The next result can be proved in a similar way or by applying the previous result
to the sequence f�sng.

Theorem 2.7.2. Let fsng be a nonincreasing sequence. Then

lim
n!1 sn D inffsng

if fsng is bounded, and

lim
n!1 sn D �1

otherwise.

Example 2.7.3. In Example 2.7.1 we saw that the sequence fsng is decreasing,
where

sn D 3n C 1

2n � 3

for all n � 2. This sequence is bounded below by 0 and therefore converges to its
greatest lower bound. In fact, its limit is easily calculated:

sn D 3 C 1
n

2 � 3
n

! 3

2

as n ! 1. 4
Example 2.7.4. In Example 2.7.2 we saw that the sequence fsng is increasing,
where s1 D 1 and

sn D
p

sn�1 C 1 (2.5)

for all n > 1. It is also easy to see by induction that the sequence is bounded above
by 2 and therefore converges to some number L. In order to find L, we begin by
taking limits of both sides of Eq. (2.5), thereby obtaining

L D p
L C 1:

Hence

L2 � L � 1 D 0;

and so

L D 1 ˙ p
5

2
:
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But sn > 0 for all n, and so we conclude that

lim
n!1 sn D 1 C p

5

2
:

4
Example 2.7.5. In Example 2.1.8 we studied the sequence fsng, where s1 D 1 and

sn D sn�1 C k

sn�1 C 1
(2.6)

for all n > 1. Here k is a positive integer. We saw in Example 2.3.2 that this
sequence converges to

p
k. We now present a different proof. Note that the sequence

is the constant sequence f1g if k D 1, and so we assume that k > 1. Moreover
sn > 0 for all n, and s1 <

p
k.

Suppose that

p
k < sn D sn�1 C k

sn�1 C 1

for some n > 1. Then

p
k � sn�1 C

p
k < sn�1 C k;

so that

.
p

k � 1/sn�1 < k �
p

k D
p

k.
p

k � 1/I

hence

sn�1 <
p

k:

Similarly, if sn <
p

k, then sn�1 >
p

k. Since s1 <
p

k, it follows that sn <
p

k if
n is odd and sn >

p
k if n is even. Thus the subsequence fs2ng is bounded below byp

k, whereas fs2nC1g is bounded above by
p

k. Moreover it is easy to see from the
recurrence relation (2.6) that

snC2 D snC1 C k

snC1 C 1
D

snCk
snC1

C k

snCk
snC1

C 1
D .k C 1/sn C 2k

2sn C k C 1
(2.7)

for all n, and so

snC2 � sn D .k C 1/sn C 2k

2sn C k C 1
� sn D 2.k � s2

n/

2sn C k C 1
:
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Thus snC2 > sn if sn <
p

k, whereas snC2 < sn if sn >
p

k. Hence fs2ng is
a decreasing subsequence and fs2nC1g is increasing. Both of these subsequences
therefore converge.

Let L be the limit of the subsequence fs2ng. From Eq. (2.7) we see that

L D .k C 1/L C 2k

2L C k C 1
;

whence

2L2 C .k C 1/L D .k C 1/L C 2k;

so that L D ˙p
k. But L � 0, and so L D p

k. The same argument shows that
the subsequence fs2nC1g also converges to

p
k. Since both subsequences converge

to
p

k, so does the sequence fsng, by Theorem 2.4.3. 4
In the next example we use a sequence to obtain an algorithm that was used

in Babylon around 1700 BC for finding the square root of a positive number. It is
sometimes known as the divide-and-average method and can also be derived from
Newton’s method, which we shall study in Sect. 9.3.

Example 2.7.6. Let k and a1 be positive numbers, and for each n 2 N define

anC1 D 1

2

�
an C k

an

�
D a2

n C k

2an

:

We shall show that an ! p
k as n ! 1.

Certainly, an > 0 for all n. Moreover

a2
n � 2anC1an C k D 0: (2.8)

This equation must have a real solution for an, and so the discriminant

4a2
nC1 � 4k

must be nonnegative. Hence a2
nC1 � k, and since anC1 > 0, it follows that

anC1 �
p

k (2.9)

for all n.
The sequence (excluding the first term) is nonincreasing: For all n > 1, we have

anC1 � an D a2
n C k

2an

� an D k � a2
n

2an

� 0:
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This nonincreasing sequence, which is bounded below, therefore converges to some
number L � 0. From Eq. (2.8) we see that L2 D k. Since L � 0, it follows that
L D p

k. 4
Remark. Define hn D k=an > 0 for all n 2 N. Since an ! p

k as n ! 1, the
same is true of hn. Moreover

anC1 D an C hn

2

and

hnC1 D k

anC1

D 2k

an C k
an

D 2
an

k
C 1

an

D 2
1

hn
C 1

an

:

Thus anC1 and hnC1 are the arithmetic and harmonic means, respectively, of an and
hn, so that hnC1 � anC1 by Lemma 2.5.5. Note also that anhn D k for all n. Thus
the geometric mean of an and hn is

p
anhn D p

k, and both fang and fhng converge
to this number. The convergence of fhng can also be confirmed by the observations
that it is a nondecreasing sequence (because fang is nonincreasing) and bounded
above by maxfk=a1; a2g: We have h1 D k=a1 and hn � an � a2 for all n > 1.

We next consider two sequences defined by arithmetic and geometric means.
These rapidly converging sequences were first studied by Lagrange and Gauss
independently in the eighteenth century and by Borchardt in 1888 in relation to
the computation of elliptic integrals. For a good discussion of this approach, see [5].

Example 2.7.7. Let a0 and g0 be positive numbers, and for all n � 0 let

anC1 D an C gn

2

and

gnC1 D p
angn:

If g0 D a0, then a1 D g1 D a0 and it follows by induction that an D gn D a0 for
all n. We assume therefore that a0 ¤ g0. From Lemma 2.5.5 we have an � gn > 0

for all positive n. Hence

an � anC1 � gnC1 � gn

for all n > 0. Thus fang is a nonincreasing sequence bounded below by minfa0; g1g
and fgng is a nondecreasing sequence bounded above by maxfg0; a1g. Both
sequences therefore converge.
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Now for all n > 0 we have

0 � anC1 � gnC1

� anC1 � gn

D an � gn

2
:

By induction we deduce that

0 � an � gn

� a1 � g1

2n�1
: (2.10)

From the sandwich theorem we conclude that

lim
n!1 an D lim

n!1 gn:

This common limit is denoted by agm.a0; g0/ and called the arithmetic–geometric
mean of a0 and g0. It is positive, since

lim
n!1 an � g1 > 0:

It cannot be written in closed form but may be expressed in terms of a certain elliptic

integral. The number 1=agm
�p

2; 1
�

is known as Gauss’s constant. Its value is

approximately 0.8346268.
Although inequality (2.10) provides a means of estimating the rate of conver-

gence of the sequences, a better estimate may be obtained by comparing the values
of an � gn and anC1 � gnC1. For each n define

�n D an � gn

D �p
an � p

gn

� �p
an C p

gn

�
:

Then

�nC1 D anC1 � gnC1

D an C gn

2
� p

angn

D
�p

an � p
gn

�2
2

;
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so that

�2
n D �p

an C p
gn

�2 �p
an � p

gn

�2
D 2

�p
an C p

gn

�2
�nC1:

Therefore �nC1 ¤ 0 if �n ¤ 0, and since �0 ¤ 0, we conclude inductively that
�n ¤ 0 for all n. Thus

�nC1

�2
n

D 1

2
�p

an C p
gn

�2 ;

so that

lim
n!1

�nC1

�2
n

D 1

8agm.a0; g0/
:

We leave it to the reader to show that the sequences defined by the harmonic and
geometric means also converge to the same limit. These sequences are given by

hnC1 D 2
1

hn
C 1

gn

and

gnC1 D
p

hngn;

respectively, for some given positive numbers h0 and g0, respectively. Their
common limit is denoted by hgm.h0; g0/. In fact,

hgm.h0; g0/ D 1

agm
�

1
h0

; 1
g0

� :

4
Recall that an empty product (a product with no factors) is defined to be 1. We

use this convention in the next example.

Example 2.7.8. Let

sn D
�

1 C 1

n

�n

D
�

n C 1

n

�n

for all n > 0. The sequence fsng has been presented earlier as Example 2.1.6. We
shall show that it is increasing and bounded above.
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For all n > 0 the binomial theorem shows that

sn D
nX

j D0

 
n

j

!�
1

n

�j

D
nX

j D0

n.n � 1/ � � � .n � j C 1/

j Šnj

D
nX

j D0

1

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�

�
nX

j D0

1

j Š

� 1 C
nX

j D1

1

2j �1

D 1 C
n�1X
j D0

1

2j

D 1 C 1 � 1
2n

1 � 1
2

< 1 C 2

D 3:

Hence the sequence fsng is bounded above by 3. Moreover for all n > 0 we have

snC1 D
nC1X
j D0

1

j Š

�
1 � 1

n C 1

��
1 � 2

n C 1

�
� � �
�

1 � j � 1

n C 1

�

>

nX
j D0

1

j Š

�
1 � 1

n C 1

��
1 � 2

n C 1

�
� � �
�

1 � j � 1

n C 1

�

�
nX

j D0

1

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�

D sn;

and so fsng is an increasing bounded sequence. Therefore it converges. Its limit
is denoted by e. Since sn � s1 D 2 for all n and the sequence is increasing and
bounded above by 3, we find that 2 < e < 3. Indeed we have s2 > s1 D 2, so that
e > 2. Moreover for all n � 3 we have
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sn � 1 C 1 C 1

2
C 1

6
C

n�1X
j D3

1

2j

D 1 C
n�1X
j D0

1

2j
� 1

4
C 1

6

< 1 C 2 � 1

12

D 35

12
:

Thus e � 35=12 < 3:

More meticulous calculations show that e is approximately 2.718. 4
We now consider the more general sequence

n�
1 C x

n

�no D

�

n C x

n

�n�
;

where x 2 R. For each x ¤ 0 we have

�
1 C x

n

�n D
�

1 C 1
n
x

�n

D
�

1 C 1

m

�mx

D
��

1 C 1

m

�m�x

;

where m D n=x. In the case where m is a positive integer, we have

e D lim
m!1

�
1 C 1

m

�m

:

It therefore seems reasonable to define

ex D lim
n!1

�
1 C x

n

�n

for all real x, but first we must show that the limit exists.

Proposition 2.7.3. For all x 2 R the sequence

fsng D
n�

1 C x

n

�no

is convergent. Moreover if x ¤ 0, then the sequence is increasing for large
enough n.
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Proof. The sequence converges to 1 if x D 0. Suppose therefore that x ¤ 0. Letting
n > jxj, define a1 D 1 and

ak D 1 C x

n

for each k 2 f2; 3; : : : ; n C 1g. Thus ak ¤ 1 D a1 for each k > 1. Moreover
n > jxj � �x, so that x=n > �1; hence ak > 0 for each k. By Lemma 2.5.5 we
have

��
1 C x

n

�n� 1
nC1 D .a1a2 � � � anC1/

1
nC1

<
1

n C 1

�
1 C n

�
1 C x

n

��

D 1 C x

n C 1
I

hence

�
1 C x

n

�n

<

�
1 C x

n C 1

�nC1

:

We conclude that the sequence fsng is increasing for n > jxj.
It therefore suffices to show that fsng is bounded. Choose an integer M � jxj.

Then the sequence


�
1 C M

n

�n�

is increasing for n > M > 0. As nM � n, we therefore have
ˇ̌
ˇ�1 C x

n

�n ˇ̌ˇ D
ˇ̌
ˇ1 C x

n

ˇ̌
ˇn

�
�

1 C jxj
n

�n

�
�

1 C M

n

�n

�
�

1 C M

nM

�nM

D
��

1 C 1

n

�n�M

< eM ;

because the sequence f.1 C 1=n/ng is increasing and converges to e. Therefore fsng
is a bounded sequence, as required. ut
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Since f.1 C x=n/ng is a nondecreasing sequence of positive terms for n > jxj, it
follows that ex > 0 for all x 2 R. Note also that e0 D 1 and e1 D e.

Example 2.7.9. For all positive integers n define

tn D
nX

j D0

xj

j Š
;

where x > 0. We shall show that the sequence ftng converges to ex .
For each n 2 N define

sn D
�
1 C x

n

�n

:

A simple modification of the calculation in Example 2.7.8 gives

sn D
nX

j D0

xj

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�

�
nX

j D0

xj

j Š

D tn:

Moreover ftng is certainly an increasing sequence. We shall prove it convergent
by showing that it is bounded above by ex . Let m and n be positive integers with
n > m. Then

�
1 C x

n

�n D
nX

j D0

xj

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�

>

mX
j D0

xj

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�
:

Hence

ex D lim
n!1

�
1 C x

n

�n

� lim
n!1

mX
j D0

xj

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�

D
mX

j D0

xj

j Š

D tm:
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Thus we have sm � tm � ex for all positive integers m, and so it follows from the
sandwich theorem that

lim
n!1 tn D ex:

4
Since ftng is an increasing sequence when x > 0, we find that

ex > 1 C x > 1

for all positive x.
It follows from the definition that e0 D 1. The result of Example 2.7.9 therefore

holds also when x D 0 if we adopt the convention that 00 D 1. In fact, it holds for
all real x. In order to prove this result, we need the following lemma.

Lemma 2.7.4. Let a1; a2; : : : ; an be nonzero numbers that are greater than or equal
to �1 and have equal sign. Then

nY
j D1

.1 C aj / � 1 C
nX

j D1

aj :

Proof. The result certainly holds if n D 1. Suppose therefore that n > 1 and that
the lemma holds for sets of fewer than n numbers satisfying the hypotheses. The
hypotheses imply that 1 C a1 � 0 and a1aj > 0 for all j > 1. Therefore, using the
inductive hypothesis, we find that

nY
j D1

.1 C aj / D .1 C a1/

nY
j D2

.1 C aj /

� .1 C a1/

0
@1 C

nX
j D2

aj

1
A

D 1 C a1 C
nX

j D2

aj C
nX

j D2

a1aj

> 1 C
nX

j D1

aj ;

as required. ut
Corollary 2.7.5. For each x � �1 and each nonnegative integer n, we have

.1 C x/n � 1 C nx:
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Proof. We have already seen in Example 1.3.1 that this inequality holds for all
x � 0. Suppose that �1 � x < 0. The result holds for n D 0 if we take 00 D 1. For
all n > 0 it follows immediately from the lemma by taking aj D x for all j � n.

ut
Theorem 2.7.6. For all positive integers n define

tn D
nX

j D0

xj

j Š
;

where x 2 R. Then the sequence ftng converges to ex .

Proof. Letting

sn D
�
1 C x

n

�n

for all n 2 N, using Lemma 2.7.4 and Theorem 1.5.4, and recalling that the empty
product is defined as 1, we have

jtn � snj D
ˇ̌
ˇ̌̌
ˇ

nX
j D0

xj

j Š
�

nX
j D0

xj

j Š

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

�ˇ̌ˇ̌̌
ˇ

D
ˇ̌
ˇ̌̌
ˇ

nX
j D2

�
1 �

�
1 � 1

n

��
1 � 2

n

�
� � �
�

1 � j � 1

n

��
xj

j Š

ˇ̌
ˇ̌̌
ˇ

�
nX

j D2

 
1 �

j �1Y
kD1

�
1 � k

n

�! jxjj
j Š

�
nX

j D2

 
1 �

 
1 �

j �1X
kD1

k

n

!!
jxjj
j Š

D
nX

j D2

 
j �1X
kD1

k

n

!
jxjj
j Š

D
nX

j D2

j.j � 1/

2n
� jxjj

j Š

D x2

2n

nX
j D2

jxjj �2

.j � 2/Š

D x2

2n

n�2X
j D0

jxjj
j Š
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for all n � 2. We deduce that

lim
n!1 jtn � snj D 0;

for it follows from Example 2.7.9 that the sequence

8<
:

n�2X
j D0

jxjj
j Š

9=
;

converges. Therefore

lim
n!1.tn � sn/ D 0

and so

lim
n!1 tn D lim

n!1.tn � sn C sn/ D lim
n!1 sn D ex:

ut
We can also show that e is irrational. First let x D 1 and let m and n be positive

integers with n > m. Then e � tm > e � tn � 0 and

tn � tm D
nX

j DmC1

1

j Š

D 1

.m C 1/Š

nX
j DmC1

1

.m C 2/.m C 3/ � � � j

D 1

.m C 1/Š

n�m�1X
j D0

1

.m C 2/.m C 3/ � � � .m C j C 1/

� 1

.m C 1/Š

n�m�1X
j D0

1

.m C 1/j

<
1

.m C 1/Š
� 1

1 � 1
mC1

D 1

.m C 1/Š
� m C 1

m

D 1

mŠm
:



2.7 Monotonic Sequences 93

Thus

e � tm D e � tn C tn � tm < e � tn C 1

mŠm
;

and taking the limit as n ! 1 yields

0 < e � tm � 1

mŠm
: (2.11)

If e were rational, then we could write e D p=q for some positive integers p

and q. Moreover e is not an integer since 2 < e < 3, and so q > 1. Putting m D q

in (2.11), we obtain

0 < qŠ.e � tq/ � 1

q
< 1:

But

qŠe D p.q � 1/Š

by assumption, and

qŠtq D
qX

j D0

qŠ

j Š
;

which is also an integer. We therefore have the contradiction that qŠ.e � tq/ is an
integer between 0 and 1.

Example 2.7.10. Let sn D nŠ=nn for all n > 0. Then

snC1

sn

D .n C 1/Š

.n C 1/nC1
� nn

nŠ

D
�

n

n C 1

�n

D 1�
1 C 1

n

�n

! 1

e

as n ! 1. Since e > 1, it follows from Theorem 2.5.4 that the sequence fsng
converges to 0. 4



94 2 Sequences

Example 2.7.11. Since

lim
n!1

�
n C 1

n

�n

D e;

Theorem 2.5.6 implies that

e D lim
n!1

0
@ nY

j D1

�
j C 1

j

�j

1
A

1=n

:

But it is easy to show by induction that

nY
j D1

�
j C 1

j

�j

D .n C 1/n

nŠ

for all positive integers n, and so

e D lim
n!1

�
.n C 1/n

nŠ

�1=n

D lim
n!1

n C 1

.nŠ/1=n
:

Thus nŠ is close to .n C 1/n=en for large values of n. 4
We now show that our definition of ex satisfies at least one of the usual laws

governing exponentiation. First we prove the following useful lemma.

Lemma 2.7.7. For every x 2 R,

lim
n!1

�
1 C x

n2

�n D 1:

Proof. For every integer n >
pjxj we have n2 > jxj � �x, so that x=n2 > �1.

Applying Corollary 2.7.5 and writing m D n2, we therefore find that

1 C x

n
�
�
1 C x

n2

�n D
��

1 C x

m

�m�1=n

� e1=n:

Using Example 2.5.2, we have

lim
n!1

�
1 C x

n

�
D 1 D lim

n!1 e1=n:

The required result now follows from the sandwich theorem. ut
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Corollary 2.7.8. For every real x we have

e�x D 1

ex
:

Proof. This result follows from the lemma by taking limits of both sides of the
identity

�
1 C x

n

�n �
1 � x

n

�n D
�

1 � x2

n2

�n

:

ut
Thus exe�x D 1. This equation is a special case of the following law governing

exponents. Its proof is an adaptation of an argument due to Kemeny [9].

Theorem 2.7.9. For each x; y 2 R we have

exey D exCy:

Proof. The result clearly holds if x D 0 or y D 0, since e0 D 1. We may therefore
assume that xy ¤ 0.

Let z D �x � y and, for all positive integers n, define

sn D
�

n C x

n

�n �
n C y

n

�n �
n C z

n

�n

D
�

n3 C n2.x C y C z/ C n.xy C xz C yz/ C xyz

n3

�n

D
�

1 C xy C xz C yz

n2
C xyz

n3

�n

:

Note that the sequence fsng converges to exeyez, and therefore so does the
subsequence fs2n�1g.

Suppose that xyz > 0. Then

xyz

.2n � 1/2
� xyz

.2n � 1/3
;

and so

�
1 C xy C xz C yz

.2n � 1/2

�2n�1

< s2n�1 �
�

1 C xy C xz C yz C xyz

.2n � 1/2

�2n�1

;
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since 2n � 1 is odd. Therefore Lemma 2.7.7 and the sandwich theorem show that

lim
n!1 s2n�1 D 1:

Consequently,

exeyez D 1;

and so

exey D 1

ez
D e�z D exCy:

Thus we have confirmed the theorem if xyz > 0.
We now distinguish three cases.

Case 1: Suppose x < 0 and y < 0. Then z > 0, so that xyz > 0. We conclude
that

exey D exCy

in this case.
Case 2: If x > 0 and y > 0, then by case 1 we have

e�xe�y D e�.xCy/:

Thus

1

exey
D 1

exCy
;

and the result follows.
Case 3: If xy < 0, then we may assume without loss of generality that x < 0 < y.
Case 3.1: If �x < y, then z < 0, so that xyz > 0.
Case 3.2: If �x D y, then

exey D exe�x D 1 D e0 D exCy:

Case 3.3: If �x > y, then z > 0. It therefore follows from case 1 that

e�ze�y D ex;

and so

exey D e�z D exCy:

ut
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The function given by ex for all real x is called the exponential function and
often denoted by exp. Here are some of its properties.

Theorem 2.7.10. Let fang be a sequence of real numbers.

1. If limn!1 an D 1, then

lim
n!1 ean D 1:

2. If limn!1 an D a, then

lim
n!1 ean D ea:

3. If an ¤ 0 for all n and limn!1 an D 0, then

lim
n!1

ean � 1

an

D 1:

Proof. 1. We have already seen that

ex > 1 C x

for all x > 0. Choose M > 1. Since limn!1 an D 1, there exists N such that
an > M � 1 > 0 for each integer n � N . Thus

ean > 1 C an > M

for all such n, and the result follows.
2. We first prove the result for a D 0, in which case we need to show that

lim
n!1 ean D 1:

Since fang is convergent, it is bounded. Let janj < M for all n. For all positive
integers m and n we have

ˇ̌̌
ˇ̌
ˇ

mX
j D0

a
j
n

j Š
� 1

ˇ̌̌
ˇ̌
ˇ D

ˇ̌̌
ˇ̌
ˇ

mX
j D1

a
j
n

j Š

ˇ̌̌
ˇ̌
ˇ

�
mX

j D1

janjj
j Š

D janj
mX

j D1

janjj �1

j Š
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� janj
mX

j D1

M j �1

.j � 1/Š

D janj
m�1X
j D0

M j

j Š
:

Taking limits as m ! 1, we therefore conclude from Proposition 2.3.2(1) that

0 � jean � 1j � janjeM :

Thus the sandwich theorem yields

lim
n!1 jean � 1j D 0;

whence

lim
n!1.ean � 1/ D 0

and the desired result follows.
In the general case, where limn!1 an D a ¤ 0, we use the result just

established:

lim
n!1 ean D lim

n!1 ea.ean�a/ D ea lim
n!1 ean�a D ea:

3. As fang converges, there exists M such that janj < M for all n. Thus for all
integers m > 1 and n > 0 we have

ˇ̌
ˇ̌̌
ˇ

1

an

0
@ mX

j D0

a
j
n

j Š
� 1

1
A � 1

ˇ̌
ˇ̌̌
ˇ D

ˇ̌
ˇ̌̌
ˇ

1

an

mX
j D1

a
j
n

j Š
� 1

ˇ̌
ˇ̌̌
ˇ

D
ˇ̌
ˇ̌̌
ˇ

mX
j D1

a
j �1
n

j Š
� 1

ˇ̌
ˇ̌̌
ˇ

D
ˇ̌̌
ˇ̌̌m�1X
j D0

a
j
n

.j C 1/Š
� 1

ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌m�1X
j D1

a
j
n

.j C 1/Š

ˇ̌̌
ˇ̌̌
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� janj
m�1X
j D1

janjj �1

.j C 1/Š

< janj
m�1X
j D1

M j �1

.j � 1/Š

D janj
m�2X
j D0

M j

j Š
:

We now complete the proof by an argument similar to that used in part (2): Taking
limits as m ! 1 yields

0 �
ˇ̌̌
ˇe

an � 1

an

� 1

ˇ̌̌
ˇ � janjeM ;

from which the desired result is obtained by taking limits as n ! 1.
ut

Corollary 2.7.11. If fang is a null sequence of nonzero terms, then

lim
n!1

exCan � ex

an

D ex:

Proof. Part (3) of the theorem shows that

lim
n!1

exCan � ex

an

D lim
n!1

ex.ean � 1/

an

D ex:

ut
Theorem 2.7.12. The exponential function is increasing.

Proof. If y > x, then y � x > 0, so that ey�x > 1; hence

ey D ey�xex > ex

as ex > 0. ut
We have already shown that every bounded sequence has a convergent subse-

quence. We conclude this section by demonstrating that such a subsequence can be
chosen to be monotonic.
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A positive integer m is called a peak index for a real sequence fsng if sn � sm

for all n � m. For example, consider the sequence f1 C .�1/n=ng. The number 1 is
not a peak index since s1 D 0 and s2 D 3=2. Since

sn � 1 C 1

n
� 3

2

for all n � 2, we see that 2 is a peak index. Similarly, 3 is not a peak index but 4 is.

Theorem 2.7.13. Every real sequence has a monotonic subsequence.

Proof. Let P be the set of peak indices for a real sequence fsng.

Case 1: If P is finite, it must have an upper bound, N . We shall find an increasing
subsequence fskng of fsng. Let k1 D N C 1. Then k1 is not a peak index, and so
there exists k2 > k1 such that sk2 > sk1 . For some integer n > 1 we may now
assume the existence of integers k1; k2; : : : ; kn such that kj < kl and skj < skl

whenever j < l . Since kn > N , kn is not a peak index and so there exists knC1 >

kn such that sknC1
> skn . This observation completes the inductive definition of

the increasing subsequence fskng of fsng.
Case 2: If P is infinite, then for each positive integer n we may define kn to be
the nth peak index. It follows that sknC1

� skn for all n 2 N, so that fskng is a
nonincreasing subsequence of fsng.

ut
Exercises 2.7.

1. Let fang and fbng be sequences of positive numbers, and for all positive integers
m and n define

pn D
mX

j D0

aj nj

and

qn D
mX

j D0

bj nj :

(a) Show that

lim
n!1

pn

qn

D am

bm

:

(b) Show that if bm > am, then there exists N such that pn=qn < 1 for all
n � N .

(c) Show that if bm < am, then there exists N such that pn=qn > 1 for all
n � N .
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2. Show that the following sequences are monotonic for large enough n:

(a)
n

.n�1/.nC2/

.nC1/.n�3/

o
; (b)

n
n2�5
nC1

o
; (c)

˚
5n

nŠ

	
.

3. Show that a monotonic sequence is convergent if it has a convergent
subsequence.

4. Show that the following sequences are nondecreasing and bounded above, and
find their limits:

(a) x0 D 0, xnC1 D 3xnC1
4

; (c) x0 D 1, xnC1 D p
3xn C 1;

(b) x0 D 0, xnC1 D 2xnC4
3

; (d) x0 D 1, xnC1 D p
2xn C 7.

5. Consider a sequence given by

xnC1 D x2
n C 3

4

for all n > 0.

(a) Show that the sequence is nonincreasing if 1 < x1 < 3.
(b) Show that the sequence is nondecreasing if 0 � x1 < 1 or x1 > 3.
(c) For each of the sequences in (a) or (b), find its limit if it converges.
(d) Study the convergence of the sequence for the following cases: x1 D 1,

x1 D 3, x1 < 0.

6. Let x1 D b and xnC1 D p
axn for all n > 0, where a > 0 and b > 0. Show that

fxng converges and find its limit.
7. Let x1 D a and xnC1 D a C x2

n for all n > 0, where a � 0. Discuss the
convergence of the sequence fxng.

8. Let fang be increasing and fbng decreasing, and suppose that

0 � bn � an � 1

2n

for all n. Show that fang and fbng converge to the same limit.
9. Let xnC1 D p

a C xn for all n > 0, where a > 0. Discuss the convergence of
the sequence for each x1 > 0.

10. Let x1 D c > 0 and

xnC1 D 6.1 C xn/

7 C xn

for all n > 0. Discuss the convergence of the sequence. (Consider the cases
c � 2 and 0 < c < 2 separately.)

11. Consider a sequence given by

xnC1 D 3xn C 1

xn C 3

for all n > 0. Study the convergence of the sequence for the cases x1 � �1,
�1 < x1 < 1, x1 D 1, and x1 > 1.
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12. Let a � 1, 0 < x1 < a2, and

xnC1 D a �
p

a2 � xn

for all n > 0.

(a) Show that 0 < xn < a2 for all n and that fxng is nonincreasing.
(b) Show that fxng converges to 0.
(c) Show that

lim
n!1

xn

xnC1

D 2a:

13. For all n � 0 let

xn D
2nX

kDnC1

1

k
:

Show that fxng is nondecreasing and converges to a limit between 1=2 and 1.
14. Let x1 D 1 and

xnC1 D 4 C 3xn

3 C 2xn

for all n > 0. Show that the sequence fxng is nondecreasing and bounded above
by 3=2, and find its limit.

15. Let x1 D p
2 and

xnC1 D
q

2 C p
xn

for all n > 0. Prove that the sequence converges.
16. Show that the sequences



2n.n � 1/ŠnŠ

.2n/Š

�

and



22n�1.n � 1/ŠnŠ

.2n/Š

�

are monotonic and find their limits.
17. Let

p
k � x1 < 3

p
k, where k > 0, and for each n > 0 define

xnC1 D 1

2

�
xn C k

xn

�
:
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Show that

ˇ̌̌
xnC1 �

p
k
ˇ̌̌

� 2
p

k

 
x1 � p

k

2
p

k

!2n

and hence that the sequence converges to
p

k.
18. Let h0 and g0 be positive numbers and let a0 D 1=h0 and b0 D 1=g0. For all

n � 0 define

hnC1 D 2
1

hn
C 1

gn

;

gnC1 D
p

hngn;

anC1 D an C bn

2
;

and

bnC1 D
p

anbn:

Show that hn D 1=an and gn D 1=bn for all n and hence that

lim
n!1 hn D lim

n!1 gn D 1

agm
�

1
h0

; 1
g0

� :

19. Let x1 D 1=2 and y1 D 1, and define

xnC1 D p
xnyn

and

ynC1 D 2
1

xnC1
C 1

yn

for all n � 1. Prove that xn < xnC1 < ynC1 < yn for all n and deduce that both
sequences fxng and fyng converge to the same limit L, where 1=2 < L < 1.

20. Let x1 > 0 and y1 > 0, and define

xnC1 D xn C yn

2

and

ynC1 D p
xnC1yn
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for all n � 1. Prove that the sequences fxng and fyng are monotonic and
converge to the same limit.

21. Show that the sequence

(�
1 C 1

n

�nC1
)

is nonincreasing and bounded below, and find its limit.

2.8 Unbounded Sequences

In the previous section we saw that a monotonic sequence is convergent if and only
if it is bounded. Specifically, if the sequence fsng is nondecreasing and unbounded,
then limn!1 sn D 1, and if it is nonincreasing and unbounded, then limn!1 sn D
�1. However it may be that a divergent sequence is bounded. An example is
furnished by the sequence f.�1/ng. It may also be that limn!1 sn D ˙1, but
fsng is not monotonic.

Example 2.8.1. Let

sn D n C 2.�1/n

for all n. Then

s2n D 2n C 2;

s2nC1 D 2n C 1 � 2 D 2n � 1;

and

s2nC2 D 2n C 2 C 2 D 2n C 4:

Hence fsng is not monotonic. But for each n we have

sn � n � 2;

and so

lim
n!1 sn D 1:

4
The next proposition is easy to establish.
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Proposition 2.8.1. Suppose fsng and ftng are sequences and there exists N such
that tn � sn for all n � N .

1. If sn ! 1 as n ! 1, then tn ! 1 as n ! 1.
2. If tn ! �1 as n ! 1, then sn ! �1 as n ! 1.

Proof. The first part is immediate from Definition 2.7.1 and the fact that if, given
any number M , there exists N1 such that sn > M for all n � N1, then tn � sn > M

for all n � maxfN; N1g. The proof of the second part is similar. ut
At this point the reader may be wondering to what extent the symbols 1 and �1

may be treated as if they were numbers. We now attempt to answer that question by
studying the properties of limits of sums and products of unbounded sequences.

For sums we have the following theorem.

Theorem 2.8.2. Let fsng and ftng be sequences and L a number. If sn ! 1 and
either tn ! 1 or tn ! L as n ! 1, then sn C tn ! 1.

Proof. Choose a number M , and suppose first that tn ! 1. There exists N such
that sn > M and tn > M for all n � N . Then sn C tn > 2M for all such n, as
required.

If tn ! L, then there exists N1 such that jtn � Lj < 1 for all n � N1. For each
such n it follows that

tn > L � 1:

Moreover there exists N such that

sn > M � L C 1

for all n � N . For all n � maxfN; N1g we deduce that sn C tn > M . ut
Thus Theorem 2.3.7(1) may be extended if we write 1 C 1 D 1 C L D 1.

Because of the commutativity of addition of real numbers, we also write
L C 1 D 1. A corresponding theorem may be proved in which sn approaches
�1 and tn approaches L or �1, and so we may also write �1 C .�1/ D
�1 C L D L C .�1/ D �1. Extending the rule that x � y D x C .�y/,
we simplify the left-hand side of this equation to �1 � 1. Similarly, L C .�1/

may be simplified to L � 1. On the other hand, we cannot ascribe any meaning to
1 � 1. We may be tempted to set it equal to 0. However, suppose sn D 2n and
tn D n for all n. Then sn ! 1 and tn ! 1 as n ! 1, but the sequence fsn � tng
does not approach 0 as n ! 1 since sn � tn D 2n � n D n ! 1.

Let us move on to products.

Theorem 2.8.3. Let fsng and ftng be sequences and L a positive number.
If sn ! 1 and either tn ! 1 or tn ! L as n ! 1, then sntn ! 1.

Proof. Choose M > 0, and suppose that tn ! 1. There exists N such that sn > M

and tn > 1 for all n � N . For all such n we deduce that sntn > M , as required.
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Suppose on the other hand that tn ! L. There exists N1 such that tn > L=2

for all n � N1. There also exists N such that sn > 2M=L for all n � N . For all
n � maxfN; N1g it therefore follows that

sntn >
2M

L
� L

2
D M:

ut
Again we use this theorem as a pretext for extending Theorem 2.3.7, this time by

writing 1�1 D 1�L D L �1 D 1, where L > 0. A corresponding result may be
proved in which sn ! �1: Simply apply the theorem to the sequence f�sng. Thus
we also write .�1/ � 1 D 1 � .�1/ D .�1/ � L D L � .�1/ D �1. Similarly,
replacing tn by �tn gives the additional equations 1 � .�L/ D .�L/ � 1 D �1
and .�1/ � .�1/ D .�1/ � .�L/ D .�L/ � .�1/ D 1.

On the other hand, we cannot ascribe meanings to 1�0 or .�1/ �0. For example,
let k ¤ 0 and for all n > 0 define sn D kn and tn D 1=n. Then sn approaches 1 or
�1 and tn approaches 0, but sntn D k.

We prepare ourselves for the incorporation of division into this framework by
proving the following theorem.

Theorem 2.8.4. Let fsng be a sequence of positive numbers.

1. We have sn ! 0 as n ! 1 if and only if 1=sn ! 1 as n ! 1.
2. Similarly, sn ! 1 as n ! 1 if and only if 1=sn ! 0 as n ! 1.

Proof. 1. Suppose first that sn ! 0 as n ! 1, and choose M > 0. There exists N

such that sn < 1=M for all n � N . Thus 1=sn > M for all such n, and we have
proved that 1=sn ! 1 as n ! 1.

Conversely, suppose that 1=sn ! 1 as n ! 1, and choose " > 0. There
exists N such that 1=sn > 1=" for all n � N . Hence sn < " for all such n, as
required.

2. Apply part (1) to the sequence f1=sng.
ut

The following corollary is immediate.

Corollary 2.8.5. Let fsng be a sequence of nonzero terms. Then jsnj ! 1 as n !
1 if and only if 1=jsnj ! 0 as n ! 1.

Example 2.8.2. Let fang be a sequence of real numbers, and suppose that

lim
n!1 an D �1:

Then

lim
n!1.�an/ D 1:



2.8 Unbounded Sequences 107

It therefore follows from Theorems 2.7.10(1) and 2.8.4(2) that

lim
n!1 ean D lim

n!1
1

e�an
D 0:

4
Example 2.8.3. Let sn D cn for all positive integers n, where c is a fixed real
number. By Example 2.6.3 the sequence fsng is convergent if and only if jcj < 1 or
c D 1. In fact,

lim
n!1 sn D 1

if c > 1, for in that case we have 0 < 1=c < 1 so that

lim
n!1

1

cn
D 0:

4
Example 2.8.4. Let fsng be a sequence of nonzero real numbers. Theorem 2.5.4
shows that if

lim
n!1

ˇ̌
ˇ̌snC1

sn

ˇ̌
ˇ̌ D L < 1;

then

lim
n!1 sn D 0:

We turn now to the case where L > 1. By Proposition 2.3.3 there exist numbers
k > 1 and N such that

ˇ̌̌
ˇsnC1

sn

ˇ̌̌
ˇ > k

for all n � N . Hence

jsnC1j > kjsnj

for all n � N . By induction it follows that

jsN Cpj > kpjsN j
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for all positive integers p. Since k > 1, we deduce from the previous example that
kp ! 1 as p ! 1, and so

lim
p!1 jsN Cpj D 1

by Proposition 2.8.1. It follows that jsnj ! 1 as n ! 1. 4
Theorem 2.8.4(2) motivates the equation 1=1 D 0. A similar theorem may be

proved in which sn approaches �1, where fsng is a sequence of negative terms, and
so we also write 1=.�1/ D 0. However, we cannot use part (1) to justify writing
1=0 D 1 because of the requirement that fsng be a sequence of positive terms.
Had fsng been a sequence of negative terms, we would have been equally tempted
to write 1=0 D �1! By extending the rule that x=y D x.1=y/ whenever y ¤ 0,
we may write L=1 D L=.�1/ D 0 for each number L. Furthermore, if L > 0,
then we may write 1=L D 1 � .1=L/ D 1 and, similarly, .�1/=L D �1.
Likewise we write 1=.�L/ D �1 and .�1/=.�L/ D 1. Note that no meaning
is ascribed to such forms as 0=0 or 1=1. This question will be explored later.

Exercises 2.8.

1. Suppose that the sequence fxng is increasing and that x
1=n
n > 1 for all n > 0.

Show that

lim
n!1 xn D 1:

(Hint: Prove it by contradiction.)
2. Show that if 0 < a < xn and limn!1 yn D 1, then limn!1 xnyn D 1. Does

the result remain true if we replace the inequalities by xn > 0?
3. Find the following limits:

(a) limn!1.n2 � n3/;
(b) limn!1 5n

2nC3n .

4. Let fxng and fyng be sequences such that

lim
n!1 xn D lim

n!1 yn D 1:

Give examples to show that

lim
n!1.xn � yn/

may be any number or ˙1.



Chapter 3
Series

3.1 Introduction

The theory of sequences can be combined with the familiar notion of a finite sum
to produce the theory of infinite series. The concept of a series is an attempt
to encapsulate the idea of a sum of infinitely many real or complex numbers.
Applications of series appear in many areas of pure and applied mathematics, and
the study of their properties forms a major part of analysis.

The idea of a series disturbed the ancients. In the fifth century BC, for example,
Zeno argued that it is impossible to walk from one place to another. For the walker
must first travel half the distance, then half the remaining distance, then half the
distance left after that, and so forth. The journey can never be completed, because
after each stage there is still some distance to go. The inference is that motion is
impossible!

Where did Zeno go wrong? He argued that in the first stage of the walk 1/2 of
the total distance must be covered, in the next stage 1/4 of the total distance, in the
third stage 1/8 of the distance, and so on. Zeno was thus attempting to add infinitely
many numbers, and concluded that the sum would be infinite. The absurdity of his
conclusion suggests that the sum of infinitely many numbers should not necessarily
be infinite. But at this juncture it is not really clear precisely what is meant by the
sum of infinitely many numbers. For us to be able to make progress, this notion
must be clarified. Specifically, to resolve Zeno’s paradox, we need a definition that
enables us to conclude that

1

2
C 1

4
C 1

8
C � � � D 1: (3.1)

This problem is resolved through what is called the sequence of partial sums. In
other words, we construct a sequence whose first term is the first of the infinite set
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of numbers to be added up, whose second term is the sum of the first two numbers to
be added up, and so forth. In general, the sum of the first n numbers in our infinite
set gives the nth term of the sequence of partial sums. The infinite sum, which is
called a series, is then defined as the limit of the sequence of partial sums, provided
of course that the limit exists.

For example, let us return to Zeno’s paradox. The sum of the first n terms on the
left-hand side of Eq. (3.1) is

Pn
j D1 1=2j . In this case the sequence of partial sums is

therefore fPn
j D1 1=2j gn�1. We now show that this sequence indeed converges to 1.

Setting a D 1=2 in Corollary 1.5.6, we have

nX
j D1

1

2j
D

n�1X
j D0

1

2j C1

D 1

2

n�1X
j D0

1

2j

D 1

2

 
1 � 1

2n

1 � 1
2

!

D 1 � 1

2n
:

Thus the sequence fPn
j D1 1=2j g converges to 1, as desired.

The use of series troubled many mathematicians in the 18th century. The
construction of an acceptable, rigorous theory took many decades and involved such
mathematicians as Weierstrass, Bolzano, Fourier, Cauchy, Dirichlet, Riemann, and
Dedekind. The theory did not reach its current form until the end of the 19th century.

3.2 Definition of a Series

Let us now formalize the concept of a series. Let fzngn�0 be a sequence of real or
complex numbers, and for each n let

Sn D
nX

j D0

zj :

The sequence fSng is called a series and is denoted by

1X
j D0

zj (3.2)



3.2 Definition of a Series 111

or

z0 C z1 C � � � :

We refer to z0; z1; : : : as the terms of the series. We consider them to be in the
order z0; z1; : : :, and so we may refer to zj as the .j C 1/th term, for each j � 0.
A series is real if all its terms are real. For every series, whether real or not, the
numbers S0; S1; : : : are the partial sums. More particularly, for each n we may
describe Sn as the partial sum corresponding to zn, or the .n C 1/th partial sum. If
fSng converges to some number S , then we write

1X
j D0

zj D S:

In other words,

1X
j D0

zj D lim
n!1

nX
j D0

zj :

As in the case of finite sums, we note that the index j is a dummy variable in the
expression (3.2). Thus, if k is another index, then

1X
j D0

zj D
1X

kD0

zk:

Motivated by Proposition 1.5.1, we also write

1X
j Dm

zj D
1X

j D0

zj Cm

for each integer m for which zm; zmC1; : : : are defined. It is also evident that if m � r ,
then

1X
j Dm

zj D
rX

j Dm

zj C
1X

j DrC1

zj :

In writing this equation we admit the possibility that both series diverge. However,
if one of them converges, then so does the other. When testing these series for
convergence, it therefore suffices to test just one of them.

It is seldom easy to determine the number, if any, to which a given series
converges. However, we do have the following theorem, which follows easily from
our earlier work on finite sums.
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Theorem 3.2.1. If z is a complex number such that jzj < 1, then

1X
j D0

zj D 1

1 � z
;

where 00 D 1, but if jzj � 1, then the series diverges.

Proof. Let n be a nonnegative integer. If z D 1, then

nX
j D0

zj D
nX

j D0

1 D n C 1;

and so the series diverges. Suppose therefore that z ¤ 1. Then

nX
j D0

zj D 1 � znC1

1 � z
;

by Corollary 1.5.6. Using the results of Examples 2.2.4 and 2.6.3, we find that the
series converges to 1=.1 � z/ if jzj < 1 but diverges if jzj � 1. ut

The series considered in Theorem 3.2.1 is said to be geometric.

Example 3.2.1. The repeating decimal 0:22 : : : can be written as

0:2 C 0:02 C 0:002 C : : : D 2

1X
j D1

aj

D 2

0
@ 1X

j D0

aj � 1

1
A ;

where a D 0:1 D 1=10. By Theorem 3.2.1 this series converges to

2

 
1

1 � 1
10

� 1

!
D 2

�
10

9
� 1

�
D 2

9
:

4
The telescoping property can also sometimes be used to deduce the number to

which a given series converges. Specifically, we have the following result.

Theorem 3.2.2. The series

1X
j D0

.zj C1 � zj /
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converges if and only if the sequence fzng converges, and in that case

1X
j D0

.zj C1 � zj / D lim
n!1 zn � z0:

Proof. By the telescoping property,

nX
j D0

.zj C1 � zj / D znC1 � z0

for every n, and the result follows immediately. ut
A series of the type contemplated in Theorem 3.2.2 is said to be telescoping or

to telescope. Note that

1X
j D0

.zj � zj C1/ D �
1X

j D0

.zj C1 � zj / D z0 � lim
n!1 zn

if the series converges.

Example 3.2.2. Since

1

j.j C 1/
D 1

j
� 1

j C 1

for all j > 0, the series

1X
j D1

1

j.j C 1/

telescopes. It converges to 1 � 0 D 1. 4
Example 3.2.3. Let a and b be complex numbers, and let z0 D a, z1 D b, and

zn D zn�1 C zn�2

2

for all n � 2. In Example 2.6.1 we showed that this sequence is Cauchy and
converges to .a C 2b/=3. We now give another way to find its limit.

Note first that

zn � zn�1 D �1

2
.zn�1 � zn�2/
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for all n � 2. By induction it follows that

zn � zn�1 D
�

�1

2

�n�1

.b � a/;

for all n � 1, so that

1X
nD1

.zn � zn�1/ D
1X

nD0

�
�1

2

�n

.b � a/ D b � a

1 � �� 1
2

� D 2.b � a/

3
:

But the series on the left-hand side is telescoping, and so

lim
n!1 zn � z0 D 2.b � a/

3
;

whence

lim
n!1 zn D a C 2.b � a/

3
D a C 2b

3
:

4
Suppose a series

P1
j D1 zj converges to some number S . Then, by definition, the

sequence fSng also converges to S , where

Sn D
nX

j D1

zj

for each n > 0. So does the subsequence fStng, where ftng is any increasing
sequence of positive integers. (See Theorem 2.4.1.) Now

Stn D
tnX

j D1

zj D
n�1X
kD0

tkC1X
j DtkC1

zj ;

where we define t0 D 0. Thus

1X
j D1

zj D
1X

kD0

tkC1X
j DtkC1

zj : (3.3)

This result shows that the terms of a convergent series may be grouped together by
means of parentheses without affecting the convergence of the series. In Eq. (3.3)
we group together first the terms

z1; z2; : : : ; zt1 ;
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followed by the terms

zt1C1; zt1C2; : : : ; zt2 ;

and so forth, giving

.z1 C z2 C � � � C zt1 / C .zt1C1 C zt1C2 C � � � C zt2 / C � � � :

On the other hand, if some terms are already grouped together, then removal of the
parentheses used to group them may change a convergent series into a divergent
one. For example,

1X
j D0

.1 � 1/ D
1X

j D0

0 D 0;

but the series obtained by removing the parentheses is

1X
j D0

.�1/j ;

which diverges because its partial sums alternate between 1 and 0. However, if the
series with the parentheses removed does converge to a number S , then the original
series must also converge to S , as we have just seen.

There is one important circumstance under which the removal of parentheses
does not alter the convergence of the series: let us suppose that aj � 0 for each j .
Assuming that the series on the right-hand side of (3.3) converges when zj D aj

for all j > 0, by definition the sequence fStng also converges to some number L,
where

Sn D
nX

j D1

aj

for each n > 0. Hence fStng is bounded above. Now the sequences fSng and fStng
are nondecreasing, since aj � 0 for each j . Therefore both sequences are bounded
above by L because for each n there exists an integer k such that n � tk , and so
Sn � Stk � L. Being nondecreasing, the sequence fSng converges to some number
M � L. In other words, the series

P1
j D1 aj converges to M . But we also have

L � M because Stk � Sn � M for all n � tk . Thus we have proved the following
fact.

Theorem 3.2.3. Suppose that aj � 0 for each j . If the series

1X
kD0

tkC1X
j DtkC1

aj

converges to some number L, then so does
P1

j D1 aj .
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Exercises 3.1. 1. Find the limits of the following series:

(a)
P1

j D0
2

3j (e)
P1

j D0
1p

j Cp
j C1

(b)
P1

j D2
j �1

j Š
(f)

P1
j D3

4
j 2�4

(c)
P1

j D1
1

j.j C2/
(g)

P1
j D0

2
j 2C4j C3

(d)
P1

j D1
2j C1

j 2.j C1/2 (h)
P1

j D0
6j

3j C1�2j C1C3j �2j .

2. Show that if limn!1 xn D 1, then

1X
j D0

�
1

xj

� 1

xj C1

�

converges.
3. A decimal number is said to be repeating if there is a finite sequence of digits

that is repeated indefinitely.

(a) Express the repeating decimal 1:2323 : : : as a fraction.
(b) Show that every repeating decimal number is rational.

4. For all n 2 N let

Sn D
nX

j D1

1

j
:

Show that

S2n � Sn � 1

2

and hence that fSng is not Cauchy.
5. Let fxng be a sequence of positive terms, and suppose that fSng diverges, where

Sn D Pn
j D0 xj for all n.

(a) Show that

8<
:

nX
j D0

xj

S2
j

9=
;

is Cauchy and hence converges.
(b) Is the above true for

8<
:

nX
j D0

xj

Sj

9=
;‹
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6. Show that

1X
j D1

1

j.j C 1/ � � � .j C k/
;

where k 2 N, is telescoping and hence find the sum.
7. Find the sum

1X
j D0

�
1

j C i C 1
� 1

j C i

�
:

8. Let fxng be a sequence of positive terms. Show that
P1

j D0 xj converges if and
only if the sequence fPn

j D0 xj g is bounded.

3.3 Elementary Properties of Series

Since the behavior of a series is determined by its sequence of partial sums, many
theorems about series can be derived from the analogous theorems about sequences.
For instance, our next theorem follows immediately from Theorem 1.5.2.

Theorem 3.3.1. Let
P1

j D0 wj and
P1

j D0 zj be convergent series. Then, for all
numbers s and t ,

1X
j D0

.swj C tzj / D s

1X
j D0

wj C t;

1X
j D0

zj : (3.4)

Note that the convergence of the series on the left-hand side of Eq. (3.4)
constitutes part of the conclusion of the theorem. However, as for sequences, the
series on the left-hand side may converge while the series on the right do not. For
instance, for s D t D 1 the series on the right-hand side both diverge if wj D 1 and
zj D �1 for all j , but the series on the left-hand side converges to 0.

The following theorem also is immediate from Theorem 2.3.11 and the definition
of series in terms of sequences of partial sums.

Theorem 3.3.2. A series
P1

j D0 zj converges if and only if the series
P1

j D0 Re .zj /

and
P1

j D0 Im .zj / both converge.

The following result gives a necessary condition for a series to be convergent.

Theorem 3.3.3. If the series
P1

j D0 zj converges, then limn!1 zn D 0.

Proof. For each n � 0 let

Sn D
nX

j D0

zj :
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Then zn D Sn � Sn�1 for each n > 0. If

1X
j D0

zj D S;

then

lim
n!1 Sn�1 D lim

n!1 Sn D S;

so that

lim
n!1 zn D lim

n!1.Sn � Sn�1/ D S � S D 0:

ut
The contrapositive of the theorem above is particularly useful in establishing the

divergence of a series. It is known as the nth-term test.

Corollary 3.3.4 (nth-Term Test). If limn!1 zn does not exist or is nonzero, then
the series

P1
j D0 zj diverges.

For example, if jzj � 1, then the series
P1

j D0 zj must diverge since

lim
n!1 jznj D lim

n!1 jzjn ¤ 0:

This argument gives an alternative proof of part of Theorem 3.2.1.
However, convergence of the sequence fzng to 0 does not imply convergence of

the series
P1

j D0 zj . This point is illustrated in the following example. The series in
this example is called the harmonic series.

Example 3.3.1. The series

1X
j D1

1

j

diverges. A proof has been given in Example 2.6.2. We now present an alternative
proof.

Let Sn D Pn
j D1 1=j for all positive integers n. We use induction to show that

S2n >
n C 1

2

for all nonnegative integers n. It will then follow that fSng diverges, as it has a
divergent subsequence. Since S1 D 1 > 1=2, the required inequality certainly holds
for n D 0. We may therefore assume that n > 0 and that the result holds for n � 1.
Then
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S2n D
2nX

j D1

1

j

D
2n�1X
j D1

1

j
C

2nX
j D2n�1C1

1

j

� S2n�1 C
2nX

j D2n�1C1

1

2n

>
n

2
C 1

2n

2nX
j D2n�1C1

1

D n

2
C 2n � 2n�1

2n

D n C 1

2
:

4
Remark. For every positive integer n we have

S2n D
2nX

j D1

1

j

D 1 C
2nX

j D2

1

j

D 1 C
n�1X
kD0

2kC1X
j D2kC1

1

j

< 1 C
n�1X
kD0

2kC1X
j D2kC1

1

2k

D 1 C
n�1X
kD0

1

2k

2kC1X
j D2kC1

1

D 1 C
n�1X
kD0

2k

2k
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D 1 C
n�1X
kD0

1

D 1 C n:

Thus the divergence of the harmonic series is extraordinarily slow.

Exercises 3.2. 1. Can
P1

j D0.xj Cyj / converge when at least one of
P1

j D0 xj andP1
j D0 yj diverges?

2. Show that if
P1

j D0 zj converges, where zj ¤ 0 for all j , then

1X
j D0

1

zj

diverges.
3. Is

1X
j D1

.�1/j 21=j

convergent?
4. Show that

P1
j D1 aj converges if and only if a D 0.

5. Prove that

1X
j D0

j 2

7j 2 C 11

diverges.
6. Evaluate the following sums:

(a)
P1

j D0
.�1/j C2j

3j I
(b)

P1
j D1

�
2

5j � 1
j.j C1/

�
:

7. Let fxng be a decreasing sequence of positive terms and suppose that
P1

j D0 xj

converges. Show that

lim
n!1 nxn D 0:

This result is known as Pringsheim’s theorem. [Hint: Define m D n=2 for even
n and m D .n C 1/=2 for odd n. Then

Sn � Sm � nxn:�
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8. Show that if an C b ¤ 0 for all nonnegative integers n, then

1X
j D0

1

aj C b

diverges. (Use question 7.)

3.4 The Comparison Test

Often it is difficult or impossible to compute the partial sums for a series, and so it
is necessary to have some tests for convergence that do not depend on knowledge
of the partial sums. Many such tests require the series to contain only nonnegative
terms (which of course must be real). We devote the next few sections to such tests.
One of them is the comparison test, in which we compare the terms of a given series
with the corresponding terms of a series whose behavior is already known.

Theorem 3.4.1 (Comparison Test). Let
P1

j D0 aj and
P1

j D0 bj be two series of
nonnegative terms, and suppose that aj � bj for all j greater than or equal to
some nonnegative integer N . If the latter series converges, then so does the former.

Proof. We may assume that N D 0, since the series
P1

j D0 bj converges if and
only if

P1
j DN bj does so, and similarly for

P1
j D0 aj . Since the series

P1
j D0 bj

converges, so does the sequence fPn
j D0 bj g of partial sums. This is a nondecreasing

sequence since bj � 0 for all j . If its limit is L then, since aj � bj for all j , it
follows that

nX
j D0

aj �
nX

j D0

bj � L

for each n. Thus the nondecreasing sequence fPn
j D0 aj g is bounded above and

hence converges. We conclude that the series
P1

j D0 aj converges. ut
Corollary 3.4.2. Let

P1
j D0 aj and

P1
j D0 bj be series of nonnegative terms, and

suppose that aj � bj whenever j � N � 0. If the former series diverges, then so
does the latter.

Remark. If a series of nonnegative terms converges, then the corresponding
sequence of partial sums is convergent and therefore bounded. Conversely, if
the sequence of partial sums is bounded, then, being nondecreasing, it converges
and so the series is convergent.

Example 3.4.1. Let us test the series

1X
j D1

1

3j j
:
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Set aj D 1=.3j j / and bj D 1=3j for each j � 1. Then aj � bj for each j . ButP1
j D0 bj is the convergent geometric series

1X
j D0

�
1

3

�j

:

Thus
P1

j D1 bj converges, and therefore so does
P1

j D1 aj by the comparison
test. 4
Exercises 3.3. 1. Show that

1X
j D1

1

ej
p

j

converges.
2. Show that

1X
j D1

1p
j

diverges.
3. Let fxng be a sequence of positive terms and suppose that

P1
j D0 xj converges.

Show that
P1

j D0 x2
j converges.

4. Let fxng be a sequence of positive terms. Show that
P1

j D0 xj converges if and
only if

1X
j D0

xj

1 C xj

converges.
5. Show that if

P1
j D0 x2

j converges, then so does

1X
j D1

jxj j
j

:

6. Suppose that 0 < anC1 � ˛an for all n, where ˛ < 1. Show that

1X
j D0

aj � a0

1 � ˛
:

7. Let fxng be a sequence of positive terms. Show that if
P1

j D0 xj converges, then
so does
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1X
j D0

p
xj xj C1:

(Hint: Use Lemma 2.5.5.)
8. Let fxng be a sequence of positive terms, and suppose that fSng diverges, where

Sn D Pn
j D0 xj for all n. Show that

1X
j D0

xj

Sm
j

converges if and only if m > 1. (See question 5 at the end of Sect. 3.2.)
9. Let fang be an increasing sequence of positive terms. Show that

1X
j D0

�
1 � aj

aj C1

�

converges if and only if fang is bounded. (Apply question 5 with

xn D anC1 � an:/

10. Show that if m > 0 and p > 0, then

lim
n!1

0
@ nX

j D1

j m

1 C j mC1

� nX
j D1

j p

1 C j pC1

1
A D 1:

11. Let fyng be a bounded sequence of positive terms. Suppose that
P1

j D0 xj is
a convergent series of nonnegative terms. Show that the series

P1
j D0 xj yj is

convergent.

3.5 Cauchy’s Condensation Test

Given the series
P1

j D0 aj , the series

1X
kD0

2ka2k

is called the corresponding condensed series. We may write it as

a1 C .a2 C a2/ C .a4 C a4 C a4 C a4/ C � � � :
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The importance of the condensed series is revealed by the following theorem. It is
remarkable in that it enables us to settle the convergence of a series by considering
only a very thin sample of its terms.

Theorem 3.5.1 (Cauchy’s Condensation Test). If fang is a nonincreasing
sequence of nonnegative terms, then the series

P1
j D0 aj converges if and only

if its condensed series does so.

Proof. It suffices to check the convergence of the series
P1

j D1 aj and its condensed
series. We may write the sum of the first 2nC1 � 1 terms of the former series as

a1 C .a2 C a3/ C .a4 C a5 C a6 C a7/ C : : : C .a2n C a2nC1 C : : : C a2nC1�1/:

Thus

2nC1�1X
j D1

aj D
nX

kD0

2kC1�1X
j D2k

aj :

Since aj � a2k whenever 2k � j < 2kC1, we find that

2kC1�1X
j D2k

aj �
2kC1�1X
j D2k

a2k

D a2k

2kC1�1X
j D2k

1

D 2ka2k :

It therefore follows from the comparison test and Theorem 3.2.3, because of the
assumption that aj � 0 for all j , that if the condensed series converges, then so
does

P1
j D1 aj .

On the other hand, for all n > 0 we can also write

2nX
j D1

aj D a1 C a2 C .a3 C a4/ C : : : C .a2n�1C1 C a2n�1C2 C : : : C a2n/

D a1 C
nX

kD1

2kX
j D2k�1C1

aj :

As aj � a2k whenever 2k�1 < j � 2k , it follows that

2kX
j D2k�1C1

aj �
2kX

j D2k�1C1

a2k



3.5 Cauchy’s Condensation Test 125

D 2k�1a2k

D 1

2
� 2ka2k ;

and so

nX
kD1

2ka2k � 2

nX
kD1

2kX
j D2k�1C1

aj :

If the series
P1

j D1 aj converges, then so does

1X
kD1

2kX
j D2k�1C1

2aj ;

and consequently the comparison test shows that the condensed series also con-
verges. ut
Remark. We observe from the proof above that if

1X
j D1

aj D S

and
1X

j D0

2j a2j D T;

then S � T � 2S .

The next theorem, which generalizes Example 3.3.1, is an application of the
condensation test.

Theorem 3.5.2. For every rational number p, the series

1X
j D1

1

j p

converges if p > 1 and diverges otherwise.

Proof. If p � 0, then 1=j p � 1 for all positive integers j . Thus the sequence
f1=npg does not converge to 0 and the series diverges by the nth-term test.

For each p > 0 the sequence f1=npg is decreasing and Cauchy’s condensation
test can be applied. The condensed series is

1X
j D0

2j 1

2jp
D

1X
j D0

1

2j.p�1/
D

1X
j D0

�
1

2p�1

�j

:
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This is a geometric series and converges if and only if 1=2p�1 < 1. Hence the
condensed series, and therefore the given series, converges if and only if p � 1 > 0,
as required. ut

The series given in Theorem 3.5.2 is generally referred to as the p-series.

Exercises 3.4. 1. Using the knowledge gained so far, discuss the convergence of
the following series:

(a)
P1

j D2
1

j
p

j �1
;

(b)
P1

j D0
1

aj2Cb
, where a > 0 and b > 0;

(c)
P1

j D0
1
j Š

.

2. Let fang be a nonincreasing sequence of nonnegative terms. Prove that the seriesP1
j D0 aj converges if and only if the series

1X
j D0

3j a3j

converges. (This result is in fact true if we replace 3 by any integer greater than
2 [12].)

3. (a) The following result is a special case of a theorem in [1]. Let
P1

j D1 aj be a
series of positive terms. Suppose that the set



maxfa2n; a2nC1g

an

ˇ̌
ˇ̌n 2 N

�

is bounded below and above by l and L, respectively. Then the series
converges if L < 1=2 and diverges if l > 1=2.

Fill in the details in the following brief sketch of the proof. Suppose that
L < 1=2. As in Cauchy’s condensation test,

S2nC1�1 D
2nC1�1X

j D1

aj D a1 C
nX

kD1

Tk;

where

Tk D
2kC1�1X
j D2k

aj

D
2k�1X

j D2k�1

.a2j C a2j C1/

� 2LTk�1

� .2L/ka1:
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Deduce that the sequence fS2nC1�1g converges, and hence that fSng does so.
Similarly, prove the theorem for the case where l > 1=2.

(b) Use the theorem of part (a) to prove the convergence of the following
series:

i.
P1

j D1
1

j p for all rational p > 1;

ii.
P1

j D1
.2j �1/Š

22j �1.j �1/Š.j C1/Š
.

[Hint: If an denotes the nth term of the series, then

a2n

an

� 1

2

�
1 � 1

4n

�n�1

:�

4. Test the convergence of the series

1X
j D1

.2j � 1/Š

22j �1.j � 1/Šj Š
:

[Hint: If an denotes the nth term of the series, then an > 1=.2n/.]

3.6 The Limit Comparison Test

Our next test for convergence is often easier to apply than the comparison test. First,
however, we require some new notation.

Definition 3.6.1. Let fang and fbng be sequences of positive terms. Then an and bn

are said to be of the same order of magnitude if there is a positive number L such
that

lim
n!1

an

bn

D L:

In this case we write an 	 Lbn. We say that an is of a lesser order of magnitude
than bn, and write an << bn, if

lim
n!1

an

bn

D 0:

Finally, an is of a greater order of magnitude than bn if

lim
n!1

an

bn

D 1:

We then write an >> bn.
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The basic intuitive idea is that if an << bn, then bn increases with n much faster
(or decreases much more slowly) than does an. Theorem 2.8.4 shows that an << bn

if and only if bn >> an. Moreover if fcng is another sequence of positive terms
and an << bn << cn, then an << cn. This result follows immediately from the
observation that

an

cn

D an

bn

� bn

cn

:

Observe also that if an 	 Lbn, then bn 	 an=L.
The following example is worth noting.

Example 3.6.1. If p is a rational number and c > 1, then

np << cn << nŠ << nn:

Proof. These results are immediate from Examples 2.5.5, 2.5.6, and 2.7.10. 4
We are now ready for our next convergence test, which is known as the limit

comparison test.

Theorem 3.6.1 (Limit Comparison Test). Let
P1

j D0 aj and
P1

j D0 bj be series of
positive terms.

1. If an 	 Lbn for some L > 0, then both series converge or both diverge.
2. If an << bn and

P1
j D0 bj converges, then so does

P1
j D0 aj .

3. If an >> bn and
P1

j D0 bj diverges, then so does
P1

j D0 aj .

Proof. 1. We are given that

lim
n!1

an

bn

D L > 0:

Proposition 2.3.5 shows the existence of a number N1 such that an=bn > L=2

for all n � N1. Similarly, there exists N2 such that an=bn < L C L=2 D 3L=2

for all n � N2. Take N D maxfN1; N2g and choose n � N . Then

L

2
<

an

bn

<
3L

2
I

hence

an <
3Lbn

2
:

We now apply the comparison test. Suppose
P1

j D0 bj is convergent. By
Theorem 3.3.1 the series

1X
j D0

3Lbj

2
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also converges, whence
P1

j D0 aj converges by the comparison test. Similarly, ifP1
j D0 aj converges, then so does

P1
j D0 bj .

2. Suppose

lim
n!1

an

bn

D 0:

Then there exists N such that

an

bn

< 1

for all n � N . Hence an < bn for all n � N , and we conclude from the
comparison test that

P1
j D0 aj converges if

P1
j D0 bj does so.

3. This statement is equivalent to the previous one. ut
Example 3.6.2. Test the series

1X
j D0

1

.j C 1/.j C 2/

for convergence.

Solution. Let

an D 1

.n C 1/.n C 2/

for all n > 0. We show that an has the same order of magnitude as 1=n2.
Accordingly, we put

bn D 1

n2

for all n > 0. Then

an

bn

D n2

.n C 1/.n C 2/
! 1

as n ! 1. Thus an 	 bn. As
P1

j D1 bj converges by Theorem 3.5.2, so doesP1
j D0 aj by the limit comparison test. 4
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Example 3.6.3. Test the series

1X
j D0

.
p

j C 1 �p
j /2

for convergence.

Solution. For all n � 0 let

an D .
p

n C 1 � p
n/2

D
 

.
p

n C 1 � p
n/.

p
n C 1 C p

n/p
n C 1 C p

n

!2

D 1

.
p

n C 1 C p
n/2

;

and let

bn D 1

n

for all n > 0. Since

bn

an

D .
p

n C 1 C p
n/2

n

D 2n C 1 C 2
p

n.n C 1/

n

D 2 C 1

n
C 2

r
1 C 1

n

! 4

as n ! 1, it follows that an 	 bn=4. As
P1

j D1 bj is the divergent harmonic series,P1
j D0 aj diverges by the limit comparison test. 4

Example 3.6.4. Test the series

1X
j D1

1

j
1C 1

j

:

Solution. Taking

an D 1

n1C 1
n
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and

bn D 1

n

for all n > 0, we have

bn

an

D n1C 1
n

n
D n1=n ! 1

as n ! 1. Since
P1

j D1 bj diverges, so does
P1

j D1 aj .
The reader should compare this result with that of Theorem 3.5.2. 4

Exercises 3.5. 1. Test the convergence of each of the following series:

(a)
P1

j D0
2j C1

5j �j
;

(b)
P1

j D1

p
j C1�p

j

j
;

(c)
P1

j D1
e1=j

j 2 ;

(d)
P1

j D3
1p

j �3Cp
j C3

;

(e)
P1

j D1.e1=j p � 1/ for every rational p [use Theorem 2.7.10(3)];

(f)
P1

j D1.e1=j � 1/p for every rational p;

(g)
P1

j D0.
p

j 2 C 1 � j /;

(h)
P1

j D1

p
j C1�p

jp
j.j C1/

;

(i)
P1

j D1
1

j 2�1=j .

