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Preface

Approximate theories of bending of thin elastic plates have been around since the
middle of the nineteenth century. The reason for their existence is twofold: on the
one hand, they reduce the full three-dimensional model to a simpler one in only
two independent variables; on the other hand, they give prominence to the main
characteristics of bending, neglecting other effects that are of lesser interest in the
study of this physical process.

In spite of their good agreement with experiments and their wide use by
engineers in practical applications, such theories never acquire true legitimacy
until they have been validated by rigorous mathematical analysis. The study of the
classical (Kirchhoff) model (Kirchhoff 1850) is almost complete (see, for example
Ciarlet and Destuynder 1979; Gilbert and Hsiao 1983). In this book, we turn our
attention to plates with transverse shear deformation, which include the Reissner
(1944, 1945, 1947, 1976, 1985) and Mindlin (1951) models, discussing the exis-
tence, uniqueness, and approximation of their regular solutions by means of the
boundary integral equation and stress function methods in the equilibrium (static)
case.

With the exception of a few results of functional analysis, which are quoted
from other sources, the presentation is self-contained and includes all the neces-
sary details, from basic notation to the full-blown proofs of the lemmas and
theorems.

Chapter 1 concentrates on the geometric/analytic groundwork for the investi-
gation of the behavior of functions expressed by means of integrals with singular
kernels, in the neighborhood of the boundary of the domain where they are
defined.

In Chap. 2, we introduce potential-type functions and determine their mapping
properties in terms of both real and complex variables, and discuss the solvability
of singular integral equations.

Next, in Chap. 3, we describe the two-dimensional model of bending of elastic
plates with transverse shear deformation, derive a matrix of fundamental solutions
for the governing system, state the main boundary value problems, and comment
on the uniqueness of their regular solutions.

All the references cited here can be found at the end of the book.

vii

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3


The layer and Newtonian plate potentials are introduced, respectively, in
Chaps. 4 and 5, where we investigate their Hölder continuity and differentiability.

In Chap. 6, we prove the existence of regular solutions for the interior and
exterior displacement, traction, and Robin boundary value problems by means of
single-layer and double-layer potentials, and discuss the smoothness of the inte-
grable solutions of these problems.

Chapter 7 is devoted to the construction of the complete integral of the system
of equilibrium equations in terms of complex analytic potentials, and the clarifi-
cation of the physical meaning of certain analytic constraints imposed earlier on
the asymptotic behavior of the solutions.

In Chap. 8, we explain how the method of generalized Fourier series can be
adapted to provide approximate solutions for the Dirichlet and Neumann problems.

Some of the results incorporated in this book have been published in Constanda
(1985, 1986a, b, 1987, 1988a, b, 1989a, b, 1990a, b, 1991, 1994, 1996a, b, 1997a,
b; Schiavone 1996; Thomson and Constanda 1998, 2008); additionally, Constanda
(1990) is an earlier—incomplete—version compiled as research notes. Chapter 5
is based on material included in Thomson and Constanda (2011a). The technique
developed in Chaps. 2–4 and 6 was later extended to the case of bending of
micropolar plates in Constanda (1974), Schiavone and Constanda (1989), and
Constanda (1989).

A comprehensive view and comparison of direct and indirect boundary integral
equation methods for elliptic two-dimensional problems in Cartesian coordinates
and Hölder spaces can be found in Constanda (1999).

Potential methods go hand in hand with variational techniques when the data
functions lack smoothness. The distributional solutions of equilibrium problems
with a variety of boundary conditions have been constructed by this combination
of analytic procedures in Chudinovich and Constanda (1997, 1998, 1999a, b,
2000a, b, c, d, e, 2001a, b). The harmonic oscillations of plates with transverse
shear deformation form the object of study in Constanda (1998), Schiavone and
Constanda (1993, 1994), Thomson and Constanda (1998, 1999, 2009a, b, c, 2010,
2011a, b, 2012a, b, c, 2013), and the case that includes thermal effects has been
developed in Chudinovich and Constanda (2005a, b, 2006, 2008a, b, c, 2009,
2010a, b, c, 2007).

Finally, a number of problems that impinge on the solution of this mathematical
model are discussed in Chudinovich and Constanda (2000f, 2006), Constanda
(1978a, b), Constanda et al. (1995), Mitric and Constanda (2005), and Constanda
(2006).

Before going over to the business of mathematical analysis, I would like to
thank my Springer UK editor, Lynn Brandon, for her support and guidance, and
her assistant, Catherine Waite, for providing feedback from the production team in
matters of formatting and style.

But above all, I am grateful to my wife for her gracious acceptance of the truth
that a mathematician’s work is never done.

Tulsa, January 2014 Christian Constanda
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Chapter 1
Singular Kernels

1.1 Introduction

Throughout the book we make use of a number of well-established symbols and
conventions. Thus, Greek and Latin subscripts take the values 1, 2 and 1, 2, 3,
respectively, summation over repeated indices is understood, x = (x1, x2) and
x = (x1, x2, x3) are generic points referred to orthogonal Cartesian coordinates
in R

2 and R
3, a superscript T indicates matrix transposition, (. . .),α = ∂(. . .)/∂xα ,

Δ is the Laplacian, and δi j is the Kronecker delta. Other notation will be defined as
it occurs in the text.

The elastostatic behavior of a three-dimensional homogeneous and isotropic body
is described by the equilibrium equations

ti j, j + fi = 0 (1.1)

and the constitutive relations

ti j = λuk,kδi j + μ(ui, j + u j,i ) (1.2)

(see, for example, Green and Zerna 1963). Here ti j = t j i are the internal stresses, ui

the displacements, fi the body forces, andλ andμ the Lamé constants of thematerial.
The components of the resultant stress vector t in a directionn = (n1, n2, n3)

T are

ti = ti j n j , (1.3)

and the internal energy per unit volume (internal energy density) is

E = 1
4 ti j (ui, j + u j,i ) = 1

2 ti j ui, j . (1.4)

C. Constanda, Mathematical Methods for Elastic Plates, 1
Springer Monographs in Mathematics, DOI: 10.1007/978-1-4471-6434-0_1,
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2 1 Singular Kernels

A thin plate is an elastic body that occupies a region S̄ × [−h0/2, h0/2] in R
3,

where S is a domain in R
2 and 0 < h0 = const � diam S is the thickness. The

special form of such a body suggests that in the study of its small deformations
certain simplifying assumptions may be introduced, which lead to two-dimensional
theories that are easier to handle but still describe adequately the salient features of
the deformation state. In what follows we are concerned exclusively with the process
of bending.

The first truly systematic theory of bending of thin elastic plates was proposed by
Kirchhoff (1850). Under his assumptions the displacement field becomes

uα = −x3u3,α,

u3 = u3(xγ ),
(1.5)

and from (1.1) and (1.2) it follows that

ΔΔu3 = p

D
,

where p is the resultant load on the faces x3 = ±h0/2 of the plate and

D = h3
0μ

λ + μ

3(λ + 2μ)

is the rigidity modulus. This theory, though producing good approximations in many
practical cases, neglects completely the effects of the transverse shear forces since
(1.2) and (1.5) yield t3α = 0 throughout the plate. It also gives rise to a few mathe-
matical discrepancies: certain stress components are neglected in some equations but
not in others. In addition, the unknown deflection u3 can satisfy only two boundary
conditions instead of the physically expected three.

Reissner (see Reissner 1944; 1976) takes transverse shear into account by assum-
ing that

tαβ = h2
0

12
x3Mαβ(xγ ),

tα3 = 3

2h0

[
1 −

(
2

h0

)2

x23

]
Qα(xγ ),

and uses the principle of least work to derive a sixth order theory that accommodates
three boundary conditions. While this is a more complete model than Kirchhoff’s, it
does not deliver the expression of the displacements but only that of their averages.

Hencky (1947), Bollé (1947), Uflyand (1948), and Mindlin (1951) introduce the
effects of transverse shear deformation in a somewhat different manner. More pre-
cisely, they start with the displacement assumption

uα = x3vα(xγ ),

u3 = v3(xγ )
(1.6)
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and arrive at the equations of an approximate sixth order theory by averaging (1.1)
and (1.2) over the thickness of the plate. As in the case of Reissner’s, these equations
allow three conditions to be prescribed on the boundary. Unfortunately, they suffer
from the same lack of rigor, due to the fact that t33 is neglected in the constitutive
relations, which also contain so-called correction factors.

The above theories have subsequently been refined in various ways, but all their
versions pursue the same ultimate goal: to offer asmuch valid information as possible
on the characteristics of bending, while at the same time reducing the problem to a
simpler one in two dimensions (seeReissner (1985) for a concise survey of this topic).

Here we are not concerned with the advantages of one theory over another from
a physical standpoint, but with their mathematical treatment. As the model of our
analysis we choose an approximation based solely on the kinematic assumption
(1.6), thus avoiding inconsistencies that might otherwise be introduced through over-
simplification. However, our technique is equally applicable—with very little mod-
ification regarding the coefficients—to all existing sixth order theories where the
system of equilibrium equations is elliptic.

1.2 Geometry of the Boundary Curve

For simplicity, we use the same symbol to indicate both a point and its position vector
in R

2. Also, vector functions are not distinguished from scalar ones by any special
marks, their nature being obvious from the context.

Let the boundary ∂S of S be a simple closed curve of length l, whose natural
parametrization (that is, in terms of its arc length measured from some point on ∂S)
is a bijection of the form

x = x(s), s ∈ [0, l], x(0) = x(l),

with inverse

s = s(x), x ∈ ∂S.

Throughoutwhat follows, ∂S is aC2-curve; in otherwords, x is twice continuously
differentiable on [0, l] and

dx

ds
(0+) = dx

ds
(l−),

d2x

ds2
(0+) = d 2x

ds2
(l−).

As is well known,

dx

ds
= τ(s) = τ(x)
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Fig. 1.1 Orientation of the
local frame axes

is the unit tangent vector at x ∈ ∂S, pointing in the direction inwhich s increases. Ifwe
denote by ν(x) the unit outward (with respect to S) normal to ∂S at x , then the direc-
tion of τ(x) is chosen so that the local frame

{
τ(x), ν(x)

}
is left-handed. In this case,

τα = εβανβ, (1.7)

where εαβ is the two-dimensional Ricci tensor (alternating symbol).
Figure1.1 shows the orientation of the local frame axes.
The Frenet–Serret formulas

d

ds
τ(x) = −κ(x)ν(x),

d

ds
ν(x) = κ(x)τ (x)

(1.8)

connect τ(x), ν(x), and the algebraic value κ(x) of the curvature of ∂S at x .

1.1 Remarks. (i) The choice we made for the direction of the normal vector ensures
that the formulation of the analytic arguments involving ν later on follows the well-
established patterns in the literature.

(ii) If S is a domainwith holes, then the above convention regarding the orientation
of τ and ν applies to the boundary of each hole, as well as to the outer boundary (if
there is one).

(iii) Since ∂S is a C2-curve, we can define

κ0 = sup
x ∈ ∂S

|κ(x)|. (1.9)

It is obvious that κ0 > 0, for κ0 = 0 would imply that ∂S were a straight line and,
therefore, not a closed curve.

Let

〈x, y⇔ = x1y1 + x2y2,

|x |2 = x21 + x22

be, respectively, the standard inner product and the Euclidean norm on R2.
Some of the estimates established below are not optimal. Tighter ones can be

obtained, but since these are only auxiliary results, we select admissible numerical
coefficients that make the inequalities easier to manipulate.
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1.2 Lemma. For all x, y ∈ ∂S,

|〈ν(x), x − y⇔| ≤ 2κ0|x − y |2, (1.10)

|ν(x) − ν(y)| ≤ 4κ0|x − y |. (1.11)

Proof. Let s and t be the arc length coordinates of x and y. We have

∂

∂s
|x − y |2 = 〈(grad(x))|x − y |2, τ (x)⇔ = 2|x − y | xα − yα

|x − y | τα(x)

= 2(xα − yα)τα(x) = 2〈τ(x), x − y⇔

and, by (1.8),

∂2

∂s2
|x − y |2 = 2

[
τα(x)τα(x) − κ(x)(xα − yα)να(x)

]
= 2

[
1 − κ(x)〈ν(x), x − y⇔].

The Taylor series expansion now yields

|x − y |2 = [|x − y |2]s=t +
[

∂

∂s
|x − y |2

]
s=t

(s − t) + 1

2

[
∂2

∂s 2 |x − y |2
]

s=s′
(s − t)2

= [
1 − κ(x ′)〈ν(x ′), x ′ − y⇔](s − t)2,

where s′ is the value of the arc length coordinate of a point x ′ lying between x and
y on ∂S.

Suppose that |x − y | ≤ 1/(2κ0). Then

|1 − κ(x ′)〈ν(x ′), x ′ − y⇔| ≥ 1 − |κ(x ′)〈ν(x ′), x ′ − y⇔|
≥ 1 − |κ(x ′)| |ν(x ′)| |x ′ − y | ≥ 1 − κ0|x − y |
≥ 1 − κ0 · 1

2κ0
= 1

2
,

so

|x − y |2 ≥ 1
2 (s − t)2. (1.12)

Following the same procedure, we have

∂

∂s
〈ν(y), x − y⇔ = να(y)τα(x) = 〈ν(y), τ (x)⇔,

∂2

∂s 2 〈ν(y), x − y⇔ = −κ(x)να(y)να(x) = −κ(x)〈ν(y), ν(x)⇔,
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and

〈ν(y), x − y⇔ = [〈ν(y), x − y⇔]s=t +
[

∂

∂s
〈ν(y), x − y⇔

]
s=t

(s − t)

+ 1

2

[
∂2

∂s2
〈ν(y), x − y⇔

]
s=s′′

(s − t)2,

where s′′ is the arc length coordinate of a point x ′′ lying between x and y on ∂S;
hence, by (1.12),

|〈ν(y), x − y⇔| ≤ 1
2 |κ(x ′′)| |ν(y)| |ν(x ′′)|(s − t)2 ≤ κ0|x − y |2.

On the other hand, if |x−y | > 1/(2κ0) (or,what is the same, 2κ0|x−y | > 1), then

|〈ν(y), x − y⇔| ≤ |ν(y)| |x − y|
≤ |x − y | · 2κ0|x − y | = 2κ0|x − y |2.

Combining the two cases, we conclude that for any x and y on ∂S,

|〈ν(y), x − y⇔| ≤ max
{
κ0, 2κ0

}|x − y |2 = 2κ0|x − y |2,

which is (1.10).
Similarly, by (1.8),

ν(x) − ν(y) = [
ν(x) − ν(y)

]
s=t + ∂

∂s

[
ν(x) − ν(y)

]
s=s′′′(s − t)

= κ(x ′′′)τ (x ′′′)(s − t),

where s′′′ is the arc length coordinate of a point x ′′′ lying between x and y on ∂S.
Hence, in view of (1.12), for |x − y | ≤ 1/(2κ0) we have

|ν(x) − ν(y)| ≤ κ0|s − t | ≤ √
2 κ0|x − y |.

At the same time, for |x − y | > 1/(2κ0),

|ν(x) − ν(y)| ≤ |ν(x)| + |ν(y)| = 2 < 4κ0|x − y |,

so for any pair of points x and y on ∂S,

|ν(x) − ν(y)| ≤ max
{√

2 κ0, 4κ0
}|x − y | = 4κ0|x − y |,

which is (1.11). 
�
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Fig. 1.2 The shorter arc
joining x and y

To keep things simple, the proofs of the rest of the lemmas in this section and
the next are constructed for one local boundary configuration only, but they remain
valid for any other possible configuration. Also, to ensure clarity, the accompanying
diagrams are not drawn to scale.

1.3 Lemma. Let x, y ∈ ∂S, and let α be the angle between ν(x) and ν(y) and γ

the angle between ν(x) and x − y. If r is a number such that

0 < r ≤ 1

8κ0
, (1.13)

then for all x and y satisfying |x − y | ≤ r ,

1
2 ≤ cosα ≤ 1, (1.14)
1
2 ≤ sin γ ≤ 1. (1.15)

Proof. Consider the shorter arc of ∂S joining x and y (see Fig. 1.2).
By (1.11),

cosα = 〈ν(x), ν(y)⇔ = 1 − 〈ν(x), ν(x) − ν(y)⇔
≥ 1 − |〈ν(x), ν(x) − ν(y)|
≥ 1 − |ν(x)| |ν(x) − ν(y)|
≥ 1 − 4κ0|x − y |
≥ 1 − 4κ0 · 1

8κ0
= 1

2
,

which proves (1.14).
Next, by the mean value theorem, there is a point x ′ ∈ ∂S between x and y such

that the support lines of τ(x ′) and x − y are parallel. The acute angle β between the
support lines of τ(x) and x − y (see Fig. 1.2) is the same as the angle between τ(x)

and τ(x ′), therefore, the same as the angle between ν(x) and ν(x ′). By (1.14), we
have

1

2
≤ cosβ ≤ 1,

and (1.15) now follows from the fact that sin γ = cosβ. 
�
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Fig. 1.3 The arc Σx,r

1.4 Lemma. If

Σx,r = {
y ∈ ∂S : |x − y| ≤ r

}
, x ∈ ∂S, (1.16)

with r satisfying (1.13), then for every x ∈ ∂S and all y ∈ Σx,r ,

1
2 |s − t | ≤ |x − y| ≤ |s − t |, (1.17)

where s and t are the arc length coordinates of x and y.

Proof. Let a and b be the end-points of Σx,r (the heavier arc in Fig. 1.3).
Direct computation shows that

d

dt
|x − y | = d

dt

[
(x1 − y1)

2 + (x2 − y2)
2]1/2

= 1

|x − y |
[
(y1 − x1)

dy1
dt

+ (y2 − x2)
dy2
dt

]

= 〈τ(y), y − x⇔
|x − y | = cosβ(y),

where β(y) is the angle between τ(y) and y − x ; hence, according to the mean value
theorem, there is y′ ∈ ∂S between x and y such that

|x − y | =
t∫

s

cosβ(σ) dσ = (t − s) cosβ(y′). (1.18)

If y lies on ∂S between x and b (see Fig. 1.4), then both β(y) and β(y′) are acute
angles and β(y′) = π/2−γ (y′), where γ (y′) is the angle between ν(y′) and y′ − x ;
so, by (1.18),

|x − y | = (t − s) sin γ (y′). (1.19)

If, on the other hand, y lies on ∂S between a and x (see Fig. 1.5), then β(y) and
β(y′) are obtuse angles but γ (y′) is still acute and β(y′) = π/2 + γ (y′); therefore,
by (1.18),
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Fig. 1.4 Arc of ∂S with y
between x and b

Fig. 1.5 Arc of ∂S with y
between a and x

|x − y | = (t − s)
( − sin γ (y′)

) = (s − t) sin γ (y′). (1.20)

Equalities (1.19) and (1.20) can be written together as

|x − y | = |s − t | sin γ (y′),

and (1.17) now follows from (1.15). 
�
1.5 Remark. From the proof of Lemma 1.4 it is clear that for any x fixed on ∂S,
|x − y | is a monotonic function of t on each of the intervals

I1 = {t : y(t) ∈ Σx,r , t ≤ s(x)},
I2 = {t : y(t) ∈ Σx,r , t ≥ s(x)},

decreasing on the former and increasing on the latter. This implies that

|x − y′| �= |x − y′′|

for all y′(t ′), y′′(t ′′) ∈ Σx,r such that t ′ �= t ′′, with t ′, t ′′ ∈ I1 or t ′, t ′′ ∈ I2, and
that there is a bijective correspondence between the points of Σx,r and those of its
projection on the tangent to ∂S at x .

1.6 Remark. A slightly modified pair of inequalities (1.17) holds for all x, y ∈ ∂S
if by |s − t | we understand the length of the shorter arc of ∂S joining x and y. Since
for |x − y | > r ,

|s − t | ≤ l ≤ l

r
|x − y |,



10 1 Singular Kernels

we conclude that for all x, y ∈ ∂S,

c|s − t | ≤ |x − y | ≤ |s − t |,

where c = min
{
1/2, r/ l

}
.

1.3 Properties of the Boundary Strip

Many of the results in this book are proved by considering the behavior of certain
two-point functions in the neighborhood of the boundary. To help the fluency of such
proofs, here we make a preliminary examination of some frequently used properties.

1.7 Lemma. The normal displacements of ∂S defined by

∂Sσ = {
x ∈ R

2 : x = ξ + σν(ξ), ξ ∈ ∂S
}
,

σ = const, 0 < |σ | <
1

κ0
,

where κ0 is given by (1.9), are well-defined C2-curves.

Proof. Let s and t be the arc length parameters on ∂S and ∂Sσ , respectively. Since
the map

x = ξ + σν(ξ) = ξ(s) + σν(ξ(s)), x ∈ ∂S,

is a C2-parametrization of ∂Sσ in terms of s, it follows that ∂Sσ is a C2-curve, and
wemay use its natural parametrization (that is, in terms of t) to discuss its differential
properties.

All we need to show now is that for any distinct points ξ, ξ ′ ∈ ∂S, the support
lines of ν(ξ) and ν(ξ ′) do not intersect at a point situated at a distance less than 1/κ0
from ∂S.

According to the assumption on σ , for any ξ ∈ ∂S,

1 + σκ(ξ) ≥ 1 − |σ | |κ(ξ)| ≥ 1 − |σ |κ0 > 0;

hence,

dx

ds
= dξ

ds
+ σ

dν(ξ)

ds
= τ(ξ) + σκ(ξ)τ (ξ) = [

1 + σκ(ξ)
]
τ(ξ). (1.21)

Since, in terms of the arc parameter t on ∂Sσ ,

dx = dx

dt
dt = τ(x) dt,
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Fig. 1.6 Arcs of ∂S and ∂Sσ

it follows that, by (1.21),

dt = |dx | =
∣∣∣∣dx

ds
ds

∣∣∣∣ =
∣∣∣∣dx

ds

∣∣∣∣ ds

= [
1 + σκ(ξ)

]ds

dt
dt,

so

ds

dt
= [

1 + σκ(ξ)
]−1;

therefore,

τ(x) = dx

dt
= dx

ds

ds

dt

= [
1 + σκ(ξ)

]−1[1 + σκ(ξ)
]
τ(ξ) = τ(ξ). (1.22)

Suppose that there are ξ, ξ ′ ∈ ∂S, ξ �= ξ ′, such that the support lines of ν(ξ) and
ν(ξ ′) intersect at some point x located at a distance less than 1/κ0 from ∂S; that is,

x = ξ + σν(ξ) = ξ ′ + σ ′ν(ξ ′), |σ |, |σ ′| <
1

κ0
.

Then x ∈ ∂Sσ ∩ ∂Sσ ′ , so, by (1.22),

τ(x) = τ(ξ) = τ(ξ ′),

which implies that ν(ξ) = ν(ξ ′). Since this contradicts our assumption, we conclude
that ∂Sσ is well defined.

Figure1.6 illustrates an arc of ∂S and the arc of a typical curve ∂Sσ . 
�
1.8 Definition. Let σ0 be a fixed number such that 0 < σ0 < 1/κ0. The region

Sσ0 = {
x ∈ R

2 : x = ξ + σν(ξ), ξ ∈ ∂S, |σ | ≤ σ0
}

is called the σ0-strip along the boundary ∂S.

1.9 Lemma. Let x, x ′ ∈ Sr/4, where r satisfies (1.13), be such that

|x − x ′| < 1
4 r.
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Fig. 1.7 Points ξ and ξ ′ on ∂S
with ν(ξ) not parallel to ν(ξ ′)

If

x = ξ + σν(ξ), x ′ = ξ ′ + σ ′ν(ξ ′), ξ, ξ ′ ∈ ∂S, (1.23)

then

|ξ − ξ ′| < 4|x − x ′|. (1.24)

Proof. Without loss of generality, we may assume that

|x − ξ | ≥ |x ′ − ξ ′|.

First, suppose that ν(ξ) and ν(ξ ′) are not parallel, and let ξ0 be the point of
intersection of their support lines. Also, let η be the point on the line through ξ and
ξ0 such that η − x ′ is parallel to ξ − ξ ′ (see Fig. 1.7).

According to the argument in the proof of Lemma 1.7, we must have

|ξ0 − ξ | ≥ 1

κ0
;

consequently, since η ∈ Sr/4,

|η − x ′|
|ξ − ξ ′| = |ξ0 − η |

|ξ0 − ξ | = |ξ0 − ξ | − |η − ξ |
|ξ0 − ξ |

= 1 − |η − ξ |
|ξ0 − ξ | > 1 − r/4

1/κ0
= 1 − 1

4 rκ0 > 1 − 1
32 > 1

2 . (1.25)

Let ϑ be the angle between ξ − ξ0 and x ′ − x , and let γ be the angle between
ν(ξ) and ξ − ξ ′. By (1.25) and as seen from Fig. 1.7,

|ξ − ξ ′| < 2|η − x ′| ≤ 2(|x − x ′| + |η − x |) < 2
( 1
4r + 1

4r
) = r;
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hence, by (1.15) and (1.25),

|x − x ′| = sin γ

sin ϑ
|η − x ′|

≥ 1
2 |η − x ′| > 1

4 |ξ − ξ ′|,

as required.
If ν(ξ) and ν(ξ ′) are parallel, then γ = π/2 and

|x − x ′| = 1

sin ϑ
|η − x ′| ≥ 1

2 |ξ − ξ ′|,

so (1.24) holds. 
�
1.10 Lemma. Let x, x ′ ∈ Sr/4, where r satisfies (1.13) and x and x ′ are given by
(1.23), and suppose that

|x − x ′| < 1
8 r.

Also, let Σξ,r be defined by (1.16), and let s, s′, and t be the arc length coordinates
of ξ, ξ ′, and y, respectively. Then ξ ′ ∈ Σξ,r/2 and

(i) for all y ∈ Σξ,r ,

|x − y | ≥ 1
2 |ξ − y |, (1.26)

|x − y | ≥ 1
2 |x − ξ |; (1.27)

(ii) for all y ∈ Σξ,r/2, we have y ∈ Σξ ′,r and

|x ′ − y | ≥ 1
2 |ξ ′ − y | ≥ 1

4 |s′ − t |. (1.28)

Proof. The geometric configuration (with the heavier arc representing a portion of
Σξ,r/2) is shown in Fig. 1.8.

By (1.24),

|ξ − ξ ′| < 4|x − x ′| < 4 · 1
8 r = 1

2 r,

which means that ξ ′ ∈ Σξ,r/2.
(i) We denote by γ the angle between ν(ξ) and ξ − y and by ϑ the angle between

ν(ξ) and y − x . If y ∈ Σξ,r , then |ξ − y | ≤ r , so from the sine theorem and (1.15)
it follows that

|x − y | = sin γ

sin ϑ
|ξ − y | ≥ 1

2 |ξ − y |,

which is (1.26).
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Fig. 1.8 Portions of Σξ,r and
Σξ,r/2 (heavier arc)

Inequality (1.27) is establish as above; that is,

|x − y | = sin γ

sin(γ + ϑ)
|x − ξ |

≥ 1
2 |x − ξ |.

(ii) Since y ∈ Σξ,r/2 and, as already shown, ξ ′ ∈ Σξ,r/2,

|ξ ′ − y | ≤ |ξ ′ − ξ | + |ξ − y |
< 1

2 r + 1
2 r = r.

This means that y ∈ Σξ ′,r , so (1.26) remains valid for x ′, ξ ′, and y, yielding

|x ′ − y | ≥ 1
2 |ξ ′ − y |.

Finally, by (1.17),
|ξ ′ − y | ≥ 1

2 |s′ − t |,

which completes the proof of (1.28). 
�
1.11 Lemma. Let x, x ′ ∈ Sr/4, where r satisfies (1.13), x and x ′ are given by (1.23),
and

|x − x ′| < 1
8 r.

If, with the notation in Lemma 1.10,

Σ1 = {y ∈ Σξ,r : |s − t | ≤ 8|x − x ′|},
Σ2 = Σξ,r \ Σ1 = {y ∈ Σξ,r : |s − t | > 8|x − x ′|}, (1.29)
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Fig. 1.9 A portion of Σξ,r
and Σ1 (heavier arc)

then Σ1 lies strictly within Σξ,r , ξ ′ ∈ Σ1, and for all y ∈ Σ2,

|x ′ − y | ≥ 1
4 |ξ − y |, (1.30)

|x − x ′| < 1
2 |x − y |, (1.31)

|ξ ′ − y | < 3|ξ − y |. (1.32)

Proof. Consider the diagram in Fig. 1.9, where the heavier arc represents Σ1. Let a,
b and p, q be the boundary points of Σξ,r and Σ1, respectively, with a, p and b, q
on opposite sides of ξ , and let tp and tq , tp < s < tq , be the arc length coordinates
of p and q. Then |ξ − a| = |ξ − b| = r , so, by (1.17) and (1.29),

|ξ − p| ≤ |s − tp| = 8|x − x ′|
< 8 · 1

8 r = r = |ξ − a|,

with a similar inequality for |ξ − q|. This means that Σ1 lies strictly within Σξ,r .
Combining (1.17) and (1.24), we see that

|s − s′| ≤ 2|ξ − ξ ′| < 8|x − x ′|;

therefore, by (1.29), ξ ′ ∈ Σ1.
For y ∈ Σ2, we use (1.29), (1.26), and (1.17) to find that

|x ′ − y | ≥ |x − y | − |x − x ′|
≥ |x − y | − 1

8 |s − t |
≥ 1

2 |ξ − y | − 1
4 |ξ − y | = 1

4 |ξ − y |.

Next, by (1.24), |ξ − ξ ′| < 4|x − x ′| < 1
2 r < r ; hence, by (1.29), (1.17), and

(1.26),

|x − x ′| < 1
8 |s − t | ≤ 1

4 |ξ − y |
≤ 1

4 · 2|x − y | = 1
2 |x − y |.



16 1 Singular Kernels

Finally, since y ∈ Σ2 and, as shown above, ξ ′ ∈ Σ1, from (1.17) and (1.29) it
follows that

|ξ ′ − y | ≤ |ξ − y | + |ξ − ξ ′| ≤ |ξ − y | + |s − s′|
≤ |ξ − y | + 8|x − x ′| < |ξ − y | + |s − t |,

so, by (1.17),

|ξ ′ − y | ≤ |ξ − y | + 2|ξ − y | = 3|ξ − y |. 
�
1.12 Lemma. Let x, x ′ ∈ Sr/4, where r satisfies (1.13),

|x − x ′| < 1
4 r,

and Σξ,r is defined by (1.16). Then for all y ∈ ∂S \ Σξ,r ,

|x − x ′| < 1
3 |x − y |, (1.33)

|x − y | > 3
4 |ξ − y |, (1.34)

|x ′ − y | > 1
2 |ξ − y |, (1.35)

|ξ ′ − y | < 2|ξ − y |. (1.36)

Proof. Given that y �∈ Σξ,r , we have

|ξ − y | > r. (1.37)

Also, since x ∈ Sr/4,

|x − y | ≥ |ξ − y | − |x − ξ | > r − 1
4 r = 3

4 r > 3|x − x ′|.

Similarly, by (1.37) and the fact that x ∈ Sr/4,

|x − y | ≥ |ξ − y | − |x − ξ | ≥ |ξ − y | − 1
4 r

> |ξ − y | − 1
4 |ξ − y | = 3

4 |ξ − y |.

Next, using (1.34) and (1.37), we deduce that

|x ′ − y | ≥ |x − y | − |x − x ′| > |x − y | − 1
4 r

> 3
4 |ξ − y | − 1

4 |ξ − y | = 1
2 |ξ − y |.

Finally, by (1.24) and (1.37), we have |ξ − ξ ′| < 4|x − x ′|, so

|ξ ′ − y | ≤ |ξ − y | + |ξ − ξ ′| < |ξ − y | + 4|x − x ′|
< |ξ − y | + r < |ξ − y | + |ξ − y | = 2|ξ − y |. 
�
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1.13 Lemma. With the notation in Lemmas 1.10 and 1.11, if x, x ′ ∈ Sr/4 satisfy

0 < |x − x ′| <
1

16
r,

r ≤ min

{
1

2
,

1

8κ0

}
,

then there are constants c1, c2, c3, c4 > 0 such that

∫
Σ1

1

|x − y |γ ds(y) ≤ c1|x − x ′|1−γ ∀γ ∈ [0, 1), (1.38)

∫
Σ1

1

|x ′ − y |γ ds(y) ≤ c2|x − x ′|1−γ ∀γ ∈ [0, 1), (1.39)

∫
Σ2

1

|x − y |γ+1 ds(y) ≤ c3
|x − x ′|γ ∀γ ∈ (0, 1), (1.40)

∫
Σ2

1

|x − y | ds(y) < c4
∣∣ ln |x − x ′|∣∣, (1.41)

where c1, c2, and c3 depend only on γ .

Proof. Let δ = |x − x ′|, let x and x ′ be given by (1.23), and let s, s′, and t be, as
before, the arc length coordinates of ξ, ξ ′, and y, respectively. We make the notation

Γ1 = {t : y(t) ∈ Σ1} = {t : |s − t | ≤ 8δ},
Γ2 = {t : y(t) ∈ Σ2} = {t : y ∈ Σξ,r , |s − t | > 8δ}. (1.42)

For y ∈ Σ1 ⊂ Σξ,r , by (1.26) and (1.17),

|x − y | ≥ 1
2 |ξ − y | ≥ 1

4 |s − t |,

so, taking into account the fact that s − 8δ < t < s + 8δ for t ∈ Γ1, we find that

∫
Σ1

1

|x − y |γ ds(y) ≤ 4γ

∫
Γ1

1

|s − t |γ dt = 4γ

s+8δ∫
s−8δ

1

|s − t |γ dt

= 4γ

{ s∫
s−8δ

1

(s − t)γ
dt +

s+8δ∫
s

1

(t − s)γ
dt

}

= 4γ

1 − γ
· 2(8δ)1−γ = 24−γ

1 − γ
|x − x ′|1−γ .
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Once again, for y ∈ Σ1 ⊂ Σξ,r , by (1.17),

|ξ − y | ≤ |s − t | ≤ 8|x − x ′|
< 8 · 1

16 r = 1
2 r,

so y ∈ Σξ,r/2, which, according to Lemma 1.10(ii), implies that y ∈ Σξ ′,r and,
therefore, by (1.28), |x ′ − y | ≥ 1

4 |s′ − t |. Also, by Lemma 1.11, ξ ′ ∈ Σ1, which,
by (1.29), implies that |s − s′| ≤ 8|x − x ′| = 8δ. As above, we then have

∫
Σ1

1

|x ′ − y |γ ds(y) ≤ 4γ

∫
Γ1

1

|s′ − t |γ dt = 4γ

{ s′∫
s−8δ

1

(s′ − t)γ
dt +

s+8δ∫
s′

1

(t − s′)γ
dt

}

= 4γ

1 − γ
· 2(s′ − s + 8δ)1−γ ≤ 25−2γ

1 − γ
|x − x ′|1−γ .

Let sa and sb, sa < s < sb, be the arc length coordinates of the end-points a and
b of Σξ,r . For y ∈ Σ2 ⊂ Σξ,r , by (1.26) and (1.17), we have

|x − y | ≥ 1
2 |ξ − y | ≥ 1

4 |s − t |;

hence, proceeding as above, we find that

∫
Σ2

1

|x − y |1+γ
ds(y) ≤ 41+γ

∫
Γ2

1

|s − t |1+γ
dt

= 41+γ

{ s−8δ∫
sa

1

(s − t)1+γ
dt +

sb∫
s+8δ

1

(t − s)1+γ
dt

}

= 41+γ

γ

{
2

(8δ)γ
− 1

(s − sa)γ
− 1

(sb − s)γ

}
≤ 23−γ

γ

1

|x − x ′|γ .

The last integral is evaluated in the same way and yields

∫
Σ2

1

|x − y | ds(y) = 4

{
−2 ln δ − 2 ln 8 + ln(s − sa) + ln(s − sb)

}
.

Since r ≤ 1/2, it follows that ln |x − x ′| ≤ ln(r/16) ≤ ln(1/32) < 0. Also, by
(1.17), s − sa ≤ 2|ξ − a| = 2r < 1, so ln(s − sa) < 0, with a similar inequality for
sb − s; therefore,

∫
Σ2

1

|x − y |γ ds(y) < −8 ln |x − x ′| = 8
∣∣ ln |x − x ′|∣∣. 
�
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Fig. 1.10 The local frame of
coordinates with the center
at x

1.14 Remark. It is obvious that all the conditions in Lemmas 1.3, 1.4, 1.7, and
1.9–1.13 are satisfied if, for example, we choose x, x ′ ∈ Sr/4 such that

0 < |x − x ′| <
1

16
r, 0 < r ≤ min

{
1

2
,

1

8κ0

}
. (1.43)

From now on, we work under this assumption and use the notation

S0 = Sr/4,

S+
0 = {

x ∈ S0 : x = ξ + σν(ξ), ξ ∈ ∂S, − 1
4 r ≤ σ < 0

}
,

S−
0 = S0 \ S̄+

0 .

(1.44)

1.15 Remark. For x ∈ ∂S, we introduce local coordinates (ρ, ω) along the positive
tangent and inward normal to ∂S at x , respectively. Since ∂S is a simple C2-curve, in
accordance with Remark 1.5 there is a function f twice continuously differentiable
on some closed interval [ρl , ρr ] ⊆ [−r, r ] satisfying f (0) = f ′(0) = 0 and such
that the equation of the arc Σx,r can be written in the form ω = f (ρ). In this local
frame, x is the origin and a point y ∈ Σx,r has coordinates (ρ, ω) = (ρ, f (ρ)) (see
Fig. 1.10).

From Lemma 1.3, the formula for the curvature of a plane curve, and (1.9), we
then readily deduce that for all y ∈ Σx,r ,

| f (ρ)| = |x − y | cos γ ≤
√
3

2
r,

| f ′(ρ)| = tan α ≤ √
3,

| f ′′(ρ)| ≤ κ0
[
1 + f ′ 2(ρ)

]3/2 ≤ 8κ0.

Given that |ρ| ≤ r and in view of (1.43), this allows us to conclude that there is
c = const > 0 depending only on ∂S and such that for all x, y ∈ ∂S,

|ρ| ≤ c, | f (ρ)| ≤ c, | f ′(ρ)| ≤ c, | f ′′(ρ)| ≤ c.
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1.16 Theorem. If x, y ∈ ∂S and s and t are the arc length coordinates of x and y,
then

|x − y |
|s − t | → 1 as y → x, uniformly on ∂S.

Proof. Without loss of generality, we may assume that y ∈ Σx,r . Referring to the
local coordinates (ρ, ω) and function f introduced in Remark 1.15, we expand f
and f ′ in Taylor series with remainder and find that

f (ρ) = f (0) + ρ f ′(0) + 1
2 ρ2 f ′′(ρ1) = 1

2 ρ2 f ′′(ρ1),
f ′(ρ) = f ′(0) + ρ f ′′(ρ2) = ρ f ′′(ρ2),

(1.45)

with ρ1 and ρ2 between 0 and ρ.
For ρ ∈ [ρl , ρr ], consider the functions

f1(ρ) = |x − y | = [
ρ2 + f 2(ρ)

]1/2
,

f2(ρ) = t − s =
ρ∫

0

[
1 + f ′ 2(θ)

]1/2
dθ.

(1.46)

By (1.45),

f (ρ)

ρ
= 1

2 ρ f ′′(ρ1);

hence, the left-hand side is well defined at ρ = 0, where it takes the value 0. Then
from (1.46),

f ′
1 (ρ) = ρ + f (ρ) f ′(ρ)

[ρ2 + f 2(ρ)]1/2 =
1+ f (ρ)

ρ
f ′(ρ)

[
1+

(
f (ρ)

ρ

)2]1/2 ,

f ′
2 (ρ) = [1 + f ′ 2(ρ)]1/2,

(1.47)

so

f ′
1 (0) = 1, f ′

2 (0) = 1

and we have

f1(ρ) = f1(0) + ρ f ′
1 (0) + 1

2 ρ2 f ′′
1 (ρ′) = ρ + 1

2 ρ2 f ′′
1 (ρ′),

f2(ρ) = f2(0) + ρ f ′
2 (0) + 1

2 ρ2 f ′′
2 (ρ′) = ρ + 1

2 ρ2 f ′′
2 (ρ′′),

(1.48)

with ρ′ and ρ′′ between 0 and ρ.



1.3 Properties of the Boundary Strip 21

Differentiating the functions in (1.47) again and then replacing f and f ′ by their
expressions (1.45), after a long but straightforward computation we arrive at

f ′′
1 (ρ) = ρ

[ 1
4 f ′′ 2(ρ1) + f ′′ 2(ρ2) + 1

2 f ′′(ρ1) f ′′(ρ)][
1 + 1

4 ρ2 f ′′ 2(ρ1)
]3/2

+ ρ
[ − f ′′(ρ1) f ′′(ρ2) + 1

8 ρ2 f ′′ 3(ρ1) f ′′(ρ)
]

[
1 + 1

4 ρ2 f ′′ 2(ρ1)
]3/2 , (1.49)

f ′′
2 (ρ) = f ′(ρ) f ′′(ρ)[

1 + f ′ 2(ρ)
]1/2 ;

therefore, byRemark1.15, there is c = const > 0dependingonlyon ∂S and such that

|ρ| ≤ c, | f ′′
1 (ρ)| ≤ c, | f ′′

2 (ρ)| ≤ c

for all ρ ∈ [ρl , ρr ] (that is, for all y ∈ Σx,r ) and all x ∈ ∂S. This implies that

|ρ f ′′
α (ρ)| ≤ c|ρ| → 0 as ρ → 0, α = 1, 2. (1.50)

Consequently, by (1.46), (1.48), and (1.50),

|x − y |
|s − t | = f1(ρ)

| f2(ρ)| = ρ + 1
2 ρ2 f ′′

1 (ρ′)
|ρ + 1

2 ρ2 f ′′
2 (ρ′′)|

= |1 + 1
2 ρ f ′′

1 (ρ′)|
|1 + 1

2 ρ f ′′
2 (ρ′′)| → 1 as ρ → 0. 
�

1.17 Theorem. With the notation in Theorem 1.16,

|x − y |
ρ

→ 1 as y → x, uni f ormly on ∂S.

Proof. As above, we find that

|x − y |
ρ

= f1(ρ)

ρ
= 1 + 1

2 ρ f ′′
1 (ρ′) → 1 as ρ → 0. 
�

1.18 Remark. If f is continuously differentiable in S0, then we can write

grad f (x) =
[
τ(x)

∂

∂s(x)
+ ν(x)

∂

∂ν(x)

]
f (x), x ∈ ∂S, (1.51)

where the notation ∂/∂s is preferred to ∂/∂τ .
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1.19 Remark. According to the definition of S0, the mapping from the set

{{ξ, σ } : ξ ∈ ∂S, |σ | ≤ 1
4 r

}

to S0 defined by

{ξ, σ } ∗→ x = ξ + σν(ξ)

is a bijection.
Let g be a continuously differentiable function on S0. Since at any point x ∈ S0

the associated pair {ξ, σ } is uniquely determined, we can extend the definition of the
normal derivative ∂g/∂ν(x) at x ∈ ∂S to any point x ∈ S0 by writing

∂

∂ν
g(x) = 〈(grad g)(x), ν(ξ)⇔, x ∈ S0.

1.4 Integrals with Singular Kernels

LetC(S) andC1(S), respectively, be the spaces of (real) continuous and continuously
differentiable functions in S.We consider the set of all functions inC(S) (C1(S)) that
are continuously extendable (continuously extendable together with their first-order
derivatives) to S̄ = S ∪∂S, and denote by C(S̄) (C1(S̄)) the space of the correspond-
ing extensions. The following assertion shows that this notation is justified.

1.20 Theorem. Let f ∈ C1(S), and suppose that

f (x) → l(ξ), grad f (x) → λ(ξ) as S � x → ξ ∈ ∂S,

where l and λ are continuous on ∂S. Then the function

f̃ (x) =
{

f (x), x ∈ S,

l(x), x ∈ ∂S,

has one-sided derivatives at all x ∈ ∂S and

grad f̃ (x) =
{
grad f (x), x ∈ S,

λ(x), x ∈ ∂S;

(that is, the operations of differentiation and extension to S̄ commute for f ).

Proof. Let λ(x) = (
λ1(x), λ2(x)

)
. It is clear that f̃ ∈ C(S̄) ∩ C1(S). Consequently,

for ξ = (ξ1, ξ2) ∈ ∂S and x = (x1, ξ2) ∈ S, x1 �= ξ1, in a sufficiently small
neighborhood of ξ we have
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∣∣∣∣ f̃ (x) − f̃ (ξ)

x1 − ξ1
− λ1(ξ)

∣∣∣∣ =
∣∣∣∣ ∂

∂x1
f̃ (η) − λ1(ξ)

∣∣∣∣
=

∣∣∣∣ ∂

∂x1
f (η) − λ1(ξ)

∣∣∣∣,

where η = (η1, ξ2) with η1 between x1 and ξ1. The result for ∂ f̃ /∂x1 now follows
from the fact that the right-hand side tends to zero as x → ξ . The argument for
∂ f̃ /∂x2 is similar. 
�
1.21 Remark. The above spaces are also introduced for functions defined on ∂S.
Let f (x) be such a function, and let s be the arc length coordinate of x . Then for
simplicitywe alsowrite f (s) ≡ f

(
x(s)

)
. In this case, the derivative of f is defined by

f ′(s) = lim
t→s

f (t) − f (s)

t − s
,

where s, t ∈ [0, l], provided that the limit exists. We specify that in what follows
the notation f ′ for the derivative does not extend to position vectors. Thus, x ′ will
denote a point on ∂S and not dx/ds.

Clearly, if f is defined and differentiable on a domain that includes ∂S, then the
derivative along ∂S of the restriction of f to ∂S coincides with 〈grad f (x), τ (x)⇔.
1.22 Definition. A function f defined on S̄ is said to be Hölder continuous (with
index α ∈ (0, 1]) on S̄ if

| f (x) − f (y)| ≤ c|x − y |α for all x, y ∈ S̄, (1.52)

where c = const > 0 is independent of x and y. If S is unbounded, then the above
definition must hold on every bounded subdomain of S.

We denote by C0,α(S̄) the vector space of (real) Hölder continuous (with index
α ∈ (0, 1]) functions on S̄, and byC1,α(S̄) the subspace ofC1(S̄) of functions whose
first-order derivatives belong to C0,α(S̄).

1.23 Lemma. If 0 < β < α ≤ 1, then

(i) C0,α(S̄) ⊂ C0,β(S̄);
(ii) f g ∈ C0,β(S̄) for all f ∈ C0,α(S̄) and g ∈ C0,β(S̄).

