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Preface

Approximate theories of bending of thin elastic plates have been around since the
middle of the nineteenth century. The reason for their existence is twofold: on the
one hand, they reduce the full three-dimensional model to a simpler one in only
two independent variables; on the other hand, they give prominence to the main
characteristics of bending, neglecting other effects that are of lesser interest in the
study of this physical process.

In spite of their good agreement with experiments and their wide use by
engineers in practical applications, such theories never acquire true legitimacy
until they have been validated by rigorous mathematical analysis. The study of the
classical (Kirchhoff) model (Kirchhoff 1850) is almost complete (see, for example
Ciarlet and Destuynder 1979; Gilbert and Hsiao 1983). In this book, we turn our
attention to plates with transverse shear deformation, which include the Reissner
(1944, 1945, 1947, 1976, 1985) and Mindlin (1951) models, discussing the exis-
tence, uniqueness, and approximation of their regular solutions by means of the
boundary integral equation and stress function methods in the equilibrium (static)
case.

With the exception of a few results of functional analysis, which are quoted
from other sources, the presentation is self-contained and includes all the neces-
sary details, from basic notation to the full-blown proofs of the lemmas and
theorems.

Chapter 1 concentrates on the geometric/analytic groundwork for the investi-
gation of the behavior of functions expressed by means of integrals with singular
kernels, in the neighborhood of the boundary of the domain where they are
defined.

In Chap. 2, we introduce potential-type functions and determine their mapping
properties in terms of both real and complex variables, and discuss the solvability
of singular integral equations.

Next, in Chap. 3, we describe the two-dimensional model of bending of elastic
plates with transverse shear deformation, derive a matrix of fundamental solutions
for the governing system, state the main boundary value problems, and comment
on the uniqueness of their regular solutions.

All the references cited here can be found at the end of the book.
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viii Preface

The layer and Newtonian plate potentials are introduced, respectively, in
Chaps. 4 and 5, where we investigate their Holder continuity and differentiability.

In Chap. 6, we prove the existence of regular solutions for the interior and
exterior displacement, traction, and Robin boundary value problems by means of
single-layer and double-layer potentials, and discuss the smoothness of the inte-
grable solutions of these problems.

Chapter 7 is devoted to the construction of the complete integral of the system
of equilibrium equations in terms of complex analytic potentials, and the clarifi-
cation of the physical meaning of certain analytic constraints imposed earlier on
the asymptotic behavior of the solutions.

In Chap. 8, we explain how the method of generalized Fourier series can be
adapted to provide approximate solutions for the Dirichlet and Neumann problems.

Some of the results incorporated in this book have been published in Constanda
(1985, 1986a, b, 1987, 1988a, b, 1989a, b, 1990a, b, 1991, 1994, 19964, b, 1997a,
b; Schiavone 1996; Thomson and Constanda 1998, 2008); additionally, Constanda
(1990) is an earlier—incomplete—version compiled as research notes. Chapter 5
is based on material included in Thomson and Constanda (2011a). The technique
developed in Chaps. 2—4 and 6 was later extended to the case of bending of
micropolar plates in Constanda (1974), Schiavone and Constanda (1989), and
Constanda (1989).

A comprehensive view and comparison of direct and indirect boundary integral
equation methods for elliptic two-dimensional problems in Cartesian coordinates
and Holder spaces can be found in Constanda (1999).

Potential methods go hand in hand with variational techniques when the data
functions lack smoothness. The distributional solutions of equilibrium problems
with a variety of boundary conditions have been constructed by this combination
of analytic procedures in Chudinovich and Constanda (1997, 1998, 1999a, b,
2000a, b, c, d, e, 2001a, b). The harmonic oscillations of plates with transverse
shear deformation form the object of study in Constanda (1998), Schiavone and
Constanda (1993, 1994), Thomson and Constanda (1998, 1999, 2009a, b, c, 2010,
2011a, b, 2012a, b, ¢, 2013), and the case that includes thermal effects has been
developed in Chudinovich and Constanda (2005a, b, 2006, 2008a, b, c, 2009,
2010a, b, c, 2007).

Finally, a number of problems that impinge on the solution of this mathematical
model are discussed in Chudinovich and Constanda (2000f, 2006), Constanda
(1978a, b), Constanda et al. (1995), Mitric and Constanda (2005), and Constanda
(2006).

Before going over to the business of mathematical analysis, I would like to
thank my Springer UK editor, Lynn Brandon, for her support and guidance, and
her assistant, Catherine Waite, for providing feedback from the production team in
matters of formatting and style.

But above all, I am grateful to my wife for her gracious acceptance of the truth
that a mathematician’s work is never done.

Tulsa, January 2014 Christian Constanda
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Chapter 1
Singular Kernels

1.1 Introduction

Throughout the book we make use of a number of well-established symbols and
conventions. Thus, Greek and Latin subscripts take the values 1, 2 and 1, 2, 3,
respectively, summation over repeated indices is understood, x = (x1, xp) and
x = (x1,x2, x3) are generic points referred to orthogonal Cartesian coordinates
in R? and R3, a superscript T indicates matrix transposition, (...),q = 9(...)/0xq,
A is the Laplacian, and §;; is the Kronecker delta. Other notation will be defined as
it occurs in the text.

The elastostatic behavior of a three-dimensional homogeneous and isotropic body
is described by the equilibrium equations

tij,j +fi=0 (1.1)

and the constitutive relations
tij = Mg 0ij + puuj +uji) (1.2)
(see, for example, Green and Zerna 1963). Here f;; = t;; are the internal stresses, u;
the displacements, f; the body forces, and A and p the Lamé constants of the material.
The components of the resultant stress vector ¢ in adirectionn = (n1, no, n3)T are
L =tjnj, (1.3)

and the internal energy per unit volume (internal energy density) is

&= Jtijuij+uj)=5tijuj. (1.4)

C. Constanda, Mathematical Methods for Elastic Plates, 1
Springer Monographs in Mathematics, DOI: 10.1007/978-1-4471-6434-0_1,
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2 1 Singular Kernels

A thin plate is an elastic body that occupies a region S x [—hq/2, ho/2] in R3,
where S is a domain in R? and 0 < ko = const < diam S is the thickness. The
special form of such a body suggests that in the study of its small deformations
certain simplifying assumptions may be introduced, which lead to two-dimensional
theories that are easier to handle but still describe adequately the salient features of
the deformation state. In what follows we are concerned exclusively with the process
of bending.

The first truly systematic theory of bending of thin elastic plates was proposed by
Kirchhoff (1850). Under his assumptions the displacement field becomes

Uy = —X3U3,0,
’ 1.5

and from (1.1) and (1.2) it follows that

Adus = %,

where p is the resultant load on the faces x3 = £h(/2 of the plate and

D= hgﬂ“‘_ﬂ
3(h+2uw)

is the rigidity modulus. This theory, though producing good approximations in many
practical cases, neglects completely the effects of the transverse shear forces since
(1.2) and (1.5) yield 3, = O throughout the plate. It also gives rise to a few mathe-
matical discrepancies: certain stress components are neglected in some equations but
not in others. In addition, the unknown deflection u3 can satisfy only two boundary
conditions instead of the physically expected three.

Reissner (see Reissner 1944; 1976) takes transverse shear into account by assum-
ing that

2

h
lag = ﬁ x3Moz/5 (-x)/)a

2
o3 = —— [1 - (3) xﬂme),
2hg ho

and uses the principle of least work to derive a sixth order theory that accommodates
three boundary conditions. While this is a more complete model than Kirchhoff’s, it
does not deliver the expression of the displacements but only that of their averages.

Hencky (1947), Bollé (1947), Uflyand (1948), and Mindlin (1951) introduce the
effects of transverse shear deformation in a somewhat different manner. More pre-
cisely, they start with the displacement assumption

Ug = X3Ve(Xy),

uz = v3(xy) (16)
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and arrive at the equations of an approximate sixth order theory by averaging (1.1)
and (1.2) over the thickness of the plate. As in the case of Reissner’s, these equations
allow three conditions to be prescribed on the boundary. Unfortunately, they suffer
from the same lack of rigor, due to the fact that 33 is neglected in the constitutive
relations, which also contain so-called correction factors.

The above theories have subsequently been refined in various ways, but all their
versions pursue the same ultimate goal: to offer as much valid information as possible
on the characteristics of bending, while at the same time reducing the problem to a
simpler one in two dimensions (see Reissner (1985) for a concise survey of this topic).

Here we are not concerned with the advantages of one theory over another from
a physical standpoint, but with their mathematical treatment. As the model of our
analysis we choose an approximation based solely on the kinematic assumption
(1.6), thus avoiding inconsistencies that might otherwise be introduced through over-
simplification. However, our technique is equally applicable—with very little mod-
ification regarding the coefficients—to all existing sixth order theories where the
system of equilibrium equations is elliptic.

1.2 Geometry of the Boundary Curve

For simplicity, we use the same symbol to indicate both a point and its position vector
in R2. Also, vector functions are not distinguished from scalar ones by any special
marks, their nature being obvious from the context.

Let the boundary 95 of S be a simple closed curve of length /, whose natural
parametrization (that is, in terms of its arc length measured from some point on 9.5)
is a bijection of the form

x=x(s), se€[0,1], x(0)=x(),

with inverse

s=s5(x), xe€aS.

Throughout what follows, d Sisa C 2_curve; in other words, x is twice continuously
differentiable on [0, /] and

dx 0+) = dx (=),
ds ds
X oy = T
ds? ds? '
As is well known,
dx

il 7(s) = t(x)
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Fig. 1.1 Orientation of the
local frame axes

7(X)

v(X)

is the unittangent vector atx € 9§, pointing in the direction in which s increases. If we
denote by v(x) the unit outward (with respect to S) normal to 9§ at x, then the direc-
tion of 7 (x) is chosen so that the local frame { T(x), v(x)} is left-handed. In this case,

Ta = €BaVB, (1.7)

where g4 is the two-dimensional Ricci tensor (alternating symbol).
Figure 1.1 shows the orientation of the local frame axes.
The Frenet—Serret formulas

—T(x) = =k (x)v(x),

ds (1.8)
—vx) = k(x)t(x)

ds

connect 7(x), v(x), and the algebraic value « (x) of the curvature of 9.5 at x.

1.1 Remarks. (i) The choice we made for the direction of the normal vector ensures
that the formulation of the analytic arguments involving v later on follows the well-
established patterns in the literature.

(ii) If S is a domain with holes, then the above convention regarding the orientation
of T and v applies to the boundary of each hole, as well as to the outer boundary (if
there is one).

(iii) Since 35S is a C2-curve, we can define

ko = sup |k(x)]. (1.9)
xedS

It is obvious that kg > 0, for k9 = 0 would imply that S were a straight line and,
therefore, not a closed curve.
Let

(X, y) = x1y1 + x22,
|x |2 = x% + x%
be, respectively, the standard inner product and the Euclidean norm on R2.
Some of the estimates established below are not optimal. Tighter ones can be
obtained, but since these are only auxiliary results, we select admissible numerical

coefficients that make the inequalities easier to manipulate.
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1.2 Lemma. Forall x, y € 95,

[(v(x), x = y)| < 260lx — y %, (1.10)
lv(x) —v(y)| < 4xolx — yI. (1.11)

Proof. Let s and ¢ be the arc length coordinates of x and y. We have

=y = (Ggrad (ol - v e00) =20 =y )

= 2(xg — Ya)Ta(x) = 2(z(x), x — y)
and, by (1.8),

82
S =y 2 = 2[ta ()T (x) — K(X) (Xa — Ya)Va ()]

=2[1 = k() (), x = »].
The Taylor series expansion now yields

2

d 1[0
x—yPP=[x—yP_ + [au—yﬁ] =D+ [mu—yﬁ} (s—1)?°
s=t s=s’
= [1 =N, = 0] =12,

where s’ is the value of the arc length coordinate of a point x’ lying between x and
yonasS.
Suppose that |x — y| < 1/(2«p). Then

11— k@D, x" =y = 1= k@) &), x" = y)]
21— k@)D =y =1 —kolx —y|

- 11
—x .
" 20 2
SO
x—y?> L —-n% (1.12)

Following the same procedure, we have

a
35 O x =y = v ()T () = (v(y), 7)),
2

552 (WO x = y) = =Kk (N)va (e () = —r (x) (v(y), v(x)),
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and

d
(v, x —y) =[O, x =»],_, + [g (v, x — y)} (s —1)
t

s=.

1T 8%
+ = [— W), x — y)} (s —1)?,

2 3S2 s=s"

where s” is the arc length coordinate of a point x” lying between x and y on 9,
hence, by (1.12),

W), x =W < 2D v I — 0% < kolx — y |2
On the other hand, if |[x—y | > 1/(2kq) (or, whatis the same, 2xg|x —y | > 1), then

(W), x — ¥ < v x — vl
<|x—yl|-260lx —y| =2kolx — y|*.

Combining the two cases, we conclude that for any x and y on 95,
(W), x = y)| < max {ko, 2c0}lx — y [ = 20lx — y I,

which is (1.10).
Similarly, by (1.8),

0
v = v = @) =], + 5 v =] L =)
— k()T (") (s — 1),

where 5" is the arc length coordinate of a point x” lying between x and y on 9S.
Hence, in view of (1.12), for |[x — y | < 1/(2ko) we have

V() = v < kols — 1] < V2kolx =y .
At the same time, for |[x — y | > 1/(2ko),
) —v)l = v+ v =2 < dxolx — y 1,
so for any pair of points x and y on 9.5,
V() — v < max {v2xo, 4o} lx — v | = dolx — ¥,

which is (1.11). O
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7
Fig. 1.2 The shorter arc \/< \/
joining x and y X Y f

3

a

To keep things simple, the proofs of the rest of the lemmas in this section and
the next are constructed for one local boundary configuration only, but they remain
valid for any other possible configuration. Also, to ensure clarity, the accompanying
diagrams are not drawn to scale.

1.3 Lemma. Let x, y € 95, and let o be the angle between v(x) and v(y) and y
the angle between v(x) and x — y. If r is a number such that

1
O<r<—, (1.13)
8/(0

then for all x and y satisfying |x — y| <r,

<cosa <1, (1.14)

D= D=

<siny <1. (1.15)

Proof. Consider the shorter arc of 0§ joining x and y (see Fig. 1.2).
By (1.11),

cosa = (v(x), v(y)) =1—(x), v(x) —v(y)
= 1= [{vx), vx) —v(y)
=1 =) vx) —v(y)l
> 1 —4diolx —y]|
1 1
>1—dky - — = =,
8kg 2
which proves (1.14).
Next, by the mean value theorem, there is a point x’ € .S between x and y such
that the support lines of (x") and x — y are parallel. The acute angle 8 between the
support lines of 7(x) and x — y (see Fig. 1.2) is the same as the angle between 7 (x)

and 7 (x’), therefore, the same as the angle between v(x) and v(x"). By (1.14), we
have

<cosB =<1,

N =

and (1.15) now follows from the fact that sin y = cos . |
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Fig. 1.3 The arc Xy ,

1.4 Lemma. If

Ex,rz{yeaS: |x—y|§r}, x €08, (1.16)
with r satisfying (1.13), then for every x € S and all y € Xy ,,
s —tl <l =yl <ls—1l, (1.17)

where s and t are the arc length coordinates of x and y.

Proof. Let a and b be the end-points of X , (the heavier arc in Fig. 1.3).
Direct computation shows that

1/2
—lx—yl= (x1—y1)2+(xz—y2)2]/

dt E[

B 1 dy dy>
AT |:(y1 —xl)g + (2 - Xz)g]
(T(y),y —x)

= ———— =cos B()),
lx —y|

where B(y) is the angle between t(y) and y — x; hence, according to the mean value
theorem, there is y' € .S between x and y such that

'
[x —y| :/cosﬁ(o)da = (t —s)cos B(Y). (1.18)

N
If y lies on S between x and b (see Fig. 1.4), then both 8(y) and B(y’) are acute

angles and B(y’) = 7 /2 —y(y'), where y () is the angle between v(y") and y' — x ;
so, by (1.18),

lx =y | =@ —s)siny(y). (1.19)
If, on the other hand, y lies on 9§ between a and x (see Fig. 1.5), then 8(y) and

B(y') are obtuse angles but y (') is still acute and B(y") = 7/2 + y (y'); therefore,
by (1.18),
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Fig. 1.4 Arc of 9§ with y
between x and b

Fig. 1.5 Arc of 9§ with y
between a and x y X

x—yl=(@—s)(—siny())) = (s —)siny(y). (1.20)
Equalities (1.19) and (1.20) can be written together as
lx =yl =Is—t]siny (),

and (1.17) now follows from (1.15). m|
1.5 Remark. From the proof of Lemma 1.4 it is clear that for any x fixed on 9.5,

|x — y | is a monotonic function of 7 on each of the intervals

Li={t:y@t) e X, t <s(x)},
L={t:y@®) e 2)(,}’9 t>s(x)},

decreasing on the former and increasing on the latter. This implies that
v =y # Ix =y

for all y'(t"), y'(¢") € Xy, such thatt' # ¢, with ¢/, 1" € Iy or¢', " € I, and
that there is a bijective correspondence between the points of X , and those of its
projection on the tangent to 9§ at x.

1.6 Remark. A slightly modified pair of inequalities (1.17) holds for all x, y € 9§
if by |s — #| we understand the length of the shorter arc of 9.5 joining x and y. Since
for|x —y|>r,

[
ls—t] <l =<-lx—yl,
r
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we conclude that for all x, y € 95,
cls—t| < Ix—yl=<Is—tl,

where ¢ = min {1/2, r/1}.

1.3 Properties of the Boundary Strip

Many of the results in this book are proved by considering the behavior of certain
two-point functions in the neighborhood of the boundary. To help the fluency of such
proofs, here we make a preliminary examination of some frequently used properties.

1.7 Lemma. The normal displacements of 0S defined by

3Se = {x e R :x =& + ov(§), £ €3S},

1
o=const, 0<lo|l<—,
K0

where kg is given by (1.9), are well-defined C?-curves.

Proof. Let s and ¢ be the arc length parameters on 05 and 95, respectively. Since
the map

x=&+ov(E)=E&(s) +ov((s)), xe€df,

isaC 2—parametlrization of S, in terms of s, it follows that S, is a C2-curve, and
we may use its natural parametrization (that is, in terms of 7) to discuss its differential
properties.

All we need to show now is that for any distinct points &, §’ € 3.5, the support
lines of v(&) and v(£”) do not intersect at a point situated at a distance less than 1/
from 9S.

According to the assumption on o, for any £ € 95,

l+ok@)=1—|oflk@E)|=1—|olko > 0;

hence,

BB e ) b okrr@) = [1Hoc@]e@). (2D

— = o
ds ds ds

Since, in terms of the arc parameter ¢ on 95,

d
dx = —xdt = 1(x)dt,
dt
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Fig. 1.6 Arcs of S and 8, \% S,

3
it follows that, by (1.21),
dt =|d |—‘d—xd _|dx d
= ds 5= ds S
—[1+ ok @)L ar
- oS 4t
SO
ds _
7 [1 +0K($)] ;
therefore,
dx dx ds
TX)=—7=— —
dt ds dt
=[1+0xk@®] '[1 +0x@®]r &) = 7). (1.22)

Suppose that there are &, " € 8, & # &', such that the support lines of v (&) and
V(&) intersect at some point x located at a distance less than 1/« from 3.5 that is,

1
x=E+ov@E) =& +0vE), ol o' < —.

ko

Then x € 95, N 3S,, so, by (1.22),
t(x) =1(5) = (&),

which implies that v(§) = v(&’). Since this contradicts our assumption, we conclude
that 0 S, is well defined.
Figure 1.6 illustrates an arc of .S and the arc of a typical curve 9.5, . O

1.8 Definition. Let o¢ be a fixed number such that 0 < o¢ < 1/x¢. The region
Sop={x eR*: x =£ +0v(&), £ €3S, |o| < 00}

is called the o¢-strip along the boundary 9.S.

1.9 Lemma. Let x, x' € Sr/4, where r satisfies (1.13), be such that

lx — x| < AITr.
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Fig. 1.7 Points& and &' on dS &
with v(&) not parallel to v(£')

If
x=&+ovE), ¥ =& +0vE), & & €3S, (1.23)
then
|E — &' < 4]x —x'). (1.24)
Proof. Without loss of generality, we may assume that
lx — & > [x" —&|.
First, suppose that v(§) and v(§’) are not parallel, and let & be the point of
intersection of their support lines. Also, let  be the point on the line through & and

& such that n — x’ is parallel to & — &’ (see Fig.1.7).
According to the argument in the proof of Lemma 1.7, we must have

1
150 =&l = —;

Ko

consequently, since 7 € S, /4,

m—x| _ leo—nl l&—&l—In—¢

E—¢&1  lgo—& &0 — &
In —&| r/4
— > 1=
& — & 1/k0
=1—grkg>1— 55 > 1. (1.25)

Let ¥ be the angle between & — &) and x’ — x, and let ¥ be the angle between
V(&) and & — &’. By (1.25) and as seen from Fig. 1.7,

1§ =& <2 —x') < 2(x — x|+ —x]) < 2(37 +gr) =73
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hence, by (1.15) and (1.25),

X —x
| sin ¥ g

1 / 1 /
>5In=x> 715§ —-§&1,

as required.
If v(¢) and v(&') are parallel, then y = /2 and

1 ’ 1 ’
=Sim?|7l—x|2§|§—§|,

so (1.24) holds. O

1.10 Lemma. Let x, x" € S,/4, where r satisfies (1.13) and x and x" are given by
(1.23), and suppose that

|x — x| <%r.

Also, let X , be defined by (1.16), and let s, s’, and t be the arc length coordinates
of &, &, and y, respectively. Then &' € X¢ /> and

(i) forall y € X ,,

lx—yl= 31—yl (1.26)
lx—yl=3lx—&L (1.27)

(ii) forall y € X¢ /2, we have y € Xgr . and
=yl =518 =yl =gl —1l. (1.28)

Proof. The geometric configuration (with the heavier arc representing a portion of
¢ r/2) is shown in Fig. 1.8.
By (1.24),

E—&|<dlx—x| <4 -gr=1r,

which means that £’ € X¢ ,».

(i) We denote by y the angle between v (&) and & — y and by ¥ the angle between
v(§)and y —x.If y € X¢ ., then |§ — y | < r, so from the sine theorem and (1.15)
it follows that

sin y
—— & —y|=31E—yl,

X — =
| vl sin ¥

which is (1.26).
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Fig. 1.8 Portions of X , and
¢ r/2 (heavier arc)

Inequality (1.27) is establish as above; that is,

oyl =Yg
X—yl=—7————|x—
Y sin(y + %)

> 1 — &
(ii) Since y € Xt ;2 and, as already shown, & e Xt r2s
& —yI<I§ —&l+1E—y
< %r + %r =r.

This means that y € X/ ,, so (1.26) remains valid for x', &, and y, yielding

=yl =3 1E =yl
Finally, by (1.17),
& =yl =3I —1l.
which completes the proof of (1.28). m]

1.11 Lemma. Let x, x’ € S;/4, where r satisfies (1.13), x and x" are given by (1.23),
and

lx — x| <%r.

If, with the notation in Lemma 1.10,

Zi={y€ T, ls—t] =8lx — x|},

, (1.29)
Yy =X, \N X1 ={yeXe,:|s—1t]>8x — x|},
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Fig. 1.9 A portion of ¢ ,
and X (heavier arc)

then X lies strictly within X¢ ,, &' € X1, and forall y € X»,

K —yl= 1=yl (1.30)
e —x| < 5l =yl (131)
€' =yl <35 =yl (1.32)

Proof. Consider the diagram in Fig. 1.9, where the heavier arc represents X;. Let a,
b and p, g be the boundary points of Xt , and X, respectively, with a, p and b, g
on opposite sides of &, and let ¢, and 14, 1, < s < 1, be the arc length coordinates
of pand g. Then |§ —a| = |§ — b| =r, so, by (1.17) and (1.29),
& —pl <Is —tp| = 8x — x|
<8~%r:r:|§—a|,

with a similar inequality for |§ — ¢|. This means that X lies strictly within X¢ .
Combining (1.17) and (1.24), we see that

|s —s'| <2|& —&'| < 8lx —x'|;

therefore, by (1.29), &’ € X.
For y € X, we use (1.29), (1.26), and (1.17) to find that
X' =yl =lx—y|—|x —x|
> |x—y|—gls—1]

Me—yl—tlE—yI=tiE—yl

v

Next, by (1.24), |§ — &'| < 4|x — x| < %r < r; hence, by (1.29), (1.17), and
(1.26),

Is—t] < 1iE—y|

2 —yl=5lx—yl.

x—x'| <

<

1
8
1
1
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Finally, since y € X, and, as shown above, ¢’ € X, from (1.17) and (1.29) it
follows that

E =y <lE=yI+IE-EI<lE=yl+Is—5
SIE—yI+8lx =X <[ —yl+Is—1],

so, by (1.17),

&=yl =1E—ylI+2[ —yl=3l§ -yl o

1.12 Lemma. Let x, x’ € Sy /4, where r satisfies (1.13),
lx — x| < }1 r,

and X , is defined by (1.16). Then forall y € 05 \ X¢ ;,

lx —x'| < T lx =y, (1.33)
x—y|> 31—yl (1.34)
X =yl > 31E—yl, (1.35)
1€ —yl <2/ =yl (1.36)

Proof. Given that y ¢ X ,, we have
E—yl>r (1.37)
Also, since x € S, /4,
—ylzl§ =yl —lx =&l >r—gr=3r>3x—x|
Similarly, by (1.37) and the fact that x € S;/4,

x—yl=lE—yl—lx—El=E—yl— 57
SE—yl—tlE—yl=21E—yl
Next, using (1.34) and (1.37), we deduce that
W=yl —yl ==X > x—y|—ir
>3E—yl—slE—yI=11E—yl
Finally, by (1.24) and (1.37), we have |§ — &’| < 4|x — x/|, so

§" =y <l —yl+1E—&1 <& —yl+4x—x|
<[E=yl+r<E=yl+IE-yl=21f -yl o
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1.13 Lemma. With the notation in Lemmas 1.10 and 1.11, if x, x" € S,/4 satisfy

1
O0<|x—x'| <—r,

16

Il : ]
r < min
8ko

then there are constants cy, ¢y, c¢3, c4 > 0 such that

/| _ds() < aily -7 vy o, ),
/| S ds(y) < colx =x|'77 vy €0, 1),
.x
3
/E_Wﬁdw—r_77we@“

| ds(y) < 4| In|x — x|,

where c1, ¢3, and c¢3 depend only on y .

Proof. Let § = |x — x'|, let x and x’ be given by (1.23), and let s, s/,

(1.38)

(1.39)

(1.40)

(1.41)

and ¢ be, as

before, the arc length coordinates of &, &', and y, respectively. We make the notation

Mi={t:y() e Sy ={r:|s—1] <8},
Dy={t:y(t)e o) ={t:y € Ze,, |s—1] > 86}.

Fory € Xy C X¢,, by (1.26) and (1.17),

1 1
x—=ylz3lE=yl=zzls—1l,

(1.42)

so, taking into account the fact that s — 85 <t < s + 86 for r € I'1, we find that

s+86

1
d 4V dt = 4}/ dt
/| sO) = ./| —1 /|wﬁw

s—86
s+86

—4V[j ! dt+/ ! dt
- (s — 1) (t — s)

s—86 K

4Y 24—y
=—— 2857 =
1—vy 1-—

Ix —x/|'77.

|
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Once again, for y € Xy C X¢ ,, by (1.17),

|E—yl<I|s—t] <8lx —x
1 1
< 8- _6 =3 r,
s0 y € X¢ /2, which, according to Lemma 1.10(i), implies that y € X¢ , and,
therefore, by (1.28), |x' — y| > % |s" — t]. Also, by Lemma 1.11, ¢ € X, which,
by (1.29), implies that |s — 5’| < 8|x — x| = 85. As above, we then have

5488

y — 4V
/|/ yds(y) =4 /|/ 1) t_4[/(’—t)7” /(Z—S’)y t]
5

47 | 25-%
= 2(s' —s+88) Y <
1—y 11—

Ix — /|77,

Let s, and sp, 5, < 5 < sp, be the arc length coordinates of the end-points a and
bof X¢,.Fory € ¥» C X¢ ,, by (1.26) and (1.17), we have

1 1 .
x—=yl>31E—yl=gls—1l;

hence, proceeding as above, we find that

I+y - -
/| yir P =4 /|s—r|‘+y a“
s—86 1 Sp 1
=41ty /7& /7dt
‘ oo T =Ty
Sa s+88
At 2 1 1 2
I N C ) L O N OO 1 vy lx—xpr

The last integral is evaluated in the same way and yields

1

| |ds(y)=4I—21n8—21n8+ln(s—sa)+1n(s—sb)].
x—y

2

Since r < 1/2, it follows that In |x — x’| < In(r/16) < In(1/32) < 0. Also, by
(1.17), s —sq <2|& —a| =2r < 1,s0In(s — s4) < 0, with a similar inequality for

sp — s, therefore,

/| ~ds(y) < —8In|x —x'| = 8|In|x — x'||. O
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Fig. 1.10 The local frame of
coordinates with the center
at x

1.14 Remark. It is obvious that all the conditions in Lemmas 1.3, 1.4, 1.7, and
1.9-1.13 are satisfied if, for example, we choose x, x’ € S, /4 such that

1 1 1
0<|x—x/|<Er, 0<r§minl§,8—]. (1.43)
Ko

From now on, we work under this assumption and use the notation

So = Sr/4s
Sy ={xeSo:x=E&+0v(), §€dS, —jr <o <0}, (1.44)
Sy =So\ Sy

1.15 Remark. For x € 9, we introduce local coordinates (o, w) along the positive
tangent and inward normal to .S at x, respectively. Since 3 is a simple C2-curve, in
accordance with Remark 1.5 there is a function f twice continuously differentiable
on some closed interval [p;, p,] € [—r, r] satisfying f(0) = f’(0) = 0 and such
that the equation of the arc X, , can be written in the form w = f(p). In this local
frame, x is the origin and a point y € X , has coordinates (o, ®) = (p, f(p)) (see
Fig.1.10).

From Lemma 1.3, the formula for the curvature of a plane curve, and (1.9), we
then readily deduce that forall y € Xy ,,

3
| f(p)l=]x —ylcosy < %r,
If'(p)| = tana < /3,

1" (o) < ko[ 1+ 2]

< 8ky.

Given that |p| < r and in view of (1.43), this allows us to conclude that there is
¢ = const > 0 depending only on 9.5 and such that for all x, y € a5,

ol <c, If@l<c, Iff (@l <c, If"(p)]=<c
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1.16 Theorem. If x, y € 0S and s and t are the arc length coordinates of x and y,
then

lx —y|
|s — t]

— 1 as y — x, uniformly on a5S.

Proof. Without loss of generality, we may assume that y € X .. Referring to the
local coordinates (p, ) and function f introduced in Remark 1.15, we expand f
and f’ in Taylor series with remainder and find that

F(p) = £O) +pf'©) + 3 0> f"(p1) = 5 0° f" (o). (1.45)
f'(0) = [ ©0)+ pf"(p2) = pf"(p2). ‘

with p; and p; between 0 and p.
For p € [p1, pr], consider the functions

fip)=lx—yl=[p*+f (p)]”2

p

flp)=t—s= / 1+ f/2(9) 1/2 (1.46)
0

By (1.45),

f(/o) Z%pf”( D

hence, the left-hand side is well defined at p = 0, where it takes the value 0. Then
from (1.46),

1+M f'(p)
F(p) = p+fp)f') _ o
! [0 + f2(p))'/? [H(@)z]'”’ (1.47)
19

£ =11+ f ()12,

SO
flOy=1, f0) =1

and we have

fi(p) = f10) + pf{ 0 + 5 2 £"(0) = p + % 0> £ (),

(1.48)
£(p) = £00) + pf50) + % 2 £5/(0") = p + 5 0% 5 (0",

with p’ and p” between 0 and p.
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Differentiating the functions in (1.47) again and then replacing f and f’ by their
expressions (1.45), after a long but straightforward computation we arrive at

p[% "2 (p1) + £ (02) + % £ (1) £ ()]

[ (p) =
: [1+402772(00]"
G SOV ECORS Vb OV 0) S
pekerel”
o) = [ (0)f7(p)

[1+720)]"
therefore, by Remark 1.15, thereis ¢ = const > 0 depending only on 9§ and such that
lpl<e, 1fi'l<ec, 1 (Pl<c

forall p € [pf, pr] (thatis, forall y € X\ ) and all x € 9S. This implies that

lofy ()l <clpl =0 asp—0, a=1,2. (1.50)

Consequently, by (1.46), (1.48), and (1.50),

K=yl _ fit) _ 4302 H"E)
Is—tl 10 |p+ 35026 (0]
_ 11430/

11+ 5 06" (0")]

—1 asp— 0. O

1.17 Theorem. With the notation in Theorem 1.16,

lx — ¥yl
P

— 1 asy— x, uniformlyondS.
Proof. As above, we find that

lx —yl _ fi(p)
0

:1+%pfl”(p/)—>l as p — 0. |

1.18 Remark. If f is continuously differentiable in Sp, then we can write

grad f(x) = [r(x) 8sa + v(x) 0 j|f(x), x €08, (1.51)

(x) ov(x)

where the notation d/ds is preferred to 9/97.
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1.19 Remark. According to the definition of Sy, the mapping from the set
{{.0}: £ €S, o] < 57}
to Sop defined by
(.ol x=§+0v(§)

is a bijection.

Let g be a continuously differentiable function on Sp. Since at any point x € So
the associated pair {£, o'} is uniquely determined, we can extend the definition of the
normal derivative dg/dv(x) at x € 9S to any point x € Sy by writing

3
3, 8@ = ((grad g)(x), v(&)). x € So.

1.4 Integrals with Singular Kernels

Let C(S)and C'(S), respectively, be the spaces of (real) continuous and continuously
differentiable functions in S. We consider the set of all functions in C(S) (C!(S)) that
are continuously extendable (continuously extendable together with their first-order
derivatives) to § = SUQS, and denote by C (S) (C1(S)) the space of the correspond-
ing extensions. The following assertion shows that this notation is justified.

1.20 Theorem. Let f € C'(S), and suppose that
f(x) > (&), grad f(x) > A(§) asS>x —> & €S,

where | and A are continuous on 3S. Then the function

fx) =

~ f(-x)’ X € Sv
I(x), xe€0dS,

has one-sided derivatives at all x € 0§ and

z o grad f(x), x €S,
grad f () = [A(x), x €35,

(that is, the operations of differentiation and extension to S commute for f).

Proof. Let A(x) = (A1(x), A2(x)). Itis clear that f € C(8) N C!(S). Consequently,
for & = (&1, &) € S and x = (x1, &) € S, x1 # &1, in a sufficiently small
neighborhood of & we have
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fox)— f@

0 -~
g —M(é)' = ‘E fa —ms)‘

9

9
= ‘_8 f ) —ri(§)
X1

where n = (11, &) with 11 between x; and &;. The result for 9 f /9x1 now follows
from the fact that the right-hand side tends to zero as x — &. The argument for
af /dxo is similar. O

1.21 Remark. The above spaces are also introduced for functions defined on 9.
Let f(x) be such a function, and let s be the arc length coordinate of x. Then for
simplicity we also write f(s) = f (x (s)) . Inthis case, the derivative of f is defined by

)  tim L0 =IO

t—s r—3s

where s, ¢t € [0, /], provided that the limit exists. We specify that in what follows
the notation f” for the derivative does not extend to position vectors. Thus, x” will
denote a point on 9.5 and not dx/ds.

Clearly, if f is defined and differentiable on a domain that includes 95, then the
derivative along 9.S of the restriction of f to .S coincides with (grad f(x), 7(x)).

1.22 Definition. A function f defined on S is said to be Holder continuous (with
index o € (0, 1]) on S if

[f(x)— fO)| <clx —y|* forall x, yeS, (1.52)

where ¢ = const > 0 is independent of x and y. If S is unbounded, then the above
definition must hold on every bounded subdomain of S.

We denote by C O""(S‘ ) the vector space of (real) Holder continuous (with index
o € (0, 1]) functions on S, and by C1@ (S) the subspace of C1(8) of functions whose
first-order derivatives belong to C%%(S).

1.23Lemma. If 0 <8 <« <1, then
(i) €(§) c COA(S); ) )
(i) fg e COA(S) forall f e CO%(S)and g € C*P(S).
The proof consists in the verification of (1.52).
The spaces C*%(35) and C1%(9S) are introduced similarly, with (1.52) required

to hold for all x, y € 9S. In view of Lemma 1.4, we will not distinguish between
O« (3S) and C°2[0, ], which is defined by means of the inequality

[ f(s) — f(O)] <c|s —t|* forall s, re]l0,I].

Obviously, Lemma 1.23 also holds for functions on 9.S.
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1.24 Remark. If f is bounded in S, that is, |f(x)] < M = constforall x € S, and
(1.52) holds for all x, y € S such that |x — y| <8, where 6 = const > 0, then it
holds (possibly with a different c) for all x, y € . This is easily shown, since for
|x —y| > & we can write

oM
[f(x) = f <2M < 5_a|x -yl

1.25 Remark. If ¢ € C 0.2(38) as a function of x and x = x(s), then, by Lemma
14,¢ € C%*(38) also as a function of s, and vice versa.

1.26 Definition. A two-point function k(x, y) defined and continuous for all x € Sy
(x €9dS)andy € 05, x # y,iscalled a y-singular kernel in So (on 35 ),y € [0, 1],
if thereis p = const > 0, which may depend on 9§, such thatforallx € So(x € 95)
andy € 95, x # y,

p
lk(x, Y| £ ———.
lx —y 7
If the above inequality holds and, in addition, for all x, x’ € Sy (x, x’ € 35 ) and
y € 98 satisfying 0 < |x — x'| < % |x — y | we have

ke, 3) — kG, )] < p
X, y) —k(x’, =pP———>
y y p X —y
then k(x, y) is called a proper y-singular kernel in Sp (on 95).
We extend this definition to two-point matrix functions by requiring each com-
ponent to satisfy the necessary properties.

1.27 Remark. A kernel may have a lower ‘singularity index’ y when it is considered
on 9§ rather than in Sy. For example, the function k(x, y) = dA/dv(y) is a proper
1-singular kernel in Sy, but, by Lemma 1.2, a proper O-singular kernel on 9.S.

1.28 Lemma. If k(x, y) is y-singular in Sy, y € [0, 1], and continuously differ-
entiable with respect to xo for all x € Sy and y € 35S, x # y, and if the kernels
|x — y|[0k(x, y)/0x] are y-singular in So, then k(x, y) is a proper y-singular
kernel in Sgp.