2. Find all integers t such that

1X
j D1

1

j 1Ct�p
t

is convergent.
3. Let a > 0 and b > 0. Find all rational p such that

1X
j D0

1

.aj C b/p

is convergent.
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4. Test the convergence of the series

1X
j D0

1

aj2 C bj C c
;

where a; b; c are all positive.
5. Prove that

lim
n!1.nŠ/1=n D 1:

3.7 The Ratio Test

In order to use the comparison or limit comparison test effectively, we need a supply
of series whose convergence or divergence has already been established. We shall
therefore develop another test which involves only the terms of the series being
tested. Its proof uses the comparison test.

Theorem 3.7.1. Let
P1

j D0 aj be a series of positive terms and suppose there exist
numbers r and N such that

anC1

an

� r < 1

for all n � N . Then the series converges. On the other hand, if

anC1

an

� 1

for all n � N , then the series diverges.

Proof. In the first case we have anC1 � ran for all n � N . It follows by induction
that

aN Cj � rj aN

for each positive integer j . Now the series
P1

j D0 aN rj converges since 0 < r < 1,
and so

P1
j D0 aN Cj converges also, by the comparison test. Hence

P1
j D0 aj

converges.
In the second case we have anC1 � an for all n � N and the series diverges by

the nth-term test. ut
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Corollary 3.7.2 (Ratio Test). Let
P1

j D0 aj be a series of positive terms and let

lim
n!1

anC1

an

D L

for some number L. Then the series converges if L < 1 and diverges if L > 1.

Proof. If L < 1, then by Proposition 2.3.4 there exist numbers N1 and r < 1 such
that

anC1

an

< r

for all n � N1. The result therefore follows immediately from Theorem 3.7.1 in this
case.

On the other hand, suppose L > 1. There exists N2 such that anC1=an > 1 for
all n � N2, and again the result follows from Theorem 3.7.1. ut
Remark. No conclusion can be drawn when L D 1 in the ratio test. For example,
this is the case for both the series

P1
j D1 1=j and

P1
j D1 1=j 2, but the former series

diverges whereas the latter converges.

Example 3.7.1. Test the series

1X
j D0

.j C 3/2j C1

3j
:

Solution. Putting

an D .n C 3/2nC1

3n

for all n � 0, we have

anC1

an

D .n C 4/2nC2

3nC1
� 3n

.n C 3/2nC1

D 2.n C 4/

3.n C 3/

! 2

3

as n ! 1. Hence the series converges by the ratio test. 4
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Example 3.7.2. Test the series

1X
j D0

x2j

.2j /Š
;

where x ¤ 0.

Solution. With

an D x2n

.2n/Š

for all n, we have

anC1

an

D x2nC2

.2n C 2/Š
� .2n/Š

x2n

D x2

.2n C 2/.2n C 1/

! 0;

and so the series converges.
A similar argument shows that

1X
j D0

x2j C1

.2j C 1/Š

also converges for all x > 0. 4
Example 3.7.3. The results of Example 3.6.1 can also be achieved by using the ratio
test. For instance, let us show that nŠ << nn. If we set an D nŠ=nn for all n > 0,
then the calculation in Example 2.7.10 shows that

anC1

an

D 1�
1 C 1

n

�n ! 1

e
< 1:

Hence the series

1X
j D1

j Š

j j
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converges by the ratio test. We deduce that

lim
n!1

nŠ

nn
D 0;

as required. 4
Exercises 3.6. 1. Let

P1
j D0 aj be a series of positive terms. Show that if anC1 �

an for all n, then the series diverges.
2. Test the convergence of the following series:

(a)
P1

j D1
j Šej

j j ; (d)
P1

j D1
.2j /Š

j j ;

(b)
P1

j D1
j 2

j Š
; (e)

P1
j D0

.j Š/2

.2j /Š
;

(c)
P1

j D1
2j j 2

j Š
; (f)

P1
j D0

.j Š/23j

.2j /Š
.

3. (a) Suppose that an > 0, bn > 0, and anC1=an � bnC1=bn for all n. Show thatP1
j D0 aj converges if

P1
j D0 bj does. (Hint: Show that the sequence fan=bng

is decreasing and use question 11 in the exercises at the end of Sect. 3.4.)
(b) Use part (a) to test the convergence of the following series:

i.
P1

j D1
j j

jej j Š
;

ii.
P1

j D1
j j

ej j Š
.

Note that the ratio test yields no conclusion in these examples.
4. Test the convergence of the series

1X
j D1

j Šxj

j j

for all x > 0.
5. The result in question 3 at the end of Sect. 3.5 is known as the second ratio test.

Here is a special case that can be proved by using Cauchy’s condensation test.
Let fang be a decreasing sequence of positive terms. By applying the ratio test to
the condensed series, show that

P1
j D0 aj converges if

lim
n!1

a2n

an

<
1

2

and diverges if

lim
n!1

a2nC1

an

>
1

2
:
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3.8 The Root Test

A somewhat different application of the comparison test gives us another test called
the root test. Again, it is applicable only to series of nonnegative terms. Its proof is
similar to that of the ratio test.

Theorem 3.8.1. Let
P1

j D0 aj be a series of nonnegative terms, and suppose that

there exist numbers r and N > 0 such that a
1=n
n � r < 1 for all n � N . Then the

series converges.

Proof. The hypothesis implies that an � rn for all n � N . Hence the seriesP1
j D0 aj converges by comparison with the convergent geometric series

P1
j D0 rj :

ut
Corollary 3.8.2 (Root Test). Let

P1
j D0 aj be a series of nonnegative terms and let

lim
n!1 a1=n

n D L

for some number L. Then the series converges if L < 1 and diverges if L > 1.

Proof. If L < 1, then there exist numbers N1 > 0 and r < 1 such that a
1=n
n < r for

all n � N1. In this case the result follows immediately from Theorem 3.8.1.
On the other hand, suppose L > 1. There exists N2 such that a

1=n
n > 1 for all

n � N2. For each such n it follows that an > 1. Hence fang cannot converge to 0
and the given series diverges. ut
Remark. As in the ratio test, no inference may be drawn if L D 1. Consider the
series

P1
j D1 1=j and

P1
j D1 1=j 2 as in the remark following the introduction of the

ratio test. Using the fact that n1=n ! 1 as n ! 1 (Example 2.5.1), we see that
L D 1 for both series, but one series diverges and the other converges.

Example 3.8.1. Test the series

1X
j D1

�
j

j C 1

�j 2

:

Solution. Setting

an D
�

n

n C 1

�n2
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for all n > 0, we obtain

a1=n
n D

�
n

n C 1

�n

D 1�
1 C 1

n

�n ! 1

e
< 1:

Hence the series converges by the root test. 4
Remark. If a

1=n
n < 1 for all n > 0, it does not necessarily follow that the seriesP1

j D0 aj converges. Indeed, the harmonic series provides an example of a divergent
series where this inequality holds for all n > 1.

We now show that if the ratio test is applicable, then so is the root test. In fact,
the root test is stronger.

Theorem 3.8.3. Let fang be a sequence of positive terms. If

lim
n!1

anC1

an

D L;

where L may be a number or 1, then

lim
n!1 a1=n

n D L:

Proof. Since an > 0 for all n, it follows that if L is a number then it must be
nonnegative.

Case 1: Suppose L > 0, and choose " 2 .0; L/. There exists N1 such that

L � " <
anC1

an

< L C "

for all n � N1. Thus

.L � "/an < anC1 < .L C "/an (3.5)

for all such n. In particular,

.L � "/aN1 < aN1C1 < .L C "/aN1 :

Suppose that

.L � "/maN1 < aN1Cm < .L C "/maN1 (3.6)

for some m 2 N. Then, using inequality (3.5) and the fact that L � " > 0, we
find that

.L�"/mC1aN1 < .L�"/aN1Cm < aN1CmC1 < .LC"/aN1Cm < .LC"/mC1aN1 :
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Therefore inequality (3.6) holds for all positive integers m, by induction. Any
integer n > N1 can be written as n D N1 C m, where m D n � N1 > 0, and so
inequality (3.6) can be rewritten as

.L � "/n aN1

.L � "/N1
< an < .L C "/n aN1

.L C "/N1
:

Thus,

.L � "/

�
aN1

.L � "/N1

�1=n

< a1=n
n < .L C "/

�
aN1

.L C "/N1

�1=n

(3.7)

for all n > N1, since L � " > 0. Denoting the left- and right-hand sides of
inequality (3.7) by sn and tn, respectively, and using the result of Example 2.5.2,
we find that sn ! L � " and tn ! L C " as n ! 1. Therefore there exist N2

and N3 such that

�" < sn � L C " < "

for all n � N2 and

�" < tn � L � " < "

for all n � N3. For all n > maxfN1; N2; N3g it follows that

L � 2" < sn < a1=n
n < tn < L C 2";

and so

lim
n!1 a1=n

n D L;

as required.
Case 2: Suppose L D 0. For every " > 0 there exists N such that

anC1

an

< "

whenever n � N . For all such n we therefore have

anC1 < "an:

Arguing as in case 1, we see by induction that

aN Cm < "maN
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for all positive integers m, and therefore that

an < "n�N aN D "n � aN

"N

for all n > N . Hence

a1=n
n < "

�aN

"N

�1=n

for all such n. Denoting the right-hand side of this inequality by sn, we see that
sn ! " as n ! 1. We then argue as in case 1 to show that

0 < a1=n
n < sn < 2"

for large enough n, and the result follows in this case also.
Case 3: Suppose finally that

lim
n!1

anC1

an

D 1;

and choose a number M . There exists N such that

anC1

an

> M C 1

for all n � N . Thus

anC1 > .M C 1/an

for all such n. Arguing as in the previous cases, we see by induction that

an > .M C 1/n aN

.M C 1/N

for all n > N and hence that

a1=n
n > .M C 1/

�
aN

.M C 1/N

�1=n

:

If we denote the right-hand side of this inequality by sn, then sn ! M C 1 as
n ! 1. For large enough n we therefore have

a1=n
n > sn > M;

and the proof is complete. ut
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Example 3.8.2. Consider the series

1X
j D0

1

2j C.�1/j
:

Letting

an D 1

2nC.�1/n

for all n, we find that

an D
(

1

2nC1 if n is even;
1

2n�1 if n is odd.

Thus, if n is even so that n C 1 is odd, then

anC1

an

D 2nC1

2n
D 2;

but if n is odd, then

anC1

an

D 2n�1

2nC2
D 1

8
:

Therefore limn!1 anC1=an does not exist. However,

a1=n
n D

8<
:

1

2�21=n if n is even;

21=n

2
if n is odd.

Hence

lim
n!1 a1=n

n D 1

2
< 1;

so that the series converges by the root test.
Note that the comparison test could also have been used, since an � 1=2n�1 for

every n. 4
Exercises 3.7. 1. Prove that

lim
n!1

n

.nŠ/1=n
D e:

(Hint: Apply Theorem 3.8.3.)
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2. Apply the root test to investigate the convergence of the series

1X
j D0

ej

j Š
:

3. Test the convergence of the following series:

(a)
P1

j D1

�
j

2j �1

�j

; (e)
P1

j D1
xj�

j C1
j

�j 2 for every x > 0;

(b)
P1

j D2.j 1=j � 1/j ; (f)
P1

j D0

�
j 2C1

j 2Cj C1

��j 2

;

(c)
P1

j D0
3j=2

2j ; (g)
P1

j D1

�
1 � 1

j

�j 2

;

(d)
P1

j D1 j 2e j̨ for every real ˛; (h)
P1

j D1
j j

2j 2 .

4. Consider the series

1X
j D2

1

j

�
1 � 1

j

�j

:

(a) Show that the root test is not applicable.
(b) Test the convergence of the series. (Hint: You may find Proposition 2.7.3

useful.)

5. Let 0 < ˛ < ˇ < 1, and for each nonnegative integer n define

an D
(

˛n if n is odd;

ˇn if n is even.

Determine the convergence of
P1

j D0 aj . (Note that the ratio and root tests both
fail.)

3.9 The Kummer–Jensen Test

The ratio test is an application of the comparison test. In fact, it is a special case of
a more general application due to Kummer and Jensen.

Theorem 3.9.1 (Kummer–Jensen Test). Let
P1

j D0 aj be a series of positive terms
and fbng a sequence of positive terms. Let

cn D bn � anC1

an

bnC1

for all n.
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1. If limn!1 cn > 0, then
P1

j D0 aj converges.
2. If

P1
j D0 1=bj diverges and there exists N such that cn � 0 for all n � N , thenP1

j D0 aj diverges.

Proof. 1. Suppose that

lim
n!1 cn D L > 0

and choose r such that 0 < r < L. Then there exists N > 0 such that

cn D bn � anC1

an

bnC1 > r

for all n � N . Hence

anbn � anC1bnC1 > ran (3.8)

for each such n.
Define

Sn D
nX

j D0

aj

for all n � 0. Since aj > 0 for all j , the sequence fSng of partial sums is
increasing. It therefore suffices to show that it is bounded above. Using (3.8) and
the telescoping property, for all integers m � N we have

r.Sm � SN �1/ D r

mX
nDN

an

<

mX
nDN

.anbn � anC1bnC1/

D aN bN � amC1bmC1

< aN bN :

Hence

Sm <
aN bN

r
C SN �1

for all such m, and the sequence fSng is indeed bounded above, as desired.
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2. By hypothesis, we have

anbn � anC1bnC1 � 0

for all n � N . Hence the sequence fanbng is nondecreasing when n � N , and
so anbn � aN bN for all such n. Thus

aN bN

bn

� an;

and the divergence of
P1

j D0 1=bj implies that of
P1

j D0 aj by the comparison
test. ut
The ratio test is obtained immediately by putting bn D 1 for all n. In view of

the limit comparison test, the divergence of the harmonic series shows that another
possibility is to have bn D n � 1 for all n. We then obtain

cn D n � 1 � anC1

an

n

D n

�
1 � anC1

an

�
� 1

for all n, and so we deduce the following result, due to Raabe.

Corollary 3.9.2 (Raabe’s Test). Let
P1

j D0 aj be a series of positive terms and
suppose that

lim
n!1 n

�
1 � anC1

an

�
D L

for some number L. Then the series converges if L > 1 and diverges if L < 1.

In fact, the Kummer–Jensen test shows that in order to establish divergence, it
suffices to find an N such that

n

�
1 � anC1

an

�
� 1

whenever n � N . Such an N certainly exists if L < 1.

Example 3.9.1. Test the series

1X
j D1

�
.2j � 1/Š

22j �1.j � 1/Šj Š

�m

for convergence, where m 2 N.



144 3 Series

Solution. Writing

an D
�

.2n � 1/Š

22n�1.n � 1/ŠnŠ

�m

for all n 2 N, we compute

anC1

an

D
�

.2n C 1/Š

22nC1nŠ.n C 1/Š
� 22n�1.n � 1/ŠnŠ

.2n � 1/Š

�m

D
�

2n C 1

2n C 2

�m

:

Thus

lim
n!1

anC1

an

D 1;

so that the ratio test is inconclusive.
Let us try Raabe’s test. We have

n

�
1 � anC1

an

�
D n

�
1 �

�
1 � 1

2n C 2

�m�

D n

0
@1 �

0
@1 � m

2n C 2
C

mX
j D2

 
m

j

!
.�1/j

.2n C 2/j

1
A
1
A

D nm

2n C 2
� n

mX
j D2

 
m

j

!
.�1/j

.2n C 2/j

! m

2

as n ! 1. Raabe’s test therefore shows that the series diverges for m D 1 and
converges for m > 2.

We now apply the Kummer–Jensen test to the case m D 2, where Raabe’s test is
not applicable. Taking bn D n for all n, we find that

bn � anC1

an

bnC1 D n � .2n C 1/2.n C 1/

4.n C 1/2

D � 1

4.n C 1/

< 0:
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Testing an, an > 0n=1

an 0?

an contains n!,
cn or nn ?

divergent
no

yes or uncertain

yes
Find lim

n

an+1
an

= L

and try ratio test

divergent convergent
an+1
an

1?

L> 1 L< 1 Ldoes not exist or L= 1

an is a ratio of
polynomials?

Try limit
comparison test divergent by

nth term test

Try root test.
Conclusion? Finished

Conclusion?

yes

yes

yes

no

no

no

no

Try comparison test or 

Finished
yes

Try the Kummer-
Jensen test

no

Fig. 3.1 Testing a series of positive terms for convergence

Recalling that the harmonic series diverges, we conclude by the Kummer–Jensen
test that the given series diverges. 4

Figure 3.1 suggests a procedure for testing a series of positive terms for
convergence.
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Exercises 3.8. 1. Test the following series for convergence:

(a)
P1

j D1
j 5

2j ; (j)
P1

j D0
1

22j C.�1/j
;

(b)
P1

j D0
100j

j Š
; (k)

P1
j D1

j

ej 2 ;

(c)
P1

j D1
j C5

j 2 ; (l)
P1

j D0
.2j /Š

22j .j Š/2 ;

(d)
P1

j D0
1

.2j C1/Š
; (m)

P1
j D1

.2j �1/Š

22j .j Š/2 ;

(e)
P1

j D0

p
j C1

j 2C1
; (n)

P1
j D1

.2j �1/Š

22j �1.j �1/Š.j C1/Š
;

(f)
P1

j D1

�
1C 1

j

�j

j
; (o)

P1
j D0

23j �1.j Š/3

.j C1/.2j C1/Š
;

(g)
P1

j D0
3j C5

p
j C7

j 3C3j 3=2C5
; (p)

P1
j D1

Qj

kD1.kCa�1/Qj

kD1.kCb�1/
for a > 0 and b > 0;

(h)
P1

j D1
1C2C:::Cj

j 3 ; (q)
P1

j D1

Qj

kD1.3k�1/2.3kC1/2

Qj

kD1.3k/4
;

(i)
P1

j D1
1

j 3C.�1/j
; (r)

P1
j D1

˛.˛C1/���.˛Cj �1/

j Š
for every real ˛.

2. For each real ˛ define
 

˛

0

!
D 1

and
 

˛

n

!
D ˛.˛ � 1/ � � � .˛ � n C 1/

nŠ

for each n 2 N. Show that the series

1X
j D1

.�1/j

 
˛

j � 1

!

converges if ˛ � 0 and diverges if ˛ < 0.
3. Let

P1
j D0 aj be a series of positive terms and let fbng be a sequence of positive

terms. For all n define

cn D an

anC1

bn � bnC1

and

rn D n

�
an

anC1

� 1

�
:
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Prove the following variants of the Kummer–Jensen test and Raabe’s test:

(a) If cn > t > 0 for all n and some fixed t , then the series converges.
(b) If

P1
j D0 1=bj diverges and cn � 0 for all n, then the series diverges.

(c) If rn > t > 1 for all n and some fixed t , then the series converges.
(d) If rn � 1 for all n, then the series diverges.

3.10 Alternating Series

In the previous several sections we dealt with series of nonnegative terms. Clearly,
the results can be applied also if the terms are all negative. If neither of these
conditions obtains, the series may be difficult to handle. However, there is a
convenient test, due to Leibniz, that can be applied to what is known as an alternating
series.

Definition 3.10.1. The series

1X
j D0

.�1/j bj (3.9)

is alternating if each bj is positive.

Theorem 3.10.1 (Leibniz’s Test). The alternating series (3.9) is convergent if fbng
is a nonincreasing sequence of positive terms converging to 0.

Proof. For each integer n � 0 let

Sn D
nX

j D0

.�1/j bj :

We need to show that the sequence fSng converges. We achieve this result by proving
that the subsequences fS2ng and fS2nC1g both converge to some number S and then
appealing to Theorem 2.4.3.

First we have

S2nC1 D
2nC1X
j D0

.�1/j bj

D b0 C
2nX

j D1

.�1/j bj � b2nC1

D b0 C
nX

j D1

.b2j � b2j �1/ � b2nC1:
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Note that b2nC1 > 0 and, since fbng is nonincreasing, b2j � b2j �1 for all j . Hence,
the sequence fS2nC1g is bounded above by b0. It is nondecreasing, because for all
n > 0 we have

S2nC1 � S2n�1 D b2n � b2nC1 � 0:

We conclude that fS2nC1g converges to some number S . It follows that

lim
n!1 S2n D lim

n!1.S2nC1 � b2nC1/

D S � 0

D S;

and the proof is complete. ut
Example 3.10.1. Consider the series

1X
j D1

.�1/j j

.j C 1/2
:

Setting

bn D n

.n C 1/2

for all n > 0, we observe that the sequence fbng converges to 0. To show that it is
nonincreasing, note first that

bnC1 � bn D n C 1

.n C 2/2
� n

.n C 1/2

D .n C 1/3 � n.n C 2/2

.n C 1/2.n C 2/2
:

As the denominator of this expression is positive, in order to determine the sign of
bnC1 � bn it suffices to inspect the numerator. Since

.n C 1/3 � n.n C 2/2 D �n2 � n C 1 < 0

for all n > 0, we confirm that the sequence fbng is in fact decreasing. Hence the
given series converges by Leibniz’s test. 4
Example 3.10.2. Let an D in=n for all n > 0. Then Re .an/ is equal to 0 if n is
odd, to 1=n if n is divisible by 4, and to �1=n otherwise. Thus
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1X
j D1

Re

�
i j

j

�
D

1X
kD1

.�1/k

2k
;

which converges by Leibniz’s test. Similarly,

1X
j D1

Im

�
i j

j

�
D

1X
kD1

.�1/k�1

2k � 1
;

which also converges. Hence the series
P1

j D1 i j =j converges by Theorem 3.3.2.
The conjugate series

1X
j D1

.�i/j

j

also converges, by the same argument. 4
Our next example shows that the condition that the sequence fbng of Leibniz’s

test be nonincreasing cannot be dropped.

Example 3.10.3. Consider the series
P1

j D1.�1/j C1bj , where

b2j �1 D 1

j C 1

and

b2j D 1

.j C 1/2

for all j > 0. The sequence fbng converges to 0, but it is not monotonic.
If the series were to converge, then we could obtain another convergent series by

grouping its terms in any way. However, by grouping the terms in pairs, we obtain

1X
j D1

�
1

j C 1
� 1

.j C 1/2

�
D

1X
j D1

j

.j C 1/2
;

and this series is divergent by the limit comparison test applied to the harmonic
series. 4

Often it is difficult to determine to what number S a convergent series converges,
but in the situation where Leibniz’s test is applicable it is possible to approximate S .
Indeed, we see in the following theorem that if we attempt to approximate S by
taking the sum of the first few terms of the series, then the error is bounded above
by the absolute value of the first term omitted from the sum.
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Theorem 3.10.2. Let fbng be a nonincreasing sequence of positive terms, and let

1X
j D0

.�1/j bj D S:

Then

jS � Snj � bnC1

for each n � 0, where

Sn D
nX

j D0

.�1/j bj :

Proof. We saw in the proof of Theorem 3.10.1 that the sequence fS2nC1g is
nondecreasing. Similarly, fS2ng is nonincreasing, since

S2nC2 � S2n D b2nC2 � b2nC1 � 0

for all n. Therefore S is an upper bound for fS2nC1g and a lower bound for fS2ng.
Hence

S2n�1 � S2nC1 � S � S2n (3.10)

for all n > 0, so that

0 � S � S2n�1

� S2n � S2n�1

D b2n;

as desired. The last two inequalities of (3.10) hold even if n D 0. Therefore

0 � S2n � S

� S2n � S2nC1

D �.�b2nC1/

D b2nC1

for all n � 0, and the proof is complete. ut
Remark. The theorem shows that

Sn � bnC1 � S � Sn C bnC1
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for all n � 0. Moreover it is easily seen that the inequalities are strict if the sequence
fbng is decreasing. In particular, since we then have b0 > b1, it follows that S > 0.

Example 3.10.4. Consider

1X
j D1

.�1/j

j 2
:

This series converges to some number S by Leibniz’s test, since the sequence f1=n2g
is decreasing and converges to 0. We approximate S by the partial sum

Sn D
nX

j D1

.�1/j

j 2

for some n > 0. If we require accuracy to within a given positive number ", then
according to Theorem 3.10.2, we need to choose n so that

1

.n C 1/2
< ":

Thus we must have

.n C 1/2 >
1

"
;

and to ensure that this inequality holds, we take

n >
1p
"

� 1:

The exact value of the sum requires ideas that are beyond the scope of this book. 4
Exercises 3.9. 1. Determine the convergence of the following series:

(a)
P1

j D1.�1/j C1 j 2

j 3C1
;

(b)
P1

j D1.�1/j C1 2j C1

j.j C1/
;

(c)
P1

j D0.�1/j C1 j �5

7j C3
;

(d)
P1

j D2.�1/j C1.j 1=j � 1/;

(e)
P1

j D1.�1/j C1.a1=j � 1/, where a > 0;

(f)
P1

j D1.�1/j C1

��
1 C 1

j

�j C1 � e

�
;

(g)
P1

j D1
.�1/j �ijp

j
.
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2. Show that the series

S D
1X

j D2

.�1/j C1

j � p
j

converges. Letting Sn be the nth partial sum of the series, find an upper bound
for jS15 � S j.

3. Let fang be a decreasing null sequence. Show that

1X
j D1

.�1/j C1 a1 C a2 C : : : C aj

j

converges.
4. If

P1
j D0 aj converges, does it follow that

P1
j D0.�1/j aj converges? Give a

proof or a counterexample.
5. Determine the convergence of

1X
j D0

.�1/j C1

j C 2 C .�1/j
:

[Hint:

1

j C 2 C .�1/j
D j C 2 � .�1/j

.j C 2/2 � 1
:�

3.11 Dirichlet’s Test

All the tests we have learned so far help us to determine the convergence of series
whose terms are all positive or alternate in sign. In this section we provide a useful
test that does not require these assumptions. The proof relies on Abel’s partial
summation identity.

Lemma 3.11.1 (Abel’s Partial Summation Identity). Let fung and fvng be two
sequences of complex numbers, and let fUng be a sequence such that Un�Un�1 D un

for all n 2 N. Then

nX
j DmC1

uj vj D Unvn � UmvmC1 �
n�1X

j DmC1

Uj .vj C1 � vj / (3.11)

whenever m < n.
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Proof. Since Uj � Uj �1 D uj , we have

nX
j DmC1

uj vj D
nX

j DmC1

vj

�
Uj � Uj �1

�

D
nX

j DmC1

vj Uj �
nX

j DmC1

vj Uj �1

D
n�1X

j DmC1

vj Uj C vnUn � vmC1Um �
nX

j DmC2

vj Uj �1

D vnUn � vmC1Um C
n�1X

j DmC1

vj Uj �
n�1X

j DmC1

vj C1Uj

D Unvn � UmvmC1 �
n�1X

j DmC1

Uj .vj C1 � vj /:

ut
The next result is due to Shiu [14].

Theorem 3.11.2. Let fung and fvng be sequences of complex numbers and suppose
that

1.
P1

j D0 jvj C1 � vj j converges,
2. fvng converges to 0, and
3. there is a constant K such that

ˇ̌̌
ˇ̌
ˇ

nX
j D0

uj

ˇ̌̌
ˇ̌
ˇ � K

for all n � 0.

Then
P1

j D0 uj vj is convergent.

Proof. Choose " > 0. The convergent sequence

8<
:

nX
j D0

jvj C1 � vj j
9=
;
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is Cauchy. Therefore by hypotheses (1) and (2) there exists N such that for all
n � N we have

nX
j DN C1

jvj C1 � vj j < "

and

jvnj < ":

For each n � 0 let

Sn D
nX

j D0

uj vj

and

Un D
nX

j D0

uj :

Thus jUnj � K for all n � 0, by hypothesis. For all integers m and n such that
n > m � N , Abel’s identity therefore gives

jSn � Smj D
ˇ̌
ˇ̌̌
ˇ

nX
j DmC1

uj vj

ˇ̌
ˇ̌̌
ˇ

� jUnvnj C jUmvmC1j C
n�1X

j DmC1

jUj jjvj C1 � vj j

� Kjvnj C KjvmC1j C K

n�1X
j DmC1

jvj C1 � vj j

< 3K";

as it may be assumed that K > 0. The desired conclusion follows from Cauchy’s
criterion. ut
Corollary 3.11.3 (Dirichlet’s Test). Let fung be a complex sequence and let fvng
be a real sequence. Suppose that

1. fvng is monotonic and converges to 0, and
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2. there is a constant K such that
ˇ̌̌
ˇ̌
ˇ

nX
j D0

uj

ˇ̌̌
ˇ̌
ˇ � K

for all n � 0.

Then
P1

j D0 uj vj is convergent.

Proof. According to Theorem 3.11.2, it is enough to show that

1X
j D0

jvj C1 � vj j

converges. Choose " > 0. By condition (1), there exists N such that

jvnj < "

for all n � N . For each such n, define

Tn D
nX

j D0

jvj C1 � vj j:

We must show that fTng is convergent.
Since fvj g is monotonic, either fvj C1 � vj g is a sequence of nonnegative terms

or it is a sequence of nonpositive terms. Therefore for all integers m and n such that
n > m � N , it follows that

jTn � Tmj D
nX

j DmC1

jvj C1 � vj j

D
ˇ̌̌
ˇ̌̌ nX
j DmC1

.vj C1 � vj /

ˇ̌̌
ˇ̌̌

D jvnC1 � vmC1j
� jvnC1j C jvmC1j
< 2":

The desired conclusion thus follows from Cauchy’s criterion. ut
Remark. We obtain Leibniz’s test by taking un D .�1/n for all n in Dirichlet’s test.
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Example 3.11.1. Let jzj D 1 and z ¤ 1. We show that

1X
j D1

zj

j p

is convergent for every rational p > 0.
Let us take vn D 1=np and un D zn for all n. Then

ˇ̌̌
ˇ̌̌ nX
j D0

zj

ˇ̌̌
ˇ̌̌ D

ˇ̌
ˇ̌1 � znC1

1 � z

ˇ̌
ˇ̌ � 1 C jzjnC1

j1 � zj D 2

j1 � zj

for all n. Therefore the series converges by Dirichlet’s test. 4
Exercises 3.10. 1. (a) Let fvng be a monotonic sequence, and let fung be a

sequence for which there is a constant K such that

ˇ̌̌
ˇ̌
ˇ

nX
j D0

uj

ˇ̌̌
ˇ̌
ˇ � K

for all n � 0. Prove that

ˇ̌
ˇ̌̌
ˇ

nX
j DmC1

uj vj

ˇ̌
ˇ̌̌
ˇ � 2K.jvmC1j C jvnj/

for all positive integers m and n such that m < n.
(b) Use part (a) to prove Dirichlet’s test.

2. Suppose that fvng is a monotonic bounded sequence and that
P1

j D0 uj converges.
Prove that

P1
j D0 uj vj converges. (This result is known as Abel’s test.)

3.12 Absolute and Conditional Convergence

We have seen the advantages of considering series whose terms are all nonnegative.
Given an arbitrary series, we may obtain a series of nonnegative terms by replacing
each term with its absolute value. If the resulting series converges, then so does the
original series. That is the content of our next theorem. We begin its proof with a
useful lemma.

Lemma 3.12.1. Let fzng be a sequence of complex numbers. Then
P1

j D0 jzj j
converges if and only if

P1
j D0 jRe .zj /j and

P1
j D0 jIm .zj /j converge.
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Proof. Recalling that jRe .zn/j � jznj and jIm .zn/j � jznj for all n, we find that the
lemma holds by the comparison test if

P1
j D0 jzj j converges. The converse follows

from the fact that

jznj � jRe .zn/j C jIm .zn/j
for all n, by the triangle inequality. ut
Theorem 3.12.2. Let fzng be a sequence (not necessarily real). If

P1
j D0 jzj j

converges, then so does
P1

j D0 zj .

Proof. In view of Lemma 3.12.1, we may assume that each zn is real. Thus we write
xn D zn for each n. Certainly,

0 � xn C jxnj � 2jxnj
for each n. Given that

P1
j D0 jxj j converges, so does

1X
j D0

.xj C jxj j/;

by the comparison test. As

1X
j D0

xj D
1X

j D0

.xj C jxj j/ �
1X

j D0

jxj j

by Theorem 3.3.1, the result follows. ut
Remark. The converse of the theorem above is not always true. For example, the
alternating series

1X
j D1

.�1/j

j

converges by Leibniz’s test, but the harmonic series diverges.

A series
P1

j D0 zj is said to be absolutely convergent if
P1

j D0 jzj j converges.
Thus every absolutely convergent series does in fact converge, according to
Theorem 3.12.2. A series that is convergent but not absolutely is said to be
conditionally convergent.

Example 3.12.1. The series

1X
j D1

i j

j 2
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is absolutely convergent since the series

1X
j D1

ˇ̌
ˇ̌ i j

j 2

ˇ̌
ˇ̌ D

1X
j D1

1

j 2

converges. 4
Example 3.12.2. Test the series

1X
j D1

.�1/j j

2j
:

Solution. Note that the series

1X
j D1

j

2j

converges by the ratio test, since

n C 1

2nC1
� 2n

n
D n C 1

2n
! 1

2
< 1:

Hence the given series converges absolutely. 4
The work in this example suggests that the ratio test can be extended to series

whose terms are not necessarily positive or even real. In fact, we can prove the
following theorem.

Theorem 3.12.3 (Generalized Ratio Test). Let
P1

j D0 zj be a series (not neces-
sarily real) and suppose that

lim
n!1

ˇ̌̌
ˇ znC1

zn

ˇ̌̌
ˇ D L

for some number L. Then the series converges absolutely if L < 1 but diverges
if L > 1.

Proof. If L < 1, then the series
P1

j D0 jzj j converges by the ratio test, and so
the given series is absolutely convergent. If L > 1, then, arguing as in the proof
of the ratio test, we see that the sequence fjznjg cannot converge to 0. Hence the
sequence fzng cannot converge to 0 either. Thus the given series fails the nth term
test and therefore cannot converge. ut

There is also a generalized root test, which has a similar proof.
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Theorem 3.12.4 (Generalized Root Test). Let
P1

j D0 zj be a series and let

lim
n!1 jznj1=n D L

for some number L. Then the series converges absolutely if L < 1 but diverges if
L > 1.

Proof. If L < 1, then the series is absolutely convergent by the root test. If L > 1,
then, as in the proof of the root test, the sequence fzng cannot converge to 0. ut
Theorem 3.12.5. Let fxng and fyng be real sequences, and suppose that

P1
j D0 x2

j

and
P1

j D0 y2
j converge. Then the series

P1
j D0 xj yj is absolutely convergent.

Proof. Note first that

.jxj j � jyj j/2 � 0

for all j . Hence

1

2
.x2

j C y2
j / � jxj yj j:

The result now follows from the comparison test. ut
Exercises 3.11. 1. Use Cauchy’s principle to prove that if a complex series is

absolutely convergent, then it is convergent.
2. (a) Show that if

P1
j D0 xj converges absolutely, then so does

P1
j D0 x2

j .
(b) Is the converse true?
(c) Is it true that if

P1
j D0 xj converges, then so does

P1
j D0 x2

j ?
3. Show that if

P1
j D0 zj and

P1
j D0 wj are absolutely convergent complex series,

then so are
P1

j D0 zj wj and
P1

j D0.˛zj Cˇwj / for all complex numbers ˛ and ˇ.
4. Show that if

P1
j D0 zj is an absolutely convergent complex series, then

ˇ̌̌
ˇ̌
ˇ

1X
j D0

zj

ˇ̌̌
ˇ̌
ˇ �

1X
j D0

jzj j:

5. Test the following series for absolute convergence and conditional conver-
gence:

(a)
P1

j D2
.�1/j C1

j �p
j

;

(b)
P1

j D0.�1/j C1
�

j C2

3j �1

�j

;

(c)
P1

j D0.j C 1/2
�

x
xC2

�j
for all real x ¤ �2;

(d)
P1

j D0.�1/j C1 .j �i/2

2j ;

(e)
P1

j D1
ij

j 3=2 .
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3.13 Rearrangements of Series

The notion of a conditionally convergent series was introduced in the previous
section. Part of the reason for this terminology is an unpleasant and perhaps
counterintuitive property: The convergence turns out to depend on the order in
which the terms of the series are written. In fact, we have the following remarkable
theorem, due to Riemann.

Theorem 3.13.1 (Riemann). For each conditionally convergent real series and
given number S , the terms of the series may be rearranged to yield a series that
converges to S . There is also a rearrangement of the terms so that the resulting
series diverges.

Before proving Theorem 3.13.1, we make some important observations. Given a
real sequence fang, let us define two new sequences fPng and fQng, where

Pn D janj C an

2
(3.12)

and

Qn D janj � an

2
(3.13)

for all n. Thus, if an � 0, then Pn D an D janj and Qn D 0, but if an < 0,
then Pn D 0 and Qn D �an D janj. We can therefore think of

P1
j D1 Pj

and �P1
j D1 Qj as the series composed of the nonnegative and negative terms,

respectively, of the series
P1

j D1 aj . It is easy to see that if
P1

j D1 aj is conditionally
convergent, then both

P1
j D1 Pj and

P1
j D1 Qj diverge. Indeed, we have

janj D 2Pn � an

for all n, and so if
P1

j D1 Pj were to converge, then it follows from Theorem 3.3.1
that

P1
j D1 jaj j would converge. This conclusion would contradict the conditional

convergence of
P1

j D1 aj . The proof that
P1

j D1 Qj diverges is similar.
Note also that if n > 1 and x1; x2; : : : ; xn are numbers such that

n�1X
j D1

xj � S;

then

nX
j D1

xj � S D xn C
n�1X
j D1

xj � S � xn: (3.14)



3.13 Rearrangements of Series 161

Similarly, if

n�1X
j D1

xj � S;

then

S �
nX

j D1

xj D S �
n�1X
j D1

xj � xn � �xn: (3.15)

The proof of the theorem involves some technical details, but the idea is simple.
From the terms of the series

P1
j D1 aj , we construct a series converging to S

as follows. First, we take just enough positive terms to obtain a partial sum that
exceeds S . Next, we throw in just enough negative terms to produce a partial sum
below S . Then we add some more positive terms, just enough to bring the partial
sum above S once more. We continue in this fashion, so that the partial sums
oscillate about S . The resulting series converges to S .

Proof of Theorem 3.13.1. Let us first try to use the terms of a conditionally conver-
gent series

P1
j D1 aj to construct a series that converges to S . For all n > 0 define

Pn and Qn as in (3.12) and (3.13), respectively. Let M1 be the smallest positive
integer such that

M1X
j D1

Pj > S:

Certainly M1 exists: The sequence fPn
j D1 Pj g is nondecreasing and therefore

cannot be bounded above since it diverges. Next let N1 be the smallest positive
integer such that

M1X
j D1

Pj �
N1X

j D1

Qj < S I

N1 also exists since
P1

j D1 Qj diverges. In fact, the choice of N1 shows that

M1X
j D1

Pj �
N1�1X
j D1

Qj � S I

hence

0 < S �
0
@ M1X

j D1

Pj �
N1X

j D1

Qj

1
A � �.�QN1/ D QN1

by (3.15).
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Continuing by induction, suppose that n > 0 and that

M1; M2; : : : ; Mn; N1; N2; : : : ; Nn

have been defined so that

0 < S � Tn � QNn; (3.16)

where

Tn D
n�1X
kD0

0
@ MkC1X

j DMkC1

Pj �
NkC1X

j DNkC1

Qj

1
A

and M0 D N0 D 0. Continue by letting MnC1 be the smallest integer greater than
Mn such that

Tn C
MnC1X

j DMnC1

Pj > S

and letting NnC1 be the smallest integer greater than Nn such that

TnC1 D Tn C
MnC1X

j DMnC1

Pj �
NnC1X

j DNnC1

Qj < S I

both MnC1 and NnC1 exist. The choice of NnC1 implies that

Tn C
MnC1X

j DMnC1

Pj �
NnC1�1X
j DNnC1

Qj � S;

so that

0 < S � TnC1 � QNnC1
;

by (3.15).
We must show that the resulting series converges to S . This goal is achieved by

studying the partial sum Tn and those between Tn and TnC1. From the choice of
MnC1 and inequalities (3.16) it follows that

0 � S � Tn �
mX

j DMnC1

Pj � QNn (3.17)
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for each m such that Mn < m < MnC1, since Pj � 0 for all j . Moreover the choice
of MnC1 also shows that

0 < Tn C
MnC1X

j DMnC1

Pj � S � PMnC1
; (3.18)

by (3.14), whence

0 � Tn C
MnC1X

j DMnC1

Pj �
mX

j DNnC1

Qj � S � PMnC1
(3.19)

for all m such that Nn < m < NnC1. From (3.16–3.19) we find that the partial sums
in question all differ from S by an amount no greater than

maxfPMnC1
; QNng:

But the sequence fang converges to 0 by the convergence of
P1

j D1 aj . Hence fjanjg
also converges to 0 and therefore so do its subsequences fPMnC1

g and fQNng, as
required.

It’s easier to construct a divergent series from the terms of the series
P1

j D1 aj .
Defining Pn and Qn as before, let K1 be the smallest positive integer such that

K1X
j D1

Pj � Q1 > 1:

Suppose that K1; K2; : : : ; Kn have been defined for some positive integer n so that

n�1X
kD0

0
@ KkC1X

j DKkC1

Pj � QkC1

1
A > n;

where K0 D 0. Let KnC1 be the smallest integer greater than Kn such that

nX
kD0

0
@ KkC1X

j DKkC1

Pj � QkC1

1
A > n C 1:

The series defined inductively by this procedure diverges. ut
By contrast, Dirichlet proved that an absolutely convergent series converges to

the same number regardless of the order in which the terms are written. In order to
make the discussion rigorous, let us first introduce the following definition.
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Definition 3.13.1. Let fkng be a sequence of nonnegative integers in which each
nonnegative integer appears exactly once. Then the sequence fakng is a rearrange-
ment of a sequence fang and the series

P1
j D0 akj is a rearrangement of the seriesP1

j D0 aj .

Theorem 3.13.2 (Dirichlet). All rearrangements of an absolutely convergent
series are absolutely convergent and converge to the same number.

Proof. Let
P1

j D0 wj be a rearrangement of an absolutely convergent seriesP1
j D0 zj . For all n 2 N write

Sn D
nX

j D0

zj ;

S 0
n D

nX
j D0

jzj j;

Tn D
nX

j D0

wj ;

and

T 0
n D

nX
j D0

jwj j:

Every convergent sequence is bounded, and so there exists M such that S 0
n � M

for all n. As
P1

j D0 jwj j is a rearrangement of
P1

j D0 jzj j, we also have T 0
n � M for

all n. Hence
P1

j D0 wj is absolutely convergent.
Let

S D
1X

j D0

zj

and

T D
1X

j D0

wj :

It remains only to show that S D T . Choose " > 0. We can find N such that

jS � Snj < "

and

S 0
m � S 0

n < "
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whenever m > n � N . Fix n � N and choose p large enough so that

jTp � T j < "

and the sum Tp includes z0; z1; : : : ; zn among its terms. Now choose m > n so large
that every term of Tp is also a term of Sm. Thus Sm � Tp is a summation whose
terms form a subset of fznC1; znC2; : : : ; zmg, so that

jSm � Tpj � S 0
m � S 0

n

< ":

Hence

jS � T j � jS � Smj C jSm � Tpj C jTp � T j
< 3":

Since " is arbitrary, we conclude that S D T , as required. ut

3.14 Products of Series

In order to understand products of series, we must first carefully consider the
process of multiplying finite sums. Suppose that am; amC1; : : : ; an; bp; bpC1; : : : ; bq

are numbers and we wish to form the product

0
@ nX

j Dm

aj

1
A
0
@ qX

kDp

bk

1
A : (3.20)

In fact, this product may be written without the parentheses, as we now show. Using
the distributive law (1.17) twice, first with s D Pn

j Dm aj and then with s D bk ,
gives

0
@ nX

j Dm

aj

1
A
0
@ qX

kDp

bk

1
A D

qX
kDp

0
@ nX

j Dm

aj

1
A bk

D
qX

kDp

0
@ nX

j Dm

aj bk

1
A

D
qX

kDp

nX
j Dm

aj bk:
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a0b0 a0b1 a0b2 · · · a0bq−1 a0bq
↙↙↙

a1b0 a1b1 a1b2 · · · a1bq−1 a1bq
↙↙↙

a2b0 a2b1 a2b2 · · · a2bq−1 a2bq
...

...
...

...
...

...
an−1b0 an−1b1 an−1b2 · · · an−1bq−1 an−1bq

↙↙↙
anb0 anb1 anb2 · · · anbq−1 anbq

Fig. 3.2 The terms of .
Pn

j Dm aj /.
Pq

kDp bk/

As multiplication is commutative, we conclude that

qX
kDp

nX
j Dm

aj bk D
0
@ qX

kDp

bk

1
A
0
@ nX

j Dm

aj

1
A

D
nX

j Dm

qX
kDp

aj bk:

It now follows that
0
@ nX

j Dm

aj

1
A
0
@ qX

kDp

bk

1
A D

nX
j Dm

qX
kDp

aj bk

D
nX

j Dm

0
@aj

qX
kDp

bk

1
A

D
nX

j Dm

aj

qX
kDp

bk;

where the penultimate line was obtained by another application of distributivity.
In order to understand better how to evaluate the expression (3.20), let us begin by

considering the case where m D p D 0. Basically, the product (3.20) is calculated
by adding up the products of the form aj bk for all relevant j and k. In other words,
we simply add all the entries in Fig. 3.2. In the calculation above, the terms aj bk

are ordered so that all those containing a0 are listed first, then all those containing
a1, and so forth. In other words, the entries of the figure are added row by row. The
sum of the entries in the .j C 1/th row is aj

Pq

kD0 bk .
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However, there is another way of performing this calculation which is of some
importance. Let us assume first that n D q, so that Fig. 3.2 gives a square array.
Instead of ordering the terms in Fig. 3.2 row by row, we may order them as indicated
by the arrows. In other words, we begin with the term a0b0 in the top left corner,
followed by the terms in the diagonal from a0b1 to a1b0, then those in the diagonal
from a0b2 to a2b0, and so on, up to and including the diagonal that contains a0bq D
a0bn, the entry in the top right corner. As the array is assumed to be square, this
diagonal also contains anb0. We then continue with the diagonal from a1bn to anb1,
then that from a2bn to anb2, and so on. The last diagonal consists only of the term
anbn. In each diagonal the sum of the subscripts is a constant between 0 and 2n

(inclusive), and this constant is different from the corresponding constant for each
other diagonal. For the diagonal where this constant is t , the sum of the terms in the
diagonal is

tX
sD0

asbt�s;

provided we agree that as D 0 whenever s > n and bt�s D 0 whenever t � s > n.
With this understanding, we conclude that

nX
j D0

aj

nX
kD0

bk D
2nX

tD0

tX
sD0

asbt�s :

If n > q, then we may set bk D 0 for all k > q and apply the result of the
calculation above. Similarly, if n < q, then we set aj D 0 for all j > n. In both
cases we reach the conclusion that

nX
j D0

aj

qX
kD0

bk D
nCqX
tD0

tX
sD0

asbt�s;

since asbt�s D 0 whenever t D s C .t � s/ > n C q. In general,

nX
j Dm

aj

qX
kDp

bk D
n�mX
j D0

aj Cm

q�pX
kD0

bkCp

D
n�mCq�pX

tD0

tX
sD0

asCmbt�sCp:

Setting v D s C m and u D t C m C p, we therefore obtain

nX
j Dm

aj

qX
kDp

bk D
nCqX

uDmCp

u�pX
vDm

avbu�v;

since t C p � s D u � m � s D u � v.
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Using Eq. (1.15), we may summarize the result of this calculation in the
following theorem.

Theorem 3.14.1. For integers m; n; p; q such that m � n and p � q, we have

nX
j Dm

aj

qX
kDp

bk D
nCqX

j DmCp

j �pX
kDm

akbj �k;

where al D 0 for all l > n and bl D 0 for all l > q. In particular,

nX
j D0

aj

qX
kD0

bk D
nCqX
j D0

jX
kD0

akbj �k;

for all nonnegative integers n and q.

We now turn our attention to the multiplication of absolutely convergent series

A D
1X

j D0

aj

and

B D
1X

j D0

bj :

Thus we need to find the sum of all products of the form aj bk for nonnegative
integers j and k. This sum may be written as the series

1X
j D0

 
jX

kD0

aj bk C
j �1X
lD0

albj

!
(3.21)

D a0b0 C a1b0 C a1b1 C a0b1 C a2b0 C a2b1 C a2b2 C a0b2 C a1b2 C � � � :

For each nonnegative integer n let An; Bn; Sn be the nth partial sums of A, B , and
the series (3.21), respectively. Thus,

An D
n�1X
j D0

aj

and

Bn D
n�1X
j D0

bj :
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The product AnBn has n2 terms, and it follows that

Sn2 D AnBn:

For each nonnegative integer n let Tn be the sum of the absolute values of the
first n terms of series (3.21). Since A and B are absolutely convergent, we find that

Tn � Tn2

D
n�1X
j D0

jaj j
n�1X
j D0

jbj j

�
1X

j D0

jaj j
1X

j D0

jbj j:

Thus the series (3.21) converges absolutely. Since fSn2g is a subsequence of fSng,
we find that

1X
j D0

 
jX

kD0

aj bk C
j �1X
lD0

albj

!
D lim

n!1 Sn

D lim
n!1 Sn2

D lim
n!1 AnBn

D AB:

Because of the absolute convergence of this series, Dirichlet’s theorem shows that
every rearrangement must also converge absolutely to AB. We have now proved the
following theorem.

Theorem 3.14.2. If
P1

j D0 aj and
P1

j D0 bj converge absolutely to A and B ,
respectively, then

1X
j D0

jX
kD0

akbj �k D AB

and the convergence is absolute.

3.15 Introduction to Power Series

A power series in a variable z is defined as a series of the form
1X

j D0

cj .z � c/j ; (3.22)
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where c; c0; c1; : : : are constants, not necessarily real. Throughout this discussion
we shall take 00 to be 1. Thus the first term of the power series is c0. We refer to c

as the center of the power series.
Each term of a power series is therefore a function of z. Series of functions played

a major role in the development of analysis in the nineteenth century. Their study
was a driving force behind the development of a satisfactory standard of rigor. The
general theory of series of functions is by no means simple.

Our first task is to find all z for which the power series converges. Often the ratio
test is very useful. Let us try some examples.

Example 3.15.1. Discuss the convergence of the series

1X
j D1

jxj

.j C 1/2
;

where x is a real variable.

Solution. Certainly the series converges if x D 0. Suppose x ¤ 0. Setting

an D nxn

.n C 1/2

for all n > 0, we find that

ˇ̌
ˇ̌anC1

an

ˇ̌
ˇ̌ D .n C 1/jxjnC1

.n C 2/2
� .n C 1/2

njxjn

D .n C 1/3

n.n C 2/2
jxj

! jxj

as n ! 1. Hence the series converges absolutely if jxj < 1. If jxj > 1, then there
exists N such that janC1j > janj for all n � N . Thus the series fails the nth-term test
and therefore diverges. (If x is not real, it is also immediate from these arguments
that the series converges absolutely if jxj < 1 and diverges if jxj > 1.)

It remains to check the cases where x D ˙1. With x D �1, we obtain the
alternating series

1X
j D1

.�1/j j

.j C 1/2
;

whose convergence has already been confirmed in Example 3.10.1.
Suppose therefore that x D 1. Then the series becomes

1X
j D1

j

.j C 1/2
:
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We use the limit comparison test, comparing this series with the harmonic series.
Putting an D n=.n C 1/2 and bn D 1=n for all n > 0, we find that

an

bn

D n2

.n C 1/2
! 1

as n ! 1. Hence an 	 bn and our series diverges by the limit comparison test.
We conclude that the given series converges if and only if �1 � x < 1. The

convergence is absolute if jxj < 1 but not if x D �1. 4
Example 3.15.2. Test the series

1X
j D0

j j .z � 1/j :

Solution. The series converges if z D 1. Suppose z ¤ 1. Then for all n > 0 we
have

ˇ̌̌
ˇ .n C 1/nC1.z � 1/nC1

nn.z � 1/n

ˇ̌̌
ˇ D .n C 1/

�
n C 1

n

�n

jz � 1j

> .n C 1/jz � 1j
! 1

as n ! 1. Hence the series converges if and only if z D 1. 4
Example 3.15.3. Consider the series

1X
j D1

zj

j
:

The series converges if z D 0. If z ¤ 0, then

ˇ̌̌
ˇ znC1

n C 1
� n

zn

ˇ̌̌
ˇ D njzj

n C 1
! jzj

as n ! 1. Hence the series converges absolutely by the ratio test if jzj < 1 and
diverges by the nth-term test if jzj > 1. We have already seen in Example 3.11.1
that the series converges if jzj D 1 and z ¤ 1. If z D 1, then the series is harmonic
and therefore diverges. 4
Example 3.15.4. We have already seen in Theorem 2.7.6 that the series

1X
j D0

xj

j Š

converges to ex for all real x. 4
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Our next theorem shows that there are three possibilities: The power series (3.22)
converges absolutely for all z; it converges only when z D c; or there exists a
positive number r such that the power series converges absolutely if jz � cj < r

and diverges if jz � cj > r . The number r in the third case is called the radius of
convergence of the power series. We write r D 0 in the second case, and in the
first case we say that the power series has an infinite radius of convergence. Thus
every power series in a real variable has associated with it an interval on which it
converges (provided we consider each real number to constitute an interval and the
set R of all real numbers also to be an interval). This interval is called the interval
of convergence of the power series. In our four examples above, the respective
intervals of convergence are Œ�1; 1/, f1g, Œ�1; 1/, and R. Similarly, a power series
in a complex variable has associated with it a circle of convergence in the interior
of which the power series is absolutely convergent and in the exterior of which it
diverges.

But we are getting ahead of ourselves. The result referred to in the previous
paragraph still needs to be proved. First, though, observe that we can simplify the
expression (3.22) by substituting w D z � c. This change of variable shows that
there is no loss of generality in assuming that c D 0.

Theorem 3.15.1. For the power series
P1

j D0 aj zj one of the following possibilities
must hold:

1. the series converges only when z D 0;
2. the series is absolutely convergent for all z;
3. there exists r > 0 such that the series converges absolutely whenever jzj < r and

diverges whenever jzj > r .

Proof. Certainly the power series converges when z D 0. We may also choose a
particular w ¤ 0 for which it converges, for if no such w exists, then possibility (1)
obtains.

We show first that

1X
j D0

aj zj (3.23)

converges absolutely for each z such that jzj < jwj. Since

1X
j D0

aj wj

converges, it follows that

lim
n!1 janwnj D 0:
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Thus the sequence fjanwnjg is bounded above by some number M . Therefore

janznj D janwnj
ˇ̌̌
ˇ zn

wn

ˇ̌̌
ˇ � M

ˇ̌̌ z

w

ˇ̌̌n
:

But jz=wj < 1, and so the series

1X
j D0

M
ˇ̌̌ z

w

ˇ̌̌j

converges. Hence

1X
j D0

jaj zj j

also converges, by the comparison test.
One conclusion to be drawn is that if the series (3.23) converges for all z, then it

converges absolutely for all z, because for every z there exists w, of modulus greater
than jzj, for which the series converges. In this case possibility (2) holds. We may
therefore suppose that there exists z0 for which (3.23) diverges. The series must then
diverge for every w0 such that jw0j > jz0j. Therefore the set of moduli of all z such
that (3.23) converges is bounded above by jz0j, and since it contains 0, it must have
a supremum, r . The series therefore converges absolutely for all z such that jzj < r

(because there exists w for which jzj < jwj � r and for which the series converges)
and diverges for all z such that jzj > r by the definition of r . ut
Example 3.15.5. Find the radius of convergence for the power series

1X
j D1

2 C .�i/j

j 2
zj :

Solution. Set

an D 2 C .�i/n

n2
zn

for each n > 0. If jzj � 1, then janj � 3=n2. Since

1X
j D1

3

j 2

converges, the given series is absolutely convergent by the comparison test. Suppose
therefore that jzj > 1. Since
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janj � jzjn
n2

for all n > 0, it follows from Example 2.5.5 that the sequence fang does
not converge to 0 and the given series therefore diverges. Hence the radius of
convergence is 1.

Note that the ratio test could not have been applied in this example, since

lim
n!1

ˇ̌̌
ˇanC1

an

ˇ̌̌
ˇ

does not exist. 4
We conclude this section with some simple observations about the addition and

multiplication of power series. Given numbers s and t and convergent power seriesP1
j D0 aj zj and

P1
j D0 bj zj , Theorem 3.3.1 shows that

s

1X
j D0

aj zj C t

1X
j D0

bj zj D
1X

j D0

.saj zj C tbj zj /

D
1X

j D0

.saj C tbj /zj :

Similarly, Theorem 3.14.2 gives

1X
j D0

aj zj

1X
j D0

bj zj D
1X

j D0

jX
kD0

akzkbj �kzj �k

D
1X

j D0

jX
kD0

akbj �kzj :

Exercises 3.12. 1. Consider the power series
P1

j D0 cj .z � c/j , where cj ¤ 0 for
all j .

(a) If

lim
n!1

ˇ̌̌
ˇcnC1

cn

ˇ̌̌
ˇ D L;

prove that the radius of convergence of the series is 1=L (take 1=L D 1 if
L D 0 and 1=L D 0 if L D 1).



3.16 The Exponential, Sine, and Cosine Functions 175

(b) If

lim
n!1 jcnj1=n D L;

prove that the radius of convergence of the series is 1=L.

2. Let the radii of convergence of

1X
j D0

aj zj ;

1X
j D0

bj zj ;

1X
j D0

.aj C bj /zj

be R1; R2; R, respectively.

(a) Show that if R1 ¤ R2, then R D minfR1; R2g.
(b) Give an example with the property that R > R1 D R2.

3. Can the power series
P1

j D0 cj .z � 2/j converge at 0 but diverge at 3?
4. For each of the following series find all real x for which the series converges:

(a)
P1

j D1.�1/j xj

j
; (f)

P1
j D0

�
1

22j �1 C 1
32j

�
xj ;

(b)
P1

j D1 j 2j xj ; (g)
P1

j D0
j Š

j j xj ;

(c)
P1

j D0.�1/j x2j

.2j /Š
; (h)

P1
j D1.�1/j .xC4/j

j 2j ;

(d)
P1

j D0
.j Š/2

.2j /Š
xj ; (i)

P1
j D1

j

.j C1/.j C2/
xj ;

(e)
P1

j D1
xjp

j
; (j)

P1
j D1

xj

j
p

j
.

5. For each of the following series find all complex z for which the series converges:

(a)
P1

j D0 zj 2
; (e)

P1
j D0

.zCi/j

ej ;

(b)
P1

j D1
.i�1/j

j
zj ; (f)

P1
j D1.�1/j 2j

j
.z � i/j ;

(c)
P1

j D0
j Š

2j .z � i/j ; (g)
P1

j D0
z2j

.�3/j ;

(d)
P1

j D0.3 C .�1/j /zj .

6. Find the radius of convergence of the series
P1

j D0 aj zj , where a2j D 1 and
a2j C1 D 2 for all j � 0.

3.16 The Exponential, Sine, and Cosine Functions

We now use the work of the previous section to generalize our earlier results
concerning the exponential function. Recall that, for real x,

ex D
1X

j D0

xj

j Š
;
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by Theorem 2.7.6. More generally, for every complex z let us define

ez D
1X

j D0

zj

j Š
;

noting that the series converges absolutely by the ratio test, since
ˇ̌
ˇ̌ znC1

.n C 1/Š
� nŠ

zn

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ z

n C 1

ˇ̌
ˇ̌ ! 0:

With this definition it is easily seen that parts (2) and (3) of Theorem 2.7.10 are valid
also for complex sequences. In addition, we define exp.z/ D ez for all z 2 C, and
refer to exp as the exponential function.

Because of the absolute convergence of the series for ez, we may apply
Theorem 3.14.2 to prove that

ewez D
0
@ 1X

j D0

wj

j Š

1
A
0
@ 1X

j D0

zj

j Š

1
A

D
1X

j D0

jX
kD0

wkzj �k

kŠ.j � k/Š

D
1X

j D0

1

j Š

jX
kD0

 
j

k

!
wkzj �k

D
1X

j D0

.w C z/j

j Š

D ewCz

for all complex numbers w and z. This result generalizes Theorem 2.7.9. It follows
by an easy induction that

.ez/n D enz

for every positive integer n.
Now suppose that z D ix for some real x. Then

eix D
1X

j D0

i j xj

j Š

D
1X

j D0

�
.�1/j x2j

.2j /Š
C i.�1/j x2j C1

.2j C 1/Š

�
: (3.24)
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Let cos.x/ D Re .eix/ and sin.x/ D Im .eix/. It follows from Theorem 2.3.11 that

cos.x/ D
1X

j D0

.�1/j x2j

.2j /Š

and

sin.x/ D
1X

j D0

.�1/j x2j C1

.2j C 1/Š

for all real x, and the convergence of these power series is absolute. (See also
Example 3.7.2.) Thus

eix D cos.x/ C i sin.x/

for all real x. We refer to cos and sin as the cosine and sine functions, respectively.
They will be given a geometric interpretation later.

We may generalize the definitions of the sine and cosine functions to complex
numbers. Thus

eiz D
1X

j D0

�
.�1/j z2j

.2j /Š
C i.�1/j z2j C1

.2j C 1/Š

�

D cos.z/ C i sin.z/;

where

cos.z/ D
1X

j D0

.�1/j z2j

.2j /Š

and

sin.z/ D
1X

j D0

.�1/j z2j C1

.2j C 1/Š

for all complex numbers z. Both series are absolutely convergent.
It is clear from the definition that sin.0/ D 0, but cos.0/ D 1 by the convention

that 00 D 1. It is also immediate that

sin.�z/ D � sin.z/

and

cos.�z/ D cos.z/
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for all z. We define

tan.z/ D sin.z/

cos.z/

for all z for which cos.z/ ¤ 0. The function so defined is called the tangent function.

Given a real- or complex-valued function f , let g be the function defined by

g.z/ D 1

f .z/

for all z such that f .z/ is defined and nonzero. The function g is called the
reciprocal of f . The sine, cosine, and tangent functions and their reciprocals are
said to be trigonometric. The reciprocals of the sine, cosine, and tangent functions
are called the cosecant, secant, and cotangent functions, respectively. They are
denoted, respectively, by csc, sec, and cot. The parentheses around the arguments of
the trigonometric functions are usually omitted.

Since

eiz D cos z C i sin z

for all z, we also have

e�iz D cos z � i sin z:

Thus eiz C e�iz D 2 cos z, and so

cos z D eiz C e�iz

2
D e2iz C 1

2eiz
:

Similarly,

sin z D eiz � e�iz

2i
D e2iz � 1

2ieiz :

For instance, if x is real, then

cos ix D ex C e�x

2

and

sin ix D e�x � ex

2i
D i.ex � e�x/

2
;
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since �i 2 D 1. Moreover

sin w cos z C cos w sin z D .e2iw � 1/.e2iz C 1/

4ieiweiz
C .e2iw C 1/.e2iz � 1/

4ieiweiz

D e2i.wCz/ C e2iw � e2iz � 1 C e2i.wCz/ � e2iw C e2iz � 1

4iei.wCz/

D e2i.wCz/ � 1

2iei.wCz/

D sin.w C z/ (3.25)

and

cos w cos z � sin w sin z D .e2iw C 1/.e2iz C 1/

4eiweiz
� .e2iw � 1/.e2iz � 1/

�4eiweiz

D e2i.wCz/ C e2iw C e2iz C 1 C e2i.wCz/ � e2iw � e2iz C 1

4ei.wCz/

D e2i.wCz/ C 1

2ei.wCz/

D cos.w C z/ (3.26)

for all complex numbers w and z. Thus

sin 2z D sin z cos z C cos z sin z D 2 sin z cos z

and, similarly,

cos 2z D cos2 z � sin2 z:

It also follows by induction that if sin z D 0, then sin nz D 0 for every n 2 N, for if
this equation holds for a particular n 2 N, then

sin..n C 1/z/ D sin.nz C z/

D sin nz cos z C cos nz sin z

D 0:

Furthermore

1 D cos 0 D cos.z � z/ D cos z cos.�z/ � sin z sin.�z/ D cos2 z C sin2 z
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for all z. If x is a real number, we infer that

j sin xj � 1

and

j cos xj � 1:

In any case we also have

cos 2z D cos2 z � .1 � cos2 z/ D 2 cos2 z � 1I

hence

cos2 z D 1 C cos 2z

2
:

In addition,

jeizj D
p

cos2 z C sin2 z D 1:

Thus eiz ¤ 0, and it follows that ez ¤ 0 for each z 2 C. Notice, however, that

j sin ixj D jex � e�x j
2

:

We therefore infer from Theorem 2.7.10(1) that the function j sin zj is unbounded.
Similarly, j cos zj is unbounded.

Note that if z D x C iy, where x and y are real, then

sin z D sin.x C iy/

D sin x cos iy C cos x sin iy

D 1

2
.ey C e�y/ sin x C i

2
.ey � e�y/ cos x:

Similarly,

cos z D 1

2
.ey C e�y/ cos x � i

2
.ey � e�y/ sin x:

If w and z are numbers such that tan w tan z D 1, then cos w cos z ¤ 0 and

sin w

cos w
� sin z

cos z
D 1;
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so that

sin w sin z D cos w cos z;

whence

cos.w C z/ D cos w cos z � sin w sin z D 0:

Conversely, if cos.w C z/ D 0 ¤ cos w cos z, then tan w tan z D 1. If neither
cos w cos z nor cos.w C z/ is equal to 0, then

tan.w C z/ D sin.w C z/

cos.w C z/

D sin w cos z C cos w sin z

cos w cos z � sin w sin z

D
sin w cos zCcos w sin z

cos w cos z
cos w cos z�sin w sin z

cos w cos z

D tan w C tan z

1 � tan w tan z
:

In particular, if tan z is defined and j tan zj ¤ 1, then

tan 2z D 2 tan z

1 � tan2 z
:

Note also that

tan.�z/ D sin.�z/

cos.�z/
D � tan z:

Proposition 3.16.1. 1. If x � 0, then

sin x � x: (3.27)

2. If x 2 R, then

1 � x2

2
� cos x � 1 � x2

2
C x4

24
: (3.28)

Proof. 1. We may assume that x < 1 since sin x � 1 for all real x. Then the
sequence fx2nC1=.2n C 1/Šg is decreasing, and we may invoke inequality (3.10)
in the proof of Theorem 3.10.2, with n D 0, to conclude that sin x � x.

2. We may assume that x > 0, since cos.�x/ D cos x for all x and cos 0 D 1.
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In regard to the first inequality, we may assume also that x < 2, as cos x � �1

for all real x. Then the sequence fx2n=.2n/Šgn�1 is decreasing, since

x2nC2

.2n C 1/Š
� .2n/Š

x2n
D x2

.2n C 2/.2n C 1/
<

1

3
< 1

when n � 1 and 0 < x < 2. Consequently,

cos x � 1 D
1X

j D1

.�1/j x2j

.2j /Š

D �
1X

j D1

.�1/j �1 x2j

.2j /Š

D �
1X

j D0

.�1/j x2j C2

.2j C 2/Š

� �x2

2
;

again using inequality (3.10) with n D 0. The first of the required inequalities
follows.

For the second inequality we may assume that x < 2
p

3, since cos x � 1.
The sequence fx2n=.2n/Šgn�1 is still decreasing, and we may appeal to
Theorem 3.10.2 to conclude that

0 � cos x � 1 C x2

2
� x4

24
:

ut
For ease of reference, in the following theorem we summarize some of the more

important results we have proved.