The proof consists in the verification of (1.52).
The spaces C0,α(∂S) and C1,α(∂S) are introduced similarly, with (1.52) required

to hold for all x, y ∈ ∂S. In view of Lemma 1.4, we will not distinguish between
C0,α(∂S) and C0,α[0, l], which is defined by means of the inequality

| f (s) − f (t)| ≤ c|s − t |α for all s, t ∈ [0, l].

Obviously, Lemma 1.23 also holds for functions on ∂S.
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1.24 Remark. If f is bounded in S̄, that is, | f (x)| ≤ M = const for all x ∈ S̄, and
(1.52) holds for all x, y ∈ S̄ such that |x − y | ≤ δ, where δ = const > 0, then it
holds (possibly with a different c) for all x, y ∈ S̄. This is easily shown, since for
|x − y | > δ we can write

| f (x) − f (y)| ≤ 2M <
2M

δα
|x − y |α.

1.25 Remark. If ϕ ∈ C0,α(∂S) as a function of x and x = x(s), then, by Lemma
1.4, ϕ ∈ C0,α(∂S) also as a function of s, and vice versa.

1.26 Definition. A two-point function k(x, y) defined and continuous for all x ∈ S0
(x ∈ ∂S ) and y ∈ ∂S, x �= y, is called a γ -singular kernel in S0 (on ∂S ), γ ∈ [0, 1],
if there is p = const > 0, whichmay depend on ∂S, such that for all x ∈ S0 (x ∈ ∂S )
and y ∈ ∂S, x �= y,

|k(x, y)| ≤ p

|x − y |γ .

If the above inequality holds and, in addition, for all x, x ′ ∈ S0 (x, x ′ ∈ ∂S ) and
y ∈ ∂S satisfying 0 < |x − x ′| < 1

2 |x − y | we have

|k(x, y) − k(x ′, y)| ≤ p
|x − x ′|

|x − y |γ+1 ,

then k(x, y) is called a proper γ -singular kernel in S0 (on ∂S ).
We extend this definition to two-point matrix functions by requiring each com-

ponent to satisfy the necessary properties.

1.27 Remark. A kernel may have a lower ‘singularity index’ γ when it is considered
on ∂S rather than in S0. For example, the function k(x, y) = ∂λ/∂ν(y) is a proper
1-singular kernel in S0, but, by Lemma 1.2, a proper 0-singular kernel on ∂S.

1.28 Lemma. If k(x, y) is γ -singular in S0, γ ∈ [0, 1], and continuously differ-
entiable with respect to xα for all x ∈ S0 and y ∈ ∂S, x �= y, and if the kernels
|x − y |[∂k(x, y)/∂xα] are γ -singular in S0, then k(x, y) is a proper γ -singular
kernel in S0.

Proof. Let x, x ′ ∈ S0 and y ∈ ∂S be such that 0 < |x − x ′| < 1
2 |x − y |. For any x ′′

on the line between x and x ′ we have

|x ′′ − y | ≥ |x − y | − |x − x ′′|
>|x − y | − 1

2 |x − y |
= 1

2 |x − y |;
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consequently,

|k(x, y) − k(x ′, y)| ≤ |xα − x ′
α|

∣∣∣∣ ∂

∂xα

k(x ′′, y)

∣∣∣∣
≤ p′|x − x ′| |x − y |−γ−1,

where p′ = const depends only on γ . 
�
1.29 Remark. If k(x, y) is a γ -singular kernel on ∂S, γ ∈ [0, 1], and continuously
differentiable with respect to the arc length coordinate s(x) of x at all x, y ∈ ∂S,
x �= y, and if |x − y |[∂k(x, y)/∂s(x)] is γ -singular on ∂S, then k(x, y) is a proper
γ -singular kernel on ∂S. The proof of this statement is similar to that of Lemma
1.28, use also being made of Remark 1.6.

The following assertion is proved by direct verification of the required properties.

1.30 Lemma. (i) If k1(x, y) is 0-singular and k2(x, y) is γ -singular, γ ∈ [0, 1],
then k1(x, y)k2(x, y) is γ -singular.

(ii) If k1(x, y) is γ1-singular and k2(x, y) is γ2-singular, 0 ≤ γ1 ≤ γ2 ≤ 1, then
k1(x, y) + k2(x, y) is γ2-singular.

1.31 Remark. Lemma 1.30 also holds with ‘singular’ replaced by ‘proper singular’
in its statement.

1.32 Theorem. If k(x, y) is a γ -singular kernel on ∂S, γ ∈ [0, 1), then the function

f (x) =
∫
∂S

k(x, y) ds(y) (1.53)

is continuous on ∂S.

Proof. Let x, a, b, y ∈ ∂S have arc length coordinates s, s − ε1, s + ε2, t, respec-
tively, with ε1, ε2 > 0 arbitrarily small, and let

Iε(s) =
a∫

b

1

|s − t |γ dt,

I (s) =
∫
∂S

1

|s − t |γ dt.

Clearly,

|I (s) − Iε(s)| = 1

1 − γ
(ε

1−γ
1 + ε

1−γ
2 ),

so Iε(s) → I (s) uniformly with respect to s as ε1, ε2 → 0. Since, by Definition
1.26 and Lemma 1.4,
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|k(x, y)| ≤ c

|x − y |γ
≤ c

|s − t |γ

for all x, y ∈ ∂S, x �= y, the improper integral (1.53) converges uniformly with
respect to x ∈ ∂S, and the assertion follows from a well-known theorem of analysis
(see, for example, Smirnov 1964). 
�
1.33 Theorem. If k(x, y) is a proper γ -singular kernel in S0 (on ∂S), γ ∈ [0, 1),
and ϕ ∈ C(∂S), then the function

K (x) =
∫
∂S

k(x, y)ϕ(y) ds(y), x ∈ S0 (x ∈ ∂S ),

belongs to C0,β(S0), with β = 1 − γ for γ ∈ (0, 1) and any β ∈ (0, 1) for γ = 0.
In addition,

sup
x,x ′∈S0 (∂S)

x �=x ′

|K (x) − K (x ′)|
|x − x ′|β ≤ c sup

x∈∂S
|ϕ(x)|,

where c = const > 0 depends only on γ .

Proof. It is obvious that K (x) is an improper integral for x ∈ ∂S.
Let Σx,r , Σ1, and Σ2 be defined by (1.16) and (1.29). In view of Remark 1.24,

we may consider x, x ′ ∈ S0 satisfying (1.43).
Setting, as before,

x = ξ + σν(ξ), x ′ = ξ ′ + σ ′ν(ξ ′), ξ, ξ ′ ∈ ∂S,

we can write

K (x) − K (x ′) = I1 + I2 + I3,

where, by Definition 1.22, Remark 1.14, and Lemmas 1.10–1.13,

|I1| =
∣∣∣∣
∫
Σ1

[
k(x, y) − k(x ′, y)

]
ϕ(y) ds(y)

∣∣∣∣

≤ c1 sup
x∈∂S

|ϕ(x)|
∫
Σ1

(
1

|x − y |γ + 1

|x ′ − y |γ
)

ds(y)

≤ c2|x − x ′|1−γ sup
x∈∂S

|ϕ(x)|,
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|I2| =
∣∣∣∣
∫
Σ2

[
k(x, y) − k(x ′, y)

]
ϕ(y) ds(y)

∣∣∣∣

≤ c3|x − x ′| sup
x∈∂S

|ϕ(x)|
∫
Σ2

1

|x − y |γ+1 ds(y)

≤ c4|x − x ′|1−γ sup
x∈∂S

|ϕ(x)| if γ ∈ (0, 1),

|I2| ≤ c5|x − x ′|∣∣ ln |x − x ′|∣∣ sup
x∈∂S

|ϕ(x)| if γ = 0,

|I3| =
∣∣∣∣

∫
∂S\Σξ,r

[
k(x, y) − k(x ′, y)

]
ϕ(y) ds(y)

∣∣∣∣

≤ c6|x − x ′| sup
x∈∂S

|ϕ(x)|
∫

∂S\Σξ,r

1

|x − y |γ+1 ds(y)

≤ c7r−γ−1l |x − x ′| sup
x∈∂S

|ϕ(x)|

= c8|x − x ′| sup
x∈∂S

|ϕ(x)|,

where l is the length of the boundary curve ∂S. The assertion now follows from the
fact that the constants c1, . . . , c8 > 0 are independent of x and x ′ (although they
depend on γ ).

The result is established for x, x ′ ∈ ∂S as a particular case of the above, by setting
x = ξ and x ′ = ξ ′. 
�
1.34 Remark. It is obvious that Theorem 1.33 holds if the kernel k(x, y) is contin-
uous on S0 × ∂S (∂S × ∂S ).

1.35 Theorem. If k(x, y) is a proper 1-singular kernel in S0 (on ∂S), ϕ ∈ C0,α(∂S),
α ∈ (0, 1], and

Φ(x) =
∫
∂S

k(x, y)
[
ϕ(y) − ϕ(ξ)

]
ds(y), (1.54)

where x = ξ + σν(ξ) ∈ S0 (x = ξ ∈ ∂S), then Φ ∈ C 0,β(S0) (Φ ∈ C 0,β(∂S)) for
any β ∈ (0, α). If, in addition, α ∈ (0, 1) and

∣∣∣∣
∫

∂S\Σξ,δ

k(x, y) ds(y)

∣∣∣∣ ≤ c = const > 0 (1.55)

for all x ∈ S0 (x ∈ ∂S) and all 0 < δ < r , then Φ ∈ C 0,α(S0) (Φ ∈ C0,α(∂S)).
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Proof. Clearly, Φ exists as an improper integral if x ∈ ∂S, and, by Theorem 1.32, is
continuous on ∂S.

As in the proof of Theorem 1.33, let x, x ′ ∈ S0 be chosen so that (1.43) holds.
Writing

Φ(x) − Φ(x ′)

=
∫
Σ1

{
k(x, y)

[
ϕ(y) − ϕ(ξ)

] − k(x ′, y)
[
ϕ(y) − ϕ(ξ ′)

]}
ds(y)

+
∫
Σ2

{[
k(x, y) − k(x ′, y)

][
ϕ(y) − ϕ(ξ ′)

]

− k(x, y)
[
ϕ(ξ) − ϕ(ξ ′)

]}
ds(y)

+
∫

∂S\Σξ,r

{[
k(x, y) − k(x ′, y)

][
ϕ(y) − ϕ(ξ ′)

]

− k(x, y)
[
ϕ(ξ) − ϕ(ξ ′)

]}
ds(y)

= I1 + I2 + I3,

from Definition 1.22, Remark 1.14, and Lemma 1.13 we now find that

|I1| ≤ c1

∫
Σ1

(
1

|ξ − y |1−α
+ 1

|ξ ′ − y |1−α

)
ds(y)

≤ c2|x − x ′|α,

|I2| ≤ c3|x − x ′|
∫
Σ2

1

|ξ − y |2−α
ds(y) + c4|ξ − ξ ′|α

∫
Σ2

1

|ξ − y | ds(y)

≤ c5|x − x ′|α + c6|x − x ′|α∣∣ ln |x − x ′|∣∣ for α ∈ (0, 1),

|I2| ≤ c3|x − x ′|
∫
Σ2

1

|ξ − y | ds(y) + c4|ξ − ξ ′|
∫
Σ2

1

|ξ − y | ds(y)

≤ c7|x − x ′|∣∣ ln |x − x ′|∣∣ for α = 1,

|I3| ≤ c8|x − x ′|
∫

∂S\Σξ,r

1

|ξ − y |2−α
ds(y) + c9|ξ − ξ ′|α

∫
∂S\Σξ,r

1

|ξ − y | ds(y)

≤ c8
l

r2−α
|x − x ′| + c10

l

r
|x − x ′|α ≤ c11|x − x ′|α,

where c1, . . . , c11 are positive constants independent of x and x ′.
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This proves the first part of the assertion. For the second part, we combine the last
terms in I2 and I3 and use the fact that

∫
∂S\Σ1

k(x, y) ds(y)

is bounded for all x, x ′ ∈ S0 satisfying the conditions of the theorem. (See Remark
1.41 below for a full explanation of this detail.)

The result for x, x ′ ∈ ∂S is again obtained by setting x = ξ and x ′ = ξ ′. 
�
1.36 Remark. By Theorem 1.32, estimate (1.55) holds on ∂S if k(x, y) is a
γ -singular kernel on ∂S, γ ∈ [0, 1).
1.37 Theorem. Let k(x, y) be a β-singular kernel on ∂S, β ∈ [0, 1), such that

g(x) = ∂

∂s

∫
∂S

k(x, y) ds(y)

exists for all x ∈ ∂S and g ∈ C(∂S), and

k(x ′, y) − k(x, y)

s′ − s
= k0(x, y) + O

( |s′ − s|
|x − y |γ+2

)
(1.56)

for all x, x ′, y ∈ ∂S satisfying

0 < |x − x ′| <
1

2
|x − y |,

where s and s′ are the arc length coordinates of x and x ′, and |x − y |k0(x, y) is a
γ -singular kernel on ∂S, γ ∈ [0, 1).

If ϕ ∈ C0,α(∂S), α ∈ (β, 1], α > γ , then the function

F(x) =
∫
∂S

k(x, y)ϕ(y) ds(y), x ∈ ∂S,

belongs to C1(∂S) and

∂

∂s
F(x) =

∫
∂S

k0(x, y)
[
ϕ(y) − ϕ(x)

]
ds(y) + ϕ(x)g(x). (1.57)

Proof. Let G(x) be the function on the right-hand side in (1.57). By Theorem 1.32,
F(x) and the first term in G(x) exist as improper integrals and are continuous on
∂S; the second term in G(x) is continuous by assumption.
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Let x, x ′ ∈ ∂S be such that 0 < |x − x ′| < r/8, with r satisfying (1.43). We have

F(x ′) − F(x)

s′ − s
− G(x)

= 1

s′ − s

∫
Σ1

{
k(x ′, y)

[
ϕ(y) − ϕ(x ′)

] − k(x, y)
[
ϕ(y) − ϕ(x)

]}
ds(y)

+ ϕ(x ′) − ϕ(x)

s′ − s

∫
Σ1

k(x ′, y) ds(y)

−
∫
Σ1

k0(x, y)
[
ϕ(y) − ϕ(x)

]
ds(y)

+
∫
Σ2

{
k(x ′, y) − k(x, y)

s′ − s
− k0(x, y)

}[
ϕ(y) − ϕ(x)

]
ds(y)

+
∫

∂S\Σx,r

{
k(x ′, y) − k(x, y)

s′ − s
− k0(x, y)

}[
ϕ(y) − ϕ(x)

]
ds(y)

+ ϕ(x)

{
1

s′ − s

[ ∫
∂S

k(x ′, y) ds(y) −
∫
∂S

k(x, y) ds(y)

]
− g(x)

}

= I1 + I2 + I3 + I4 + I5 + I6.

By Definition 1.22, Remark 1.14, and Lemmas 1.10 and 1.13,

|I1| ≤ c1
|s′ − s|

∫
Σ1

(|x ′ − y |α−β + |x − y |α−β) ds(y) ≤ c2|s′ − s|α−β,

|I2| ≤ c3
|s′ − s|1−α

∫
Σ1

1

|x ′ − y |β ds(y) ≤ c4|s′ − s|α−β,

|I3| ≤ c5

∫
Σ1

1

|x − y |1+γ−α
ds(y) ≤ c6|s′ − s|α−γ .

By Lemma 1.11, y ∈ Σ2 implies that

|x − x ′| <
1

2
|x − y |;

hence,

|I4| ≤ c7|s′ − s|
∫
Σ2

1

|x − y |2+γ−α
ds(y) ≤ c8|s′ − s|α−γ .
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Finally, by Lemma 1.12,

|I5| ≤ c9|s′ − s|
∫

∂S\Σx,r

1

|x − y |2+γ−α
ds(y) ≤ c10|s′ − s|.

Since all the constants c1, . . . , c10 > 0 are independent of x and x ′, we find that
I j → 0 as s′ − s → 0, j = 1, . . . , 5.

In addition, by our assumption (i), I6 → 0 as s′ −s → 0, which proves that F ′(x)

exists for all x ∈ ∂S and is given by (1.57), whose right-hand side is obviously a
continuous function on ∂S. 
�
1.38 Remark. Under the conditions in Theorem 1.37, if g ∈ C0,α(∂S) and k0(x, y)

is a proper 1-singular kernel on ∂S, then, by Theorem 1.35, F ∈ C1,β(∂S) for any
β ∈ (0, α). If, furthermore, α ∈ (0, 1) and k0(x, y) satisfies estimate (1.55), then
F ∈ C1,α(∂S).

1.39 Remark. In practice it is helpful to have some easily checked condition in
place of assumption (1.56) in Theorem 1.37. Suppose that k(x, y) is continuously
differentiable with respect to the arc length coordinate s of x at all points x, y ∈ ∂S,
x �= y, and that |x − y |[∂k(x, y)/∂s(x)

]
is a proper γ -singular kernel on ∂S,

γ ∈ [0, 1). Then for x, x ′, y ∈ ∂S such that 0 < |x − x ′| < 1
2 |x − y |,

k(x ′, y) − k(x, y)

s′ − s
= ∂

∂s(x)
k(x, y) +

[
∂

∂s(x)
k(x ′′, y) − ∂

∂s(x)
k(x, y)

]
,

where s′ is the arc length coordinate of x ′ and x ′′ ∈ ∂S lies between x and x ′. Since
∣∣∣∣ ∂

∂s(x)
k(x ′′, y) − ∂

∂s(x)
k(x, y)

∣∣∣∣ ≤ c
|s − s′|

|x − y |γ+2 ,

it follows that under the above conditions, (1.56) holds with

k0(x, y) = ∂

∂s(x)
k(x, y).

1.40 Definition. Let k(x, y) be defined and continuous at all points x, y ∈ ∂S,
x �= y. We say that

∫
∂S

k(x, y) ds(y) exists as principal value if

lim
δ→0

∫
∂S\Σx,δ

k(x, y) ds(y) (1.58)

exists for all x ∈ ∂S.
Obviously, an ordinary (even improper) integral exists as principal value, but the

converse is not true in general.
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Fig. 1.11 The sets Σx,δ and
Γx,δ (heavier arc)

In what follows, the principal value of an integral (if it exists) is denoted by the
same symbol as an ordinary integral, the difference inmeaning being either explicitly
stated or understood from the context as the only possible alternative.

1.41 Remark. Let k(x, y) be a 1-singular kernel on ∂S, and, with an earlier notation,
let sa , sb and sp, sq , sa ≤ sp < sq ≤ sb, be the arc length coordinates of the end-points
a, b and p, q of the sets Σx,δ and

Γx,δ = {y ∈ ∂S : |t − s| ≤ δ} , (1.59)

respectively, where s and t are the arc length coordinates of x and y (see Fig. 1.11).
Since

∣∣∣∣
∫

∂S\Γx,δ

k(x, y) ds(y) −
∫

∂S\Σx,δ

k(x, y) ds(y)

∣∣∣∣

=
∣∣∣∣

∫
Σx,δ\Γx,δ

k(x, y) ds(y)

∣∣∣∣ ≤ c

( sp∫
sa

1

|s − t | dt +
sb∫

sq

1

|s − t | dt

)

= c ln

(
s − sa

s − sp
· sb − s

sq − s

)
= c ln

(
s − sa

δ
· sb − s

δ

)
,

Theorem 1.16 implies that if
∫
∂S

k(x, y) ds(y) exists in the sense of principal value,

then its definition can equivalently be given as

lim
δ→0

∫
∂S\Γx,δ

k(x, y) ds(y).

Moreover, if the limit (1.58) exists uniformly for all x ∈ ∂S, then so does the above
one, and vice versa.

1.42 Remark. Let ρ be the local coordinate of y ∈ Σx,r measured from x along the
support line of τ(x) (see Remark 1.15), and consider the set

�x,δ = {y ∈ Σx,r : |ρ| ≤ δ}, δ < 1
2 r.
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Since δ < r/2, all points in the neighborhood of x such that |ρ| ≤ δ belong to Σx,r .
Denoting by −a and b, a, b > 0, the ρ-coordinates of the end-points of Σx,δ , we
find that for a 1-singular kernel k(x, y) on ∂S,

∣∣∣∣
∫

∂S\Σx,δ

k(x, y) ds(y) −
∫

∂S\�x,δ

k(x, y) ds(y)

∣∣∣∣

=
∣∣∣∣

∫
�x,δ\Σx,δ

k(x, y) ds(y)

∣∣∣∣ ≤ c1

∫
�x,δ\Σx,δ

1

|x − y | ds(y)

≤ c2

( −a∫
−δ

− 1

ρ
dρ +

δ∫
b

1

ρ
dρ

)
= c2 ln

(
δ

a
· δ

b

)
,

where c2 does not depend on x . Consequently, by Theorem 1.17, if

∫
∂S

k(x, y) ds(y)

exists in the sense of principal value, then it can also be defined as

lim
δ→0

∫
∂S\�x,δ

k(x, y) ds(y).

Furthermore, fromTheorem1.17 it follows that if either of these two equivalent limits
exists uniformly with respect to x ∈ ∂S, then the other one has the same property.

1.43 Theorem. Suppose that k(x, y) is a proper 1-singular kernel in S0 and, at the
same time, a γ -singular kernel on ∂S, γ ∈ [0, 1), and let

f (x) =
∫
∂S

k(x, y) ds(y), x ∈ S0 \ ∂S,

f0(x) =
∫
∂S

k(x, y) ds(y), x ∈ ∂S,

(1.60)

and

F(x) =
∫
∂S

k(x, y)ϕ(y) ds(y), x ∈ S0 \ ∂S,

F0(x) =
∫
∂S

k(x, y)ϕ(y) ds(y), x ∈ ∂S,

(1.61)
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where ϕ ∈ C0,α(∂S), α ∈ (0, 1]. Also, consider the functions

f +(x) =
{

f (x), ξ ∈ S+
0 ,

l(x) + f0(x), x ∈ ∂S,

f −(x) =
{

f (x), x ∈ S−
0 ,

−l(x) + f0(x), x ∈ ∂S,

(1.62)

and

F+(x) =
{

F(x), x ∈ S+
0 ,

l(x)ϕ(x) + F0(x), x ∈ ∂S,

F−(x) =
{

F(x), x ∈ S−
0 ,

−l(x)ϕ(x) + F0(x), x ∈ ∂S,

(1.63)

where l ∈ C0,α(∂S). If f + ∈ C0,α(S̄+
0 ) and f − ∈ C0,α(S̄−

0 ), then F+ ∈ C0,β(S̄+
0 )

and F− ∈ C0,β(S̄−
0 ), with β = α for α ∈ (0, 1) and any β ∈ (0, 1) for α = 1.

Proof. From the properties of k(x, y) it is clear that f0 and F0 are improper integrals.
To prove the statement for F+, it suffices to consider x, x ′ ∈ S̄+

0 satisfying (1.18). Let

x = ξ + σν(ξ) ∈ S+
0 , ξ ∈ ∂S, x ′ = ξ ′ ∈ ∂S.

Then
∫
∂S

ds(y)k(x, y)ϕ(y) − l(x ′)ϕ(x ′) −
∫
∂S

k(x ′, y)ϕ(y) ds(y)

=
∫
∂S

k(x, y)
[
ϕ(y) − ϕ(ξ)

]
ds(y) −

∫
∂S

k(x ′, y)
[
ϕ(y) − ϕ(x ′)

]
ds(y)

+ [
ϕ(ξ) − ϕ(x ′)

] ∫
∂S

k(x, y) ds(y)

+ ϕ(x ′)
[ ∫

∂S

k(x, y) ds(y) − l(x ′) −
∫
∂S

k(x ′, y) ds(y)

]
; (1.64)

that is,

F+(x) − F+(x ′) = Φ(x) − Φ(x ′) + [
ϕ(ξ) − ϕ(ξ ′)

]
f +(x)

+ [
f +(x) − f +(x ′)

]
ϕ(ξ ′), (1.65)

where Φ is given by (1.54). Equality (1.65) is similarly obtained for x, x ′ ∈ S+
0 ,

x, x ′ ∈ ∂S, or x ∈ ∂S, x ′ ∈ S+
0 . Since, by our assumption, both f0 and f
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are bounded, (1.60) shows that k(x, y) satisfies estimate (1.55). The assertion now
follows from (1.65) and Theorem 1.35.

F− is treated analogously. 
�
This theorem can be generalized to certain 1-singular kernels on ∂S.

1.44 Definition. A 1-singular kernel k(x, y) on ∂S is called integrable if

∫
∂S

k(x, y) ds(y)

exists as principal value for all x ∈ ∂S, and uniformly integrable if the integral in
(1.58) converges uniformly with respect to x ∈ ∂S.

For convenience, we extend this concept to γ -singular kernels, γ ∈ (0, 1), and
note that all such kernels are uniformly integrable.

1.45 Remark. If k(x, y) is uniformly integrable, then
∫
∂S

k(x, y) ds(y) is continuous

on ∂S. This is shown by writing the principal value of the integral as the sum of
a uniformly convergent infinite series. Evidently, any uniformly integrable kernel
satisfies (1.55) on ∂S.

1.46 Theorem. If the kernel k(x, y) is 1-singular on ∂S and integrable, and if
ϕ ∈ C0,α(∂S), α ∈ (0, 1], then the integral

∫
∂S

k(x, y)ϕ(y) ds(y)

exists in the sense of principal value for all x ∈ ∂S. If k(x, y) is uniformly integrable,
then the above principal value exists uniformly with respect to x ∈ ∂S.

Proof. We write

∫
∂S\Σx,δ

k(x, y)ϕ(y) ds(y) =
∫

∂S\Σx,δ

k(x, y)
[
ϕ(y) − ϕ(x)

]
ds(y)

+ ϕ(x)

∫
∂S\Σx,δ

k(x, y) ds(y).

The result follows from the fact that, as δ → 0, the first term on the right-hand side
converges uniformly since its integrand is O(|x − y |α−1). 
�
1.47 Theorem. Suppose that

(i) k(x, y) is a proper 1-singular kernel in S0 which is integrable on ∂S;
(ii) f + and f − defined by (1.62), where l ∈ C0,α(∂S), α ∈ (0, 1], and f0 is

understood as principal value, belong, respectively, to C 0,α(S̄+
0 ) and C 0,α(S̄−

0 ).
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Then the functions F+ and F− defined by (1.63), where ϕ ∈ C0,α(∂S) and F0
is understood as principal value, belong , respectively, to C 0,β(S̄+

0 ) and C 0,β(S̄−
0 )

with β = α for α ∈ (0, 1) and any β ∈ (0, 1) for α = 1.

Proof. By Theorem 1.46, F0 exists in the sense of principal value for all x ∈ ∂S.
As in the proof of Theorem 1.43, let x, x ′ ∈ S̄+

0 , x �= x ′. If x, x ′ ∈ S+
0 , equality

(1.65) is established immediately. If x ∈ S+
0 , x ′ ∈ ∂S (or x ∈ ∂S, x ′ ∈ S+

0 ), we write
(1.64) with the integrals extended over ∂S\Σx ′,δ (∂S\Σx,δ) in the first instance, then
let δ → 0. Noting that the limit of the second term on the right-hand side coincides
with the improper integral Φ(x ′)

(
Φ(x)

)
, we again arrive at (1.65). Finally, we see

that this is also true if both x, x ′ ∈ ∂S when the integrals in (1.64) are initially
extended over ∂S \ (Σx,δ ∪ Σx ′,δ). Hence, (1.65) holds for all x, x ′ ∈ S̄+

0 , x �= x ′,
and the result follows from the assumptions (i) and (ii) and Theorem 1.35.

The reasoning is similar in the case of S̄−
0 . 
�
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Chapter 2
Potentials and Boundary Integral Equations

2.1 The Harmonic Potentials

In what follows, we examine the Hölder continuity and Hölder continuous
differentiability on S̄+ and S̄− of functions that are analytic in S+ and S−. Hence, it
suffices to consider the behavior of such functions in the boundary strip S0.

We begin by giving a brief account of the main properties of the harmonic poten-
tials, which will be required at a later stage in the proceedings.

The harmonic single-layer potential is defined by

(vα)(x) = −
∫
∂S

(ln |x − y |)α(y) ds(y), (2.1)

and the harmonic double-layer potential by

(wα)(x) = −
∫
∂S

[
∂

∂Δ(y)
ln |x − y |

]
α(y) ds(y), (2.2)

where the function α is called the density.
We denote by S+ the finite domain bounded by ∂S and set

S− = R
2 \ S̄+.

2.1 Theorem. If α ∈ C(∂S), then vα ∈ C0,δ(R2) for any index δ ∈ (0, 1).

Proof. The assertion follows from Theorem 1.33 in view of the fact that, as can easily
be verified by means of Lemma 1.28, the kernel

k(x, y) = − ln |x − y |

of v is a proper λ -singular kernel in S0 for any λ ∈ (0, 1). ∈�
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2.2 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the restrictions of wα to S+ and
S− have C0,γ -extensions to S̄+ and S̄−, respectively, with γ = δ for δ ∈ (0, 1) and
any γ ∈ (0, 1) for δ = 1. These extensions are given by

(wα)+(x) =
{

(wα)(x), x ∈ S+,

−βα(x) + (w0α)(x), x ∈ ∂S,

(wα)−(x) =
{

(wα)(x), x ∈ S−,

βα(x) + (w0α)(x), x ∈ ∂S,

(2.3)

where

(w0α)(x) = −
∫
∂S

[
∂

∂Δ(y)
ln |x − y |

]
α(y) ds(y), x ∈ ∂S. (2.4)

Proof. Applying Lemmas 1.28 and 1.2, we readily convince ourselves that

k(x, y) = − ∂

∂Δ(y)
ln |x − y | = ⇔Δ(y), x − y≤

|x − y|2

is a proper 1-singular kernel in S0 and 0-singular on ∂S. Consequently, w0α is an
improper integral.

Let x ∈ S+, and consider a disk τx,ν ⊂ S+ with the center at x and radius ν

sufficiently small. Using the divergence theorem in S+ \ τx,ν and the fact that ε is a
solution of the Laplace equation for x ≥= y, we find that

0 =
∫

S+\τx,ν

κ(y) ln |x − y | da(y)

=
∫
∂S

∂

∂Δ(y)
ln |x − y | ds(y) −

∫
∂τx,ν

∂

∂Δ(y)
ln |x − y | ds(y)

=
∫
∂S

∂

∂Δ(y)
ln |x − y | ds(y) − 2β,

where ∂τx,ν is the circular boundary of τx,ν; hence,

∫
∂S

∂

∂Δ(y)
ln |x − y | ds(y) = 2β, x ∈ S+. (2.5)

The procedure is similar for x ∈ ∂S, except that in this case τx,ν is replaced by
τx,ν √ S+ and ∂τx,ν by its part lying in S+. It is not difficult to show that for a small
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value of ν, the length of this part is equal to βν + O(ν2), which leads to

∫
∂S

∂

∂Δ(y)
ln |x − y | ds(y) = β, x ∈ ∂S. (2.6)

Finally, the direct application of the divergence theorem yields

∫
∂S

∂

∂Δ(y)
ln |x − y | ds(y) = 0, x ∈ S−. (2.7)

In view of these integrals and the expression of k(x, y), we now see that

f (x) =
∫
∂S

k(x, y) ds(y) =
{

−2β, x ∈ S+,

0, x ∈ S−,

f0(x) =
∫
∂S

k(x, y) ds(y) = −β, x ∈ ∂S. (2.8)

From (1.62) with l(x) = −β , x ∈ ∂S, we obtain

f +(x) = −2β, x ∈ S̄+
0 ,

f −(x) = 0, x ∈ S̄−
0 .

Since

f + ∈ C0,δ(S̄+
0 ), f − ∈ C0,δ(S̄−

0 ),

the desired result follows from Theorem 1.43. ∈�
2.3 Remark.Theorem 2.2 implies that if α ∈ C0,δ(∂S), then, as S± 
 x ′ → x ∈ ∂S,
wα has finite limits given by

(wα)±(x) = ∩βα(x) −
∫
∂S

[
∂

∂Δ(y)
ln |x − y |

]
α(y) ds(y), x ∈ ∂S, (2.9)

where the last term is an improper integral. It can be shown (Colton and Kress 1983)
that wα can also be extended by continuity to S̄+ and S̄− if α ∈ C(∂S), but then the
two extensions w+ and w− are merely continuous.

2.4 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the first-order derivatives of
vα in S+ and S− have C0,γ -extensions to S̄+ and S̄−, respectively, with γ = δ

for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1. These extensions are given by

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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(grad vα)+(x) =
{

(grad vα)(x), x ∈ S+,

βΔ(x)α(x) + (grad vα)0(x), x ∈ ∂S,

(grad vα)−(x) =
{

(grad vα)(x), x ∈ S−,

−βΔ(x)α(x) + (grad vα)0(x), x ∈ ∂S,

where

(grad vα)0(x) = −
∫
∂S

[
grad (x) ln |x − y |]α(y) ds(y), x ∈ ∂S,

the integral being understood as principal value.

Proof. By checking the properties required in Lemma 1.28, we verify that

k(x, y) = −grad (x) ln |x − y |

is a proper 1-singular kernel in S0 and on ∂S.
From (1.51) and the fact that

[
grad (x) + grad (y)

]
ln |x − y | = 0, x ≥= y,

it follows that for x, y ∈ ∂S, x ≥= y,

k(x, y) =
[

∂

∂s(y)
ln |x − y |

]
Σ(y) +

[
∂

∂Δ(y)
ln |x − y |

]
Δ(y).

Consequently, using integration by parts and denoting by a and b the end-points of
σx,ν , for x ∈ ∂S we can write

∫
∂S\σx,ν

k(x, y) ds(y) =
∫

∂S\σx,ν

[
∂

∂s(y)
ln |x − y |

]
Σ(y) ds(y)

+
∫

∂S\σx,ν

[
∂

∂Δ(y)
ln |x − y |

]
Δ(y) ds(y)

= [
Σ(a) − Σ(b)

]
ln ν −

∫
∂S\σx,ν

(ln |x − y |)π(y)Δ(y) ds(y)

+
∫

∂S\σx,ν

[
∂

∂Δ(y)
ln |x − y |

]
Δ(y) ds(y).

Since ∂S is a C2-curve, the first term on the right-hand side tends to zero as ν → 0,
while the other two tend to

(
v(πΔ)

)
(x) and −(w0Δ)(x), respectively. Therefore,

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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k(x, y) is integrable on ∂S and

f0(x) =
∫
∂S

k(x, y) ds(y) = (
v(πΔ)

)
(x) − (w0Δ)(x), x ∈ ∂S,

where f0 is understood as principal value.
On the other hand, if x ∈ S0 \∂S, then, again integrating by parts and taking (1.8)

into account, we find that

f (x) =
∫
∂S

k(x, y) ds(y) = (
v(πΔ)

)
(x) − (wΔ)(x), x ∈ S0 \ ∂S.

By Theorems 2.1 and 2.2, the function f is C0,δ-extendable to S̄+
0 and S̄−

0 and the
values of the corresponding extensions on ∂S are given by the formula

f ±(x) = (
v(πΔ)

)
(x) ± βΔ(x) + (w0Δ)(x) = ±βΔ(x) + f0(x), x ∈ ∂S;

in other words, the expressions (1.62) with l = βΔ ∈ C0,1(∂S). As stated earlier,
f + ∈ C0,δ(S̄+

0 ) and f − ∈ C0,δ(S̄−
0 ). The assertion now follows from Theorem 1.47

with F and F0 in (1.61) defined by

F(x) = −
∫
∂S

[
grad (x) ln |x − y |]α(y) ds(y) = (grad v)(x), x ∈ S0 \ ∂S,

F0(x) = −
∫
∂S

[
grad (x) ln |x − y |]α(y) ds(y) = (grad v)0(x), x ∈ ∂S,

the latter understood as principal value. ∈�
2.5 Remark.Theorem 2.4 implies that if α ∈ C0,δ(∂S), then, as S± 
 x ′ → x ∈ ∂S,
(grad vα)(x ′) tends to finite limits given by

(grad vα)±(x) = ±βΔ(x)α(x) −
∫
∂S

[
grad (x) ln |x − y |]α(y) ds(y), x ∈ ∂S,

(2.10)
where the second term on the right-hand side is understood as principal value.

2.6 Remark.Theorems 2.4 and 1.20 also imply that ifα ∈ C0,δ(∂S),δ ∈ (0, 1], then
the restrictions of vα to S̄+ and S̄− belong, respectively, to C1,γ(S̄+) and C1,γ(S̄−),
with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1. We denote these restrictions
by (vα)+ and (vα)−; hence,

(grad (vα)+)(x) = (grad vα)+(x), x ∈ S̄+,

(grad (vα)−)(x) = (grad vα)−(x), x ∈ S̄−.

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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2.7 Theorem. If α ∈ C1,δ(∂S), δ ∈ (0, 1], then the restrictions of wα to S+ and
S− have C1,γ -extensions (wα)+ and (wα)− to S̄+ and S̄−, respectively, with γ = δ

for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1. These extensions are given by (2.3) and
satisfy the equality ∂(wα)+/∂Δ = ∂(wα)−/∂Δ on ∂S.

Proof. Let x ≥= y. Since

κ(y) ln |x − y | = 0,[
grad (x) + grad (y)

]
ln |x − y | = 0,

for x ∈ S0 \ ∂S and any y ∈ ∂S we can write

∂

∂xλ

[
∂

∂Δ(y)
ln |x − y |

]

= Δγ(y)
∂

∂yγ

(
∂

∂xλ

ln |x − y |
)

+ Δλ (y)κ(y) ln |x − y |

= Δγ(y)
∂

∂yγ

(
− ∂

∂yλ

ln |x − y |
)

+ Δλ (y)
∂

∂yγ

(
∂

∂yγ

ln |x − y |
)

=
[
Δγ(y)

∂

∂yλ

− Δλ (y)
∂

∂yγ

](
∂

∂xγ

ln |x − y |
)

= ξγλ

∂

∂s(y)

(
∂

∂xγ

ln |x − y |
)

.

Consequently, using integration by parts, we find that for x ∈ S0 \ ∂S,

∂

∂xλ

(wα)(x) = −
∫
∂S

∂

∂xλ

[
∂

∂Δ(y)
ln |x − y |

]
α(y) ds(y)

= ξγλ

∂

∂xγ

∫
∂S

(ln |x − y |)α′(y) ds(y)

= ξλγ

∂

∂xγ

(vα′)(x). (2.11)

From this, Theorem 2.4, and the fact that α′ ∈ C0,δ(∂S) we deduce that gradwα has
C0,γ -extensions (gradwα)+ and (gradwα)− to S̄+ and S̄−. By Theorem 2.2, the
extensions (wα)+ and (wα)−, given by (2.3), of wα are Hölder continuous on S̄+
and S̄−, respectively. Since, as is obvious,

grad (wα)+(x) = (gradwα)+(x), x ∈ S+,

grad (wα)−(x) = (gradwα)−(x), x ∈ S−,

the first part of the assertion now follows from Theorem 1.20.
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To complete the proof, we remark that, in view of (2.11) and (2.10), for x ∈ ∂S
Theorem 1.20 yields

∂

∂Δ
(wα)±(x) = ⇔grad (wα)±(x), Δ(x)≤ = ⇔(gradwα)±(x), Δ(x)≤

= ξλγ

[
∂

∂xγ

vα′
]±

(x)Δλ (x)

= ξγλ Δλ (x)

∫
∂S

(
∂

∂xγ

ln |x − y |
)

α′(y) ds(y),

where the integral is understood as principal value. ∈�
2.8 Theorem. The function w0α defined by (2.4) as the direct value on ∂S of the
double-layer potential with density α ∈ C0,δ(∂S), δ ∈ (0, 1], belongs to C1,γ(∂S),
with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. As noted in the proof of Theorem 2.2, the kernel

k(x, y) = − ∂

∂Δ(y)
ln |x − y |

is 0-singular on ∂S; consequently, w0(x) is an improper integral for all x ∈ ∂S.
Clearly,

k0(x, y) = ∂

∂s(x)
k(x, y)

= ⇔Δ(y), Σ (x)≤
|x − y|2 − 2

⇔Δ(y), x − y≤⇔Σ(x), x − y≤
|x − y|4 (2.12)

is 1-singular on ∂S. Verifying the conditions of Lemma 1.28, we deduce that k0(x, y)

is a proper 1-singular kernel on ∂S.
Next, by writing ⇔· , ·≤ in terms of the cosine of the angle between the vectors, we

find that
⇔Δ(y), Σ (x)≤ + ⇔Δ(x), Σ (y)≤ = 0, x, y ∈ ∂S. (2.13)

Using the same technique, (2.12), and (2.13), for x, y ∈ ∂S, x ≥= y, we now obtain

[
∂

∂s(x)
+ ∂

∂s(y)

]
k(x, y)

= 2|x − y|−4{⇔Δ(x), x − y≤⇔Σ(y), x − y≤
− ⇔Δ(y), x − y≤⇔Σ(x), x − y≤ + ⇔Δ(y), Σ (x)≤} = 0. (2.14)

From this and (2.12) we conclude that k0(x, y) satisfies (1.55).

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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The assertion now follows from Theorem 1.37 with γ = λ = 0 and g(x) = −β ,
x ∈ ∂S (according to (2.8)), and Remarks 1.39 and 1.38. ∈�

2.2 Other Potential-Type Functions

In this section we consider the Hölder continuity and continuous differentiability of
some other useful integrals with λ -singular kernels.

2.9 Theorem. Suppose that k(x, y) is a continuous kernel in S0 × ∂S and such that
grad (x)k(x, y) is a proper λ -singular kernel in S0, λ ∈ [0, 1), and let

(vaα)(x) =
∫
∂S

k(x, y)α(y) ds(y), x ∈ S0.

If α ∈ C(∂S), then vaα ∈ C1,γ(S0), with γ = 1 − λ for λ ∈ (0, 1) and any
γ ∈ (0, 1) for λ = 0.

Proof. Clearly, vaα ∈ C(S0) √ C1(S+
0 ) √ C1(S−

0 ). The statement follows from the
fact that for x ∈ S0 \ ∂S,

(grad vaα)(x) =
∫
∂S

grad (x)k(x, y)α(y) ds(y),

which, by Theorem 1.33, belongs to C0,γ(S0). ∈�
2.10 Theorem. Suppose that k(x, y) is a continuous kernel on ∂S × ∂S and such
that ∂k(x, y)/∂s(x) is a proper λ -singular kernel on ∂S, λ ∈ [0, 1). If α ∈ C(∂S),
then the function

(va
0α)(x) =

∫
∂S

k(x, y)α(y) ds(y), x ∈ ∂S,

belongs to C1,γ(∂S), with γ = 1 − λ for λ ∈ (0, 1) and any γ ∈ (0, 1) for λ = 0.

Proof. Consider the function

(va
0να)(x) =

∫
∂S\σx,ν

k(x, y)α(y) ds(y), ν > 0.

It is obvious that (va
0να)(x) → (va

0α)(x) as ν → 0, for all x ∈ ∂S. On the other
hand,

∂

∂s
(va

0να)(x) =
∫

∂S\σx,ν

∂

∂s(x)
k(x, y)α(y) ds(y),
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which converges uniformly to
∫
∂S

[
∂k(x, y)/∂s(x)

]
α(y) ds(y) as ν → 0 (see the

proof of Theorem 1.32). By a well-known theorem of analysis, va
0α is differentiable

at all x ∈ ∂S and

∂

∂s
(va

0α)(x) =
∫
∂S

∂

∂s(x)
k(x, y)α(y) ds(y).

We complete the proof by applying Theorem 1.33 to the above integral to deduce
that ∂(va

0α)/∂s ∈ C0,γ(∂S). ∈�
2.11 Theorem. If α ∈ C(∂S), then the functions

(vb
λ να)(x) =

∫
∂S

(xλ − yλ )(xν − yν)

|x − y|2 α(y) ds(y), x ∈ R
2, (2.15)

(vc
λ α)(x) =

∫
∂S

[
∂

∂s(y)

(
(xλ − yλ ) ln |x − y |)

]
α(y) ds(y), x ∈ R

2, (2.16)

(vd
λ α)(x) =

∫
∂S

[
∂

∂Δ(y)

(
(xλ − yλ ) ln |x − y |)

]
α(y) ds(y), x ∈ R

2, (2.17)

belong to C0,δ(R2) for any δ ∈ (0, 1).

Proof. As mentioned earlier, it suffices to verify the Hölder continuity of these func-
tions in S0.

By direct verification or by means of Lemma 1.28, we easily convince ourselves
that (xλ − yλ )(xν − yν)|x − y|−2 is a proper 0-singular kernel in S0. Similarly,

∂

∂s(y)

[
(xλ − yλ ) ln |x − y |] = −Σλ ln |x − y | − (xλ − yλ )⇔Σ(y), x − y≤

|x − y|2

and

∂

∂Δ(y)

[
(xλ − yλ ) ln |x − y |] = −Δλ (y) ln |x − y | − (xλ − yλ )⇔Δ(y), x − y≤

|x − y|2

are proper τ -singular kernels in S0 for any τ ∈ (0, 1). The result now follows from
Theorem 1.33. ∈�
2.12 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the function

(ve
λ να)(x) =

∫
∂S

[
∂

∂s(y)

(xλ − yλ )(xν − yν)

|x − y|2
]
α(y) ds(y), x ∈ R

2, (2.18)

belongs to C0,γ(R2), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.



