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Preface 

This book is a contribution to the study of the sporadic simple groups, 
which are the twenty-six fascinating finite simple groups which do not 
belong to any ofthe infinite families of finite simple groups. In particular, 
we classify and study all graphs admitting a sporadic simple group or 
its automorphism group as a vertex-transitive group of automorphisms 
of rank at most 5. We do this by first finding all the representations of 
these sporadic groups as transitive permutation groups of rank at most 5. 
The classification, construction and analysis of these representations and 
graphs involve both theoretical arguments about permutation groups 
and characters, and computational methods involving the use of various 
computer systems for group theory, character theory and graph theory. 
The ATLAS of Finite Groups was an invaluable resource throughout all 
our work. 

We have tried to make most of our techniques accessible to a begin­
ning graduate student who is willing to study some basic computational 
group theory. In particular, the construction and analysis of collapsed 
adjacency matrices are spelled out in detail. For the theoretical analysis 
of certain permutation representions, some knowledge of permutation 
group theory is assumed. 

Using the presentations for sporadic groups which are given in this book, 
and the generating sets for the point stabilizers, the reader should be able 
to construct and study most of the representations and graphs described 
in this book. Indeed, one of our main aims is to give inexperienced 
readers sufficient background to enable them to construct and explore 
finite vertex-transitive graphs. 

It is our pleasure to thank the people and organizations who have helped 

ix 
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bring this book to fruition. This book would not have been under': 
taken without the GAP computer system, and we thank its main ar­
chitect, Martin Sch6nert, and the leader of the GAP project, Joachim 
Neubuser, who is also responsible for the open and challenging atmo­
sphere of Lehrstuhl D fur Mathematik at the RWTH Aachen, where 
both authors have spent fruitful visits. Also, many thanks are due to 
the computational representation theory team at Lehrstuhl D, who put 
so much effort into the character theory part of GAP. Here special thanks 
go to Klaus Lux and Thomas Breuer. Thanks are also due to John Can­
non and his team at the University of Sydney who produced the Cayley 
group theory system (and its successor the algebra system MAGMA), 
which was very useful in our work. We thank Gerhard Michler and the 
Institute for Experimental Mathematics, University of Essen, for making 
computational resources available for the analysis of the degree 9606125 
permutation representation of the Lyons group, and Gene Cooperman 
for providing us with this representation. We also acknowledge super­
computer resources obtained through the UK Engineering and Physi­
cal Sciences Research Council and the University of London Computer 
Centre. Special thanks go to Dima Pasechnik, who computed complete 
sets of collapsed adjacency matrices for two very large representations, 
given a single matrix for each. Thanks also go to Peter Cameron, Sasha 
Ivanov, Derek Holt and Petra Fogarty, for useful discussions and sug­
gestions. Finally, we thank the Australian Research Council and the 
University of Western Australia for research grants to enable us to work 
at the same location to initiate the research for this book, and again to 
complete the writing of the book. 
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1 

Low Rank Permutation Groups 

1.1 Introduction 

Many interesting finite geometries, graphs and designs admit automor­
phism groups of low rank. In fact, it was a study of the rank 3 case which 
led to the discoveries and constructions of some of the sporadic simple 
groups (see [Gor82]). For several classification problems about graphs 
or designs, the case where the automorphism group is almost simple is 
of central importance, and many of the examples have a transitive auto­
morphism group of low rank. This is the case, for example, for the clas­
sification problems of finite distance-transitive graphs [BCN89, PSY87j, 
and of finite flag-transitive designs [BDD88, BDDKLS90j. 

This book presents a complete classification, up to conjugacy of the 
point stabilizers, of the faithful transitive permutation representations 
of rank at most 5 of the sporadic simple groups and their automor­
phism groups. These results, summarized in Chapter 5, filled a major 
gap in the existing classification results for finite, low rank, transitive 
permutation groups. For each representation classified, we also give the 
collapsed adjacency matrices (defined in Section 2.3) for all the asso­
ciated orbital digraphs. We use these collapsed adjacency matrices to 
classify the vertex-transitive, distance-regular graphs for these low rank 
representations, and discover some new distance-regular graphs of di­
ameter 2 (but of rank greater than 3) for the O'Nan group 0 'N, the 
Conway group Co2 , and the Fischer group Fi22 • We also classify the 
graphs of diameter at most 4 on which a sporadic simple group or its au­
tomorphism group acts distance-transitively. It turns out that all these 
graphs are well-known. 

1 



2 1 Low Rank Permutation Groups 

We have tried to give enough information so that the interested reader 
can duplicate most of our results, and study further the fascinating spo­
radic groups. In particular, we give presentations for most of the spo­
radic groups G having permutation representations of rank at most 5, 
together with sets of words generating the appropriate point stabilizers 
in G. This information allows the reader with access to a good coset 
enumeration program (such as those within MAGMA [CP95j and GAP 
[Sch95)) to reconstruct most of the representations studied in this book. 

In the 1970s, R.T. Curtis determined many collapsed adjacency ma­
trices for inclusion in the original Cambridge ATLAS, but these do 
not appear in the published ATLAS [CCNPW85j. In the early to mid 
1980s, the primitive permutation representations of the non abelian sim­
ple groups of order up to 106 (excluding the family L2(q)) were analysed 
in detail from the point of view of cellular rings (or coherent configu­
rations) by A.A. Ivanov, M.H. Klin and LA. Faradzev [IKF82, IKF84j 
(see also [FIK90, FKM94)). As part of this analysis, these represen­
tations were explicitly constructed using the CoCo computer package 
[FK91j, and all collapsed adjacency matrices for the orbital digraphs 
were determined. Furthermore, collapsed adjacency matrices have been 
constructed by others for certain specific orbital digraphs for sporadic 
groups (see [ILLSS95] and its references), but we have computed all the 
collapsed adjacency matrices in this book from scratch, using the meth­
ods we describe, except for two representations where explicit references 
are given. 

Any permutation representation of rank at most 5 is multiplicity-free 
(that is, the sum of distinct complex irreducible representations), and 
for primitive permutation representations, the classification in this book 
has recently been extended in [ILLSS95], to give a complete classifica­
tion of the primitive multiplicity-free permutation representations of the 
sporadic simple groups and their automorphism groups, together with 
a classification of the graphs r on which such a group acts primitively 
and distance-transitively. It is shown that for such a distance-transitive 
graph r, we have diam(r) ::; 4, and so r appears in our classification. 
Even more recently, Breuer and Lux [BL96] have completed the classi­
fication of the imprimitive multiplicity-free permutation representations 
of the sporadic simple groups and their automorphism groups. 
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1.2 Transitive permutation groups, orbitals and ranks 

The symmetric group on a set 0 is the group Sym (0) of all permutations 
of O. If 0 is finite of cardinality n, then Sym (0) is often denoted Sn. 
A permutation group G on a set 0 is a subgroup of Sym (0), and G is 
said to be transitive on 0 if, for all a, /3 E 0, there is an element 9 E G 
such that the image aY of a under 9 is equal to /3. More generally, the 
orbit of G containing a point a EO is the set aG := {aY I 9 E G}. 

For the remainder of the section, let G be a transitive permutation group 
on a finite set O. 

The permutation group G on 0 can also be regarded as a permutation 
group on 0 x 0 by defining 

(a,/3 E O,g E G). 

The number of orbits of G on 0 x 0 is called the rank of G on O. 

If a, (3 are distinct points of 0, then the pairs (a, a) and (a, (3) lie in 
different orbits of G on 0 x O. Thus, for 101 > 1, the rank of G is at least 
2. A permutation group on 0 is said to be 2-transitive (or doubly tran­
sitive) on 0 if it is transitive on the ordered pairs of distinct points of O. 
Thus, for 101 > 1, the 2-transitive groups are precisely the permutation 
groups of rank 2. The classification of the finite 2-transitive groups was 
one of the first consequences for permutation groups of the finite simple 
group classification, and the problem of classifying finite permutation 
groups of low rank is a natural extension of this classification. 

The orbits of G on 0 x 0 are called orbitals, and to each orbital E we 
associate the directed graph with vertex set 0 and edge set E, the so­
called orbital digraph for E. It is easy to show that the orbitals for G 
are in one-to-one correspondence with the orbits on 0 of the stabilizer 
GO'. := {g E G I aY = a} of a point a E O. This correspondence maps 
an orbital E to the set of points {(3 I (a, (3) E E}. The orbits of GO'. on 
o are called suborbits of G, and their lengths are called the subdegrees 
ofG. 

If G has rank r, then a point stabilizer will have exactly r orbits on 0, 
and we say that such a stabilizer is a rank r subgroup of G. 
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1.3 Permutation representations 

Let G be a group and 0 a set. An action of G on 0 is a function which 
associates to every a E 0 and 9 EGan element a 9 of 0 such that, for 
all a E 0 and all g,h E G, a 1 = a and (a9 )h = a9h • In a natural way, 
an action defines a permutation representation of G on 0, which is a 
homomorphism <p from G into Sym (0): simply define (g)<p E Sym (0) 
by a(9)<P := a 9 . Conversely, a permutation representation naturally 
defines an action of G on 0, leading to a natural bijection between 
the actions of G on 0 and the permutation representations of G on 0 
(see [NST94, pp.30-32]). Note also that a permutation group H on 0 
defines a natural representation (and action) of H on 0, by defining the 
representation to be the identity map. 

Most of the definitions of Section 1.2 apply to permutation representa­
tions by applying them to the permutation group which is the image of 
that representation. Thus, a permutation representation is said to be 
transitive if its image is transitive. Similarly, the orbits of a representa­
tion are those of its image and, if the representation is transitive, then 
its rank, orbitals, sub orbits and sub degrees are those of its image. How­
ever, the point stabilizer G a := {g E G I a 9 = a} for the representation 
may be a proper preimage of the point stabilizer for the permutation 
group image. 

A permutation representation is said to be faithful if its kernel is the 
trivial group of order 1, in which case G is isomorphic to its permutation 
group image, and we are back to the case of permutation groups. In this 
book we study faithful representations of the sporadic simple groups and 
their automorphism groups. If a representation of a (sporadic) simple 
group is not faithful then clearly its image is the trivial group, and a non­
faithful representation of the automorphism group of a sporadic simple 
group has an image of order 1 or 2 (as a sporadic simple group has index 
at most 2 in its automorphism group). 

1.4 Permutational equivalence and permutational 
isomorphism 

There are several slightly different concepts of equivalence, or isomor­
phism, for permutation representations and permutation groups (see 
[NST94, pp.32-33]). Since an abstract group may be represented in 
many different ways as a permutation group, the notion of group isomor-
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phism does not provide a sufficiently refined measure for distinguishing 
between different permutation representations and different permutation 
groups. The most general concept of permutational equivalence concerns 
different groups acting on different sets. A permutational equivalence of 
permutation representations of groups G, G* acting on n, n* respec­
tively is a pair ((), ¢» of functions, where () : n -t n* is a bijection and 
¢> : G -t G* is an isomorphism, and 

for all a E n and all 9 E G, and the representations (and actions) of G 
and G* are said to be (permutationally) equivalent. Clearly () induces 
a bijection between the sets of orbits of G, G* in n, n* respectively. 
Also, the restriction of ¢> to the stabilizer G 01 of a point a E n is an 
isomorphism onto the stabilizer in G* of the point a(} E n*. Thus the 
equivalence induces bijections of the sets of orbits and point stabilizers of 
the two permutation representations. In the particular case of transitive 
representations of G, G* on finite sets n, n*, the permutational equiva­
lence ((), ¢» preserves rank and sub degrees. Moreover, this equivalence 
induces a second equivalence (() x (), ¢» of the natural representations of 
G, G* acting on n x nand n* x n* respectively (namely, by defining 
(a,(3)(() x ()) := (a(),(3()) for all (a,(3) E n x n), such that () x () induces 
a bijection from the set of orbitals of G in n x n to the set of orbitals of 
G* in n* x n*, and preserves the isomorphism classes of the associated 
orbital digraphs. 

If G = G* then the isomorphism ¢> is an automorphism of G. In the 
special case where ¢> is the identity map, the equivalence ((), 1) is called 
a permutational isomorphism. Thus, roughly speaking, a permutational 
isomorphism amounts to a relabelling of the point set. 

The notions of permutational equivalence and permutational isomor­
phism for permutation groups G, G* on n, n* respectively, are defined 
to be the same as these concepts for their natural representations. Note 
that the classification of faithful permutation representations up to per­
mutational equivalence (respectively isomorphism) is the same as the 
classification of permutation groups up to permutational equivalence 
(respectively isomorphism). 

In our subsequent discussion we use the following notation: for a group 
G, AutG denotes the automorphism group of G, InnG the group of 
inner automorphisms of G, and OutG:= Aut G/Inn G is the outer au-
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tomorphism group of G. Each element of Aut G \ Inn G is called an outer 
automorphism of G. 

Suppose that G has a transitive permutation representation on the set 
0, and choose a E O. Then this representation is permutationally iso­
morphic to the representation of G, acting by right multiplication, on 
the right cosets of the point stabilizer Ga [NST94, Theorem 6.3]. If 
<p E Aut G, then G also has a transitive permutation representation, 
acting by right multiplication, on the set 0* of right cosets of the sub­
group K := (Ga)<p, and 

() : aU r-+ K(g<p) (0: E O,g E G) 

is a well-defined bijection () : n -t 0*. Moreover the pair ((), <p) is an 
equivalence between the permutation representations of G on 0 and on 
0*. Of course ((), <p) is by definition a permutational isomorphism if and 
only if <p is the identity. However the permutation representations of G 
on 0 and on 0* are permutationally isomorphic if and only if Ga and 
K are conjugate in G [NST94, Theorem 6.3 and Proposition 6.5]. We 
see from this discussion that, in general, two transitive representations 
of G are permutationally isomorphic if and only if a point stabilizer for 
one representation is in the same conjugacy class in G as a point sta­
bilizer for the other representation. Moreover, there is a permutation 
representation of Aut G on the set of permutational isomorphism classes 
of transitive permutation representations of G such that Inn G is con­
tained in the kernel. So in fact we have a permutation representation 
induced of Out G := Aut G lInn G on these permutational isomorphism 
classes. The orbits of AutG (and of Out G) correspond to the permu­
tational equivalence classes of transitive permutation representations of 
G. Thus the permutational isomorphism classes (respectively permuta­
tional equivalence classes) of transitive permutation representations of 
G are in one-to-one correspondence with the conjugacy classes of sub­
groups of G (respectively orbits of Aut G, and hence of Out G, on these 
conjugacy classes). 

The classification of transitive permutation representations in this book 
is up to permutational isomorphism, which is the same as the classifica­
tion up to conjugacy of the point stabilizers. 

Two different permutational isomorphism classes of transitive represen­
tations correspond to the same permutational equivalence class if and 
only if there is an outer automorphism of G mapping one permutational 
isomorphism class to the other. In the case where G is a sporadic simple 
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group, lOut GI :S 2. Hence, in this situation, an outer automorphism of 
G will interchange the two permutational isomorphism classes, and will 
also interchange the corresponding conjugacy classes of point stabilizers. 
We will point this out whenever it occurs. 

1.5 Invariant partitions and primitivity 

If G is a permutation group on a set n, then a partition P of n is said 
to be G-invariant (and G is said to preserve P) if the elements of G 
permute the blocks of P blockwise, that is, for B E P and 9 E G, the 
set Bg is also a block of P. The blocks of a G-invariant partition are 
called blocks of imprimitivity for G. If G is transitive on n then all 
blocks of a G-invariant partition P of n have the same cardinality and 
G acts transitively on P. Moreover, every permutation group G on n 
preserves the two partitions {n} and {{ex} I ex En}; these are called 
trivial partitions of n, and their blocks, nand {ex} for ex E n, are called 
trivial blocks of imprimitivity. All other partitions of n are said to be 
nontrivial. A permutation group G is said to be primitive on n if G is 
transitive on n and the only G-invariant partitions of n are the trivial 
ones. Also G is said to be imprimitive on n if G is transitive on nand 
G preserves some nontrivial partition of n. 

1.6 The O'Nan-Scott theorem for finite primitive 
permutation groups 

It is not difficult to see that the set of orbits of a normal subgroup 
of a transitive permutation group G on n is a G-invariant partition 
of n. Thus each nontrivial normal subgroup of a primitive permutation 
group is transitive. In particular, for finite primitive permutation groups 
G on n the socle of G, soc(G), which is the product of its minimal 
normal subgroups, is transitive on n. Several different types of finite 
primitive permutation groups have been identified in the O'Nan-Scott 
Theorem ([Sco80, AS85] or see [LPS88]) and are described according to 
the structure and permutation action of their socles. 

A finite primitive permutation group G has at most two minimal normal 
subgroups, and if M, N are distinct minimal normal subgroups of G, 
then M ~ N, M and N are nonabelian, and both act regularly on n 
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(see [Sco80] or [LPS88]). (A permutation group on n is regular if it is 
transitive, and only the identity element fixes a point of n.) 

For most of the types of finite primitive groups, the socle is the unique 
minimal normal subgroup, and for all types the socle is a direct product 
of isomorphic simple groups. The types of finite primitive permutation 
groups are described in [LPS88] as follows. Let G be a primitive per­
mutation group on a finite set n, and let N := soc(G). Then N = Tk 
for some simple group T and positive integer k, and one of the following 
holds. 

Affine type. Here N = Z; (p a prime) is elementary abelian, N is the 
unique minimal normal subgroup of G, N is regular on n, and 
n can be identified with a finite vector space V in such a way 
that N is the group of translations of V and G is a subgroup of 
the group AG L(V) of affine transformations of V. 

Amost simple type. The socle N = T is a nonabelian simple group 
(k = 1), so T :S G :S AutT, that is, G is an almost simple 
group. Also TO! i- 1. 

For the remaining types N = Tk with k 2: 2 and T a nonabelian simple 
group. 

Simple diagonal type. Here G is a subgroup of the group 

W:= {(al,'" ,ak).7r I ai E AutT,7r E Sk, 
ai == aj (mod InnT) for all i,j}, 

where 7r E Sk permutes the components ai naturally. With the 
obvious multiplication, W is a group with socle N = Tk, and 
W = N.(Out T x Sk), a (not necessarily split) extension of N 
by Out T X Sk. The action of Won n is equivalent to its action 
by right multiplication on the set of right cosets of its subgroup 

WO!:= {(a, ... ,a).7r I a E AutT,7r E Sd ~ AutT x Sk· 

The group G must contain N, and NO! = {(a, ... , a) I a E T} is 
a diagonal subgroup of N, hence the name 'diagonal type'. 

Product type. For this type, G is a subgroup of a wreath product W := 

H wr Sl in product action on n = AI, where l 2: 2 and l divides 
k, H is a primitive permutation group on A, soc(H) ~ Tk/l, 
and N = soc(W) = soc(H)1 is contained in G. The group H is 
of either almost simple or simple diagonal type. 
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Twisted wreath type. For this type, G = Ttwr<p P = Tk.p is a twisted 
wreath product, where P :::; Sk, and N is regular on n. 

More information about the structure of these groups can be found in 
[AS85, Sco80, LPS88]. 

1. 7 Existing classifications of low rank primitive groups 

Long before the description of finite primitive permutation groups that 
we find in the O'Nan-Scott Theorem had been written down, W. Burn­
side [Burll, Section 154] proved that a finite 2-transitive group is of 
either affine or almost simple type. In fact, the minimum ranks for fi­
nite primitive groups of the other types tend to be higher than those for 
primitive groups of affine or almost simple type, and it follows from the 
O'Nan-Scott Theorem that the finite primitive groups of rank at most 
5 are essentially known once the almost simple ones and the affine ones 
have been classified (see [Cuy89]). According to the finite simple group 
classification a nonabelian finite simple group T is either an alternating 
group, a group of Lie type, or one of the 26 sporadic simple groups (see 
[Gor82]). Thus the socle T of an almost simple group G is a simple 
group of one of these types. 

The finite 2-transitive groups have been completely classified using the 
finite simple group classification, and this result is the culmination of 
the work of many people. The 2-transitive representations of the finite 
symmetric and alternating groups were classified by E. Maillet [Mai1895] 
in 1895. Those of the finite almost simple groups of Lie type were 
determined by C.W. Curtis, W.M. Kantor and G.M. Seitz [CKS76] in 
1976, and the classification of the 2-transitive groups of almost simple 
type was completed and announced by P.J. Cameron [Cam81] in 1981 as 
a consequence of the finite simple group classification. The finite soluble 
2-transitive groups were classified by B. Huppert [Hup57] in 1957; the 
major part of the classification of the finite insoluble 2-transitive groups 
of affine type was done by C. Hering [Her74, Her85], and a complete 
and independent proof of the classification of finite 2-transitive groups 
of affine type was given by M.W. Liebeck [Lie87, Appendix 1]. 

A great deal of effort has gone into understanding low rank primitive 
permutation groups, in particular those of rank at most 5. It follows 
from the O'Nan-Scott Theorem (see [Cuy89, Corollary 2.2]) that, if G 
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is primitive of rank at most 5 on a finite set n, then either G is of affine 
or almost simple type, or G is a subgroup of a wreath product H wr Sk 
in product action on n = Ak, where k E {2,3,4} and H is an almost 
simple 2-transitive permutation group on A, or G has simple diagonal 
type with socle isomorphic to L2(q) x L2(q) for some q E {5,7,8,9}. 
Thus a classification of primitive permutation groups of rank up to 5 is 
reduced to a classification of those of affine or almost simple type. 

We consider the almost simple case first. In 1972 E.E. Bannai [Ban72] 
classified all primitive permutation representations of rank at most 5 of 
the finite alternating and symmetric groups. In 1982 W.M. Kantor and 
R.A. Liebler [KL82] classified the primitive rank 3 representations of 
the classical groups (see also [Sei74]). In 1986 M.W. Liebeck and J. Saxl 
[LS86] found all the primitive rank 3 representations of the exceptional 
simple groups of Lie type, and A. Brouwer, R.A. Wilson and L.H. Soicher 
(see [LS86]) determined those of the sporadic simple groups, thereby 
completing the classification of almost simple primitive rank 3 groups. 
In 1989, H. Cuypers [Cuy89] completed the classification of all primitive 
representations of rank at most 5 of all finite almost simple groups of Lie 
type. Part of the purpose of this book is to complete the classification 
of the almost simple primitive groups of rank at most 5 by classifying 
all such representations of the sporadic almost simple groups. Note that 
the sporadic almost simple groups are the sporadic simple groups and 
their automorphism groups, since a sporadic simple group has index at 
most 2 in its automorphism group. 

Finite soluble primitive groups of rank 3 are primitive groups of affine 
type and were classified by D.A. Foulser [Fou69] in 1969. The classi­
fication of all primitive rank 3 groups of affine type was completed by 
M.W. Liebeck [Lie87] in 1987. From these results, and the results pre­
sented in this book, it follows that to complete the classification of finite 
primitive permutation groups of rank at most 5, only the affine primitive 
groups of rank 4 and 5 remain to be classified. 

1.8 Low rank sporadic classification 

In this book we classify all (primitive and imprimitive) faithful transitive 
permutation representations of rank at most 5 of the sporadic simple 
groups and their automorphism groups. The rank 2 case is included 
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for completeness, and the rank 3 case expands the list in [LS86] by 
classifying all imprimitive rank 3 representations of these groups. 

We also provide detailed information about the digraphs on which the 
permutation groups we describe act vertex-transitively. Background 
about such graphs is given in Chapter 2, and a discussion of the meth­
ods used in our investigations is in Chapter 3. Chapter 4 contains the 
main body of our work, with the description of the representations and 
digraphs for the individual sporadic groups, together with many pre­
sentations, and Chapter 5 summarizes the representations and distance­
regular graphs classified. 



2 

Digraphs for Transitive Groups 

Let G be a transitive permutation group on a finite set n. In this chapter 
we discuss the digraphs with vertex-set n on which G acts as a (vertex­
transitive) group of automorphisms. We also discuss distance-regularity 
and distance-transitivity of graphs. 

2.1 Some definitions for digraphs 

Before proceeding further, it is convenient to record some basic defini­
tions for digraphs. 

A directed graph, or digraph, r = (V, E) consists of a finite set V, to­
gether with a subset E of V x V. The elements of V are called vertices, 
and the elements of E are called edges. For v E V, the set 

rev) := {w E V I (v,w) E E} 

is called the set of neighbours of v in r. 

Let r = (V, E) be a digraph. A path (some would say a directed path) 
of length n in r is a sequence Vl,' .. ,vn +! of vertices of r such that 
(Vi, Vi+d E E for i = 1, ... , n. We say that such a path connects VI to 
Vn +!, and that VI is connected to Vn+!. We call r connected (some would 
say strongly connected) if V is connected to w for every v, w E V. If v is 
connected to w.in t, then we define the distance d(v, w) = ddv, w) to be 
the length of a shortest path connecting v to w. Now if r is connected 
then its diameter diam(r) is defined to be max{d(v,w) I v,w E V}. 

The digraph r is called simple if whenever (v, w) is an edge then (w, v) 
is an edge and v :f w. If r is simple, then we usually consider r to be 

12 
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an ordinary undirected graph by identifying each edge (v, w) with (w, v) 
and speaking of the undirected edge {v, w}. We also call r a simple graph 
in this case. For simple graphs the concepts defined above (such as set of 
neighbours, path, path length, distance, connectivity and diameter) still 
apply with undirected edges replacing (directed) edges in the definitions. 

A cycle in a simple (di)graph r is defined to be a path of length ~ 3 
connecting a vertex to itself and having no vertices repeated except for 
the first and last. If a simple graph r contains cycles, then we define the 
girth of r to be the length of a shortest cycle of rj otherwise the girth 
is defined to be the symbol 00. 