Theorem 3.16.2. Let w and z be complex numbers. Then

1. cos z D eizCe�iz

2
,

2. sin z D eiz�e�iz

2i
,

3. sin.w C z/ D sin w cos z C cos w sin z,
4. cos.w C z/ D cos w cos z � sin w sin z,
5. tan.w C z/ D tan wCtan z

1�tan w tan z if cos w cos z cos.w C z/ ¤ 0,
6. sin 2z D 2 sin z cos z,
7. cos 2z D cos2 z � sin2 z,
8. tan 2z D 2 tan z

1�tan2 z
if cos z cos 2z ¤ 0,
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9. cos2 z C sin2 z D 1,
10. cos2 z D 1Ccos 2z

2
,

11. jeizj D 1.

In addition, if x is real, then j sin xj � 1 and j cos xj � 1.

Example 3.16.1. Since

ˇ̌̌
ˇ sin n

np

ˇ̌̌
ˇ � 1

np

for all n 2 N and p 2 Q, the comparison test shows that the series

1X
j D1

sin j

j p
(3.29)

is absolutely convergent if p > 1. We now prove that it is conditionally convergent
when 0 < p � 1.

We showed in Example 3.11.1 that

1X
j D1

zj

j p
(3.30)

converges for each p > 0 and each z ¤ 1 such that jzj D 1. In particular, if

z D ei D cos 1 C i sin 1;

then jzj D 1 and z ¤ 1 since cos 1 ¤ 1. [If cos 1 D 1, then

j sin 1j D
p

1 � cos2 1 D 0:

However, sin 1 > 0 by the remark following Theorem 3.10.2, as the sequence



1

.2n C 1/Š

�

is decreasing.] Therefore the series (3.30) converges for this z, and since

zn D ein D cos n C i sin n;

it follows by Theorem 3.3.2 that the series (3.29) converges.
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It remains to show that this series is not absolutely convergent if 0 < p � 1. As

ˇ̌̌
ˇ sin n

n

ˇ̌̌
ˇ �

ˇ̌̌
ˇ sin n

np

ˇ̌̌
ˇ

whenever 0 < p � 1, the comparison test shows that it is enough to establish the
divergence of

1X
j D1

j sin j j
j

:

For each n > 0 let us write

j sin nj
n

D an C bn

2
;

where

an D j sin nj � j sin.n � 1/j
n

and

bn D j sin nj C j sin.n � 1/j
n

:

It suffices to show that
P1

j D1 aj converges and
P1

j D1 bj diverges.
In regard to the former series, define

un D j sin nj � j sin.n � 1/j

and

vn D 1

n

for each n > 0. Then fvng is a decreasing null sequence. Moreover

ˇ̌̌
ˇ̌̌ nX
j D1

uj

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌ nX
j D1

.j sin j j � j sin.j � 1/j/
ˇ̌̌
ˇ̌̌

D j sin nj
� 1

for all n > 0, by the telescoping property. We conclude from Dirichlet’s test thatP1
j D1 aj converges.
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In order to verify the divergence of
P1

j D1 bj , note first that for all real numbers
˛ and ˇ we have

j sin.˛ � ˇ/j D j sin ˛ cos ˇ � cos ˛ sin ˇj
� j sin ˛jj cos ˇj C j cos ˛jj sin ˇj
� j sin ˛j C j sin ˇj:

Therefore

sin 1 D j sin 1j D j sin.n � .n � 1//j � j sin nj C j sin.n � 1/j:

Consequently,

bn � sin 1

n
> 0

for all n > 0, and the series
P1

j D1 bj diverges by comparison with the harmonic
series. 4
Example 3.16.2. Consider the series

1X
j D1

sin jx

j

for any x 2 R. It converges to 0 if sin.x=2/ D 0. Suppose therefore that
sin.x=2/ ¤ 0. The trigonometric identity (3.26) implies that

cos
�x

2
C jx

�
D cos

x

2
cos jx � sin

x

2
sin jx

and

cos
�x

2
� jx

�
D cos

x

2
cos jx C sin

x

2
sin jxI

hence

2 sin
x

2
sin jx D cos

�x

2
� jx

�
� cos

�x

2
C jx

�
:
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Since

cos
�x

2
� jx

�
D cos

��
1

2
� j

�
x

�

D cos

��
j � 1

2

�
x

�

D cos

��
.j � 1/ C 1

2

�
x

�
;

it follows that

nX
j D1

�
cos

�x

2
� jx

�
� cos

�x

2
C jx

��

D
nX

j D1

�
cos

��
.j � 1/ C 1

2

�
x

�
� cos

��
j C 1

2

�
x

��

D cos
x

2
� cos

��
n C 1

2

�
x

�
I

hence

nX
j D1

sin jx D cos x
2

� cos..n C 1
2
/x/

2 sin x
2

for all n 2 N, since sin.x=2/ ¤ 0. Consequently,

ˇ̌̌
ˇ̌̌ nX
j D1

sin jx

ˇ̌̌
ˇ̌̌ �

ˇ̌
cos x

2

ˇ̌C ˇ̌
cos

��
n C 1

2

�
x
�ˇ̌

2
ˇ̌
sin x

2

ˇ̌

� 1ˇ̌
sin x

2

ˇ̌ :

Dirichlet’s test therefore implies that the series converges. (In fact, the previous
example shows that it is conditionally convergent if x D 1.) 4
Example 3.16.3. Let fang be a null sequence of real numbers. We show that

lim
n!1

sin an

an

D 1:
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From the definition we have

sin an

an

D
1X

j D0

.�1/j a
2j
n

.2j C 1/Š
D 1 C anRn

for all n, where

Rn D
1X

j D1

.�1/j a
2j �1
n

.2j C 1/Š
:

Since fang is convergent, there is an M such that janj � M for all n. Hence

jRnj �
1X

j D1

ˇ̌
ˇ̌̌ a

2j �1
n

.2j C 1/Š

ˇ̌
ˇ̌̌

�
1X

j D1

M 2j �1

.2j � 1/Š

D
1X

j D0

M 2j C1

.2j C 1/Š

< eM :

Thus

lim
n!1

sin an

an

D 1 C lim
n!1 anRn D 1:

4
Exercises 3.13. 1. If u and v are any complex numbers, prove that

sin u � sin v D 2 cos
u C v

2
sin

u � v

2

and

cos u � cos v D �2 sin
u C v

2
sin

u � v

2
:

Hence show that

2 sin ˛ sin ˇ D cos.˛ C ˇ/ � cos.˛ � ˇ/



188 3 Series

and

2 cos ˛ sin ˇ D sin.˛ C ˇ/ � sin.˛ � ˇ/

for all real numbers ˛ and ˇ.
2. Use the inequality

ˇ̌̌
ˇ̌
ˇ

nX
j D1

sin j

ˇ̌̌
ˇ̌
ˇ � 1

sin 1
2

;

for all n 2 N, to verify the convergence of series (3.29) for all rational p > 0.
3. Prove that if fang is a decreasing null sequence, then

1X
j D1

aj sin j

and

1X
j D1

aj cos j

converge.
4. Let fang be a null sequence of real numbers. Show that

lim
n!1 cos an D 1

and

lim
n!1

tan an

an

D 1:

5. The functions given by

sinh x D ex � e�x

2

and

cosh x D ex C e�x

2
;

for each x, are called the hyperbolic sine and hyperbolic cosine functions,
respectively.
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(a) Show that

cosh2 x � sinh2 x D 1

for all x.
(b) Let z D x C iy, where x and y are real.

i. Prove the following:

A. sin z D sin x cosh y C i sinh y cos x.
B. j sinh yj � j sin zj � j cosh yj.
C. j sin zj2 D sin2 x C sinh2 y.

ii. For every c 2 R, show that the function f .z/ D sin z maps the line y D c

to an ellipse and the line x D c to a hyperbola.

6. Express sin i and cos i in the form x C iy where x and y are real.
7. Find the sum

1X
j D0

sin
1

2j
cos

3

2j
:

(Hint: Rewrite it as a telescoping series.)
8. Determine the convergence of

1X
j D1

�
1 � cos

1

j

�
:

(Hint: Write each term in terms of the sine function.)
9. Show that j cos zj is unbounded, where z 2 C.



Chapter 4
Limits of Functions

The concept of a limit of a function is central to the study of mathematical analysis.
It generalizes the notion of the limit of a sequence (a function whose domain is a
set of integers). Indeed, the former can be defined in terms of the latter. Unless an
indication to the contrary is given or it is evident that a restriction to real numbers
is required, the domain and range of a given function are assumed to be sets of
complex numbers.

4.1 Introduction

We start by looking at an example. Consider the real functions f; g; h given by

f .x/ D g.x/ D h.x/ D 2x2 � 2x

x � 1

for all x ¤ 1, g.1/ D 1, and h.1/ D 2 (see Fig. 4.1). Thus Df D R � f1g and
Dg D Dh D R. For each x ¤ 1,

f .x/ D g.x/ D h.x/ D 2x.x � 1/

x � 1
D 2x:

Let us first contemplate the function f . As x becomes close to 1, f .x/ becomes
close to 2 provided that x ¤ 1. More formally, we say that the limit of f , as x

approaches 1, is 2. In this case we write

lim
x!1

f .x/ D 2:

Likewise limx!1 g.x/ D 2 and limx!1 h.x/ D 2; the values of these functions at 1
are immaterial.

© Springer Science+Business Media New York 2015
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x

f (x)

1

1

2

x

g(x)

1

1

2

x

h(x)

1

1

2

Fig. 4.1 Graphs of f , g and h

Roughly speaking, we can ensure that the distance between f .x/ and 2 is as
small as we please by choosing x close enough to 1 but distinct from 1. In other
words, given any sequence fsng in R�f1g that converges to 1, the sequence ff .sn/g
converges to 2.

4.2 Definition and Examples

We now define the concept formally.

Definition 4.2.1. Let f be a function, c an accumulation point of Df , and L a
number. We write

lim
z!c

f .z/ D L (4.1)

if the sequence ff .sn/g converges to L for every sequence fsng in Df � fcg
converging to c. We call L a limit of f at c. We also say that f .z/ approaches
L as z approaches c, and we write f .z/ ! L as z ! c.

Remark 1. The number c may or may not be a member of Df .

Remark 2. The symbol z in Definition 4.2.1 represents a dummy variable. Thus if
limz!c f .z/ D L, then we also have limw!c f .w/ D L for any other symbol w.

Remark 3. The assumption that c is an accumulation point of Df guarantees the
existence of a sequence in Df � fcg that converges to c.

We have seen that a sequence has at most one limit. This observation leads
immediately to the following theorem.

Theorem 4.2.1. A function has at most one limit at a given accumulation point of
its domain.
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Example 4.2.1. It follows from Theorem 2.7.10(2) that

lim
x!a

ex D ea

for all a 2 R. Similarly, Theorem 2.7.10(3) shows that

lim
h!0

eh � 1

h
D 1: 4

Example 4.2.2. Let f .x/ D i 1=x for each x in the range of the sequence f1=ng.
Because this sequence is null, we see that 0 is an accumulation point of Df . We
now demonstrate that

lim
x!0

f .x/

does not exist. For each positive integer n take

sn D 1

4n

and

tn D 1

4n C 2
:

Thus

lim
n!1 sn D lim

n!1 tn D 0:

However,

i 1=sn D i 4n D 1n D 1

and

i 1=tn D i 2.2nC1/ D .�1/2nC1 D �1 ¤ 1:

Therefore the desired limit does not exist. 4
Proposition 4.2.2. Suppose that f .z/ D k for all z 2 Df . Then for every
accumulation point c of Df we have

lim
z!c

f .z/ D k:
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Proof. Let fsng be any sequence in Df � fcg converging to c. Since ff .sn/g is the
constant sequence fkg, it converges to k. ut

The next two propositions can be proved in a similar way. In both propositions
we take c to be an accumulation point of Df .

Proposition 4.2.3. Suppose that f .z/ D z for all z 2 Df . Then

lim
z!c

f .z/ D c:

Proposition 4.2.4. If f .z/ D jzj for all z 2 Df , then

lim
z!c

f .z/ D jcj:

From Example 3.16.3 we obtain the following result.

Proposition 4.2.5.

lim
x!0

sin x

x
D 1:

4.3 Basic Properties of Limits

We now present an equivalent formulation of the definition of a limit. Recall that if
c is an accumulation point of Df , then there is an injective sequence fsng in Df that
converges to c.

Theorem 4.3.1. Let f be a function, c an accumulation point of Df , and L a
number. The following statements are equivalent:

1.

lim
z!c

f .z/ D LI

2. for every " > 0 there exists ı > 0 such that

jf .z/ � Lj < "

for each z 2 Df satisfying 0 < jz � cj < ı.

Proof. Suppose that condition (2) holds. Let fsng be a sequence in Df � fcg
converging to c. Choose " > 0. There exists ı > 0 such that

jf .z/ � Lj < "
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for each z 2 Df satisfying 0 < jz � cj < ı. Moreover there exists N such that

jsn � cj < ı

for all n � N . For all such n we have sn 2 Df and sn ¤ c by hypothesis, and so

jf .sn/ � Lj < ":

Hence ff .sn/g converges to L, and we conclude that condition (1) holds.
Conversely, suppose that condition (2) does not hold. Then, for some " > 0,

every ı > 0 has the property that there exists z 2 Df satisfying 0 < jz � cj < ı and
jf .z/ � Lj � ". In particular, for each positive integer n we can choose sn 2 Df

such that

0 < jsn � cj <
1

n

and jf .sn/ � Lj � ". The sequence fsng evidently converges to c, by Lemma 2.5.1.
However,

lim
n!1 f .sn/ ¤ LI

otherwise there would exist N such that jf .sn/�Lj < " for all n � N . We conclude
that condition (1) does not hold. ut
Remark 1. If we use the notation

Nr.a/ D fz j jz � aj < rg

and

N �
r .a/ D Nr.a/ � fag;

where a is any number and r is a positive (real) number, then Theorem 4.3.1 shows
that

lim
z!c

f .z/ D L

if and only if for every " > 0 there exists ı > 0 such that

f .N �
ı .c/ \ Df / � N".L/:

The two parts of Fig. 4.2 depict Nr.a/ in R and C, respectively.
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r
a

( )
a

r

Fig. 4.2 Nr .a/ in R and C

Remark 2. We can clearly assume that " < M and ı < M for some constant M .
And, as in Proposition 2.2.3, we can replace " by k", where k is a positive constant.

Remark 3. If x and c are real numbers, we often write the inequality jx � cj < ı as

c � ı < x < c C ı:

Example 4.3.1. Let us prove from Theorem 4.3.1 that

lim
z!1

.z2 C 1/ D 2:

Proof. Choose " > 0. We need to find a corresponding ı > 0 such that

jz2 C 1 � 2j D jz2 � 1j < k";

for some constant k > 0, whenever 0 < jz � 1j < ı.
Now

jz2 � 1j D j.z C 1/.z � 1/j
D jz C 1jjz � 1j
D jz � 1 C 2jjz � 1j
� .jz � 1j C 2/jz � 1j
< .ı C 2/ı

whenever jz � 1j < ı. Thus, if ı � 1, then jz2 � 1j < 3ı, and if in addition ı � ",
then it follows that jz2 � 1j < 3". Hence we can guarantee that jz2 � 1j < 3" if we
take

ı D minf1; "g:
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We conclude that

lim
z!1

.z2 C 1/ D 2: 4
Example 4.3.2. Now let us prove that

lim
z!1

1

z
D 1:

Proof. Choose " > 0. We need to find ı > 0 such that

ˇ̌̌
ˇ1z � 1

ˇ̌̌
ˇ < k"; (4.2)

for some constant k > 0, whenever z ¤ 0 and 0 < jz � 1j < ı. If z ¤ 0, then

ˇ̌̌
ˇ1z � 1

ˇ̌̌
ˇ D j1 � zj

jzj <
ı

jzj
whenever

ı > jz � 1j � jjzj � 1j � 1 � jzj:

Taking ı � 1=2, we therefore have

jzj > 1 � ı � 1

2
;

so that

1

jzj < 2:

If in addition ı � ", then

ˇ̌
ˇ̌1

z
� 1

ˇ̌
ˇ̌ < 2ı � 2":

Thus we can guarantee that inequality (4.2) holds with k D 2 if we take

ı D min



1

2
; "

�
:

We conclude that

lim
z!1

1

z
D 1:

4
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Motivated by our study of sequences, we say that a function f satisfies the
Cauchy condition at an accumulation point c of Df if, for every " > 0, there
exists ı > 0 such that

jf .z/ � f .w/j < "

for all z and w in N �
ı .c/ \ Df .

Theorem 4.3.2. Let c be an accumulation point of the domain of a function f .
Then limz!c f .z/ D L for some number L if and only if f satisfies the Cauchy
condition at c.

Proof. Suppose first that

lim
z!c

f .z/ D L:

Choose " > 0. There exists ı > 0 such that jf .z/ � Lj < " for all z 2 Df satisfying
0 < jz � cj < ı. Choose z and w in N �

ı .c/ \ Df . Then jf .z/ � Lj < " and
jf .w/ � Lj < ". Hence

jf .z/ � f .w/j � jf .z/ � Lj C jL � f .w/j < 2":

We conclude that f satisfies the Cauchy condition at c.
Conversely, suppose that f satisfies the Cauchy condition at c. Choose " > 0.

There exists ı > 0 such that

jf .z/ � f .w/j < " (4.3)

for all z and w in N �
ı .c/ \ Df .

Since c is an accumulation point of Df , we can find an injective sequence fzng
in Df that converges to c. Choose N such that

0 < jzn � cj < ı

for every n � N . Thus zn 2 N �
ı .c/ \ Df for each such n, and so

jf .zn/ � f .zm/j < "

whenever m � N and n � N . Consequently, the sequence ff .zn/g is Cauchy and
therefore converges to some number L.

We conclude that there exists M1 such that jf .zn/ � Lj < " for all n � M1.
Now let fwng be any sequence in Df � fcg converging to c. There exists M2 �
maxfN; M1g such that 0 < jwn � cj < ı for all n � M2. Choose n � M2 � N .
Then we also have 0 < jzn � cj < ı, and so jf .wn/ � f .zn/j < " by the Cauchy
criterion. Therefore
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jf .wn/ � Lj � jf .wn/ � f .zn/j C jf .zn/ � Lj < 2";

since n � M1, and we deduce that ff .wn/g also converges to L.
Hence

lim
z!c

f .z/ D L;

by definition. ut
Exercises 4.1. 1. Let f be a function, c an accumulation point of Df , and L a

number. Suppose there exists a real K such that

jf .z/ � Lj � Kjz � cj

for all z 2 C. Show that limz!c f .z/ D L.
2. Let ˛ > 0 and limx!0 f .x/ D L. Show that limx!0 f .˛x/ D L.
3. Suppose that limx!c f .x/ D L for some numbers c and L. Show that the

function f is bounded on some neighborhood of c.
4. Use Theorem 4.3.1 to prove that limx!1

p
x D 1.

5. Show that limz!0.z=z/ does not exist for any z 2 C.

4.4 Algebra of Limits

We shall now write down some theorems that are useful for calculating limits. Most
of them follow from the corresponding theorems for sequences. In each theorem
we shall assume that the limit is being evaluated at an accumulation point for the
domain of the relevant function.

Theorem 4.4.1. Let f and g be functions, let K and L be numbers, and let c be an
accumulation point of Df \ Dg . Suppose that

lim
z!c

f .z/ D K

and

lim
z!c

g.z/ D L:

Then

1.

lim
z!c

.f .z/ C g.z// D K C L;
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2.

lim
z!c

f .z/g.z/ D KL;

3.

lim
z!c

f .z/

g.z/
D K

L

if L ¤ 0 and there exists a neighborhood Nı.c/ such that g.z/ ¤ 0 for all
z 2 N �

ı .c/ \ Dg.

Proof. 1. It follows from the hypothesis that the sequence ff .sn/g converges to K

for every sequence fsng in Df �fcg converging to c. Similarly, fg.tn/g converges
to L for every sequence ftng in Dg � fcg converging to c.

Choose a sequence fsng in

Df Cg � fcg D .Df \ Dg/ � fcg

converging to c. Then, for all n,

.f C g/.sn/ D f .sn/ C g.sn/ ! K C L

as n ! 1, and the result follows.
2. The proofs of parts (2) and (3) are similar. ut
Remark 1. Sometimes the limits in the left-hand sides in the conclusion of the
theorem exist even if limz!c f .z/ or limz!c g.z/ do not. For example, let f .z/ D
1=z and g.z/ D �1=z for all z ¤ 0. Neither of these functions has a limit at 0, yet
their sum and quotient do.

Remark 2. The insistence on c being an accumulation point of Df \ Dg is
inserted in order to guarantee that the limits in question are well defined. (See
Theorem 4.2.1.) For instance, if f .x/ D p

x for all x � 0 and g.x/ D p�x

for all x � 0, then 0 is not an accumulation point of Df \Dg since Df \Dg D f0g.
In this case the desired limits are undefined.

Corollary 4.4.2. Let n be a positive integer. Using the notation of the theorem, we
have

1.

lim
z!c

f n.z/ D Ln;
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2.

lim
z!c

1

f n.z/
D 1

Ln

if L ¤ 0 and there exists a neighborhood Nı.c/ such that f .z/ ¤ 0 for all
z 2 N �

ı .c/ \ Df .

Using parts (1) and (2) of the theorem, we also obtain the following corollary.

Corollary 4.4.3. Let

p.z/ D
nX

kD0

akzk

for all z, where n; a0; a1; : : : ; an are constants. Then

lim
z!c

p.z/ D p.c/:

The following theorem is an analog of the sandwich theorem for sequences.

Theorem 4.4.4. Let f; g; h be functions and let c be an accumulation point of the
set Df \ Dg \ Dh. Suppose there exists ı > 0 such that

f .x/ � g.x/ � h.x/

for each x 2 Df \ Dg \ Dh for which 0 < jx � cj < ı. If

lim
x!c

f .x/ D lim
x!c

h.x/ D L;

then

lim
x!c

g.x/ D L:

Proof. Let fsng be a sequence in Df �fcg converging to c. There exists N such that
0 < jsn � cj < ı for all n � N . For every such n we have

f .sn/ � g.sn/ � h.sn/:

The hypotheses imply that f .sn/ ! L and h.sn/ ! L as n ! 1, and the result
now follows from the sandwich theorem. ut
Example 4.4.1. Since

0 �
ˇ̌̌
ˇx sin

1

x

ˇ̌̌
ˇ � jxj



202 4 Limits of Functions

for all x ¤ 0, and limx!0 jxj D 0, the sandwich theorem for functions
(Theorem 4.4.4) shows that

lim
x!0

x sin
1

x
D 0:

Similarly,

lim
x!0

x cos
1

x
D 0: 4

The next theorem is also analogous to a theorem on sequences from which it
follows immediately.

Theorem 4.4.5. If f is a function such that m � f .x/ � M and limx!c f .x/ D
L, then m � L � M .

Theorem 4.4.6. Let f be a function and let L and c be numbers such that L is
real. Suppose

lim
z!c

f .z/ D L ¤ 0:

1. If L > 0, then there exists ı > 0 such that f .z/ > L=2 for all z 2 N �
ı .c/ \ Df .

2. If L < 0, then there exists ı > 0 such that f .z/ < L=2 for all z 2 N �
ı .c/ \ Df .

Proof. 1. There exists ı > 0 such that

jf .z/ � Lj <
L

2

for all z 2 Df for which 0 < jz � cj < ı. For all such z it follows that

f .z/ > L � L

2
D L

2
:

2. The proof of part (2) is similar. ut
Theorem 4.4.7. Let u and v be real-valued functions. Define

f .z/ D u.z/ C iv.z/

for each z 2 Du \ Dv . Let c be an accumulation point of Du \ Dv . Then

lim
z!c

f .z/ D A C iB (4.4)

if and only if limz!c u.z/ D A and limz!c v.z/ D B .



4.5 One-Sided Limits 203

Proof. If limz!c u.z/ D A and limz!c v.z/ D B , then the result follows from
Theorem 4.4.1. Conversely, suppose that Eq. (4.4) holds. Considering the real and
imaginary parts of f .z/ � A � iB, we see that

ju.z/ � Aj � jf .z/ � .A C iB/j

and

jv.z/ � Bj � jf .z/ � .A C iB/j:

The proof now follows by an argument similar to the proof of Theorem 2.3.11. ut
Exercises 4.2. 1. Find the following limits if they exist, giving reasons for any that

do not:
(a) limx!0

tan x�x
sin x

; (f) limx!1

p
x�1

x�1
;

(b) limx!0
sin ˛x
sin ˇx

for ˇ ¤ 0; (g) limx!0
sin cx

x
for c 2 R;

(c) limx!c
xn�cn

x�c
for n 2 N and c 2 R; (h) limx!0

cos x�1
x

;

(d) limz!0
.z�1/2�1

z ; (i) limz!i
z2C1
z�i

;

(e) limx!0 x
�
sin 1

x
C cos 1

x

�
; (j) limx!0

eix�1
x

.
2. If z D x C iy, where x and y are real, find limz!0.x2=z/.

4.5 One-Sided Limits

In this section we restrict the domain of our function to a subset of R. For instance,
sometimes a function does not have a limit at a point a, but it would if the domain
were restricted to a set of numbers greater than a.

Example 4.5.1. Suppose that

h.x/ D
(

1 if x > a;

0 if x � a.

The function h is known as a Heaviside function. If we restrict x to the interval
Œa; 1/, we obtain a function f given by

f .x/ D
(

1 if x > a;

0 if x D a.

Then

lim
x!a

f .x/ D 1:
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We say that the limit of h at a from the right is 1, and write

lim
x!aC

h.x/ D 1:

Likewise the limit of h at a from the left is 0. We write

lim
x!a�

h.x/ D 0:

Notice that

lim
x!aC

h.x/ ¤ lim
x!a�

h.x/:

We shall see later that this observation implies that limx!a h.x/ does not exist. We
can also prove this fact by considering the sequences fsng and ftng, where

sn D a C 1

n

and

tn D a � 1

n

for all n > 0. Then

lim
n!1 sn D lim

n!1 tn D a;

but h.sn/ D 1 and h.tn/ D 0 for all n. Therefore limx!a h.x/ does not exist. 4
Example 4.5.2. Let bxc be the largest integer less than or equal to a real number x.
The function f given by f .x/ D bxc for all x is called the floor of x (see Fig. 4.3).
For every n 2 N we have

lim
x!nC

bxc D n

and

lim
x!n�

bxc D n � 1: 4

Example 4.5.3. It is easy to show from the definition that

lim
x!0C

p
x D 0:
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Fig. 4.3 Graph of the floor
function

1

1 2

–1

–1
x

It is also true that

lim
x!0

p
x D 0;

even though
p

x is not defined for x < 0. 4
Let us now define the notion of a one-sided limit formally.

Definition 4.5.1. Let f be a function of a real variable. Let a be an accumulation
point of fx 2 Df j x < ag. Then

lim
x!a�

f .x/ D L

if the sequence ff .sn/g converges to L for each sequence fsng in fx 2 Df j x < ag
that converges to a.

The notation

lim
x!aC

f .x/ D L

can be defined in a similar way.

The following theorem is analogous to Theorem 4.3.1 and can be proved in a
similar manner.

Theorem 4.5.1. Let f be a function of a real variable and let a and L be
numbers.

1. If a is an accumulation point of fx 2 Df j x < ag, then

lim
x!a�

f .x/ D L

if and only if for every " > 0 there exists ı > 0 such that jf .x/ � Lj < " for all
x 2 Df satisfying 0 < a � x < ı.
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2. If a is an accumulation point of fx 2 Df j x > ag, then

lim
x!aC

f .x/ D L

if and only if for every " > 0 there exists ı > 0 such that jf .x/ � Lj < " for all
x 2 Df satisfying 0 < x � a < ı.

Note that 0 < a � x < ı if and only if a � ı < x < a and that 0 < x � a < ı if
and only if a < x < a C ı.

Theorem 4.5.2. Let f be a function and L a number. Let a be an accumulation
point of fx 2 Df j x > ag and fx 2 Df j x < ag. Then

lim
x!a

f .x/ D L (4.5)

if and only if limx!aC f .x/ and limx!a� f .x/ exist and

lim
x!aC

f .x/ D lim
x!a�

f .x/ D L: (4.6)

Proof. Suppose first that Eq. (4.5) holds, and choose " > 0. There exists ı > 0 such
that

jf .x/ � Lj < " (4.7)

for all x 2 Df such that 0 < jx � aj < ı. In particular, inequality (4.7) holds for all
x 2 Df such that 0 < x � a < ı. Therefore

lim
x!aC

f .x/ D L:

A similar argument shows that

lim
x!a�

f .x/ D L:

Conversely, suppose that Eq. (4.6) holds, and choose " > 0. There exist ı1 > 0

and ı2 > 0 such that inequality (4.7) holds for all x 2 Df satisfying either 0 <

x � a < ı1 or 0 < a � x < ı2. Thus inequality (4.7) holds for all x 2 Df such that

0 < jx � aj < minfı1; ı2g:

Consequently, Eq. (4.5) holds. ut
The work in Sect. 4.4 also holds for one-sided limits.

Example 4.5.4. Let f be the function given by

f .x/ D e1=x
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for all x ¤ 0. Then limx!0C f .x/ does not exist, for if we set sn D 1=n for all
n 2 N, then sn ! 0 as n ! 1 but

f .sn/ D en ! 1

as n ! 1.
On the other hand, for each x > 0 we have x < ex . Thus if t < 0, then

0 < �1

t
< e�1=t ;

whence

0 < e1=t < �t:

It therefore follows from the sandwich theorem that

lim
t!0�

e1=t D 0: 4

Exercises 4.3. 1. Find the following limits if they exist, giving reasons for any that
do not:

(a) limx!1�
x2C2x�3

jx�1j ; (e) limx!0C
x�p

xp
x

;

(b) limx!1�
1�xp
1�x

; (f) limx!0C
sin

p
x

x
;

(c) limx!0C
1

1C2�1=x ; (g) limx!0C
.xC1/1=3�1

x
;

(d) limx!0�
1

1C2�1=x ; (h) limx!1�
1

bxc�1
.

4.6 Infinite Limits

Some functions increase or decrease without bound as their arguments approach a
given number. We now define this concept formally.

Definition 4.6.1. Let f be a function and c an accumulation point of Df . We write

lim
x!c

f .x/ D 1

if f .sn/ ! 1 as n ! 1 for every sequence fsng in Df � fcg converging to c.
The equation

lim
x!c

f .x/ D �1

may be defined similarly.



208 4 Limits of Functions

Thus

lim
x!c

f .x/ D 1

if and only if for every N there exists ı > 0 such that f .x/ > N for all x 2 Df

satisfying 0 < jx � cj < ı. Similarly,

lim
x!c

f .x/ D �1

if and only if this condition holds with the inequality f .x/ > N replaced
by f .x/<N .

We now discuss the behavior of a function f as its argument approaches ˙1.

Definition 4.6.2. Let f be a function and L a number. Suppose that Df is not
bounded above. We write

lim
x!1 f .x/ D L

if f .sn/ ! L as n ! 1 for every sequence fsng in Df such that sn ! 1 as
n ! 1.

The notation

lim
x!�1 f .x/ D L

may be defined in a similar manner.

Note that if Df is not bounded above, then

lim
x!1 f .x/ D L

if and only if for every " > 0 there exists M such that jf .x/�Lj < " for all x 2 Df

satisfying x > M . Moreover

lim
x!�1 f .x/ D L

if and only if this condition holds with the inequality x > M replaced by x < M ,
provided that Df is not bounded below (though it may be bounded above).

Of course, we also have such notations as

lim
x!1 f .x/ D 1 (4.8)

and

lim
x!1 f .x/ D �1;
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and so forth. We leave it to the reader to list the possibilities and to formulate
appropriate definitions for them. For example, Eq. (4.8) holds if and only if Df

is not bounded above and for every sequence fsng in Df such that

lim
n!1 sn D 1;

we have

lim
n!1 f .sn/ D 1:

Thus it follows from Theorem 2.7.10(1) that

lim
x!1 ex D 1:

Similarly,

lim
x!�1 ex D 0;

by Example 2.8.2.

Example 4.6.1. Prove that

lim
x!1

1

x
D 0:

Proof. Let fsng be a sequence of positive numbers such that limn!1 sn D 1. Then

lim
n!1

1

sn

D 0;

by Theorem 2.8.4(2). The result follows. 4
Example 4.6.2. We have seen in Example 2.7.8 that

lim
n!1

�
1 C 1

n

�n

D e:

We now show that limx!˙1 f .x/ D e, where

f .x/ D
�

1 C 1

x

�x

for all x 2 Q � Œ�1; 0�. (Later we shall extend this result to the set R � Œ�1; 0�.)
First let fsng be any sequence in Q such that sn � 1 for all n and

lim
n!1 sn D 1:
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For each k let nk D bskc. Then

0 < nk � sk < nk C 1:

Thus

1

nk C 1
<

1

sk

� 1

nk

;

and so �
1 C 1

nk C 1

�nk

<

�
1 C 1

sk

�sk

<

�
1 C 1

nk

�nkC1

:

Letting nk ! 1 and using Lemma 2.2.1, we obtain

�
1 C 1

nk C 1

�nk

D
�

1 C 1

nk C 1

�nkC1 �
1 C 1

nk C 1

��1

! e � 1 D e

and
�

1 C 1

nk

�nkC1

D
�

1 C 1

nk

�nk
�

1 C 1

nk

�
! e � 1 D e:

Hence

lim
k!1

�
1 C 1

sk

�sk

D e:

We conclude that

lim
x!1

�
1 C 1

x

�x

D e:

In order to show that

lim
x!�1

�
1 C 1

x

�x

D e;

choose a sequence fxng in Q such that

lim
n!1 xn D �1

and xn < �1 for all n. Let yn D �xn for all n. Then

lim
n!1 yn D 1
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and yn > 1 for all n, and so
�

1 C 1

xn

�xn

D
�

1 � 1

yn

��yn

D
�

yn � 1

yn

��yn

D
�

yn

yn � 1

�yn

D
�

1 C 1

yn � 1

�yn

D
�

1 C 1

yn � 1

�yn�1 �
1 C 1

yn � 1

�

! e

as n ! 1. 4
Theorem 4.6.1. Let f and g be functions, let L be a number, and let a be an
accumulation point of both fx 2 Df j x > ag and fx 2 Dg j x > ag. Suppose that

lim
x!aC

f .x/ D L > 0

and

lim
x!aC

g.x/ D 0:

Suppose also that there exists ı > 0 such that g.x/ > 0 for all x 2 Dg satisfying
0 < x � a < ı. Then

lim
x!aC

f .x/

g.x/
D 1:

Proof. Choose N > 0. The first limit given shows the existence of ı1 > 0 such that

f .x/ >
L

2

for all x 2 Df satisfying 0 < x �a < ı1. It also follows from the second hypothesis
that there exists ı2 > 0 such that

jg.x/j <
L

2N

for all x 2 Dg for which 0 < x � a < ı2.
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Now let ı3 D minfı; ı1; ı2g, so that ı3 > 0, and choose x 2 Df \ Dg such that
0 < x � a < ı3. Then

f .x/ >
L

2
> 0:

Moreover

0 < g.x/ D jg.x/j <
L

2N
;

so that

1

g.x/
>

2N

L
> 0:

Hence

f .x/

g.x/
>

L

2
� 2N

L
D N;

and the result follows. ut
Example 4.6.3. It follows immediately from Theorem 4.6.1 that

lim
x!0C

1

x
D 1: 4

Theorem 4.6.2. Let f and g be functions and let a be an accumulation point of
Df ıg. If

lim
x!1 f .x/ D L;

for some number L, and

lim
x!a

g.x/ D 1;

then

lim
x!a

f .g.x// D L:

Proof. Note that a is an accumulation point of Dg, since Df ıg � Dg.
Choose " > 0. By hypothesis, there exists M such that jf .x/ � Lj < " for all

x 2 Df satisfying x > M . Similarly, there exists ı > 0 such that g.x/ > M for all
x 2 Dg for which 0 < jx � aj < ı. Choose x 2 Df ıg such that 0 < jx � aj < ı.
Then x 2 Dg, so that g.x/ > M , and g.x/ 2 Df . Therefore



4.6 Infinite Limits 213

jf .g.x// � Lj < ";

and the result follows. ut
Clearly, a and L may each be replaced by 1 or �1. Moreover the limits as x

approaches a may be replaced with one-sided limits. Thus Example 4.6.3 yields the
following corollary.

Corollary 4.6.3. If limx!1 f .x/ D L, then

lim
x!0C

f

�
1

x

�
D L:

Corollary 4.6.4. If limx!a g.x/ D 1, where a is an accumulation point of

fx 2 Dg j g.x/ ¤ 0g;

then

lim
x!a

1

g.x/
D 0:

Proof. Define f .x/ D 1=x for all x ¤ 0. Then limx!1 f .x/ D 0, by
Example 4.6.1. It therefore follows from Theorem 4.6.2 that

lim
x!a

1

g.x/
D lim

x!a
f .g.x// D 0: ut

Once again a may be replaced by 1 or �1 and the limits may be replaced by
one-sided limits.

Example 4.6.4. From Example 4.6.3 and Theorem 4.6.2 we have

lim
x!0C

e1=x D 1:

Consequently

lim
x!0C

1

e1=x C 1
D 0;

using Corollary 4.6.4. On the other hand, Example 4.5.4 shows that

lim
x!0�

1

e1=x C 1
D 1

0 C 1
D 1: 4
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Example 4.6.5. We show that limx!0 f .x/ D e, where

f .x/ D .1 C x/1=x

for all nonzero rational numbers x > �1. Since

lim
x!1

�
1 C 1

x

�x

D e

by Example 4.6.2, it follows from Corollary 4.6.3 that

lim
x!0C

.1 C x/1=x D e:

A similar argument shows that

lim
x!0�

.1 C x/1=x D e:

The result now follows from Theorem 4.5.2. 4
Exercises 4.4. 1. Find the following limits:

(a) limx!1 cos 2x
x

; (e) limx!1
p

x�xp
xCx

;

(b) limx!1 xp
4x2C5xC1

; (f) limx!0
1pjxj ;

(c) limx!1.
p

x2 C x C 1 � 1/; (g) limx!�1
�
1 C 1

x

�x
;

(d) limx!1 x sin 1
x

; (h) limx!1�

p
1�x

x�1
.

2. Give examples of functions f and g to show that if

lim
x!0

f .x/ D lim
x!0

g.x/ D 0

then

lim
x!0

f .x/

g.x/

may be any real number or ˙1 or may not exist.



Chapter 5
Continuity

5.1 Definition and Examples

We now come to a most important concept in analysis, one that has many
applications, notably in optimization. Roughly speaking, we are talking about those
functions that have no gaps in their graphs. Such functions are said to be continuous.
For example, the functions f and g, such that

f .x/ D g.x/ D 2x2 � 2x

x � 1

for all x ¤ 1 and g.1/ D 1, are not continuous at 1 since the graphs of both
functions have a gap where x D 1. On the other hand, the function h, such that
h.x/ D f .x/ for all x ¤ 1 and h.1/ D 2, is continuous (see Fig. 5.1).

The function given by

k.x/ D e1=x;

for all x ¤ 0, is not continuous at 0, for Example 4.5.4 shows that limx!0C e1=x D
1 but limx!0� e1=x D 0, and so the graph of k will have a gap no matter how we
define k.0/ (see Fig. 5.2).

Similarly, the function given by

1

e1=x C 1
;

for all x ¤ 0, is not continuous at 0 no matter how we define its value at 0 because
Example 4.6.4 shows that

lim
x!0C

1

e1=x C 1
D 0

© Springer Science+Business Media New York 2015
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x

f (x)

1

1

2

x

g(x)

1

1

2

x

h(x)

1

1

2

Fig. 5.1 Graphs of f , g and h

Fig. 5.2 Graph of e1=x

x

k(x)

1

but

lim
x!0�

1

e1=x C 1
D 1

(see Fig. 5.3).
A function f fails to be continuous at a certain point if its limit at that point is not

equal to its value there. In particular, f is not continuous at a given point if either
it or its limit is not defined at that point. We now make the concept of continuity
precise.

Definition 5.1.1. A function f is continuous at an accumulation point c of Df if

lim
z!c

f .z/ D f .c/:

In view of the fact that jf .z/ � f .c/j D 0 when z D c, the following theorem is
immediate from Theorem 4.3.1.
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Fig. 5.3 Graph of
1=.e1=x C 1/ 1

1
2

Theorem 5.1.1. A function f is continuous at an accumulation point c of Df if
and only if for all " > 0 there exists ı > 0 such that

jf .z/ � f .c/j < "

for each z 2 Df satisfying jz � cj < ı.

Of course, the notion of continuity can also be formulated in terms of sequences.

Theorem 5.1.2. Let f be a function and c an accumulation point of Df . Then f

is continuous at c if and only if ff .sn/g converges to f .c/ for every sequence fsng
in Df converging to c.

The next theorem follows immediately from Theorem 4.4.7.

Theorem 5.1.3. Let u and v be real-valued functions, and define

f .z/ D u.z/ C iv.z/

for each z 2 Du \Dv . Then f is continuous at an accumulation point c of Du \Dv

if and only if u and v are continuous at c.

It is an immediate consequence of Propositions 4.2.2 and 4.2.3 that constant
functions and the identity function (the function that maps each number to itself)
are continuous everywhere, as is the absolute value function, by Proposition 4.2.4.
It follows from Theorem 4.4.1 that the sum or product of functions f and g that
are continuous at a point c is also continuous at c if c is an accumulation point
of Df \ Dg. Thus polynomial functions are continuous everywhere. The quotient
f =g is also continuous at c provided that in addition g.x/ ¤ 0 for all x in some
neighborhood of c. Theorem 2.3.13 shows that for each m 2 N the function given
by x1=m for all x � 0 is continuous at each such x.

Sometimes a function is not continuous but its product with another function
is continuous. For example, the functions given by e1=x and e�1=x , for all x ¤ 0,
are not continuous at 0. However, e1=x � e�1=x gives the constant function 1 for all
x ¤ 0, and if we define its value at 0 to be 1, then the resulting function is continuous
everywhere.
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Theorem 5.1.4. Let f and g be functions and let c and L be numbers. Suppose that
c is an accumulation point of Df ıg, that limz!c g.z/ D L, and that f is continuous
at L. Then

lim
z!c

f .g.z// D f .L/ D f

�
lim
z!c

g.z/

�
D lim

g.z/!L
f .g.z//:

Proof. As c is an accumulation point of Df ıg and Df ıg � Dg, it is also an
accumulation point of Dg.

Choose " > 0. There exists ı1 > 0 such that

jf .z/ � f .L/j < "

for all z 2 Df satisfying jz � Lj < ı1. Similarly, there exists ı > 0 such that

jg.z/ � Lj < ı1

for all z 2 Dg satisfying 0 < jz � cj < ı. For each such z we therefore have

jf .g.z// � f .L/j < "

if g.z/ 2 Df , and the first equation follows. The proof is completed with the
observation that f .L/ is equal to the two rightmost expressions, respectively, by
substitution and the continuity hypothesized for f . ut
Remark. Clearly, the limits as z approaches c may be replaced by one-sided limits.
Moreover the accumulation point c of Df ıg may be replaced by 1 or �1.

Corollary 5.1.5. If g is continuous at an accumulation point c of Df ıg and f is
continuous at g.c/, then f ı g is continuous at c.

Proof. Apply the theorem with L D g.c/. ut
Corollary 5.1.6. Let f be a function and L and c numbers. Suppose that c is an
accumulation point of Df . If limz!c f .z/ D L, then

lim
z!c

jf .z/j D jLj:

Corollary 5.1.7. Let f be a real function and L and a real numbers. Suppose that
a is an accumulation point of Df and

lim
x!a

f .x/ D L:
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Then, for every positive integer m,

lim
x!a

.f .x//1=m D L1=m

if for each ı > 0 there exists x 2 N �
ı .a/ \ Df such that f .x/ � 0.

The next result is a corollary of Theorem 4.4.6.

Theorem 5.1.8. Let f be a real-valued function that is continuous at a number c.

1. If f .c/ > 0, then there exists ı > 0 such that f .z/ > 0 for all z 2 Nı.c/ \ Df .
2. If f .c/ < 0, then there exists ı > 0 such that f .z/ < 0 for all z 2 Nı.c/ \ Df .

Example 4.2.1 establishes the continuity of the exponential function.

Theorem 5.1.9. The function ex is continuous at all x.

We now give a famous example of a discontinuous function that is due to
Dirichlet.

Example 5.1.1. Let

f .x/ D
(

1 if x is rational;

0 otherwise.

We show that f is not continuous anywhere. First let c be a rational number. By the
density theorem, for each n 2 N we can find an irrational number

sn 2
�

c � 1

n
; c C 1

n

�
:

Thus f .sn/ D 0, and so

lim
n!1 f .sn/ D 0 ¤ f .c/;

yet the sequence fsng converges to c. Consequently, f is not continuous at c.
The case where c is an irrational number can be handled in a similar manner. 4
The following function is a modification of the Dirichlet function. It is known as

Thomae’s function or the popcorn function.

Example 5.1.2. Let f W .0; 1/ ! R be defined by

f .x/ D
(

0 if x is irrational;
1
n

if x D m
n

, where m and n are relatively prime positive integers.

We show that f is continuous at irrational points but not at rational points.
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Let c be a rational number in .0; 1/. As in the previous example, we can construct
a sequence fsng of irrational numbers in .0; 1/ such that sn ! c. Hence f .sn/ D 0

for all n. But f .c/ ¤ 0; hence f is not continuous at c.
Now let c be an irrational number in .0; 1/. Choose any " > 0 and let

B D



m

n
2 .0; 1/

ˇ̌̌
ˇm 2 N; n 2 N;

1

n
� "

�
:

Then B is finite, as m < n � 1=", and c … B . Choose ı > 0 such that Nı.c/ �
.0; 1/ and

Nı.c/ \ B D ;:

Hence f .x/ < " for all x 2 Nı.c/. Consequently,

lim
x!c

f .x/ D 0 D f .c/:

We conclude that f is continuous at c. 4
However, we can prove the following theorem. The proof is due to Volterra

(1881).

Theorem 5.1.10. There is no function f W .0; 1/ ! R that is continuous at all
rational numbers in .0; 1/ but not at any irrational number.

Proof. Let gW .0; 1/ ! R be defined by

g.x/ D
(

0 if x is irrational;
1
n

if x D m
n

, where m and n are relatively prime positive integers.

We have shown in Example 5.1.2 that g is discontinuous on A D Q \ .0; 1/ and
continuous on B D .0; 1/ � A.

Suppose there is a function f W .0; 1/ ! R that is continuous on A but
discontinuous on B . Let c 2 A. Then f is continuous at c. Hence there exists
ı > 0 such that .c � ı; c C ı/ � .0; 1/ and

jf .x/ � f .c/j <
1

4

for all x 2 .c�ı; cCı/. We may assume that ı � 1=4. Choose a1; b1 2 .c�ı; cCı/

such that a1 < b1; hence b1 � a1 < 1=2. Then for all x; y 2 .a1; b1/ we have

jf .x/ � f .y/j � jf .x/ � f .c/j C jf .y/ � f .c/j <
1

4
C 1

4
D 1

2
: (5.1)
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Now g is continuous at some point in .a1; b1/. Therefore by the preceding argument
with .0; 1/ replaced by .a1; b1/, there exist a0

1; b0
1 2 .a1; b1/ such that

jg.x/ � g.y/j <
1

2
(5.2)

for all x; y 2 .a0
1; b0

1/.
In summary, inequalities (5.1) and (5.2) both hold for all x; y 2 .a0

1; b0
1/.

Moreover .a0
1; b0

1/ contains a point at which f is continuous and a point at which g is
continuous. Therefore we may repeat the argument inductively to obtain a sequence
of nested intervals

.a0
1; b0

1/ 
 .a0
2; b0

2/ 
 : : :

in which each interval .a0
n; b0

n/ has length less than 1=2n and satisfies the condition
that

jf .x/ � f .y/j <
1

2n

and

jg.x/ � g.y/j <
1

2n

whenever x; y 2 .a0
n; b0

n/. Moreover the sequence fa0
ng is increasing and bounded

above. Therefore it converges. Similarly, fb0
ng converges. Since

0 < b0
n � a0

n <
1

2n

for all n, it follows from the sandwich theorem that fa0
ng and fb0

ng both converge to
some number d that belongs to every interval in the sequence. Therefore for every
n 2 N and every x 2 .a0

n; b0
n/, it follows that

jf .x/ � f .d/j <
1

2n

and

jg.x/ � g.d/j <
1

2n
:

It is now easy to show that f is continuous at d . Choose " > 0. Since 1=2n ! 0

as n ! 1, there exists N such that 1=2n < " for all n � N . Choose x such that

jx � d j < minfd � a0
N ; b0

N � dg:
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Then x 2 .a0
N ; b0

N /, and so

jf .x/ � f .d/j <
1

2N
< ";

as required. A similar argument shows that g is continuous at d . Hence we reach
the contradiction that d 2 A \ B D ;. ut
Exercises 5.1.

1. Study the continuity of each of the following functions:

(a) f .x/ D
( jxj

x
if x ¤ 0;

0 if x D 0.

(b) f .x/ D
(

x2 if x � 1;

2 � x if x > 1.

(c) f .x/ D
(

i.eix�1/

x
if x ¤ 0;

�1 if x D 0.

(d) f .x/ D
(

x if x is rational;

0 if x is irrational.

2. Find c for which the following functions are continuous:

(a) f .x/ D
(

x sin 1
x

if x ¤ 0;

c if x D 0.

(b) f .x/ D
(

x2 � x C 1 if x � 1;

cx2 C 1 if x > 1.

3. Let f be continuous on an interval I . Suppose that f .r/ D r2 for every rational
number r in I . Prove that f .x/ D x2 for all x 2 I .

4. Let f and g be continuous functions. Show that the functions f _ g and f ^ g

are also continuous, where

.f _ g/.x/ D maxff .x/; g.x/g

and

.f ^ g/.x/ D minff .x/; g.x/g
for all x.
(Hint:

maxfa; bg D a C b C ja � bj
2
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and

minfa; bg D a C b � ja � bj
2

:/

5. A subset S of C is open if for every c 2 S there exists ı > 0 such that Nı.c/ �
S . Let f WC ! C be continuous. Show that if S is open in C, then

fz 2 C j f .z/ 2 Sg

is open.

5.2 One-Sided Continuity

The concept of one-sided continuity is analogous to that of a one-sided limit.

Definition 5.2.1. A function f is continuous on the right at an accumulation point
c of f x 2 Df j x > c g if

lim
x!cC

f .x/ D f .c/:

The definition of a function that is continuous on the left at c is analogous.

Example 5.2.1. If

f .x/ D 1

e1=x C 1

for all x ¤ 0, then we have already seen that

lim
x!0C

f .x/ D 0

and

lim
x!0�

f .x/ D 1:

Therefore, if we were to define f .0/ D 0, then f would be continuous on the right
at 0, and if we were to define f .0/ D 1, then f would be continuous on the left
at 0. 4
Example 5.2.2. Let f be the function given by

f .x/ D p
x
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for all x � 0. Then f is continuous on the right at 0. It is not continuous on the left
at 0 since it is undefined at each x < 0. Nevertheless f is continuous at 0 according
to our definition. 4

5.3 Continuity over an Interval

Definition 5.3.1. A function is continuous over a given set if it is continuous at all
points in the set.

We shall show that if a function is continuous over a closed set, then it reaches a
maximum and a minimum somewhere in that set.

In many applications the domain of a function is assumed to be closed and
bounded. A closed bounded set is said to be compact.

Theorem 5.3.1. Let f W X ! C be a continuous function, where X is a compact
subset of C. Then f .X/ is compact.

Proof. Suppose that f .X/ is not bounded. Choose w 2 f .X/. For every n 2 N, we
can find wn 2 f .X/ such that

jwn � wj > n:

There exists zn 2 X such that f .zn/ D wn. As X is bounded, Theorem 2.6.10 shows
that fzng contains an injective convergent subsequence fzkng. Let

z D lim
n!1 zkn :

Since X is closed, we have z 2 X .
The continuity of f shows that

lim
n!1 wkn D lim

n!1 f .zkn/ D f .z/;

by the remark following Theorem 5.1.4. Thus there exists N such that

jwkn � f .z/j < 1

for all n � N . For each such n it follows that

n � kn

< jwkn � wj
� jwkn � f .z/j C jf .z/ � wj
< 1 C jf .z/ � wj:
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Fig. 5.4 Graph of f in
Example 5.3.1

1

1

–1

–1

0 x

f(x)

However this conclusion is impossible, as the right-hand side of the inequality above
is a constant. Consequently f .X/ is bounded.

In order to show that f .X/ is closed, choose a limit point w of f .X/. There exists
a sequence fwng in f .X/ such that limn!1 wn D w. For each n there exists zn 2 X

such that f .zn/ D wn. As before, fzng contains a subsequence fzkng converging to a
number z 2 X . Theorem 2.4.1 and the continuity of f show that

w D lim
n!1 wkn D f .z/:

Thus w 2 f .X/, and we conclude that f .X/ is closed. ut
Corollary 5.3.2 (Maximum- and Minimum-Value Theorem). Let f W X ! R be
a continuous function, where X is a compact set. Then f .X/ contains a maximum
and a minimum value.

Proof. The result follows from the theorem since the supremum and infimum of
f .X/ are necessarily limit points. ut

In particular, a function that is continuous on a closed interval reaches a
maximum and a minimum value in that interval. If a function is not continuous
on a closed interval, then it may or may not have a maximum or a minimum on that
interval.

Example 5.3.1. Let

f .x/ D
(

x if �1 < x < 1;

0 otherwise.

Here f is not continuous on the closed interval Œ�1; 1� although it is continuous on
the open interval .�1; 1/. In this case f has neither a maximum nor a minimum on
Œ�1; 1�, since there is no largest number less than 1 and no smallest number greater
than �1. Note that neither �1 nor 1 is a value of the function (see Fig. 5.4). 4

Example 5.3.2. Let

f .x/ D
(

x if �1 < x < 1;

2 if jxj � 1.
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Fig. 5.5 Graph of f in
Example 5.3.2
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Fig. 5.6 Graph of f in
Example 5.3.3
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Here f is not continuous on the closed interval Œ�1; 1�, though it is continuous on
the open interval .�1; 1/. It has no minimum on Œ�1; 1�, but it has a maximum of 2,
attained at 1 (see Fig. 5.5). 4

It is not only discontinuities at endpoints of intervals that may invalidate the
conclusion of the theorem.

Example 5.3.3. Let

f .x/ D
(

x if x � 0;

1 � x if x > 0.

This function is not continuous on Œ�1; 1� as it is not continuous at 0. It has a
minimum of �1 on Œ�1; 1�, attained at �1, but no maximum (see Fig. 5.6). 4

Our next theorem asserts the existence of a zero of a continuous function where
the values of the function are not all of the same sign.

Theorem 5.3.3 (Bolzano). Suppose that f W Œa; b� ! R is a continuous function
such that f .a/f .b/ < 0. Then there exists � 2 .a; b/ such that f .�/ D 0.

Proof. We assume that f .a/ < 0 and f .b/ > 0, as the proof in the other case is
similar.
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Suppose there is no � 2 .a; b/ such that f .�/ D 0. Let a0 D a and b0 D b.
Suppose now that aj and bj have been defined for some nonnegative integer j ,
that they are both in Œa; b�, that f .aj / < 0, that f .bj / > 0, and that bj � aj D
.b � a/=2j . If

f

�
aj C bj

2

�
> 0;

then let aj C1 D aj and bj C1 D .aj C bj /=2; otherwise define aj C1 D .aj C
bj /=2 and bj C1 D bj . Then fang is a nondecreasing sequence in Œa; b�, fbng is a
nonincreasing sequence in Œa; b�, and for all n we have f .an/ < 0, f .bn/ > 0 and

bn � an D b � a

2n
:

As the sequences fang and fbng are bounded and monotonic, they both converge.
Moreover their limits are equal, since bn � an ! 0. Let

lim
n!1 an D lim

n!1 bn D �:

Since f is continuous, we have

0 � lim
n!1 f .an/ D f .�/ D lim

n!1 f .bn/ � 0:

Hence f .�/ D 0. Moreover � 2 .a; b/ since f .a/f .b/ ¤ 0. ut
Corollary 5.3.4 (Intermediate-Value Theorem). Let f W Œa; b� ! R be a contin-
uous function such that f .a/ ¤ f .b/. For each number k between f .a/ and f .b/

there exists � 2 .a; b/ such that f .�/ D k.

Proof. Apply Bolzano’s theorem to the function

g.x/ D f .x/ � k

for all x 2 Œa; b�. ut
Example 5.3.4. We show that the equation

ex D 4x

has a solution between 0 and 1. Let

f .x/ D ex � 4x

for all x. Then f .0/ D 1 > 0 and f .1/ D e � 4 < 0. By Bolzano’s theorem, the
equation f .x/ D 0 has a solution between 0 and 1, and the result follows. 4
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Example 5.3.5. If a > 0 and n 2 N, then we can use the intermediate-value theorem
to prove the existence of a positive nth root of a. Choose c > maxf1; ag, and let
f .x/ D xn for all x 2 R. This function is continuous on Œ0; c� and

f .0/ D 0 < cn D f .c/:

As 0 < a < c < cn, the intermediate-value theorem confirms the existence of � > 0

such that �n D f .�/ D a. Thus � is an nth root of a. 4
A fixed point for a function f is a number x 2 Df such that f .x/ D x.

Corollary 5.3.5 (Fixed-Point Theorem). Let f W Œa; b� ! Œa; b� be a continuous
function. Then f has a fixed point.

Proof. If either f .a/ D a or f .b/ D b, then f has a fixed point. The remaining
possibility is that f .a/ � a > 0 and f .b/ � b < 0. Let

g.x/ D f .x/ � x

for all x 2 Œa; b�. Then g is continuous on Œa; b�, g.a/ > 0 and g.b/ < 0. Therefore,
by Bolzano’s theorem, there exists � 2 .a; b/ such that f .�/ � � D 0. The result
follows. ut

By combining the maximum-value theorem, the minimum-value theorem, and
the intermediate-value theorem, we obtain the following corollary.

Corollary 5.3.6. If f W Œa; b� ! R is continuous and m and M are its minimum and
maximum values, respectively, then

f .Œa; b�/ D Œm; M�:

Theorem 5.3.7. A continuous real function is injective if and only if it is strictly
monotonic.

Proof. Clearly, every strictly monotonic function is injective.
Let f be a continuous injective function that is not strictly monotonic. We

shall complete the proof by finding a contradiction. Since f is injective but not
monotonic, there exist ˛; ˇ; � 2 Df such that ˛ < ˇ < � and either

f .ˇ/ > maxff .˛/; f .�/g

or

f .ˇ/ < minff .˛/; f .�/g:

We may suppose that the former inequality obtains, the argument in the other case
being similar. Choose k such that
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maxff .˛/; f .�/g < k < f .ˇ/:

Then the intermediate-value theorem establishes the existence of c and d such that
˛ < c < ˇ < d < � and f .c/ D k D f .d/, contradicting the assumption that f

is injective. ut
Theorem 5.3.8. Let f W Œa; b� ! R be an increasing (respectively, decreasing) con-
tinuous function. Then f �1 exists and is also increasing (respectively, decreasing)
and continuous.

Proof. We confine our attention to the case where f is increasing, as the argu-
ment in the other case is analogous. Our previous results (Corollary 5.3.6 and
Theorem 5.3.7) show that f �1 exists with domain Œm; M�, where m D f .a/ and
M D f .b/. Now choose y1; y2 2 Œm; M�, where y1 < y2. Then y1 D f .x1/ and
y2 D f .x2/ for some x1; x2 2 Œa; b�. Thus x1 D f �1.y1/ and x2 D f �1.y2/: If
x1 � x2, then y1 D f .x1/ � f .x2/ D y2, a contradiction. Hence f �1 is increasing.

Let c 2 Œm; M� and choose " > 0. We want to find ı > 0 such that

jf �1.y/ � f �1.c/j < " (5.3)

for all y 2 Nı.c/ \ Œm; M�. If we set x D f �1.y/ and ˇ D f �1.c/, then
inequality (5.3) becomes

jx � ˇj < ";

which is equivalent to

ˇ � " < x < ˇ C ": (5.4)

As f is increasing, inequality (5.4) is equivalent to

f .ˇ � "/ < f .x/ < f .ˇ C "/

and therefore to

f .ˇ � "/ � f .ˇ/ < f .x/ � f .ˇ/ < f .ˇ C "/ � f .ˇ/:

Since

f .x/ � f .ˇ/ D y � c

whenever y 2 Œm; M�, the proof is completed by choosing

ı D minff .ˇ/ � f .ˇ � "/; f .ˇ C "/ � f .ˇ/g W
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For each y 2 Œm; M� such that jy � cj < ı we have

f .ˇ � "/ � f .ˇ/ < 0 � y � c < f .ˇ C "/ � f .ˇ/

if y � c � 0, whereas if y � c < 0, then

c � y < f .ˇ/ � f .ˇ � "/;

so that

f .ˇ � "/ � f .ˇ/ < y � c < 0 < f .ˇ C "/ � f .ˇ/: ut

Exercises 5.2.

1. Let f W Œa; b� ! R be continuous. Show that

M D maxfjf .x/j j x 2 Œa; b�g

exists. Show also that for every " > 0 there is an interval Œ˛; ˇ�, included in Œa; b�,
such that

jf .x/j > M � "

for all x 2 Œ˛; ˇ�.
2. Let f; gW Œa; b� ! R be continuous functions. Suppose that f .a/ < g.a/ and

f .b/ > g.b/. Show that there exists c 2 .a; b/ such that f .c/ D g.c/.
3. Let f W .a; b/ ! R be continuous. Show that for any c1; c2; : : : ; cn 2 .a; b/ there

exists c 2 .a; b/ such that

f .c/ D 1

n

nX
j D1

f .cj /:

4. Let p be a nonzero polynomial. Show that ex D jp.x/j has a real solution.
5. Let f W Œa; 1/ ! R be continuous and suppose that limx!1 f .x/ exists and is

finite. Show that f is bounded on Œa; 1/.
6. Let f be continuous on R and suppose that

lim
x!1 f .x/ D lim

x!�1 f .x/ D 0:

Show that f attains a maximum value or a minimum value.
7. Let f be a function and c a number. We say that f .c/ is a local maximum

(respectively, local minimum) of f if there exists ı > 0 such that f .c/ � f .x/

[respectively, f .c/ � f .x/] for all x 2 Nı.c/.
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Let f W Œa; b� ! R be continuous. Suppose that f .˛/ and f .ˇ/ are local
maxima of f , where ˛ < ˇ. Show that there exists c 2 .˛; ˇ/ such that f .c/ is
a local minimum.

8. Let f W Œa; b� ! R be continuous. Show that if f does not have a local maximum
or a local minimum, then it must be monotonic on Œa; b�.

5.4 The Logarithm Function

Recall that the exponential function is increasing (Theorem 2.7.12) and continuous
everywhere (Theorem 5.1.9). Therefore it has a continuous increasing inverse. This
inverse is called the logarithm function and is denoted by log. (The reader is
cautioned that some authors use a different notation.) The logarithm of a number
x is often written as log x rather than log.x/. Since limx!1 ex D 1 and
limx!�1 ex D 0, the continuity of the exponential function, together with the
intermediate-value theorem, shows that log x is defined for all x > 0. Theorem 5.3.8
shows that it is increasing and continuous on .0; 1/.

As the logarithm and exponential functions are inverses, log x D y if and only if
ey D x. Therefore

elog x D x

and

log ey D y:

In particular, log e D 1, so that ex D ex log e . We use this observation to motivate the
following definition for every a > 0 and every real x:

ax D ex log a: (5.5)

In particular,

a0 D e0 D 1

and

a1 D elog a D a:

We also define 0x D 0 for all x > 0.
If a; x; y are real numbers with a > 0, then

axay D ex log aey log a D ex log aCy log a D e.xCy/ log a D axCy:
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Thus, for every number w we have

1 D a0 D aw�w D awa�w:

Therefore

a�w D 1

aw
:

Applying this result with a and w replaced by e and y log a, respectively, we find
that

ax

ay
D ex log a

ey log a
D ex log ae�y log a D e.x�y/ log a D ax�y:

Moreover Eq. (5.5) shows that

log ax D x log a

for all a > 0 and all real x. If y is also a real number, it follows that

log.ax/y D y log ax D xy log a D log axy;

and we deduce that

.ax/y D axy:

In addition,

log 1 D log a0 D 0 log a D 0:

Hence

1x D ex log 1 D e0 D 1

for all real x.
Note that

axC1 D ax � a1 D axa:

Since we also have a0 D 1, it follows by induction that our definition of ax agrees
with our previous understanding in the case where x is a nonnegative integer. As
a�x D 1=ax , the same can be said if x is a negative integer. Note also that if m and
n are integers and n > 0, then .a1=n/m D am=n. In particular,

.a1=n/n D a1 D a:
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Thus our definition also agrees with our previous understanding in the case where x

is rational.
Now suppose that a > 0 and b > 0. Since

elog aClog b D elog aelog b D ab;

it follows that

log ab D log a C log b:

One consequence is that

axbx D ex log aex log b D ex.log aClog b/ D ex log ab D .ab/x

for every real x. Similarly,

log
a

b
D log a � log b;

since

elog a�log b D elog ae� log b D elog a

elog b
D a

b
:

Hence

ax

bx
D ex log a

ex log b
D ex.log a�log b/ D ex log a

b D
�a

b

�x

:

We also observe that the result of Example 4.6.2 holds for all real x … Œ�1; 0�.
Indeed, the argument used in that example extends to the case of such an x. The
result of Example 3.6.1 may similarly be extended to all real p.

Since log 1 D 0 and log is increasing and continuous on .0; 1/, we see that
log x is negative for all x 2 .0; 1/ and positive for all x > 1. Moreover if we choose
M > 0 and x > eM , then

log x > log eM D M:

Hence

lim
x!1 log x D 1:

Also, log x < �M for all x such that 0 < x < e�M , and so

lim
x!0C

log x D �1:
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Example 5.4.1. By continuity we see that

lim
n!1

log n

n
D lim

n!1 log n1=n D log
�

lim
n!1 n1=n

�
D log 1 D 0:

In other words, log n << n. 4
Example 5.4.2. We show that

1X
j D2

1

j log j

is divergent. This series is known as Abel’s series.
We observe that f1=.n log n/g is a decreasing sequence of positive terms. Hence

Cauchy’s condensation test is applicable. The condensed series is

1X
kD1

2k 1

2k log 2k
D

1X
kD1

1

k log 2

D 1

log 2

1X
kD1

1

k
;

which is divergent. Hence Abel’s series is also divergent. 4
Logarithms are used in the proof of a test, due to Gauss, for the convergence of a

series.

Theorem 5.4.1 (Gauss’s Test). Let
P1

j D1 aj be a series of positive terms. Suppose
there exist a bounded sequence fsng and a constant c such that

anC1

an

D 1 � c

n
C sn

n2
(5.6)

for all n > 0. Then the series is convergent if c > 1 and divergent if c � 1.

Proof. Case 1: Suppose c ¤ 1. From Eq. (5.6) we see that

n

�
1 � anC1

an

�
D c � sn

n
;

and the expression on the right-hand side approaches c as n approaches infinity
since fsng is bounded. The required result therefore follows from Raabe’s test.

