
Lecture Notes in Mathematics 2113

Daniel Scott Farley
Ivonne Johanna Ortiz

Algebraic 
K-theory of 
Crystallographic 
Groups
The Three-Dimensional Splitting Case



Lecture Notes in Mathematics 2113

Editors-in-Chief:
J.-M. Morel, Cachan
B. Teissier, Paris

Advisory Board:
Camillo De Lellis (Zürich)
Mario di Bernardo (Bristol)
Alessio Figalli (Austin)
Davar Khoshnevisan (Salt Lake City)
Ioannis Kontoyiannis (Athens)
Gabor Lugosi (Barcelona)
Mark Podolskij (Aarhus)
Sylvia Serfaty (Paris and NY)
Catharina Stroppel (Bonn)
Anna Wienhard (Heidelberg)

More information about this series at
http://www.springer.com/series/304

http://www.springer.com/series/304




Daniel Scott Farley • Ivonne Johanna Ortiz

Algebraic K-theory
of Crystallographic Groups
The Three-Dimensional Splitting Case

123



Daniel Scott Farley
Ivonne Johanna Ortiz
Department of Mathematics
Miami University
Oxford, OH, USA

ISBN 978-3-319-08152-6 ISBN 978-3-319-08153-3 (eBook)
DOI 10.1007/978-3-319-08153-3
Springer Cham Heidelberg New York Dordrecht London

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2014946579

Mathematics Subject Classification (2014): 20H15, 19B28, 19A31, 19D35

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


To the memory of Almir Alves (1965–2009)





Acknowledgments

The authors would like to thank Tom Farrell for originally suggesting this project to
us, and for his invaluable encouragement and support while it was being completed.
We are also grateful to Jean-François Lafont for his encouragement, many helpful
discussions, and for his comments on preliminary versions of this manuscript. The
graphics in this monograph were kindly produced by Dennis Burke.

This work is dedicated to the memory of Almir Alves. Pedro Ontaneda has
written a memorial essay describing Almir’s remarkable life. It can be found (at
the time of this writing) at:

www.math.binghamton.edu/dept/alves/pedro/Almir2.html

Almir grew up in poverty, attending school for the first time when he was 10 years
old. He was a lifelong fighter, who flourished through perseverance, and became a
Ph.D. mathematician with a gift for explaining complicated ideas in a simple way.
He is greatly missed by all of us.

Pedro Ontaneda informed us that Almir, a few days before his death, told him
that he knew how to prove the splitting formulas for K0 and K�1.

This project was supported in part by the NSF, under the second author’s grants
DMS-0805605 and DMS-1207712.

vii

www.math.binghamton.edu/dept/alves/pedro/Almir2.html




Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Three-Dimensional Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Classification of Orientation-Preserving Point Groups . . . . . . . . . . . . . . 11
2.3 Classification of Point Groups with Central Inversion . . . . . . . . . . . . . . . 15
2.4 Classification of the Remaining Point Groups and Summary . . . . . . . 15
2.5 Descriptions of Selected Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.1 The Orientation-Preserving Standard Point Groups . . . . . . . . . 17
2.5.2 The Standard Point Groups with Inversion. . . . . . . . . . . . . . . . . . . 18
2.5.3 The Remaining Standard Point Groups . . . . . . . . . . . . . . . . . . . . . . 18
2.5.4 Some Non-standard Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Arithmetic Classification of Pairs .L; H / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Definition of Arithmetic Equivalence and a Lemma . . . . . . . . . . . . . . . . . 23
3.2 Full Sublattices in Pairs .L;H/, Where H Contains .�1/ . . . . . . . . . . 24
3.3 Description of Possible Lattices L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Classification of Pairs .L;H/, Where .�1/ 2 H . . . . . . . . . . . . . . . . . . . . 32
3.5 The Classification of the Remaining Pairs .L;H/ . . . . . . . . . . . . . . . . . . . 36

4 The Split Three-Dimensional Crystallographic Groups . . . . . . . . . . . . . . . 41

5 A Splitting Formula for Lower Algebraic K -Theory . . . . . . . . . . . . . . . . . . . 45
5.1 A Construction of EFIN .� / for Crystallographic Groups . . . . . . . . . . 45
5.2 A Construction of EVC.� / for Crystallographic Groups. . . . . . . . . . . . 45
5.3 A Splitting Formula for the Lower Algebraic K-Theory . . . . . . . . . . . . 47

6 Fundamental Domains for the Maximal Groups. . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 A Special Case of Poincare’s Fundamental Polyhedron

Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Cell Structures and Stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2.1 Standard Cellulations and Equivariant Cell Structures . . . . . . 62
6.2.2 Computation of Cell Stabilizers and Negligible Groups . . . . 64

ix



x Contents

6.3 A Fundamental Polyhedron for �1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 A Fundamental Polyhedron for �2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 A Fundamental Polyhedron for �3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.6 A Fundamental Polyhedron for �4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.7 A Fundamental Polyhedron for �5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.8 A Fundamental Polyhedron for �6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.9 A Fundamental Polyhedron for �7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 The Homology Groups H �
n .EFIN.� /IKZ

�1/ . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1 The Algebraic K-Theory of Cell Stabilizers in EFIN .� / . . . . . . . . . . 82