Proof. Letx, x’ € Spand y € 3S be such that 0 < |x —x'| < % |x — y|. For any x”
on the line between x and x’ we have

X" =yl =lx—y|—|x—x"|
1
>x—yl—zlx—yl

1 .
=5lx =yl
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consequently,

lk(x, y) —k(x', y)| <|xq —x,

/
o |

_k //7
o (x y)'

—y—1
<plx=xlx—yl7",

where p’ = const depends only on y. O

1.29 Remark. If k(x, y) is a y-singular kernel on 9§, y € [0, 1], and continuously
differentiable with respect to the arc length coordinate s(x) of x at all x, y € a5,
x # y,and if |[x — y |[0k(x, y)/ds(x)] is y-singular on 9§, then k(x, y) is a proper
y-singular kernel on 9S. The proof of this statement is similar to that of Lemma
1.28, use also being made of Remark 1.6.

The following assertion is proved by direct verification of the required properties.

1.30 Lemma. (i) If ki(x, y) is O-singular and ko(x, y) is y-singular, y € [0, 1],
then ky(x, y)ky(x, y) is y-singular.

(1) If ky(x, y) is y1-singular and ky(x, y) is y2-singular,0 < y1 < y» < 1, then
ki(x, y) + ka(x, y) is y2-singular.

1.31 Remark. Lemma 1.30 also holds with ‘singular’ replaced by ‘proper singular’
in its statement.

1.32 Theorem. If k(x, y) is a y-singular kernel on 3S, y € [0, 1), then the function

Fo) = / k(x. y)ds(y) (1.53)
EN
is continuous on 0S.

Proof. Let x, a, b, y € 9§ have arc length coordinates s, s — €1, § + &2, t, respec-
tively, with €1, & > 0 arbitrarily small, and let

ol
1 = — dt,
2 (5) /|s_t|y
b

1
I(s)=/ YTy dr.
aS

Clearly,

1(s) — L:(s)| = 7 +e "),

1
-y
so I;(s) — I(s) uniformly with respect to s as €1, &2 — 0. Since, by Definition
1.26 and Lemma 1.4,
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C
k(x, y)| < ———
lx —y|”

C

=
ls —1|¥

for all x, y € 95, x # y, the improper integral (1.53) converges uniformly with
respect to x € 95, and the assertion follows from a well-known theorem of analysis
(see, for example, Smirnov 1964). O

1.33 Theorem. If k(x, y) is a proper y-singular kernel in Sy (on 95), y € [0, 1),
and ¢ € C(0S), then the function

K(x) = /k(x, Ve ds(y), x €S (x €dS),
3s

belongs to C%P (So), with B =1 —y for y € (0,1) and any B € (0, 1) for y = 0.
In addition,

IK (x) — K(x)]
sup  ————— 5 = ¢ sup [p(x)],
xx'esy @s) X — X xeds
x#x!

where ¢ = const > 0 depends only on y .

Proof. It is obvious that K (x) is an improper integral for x € 9.S.

Let Xy ,, X1, and X, be defined by (1.16) and (1.29). In view of Remark 1.24,
we may consider x, x’ € Sy satisfying (1.43).

Setting, as before,

x=E+ov), X' =§&+0vE), £ & €S,

we can write

Kx)—K@x)=hL+L+ 5,

where, by Definition 1.22, Remark 1.14, and Lemmas 1.10-1.13,

1| = ‘/[k(x, y) —k(x', y)]w(y)dS(y)‘
X

1 1
< c1 sup |@(x)] ( + — )dS(y)
xeds x—yl¥ X =yl

X
1_
< clx — x| sup |p(x)],
x€o0S
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|| = ‘/[k(x, y) —k(x', y)]w(y)dS(y)‘
P}

1

< cslx — x| su |<p<x>|/—ds<y>

cens J
2

< ealx — X" sup lp(x)| if y € (0, 1),
x€dS

12| < eslx —x/|[In|x — x"I[ sup [p(0)| if y =0,
x€dS

|13 = ‘ / [k(x, y) —k(x', y)]co(y)dS(y)‘

85\

1
< celx — x| sup |@(x)| / ——ds(y)
xeds lx —y v+l Y
BS\Eg,r

< e "M x — x| sup Jp(x)]
x€dS

= cglx — x| sup |p(x)],
xe€dS
where [ is the length of the boundary curve dS. The assertion now follows from the
fact that the constants cy, ..., cg > 0 are independent of x and x’ (although they
depend on y).
The result is established for x, x’ € 9 as a particular case of the above, by setting
x=~&andx' =§&'. O

1.34 Remark. It is obvious that Theorem 1.33 holds if the kernel k(x, y) is contin-
uous on Sy x 95 (085 x 9S5).

1.35 Theorem. If k(x, y) is a proper l-singular kernel in So (on 85), ¢ € C*%(35),
o € (0, 1], and

P(x) = /k(x, N[e) —e@©]dsy), (1.54)

as

where x =& +ov(€) € So (x =& € 3S), then ® € C*P(Sp) (@ € COP(DS)) for
any B € (0, o). If, in addition, o € (0, 1) and

‘ / k(x, y)ds(y)| <c=const >0 (1.55)

IS\ X 5

forall x € So (x € 3S) and all 0 <8 < r,then ® € C%%(Sy) (® € CH*(3S)).
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Proof. Clearly, @ exists as an improper integral if x € 95, and, by Theorem 1.32, is
continuous on 9.

As in the proof of Theorem 1.33, let x, x” € Sy be chosen so that (1.43) holds.
Writing

D(x) — P(x")

= / {k(x, Mo — @] —k(x', Vo) — eE)]} ds(y)
Py}

- / {[kCx, y) — k(" »][e() — 0EN]
3

—k(x, [e®&) —E)]}ds(y)
+ / (kG y) = ks »][e0) — 0]

S\ Xt

—k(x, [e®) —eEN]}ds(y)
=L+ L+ I

from Definition 1.22, Remark 1.14, and Lemma 1.13 we now find that

1 1
1 + d
'l'fclf(ls—yﬂ—a |s’—y|l—“) W)

2

< el —x'1,

/ 1 N 1
|12|SC3|x—x|/st(y)+C4|S—§| /Ié—ylds(y)
P 3

< cslx —x'|* + colx — x'|*|In|x —x'|| for a € (0, 1),

1 1
|I2] < c3]x —X’I/ ds(y) + csl& — é’l/ ds(y)
1§ —yl 1§ —yl
2] 3

<c7lx =x'||In|x —x'|| fora=1,

1 1
3] < cglx — x| / —————ds(y) + col€ — &I / ds(y)
& —y|>@ [
S\ Z¢ S\ Ze
l
< s v — X[ +cro= v =" < enlx — X%,
re—¢ r

where c1, ..., c11 are positive constants independent of x and x’.
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This proves the first part of the assertion. For the second part, we combine the last
terms in /p and /3 and use the fact that

/ k(x, y)ds(y)
S\ X

is bounded for all x, x" € Sy satisfying the conditions of the theorem. (See Remark
1.41 below for a full explanation of this detail.)
The result for x, x” € 3S is again obtained by setting x = & and x" = &'. ]

1.36 Remark. By Theorem 1.32, estimate (1.55) holds on 9§ if k(x, y) is a
y-singular kernel on 9§, y € [0, 1).

1.37 Theorem. Let k(x, y) be a B-singular kernel on 3S, B € [0, 1), such that
0
g = 5 [ k. s
S
BN

exists for all x € 0S and g € C(3S), and

k(-x/’ )’) - k(-xv Y)

s’ —s

— ko(x, )+ 0(&) (1.56)

Ix —y|r+2

forall x, x', y € S satisfying
, 1
0<|x—x|<§|x—y|,

where s and s’ are the arc length coordinates of x and x', and |x — y |ko(x, y) is a
y-singular kernel on 9§, y € [0, 1).
If 9 € CO%(3S), a € (B, 1], @ > y, then the function

F(x) z/k(x, Ve ds(y), x €39S,
N
belongs to CcL@S) and
0
35 F(x) = /ko(x, W) — o) ds(y) + p(x)g(x). (1.57)

S

Proof. Let G(x) be the function on the right-hand side in (1.57). By Theorem 1.32,
F(x) and the first term in G(x) exist as improper integrals and are continuous on
aS; the second term in G (x) is continuous by assumption.
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Letx, x’ € S be such that 0 < |x —x'| < r/8, with r satisfying (1.43). We have

F(x') — F(x)
s/ —s

- G(x)

[0(y) — ()] —k(x, »)[e() — )]} ds(y)

+ w / k(e y) ds(y)

D

—/ko(x, Mo — )] ds(y)

2

k(x', y) —k(x,
+/< (x ys)/_s(x y) ~ kolx. y)][q)(y)_(p(x)]ds(y)
P
k(x', y) — k(x,
N [ (x ys{_s@“ Y kot y>][¢(y)—so<x>]ds<y>
IS\ Ex.r
1
+(p(x)[s/ — [/k(x/, y)ds(y) —/k(x, y) ds(y)} —g(x)]
3s 9§

=h+Lb+L+ 1L+ 1s+ 1.

By Definition 1.22, Remark 1.14, and Lemmas 1.10 and 1.13,
P,

1| < /(|x/—y|“—ﬁ+|x—y|“—ﬂ>ds<y) <als —s

s’ —

a3 1 ’ a—p
|12|s|S,_S|1_a/|x,_y|ﬁds<y)5c4|s s,

13| = C5/| |1+y — ds(y) < cls" =577

By Lemma 1.11, y € X» implies that

1
v — x| <zl =yl

hence,

1 _
[14] §C7|S/_S|/md.¥(y)§C8|s/—s|a v,

P}
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Finally, by Lemma 1.12,

1
5] < cols” — s] / mds(y) < ciols” = sl.
IS\ s,

Since all the constants c1, ..., cjp > 0 are independent of x and x’, we find that
Ij > 0ass'—s—0,j=1,....,5.

In addition, by our assumption (i), I¢ — 0ass’—s — 0, which proves that F’(x)
exists for all x € 9 and is given by (1.57), whose right-hand side is obviously a
continuous function on 9. O

1.38 Remark. Under the conditions in Theorem 1.37,if g € C%%(38) and ko(x, y)
is a proper 1-singular kernel on 95, then, by Theorem 1.35, F € C1#(35) for any
B € (0, ). If, furthermore, @ € (0, 1) and ko(x, y) satisfies estimate (1.55), then
F e Ch¥(38).

1.39 Remark. In practice it is helpful to have some easily checked condition in
place of assumption (1.56) in Theorem 1.37. Suppose that k(x, y) is continuously
differentiable with respect to the arc length coordinate s of x at all points x, y € 95,
x # y, and that [x — y|[0k(x, y)/ds(x)] is a proper y-singular kernel on 95,
y € [0, 1). Then for x, x’, y € S such that 0 < |x — x/| < %|x -yl

k(x/9 y) _k(x’ }’) _
s’ —s T As(x)

// a
k(x, y) + |:8_() x7, y) — a0 k(x, )’)},

where s’ is the arc length coordinate of x” and x” € 95 lies between x and x’. Since

4 a
95 (x) k(x", y)_T y)'

it follows that under the above conditions, (1.56) holds with

a
ko(xv y) = mk(xﬂ )’)

1.40 Definition. Let k(x, y) be defined and continuous at all points x, y € 95,
x #y. Wesay that [ k(x, y)ds(y) exists as principal value if
as

girrz) / k(x, y)ds(y) (1.58)

IS\ Xy 5

exists forall x € 9S.
Obviously, an ordinary (even improper) integral exists as principal value, but the
converse is not true in general.
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Fig. 1.11 The sets X 5 and
Iy s (heavier arc)

In what follows, the principal value of an integral (if it exists) is denoted by the
same symbol as an ordinary integral, the difference in meaning being either explicitly
stated or understood from the context as the only possible alternative.

1.41 Remark. Let k(x, y) be a 1-singular kernel on 9.5, and, with an earlier notation,
lets,, spand sy, 54,5 < sp < 54 < sp, be the arclength coordinates of the end-points
a, b and p, g of the sets Xy s and

I'is={yedS:|t—s| <6}, (1.59)

respectively, where s and ¢ are the arc length coordinates of x and y (see Fig.1.11).
Since

‘/k(x,y)dS(y)— / k(x,y)dS(y)‘
8S\1—j\',6 8S\Ex.6

Sp Sh
:‘ / k(x, y)ds(y)| < c(/ ! dt+/ ! dt)
‘ |s — 1] |s — 1]

E:(,«S\FX,B Sq
S—Sq Sp—S S—S8; Sp—S
=cln . =cln . )
s—3Sp Sg—5 1) 1)

Theorem 1.16 implies that if [ k(x, y)ds(y) exists in the sense of principal value,
BN
then its definition can equivalently be given as

lim / k(e y) ds(y).

S\I2s

Moreover, if the limit (1.58) exists uniformly for all x € 9§, then so does the above
one, and vice versa.

1.42 Remark. Let p be the local coordinate of y € X , measured from x along the
support line of 7(x) (see Remark 1.15), and consider the set

Ays={ye Xy, lpl <68}, §< %r-
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Since § < r/2, all points in the neighborhood of x such that |p| < § belong to X\ .
Denoting by —a and b, a, b > 0, the p-coordinates of the end-points of X 5, we

find that for a 1-singular kernel k(x, y) on a5,
‘ / k(x, y)ds(y) — / k. ) ds(y)‘
IS\ Xy 5 0S8\ Ax,s

=‘ / k(x, y)ds(y)

Ax 8\2): 8 AX,J\EX,S

)
1 )
562(/——dp+/—d ):czln(—~—),
P a b
b

where ¢y does not depend on x. Consequently, by Theorem 1.17, if
/k(x, y)ds(y)
s

exists in the sense of principal value, then it can also be defined as

Jim k(x, y)ds(y).
AS\A s

1
<o / ds(y)
lx —y|

Furthermore, from Theorem 1.17 it follows that if either of these two equivalent limits
exists uniformly with respect to x € 9.5, then the other one has the same property.

1.43 Theorem. Suppose that k(x, y) is a proper 1-singular kernel in Sy and, at the

same time, a y-singular kernel on 39S, y € [0, 1), and let

Jfx) =/k(x, y)ds(y), xe€So\as,
3s
Jox) = /k(x, y)ds(y), xe€dSs,

N

and
Fr) = / kG, Vo) ds(y), x € So\ 38,
EN
Folx) = / k(x. Ve ds(y), x €S,
N

(1.60)

(1.61)
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where ¢ € CY2(3S), a € (0, 1]. Also, consider the functions

o [f(x), §e sy,
I 3
]E)(C);L Sox), xe€ Sf, (162)
B _ X), x €8,
fo= [—l(x) + fox), x € s,
and
F+(x) — F(x), xeSy,
e + Fo(x), xe af, (163
F‘(x)z[F(x)’ X €5,
—1(x)p(x) + Fo(x), x €8S,

where l € CO*(38).If f+ e CO*(S) and f~ € CO*(S)), then F* € COF(5))
and F~ € CO#(S;), with B = o for a € (0, 1) and any B € (0, 1) for a = 1.

Proof. From the properties of k(x, y) itis clear that fy and F¢ are improper integrals.
To prove the statement for F T, it suffices to consider x, x’ € Sar satisfying (1.18). Let

x=&+ov(E)eSf, £€dS, x' =¢&€ds.

Then

/ ds(k(x, Ve — (K)e') — / k(s Vo) ds(y)

S BN
= /k(x, N[e») — e@&]ds(y) —/k(X’, e —e&)]ds(y)
as as

+ [0&) — p(x)] / k(x, y)ds(y)
aS

+¢(X’)[/k(x, Y ds(y) —1(x") —/k(x/, y)dS(y)} (1.64)

S aS

that is,

Ft)— FT) =o@x) — o) + @) — oE)] T
+ [T ) = fTED)]eE, (1.65)

where @ is given by (1.54). Equality (1.65) is similarly obtained for x, x’ € S,
x,x" € 35,orx € 38, x' € SO+. Since, by our assumption, both fy and f
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are bounded, (1.60) shows that k(x, y) satisfies estimate (1.55). The assertion now
follows from (1.65) and Theorem 1.35.
F~ is treated analogously. O

This theorem can be generalized to certain 1-singular kernels on 9S.

1.44 Definition. A 1-singular kernel k(x, y) on 9 is called integrable if

/k(x, y)ds(y)

S

exists as principal value for all x € 9§, and uniformly integrable if the integral in
(1.58) converges uniformly with respect to x € 9.S.

For convenience, we extend this concept to y-singular kernels, y € (0, 1), and
note that all such kernels are uniformly integrable.

1.45 Remark. If k(x, y) is uniformly integrable, then f k(x, y)ds(y) is continuous
N

on dS. This is shown by writing the principal value of the integral as the sum of
a uniformly convergent infinite series. Evidently, any uniformly integrable kernel
satisfies (1.55) on 9.

1.46 Theorem. If the kernel k(x, y) is l-singular on dS and integrable, and if
¢ € CO(@S), a € (0, 11, then the integral

[k o dse

aS
exists in the sense of principal value for all x € 9S.1If k(x, y) is uniformly integrable,
then the above principal value exists uniformly with respect to x € 3S.

Proof. We write

ke, Vo(y) ds(y) = / k. o) — o] ds()
IS\ Xy s S\ Xy s

() / k(x. y)ds(y).
S\ Xy 5

The result follows from the fact that, as § — 0, the first term on the right-hand side
converges uniformly since its integrand is O (|x — y [*~1). O
1.47 Theorem. Suppose that

(1) k(x, y) is a proper l-singular kernel in Sy which is integrable on 95
(ii) f* and f~ defined by (1.62), where | € cY2(39), a € 0, 1], and ]io is
understood as principal value, belong, respectively, to C ¢ (SO+) and C % (5)-
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Then the functions F* and F~ defined by (1.63), where ¢ E_CO"" @8) and_Fo
is understood as principal value, belong , respectively, to CO"B(SS_) and CO*’S(SO_)
with 8 = a fora € (0, 1) and any g € (0, 1) for « = 1.

Proof. By Theorem 1.46, Fq exists in the sense of principal value for all x € 9.

As in the proof of Theorem 1.43, let x, x’ € S’ar, x#x . Ifx, x' € S(;r, equality
(1.65) is established immediately. If x € S, x” € 35 (orx € 38, x" € S), we write
(1.64) with the integrals extended over 05\ X+ s (0.5\ X s) in the first instance, then
let 5§ — 0. Noting that the limit of the second term on the right-hand side coincides
with the improper integral @ (x”) (45 (x)), we again arrive at (1.65). Finally, we see
that this is also true if both x, x” € 35 when the integrals in (1.64) are initially
extended over 85 \ (Xy s U X 5). Hence, (1.65) holds for all x, x’ € S‘ar, x #x/,
and the result follows from the assumptions (i) and (ii) and Theorem 1.35.

The reasoning is similar in the case of S‘O_ . O
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Chapter 2
Potentials and Boundary Integral Equations

2.1 The Harmonic Potentials

In what follows, we examine the Holder continuity and Holder continuous
differentiability on S* and S~ of functions that are analytic in S* and S~. Hence, it
suffices to consider the behavior of such functions in the boundary strip Sp.

We begin by giving a brief account of the main properties of the harmonic poten-
tials, which will be required at a later stage in the proceedings.

The harmonic single-layer potential is defined by

(vp)(x) = —/(hl Ix —yDe(y)ds(y), 2.1)

aS

and the harmonic double-layer potential by

0
(W) (x) = — / [ In |x—y|}w(y>ds(y>, (22)
Lo

where the function ¢ is called the density.
We denote by S the finite domain bounded by 8S and set

S™=R>\ST.

2.1 Theorem. If ¢ € C(3S), then vp € CO*(R?) for any index a € (0, 1).

Proof. The assertion follows from Theorem 1.33 in view of the fact that, as can easily
be verified by means of Lemma 1.28, the kernel

k(x, y)=—In|x —y|

of v is a proper y-singular kernel in Sy for any y € (0, 1). O

C. Constanda, Mathematical Methods for Elastic Plates, 37
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2.2 Theorem. If ¢ € COe (@S), o€ (0, 1], then the restrictions of we to ST and
S~ have C%P-extensions to St and S~ respectively, with B = a for a € (0, 1) and
any B € (0, 1) for o = 1. These extensions are given by

oy o) (x), xest,

(e = [—w(x) + @)X, x €S,
(2.3)

(we)~(x) = (we) (x), x €S,

T re0) + o)), x €08,

where

a
(wop) (x) = —/ [—ln lx —y I}p(y) ds(y), x €0s. 2.4
A av(y)

Proof. Applying Lemmas 1.28 and 1.2, we readily convince ourselves that

9 X —
kx, y) = S av(y) ol =yl= <V(Ifc)—xylz :

is a proper 1-singular kernel in So and 0-singular on 9.S. Consequently, wog is an
improper integral.

Let x € ST, and consider a disk o, 5 C ST with the center at x and radius §
sufficiently small. Using the divergence theorem in S \ oy 5 and the fact that A is a
solution of the Laplace equation for x # y, we find that

0= / A)In|x —ylda(y)

SHt\oy s

0
= In|x —ylds(y) — / In|x —ylds(y)
/ av(y) av(y)
s 30,5
/ 9 In | |ds(y) — 2w
= x —ylds(y) —2m,
v(y)
S
where 0oy s is the circular boundary of oy s; hence,
d +
Injx —y|ds(y)=2n, xeS7. (2.5)
av(y)

aS

The procedure is similar for x € 9., except that in this case oy s is replaced by
ox.5 N ST and do, s by its part lying in S It is not difficult to show that for a small
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value of 8, the length of this part is equal to 778 + O (8%), which leads to

0
/ Injlx —y|ds(y) =m, x€dS. (2.6)
A av(y)

Finally, the direct application of the divergence theorem yields

8{ ava(y) Injx —y|ds(y) =0, xe€S§. 2.7)

In view of these integrals and the expression of k(x, y), we now see that

-2, xe ST,
£ —/k<x, ¥ ds(y) = ’0’ i
EN
folx) = /k(x, y)ds(y) = —m, x €08S. (2.8)

N

From (1.62) with [(x) = —m, x € 35, we obtain

ffoy=-2n, xesy,
f(x) =0, X €S,.

Since
frech (S, fmec™ sy,

the desired result follows from Theorem 1.43. |

2.3 Remark. Theorem 2.2 implies thatif ¢ € Cl (0S), then, as SE>x' = x €98,
we has finite limits given by

Injx —y |i|g0(y) ds(y), x€dS, (2.9)

d
) = —
(W)™ (x) = Frp(x) l[GV(y)

where the last term is an improper integral. It can be shown (Colton and Kress 1983)

that w can also be extended by continuity to ST and S~ if ¢ € C(35), but then the
two extensions wT and w™ are merely continuous.

2.4 Theorem. If ¢ € C%*(3S), o € (0, 1], then the first-order derivatives of
ve in ST and S have C%P-extensions to ST and S~, respectively, with B = «
for o € (0, 1) and any B € (0, 1) for o = 1. These extensions are given by
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(gradve)(x), xe ST,

+ir) =
(gradve)™ (x) = [nv(x)(p(x) + (gradvp)o(x), x €98,

(grad ve) (x), x €S,

feradve) (0 = [—nu(x)<p(x) + (gradvp)o(x), x €95,

where

(grad vp)o(x) = — / [erad () In [x — y [Jo(y) ds(y). x € a5,
N

the integral being understood as principal value.

Proof. By checking the properties required in Lemma 1.28, we verify that
k(x, y) = —grad (x)In|x — y |

is a proper 1-singular kernel in Sp and on 9S.
From (1.51) and the fact that

[grad (x) + grad ()] In|x — y | =0, x #y,

it follows that for x, y € 95, x # y,

k(x, y) = [ Infx —y I}f(y) + [ Injx —y I]V(y).

as(y) v (y)

Consequently, using integration by parts and denoting by a and b the end-points of
2,5, for x € 95 we can write

0
k(x, y)ds(y) = / [as(y)lnu—yqr(y)ds(y)

IS\ x5 35\ x5
0
+ / [mlnu—w]v(y)ds(y)
HS\EX,a
= [t(@ — t®)]In5 - / (Inlx — y DeGIv () ds(y)

0S5\ 2y s

0
+ / [av(y)lnu—y@v(y)ds(y).

0S5\ 2y s

Since S is a C2-curve, the first term on the right-hand side tends to zero as § — 0,
while the other two tend to (V(K v)) (x) and —(wov)(x), respectively. Therefore,
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k(x, y) is integrable on 9.5 and
Jox) = /k(x, Y ds(y) = (v(kv))(x) — (wov)(x), x €3S,
s

where fo is understood as principal value.
On the other hand, if x € Sp \ 0, then, again integrating by parts and taking (1.8)
into account, we find that

fx) = /k(x, y)ds(y) = (v(kv))(x) — (wv)(x), x € So\dS.
3s

By Theorems 2.1 and 2.2, the function f is C%%-extendable to S’J and S’(; and the
values of the corresponding extensions on 9§ are given by the formula

FE@) = (V&) () 7o) + (wev) (x) = £ (x) + fo(x), x € IS;
in other words, the expressions (1.62) with = v € CY1(3S). As stated earlier,

fte CO’O‘(S’J) and f~ € CO'“(S'(;). The assertion now follows from Theorem 1.47
with F and Fj in (1.61) defined by

Fx) = - / [erad (1) In |x = y [Jp(») ds(y) = (grad)(x),  x € S\ 3S,

3s
Fo(x) = —/ [grad () In|x — y |]o(y) ds(y) = (gradv)o(x), x € 35,
aS
the latter understood as principal value. O

2.5 Remark. Theorem 2.4 implies thatif ¢ € CO’“(aS),then, asST o> x' — x €98,
(grad vp)(x”) tends to finite limits given by

(grad vp) ™ (x) = £ V(x)P(x) — / [erad () In |x — y[Je(») ds(y), x €3S,

BN
(2.10)

where the second term on the right-hand side is understood as principal value.

2.6 Remark. Theorems 2.4 and 1.20 also imply thatif ¢ € C%%(3S),« € (0, 1], then
the restrictions of v to Stand ™ belong, respectively, to C LB(S*)yand C1A(S7),
with 8 = a fora € (0, 1) and any 8 € (0, 1) for @ = 1. We denote these restrictions
by (vg)™ and (vg)~; hence,

(grad (vp) T)(x) = (gradvp) T (x), x € ST,
(grad (vp) ") (x) = (gradvg) " (x), x € 5.
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2.7 Theorem. If ¢ € C1¥(3S), a € (0, 1], then the restrictions of we to ST and
S~ have CV-P-extensions (wp)™ and (wp)~ to ST and S, respectively, with p = «
fora € (0,1)and any B € (0, 1) for « = 1. These extensions are given by (2.3) and
satisfy the equality d(wp) ™ /dv = d(wp)~/dv on 9S.

Proof. Let x # y. Since
A)Infx —y| =0,
[grad (x) + grad (y)] Injlx —y| =0,

for x € Sp \ 95 and any y € 3§ we can write

3T a
8xy[8v( ) 'x‘y']

9 9
= V,s(y)—(ﬂln lx —y I) +v,(MA In|x —y|

£ 9 9 In | |
=¢eg,—(—In|x — .
B 95 () \oxg Y

Consequently, using integration by parts, we find that for x € Sp \ 95,

0 0 0
I woyx) = —/ —[ lnlx —y |}o(y> ds(y)
a 30

axy 0xy
S

9
= 8/31/@ /(1n Ix —y D¢’ (y) ds(y)

=&yg— oxp (v<p )(x). 2.11)

From this, Theorem 2.4, and the fact that ¢’ € C 0.2(38) we deduce that grad we has
% extensions (gradwe)™ and (gradwg)~ to St and §—. By Theorem 2.2, the
extensions (wg)™ and (wg)~, given by (2.3), of we are Holder continuous on St
and S—, respectively. Since, as is obvious,

grad (wp)™ (x) = (gradwe) " (x), x € 57,
grad (wp) ™ (x) = (gradwe) ™ (x), x €S,

the first part of the assertion now follows from Theorem 1.20.
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To complete the proof, we remark that, in view of (2.11) and (2.10), for x € 9§
Theorem 1.20 yields

0
5(w¢)i(x) = (grad (wp)® (x), v(x)) = ((grad we)=(x), v(x))
o)
= &yp [3_ 1% i| (X)Vy (x)
XB
o)
= Epyly (X)/ (a_ Injx —y I)w’(y) ds(y),
XB
N

where the integral is understood as principal value. O

2.8 Theorem. The function wog defined by (2.4) as the direct value on 9S of the
double-layer potential with density ¢ € C**(3S), a € (0, 1], belongs to C-P(35),
with B = a for o € (0, 1) and any B € (0, 1) for o = 1.

Proof. As noted in the proof of Theorem 2.2, the kernel

ad
k(x, y) = —3—()1 lx — ¥

is O-singular on dS; consequently, wo(x) is an improper integral for all x € 9S.
Clearly,

0
ko(x, y) = k(x, y)

500
_ O To) O) X =, X =3) G,
|x—y|2 |x_y|4

is 1-singular on 8 S. Verifying the conditions of Lemma 1.28, we deduce that ko (x, y)
is a proper 1-singular kernel on 9.
Next, by writing (-, -) in terms of the cosine of the angle between the vectors, we
find that
), T(x) + (v(x), T(y)) =0, x, y€as. (2.13)

Using the same technique, (2.12), and (2.13), for x, y € 35, x # y, we now obtain

0 0
k
[asm 4T (y>} (6 )

=2lx — y["H @), x — )T, x —y)
— (), x =T, x —y) + (), 1)} =0. (2.14)

From this and (2.12) we conclude that ko(x, y) satisfies (1.55).
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The assertion now follows from Theorem 1.37 with 8 = y = 0 and g(x) = —m,
x € dS (according to (2.8)), and Remarks 1.39 and 1.38. |

2.2 Other Potential-Type Functions

In this section we consider the Holder continuity and continuous differentiability of
some other useful integrals with y-singular kernels.

2.9 Theorem. Suppose that k(x, y) is a continuous kernel in Sy x 3§ and such that
grad (x)k(x, y) is a proper y-singular kernel in Sy, y € [0, 1), and let

(V) (x) = / kYo ds(). x € S,
EN
If ¢ € C(DS), then vl € CYP(Sy), with B = 1 — y for y € (0, 1) and any
B e€,1)fory =0.

Proof. Clearly, v¢¢ € C(Sg) N C ! (SéF ync ! (S; ). The statement follows from the
fact that for x € Sp \ 95,

(gradv?p)(x) = / grad (x)k(x, y)o(y)ds(y),
N
which, by Theorem 1.33, belongs to Co'f’(So). |

2.10 Theorem. Suppose that k(x, y) is a continuous kernel on S x 0S8 and such
that 0k(x, y)/ds(x) is a proper y-singular kernel on 39S,y € [0, 1).If ¢ € C(99),
then the function

(@) (x) =/k(x, Ve ds(y), xeds,
3s
belongs to CYP(3S), with p =1 —y for y € (0,1) and any g € (0, 1) for y = 0.

Proof. Consider the function

() (x) = / k(x, Yp() ds(y), 8> 0.
35\2)(,5

It is obvious that (vgago)(x) — (vgfp)(x) as § — 0, for all x € 9S. On the other
hand,
—a(a§0)()_ / _8 ( Yp(y)ds(y)
Vv X) = k(x, y)o(y)ds(y),
ds 0 as(x) Ve Y

IS\ Xy 5
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which converges uniformly to [ [9k(x, y)/ds(x)]e(y)ds(y) as § — O (see the
as

proof of Theorem 1.32). By a well-known theorem of analysis, vj¢ is differentiable
atall x € 95 and

0 0
Z (o = / T K D) s,
N

We complete the proof by applying Theorem 1.33 to the above integral to deduce
that d(vig)/ds € COF(39). o

2.11 Theorem. If ¢ € C(3S), then the functions

(Vh50)(x) = / Gy _|jy_)(;|82_ %) p(y)ds(y), xeR% (215
aS

. a
vy, @) (x) =/ [m((xy —yy)nfx —y |)]<p(y) ds(y), x €R*,  (2.16)

aS

d
V) (x) =/ [m(uy —y)Injx—y |)}a(y) ds(y), x e R%,  (2.17)
S

belong to C%*(R?) for any o € (0, 1).

Proof. As mentioned earlier, it suffices to verify the Holder continuity of these func-
tions in Sp.

By direct verification or by means of Lemma 1.28, we easily convince ourselves
that (x, — v, )(xs — ys)|x — y|~2 is a proper 0-singular kernel in Sy. Similarly,

(xy =y {t(y), x —y)
Ix — y?

9
9s(y)

[(xy_yV)ln|x_y|]:_Tyln|x_y|_

and

(xy —y) v, x —y)
Ix — yI?

9
m[(xy —y)njx—y|]=—-v,(hx—y|-

are proper o -singular kernels in Sy for any o € (0, 1). The result now follows from
Theorem 1.33. O

2.12 Theorem. If ¢ € CY2(3S), a € (0, 1], then the function

9 — —
(v 50)(x) = / [as(y) & |jy_)(jf2 ya)}w(y)ds(yx xeR:, (218
as

belongs to C*P(R?), with B = o for o € (0, 1) and any B € (0, 1) for a = 1.
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Proof. Direct verification of the properties in Definition 1.26 shows that the kernel
k(x, y) of v;8<p is a proper 1-singular kernel in Sp. Also, for x, y € 95, x # y,

el (xy - }’y)(xé —¥s)

ds(y) lx —y?
(xp - y,o)(xcr - Vo)
= Cys 1n|x—y|, (219)
rere x — y|? v (y)
where
Cyyys = Cyysy = —CySyy = —Csyyy = €8y
Cysys = Cyssy = Cyyss =0 (¥, 8 not summed), (2.20)

which means that k(x, y) is O-singular on dS. Consequently, v; 5% 1s an improper
integral for x € 9.
Since forx, y € S, x # y,

lim (xy - )’y)(xé - Ys)

=1, (x)T5(x%),
Jim = P (OT5()

we find that f and fy defined by (1.60) are identically zero. Hence, fT and f~
defined by (1.62) with [(x) = 0, x € 885, belong to C%%(3S). The result now
follows from Theorem 1.43. O

2.13 Theorem. If ¢ € C%%(3S), a € (0, 1], then

- 0
(vg¢>(x)=/[ 1n|x—y|}¢(y>ds(y), x€ds, (2.21)
J Lost

exists as principal value uniformly for all x € 9S. Furthermore, vggo e COB(HS),
with B = a for o € (0, 1) and any B € (0, 1) for . = 1.

Proof. For x, y € 3§, x # y, we have

In|x — <ecilx —y|™,

|'= (T, x = )]
lx — y|?

as(y)

|x — ¥

0 0
—|: In |x —y|]‘
0x, [ 0s(y)

o (T(), x =)y —yy)
lx =yl lx —yI?

_1
<alx—yl T,

where ¢ and ¢ are positive constants. Therefore, by Lemma 1.28, 9 In |x —y |/9s(y)
is a proper 1-singular kernel on dS. This kernel is also uniformly integrable since if
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a and b are the end-points of X s, then

9 |x — al
Injx —y|ds(y) =In -0 (2.22)
/ 25 (y) FIARY X —b|

AS\Zyx 5

forall0 < § < r and all x € 9S5. We can now write

9
/ [as(y) Infx —y I}w(y) ds(y)

0S5\ Xy s

0
:“/)[%@f“x‘”ﬁﬂw—w&ﬂmwx

\zx,é

and the first part of the assertion follows from Definition 1.40 and the uniform
convergence, as 8 — 0, of the right-hand side, whose integrand is O(|x — y|*~!);
consequently,

vl @) (x) :l [asiy) In|x —y I][go(y) —p]ds(y), xedSs, (223

in the sense of principal value.
To complete the proof, we apply Theorem 1.32 with & = x and make use of the
last part of Remark 1.45. O

2.14 Theorem. If ¢ € CY2(3S), a € (0, 1], then the function

d
0o = / [as(y) Injx —y I](/)(y) ds(y), xe€S\aSs, (2.24)
s
is COP-extendable to R?, with B = o for a € (0, 1) and any B € (0, 1) for o = 1.
Proof. In the proof of Theorem 2.13 it was shown that

dln|x — y|
k(x, y)=8s—(y)

is an integrable, proper 1-singular kernel on 9S. The same reasoning indicates that
k(x, y) is also a proper 1-singular kernel in Sp. In view of (2.22), formulas (1.60)
yield

fx)=0, x € 8\ dS,
fox)=0, x€as, (2.25)

the latter understood as principal value. From (2.25) and (1.62) with /(x) = 0,
x € 38, it follows that f+ e CO‘“(SJ) and f~ € CO""(SO_) (both these functions
are identically zero). The application of Theorem 1.47 now completes the proof. O
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2.15 Remark. Since [ = 0, (2.24) also represents the extension of v/ ¢ to R?, that

is, it holds for x € R?, but for x € 85 the integral on the right-hand side (denoted

by v(J; @ in (2.21)) must be understood as principal value.

Alternatively, since

3
/ Injx —y|ds(y) =0, xeR>\aS,
A as(y)

we see that the extension of v/ ¢ to R? is also given by the right-hand side of (2.23)
with x € R%.

2.16 Theorem. If ¢ € C1%(3S), « € (0, 1], then the function v(j;ga defined by (2.21)
belongs to CVP(3S), with B = « for a € (0, 1) and any B € (0, 1) for « = 1.

Proof. By Theorem 2.13, v(]; ¢ is Holder continuous on 9.S.
Letx = 1 (s) € 0§ be arbitrary but fixed, and leta = ¥ (s — &) and b = ¥ (s +5)
be the end-points of the arc I'y 5 defined by (1.59). Integrating by parts, we find that

(nlx —y D¢’ (M ds(y) = ¢(@ In|x —al — ¢b)In|x — b|
90S\I'xs

9
- / [ In Ix—yl}p(y)ds(y). (2.26)
0s(y)

dS\Tx.s
The first term on the right-hand side can be written in the form

@(x)(In|x —a| —In|x — b))
+[p@) — o) In|x —al — [p(b) — ¢(x)]In|x — b].

Since

- 5
Injx —al —Infx — b = In (=91
5 x—bl

and ¢ is differentiable on 95, by Theorem 1.16, this expression tends to zero as
5§ — 0.

In the proof of Theorem 2.13 it was shown that d In |[x —y |/ds(y) is an integrable,
proper 1-singular kernel on 9. Setting

Flx) = / (Inlx — y g’ () ds(y).

aS

Fs(x) = / (Infx =y D¢’ (») ds(y),

dS\Iy s
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and letting § — 0 in (2.26), we see that, by Theorem 2.13 and Remark 1.41,

Fx) = lim Fs(x) = ~ (g9 (0). (2.27)

On the other hand, by Leibniz’s rule for differentiating an integral whose limits
depend on the parameter,

0
Fj(x) = / [mlmx—qu’mds(y)

9S\I'x s
+¢'(@n|x —al —¢ () In|x — b|.