46 2 Potentials and Boundary Integral Equations

Proof. Direct verification of the properties in Definition 1.26 shows that the kernel
k(x, y) of ve

λ να is a proper 1-singular kernel in S0. Also, for x, y ∈ ∂S, x ≥= y,

∂

∂s(y)

(xλ − yλ )(xν − yν)

|x − y|2
= cλ νητ

(xη − yη)(xτ − yτ )

|x − y|2
∂

∂Δ(y)
ln |x − y |, (2.19)

where

cλ λ λ ν = cλ λ νλ = −cλ νλ λ = −cνλ λ λ = ξνλ ,

cλ νλ ν = cλ ννλ = cλ λ νν = 0 (λ, ν not summed), (2.20)

which means that k(x, y) is 0-singular on ∂S. Consequently, ve
λ να is an improper

integral for x ∈ ∂S.
Since for x, y ∈ ∂S, x ≥= y,

lim
y→x

(xλ − yλ )(xν − yν)

|x − y|2 = Σλ (x)Σν(x),

we find that f and f0 defined by (1.60) are identically zero. Hence, f + and f −
defined by (1.62) with l(x) = 0, x ∈ ∂S, belong to C0,δ(∂S). The result now
follows from Theorem 1.43. ∈�
2.13 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then

(v f
0 α)(x) =

∫
∂S

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y), x ∈ ∂S, (2.21)

exists as principal value uniformly for all x ∈ ∂S. Furthermore, v f
0 α ∈ C0,γ(∂S),

with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. For x, y ∈ ∂S, x ≥= y, we have

∣∣∣∣ ∂

∂s(y)
ln |x − y |

∣∣∣∣ = |⇔Σ(y), x − y≤|
|x − y|2 ∀ c1|x − y|−1,

|x − y|
∣∣∣∣ ∂

∂xλ

[
∂

∂s(y)
ln |x − y |

]∣∣∣∣
=

∣∣∣∣ Σλ (y)

|x − y| − 2
⇔Σ(y), x − y≤(xλ − yλ )

|x − y|3
∣∣∣∣ ∀ c2|x − y|−1,

where c1 and c2 are positive constants. Therefore, by Lemma 1.28, ∂ ln |x −y |/∂s(y)

is a proper 1-singular kernel on ∂S. This kernel is also uniformly integrable since if

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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a and b are the end-points of σx,ν , then∫
∂S\σx,ν

∂

∂s(y)
ln |x − y | ds(y) = ln

|x − a|
|x − b| = 0 (2.22)

for all 0 < ν ∀ r and all x ∈ ∂S. We can now write
∫

∂S\σx,ν

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y)

=
∫

∂S\σx,ν

[
∂

∂s(y)
ln |x − y |

][
α(y) − α(x)

]
ds(y),

and the first part of the assertion follows from Definition 1.40 and the uniform
convergence, as ν → 0, of the right-hand side, whose integrand is O(|x − y|δ−1);
consequently,

(v f
0 α)(x) =

∫
∂S

[
∂

∂s(y)
ln |x − y |

][
α(y) − α(x)

]
ds(y), x ∈ ∂S, (2.23)

in the sense of principal value.
To complete the proof, we apply Theorem 1.32 with ϑ = x and make use of the

last part of Remark 1.45. ∈�
2.14 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the function

(v f α)(x) =
∫
∂S

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y), x ∈ S0 \ ∂S, (2.24)

is C0,γ -extendable to R
2, with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. In the proof of Theorem 2.13 it was shown that

k(x, y) = ∂ ln |x − y |
∂s(y)

is an integrable, proper 1-singular kernel on ∂S. The same reasoning indicates that
k(x, y) is also a proper 1-singular kernel in S0. In view of (2.22), formulas (1.60)
yield

f (x) = 0, x ∈ S0 \ ∂S,

f0(x) = 0, x ∈ ∂S, (2.25)

the latter understood as principal value. From (2.25) and (1.62) with l(x) = 0,
x ∈ ∂S, it follows that f + ∈ C0,δ(S̄+

0 ) and f − ∈ C0,δ(S̄−
0 ) (both these functions

are identically zero). The application of Theorem 1.47 now completes the proof. ∈�

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1


48 2 Potentials and Boundary Integral Equations

2.15 Remark. Since l = 0, (2.24) also represents the extension of v f α to R
2, that

is, it holds for x ∈ R
2, but for x ∈ ∂S the integral on the right-hand side (denoted

by v f
0 α in (2.21)) must be understood as principal value.
Alternatively, since

∫
∂S

∂

∂s(y)
ln |x − y | ds(y) = 0, x ∈ R

2 \ ∂S,

we see that the extension of v f α to R2 is also given by the right-hand side of (2.23)
with x ∈ R

2.

2.16 Theorem. If α ∈ C1,δ(∂S), δ ∈ (0, 1], then the function v f
0 α defined by (2.21)

belongs to C1,γ(∂S), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. By Theorem 2.13, v f
0 α is Hölder continuous on ∂S.

Let x = Γ(s) ∈ ∂S be arbitrary but fixed, and let a = Γ(s − ν) and b = Γ(s + ν)

be the end-points of the arc ρx,ν defined by (1.59). Integrating by parts, we find that

∫
∂S\ρx,ν

(ln |x − y |)α′(y) ds(y) = α(a) ln |x − a| − α(b) ln |x − b|

−
∫

∂S\ρx,ν

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y). (2.26)

The first term on the right-hand side can be written in the form

α(x)(ln |x − a| − ln |x − b|)
+ [

α(a) − α(x)
]
ln |x − a| − [

α(b) − α(x)
]
ln |x − b|.

Since

ln |x − a| − ln |x − b| = ln

( |x − a|
ν

· ν

|x − b|
)

and α is differentiable on ∂S, by Theorem 1.16, this expression tends to zero as
ν → 0.

In the proof of Theorem 2.13 it was shown that ∂ ln |x − y |/∂s(y) is an integrable,
proper 1-singular kernel on ∂S. Setting

F(x) =
∫
∂S

(ln |x − y |)α′(y) ds(y),

Fν(x) =
∫

∂S\ρx,ν

(ln |x − y |)α′(y) ds(y),

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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and letting ν → 0 in (2.26), we see that, by Theorem 2.13 and Remark 1.41,

F(x) = lim
ν→0

Fν(x) = −(v f
0 α)(x). (2.27)

On the other hand, by Leibniz’s rule for differentiating an integral whose limits
depend on the parameter,

F ′
ν(x) =

∫
∂S\ρx,ν

[
∂

∂s(x)
ln |x − y |

]
α′(y) ds(y)

+ α′(a) ln |x − a| − α′(b) ln |x − b|.

Since α′ ∈ C0,δ(∂S), we deduce as above that the sum of the last two terms tends
to zero uniformly as ν → 0. Hence,

lim
ν→0

F ′
ν(x) =

∫
∂S

[
∂

∂s(x)
ln |x − y |

]
α′(y) ds(y), (2.28)

where the integral is understood as principal value and, by Theorem 2.13, the con-
vergence is uniform with respect to x . A well-known result of analysis now implies
that F(x) is differentiable and that F ′(x) is equal to the right-hand side of (2.28).
Taking (2.27) into account, we conclude that ∂(v f

0 α)/∂s exists and

∂

∂s
(v f

0 α)(x) = −
∫
∂S

[
∂

∂s(x)
ln |x − y |

]
α′(y) ds(y), x ∈ ∂S.

By Theorem 2.13, ∂(v f
0 α)/∂s ∈ C0,δ(∂S), as required. ∈�

2.17 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the functions

(vc
λ 0α)(x) =

∫
∂S

{
∂

∂s(y)

[
(xλ − yλ ) ln |x − y |]

}
α(y) ds(y), x ∈ ∂S, (2.29)

(vd
λ 0α)(x) =

∫
∂S

{
∂

∂Δ(y)

[
(xλ − yλ ) ln |x − y |]

}
α(y) ds(y), x ∈ ∂S, (2.30)

belong to C1,γ(∂S), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.
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Proof. The kernel

k(x, y) = ∂

∂s(y)

[
(xλ − yλ ) ln |x − y |]

= −Σλ (y) ln |x − y | − (xλ − yλ )⇔Σ(y), x − y≤
|x − y|2

is ν-singular on ∂S, where ν ∈ (0, 1) is arbitrary, so (vc
λ 0α)(x) is an improper integral

for all x ∈ ∂S. Also,

k0(x, y) = ∂

∂s(x)
k(x, y)

= −Σλ (y)
∂

∂s(x)
ln |x − y | − ∂

∂s(x)

(xλ − yλ )⇔Σ(y), x − y≤
|x − y|2 (2.31)

is 1-singular on ∂S. Using Lemma 1.28, we find that k0(x, y) is a proper 1-singular
kernel on ∂S.

Since

k̂(x, y) =
[

∂

∂s(x)
+ ∂

∂s(y)

]
ln |x − y | = ⇔Σ(x) − Σ(y), x − y≤

|x − y|2

is 0-singular on ∂S, the first term on the right-hand side in (2.31) can be written in
the form

−k̂(x, y)Σλ (y) + ∂

∂s(y)

[
Σλ (y) ln |x − y |] + π(y)Δλ (y) ln |x − y |.

Similarly, since

k̃λ ν(x, y) =
[

∂

∂s(x)
+ ∂

∂s(y)

]
(xλ − yλ )(xν − yν)

|x − y|2

=
[
Σλ (x) − Σλ (y)

]
(xν − yν)

|x − y|2 +
[
Σν(x) − Σν(y)

]
(xλ − yλ )

|x − y|2
− 2

(xλ − yλ )(xν − yν)⇔Σ(x) − Σ(y), x − y≤
|x − y|4

is 0-singular on ∂S, the second term on the right-hand side in (2.31) becomes

−k̃λ ν(x, y)Σν(y) + ∂

∂s(y)

(xλ − yλ )⇔Σ(y), x − y≤
|x − y|2

+ π(y)(xλ − yλ )⇔Δ(y), x − y≤
|x − y|2 .
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Denoting by a and b the end-points of σx,ν , we find that

∫
∂S\σx,ν

∂

∂s(y)

[
Σλ (y) ln |x − y |] ds(y)

= Σλ (a) ln |x − a| − Σλ (b) ln |x − b|
= Σλ (a) ln

|x − a|
|x − b| + [

Σλ (a) − Σλ (b)
]
ln |x − b|

= [
Σλ (a) − Σλ (b)

]
ln |x − b| → 0,

uniformly as ν → 0, and that

∫
∂S\σx,ν

∂

∂s(y)

(xλ − yλ )⇔Σ(y), x − y≤
|x − y|2 ds(y)

= (xλ − aλ )⇔Σ(a), x − a≤
|x − a|2 − (xλ − bλ )⇔Σ(b), x − b≤

|x − b|2 → 0,

uniformly as ν → 0. Consequently, the kernel k0(x, y) satisfies estimate (1.55).
The result now follows from Theorem 1.37 with any γ ∈ (0, δ), λ = 0, and

g(x) = 0, x ∈ ∂S, and Remarks 1.39 and 1.38.
The function vd

λ 0α is treated similarly. ∈�
2.18 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then the function defined by

(ve
λ ν0α)(x) =

∫
∂S

[
∂

∂s(y)

(xλ − yλ )(xν − yν)

|x − y|2
]
α(y) ds(y), x ∈ ∂S, (2.32)

belongs to C1,γ(∂S), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. From formula (2.19) and the estimates in Lemma 1.2 we see that the kernel

k(x, y) = ∂

∂s(y)

(xλ − yλ )(xν − yν)

|x − y|2

is 0-singular on ∂S, hence (ve
λ ν0α)(x) is an improper integral for all x ∈ ∂S.

A simple calculation shows that

k0(x, y) = ∂

∂s(x)
k(x, y)

= cλ νεμcεμητ
(xη − yη)(xτ − yτ )

|x − y|2
[

∂

∂Δ(x)
ln |x − y |

][
∂

∂Δ(y)
ln |x − y |

]

+ cλ νητ
(xη − yη)(xτ − yτ )

|x − y|2
∂

∂s(x)

[
∂

∂Δ(y)
ln |x − y |

]
, (2.33)

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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where the cλ νητ are given by (2.20), is a 1-singular kernel on ∂S. Moreover, using
Lemma 1.28, we easily convince ourselves that k0(x, y) is a proper 1-singular kernel
on ∂S.

The first term on the right-hand side of (2.33) is 0-singular on ∂S. By (2.14), the
second term can be written in the form

cλ νητ

{
− ∂

∂s(y)

[
(xη − yη)(xτ − yτ )

|x − y|2
∂

∂Δ(y)
ln |x − y |

]

+
[

∂

∂Δ(y)
ln |x − y |

]
∂

∂s(y)

(xη − yη)(xτ − yτ )

|x − y|2
}
,

from which, in view of what was said above about k(x, y), we immediately deduce
by direct verification that k0(x, y) satisfies estimate (1.55).

The assertion now follows from Theorem 1.37 with γ = λ = 0 and g(x) = 0,
x ∈ ∂S, and Remarks 1.39 and 1.38. ∈�

2.3 Complex Singular Kernels

In the analysis of two-dimensional problems it is often convenient to express certain
properties of functions in terms of complex variables. Extending an earlier conven-
tion, for a function f given on ∂S we write f (z) ⊂ f (x), where z = x1 + i x2, and
identify z with the geometric point x .

Suppose now that C(∂S) and C1(∂S) are complex vector spaces, and construct
the complex spaces C0,δ(∂S) and C1,δ(∂S) by defining Hölder continuity in terms
of the inequality

| f (z) − f (ω )| ∀ c|z − ω |δ for all z, ω ∈ ∂S,

and the derivative as

f ′(z) = d

dz
f (z) = lim

ω→z

f (ω ) − f (z)

ω − z
, z, ω ∈ ∂S,

if this limit exists.
Since |z − ω | = |x − y|, where ω = y1 + iy2, it is obvious that Hölder continuity

with respect to z and Hölder continuity with respect to x (or s, according to the
discussion in Sect. 1.2), are equivalent. The same can also be said about Hölder
continuous differentiability on ∂S. We can see this from the equality

f ′(s) = θ(z) f ′(z),

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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where

θ(z) = dz

ds
= Σ1(z) + iΣ2(z), (2.34)

which means that f ′ ∈ C0,δ(∂S) in terms of z if and only if f ′ ∈ C0,δ(∂S) in terms
of s, as implied by the statement of Lemma 1.20 and the fact that both θ(z) and[
θ(z)

]−1 = θ̄(z) = Σ1(z)− iΣ2(z) belong to C1(∂S). This shows that our somewhat
loose use of the same symbol for a function on ∂S whether it is expressed in terms
of z or x is justified in relation to Hölder spaces.

In the light of these arguments, and because for a kernel k(x, y) and a density α

on ∂S
∫
∂S

k(x, y)α(y) ds(y) =
∫
∂S

k(z, ω )α(ω )θ̄(ω ) dω,

we conclude that the definition of λ -singular and proper λ -singular kernels on ∂S and
all the associated results established in Sect. 1.4 on the behavior on ∂S of integrals
with such kernels can be understood in terms of either real or complex variables.

2.19 Theorem. If α ∈ C0,δ(∂S), δ ∈ (0, 1], then

(ϕ α)(z) =
∫
∂S

α(ω )

ω − z
dω, z ∈ ∂S, (2.35)

exists in the sense of principal value, uniformly for all z ∈ ∂S, and belongs to
C0,γ(∂S), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. Let z = x1 + i x2 and ω = y1 + iy2. Differentiating with respect to s(y) the
equality

log(ω − z) = ln |ω − z| + iΦ = ln |x − y| + iΦ,

where Φ = arg(ω − z), and using the Cauchy–Riemann relation

∂

∂s(y)
Φ(x, y) = ∂

∂Δ(y)
ln |x − y |,

we obtain

dω

ω − z
= ∂

∂s(y)
ln |x − y | ds(y) + i

∂

∂Δ(y)
ln |x − y | ds(y). (2.36)

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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Hence, we can write

∫
∂S\σx,ν

α(ω )

ω − z
dω =

∫
∂S\σx,ν

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y)

+ i
∫

∂S\σx,ν

[
∂

∂Δ(y)
ln |x − y |

]
α(y) ds(y),

and the result is obtained from Theorems2.13 and 2.2 by letting ν → 0. ∈�
2.20 Remark. The function ϕ α defined by (2.35) can be expressed in terms of an
improper integral. Writing

∫
∂S\σx,ν

α(ω )

ω − z
dω =

∫
∂S\σx,ν

α(ω ) − α(z)

ω − z
dω + α(z)

∫
∂S\σx,ν

dω

ω − z
,

replacing (ω − z)−1dω by its expression in (2.36), letting ν → 0, and using formulas
(2.22) and (2.8), we find that, in the sense of principal value,

∫
∂S

α(ω )

ω − z
dω = β iα(z) +

∫
∂S

α(ω ) − α(z)

ω − z
dω, z ∈ ∂S, (2.37)

where the integrand of the last term is O(|z − ω |δ−1) if α ∈ C0,δ(∂S), δ ∈ (0, 1].
2.21 Theorem. If α ∈ C1,δ(∂S), δ ∈ (0, 1], then ϕ α defined by (2.35) belongs to
C1,γ(∂S), with γ = δ for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.

Proof. By (2.36), (2.21), and (2.4),

(ϕ α)(z) = v f
0 (x) − iw0(x),

and the assertion follows from Theorems 2.16 and 2.8. ∈�
2.22 Theorem. If K s : C0,δ(∂S) → C0,δ(∂S), δ ∈ (0, 1), is the operator defined
by

(K sα)(z) =
∫
∂S

α(ω )

ω − z
dω, z ∈ ∂S, (2.38)

then (K s)2 = −β2 I , where I is the identity operator.

Proof. From Theorem 2.19 it is clear that the operator composition (K s)2 is mean-
ingful.
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In Muskhelishvili (1946) it is shown that a function f (z, ω ) which is Hölder
continuous with respect to both its variables z and ω satisfies the Poincaré–Bertrand
formula

∫
∂S

1

ω − z

[ ∫
∂S

f (ω, η)

η − ω
dη

]
dω

= −β2 f (z, z) +
∫
∂S

[ ∫
∂S

f (ω, η)

(ω − z)(η − ω )
dω

]
dη. (2.39)

Using (2.39) and the fact that, by (2.37) with α = 1,

∫
∂S

dω

ω − z
= β i, z ∈ ∂S, (2.40)

in the sense of principal value, we find that for any α ∈ C0,δ(∂S) and z ∈ ∂S

(
(K s)2α

)
(z) =

∫
∂S

1

ω − z

[ ∫
∂S

α(η)

η − ω
dη

]
dω

= −β2α(z) +
∫
∂S

[ ∫
∂S

α(η)

(ω − z)(η − ω )
dω

]
dη

= −β2α(z) +
∫
∂S

[
1

η − z

( ∫
∂S

dω

ω − z
−

∫
∂S

dω

ω − η

)
α(η)

]
dη

= −β2α(z),

as required. ∈�
2.23 Theorem. Let f (z, ω ) be a function defined on ∂S × ∂S, which belongs to
C0,δ(∂S), δ ∈ (0, 1], with respect to each of its variables, uniformly relative to the
other one, and satisfies the inequality

| f (z, ω ) − f (z′, ω )| < c|z − z′| |z − ω |δ−1, c = const > 0,

for all z, z′, ω ∈ ∂S such that 0 < |z − z′| < 1
2 |z − ω |. Then the function

(Λ f )(z) =
∫
∂S

f (z, ω )

ω − z
dω, z ∈ ∂S,

where the integral is understood as principal value, belongs to C0,γ(∂S),with γ = δ

for δ ∈ (0, 1) and any γ ∈ (0, 1) for δ = 1.
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Proof. Let z = x1 + i x2. Writing

∫
∂S\σx,r

f (z, ω )

ω − z
dω =

∫
∂S\σx,r

f (z, ω ) − f (z, z)

ω − z
dω + f (z, z)

∫
∂S\σx,r

dω

ω − z
,

from Theorem 2.19 and the fact that the integrand of the first term on the right-hand
side is O(|z − ω |δ−1)we conclude that (Λ f )(z) exists in the sense of principal value
for all z ∈ ∂S.

To establish the Hölder continuity of Λ f , for z, z′, ω ∈ ∂S we use the decompo-
sition

2
[
(Λ f )(z) − (Λ f )(z′)

] =
∫
∂S

[
f (z, ω ) − f (z, z)

ω − z
− f (z, ω ) − f (z, z′)

ω − z′

]
dω

+
∫
∂S

[
f (z′, ω ) − f (z′, z)

ω − z
− f (z′, ω ) − f (z′, z′)

ω − z′

]
dω

+
∫
∂S

f (z, ω ) − f (z′, ω )

ω − z
dω +

∫
∂S

f (z, ω ) − f (z′, ω )

ω − z′ dω

+ f (z, z)
∫
∂S

dω

ω − z
− f (z, z′)

∫
∂S

dω

ω − z′

+ f (z′, z)
∫
∂S

dω

ω − z
− f (z′, z′)

∫
∂S

dω

ω − z′

= I1 + I2 + I3 + I4 + I5 + I6.

Let z′ = x ′
1 + i x ′

2 and ω = y1 + iy2, and let σx,r , σ1, and σ2 be the sets defined
by (1.16) and (1.29) with x and x ′ satisfying (1.43). By Lemmas 1.10–1.13, (2.40),
and Remark 1.41,

|I11| =
∣∣∣∣
∫
σ1

[
f (z, ω ) − f (z, z)

ω − z
− f (z, ω ) − f (z, z′)

ω − z′

]
dω

∣∣∣∣

∀ c1

∫
σ1

(|x − y|δ−1 + |x ′ − y|δ−1) ds(y) ∀ c2|z − z′|δ,

|I12| =
∣∣∣∣
∫
σ2

(
1

ω − z
− 1

ω − z′

)[
f (z, ω ) − f (z, z′)

]
dω

∣∣∣∣

∀ c3|z − z′|
∫
σ2

|x − y|δ−2 ds(y) ∀ c4|z − z′|δ if δ ∈ (0, 1),

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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|I12| ∀ c5|z − z′|∣∣ ln |z − z′|∣∣ if δ = 1,

|I13| =
∣∣∣∣

∫
∂S\σx,r

(
1

ω − z
− 1

ω − z′

)[
f (z, ω ) − f (z, z′)

]
dω

∣∣∣∣

∀ c6|z − z′|
∫

∂S\σx,r

|x − y|δ−2 ds(y) ∀ c7|z − z′|,

|I14| =
∣∣∣∣[ f (z, z′) − f (z, z)

] ∫
∂S\σ1

dω

ω − z

∣∣∣∣ ∀ c8|z − z′|δ;

consequently,
|I1| = |I11 + I12 + I13 + I14| ∀ c9|z − z′|γ,

where the constants c1, . . . , c9 > 0 may depend on δ.
Similarly,

|I2| ∀ c10|z − z′|γ, c10 = const > 0.

Next, we find that

|I31| =
∣∣∣∣
∫
σ1

{[
f (z, ω ) − f (z, z)

] − [
f (z′, ω ) − f (z′, z)

]} dω

ω − z

∣∣∣∣

∀ c11

∫
σ1

|x − y|δ−1 ds(y) ∀ c12|z − z′|δ,

|I32| =
∣∣∣∣
∫
σ2

f (z, ω ) − f (z′, ω )

ω − z
dω

∣∣∣∣

∀ c13|z − z′|
∫
σ2

|x − y|δ−2 ds(y) ∀ c14|z − z′|δ if δ ∈ (0, 1),

|I32| ∀ c15|z − z′| ∣∣ ln |z − z′|∣∣ if δ = 1,

|I33| =
∣∣∣∣

∫
∂S\σx,r

f (z, ω ) − f (z′, ω )

ω − z
dω

∣∣∣∣

∀ c16|z − z′|
∫

∂S\σx,r

|x − y|δ−2 ds(y) ∀ c17|z − z′|,

|I34| =
∣∣∣∣[ f (z, z) − f (z′, z)

]( ∫
∂S

dω

ω − z
−

∫
∂S\σ1

dω

ω − z

)∣∣∣∣
∀ c18|z − z′|δ;
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therefore,

|I3| = |I31 + I32 + I33 + I34| ∀ c19|z − z′|γ,

where the constants c11, . . . , c19 > 0 may depend on δ. In exactly the same way,
but using σx ′,r instead of σx,r , we find that

|I4| ∀ c20|z − z′|γ, c20 = const > 0.

Finally,

|I5| = ∣∣β i
[

f (z, z) − f (z, z′)
]∣∣ ∀ c21|z − z′|δ,

|I6| = ∣∣β i
[

f (z′, z) − f (z′, z′)
]∣∣ ∀ c22|z − z′|δ,

where c21 and c22 are positive constants.
Combining the above inequalities, we now obtain

|(Λ f )(z) − (Λ f )(z′)| ∀ c23|z − z′|γ, c23 = const > 0,

as required. ∈�

2.4 Singular Integral Equations

We discuss briefly a few concepts of functional analysis, which will enable us to
find the solutions of the boundary value problems to be stated later in Sect. 3.4.
The presentation is made in terms of complex variables in order to simplify the
technicalities involved. Any difference between the complex and real cases will be
indicated explicitly.

2.24 Theorem. C0,δ(∂S) is a Banach space with norm

⊆α⊆δ = ⊆α⊆→ + |α|δ, (2.41)

where

⊆α⊆→ = sup
z∈∂S

|α(z)|, |α|δ = sup
z,ω∈∂S

z ≥=ω

|α(z) − α(ω )|
|z − ω |δ .

Proof. As can easily be verified, (2.41) satisfies satisfies the norm axioms.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Let {αn}→n=1 be a Cauchy sequence in C0,δ(∂S); that is, for any ξ > 0 arbitrarily
small there is a positive integer n0(ξ) such that

⊆αn − αm⊆δ < ξ for all n, m > n0(ξ).

By (2.41),
⊆αn − αm⊆→ < ξ for all n, m > n0(ξ),

which means that {αn}→n=1 is also a Cauchy sequence in C(∂S). Since C(∂S) is a
complete space, there is a α ∈ C(∂S) such that

⊆αn − α⊆→ → 0 as n → →. (2.42)

From (2.41) we also deduce that

|αn − αm |δ < ξ for all n, m > n0(ξ).

Letting m → → and using the uniform convergence of {αn}→n=1 on ∂S, we now
obtain

|αn − α|δ < ξ for all n > n0(ξ). (2.43)

Hence, there is c = const > 0 such that for all z, ω ∈ ∂S, z ≥= ω ,

|α(z) − α(ω )|
|z − ω |δ ∀ |α|δ ∀ c;

in other words, α ∈ C0,δ(∂S). Also, from (2.42) and (2.43) it follows that

⊆αn − α⊆δ → 0 as n → →;

that is, {αn}→n=1 converges in the norm (2.41), which means that C0,δ(∂S) is
complete. ∈�
2.25 Definition. Let X and Y be normed spaces. A linear operator K : X → Y is
called compact if it maps any bounded set in X into a relatively compact set in Y
(that is, a set in which every sequence contains a convergent subsequence).

2.26 Theorem. If k(z, ω ) is a proper λ -singular kernel on ∂S, λ ∈ [0, 1), then the
operator K defined by

(Kα)(z) =
∫
∂S

k(z, ω )α(ω ) dω, z ∈ ∂S, (2.44)
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is a compact operator from C0,δ(∂S) to C0,δ(∂S), with δ = 1 − λ for λ ∈ (0, 1)
and any δ ∈ (0, 1) for λ = 0.

Proof. According to Theorem 1.33 and the fact that C0,δ(∂S) ⊂ C(∂S), the operator
K : C0,δ(∂S) → C0,δ(∂S) is well defined.

Let M1 ⊂ C0,δ(∂S) be a bounded set; that is,

⊆α⊆δ ∀ c = const > 0 for all α ∈ M1. (2.45)

Also, let {Φn}→n=1 ⊂ M2 = K (M1). We denote by {αn}→n=1 a sequence in M1 such
that Φn = Kαn , n = 1, 2, . . . .

In view of (2.41), inequality (2.45) implies that

sup
z∈∂S

|αn(z)| ∀ c,

|αn(z) − αn(z′)| ∀ c|z − z′|δ

for all n = 1, 2, . . . and all z, z′ ∈ ∂S; in other words, {αn}→n=1 is uniformly bounded
and equicontinuous in C(∂S). By the Arzelà–Ascoli theorem (Colton and Kress
1983), it contains a uniformly convergent subsequence. For simplicity, we denote
this subsequence again by {αn}→n=1. Hence, there is a α ∈ C(∂S) such that

⊆αn − α⊆→ → 0 as n → →. (2.46)

Let Φ = Kα. By Theorem 1.33, Φ ∈ C0,δ(∂S). For z ∈ ∂S we have

|Φn(z) − Φ(z)| ∀
∫
∂S

|k(z, ω )| |αn(ω ) − α(ω )| dω

∀ c1 sup
x∈∂S

|αn(z) − α(z)|
∫
∂S

|z − ω |−λ dω ;

consequently, by Theorem 1.32,

⊆Φn − Φ⊆→ ∀ c2⊆αn − α⊆→, n = 1, 2, . . . ,

where c1 and c2 are positive constants. On the other hand, by Theorem 1.33,

|Φn − Φ |δ ∀ c3⊆αn − α⊆δ, n = 1, 2, . . . .

The last two inequalities, (2.41), and (2.46) yield

⊆Φn − Φ⊆δ → 0 as n → →,

which proves that K is compact on C0,δ(∂S). ∈�
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2.27 Definition.Let X and Y be vector spaces overC. Amapping (· , ·) : X ×Y → C

is called a non-degenerate bilinear form if
(i) for any α ∈ X , α ≥= 0, there is a Γ ∈ Y such that (α, Γ) ≥= 0, and for any

Γ ∈ Y , Γ ≥= 0, there is a α ∈ X such that (α, Γ) ≥= 0;
(ii) for any α1, α2, α ∈ X , Γ1, Γ2, Γ ∈ Y , and δ1, δ2 ∈ C,

(δ1α1 + δ2α2, Γ) = δ1(α1, Γ) + δ2(α2, Γ),

(α, δ1Γ1 + δ2Γ2) = δ1(α, Γ1) + δ2(α, Γ2).

2.28 Definition. By a dual system (X, Y ) we understand a pair of normed spaces X
and Y together with a non-degenerate bilinear form (· , ·) : X × Y → C.

2.29 Definition. Let (X, Y ) be a dual systemwith bilinear form (· , ·). Two operators
K : X → X and K ∗ : Y → Y are called adjoint if

(Kα, Γ) = (α, K ∗Γ) (2.47)

for all α ∈ X and Γ ∈ Y .

2.30 Remark. It can be shown without difficulty (Colton and Kress 1983) that if an
operator K : X → X has an adjoint K ∗ : Y → Y in a dual system (X, Y ), then K ∗
is unique, and both K and K ∗ are linear.

2.31 Definition. Let (X, Y ) be a dual system with bilinear form (· , ·), K : X → X
an operator that has a (unique) adjoint K ∗ : Y → Y , I the identity operator (which,
for simplicity, is denoted by the same symbol regardless of the space where it acts),
and ω ∈ C, ω ≥= 0, and consider the equations

(K − ωI )α = f, f ∈ X, (K)

(K ∗ − ωI )Γ = g, g ∈ Y, (K*)

together with their homogeneous versions (K0) and (K∗
0). We say that the Fredholm

Alternative holds for K in (X, Y ) if either
(i) (K0) has only the zero solution, in which case so does (K∗

0), and (K) and (K∗)
have unique solutions for any f ∈ X and g ∈ Y , respectively, or

(ii) (K0) and (K∗
0) have the same finite number of linearly independent solutions

{α1, . . . , αn} and {Γ1, . . . , Γn}, and (K) and (K∗) are solvable, respectively, if and
only if

( f, Γi ) = 0, (αi , g) = 0, i = 1, . . . , n.

2.32 Theorem. Let (X, Y ) be a dual system and K : X → X a compact linear
operator that has a (unique) compact adjoint K ∗ : Y → Y. Then the Fredholm
Alternative holds for K in (X, Y ).
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A full, detailed proof of this assertion can be found, for example, in themonograph
(Colton and Kress 1983).

2.33 Remark. Let K be the operator defined by (2.44), and consider the dual system(
C0,δ(∂S), C0,δ(∂S)

)
, δ ∈ (0, 1), with the bilinear form

(α, Γ) =
∫
∂S

α(ω )Γ(ω ) dω, α, Γ ∈ C0,δ(∂S), (2.48)

which is easily seen to satisfy the conditions in Definition 2.2.7. From (2.47) and
(2.48) we have

(Kα, Γ) =
∫
∂S

[ ∫
∂S

k(z, ω )α(ω ) dω

]
Γ(z) dz

=
∫
∂S

α(ω )

[ ∫
∂S

k(z, ω )Γ(z) dz

]
dω

= (α, K ∗Γ),

where

(K ∗α)(z) =
∫
∂S

k∗(z, ω )α(ω ) dω,

with k∗(z, ω ) = k(ω, z).
This means that if k(z, ω ) is a proper (1 − δ)-singular kernel on ∂S with respect

to both z and ω , then, by Theorems 2.26 and 2.32, the Fredholm Alternative holds
for K .

The Fredholm Alterative does not hold in general for operators with 1-singular
kernels. However, there is a class of such operators for which the assertion remains
true.

Theorem 2.23 enables us to introduce the following concept.

2.34 Definition. An operator K : C0,δ(∂S) → C0,δ(∂S), δ ∈ (0, 1), is called
δ-regular singular if it is defined by an expression of the form

(Kα)(z) =
∫
∂S

k̂(z, ω )

ω − z
α(ω ) dω, z ∈ ∂S, (2.49)

where k̂(z, ω ) belongs to C0,δ(∂S) with respect to each variable, uniformly relative
to the other one, and satisfies the inequality

|k̂(z, ω ) − k̂(z′, ω )| ∀ c|z − z′| |z − ω |δ−1, c = const > 0,
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for all z, z′, ω ∈ ∂S such that 0 < |z − z′| < 1
2 |z − ω |. (The value of k̂(z, ω ) at

z = ω may also be understood in the sense of continuous extension.)

2.35 Theorem. If k(x, y) is a proper λ -singular kernel on ∂S, λ ∈ [0, 1), with
respect to both x and y, then the operator K on C0,1−λ (∂S) defined by

(Kα)(x) =
∫
∂S

k(x, y)α(y) ds(y), x ∈ ∂S,

is (1 − λ )-regular singular, and k̂(z, ω ) in (2.49) satisfies

k̂(z, z) = 0, z ∈ ∂S.

Proof. Clearly, (Kα)(x) is an improper integral for all x ∈ ∂S.
In accordance with our notational convention, we write

∫
∂S

k(x, y)α(y) ds(y) =
∫
∂S

k(z, ω )α(ω )θ̄(ω ) dω =
∫
∂S

k̂(z, ω )

ω − z
dω,

where θ(z) is defined by (2.34) and

k̂(z, ω ) = (ω − z)k(z, ω )θ̄(ω ).

By Definition 1.26, k̂(z, z) = 0 in the sense of continuous extension.
Let z, z′, ω ∈ ∂S be such that 0 < |z − z′| < 1

2 |z − ω |. In this case

|z′ − ω | ∪ |z − ω | − |z − z′| > |z − ω | − 1
2 |z − ω | = 1

2 |z − ω |. (2.50)

Since |θ(ω )| = 1, ω ∈ ∂S, we have

|k̂(z, ω ) − k̂(z′, ω )| = |(ω − z)k(z, ω ) − (ω − z′)k(z′, ω )|
∀ |z − ω | |k(z, ω ) − k(z′, ω )| + |z − z′| |k(z′, ω )|
∀ c1|z − z′|(|z − ω |−λ + |z′ − ω |−λ ),

which, on the basis of (2.50), shows that

|k̂(z, ω ) − k̂(z′, ω )| ∀ c2|z − z′| |z − ω |−λ

and that

|k̂(z, ω ) − k̂(z′, ω )| ∀ c3|z − z′|1−λ ,
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where the constants c1, c2, c3 > 0 are independent of z, z′, and ω .
If |z − z′| ∪ 1

2 |z − ω |, then

|z′ − ω | ∀ |z − z′| + |z − ω | ∀ 3|z − z′|;

consequently,

|k̂(z, ω ) − k̂(z′, ω )| ∀ |z − ω | |k(z, ω )| + |z′ − ω | |k(z′, ω )|
∀ c1(|z − ω |1−λ + |z′ − ω |1−λ ) ∀ c4|z − z′|1−λ ,

where c4 is independent of z, z′, and ω .
The Hölder continuity of k̂(z, ω ) with respect to ω is proved similarly by writing

|k̂(z, ω ) − k̂(z, ω ′)| ∀ |ω − z| |k(z, ω )| |θ(ω ) − θ(ω ′)|
+ |ω − z| |k(z, ω ) − k(z, ω ′)| + |ω − ω ′| |k(z, ω ′)|

and using the fact that θ ∈ C0,δ(∂S). ∈�
2.36 Definition. Consider an equation of the form

(K − ωI )α = f on ∂S, (2.51)

where K is an δ-regular singular operator, α and f are 3 × 1 matrices in C0,δ(∂S),
δ ∈ (0, 1),ω ∈ C,ω ≥= 0, and det

[−ωE3±β i k̂(z, z)
]
(see Definition 2.34), where

E3 is the identity 3 × 3 matrix, do not vanish on ∂S. The number (Muskhelishvili
1946)

η = 1

2β

[
arg

det
( − ωE3 − β i k̂(z, z)

)
det

( − ωE3 + β i k̂(z, z)
)

]
∂S

, (2.52)

where
[
Φ(z)

]
∂S denotes the change in Φ(z) as z traverses ∂S once anticlockwise, is

called the index of equation (2.51).
When (2.51) is a scalar equation, the symbols det and E3 are dropped in (2.52).

2.37 Remark. Let K be an δ-regular singular operator, δ ∈ (0, 1), and consider the
dual system

(
C0,δ(∂S), C0,δ(∂S)

)
with the bilinear form (2.48). Then from (2.47)

and (2.49) we conclude that the kernel of the adjoint K ∗ of K is −k̂(ω, z)/(ω − z),
which implies that, by (2.52), the index of the equation

(K ∗ − ωI )Γ = g on ∂S, g ∈ C0,δ(∂S),

is equal to −η.

2.38 Theorem. If K is an δ-regular singular operator, δ ∈ (0, 1), such that the
index of the equation (K) is zero, then the Fredholm Alternative holds for K in the
dual system

(
C0,δ(∂S), C0,δ(∂S)

)
with the bilinear form (2.48).
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A comprehensive discussion of this assertion can be found in Muskhelishvili
(1946) and Kupradze et al. (1979). Its proof consists of two stages. First, it is shown
that we can always find an δ-regular singular operator L and a θ ∈ C, θ ≥= 0, such
that the equation

(L − θ I )(K − ωI )α = (L − θ I ) f

is of the form
(K̃ − ω̃I )α̃ = f̃ , (K̃ )

where ω̃ ∈ C, ω̃ ≥= 0, f̃ ∈ C0,δ(∂S), K̃ is an integral operator defined by

(K̃ α̃)(z) =
∫
∂S

k̃(z, ω )α̃(ω ) dω, z ∈ ∂S,

and k̃(z, ω ) is a proper (1−δ)-singular kernel on ∂S with respect to both z and ω . By
Remark 2.33, the Fredholm Alternative holds for the operator K in the dual system(
C0,δ(∂S), C0,δ(∂S)

)
with the bilinear form (2.48). The second part of the proof

consists in showing that, since the indices of both (K) and (K∗) are zero (the latter
according to Remark 2.37), (K), (K̃) and (K∗), (K̃∗) have, respectively, the same
solutions.

2.39 Remark. Let K : C0,δ(∂S) → C0,δ(∂S), δ ∈ (0, 1), be an operator of the
form

(Kα)(z) =
∫
∂S

k(z, ω )α(ω ) dω, z ∈ ∂S,

and consider the corresponding equation (K)

−ωα(z) +
∫
∂S

k(z, ω )α(ω ) dω = f (z), z ∈ ∂S.

Now suppose that, for f and ω real, when we change from z and ω to x and y the
transformed equation

−ωα(x) +
∫
∂S

k(x, y)θ(y)α(y) ds(y) = f (x), x ∈ ∂S,

where θ is defined by (2.34), is real. By Remark 2.33, the kernel of the adjoint
operator K ∗

c in the complex dual system
(
C0,δ(∂S), C0,δ(∂S)

)
with the bilinear

form (2.48) is
k∗

c (z, ω ) = k(ω, z) = k(y, x)θ(y).
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On the other hand, it is easy to see that the kernel of the adjoint K ∗
r in the real dual

system
(
C0,δ(∂S), C0,δ(∂S)

)
with the bilinear form

(α, Γ) =
∫
∂S

α(y)Γ(y) ds(y) (2.53)

is
k∗

r (x, y) = k(y, x)θ(x),

which is different from k∗
c (z, ω ). In Muskhelishvili (1946) it is shown that if the

Fredholm Alternative holds for the operator K in the complex system, then it also
holds for it in the real system, provided that we confine ourselves to real solutions
of (K) and (K∗) with K ∗ = K ∗

r .

2.40 Remark. If C0,δ(∂S) is understood as a space of 3 × 1 matrix functions, then
α is replaced by αT in (2.48) and (2.53).
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Chapter 3
Bending of Elastic Plates

3.1 The Two-Dimensional Plate Model

We consider the averaging operators Iα−1 and Jα−1 defined by

(Iα−1s)(xγ ) = 1

h0

[
x α−1
3 s(xi )

]x3 = h0/2
x3 =−h0/2

,

(Jα−1s)(xγ ) = 1

h0

h0/2∫
−h0/2

x α−1
3 s(xi ) dx3. (3.1)

Setting

Nαβ = J1tαβ,

N3α = J0t3α,

gα = J1 fα + I1t3α,

g3 = J0 f3 + I0t33, (3.2)

from (1.1) and (3.1) we obtain the equilibrium equations

Nαβ,β − N3α + gα = 0,

N3β,β + g3 = 0. (3.3)

By analogy with (1.3), for a direction n = (n1, n2)
T in the middle plane we write

Nα = Nαβnβ,

N3 = N3βnβ. (3.4)

3.1 Remarks. It is easy to verify that N3α , Nαα (α not summed), and N12 = N21
are, respectively, the averaged transverse shear forces and averaged bending and
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twisting moments with respect to the middle plane, acting on the face of a vertical
cross-section element of the plate perpendicular to the xα-axis. Similarly, J0 f3
and J1 fα are the averaged body forces and moments, while I0t33 and I1t3α are
the resultant averaged force and moments acting on the faces x3 = ±h0/2. For
simplicity, from now on we will omit the word ‘averaged’ when referring to forces
and moments in the plate.

It can also be seen that the components of the moment with respect to the middle
plane and the transverse shear force in a direction n are εβα Nβ and N3. If the mo-
ment is computed with respect to the origin of coordinates, then its components are
εβα(Nβ − xβ N3). Clearly, knowing the Ni at a point is equivalent to knowing the
εβα(Nβ − xβ N3) and N3.

To avoid a clash of notation with the harmonic single-layer potential, in what
follows we write ui in place of vi on the right-hand side of (1.6). Thus, from (1.6),
(1.2), and (3.1) we obtain the constitutive relations

Nαβ = h 2[λuγ,γ δαβ + μ(uα,β + uβ,α)
]
,

N3α = μ(uα + u3,α), (3.5)

where h 2 = h 2
0 /12. The same formulas and (1.3) show that

Nα = J1tα, N3 = J0t3.

To establish the compatibility conditions for the Niα , first we use (3.5) to deduce
that

u1,1 = 1

2h 2μ

[
(1 − σ)N11 − σ N22

]
,

u2,2 = 1

2h 2μ

[
(1 − σ)N22 − σ N11

]
,

u1,2 + u2,1 = 1

h 2μ
N12, (3.6)

u1,2 − u2,1 = 1

μ
(N31,2 − N32,1),

where

σ = λ

2(λ + μ)

is Poisson’s ratio. The compatibility conditions are then derived by equating uα,12
with uα,21 after computing these derivatives from (3.6). As a result, we obtain

h 2(N31,12 − N32,11) + N12,1 − (1 − σ)N11,2 + σ N22,2 = 0,

h 2(N32,12 − N31,22) + N12,2 + σ N11,1 − (1 − σ)N22,1 = 0. (3.7)

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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From (3.3) and (3.5) we find that the equilibrium equations in terms of the dis-
placements are

A(∂x )u(x) + g(x) = 0, (3.8)

where A(∂x ) = A(∂/∂xγ ) and A(ξ) = A(ξγ ) is the matrix

⎛
⎝ h 2μΔ + h 2(λ + μ)ξ21 − μ h 2(λ + μ)ξ1ξ2 −μξ1

h 2(λ + μ)ξ1ξ2 h 2μΔ + h 2(λ + μ)ξ22 − μ −μξ2
μξ1 μξ2 μΔ

⎞
⎠ , (3.9)

u = (u1, u2, u3)
T, g = (g1, g2, g3)T, and Δ = ξαξα. Then the vector N of

components

Ni = Niβnβ

can be written as

N (x) = T (∂x ; n)u(x), (3.10)

where T (∂x ; n) = T (∂/∂xγ ; n) and T (ξ ; n) = T (ξγ ; nδ) is the matrix

⎛
⎝ h 2(λ + 2μ)n1ξ1 + h 2μn2ξ2 h 2μn2ξ1 + h 2λn1ξ2 0

h 2λn2ξ1 + h 2μn1ξ2 h 2μn1ξ1 + h 2(λ + 2μ)n2ξ2 0
μn1 μn2 μnαξα

⎞
⎠ . (3.11)

For brevity, we also write T (∂x ; ν) ≡ T (∂x ) ≡ T .
From (1.4), (1.6), (3.1), (3.2), and (3.5) we see that the internal energy density

per unit area of the middle plane is

E(u, u) = J0E = 1
4 Nαβ(uα,β + uβ,α) + 1

2 N3α(uα + u3,α)

= 1
2

{
h 2[λuα,αuβ,β + μuα,β(uα,β + uβ,α)

]
+ μ(uα + u3,α)(uα + u3,α)

}
. (3.12)

Throughout what follows we assume that the Lamé constants satisfy the conditions

λ + μ > 0, μ > 0. (3.13)

3.2 Theorem. E(u, u) is a positive quadratic form and (3.8) an elliptic system.

Proof. From (3.12) it follows that

E(u, u) = 1
2

{
h 2[E0(u, u) + μ(u1,2 + u2,1)

2]
+ μ

[
(u1 + u3,1)

2 + (u2 + u3,2)
2]}, (3.14)
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where

E0(u, u) = (λ + 2μ)u2
1,1 + 2λu1,1u2,2 + (λ + 2μ)u2

2,2. (3.15)

We now easily verify that (3.13) are necessary and sufficient conditions for E0(u, u)

to be a positive quadratic form.
The second part of the assertion is obtained from the fact that, by (3.9), the matrix

A0(ξ) corresponding to the second-order derivatives in system (3.8) is invertible for
all ξ ∈= 0 since

det A0(ξ) = a1(ξ
2
1 + ξ22 )3,

where

a1 = h 4μ2(λ+2μ) > 0. �⇔

3.3 Theorem. E(u, u) = 0 if and only if

u(x) = (c1, c2, c0 − c1x1 − c2x2)
T, (3.16)

where c0, cα = const.

Proof. Replacing (3.16) in (3.12), we see immediately that E(u, u) = 0.
Conversely, suppose that E(u, u) = 0. From (3.14) and (3.15) we get

u1,1 = u2,2 = 0,

u1,2 + u2,1 = 0,

u3,α + uα = 0.

The first two equations yield the equalities

u1 = χ1(x2),

u2 = χ2(x1),

which, replaced in the second relation, lead to

χ1(x2) = kx2 + c1,

χ2(x1) = −kx1 + c2,

where k, c1, and c2 are arbitrary constants. Using the compatibility condition for
u3, that is, u3,12 = u3,21, from the last two equations we find that k = 0. Hence,
uα = cα, so that

u3,α = −cα.
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Integrating the equation for α = 1 and substituting the result into that for α = 2, we
obtain

u3 = c0 − cαxα,

where c0 is an arbitrary constant. �⇔
3.4 Remarks. (i) Since the three-dimensional displacement field we are investigating
is of the form

(
x3u1(x1, x2), x3u2(x1, x2), u3(x1, x2)

)T
,

the most general admissible translation and rotation vectors are, respectively, of the
form

(0, 0, a)T,

(−x3b2, x3b1, x1b2 − x2b1)
T,

where a, b1, and b2 are arbitrary constants. Therefore, setting a = c0, b1 = c2, and
b2 = −c1, we conclude that (3.16) represents an arbitrary rigid displacement.