7.1.1 The Lower Algebraic K-Theory of Z=4 � Z=2. . . . . . . . . . . . . . 83
7.1.2 The Lower Algebraic K-Theory of Z=6 � Z=2. . . . . . . . . . . . . . 84
7.1.3 The Lower Algebraic K-Theory of A4 � Z=2 . . . . . . . . . . . . . . . 87

7.2 The Homology of EFIN .� / . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.3 Calculations of H�

n .EFIN .� /IKZ
�1/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Fundamental Domains for Actions on Spaces of Planes . . . . . . . . . . . . . . . 99
8.1 Negligible Line Stabilizer Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2 The Finiteness of the Indexing Set T 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Cokernels of the Relative Assembly Maps forVC1 . . . . . . . . . . . . . . . . . . . 119
9.1 Passing to Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Reconstructing �` from � ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3 Cokernels of Relative Assembly Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3.1 The Lower Algebraic K-Theory of C4 � Z,
D4 � Z, and D6 � Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.3.2 The Lower Algebraic K-Theory of D2 Ì˛ Z . . . . . . . . . . . . . . . . 134
9.3.3 The Lower Algebraic K-Theory of D4 �C4 D4 . . . . . . . . . . . . . . 135
9.3.4 The Lower Algebraic K-Theory of C4 �D1 . . . . . . . . . . . . . . . 135
9.3.5 The Lower Algebraic K-Theory of D6 �D1 . . . . . . . . . . . . . . . 136

10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Chapter 1
Introduction

AlgebraicK-theory is a branch of algebra dealing with linear algebra over a general
ring R instead of a field. It associates to any ring R a sequence of abelian groups
Kn.R/. The first two of these groups, K0 and K1, are easy to describe in concrete
terms. For instance, a finitely generated projective R-module defines an element of
K0.R/, and an invertible matrix over R has a “determinant” in K1.R/. The entire
sequence of groups Kn.R/ behaves something like a homology theory of rings.

Algebraic K-theory plays an important role in many areas of mathematics,
especially number theory, algebraic topology, and algebraic geometry. In particular,
the class group of a number field F is essentially K0.R/, where R is the ring
of algebraic integers in F , and “Whitehead torsion” in topology is an element of
K1.Z�/, where � is the fundamental group of the space being studied. The K-
theory of group rings is computable via algebraic number theory when the group is
finite and it is understood to some extent. It has been computed for many classes of
torsion-free groups (see, for example, [Bas64,FH81,FH73,FJ87,Pl80] and [Wal78]).
Results in the case of infinite groups with torsion include work of:

• Bass and Murthy on finitely generated groups [BM67],
• Bürgisser on arithmetic groups [B83],
• Connolly and Koźniewski [CK90], Pearson [P98] and Tsapogas [T95] on

crystallographic groups,
• Farrell and Hsiang [FH70] and Farrell and Jones [FJ95] on virtually cyclic

groups,
• Lück and Stamm on cocompact planar groups [LS00],
• Berkove, Farrell, Juan-Pineda, and Pearson on Bianchi groups [BFJ-PP00],
• Berkove, Juan-Pineda, and Pearson on Fuchsian groups [BJ-PP01],
• Berkove, Juan-Pineda, and Lu on mapping class groups [BJ-PL04],
• Lück on a certain finite extension of the Heisenberg group [L05],
• Lafont and Ortiz on hyperbolic three-simplex reflection groups [LO09], and
• Lafont, Magurn, and Ortiz on hyperbolic reflection groups [LMO10].

© Springer International Publishing Switzerland 2014
D.S. Farley, I.J. Ortiz, Algebraic K-theory of Crystallographic Groups, Lecture Notes
in Mathematics 2113, DOI 10.1007/978-3-319-08153-3__1
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2 1 Introduction

The goal of this monograph is to compute the lower algebraic K-theory of the
split three-dimensional crystallographic groups; i.e., the groups � � Isom.R3/ that
fit into a split short exact sequence

1! L! � ! H ! 1;

where L is a discrete cocompact additive subgroup of R3 (i.e., a lattice in R
3), H

is a finite subgroup of the orthogonal group O.3/, and the map � ! H sends
an isometry � 2 � to its linear part. It is well known that every crystallographic
group fits into a similar short exact sequence, although the sequence does not split
in general. Note also that a group � might admit another type of splitting without
being a split crystallographic group in our sense. One such example is the Klein
bottle group, a two-dimensional crystallographic group that factors as Z Ì Z, but
admits no factorization of the above form since it is torsion-free. There are 73
split three-dimensional crystallographic groups up to isomorphism, representing
a third of the 219 isomorphism classes of three-dimensional crystallographic
groups in all. The split crystallographic groups are also called splitting groups,
since every n-dimensional crystallographic group embeds in a split n-dimensional
crystallographic group (its splitting group) as a subgroup of finite index (see [Ra94,
pp. 312–313]). Thus, the 73 split three-dimensional crystallographic groups contain
the remaining three-dimensional crystallographic groups as subgroups of finite
index.

Our computation of theK-groups uses the fundamental work of Farrell and Jones
[FJ93], who established an isomorphism

W hn.� / Š H�
n .EVC.� /IKZ

�1/;

where EVC.� / is a model for the classifying space of � with isotropy in the family
of virtually cyclic subgroups, and � is a cocompact discrete subgroup of a virtually
connected Lie group. In particular, their work applies to crystallographic groups of
all dimensions.