Since ¢’ € C%*(35), we deduce as above that the sum of the last two terms tends
to zero uniformly as § — 0. Hence,

. / 0 /
;1_% Fy(x) = / [mln lx —yl]w () ds(y), (2.28)
as

where the integral is understood as principal value and, by Theorem 2.13, the con-
vergence is uniform with respect to x. A well-known result of analysis now implies

that F(x) is differentiable and that F’(x) is equal to the right-hand side of (2.28).

Taking (2.27) into account, we conclude that 8(v(}; @) /ds exists and

0 0
Z o) = —/[m Inlx -y |}o’<y> ds(y). x € ds.
N

By Theorem 2.13, B(V({w)/as e C%*(35), as required. O
2.17 Theorem. If ¢ € C%%(3S), a € (0, 1, then the functions

. a
(v509) (x) =E£ [m[(xy —yy)Injx —y I]]w(y) ds(y), x €3S, (229

a
(v09) (x) =/ [av—(y)[(xy —yy)Infx —y |]]<p(y) ds(y), x €3S,  (2.30)
a5

belong to CY#(3S), with B = o for o € (0, 1) and any B € (0, 1) for a = 1.
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Proof. The kernel

k(x, y) = [(xy = yy)In|x — y]]

ds(y)

=-—15,()nlx—-y|- (xy — yp)(T(y), x — )

lx — y?

is §-singular on 9§, where § € (0, 1) is arbitrary, so (V;Ogo) (x) is an improper integral
for all x € 9S. Also,

ko(x, y) = k(x, y)

ds(x)

Z_TV(Y)L1n|x—y|_ d (y =y)(T(), x —y)

ds(x) ds(x) lx — yI? 230

is 1-singular on 9S. Using Lemma 1.28, we find that ko(x, y) is a proper 1-singular
kernel on 9.
Since

(t(x) —t(y), x —y)
Ix —yI?

l€<x,y>=[ }ln|x—y|=

350 a5y

is O-singular on 9., the first term on the right-hand side in (2.31) can be written in
the form

. ]
—k(x, N1, (N + ——[n M Inlx —y (] +c)v, () In|x = y]|.

ds(y)
Similarly, since
. [ a 1y —yy)(xs — ys)
kol ) = [asm " as(y)] =P
_ [ty (%) — 7, (M] (x5 — ys) N [ts(x) — 5D ] (xy — ¥y)
lx — y|? lx — y|?
_ Gy =y — ys){r () — 7). ¥ — ¥)
lx —y|*

is 0-singular on 9 S, the second term on the right-hand side in (2.31) becomes

7 d (xy = yy)(T(y), x —y)
k]/a(-xs Y)TB(Y)+ 8s(y) |x_y|2

k(Y (xy — y)(v(y), x — y)
+ 5 .
lx — yl
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Denoting by a and b the end-points of X, 5, we find that

/ %(y)[ry(y) In|x — yl|]ds(y)
A0S\ Xy 5
=1(a)In|x —a|l —7,(b)In|x — b|
[x —al
lx — bl
= [ry(@) — 7, (®)]In|x — b| - 0,

=1,(a)ln + [ty (@) — 7, (B)] In |x — b]

uniformly as § — 0, and that

/ 0 (xy =y t(y), x —y)
s (y) lx — yI?

ds(y)

IS\ Xy 5

_ Gy —ay)(t(@), x —a)  (xy —by)(r(b), x —b) S0
B lx —al? lx — b|? ’

uniformly as § — 0. Consequently, the kernel ko(x, y) satisfies estimate (1.55).
The result now follows from Theorem 1.37 with any 8 € (0, @), y = 0, and
g(x) =0, x € S, and Remarks 1.39 and 1.38.
The function v)‘focp is treated similarly. O

2.18 Theorem. If ¢ € C%%(3S), a € (0, 1], then the function defined by

9 — —
(Vs 500) () = / [as@) & |jy_)(;|‘2 ya)]w(y)ds(y), xeds,  (232)
N

belongs to CYP(3S), with B = o for a € (0, 1) and any B € (0, 1) for a = 1.
Proof. From formula (2.19) and the estimates in Lemma 1.2 we see that the kernel

ad (xy — yy)(xs — ys)

MV =50 k=P

is O-singular on 9§, hence (v; s0®)(x) is an improper integral for all x € d5.
A simple calculation shows that

a
ko(x, y) = -——k(x, y)

as(x)
(xp — yp)(xo — yo) 0 d
= Cysiuciuor — |~ [av(x) b=y '][av(y) b=y ']
(Xp - )’p)(xa —Yo) 0 _
+cyspo Py 3500 [av(y) Injx —y |:|, (2.33)
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where the ¢, 5,5 are given by (2.20), is a 1-singular kernel on 9S. Moreover, using
Lemma 1.28, we easily convince ourselves that ko (x, y) is a proper 1-singular kernel
onadSs.

The first term on the right-hand side of (2.33) is 0-singular on 9S. By (2.14), the
second term can be written in the form

¢ [ _ il [(xp - yp)(xa - Yo)
LT Bs(y) =y ()
9 (xp —yp)(xgs _ya)]

0
+|——1Inlx —
[awy)“'x y'}as@) X — yP2

from which, in view of what was said above about k(x, y), we immediately deduce
by direct verification that ko(x, y) satisfies estimate (1.55).

The assertion now follows from Theorem 1.37 with 8 = y = 0 and g(x) = 0,
x € 35, and Remarks 1.39 and 1.38. m|

lnlx—yl}

2.3 Complex Singular Kernels

In the analysis of two-dimensional problems it is often convenient to express certain
properties of functions in terms of complex variables. Extending an earlier conven-
tion, for a function f given on S we write f(z) = f(x), where z = x| + ixp, and
identify z with the geometric point x.

Suppose now that C(d5) and C'(3S) are complex vector spaces, and construct
the complex spaces C%%(3S) and C1-%(3S) by defining Holder continuity in terms
of the inequality

|f(2) = f©] <clz—¢|* forall z, ¢ €S,

and the derivative as

d
f'@) = —f(z) = lim , z,C0€dS,
dz {—z

f(@)— f(2)

{—z
if this limit exists.

Since |z — ¢| = |x — y|, where { = y| +iy», it is obvious that Holder continuity
with respect to z and Holder continuity with respect to x (or s, according to the
discussion in Sect. 1.2), are equivalent. The same can also be said about Holder
continuous differentiability on 9.S. We can see this from the equality

') =@ @,


http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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where
dz .
P(z) = — =12 +in), (2.34)
ds

which means that ' € C%%(3S) in terms of z if and only if f € C%*(3S) in terms
of s, as implied by the statement of Lemma 1.20 and the fact that both 9 (z) and
[1?(1)]_l = 1¥(z) = 11(z) —iT2(2) belong to C'(3S). This shows that our somewhat
loose use of the same symbol for a function on 9§ whether it is expressed in terms
of z or x is justified in relation to Holder spaces.

In the light of these arguments, and because for a kernel k(x, y) and a density ¢
onadsS

/k(x, Vo) ds(y) =/k(z, OB () de,

a9 as

we conclude that the definition of y-singular and proper y -singular kernels on .S and
all the associated results established in Sect. 1.4 on the behavior on 9§ of integrals
with such kernels can be understood in terms of either real or complex variables.

2.19 Theorem. If ¢ € C*%(3S), « € (0, 1], then

o) = [ L9 ar. ;eas. (2.35)

{—z
s

exists in the sense of principal value, uniformly for all z € 9S, and belongs to
C%A(3S), with B = a fora € (0, 1) and any B € (0, 1) for a = 1.

Proof. Let z = x1 +ixp and ¢ = y; + iy». Differentiating with respect to s(y) the
equality

log(¢ —z)=In|¢ —z| +i6 =In|x — y| +i6,

where 6 = arg(¢ — z), and using the Cauchy—Riemann relation

0 0
—as(y)(?(x, y) = ) In|x —yl,

we obtain

d 0
% oy lds) +i

9
In|x — ) 2.
=z 550 0y nlx —ylds(y) (2.36)


http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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Hence, we can write

0
v gy — / [—ln|x—y|]¢<y)ds(y>

§—z ds(y)
EN P 98\ Zy 5
) 0l
wi [ [ ifemason
av(y)
¢ \Ex,5
and the result is obtained from Theorems?2.13 and 2.2 by letting § — 0. O

2.20 Remark. The function ¥ ¢ defined by (2.35) can be expressed in terms of an
improper integral. Writing

d¢
¢—z

0©) 4 _ / 0O =0 o /
-z —z

IS\ Ty IS\Tx,8 IS\ Dy.s

replacing (¢ — z)~'d¢ by its expression in (2.36), letting § — 0, and using formulas
(2.22) and (2.8), we find that, in the sense of principal value,

@) dc =ni¢(z)+/¢(§2:f(Z)

d¢, z €3S, (2.37)
—z
aS

a9

where the integrand of the last term is O (|z — ¢|*" ) if ¢ € Cc%2(3S), a € (0, 1].

2.21 Theorem. If ¢ € C"*(3S), a € (0, 1], then W ¢ defined by (2.35) belongs to
CYA(3S), with B = o for a € (0, 1) and any B € (0, 1) for a = 1.

Proof. By (2.36), (2.21), and (2.4),

(W) (2) = v (x) — iwp(x),

and the assertion follows from Theorems 2.16 and 2.8. m]

2.22 Theorem. If K* : C%*(3S) — C%*(3S), a € (0, 1), is the operator defined
by

(K'9)(2) = &dé, z €08, (2.38)

{—z
N

then (K%)? = —m*1, where I is the identity operator.

Proof. From Theorem 2.19 it is clear that the operator composition (K*)? is mean-
ingful.
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In Muskhelishvili (1946) it is shown that a function f(z, ¢) which is Holder
continuous with respect to both its variables z and ¢ satisfies the Poincaré—Bertrand

formula
1 f@, n }
dnl|d
/c—z[ n—¢ ‘T
BN aS
_ f& ]d 239
ﬂf(z,z)+/[/(§_z)(n_§) de|dn. (239

Using (2.39) and the fact that, by (2.37) with ¢ = 1,

dg .

=i, z €08, (2.40)
{—z

s

in the sense of principal value, we find that for any ¢ € C%%(3S) and z € 3

532 _ 1 /(0(77) :|
wton [ [ [ 22
EN

o(n) ]
= — d
”(Z”/[/(c - ]
d

:_ﬂz(p(z)+/|:n—z(/§—z_/g—{n)(p(n)}d’?
N ENY 05

=-129(2),

as required. O
2.23 Theorem. Let f(z, ¢) be a function defined on 39S x 9S8, which belongs to
CcOe (0S), a € (0, 1], with respect to each of its variables, uniformly relative to the
other one, and satisfies the inequality

If(z &) — &, Ol <clz—21z—¢|*"!, ¢ =const >0,

forall z, 7/, £ € 3S such that 0 < |z — 7| < %|z — ¢|. Then the function

an@= [ L2, zeos,
N

where the integral is understood as principal value, belongs to C%P(3S), with p = «
for o € (0,1)and any B € (0, 1) for o = 1.
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Proof. Let z = x1 + ixp. Writing

f&8 [z )= [z 2)
é‘ =
{—z {—z

S\ Z,., S\ Sy S\

d¢ + f(z, 2) / d¢ )
—z

from Theorem 2.19 and the fact that the integrand of the first term on the right-hand
sideis O(]z—¢]*~!) we conclude that (Af)(z) exists in the sense of principal value
forall z € 9S.

To establish the Holder continuity of Af, for z, 7/, ¢ € 3§ we use the decompo-
sition

2[<Af)(z)—(Af)(z’>]=/[f(z’ d-fen Jedo Z)]

s £z (-7
+/[f(z,§)—f(z,z)_f(z,s“)—f/(z,z)]d{
-z ¢ =
/f(z, C)—f(z C)d“r/f(z, C)—f/(z,g“)d{
{—z
as
d
e z)/——f( Y
S
/ dg
+ /@, z)/i—f( )/5_/
a8

=h+bL+L+14+ 15+ Ie.

Letz = x| +ixjand ¢ = y; +iys, and let X, ., ¥, and X be the sets defined
by (1.16) and (1.29) with x and x’ satisfying (1.43). By Lemmas 1.10-1.13, (2.40),
and Remark 1.41,

|111|—‘/[f(z - f(z ) f - [ z’)]
;=7

d;\
< c1/<|x — ¥ I =y ds(y) < ealz - 79,

=l

<alz =7 / Ix —y|%2ds(y) < calz —Z|% ifa e (0,1),
P}

)Lﬂzé) f. Z)d4
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http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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2] < cslz —Zl|Infz = 2|| ifa=1,

[13] = / ( ! ! )[f(z ) — f(z z/)]d;“'
{ —z é_ _ Z/ I ’
S\ Xy,
< cslz — 7| /’Ix—yW_%hQOSCﬂz—z%
IS\
/ dé‘ /o
\Iisl = |[f @ 2) = f(z, 2] - <cglz —2|%
aS\X
consequently,
|| = I + Lo+ Ds + Ial < colz — 2'1F,
where the constants cq, ..., cg > 0 may depend on «.
Similarly,

|| < ciolz — 2P, c10 = const > 0.

Next, we find that

/ , dg
1311 = ‘/{[f(z, O—f@ ] -[fE. 0~ f ,z)]}gj
z

<ci / Ix — y[*"Vds(y) < cnnlz — 71,
P
f(z’ ;‘)_f(z7 C)dé“
-z

1132 I—‘

P2}

<cilz—7l / lx = y[* 7% ds(y) < cualz =1 ifa € (0, 1),

)Y

lIn| < cislz — 2| |In]z = 2| ife=1,

_ f(z,é“)—f(z 0y
|I33] =
IS\,
Scwk—ZW‘/ lx — y|* 2 ds(y) < ci7lz — 71,

IS\ .y

d d
|134|=‘[f(z, 2) — f(, Z)]( g‘—{z_ gfz)‘
as 9S\Xy

<ciglz — 2%

57
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therefore,
\I3] = 31 + I32 + Is3 + I34] < ciolz — /|7,
where the constants ci1, ..., cj9 > 0 may depend on «. In exactly the same way,
but using X,/ , instead of X ,, we find that
|I4] < calz — 2|, ¢20 = const > 0.
Finally,

15| = |7i[f(z, ) = f(z, ]| < carlz =217,
[Is| = |7i[ (2 2) = f(&, DD)]| < eanlz =21

where ¢p1 and ¢y, are positive constants.
Combining the above inequalities, we now obtain

I(Af)(2) — (Af) ()] < easlz —2/|P, ¢23 = const > 0,

as required. O

2.4 Singular Integral Equations

We discuss briefly a few concepts of functional analysis, which will enable us to
find the solutions of the boundary value problems to be stated later in Sect. 3.4.
The presentation is made in terms of complex variables in order to simplify the
technicalities involved. Any difference between the complex and real cases will be
indicated explicitly.

2.24 Theorem. C%*(9S) is a Banach space with norm

lelle = ll@lloo + @]’ (2.41)
where
lp(z) — (&)l
lollc = sup l@(), |@la = sup —————.
z€9S z,0€0S |z —¢|
Z#E

Proof. As can easily be verified, (2.41) satisfies satisfies the norm axioms.
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Let {g,},2 | be a Cauchy sequence in C%%(3S); that is, for any & > 0 arbitrarily
small there is a positive integer ng(¢) such that

lon — ¢mlla <& foralln, m > no(e).

By (2.41),
lon — @mlloo < & foralln, m > ng(e),

which means that {¢,}>° , is also a Cauchy sequence in C(9S5). Since C(dS) is a

complete space, there is a ¢ € C(9S) such that
lon — @lloo — 0 asn — oo. (2.42)
From (2.41) we also deduce that
lon — Omle < € foralln, m > ng(e).

Letting m — oo and using the uniform convergence of {¢,}>°, on 3, we now
obtain

lon — @la <& foralln > ng(e). (2.43)
Hence, there is ¢ = const > 0 such that for all z, ¢ € 95, z # ¢,

9@ — 0@ _

lz— | <lple < ¢

in other words, ¢ € CO""(E) S). Also, from (2.42) and (2.43) it follows that
lgn — @lle — 0 as n — oo;
that is, {¢,}>°, converges in the norm (2.41), which means that C%(38) is

complete. O

2.25 Definition. Let X and Y be normed spaces. A linear operator K : X — Y is
called compact if it maps any bounded set in X into a relatively compact set in ¥
(that is, a set in which every sequence contains a convergent subsequence).

2.26 Theorem. If k(z, ¢) is a proper y-singular kernel on 3S, y € [0, 1), then the
operator K defined by

(Ko)(2) = / kG (@) de, € dS, (2.44)
N
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is a compact operator from C%%(35) to CO%(dS), witha =1 —y for y € (0, 1)
and any o € (0, 1) for y = 0.

Proof. According to Theorem 1.33 and the fact that C 0.2(58) c C(3S), the operator
K : CY*(H8) — C%*(3S) is well defined.
Let M, C C%%(3S) be a bounded set; that is,
l¢lle < c =const>0 forallp € M. (2.45)

Also, let {6,}5° | C My = K(M;). We denote by {¢,}7° , a sequence in M such
that6, = Kg,,n =1,2,....
In view of (2.41), inequality (2.45) implies that

sup @, (2)] < c,
z€0S
lgn(2) — @n ()] < clz —2/|*

foralln =1,2,...andall z, 7/ € 9S;in other words, {(pn}zO | is uniformly bounded

and equicontinuous in C(3S). By the Arzela—Ascoli theorem (Colton and Kress
1983), it contains a uniformly convergent subsequence. For simplicity, we denote
this subsequence again by {¢,}7° ;. Hence, there is a ¢ € C(9S) such that

lon — @lloc = 0 asn — oo. (2.46)

Let & = K¢. By Theorem 1.33,0 € C%%(3S). For z € S we have

6n(2) — 0(2)] < / lk(z, Ollen () — @) dE

s

< c1 sup |¢,(2) —w(z)l/lz—él_”dc
EN

xeasS

consequently, by Theorem 1.32,
10 — Ollo < 2lln — @lloo, n=1,2,...,
where c¢1 and ¢; are positive constants. On the other hand, by Theorem 1.33,
0n = Ola < c3llon —@lla, n=12,....
The last two inequalities, (2.41), and (2.46) yield
16, —Oll¢ = 0 as n — oo,

which proves that K is compact on C%%(35). O
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2.27 Definition. Let X and Y be vector spaces over C. A mapping (-, ) : X xY — C
is called a non-degenerate bilinear form if

(1) for any ¢ € X, ¢ # 0, there is a Y € Y such that (¢, ¥) # 0, and for any
Y €Y,y #0,thereis ag € X such that (¢, ¥) # 0;

(ii) for any @1, @2, ¢ € X, Y1, Y2, ¥ € Y,and a1, ap € C,

(a1@1 + 202, V) = ar(e1, ¥) +o2(p2, V),
(¢, a1¥1 +a2¥2) = a1(, Y1) +az(e, ¥2).

2.28 Definition. By a dual system (X, Y) we understand a pair of normed spaces X
and Y together with a non-degenerate bilinear form (-, ) : X x ¥ — C.

2.29 Definition. Let (X, Y) be a dual system with bilinear form (-, -). Two operators
K :X — Xand K*: Y — Y are called adjoint if

(Ko, ¥) = (¢, K*Y) (2.47)

forallp e Xandy €Y.

2.30 Remark. It can be shown without difficulty (Colton and Kress 1983) that if an
operator K : X — X has an adjoint K* : Y — Y in a dual system (X, Y), then K*
is unique, and both K and K* are linear.

2.31 Definition. Let (X, Y) be a dual system with bilinear form (-, ), K : X — X
an operator that has a (unique) adjoint K* : Y — Y, I the identity operator (which,
for simplicity, is denoted by the same symbol regardless of the space where it acts),
and w € C, w # 0, and consider the equations

(K*—ohy =g, g€V, (K*)

together with their homogeneous versions (Kq) and (KS). We say that the Fredholm
Alternative holds for K in (X, Y) if either

(1) (Ko) has only the zero solution, in which case so does (KE‘)‘), and (K) and (K*)
have unique solutions for any f € X and g € Y, respectively, or

(ii) (Ko) and (K§) have the same finite number of linearly independent solutions
{o1,..., ¢y} and {Y, ..., ¥y}, and (K) and (K*) are solvable, respectively, if and
only if

(fs i) =0, (¢i,8)=0, i=1..., n

2.32 Theorem. Let (X, Y) be a dual system and K : X — X a compact linear
operator that has a (unique) compact adjoint K* : Y — Y. Then the Fredholm
Alternative holds for K in (X, Y).
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A full, detailed proof of this assertion can be found, for example, in the monograph
(Colton and Kress 1983).

2.33 Remark. Let K be the operator defined by (2.44), and consider the dual system
(€O (@S), c**(3S)), @ € (0, 1), with the bilinear form

(p. ¥) = /(ﬁ(()lﬂ(i)dﬁ» ¢, ¥ € CH@S), (2.48)

as

which is easily seen to satisfy the conditions in Definition 2.2.7. From (2.47) and
(2.48) we have

<K¢nm:3/[/%@,0¢@wx}w@nn

a5 aS

=/<p(§)[/k(z, {)I/I(Z)dz] d¢

S a8
= (¢, K*Y),

where

(K*¢)(2) =/k*(z, Oe(g)ds,

aS

with k*(z, ¢) = k(¢, 2).

This means that if k(z, ¢) is a proper (1 — «)-singular kernel on 95 with respect
to both z and ¢, then, by Theorems 2.26 and 2.32, the Fredholm Alternative holds
for K.

The Fredholm Alterative does not hold in general for operators with 1-singular
kernels. However, there is a class of such operators for which the assertion remains
true.

Theorem 2.23 enables us to introduce the following concept.

2.34 Definition. An operator K : C%¥(3S) — C%*(3S), a € (0, 1), is called
a-regular singular if it is defined by an expression of the form

i,
mw@=/é%§moa,zam (2.49)
EN

where lg(z, ¢) belongs to C%%(3S) with respect to each variable, uniformly relative
to the other one, and satisfies the inequality

|I€(z, 7)) — Ig(z’, Dl <clz—7lz— CI‘FI, ¢ = const > 0,
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forallz, 7/, ¢ € S suchthat 0 < |z — /| < %|z — Z|. (The value of k(z, ¢) at
z = ¢ may also be understood in the sense of continuous extension.)

2.35 Theorem. If k(x, y) is a proper y-singular kernel on 39S, y € [0, 1), with
respect to both x and y, then the operator K on C%'=Y(3S) defined by

(K¢)(x) =/k(x, Vey)ds(y), xe€as,
3

is (1 — y)-regular singular, and lz(z, ) in (2.49) satisfies

IQ(z, z2)=0, zedSs.

Proof. Clearly, (K ¢)(x) is an improper integral for all x € 9.
In accordance with our notational convention, we write

k(z, 0,
-z

/k(x, Ve (y)ds(y) =/k(z, D60 (6) dg =/ g,

EN S aS
where ¥ (z) is defined by (2.34) and
kz, ©) = (€ = Dk, OP(©).

By Definition 1.26, Iz(z, z) = 0 in the sense of continuous extension.
Letz, 7/, £ € 3Sbesuch that 0 < |z — 7| < %Iz — £|. In this case

12 —¢l2lz—¢l—lz=2I>lz—¢l— Sz —¢l =3z —¢l. (2.50)
Since |9 (¢)| =1, ¢ € 3§, we have

lk(z, ¢) —k(Z', O = 1(¢ — 2k(z, ©) — (¢ — 2k, )
<lz—¢llk(z, ©) —k(Z, O+ |z = 2| k(Z, ©)

<cale =2z =¢I7" +1Z = ¢,
which, on the basis of (2.50), shows that
kz, ©) k@, Ol < ealz = 2NNz = ¢
and that

lk(z, ) —k(Z, ) < eslz — 21",
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where the constants ¢y, ¢z, ¢3 > 0 are independent of z, 7/, and ¢.
If |z — 2| = 31z — £], then

=l <lz =2+ 1z =¢l <3|z = 2[;
consequently,

lk(z, £) — k@@, O <z =l lkz O+ 17 = ¢l k@&, 0]

1— 1— 1—
<c(z=¢I 77+ =¢I' ) <clz =217,

where ¢4 is independent of 2z, Z/,and ¢.
The Holder continuity of k(z, ¢) with respect to ¢ is proved similarly by writing

k(z, ©) —k(z, Ol < 1¢ =zl lk(z, DI () — 9]
+1¢ — 2l k(z, ©) — k(z, L) +1¢ = ¢/l k(z, &)
and using the fact that ¥ € c%2@38). O

2.36 Definition. Consider an equation of the form
(K —wlp=f ondS, (2.51)

where K is an -regular singular operator, ¢ and f are 3 x 1 matrices in cO%25),
a€(0,1),weC,w#0,and det [—a)E3 +mik(z, z)] (see Definition 2.34), where
Es is the identity 3 x 3 matrix, do not vanish on dS. The number (Muskhelishvili
1946)

(2.52)

1 [ det (— wE3 — wik(z, 2)) ]
1Y a )
as

= —_— I'g =
2 det(—a)E3 + mik(z, z))

where [9 (z)] 35S denotes the change in 6(z) as z traverses 95 once anticlockwise, is
called the index of equation (2.51).
When (2.51) is a scalar equation, the symbols det and E3 are dropped in (2.52).

2.37 Remark. Let K be an a-regular singular operator, o € (0, 1), and consider the
dual system (CO"" @S), C%*(d S)) with the bilinear form (2.48). Then from (2.47)

and (2.49) we conclude that the kernel of the adjoint K* of K is —lg(g“, 2)/(& — 2),
which implies that, by (2.52), the index of the equation

(K* —why =gondS, geC%®dS),

is equal to —p.

2.38 Theorem. If K is an a-regular singular operator, o € (0, 1), such that the
index of the equation (K) is zero, then the Fredholm Alternative holds for K in the
dual system (C**(3S), C**(3S)) with the bilinear form (2.43).



2.4 Singular Integral Equations 65

A comprehensive discussion of this assertion can be found in Muskhelishvili
(1946) and Kupradze et al. (1979). Its proof consists of two stages. First, it is shown
that we can always find an «-regular singular operator L and a 9 € C, ¢ # 0, such
that the equation

(L=91)K —who=(L—0Df
is of the form . 5 .
(K —aD¢ = f, (K)
where v € C, @ # 0, f IS CO""(E)S), K isan integral operator defined by

(k@@>=/f@,o¢@nﬂ,zea&

S

and k(z, ¢) is a proper (1 —«)-singular kernel on 9S with respect to both z and ¢. By
Remark 2.33, the Fredholm Alternative holds for the operator K in the dual system
(CO’“(a S), CO’“(B S)) with the bilinear form (2.48). The second part of the proof
consists in showing that, since the indices of both (K) and (K*) are zero (the latter
according to Remark 2.37), (K), (K) and (K*), (K*) have, respectively, the same
solutions.

2.39 Remark. Let K : C%*(3S) — C%%(35), a € (0, 1), be an operator of the
form

W@@=/H&OWOM,ZGM,

as

and consider the corresponding equation (K)

—ww@+/uaomoa=fw,zew.
0S

Now suppose that, for f and w real, when we change from z and ¢ to x and y the
transformed equation

—w@(x) +/k(x, NIV (y)ds(y) = f(x), x€as,
S

where ¥ is defined by (2.34), is real. By Remark 2.33, the kernel of the adjoint
operator K in the complex dual system (C%%(35), C%*(3S)) with the bilinear
form (2.48) is

ki(z, ©) = k(g 2) = k(y, )P ().
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On the other hand, it is easy to see that the kernel of the adjoint K" in the real dual
system (C%*(3S), C%*(35)) with the bilinear form

(@, ¥) = /(p(y)lﬁ(y)dS(y) (2.53)

S

is
ki(x, y) = k(y, x)0(x),

which is different from &7 (z, ¢). In Muskhelishvili (1946) it is shown that if the
Fredholm Alternative holds for the operator K in the complex system, then it also
holds for it in the real system, provided that we confine ourselves to real solutions
of (K) and (K*) with K* = K.

2.40 Remark. If C%%(35) is understood as a space of 3 x 1 matrix functions, then
¢ is replaced by ¢ in (2.48) and (2.53).
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Chapter 3
Bending of Elastic Plates

3.1 The Two-Dimensional Plate Model

We consider the averaging operators .%,_1 and _Z,_1 defined by

1 -1 x3=ho/2
(Fa—15)(xy) = o [x" s(x,-)]é:_oho/z,
ho,2
1 _
(/oc—ls)(xy) = h_O / X3a 1S()C,')d)€3.
—ho/2
Setting
Nuog = Fitag,
N3w = Fot3a,

8a = jlfa +jlt3ou
g3 = 2o f3 + Hots3,

from (1.1) and (3.1) we obtain the equilibrium equations

Nop.p — N3g + go =0,
N3/3,ﬂ +g3=0.

3.1)

(3.2)

(3.3)

By analogy with (1.3), for a direction n = (1, n2)T in the middle plane we write

Ny = apng,
N3 = N3gng.

(3.4)

3.1 Remarks. It is easy to verify that N3y, Nyo (o not summed), and Nia = Ny
are, respectively, the averaged transverse shear forces and averaged bending and
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twisting moments with respect to the middle plane, acting on the face of a vertical
cross-section element of the plate perpendicular to the x,-axis. Similarly, #j f3
and ¢ f, are the averaged body forces and moments, while .#yt33 and 7113, are
the resultant averaged force and moments acting on the faces x3 = +h¢/2. For
simplicity, from now on we will omit the word ‘averaged’ when referring to forces
and moments in the plate.

It can also be seen that the components of the moment with respect to the middle
plane and the transverse shear force in a direction n are ego Ng and N3. If the mo-
ment is computed with respect to the origin of coordinates, then its components are
ega(Ng — xgN3). Clearly, knowing the N; at a point is equivalent to knowing the
epa(Ng — xgN3) and N3.

To avoid a clash of notation with the harmonic single-layer potential, in what
follows we write u; in place of v; on the right-hand side of (1.6). Thus, from (1.6),
(1.2), and (3.1) we obtain the constitutive relations

Nop = h>[Mtyy 8up + 1(ua,p + upa)],
N3y = p(ug + u3,a)s (3.5)

where 72 = hg /12. The same formulas and (1.3) show that
Ny = fite, N3 = _Zot3.

To establish the compatibility conditions for the N;q, first we use (3.5) to deduce
that

1
ui,1 = =——[(1 —0)Ni1 — o Nna],

2h2p
Uz = m[(l —0)Ny — o N1,
1
- Np. 3.6
ui2 +uz i PER (3.6)

1
uip —up | = ;(N31,2 — N32.1),

where
A
O = —
2+ 1)

is Poisson’s ratio. The compatibility conditions are then derived by equating uy 12
with u, 21 after computing these derivatives from (3.6). As a result, we obtain

h*(N31.12 — N32.11) + Niog — (1 —0)Nyj12 +0Napp =0,
h%(N32.12 — N31.22) + Ni2.a + o Nipp — (1 — 0)Nap, g = 0. (3.7)
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From (3.3) and (3.5) we find that the equilibrium equations in terms of the dis-
placements are

A@)u(x) + gx) =0, (3.8)

where A(0x) = A(9/0x,) and A(§) = A(§,) is the matrix

h2pA +h2(h + Wit — h2 0+ W& — &1
h* O+ w16 hPpA+h2 0o+ e —p —pk2 |, (3.9)
né ué2 nA

u = (uy, up, ug)T, g = (g1, &, g3)T, and A = &,&,. Then the vector N of
components

N,' = N,-ﬁn,g
can be written as
N(x) = T(9x; nu(x), (3.10)

where T (0x; n) = T(3/dx,; n) and T'(§; n) = T (§,; ns) is the matrix

h20.+2wni€1 + h2unsgy  h2unaé + h2in& 0
h2xnsé) +h2uni&  h2unig +h2+2wnaé 0 . (3.11)
uny Hna Ung&o

For brevity, we also write T (0y; v) =T (0x) =T.
From (1.4), (1.6), (3.1), (3.2), and (3.5) we see that the internal energy density
per unit area of the middle plane is

E(u, u) = /Oéa = %Naﬁ(ua,ﬁ + uﬂ,o{) + %N3a(uoc + Uu3.q)
= 3 {n*[huaaup,p + e, pap +up.o)]
+ (g +u3,0) (e +u30)} (3.12)

Throughout what follows we assume that the Lamé constants satisfy the conditions
A+wu>0 pn>0. (3.13)

3.2 Theorem. E (u, u) is a positive quadratic form and (3.8) an elliptic system.

Proof. From (3.12) it follows that

E(u, u) = 3{h*[Eo(u, u) + pu2 + ua1)?]
+ u[(ur +uz)? + (w2 +u3)?]}, (3.14)
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where

Eo(u, u) = (A + Z/L)u%l 4+ 2Auyu22 + (A + 2M)u%‘2.

(3.15)

‘We now easily verify that (3.13) are necessary and sufficient conditions for Eo(u, u)

to be a positive quadratic form.

The second part of the assertion is obtained from the fact that, by (3.9), the matrix
Ap(&) corresponding to the second-order derivatives in system (3.8) is invertible for

all £ # 0 since
det Ag(§) = a1 (57 +69)°,
where
ay = h* > +2p) > 0.
3.3 Theorem. E(u, u) = 0 if and only if
u(x) = (c1. €2, co — c1x1 — c2x2)",

where cq, ¢, = const.

Proof. Replacing (3.16) in (3.12), we see immediately that E(u, u) = 0.
Conversely, suppose that E(u, u) = 0. From (3.14) and (3.15) we get

uig =uzp =0,
ui+uy1 =0,
usz g +ug =0.

The first two equations yield the equalities

up = x1(x2),
uz = x2(x1),

which, replaced in the second relation, lead to

x1(x2) = kxp +c1,
x2(x1) = —kx1 + c2,

(3.16)

where k, c1, and ¢, are arbitrary constants. Using the compatibility condition for
us, that is, u3 12 = u3 21, from the last two equations we find that k = 0. Hence,

Uy = Cy, SO that

U3 g = —Cq.
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Integrating the equation for &« = 1 and substituting the result into that for ¢ = 2, we
obtain

U3z = o — CaXas

where ¢ is an arbitrary constant. O

3.4 Remarks. (i) Since the three-dimensional displacement field we are investigating
is of the form

T

(x3u1(x1, x2), x3u2(x1, x2), u3(x1,x2))

the most general admissible translation and rotation vectors are, respectively, of the
form

©. 0, )",

(—x3ba, x3by, x1by — x2b1)",

where a, by, and b; are arbitrary constants. Therefore, setting a = cg, b1 = ¢2, and
by = —c1, we conclude that (3.16) represents an arbitrary rigid displacement.

(i1) It is obvious that the columns of the matrix

1 00
F = 0O 10 (3.17)
—x] —xp 1

form a basis for the space of rigid displacements, and that a generic rigid displacement
of the form (3.16) can be written as

u=Fc,
_ T
where ¢ = (c1, ¢, ¢p)".

3.5 Theorem. If u € C%(St) N CY(ST), then

/(Aai — XqAzj)u;da = /(Tm' — xoT3i)u; ds,
S+ 3s

/Agiui da=/T3iu,- ds.

S+ N

Proof. Since (3.3) and (3.8) are the same system and (3.4) and (3.10) the same 3 x 1
matrix, by the divergence theorem,
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/(Aai — xqAzj)u; da = /(Naﬁ,ﬂ — N3q —x¢N3gg)da
S+ S+

_ / (Nup — xaN3g)vs ds = / (Tai — xo Tty ds,
N N

/A3iui da:/N3,3,ﬁda

St St
=/N3,3UﬁdS=/T3iuids.
as as

3.6 Theorem. (Betti formula) If u € C2(ST) N CY(ST) is a solution of the homo-
geneous system (3.8), then

2/E(u, u)da =/uTTuds. (3.18)

s+ N

Proof. Using (3.8), (3.3), (3.10),_ (3.4), the divergence theorem, and (3.12), we find
that for any u € C2(St)nC'(§1),

0= /uTAu da

S+
= / [(Naﬂ,ﬂ — N3g)ug + N3a,au3] da

S+
= —/ [Naptta.p + N3o (o + u3.0)| da + / Nju; ds

st 3s
= —2/E(u, u)da+/uTTuds,
st 3s

which yields the result. O
3.7 Theorem. (Reciprocity relation) If u, i € C2(ST) N C!(§T), then

/(ﬂTAu —u'A)da = /(ﬁTTu —u'Ta)ds.
S+ BN

Proof. Let N;g and Ni,g be the moments and transverse shear forces generated by
the displacements u and i, respectively. Using the equivalence of (3.3) and (3.8),
together with (3.4), (3.10), and the divergence theorem, we find that
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/ (T Au —uT Al da

S+

= / [(Notﬂ,ﬁ — N3g)iig + N3a,alf~l3 - (Naﬁ,ﬂ - N3ot)“oz - N3O(,Dtu3] da
S+

= /(N,-:Zi — Nil/l,')ds
S

- / [Naﬁﬁa,ﬂ + N3a(ﬁot + ’/73,01) - Naﬂua,ﬂ - ]\7305(1401 + MS,O{)] da
S+

= /(ﬁTTu —u'Ti)ds,
N

since, by (3.5), the integrand of the second integral vanishes in S™. O
3.2 Singular Solutions

We seek a Galerkin representation for the solution of (3.8). Following the method
described in Constanda (1978), if A* (&) is the adjoint of A(&), then

u(x) = A*(3x) B(x), (3.19)
where B is the solution of
(det A)(d,)B(x) + g(x) = 0. (3.20)
More explicitly, from (3.9) we find that
AsgE) =h> O +20)8ap AA = B2 1O+ 1) Abup — 11 Eakp,

ARE) =h O+ 20 A8 — PO+ 3 A + 17, (3.21)

ALy (E) = — A3, () = W2E(h?A = 1),
and
det A(§) = alAA(A - hiz) (3.22)

Taking in turn each component of g equal to §(|x — y|), where § is the Dirac delta,
and setting the other two equal to zero, from (3.19) and (3.20) we obtain the matrix
of fundamental solutions

D(x, y) = A" ()t (x, y) (3.23)
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for the operator —A, where, by (3.20) and (3.22), #(x, y) is a solution of
1 1
AA A — — Jt(x, y) = ——8(]x — y]). (3.24)
/’12 aq

We seek ¢t of the form

lx — yl
t(x, y) =biIn|x — y| +balx — y*In|x — y| +b3Ko( — ).

where K is the modified Bessel function of the second kind and order zero. Replacing
this in (3.24) and taking into account the fact that, with respect to x,

A(n |x — y[) =2758(|x — yl),
AA(x = y*In|x — y|) = 878(|x — y)),

1 _
(A - h—z)K0(|x - y') = —2m8(|x — y|).

t(x, y) =t(x —y)

we deduce that

= a2|:(4h2 +lx—yP)Injx — y| +4h2K0(?)}, (3.25)
where
= ! (3.26)
2T 220+ 2m) ‘
In view of (3.21) and (3.23)—(3.25),
T
D(x, y) = (D(y, x)) . (3.27)
Along with D(x, y), we consider the matrix of singular solutions
T
P(x, y; n) = (T(By; n)D(y, x)) , (3.28)

writing, for simplicity, P(x, v; v(y)) = P(x, y).