(ii) It is obvious that the columns of the matrix

F =
⎛
⎝ 1 0 0

0 1 0
−x1 −x2 1

⎞
⎠ (3.17)

form a basis for the space of rigid displacements, and that a generic rigid displacement
of the form (3.16) can be written as

u = Fc,

where c = (c1, c2, c0)T.

3.5 Theorem. If u ≤ C 2(S+) ∩ C1(S̄+), then

∫
S+

(Aαi − xα A3i )ui da =
∫
∂S

(Tαi − xαT3i )ui ds,

∫
S+

A3i ui da =
∫
∂S

T3i ui ds.

Proof. Since (3.3) and (3.8) are the same system and (3.4) and (3.10) the same 3× 1
matrix, by the divergence theorem,
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∫
S+

(Aαi − xα A3i )ui da =
∫
S+

(Nαβ,β − N3α − xα N3β,β) da

=
∫
∂S

(Nαβ − xα N3β)νβ ds =
∫
∂S

(Tαi − xαT3i )ui ds,

∫
S+

A3i ui da =
∫
S+

N3β,β da

=
∫
∂S

N3βνβ ds =
∫
∂S

T3i ui ds.

3.6 Theorem. (Betti formula) If u ≤ C 2(S+) ∩ C1(S̄+) is a solution of the homo-
geneous system (3.8), then

2
∫
S+

E(u, u) da =
∫
∂S

uT Tu ds. (3.18)

Proof. Using (3.8), (3.3), (3.10), (3.4), the divergence theorem, and (3.12), we find
that for any u ≤ C 2(S+) ∩ C1(S̄+),

0 =
∫
S+

uT Au da

=
∫
S+

[
(Nαβ,β − N3α)uα + N3α,αu3

]
da

= −
∫
S+

[
Nαβuα,β + N3α(uα + u3,α)

]
da +

∫
∂S

Ni ui ds

= −2
∫
S+

E(u, u) da +
∫
∂S

uTTu ds,

which yields the result. �⇔
3.7 Theorem. (Reciprocity relation) If u, ũ ≤ C 2(S+) ∩ C1(S̄+), then

∫
S+

(ũT Au − uT Aũ) da =
∫
∂S

(ũTT u − uTT ũ) ds.

Proof. Let Niβ and Ñiβ be the moments and transverse shear forces generated by
the displacements u and ũ, respectively. Using the equivalence of (3.3) and (3.8),
together with (3.4), (3.10), and the divergence theorem, we find that
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∫
S+

(ũT Au − uT Aũ) da

=
∫
S+

[
(Nαβ,β − N3α)ũα + N3α,α ũ3 − (Ñαβ,β − Ñ3α)uα − Ñ3α,αu3

]
da

=
∫
∂S

(Ni ũi − Ñi ui ) ds

−
∫
S+

[
Nαβ ũα,β + N3α(ũα + ũ3,α) − Ñαβuα,β − Ñ3α(uα + u3,α)

]
da

=
∫
∂S

(ũTT u − uTT ũ) ds,

since, by (3.5), the integrand of the second integral vanishes in S+. �⇔

3.2 Singular Solutions

We seek a Galerkin representation for the solution of (3.8). Following the method
described in Constanda (1978), if A≥(ξ) is the adjoint of A(ξ), then

u(x) = A≥(∂x )B(x), (3.19)

where B is the solution of

(det A)(∂x )B(x) + g(x) = 0. (3.20)

More explicitly, from (3.9) we find that

A≥
αβ(ξ) = h 2μ(λ + 2μ)δαβΔΔ − h 2μ(λ + μ)Δξαξβ − μ2ξαξβ,

A≥
33(ξ) = h 4μ(λ + 2μ)ΔΔ − h 2μ(λ + 3μ)Δ + μ2, (3.21)

A≥
α3(ξ) = −A≥

3α(ξ) = μ2ξα(h 2Δ − 1),

and

det A(ξ) = a1ΔΔ

(
Δ − 1

h 2

)
. (3.22)

Taking in turn each component of g equal to δ(|x − y|), where δ is the Dirac delta,
and setting the other two equal to zero, from (3.19) and (3.20) we obtain the matrix
of fundamental solutions

D(x, y) = A≥(∂x )t (x, y) (3.23)
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for the operator −A, where, by (3.20) and (3.22), t (x, y) is a solution of

ΔΔ

(
Δ − 1

h 2

)
t (x, y) = − 1

a1
δ(|x − y|). (3.24)

We seek t of the form

t (x, y) = b1 ln |x − y| + b2|x − y|2 ln |x − y| + b3K0

( |x − y|
h

)
,

where K0 is themodifiedBessel function of the secondkind andorder zero.Replacing
this in (3.24) and taking into account the fact that, with respect to x ,

Δ(ln |x − y|) = 2πδ(|x − y|),
ΔΔ(|x − y|2 ln |x − y|) = 8πδ(|x − y|),(
Δ − 1

h 2

)
K0

( |x − y|
h

)
= −2πδ(|x − y|),

we deduce that

t (x, y) = t (|x − y|)
= a2

[
(4h 2 + |x − y|2) ln |x − y| + 4h 2K0

( |x − y|
h

)]
, (3.25)

where

a2 = 1

8πh 2μ2(λ + 2μ)
. (3.26)

In view of (3.21) and (3.23)–(3.25),

D(x, y) = (
D(y, x)

)T
. (3.27)

Along with D(x, y), we consider the matrix of singular solutions

P(x, y; n) = (
T (∂y; n)D(y, x)

)T
, (3.28)

writing, for simplicity, P
(
x, y; ν(y)

) ≡ P(x, y).
To determine the behavior of D(x, y) and P(x, y) in the neighborhood of x = y,

we note (see Abramowitz and Stegun (1964), formulas (9.6.12) and (9.6.13) on
p. 375) that, as ξ √ 0,

K0(ξ) = −(
1 + 1

4 ξ2 + 1
64 ξ4 + · · · ) ln ξ,
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so from (3.25) we deduce that for |x − y| small,

t (x, y) = a3|x − y|4 ln |x − y| + t̃(x, y), (3.29)

where t̃ ≤ C5(R2) and

a3 = − 1

128πh 4μ2(λ + 2μ)
.

We denote by {Ei j } the standard ordered basis for the vector space of 3 × 3
matrices. From (3.23), (3.21), (3.25), (3.28), (3.11), and (3.29), we now find that for
y ≤ ∂S and x close to y,

D(x, y) = − 1

2π
(ln |x − y|)

(
a4Eγ γ + 1

μ
E33

)

+ 2a2μ(λ + μ)
(xα − yα)(xβ − yβ)

|x − y|2 Eαβ + D̃(x, y), (3.30)

P(x, y) = − 1

2π

{
μ′εαβ

[
∂

∂s(y)
ln |x − y|

]
Eαβ

+
[

∂

∂ν(y)
ln |x − y|

]
E3

− (λ′ + μ′)εαγ

[
∂

∂s(y)

(xα − yα)(xβ − yβ)

|x − y|2
]

Eγβ

+ εαβ

[
∂

∂s(y)

(
(xα − yα) ln |x − y|)

](
λ′E3β + 1

h 2 Eβ3

)

− μ′
[

∂

∂ν(y)

(
(xα − yα) ln |x − y|)

]
E3α

}
+ P̃(x, y),

(3.31)

where E3 is the identity 3× 3 matrix, D̃(x, y) and P̃(x, y) satisfy the conditions of
Theorem 2.9 (or Theorem 2.10) with any γ ≤ (0, 1),

a4 = λ + 3μ

2h 2μ(λ + 2μ)
,

and

λ′ = λ

λ + 2μ
,

μ′ = μ

λ + 2μ
. (3.32)
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3.8 Theorem. The columns of D(x, y) and P(x, y; n) are solutions of the homo-
geneous system (3.8) at all x ≤ R

2, x ∈= y, and for any direction n independent of x .

Proof. Since A(ξ)A≥(ξ) = (
det A(ξ)

)
E3, from (3.23), (3.22), and (3.24) we see that

for x ∈= y,

A(∂x )D(x, y) = A(∂x )A≥(∂x )t (x, y) = (det A)(∂x )t (x, y) = 0.

Also, using (3.28) and expliciting the individual components, we easily convince
ourselves that

A(∂x )P(x, y; n) = (
T (∂y; n)

(
A(∂x )D(x, y)

)T)T = 0. �⇔

3.9 Theorem. (Somigliana representation formula) If the 3 × 1 matrix function
u ≤ C 2(S+) ∩ C1(S̄+) is a solution of the homogeneous system (3.8), then

φ(x)u(x) =
∫
∂S

[
D(x, y)T (∂y)u(y) − P(x, y)u(y)

]
ds(y), (3.33)

where

φ(x) =

⎧⎪⎨
⎪⎩
1, x ≤ S+,
1
2 , x ≤ ∂S,

0, x ≤ S−.

(3.34)

Proof. Let x ≤ S+, and let σx,ω ⊂ S+ be a disk with center at x and radius ω

sufficiently small. Applying Theorem 3.7 in S+ \ σx,ω, with ũ replaced in turn by
each column of D, and making use of Theorem 3.8, we find that

∫
∂S

[
D(x, y)T (∂y)u(y) − P(x, y)u(y)

]
ds(y)

=
∫

∂σx,ω

[
D(x, y)T (∂y)u(y) − P(x, y)u(y)

]
ds(y), (3.35)

where ∂σx,ω is the boundary of σx,ω.
By (3.30),

∫
∂σx,ω

D(x, y)T (∂y)u(y) ds(y) = O(ω lnω).

From (3.31) we see that for y ≤ ∂σx,ω,
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P(x, y) = O

(
1

ω

)
,

∫
∂σx,ω

P(x, y) ds(y) = −E3 + O(ω lnω);

consequently, since u(x) − u(y) = O(ω),

∫
∂σx,ω

P(x, y)u(y) ds(y)

=
∫

∂σx,ω

P(x, y)
[
u(y) − u(x)

]
ds(y)

+
[ ∫

∂σx,ω

P(x, y) ds(y)

]
u(x)

= −u(x) + O(ω).

The first part of the assertion now follows from (3.35) if we let ω √ 0.
The casewhen x ≤ ∂S is handled in a similar way, with σx,ω replaced by σx,ω∩S+

and ∂σx,ω by its part lying in S+. As was remarked in the proof of Theorem 2.2, for
ω small the length of the latter is πω + O(ω2), which yields the required formula.

The result when x ≤ S− is obtained directly from (3.35). �⇔

3.3 Case of the Exterior Domain

For y fixed and |x | √ ∞, we have

1

|x − y|2 = 1

|x |2 + 2
∩x, y∀
|x |4 − |y|2

|x |4 + 4
∩x, y∀2

|x |6 + O(|x |−5),

ln |x − y| = ln |x | − ∩x, y∀
|x |2 + 1

2

|y|2
|x |2 − ∩x, y∀2

|x |4 (3.36)

+ ∩x, y∀|y|2
|x |4 − 4

3

∩x, y∀3
|x |6 + O(|x |−4),

and (see Abramowitz and Stegun 1964)

K0

( |x − y|
h

)
= O(|x |−1/2e−|x |). (3.37)

Then from (3.21), (3.23), (3.25), (3.28), (3.36), and (3.37) we obtain the asymptotic
relations
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D11, D22 = O(ln |x |), D12, D21 = O(1),

Dα3, D3α = O(|x | ln |x |), D33 = O(|x |2 ln |x |), (3.38)

Pαβ, P33 = O(|x |−1), P3α = O(ln |x |), Pα3 = O(|x |−2).

This means that we cannot obtain analogs of Theorems 3.6 and 3.9 in S− without
restrictions on the behavior of u at infinity.

Let A be the set of 3 × 1 matrix functions u that, in terms of polar coordinates
r, θ admit, as r √ ∞, an asymptotic expansion of the form

u1(r, θ) = r−1[m0 sin θ + 2m1 cos θ − m0 sin(3θ) + (m2 − m1) cos(3θ)
]

+ r−2[(2m3 + m4) sin(2θ) + m5 cos(2θ)

− 2m3 sin(4θ) + 2m6 cos(4θ)
]

+ r−3[2m7 sin(3θ) + 2m8 cos(3θ) + 3(m9 − m7) sin(5θ)

+ 3(m10 − m8) cos(5θ)
] + O(r−4),

u2(r, θ) = r−1[2m2 sin θ + m0 cos θ + (m2 − m1) sin(3θ) + m0 cos(3θ)
]

+ r−2[(2m6 + m5) sin(2θ) − m4 cos(2θ)

+ 2m6 sin(4θ) + 2m3 cos(4θ)
]

+ r−3[2m10 sin(3θ) − 2m9 cos(3θ) + 3(m10 − m8) sin(5θ)

+ 3(m7 − m9) cos(5θ)
] + O(r−4),

u3(r, θ) = −(m1 + m2) ln r − [
m1 + m2 + m0 sin(2θ)

+(m1 − m2) cos(2θ)
] + r−1[(m3 + m4) sin θ + (m5 + m6) cos θ

−m3 sin(3θ) + m6 cos(3θ)
]

+ r−2[m11 sin(2θ) + m12 cos(2θ) + (m9 − m7) sin(4θ)

+ (m10 − m8) cos(4θ)
] + O(r−3), (3.39)

where m1, . . . , m12 are arbitrary constants. We also introduce the set

A ≥ = {
u≥: u≥ = u + u0, u ≤ A , u0 is of the form (3.16)

}
.

3.10 Remarks. In view of (3.12),A andA ≥ are classes of finite energy functions.

3.11 Remarks. For simplicity, throughout what follows we consider only the
homogeneous system (3.8); that is,

Au = 0. (3.40)

This is done without loss of generality since, as shown in Sect. 5.4, if g is suffi-
ciently smooth, then (3.8) can be reduced to (3.40) by means of a particular solution
constructed in the form of a Newtonian potential.

http://dx.doi.org/10.1007/978-1-4471-6434-0_5
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3.12 Theorem. (Somigliana representation formula) If the 3 × 1 matrix function
u ≤ C 2(S−) ∩ C1(S̄−) ∩ A is a solution of (3.8), then

[
1 − φ(x)

]
u(x) = −

∫
∂S

[
D(x, y)T (∂y)u(y) − P(x, y)u(y)

]
ds(y),

where φ is defined by (3.34).

Proof. Consider a circle ΓR with the center at x and radius R sufficiently large so
that ∂S lies inside ΓR . With the origin of polar coordinates at x , from (3.11), (3.21),
(3.23), (3.25), (3.28), and (3.36)–(3.39) we find that for y = (R, θ) ≤ ∂ΓR ,

T3i ui = R−3[(m7 + m9 − 2m11) sin(2θ)

+ (m8 + m10 − 2m12) cos(2θ)
] + O(R−4),

(D3αTαi − P3i )ui = (4λ ln R + 3λ + 2μ)

4(λ + 2μ)R

[
m0 sin(2θ) + 2(m2 − m1) cos(2θ)

]

+ O(R−2 ln R),

(Dαi Ti j − Pα j )u j = O(R−2 ln R);

consequently,

∫
∂ΓR

[
D(x, y)T u(y) − P(x, y)u(y)

]
ds(y) = O(R−1 ln R),

and the desired result is obtained by applying Theorem 3.9 in S− ∩ ΓR and letting
R √ ∞. �⇔
3.13 Theorem. (Betti formula) If u ≤ C 2(S−) ∩ C1(S̄−) ∩ A ≥ is a solution of
(3.40), then

2
∫
S−

E(u, u) da = −
∫
∂S

uTTu ds. (3.41)

Proof. The required formula is obtained via the procedure used in the proof of
Theorem 3.12—this time in conjunction with Theorem 3.5—after noting that for
R large,

Tαi ui , T3i ui = O(R−2), (3.42)

which means that uTT u = O(R−2) for u ≤ A ≥. �⇔
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3.4 Uniqueness of Regular Solutions

LetK ,L ,P ,Q,R, andS be continuous 3×1matrix functions prescribed on ∂S,
and let σ be a continuous, positive definite 3×3 matrix function on ∂S. We consider
the following interior and exterior Dirichlet, Neumann, and Robin boundary value
problems:

(D+) Find u ≤ C 2(S+) ∩ C1(S̄+) satisfying

Au(x) = 0, x ≤ S+,

u(x) = P(x), x ≤ ∂S. (3.43)

(N+) Find u ≤ C 2(S+) ∩ C1(S̄+) satisfying

Au(x) = 0, x ≤ S+,

T u(x) = Q(x), x ≤ ∂S. (3.44)

(R+) Find u ≤ C 2(S+) ∩ C1(S̄+) satisfying

Au(x) = 0, x ≤ S+,

T u(x) + σ(x)u(x) = K (x), x ≤ ∂S. (3.45)

(D−) Find u ≤ C 2(S−) ∩ C1(S̄−) ∩ A ≥ satisfying

Au(x) = 0, x ≤ S−,

u(x) = R(x), x ≤ ∂S. (3.46)

(N−) Find u ≤ C 2(S−) ∩ C1(S̄−) ∩ A satisfying

Au(x) = 0, x ≤ S−,

T u(x) = S (x), x ≤ ∂S. (3.47)

(R−) Find u ≤ C 2(S−) ∩ C1(S̄−) ∩ A satisfying

Au(x) = 0, x ≤ S−,

T u(x) − σ(x)u(x) = L (x), x ≤ ∂S. (3.48)

3.14 Definition. A solution as stated above is called a regular solution of the corre-
sponding problem.

3.15 Remark. The condition that u ≤ C1(S̄+) or u ≤ C1(S̄−) is necessary even in
the case of the Dirichlet problems, to ensure the applicability of the Betti formula.
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3.16 Theorem. (i) (D+), (D−), (N−), (R+), and (R−) have at most one regular
solution.

(ii) Any two regular solutions of (N+) differ by a 3× 1 matrix of the form (3.16).

Proof. (i) The difference u of two regular solutions of (D+) satisfies (3.43) with
P = 0; therefore, by Theorem 3.6 and the fact that E(u, u) is a positive quadratic
form,

E(u, u) = 0 in S+.

From Theorem 3.3 it now follows that u is of the form (3.16) in S̄+. Since u = 0 on
∂S, we deduce that u(x) = 0, x ≤ S̄+.

The same argument, but based on Theorem 3.13 instead of Theorem 3.6, is used
to prove the result for (D−).

If u is the difference of two regular solutions of (N−), then, as above, we conclude
that u is of the form (3.16) in S−. However, since u ≤ A , we see from (3.39) that
u = 0.

For (R+) we write

(T u)(x) = −(σu)(x), x ≤ ∂S,

and (3.18) leads to

2
∫
S+

E(u, u) da +
∫
∂S

uT(σu) ds = 0.

Since
uTσu = ui (σu)i = ui (σi j u j ) = σi j ui u j = σ(uTu)

and σ is positive definite, we deduce that u is a rigid displacement in S+ which
vanishes on ∂S, so u = 0.

The argument is analogous for (R−), with

(T u)(x) = (σu)(x), x ≤ ∂S,

replaced in (3.41).

(ii) As in the case of (D+), we find that the difference of two regular solutions of
(N+) is of the form (3.16). �⇔
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Chapter 4
The Layer Potentials

4.1 Layer Potentials with Smooth Densities

Let q = (qi j ), i = 1, . . . , n, j = 1, . . . , m, be a matrix, X a space of scalar
functions, and L a scalar operator on X . In what follows we write q ∈ X if qi j ∈ X ,
i = 1, . . . , n, j = 1, . . . , m; we also write Lq = (Lqi j ).

We introduce the single-layer plate potential

(V α)(x) =
∫
∂S

D(x, y)α(y) ds(y) (4.1)

and the double-layer plate potential

(Wα)(x) =
∫
∂S

P(x, y)α(y) ds(y), (4.2)

where α is a density 3 × 1 matrix.
If f is any of the potential-type functions defined in Sects. 2.1 and 2.2 for scalar

densities, here we denote by f α the 3 × 1 vector function of components f αi .

4.1 Theorem. If α ∈ C(∂S), then V α and Wα are analytic and satisfy (3.40) in
S+ ∈ S−.
Proof. Clearly, V α and Wα are twice continuously differentiable at any x /∈ ∂S and,
by Theorem 3.8, are solutions of (3.40). Their analyticity follows in the usual way
(see, for example, Miranda 1970). �⇔

Let p be the vector-valued functional on C(∂S) defined by

p f =
∫
∂S

FT f ds, (4.3)

where F is the matrix (3.17).
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4.2 Theorem. If α ∈ C(∂S), then

(i) Wα ∈ A ;
(ii) V α ∈ A if and only if pα = 0; that is, by (4.3), if and only if

(pα)Δ =
∫
∂S

(αΔ − xΔα3) ds = 0,

(pα)3 =
∫
∂S

α3 ds = 0.

Proof. (i) Expansion (3.39) for Wα is obtained from (4.2), (3.11), (3.21), (3.23),
(3.25), (3.28), (3.36), and (3.37).
(ii) Using the same formulas as above, from (4.1) we find that, as r = |x | ≤ ∞,

(V α)1(r, δ)

= − a2μ
2[(pα)3r(2 ln r + 1) cos δ + (pα)1(2 ln r + 2 + cos(2δ)) + (pα)2 sin(2δ)

]
+ (V α)A1 (r, δ),

(V α)2(r, δ)

= − a2μ
2[(pα)3r(2 ln r + 1) sin δ + (pα)2(2 ln r + 2 − cos(2δ)) + (pα)1 sin(2δ)

]
+ (V α)A2 (r, δ),

(V α)3(r, δ)

= a2μ(pα)3
[
μr2 ln r − 4h2(λ + 2μ) ln r − 4h2(λ + 3μ)

]
+ a2μ

[
(pα)1 cos δ + (pα)2 sin δ

][
μr(2 ln r + 1) − 4h2(λ + 2μ)r−1]

+ (V α)A3 (r, δ),

where (V α)A ∈ A . This can be written more compactly in the form

(V α)(r, δ) = M∞(r, δ)(pα) + (V α)A (r, δ), (4.4)

where M∞(r, δ) is the 3 × 3 matrix function with columns

M∞(1)(r, δ) = − a2μ
(
μ(2 ln r + 2 + cos(2δ)), μ sin(2δ),

− (μr(2 ln r + 1) − 4h2(λ + 2μ)r−1) cos δ
)T

,

M∞(2)(r, δ) = − a2μ
(
sin(2δ), μ(2 ln r + 2 − cos(2δ)),

− (μr(2 ln r + 1) − 4h2(λ + 2μ)r−1) sin δ
)T

,

M∞(3)(r, δ) = − a2μ
(
μr(2 ln r + 1) cos δ, μr(2 ln r + 1) sin δ,

− μr2 ln r + 4h2(λ + 2μ) ln r + 4h2(λ + 3μ)
)T

and a2 is the constant (3.26). The assertion now follows immediately from (4.4). �⇔
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4.3 Remark. The requirement that the solutions of the exterior boundary value
problems belong to A or A ≥ is justified by the fact that such solutions will be
sought in the form of single-layer or double-layer plate potentials.

In view of Theorem 4.1, to investigate the continuity and differentiability of V α

and Wα in S̄+ and S̄− it suffices to consider their behavior in S̄+
0 and S̄−

0 .

4.4 Theorem. If α ∈ C(∂S), then V α ∈ C0,Δ(R2) for any Δ ∈ (0, 1).

Proof. From (4.1) and (3.30) we see that for x ∈ S0\∂S,

V α = 1

2γ

(
a4Eβ β + 1

μ
E33

)
(vα) + 2a2μ(λ + μ)EΔτ(vb

Δτα) + (V α)A ,

where vα and vb
Δτα are defined by (2.1) and (2.15), respectively, and

(V α)A (x) =
∫
∂S

D̃(x, y)α(y) ds(y).

The assertion now follows from Theorems 2.1, 2.11, and 2.9. �⇔
4.5 Theorem. If α ∈ C0,Δ(∂S), Δ ∈ (0, 1], then Wα has C0,τ -extensions (Wα)+
and (Wα)− to S̄+ and S̄−, respectively, with τ = Δ for Δ ∈ (0, 1) and any τ ∈ (0, 1)
for Δ = 1. These extensions are given by

(Wα)+(x) =
{

(Wα)(x), x ∈ S+,

− 1
2 α(x) + (W0α)(x), x ∈ ∂S,

(Wα)−(x) =
{

(Wα)(x), x ∈ S−,
1
2 α(x) + (W0α)(x), x ∈ ∂S,

(4.5)

where

(W0α)(x) =
∫
∂S

P(x, y)α(y) ds(y), x ∈ ∂S, (4.6)

the integral being understood as principal value.

Proof. As mentioned at the beginning of Sect. 2.1, it suffices to perform the analysis
in the boundary strip S0 (see (1.44)). Thus, following the argument in the proof of
Theorem 4.4, from (4.2) and (3.31) we find that for x ∈ S0\∂S,

Wα = − 1

2γ

[
μ√νΔτ EΔτ(v f α) − E3(wα) − (λ√ + μ√)νΔβ Eβτ(ve

Δτα)

+ 1

2
νΔτ

(
λ√E3τ + 1

h2 Eτ3

)
(vc

Δα) − 1

2
E3Δ(vd

Δα)

]
+ W̃α, (4.7)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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where vc
Δα, vd

Δα, ve
Δτα, v f α, and wα are defined by (2.2), (2.16)–(2.18), and (2.24),

respectively,

(W̃α)(x) =
∫
∂S

P̃(x, y)α(y) ds(y),

and the kernel P̃(x, y) satisfies the conditions of Theorem 2.9 with any β ∈ (0, 1).
The assertion now follows from (4.7), Theorems 2.11, 2.12, 2.14, 2.9, and 2.2,

and Remarks 2.15 and 2.3. �⇔
4.6 Theorem. If α ∈ C0,Δ(∂S), Δ ∈ (0, 1], then the first-order derivatives of V α

in S+ and S− have C0,τ -extensions to S̄+ and S̄−, respectively, with τ = Δ for
Δ ∈ (0, 1) and any τ ∈ (0, 1) for Δ = 1. These extensions are given by

((V α),β)
+(x) =

{
(V α),β (x), x ∈ S+,

f β (x) + ((V α),β)0(x), x ∈ ∂S,

((V α),β)
−(x) =

{
(V α),β (x), x ∈ S−,

− f β (x) + ((V α),β)0(x), x ∈ ∂S,

where the components of the vector function f β are

f β
Δ = 4γa2μ

[
(λ + 2μ)εΔτ − (λ + μ)κΔκτ

]
κβ ατ,

f β
3 = 1

2μ κβ α3
(4.8)

and
((V α),β)0(x) =

∫
∂S

∂

∂xβ

D(x, y)α(y) ds(y), x ∈ ∂S,

the integral being understood as principal value.

Proof. Once again, we restrict our attention to the boundary strip S0. For x ∈ S0\∂S
and y ∈ ∂S we write

DΔτ = D≥
Δτ + D̃Δτ,

D33 = D≥
33 + D̃33,

(4.9)

where, by (3.30),

D≥
Δτ(x, y) = 2a2μ

[
− (λ + 3μ)εΔτ ln |x − y |

+ (λ + μ)
(xΔ − yΔ)(xτ − yτ)

|x − y|2
]
, (4.10)

D≥
33(x, y) = − 1

2γμ
ln |x − y |,

http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
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and D̃Δτ and D̃33 satisfy the conditions of Theorem 2.9 with any β ∈ (0, 1). From
(3.21), (3.23), and (3.25) it follows that

DΔ3 = −D3Δ = −a2μ
2(xΔ − yΔ)(2 ln |x − y | + 1), (4.11)

which also satisfies the conditions of Theorem 2.9 with any β ∈ (0, 1).
Using (1.7) and the equality

ντΣ νμσ = ετμεΣσ − ετσεΣμ, (4.12)

we find that

ντΣ

∂

∂s(y)

(xΔ − yΔ)(xΣ − yΣ )

|x − y|2

=
[
κτ(y)

∂

∂yΣ

− κΣ (y)
∂

∂yτ

]
(xΔ − yΔ)(xΣ − yΣ )

|x − y|2

= −εΔτ

∂

∂κ(y)
ln |x − y |

−2κΣ (y)
(xΔ − yΔ)(xτ − yτ)(xΣ − yΣ )

|x − y|4 . (4.13)

Next, (4.13) and (1.51) yield

∂

∂κ(y)

(xΔ − yΔ)(xτ − yτ)

|x − y|2
= −κΔ(y)

xτ − yτ

|x − y|2 − κτ(y)
xΔ − yΔ

|x − y|2
+ 2κΣ (y)

(xΔ − yΔ)(xτ − yτ)(xΣ − yΣ )

|x − y|4

=
[
κΔ(y)

∂

∂yτ

+ κτ(y)
∂

∂yΔ

]
ln |x − y |

− ντΣ

∂

∂s(y)

(xΔ − yΔ)(xΣ − yΣ )

|x − y|2
− εΔτ

∂

∂κ(y)
ln |x − y |

= [
κΔ(y)πτ(y) + κτ(y)πΔ(y)

] ∂

∂s(y)
ln |x − y |

+ [
2κΔ(y)κτ(y) − εΔτ

] ∂

∂κ(y)
ln |x − y |

− ντΣ

∂

∂s(y)

(xΔ − yΔ)(xΣ − yΣ )

|x − y|2 . (4.14)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Finally, from (4.10), (4.14), (1.7), and (1.51) we obtain

∂

∂xβ

D≥
Δτ(x, y) = − ∂

∂yβ

D≥
Δτ(y, x)

= 2a2μ

{
(λ + 3μ)εΔτ

[
νΣβ κΣ (y)

∂

∂s(y)
+ κβ (y)

∂

∂κ(y)

]
ln |x − y |

+ (λ + μ)

[
νβΣ κΣ (y)

∂

∂s(y)
− κβ (y)

∂

∂κ(y)

]
(xΔ − yΔ)(xτ − yτ)

|x − y|2
}

= 2a2μ

{
2κβ (y)

[
(λ + 2μ)εΔτ − (λ + μ)κΔ(y)κτ(y)

] ∂

∂κ(y)
ln |x − y |

+ [
(λ + 3μ)εΔτνΣβ κΣ (y)

− (λ + μ)
(
νΣτκΔ(y) + νΣΔκτ(y)

)
κΣ (y)κβ (y)

] ∂

∂s(y)
ln |x − y |

− (λ + μ)

[
νΣβ κΣ (y)

∂

∂s(y)

(xΔ − yΔ)(xτ − yτ)

|x − y|2

+ νΣτκβ (y)
∂

∂s(y)

(xΔ − yΔ)(xΣ − yΣ )

|x − y|2
]}

.

Similarly,

∂

∂xβ

D≥
33(x, y) = 1

2γμ

[
κβ (y)

∂

∂κ(y)
+ νΣβ κΣ (y)

∂

∂s(y)

]
ln |x − y |.

In view of (4.1) and the above calculation, for x ∈ S0 \∂S and y ∈ ∂S we can
now write

(V α),β = −γ−1w f β + vgβ + vb
Δβ pΔ

+ ve
ΔτqΔτβ + v f rβ + V β α. (4.15)

Here, wα, vα, vb
Δβ α, ve

Δτα, and v f α are defined by (2.1), (2.2), (2.15), (2.18), and

(2.24), respectively, the densities f β (given by (4.8)), gβ , pΔ , qΔτβ , and rβ are 3×1
vector functions of class C0,Δ(∂S), and

(V β α)(x) =
∫
∂S

F (x, y)tβ (y) ds(y),

where tβ is another 3× 1 vector function of class C0,Δ(∂S) andF (x, y) is a proper
ν-singular kernel in S0 for any ν ∈ (0, 1). The assertion now follows from Theorems
2.1, 2.2, 2.11, 2.12, 2.14, and 1.33. �⇔

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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4.7 Remark. From Theorems 4.4 and 4.6 we conclude that if α ∈ C0,Δ(∂S),
Δ ∈ (0, 1], then the restrictions of V α to S̄+ and S̄− belong, respectively, toC1,τ(S̄+)

and C1,τ(S̄−), with τ = Δ for Δ ∈ (0, 1) and any τ ∈ (0, 1) for Δ = 1. Denoting
these two functions by (V α)+ and (V α)−, we can write

((V α)+),β (x) = ((V α),β )+(x), x ∈ S̄+,

((V α)−),β (x) = ((V α),β )−(x), x ∈ S̄−.

In view of Theorem 4.4, we make the notation

(V α)±(x) = (V α)±0 (x) = (V0α)(x), x ∈ ∂S. (4.16)

Consider the function T (V α) defined on S0\∂S (see Remark 1.19).

4.8 Corollary. If α ∈ C0,Δ(∂S), Δ ∈ (0, 1], then the restrictions of T (V α) to S+
0

and S−
0 have C0,τ -extensions to S̄+

0 and S̄−
0 , respectively, with τ = Δ for Δ ∈ (0, 1)

and any τ ∈ (0, 1) for Δ = 1. These extensions are given by

(T (V α))+(x) =
{

T (V α)(x), x ∈ S+
0 ,

1
2 α(x) + (T (V α))0(x), x ∈ ∂S,

(T (V α))−(x) =
{

T (V α)(x), x ∈ S−
0 ,

− 1
2 α(x) + (T (V α))0(x), x ∈ ∂S,

(4.17)

where

(T (V α))0(x) =
∫
∂S

T (∂x )D(x, y)α(y) ds(y),

the integral being understood as principal value.

Proof. By (3.11), for x ∈ S0\∂S we have

(T (V α))Δ = h2
{
λκΔ(V α)τ,τ + μκτ

[
(V α)τ,Δ + (V α)Δ,τ

]}
,

(T (V α))3 = μκΔ

[
(V α)Δ + (V α)3,Δ

]
,

(4.18)

and the C0,τ -extendability of T (V α) to S̄+
0 and S̄−

0 follows from Theorem 4.6. For
x ∈ ∂S, the same theorem and (4.18) yield

(T (V α))±Δ = ±h2[λκΔ f τ
τ + μκτ( f τ

Δ + f Δ
τ )

] + (T (V α))0Δ

= ± 1
2 αΔ + (T (V α))0Δ,

(T (V α))±3 = μκΔ f Δ
3 + (T (V α))03 = ± 1

2 α3 + (T (V α))03,

which completes the proof. �⇔

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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4.9 Remark. In view of Remark 4.7, we can write

(T (V α)+)(x) = (T (V α))+(x), x ∈ S̄+
0 ,

(T (V α)−)(x) = (T (V α))−(x), x ∈ S̄−
0 .

(4.19)

4.10 Theorem. If α ∈ C1,Δ(∂S), Δ ∈ (0, 1], then the restrictions of Wα to S+
and S− have C1,τ -extensions (Wα)+ and (Wα)− to S̄+ and S̄−, respectively, with
τ = Δ for Δ ∈ (0, 1) and any τ ∈ (0, 1) for Δ = 1. These extensions are given by
(4.5) and satisfy

T (Wα)+ = T (Wα)− on ∂S.

Proof. Let u be a continuously differentiable 3 × 1 matrix function on ∂S. From
(3.11), (1.7), and the easily verified equality

κτuτ,β − κβ uτ,τ = ντβ

∂

∂s
uτ,

for y ∈ ∂S we obtain

Tβτuτ = h2[λκβ uτ,τ + μκτ(uτ,β + uβ,τ)
]

= h2
{
2μντβ

∂

∂s
uτ +

[
(λ + μ)κβ

∂

∂yτ

− μντβ

∂

∂s
+ μετβ

∂

∂κ

]
uτ

}
. (4.20)

Using (4.10)–(4.12), after a lengthy but straightforward calculation we find that for
x ∈ S0\∂S and y ∈ ∂S,

[
(λ + μ)κβ (y)

∂

∂yτ

− μντβ

∂

∂s(y)
+ μετβ

∂

∂κ(y)

]
D≥

Δτ(x, y)

= 1

2γ

[
− εΔβ

∂

∂κ(y)
ln |x − y | + νΔβ

∂

∂s(y)
ln |x − y |

]
.

Consequently, using (4.20), (3.27) and integration by parts, we see that

∫
∂S

[
Tβτ(∂y)D≥

τΔ(y, x)
]
αβ (y) ds(y)

= h2
{
2μνβτ

∫
∂S

D≥
Δτ(x, y)α√

β (y) ds(y)

− 1

2γ

∫
∂S

[
∂

∂κ(y)
ln |x − y |

]
αΔ(y) ds(y)

− 1

2γ
νΔβ

∫
∂S

(ln |x − y |)α√
β (y) ds(y)

}
.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Similarly,

∫
∂S

[
T3τ(∂y)DτΔ(y, x)

]
α3(y) ds(y) = μ

∫
∂S

DΔτ(x, y)κτ(y)α3(y) ds(y)

and, by (4.11),

∫
∂S

[
T33(∂y)D3Δ(y, x)

]
α3(y) ds(y)

= 2a2μ
3
{ ∫

∂S

(ln |x − y |)κΔ(y)α3(y) ds(y)

−
∫
∂S

[
∂

∂κ(y)
ln |x − y |

]
(xΔ − yΔ)α3(y) ds(y)

}
+ cΔ,

where the cΔ are combinations of λ and μ.
By means of the same procedure and (3.27), we arrive at

∫
∂S

[
Tβτ(∂y)Dτ3(y, x)

]
αβ (y) ds(y)

= 2h2μ

{
νβτ

∫
∂S

D3τ(x, y)α√
β (y) ds(y)

− a2μ(2λ + 3μ)

∫
∂S

(ln |x − y |)κβ (y)αβ (y) ds(y)

+ a2μ
2
∫
∂S

[
∂

∂κ(y)
ln |x − y |

]
(xβ − yβ )αβ (y) ds(y)

− a2μ
2νβτ

∫
∂S

(ln |x − y |)(xτ − yτ)α√
β (y) ds(y)

}
+ c√

β xβ + c√,

∫
∂S

[
T3τ(∂y)Dτ3(y, x)

]
α3(y) ds(y) = μ

∫
∂S

D3τ(x, y)κτ(y)α3(y) ds(y),

∫
∂S

[
T33(∂y)D≥

33(y, x)
]
α3(y) ds(y)

= − 1

2γ

∫
∂S

[
∂

∂κ(y)
ln |x − y |

]
α3(y) ds(y),

where the c √
β and c √ are combinations of λ and μ.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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These relations, (4.1), (4.2), (4.9), and (3.28) yield

Wα = v

(
2h2a2μ

2ξ − h2

2γ
Σ √ − 2a2μ

3η

)

+w

(
h2

2γ
α − 2a2μ

3σ

)

+ V (2h2μΣ √ + μη) + 2a2μ
3(W̃α) + W α, (4.21)

where, as functions of x , the specified densities and W̃α are

ξ = (
0, 0, (2λ + 3μ)κβ αβ + μνβτ xβ α√

τ

)T
,

Σ = (−α2, α1, 0)T,

η = (κ1α3, κ2α3, 0)T,

σ = (x1α3, x2α3, −h2xβ αβ )T,

W̃α = (
x1(wα3), x2(wα3), h2xβ

(
v(ντβ α√

τ) − wαβ

))T
,

(4.22)

andW α is a potential-type functionwhose kernel satisfies the conditions of Theorem
2.9 with any β ∈ (0, 1). Since α ∈ C1,Δ(∂S) and κ ∈ C1(∂S), we see immediately
that

ξ ∈ C0,Δ(∂S), η ∈ C1(∂S), Σ, σ ∈ C1,Δ(∂S).

By Theorem 4.5, the restrictions of Wα to S+ and S− have C0,τ -extensions
(Wα)+ and (Wα)− to S̄+ and S̄−, respectively. On the other hand, by Theorems
2.4, 2.7, 2.9, and 4.6, the restrictions of (Wα),β to S+ and S− have C0,τ -extensions
((Wα),β )+ and ((Wα),β )−, given by (2.45), to S̄+ and S̄−. Since

((Wα)+),β (x) = ((Wα),β )+(x), x ∈ S+,

((Wα)−),β (x) = ((Wα),β )−(x), x ∈ S−,

the first part of the assertion follows from Theorem 1.20.
For the second part, first we deduce from (2.11) and (2.10) that

(
∂

∂xβ

(wα)(x)

)±

= νβτ

{
± γκτ(x)α√(x)

+
∫
∂S

(
∂

∂xτ

ln |x − y |
)

α√(y) ds(y)

}
, (4.23)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
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where the integral is understood as principal value. Next, we convince ourselves by
direct verification that for x ∈ ∂S,

νβτκβ (xτα3)
√ = α3 + νβτ xτκβ α√

3,

νβΔκβ (xτα3)
√ = −κΔκτα3 + α3εΔτ + νβΔxτκβ α√

3,

νβτκβ (xΔα3)
√ = −κΔκτα3 + α3εΔτ + νβτ xΔκβ α√

3,

ντΔκτ(xβ αβ )√ = αΔ − κΔκβ αβ + ντΔxβ κτα√
β ,

νβΔκτκβ α√
τ − νβτκΔκτα√

β = νβΔα√
β .

Finally, rewriting (4.21) in the form

Wα = V (2h2μΣ √ + μη) + Ŵα, (4.24)

starting from (3.11), and making use of (2.9), (2.10), (4.20), (4.22), (4.23), and the
above relations, after another simple but rather lengthy computation we get

(T (Ŵα)±)Δ = ((T (Ŵα))Δ)± = (TΔτ(Ŵα)τ)±

= ∓ 1
2 μ

[
κΔα3 + h2(νβτκΔκτα√

β + νβΔκβ κτα√
τ + νβΔα√

β )
] + (Ŵ α)Δ

= ∓μ
( 1
2 κΔα3 + h2νβΔα√

β

) + (Ŵ α)Δ,

(T (Ŵα)±)3 = ((T (Ŵα))3)
± = (Ŵ α)3,

where Ŵ α has the same properties as W α. On the other hand, by Remark 4.9,
Corollary 4.8, (4.24), and (4.22),

(T (V (2h2μΣ √ + μη))±)Δ

= ((T (V (2h2μΣ √ + μη)))Δ)±

= ±μ
( 1
2 κΔα3 + h2νβΔα√

β

) + (T (V (2h2μΣ √ + μη)))0Δ,

(T (V (2h2μΣ √ + μη))±)3

= ((T (V (2h2μΣ √ + μη)))Δ)±

= (T (V (2h2μΣ √ + μη)))03;

consequently,

(T (Wα)+)(x) = (T (Wα)−)(x) = (Ŵ α)(x) + (T (V α))0(x), x ∈ ∂S,

which completes the proof. �⇔

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
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4.2 Layer Potentials with Integrable Densities

We denote by L p(∂S), p ≥ 1, the space of functions f on ∂S that are measurable and
such that | f |p is Lebesgue integrable over ∂S. As is well known (see, for example,
Weir 1973), the space L p(∂S) is complete with respect to the norm

‖ f ‖p =
{ ∫

∂S

| f (y)|p ds(y)

}1/p

.

Also, every function f ∈ L1(∂S) can be written in the form

f = f1 − f2, (4.25)

where f1 and f2 are the limits almost everywhere of increasing sequences of
step functions {α(1)

n }∞n=1 and {α(2)
n }∞n=1, respectively, for which the corresponding

sequences of integrals
{ ∫

∂S
αn

}∞
n=1 and

{ ∫
∂S

ϑn
}∞

n=1 are bounded.

4.11 Definition. Let f ∈ L1(∂S). A point x ∈ ∂S such that

{α(Δ)
n (x)}∞n=1 ≤ fΔ(x),

where the fΔ are as in (4.25), is called a Lebesgue point for f .

4.12 Lemma. If f ∈ L1(∂S) and x is a Lebesgue point for f , then

lim
ν≤0

1

ν

s+ν∫
s

f (t) dt = f (s).

The proof of this assertion is based on (4.25) and Definition 4.11.

4.13 Theorem. Let k(x, y) be a proper β -singular kernel in S0, β ∈ [0, 1], let

x = Γ ∓ εκ(Γ) ∈ S±
0 , Γ ∈ ∂S, ε > 0,

and suppose that

lim
ε≤0

∫
∂S

k(x, y) ds(y) = l±(Γ) (4.26)

and

lim
ε≤0

∫
∂S\ρΓ,ε

k(Γ, y) ds(y) = l(Γ), (4.27)
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where ρΓ,ε is defined by (1.16). If α ∈ L1(∂S), then

lim
ε≤0

[ ∫
∂S

k(x, y)α(y) ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y)α(y) ds(y)

]

= [
l±(Γ) − l(Γ)

]
α(Γ)

for almost all Γ ∈ ∂S, where ωΓ,8ε is defined by (1.59).

Proof. Let Γ be a Lebesgue point for α, let

|x − Γ | = ε < r/8,

with r chosen as in (1.43), and let ρ1 and ρ2 be the sets (1.29) constructed with x
and x √ replaced, respectively, by Γ and x . Then

ωΓ,8ε = ρ1,
and since here, obviously,

∂S = ρ1 ∈ ρ2 ∈ (∂S\ρΓ,r ) = ωΓ,8ε ∈ ρ2 ∈ (∂S\ρΓ,r ),

we can write

I =
∫
∂S

k(x, y)α(y) ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y)α(y) ds(y)

=
∫
∂S

k(x, y)[α(y) − α(Γ)] ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y)[α(y) − α(Γ)] ds(y)

+α(Γ)

[ ∫
∂S

k(x, y) ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y) ds(y)

]

=
∫
ρ1

k(x, y)[α(y) − α(Γ)] ds(y) +
∫
ρ2

k(x, y)[α(y) − α(Γ)] ds(y)

+
∫

∂S\ρΓ,r

k(x, y)[α(y) − α(Γ)] ds(y)

−
∫
ρ2

k(Γ, y)[α(y) − α(Γ)] ds(y) −
∫

∂S\ρΓ,r

k(Γ, y)[α(y) − α(Γ)] ds(y)

+α(Γ)

[ ∫
∂S

k(x, y) ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y) ds(y)

]

= I1 + I2 + I3 + I4,

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_1


96 4 The Layer Potentials

where

I1 =
∫
ρ1

k(x, y)
[
α(y) − α(Γ)

]
ds(y),

I2 =
∫
ρ2

[
k(x, y) − k(Γ, y)

][
α(y) − α(Γ)

]
ds(y),

I3 =
∫

∂S\ρΓ,r

[
k(x, y) − k(Γ, y)

][α(y) − α(Γ)
]

ds(y),

I4 = α(Γ)

[ ∫
∂S

k(x, y) ds(y) −
∫

∂S\ωΓ,8ε

k(Γ, y) ds(y)

]
.