The first computations of the lower algebraic K-theory of crystallographic
groups were made by Kimberly Pearson [P98], who completely handled the two-
dimensional case. Alves and Ontaneda [AO06] derived the following general
formula for the Whitehead group of a three-dimensional crystallographic group:

W h.� / Š
M

G2I
W h.G/;

where I is the set of conjugacy classes of maximal infinite virtually cyclic
subgroups. They also prove that the above direct sum is finite.

In this monograph, we will extend the results of [AO06] in two directions: first,
we will derive similar general formulas forK�1.Z� /, QK0.Z� /, andW h.� /, where
� is an arbitrary (not necessarily split) three-dimensional crystallographic group.
These general results are presented in Chap. 5, which is largely self-contained. The
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main result is Theorem 5.1, a splitting formula for the lower algebraic K-theory of
three-dimensional crystallographic groups:

W hn.� / Š H�
n .EFIN .� /IKZ

�1/˚
M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/:

The indexing set T 00 consists of a selection of one line from each � -orbit of lines,
and may be taken to be finite, since the groups in question are trivial in all but
finitely many cases. In the case n D 1, the first summand in the above formula
vanishes, and the second summand can be identified with the right side of the
formula from [AO06] (above). The second goal is to make explicit calculations of
the lower algebraicK-groups of the split three-dimensional crystallographic groups;
that is, to describe completely the isomorphism types of K�1.Z� /, QK0.Z� /, and
W h.� / as abelian groups. In order to do this, it is necessary to identify the split
three-dimensional crystallographic groups as explicitly as possible. We do this by
specifying all possible pairings .L;H/ (up to a certain type of equivalence), where
L and H are as above, and the action of H (a subgroup of O.3/) on L is the
obvious one. Our work in classifying these groups is contained in Chaps. 2–4; the
results are summarized in Table 4.1. Chapters 6–9 contain parallel computations, for
all 73 of the split three-dimensional crystallographic groups, of the first and second
summands from the splitting formula; Chaps. 6 and 7 describe the first summand,
and Chaps. 8 and 9 describe the second summand. In Chap. 10, we summarize the
results of the calculations in Table 10.1, and give a pair of examples illustrating how
to assemble the various pieces of the calculation from the preceding chapters.

Now let us give a more detailed, chapter-by-chapter description of this work.
Chapters 2–4 give a complete classification of the split three-dimensional

crystallographic groups. The presentation is almost entirely self-contained, assumes
no prior knowledge of crystallographic groups, and indeed involves little more than
basic group theory and linear algebra.

Chapter 2 describes the classification of three-dimensional point groups (point
groups hereafter), which are the subgroups of O.3/ that leave a lattice L � R

3

invariant. Our treatment here is standard for the most part, and the basic elements
of our classification can be found in Chap. 4 of [Sc80] (although we assume no
prior familiarity with that source). One difference is that we need to find explicit
groups of matrices for our computations in later chapters, so we give a more detailed
classification than any that we were able to find in the literature. We begin our
analysis by proving that point groups are finite, and satisfy the crystallographic
restriction [Sc80, p. 32]: every element of a point group has order 1, 2, 3, 4, or 6. The
next step is to classify the orientation-preserving point groupsH . The classification
heavily exploits the fact that every h 2 H is a rotation about an axis (which
we call a pole, following [Sc80]). Using a counting argument (Proposition 2.1;
see also [Sc80, p. 45]), one can enumerate all of the possible numbers of orbits
of poles, and determine the possible orders of the elements h that act on a given
pole (Proposition 2.2; also [Sc80, pp. 46–49]). It turns out that the latter numerical
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information completely determines the orientation-preserving point group H up to
conjugacy within O.3/; we carefully argue a particular case of this fact in our proof
of Theorem 2.1, which gives simple descriptions of the orientation-preserving point
groups. There are 11 in all. It is then straightforward to classify the remaining point
groups. If a point groupH contains the antipodal map .�1/, then it can be expressed
as hHC; .�1/i, where HC is the orientation-preserving subgroup; thus there are
also 11 point groups that contain .�1/ (Theorem 2.2). The remaining point groups
(which are not subgroups of SO.3/, but also do not contain the inversion .�1/) are
all necessarily subgroups of index 2 inside of the 11 point groups containing the
inversion, and may therefore be recovered as kernels of surjective homomorphisms
� W H ! Z=2, where H contains the inversion .�1/. This scheme of classification
is carried out in Sect. 2.4; there are 10 additional groups of this last type, making
32 in all. The chapter concludes with an attempt at an intuitive description of the
“standard point groups”, which are simply the preferred forms (up to conjugacy)
of the point groups that are used throughout the rest of the monograph. (We also
describe a few non-standard point groups that arise naturally in our arguments.) The
standard point groups are described by their generators in Figs. 2.1 and 2.2.