To determine the behavior of D(x, y) and P(x, y) in the neighborhood of x =y,
we note (see Abramowitz and Stegun (1964), formulas (9.6.12) and (9.6.13) on
p. 375) that, as § — 0,

Ko@) =—(1+ 36>+ L&+ ) Ing,
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so from (3.25) we deduce that for |x — y| small,
t(x, y) = aslx — y[*In|x — y| +7(x, y), (3.29)

where 7 € C°(R?) and

1
1287 h4 2 (A +2u)

az =

We denote by {E;;} the standard ordered basis for the vector space of 3 x 3
matrices. From (3.23), (3.21), (3.25), (3.28), (3.11), and (3.29), we now find that for
y € 0S5 and x close to y,

1 1
D(x, y)=— 7 (In]x — yl)(a4Eyy + L E33)

(X — yoc)(xﬂ - yﬂ)

+ 2 )= Eap D(x, ), (3.30)
1
Px,y)=-— {M/Saﬁ[as(y) Infx — yI]Eaﬂ

0
* [av@) tn 'x_y'}&

(X — ya)(xﬁ - Yﬂ)
3s(y) x — yP? 7P

-+ u’)eay[
9 , !
+ €ap m((xa — Ye)In |x_y|) KE3/3+ﬁEﬁ3)

/ 8 p
—n [T(y)((x" — Vo) In|x — yl):|E3a] + P(x, y),

(3.31)

where E3 is the identity 3 x 3 matrix, D(x, y) and I3(x, y) satisfy the conditions of
Theorem 2.9 (or Theorem 2.10) with any y € (0, 1),

A+3u

TGt o)

and
N o= *
A42u’
o= > (3.32)
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3.8 Theorem. The columns of D(x, y) and P(x, y; n) are solutions of the homo-
geneous system (3.8) at all x € R?, x # y, and for any direction n independent of x.

Proof. Since A(§)A* (&) = (det A(E)) E3, from (3.23), (3.22), and (3.24) we see that
for x # vy,

A@x)D(x, y) = A@x)A™ ()t (x, y) = (det A)(@)t(x, y) =0.

Also, using (3.28) and expliciting the individual components, we easily convince
ourselves that

A@)P(x, yi n) = (T@y: m(A@)D(x, y)')' =0. o

3.9 Theorem. (Somigliana representation formula) If the 3 x 1 matrix function
u e C2(SH NCl(S) is a solution of the homogeneous system (3.8), then

P (X)ulx) = / [DG, NT@yuy) = Px, pu(n]ds(y), (3.33)
S
where
1, xeSt,
Pp(x) =14, x€ds, (3.34)
0, xeS™ .

Proof. Let x € ST, and let 0y, C ST be a disk with center at x and radius
sufficiently small. Applying Theorem 3.7 in ST \ o, 4, with & replaced in turn by
each column of D, and making use of Theorem 3.8, we find that

/ [DGe. T @)u(y) — Pex. yu()]ds(y)

aS

= / [D@x, NT@uly) = P(x, yyuy)]ds(y), (3.35)

30y, 0

where doy , is the boundary of oy .
By (3.30),

/ D@, )T (0y)u(y)ds(y) = O(wlhw).

30y .0

From (3.31) we see that for y € 9oy 4,
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Pu,y>=<7(l),
w

/ P(x, y)ds(y) = —E3 + O(wlhw);

30y,

consequently, since u(x) — u(y) = O(w),

/“Pu,wmwdmw

00y,

_ /’p@,wpgo—uuﬂdww

00y,

+[ / P(x, y)dS(y)}u(X)

00,0

=—ulx) + O(w).

The first part of the assertion now follows from (3.35) if we let @ — 0.

The case when x € 9§ is handled in a similar way, with oy, replaced by o , NS +
and doy ,, by its part lying in ST. As was remarked in the proof of Theorem 2.2, for
o small the length of the latter is ww + O (w?), which yields the required formula.

The result when x € S is obtained directly from (3.35). m]

3.3 Case of the Exterior Domain

For y fixed and |x| — oo, we have

Inlx — y| = In |x| — (T);|§> %%—% (3.36)
e T2 o,
and (see Abramowitz and Stegun 1964)
K0(|x ; y') = O(x|" 21y, (3.37)

Then from (3.21), (3.23), (3.25), (3.28), (3.36), and (3.37) we obtain the asymptotic
relations
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D11, Dy = O(In|x|), Diz, Dy = O(1),
Dy3, D3g = O(|x|In|x[), D33 = O(lx|*Inx]), (3.38)
Pap, P33 = O(x|™"). P = O(lnlx]).  Po3 = O(Ix| 7).
This means that we cannot obtain analogs of Theorems 3.6 and 3.9 in S~ without
restrictions on the behavior of u at infinity.

Let <7 be the set of 3 x 1 matrix functions u that, in terms of polar coordinates
r, 6 admit, as r — 00, an asymptotic expansion of the form

uy(r, 0) = r! [mo sinf + 2mj cos @ — mg sin(36) + (mp — my) cos(39)]
+r72[(2m3 + m4) sin(20) + ms cos(26)
—2m3 sin(46) + 2mg cos(40)]
+r3 [2m7 sin(360) + 2mg cos(30) + 3(mg — m7) sin(560)
+3(mig — mg) cos(50) | + O (™),
ur(r, 0) = r! [2m2 sin@ + mqcos6 + (mr — my) sin(360) + myg cos(39)]
+r72[(2mg + ms) sin(20) — m4 cos(26)
+ 2me sin(460) + 2m3 cos(40) |
+r73[2m10 5in(30) — 2mg cos(30) + 3(m1g — ms) sin(56)
+3(m7 — mo) cos(50)| + O(r™),
uz(r, 0) = —(my +my)Inr — [ml + my + mq sin(20)
+(my —mp) c0s(20)] + r~[(m3 + m4) sin @ + (ms + mg) cos
—m3sin(30) + mg cos(30)]
+ 77 2[m11 8in(20) + m12 cos(20) + (mo — m7) sin(40)
+ (m1g — mg) cos(46)] + 0 (r ™), (3.39)

where m1, ..., myy are arbitrary constants. We also introduce the set
A = {u*: u* =u+ug, u €., ugis of the form (3.16)}.

3.10 Remarks. In view of (3.12), &/ and ./ are classes of finite energy functions.

3.11 Remarks. For simplicity, throughout what follows we consider only the
homogeneous system (3.8); that is,
Au = 0. (3.40)

This is done without loss of generality since, as shown in Sect.5.4, if g is suffi-
ciently smooth, then (3.8) can be reduced to (3.40) by means of a particular solution
constructed in the form of a Newtonian potential.
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3.12 Theorem. (Somigliana representation formula) If the 3 x 1 matrix function
ue C>(ST)NCYUS™) N is a solution of (3.8), then

[1 =0 ]ux) = —/ [DGx, MT@)uly) — P(x, yyuy)]ds(y),

aS

where ¢ is defined by (3.34).

Proof. Consider a circle I'g with the center at x and radius R sufficiently large so
that 9§ lies inside I'g. With the origin of polar coordinates at x, from (3.11), (3.21),
(3.23), (3.25), (3.28), and (3.36)—(3.39) we find that for y = (R, 0) € 0[,

Tsiu; = R™3[(m7 + mo — 2m1) sin(26)
+ (mg +mio — 2m12) cos(20)] + O(R™),
(41 1n R + 3% +2u)

(Do Toi = PsiJui = —— o= 5p [m0 sin(26) + 2(ma — my) cos(26) ]

+ O(R2InR),

(DyiTij — Pyjluj = O(R_2 In R);
consequently,
/ [D@x. »)Tu(y) — P(x, y)u»)]ds(y) = O(R™' InR),
arg

and the desired result is obtained by applying Theorem 3.9 in S N I'k and letting
R — oo. |

3.13 Theorem. (Betti formula) If u € C2(S™) N C'(S™) N &* is a solution of
(3.40), then

2/E(u, u)da = —/uTTuds. (3.41)
s- s
Proof. The required formula is obtained via the procedure used in the proof of
Theorem 3.12—this time in conjunction with Theorem 3.5—after noting that for
R large,
Tojui, Tsiui = O(R™?), (3.42)

which means that uTTu = O(R™2) foru € o/*. O



80 3 Bending of Elastic Plates

3.4 Uniqueness of Regular Solutions

Let#, %, 7, 2,%,and . be continuous 3 x 1 matrix functions prescribed on 3.5,
and let o be a continuous, positive definite 3 x 3 matrix function on 9.S. We consider
the following interior and exterior Dirichlet, Neumann, and Robin boundary value
problems:

(DV) Find u € C2(S1) N CY(SY) satisfying

Au(x) =0, xesSt,
ux) = P(x), xe€as. (3.43)

(N1) Find u € C2(S1) N CY(ST) satisfying

Au(x) = 0, xeST,
Tu(x) = 2(x), x €dS. (3.44)

(RT) Find u € C*(ST) N CY(§1) satisfying

Au(x) =0, xest,
Tu(x)+o@xulx) = (x), xe€as. (3.45)

(D7) Findu € C*(S™)N CY(8™) N &* satisfying
Au(x) =0, xesS,
u(x) =%(x), xe€as. (3.46)
(N7) Find u € C*(S7) N CY(S™) N o satisfying
Au(x) =0, xesS,
Tu(x) =.%(x), x€dSs. (3.47)
(R7) Find u € C*(S7)NCY(S™) N o satisfying
Au(x) =0, xes,

Tu(x) —o(x)ulx) =%(x), x€dSs. (3.48)

3.14 Definition. A solution as stated above is called a regular solution of the corre-
sponding problem.

3.15 Remark. The condition thatu € C1(St) oru € C1(§7) is necessary even in
the case of the Dirichlet problems, to ensure the applicability of the Betti formula.
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3.16 Theorem. (i) (D), (D7), (N7), (R"), and (R™) have at most one regular
solution.

(ii) Any two regular solutions of (NT) differ by a 3 x 1 matrix of the form (3.16).

Proof. (i) The difference u of two regular solutions of (D) satisfies (3.43) with
& = 0; therefore, by Theorem 3.6 and the fact that E (u, u) is a positive quadratic
form,

E(,u)=0 in ST.

From Theorem 3.3 it now follows that « is of the form (3.16) in S*. Since u = 0 on
9, we deduce that u(x) =0, x € St.

The same argument, but based on Theorem 3.13 instead of Theorem 3.6, is used
to prove the result for (D7).

If u is the difference of two regular solutions of (N ™), then, as above, we conclude
that u is of the form (3.16) in S—. However, since u € 7, we see from (3.39) that
u=0.

For (R1) we write

(Tu)(x) = —(ou)(x), x €98,

and (3.18) leads to
Z/E(u,u)da +/MT(0u)ds =0.
S+ EN

Since

T T
u ou=u;(ou); =u;(ojju;) =ojjuju; =0 u)

and o is positive definite, we deduce that u is a rigid displacement in St which
vanishes on 95, sou = 0.
The argument is analogous for (R™), with

(Tu)(x) = (cu)(x), x €S,

replaced in (3.41).

(i) As in the case of (D), we find that the difference of two regular solutions of
(NT) is of the form (3.16). O
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Chapter 4
The Layer Potentials

4.1 Layer Potentials with Smooth Densities

Let g = (gi5),i = 1,...,n, j = 1,...,m, be a matrix, X a space of scalar
functions, and L a scalar operator on X. In what follows we write ¢ € X if g;; € X,
i=1,...,n,j=1,...,m; wealso write Lqg = (Lg;;).

We introduce the single-layer plate potential

Vo) (x) =/D(x, Ve(y) ds(y) (4.1)

S

and the double-layer plate potential

(We)(x) =/P(x, Ve(y)ds(y), 4.2)

N

where ¢ is a density 3 x 1 matrix.
If f is any of the potential-type functions defined in Sects. 2.1 and 2.2 for scalar
densities, here we denote by f¢ the 3 x 1 vector function of components f¢;.

4.1 Theorem. If ¢ € C(3S), then Vo and W are analytic and satisfy (3.40) in
StTus~.

Proof. Clearly, V¢ and W are twice continuously differentiable at any x ¢ 9.5 and,
by Theorem 3.8, are solutions of (3.40). Their analyticity follows in the usual way
(see, for example, Miranda 1970). 0O

Let p be the vector-valued functional on C(9S) defined by

of = / FTfds, (4.3)
aS

where F is the matrix (3.17).
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4.2 Theorem. If ¢ € C(3S), then

D) Woed;
(il) Vo € o ifand only if pp = 0; that is, by (4.3), if and only if

(PP)a = /(§0a — Xg@3)ds =0,
aS

(pp)3 = /<P3 ds =0.
3s

Proof. (i) Expansion (3.39) for W¢ is obtained from (4.2), (3.11), (3.21), (3.23),

(3.25), (3.28), (3.36), and (3.37).
(ii) Using the same formulas as above, from (4.1) we find that, as r = |x| — oo,

V) (r, 0)
- azuz[(p(p)3r(2 Inr 4+ 1)cos6 + (pe)1 2Inr + 2 + cos(20)) + (pp)? Sin(29)]

+ (Vo) (r,0),

(Vo)a(r,0)
— ap®[(pe)3r2Inr + 1)sind + (pp)a2Inr + 2 — cos(260)) + (pg), sin(26)]

+ (V) (r,6),

(Ve)3(r,0)
= ayp(p@)s[pwr? Inr — 4n> (4 2p0) Inr — 4% (. + 3]

+ayu[(pp)1 cos + (pp)asinO][ur2Inr + 1) — 4% + 2u)r71]
+(Ve)y (1,0),

where (V(p)% € o7. This can be written more compactly in the form

(Vo)(r,0) = M™(r,0)(pg) + (Vo) (r, 0), (4.4)

where M (r, 0) is the 3 x 3 matrix function with columns

MV (r,0) = — ayp(u2Inr + 2 + cos(260)), wsin(20),
— (ur@Inr + 1) —4h O+ 2u)r ") cos6) ",

M= (r,0) = — ayu(sin(20), u(2Inr + 2 — cos(20)),
— (ur@Inr + 1) — 4h* (0 4 20)r ) sin6) ",

M>D(r,0) = —ayp(ur2Inr + 1) cosd, ur2Inr + 1)siné,
— wrInr +4R20 420 Inr 4 4120+ 3)) "

and a5 is the constant (3.26). The assertion now follows immediately from (4.4)
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4.3 Remark. The requirement that the solutions of the exterior boundary value
problems belong to 7 or .&/* is justified by the fact that such solutions will be
sought in the form of single-layer or double-layer plate potentials.

In view of Theorem 4.1, to investigate the continuity and differentiability of V¢
and We in ST and S~ it suffices to consider their behavior in Sar and S .

4.4 Theorem. If ¢ € C(3S), then Vo € CO%(R?) for any a € (0, 1).
Proof. From (4.1) and (3.30) we see that for x € Sy\ a5,

1 1
Vo = Z(MEVV + ;E33)(V<p) +2a30 (A + 1) Eap (Vog0) + Vo).

where vg and vZ g9 are defined by (2.1) and (2.15), respectively, and

(Vo)? (x) = / D(x, Vp(y)ds(y).

a5

The assertion now follows from Theorems 2.1, 2.11, and 2.9. O

4.5 Theorem. If ¢ € C**(3S), o € (0, 1], then W¢ has C%P-extensions (Wg)*
and (W)~ to ST and S~ , respectively, with B = a for a € (0, 1) and any B € (0, 1)
for o = 1. These extensions are given by

(We) (), xe st
W)™ =
(o {—%w(X)-F(Wo(D)(X), x €95,
(4.5)
. (We)(x), xes,
w =
e {%w(X)Jr(Wo(p)(X), x € 95,
where
(Wop)(x) = / P(x. Do) ds(y). x €S, (46)

S

the integral being understood as principal value.

Proof. As mentioned at the beginning of Sect. 2.1, it suffices to perform the analysis
in the boundary strip Sy (see (1.44)). Thus, following the argument in the proof of
Theorem 4.4, from (4.2) and (3.31) we find that for x € Sp\a.S,

1
Wo=—5— [M’eaﬁEaﬁ(vf @) — Ez(wp) — (V' + 1)eay Eyp(vasp)

1 1 . 1 ~
+ 5 fap (?»’E3,s + ﬁEﬁS)(V&‘P) - EEsa(vgw)} +Wo, (4.7)


http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_3

86 4 The Layer Potentials

where V5@, V49, Vg0, v/ ¢, and wg are defined by (2.2), (2.16)—(2.18), and (2.24),
respectively,

We)(x) = / P(x, Y)o(y)ds(y),

a9

and the kernel f’(x, y) satisfies the conditions of Theorem 2.9 with any y € (0, 1).
The assertion now follows from (4.7), Theorems 2.11, 2.12, 2.14, 2.9, and 2.2,
and Remarks 2.15 and 2.3. O

4.6 Theorem. If ¢ € C**(3S), o € (0, 11, then the first-order derivatives of V¢
in St and S= have C%P-extensions to St and S—, respectively, with B = « for
a € (0,1) and any B € (0, 1) for « = 1. These extensions are given by

(Vo)y (1), x €St
Vo)) T(x) = 7
(V76 [fy(x>+(<vm,y)o(x>, x € s,
(Ve).y (1), xesm,

\% s - =
((V)y) () [_fy(x)+((Vg0),y)o(x), x €S,

where the components of the vector function fV are

fY = dmaru[ O+ 285 — O+ w)vavp]v, 0,

(4.8)
f3y = ﬁ Vy ¢3

and

9

((Ve),o(x) =/g D(x, y)p(y)ds(y), x €aS,
Y

as

the integral being understood as principal value.

Proof. Once again, we restrict our attention to the boundary strip So. For x € Sp\dS
and y € 95 we write

Do = D}y + Dag,

- 4.9)
D33 = D3; + Ds3,
where, by (3.30),
Dyp(x, y) =2azu[ — (A +3w)depIn|x — y|
Xog — Xg —
+o4 e g"‘i(y’fz y’s)], (4.10)

D3(x, y) = — Injx —yl,

2w
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and Da,g and 533 satisfy the conditions of Theorem 2.9 with any y € (0, 1). From
(3.21), (3.23), and (3.25) it follows that

Do3 = —D3q = —azpt* (xq — yo)2In|x — y | + 1), (4.11)

which also satisfies the conditions of Theorem 2.9 with any y € (0, 1).
Using (1.7) and the equality

€B0€up = 08.06p — 88pSo s (4.12)
we find that

e 0 (xa¢ — Ya) (X5 — Yo)
P75y =P
d il oa— Ja o~ Jo
= I:Vﬁ(y)T — Vo(y)@}(x Ya) (X Vo)

lx — y?

0
= —Saﬂm Infx —y|
o, (y)( ya)(Tﬂ _—yyﬁ‘)(xa - ya)

(4.13)

Next, (4.13) and (1.51) yield

0 (xq — ya)(xﬁ - )’f})
Iv(y) |x —yl2

- _ *6~
= —va(y) |x_y| (y)I y|2

+ 20, () (xq — ya)(xﬂ - ya)(xo - Yo)
lx — vl

0 0
= [va(y)@ + Uﬁ()’)g}ln |x =y
o

0 (X0 — Ya)(Xo — Vo)
_8ﬁ0' 3
as(y) lx — yl

—5aﬂa—()ln|X—y|

= [vaM () + Vﬁ()’)fa(}’)]a_() Injx —y|

ad
+ [Zva(y)vﬁ(y) - Saﬁ]av_(y) Injx —y|

_ 0 (Xa _yot)(xo _ya)
795 () Ix — y[2

4.14)
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Finally, from (4.10), (4.14), (1.7), and (1.51) we obtain

3 * o *
ox, Dyg(x, y) = oy, Dyg(y, x)
9
= 2azu[(>» + 3u)8ap |:50yv<7 )= 550) +vy(y) e )} Infx —y|
0 0 (X¢ — Ya)(xg — yg)
+(x+u>[eyavg(y)m - vy(y)av(y)] = yfz £ ]
9
= 2a2M[2Vy D[+ 2808 — (A 4+ wva (MVp(Y)] 0 Injx —y|
+ [()‘ + 3#)8aﬂ80y Vo (y)
— O+ 1) (0pva(Y) + €0avp (1)) Ve (v, (N] —— e ( ) Injx —y|
_ (Xa = Ya)(xp — ¥p)
()L+M)|:8ayvo(y) 3s(y) Ix _y|2
(Xa = Ya) (X6 — Yo)
+8"’Svy(y)8S(y) lx — y[? “

Similarly,

1 9 9
3xy D3;(x, y) = nu[ y(y) ) + &0y a()’)a o )} njx —yl.

In view of (4.1) and the above calculation, for x € Sp\dS and y € 95 we can
now write

(Vo),y = — 'wf? +vg” —i—vgyp"‘
+v§ﬁq“ﬂ7’ + v/ 97 . (4.15)

Here, wo, v, v3y<p, vgﬁgo, and vfgz) are defined by (2.1), (2.2), (2.15), (2.18), and

(2.24), respectively, the densities f? (given by (4.8)), g7, p®, ¢*#7,and r¥ are 3 x 1
vector functions of class C%*(35), and

(V7 ) (x) =/f(x, Y (y) ds(y).

a5

where 17 is another 3 x 1 vector function of class C%*(3S) and .Z (x, y)isa proper
e-singular kernel in Sp for any € € (0, 1). The assertion now follows from Theorems
2.1,2.2,2.11,2.12, 2.14, and 1.33. O
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4.7 Remark. From Theorems 4.4 and 4.6 we conclude that if ¢ € Cco(38),
a € (0, 1], then the restrictions of V¢ to Stand S~ belong, respectively, to C LA(ST)
and C1#(§7), with 8 = « for « € (0, 1) and any 8 € (0, 1) for « = 1. Denoting
these two functions by (V@)™ and (V¢)~, we can write

((Ve)M),y () = (Ve),y ) T(x), xeST,
(V@) )y () = ((V)y ) (x), x €S8

In view of Theorem 4.4, we make the notation
(Vo) (x) = (Vo)g (x) = (Vog) (x), x € dS. (4.16)

Consider the function 7' (V¢) defined on Sp\dS (see Remark 1.19).

4.8 Corollary. If ¢ € CO""(BS),_a € (0, 11, then the restrictions of T (V¢) to S(‘)|r
and S, have C 0.B_extensions to Sa' and S , respectively, with B = o for a € (0, 1)
and any B € (0, 1) for « = 1. These extensions are given by

T (Vo) (x), x €Sy,

T(Ve)T(x) =
( ( QO)) (-x) [%(/)()C)'F(T(VQD))O(X)’ .X'GaS,

(4.17)
_ T (Vo)(x), X €S8y,
TV =
TVen o [—% o) + (T(VPo). x €3S,
where
e = [ 7D eI ds(y).
S
the integral being understood as principal value.
Proof. By (3.11), for x € Sp\dS we have
(T(V)a = h*{1va(Ve)p.p+ 1uvp[(VO)pa + (Vo)) 4.18)

(T(Ve)3 = wa[(Ve)a + (VP)3al.

and the Co’ﬁ-extendability of T(Vy) to 5’6" and 5’0_ follows from Theorem 4.6. For
x € 48, the same theorem and (4.18) yield

(T (V)T = £h*[va ff + nop(ff + 1] + (T (V)oa
=45 00 + (T(V))oa,
(T (V)T = wva f8 + (T(Ve)os = £5 3 + (T(Ve)os,

which completes the proof. O
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4.9 Remark. In view of Remark 4.7, we can write

(T(Ve)Hx) =T (Ve)Tx), xeSy,

_ _ — (4.19)
(TVe) )x) =T V)~ (x), x€.

4.10 Theorem. If ¢ € CL%(3S), « € (0, 11, then the restrictions of W¢ to ST
and S~ have C"P-extensions (W)t and (W)~ to St and S~, respectively, with
B =afora e (0,1)andany B € (0, 1) for o« = 1. These extensions are given by
(4.5) and satisfy

T(Wo)T =T (Wg)~ on dS.

Proof. Let u be a continuously differentiable 3 x 1 matrix function on 9.S. From
(3.11), (1.7), and the easily verified equality

0
VBUB,y — VyUg.g = Sﬂyg ug,

for y € 9§ we obtain
Typup = h*[hvyupp + pvp(upy +uyp)]

a Gl a Gl

Using (4.10)—(4.12), after a lengthy but straightforward calculation we find that for
x € So\dSandy € dS,

d d 0
A+ vy (Y)— — pepy—— + ud 7}D* (x, y)
[ " oyg T asy T () | TP
L s~ =y 4 ey —— Inlx— |
=—| —8qy—— In|x — Eqy —— In|x — .
2 L% vy T s Y

Consequently, using (4.20), (3.27) and integration by parts, we see that

/[Tyﬁ(ay)DEa(y, 0]y () ds(y)
3s

_ hZ[zMsyﬁ / Dy (e, )¢, (0 ds(y)
EN

1
o [av(y) Injx —y l]wa(y) ds(y)
S

1
— 5 fay /(ln Ix — y Do), (») dS(y)]-
as
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Similarly,
/[Tsﬂ(i?y)Dﬂa(y, x)]ea(y) ds(y) = M/Daﬁ(x, Wp(Me3(y) ds(y)
s s
and, by (4.11),

/ [733(3y) Daa(y. 0)]03(») ds(y)

S

= 2a2/ﬁ[ / (In|x — y Dve(M@3(y) ds(y)
S

9
—/[ lnlx—yl}(xa—ya)ws(y)dS(y)]+ca,
v (y)

aS

where the ¢, are combinations of A and L.
By means of the same procedure and (3.27), we arrive at

/[Tyﬁ(ay)DfB(ya )]y ) ds(y)

aS

_ zhzu{% / Dss(x, »)¢, () ds(3)
EN

—ayiu (21 +3p) /(ln lx =y Dvy (e, (¥) ds(y)
aS

ad
—}—azuz/ |:3v(y) Injx —y |](xy = Yy)ey (v) ds(y)
aS
— ey / (Inlx — y (g — )0, (y)ds(y)] x4+
EN

/[T3ﬂ(3y)D;33(y, X)]es(y)ds(y) = M/Dw(x, Nvg(Mes(y) ds(y),
is as

/[T33(3y)D§3(y, 0 ]es(v) ds(y)

s

1
= - [av(y) In |x —yl]<p3(y)d5(y),
EN

/

where the ¢y

and ¢’ are combinations of A and .
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These relations, (4.1), (4.2), (4.9), and (3.28) yield
h2
Wo = v(2h2a2,u,219 ~ 5 o — 2a2,u3w)
T

h? 5

twl| =9 —2an’p
2

+ V@R uo' + pw) + 2a3> (We) + # o, 4.21)

where, as functions of x, the specified densities and Wgo are

D = (O, 0, @x+ 3wy, + /wyﬁxygol’s)T,
o =(—¢. o1, 0T,
@ = (vig3, ng3, 0T, (4.22)
p = (X103, X203, —h*xy )7,
Wo = (x1(wgs), x20wg3), h2x, (v(epy @) — wey))

and # ¢ is a potential-type function whose kernel satisfies the conditions of Theorem
2.9 with any y € (0, 1). Since ¢ € C1¥(3S) and v € C'(S), we see immediately
that

9 € C%%DS), weC'dS), o, peC¥@OS).
By Theorem 4.5, the restrictions of W¢ to ST and S~ have C%P-extensions
(W)™ and (We)™ to ST and S, respectively. On the other hand, by Theorems

2.4,2.7,2.9, and 4.6, the restrictions of (W), to_S+ and_S_ have C%-#-extensions
(We),, )" and (We),, )™, given by (2.45), to ST and S Since

(We)h),y (1) = (We),, )T (x), xe ST,
(We)7),y ) = (We),, )" (x), xeS™,

the first part of the assertion follows from Theorem 1.20.
For the second part, first we deduce from (2.11) and (2.10) that

P +
(3— (w<p)(x))
Xy

= 8,,/3[ + g (x)g’ (x)

d
+ / (— Inlx —y |)w’<y)ds<y>], 4.23)

dxg
aS
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where the integral is understood as principal value. Next, we convince ourselves by
direct verification that for x € 9§,

Ey/fi”y(xﬁ%)/ =@3+ 8yﬂxﬂ"y¢’§’

— Vg V@3 + (p38aﬁ + Syaxﬂ‘)y(pév

eyaVy (Xp@3)’
gyﬁvy(xa(pS)/ = —Va VY3 + @38ap + 8yﬁxa‘}y§0§v
epaVp(Xy@y)' = Qu — VaVy @y + EgaXyVpe,,
EyaVBVy P — EypVaVEP), = Eya P,
Finally, rewriting (4.21) in the form
Wo = VQh2uo' + uw) + We, (4.24)

starting from (3.11), and making use of (2.9), (2.10), (4.20), (4.22), (4.23), and the
above relations, after another simple but rather lengthy computation we get

(TWe)E)y = (T(We))e) T = (T (We)p)E
= F5 1[vaws + h*(eypvavpe), + £yavyvp0h + va@))] + (F 9)a
= Fiu(} vas + h?eyat)) + (# @)a.

(TWe)h)s = (T(We))3)E = (F ),

where WA(p has the same properties as # ¢. On the other hand, by Remark 4.9,
Corollary 4.8, (4.24), and (4.22),

(T(VQh*po' + uw))*)g
= (T(V2R*po' + pw)))e)*
= (3 vag3 + hPeyag)) + (T (VR o’ + 1)))og.

(T(VQ2h*po' + pw))®)s
= (T(VQh* o’ + pw)))e)*
= (T(V(2h* o’ + ue)))os;

consequently,
(TWe)")(x) = (T(We) ) (x) = (# 9)(x) + (T(Ve))o(x), x €S,

which completes the proof. O
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4.2 Layer Potentials with Integrable Densities

We denote by L?(3S), p > 1, the space of functions f on 9. that are measurable and
such that | f|? is Lebesgue integrable over 9S. As is well known (see, for example,
Weir 1973), the space L”(dS) is complete with respect to the norm

I/p
I fllp = [/I.f(y)lpdS(y)] .
as

Also, every function f € L'(3S) can be written in the form

f=n-r (4.25)

where f1 and f, are the limits almost everywhere of increasing sequences of

step functions {go,(ll)}floz] and {(p,(lz) }o2 |- respectively, for which the corresponding
sequences of integrals { Ik <p,,}zo:1 and { Ik w,,}zo:l are bounded.
S S

4.11 Definition. Let f € L'(3S). A point x € 35 such that

o 2y = fal@),
where the f;, are as in (4.25), is called a Lebesgue point for f.
4.12 Lemma. If f € L'(3S) and x is a Lebesgue point for f, then
| s+e
lim — / f@dt = f(s).
E—>

0¢
s

The proof of this assertion is based on (4.25) and Definition 4.11.
4.13 Theorem. Let k(x, y) be a proper y-singular kernel in Sy, y € [0, 1], let

x=EFoE) €Sy, £edS, §>0,

and suppose that

lim / K(x, ) ds(y) = IE(®) (4.26)
kN
and
lim / K(E, y)ds(y) = 1(5), 4.27)

IS\ X 5
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where X¢ s is defined by (1.16). If ¢ € LY(S), then

tin | [k pmasm - [ ke emaso)]

aS 0S8\ I% 85

=[IFE) - 1®)]p©)

for almost all § € 38, where It gs is defined by (1.59).
Proof. Let & be a Lebesgue point for ¢, let

|x =& =48 <r/8,

with r chosen as in (1.43), and let X'| and X, be the sets (1.29) constructed with x
and x’ replaced, respectively, by & and x. Then

) . I:gs = X4,
and since here, obviously,

08 =21 U XU 08\ Xe,) =TggsUXrU @S\ Xg ),

we can write

I= / ke, Vo(y) ds(y) — / K(E, V() ds()

as S\ T: 85

=/k(x,y)[¢>(y)—w(é)]ds(y)— / k&, Mle(y) —e@)]lds(y)

39S S\ It 85

+<p(s>[/k<x,y)ds<y> - / k(&y)ds(y)]

N 0S\I: 85

_ / ke, »Io() — p@E)]ds(y) + / ke, o0y — p(E)]ds(y)

2 pXy)

+ / kG, )90y — p(&)]ds(y)

05\

_ / KGE. o0 — 9(E)]ds(y) — / k(& Py — @E)]ds(y)

b3 S\ X,

+<p(€)[/k(x,y)dS(y)— / k(E,y)dS(y)]

aS S\ T% 85
=L+ DL+ 5+ 14
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where

I = / k. o) — 0®]ds (),

2

I = / [kGe. y) — k& »][e0) — 0©)]ds(y).
p)

I = / [k(x. ) — k& N]le0) — 0@®]ds (),
S\ T,

Iy = w(S)[/k(x, y)ds(y) — / k(. y) dS(y)}-

X IS\ Ik 85

Let f(y) = ¢(y) — ¢(§), and let '] and I> be defined by (1.42). By Lemmas
1.10 and 4.12, as § — O,

i 5c1/|x—y|—y|f<y)|ds(y>
2
< cz/|x—sry|f(y>|ds<y>
X
5635_V/|f(t)|dt—> cLf ()] =0,
I

where the positive constants ¢y, ¢z, ¢3, and ¢ do not depend on x.
By Lemma 1.11,

|| < ¢ / e —&11E = yI7" N F I ds(y)

DY)

- C4s/|s—rry*|f(r>|dr,

I}

where ¢4 = const > 0 does not depend on x. Setting
t
gt) = / |f (o)l do,
s

we see that

Lg(t)—>|f(s)|:0 ast — s,
t—s
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g is absolutely continuous (Thomson and Constanda 1999), and g’ = |f| almost
everywhere in 5. Let a and b, a < s < b, be the arc coordinates of the end-points
of X¢ . Integrating by parts, we obtain

s—868 b
|12|sc43[/(s—t)‘y‘lg/(r)dw /(t—s)‘y‘lg/mdt}
a s+88

< C5[5_V [g(s —88) — g(s + 83)]
—8[—a) " g@) — (b —5) )]
5s—868 b
—(r+ 1)8[ / (s — 1)V 2g(r)dr — / (t—)7" (1) dr]],
a 5+88

where ¢5 = const > 0 does not depend on x. According to Lemma 4.12, we have

3 7g(s+85) —0 as § — 0,
which also yields

s—88 b
1im5/(s—t)*V*Zg(t)dtznm(s/(t—s)g(t)drzo.
5—0 §—0

a s+88

Hence, |I;] — 0asé§ — 0.
From Lemma 1.12 it follows that

[I3] < c / lx —&[1E = Y77 F I ds(y)
IS\ Ze.r

< car*za/ |f()lds(y) - 0 as 8§ — 0,
N

where cg = const > 0. Finally, as noted in Remark 1.41,

k&, y)ds(y) > 0 as § — 0.
2t 85\ 1,85
Consequently, from our assumption on k(x, y) we deduce that

L — [I%®&) = 1®)]eE) as § — 0,

which completes the proof. O
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4.14 Theorem. If k(x, y) is a y-singular kernel on 3S,y € [0, 1),and ¢ € L'(35),
then

/ku,w¢@nh@)

S

exists for almost all x € 9S.

Proof. By Theorem 1.32, the function fas |k(x, y)|ds(x) is continuous on 95,
therefore,

Iw(y)l/lk(x, Vlds(x)

as

belongs to L'(@35S). By Tonelli’s Theorem (see, for example, Weir 1973),
lk(x, ¥)o(y)| belongs to L'(3S x 85), and the assertion now follows from Fubini’s
Theorem (Weir 1973). m]

4.15 Remark. Using Lebesgue’s dominated convergence theorem, it is easy to show
that if Ay s is any small neighborhood of x on 9§ of arc length § > 0 and k(x, y)
and ¢ are as in Theorem 4.14, then

;E}}) / k(x, y)o(y)ds(y) =/k(x, V() ds(y)
0S5\ Ay 5 aS

for almost all x € 9S.
4.16 Theorem. If ¢ € L'(3S), then

0
/[m@)mu—quwdﬂw

aS

exists in the sense of principal value for almost all x € 9.

Proof. Since d1n |x — y|/dv(y) is O-singular on 9.5, from Theorem 4.14 it follows

that
/ a ln X ¢ ( ) CiS ( Y )

exists for almost all x € 5. Also, in Prossdorf (1978) it is shown that the function

®(¢)
-z
s

d¢

exists in the sense of principal value for almostall x € 9. The result is now obtained
by means of (2.36). |
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4.17 Theorem. Suppose that k(x, y) is a proper y-singular kernel in Sp, y € [0, 1),
x=ETF () €Sy, E€dS, 8 >0,

and ¢ € LI(E)S); then

gig})/k(x, »e(y)ds(y) =/k(é,y)¢(y) ds(y) (4.28)
a5

S

for almost all £ € 3S.

Proof. By Theorem 1.33, 1 + (&) and /(&) defined by (4.26) and (4.27) are all equal to
fas k(&, y)ds(y), and (4.28) now follows from Theorem 4.13 and Remark 4.15. O

Having completed this preparatory work, we can turn to the study of the behavior
of the layer plate potentials with L?-densities.

4.18 Theorem. If ¢ € L%(3S), then

(i) Vo and W are analytic in R \ 3S;
(i) A(Vp) = A(Wg) =0inR>\ 35S;
(iii)) Theorem 4.2 holds for V¢ and W ¢.

The proof of this assertion is based on classical results concerning the analyticity
of solutions of systems of partial differential equations (see, for example, Miranda
1970), the definition of V¢ and W, and their asymptotic expansions for |x| large.

4.19 Theorem. If
X=ETF () € SF. E€dS, 8 >0,

and ¢ € L*(3S), then
lim (Ve)(x) = (Vo) (§)

for almost all £ € 3S.