Case 2: Suppose c D 1. We apply the Kummer-Jensen test to the sequence

f.n � 1/ log.n � 1/g:
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We already know that Abel’s series diverges, and so it remains only to investigate
the limiting behavior of

cn D .n � 1/ log.n � 1/ �
�

1 � 1

n
C sn

n2

�
n log n

D .n � 1/ log.n � 1/ �
�
n � 1 C sn

n

�
log n

D .n � 1/.log.n � 1/ � log n/ � sn log n

n
:

Since fsng is bounded, we have

lim
n!1

sn log n

n
D 0:

(See Theorem 2.5.3 and recall that log n << n.) Moreover, using the analog of
Theorem 5.1.4 with c replaced by 1, we obtain

lim
n!1 cn D lim

n!1.n � 1/.log.n � 1/ � log n/

D lim
n!1 log

�
n � 1

n

�n�1

D log lim
n!1

�
n

n � 1
�
�

1 � 1

n

�n�

D log
�
1 � e�1

�
D �1:

As the result of this calculation is negative, there exists N such that cn < 0 for
all n � N . Consequently, the theorem follows from the Kummer-Jensen test.

ut
Example 5.4.3. Test the series

1X
j D1

�
.2j � 1/Š

22j �1.j � 1/Šj Š

�2

for convergence.

Solution. As in Example 3.9.1 we write

an D
�

.2n � 1/Š

22n�1.n � 1/ŠnŠ

�2
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for all n > 0. Then

anC1

an

D
�

2n C 1

2n C 2

�2

D 1 � 1

n
C 1

n2

�
5n2 C 4n

4n2 C 8n C 4

�
;

the last step being obtained upon division of 4n2 C 4n C 1 by 4n2 C 8n C 4 to give
a quotient of 1 � 1=n and a remainder of 5 C 4=n. Since the sequence



5n2 C 4n

4n2 C 8n C 4

�

converges (to 5=4), it is bounded. The divergence of the given series now follows
from Gauss’s test with c D 1.

4
Exercises 5.3.

1. Let an D loglog n n for all n > 1. Show that an D nlog log n and hence thatP1
j D2 1=aj converges.

2. Determine the convergence of the following series:

(a)
P1

j D1.log.j C 1/ � log j /p where p > 0;

(b)
P1

j D2
log j

j
;

(c)
P1

j D1
1
j

log
�
1 C 1

j

�
;

(d)
P1

j D2
1

j logp j
where p 2 R;

(e)
P1

j D2
1

j log j log log j
.

(Hint: Try Cauchy’s condensation test.)
3. Find the interval of convergence of the power series

1X
j D2

log j

.j C 1/2
.x � 1/j :

4. Let fang be a sequence of positive terms and fsng a bounded sequence. Let c be
a constant such that

an

anC1

D 1 C c

n
C sn

n2

for all n > 0. Prove that the series
P1

j D1 aj converges if c > 1 and diverges if
c � 1.
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5. (Bertrand’s test) Let
P1

j D1 aj be a series of positive terms, and for each n 2 N

let

ˇn D
�

n

�
anC1

an

� 1

�
� 1

�
log n:

(a) Show that if limn!1 ˇn > 1, then the series converges.
(b) Show that if limn!1 ˇn < 1, then the series diverges.

(Hint: Take

bn D .n � 1/ log.n � 1/

in the Kummer-Jensen test.)

5.5 Uniformly Continuous Functions

Let f be a continuous function and let c be an accumulation point of Df . Then for
each " > 0 there exists ı > 0 such that

jf .z/ � f .c/j < "

for all z 2 Nı.c/ \ Df . It may be that ı depends on c. If not, then we say that f is
uniformly continuous.

Definition 5.5.1. A function f is uniformly continuous if for each " > 0 there
exists ı > 0 such that

jf .z1/ � f .z2/j < "

for all z1; z2 2 Df satisfying jz1 � z2j < ı.

Remark. Thus a uniformly continuous function must be continuous at every point
in its domain.

We can prove the following sequential characterisation of uniform continuity.

Proposition 5.5.1. A function f is uniformly continuous if and only if for each pair
of sequences fsng and ftng in Df such that

lim
n!1.sn � tn/ D 0;
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we have

lim
n!1.f .sn/ � f .tn// D 0:

Proof. Suppose there exist sequences fsng and ftng in Df such that fsn � tng is null
but ff .sn/ � f .tn/g is not. Some " > 0 therefore has the property that for every M

there exists n � M satisfying

jf .sn/ � f .tn/j � "; (5.7)

but on the other hand, for every ı > 0 there exists N such that

jsn � tnj < ı

for all n � N . Some such n must satisfy inequality (5.7), and so f cannot be
uniformly continuous.

Conversely, suppose f is not uniformly continuous. Then for some " > 0 and all
ı > 0 there exist s; t 2 Df such that js � t j < ı and jf .s/ � f .t/j � ". Thus for
each n 2 N there exist sn; tn 2 Df such that

jsn � tnj <
1

n

and

jf .sn/ � f .tn/j � ":

The sandwich theorem shows that the sequence fsn � tng is null, but ff .sn/�f .tn/g
is evidently not. ut
Example 5.5.1. Consider the function f W .0; 2� ! R defined by

f .x/ D 1

x
:

Let " D 1=2 and, for each n 2 N, define sn D 1=n and tn D 2=n. Then

jsn � tnj D 1

n
! 0

as n ! 1, but

jf .sn/ � f .tn/j D n

2
� "

for all n 2 N. We conclude that f is not uniformly continuous. 4
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We also deduce the following theorem.

Theorem 5.5.2. Every function that is continuous over a compact set is uniformly
continuous.

Proof. Suppose that a function f is continuous over a compact set X but not
uniformly. Then we can find " > 0 with the property that for each n 2 N there
exist sn and tn in X satisfying

lim
n!1 jsn � tnj D 0

and

jf .sn/ � f .tn/j � ": (5.8)

Since fsng is bounded, by Corollary 2.6.8 it has a subsequence fskng that converges
to some number s. If skm D s for some number m, then s 2 X . In the remaining
case s is a limit point of X by Theorem 2.6.11, and once again s 2 X since X is
closed. Now

jtkn � sj � jtkn � skn j C jskn � sj ! 0

as n ! 1. Hence

lim
n!1 tkn D s:

As f is continuous at s 2 X , we obtain

lim
n!1 f .skn/ D lim

n!1 f .tkn/ D f .s/:

Therefore

jf .skn/ � f .tkn/j � jf .skn/ � f .s/j C jf .tkn/ � f .s/j ! 0

as n ! 1. We now have a contradiction to inequality (5.8). ut
Theorem 5.5.3. A continuous function f is uniformly continuous on an open
interval .a; b/ if and only if limx!aC f .x/ and limx!b� f .x/ exist and are finite.

Proof. Suppose that f is uniformly continuous on .a; b/. Choose " > 0. There
exists ı > 0 such that

jf .x/ � f .y/j < " (5.9)

for all x and y in .a; b/ satisfying jx � yj < ı. Choose x and y in N �
ı=2.a/ \ .a; b/.

Then
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jx � yj � jx � aj C ja � yj <
ı

2
C ı

2
D ı;

so that inequality (5.9) holds. Thus f satisfies Cauchy’s condition at a, and we
conclude from Theorem 4.3.2 that limx!aC f .x/ exists and is finite. The limit as
x ! b� is dealt with in a similar manner.

Conversely, suppose that both limits exist and are finite. Then f can be extended
to a continuous function on Œa; b� that is uniformly continuous by Theorem 5.5.2.
Hence f is also uniformly continuous. ut
Example 5.5.2. Let f .x/ D e�1=x for all x ¤ 0. Then limx!0C f .x/ D 0. Hence
f is uniformly continuous on .0; b� for each b > 0. 4

A function is uniformly continuous over a closed interval if and only if it is
continuous over that interval. Thus if functions f and g are uniformly continuous
over an interval Œa; b�, then so are f C g, fg, and f̨ for all ˛ 2 R. In view of
Theorem 5.5.3, this result is also true if we replace the interval by .a; b/. However,
it is in general not true if we replace the interval by Œa; 1/.

Example 5.5.3. Let f .x/ D g.x/ D x for all x. Then, clearly, f and g are
uniformly continuous over Œ0; 1/. However, we show that the function given by
x2 is not uniformly continuous over that interval. For all n � 0 let sn D p

n C 1

and tn D p
n. Then

sn � tn D p
n C 1 � p

n

D .
p

n C 1 � p
n/.

p
n C 1 C p

n/p
n C 1 C p

n

D 1p
n C 1 C p

n

! 0:

However,

s2
n � t 2

n D 1

for all n. Hence according to Proposition 5.5.1, the function x2 is not uniformly
continuous over Œ0; 1/. 4

The family of uniformly continuous functions includes an important subfamily,
which we define below.

Definition 5.5.2. A function f is said to be Lipschitz continuous if there exists a
positive constant M such that

jf .z1/ � f .z2/j � M jz1 � z2j
for all z1 and z2 in Df .
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Example 5.5.4. The modulus function is Lipschitz continuous since

jjz1j � jz2jj � jz1 � z2j

for all z1; z2 2 C. 4
It follows from Proposition 5.5.1 and the sandwich theorem that every function

that is Lipschitz continuous is also uniformly continuous. However, the converse is
not always true.

Example 5.5.5. The function f given by

f .x/ D p
x

is continuous and therefore uniformly continuous over Œ0; 1�. We show that it is not
Lipschitz continuous. Suppose there exists M > 0 such that

jf .x1/ � f .x2/j � M jx1 � x2j

for all x1; x2 2 Œ0; 1�. In particular,

jf .x/ � f .0/j � M jxj

for every x 2 .0; 1�. Thus

p
x � Mx;

so that 1 � M
p

x. However, this result is contradicted for x such that 0 < x <

1=M 2. 4
Exercises 5.4.

1. Show that the following functions are uniformly continuous:

(a)
p

x, where x 2 Œ0; 1/;
(b) x sin 1

x
, where x 2 .0; 1/.

2. Show that the following functions are not uniformly continuous:

(a) log x, where x 2 .0; 1/;
(b) ex , where x 2 Œ0; 1/.

3. Suppose that f is uniformly continuous on .a; b� and on Œb; c/. Show that f is
uniformly continuous on .a; c/.

4. Let f be continuous on Œa; 1/ and suppose that limx!1 f .x/ exists and is finite.
Show that f is uniformly continuous on Œa; 1/.



Chapter 6
Differentiability

The notion of a derivative is motivated by studying two kinds of problems: finding
instantaneous velocities and determining slopes of tangents to curves. Here we
shall not dwell on these problems. Rather, we undertake a study of the general
mathematical properties of derivatives. We assume all functions to be of a complex
variable and complex-valued unless an indication to the contrary is given.

6.1 Derivatives

Definition 6.1.1. Let f be a function and c an accumulation point of Df . Define

f 0.c/ D lim
z!c

f .z/ � f .c/

z � c
:

If the limit exists and is a number, then f is said to be differentiable at c and f 0.c/

is the derivative of f at c.

Remark 1. We sometimes write

d

dz
f .z/ D f 0.z/

if f is differentiable at z.

Remark 2. In the case where f is a real-valued function of a real variable x, the
quotient

f .x/ � f .c/

x � c

© Springer Science+Business Media New York 2015
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gives the slope of the line joining the points .c; f .c// and .x; f .x// on the graph
of f . We may interpret f 0.c/ geometrically as the slope of the graph of f at the
point .c; f .c//.

Example 6.1.1. Let f .z/ D az C b for all z 2 C, where a; b 2 C. Then, for each
c 2 C and z ¤ c,

f .z/ � f .c/

z � c
D .az C b/ � .ac C b/

z � c

D a.z � c/

z � c

D a:

Hence f 0.c/ D a. 4
In particular, if f .z/ D b for all z 2 C, then f 0.c/ D 0 for all c. If f .z/ D z for

all z 2 C, then f 0.c/ D 1 for all c.

Example 6.1.2. Let f .z/ D z2 for all z 2 C. Then, for each c and z ¤ c,

f .z/ � f .c/

z � c
D z2 � c2

z � c

D z C c

! 2c

as z ! c. Hence f 0.c/ D 2c. 4
Definition 6.1.1 may be rewritten using the limit in the next theorem.

Theorem 6.1.1. Let f be a function that is differentiable at a number c. Then

f 0.c/ D lim
h!0

f .c C h/ � f .c/

h
:

Proof. Let k.z/ D c C z for all z. Then limz!0 k.z/ D c. Define

g.z/ D f .z/ � f .c/

z � c

for all z 2 Df �fcg, and let g.c/ D f 0.c/. Then 0 is an accumulation point of Dgık

and g is continuous at c. Notice also that

g.k.z// D f .c C z/ � f .c/

z
:
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It therefore follows from Theorem 5.1.4 that

f 0.c/ D lim
z!c

g.z/ D lim
k.z/!c

g.k.z// D lim
z!0

f .c C z/ � f .c/

z
;

as required. ut
Example 6.1.3. Recall that exp.z/ D ez for all complex z. We have seen that The-
orem 2.7.10 holds also for complex numbers. Therefore so does Corollary 2.7.11,
and we can use the latter, together with Theorem 6.1.1, to show that

exp0.c/ D lim
h!0

ecCh � ec

h
D ec

for all c. In other words, the exponential function is its own derivative. 4
The following theorem is clear from the sequential formulation of limits.

Theorem 6.1.2. Let f be a function. If there exist sequences fsng and ftng in Df

such that

lim
n!1 sn D lim

n!1 tn D c

and

lim
n!1

f .sn/ � f .c/

sn � c
¤ lim

n!1
f .tn/ � f .c/

tn � c
;

then f 0.c/ does not exist.

Example 6.1.4. Consider the function f .z/ D z, defined on C. We show that f 0.0/

does not exist. For each n 2 N, take sn D 1=n and tn D i=n. Clearly,

lim
n!1 sn D lim

n!1 tn D 0:

Now

f .sn/ � f .0/

sn � 0
D 1

and

f .tn/ � f .0/

tn � 0
D �1:

Hence

lim
n!1

f .sn/ � f .0/

sn � 0
¤ lim

n!1
f .tn/ � f .0/

tn � 0
:

Therefore f 0.0/ does not exist. 4
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Example 6.1.5. Consider the real function

f .x/ D
(

x2 if x � 0;

x if x > 0:

We show that f 0.0/ does not exist. For each x ¤ 0 let

Q.x/ D f .x/ � f .0/

x � 0

D f .x/

x

D
(

x if x � 0;

1 if x > 0:

Thus

lim
x!0�

Q.x/ D 0

and

lim
x!0C

Q.x/ D 1:

Hence limx!0 Q.x/ does not exist. In other words, f 0.0/ does not exist. Note that
the function is continuous but its graph has a “corner” at 0 (see Fig. 6.1). 4

We now show that if f is differentiable at c, then f is continuous at c.
Examples 6.1.4 and 6.1.5 show that the converse is not always true.

Theorem 6.1.3. If a function f is differentiable at a number c, then f is continuous
at c.

Fig. 6.1 Graph of f

in Example 6.1.5

x

f(x)

0
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Proof. Let f be differentiable at c. Then, for each z 2 Df � fcg,

f .z/ � f .c/ D f .z/ � f .c/

z � c
.z � c/:

As z approaches c, the right-hand side approaches f 0.c/ � 0 D 0. Hence

lim
z!c

f .z/ D f .c/:

ut
Our next example shows that, even for a real function f , the existence of

lim
x!c

f 0.x/

does not guarantee the existence of f 0.c/.

Example 6.1.6. Let

f .x/ D
(

x C 1 if x � 0;

x if x > 0.

Then f 0.x/ D 1 for all x ¤ 0. Thus

lim
x!0

f 0.x/ D 1:

But f is not continuous at 0, since limx!0� f .x/ D 1 and limx!0C f .x/ D 0.
Therefore, by Theorem 6.1.3, f 0.0/ does not exist. 4

Our next theorem gives an idea of the behavior of a function in the vicinity of a
point where its derivative exists. The result is stronger than Theorem 6.1.3.

Theorem 6.1.4. Let f be differentiable at c. Then there exist ı > 0 and M > 0

such that

jf .z/ � f .c/j < M jz � cj
for all z 2 N �

ı .c/ \ Df .

Proof. There exists ı > 0 such that

ˇ̌̌
ˇf .z/ � f .c/

z � c
� f 0.c/

ˇ̌̌
ˇ < 1

for all z 2 N �
ı .c/ \ Df . Hence

ˇ̌
ˇ̌f .z/ � f .c/

z � c

ˇ̌
ˇ̌ � jf 0.c/j < 1:



248 6 Differentiability

Setting M D jf 0.c/j C 1 > 0, we obtain

jf .z/ � f .c/j < M jz � cj
for all z 2 N �

ı .c/ \ Df . ut
The condition given in the conclusion of Theorem 6.1.4 is called the Lipschitz

condition at c. Functions that satisfy it are continuous at c but not necessarily
differentiable there.

Example 6.1.7. The absolute value function jxj satisfies the Lipschitz condition at 0
but can be shown to be not differentiable there. Hence the converse of Theorem 6.1.4
is in general not true. 4

We end this section by defining f .0/ D f , where f is a function, and if f .n/ has
been defined for some nonnegative integer n, then f .nC1/ D .f .n//0. We call f .n/

the nth derivative of f . If f is a function of a variable z, then its nth derivative is
sometimes written as dn

dzn f .z/. These higher-order derivatives will be used later to
study approximations of functions by polynomials.

Exercises 6.1.

1. Find the derivatives of the following functions:

(a) 1
x

, where x ¤ 0;
(b) xn, where n 2 N;
(c) xjxj.

2. Show that the absolute value function is not differentiable at 0.
3. Show that the function

p
x, where x � 0, is differentiable at all x > 0.

4. Use the properties of the sine and cosine functions to prove that sin0 x D cos x

and cos0 x D � sin x for all x.
5. Let

f .x/ D
(

x2 if x 2 Q;

0 if x … Q.

Show that f is differentiable only at 0.
6.

f .x/ D
(

x2 if x < 0;

x3 if x � 0.

Find f 0.x/ and f 00.x/ for all x.
7. Let f .x/ D jxj3 for all x. Find f 0.x/ and f 00.x/ for all x and show that f 000.0/

does not exist.
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6.2 Differentiation Formulas

We now present some results that are helpful in finding derivatives of functions.

Theorem 6.2.1. If f and g are functions and c is an accumulation point of Df \
Dg , where f and g are differentiable, then

1.

.f C g/0.c/ D f 0.c/ C g0.c/;

2.

.fg/0.c/ D f .c/g0.c/ C f 0.c/g.c/;

3.

�
f

g

�0
.c/ D f 0.c/g.c/ � f .c/g0.c/

g2.c/

if there is a neighborhood Nı.c/ such that g.z/ ¤ 0 for all z 2 Nı.c/.

Proof. 1. We compute

.f C g/0.c/ D lim
z!c

.f C g/.z/ � .f C g/.c/

z � c

D lim
z!c

�
f .z/ � f .c/

z � c
C g.z/ � g.c/

z � c

�

D f 0.c/ C g0.c/:

2. Since

.fg/.z/ � .fg/.c/ D f .z/g.z/ � f .c/g.c/

D f .z/g.z/ � f .z/g.c/ C f .z/g.c/ � f .c/g.c/

D f .z/.g.z/ � g.c// C .f .z/ � f .c//g.c/;

we have

.fg/0.c/ D lim
z!c

f .z/ lim
z!c

g.z/ � g.c/

z � c
C lim

z!c

f .z/ � f .c/

z � c
g.c/

D f .c/g0.c/ C f 0.c/g.c/

because f is continuous at c.
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3. We deal first with the function 1=g, recalling that g is continuous at c:

�
1

g

�0
.c/ D lim

z!c

1
g.z/ � 1

g.c/

z � c

D lim
z!c

�
1

z � c
� g.c/ � g.z/

g.z/g.c/

�

D lim
z!c

1

g.z/g.c/
� lim

z!c

g.c/ � g.z/

z � c

D �g0.c/

g2.c/
:

An application of part (2) therefore gives

�
f

g

�0
.c/ D

�
f � 1

g

�0
.c/

D f 0.c/
1

g.c/
C f .c/

�
1

g

�0
.c/

D f 0.c/

g.c/
� f .c/g0.c/

g2.c/

D f 0.c/g.c/ � f .c/g0.c/

g2.c/
:

ut
Remark. Again, the hypothesis that c be an accumulation point of Df \ Dg is
essential (see Remark 2 after Theorem 4.4.1).

Corollary 6.2.2. Let f be a function and a and c numbers. If f is differentiable
at c, then

.af /0.c/ D af 0.c/:

Proof. Let g.z/ D a for all z. Thus g0.c/ D 0 for all c. Hence

.af /0.c/ D af 0.c/ C 0 � f .c/ D af 0.c/;

by Theorem 6.2.1(2). ut
Example 6.2.1. Let f .z/ D zn for all z, where n is a positive integer. We show by
induction that

f 0.z/ D nzn�1
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for all z, where 00 D 1. Certainly, f 0.z/ D 1 for all z if n D 1. Assume that n > 1

and that the result holds with n replaced by n � 1. Then zn D z � zn�1, and so

f 0.z/ D z.n � 1/zn�2 C 1 � zn�1

D nzn�1

for all z, by Theorem 6.2.1(2), as required.
Suppose now that z ¤ 0. Then the result just proved holds also when

n D 0. In fact, we can extend it to the case where n is a negative integer, using
Theorem 6.2.1(3) and the fact that zn D 1=z�n. Thus if f .z/ D zn for all z ¤ 0 and
n is a negative integer, then �n > 0, and so

f 0.z/ D �.�nz�n�1/

z�2n
D nzn�1

for all z ¤ 0. 4
Our next theorem, known as the chain rule, deals with compositions of functions.

Theorem 6.2.3 (Chain Rule). Suppose that f and g are functions such that both
g0.c/ and f 0.g.c// exist, where c 2 Df ıg. Suppose also that c is an accumulation
point of Df ıg. Then

.f ı g/0.c/ D f 0.g.c//g0.c/:

Proof. Define

u.z/ D g.z/ � g.c/

z � c
� g0.c/

for all z 2 Dg � fcg. Thus

lim
z!c

u.z/ D g0.c/ � g0.c/ D 0:

Define u.c/ D 0. Then u is continuous at c.
Similarly, let b D g.c/ and define

v.z/ D
(

f .z/�f .b/

z�b
� f 0.b/ if z 2 Df � fbg;

0 if z D b.

Then v is continuous at b.
From the definitions of u.z/ and v.z/, we have

g.z/ � b D .z � c/.g0.c/ C u.z//
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for all z 2 Dg (even for z D c) and

f .z/ � f .b/ D .z � b/.f 0.b/ C v.z//

for all z 2 Df . Hence

f .g.z// � f .g.c// D f .g.z// � f .b/

D .g.z/ � b/.f 0.b/ C v.g.z///

D .z � c/.g0.c/ C u.z//.f 0.b/ C v.g.z///

for all z 2 Df ıg, so that

.f ı g/0.c/ D lim
z!c

.g0.c/ C u.z//.f 0.b/ C v.g.z///

D g0.c/f 0.b/;

for v ı g is continuous at c by Corollary 5.1.5 since g is continuous at c and v is
continuous at b D g.c/. ut
Example 6.2.2. Since

sin z D eiz � e�iz

2i

for all z 2 C, we have

sin0 z D ieiz C ie�iz

2i
D eiz C e�iz

2
D cos z;

by Theorems 6.2.1 and 6.2.3. Similarly,

cos0 z D ieiz � ie�iz

2
D i 2.eiz � e�iz/

2i
D � sin z:

Thus the sine and cosine functions are continuous everywhere.
Recall also that sec x D 1= cos x and tan x D .sin x/=.cos x/ whenever

cos x ¤ 0. We therefore have

tan0 x D cos2 x C sin2 x

cos2 x
D 1

cos2 x
D sec2 x:

It follows that the tangent function is continuous wherever it is defined. Note also
that

sec0 x D � 1

cos2 x
.� sin x/ D sec x tan x

for all x such that cos x ¤ 0. 4
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Theorem 6.2.4 (Inverse Function Theorem). Let f W Œa; b� ! R be an increasing
differentiable function. Let c be a number in Œa; b� such that f 0.c/ ¤ 0. Then f �1

is differentiable at f .c/ and

�
f �1

�0
.f .c// D 1

f 0.c/
:

Proof. Note first that f is continuous, by Theorem 6.1.3. Therefore f �1 exists and
is continuous and increasing on its domain, by Theorem 5.3.8. Let g D f �1. Thus
Dg D Œf .a/; f .b/�.

According to Theorem 6.1.1, we must show that

lim
k!0

g.f .c/ C k/ � c

k
D 1

f 0.c/
;

since g.f .c// D c. It is therefore enough to prove that

f 0.c/ D lim
k!0

k

g.f .c/ C k/ � c
:

For each k such that f .c/ C k 2 Dg , define

h.k/ D g.f .c/ C k/ � c:

Thus k 2 Dh if and only if f .a/ � f .c/ C k � f .b/. Consequently,

Dh D Œf .a/ � f .c/; f .b/ � f .c/�:

Therefore 0 2 Dh since f is increasing, and

h.0/ D g.f .c// � c D c � c D 0:

Furthermore,

f �1.f .c/ C k/ D c C h.k/I

hence

f .c/ C k D f .c C h.k//;

so that

k D f .c C h.k// � f .c/:
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Thus it suffices to show that

f 0.c/ D lim
k!0

f .c C h.k// � f .c/

h.k/
:

But

f 0.c/ D lim
h.k/!0

f .c C h.k// � f .c/

h.k/
:

We therefore introduce the function j defined by j.0/ D f 0.c/ and

j.x/ D f .c C x/ � f .c/

x

for all x 2 Œa � c; b � c� � f0g, so that

f 0.c/ D lim
h.k/!0

j.h.k//:

We now check that the hypotheses of Theorem 5.1.4 are satisfied by the functions
j and h. As h is evidently continuous on its domain, we see that

lim
k!0

h.k/ D h.0/ D 0:

Moreover j is continuous at 0 by definition. Finally, we have k 2 Dj ıh if and only
if k 2 Dh and h.k/ 2 Œa � c; b � c�. But if k 2 Dh, then h.k/ 2 Œa � c; b � c� since
Rg D Œa; b�. We conclude that Dj ıh D Dh and therefore that 0 is an accumulation
point of Dj ıh. We can thus apply Theorem 5.1.4 to show that

f 0.c/ D lim
k!0

j.h.k//;

as required. ut
The inverse function theorem also holds for functions of a complex variable with

continuous derivatives (see [11]).
Since the logarithm and exponential functions are inverses, we have

x D exp.log x/ (6.1)

for all x > 0. Moreover the logarithm function is differentiable at all x > 0

by Theorem 6.2.4, since the exponential function is nonzero, differentiable, and
increasing everywhere. Differentiation of Eq. (6.1) therefore yields

1 D exp.log x/ log0 x D x log0 x;
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and so

log0 x D 1

x

for all x > 0. This calculation provides another confirmation that the logarithm
function is continuous at all x > 0.

Let us now define f .x/ D xa D ea log x > 0 for all x > 0, where a is any real
number. Then

f 0.x/ D ea log x � a

x
D xa � a

x
D axa�1:

Similarly, let g.x/ D ax D ex log a for all x, where a > 0. Then

g0.x/ D ex log a log a D ax log a:

Exercises 6.2.

1. Show that log0 x D 1=x for all x > 0 by evaluating

lim
h!0

log.x C h/ � log x

h
:

2. Let f W Œa; b� ! R be differentiable at c 2 .a; b/. Let fang and fbng be sequences
such that

a < an < c < bn < b

for all positive integers n. If

lim
n!1 an D lim

n!1 bn D c;

prove that

f 0.c/ D lim
n!1

f .bn/ � f .an/

bn � an

:

[Hint: Use the fact that

f .bn/ � f .an/

bn � an

� f 0.c/

D bn � c

bn � an

�
f .bn/ � f .c/

bn � c
� f 0.c/

�
� an � c

bn � an

�
f .an/ � f .c/

an � c
� f 0.c/

�

for all n 2 N.]
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3. Let f and g be functions having nth derivatives. Prove that

.fg/.n/ D
nX

j D0

 
n

j

!
f .n�j /g.j /:

(This result is known as Leibniz’s rule.)
4. Let F D f1f2 � � � fn and Fj D F=fk whenever fj .x/ ¤ 0. Show by induction

that we then have

F 0.x/ D
nX

j D1

Fj .x/f 0
j .x/:

5. Let

f .x/ D
(

x if x 2 Q;

�x if x … Q.

Show that .f ı f /.x/ D x for all x. What can you say about the chain rule?
6. Let f be as in Exercise 6.5 and let g D �f . Show that .fg/.x/ D �x2 for all x.

What can you say about the product rule?
7. Let m and n be positive integers. An m � n matrix is defined as an array of

numbers arranged in m rows and n columns. The array is usually enclosed in

parentheses. The determinant

ˇ̌
ˇ̌p q

r s

ˇ̌
ˇ̌ of the 2� 2 matrix

�
p q

r s

�
is defined by the

equation

ˇ̌̌
ˇp q

r s

ˇ̌̌
ˇ D ps � rq:

Let .a; b/ be an open interval, and for all x 2 .a; b/ define

F.x/ D
ˇ̌
ˇ̌f1.x/ f2.x/

g1.x/ g2.x/

ˇ̌
ˇ̌ ;

where f1; f2; g1; g2 are functions that are differentiable on .a; b/. Show that

F 0.x/ D
ˇ̌̌
ˇf

0
1 .x/ f 0

2 .x/

g1.x/ g2.x/

ˇ̌̌
ˇC

ˇ̌̌
ˇf1.x/ f2.x/

g0
1.x/ g0

2.x/

ˇ̌̌
ˇ

for all x 2 .a; b/.
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6.3 The Mean-Value Theorem for Derivatives

The first theorem to be discussed in this section is important in its own right but is
even more important as the basis for a number of other theorems that are among the
most useful in the theory of functions.

Theorem 6.3.1 (Rolle). Let f W Œa; b� ! R be continuous on Œa; b� and differ-
entiable on .a; b/, and suppose that f .a/ D f .b/. Then f 0.�/ D 0 for some
� 2 .a; b/.

Proof. If f is a constant function, then f 0.x/ D 0 for all x 2 Œa; b�. Hence we
assume that f .x1/ ¤ f .a/ for some x1 2 .a; b/. We may also assume that

f .x1/ > f .a/;

as the argument for the other case is similar.
By the maximum-value theorem, there exists � 2 Œa; b� such that f .x/ � f .�/

for all x 2 Œa; b�. Since

f .�/ � f .x1/ > f .a/ D f .b/;

we have � … fa; bg. Thus � 2 .a; b/.
We claim that f 0.�/ D 0. Define

Q.x/ D f .x/ � f .�/

x � �

for all x 2 Œa; b� � f�g. Then

lim
x!�

Q.x/ D f 0.�/:

As f .x/ � f .�/ for all x 2 Œa; b�, it follows that f .x/ � f .�/ � 0 for all such x.
Hence Q.x/ � 0 for all x 2 Œa; �/ and Q.x/ � 0 for all x 2 .�; b�. Thus

lim
x!��

Q.x/ � 0

and

lim
x!�C

Q.x/ � 0I

consequently, limx!� Q.x/ D 0, as required. ut
Remark 1. The number � in Rolle’s theorem need not be unique. For example, let
f .x/ D x3 � x for all x 2 Œ�1; 1�. Then f satisfies the hypotheses of the theorem.
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However, f 0.x/ D 3x2 � 1 for all x 2 .�1; 1/, so that

f 0
�

1p
3

�
D f 0

�
� 1p

3

�
D 0:

Remark 2. The conditions in Rolle’s theorem cannot be relaxed. For instance, for
all x 2 Œ0; 1� let

f .x/ D x;

g.x/ D x � bxc;

and

h.x/ D j2x � 1j:

The function f is continuous and differentiable everywhere, yet f 0.x/ D 1 ¤ 0 for
all x. Note that f .0/ ¤ f .1/. The function g satisfies g.x/ D x for all x 2 Œ0; 1/

and g.1/ D 1 � 1 D 0 D g.0/. It is differentiable on .0; 1/, but g0.x/ D 1 ¤ 0 for
all x 2 .0; 1/. Note that g is not continuous at 1. Finally, h is continuous everywhere
and h.0/ D h.1/ D 1. Its derivative is �2 ¤ 0 at all x 2 .0; 1=2/ and 2 ¤ 0 at all
x 2 .1=2; 1/. It is not differentiable at 1=2.

Remark 3. The converse of Rolle’s theorem is not, in general, true. In fact, the
conclusion of the theorem does not imply any of its hypotheses. Take, for example,
the function f such that

f .x/ D x2 � bx2c

for each x 2 Œ�1; 3=2�. Here we have f .3=2/ D 9=4 � 2 D 1=4 ¤ 0 D f .�1/.
Moreover f is not continuous (and therefore not differentiable) at 1. Nevertheless,
f .x/ D x2 for all x 2 .�1; 1/, and so f 0.0/ D 0. Note that 0 2 .�1; 3=2/.

By maneuvering the x-axis, we can generalize Rolle’s theorem to one of the most
fundamental theorems of real analysis—the mean-value theorem.

Theorem 6.3.2 (Mean-Value Theorem). Let f be a function of a real variable
and suppose that f is continuous on a closed interval Œa; b� and differentiable on
.a; b/. Then there is a number � 2 .a; b/ such that

f 0.�/ D f .b/ � f .a/

b � a
: (6.2)

Discussion: Notice that the right-hand side of Eq. (6.2) is the slope of the chord
of the graph of f joining the points .a; f .a// and .b; f .b//. The theorem asserts
that some tangent to the graph between these points is parallel to the chord. We may
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rotate and translate the chord, if necessary, until it is superimposed on the x-axis.
The mean-value theorem then becomes identical to Rolle’s theorem.

Proof. The equation of the chord joining .a; f .a// and .b; f .b// is

y � f .a/ D f .b/ � f .a/

b � a
.x � a/:

Thus

y D f .a/ C f .b/ � f .a/

b � a
.x � a/:

Define

g.x/ D f .x/ � y D f .x/ � f .a/ � f .b/ � f .a/

b � a
.x � a/

for each x 2 Œa; b�. Then g is continuous on Œa; b� and differentiable on .a; b/.
Moreover g.a/ D 0 and

g.b/ D f .b/ � f .a/ � .f .b/ � f .a// D 0:

Thus Rolle’s theorem may be applied to find a number � 2 .a; b/ such that
g0.�/ D 0. But

g0.�/ D f 0.�/ � f .b/ � f .a/

b � a
:

The result follows. ut
Example 6.3.1. If f .x/ D ex for all x, then f 0.x/ D ex for all x. We can use this
result and the mean-value theorem to show that

ex � 1 C x

for all real x. Indeed, equality holds if x D 0. Suppose that x > 0. By the mean-
value theorem, there exists � 2 .0; x/ such that

ex � e0 D e�.x � 0/:

Since � > 0, we conclude that

ex � 1 D e�x > x;

and the result follows.
The case where x < 0 is handled in a similar way. 4
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We now establish some theorems that are plausible intuitively but difficult to
prove without invoking the mean-value theorem.

Theorem 6.3.3. Let f W Œa; b� ! R be a function that is continuous on Œa; b� and
differentiable on .a; b/. If f 0.x/ D 0 for all x 2 .a; b/, then f is a constant
function.

Proof. Suppose f is not a constant function. Then there exist c and d in Œa; b� such
that f .c/ ¤ f .d/. Suppose without loss of generality that c < d . By the mean-
value theorem, there exists � 2 .c; d/ such that

f .d/ � f .c/

d � c
D f 0.�/ D 0:

Thus we reach the contradiction that f .d/ D f .c/. ut
Corollary 6.3.4. Let f; gW Œa; b� ! R be functions that are continuous on Œa; b�

and differentiable on .a; b/. Suppose that f 0.x/ D g0.x/ for all x 2 .a; b/. Then
there is a constant c such that

f .x/ D g.x/ C c

for all x 2 Œa; b�.

Proof. Apply Theorem 6.3.3 to the function f � g. ut
The next two theorems relate the sign of the derivative of a function to the

monotonicity of the function.

Theorem 6.3.5. Let f W Œa; b� ! R be a function that is continuous on Œa; b� and
differentiable on .a; b/. If f 0.x/ > 0 for all x 2 .a; b/, then f is increasing on
Œa; b�.

Proof. Choose c and d in Œa; b� such that c < d . The function f satisfies the
hypotheses of the mean-value theorem on Œc; d �. Therefore there exists � 2 .c; d/

such that

f .d/ � f .c/

d � c
D f 0.�/ > 0:

Consequently, f .d/ > f .c/, since d � c > 0. We conclude that f is increasing on
Œa; b�. ut
Theorem 6.3.6. Let f W Œa; b� ! R be a function that is continuous on Œa; b� and
differentiable on .a; b/. If f 0.x/ < 0 for all x 2 .a; b/, then f is decreasing on
Œa; b�.

Proof. Apply Theorem 6.3.5 to the function �f . ut
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Corollary 6.3.7. If f 0 is continuous at some c 2 .a; b/ and f 0.c/ ¤ 0, then f is
strictly monotonic in some neighborhood of c.

Proof. Suppose first that f 0.c/ > 0. Since f 0 is continuous at c, Theorem 5.1.8
confirms the existence of ı > 0 such that f 0.x/ > 0 for all x 2 Nı.c/. By
Theorem 6.3.5, f is increasing on Nı.c/.

The argument is similar if f 0.c/ < 0. ut
Example 6.3.2. Let f .x/ D xa for all x > 0, where a 2 R. Then f 0.x/ D axa�1

for all x > 0. Thus f is increasing if a > 0 and decreasing if a < 0. 4
Example 6.3.3. Let f .x/ D ax for all x 2 R, where a > 0. Then f 0.x/ D ax log a

for all x, so that f is increasing if a > 1 and decreasing if 0 < a < 1. 4
Example 6.3.4. Let

f .x/ D ax2 C bx C c

for all real x, where a; b; c are real and a > 0. Then

f 0.x/ D 2ax C b

for all x, and so f 0.x/ D 0 if and only if x D �b=.2a/. Moreover f 0.x/ < 0 for
all x < �b=.2a/ and f 0.x/ > 0 for all x > �b=.2a/, since a > 0. It follows from
Theorems 6.3.6 and 6.3.5 that f is decreasing on .�1; �b=.2a/� and increasing
on Œ�b=.2a/; 1/. Therefore, by Theorem 5.3.7, the equation f .x/ D 0 can have at
most two real solutions, one in the former interval and one in the latter. In fact, since

f .x/ D a

�
x2 C bx

a
C c

a

�

D a

 �
x C b

2a

�2

� b2

4a2
C c

a

!
;

we have

lim
x!�1 f .x/ D lim

x!1 f .x/ D 1;

and so there are two real solutions if f .�b=.2a// < 0, none if f .�b=.2a// > 0,
and just the solution x D �b=.2a/ if f .�b=.2a// D 0. Note that

f

�
� b

2a

�
D a � b2

4a2
� b2

2a
C c

D 4ac � b2

4a
:
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As we saw in Sect. 1.4, the number b2�4ac is called the discriminant of f .x/. Since
a > 0, the equation has two distinct real solutions if the discriminant 	 is positive,
just one if 	 D 0, and none if 	 < 0. We also observe that the equation has two
distinct real solutions if and only if there exists a number � such that f .�/ < 0.

If a < 0, similar arguments show that once again the equation has two distinct
real solutions if 	 > 0, just one if 	 D 0, and none if 	 < 0. In this case,
however, two distinct real solutions exist if and only if there is a number � such that
f .�/ > 0. 4
Definition 6.3.1. Let f be a real-valued function. The value of f at a number
c 2 Df is called a local maximum if there exists a neighborhood Nı.c/ such
that f .z/ � f .c/ for all z 2 Nı.c/. A local minimum of f is defined analogously.
A number c is an extremal point or extremum of f if f .c/ is a local maximum or
local minimum, and f .c/ is then an extremal value of f .

Our next result gives a sufficient condition for the existence of an extremum.

Theorem 6.3.8 (First Derivative Test). Let f W Œa; b� ! R be a continuous
function and let c 2 .a; b/. Suppose there exists ı > 0 such that f is differentiable
at all x 2 N �

ı .c/.

1. If f 0.x/ � 0 whenever c � ı < x < c and f 0.x/ � 0 whenever c < x < c C ı,
then f has a local maximum at c.

2. If f 0.x/ � 0 whenever c � ı < x < c and f 0.x/ � 0 whenever c < x < c C ı,
then f has a local minimum at c.

Proof.

1. The mean-value theorem shows that for each x 2 .c�ı; c/ there exists � 2 .x; c/

such that

f .c/ � f .x/ D f 0.�/.c � x/ � 0:

Hence f .c/ � f .x/. Likewise, f .c/ � f .x/ for each x 2 .c; c C ı/. Therefore
f .c/ is a local maximum.

2. The proof of part (2) is similar. ut
Example 6.3.5. This theorem shows that the function jxj, for all x 2 R, has a local
minimum at 0. Note that this function is not differentiable at 0. 4

The following theorem is often of assistance in locating local maxima and
minima.

Theorem 6.3.9. Let f W Œa; b� ! R and c 2 .a; b/. If f .c/ is an extremal value of
f and f 0.c/ exists, then f 0.c/ D 0.

Theorem 6.3.9 is an immediate consequence of the following lemma, which
asserts that an extremal point of a function f is a “turning” point of the graph of f .
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Lemma 6.3.10. Let f W Œa; b� ! R and c 2 .a; b/.

1. If f 0.c/ > 0, then there exists ı > 0 such that f .x/ < f .c/ for all x 2 Df for
which c � ı < x < c and f .x/ > f .c/ for all x 2 Df for which c < x < c C ı.

2. If f 0.c/ < 0, then there exists ı > 0 such that f .x/ > f .c/ for all x 2 Df for
which c � ı < x < c and f .x/ < f .c/ for all x 2 Df for which c < x < c C ı.

Proof. If f 0.c/ > 0, then by Theorem 4.4.6 there exists ı > 0 such that

f .x/ � f .c/

x � c
> 0

for all x 2 N �
ı .c/. Thus f .x/ > f .c/ if x > c, but f .x/ < f .c/ if x < c.

The case where f 0.c/ < 0 follows by considering the function �f . ut
A number c such that f 0.c/ D 0 is sometimes called a critical point of the

function f .
Our next theorem shows that derivatives satisfy the conclusion of the

intermediate-value theorem even though they may not be continuous. First, we
establish a special case.

Lemma 6.3.11. If f W Œa; b� ! R is differentiable and f 0.a/f 0.b/ < 0, then there
exists � 2 .a; b/ such that f 0.�/ D 0.

Proof. We may assume that f 0.a/ > 0 [and therefore that f 0.b/ < 0] as the
argument is similar if f 0.a/ < 0. The differentiable function f is continuous and
therefore has a maximum value at some � 2 Œa; b�. By Lemma 6.3.10, there exists
ı > 0 such that f .x/ > f .a/ for each x such that a < x < a C ı. Therefore � ¤ a.
Similarly, � ¤ b, so that � 2 .a; b/. Finally, f 0.�/ D 0 by Theorem 6.3.9. ut
Theorem 6.3.12 (Darboux). If f W Œa; b� ! R is differentiable and f 0.a/ ¤
f 0.b/, then for each v between f 0.a/ and f 0.b/ there exists � 2 .a; b/ such that
f 0.�/ D v.

Proof. Apply Lemma 6.3.11 to the function g such that

g.x/ D f .x/ � vx

for all x 2 Œa; b�. ut
Remark. If the derivative f 0 is continuous, then Darboux’s theorem follows
immediately from the intermediate-value theorem.

Corollary 6.3.13. Let f be continuous on Œa; b� and differentiable on .a; b/, and
suppose that f 0.x/ ¤ 0 for all x 2 .a; b/. Then f is strictly monotonic on Œa; b�.

Proof. If there exist x and y such that a < x < y < b and f 0.x/f 0.y/ < 0,
then we may apply Darboux’s theorem to the interval Œx; y� to produce a number
� 2 .x; y/ for which f 0.�/ D 0. This finding contradicts the hypothesis. Therefore
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either f 0.x/ > 0 for all x 2 .a; b/ or f 0.x/ < 0 for all x 2 .a; b/. The conclusion
is immediate in both cases, by Theorem 6.3.5 or Theorem 6.3.6, respectively. ut
Remark. The condition hypothesized for the continuity of f in this corollary may
be relaxed provided that a corresponding change is made to the conclusion. For
example, suppose that the interval Œa; b� is replaced by Œa; b/, and choose y such
that a < y < b. Then f is continuous on Œa; y� and therefore strictly monotonic on
that interval. As y is any number in .a; b/, we conclude that f is strictly monotonic
on Œa; b/.

Exercises 6.3.

1.(a) Show that

x � x2

2
< log.1 C x/ < x � x2

2
C x3

3

for all x > 0.
(b) Let

sn D
�
1 C 1

n

�n2

en

for each n > 0. Show that

�1

2
< log sn < �1

2
C 1

3n
:

(c) Compute limn!1 sn.
2.(a) Show that

2x

x C 2
< log.1 C x/

for any x > 0. (Hint: Try using Theorem 6.3.5 or 6.3.6.)
(b) Show that

lim
n!1 n.a1=n � 1/ D log a:

3. Prove that

log.1 C x/ < x � x2

2.1 C x/

if x > 0 and that the inequality is reversed if �1 < x < 0.
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4. For all x > 0 let

f .x/ D
�

1 C 1

x

�x

and

g.x/ D
�

1 � 1

x

��x

:

Show that f is increasing on .0; 1/ and g is decreasing on .1; 1/. [Hint: Study
the signs of the derivatives of log f .x/ and log g.x/.]

5. Use the mean-value theorem to show that the following functions are uniformly
continuous on Œ0; 1/:

(a) cos kx for every real k.
(b) log.1 C x/.

6. Use the mean-value theorem to show that

1

2
p

n C 1
<

p
n C 1 � p

n <
1p
n

for every n 2 N.
7. Show that the equation

x4 C 4x C c D 0

has at most two real roots for every real c and exactly two if c < 0.
8. Show that x5 C 7x � 2 D 0 has exactly one real root.
9. Suppose that f is differentiable on R and has two real roots. Show that f 0 has

at least one root.
10. Let p.x/ be a polynomial of degree n � 2. Suppose that the equation p.x/ D 0

has n real roots (which may be repeated). Show that p0.x/ D 0 has n � 1 real
roots.

11. Let f be a function such that f 0 is continuous on Œa; b� and differentiable on
.a; b/, and suppose that

f .a/ D f .b/ D f 0.a/ D 0:

Show that there exists ˛ 2 .a; b/ such that f 00.˛/ D 0.
12. Suppose that f 00 exists and is bounded on .a; b/. Show by the mean-value

theorem that f 0 is also bounded on .a; b/ and hence that f is uniformly
continuous on .a; b/. [Note that the function

p
x is uniformly continuous and

differentiable on .0; 1/, but its derivative is not bounded on .0; 1/.]
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13. Let f be a function that is continuous on Œ0; 1� and differentiable on .0; 1/, and
suppose that f .0/ D f .1/ D 0. Show that there exists c 2 .0; 1/ for which
f 0.c/ D f .c/. [Hint: Apply the mean-value theorem to f .x/=ex .]

14. Let f be a differentiable function. Suppose that jf 0.x/j � M for all x 2 Df .
Show that f is Lipschitz continuous.

15. Show that
p

x2 C 1 and sin x are Lipschitz continuous on R.

6.4 Periodicity of Sine and Cosine

The sine and cosine functions may be used to define another important mathematical
constant. First, we derive the following proposition.

Proposition 6.4.1. There exists 
 2 .1; 2/ such that cos 
 D 0:

Proof. Proposition 3.16.1 shows that

cos x � 1 � x2

2

for every real x. Hence

cos 1 � 1 � 1

2
D 1

2
> 0:

Similarly,

cos x � 1 � x2

2
C x4

24
;

so that

cos 2 � 1 � 4

2
C 16

24
D �1

3
< 0:

An appeal to continuity and the intermediate-value theorem completes the proof. ut
For the sine function we have the following result.

Proposition 6.4.2. If x 2 .0; 2/, then sin x > 0.

Proof. The proposition follows from the facts that

sin x D
1X

j D0

.�1/j x2j C1

.2j C 1/Š
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D
1X

j D0

�
x4j C1

.4j C 1/Š
� x4j C3

.4j C 3/Š

�

D
1X

j D0

x4j C1

.4j C 1/Š

�
1 � x2

.4j C 3/.4j C 2/

�

for all real x and

.4j C 3/.4j C 2/ � 6 > x2

for all x 2 .0; 2/. ut
Thus

cos0 x D � sin x < 0

for all x 2 .0; 2/, so that cos is decreasing on the interval Œ0; 2�. We infer that the 


of Proposition 6.4.1 must be unique. Since sin 
 > 0, it follows that

sin 
 D
p

1 � cos2 
 D 1:

Furthermore,

sin 2
 D 2 sin 
 cos 
 D 0:

We also have the following proposition.

Proposition 6.4.3. If x 2 .0; 2
/, then sin x > 0.

Proof. Since 
 2 .1; 2/, we already know that sin x > 0 for all x 2 .0; 
� by
Proposition 6.4.2. It remains to consider the case where 
 < x < 2
. Let y D x�
;
hence 0 < y < 
. Moreover

sin x D sin.y C 
/ D sin y cos 
 C cos y sin 
 D cos y:

We therefore need to show that cos y > 0. But this result is immediate from the
facts that cos 
 D 0, 0 < y < 
, and cos is decreasing on Œ0; 
�. ut

We now define � D 2
. This is the new mathematical constant whose
introduction was foreshadowed earlier. Our results therefore show that 2 < � < 4,
cos.�=2/ D 0, sin.�=2/ D 1, and sin � D 0. In fact, we see from Proposition 6.4.3
that � is the smallest positive number whose sine is 0. Moreover it follows from
Proposition 6.4.3 and the formula cos0 x D � sin x that cos is decreasing on Œ0; ��.
In addition,
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sin
�
x C �

2

�
D sin x cos

�

2
C cos x sin

�

2
D cos x (6.3)

and

cos
�
x C �

2

�
D cos x cos

�

2
� sin x sin

�

2
D � sin x (6.4)

for all x. Therefore

sin.x C �/ D sin
�
x C �

2
C �

2

�
D cos

�
x C �

2

�
D � sin x:

It follows that sin x < 0 for all x 2 .�; 2�/ and hence that cos is increasing on
Œ�; 2��. Furthermore,

cos.x C �/ D � sin
�
x C �

2

�
D � cos x

and

sin.x C 2�/ D � sin.x C �/ D sin x

for all x. Similarly,

cos.x C 2�/ D cos x:

Since cos 0 D 1 and cos � D � cos 0 D �1, an appeal to the continuity of the
cosine and the intermediate-value theorem shows that the cosine, restricted to the
interval Œ0; ��, is a bijection between that interval and the interval Œ�1; 1�. Note
also that cos.3�=2/ D � cos.�=2/ D 0. Since the cosine is decreasing on Œ0; ��

but increasing on Œ�; 2��, we see that cos x < 0 if �=2 < x < 3�=2. Therefore
cos x > 0 if ��=2 < x < �=2. We deduce that the sine function is increasing on
Œ��=2; �=2� and decreasing on Œ�=2; 3�=2�. Since sin.�=2/ D 1 and sin.��=2/ D
� sin.�=2/ D �1, it follows that the sine, restricted to the interval Œ��=2; �=2�, is
a bijection between that interval and the interval Œ�1; 1�.

A function f defined for all x and not constant is said to be periodic if there
exists � > 0 such that

f .x C �/ D f .x/

for all x. The smallest such � is called the period of f . We have now shown that
the sine and cosine functions are both periodic with period 2� .

We have observed that sin is continuous everywhere, and it is also increasing
on Œ��=2; �=2�. Consequently, if its domain were restricted to that interval, then
the resulting function would have an inverse. This inverse is called the inverse sine
function and is denoted by arcsin. Its domain is Œ�1; 1�, since sin.��=2/ D �1 and
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sin.�=2/ D 1. As cos x ¤ 0 for all x 2 .��=2; �=2/, we see from the inverse
function theorem (Theorem 6.2.4) that arcsin is differentiable on .�1; 1/. In fact, if
y 2 .�1; 1/, then y D sin x for some x 2 .��=2; �=2/, and

arcsin0.y/ D 1

sin0 x
D 1

cos x
D 1p

1 � y2

since cos x > 0.
A similar argument shows that if the domain of cos were restricted to the interval

Œ0; ��, then the resulting function would have an inverse. This inverse is called the
inverse cosine function and denoted by arccos. It is also differentiable on .�1; 1/.
If y 2 .�1; 1/, then y D cos x for some x 2 .0; �/, and

arccos0.y/ D � 1

sin x
D � 1p

1 � y2
:

Since tan x D sin x= cos x for all x for which cos x ¤ 0, we have

tan0 x D cos2 x C sin2 x

cos2 x
D 1 C tan2 x > 0

for all such x. We infer that tan is continuous and increasing on each interval over
which it is defined. An example of such an interval is .��=2; �=2/. Since

lim
x! �

2
�

tan x D lim
x! �

2
�

sin x

cos x
D 1

and, similarly,

lim
x!� �

2
C

tan x D �1;

it follows that for all y there exists a unique x 2 .��=2; �=2/ for which tan x D y.
We write x D arctan.y/ and refer to x as the inverse tangent of y. For instance,
arctan.0/ D 0. This function is differentiable, by the inverse function theorem. Since

tan arctan.y/ D y;

differentiation yields

1 D .1 C tan2 arctan.y// arctan0.y/ D .1 C y2/ arctan0.y/;
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so that

arctan0.y/ D 1

1 C y2
:

The parentheses around the arguments of the inverse sine, inverse cosine, and
inverse tangent functions are usually omitted.

Let � D arcsin.�x/, where x 2 Œ�1; 1�. Then sin � D �x and ��=2 � � �
�=2. Hence ��=2 � �� � �=2 and sin.��/ D � sin � D x, so that �� D
arcsin x. We deduce that

arcsin.�x/ D � arcsin x:

On the other hand, let � D arccos.�x/, where x 2 Œ�1; 1�. Then cos � D �x

and 0 � � � � . Hence 0 � � � � � � and

cos.� � �/ D � cos.��/ D � cos � D x;

so that � � � D arccos x. Therefore

arccos.�x/ D � � arccos x:

Example 6.4.1. We now show that

lim
x!0

cos
1

x

does not exist. For each positive integer n take

sn D 1

2n�

and

tn D 2

.2n C 1/�
:

Then

lim
n!1 sn D lim

n!1 tn D 0:

However,

cos
1

sn

D cos 2n� D 1
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and

cos
1

tn
D cos

�
n� C �

2

�
D 0 ¤ 1:

Therefore the limit in question does not exist. In fact, this argument shows that

lim
x!0C

cos
1

x

does not exist. Neither does limx!0� cos.1=x/, by a similar argument. 4
In the next example, we use the sine and cosine functions to show that the

derivative of a differentiable function might not be continuous.

Example 6.4.2. Let f be the real function defined by

f .x/ D
(

x2 sin 1
x

if x ¤ 0;

0 if x D 0.

By the product and chain rules, f is differentiable at all x ¤ 0. Moreover for all
x ¤ 0 we have

0 �
ˇ̌
ˇ̌f .x/ � f .0/

x � 0

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌f .x/

x

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌x sin

1

x

ˇ̌
ˇ̌ � jxj:

It therefore follows from the sandwich theorem that

f 0.0/ D lim
x!0

f .x/ � f .0/

x � 0
D 0:

Hence f is differentiable at all x.
On the other hand, for all x ¤ 0 we have

f 0.x/ D 2x sin
1

x
C x2

�
� 1

x2

�
cos

1

x

D 2x sin
1

x
� cos

1

x
:

As

lim
x!0

2x sin
1

x
D 0

by Example 4.4.1 but limx!0 cos.1=x/ does not exist, we conclude that
limx!0 f 0.x/ does not exist. Therefore f 0 is not continuous at 0. 4
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Our next example shows that a function may have a local extremum at some
point c, yet the values of its derivative might not have equal sign throughout the left
or right half of any neighborhood of c.

Example 6.4.3. Let

f .x/ D
(

2x4 C x4 sin 1
x

if x ¤ 0;

0 if x D 0:

Since

2x4 C x4 sin
1

x
D x4

�
2 C sin

1

x

�
� x4 > 0

for all x ¤ 0, we find that f .0/ D 0 is a local minimum.
Now f is differentiable at all x ¤ 0. In fact,

f 0.x/ D 8x3 C 4x3 sin
1

x
� x2 cos

1

x

for all x ¤ 0. Thus for all integers n � 2 we have

f 0
�

1

2n�

�
D 1

n3�3
� 1

4n2�2
D 4 � n�

4n3�3
< 0;

whereas

f 0
�

1

2n� C �
2

�
D 12�

2n� C �
2

�3 > 0:

Since

1

2n�
! 0

and

1

2n� C �
2

! 0

as n ! 0, we find that each neighborhood Nı.0/ of 0 contains positive numbers a

and b such that f 0.a/f 0.b/ < 0. We can also find negative numbers in Nı.0/ with
the same property, because

f 0
�

� 1

2n�

�
< 0
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and

f 0
�

� 1

.2n C 1/�

�
D � 8

.2n C 1/3�3
C 1

.2n C 1/2�2

D �8 C .2n C 1/�

.2n C 1/3�3

> 0

for all integers n > 1. 4
We now give an example showing that f 0.c/ may be nonzero, but f is neither

increasing nor decreasing on any interval containing c.

Example 6.4.4. If

f .x/ D
(

x2 sin 1
x

C x
2

for x ¤ 0;

0 for x D 0,

then

f 0.x/ D 2x sin
1

x
� cos

1

x
C 1

2

for all x ¤ 0. In order to compute f 0.0/, for each x ¤ 0 define

Q.x/ D f .x/ � f .0/

x � 0

D f .x/

x

D x sin
1

x
C 1

2
:

Thus

f 0.0/ D lim
x!0

Q.x/ D 1

2
:

But for each n 2 Z � f0g we have

f 0
�

1

2n�

�
D �1

2
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and

f 0
�

1

.2n C 1/�

�
D 3

2
:

Thus f is neither increasing nor decreasing on any interval containing 0. 4
The mean-value theorem may be used to sharpen inequality (3.27).

Example 6.4.5. We shall show that sin x < x for all x > 0. This inequality is
certainly true if x > 1, and so we may suppose that 0 < x � 1. As the sine function
is differentiable everywhere, we may apply the mean-value theorem to it on the
interval Œ0; x� to find � 2 .0; x/ such that

sin x � sin 0 D .x � 0/ cos �:

Therefore

sin x D x cos � < x;

for cos � < 1 since 0 < � < x � 1 < 2� . 4
The next example presents a result known as Jordan’s inequality.

Example 6.4.6. For all x 2 Œ��=2; �=2� � f0g we shall show that

2

�
� sin x

x
:

Define

f .x/ D � sin x � 2x

for all such x. Then

f 0.x/ D � cos x � 2

and

f 00.x/ D �� sin x:

The last equation shows that f 0 is decreasing on Œ0; �=2�. Since f 0.0/ D � � 2 > 0

and f 0.�=2/ D �2 < 0, it follows from the intermediate-value theorem that there
is a unique � 2 .0; �=2/ such that f 0.�/ D 0. Thus f 0.x/ > 0 for all x 2 Œ0; �/

and f 0.x/ < 0 for all x 2 .�; �=2�, so that f is increasing on Œ0; �� and decreasing
on Œ�; �=2�. As f .0/ D f .�=2/ D 0, we conclude that f .x/ > 0 for all x 2
.0; �=2/. Thus



6.4 Periodicity of Sine and Cosine 275

� sin x > 2x

for all such x and the desired inequality follows in this case upon division by
�x > 0.

If x 2 .��=2; 0/, then �x 2 .0; �=2/. The previous result therefore shows that

� sin.�x/ > �2x;

whence � sin x < 2x and the desired result again holds.
Clearly, equality holds if x D ˙�=2.
Jordan’s inequality spawns several other results. For instance, let 0 < x < �=2.

Then

0 <
�

2
� x <

�

2
:

Moreover

sin
��

2
� x

�
D � sin

�
x � �

2

�
D cos x

by Eq. (6.4). Jordan’s inequality therefore shows that

2

�
� sin

�
�
2

� x
�

�
2

� x
D cos x

�
2

� x
:

Thus

cos x � 2

�

��

2
� x

�
D 1 � 2x

�

for all x 2 .0; �=2/. This inequality is due to Kober. Since

1 � cos x � 2x

�
;

Kober’s inequality may be rewritten as

1 � cos x

x
� 2

�
:

Note that equality holds for x D �=2.
Further information about these inequalities may be found in [18]. 4
As an illustration of the computation of a sine or a cosine of a real number, we

offer the following example.
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Example 6.4.7.

sin
�

4
D 1p

2
:

Proof. First, observe that

1 D sin
�

2
D 2 sin

�

4
cos

�

4
:

Since 0 < �=4 < �=2, we also know that cos.�=4/ > 0. Hence

1

2
D sin

�

4
cos

�

4
D
�

sin
�

4

�r
1 � sin2 �

4
;

so that

1

4
D
�

sin2 �

4

� �
1 � sin2 �

4

�
D sin2 �

4
� sin4 �

4
:

Thus

0 D 4 sin4 �

4
� 4 sin2 �

4
C 1 D

�
2 sin2 �

4
� 1

�2

;

whence

sin2 �

4
D 1

2

and the result follows.

4
Hence

cos
�

4
D
r

1 � 1

2
D 1p

2
:

Note that cos x D 0 if and only if x D .2k C 1/�=2 for some integer k. For all
other values of x we have

tan x D sin x

cos x
:

For instance,

tan 0 D 0
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and

tan
�

4
D 1p

2
� p

2 D 1:

Theorem 6.4.4. If cos x D cos y and sin x D sin y, then x D y C 2k� for some
integer k.

Proof. First we reduce the problem to values of x and y in Œ0; 2�/. There exists an
integer l such that

2l� � x < 2.l C 1/� D 2l� C 2�:

Let x1 D x � 2l� ; hence 0 � x1 < 2� . Similarly, let m be the integer such that

2m� � y < 2.m C 1/�

and let y1 D y � 2m� , so that 0 � y1 < 2� . Note also that cos x1 D cos y1 and
sin x1 D sin y1.

Suppose that sin x1 D sin y1 D 0. Then fx1; y1g � f0; �g. Since cos 0 ¤ cos � ,
it follows that x1 D y1.

Suppose sin x1 > 0. Then x1 and y1 are both in .0; �/. Since cos is decreasing
on that interval and cos x1 D cos y1, we deduce that x1 D y1.

Suppose sin x1 < 0. Now fx1; y1g � .�; 2�/. Since cos is increasing on .�; 2�/

and cos x1 D cos y1, we again have x1 D y1.
Thus x1 D y1 in every case. Hence

x � 2l� D y � 2m�;

and so

x D y C 2l� � 2m� D y C 2.l � m/�;

as required. ut
We now give a geometric interpretation of the sine and cosine functions for real

numbers. The idea is to establish a bijection between the interval Œ0; 2�/ and the
unit circle

x2 C y2 D 1;

the circle that is centered at the origin and has radius 1. Given a point .x; y/ on the
circle, we observe that jxj � 1. Therefore there is a unique number ˛ 2 Œ0; �� for
which cos ˛ D x. Moreover

y2 D 1 � x2 D 1 � cos2 ˛ D sin2 ˛;
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Fig. 6.2 sin ' D y and
cos ' D x

x

y

1

1

–1

–1

0 Q

P

x

y

ϕ

so that y D ˙ sin ˛. We define f .x; y/ D ˛ if y D sin ˛. Otherwise y D � sin ˛ ¤
0. In this case ˛ ¤ 0, x D cos.�˛/ D cos.2��˛/, and y D sin.�˛/ D sin.2��˛/,
and we define f .x; y/ D 2� � ˛. In each case we find that f .x; y/ is the unique
(see Theorem 6.4.4) number in Œ0; 2�/ with cosine x and sine y. The function f is
a surjection onto Œ0; 2�/: Given ' such that 0 � ' < 2� , if we put x D cos ' and
y D sin ', then f .x; y/ D ' and x2 C y2 D 1. We see that it is also injective, for
if f .u; v/ D f .x; y/ D ', then u D cos ' D x and similarly v D y.

The bijection f manifests itself geometrically as the measurement of an angle by
means of a number in the interval Œ0; 2�/. Thus for every point P D .x; y/ on the
circle x2 C y2 D 1 there is a unique angle ' 2 Œ0; 2�/, measured from the positive
x-axis in the counterclockwise sense to the line joining the origin O to P , such that
x D cos ' and y D sin '. If 0 < ' < �=2, then x > 0 and y > 0. In this case let Q

be the foot of the perpendicular from P to the positive x-axis. Then sin ' and cos '

are the lengths of PQ and OQ, respectively (see Fig. 6.2). If ' D �=2, then P is on
the positive y-axis and ' is a right angle.

If we now multiply all coordinates by some factor r > 0, then the unit circle is
replaced by a circle C of radius r but still centered at the origin. Its equation is

x2 C y2 D r2:

If 0 < ' < �=2, then the triangle OPQ is replaced by a right triangle with
hypotenuse of length r extending from the origin to a point .x; y/ on C . The
remaining vertex of the triangle is the point .x; 0/ on the positive x-axis. The angle
from the positive x-axis to the hypotenuse, measured in the counterclockwise sense,
is still ' > 0. The length of the side coincident with the x-axis is x D r cos ', and



6.4 Periodicity of Sine and Cosine 279

Fig. 6.3 sin ' D s=r and
cos ' D t=r

t

sr

ϕ

that of the side parallel to the y-axis is y D r sin '. We therefore perceive that, for
an angle ' < �=2 in a given right triangle, sin ' is the ratio of the length s of the
side opposite ' to the length r of the hypotenuse. Similarly, cos ' D t=r , where t

is the length of the side adjacent to the right angle and ' (see Fig. 6.3). In fact, the
triangle may be positioned anywhere in the plane and oriented in any manner, so that
the angle ' may be measured, geometrically, from any line. However, since ' > 0,
we use the convention that the angle is measured in the counterclockwise sense.
Negative numbers may similarly be perceived as angles measured in the clockwise
sense. Thus the numbers ' and �' measure the same angle but in opposite senses.
The numbers ' and ' C 2k� , for each integer k, also measure the same angle.

For each ' 2 Œ0; 2�/ we define � D '�2� if � < ' < 2� and � D ' otherwise.
Then � 2 .��; ��, cos � D x=r , and sin � D y=r . Moreover � 2 .��=2; �=2/ if
and only if x > 0, whereas � 2 .0; �/ if and only if y > 0. If x D 0, then � D �=2

if y > 0 and � D ��=2 if y < 0. On the other hand, for y D 0 we have � D 0 if
x > 0 and � D � if x < 0.

We now give a geometric interpretation of the multiplication of complex num-
bers. Suppose that z D x C iy, where x and y are real and jzj D 1. Geometrically,
z is therefore a point on the unit circle centered at the origin. There exists a unique
number � 2 .��; ��, which we will call the argument of z, such that x D cos � and
y D sin � . Thus

z D cos � C i sin � D ei� :

For example,

ei� D cos � C i sin � D �1:

Note also that

z D ei.�C2k�/
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for every integer k, and that

z D cos � � i sin � D cos.��/ C i sin.��/ D e�i� :

Now let us multiply two complex numbers w and z with modulus 1 and respective
arguments ˛ and ˇ:

wz D ei˛eiˇ D ei.˛Cˇ/:

Thus the multiplication of two complex numbers on the unit circle centered at the
origin manifests itself geometrically as a rotation about the origin. We easily obtain
a corresponding result for division:

w

z
D ei˛

eiˇ
D ei.˛�ˇ/:

Furthermore, since

.ei˛/n D ein˛

for every integer n, we obtain the following theorem, which is due to de Moivre.