Chapter 3 contains a detailed classification of the possible arithmetic equivalence
classes (Definition 3.1, which is taken from [Sc80, p. 34]) of pairs .L;H/, where
L is a lattice and H is a point group such that H � L D L. We will eventually
show (Theorem 4.1) that an arithmetic equivalence class uniquely determines a
split crystallographic group up to isomorphism, so Chap. 3 contains the heart of
the classification of split crystallographic groups. Our general approach to the
classification of the pairs .L;H/ is as follows. We begin with a standard point
group H ; for the sake of illustration, let us assume that H D SC

4 � .�1/, the
group of all signed permutation matrices. We can then deduce certain facts about
the lattice L. For instance, H contains rotations about the coordinate axes, so
an elementary argument (Lemma 3.1(1)) shows that there are lattice points on
each of the coordinate axes. Moreover, since H acts transitively on the coordinate
axes, the lattice points on the coordinate axes having minimal norm must all have
the same norm, which we can assume is 1 up to arithmetic equivalence (which
permits rescaling of the lattice L). It follows directly that Z

3 � L, and that
c.1; 0; 0/, c.0; 1; 0/, and c.0; 0; 1/ are not in L if 0 < c < 1. (This conclusion
is recorded in Proposition 3.1(3), but in somewhat different language.) From here, it
is straightforward to argue that there are only three possibilities for the lattice L—
see Lemma 3.2 and Corollary 3.1. It is then possible to show that all three of these
possible lattices result in different arithmetic classes of pairs .L;H/ (Theorem 3.2).
The arguments in all of Chap. 3 follow the same pattern: for a fixed standard point
group H , we attempt to “build” L using properties of H , as in the above example.
We are able to show that L can always be chosen from a list of only seven lattices,
which are described by generating sets in Corollaries 3.1 and 3.2. The arguments
from Chap. 3, while elementary, are significantly more detailed than what can be
found in [Sc80]. We arrive at a total of 73 arithmetic classes, which agrees with the
count from [Sc80, p. 34].
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Chapter 4 contains the crucial Theorem 4.1, which shows that the arithmetic
classes of pairs .L;H/ are in exact correspondence with the isomorphism classes
of split crystallographic groups. In the proof, we appeal to Ratcliffe [Ra94], which
is the only place where the argument of Chaps. 2–4 fails to be self-contained. The
split three-dimensional crystallographic groups are classified up to isomorphism
in Table 4.1. One interesting feature of our classification is that all 73 groups are
contained in 7 basic maximal groups as subgroups of finite index. This fact will be
heavily used in later chapters. We denote these maximal groups �i (i D 1; : : : ; 7).

Chapter 5 contains a proof of the main splitting result, Theorem 5.1. This chapter
is independent of the previous ones, and the main results apply generally, to all three-
dimensional crystallographic groups, not just to the split ones. We begin by giving
an explicit description of a model for EVC.� /, for any crystallographic group �
(our construction comes from [Fa10]). Begin with a copy of R3, suitably cellulated
to make it a � -CW complex. This is a model for EFIN.� /. For each ` 2 L � R

3

that generates a maximal cyclic subgroup of L, we define a “space of lines” R
2
`,

consisting of the set of all lines Ò � R
3 having ` as a tangent vector. Each space

R
2
` is isometric to R

2 with respect to a suitable metric (see Sect. 5.2). The space
R
3 � `h`i R2` is a model for EVC.� / (Proposition 5.2). The general form of this

classifying space allows us to deduce a preliminary splitting result (Proposition 5.4):

H�
n .EVC.� /IKZ

�1/

Š H�
n .EFIN .� /IKZ

�1/˚
M

h`i2T
H�.`/
n .EFIN .� .`//

! EVC
h`i
.� .`//IKZ

�1//:

Here � .`/ is the (finite index) subgroup of � that takes the line ` to a line parallel to
` (possibly reversing the direction), andVCh`i is the family of subgroups consisting
of: (a) finite subgroups of � .`/ and (b) virtually cyclic subgroups of � .`/ that
contain a translation Q̀ 2 L parallel to `. The indexing set T consists of a single
choice of maximal cyclic subgroup h`i � L from each H -orbit.

The next step is to compute the sum of cokernels on the right side of the formula
above. We are thus led to consider the classifying space EVC

h`i
.� .`//; we use the

model R3 � R
2
`. By making a detailed analysis of the possible cell stabilizers in

EVC
h`i
.� .`// (Lemma 5.2 and Corollary 5.1), we are able to conclude that the great

majority of these stabilizers are “negligible”. Here the class of negligible groups
is carefully chosen so that W hn.G/ Š 0 when G is negligible and n � 1, and
so that the property of being negligible is closed under passage to subgroups. (See
Definition 5.3 and Lemma 5.1.) As a result, we are able to argue (Propositions 5.5
and 5.6) that the only cells from the classifying space EVC

h`i
.� .`// that make a

contribution to the cokernels for n � 1 come from a subcomplex E that is a disjoint
union
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E D
a

Ò
EVC.� Ò/:

The general splitting formula (Theorem 5.1) now follows readily from Proposi-
tion 5.4.