Proof. From (4.1) and (3.30) we see that the kernel of V¢ is a proper y-singular
kernel in Sp, with any y € (0, 1). Also, since 95 is a set of finite measure, we have
¢ € L'(35), and the assertion now follows from Theorem 4.17. m]

4.20 Theorem. If
x=EFOv(E) € ST, E€dS, s> 0,

and ¢ € L2(3S), then

lim (W) (x) = F3 0(6) + / P&, o) ds(y) = F5 ¢&) + (Wop) (§)
S
for almost all £ € 05, where the integral is understood as principal value.

Proof. We examine the terms of the kernel P(x, y) of Wg one by one, using the
expression (3.31). As above, ¢ € L'(35S).
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(1) First, 9 In |x — y |/ds(y) satisfies the conditions of Theorem 4.13 with y = 1
and [* = [ = 0 (see Theorem 2.14). By Remark 4.15 and Theorems 4.16 and 4.13,

lim
§—0 as(y)
EN

9
=8/S[8S(y) In|& —yl}p(y)ds(y)

for almost all £ € 9§, where the right-hand side is understood as principal value.

(ii) Next, 0 In |x — y |/dv(y) satisfies the conditions of Theorem 4.3 with y = 1,
I =2m,17 =0,and ] = 7 (see (2.5)—(2.7)). Also, this is a O-singular kernel on
aS. Consequently, by Remark 4.15 and Theorem 4.13,

Infx —y I]w(y) ds(y)

lim
§—0 [av(y)
s

Injx —y I}O(y) ds(y)

a
=imﬂ(€)+/[au(y) lnlf;'—yl}p(y)dS(y)

as

for almost all £ € 9S.

(iii) The kernel 8[(xa — Yo)(xg — yg)Ix — y|_2]/8s(y) satisfies the conditions
of Theorem 4.13 with y = 1 and ¥ =1 =0, and is 0-singular on 9§ (see
Theorem 2.14). Hence, by Remark 4.15 and Theorem 4.13,

8 o T o -
g%/[ (o = Ya) (38 ”qum@)

ds(y) Ix —yI?
N
_ 0 (6o — Ya)(‘i:ﬂ - y,3)1| d
_l[w@) ST LRt

for almost all £ € 9.

(iv) Finally, the remaining terms are proper y-singular kernels in Sp, with any
y € (0, 1); therefore, by Theorem 4.17, they satisfy (4.28).

The assertion now follows from (i)—(iv), (3.31), and (4.2). m|

4.21 Theorem. If x:é:FcSv(é)eSoi,éeaS,8>0,
and ¢ € L*(3S), then

gi_IR)(T(Vw))(x) =+19@) +/T(85)D(é, Vo) ds(y)
as

for almost all & € 0S, where the integral is understood as principal value.
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Proof. From the expressions derived in the proof of Theorem 4.6 it is clear that the
kernel of d(V¢);/dxy consists of the same type of terms as the kernel of W¢. To
complete the proof, we use (4.15) and (4.18). O

4.22 Remark. It is not difficult to show that the same results hold for V¢, We, and
T (V) as S(;—L > x — & € 3§ on any direction different from that of 7 (&). However,
for our purposes it suffices to have the corresponding limiting formulas established
as x — & along the normal at §.
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Chapter 5
The Newtonian Potential

5.1 Definition

The nonhomogeneous system (3.8)—that is,
A@u(x)+gx) =0, xe€ StorxesS™, (5.1)

where A(0y) is defined by (3.9)—can be reduced to its homogeneous version if
we know a particular solution of it. Our aim is to construct such a solution and
to determine conditions under which this solution has all the required smoothness
properties.

5.1 Definition. The integral

U(x) =/D(x,y)g(y)da(y), (5.2)

N

where S denotes either ST or S~ and D(x, y) is the matrix (3.23) of fundamental
solutions for A(d,), is called the Newtonian plate potential of density g.

Here, we consider only the case of the interior domain S™; the case of S~ is
treated in exactly the same way, with additional restrictions on g(x) as |x| — oo, to
ensure that U (x) exists as an improper integral.

Refining expression (3.30) and writing it more compactly, we see that for x close
toy,

1
D(.X, Y) = (11’1 |x _y|)(d1Eyy — m E33)

(X — yoz)(xﬁ - yﬂ) E

+dy a,
=y ’
+C+O(x —y|In|x —y)), (5.3)
C. Constanda, Mathematical Methods for Elastic Plates, 103
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where C is a constant 3 x 3 matrix and

A+3u
AmrhZpu(+2p)’
P
= — T
A hZpu(h +2u0)

dy =
(5.4)

The properties of the series expansions for the modified Bessel functions allow us to
differentiate (5.3) as necessary.

Let o (a, p) be the disk with the center at a, radius p, and circular boundary
do (a, p). All subsequent integration over circularly symmetric domains is performed
in terms of polar coordinates with the pole at the center of symmetry.

We make the notation

lop = / (e — y) (¥ — vg) ds(y) = T8, (5.5)
do(x,1)
lapn = / (e — 3) (¥ — ¥5) (X — ) (oy — y) ds ()
do(x,1)
T
= Z (504135,077 + 505/76/377 —+ 80”)8/3/0)’ (5.6)

where the integrals have been computed as indicated above.

5.2 The First-Order Derivatives

5.2Theorem.If g € L%°(ST), then dU (x)/dxy exists at each point x € ST (x € 35)
and

a a
——UK) =/8—D(x,y)g(y)da(y)-
X

0Xy o
S+

Proof. Consider the function
U”(x) = /k‘”(x, gy da(y),
S+
where

0, 0<|x -yl 2o,

£ . lx—yl 3
(x,y) = J 18| ~5 +1iD(x,y), o<|x—y| <2,

w
D(x,y), 20 < |x — y| < o0.
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Obviously, k®(x, y) has first-order derivatives with respect to the coordinates of
x € ST (x € 35); hence, dU® (x)/dx, exists at each point x € ST (x € 3S) and

9 9
a—U”’(x) =/—kw(x,y)g(y)da(y),
Xo 0Xy

S+

where the kernel of the integral satisfies

., .
—k%x,y) =0 if 0<|x —y| <o,
0Xy

d — — 3
—k?(x,y) = LA R bl B D(x,y)
0xy 2w |x — y| w 2

+1[ | [ b=yl 3 }H} " p
E sin n( > E) E (x,y)

if w<|x—y|l <2w,

0 0
—k®(x,y) = — D(x,y) if 2w < |x — y| < o0.
0Xy 0Xy

Next,

|U®(x) — Ux)|

/ [k°(x, y) = D(x, »)]g(y) da(y)‘
S+

=‘— / D(x, y)g(y)da(y)

StNo (x,w)

n % / [sin [n(@ _ g)] — I]D(x, y)g(y)da(y)

w 2
StNo (x,20)\STNo (x,w)

< llglo / DG ) da(y) + gl / D(x. y)| daly) — 0,

o(x,w) o(x,2w)\o (x,w)
uniformly as @ — 0, since D(x, y) has only a logarithmic singularity at x = Yy,
which means that the behavior of the right-hand side is similar to

w
/plnpdp: %a)zlnw—%wzao as w — 0.
0

Here, ||glloo is the norm on the space L>®(ST).
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Also,

9 )
‘/Tkw(x,y)g(y)da(y)—/fD(x,y)g(y)da(y)‘
Xo 0xy
S+

]
_‘ _ / L D(x, y)g(y) da(y)

0Xq
StNo (x,w)

S =

20 |x —yl

17 . lx—yl 3 | 0 D
+§ SlH(T[( > —5))— ﬂ (x,y)

STNo (x,2w)\STNo (x,w)

which leads to

9
‘/—k‘”(x ey da(y) — /gD(x,y)g(y)da(y)‘
S+

=< llglleo

o(x,w)

+ gl /
2a)gOO

o(x,2w)\o (x,w)

0
‘8— D(x,y)‘da(y)
Xo

Xa —

< D(x,y)|da(y)

|lx —

T lgllos / ‘a D(x. y)‘da(y)

o (x,2w)\o (x,w)

< cllglloo /

o(x,w)

1
elgle [ - da(y) ~ 0.

o (x,2w)\o (x,w)

T2 7 bx,y) | da(y)

|lx —

T
da(y) + — llglleo
| 2w

o(x,2w)\o (x,w)

uniformly as @ — 0. The second integral on the right-hand side tends to zero as

w — 0 because its behavior is similar to

2w
1 1 2
;/plnpdp: —[z0*mp =30,

w
—}‘w(6lna)+81n2—3)—>0 as w — 0.

The assertion now follows from a well-known theorem of real analysis.
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5.3 Lemma. If B8 € (0, 1], then there is a constant c such that

1
X' =x"Pln— <clx' = x"|% O0<a<pB<1, x, x"eR%

|x/ . x//| —
Proof. Consider the function & defined by

h(t) =

1
tY +tlnt,
L—vy

where y € (0, 1) and ¢ € [0, 00). We can write & as
ht) =17 x (),
with

1
x(t) = —— + 1"V 1Int.
l—y

107

(5.7)

(5.8)

Obviously, 2(0) = 0. We claim that x () > O on 0 < ¢t < oo. The function x has

a turning point if and only if
O=x')=0—=yp)t VInt+177,

which occurs at
t = el/()/—l) .

Differentiating x a second time yields

X' ==yl =)t 7 int+ (1 -y 7 —yrr

so, since y < 1,

_ _ 1
X//(el/(y 1)) =y - y)e()’-‘rl)/(l v~

y —1

+( - J,)e()/Jrl)/(lf)/) — ye(}“rl)/(l*}/)

=(1- y)e(y-i-l)/(l—y) > 0.

Also,

(D) = te



108 5 The Newtonian Potential

Hence, x has a minimum turning point at t = ¢!/~ and x (e!/*~D) > 0. Since
this is the only turning point of the function, x(¢) > 0 on 0 < t < oo. Therefore,
h(t) given by (5.8) has exactly one root, which occurs at + = 0. Now, since

BV D) = 1; ey/(y—l)(l _ 1) -0,

we find that 2(z) > 0 on 0 < ¢t < 0o. Replacing f by |x — x”| in (5.7) yields

|x/ _ x//|y + |x/ _ x”lln |x/ _ x//| >0

for any y € (0, 1).

. 1 . .
With ¢ = ] , this is rewritten as
1
X —x"|In —— < c|lx’ = X",
|x/ _ x//|
SO
1
X' =x"Pln—— <clx’ =x")% O<a<B<l,
|x/ _ )C//|
which proves the assertion. O

5.4 Theorem. If g € L>®(S1), then U € C1*(3S), a € (0, 1).
Proof. By Theorem 5.2,

0
Q) = Fy Ux) = /q(x, y)g(y)da(y) onaS,
Xn

S+

where

9
q(x,y) = T D(x,y).
Xn

By (5.3),
q(x.y) = O(lx — y| Has|x — y| - 0.
Letx’, x” € 9S and & = |x’ — x”|. Then

0 — 0"y = N, x") + L, x") + L', x"), (5.9)
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where

Jix' x") = / q(x’, y)g(y)da(y),
StNo (x/,28)

H(x' x") =~ / q(x", y)g(y)da(y),
STNo (x/,28)
S x") = / [q(x", y) —q(x", »] g(y) da(y).
S+\J(x’,2§)

Taking into account the singularity of ¢ (x, y), we find that

] < / 9, Vg da(y)
S*tNo (x’,28)

1
<allgls [ daw)
o(x',28)

=2mcylglleo - 26,

where, as mentioned earlier, the integration was performed in terms of polar coordi-
nates with the pole at x’; hence,

1] < calx” = x"|. (5.10)

Similarly, using polar coordinates with the pole at x”, we get

D) < / g g daly)

StNo (x/,28)

1
< cllgloo / L

lx” — y|
o(x”,38)
=2mcillglloo - 36,
SO
|2l < c3lx” — x"|. (5.11)

Estimating J3 is less straightforward. First, we have

3] = / lg(x', ) = q(x", Yl 1glda(y).
SH\o(x'.28)
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By the mean value theorem,

lg(x', y) — g (x", )| = |xp — x4l

a
a_q(x///, y)‘
B

"

< calx’ = x| " =y 72,

"

where x”” lies between x” and x”. Also, for y € 7\ o (x’/, 2§),

"

1 1 .
" =yl = X =yl = = x> Y =yl = g =yl =g I =y

therefore, when y € ST\ o (x’, 2£),
g, y) =g )| < esh =212 =y 72,
which implies that
/ 1 1
[/3] < csliglloclx” — X7 ———da(y);
Ix" =yl
St\o(x,28)

so0, by extending the domain of integration, we see that

1
131 < esllglloolx” — x” / W—zdﬁl()’),

o(x',M)\o (x',28)

where M is the largest distance between any two points in S*; consequently,

M
|31 < 2mesliglloolx” — x//l(ln 5 In [x’ —x/’)

=cglx = x"| +c7)x — x| In ——,
|x/ _ x//|
and from Lemma 5.3 we now conclude that
|J3] < colx’ — x|+ cglx’ —x"|%,  « € (0, 1);

in other words,
[J3] < colx” — x"|%.

Combining (5.9)—(5.12), we arrive at the required inequality
10(x") = Q)| < elx’ = x"|% @€ (0, 1),

where ¢ is a constant independent of x” and x”’.

(5.12)
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5.3 The Second-Order Derivatives

5.5 Theorem. If g € C%%(S), a € (0, 1], then the integral

M(x) = / m(x. y)g(y) da(y).
S+
where
2

0x40xg8

m(x,y) = D(x,y),

exists in the sense of principal value at every point x € ST and is given by the
formula

M(x) = /m(x, Nlg(y) — g(x)1da(y)

S+

+ [ / m(x, y)da(y) +£lg)1}) / m(x, y)da(y)]g(x),
St\o (x,w) o(x,w)\o (x,8)
(5.13)
where @ > ¢ and o (x, w) C ST.

Proof. The principal value of the integral is computed as

lirrb / m(x,y)g(y)da(y)

E—>

St\o(x,8)

~ lim [ / m(e. Mgk — g0l daly)

e—0
St\o(x,e)

+[ / m(x, y)da(y)
St\o (x,w)

+ / m, y) da(y)}g(x)],

o(x,w)\o(x,e)

where w is chosen so that w > ¢ and o (x, w) C ST.
The first integral on the right-hand side of this expression converges since the
integrand is O (|x — y|%72), a € (0, 11; hence,
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lim / m(x, y)g(y)da(y)

e—0
St\o(x,8)
=/m(x,y)[g(y) —g)]da(y)
S+
+[ / mix, ) da(y) + lim / m(x,y)da(y)}g(X)- (5.14)
SH\o (x,w) o (x,w)\o(x,¢)

We claim that the third integral has a limit as ¢ — 0. By (5.3),

a Xg— yp
— Dyy(x,y) =d18pp—>
0xp on pn|x_Y|2
8,80y — + 8pp(x, —
tds pﬂ( n J’n) nf( 14 yp)
lx — ¥l
Xp — Xn — X —
o8 = 3000 = 3OB =) 1 1y — )
lx — vl
and
82
0XqdXx pn(x: )
(S _ —
_d18077|: o 2—2(xa )’a)(xﬂ4 yﬂ)]
lx — vl lx =l

d2|:3,0ﬂ8m] + 57;,3801,0 _ 28,0;‘}(350! - ya)(xn - yn) + 617;3 (xq — )’ot)(x,o - Yp)i|
lx — y|? lx — y|*

_2d2|:8ap(xn_)’n)(xﬂ_yﬂ)+8an(xp - Yp)(x,B - Yﬂ)+5aﬁ(xp_yp)(xn_)’n)
lx — yI*

(xq — yoz)(xﬁ - yﬂ)(xp - yp)(xn - Yn)
lx — y[®

—4 ]+0(|x—y|‘).

From (5.3) we also deduce that

2
Tradvs Dy3(x,y) = O(x —y|™h
o
and
9 1 xp—y
S D3 y) =~ Pl Ok = ylInlx = yI),
xp 2 |x =yl
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which lead to
2
Dxadxs D33(x, y)
= —2;M [|x 5_a,3y|2 - _&ai();’ff %) } +0(n|x - y)):
therefore,

/ 1y G5 ¥) da(y)

o(x,w)\o(x,e)
=1In ‘f [d1 (278 py8ap — 28py1ap) + 27 d2 (8 ppSan + Sypdap)
—2d>(8pplan + Suplap + Saplnp + Sanlop + Saplon) + 8daluppn]
+ / O(lx — y|"Hda(y).

o(x,w)\o(x,¢)

Taking (5.5) and (5.6) into account, we find that

/ oy (x, y) da(y)

o (x,)\o (x,€)
=In % [270d1 (8 pyBap — Spndup) + 27 d2(8p8an + Supdp)
— 270d(28 58 + 28,80 + e p)
+ 27 d2(8ap8 oy + Sapdpy + Sandpp) ]

+ / O(lx — yI™ da(y);

o(x,w)\o(x,¢)
hence,
G da = [ 0Gx =y da)
o(x,w)\o(x,8) o(x,w)\o(x,e)

from which we readily infer that

lim / mpy(x, y)da(y) exists.

e—0
o(x,w)\o(x,e)
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Similarly,

82
/ 3 (x, y) daly) = / D,3(x. y) da(y)

0xy0xg
o(x,w)\o(x,¢) o(x,w)\o(x,e)

= / 0( ! )da(y),
|x — ¥

o(x,w)\o(x,e)

SO

e—0
o(x,w)\o(x,e)

lim / mp3(x, y)da(y) exists.

Finally,

/ m3s(x. y) da(y)

o(x,w)\o(x,¢)

82
= / D33(x, y)da(y)

0xq0xg

o(x,w)\o(x,e)

m2 (- Lts,+ 1y
= In — _ e —
o\ das b e

+ / O(n|x —y|)da(y).

o(x,w)\o(x,&)
By (5.5),
matey)dao) = [ 0talx = y)daty).
o(x,w)\o(x,e) o(x,w)\o(x,e)

which implies that

lim / m33(x, y)da(y) exists.

e—0
o(x,w)\o(x,¢)

Therefore, we have shown that

lim / m(x,y)da(y) exists,

e—0
o(x,w)\o(x,e)
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and from (5.14) we conclude that

lim / m(x,y)da(y) exists,

e—0
St\o(x,8)

thus proving the assertion. O

5.6 Remark. Since both

9
/D(x,y)g(y)da(y) and /QD(x,y)g(y)da(y)

S+ S+

exist as improper integrals (provided that g is bounded), their principal values obvi-
ously exist and coincide with the values of the improper integrals themselves, so we
may write

/D(x, g da(y)

S+

=/D(x,y)[g(y)—g(X)]da(y)
S+

4 [ / D(x. y) day)
ST\o (x,0)

+ 1im / D(x, y)da(y)]g(x)

o(x,w)\o(x,e)

and

d
/ . D(x, y)g(y)da(y)
Xa

S+

d
Z/QD(x,y)[g(y)—g(x)]da(y)

S+
d
+[ / — D(x, y)da(y)

0Xy
SHt\o (x,w)

+ lim / i D(x,y) da(y)i|g(x).

e—0 0Xy
o(x,w)\o(x,&)

In the next assertion, $* denotes a bounded domain in R? such that S* c S+,
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5.7 Theorem. If g € C%#(ST), B € (0, 1), then M € C**(S*), where 0 < a <
B < 1 and M (x) defined by (5.13) is understood in the sense of principal value.

Proof. Let p > 0 be the minimum distance between 9.5 and the boundary of S*. By
Theorem 5.5, M (x) exists for x € $* in the sense that

M(x) = / mx, »[g0) — )] da(y)

S+

+[ / m(x,y>da(y)]g<x)
St\o (x,p)

+Lli_1}10 / m(x,y)da(y)}g(x}

o(x,p)\o(x,e)

Since x € S*, the disk o (x, p) is contained entirely within S+.

We have already shown in the proof of Theorem 5.5 that the limit of the third
integral on the right-hand side exists. Given that m is, in fact, a function of x — y
and we are integrating over an annular region with the center at x, this integral is a
constant matrix depending on p; that is, it is independent of x.

For simplicity, from now on we consider m and f to be scalar functions instead
of a matrix-valued function and a vector-valued function, respectively.

The function M can be written in the form

M(x) = Mi(x) + Ma(x) + M3(x), (5.15)
where
Mi(x) = /M(x, W[g») — gx)]da(y),
S+

Ma(x) = g(x) / m(x, y)da(y),

SH\o (x,p)

M3 (x) = Lh_rg% / m(x, y) da(y)}g(X) = cp8(x).

o(x,p)\o(x,€)
Let x’, x” € S* be such that
E=x"—x"| < %,0.
First, we have

Mi(x) = Mi(xX") = (X', x") + L x7) + B X + ax x7), (5.16)
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where

NG X = / [ ) — m(". »][s0) — g™ da(y)
SHt\o(x',p)

e —eh] [ mt ) daey,
SH\o (x'.p)
L' x") = / m(x', y)[g(y) — g(x"]da(y)
o(x/,28)
- / m(x", »)[g(y) — g(x"]da(y),
o(x',28)
S x") = [g(x") — g(xh] / m(x',y)da(y),
o (. p)\o (x'.26)
Ja(x', x") = / [mx', y) —mG", »][g() — gx)]da(y).
o (<. p)\o (x',26)
We estimate the above integrals. First,
|1 (x", x| < / Im(x', y) —m&x", y)|1g(y) — gx")| da(y)
SH\o(@'.p)

+ 1g(x") — g(x")] / Im(x', y)| da(y).
ST\o (', p)

By the mean value theorem,

8 |x/ _ x//|
Im(x', y) —m&x", y)| < |x}, — xy| |[=— mx", y)‘ < cli——
0xy [x"" — yl
where x”’ lies between x” and x”. Also, since
' — x| < |x —x"|
1 /
<5 lx =yl
fory € ST\ o(x/, p) we have
Ix"" =y = |x" =yl = |x" = x"|

1 1
> —yl=5 0 =yl=51x" =yl
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Therefore, when y € ST\ o (x/, p),

|x" — x"]

Im(x', y) —m@x", y)| < TR (5.17)
from which
lx" = yIP
(', X)) < eslx’ — x| / ﬁda(y)
St\o(x',p)
1
+ calx’ — x"|P / ﬁda(y).
X =y
St\o(x',p)

The integrals on the right-hand side do not pose a problem since x’ lies outside the
domain of integration and |x” — y| is bounded in ST \ o (x’, p); hence,

|1, x| < eslx’ — x"|F, (5.18)

where c5 is a constant depending on p.
Estimating J», we arrive at

|2, x| < / Im(x', )| 1g(y) — g(x")| da(y)

o(x',28)

4 / " )18 — )] da(y)

o(x’,28)

< c6 / W—ﬂ“ﬁﬂw+%l/lﬂ—ﬂwhdw
o(x,28) o(x,28)

From Fig. 5.1 we see that o (x’, 2&) C o (x”, 3&); so, using polar coordinates with
the pole at x” and x”, respectively, to evaluate the integrals, we obtain

(e 2] < e / W =y da(y) + cg / = y1F 2 da(y)
o(x’,2€) o(x",3&)

2
- F” cof2P1x' — x"|F 4+ 38 x — x"P),
which means that

|, x")] < er1x’ — x"|P. (5.19)
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Fig. 5.1 The disks o (x/, 2)
and o (x”, 3&)

Now, by Lemma 5.3,
I3, x| < 1g(x”) — g(x")] / Im(x’, y)| da(y)
o (x',p)\o (x',28)

1
< cgle’ — 2"} / — L day)
|x" =yl
o(x',p)\o (x',28)

1
_ / "B p
_27TC8|)C —x"| (1n§+lnm)

<colx’ = x| +cpolx’ —x"|* < enly’ —x"|%, (5.20)
where 0 < o < B8 < 1 and ¢11 depends on p.
Regarding J4, from the assumption on g it follows that
s’ 2" < / mx, ) —mG, )12 — g6l da(y)
o(x',p)\o (x',28)
<en / @', y) = (" 1" = yIP da(y).

o(x’,p)\o(x',28)
It can be shown that (5.17) holds for y € o (x’, p) \ o (x’, 2£), so
[Ja(x', x| < epzlx’ — x"|
o (x’,p)\o (x',28)
Fory e o (x’, p) \ o (x’, 28),

e I P F ]

IA

IA

X =yl =yl =3 =yl
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therefore, since 8 < 1, we use polar coordinates again and arrive at

L4, 2] < cral’ — ") / ' — y1P=3 da(y)
o(x’,p)\o(x',28)
21 _ _ _
— - ’3 cl4|x/ _x//|{2f3 l|x/ _x//|/3 1 _ ,Oﬂ 1}7
which yields
[Ja(x x| < erslx’ — x|, (5.21)

where c15 depends on p.
Estimates (5.18)—(5.21) together with (5.16) now lead to the conclusion that for
X" = x"| < p/2,
IMy(x") = My (x")| < crelx” — x"|%, (5.22)

where 0 < o < B < 1 and c16 depends on p.
Next,

My(x') = Ma(x") = Js(x', x") + Jo(x', x") + J7(x", x") + Jg(x', x7),  (5.23)

where

S5 x") = [g() — g™ / m(x', y)da(y).
SH\a(x',p)

Jo(x' 2"y = g / [mGx', ) = m(x", )] da(y),
SH\o(x',p)

PG X" = g (") / m(x", y) da(y),
o(x",p)\o (x',p)

T 2"y = —ga") / m@", y) da(y).
a(x’,p)\o (x”,p)

The estimation of Js starts from the inequality

5 2] < 18y — g™ / m(', ) da(y)
St\o(x',p)

1
<cpplx’ —x"|P / ———> da(y).
Ix" =yl
ST\o(x,0)
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Since x’ is outside the domain of integration, this yields

|Js(x", x")| < crglx’ — x5, (5.24)

where c1g depends on p.
Recalling (5.17), we see that

[Jo(x', x| < | f(x")] / Im(x', y) = m(x", y)lda(y)

ST\o (x’,0)
1
< e[ sup | f O] 1x" = x"| / ———x da(y);
xes* [x" =y
ST\ (x',p)
hence,
[J6(x", x| < crolx” — x|, (5.25)

where c19 depends on p.
For J7, we have

|J7(x", x| < 1g(x")] / Im(x", y)| da(y)

o(x",p)\o (x'.p)

1
<0 / = yP da(y).
o(x",p)\o (x',p)

Extending the domain of integration and changing to polar coordinates with the pole
at x” leads to

|J7(x", x| < e mda(y)
o (", ptla’ =x"D\o (", p—[x'=x"])
1
<2mcplo+1x —x" - (p = | —x")]| ——
[o+1 = (oI ==
/7 4
x'—x
= 4mcy | | .
p— |x"—x"|
Since
l ” 1 1
p—lx =x"|>p—5p=5p,
we arrive at

8
[J7(x", x")] < 7620|X/ —x";
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that is,
|J7(x", x| < earlx” — x|, (5.26)

where ¢y depends on p.
Similarly, noting that

X" =yl =[x =yl

fory € o(x’, p) \ o (x”, p), we find that

[Js(x", )] < | f ()] / Im(x", y)|da(y)

o (x’,p)\o (x",p)

<c 3 da(y)

lx” — yl
a(x’,p)\o (x",p)

1
<c» / mda()’)

o(x.p)\o (x".p)

1
f Cc22 mda(y)

o (&', p+|x' —x"PD\o (x', p—|x"—x"])
Just as in the case of J7, the above inequality yields
[Js (", x")| < caslx” — "], (5.27)

where ¢33 depends on p.
Combining (5.24)—(5.27) and also taking (5.23) into account, we see that for
lx' —x"| < p/2,

My (x") — Ma(x")| < coalx’ — x"|P, (5.28)

where ¢4 depends on p.
Finally, it is obvious that

IM3(x") = M3(x")| < [e,llx" — x"1P. (5.29)
Thus, from (5.15), (5.22), (5.28), and (5.29) we conclude that for |x' —x"| < p/2,
IM(x") = M(x")| < cslx” — x"|*,

where 0 < o < B < 1 and ¢5 depends on p.
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We can easily show that M is bounded:

|M (x)] S/Im(x,y)llg(y)—g(X)lda(y)
S+

+[g(x)] / Im(x, y)lda(y) + lcpllg(x)]

ST\o (x,p)

_ 1
<o [l =3P da) ten [ = dat) +leyle < M.
s+ ST\o(x,p)

Hence, for |x" — x"| > p/2,

I I 2\ ¢
MGy — M@ < 2N =2n 2 X ZN(—) X' — x|,
o

|x/ — x"|* ~
and we conclude that for all x’, x” € S*,
IM(x") — M) < clx’ —x"|%,

where 0 < o < B < 1 and ¢ depends on p. m|

5.8 Theorem. If g € C%A(S1), B € (0, 1), then U € C**(82), where 2 is an
arbitrary domain in R* whose closure lies in St,and 0 < a < B < 1. Additionally,

2

3 Ux) =y(a, Blgx) + M(x), (5.30)
Xg0Xg

where M is defined by (5.13) and y («, B) is a constant symmetric 3 x 3 matrix with
entries

Von(at, B) = wd18upd,ny + %ndz((sapéﬂ,, + 8andpp — 8apbpn), (5.31)

Vﬂ3((x7 ﬂ) = y3,0(a7 :3) = 07 (532)
1

B) = —— Sup. 5.33

v33(a, B) o ap (5.33)

Proof. By Theorem 5.2 with D(x, y) = D(x — y) (which reflects the structure of D
more accurately),

2 2

(x) =
0xy0Xg 0xq0xg

/ D(x — y)g(y) daly)
S+

d

9
= [ 5 D(x — y)g(y)da(y).
Xo 3)6/3
S+
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According to Theorem 2.8 in Kupradze et al. (1979, p. 184),

9 9
3 / — D(x —y)g(y)da(y)
X 0xp

St\o (x,w)

2
= / D(x — y)g(y)da(y)
0xq0xg
ST\o (x,w)

o o 8
- / Y7 D pix — y)g(y) ds(y). (5.34)
|x — y| dxg

do (x,w)

We rewrite the second integral on the right-hand side of (5.34) as
Y, Xq O
- / T —— D(x — y)g(») ds(y)
x =yl axg
do (x,w)
=w

9
(xa — Ya)a_ D(w(x —y)glx +w(y —x))ds(y).
Xg
9o (x,1)

The first two components of the integral around do (x, 1) are

0
o / (ko = o) D@5 = )&+ =) ds(0)

do(x,1)
d
+o / (g — )’a)g Dp3(@(x — y))g3(x + @ (y — x))ds(y)
do(x,1) P
= (X — ya){dlgpn(xﬁ —yp)+ d2[8p/3 (xy — ) +8y8(xp — ¥p)
do (x,1)

—2(xp — yp)(xy — ¥ (xg — yp)| + O(@Inw)} g, (x + w(y — x)) ds(y)

+ (Xa = Ya)(O(@In 0))g3(x + w(y — x)) ds(y).
do(x,1)

As w — 0 in the above expression, from (5.5), (5.6), and (5.31)—(5.33) it follows
that the first two components are

&) d18py1up + da(Bpnlap + Spplan — 2lappn) ]
= gn(x){ndl(spn(saﬁ

+ 7w da[8pnSup + 8ppSan — % (8appn + Sapdpn + Sundpp) ]}
= Yoy, B)gy(x) + vp3(a, B)g3(x).
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The third component of the integral around do (x, 1) is found analogously. First,
we see that

0
o / (50 =30 D0 = D)8+ = 1) ds)
do(x,1)

9
+o / (xq — Ya)@ D33(w(x — y)g3(x + @ (y — x))ds(y)
do(x,1)

= / (Xa = Ya)(O(@Inw))gu(x + &y — x))ds(y)

do (x,1)
1
+ / (X — ya)[ T (xg — yp) + O (o” lnw)}%(x +o(y —x))ds(y).
do(x,1)

As w — 0, from (5.5) we deduce that the third component is

1 1
e ap83(x) = T dap83(x) = yaula, B)gu(x) + y33(a, B)gz(x).

Equality (5.30) is now obtained by letting @ — 0 in (5.34).
By Theorem 5.5, M (x) exists in the sense of principal value and, by Theorem 5.7,
M e C%%(£2), which completes the proof. O

5.4 A Particular Solution of the Nonhomogeneous System

5.9 Theorem. If g € Co’ﬁ(S"'), B € (0, 1), then U(x) defined by (5.2) is a regular
solution in ST of system (5.1).

Proof. The regularity of U has been shown in the proofs of Theorems 5.4 and 5.8.
By (3.9),

2 a2
a
[AO)U @], =h*1 D — Ua(x)
521 axﬂ

2

0xy0x,

2
+RP A+ D Up(x)
p=1

9
— uUy(x) — u—Us(x),
X
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and by Theorem 5.8,

a2 32
—— Ua(x) :/[72 D(x, y)(g(y) —g(x))} da(y)
dxg dxg o

S+

32
+[ / 7Dak(x,y)da(y)}gk(X)
dx

SHt\o(x,w) p

32
+ lim [ / — Dak(x, y)da(y)}gk(X)
ax

e—0 8
o(x,w)\o(x,e)

+[yB. Prg™)],.

92 92
—Upu):/[ D(x,y)(g(y)—g(x))] da(y)

0xq0x, FA 0xq0x, o

32
+[ / rain, me,y)da(y)]gk(x)

ST\o(x,w)

82
+ lim [ / ——— Dpr(x,y) da(y)]gk(X)

e—0 Bxa 8xp
o(x,w)\o(x,&)

+[r@ pg@],.

Also, Remark 5.6 and Theorem 5.2 imply that

U (x) =/[D(x,y)(g(y)—g(X))]a da(y)

S+
+ |: / Dgi(x,y) da(y):|gk(x)
ST\o (x,w)
+ 1im [ / D (x. ) da(y)}gku),

o(x,w)\o(x,e)

9 9
— Us(x) =/ [— D(x, y)(g(») —g(x))} da(y)
3
S+

0Xy 0Xy

d
+ |: / — D3 (x,y) da(y)]gk(x)

0Xy
St\o (x,w)
. 0
+ lim — D3p(x, y)da(y) | gk (x);
e—0 axa

o(x,w)\o(x,e)
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consequently,

2

(AU )], Z y(B.B)g(x)],

2

+R0+w Y [y (@, PgM],

p=1
+/[A(ax)D(x,y)(g(y) —8)], da(y)

S+

+[ / [A(ax)D(x,y)]akda@)}gk(x)
ST\o (x,w)

+ lim [ / [A@)D(x, Y], da(y)]gk(x).

e—0
o(x,w)\o(x,e)

Next,

/ [A@:)D(x, y)(8() — g(x))], da(y)

S+

_ / [ =80 = ¥DE3 () = g(0)], da(y)

—/8(|x — YDga(y) daly)

S+

+ [/sux - y|)da(y>}ga(x>
S+

= —gu(x) + gu(x) = 0.

By Theorem 3.8, the integrals over ST\ o (x, ) and o (x, ®) \ o (x, €) are also zero.
Therefore, using (5.31) and (5.32), we obtain

2
[A00U @], = D {h*1ven(B, B)&n () + h* 1yas (B, B)&3(X)
B=1

+h2 O+ 10y en Bgu(x) + 0+ wyss(a, Bgs(x)}
2
= > {n*ulrdi8uy + 5 722808855 — San)]gn(x)
B=1
+ R+ [ di8apdpu + L wdray]gu(0));
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so, by (5.4),

[A@0UW)], = [P*n@rdi — mdy) + h*(h + pmd,
+ W urds + W2 (A + mdy]ge ()
= 1?x[(h +3w)di + O + wda]ga )

= oz (AT W7 = 0430 ]ga() = —ga (),

which means that
[A(ax)U(x)]a + ga(x) = 0.

Similarly,
2 82
[A@U®];=n ) {—Uﬁ(x)+a—U3(x>]
p=1 *p
which leads to

[A(dx )U(X)]

Z y 6. /2wl + [ [4@0DG »(e0) ~ g0)]; daty)

~ J
+[ / [A(axw(x,y)]3kda<y>}gk<x>

St\o (x,w)

+ lim [ / [A@)D(x, y)]5, da(y)}gk(ﬂ

e—0
o(x,w)\o(x,e)

As before, the integrals on the right-hand side vanish, and (5.32) and (5.33) yield

[A@)U )], HZ[)@a(ﬁ B)ga(X) + v33(B, B)g3 (x)]
B=1

2
1
= M/SZ:; (— Z)&(X),

hence,
[A@)U™)]; + g3(x) =0,

as required. O
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5.10 Remark. Consider the generic boundary value problem

A0 )u(x) +gx) =0, xedSt, (5.35)
Bu(x) =% (x), xe€dS ’
for system (5.1), where g € L°°(S™), B is any of the boundary operators generated
by the Dirichlet, Neumann, or Robin conditions, and %/ is a continuous 3 x 1 matrix
function prescribed on 9 (see Sect.3.4). By Theorem 5.9 in conjunction with the
smoothness results established in Sects. 5.2 and 5.3, the substitution

u=v+U (5.36)
transforms (5.35) into the boundary value problem

A(dy)v(x) =0, xest, (5.37)
Bv(x) =% (x)— BU(x), xe€dS ’
for the homogeneous system (5.1). According to Theorem 5.2, the boundary data
function % — BU is continuous on 9, and if (5.37) has a regular solution v, then
(5.35) also has a regular solution u given by (5.36). This justifies the statement made
in Remark 3.11.

Reference

Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional
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Chapter 6
Existence of Regular Solutions

6.1 The Dirichlet and Neumann Problems

In view of Theorems 4.2 and 4.10 and Remarks 4.7 and 4.9, we may seek the solutions
of problems (N*) and (N7) in the form of (V)™ and (V)™ with ¢ € C*%(35),
that of (D) in the form of (W¢)*t with g € C1%(35), and that of (D) as the sum of
(We)~ withg € C]""(BS) and some 3 x 1 matrix ug of the form (3.16). By Theorem
4.5, Corollary 4.8, and Remark 4.9, the boundary value problems (3.43), (3.44) and
(3.46), (3.47) are reduced, respectively, to the (systems of) singular integral equations

Lo+ / P(x, Vo) ds(y) = P(x), )
N
o) + / T@)D(x, Vo) ds(y) = 2(x), )
N
Lo() + / Px, 1o ds(y) = B(x) — ug(x), @)
N
Lo+ / T@)D(x, V() ds(y) = (), )
N

where x € 0S5 and ¢ is an unknown density.
Let (93' ), (%+), (%, ), and (4,") be the associated homogeneous equations.

6.1 Theorem. If & € C“*(3S), a € (0, 1), then any solution ¢ € C%%(dS)
of equation (27%) belongs to CL%(dS). A similar statement holds for
(27)if # € CH()S).