Let r = (n, E) be a digraph, and G be a permutation group on n. We 
say that G acts on r if, for all (a, (3) E E and g E G, we have (a9 , (39) E 

Ej that is, G is a group of automorphisms of r. The automorphism 
group Aut (r) of the digraph r is the subgroup of Sym (n) consisting 
of all automorphisms of r. We say that r is vertex-transitive if Aut (r) 
is transitive on the vertex-set n, and we say that r is a rank r graph if 
Aut (r) is a transitive group of rank r on n. 

2.2 Generalized orbital digraphs 

Let G be a transitive permutation group on a finite set n, and let E ~ 
n x n be an orbital for G. Recall that the orbital digraph for G associated 
with E is simply the digraph (n, E). Clearly, G is transitive on the 
vertices and on the edges of an orbital digraph. On the other hand, 
if r = (n, F) is a digraph (with vertex-set n) on which G acts (as a 
vertex-transitive group of automorphisms), then F is a union of orbitals 
for G. Such a digraph r is called a generalized orbital digraph for G. If 
in addition, G acts edge-transitively on the generalized orbital digraph 
r = (n, F), then F is either empty or a single orbital for G. 

One of the orbitals for G is {(a, a) I a En}. Its associated orbital 
digraph consists of a 'loop' (a, a) at each vertex a, and it corresponds 
to the sub orbit {a}. This orbital, and its corresponding digraph and 
sub orbit are all said to be trivial. All others are said to be nontrivial. 
Clearly, each nontrivial orbital digraph has no loops. 

Each orbital E has a paired orbital E* defined by 

E* := {«(3,')') I ('y,(3) E E}. 

As E and E* are orbits for G on n x n, they are either equal or disjoint. 
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If En E* = 0, then the adjacency relation for the orbital digraph (0, E) 
is anti-symmetric in the sense that if ((3, 'Y) E E then ('Y, (3) f!. E. On 
the other hand, if E = E* then, in the orbital digraph (0, E), ((3, 'Y) 
is an edge whenever ('Y, (3) is. In this case E is said to be self-paired 
and the associated digraph is said to be undirected. Moreover, unless 
the self-paired orbital E is the trivial orbital, the orbital digraph (0, E) 
is simple, in which case it is often called the orbital graph associated 
with E. Similarly, a simple generalized orbital digraph will sometimes 
be referred to as a generalized orbital graph. 

It is worthwhile to mention the following result, discovered indepen­
dently by D.G. Higman [Hig67] and C.C. Sims [Sim67], which is not 
difficult to prove, but provides a nice characterization of primitivity in 
terms of orbital digraphs. 

Theorem 2.1 Let G be a transitive permutation group on a finite set 
O. Then G is primitive if and only if each nontrivial orbital digraph for 
G is connected. 

2.3 Collapsed adjacency matrices 

As before, G is a transitive permutation group on a finite set 0, and 
a E O. We fix an ordering 0 1 = {a}, O2, ... , Or on the distinct orbits 
of Goo which have respective representatives a1 = a, a2, . .. ,ar . 

Let r = (0, E) be a generalized orbital digraph for G, and for 1 :::; k,j :::; 
r, define 

In other words, A[k, j] is the number of neighbours of ak in OJ. It is 
very important to note that A[k, j] does not depend on the choice ak of 
suborbit representative of Ok. Indeed, if (3 is any element of Ok, then 
there is an element 9 E Go. such that a~ = (3, and we have 

r((3) n OJ = r(aV n OJ = r(ak)9 n Off = (r(ak) n OJ)9. 

Thus we have 

The r x r integer matrix 

A = (A[k,j]) 
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is called the collapsed adjacency matrix for r (with respect to G and the 
sub orbit ordering). 

For 1 S; i S; r, let Ai be the collapsed adjacency matrix (with respect to 
G and the sub orbit ordering) for the orbital digraph (fl, E i ) correspond­
ing to the suborbit 1k In particular, Al is the r x r identity matrix. 
Since r = (fl, E) is a generalized orbital digraph for G, we have that E 
is the disjoint union of certain orbitals for G, and we have the following 
obvious, but useful, result. 

Proposition 2.2 As above, let A be the collapsed adjacency matrix for 
the generalized orbital digraph r = (fl,E), where E is the disjoint union 
of orbitals, Eil ,.·., E i., for G. Then A = Ail + ... + Ai. . 0 

In Chapter 4, we shall use the notation r{ it, ... , is} for a generalized 
orbital digraph whose edge set is the disjoint union of orbitals indexed 
byil,··.,is ' 

The calculation and application of collapsed adjacency matrices is dis­
cussed in Chapter 3. Many properties of a generalized orbital digraph 
r can easily be deduced from a collapsed adjacency matrix for r. Note 
that if (0, ¢) is a permutational equivalence of the finite transitive per­
mutation groups G, G* , then G and G* have exactly the same sequence 
of collapsed adjacency matrices for their respective sequences of orbital 
digraphs (with respect to an ordering of the sub orbits of G and the 
image of this ordering under 0). 

Remarks In this book, we have chosen to avoid the theory of asso­
ciation schemes (see [BI84] and [BCN89]), and the closely related the­
ory of coherent configurations [Hig75, Hig76]. The theory of coherent 
configurations was independently developed in the former Soviet Union 
under the name of cellular rings (see [FIK90]). Readers who wish to ad­
vance further in their study of permutation groups and digraphs would 
be well-advised to study these theories. We do remark, however, that 
the collapsed adjacency matrices for the orbital digraphs of the finite 
transitive permutation group G on fl give the intersection numbers, 
or structure constants, for the (homogeneous) coherent configuration 
whose classes are the nontrivial orbitals of G, as follows. For 1 S; j S; r, 
where r is the rank of G, define j* by the rule that suborbit flj* corre­
sponds to the paired orbital of the orbital corresponding to fl j . Then if 
Ei is the G-orbital corresponding to fli' the (k,j)-entry Adk,j] of the 
collapsed adjacency matrix Ai for (fl, E i) is equal to the intersection 
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number pJ=L'-l = P~~l';'-l as defined in [BCN89, Section 2.1]. This 
means that, if all the orbitals for G are self-paired, then our collapsed 
adjacency matrices for the orbital digraphs are the same as the intersec­
tion matrices defined in [BCN89, p.45] for the associated (symmetric) 
association scheme (except for our indexing starting at 1, rather than 
0). Indeed, the collapsed adjacency matrices for the orbital digraphs for 
G are the transposes of the intersection matrices as originally defined by 
D.G. Higman in [Hig67] (again, except for our indexing from 1). 

2.4 Distance-regularity and distance-transitivity 

Suppose now that r = (n, E) is a connected simple graph, and let 
d:= diam(r). For 0 ~ i ~ d, define 

r i := {(,8, 1') I d(,8, 'Y) = i}, 

the set of pairs of vertices at distance ii and for each vertex,8 define 

the set of vertices at distance i from ,8. In particular, r 1 (,8) = r(,8). 
Then r is said to be distance-regular if there are constants bo,· .. , bd-l, 
and Cl, ... , Cd, such that, for each 0 ~ i ~ d, and each pair ,8, l' of 
vertices at distance i, there are precisely Ci neighbours of 'Y in r i-l (,8) 
(if i > 0) and bi neighbours of'Y in ri+l (,8) (if i < d). The sequence 

~(r):= {bo,b1 , ... ,bd-li Cl,C2, ... ,Cd}, 

is called the intersection array of f. A distance-regular graph r is regular 
of valency k := bo = jr(,8)I. Set bd = Co = o. The numbers Ci, bi and ai, 
where 

is the number of neighbours of'Y in r i (,8), for d(,8,'Y) = i, are called the 
intersection numbers of r (i = 0, ... , d). 

If G acts on r, then clearly each of the sets r i is fixed setwise by G. Such 
a group G is said to act distance-transitively on r if G is transitive on 
each of the r i , in which case G is transitive on the vertex-set n and the 
orbitals for G are precisely the sets ro, ... , rd. We say that a simple con­
nected graph r is distance-transitive if Aut (r) acts distance-transitively 
on r, and clearly, if r is distance-transitive then it is distance-regular. 
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The converse is far from true however, as some of our examples in Chap­
ter 4 will illustrate. 

If G is a transitive permutation group on n, of rank r, and G acts on the 
simple connected graph r = (n, E), then we see that G acts distance­
transitively on r if and only if the diameter of r is r - 1. Thus, if 
r S 3 then each transitive permutation group G of rank r acts distance­
transitively on each simple connected orbital digraph for G. 

2.5 Graphs for groups of ranks 2 and 3 

If G is 2-transitive on a finite set n of size n > 1 then the sub degrees 
of G are 1, n - 1, and there are two orbital digraphs for G, the trivial 
orbital digraph and the complete graph Kn of size n. With respect to 
G, the complete graph Kn has collapsed adjacency matrix 

(
On-I) 
1 n-2 ' 

and Kn is the unique distance-regular graph with intersection array 

{n-l;I}. 

Now suppose that the transitive permutation group G on n has rank 
3. Then both nontrivial orbital digraphs for G are simple if and only 
if one of them is, and this holds if and only if IGI is even (some pair 
of unequal points in n are swapped by some element of G if and only 
if G contains an involution). By the celebrated Odd Order Theorem of 
W. Feit and J.G. Thompson [FT63], if G is insoluble, as in the almost 
simple case, then G has even order. If G is primitive of rank 3 then each 
of its nontrivial orbital digraphs is connected. Thus, if G is a primitive 
rank 3 group of even order then its nontrivial orbital digraphs form a 
pair of complementary connected simple graphs on each of which G acts 
distance-transitively. (The complement of a simple graph (V, E), where 
E is a set of undirected edges, is (V, E), where E is the set of 2-subsets 
of V not in E.) 

If G is an imprimitive rank 3 group, having a blocks of imprimitivity 
each of size b, then G has sub degrees 1, b - 1, b(a - 1). It is easy to 
see that both nontrivial orbital digraphs for G are simple, one being 
a.Kb, a disjoint copies of Kb, and the other being its complement, the 
complete multipartite graph Kaxb, on which G acts distance-transitively. 
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The graph Kaxb is the unique distance-regular graph with intersection 
array 

{b(a- 1),b- 1;I,b(a- I)} (a, b > 1). 

(Note that any imprimitive permutation group preserving a blocks of 
imprimitivity each of size b acts vertex-transitively on Kaxb.) 

If r is any diameter 2 distance-regular graph with intersection array 

{bo, b1 ; Cl , C2 } , 

such that r is not a complete multipartite graph (so that bo > C2), then 
the complement of r is also distance-regular, and has intersection array 

{ bobl,bo_C2;I,bobl_bl}' 
C2 C2 
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The Methods 

We now describe the methods used to classify the transitive represen­
tations of rank at most 5 of the sporadic almost simple groups, and 
to analyse their associated generalized orbital digraphs. The methods 
for the analysis of these digraphs via their collapsed adjacency matrices 
are general, and are not restricted to sporadic groups or to low rank 
representations. 

3.1 Permutation characters 

Let G be a finite group. For a permutation representation of G on a 
finite set n, the permutation character 7r is the map 7r : G -+ <C such 
that, for g E G, 7r(g) is the number of points of n fixed by g. Now 7r is 
the character (trace map) of the natural matrix representation for G on 
the complex vector space en (see for example [Isa76, p.68]), and so 7r 

is a sum of complex irreducible characters for G. In particular the mul­
tiplicity of the trivial character 1G in 7r is equal to the number of orbits 
of Gin n (see [Isa76, Corollary 5.15]) and in particular 7r is a transitive 
permutation character (that is, the permutation character of a transi­
tive permutation representation) precisely when 1G has multiplicity 1 
in 1r. In order to understand our arguments concerning permutation 
characters, the reader who is not familiar with the basic theory of (per­
mutation) characters for finite groups is urged to consult the excellent 
reference [Isa76], especially Chapter 5. Note that permutationally iso­
morphic permutation representations of G have the same permutation 
character, but permutation representions which are not permutationally 
isomorphic mayor may not have the same permutation character. 

19 
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Improved versions of the ATLAS character tables (and power maps) for 
all the sporadic simple groups and their automorphism groups are avail­
able in the computational group theory system GAP [Sch95]. We used 
this system to obtain a list of possible permutation characters for transi­
tive representations of rank at most 5 of these groups. More specifically, 
there are several special properties that such a permutation character 
must possess; for example it must be (rational) integer-valued and con­
tain the trivial character 1a exactly once. The list of properties of 
interest to us is given in the statement below. (Here ga denotes the 
conjugacy class of 9 in G.) 

Theorem 3.1 Let 7r be the permutation character of a transitive repre­
sentation of rank r :::; 5 of a finite group G, and let g E G. Then 

(a) 7r = 1a + X2 + ... + Xr, where X2, . .. ,Xr are distinct nontrivial 
irreducible characters; in particular, 7r is multiplicity-free; 

(b) 7r(1) divides IGI; 
(c) 7r(g) is a non-negative integer; 
(d) 7r(1) divides Iga l.7r(g); 
(e) 7r(gk) ;::: 7r(g) for all integers k ;::: 0; 
(f) if7r(g) > 0 then 7r(l).I(g}1 divides IGI· 

Proof Properties (b) to (f) come from [Isa76, Theorem 5.18] and hold 
for any transitive permutation character 7r of G. 
Applying [Isa76, Corollaries 5.15 and 5.16], we see that either (a) holds, 
or r = 5 and 7r = 1a + 2X for some nontrivial irreducible character X. 
Suppose the latter holds. The character X has algebraic integer values 
and, since 7r has rational integer values, X too must have rational integer 
values. Thus, each value of 7r is an odd rational integer, and so positive. 
But then, as 7r :j.: la, the inner product (see [Isa76, pp.20-21]) [la,7r] is 
greater than 1, which contradicts the fact that 1a has multiplicity 1 in 
7r. 0 

3.2 Pseudo-permutation characters 

We call a character 7r of a finite group G which satisfies (for all 9 E G) 
the properties (a) to (f) of Theorem 3.1 a pseudo-permutation character 
for G (of rank at most 5). We first used GAP to compute a list of all 
pseudo-permutation characters of rank at most 5 for the sporadic almost 
simple groups. We then looked at each faithful such pseudo-permutation 
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character to determine if it really was a permutation character for the 
group G under consideration and, if so, worked to identify all permu­
tation representations with that character. Usually the permutation 
characters corresponding to primitive representations of low rank of G 
were identified immediately using the information about maximal sub­
groups of G contained in the ATLAS. Some of the pseudo-permutation 
characters which were not permutation characters could be eliminated 
by proving that there was no suitable subgroup of G to be a point stabi­
lizer, or by proving that the character value at some element of G was not 
a possible value for a permutation character evaluated at that element. 
Delicate analysis was often required in the cases where the character was 
shown (if it really was a permutation character) to be the permutation 
character of G acting (by right multiplication) on the right cosets of a 
subgroup H, where H < M < G, M a certain maximal subgroup of G. 
Such a representation would be imprimitive. In these cases it was often 
necessary to identify all subgroups H of M of the appropriate index and 
to examine the representation of G on the cosets of H for all of these 
subgroups H. 

3.3 Constructing and analysing representations 

Some of the permutation representations under consideration were orig­
inally analysed by hand, and this analysis is described with the corre­
sponding representation. 

Many other representations were constructed and analysed using the 
graph theory system GRAPE [Soi93b], which is a share library package 
in the group theory system GAP [Sch95]. GRAPE includes B.D. McKay'S 
graph automorphism package nauty [McK90], L.H. Soicher's coset enu­
meration package Enum, and his program Coladj to compute collapsed 
adjacency matrices. The standalone version of the EnumColadj func­
tion in GRAPE was most useful. Its purpose is to produce collapsed 
adjacency matrices for the orbital digraphs of the transitive representa­
tion produced by a (successful) coset enumeration of the cosets of H in 
G, given a presentation for G and words generating H with respect to 
this presentation. The presentations we used come from [CNS88, CP92, 
HS95, Soi85, Soi87a, Soi88, Soi90, Soi91]. Many of these presentations 
are reproduced in the ATLAS (and in this book). The largest repre­
sentation constructed and analysed this way was the degree 1545600 
representation of COlon the cosets of 3'Suz: 2, and for this calculation 
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we used a University of London Convex supercomputer. The reader 
who is unfamiliar with coset enumeration (also called the Todd-Coxeter 
method) should consult [Neu82] for a clear introduction. 

Given a presentation for a group G, finding words generating a subgroup 
in a specified conjugacy class is as much an art as it is a science, but once 
found, it is usually easy to show that these words generate a subgroup 
in the correct conjugacy class. For example, a coset enumeration, when 
successful, will show that the subgroup H generated by these words has 
the desired index in G. Also, the calculation of the collapsed adjacency 
matrices for the orbital digraphs determines (among other things) the 
rank and subdegrees for the representation of G on the cosets of H. We 
shall give the presentations we have used explicitly, along with sets of 
words generating the appropriate subgroups. The systems Cayley, GAP 
and GRAPE were all useful in the determination of these words. 

A small number of representations were constructed and analysed with­
out using a presentation, but using the group theory system Cayley 
[Can84] (which has been superseded by the computer algebra system 
MAGMA [CP95]). In particular, we originally used Cayley to construct 
and analyse some of the imprimitive representations for Ml1 and M 12 , 

for the initial study of the rank 5 representations of M cL, and for the 
construction and analysis of the representations of Ru of rank at most 5. 
(We remark that Cayley, MAGMA and GAP contain libraries of matrix 
and permutation representations, including many for sporadic simple 
groups. See also [Wil].) Given some representation of a group G, Cayley 
was used to construct an appropriate point stabilizer H for the repre­
sentation of G we wished to construct. For example, H could sometimes 
be found as the stabilizer of a subset of the points of the given repre­
sentation for G, or as the normalizer of an appropriate subgroup of G. 
For imprimitive representations, H was usually a term in some compo­
sition series for the point stabilizer in some particular representation for 
G. After finding H, we then used the Cayley function cosact image to 
construct explicitly the desired permutation representation of G on the 
cosets of H. Next, we applied a simple Cayley version of our collapsed 
adjacency matrix program to calculate the collapsed adjacency matrices 
for the orbital digraphs for this representation. 

The degree 9606125 permutation representation of Lyon the cosets of 
3' M cL: 2 was constructed by Cooperman, Finkelstein, York and Tsel-
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man [CFYT94], and was kindly provided to us via the Institute for 
Experimental Mathematics, University of Essen. 

We are also grateful to D.V. Pasechnik, who wrote a program in Maple 
[CGGLMW92] which calculated the collapsed adjacency matrices for all 
the orbital digraphs for the representations of Lyon the cosets of G2 (5) 
and the Baby Monster group B on the cosets of 2.2 E6(2): 2, given one 
collapsed adjacency matrix having distinct eigenvalues, for an orbital 
digraph, for each of these representations. 

3.4 Computing with collapsed adjacency matrices 

Throughout this section G is a transitive permutation group on a finite 
set fl. 

In this section we describe how to calculate the collapsed adjacency 
matrix for any generalized orbital digraph r for G. We also show how to 
use this collapsed adjacency matrix to determine whether r is connected, 
and if so its diameter; whether r is simple, and if so its girth; whether 
r is distance-regular, and whether G acts distance-transitively on r. 
The methods described here are implemented in GRAPE. More advanced 
methods for computing collapsed adjacency matrices are discussed in 
[ILLSS95] and [LLS95]. 

3.4.1 Computing collapsed adjacency matrices 

Let (fl, E) be a generalized orbital digraph for G. Therefore E is the 
union of distinct G-orbitals, Eil"'" Eis say, and the collapsed adja­
cency matrix for (fl, E) is just the sum of those for the orbital digraphs 
(fl, Eit ), ... ,(fl, EiJ. Thus, we can determine the collapsed adjacency 
matrices for all generalized orbital digraphs for G from those for the 
orbital digraphs for G (given a fixed ordering of the suborbits for G). 

We now show how to compute the collapsed adjacency matrices for the 
orbital digraphs for G. We suppose we are given permutation generators 
for G acting on fl. We first calculate generators for the stabilizer GOt of a 
point a E fl. If we have calculated the permutation generators for G on 
fl by a coset enumeration, then we already have words for generators of 
GOt (see [Neu82]). If the permutations generating G come from another 
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source then we use standard methods from computational group theory 
[But91, LeoBO] to calculate generators for Ga. 

Next, we determine the orbits, 01 = {a},02, ... ,Or say, ofGa on 0, 
with respective representatives al = a, a2, .. . ,ar (see [But91, Chapter 
7] for orbit algorithms). In the process, we determine a function 

sub orb : 0 ~ {l, ... ,r} 

(implemented as an array) such that, for f3 E 0, suborb(f3) = j means 
that f3 E OJ. We also do a modified orbit calculation for the orbit 
(already known to be 0) of G on 0, in order to calculate a Schreier 
vector (see [But91, Chapter 7)) for this orbit. A Schreier vector allows 
us to calculate efficiently a word in the generators of G taking the point 
a to any given f3 E O. In particular, we calculate words WI, ••. , W r , such 
that 

Let 1 S i, k S r. We now describe how to compute the kth row of 
the collapsed adjacency matrix Ai for the orbital digraph r = (0, Ei ) 
corresponding to the sub orbit Oi. Now r(ak), the set of neighbours of 
ak in r, is the image of Oi = r(a) under (the permutation defined by) 
Wk. Thus, for j = 1, ... , r, we must calculate 

Adk,j] := W(ak) n Ojl = 10rk n Ojl. 
We can efficiently compute these Ai[k,j] (for j == 1, ... , r) by executing 
the following steps: 

(i) for j := 1, ... ,r: set Ai[k, j] := 0; 
(ii) for each f3 E 0i: set j := suborb(f3wk ), and then set Ai[k,j] := 

Ai[k,j] + 1. 

After these steps have been executed, the kth row of Ai is correctly 
determined. 

3.4.2 Applying collapsed adjacency matrices 

As usual, G is a transitive permutation group on the finite set 0, with 
a E O. Let A == (A[k,j)) be the r x r collapsed adjacency matrix for 
a generalized orbital digraph r = (0, E) for G, with respect to a fixed 
ordering 01 = {a}, O2 , ••• ,Or of the orbits of Ga. 
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Now define the collapsed digraph 

~=~(A) 

to have vertex set {1, ... ,r}, with (k,j) an edge of ~ if and only if 
A[k,j] > O. ' 

Let 1 S k,j S r. From the definition of A in Section 2.3, and the 
discussion following, it follows that (k,j) is an edge of ~ if and only if 
each element of nk has a neighbour (in r) in nj , and this holds if and 
only if at least one element in nk has a neighbour in nj. Since GO!. is 
transitive on nj , this also means that (k,j) is an edge of ~ if and only 
if each element of nj is a neighbour in r of some element of nk. 
Some important properties of r can be read off the usually much smaller 
digraph~. Indeed, for the graphs in this book, ~ has at most five 
vertices. 

Theorem 3.2 Retaining the notation of this subsection, we have: 
(a) r is simple if and only if (v, 1) is an edge of ~ whenever (l,v) is, 
but (1,1) is not an edge of~. 
(b) Let 1 S v S r, f3 E nu , and let n be a non-negative integer. Then 0: 

is connected to f3 by a path of length n in r if and only if 1 is connected 
to v by a path of length n in~. (Thus, if 0: is connected to f3 by a path 
in r, then dr( 0:, (3) = dE (1, v).) Furthermore, r is connected if and only 
if ~ is connected, in which case diam(r) = diam(~). 

Proof (a) Since nl = {o:}, the 'only if' part of (a) is obvious. 
Suppose that (v, 1) is an edge of~ whenever (l,v) is, and (1,1) is not an 
edge of~. Suppose (0:, 'Y) is an edge of r, and let j := suborb('Y) (that 
is, 'Y E nj ). Then A[I,j] > 0 and (l,j) is an edge of~. Since (1,1) is 
not an edge of ~, we have j =1= 1, that is, 'Y =1= 0:, and so by the vertex­
transitivity of r we can conclude that r contains no loops. Moreover, 
since (l,j) is an edge, so also (j,1) is an edge of~, so A(j, 1] > O. This 
implies that each element of nj has a neighbour (in r) in nl = {o:}. In 
particular, (-y,o:) is an edge of r. Again, by the vertex-transitivity of r, 
we conclude that r is undirected. Thus r is simple. 
(b) Suppose that f31, f32, ... , f3n+ 1 is a path of length n in r. Then this 
induces a path VI, V2, ... , vn+! in ~, where for i = 1,2, ... , n + 1, f3i E 
nUi ' It follows that dE (V1 , vn+!) S dr(f31, f3n+!)' Also, if r is connected, 
then so is ~, and diam(r) 2 diam(~). In the particular case where 
f3I = 0:, f3n+! = f3, we have VI = 1, vn+! = v, and dE(I,v) S dr(o:,f3). 
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Suppose now that 1 and v are connected by a path of length n in I:. We 
shall show that a and 13 are connected by a path of length n in f, for 
every 13 E nv. We do this by induction on n. If n = 0 then v = 1,13 = a, 
and the result holds. Suppose n > 0, that 1 = VI, V2, ••• , vn+1 = v is 
a path of length n connecting 1 and v in I:, and that 13 E nv. By 
induction, there is a path of length n - 1 connecting a to 'Y for every 
'Y E nVn ' Since (vn , Vn+1) is an edge of I:, this implies that each element 
of nVn+1 = nv is a neighbour in f of some element of nVn ' Thus there 
is a path in f of length n from a to each 13 E nv. 
We thus have that dr{a, (3) ~ dE{l, v), for 13 E nv. Also, since f is 
vertex-transitive, we have that, if I: is connected, then so is f, and 
diam{I:) ~ diam(r). This completes the proof of (b). 0 

We note that, if I: = I:{A) is connected, then its diameter diam(I:) = 
diam(f) is equal to the maximum dE{l,v), where v ranges over the 
vertices of I:. 