The remainder of the monograph uses Theorem 5.1 and the Farrell-Jones
isomorphism to compute the lower algebraic K-theory of the split crystallographic
groups. It now suffices to make separate computations of

H�
n .EFIN .� /IKZ

�1/ and
M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/;

where the latter sum is indexed over a choice from each � -orbit of a line Ò 2`
h`i R2` with non-negligible stabilizer.
Our task in Chap. 6 is to describe explicit � -CW structures on R

3, where
� ranges over the groups �i (i D 1; : : : ; 7). This involves using Poincaré’s
Fundamental Polyhedron Theorem (Theorem 6.1, adapted from [Ra94, p. 711]) to
produce a fundamental domain for the action of each �i , which leads to the desired
� -equivariant cellulation (Theorem 6.2). We consider each group �i in great detail,
producing the desired cellulation and recording the non-negligible cell stabilizers
(Theorems 6.3–6.9).

In Chap. 7, we computeH�
n .EFIN .� /IKZ

�1/, for all 73 split crystallographic
groups � . The chapter begins by summarizing the isomorphism types of the groups
W hn.G/, where n � 1 and G is a finite subgroup of a crystallographic group (see
Table 7.1). Most of the groups W hn.G/ were known before (the reference [LO09]
collects the previously known results), but for three groups (Z=4�Z=2, Z=6�Z=2,
andA4�Z=2) we make original calculations ofW hn.G/ (n � 0). These calculations
are contained in Sects. 7.1.1, 7.1.2, and 7.1.3, respectively. Once we have understood
the above groups W hn.G/ (n � 1), we are ready to use a spectral sequence due to
Quinn [Qu82] to compute the groups H�

n .EFIN .� /IKZ
�1/. The main additional

ingredient that we will need is information about the cell stabilizers in a model for
EFIN .� /, where � is any of the 73 split crystallographic groups. It is here that we
use the fact that each split crystallographic group � is a finite index subgroup of
some �i , where i 2 f1; : : : ; 7g. The model for EFIN .�i / (which was explicitly
described in Chap. 6) is also naturally a model for EFIN .� /; it is necessary
only to recompute the cell stabilizer information for the action of the smaller
group. This is done using a simple procedure (Procedure 7.1) and the resulting
cell stabilizer information is recorded in Tables 7.2, 7.3, 7.4, 7.5, and 7.6. From
here, it is usually straightforward to compute H�

n .EFIN .� /IKZ
�1/: in almost

all cases, the vertices make the only contribution to the calculation, so the group
in question is a direct sum of K-groups of the vertex stabilizers. (A more precise
statement is given in Lemma 7.1.) We can therefore obtain a computation simply
by referring to the relevant tables. There are five more difficult cases, in which
there is a non-trivial contribution from the edges. We make detailed calculations
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of H�
n .EFIN .� /IKZ

�1/ in each of these cases; the calculations are contained in
Examples 7.4–7.8. Examples 7.6 and 7.8 are especially notable, since they provide
the first examples of infinite groups with torsion such that QK0.Z� / has elements of
infinite order. The calculations of Chap. 7 are summarized in Table 7.8.

The final step is to compute the second summand from Theorem 5.1. This is done
in Chaps. 8 and 9, which are organized like Chaps. 6 and 7. In Chap. 8, we must
consider the action of each group �i (i D 1; : : : ; 7) on the associated space of lines`

h`i R2`, which (up to isometry) is a countably infinite disjoint union of planes. We
are able to show that, for each �i (i D 1; : : : ; 5), only two or three of these planes
make a contribution toK-theory, and that no plane makes a contribution toK-theory
when i D 6 or 7 (Proposition 8.3). It therefore becomes feasible to determine the
required actions and their fundamental domains; this is done in Theorems 8.1–8.5,
where we also compute (one possible choice of) the indexing set T 00 explicitly, for
all of the groups �i , i D 1; : : : ; 5. We describe each of the lines Ò 2 T 00 by an
explicit parametrization, and compute the strict stabilizer group � Ò D f� 2 � j
�j Ò D id Òg, where � is any of the groups �i , i D 1; : : : ; 5.

In the beginning of Chap. 9, we describe how to compute the indexing sets
T 00 and the strict stabilizers of lines Ò 2 T 00 for all of the split crystallographic
groups � . This involves a simple procedure (Procedure 9.1) that computes T 00
and the strict stabilizers of lines Ò 2 T 00 for a group � 0, provided that the latter
information is already known for a larger group � such that Œ� W � 0� < 1.
Procedure 9.1 is directly analogous to Procedure 7.1, and similarly exploits the fact
that every split crystallographic group sits inside of one of the �i , i D 1; : : : ; 7.
The strict stabilizer information and T 00 is recorded in Tables 9.1, 9.2, 9.3, 9.4,
and 9.5. (In particular, it follows from our calculations that T 00 is always finite, as
we claimed above.) We then describe a procedure (Procedure 9.2) that computes
the stabilizer of a line, provided that its strict stabilizer is given to us. Using this
procedure, we compute the stabilizers of all of the lines in T 00 (for arbitrary � );
the results are summarized in Tables 9.6, 9.7, 9.8, 9.9, and 9.10. It is then enough
to determine the isomorphism types of the relevant cokernels from Theorem 5.1;
these are summarized in Table 9.11. (We note also that Sect. 9.3 contains original
computations of a few of the cokernels from Table 9.11.) By the end of Chap. 9,
we have completely reduced the problem of computing the second summand from
Theorem 5.1 to a matter of consulting the relevant tables.