Let f (y) = α(y) − α(Γ), and let ω1 and ω2 be defined by (1.42). By Lemmas
1.10 and 4.12, as ε ≤ 0,

|I1| ∩ c1

∫
ρ1

|x − y|−β | f (y)| ds(y)

∩ c2

∫
ρ1

|x − Γ |−β | f (y)| ds(y)

∩ c3ε
−β

∫
ω1

| f (t)| dt ≤ c| f (0)| = 0,

where the positive constants c1, c2, c3, and c do not depend on x .
By Lemma 1.11,

|I2| ∩ c1

∫
ρ2

|x − Γ | |Γ − y|−β−1| f (y)| ds(y)

∩ c4ε
∫
ω2

|s − t |−β−1| f (t)| dt,

where c4 = const > 0 does not depend on x . Setting

g(t) =
t∫

s

| f (Σ )| dΣ,

we see that
1

t − s
g(t) ≤ | f (s)| = 0 as t ≤ s,

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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g is absolutely continuous (Thomson and Constanda 1999), and g√ = | f | almost
everywhere in ω2. Let a and b, a < s < b, be the arc coordinates of the end-points
of ρΓ,r . Integrating by parts, we obtain

|I2| ∩ c4ε

[ s−8ε∫
a

(s − t)−β−1g√(t) dt +
b∫

s+8ε

(t − s)−β−1g√(t) dt

]

∩ c5

{
ε−β

[
g(s − 8ε) − g(s + 8ε)

]

− ε
[
(s − a)−β−1g(a) − (b − s)−β−1g(b)

]

− (β + 1)ε

[ s−8ε∫
a

(s − t)−β−2g(t) dt −
b∫

s+8ε

(t − s)−β−2g(t) dt

]}
,

where c5 = const > 0 does not depend on x . According to Lemma 4.12, we have

ε−β g(s ± 8ε) ≤ 0 as ε ≤ 0,

which also yields

lim
ε≤0

ε

s−8ε∫
a

(s − t)−β−2g(t) dt = lim
ε≤0

ε

b∫
s+8ε

(t − s)g(t) dt = 0.

Hence, |I2| ≤ 0 as ε ≤ 0.
From Lemma 1.12 it follows that

|I3| ∩ c1

∫
∂S\ρΓ,r

|x − Γ | |Γ − y|−β−1| f (y)| ds(y)

∩ c6r−2ε

∫
∂S

| f (y)| ds(y) ≤ 0 as ε ≤ 0,

where c6 = const > 0. Finally, as noted in Remark 1.41,

∫
ρΓ,8ε\ωΓ,8ε

k(Γ, y) ds(y) ≤ 0 as ε ≤ 0.

Consequently, from our assumption on k(x, y) we deduce that

I4 ≤ [
l±(Γ) − l(Γ)

]
α(Γ) as ε ≤ 0,

which completes the proof. �⇔
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4.14 Theorem. If k(x, y) is a β -singular kernel on ∂S, β ∈ [0, 1), and α ∈ L1(∂S),
then ∫

∂S

k(x, y)α(y) ds(y)

exists for almost all x ∈ ∂S.

Proof. By Theorem 1.32, the function
∫
∂S |k(x, y)| ds(x) is continuous on ∂S,

therefore,

|α(y)|
∫
∂S

|k(x, y)| ds(x)

belongs to L1(∂S). By Tonelli’s Theorem (see, for example, Weir 1973),
|k(x, y)α(y)| belongs to L1(∂S × ∂S), and the assertion now follows from Fubini’s
Theorem (Weir 1973). �⇔
4.15 Remark. Using Lebesgue’s dominated convergence theorem, it is easy to show
that if θx,ε is any small neighborhood of x on ∂S of arc length ε > 0 and k(x, y)

and α are as in Theorem 4.14, then

lim
ε≤0

∫
∂S\θx,ε

k(x, y)α(y) ds(y) =
∫
∂S

k(x, y)α(y) ds(y)

for almost all x ∈ ∂S.

4.16 Theorem. If α ∈ L1(∂S), then

∫
∂S

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y)

exists in the sense of principal value for almost all x ∈ ∂S.

Proof. Since ∂ ln |x − y |/∂κ(y) is 0-singular on ∂S, from Theorem 4.14 it follows
that ∫

∂S

[
∂

∂κ(y)
ln |x − y |

]
α(y) ds(y)

exists for almost all x ∈ ∂S. Also, in Prössdorf (1978) it is shown that the function

∫
∂S

α(ϕ )

ϕ − z
dϕ

exists in the sense of principal value for almost all x ∈ ∂S. The result is now obtained
by means of (2.36). �⇔

http://dx.doi.org/10.1007/978-1-4471-6434-0_2
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4.17 Theorem. Suppose that k(x, y) is a proper β -singular kernel in S0, β ∈ [0, 1),

x = Γ ∓ εκ(Γ) ∈ S±
0 , Γ ∈ ∂S, ε > 0,

and α ∈ L1(∂S); then

lim
ε≤0

∫
∂S

k(x, y)α(y) ds(y) =
∫
∂S

k(Γ, y)α(y) ds(y) (4.28)

for almost all Γ ∈ ∂S.

Proof. By Theorem 1.33, l±(Γ) and l(Γ) defined by (4.26) and (4.27) are all equal to∫
∂S k(Γ, y) ds(y), and (4.28) now follows from Theorem 4.13 and Remark 4.15. �⇔
Having completed this preparatory work, we can turn to the study of the behavior

of the layer plate potentials with L2-densities.

4.18 Theorem. If α ∈ L2(∂S), then

(i) V α and Wα are analytic in R
2 \ ∂S;

(ii) A(V α) = A(Wα) = 0 in R
2 \ ∂S;

(iii) Theorem 4.2 holds for V α and Wα.

The proof of this assertion is based on classical results concerning the analyticity
of solutions of systems of partial differential equations (see, for example, Miranda
1970), the definition of V α and Wα, and their asymptotic expansions for |x | large.
4.19 Theorem. If

x = Γ ∓ εκ(Γ) ∈ S±
0 , Γ ∈ ∂S, ε > 0,

and α ∈ L2(∂S), then
lim
ε≤0

(V α)(x) = (V α)(Γ)

for almost all Γ ∈ ∂S.

Proof. From (4.1) and (3.30) we see that the kernel of V α is a proper β -singular
kernel in S0, with any β ∈ (0, 1). Also, since ∂S is a set of finite measure, we have
α ∈ L1(∂S), and the assertion now follows from Theorem 4.17. �⇔
4.20 Theorem. If

x = Γ ∓ εκ(Γ) ∈ S±
0 , Γ ∈ ∂S, ε > 0,

and α ∈ L2(∂S), then

lim
ε≤0

(Wα)(x) = ∓ 1
2 α(Γ) +

∫
∂S

P(Γ, y)α(y) ds(y) = ∓ 1
2 α(Γ) + (W0α)(Γ)

for almost all Γ ∈ ∂S, where the integral is understood as principal value.

Proof. We examine the terms of the kernel P(x, y) of Wα one by one, using the
expression (3.31). As above, α ∈ L1(∂S).

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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(i) First, ∂ ln |x − y |/∂s(y) satisfies the conditions of Theorem 4.13 with β = 1
and l± = l = 0 (see Theorem 2.14). By Remark 4.15 and Theorems 4.16 and 4.13,

lim
ε≤0

∫
∂S

[
∂

∂s(y)
ln |x − y |

]
α(y) ds(y)

=
∫
∂S

[
∂

∂s(y)
ln |Γ − y|

]
α(y) ds(y)

for almost all Γ ∈ ∂S, where the right-hand side is understood as principal value.
(ii) Next, ∂ ln |x − y |/∂κ(y) satisfies the conditions of Theorem 4.3 with β = 1,

l+ = 2γ , l− = 0, and l = γ (see (2.5)–(2.7)). Also, this is a 0-singular kernel on
∂S. Consequently, by Remark 4.15 and Theorem 4.13,

lim
ε≤0

∫
∂S

[
∂

∂κ(y)
ln |x − y |

]
α(y) ds(y)

= ±γα(Γ) +
∫
∂S

[
∂

∂κ(y)
ln |Γ − y|

]
α(y) ds(y)

for almost all Γ ∈ ∂S.
(iii) The kernel ∂

[
(xΔ − yΔ)(xτ − yτ)|x − y|−2

]
/∂s(y) satisfies the conditions

of Theorem 4.13 with β = 1 and l± = l = 0, and is 0-singular on ∂S (see
Theorem 2.14). Hence, by Remark 4.15 and Theorem 4.13,

lim
ε≤0

∫
∂S

[
∂

∂s(y)

(xΔ − yΔ)(xτ − yτ)

|x − y|2
]
α(y) ds(y)

=
∫
∂S

[
∂

∂s(y)

(ΓΔ − yΔ)(Γτ − yτ)

|Γ − y|2
]
α(y) ds(y)

for almost all Γ ∈ ∂S.
(iv) Finally, the remaining terms are proper β -singular kernels in S0, with any

β ∈ (0, 1); therefore, by Theorem 4.17, they satisfy (4.28).
The assertion now follows from (i)–(iv), (3.31), and (4.2). �⇔

4.21 Theorem. If
x = Γ ∓ εκ(Γ) ∈ S±

0 , Γ ∈ ∂S, ε > 0,

and α ∈ L2(∂S), then

lim
ε≤0

(T (V α))(x) = ± 1
2 α(Γ) +

∫
∂S

T (∂Γ )D(Γ, y)α(y) ds(y)

for almost all Γ ∈ ∂S, where the integral is understood as principal value.

http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_2
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Proof. From the expressions derived in the proof of Theorem 4.6 it is clear that the
kernel of ∂(V α)i/∂xΔ consists of the same type of terms as the kernel of Wα. To
complete the proof, we use (4.15) and (4.18). �⇔
4.22 Remark. It is not difficult to show that the same results hold for V α, Wα, and
T (V α) as S±

0 ∀ x ≤ Γ ∈ ∂S on any direction different from that of π(Γ). However,
for our purposes it suffices to have the corresponding limiting formulas established
as x ≤ Γ along the normal at Γ .
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Chapter 5
The Newtonian Potential

5.1 Definition

The nonhomogeneous system (3.8)—that is,

A(∂x )u(x) + g(x) = 0, x ∈ S+ or x ∈ S−, (5.1)

where A(∂x ) is defined by (3.9)—can be reduced to its homogeneous version if
we know a particular solution of it. Our aim is to construct such a solution and
to determine conditions under which this solution has all the required smoothness
properties.

5.1 Definition. The integral

U (x) =
∫
S

D(x, y)g(y) da(y), (5.2)

where S denotes either S+ or S− and D(x, y) is the matrix (3.23) of fundamental
solutions for A(∂x ), is called the Newtonian plate potential of density g.

Here, we consider only the case of the interior domain S+; the case of S− is
treated in exactly the same way, with additional restrictions on g(x) as |x | ∈ ∞, to
ensure that U (x) exists as an improper integral.

Refining expression (3.30) and writing it more compactly, we see that for x close
to y,

D(x, y) = (ln |x − y|)
(

d1Eγ γ − 1

2πμ
E33

)

+ d2
(xα − yα)(xβ − yβ)

|x − y|2 Eαβ

+ C + O(|x − y| ln |x − y|), (5.3)
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where C is a constant 3 × 3 matrix and

d1 = − λ + 3μ

4πh2μ(λ + 2μ)
,

d2 = λ + μ

4πh2μ(λ + 2μ)
. (5.4)

The properties of the series expansions for the modified Bessel functions allow us to
differentiate (5.3) as necessary.

Let σ(a, ρ) be the disk with the center at a, radius ρ, and circular boundary
∂σ(a, ρ). All subsequent integration over circularly symmetric domains is performed
in terms of polar coordinates with the pole at the center of symmetry.

We make the notation

Iαβ =
∫

∂σ(x,1)

(xα − yα)(xβ − yβ) ds(y) = πδαβ, (5.5)

Iαβρη =
∫

∂σ(x,1)

(xα − yα)(xβ − yβ)(xρ − yρ)(xη − yη) ds(y)

= π

4
(δαβδρη + δαρδβη + δαηδβρ), (5.6)

where the integrals have been computed as indicated above.

5.2 The First-Order Derivatives

5.2 Theorem. If g ∈ L∞(S+), then ∂U (x)/∂xα exists at each point x ∈ S+ (x ∈ ∂S)

and
∂

∂xα

U (x) =
∫
S+

∂

∂xα

D(x, y)g(y) da(y).

Proof. Consider the function

Uω(x) =
∫
S+

kω(x, y)g(y) da(y),

where

kω(x, y) =

⎛⎝⎝⎞
⎝⎝⎠

0, 0 ⇔ |x − y| ⇔ ω,

1

2

{
sin

[
π

( |x − y|
ω

− 3

2

)]
+ 1

}
D(x, y), ω < |x − y| < 2ω,

D(x, y), 2ω ⇔ |x − y| < ∞.
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Obviously, kω(x, y) has first-order derivatives with respect to the coordinates of
x ∈ S+ (x ∈ ∂S); hence, ∂Uω(x)/∂xα exists at each point x ∈ S+ (x ∈ ∂S) and

∂

∂xα

Uω(x) =
∫
S+

∂

∂xα

kω(x, y)g(y) da(y),

where the kernel of the integral satisfies

∂

∂xα

kω(x, y) = 0 if 0 ⇔ |x − y| < ω,

∂

∂xα

kω(x, y) =
{

π

2ω

xα − yα

|x − y| cos

[
π

( |x − y|
ω

− 3

2

)]}
D(x, y)

+ 1

2

{
sin

[
π

( |x − y|
ω

− 3

2

)]
+ 1

}
∂

∂xα

D(x, y)

if ω < |x − y| < 2ω,

∂

∂xα

kω(x, y) = ∂

∂xα

D(x, y) if 2ω < |x − y| < ∞.

Next,

∣∣Uω(x) − U (x)
∣∣

=
∣∣∣∣
∫
S+

[
kω(x, y) − D(x, y)

]
g(y) da(y)

∣∣∣∣

=
∣∣∣∣ −

∫
S+≤σ(x,ω)

D(x, y)g(y) da(y)

+ 1

2

∫
S+≤σ(x,2ω)\S+≤σ(x,ω)

{
sin

[
π

( |x − y|
ω

− 3

2

)]
− 1

}
D(x, y)g(y) da(y)

∣∣∣∣

⇔ ‖g‖∞
∫

σ(x,ω)

|D(x, y)| da(y) + ‖g‖∞
∫

σ(x,2ω)\σ(x,ω)

|D(x, y)| da(y) ∈ 0,

uniformly as ω ∈ 0, since D(x, y) has only a logarithmic singularity at x = y,
which means that the behavior of the right-hand side is similar to

ω∫
0

ρ ln ρ dρ = 1
2 ω2 lnω − 1

4 ω2 ∈ 0 as ω ∈ 0.

Here, ‖g‖∞ is the norm on the space L∞(S+).
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Also,

∣∣∣∣
∫

S+

∂

∂xα
kω(x, y)g(y) da(y) −

∫

S+

∂

∂xα
D(x, y)g(y) da(y)

∣∣∣∣

=
∣∣∣∣ −

∫

S+≤σ(x,ω)

∂

∂xα
D(x, y)g(y) da(y)

+
∫

S+≤σ(x,2ω)\S+≤σ(x,ω)

{[
π

2ω

xα − yα

|x − y| cos

(
π

( |x − y|
ω

− 3

2

))]
D(x, y)

+ 1

2

[
sin

(
π

( |x − y|
ω

− 3

2

))
− 1

]
∂

∂xα
D(x, y)

}
g(y) da(y)

∣∣∣∣,

which leads to
∣∣∣∣
∫
S+

∂

∂xα

kω(x, y)g(y) da(y) −
∫
S+

∂

∂xα

D(x, y)g(y) da(y)

∣∣∣∣

⇔ ‖g‖∞
∫

σ(x,ω)

∣∣∣∣ ∂

∂xα

D(x, y)

∣∣∣∣ da(y)

+ π

2ω
‖g‖∞

∫
σ(x,2ω)\σ(x,ω)

∣∣∣∣ xα − yα

|x − y| D(x, y)

∣∣∣∣ da(y)

+ ‖g‖∞
∫

σ(x,2ω)\σ(x,ω)

∣∣∣∣ ∂

∂xα

D(x, y)

∣∣∣∣ da(y)

⇔ c‖g‖∞
∫

σ(x,ω)

1

|x − y| da(y) + π

2ω
‖g‖∞

∫
σ(x,2ω)\σ(x,ω)

∣∣∣∣ xα − yα

|x − y| D(x, y)

∣∣∣∣ da(y)

+ c‖g‖∞
∫

σ(x,2ω)\σ(x,ω)

1

|x − y| da(y) ∈ 0,

uniformly as ω ∈ 0. The second integral on the right-hand side tends to zero as
ω ∈ 0 because its behavior is similar to

1

ω

2ω∫
ω

ρ ln ρ dρ = 1

ω

[ 1
2 ρ2 ln ρ − 1

4 ρ2]2ω
ω

= 1
4 ω(6 lnω + 8 ln 2 − 3) ∈ 0 as ω ∈ 0.

The assertion now follows from a well-known theorem of real analysis. ≥√
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5.3 Lemma. If β ∈ (0, 1], then there is a constant c such that

|x ′ − x ′′|β ln
1

|x ′ − x ′′| ⇔ c|x ′ − x ′′|α, 0 < α < β ⇔ 1, x ′, x ′′ ∈ R
2.

Proof. Consider the function h defined by

h(t) = 1

1 − γ
tγ + t ln t, (5.7)

where γ ∈ (0, 1) and t ∈ [0,∞). We can write h as

h(t) = tγ χ(t), (5.8)

with

χ(t) = 1

1 − γ
+ t1−γ ln t.

Obviously, h(0) = 0. We claim that χ(t) > 0 on 0 ⇔ t < ∞. The function χ has
a turning point if and only if

0 = χ ′(t) = (1 − γ )t−γ ln t + t−γ ,

which occurs at
t = e1/(γ−1).

Differentiating χ a second time yields

χ ′′(t) = −γ (1 − γ )t−γ−1 ln t + (1 − γ )t−γ−1 − γ t−γ−1;

so, since γ < 1,

χ ′′(e1/(γ−1)) = −γ (1 − γ )e(γ+1)/(1−γ ) 1

γ − 1

+ (1 − γ )e(γ+1)/(1−γ ) − γ e(γ+1)/(1−γ )

= (1 − γ )e(γ+1)/(1−γ ) > 0.

Also,

χ
(
e1/(γ−1)) = 1

1 − γ
+ e−1 1

γ − 1

= 1

1 − γ

(
1 − 1

e

)
> 0.
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Hence, χ has a minimum turning point at t = e1/(γ−1), and χ(e1/(γ−1)) > 0. Since
this is the only turning point of the function, χ(t) > 0 on 0 ⇔ t < ∞. Therefore,
h(t) given by (5.8) has exactly one root, which occurs at t = 0. Now, since

h
(
e1/(γ−1)) = 1

1 − γ
eγ /(γ−1)

(
1 − 1

e

)
> 0,

we find that h(t) ≥ 0 on 0 ⇔ t < ∞. Replacing t by |x ′ − x ′′| in (5.7) yields

1

1 − γ
|x ′ − x ′′|γ + |x ′ − x ′′| ln |x ′ − x ′′| ≥ 0

for any γ ∈ (0, 1).

With c = 1

1 − γ
, this is rewritten as

|x ′ − x ′′| ln 1

|x ′ − x ′′| ⇔ c|x ′ − x ′′|γ ,

so

|x ′ − x ′′|β ln
1

|x ′ − x ′′| ⇔ c|x ′ − x ′′|α, 0 < α < β ⇔ 1,

which proves the assertion. ≥√
5.4 Theorem. If g ∈ L∞(S+), then U ∈ C1,α(∂S), α ∈ (0, 1).

Proof. By Theorem 5.2,

Q(x) = ∂

∂xη

U (x) =
∫
S+

q(x, y)g(y) da(y) on ∂S,

where

q(x, y) = ∂

∂xη

D(x, y).

By (5.3),

q(x, y) = O(|x − y|−1)as|x − y| ∈ 0.

Let x ′, x ′′ ∈ ∂S and ξ = |x ′ − x ′′|. Then

Q(x ′) − Q(x ′′) = J1(x ′, x ′′) + J2(x ′, x ′′) + J3(x ′, x ′′), (5.9)
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where

J1(x ′, x ′′) =
∫

S+≤σ(x ′,2ξ)

q(x ′, y)g(y) da(y),

J2(x ′, x ′′) = −
∫

S+≤σ(x ′,2ξ)

q(x ′′, y)g(y) da(y),

J3(x ′, x ′′) =
∫

S+\σ(x ′,2ξ)

[
q(x ′, y) − q(x ′′, y)

]
g(y) da(y).

Taking into account the singularity of q(x, y), we find that

|J1| ⇔
∫

S+≤σ(x ′,2ξ)

|q(x ′, y)||g(y)| da(y)

⇔ c1‖g‖∞
∫

σ(x ′,2ξ)

1

|x ′ − y| da(y)

= 2πc1‖g‖∞ · 2ξ,

where, as mentioned earlier, the integration was performed in terms of polar coordi-
nates with the pole at x ′; hence,

|J1| ⇔ c2|x ′ − x ′′|. (5.10)

Similarly, using polar coordinates with the pole at x ′′, we get

|J2| ⇔
∫

S+≤σ(x ′,2ξ)

|q(x ′′, y)||g(y)| da(y)

⇔ c1‖g‖∞
∫

σ(x ′′,3ξ)

1

|x ′′ − y| da(y)

= 2πc1‖g‖∞ · 3ξ,

so

|J2| ⇔ c3|x ′ − x ′′|. (5.11)

Estimating J3 is less straightforward. First, we have

|J3| ⇔
∫

S+\σ(x ′,2ξ)

|q(x ′, y) − q(x ′′, y)| |g(y)| da(y).
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By the mean value theorem,

|q(x ′, y) − q(x ′′, y)| ⇔ |x ′
β − x ′′

β |
∣∣∣∣ ∂

∂xβ

q(x ′′′, y)

∣∣∣∣
⇔ c4|x ′ − x ′′| |x ′′′ − y|−2,

where x ′′′ lies between x ′ and x ′′. Also, for y ∈ S+ \ σ(x ′, 2ξ),

|x ′′′ − y| ≥ |x ′ − y| − |x ′ − x ′′′| > |x ′ − y| − 1
2 |x ′ − y| = 1

2 |x ′ − y|;

therefore, when y ∈ S+ \ σ(x ′, 2ξ),

|q(x ′, y) − q(x ′′, y)| ⇔ c5|x ′ − x ′′| |x ′ − y|−2,

which implies that

|J3| ⇔ c5‖g‖∞|x ′ − x ′′|
∫

S+\σ(x ′,2ξ)

1

|x ′ − y|2 da(y);

so, by extending the domain of integration, we see that

|J3| ⇔ c5‖g‖∞|x ′ − x ′′|
∫

σ(x ′,M)\σ(x ′,2ξ)

1

|x ′ − y|2 da(y),

where M is the largest distance between any two points in S̄+; consequently,

|J3| ⇔ 2πc5‖g‖∞|x ′ − x ′′|
(
ln

M

2
− ln |x ′ − x ′′|

)

= c6|x ′ − x ′′| + c7|x ′ − x ′′| ln 1

|x ′ − x ′′| ,

and from Lemma 5.3 we now conclude that

|J3| ⇔ c6|x ′ − x ′′| + c8|x ′ − x ′′|α, α ∈ (0, 1);

in other words,
|J3| ⇔ c9|x ′ − x ′′|α. (5.12)

Combining (5.9)–(5.12), we arrive at the required inequality

|Q(x ′) − Q(x ′′)| ⇔ c|x ′ − x ′′|α, α ∈ (0, 1),

where c is a constant independent of x ′ and x ′′. ≥√
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5.3 The Second-Order Derivatives

5.5 Theorem. If g ∈ C 0,α(S+), α ∈ (0, 1], then the integral

M(x) =
∫
S+

m(x, y)g(y) da(y),

where

m(x, y) = ∂2

∂xα∂xβ

D(x, y),

exists in the sense of principal value at every point x ∈ S+ and is given by the
formula

M(x) =
∫
S+

m(x, y)[g(y) − g(x)] da(y)

+
[ ∫

S+\σ(x,ω)

m(x, y) da(y) + lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

m(x, y) da(y)

]
g(x),

(5.13)

where ω > ε and σ(x, ω) ⊆ S+.

Proof. The principal value of the integral is computed as

lim
ε∈0

∫
S+\σ(x,ε)

m(x, y)g(y) da(y)

= lim
ε∈0

{ ∫
S+\σ(x,ε)

m(x, y)[g(y) − g(x)] da(y)

+
[ ∫

S+\σ(x,ω)

m(x, y) da(y)

+
∫

σ(x,ω)\σ(x,ε)

m(x, y) da(y)

]
g(x)

}
,

where ω is chosen so that ω > ε and σ(x, ω) ⊆ S+.
The first integral on the right-hand side of this expression converges since the

integrand is O(|x − y|α−2), α ∈ (0, 1]; hence,
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lim
ε∈0

∫
S+\σ(x,ε)

m(x, y)g(y) da(y)

=
∫
S+

m(x, y)[g(y) − g(x)] da(y)

+
[ ∫

S+\σ(x,ω)

m(x, y) da(y) + lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

m(x, y) da(y)

]
g(x). (5.14)

We claim that the third integral has a limit as ε ∈ 0. By (5.3),

∂

∂xβ

Dρη(x, y) = d1δρη

xβ − yβ

|x − y|2

+ d2
δρβ(xη − yη) + δηβ(xρ − yρ)

|x − y|2

− 2
(xρ − yρ)(xη − yη)(xβ − yβ)

|x − y|4 + O(ln |x − y|)

and

∂2

∂xα∂xβ

Dρη(x, y)

= d1δρη

[
δαβ

|x − y|2 − 2
(xα − yα)(xβ − yβ)

|x − y|4
]

+ d2

[
δρβδαη + δηβδαρ

|x − y|2 − 2
δρβ(xα − yα)(xη − yη) + δηβ(xα − yα)(xρ − yρ)

|x − y|4
]

−2d2

[
δαρ(xη−yη)(xβ −yβ)+δαη(xρ − yρ)(xβ − yβ)+δαβ(xρ −yρ)(xη−yη)

|x − y|4

− 4
(xα − yα)(xβ − yβ)(xρ − yρ)(xη − yη)

|x − y|6
]

+ O(|x − y|−1).

From (5.3) we also deduce that

∂2

∂xα∂xβ

Dρ3(x, y) = O(|x − y|−1)

and

∂

∂xβ

D33(x, y) = − 1

2πμ

xβ − yβ

|x − y|2 + O(|x − y| ln |x − y|),
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which lead to

∂2

∂xα∂xβ

D33(x, y)

= − 1

2πμ

[
δαβ

|x − y|2 − 2
(xα − yα)(xβ − yβ)

|x − y|4
]

+ O(ln |x − y|);

therefore,

∫
σ(x,ω)\σ(x,ε)

mρη(x, y) da(y)

= ln
ω

ε

[
d1(2πδρηδαβ − 2δρη Iαβ) + 2πd2(δρβδαη + δηβδαρ)

− 2d2(δρβ Iαη + δηβ Iαρ + δαρ Iηβ + δαη Iρβ + δαβ Iρη) + 8d2 Iαβρη

]
+

∫
σ(x,ω)\σ(x,ε)

O(|x − y|−1) da(y).

Taking (5.5) and (5.6) into account, we find that

∫
σ(x,ω)\σ(x,ε)

mρη(x, y) da(y)

= ln
ω

ε

[
2πd1(δρηδαβ − δρηδαβ) + 2πd2(δρβδαη + δηβδαρ)

− 2πd2(2δρβδαη + 2δηβδαρ + δαβδρη)

+ 2πd2(δαβδρη + δαρδβη + δαηδβρ)
]

+
∫

σ(x,ω)\σ(x,ε)

O(|x − y|−1) da(y);

hence,

∫
σ(x,ω)\σ(x,ε)

mρη(x, y) da(y) =
∫

σ(x,ω)\σ(x,ε)

O(|x − y|−1) da(y),

from which we readily infer that

lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

mρη(x, y) da(y) exists.
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Similarly,

∫
σ(x,ω)\σ(x,ε)

mρ3(x, y) da(y) =
∫

σ(x,ω)\σ(x,ε)

∂2

∂xα∂xβ

Dρ3(x, y) da(y)

=
∫

σ(x,ω)\σ(x,ε)

O

(
1

|x − y|
)

da(y),

so

lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

mρ3(x, y) da(y) exists.

Finally,

∫
σ(x,ω)\σ(x,ε)

m33(x, y) da(y)

=
∫

σ(x,ω)\σ(x,ε)

∂2

∂xα∂xβ

D33(x, y) da(y)

= ln
ω

ε

(
− 1

μ
δαβ + 1

πμ
Iαβ

)

+
∫

σ(x,ω)\σ(x,ε)

O(ln |x − y|) da(y).

By (5.5),
∫

σ(x,ω)\σ(x,ε)

m33(x, y) da(y) =
∫

σ(x,ω)\σ(x,ε)

O(ln |x − y|) da(y),

which implies that

lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

m33(x, y) da(y) exists.

Therefore, we have shown that

lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

m(x, y) da(y) exists,
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and from (5.14) we conclude that

lim
ε∈0

∫
S+\σ(x,ε)

m(x, y) da(y) exists,

thus proving the assertion. ≥√
5.6 Remark. Since both

∫
S+

D(x, y)g(y) da(y) and
∫
S+

∂

∂xα

D(x, y)g(y) da(y)

exist as improper integrals (provided that g is bounded), their principal values obvi-
ously exist and coincide with the values of the improper integrals themselves, so we
may write

∫
S+

D(x, y)g(y) da(y)

=
∫
S+

D(x, y)
[
g(y) − g(x)

]
da(y)

+
[ ∫

S+\σ(x,ω)

D(x, y) da(y)

+ lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

D(x, y) da(y)

]
g(x)

and
∫
S+

∂

∂xα

D(x, y)g(y) da(y)

=
∫
S+

∂

∂xα

D(x, y)
[
g(y) − g(x)

]
da(y)

+
[ ∫

S+\σ(x,ω)

∂

∂xα

D(x, y) da(y)

+ lim
ε∈0

∫
σ(x,ω)\σ(x,ε)

∂

∂xα

D(x, y) da(y)

]
g(x).

In the next assertion, S∩ denotes a bounded domain in R2 such that S∩ ∀ S+.
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5.7 Theorem. If g ∈ C 0,β(S+), β ∈ (0, 1), then M ∈ C 0,α(S∩), where 0 < α <

β < 1 and M(x) defined by (5.13) is understood in the sense of principal value.

Proof. Let ρ > 0 be the minimum distance between ∂S and the boundary of S∩. By
Theorem 5.5, M(x) exists for x ∈ S∩ in the sense that

M(x) =
∫
S+

m(x, y)
[
g(y) − g(x)

]
da(y)

+
[ ∫

S+\σ(x,ρ)

m(x, y) da(y)

]
g(x)

+
[
lim
ε∈0

∫
σ(x,ρ)\σ(x,ε)

m(x, y) da(y)

]
g(x).

Since x ∈ S∩, the disk σ(x, ρ) is contained entirely within S+.
We have already shown in the proof of Theorem 5.5 that the limit of the third

integral on the right-hand side exists. Given that m is, in fact, a function of x − y
and we are integrating over an annular region with the center at x , this integral is a
constant matrix depending on ρ; that is, it is independent of x .

For simplicity, from now on we consider m and f to be scalar functions instead
of a matrix-valued function and a vector-valued function, respectively.

The function M can be written in the form

M(x) = M1(x) + M2(x) + M3(x), (5.15)

where

M1(x) =
∫
S+

m(x, y)
[
g(y) − g(x)

]
da(y),

M2(x) = g(x)

∫
S+\σ(x,ρ)

m(x, y) da(y),

M3(x) =
[
lim
ε∈0

∫
σ(x,ρ)\σ(x,ε)

m(x, y) da(y)

]
g(x) = cρg(x).

Let x ′, x ′′ ∈ S∩ be such that

ξ = |x ′ − x ′′| < 1
2 ρ.

First, we have

M1(x ′) − M1(x ′′) = J1(x ′, x ′′) + J2(x ′, x ′′) + J3(x ′, x ′′) + J4(x ′, x ′′), (5.16)
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where

J1(x ′, x ′′) =
∫

S+\σ(x ′,ρ)

[
m(x ′, y) − m(x ′′, y)

][
g(y) − g(x ′′)

]
da(y)

+ [
g(x ′′) − g(x ′)

] ∫
S+\σ(x ′,ρ)

m(x ′, y) da(y),

J2(x ′, x ′′) =
∫

σ(x ′,2ξ)

m(x ′, y)
[
g(y) − g(x ′)

]
da(y)

−
∫

σ(x ′,2ξ)

m(x ′′, y)
[
g(y) − g(x ′′)

]
da(y),

J3(x ′, x ′′) = [
g(x ′′) − g(x ′)

] ∫
σ(x ′,ρ)\σ(x ′,2ξ)

m(x ′, y) da(y),

J4(x ′, x ′′) =
∫

σ(x ′,ρ)\σ(x ′,2ξ)

[
m(x ′, y) − m(x ′′, y)

][
g(y) − g(x ′′)

]
da(y).

We estimate the above integrals. First,

|J1(x ′, x ′′)| ⇔
∫

S+\σ(x ′,ρ)

|m(x ′, y) − m(x ′′, y)| |g(y) − g(x ′′)| da(y)

+ |g(x ′′) − g(x ′)|
∫

S+\σ(x ′,ρ)

|m(x ′, y)| da(y).

By the mean value theorem,

|m(x ′, y) − m(x ′′, y)| ⇔ |x ′
α − x ′′

α |
∣∣∣∣ ∂

∂xα

m(x ′′′, y)

∣∣∣∣ ⇔ c1
|x ′ − x ′′|
|x ′′′ − y|3 ,

where x ′′′ lies between x ′ and x ′′. Also, since

|x ′ − x ′′′| < |x ′ − x ′′|
< 1

2 |x ′ − y|,

for y ∈ S+ \ σ(x ′, ρ) we have

|x ′′′ − y| ≥ |x ′ − y| − |x ′ − x ′′′|
> |x ′ − y| − 1

2 |x ′ − y| = 1
2 |x ′ − y|.
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Therefore, when y ∈ S+ \ σ(x ′, ρ),

|m(x ′, y) − m(x ′′, y)| ⇔ c2
|x ′ − x ′′|
|x ′ − y|3 , (5.17)

from which

|J1(x ′, x ′′)| ⇔ c3|x ′ − x ′′|
∫

S+\σ(x ′,ρ)

|x ′′ − y|β
|x ′ − y|3 da(y)

+ c4|x ′ − x ′′|β
∫

S+\σ(x ′,ρ)

1

|x ′ − y|2 da(y).

The integrals on the right-hand side do not pose a problem since x ′ lies outside the
domain of integration and |x ′′ − y| is bounded in S+ \ σ(x ′, ρ); hence,

|J1(x ′, x ′′)| ⇔ c5|x ′ − x ′′|β, (5.18)

where c5 is a constant depending on ρ.
Estimating J2, we arrive at

|J2(x ′, x ′′)| ⇔
∫

σ(x ′,2ξ)

|m(x ′, y)| |g(y) − g(x ′)| da(y)

+
∫

σ(x ′,2ξ)

|m(x ′′, y)| |g(y) − g(x ′′)| da(y)

⇔ c6

∫
σ(x ′,2ξ)

|x ′ − y|β−2 da(y) + c6

∫
σ(x ′,2ξ)

|x ′′ − y|β−2 da(y).

From Fig. 5.1 we see that σ(x ′, 2ξ) ∀ σ(x ′′, 3ξ); so, using polar coordinates with
the pole at x ′ and x ′′, respectively, to evaluate the integrals, we obtain

|J2(x ′, x ′′)| ⇔ c6

∫
σ(x ′,2ξ)

|x ′ − y|β−2 da(y) + c6

∫
σ(x ′′,3ξ)

|x ′′ − y|β−2 da(y)

= 2π

β
c6

{
2β |x ′ − x ′′|β + 3β |x ′ − x ′′|β⎧

,

which means that

|J2(x ′, x ′′)| ⇔ c7|x ′ − x ′′|β. (5.19)
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Fig. 5.1 The disks σ(x ′, 2ξ)

and σ(x ′′, 3ξ)

Now, by Lemma 5.3,

|J3(x ′, x ′′)| ⇔ |g(x ′′) − g(x ′)|
∫

σ(x ′,ρ)\σ(x ′,2ξ)

|m(x ′, y)| da(y)

⇔ c8|x ′ − x ′′|β
∫

σ(x ′,ρ)\σ(x ′,2ξ)

1

|x ′ − y|2 da(y)

= 2πc8|x ′ − x ′′|β
(
ln

ρ

2
+ ln

1

|x ′ − x ′′|
)

⇔ c9|x ′ − x ′′|β + c10|x ′ − x ′′|α ⇔ c11|x ′ − x ′′|α, (5.20)

where 0 < α < β < 1 and c11 depends on ρ.
Regarding J4, from the assumption on g it follows that

|J4(x ′, x ′′)| ⇔
∫

σ(x ′,ρ)\σ(x ′,2ξ)

|m(x ′, y) − m(x ′′, y)| |g(y) − g(x ′′)| da(y)

⇔ c12

∫
σ(x ′,ρ)\σ(x ′,2ξ)

|m(x ′, y) − m(x ′′, y)| |x ′′ − y|β da(y).

It can be shown that (5.17) holds for y ∈ σ(x ′, ρ) \ σ(x ′, 2ξ), so

|J4(x ′, x ′′)| ⇔ c13|x ′ − x ′′|
∫

σ(x ′,ρ)\σ(x ′,2ξ)

|x ′′ − y|β
|x ′ − y|3 da(y).

For y ∈ σ(x ′, ρ) \ σ(x ′, 2ξ),

|x ′′ − y| ⇔ |x ′ − x ′′| + |x ′ − y|
⇔ 1

2 |x ′ − y| + |x ′ − y| = 3
2 |x ′ − y|;
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therefore, since β < 1, we use polar coordinates again and arrive at

|J4(x ′, x ′′)| ⇔ c14|x ′ − x ′′|
∫

σ(x ′,ρ)\σ(x ′,2ξ)

|x ′ − y|β−3 da(y)

= 2π

1 − β
c14|x ′ − x ′′|{2β−1|x ′ − x ′′|β−1 − ρβ−1⎧,

which yields

|J4(x ′, x ′′)| ⇔ c15|x ′ − x ′′|β, (5.21)

where c15 depends on ρ.
Estimates (5.18)–(5.21) together with (5.16) now lead to the conclusion that for

|x ′ − x ′′| < ρ/2,
|M1(x ′) − M1(x ′′)| ⇔ c16|x ′ − x ′′|α, (5.22)

where 0 < α < β < 1 and c16 depends on ρ.
Next,

M2(x ′) − M2(x ′′) = J5(x ′, x ′′) + J6(x ′, x ′′) + J7(x ′, x ′′) + J8(x ′, x ′′), (5.23)

where

J5(x ′, x ′′) = [g(x ′) − g(x ′′)]
∫

S+\σ(x ′,ρ)

m(x ′, y) da(y),

J6(x ′, x ′′) = g(x ′′)
∫

S+\σ(x ′,ρ)

[
m(x ′, y) − m(x ′′, y)

]
da(y),

J7(x ′, x ′′) = g(x ′′)
∫

σ(x ′′,ρ)\σ(x ′,ρ)

m(x ′′, y) da(y),

J8(x ′, x ′′) = −g(x ′′)
∫

σ(x ′,ρ)\σ(x ′′,ρ)

m(x ′′, y) da(y).

The estimation of J5 starts from the inequality

|J5(x ′, x ′′)| ⇔ |g(x ′) − g(x ′′)|
∫

S+\σ(x ′,ρ)

|m(x ′, y)| da(y)

⇔ c17|x ′ − x ′′|β
∫

S+\σ(x ′,ρ)

1

|x ′ − y|2 da(y).
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Since x ′ is outside the domain of integration, this yields

|J5(x ′, x ′′)| ⇔ c18|x ′ − x ′′|β, (5.24)

where c18 depends on ρ.
Recalling (5.17), we see that

|J6(x ′, x ′′)| ⇔ | f (x ′′)|
∫

S+\σ(x ′,ρ)

|m(x ′, y) − m(x ′′, y)| da(y)

⇔ c2
[
sup
x∈S∩

| f (x)|] |x ′ − x ′′|
∫

S+\σ(x ′,ρ)

1

|x ′ − y|3 da(y);

hence,

|J6(x ′, x ′′)| ⇔ c19|x ′ − x ′′|, (5.25)

where c19 depends on ρ.
For J7, we have

|J7(x ′, x ′′)| ⇔ |g(x ′′)|
∫

σ(x ′′,ρ)\σ(x ′,ρ)

|m(x ′′, y)| da(y)

⇔ c20

∫
σ(x ′′,ρ)\σ(x ′,ρ)

1

|x ′′ − y|2 da(y).

Extending the domain of integration and changing to polar coordinates with the pole
at x ′′ leads to

|J7(x ′, x ′′)| ⇔ c20

∫
σ(x ′′,ρ+|x ′−x ′′|)\σ(x ′′,ρ−|x ′−x ′′|)

1

|x ′′ − y|2 da(y)

⇔ 2πc20
[
ρ + |x ′ − x ′′| − (

ρ − |x ′ − x ′′|)] 1

ρ − |x ′ − x ′′|
= 4πc20

|x ′ − x ′′|
ρ − |x ′ − x ′′| .

Since

ρ − |x ′ − x ′′| > ρ − 1
2 ρ = 1

2 ρ,

we arrive at

|J7(x ′, x ′′)| ⇔ 8π

ρ
c20|x ′ − x ′′|;
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that is,

|J7(x ′, x ′′)| ⇔ c21|x ′ − x ′′|, (5.26)

where c21 depends on ρ.
Similarly, noting that

|x ′′ − y| ≥ |x ′ − y|

for y ∈ σ(x ′, ρ) \ σ(x ′′, ρ), we find that

|J8(x ′, x ′′)| ⇔ | f (x ′′)|
∫

σ(x ′,ρ)\σ(x ′′,ρ)

|m(x ′′, y)| da(y)

⇔ c22

∫
σ(x ′,ρ)\σ(x ′′,ρ)

1

|x ′′ − y|2 da(y)

⇔ c22

∫
σ(x ′,ρ)\σ(x ′′,ρ)

1

|x ′ − y|2 da(y)

⇔ c22

∫
σ(x ′,ρ+|x ′−x ′′|)\σ(x ′,ρ−|x ′−x ′′|)

1

|x ′ − y|2 da(y).

Just as in the case of J7, the above inequality yields

|J8(x ′, x ′′)| ⇔ c23|x ′ − x ′′|, (5.27)

where c23 depends on ρ.
Combining (5.24)–(5.27) and also taking (5.23) into account, we see that for

|x ′ − x ′′| < ρ/2,

|M2(x ′) − M2(x ′′)| ⇔ c24|x ′ − x ′′|β, (5.28)

where c24 depends on ρ.
Finally, it is obvious that

|M3(x ′) − M3(x ′′)| ⇔ |cρ ||x ′ − x ′′|β. (5.29)

Thus, from (5.15), (5.22), (5.28), and (5.29) we conclude that for |x ′−x ′′| < ρ/2,

|M(x ′) − M(x ′′)| ⇔ c25|x ′ − x ′′|α,

where 0 < α < β < 1 and c25 depends on ρ.
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We can easily show that M is bounded:

|M(x)| ⇔
∫
S+

|m(x, y)| |g(y) − g(x)| da(y)

+ |g(x)|
∫

S+\σ(x,ρ)

|m(x, y)| da(y) + |cρ ||g(x)|

⇔ c26

∫
S+

|x − y|β−2 da(y) + c27

∫
S+\σ(x,ρ)

1

|x − y|2 da(y) + |cρ | |g(x)| ⇔ N .

Hence, for |x ′ − x ′′| ≥ ρ/2,

|M(x ′) − M(x ′′)| ⇔ 2N = 2N
|x ′ − x ′′|α
|x ′ − x ′′|α ⇔ 2N

(
2

ρ

)α

|x ′ − x ′′|α,

and we conclude that for all x ′, x ′′ ∈ S∩,

|M(x ′) − M(x ′′)| ⇔ c|x ′ − x ′′|α,

where 0 < α < β < 1 and c depends on ρ. ≥√
5.8 Theorem. If g ∈ C 0,β(S+), β ∈ (0, 1), then U ∈ C 2,α(Ω), where Ω is an
arbitrary domain in R

2 whose closure lies in S+, and 0 < α < β < 1. Additionally,

∂2

∂xα∂xβ

U (x) = γ (α, β)g(x) + M(x), (5.30)

where M is defined by (5.13) and γ (α, β) is a constant symmetric 3× 3 matrix with
entries

γρη(α, β) = πd1δαβδρη + 1
2 πd2(δαρδβη + δαηδβρ − δαβδρη), (5.31)

γρ3(α, β) = γ3ρ(α, β) = 0, (5.32)

γ33(α, β) = − 1

2μ
δαβ. (5.33)

Proof. By Theorem 5.2 with D(x, y) = D(x − y) (which reflects the structure of D
more accurately),

∂2

∂xα∂xβ

U (x) = ∂2

∂xα∂xβ

∫
S+

D(x − y)g(y) da(y)

= ∂

∂xα

∫
S+

∂

∂xβ

D(x − y)g(y) da(y).
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According to Theorem 2.8 in Kupradze et al. (1979, p. 184),

∂

∂xα

∫
S+\σ(x,ω)

∂

∂xβ

D(x − y)g(y) da(y)

=
∫

S+\σ(x,ω)

∂2

∂xα∂xβ

D(x − y)g(y) da(y)

−
∫

∂σ(x,ω)

yα − xα

|x − y|
∂

∂xβ

D(x − y)g(y) ds(y). (5.34)

We rewrite the second integral on the right-hand side of (5.34) as

−
∫

∂σ(x,ω)

yα − xα

|x − y|
∂

∂xβ

D(x − y)g(y) ds(y)

= ω

∫
∂σ(x,1)

(xα − yα)
∂

∂xβ

D(ω(x − y))g(x + ω(y − x)) ds(y).

The first two components of the integral around ∂σ(x, 1) are

ω

∫
∂σ(x,1)

(xα − yα)
∂

∂xβ

Dρη(ω(x − y))gη(x + ω(y − x)) ds(y)

+ ω

∫
∂σ(x,1)

(xα − yα)
∂

∂xβ

Dρ3(ω(x − y))g3(x + ω(y − x)) ds(y)

=
∫

∂σ(x,1)

(xα − yα)
{
d1δρη(xβ − yβ) + d2

[
δρβ(xη − yη) + δηβ(xρ − yρ)

− 2(xρ − yρ)(xη − yη)(xβ − yβ)
] + O(ω lnω)

⎧
gη(x + ω(y − x)) ds(y)

+
∫

∂σ(x,1)

(xα − yα)(O(ω lnω))g3(x + ω(y − x)) ds(y).