Now suppose that our generalized orbital digraph f = (n, E) is simple 
and connected of diameter d, and let A = (A[k,j]) and I: = I:{A) be as 
before. Now I: has diameter d, and as usual we let I: i {l) denote the set 
of vertices of I: at distance i from 1, for i = 0, ... , d. We see from the 
theorem above that 

U nv = ri{a), 
vEEi(l) 

the set of vertices of r at distance i from a. 

For 0 ~ i < d and v E I: i {l), define 

Mv] := L A[v, w]. 
wE Ei+l(l) 

For 0 < i ~ d and v E I: i (l), define 

cdv] := L A[v, w]. 
wEEi_t{I) 

For 0 ~ i ~ d and v E I:i(l), define 

ai[v]:= L A[v, w]. 
wEEi(l) 

Suppose 13 E nv , v E I: i {l), and so dr{a,(3) = i. Then 
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(ifi < d), 

(if i > 0), and 

Theorem 3.3 We retain the notation above. In particular, r is simple 
and connected and d = diam(r). 

( a) The graph r has no cycles if and only if, for all i = 1, ... ,d and all 
v E Ei (I), Ci[V] :::; 1 and ai[v] = O. 
Suppose that r contains a cycle and that m is the least positive integer 
i such that, for some v E Ei (I), Ci[V] ~ 2 or adv] ~ 1. Define 9 := 2m 
if cm[v] ~ 2 for some v E Em (I), and otherwise 9 := 2m + 1. Then r 
has girth g. 

(b) r is distance-regular, with intersection array 

if and only if for all i = 0, ... , d, and for all v E Ei (I), we have bi = bi[v] 
(if i < d) and Ci = Ci[V] (if i > 0). 
(c) G acts distance-transitively on r if and only if d = r -1, where r is 
the rank of G. 

Proof (a) If r has no cycles then clearly the parameter restrictions 
Ci[V] :::; 1 and ai[v] = 0 hold. Suppose r has a shortest cycle C of 
length n. Since r is vertex-transitive, we may assume, without loss of 
generality, that a is a vertex in C. If n = 2i is even then we must 
have cdv] ~ 2 for some v E Ei(I). If n = 2i + 1 is odd, then we must 
have adv] ~ 1 for some v E Ei(I). This finishes the proof of the first 
statement of (a), and shows that 9 is a lower bound for the girth of r. 

Now suppose that Ci[V] ~ 2 for some i > 0 and v E Ei(l). Then there 
are two different paths in r from a to the same vertex in r i (a), and so 
r must contain a cycle of length at most 2i. If ai[v] > 0 for some i > 0 
and v E Ei(l), then this means that there are two (different) vertices in 
ri(a) joined by an edge, and therefore r contains a cycle of length at 
most 2i + 1. This shows that 9 is an upper bound for the girth of r, 
completing the proof of (a). 
(b) This follows easily from the discussion preceding the statement of 
this theorem, together with the vertex-transitivity of r. 
(c) This follows from the fact that G acts on r distance-transitively 
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if and only if the G-orbitals are precisely the (G-invariant) sets ri of 
ordered pairs of vertices of r at distance i, for i :::: 0, ... , d. 0 

It is worth pointing out that a simple connected vertex-transitive graph 
has no cycles if and only if the graph has at most two vertices. 

In summary, let r be a generalized orbital digraph for a finite transitive 
permutation group G, such that the associated collapsed adjacency ma­
trix for r is A, and the associated collapsed digraph is E :::: E(A). Then 
E provides a simple tool for determining whether r is simple, whether 
r is connected, and if so for finding its diameter, and whether G acts on 
r distance-transitively. If r is simple and connected, then E together 
with A provide the tool-kit for determining the girth of r, and whether 
r is distance-regular. 

3.5 A lemma for certain imprimitive groups 

The result below will be used to eliminate from consideration certain 
imprimitive representations which have rank greater than 5. 

Lemma 3.4 Let G be a transitive imprimitive permutation group on 
a finite set n, and let q> :::: {B9 I g E G} be a system of blocks of 
imprimitivity preserved by G. Suppose that G acts 2-transitively on q>, 

and that, for B E q>, the actions of G B (the setwise stabilizer of B in G) 
on Band q> \ {B} are permutationally isomorphic. Then the action of 
G on n is permutationally isomorphic to its action on the set of ordered 
pairs of distinct elements of q>j in particular, if 1q>1 24 then G has rank 
at least 7 in its action on n. 

Proof Let a E Band H == GB. Then by assumption, Ga :::: Ha :::: HB' :::: 
G B ,B', for some B' E q> \ {B}. Thus the actions of G on n and on the set 
of ordered pairs of distinct elements of q> are permutationally isomorphic. 
If I q> I 2 4 then the following seven sets are invariant under G a :::: H a :::: 

GB,B': {(B,B' )}, {(B',B)}, {(B,C) I C "# B,B'}, {(B',C) I C "# 
B,B I

}, {(C,B) I C"# B,B'}, {(C,B') I C"# B,B'}, {(C,C') I C,CI "# 
B, B'}, in which case G has rank at least 7 on n. 0 
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The Individual Groups 

We now handle individually each sporadic almost simple group G hav­
ing a faithful pseudo-permutation character of rank at most 5, and list 
each such character 7r found by our computer search. The numbering 
of the irreducible characters Xi agrees with that in the GAP version 
of the ATLAS character tables, which agrees with the printed ATLAS 
[CCNPW85] in the case of simple groups. We examine each of these 
pseudo-permutation characters in turn to determine if it is the charac­
ter of some permutation representation of G, and, if so, we describe all 
such representations (up to permutational isomorphism). Specifically, 
for each representation of rank up to 5, we provide 

• the irreducible constituents of the permutation character, as well as 
the degrees of these constituents, 

• a point stabilizer, 
• (for rank> 2) the collapsed adjacency matrices for the nontrivial 

orbital digraphs, and 
• (for rank> 3) the non-complete distance-regular generalized orbital 

graphs. 

Note that the information on rank 2 and 3 graphs which is suppressed 
in this chapter is given in a general way in Section 2.5. 

We also give presentations for many sporadic almost simple groups. 
Specifically, let K be a sporadic simple group, other than Ru, Ly, and 
B, such that K has a faithful permutation representation of rank at 
most 5. Then we shall give an explicit presentation for G = K or 
G = Aut (K), or both. We shall also give collections of words gener­
ating various subgroups of these groups G, which include all those we 

29 
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used to construct, via coset enumeration, the representations of rank at 
most 5 giving rise to the collapsed adjacency matrices for K and Aut (K) 
given in this book. (If K !F Aut (K), and there is a representation p of 
Aut (K) = K.2 on the cosets of L.2 1:: K, such that the the restriction 
of p to K on the cosets of L :S K has the same rank (:S 5) as does p, 

then we sometimes give a presentation and subgroup generators for just 
one of these representations, as they both give rise to the same (orbital 
digraphs and) collapsed adjacency matrices.) For readers familiar with 
GRAPE, these presentations and subgroup generators will help them to 
use GRAPE to construct and study the generalized orbital digraphs of 
rank at most 5 for K and Aut (K). 

The reader who wants more information on the sporadic groups than 
is given in this book is urged to consult the ATLAS [CCNPW85], the 
ATLAS of Brauer Characters [JLPW95], which contains many references 
on the sporadic groups, [Gor82], which contains interesting historical 
information about these groups, [CS88], and [Asc94]. 

4.1 Notation and conventions 

In each section for the individual groups, G always denotes the sporadic 
almost simple group under consideration. For 1r a permutation character 
of G on a set 0 of 1r(1) points, we always let H denote the point stabilizer 
Ger , where a E O. We give the degrees of the irreducible constituents of 
1r as the summands of 1r(1). 

For the purposes of constructing the collapsed adjacency matrices, we 
order the suborbits in non-decreasing order of their lengths, with the first 
sub orbit 0 1 = {a} corresponding to the trivial orbital. In the case of 
repeated subdegrees greater than 1 an ordering of the sub orbits of equal 
length is chosen arbitrarily. We print the collapsed adjacency matrices 
for the nontrivial orbital digraphs in the order of their corresponding 
suborbits. Note that the unique non-zero entry in the first row of a 
collapsed adjacency matrix for an orbital digraph r is the corresponding 
suborbit length as well as the (out) valency of r. 
If the rank r of G on 0 is greater than 3, then after giving the col­
lapsed adjacency matrices A2 , A3 , ••• ,Ar for the nontrivial orbital di­
graphs (which correspond to suborbits O2,03,,,,, Or), we describe each 
non-complete distance-regular generalized orbital graph r = (0, E) for 
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this representation. Such a graph r = (0, E) is denoted 

r{i1, ... ,is }' 

where iI, ... ,is are distinct, and this notation means that E is the (dis­
joint) union of the orbitals corresponding to the sub orbits 0h,' .. , Oi •. 
Recall that this implies that the collapsed adjacency matrix for r is 

Ail + ... + Ai. 

(Proposition 2.2). For each non-complete distance-regular generalized 
orbital graph r for G, we also give its intersection array 

t = t(r), 

unless r is complete multipartite or the complement of a diameter 2 
distance-regular graph already described, and we indicate when G acts 
distance-transitively on r. Again we note that this information is given 
for representations of rank 2 and 3 in a general way in Section 2.5. 

Each transitive group on n points has the complete graph Kn as a gener­
alized orbital graph (obtained from the union of all nontrivial orbitals), 
and of course the graph Kn has a distance-transitive action by its auto­
morphism group Sn. 

Each transitive imprimitive group having a blocks of imprimitivity of 
size b has the complete multipartite graph Kaxb as a generalized orbital 
graph (obtained from the union of the orbitals corresponding to the 
sub orbits not in the block containing the fixed point a), which has a 
distance-transitive action by its automorphism group Sb wr Sa. 

For 1 :S k :S m, the Johnson graph J(m, k) is the graph whose vertex-set 
is the set of all k-subsets of an m-set, with two vertices joined by an edge 
if and only if their intersection has size k -1. The symmetric group Sm, 
acting naturally on the k-subsets of an m-set, acts distance-transitively 
on J(m,k). 

We shall also encounter certain well-known Taylor graphs. A Taylor 
graph is a distance-regular graph with intersection array of the form 
{k, fL, 1; 1, fL, k}. More information on Taylor graphs can be found in 
[BCN89]. 

Some of the groups we describe act on t-designs. Let v ~ k ~ t ~ 1 
and A ~ 1 be integers. Then at - (v, k, A) design consists of a v-set X 
together with a collection B of k-subsets of X, such that every t-subset 
of X is contained in exactly A elements of B. The elements of X are 
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called points, and the elements of l3 are called blocks. A Steiner system 
S(t, k, v) is simply a t - (v, k, 1) design. 

Our notation for group structures and conjugacy classes follows the AT­
LAS. We also make extensive use of the maximal subgroup information 
in the ATLAS, often without reference, as well as the ATLAS character 
tables and permutation character information (although our calculations 
provide a check on much of the permutation character information we 
use). 

4.1.1 Notation for group presentations 

In our compact notation for a group presentation, we give many of the 
generators and relations via a Coxeter graph. Usually all the generators, 
but not all the relations, are given this way. 

Each node x of a Coxeter graph specifies a generator x and the relation 
1 = x2 • If two distinct nodes x, y in a Coxeter graph are joined by 
an edge with label m, then this denotes the relation 1 = (xy) m . (All 
the edges in our Coxeter graphs are labelled (with positive integers), 
although the usual convention is to omit the label 3.) If two distinct 
nodes x, y in a Coxeter graph are not joined by an edge, then this denotes 
the relation 1 = (xy)2. We specify a Coxeter graph <.p by a set of paths 
in <.p, each containing at least one edge, and which together contain all 
the edges of <.P. A typical path is of the form 

xmynz ... , 

which means that x is joined to y with an edge labelled m, y is joined 
to z with an edge labelled n, and so on. 

For example, the graph specified by the two paths 

a3b3c3d3a3c, b3d 

is the complete graph on a, b, c, d, with all edge-labels 3. The Coxeter 
graph 

is denoted by 

3 5 
0---0---0 
abc 

a3b5c, 
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which also denotes the presentation 

for 2 x A5 • 
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Relations that are not specified in a Coxeter graph are given in the usual 
way. For example, 

If Wi, W2 are words, then Wf2 means W;-lWl W2. Generators that are not 
specified in a Coxeter graph are listed before the Coxeter graph paths. 
Finally, relations given in square brackets are redundant, but may be 
helpful for the purpose of coset enumeration. Thus, in the presentation 

(a3b5c3d /1 = (abc)5[= (bcd)5]) 

(for L2 (11)), the relation 1 = (bcd)5 holds, but is a consequence of the 
other relations. 

4.2 The Mathieu group Ml1 

A presentation for Ml1 is 

(a3b5c3d3e4c I a = (ce)2, [1 = (abc)5 = (bcd)5]) 

(see [Soi87b]), in which 

MlO e:! (b, c, d, abcbae) > (b, c, d, dabcbae) e:! A6 , 

Mg : 2 e:! (a, b, d, e, (decbcdcba)cbc) > (ab, de, (decbcdcba)Cbc) e:! 32 : 8, 

and 

85 e:! (a, b, c, e). 

4.2.1 rank 2 

(i) 7r = Xl + X2, of degree 11 = 1 + 10. 

This character corresponds to the unique 2-transitive representation of 
G of degree 11. A point stabilizer is H ~ M lO • 
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(ii) 11" = Xl + X5, of degree 12 = 1 + II. 

This character corresponds to the unique 2-transitive representation of 
G of degree 12. A point stabilizer is H ~ L2(11). 

4.2.2 rank 3 

(iii) 11" = Xl + X2 + X5, of degree 22 = 1 + 10 + 11. 

lt follows from the maximal subgroup structure of G that H < L < G, 
where L ~ MlO is a point stabilizer in the representation (i) above. 
Hence G preserves a system of imprimitivity ~ := BG where B := (XL, 

and H ~ A6 is transitive on ~ \ {B}. Let B' E ~ \ {B} and f3 E B'. 
Then H B, ~ 32

: 4. Let 9 E HB' be an element of order 4. Then 9 
fixes 11"(g) = 1 + 2 - 1 = 2 points of n, and hence 9 fixes only the 
two points of B. lt follows that HB' is transitive on B', whence H is 
transitive on n\B. Thus G has a unique imprimitive rank 3 permutation 
representation of degree 22, and its character must therefore be 11". The 
subdegrees are 1, 1, 20. 

The collapsed adjacency matrices for the (nontrivial) orbital digraphs 
are 

o 20) o 20 . 
1 18 

(iv) 11" = Xl + X2 + Xs, of degree 55 = 1 + 10 + 44. 

There is a unique class of maximal subgroups of G such that a repre­
sentative has index 55, and the associated permutation character is 11". 

A point stabilizer is H ~ M9: 2, the stabilizer of an unordered pair of 
points in the representation in (i). 

The sub degrees are 1, 18, 36, and the collapsed adjacency matrices are 

18 0) 
9 8 
4 14 
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(

0036) o 8 28 . 
1 14 21 

If there were also an imprimitive permutation representation with this 
character then, again by examining the maximal subgroups of G, a point 
stabilizer H would be a subgroup of index 5 in a subgroup M lO , but MlO 

has no subgroup of this index. 

4.2.3 rank 4 

(v) IT = Xl + X2 + X5 + XS, of degree 66 = 1 + 10 + 11 + 44. 

There is a unique class of maximal subgroups of G of index 66, and the 
associated permutation character is IT. A point stabilizer is H ~ 8 5 , the 
stabilizer of an unordered pair of points in the representation in (ii). 

The subdegrees are 1, 15, 20,30, and the collapsed adjacency matrices 
are 

U 
15 0 In 0 4 
3 3 
5 6 

U 
0 20 

I~ ) 4 4 
3 10 
6 4 10 

(~ 
0 0 W) 10 12 

1: . 9 6 
4 10 15 

The non-complete distance-regular generalized orbital graphs are 

r{3} ~ J(12, 2), L = {20, 9; 1, 4} (and complement). 

If there were also an imprimitive permutation representation with char­
acter IT, then H would be a subgroup of index 6 in a subgroup MlO , but 
MlO has no subgroup of this index. 
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(vi) 7r = Xl + X2 + XS + XlO, of degree 110 = 1 + 10 + 44 + 55. 

It follows from the maximal subgroup structure of G that H < L < G, 
where either L e:! MlO of index 11, or L e:! M9: 2 of index 55. In the 
former case, G preserves a partition 1:: of n into eleven blocks of size 10, 
and the stabilizer L = G B of B E 1:: induces permutationally isomorphic 
actions on Band 1:: \ { B}, since M 10 has a unique representation of degree 
10. By Lemma 3.4, this action of G has rank at least 7. Therefore we 
have H < L e:! M9: 2 e:! 32 : Qs.2. A Sylow 2-subgroup S of L is a Sylow 
2-subgroup of G and is semidihedral of order 16, 

see [Gor68, p.487 and p.191], From the character table of G, we find 
that 7r(g) = 2 for each element 9 E G of order 8. Therefore H contains 
an element x of order 8, and it follows that H = 03(L).(x) !::! 32 : 8. 
The action of G on 1:: is permutationally isomorphic to its action on the 
set of unordered pairs of elements from the set 6. := {I, 2, ... , 11} on 
which G acts naturally. We may identify 1:: with this set so that L is the 
stabilizer of the pair {I, 2}, and then the orbits of L on 1:: are {{I, 2}}, 
1::1 := {{i,j} Ii :s; 2 < j}, and E2 := {{i,j} I i,j > 2}, of lengths 1, 18 
and 36 respectively. Clearly 03(L) has six orbits of length 9 on 1::, and 
hence has twelve orbits of length 9 on n. The permutation character 
7r' for the action of G on 1:: is the character in (iv). Since 7r'(x) = 1, x 
fixes exactly one element of 1:: and hence H is transitive on 1::1, Since 
7r'(x2 ) = 3 and 7r(x2 ) = 2, x2 fixes three elements of 1::, but fixes only 
two points of n. It follows that H is transitive on both 1::2 and the set 
of points of n contained in elements of 1::1, Finally, since 7r(x4) = 6, X4 
fixes precisely the six points of n contained in the three elements of 1:: 
fixed by x2. In particular, x4 fixes no points contained in elements of 1::2. 
Hence H is transitive on the set of points of n contained in elements of 
1::2, Thus the imprimitive action of G on n has rank 4, with sub degrees 
1,1,36,72. 

Thus we have described, up to permutational isomorphism, a unique 
imprimitive rank 4 representation of Mu. The collapsed adjacency ma­
trices are 
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U 
0 36 

1~ ) 
0 36 
1 18 
0 8 28 

U 
0 0 

72 ) 0 0 72 
0 16 56 . 

1 28 42 

The only non-complete distance-regular generalized orbital graph is 

r{3, 4} ~ K55x2 . 

4.2.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.3 The Mathieu group M12 

A presentation for M12 is 

(b4j3a3b5c3d3e4c, e6j I a = (ce)2, d = (bf)2, 1 = (adej)3 = (bcef)6) 

(discovered jointly by A.J.E. Ryba and L.H. Soicher; see [Soi88]), in 
which 

Mll ~ (a, b, c, d, e) > (a, b, c, d) ~ £2(11), 

and 

MlO: 2 ~ (b, c, d, j, abcbae) 

containing 

(b, c, d, jabcbae) ~ PG£2(9) and (b, c, d, j, dabcbae) ~ 8 6 , 

We also have 

£2(11) ~ (abc, bcd, aejd) (maximal), 

and 

M9:83 ~ (a,b,d,e,f). 
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A presentation for M 12 : 2 is obtained from the presentation for Ml2 by 
adjoining a generator t, and the relations 

In this M12 : 2, we have 

(a, b, c, d, t) :::! L2(11): 2 :::! (abc, bcd, aejd, t), 

but note that these two subgroups are in different conjugacy classes of 
MI2 :2. 

4.3.1 rank 2 

(i) 7r = Xl + Xi, where i = 2 or 3, of degree 12 = 1 + 11. 

These characters correspond to the two equivalent, but not permuta­
tionally isomorphic, 2-transitive representations of G of degree 12, each 
having point stabilizer isomorphic to MH . An equivalence between these 
representations, which interchanges them, is induced by an outer auto­
morphism of G. 

4.3.2 rank 3 

(ii) 7r = Xl + Xi + X7, where i = 2 or 3, of degree 66 = 1 + 11 + 54. 

By examining the indices of maximal subgroups of G, it is clear that 
there is no imprimitive permutation representation of G of degree 66. It 
follows that the above representations correspond to the two classes of 
maximal subgroups of G having a representative of index 66, and these 
representations are interchanged by an outer automorphism of G. A 
point stabilizer is MlO: 2, the stabilizer of an unordered pair of points in 
the representation with character Xl + Xi in (i). 

Thus we have described two equivalent, but not permutationally isomor­
phic, primitive rank 3 representations of M12 . The subdegrees are 1, 20, 
45, and the collapsed adjacency matrices are 

20 0) 
10 9 
4 16 
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o 45) 
9 36 . 

16 28 

4.3.3 rank 4 

(iii) 1f = Xl + Xi + X7 + X11, where i = 2 or 3, of degree 132 = 
1 + 11 + 54 + 66. 

From the table of maximal subgroups of G, it follows that H < L < 
G, where m := IG : LI is either 12 or 66, and G preserves a system 
of imprimitivity I; := BG where II;I = m, B := a L , and L = GB. 
The permutation character 1f' of G in its action on I; has degree m 
and is contained in 1f. Suppose first that m = 12. Then 1f' = Xl + 
Xi, a character in (i), and L ~ M ll , which has a unique permutation 
representation of degree 11. It follows that H is the stabilizer of an 
ordered pair of distinct points in a permutation representation in (i), 
which implies by Lemma 3.4 that G has rank at least 7 on n. 
This contradiction shows that m = 66. So 1f' = Xl + Xi + X7, a character 
in (ii), L ~ MlO: 2 e;! Aut (86), and H is one of the three subgroups 
of L of index 2. By Lemma 3.4 it follows that H "p MlO • Now there 
is an element x E G of order 8, with 1f(x) = 2, and hence H contains 
a conjugate of x. We may assume that x E H. Since 86 contains no 
element of order 8, it follows that H ~ PGL2(9). 

It follows from (ii) above that the action of G on I; is permutationally 
isomorphic to the rank 3 action of G on the set of 66 unordered pairs from 
a set 6. := {I, 2, ... , 12} (on which G acts with associated permutation 
character Xl + Xi). We may make this identification so that the orbits 
of L on I; are {B} = {1,2}, I;l := {{k,l} 11 :::; k :::; 2,l > 2}, and 
I;2 := {{k,l} 12 < k < l}, of lengths 1, 20, and 45 respectively. Let 
B j E I;j and let {3j be a point of n in Bj, for j = 1,2. Now HB2 ~ D16 

is a Sylow 2-subgroup of H, and so we may assume that the element x 
fixes B2 setwise. Since x fixes only two points of n, and x fixes a, it 
follows that x interchanges the two points of B2 • Thus H is transitive 
on the 90 points of n lying in blocks in I;2. 

We claim that all elements of H of order 4 fix no points of n in blocks 
of I;l. Since HB2 ~ D16 is a Sylow 2-subgroup of H, and since the two 
elements of order 4 in HB2' namely x 2 and x6, are conjugate in HB2' it 
is sufficient to consider x2 . It follows from the character table for G that 
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there are two conjugacy classes of elements of order 4, fixing zero or four 
points of n respectively. Thus x 2 , which lies in Hf32' fixes precisely the 
four points of n in B U B 2 . In particular, x 2 fixes no points of n in any 
block in ~l. 

Now consider the action of H on ~l. The subgroup LBI is the stabilizer 
in G of three points of Ll which, without loss of generality, we may 
take to be the points 1, 2, 3. Now H is transitive on Ll \ {I, 2}, and 
H3 ~ 32

: 8 (see ATLAS, p.4), so we have HB! :s; H3 ~ 32 : 8. Since 
7r'(x) = 1 + 1 + 0 = 2, x fixes no block of ~l setwise, and hence HB! 
contains no element of order 8, so HBI i= H3. It follows that H is 
transitive on ~l and HB! ~ 32 : 4. From the previous paragraph we 
know that elements of order 4 in HBI do not fix any points in B 1 • 

Hence Hf3! ~ 32 : 2 and H is transitive on the 40 points of n in blocks of 
~l. Thus the imprimitive action of G on n has rank 4, with subdegrees 
1,1,40,90. 

Note that we have described two equivalent, but not permutationally 
isomorphic, representations of M 12 . An outer automorphism of M12 in­
duces an equivalence which interchanges the two permutation represen­
tations arising in case (ii), and hence interchanges the two permutation 
representations in this case also. The collapsed adjacency matrices for 
each representation are 

U 
1 0 

n 0 0 
0 1 
0 0 

u 0 40 

1~ ) 
0 40 
1 20 
0 8 32 

( ~1 LH~). 
1 32 56 

The only non-complete distance-regular generalized orbital graph is 

f{3,4} ~ K 66x2 . 
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4.3.4 rank 5 

(iv) rr = Xl + X2 + X3 + X7 + Xi, where i = 8,9, or 10, of degree 
132 = 1 + 11 + 11 + 54 + 55. (We shall show that it is only when i = 8 
that we get a permutation character.) 

From the table of maximal subgroups of G, it follows that H < L < G, 
where m := IG : LI is either 12 or 66, and G preserves a system of 
imprimitivity ~ := BO where I~I = m, B := OiL, and L = GB. The 
assumption m = 12 leads to a contradiction by the same argument as in 
case (iii) above. So m = 66. Let rr' be the permutation character of G 
in its action on ~. So rr' = Xl + Xj + X7 with j = 2 or 3, a character in 
(ii), L !:::! MlO: 2 !:::! Aut (S6), and H is one of the three subgroups of L of 
index 2. By Lemma 3.4 it follows that H ~ MID. Also, by (iii) above, 
we know that H is not PG L2 (9) since in that case we showed that the 
permutation representation has rank 4. Therefore H!:::! S6. 