Chapter 10 contains Table 10.1, a complete summary of the isomorphism types
of the lower algebraic K-groups of the split crystallographic groups � . (A group is
omitted from the table if all of its K-groups are trivial.) Chapter 10 also contains a
few examples, which are intended to help the reader to assemble the calculations in
this work.

It is natural to ask if our arguments can be generalized to other classes of
crystallographic groups. The first class to consider is that of the remaining three-
dimensional crystallographic groups—there are 146 more up to isomorphism. We
expect that all of our basic arguments will still be applicable. The splitting formula
(Theorem 5.1) applies to all three-dimensional crystallographic groups (as we have
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argued in Chap. 5). Moreover, each three-dimensional crystallographic group sits
inside of one of the �i (i D 1; : : : ; 7) as a subgroup of finite index, so some
procedure for passing to subgroups of finite index should still work. It seems likely
that the classification itself, and the sheer number of cases, will be the biggest
obstacles to a complete calculation of the lower algebraic K-theory for all 219
three-dimensional crystallographic groups. The authors intend to complete such a
calculation in later work.

The obstacles to extending our arguments to dimension four seem much more
substantial. Aside from the greater difficulty of classifying four-dimensional crys-
tallographic groups (and the large number of such groups), it seems that some
basic features of our approach are likely to fail. For instance, the splitting formula
in Theorem 5.1 depends on having a large number of negligible cell stabilizers,
which in turn depends heavily on the low codimension of cells in R

3 and R
2
`

(see, especially, Lemma 5.2 and Corollary 5.1). It is therefore not clear whether
an analogous formula can be proved in dimension four. In any event, higher-
dimensional cells should make more contributions to the calculations in dimension
four, which will make these calculations much more complicated.



Chapter 2
Three-Dimensional Point Groups

In this chapter, we give a complete classification of the 32 three-dimensional point
groups. Our treatment is self-contained, but the principles of the classification come
from [Sc80, Chap. 4]. Our goal is to describe the point groups as explicit groups of
matrices.

2.1 Preliminaries

Definition 2.1. A lattice in R
n is a discrete, cocompact subgroup of the additive

group R
n.

We say that H � O.n/ is a point group (of dimension n) if there is a lattice
L � R

n such that H leaves L invariant, i.e., H �L D L. Here we will be interested
only in the case n D 3, so “point group” will refer to a three-dimensional point
group, and “lattice” will mean a lattice in R

3.

Our first goal is to classify the point groups. We will prove some preliminary
facts in this section, and complete the classification in Sect. 2.4.

First, we set some conventions. If ` is a line defined by a system S of equations,
we sometimes denote this line `.S/. For instance, `.y D z D 0/ denotes the x-axis.
Similarly, if a plane P is defined by the equationE, we sometimes denote this plane
P.E/. For instance, P.z D 0/ denotes the xy-plane.

Lemma 2.1. Let H be a point group.

1. jH j <1;
2. Any h 2 H leaves some line ` invariant: h � ` D `. If h ¤ 1 is orientation-

preserving, then h fixes a unique line `, and acts as a rotation about this line.
3. (The Crystallographic Restriction) If h 2 H , then jhj 2 f1; 2; 3; 4; 6g.
4. Let ` � R

3 be a one-dimensional subspace. The groupHC
` D fh 2 H \SO.3/ j

hj` D id`g is a cyclic group of rotations about the axis `, of order 1, 2, 3, 4, or 6.

© Springer International Publishing Switzerland 2014
D.S. Farley, I.J. Ortiz, Algebraic K-theory of Crystallographic Groups, Lecture Notes
in Mathematics 2113, DOI 10.1007/978-3-319-08153-3__2
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Proof. 1. Choose an element v 2 L � f0g. Since L is discrete, H � O.3/, and
H �L D L, there can be at most finitely many translates of v under the action of
H . It follows that the stabilizer group Hv satisfies ŒH W Hv� <1.

We next choose some v1 2 L such that fv; v1g is a linearly independent set,
and conclude by the same reasoning that ŒHv;Hfv;v1g� <1, where Hfv;v1g is the
subgroup of H that fixes both v and v1.

It follows that Hfv;v1g has finite index in H . But clearly Hfv;v1g has order at
most 2 (since it acts orthogonally on R

3 and fixes a plane), so H itself must be
finite.

2. Let h 2 SO.3/. It follows from basic linear algebra that 1 is an eigenvalue of
h, so h fixes a non-trivial subspace. If h fixed a subspace of dimension greater
than or equal to 2, then h would necessarily be the identity since h 2 SO.3/. The
second statement follows, since h must act in an orientation-preserving fashion
on the plane perpendicular to `, which means that it is a rotation in this plane.

The first statement follows easily from the second one, since any h 2 O.3/ �
SO.3/ can be expressed as h D .�1/ Oh where .�1/ 2 O.3/ is the antipodal map
and Oh is orientation-preserving.

3. It is sufficient to prove the statement for the case in which h 2 SO.3/�f1g, since
any Nh 2 O.3/�SO.3/ can be expressed as a product of an orientation-preserving
element and the antipodal map .�1/. By (2), h fixes a line, which we can assume
is the z-axis.

Let L be a lattice that is invariant under the action of H on R
3. We claim that

the xy-plane contains a non-zero vector v 2 L. Let v1 2 L � `.x D y D 0/.
The vector v1 � hv1 is non-zero and lies in the xy-plane, proving the claim. Now
suppose that v2 is the smallest vector in L \ P.z D 0/; we can assume that
jjv2jj D 1.