Theorem 6.4.5 (de Moivre). For each integer n and each real ˛,

.cos ˛ C i sin ˛/n D cos n˛ C i sin n˛:

More generally, for every z ¤ 0 we have

ˇ̌̌
ˇ z

jzj
ˇ̌̌
ˇ D jzj

jzj D 1;

and so there is a unique number � 2 .��; �� for which

z

jzj D ei� :

Hence

z D rei� ;

where r D jzj. This expression is called the polar form of z. The number � is the
argument of z and is written as arg z.

There are various formulas for arg z. Let z D .x; y/ ¤ 0, where x and y are real.
If � 2 Œ0; �=2�, then sin � D y=r , so that

arg z D � D arcsin
y

r
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in this case. If � 2 .�=2; ��, then 0 � � � � < �=2 and

sin.� � �/ D � sin.��/ D sin � D y

r
:

Hence

� � � D arcsin
y

r
;

so that

arg z D � D � � arcsin
y

r
:

If � 2 Œ��=2; 0/, then 0 < �� � �=2 and sin.��/ D �y=r , whence

�� D arcsin
�
�y

r

�
D � arcsin

y

r
;

so that

arg z D arcsin
y

r
:

If � 2 .��; ��=2/, then 0 < � C � < �=2 and sin.� C �/ D �y=r , so that

arg z D arcsin
�
�y

r

�
� � D �� � arcsin

y

r
:

Note that if z is real, then arg z D 0 if z > 0 and arg z D � if z < 0.
We have already observed that

z D jzjei� D jzj.cos � C i sin �/

for all z ¤ 0, where � D arg z. If we also have

z D jzj.cos � C i sin �/

for some � , then

jzj.cos � C i sin �/ D jzj.cos � C i sin �/:

Hence cos � D cos � and sin � D sin � , and so

� D � C 2k� D arg z C 2k�

for some integer k.
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If w is another nonzero complex number, then

wz D jwzjei arg wz D jwzj.cos ˛ C i sin ˛/;

where ˛ D arg wz. If arg w D 
, then we can also write

wz D jwjei
 jzjei�

D jwzjei.
C�/

D jwzj.cos.
 C �/ C i sin.
 C �//:

Hence

cos ˛ D cos.
 C �/

and

sin ˛ D sin.
 C �/:

We conclude that ˛ D 
 C � C 2k� for some integer k. In other words,

arg wz D arg w C arg z C 2k�:

A similar argument shows that

arg
w

z
D arg w � arg z C 2k�

for some integer k.
There are many expressions for � . Several can be obtained by using the argument

of a complex number. For instance, starting with the equation

.2 C i/.3 C i/ D .2; 1/.3; 1/ D .5; 5/ D 5.1; 1/; (6.5)

observe that the components of the complex numbers .1; 1/; .2; 1/; .3; 1/ are all
positive. Therefore the arguments of these numbers are all in the interval .0; �=2/.
In fact, the argument of the number on the right-hand side is equal to arg.1; 1/,
which is arcsin.1=

p
2/ D �=4. Letting

� D arg.2; 1/ D arcsin
1p
5

;

we find that sin � D 1=
p

5, so that

cos � D
r

1 � 1

5
D 2p

5
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and therefore tan � D 1=2. Thus arg.2; 1/ D arctan 1=2. Similarly, since

arg.3; 1/ D arcsin
1p
10

we have cos arg.3; 1/ D 3=
p

10, and we deduce that arg.3; 1/ D arctan 1=3. As

arg.2; 1/ C arg.3; 1/ < �;

it follows that

arg..2; 1/.3; 1// D arctan
1

2
C arctan

1

3
:

Hence

arctan
1

2
C arctan

1

3
D �

4
;

so that

� D 4

�
arctan

1

2
C arctan

1

3

�
:

The power series expansion for arctan x, which we will derive later, therefore
provides a means of estimating � . More efficient formulas with which to begin can
be found in the exercises. The approximate value of � is 3:14159.

In contrast to the injective nature of the exponential function for real variables,
for complex arguments we have the following theorem.

Theorem 6.4.6. For complex w and z we have ew D ez if and only if z D w C2k�i

for some integer k.

Proof. If z D w C 2k�i , then, since

e2k�i D cos 2k� C i sin 2k� D 1;

we have

ez D ewC2k�i D ewe2k�i D ew:

To prove the converse, suppose first that ez D e0 D 1, where z D x C iy for some
real numbers x and y. Then

1 D ez D exCiy D exeiy D ex.cos y C i sin y/;
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so that ex cos y D 1 and ex sin y D 0. Since ex ¤ 0, it follows that sin y D 0, and
so y D n� for some integer n. Hence

1 D ex cos n� D .�1/nex;

and since ex > 0, it follows that n is even and ex D 1. The former condition shows
that n D 2k for some integer k, and from the latter we have x D 0, so that

z D iy D n�i D 2k�i;

as required.
The general case now follows easily, for if ew D ez, then ez�w D 1, so that

z � w D 2k�i

for some integer k. Hence z D w C 2k�i . ut
For all integers n we have cos 2n� D 1 and sin n� D 0. Thus fcos nxg is

convergent if x D 2k� for some k 2 Z, and fsin nxg is convergent if x D k� .
We now show that these are the only cases where the sequences are convergent and
x is real.

Theorem 6.4.7. 1. The sequence fcos nxg is convergent if and only if x D 2k� for
some k 2 Z.

2. The sequence fsin nxg is convergent if and only if x D k� for some k 2 Z.

Proof. Suppose that x ¤ 2k� for every integer k. Clearly, fcos nxg is divergent if
x D .2k C 1/� , for in that case we have cos nx D 1 if n is even and cos nx D �1 if
n is odd. We therefore assume further that x ¤ k� for every k 2 Z.

Now

cos.n C 1/x � cos nx D cos nx cos x � sin nx sin x � cos nx

for all n. If fcos nxg were convergent, then the left-hand side would converge to 0.
Therefore fsin nxg would converge as well (sin x ¤ 0 since x ¤ k� for each
integer k), and therefore so would fenxig since

enxi D cos nx C i sin nx:

We now find a contradiction by showing that the difference between consecutive
terms of this sequence does not approach 0 as n ! 1. First,

je.nC1/xi � enxij D jenxi.exi � 1/j D jexi � 1j:
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But

exi D cos x C i sin x ¤ 1;

for cos x ¤ 1 since x ¤ 2k� for each integer k. Therefore jexi � 1j is a positive
constant.

By Cauchy’s principle, we have now reached the contradiction that the sequence
fenxig does not converge. Part (1) of the theorem follows. The proof of part (2) is
similar, using the identity

sin.n C 1/x � sin nx D sin nx cos x C cos nx sin x � sin nx

for all n. ut
We conclude this section with the observation that the mean-value theorem does

not hold in general for functions of a complex variable. For example, let f .z/ D eiz

for all z 2 C. If a D 0 and b D 2� , then

f .b/ � f .a/

b � a
D e2�i � e0

2�
D 1 � 1

2�
D 0;

but f 0.z/ D ieiz ¤ 0 for every z.

Exercises 6.4.

1. Use the equation

cos x D eix C e�ix

2
;

for all x, to express cos 3x in terms of cos x.
2. Use the result of Example 6.4.5 to show that

cos x > 1 � x2

2

for all x ¤ 0.
3. Show that

1

� � x
� tan x

2

x

for all x such that 0 < x � �=2.
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4. Prove that the following strengthening of Kober’s inequality holds for all x such
that 0 < x � �=2:

1 � cos x

x
� tan x

2

x
� 2

�
:

[Hint: 1 � cos x D 2 sin2.x=2/.]
5. For each real ˛ and ˇ, show that

sin x cos.˛ C ˇ � x/ C cos x sin.˛ C ˇ � x/

is a constant function. Deduce the addition rules for the sine and cosine
functions from this fact.

6. Differentiate the identity

sin
��

2
� x

�
D cos x

to deduce that

cos
��

2
� x

�
D sin x:

7. Show that cos x C x sin x is increasing on Œ0; �=2� and hence deduce that

cos x C x sin x > 1

for all x 2 .0; �=2�.
8. Let � and r be real numbers and suppose that jr j < 1.

(a) Show that

i.
P1

j D0 rj cos j� D 1�r cos �
1�2r cos �Cr2 ;

ii.
P1

j D1 rj cos j� D r sin �
1�2r cos �Cr2 .

(Hint: Write z D rei� and investigate
P1

j D0 zj .)

(b) Find the sums
Pn

j D0 cos j� and
Pn

j D1 sin j� . Are they convergent?
(Hint: See Theorem 6.4.7.)

9. Prove that

1X
j D1

cos j�

j

converges if and only if � is not an integer multiple of 2� .
10.(a) Establish the following identities:

i. cos
�
j ˙ 1

2

�
� D cos j� cos �

2
� sin j� sin �

2
;

ii. cos
�
j � 1

2

�
� � cos

�
j C 1

2

�
� D 2 sin j� sin �

2
.
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(b) Use part (a) to find the sum

Sn D
nX

j D1

sin j�:

Show also that the sequence fSng is bounded.
11. Show that

lim
x!0

sin jzj
z

does not exist.
12. Show that

cos
�

6
D

p
3

2
:

13. Compute .5 � i/4.1 C i/ and hence show that

�

4
D 4 arctan

1

5
� arctan

1

239
:

This formula is due to Machin.
14. Compute

.4 C i/3.20 C i/

1 C i

and hence show that

�

4
D 3 arctan

1

4
C arctan

1

20
C arctan

1

1985
:

15. Show that sin z D 0 if and only if z is an integer multiple of � .
16. Solve the following equations:

(a) cos z D 0.
(b) cos z D 1.

17. Let n be a positive integer.

(a) Express sin2n x in terms of cos kx, where k 2 Z.
(b) Express sin2nC1 x in terms of sin kx, where k 2 Z.
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6.5 L’Hôpital’s Rule

The concept of a derivative may be applied to the calculation of limits that do not
succumb to the methods of Chap. 4. First we need a generalized version of the
mean-value theorem. This generalization is due to Cauchy.

Consider two functions f and g that satisfy the hypotheses of the mean-value
theorem on some interval Œa; b�. Then there exist numbers �f and �g in .a; b/ such
that

f .b/ � f .a/

b � a
D f 0.�f /

and

g.b/ � g.a/

b � a
D g0.�g/:

Thus

f .b/ � f .a/

g.b/ � g.a/
D f 0.�f /

g0.�g/
(6.6)

if g.b/ ¤ g.a/ and g0.�g/ ¤ 0. It is natural to wonder whether there is a number
� 2 .a; b/ such that Eq. (6.6) holds with �f D �g D � . Cauchy’s mean-value
formula satisfies our curiosity in this regard.

Theorem 6.5.1 (Cauchy’s Mean-Value Formula). Let f and g be functions that
are continuous on a closed interval Œa; b� and differentiable on .a; b/. Suppose also
that g0.x/ ¤ 0 for all x 2 .a; b/. Then there exists � 2 .a; b/ such that

f .b/ � f .a/

g.b/ � g.a/
D f 0.�/

g0.�/
:

Proof. Notice first that g.b/ � g.a/ ¤ 0, for if g.a/ D g.b/, then Rolle’s theorem
would reveal the existence of a number c 2 .a; b/ for which g0.c/ D 0. Such a c

cannot exist, however, by hypothesis.
Now define a function F such that

F.x/ D .f .b/ � f .a//g.x/ � .g.b/ � g.a//f .x/

D f .b/g.x/ � f .a/g.x/ � f .x/g.b/ C f .x/g.a/

for all x 2 Œa; b�. This function is continuous on Œa; b� and differentiable on .a; b/.
Since

F.a/ D f .b/g.a/ � f .a/g.b/ D F.b/;
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it satisfies all the hypotheses of Rolle’s theorem. Therefore there is a number � 2
.a; b/ such that

0 D F 0.�/ D .f .b/ � f .a//g0.�/ � .g.b/ � g.a//f 0.�/:

Hence

.f .b/ � f .a//g0.�/ D .g.b/ � g.a//f 0.�/;

and the result follows upon division by the nonzero number .g.b/ � g.a//g0.�/. ut
Remark. The mean-value theorem is the special case where g.x/ D x for all x 2
Œa; b�.

Corollary 6.5.2. Let f and g be functions that are differentiable on an open
interval .a; b/ and suppose that g0.x/ ¤ 0 for all x 2 .a; b/. Suppose also that

lim
x!aC

f 0.x/

g0.x/
D L

for some real number L. Then for every " > 0 there exists ı 2 .0; b � a/ such that

ˇ̌̌
ˇf .y/ � f .x/

g.y/ � g.x/
� L

ˇ̌̌
ˇ < "

for all x and y satisfying a < x < y < a C ı.

Proof. Choose " > 0. By hypothesis we have .a; b/ � Df 0=g0 and

lim
x!aC

f 0.x/

g0.x/
D L:

Therefore there exists ı > 0 such that
ˇ̌̌
ˇf

0.y/

g0.y/
� L

ˇ̌̌
ˇ < " (6.7)

for each y 2 .a; b/ satisfying a < y < a C ı. For each such y we therefore have

f 0.c/

g0.c/
< L C " (6.8)

for all c 2 .a; y/. We may assume that ı < b � a.
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Now fix x and y such that a < x < y < a C ı. Functions f and g satisfy
the hypotheses of Cauchy’s mean-value formula on Œx; y�. Therefore there exists
� 2 .x; y/ such that

f .y/ � f .x/

g.y/ � g.x/
D f 0.�/

g0.�/
:

As � 2 .a; y/, it follows from inequality (6.8) that

f .y/ � f .x/

g.y/ � g.x/
< L C ":

A similar argument shows that

f .y/ � f .x/

g.y/ � g.x/
> L � ";

and the conclusion follows. ut
Remark. Corresponding results may be obtained by replacing L with ˙1. For
instance, if

lim
x!aC

f 0.x/

g0.x/
D 1;

then for each number M there exists ı 2 .0; b � a/ such that

f .y/ � f .x/

g.y/ � g.x/
> M

for all x and y satisfying a < x < y < a C ı.

We now discuss several closely related theorems known collectively as
l’Hôpital’s rule. Suppose first that f and g are functions of a real variable x

and that they both approach 0 as x approaches some value (finite or infinite). The
limit, which may be one- or two-sided, of f .x/=g.x/ is then described as being of
the indeterminate form 0=0. L’Hôpital’s rule can sometimes be applied to find this
limit. We deal first with the case of one-sided limits.

Theorem 6.5.3. Let f and g be functions that are differentiable on an open interval
.a; b/ and suppose that g0.x/ ¤ 0 for all x 2 .a; b/. Suppose also that

lim
x!aC

f .x/ D lim
x!aC

g.x/ D 0

and

lim
x!aC

f 0.x/

g0.x/
D L



6.5 L’Hôpital’s Rule 291

for some real number L. Then

lim
x!aC

f .x/

g.x/
D L:

Proof. Choose " > 0. By Corollary 6.5.2 there exists ı 2 .0; b � a/ such that

L � " <
f .x/ � f .y/

g.x/ � g.y/
< L C " (6.9)

for all x and y satisfying a < y < x < a C ı. Thus ı > 0. Choose x such that
0 < x � a < ı and g.x/ ¤ 0. Then

a < x < a C ı < a C b � a D b;

so that x 2 Df =g. Moreover inequality (6.9) holds for each y 2 .a; x/. Taking limits
as y ! aC, we find that

L � " � f .x/

g.x/
� L C ";

so that ˇ̌̌
ˇf .x/

g.x/
� L

ˇ̌̌
ˇ � " < 2"

and the result follows. ut
Remark. A similar argument shows that L may be replaced by 1 or �1. Similar
results also hold for limits as x ! b�, and therefore for two-sided limits as well.

Example 6.5.1. Evaluate

lim
x!0

sin x

x
:

Solution. Since sin x ! 0 as x ! 0, we have

lim
x!0

sin x

x
D lim

x!0
cos x D 1

by l’Hôpital’s rule.

4
Example 6.5.2. Evaluate

lim
x!0

ex � 1

sin x
:
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Solution. Note first that

lim
x!0

.ex � 1/ D 0 D lim
x!0

sin x:

Therefore l’Hôpital’s rule may be applied. We conclude that

lim
x!0

ex � 1

sin x
D lim

x!0

ex

cos x
D 1:

4
Example 6.5.3. L’Hôpital’s rule is not applicable to the evaluation of

lim
x!0C

log x

x

because

lim
x!0C

log x D �1:

An attempt to apply l’Hôpital’s rule would yield a wrong answer, since

lim
x!0C

1
x

1
D lim

x!0C

1

x
D 1;

yet for each x 2 .0; 1/ we find that log x is negative and x positive. 4
Example 6.5.4. Evaluate

lim
x!0

sin x � tan x

x2
:

Solution. Since

lim
x!0

.sin x � tan x/ D 0 D lim
x!0

x2;

we may apply l’Hôpital’s rule. Therefore

lim
x!0

sin x � tan x

x2
D lim

x!0

cos x � sec2 x

2x
:

As

lim
x!0

.cos x � sec2 x/ D 0 D lim
x!0

2x;
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we must apply l’Hôpital’s rule once again. We conclude that

lim
x!0

sin x � tan x

x2
D lim

x!0

cos x � sec2 x

2x

D lim
x!0

� sin x � 2 sec2 x tan x

2

D 0:

4
The next theorem also concerns the indeterminate form 0=0, but the limit is taken

as x ! 1.

Theorem 6.5.4. Let f and g be functions that are differentiable at all x > a for
some positive number a, and suppose that g0.x/ ¤ 0 for all x > a. Suppose also
that

lim
x!1 f .x/ D lim

x!1 g.x/ D 0

and

lim
x!1

f 0.x/

g0.x/
D L;

where L may be any real number, 1, or �1. Then

lim
x!1

f .x/

g.x/
D L:

Proof. For each x > a > 0 we may define t D 1=x. Thus 0 < t < 1=a. For
each t satisfying these inequalities, define F.t/ D f .1=t/ and G.t/ D g.1=t/. By
Corollary 4.6.3 we then have

lim
t!0C

F.t/ D lim
t!0C

f

�
1

t

�
D lim

x!1 f .x/ D 0

and

lim
t!0C

G.t/ D lim
t!0C

g

�
1

t

�
D lim

x!1 g.x/ D 0:

Moreover F and G are differentiable on .0; 1=a/, and for each t 2 .0; 1=a/ we have
1=t > a, so that
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G0.t/ D � 1

t2
g0
�

1

t

�
¤ 0

by hypothesis. Therefore Theorem 6.5.3 is applicable. We conclude that

lim
x!1

f .x/

g.x/
D lim

t!0C

f
�

1
t

�
g
�

1
t

�

D lim
t!0C

F.t/

G.t/

D lim
t!0C

F 0.t/
G0.t/

D lim
t!0C

� 1
t2 f 0 � 1

t

�
� 1

t2 g0 � 1
t

�

D lim
x!1

f 0.x/

g0.x/

D L:

ut
Remark. A similar proof establishes a corresponding theorem in which x ! �1.

Sometimes an application of these theorems makes matters worse.

Example 6.5.5. Suppose we wish to evaluate

lim
x!0C

x log x:

We may convert this limit to the indeterminate form 0=0 by writing

x log x D x
1

log x

for all x > 0 such that x ¤ 1, because

lim
x!0C

1

log x
D 0

since log x ! �1 as x ! 0C. An application of l’Hôpital’s rule then shows that

lim
x!0C

x
1

log x

D lim
x!0C

1

1
x

�
� 1

log2 x

� D � lim
x!0C

x
1

log2 x

:
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Although the limit on the right-hand side is still of the indeterminate form 0=0, it is
more complicated than the limit on the left-hand side. The appeal to Theorem 6.5.3
has therefore failed to solve the problem. However, we can also write

x log x D log x
1
x

;

for all x > 0, and note that

lim
x!0C

log x D �1

and

lim
x!0C

1

x
D 1:

4
The observation at the end of the example above motivates a study of other

indeterminate forms. We prepare for the resulting theorem with a helpful lemma
concerning limits.

Lemma 6.5.5. Let f be a function defined on an interval .a; b/ and let L be a
number. Suppose that for each q1 > L there exists c1 2 .a; b/ such that f .x/ < q1

whenever x 2 .a; c1/. Suppose similarly that for each q2 < L there exists c2 2
.a; b/ such that q2 < f .x/ whenever x 2 .a; c2/. Then

lim
x!aC

f .x/ D L:

Proof. Choose " > 0. Then L � " < L < L C ". Consequently, there exist numbers
c1 and c2 in .a; b/ such that f .x/ < L C " whenever x 2 .a; c1/ and L � " < f .x/

whenever x 2 .a; c2/. If we choose x such that

0 < x � a < minfc1 � a; c2 � ag;

then a < x < c1 and a < x < c2, so that

L � " < f .x/ < L C ":

Hence jf .x/ � Lj < ", and the result follows. ut
Theorem 6.5.6. Let f and g be functions that are differentiable on an open interval
.a; b/ and suppose that g0.x/ ¤ 0 for all x 2 .a; b/. Suppose also that

lim
x!aC

g.x/ D 1
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and

lim
x!aC

f 0.x/

g0.x/
D L

for some real number L. Then

lim
x!aC

f .x/

g.x/
D L:

Discussion: One obvious way to attempt a proof of this theorem is to try to show
that limx!aC f .x/ D 1 and then to convert the limit to the indeterminate form 0=0

by writing f .x/=g.x/ as

1
g.x/

1
f .x/

:

Using Theorem 6.5.3 together with the chain rule, we should then obtain

lim
x!aC

f .x/

g.x/
D lim

x!aC

1
g.x/

1
f .x/

D lim
x!aC

� g0.x/

g2.x/

� f 0.x/

f 2.x/

D lim
x!aC

f 2.x/

g2.x/
� lim

x!aC

g0.x/

f 0.x/

D
�

lim
x!aC

f .x/

g.x/

�2
1

L
:

We now encounter several problems, the most obvious of which is that L might
be 0. Furthermore, limx!aC f .x/=g.x/ might not exist. Even if it were to exist, it
would have to be nonzero in order for us to be able to deduce the required result
as a consequence of the calculation above. The following proof circumvents these
difficulties.

Proof. Choose q1 > L. The density property shows that there is a q satisfying
L < q < q1. By Corollary 6.5.2 there exists ı 2 .0; b � a/ such that

ˇ̌
ˇ̌f .x/ � f .y/

g.x/ � g.y/
� L

ˇ̌
ˇ̌ < q � L

for all x and y satisfying a < x < y < a C ı. Fix a y for which

a < y < a C ı < b:
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It follows that

f .x/ � f .y/

g.x/ � g.y/
< L C q � L D q (6.10)

for all x 2 .a; y/.
Since

lim
x!aC

g.x/ D 1;

there exists ı1 > 0 such that

g.x/ > maxf0; g.y/g (6.11)

for all x 2 .a; b/ satisfying 0 < x � a < ı1. Let

c D minfy; a C ı1g > a:

Thus c 2 .a; b/, since y < b.
Now choose x 2 .a; c/. Then a < x < c � y, so that inequality (6.10) holds.

But we also have

0 < x � a < c � a � ı1;

so that g.x/ � g.y/ > 0 by inequality (6.11). Therefore

f .x/ � f .y/ < q.g.x/ � g.y//;

and so

f .x/ < f .y/ C qg.x/ � qg.y/:

Moreover g.x/ > 0. We conclude that

f .x/

g.x/
< h.x/

for all x 2 .a; c/, where

h.x/ D f .y/

g.x/
C q � q

g.y/

g.x/

for all such x.
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Now

lim
x!aC

h.x/ D q

since

lim
x!aC

1

g.x/
D 0

by Corollary 4.6.4. Therefore there exists ı2 > 0 such that

jh.x/ � qj < q1 � q (6.12)

for all x 2 .a; c/ satisfying 0 < x � a < ı2. Define

c1 D minfc; a C ı2g > a:

Thus c1 2 .a; b/. Choose x 2 .a; c1/. Then x 2 .a; c/ and

0 < x � a < c1 � a � ı2:

Therefore inequality (6.12) holds, so that

h.x/ < q C q1 � q D q1:

We conclude that

f .x/

g.x/
< h.x/ < q1:

In summary, we have now shown that for each q1 > L there exists c1 2 .a; b/

such that

f .x/

g.x/
< q1

whenever x 2 .a; c1/. A similar argument shows that for each q2 < L there exists
c2 2 .a; b/ such that

q2 <
f .x/

g.x/

whenever x 2 .a; c2/. An appeal to Lemma 6.5.5 therefore completes the proof. ut
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Example 6.5.6. Evaluate

lim
x!0C

x log x:

Solution. We have

lim
x!0C

x log x D lim
x!0C

log x
1
x

:

Since limx!0C 1=x D 1, it follows from Theorem 6.5.6 that

lim
x!0C

x log x D lim
x!0C

1
x

� 1
x2

D � lim
x!0C

x D 0:

4
Theorem 6.5.6 may be extended to limits as x approaches a�, a, 1, or �1.

Remark. If lim f 0.x/=g0.x/ does not exist, then we cannot draw any conclusion
about lim f .x/=g.x/.

Example 6.5.7. If f .x/ D sin x and g.x/ D x for all x, then f 0.x/ D cos x and
g0.x/ D 1, so that limx!1 f 0.x/=g0.x/ does not exist. 4

When applying l’Hôpital’s rule to find limx!a f .x/=g.x/, we must make sure
that all the hypotheses are satisfied, as we may get spurious results otherwise.
For instance, if g0 has a zero in each neighborhood of a, then we must not apply
l’Hôpital’s rule. Corresponding remarks hold if x approaches aC, a�, 1, or �1. In
a case where f 0.x/ D ˛.x/h.x/, g0.x/ D ˛.x/k.x/, and ˛.x/ does not approach
a limit but h.x/=k.x/ does, then we must resist the temptation to cancel ˛.x/ in
f 0.x/=g0.x/. In 1879, Stolz gave an example to illustrate this point. In 1956, Boas
constructed infinitely many examples, including the one constructed by Stolz. We
present an example here.

Example 6.5.8. For all x let

f .x/ D sin 2x C 2x

4
;

and let ' be any function such that the functions '.sin x/ and '0.sin x/ are
positive and bounded for all x. For instance, the exponential function satisfies these
conditions. Let

g.x/ D f .x/'.sin x/
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for all x. Thus

lim
x!1 g.x/ D lim

x!1 f .x/ D 1:

Moreover g.x/ > 0 for all x > 1=2.
Now let us attempt to apply l’Hôpital’s rule to compute limx!1 f .x/=g.x/.

First we check that the hypotheses are satisfied. For all x we have

f 0.x/ D cos 2x C 1

2
D cos2 x

and

g0.x/ D '.sin x/ cos2 x C f .x/'0.sin x/ cos x

D .'.sin x/ cos x C f .x/'0.sin x// cos x:

Thus g0.x/ D 0 whenever cos x D 0. Consequently, for every a there exist values
of x > a such that g0.x/ D 0. We conclude that l’Hôpital’s rule cannot in fact be
applied.

Note that cos x is a common factor of f 0.x/ and g0.x/. Canceling this factor, we
obtain

f 0.x/

g0.x/
D cos x

'.sin x/ cos x C f .x/'0.sin x/

for 1all x such that g0.x/ ¤ 0. The properties hypothesized for ' and the fact that
limx!1 f .x/ D 1 therefore show that

lim
x!1

f 0.x/

g0.x/
D 0:

However,

f .x/

g.x/
D 1

'.sin x/
1

for all x > 1=2, and this quotient does not approach 0 as x ! 1. 4
It is easy to use l’Hôpital’s rule to prove that log x << x:

lim
x!1

log x

x
D lim

x!1
1

x
D 0:

In fact, it can be proved by induction that logk x << x for every positive integer k,
for if we assume that

lim
x!1

logk x

x
D 0
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for some fixed k, then, using l’Hôpital’s rule, we obtain

lim
x!1

logkC1 x

x
D lim

x!1
.k C 1/ logk x

x
D 0:

Exercises 6.5.

1. Show that the conclusion of Theorem 6.5.1 does not hold for the functions

f .x/ D 4x3 C 6x2 � 12x

and

g.x/ D 3x4 C 4x3 � 6x2

on the interval Œ0; 1�. Which of the conditions of the theorem is not satisfied in
this case?

2. Show that Theorem 6.5.6 may not be applied to evaluate

lim
x!1

x C cos x

x C sin x

directly.
3. Let

f .x/ D x C cos x sin x

and

g.x/ D esin xf .x/

for all x. Show that l’Hôpital’s rule does not apply to the evaluation of

lim
x!1

f .x/

g.x/
:

Does the limit exist?
4. Show that l’Hôpital’s rule does not apply to the evaluation of

lim
x!1

2x C sin 2x

x sin x C cos x
:

Does the limit exist?
5. Evaluate the following limits:

(a) limx!0
ex�1

log.xC1/
;

(b) limx!1 x log x

x2C1
;
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(c) limx!1C
ex�1
x�1

;

(d) limx!0C
log sin x

log x
;

(e) limx!1 x.log.x C 2/ � log x/;
(f) limx!1 x.a1=x � 1/, where a > 0.
(g) limx!.�1/C.x C 1/1=3 log.x C 1/;
(h) limx!0C xx ;
(i) limx!1.

p
x2 C x � x/;

(j) limx!.�=2/�

�
x � �

2

�
tan x;

(k) limx!1
�

xC1
x�2

�x
.

6. The determinant

ˇ̌̌
ˇ̌
ˇ
a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ̌̌
ˇ̌
ˇ

of the 3 � 3 matrix

0
@a11 a12 a13

a21 a22 a23

a31 a32 a33

1
A

is defined by the equation

ˇ̌
ˇ̌̌
ˇ
a11 a12 a13

a21 a22 a23

a31 a32 a33

ˇ̌
ˇ̌̌
ˇ D a11

ˇ̌̌
ˇa22 a23

a32 a33

ˇ̌̌
ˇ � a12

ˇ̌̌
ˇa21 a23

a31 a33

ˇ̌̌
ˇC a13

ˇ̌̌
ˇa21 a22

a31 a32

ˇ̌̌
ˇ :

Let f; gW Œa; b� ! R. Apply Rolle’s theorem with

F.x/ D
ˇ̌̌
ˇ̌
ˇ

1 1 1

f .a/ f .x/ f .b/

g.a/ g.x/ g.b/

ˇ̌̌
ˇ̌
ˇ

to prove Cauchy’s mean-value formula. (See question 7 of the exercises for
Sect. 6.2.)

7. Let f and g be functions that are continuous on Œa; b� and differentiable on
.a; b/. Then, as in the proof of Cauchy’s mean-value formula, there exists � 2
.a; b/ satisfying the equation

.f .b/ � f .a//g0.�/ D .g.b/ � g.a//f 0.�/: (6.13)
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Show that Cauchy’s mean-value formula does not apply in the case where

f .x/ D 3x4 � 2x3 � x2 C 1

and

g.x/ D 4x3 � 3x2 � 2x

for all x 2 Œ0; 1� but that there exists � 2 .0; 1/ satisfying Eq. (6.13).
8. [17] Let ˛1; ˛2; ˛3 be real numbers with sum equal to 1. Let f1; f2; f3 be

functions that are continuous on Œa; b� and differentiable on .a; b/, and suppose
that fk.a/ ¤ fk.b/ for each k 2 f1; 2; 3g. Show that there exists � 2 .a; b/ for
which

˛1

f1.b/ � f1.a/
f 0

1 .�/ C ˛2

f2.b/ � f2.a/
f 0

2 .�/ C ˛3

f3.b/ � f2.a/
f 0

3 .�/ D 0:

[Hint: Apply Rolle’s theorem with

F.x/ D ˛1.f2.b/ � f2.a//.f3.b/ � f3.a//.f1.x/ � f1.a//

C˛2.f1.b/ � f1.a//.f3.b/ � f3.a//.f2.x/ � f2.a//

C˛3.f1.b/ � f1.a//.f2.b/ � f2.a//.f3.x/ � f3.a//:�

Obtain an expression for f 0
1 .�/ by taking ˛1 D �1, and derive Cauchy’s mean-

value formula by taking ˛1 D �1, ˛2 D 1, and ˛3 D 0.
The result can be generalized to an arbitrary number of functions. Use it to

show that the equation

f .x/ D �3x C �

2
cos

�x

2
C ex

e � 1
C 1

.x C 1/ log 2
D 0

has at least one solution in .0; 1/. [Note that f .0/ and f .1/ are both positive
and so the conclusion is not an obvious consequence of the intermediate-value
theorem.]

9. [2] Let a and b > a be real numbers and suppose that f and g are
functions that are continuous on Œa; b� and differentiable on .a; b/. Suppose
also that g0.x/ ¤ 0 for all x 2 .a; b/. Show that if f 0.x/=g0.x/ is increasing
(respectively, decreasing), then so are

f .x/ � f .a/

g.x/ � g.a/

and

f .x/ � f .b/

g.x/ � g.b/
:
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[Hint: Note that Corollary 6.3.13 implies that either g0.x/ < 0 for all x 2 .a; b/

or g0.x/ > 0 for all x 2 .a; b/. Assuming that f 0.x/=g0.x/ is increasing, show
that the derivative of

f .x/ � f .a/

g.x/ � g.a/

is nonnegative.]
10. This problem concerns the following question. Suppose that f and g are

functions such that

lim
x!aC

f .x/

g.x/
(6.14)

is of the indeterminate form 0=0, where a is a real number. It follows from
Theorem 6.5.3 that if

lim
x!aC

f 0.x/

g0.x/
(6.15)

exists, then so does the limit (6.14). The question is whether we can extend this
observation to say that if f 0.x/=g0.x/ exists throughout some interval .a; aCı/,
where ı > 0, but the limit (6.15) does not exist, then the limit (6.14) also does
not exist.

(a) Show that the answer to the question posed is “no” by considering the
functions defined by

f .x/ D x2 sin
1

x
;

for all x ¤ 0, and g.x/ D sin x. Use the facts that

lim
x!0C

x sin
1

x
D 0

(see Example 4.4.1),

lim
x!0C

cos
1

x

does not exist (Example 6.4.1) and

lim
x!0C

sin x

x
D 1
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(Example 6.5.1) in order to demonstrate that f 0.x/=g0.x/ exists throughout
the interval .0; �=2/ and that

lim
x!0C

f 0.x/

g0.x/

does not exist but

lim
x!0C

f .x/

g.x/
D 0:

(b) i. Show that if f 0.x/=g0.x/ exists throughout some interval .a; aCı/, where
ı > 0, then for each x 2 .a; a C ı/ there exists � 2 .a; x/ such that

f .x/

g.x/
D f 0.�/

g0.�/
:

ii. Why is it therefore not valid to conclude that the answer to the question
posed is “yes” by using the following argument?

If the limit (6.15) does not exist, then

lim
x!aC

f 0.�/

g0.�/

does not exist since a < � < x for each x. Because

f .x/

g.x/
D f 0.�/

g0.�/
;

it therefore follows that the limit (6.14) also does not exist.

6.6 A Discrete Version of l’Hôpital’s Rule

L’Hôpital’s rule is a powerful tool for calculating limits of indeterminate forms.
However, in applications one may encounter an indeterminate form f .x/=g.x/

whose limit exists even though functions f and g are not differentiable or the
limit of f 0.x/=g0.x/ does not exist. In 1988, Huang [8] dealt with this problem
by proving a discrete version of l’Hôpital’s rule.

Let f be a function defined at all x > a for some number a. For each x > a and
h > a � x let us define

	hf .x/ D f .x C h/ � f .x/:
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Then

f 0.x/ D lim
h!0

	hf .x/

h
:

Huang’s result shows that, under certain circumstances,

lim
x!1

f .x/

g.x/
D lim

x!1
	hf .x/

	hg.x/
:

Theorem 6.6.1. Let f and g be functions defined at all x > a for some number a.
Suppose that

1.

lim
x!1 f .x/ D lim

x!1 g.x/ D 0;

and
2. for some h > 0,

(a) either 	hg.x/ > 0 for all x > a or 	hg.x/ < 0 for all x > a, and
(b)

lim
x!1

	hf .x/

	hg.x/
D L;

where L may be any real number, 1, or �1.

Then

lim
x!1

f .x/

g.x/
D L:

Proof. Let us assume that 	hg.x/ > 0 for all x > a; the argument in the other case
is similar.

Case 1: Suppose that L is a real number. Choose " > 0. By assumption there
exists N > a such that

L � " <
f .x C h/ � f .x/

g.x C h/ � g.x/
< L C "

for all x � N . Fix x � N . Then for all positive integers k we have
x C .k � 1/h � N , and so

L � " <
f .x C kh/ � f .x C .k � 1/h/

g.x C kh/ � g.x C .k � 1/h/
< L C ":
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Since

g.x C kh/ � g.x C .k � 1/h/ > 0;

it follows that

.L � "/.g.x C kh/ � g.x C .k � 1/h//

< f .x C kh/ � f .x C .k � 1/h/

< .L C "/.g.x C kh/ � g.x C .k � 1/h//:

Summation from k D 1 to k D n, where n is a positive integer, gives

.L � "/.g.x C nh/ � g.x// < f .x C nh/ � f .x/ < .L C "/.g.x C nh/ � g.x//;

by the telescoping property. Taking limits as n ! 1, we obtain

.L � "/.�g.x// � �f .x/ � .L C "/.�g.x//;

by Theorem 4.6.2. Our initial assumption shows that the sequence fg.x C nh/g
is increasing. Since

lim
n!1 g.x C nh/ D 0;

it follows that g.x/ < 0. Thus

L � " � f .x/

g.x/
� L C ";

from which the required result follows.
Case 2: If L D 1, then for each M > 0 there exists N > a such that

f .x C h/ � f .x/ > M.g.x C h/ � g.x//

whenever x � N . Fix such an x. Using the method employed in the previous
case, we find that

f .x C nh/ � f .x/ > M.g.x C nh/ � g.x//

for all positive integers n. By letting n ! 1, we see that

f .x/

g.x/
� M;

and the result follows.
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Case 3: The case where L D �1 can be dealt with by applying the argument of
case 2 to the functions �f and g.

ut
By applying the proof of this theorem to sequences, we obtain the following

result.

Corollary 6.6.2. Let fang and fbng be sequences that converge to 0. Let h be a
positive integer for which there exists a real number N such that the sign of bnCh�bn

is constant for all n � N . Suppose that

lim
n!1

anCh � an

bnCh � bn

D L;

where L may be any real number, 1, or �1. Then

lim
n!1

an

bn

D L:

Example 6.6.1. For each x > 1 define

f .x/ D sin 2�x

bxc
and

g.x/ D p
x C 1 � p

x D 1p
x C 1 C p

x
:

Then

lim
x!1 f .x/ D lim

x!1 g.x/ D 0:

We wish to evaluate limx!1 f .x/=g.x/. Evidently, l’Hôpital’s rule is not
applicable. Taking h D 1 in Theorem 6.6.1, we obtain

	1g.x/ D g.x C 1/ � g.x/

D p
x C 2 � p

x

D 2p
x C 2 C p

x

> 0
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and

	1f .x/ D f .x C 1/ � f .x/

D sin 2�.x C 1/

bx C 1c � sin 2�x

bxc

D
�

1

bxc C 1
� 1

bxc
�

sin 2�x

D � sin 2�x

bxc.bxc C 1/
;

so that

	1f .x/

	1g.x/
D � .

p
x C 2 C p

x/ sin 2�x

2bxc.bxc C 1/
I

hence

ˇ̌
ˇ̌	1f .x/

	1g.x/

ˇ̌
ˇ̌ <

2
p

x C 2

2.x � 1/2
! 0

as x ! 1. We conclude that

lim
x!1

f .x/

g.x/
D 0:

4
We now establish another version of the theorem.

Theorem 6.6.3. Let f and g be functions defined at all x > a for some number
a, and suppose that they are bounded on every finite subinterval of .a; 1/. Suppose
also that

1.

lim
x!1 g.x/ D 1;

and
2. for some h > 0,

(a) either 	hg.x/ > 0 for all x > a or 	hg.x/ < 0 for all x > a, and
(b)

lim
x!1

	hf .x/

	hg.x/
D L;

where L may be any real number, 1, or �1.
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Then

lim
x!1

f .x/

g.x/
D L:

Proof. Let us assume that 	hg.x/ > 0 for all x > a, as the argument in the other
case is similar. Since limx!1 g.x/ D 1, we may also assume that g.x/ > 0 for
all x > a.

Case 1: Suppose L is a real number. Choose " > 0. Arguing as in the proof of
Theorem 6.6.1, we deduce the existence of N > a such that

ˇ̌
ˇ̌f .x C nh/ � f .x/

g.x C nh/ � g.x/
� L

ˇ̌
ˇ̌ < " (6.16)

for all x � N and all positive integers n.
Choose x � N Ch, and write x D N C�h. Let j D b�c and r D N C.� �j /h.
Thus j > 0, x D r C jh, and r 2 ŒN; N C h/. Furthermore,

g.x/ � g.r/ D g.r C jh/ � g.r/ > 0;

so that

0 <
g.r/

g.x/
< 1I

hence
ˇ̌
ˇ̌1 � g.r/

g.x/

ˇ̌
ˇ̌ < 1;

and so
ˇ̌
ˇ̌f .x/

g.x/
� L

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌f .r/ � Lg.r/

g.x/

ˇ̌
ˇ̌C

ˇ̌
ˇ̌f .x/ � f .r/

g.x/ � g.r/
� L

ˇ̌
ˇ̌

because

f .x/

g.x/
� L D f .x/ � Lg.x/

g.x/

D f .r/ � Lg.r/ C f .x/ � f .r/ � Lg.x/ C Lg.r/

g.x/

D f .r/ � Lg.r/

g.x/
C g.x/ � g.r/

g.x/

�
f .x/ � f .r/ � L.g.x/ � g.r//

g.x/ � g.r/

�
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D f .r/ � Lg.r/

g.x/
C
�

1 � g.r/

g.x/

��
f .x/ � f .r/

g.x/ � g.r/
� L

�
:

Note that
ˇ̌̌
ˇf .x/ � f .r/

g.x/ � g.r/
� L

ˇ̌̌
ˇ D

ˇ̌̌
ˇf .r C jh/ � f .r/

g.r C jh/ � g.r/
� L

ˇ̌̌
ˇ < "

by inequality (6.16). Furthermore, since f and g are bounded on ŒN; N C h/ and
limx!1 g.x/ D 1, there exists N1 � N such that

ˇ̌̌
ˇf .r/ � Lg.r/

g.x/

ˇ̌̌
ˇ < "

for all x � N1. For all such x we therefore have

ˇ̌̌
ˇf .x/

g.x/
� L

ˇ̌̌
ˇ < 2";

and so

lim
x!1

f .x/

g.x/
D L:

Case 2: Suppose that L D 1.
We first show that 	hf .x/ > 0 for sufficiently large x. Choose M > 0. There
exists N > a such that

f .x C h/ � f .x/

g.x C h/ � g.x/
> M

for all x � N . Hence

	hf .x/ D f .x C h/ � f .x/ > M.g.x C h/ � g.x// > 0

for all x � N , as claimed.

As in Theorem 6.6.1, we see that

f .x C nh/ � f .x/

g.x C nh/ � g.x/
> M

for all x � N and all positive integers n. Choose x � N C h, and write x D r C jh,
where r 2 ŒN; N C h/ and j is a positive integer. Thus

f .x/ � f .r/

g.x/ � g.r/
D f .r C jh/ � f .r/

g.r C jh/ � g.r/
> M;
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so that

f .x/ > M.g.x/ � g.r// C f .r/:

Hence

lim
x!1 f .x/ D 1;

and so we may assume also that f .x/ > 0 for all x > a.
Finally,

lim
x!1

	hg.x/

	hf .x/
D lim

x!1
1

	hf .x/

	hg.x/

and

lim
x!1

	hf .x/

	hg.x/
D 1:

Consequently,

lim
x!1

	hg.x/

	hf .x/
D 0:

It therefore follows from case 1 that

lim
x!1

g.x/

f .x/
D 0;

whence

lim
x!1

f .x/

g.x/
D lim

x!1
1

g.x/

f .x/

D 1;

because f .x/=g.x/ > 0 for all x > a.

Case 3: The case where L D �1 can be handled by the same argument with f

replaced by �f .

ut
We immediately obtain the corresponding result for sequences.

Corollary 6.6.4. Let fang and fbng be sequences, where limn!1 bn D 1. Let h

be a positive integer for which there exists a real number N such that the sign of
bnCh � bn is constant for all n � N . Suppose that
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lim
n!1

anCh � an

bnCh � bn

D L;

where L may be any real number, 1, or �1. Then

lim
n!1

an

bn

D L:

By taking h D 1, we obtain the following result, which is due to Stolz.

Corollary 6.6.5. Let fang be a sequence and fbng an increasing sequence such that
limn!1 bn D 1. If

lim
n!1

anC1 � an

bnC1 � bn

D L

for some real L, then

lim
n!1

an

bn

D L:

Example 6.6.2. Let x1 D 1=2 and

xnC1 D xn.1 � xn/

for all n � 1. It is easy to see by induction that 0 < xn < 1 for all n, and so
xnC1 < xn for all n. Thus the sequence fxng is decreasing. It therefore converges to
some number L. From the recurrence relation we obtain

L D L.1 � L/

by taking limits, and we infer that L D 0. Thus the sequence f1=xng is increasing
and approaches infinity as n does so. Noting first that

xn � xnC1 D xn � xn.1 � xn/ D x2
n

for all n, we conclude from Stolz’s theorem, with an D n and bn D 1=xn for all n,
that

lim
n!1 nxn D lim

n!1
n
1

xn

D lim
n!1

.n C 1/ � n
1

xnC1
� 1

xn

D lim
n!1

xnxnC1

xn � xnC1
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D lim
n!1

xnC1

xn

D lim
n!1.1 � xn/

D 1:

4
Corollary 6.6.6. Let a be a positive number and let k be a function that is defined
and positive at all x > a and bounded on every finite subinterval of .a; 1/. Suppose
that

lim
x!1

k.x C 1/

k.x/
D L;

where L may be any positive number or 1. Then

lim
x!1 .k.x//1=x D L:

Proof. Let f .x/ D log k.x/ and g.x/ D x for all x > a. Then

f .x C 1/ � f .x/

g.x C 1/ � g.x/
D log k.x C 1/ � log k.x/ D log

k.x C 1/

k.x/
! log L

as x ! 1. It therefore follows from Theorem 6.6.3 that

lim
x!1

log k.x/

x
D log L:

Hence

lim
x!1.k.x//1=x D lim

x!1 exp log.k.x//1=x D lim
x!1 exp

log k.x/

x
D exp log L D L:

ut
As a consequence of Corollary 6.6.6, we obtain the corresponding result for

sequences.

Corollary 6.6.7. If fang is a sequence of positive terms and

lim
n!1

anC1

an

D L;

then

lim
n!1 a1=n

n D L:
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Exercises 6.6.

1. Use the work of this section to show that

lim
n!1

0
@ nX

j D1

.2j � 1/2

� nX
j D1

j 2

1
A D 4:

2. Use the work of this section to show that

lim
n!1

1

nkC1

nX
j D1

kk D 1

k C 1

for all positive integers k.
3. Use Theorem 6.6.3 to find

lim
x!1

sin x C x

x
:

4. For each x � 0 let k.x/ be the integer such that

x D y.x/ C 2k.x/�

for some number y.x/ 2 Œ0; 2�/, and let

g.x/ D sin y.x/ C k.x/:

Show that

lim
x!1

x

g.x/
D 2�:

5. Use the work in this section to find

lim
x!1

log x

x

and

lim
x!1

x

ex
:

6. If fang and fbng are sequences such that

lim
n!1 an D lim

n!1 bn D 0
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and

lim
n!1

an

bn

D L

for some number L, show that

lim
n!1

0
@ nX

j D1

aj

� nX
j D1

bj

1
A D L:

7. Prove that if

lim
n!1.xn � xnC1/ D L;

then

lim
n!1

xn

n
D L:

6.7 Differentiation of Power Series

We move on to consider derivatives of power series. Let us define

f .z/ D
1X

j D0

aj .z � c/j

for each z within the circle of convergence of the power series on the right-hand
side. If we differentiate the power series term by term, we obtain a new series,

1X
j D1

jaj .z � c/j �1;

which is said to be the corresponding derived series. It is natural to ask whether the
derived series has the same circle of convergence and, if so, whether the function it
defines is f 0. It turns out that the answers to these questions are affirmative within
the interior of the circle of convergence.

First we investigate the radius of convergence.

Theorem 6.7.1. A power series and its derived series have the same radius of
convergence.
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Proof. It suffices to consider power series with center 0. Let r1 and r2 be the radii
of convergence of the power series

1X
j D0

aj zj

and its derived series, respectively. For each positive integer n we have

janznj � jnanznj D jzjjnanzn�1j:

Thus if the derived series converges, then so does the given series by the comparison
test. We deduce that r1 � r2.

It remains to show that r2 � r1. This inequality certainly holds if r1 D 0. Assume
therefore that r1 > 0. Choose z and r such that 0 < jzj < r < r1. Then

1X
j D0

jaj rj j

is convergent, and so

0 D lim
n!1 janjrn D r lim

n!1 janjrn�1:

As it therefore converges to 0, the sequence fjanjrn�1g is bounded above by some
number M . Thus

jnanzn�1j D njanjrn�1
ˇ̌̌ z

r

ˇ̌̌n�1

� Mn
ˇ̌̌ z

r

ˇ̌̌n�1

:

Now the series

1X
j D1

j
ˇ̌̌ z

r

ˇ̌̌j �1

converges by the ratio test, since

.n C 1/jzjn
rn

� rn�1

njzjn�1
D n C 1

n
� jzj

r

and this quantity approaches jzj=r < 1 as n ! 1. Therefore the derived series
converges at jzj by the comparison test. We conclude that r2 � r1, as required. ut
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By applying the theorem k times, we see that the series
P1

j D0 aj zj has the same
radius of convergence as

1X
j Dk

j.j � 1/ � � � .j � k C 1/aj zj �k D
1X

j Dk

j Š

.j � k/Š
aj zj �k:

The theorem cannot be applied to deduce information about convergence on
the circle of convergence or, in the real case, at the end points of the interval of
convergence. For instance, the real series

1X
j D1

.�1/j �1

j
xj

is convergent when x D 1, by Leibniz’s test. Therefore the radius of convergence,
r , is at least 1. The derived series,

1X
j D0

.�1/j xj ;

diverges when x D 1. Thus, r D 1. However, the two series exhibit different
behaviour in regard to convergence at at least one endpoint of the interval of
convergence.

Theorem 6.7.2. Let

f .z/ D
1X

j D0

aj zj

for all z such that jzj < r , where r is the radius of convergence of the power series
and is nonzero. Then f is differentiable at all z such that jzj < r , and

f 0.z/ D
1X

j D1

jaj zj �1

for all such z.

Proof. Choose w such that jwj < r . Also, choose t such that jwj < t < r , and z
such that jzj < t and z ¤ w. Define

	 D f .z/ � f .w/

z � w
�

1X
j D1

jaj wj �1
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D 1

z � w

1X
j D1

aj .zj � wj / �
1X

j D1

jaj wj �1

D
1X

j D2

aj

�
zj � wj

z � w
� j wj �1

�
:

The challenge is to show that 	 ! 0 as z ! w. It will be met by finding an upper
bound for j	j.

We begin by investigating the expression in parentheses. Noting that

j �1X
kD0

zkwj �k�1 D zj � wj

z � w

for all j > 0, by Theorem 1.5.5, and that

j �1X
kD0

wj �1 D wj �1

j �1X
kD0

1 D j wj �1

for all j > 0, we find that

zj � wj

z � w
� j wj �1 D

j �1X
kD0

zkwj �k�1 �
j �1X
kD0

wj �1

D
j �1X
kD0

.zkwj �k�1 � wj �1/

D
j �1X
kD1

wj �k�1.zk � wk/

D
j �1X
kD1

wj �k�1.z � w/

k�1X
mD0

zmwk�m�1

D .z � w/

j �1X
kD1

k�1X
mD0

zmwj �m�2:

Since t > maxfjzj; jwjg, for every nonnegative s and u we have

jzswuj D jzjsjwju
� t stu

D t sCu:
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Thus
ˇ̌̌
ˇaj

�
zj � wj

z � w
� j wj �1

�ˇ̌̌
ˇ D jaj j

ˇ̌̌
ˇ z

j � wj

z � w
� j wj �1

ˇ̌̌
ˇ

D jaj j
ˇ̌
ˇ̌̌
.z � w/

j �1X
kD1

k�1X
mD0

zmwj �m�2

ˇ̌
ˇ̌̌

� jaj jjz � wj
j �1X
kD1

k�1X
mD0

jzmwj �m�2j

� jaj jjz � wj
j �1X
kD1

k�1X
mD0

t j �2

D jaj jjz � wjt j �2

j �1X
kD1

k�1X
mD0

1

D jaj jjz � wjt j �2

j �1X
kD1

k

D j.j � 1/

2
jz � wjjaj tj �2j

for all j > 1, since

j �1X
kD1

k D j.j � 1/

2

by Theorem 1.5.4. As 0 < t < r , the series
P1

j D0 jaj tj j converges, and it follows
by two applications of Theorem 6.7.1 that

1X
j D2

jj.j � 1/aj tj �2j

also converges. Writing

S D
1X

j D2

jj.j � 1/aj tj �2j

D
1X

j D2

j.j � 1/jaj tj �2j;



6.7 Differentiation of Power Series 321

we obtain

j	j �
1X

j D2

ˇ̌̌
ˇaj

�
zj � wj

z � w
� j wj �1

�ˇ̌̌
ˇ

� jz � wj
2

1X
j D2

j.j � 1/jaj tj �2j

D jz � wjS
2

:

Hence 	 ! 0 as z ! w, as required. ut
Corollary 6.7.3. Let r be the radius of convergence of the series

P1
j D0 aj zj . Then

the series

1X
j D0

aj

zj C1

j C 1

converges for all z such that jzj < r .

Proof. This result is immediate from the theorem, for the first series is the derivative
of the second. ut

The application of Theorem 6.7.2 is sometimes referred to as term-by-term
differentiation and that of Corollary 6.7.3 as term-by-term integration. We will study
the general concept of integration in the next chapter.

Theorem 6.7.2 implies that the limit of a power series is continuous within the
interior of the interval of convergence.

Example 6.7.1. Theorem 3.2.1 shows that

1X
j D0

.�1/j zj D 1

1 C z

for all z such that jzj < 1, since .�1/j zj D .�z/j . For all such z differentiation
gives

� 1

.1 C z/2
D

1X
j D1

.�1/j j zj �1

D
1X

j D0

.�1/j C1.j C 1/zj ;
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so that

1

.1 C z/2
D

1X
j D0

.�1/j .j C 1/zj

for all z such that jzj < 1.
For instance, take z D �1=3. Then

1X
j D0

j C 1

3j
D 1�

2
3

�2 D 9

4
:

Hence

1X
j D1

j

3j
D

1X
j D0

�
j C 1

3j
� 1

3j

�
D 9

4
� 1

2
3

D 3

4
:

4
Example 6.7.2. Since

exp.z/ D ez D
1X

j D0

zj

j Š

for all z, it follows that

exp0.z/ D
1X

j D1

j zj �1

j Š
D

1X
j D1

zj �1

.j � 1/Š
D

1X
j D0

zj

j Š
D ez D exp.z/;

as we saw earlier. 4
It is possible to express the logarithm function as a power series. Indeed, we have

the following theorem.

Theorem 6.7.4. For all x 2 .�1; 1/

log.1 C x/ D
1X

j D1

.�1/j C1 xj

j
:

Proof. Note first that the power series is absolutely convergent, by Example 3.15.3.
Its derivative is

1X
j D1

.�1/j C1 jxj �1

j
D

1X
j D1

.�x/j �1 D
1X

j D0

.�x/j D 1

1 C x
;
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by Theorem 3.2.1. This expression is also the derivative of log.1 C x/, and so there
exists c such that

1X
j D1

.�1/j C1 xj

j
D log.1 C x/ C c:

Substituting x D 0 gives

0 D log 1 C c D c

and the theorem follows. ut
If x D �1, then the series above diverges since the harmonic series does so. Thus

the radius of convergence is 1. If x D 1, then the series is alternating and converges.
We would naturally expect it to converge to log 2. We will confirm this fact later.

Since j � xj D jxj < 1 for all x 2 .�1; 1/, we also have

log.1 � x/ D
1X

j D1

.�1/j C1 .�x/j

j
D �

1X
j D1

xj

j
:

We proceed to extend this result. For all x 2 Œ�1; 1/ let

t .x/ D 1 C x

1 � x
: (6.17)

Note that t .x/ > 0 for all x 2 .�1; 1/ and that t is continuous at all x 2 Œ�1; 1/.
Since t .�1/ D 0 and

lim
x!1�

1 C x

1 � x
D 1;

the range of t must be the set of all nonnegative real numbers. Furthermore, for all
x 2 .�1; 1/,

log t .x/ D log
1 C x

1 � x

D log.1 C x/ � log.1 � x/

D
1X

j D1

.�1/j C1 xj

j
C

1X
j D1

xj

j

D 2

1X
kD0

x2kC1

2k C 1
: (6.18)
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But if we write t instead of t .x/ for convenience, Eq. (6.17) shows that

t � tx D 1 C x;

whence

t � 1 D x.t C 1/:

Since t > 0, it follows that

x D t � 1

t C 1
;

and so we obtain the following theorem.

Theorem 6.7.5. For all t > 0

log t D 2

1X
kD0

1

2k C 1

�
t � 1

t C 1

�2kC1

: (6.19)

For instance,

log 2 D 2

1X
kD0

1

.2k C 1/32kC1
: (6.20)

Equation (6.20) may be used to approximate log 2 to a high level of accuracy. Even
if we use only five terms of the series, we obtain 0:6931 : : :, which is correct to two
decimal places.

Theorem 6.7.5 can be used to find a quick way of approximating log t for each
positive t . First find an integer k such that

2k � t < 2kC1:

Thus

1 � t

2k
< 2;

so that Theorem 6.7.4 can be used to approximate log.t=2k/. But

log
t

2k
D log t � k log 2;

and so log t may be calculated from the formula

log t D log
t

2k
C k log 2:
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This method is particularly effective for large values of t .
The logarithm function features in the definition of an important mathematical

constant. Note first that for every j > 0 the mean-value theorem yields the existence
of a � 2 .j; j C 1/ such that

log.j C 1/ � log j

j C 1 � j
D log0 �:

In other words,

log.j C 1/ � log j D 1

�
:

Since 0 < j < � < j C 1, it follows that

1

j C 1
< log.j C 1/ � log j <

1

j
(6.21)

for all j > 0. Thus for all n > 1 we have

n�1X
j D1

1

j C 1
<

n�1X
j D1

.log.j C 1/ � log j / <

n�1X
j D1

1

j
: (6.22)

Now let

Sn D
nX

j D1

1

j
D

n�1X
j D0

1

j C 1

for all n > 0. Then Eq. (6.22) yields

Sn � 1 < log n < Sn�1

for all n > 1, where the telescoping property was used to evaluate the middle
summation. Thus

log n C 1

n
< Sn�1 C 1

n
D Sn < 1 C log n: (6.23)

Let

an D Sn � log n
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for all n 2 N. We shall prove the sequence fang convergent. First, since

SnC1 � Sn D 1

n C 1
;

we have

anC1 � an D 1

n C 1
� log.n C 1/ C log n;

and it follows that anC1 < an because

log.n C 1/ >
1

n C 1
C log n

by Eq. (6.21). Thus fang is a decreasing sequence. It is bounded below by 0:
Inequalities (6.23) give

an D Sn � log n >
1

n
> 0:

Hence fang converges to some number � , which is called Euler’s constant. Thus

� D lim
n!1 an D lim

n!1

0
@ nX

j D1

1

j
� log n

1
A :

From inequalities (6.23) we have

1

n
< Sn � log n < 1;

so that 0 � � � 1. In fact, � is approximately 0:577.
We can use these ideas to obtain a convenient power series expansion for log 2.

Define

"n D Sn � log n � �

for all n > 0. Then "n ! 0 as n ! 1, and

Sn D log n C � C "n:

Now we put

Tn D
nX

j D1

.�1/j C1

j
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for all n > 0. Thus

T2n D
2nX

j D1

.�1/j C1

j

D
2nX

j D1

1

j
� 2

nX
j D1

1

2j

D S2n � Sn

D log 2n C � C "2n � log n � � � "n

D log 2 C "2n � "n

! log 2

as n ! 1, so that

log 2 D
1X

j D1

.�1/j C1

j
:

We have now extended Theorem 6.7.4 to the case x D 1. However, this result does
not provide an efficient method for approximating log 2. For instance, by taking 20
terms of the series we obtain the approximation 0:6669, rounded to four decimal
places. This result is much worse than that reached by taking only five terms of the
series given in Eq. (6.20).

The next theorem gives a power series expansion, due to Gregory, for arctan x

that is valid for all x such that jxj < 1.

Theorem 6.7.6. For all x such that jxj < 1,

arctan x D
1X

j D0

.�1/j x2j C1

2j C 1
:

Proof. It follows from Example 3.15.3 that the power series is absolutely conver-
gent. Its derivative is

1X
j D0

.�1/j x2j D
1X

j D0

.�x2/j

D 1

1 C x2

D arctan0 x
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for all x such that jxj < 1. By Corollary 6.3.4 there is a constant c such that

1X
j D0

.�1/j x2j C1

2j C 1
D arctan x C c

for all such x. Since arctan 0 D 0, we have c D 0 and the theorem follows. ut
We finish this section with an example of an application of the differentiation of

power series to the solution of a certain type of differential equation. Such equations
arise, for instance, in wave mechanics.

Example 6.7.3. The differential equation

y00 � 2xy0 C 2�y D 0; (6.24)

where � � 0, is known as Hermite’s equation of order �. We aim to find a power
series solution.

Let

y.x/ D
1X

j D0

aj xj

be a solution. From Eq. (6.24) we obtain

0 D
1X

j D2

j.j � 1/aj xj �2 � 2x

1X
j D1

jaj xj �1 C 2�

1X
j D0

aj xj

D
1X

j D0

.j C 2/.j C 1/aj C2xj � 2

1X
j D0

jaj xj C 2�

1X
j D0

aj xj

D
1X

j D0

..j C 2/.j C 1/aj C2 � 2jaj C 2�aj /xj

for all x for which the series converges. Therefore

.j C 2/.j C 1/aj C2 C 2.� � j /aj D 0

for each j , so that

aj C2 D � 2.� � j /

.j C 2/.j C 1/
aj :
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Note that y.0/ D a0. Similarly, since

y0.x/ D
1X

j D1

jaj xj �1;

we have y0.0/ D a1. These two equations are called the initial conditions for the
differential equation. The series for y is uniquely determined if a0 and a1 are known.
In fact, an inductive argument shows that

a2j D .�1/j 2j �.� � 2/.� � 4/ � � � .� � 2j C 2/

.2j /Š
a0

and

a2j C1 D .�1/j 2j .� � 1/.� � 3/.� � 5/ � � � .� � 2j C 1/

.2j C 1/Š
a1

for all j � 0. Recalling the convention that the empty product is 1, we therefore
obtain

y.x/ D a0

1X
j D0

.�1/j
2j
Qj �1

kD0
.� � 2k/

.2j /Š
x2j C a1

1X
j D0

.�1/j
2j
Qj �1

kD0
.� � 2k � 1/

.2j C 1/Š
x2j C1:

In the case where � is a positive integer, the first series is a polynomial if � is
even and the second series is a polynomial if � is odd. The solution is therefore a
polynomial of degree � if either � is even and .a0; a1/ D .1; 0/ or � is odd and
.a0; a1/ D .0; 1/. In either case it is called the Hermite polynomial of degree �

and is denoted by H�. For example, for all x we have

H1.x/ D x;

H2.x/ D 1 � 2x2;

H3.x/ D x � 2x3

3
;

H4.x/ D 1 � 4x2 C 4x4

3
;

H5.x/ D x � 4x3

3
C 4x5

15
;

H6.x/ D 1 � 6x2 C 4x4 � 8x6

15
:
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There are other ways of defining the Hermite polynomials. For instance, it can
be shown [16] that they satisfy the recursive relation

HnC1.x/ D 2xHn.x/ � 2nHn�1.x/

for all n > 1 and all x.
It is not hard to see that the solution converges absolutely for all real x. This

fact also follows from the following beautiful result, which is due to Fuchs [13].
Consider the differential equation

y00 C p.x/y0 C q.x/y D 0;

where y.0/ and y0.0/ are given. Let r > 0. If p and q can be represented by
power series on the interval .�r; r/, then the differential equation has a unique
power series solution and this solution also converges on .�r; r/. In other words,
the radius of convergence of the solution is at least as big as the minimum of the
radii of convergence of p and q. 4
Exercises 6.7.

1. Verify the formulas for the derivatives of the sine and cosine functions by
differentiating their power series.

2. Let

f .z/ D
1X

j D0

z3j

.3j /Š
:

(a) Find the radius of convergence of the series.
(b) Show that

f .z/ C f 0.z/ C f 00.z/ D ez

for all z within the circle of convergence.

3. Suppose that the radius of convergence of

f .z/ D
1X

j D0

aj zj

is r > 0. Show that

f .n/.z/ D
1X

j D0

.n C j /Š

nŠ
anCj zj

for all nonnegative integers n and all z such that jzj < r .



6.7 Differentiation of Power Series 331

4. Suppose that

f .z/ D 1 C
1X

j D1

aj zj

is the series solution of the differential equation f 0.z/ D f .z/. Show that

anC1 D an

n C 1

for all n 2 N and hence that f .z/ D ez for all z.
5. Suppose that f .x/ D P1

j D0 aj xj is the series solution of f 0.x/ D 1 C x2 and
that f .0/ D 0. Show that f .x/ D tan x for all x for which cos x ¤ 0.

6. Suppose that f .x/ D P1
j D0 aj zj is the series solution of f 00.z/ D �f .z/ and

that f .0/ D 0 and f 0.0/ D 1. Show that f .z/ D sin z for all z.
7. Suppose that f .x/ D P1

j D0 aj zj is the series solution of f 00.z/ D �f .z/ and
that f .0/ D 1 and f 0.0/ D 0. Show that f .z/ D cos z for all z.

8. Is the solution of Hermite’s equation satisfying the following conditions a
polynomial:

� D 3; a0 D 1; a1 D 0‹

9. (Airy’s equation) Suppose that f .x/ D P1
j D0 aj xj is the series solution of

f 00.x/ � xf .x/ D 0:

First, show that a2 D 0 and

anC2 D an�1

.n C 1/.n C 2/

for all n 2 N. Hence for all k 2 N, show that

a3k D a0

2 � 3 � 5 � 6 � � � .3k � 1/3k
;

a3kC1 D a1

3 � 4 � 6 � 7 � � � 3k.3k C 1/
;

a3kC2 D 0:

10. (Legendre’s equation) Suppose that
P1

j D0 aj xj is the series solution of

.1 � x2/f 00.x/ � 2xf 0.x/ C ˛.˛ C 1/f .x/ D 0:
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Substitute the power series for f .x/ into the differential equation to obtain a
series p.x/. Show that the constant term of the latter series satisfies the equation

2a2 C ˛.˛ C 1/a0 D 0;

that the coefficient of x satisfies

6a3 C .�2 C ˛.˛ C 1//a1 D 0;

and that, for all n > 1, the coefficient of xn satisfies

.n C 2/.n C 1/anC2 C .�n.n � 1/ � 2n C ˛.˛ C 1//an D 0:

Writing

p.x/ D a0p1.x/ C a1p2.x/;

show that the series p.x/ converges absolutely whenever jxj < 1.
When n is a nonnegative integer, either p1 or p2 is a polynomial. Show that

if n D 0, then p1.x/ D 1 and

p2.x/ D 1

2
log

1 C x

1 � x

and that if n D 1, then p2.x/ D x and

p1.x/ D 1 � 1

2
log

1 C x

1 � x
:

11. Use the fact that

lim
n!1

0
@ nX

j D1

1

j
� log n

1
A D �

to show that

lim
n!1

1

log n

nX
j D1

1

j
D 1:

Derive this result also from Stolz’s theorem.