Let x E G be an element of order 8. Then rr(x) = 2, if either i = 9 and 
x is in class 8B, or i = 10 and x is in class 8A. Since H contains no 
element of order 8, it follows that i = 8. Then it follows that rr(y) = 4 
for every element y of order 4, and hence H contains elements of order 
4 from both class 4A and class 4B of G, and each of them fixes four 
points of 11, two in B and two in one other block of~. 

It follows from (ii) above that the action of G on ~ is permutationally 
isomorphic to the rank 3 action of G on the set of 66 unordered pairs from 
a set .6. := {I, 2, ... , 12} (on which G acts with associated permutation 
character Xl + Xj). As in (iii) we may make this identification so that 
the orbits of L on ~ are {B} = {1,2}, ~l := {{k,l} 11 $ k $ 2,1> 2}, 
and ~2 := {{k,l} 12 < k < 1}, of lengths 1, 20, and 45 respectively. 
Let Bk E ~k and let 13k be a point of 11 in Bk, for k = 1,2. Since 
H g G{1,2} !:::! M lO , it follows that H is transitive on both ~l and ~2. 
Suppose that H is intransitive on the 40 points of 11 in the blocks of ~l. 
Then H has two orbits of length 20 on these points, say 111 ,1 and 111,2. 

An element y of order 4 lying in A6 ~ H fixes four points of .6. including 
1 and 2, and hence fixes four blocks of ~l. It must therefore fix four 
points of each of 111,1 and 111,2. This contradicts the fact that y fixes 
only four points of 11. Thus H is transitive on the 40 points of 11 lying 
in the blocks of ~l. If H were transitive on the 90 points of 11 lying in 
the blocks of ~2' then H would have rank 4 in its action on 11, and we 
know that this is not the case from the previous subsection. Hence H 
has rank 5 on 11, with sub degrees 1, 1, 40, 45, 45. 
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Note that we have described two equivalent, but not permutationally 
isomorphic, permutation representations of G with character 7r = Xl + 
X2 + X3 + X7 + Xs· An equivalence which interchanges these two repre­
sentations is induced by an outer automorphism of M 12 • The collapsed 
adjacency matrices for each representation are 

U 
1 0 0 

1) 
0 0 0 
0 1 0 
0 0 0 
0 0 1 

( ! 
0 40 0 

j) 0 40 0 
1 20 9 
0 8 16 
0 8 16 16 

U 
0 0 45 

4~ ) 
0 0 0 
0 9 18 18 
0 16 20 8 
1 16 8 20 

(! 
0 0 0 

45 ) 0 0 45 
1~ . 0 9 18 

1 16 8 20 
0 16 20 8 

The only non-complete distance-regular generalized orbital graph is 

r{3, 4, 5} ~ K 66x2 . 

(v) 7r = Xl + X2 + X3 + XS + Xu, of degree 144 = 1 + 11 + 11 + 55 + 66. 

There is only one conjugacy class of maximal subgroups of G of index 
144, and the associated permutation character is not equal to this char­
acter 7r (see the ATLAS, p.33). It follows that H < L < G, where 
m := IG : LI = 12, and G preserves a system of imprimitivity ~ := BG 
where I~I = m, B := aL , and L = GB. Also the permutation char­
acter 7r' of G in its action on ~ is equal to Xl + Xi, where i = 2 or 
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3, and L ~ M l1 , H ~ L2(11). The group L has a unique conjugacy 
class of subgroups of index 12, while G has two classes of subgroups of 
index 12, and (examining the associated permutation characters) taking 
L to belong to the first of these classes, L acts transitively on the set 
of cosets of the second class. It follows that H is the intersection of L 
and a subgroup M from the second conjugacy class of subgroups of G 
of index 12. Thus G preserves a second system of imprimitivity on n, 
0:= CG , where 101 = 12, M = Ge , C = aM, and H = LnM. Let 
B' E E \ {B}. Now H has two representations of degree 11, and so the 
orbits of HB' ~ A5 in B (and hence in B') have lengths either 1, 1, 10, 
or 1, 5, 6, and hence the orbits of H in n have lengths either 1, 11, 11, 
11,110 or 1, 11, 11, 55, 66. In particular G has rank 5 on n, and we now 
determine the subdegrees. The subgroup H is normalised by an outer 
automorphism of G (see ATLAS), and H.2 ~ PGL2 (11) permutes the 
H-orbits in n. If H had three orbits of length 11, then H.2 would fix 
one of them setwise, but H.2 has no subgroup of index 11. Hence G is 
imprimitive of rank 5 with subdegrees 1, 11, 11, 55, 66. 

Thus we have described, up to permutational isomorphism, a unique 
imprimitive rank 5 representation with this permutation character. The 
collapsed adjacency matrices are 

U 
11 0 0 

! ) 10 0 0 
0 0 5 
0 1 4 
0 1 5 

U 
0 11 0 

1) 
0 0 5 
0 10 0 
1 0 4 
1 0 5 

U 
0 0 55 

3~ ) 
0 5 20 
5 0 20 30 
4 4 22 24 
5 5 20 25 
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( 

0 0 0 0 66 1 o 0 6 30 30 
o 6 0 30 30 . 
o 6 6 24 30 
1 5 5 25 30 

The non-complete distance-regular generalized orbital graphs are 

r{2,3}, 
r{4}, 
r{2,4}, 
r{3,4}, 
r{5}, 
r{2,4,5} e:! Kl2X12 

r{3, 4, 5} e:! K12X12. 

t = {22, 11j 1, 2} 
t = {55, 32j 1, 20} 
t= {66,35j1,30} 
t= {66,35j1,30} 
t= {66,35j1,30} 

(and complement) 
(and complement) 
(and complement) 
(and complement) 
(and complement) 

The graph r{2,3} is isomorphic to the Hamming graph H(2,12), on 
which its automorphism group 812 wr 82 acts distance-transitively (see 
[BCN89, p.261]). 

Each of r{2,4}, r{3,4}, and r{5} has intersection array {66,35j 1,30}. 
In each of these graphs, any pair of distinct vertices has exactly al = 
30 = C2 common neighbours. Therefore, each of these graphs r = (V, E) 
gives rise to a 2 - (144,66,30) design, whose point-set is V, and block­
set is {r(v) I v E V} (see [CvL91, p.43]). These particular graphs 
and designs were known to M. Hall [Hal76]. Now r{2,4} e:! r{3,4}, 
as these two graphs are interchanged by an outer automorphism of G. 
Therefore their corresponding designs are also isomorphic. However, 
r{2,4} '¥- r{5}. Indeed, using nauty (within GRAPE), we check that 
Aut (r{2,4}) e:! M12 , but Aut (r{5}) e:! M12:2. We also check, using 
nauty, that the designs corresponding to r{2,4} and r{5} are not iso­
morphic. 

(vi) 71' = Xl + X4 +X5 +X6 + Xu, of degree 144 = 1 + 16+ 16+45+66. 

If G were imprimitive on n it would preserve a system of 12 blocks 
of imprimitivity and one of X2, X3 would be a constituent of 71'. Since 
this is not the case, G is primitive. There is a unique class of maximal 
subgroups of index 144, H e:! £2(11), and the associated permutation 
character is 71'. For an element x E G of order 11, 71'(x) = 1, and hence 
all H-orbits in n \ {a} have length a multiple of 11. An examination 
of the subgroups of £2(11) shows that any subgroup of H of index a 
multiple of, and greater than, 11 must have index at least 55. It follows 
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that H has at least two orbits of length 11 in 0, and the sub degrees are 
either 1, 11, 11, 11, 110, or 1, 11, 11, 55, 66. Now H is normalized by 
an outer automorphism of G, and H.2 ~ PGL2 (11) must permute the 
H-orbits in O. As in case (v), H may not have an odd number of orbits 
of length 11, and hence the subdegrees are 1, 11, 11,55,66. 

Thus we have described, up to permutational isomorphism, a unique 
primitive rank 5 representation with this permutation character. The 
collapsed adjacency matrices are 

(1 
11 0 0 

D 
0 5 0 
0 0 10 
2 0 3 
0 1 5 

U 
o 11 0 

n 0 0 10 
5 0 0 
0 2 3 
1 0 5 

(! 
0 0 55 

3~ ) 
10 0 15 
0 10 15 30 
3 3 24 24 
5 5 20 25 

(! 
0 

o 0 ~) 0 6 30 30 
6 o 30 30 . 
6 6 24 30 
5 5 25 30 

The non-complete distance-regular generalized orbital graphs are 

r{5}, £ = {66, 35; 1, 30} (and complement). 

As in case (v) above, we have that r := r {5} = (V, E) gives rise to a 
2 - (144,66,30) design, whose point-set is V, and block-set is {r(v) I 
v E V}. Again, this graph and design were known to M. Hall [HaI76]. 
Using nauty (within GRAPE), we check that r{5} has automorphism 
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group M12 : 2, but r{5} is not isomorphic to the distance-regular graph in 
(v) above having the same intersection array and automorphism group. 
We also check, using nauty, that the design arising from f{5} is not 
isomorphic to any of the designs with the same parameters discussed in 
case (v). 

(vii) 1r = Xl + X2 + X7 + Xi + X12, where i = 8 or 9, or 1r = Xl + X3 + 
X7 + Xi + X12, where i = 8 or 10, of degree 220 = 1 + 11 + 54 + 55 + 99. 
(We shall show that, in each case, it is only when i = 8 that we get a 
permutation character.) 

By examining the indices of maximal subgroups of G, it is clear that 
there is no imprimitive permutation representation of G of degree 220. 
Thus the point stabilizer is a maximal subgroup of G. It follows (from 
the ATLAS) that 1r = Xl +Xj+X7+XS+XI2, wherej = 2 or 3, that these 
representations correspond to the two classes of maximal subgroups of 
G having a representative of index 220, and these representations are in­
terchanged by an outer automorphism of G. A point stabilizer is M9: S3, 
the stabilizer of an unordered triple of points in the representation with 
character Xl + Xj in (i). 

Thus we have described two equivalent, but not permutationally isomor­
phic, primitive rank 5 representations of Ml2 which are interchanged by 
an outer automorphism of M12 . For each of these representations, the 
sub degrees are 1, 12, 27, 72, 108, and the collapsed adjacency matrices 
are 

1~ ) 

16 
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CO 
0 72 0) o 0 18 18 36 

o 8 0 40 24 
1 3 15 14 39 
o 4 6 26 36 

(0 0 o 0 108) 
o 9 9 36 54 
o 4 16 24 64 . 
o 6 9 39 54 
1 6 16 36 49 

The only non-complete distance-regular generalized orbital graph is 

r{3} ~ J(12,3), t = {27, 16, 7; 1,4, 9}. 

(viii) 7r = Xl + X6 + Xl1 + Xl4 + X15, of degree 432 = 1 + 45 + 66 + 
144+ 176. 

As there are no maximal subgroups of G of index 432, H < L < G, where 
m := IG : LI = 12 or 144, and G preserves a system of imprimitivity 
~:= BO where I~I = m, B:= a L , and L = GB. Ifm were 144 then L 
would be L2 (11) which has no subgroup of index 3. Similarly if m were 
12, then L would be Mu , which has no subgroup of index 36. Thus 7r 

is not a permutation character. 

4.4 Automorphism group M 12 : 2 of Ml2 

A presentation for M 12 : 2 is given in the section for M 12 . 

4.4.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.4.2 rank 3 

(i) 7r = Xl + X2 + X3, of degree 24 = 1 + 1 + 22. 

An examination of the table of maximal subgroups of G shows that H ~ 
M l1 , H:S M12 . There is just one G-conjugacy class of such subgroups. 
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As we saw in case (v) of M12 , H is transitive by conjugation on the 
12 subgroups Mll which form one of the two M12-conjugacy classes of 
such subgroups. Thus this is an imprimitive rank 3 representation, with 
sub degrees 1, 11, 12, and permutation character 1r. 

The collapsed adjacency matrices are 

( ~ ~~ ~) 
o 0 11 

4.4.3 rank 4 

(ii) 11" = Xl + X3 + X9 + X12, of degree 144 == 1 + 22 + 55 + 66. 

The restriction of 11" to M12 is the permutation character in case (v) of 
M12 . Thus H ~ L2(11).2, and H n Ml2 has orbits on n of lengths 1, 
11, 11, 55, 66. Since 11" is the only pseudo-permutation character of G 
of rank at most 5 whose restriction to M12 is the character of case (v) 
of M12 (see the next subsection), it follows that G is primitive of rank 
4 on n with subdegrees 1, 22, 55, 66, and that there is a unique such 
representation. 

Thus we have described, up to permutational isomorphism, a unique 
primitive rank 4 representation of M12: 2. The collapsed adjacency ma-
trices are 

U 
22 0 0) 10 5 6 
2 8 12 
2 10 10 

U 
0 55 

~) 5 20 
8 22 24 

10 20 25 
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( 

0 0 0 66) o 6 30 30 
o 12 24 30 . 
1 10 25 30 

The non-complete distance-regular generalized orbital graphs are 

f{2}, t = {22, 11j 1, 2} 
f{3}, t = {55, 32j 1, 20} 
f{4}, t = {66,35j 1,30} 

(and complement) 
(and complement) 
(and complement). 

(iii) 7r = Xl + X4 + X5 + X12, of degree 144 = 1 + 32 + 45 + 66. 
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The restriction of 7r to Ml2 is the permutation character in case (vi) 
of M 12. Thus H £::! L2(11).2, and H n Ml2 has orbits on n of lengths 
1, 11, 11, 55, 66. As in the previous case, since 7r is the only pseudo­
permutation character of G of rank at most 5 whose restriction to Ml2 

is the character of case (vi) of M12 , it follows that G is primitive of rank 
4 on n with sub degrees 1, 22, 55, 66, and that there is a unique such 
representation. 

Thus we have described, up to permutational isomorphism, a unique 
primitive rank 4 representation of M 12 : 2. The collapsed adjacency ma-
trices are 

U 
22 0 

1~ ) 

5 10 
4 6 
2 10 10 

U 
0 55 

3~ ) 
10 15 
6 24 24 

10 20 25 

U 
0 0 

66 ) 6 30 30 
12 24 30 . 

10 25 30 

The non-complete distance-regular generalized orbital graphs are 

r{4}, t = {66,35j 1,30} (and complement). 
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4.4.4 rank 5 

(iv) 'IT = Xl + X2 + X3 + X7 + XS, of degree 132 = 1 + 1 + 22 + 54 + 54. 

The restriction of 'IT to M12 is the permutation character 2Xl + X2 + X3 + 
2X7· This means in particular that M12 has two orbits, say fh and fh, 
on 0, each of length 66, and the permutation characters for M12 on 0 1 

and fh must be the characters in case (ii) of M 12 . 

We may suppose that H is the stabilizer of a point in 0 1• Thus H ~ 
MlO: 2, H < M12 , and H has orbits oflengths 1, 20, 45 on 0 1 . Further, 
the number of orbits of H on O2 is equal to the inner product of the 
permutation characters of M12 on 0 1 and O2 , namely 2. Thus G has 
an imprimitive rank 5 representation on O. The subgroup MlO of index 
2 in H is the stabilizer of two points in one of the representations of 
M12 of degree 12, say on a set ~1' Its action on O2 is permutationally 
isomorphic to its action on unordered pairs from the other representation 
of M12 of degree 12, say on ~2' Since MlO has index 11 in the stabilizer 
L of a point of ~1' and since L is transitive on ~2' it follows that each 
orbit of H on O2 has length divisible by 6. Further, since an element 
of order 5 in H fixes exactly one point of !h, the H-orbit lengths on 
O2 must be either 6, 60 or 30, 36. However, since H has no transitive 
representation of degree 6, it follows that the sub degrees of G are 1, 20, 
30,36,45. 

Thus we have described, up to permutational isomorphism, a unique 
imprimitive rank 5 representation of M 12 : 2. The collapsed adjacency 
matrices are 

( 

;01 i~ 0 DOl ~ 1~ ~~ j 

~ ~~ 1~ ~ 1 
8 0 0 21 

10 0 0 20 
o 14 16 0 
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( ~ 
0 0 36 

2~ 1 0 18 18 
12 0 0 
10 0 0 25 
0 16 20 0 

U 
0 0 0 

~l 9 0 0 36 
0 21 24 o . 
0 20 25 0 

16 0 0 28 

The only non-complete distance-regular generalized orbital graph is 

r{3,4} ~ K 2x66 • 

(v) 7r = Xl +X5+X12+X18+X21, of degree 432 = 1+45+66+144+176. 

The restriction of 7r to M12 is the pseudo-permutation character of case 
(viii) of M 12 · Since that character is not a permutation character of 
M 12 , it follows that 7r is not a permutation character of M 12 : 2. 

4.5 The Janko group J1 

A presentation for J1 is 

(a3b5c3d5e 11 = (abc)5[= (bcd)5], a = (cde)5), 

in which 

£2(11) ~ (a, b, c, d). 

This presentation was discovered by J.H. Conway and R.A. Parker (see 
[Soi87b]). 

4.5.1 rank 2 

(i) 7r = Xl + X4 of degree 77 = 1 + 76. 

G has no subgroup of index 77. 
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4.5.2 rank 3 

(ii) IT = Xl + X4 + X6 of degree 154 = 1 + 76 + 77. 

G has no subgroup of index 154. 

4.5.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.5.4 rank 5 

(iii) IT = Xl + X2 + X3 + X4 + X6 of degree 266 == 1 + 56+ 56+ 76+ 77. 

There is a unique class of subgroups of G of index 266, with associated 
permutation character 1r. A point stabilizer is a maximal H ~ L2(11). 

The sub degrees are 1, 11, 12, 110, 132, and the collapsed adjacency 
matrices are 

U 
11 0 0 

III 0 0 10 
0 0 0 
1 0 4 
0 1 5 

(I 
0 12 0 

I~ 1 0 0 0 
0 0 0 11 
0 0 6 6 
1 1 5 5 

( ! 
0 0 110 

6~ 1 10 0 40 
0 0 55 55 
4 6 45 54 
5 5 45 55 
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( 

0 0 0 0 132] o 0 12 60 60 
o 11 11 55 55 . 
o 6 6 54 66 
1 5 5 55 66 

The only non-complete distance-regular generalized orbital graph is 

r {2}, ~ = {11, 10,6,1; 1, 1,5,11}, G acts distance-transitively. 
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This graph is known as the Livingstone graph, and is described in detail 
in [BCN89j. 

4.6 The Mathieu group M22 

A presentation for M22 is 

(a3b5c3d, a4e3c 11 = (abc)5[= (bcd)5], 

1 = (eab)3 = (bce)5 = (aecd)4 = (abce)8) 

(see [Soi85, Soi88]), in which 

M21 ~ L3(4) ~ (a,b,c,a bcde
), 

24: 55 ~ (a, c, d, e, bcdecb) , 

and 

MlO ~ (b, c, e, abcdcbeacbcdcbaecbacd). 

The short words generating 24: 55, and those generating 23: L3(2), were 
found by M. SchOnert. 

We remark that the subgroup L2 (11) ~ (a, b, c, d) leads to a rank 6 
representation of M 22 , and a vertex-transitive distance-regular graph of 
diameter 3 (see [Soi95]). 
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A presentation for M 22 : 2 is obtained from that of M 22 , above, byad­
joining a generator t, and the relations 

We note that t normalizes each of the following of the specific sub­
groups of M22 given above: (a, b, c, e), (b, c, e, (aec)3), (a, c, d, e, bcdecb) , 
(a, c, d, e, aecb), and (b, c, e, abcdcbeacbcdcbaecbacd). The element t does 
not normalize the specific subgroup (a, b, c, abcde ) 9'! M2l, but the (outer) 
element eabt does. 

4.6.1 rank 2 

(i) 7r = Xl + X2, of degree 22 = 1 + 21. 

This character corresponds to the unique 2-transitive representation of 
G of degree 22. A point stabilizer is H 9'! M2l 9'! L3(4). 

In the remainder of this section, let X be the set of points of size 22 in 
this representation. Then G preserves a Steiner system 8(3,6,22) with 
point-set X and block-set B consisting of 77 subsets of X of size 6, called 
hexads. 

(ii) 7r = Xl + X5, of degree 56 = 1 + 55. 

G has no subgroup of index 56. 

4.6.2 rank 3 

(iii) 7r = Xl + X2 + X5, of degree 77 = 1 + 21 + 55. 

By examining the indices of maximal subgroups of G, it is clear that 
there is a unique class of subgroups of G of index 77. The associated 
permutation representation is the primitive rank 3 representation of G 
on B, with character 7r. A point stabilizer is H 9'! 24: A6 • 

The sub degrees are 1, 16,60, and the collapsed adjacency matrices are 

16 0) o 15 
4 12 
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( 

0 0 60) o 15 45 . 
1 12 47 

(iv) 7r = Xl + X2 + X7, of degree 176 = 1 + 21 + 154. 

There are exactly two classes of maximal subgroups of G of index 176, 
with associated permutation character 7r, each having a representative 
isomorphic to A7 • The associated representations are interchanged by 
an outer automorphism of G. 

For each of these two equivalent, but not permutationally isomorphic, 
representations, the sub degrees are 1, 70, 105, and the collapsed adja­
cency matrices are 

( ~ ~~ 5~) 
o 34 36 

o 105) 
51 54 . 
36 68 

If there were also an imprimitive permutation representation of G with 
character 7r, then we would have H < L < G with IG : LI a proper 
divisor of 176. Then L ~ L3(4) of index 22, but this subgroup L has no 
subgroup of index 8. 

(v) 7r = Xl + X5 + X7, of degree 210 = 1 + 55 + 154. 

G has no subgroup of index 210. 

4.6.3 rank 4 

(vi) 7r = Xl + X2 + X5 + X6, of degree 176 = 1 + 21 + 55 + 99. 

Arguing as in (iv) above, the only subgroups of G of index 176 are 
isomorphic to A7 , but then the associated permutation representation 
has rank 3. Thus 7r is not a permutation character. 

(vii) 7r = Xl + X2 + X5 + X7, of degree 231 = 1 + 21 + 55 + 154. 

There is a unique class of maximal subgroups of G of index 231 with 
associated permutation character 7r. A point stabilizer is H ~ 24: 85 , 
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the stabilizer of an unordered pair of points in the representation with 
character Xl + X2 in (i). 

The subdegrees are 1, 30, 40, 160, and the collapsed adjacency matrices 
are 

~ 1~) 
3 24 
6 21 

o 16 32 112 

( 

0 0 0 160) 

o 24 16 120 . 
1 21 30 108 

The non-complete distance-regular generalized orbital graphs are 

r{2}, t-={30,20;1,3} 
r{3}~J(22,2), t-={40,19;1,4} 

(and complement) 
(and complement). 

The graph r{2} was originally discovered by P.J. Cameron (see also 
[IKF84, FKM94]). 

If there were also an imprimitive permutation representation of G with 
character 71", then we would have H < L < G with IG : LI a proper 
divisor of 231. Then L ~ 24: A6 of index 77, but this subgroup L has no 
subgroup of index 3. 

(viii) 71" = Xl + X2 + X5 + X9, of degree 308 = 1 + 21 + 55 + 231. 

G has no maximal subgroup of index 308, and hence H < L < G, 
where m := IG : LI is either 22 or 77, and G preserves a system of 
imprimitivity E := BG where lEI = m, B := a L , and L = GB. If 
m = 77, then L ~ 24: A6 , which has no subgroup of index 4. Similarly, 
if m = 22, then L ~ L3 (4), which has no subgroup of index 14. Thus 71" 

is not a permutation character. 
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4.6.4 rank 5 

There is a unique class of maximal subgroups with associated permuta­
tion character 7r. A point stabilizer is H £::: 23: L3(2). 

The sub degrees are 1, 7,42, 112, 168, and the collapsed adjacency ma­
trices are 

9~ ) 48 
48 
64 

o 168) 96 48 
48 100 . 
48 96 
64 76 

The only non-complete distance-regular generalized orbital graph is 

r{2}, t = {7,6,4,4; 1, 1, 1,6}, G acts distance-transitively. 

We may take the vertices of r{2} to be the 330 octads of an 8(5,8,24) 
which do not contain either of two given points. We join two such 
octads by an edge in r{2} precisely when they are disjoint. This graph 
is described in more detail in [BCN89]. 

If there were also an imprimitive permutation representation with char­
acter 7r, then we would have H < L < G with m := IG : LI dividing 
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330. Then m = 22 and L ~ L3(4). However this subgroup L has no 
subgroup of index 15. 

(x) 7r = Xl +X2+X5 +X7+X9, of degree 462 = 1+21+55+154+231. 

G has no maximal subgroup of index 462, so H < L < G with m :== 
IG: LI dividing 462, and G preserves a system ofimprimitivity ~ := BG 
where I~I = m, B:= a L , and L = GB. We observe that m is 22,77, or 
231, and L is L3 (4), 24: A6 , or 24: 85 respectively. 

Suppose first that m = 22. Then L is the stabilizer of a point x of 
X. We may identify X \ {x} with the set of 21 points of the projective 
plane PG2 (4). By Lemma 3.4, H is not the stabilizer in L of a point 
of X \ {x}, and hence H is the stabilizer of a hyperplane of PG2 (4), 
and has orbits on X of lengths 1, 5, 16. The actions of G on X and ~ 
are permutationally isomorphic, and so H has orbits on ~ of lengths 1, 
5, 16, and hence fixes setwise subsets of n of sizes 21, 21.5, and 21.16 
respectively. Since IHI is not divisible by 7, H has at least two orbits in 
each of these three sets, so G has rank at least 6, which is a contradiction. 