As ω ∈ 0 in the above expression, from (5.5), (5.6), and (5.31)–(5.33) it follows
that the first two components are

gη(x)
[
d1δρη Iαβ + d2(δβη Iαρ + δβρ Iαη − 2Iαβρη)

]
= gη(x)

{
πd1δρηδαβ

+ πd2
[
δβηδαρ + δβρδαη − 1

2 (δαβδρη + δαρδβη + δαηδβρ)
]⎧

= γρη(α, β)gη(x) + γρ3(α, β)g3(x).
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The third component of the integral around ∂σ(x, 1) is found analogously. First,
we see that

ω

∫
∂σ (x,1)

(xα − yα)
∂

∂xβ

D3μ(ω(x − y))gμ(x + ω(y − x)) ds(y)

+ ω

∫
∂σ (x,1)

(xα − yα)
∂

∂xβ

D33(ω(x − y))g3(x + ω(y − x)) ds(y)

=
∫

∂σ (x,1)

(xα − yα)(O(ω lnω))gμ(x + ω(y − x)) ds(y)

+
∫

∂σ (x,1)

(xα − yα)

[
− 1

2πμ
(xβ − yβ) + O(ω2 lnω)

]
g3(x + ω(y − x)) ds(y).

As ω ∈ 0, from (5.5) we deduce that the third component is

− 1

2πμ
Iαβg3(x) = − 1

2μ
δαβg3(x) = γ3μ(α, β)gμ(x) + γ33(α, β)g3(x).

Equality (5.30) is now obtained by letting ω ∈ 0 in (5.34).
By Theorem 5.5, M(x) exists in the sense of principal value and, by Theorem 5.7,

M ∈ C 0,α(Ω), which completes the proof. ≥√

5.4 A Particular Solution of the Nonhomogeneous System

5.9 Theorem. If g ∈ C 0,β(S+), β ∈ (0, 1), then U (x) defined by (5.2) is a regular
solution in S+ of system (5.1).

Proof. The regularity of U has been shown in the proofs of Theorems 5.4 and 5.8.
By (3.9),

[
A(∂x )U (x)

]
α

= h2μ

2⎪
β=1

∂2

∂x2β
Uα(x)

+ h2(λ + μ)

2⎪
ρ=1

∂2

∂xα∂xρ

Uρ(x)

− μUα(x) − μ
∂

∂xα

U3(x),

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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and by Theorem 5.8,

∂2

∂x2β
Uα(x) =

∫
S+

[
∂2

∂x2β
D(x, y)

(
g(y) − g(x)

)]
α

da(y)

+
[ ∫

S+\σ(x,ω)

∂2

∂x2β
Dαk(x, y) da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

∂2

∂x2β
Dαk(x, y) da(y)

]
gk(x)

+ [
γ (β, β)g(x)

]
α
,

∂2

∂xα∂xρ

Uρ(x) =
∫
S+

[
∂2

∂xα∂xρ

D(x, y)
(
g(y) − g(x)

)]
ρ

da(y)

+
[ ∫

S+\σ(x,ω)

∂2

∂xα∂xρ

Dρk(x, y) da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

∂2

∂xα∂xρ

Dρk(x, y) da(y)

]
gk(x)

+ [
γ (α, ρ)g(x)

]
ρ
.

Also, Remark 5.6 and Theorem 5.2 imply that

Uα(x) =
∫
S+

[
D(x, y)

(
g(y) − g(x)

)]
α

da(y)

+
[ ∫

S+\σ(x,ω)

Dαk(x, y) da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

Dαk(x, y) da(y)

]
gk(x),

∂

∂xα

U3(x) =
∫
S+

[
∂

∂xα

D(x, y)
(
g(y) − g(x)

)]
3

da(y)

+
[ ∫

S+\σ(x,ω)

∂

∂xα

D3k(x, y) da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

∂

∂xα

D3k(x, y) da(y)

]
gk(x);
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consequently,

[
A(∂x )U (x)

]
α

= h2μ

2⎪
β=1

[
γ (β, β)g(x)

]
α

+ h2(λ + μ)

2⎪
ρ=1

[
γ (α, ρ)g(x)

]
ρ

+
∫
S+

[
A(∂x )D(x, y)

(
g(y) − g(x)

)]
α

da(y)

+
[ ∫

S+\σ(x,ω)

[
A(∂x )D(x, y)

]
αk da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

[
A(∂x )D(x, y)

]
αk da(y)

]
gk(x).

Next, ∫
S+

[
A(∂x )D(x, y)

(
g(y) − g(x)

)]
α

da(y)

=
∫
S+

[ − δ(|x − y|)E3
(
g(y) − g(x)

)]
α

da(y)

= −
∫
S+

δ(|x − y|)gα(y) da(y)

+
[ ∫

S+
δ(|x − y|) da(y)

]
gα(x)

= −gα(x) + gα(x) = 0.

By Theorem 3.8, the integrals over S+ \σ(x, ω) and σ(x, ω) \σ(x, ε) are also zero.
Therefore, using (5.31) and (5.32), we obtain

[
A(∂x )U (x)

]
α

=
2⎪

β=1

{
h2μγαη(β, β)gη(x) + h2μγα3(β, β)g3(x)

+ h2(λ + μ)γβμ(α, β)gμ(x) + h2(λ + μ)γβ3(α, β)g3(x)
⎧

=
2⎪

β=1

{
h2μ

[
πd1δαη + 1

2 πd2(2δαβδηβ − δαη)
]
gη(x)

+ h2(λ + μ)
[
πd1δαβδβμ + 1

2 πd2δαμ

]
gμ(x)

⎧;
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so, by (5.4),

[
A(∂x )U (x)

]
α

= [
h2μ(2πd1 − πd2) + h2(λ + μ)πd2

+ h2μπd2 + h2(λ + μ)πd1
]
gα(x)

= h2π
[
(λ + 3μ)d1 + (λ + μ)d2

]
gα(x)

= 1

4μ(λ + 2μ)

[
(λ + μ)2 − (λ + 3μ)2

]
gα(x) = −gα(x),

which means that [
A(∂x )U (x)

]
α

+ gα(x) = 0.

Similarly,

[
A(∂x )U (x)

]
3 = μ

2⎪
β=1

{
∂

∂xβ

Uβ(x) + ∂2

∂x2β
U3(x)

}
,

which leads to

[
A(∂x )U (x)

]
3

= μ

2⎪
β=1

[
γ (β, β)g(x)

]
3 +

∫
S+

[
A(∂x )D(x, y)

(
g(y) − g(x)

)]
3 da(y)

+
[ ∫

S+\σ(x,ω)

[
A(∂x )D(x, y)

]
3k da(y)

]
gk(x)

+ lim
ε∈0

[ ∫
σ(x,ω)\σ(x,ε)

[
A(∂x )D(x, y)

]
3k da(y)

]
gk(x).

As before, the integrals on the right-hand side vanish, and (5.32) and (5.33) yield

[
A(∂x )U (x)

]
3 = μ

2⎪
β=1

[
γ3α(β, β)gα(x) + γ33(β, β)g3(x)

]

= μ

2⎪
β=1

(
− 1

2μ

)
g3(x);

hence, [
A(∂x )U (x)

]
3 + g3(x) = 0,

as required. ≥√
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5.10 Remark. Consider the generic boundary value problem

A(∂x )u(x) + g(x) = 0, x ∈ S+,

Bu(x) = U (x), x ∈ ∂S
(5.35)

for system (5.1), where g ∈ L∞(S+), B is any of the boundary operators generated
by the Dirichlet, Neumann, or Robin conditions, andU is a continuous 3×1 matrix
function prescribed on ∂S (see Sect. 3.4). By Theorem 5.9 in conjunction with the
smoothness results established in Sects. 5.2 and 5.3, the substitution

u = v + U (5.36)

transforms (5.35) into the boundary value problem

A(∂x )v(x) = 0, x ∈ S+,

Bv(x) = U (x) − BU (x), x ∈ ∂S
(5.37)

for the homogeneous system (5.1). According to Theorem 5.2, the boundary data
function U − BU is continuous on ∂S, and if (5.37) has a regular solution v, then
(5.35) also has a regular solution u given by (5.36). This justifies the statement made
in Remark 3.11.
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Chapter 6
Existence of Regular Solutions

6.1 The Dirichlet and Neumann Problems

In viewof Theorems 4.2 and 4.10 andRemarks 4.7 and 4.9,wemay seek the solutions
of problems (N+) and (N−) in the form of (V ϕ)+ and (V ϕ)− with ϕ ∈ C0,α(∂S),
that of (D+) in the form of (Wϕ)+ with ϕ ∈ C1,α(∂S), and that of (D−) as the sum of
(Wϕ)− with ϕ ∈ C1,α(∂S) and some 3×1matrix u0 of the form (3.16). By Theorem
4.5, Corollary 4.8, and Remark 4.9, the boundary value problems (3.43), (3.44) and
(3.46), (3.47) are reduced, respectively, to the (systems of) singular integral equations

− 1
2 ϕ(x) +

∫
∂S

P(x, y)ϕ(y) ds(y) = P(x), (D+)

1
2 ϕ(x) +

∫
∂S

T (∂x )D(x, y)ϕ(y) ds(y) = Q(x), (N +)

1
2 ϕ(x) +

∫
∂S

P(x, y)ϕ(y) ds(y) = R(x) − u0(x), (D−)

− 1
2 ϕ(x) +

∫
∂S

T (∂x )D(x, y)ϕ(y) ds(y) = S (x), (N −)

where x ∈ ∂S and ϕ is an unknown density.
Let (D+

0 ), (N +
0 ), (D−

0 ), and (N −
0 ) be the associated homogeneous equations.

6.1 Theorem. If P ∈ C1,α(∂S), α ∈ (0, 1), then any solution ϕ ∈ C0,α(∂S)

of equation (D+) belongs to C1,α(∂S). A similar statement holds for
(D−) if R ∈ C1,α(∂S).
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Proof. By (4.6), we can write (D+) in the form

(
W0 − 1

2 I
)
ϕ = P, (6.1)

where, in view of (3.31), (2.36), (2.38), (2.2), (2.32), (2.29), and (2.30), W0ϕ admits
the decomposition

W0ϕ = − 1

2π
(μ∈εαβ Eαβ K sϕ + K wϕ); (6.2)

here, K s is defined by (2.38),

K wϕ = − (E3 − iμ∈εαβ Eαβ)(w0ϕ)

− (λ∈ + μ∈)εαγ Eγβ(ve
αβ 0ϕ)

+ 1
2 εαβ(λ∈E3β + h−2Eβ3)(v

c
α 0ϕ)

− 1
2 E3α(vd

α 0ϕ) − 2π(W̃0ϕ), (6.3)

(W̃0ϕ)(x) =
∫
∂S

P̃(x, y)ϕ(y) ds(y), x ∈ ∂S,

and P̃(x, y) satisfies the conditions of Theorem 2.10 with any γ ∈ (0, 1). Applying
the operator

−2π(μ∈εαβ Eαβ K s − π E3 I )

to both sides of (6.1) and making use of Theorem 2.22, we obtain

[
π2(E3 − μ∈2Eγ γ )I − μ∈εαβ Eαβ K s K w + π E3K w]

ϕ

= 2π(μ∈εαβ Eαβ K s − π E3 I )P. (6.4)

Clearly, any solution of (6.1) is also a solution of (6.4). By Theorem 2.21,
C1,α(∂S) is invariant under K s ; consequently, the right-hand side of (6.4) belongs to
C1,α(∂S). By Theorems 2.8, 2.18, 2.17, and 2.10, K w mapsC0,α(∂S) intoC1,α(∂S).

A further application of Theorem 2.21 now shows that every C0,α-solution of (6.4)
belongs to C1,α(∂S), which proves the assertion.

The case of (D−) is treated in the same way. �⇔
6.2 Theorem. The Fredholm Alternative holds for the pairs of integral equations
(D+), (N −) and (N +), (D−) in the (real) dual system

(
C0,α(∂S), C0,α(∂S)

)
,

α ∈ (0, 1), equipped with the bilinear form

(ϕ, ψ) =
∫
∂S

ϕT(y)ψ(y) ds(y). (6.5)
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Proof. Denoting by D and N the integral operators occurring in (D±) and (N ±),
respectively, we see that, by (3.28), for any ϕ, ψ ∈ C0,α(∂S)

(Dϕ, ψ) =
∫
∂S

[ ∫
∂S

P(x, y)ϕ(y) ds(y)

]T
ψ(x) ds(x)

=
∫
∂S

[ ∫
∂S

(
T (∂y)D(y, x)

)T
ϕ(y) ds(y)

]T
ψ(x) ds(x),

=
∫
∂S

ϕT(y)

[ ∫
∂S

T (∂y)D(y, x)ψ(x) ds(x)

]
ds(y)

= (ϕ, N ψ).

Owing to the symmetry of the bilinear form (6.5), we also have

(N ϕ, ψ) = (ϕ, Dψ),

which means that D and N are mutually adjoint in the given dual system. Since
D = W0, it is then natural to writeN = W ≤

0 , the adjoint of W0. Therefore,

(W ≤
0 ϕ)(x) =

∫
∂S

T (∂x )D(x, y)ϕ(y) ds(y),

and the integral equations (D+), (N +), (D−), and (N −) can be written in the
alternative form

(
W0 − 1

2 I
)
ϕ = P, (D+)(

W ≤
0 + 1

2 I
)
ϕ = Q, (N +)(

W0 + 1
2 I

)
ϕ = R − u0, (D−)(

W ≤
0 − 1

2 I
)
ϕ = S . (N −)

From (6.2), (6.3), Theorem 2.19, and the fact (pointed out in the proof of Theorem
6.1) that K w mapsC0,α(∂S) intoC1,α(∂S), it is clear thatC0,α(∂S) is invariant under
the operator W0.

The kernel kw of K w is a proper γ -singular kernel on ∂S with respect to both x
and y, for any γ ∈ (0, 1). Hence, by Theorem 2.35, K w is α-regular singular and its
complex kernel k̂w satisfies

k̂w(z, z) = 0, z ∈ ∂S.

Also, (2.38) shows that the same can be said about K s , except that in this case

k̂s(z, z) = E3, z ∈ ∂S.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Then, by (6.2), D itself is α-regular singular and

k̂(z, z) = − 1

2π

[
μ∈εαβ Eαβ k̂s(z, z) + k̂w(z, z)

]

= − 1

2π
μ∈εαβ Eαβ, z ∈ ∂S.

Consequently, and in view of (3.32) and (3.13),

det
[ − 1

2 E3 ± π i k̂(z, z)
] = − 1

8 (1 − μ∈2) < 0,

from which we immediately deduce that the index ρ of the complex version of
(D+), defined by (2.52), is zero. According to Theorem 2.38, this means that the
Fredholm Alternative holds for the pair (D+), (N −) in the (complex) dual system(
C0,α(∂S), C0,α(∂S)

)
with the bilinear form

(ϕ, ψ) =
∫
∂S

ϕT(ζ )ψ(ζ ) dζ ;

therefore, by Remark 2.39, it also holds for (D+), (N −) in the (real) dual system(
C0,α(∂S), C0,α(∂S)

)
with the bilinear form (6.5).

The argument is similar for the pair (D−), (N +). �⇔
6.3 Theorem. (D−

0 ) has exactly three linearly independent C0,α-solutions.

Proof. In view of Theorem 6.1, it suffices to prove the assertion in C1,α(∂S),
α ∈ (0, 1).

It is clear that a 3×1matrix u0 of the form (3.16) is a solution of the homogeneous
interior Neumann problem (N+). Since T u0 = 0, replacing u by u0 in (3.33), we
obtain

1
2 u0(x) +

∫
∂S

P(x, y)u0(y) ds(y) = 0, x ∈ ∂S;

that is, u0 is a solution of (D−
0 ); hence, f (1), f (2), and f (3), where

f (1)(x) = (1, 0, −x1)
T,

f (2)(x) = (0, 1, −x2)
T, (6.6)

f (3)(x) = (0, 0, 1)T

are the columns of the matrix F defined in (3.17), are three linearly independent
solutions of (D−

0 ).
Let f (0) be an arbitrary C1,α-solution of (D−

0 ). Then

f = f (0) − ci f (i) (6.7)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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is also a C1,α-solution of (D−
0 ), for any constants ci . This means that

(W f )− = 0 on ∂S;

consequently, by Theorems 4.1 and 4.2(i), W f is a regular solution of the homoge-
neous exterior Dirichlet problem (D−). By Theorem 3.16(i),

(W f )− = 0 in S̄−.

This yields
T (W f )− = 0 on ∂S,

which, in turn, by Theorem 4.10, implies that

T (W f )+ = 0 on ∂S,

and we deduce that (W f )+ is a regular solution of the homogeneous interior Neu-
mann problem (N+). Hence, by Theorem 3.16(ii),

(W f )+ =
(

W f (0)
)+ − ci

(
W f (i)

)+ = ũ in S̄+, (6.8)

where ũ is of the form (3.16).
Without loss of generality, suppose that the origin of coordinates lies in S+. We

choose the ci so that ũ = 0, for example, by asking that

(W f )+(0) = 0.

This is equivalent to the system of linear equations

ci

(
W f (i)

)+
(0) =

(
W f (0)

)+
(0). (6.9)

Let {c≤
1, c≤

2, c≤
3} be a solution of the homogeneous system (6.9). Then, setting

f ≤ = c≤
i f (i), we obtain

(
W f ≤)+

(0) = 0. (6.10)

Taking f (0) = 0 and ci = c≤
i in (6.7), we see that, as above, (W f ≤)+ is a regular

solution of the homogeneous problem (N+); therefore, by Theorem3.16(ii), (W f ≤)+
is of the form (3.16). In view of (6.10), we conclude that

(W f ≤)+ = 0 in S̄+,

so
T (W f ≤)+ = 0 on ∂S.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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By Theorem 4.10,
T (W f ≤)− = 0 on ∂S.

Thus, (W f ≤)− is a regular solution of the homogeneous exterior Neumann problem
(N−). Hence, by Theorem 3.16(i),

(W f ≤)− = 0 in S̄−.

Since
(W f ≤)+ = 0 in S̄+,

from (4.5) it follows that

f ≤ = (W f ≤)− − (W f ≤)+ = 0 on ∂S.

Thismeans that the homogeneous system (6.9) has only the trivial solution; therefore,
(6.9) has a unique solution {c1, c2, c3}, for which, by (6.8),

(W f )+ = 0 in S̄+.

But, as was established earlier, we also have

(W f )− = 0 in S̄−.

Using (4.5) again, we now obtain

f = (W f )− − (W f )+ = 0 on ∂S.

Hence, according to (6.7), any C1,α-solution of (D−
0 ) can be expressed uniquely as

a linear combination of the f (i). �⇔
6.4 Lemma. If ϕ ∈ C0,α(∂S), α ∈ (0, 1), is a regular solution of equation (N −),
then

pϕ = −pS ;

that is,

∫
∂S

(ϕα − xαϕ3) ds = −
∫
∂S

(Sα − xαS3) ds,

∫
∂S

ϕ3 ds = −
∫
∂S

S3 ds.

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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Proof. Setting
u(y) = (c1, c2, c0 − c1y1 − c2y2)

T

in Theorem 3.9 and taking into account the fact that T u = 0 for such a choice, we
find that for x ∈ ∂S,

∫
∂S

[
Pjα(x, y) − yα Pj3(x, y)

]
ds(y) = − 1

2 (δ jα − xαδ j3),

∫
∂S

Pj3(x, y) ds(y) = − 1
2 δ j3,

or, in view of (3.28),

∫
∂S

[
Tαk(∂y) − yαT3k(∂y)

]
Dkj (y, x) ds(y) = − 1

2 (δ jα − xαδ j3),

∫
∂S

T3k(∂y)Dkj (y, x) ds(y) = − 1
2 δ j3. (6.11)

Multiplying (N −)3 and the combinations (N −)α − xα × (N −)3 by ds(x) and
integrating the resulting expressions over ∂S, we obtain the equalities

−1

2

∫
∂S

ϕ3(x) ds(x) +
∫
∂S

[ ∫
∂S

T3k(∂x )Dkj (x, y) ds(x)

]
ϕ j (y) ds(y)

=
∫
∂S

S3(x) ds(x)

and

− 1

2

∫
∂S

[
ϕα(x) − xαϕ3(x)

]
ds(x)

+
∫
∂S

{ ∫
∂S

[
Tαk(∂x )Dkj (x, y) − xαT3k(∂x )Dkj (x, y)

]
ds(x)

}
ϕ j (y) ds(y)

=
∫
∂S

[
Sα(x) − xαS3(x)

]
ds(x),

and the desired formulas follow from (6.11). �⇔
6.5 Theorem. (i) The interior Dirichlet problem (D+) has a unique regular solution
for any P ∈ C1,α(∂S), α ∈ (0, 1). This solution can be represented as the extension

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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(Wϕ)+ to S̄+ of the restriction to S+ of a double-layer potential Wϕ with density
ϕ ∈ C1,α(∂S).

(ii) The exterior Neumann problem (N−) has a unique regular solution for
S ∈ C0,α(∂S), α ∈ (0, 1), if and only if

pS = 0;

that is, ∫
∂S

(Sα − xαS3) ds = 0, (6.12)

∫
∂S

S3 ds = 0.

This solution can be represented as the restriction (V ϕ)− to S̄− of a single-layer
potential V ϕ with density ϕ ∈ C0,α(∂S).

Proof. By Theorem 6.2, the Fredholm Alternative holds for the pairs (D+), (N −)

and (D−), (N +) in the (real) dual system
(
C0,α(∂S), C0,α(∂S)

)
with the bilinear

form (6.5).
Let u be a regular solution of (N−), and consider a disk ΓR of sufficiently large

radius R so that S̄+ ⊂ ΓR . Applying Theorem 3.5 in S− ≥ ΓR , we find that
∫
∂S

(Sα − xαS3) ds −
∫

∂ΓR

(Tαi − xαT3i )ui ds = 0,

∫
∂S

S3 ds −
∫

∂ΓR

T3i ui ds = 0,

from which (6.12) are obtained by letting R √ ∞ and taking (3.42) into account.
Suppose now that (6.12) hold, and let ϕ(0) be a solution of (N −

0 ). By (4.17) and
(4.19), this is equivalent to

T
(

V ϕ(0)
)− = 0 on ∂S.

Since

A
(

V ϕ(0)
)− = 0 in S−

and, by Lemma 6.4 and Theorem 4.2(ii),

(V ϕ(0))− ∈ A ,

it follows that
(
V ϕ(0)

)−
is a solution of the homogeneous exterior Neumann problem

(N−). By Theorem 3.16(i),

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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(
V ϕ(0)

)− = 0 in S̄−;

hence, by Theorem 4.4,

(
V ϕ(0)

)− = 0 =
(

V ϕ(0)
)+

on ∂S.

Next,
(
V ϕ(0)

)+
is a solution of the homogeneous interior Dirichlet problem (D+);

consequently, by Theorem 3.16(i),

(
V ϕ(0)

)+ = 0 in S̄+.

Then

T
(

V ϕ(0)
)+ = 0 on ∂S,

and (4.17) and (4.19) yield

ϕ(0) = T
(

V ϕ(0)
)+ − T

(
V ϕ(0)

)− = 0 on ∂S,

from which we conclude that (N −
0 ) has only the zero solution. According to

the Fredholm Alternative, so does (D+
0 ); therefore, (D+) and (N −) have unique

solutions ϕ ∈ C0,α(∂S).
To complete the proof, we remark that in the case of (N−), from Lemma 6.4,

(6.12), and Theorem 4.2(ii) it follows that (V ϕ)− ∈ A ; in other words, (V ϕ)− is a
regular solution of (N−). At the same time, in the case of (D+), Theorem 6.1 yields
ϕ ∈ C1,α(∂S); hence, by Theorem 4.10, (Wϕ)+ is a regular solution of the problem.

The uniqueness of these solutions was established in Theorem 3.16(i). �⇔
6.6 Theorem. The interior Neumann problem (N+) is solvable for Q ∈ C0,α(∂S),
α ∈ (0, 1), if and only if

pQ = 0;

that is,

∫
∂S

(Qα − xαQ3) ds = 0,

∫
∂S

Q3 ds = 0. (6.13)

The regular solution is unique up to a 3 × 1 matrix of the form (3.16) and can
be represented as the restriction (V ϕ)+ to S̄+ of a single-layer potential V ϕ with
density ϕ ∈ C0,α(∂S).

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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Proof.ByTheorem 6.2 and the FredholmAlternative, (N +) is solvable if and only if

( f (i),Q) =
∫
∂S

( f (i))TQ ds = 0,

where the f (i) are defined by (6.6). Writing these conditions explicitly, we see that
they coincide with (6.13). Consequently, if the equalities (6.13) hold, then there is a
density ϕ ∈ C0,α(∂S) for which (V ϕ)+ is a regular solution of (N+). The uniqueness
of this solution is discussed in Theorem 3.16(ii). �⇔
6.7 Theorem. The exterior Dirichlet problem (D−) has a unique regular solution
for any R ∈ C1,α(∂S). This solution can be represented as the sum of the extension
(Wϕ)− to S̄− of the restriction to S− of a double-layer potential Wϕ with density
ϕ ∈ C1,α(∂S), and a particular 3 × 1 matrix u0 of the form (3.16).

Proof. According to Theorem 6.2 and the Fredholm Alternative, (N +
0 ) has exactly

three linearly independent C0,α-solutions g(i). Without loss of generality, suppose
that the sets { f (i)} and {g(i)} have been biorthonormalized Kupradze et al. (1979);
that is, we have (

f (i), g( j)
)

= δi j .

Taking u0 = ci f (i), where

ci =
∫
∂S

(
g(i)

)T
R ds,

we see that

(g( j), R − ci f (i)) =
∫
∂S

(
g( j)

)T
(R − ci f (i)) ds = 0.

Consequently, by the Fredholm Alternative, (D−) has a solution ϕ ∈ C0,α(∂S). By
Theorem 6.1, ϕ ∈ C1,α(∂S). Since, by Theorem 4.2(i),

(Wϕ)− + u0 ∈ A ≤,

it follows that (Wϕ)− + u0 is a regular solution of (D−). The uniqueness of this
solution is guaranteed by Theorem 3.16(i). �⇔
6.8 Remark. Restrictions (6.13) and (6.12), which are necessary and sufficient for
the solvability of (N+) and (N−), respectively, have a direct physical meaning. By
Remark 3.1, they represent the condition that the transverse shear force and the
bending and twisting moments acting on ∂S be zero.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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The regular solutions to all our boundary value problems have been found in
closed form. But one question still remains unanswered: what is the mechanical
significance of the class A that intervenes so essentially in the proceedings? Is its
introduction really necessary? Could there be regular solutions outside this class as
well? The boundary integral equation method, while elegant and precise, offers no
answer. To settle this outstanding matter, in Chap.7 we change over to a different
technique of investigation, equally powerful, which allows us to obtain the complete
integral of system (3.40).

6.2 The Robin Problems

Let Φ be the matrix whose columns g(i), i = 1, 2, 3, are three linearly independent
solutions of (N +) (see the proof of Theorem 6.7), chosen so that

pΦ = E3.

For the Robin problems (R+) and (R−) we seek solutions of the form

u = (V (ϕ − Φ(pϕ)))+ + F(pϕ), (6.14)

u = (V (ϕ − Φ(pϕ)))− + F(pϕ). (6.15)

Then, in view of (4.16), the boundary conditions in (3.45) and (3.48)—that is,

T u + σu = K and T u − σu = L on ∂S,

give rise, respectively, to the boundary integral equations

(
W ≤

0 + 1
2 I

)
(ϕ − Φ(pϕ)) + σ V0(ϕ − Φ(pϕ)) + σ F(pϕ) = K , (R+)(

W ≤
0 − 1

2 I
)
(ϕ − Φ(pϕ)) − σ V0(ϕ − Φ(pϕ)) − σ F(pϕ) = L . (R−)

Since the dominant terms in the kernels of (R+) and (R−) are the same as in those
of (N +) and (N −), the index of each of these equations is zero, so the Fredholm
Alternative can be applied to them.

6.9 Theorem. Let σ ∈ C0,α(∂S), α ∈ (0, 1).
(i) The interior Robin problem (R+) has a unique solution ϕ ∈ C0,α(∂S) for any

K ∈ C0,α(∂S). Then the (unique) solution of (R+) is given by (6.14).
(ii) The exterior Robin problem (R−) has a unique solution ϕ ∈ C0,α(∂S) for

any L ∈ C0,α(∂S). Then the (unique) solution of (R−) is given by (6.15).

Proof.Sinceσ ∈ C0,α(∂S), the operators occurring in (R+) and (R−)mapC0,α(∂S)

to C0,α(∂S).

(i) Consider a solution ϕ̄ of the homogeneous equation (R+
0 ); in other words, a

function ϕ̄ ∈ C0,α(∂S) such that

http://dx.doi.org/10.1007/978-1-4471-6434-0_7
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_4
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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(W ≤
0 + 1

2 I )(ϕ̄ − Φ(pϕ̄)) + σ V0(ϕ̄ − Φ(pϕ̄)) + σ F(pϕ̄) = 0. (6.16)

This means that (V (ϕ̄ − Φ(pϕ̄)))+ + F(pϕ̄) is the (unique) solution of the homo-
geneous problem (R+); therefore,

(V (ϕ̄ − Φ(pϕ̄)))+ + F(pϕ̄) = 0. (6.17)

Since
p(ϕ̄ − Φ(pϕ̄)) = 0,

from (4.16), (6.16), and (6.17) we deduce that the function

U − = (V (ϕ̄ − Φ(pϕ̄)))− + F(pϕ̄)

satisfies

AU − = 0 in S−,

U − = (V (ϕ̄ − Φ(pϕ̄)))−0 = V0(ϕ̄ − Φ(pϕ̄)) + F(pϕ̄)

= (V (ϕ̄ − Φ(pϕ̄)))+0 + F(pϕ̄) = 0 on ∂S,

U −(x) = [
M∞ p(ϕ̄ − Φ(pϕ̄)) + U A + F(pϕ̄)

]
(x)

= (U A + F(pϕ̄))(x) as |x | √ ∞.

By Theorem 3.16,

F(pϕ̄) = 0,

(V (ϕ̄ − Φ(pϕ̄)))− + F(pϕ̄) = (V (ϕ̄ − Φ(pϕ̄)))− = 0.

Since the columns of F are linearly independent, this implies that

pϕ̄ = 0, (V ϕ̄)− = 0.

Also, (6.17) yields
(V ϕ̄)+ = 0;

hence, by Remark 4.9 and (4.17) , ϕ̄ = 0.
Since the homogeneous equation (R+

0 ) has only the zero solution, the Fredholm
Alternative states that (R+) has a unique solution ϕ ∈ C0,α(∂S). By Remark 4.7
and Theorem 4.1, u given by (6.14) belongs to C1,α(S̄+) and satisfies Au = 0 (in
S+), so it is the (unique) solution of (R+).

(ii) If ϕ̄ is a solution of the homogeneous equation (R−
0 ), that is,

(W ≤
0 − 1

2 I )(ϕ̄ − Φ(pϕ̄)) − σ V0(ϕ̄ − Φ(pϕ̄)) − σ F(pϕ̄) = 0,

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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then, by (4.4), the function

U − = (V (ϕ̄ − Φ(pϕ̄)))− + F(pϕ̄)

satisfies

AU − = 0 in S−,

TU − − σU − = 0 on ∂S,

U −(x) = [
M∞ p(ϕ̄ − Φ(pϕ̄)) + U A + F(pϕ̄)

]
(x)

= (
U A + F(pϕ̄)

)
(x) as |x | √ ∞,

which is the homogeneous problem (R−). Applying Theorem 3.16 once more, we
conclude that

F(pϕ̄) = 0, (V (ϕ̄ − Φ(pϕ̄)))− + F(pϕ̄) = (V (ϕ̄ − Φ(pϕ̄)))− = 0;

hence, as above, pϕ̄ = 0 and

(V ϕ̄)−0 = 0 = V0ϕ̄ = (V ϕ̄)+0 ,

so (V ϕ̄)+ = 0 is the unique solution of the homogeneous problem (D+). Remark
4.9 and (4.17) now imply that ϕ̄ = 0. Consequently, by the Fredholm Alternative,
(R−) has a unique solution ϕ ∈ C0,α(∂S).

The function u given by (6.15) belongs to C1,α(S̄−) and satisfies Au = 0 (in S−).
Also, u ∈ A ≤ since p

(
ϕ −Φ(pϕ)

) = 0, which means that u is the (unique) solution
of (R−). �⇔
6.10 Remark. The sole purpose of the term Φ(pϕ) in the density of V ± is to ensure
that p applied to the density yields zero. This term can be replaced by any other
that has the same effect. For example, in Schiavone (1996) the correction term in the
density is F(pF)−1(pϕ).

6.3 Smoothness of the Integrable Solutions

Weconclude this chapter by taking a closer look at the regularity properties of the L2-
solutions of the singular integral equations corresponding to the interior and exterior
Dirichlet and Neumann boundary value problems.

6.11 Theorem. Suppose that

λϕ(x) +
∫
∂S

k(x, y)ϕ(y) ds(y) = f (x) (6.18)

for almost all x ∈ ∂S,where k(x, y) is a proper γ -singular kernel on ∂S, γ ∈ [0, 1),
λ ∈ R, λ �= 0, and f ∈ C0,α(∂S), α ∈ (0, 1]. If ϕ ∈ L p(∂S) is a solution of (6.18),

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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then ϕ ∈ C0,β(∂S), with β = min{α, 1 − γ } if γ ∈ (0, 1), β = α if α ∈ (0, 1) and
γ = 0, and any β ∈ (0, 1) if α = 1 and γ = 0.

Proof. Let

K (x) =
∫
∂S

k(x, y)ϕ(y) ds(y),

which, by Theorem 4.14, exists for almost all x ∈ ∂S. We have

|K (x)| ≤
∫
∂S

[|k(x, y)|2−γ |ϕ(y)|p]1/[p(2−γ )]

× |ϕ(y)|(1−γ )/(2−γ )|k(x, y)|(p−1)/p ds(y).

Setting

p1 = p(2 − γ ), p2 = p(2 − γ )

1 − γ
, p3 = p

p − 1

and noting that
1

p1
+ 1

p2
+ 1

p3
= 1

and that the three factors of the integrand on the right-hand side above belong to
L p1(∂S), L p2(∂S), and L p3(∂S), respectively, we apply the generalized Hölder
inequality and Theorem 1.32 to obtain

|K (x)| ≤
[ ∫

∂S

|k(x, y)|2−γ |ϕ(y)|p ds(y)

]1/[p(2−γ )]

×
[ ∫

∂S

|ϕ(y)|p ds(y)

](1−γ )[p(2−γ )][ ∫
∂S

|k(x, y)| ds(y)

](p−1)/p

= c1∩ϕ∩(1−γ )/(2−γ )
p

[ ∫
∂S

|k(x, y)|2−γ |ϕ(y)|p ds(y)

]1/[p(2−γ )]
,

where c1 = const > 0. Then, by Fubini’s Theorem,
∫
∂S

|K (x)|p(2−γ ) ds(x)

≤ c1∩ϕ∩p(1−γ )
p

∫
∂S

[ ∫
∂S

|k(x, y)|2−γ |ϕ(y)|p ds(y)

]
ds(x)

= c1∩ϕ∩p(1−γ )
p

∫
∂S

[ ∫
∂S

|k(x, y)|2−γ ds(x)

]
|ϕ(y)|p ds(y).
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Since
|k(x, y)|2−γ ≤ c2|x − y|−γ (2−γ ), c2 = const > 0,

and 0 ≤ γ (2 − γ ) < 1, from Theorem 1.32 it follows that

∫
∂S

|K (x)|p(2−γ ) ds(y) ≤ c3∩ϕ∩p(1−γ )
p

∫
∂S

|ϕ(y)|p ds(y) = c3∩ϕ∩p(2−γ )
p ,

where c3 = const > 0. This means that K ∈ L p(2−γ )(∂S). Then (6.18) yields
ϕ ∈ L p(2−γ )(∂S). Applying the argument successively n times, we deduce that
ϕ ∈ L p(2−γ )n

(∂S) for any positive integer n; hence, ϕ ∈ L∞(∂S).
If we now repeat the proof of Theorem 1.33 with the integrals understood in the

sense of Lebesgue, we conclude that K ∈ C0,δ(∂S), with δ = 1 − γ for γ ∈ (0, 1)
and any δ ∈ (0, 1) for γ = 0. The result now follows from (6.18). �⇔
6.12 Theorem. Suppose that equations (D±) and (N ±) hold almost everywhere on
∂S, and that P, Q, R, S ∈ C0,α(∂S), α ∈ (0, 1). If ϕ ∈ L2(∂S) is a solution of
any of the above equations, then ϕ ∈ C0,α(∂S).

Proof. (D±) and (N ±) are of the form

(K − ωI )ϕ = g, (6.19)

where, as seen in the proof of Theorem 6.2, K is α-regular singular and ω ∈ R,
ω �= 0. In Muskhelishvili (1946) it is shown that we can always find an α-regular
singular operator L that maps L2(∂S) to L2(∂S), and a ϑ ∈ R, ϑ �= 0, such that the
equation

(L − ϑ I )(K − ωI )ϕ = (L − ϑ I )g (6.20)

is of the form (6.18), where λ ∈ R, λ �= 0, f ∈ C0,α(∂S), and k(x, y) is a proper
(1 − α)-singular kernel on ∂S. Since every solution of (6.19) is also a solution of
(6.20), the assertion follows from Theorem 6.11 with p = 2. �⇔
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Chapter 7
Complex Variable Treatment

7.1 Complex Representation of the Stresses

We revert to the original notation, where S is a bounded simply connected domain
in R2, whose boundary αS is a simple closed contour.

In agreement with (3.40), we consider the homogeneous system (3.3); that is,

N∂Δ,Δ − N3∂ = 0,

N3Δ,Δ = 0, (7.1)

and investigate its analytic solutions in S.
From the second equation (7.1) we deduce that there is a function G (xδ ) such

that

N31 = G ,2 , (7.2)

N32 = −G ,1 .

This and the first equation (7.1) yield

N11,1 + (N12 − G ),2 = 0,

(N12 + G ),1 +N22,2 = 0.

Hence, there are functions H∂(xδ ) such that

N11 = H1,2 , N12 − G = −H1,1,

N22 = −H2,1 , N12 + G = H2,2.
(7.3)

Obviously, we must have

G − H1,1 = −G + H2,2. (7.4)
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Let B(xδ ) be such that
G = B,12 . (7.5)

Then from (7.4) it follows that there is a function C (xδ ) satisfying

B,2 −H1 = −C ,2 ,

B,1 −H2 = C ,1 ,

in which case (7.2), (7.3), and (7.5) imply that

N11 = (C + B),22 ,

N22 = (C − B),11 ,

N12 = −C ,12 , (7.6)

N31 = B,122 ,

N32 = −B,112 .

The stress functionsB and C generate a deformation state if and only if N∂Δ and
N3∂ given by (7.6) satisfy the compatibility relations (3.7). Replacing (7.6) in (3.7),
we obtain the Cauchy–Riemann system

(h 2λB,12 −B,12 ),1 = (1 − γ)(λC + B,22 −B,11 ),2 ,

(h 2λB,12 −B,12 ),2 = −(1 − γ)(λC + B,22 −B,11 ),1 .

Hence,

λB,12 − 1

h 2 B,12 = 2

h 2 Reβ0, (7.7)

λC + B,22 −B,11 = 2

1 − γ
Imβ0, (7.8)

where β0 is an arbitrary analytic function of z = x1 + i x2 in S.
Let τ(z, z̄) be an arbitrary real solution in S of the equation

λτ − 1

h 2 τ = 0. (7.9)

Then from (7.7) we find that

B,12 = Re
[
τ(z, z̄) − 2β0(z)

]
. (7.10)

For simplicity, in what follows we omit the explicit mention of z and z̄ in the
symbols of functions.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Applying the operator (λ − h−2)α2/αx1αx2 to (7.8) and using (7.10), we obtain

λ

(
λC ,12 − 1

h 2 C ,12

)
= 8

h 2 γ1Reβ
′′
0 ,

where γ1 = 1
4 (1 − 2γ)(1 − γ)−1. Therefore,

C ,12 = Re(ν − 2γ1 z̄ β ′
0 + 2ε0), (7.11)

where ν is another arbitrary real solution of (7.9) in S and ε0 is an arbitrary analytic
function in S. From (7.10) and (7.11) we deduce that

(C + B),12 = Re(τ + ν − 2β0 + 2ε0 − 2γ1 z̄ β ′
0), (7.12)

(C − B),12 = Re(−τ + ν + 2β0 + 2ε0 − 2γ1 z̄ β ′
0). (7.13)

Differentiating (7.12) with respect to x2 and replacing the result in (7.8) differ-
entiated with respect to x1, and dealing similarly with (7.13) and (7.8), we find
(C − B),111 and (C + B),222, which we then combine with (C − B),122 and
(C + B),112 obtained directly from (7.12) and (7.13). Thus, we arrive at

λ
[
(C + B),2 + i(C − B),1

] = 4(τ,z − 2γ1β
′
0),

where (. . .),z = α(. . .)/αz. This implies that

(C + B),2 = 2Re(2h 2τ,z − γ1 z̄ β0 + β1),

(C − B),1 = 2Im(2h 2τ,z − γ1 z̄ β0 − β2), (7.14)

where β∂ are arbitrary analytic functions in S.
Since this representation has been obtained by differentiating the exact formula

(7.8), it may contain too much arbitrariness. Replacing (7.14) in (7.12), (7.13), and
(7.8), we see that

Re(4h 2τ,zz − ν + β ′
1 − β ′

2 − 2ε0) = 0, (7.15)

2(1 − γ)(β ′
1 + β ′

2) + (3 − 2γ)β0 = 0. (7.16)

Now (7.16) yields

β0 = −2(1 − γ)

3 − 2γ
(β ′

1 + β ′
2). (7.17)

Since τ and ν are solutions of (7.9), from (7.15) we find that

2Reε0 = Re(β ′
1 − β ′

2),

ν = 4h 2Re τ,zz . (7.18)
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Substituting (7.17) and (7.18) in (7.10)–(7.12) and (7.14) and setting

κ = 1 − 2γ

3 − 2γ
= μ

2Σ + 3μ
, (7.19)

we obtain

(C + B),2 = Re
[
4h 2τ,z + κ z̄(β ′

1 + β ′
2) + 2β1

]
,

(C − B),1 = Im
[
4h 2τ,z + κ z̄(β ′

1 + β ′
2) − 2β2

]
, (7.20)

C ,12 = Re
[
4h 2τ,zz + κ z̄(β ′′

1 + β ′′
2 ) + β ′

1 − β ′
2

]
,

B,12 = Re
[
τ + (1 + κ)(β ′

1 + β ′
2)

]
.

Finally, from the above relations and formulas (7.6) we conclude that

N11 = −Im
[
4h 2τ,zz + κ z̄(β ′′

1 + β ′′
2 ) − κβ ′

2 + (2 − κ)β ′
1

]
,

N22 = Im
[
4h 2τ,zz + κ z̄(β ′′

1 + β ′′
2 ) + κβ ′

1 − (2 − κ)β ′
2

]
,

N12 = −Re
[
4h 2τ,zz + κ z̄(β ′′

1 + β ′′
2 ) + β ′

1 − β ′
2

]
, (7.21)

N31 = −Im
[
2τ,z + (1 + κ)(β ′′

1 + β ′′
2 )

]
,

N32 = −Re
[
2τ,z + (1 + κ)(β ′′

1 + β ′′
2 )

]
.

Since an arbitrary solution of (7.9) can be expressed in terms of an arbitrary
analytic function in S (Miranda 1970), the bending and twisting moments and the
transverse shear forces are represented in terms of three arbitrary analytic functions
of z in S. Functions of this type are known in the literature as complex potentials.

7.2 The Traction Boundary Value Problem

We consider the Neumann boundary conditions

Ni = Ni∂σ∂ = Ñi on αS. (7.22)

According to Remark 3.1, the resultant force and complex moment acting on an arc
t0t of αS are

[
N

]t
t0

=
t∫

t0

N3 ds = ˜N ,

[
M

]t
t0

=
t∫

t0

[ − N2 + x2N3 + i(N1 − x1N3)
]

ds = M̃ . (7.23)
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From (7.6) and (7.22) we obtain

N3 = d

ds
B,12 ,

− N2 + x2N3 + i(N1 − x1N3) (7.24)

= d

ds

[
(C − B),1 + i(C + B),2 − i zB,12

]
.

Using this in (7.23), we find that on αS,

B,12 = ˜N + Δ1, Δ1 ∈ R,

(C − B),1 + i(C + B),2 − i zB,12 = M̃ + Δ2, Δ2 ∈ C. (7.25)

Settingβ1 + β2 = π andβ1 − β2 = ξ , from (7.20) and (7.25) we now deduce
that

4h 2τ,z̄ + κzπ̄′ + π + ξ̄ = z ˜N − iM̃ + Δ1z − iΔ2,

τ + 1
2 (1 + κ)(π′ + π̄′) = ˜N + Δ1 on αS. (7.26)

Hence, the traction boundary value problem reduces to finding τ, π, and ξ satis-
fying (7.9) in S and (7.26) on αS.

7.3 The Displacement Boundary Value Problem

Consider the Dirichlet boundary conditions

ui = ũi on αS. (7.27)

We introduce the complex displacements, moments, and force by

η = u1 + iu2 ,

ϑ = u3 ,

Γ = N11 − N22 + 2i N12 , (7.28)

ρ = N11 + N22,

ω = N31 + i N32.

Then the constitutive relations (3.5) become

Γ = 4h 2μη,z̄ ,

ρ = 4h 2(Σ + μ)Reη,z , (7.29)

ω = μ(η + 2ϑ,z̄ ),

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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and from (7.21), the third equation (7.28), and the first equation (7.29) we find that

η = − i

2h 2μ

[
4h 2τ,z̄ + κz (β̄ ′

1 + β̄ ′
2) + β̄1 − β̄2 + ν1

]
, (7.30)

where ν1 is an analytic function of z in S. This, (7.21), and (7.29) yield

Im ν ′
1 = −κIm(β ′

1 + β ′
2);

therefore,
ν1 = −κ(β1 + β2) − c1z − c2, (7.31)

where c1 ∈ R and c2 ∈ C.
Setting β∂ = ε′

∂ , from (7.30) and (7.31) we get

η = − i

2h 2μ

[
4h 2τ,z̄ + κz (ε̄′′

1 + ε̄′′
2) − κ(ε′

1 + ε′
2) + ε̄′

1 − ε̄′
2 − c1z − c2

]
.