C. Constanda, Mathematical Methods for Elastic Plates, 131
Springer Monographs in Mathematics, DOI: 10.1007/978-1-4471-6434-0_6,
© Springer-Verlag London 2014
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Proof. By (4.6), we can write (271) in the form
(Wo—31)p =2, (6.1)

where, in view of (3.31), (2.36), (2.38), (2.2), (2.32), (2.29), and (2.30), Wp¢ admits
the decomposition

1
Wop = —5— (WeapEapK ¢ + K" ¢); (6.2)
here, K* is defined by (2.38),

K" = — (E3 — ipeag Eqp) (Wo@)
— (4 W)eay Eyp(vago®)
+ 1 eap(W Esp + h 2 Eg3) (v 09)
— 3 E3a (v o9) — 2t (Wog), (6.3)

(Wop)(x) = / P(x, V() ds(y), x e€ds,
S

and P(x, y) satisfies the conditions of Theorem 2.10 with any y € (0, 1). Applying
the operator

—2;1(,1/8043 Eqp K* —mE3l)
to both sides of (6.1) and making use of Theorem 2.22, we obtain

[7*(E3 — W?Ey)1 — 1 eap Eap K K" + TE3K" ]
=21 (W eqp EqpK* — T E31) 2. (6.4)

Clearly, any solution of (6.1) is also a solution of (6.4). By Theorem 2.21,
C1%(3S) is invariant under K*; consequently, the right-hand side of (6.4) belongs to
C1%(3S). By Theorems 2.8,2.18,2.17, and 2.10, K* maps C%%(3S) into C1%(35).
A further application of Theorem 2.21 now shows that every C%%-solution of (6.4)
belongs to C1-%(3S), which proves the assertion.

The case of (27) is treated in the same way. m]

6.2 Theorem. The Fredholm Alternative holds for the pairs of integral equations
(Z), (N 7) and (N'), (Z7) in the (real) dual system (C**(3S), C**(39)),
a € (0, 1), equipped with the bilinear form

(¢, V) = / TP () ds(y). (6.5)

aS
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Proof. Denoting by 2 and .4 the integral operators occurring in (2%) and (%),
respectively, we see that, by (3.28), for any ¢, ¥ € C%%(35)

T
(P, w>=/[/P<x, y)w(y)ds(y)} ¥ (x) ds(x)

S aS
T
:/[/(T(ay)D(y,x))Tw(y)ds(y)} ¥ (x)ds(x),
as 08

=/<0T(y)[/T(ay)D(y,x)w(x)ds(x)] ds(y)
as aS
= (¢, NY).

Owing to the symmetry of the bilinear form (6.5), we also have
(Mo, ) = (0, V),

which means that 2 and .4 are mutually adjoint in the given dual system. Since
29 = W, it is then natural to write .4/ = W(’)k, the adjoint of Wy. Therefore,

(Woe)(x) =/T(3X)D(x,y)</>(y)d8(y),
3s

and the integral equations (271), (A1), (27), and (.4 ~) can be written in the
alternative form

(Wo—351)p =2, (2]
(Wo +31)9 =2, ()
(Wo+ 3 1)p = % — uo, (Z77)
(Wg =3 1)p=5" (A7)

From (6.2), (6.3), Theorem 2.19, and the fact (pointed out in the proof of Theorem
6.1) that K* maps C%*(3S) into C1%(dS), it is clear that C%% (9 S) is invariant under
the operator Wy.

The kernel k" of K" is a proper y-singular kernel on 9. with respect to both x
and y, for any y € (0, 1). Hence, by Theorem 2.35, K" is a-regular singular and its
complex kernel k" satisfies

k"(z,z) =0, zeds.
Also, (2.38) shows that the same can be said about K*, except that in this case

k(z, z) = E3, z€d5.
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Then, by (6.2), Z itself is a-regular singular and

A 1 ~ ~
k(z, z) = —E[u’eaﬂEaﬁks(z, 2)+k"(z, 2)]

-,
= —— £ E . EBS
27_[:‘/« apLap, <

Consequently, and in view of (3.32) and (3.13),
det [ - % Ej ﬂ:?‘[il%(z, z)] = _%(1 _ M/z) <o,

from which we immediately deduce that the index p of the complex version of
(27), defined by (2.52), is zero. According to Theorem 2.38, this means that the
Fredholm Alternative holds for the pair (Z), (.# ™) in the (complex) dual system
(CO(3S), C*%(35)) with the bilinear form

(6 V) = / STV () de;

aS

therefore, by Remark 2.39, it also holds for (271), (.#7) in the (real) dual system
(CO(3S), C%%(35)) with the bilinear form (6.5).
The argument is similar for the pair (27), (A 7). ]

6.3 Theorem. (%, ) has exactly three linearly independent C 0% _solutions.

Proof. In view of Theorem 6.1, it suffices to prove the assertion in C1%(35),
a € (0,1).

Itis clear thata 3 x 1 matrix ug of the form (3.16) is a solution of the homogeneous
interior Neumann problem (NT). Since Tuo = 0, replacing u by ug in (3.33), we
obtain

%Mo(x)-i-/P(x, Vuo(y)ds(y) =0, x €dS;
N

that is, ug is a solution of (90_); hence, f(l), f(z), and f(3), where
fP@) =, 0, —xnT,

fP0) =0, 1, —x)', (6.6)
fO@ =0 D
are the columns of the matrix F defined in (3.17), are three linearly independent

solutions of (Z)).
Let £© be an arbitrary C!%-solution of (%, ). Then

f=r9—ef? (67)
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is also a C1-%-golution of (%, ), for any constants c;. This means that
(Wf)" =0 onadS;

consequently, by Theorems 4.1 and 4.2(i), W is a regular solution of the homoge-
neous exterior Dirichlet problem (D™). By Theorem 3.16(1),

(Wf)" =0 inS".

This yields
T(Wf)" =0 onas,

which, in turn, by Theorem 4.10, implies that
TWFH)T =0 onds,

and we deduce that (W)™ is a regular solution of the homogeneous interior Neu-
mann problem (N*1). Hence, by Theorem 3.16(ii),

+ N _
WH*=(wr®) —a(wr®) =i ins*, 6.8)
where # is of the form (3.16).
Without loss of generality, suppose that the origin of coordinates lies in ST. We
choose the ¢; so that # = 0, for example, by asking that

(Wf)*(0) =0.

This is equivalent to the system of linear equations

a(wr®) o = (W) o. 6.9)

Let {c}, c5, c3} be a solution of the homogeneous system (6.9). Then, setting
f*= c;*f(i), we obtain

(W™ =o. (6.10)
Taking fO =0and¢; = ci in (6.7), we see that, as above, (WF*T is aregular
solution of the homogeneous problem (NT); therefore, by Theorem 3.16(ii), (W f*)*
is of the form (3.16). In view of (6.10), we conclude that
(Wt =0 in ST,

SO
T(Wf5T =0 ondSs.
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By Theorem 4.10,
T(Wf*~™ =0 onas.

Thus, (W f*)~ is a regular solution of the homogeneous exterior Neumann problem
(N7). Hence, by Theorem 3.16(i),

(Wf*)" =0 in§™.

Since .
(WfHT =0 in ST,

from (4.5) it follows that
fr= W™ —(Wf5HT =0 onds.

This means that the homogeneous system (6.9) has only the trivial solution; therefore,
(6.9) has a unique solution {c1, ¢2, c3}, for which, by (6.8),

WAHT=0 inST.
But, as was established earlier, we also have
(Wf)" =0 inS".
Using (4.5) again, we now obtain
f=Wf)~—Wf)T =0 onds.

Hence, according to (6.7), any C'**-solution of (%, ) can be expressed uniquely as
a linear combination of the f®. o

6.4 Lemma. If ¢ € C*(3S), a € (0, 1), is a regular solution of equation (N ™),
then

py =—pS;

that is,

/ (¢ — xa3)ds = — / (S = xa ) dis,
N N

/(pgdS:—/,S%ds.
N

S
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Proof. Setting
u(y) = (c1, 2, co —c1y1 — cay2)’

in Theorem 3.9 and taking into account the fact that Tu = 0 for such a choice, we
find that for x € 95,

/ [Pia(x, ¥) = yaPj3(x, »]ds() = =3 Bja = %edj3),
S

/P,-g(x, Wds() = —L 3.
N

or, in view of (3.28),

/ [Tt (By) — ya T3] Dij (. 1) ds(y) = — L (8o — xa83),
ENY

[ 10040 1 dsi) = ~Loa 6.11)
S
Multiplying (.4 ~)3 and the combinations (.4 ~), — x4 X (4 7)3 by ds(x) and

integrating the resulting expressions over 95, we obtain the equalities

1
) /¢3(X)dS(X)+/[/Tak(ax)ij(x, )’)ds(x)i|<ﬁj()’)ds(Y)

aS as 0S8

= /«5”3()6) ds(x)

S

and

2
N

1
-5 /[‘Pa(x) —Xa(p3(X)] ds(x)

+ / [ / [Tk () Dy (5. ) — x0T (0) Dy (xo 9)] ds o) L () ds ()

as  as
= / [Za(x) — xo0S3(x) | ds(x),
s
and the desired formulas follow from (6.11). m|

6.5 Theorem. (i) The interior Dirichlet problem (D) has a unique regular solution
forany 2 € CH¥(3S), a € (0, 1). This solution can be represented as the extension
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(W)t to ST of the restriction to ST of a double-layer potential W ¢ with density
@ e ChY@®S).

(ii) The exterior Neumann problem (N—) has a unique regular solution for
S € C%%(3S), a € (0, 1), if and only if

p =0;
that is,
/ (Fo — x¢73)ds =0, (6.12)
N
/,5% ds = 0.
0S5

This solution can be represented as the restriction (V@)™ to S~ of a single-layer
potential V¢ with density ¢ € C%%(35).

Proof. By Theorem 6.2, the Fredholm Alternative holds for the pairs (21), (4 7)
and (27), (A1) in the (real) dual system (CO"" (09), CO’“(BS)) with the bilinear
form (6.5).

Let u be a regular solution of (N7), and consider a disk I'g of sufficiently large
radius R so that ST C I'z. Applying Theorem 3.5 in S~ N I'g, we find that

/(ya — XgF3)ds — / (Tai — xoT3i)u; ds =0,
BN ol'g

/Ygds—/Tgiuids=O,
S

olg
from which (6.12) are obtained by letting R — oo and taking (3.42) into account.
Suppose now that (6.12) hold, and let (p(o) be a solution of (%_). By (4.17) and
(4.19), this is equivalent to
T (V(p(o))7 =0 onaSs.

Since B
A(Ve®) =0 ins-

and, by Lemma 6.4 and Theorem 4.2(ii),
Ve~ e,

it follows that (V(p(o)) ~ is a solution of the homogeneous exterior Neumann problem
(N7). By Theorem 3.16(1),
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(V(p(o)) =0 inS;
hence, by Theorem 4.4,

- +
(V<p<°>) —0= (V(p(o)) on 35.

Next, (V(p(o))+ is a solution of the homogeneous interior Dirichlet problem (D);
consequently, by Theorem 3.16(i),

(V<p(°))+ —0 inS*.

Then
o\
T(Vgo ) =0 onadS,

and (4.17) and (4.19) yield

+ —
O =71 (V(p(o)) -T (V(p(o)) =0 on 3S,

from which we conclude that (.4;") has only the zero solution. According to
the Fredholm Alternative, so does (@0+ ); therefore, (21) and (.4 ™) have unique
solutions ¢ € C%*(35).

To complete the proof, we remark that in the case of (N7), from Lemma 6.4,
(6.12), and Theorem 4.2(ii) it follows that (V@)™ € 27; in other words, (V@)™ is a
regular solution of (N7). At the same time, in the case of (DT), Theorem 6.1 yields
Qe cle (05); hence, by Theorem 4.10, (We)Tisa regular solution of the problem.

The uniqueness of these solutions was established in Theorem 3.16(i). m]

6.6 Theorem. The interior Neumann problem (NT) is solvable for 2 € C%*(35),
a € (0, 1), if and only if

that is,

/@% %0 3)ds =0,
N

/,023 ds = 0. (6.13)
BN

The regular solution is unique up to a 3 x 1 matrix of the form (3.16) and can
be represented as the restriction (Vo)™ to ST of a single-layer potential V ¢ with
density ¢ € CO*(d5).
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Proof. By Theorem 6.2 and the Fredholm Alternative, (.4 ) is solvable if and only if

(f9, 9) = /(f@)ngs =0,
aS

where the £ are defined by (6.6). Writing these conditions explicitly, we see that
they coincide with (6.13). Consequently, if the equalities (6.13) hold, then there is a
density ¢ € C%%(3S) for which (V)™ is a regular solution of (N*). The uniqueness
of this solution is discussed in Theorem 3.16(ii). m|

6.7 Theorem. The exterior Dirichlet problem (D™) has a unique regular solution
for any # € C1%(dS). This solution can be represented as the sum of the extension
(We)~ to S~ of the restriction to S~ of a double-layer potential W ¢ with density
NS cle@S), and a particular 3 x 1 matrix ug of the form (3.16).

Proof. According to Theorem 6.2 and the Fredholm Alternative, (%+) has exactly
three linearly independent C%“-solutions g. Without loss of generality, suppose
that the sets { £} and {g)} have been biorthonormalized Kupradze et al. (1979);
that is, we have

(f(i)7 g(j)) = 5.

Taking ug = ¢; f®, where

¢ :/(g(i))T%ds,

as

we see that

(V. & —cif) = / () @ —aras=o

s

Consequently, by the Fredholm Alternative, (27) has a solution ¢ € C%%(3S). By
Theorem 6.1, ¢ € cl(d8). Since, by Theorem 4.2(i),

W)™ +uo € 7%,

it follows that (W)™ + ug is a regular solution of (D). The uniqueness of this
solution is guaranteed by Theorem 3.16(i). O

6.8 Remark. Restrictions (6.13) and (6.12), which are necessary and sufficient for
the solvability of (NT) and (N™), respectively, have a direct physical meaning. By
Remark 3.1, they represent the condition that the transverse shear force and the
bending and twisting moments acting on 9. be zero.
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The regular solutions to all our boundary value problems have been found in
closed form. But one question still remains unanswered: what is the mechanical
significance of the class o7 that intervenes so essentially in the proceedings? Is its
introduction really necessary? Could there be regular solutions outside this class as
well? The boundary integral equation method, while elegant and precise, offers no
answer. To settle this outstanding matter, in Chap.7 we change over to a different
technique of investigation, equally powerful, which allows us to obtain the complete
integral of system (3.40).

6.2 The Robin Problems

Let @ be the matrix whose columns g(i), i =1,2,3, are three linearly independent
solutions of (.#*) (see the proof of Theorem 6.7), chosen so that

pP = E3.
For the Robin problems (R™) and (R ™) we seek solutions of the form

u=Vp-2pe)" + F(py), (6.14)
u=Vp—-2(pe)) + F(py). (6.15)

Then, in view of (4.16), the boundary conditions in (3.45) and (3.48)—that is,
Tu+ou=% and Tu—ou=.2% onas,
give rise, respectively, to the boundary integral equations

(W + 3 1) (¢ — @(pg)) + 0 Vol — D(p)) + 0 F(pp) = A, (#7)
(Wg =3 1) (@ — @(pg)) — Vol — P(p)) =0 F(pe) = Z. (%)

Since the dominant terms in the kernels of (Z1) and (#™) are the same as in those
of (#*) and (.# ™), the index of each of these equations is zero, so the Fredholm
Alternative can be applied to them.

6.9 Theorem. Let o € C%%(3S), a € (0, 1).

(i) The interior Robin problem (Z7) has a unique solution ¢ € C%*(35) for any
H € CO%(DS). Then the (unique) solution of (R is given by (6.14).

(ii) The exterior Robin problem (#~) has a unique solution ¢ € Cco*(p8) for
any £ € CY%(dS). Then the (unique) solution of (R™) is given by (6.15).

Proof. Sinceo € C%%(3S), the operators occurring in (%) and (%) map c%2(359)
to CO%(3S).

(i) Consider a solution ¢ of the homogeneous equation (z%"o+ ); in other words, a
function ¢ € C%%(3S) such that
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(W + 3 D@ — 2(pp) + 0 Vo(@ — ®(pp)) + 0 F(p@) = 0. (6.16)

This means that (V (¢ — @ (p@)))™ + F(p@) is the (unique) solution of the homo-
geneous problem (RT); therefore,

V(g —@(pe)) " + F(pg) =0. (6.17)

Since
plp—@(pp)) =0,

from (4.16), (6.16), and (6.17) we deduce that the function

U =V(p—P(pp))” + F(pp)
satisfies
A%~ =0 inS~,
U = V(@ —2(pp)), = V(@ —P(pp) + F(pp)
=V(p— 45(1?@)))2{ + F(pp) =0 onds,
U~ (x) = [M®p@ — @ (p@) + U7 + F(p@)]|(x)
= U7 + F(p@))(x) as|x| — oo.

By Theorem 3.16,
F(pg) =0,
V(g = @(pp)” + F(pp) = (V(g — 2(pp)))~ =0.
Since the columns of F are linearly independent, this implies that
py =0, (Vo) =0.

Also, (6.17) yields
(V@)t =0

hence, by Remark 4.9 and (4.17) , ¢ = 0.

Since the homogeneous equation (%’J ) has only the zero solution, the Fredholm
Alternative states that (%) has a unique solution ¢ € C 0.x(38). By Remark 4.7
and Theorem 4.1, u given by (6.14) belongs to clo(S) and satisfies Au = 0 (in
S™), so it is the (unique) solution of (R™).

(ii) If ¢ is a solution of the homogeneous equation (%, ), that is,

(Wg — 3 D(@ — P(pp)) — o Vo(@ — P(p@)) — o F(p@) =0,
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then, by (4.4), the function
U~ = V(g —D(pP)) + F(pg)
satisfies
A2~ =0 in S,
T% —oc%Z =0 onas,
U~ (x) = [M®p(@ — (p) + U7 + F(p@)](x)
= (%7 + F(p@)(x) as |x| — oo,

which is the homogeneous problem (R™). Applying Theorem 3.16 once more, we
conclude that

F(pp) =0, (Vg —2((pp)) + F(pp) = V(g —2(pp)) =0;
hence, as above, pp = 0 and
(V@)g =0="Vog = (V@){.

so (V@)™ = 0 is the unique solution of the homogeneous problem (D). Remark
4.9 and (4.17) now imply that ¢ = 0. Consequently, by the Fredholm Alternative,
(Z7) has a unique solution ¢ € c%2(389).

The function u given by (6.15) belongs to C1(§7) and satisfies Au = 0 (in S7).
Also, u € o/* since p((p — ¢>(pcp)) = 0, which means that u is the (unique) solution
of (R7). m|

6.10 Remark. The sole purpose of the term @ (p) in the density of V* is to ensure
that p applied to the density yields zero. This term can be replaced by any other
that has the same effect. For example, in Schiavone (1996) the correction term in the
density is F(pF)~ ' (py).

6.3 Smoothness of the Integrable Solutions

We conclude this chapter by taking a closer look at the regularity properties of the L2-
solutions of the singular integral equations corresponding to the interior and exterior
Dirichlet and Neumann boundary value problems.

6.11 Theorem. Suppose that
Ap(x) +/k(x, Ve(y)ds(y) = f(x) (6.18)
as

foralmostall x € 0S,where k(x, y) isaproper y-singular kernelondS,y € [0, 1),
reR,A#0,and f e CO%®DS),a € (0,11.If ¢ € LP(S) is a solution of (6.18),
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then ¢ € COP(3S), with B = min{a, | —y}if y € (0, 1), B=a if a € (0, 1) and
y =0,andany B € 0, 1)ifa =1and y =0.

Proof. Let
K@ = [ kr. o s,

aS

which, by Theorem 4.14, exists for almost all x € 9S5. We have

|K (x)] S/[Ik(x, y)|27}’|(p(y)|p]]/[l7(2*}’)]
a9

x [T k(e y)| PP ds ().

Setting

p2—y) D
p1=p2—y), P2="o s 3=
-y p—1

and noting that
1 1 1

— =1
P p2 p3

and that the three factors of the integrand on the right-hand side above belong to
LPY(3S), LP2(9S), and LP3(0S), respectively, we apply the generalized Holder
inequality and Theorem 1.32 to obtain

1/[p2—y)]
K| < [ / k(. y>|2—y|<o(y>|"ds<y)}
EN

(I=-y)p2-p)] (p—D/p
X[/Iw(y)l"dS(y)} [/Ik(x, y)IdS(y)]
aS aS

] 1/[p2—y)]

b

- c1||¢||§,”’/<“>[ / kG, VIF 191 ds(y)
N

where ¢1 = const > (. Then, by Fubini’s Theorem,

/ |K ()77 ds(x)

aS

<allg)p " / [ / Ik (x, y>|2—V|<p(y>|f’ds(y>] ds(x)

as 0S

=il / [ / lk(x, y)[>77 ds<x>}|¢<y>|pds<y>.

as 0§
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Since
k(x, W77 < calx — y| V@) ¢y = const > 0,

and 0 < y(2 — y) < 1, from Theorem 1.32 it follows that

_ 1— 2—
/|K<x>|P<2 M ds(y) < csllollh ”/w(y)wds(y)=c3||¢||§‘ 12
N N

where ¢3 = const > 0. This means that K € LP2~7)(3S). Then (6.18) yields
@ € LPC7Y)(3S). Applying the argument successively n times, we deduce that
@ € LPZ=v)"(358) for any positive integer n; hence, ¢ € L*®(35).

If we now repeat the proof of Theorem 1.33 with the integrals understood in the
sense of Lebesgue, we conclude that K € CO'5(8S), withé =1—y fory € (0, 1)
and any § € (0, 1) for y = 0. The result now follows from (6.18). m]

6.12 Theorem. Suppose that equations (27%) and (N *) hold almost everywhere on
88, and that 2, 2, #, .7 € C¥%(dS), a € (0, 1). If ¢ € L*(3S) is a solution of
any of the above equations, then ¢ € C%*(35).

Proof. (27%) and (4'F) are of the form
(K —whyp =g, (6.19)

where, as seen in the proof of Theorem 6.2, K is a-regular singular and w € R,
o # 0. In Muskhelishvili (1946) it is shown that we can always find an «a-regular
singular operator L that maps L2(3 S) to L2(8S), anda® € R, 9 # 0, such that the
equation

(L—v1)(K —wl)p=(L—-9I)g (6.20)

is of the form (6.18), where . € R, A # 0, f € C%%(35), and k(x, y) is a proper
(1 — a)-singular kernel on 9.S. Since every solution of (6.19) is also a solution of
(6.20), the assertion follows from Theorem 6.11 with p = 2. m]
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Chapter 7
Complex Variable Treatment

7.1 Complex Representation of the Stresses

We revert to the original notation, where S is a bounded simply connected domain
in R?, whose boundary S is a simple closed contour.
In agreement with (3.40), we consider the homogeneous system (3.3); that is,

Nup g — N3g =0,
N3gp =0, (7.1)
and investigate its analytic solutions in S.
From the second equation (7.1) we deduce that there is a function ¢ (x,) such

that

N3 =92, (7.2)
N3ypp =-9,,.

This and the first equation (7.1) yield

Nit1+ (N2 —9),2,=0,
(N12+%9),1 +Nxn 2 =0.

Hence, there are functions /%, (x, ) such that

N =74, Nip —% = -4, (7.3)
Ny =—-961, N+ 9 = 56,. ’
Obviously, we must have
G —01=—-9+ 5. (7.4)
C. Constanda, Mathematical Methods for Elastic Plates, 147
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Let %(x,) be such that
G =B, 1. (7.5)

Then from (7.4) it follows that there is a function % (x,,) satistying

%’2 _jﬁ = _(gvz’
%11 _ﬁ% :%91 )

in which case (7.2), (7.3), and (7.5) imply that

Ny = (6 + %) .2,

Ny = (¢ — P).11,

Nip = —=%,12, (7.6)
N3y = %B,122,

N =—-%12.

The stress functions % and ¢ generate a deformation state if and only if N, and
N3y given by (7.6) satisfy the compatibility relations (3.7). Replacing (7.6) in (3.7),
we obtain the Cauchy—Riemann system

(h*AB, 12— Ban)a = (1 — 0)AC + Boon — Bo11)2
(h>AB 12— B12)n=—(1 — ) (AC + B, — B11 )1 -

Hence,
1 2
A%.12 — 57 #i12 = 35 Refdo, (7.7)
2
AC + B, —B11 = 1 Ims2, (7.8)
— O

where £2¢ is an arbitrary analytic function of z = x; 4+ ix» in S.
Let n(z, z) be an arbitrary real solution in S of the equation

1
An — = 0. (7.9)
Then from (7.7) we find that
PB.,12=Re[n(z, 2) — 220(2)]. (7.10)

For simplicity, in what follows we omit the explicit mention of z and z in the
symbols of functions.
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Applying the operator (A — h_z)az/axl dx3 to (7.8) and using (7.10), we obtain

1 8 P
A(A‘g,lz — ﬁ %,12) = h_2 o1Ref2y,

where o = ‘—11 (1 —20)(1 — )~ L. Therefore,
%,12=Re(® — 2012 Q(/)—i—Zw()), (7.11)

where 6 is another arbitrary real solution of (7.9) in S and wy is an arbitrary analytic
function in S. From (7.10) and (7.11) we deduce that

(%+<@)»12=Re(7}+9_290"‘2(1)0_20'129(/))7 (7.12)

(€ — PB),12=Re(—n+ 6 + 2820 + 2wy — 2012 $2()). (7.13)
Differentiating (7.12) with respect to x» and replacing the result in (7.8) differ-
entiated with respect to x1, and dealing similarly with (7.13) and (7.8), we find

(¢ — $),111 and (€ + A),»», which we then combine with (¢ — 4),12> and
(€ + A),112 obtained directly from (7.12) and (7.13). Thus, we arrive at

A[(€ + B +i(€ — B),1 | =401, — 201 2)),
where (...),; = 9(...)/dz. This implies that

(€ + B),2=2Re(2h*1),, — 01Z 20 + £21),
(€ — B),1 = 2ImQh>*,. — 012 20 — 22), (7.14)

where §2, are arbitrary analytic functions in S.

Since this representation has been obtained by differentiating the exact formula
(7.8), it may contain too much arbitrariness. Replacing (7.14) in (7.12), (7.13), and
(7.8), we see that

Re(4h2n,,; — 0 + 2] — 25 — 2wp) = 0, (7.15)
2(1 — o) (2] + 25) + (3 —20)20 = 0. (7.16)
Now (7.16) yields
o= 2079 or s on. (7.17)
3—20 17772

Since 1 and 0 are solutions of (7.9), from (7.15) we find that

2Re wy = Re(2] — 2}),
6 =4h’Ren, ... (7.18)
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Substituting (7.17) and (7.18) in (7.10)—(7.12) and (7.14) and setting

1—-20 N
K= = , (7.19)
3—20 2A+3u

we obtain

(€ + B),2 = Re[4hn,, +kZ(2] + £25) +2821],
(€ — B),1 = Im[4h?n,, +kZ(2] + £25) — 252], (7.20)
%12 = Re[4h ... +KZ(2] + 27) + 2] — 23],
F.12 = Re[n+ (1 +)(82] + £25)].

Finally, from the above relations and formulas (7.6) we conclude that

Ni = —Im[4h?n,.; +«Z(2] + %) — k2 + (2 — )21 ],

Ny =Im[4h?n, .. +kZ(2] + 23) + k2] — (2 — x)$2}],

Niz = —Re[4h?n, .. +«kZ(2] + 2)) + 2| — 25], (7.21)
N3 = —Im[2,. + (1 + €)(2] + £25)],

N3 = —Re[2n,. + (1 + €)(2] + 20)].

Since an arbitrary solution of (7.9) can be expressed in terms of an arbitrary
analytic function in S (Miranda 1970), the bending and twisting moments and the
transverse shear forces are represented in terms of three arbitrary analytic functions
of z in S. Functions of this type are known in the literature as complex potentials.

7.2 The Traction Boundary Value Problem

We consider the Neumann boundary conditions
N; = Njgvy = N; onds. (7.22)

According to Remark 3.1, the resultant force and complex moment acting on an arc
tot of 08 are

t
[/V];0=/N3dS=</I7,
0]
t
[//f]io = / [ = N2+ x2N3 +i(Ny — x1N3)]ds = M. (7.23)
]
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From (7.6) and (7.22) we obtain

d

N = _%a )
3= LA
— No +xoN3 +i(N1 — x1N3) (7.24)
d
=£k%—%m+ﬂ%+£m—m%ﬂ}

Using this in (7.23), we find that on 955,

:%’,12=</1;+,31, B1 €R,
(€ — B +i(C+B)y —izB12=M+ B2, p2eC. (7.25)

Setting £21 + £2o = p and 21 — §2, = ¥, from (7.20) and (7.25) we now deduce
that

4h2n.: +kzp +p+ 0 =N —idl + iz — i,
n+ 30 +6)0 +p)=A+p onds. (7.26)

Hence, the traction boundary value problem reduces to finding 7, p, and ¢ satis-
fying (7.9) in S and (7.26) on 95S.

7.3 The Displacement Boundary Value Problem

Consider the Dirichlet boundary conditions
ui =1i; onds. (7.27)

We introduce the complex displacements, moments, and force by

I' =u;+iuy,

O =us3,

@ = Nj1 — Ny +2iNjp, (7.28)
¥ = N1 + Nao,

A = N31 +iN3».

Then the constitutive relations (3.5) become

® =4h’urlz,
U =4h%(\L 4+ pw)Rerl,. (7.29)
A=ul +20.z),
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and from (7.21), the third equation (7.28), and the first equation (7.29) we find that

i o
r= —2h2M[4h2n,z Kz (2] + 25+ 21—+ 0], (7.30)

where 6 is an analytic function of z in S. This, (7.21), and (7.29) yield
Im 6’y = —kIm(2'| + §25);

therefore,
01 = —k (821 + $22) — c1z2 — c2, (7.31)

where ¢c; € Rand ¢; € C.
Setting 2, = @'y, from (7.30) and (7.31) we get

i ) bt - -
I = —2h2u[4h27}72+l<z (0] + @5) — k(0] + @h) + @) — @ — c12 _62].

(7.32)

From this, (7.21), and the third equation (7.29) we obtain

O = Kz (@) + @) — kZ (] + wh) + @1 — @

i [
4h2p
— 122 — €27 — 203 (1 + k)@ + &) + 62], (7.33)

where 65 is an analytic function of z in S. Since @ is real, we must have

c; =0,
0 = — (w1 — @) + 202 (1 + k) (@] + b)) + &2z —ic3, (7.34)

where c3 € R. We set

2
W =—-—n,
12
iK
2]12 ((1)1 +Cl)2)
i
m(wl — @), (7.35)
. ic
| = l] + llQ = m,
c3

4h2p’
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From this and (7.32)—(7.34) we then conclude that

F=iY:;+72 +2+d +1,

h2)»+2u

e = Re(4
n

.Q’—ZSZ—w—lZ+m). (7.36)

7.1 Remarks. The matrix u( defined by the terms containing / and m is of the form

(3.16); consequently, it represents a rigid displacement. These terms are unessential

and in what follows we assume them to be incorporated in §2 and w, respectively.
Letz € 0S. Writing & = ui| + iu», from (7.27) we find that

v+ +Q2+a =i,

at2
Re(4h2ﬂ9/ _io-— a)) — il (1.37)
n

Thus, the displacement boundary value problem reduces to finding a solution i in
S of (7.9) and arbitrary analytic functions §2 and w in § satisfying (7.37) on 9.
From (7.29), (7.35), and (7.36) we see that

D =4y, + 22" + "),
W =4n2O+ (R + 2, (7.38)
A=ipp,:~+4h>O+21)82".

Comparing the definitions of 1, p, ¥ and ¥, §2, @, we can rewrite the traction
boundary conditions (7.26) as

- 2A+3 ) 1 .
etz - Lo = (A + iz +iBiz+ B,
jz 2h-u
P _ 2 -
iy — a2 gy = N 4 py; (7.39)
m

similarly, using (7.23), (7.24), and (7.20), we rewrite the resultant force and complex
moment acting on the arc fof of 95 as

[T = [ = 2y = 202G+ 2@ = 20];.

M = [Lipzy — 20200 +21)2(2 — 27) (7.40)
1o 2

—2n%u(iv,:+ 22 + @) +2h2 (21 + 3;09];0.
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7.2 Remarks. A representation similar to (7.38) has been derived in the case of
Reissner’s theory (Green and Zerna 1963). In our notation, this is

A4+2u = _
& = 4h? im:: + ——— (2827 + " ],
H|: b33 40““#)( )
h2uGr+2 -
W:M([)’+9/)’

A+ p
A=pGimz + 4h22"),

where @ is an arbitrary analytic solution in S of the equation

7.3 Remarks. ® given by the second equation (7.36) satisfies AA® = 0. From
(7.36) and (7.19) we obtain

I'=-20;: + iy,: + 4h*u~ ' +2p0)82".

Hence, in this theory, as in Kirchhoff’s, ® = u3 remains a biharmonic function. In
addition, Kirchhoff’s theory also leads to the second equation (1.5); that is,

I' =-20,;.
Here, I" contains two correction terms, of which one is a solution of (7.9) and the

other is harmonic.

7.4 Remarks. If instead of (3.5) we adopt Mindlin’s constitutive relations (Mindlin
1951), then, ignoring rigid displacements, we obtain

- 8h? -
F:ix,z—Zkz(z.Q’—l—.Q—i—c?/—l—l m),

— 0
® =2Re(Z 2 + w),
C2ERTT. _of <, 8h% o
= 1+0|:lx,zz—2k (z.Q +w ~|—E.Q )],
, Eh?
1—0

¥ = —8k Res2’,

, E , ) -, ., 8h? -
=k |ix s+ - DR -2+ &) + Q"
2(1 — o) l1—0o

where E is Young’s modulus, k2 a correction coefficient introduced by Mindlin, and
X an arbitrary real solution of the equation

2
Ax—ﬁxzo.
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7.4 Arbitrariness in the Complex Potentials

Suppose that the functions ¥, $2,, and w, generate the same stress state as ¥/, §2,
and w. Then from the second equation (7.38) we find that

Ref2, = Ref2’;
therefore,
2, =R+ idiz+dy,d €eR,dr € C. (7.41)
Using the third equation (7.38) and (7.41), we obtain
Viz =Y.z,

which yields
Ve =V +d3z+ds, d3, dy € C.

Since ¥ and v, are real functions, it follows that d3 = 0 and d4 € R, and the fact
that both i and v, are solutions of (7.9) leads to

Yy = V. (7.42)
From the first equation (7.38), (7.41), and (7.42) we deduce that
oy =w+dsz +ids, ds, ds € C. (7.43)

Choosing dy, d», and ds5 so that

K -

d=————p1, dry—«d
1 2h2u(1+/<)ﬂ1 h — Kds

K
= —2h2M,32,

we make the terms 81 and i1z + B2 vanish in (7.39). To reduce the arbitrariness of
£2 and w we may impose, for example, the additional conditions

£20)=0, w()=0.

If we also want the displacements to remain unchanged, then, according to (7.36)
and (7.41)—(7.43), we must require that

d5 = —672, d6 e R.

Thus, the functions £2 and @ are completely determined if we ask, say, that they
satisfy

2(0)=0, ImR'(0)=0, w(©)=0.
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7.5 Bounded Multiply Connected Domain

Let S be multiply connected. For simplicity, we introduce the notation

0(z,2) €% < 0(z, 7)issingle-valuedin S.

From (7.36) and (7.38) we see that the moments, forces, and displacements are

single-valued if

iv: + 22 +2+d e¥,

At2
Re(4h2ufz’ _io-— a)) cw,

7

iV + 2R +a €U,
Re2' € %,

iv; + 4
Clearly, from the first equation (7.44) it follows that
2" ew,
which, in view of (7.44), yields ¢,z € % . Then
V€U

also, consequently,

v ew.
From the third equation (7.44)—(7.46) we deduce that
o €U,
and from the second and fourth equations (7.44) we get
RezR +w) e .
Also, the first equation (7.44) and (7.46) lead to

4+ Q2+d eU.

A42u -
h2 + MQ//G
%

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

This means that the necessary single-valuedness conditions are the fourth equation

(7.44) and (7.45)—(7.49).
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Next, suppose that the boundary of § consists of n + 1 disjoint simple closed
curves of which one, 95, encloses all the remaining ones, dS;, k = 1,...,n.
According to a well-known argument in three-dimensional elasticity (Muskhelishvili
1949), we can choose arbitrary points z; inside the contours 9.5 and write

n

1 -
2L =— Z(ckz + dy) log(z — zx) + £2,

2mi P
n
1 -
®=5— > (prz+qu)logz — 2) + @, (7.50)
2mi P
where ck, dx, px, qr € C,k=1,...,n, and 2 and & are analytic functions in S.

From the fourth equation (7.44) and (7.48)—(7.50) we find that the coefficients must
satisfy

Recyk =0, dr+ pr =0, Regr =0. (7.51)

Traversing 9 Sy once anticlockwise, from (7.40), (7.46), and (7.50) we obtain the
resultant force and moment on 3.5y in the form

M= —[AN],5, = —4h* (0 +2)Im ey,

98k

My = —[ M), = 20%] = Qb+ 3u)di + upr].
Combining these relations with (7.51), we deduce that

cx = 2mic N, dp = 2mc A,

Pk = 271c=///_k, qr = —2micsy,

where ¢ = [87h?(A + 2/1,)]71 and s; € R. From this and (7.50) we now conclude
that

n
Q= —c Z(Z‘/ﬂ‘ — i) log(z — zx) + 2,
k=1

w=—c Z(in//_k + sx) log(z — z) + @. (7.52)
k=1

7.5 Remarks. The terms s; log(z — zx), although many-valued, do not alter the
single-valuedness of the force, moments, and displacements. These terms occur only
in the expression of @, in the form

Re[si log(z — zx)] = seloglz — 2| € % .
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7.6 Unbounded Multiply Connected Domain

Suppose that the curve 9.5 has expanded to infinity. Introducing the notation
n
N=> M,
k=1

M= Z///k,
k=1

and proceeding as in Muskhelishvili (1949), from (7.52) we find that the complex
potentials admit the expansions

oo
—c(Nz —iM)logz + D anz",

n=—0oo

94

oo
w=—ciMz+s)logz+ > byd", (7.53)

n=—oQ

where a,, b, € C. Then (7.38) and (7.53) yield the complex moments and force in
the form

@ =4h 2,u|:i1p,zz —cNzz7 ' +icMzz72 4 icMz 7! 4 5272

+ > n(n—l)(anz+5n)z"—2},

n=—oo

U =4h%(n + M)[ —2¢NIn|z| =2cN+ic(Mz7' =Mz7hH  (7.59)

o0
+ Z H(Cannl-‘rt_ann]j|,
n=—0oo
A =ipy,: +4h 20 +2M)[ —cNz ' +icMz 2

+ > n(n—l)anz“}.

n=—0oo
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To investigate the behavior of @, ¥, and A as |z| — oo, we need to know the
asymptotics of 1. Since (Abramowitz and Stegun 1964)

d
Qe Ko(§) = —K1(8),

d 1
—K = —K — - Ki(&), 7.55
dE 16) (&) £ 16) (7.55)

and, as |§| — oo,

z \ 12 .
K0(§)=(E) e

172
ke = (= e 756
1(§) 2% + e, (7.56)

and since (271)_1K0(h_1|x — y|) is a fundamental solution of (7.9), just as in
harmonic potential theory we deduce that ¢ admits the representation

Yx) = / [w(wav(y)Ko(h—l lx —y|) — Ko(h tx — y |>av<y>w<y>} ds(y).
Ua Sk

From this, (7.55), and (7.56) we see that 1 and its derivatives vanish as |x | — oo.
Therefore, (7.54) shows that @, ¥, and A are bounded at infinity if and only if

N=0, a,=0 (n>2), b,=0 (n>3). (7.57)
Next, using (7.53) and (7.57) in (7.36), we obtain

I = (a1 +a1)z +2b27 + 2icMIn |z | — icMzz™ ! + ag + by + icM

ta1z7V —eszV —a 122724 0(z17Y),
e = Re[ic(Mz —M2)logz+esln|z| — brz? —aizz (7.58)

At2
(@ + by)z + a2

ay—a_1z 'z — bo] +0(z|™).