Next let m = 77. Then H has index 6 in L ~ 24: A6 • In particular, L 
is 2-transitive on B, so H has orbits of lengths 1, 5 in B. Further, the 
action of G on ~ is permutationally isomorphic to its rank 3 action on 
the set B of hexads. Hence L has orbits on ~ of lengths 1, 16, 60, and 
L is the stabilizer of a hexad Y E B. Moreover, either the actions of L 
on Band Yare permutation ally isomorphic, or the stabilizer H of the 
point a of B induces a 2-transitive action on Y with HY ~ L2(5). In 
the former case, the action of G on n is permutationally isomorphic to 
its action on incident point-hexad pairs from the Steiner system, and 
so H is also a subgroup of index 21 in the stabilizer of a point of X. 
We showed in the previous paragraph that this is not possible. Thus 
H Y ~ L2(5). Direct calculation shows that for this H ~ 24: L2(5), the 
action of G is rank 5, with subdegrees 1,5,96, 120,240, and collapsed 
adjacency matrices 
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( ~ ~ ~~ 
150 
o 0 24 
o 0 24 

3L~) 
24 48 
24 48 

o 0 120 

9~ ) 
o 0 24 
o 30 30 60 
1 24 
2 24 

34 60 
30 64 

( 

0 0 0 0 240) o 0 0 96 144 
o ° 60 60 120 . 
o 4 48 60 128 
1 3 48 64 124 

The only non-complete distance-regular generalized orbital graph is 

r{3, 4, 5} e:! K 77x6 • 

59 

Now if m = 231, then H has index 2 in L e:! 24: S5. Thus H e:! 24: A5 , 

which is the stabilizer of an ordered pair of distinct points of X. By 
Lemma 3.4, G has rank at least 7 on the cosets of H. 

(xi) 7r = Xl +X2+X5+X7+X12, of degree 616 = 1+21+55+154+385. 

There is a unique class of maximal subgroups of G of index 616 with 
associated character 1r. The point stabilizer is He:! MlO e:! A6 ·23 • 

The subdegrees are 1, 30, 45, 180, 360, and the collapsed adjacency 
matrices are 

30 0 
14 3 
2 4 o 24 

~ 1~) 
o 0 14 16 
1 3 8 18 
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(H 4~ 
o 0 8 
o 3 1 

~ 3~ 1 32 8 
5 32 

16 25 

o 0 180 0 1 
~ 3~ ~~ 1~~ 

14 5 72 88 
8 16 44 112 

o 0 
12 36 
24 8 
16 32 
18 25 

o 360 1 96 216 
128 200 . 
88 224 

112 204 

There are no non-complete distance-regular generalized orbital graphs. 

If there were also an imprimitive permutation representation with this 
character, then we would have H < L < G with m := IG : LI dividing 
616. Then m is 22 or 77, and H is a subgroup of index 28 in L ~ L3(4) or 
index 8 in L ~ 24: A6 , respectively. In neither case does such a subgroup 
exist. 

(xii) 1f = Xl +X2+X5+X9+X12, of degree 693 = 1+21+55+231+385. 

There is no maximal subgroup of G of index 693, and so H < L < G with 
m := IG : LI dividing 693. Then m is 77 or 231, and H is a subgroup of 
index 9 in 24: A6 or index 3 in 24: 85 , respectively. In neither case does 
such a subgroup exist. 

(xiii) 1f = Xl +X2+X7+X9+X12, of degree 792 = 1+21+154+231+385. 

There is no maximal subgroup of G of index 792, and so H < L < G 
with m := IG : LI dividing 792. Now m must be 22, and H is a subgroup 
of index 36 in L3(4). However there is no such subgroup. 

(xiv) 1f = Xl +X3+X4 +X7+X12, of degree 630 = 1+45+45+154+385. 

G has no subgroup of index 630. 
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4.7 Automorphism group M 22 : 2 of M22 

A presentation for M 22 : 2 is given in the section for M 22 . 

4.7.1 rank 2 

61 

There is just one faithful pseudo-permutation character of G of rank 2. 

(i) 7r == Xl + X3, of degree 22 = 1 + 21. 

This is the character of the unique 2-transitive representation of G of 
degree 22. A point stabilizer is H e:: L3(4): 22 , and the restriction of the 
representation to G has the permutation character of case (i) for Mn. 

4.7.2 rank 3 

(ii) 7r = Xl + X3 + X9, of degree 77 = 1 + 21 + 55. 

There is a unique class of subgroups of G of index 77. The associated 
permutation representation is the primitive rank 3 representation of G 
on B, with character 7r. A point stabilizer is H e:: 24: 8 6 , and the restric­
tion to M22 is the representation in case (iii) for M 22 . The collapsed 
adjacency matrices are the same as for that representation. 

4.7.3 rank 4 

(iii) 7r = Xl + X2 + X3 + X4, of degree 44 = 1 + 1 + 21 + 21. 

There is no maximal subgroup of G of index 44, and so G is imprimitive, 
and H e:: M2l < M22 < G. The restriction of 7r to M22 is intransitive 
with two orbits on each of which the action of M22 is permutationally 
isomorphic to the 2-transitive action in case (i) of M 22 . The sub degrees 
are therefore 1, 1, 21, 21, and the collapsed adjacency matrices are 
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U 
0 21 

2! ) 0 0 
0 20 
1 0 20 

U 
0 0 21 ) 0 21 

2~ 1 0 
0 20 

The non-complete distance-regular generalized orbital graphs are 

r{ 4}, t = {21, 20,1; 1,20,21}, G acts distance-transitively 
r{2, 4} ~ K2x22 

r{3, 4} ~ K 22x2 • 

The graph r{4} is an example of a Taylor graph. In fact, r{4} is just 
the graph K 2X22 with a I-factor removed, and has automorphism group 
2 x 822 . 

(iv) 'If = Xl + X2 + X9 + XlO, of degree 112 = 1 + 1 + 55 + 55. 

G has no subgroup of index 112. 

(v) 'If = Xl + X3 + X9 + X13, of degree 231 = 1 + 21 + 55 + 154. 

There is a unique class of maximal subgroups of index 231 in G, and 
it corresponds to the primitive permutation representation of G with 
character 'If. A point stabilizer is H ~ 25 : 85 , and the restriction to M22 

is the primitive rank 4 representation of case (vii) of M 22 . Thus the 
collapsed adjacency matrices and associated distance-regular graphs are 
the same as for that representation. 

If there were also an imprimitive representation with character 'If, then 
we would have H < L < G with H of index 3 in L ~ 24: 86 , No such 
subgroup exists. 

4.7.4 rank 5 

(vi) 'If = Xl +X3 +X9 +Xll +XI3, of degree 330 = 1+21+55+99+154. 

There is a unique primitive permutation representation of G of degree 
330, and it has associated character 'If. A point stabilizer is H ~ 
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23: L3(2) x 2, and the restriction to M22 is the primitive rank 5 rep­
resentation of case (ix) of M 22 . Thus the collapsed adjacency matrices 
and the associated non-complete distance-regular graph, on which G 
acts distance-transitively, are the same as for that representation. 

If there were also an imprimitive permutation representation with char­
acter 1T', then we would have H < L < G with m := IG : LI dividing 
330. Then m = 22 and L ~ L3(4): 22 • However this subgroup L has no 
subgroup of index 15. 

(vii) 1T' = Xl +X3+X9+XI3+XI4, of degree 385 = 1+21+55+154+154. 

There is no maximal subgroup of G of index 385. Indeed, we would 
need to have H < L < G, with H of index 5 in L ~ 24: 8 6 , but no such 
subgroup exists. 

(viii) 1T' = Xl +X3 +X9 +X13 +XI8, of degree 462 = 1 + 21 +55+ 154+ 23l. 

The restriction of 1T' to M22 is the rank .5 permutation character of case 
(x) for M 22 . There is a unique transitive permutation representation of 
M22 with this restricted character. This representation is imprimitive, 
preserving a set ~ of 77 blocks of size 6, and has point stabilizer H n 
M22 ~ 24: L2(5) < 24: A6 • It follows that H ~ 24: PGL2(5) < 24: 8 6 , 

there is a unique representation of G with character 1T', and the collapsed 
adjacency matrices and associated non-complete distance-regular graph 
are the same as in case (x) for M 22 . 

(ix) 1T' = Xl +X3 +X9+XI3+X20, of degree 616 = 1+21+55+154+385. 

There is a unique class of maximal subgroups of G of index 616 having 
associated permutation character 1T'. A point stabilizer is H ~ A6 ' 22 , 
and the restriction to M22 is the primitive rank 5 representation of case 
(xi) of Mn. Thus the collapsed adjacency matrices are the same as for 
that representation, and there is no associated non-complete distance­
regular graph. 

If there were also an imprimitive representation with character 1T', then 
we would have H < L < G with m = 22 or 77. In the former case, H 
has index 28 in L ~ L3(4): 22 , but L has no such subgroup. In the latter 
case, H has index 8 in L ~ 24: 8 6 . Again L has no such subgroup. 
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4.8 The Hall-Janko group J2 

A presentation for J2 is 

(a5b3c8d3e I a = (Cd)4, 1 = ((bcdcd)5 e)3[= (abc)5]) 

(see [Soi85]), in which 

3'PGL2 (9) ~ (a,b,c,d). 

The representation of J2 on the cosets of 3' PGL2 (9) extends to a rep­
resentation of the same rank for J2 : 2 on the cosets of 3' A6 ' 22. 

A presentation for J2 : 2 is 

(a3b3c8d3e3j I a = (cd)4, 1 = (bcde)8) 

(see [Soi85)), in which 

U3(3):2 S:':! (a,b,c,d,e), 

and 

The representation of J2 : 2 on the cosets of U3 (3): 2 restricts to a repre­
sentation of the same rank for J2 on the cosets of U3 (3). 

4.8.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.8.2 rank 3 

(i) 7r = Xl + X6 + X7 of degree 100 = 1 + 36 + 63. 

There is a unique class of subgroups of G of index 100. A representative 
is a maximal H ~ U3(3), and the associated permutation character is 7r. 

The sub degrees are 1, 36, 63, and the collapsed adjacency matrices are 

(

0360) 
1 14 21 

° 12 24 
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( 

0 0 63) o 21 42 . 
1 24 38 

4.8.3 rank 4 

(ii) 7f = Xl + X7 + XlO + X11 of degree 280 = 1 + 63 + 90 + 126. 

There is a unique class of subgroups of G of index 280. A representative 
is a maximal H ~ 3' PG L2 (9), and the associated permutation character 
is 7f. 

The sub degrees are 1, 36,108,135, and the collapsed adjacency matrices 
are 

U 
36 0 

I~ ) 8 12 
4 12 20 
4 16 16 

U 
0 108 

6~ ) 12 36 
12 40 55 
16 44 48 

U 
0 o 135) 

15 60 60 
20 55 60 . 

16 48 70 

The non-complete distance-regular generalized orbital graphs are 

r{2}, t = {36, 27; 1, 4} (and complement) 
r{4}, t = {135,64; 1,60} (and complement). 

These distance-regular graphs were originally presented in [IKF84] (see 
also [FKM94]). 

We may take the vertex-sets of r{2} and r{4} to be the conjugacy class 
in J2 of 3A-generated subgroups of order 3. Then vertices A, Bare 
joined by an edge in r{2} (respectively r{4}) if and only if (A,B) is 
isomorphic to A4 (respectively SL2(3)). 



66 4 The Individual Groups 

4.8.4 rank 5 

(iii) 1f = Xl +X6 +X7+XlO+XI2 of degree 350 = 1+36+63+90+ 160. 

G has no subgroup of index 350. 

4.9 Automorphism group J2 : 2 of J2 

A presentation for J2 : 2 is given in the section for J2 • 

4.9.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.9.2 rank 3 

(i) 1f = Xl + X5 + X7 of degree 100 = 1 + 36 + 63. 

There is a unique class of subgroups of G of index 100. A representative 
is a maximal H 9.! U3 (3): 2, and the associated permutation character is 
1f. The restriction of this representation to J2 is the representation in 
case (i) for J2 , and so the collapsed adjacency matrices are the same as 
for that representation. 

4.9.3 rank 4 

(ii) 1f = Xl + X2 + X3 + X4 of degree 72 = 1 + 1 + 28 + 42. 

G has no subgroup of index 72. 

(iii) 1f = Xl + X7 + XlO + X12 of degree 280 = 1 + 63 + 90 + 126. 

There is a unique class of subgroups of G of index 280. A representative 
is a maximal H 9.! 3' A6 ' 22, and the associated permutation character is 
1r. The restriction of this representation to h is the representation in 
case (ii) for J2 , and so the collapsed adjacency matrices and associated 
distance-regular graphs are the same as for that representation. 



4·9 Automorphism group J2 : 2 of J2 67 

4.9.4 rank 5 

(iv) IT = Xl + X2 + X3 + XlO + XlI of degree 210 = 1 + 1 + 28 + 90 + 90. 

G has no subgroup of index 210. 

(v) IT = Xl +X3 +X5 + XlO +X14 of degree 315 = 1 +28+36+90+ 160. 

There is a unique class of subgroups of G of index 315. A representative 
is a maximal H ~ 2~+4 .85 , and the associated permutation character is 
IT. 

The sub degrees are 1, 10, 64, 80, 160. (The restriction of this repre-
sentation to J2 has rank 6 and subdegrees 1, 10, 32, 32, 80, 160.) The 
collapsed adjacency matrices are 

C 10 0 
0 

; 1 
1 1 0 8 
o 0 5 0 
o 1 0 1 
o 0 2 4 

U 
0 64 0 

3~ 1 0 32 0 
5 8 20 30 
0 16 16 32 
2 12 16 34 

U 
0 0 80 

6~ 1 8 0 8 
0 20 20 40 
1 16 30 32 
4 16 16 44 

U 
o 0 0 160 1 o 32 64 64 
5 30 40 85 . 
8 32 32 88 
4 34 44 77 

The only non-complete distance-regular generalized orbital graph is 

r{2}, t = {10, 8, 8, 2; 1, 1,4, 5}, G acts distance-transitively. 

We may take the vertex-set of r{2} to be the conjugacy class 2A of J2 • 
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Then vertices x,y are joined by an edge in r{2} precisely when xy has 
order 2. This graph is described in more detail in [BCN89]. 

4.10 The Mathieu group M 23 

A presentation for M23 is 

(a3b5c3d3j6e,a4e3c4j I a = (cf)2,b = (ef)3, 

1 = (eab)3 = (bce)5[= (bcd)5] = (aecd)4 = (bcef)4) 

(see [Soi85, Soi88]), in which 

M22 ~ (a,b,c,d,e), 

As ~ (a, b, d, e, j, efdc
) , 

and 

Mn ~ (a, b, c, d, f). 

4.10.1 rank 2 

(i) 7r = Xl + X2 of degree 23 = 1 + 22. 

This character corresponds to the unique 2-transitive representation of 
G of degree 23. A point stabilizer is H ~ M22 . 

In the remainder of this section, let X be the set of points of size 23 in 
this representation. Then G preserves a Steiner system S (4, 7, 23) with 
point-set X and block-set !3 consisting of 253 subsets of X of size 7, 
called heptads. 

4.10.2 rank 3 

(ii) 7r = Xl + X2 + X5 of degree 253 = 1 + 22 + 230. 

There are two conjugacy classes of maximal subgroups of G of index 



4.10 The Mathieu group M 23 69 

253 with associated permutation character 7f. The point stabilizers are 
He:! L3(4): 22 and He:! 24: A7 in the two representations. 

In the former case, H is the stabilizer of an unordered pair of points of 
X, and the sub degrees are 1, 42, 210. The collapsed adjacency matrices 
are 

42 0) 
21 20 
4 38 

( 

0 0 210) o 20 190 . 
1 38 171 

In the latter case, where H e:! 24: A7 , H is the stabilizer of a heptad, that 
is, the action of G on n is permutationally isomorphic to its action on 
8. The sub degrees are 1, 112, 140, and the collapsed adjacency matrices 
are 

112 0) 
36 75 
60 52 

o 140) 
75 65 . 
52 87 

If there were also an imprimitive representation of G with permutation 
character 7f, then we would have H < L < G with IG : LI dividing 253. 
Then m = 23 and H would have index 11 in L e:! M 22 • There is no such 
subgroup H. 

4.10.3 rank 4 

(iii) 7f = Xl + X2 + X5 + X9 of degree 506 = 1 + 22 + 230 + 253. 

There is a unique class of maximal subgroups of G of index 506 with 
associated permutation character 7f. A point stabilizer is H e:! As. 

The group M 23 is the stabilizer of a point x in the 5-transitive represen­
tation of M24 of degree 24, and has two orbits on the set of 759 octads 
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(the blocks of an 3(5,8,24)) preserved by M24, namely, the sets of oc­
tads which do, and which do not, contain the point x. The subgroup H 
is the stabilizer of an octad which does not contain x. 

The sub degrees are 1, 15,210,280, and the collapsed adjacency matrices 
are 

U 
15 0 

In 0 14 
1 2 
0 9 

U 
o 210 

16~ ) 14 28 
2 111 96 
9 72 129 

U 
0 0 

280 ) 0 168 112 
12 96 172 . 

6 129 144 

The only non-complete distance-regular generalized orbital graph is 

r{2}, L = {15, 14, 12; 1, 1, 9}, G acts distance-transitively. 

We may take the vertices of r{2} to be the 506 octads of an 3(5,8,24) 
which do not contain a given point. We join two such octads by an edge 
in r{2} precisely when they are disjoint. This graph is described in more 
detail in [BCN89]. 

If there were also an imprimitive permutation representation of G with 
character 7[, then we would have H < L < G with IG : LI a proper 
divisor of 506. Then either m = 23 and H has index 22 in L ~ M 22 , or 
m = 253 and H has index 2 in L ~ L3(4): 2 or 24: A7 • If m = 23, then 
H would be the stabilizer of an ordered pair of distinct points of X, and 
by Lemma 3.4 the representation would have rank at least 7, which is a 
contradiction. Hence m = 253. The subgroup L ~ L3(4): 2 has a unique 
subgroup of index 2, namely the stabilizer of an ordered pair of distinct 
points of X, and we have shown that H cannot be this subgroup. Hence 
L ~ 24: A7 , but this subgroup has no subgroup of index 2. Thus there 
are no imprimitive representations with associated character 7[. 
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(iv) 7r = Xl + X2 + X5 + X16 of degree 1288 = 1 + 22 + 230 + 1035. 

There is a unique class of maximal subgroups of G of index 1288 with 
associated permutation character 7r. A point stabilizer is H ~ Mu. 

The subdegrees are 1, 165, 330, 792, and the collapsed adjacency matri­
ces are 

u 165 o 
o 92 

46 11 
15 45 

0) 72 
108 
105 

(0~1 9~ 3~~ 21~) 
11 138 180 
45 75 210 

U 1~~ i!~ ~~:). 
105 210 476 

The non-complete distance-regular generalized orbital graphs are 

r{2,3}, l = {495, 288; 1, 180} (and complement). 

The graph r{2, 3} has a distance-transitive (rank 3) action by M 24 • 

If there were also an imprimitive permutation representation of G with 
character 7r, then we would have H < L < G with IG : LI a proper 
divisor of 1288. Then m = 23, and H would have index 56 in L ~ M 22 • 

However, M22 has no subgroup of this index. 

4.10.4 rank 5 

(v) 7r = Xl +X2+X5+X9+Xl7, of degree 2530 = 1+22+230+253+2024. 

Now G has no maximal subgroup of index 2530, and hence H < L < G 
with m := IG : LI dividing 2530, where m is one of 23,253 or 506, and 
H has index 110, 10 or 5 in M22 , L3(4): 2 or As, respectively. There is 
no such subgroup H in any of these cases. Thus 7r is not a permutation 
character. 
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4.11 The Higman-Sims group HS 

A presentation for H S is 

(b4j3a3b5c3d,a4e3cl d= (bj)2 = (eaj)3,1 = (eab)3 = (bce)5[= (abc)5)) 

(see [Soi85, Soi88]), in which 

U3(5):2 == (b,c,d,j,dcbae,abjae) > (b,c,d,j,dcbae ) == U3(5), 

M22 == (a, b, c, d, e), 

and 

L3(4):21 == (a,b,c, abcde , eajabceajbcbeaj). 

A presentation for HS: 2 is obtained from that of HS, by adjoining a 
generator t, and the relations 

In this H S: 2, we have 

S8 x 2 == C(t) = (a,c,d,e,j,t,aecb ,t(abcf t)8). 

Note also that t normalizes (a, b, c, d, e) == M 22 . 

4.11.1 rank 2 

(i) 7r = Xl + X7 of degree 176 = 1 + 175. 

The group G has two equivalent, but not permutationally isomorphic, 2-
transitive representations with permutation character 7r, and these are 
interchanged by an outer automorphism of G. A point stabilizer is 
H == U3 (5): 2. 

4.11.2 rank 3 

(ii) 7r = Xl + X2 + X3 of degree 100 = 1 + 22 + 77. 

There is a unique class of subgroups of G of index 100. A representative 
is a maximal H == M n , and the associated permutation character is 7r. 
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The sub degrees are 1, 22, 77, and the collapsed adjacency matrices are 

22 0) o 21 
6 16 

( 

0 0 77) o 21 56 . 
1 16 60 

The orbital graph corresponding to the sub orbit of length 22 is the 
Higman-Sims graph f(HS), which was used by Higman and Sims [HS68] 
to construct their group. The automorphism group of f(HS) is HS: 2. 

4.11.3 rank 4 

(iii) 7r = Xl + X2 + Xi + X7, where i = 5 or 6, of degree 352 = 1 + 22 + 
154 + 175. 

The group G has no maximal subgroup of index 352, and hence H < 
L < G, with m := IG : LI dividing 352. It follows that m = 176 and 
L belongs to one of the two conjugacy classes of subgroups in case (i) 
above. So L ~ U3(5}: 2, and as L has a unique subgroup H ~ U3 (5) 
of index 2, and H is not contained in a subgroup from the other class 
of subgroups of G of index 176, it follows that there are exactly two 
equivalent, but not permutationally isomorphic, representations of G 
of this type, corresponding to the two possibilities for 7r above (these 
two possibilities are interchanged by an outer automorphism of G (see 
ATLAS)). Since the representations of degree 176 are 2-transitive, it 
follows that each of the representations here has rank 4 and sub degrees 
1,1,175,175. 

The collapsed adjacency matrices are 
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U 
0 175 

17~ ) 0 0 
0 102 72 
1 72 102 

U 
0 0 

175 ) 0 175 10~ . 1 72 
0 102 72 

The non-complete distance-regular generalized orbital graphs are 

r{3}, l = {175, 72, 1; 1, 72, 175}, G acts distance-transitively 
r{4}, l = {175, 102, 1; 1, 102, 175}, G acts distance-transitively 
r{3,4} ~ K 176x2 • 

r{3} and r{4} are well-known Taylor graphs, and are described in 
[BCN89, p.370]. 

4.11.4 rank 5 

(iv) 7r = Xl +X2+X3+X7+X13 of degree 1100 = 1+22+77+175+825. 

There is a unique class of maximal subgroups of G of index 1100 with 
associated permutation character 1r. A point stabilizer is H ~ L3(4): 21, 
the stabilizer in G of an unordered edge of the Higman-Sims graph 
r(HS). 

The sub degrees are 1, 42, 105, 280, 672, and the collapsed adjacency 
matrices are 

( l 
42 0 0 

1~ ) 20 5 0 
2 8 0 32 
0 0 18 24 
1 5 10 26 

U 
0 105 0 

8~ ) 
5 20 0 
8 0 64 32 
0 24 9 72 
5 5 30 65 
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o 0 280 
o 0 120 
o 64 24 

18 9 108 
10 30 60 

16~ 1 192 
144 
180 

~~ ~~ :~~ ::~ 1· 
24 72 144 432 
26 65 180 400 

75 

There are no non-complete distance-regular generalized orbital graphs. 

If there were also an imprimitive representation of G with permutation 
character 7f, then we would have H < L < G with m := IG : LI dividing 
1100. Then m = 100 and H would have index 11 in L ~ M22 • However 
there is no such subgroup. 

(v) 7f = Xl +X3+X4+X7+X9 of degree 1100 = 1+77+154+175+693. 

There is a unique class of maximal subgroups of G of index 1100 with 
associated permutation character 7f. A point stabilizer is H ~ S8' 

The sub degrees are 1, 28, 105, 336, 630, and the collapsed adjacency 
matrices are 

28 0 0 
o 15 12 
400 
1 
o 

o 

o 12 
4 8 

o 336 
12 0 144 
o 32 112 

12 35 108 
8 32 96 

2~ 1 15 
16 

18~ 1 192 
180 
200 
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( 

0 0 0 0 630 1 o 0 90 180 360 
o 24 48 192 366 . 
o 15 60 180 375 
1 16 61 200 352 

There are no non-complete distance-regular generalized orbital graphs. 

Arguing as in the previous case, we see that there is no imprimitive 
permutation representation with character 7f. 

4.12 Automorphism group HS:2 of HS 

A presentation for HS: 2 is given in the section for HS. 

4.12.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.12.2 rank 3 

(i) 7f = Xl + X3 + X5 of degree 100 = 1 + 22 + 77. 

There is a unique class of subgroups of G of index 100. A representative 
is a maximal H ~ M 22 : 2, and the associated permutation character is 
7f. The restriction of this representation to H S is the representation in 
case (ii) for HS, and so the collapsed adjacency matrices are the same 
as for that representation. 

4.12.3 rank 4 

(ii) 7f = Xl + X2 + XlO + Xl1 of degree 352 = 1 + 1 + 175 + 175. 

The only subgroups H of G of index 352 are such that H ~ U3(5): 2 and 
H < HS < G. There is only one G-conjugacy class of such subgroups, 
and the associated permutation character is 7f. 

The sub degrees are 1, 50, 126, 175, and the collapsed adjacency matrices 
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are 

U 
50 0 

4~ ) 
0 0 
0 0 50 

14 36 0 

U 
0 126 

12~ ) 0 0 
0 0 125 

36 90 0 

U 
0 0 

17~ ) 49 126 
50 125 o . 
0 0 174 

The non-complete distance-regular generalized orbital graphs are 

r{2}, L = {50, 49, 36; 1, 14, 50}, G acts distance-transitively 
r{3}, L = {126,125,36;1,90,126}, G acts distance-transitively 
r{2, 3} ~ K2X176. 