(7.32)

From this, (7.21), and the third equation (7.29) we obtain

ϑ = i

4h 2μ

[
κz (ε̄′

1 + ε̄′
2) − κ z̄ (ε′

1 + ε′
2) + ε̄1 − ε̄2

− c1zz̄ − c2 z̄ − 2h 2(1 + κ)(ε̄′′
1 + ε̄′′

2) + ν2
]
, (7.33)

where ν2 is an analytic function of z in S. Since ϑ is real, we must have

c1 = 0,

ν2 = −(ε1 − ε2) + 2h 2(1 + κ)(ε′′
1 + ε′′

2) + c̄2z − ic3, (7.34)

where c3 ∈ R. We set

θ = − 2

μ
τ,

β = iκ

2h 2μ
(ε′

1 + ε′
2),

ε = i

2h 2μ
(ε1 − ε2), (7.35)

l = l1 + il2 = ic2
2h 2μ

,

m = c3
4h 2μ

.
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From this and (7.32)–(7.34) we then conclude that

η = iθ,z̄ + z β̄ ′ + β + ε̄′ + l,

ϑ = Re

(
4h 2 Σ + 2μ

μ
β ′ − z̄ β − ε − l z̄ + m

)
. (7.36)

7.1 Remarks. The matrix u0 defined by the terms containing l and m is of the form
(3.16); consequently, it represents a rigid displacement. These terms are unessential
and in what follows we assume them to be incorporated in β and ε, respectively.

Let z ∈ αS. Writing ũ = ũ1 + i ũ2, from (7.27) we find that

iθ,z̄ + z β̄ ′ + β + ε̄′ = ũ,

Re

(
4h 2 Σ + 2μ

μ
β ′ − z̄ β − ε

)
= ũ3. (7.37)

Thus, the displacement boundary value problem reduces to finding a solution θ in
S of (7.9) and arbitrary analytic functions β and ε in S satisfying (7.37) on αS.

From (7.29), (7.35), and (7.36) we see that

Γ = 4h 2μ(iθ,z̄ z̄ + z β̄ ′′ + ε̄′′),

ρ = 4h 2(Σ + μ)(β ′ + β̄ ′), (7.38)

ω = iμθ,z̄ + 4h 2(Σ + 2μ)β̄ ′′.

Comparing the definitions of τ, π, ξ and θ , β , ε, we can rewrite the traction
boundary conditions (7.26) as

iθ,z̄ + z β̄ ′ − 2Σ + 3μ

μ
β + ε̄′ = − 1

2h 2μ
(M̃ + i z ˜N + iΔ1z + Δ2),

iθ − 4h 2 Σ + 2μ

μ
(β ′ − β̄ ′) = −2i

μ
( ˜N + Δ1); (7.39)

similarly, using (7.23), (7.24), and (7.20), we rewrite the resultant force and complex
moment acting on the arc t0t of αS as

[
N

]t
t0

= [ − 1
2μθ − 2h 2(Σ + 2μ)(β ′ − β̄ ′)

]t
t0
,

[
M

]t
t0

= [ 1
2 iμzθ − 2h 2(Σ + 2μ)z(β − β̄ ′) (7.40)

− 2h 2μ(iθ,z̄ + z β̄ ′ + ε̄′) + 2h 2(2Σ + 3μ)β
]t

t0
.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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7.2 Remarks. A representation similar to (7.38) has been derived in the case of
Reissner’s theory (Green and Zerna 1963). In our notation, this is

Γ = 4h 2μ

[
iϕ,z̄ z̄ + Σ + 2μ

4(Σ + μ)
(z β̄ ′′ + ε̄′′)

]
,

ρ = h 2μ(3Σ + 2μ)

Σ + μ
(β ′ + β̄ ′),

ω = μ( 56 iϕ,z̄ + 4h 2β̄ ′′),

where ϕ is an arbitrary analytic solution in S of the equation

λϕ − 5

6h 2 ϕ = 0.

7.3 Remarks. ϑ given by the second equation (7.36) satisfies λλϑ = 0. From
(7.36) and (7.19) we obtain

η = −2ϑ,z̄ + iθ,z̄ + 4h 2μ−1(Σ + 2μ)β̄ ′′.

Hence, in this theory, as in Kirchhoff’s, ϑ = u3 remains a biharmonic function. In
addition, Kirchhoff’s theory also leads to the second equation (1.5); that is,

η = −2ϑ,z̄ .

Here, η contains two correction terms, of which one is a solution of (7.9) and the
other is harmonic.

7.4 Remarks. If instead of (3.5) we adopt Mindlin’s constitutive relations (Mindlin
1951), then, ignoring rigid displacements, we obtain

η = iΦ,z̄ −2k2
(

zβ̄ ′ + β + ε̄′ + 8h 2

1 − γ
β̄ ′′

)
,

ϑ = 2Re(z̄ β + ε),

Γ = 2Eh 2

1 + γ

[
iΦ,z̄ z̄ −2k2

(
zβ̄ ′′ + ε̄′′ + 8h 2

1 − γ
β̄ ′′′

)]
,

ρ = −8k2
Eh 2

1 − γ
Reβ ′,

ω = k2
E

2(1 − γ)

[
iΦ,z̄ +(k2 − 1)(zβ̄ ′ − β + ε̄′) + 8h 2

1 − γ
β̄ ′′

]
,

where E is Young’s modulus, k2 a correction coefficient introduced by Mindlin, and
Φ an arbitrary real solution of the equation

λΦ − k2

h 2 Φ = 0.

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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7.4 Arbitrariness in the Complex Potentials

Suppose that the functions θ∗, β∗, and ε∗ generate the same stress state as θ , β ,
and ε. Then from the second equation (7.38) we find that

Reβ ′∗ = Reβ ′;

therefore,

β∗ = β + id1z + d2, d1 ∈ R, d2 ∈ C. (7.41)

Using the third equation (7.38) and (7.41), we obtain

θ∗,z̄ = θ,z̄ ,

which yields

θ∗ = θ + d3z + d4, d3, d4 ∈ C.

Since θ and θ∗ are real functions, it follows that d3 = 0 and d4 ∈ R, and the fact
that both θ and θ∗ are solutions of (7.9) leads to

θ∗ = θ. (7.42)

From the first equation (7.38), (7.41), and (7.42) we deduce that

ε∗ = ε + d5z + id6, d5, d6 ∈ C. (7.43)

Choosing d1, d2, and d5 so that

d1 = κ

2h 2μ(1 + κ)
Δ1, d2 − κ d̄5 = κ

2h 2μ
Δ2,

we make the terms Δ1 and iΔ1z + Δ2 vanish in (7.39). To reduce the arbitrariness of
β and ε we may impose, for example, the additional conditions

β(0) = 0, ε(0) = 0.

If we also want the displacements to remain unchanged, then, according to (7.36)
and (7.41)–(7.43), we must require that

d5 = −d̄2, d6 ∈ R.

Thus, the functions β and ε are completely determined if we ask, say, that they
satisfy

β(0) = 0, Imβ ′(0) = 0, ε(0) = 0.
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7.5 Bounded Multiply Connected Domain

Let S be multiply connected. For simplicity, we introduce the notation

ν(z, z̄) ∈ U ⇔ ν(z, z̄) is single-valued in S.

From (7.36) and (7.38) we see that the moments, forces, and displacements are
single-valued if

iθ,z̄ + z β̄ ′ + β + ε̄′ ∈ U ,

Re

(
4h 2 Σ + 2μ

μ
β ′ − z̄ β − ε

)
∈ U ,

iθ,z̄ z̄ + z β̄ ′′ + ε̄′′ ∈ U , (7.44)

Reβ ′ ∈ U ,

iθ,z̄ + 4h 2 Σ + 2μ

μ
β̄ ′′ ∈ U .

Clearly, from the first equation (7.44) it follows that

β ′′ ∈ U , (7.45)

which, in view of (7.44), yields θ,z̄ ∈ U . Then

θ,zz̄ ∈ U

also, consequently,
θ ∈ U . (7.46)

From the third equation (7.44)–(7.46) we deduce that

ε′′ ∈ U , (7.47)

and from the second and fourth equations (7.44) we get

Re(z̄ β + ε) ∈ U . (7.48)

Also, the first equation (7.44) and (7.46) lead to

z β̄ ′ + β + ε̄′ ∈ U . (7.49)

This means that the necessary single-valuedness conditions are the fourth equation
(7.44) and (7.45)–(7.49).
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Next, suppose that the boundary of S consists of n + 1 disjoint simple closed
curves of which one, αS, encloses all the remaining ones, αSk , k = 1, . . . , n.

According to awell-known argument in three-dimensional elasticity (Muskhelishvili
1949), we can choose arbitrary points zk inside the contours αSk and write

β = 1

2π i

n∑
k=1

(ck z + dk) log(z − zk) + β̃,

ε = 1

2π i

n∑
k=1

(pk z + qk) log(z − zk) + ε̃, (7.50)

where ck, dk, pk, qk ∈ C, k = 1, . . . , n, and β̃ and ε̃ are analytic functions in S.
From the fourth equation (7.44) and (7.48)–(7.50) we find that the coefficients must
satisfy

Re ck = 0, dk + p̄k = 0, Re qk = 0. (7.51)

Traversing αSk once anticlockwise, from (7.40), (7.46), and (7.50) we obtain the
resultant force and moment on αSk in the form

Nk = −[
N

]
αSk

= −4h 2(Σ + 2μ)Im ck,

Mk = −[
M

]
αSk

= 2h 2[ − (2Σ + 3μ)dk + μ p̄k
]
.

Combining these relations with (7.51), we deduce that

ck = −2π icNk, dk = −2πcMk,

pk = 2πcM̄k, qk = −2π icsk,

where c = [
8πh 2(Σ + 2μ)

]−1 and sk ∈ R. From this and (7.50) we now conclude
that

β = −c
n∑

k=1

(zNk − iMk) log(z − zk) + β̃,

ε = −c
n∑

k=1

(i zM̄k + sk) log(z − zk) + ε̃. (7.52)

7.5 Remarks. The terms sk log(z − zk), although many-valued, do not alter the
single-valuedness of the force, moments, and displacements. These terms occur only
in the expression of ϑ , in the form

Re
[
sk log(z − zk)

] = sk log |z − zk | ∈ U .
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7.6 Unbounded Multiply Connected Domain

Suppose that the curve αS has expanded to infinity. Introducing the notation

N =
n∑

k=1

Nk,

M =
n∑

k=1

Mk,

s =
n∑

k=1

sk

and proceeding as in Muskhelishvili (1949), from (7.52) we find that the complex
potentials admit the expansions

β = −c(Nz − i M) log z +
≤∑

n=−≤
anzn,

ε = −c(i M̄z + s) log z +
≤∑

n=−≤
bnzn, (7.53)

where an, bn ∈ C. Then (7.38) and (7.53) yield the complex moments and force in
the form

Γ = 4h 2μ

[
iθ,z̄ z̄ −c Nzz̄−1 + ic M̄zz̄−2 + icMz̄−1 + csz̄−2

+
≤∑

n=−≤
n(n − 1)(ānz + b̄n)z̄n−2

]
,

ρ = 4h 2(Σ + μ)

[
− 2c N ln |z | − 2c N + ic(Mz−1 − M̄z̄−1) (7.54)

+
≤∑

n=−≤
n(anzn−1 + ān z̄n−1

]
,

ω = iμθ,z̄ +4h 2(Σ + 2μ)

[
− c Nz̄−1 + ic M̄z̄−2

+
≤∑

n=−≤
n(n − 1)ān z̄n−2

]
.
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To investigate the behavior of Γ, ρ , and ω as |z | → ≤, we need to know the
asymptotics of θ . Since (Abramowitz and Stegun 1964)

d

dΛ
K0(Λ) = −K1(Λ),

d

dΛ
K1(Λ) = −K0(Λ) − 1

Λ
K1(Λ), (7.55)

and, as |Λ | → ≤,

K0(Λ) =
(

π

2Λ

)1/2

e−Λ + · · · ,

K1(Λ) =
(

π

2Λ

)1/2

e−Λ + · · · , (7.56)

and since (2π)−1K0(h−1|x − y |) is a fundamental solution of (7.9), just as in
harmonic potential theory we deduce that θ admits the representation

θ(x) =
∫

≥αSk

[
θ(y)ασ(y)K0(h

−1|x − y |) − K0(h
−1|x − y |)ασ(y)θ(y)

]
ds(y).

From this, (7.55), and (7.56) we see that θ and its derivatives vanish as |x | → ≤.
Therefore, (7.54) shows that Γ, ρ , and ω are bounded at infinity if and only if

N = 0, an = 0 (n √ 2), bn = 0 (n √ 3). (7.57)

Next, using (7.53) and (7.57) in (7.36), we obtain

η = (a1 + ā1)z + 2b̄2 z̄ + 2ic M ln |z | − ic M̄zz̄−1 + a0 + b̄1 + ic M

+ a−1z−1 − csz̄−1 − ā−1zz̄−2 + O(|z |−2),

ϑ = Re

[
ic(M̄z − Mz̄) log z + cs ln |z | − b2z2 − a1zz̄ (7.58)

− (ā0 + b1)z + 4h 2 Σ + 2μ

μ
a1 − a−1z−1 z̄ − b0

]
+ O(|z |−1).

Since u3 = ϑ occurs in the internal energy density (3.14) only in terms of its
derivatives, we conclude that for a finite energy solution—that is, η = O(1) and
ϑ = O(ln |z |) as |z | → ≤—we must have

M = 0, a1 = i∂ (∂ ∈ R), b2 = 0, b1 = −ā0. (7.59)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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In view of (7.41), we may discard the a0-term and the a1-term. Setting

−cs = a ∈ R

and
Reb0 = b,

from (7.53), (7.57), and (7.59) we conclude that, as |z | → ≤,

β =
−1∑

n=−≤
anzn,

ε = a logz + b +
−1∑

n=−≤
bnzn . (7.60)

These formulas and (7.36) (with an arbitrary θ satisfying (7.9)) yield the general
analytic finite energy solution of (3.40) in S.

7.6 Remark. It is interesting to note that, although θ is responsible for the sixth
order character of this bending theory, it plays no active role in the far-field pattern
of the solution, which depends exclusively on the structure of β and ε.

7.7 Remark. A straightforward calculation shows that for a = b in (7.60), the
expansion of u coincides with (3.39), which characterizes the class A . Also, from
(7.36), (7.56), and (7.60) we obtain the asymptotic relations

Γ = O(|z |−2), ρ = O(|z |−2),

η = O(|z |−1), ϑ = O(ln |z |), ω = O(|z |−3).

These imply that the Betti formula in the exterior domain, proved in Theorem 3.13,
holds for all solutions satisfying (7.57) and (7.59). Consequently, the condition that
u ∈ A , which was shown to be sufficient for the solvability of the exterior Neumann
problem, turns out to be also necessary if we want a unique solution. Removing the
restriction a = b in (7.60) means that the regular solution of this problem is unique
up to an arbitrary vertical translation.

7.7 Example

Consider an infinite plate with a circular hole of radius π, acted upon at the hole by a
normal force cx3, c = const > 0, parallel to the middle plane of the plate. Choosing
the origin at the center of the hole and following the averaging procedure set out in
Sect. 3.1, we arrive at the boundary and far-field conditions

Nrr = h 2c, Nrν = N3r = 0 if |z | = π,

N∂Δ = N3∂ = 0 as |z | → ≤, (7.61)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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where Nrr , Nrν , and N3r are the physical polar components of the Ni∂ , defined by

Nrr = 1
2Re(e

−2iνΓ + ρ ),

Nrν = 1
2 Im(e−2iνΓ − ρ ),

N3r = Re(e−iνω).

To solve the problem, we use a semi-inverse method, setting

a−1 = a−2 = . . . = 0,

b−1 = b−2 = . . . = 0,

θ = 0

in (7.60), the last value being justified by the arbitrariness in ε as shown by (7.43).
Then from (7.60) and (7.38) we see that (7.61) are satisfied if

a = −cπ2(2μ)−1,

in which case (7.36) and (7.60) yield

η = −cπ2

2μ
z̄−1, ϑ = cπ2

2μ
ln |z | − b.

It is clear that this exterior Neumann problem has a unique solution in A , corre-
sponding to b = −cπ2(2μ)−1. If this restriction is removed, then the solution is
determined up to an arbitrary vertical translation, as noted in Remark 7.7.

7.8 Physical Significance of the Restrictions

From (7.54) and (7.57) we find that, as |z | → ≤, the limiting values of Γ,ρ , and
ω are

Γ≤ = 8h 2μb̄2,

ρ≤ = 8h 2(Σ + μ)Rea1,

ω≤ = 0;

that is, the bending and twisting moments are uniformly distributed at infinity,
whereas the transverse shear force vanishes. We can see that the second and third
equations (7.59) are equivalent to Γ≤ = ρ≤ = 0.

In view of (1.6), the rotations in the vertical coordinate planes in R3 are given by

ε∂ = 1
2 (u∂ − u3,∂).

http://dx.doi.org/10.1007/978-1-4471-6434-0_1
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From this, (7.28), (7.58), and the second and third equations (7.59) we deduce that,
as |z | → ≤, the complex vertical rotation is

ε = ε1 + iε2 = 1
2 (η − 2ϑ,z̄ )

= 2ic M ln |z | − ic M̄zz̄−1 + a0 + b̄1 + ic M + O(|z |−1).

Hence, the first and fourth equations (7.59) are equivalent to ε≤ = 0. In this case,
ϑ = O(ln |z |).
7.8 Remark. In view of the above arguments, we conclude that an analytic solution
of (3.40) is of finite energy if and only if the corresponding bending and twisting
moments, transverse shear force, and rotation in the vertical coordinate plane vanish
at infinity. Then, by Remark 7.6,A is the class of all finite energy solutions of (3.40)
that contain no vertical translation.
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Chapter 8
Generalized Fourier Series

8.1 The Interior Dirichlet Problem

In this chapter we suspend the convention of summation over repeated indices, as
well as that regarding the values taken by Latin subscripts. Greek subscripts and
superscripts continue to take the values 1, 2.

8.1 Definition. Let X be a normed space. A subsetX ⊂ X is called a fundamental
set in X if spanX is dense in X .

The following assertion is a well-known result of functional analysis.

8.2 Theorem. If X is a Hilbert space, then X ⊂ X is a fundamental set in X if and
only if the orthogonal complement of X in X consists of the zero vector alone.

Let αS∈ be a simple closed C2-curve such that αS lies strictly in the domain S+∈
enclosed by αS∈, and let {x (k) ∈ αS∈, k = 1, 2, . . .} be a countable set of points
densely distributed on αS∈. We set S−∈ = R

2\S̄+∈ , and denote by D(i) the columns
of the matrix D.

8.3 Theorem. The set

{
f (i ), ∂ ( jk), i, j = 1, 2, 3, k = 1, 2, . . .

}
, (8.1)

where the f (i ) are defined by (6.6) and

∂( jk)(x) = D ( j )(x, x (k)), (8.2)

is linearly independent on αS and fundamental in L2(αS).

Proof. Suppose that there are a positive integer N and real numbers ci and c jk ,
i, j = 1, 2, 3, k = 1, 2, . . . , N , not all zero, such that

3∑
i=1

ci f (i )(x) +
3∑

j=1

N∑
k=1

c jk∂
( jk)(x) = 0, x ∈ αS. (8.3)
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Setting

Δ(x) =
3∑

i=1

ci f (i )(x) +
3∑

j=1

N∑
k=1

c jk∂
( jk)(x), (8.4)

from (8.2), (8.3), and Theorem 3.8 we see that

AΔ = 0 in S+,

Δ = 0 on αS;

that is, Δ is a regular solution of the homogeneous interior Dirichlet problem. By
Theorem 3.16(i), Δ = 0 in S̄+. Then, using analyticity arguments, we deduce that

Δ = 0 in S+∈ . (8.5)

Let x (p) be any of the (finitely many) points x (1), . . . , x (N ). In view of (8.4) and
(8.2), we write

Δl(x) =
3∑

i=1

ci f (i )
l (x) +

3∑
j=1

N∑
k=1

c jk D jl(x, x (k)), l = 1, 2, 3,

and remark that, according to (3.30), as x ⇔ x (p), all the terms on the right-hand
side remain bounded except clp Dll(x, x (p)), which is of order O(ln |x − x (p)|). This
clearly contradicts the equality (8.5), and we conclude that all the c jk in (8.3) must
be zero. Since the f (i ) are linearly independent, we deduce that the ci are also zero.
Hence, the set (8.1) is linearly independent on αS.

Now let δ ∈ L2(αS) be such that for all i, j = 1, 2, 3 and k = 1, 2, . . . ,

∫
αS

( f (i ))Tδ ds =
∫
αS

(∂( jk))Tδ ds = 0. (8.6)

By (8.2) and (3.27), this is equivalent to

∫
αS

D(x (k), y)δ(y) ds(y) = 0, k = 1, 2, . . . , (8.7)

∫
αS

[δλ(y) − yλδ3(y)] ds(y) =
∫
αS

δ3(y) ds(y) = 0. (8.8)

Consider the single-layer plate potential

(V δ)(x) =
∫
αS

D(x, y)δ(y) ds(y).

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Since, by Theorem 4.18(i), V δ is continuous on αS∈ and the points x (k), k =
1, 2, . . . , are densely distributed on αS∈, from (8.7) it follows that V δ = 0 on
αS∈. In view of Theorem 4.18(ii), (iii), we have

A(V δ) = 0 in S−∈ ,

V δ = 0 on αS∈,

V δ ∈ A .

This means that V δ is a regular solution in S̄−∈ of the homogeneous exterior Dirichlet
problem (D−); consequently, by Theorem 3.16(i), V δ = 0 in S̄−∈ . The analyticity of
the single-layer plate potential V in R2\αS now implies that

V δ = 0 in S−. (8.9)

In turn, this yields (T (V δ))− = 0 in S−. Letting S− ≤ x ′ ⇔ x ∈ αS along the
support line of γ(x), from Theorem 4.21 we find that

− 1
2 δ(x) +

∫
αS

T (αx )D(x, y)δ(y) ds(y) = 0

for almost all x ∈ αS, where the integral is understood as principal value.ByTheorem
6.12, δ ∈ C 0,λ(αS) with any λ ∈ (0, 1). Then V δ is continuous in R2 and

A(V δ) = 0 in S+,

V δ = 0 on αS;

that is, V δ is a regular solution in S̄+ of the homogeneous problem (D+). Conse-
quently, by Theorem 3.16(i), V δ = 0 in S̄+. From this and (8.9) we deduce that

(T (V δ))+ = (T (V δ))− = 0 on αS,

and (4.17) yields δ = 0.
Since L2(αS) is a Hilbert space, we now apply Theorem 8.2 to conclude that (8.1)

is a fundamental set in L2(αS). ≥√
Let u be the (unique) regular solution of (D+). By Theorem 3.9 and (3.43),

u(x) =
∫
αS

D(x, y)β(y) ds(y) − H(x), x ∈ S+, (8.10)

H(x) =
∫
αS

D(x, y)β(y) ds(y), x ∈ S−, (8.11)

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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where we have used the notation

H(x) =
∫
αS

P(x, y)P(y) ds(y), x ∈ R
2\αS, (8.12)

β(y) = (T u)(y), y ∈ αS. (8.13)

Formula (8.11) yields

∫
αS

D(x (k), y)β(y) ds(y) = H(x (k)), k = 1, 2, . . . ,

which, by (3.27) and (8.2), is equivalent to

∫
αS

(∂( jk))Tβ ds = Hj (x (k)), j = 1, 2, 3, k = 1, 2, . . . . (8.14)

We arrange the elements of (8.1) in the order

f (1), f (2), f (3), ∂ (11), ∂ (21), ∂ (31), . . . , ∂ (1k), ∂ (2k), ∂ (3k), . . . ,

and denote the new sequence by {∂(m)}∞m=1. Let {τ(n)}∞n=1 be the orthonormalized
fundamental sequence constructed from the set {∂(m)}∞m=1 in L2(αS) by means of
the Gram–Schmidt process. Then

τ(n) =
n∑

m=1

knm∂(m), n = 1, 2, . . . ,

where knm are well-determined numbers. Writing

β(n) =
n∑

r=1

prτ
(r), n = 1, 2, . . . , (8.15)

with the coefficients on the right-hand side given by

pr =
∫
αS

(τ(r))Tβ ds =
r∑

m=1

krm

∫
αS

(∂(m))Tβ ds, r = 1, 2, . . . , (8.16)

and setting

u(n)(x) =
∫
αS

D(x, y)β(n)(y) ds(y) − H(x), x ∈ S+, (8.17)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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from (8.10) we see that for x ∈ S+,

∣∣u(x) − u(n)(x)
∣∣ ≤

3∑
i=1

∣∣ui (x) − u(n)
i (x)

∣∣

≤
3∑

i=1

∫
αS

∣∣(D(i)(y, x)
)T[

β(y) − β(n)(y)
]∣∣ ds(y)

≤
3∑

i=1

‖D(i)(x, ·)‖2‖β − β(n)‖2.

Since the ‖D(i)(x, ·)‖2 are uniformly bounded on any closed subdomain S ′ ⊂ S+
and ‖β − β(n)‖2 ⇔ 0 as n ⇔ ∞, we conclude that u(n) ⇔ u, uniformly on S ′.

Clearly, each u(n) is a solution of the equation Au = 0 in S+.

8.4 Remark. According to (8.13), u is a regular solution of the interior Neumann
problem

Au = 0 in S+,

T u = β on αS;

therefore, by Theorem 6.6,

∫
αS

( f (i ))Tβ ds = 0, i = 1, 2, 3, (8.18)

which is equivalent to (6.13). Since ∂(i) = f (i ), i = 1, 2, 3, from (8.16) and (8.18)
it now follows that

p1 = p2 = p3 = 0,

pr =
r∑

m=4

krm

∫
αS

(∂(m))Tβ ds, r = 4, 5, . . . . (8.19)

Hence, the approximate solution u(n) is given by (8.17), where H and β(n) are given
by (8.12) and (8.15), respectively, with the pr as in (8.19) and fully determined for
r = 4, 5, . . . by (8.12) and (8.14).

8.2 The Interior Neumann Problem

With the notation introduced in the preceding section, we can prove the following
assertion.

http://dx.doi.org/10.1007/978-1-4471-6434-0_6
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8.5 Theorem. The set

{ f (i ), ν( jk), i, j = 1, 2, 3, k = 1, 2, . . .}, (8.20)

where the f (i ) are defined by (6.6) and

ν( jk)(x) = T (αx )D ( j )(x, x (k)), (8.21)

is linearly independent on αS and fundamental in L2(αS).

Proof. As in the proof of Theorem 8.3, suppose that there are a positive integer N and
real numbers ci and c jk , i, j = 1, 2, 3, k = 1, 2, . . . , N , not all zero, such that

3∑
i=1

ci f (i )(x) +
3∑

j=1

N∑
k=1

c jkν
( jk)(x) = 0, x ∈ αS. (8.22)

Then, taking (8.21), (8.22), and Theorem 3.8 into consideration, we find that the
3 × 1 matrix

Δ(x) =
3∑

j=1

N∑
k=1

c jk D ( j )(x, x (k)) (8.23)

is a regular solution of the interior Neumann problem

AΔ = 0 in S+,

T Δ = −
3∑

i=1

ci f (i ) on αS;

consequently, by (6.13),

∫
αS

( f (l))T
[

−
3∑

i=1

ci f (i )

]
ds = 0, l = 1, 2, 3,

which implies that the coefficients c1, c2, and c3 are all equal to zero. This yields

T Δ = 0 on αS,

so, by Theorem 3.16(ii),

Δ =
3∑

i=1

εi f (i ) in S+

http://dx.doi.org/10.1007/978-1-4471-6434-0_6
http://dx.doi.org/10.1007/978-1-4471-6434-0_6
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for some constants εi , i = 1, 2, 3. From this and (8.23) it follows that

Δ̃ (x) =
3∑

j=1

N∑
k=1

c jk D ( j )(x, x (k)) −
3∑

i=1

εi f (i )(x) = 0, x ∈ S̄+.

By analyticity, Δ̃ = 0 in S̄+∈ , and the linear independence of the set (8.20) on αS is
established by means of the argument used in the proof of Theorem 8.3.

Suppose now that for all i, j = 1, 2, 3 and k = 1, 2, . . . the functionδ ∈ L2(αS)

satisfies
∫
αS

( f (i ))Tδ ds =
∫
αS

(ν( jk))Tδ ds = 0.

According to (8.21) and (3.28), this means that

∫
αS

[
δλ(y) − yλδ3(y)

]
ds(y) =

∫
αS

δ3(y) ds(y) = 0, (8.24)

∫
αS

P(x (k), y)δ(y) ds(y) = 0, k = 1, 2, . . . . (8.25)

By Theorem (4.18)(i), the double-layer plate potential

(Wδ)(x) =
∫
αS

P(x, y)δ(y) ds(y)

is continuous on αS∈. Since the x (k) are densely distributed on αS∈, from (8.25)
we deduce that Wδ = 0 on αS∈. Then, by Theorem 4.18(ii), (iii), Wδ is a regular
solution of the exterior Dirichlet problem

A(Wδ) = 0 in S−∈ ,

Wδ = 0 on αS∈,
Wδ ∈ A ;

hence, by Theorem 3.16(i), Wδ = 0 in S̄−∈ . The analyticity of Wδ in R
2\αS now

yields Wδ = 0 in S−. Letting S− ≤ x ′ ⇔ x ∈ αS along the support line of γ(x),
from Theorem 4.20 we find that

1
2 δ(x) +

∫
αS

P(x, y)δ(y) ds(y) = 0

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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for almost all x ∈ αS, where the integral is understood as principal value.ByTheorem
6.12, δ ∈ C 0,λ(αS) for any λ ∈ (0, 1), which, in view of Theorem 6.3, implies that

δ =
3∑

i=1

κi f (i ) on αS, κi = const > 0.

Then, by (8.24),

∫
αS

[
( f (l))T

3∑
i=1

κi f (i )

]
ds = 0, l = 1, 2, 3,

andwe conclude that all the κi are zero; that is, δ = 0. The desired result now follows
from Theorem 8.2. ≥√

Let u be a regular solution of (N+). By Theorem 3.9 and (3.44),

u(x) = −
∫
αS

P(x, y)Σ(y) ds(y) + L(x), x ∈ S+, (8.26)

L(x) =
∫
αS

P(x, y)Σ(y) ds(y), x ∈ S−, (8.27)

where

L(x) =
∫
αS

D(x, y)Q(y) ds(y), x ∈ R
2\αS, (8.28)

Σ(x) = u(x), x ∈ αS.

We rearrange the elements of the subset {ν( jk), j = 1, 2, 3, k = 1, 2, . . .} of
(8.20) in the order

ν(11), ν(21), ν(31), . . . , ν(1k), ν(2k), ν(3k), . . . ,

denote the new sequence by {ν(m)}∞m=1, and use the Gram–Schmidt process to con-
struct the orthonormal sequence {σ(n)}∞n=1 in L2(αS); thus,

σ(n) =
n∑

m=1

πnmν(m), n = 1, 2, . . . , (8.29)

where πnm are well-determined numerical coefficients. Also, let { f̃ (i )}3i=1 be the
orthonormalized set obtained from { f (i )}3i=1.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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We claim that { f̃ (i ), σ(n), i = 1, 2, 3, n = 1, 2, . . .} is a fundamental ortho-
normal set in L2(αS). To convince ourselves of this, we need to verify only that

∫
αS

( f̃ (i ))Tσ(n) ds = 0, i = 1, 2, 3, n = 1, 2, . . . .

But this is obviously true, since the f̃ (i ) and the σ(n) are finite linear combinations
of the f (i ) and ν( jk), respectively, and, by (6.6), (8.21), and Theorems 3.5 and 3.8,

∫
αS

( f (λ))Tν( jk) ds =
∫
αS

(Tλl − xλT3l)D ( j )
l (x, x (k)) ds

=
∫
S+

(Aλl − xλ A3l)D ( j )
l (x, x(k)) da = 0,

∫
αS

( f (3))Tν( jk) ds =
∫
αS

T3l D ( j )
l (x, x (k))

=
∫
S+

A3l D ( j )
l (x, x (k)) da = 0.

Without loss of generality, suppose that n > 3, and let

Σ(n) =
3∑

i=1

q̃i f̃ (i ) +
n−3∑
r=1

qrσ
(r), (8.30)

where

q̃i =
∫
αS

( f̃ (i ))TΣ ds, i = 1, 2, 3,

qr =
∫
αS

(σ(r))TΣ ds =
r∑

m=1

πrm

∫
αS

(ν(m))TΣ ds, r = 1, 2, . . . . (8.31)

Setting

u(n)(x) = −
∫
αS

P(x, y)Σ(n)(y) ds(y) + L(x), x ∈ S+, (8.32)

and using (8.26), just as in Sect. 8.1 we find that u(n) ⇔ u as n ⇔ ∞, uniformly on
any closed subdomain S ′ ⊂ S+.

http://dx.doi.org/10.1007/978-1-4471-6434-0_6
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From (8.27) it follows that

∫
αS

P(x (k), y)Σ(y) ds(y) = L(x (k)), k = 1, 2, . . . .

By (3.28) and (8.21), this is the same as

∫
αS

(ν( jk))TΣ ds = L j (x (k)), j = 1, 2, 3, k = 1, 2, . . . . (8.33)

Applying Theorem 3.9 to f̃ (i ) in S+, from (8.32) and (8.30) we now obtain the
approximate solution in the form

u(n)(x) =
3∑

i=1

q̃i f̃ (i )(x) −
n−3∑
r=1

qr

∫
αS

P(x, y)σ(r)(y) ds(y) + L(x), x ∈ S+,

where the first term on the right-hand side is a rigid displacement independent of n,
L(x) is given by (8.28), σ(r) by (8.29), and the qr are computed by means of (8.31),
(8.33), and (8.28). Since the coefficients q̃i cannot be found in terms of the boundary
data of the problem, we conclude that, in agreement with Theorem 6.6, the exact
solution is determined in the limit up to an arbitrary rigid displacement.

8.3 The Exterior Dirichlet Problem

The construction of a fundamental sequence in the space of the solution for exterior
problemsmeets with the usual difficulties that arise from the behavior of the matrices
D(x, y) and P(x, y) for y ∈ αS and |x | large. To overcome these obstacles, we
need to establish some auxiliary results.

Let S be a finite domain in R2, and let G be a linear functional on C(αS).

8.6 Theorem. Consider the 3 × 1 vector function

ξ(x) = Gy(D(x, y)δ(y)), δ ∈ X, x ∈ S−, (8.34)

where the subscript y indicates that G is applied to its argument regarded as a
function of the point y. Then ξ ∈ A if

ηλ = Gy(δλ(y) − yλδ3(y)) = 0,

η3 = Gy(δ3(y)) = 0. (8.35)

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Proof. We define

D ∞
11 (x, y) = −a2μ

2(2 ln r + 2 + cos 2∂),

D ∞
22 (x, y) = −a2μ

2(2 ln r + 2 − cos 2∂),

D ∞
33 (x, y) = a2μ

[
μr2 ln r − 4h2(ϑ + 2μ) ln r − 4h2(ϑ + 3μ)

]
− a2μ

{
y1

[
μr(2 ln r + 1) − 4h2(ϑ + 2μ)r−1] cos ∂

+ y2
[
μr(2 ln r + 1) − 4h2(ϑ + 2μ)r−1] sin ∂

}
,

D ∞
12 (x, y) = D ∞

21 (x, y) = −a2μ
2 sin 2∂,

D ∞
13 (x, y) = −a2μ

2[r(2 ln r + 1) cos ∂ (8.36)

− y1(2 ln r + 2 + cos 2∂) − y2 sin 2∂
]
,

D ∞
23 (x, y) = −a2μ

2[r(2 ln r + 1) sin ∂

− y2(2 ln r + 2 − cos 2∂) − y1 sin 2∂
]
,

D ∞
31 (x, y) = a2μ

[
μr(2 ln r + 1) − 4h2(ϑ + 2μ)r−1] cos ∂,

D ∞
32 (x, y) = a2μ

[
μr(2 ln r + 1) − 4h2(ϑ + 2μ)r−1] sin ∂,

where (r, ∂) are the polar coordinates of x , and, for |x | large, write (8.34) in the form

ξ(x) = Gy(D ∞(x, y)δ(y)) + Gy((D(x, y) − D ∞(x, y))δ(y))

= ξ ∞(x) + ξ̃(x).

Using (3.21), (3.23), (3.25), (3.36), (3.37), and (8.36), we find by direct calculation
that ξ̃ ∈ A and that

ξ ∞
1 (x) = −a2μ

2[η3r(2 ln r + 1) cos ∂

+ η1(2 ln r + 2 + cos 2∂) + η2 sin 2∂
]
,

ξ ∞
2 (x) = −a2μ

2[η3r(2 ln r + 1) sin ∂

+ η2(2 ln r + 2 − cos ∂) + η1 sin 2∂
]
,

ξ ∞
3 (x) = a2μη3

[
μr2 ln r − 4h2(ϑ + 3μ)

]
+ a2μ(η1 cos ∂ + η2 sin ∂)

[
μr(2 ln r + 1) − 4h2(ϑ + 2μ)r−1],

which means that ξ ∞ = 0 if (8.35) hold. ≥√
8.7 Remark. Obviously, Theorem 4.2(ii) is a particular case of Theorem 8.6 with G
defined on C(αS) by

G Γ =
∫
αS

Γ ds.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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8.8 Theorem. For any (fixed) y ∈ αS,
(i) A(αx )D ∞(x, y) = 0, x ∈ S−;
(ii) the columns of D − D ∞ belong to A .

Proof. (i) We can easily convince ourselves that the columns of D ∞ are generated
by (7.28) and (7.36) with l = m = 0, β = 0, and ρ and τ given, respectively, by

ρ(z) = −a2μ
2(log z + 1), τ(z) = −a2μ

2z log z,

ρ(z) = −ia2μ
2(log z + 1), τ(z) = ia2μ

2z log z,

ρ(z) = −a2μ
2[(z − ω ) log z − ω

]
, τ(z) = a2μ

2(ω̄ z log z + 4h2),

where z = x1 + i x2 and ω = y1 + iy2.

(ii) This assertion is proved by computing the entries of the matrix D − D ∞
explicitly and verifying that its columns exhibit the far-field pattern (3.39) stipulated
in the definition of the class A . ≥√

Let the curve αS∈ now be chosen so that it lies strictly inside the domain S+.
8.9 Theorem. The set (8.1), constructed as in Theorem 8.3, is linearly independent
on αS and fundamental in L2(αS).

Proof. Suppose that there are a positive integer N and real numbers ci and c jk ,
i, j = 1, 2, 3, k = 1, 2, . . . , N , not all zero, such that (8.3) holds, and letΔ again
be defined by (8.4). Then grad Δi = 0 on αS, i = 1, 2, 3. SinceΔ ∈ C1(S−∈ ), from
expression (3.11) we immediately see that

T Δ = 0 on αS. (8.37)

Using the representation

Δ = Δ∞ + Δ̃ +
3∑

i=1

ci f (i ), (8.38)

where the functions Δ∞ and Δ̃ are defined by means of the columns of the matrices
D∞ and D − D ∞, respectively, from Theorem 8.4 and (8.37) we deduce that Δ̃ is
a regular solution of the exterior Neumann problem

AΔ̃ = 0 in S−,

T Δ̃ = −T Δ∞ on αS,

Δ̃ ∈ A .

According to Theorem 6.5(ii),

∫
αS

( f (i ))TT Δ∞ ds = 0, i = 1, 2, 3.

http://dx.doi.org/10.1007/978-1-4471-6434-0_7
http://dx.doi.org/10.1007/978-1-4471-6434-0_7
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Consider a circle θR with the center at the origin and radius R sufficiently large
so that S̄+ ⊂ θR strictly. By Theorem 3.7 applied to f (i ) and Δ∞ in θR\S̄+, the
above equality yields

∫
αθR

( f (i ))TT Δ∞ ds = 0, i = 1, 2, 3.

Direct calculation now shows that these relations are equivalent to

N∑
k=1

(cλk − x (k)
λ c3k) = 0,

N∑
k=1

c3k = 0. (8.39)

Let G be the linear functional defined on C(αS) by

G Γ =
N∑

k=1

Γ(x (k)), Γ ∈ C(αS),

and let δc ∈ C(αS) be such that

δc(x (k)) = (c1k, c2k, c3k)
T, k = 1, 2, . . . , N .

Then

3∑
j=1

N∑
k=1

c jk∂
( jk)(x) =

3∑
j=1

N∑
k=1

c jk D ( j )(x, x (k))

=
N∑

k=1

D(x, x (k))δc(x (k))

= Gy(D(x, y)δc(y)).

In view of this and the definition of G , (8.39) are equivalent to (8.35); therefore,
by Theorem 8.6 and (8.38), Δ ∈ A ∈. From (8.3) and (8.4) we then see that Δ is
the regular solution in S− of the homogeneous Dirichlet problem

AΔ = 0 in S−,

Δ = 0 on αS,

Δ ∈ A ∈.
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By Theorem 3.16(i), Δ = 0 in S̄−. Due to the analyticity of Δ , we have Δ = 0 in
S−∈ , and the linear independence of the set (8.1) on αS is established by the argument
used in the proof of Theorem 8.3.

Suppose now that equalities (8.6) hold for some δ ∈ L2(αS). Since the points
x (k) are densely distributed on αS∈, we deduce from Theorem 4.18(i), (ii) that the
single-layer potential V of density δ is a regular solution of the homogeneous interior
Dirichlet problem

A(V δ) = 0 in S+∈ ,

V δ = 0 on αS∈;

hence, by Theorem 3.16(i), V δ = 0 in S̄+∈ . Due to the analyticity of V δ in R
2\αS,

we conclude that V δ = 0 in S+, and so, (T (V δ))+ = 0 in S+. Letting x ′ ∈ S+
tend to x ∈ αS along the support line of γ(x), we apply Theorem 4.21 to obtain the
equation

1
2δ(x) +

∫
αS

T (αx )D(x, y)δ(y) ds(y) = 0

for almost all x ∈ αS, the integral being understood as principal value. Theorem
6.12 now indicates that δ ∈ C 0,λ(αS), with any λ ∈ (0, 1). Hence, V δ ∈ C(R2),
which means that V δ = 0 on αS.

The first three equalities in (8.6) are equivalent to pδ = 0, where p is the func-
tional defined in (4.3). Then, by Theorem 4.2(ii), V δ ∈ A , so V δ is a regular
solution of the homogeneous Dirichlet problem

A(V δ) = 0 in S−,

V δ = 0 on αS,

V ∈ A ;

hence, by Theorem 3.16(i), V δ = 0 in S−. This implies that (T (V δ))− = 0, and,
by (4.17), δ = 0. As in the proof of Theorem 8.3, we finally deduce that (8.1) is a
fundamental set in L2(αS). ≥√
8.10 Remark. In classical three-dimensional elasticity (Kupradze et al. 1979) there
is no need for the f (i ) to be included in the set (8.1).

Let u be the (unique) regular solution of (D−). According to Theorem 6.7, we
can write

u = ũ +
3∑

i=1

ci f (i ), (8.40)

where ũ ∈ A and, as shown in the proof of that theorem,

ci =
∫
αS

(g(i))TR ds.

http://dx.doi.org/10.1007/978-1-4471-6434-0_4
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By (3.45) and Theorem 3.12 applied to ũ,

ũ(x) = −
∫
αS

D(x, y)β(y) ds(y) + H(x), x ∈ S−,

H(x) =
∫
αS

D(x, y)β(y) ds(y), x ∈ S+,

where

H(x) =
∫
αS

P(x, y)

[
R(y) −

3∑
i=1

ci f (i )(y)

]
ds(y), x ∈ R

2\αS, (8.41)

β(y) = (T ũ)(y), y ∈ αS.

Since, by (8.40) and (8.41), ũ is a regular solutionof the exteriorNeumannproblem

Aũ = 0 in S−,

T ũ = β on αS,

ũ ∈ A ,

from Theorem 6.5(ii) it follows that

∫
αS

( f (i ))Tβ ds = 0, i = 1, 2, 3,

which is equivalent to (6.12). This fact allows us now to proceed as in Sect. 8.1 and
construct a similar scheme for the approximation of ũ.

8.4 The Exterior Neumann Problem

Let the curve αS∈ and the points x (k) be as described in Sect. 8.3.

8.11 Theorem. The set

{ν( jk), j = 1, 2, 3, k = 1, 2, . . .}, (8.42)

where the ν( jk) are defined by (8.21), is linearly independent on αS and fundamental
in L2(αS).

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Proof. Suppose that there are a positive integer N and real numbers c jk , j = 1, 2, 3,
k = 1, 2, . . . , N , not all zero, such that

3∑
j=1

N∑
k=1

c jkν
( jk)(x) = 0, x ∈ αS.

Representing Δ defined by (8.23) in the form Δ = Δ∞ + Δ̃ , where Δ∞ and
Δ̃ are constructed in terms of D ∞ and D − D ∞, respectively, just as in the proof
of Theorem 8.9 (this time with Δ ∈ A ) we deduce that the set (8.42) is linearly
independent on αS.

An argument similar to that used in the proof of Theorem 8.5 now shows that if

∫
αS

(ν( jk))Tδ ds = 0, j = 1, 2, 3, k = 1, 2, . . . ,

for some δ ∈ L2(αS), then the double-layer potential W of density δ satisfies W = 0
in S+. Hence, as S+ ≤ x ′ ⇔ x ∈ αS along the support line of γ(x), Theorem 4.20
yields

− 1
2δ(x) +

∫
αS

P(x, y)δ(y) ds(y) = 0

for almost all x ∈ αS, where the integral is understood in the sense of principal value.
By Theorems 6.12 and 6.3, δ(x) = 0, x ∈ αS.

The fact that (8.42) is a fundamental set in L2(αS) now follows directly from
Theorem 8.2. ≥√

The generalized Fourier series approximation u(n) of the (unique) regular solution
u of (N−) is constructed just as in Sect. 8.2, the procedure being simplified here by
the absence of the rigid displacements f (i ) in (8.42).

8.5 Numerical Example

This illustration is based on the solution in S+ of the homogeneous system (3.8),
generated by (7.36) with β = 0, ρ = z2, τ = z + 1, and l = m = 0. Below, we use
the procedure described in Sect. 8.1 to reconstruct the solution from its values on the
boundary αS.