Since u3 = © occurs in the internal energy density (3.14) only in terms of its
derivatives, we conclude that for a finite energy solution—that is, I = O(1) and
® = 0O(In|z]) as |z| — oco—we must have

M=0, ai=ia (@€eR), ba=0, b =—ap. (7.59)
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In view of (7.41), we may discard the ap-term and the a;-term. Setting
—cs=aelR

and
Rebo =b ,

from (7.53), (7.57), and (7.59) we conclude that, as |z | — oo,

2= Z a,7",

n=—o00
-1
w=alogz+b+ Y by". (7.60)

n=—0oo

These formulas and (7.36) (with an arbitrary v satisfying (7.9)) yield the general
analytic finite energy solution of (3.40) in S.

7.6 Remark. It is interesting to note that, although i is responsible for the sixth
order character of this bending theory, it plays no active role in the far-field pattern
of the solution, which depends exclusively on the structure of £2 and w.

7.7 Remark. A straightforward calculation shows that for ¢ = b in (7.60), the
expansion of u coincides with (3.39), which characterizes the class 7. Also, from
(7.36), (7.56), and (7.60) we obtain the asymptotic relations

@ =0(z1™, ¥=0(z,
r=0(zI™, ©=0Wn|z]), A=0(z|).

These imply that the Betti formula in the exterior domain, proved in Theorem 3.13,
holds for all solutions satisfying (7.57) and (7.59). Consequently, the condition that
u € o/, which was shown to be sufficient for the solvability of the exterior Neumann
problem, turns out to be also necessary if we want a unique solution. Removing the
restriction @ = b in (7.60) means that the regular solution of this problem is unique
up to an arbitrary vertical translation.

7.7 Example

Consider an infinite plate with a circular hole of radius p, acted upon at the hole by a
normal force cx3, ¢ = const > 0, parallel to the middle plane of the plate. Choosing
the origin at the center of the hole and following the averaging procedure set out in
Sect. 3.1, we arrive at the boundary and far-field conditions

Ny = hzcs Nyg = N3 =0 if|z] = p,
Nog = N3q =0 as|z| — o0, (7.61)
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where N,,, N9, and N3, are the physical polar components of the N;y, defined by

Ny = SRe(e™ @ + ),
Nyo = sIm(e @ — @),
N3 = Re(e 70 A).

To solve the problem, we use a semi-inverse method, setting

a_lza_QZ...ZO,
b_i=bo,=...=0,
¥ =0

in (7.60), the last value being justified by the arbitrariness in w as shown by (7.43).
Then from (7.60) and (7.38) we see that (7.61) are satisfied if

a=—cp*u)",
in which case (7.36) and (7.60) yield

2 2
Py cp
r=——77", ®&=—In|z|—b.
2,uz 21 2]

It is clear that this exterior Neumann problem has a unique solution in .o, corre-
sponding to b = —c,oz(Z,u)_l. If this restriction is removed, then the solution is
determined up to an arbitrary vertical translation, as noted in Remark 7.7.

7.8 Physical Significance of the Restrictions

From (7.54) and (7.57) we find that, as |z | — o0, the limiting values of @, ¥, and
A are

Do = 8h 2M52,
Yoo = 812 (A + 1)Reay,
A = 0;

that is, the bending and twisting moments are uniformly distributed at infinity,
whereas the transverse shear force vanishes. We can see that the second and third
equations (7.59) are equivalent to @, = ¥oo = 0.

In view of (1.6), the rotations in the vertical coordinate planes in R are given by

1
Ea = j(ua —U3q)-
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From this, (7.28), (7.58), and the second and third equations (7.59) we deduce that,
as |z | — oo, the complex vertical rotation is

e=c¢+iey =3I —20,z)
= 2icMin|z| — icMzz ™! + ag + by +icM+ O(jz|™").

Hence, the first and fourth equations (7.59) are equivalent to o, = 0. In this case,
® =0(n|z]).

7.8 Remark. In view of the above arguments, we conclude that an analytic solution
of (3.40) is of finite energy if and only if the corresponding bending and twisting
moments, transverse shear force, and rotation in the vertical coordinate plane vanish
at infinity. Then, by Remark 7.6, ./ is the class of all finite energy solutions of (3.40)
that contain no vertical translation.
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Chapter 8
Generalized Fourier Series

8.1 The Interior Dirichlet Problem

In this chapter we suspend the convention of summation over repeated indices, as
well as that regarding the values taken by Latin subscripts. Greek subscripts and
superscripts continue to take the values 1, 2.

8.1 Definition. Let X be a normed space. A subset 2~ C X is called a fundamental
set in X if span 2 is dense in X.
The following assertion is a well-known result of functional analysis.

8.2 Theorem. If X is a Hilbert space, then 2~ C X is a fundamental set in X if and
only if the orthogonal complement of 2 in X consists of the zero vector alone.

Let 85, be a simple closed C?-curve such that 3 lies strictly in the domain S
enclosed by 9.5, and let {x(k) € 0S4, k=1, 2, ...} be a countable set of points
densely distributed on 8S,. We set ST = R?\S;, and denote by D) the columns
of the matrix D.

8.3 Theorem. The set
{r©O, 000 i j=1,2,3k=1,2,...}, (8.1)
where the f ") are defined by (6.6) and
9Ub (x) = DU (x, x®)y, (8.2)

is linearly independent on 3S and fundamental in L*(95).

Proof. Suppose that there are a positive integer N and real numbers ¢; and cjy,

i,j=1,2,3k=1,2,..., N, notall zero, such that
3 3 N
Dlaf @@+ ZZ 00U (x) =0, xeds. (8.3)
— o1k
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Setting

@ (x) = Zczf(’)(x) + ZZc 100 (x), (8.4)

j=1k=1

from (8.2), (8.3), and Theorem 3.8 we see that

Aw =0 in ST,
w =0 onas;

that is, @ is a regular solution of the homogeneous interior Dirichlet problem. By
Theorem 3.16(i), w = 0in S™. Then, using analyticity arguments, we deduce that

@ =0 inS;. (8.5)

Let x(P) be any of the (finitely many) points x(, ..., x™)_In view of (8.4) and
(8.2), we write

@ (x) = Zc,f[(l)(x)—l—ZZc]kDﬂ(x x®), 1=1,2,3,

j=1k=1

and remark that, according to (3.30), as x — x(P), all the terms on the right-hand
side remain bounded except ¢, Dy (x, x(P), which is of order O (In |x — x(P) |). This
clearly contradicts the equality (8.5), and we conclude that all the ¢ j; in (8.3) must
be zero. Since the f @) are linearly independent, we deduce that the c¢; are also zero.
Hence, the set (8.1) is linearly independent on 9.

Now let ¢ € L2(8S) be such that foralli, j =1, 2,3andk =1, 2, ...,

/(f(i))qu ds = /(Q(jk))qu ds = 0. (8.6)

By (8.2) and (3.27), this is equivalent to

/D(x(k), Ve ds(y) =0, k=1,2, ..., (8.7)
as
/[<pa(y) — Ya3(¥)] ds(y) =/<03(y) ds(y) =0. (8.8)
as

Consider the single-layer plate potential

(Vo) (x) =/D(x, »e(y)ds(y).

N
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Since, by Theorem 4.18(i), V¢ is continuous on 9S, and the points x® k=
1, 2, ..., are densely distributed on 95, from (8.7) it follows that V¢ = 0 on
0S. In view of Theorem 4.18(ii), (iii), we have

A(Vg)=0 inS_,
V=0 ondS,,
Vo e of.
This means that V ¢ is a regular solution in S of the homogeneous exterior Dirichlet

problem (D™); consequently, by Theorem 3.16(i), V¢ = 0 in S’; . The analyticity of
the single-layer plate potential V in R?\3.S now implies that

V=0 inS~. (8.9)
In turn, this yields (T (Vg))~ = 0in §™. Letting S~ > x’ — x € 95 along the
support line of v(x), from Theorem 4.21 we find that
—3 9(x) +/T(3x)D(X, ey ds(y) =0
3s

foralmostall x € 95, where the integral is understood as principal value. By Theorem
6.12, ¢ € C %%(3S) with any « € (0, 1). Then V¢ is continuous in RZ and

A(Ve)=0 in ST,
Vo=0 onaS;

that is, V¢ is a regular solution in St of_the homogeneous problem (D). Conse-
quently, by Theorem 3.16(i), V¢ = 0in S™. From this and (8.9) we deduce that

(T(Ve)T =(T(Vy))~ =0 onadSs,

and (4.17) yields ¢ = 0.
Since L%(dS) is a Hilbert space, we now apply Theorem 8.2 to conclude that (8.1)
is a fundamental set in L2(35). m|
Let u be the (unique) regular solution of (DT). By Theorem 3.9 and (3.43),

u(x) = / D(x, PY () ds(y) — H(x), xeS7, (8.10)
3s
H(x) = / D(x, y)y(y)ds(y), xes§, (8.11)

as
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where we have used the notation

H (x) =/P(x, VP(y)ds(y), xeR*\aS,

aS
V() = (Tu)(y), y € dS. (8.13)

(8.12)

Formula (8.11) yields

/D(x(k), Wy(Nds(y)=Hx®), k=1,2,...,
S
which, by (3.27) and (8.2), is equivalent to

/(9<f’<>)T1pds =H;x®), j=1,2,3 k=12, .... (8.14)
BN

We arrange the elements of (8.1) in the order

FOF@ G gD gCh gGh b @0 (o

and denote the new sequence by {9(’”)};’;’:1. Let {w(”)};’lo: | be the orthonormalized
fundamental sequence constructed from the set {9(’”)}1‘;0: | in L%(S) by means of

the Gram—Schmidt process. Then

n
w(n) = anme(m), n=1,2, ...,
m=1

where k;, are well-determined numbers. Writing

n
PO =S po, n=1,2, ..., (8.15)
r=1
with the coefficients on the right-hand side given by
r
pr= /(w‘”)Tw ds = Zkrm/(e(’"))% ds, r=12,..., (8.16)
3s m=l 5
and setting
(8.17)

u™ (x) =/D<x, P (y)ds(y) — Hx), xeST,
N
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from (8.10) we see that for x € ST,

3

u) = u™ )| =D Jui @) — u” ()]

i=1

3
=2 / (DY, ) [ o) =y ][ ds)

i=lgg

3
= DI 2l = o

i=1

Since the || D@ (x, -)||» are uniformly bounded on any closed subdomain S’ c S+
and || — ™|, = 0asn — oo, we conclude that u™ — u, uniformly on S’.
Clearly, each u™ is a solution of the equation Au = 0in S*.

8.4 Remark. According to (8.13), u is a regular solution of the interior Neumann
problem

Au=0 inST,
Tu=1% onadSs;
therefore, by Theorem 6.6,
/(f(i))Tl/deZO, i=1,2, 3, (8.18)
s

which is equivalent to (6.13). Since 8) = @) j =1, 2, 3, from (8.16) and (8.18)
it now follows that

pr=p2=p3=0,

.
pr = Zk,m/w(m))w ds, r=4,5,.... (8.19)

m=4 3s
Hence, the approximate solution u" is given by (8.17), where H and v are given
by (8.12) and (8.15), respectively, with the p, as in (8.19) and fully determined for
r=4,5,...by(8.12) and (8.14).

8.2 The Interior Neumann Problem

With the notation introduced in the preceding section, we can prove the following
assertion.
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8.5 Theorem. The set
(FO, 000 i j=1,2,3 k=12 ..} (8.20)
where the @) are defined by (6.6) and
9P (x) = T (0D Y (x, xP), (8.21)

is linearly independent on 3S and fundamental in L*(95).

Proof. As in the proof of Theorem 8.3, suppose that there are a positive integer N and
real numbers ¢; and cj, i, j =1, 2,3, k=1, 2, ..., N, notall zero, such that

3 3 N
DoafPm+ Zz #0U0x) =0, xeas. (8.22)
: P

Then, taking (8.21), (8.22), and Theorem 3.8 into consideration, we find that the
3 x 1 matrix

3 N
m(x) = > DV (x, x®) (8.23)
j=1k=1

is a regular solution of the interior Neumann problem

Aw =0 in ST,

3
@ Z_Zc,-f“‘) on 9S;

i=1

consequently, by (6.13),

3
/(f(l))T[—Zcif(i)}ds=O, [=1,2,3,
as i=l

which implies that the coefficients ¢y, ¢2, and c3 are all equal to zero. This yields
Tow =0 onads,

so, by Theorem 3.16(ii),

3
w:z,Bif(i) in ST

i=1
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for some constants B;,i = 1, 2, 3. From this and (8.23) it follows that

3 N 3
F)=> > cpDV @, x®) =D g f D) =0, xeSt.

j=lk=1 i=1
By analyticity, @ = 0 in S, and the linear independence of the set (8.20) on 35 is
established by means of the argument used in the proof of Theorem 8.3.

Suppose now thatforalli, j =1, 2, 3andk = 1, 2, ...thefunctiong € Lz(BS)
satisfies

/ (f )Ty ds = / ®UD)Tgds = 0,
N N

According to (8.21) and (3.28), this means that

/[%(y) — Ya3()] ds(y) =/¢3(y) ds(y) =0, (8.24)
as as
/P(x(k), Ve()ds(y) =0, k=1,2,.... (8.25)
N

By Theorem (4.18)(i), the double-layer plate potential

W) = [ P o dsy)
as
is continuous on 9S,. Since the x® are densely distributed on 9., from (8.25)

we deduce that We = 0 on 9S,. Then, by Theorem 4.18(ii), (iii), W is a regular
solution of the exterior Dirichlet problem

AWp)=0 inS,_,
We =0 onaS,,
Wy € o

hence, by Theorem 3.16(1), W¢ = 0 in S‘*_ . The analyticity of W¢ in R*\3S now
yields W = 0in S~. Letting S~ > x’ — x € 9S along the support line of v(x),
from Theorem 4.20 we find that

L o) +/P(x, Vo) ds(y) =0
S
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foralmostall x € 0§, where the integral is understood as principal value. By Theorem
6.12, 9 € C O (0S) for any o € (0, 1), which, in view of Theorem 6.3, implies that

3
QDZZVif(i) ondS, y; =const> 0.

i=1

Then, by (8.24),

3
/[(f(’))szif(i’]ds =0, 1=1,23,
i=1

S

and we conclude that all the y; are zero; thatis, ¢ = 0. The desired result now follows
from Theorem 8.2. O

Let u be a regular solution of (N1). By Theorem 3.9 and (3.44),

u(x) = —/ P(x, y)p(y)ds(y) + L(x), x € ST, (8.26)
as
L) = / PG, »)p() ds(y), xes (8.27)
s
where
L(x) =/D(x, W2 ds(y), x¢€ R2\BS, (8.28)
s
px) =u(x), x €08S.

We rearrange the elements of the subset {#UX), j =1,2,3, k=1,2, ...} of
(8.20) in the order

19(1])’ 0(2])’ 0(3])’ o, ﬂ(lk)7 19(2k)’ ﬁ(Sk)’ o

denote the new sequence by {1 ") }om—1» and use the Gram—Schmidt process to con-

struct the orthonormal sequence {77(")}20:1 in L2(35); thus,
n
™ = anmz?(m), n=1,2 ..., (8.29)
m=1

where «,,,, are well-determined numerical coefficients. Also, let { f @ )}1.3:1 be the
orthonormalized set obtained from { f ©)}3_ .
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We claim that {f(i ), r)(”), i=1,2,3, n=1,2,...}is afundamental ortho-
normal set in L?(3S). To convince ourselves of this, we need to verify only that

/(f<">)Tn<”>ds=o, i=1,2,3,n=12,....
as

But this is obviously true, since the £ and the n™ are finite linear combinations
of the f @) and 9 UL, respectively, and, by (6.6), (8.21), and Theorems 3.5 and 3.8,

/ (f )90 a5 = / (Tot = xaT3) D) (e, x®) ds
as as

_ / (Aat — xaAs) D (x, x(K)) da = 0,

S+
JuOmsias= [ 1006 5 )
aS N
=/A31Dl(j)(x, x®)da = 0.
S+

Without loss of generality, suppose that n > 3, and let
3 ‘ n—3
P =220+ am " (8.30)
i=1 r=1

where

i =/<f“’>>Tpds, i=1,23
EN

,
0= [ pds = 3w [0V pds. =12 3D
s m=l gg
Setting
u™(x) = —/ P(x, y)p™(y)ds(y) + L(x), xe€ ST, (8.32)
aS

and using (8.26), just as in Sect. 8.1 we find that u"” — u as n — oo, uniformly on
any closed subdomain S’ C S*.
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From (8.27) it follows that

/P(x(k), We(Mds(y) =Lx®), k=1,2,....
N

By (3.28) and (8.21), this is the same as

/(ﬂ(jk))Tpds =L;x®), j=1,2,3 k=12, ... (8.33)
EN

Applying Theorem 3.9 to £ @) in S, from (8.32) and (8.30) we now obtain the
approximate solution in the form

3 n—3
u®™(x) = qu-f(”(x) — qu / P(x, y)n(’)(y) ds(y) + L(x), xeST,
i=1 r=1

as

where the first term on the right-hand side is a rigid displacement independent of r,
L(x) is given by (8.28), n® by (8.29), and the g, are computed by means of (8.31),
(8.33), and (8.28). Since the coefficients ¢; cannot be found in terms of the boundary
data of the problem, we conclude that, in agreement with Theorem 6.6, the exact
solution is determined in the limit up to an arbitrary rigid displacement.

8.3 The Exterior Dirichlet Problem

The construction of a fundamental sequence in the space of the solution for exterior
problems meets with the usual difficulties that arise from the behavior of the matrices
D(x, y) and P(x, y) for y € 95 and |x| large. To overcome these obstacles, we
need to establish some auxiliary results.

Let S be a finite domain in R2, and let ¢ be a linear functional on C(35S).

8.6 Theorem. Consider the 3 x 1 vector function
x(x) =9,Dx, o), ¢eX xe§, (8.34)

where the subscript y indicates that ¢ is applied to its argument regarded as a
function of the point y. Then x € <of if

Ta =9y (0 (y) — Ya3(y)) =0,
3 =% (p3(y) =0. (8.35)
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Proof. We define

DX (x, y) = —axp*(21Inr 4 2 + cos 26),
Dy (x, y) = —ayp*2Inr 42 — cos26),
DY (x, y) = axp[pur? Inr — 4h* (. 4+ 2p) Inr — 40> (A + 340
—ayp{yi[pr@Inr + 1) — 4h* (. 4 2p)r "] cos 6
+ y2[ur@Inr + 1) — 4h*(n + 2p)r~ '] sin 6},
DY (x, y) =Dy (x, y) = —ayp? sin 26,
DX (x, y) = —axp*[r(2Inr + 1) cos 6 (8.36)
—y12Inr + 2+ cos20) — y2sin 26],
Dy (x, y) = —aguz[r(Z Inr +1)siné
—y2(2Inr +2 — cos20) — y; sin26],
DiY(x, y) = axp[pr @Inr + 1) — 4h* (A + 2p)r "] cos 0,
DY (x, y) = axp[pur2Inr + 1) — 4h* (L +2)r '] sin 6,

where (r, ) are the polar coordinates of x, and, for |x| large, write (8.34) in the form

x(x) =G (D¥(x, () + % ((D(x, y) = DZ(x, y)e()
=X () + X (x).

Using (3.21), (3.23), (3.25), (3.36), (3.37), and (8.36), we find by direct calculation
that ¥ € o/ and that

x> (x) = —a2u2[1:3r(2 Inr +1)cosé
+ 71 (2Inr + 2 4 cos 20) + 12 5in 26|,
X (x) = —az,uz[mr(Zlnr +1)sin6
+ 2(2Inr +2 — cos6) + 7y sin 26|,
x5°(x) = axprs[pwr? Inr — 4h* (A +3w)|
+ ap (T cos b + 1o sin 9)[,ur(2 Inr+1) — 4h2()\ + 2/1)}”71],

which means that x *° = 0 if (8.35) hold. m|

8.7 Remark. Obviously, Theorem 4.2(ii) is a particular case of Theorem 8.6 with ¢
defined on C(9S) by
Yo = / ods.

S
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8.8 Theorem. For any (fixed) y € 95,
(1) A(@x)D*®(x, y) =0,x € §7;
(ii) the columns of D — D belong to < .

Proof. (i) We can easily convince ourselves that the columns of D °° are generated
by (7.28) and (7.36) with = m = 0, ¥ = 0, and §2 and w given, respectively, by

Q@) = —aap*(ogz + 1), w(z) = —ayp’z logz,
2(() = —iaz,uz(logz +1), () =ian’z log z,
R@) =—ap[@—0)logz —¢], () =au*@z logz +4h?),

where z = x; +ixo and ¢ = y; +iy2.

(i1) This assertion is proved by computing the entries of the matrix D — D *°
explicitly and verifying that its columns exhibit the far-field pattern (3.39) stipulated
in the definition of the class .« O

Let the curve 3.5, now be chosen so that it lies strictly inside the domain S™.

8.9 Theorem. The set (8.1), constructed as in Theorem 8.3, is linearly independent
on 39S and fundamental in L2(35).

Proof. Suppose that there are a positive integer N and real numbers ¢; and cjy,
i,j=1,2,3k=1,2,..., N,notall zero, such that (8.3) holds, and let & again
be defined by (8.4). Then grad w; = 0ondS,i =1, 2, 3. Since w € C! (S;), from
expression (3.11) we immediately see that

Tw =0 onds. (8.37)

Using the representation

3
m=o+a+ > af (8.38)

i=1

where the functions @ > and @ are defined by means of the columns of the matrices
D®° and D — D *°, respectively, from Theorem 8.4 and (8.37) we deduce that @ is
a regular solution of the exterior Neumann problem

A =0 inS—,
T =—-Tw™>™ onds,
w e .

According to Theorem 6.5(ii),

/(f(i))TTwoods =0, i=1,2,3.
S
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Consider a circle I'g with the center at the origin and radius R sufficiently large

so that ST C Ig strictly. By Theorem 3.7 applied to f @) and > in I'g\S¥, the
above equality yields

/(f<i>)TTw°°ds=o, i=1,2, 3.

ol'g
Direct calculation now shows that these relations are equivalent to

N
Z(Cak —xPey) =0,
k=1

N
> ex =0. (8.39)
Let ¢ be the linear functional defined on C(9S) by

Yo = io(x(k)), o€ C@dS),
k=1
and let ¢, € C(dS) be such that
@e(x®) = (c1x, oy c3), k=1,2,..., N.
Then

3 N 3 N
chjkg(jk)(x) — ZZCjkD(j)(x, x(k))
j=1k=1

j=1lk=1

N
> D(x, x®)pe(x®)
k

=1
Gy (D(x, Y)oc()-

In view of this and the definition of ¢, (8.39) are equivalent to (8.35); therefore,
by Theorem 8.6 and (8.38), @ € /*. From (8.3) and (8.4) we then see that @ is
the regular solution in S~ of the homogeneous Dirichlet problem

A =0 inS—,
w =0 onas,
w e F*.
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By Theorem 3.16(i), = = 0 in S~. Due to the analyticity of @, we have @ = 0 in
S, , and the linear independence of the set (8.1) on 9§ is established by the argument
used in the proof of Theorem 8.3.

Suppose now that equalities (8.6) hold for some ¢ € L*(3S). Since the points
x® are densely distributed on 9.5, we deduce from Theorem 4.18(i), (ii) that the
single-layer potential V of density ¢ is a regular solution of the homogeneous interior
Dirichlet problem

A(Vp)=0 inS],
Vo =0 ondSy;

hence, by Theorem 3.16(i), V¢ = 0 in S;". Due to the analyticity of V¢ in R?\3S,
we conclude that Vo = 0in ST, and so, (T(Vg))™ = 0in ST. Letting x" € ST
tend to x € 9.5 along the support line of v(x), we apply Theorem 4.21 to obtain the
equation

Lo(o) + / T(3:)D(x, yp(y)ds(y) =0
N

for almost all x € 95, the integral being understood as principal value. Theorem
6.12 now indicates that ¢ € C O""(BS), with any @ € (0, 1). Hence, Vo € C(Rz),
which means that Vo = 0on dS.

The first three equalities in (8.6) are equivalent to pg = 0, where p is the func-
tional defined in (4.3). Then, by Theorem 4.2(ii), V¢ € <7, so V¢ is a regular
solution of the homogeneous Dirichlet problem

A(Vp)=0 in S,
Vo =0 onaSs,
Ve,

hence, by Theorem 3.16(i), V¢ = 0 in S™. This implies that (T (V¢))™ = 0, and,

by (4.17), ¢ = 0. As in the proof of Theorem 8.3, we finally deduce that (8.1) is a
fundamental set in L2(35). O

8.10 Remark. In classical three-dimensional elasticity (Kupradze et al. 1979) there
is no need for the f @) to be included in the set (8.1).

Let u be the (unique) regular solution of (D™). According to Theorem 6.7, we
can write

3
u=i+y cif?, (8.40)
i=1
where i1 € <7 and, as shown in the proof of that theorem,

ci = /(g(i))T%’ds.
N
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By (3.45) and Theorem 3.12 applied to i,

u(x) = —/D(x, WY (y)ds(y) + Hx), xeS,

S

H(x) =/D(X, WY () ds(y), xesT,

S

where

3
H<x>=/P<x, y)[%(y)—Zc,-f“)(y)} ds(y), x € R\3S, (841

as i=1
Y(y) = (Tu)(y), y € as.

Since, by (8.40) and (8.41), iz is aregular solution of the exterior Neumann problem

Au=0 inS—,
Tiu=v% ondSs,
uec o,

from Theorem 6.5(ii) it follows that

/(f“))szds =0, i=1,2,3,
a8

which is equivalent to (6.12). This fact allows us now to proceed as in Sect. 8.1 and
construct a similar scheme for the approximation of .

8.4 The Exterior Neumann Problem

Let the curve 95, and the points x® be as described in Sect. 8.3.
8.11 Theorem. The set

WUo, j=1,2,3k=12,...1} (8.42)

where the U are defined by (8.21), is linearly independent on 3 S and fundamental
in L>(35).
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Proof. Suppose that there are a positive integer N and real numbers cjx, j = 1, 2, 3,
k=1, 2, ..., N, not all zero, such that

3 N
ch DY) =0, xeds.

j=1k=l

Representing @ defined by (8.23) in the form @ = @™ + @, where @™ and
@ are constructed in terms of D® and D — D ®°, respectively, just as in the proof
of Theorem 8.9 (this time with @ € &) we deduce that the set (8.42) is linearly
independent on 9.

An argument similar to that used in the proof of Theorem 8.5 now shows that if

/(ﬁ(jk))T(pdSZO, j=1,2,3k=1,2,...,
S

for some ¢ € L?(3S), then the double-layer potential W of density ¢ satisfies W = 0
in S*. Hence, as ST 5 x’ — x € 9S along the support line of v(x), Theorem 4.20
yields

o) +/P<x, Vo) ds(y) =0
N

foralmostall x € 95, where the integral is understood in the sense of principal value.
By Theorems 6.12 and 6.3, p(x) =0, x € 3S.

The fact that (8.42) is a fundamental set in L2(3S) now follows directly from
Theorem 8.2. |

The generalized Fourier series approximation u" of the (unique) regular solution
u of (N7) is constructed just as in Sect. 8.2, the procedure being simplified here by
the absence of the rigid displacements f @) in (8.42).

8.5 Numerical Example

This illustration is based on the solution in ST of the homogeneous system (3.8),
generated by (7.36) with =0, 2 = zz, w=z+1,andl = m = 0. Below, we use
the procedure described in Sect. 8.1 to reconstruct the solution from its values on the
boundary 9.S.

Consider the interior Dirichlet problem for a disk with h = 0.5and A = pu =1,
where 95§ is the unit circle centered at the origin and the boundary conditions are

P1(x) = 2()512 +1), Pr(x)=2x1x3, P3(x)=4x;—1, xe€aS.
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Let 95 be the circle concentric with 9.5 and of radius r, > 1. We introduce polar
coordinates with the pole at the origin and choose the points x(k), k=1,2,...,o0on
9. to be those corresponding to the polar angles

in this order. Obviously, the set {x )} o2 is densely distributed on 9.

The approximation scheme described in Sect.8.1 has been implemented on a
PC with the Mathematica® software. Since for this type of problem the default
numerical integration technique in Mathematica® takes inordinately long to execute
and, additionally, does not cope well with zero intermediate results, the integrals over
dS have been evaluated by means of Simpson’s rule with ng = 36 equal ‘strips’.
Consequently, all the functions defined on 95 have been discretized at the Simpson
nodes, and the approximate values of the solution have been computed at a few
specified individual points x@ in S*.

8.12 Remark. In the Gram—Schmidt method applied to the subset {# "™ }"*_, consist-

ing of the first n, elements of the complete set {6 } oo |» We begin by constructing
the orthogonal vector functions

QW — g,

m—1
e @y,
Qm=gm N 2 L@ =2 n, 8.43
Z} 12@]5 v 68

and then the orthonormalized vector functions

1

(m) _
w _
1820711

, m=1,...,ny, (8.44)

where (-, -)» and || - || are the inner product and norm on L?(3S). Combining (8.43)
and (8.44), we can also write

m—1
Qm — glm) _ Z(g(m)’ w(Q))zw(fI)’ m=2,...,ny,
q=1
and
(m) _ g (m) @ _
w + I , m=2,...,0ny, 8.45
HQWW2‘ 23 ] ! (849
where

Ing = =0, &)
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Expressing the Gram—Schmidt transformation as

m
o™ =" kgt . m=1,...ny. (8.46)
q=1

from (8.45) and (8.46) we see that

1

= T 1» s Ny,
IR, '
and
m—1
™ =k D lng®@ + kim0
q=1
m—1 q
= Z kmmlmq(quse(x)) + kmme(m)v m=2 ..., ny.
q=1 s=1
These equalities permit us to compute all the coefficients kg, g = 1,...,m,

m=1,...,ny. Obviously, kj,g =0forg =m+1,..., ny.

For the sake of symmetry, in our approximating procedure we work with the first
no = 32 = 25 points x® on 85S,, so the circle is fully traversed five times. Since
the first three elements in the sequence (8.1) are the rigid displacements, the number
of vector functions " (hence, also w™) available after each of these passages is
9, 15, 27, 51, and 99.

The data compiled in Tables 8.1-8.17 are the values of the exact solution u and
the approximate solution u at selected points x¥ € S+ designated by their polar
coordinates, form =9, 15, 27, 51, 99 and various radii r, of 9S. The exact errors
|u — u™| at these points are also computed, where

T
=™ = (e =™z — 5" s = ug™)

8.13 Remark. Tables 8.1, 8.2, 8.3, and 8.4 show the results at four points x® 1ocated
on different radial directions at an increasing distance from the center of the disk
toward its boundary, for 7, = 2 and r, = 4, respectively (see Remark 8.14(ii)). The
numbers in these tables lead to several conclusions.

(i) The approximation worsens as we get closer to the boundary. This is explained
by the fact that the matrix functions D and P are singular on 9.

(ii) The smallest errors are yielded by u®D and u®?, with the former having a
slight ‘edge’ over the latter for both r, = 2 and r, = 4.

(iii) The approximation is better for r, = 4 at the points closer to the center, and for
ro = 2 at the points farther away from from it.
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Table 8.1 The values of u™ and u at selected points x® in S* for r, = 2

x® (0.05, 0) 0.3, 7/4) 0.6, 7/2) 0.9, 37/4)
u® 0.909099 1.093230 1.416320 2.332110
0.000000 0.065845 0.000034 —0.361680

—0.756856 0.011257 —1.000300 —3.434730

u1® 1.020470 1.190750 1.369730 2.311760
0.000000 0.098177 0.000037 —0.642597

—0.750471 0.039260 —1.000040 —3.525950

u@ 1.007360 1.179880 1.359420 2.325780
0.000000 0.089996 0.000030 —0.606286

—0.750132 0.041542 —1.000040 —3.559670

u®h 1.007420 1.179940 1.359310 2.331510
0.000000 0.090023 0.000030 —0.601356

—0.750129 0.041555 —1.000040 —3.559750

u® 1.007580 1.179940 1.360440 2.063980
0.000022 0.089946 —0.000932 —0.538252

—0.750123 0.041559 —1.000070 —3.539530

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 —0.810000

—0.750125 0.041568 —1.000000 —3.666500

8.14 Remark. Tables 8.5, 8.6, 8.7, and 8.8 contain, respectively, the values of u®h
and u®? and the corresponding errors at the same points as in the first four tables,
for several values of r,.

(i) Ttis clear that u®® is a better approximation than u®! away from the boundary
(more precisely, at the first three points) for r, = 1.1. The situation is reversed
for r, = 1.5, and there is not much to choose between the two for r, = 10.

(ii) The best approximations ! and #®® in the computed set are for r, = 2,
followed closely by those for r, = 4. The errors increase when ry, is significantly
smaller than 2 or larger than 4. This is explained by the singularity of D(x, y)
and P (x, y) on 95 and the asymptotics (3.38) of these functions as y € 95 and
x| — oo.

(iii) The anomalous error numbers generated by u® at (0.9, 37 /4) for ro = 1.1
have the same explanation. Other points with a polar radius of 0.9 were tried in
this case, with similar results.

8.15 Remark. Tables 8.9 and 8.10 widen the scope of the investigation into how the
approximation errors for u®! and u®? vary as the point x moves from the center
of the disk toward 9§ in polar radius increments of 0.1, for r, = 2 and r, = 4.

(i) For r, = 2, both errors are zero up to 4 decimal places until the polar radius
of the point reaches 0.3, and to 3 decimal places until 0.6, after which it starts
deteriorating fast. For r, = 4, the thresholds are 0.5 and 0.6, respectively.
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Table 8.2 The computational errors [u — 1™ | at the points in Table 8.1 for r, = 2

x® (0.05, 0) 0.3, /4) 0.6, 7/2) (0.9, 37 /4)
lu—u®)| 0.098401 0.086770 0.056320 0.287890
0.000000 0.024155 0.000034 0.448320
0.006731 0.030311 0.000030 0.231770
lu — u1) 0.012970 0.010750 0.009730 0.308240
0.000000 0.008177 0.000037 0.167403
0.000346 0.002308 0.000040 0.140550
lu —u®?| 0.000140 0.000120 0.000580 0.294220
0.000000 0.000004 0.000030 0.203714
0.000007 0.000026 0.000040 0.106830
lu — u®Y| 0.000080 0.000060 0.000690 0.288490
0.000000 0.000023 0.000030 0.208644
0.000004 0.000013 0.000040 0.106750
lu — u®) 0.000080 0.000060 0.000440 0.556020
0.000022 0.000054 0.000932 0.271748
0.000002 0.000009 0.000070 0.126970

Table 8.3 The values of u” and u at the points x¥ in Table 8.1 for r, = 4

x® (0.03, 0) 0.3, /4) 0.6, 7/2) 0.9, 37 /4)
u® 0.891649 1.079830 1.426260 2.395640
0.000000 0.065017 0.000040 —0.336053

—0.755540 0.018704 —1.000030 —3.498200

uld 0.894734 1.083160 1.418590 2.421150
0.000000 0.065388 0.000040 —0.343568

—0.754609 0.024425 —1.000030 —3.552410

u@n 1.007450 1.179960 1.359160 2.324730
0.000000 0.089989 0.000040 —0.607881

—0.750127 0.041560 —1.000030 —3.558930

uGh 1.007500 1.180000 1.359120 2.324910
0.000000 0.090000 0.000055 —0.607857

—0.750125 0.041568 —1.000030 —3.559470

u® 1.007500 1.180000 1.359050 1.459230
0.000000 0.090002 0.000079 0.329970

—0.750125 0.041568 —1.000030 —0.050139

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 —0.810000

—0.750125 0.041568 —1.000000 —3.666500
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Table 8.4 The computational errors [u — u™| at the points in Table 8.3 for r, = 4

183

x® (0.05, 0) 0.3, /4) 0.6, 7/2) (0.9, 37 /4)
lu—u®)| 0.115851 0.100170 0.066260 0.224360
0.000000 0.024983 0.000040 0.473947
0.005415 0.022864 0.000030 0.315500
lu — u1) 0.112766 0.096840 0.058590 0.198850
0.000000 0.024612 0.000040 0.466432
0.004484 0.017143 0.000030 0.114090
lu —u®?| 0.000050 0.000040 0.000840 0.295270
0.000000 0.000011 0.000040 0.202119
0.000002 0.000008 0.000030 0.107570
lu — u®Y| 0.000000 0.000000 0.000880 0.295090
0.000000 0.000000 0.000055 0.202143
0.000000 0.000000 0.000030 0.107030
lu — u®) 0.000000 0.000000 0.000950 1.160770
0.000000 0.000002 0.000079 1.139970
0.000000 0.000000 0.000030 3.616361

Table 8.5 The values of u®" and u at the points x in Table 8.1 for various radii r,

x® (0.05, 0) 0.3, w/4) 0.6, /2) 0.9, 37 /4)
ro = 1.1 0.984393 1.148190 1.468830 2.221520
0.000000 0.097241 0.001287 —0.415976

—0.759148 0.003493 —1.032630 —3.419870

ro=15 1.005800 1.178670 1.363540 2.340940
0.000000 0.091092 —0.000231 —0.599018

—0.750251 0.041138 —1.000250 —3.560160

ro =2 1.007420 1.179940 1.359310 2.331510
0.000000 0.090023 0.000030 —0.601356

—0.750129 0.041555 —1.000040 —3.559750

o = 4 1.007500 1.180000 1.359120 2.324910
0.000000 0.090000 —0.000055 —0.607857

—0.750125 0.041568 —1.000030 —3.559470

ro =10 0.890012 1.078890 1.423330 2.412190
0.000000 0.064548 0.000122 —0.344890

—0.754919 0.023032 —1.000420 —3.545090

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 —0.810000

—0.750125 0.041568 —1.000000 —3.666500
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Table 8.6 The computational errors |u — u®D) at the points in Table 8.5

x® (0.05, 0) 0.3, 7/4) 0.6, 7/2) (0.9, 37/4)
ro = 1.1 0.023107 0.031810 0.108830 0.398480
0.000000 0.007241 0.001287 0.394024
0.009023 0.038075 0.032630 0.246630
ro =15 0.001700 0.001330 0.003540 0.279060
0.000000 0.001092 0.000230 0.210982
0.000126 0.000430 0.000250 0.106340
ro =2 0.000080 0.000060 0.000690 0.288490
0.000000 0.000023 0.000030 0.208644
0.000004 0.000013 0.000040 0.106750
ro =4 0.000000 0.000000 0.000880 0.295090
0.000000 0.000000 0.000055 0.202143
0.000000 0.000000 0.000030 0.107030
ro = 10 0.117488 0.101110 0.063330 0.207810
0.000000 0.025452 0.000122 0.465110
0.004794 0.022648 0.000420 0.121410

Table 8.7 The values of u®® and u at the points x in Table 8.1 for various radii r,

x® (0.03, 0) 0.3, 7/4) 0.6, /2) (0.9, 37/4)
ro = 1.1 1.006880 1.150640 0.873030 160.400000
0.000000 0.047808 —0.043748 —120.054000
—0.750165 0.038164 —1.009930 —6.325140
ro=15 1.007030 1.175570 1.345790 2.103650
—0.002429 0.089554 —0.022097 —0.505978
—0.750366 0.040829 —1.000750 —3.532410
ro =2 1.007580 1.179940 1.360440 2.063980
0.000022 0.089946 —0.000932 —0.538252
—0.750123 0.041559 —1.000070 —3.539530
o = 4 1.007500 1.180000 1.359050 1.459230
0.000000 0.090002 0.000079 0.329970
—0.750125 0.041568 —1.000030 —0.050139
ro =10 0.890082 1.078900 1.422220 2.408500
0.000017 0.064634 0.000412 —0.360479
—0.754916 0.023071 —1.001010 —3.541330
u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 —0.810000
—0.750125 0.041568 —1.000000 —3.666500
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Table 8.8 The computational errors |u — 1) at the points in Table 8.7

x® (0.05, 0) 0.3, 7/4) 0.6, 7/2) (0.9, 37/4)
ro = 1.1 0.000620 0.029360 0.486970 157.780000
0.000000 0.042192 0.043748 119.244000
0.000040 0.003404 0.009930 2.658640
ro =15 0.000470 0.004430 0.014210 0.516350
0.002429 0.000446 0.022097 0.304022
0.000241 0.000739 0.000750 0.134090
ro =2 0.000080 0.000060 0.000440 0.556020
0.000022 0.000054 0.000932 0.271748
0.000002 0.000009 0.000070 0.126970
ro =4 0.000000 0.000000 0.000950 1.160770
0.000000 0.000002 0.000079 1.139970
0.000000 0.000000 0.000030 3.616361
ro = 10 0.117418 0.101100 0.062220 0.211500
0.000017 0.025366 0.000412 0.449521
0.004791 0.018497 0.001010 0.125170

(ii) Theerrorsforu® and u®® remain comparable at 0.7 and 0.8; the latter becomes
worse at 0.9, especially for r, = 4.