The graph r {2} is the incidence graph of the famous 2 - (176,50,14) 
design discovered by G. Higman [Hig69], and r{3} is the incidence graph 
of the complement of this design. 

4.12.4 rank 5 

(iii) 1f = Xl +X3+X5+XlO+XI9 of degree 1100 = 1+22+77+175+825. 

There is a unique class of maximal subgroups with associated permuta­
tion character 1f, namely H ~ L3 (4): 22. The restriction of this repre­
sentation to HS is the rank 5 representation in case (iv) for HS. The 
collapsed adjacency matrices are the same as for the representation in 
case (iv) for HS, and there are no associated non-complete distance­
regular graphs. 

If there were also an imprimitive representation with permutation char­
acter 1f, then we would have H < L < G with m := IG : LI dividing 
1100. Then m = 100, and H would have index 11 in L ~ M 22 : 2. No 
such subgroup exists. 
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(iv) 7C' = Xl +X5+X7+XlO+XI4 of degree 1100 = 1+77+154+175+693. 

There is a unique class of maximal subgroups with associated permuta­
tion character 7C', namely H ~ 88 X 2. The restriction of this representa­
tion to H 8 is the rank 5 representation in case (v) for H 8. The collapsed 
adjacency matrices are the same as for the representation in case (v) for 
H 8, and there are no associated non-complete distance-regular graphs. 

Arguing as in the previous case, we see that there is no imprimitive 
representation with permutation character 7C'. 

4.13 The Janko group J3 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 

4.14 Automorphism group J3: 2 of J3 

4.14.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.14.2 rank 3 

(i) 7C' = Xl + X2 + X4 of degree 648 = 1 + 1 + 646 .. 

G has no subgroup of index 648. 

4.14.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.14.4 rank 5 

(ii) 7C' = Xl +X2+X4+X5+X6 of degree 1296 = 1+ 1+646+324+324. 

G has no subgroup of index 1296. 
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4.15 The Mathieu group M24 

A presentation for M24 is 

(a3b5e3d3j6e,a4e3e4j4g4b I a = (ef)2,e = (bg)2,b = (ef)3, 

. 1 = (aeed)4 = (baejg)3 = (beef)4[= (bed)5]) 

(see [Soi85, Soi88]), in which 

M23 ~ (a, b, e, d, e, j), 

M22 : 2 ~ (a, b, e, d, e, g), 

24:As ~ (a,b,e,e,j,g), 

and 

L3(4):83 ~ (a,b,e,abcde,J,eabg). 

Another presentation for M24 is 

(a3b3c10d3e, b4j, d3g I a = (ed)5 = (ede)5, 

j = (edg) 5 ,e = (bef) 3 ,1 = (abf)3) 

(see [Soi85]), in which 

M12 : 2 ~ (a, b, e, d, e, j) > (ab, be, d, e, j) ~ M12 , 
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26 :3'86 ~ (a,e,d,e,j,g,bedegdeb) > (a,c,d,e,j,g,dbcdegdcb) ~ 26 :3'A6 , 

and 

26: (L3(2) x 83 ) ~ (a,b,d,e,j,g, (edg)dcbdcdc). 

4.15.1 rank 2 

(i) 7r = Xl + X2 of degree 24 = 1 + 23. 

This character corresponds to the unique 2-transitive representation of 
G of degree 24. A point stabilizer is H ~ M 23 . 

In the remainder of this section, let X be the set of points, of size 24, in 
this representation. Then G preserves a Steiner system 8(5,8,24) with 
point-set X and block-set 13 consisting of 759 subsets of X of size 8, 
called octads. The octads are the supports of the weight 8 codewords 
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of the binary Golay code C of length 24 (see [CS88, Chapter 11)) whose 
automorphism group is G. The support of a weight 12 codeword in Cis 
called a dodecad, and dodecads come in complementary pairs. 

(ii) 7r = Xl + X7 of degree 253 = 1 + 252. 

There is no subgroup of G of index 253. 

4.15.2 rank 3 

(iii) 7r = Xl + X2 + X7 of degree 276 = 1 + 23 + 252. 

There is a unique class of subgroups of G of index 276. A representative 
is a maximal H ~ M 22 : 2, the stabilizer of an unordered pair of points 
of X, and the sub degrees are 1, 44, 231. The associated permutation 
character is 7r. 

The collapsed adjacency matrices are 

44 0) 
22 21 
4 40 

( 

0 0 231) 
o 21 210 . 
1 40 190 

(iv) 7r = Xl + X7 + Xl4 of degree 1288 = 1 + 252 + 1035. 

There is a unique class of subgroups of G of index 1288. A representative 
is a maximal H ~ M 12 : 2, the stabilizer of a complementary pair of 
dodecads. The associated permutation character is 7r. 

The sub degrees are 1, 495, 792, and the collapsed adjacency matrices 
are 

495 0 ) 
206 288 
180 315 

o 792) 
288 504 . 
315 476 

(v) 7r = Xl + X7 + XIS of degree 2024 = 1 + 252 + 1771. 
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There is a unique class of maximal subgroups of G of index 2024, namely 
H ~ L3(4): 83 . However the permutation character for the permutation 
representation associated with this subgroup H has rank 5. Thus we 
must have H < L < G with IG : LI dividing 2024. However G has 
no proper subgroup of index a proper divisor of 2024, so 71' is not a 
permutation character. 

4.15.3 rank 4 

(vi) 71' = Xl + X2 + X7 + X9 of degree 759 = 1 + 23 + 252 + 483. 

There is a unique class of subgroups of G of index 759. A representative 
is a maximal H ~ 24: As, the stabilizer of an octad in 6. Thus the 
action of G on n is permutationally isomorphic to its action on 6. The 
associated permutation character is 71'. 

The sub degrees are 1, 30, 280, 448, and the collapsed adjacency matrices 
are 

U 
30 0 J) 1 28 
3 3 
0 15 15 

U 
0 280 

22~ ) 28 28 
3 140 136 

15 85 180 

U 
0 0 

448 ) 
0 224 224 

24 136 288 . 

15 180 252 

The only non-complete distance-regular generalized orbital graph is 

r{2}, t = {30, 28, 24; 1,3, 15}, G acts distance-transitively. 

We may take the vertex-set of r{2} to be the set 6 of 759 octads. We 
join two such octads by an edge in r{2} precisely when they are disjoint. 
This graph is described in more detail in [BCN89, p.366] where it is 
called the large Witt graph. 
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(vii) 'It' = Xl + X7 + X9 + Xu of degree 1771 = 1 + 252 + 483 + 1035. 

There is a unique class of subgroups of G of index 1771. A representative 
is a maximal H ~ 26: 3'86, The associated permutation character is 'It'. 

The subdegrees are 1, 90, 240, 1440, and the collapsed adjacency matri­
ces are 

( 

0 0 0 1440) o 48 192 1200 
o 72 192 1176 . 
1 75 196 1168 

There are no non-complete distance-regular generalized orbital graphs. 

(viii) 'It' = Xl + X7 + Xl8 + Xl9 of degree 4048 = 1 + 252 + 1771 + 2024. 

There is no maximal subgroup of G of index 4048, and hence H < L < G 
with m := IG : LI a proper divisor of 4048. It follows that m = 2024 
and H has index 2 in L ~ L3(4): 83 ; however the action of G on the set 
of right cosets of L in G has rank 5, and so the action of G on n has 
rank at least 6, which is a contradiction. 

(ix) 'It' = Xl + X7 + X14 + X25 of degree 7084 = 1 + 252 + 1035 + 5796. 

There is no maximal subgroup of G of index 7084, and hence H < L < G 
with m := IG : LI a proper divisor of 7084. It follows that m = 1771 
and H has index 4 in L ~ 26 :3·S6 • However, the action of G on the 
set of right cosets of L in G is permutationally isomorphic to its rank 4 
action in case (vii) above, and it follows that the action on n has rank 
greater than 4, which is a contradiction. 
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4.15.4 rank 5 

(x) 11" == Xl +X2+X7+X9+XI7, of degree 2024 == 1+23+252+483+1265. 

There is a unique class of subgroups of G of index 2024. A representative 
is a maximal H e:! L3(4): S3, the stabilizer of an unordered triple of 
points of X. The associated permutation character is 11". 

The sub degrees are 1, 63, 210, 630, 1120, and the collapsed adjacency 
matrices are 

( ~~~~4~ o 0 6 9 
o 4 3 40 
o 0 9 9 

( 
o~: ~ 2~~ ~~ 

3 25 54 
9 18 72 

( ~
o~ 0 0 630 

40 30 400 
9 75 162 

40 54 247 
9 72 162 

Jl 16 
45 

16~ 1 96 
128 
111 

16~ 1 384 
288 
387 

( ~~ J 1~~ !~ IE l. 
16 128 288 688 
45 111 387 576 

The only non-complete distance-regular generalized orbital graph is 

r{2} e:! J(24,3), t = {63, 40,19; 1,4, 9}. 

(xi) 11" == Xl + X2 + X7 + Xl4 + X17 of degree 2576 = 1 + 23 + 252 + 
1035 + 1265. 

There is no maximal subgroup of G of index 2576, and hence H < L < G 
with m := IG : LI a proper divisor of 2576. It follows that H has index 
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2 in L ~ M12 : 2, the stabilizer of a complementary pair of dodecads in 
the representation in (iv) above. Therefore H ~ M12 , and the action of 
G on the cosets of H is permutationally isomorphic to the action of G 
on the 2576 dodecads contained in X. 

Two dodecads meet in 12, 0, 4, 8, or 6 points, giving rise to sub orbits 
of H of respective lengths 1, 1, 495, 495, 1584. The collapsed adjacency 
matrices are 

(! 
1 0 0 

I) 
0 0 0 
0 0 1 
0 1 0 
0 0 0 

u 
0 495 0 

28~ ) 0 0 495 
0 22 184 
1 184 22 288 
0 90 90 315 

(! 
0 0 495 

2J) 
0 495 0 
1 184 22 
0 22 184 288 
0 90 90 315 

(! 
0 0 o 1584) 
0 0 o 1584 
0 288 288 1008 . 
0 288 288 1008 
1 315 315 952 

The only non-complete distance-regular generalized orbital graph is 

r{3,4, 5} ~ K1288x2. 

(xii) 7r = Xl + X7 + X9 + Xl4 + Xl8 of degree 3542 = 1 + 252 + 483 + 
1035 + 1771. 

There is no maximal subgroup of G of index 3542, and hence H < L < G 
with m := IG : LI a proper divisor of 3542. It follows that m = 1771, 
and H has index 2 in L ~ 26:3·S6. Thus H ~ 26:3·A6. 
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Direct calculation shows that the action of G on the cosets of H has rank 
5, with subdegrees 1, 1, 180,480,2880, and the associated permutation 
character must be 7r, since 7r is the unique rank 5 pseudo-permutation 
character of G of degree 3542. The collapsed adjacency matrices are 

[1 
1 0 0 

!l 0 0 0 
0 1 0 
0 0 1 
0 0 0 

[l 
0 180 0 

0] 0 180 0 0 
1 34 48 96 
0 18 18 144 
0 6 24 150 

(! 
0 0 480 J] 0 0 480 
0 48 48 
1 18 76 384 
0 24 64 392 

U 
0 0 0 

2800 ] 0 0 0 2880 
0 96 384 2400 . 
0 144 384 2352 
1 150 392 2336 

The only non-complete distance-regular generalized orbital graph is 

r{3, 4, 5} ~ K1771 x2. 

(xiii) 7r = Xl + X7 + X9 + X14 + X19 of degree 3795 = 1 + 252 + 483 + 
1035 + 2024. 

There is a unique class of maximal subgroups of G of index 3795. A 
representative is H ~ 26: (£3(2) x S3). The associated permutation 
character is 7r. 

The subdegrees are 1, 42, 56, 1008, 2688, and the collapsed adjacency 
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matrices are 

U 
42 0 0 

il 
13 4 24 
3 3 36 
1 2 15 
0 0 9 33 

( 1 

0 56 0 

Jl 4 4 48 
3 4 0 
2 0 14 40 
0 1 15 40 

(! 
0 o 1008 

57~ 1 24 48 360 
36 0 252 720 
15 14 258 720 
9 15 270 714 

(! 
0 0 

o 2688 1 0 0 576 2112 
0 48 720 1920 . 

24 40 720 1904 
33 40 714 1900 

There are no non-complete distance-regular generalized orbital graphs. 

If there were also an imprimitive representation of G with permutation 
character IT, then we would have H < L < G with m := IG : LI a 
proper divisor of 3795. Then m = 759 and H has index 5 in L !::! 24: As. 
However L has no subgroup of index 5. 

(xiv) IT = Xl + X7 + Xl4 + Xl9 + X25 of degree 9108 = 1 + 252 + 1035 + 
2024+ 5796. 

There is no maximal subgroup of G of index 9108, and hence H < L < G 
with m := IG : LI a proper divisor of 9108. Then m is either 276 or 759 
and H would have index 33 or 12 in L !::! M22 : 2 or 24: A8 respectively. 
However neither of these subgroups L has a subgroup of the required 
index. Thus IT'is not a permutation character. 
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4.16 The McLaughlin group MeL 

A presentation for MeL is 

(a3b5e3d3J6e,a4e3c4J I a = (cf)2,b = (ef)3, 

1 = (eab)3 = (bce)5[= (bcd)5] = (aecd)4 = (eef)7) 

(see [Soi85, Soi88]), in which 

U4(3) ~ (eef,dfcd), 

M22 ~ (a, b, c, d, e), 

U3(5) ~ (b, (de)cbac, acdcbeaee, (edJbeaeed)3), 

and 

87 

3~+4: 2.85 ~ N( ((cdfbeaecd) 10) ) = (cdfbeaeed, cbadecbcbadceebaecd). 

The short words generating U4 (3) were found by M. Schonert. 

4.16.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.16.2 rank 3 

(i) IT = Xl + X2 + X4 of degree 275 = 1 + 22 + 252. 

There is a unique class of subgroups of G of index 275. A representative 
is a maximal H ~ U4 (3), and the associated permutation character is IT. 

The sub degrees are 1, 112, 162, and the collapsed adjacency matrices 
are 

0 112 0) 
30 81 
56 56 

U o 162) 
81 81 . 
56 105 

The orbital graph corresponding to the suborbit of length 112 is the 
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McLaughlin graph r(MeL) , and McLaughlin [McL69] constructed his 
group G = MeL as a group of automorphisms of this graph. The auto­
morphism group of r(MeL) is Aut (MeL) = MeL: 2. 

4.16.3 rank 4 

(ii) 7r = Xl + X2 + X4 + X9 of degree 2025 = 1 + 22 + 252 + 1750. 

There are just two classes of subgroups of G of index 2025, and these 
are interchanged by an outer automorphism of G. For each class, a 
representative is a maximal H ~ M 22 , and the associated permutation 
character is 7r. 

For each of these two equivalent, but not permutationally isomorphic, 
representations, the subdegrees are 1, 330, 462, 1232, and the collapsed 
adjacency matrices are 

U 
330 0 

16~ ) 7 154 
110 20 200 
45 75 210 

U 
0 ~2 0) 154 28 280 

20 185 256 
75 96 291 

( 0 0 0 1232) o 168 280 784 
o 200 256 776 . 
1 210 291 730 

There are no non-complete distance-regular generalized orbital graphs. 

(iii) 7r = Xl + X2 + X4 + X20 of degree 9900 = 1 + 22 + 252 + 9625. 

There are no maximal subgroups of G of index 9900, and hence H < 
L < G where m := IG : LI divides 9900. Then m = 275, and H has 
index 36 in L ~ M 22 • However there is no such subgroup, and hence 7r 

is not a permutation character. 



4.16 The M eLaughlin group MeL 89 

4.16.4 rank 5 

(iv) 1l' = Xl +X2+X4+X9+X14 of degree 7128 = 1+22+252+1750+ 
5103. 

There is a unique class of subgroups of G of index 7128. A representative 
is a maximal H £;! Ua(5) , and the associated permutation character is 1l'. 

The sub degrees are 1, 252, 750, 2625, 3500, and the collapsed adjacency 
matrices are 

25~ 12~ ~ 12~ 1 
42 0 168 42 
o 48 48 156 
9 9 117 117 

o 750 0 0 1 125 0 500 125 
o 224 77 448 

48 22 376 304 
9 96 228 417 

o 0 2625 
o 500 500 

168 77 1316 
48 376 808 

117 228 1044 

162~ 1 1064 
1392 
1236 

1!~ !:: :~~ ::!: 1 . 
156 304 1392 1648 
117 417 1236 1729 

There are no non-complete distance-regular generalized orbital graphs. 

(v) 1l' = Xl + X4 + X12 + X14 + X15 of degree 15400 = 1 + 252 + 4500 + 
5103+ 5544. 

There are two conjugacy classes of maximal subgroups of G of index 
15400, with representatives 34 : MlO and N(3A) £;! 3~+4: 2.S5' 

Suppose H £;! 34 : MlO. Then H is the stabilizer in MeL of an unordered 
edge of the McLaughlin graph r = r( M cL) defined in (i) above (G is 
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transitive on the edges of r). It is easy to show that there are more than 
five isomorphism types of subgraphs of r induced on the unions of (not 
necessarily distinct) pairs of unordered edges, and so the rank of G on 
the cosets of H is greater than 5. In fact, direct calculation shows this 
rank to be 10. 

Now suppose H ~ 3~+4: 2.85 , Then H is the normalizer of a 3A sub­
group of order 3, and is also the stabilizer in M cL of a 5-clique of 
r(McL). 

Direct calculation shows that G has rank 5, and so the associated per­
mutation character must be 7r, the unique rank 5 pseudo-permutation 
character of G of degree 15400. The subdegrees are 1, 90, 1215, 2430, 
11664, and the collapsed adjacency matrices are 

cwo 0 

J) 1 8 54 27 
o 4 32 6 
o 1 3 14 72 
o 0 5 15 70 

U 
0 1215 0 

M~ ) 
54 432 81 
32 246 168 768 
3 84 192 936 
5 80 195 935 

U 
0 0 2430 

19~ ) 27 81 378 
6 168 384 1872 

14 192 351 1872 
15 195 390 1830 

(! o 0 0 11664) o 648 1944 9072 
48 768 1872 8976 . 
72 936 1872 8784 
70 935 1830 8828 

There are no non-complete distance-regular generalized orbital graphs. 

If there were an imprimitive representation of G with permutation char­
acter 7r, we would have H < L < G with m := IG : LI dividing 15400. 
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Then m = 275 and H would have index 56 in L ~ U4(3). However L 
has no such subgroup. 

4.17 Automorphism group MeL: 2 of MeL 

We do not give a presentation for MeL: 2. All faithful permutation repre­
sentations of rank at most 5 for MeL: 2 are extensions ofrepresentations 
of the same rank for MeL. 

4.17.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.17.2 rank 3 

(i) 7r = Xl + X3 + X7 of degree 275 = 1 + 22 + 252. 

There is a unique class of subgroups of G of index 275. A representative 
is a maximal H ~ U4 (3): 23, and the associated permutation character is 
7r. The restriction of this representation to MeL is the representation in 
case (i) for MeL, and so the collapsed adjacency matrices are the same 
as for that representation. 

4.17.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.17.4 rank 5 

(ii) 7r = Xl + X4 + X7 + Xl4 + X24 of degree 7128 = 1 + 22 + 252 + 
1750+ 5103. 

There is a unique class of subgroups of G of index 7128. A representative 
is a maximal H ~ U3 (5): 2, and the associated permutation character is 
7r. The restriction of this representation to MeL is the representation in 
case (iv) for MeL, and so the collapsed adjacency matrices are the same 
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as for that representation. There are no non-complete distance-regular 
generalized orbital graphs. 

(iii) 7r = Xl + X7 + X20 + X24 + X26 of degree 15400 = 1 + 252 + 4500 + 
5103+ 5544. 

There are just two conjugacy classes of maximal subgroups of G of index 
15400, with representatives 34 : (MlO x 2) and N(3A) ~ 3~+4: 4.S5. 

Arguing as in case (v) for MeL, we see that there is exactly one conju­
gacy class of maximal subgroups of MeL: 2 of index 15400 with associ­
ated permutation character 7r. A representative is H ~ 3~+4: 4.S5 , and 
the restriction to MeL is the rank 5 representation of case (v) of MeL. 
Thus the collapsed adjacency matrices are the same as for that rep­
resentation, and there are no associated non-complete distance-regular 
graphs. 

If there were an imprimitive representation of G with permutation char­
acter 7r, we would have H < L < G with m := IG : LI dividing 15400. 
Then m = 275 and H has index 56 in L ~ U4 (3): 23. However L has no 
such subgroup. 

4.18 The Held group He 

A presentation for He is 

{a4b3c10d3e,d3j4g3dl e = (fg)2 = (abe)3,a = (ed)5,1 = (edjg)4) 

(see [Soi91], where also words for generators of many maximal subgroups 
are given). In this He, we have 

S4(4): 2 ~ {a, e, d, e, j, (ab)2, (bede)7). 

A presentation for He: 2 is obtained from this presentation for He by 
adjoining a generator t, and the relations 

1 = t 2 = (at)2 = (bt)2 = (et)2 = (dt)2 = (et)2 = jtg. 

In this He: 2, we have 

S4(4): 4 ~ {a, e,d, e, j, (ab)2, (bedet, bededgjdebdjt). 

4.18.1 rank 2 

G has no pseudo-permutation character of rank 2. 
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4.18.2 rank 3 

G has no pseudo-permutation character of rank 3. 

4.18.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.18.4 rank 5 

(i) 1r::::: Xl +X2+X3+X6+X9 of degree 2058 = 1+51+51+680+1275. 

There is a unique class of subgroups of G of index 2058. A representative 
is a maximal H ~ 84(4): 2, and the associated permutation character is 
1r. 

The sub degrees are 1, 136, 136,425, 1360, and the collapsed adjacency 
matrices are 

136 

~ 1O~) o 0 75 60 
24 0 16 96 
6 10 30 90 

o 
o 36 

o 0 0 
60 100 300 

100 60 300 
96 96 256 
90 90 285 

0) 60 
100 
96 
90 

1360 ) 900 
900 . 
912 
894 
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There are no non-complete distance-regular generalized orbital graphs. 

4.19 Automorphism group He: 2 of He 

A presentation for He: 2 is given in the section for He. 

4.19.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.19.2 rank 3 

G has no pseudo-permutation character of rank 3. 

4.19.3 rank 4 

(i) 7r = Xl + Xa + XS + X9 of degree 2058 = 1 + 102 + 680 + 1275. 

There is a unique class of subgroups of G of index 2058. A representative 
is a maximal H ~ 84 (4): 4. The restriction of this representation to He is 
the rank 5 representation of case (i) for He. Hence G has rank 4 or 5 on 
O. However, since (see the next subsection) G has no rank 5 permutation 
character, it follows that G has rank 4, permutation character 7r, and 
sub degrees 1, 272, 425, 1360. 

The collapsed adjacency matrices are 

U 
272 0 

1~ ) 36 75 
48 32 192 
32 60 180 

U 
o 425 

3~ ) 75 50 
32 136 256 
60 80 285 
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( 

0 0 0 1360) o 160 300 900 
o 192 256 912 . 
1 180 285 894 

There are no non-complete distance-regular generalized orbital graphs. 

4.19.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.20 The Rudvalis group Ru 

In [Wei91]' R. Weiss gives a presentation for G = Ru, and he also gives 
words generating a subgroup 2 F4(2)' and words generating 2 F4(2). His 
presentation is derived in order to classify a certain geometry for G. We 
remark that permutations of degree 4060 generating G are available in 
the MAGMA system [CP95]. 

4.20.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.20.2 rank 3 

(i) 1r = Xl + X5 + X6 of degree 4060 = 1 + 783 + 3276. 

There is a unique class of subgroups of G of index 4060. A representative 
is a maximal H ~ 2 F4(2), and the associated permutation character is 
1r. 

The subdegrees are 1, 1755, 2304, and the collapsed adjacency matrices 
are 

1755 0 ) 
730 1024 
780 975 
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o 2304) 
1024 1280 . 
975 1328 

4.20.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.20.4 rank 5 

(ii) 1r = Xl + X4 + X5 +X6 +X7 of degree 8120 = 1 +406+ 783+3276+ 
3654. 

There is no maximal subgroup of index 8120, and hence H < L < G 
with m := IG : LI dividing 8120. It follows that m = 4060 and H has 
index 2 in L ~ 2 F4(2). Hence H ~ 2 F4(2)'. Thus G preserves a block 
system E consisting of 4060 blocks of size 2, and the action of G on E 
is permutationally isomorphic to the rank 3 representation in (i) above 
with sub degrees 1, 1755, 2304. Let B be the block of E containing a. 
Then H fixes both points of B, and (by the ATLAS, p.74) H is transitive 
on the two L-orbits, El and E2 , in E \ {B} of lengths 1755 and 2304 
respectively. Let Bi E Ei for i = 1,2. Then HB! ~ 2.[28]: 5: 4 and 
HB2 ~ L2 (25) (by the ATLAS, p.74). Since HB2 is the unique subgroup 
of LB2 of index 2, it follows that HB2 fixes B2 pointwise. Hence H has 
two orbits of length 2304 on the points of n in blocks of E2 • Now H must 
either be transitive on the 3510 points of n in blocks of E l , or have two 
orbits of length 1755 on this set. Thus G has rank 5 or 6. Suppose that 
G has rank 6. Then G must have a permutation character 1r' of rank 
6, degree 8120, which contains the character of case (i), such that the 
difference between 1r' and this character is the sum of three nontrivial 
irreducible characters. By the ATLAS, p.127, this difference would have 
to be Xi + X4 + X6, where i = 2 or i = 3. However, in this case X6 would 
have multiplicity 2 in 1r' which would force G to have rank 8, which is 
a contradiction. Hence G has rank 5, sub degrees 1, 1, 2304, 2304, 3510, 
and associated permutation character 1r. 