Chapter 7
The Riemann Integral

In this chapter we use the idea of an area to motivate a concept called an integral of a
function, and we show that the process of finding an integral of a function is closely
related to that of obtaining an antiderivative of the function, that is, a function whose
derivative is the given function. Some techniques for finding integrals are derived
and the use of integrals for testing the convergence of certain types of series are
discussed. All functions under consideration are assumed to be real-valued functions
of one or more real variables.

7.1 Area Under a Curve

Suppose we wish to approximate the area bounded by the curve y D f .x/ and the
lines x D a, x D b, and y D 0 (see Fig. 7.1. For the sake of clarity, the figure is
drawn for a function f such that f .x/ � 0 for all x 2 Œa; b�.)

We approximate the area using small rectangular regions. Let us first introduce a
few definitions and notation.

Definition 7.1.1. Let Œa; b� be a closed interval. By a partition of Œa; b� we mean a
(finite) sequence x0; x1; : : : ; xn of numbers such that

a D x0 < x1 < : : : < xn D b:

(More formally, x0 D a, xn D b, and xj C1 > xj for all j < n.)

This partition P is denoted by .x0; x1; : : : ; xn/. The numbers x0; x1; : : : ; xn are
called the division points of P . The set of division points of P is denoted by OP .
We say that OP determines P . If .x0; x1; : : : ; xn/ is a partition P of Œa; b�, we define
the norm or mesh of P to be the maximum of the quantities xj C1 � xj , where

© Springer Science+Business Media New York 2015
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_7
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a b

y f (x)

y

x

=

Fig. 7.1 Area under the graph of f between a and b

0 � j < n. This number is denoted by �.P /. Each interval Œxj ; xj C1� is called
a subinterval of P , and the elements of .xj ; xj C1/ are called interior points of
Œxj ; xj C1�.

Recall that a function f mapping Œa; b� into R is bounded if there exist m and M

such that m � f .x/ � M for all x 2 Œa; b�. If .x0; x1; : : : ; xn/ is a partition of Œa; b�

and f is bounded on Œa; b�, then f is also bounded on each subinterval Œxj ; xj C1�

of Œa; b�, where j < n. For each j < n we set

Mj .f / D supff .x/ j x 2 Œxj ; xj C1�g

and

mj .f / D infff .x/ j x 2 Œxj ; xj C1�g:

If f and g are functions that are defined and bounded on Œa; b� and f .x/ � g.x/

for all x 2 Œa; b�, then it is clear that Mj .f / � Mj .g/ and mj .f / � mj .g/ for
each j . For the rest of this chapter, unless we state otherwise, we assume that f

is a function that is defined and bounded on a closed interval Œa; b�. Given such a
function f and a partition .x0; x1; : : : ; xn/ of Œa; b�, we shall also take Mj .f / and
mj .f / to be defined as above.

Remark. There might not exist c 2 Œxj ; xj C1� such that f .c/ D Mj .f /, and
similarly for mj .f /. For example, let f W Œ0; 2� ! R be defined by

f .x/ D
8<
:

x � bxc if x 2 Œ0; 1�

bxc � x if x 2 .1; 2�
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Fig. 7.2 Graph of x � bxc
for x 2 Œ0; 1� and bxc � x for
x 2 .1; 2�

f (x)

x

1

–1

1 2

(see Fig. 7.2). Let P be the partition .0; 1; 2/ of Œ0; 2�. Then M0.f / D 1 and
m1.f / D �1. It is clear that there is no c 2 Œ0; 1� such that f .c/ D 1 and no
c 2 Œ1; 2� such that f .c/ D �1. However, if f is continuous on Œa; b�, then there is
always a number c 2 Œxj ; xj C1� such that f .c/ D Mj .f / (see Corollary 5.3.2).
A corresponding statement holds for mj .f /. The number c also exists if f is
nondecreasing or nonincreasing on Œa; b�. For instance, if f is nondecreasing on
Œa; b�, then Mj .f / D f .xj C1/ and mj .f / D f .xj /.

Let .x0; x1; : : : ; xn/ be a partition P of some closed interval J � Œa; b�. Then we
define

U.P; f / D
n�1X
j D0

Mj .f /.xj C1 � xj /:

The number U.P; f / is called the upper (Riemann) sum of f over J relative to P .
An upper sum of f over the whole of Œa; b� can be thought of geometrically as the
shaded area in Fig. 7.3. This sum is an approximation, from above, for the area A

bounded by the curve y D f .x/ and the lines x D a, x D b, and y D 0. It is clear
that if c 2 .a; b/ and P1 and P2 are partitions of Œa; c� and Œc; b�, respectively, then

U.P; f / D U.P1; f / C U.P2; f /;

where P is the partition of Œa; b� for which OP D OP1 [ OP2.
The sum

L.P; f / D
n�1X
j D0

mj .f /.xj C1 � xj /
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y

x

ba

y f(x)

x0 x1 x2 xn

Fig. 7.3 Illustration of an upper Riemann sum

y

x

ba

y f(x)

x0 x1 x2 xn

Fig. 7.4 Illustration of a lower Riemann sum

is called the lower (Riemann) sum of f over J relative to the partition P of J . If
J D Œa; b�, then this lower sum gives the shaded area in Fig. 7.4 and constitutes an
approximation for A from below. Note also that

L.P; f / D L.P1; f / C L.P2; f /;

where P1 and P2 are partitions of Œa; c� and Œc; b�, respectively, for some c 2 .a; b/,
and P is the partition of Œa; b� for which OP D OP1 [ OP2.
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We also have

U.P; f / � L.P; f / D
n�1X
j D0

Mj .f /.xj C1 � xj / �
n�1X
j D0

mj .f /.xj C1 � xj /

D
n�1X
j D0

.Mj .f / � mj .f //.xj C1 � xj /:

In addition, if f and g are functions that are defined and bounded on J and satisfy
f .x/ � g.x/ for all x 2 J , then L.P; f / � L.P; g/ and U.P; f / � U.P; g/.

Example 7.1.1. If P is the partition .a; b/ of Œa; b� determined by fa; bg, then

L.P; f / D m.b � a/

and

U.P; f / D M.b � a/;

where M D supff .x/ j x 2 Œa; b�g and m D infff .x/ j x 2 Œa; b�g. 4
The sum

S.P; f / D
n�1X
j D0

f .cj /.xj C1 � xj /; (7.1)

where cj 2 Œxj ; xj C1� for all j < n, is called a Riemann sum of f over J

relative to P and the intermediate points c0; c1; : : : ; cn�1. It gives the shaded area in
Fig. 7.5 if J D Œa; b�. Observe that the notation does not indicate the dependence
of the Riemann sum S.P; f / on the intermediate points. Whenever we need to
make this dependence explicit, then we write S.P; f; c/ instead of S.P; f /, where
c D .c0; c1; : : : ; cn�1/.

Example 7.1.2. If f .x/ D k for all x 2 Œa; b�, then

S.P; f / D
n�1X
j D0

k.xj C1 � xj /

D k.b � a/;

by the telescoping property. In this case we also have

U.P; f / D L.P; f / D S.P; f /:

4
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y

x

ba

y = f(x)

x0 x1 x2 xnc0 c1 c2 cn 1

Fig. 7.5 Illustration of a Riemann sum

If f and g are functions defined and bounded on J , and k and l are constants,
then

S.P; kf C lg/ D
n�1X
j D0

.kf .cj / C lg.cj //.xj �1 � xj /

D k

n�1X
j D0

f .cj /.xj C1 � xj / C l

n�1X
j D0

g.cj /.xj C1 � xj /

D kS.P; f / C lS.P; g/:

It is also clear that

L.P; f / � S.P; f / � U.P; f /: (7.2)

Intuitively, as the partition becomes “finer,” we expect the Riemann sum to
provide a better approximation for the required area. However, it is not always the
case that if �.P1/ � �.P2/; we necessarily obtain a better approximation for the
area by using P1 rather than P2.

Definition 7.1.2. We say that a partition Q of Œa; b� is a refinement of a partition
P if OP � OQ; that is, every division point of P is a division point of Q.

Let P and Q be partitions of Œa; b�. We define P [ Q to be the partition
determined by the set OP [ OQ of division points.

It is clear that if P and Q are partitions of Œa; b�, then P [ Q is a refinement of
both P and Q and that if Q is a refinement of P , then �.Q/ � �.P /.
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Theorem 7.1.1. Suppose P and Q are partitions of Œa; b� and that Q is a
refinement of P . Then for each function f defined and bounded on Œa; b� we have

L.P; f / � L.Q; f /

and

U.P; f / � U.Q; f /:

Proof. To establish the first inequality, it suffices to prove the result for the case
where Q contains exactly one more point than P . An easy induction then gives us
the general case.

Suppose OQ D OP [ fyg, where P D .x0; x1; : : : ; xn/ and xj < y < xj C1 for
some integer j < n. Let

m0
1 D infff .x/ j x 2 Œxj ; y�g

and

m0
2 D infff .x/ j x 2 Œy; xj C1�g:

Clearly, m0
1 � mj .f / and m0

2 � mj .f /. Thus

L.Q; f / � L.P; f / D m0
1.y�xj /Cm0

2.xj C1�y/�mj .f /.xj C1�xj /

� mj .f /.y�xj /Cmj .f /.xj C1�y/�mj .f /.xj C1�xj /

D 0:

The proof of the second inequality is similar. ut
Corollary 7.1.2. Let P and Q be any two partitions of Œa; b�. Then L.P; f / �
U.Q; f /.

Proof. Since P [ Q is a refinement of both P and Q, Theorem 7.1.1 implies that

L.P; f / � L.P [ Q; f / � U.P [ Q; f / � U.Q; f /:

ut
Exercises 7.1.

1. Prove that, for any partitions P and Q of an interval Œa; b�,

m.b � a/ � L.P; f / � U.Q; f / � M.b � a/;

where M D supff .x/ j x 2 Œa; b�g and m D infff .x/ j x 2 Œa; b�g.
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2. Consider the function f defined by f .x/ D x for all x 2 Œ0; 1�. For each positive
integer n, the partition

Pn D
�

0;
1

n
;

2

n
; : : : ; 1

�

divides the interval Œ0; 1� into n subintervals of length 1=n. Find

lim
n!1 U.Pn; f /

and

lim
n!1 L.Pn; f /:

7.2 Upper and Lower Integrals

The collections of upper and lower sums of f over Œa; b� are nonempty and bounded
below and above, respectively. Hence we can make the following definition.

Definition 7.2.1. The lower integral
R

f of a bounded function f over Œa; b� is
the least upper bound of the set of lower sums of f relative to partitions of Œa; b�.
Similarly, the upper integral

R
f of f over Œa; b� is the greatest lower bound of the

set of upper sums of f relative to partitions of Œa; b�.

From Corollary 7.1.2 it is clear that

L.P; f / �
Z

f �
Z

f � U.P; f / (7.3)

for every partition P of Œa; b�. Moreover, if f and g are bounded functions such that
f .x/ � g.x/ for all x 2 Œa; b�, then

R
f � R

g and
R

f � R
g. It is also clear from

inequalities (7.2) that

Z
f � S.P; f / �

Z
f

for every Riemann sum S.P; f / of f over Œa; b� relative to P .

Example 7.2.1. Let f W Œ0; 1� ! R be defined by

f .x/ D



0 if x is irrational;
1 if x is rational.
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For each partition P D .x0; x1; : : : ; xn/ of Œ0; 1� we have Mj .f / D 1 and
mj .f /D0 for all j < n. Hence

U.P; f / D
n�1X
j D0

.xj C1 � xj /

D xn � x0

D 1

and

L.P; f / D 0:

Thus
R

f D 0 and
R

f D 1. 4

7.3 The Riemann Integral

In this section we define the (Riemann) integral of a function and show that when
the integral exists, it coincides with both the upper and lower integrals.

Definition 7.3.1. Let f be a bounded function from Œa; b� into R. We say that the
Riemann sums of f over Œa; b� converge to a number I if for every " > 0 there is a
ı > 0 such that if P is a partition of Œa; b� with norm �.P / < ı, then

jS.P; f / � I j < "

for every Riemann sum S.P; f / of f over Œa; b� relative to P .

Remark 1. As in Proposition 2.2.3, convergence will follow if this inequality can
be established with " replaced by c" for some c > 0.

Remark 2. If the Riemann sums of f over Œa; b� converge to I , then S.P; f / < I C
" for every Riemann sum S.P; f / of f over Œa; b� relative to P . Thus

R
f < I C ",

and since " is arbitrary it follows that
R

f � I . Similarly, I � R
f .

Example 7.3.1. If f .x/ D k for each x 2 Œa; b�, then the Riemann sums of f over
Œa; b� converge to k.b�a/, the value of each such Riemann sum (cf. Example 7.1.2).

4
The proof of the following theorem is analogous to that of Theorem 2.2.2 and

therefore omitted.

Theorem 7.3.1. Let f be a bounded function on Œa; b� whose Riemann sums
converge to I1 and I2. Then I1 D I2.
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Definition 7.3.2. Let f be a function that is bounded on Œa; b�. If the Riemann sums
converge to some number I , then we say that f is (Riemann) integrable over Œa; b�.
We call I the (Riemann) integral of f over Œa; b�, and write

Z b

a

f .x/ dx D I;

or simply
R b

a
f D I or

R
f D I . The function f is called the integrand of I .

For instance, it follows from Example 7.3.1 that

Z b

a

k dx D k.b � a/:

In particular,

Z b

a

0 dx D 0:

For typographical convenience, an integral of the form
R b

a
f .x/

g.x/
dx is sometimes

written as
R b

a
f .x/ dx

g.x/
.

Theorem 7.3.2. Let f W Œa; b� ! R be integrable. Then every sequence fS.Pn; f /g
of Riemann sums for f over Œa; b� satisfying limn!1 �.Pn/ D 0 must converge toR

f .

Proof. Let I D R
f . For each " > 0, there exists ı > 0 such that

jS.P; f / � I j < "

for every partition P of Œa; b� with �.P / < ı. For every sequence fS.Pn; f /g of
Riemann sums for f over Œa; b� satisfying limn!1 �.Pn/ D 0, there is an N such
that �.Pn/ < ı whenever n � N . Therefore jS.Pn; f / � I j < " for each n � N ,
and so

lim
n!1 S.Pn; f / D I: ut

The converse of this theorem is given as an exercise.

Definition 7.3.3. We say that U.P; f / � L.P; f / converges to 0 over a closed
interval Œa; b� if for every " > 0 there is a ı > 0 such that if P is any partition of
Œa; b� satisfying �.P / < ı, then

U.P; f / � L.P; f / < ":



7.3 The Riemann Integral 343

Remark 1. Again, to establish convergence it suffices to prove the preceding
inequality with " replaced by c" for some c > 0.

Remark 2. Suppose that U.P; f / � L.P; f / converges to 0 over Œa; b�. By
inequalities (7.3) we see that

U.P; f / � L.P; f / �
Z

f �
Z

f

for every partition P of Œa; b�. However, if
R

f >
R

f , then

Z
f �

Z
f > 0;

and so we may find ı > 0 such that

U.P; f / � L.P; f / <

Z
f �

Z
f

for every partition P of Œa; b� with norm less than ı. This contradiction shows that
if U.P; f / � L.P; f / converges to 0, then

R
f D R

f .

Theorem 7.3.3. Let f be a function that is bounded on Œa; b�. Then the following
two statements are equivalent:

1. U.P; f / � L.P; f / converges to 0 over Œa; b�;
2. f is integrable over Œa; b�.

Proof. Suppose (1) holds. Given " > 0, there exists ı > 0 such that

U.P; f / � L.P; f / < "

for every partition P of Œa; b� with �.P / < ı. Now

U.P; f /�L.P; f / D
 

U.P; f / �
Z

f

!
C
 Z

f �
Z

f

!
C
 Z

f � L.P; f /

!
:

Since each term in parentheses is nonnegative,

Z
f �

Z
f � U.P; f / � L.P; f / < "

whenever �.P / < ı. As " is arbitrary,
R

f D R
f . Let I D R

f . It follows that
L.P; f / � I � U.P; f /, and as we also have L.P; f / � S.P; f / � U.P; f / for
each Riemann sum S.P; f /, we deduce that

jS.P; f / � I j � U.P; f / � L.P; f / < ";

as required.
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Conversely, suppose that (2) holds, and let I D R
f . Then given any " > 0, there

is a ı > 0 such that

I � " < S.P; f / < I C "

for each partition P of Œa; b� with norm less than ı and each Riemann sum S.P; f /

of f over Œa; b� relative to P . Fix such a P D .x0; x1; : : : ; xn/ and choose cj 2
Œxj ; xj C1� for each j < n. Since Mj .f / � " is less than the least upper bound of f

on Œxj ; xj C1�, we may choose each cj so that f .cj / > Mj .f / � ". Therefore

U.P; f / D
n�1X
j D0

Mj .f /.xj C1 � xj /

<

n�1X
j D0

f .cj /.xj C1 � xj / C "

n�1X
j D0

.xj C1 � xj /

D S.P; f / C ".b � a/

< I C ".b � a C 1/:

Similarly,

L.P; f / > I � ".b � a C 1/;

and so

U.P; f / � L.P; f / < 2".b � a C 1/

whenever �.P / < ı. Therefore U.P; f /�L.P; f / converges to 0, as required. ut
From Remarks 2 after Definitions 7.3.1 and 7.3.3 we obtain the following

corollary.

Corollary 7.3.4. If f is integrable over Œa; b�, then
R

f D R
f D R

f .

The proof of the next result is adapted from [7].

Lemma 7.3.5. Let f W Œa; b� ! R be a bounded function. Then for every " > 0

there is a ı > 0 such that

U.P; f / <

Z
f C "

and

L.P; f / >

Z
f � "

for every partition P of Œa; b� for which �.P / < ı.
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Proof. The lemma is certainly true if f .x/ D 0 for all x 2 Œa; b�, for in that case we
have U.P; f / D R

f D L.P; f / D R
f D 0. We therefore assume that f .x/ ¤ 0

for some x 2 Œa; b�.
Choose " > 0. By the definition of the upper integral there exists a partition P1

such that

U.P1; f / <

Z
f C "

2
:

Suppose that P1 contains k interior points. Theorem 7.1.1 shows that P1 may be
refined if necessary so that k > 0. Let ı be the minimum length of any subinterval
of P1. In view of Theorem 7.1.1, we may also assume that

ı <
"

6Mk
;

where M D supx2Œa;b� jf .x/j > 0.
Now let P be any partition with �.P / < ı, and let Q D P [ P1. Then

Theorem 7.1.1 shows that

U.Q; f / � U.P1; f / <

Z
f C "

2
: (7.4)

We wish to obtain an upper bound for U.P; f / � U.Q; f /. By the choice of
ı, there is at most one point of P1 in each subinterval of P . Let S be the set of
subintervals J of P such that some interior point of J belongs to P1. These are
precisely the subintervals of P that are not subintervals of Q. Rather, each such
subinterval of P is the union of just two subintervals of Q. The contributions to
U.P; f / and to U.Q; f / of each subinterval of P not in S are equal and therefore
cancel in the expression U.P; f / � U.Q; f /. Now choose an interval J D Œr; t � in
S and let s be its unique interior point in P1. Thus J1 D Œr; s� and J2 D Œs; t � are
subintervals of Q. The contribution of J to jU.P; f /j is no greater than M.t � r/ <

Mı. Similarly, the contribution of each of J1 and J2 to jU.Q; f /j is less than Mı.
Therefore the sum of these contributions to jU.P; f /j and jU.Q; f /j is less than
3Mı. Moreover since P1 has just k interior points, we see that jS j � k. Using the
triangle inequality, we therefore conclude that

U.P; f / � U.Q; f / � jU.P; f / � U.Q; f /j � 3kMı <
"

2
: (7.5)

Combining inequalities (7.4) and (7.5), we obtain

U.P; f / D U.Q; f / C U.P; f / � U.Q; f / <

Z
f C ";

and the first of the required inequalities is proved. The proof of the second is similar.
ut
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Theorem 7.3.6. A bounded function f is integrable if and only if
R

f D R
f .

Proof. We have already observed the necessity of the equation. Suppose therefore
that

R
f D R

f D I , and choose " > 0. By Lemma 7.3.5 there exists ı > 0 such
that

I � " < L.P; f / � U.P; f / < I C "

for every partition P for which �.P / < ı. Hence

U.P; f / � L.P; f / < " C " D 2";

so that f is integrable by Theorem 7.3.3. ut
Corollary 7.3.7. A bounded function defined on Œa; b� is integrable if and only if
for every " > 0 there is a partition P of Œa; b� such that

U.P; f / � L.P; f / < ": (7.6)

Proof. The necessity is clear from Theorem 7.3.3.
Given a partition P of Œa; b� satisfying Eq. (7.6), we have

L.P; f / �
Z

f �
Z

f � U.P; f /:

Hence

Z
f �

Z
f � U.P; f / � L.P; f / < ":

Since " is arbitrary, it follows that
R

f � R
f . Therefore

R
f D R

f , and so the
result is a consequence of Theorem 7.3.6. ut

The next corollary is obtained by translating the previous one into terms of
sequences and is often useful.

Corollary 7.3.8. Let f W Œa; b� ! R be a bounded function. Then f is integrable if
and only if there exists a sequence fPng of partitions of Œa; b� such that

lim
n!1.U.Pn; f / � L.Pn; f // D 0:

If f is integrable, then

Z
f D lim

n!1 U.Pn; f / D lim
n!1 L.Pn; f /:
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Theorem 7.3.9. If a function f is integrable over closed intervals Œa; c� and Œc; b�,
then f is integrable over Œa; b�.

Proof. We must show that U.P; f / � L.P; f / converges to 0 over Œa; b�. Choose
" > 0. Since f is integrable on Œa; c�, there exists ı1 > 0 such that

U.P1; f / � L.P1; f / < "

for every partition P1 of Œa; c� satisfying �.P1/ < ı1. Similarly, there exists ı2 > 0

such that

U.P2; f / � L.P2; f / < "

for every partition P2 of Œc; b� satisfying �.P2/ < ı2. Let ı D minfı1; ı2g, and
choose a partition P of Œa; b� such that �.P / < ı. We may refine it if necessary to
ensure that c 2 OP . Then OP \ Œa; c� is the set of division points of a partition P1 of
Œa; c� with norm less than ı1. Similarly, OP \ Œc; b� is the set of division points of a
partition P2 of Œc; b� with norm less than ı2. Moreover

U.P; f / D U.P1; f / C U.P2; f /

and

L.P; f / D L.P1; f / C L.P2; f /I
hence

U.P; f /�L.P; f / D U.P1; f /�L.P1; f /CU.P2; f /�L.P2; f / < "C" D 2";

as required. ut
By means of an easy inductive argument, we obtain the following corollary.

Corollary 7.3.10. Let .x0; x1; : : : ; xn/ be a partition of a closed interval Œa; b�. Let
f be a function defined on Œa; b�, and suppose that f is integrable over Œxj ; xj C1�

for each j < n. Then f is integrable over Œa; b�.

We shall show that if f is continuous on Œa; b�, then it is integrable over Œa; b�.
In fact, we prove the following more general theorem.

Theorem 7.3.11. If f is continuous on .a; b/ and bounded on Œa; b�, then f is
integrable over Œa; b�.

Proof. We suppose first that f is continuous at a (but not necessarily at b). Choose
" such that 0 < " < b � a, and let c D b � " > a. Then f is continuous on Œa; c�,
and Theorem 5.5.2 implies the existence of ı > 0 such that

jf .x/ � f .y/j < "

whenever jx � yj < ı and x; y 2 Œa; c�.
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Take any partition P D .x0; x1; : : : ; xn/ of Œa; b� with norm �.P / < ı, and refine
it if necessary so that c D xr for some r such that 0 < r < n. By Theorem 7.3.3 it
suffices to show that

U.P; f / � L.P; f / < k"

for some k > 0. Let P1 and P2 be the partitions of Œa; c� and Œc; b�, respectively,
such that cP1 and cP2 are the intersections of OP with Œa; c� and Œc; b�, respectively.
The function f is continuous on Œxj ; xj C1� for each j such that 0 � j < r , so
that Mj .f / D f .cj / for some cj 2 Œxj ; xj C1� and mj .f / D f .dj / for some
dj 2 Œxj ; xj C1�. Thus

U.P1; f / � L.P1; f / D
r�1X
j D0

.Mj .f / � mj .f //.xj C1 � xj /

D
r�1X
j D0

.f .cj / � f .dj //.xj C1 � xj /

< "

r�1X
j D0

.xj C1 � xj /

D ".c � a/:

Since f is bounded on Œc; b�, there exists M such that jf .x/j < M for all x 2
Œc; b�. Note also that

Mj .f / � mj .f / D jMj .f / � mj .f /j � jMj .f /j C jmj .f /j � 2M

for each j such that r � j < n, by the triangle inequality. It follows that

U.P2; f / � L.P2; f / D
n�1X
j Dr

.Mj .f / � mj .f //.xj C1 � xj /

� 2M.b � c/

D 2M":

We therefore deduce that

U.P; f / � L.P; f / D U.P1; f / � L.P1; f / C U.P2; f / � L.P2; f /

< .c � a/" C 2M"

D .c � a C 2M/";

as required.
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We have now proved the theorem in the case where f is continuous at a.
Similarly, the theorem holds if f is continuous at b. The remaining case is dealt with
by noting that f is continuous at c and applying these results and Theorem 7.3.9 to
the intervals Œa; c� and Œc; b�. ut
Corollary 7.3.12. Let f be a function that is continuous over an interval Œa; b�

except at a finite number of points. If f is bounded on Œa; b�, then f is integrable
over Œa; b�.

Proof. Let P be a partition .x0; x1; : : : ; xn/ of Œa; b� such that OP contains all
points in Œa; b� where f is not continuous. By Theorem 7.3.11, f is integrable on
Œxj ; xj C1� for each j < n. Now apply Corollary 7.3.10. ut

By applying Theorems 5.3.1 and 7.3.11, we also obtain the following result.

Corollary 7.3.13. If a function f is continuous over an interval Œa; b�, then f is
integrable over Œa; b�.

Lebesgue showed that a function may be discontinuous at infinitely many points
yet be integrable.

Example 7.3.2. Consider the function f W Œ0; 1� ! R defined by

f .x/ D
(

x
�

1
x

˘
if x ¤ 0;

0 if x D 0:

Thus for each

x 2
�

1

n C 1
;

1

n



;

where n 2 N, we have b1=xc D n. In this case it follows that f .x/ D nx, so that

n

n C 1
< f .x/ � 1:

Thus f is bounded on .1=.n C 1/; 1=n� for all n 2 N. Consequently it is bounded
on Œ1=n; 1� for all n 2 N. Moreover

lim
x!

�
1

nC1

�C
f .x/ D n

n C 1
< 1;

whereas

f

�
1

n C 1

�
D 1

n C 1
bn C 1c D 1:

Hence f is discontinuous at 1=.n C 1/ for each n 2 N.
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Choose " > 0 and N 2 N so large that 1=N < ". By Corollary 7.3.12, f

is integrable on Œ1=N; 1�. Let P D .x0; x1; : : : ; xn/ be a partition of Œ0; 1�. By
Theorem 7.3.3, we may refine P so that xk D 1=N , for some k < n, and

n�1X
j Dk

.Mj .f / � mj .f //.xj C1 � xj / < ":

Now for each x < 1=N we have x 2 .1=.M C 1/; 1=M� for some M 2 N such that
M � N , so that

1 � f .x/ >
M

M C 1
� N

N C 1

since the sequence fn=.n C 1/g is increasing. [This observation is easily checked
for all n > 0 by dividing both sides of the inequality

n2 > n2 � 1 D .n � 1/.n C 1/

by n.n C 1/.] As

N

N C 1
>

N � 1

N
D 1 � 1

N
;

it follows that

k�1X
j D0

.Mj .f / � mj .f //.xj C1 � xj / <

k�1X
j D0

�
1 �

�
1 � 1

N

��
.xj C1 � xj /

D 1

N
.xk � x0/

D 1

N 2

< "2:

We conclude that

U.P; f / � L.P; f / < "2 C " D "." C 1/I

therefore f is integrable over Œ0; 1�. 4
Two more important classes of integrable functions are the increasing and

decreasing bounded functions.
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Theorem 7.3.14. A bounded function that is increasing on an interval Œa; b� or
decreasing on Œa; b� is also integrable over Œa; b�.

Proof. Let f be a bounded function that is increasing on Œa; b�. Given " > 0, let P

be a partition .x0; x1; : : : ; xn/ of Œa; b� with �.P / < ". Then

U.P; f / � L.P; f / D
n�1X
j D0

.Mj .f / � mj .f //.xj C1 � xj /

< "

n�1X
j D0

.f .xj C1/ � f .xj //

D ".f .b/ � f .a//:

Moreover f .b/ > f .a/ since f is increasing on Œa; b�. Thus U.P; f / � L.P; f /

converges to 0, and so f is integrable over Œa; b�.
The argument is similar if f is decreasing on Œa; b�. ut

Exercises 7.2.

1. Let f W Œa; b� ! R. Prove that the following statements are equivalent:

(a) f is integrable over Œa; b�.
(b) For each " > 0 there exists ı > 0 such that if P and Q are partitions of Œa; b�

with norm less than ı, then

jS.P; f / � S.Q; f /j < "

for all Riemann sums S.P; f / and S.Q; f / of f over Œa; b� relative to P

and Q, respectively.

This result is known as the Cauchy criterion for integrability.
2. Let f W Œa; b� ! R. Suppose that for each " > 0 there exist integrable functions

g and h from Œa; b� to R such that

Z
.g � h/ < "

and

g.x/ � f .x/ � h.x/

for all x 2 Œa; b�. Show that f is integrable.
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This result is called the sandwich theorem for integrals. In particular it shows
that if there are integrable functions g and h mapping Œa; b� into R such that
g.x/ � f .x/ � h.x/ for all x 2 Œa; b� and

R
g D R

h D I , then f is integrable
and

R
f D I .

3. Let

fn.x/ D nxn�1

1 C x

for all n > 1 and x ¤ �1. Define An D R 1

0
fn for all n > 1, and show that

lim
n!1 An D 1

2
:

[Hint: nxn�1=2 � fn.x/ � nxn�2=2 for all n > 2.]
4. Let f W Œ0; 1� ! R be defined by

f .x/ D
(

1 if x D 1
n

for some n 2 N;

0 otherwise:

Show that f is integrable and
R

f D 0. [Hint: Choose " > 0 and an integer
m > 1=". Let

�
0;

1

m
; x2; x3; : : : ; x2m�1; 1

�

be a partition P of Œ0; 1� satisfying the inequalities

x2k >
1

m � k C 1
> x2k�1

and

x2k � x2k�1 <
"

m

for each integer k such that 1 < k < m. Compute U.P; f / � L.P; f /.]
5. Let f W Œa; b� ! R be a function. Suppose that any sequence fS.Pn; f /g of

Riemann sums of f over Œa; b� is convergent if limn!1 �.Pn/ D 0. Prove that
f is integrable.

This result is the converse of Theorem 7.3.2 and therefore completes a
sequential characterization of integrability.
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7.4 Basic Properties of Integrals

The next theorem summarizes the fundamental properties of integrals. We prepare
for it with the following lemma.

Lemma 7.4.1. Let f be a real-valued function defined on an interval Œa; b�, and let
M D sup Rf and m D inf Rf . Define

g.x; y/ D f .y/ � f .x/

for all .x; y/ 2 D2
f . Then

sup Rg D M � m:

Proof. For each x; y 2 Œa; b� we have f .y/ � M and f .x/ � m. Hence

g.x; y/ � M � m;

so that M � m is an upper bound of Rg .
Now choose " > 0. We must show that M � m � " is not an upper bound of Rg .

Since M D sup Rf , there exists d 2 Œa; b� such that

f .d/ > M � "

2
:

Similarly there exists c 2 Œa; b� such that

f .c/ < m C "

2
:

Hence

g.c; d/ D f .d/ � f .c/ > M � m � ";

as required. ut
Theorem 7.4.2. Let f; g be functions and Œa; b� an interval.

1. If f is integrable over Œa; b�, then for every constant k, the function kf is also
integrable over Œa; b� and

Z b

a

kf D k

Z b

a

f:

2. If f and g are integrable over Œa; b�, then so is f C g and
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Z b

a

.f C g/ D
Z b

a

f C
Z b

a

g:

3. If f is integrable over Œa; b� and c 2 .a; b/, then f is integrable over Œa; c� and
Œc; b� and

Z b

a

f D
Z c

a

f C
Z b

c

f:

4. If f and g are integrable over Œa; b�, then so is fg.

Proof. 1. The result is clear if k D 0. Suppose therefore that k ¤ 0.
Let .x0; x1; : : : ; xn/ be a partition P of Œa; b�. Choose cj 2 Œxj ; xj C1� for each

j < n, and let c D .c0; c1; : : : ; cn�1/. It is immediate from Eq. (7.1) that

S.P; kf ; c/ D kS.P; f; c/:

The desired result now follows from the observation that if

jS.P; f; c/ � I j < ";

then

jS.P; kf ; c/ � kIj D jkjjS.P; f; c/ � I j < jkj":

2. Let I1 D R b

a
f and I2 D R b

a
g. Choose " > 0. There is a ı1 > 0 such that if P is

a partition of Œa; b� with norm less than ı1, then

jS.P; f / � I1j < "

for every Riemann sum S.P; f / of f over Œa; b� relative to P . Similarly, there
is a ı2 > 0 such that

jS.P; g/ � I2j < "

for every partition P of Œa; b� with �.P / < ı2 and every Riemann sum S.P; g/

of g over Œa; b� relative to P . Let ı D minfı1; ı2g, and choose a partition P of
Œa; b� with norm less than ı. Let P D .x0; x1; : : : ; xn/, choose cj 2 Œxj ; xj C1�

for each j < n, and let c D .c0; c1; : : : ; cn�1/. Since �.P / < ı1 and �.P / < ı2,
we have

jS.P; f C g; c/ � .I1 C I2/j D jS.P; f; c/ C S.P; g; c/ � .I1 C I2/j
� jS.P; f; c/ � I1j C jS.P; g; c/ � I2j
< 2";

as required.
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3. Choose " > 0. Then

n�1X
j D0

.Mj .f / � mj .f //.yj C1 � yj / < "

for every partition Q D .y0; y1; : : : ; yn/ of Œa; b� with small enough norm.
Choose such a partition Q with yl D c for some l . Then we have both

l�1X
j D0

.Mj .f / � mj .f //.yj C1 � yj / < "

and

n�1X
j Dl

.Mj .f / � mj .f //.yj C1 � yj / < ";

and we deduce that f is integrable over both Œa; c� and Œc; b�.
Let

R b

a
f D I ,

R c

a
f D I1, and

R b

c
f D I2. There exists ı0 > 0 such that

jS.P; f / � I j < "

for every Riemann sum S.P; f / of f over Œa; b� relative to any partition P of
Œa; b� satisfying �.P / < ı0. Similarly, there exist ı1 > 0 such that

jS.P; f / � I1j < "

for every Riemann sum S.P; f / of f over Œa; c� relative to any partition P of
Œa; c� satisfying �.P / < ı1 and ı2 > 0 such that

jS.P; f / � I2j < "

for every Riemann sum S.P; f / of f over Œc; b� relative to any partition P

of Œc; b� satisfying �.P / < ı2. Let ı D minfı0; ı1; ı2g, and let P1 and P2

be partitions of Œa; c� and Œc; b�, respectively, with norm less than ı. Let P

be the partition of Œa; b� for which OP D cP1 [ cP2; then �.P / < ı. Let
P1 D .x0; x1; : : : ; xk/ and P2 D .xk; xkC1; : : : ; xn/. Choose cj 2 Œxj ; xj C1�

for each j < n, and let c D .c0; c1; : : : ; cn�1/, c0 D .c0; c1; : : : ; ck�1/ and
c00 D .ck; ckC1; : : : ; cn�1/. Then

S.P; f; c/ D S.P1; f; c0/ C S.P2; f; c00/:
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Hence

jI � .I1 C I2/j
D jI � S.P; f; c/ C S.P1; f; c0/ C S.P2; f; c00/ � .I1 C I2/j
� jI � S.P; f; c/j C jS.P1; f; c0/ � I1j C jS.P2; f; c00/ � I2j
< 3":

As " is arbitrary, we conclude that I D I1 C I2, as required.
4. First we prove the result for the special case where f D g. Choose " > 0. There

exists ı > 0 such that

U.P; f / � L.P; f / D
n�1X
j D0

.Mj .f / � mj .f //.xj C1 � xj / < "

for all partitions P D .x0; x1; : : : ; xn/ of Œa; b� with norm less than ı. Choose
such a partition P and let

M D supfjf .x/j j x 2 Œa; b�g:

We may assume that M > 0, the required result being clear if f .x/ D 0 for all
x 2 Œa; b�. Note that

Mj .f 2/ � mj .f 2/ D supff 2.cj / � f 2.dj / j fcj ; dj g � Œxj ; xj C1�g

for each j < n, by Lemma 7.4.1. Moreover

f 2.cj / � f 2.dj / D .f .cj / C f .dj //.f .cj / � f .dj //

� .jf .cj /j C jf .dj /j/jf .cj / � f .dj /j
� 2M jf .cj / � f .dj /j;

and so

Mj .f 2/ � mj .f 2/ � 2M � supfjf .cj / � f .dj /j j fcj ; dj g � Œxj ; xj C1�g
D 2M � supff .cj / � f .dj / j fcj ; dj g � Œxj ; xj C1�g
D 2M.Mj .f / � mj .f //;

again by Lemma 7.4.1. Hence

U.P; f 2/ � L.P; f 2/ � 2M.U.P; f / � L.P; f //

< 2M"
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whenever �.P / < ı. Thus U.P; f 2/ � L.P; f 2/ converges to 0 and so f 2 is
integrable over Œa; b�.

The general case follows from this special case, the equation

fg D .f C g/2 � .f � g/2

4

and parts (1) and (2).
ut

We now introduce the conventions thatZ a

a

f D 0

for every a, and

Z b

a

f D �
Z a

b

f

whenever b < a. With these conventions we can extend Theorem 7.4.2(3) as
follows. In this theorem no assumption is made about the sizes of a, b, and c.

Theorem 7.4.3. If a; b; c are any real numbers and f is integrable over a closed
interval containing a; b; c, then

Z b

a

f D
Z c

a

f C
Z b

c

f:

Proof. The definitions above imply the theorem immediately if a D b, a D c, or
b D c. If c < a < b, then

Z b

c

f D
Z a

c

f C
Z b

a

f;

so that

Z b

a

f D
Z b

c

f �
Z a

c

f D
Z c

a

f C
Z b

c

f:

The argument is similar if a < b < c. The case where a < c < b is covered by
Theorem 7.4.2(3). If b < a, then

Z b

a

f D �
Z a

b

f D �
Z c

b

f �
Z a

c

f D
Z c

a

f C
Z b

c

f: ut
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Theorem 7.4.4. If m � f .x/ � M for all x 2 Œa; b� and f is integrable over
Œa; b�, then

m.b � a/ �
Z b

a

f � M.b � a/:

Proof. Let P be a partition .x0; x1; : : : ; xn/ of Œa; b�. Since

U.P; f / D
n�1X
j D0

Mj .f /.xj C1 � xj /

� M

n�1X
j D0

.xj C1 � xj /

D M.b � a/;

it follows that

Z
f �

Z
f � M.b � a/:

The remaining inequality is proved similarly. ut
The following corollary is immediate.

Corollary 7.4.5. If f .x/ � 0 for all x 2 Œa; b� and f is integrable over Œa; b�, then

Z b

a

f � 0:

Corollary 7.4.6. If f .x/ � g.x/ for all x 2 Œa; b� and f and g are integrable over
Œa; b�, then

Z b

a

f �
Z b

a

g:

Proof. This result is immediate from the fact that

0 �
Z b

a

.f � g/ D
Z b

a

f �
Z b

a

g: ut
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Corollary 7.4.7. Suppose that f is continuous on Œa; b�. If f .x/ � 0 for all x 2
Œa; b� and f .x/ > 0 for some x 2 Œa; b�, then

Z b

a

f > 0:

Proof. The continuous function f is integrable on Œa; b�. Choose c 2 Œa; b� such
that f .c/ > 0, and without loss of generality suppose that c ¤ b. By Theorem 4.4.6
and the continuity of f there exists a number ı 2 .0; b�c/ such that f .x/ � f .c/=2

for all x 2 Œc; d �, where d D c C ı. Hence

Z d

c

f � f .c/

2
.d � c/ > 0;

and so

Z b

a

f D
Z c

a

f C
Z d

c

f C
Z b

d

f > 0;

since
R c

a
f � 0 and

R b

d
f � 0. ut

If f W Œa; b� ! R is a function, then we define jf j to be the function given by

jf j.x/ D jf .x/j

for all x 2 Œa; b�.

Theorem 7.4.8. If a function f is integrable over Œa; b�, then so is jf j. Moreover

ˇ̌
ˇ̌̌Z b

a

f

ˇ̌
ˇ̌̌ �

Z b

a

jf j:

Proof. Choose " > 0. There exists a partition P D .x0; x1; : : : ; xn/ of Œa; b� such
that

U.P; f / � L.P; f / < ":

For all j < n and all t; t 0 2 Œxj ; xj C1� we have

ˇ̌jf .t/j � jf .t 0/jˇ̌ � jf .t/ � f .t 0/j
� supff .x/ � f .x0/ j fx; x0g � Œxj ; xj C1�g
D Mj .f / � mj .f /;
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by Lemma 7.4.1. Hence

Mj .jf j/ � mj .jf j/ D supfjf .x/j � jf .x0/j j fx; x0g � Œxj ; xj C1�g
� Mj .f / � mj .f /;

so that

U.P; jf j/ � L.P; jf j/ � U.P; f / � L.P; f / < ":

We conclude that jf j is integrable over Œa; b�. The desired inequality follows
from Corollary 7.4.6, since j R b

a
f j D ˙ R b

a
f . ut

Theorem 7.4.9 (Mean-Value Theorem for Integrals). Suppose that f and g are
continuous on Œa; b� and that g.x/ � 0 for all x 2 Œa; b�. Then there exists � 2 Œa; b�

such that

Z b

a

fg D f .�/

Z b

a

g:

Proof. Since f is continuous on Œa; b�, f .x/ attains a minimum m and a maximum
M on Œa; b�. As g.x/ � 0 for all x 2 Œa; b�, it follows that

m

Z
g �

Z
fg � M

Z
g:

Therefore the theorem holds for every � 2 Œa; b� if
R

g D 0. In the remaining case
we have

m �
R

fgR
g

� M:

By the intermediate-value theorem there exists � 2 Œa; b� such that

f .�/ D
R

fgR
g

;

and the result follows. ut
By taking g.x/ D 1 for all x, we obtain the following corollary.

Corollary 7.4.10. If f is continuous on Œa; b�, then there exists � 2 Œa; b� such that

Z b

a

f D f .�/.b � a/:
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Fig. 7.6 Illustration for
Corollary 7.4.10

x
ba ξ

f (x)

Remark. This corollary asserts that, for a function f that is continuous on Œa; b�,
the area bounded by the curve y D f .x/ and the lines x D a, x D b, and y D 0 is
equal to the area of some rectangle with side Œa; b� (see Fig. 7.6).

Exercises 7.3.

1. For all x in a closed interval Œa; b�, define

f C.x/ D maxff .x/; 0g

and

f �.x/ D minff .x/; 0g:

Show that f is integrable over Œa; b� if both f C and f � are.
2. Prove that if both f and g are integrable over a closed interval Œa; b�, then so are

maxff; gg and minff; gg. [Hint: Note that

maxff; gg D 1

2
.f C g C jf � gj/:

Find a similar formula for minff; gg.]
3. Let f W Œa; b� ! R be continuous. Show that

lim
p!1

�Z 1

0

jf .x/jp
�1=p

D max
x2Œ0;1�

jf .x/j

and

lim
p!�1

�Z 1

0

jf .x/jp
�1=p

D min
x2Œ0;1�

jf .x/j:
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4. Let f W Œa; b� ! R be a continuous function, and suppose that f .x/ � 0 for all
x 2 Œa; b�. Show that

R
f D 0 if and only if f .x/ D 0 for all x 2 Œa; b�.

5. Let f W Œa; b� ! R be an integrable function such that f .x/ � 0 for all x 2 Œa; b�.
Show that

p
f is integrable on Œa; b�.

7.5 The Fundamental Theorem of Calculus

This section develops some techniques of integration. First we establish a relation-
ship between the concepts of an integral and an antiderivative.

Theorem 7.5.1 (Fundamental Theorem of Calculus). Let f be continuous on
Œa; b�, and for each x 2 Œa; b� define

F.x/ D
Z x

a

f:

Then F 0.x/ D f .x/ for all x 2 Œa; b�. Moreover, if G is any function on Œa; b� such
that G0 D f , then

Z b

a

f D G.b/ � G.a/:

Proof. Since f is continuous on Œa; b�, the function F indeed exists. We show that
F 0.t/ D f .t/ for all t 2 Œa; b�. By definition,

F 0.t/ D lim
x!t

F .x/ � F.t/

x � t

D lim
x!t

1

x � t

�Z x

a

f �
Z t

a

f

�

D lim
x!t

1

x � t

Z x

t

f

D lim
x!t

f .�/.x � t /

x � t

D lim
x!t

f .�/

for some number � between x and t . (In the penultimate step of the above calculation
we used the mean-value theorem for integrals.)

In order to prove that F 0.t/ D f .t/, it therefore suffices to show that

lim
x!t

f .�/ D f .t/:
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Choose " > 0. Since f is continuous at t , there exists ı > 0 such that jf .x/ �
f .t/j < " whenever jx � t j < ı. Choose x such that 0 < jx � t j < ı. Since �

lies between x and t , we have j� � t j � jx � t j < ı, and so jf .�/ � f .t/j < ", as
required.

Now suppose G is another antiderivative of f . Then G0.x/ D F 0.x/ D f .x/ for
all x 2 Œa; b�, so that

.F � G/0.x/ D 0

for each such x. Hence F.x/ � G.x/ is a constant. Thus

G.b/ � G.a/ D F.b/ � F.a/ D
Z b

a

f �
Z a

a

f D
Z b

a

f:
ut

We sometimes write F.b/ � F.a/ as F.x/jba.

Example 7.5.1. Since F 0.x/ D 1=x if F.x/ D log x for all x > 0, we have

Z x

1

dt

t
D F.x/ � F.1/ D log x

for all x > 0. This integral is sometimes used as a definition of the logarithm
function. 4
Example 7.5.2. Let

f .x/ D xnC1

n C 1

for all x 2 Œa; b�, where n ¤ �1. Then

f 0.x/ D 1

n C 1
� .n C 1/xn D xn

for all such n. The fundamental theorem therefore implies that

Z b

a

xn dx D xnC1

n C 1

ˇ̌̌
ˇ
b

a

for all n ¤ �1. Similar arguments show that

Z b

a

sin x dx D � cos xjba;

Z b

a

cos x dx D sin xjba;
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and

Z b

a

ex dx D exjba: 4
The fundamental theorem of calculus asserts that if we differentiate the integral

of a continuous function, then we recover the original function. It is pertinent to ask
the following question: Is it always true that

Z b

a

f 0 D f .b/ � f .a/‹

The answer is no, for f 0 might not be integrable.

Example 7.5.3. Let f be defined by

f .x/ D
(

x2 sin 1
x2 if x ¤ 0;

0 if x D 0:

Then

f 0.x/ D 2x sin
1

x2
� 2

x
cos

1

x2

for all x ¤ 0. It is easy to see that f 0 is not integrable on any interval that contains
0 and has positive length as it is not bounded on any such interval. 4

However, we do have the following theorem.

Theorem 7.5.2. If f is differentiable on Œa; b� and f 0 is integrable over Œa; b�, then

Z b

a

f 0 D f .b/ � f .a/:

Proof. Take any partition P D .x0; x1; : : : ; xn/ of Œa; b�. By the mean-value
theorem, there exist numbers �0; �1; : : : ; �n�1 such that �j 2 .xj ; xj C1/ and

f .xj C1/ � f .xj / D f 0.�j /.xj C1 � xj /

for each j < n. Therefore

L.P; f 0/ D
n�1X
j D0

mj .f 0/.xj C1 � xj /
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�
n�1X
j D0

f 0.�j /.xj C1 � xj /

D
n�1X
j D0

.f .xj C1/ � f .xj //

D f .b/ � f .a/;

by the telescoping property. Similarly,

U.P; f 0/ � f .b/ � f .a/:

Hence

Z
f 0 � f .b/ � f .a/ �

Z
f 0:

As f 0 is integrable over Œa; b�, it follows that

Z b

a

f 0 D f .b/ � f .a/:

ut
Theorem 7.5.3. Suppose that

f .x/ D
1X

j D0

aj xj

for all x such that jxj < r , where r is the radius of convergence of the power series
and is nonzero. Then f is integrable over every closed subinterval of .�r; r/, and
for each x 2 .�r; r/ we have

Z x

0

f D
1X

j D0

aj

j C 1
xj C1: (7.7)

Proof. Being differentiable at all x 2 .�r; r/ by Theorem 6.7.2, f is continuous,
and therefore integrable, on every closed subinterval of .�r; r/.

By Theorem 6.7.1, r is also the radius of convergence for the series on the right-
hand side of Eq. (7.7). We may therefore define

G.x/ D
1X

j D0

aj

j C 1
xj C1
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for each x 2 .�r; r/. It follows from Theorem 6.7.2 that G is differentiable on
.�r; r/ and G0.x/ D f .x/ for each x 2 .�r; r/. We conclude that G0 is integrable
over every closed subinterval of .�r; r/. Therefore Theorem 7.5.2 shows that

Z x

0

f D G.x/ � G.0/ D G.x/: ut

The technique implicit in the following theorem is called integration by
substitution.

Theorem 7.5.4. Let g be a function that is differentiable on an interval Œc; d � and
assume that g0 is continuous on Œc; d �. Let f be a function that is continuous on the
range of g. Suppose that g.c/ D a and g.d/ D b. Then

Z b

a

f D
Z d

c

.f ı g/g0:

Proof. Note that since f ı g and g0 are continuous, .f ı g/g0 is also continuous,
and therefore integrable, over every interval on which it is defined.

For each x 2 Rg define

H.x/ D
Z x

a

f

and for each x 2 Œc; d � let

G.x/ D
Z x

c

.f ı g/g0:

Then, by the chain rule and the fundamental theorem of calculus,

.H ı g/0.x/ D H 0.g.x//g0.x/

D f .g.x//g0.x/

D G0.x/:

Hence the functions H ı g and G differ by a constant, and so

G.d/ � G.c/ D H.g.d// � H.g.c// D H.b/ � H.a/:

The required result now follows since H.a/ D G.c/ D 0. ut
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Example 7.5.4. In order to evaluate

Z d

c

dx

x log x
;

where c > 1 and d > 1, set f .x/ D 1=x for all x ¤ 0 and g.x/ D log x for all
x > 0. Then g0.x/ D 1=x for all x > 0. For all such x it follows that

1

x log x
D g0.x/

g.x/
D f .g.x//g0.x/:

Hence

Z d

c

dx

x log x
D
Z log d

log c

dx

x

D log xjlog d
log c

D log log d � log log c:
4

The use of the next theorem is a technique called integration by parts.

Theorem 7.5.5. If f and g are both differentiable over an interval Œa; b� and f 0
and g0 are integrable over Œa; b�, then

Z b

a

fg0 D f .b/g.b/ � f .a/g.a/ �
Z b

a

f 0g:

Proof. It is clear that both the integrals concerned exist. Let

F.x/ D f .x/g.x/

for all x 2 Œa; b�. Then

f .b/g.b/ � f .a/g.a/ D F.b/ � F.a/

D
Z

F 0

D
Z

.fg0 C f 0g/

D
Z

fg0 C
Z

f 0g;

and the result follows. ut
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Example 7.5.5. For each nonnegative integer n, define

In D
Z �=2

0

sinn x dx:

For instance, I0 D �=2 and

I1 D
Z �=2

0

sin x dx D � cos xj�=2
0 D 1:

For the case where n > 1, put f .x/ D sinn�1 x and g.x/ D � cos x for all x. Thus

In D � sinn�1 x cos x
ˇ̌�=2

0
C .n � 1/

Z �=2

0

sinn�2 x cos2 x dx

D .n � 1/

Z �=2

0

sinn�2.x/.1 � sin2 x/ dx

D .n � 1/.In�2 � In/:

Hence

nIn D .n � 1/In�2;

so that

In D n � 1

n
In�2:

Easy inductions now show that

I2n D �

2

nY
mD1

2m � 1

2m

and

I2nC1 D
nY

mD1

2m

2m C 1

for each positive integer n. For example,

Z �=2

0

sin2 x dx D �

4
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and

Z �=2

0

sin3 x dx D 2

3
:

Note also that

Z �=2

0

cosn x dx D In

for every nonnegative integer n. This formula can be verified either similarly or by
replacing x with �=2 � x. 4

Integration by parts has a number of interesting applications. We illustrate this
point by using the preceding example to derive a famous formula due to Wallis:

lim
n!1

22n.nŠ/2

.2n/Š
p

2n
D
r

�

2
: (7.8)

When 0 � x � �=2 and n 2 N, we have

0 � sin2nC1 x � sin2n x � sin2n�1 x:

Using the notation of Example 7.5.5, we therefore deduce that

0 � I2nC1 � I2n � I2n�1;

and so

nY
mD1

2m

2m C 1
� �

2

nY
mD1

2m � 1

2m
�

n�1Y
mD1

2m

2m C 1
D 2n C 1

2n

nY
mD1

2m

2m C 1
:

Applying the result

nY
mD1

.2m � 1/.2m C 1/ D 1 � 3 � 3 � 5 � : : : � .2n � 1/.2n C 1/

D .2n C 1/

nY
mD1

.2m � 1/2;

we find that

�

2
�

nY
mD1

2m � 2m

.2m � 1/.2m C 1/
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D 1

2n C 1

nY
mD1

.2m/2

.2m � 1/2

D Pn

2n C 1
;

where

Pn D
 

nY
mD1

2m

2m � 1

!2

for all positive integers n. Similarly,

�

2
� 2n C 1

2n
� Pn

2n C 1
D Pn

2n
:

In other words,

an � �

2
� bn;

where an D Pn=.2n C 1/ and bn D Pn=.2n/ for each positive integer n. Therefore

bn � an D Pn

2n
� Pn

2n C 1
D Pn

2n.2n C 1/
D an

2n
� �

4n
;

so that bn � an ! 0 as n ! 1 by the sandwich theorem. As

0 � �

2
� an � bn � an;

the sandwich theorem also shows that

lim
n!1 an D lim

n!1 bn D �

2
:

Since

nY
mD1

2m D 2 � 4 � : : : � .2n/ D 2nnŠ

and

nY
mD1

.2m � 1/ D 1 � 3 � : : : � .2n � 1/ D .2n/Š

2 � 4 � : : : � .2n/
D .2n/Š

2nnŠ
;
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we find that

bn D 1

2n

 
nY

mD1

2m

2m � 1

!2

D 1

2n

�
22n.nŠ/2

.2n/Š

�2

:

Therefore r
�

2
D lim

n!1
p

bn

D lim
n!1

22n.nŠ/2

p
2n.2n/Š

;

as required.
We can use Wallis’s formula to establish a formula, attributed to Stirling, for

approximating factorials:

nŠ 	
p

2�n
2nC1

2

en
:

If we write

cn D nŠen

n
2nC1

2

for all positive integers n, then our goal is to show that

lim
n!1 cn D p

2�: (7.9)

Note that

cn

cnC1

D nŠen

n
2nC1

2

� .n C 1/
2nC3

2

.n C 1/ŠenC1

D 1

e

�
n C 1

n

� 2nC1
2

:

Now define dn D log cn for all n 2 N. Then

dn � dnC1 D log cn � log cnC1

D log
cn

cnC1

D 2n C 1

2
log

n C 1

n
� 1:
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Next we introduce a change of variable. Let

t D 1

2n C 1
:

Noting that 0 < t < 1, we have

2n C 1 D 1

t
;

so that

n D 1

2

�
1

t
� 1

�
D 1 � t

2t

and

n C 1 D 1 � t

2t
C 1 D 1 C t

2t
I

hence

n C 1

n
D 1 C t

1 � t
:

Using Eq. (6.18), we therefore find that

dn � dnC1 D 1

2t
log

1 C t

1 � t
� 1

D 1

2t
� 2

1X
j D0

t2j C1

2j C 1
� 1

D
1X

j D1

t2j

2j C 1

> 0:

Therefore the sequence fdng is decreasing. In order to show that it is bounded below,
we resume the calculation above:

dn � dnC1 D
1X

j D1

t2j

2j C 1

< t2

1X
j D1

t2j �2
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D t 2

1X
j D0

t2j

D t 2

1 � t 2

D 1

.2n C 1/2

�
1 � 1

.2nC1/2

�

D 1

.2n C 1/2 � 1

D 1

4n.n C 1/

D 1

4n
� 1

4.n C 1/
:

Hence

dn � 1

4n
� dnC1 C 1

4.n C 1/
< 0

and we conclude that the sequence fdn � 1=.4n/g is increasing. Therefore

dn > dn � 1

4n
� d1 � 1

4

for all positive integers n.
Decreasing but bounded below, the sequence fdng converges. Let C be its limit.

Then

lim
n!1 cn D lim

n!1 edn D eC ;

and it remains only to show that eC D p
2� . We have already proved that

nŠ 	 n
2nC1

2 eC �n:

Using Wallis’s formula, we therefore find that

r
�

2
	 22nn2nC1e2C �2n

.2n/
4nC1

2 eC �2n
p

2n
D eC

2
:

Consequently eC 	 p
2� , and the required equation follows because C is constant.

The proof of the next theorem also uses integration by parts.
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Theorem 7.5.6. Let I be an open interval and let a 2 I . Let f W I ! R be
a function. Let n be a nonnegative integer and suppose that f .j / exists and is
continuous for each nonnegative integer j � n C 1. Then for each x 2 I we
have

f .x/ D Pn.x/ C Rn.x/;

where

Pn.x/ D
nX

j D0

f .j /.a/

j Š
.x � a/j ;

Rn.x/ D 1

nŠ

Z x

a

.x � t /nf .nC1/.t/ dt

and 00 D 1.

Proof. For every j 2 f0; 1; : : : ; n C 1g, the function f .j / is continuous, and
therefore integrable, on the closed interval with ends a and x. Consequently Rn.x/

exists, by Theorem 7.4.2(4).
We proceed by induction on n. First, for all x 2 I we have P0.x/ D f .a/ and

R0.x/ D
Z x

a

f 0.t/ dt D f .x/ � f .a/;

by Theorem 7.5.2. Therefore the theorem holds for n D 0.
Suppose therefore that n > 0 and the theorem holds for n � 1. Integration by

parts yields

Rn.x/ D 1

nŠ

�
.x � t /nf .n/.t/

ˇ̌x
a

C n

Z x

a

.x � t /n�1f .n/.t/ dt

�

D �f .n/.a/

nŠ
.x � a/n C 1

.n � 1/Š

Z x

a

.x � t /n�1f .n/.t/ dt

for all x 2 I . By the inductive hypothesis, it follows that

f .x/ D Pn�1.x/ C Rn�1.x/

D
n�1X
j D0

f .j /.a/

j Š
.x � a/j C 1

.n � 1/Š

Z x

a

.x � t /n�1f .n/.t/ dt

D
n�1X
j D0

f .j /.a/

j Š
.x � a/j C f .n/.a/

nŠ
.x � a/n C Rn.x/
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D
nX

j D0

f .j /.a/

j Š
.x � a/j C 1

nŠ

Z x

a

.x � t /nf .nC1/.t/ dt;

as required. ut
In 1947, Niven proved that � is irrational. In 1986, Parks proved a more general

result from which the irrationality of both � and e follows. We present this result
now. Its proof uses integration by parts.

Theorem 7.5.7. Let c be a positive number and let f W Œ0; c� ! R be a differen-
tiable function such that f .x/ > 0 for all x 2 .0; c/. Suppose there exist functions
f1; f2; : : : that are differentiable on Œ0; c� and satisfy the conditions that f 0

1 D f ,
f 0

k D fk�1 for all k > 1 and fk.0/ and fk.c/ are integers for all k. Then c is
irrational.

Proof. Let S be the set of all real polynomials p such that p.k/.0/ and p.k/.c/ are
integers for all nonnegative integers k. In other words, p and all its derivatives yield
integers when evaluated at 0 and at c. The set S is closed under multiplication: If
p and q are polynomials in S , then so is pq, for it is easily seen by induction that
.pq/.k/ is a sum of products of derivatives of p and q. (We consider p and q to be
zeroth derivatives of themselves.) Note also that p 2 S if p.0/ and p.c/ are integers
and p0 2 S .

We show next that if p 2 S , then
R c

0
fp is an integer. To this end, we first claim

that it is an integer if and only if
R c

0
f1p0 is. Indeed, using integration by parts, we

find that
Z c

0

fp D f1.c/p.c/ � f1.0/p.0/ �
Z c

0

f1p0:

From the hypotheses and the assumption that p 2 S we see that the first two terms
on the right-hand side are integers, and our claim follows. Proceeding inductively,
we find that

R c

0
fp is an integer if and only if

R c

0
f	p.	/ is an integer, where 	 is

the degree of p. Note that p.	/ is a constant function, and the constant is an integer
since p 2 S . Moreover the differentiable function f	 D f 0

	C1 is continuous, and
hence integrable, on Œ0; c�. Therefore, by the fundamental theorem of calculus, we
have

Z c

0

f	p.	/ D p.	/.c/

Z c

0

f 0
	C1

D p.	/.c/.f	C1.c/ � f	C1.0//;

an integer. We conclude that
R c

0
fp is an integer.

Assume now that c is rational. Then there are positive integers m and n such that
c D m=n. Define
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Pk.x/ D xk.m � nx/k

kŠ

for all x 2 Œ0; c� and all nonnegative integers k, where 00 D 1.
We shall show that Pk 2 S for all k. First, it is clear that the constant polynomial

P0 is in S . Suppose therefore that k > 0 and that Pk�1 2 S . Observe first that
Pk.0/ D 0, and that Pk.c/ D 0 since m D nc. For all x 2 Œ0; c� we have

P 0
k.x/ D kxk�1.m � nx/k � knxk.m � nx/k�1

kŠ

D kxk�1.m � nx/k�1.m � 2nx/

kŠ

D Pk�1.x/.m � 2nx/:

The first factor is a polynomial in S by the inductive hypothesis. The second is
in S since m, m � 2nc D �m, and �2n are all integers. Since S is closed under
multiplication, we conclude that P 0

k 2 S and therefore that Pk 2 S for all k as
Pk.0/ and Pk.c/ are integers.

Next observe that Pk.x/ > 0 for all x 2 .0; c/ and all k, a property shared by
f .x/. Thus

R c

0
fPk > 0. But this integral must be an integer, since Pk 2 S . Hence

Z c

0

f .x/Pk.x/ dx � 1 (7.10)

for all nonnegative integers k. However, setting

M D maxfx.m � nx/ j x 2 Œ0; c�g

and

L D maxff .x/ j x 2 Œ0; c�g;
we obtain

Z c

0

f .x/Pk.x/ dx �
Z c

0

L
M k

kŠ
dx

D cLMk

kŠ
:

This result gives a contradiction, for

lim
k!1

M k

kŠ
D 0

by Example 2.5.6. ut
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Corollary 7.5.8. If 0 < j� j � � and cos � and sin � are rational, then � is
irrational.

Proof. Since cos � and sin � are rational, so are cos j� j and sin j� j. Hence we can
find a positive integer n such that n cos j� j and n sin j� j are integers. Now apply the
theorem with c D j� j and f .x/ D n sin x for all x 2 Œ0; j� j� to conclude that j� j,
and hence � , is irrational. ut
Corollary 7.5.9. For every positive rational number a ¤ 1, log a is irrational.

Proof. Suppose first that a > 1, so that log a > 0. Write a D m=n for positive
integers m and n, and apply the theorem with c D log a and f .x/ D nex for all
x 2 Œ0; log a�, noting that nec D nelog a D na D m.

If 0 < a < 1, then 1=a > 1 and we conclude that log 1=a is irrational by the
previous case. That log a is irrational now follows from the equation

log
1

a
D � log a: ut

Remark 1. By taking � D � in Corollary 7.5.8, we find that � is irrational.

Remark 2. Let a; b; c be positive rational numbers and suppose that a2 C b2 D c2.
There is a number � such that 0 < � < �=2, sin � D a=c, and cos � D b=c. Then
both sin � and cos � are rational, so that � is irrational. In other words, arctan.a=b/

is irrational.

Remark 3. Corollary 7.5.9 confirms the irrationality of e, since log e D 1. In fact,
ea is irrational for every nonzero rational number a.

In Sect. 6.4 we introduced the number � . We now give it a geometric interpre-
tation by showing that the circumference of a unit circle is 2� . For this purpose we
need the notion of arc length.

Let f be a continuous real-valued function defined on a closed interval I with
partition .x0; x1; : : : ; xn/. For each j let Pj be the point .xj ; f .xj //. For each j < n

the distance between Pj C1 and Pj is jPj C1 � Pj j. The sum of these distances gives
an approximation for the length of the graph of f . If

lim
n!1

n�1X
j D0

jPj C1 � Pj j

exists and is finite, then we define it to be the (arc) length of the graph of f over I .
It is evaluated in the following theorem.

Theorem 7.5.10. Let f be a differentiable function from an interval Œa; b� into R.
Suppose that f 0 is continuous on Œa; b�. Then the length of the graph of f over
Œa; b� is

Z b

a

p
1 C .f 0/2:
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Proof. By applying the mean-value theorem to f over Œxj ; xj C1�, where j < n, we
discover a �j 2 .xj ; xj C1/ for which

f .xj C1/ � f .xj / D f 0.�j /.xj C1 � xj /:

Therefore

n�1X
j D0

jPj C1 � Pj j D
n�1X
j D0

q
.xj C1 � xj /2 C .f .xj C1/ � f .xj //2

D
n�1X
j D0

q
.xj C1 � xj /2 C .f 0/2.�j /.xj C1 � xj /2

D
n�1X
j D0

.xj C1 � xj /

q
1 C .f 0/2.�j /;

which is a Riemann sum for the function
p

1 C .f 0/2. This function is continuous,
and therefore integrable, on Œa; b�. Its Riemann sums converge to the required arc
length, and the result follows. ut
Example 7.5.6. Since arccos.1=

p
2/ D �=4, the length of the graph of the function

f .x/ D
p

1 � x2;

where x 2 Œ0; 1=
p

2�, is an eighth of the circumference of the unit circle. In order
to evaluate it, we first use the chain rule to compute

f 0.x/ D 1

2
p

1 � x2
� .�2x/

D � xp
1 � x2

:

This function is continuous at all x ¤ ˙1. Therefore

Z 1=
p

2

0

p
1 C .f 0/2 D

Z 1=
p

2

0

r
1 C x2

1 � x2
dx

D
Z 1=

p
2

0

dxp
1 � x2

D arcsin xj1=
p

2
0

D �

4
:

Consequently the circumference of the unit circle is 8 � �=4 D 2� . 4
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Exercises 7.4.