We consider the set fv2; hv2; : : : ; hn�1v2g, where jhj D n. No two of the
elements in this set are equal, and any two hi � v2, hj � v2, .i ¤ j / must satisfy

jjhi � v2 � hj � v2jj � 1;

by the minimality of the norm of v2. Moreover,

fv2; : : : ; hn�1v2g � f.x; y; 0/ j x2 C y2 D 1g:

Thus, we have n points arranged on the unit circle in such a way that no two are
closer than 1 unit. It follows easily from this that n � 6, since the circumference
of the circle is 2� .

We now rule out the case jhj D 5. If jhj D 5, then h is rotation about the
z-axis through 2�=5 radians. One checks that

jjv2 C h2 � v2jj D 2 cos

�
2�

5

�
< 1:
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This is a contradiction.
4. This is a straightforward observation based on (2) and (3).

2.2 Classification of Orientation-Preserving Point Groups

Now we turn to the classification of point groups, based on [Sc80]. We would like
to point out that Propositions 2.1 and 2.2, and Definition 2.2, are based on [Sc80,
pp. 45–48]. Our contribution here is to describe the point groups explicitly in terms
of generating sets.

Definition 2.2. Let H � SO.3/ be a non-trivial point group, and let h 2 H � f1g.
If ` is a one-dimensional subspace of R3 that is fixed by h, then we say that ` is a
pole of h. We also say that ` is a pole of H .

SupposeH � SO.3/ is a non-trivial point group. Lemma 2.1(2) implies that each
� 2 H � f1g has a unique pole. We let L be the set of all poles of H . This set must
be finite by Lemma 2.1(1) and (2). For each ` 2 L, choose unit vectors vC

` ; v
�̀ 2 `

(vC
` ¤ v�̀). LetLC D fvC

` j ` 2 Lg andL� D fv�̀ j ` 2 Lg. It is not difficult to see
thatH acts on the setL (and, thus, on the setLC[L�). We will sometimes call the
elements ofLC[L� pole vectors. We let T denote a choice of orbit representatives
of LC [ L� under this action. Finally, we let Hv D fh 2 H j hv D vg, and let
OH.v/ be the orbit of v under the action of H .

Proposition 2.1. Let H � SO.3/ be a non-trivial point group.

2 � 2

jH j D
X

v2T

�
1 � 1

jHvj
�
:

Proof. First, we note that

1. jH j � 1C jLCj D
X

vC2LC

jHvC j

2. jH j � 1C jL�j D
X

v�2L�

jHv� j

The proofs that (1) and (2) hold are identical. Formula (1) follows directly from the
observations that HvC

1
\HvC

2
D f1g if vC

1 ¤ vC
2 , and that H is the union of the Hv

as v ranges over LC (Lemma 2.1(2)). Thus, every element of H is counted exactly
once on the right side of (1), except for the identity, which is counted jLCj times.

It follows from (1) and (2) that

2jH j � 2 D
X

v2LC[L�

.jHvj � 1/) 2 � 2

jH j D
X

v2LC[L�

� jHvj
jH j �

1

jH j
�
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) 2 � 2

jH j D
X

v2T

�
1 � jOH.v/jjH j

�

) 2 � 2

jH j D
X

v2T

�
1 � 1

jHvj
�
:

Proposition 2.2. Let 1 ¤ H � SO.3/ be a point group. The number jT j of orbits
under the action of H on LC [ L� is either 2 or 3. If jT j D 2, then H leaves
a line invariant, and is therefore a cyclic group of rotations. Its order must be 2,
3, 4, or 6. If jT j D 3, then let v1, v2, v3 be orbit representatives chosen so that
jHv1 j � jHv2 j � jHv3 j. We let ˛ D jHv1 j, ˇ D jHv2 j, and � D jHv3 j. The only
possibilities for the triple .˛; ˇ; �/ and the order of H are as follows:

1. .2; 2; n/ (n 2 f2; 3; 4; 6g), and jH j D 2n;
2. .2; 3; 3/, and jH j D 12;
3. .2; 3; 4/, and jH j D 24.

Proof. Suppose that jT j D 1. Proposition 2.1 implies that

2 � 2

jH j D 1 �
1

jHvj :

This has no solutions, since the left side will always be at least 1, and the right side
is less than 1. Thus, jT j is never equal to 1.

Suppose that jT j D 2. Let T D fv1; v2g. By the previous Proposition

2 � 2

jH j D 2 �
1

jHv1 j
� 1

jHv2 j
) jH j
jHv1 j

C jH jjHv2 j
D 2

) jO.v1/j C jO.v2/j D 2:

It follows that jO.v1/j D jO.v2/j D 1, so v1 and v2 are both fixed by all of H . If v1
and v2 formed a linearly independent set, it would follow that H D 1 (since every
element of H would then act as the identity on the plane spanned by v1, v2). We
have ruled this out by our hypothesis. The only possibility is that v1 and v2 are in the
same one-dimensional subspace. The rest of the picture is now clear: every element
of H is a rotation about the axis determined by v1 and v2. The conclusion follows.