4.21 The Suzuki group Suz 

The collapsed adjacency matrices are 

[0 1 0 0 

1] 
100 0 
000 1 
001 0 
000 0 

u 
0 2304 0 

0] 0 0 2304 0 
0 728 600 975 
1 600 728 975 
0 640 640 1024 

U 
0 0 2304 

0] 0 2304 0 0 
1 600 728 975 
0 728 600 975 
0 640 640 1024 

[ 1 
0 0 0 3510 ] 0 0 0 3510 
0 975 975 1560 . 
0 975 975 1560 
1 1024 1024 1460 

The only non-complete distance-regular generalized orbital graph is 

r{3,4,5} S::! K4060X2' 

4.21 The Suzuki group Suz 

A presentation for Suz is 

(a5b3c8d3e,b3J4g3b I a = {cd)4 = (fg)2, 

1 = (abcJ)5[= (abcg)5] = (bJg)5 = ((bcdcd)5 e)3) 

(see [Soi85]), in which 

G2 (4) S::! (a, b, c, d, e, J), 

97 
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and 

A presentation for Suz: 2 is obtained from this presentation for Suz by 
adjoining a generator t, and the relations 

Note that t normalizes (a, b, c, d, j, g). 

4.21.1 rank 2 

There are no pseudo-permutation characters of rank 2 for G. 

4.21.2 rank 3 

(i) 'fr = Xl + X4 + X5 of degree 1782 = 1 + 780 + 100l. 

There is a unique class of subgroups of G of index 1782. A representative 
is a maximal H :::! G2 ( 4), and the associated permutation character is 
'fr. 

The subdegrees are 1, 416, 1365, and the collapsed adjacency matrices 
are 

( 
0

01 416 ° ) 
100 315 
96 320 

( 
° 0 1365) ° 315 1050 . 
1 320 1044 

The orbital graph corresponding to the sub orbit of length 416 is the 
Suzuki graph r(Suz), which was used by Suzuki [Suz69j in the construc­
tion of his sporadic simple group. The automorphism group of r(Suz) 
is Aut (Suz) = Suz: 2. 

4.21.3 rank 4 

There are no pseudo-permutation characters of rank 4 for G. 
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4.21.4 rank 5 

(ii) 7r = Xl + X2 + X4 + X6 + X9 of degree 10296 = 1 + 143 + 780 + 
3432+ 5940. 

G has no subgroup of index 10296, and hence 7r is not a permutation 
character. 

(iii) 7r = Xl + X3 + X4 + X9 + X15 of degree 22880 = 1 + 364 + 780 + 
5940 + 15795. 

There is a unique class of subgroups of G of index 22880. A represen­
tative is a maximal H ~ 32'U4(3): 2, and the associated permutation 
character is 7r. 

The subdegrees are 1, 280,486,8505, 13608, and the collapsed adjacency 
matrices are 

U 
280 0 0 

2~ 1 36 0 243 
0 0 0 
8 0 128 144 
0 10 90 180 

II 
0 486 0 

~~l 0 0 0 
0 58 315 112 
0 18 180 288 

10 4 180 292 

[1 
0 0 8505 

~7~ 1 243 0 3888 
0 315 3150 5040 

128 180 3300 4896 
90 180 3060 5175 

[! o 0 0 13608 1 
o 486 4374 8748 

280 112 5040 8176 . 
144 288 4896 8280 
180 292 5175 7960 

The only non-complete distance-regular generalized orbital graph is 

r{2}, t = {280, 243, 144, 10; 1,8,90, 280}, G acts distance-transitively. 
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We may take the vertex-set of r{2} to be the conjugacy class in Suz 
of 3A-generated subgroups of order 3. Then vertices A, B are joined by 
an edge in r {2} if and only if (A, B) ~ 32. This graph is known as the 
Patterson graph, and is described in more detail in [BCN89, pp.410-
412]. 

4.22 Automorphism group Suz: 2 of Suz 

A presentation for Suz: 2 is given in the section for Suz. 

4.22.1 rank 2 

There are no faithful pseudo-permutation characters of rank 2 for G. 

4.22.2 rank 3 

(i) 'Tr = Xl + X7 + X9 of degree 1782 = 1 + 780 + 1001. 

There is a unique class of subgroups of G of index 1782. A representative 
is a maximal H ~ G2 (4): 2, and the associated permutation character is 
'Tr. The restriction of this representation to Suz is the representation in 
case (i) for Suz, and so the collapsed adjacency matrices are the same 
as for that representation. 

4.22.3 rank 4 

There are no pseudo-permutation characters of rank 4 for G. 

4.22.4 rank 5 

(ii) 'Tr = Xl + XS + X7 + X14 + X23 of degree 22880 = 1 + 364 + 780 + 
5940 + 15795. 

There is a unique class of subgroups of G of index 22880. A representa­
tive is a maximal H ~ 32·U4(3): (22h33, and the associated permutation 
character is 'Tr. The restriction of this representation to Suz is the repre­
sentation in case (iii) for Suz, and so the collapsed adjacency matrices 
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and associated non-complete distance-regular graph (on which G acts 
distance-transitively) are the same as for that representation. 

4.23 The Q'Nan group O'N 

In [Soi90j, the following presentation is deduced for the O'Nan group 
O'N: 

(g,a3b3c8d3e3f I af = g2 = (Cd)4, 1 = ccdgdg = ddcgcg , 

1 = (bcdg)5 = gbgClgC = gegdgegd). 

Note that this presentation contains no Coxeter graph relations at all 
for the generator g, which has order 4. In this 0 'N, we have 

L3(7): 2 ~ (a, b, c, d, e, f). 

Words generating certain other subgroups are given in [Soi90). 

4.23.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.23.2 rank 3 

G has no pseudo-permutation character of rank 3. 

4.23.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.23.4 rank 5 

(i) 7r = Xl + X2 + X7 + Xi + Xl1 of degree 122760 = 1 + 10944 + 26752 + 
32395 + 52668, where i = 8 or 9. 

An examination of the table of maximal subgroups of G shows that H 
lies in one of the two classes of maximal subgroups of index 122760, 
and H ~ L3(7): 2. These classes correspond to the two possibilities 
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for 7r above, and are interchanged by an outer automorphism of G (see 
ATLAS). 

For each of these two equivalent, but not permutationally isomorphic, 
representations, the subdegrees are 1, 5586,6384,52136,58653, and the 
collapsed adjacency matrices are 

(l 
5586 0 0 

254~ 1 364 216 2464 
189 301 2303 2793 
264 282 2394 2646 
242 304 2352 2688 

U 
0 6384 0 

319~ 1 216 344 2632 
301 349 2793 2940 
282 342 2736 3024 
304 320 2688 3072 

(1 
0 0 52136 

2469~ 1 2464 2632 22344 
2303 2793 22344 24696 
2394 2736 22057 24948 
2352 2688 22176 24920 

(! 
0 0 0 

58653 1 2541 3192 24696 28224 
2793 2940 24696 28224 . 
2646 3024 24948 28035 
2688 3072 24920 27972 

The non-complete distance-regular generalized orbital graphs are 

r{2, 3}, ~ = {11970, 10829; 1, 1170} (and complement). 

We believe these distance-regular graphs are new. Let r = r{2,3}. 
We have 0 'N acting vertex-primitively on r. From [LPS90, Chap­
ter 9, Tables I-VI], we deduce that soc(Aut (r)) ~ 0 'N. Since a per­
mutation representation of degree 122760 for 0 'N does not extend to 
Aut (0 'N) = 0 'N: 2, it follows that Aut (r) ~ 0 'N. 
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4.24 Automorphism group 0 'N: 2 of 0 'N 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 

4.25 The Conway group C03 

A presentation for C 03 is 

(b4h3a3b5c3d3j4c3e4a,e6j6h I a = (ef)2,b = (ef)3, 

(see [Soi85, Soi88]), in which 

MeL: 2 ~ (a,b,e,d,e,j,hjdeeebahjeedjehjh) > (a,b,e,d,e,j) ~ MeL, 

and 

HS ~ (a,b,e,d,e,h). 

We record here that 

and M 23 ~ (a, b, e, d, e, (Jeadjehjhejdye f ) (rank 8). 

4.25.1 rank 2 

(i) 7r = Xl + XS of degree 276 = 1 + 275. 

This character corresponds to the unique 2-transitive representation of 
G. A point stabilizer is H ~ MeL: 2. 

4.25.2 rank 3 

There are no pseudo-permutation characters of rank 3 for G. 
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4.25.3 rank 4 

(ii) 7r = Xl + X2 + X4 + X5 of degree 552 = 1 + 23 + 253 + 275. 

The group G has no maximal subgroup of index 552, and hence H < 
L < G with m := IG : LI dividing 552. Then m = 276 and H has 
index 2 in L ~ M cL: 2. Hence H ~ M cL. Thus G preserves a block 
system E consisting of 276 blocks of size 2, and the action of G on E 
is permutationally isomorphic to the 2-transitive representation in (i) 
above. Let B be the block of E containing a. Then H fixes both points 
of B, and by the ATLAS, p.100, H is transitive on E \ {B}. Thus G 
has rank 3 or 4 on n, and, as G has no rank 3 permutation characters, 
it follows that G has rank 4, sub degrees 1, 1, 275, 275, and associated 
permutation character 7r. 

The collapsed adjacency matrices are 

u 0 275 

27~ ) 0 0 
0 162 112 
1 112 162 

COO 275) o 0 275 0 
o 1 112 162 . 
1 0 162 112 

The non-complete distance-regular generalized orbital graphs are 

r{3}, L = {275, 112, 1; 1, 112, 275}, G acts distance-transitively 
r{4}, L = {275, 162, 1; 1, 162, 275}, G acts distance-transitively 
r{3, 4} ~ K276x2. 

r{3} and r{4} are well-known Taylor graphs, and are described in 
[BCN89, p.373]. 
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4.25.4 rank 5 

(iii) 7r = Xl + X2 + X5 + X9 + Xl5 of degree 11178 = 1 + 23 + 275 + 
2024 + 8855. 

There is a unique class of subgroups of G of index 11178. A representa­
tive is a maximal H ~ HS. 

Direct calculation shows that G acting on the cosets of H has rank 5, and 
so must have permutation character 11", the unique pseudo-permutation 
character of G of rank 5. The subdegrees are 1, 352, 1100,4125, 5600, 
and the collapsed adjacency matrices are 

(! 
352 0 0 

17~ ) 
1 175 0 

56 0 240 56 
0 64 64 224 

11 11 165 165 

U 
0 1100 0 

17~ ) 
175 0 750 

0 322 105 672 
64 28 560 448 
11 132 330 627 

(! 
0 0 4125 

262~ ) 0 750 750 
240 105 2100 1680 
64 560 1260 2240 

165 330 1650 1980 

( 0 0 0 0 5600) o 175 175 2625 2625 
o 56 672 1680 3192 . 
o 224 448 2240 2688 
1 165 627 1980 2827 

There are no non-complete distance-regular generalized orbital graphs. 
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4.26 The Conway group CO2 

A presentation for CO2 is 

(a3b5c3d3J6e, a4e3c4J4g4b I a = (cf)2, e = (bg)2, b = (ef)3, 

1 = (aecd)4 = (baeJg)3 = (ceJn 

(see [Soi85, Soi88]), in which 

and 

U6 (2):2 c:: (g,ceJ,dcJd,deaeJecdJgJdecdJgbJcde) 

> (g, ceJ, dcJd) ~ U6(2), 

21+8: 36 (2) ~ (a, b, d, e, J, g, (gJdc)\ (abcdeJg)5). 

The short words generating U6(2) were found by M. SchOnert. 

We record here that MeL ~ (a,b,c,d,e,f) (rank 6), and H3:2 c:: 

(a, b, c, d, J, (adecgbcdeabc)bce) (rank 7). 

4.26.1 rank 2 

There are no pseudo-permutation characters of rank 2 for G. 

4.26.2 rank 3 

(i) 7r = Xl + X4 + X6 of degree 2300 = 1 + 275 + 2024. 

There is a unique class of subgroups of G of index 2300. A representative 
is a maximal H ~ U6 (2): 2, and the associated permutation character is 
7r. 

The sub degrees are 1, 891, 1408, and the collapsed adjacency matrices 
are 

( 
o~ 891 0 ) 

378 512 
324 567 

( 

0 0 1408) 
o 512 896 . 
1 567 840 
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4.26.3 rank 4 

There are no pseudo-permutation characters of rank 4 for G. 

4.26.4 rank 5 

(ii) 1f = Xl +X2+X4+X6+X7 of degree 4600 = 1+23+275+2024+2277. 

The group G has no maximal subgroups of index 4600, and hence H < 
L < G with m := IG : LI dividing 4600. Then m = 2300 and H has 
index 2 in L ~ U6 (2): 2. Hence H ~ U6 (2). Thus G preserves a block 
system E consisting of 2300 blocks of size 2, and the action of G on E 
is permutation ally isomorphic to the rank 3 representation in (i) above 
with sub degrees 1, 891, 1408. Let E l , E2 denote the orbits of L on E 
of lengths 891, 1408 respectively. Let BEE be the block containing ct, 

and let B' EEl. Since IL : HI = 2 is prime to 891, H is transitive on El 
and so LB, is transitive on B. By the ATLAS, p.1l5, LB' ~ 29: L3(4): 2, 
which has a unique subgroup of index 2, namely HB' ~ 29: L3(4). Hence, 
since HB' has no subgroup of index 2, HB' fixes B' pointwise, and so H 
has two orbits of length 891 on the points of n in the blocks of E l . 

Now by the ATLAS, p.1l5, L has a unique class of subgroups of index 
1408, so for B" E E2 , LBII ~ U4 (3).22 • As H ~ U6 (2) has no subgroup 
ofindex 704, H is transitive on E2 and HB" ~ U4(3): 2. Thus H is either 
transitive on the 2816 points of n contained in E2 , or has two orbits of 
length 1408 in this set of points. Suppose the latter is true. Then the 
representation of G on the cosets of H has rank 6, and is imprimitive with 
2300 blocks of size 2; the permutation character 1f' for the action of G on 
the cosets of H must contain the character corresponding to the action 
of G on this system of imprimitivity, that is, 1f' contains XI + X4 + X6, 
and there are three other irreducible characters of G whose degrees sum 
to 2300. Checking the character table for G in the ATLAS shows that 
this is not possible. Hence H is transitive on these 2816 points, G has 
rank 5, and the subdegrees are 1, 1, 891, 891, 2816. 

Thus we have described, up to permutational isomorphism, a unique im­
primitive rank 5 representation of G. The collapsed adjacency matrices 
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are 

(l 
1 0 0 

1) 
0 0 0 
0 0 1 
0 1 0 
0 0 0 

(l 
0 891 0 

51~ ) 0 0 891 
0 336 42 
1 42 336 512 
0 162 162 567 

(! 
0 0 891 

51~ ) 0 891 0 
1 42 336 
0 336 42 512 
0 162 162 567 

(0 0 0 o ~16) o 0 0 o 2816 
o 0 512 512 1792 . 
o 0 512 512 1792 
1 1 567 567 1680 

The only non-complete distance-regular generalized orbital graph is 

r{3, 4, 5} 9:! K230ox2. 

(iii) 7r = Xl + X4 + X6 + Xl4 + Xl7 of degree 46575 = 1 + 275 + 2024 + 
12650 + 31625. 

There is a unique class of subgroups of G of index 46575. A representa­
tive is a maximal H 9:! 210: M22 : 2. 

Direct calculation shows that G acting on the cosets of H has rank 5, 
and so must have permutation character 7r, the unique rank 5 pseudo­
permutation character of G of degree 46575. The sub degrees are 1, 462, 
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2464, 21120, 22528, and the collapsed adjacency matrices are 

[! 
462 0 0 

19~ 1 61 80 320 
15 15 240 
7 28 203 224 
0 21 210 231 

n 
0 2464 0 

1O~ 1 80 80 1280 
15 496 480 1472 
28 56 1260 1120 
21 161 1050 1232 

U 
0 0 21120 

1024~ 1 320 1280 9280 
240 480 10800 9600 
203 1260 9352 10304 
210 1050 9660 10200 

[! 
0 0 0 

22528 1 0 1024 10240 11264 
192 1472 9600 11264 . 
224 1120 10304 10880 
231 1232 10200 10864 

There are no non-complete distance-regular generalized orbital graphs. 

(iv) 'If' = Xl + X4 + X6 + Xl5 + Xl7 of degree 56925 = 1 + 275 + 2024 + 
23000 + 31625. 

There is a unique class of subgroups of G of index 56925. A representa­
tive is a maximal H ~ 2~+8: S6(2). 

Direct calculation shows that G acting on the cosets of H has rank 5, 
and so must have permutation character 'If', the unique rank 5 pseudo­
permutation character of G of degree 56925. The sub degrees are 1, 1008, 
1260, 14336,40320, and the collapsed adjacency matrices are 

100~ 13~ 51~ 36~ 1 
108 36 0 864 
36 0 162 810 
9 27 288 684 
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U 
0 1260 0 

108~ 1 135 45 0 
36 135 512 576 
0 45 405 810 

27 18 288 927 

U 
0 0 14336 

1152~ 1 512 0 2304 
0 512 4608 9216 

162 405 4048 9720 
288 288 3456 10304 

( ! 
0 0 0 

40320 1 360 1080 11520 27360 
864 576 9216 29664 . 
810 810 9720 28980 
684 927 10304 28404 

The non-complete distance-regular generalized orbital graphs are 

r{2,3}, t = {2268, 1952; 1,81} (and complement). 

We believe these distance-regular graphs are new. Let r = r {2, 3}. 
We may take the vertex-set of r to be the conjugacy class 2A of Co2 . 

Then structure constant calculations (see [Wil86]) show that, in r, two 
vertices x, yare joined by an edge if and only if xy has order 2. We have 
CO2 acting vertex-primitively on r. From [LPS90, Chapter 9, Tables 1-
VI], we deduce that soc(Aut (r)) e:: Co2 , Since CO2 has a trivial outer 
automorphism group, it follows that Aut (r) ~ Co2 , 

4.27 The Fischer group Fi22 

A presentation for Fi22 is 

(a3b3c3d3e3J3g, d3h3i 11 = (dcbdeJdhi)10 = (abcdeJh)9 = (bcdeJgh)9) 

(this is Y332/Z(Y332); see [CNS88]), in which 

2'U6 (2) ~ (a,c,d,e,J,g,h,i,(abcdeh)5), 

and 

0 7 (3) ~ (b,c,d,e,J,g,h,i). 



4.27 The Fischer group Fi22 111 

We record here that 

210: M22 ~ (a, c, e, g, h, bacb, deed, jegj, dchd, dehd, (cdehi)4) (rank 8), 

and 26:86(2) ~ (a,b,c,d,e,j,g,h) (rank 10). 

A presentation for Fi22 : 2 can be obtained from that of Fi22 by adjoining 
the generator t, and the relations 

1 = t2 = atg = btj = cte = (dt)2 = (ht)2 = (it)2. 

In this Fi22 : 2, we have that 

Ot(2):83 x 2 ~ C(t) = (d,h,i,ag,bj,ce,t). 

4.27.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.27.2 rank 3 

(i) 1r = Xl + X3 + X7 of degree 3510 = 1 + 429 + 3080. 

An examination of the table of maximal subgroups of G shows that H 
is maximal in G and H ~ 2·U6 (2). The sub degrees are 1, 693, 2816, and 
the collapsed adjacency matrices are 

693 0 ) 
180 512 
126 567 

( 

0 0 2816) 
o 512 2304 . 
1 567 2248 

The vertex-set of these orbital graphs may be taken to be the class of 
3-transpositions of G (that is, a conjugacy class D of involutions of G, 
such that, for all d,e E D, de has order 1,2, or 3). For the first orbital 
graph we join d, e exactly when de has order 2 (equivalently d ¥ e and 
d, e commute), and for the second graph we join d, e exactly when de 
has order 3. These graphs were originally studied by Fischer [Fis69]. 

(ii) 1r = Xl + X3 + X9 of degree 14080 = 1 + 429 + 13650. 
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An examination of the table of maximal subgroups of G shows that H lies 
in one of two classes of maximal subgroups of index 14080, H ~ 0 7 (3). 
These representations are interchanged by an outer automorphism of G. 

Thus we liave described two equivalent, but not permutationally isomor­
phic, primitive rank 3 representations of G. The subdegrees are 1, 3159, 
10920, and the collapsed adjacency matrices are 

3159 0 ) 
918 2240 
648 2511 

( 

0 0 10920) 
o 2240 8680 . 
1 2511 8408 

Remark The group Aut (G) = G: 2 acts with permutation rank 6 
on the cosets of H < G. This imprimitive representation has subde­
grees 1,364,1080,3159,10920,12636, and the generalized orbital digraph 
r{2,3} for this representation is distance-regular, with intersection ar­
ray {1444, 1443, 1296; 1, 148, 1444}. This graph is the incidence graph of 
a square 2 - (20160,1444,148) design, on which Fi22 acts as a group 
of automorphisms. We have been informed by P.J. Cameron that this 
design for Fi22 was first discovered by A. Rudvalis in the early 1970s. 

4.27.3 rank 4 

(iii) 7r = Xl + X3 + X7 + X9 of degree 17160 == 1 + 429 + 3080 + 13650. 

G has no subgroup of index 17160. 

(iv) 7r = Xl +X7+X9+XI3 of degree 61776 = 1 +3080+ 13650+45045. 

An examination of the indices of maximal subgroups of G shows that 
H is maximal in G and H ~ Ot(2): S3' The subdegrees are 1, 1575, 
22400,37800 and the collapsed adjacency matrices are 

1575 
198 
36 
36 

51~ 86~) 
567 972 
576 963 
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U 
0 22400 

138~ ) 512 8064 
567 8224 13608 
576 8064 13760 

U 
0 0 37800) 864 13824 23112 

972 13608 23220 . 
963 13760 23076 

The non-complete distance-regular generalized orbital graphs are 

r{2}, t= {1575, 1376; 1,36} (and complement) 
r{3}, t = {22400,14175;1,8064} (and complement). 

We believe these distance-regular graphs are new. The vertex-sets of 
r{2} and r{3} may be taken to be the conjugacy class 2D of Fi22: 2. 
Then structure constant calculations (see [Wil86]) show that vertices 
x, yare joined by an edge in r{2} (respectively r{3}) if and only if xy 
has order 2 (respectively 3). Let r = r{2} or r{3}. Then we have Fi22 
acting vertex-primitively on r. From [LPS90, Chapter 9, Tables I-VI], 
we deduce that soc(Aut (r)) ~ Fi22' Since the permutation representa­
tion in the present case extends to a representation of the same rank for 
Aut (Fi22 ) = Fi22: 2, it follows that Aut er) ~ Fh2: 2. 

4.27.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.28 Automorphism group Fi22: 2 of Fi22 

A presentation for Fi22 : 2 is given in the section for Fi22 . 

4.28.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 
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4.28.2 rank 3 

(i) 7r = Xl + X5 + X13 of degree 3510 = 1 + 429 + 3080. 

There is a unique class of subgroups of G of index 3510. A representative 
is a maximal H ~ 2·U6 (2).2, and the associated permutation character 
is 7r. The restriction of this representation to Fi22 is the representation 
in case (i) for Fi22 , and so the collapsed adjacency matrices are the same 
as for that representation. 

4.28.3 rank 4 

(ii) 7r = Xl +X13+X17+X25 of degree 61776 = 1+3080+13650+45045. 

There is a unique class of subgroups of G of index 61776. A represen­
tative is a maximal H ~ Ot(2): S3 x 2, and the associated permutation 
character is 7r. The restriction of this representation to Fi22 is the repre­
sentation in case (iv) for Fi22 , and so the collapsed adjacency matrices 
and associated distance-regular graphs are the same as for that repre­
sentation. 

4.28.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.29 The Harada-Norton group HN 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 

4.30 Automorphism group HN:2 of HN 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 
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4.31 The Lyons group Ly 
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C.C. Sims derived a presentation for the Lyons group Ly, as part of 
his proof of the existence and uniqueness of this group (see [Sim73]). 
The usefulness of the presentation as given in [Sim73] depends on an 
unpublished presentation of G2 (5), which now appears in [JW96]. 

4.31.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.31.2 rank 3 

G has no pseudo-permutation character of rank 3. 

4.31.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.31.4 rank 5 

(i) 1T = Xl + X4 + Xu + X12 + X14 of degree 8835156 = 1 + 45694 + 
1534500 + 3028266 + 4226695. 

An examination of the table of maximal subgroups of G shows that H 
is maximal in G, and H e:! G2(5). The subdegrees are 

1,19530,968750,2034375,5812500. 

W.M. Kantor [Kan81] gives the collapsed adjacency matrix A for the or­
bital digraph corresponding to the suborbit of length 19530. The matrix 
A has distinct eigenvalues, allowing the collapsed adjacency matrices for 
the other orbital digraphs of this multiplicity-free representation to be 
determined from A (this uses some basic theory of Bose-Mesner alge­
bras; see [BCN89, pp. 43-46]). This was done by n.v. Pasechnik, using 
a Maple program he wrote for this purpose. 
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The collapsed adjacency matrices are 

o 
154 3125 

( 
0:

00 19530 

63 2520 
36 2190 
42 2058 

o 01 3750 12500 
4599 12348 
4584 12720 
4452 12978 

( 

0 0 968750 0 0 1 
00: 3125 125000 228125 612500 

2520 114013 225372 626844 
2190 107320 223080 636160 
2058 104474 222656 639562 

( ::

0 0 0 2034375 
3750 228125 477500 
4599 225372 468468 
4584 223080 468670 
4452 222656 468314 

132500~ 1 
1335936 
1338040 
1338953 

U 
o 5812500 1 

12500 612500 1325000 3862500 
12348 626844 1335936 3837372 . 
12720 636160 1338040 3825580 
12978 639562 1338953 3821006 

o o 

There are no non-complete distance-regular generalized orbital graphs. 