1. Use the result of Example 7.5.1 to prove the following:

(a) If F.x/ D log x for all x > 0 and cx > 0 for some constant c, then

F 0.cx/ D 1

x

for all x > 0.
(b) If x > 0 and y > 0, then

log xy D log x C log y:

(c) If x > 0 and p is a rational number, then

log xp D p log x:

(d)

lim
x!1 log x D 1

and

lim
x!0C

log x D �1:

2. Let f be a function that is integrable over Œa; b� and let F.x/ D R x

a
f for all

x 2 Œa; b�.

(a) Show that for all x; y 2 Œa; b� satisfying x < y we have

jF.x/ � F.y/j < M.y � x/;

where M is the least upper bound of jf j on Œa; b�.
(b) Hence show that F is continuous on Œa; b�. (Note that f need not be

continuous, and therefore the fundamental theorem of calculus cannot be
used.)

3. By choosing a particular type of partition of the interval Œ1; 2� and suitable
Riemann sums for

Z 2

1

dx

x2
;
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evaluate

lim
n!1 n

nX
j D1

1

.n C j /2
:

(The evaluation of this limit is due to Darboux.)
4. By choosing a particular type of partition of the interval Œ0; 1� and suitable

Riemann sums for
R 1

0
ex dx, evaluate

lim
n!1

1

n

nX
j D1

e
j �1

n :

5. By choosing a particular type of partition of the interval Œ0; 1� and suitable
Riemann sums for

R 1

0
xm dx, evaluate

lim
n!1

1

nmC1

nX
j D1

j m:

6. Let f W Œa; b� ! R be integrable. Show that if f is continuous at a point
c 2 .a; b/, then

R x

a
f is differentiable at c. (Note that this result implies the

fundamental theorem of calculus.)
7. Let f W Œa; b� ! R be a continuous function such that f .x/ > 0 for all x 2

Œa; b�. Show that
R x

a
f is increasing on Œa; b�.

8. Suppose that f 00 is continuous on Œa; b�. Show that

Z b

a

xf 00.x/ dx D bf 0.b/ � f .b/ � .af 0.a/ � f .a//:

9. Let f be a continuous real-valued function and let u and v be differentiable
functions. Define

F.x/ D
Z v.x/

u.x/

f .t/ dt:

Show that

F 0.x/ D f .v.x//v0.x/ � f .u.x//u0.x/:

10. Let f and g be functions from Œa; b� to R such that g is continuous, f

monotonic, and f 0 integrable. Show that there exists c 2 Œa; b� for which

Z b

a

fg D f .a/

Z c

a

g C f .b/

Z b

c

g:
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This result is known as the second mean-value theorem. [Hint: Let

G.x/ D
Z x

a

g.t/ dt

for each x 2 Œa; b�. Apply integration by parts to

Z b

a

fg D
Z b

a

fG0

and then use the mean-value theorem.]
11. For each m; n 2 N evaluate the following integrals:

(a)
R �

��
sin mx sin nx dx;

(b)
R �

��
cos mx cos nx dx;

(c)
R �

��
sin mx cos nx dx.

7.6 The Cauchy–Schwarz Inequality

Another theorem about integrals is known as the Cauchy–Schwarz inequality.

Theorem 7.6.1 (Cauchy–Schwarz Inequality). If f and g are integrable on a
closed interval, then

�Z
fg

�2

�
Z

f 2

Z
g2:

Proof. Note that the functions fg, f 2, and g2 are integrable by Theorem 7.4.2(4).
For all real x we haveZ

.xf C g/2 D x2

Z
f 2 C 2x

Z
fg C

Z
g2:

The polynomial on the right-hand side of this equation is therefore nonnegative for
all real x. Thus its discriminant cannot be positive, by the results of Example 6.3.4.
In other words,

4

�Z
fg

�2

� 4

Z
f 2

Z
g2 � 0:

The required inequality follows. ut
Let f W Œa; b� ! R be integrable. We define the norm kf k of f by the equation

kf k D
�Z

f 2

� 1
2

:
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With this notation we may rewrite the Cauchy–Schwarz inequality as
Z

fg � kf kkgk:

The norm of a function satisfies the triangle inequality.

Corollary 7.6.2. Let f; gW Œa; b� ! R be integrable. Then

kf C gk � kf k C kgk:

Proof. Note first that kf k � 0 for every integrable function f . Now

kf C gk2 D
Z

.f C g/2

D
Z

f 2 C 2

Z
fg C

Z
g2

� kf k2 C 2kf kkgk C kgk2

D .kf k C kgk/2;

and the result follows by taking square roots of both sides. ut
A similar argument to that used to prove Theorem 7.6.1, combined with

Theorem 3.12.5, yields the following corresponding result for series. The details
of the proof are left as an exercise.

Theorem 7.6.3. Let fxng and fyng be sequences such that
P1

j D0 x2
j and

P1
j D0 y2

j

converge. Then
P1

j D0 jxj yj j converges and

0
@ 1X

j D0

jxj yj j
1
A

2

�
1X

j D0

x2
j

1X
j D0

y2
j :

Exercises 7.5.

1. If f and g are integrable functions, prove that

kf k � kgk � kf � gk

and

k f̨ k D j˛jkf k

for every number ˛.
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2. Let f and g be integrable over an interval Œa; b�. Prove that

Z b

a

Z b

a

ˇ̌̌
ˇf .x/ g.x/

f .y/ g.y/

ˇ̌̌
ˇ
2

dy dx D 2

0
@kf k2kgk2 �

 Z b

a

f .x/g.x/ dx

!2
1
A :

(Note that the integrand on the left-hand side is the square of a determinant.)
Deduce the Cauchy–Schwarz inequality from this equation.

3. Let f and g be integrable over an interval Œa; b�.

(a) Prove that

Z b

a

Z b

a

.f .y/ � f .x//.g.y/ � g.x// dy dx

D 2

 
.b � a/

Z b

a

f .x/g.x/ dx �
Z b

a

f .x/ dx
Z b

a

g.x/ dx

!
:

(b) Suppose that f and g are both increasing or both decreasing. Deduce that

Z b

a

f

Z b

a

g � .b � a/

Z b

a

fg:

4. Prove Theorem 7.6.3.

7.7 Numerical Integration

The fundamental theorem of calculus is a very useful tool for evaluating integrals.
However, it is not always applicable, as there are integrable functions such as
e�x2

and sin sin x whose antiderivatives cannot be expressed explicitly in terms
of such elementary functions as polynomials, the trigonometric functions, and the
exponential and logarithm functions. In this section we therefore investigate the
question of approximating a definite integral by means of a Riemann sum. We also
wish to estimate the accuracy of the resulting approximations.

We begin with a lemma.

Lemma 7.7.1. Let f be a function with continuous derivative on an interval Œa; b�.
For every c 2 Œa; b� let

" D
Z b

a

f � f .c/.b � a/:

Then

j"j � .b � a/2

2
sup

x2Œa;b�

jf 0.x/j:
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Proof. Since f 0 is continuous on the closed interval Œa; b�, we may define

M D sup
x2Œa;b�

jf 0.x/j:

By the mean-value theorem (for differentiation), for every x 2 Œa; b� � fcg there
exists � between x and c such that

jf .x/ � f .c/j D jf 0.�/.x � c/j
� M jx � cj:

Hence

j"j D
ˇ̌̌
ˇ̌
Z b

a

.f .x/ � f .c// dx

ˇ̌̌
ˇ̌

�
Z b

a

jf .x/ � f .c/j dx

� M

Z b

a

jx � cj dx

D M

 
�
Z c

a

.x � c/ dx C
Z b

c

.x � c/ dx

!

D M

 
� .x � c/2

2

ˇ̌̌
ˇ
c

a

C .x � c/2

2

ˇ̌̌
ˇ
b

c

!

D M

�
.a � c/2

2
C .b � c/2

2

�

� M

2
.b � a/2

since

.b � a/2 D ..b � c/ C .c � a//2

D .b � c/2 C 2.b � c/.c � a/ C .c � a/2

� .b � c/2 C .c � a/2:

ut
Theorem 7.7.2. Let f be a function with continuous derivative on an interval Œa; b�

with partition P D .x0; x1; : : : ; xn/. Then every Riemann sum S.P; f / of f over
Œa; b� relative to P satisfies the inequality



7.7 Numerical Integration 385

ˇ̌̌
ˇ̌
Z b

a

f � S.P; f /

ˇ̌̌
ˇ̌ � b � a

2
sup

x2Œa;b�

jf 0.x/j�.P /:

Proof. As in the proof of the lemma, let

M D sup
x2Œa;b�

jf 0.x/j:

For any Riemann sum S.P; f; c/ of f over Œa; b� relative to P and intermediate
points c0; c1; : : : ; cn�1, we have

ˇ̌̌
ˇ̌
Z b

a

f .x/ dx � S.P; f; c/

ˇ̌̌
ˇ̌ D

ˇ̌̌
ˇ̌
ˇ
n�1X
j D0

Z xj C1

xj

f .x/ dx �
n�1X
j D0

f .cj /.xj C1 � xj /

ˇ̌̌
ˇ̌
ˇ

�
n�1X
j D0

ˇ̌̌
ˇ̌
Z xj C1

xj

f .x/ dx � f .cj /.xj C1 � xj /

ˇ̌̌
ˇ̌

�
n�1X
j D0

M

2
.xj C1 � xj /2

� M

2

n�1X
j D0

�.P /.xj C1 � xj /

D 1

2
M�.P /.b � a/: ut

Although the upper bound this theorem provides for the error may seem crude,
the following example shows that it cannot be improved.

Example 7.7.1. Let f .x/ D x for all x 2 Œ0; 1�. Then
R 1

0
f D 1=2. For each n 2 N

let Pn be the partition

�
0;

1

n
;

2

n
; : : : ; 1

�
;

so that �.Pn/ D 1=n. By choosing as intermediate points the leftmost end of each
subinterval of Pn or the rightmost end of each such subinterval, we obtain the lower
sum L.Pn; f / or the upper sum U.Pn; f /, respectively, of f over Œ0; 1� relative to
Pn. Now for each j the j th subinterval of Pn is Œ.j � 1/=n; j=n�, so that

L.Pn; f / D 1

n

n�1X
j D0

j

n
D n.n � 1/

2n2
D 1

2
� 1

2n
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and

U.Pn; f / D 1

n

nX
j D1

j

n
D n.n C 1/

2n2
D 1

2
C 1

2n
:

Hence

ˇ̌̌
ˇ
Z 1

0

f .x/ dx � L.Pn; f /

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
Z 1

0

f .x/ dx � U.Pn; f /

ˇ̌̌
ˇ D 1

2n
;

and this number is the upper bound provided by the theorem for the error. 4
We now consider the case where a Riemann sum is obtained by using the

midpoints of each subinterval of a partition.

Lemma 7.7.3. Let f be a function with continuous second derivative on an interval
Œa; b�. Let c D .a C b/=2 and define

" D
Z b

a

f � f .c/.b � a/:

Then

j"j � .b � a/3

24
sup

x2Œa;b�

jf 00.x/j:

Proof. Using Theorem 7.5.6 with n D 1, we obtain

f .x/ � f .c/ D f 0.c/.x � c/ C
Z x

c

.x � t /f 00.t/ dt

for all x 2 .a; b/. Thus

" D
Z b

a

.f .x/ � f .c// dx

D
Z b

a

f 0.c/.x � c/ dx C
Z b

a

Z x

c

.x � t /f 00.t/ dt dx:

But

Z b

a

f 0.c/.x � c/ dx D f 0.c/

Z b

a

�
x � a C b

2

�
dx

D f 0.c/

 Z b

a

x dx � .a C b/.b � a/

2

!
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D f 0.c/

�
b2 � a2

2
� b2 � a2

2

�

D 0:

Setting

M D sup
x2Œa;b�

jf 00.x/j;

we therefore conclude that

j"j �
Z b

a

ˇ̌
ˇ̌Z x

c

.x � t /f 00.t/ dt

ˇ̌
ˇ̌ dx

�
Z b

a

Z x

c

.x � t /M dt dx

D �M

Z b

a

.t � x/2

2

ˇ̌̌
ˇ
x

c

dx

D M

2

Z b

a

.x � c/2 dx

D M

6

�
.b � c/3 � .a � c/3

�

D M

6

 �
b � a C b

2

�3

�
�

a � a C b

2

�3
!

D M

6
� 1

8

�
.b � a/3 � .a � b/3

�

D M

24
.b � a/3: ut

Theorem 7.7.4. Let f be a function such that f 00 exists and is continuous on an
interval Œa; b� with partition .x0; x1; : : : ; xn/. Let c D .c0; c1; : : : ; cn�1/, where

cj D xj C1 C xj

2

for all j < n. Then

ˇ̌
ˇ̌̌Z b

a

f � S.P; f; c/

ˇ̌
ˇ̌̌ � b � a

24
sup

x2Œa;b�

jf 00.x/j.�.P //2:
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Proof. Letting

M D sup
x2Œa;b�

jf 00.x/j

and using Lemma 7.7.3, we obtain

ˇ̌̌
ˇ̌
Z b

a

f .x/ dx � S.P; F; c/

ˇ̌̌
ˇ̌ �

n�1X
j D0

ˇ̌̌
ˇ̌
Z xj C1

xj

f .x/ dx � f .cj /.xj C1 � xj /

ˇ̌̌
ˇ̌

�
n�1X
j D0

M

24
.xj C1 � xj /3

� M

24
.�.P //2

n�1X
j D0

.xj C1 � xj /

D 1

24
M.�.P //2.b � a/: ut

Again, the bound is sharp.

Example 7.7.2. Let f .x/ D x2 for all x 2 Œ0; 1�, so that
R 1

0
f D 1=3. For each

n 2 N let Pn be the partition used in Example 7.7.1. Defining c0; c1; : : : ; cn�1; c as
in the theorem, we find that

cj D 1

2

�
j

n
C j C 1

n

�
D j C 1

2

n

for each j < n. Therefore

S.Pn; f; c/ D 1

n

n�1X
j D0

1

n2

�
j C 1

2

�2

D 1

n3

n�1X
j D0

�
j 2 C j C 1

4

�

D 1

n3

�
n.n � 1/.2n � 1/

6
C n.n � 1/

2
C n

4

�

D 4n2 � 1

12n2

D 1

3
� 1

12n2
:
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Hence

ˇ̌̌
ˇ
Z 1

0

f .x/ dx � S.Pn; f; c/

ˇ̌̌
ˇ D 1

12n2
;

the bound given by the theorem. 4
The reader is referred to [3] for more on numerical integration.

Exercises 7.6.

1. Let f W Œa; b� ! R be monotonic. For each n 2 N let h D .b � a/=n and

Pn D .a; a C h; a C 2h; : : : ; b/:

For each Riemann sum S.Pn; f / of f over Œa; b� relative to Pn, show that

ˇ̌̌
ˇ̌
Z b

a

f .x/ dx � S.Pn; f /

ˇ̌̌
ˇ̌ � jb � aj

n
jf .b/ � f .a/j:

2. Let b > 0 and

S D f .0/ C f .b/

2
b

for some function f . If jf 00.x/j � M for all x 2 Œ0; b�, show that

ˇ̌
ˇ̌̌Z b

0

f .x/ dx � S

ˇ̌
ˇ̌̌ � 1

12
M.b � a/3:

[Hint: Apply integration by parts twice to evaluate
R b

0
t.b � t /f 00.t/ dt.]

3. Using four subintervals and choosing their midpoints as the intermediate points,
approximate log 2 D R 2

1
dx
x

by means of a Riemann sum and estimate the error.

7.8 Improper Integrals

Although there are several types of improper integrals, here we remove only the
condition that the domain of the function is a finite interval. Let f be a function that
is integrable over Œa; n�, for every integer n � a. We define

Z 1

a

f D lim
n!1

Z n

a

f;
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provided the limit exists. In this case we say that the integral converges; otherwise
it diverges. If a � b � n, then

Z 1

a

f D lim
n!1

Z n

a

f

D lim
n!1

 Z b

a

f C
Z n

b

f

!

D
Z b

a

f C
Z 1

b

f:

Example 7.8.1. We show that the integral

Z 1

1

x�p dx

converges if and only if p > 1.
If p ¤ 1, then

Z 1

1

x�p dx D lim
n!1

Z n

1

x�p dx

D lim
n!1

x1�p

1 � p

ˇ̌̌
ˇ
n

1

D lim
n!1

n1�p � 1

1 � p

D
(

1
p�1

if p > 1

1 if p < 1:

If p D 1, then the integral becomes

Z 1

1

dx

x
D lim

n!1

Z n

1

dx

x

D lim
n!1 log xjn1

D lim
n!1 log n

D 1: 4
One of the basic tools for establishing convergence of an improper integral is the

comparison test. It is analogous to the comparison test for convergence of a series.



7.8 Improper Integrals 391

Theorem 7.8.1 (Comparison Test). Let a 2 R. Suppose that f and g are
integrable functions over Œa; b� for all b > a and that jf .x/j � g.x/ for all x � a.
If
R1

a
g converges, then so does

R1
a

f . Moreover

ˇ̌
ˇ̌Z 1

a

f

ˇ̌
ˇ̌ �

Z 1

a

g:

Proof. First note that jf j is also integrable over Œa; b� for all b > a, by
Theorem 7.4.8.

Suppose that f .x/ � 0 for all x � a. Then the sequence


Z n

a

f

�

is nondecreasing and bounded above by
R1

a
g, according to Corollary 7.4.6. In this

case the result follows from Theorem 2.7.1.
For the general case, let

f1 D jf j C f

2

and

f2 D jf j � f

2
:

Then f1 and f2 are integrable over Œa; b� for all b > a. Furthermore, for each x � a

and j 2 f1; 2g we have

0 � fj .x/ � jf .x/j � g.x/:

Hence
R1

a
f1 and

R1
a

f2 both converge. As f D f1 � f2,
R1

a
f also converges.

Finally, by Theorem 7.4.8 and Corollary 7.4.6,

ˇ̌
ˇ̌̌Z b

a

f

ˇ̌
ˇ̌̌ �

Z b

a

jf j �
Z b

a

g:

The proof is completed by taking the limit as b ! 1. ut
A corresponding result holds for integrals of the form

R a

�1 f .
The theorem immediately implies the following corollary.

Corollary 7.8.2. Suppose f is an integrable function over Œa; b� for all b > a. IfR1
a

jf j converges, then so does
R1

a
f .
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Example 7.8.2. We show that the integral

Z 1

1

tx�1e�t dt

converges for all x > 0. We first locate the maximum of the function f defined by

f .t/ D txC1e�t

for all t > 1. Note that

f 0.t/ D .x C 1/txe�t � txC1e�t D txe�t .x C 1 � t /

for all such t . Hence f 0.t/ D 0 if and only if t D x C 1. Since f 0.t/ > 0 when
t < x C 1 and f 0.t/ < 0 when t > x C 1, the maximum of f occurs at x C 1. Let
M D f .x C 1/. Then

Z n

1

tx�1e�t dt D
Z n

1

f .t/t�2 dt � M

Z n

1

t�2 dt

for all n 2 N. By Example 7.8.1,
R1

1
t�2 dt converges. Hence

Z 1

1

tx�1e�t dt

converges by the comparison test. 4
The improper integral

R1
a

f is said to be absolutely convergent if
R1

a
jf j is

convergent.
The following example, which is due to Dirichlet, shows that a convergent

improper integral need not be absolutely convergent.

Example 7.8.3. We show that the integral

Z 1

1

sin x

x
dx

is convergent but not absolutely.
Using integration by parts (Theorem 7.5.5), we obtain

Z n

1

sin x

x
dx D �cos x

x

ˇ̌
ˇn
1

�
Z n

1

cos x

x2
dx

for all n 2 N. Now

�cos x

x

ˇ̌̌n
1

D �cos n

n
C cos 1 ! cos 1
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as n ! 1, and since

ˇ̌
ˇcos x

x2

ˇ̌
ˇ � 1

x2
;

the integral

Z 1

1

cos x

x2
dx

converges by the comparison test. Hence the integral in question is convergent.
We show next that the integral is not absolutely convergent. For all

x 2
�

�

4
C j�;

3�

4
C j�



;

where j 2 N, we have

j sin xj � sin
�

4
D 1p

2

and x < .j C 1/� . Hence

Z 1

1

j sin xj
x

dx >

1X
j D1

Z .j C 3
4 /�

.j C 1
4 /�

j sin xj
x

dx

� 1p
2

1X
j D1

Z .j C 3
4 /�

.j C 1
4 /�

dx

x

>
1p
2

1X
j D1

�
�

2
� 1

.j C 1/�

�

D 1

2
p

2

1X
j D2

1

j
:

As
P1

j D2 1=j diverges, we deduce that

Z 1

1

j sin xj
x

dx

also diverges. 4
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Exercises 7.7.

1. Test the following integrals for convergence:

(a)
R1

0
dx
xex ;

(b)
R 0

�1 eax dx;

(c)
R1

0
sin x2 dx.

2. Evaluate Z 1

1

log x

x2
dx:

3. (a) Suppose that f .x/ � 0 and g.x/ � 0 for all x � a, and let

lim
x!1

f .x/

g.x/
D L:

Prove that

i. If 0 < L < 1, then
R1

a
f and

R1
a

g both converge or both diverge.
ii. If L D 0, then

R1
a

f converges if
R1

a
g converges.

iii. If L D 1, then
R1

a
g converges if

R1
a

f converges.

(b) The result of part (a) is called the limit comparison test for integrals. Use it
to prove that

Z 1

1

dx

a2 C x2

is convergent.

7.9 Integral Test for Convergence of a Series

Since an integral is defined in terms of Riemann sums, there are many similarities
between the theories of integrals and series. One of the most important connections
between the two theories is the integral test for the convergence of a series. It
involves improper integrals.

Theorem 7.9.1 (Euler, Maclaurin). Let f be a nonincreasing continuous function
on the interval Œ1; 1/, and suppose that f .x/ � 0 for all x � 1. Let

dn D
nX

j D1

f .j / �
Z n

1

f

for all n 2 N. Then the sequence fdng converges.
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Proof. It suffices to show that fdng is nonincreasing and bounded below. Since f is
nonincreasing, for every positive integer j we have

f .j C 1/ D minff .x/ j x 2 Œj; j C 1�g

and

f .j / D maxff .x/ j x 2 Œj; j C 1�g:

Hence

f .j C 1/ �
Z j C1

j

f � f .j /;

so that

dnC1 � dn D
0
@nC1X

j D1

f .j / �
Z nC1

1

f

1
A �

0
@ nX

j D1

f .j / �
Z n

1

f

1
A

D f .n C 1/ �
Z nC1

n

f

� f .n C 1/ � f .n C 1/

D 0

for each n 2 N.
We have now proved that fdng is nonincreasing. It is also bounded below by 0,

since

dn D
nX

j D1

f .j / �
n�1X
j D1

Z j C1

j

f

�
nX

j D1

f .j / �
n�1X
j D1

f .j /

D f .n/

� 0

for each n 2 N. ut
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Corollary 7.9.2. Under the hypotheses of Theorem 7.9.1 we have

Z nC1

1

f �
nX

j D1

f .j / � f .1/ C
Z n

1

f

for all n 2 N.

Proof. From the proof of the theorem we have

f .j C 1/ �
Z j C1

j

f � f .j /

for all j 2 N. From the second inequality we obtain

Z nC1

1

f D
nX

j D1

Z j C1

j

f �
nX

j D1

f .j /:

The first inequality gives

n�1X
j D1

f .j C 1/ �
n�1X
j D1

Z j C1

j

f D
Z n

1

f:

Consequently

nX
j D1

f .j / D f .1/ C
nX

j D2

f .j / D f .1/ C
n�1X
j D1

f .j C 1/ � f .1/ C
Z n

1

f: ut

Corollary 7.9.3 (Integral Test). Let f be a nonincreasing continuous function on
the interval Œ1; 1�, and suppose that f .x/ � 0 for all x � 1. Then the seriesP1

j D1 f .j / and the integral
R1

1
f both converge or both diverge.

Remark. The Euler–Maclaurin theorem and the integral test are clearly true if there
exists a fixed number N such that the function satisfies all the conditions for each
x � N .

Example 7.9.1. Use the integral test to show that
P1

j D1 1=j p is convergent if and
only if p > 1.

Solution. Let

f .x/ D 1

xp
> 0

for all x > 0.



7.9 Integral Test for Convergence of a Series 397

If p � 0, we have

lim
n!1

1

np
¤ 0

and the series is divergent by the nth term test.
Suppose p > 0. Then f is clearly nonincreasing and continuous at all x � 1

and the integral test can be applied. Therefore, by the integral test and the result of
Example 7.8.1, the series is convergent if and only if p > 1. 4
Example 7.9.2. Use the integral test to confirm the divergence of Abel’s series

1X
j D2

1

j log j
:

Solution. Let

f .x/ D 1

x log x
> 0

for all x > 1. Then as x log x is increasing at all x � 2, it follows that f is
decreasing at all x � 2. Moreover f is continuous at all x � 2. Hence the integral
test can be applied.

Using the result of Example 7.5.4, we have

Z 1

2

dx

x log x
D lim

n!1.log log n � log log 2/ D 1:

Therefore the series is divergent by the integral test. 4
Series for which the kth term involves log k are often suitable for the use of the

integral test. One problem with the integral test is that the required integral may not
be easy to evaluate. A comparison test is often used to modify the series so that the
corresponding integral may be found easily.

Example 7.9.3. Test the convergence of

1X
j D1

1

j log.j 2 C 3j C 1/
:

Solution. Let

an D 1

n log.n2 C 3n C 1/
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and

bn D 1

n log n

for all integers n > 1. Then, using l’Hôpital’s rule,

lim
n!1

an

bn

D lim
n!1

n log n

n log.n2 C 3n C 1/

D lim
n!1

log n

log.n2 C 3n C 1/

D lim
n!1

1
n

2nC3
n2C3nC1

D lim
n!1

n2 C 3n C 1

2n2 C 3n

D 1

2
:

Since
P1

j D2 bj is divergent by the previous example,
P1

j D1 aj is also divergent by
the limit comparison test. 4
Exercises 7.8.

1. Test the convergence of the following series:

(a)
P1

j D2
1

j log2 j
. (c)

P1
j D2

1
j log j log log j

.

(b)
P1

j D2
1

.j C5/ log2 j
.

2. Does the result

Z 1

1

dx

x2
D 1 ¤

1X
j D1

1

j 2

contradict the argument used in the proof of the integral test?
3. Apply the integral test to test the convergence of

1X
j D2

1

j logp j
:



Chapter 8
Taylor Polynomials and Taylor Series

8.1 Taylor’s Theorem

Because polynomials are so easy to study, it would be very convenient if they
were the only functions with which we had to deal. Although this is not the case,
it turns out that many functions that are not polynomials can be approximated as
accurately as we please by polynomials. In this section we present a theorem that
gives conditions under which such an approximation is possible.

Given a function f that is not a polynomial, we are interested in finding a
polynomial, in a variable x, that gives a good approximation for f .x/ at values
of x near some number a. It is convenient to write the polynomial in powers of
x � a rather than x. If we take the polynomial to be of degree n � 0 and denote it
by Pn, then we can write

Pn.x/ D
nX

j D0

aj .x � a/j (8.1)

for all x, where a0; a1; : : : ; an are constants and we take 00 D 1. We also assume
that the graph of f is smooth at a in the sense that f .a/; f 0.a/; : : : ; f .n/.a/ exist
and are known. This may seem to be rather a strong requirement, but in fact it is
satisfied for every n � 0 by many important functions, such as ex and sin x at 0 and
log x at 1.

It is reasonable to expect that at a the approximation is exact and the derivatives
of Pn and f are equal. In fact, we shall require that

P .k/
n .a/ D f .k/.a/

for all integers k such that 0 � k � n.
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We begin by deriving a formula for the coefficients of Pn. By differentiating the
sides of Eq. (8.1) k times, where 0 � k � n, we obtain

P .k/
n .x/ D

nX
j D0

aj j.j � 1/ � � � .j � k C 1/.x � a/j �k

D
nX

j Dk

aj

j Š

.j � k/Š
.x � a/j �k

D akkŠ C
nX

j DkC1

aj

j Š

.j � k/Š
.x � a/j �k

for all x. Therefore

f .k/.a/ D P .k/
n .a/ D akkŠ;

and so

ak D f .k/.a/

kŠ
:

Substitution into Eq. (8.1) yields

Pn.x/ D
nX

j D0

f .j /.a/

j Š
.x � a/j

for all x. This polynomial is called the Taylor polynomial of order n for f

about a.

Example 8.1.1. Find the Taylor polynomial of order 5 for cos x about 0.

Solution. Taking f .x/ D cos x for all x and a D 0, we have f .0/ D 1. Moreover

f 0.x/ D � sin x

for all x, and so f 0.0/ D 0. Similarly, we find that f .2/.0/ D �1, f .4/.0/ D 1, and
f .3/.0/ D f .5/.0/ D 0. Therefore

P5.x/ D 1 � x2

2
C x4

24
:

Notice that in this case the Taylor polynomial of order 5 is actually of degree 4
because the term in x5 has a coefficient of 0. 4
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We now prove Taylor’s theorem, which gives a means of estimating the error
incurred in using a Taylor polynomial as an approximation for the value of a function
at some number.

Theorem 8.1.1 (Taylor). Let a be a real number, n a nonnegative integer, and f a
function such that f .nC1/.x/ exists for all x in some open interval I containing a.
Let Pn be the Taylor polynomial of order n for f about a. Then for each x 2 I �fag
there exists a number � between a and x such that

f .x/ � Pn.x/ D f .nC1/.�/

.n C 1/Š
.x � a/nC1:

Proof. Fix x 2 I � fag, and for all t 2 I define

F.t/ D f .x/ �
nX

j D0

f .j /.t/

j Š
.x � t /j

D f .x/ � f .t/ �
nX

j D1

f .j /.t/

j Š
.x � t /j :

Since f .nC1/.t/ exists for all t 2 I , we infer that f .j / must be continuous on I for
all j such that 0 � j � n. Hence F is continuous on the closed interval with ends
a and x and differentiable on the corresponding open interval. Note that

F.x/ D f .x/ � f .x/ D 0

and

F.a/ D f .x/ �
nX

j D0

f .j /.a/

j Š
.x � a/j D f .x/ � Pn.x/:

Thus we need to show that

F.a/ D f .nC1/.�/

.n C 1/Š
.x � a/nC1

for some � between a and x.
Using the product rule, the chain rule, and the telescoping property, we obtain

F 0.t/ D �f 0.t/ �
nX

j D1

�
f .j C1/.t/

j Š
.x � t /j C f .j /.t/

j Š
j.x � t /j �1.�1/

�

D �f 0.t/ �
nX

j D1

�
f .j C1/.t/

j Š
.x � t /j � f .j /.t/

.j � 1/Š
.x � t /j �1

�
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D �f 0.t/ �
�

f .nC1/.t/

nŠ
.x � t /n � f 0.t/

�

D � .x � t /n

nŠ
f .nC1/.t/:

Now let

G.t/ D .x � t /nC1

for all t 2 I . Then

G0.t/ D �.n C 1/.x � t /n

for all such t . Note also that G.x/ D 0 and that G0.t/ ¤ 0 for all t ¤ x. By
Cauchy’s mean-value formula there exists � between a and x such that

F 0.�/

G0.�/
D F.a/ � F.x/

G.a/ � G.x/
D F.a/

G.a/
:

Hence

F.a/ D F 0.�/

G0.�/
G.a/

D � .x��/n

nŠ
f .nC1/.�/.x � a/nC1

�.n C 1/.x � �/n

D f .nC1/.�/

.n C 1/Š
.x � a/nC1;

as required. ut
As a consequence of this theorem we have

f .x/ D Pn.x/ C f .nC1/.�/

.n C 1/Š
.x � a/nC1

D
nX

j D0

f .j /.a/

j Š
.x � a/j C f .nC1/.�/

.n C 1/Š
.x � a/nC1

for all x 2 I � fag. Note also that the value of � depends on the choice of x. For
each x 2 I � fag we define

Rn.x/ D f .nC1/.�/

.n C 1/Š
.x � a/nC1: (8.2)
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Thus

Rn.x/ D f .x/ � Pn.x/

for each such x. The function Rn is called the Taylor remainder of degree n.

Example 8.1.2. Use the Taylor polynomial of order 5 for cos x about 0 to obtain an
approximation for cos 0:1 and use Taylor’s theorem to show that the approximation
gives the first eight digits in the decimal expansion of cos 0:1 correctly.

Solution. From Example 8.1.1 we have

P5.x/ D 1 � x2

2
C x4

24

for all x. The required approximation for cos 0:1 is therefore

P5.0:1/ D 0:9950041666 : : : :

Since the sixth derivative of cos x is � cos x, Taylor’s theorem shows that there
exists a number � between 0 and 0.1 such that

cos 0:1 � P5.0:1/ D .0:1/6

6Š
.� cos �/ D �0:0000000013888 : : : .cos �/:

Since 0 < cos � < 1, we have

�0:0000000013888 : : : < cos 0:1 � P5.0:1/ < 0:

Hence

�0:0000000014 < cos 0:1 � P5.0:1/ < 0;

and so

P5.0:1/ � 0:0000000014 < cos 0:1 < P5.0:1/:

We conclude that

0:99500416526 : : : < cos 0:1 < 0:9950041666 : : : :

Thus P5.0:1/ gives the first eight digits in the decimal expansion of cos 0:1 correctly
as 0.99500416. 4

A function f is said to be smooth over an interval I if f .k/.x/ exists for all
x 2 I and all nonnegative integers k. We write C 1.I / for the set of functions that
are smooth over I .
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Example 8.1.3. Let f 2 C 1.I /, where I is an open interval containing 1, and
suppose that f .1/ D 0, f 0.1/ D 1, f 00.1/ D 2, and

f 000.x/ D ex2

1 C x

for all x 2 I � f�1g. Write down the Taylor polynomial of order 3 for f about 1.
Suppose that this polynomial is used to approximate f .0:5/. Find an upper bound
for the error and write down the approximate value of f .0:5/.

Solution. The Taylor polynomial is

P3.x/ D f .1/ C .x � 1/f 0.1/ C .x � 1/2

2Š
f 00.1/ C .x � 1/3

3Š
f 000.1/

D .x � 1/ C .x � 1/2 C e.x � 1/3

12
:

The error incurred by the approximation is given by jR3.0:5/j. Now,

f .4/.�/ D e�2 �
2�2 C 2� � 1

�
.1 C �/2

;

where 0:5 < � < 1, and since 2�2 C 2� � 1 is increasing at all � > 0:5, it follows
that

jf .4/.�/j <
3e

.1:5/2
D 4

3
e < 4:

We thus have

jR3.0:5/j D jf .4/.�/jj0:5 � 1j4
4Š

<
4

4Š24
< 0:011:

The approximation given by P3.0:5/ is

P3.0:5/ D �0:5 C 0:25 � .0:125/e

12

 �0:28

with error less than 0:011. 4
A common problem in the approximation of numbers or functions is to make

the approximation correct to within a specified error tolerance. If we use the Taylor
polynomial of order n about a point a to approximate a function f at a point x near
a, then the error depends on n, the distance jx � aj, and the absolute values of the
derivatives of f between x and a. The next example illustrates the problem and a
solution strategy.
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Example 8.1.4. Let f .x/ D log.x C 1/ for all x > �1. What degree Taylor
polynomial about 0 is required to approximate log 1:1 with a maximum error of
0.001? What degree Taylor polynomial about 0 is required to approximate log 1:5

with the same maximum error?

Solution. For all n � 1 and all � > 0 we have

jf .n/.�/j D .n � 1/Š

.1 C �/n

< .n � 1/Š:

To approximate log 1:1, we note that x D 0:1 and

jRn.0:1/j D jf .nC1/.�/j.0:1/nC1

.n C 1/Š

<
nŠ

.n C 1/Š10nC1

D 1

.n C 1/10nC1
:

We thus seek a value of n such that

.n C 1/10nC1 � 1000:

Evidently the preceding inequality is satisfied for n D 2 but not for n D 1. We
conclude that a Taylor polynomial of degree 2 suffices for the approximation.

To approximate log 1:5, we have

jRn.0:5/j <
1

.n C 1/2nC1
:

We seek a value of n such that

.n C 1/2nC1 � 1000:

For n D 6,

7.27/ D 896;

and for n D 7,

8.28/ D 2048:

A Taylor polynomial of degree 7 thus suffices to make this approximation. 4
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A function f 2 C 1.I / is said to have a zero of order k at a number a 2 I

if f .j /.a/ D 0 for j D 0; 1; : : : ; k � 1 and f .k/.a/ ¤ 0. If f has a zero of order
k > 0 at a, then Taylor’s theorem implies that

f .x/ D f .k/.a/

kŠ
.x � a/k C f .kC1/.�/

.k C 1/Š
.x � a/kC1

D .x � a/kF.x/ (8.3)

for all x 2 I � fag, where � is a number between a and x and

F.x/ D f .k/.a/

kŠ
C f .kC1/.�/

.k C 1/Š
.x � a/

for all x 2 I . Thus

F.a/ D f .k/.a/

kŠ
¤ 0:

Conversely, if f .x/ is given by Eq. (8.3) for all x 2 I � fag and F.a/ ¤ 0, then f

has a zero of order k at a.

Example 8.1.5. Let f .x/ D sin x for all x and let a D 0. Then f .0/ D sin 0 D 0

and f 0.0/ D cos 0 D 1. The function f thus has a zero of order 1 at 0. From the
definition of sin x we know that

sin x D
1X

j D0

.�1/j x2j C1

.2j C 1/Š

D x

1X
j D0

.�1/j x2j

.2j C 1/Š

D xF.x/;

where

F.x/ D
1X

j D0

.�1/j x2j

.2j C 1/Š

for all x. Note that F.0/ D 1 ¤ 0. 4
Taylor’s theorem provides an alternative perspective on l’Hôpital’s rule. Suppose

that f and g are functions that are smooth over an interval I and have zeros of order
m > 0 and n > 0, respectively, at a number a 2 I . Let

h.x/ D f .x/

g.x/
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for all x 2 I � fag for which g.x/ ¤ 0. Now, limx!a h.x/ is of the indeterminate
form 0/0, and l’Hôpital’s rule can be invoked to evaluate the limit, if it exists.
Equation (8.3), however, shows that the functions f and g can be expressed as

f .x/ D .x � a/mF.x/

and

g.x/ D .x � a/nG.x/;

where F and G are continuous functions such that

F.a/ D f .m/.a/

mŠ
¤ 0

and

G.a/ D g.n/.a/

nŠ
¤ 0:

Thus

h.x/ D .x � a/m�n F.x/

G.x/
:

Evidently

lim
x!a

F.x/

G.x/
D F.a/

G.a/
D nŠf .m/.a/

mŠg.n/.a/
¤ 0:

We thus have

lim
x!a

h.x/ D
(

0 if m > n;
f .m/.a/

g.m/.a/
if m D n:

If n > m, it is clear that jh.x/j ! 1 as x ! a.
In practice, this approach to evaluating limits is not notably shorter than using

l’Hôpital’s rule. It does, however, indicate how many applications of l’Hôpital’s
rule are needed, and in the case where the Taylor polynomials are known, it can
prove a shorter calculation.

In determining the order of a zero it is useful to observe that if f and g are
smooth functions that have zeros of order m > 0 and n > 0, respectively, at a then
the function p D fg can be expressed as

p.x/ D .x � a/mCnF.x/G.x/;
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where

F.a/G.a/ D f .m/.a/

mŠ
� g.n/.a/

nŠ
¤ 0I

consequently, p has a zero of order m C n at a.

Example 8.1.6. Evaluate

lim
x!0

x sin2 x

1 � cos x
:

Solution. Let f .x/ D x sin2 x for all x and let g.x/ D 1 � cos x for all x such
that cos x ¤ 1. We know from Example 8.1.5 that sin x has a zero of order 1 at 0;
consequently sin2 x has a zero of order 2 at 0 and therefore f has a zero of order 3
at 0. Now g.0/ D 1 � cos 0 D 0, g0.0/ D sin 0 D 0, and g00.0/ D cos 0 D 1. The
function g thus has a zero of order 2 at 0. Since 3 > 2,

lim
x!0

x sin2 x

1 � cos x
D 0:

4
Example 8.1.7. Evaluate

lim
x!0

x.1 � ex/

1 � cos x
:

Solution. Let f .x/ D x.1 � ex/ for all x and let g.x/ D 1 � cos x for all x for
which cos x ¤ 1. It can be readily verified that 1 � ex has a zero of order 1 at 0,
and therefore f must have a zero of order 2 at 0. We know from Example 8.1.6
that g has a zero of order 2 at 0. In this case m D n D 2, so that the limit exists
and is nonzero. We also know that two applications of l’Hôpital’s rule are required
to evaluate this limit. The limit can also be found by using Taylor polynomials. In
detail,

f .x/ D x

0
@1 �

1X
j D0

xj

j Š

1
A

D x

0
@1 � 1 � x � x

1X
j D2

xj �1

j Š

1
A

D x2 .�1 C s.x//
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and

g.x/ D 1 �
1X

j D0

.�1/j x2j

.2j /Š

D 1 � 1 C x2

2Š
� x2

1X
j D2

.�1/j x2j �2

.2j /Š

D x2

�
1

2
C t .x/

�
;

where s and t are functions such that limx!0 s.x/ D limx!0 t.x/ D 0:

Consequently

lim
x!0

x.1 � ex/

1 � cos x
D lim

x!0

x2 .�1 C s.x//

x2
�

1
2

C t .x/
� D �2:

4
If f has a zero of order k > 0 at a, then Eq. (8.3) implies that, near a, the function

f behaves like .x � a/kF.a/. For example, if k D 3 and a D 0, then the graph of
f near 0 would be almost the same as that of x3F.0/. Thus in a neighborhood of 0
the graph would look like the cubic curve y D Cx3, where C is a nonzero constant.
The local shape of a curve near a critical point provides a key insight into the nature
of the critical point. Recall that if a smooth function f has a relative extremum at
a, then f 0.a/ D 0. The nature of the critical point depends on the higher-order
derivatives at a. It is the first nonzero derivative at a that determines whether the
critical point corresponds to a relative extremum. Briefly, suppose g has a critical
point at a. Then a is a zero of f .x/ D g.x/ � g.a/ of order k > 1. The graph of
f near a is nearly the same as that of C.x � a/k : If k is even, the critical point will
yield a local extremum; if k is odd, then the critical point cannot correspond to a
relative extremum. This simple observation is formalized in the next result.

Theorem 8.1.2. Let I be an open interval containing some number a, and let
n 2 N. Let f be a function such that f .k/ is defined and continuous on I for each
positive integer k � n. Suppose that f .k/.a/ D 0 for all positive integers k < n but
f .n/.a/ ¤ 0.

1. If n is even and f .n/.a/ > 0, then f .a/ is a relative minimum.
2. If n is even and f .n/.a/ < 0, then f .a/ is a relative maximum.
3. If n is odd, then f .a/ is not a relative extremum.

Proof. Since f .n/.a/ ¤ 0 and f .n/ is continuous, we may choose I so that

f .n/.x/f .n/.a/ > 0
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for all x 2 I . Taylor’s theorem shows that for each fixed x 2 I � fag there exists �

between x and a such that

f .x/ D Pn�1.x/ C Rn�1.x/

D f .a/ C f .n/.�/

nŠ
.x � a/n:

Thus

f .n/.�/f .n/.a/ > 0:

1. In this case f .n/.�/ > 0. Hence Rn�1.x/ > 0, so that f .x/ > f .a/.
2. The proof is similar in this case.
3. Since n is odd, .x � a/n has the same sign as x � a. Thus the sign of Rn�1.x/

when x > a is different from its sign when x < a. Consequently f .a/ is not a
relative extremum.

ut
Example 8.1.8. Let

g.x/ D 1 C x.1 � cos x/

for all x. It is readily verified that g has a critical point at 0. Let

f .x/ D g.x/ � g.0/ D x.1 � cos x/:

Since 1 � cos x has a zero of order 2 at 0, f has a zero of order 3 at 0. We conclude
that f , and therefore g, does not have a relative extremum at 0. 4
Example 8.1.9. Let

g.x/ D 1 C x sin x � x2 � x5

for all x. Then g has a critical point at 0. Here f .x/ D x sin x � x2 � x5 for all x,
and the definition of sin x gives

f .x/ D �x4

3Š
� x5 C x6L.x/;

where L is some smooth function. This expression shows that f has a zero of order
4 at 0 and so the critical point yields a relative extremum. Since g.4/.0/ D �4 < 0,
this extremum is a relative maximum. 4
Exercises 8.1.

1. Let f .x/ D ex=xe for all x > 0.

(a) Show that the only relative minimum of f is at e.
(b) Deduce that e� > �e .
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2. Use the Taylor polynomial of order 6 for sin x about 0 to obtain an approximate
value for sin 0:3 and then use Taylor’s theorem to prove that this approximation
gives the first seven digits in the decimal expansion of sin 0:3 correctly.

3. Use the Taylor polynomial of order 3 for log x about 1 to obtain an approximate
value for log 1:06 and then use Taylor’s theorem to prove that this approximation
gives the first four digits in the decimal expansion of log 1:06 correctly.

4. Suppose f is a function that satisfies f .0/ D 1, f 0.0/ D 0, and

f 00.x/ C xf .x/ D 0

for all x 2 R. Find the Taylor polynomial of order 9 for f about 0. (The function
f is called an Airy function.)

5. Let f be a function such that f .1/ D 0, f 0.1/ D 1, f 00.1/ D 2, and

f 000.x/ D 2x log.x C 2/

x C 1

for all x > �2 satisfying x ¤ �1.

(a) Write down the Taylor polynomial of order 3 for f about 1.
(b) Find upper bounds for the error if the Taylor polynomial of order 2 for f

about 1 is used to approximate f .1:2/ and f .0:5/.

8.2 Taylor Series

Let f be a function, in a real variable x, given by

f .x/ D
1X

j D0

aj .x � a/j (8.4)

for all x in the interior of the interval of convergence. Thus

aj D f .j /.a/

j Š

for all j , as in Sect. 8.1, so that

f .x/ D
1X

j D0

f .j /.a/

j Š
.x � a/j : (8.5)

The series on the right-hand side is called the Taylor series for f about a. When
a D 0, it is also called the Maclaurin series for f . Note that the Taylor series about
a is the only possible representation of f as a power series with center a.
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One application of a Taylor series gives a proof of the binomial theorem. Recall
that

 
n

j

!
D nŠ

j Š.n � j /Š
;

where j and n are integers such that 0 � j � n.

Theorem 8.2.1. For every nonnegative integer n and every x and y,

.x C y/n D
nX

j D0

 
n

j

!
xj yn�j :

Proof. For y D 0 we have

nX
j D0

 
n

j

!
xj yn�j D

n�1X
j D0

 
n

j

!
xj yn�j C xn

D xn;

as required.
Suppose y D 1, and let

f .x/ D .x C 1/n

for all x. Then f is a polynomial of degree n, and so we may write

.x C 1/n D
1X

j D0

aj xj

for some integers a0; a1; : : :, where aj D 0 for all j > n. Therefore

aj D f .j /.0/

j Š

for each j . But for all j � n and all x we have

f .j /.x/ D nŠ

.n � j /Š
.x C 1/n�j ;

so that

f .j /.0/ D nŠ

.n � j /Š
:
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Hence

aj D nŠ

j Š.n � j /Š
D
 

n

j

!
;

and substitution into the summation yields

.x C 1/n D
nX

j D0

 
n

j

!
xj ;

as required.
In the general case with y ¤ 0 we therefore have

.x C y/n D yn

�
x

y
C 1

�n

D yn

nX
j D0

 
n

j

!�
x

y

�j

D
nX

j D0

 
n

j

!
xj yn�j :

ut
Taking x D y D 1 yields the following corollary.

Corollary 8.2.2. For every nonnegative integer n,

nX
j D0

 
n

j

!
D 2n:

We now give an example of an infinitely differentiable function f whose Taylor
series converges but to a sum different from f .

Example 8.2.1. Let

f .x/ D e�1=x2

for all x ¤ 0, and let f .0/ D 0. This function is known as Cauchy’s function. We
show that its Maclaurin series does not converge to f .x/ for any x ¤ 0.

First we prove that if n is a positive integer, then

lim
x!0

e�1=x2

xn
D 0: (8.6)
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We start with the case where n is even. Suppose therefore that n D 2k, where k is a
positive integer. Then

e�1=x2

xn
D

1

x2k

e1=x2

and

lim
x!0

1

x2k
D lim

x!0
e1=x2 D 1:

Therefore we may apply l’Hôpital’s rule.
At this point we apply induction. For k D 1 we have

lim
x!0

1
x2

e1=x2
D lim

x!0

�2
x3

�2
x3 e1=x2

D lim
x!0

1

e1=x2
D 0:

Now assume that k > 1 and

lim
x!0

1

x2.k�1/

e1=x2
D 0:

Then

lim
x!0

1

x2k

e1=x2
D lim

x!0

�2k

x2kC1

�2
x3 e1=x2

D k lim
x!0

1

x2.k�1/

e1=x2
D k � 0 D 0;

as required.
If n is odd, we may write n D 2k C 1, where k this time is a nonnegative integer.

We then have

lim
x!0

e�1=x2

x2kC1
D lim

x!0

 
x � e�1=x2

x2kC2

!
D 0 � 0 D 0

since 2k C 2 is even and positive. The proof of Eq. (8.6) is now complete.
Next we show by induction that for every x ¤ 0 and every positive integer n we

have

f .n/.x/ D e�1=x2

gn.x/; (8.7)

where

gn.x/ D
mX

j D1

Aj

xj

for some positive integer m and constants A1; A2; : : : ; Am. For every x ¤ 0 we have

f 0.x/ D e�1=x2 � 2

x3
:
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Thus f 0.x/ is of the required form, with m D 3, A1 D A2 D 0, and A3 D 2.
Suppose that the desired result holds for n. Note that

f .nC1/.x/ D 2

x3
e�1=x2

gn.x/ C e�1=x2

g0
n.x/

D e�1=x2

�
2

x3
gn.x/ C g0

n.x/

�
:

Since

g0
n.x/ D �

mX
j D1

jAj

xj C1
;

it follows that

2

x3
gn.x/ C g0

n.x/

D
mX

j D1

2Aj

xj C3
�

mX
j D1

jAj

xj C1

D
mC3X
j D4

2Aj �3

xj
�

mC1X
j D2

.j � 1/Aj �1

xj

D �A1

x2
� 2A2

x3
C

mC1X
j D4

�
2Aj �3

xj
� .j � 1/Aj �1

xj

�
C 2Am�1

xmC2
C 2Am

xmC3
:

Hence

f .nC1/.x/ D e�1=x2
rX

j D1

Bj

xj
;

where r D m C 3, B1 D 0, B2 D �A1, B3 D �2A2, BmC2 D 2Am�1, BmC3 D
2Am, and

Bj D 2Aj �3 � .j � 1/Aj �1

for all integers j such that 4 � j � m C 1. The proof that f .n/.x/ is of the desired
form is now complete.

Now we prove by induction that f .n/.0/ D 0 for all positive integers n. First

f 0.0/ D lim
x!0

f .x/ � f .0/

x � 0
D lim

x!0

f .x/

x
D lim

x!0

e�1=x2

x
D 0
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by Eq. (8.6). Suppose that f .r/.0/ D 0 for some positive integer r . Then, using
Eq. (8.7), for some positive integer m and constants A1; A2; : : : ; Am, we have

f .rC1/.0/ D lim
x!0

f .r/.x/

x

D lim
x!0

e�1=x2
mX

j D1

Aj

xj C1

D 0;

by Eq. (8.6).
We have now completed the proof that f .n/.0/ D 0 for all positive integers n. We

deduce that the Maclaurin series for f converges to 0 regardless of the value of x.
Since f .x/ ¤ 0 for all x ¤ 0, it follows that the Maclaurin series for f converges
to f .x/ only when x D 0.

It is shown in complex analysis that functions that can be represented by a Taylor
series about a given point are precisely those that are differentiable throughout some
neighborhood of that point. If we consider the function f of this example as a
function in the complex plane, then it is not differentiable at 0. Indeed it is not even
continuous at 0: If we take

zn D 1

n
p

i

for all n > 0, then fzng converges to 0, but the sequence ff .zn/g does not converge
to f .0/ D 0 since je�1=z2 j D je�in2 j D 1: 4
Exercises 8.2.

1. Let f be a function such that f .n/.x/ exists for all nonnegative integers n and for
all x in an open interval I containing a number a. Show that if there is a number
M such that jf .n/.x/j � M for all n and for all x 2 I , then f is representable
by a Taylor series about a.

2. Find the Maclaurin series for .1 C x/˛ for each ˛ 2 R and give its radius of
convergence.

8.3 Some Shortcuts for Computing Taylor Series

If a function f has a Taylor series about a number a, then the coefficients of the
series can be determined by evaluating the derivatives of f at a. Finding these
derivatives, however, can prove tedious and awkward. In this section we look at
some shortcuts when the functions involved are closely related to known Taylor
series.



8.3 Some Shortcuts for Computing Taylor Series 417

If f has a Taylor series about a, then the series is unique. If we can establish by
any means that a power series of the correct form represents f in a neighborhood
of a, then the power series must be the Taylor series. Often simple substitutions,
algebraic identities, differentiation, or integration can be used to facilitate the
computation of a Taylor series. The examples that follow illustrate how this is done.

Example 8.3.1. Find the Maclaurin series for cos x4.

Solution. For each w 2 R the definition of cos w gives

cos w D 1 � w2

2Š
C w4

4Š
� w6

6Š
C � � � :

Let w D x4. Then

cos x4 D 1 � .x4/2

2Š
C .x4/4

4Š
� .x4/6

6Š
C � � �

D 1 � x8

2Š
C x16

4Š
� x24

6Š
C � � �

D
1X

j D0

.�1/j x8j

.2j /Š
: 4

Example 8.3.2. Find the Taylor series for ex about 1.

Solution. For all w 2 R,

ew D 1 C w C w2

2Š
C w3

3Š
C � � � :

Let w D x � 1. Then

ex�1 D 1 C .x � 1/ C .x � 1/2

2Š
C .x � 1/3

3Š
C � � � ;

and hence

ex D e

�
1 C .x � 1/ C .x � 1/2

2Š
C .x � 1/3

3Š
C � � �

�

D e

1X
j D0

.x � 1/j

j Š
:

4
Example 8.3.3. Find the Taylor series for 1=x about 2.
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Solution. For all x ¤ 0 we have

1

x
D 1

2 C x � 2
D 1

2.1 � �.x�2/

2
/
:

Now for all w such that jwj < 1,

1

1 � w
D 1 C w C w2 C w3 C � � � I

hence for all x such that

jx � 2j
2

< 1;

we have

1

x
D 1

2

�
1 � x � 2

2
C .x � 2/2

22
� .x � 2/3

23
C � � �

�

D
1X

j D0

.�1/j

2j C1
.x � 2/j :

4
Example 8.3.4. Find the Maclaurin series for

x

.1 C x/2
:

Solution. For all w such that jwj < 1 we have

1

1 � w
D

1X
j D0

wj ;

and since power series can be differentiated term by term,

1X
j D1

jwj �1 D 1

.1 � w/2
:

Let w D �x. Then

1

.1 C x/2
D

1X
j D1

.�1/j �1jxj �1;
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so that

x

.1 C x/2
D

1X
j D1

.�1/j �1jxj :

4
Example 8.3.5. Find the Maclaurin series for

log.1 C x2/:

Solution. The Maclaurin series can be readily obtained from the Maclaurin series
for log.1 C w/. We derive the series from the geometric series to illustrate the use
of integration.

Integration by substitution yields

Z x

0

2t

1 C t 2
dt D log.1 C x2/

and for each x such that jxj < 1, a simple substitution in the geometric series gives

1

1 C x2
D

1X
j D0

.�1/j x2j ;

so that

2x

1 C x2
D 2

1X
j D0

.�1/j x2j C1:

We know that power series can be integrated term by term within the interval of
convergence. We thus have

log.1 C x2/ D
Z x

0

2t

1 C t 2
dt

D 2

1X
j D0

Z x

0

.�1/j t2j C1 dt

D 2

1X
j D0

.�1/j

2j C 2
x2j C2

D
1X

j D0

.�1/j

j C 1
x2j C2: 4
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Example 8.3.6. Find the Maclaurin series for cos2 x.

Solution. We know the Maclaurin series for cos x, but it is clear that simply
squaring this series involves a multiplication of infinite series that in itself can prove
awkward. Instead, we exploit the trigonometric identity

cos2 x D 1 C cos 2x

2
:

The Maclaurin series for cos 2x can be derived by a simple substitution; hence

cos 2x D
1X

j D0

.�1/j 22j

.2j /Š
x2j :

We thus have

cos2 x D 1

2
C

1X
j D0

.�1/j 22j �1

.2j Š/
x2j D 1 C

1X
j D1

.�1/j 22j �1

.2j /Š
x2j :

4
Exercises 8.3.

1. Use the geometric series to determine the Taylor series for the following
functions about the indicated point a:

(a) 1
2Cx

, a D �1; (c) arctan x, a D 0;

(b) 1
x.xC1/

, a D 1; (d) 1
.2Cx/3 , a D 0.

2. Use the Maclaurin series for sin x and cos x along with trigonometric identities
to determine the Taylor series for the following functions about a:

(a) sin x sin 2x, a D 0; (c) cos x, a D �
2

;
(b) 1�cos x

x
, a D 0; (d) cos x sin x, a D 0.

3. Show that x1=3 is representable by a Taylor series about 1 in the interval .0; 2/.
4. Show that cos x is representable by a Taylor series about any real number.
5. Let f .x/ D .sin x/=x for all x ¤ 0 and let f .0/ D 1. Estimate

R 1

0
f by using

five terms of the Maclaurin series for f , and find an upper bound for the error.
6. For the following functions f , find the Maclaurin series for

R x

0
f .t/ dt and give

the intervals of convergence:

(a) sin t 2;
(b) e�t2

.

7. Find the Maclaurin series for sinh x and cosh x and give the intervals of
convergence.
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8. Find the Maclaurin series for sin4 x by expressing the function in terms of sin kx
and cos kx, where k 2 Z.

9. Let

F.x/ D
Z x

a

t t dt:

Show that

F 00.x/ D .1 C log x/F 0.x/:

Use this result to obtain the Taylor expansion

.x � 1/ C 1

2
.x � 1/2 C 1

3
.x � 1/3 C 1

8
.x � 1/4 C : : :

for F about 1.



Chapter 9
The Fixed-Point Problem

9.1 The Fixed-Point Problem

The theory of sequences finds many applications in the study of numerical
techniques for solving equations, since many numerical methods involve the
construction of a sequence of successively better approximations for the desired
solution. In this chapter we show how analysis can help in the study of a numerical
approximation technique for solving nonlinear equations. The work in this chapter
is to a large extent based on the lecture notes of Michael Carter.

Suppose we are given a nonlinear equation, such as

3x3 � 3x C 1 D 0: (9.1)

Such an equation can always be written in the form

x D g.x/

for some function g. For example, Eq. (9.1) can be rewritten as

x D 3x3 � 2x C 1 (9.2)

or

x D 3x3 C 1

3
;

and there are many other possibilities.
A number x satisfying the equation x D g.x/ is called a fixed point of the

function g because an application of g to x leaves x unchanged. For instance, the

© Springer Science+Business Media New York 2015
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_9

423



424 9 The Fixed-Point Problem

function given by x2 for all x has the two fixed points 0 and 1. Evidently if we can
find a good technique for determining the fixed points of a function, then we will
have a good technique for solving equations, for if an equation is written in the form
x D g.x/, then its solutions are precisely the fixed points of g.

9.2 Existence of Fixed Points

The first question to be considered is whether a given function has any fixed points
at all. Once we have that information, we can consider how the fixed points may
be found. We can gain considerable insight by looking at the problem graphically,
because a fixed point of a function g is simply a value of the argument x at which
the graph of g intersects the line y D x (see Fig. 9.1).

Clearly, a function need not have a fixed point. The exponential function, whose
graph is drawn in Fig. 9.2, is an example of a function with no fixed point.

The next theorem establishes a useful set of conditions under which we can be
sure that a given function has a fixed point.

Theorem 9.2.1. Let a and b be real numbers with a < b. Let g be a function such
that g.a/ � a and g.b/ � b and g is continuous on Œa; b�. Then g has a fixed point
in Œa; b�.

x

y

y = x

y = g(x)

x1

x2

g(x2) = x2

g(x1) = x1

Fig. 9.1 Graph of a function g with two fixed points
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Fig. 9.2 The exponential
function has no fixed points

x

y

1

y = x

y = ex

Proof. Define

h.x/ D x � g.x/

for all x 2 Œa; b�. If either h.a/ D 0 or h.b/ D 0, then a or b, respectively, is
a fixed point of g. We may suppose, therefore, that g.a/ > a and g.b/ < b and
consequently that h.a/ < 0 < h.b/. Then the intermediate-value theorem shows
that there is a number � 2 .a; b/ such that h.�/ D 0. Thus � is a fixed point of g. ut

Under the conditions of Theorem 9.2.1 the function g may have many fixed
points, for its graph may touch the line y D x several times. It is often important
to know that g has only one fixed point in a particular interval. Geometric intuition
suggests that this will be the case if g.x/ does not vary too rapidly as x changes, for
then the graph of g will not oscillate rapidly enough to cross the line y D x more
than once. It therefore seems that one way of guaranteeing uniqueness of the fixed
point in a particular interval is to restrict the size of g0. The next theorem makes this
idea precise.

Theorem 9.2.2. If a function g satisfies the hypotheses of Theorem 9.2.1 and in
addition jg0.x/j < 1 for all x 2 .a; b/, then g has a unique fixed point in Œa; b�.

Proof. The existence of a fixed point of g in Œa; b� follows from Theorem 9.2.1.
Suppose that x1 and x2 are fixed points of g in Œa; b� such that x1 < x2. By the
mean-value theorem applied to the interval Œx1; x2�, there exists � 2 .x1; x2/ such
that

g0.�/ D g.x2/ � g.x1/

x2 � x1

:

As x1 and x2 are fixed points, it follows that g0.�/ D 1, despite the hypothesis
that jg0.x/j < 1 for all x 2 .a; b/. This contradiction shows that the fixed point in
question is indeed unique. ut
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9.3 Fixed-Point Iteration

We suppose now that we are given a function g and we wish to find, as accurately
as may be required, the fixed points of g. The method we shall use is called fixed-
point iteration. It involves making an initial guess, x0 say, and then constructing
a sequence fxng of successive approximations for the desired fixed point, using the
formula

xnC1 D g.xn/

for all nonnegative integers n. The process is illustrated graphically in Fig. 9.3.
If the sequence fxng so constructed converges to some number s and g is

continuous, then it is easily seen that s is a fixed point of g. Indeed, since xn ! s

as n ! 1 and g is continuous, it follows that g.xn/ ! g.s/. Therefore, taking
limits on both sides of the equation xnC1 D g.xn/ yields s D g.s/, as required.
However, the sequence fxng need not converge. The following example illustrates
this and other difficulties.

Example 9.3.1. Suppose we wish to solve Eq. (9.1) given at the beginning of this
chapter. First we sketch the graph of the function on the left-hand side of the
equation. For instance, if we draw the graph of 3x3 � 3x and move it one unit
up, then Fig. 9.4 makes it appear that there are solutions near �1:1, 0.4, and 0.7.

Now let us try to solve the equation by writing it in the form (9.2) and looking
for the fixed points of the corresponding function given by

g.x/ D 3x3 � 2x C 1

for all x. We show graphically in Fig. 9.5 the fates of seven iterations that start with
initial guesses near one of the three values obtained above.

The following facts should be clear from the figure.

x0 x1x2 x3
xs

y= g(x)
g(x1)= x2

g(x2) = x3

g(x0) = x1 g(x0) = x1

g(x0) = x2

y = x 
y

fixed point of g fixed point of g

x0x1x2
xs

y = g(x)
y = x 

y

Fig. 9.3 Illustration of fixed-point iteration
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Fig. 9.4 Graph of
3x3 � 3x C 1

–1.15

–1 1

1

y = 3x3 − 3x

y = 3x3 − 3x+1y

x
0.58

1. No iteration can converge to the fixed points located near �1:1 and 0.7.
2. Iterations such as 3–5, which start close enough to the remaining fixed point, will

converge to that fixed point. The value obtained for the fixed point by this means
is 0.3949 (correct to four decimal places). A closer study of the graph shows that
in order for an iteration to converge to this fixed point, the initial guess must lie
in the interval Œ0:14; 0:74�, approximately. Even then, the convergence is so slow
that it takes many steps of an iteration to get a good approximation for the fixed
point.

3. Some iterations that start near �1:1, such as iteration 7, which might be expected
to diverge like iteration 2, actually converge to 0.3949. . . because the third term
in the iteration falls in the interval Œ0:14; 0:74� referred to in (2), instead of
overshooting or undershooting it. The figure shows how this happens. 4
It is clear from this example that trying to solve Eq. (9.1) by applying fixed-point

iteration to version (9.2) is an approach whose value is very limited. Only one of the
three solutions can be found this way, and that at the cost of considerable calculation
because of the slow convergence of the iterations. Furthermore, the interval within
which the initial guess must be placed in order for us to be sure the iterations will
converge is not large. It would be helpful to know what sorts of conditions the
function g must satisfy if the fixed-point iterations are to converge and to have a
better understanding of what governs the rate of convergence of the iterations. The
next theorem deals with these questions. As well as giving conditions under which
a fixed-point iteration will converge to a fixed point of g, it also gives a bound on
the error incurred by stopping the iterations after a given number of steps.

Theorem 9.3.1. Suppose the function g satisfies the following conditions:

1. g is continuous on the closed interval Œa; b�;
2. a � g.x/ � b for all x 2 Œa; b�; and
3. there is a number L < 1 such that jg0.x/j � L for all x 2 .a; b/.
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1

1

2

2

27
7

6

6
x

y

y = 3x3 − 2x + 1

6

6

7 7

3

3

4 5

Fig. 9.5 Iterations for fixed points of 3x3 � 2x C 1

Then

1. for any initial value x0 2 Œa; b�, the sequence fxng defined by xnC1 D g.xn/

for each n � 0 converges to a number s, which is the unique fixed point of g in
Œa; b�; and

2. the error en D s � xn satisfies

jenj � Ln

1 � L
jx1 � x0j

for each n 2 N.



9.3 Fixed-Point Iteration 429

Proof.