Consider the interior Dirichlet problem for a disk with h = 0.5 and ϑ = μ = 1,
where αS is the unit circle centered at the origin and the boundary conditions are

P1(x) = 2(x21 + 1), P2(x) = 2x1x2, P3(x) = 4x1 − 1, x ∈ αS.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
http://dx.doi.org/10.1007/978-1-4471-6434-0_7
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Let αS∈ be the circle concentric with αS and of radius ro > 1. We introduce polar
coordinates with the pole at the origin and choose the points x (k), k = 1, 2, . . . , on
αS∈ to be those corresponding to the polar angles

0, ϕ, 1
2 ϕ, 3

2 ϕ, 1
4 ϕ, 3

4 ϕ, 5
4 ϕ, 7

4 ϕ, . . . ,

in this order. Obviously, the set {x (k)}∞
k=1 is densely distributed on αS∈.

The approximation scheme described in Sect. 8.1 has been implemented on a
PC with the Mathematica� software. Since for this type of problem the default
numerical integration technique in Mathematica� takes inordinately long to execute
and, additionally, does not cope well with zero intermediate results, the integrals over
αS have been evaluated by means of Simpson’s rule with ns = 36 equal ‘strips’.
Consequently, all the functions defined on αS have been discretized at the Simpson
nodes, and the approximate values of the solution have been computed at a few
specified individual points x (i) in S+.

8.12 Remark. In the Gram–Schmidt method applied to the subset {∂(m)}nv
m=1 consist-

ing of the first nv elements of the complete set {∂(m)}∞
m=1, we begin by constructing

the orthogonal vector functions

ρ(1) = ∂(1),

ρ(m) = ∂(m) −
m−1∑
q=1

∩∂(m), ρ(q)∀2
‖ρ(q)‖22

ρ(q), m = 2, . . . , nv, (8.43)

and then the orthonormalized vector functions

τ(m) = 1

‖ρ(m)‖2 ρ(m), m = 1, . . . , nv, (8.44)

where ∩· , ·∀2 and ‖ · ‖2 are the inner product and norm on L2(αS). Combining (8.43)
and (8.44), we can also write

ρ(m) = ∂(m) −
m−1∑
q=1

∩∂(m), τ(q)∀2τ(q), m = 2, . . . , nv,

and

τ(m) = 1

‖ρ(m)‖2
{
∂(m) +

m−1∑
q=1

lmqτ(q)

}
, m = 2, . . . , nv, (8.45)

where

lmq = −∩∂(m), τ(q)∀2.
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Expressing the Gram–Schmidt transformation as

τ(m) =
m∑

q=1

kmq∂(q), m = 1, . . . , nv, (8.46)

from (8.45) and (8.46) we see that

kmm = 1

‖ρ(m)‖2 , m = 1, . . . , nv,

and

τ(m) = kmm

m−1∑
q=1

lmqτ(q) + kmm∂(m)

=
m−1∑
q=1

kmmlmq

( q∑
s=1

kqs∂
(s)

)
+ kmm∂(m), m = 2, . . . , nv.

These equalities permit us to compute all the coefficients kmq , q = 1, . . . , m,

m = 1, . . . , nv. Obviously, kmq = 0 for q = m + 1, . . . , nv.

For the sake of symmetry, in our approximating procedure we work with the first
no = 32 = 25 points x (k) on αS∈, so the circle is fully traversed five times. Since
the first three elements in the sequence (8.1) are the rigid displacements, the number
of vector functions ∂(m) (hence, also τ(m)) available after each of these passages is
9, 15, 27, 51, and 99.

The data compiled in Tables8.1–8.17 are the values of the exact solution u and
the approximate solution u(m) at selected points x (i) ∈ S+ designated by their polar
coordinates, for m = 9, 15, 27, 51, 99 and various radii ro of αS∈. The exact errors
|u − u(m)| at these points are also computed, where

|u − u(m)| = (|u1 − u(m)
1 |, |u2 − u(m)

2 |, |u3 − u(m)
3 |)T.

8.13 Remark. Tables8.1, 8.2, 8.3, and 8.4 show the results at four points x (i) located
on different radial directions at an increasing distance from the center of the disk
toward its boundary, for ro = 2 and ro = 4, respectively (see Remark 8.14(ii)). The
numbers in these tables lead to several conclusions.

(i) The approximation worsens as we get closer to the boundary. This is explained
by the fact that the matrix functions D and P are singular on αS.

(ii) The smallest errors are yielded by u(51) and u(99), with the former having a
slight ‘edge’ over the latter for both ro = 2 and ro = 4.

(iii) The approximation is better for ro = 4 at the points closer to the center, and for
ro = 2 at the points farther away from from it.
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Table 8.1 The values of u(m) and u at selected points x (i) in S+ for ro = 2

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

u(9) 0.909099 1.093230 1.416320 2.332110
0.000000 0.065845 0.000034 −0.361680

−0.756856 0.011257 −1.000300 −3.434730

u(15) 1.020470 1.190750 1.369730 2.311760
0.000000 0.098177 0.000037 −0.642597

−0.750471 0.039260 −1.000040 −3.525950

u(27) 1.007360 1.179880 1.359420 2.325780
0.000000 0.089996 0.000030 −0.606286

−0.750132 0.041542 −1.000040 −3.559670

u(51) 1.007420 1.179940 1.359310 2.331510
0.000000 0.090023 0.000030 −0.601356

−0.750129 0.041555 −1.000040 −3.559750

u(99) 1.007580 1.179940 1.360440 2.063980
0.000022 0.089946 −0.000932 −0.538252

−0.750123 0.041559 −1.000070 −3.539530

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 −0.810000

−0.750125 0.041568 −1.000000 −3.666500

8.14 Remark. Tables8.5, 8.6, 8.7, and 8.8 contain, respectively, the values of u(51)

and u(99) and the corresponding errors at the same points as in the first four tables,
for several values of ro.

(i) It is clear that u(99) is a better approximation than u(51) away from the boundary
(more precisely, at the first three points) for ro = 1.1. The situation is reversed
for ro = 1.5, and there is not much to choose between the two for ro = 10.

(ii) The best approximations u(51) and u(99) in the computed set are for ro = 2,
followed closely by those for ro = 4. The errors increasewhen ro is significantly
smaller than 2 or larger than 4. This is explained by the singularity of D(x, y)

and P(x, y) on αS and the asymptotics (3.38) of these functions as y ∈ αS and
|x | ⇔ ∞.

(iii) The anomalous error numbers generated by u(99) at (0.9, 3ϕ/4) for ro = 1.1
have the same explanation. Other points with a polar radius of 0.9 were tried in
this case, with similar results.

8.15 Remark. Tables8.9 and 8.10 widen the scope of the investigation into how the
approximation errors for u(51) and u(99) vary as the point x (i) moves from the center
of the disk toward αS in polar radius increments of 0.1, for ro = 2 and ro = 4.

(i) For ro = 2, both errors are zero up to 4 decimal places until the polar radius
of the point reaches 0.3, and to 3 decimal places until 0.6, after which it starts
deteriorating fast. For ro = 4, the thresholds are 0.5 and 0.6, respectively.

http://dx.doi.org/10.1007/978-1-4471-6434-0_3
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Table 8.2 The computational errors |u − u(m)| at the points in Table8.1 for ro = 2

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

|u − u(9)| 0.098401 0.086770 0.056320 0.287890
0.000000 0.024155 0.000034 0.448320
0.006731 0.030311 0.000030 0.231770

|u − u(15)| 0.012970 0.010750 0.009730 0.308240
0.000000 0.008177 0.000037 0.167403
0.000346 0.002308 0.000040 0.140550

|u − u(27)| 0.000140 0.000120 0.000580 0.294220
0.000000 0.000004 0.000030 0.203714
0.000007 0.000026 0.000040 0.106830

|u − u(51)| 0.000080 0.000060 0.000690 0.288490
0.000000 0.000023 0.000030 0.208644
0.000004 0.000013 0.000040 0.106750

|u − u(99)| 0.000080 0.000060 0.000440 0.556020
0.000022 0.000054 0.000932 0.271748
0.000002 0.000009 0.000070 0.126970

Table 8.3 The values of u(m) and u at the points x (i) in Table 8.1 for ro = 4

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

u(9) 0.891649 1.079830 1.426260 2.395640
0.000000 0.065017 0.000040 −0.336053

−0.755540 0.018704 −1.000030 −3.498200

u(15) 0.894734 1.083160 1.418590 2.421150
0.000000 0.065388 0.000040 −0.343568

−0.754609 0.024425 −1.000030 −3.552410

u(27) 1.007450 1.179960 1.359160 2.324730
0.000000 0.089989 0.000040 −0.607881

−0.750127 0.041560 −1.000030 −3.558930

u(51) 1.007500 1.180000 1.359120 2.324910
0.000000 0.090000 0.000055 −0.607857

−0.750125 0.041568 −1.000030 −3.559470

u(99) 1.007500 1.180000 1.359050 1.459230
0.000000 0.090002 0.000079 0.329970

−0.750125 0.041568 −1.000030 −0.050139

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 −0.810000

−0.750125 0.041568 −1.000000 −3.666500
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Table 8.4 The computational errors |u − u(m)| at the points in Table8.3 for ro = 4

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

|u − u(9)| 0.115851 0.100170 0.066260 0.224360
0.000000 0.024983 0.000040 0.473947
0.005415 0.022864 0.000030 0.315500

|u − u(15)| 0.112766 0.096840 0.058590 0.198850
0.000000 0.024612 0.000040 0.466432
0.004484 0.017143 0.000030 0.114090

|u − u(27)| 0.000050 0.000040 0.000840 0.295270
0.000000 0.000011 0.000040 0.202119
0.000002 0.000008 0.000030 0.107570

|u − u(51)| 0.000000 0.000000 0.000880 0.295090
0.000000 0.000000 0.000055 0.202143
0.000000 0.000000 0.000030 0.107030

|u − u(99)| 0.000000 0.000000 0.000950 1.160770
0.000000 0.000002 0.000079 1.139970
0.000000 0.000000 0.000030 3.616361

Table 8.5 The values of u(51) and u at the points x (i) in Table 8.1 for various radii ro

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

ro = 1.1 0.984393 1.148190 1.468830 2.221520
0.000000 0.097241 0.001287 −0.415976

−0.759148 0.003493 −1.032630 −3.419870

ro = 1.5 1.005800 1.178670 1.363540 2.340940
0.000000 0.091092 −0.000231 −0.599018

−0.750251 0.041138 −1.000250 −3.560160

ro = 2 1.007420 1.179940 1.359310 2.331510
0.000000 0.090023 0.000030 −0.601356

−0.750129 0.041555 −1.000040 −3.559750

ro = 4 1.007500 1.180000 1.359120 2.324910
0.000000 0.090000 −0.000055 −0.607857

−0.750125 0.041568 −1.000030 −3.559470

ro = 10 0.890012 1.078890 1.423330 2.412190
0.000000 0.064548 0.000122 −0.344890

−0.754919 0.023032 −1.000420 −3.545090

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 −0.810000

−0.750125 0.041568 −1.000000 −3.666500
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Table 8.6 The computational errors |u − u(51)| at the points in Table 8.5
x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

ro = 1.1 0.023107 0.031810 0.108830 0.398480
0.000000 0.007241 0.001287 0.394024
0.009023 0.038075 0.032630 0.246630

ro = 1.5 0.001700 0.001330 0.003540 0.279060
0.000000 0.001092 0.000230 0.210982
0.000126 0.000430 0.000250 0.106340

ro = 2 0.000080 0.000060 0.000690 0.288490
0.000000 0.000023 0.000030 0.208644
0.000004 0.000013 0.000040 0.106750

ro = 4 0.000000 0.000000 0.000880 0.295090
0.000000 0.000000 0.000055 0.202143
0.000000 0.000000 0.000030 0.107030

ro = 10 0.117488 0.101110 0.063330 0.207810
0.000000 0.025452 0.000122 0.465110
0.004794 0.022648 0.000420 0.121410

Table 8.7 The values of u(99) and u at the points x (i) in Table 8.1 for various radii ro

x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

ro = 1.1 1.006880 1.150640 0.873030 160.400000
0.000000 0.047808 −0.043748 −120.054000

−0.750165 0.038164 −1.009930 −6.325140

ro = 1.5 1.007030 1.175570 1.345790 2.103650
−0.002429 0.089554 −0.022097 −0.505978
−0.750366 0.040829 −1.000750 −3.532410

ro = 2 1.007580 1.179940 1.360440 2.063980
0.000022 0.089946 −0.000932 −0.538252

−0.750123 0.041559 −1.000070 −3.539530

ro = 4 1.007500 1.180000 1.359050 1.459230
0.000000 0.090002 0.000079 0.329970

−0.750125 0.041568 −1.000030 −0.050139

ro = 10 0.890082 1.078900 1.422220 2.408500
0.000017 0.064634 0.000412 −0.360479

−0.754916 0.023071 −1.001010 −3.541330

u 1.007500 1.180000 1.360000 2.620000
0.000000 0.090000 0.000000 −0.810000

−0.750125 0.041568 −1.000000 −3.666500
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Table 8.8 The computational errors |u − u(99)| at the points in Table8.7
x (i) (0.05, 0) (0.3, ϕ/4) (0.6, ϕ/2) (0.9, 3ϕ/4)

ro = 1.1 0.000620 0.029360 0.486970 157.780000
0.000000 0.042192 0.043748 119.244000
0.000040 0.003404 0.009930 2.658640

ro = 1.5 0.000470 0.004430 0.014210 0.516350
0.002429 0.000446 0.022097 0.304022
0.000241 0.000739 0.000750 0.134090

ro = 2 0.000080 0.000060 0.000440 0.556020
0.000022 0.000054 0.000932 0.271748
0.000002 0.000009 0.000070 0.126970

ro = 4 0.000000 0.000000 0.000950 1.160770
0.000000 0.000002 0.000079 1.139970
0.000000 0.000000 0.000030 3.616361

ro = 10 0.117418 0.101100 0.062220 0.211500
0.000017 0.025366 0.000412 0.449521
0.004791 0.018497 0.001010 0.125170

(ii) The errors foru(51) andu(99) remain comparable at 0.7 and0.8; the latter becomes
worse at 0.9, especially for ro = 4.

8.16 Remark. Tables 8.11, 8.12 and 8.13, 8.14 show the approximate and exact
values of the solution, and the corresponding errors, at three points very close to
αS (specifically, with polar radius 0.99), for ro = 2 and ro = 4. As expected, the
approximations are unsatisfactory, with the ‘badness’ worst at (0.99, 0), which, of
the three points, is closest to a Simpson node and, therefore, most affected by the
singularities of D and P .

8.17 Remark. Tables 8.15, 8.16, and 8.17 contain the values of the approximations
u(51) and u(99) and the error of the former at the same close-to-the-boundary points
used in Tables 8.11, 8.12, 8.13, and 8.14, for the set of incremental radii ro of αS∈
considered earlier. The conclusions regarding the error size for each of these radii
are similar to those in Remark 8.16.

We make a few general comments.

8.18 Remarks. (i) The size of the errors did not diminish when we doubled the
number of points x (k) on αS∈, to construct u(195). We suspect that the main reason
for this is the numerical instability of the classical Gram–Schmidt process.

(ii) Simpson’s rule of numerical integration over [0, 2ϕ ] was also tried with 48
and 96 equal strips, but the changes in the final figures were not significant.

(iii) The values of u(m) were computed for more radii ro, from 0.01 to 100, and
the conclusion was that ro = 2 and ro = 4 fall within the optimal range for the error.
Placing αS∈ too close to αS or too far away from it led to badly distorted results.
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Table 8.9 The values of u(51), u(99), and u at selected points x (i) in S+ for ro = 2 and ro = 4

x (i) u(51) u(99) u

ro = 2 ro = 4 ro = 2 ro = 4

(0.05, 0) 1.007420 1.007500 1.007580 1.007500 1.007500
0.000000 0.000000 0.000022 0.000000 0.000000

−0.750129 −0.750125 −0.750123 −0.750125 −0.750125

(0.1, ϕ/3) 1.014930 1.015000 1.015070 1.015000 1.015000
0.008662 0.008660 0.008635 0.008659 0.008660

−0.750504 −0.750500 −0.750500 −0.750500 −0.750500

(0.2, ϕ/6) 1.099910 1.100000 1.100030 1.100000 1.100000
0.034650 0.034641 0.034481 0.034638 0.034641

−0.140916 −0.140903 −0.140905 −0.140903 −0.140903

(0.3, ϕ/4) 1.179940 1.180000 1.179940 1.180000 1.180000
0.090023 0.090000 0.089946 0.090002 0.090000
0.041555 0.041568 0.041559 0.041568 0.041568

(0.4, ϕ/9) 1.442430 1.442570 1.442350 1.442530 1.442570
0.102863 0.102849 0.102984 0.102867 0.102846
0.819218 0.819245 0.819216 0.819243 0.819245

(0.5, 4ϕ/9) 1.265210 1.265120 1.265170 1.265080 1.265080
0.085503 0.085478 0.085823 0.085449 0.085505

−0.587587 −0.587586 −0.587581 −0.587587 −0.587586

(0.6, ϕ/2) 1.359310 1.359120 1.360440 1.359050 1.360000
0.000030 −0.000055 −0.000932 0.000079 0.000000

−1.000040 −1.000030 −1.000070 −1.000030 −1.000000

(0.7, 5ϕ/4) 1.970290 1.970030 1.820640 1.969680 1.980000
0.490459 0.490576 0.829947 0.489950 0.490000

−3.231610 −3.231600 −3.242060 −3.231590 −3.232340

(0.8, 10ϕ/9) 2.696250 2.698700 2.895320 2.699320 2.770270
0.372738 0.374538 0.413757 0.374755 0.411384

−4.247290 −4.247350 −4.269450 −4.247350 −4.277650

(0.9, 3ϕ/4) 2.331510 2.324910 2.063980 1.459230 2.620000
−0.601356 −0.607857 −0.538252 0.329970 −0.810000
−3.559750 −3.559470 −3.539530 −0.050139 −3.666500

(iv) The convergence of u(m) in the vicinity of the boundary is, as expected, much
slower than near the center. At points close to αS, a considerably higher value of m
needs to be considered to bring the error to a reasonable size.

(v) The accuracy of the approximation can be improved if use is made of a more
powerful computer and a more sophisticated numerical algorithm. For example, the
stability of the Gram–Schmidt scheme can be enhanced by means of a modified
version where the construction of the vector function ρ(m) involves its orthogonal-
ization against any errors introduced in the computation of its predecessors. Also, a
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Table 8.10 The computational errors |u − u(51)| and |u − u(99)| at the points in Table 8.9
x (i) |u − u(51)| |u − u(99)|

ro = 2 ro = 4 ro = 2 ro = 4

(0.05, 0) 0.000080 0.000000 0.000080 0.000000
0.000000 0.000000 0.000022 0.000000
0.000004 0.000000 0.000002 0.000000

(0.1, ϕ/3) 0.000070 0.000000 0.000070 0.000000
0.000002 0.000000 0.000025 0.000001
0.000004 0.000000 0.000000 0.000000

(0.2, ϕ/6) 0.000090 0.000000 0.000030 0.000000
0.000009 0.000000 0.000160 0.000003
0.000013 0.000000 0.000002 0.000000

(0.3, ϕ/4) 0.000060 0.000000 0.000060 0.000000
0.000023 0.000000 0.000054 0.000002
0.000013 0.000000 0.000009 0.000000

(0.4, ϕ/9) 0.000140 0.000000 0.000220 0.000040
0.000017 0.000003 0.000138 0.000021
0.000027 0.000000 0.000029 0.000002

(0.5, 4ϕ/9) 0.000130 0.000040 0.000090 0.000000
0.000002 0.000027 0.000318 0.000056
0.000001 0.000000 0.000005 0.000001

(0.6, ϕ/2) 0.000690 0.000880 0.000440 0.000950
0.000030 0.000055 0.000932 0.000021
0.000040 0.000030 0.000070 0.000030

(0.7, 5ϕ/4) 0.009710 0.009970 0.159360 0.010320
0.000459 0.000576 0.339947 0.000050
0.000730 0.000740 0.009720 0.000750

(0.8, 10ϕ/9) 0.074020 0.071570 0.125050 0.070950
0.038646 0.036846 0.002373 0.036629
0.030360 0.030300 0.008200 0.030300

0.288490 0.295090 0.556020 1.160770
0.208644 0.202143 0.271748 1.139970
0.106750 0.107030 0.126970 3.616361

faster and more efficient numerical integration procedure could be adopted, and the
computer algebra capabilities of Mathematica� could be exploited if the machine
has sufficient available memory. But such refinements go beyond the scope of this
book, which is concerned chiefly with the analytic handling of the problem.

8.19 Remark. For the interested reader, below are the contents of theMathematica�
notebook used to generate the numerical results in this section. The commands in
each cell are preceded by brief explanatory comments.
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Table 8.11 The values of u(m) and u at selected points x (i) close to αS for ro = 2

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

u(9) 14.318600 3.714870 1.883640
0.000000 0.453832 −0.187059
7.291790 3.604700 1.773780

u(15) 14.405100 3.815040 1.958140
0.000000 0.570787 −0.136224
7.208620 3.528960 1.712860

u(27) 14.394200 3.806260 1.952360
0.000000 0.581351 −0.132348
7.168420 3.497190 1.683650

u(51) 14.260300 3.866190 1.947120
0.000000 0.613252 −0.111941
7.167530 3.496620 1.683580

u(99) 14.364800 3.973990 1.998120
0.424528 0.361206 −0.086232
7.019800 3.605200 1.682940

u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.12 The computational errors |u − u(m)| at the points in Table 8.11 for ro = 2

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

|u − u(9)| 10.378300 0.150820 2.041770
0.000000 0.078764 0.357252
4.312090 0.701470 1.190780

|u − u(15)| 10.464800 0.050650 1.967270
0.000000 0.195719 0.306417
4.228920 0.625730 1.251700

|u − u(27)| 10.453900 0.059430 1.973050
0.000000 0.206283 0.302541
4.188720 0.593960 1.280910

|u − u(51)| 10.320000 0.000050 1.978290
0.000000 0.238184 0.282134
4.187830 0.593390 1.280980

|u − u(99)| 10.424500 0.108300 1.927290
0.424528 0.013862 0.256425
4.040100 0.701970 1.281620
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Table 8.13 The values of u(m) and u at the points x (i) in Table 8.11 for ro = 4

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

u(9) 14.200100 3.625110 1.808630
0.000000 0.460078 −0.186517
7.238340 3.562120 1.735350

u(15) 14.170700 3.604000 1.791320
0.000000 0.467818 −0.183938
7.164520 3.496130 1.676040

u(27) 14.392900 3.806970 1.952520
0.000000 0.583507 −0.131415
7.166160 3.496450 1.682600

u(51) 14.393000 3.807050 1.952580
0.000122 0.584242 −0.131048
7.167680 3.497100 1.683410

u(99) 14.393300 3.806120 1.952220
0.000147 0.583194 −0.131500
7.168040 3.497150 1.683520

u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.14 The computational errors |u − u(m)| at the points in Table 8.13 for ro = 4

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

|u − u(9)| 10.259800 0.240580 2.116780
0.000000 0.085010 0.356710
4.258640 0.658890 1.229210

|u − u(15)| 10.230400 0.261690 2.134090
0.000000 0.092750 0.354131
4.184820 0.592900 1.288520

|u − u(27)| 10.452600 0.058720 1.972890
0.000000 0.208439 0.301608
4.186460 0.593220 1.281960

|u − u(51)| 10.452700 0.058640 1.972830
0.000122 0.209174 0.301241
4.187980 0.593870 1.281150

|u − u(99)| 10.453000 0.059570 1.973190
0.000147 0.208126 0.301693
4.188340 0.593920 1.281040
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Table 8.15 The values of u(51) and u at the points x (i) in Table 8.11 for various radii ro

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

ro = 1.1 14.158700 4.011060 1.980900
0.000000 0.738428 −0.041818
7.128330 3.379650 1.598850

ro = 1.5 14.151600 3.897410 1.932960
0.000000 0.618801 −0.104884
7.167320 3.493720 1.681880

ro = 2 14.260300 3.866190 1.947120
0.000000 0.613252 −0.111941
7.167530 3.496620 1.683580

ro = 4 14.393000 3.807050 1.952580
0.000122 0.584242 −0.131048
7.167680 3.497100 1.683410

ro = 10 14.184800 3.616360 1.799440
0.005259 0.445375 −0.190697
7.163660 3.497540 1.675870

u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560

Table 8.16 The values of u(99) and u at the points in Table 8.11 for various radii ro

x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

ro = 1.1 615.922000 −619.646000 −70.536600
0.032329 675.962000 250.783000

−33.759500 22.981500 10.222800

ro = 1.5 6.729380 8.452130 1.337370
4.033270 −5.983060 −1.401630
8.731610 3.165590 1.844720

ro = 2 14.364800 3.973990 1.998120
0.424528 0.361206 −0.086232
7.019800 3.605200 1.682940

ro = 4 14.393300 3.806120 1.952220
0.000147 0.583194 −0.131500
7.168040 3.497150 1.683520

ro = 10 14.199000 3.630510 1.808370
0.012549 0.432949 −0.192421
7.157130 3.494560 1.671720

u 3.940300 3.865690 3.925410
0.000000 0.375068 0.170193
2.979700 2.903230 2.964560
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Table 8.17 The computational error |u − u(51)| at the points in Table 8.15
x (i) (0.99, 0) (0.99, ϕ/16) (0.99, ϕ/36)

ro = 1.1 10.218400 0.145370 1.944510
0.000000 0.363360 0.212011
4.148630 0.476420 1.365710

ro = 1.5 10.211300 0.031720 1.992450
0.000000 0.243733 0.275077
4.187620 0.590490 1.282680

ro = 2 10.320000 0.000500 1.978290
0.000000 0.238184 0.282131
4.187830 0.593390 1.280980

ro = 4 10.452700 0.058640 0.020250
0.000122 0.209172 0.301241
4.187980 0.593870 1.281150

ro = 10 10.244500 0.249330 1.799440
0.005259 0.070307 0.360890
4.183960 0.594310 1.288690

The physical parameters:

lam = 1;
mu = 1;
h = 1/2;

Some auxiliary expressions:

xy[x1_ , x2_ , y1_ , y2_ ] := ((x1 - y1)⊂2 +
(x2 - y2)⊂2)⊂(1/2);

lxy[x1_ , x2_ , y1_ , y2_ ] := Log[xy[x1, x2, y1, y2]];
txy[x1_ , x2_ , y1_ , y2_ ] := (1/(8 ∈ Pi ∈h⊂2 ∈mu⊂2 ∈

(lam + 2 ∈mu))) ∈((4 ∈h⊂2 +
xy[x1, x2, y1, y2]⊂2) ∈lxy[x1, x2, y1, y2] +
4 ∈h⊂2 ∈BesselK[0, xy[x1, x2, y1, y2]/h]);

The matrix D(x, y) of fundamental solutions:

D11[x1_ , x2_ , y1_ , y2_ ] := ((h⊂2 ∈mu ∈(lam + 2 ∈mu) ∈
(D[txy[x1, x2, y1, y2], {x1, 4}] +
2 ∈D[txy[x1, x2, y1, y2], x1, x1, x2, x2] +
D[txy[x1, x2, y1, y2], {x2, 4}]) -
h⊂2 ∈mu ∈(lam + mu) ∈
(D[txy[x1, x2, y1, y2], {x1, 4}] +
D[txy[x1, x2, y1, y2], x1, x1, x2, x2]) -
mu⊂2 ∈D[txy[x1, x2, y1, y2], {x1, 2}]));
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D12[x1_ , x2_ , y1_ , y2_ ] := ((-h⊂2 ∈mu ∈(lam + mu) ∈
(D[txy[x1, x2, y1, y2], x1, x1, x1, x2] +
D[txy[x1, x2, y1, y2], x1, x2, x2, x2]) -
mu⊂2 ∈D[txy[x1, x2, y1, y2], x1, x2]));

D13[x1_ , x2_ , y1_ , y2_ ] := ((mu⊂2 ∈
(h⊂2 ∈(D[txy[x1, x2, y1, y2], {x1, 3}] +
D[txy[x1, x2, y1, y2], x1, x2, x2]) -
D[txy[x1, x2, y1, y2], x1])));

D21[x1_ , x2_ , y1_ , y2_ ] := D12[y1, y2, x1, x2];
D22[x1_ , x2_ , y1_ , y2_ ] := ((h⊂2 ∈mu ∈(lam + 2 ∈mu) ∈

(D[txy[x1, x2, y1, y2], x1, 4] +
2 ∈D[txy[x1, x2, y1, y2], x1, x1, x2, x2] +
D[txy[x1, x2, y1, y2], {x2, 4}]) -
h⊂2 ∈mu ∈(lam + mu) ∈
(D[txy[x1, x2, y1, y2], x1, x1, x2, x2] +
D[txy[x1, x2, y1, y2], {x2, 4}]) -
mu⊂2 ∈D[txy[x1, x2, y1, y2], {x2, 2}]));

D23[x1_ , x2_ , y1_ , y2_ ] := ((mu⊂2 ∈
(h⊂2 ∈(D[txy[x1, x2, y1, y2], x1, x1, x2] +
D[txy[x1, x2, y1, y2], {x2, 3}]) -
D[txy[x1, x2, y1, y2], x2])));

D31[x1_ , x2_ , y1_ , y2_ ] := D13[y1, y2, x1, x2];
D32[x1_ , x2_ , y1_ , y2_ ] := D23[y1, y2, x1, x2];
D33[x1_ , x2_ , y1_ , y2_ ] := ((h⊂4 ∈mu ∈(lam + 2 ∈mu) ∈

(D[txy[x1, x2, y1, y2], {x1, 4}] +
2 ∈D[txy[x1, x2, y1, y2], x1, x1, x2, x2] +
D[txy[x1, x2, y1, y2], {x2, 4}]) -
h⊂2 ∈mu ∈(lam + 3 ∈mu) ∈
(D[txy[x1, x2, y1, y2], {x1, 2}] +
D[txy[x1, x2, y1, y2], {x2, 2}]) +
mu⊂2 ∈txy[x1, x2, y1, y2]))

MatrixD[x1_ , x2_ , y1_ , y2_ ] := {{D11[x1, x2, y1, y2],
D12[x1, x2, y1, y2], D13[x1, x2, y1, y2]},
{D21[x1, x2, y1, y2], D22[x1, x2, y1, y2],
D23[x1, x2, y1, y2]}, {D31[x1, x2, y1, y2],
D32[x1, x2, y1, y2], D33[x1, x2, y1, y2]}};

The matrix P(x, y) of singular solutions:

P11[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈(lam + 2 ∈mu) ∈nu1y ∈
D[D11[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu2y ∈
D[D11[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu2y ∈
D[D21[y1, y2, x1, x2], y1] + h⊂2 ∈lam ∈nu1y ∈
D[D21[y1, y2, x1, x2], y2]);

P12[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈lam ∈nu2y ∈
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D[D11[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu1y ∈
D[D11[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu1y ∈
D[D21[y1, y2, x1, x2], y1] + h⊂2 ∈(lam + 2 ∈mu) ∈
nu2y ∈D[D21[y1, y2, x1, x2], y2]);

P13[x1_ , x2_ , y1_ , y2_ ] := (mu ∈nu1y ∈
D11[y1, y2, x1, x2] + mu ∈nu2y ∈
D21[y1, y2, x1, x2] + mu ∈(nu1y ∈
D[D31[y1, y2, x1, x2], y1] + nu2y ∈
D[D31[y1, y2, x1, x2], y2]));

P21[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈(lam + 2 ∈mu) ∈nu1y ∈
D[D12[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu2y ∈
D[D12[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu2y ∈
D[D22[y1, y2, x1, x2], y1] + h⊂2 ∈lam ∈nu1y ∈
D[D22[y1, y2, x1, x2], y2]);

P22[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈lam ∈nu2y ∈
D[D12[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu1y ∈
D[D12[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu1y ∈
D[D22[y1, y2, x1, x2], y1] + h⊂2 ∈(lam + 2 ∈mu) ∈
nu2y ∈D[D22[y1, y2, x1, x2], y2]);

P23[x1_ , x2_ , y1_ , y2_ ] := (mu ∈nu1y ∈
D12[y1, y2, x1, x2] + mu ∈nu2y ∈
D22[y1, y2, x1, x2] + mu ∈(nu1y ∈
D[D32[y1, y2, x1, x2], y1] + nu2y ∈
D[D32[y1, y2, x1, x2], y2]));

P31[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈(lam + 2 ∈mu) ∈nu1y ∈
D[D13[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu2y ∈
D[D13[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu2y ∈
D[D23[y1, y2, x1, x2], y1] + h⊂2 ∈lam ∈nu1y ∈
D[D23[y1, y2, x1, x2], y2]);

P32[x1_ , x2_ , y1_ , y2_ ] := (h⊂2 ∈lam ∈nu2y ∈
D[D13[y1, y2, x1, x2], y1] + h⊂2 ∈mu ∈nu1y ∈
D[D13[y1, y2, x1, x2], y2] + h⊂2 ∈mu ∈nu1y ∈
D[D23[y1, y2, x1, x2], y1] + h⊂2 ∈(lam + 2 ∈mu) ∈
nu2y ∈D[D23[y1, y2, x1, x2], y2]);

P33[x1_ , x2_ , y1_ , y2_ ] := (mu ∈nu1y ∈
D13[y1, y2, x1, x2] + mu ∈nu2y ∈
D23[y1, y2, x1, x2] + mu ∈(nu1y ∈
D[D33[y1, y2, x1, x2], y1] + nu2y ∈
D[D33[y1, y2, x1, x2], y2]));

MatrixP[x1_ , x2_ , y1_ , y2_ ] := {{P11[x1, x2, y1, y2],
P12[x1, x2, y1, y2], P13[x1, x2, y1, y2]},
{P21[x1, x2, y1, y2], P22[x1, x2, y1, y2],
P23[x1, x2, y1, y2]}, {P31[x1, x2, y1, y2],
P32[x1, x2, y1, y2], P33[x1, x2, y1, y2]}};
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The radii of the circles αS and αS∈:

rInner = 1;
rOuter = 2;

The number no of points on αS∈, chosen, for symmetry, to be a power of 2:

nO = 32;

The (even) number ns of equal subintervals for numerical integration by Simpson’s
rule from 0 to 2ϕ :

nS = 36;

The polar angles of the points x (m), which are placed around the circle in equal
increments of ϕ/2, then ϕ/4, then ϕ/8, then ϕ/16, etc., without replicating the
values generated by earlier passages:

AngleList = {0, Pi};
For[n = 3, n <= nO, n++, {quot = n - 1, den = 1;

While[(quot = Floor[quot/2])! = 0, den = den ∈2;
phi = (2 ∈(n - den) - 1) ∈ Pi/den]};
AppendTo[AngleList, phi]; Print[AngleList]];

The Cartesian coordinates of the points x (m) on αS∈, computed from their polar
angles:

Do[{xm1[m] = rOuter ∈Cos[AngleList[[m]]], xm2[m] =
rOuter ∈Sin[AngleList[[m]]]}, {m, 1, nO}];

The indexed entries of D(x, y):

MatrixD[1, 1] = D11[x1, x2, y1, y2];
MatrixD[1, 2] = D12[x1, x2, y1, y2];
MatrixD[1, 3] = D13[x1, x2, y1, y2];
MatrixD[2, 1] = D21[x1, x2, y1, y2];
MatrixD[2, 2] = D22[x1, x2, y1, y2];
MatrixD[2, 3] = D23[x1, x2, y1, y2];
MatrixD[3, 1] = D31[x1, x2, y1, y2];
MatrixD[3, 2] = D32[x1, x2, y1, y2];
MatrixD[3, 3] = D33[x1, x2, y1, y2];
For[i = 1, i <= 3, i++, For[j = 1, j <= 3, j++,

MatrixD[i, j]]];
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The columns of D(x, y):

Do[DCol[i] = {MatrixD[1, i], MatrixD[2, i],
MatrixD[3, i]}, {i, 1, 3}];

The first 3no + 3 terms of the complete set ∂(i,m) of vector functions, in double index
notation:

theta[1, 0] = {1, 0, -x1};
theta[2, 0] = {0, 1, -x2};
theta[3, 0] = {0, 0, 1};
Do[{Do[theta[i, m] = DCol[i] /. {y1 -> xm1[m],

y2 -> xm2[m]}, {i, 1, 3}], Print[m]},
{m, 1, nO}];

The same set in single index notation:

theta[1] = theta[1, 0];
theta[2] = theta[2, 0];
theta[3] = theta[3, 0];
Do[{theta[m] = If[(m - 1)/3 \[Element] Integers,

theta[1, (m - 1)/3], If[(m - 2)/3
\[Element] Integers, theta[2, (m - 2)/3],
theta[3, (m - 3)/3]]], Print[m]},
{m, 4, 3 ∈nO + 3}];

The 3no + 3 vector functions ∂(m) in terms of the polar angle λ on αS:

Do[{thetaPolar[m] = theta[m] /. {x1 -> rInner ∈
Cos[\[Alpha]], x2 -> rInner ∈ Sin[\[Alpha]]},
Print[m]}, {m, 1, 3 ∈nO + 3}];

Discretization of a function as the set of its ns + 1 values at the Simpson nodes of
rank from 0 to ns on [0, 2ϕ ]:
Discretize[f_ , \[Alpha]_ ] := Module[{g, step},
step = (2 ∈Pi)/nS; g[i_ ] := N[f /. \[Alpha] -> step ∈i];

Do[g[i], {i, 0, nS}]; Table[g[i], {i, 0, nS}]];

Discretization of the set of all 3no + 3 vector functions ∂(m):

Do[{thetaDiscr[m] = Discretize[thetaPolar[m],
\[Alpha]], Print[m]}, {m, 1, 3 ∈nO + 3}];
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Simpson’s rule of integration from 0 to 2ϕ with ns equal subintervals, for a function
already discretized at the Simpson nodes:

Simpson[f_ ] := Module[odd, even, odd = 0; even = 0;
Do[If[Mod[i, 2] === 0, odd = odd + f[[i]],
even = even + f[[i]]], i, 2, nS]; N[(1/3) ∈
(2 ∈ Pi/nS) ∈(f[[1]] + 2 ∈even + 4 ∈odd +
f[[nS + 1]])]];

The L2-inner product of two discretized vector functions on [0, 2ϕ ]:
IP[f_ , g_ ] := Module[{fg}, fg = Table[f[[i]].g[[i]],

{i, 1, nS + 1}]; Simpson[fg]];

Orthonormalization of the discretized vector functions ∂(m) as discretized vector
functions τ(m) on αS, via the Gram–Schmidt process:

Do[{OmegaDiscr[m] = thetaDiscr[m] -
Sum[(IP[thetaDiscr[m], OmegaDiscr[q]]/
IP[OmegaDiscr[q], OmegaDiscr[q]]) ∈
OmegaDiscr[q], {q, 1, m - 1}], omegaDiscr[m] =
(1/IP[OmegaDiscr[m], OmegaDiscr[m]])⊂(1/2) ∈
OmegaDiscr[m], Print[m]}, {m, 1, 3 ∈nO + 3}];

The coefficients km,n of the Gram–Schmidt transformation (the τ(m) expressed as
linear combinations of the ∂(n)):

For[m = 1, m <= 3 ∈nO + 3, m++, k[m, m] =
(1/IP[OmegaDiscr[m], OmegaDiscr[m]])⊂(1/2);
For[q = 1, q <= m - 1, q++, k[m, q] = 0;
For[s = q, s <= m - 1, s++, k[m, q] = k[m, q] -
IP[thetaDiscr[m], omegaDiscr[s]] ∈k[s, q]];
k[m, q] = k[m, m] ∈k[m, q]]; Print[m]];

The zero coefficients above the leading diagonal of the transformation matrix:

Do[Do[If[q <= m, k[m, q] = k[m, q], k[m, q] = 0],
{q, 1, 3 ∈nO + 3}], {m, 1, 3 ∈nO + 3}];

The vector function P prescribed on αS:

ScriptP[x1_ , x2_ ] := {2 ∈(x1⊂2 + 1), 2 ∈x1 ∈x2,
4 ∈x1 - 1};
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P in polar coordinates:

ScriptPPolar[\[Alpha]_ ] := ScriptP[x1, x2] /.
{x1 -> rInner ∈ Cos[\[Alpha]], x2 -> rInner ∈
Sin[\[Alpha]]}; ScriptPPolar[\[Alpha]];

P discretized:

ScriptPPolarDiscr = Discretize[ScriptPPolar[\[Alpha]],
\[Alpha]];

P(x, y) with y ∈ αS in polar coordinates:

MatrixPPolar[x1_ , x2_ , \[Alpha]_ ] :=
MatrixP[x1, x2, y1, y2] /.
{nu1y -> Cos[\[Alpha]], nu2y -> Sin[\[Alpha]],
y1 -> rInner ∈Cos[\[Alpha]],
y2 -> rInner ∈Sin[\[Alpha]]}

The set of no matrices generated by P(x, y) with y ∈ αS in polar coordinates and
x replaced in turn by every one of the points x (m) on αS∈:
Do[{MatrixPPolarOuter[m] = MatrixPPolar[x1, x2,

\[Alpha]] /. {x1 -> xm1[m], x2 -> xm2[m]},
Print[m]}, {m, 1, nO}];

The same set, discretized at the Simpson nodes:

Do[{MatrixPPolarOuterDiscr[n] = Discretize[
MatrixPPolarOuter[n], \[Alpha]], Print[n]},
{n, 1, nO}];

The number nv of vector functions ∂(m) (so also τ(m)) chosen from the full 3no + 3-
set for the calculation of the approximate solution (because of the way the ∂ -set is
constructed, these vectors will always be the first nv ones in the full set):

nV = 51;

The set of no vectors generated by the vector function H at every one of the points
x (m) on αS∈ (not needed if nv = 3):

Do[{Hxm[m] = IP[MatrixPPolarOuterDiscr[m],
ScriptPPolarDiscr], Print[m]}, {m, 1, nO}];
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The L2-inner product of ∂(m) and β on [0, 2ϕ ] for m ⊆ 4:

Do[{IntThetaPsi[m] = If[(m - 1)/3 \[Element] Integers,
Hxm[(m - 1)/3][[1]], If[(m - 2)/3
\[Element] Integers, Hxm[(m - 2)/3][[2]],
Hxm[(m - 3)/3][[3]]]], Print[m]}, {m, 4, nV}];

The first three coefficients pr (as remarked, they are zero):

p[1] = 0;
p[2] = 0;
p[3] = 0;

The rest of the pr (for r ⊆ 4):

Do[{p[r] = Sum[k[r, m] ∈IntThetaPsi[m], {m, 4, r}],
Print[r]}, {r, 4, nV}];

The vector function β discretized at the Simpson nodes:

psiDiscr = p[1] ∈omegaDiscr[1]; Do[lbr psiDiscr =
psiDiscr + p[r] ∈omegaDiscr[r], Print[r]},
{r, 2, nV}];

A specific point x (i) in S+ where the solution is computed (its Cartesian coordi-
nates are constructed from its polar coordinates to allow easier radial and angular
variations, as desired ):

PolarRadius = 0.05;
PolarAngle = 0;
xI1 = PolarRadius ∈Cos[PolarAngle]; xI2 =

PolarRadius ∈Sin[PolarAngle];

D(x, y) with y ∈ αS in polar coordinates:

MatrixDPolar[x1_ , x2_ , \[Alpha]_ ] :=
MatrixD[x1, x2, y1, y2] /.
{y1 -> rInner ∈ Cos[\[Alpha]], y2 -> rInner ∈
Sin[\[Alpha]]};

D(x, y) as above and x = x (i):

MatrixDPolarInner[\[Alpha]_ ] := MatrixDPolar[x1, x2,
\[Alpha]] /. {x1 -> xI1, x2 -> xI2};
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D(x, y) now discretized at the Simpson nodes:

MatrixDPolarInnerDiscr =
Discretize[MatrixDPolarInner[\[Alpha]],
\[Alpha]];

The integral of D(x, y)β(y) with respect to the polar angle λ over [0, 2ϕ ]:
IntMatrixDpsi = IP[MatrixDPolarInnerDiscr, psiDiscr];

P(x, y) with y ∈ αS in polar coordinates and x = x (i):

MatrixPPolarInner[\[Alpha]_ ] := MatrixPPolar[x1, x2,
\[Alpha]] /. {x1 -> xI1, x2 -> xI2};

P(x, y) as above, discretized at the Simpson nodes:

MatrixPPolarInnerDiscr =
Discretize[MatrixPPolarInner[\[Alpha]],
\[Alpha]];

The vector H(x (i)):

HInner = IP[MatrixPPolarInnerDiscr,
ScriptPPolarDiscr];

The approximate solution u at (x (i)):

uxi = IntMatrixDpsi - HInner

8.20 Remark. The exact solution, computed—as mentioned at the beginning of this
section—from (7.36) with β = 0, ρ = z2, τ = z + 1, and l = m = 0, is

u(x1, x2) = (3x21 + x22 + 1, 2x1x2, −x31 − x1x22 + 5x1 − 1)T.

Figures8.1, 8.2, and 8.3 show the graphs of the three components u1, u2, and u3 of
this solution defined in S+. The discs on the top and bottom of the coordinate boxes
enclosing the graphs are horizontal cross sections of the cylinder x21 + x22 ≤ 1. The
boundary curves (shown in thicker lines) of the surfaces representing the ui are the
graphs of the components of u prescribed on αS; that is,

P(x1, x2) = (
2(x21 + 1), 2x1x2, 4x1 − 1

)T
, x ∈ αS.

http://dx.doi.org/10.1007/978-1-4471-6434-0_7
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Fig. 8.1 Graph of u1
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Hölder

continuity, 23
continuous differentiability, 37
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complex singular, 52
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singular, 22
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Kinematic assumption, 3
Kirchhoff, 2

theory, 154
Kronecker delta, 1

L
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Mean value theorem, 7
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Multiply connected domain
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Normal derivative, 22
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Operator

α-regular singular, 62
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P
Physical polar components, 161
Plate

bending, 2
potential

complex, 155
double-layer, 83
Newtonian, 78, 103
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with integrable density, 94
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with a circular hole, 160

Poincaré–Bertrand formula, 55
Poisson’s ratio, 68
Potential, 37

complex, 150
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Potential-type function, 44
Principal value, 31, 111

R
Regular solution

existence, 80
unique, 160
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Reissner, 2
theory, 154



Index 209
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Ricci tensor, 4
Rigid displacement, 71
Rigidity modulus, 2
Robin problems, 141

S
Semi-inverse method, 161
Simpson’s rule, 179
Sine theorem, 13
Single-valuedness conditions, 156
Singular integral equation, 58, 131

index, 64
Solution

Galerkin representation, 73
particular, 125
singular, 73

Somigliana representation formula, 76, 79
Standard inner product, 4
Step functions, 94
Stress

complex representation, 147

function, 148
internal, 1
vector, 1

T
Taylor series, 20
Tonelli’s theorem, 98
Transverse shear

deformation, 2
force, 2, 150, 162

averaged, 67

V
Vertical

rotation, 162
translation, 160

Y
Young’s modulus, 154
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