(ii) 1r = Xl + X4 + Xu + Xl2 + Xl5 of degree 9606125 = 1 + 45694 + 
1534500 + 3028266 + 4997664. 

An examination of the table of maximal subgroups of G shows that H 
is maximal in G, and H ~ 3·MeL: 2. The subdegrees are 

1,15400,534600,1871100,7185024. 

Cooperman, Finkelstein, York and Tselman [CFYT94] have constructed 
this permutation representation, using a ll1-dimensional GF(5) ma­
trix representation for Ly constructed by Meyer, Neutsch and Parker 
[MNP85] (see also [GoI95]). We used this explicit permutation represen­
tation to construct the collapsed adjacency matrices below on an IBM 
RS/6000 of the Institute for Experimental Mathematics, University of 
Essen. 
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The collapsed adjacency matrices are 

(1 
15400 0 0 

llM~) 90 1215 2430 
35 560 3045 11760 
20 870 2990 11520 
25 875 3000 11500 

( ! 
0 534600 0 

4082~ ) 1215 19440 105705 
560 38985 102270 392784 
870 29220 104190 400320 
875 29225 104250 400250 

(! 
0 0 1871100 

139968~ ) 2430 105705 363285 
3045 102270 364665 1401120 
2990 104190 366255 1397664 
3000 104250 363975 1399875 

( 0 0 0 0 7185024) o 11664 408240 1399680 5365440 
o 11760 392784 1401120 5379360 . 
o 11520 400320 1397664 5375520 
1 11500 400250 1399875 5373398 

There are no non-complete distance-regular generalized orbital graphs. 

Before the construction of these collapsed adjacency matrices, it was 
shown [Soi93a] that Ly does not act distance-transitively on any (non­
trivial) orbital graph for this representation. The argument made use of 
the collapsed adjacency matrices in case (v) of MeL. 

4.32 The Thompson group Th 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 
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4.33 The Fischer group Fi23 

A presentation for Fi23 is 

(a3b3c3d3e3/3g3j, d3h3i 11 = (dcbdeldhi)10 = (abcdelh)9) 

(this is Y342/Z(Y342)j see [CNS88]), in which 

2· Fi22 ~ (a, b, c, d, e, I, g, h, i), 

0+(3)· 83 c,; (a bed e I 9 i J. (abcdeh)5 a(bcde fg hi)5) 
8 • - """'" , 

which contains 

(ab, ac, ad, ae, ai, ag, ai, aj, a(abcdeh)5, aa(bcde fg hi)5) S:! Ot(3): 3, 

and we have 

Ot(3): 2 ~ (b, c, d, e,f, g, h, i, j). 

4.33.1 rank 2 

G has no pseudo-permutation character of rank 2. 

4.33.2 rank 3 

(i) 7r = Xl + X2 + X6 of degree 31671 = 1 + 782 + 30888. 

There is a unique class of subgroups of G of index 31671 (see [KPW89)). 
A representative is a maximal H s::! 2· Fi22, and the associated permuta­
tion character is 7r. The sub degrees are 1,3510,28160, and the collapsed 
adjacency matrices are 

( 
o~ 3510 0 ) 

693 2816 
351 3159 

( 

0 0 28160) 
o 2816 25344 . 
1 3159 25000 

The vertex-set of these orbital graphs may be taken to be the class of 3-
transpositions of G (recall that this is a conjugacy class D of involutions 
of G, such that, for all d, e E D, de has order 1, 2, or 3). For the first 
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orbital graph we join d, e exactly when de has order 2 (equivalently d =I e 
and d, e commute), and for the second graph we join d, e exactly when 
de has order 3. These graphs were originally studied by Fischer [Fis69]. 

(ii) 'IT:= Xl + X6 + XS of degree 137632:= 1 + 30888 + 106743. 

There is a unique class of subgroups of G of index 137632 (see [KPW89]). 
A representative is a maximal H ~ Ot(3):83 , and the associated per­
mutation character is 'IT. The sub degrees are 1, 28431, 109200, and the 
collapsed adjacency matrices are 

28431 0 ) 
6030 22400 
5832 22599 

( 

0 0 109200) 
o 22400 86800 . 
1 22599 86600 

4.33.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.33.4 rank 5 

(iii) 'IT:= Xl + X5 + X6 + Xs + X9 of degree 275264 := 2 x 137632 := 
1 + 25806 + 30888 + 106743 + 111826. 

By [KPW89] there is no maximal subgroup of G of index 275264, and H 
is the unique subgroup of index 2 in a maximal subgroup L ~ Ot(3): 83 

of G, so H ~ Ot(3): 3. 

Direct calculation shows that G has rank 5 on the cosets of H, and so the 
associated permutation character is 'IT, the unique pseudo-permutation 
character of G of degree 275264. The subdegrees are 1, 1,28431,28431, 
218400, and the collapsed adjacency matrices are 

(H! Hl 
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( 
~ ~ 
1 0 
o 1 
o 0 

28431 0 0 1 o 28431 0 
2880 3150 22400 
3150 2880 22400 
2916 2916 22599 

( 
:

0: 00 0 28431 o 28431 0 
1 3150 2880 
o 2880 3150 

2916 2916 

224J 1 
22400 
22599 

( 
~ ~ ~ 
o 0 22400 
o 0 22400 
1 1 22599 

o 218400 1 o 218400 
22400 173600 . 
22400 173600 
22599 173200 

The only non-complete distance-regular generalized orbital graph is 

r{3,4,5} ~ K137632X2' 

(iv) 71' = Xl + X2 + X6 + XS + XlO of degree 412896 = 3 x 137632 = 
1 + 782 + 30888 + 106743 + 274482. 

By [KPW89] there is no maximal subgroup of G of index 412896, and 
H is a subgroup of index 3 in a maximal subgroup L ~ Ot(3): 83 of G, 
so H ~ Ot(3):2. 

Direct calculation shows that G has rank 5 on the cosets of H, and so the 
associated permutation character is 71', the unique pseudo-permutation 
character of G of degree 412896. The subdegrees are 1, 2, 28431,56862, 
327600, and the collapsed adjacency matrices are 
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U 
0 28431 0 

224J 1 0 0 28431 
0 4110 1920 
1 960 5070 22400 
0 1944 3888 22599 

U 
0 0 56862 

«80~ 1 0 28431 28431 
2 1920 10140 
1 5070 6990 44800 
0 3888 7776 45198 

U 
0 0 o 327600 1 0 0 o 327600 
0 22400 44800 260400 . 
0 22400 44800 260400 
2 22599 45198 259800 

The only non-complete distance-regular generalized orbital graph is 

r{3,4,5} ~ K137632X3' 

4.34 The Conway group Cal 

A presentation for 2'Co1 is 

(b4h3a3b5c3d3j4c3e4a, b4g4j, e6j6h I a = (cf)2, e = (bg)2, b = (ef)3, 

d = (bh)2 = (eah)3, 1 = (adjh)3 = (baejg)3 = (cef)7), 

in which the central involution is 

z := (adejcejgh)39 

(see [Soi85, Soi88]), and we have 

2 x CO2 ~ (a,b,c,d,e,j,g,z). 

We record here that 212: M24 ~ (a, b, d, e, j, g, h, (gjdc)\ z) (rank 6), 
and 2 x C03 ~ (a, b, c, d, e, j, h, z) (rank 7). 

Note that a presentation for Cal is obtained by adjoining the relation 
z = 1 to the presentation for 2'Co1 above. However, for many of the 
subgroups H of Cal considered here, to obtain the representation of 
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COlon the cosets of H by coset enumeration, rather than using this 
presentation for COl, it is more efficient to enumerate the cosets of 2.H 
in 2'C01 , using the presentation for 2·C01 • 

We also make use of the following presentation for 2 x COl [Soi87a]: 

(a3b3c8d3e3j3g3h3i I a = (cd)4, 1 = (bcde)B), 

in which the central involution is 

z := ((bcdcdejgh?3i)3, 

and we have 

2 x 3'Suz: 2 ~ (a, b, c, d, e, j,g, h, z). 

As with the presentation for 2'C01 , a presentation for COl is obtained 
by adjoining the relation z = 1 to the presentation for 2 x COl above, 
and similar comments apply concerning coset enumeration. 

4.34.1 rank 2 

There are no pseudo-permutation characters of rank 2 for G. 

4.34.2 rank 3 

There are no pseudo-permutation characters of rank 3 for G. 

4.34.3 rank 4 

(i) rr = Xl + X3 + X6 + XlO of degree 98280 = 1 + 299 + 17250 + 80730. 

The group G has a unique class of subgroups of index 98280, with rep­
resentative a maximal H ~ Co2 • This gives rise to a primitive rank 4 
representation of G, which must have character rr, the unique pseudo­
permutation character of G of rank 4. 

The sub degrees are 1, 4600,46575,47104, and the collapsed adjacency 
matrices are 

4600 
892 89~ 281~) 
88 2464 2048 

2025 2300 275 
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U 
0 46575 

2Q73~ ) 891 24948 
2464 21582 22528 
2025 22275 22275 

(~ 
0 0 471W) 2816 20736 23552 

2048 22528 22528 . 
2300 22275 22528 

There are no non-complete distance-regular generalized orbital graphs. 

4.34.4 rank 5 

(ii) 7r = Xl + X4 + X7 + Xl6 + X20 of degree 1545600 = 1 + 1771 + 
27300 + 644644 + 871884. 

The group G has a unique class of subgroups of index 1545600. A 
representative is a maximal H ~ 3'Suz: 2. This gives rise to a primitive 
rank 5 representation of G, which must have character 7r, the unique 
pseudo-permutation character of G of rank 5. 

The sub degrees are 1, 5346, 22880,405405, 1111968 and the collapsed 
adjacency matrices are 

U 
5346 0 0 

01 
418 0 4095 832 

0 486 0 4860 
54 0 1836 3456 
4 100 1260 3982 

U 
0 22880 0 

200~ 1 0 2080 0 
486 280 8505 13608 

0 480 5120 17280 
100 280 6300 16200 

(! 
0 0 405405 

26208~ 1 4095 0 139230 
0 8505 90720 306180 

1836 5120 111600 286848 
1260 6300 104580 293265 
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o 0 0 1111968 1 
832 20800 262080 828256 

4860 13608 306180 787320 . 
3456 17280 286848 804384 
3982 16200 293265 798520 

There are no non-complete distance-regular generalized orbital graphs. 

4.35 The Janko group J4 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 

4.36 The Fischer group Fi~4 

A presentation for 3' Fi24 is 

(l3k3a3b3c3d3e3j3g3j, d3h3i Il = (abcdejh)9) 

(this is isomorphic to Y542; see [CNS88j and [CP92j), in which the normal 
subgroup of order 3 is generated by 

z := (dcbakldejgjdhi)17, 

and we have 

Fi23 X 83 ~ (a,b,c,d,e,j,g,h,i,j,l,z). 

Note that a presentation for Fi24 is obtained by adjoining the relation 
z = 1 to the presentation for 3'Fi24 above. However, to obtain the 
representation of Fi24 on the cosets of Fi23 x 2 by coset enumeration, 
it is best to enumerate the cosets of Fi23 x 83 in the 3' Fi24 above. 

We do not give a presentation for Fi~4' The representation for Fi24 = 
Fi~4: 2 on the cosets of Fi23 x 2 restricts to a representation of the same 
rank for Fi~4 on the cosets of Fi23 . 

4.36.1 rank 2 

G has no pseudo-permutation character of rank 2. 
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4.36.2 rank 3 

(i) n = Xl + X3 + X4 of degree 306936 = 1 + 57477 + 249458. 

By [LW91] there is a unique class of subgroups of G of index 306936. A 
representative is a maximal H e:! Fi23 , and the associated permutation 
character is n. The sub degrees are 1, 31671, 275264, and the collapsed 
adjacency matrices are 

31671 0 ) 
3510 28160 
3240 28431 

( 

0 0 275264) 
o 28160 247104 . 
1 28431 246832 

The vertex-set of these orbital graphs may be taken to be the class of 
3-transpositions of Fi24 e:! G: 2. For the first orbital graph we join 3-
transpositions d, e exactly when de has order 2 (equivalently d i- e and 
d, e commute), and for the second graph we join d, e exactly when de 
has order 3. These graphs were originally studied by B. Fischer [Fis69]. 

4.36.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.36.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.37 Automorphism group Fi24 = Fi~4: 2 of Fi~4 

A presentation for 3' Fi24 is given in the section for Fi~4' In [HS95], a 
presentation is given for Fi24, as a 3-transposition group generated by 
five 3-transpositions. 
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4.37.1 rank 2 

G has no faithful pseudo-permutation character of rank 2. 

4.37.2 rank 3 

(i) 1f = Xl + X5 + X7 of degree 306936 = 1 + 57477 + 249458. 

The restriction of 1f to Fi~4 is the permutation character in case (i) for 
Fi~4' Thus H e! Fi23 X 2, and the collapsed adjacency matrices are the 
same as for that case. 

4.37.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.37.4 rank 5 

G has no pseudo-permutation character of rank 5. 

4.38 The Fischer Baby Monster group B 

In [Iva94], A.A. Ivanov derives a presentation for the Baby Monster 
group B, by proving that 1'433 e! 22.B. In this Y433 , there is a visible 
23.2E6(2):2 e! Y333. Details and definitions can be found in [Iva94], 
where Ypqr is defined as a certain finitely presented group. (This defini­
tion is somewhat different from the definition of Ypqr in [CNS88], which 
is different again from the definition in the ATLAS.) The representation 
of Y433 on the cosets of Y333 is of degree 13571955000, and is well out of 
the range of current coset enumeration technology. 

4.38.1 rank 2 

G has no pseudo-permutation character of rank 2. 
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4.38.2 rank 3 

G has no pseudo-permutation character of rank 3. 

4.38.3 rank 4 

G has no pseudo-permutation character of rank 4. 

4.38.4 rank 5 
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(i) 1r = Xl + X3 + X5 + Xl3 + X15 of degree 13571955000 = 1 + 96255 + 
9458750 + 4275362520 + 9287037474. 

By [MM85, ILL8895] there is a unique class of subgroups of G of index 
13571955000, a representative is a maximal H ~ 2. 2 E6(2): 2, and the 
associated permutation character is 1r. The sub degrees are 

1,3968055,23113728,2370830336,11174042880. 

Using the information in [Iva92] on the orbital digraph corresponding to 
the suborbit of length 3968055, D.V. Pasechnik calculated the collapsed 
adjacency matrix A for this graph. This collapsed adjacency matrix had 
originally been computed much earlier by B. Fischer (see [Hig76]). The 
calculation of a collapsed adjacency matrix for such a large representa­
tion is beyond the scope of the methods described in this book. 

The matrix A has distinct eigenvalues, allowing the collapsed adja­
cency matrices for the other orbital digraphs of this multiplicity-free 
representation to be determined from A (this uses some basic theory 
of Bose-Mesner algebras; see [BCN89, pp.43-46]). This was done by 
D.V. Pasechnik, using a Maple program he wrote for this purpose. 

The collapsed adjacency matrices are 

II 
3968055 0 0 

182476~ 1 46134 0 2097152 
0 69615 0 3898440 

3510 0 837135 3127410 
648 8064 663552 3295791 
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(l 
0 23113728 0 0 1 
0 405504 0 22708224 

69615 o 6336512 16707600 
0 61776 3592512 19459440 

8064 34560 4128768 18942336 

(! 
0 0 2370830336 

186856243~ 1 2097152 0 500170752 
0 6336512 368492544 1996001280 

837135 3592512 423236608 1943164080 
663552 4128768 412286976 1953751040 

[1 
0 0 0 11174042880 1 

1824768 22708224 1868562432 9280947456 
3898440 16707600 1996001280 9157435560 . 
3127410 19459440 1943164080 9208291950 
3295791 18942336 1953751040 9198053712 

There are no non-complete distance-regular generalized orbital graphs. 

4.39 The Fischer-Griess Monster group M 

G has no faithful pseudo-permutation character of rank less than or 
equal to 5. 
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Summary of the Representations and Graphs 

In this chapter we give tables summarizing the transitive permutation 
representations and distance-regular generalized orbital graphs we have 
studied and classified in this book. In particular, Tables 5.1, 5.2, 5.3, 
and 5.4 list the primitive representations of respective ranks 2, 3, 4, and 
5 of the sporadic almost simple groups, while Tables 5.5, 5.6, and 5.7 list 
the imprimitive representations of these groups for respective ranks 3, 4, 
and 5. These tables also give the number of distance-regular generalized 
orbital graphs for each ofthese representations. Finally, Table 5.8 gives a 
summary of the graphs of diameters 3 and 4 having a distance-transitive 
action by a sporadic almost simple group. 

For each table of permutation representations, the column labelled 'G' 
gives the group being represented, the 'case' column gives the roman­
numbered case for G in Chapter 4, where the representation is described 
in detail, the column labelled 'H' gives the point stabilizer, and 'degree' 
the degree of the representation. Notation of the form K[.2] for G and 
£(.2] for H denotes two representations ofthe same rank and degree: one 
of K.2 on the cosets of £.2, and the restriction of this representation to K 
on the cosets of £. In this situation there will be two entries in the 'case' 
column, corresponding respectively to K and K.2. Given an entry for 
a group G with point stabilizer H, the notation H (2 classes) denotes 
that there are two G-classes of subgroups isomorphic to H, and that 
these classes are interchanged by an outer automorphism of G, giving 
two equivalent (but not permutationally isomorphic) representations for 
G. 

A line in a table of representations gives information on the representa­
tion of a group G acting on the (right) cosets of a subgroup H (or each 
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of G = K, K.2 acting on the cosets of H = L, L.2, respectively). We 
put an m in the 'd.r.' (distance-regular) column of this line to denote 
that exactly m of the generalized orbital digraphs for the permutation 
representation of G on the cosets of H are distance-regular graphs. The 
complete graph is included in ihis count. We put an n in the 'd.t.' 
(distance-transitive) column to denote that G acts distance-transitively 
on exactly n of these distance-regular (generalized) orbital digraphs. 
All these distance-regular and distance-transitive graphs are described 
in Chapter 4 in the sections for the corresponding representations. The 
new distance-regular graphs of diameter 2 for A' N, CO2 and Fi22 are of 
particular interest. 

We thus have a complete classification of the distance-regular graphs on 
which a sporadic almost simple group acts vertex-transitively with rank 
at most 5, as well as a classification of the (distance-regular) graphs of di­
ameter at most 4 on which a sporadic almost simple group acts distance­
transitively. It is now known [ILLSS95j that all distance-regular graphs 
on which a sporadic almost simple group acts primitively and distance­
transitively have diameter at most 4, and so these graphs appear in our 
classification. 

In Table 5.B, we summarize those simple connected graphs r of diameters 
3 and 4 having a distance-transitive action by a sporadic almost simple 
group G. A check mark is put in the column labelled 'prim' if and only 
if G acts primitively on the vertices of r, 'n' denotes the number of 
vertices of r, and 'diam' is the diameter of r. 

Table 5.1. The rank 2 representations 

G ease H degree d.r. d.t. 

Mll ( i) MlO 11 1 1 
Mll ( ii) L2(11) 12 1 1 
M12 ( i) Mll (2 classes) 12 1 1 
M22[.2] (i), [i] L3 ( 4)[.2] 22 1 1 
M23 ( i) M22 23 1 1 
HS ( i) U3(5).2 (2 classes) 176 1 1 
M24 ( i) M23 24 1 1 
C03 ( i) MeL.2 276 1 1 
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Table 5.2. The rank 3 primitive representations 

G case H degree d.r. d.t. 

Ml1 (iv) M9.2 55 3 2 
M12 ( ii) MlO.2 (2 classes) 66 3 2 
M22[.2] (iii), Iii] 24: A6[.2] 77 3 2 
M22 (iv) A7 (2 classes) 176 3 2 
J2[.2] (i), [i] U3(3)[.2] 100 3 2 
M23 ( ii) L3(4).2 253 3 2 
M23 ( ii) 24:A7 253 3 2 
H8[.2] (ii),[i] M22[.2] 100 3 2 
M24 ( iii) M22.2 276 3 2 
M24 (iv) M12.2 1288 3 2 
MeL[.2] (i),[i] U4(3)[.2] 275 3 2 
Ru (i) 2 F4(2) 4060 3 2 
8uz[.2] (i), [i] G2(4)[.2] 1782 3 2 
CO2 (i) U6(2).2 2300 3 2 
Fid·2] (i), [i] 2· U6(2)[.2] 3510 3 2 
Fi22 ( ii) ()7(3) (2 classes) 14080 3 2 
Fi23 (i) 2·Fi22 31671 3 2 
Fi23 ( ii) ()t(3).S3 137632 3 2 
Fi~4[·2] (i), til Fi23[x2] 306936 3 2 

Table 5.3. The rank 4 primitive representations 

G case H degree d.r. d.t. 

Mll (v) 85 66 3 0 
M12.2 ( ii) L2(11).2 144 7 0 
M12.2 ( iii) L2(11).2 144 3 0 
M22[.2] (vii), [v] 24: 85[.2] 231 5 0 
h[.2] (ii), [iii] 3· PGL2(9)[.2] 280 5 0 
M23 (iii) As 506 2 1 
M23 (iv) Ml1 1288 3 0 
M24 (vi) 24: As 759 2 1 
M24 ( vii) 26 :3·S6 1771 1 0 
MeL ( ii) M22 (2 classes) 2025 1 0 
He.2 (i) 84(4).4 2058 1 0 
Fi22[.2] (iv), Iii] ()t(2).83[x2] 61776 5 0 
COl (i) CO2 98280 1 0 
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Table 5.4. The rank 5 primitive representations 

G 

M12 
M12 
J1 

M22 [.2] 
M22[.2] 
h.2 
H8[.2] 
H8[.2] 
M24 
M24 
MeL[.2] 
MeL[.2] 
He 
8uz[.2] 
G'N 
C03 

C02 

C02 

Ly 
Ly 
GOl 

B 

case 

(vi) 
( vii) 
( iii) 
(ix), [vi] 
(xi), fix] 
(v) 
(iv), [iii] 
(v), [iv] 
(x) 
(xiii) 
(iv), iii] 
(v), [iii] 
( i) 
(iii), iii] 
( i) 
( iii) 
( iii) 
(iv) 
( i) 
( ii) 
(ii) 
( i) 

H 

L 2 (11) 
Mg.83 (2 classes) 
L 2 (11) 
23: L3(2)[x2] 
MlO[.2] 
2:+4 .85 
L3(4).2[.2] 
8s[x2] 
L3(4).83 
26: (L3(2) x 83) 
U3(5)[.2] 
3~+4: 2.85[.2] 
84( 4).2 
3' U4 (3).2[.2] 
L3(7).2 (2 classes) 
H8 
210: M22.2 
2~+B: 86(2) 
G2(5) 
3·MeL.2 
3·Suz.2 
2. 2 E6(2).2 

degree 

144 
220 
266 
330 
616 
315 

1100 
1100 
2024 
3795 
7128 

15400 
2058 

22880 
122760 
11178 
46575 
56925 

8835156 
9606125 
1545600 

13571955000 

d.r. 

3 
2 
2 
2 
1 
2 
1 
1 
2 
1 
1 
1 
1 
2 
3 
1 
1 
3 
1 
1 
1 
1 

Table 5.5. The rank 3 imprimitive representations 

G case H degree d.r. d.t. 

M11 (iii) A6 22 2 1 
M12.2 (i) Mu 24 2 1 

Table 5.6. The rank 4 imprimitive representations 

G case 

Mll (vi) 
M12 (iii) 
M22.2 (iii) 
H8 (iii) 
H8.2 (ii) 
C03 (ii) 

H 

32:8 
PGL2(9) (2 classes) 
L3(4) 
U3(5) (2 classes) 
U3(5).2 
MeL 

degree 

110 
132 
44 

352 
352 
552 

d.r. 

2 
2 
4 
4 
4 
4 

d.t. 

o 
o 
1 
2 
2 
2 

d.t. 

o 
o 
1 
1 
o 
1 
o 
o 
o 
o 
o 
o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
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Table 5.7. The rank 5 imprimitive representations 

G case H degree d.r. d.t. 

M12 (iv) S6 (2 classes) 132 2 0 
M12 (v) L2(11) 144 13 0 
M12.2 (iv) MlO.2 132 2 0 
M22[.2] (x), [viii] 24: L2(5)[.2] 462 2 0 
M24 (xi) M12 2576 2 0 
M24 (xii) 26:3'A6 3542 2 0 
Ru (ii) 2 F4(2)' 8120 2 0 
CO2 ( ii) U6(2) 4600 2 0 
Fi23 ( iii) Ot(3).3 275264 2 0 
Fi23 (iv) Ot(3).2 412896 2 0 

Table 5.8. Distance-transitive graphs of diameters 3 and 4 

G prim n diam intersection array 

M23 vi 506 3 {15,14,12j1,1,9} 
M24 vi 759 3 {30,28,24j1,3,15} 
J1 vi 266 4 {11,10,6,lj1,1,5,11} 
M22[.2] vi 330 4 {7,6,4,4,;1,1,1,6} 
J2.2 vi 315 4 {10,8,8,2j1,1,4,5} 
Suz[.2] vi 22880 4 {280, 243, 144,10j1,8,90,280} 
M22.2 44 3 {21,20,lj1,20,21} 
HS 352 3 {175,72,lj1,72,175} 
HS 352 3 {175,102,lj1,102,175} 
HS.2 352 3 {50,49,36j1,14,50} 
HS.2 352 3 {126, 125,36j1,90, 126} 
C03 552 3 {275, 112, 1j 1, 112, 275} 
C03 552 3 {275, 162, 1j 1, 162, 275} 
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