1. Taking x D a and x D b in hypothesis (2) gives g.a/ � a and g.b/ � b, respec-
tively, so that g satisfies the hypotheses of Theorem 9.2.1. By hypothesis (3), g

also satisfies the conditions of Theorem 9.2.2, and so we know that g has exactly
one fixed point s in Œa; b�. Choose any x0 2 Œa; b�, and let the sequence fxng be
defined by

xnC1 D g.xn/

for each n � 0. Then, by hypothesis (2), xn 2 Œa; b� for all n. We may also
assume that xn ¤ s for all n. The mean-value theorem shows that for every
positive integer n there is a number �n between xn�1 and s such that

g0.�n/ D g.xn�1/ � g.s/

xn�1 � s
:

Thus

xn � s D g0.�n/.xn�1 � s/;

so that

jxn � sj � Ljxn�1 � sj

by hypothesis (3). In particular,

jx1 � sj � Ljx0 � sj;

and if

jxk � sj � Lkjx0 � sj

for some k > 0, then

jxkC1 � sj � Ljxk � sj � LkC1jx0 � sj:

Consequently

jxn � sj � Lnjx0 � sj

for all n 2 N, by induction. Since 0 � L < 1, we have

lim
n!1 Ln D 0;
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and so

lim
n!1 jxn � sj D 0:

It follows that

lim
n!1 xn D s;

as required.
2. We may assume that xn ¤ xn�1 for all n 2 N, as xn D s otherwise. By the

mean-value theorem, for every positive integer n there is a number �n between
xn�1 and xn such that

g0.�n/ D g.xn/ � g.xn�1/

xn � xn�1

:

Arguing as in the proof of (1), we obtain

jxnC1 � xnj D jg0.�n/.xn � xn�1/j � Ljxn � xn�1j:

We conclude by induction that

jxnC1 � xnj � Lnjx1 � x0j

for all n 2 N.
Now fix n and let m be an integer such that m > n. Using the telescoping

property, we have

jxm � xnj D
ˇ̌̌
ˇ̌̌m�1X
j Dn

.xj C1 � xj /

ˇ̌̌
ˇ̌̌

�
m�1X
j Dn

jxj C1 � xj j

� jx1 � x0j
m�1X
j Dn

Lj

D jx1 � x0j
0
@m�1X

j D0

Lj �
n�1X
j D0

Lj

1
A

D jx1 � x0j
�

1 � Lm

1 � L
� 1 � Ln

1 � L

�

D jx1 � x0jL
n � Lm

1 � L
;
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since 0 � L < 1. Now limm!1 xm D s, as proved in part (1), and so

jenj D js � xnj � Ln

1 � L
jx1 � x0j;

as required. ut
Example 9.3.2. Let us return to Eq. (9.1) discussed in the previous example, but
this time we shall write it in the form

x D
�

3x � 1

3

�1=3

D
�

x � 1

3

�1=3

and look for fixed points of the function g given by

g.x/ D
�

x � 1

3

�1=3

for all x, using the information provided by Theorem 9.3.1. In order to apply the
theorem we need to know for what values of x we have jg0.x/j < 1, and so we first
sketch the graph of

g0.x/ D 1

3

�
x � 1

3

��2=3

:

This graph is given in Fig. 9.6.
We can see from the graph that jg0.x/j < 1 if x < 0:1409 : : : or x > 0:5258 : : :.

Now we must look at the graph of g to find suitable intervals Œa; b� satisfying
the condition that a � g.x/ � b for all x 2 Œa; b� as well as the condition that
jg0.x/j � L for some L < 1 and all x 2 Œa; b�. We can recognize intervals Œa; b�

0.1409–1–1.3 1
3

0.5258

0.6

y

x

1

0.8046

0.5540

0.2752

0.2403

y = 1
3 x − 1

3( )−2/3

0.8

Fig. 9.6 Graph of .1=3/.x � 1=3/�2=3
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Fig. 9.7 An interval Œa; b�

where a � g.x/ � b

b

b

a

a
x

y
y = x

y = g(x)

–1.3 –1
0.6 0.8

0.6
0.8

–1

–1.3

x

y

y = xy = x − 1
3( )1/3

fixed point at x
already known 

= 0.3949...

Fig. 9.8 Graph of .x � 1=3/1=3

where a � g.x/ � b for all x 2 Œa; b� by noting that in such a case the graph of g

on the interval Œa; b� must lie entirely within the square box shown in Fig. 9.7. The
graph of g is drawn in Fig. 9.8.

It is clear that the fixed point 0.3949 . . . obtained by the method of the previous
example lies in a region of the graph where g0.x/ > 1, so that Theorem 9.3.1 cannot
be applied to locate that fixed point in the present case. In fact, graphical analysis or
numerical experimentation indicates that in the present case no fixed-point iteration
will converge to the fixed point 0.3949 . . . , and so that fixed point cannot be located
by the present method. In fact, iterations started just above 0.3949 . . . will converge
to the fixed point near 0.7, while those started just below 0.3949 . . . will converge to
the fixed point near �1:1. However, both the fixed point near �1:1 and that near 0.7
can be enclosed in intervals on which Theorem 9.3.1 may be applied, for example,
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the intervals Œ�1:3; �1� and Œ0:6; 0:8�, as shown. Analysis of the graph of g0 shows
that jg0.x/j � 0:276 for all x 2 Œ�1:3; �1� and jg0.x/j � 0:805 for all x 2 Œ0:6; 0:8�,
so that we may apply Theorem 9.3.1 on these intervals with L D 0:276 and L D
0:805, respectively. This method therefore locates the two solutions of Eq. (9.1) not
found by the method of Example 9.3.1. By combining the two methods, we can say
that, correct to four decimal places, the solutions of Eq. (9.1) are �1:1372, 0.3949,
and 0.7422. 4

Considering the amount of work involved in obtaining the solutions in this
example, one cannot help feeling that there must be an easier way. One point that
will be noticed is the relatively rapid convergence of the iterations in the interval
Œ�1:3; �1�. Note that jg0.x/j is smaller in this interval, so that L is smaller and
therefore Ln tends to 0 relatively fast as n ! 1. Thus the error bound given
by Theorem 9.3.1 will also tend to 0 relatively quickly. This observation suggests
more rapid convergence of the iterations than in the case of iterations in the interval
Œ0:6; 0:8�. Thus one way of speeding up the process might be to seek functions g for
which jg0.x/j is very small near a fixed point of g. This idea is the reason for the
success of the following method.

Suppose we are given the nonlinear equation f .x/ D 0 for all x, and we wish to
write it in the form x D g.x/ in order to apply fixed-point iteration. One approach
is to write f .x/ D 0 in the equivalent form

f .x/h.x/ D 0;

where h is any differentiable function with the property that the equation h.x/ D 0

has no real solutions, so that f .x/ D 0 if and only if f .x/h.x/ D 0. Then we can
rewrite f .x/ D 0 as x D x C f .x/h.x/, so that

g.x/ D x C f .x/h.x/

for all x.
Now let s be a fixed point of g, that is, a solution of f .x/ D 0. In view of our

previous discussion, we should like jg0.x/j to be small when x is near s. If, in fact,
g0.s/ D 0, then as long as g0 is continuous, we can be sure that jg0.x/j will be small
if x is close enough to s. Now

g0.x/ D 1 C f .x/h0.x/ C h.x/f 0.x/

for all x, and since f .s/ D 0 this equation gives

g0.s/ D 1 C h.s/f 0.s/:

Therefore g0.s/ D 0 if f 0.s/ ¤ 0 and h.s/ D �1=f 0.s/. Thus we define

h.x/ D � 1

f 0.x/
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for all x such that f 0.x/ ¤ 0, for then the value of s does not need to be known. In
other words, we write the equation f .x/ D 0 in the equivalent form

x D x � f .x/

f 0.x/

and then use fixed-point iteration. This procedure is called Newton’s method. If
the fixed-point iteration starts close enough to a solution of f .x/ D 0, then L

in Theorem 9.3.1 will be small and so the iteration will converge rapidly to the
desired solution. Difficulties arise in certain cases, most obviously if f 0.s/ D 0,
but Newton’s method is very useful in cases where f 0.x/ is easily calculated and a
reasonably good initial guess at the solutions can be made.

Example 9.3.3. Newton’s method applied to Eq. (9.1) requires the equation to be
rewritten in the form

x D x � 3x3 � 3x C 1

9x2 � 3

for all x such that 9x2 ¤ 3. Applying fixed-point iteration with starting values
near the solutions guessed at the beginning of Example 9.3.1 leads to iterations that
converge relatively rapidly compared with those in the previous examples. 4
Exercises 9.1.

1. Let g.x/ D x2 for all x. From a graph similar to that used to trace the fates
of fixed-point iterations in Example 9.3.1, determine for what values of x0 the
sequence fxng, defined by xnC1 D g.xn/ for all nonnegative integers n, will
converge to a fixed point of g and for what values of x0 it will diverge.

2. Suppose Eq. (9.1) discussed in Examples 9.3.1–9.3.3 is rewritten as x D .3x3 C
1/=3. Putting g.x/ D .3x3 C1/=3 for all x, sketch the graphs of g and g0 and use
the approach illustrated in Example 9.3.2 to find suitable intervals within which
Theorem 9.3.1 can be applied to locate fixed points. Use fixed-point iterations,
starting at each end of the intervals you have found, to locate the corresponding
fixed points correct to four decimal places. If there are any fixed points that
cannot be located in this way, use the graph of g to describe what will happen to
iterations that start near these fixed points.

3. Do the same as for the previous exercise but for the function g given by

g.x/ D 3x � 1

3x2

for all x ¤ 0. Note that in investigating the graph of g0 it is not necessary to find
exactly the values of x for which g0.x/ D ˙1; just locate these values roughly
by calculating a few values of g0.x/ on either side of the apparent location of
these values of x.
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4. Show that Newton’s method applied to the equation x2 D c, where c > 0, leads
to the fixed-point problem

x D x2 C c

2x
;

and use graphical methods to show that Theorem 9.3.1 can be applied on the
interval Œ 2

3

p
c; 4

3

p
c� to locate the fixed point

p
c. Find the smallest possible

value of L for this interval. In the case c D 2, use the fact that 1 <
p

2 < 3
2

to show that 1 lies in the interval Œ 2
3

p
2; 4

3

p
2� and hence locate

p
2 correct

to six decimal places by fixed-point iteration. Calculate, for each step in the
iteration, the size of the actual error and the theoretical bound on the error given
by Theorem 9.3.1.

5. For the fixed-point problem x D cos x for all x, use graphical methods to show
that Theorem 9.3.1 can be applied on the interval Œ0; 1�. If your calculator can
evaluate trigonometric functions, use the initial value x0 D 0:5 and locate the
fixed point correct to four decimal places. Also, solve the equation by Newton’s
method with the same initial value and note the rapid convergence in this case.

6. Suppose

f .x/ D .x � r1/.x � r2/ � � � .x � rm/

for all x, where m � 2 and r1 � r2 � : : : � rm. Then f is a polynomial
of degree m with the coefficient of xm equal to 1, and the equation f .x/ D 0

has only real solutions, none of which exceeds the solution rm. Let fxng be a
sequence produced by Newton’s method applied to the equation f .x/ D 0.

(a) Explain why f .x/ > 0 for all x > rm, and show by direct differentiation
that f 0.x/ > 0 and f 00.x/ > 0 for all x > rm.

(b) Suppose that xk > rm for some integer k � 0. Show that xkC1 < xk . By
using the mean-value theorem applied to f on the interval Œrm; xk�, show
also that f .xk/ < .xk � rm/f 0.xk/ and deduce that xk � xkC1 < xk � rm

and hence that xkC1 > rm.
(c) From (b) it follows that if x0 > rm, then the sequence fxng is a decreasing

sequence bounded below by rm. Hence the sequence fxng converges to a
limit s � rm. Prove that in fact s D rm. Illustrate this conclusion for the
function given by

f .x/ D .x C 1/2.x � 2/;

for all x, by taking x0 D 3, x0 D 10, and x0 D 30 and carrying out the
iterations correct to four decimal places.

(d) In some cases the convergence of the sequence fxng may be exceedingly
slow. For example, if f .x/ D .x � s/m for all x, show that

xnC1 D
�

1 � 1

m

�
xn C s

m
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for all n 2 N, and deduce that

s � xnC1 D
�

1 � 1

m

�
.s � xn/:

[Thus if m is large, so that 1 � 1=m is close to 1, then the decrease in the
error at each step of the iteration is slight. For example, if m D 100, then
enC1 D 99en=100. Note that this is a case where f 0.s/ D 0, since m � 2,
and so we might expect that Newton’s method could run into difficulties.]



Chapter 10
Sequences of Functions

10.1 Introduction

The representation of a function as the limit of a sequence or, equivalently, an
infinite series is central to many topics in advanced analysis. In this chapter we
concentrate on sequences of functions and certain properties of limits that can be
gleaned from properties of the sequence terms. We begin with an application that
not only motivates the study of sequences of functions, but also highlights some key
questions regarding limits.

A first-order ordinary differential equation for a function y is an equation of the
form

y0 D f .x; y/; (10.1)

where f is a given function of a variable x and y. The equation is usually
supplemented with an initial condition

y.a/ D c; (10.2)

where a and c are given numbers. The initial-value problem consists of determin-
ing a function y that satisfies Eqs. (10.1) and (10.2) for all x in some open interval
that contains a.

We gloss over the fundamental questions of the existence and uniqueness of
solutions to initial-value problems. It turns out that for most choices of f the
problem cannot be solved explicitly. Nonetheless, it can be shown, for example,
that if f is differentiable in a neighborhood of .a; c/ with respect to x and y, then
the initial-value problem has a unique solution. The proof of this result requires

© Springer Science+Business Media New York 2015
C.H.C. Little et al., Real Analysis via Sequences and Series, Undergraduate
Texts in Mathematics, DOI 10.1007/978-1-4939-2651-0_10
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the use of a sequence of functions, and the solution is the limit of this sequence.
Picard proved this result by the method of successive approximations. Specifically,
the problem can be recast as an integral equation

y.x/ D c C
Z x

a

f .�; y.�// d�;

and this formulation motivates the sequence defined by

y0.x/ D c

and

ynC1.x/ D c C
Z x

a

f .�; yn.�// d�

for all nonnegative integers n. It is then shown that fyn.x/g converges to a limit
y.x/ that solves the initial-value problem. The result is local in character: To
ensure convergence of the sequence, x is usually restricted to a small open interval
containing a.

Convergence questions aside, the claim that the limit is the solution of the
differential equation brings to the fore certain questions concerning the properties of
the function that is the limit of the sequence. The problem is that more than one limit
process is involved, and the order in which these limits are taken must be changed.
To prove that the function defined by

y.x/ D lim
n!1 yn.x/

is a solution to the integral equation, we need to justify the following calculation:

lim
n!1 yn.x/ D c C lim

n!1

Z x

a

f .�; yn.�// d�

D c C
Z x

a

lim
n!1 f .�; yn.�// d�

D c C
Z x

a

f .�; lim
n!1 yn.�// d�

D c C
Z x

a

f .�; y.�// d�:

In this calculation, the sequence limit migrates from outside the integral to inside
the integrand. There are two limits involved in this manipulation: the limit defining
y and the limit defining the integral. The problem in the second line is that we
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must change the order in which the sequence limit and the integral limit are taken.
Intuitive as the calculation seems, it turns out that changing the order of these limits
is not always valid.

Indeed, there is a third limit process in the background that stems from the
continuity of f and the functions yn. Given that f is differentiable with respect to
x and y in some neighborhood N of .a; c/, a fortiori f is continuous with respect
to y (and x) for each .x; y/ 2 N . Certainly, if fwng is a sequence of numbers such
that .x; wn/ 2 N and limn!1 wn D y, then the definition of continuity implies that

lim
n!1 f .x; wn/ D f .x; lim

n!1 wn/ D f .x; y/:

The sequence fyng consists of functions continuous near a, but is the limit function
y continuous near a? For that matter, if y is not continuous, is f .x; y.x// integrable
with respect to x in some neighborhood of a?

Suppose that the problems with the calculation above are resolved. The function
y thus represents the solution to the integral equation. The original problem,
however, involved a differential equation. The integral equation is well defined for
every continuous function y; the differential equation requires y to be differentiable
near a. It is clear from the definition of the sequence that each yn is differentiable,
but is the limit y differentiable?

The initial-value problem highlights the need to examine conditions under which
the order of certain limiting processes can be changed. On a more fundamental
level it also raises questions as to whether properties of the sequence terms, such as
continuity and differentiability, are preserved in the limit.

Let I � R be an interval and suppose the sequence ffn.x/g converges to f .x/

for all x 2 I . We have, in summary, the following questions concerning limits of
sequences of functions.

1. If fn is continuous on I for all n, is f continuous on I ?
2. If fn is integrable on I for all n, is f integrable on I ? If so, is

Z b

a

lim
n!1 fn.x/ dx D lim

n!1

Z b

a

fn.x/ dx;

where I D Œa; b�?
3. If fn is differentiable on I for all n, is f differentiable on I ? If so, is

�
lim

n!1 fn

�0 D lim
n!1 f 0

n‹

In this chapter we develop conditions under which the order of limit processes can
be changed. We end this section with a few simple examples to illustrate that, in
general, the order of these processes cannot be changed.
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Example 10.1.1 (Continuity). Let ffng be the sequence defined by

fn.x/ D 1

1 C nx2

for all n and all x 2 Œ�1; 1�. For every n, fn is continuous on Œ�1; 1�. If x ¤ 0, then
it is plain that fn.x/ ! 0 as n ! 1; however, fn.0/ D 1 for all n and consequently
fn.0/ ! 1 as n ! 1. The limit of the sequence is thus given by

f .x/ D



0 if x 2 Œ�1; 1� � f0g
1 if x D 0;

hence f is not continuous on Œ�1; 1�. Note that

lim
x!0

�
lim

n!1 fn.x/
�

D 0 ¤ lim
n!1

�
lim
x!0

fn.x/

�
D 1:

4
Example 10.1.2 (Differentiation). Let ffng be the sequence defined by

fn.x/ D x

1 C nx2

for all n and all x 2 Œ0; 1�. Then

f .x/ D lim
n!1 fn.x/ D 0

for all x 2 Œ0; 1�, so that f 0.x/ D 0 for all such x. However,

f 0
n.x/ D 1 � nx2

.1 C nx2/2
;

so that

lim
n!1 f 0

n.x/ D



1 if x D 0;

0 otherwise.

Hence

lim
n!1 f 0

n.x/ ¤
�

lim
n!1 fn.x/

�0

when x D 0. 4
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Example 10.1.3 (Differentiation). Let ffng be the sequence defined by

fn.x/ D sin nx

n

for all n 2 N and x 2 R. Now, j sin nxj � 1; consequently fn.x/ ! 0 as n ! 1
for all x 2 R.

For every n 2 N we see that fn is differentiable on R. The limit f D 0 is also a
differentiable function on R. The derivative of fn, however, is defined by

f 0
n.x/ D cos nx;

so that the sequence ff 0
ng converges only for special values of x such as 0 and 2�

and diverges for most x 2 R. 4
Example 10.1.4 (Integration). Let ffng be the sequence defined by

fn.x/ D 2nxe�nx2

for all n and all x 2 Œ0; 1�. For each x 2 Œ0; 1�, fn.x/ ! 0 as n ! 1; hence

Z 1

0

lim
n!1 fn.x/ dx D

Z 1

0

0 dx D 0:

On the other hand,

Z 1

0

fn.x/ dx D 1 � e�n;

so that

lim
n!1

Z 1

0

fn.x/ dx D 1 ¤
Z 1

0

lim
n!1 fn.x/ dx D 0:

4

10.2 Uniform Convergence

The examples in the previous section show that the order in which limits are taken is
important. We thus seek sufficient conditions under which this order can be changed.
In this section we present the key concept of uniform convergence. In the next
section we show that the order of limits for sequences that converge uniformly can
be changed.
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Let I be a set of real numbers and let ffng be a sequence of functions defined
on I . Suppose that for each x 2 I the sequence ffn.x/g converges to f .x/. For all
x 2 I , the definition of convergence implies that for every " > 0 there is an integer
N such that

jfn.x/ � f .x/j < "

whenever n � N . The value of N , in general, depends not only on the choice of "

but also on x. Suppose that we consider two distinct values x1 and x2 in I . Since
ffn.x1/g and ffn.x2/g are convergent sequences, for every " > 0 there exist integers
N."; x1/ and N."; x2/ such that

jfn.x1/ � f .x1/j < " (10.3)

whenever n � N."; x1/ and

jfn.x2/ � f .x2/j < " (10.4)

whenever n � N."; x2/. Integers N."; x1/ and N."; x2/ are not necessarily equal,
but we could use N D maxfN."; x1/; N."; x2/g to ensure that inequalities (10.3)
and (10.4) are satisfied for all n � N . Evidently, for any finite number of points
x1; x2; : : : ; xj in I we can always choose N so that if n � N , then

jfn.xk/ � f .xk/j < "

for each k 2 f1; 2; : : : ; j g. It is not clear, however, that we can find an N such that,
for all x 2 I ,

jfn.x/ � f .x/j < "

whenever n � N . Generically, it is not possible to find such an N , and this situation
leads to the concept of uniform convergence.

Let ffng be a sequence of functions defined on a set I � R. The sequence is
said to converge uniformly to the function f on I if for each " > 0 there exists
an integer N , which may depend on " but not on any particular x 2 I , such that if
n � N , then

jfn.x/ � f .x/j < " (10.5)

for all x 2 I . Clearly, " in inequality (10.5) may be replaced by c" for any constant
c > 0. In applications we usually take I to be a closed interval. We always assume
it to be nonempty.

Note that if there exists a function f such that fn.x/ D f .x/ for each x 2 I and
each n, then the sequence ffng converges uniformly to f on I .
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Suppose that fn.x/ D an for each x 2 I and each n, and that the sequence fang
converges to L. Choose " > 0. There exists N such that

jfn.x/ � Lj D jan � Lj < "

for all n � N . Therefore the sequence ffng of functions converges uniformly on I

to the constant L.
The geometric interpretation of uniform convergence is straightforward. If the

graph of f is drawn for all x 2 I , then a ribbon of width 2" can be constructed by
curves offset a distance of " from the graph of f . If ffng converges uniformly to f

on I , then for each " > 0 there is an N such that the graph of fn lies in the ribbon
for all n � N . The quantity limiting N is the maximum difference between fn.x/

and f .x/ for x 2 I . This observation motivates the investigation of the sequence
fMng of numbers defined by

Mn D sup
x2I

jfn.x/ � f .x/j:

Inequality (10.5) shows that Mn necessarily exists for all n if ffng is uniformly
convergent on I .

Theorem 10.2.1. The sequence ffng converges uniformly on I to f if and only if
Mn ! 0 as n ! 1.

Proof. Suppose that ffng converges uniformly on I to f . Choose " > 0. Since ffng
converges uniformly, there is an integer N that is independent of x such that

jfn.x/ � f .x/j < "

for all n � N ; hence Mn exists and

jMnj D Mn D sup
x2I

jfn.x/ � f .x/j � "

for all n � N . Thus Mn ! 0 as n ! 1 from the definition of convergence.
Suppose that Mn ! 0 as n ! 1. For each " > 0 there is an N such that Mn < "

whenever n � N ; therefore, for all x 2 I ,

jfn.x/ � f .x/j � Mn < "

for each n � N . The choice of N is independent of x and we thus conclude that
ffng converges uniformly to f on I . ut
Corollary 10.2.2. Suppose that ffng converges uniformly on I to f . If M is a
number such that jfn.x/j < M for all n and all x 2 I , then jf .x/j � M for all
x 2 I .
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Proof. Suppose that jf .x/j > M for some x 2 I . Then jf .x/j D M C " for some
" > 0. Thus for all n we have

jfn.x/ � f .x/j � jf .x/j � jfn.x/j > M C " � M D ":

Therefore

sup
x2I

jfn.x/ � f .x/j > "

for all n, and so we have the contradiction that

lim
n!1 sup

x2I

jfn.x/ � f .x/j � " > 0:

ut
Of course, a corresponding result holds if jfn.x/j > M for all n and all x 2 I .

Example 10.2.1. Let ffng be the sequence defined by

fn.x/ D 1 � xnC1

1 � x

for each x 2 Œ�1=2; 1=2� D I . For all x 2 I , xnC1 ! 0 as n ! 1, and therefore

f .x/ D lim
n!1 fn.x/ D 1

1 � x
:

Now

jfn.x/ � f .x/j D jxjnC1

1 � x
I

consequently

Mn D sup
x2I

jfn.x/ � f .x/j

D sup
x2I

jxjnC1

1 � x

D 1

2n
:

Since Mn ! 0 as n ! 1, ffng converges uniformly to f on I by Theorem 10.2.1.
4
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Example 10.2.2. Let ffng be the sequence defined by

fn.x/ D 1

1 C nx2

for all x 2 Œ�1; 1� D I . Example 10.1.1 shows that fn ! f as n ! 1, where

f .x/ D



0 if x 2 I � f0g;
1 if x D 0;

therefore

jfn.x/ � f .x/j D
(

1
1Cnx2 if x 2 I � f0g;
0 if x D 0.

Now

Mn D sup
x2I

jfn.x/ � f .x/j D 1;

and it is clear that limn!1 Mn ¤ 0 as n ! 1. Theorem 10.2.1 thus implies that
the sequence does not converge uniformly to f on I . 4
Remark. A sequence ffng of functions fails to be uniformly convergent to a function
f on a set I if and only if there is an " > 0 such that for all N there exist an integer
k � N and an xk 2 I for which

jfk.xk/ � f .xk/j � ":

We illustrate this remark in the next example.

Example 10.2.3. Let ffng be the sequence defined by

fn.x/ D x

n

for all n 2 N and all x 2 R. Since

f .x/ D lim
n!1 fn.x/ D 0

for all x 2 R, the sequence converges to a continuous function. However, it is not
uniformly convergent: For all n 2 N let xn D n, so that fn.xn/ D 1 and hence

jfn.xn/ � f .xn/j D 1 > 0:
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Note also that

lim
n!1 f 0

n.x/ D lim
n!1

1

n
D 0 D

�
lim

n!1 fn.x/
�0

and

lim
n!1

Z b

a

fn.x/ dx D lim
n!1

b2 � a2

2n
D 0 D

Z b

a

lim
n!1 fn.x/ dx:

4
Our next example shows that a sequence of functions may converge uniformly

on every closed subinterval of an open interval yet fail to be uniformly convergent
on the open interval.

Example 10.2.4. Let

fn.x/ D xn

for each n and each x 2 .0; 1/. We will show that if 0 < a < b < 1, then ffng
converges uniformly on Œa; b�, but it does not do so on .0; 1/.

For each x 2 .0; 1/ we have

f .x/ D lim
n!1 fn.x/ D 0:

Therefore

sup
x2Œa;b�

jfn.x/ � f .x/j D sup
x2Œa;b�

jfn.x/j D sup
x2Œa;b�

xn D bn ! 0

as n ! 1. Hence ffng converges uniformly on Œa; b�.
For each n > 0 let

xn D 1 � 1

n
:

Then

jfn.xn/ � f .xn/j D
�

1 � 1

n

�n

! 1

e

as n ! 1. Hence

sup
x2I

jfn.x/ � f .x/j � 1

e
> 0:

We conclude from Theorem 10.2.1 that ffng does not converge uniformly on .0; 1/.
4
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Theorem 10.2.1 is a useful characterization of uniform convergence, but one must
find the supremum of jfn.x/ � f .x/j. The problem can sometimes be mitigated by
using the sandwich theorem (Sect. 2.5). If there is a sequence fKng such that

jfn.x/ � f .x/j < Kn

for each n 2 N and each x 2 I , then 0 � Mn � Kn for each n. If Kn ! 0

as n ! 1, then Mn ! 0 as n ! 1. To show that a sequence is not uniformly
convergent on I , it suffices to establish a nonzero lower bound for the sequence
fMng, valid for all n sufficiently large.

A more serious problem with this characterization of uniform convergence is that
it requires a candidate for f . Often there is not an obvious candidate and hence we
cannot use Theorem 10.2.1 directly. We thus seek an alternative characterization
that does not require a limit candidate. This line of thought leads to a generalization
of the Cauchy principle for convergence (Theorem 2.6.9).

Theorem 10.2.3 (Cauchy Principle). Let ffng be a sequence of functions defined
on the set I . The sequence ffng converges uniformly on I if and only if for each
" > 0 there is an integer N , which may depend on " and I but not on any x 2 I ,
such that for all x 2 I we have

jfn.x/ � fm.x/j < "

whenever n � N and m � N .

Proof. Necessity: Suppose ffng converges uniformly on I to f . Then for each " > 0

there is an integer N such that for all x 2 I we have

jfn.x/ � f .x/j < "

whenever n � N . If n � N and m � N , then, for all x 2 I ,

jfn.x/ � fm.x/j D jfn.x/ � f .x/j C jf .x/ � fm.x/j
< 2":

The result follows.
Sufficiency: Suppose that for each " > 0 there is an N such that for all x 2 I we

have

jfn.x/ � fm.x/j < "

whenever n � N and m � N . For every x 2 I , ffn.x/g is a Cauchy sequence of
numbers and therefore convergent. Define

f .x/ D lim
n!1 fn.x/

for all x 2 I .
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Choose any " > 0 and x 2 I . There is an N , independent of x, such that

jfn.x/ � f .x/j � jfn.x/ � fm.x/j C jfm.x/ � f .x/j
< " C jfm.x/ � f .x/j

whenever m � N and n � N . Since fm.x/ ! f .x/ as m ! 1, we can choose
m � N (m may depend on " and x) so that

jfm.x/ � f .x/j < ":

Therefore

jfn.x/ � f .x/j < " C " D 2"

whenever n � N . This inequality is valid for all x 2 I , and N is independent of x.
We thus conclude that ffng converges uniformly to f on I . ut

Note the similarity between the proof of necessity in Theorem 10.2.3 and the
proof of Theorem 2.6.1.

In order to prove the uniform convergence of a sequence ffng of Theorem 10.2.3
on an interval I , it is of course enough to prove the existence of a positive constant
c such that

jfn.x/ � fm.x/j < c"

whenever n � N and m � N .
The following result provides a sequential characterization of uniform conver-

gence of a sequence of functions.

Theorem 10.2.4. Let ffng be a sequence of functions on a nonempty set I . Then
the sequence converges uniformly to f on I if and only if

lim
n!1.fn.xn/ � f .xn// D 0 (10.6)

for each sequence fxng in I .

Proof. Suppose that ffng converges uniformly to f on I . Then for each sequence
fxng in I we have

0 � jfn.xn/ � f .xn/j � sup
x2I

jfn.x/ � f .x/j ! 0

as n ! 1. Equation (10.6) follows by the sandwich theorem.
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Suppose on the other hand that ffng does not converge uniformly to f . Then
there is an " > 0 such that for all N there exist an integer k � N and an xk 2 I for
which

jfk.xk/ � f .xk/j � ":

In particular, there exist k1 � 1 and xk1 2 I for which

jfk1.xk1/ � f .xk1/j � ":

Moreover, suppose that positive integers k1; k2; : : : ; kn have been defined for some
n 2 N, and that xkj 2 I and

jfkj .xkj / � f .xkj /j � "

for all j . Suppose also that kj < kj C1 for each j < n. Then there exist an integer
knC1 � kn C 1 and an xknC1

2 I such that

jfknC1
.xknC1

/ � f .xknC1
/j � ":

We have now constructed a subsequence ffkng of ffng by induction. Let fxng be any
sequence in I having fxkng as a subsequence. For instance, since I ¤ ; we may
choose a 2 I and set xn D a for each positive integer n … fk1; k2; : : :g. Then the
subsequence fjfkn.xkn/ � f .xkn/jg of fjfn.xn/ � f .xn/jg does not converge to 0,
and the proof is complete. ut

The contrapositive of this theorem is often easier to use.

Corollary 10.2.5. If there exists a sequence fxng in I such that

lim
n!1.fn.xn/ � f .xn// ¤ 0;

then ffng does not converge uniformly to f .

Exercises 10.1.

1. For each of the following sequences defined on Œ0; 1�, show that the sequence
is convergent and determine whether the convergence is uniform:

(a) fxng.

(b)
n

sin.nxCn/p
n

o
.

(c)
˚

x
1Cnx

	
.

(d)
n

nx2

1Cnx

o
.

(e)


q
x2 C 1

n

�
.
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2. Show that the sequence

fsin1=n xg

converges uniformly on every closed proper subinterval of Œ0; �� but not on
Œ0; �� itself.

3. Show that the sequence

(�
sin x

x

�1=n
)

converges on .0; �/ but not uniformly.
4. Show that the sequence



nx

1 C n2x2

�

is uniformly convergent on Œc; 1�, where 0 < c < 1. Does the sequence
converge uniformly on .0; 1/?

5. Use differentiation to find the maximum value of the function

fn.x/ D n2x

1 C n3x2

for all n 2 N and x 2 R, and hence show that the sequence ffng is not
uniformly convergent on Œ0; 1�.

6. Let

fn.x/ D n˛x

1 C nˇx2

for all n 2 N and x 2 R, where ˇ > ˛ � 0. Show that the sequence ffng
converges uniformly on Œ0; 1� if and only if ˇ > 2˛.

7. Let

fn.x/ D 1

x
C nx

enx2

for all n 2 N and x 2 .0; 1�. Show that

f .x/ D lim
n!1 fn.x/ D 1

x
:

Use differentiation to find the maximum value of jfn.x/ � f .x/j and hence
show that the sequence ffng is not uniformly convergent on .0; 1�.
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8. Let ffng be a sequence of functions defined on an interval I . Show that if
ffng converges uniformly to f , then fjfnjg converges uniformly to jf j. Is the
converse true?

9. Let fang be a convergent sequence and for each n let fnW I ! R be a function.
Suppose there exists N such that

sup
x2I

fjfn.x/ � fm.x/jg � jan � amj

for all m � N and n � N . Show that
P1

j D0 fj .x/ converges uniformly on I .
10. Suppose f WR ! R is uniformly continuous. Let

fn.x/ D f

�
x C 1

n

�

for all n 2 N and x 2 R. Show that ffng converges uniformly to f .
11. Let f W Œa; b� ! R be continuous.

(a) Explain why, for each n 2 N, there exists ın > 0 such that

jf .x/ � f .y/j <
1

n

whenever jx � yj < ın.
(b) Let .x0; x1; : : : ; xkn/ be a partition of Œa; b� such that xj C1 � xj < ın for

each j < kn. For each n and each x 2 Œa; b� define

fn.x/ D



f .xj / if xj � x < xj C1

f .b/ if x D b.

Show that ffng converges to f uniformly.

12. Show that the sequence

n
cos

x

n

o

converges uniformly on .�a; a/ for every a. Is the convergence uniform on R?
13. For all n 2 N let

f .x/ D



x=n if x is even;

1=n if x is odd.

Show that ffng converges on R but not uniformly.
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10.3 Properties of Uniformly Convergent Sequences

The examples in Sect. 10.1 illustrate the need for conditions under which it is valid
to change the order in which limits are taken. In this section we show that uniformly
convergent sequences are well behaved in the sense that the order in which limits
are taken is not important. We begin with continuity.

Theorem 10.3.1. Let I � R and let ffng be a sequence of functions that
is uniformly convergent on I . Let c be a limit point of I , and suppose that
limx!c fn.x/ exists for all n 2 N. Then

lim
n!1 lim

x!c
fn.x/

exists if and only if

lim
x!c

lim
n!1 fn.x/

exists, and in this case those limits are equal.

Proof. As ffng is uniformly convergent on I , we may define

f .x/ D lim
n!1 fn.x/

for each x 2 I .
Suppose first that

lim
x!c

f .x/ D L;

and choose " > 0. There exists ı > 0 such that

jf .x/ � Lj < "

whenever x 2 I and 0 < jx � cj < ı. The uniform convergence of ffng on I shows
the existence of an N for which

jfn.x/ � f .x/j < "

whenever n � N and x 2 I . Hence

jfn.x/ � Lj � jfn.x/ � f .x/j C jf .x/ � Lj < 2"

whenever n � N , x 2 I and 0 < jx � cj < ı. Therefore, since limx!c fn.x/ exists
for all n, we have

ˇ̌
ˇ lim
x!c

fn.x/ � L
ˇ̌
ˇ � 2" < 3"
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for all n � N . We conclude that

lim
n!1 lim

x!c
fn.x/ D L: (10.7)

On the other hand, suppose that Eq. (10.7) holds. For each n 2 N, write

gn.c/ D lim
x!c

fn.x/:

Thus

lim
n!1 gn.c/ D L:

Choose " > 0. There exists M1 such that

jgn.c/ � Lj < "

for all n � M1. Moreover, for each such n there exists ın > 0 such that

jfn.x/ � gn.c/j < "

whenever x 2 I and 0 < jx � cj < ın, and the uniform convergence of ffng shows
the existence of M2 such that

jfn.x/ � f .x/j < "

whenever n � M2 and x 2 I . Fix n � maxfM1; M2g. Then

jf .x/ � Lj � jf .x/ � fn.x/j C jfn.x/ � gn.c/j C jgn.c/ � Lj < 3"

for each x 2 I such that 0 < jx � cj < ın. Thus

lim
x!c

f .x/ D L;

as required. ut
Remark. The hypothesis that c be a limit point of I is needed only to ensure that
the limits in question are defined.

Corollary 10.3.2. Let ffng be a sequence of functions that is uniformly convergent
to a function f on a set I � R. If fn is continuous on I for each n, then f is
continuous on I .

Proof. It is immediate from the hypotheses that for each c 2 I we have

lim
x!c

f .x/ D lim
x!c

lim
n!1 fn.x/

D lim
n!1 lim

x!c
fn.x/
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D lim
n!1 fn.c/

D f .c/:

ut
The result above gives a sufficient condition for a sequence of continuous

functions to converge to a continuous function. The next example shows that it is
not a necessary condition.

Example 10.3.1. Let ffng be the sequence defined by

fn.x/ D nx.1 � x/n

for all x 2 Œ0; 1� D I . It is clear that for all x 2 I , we have fn.x/ ! 0 as n ! 1.
The function defined by f .x/ D 0 for all x 2 I is continuous on I and hence the
sequence converges pointwise to a continuous function.

This sequence, however, is not uniformly convergent to f on I . Consider the
sequence fxng in I defined by

xn D 1

1 C n

for all n 2 N.1 Since

jfn.xn/ � f .xn/j D
ˇ̌
ˇ̌ n

1 C n

�
1 � 1

1 C n

�n ˇ̌ˇ̌ D 1�
1 C 1

n

�nC1
>

1

2e
> 0

for all n 2 N, Theorem 10.2.1 shows that the sequence indeed fails to be uniformly
convergent on I . 4

Example 10.1.4 shows that there are sequences ffng of integrable functions such
that fn.x/ ! f .x/ for all x in an interval I D Œa; b� but

lim
n!1

Z b

a

fn.x/ dx ¤
Z b

a

f .x/ dx:

Indeed, it may be that the limit f is not even integrable over I . The next result
shows that if ffng converges uniformly to f on I , then f is integrable and the order
in which the limits are taken can be changed.

1The reader may wonder what prompts the choice of this sequence. In fact, it can be shown using
elementary calculus that fn has a global maximum in I at xn.
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Theorem 10.3.3. Let ffng be a sequence of functions that are integrable over the
interval I D Œa; b� and suppose that ffng converges uniformly to f over I . Then f

is integrable on I , and

lim
n!1

Z b

a

fn D
Z b

a

f: (10.8)

Proof. Choose " > 0. Since ffng converges uniformly to f on I , there exists N

such that

fn.x/ � " < f .x/ < fn.x/ C "

for all n � N and x 2 I . Taking the lower integrals over I of both sides of the first
inequality, we obtain

Z
fn � ".b � a/ �

Z
f;

since fn is integrable over I . Similarly,

Z
f �

Z
f �

Z
fn C ".b � a/:

Consequently,

0 �
Z

f �
Z

f � 2".b � a/;

and since these inequalities must hold for every " > 0, it follows that

Z
f D

Z
f;

so that f is integrable on I .
We now have

Z
fn � ".b � a/ �

Z
f �

Z
fn C ".b � a/:

Hence

�".b � a/ �
Z

f �
Z

fn � ".b � a/



456 10 Sequences of Functions

for all " > 0 and n � N , and so

lim
n!1

Z
fn D

Z
f:

ut
Theorems 7.3.11 and 7.3.14 provide sufficient conditions under which a function

is integrable. These results can be used with Theorem 10.3.3 to glean the following
corollaries.

Corollary 10.3.4. Let ffng be a sequence of functions that are continuous on the
interval Œa; b�, and suppose that ffng converges uniformly to f on Œa; b�. Then f is
integrable over Œa; b� and Eq. (10.8) is satisfied.

Corollary 10.3.5. Let ffng be a sequence of functions that are bounded and
monotonic on the interval Œa; b�. If ffng converges uniformly to f on Œa; b�, then
f is integrable over Œa; b� and Eq. (10.8) is satisfied.

Example 10.3.2. Consider the sequence ffng defined by

fn.x/ D
8<
:

xn˛ if x 2 Œ0; 1=n/�
2
n

� x
�

n˛ if x 2 Œ1=n; 2=n/

0 if x 2 Œ2=n; 1�

for all n > 0, where ˛ > 0 is a fixed number. The functions fn are continuous on
the interval Œ0; 1� and hence integrable by Theorem 7.3.11.

We show first that fn.x/ ! 0 as n ! 1 for each x 2 Œ0; 1�. The result is
obvious if x D 0. Suppose x 2 .0; 1�. Let N be any integer such that N > 2=x.
Then for all n � N , we have x > 2=n; hence fn.x/ D 0 and thus fn.x/ ! 0 as
n ! 1.

Evidently,

Z 1

0

fn.x/ dx D n˛�2; (10.9)

so that if 0 < ˛ < 2,

lim
n!1

Z 1

0

fn.x/ dx D
Z 1

0

lim
n!1 fn.x/ dx D 0I (10.10)

however, if ˛ D 2,

lim
n!1

Z 1

0

fn.x/ dx D 1 ¤
Z 1

0

lim
n!1 fn.x/ dx;
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and the sequence fn˛�2g diverges if ˛ > 2. Now,

sup
x2Œ0;1�

jfn.x/j D n˛�1;

and Theorem 10.2.1 implies that ffng is uniformly convergent to the constant
function 0 on Œ0; 1� only if ˛ < 1. Corollary 10.3.4 can be used to deduce
relation (10.10), whenever 0 < ˛ < 1, without calculating the integral of fn. None
of the results concerning integration of uniformly convergent sequences, however,
can be applied when 1 � ˛ < 2. This example thus shows that uniform convergence
is not a necessary condition for changing the order of the limits. 4

If ffng is a convergent sequence of functions that are differentiable on an interval
I , Example 10.1.3 shows that the sequence ff 0

n.x/g may diverge even for all x 2 I .
It is of interest to examine the relationship between these sequences when uniform
convergence is imposed. Uniform convergence of ffng on I does not guarantee the
convergence of ff 0

ng on I , but the next theorem shows that uniform convergence of
ff 0

ng on I guarantees uniform convergence of ffng on I , provided there is a c 2 I

such that ffn.c/g converges.

Theorem 10.3.6. Let ffng be a sequence of functions that are differentiable on
an interval I D Œa; b�. Suppose that the sequence ff 0

ng converges uniformly on I

and that there exists c 2 I such that limn!1 fn.c/ exists. Then ffng converges
uniformly on I to a differentiable function f , and

f 0.x/ D lim
n!1 f 0

n.x/ (10.11)

for all x 2 I .

Proof. Choose " > 0. As ffn.c/g converges, there exists N1 such that

jfn.c/ � fm.c/j < "

whenever m � N1 and n � N1, and the uniform convergence of the sequence ff 0
ng

on I implies the existence of an N2 such that

jf 0
n.t/ � f 0

m.t/j <
"

b � a

whenever m � N2, n � N2 and t 2 I .
Let N D maxfN1; N2g and choose m � N , n � N and x 2 I . For each

t 2 I � fxg we may apply the mean-value theorem to the function fn � fm to
establish the existence of a � between x and t such that

jfn.t/ � fm.t/ � fn.x/ C fm.x/j D jt � xjjf 0
n.�/ � f 0

m.�/j

<
jt � xj
b � a

"

� ": (10.12)
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Note that this inequality holds even if t D x. Substituting c for x, we therefore
obtain

jfn.t/ � fm.t/j � jfn.t/ � fm.t/ � fn.c/ C fm.c/j C jfn.c/ � fm.c/j
< 2":

Thus ffng satisfies the Cauchy criterion for uniform convergence. Let this sequence
converge to a function f .

Next, for each n 2 N, x 2 I , and t 2 I � fxg define

hn.t/ D fn.t/ � fn.x/

t � x
I

also let

h.t/ D f .t/ � f .x/

t � x
:

Fix x 2 I . Since fn is differentiable, we have

lim
t!x

hn.t/ D f 0
n.x/:

Inequality (10.12) shows that

jhn.t/ � hm.t/j D jfn.t/ � fn.x/ � fm.t/ C fm.x/j
jt � xj

<
jt � xj
b � a

" � 1

jt � xj
D "

b � a

for all m � N , n � N , and t 2 I � fxg. Therefore the sequence fhng converges
uniformly to h on I � fxg. As x is a limit point for I � fxg and limt!x hn.t/ exists,
we may therefore apply Theorem 10.3.1 to fhng:

lim
n!1 f 0

n.x/ D lim
n!1 lim

t!x
hn.t/

D lim
t!x

lim
n!1 hn.t/

D lim
t!x

h.t/:

We conclude that f 0.x/ exists and

f 0.x/ D lim
n!1 f 0

n.x/:

ut
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In Example 10.1.2 we found a sequence ffng of functions that converges to the
constant function 0 but

lim
n!1 f 0

n.0/ ¤ 0:

In view of Theorem 10.3.6, we conclude that ff 0
ng cannot be uniformly convergent.

The following example shows that Eq. (10.11) may hold even if ff 0
ng is not

uniformly convergent.

Example 10.3.3. For all n > 0 and x 2 Œ0; 1� let

fn.x/ D log.1 C n2x2/

2n
:

Using l’Hôpital’s rule, we find that ffng converges to 0. Furthermore

f 0
n.x/ D nx

1 C n2x2

for all x 2 Œ0; 1�, so that ff 0
ng also converges to 0. Hence

�
lim

n!1 fn.x/
�0 D lim

n!1 f 0
n.x/:

However, we can show that ff 0
ng is not uniformly convergent on Œ0; 1�. Since

.1 � nx/2 � 0;

we have

1 C n2x2 � 2nx;

so that f 0
n.x/ � 1=2 for each relevant n and x. Moreover f 0

n.x/ attains its maximum
value of 1=2 at 1=n. Hence

sup
x2Œ0;1�

jf 0
n.x/ � 0j D sup

x2Œ0;1�

jf 0
n.x/j D 1

2

for all n. As this result is nonzero, Theorem 10.2.1 shows that ff 0
ng is not uniformly

convergent. 4
Exercises 10.2.

1. Let

fn.x/ D n2x

1 C n2x2

for all n 2 N and x 2 R.
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(a) For each x find

f .x/ D lim
n!1 fn.x/:

(b) Is f continuous?
(c) Is the convergence uniform?

2. Show that fsinn xg converges on Œ0; ��. Is the convergence uniform?
3. Let fn.x/ D xn=n for all n 2 N and x 2 Œ0; 1�.

(a) Does the sequence ffng converge uniformly?
(b) Is

lim
n!1

Z 1

0

fn D
Z 1

0

lim
n!1 fn‹

(c) Is

lim
n!1 f 0

n D
�

lim
n!1 fn

�0
‹

4. In view of Corollary 10.3.2 we can say that uniform convergence preserves
continuity. Use the following example to show that it does not necessarily
preserve discontinuity: For all n 2 N, let

fn.x/ D



1
n

if x is rational;
0 if x is irrational.

5. For each n 2 N, let

fn.x/ D



1 � nx if 0 � x < 1
n
;

0 if x � 1
n

.

(a) Does the sequence ffng converge uniformly?
(b) Show that fn is continuous for each n but the limit function is not

continuous.

6. Let

fn.x/ D 2n2x

en2x2

for each n 2 N and x 2 Œ0; 1�.

(a) Show that the sequence ffng is not uniformly convergent on Œ0; 1�.
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(b) Is

lim
n!1

Z 1

0

fn D
Z 1

0

lim
n!1 fn‹

7. Let

fn.x/ D 2nx

1 C n2x2

for each n 2 N and x 2 Œ0; 1�.

(a) Use differentiation to find the maximum value of each function and hence
show that the sequence ffng is not uniformly convergent on Œ0; 1�.

(b) Is

lim
n!1

Z 1

0

fn D
Z 1

0

lim
n!1 fn‹

8. Show that



x � xn

n

�

converges uniformly on Œ0; 1� but the sequence of derivatives does not.
9. Let ffng be a sequence of uniformly continuous functions that is uniformly

convergent to a function f on an interval I . Show that f is uniformly
continuous on I .

10. Let fn and gn be continuous on an interval I , and suppose that ffng and
fgng converge uniformly to f and g, respectively. Show that ffngng converges
uniformly to fg and that fg is continuous.

11. Let ffng be a sequence of functions on an interval I . Suppose that fn.c/ D 0

for all n and some c 2 I , and that ff 0
ng converges uniformly on I . Show that

ffng converges uniformly and

lim
n!1 f 0

n.x/ D f 0.x/:

12. It is crucial that the interval of integration be finite in Theorem 10.3.3. For all
n 2 N let

fn.x/ D
(

1
n

if 0 � x � n;

0 if x > n.

(a) Show that ffng is uniformly convergent on Œ0; 1/ and that fn is integrable
on Œ0; 1/ for each n 2 N.
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(b) Show that

lim
n!1

Z 1

0

fn D 1

but
Z 1

0

lim
n!1 fn D 0:

(c) Construct a similar example where
Z 1

0

lim
n!1 fn D 0

but 
Z 1

0

fn

�

diverges.

10.4 Infinite Series

The results of Sect. 10.3 can be readily adapted to infinite series of functions. Let
ffng be a sequence of functions defined on a set I and let fSng be the sequence of
partial sums defined by

Sn.x/ D
nX

j D0

fj .x/

for all x 2 I . The series
P1

j D0 fj .x/ is said to converge uniformly on I if fSng
converges uniformly on I . Properties of uniformly convergent sequences can be
used to derive analogous results for uniformly convergent series. Moreover the
comparison, ratio, and root tests are applicable for uniformly convergent series.

Theorem 10.4.1. Let
P1

j D0 jfj .x/j be a series that converges uniformly on a set
I . For all " > 0 there is an integer N such that jfk.x/j < " whenever k � N and
x 2 I .

Proof. Noting that the sequence fPn
j D0 jfj .x/jg converges uniformly on I , we

apply the Cauchy principle. Thus for each " > 0 there exists N1 such that

nX
j DN1C1

jfj .x/j D
nX

j D0

jfj .x/j �
N1X

j D0

jfj .x/j < "

whenever x 2 I and n > N1, and the result follows by taking N D N1 C 1. ut
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Theorem 10.4.2. Let
P1

j D0 jfj .x/j be a series that converges uniformly on a set I .
Then

P1
j D0 fj .x/ converges uniformly on I .

Proof. By the Cauchy principle, for each " > 0 there exists N such that

nX
j DmC1

jfj .x/j D
nX

j D0

jfj .x/j �
mX

j D0

jfj .x/j < "

whenever x 2 I and n > m � N . For each such x; n; m we have

ˇ̌̌
ˇ̌̌ nX
j D0

fj .x/ �
mX

j D0

fj .x/

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌ nX
j DmC1

fj .x/

ˇ̌̌
ˇ̌̌ �

nX
j DmC1

jfj .x/j < ";

and the result therefore follows from the Cauchy principle. ut
The next result follows immediately from Theorem 10.3.1.

Theorem 10.4.3. Suppose ffng is a sequence of functions such that
P1

j D0 fj .x/

converges uniformly on some set I � R. Let c be a limit point of I . Then

1X
j D0

lim
x!c

fj .x/ D lim
x!c

1X
j D0

fj .x/;

provided either side of the equation exists.

Corollary 10.4.4. If
P1

j D0 fj .x/ converges uniformly on I and fj is continuous
on I for each j , then

P1
j D0 fj .x/ is continuous on I .

Proof. The hypotheses and Theorem 10.4.3 show that

lim
x!c

1X
j D0

fj .x/ D
1X

j D0

lim
x!c

fj .x/ D
1X

j D0

fj .c/

for each c 2 I . ut
The function Sn is integrable or differentiable on I if each fj is integrable

or differentiable, respectively, on I . These simple observations coupled with
Theorems 10.3.3 and 10.3.6 give the following results immediately.

Theorem 10.4.5 (Term-by-Term Integration). Let ffng be a sequence of func-
tions that are integrable on the interval I D Œa; b�. Suppose that the seriesP1

j D0 fj .x/ is uniformly convergent on I . Then

1X
j D0

Z b

a

fj .x/ dx D
Z b

a

0
@ 1X

j D0

fj .x/

1
A dx:
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Theorem 10.4.6 (Term-by-Term Differentiation). Let ffng be a sequence of
functions that are differentiable on the interval I . Suppose that

1. the series
P1

j D0 f 0
j .x/ is uniformly convergent on I and

2. there exists c 2 I such that the series
P1

j D0 fj .c/ converges.

Then the series
P1

j D0 fj .x/ is uniformly convergent on I to a differentiable
function, and

0
@ 1X

j D0

fj .x/

1
A

0

D
1X

j D0

f 0
j .x/

for all x 2 I .

Although the results concerning the uniform convergence of sequences can be
readily exported to get analogous results for series, the tests for uniform convergence
given in Sect. 10.2 rely on the use of the sequence of partial sums. The sequence
fSng of partial sums can prove to be an elusive quantity to obtain in a form conducive
to evaluating limits. Indeed, fSng can be found in closed form only for a few types
of series such as the geometric series. If fSng is difficult to procure in a useful form,
then identifying a candidate for the limit is yet another potentially formidable task.
Ideally, one desires a test that avoids these problems and relies directly on the terms
of the series. The next result is a comparison test for uniform convergence.

Theorem 10.4.7 (Comparison Test). Let ffng and fgng be sequences of nonneg-
ative functions defined on the set I , and suppose that for all x 2 I and k 2 N we
have

fk.x/ � gk.x/:

If the series
P1

j D0 gj .x/ is uniformly convergent on I , then the series
P1

j D0 fj .x/

is uniformly convergent on I .

Proof. Choose " > 0, and let

Sn.x/ D
nX

j D0

fj .x/

and

Tn.x/ D
nX

j D0

gj .x/

for all n � 0 and x 2 I . Since fTng is uniformly convergent on I , the Cauchy
criterion implies that there is an integer N such that

jTn.x/ � Tm.x/j < "
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for all x 2 I whenever n � N and m � N . Thus whenever x 2 I and n > m � N ,
we have

jSn.x/ � Sm.x/j D
ˇ̌̌
ˇ̌
ˇ

nX
j DmC1

fj .x/

ˇ̌̌
ˇ̌
ˇ

D
nX

j DmC1

fj .x/

�
nX

j DmC1

gj .x/

D Tn.x/ � Tm.x/

< ":

The integer N does not depend on x 2 I , and therefore fSng is uniformly convergent
on I by Theorem 10.2.3. ut

The next result, although limited in applications as we shall explain later,
nonetheless proves to be one of the most useful and convenient tests for uniform
convergence of series. It is an immediate consequence of Theorem 10.4.7.

Corollary 10.4.8 (Weierstrass M-Test). Let ffng be a sequence of functions
defined on a set I . Suppose there exists a sequence fMng of constants such that
jfn.x/j � Mn for all x 2 I and all n. If

P1
j D0 Mj converges, then

P1
j D0 fj .x/

converges uniformly on I .

Example 10.4.1. Let ffng be the sequence of functions defined by

fn.x/ D sin nx

n2 C jxj ;

for all n 2 N and x 2 R. We have j sin nxj � 1 for all x 2 R; consequently,

jfn.x/j � 1

n2

for all n 2 N. Now,
P1

j D1 1=j 2 is convergent, and therefore the series
P1

j D1 fj .x/

is uniformly convergent on R. 4
We know that power series define functions that are differentiable within the

interval of convergence of the series and that the derivative can be obtained by
differentiating the series term by term. A power series can also be integrated term
by term within the interval of convergence. It should thus occasion little surprise
that a power series is uniformly convergent within the interval of convergence.
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Theorem 10.4.9. Suppose that the power series

1X
j D0

aj .x � a/j

has a radius of convergence r > 0 and let ˛ and ˇ be any numbers such that

a � r < ˛ < ˇ < a C r:

Then
P1

j D0 aj .x � a/j converges uniformly on Œ˛; ˇ�.

Proof. Without loss of generality we can assume that a D 0 and r D 1 since the
general case can be obtained by a translation and scaling of the variable. Let


 D maxfj˛j; jˇjg:

The hypotheses show that 
 < 1, so that the series
P1

j D0 aj 
j is absolutely
convergent. Moreover, if x 2 I D Œ˛; ˇ�, then jxj � 
. Therefore

janxnj � janj
n

for all x 2 I and all n. The uniform convergence of the power series thus follows
from the Weierstrass M-test with Mn D janj
n. ut

The Weierstrass M-test is a comparison test for uniform convergence. The key
feature is that the comparison series consists of terms that are constants. Other series
tests that spawn from the comparison test can also be adapted to test for uniform
convergence. We give two such results now.

Theorem 10.4.10 (D’Alembert Ratio Test). Let ffng be a sequence of functions
defined on a set I . Suppose there exist numbers r < 1 and N such that fN is
bounded and for all x 2 I and n � N we have fn.x/ ¤ 0 and

jfnC1.x/j
jfn.x/j � r:

Then the series
P1

j D0 fj .x/ converges uniformly on I .

Proof. Arguing as in the proof of Theorem 3.7.1, we see by induction that

jfN Cj .x/j � rj jfN .x/j

for all x 2 I and j 2 N. The result now follows from the comparison test since fN

is bounded and r < 1. ut
The reader should have no trouble proving the next theorem.
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Theorem 10.4.11 (Cauchy Root Test). Let ffng be a sequence of functions
defined on a set I , and suppose that there exist numbers r < 1 and N 2 N such that

jfn.x/j1=n � r

for all x 2 I and n � N . Then the series
P1

j D0 fj .x/ converges uniformly on I .

The Weierstrass M-test is perhaps the most frequently used test for the uniform
convergence of series. Indeed, Bromwich ([4] p. 124) notes that series satisfying
the Weierstrass M-test were called “normally convergent” by Baire and that this
“terminology has the advantage of emphasizing the fact that the M-test can be
applied to nearly all series in ordinary everyday use.” A major limitation of the
test, however, is that a series must be absolutely convergent at each point in the set
I in order to apply the test successfully. More delicate tests are needed to cope with
series that are uniformly convergent in a set but conditionally convergent at points
in the set. However, we note the following result due to Baire that simply says that
every uniformly convergent series of bounded functions on a set I can be made into
a “normally convergent” series by a judicious grouping of terms. The proof of this
theorem may be found in [4].

Theorem 10.4.12 (Baire). For every uniformly convergent series of functions
bounded on some set, there exists a regrouping of terms such that the resulting series
satisfies the Weierstrass M-test.

Exercises 10.3.

1. Determine whether the following series
P1

j D2 fj .x/ converge uniformly on the
set I :

(a) fn.x/ D sin nx
2n , I D Œ��; ��.

(b) fn.x/ D x
n2Cx2 , I D R.

(c) fn.x/ D x2

.1Cx2/n , I D R.

(d) fn.x/ D .nC1/x

enx2=2
, I D Œ0; 1�.

(e) fn.x/ D log.1Cnx/

nxn , I D Œc; 1/ for some c > 1 [hint: log.1 C h/ < h when
h > 0].

(f) fn.x/ D log
�
1 C x

n log2 n

�
, I D Œ�c; c� for some c > 0.

(g) fn.x/ D 1
2n�1x

, I D .0; 1�.
(h) fn.x/ D sin nx sin xp

nCx
, I D Œ0; 2��.

(i) fn.x/ D .�1/nC1 1
nx , I D Œc; 1/ for some c > 0 [hint: nx D nx� c

2 n
c
2 ].

2. Let

fn.x/ D sin nx

n2
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for all n > 0 and x 2 R. Show that
P1

j D1 fj .x/ converges uniformly over R
whereas

P1
j D1 f 0

j .x/ diverges at 0.
3. For all n > 0 let

fn.x/ D
(

0 if x D 0;
xn log x

n
if 0 < x � 1.

(a) Show that the supremum of jfn.x/j on Œ0; 1� occurs at e�1=n.
(b) Show that

P1
j D1 fj .x/ converges uniformly on Œ0; 1�.

4. For all n > 0 and x 2 R let

fn.x/ D n2x2

en2x
:

(a) Show that

sup
x2R

jfn.x/j D 4

n2e2
:

(b) Show that
P1

j D1 fj .x/ converges uniformly on R.

5. For all n > 0 and x 2 R let

fn.x/ D
(

1
n

if 1
nC1

< x � 1
n
;

0 otherwise.

Show that
P1

j D1 fj .x/ converges uniformly but

1X
j D1

sup
x2R

jfj .x/j (10.13)

diverges. Note that in general if (10.13) converges, then
P1

j D1 fj .x/ converges
uniformly (why?).

6. Show that if
P1

j D0 aj is absolutely convergent, then

1X
j D1

aj sin jx
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and

1X
j D0

aj cos jx

converge uniformly on R.
7. Suppose that

P1
j D0 fj .x/ converges uniformly on an interval I to a bounded

function f W I ! R. Show that
P1

j D0 f .x/fj .x/ converges uniformly on I .
8. Let ffng be a sequence of functions defined on an interval I , and suppose that

fn.x/ � 0 for all n and all x 2 I . Suppose also that ffn.x/g is a decreasing
sequence for all x 2 I and that

lim
n!1 sup

x2I

fn.x/ D 0:

Show that

1X
j D0

.�1/j fj .x/

converges uniformly on I .
9. Let

fn.x/ D .�1/n.1 � x/xn

for all n and all x 2 Œ0; 1�. Show that
P1

j D0 fj .x/ converges uniformly butP1
j D0 jfj .x/j does not.

10. Show that

1X
j D0

1

j 2 C x2

is differentiable on R.
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Symbols
� , 267
nth term test, 118
p-series, 126

A
Abel’s partial summation identity, 152
absolute value, 12
accumulation point, 75
addition, 15
addition of complex numbers, 15
Airy function, 411
Airy’s equation, 331
arc length, 377
area, 333
arithmetic mean, 51, 63
arithmetic–geometric mean, 84
associativity, 16

B
Baire’s theorem, 467
bijection, 4
binomial coefficient, 29
binomial expansion, 30
binomial theorem, 29, 412
Bolzano’s theorem, 226
Bolzano–Weierstrass theorem, 74
bounded above, 67
bounded below, 67

C
Cartesian product, 3
Cauchy condition, 198

Cauchy principle, 73
uniform convergence, 447

Cauchy’s condensation test, 124
Cauchy’s function, 413
Cauchy’s mean-value formula, 288
Cauchy–Schwarz inequality, 381
cell, 3
chain rule, 251
closed set, 76
commutativity, 16
comparison test, 121

uniform convergence, 464
completeness, 67
complex number

argument of, 280
polar form of, 280

component
first, 3
second, 3

composition of functions, 4
convergence

uniform, 442

D
Darboux’s theorem, 263
de Moivre’s theorem, 280
density, 67
derivative, 243

nth, 248
Dirichlet’s test, 154
discriminant, 17, 262
disjoint sets, 2
distinct sets, 2
distributive, 25
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distributivity, 16
division point, 333

E
equal sets, 2
equation

quadratic, 17
equivalence class, 4
equivalent sequences, 67
Euler’s constant, 326
Euler–Maclaurin theorem, 394
exponentiation, 8, 94, 231

F
factorial, 12
first derivative test, 262
fixed point, 228
fixed point iteration, 426
fixed-point theorem, 228
Fuchs’s theorem, 330
function, 4

Airy, 411
bijective, 4
Cauchy’s, 413
complex-valued, 4
constant, 4
continuous, 216
continuous on the left, 223
continuous on the right, 223
continuous over a set, 224
cosecant, 178
cosine, 177
cotangent, 178
critical point of, 263
decreasing, 13
differentiable, 243
domain of, 4
exponential, 97, 176
extremal point of, 262
extremal value of, 262
extremum of, 262
fixed point of, 423
floor, 204
graph of, 5

arc length of, 377
Heaviside, 203
increasing, 13
injective, 4
integrable, 342
inverse cosine, 269
inverse of, 4
inverse sine, 269

inverse tangent, 269
limit of, 192
Lipschitz continuous, 240
local maximum of, 262
local minimum of, 262
logarithm, 231
monotonic, 13
nondecreasing, 13
nonincreasing, 13
one-to-one, 4
order of zero of, 406
periodic, 268
popcorn, 219
range of, 4
real-valued, 4
reciprocal of, 178
secant, 178
sine, 177
smooth, 403
strictly monotonic, 13
surjective, 4
tangent, 178
Thomae’s, 219
trigonometric, 178
uniformly continuous, 237

fundamental theorem of calculus, 362

G
Gauss’s constant, 84
Gauss’s test, 234
generalised ratio test, 158
generalised root test, 159
geometric mean, 61, 63
golden ratio, 35
greatest lower bound, 67

H
harmonic mean, 63
Hermite polynomial, 329
Hermite’s equation, 328

I
image, 4
indeterminate form, 290
induction, 5
inductive hypothesis, 6
inequality

Bernoulli’s, 7
triangle, 12

infimum, 67
initial-value problem, 437
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injection, 4
integral, 342

improper
absolutely convergent, 392
comparison test, 391

lower, 340
upper, 340

integral test, 396
integrand, 342
integration by parts, 367
integration by substitution, 366
interior point, 334
intermediate-value theorem, 227
intersection of sets, 2
interval, 13

closed, 13
ends of, 13
half open, 13
open, 13

inverse function theorem, 253

J
Jordan’s inequality, 274

K
Kummer–Jensen test, 142

L
l’Hôpital’s rule, 290
least upper bound, 67
Legendre’s equation, 332
Leibniz’s rule, 256
Leibniz’s test, 147
limit

infinite, 208
one-sided, 205

limit comparison test, 128
limit point, 75
Lipschitz condition, 248
Lipschitz’s theorem, 247
lower bound, 67
lower sum, 336

M
maximum- and minimum-value theorem, 225
mean-value theorem, 258
mean-value theorem for integrals, 360
mesh, 334
method of successive approximations, 438
multiplication, 15

multiplication of complex numbers, 15
mutually disjoint sets, 2

N
neighborhood, 37
Newton’s method, 434
norm, 334
number

complex, 15
conjugate of, 18
exponentiation of, 17
imaginary part of, 15
modulus of, 19
real part of, 15

natural, 5

O
order of magnitude, 127
ordered pair, 3

component of, 3
ordered triple, 3

P
partition, 3, 333

refinement of, 338
peak index, 100
polynomial, 9

coefficient of, 9
degree of, 9
root of, 9

product, 8, 165
Cartesian, 12
factors of, 8

product of sums, 165

R
Raabe’s test, 143
ratio test, 132

uniform convergence, 466
relation, 3

equality, 3
equivalence, 3
inclusion, 3
reflexive, 3
symmetric, 3
transitive, 3

Riemann sum, 337
convergence of, 341

Riemann’s theorem, 160
Rolle’s theorem, 257
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root test, 136
uniform convergence, 467

S
sandwich theorem, 56, 201
sequence, 33

approaches infinity, 78
approaches minus infinity, 79
arithmetic, 34
bounded, 43
Cauchy, 65
complex, 33
complex harmonic, 34
convergent, 37
decreasing, 77
divergent, 37
Fibonacci, 35
geometric, 34
harmonic, 34
imaginary part of, 49
increasing, 53
limit of, 37
monotonic, 77
nondecreasing, 77
nonincreasing, 77
null, 38
partial sum of, 111
rational, 33
real, 33
real part of, 49
rearrangement of, 164
sign, 34
term of, 33

series, 111
Abel’s, 234
absolutely convergent, 157
alternating, 147
condensed, 123
conditionally convergent, 157
derived, 316
geometric, 112
harmonic, 118
Maclaurin, 411
power, 170

addition of, 174
center of, 170
circle of convergence, 172
interval of convergence, 172

multiplication of, 174
radius of convergence, 172

real, 111
rearrangement of, 164
Taylor, 411
telescoping, 113
term of, 111
uniform convergence of, 462

set, 1
compact, 224
complement of, 2
element of, 1
empty, 1
member of, 1
ordered, 12
power, 2
subset of, 1

subinterval, 334
subsequence, 53
subtraction, 16
subtraction of complex numbers, 16
sum, 8

terms of, 8
supremum, 67
supremum property, 67
surjection, 4

T
Taylor polynomial, 400
Taylor remainder, 403
Taylor’s theorem, 401
telescoping property, 26

U
uniform convergence, 442

series, 462
union of sets, 2
upper bound, 67
upper sum, 335

W
Weierstrass M-test, 465

Z
Zeno’s paradox, 109
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