8.16 Remark. Tables 8.11, 8.12 and 8.13, 8.14 show the approximate and exact
values of the solution, and the corresponding errors, at three points very close to
aS (specifically, with polar radius 0.99), for r, = 2 and r, = 4. As expected, the
approximations are unsatisfactory, with the ‘badness’ worst at (0.99, 0), which, of
the three points, is closest to a Simpson node and, therefore, most affected by the
singularities of D and P.

8.17 Remark. Tables 8.15, 8.16, and 8.17 contain the values of the approximations
uGD and u©®% and the error of the former at the same close-to-the-boundary points
used in Tables 8.11, 8.12, 8.13, and 8.14, for the set of incremental radii r, of 95,
considered earlier. The conclusions regarding the error size for each of these radii
are similar to those in Remark 8.16.

We make a few general comments.

8.18 Remarks. (i) The size of the errors did not diminish when we doubled the
number of points x®) on 35, to construct u1°. We suspect that the main reason
for this is the numerical instability of the classical Gram—Schmidt process.

(ii) Simpson’s rule of numerical integration over [0, 2] was also tried with 48
and 96 equal strips, but the changes in the final figures were not significant.

(iii) The values of u™ were computed for more radii r,, from 0.01 to 100, and
the conclusion was that r, = 2 and r, = 4 fall within the optimal range for the error.
Placing 9. too close to 9.5 or too far away from it led to badly distorted results.
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Table 8.9 The values of u®V, 4u®9 and u at selected points x® in ST for ro=2andr, =4

NG) ED) ) u
ro =2 ro =4 ro =2 ro =4

(0.05, 0) 1.007420 1.007500 1.007580 1.007500 1.007500

0.000000 0.000000 0.000022 0.000000 0.000000

—0.750129 —0.750125 —0.750123 —0.750125 —0.750125

0.1, 7/3) 1.014930 1.015000 1.015070 1.015000 1.015000

0.008662 0.008660 0.008635 0.008659 0.008660

—0.750504 —0.750500 —0.750500 —0.750500 —0.750500

0.2, 7/6) 1.099910 1.100000 1.100030 1.100000 1.100000

0.034650 0.034641 0.034481 0.034638 0.034641

—0.140916 —0.140903 —0.140905 —0.140903 —0.140903

0.3, m/4) 1.179940 1.180000 1.179940 1.180000 1.180000

0.090023 0.090000 0.089946 0.090002 0.090000

0.041555 0.041568 0.041559 0.041568 0.041568

0.4, 7/9) 1.442430 1.442570 1.442350 1.442530 1.442570

0.102863 0.102849 0.102984 0.102867 0.102846

0.819218 0.819245 0.819216 0.819243 0.819245

(0.5, 47 /9) 1.265210 1.265120 1.265170 1.265080 1.265080

0.085503 0.085478 0.085823 0.085449 0.085505

—0.587587 —0.587586 —0.587581 —0.587587 —0.587586

0.6, 7/2) 1.359310 1.359120 1.360440 1.359050 1.360000

0.000030 —0.000055 —0.000932 0.000079 0.000000

—1.000040 —1.000030 —1.000070 —1.000030 —1.000000

(0.7, 57 /4) 1.970290 1.970030 1.820640 1.969680 1.980000

0.490459 0.490576 0.829947 0.489950 0.490000

—3.231610 —3.231600 —3.242060 —3.231590 —3.232340

(0.8, 107r/9) 2.696250 2.698700 2.895320 2.699320 2.770270

0.372738 0.374538 0.413757 0.374755 0.411384

—4.247290 —4.247350 —4.269450 —4.247350 —4.277650

(0.9, 37 /4) 2.331510 2.324910 2.063980 1.459230 2.620000

—0.601356 —0.607857 —0.538252 0.329970 —0.810000

—3.559750 —3.559470 —3.539530 —0.050139 —3.666500

(iv) The convergence of ™ in the vicinity of the boundary is, as expected, much
slower than near the center. At points close to 9.5, a considerably higher value of m
needs to be considered to bring the error to a reasonable size.

(v) The accuracy of the approximation can be improved if use is made of a more
powerful computer and a more sophisticated numerical algorithm. For example, the
stability of the Gram—Schmidt scheme can be enhanced by means of a modified
version where the construction of the vector function 2 involves its orthogonal-
ization against any errors introduced in the computation of its predecessors. Also, a
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Table 8.10 The computational errors |u — uBV) and |u — u®| at the points in Table 8.9

x® lu — u®Y)| lu —u®)|
ro =2 ro =4 ro =2 ro =4
(0.05, 0) 0.000080 0.000000 0.000080 0.000000
0.000000 0.000000 0.000022 0.000000
0.000004 0.000000 0.000002 0.000000
0.1, /3) 0.000070 0.000000 0.000070 0.000000
0.000002 0.000000 0.000025 0.000001
0.000004 0.000000 0.000000 0.000000
0.2, m/6) 0.000090 0.000000 0.000030 0.000000
0.000009 0.000000 0.000160 0.000003
0.000013 0.000000 0.000002 0.000000
(0.3, /4) 0.000060 0.000000 0.000060 0.000000
0.000023 0.000000 0.000054 0.000002
0.000013 0.000000 0.000009 0.000000
0.4, 7/9) 0.000140 0.000000 0.000220 0.000040
0.000017 0.000003 0.000138 0.000021
0.000027 0.000000 0.000029 0.000002
(0.5, 47/9) 0.000130 0.000040 0.000090 0.000000
0.000002 0.000027 0.000318 0.000056
0.000001 0.000000 0.000005 0.000001
0.6, m/2) 0.000690 0.000880 0.000440 0.000950
0.000030 0.000055 0.000932 0.000021
0.000040 0.000030 0.000070 0.000030
(0.7, 5m/4) 0.009710 0.009970 0.159360 0.010320
0.000459 0.000576 0.339947 0.000050
0.000730 0.000740 0.009720 0.000750
(0.8, 107/9) 0.074020 0.071570 0.125050 0.070950
0.038646 0.036846 0.002373 0.036629
0.030360 0.030300 0.008200 0.030300
0.288490 0.295090 0.556020 1.160770
0.208644 0.202143 0.271748 1.139970
0.106750 0.107030 0.126970 3.616361

faster and more efficient numerical integration procedure could be adopted, and the
computer algebra capabilities of Mathematica® could be exploited if the machine
has sufficient available memory. But such refinements go beyond the scope of this
book, which is concerned chiefly with the analytic handling of the problem.

8.19 Remark. For the interested reader, below are the contents of the Mathematica®
notebook used to generate the numerical results in this section. The commands in
each cell are preceded by brief explanatory comments.
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Table 8.11 The values of u™ and u at selected points x® close to 85 for r, = 2

x® (0.99, 0) (0.99, 7/16) (0.99, 7/36)
u® 14.318600 3.714870 1.883640
0.000000 0.453832 —0.187059
7.291790 3.604700 1.773780
u1® 14.405100 3.815040 1.958140
0.000000 0.570787 —0.136224
7.208620 3.528960 1.712860
u@ 14.394200 3.806260 1.952360
0.000000 0.581351 —0.132348
7.168420 3.497190 1.683650
u®b 14.260300 3.866190 1.947120
0.000000 0.613252 —0.111941
7.167530 3.496620 1.683580
u® 14.364800 3.973990 1.998120
0.424528 0.361206 —0.086232
7.019800 3.605200 1.682940
u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.12 The computational errors |u — 1| at the points in Table 8.11 for r, = 2

x® (0.99, 0) (0.99, 7/16) (0.99, 7/36)
lu—u®)| 10.378300 0.150820 2.041770
0.000000 0.078764 0.357252
4.312090 0.701470 1.190780
lu — u1) 10.464800 0.050650 1.967270
0.000000 0.195719 0.306417
4.228920 0.625730 1.251700
lu — u@7| 10.453900 0.059430 1.973050
0.000000 0.206283 0.302541
4.188720 0.593960 1.280910
lu — u®b| 10.320000 0.000050 1.978290
0.000000 0.238184 0.282134
4.187830 0.593390 1.280980
lu — u®| 10.424500 0.108300 1.927290
0.424528 0.013862 0.256425

4.040100 0.701970 1.281620
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Table 8.13 The values of « and u at the points x in Table 8.11 for r, = 4

x® (0.99, 0) (0.99, 7/16) (0.99, 7/36)
u® 14.200100 3.625110 1.808630
0.000000 0.460078 —0.186517
7.238340 3.562120 1.735350
u1 14.170700 3.604000 1.791320
0.000000 0.467818 —0.183938
7.164520 3.496130 1.676040
u@ 14.392900 3.806970 1.952520
0.000000 0.583507 —0.131415
7.166160 3.496450 1.682600
u®b 14.393000 3.807050 1.952580
0.000122 0.584242 —0.131048
7.167680 3.497100 1.683410
u® 14.393300 3.806120 1.952220
0.000147 0.583194 —0.131500
7.168040 3.497150 1.683520
u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.14 The computational errors |u — 1| at the points in Table 8.13 for r, = 4

x® (0.99, 0) (0.99, 7/16) (0.99, 7/36)
lu —u®| 10.259800 0.240580 2.116780
0.000000 0.085010 0.356710
4.258640 0.658890 1.229210
lu — u1) 10.230400 0.261690 2.134090
0.000000 0.092750 0.354131
4.184820 0.592900 1.288520
lu — u@7| 10.452600 0.058720 1.972890
0.000000 0.208439 0.301608
4.186460 0.593220 1.281960
lu — u®b| 10.452700 0.058640 1.972830
0.000122 0.209174 0.301241
4.187980 0.593870 1.281150
lu — u®| 10.453000 0.059570 1.973190
0.000147 0.208126 0.301693

4.188340 0.593920 1.281040
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Table 8.15 The values of u®! and u at the points x© in Table 8.11 for various radii r,

x® 0.99, 0) (0.99, 7/16) (0.99, 7/36)
ro = 1.1 14.158700 4.011060 1.980900
0.000000 0.738428 —0.041818
7.128330 3.379650 1.598850
ro =15 14.151600 3.897410 1.932960
0.000000 0.618801 —0.104884
7.167320 3.493720 1.681880
ro =2 14.260300 3.866190 1.947120
0.000000 0.613252 —0.111941
7.167530 3.496620 1.683580
ro =4 14.393000 3.807050 1.952580
0.000122 0.584242 —0.131048
7.167680 3.497100 1.683410
ro = 10 14.184800 3.616360 1.799440
0.005259 0.445375 —0.190697
7.163660 3.497540 1.675870
u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.16 The values of x% and  at the points in Table 8.11 for various radii r

x® (0.99, 0) (0.99, 7/16) (0.99, 7/36)
ro = 1.1 615.922000 —619.646000 —70.536600
0.032329 675.962000 250.783000

—33.759500 22.981500 10.222800

ro=15 6.729380 8.452130 1.337370
4.033270 —5.983060 —1.401630

8.731610 3.165590 1.844720

ro =2 14.364800 3.973990 1.998120
0.424528 0.361206 —0.086232

7.019800 3.605200 1.682940

ro =4 14.393300 3.806120 1.952220
0.000147 0.583194 —0.131500

7.168040 3.497150 1.683520

ro =10 14.199000 3.630510 1.808370
0.012549 0.432949 —0.192421

7.157130 3.494560 1.671720

u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193

2.979700 2.903230 2.964560
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Table 8.17 The computational error |u — u®V) at the points in Table 8.15

x® 0.99, 0) (0.99, 7/16) (0.99, 7/36)
ro = 1.1 10.218400 0.145370 1.944510
0.000000 0.363360 0.212011
4.148630 0.476420 1.365710
ro =15 10.211300 0.031720 1.992450
0.000000 0.243733 0.275077
4.187620 0.590490 1.282680
ro =2 10.320000 0.000500 1.978290
0.000000 0.238184 0.282131
4.187830 0.593390 1.280980
ro =4 10.452700 0.058640 0.020250
0.000122 0.209172 0.301241
4.187980 0.593870 1.281150
ro = 10 10.244500 0.249330 1.799440
0.005259 0.070307 0.360890
4.183960 0.594310 1.288690

The physical parameters:

lam = 1;
mu = 1;
h =1/2;

Some auxiliary expressions:

xyl[xl_, x2_, vl _, v2_1 := ((x1 - y1)"2 +
(x2 - y2)"2)"M(1/2);
Ixy[xl_, x2_, yv1_, y2_1] Log[xy[xl, x2, vyv1, vyv211;
txy[xl_, x2_, v1_, v2_1 := (1/(8% Pixh™2%mu’2x*
(lam + 2%mu))) * ((4xh"2 +
xy[xl, x2, yv1, yv2172)x1lxy[xl, x2, yv1, y2] +
4xh"2%xBesselK[0, xy[xl, x2, vyl1, y21/hl);

The matrix D(x, y) of fundamental solutions:

Dll1[xl_, x2_, vl1_, v2_1 := ((h"2%mux* (lam + 2=*xmu) *
(Dltxy[x1l, x2, yv1, vyv21, {x1, 4}1 +
2xD[txy[x1, x2, v1, v2], x1, x1, x2, x2] +
Dltxyl[xl, x2, v1, yv21, {x2, 4}])
h"2#mu* (lam + mu) *

(Dltxy[x1, x2, v1, vyv21, {x1, 4}1 +
Dltxy[x1l, x2, y1, vy2], x1, x1, x2, x2]) -
mu2 #D[txy[xl, x2, y1, yv21, {x1, 2}1));
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DI2[xl_, x2_, vl1_, v2_1 := ((-h"2xmu=x (lam + mu) *
(Dltxy[x1, x2, v1, v2], x1, x1, x1, x2] +
Dltxy[x1l, x2, vyv1, v2], x1, x2, x2, x2]) -
mu2xD[txy[xl, x2, v1, v21, x1, x21));

DI3[x1l_, x2_, vl1_, v2_1 := ((mu"2=x%

(h"2% (Dtxy[xl, x2, v1, v2], {x1, 3}1 +
Dltxy[xl, x2, y1, y2], x1, x2, x2]) -
Dltxyl[xl, x2, v1, v21, x11)));

D21[x1_, x2_, yv1_, y2_1 := D12[yl, y2, x1, x21;

D22[x1_, x2_, vl1_, v2_1 := ((h"2%mux* (lam + 2=%xmu) *
(Dltxy[x1, x2, v1, v2], x1, 4] +
2xD[txy([x1, x2, v1, v2], x1, x1, x2, x2] +
Dltxy[xl, x2, v1, y21, {x2, 4}]) -
h”2#mu* (lam + mu) *

(Dltxy([x1l, x2, yv1, y2], x1, x1, x2, x2] +
Dltxyl[xl, x2, v1, vy21, {x2, 4}]1) -
mu2*D[txy[xl, x2, v1, v21, {x2, 2}1));

D23[x1_, x2_, vl _, v2_1 := ((mu"2x%

(h"2% (D[txy[xl, x2, v1, v21, x1, x1, x2] +
Dltxy[xl, x2, v1, vyv21, {x2, 3}1) -
Dltxyl[xl, x2, v1, v21, x21)));

D31([x1_, x2_, y1_, yv2_1 := D13[yl, y2, x1, x2];

D32[x1_, x2_, v1_, v2_] D23 [yl, y2, x1, x2];

D33[x1_, x2_, vl , v2_1 := ((h™smux* (lam + 2sxmu) *
(Dltxy[x1, x2, v1, y21, {x1, 4}1 +
2xD[txy[x1, x2, v1, v2], x1, x1, x2, x2] +
Dltxyl[xl, x2, v1, y21, {x2, 4}]1) -
h™"2smux* (lam + 3*xmu) *
(Dltxy[x1l, x2, y1, vyv21, {x1, 2}]
Dltxyl[xl, x2, v1, v21, {x2, 2}1)
mu2 xtxy[xl, x2, yv1, v21))

MatrixD[x1_, x2_, yv1_, vy2_1 := {{D11l[x1, x2, vy1, vy2],
D12([x1, x2, yl1l, vy2], D13[x1, x2, vy1, vy21},
{pD21[x1, x2, yl1, y21, D22[x1, x2, v1, y21,
D23[x1, x2, y1, y21}, {D31[x1, x2, yl1l, vy21,
D32([x1, x2, yl1, v2], D33[x1, x2, v1, v21}};

+
+

The matrix P(x,y) of singular solutions:

P11[x1_, x2_, v1_, yv2_ 1 := (h"2x% (lam + 2%mu) *xnulysx*
D[D11[yl, v2, x1, x2], yv1] + h"2xmu*nuly
D[D11[yl, v2, x1, x2], y2] + h"2xmu*nuly*
D[D21[yl, y2, x1, x2], yl1] + h”"2xlam*xnulysx*
D[D21[yl, y2, x1, x21, v2]);

P12[x1_, x2_, v1_, yv2_1 := (h"2%xlam*nul2y=x*
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D[D11[yl, y2, x1, x2], y1] + h"2xmusnuly*
D[D11[yl, v2, x1, x2], y2] + h"2xmuxnuly*
D[D21[yl, v2, x1, x2], y1l] + h"2x%x (lam + 2x*mu) *
nu2y*D[D21[yl, y2, x1, x2]1, y21);

P13[x1_, x2_, yv1_, y2_1] = (muxnuly
D11[yl, v2, x1, xX2] + mu*xnu2y
D21[yl, y2, x1, x2] + mux (nuly*

D[D31[yl, yv2, x1, x2], y1l] + nu2y=x*
D[D31[vyl, v2, x1, x2]1, v21));

P21[x1_, x2_, yv1_, yv2_1 := (h"2% (lam + 2%mu) xnulysx*
D[D12[yl, v2, x1, x2], y1] + h"2xmu*nuly*
D[D12[yl, v2, x1, x2], y2] + h"2xmu*nuly*
D[D22[yl, y2, x1, x2], y1] + h™"2xlam*xnulysx*
D[D22[yl, v2, x1, x21, y21);

P22[x1_, x2_, v1_, yv2_1 := (h"2%xlam*nu2y=x*
D[D12[yl, v2, x1, x2], y1] + h"2xmuxnuly*
D[D12[yl, v2, x1, x2], y2] + h"2xmuxnuly*
D[D22[yl, v2, x1, x2], y1] + h"2x% (lam + 2#*mu) *
nu2y*D[D22[vl, y2, x1, x2]1, v2]);

P23[x1_, x2_, v1_, v2_1 := (muxnulys
D12[yl, vy2, x1, x2] + mu*xnuly*

D22 [yl, v2, x1, x2] + mux (nuly*
D[D32[yl, v2, x1, x2], y1] + nu2ysx
D[D32[vyl, v2, x1, x2], v21));

P31[x1_, x2_, v1_, y2_1] = (h"2x% (lam + 2%mu) *xnulysx*
D[D13[yl, v2, x1, x2], yv1] + h"2xmu*nuly*
D[D13[yl, v2, x1, x2], y2] + h"2xmu*nuly*
D[D23[yl, y2, x1, x2], yl1] + h”"2xlam*xnulysx*
D[D23[yl, yv2, x1, x21, v21);

P32[x1_, x2_, yv1_, y2_] = (h"2xlam*nu2y*
D[D13[yl, v2, x1, x2], yv1] + h"2xmu*nulyx
D[D13[yl, y2, x1, x2], y2] + hAZ*mu*nuly*
D[D23[yl, y2, x1, x2], y1] + h"2x% (lam + 2#*mu) *
nu2y*D[D23[vyl, y2, x1, x2]1, v2]);

P33[x1_, x2_, yv1_, y2_] = (muxnuly
D13[yl, v2, x1, x2] + muxnulyx
D23 [yl, yv2, x1, x2] + musx (nuly*

D[D33[yl, v2, x1, x2], y1] + nu2ys
D[D33[yl, v2, x1, x21, v21));

MatrixP([x1l_, x2_, vyv1_, y2_1 := {{P11[x1, x2, v1, vy21,
P12 [x1, x2, vl1, y2]1, P13[x1l, x2, v1, v21},
{P21[x1, x2, vyl, y21, P22[x1l, x2, v1, vy2],
P23 [x1, x2, v1, vy21}, {P31[x1, x2, yl, vy21,
P32[x1, x2, y1, y21, P33[x1l, x2, v1, v21}};
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The radii of the circles 0S and 9S:

rIinner = 1;
rOuter = 2;

The number n, of points on S, chosen, for symmetry, to be a power of 2:

no = 32;

The (even) number ng of equal subintervals for numerical integration by Simpson’s
rule from 0 to 2m:

ns = 36;

The polar angles of the points x™, which are placed around the circle in equal
increments of 7w /2, then w /4, then w/8, then m /16, etc., without replicating the
values generated by earlier passages:

AngleList = {0, Pi};

For[n = 3, n <= nO, n++, {quot = n - 1, den = 1;
While[ (quot = Floor[quot/2])! = 0, den = denx2;
phi = (2% (n - den) - 1) % Pi/den]};
AppendTo [AngleList, phi]; Print[AngleList]];

The Cartesian coordinates of the points x™ on 88, computed from their polar
angles:

Do [{xml[m] = rOuterxCos [AngleLlst[ [m]]], xm2[m] =
rOuter x Sin[AngleList][ 1}, {m, 1, noO}1;

The indexed entries of D(x, y):

MatrixDI[1, = D11[x1, x2, v1, v21;
MatrixDI[1, D12[x1, x2, yv1, v21;
MatrixDI[1, D13[x1, x2, v1, v21;

[ 1] [

[ ] [

[ ] [

MatrixD | ] = [x1, x2, v1, v21;

MatrixD| ] = D22[x1, x2, vyv1, v21;

MatrixD] ] [

MatrixD] ] [

MatrixD][ ] = [x1, x2, v1, v21;

MatrixD][ 3] = D33[x1, x2, v1, v21;

For[i =1, 1 <= 3, i+4+4, For[j =1, J <= 3, Jj++,

MatrixD[i, J111;

x1, x2, yl1, v21;
x1, x2, v1, v21;

W wwMhDNDND R
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The columns of D(x, y):

Do[DCol[i] = {MatrixD[1l, i], MatrixDI[2, 1],
MatrixDI[3, i1}, {i, 1, 3}1;

The first 3no + 3 terms of the complete set 0™ of vector functions, in double index
notation:

theta[l, 0] = {1, 0, -x1};

theta[2, 0] = {0, 1, -x2};

theta([3, 0] = {0, 0, 1};

Do[{Do[theta[i, m] = DCol[i] /. {y1l -> xml[m],
yv2 -> xm2[ml}, {i, 1, 3}], Print[m]},
{m, 1, nO}];

The same set in single index notation:

theta[l] = thetall, 0];

theta[2] = thetal2, 0];

theta[3] = thetal3, 0];

Do[{theta[m] = If[(m - 1)/3 \[Element] Integers,
thetall, (m - 1)/31, If[(m - 2)/3
\[Element] Integers, thetal[2, (m - 2)/3],
thetal[3, (m - 3)/3111, Print([m]},

{m, 4, 3%n0 + 3}];

The 3n, + 3 vector functions 0™ in terms of the polar angle o on 3S:

Do[{thetaPolar[m] = theta[m] /. {x1 -> rInnerx
Cos[\[Alphall, x2 -> rInnerx* Sin[\[Alphall},
Print[m]}, {m, 1, 3%nO + 3}1;

Discretization of a function as the set of its ng + 1 values at the Simpson nodes of
rank from 0 to ng on [0, 27 ]:

Discretize[f_, \[Alphal_] := Modulel{g, step},
step = (2%Pi)/nS; gli_] := N[f /. \[Alpha] -> stepx*i];
Dol[gl[il, {i, 0, nS}]; Tablelgli], {i, 0, nS}11;

Discretization of the set of all 3n, + 3 vector functions ™

Do[{thetaDiscr[m] = Discretize[thetaPolar[m],
\[Alphal], Print[ml]}, {m, 1, 3%n0 + 3}1;
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Simpson’s rule of integration from 0 to 2w with ng equal subintervals, for a function
already discretized at the Simpson nodes:

Simpson[f_] := Modulel[odd, even, odd = 0; even = 0;
Do[If[Mod[i, 2] === 0, odd = odd + f[[i]],
even = even + f£[[i]]1], 1, 2, nS]; N[(1/3) *
(2% Pi/nS)*x (£[[1]] + 2%even + 4xodd +
flns + 111)11;

The L-inner product of two discretized vector functions on [0, 21 ]:

IP[f_, g_] := Modulel{fg}, fg = Tablel[f[[i]].gl[i]],
{i, 1, ns + 1}]; Simpson[fgl];

Orthonormalization of the discretized vector functions 8" as discretized vector
functions @™ on 3, via the Gram—Schmidt process:

Do [{OmegaDiscr[m] = thetaDiscr[m] -
Sum|[ (IP[thetaDiscr[m], OmegaDiscr([gll/
IP[OmegaDiscr[qgl, OmegaDiscr[gll) *
OmegaDiscr[qg], {g, 1, m - 1}], omegaDiscr[m]
(1/IP[OmegaDiscr[m], OmegaDiscr[m]])”(1/2)
OmegaDiscr[m], Print[m]}, {m, 1, 3%*n0O + 3}];

The coefficients ki, , of the Gram—Schmidt transformation (the o™ expressed as
linear combinations of the 8™):

For[m = 1, m <= 3%xn0 + 3, m++, k[m, m] =
(1/IP[OmegaDiscr[m], OmegaDiscr[m]])”(1/2);
For[g =1, g <=m - 1, g++, k[m, g] = 0;
For[s = g, s <=m - 1, s++, k[m, g] = k[m, g] -
IP[thetaDiscr[m], omegaDiscr[s]]*xk[s, qll;
k[m, gl = k[m, ml*xk[m, gll; Print[m]l];

The zero coefficients above the leading diagonal of the transformation matrix:

Do[Do[If[g <= m, k[m, gl = k[m, g], k[m, gl = 0],
{a, 1, 3%*n0O + 3}], {m, 1, 3%n0 + 3}];

The vector function & prescribed on 9

ScriptP[xl_, x2_ ] := {2% (x172 + 1), 2%xl%x2,

4xxl - 1};
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P in polar coordinates:

ScriptPPolar[\[Alpha]l_] := ScriptP[xl, x2] /.
{x1 -> rInnerx* Cos[\[Alphal], x2 -> rInnerx
Ssin[\[Alpha]ll}; ScriptPPolar[\[Alphall;

P discretized:

ScriptPPolarDiscr = Discretize[ScriptPPolar[\[Alphall],
\[Alphall;

P(x,y) withy € 3§ in polar coordinates:

MatrixPPolar[xl_, x2_, \[Alphal_1 :=
MatrixP[x1l, x2, vy1, v21 /.
{nuly -> CosI[\[Alphall, nu2y -> Sin[\[Alphall,
vyl -> rInnerxCos[\[Alphall,
y2 -> rInnerx*Sin[\[Alphall}

The set of n, matrices generated by P(x,y) with y € dS in polar coordinates and
x replaced in turn by every one of the points x™ on 95,:

Do[{MatrixPPolarOuter[m] = MatrixPPolar([x1l, x2,
\[Alphall /. {x1 -> xml[m], x2 -> xm2[m]},
Print[m]}, {m, 1, no}l;

The same set, discretized at the Simpson nodes:

Do[{MatrixPPolarOuterDiscr[n] = Discretize]l
MatrixPPolarOuter[n], \[Alphall, Print[n]},
{n, 1, nO}1;

The number ny of vector functions 0" (so also w™) chosen from the full 3n, + 3-
set for the calculation of the approximate solution (because of the way the 0-set is
constructed, these vectors will always be the first ny ones in the full set):

nv = 51;

The set of n, vectors generated by the vector function H at every one of the points
x on 38, (not needed if ny = 3):

Do[{Hxm[m] = IP[MatrixPPolarOuterDiscr[m],
ScriptPPolarDiscr], Print[ml}, {m, 1, nO}];
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The L*-inner product of 6™ and y on [0, 27 for m > 4:

Do[{IntThetaPsi[m] = If[(m - 1)/3 \[Element] Integers,
Hxm[(m - 1)/3]1[[1]], If[(m - 2)/3
\[Element] Integers, Hxm[(m - 2)/31[[2]1,
Hxm[(m - 3)/31[[3111]1, Print[ml}, {m, 4, nv}l;

The first three coefficients p, (as remarked, they are zero):

p[1l] = 0;
p[2] = 0;
p[3] = 0;

The rest of the p, (forr > 4):

Do[{plr] = Sum[k[r, m]*IntThetaPsi[m], {m, 4, r}l,
Print[rl}, {r, 4, nV}];

The vector function  discretized at the Simpson nodes:

psiDiscr = pl[l] *xomegaDiscr([1l]; Do[lbr psiDiscr =
psiDiscr + plr] xomegaDiscr[r], Print[r]l},
{r, 2, nV}l;

A specific point x in ST where the solution is computed (its Cartesian coordi-
nates are constructed from its polar coordinates to allow easier radial and angular
variations, as desired):

PolarRadius = 0.05;

PolarAngle = 0;

xI1 = PolarRadius*Cos[PolarAngle]; xI2 =
PolarRadius *Sin[PolarAngle];

D(x,y) withy € 3§ in polar coordinates:

MatrixDPolar[xl_, x2_, \[Alphal_1 :=
MatrixD[x1l, x2, vy1, v21 /.
{yl -> rInner* Cos[\[Alphall, y2 -> rInnerx
Sin[\[Alphall};

D(x, y) as above and x = x®:

MatrixDPolarInner[\[Alphal_ 1 := MatrixDPolar[xl, x2,
\[Alphal]l /. {x1 -> xI1, x2 -> xI2};
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D(x, y) now discretized at the Simpson nodes:

MatrixDPolarInnerDiscr =
Discretize[MatrixDPolarInner[\[Alphall,
\[Alphall;

The integral of D(x, y)yr(y) with respect to the polar angle a over [0, 2m]:

IntMatrixDpsi = IP[MatrixDPolarInnerDiscr, psiDiscr];

P(x,y) with y € 3S in polar coordinates and x = x©:

MatrixPPolarInner[\[Alpha]_] := MatrixPPolar[xl, x2,
\[Alphal] /. {x1 -> xI1, x2 -> xI2};

P(x,y) as above, discretized at the Simpson nodes:

MatrixPPolarInnerDiscr =
Discretize[MatrixPPolarInner[\[Alphall,
\[Alphall;

The vector H (x(i)):

HInner = IP[MatrixPPolarInnerDiscr,
ScriptPPolarDiscr];

The approximate solution u at (xV):

uxi = IntMatrixDpsi - HInner

8.20 Remark. The exact solution, computed—as mentioned at the beginning of this
section—from (7.36) with y =0, 2 =22, w = z+ 1,and [ = m = 0, is

u(xy, x2) = (3)612 +x§ +1, 2x1x2, —x13 — ch% + 5x; — l)T.

Figures 8.1, 8.2, and 8.3 show the graphs of the three components u 1, u>, and u3 of
this solution defined in ST. The discs on the top and bottom of the coordinate boxes
enclosing the graphs are horizontal cross sections of the cylinder xl2 + x% < 1. The
boundary curves (shown in thicker lines) of the surfaces representing the u; are the
graphs of the components of u prescribed on 9.S; that is,

P(x1,x2) = (203 + 1), 2x1x2, 4 —1)7, x €dS.
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Fig. 8.1 Graph of u;

Fig. 8.2 Graph of u;
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Fig. 8.3 Graph of u3
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Biorthonormalized set, 140
Body forces, 1
averaged, 68
Body moments, averaged, 68
Boundary
conditions
Dirichlet, 151
Neumann, 150
geometry, 3
integral equations, 37
strip, 10
value problem
Dirichlet, 80
displacement, 151
Neumann, 80
Robin, 80
traction, 150

C
Cauchy sequence, 59
Cauchy-Riemann

relations, 53

system, 148
Compatibility conditions, 68

Constitutive relations, 1, 68, 151
Mindlin’s, 154
Correction
coefficient, 154
factors, 3
terms, 154
Curvature, 4, 19

D
Dirac delta, 73
Direct values, 43
Dirichlet problem
exterior, 140, 172
interior, 137, 163
Displacements, 1
complex, 151
Divergence theorem, 38, 71, 72
Dual system, 61

E
Equilibrium equations, 1, 67
Euclidean norm, 4

F
Far-field conditions, 160
Finite energy

function, 78

solution, 159, 162
Fredholm Alternative, 61
Frenet—Serret formulas, 4
Fubini’s theorem, 98
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G
Generalized Fourier series, 163
Gram-Schmidt process, 166, 170

H
Holder

continuity, 23

continuous differentiability, 37
Hilbert space, 163

1

Improper integral, 26

Integrable solutions, 144

Internal energy density, 1, 69, 159

K
Kernel
y-singular, 24
complex singular, 52
continuous, 44
integrable, 35
proper y-singular, 24
singular, 22
uniformly integrable, 35
Kinematic assumption, 3
Kirchhoff, 2
theory, 154
Kronecker delta, 1

L

Lamé constants, 1

Laplace equation, 38

Lebesgue
dominated convergence theorem, 98
point, 94

Leibniz’s rule, 49

Load, 2

Local coordinates, 20

Logarithmic singularity, 105

M
Matrix of fundamental solutions, 73
Mean value theorem, 7
Mindlin, 2
Modified Bessel function, 74
Moment

averaged bending, 68

averaged twisting, 68

bending, 150, 162

Index

complex, 150

twisting, 150, 162
Multiply connected domain

bounded, 156

unbounded, 158

N
Natural parametrization, 10
Neumann problem
exterior, 138, 160, 161, 177
interior, 139, 167
Non-degenerate bilinear form, 61
Normal derivative, 22

(0]
Operator
a-regular singular, 62
adjoint, 61
averaging, 67
compact, 59
Orthogonal complement, 163

P
Physical polar components, 161
Plate
bending, 2
potential
complex, 155
double-layer, 83
Newtonian, 78, 103
single-layer, 83, 164
with integrable density, 94
thin, 2
two-dimensional model, 67
with a circular hole, 160
Poincaré—Bertrand formula, 55
Poisson’s ratio, 68
Potential, 37
complex, 150
harmonic, 37
Potential-type function, 44
Principal value, 31, 111

R

Regular solution
existence, 80
unique, 160
uniqueness, 80

Reissner, 2
theory, 154
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Restrictions, physical significance, 161
Ricci tensor, 4

Rigid displacement, 71

Rigidity modulus, 2

Robin problems, 141

S
Semi-inverse method, 161
Simpson’s rule, 179
Sine theorem, 13
Single-valuedness conditions, 156
Singular integral equation, 58, 131
index, 64
Solution
Galerkin representation, 73
particular, 125
singular, 73
Somigliana representation formula, 76, 79
Standard inner product, 4
Step functions, 94
Stress
complex representation, 147
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function, 148
internal, 1
vector, 1

T
Taylor series, 20
Tonelli’s theorem, 98
Transverse shear
deformation, 2
force, 2, 150, 162
averaged, 67

A%

Vertical
rotation, 162
translation, 160

Y
Young’s modulus, 154
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