Suppose that jT j D 3. Let T D fv1; v2; v3g. We suppose that v1, v2, v3 are chosen
as in the statement of the proposition. We apply Proposition 2.1:

2 � 2

jH j D 3 �
1

˛
� 1
ˇ
� 1
�
) 1

˛
C 1

ˇ
C 1

�
D 1C 2

jH j :

We are therefore led to consider solutions .˛; ˇ; �/ of the inequality:

1

˛
C 1

ˇ
C 1

�
> 1;
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Fig. 2.1 Orientation-preserving point groups

where 1 < ˛ � ˇ � � . The only such solutions are: (i) .2; 2; n/ (n arbitrary),
(ii) .2; 3; 3/, (iii) .2; 3; 4/, and (iv) .2; 3; 5/. If we keep in mind that each integer in
these 3-tuples is jHvj, for some v 2 R

3, where H � SO.3/ is a point group, then
we see that each represents the order of a cyclic subgroup of H . It follows from the
crystallographic restriction that we can ignore the solution .2; 3; 5/ and all solutions
.2; 2; n/ where n 62 f1; 2; 3; 4; 6g. This leads us to the solutions described in (1)–(3)
in the statement of the proposition.

Suppose that jT j � 4. We consider the equation from the statement of
Proposition 2.1. Note that each term in the sum on the right is at least 1=2, since
jHvj � 2. It follows that the right side is at least 2. The left side is clearly less than
2, so it is impossible that jT j � 4. This completes the proof.

Theorem 2.1 (Classification of Orientation-Preserving Point Groups). Suppose
that H � SO.3/ acts on a lattice L in R

3. The group H is conjugate within O.3/
to one of the groups in Fig. 2.1.

Proof. We will show that the triple .2; 3; 4/ from Proposition 2.2 uniquely deter-
mines the group SC

4 up to conjugacy within O.3/.
Suppose that H � SO.3/ is a point group, T D fv1; v2; v3g, jHv1 j D 2, jHv2 j D

3, and jHv3 j D 4. Proposition 2.2 says that jH j D 24. It follows that jOH.v3/j D 6.
By Lemma 2.1(4), the groups Hvi are cyclic, for i D 1; 2; 3. Let h 2 Hv3 be a

generator ofHv3 , i.e., hhi D Hv3 , and jhj D 4. We consider the action of h on the set
OH.v3/. Certainly h fixes v3 (by definition) and h can fix at most one other vector in
LC[L�, namely �v3 (for, otherwise, h would fix a 2-element linearly independent
set, and would necessarily be the identity, since h 2 SO.3/). It follows that h acts
on OH.v3/� fv3g with at most one fixed point. After considering the possible cycle
types in the latter action, we easily conclude that h must be a 4-cycle. Therefore h
must have another fixed point in OH.v3/� fv3g, and this fixed point must be �v3. It
follows, in particular, that �v3 2 OH.v3/.



14 2 Three-Dimensional Point Groups

Let OH.v3/ D fv3;�v3; v4; hv4; h2v4; h3v4g (without loss of generality). Since
OH.v3/ is H -invariant, we have

v3 � v3 C v4 C hv4 C h2v4 C h3v4 D .1C hC h2 C h3/v4 D 0;

for otherwise the sum on the left would be a non-zero vector that is held invariant
by all of H , and this would force H to be cyclic, by Lemma 2.1(4). The group H
is, however, not cyclic by the crystallographic restriction (Lemma 2.1(2)). Now

0 D v3 �.1ChCh2Ch3/v4 D v3 �v4Chv3 �hv4Ch2v3 �h2v4Ch3v3 �h3v4 D 4.v3 �v4/:

It follows that v3 is perpendicular to v4; hv4; h2v4; h3v4.
We can repeat the above argument for each element of OH.v3/ to conclude that

for any v 2 OH.v3/: i) �v 2 OH.v3/, and ii) v ? Ov for any Ov 2 OH.v3/ � fv;�vg.
Now choose h1 2 Hv2 such that hh1i D Hv2 (and so jh1j D 3). We consider the

action of h1 on OH.v3/. We claim that the cycle type of h1 as a permutation can only
be .���/.���/. Indeed, if any power n of h1 fixes Qv 2 OH.v3/, then the vectors v2
and Qv are linearly independent, and therefore span a plane that is fixed by hn1 . Since
hn1 is also orientation-preserving, we must have hn1 D 1. Thus the action of hh1i on
OH.v3/ is free, from which the claim easily follows.

We consider the set B D fv3; h1v3; h21v3g. It is easy to check that B \ �B D ;,
since the assumption B \ �B ¤ ; quickly forces h1 to have the wrong cycle type.
It follows that B is an orthonormal basis for R3. The element h1 has the matrix

�
0 0 1
1 0 0
0 1 0

�

with respect to the ordered basis Œv3; h1v3; h21v3�.
We return to the element h, which permutes B [ �B D OH.v3/. Since jhj D 4,

and hv3 D v3, we must have

h D
�
1 0 0
0 0 �1
0 ˙1 0

�
:

It is now clear that the change of basis matrix sending x to v3, y to h1v3, and z to
h21v3 is orthogonal and conjugates hh; h1i to SC

4 (as described in Fig. 2.1). Since
jH j D 24, the equality H D hh; h1i is forced. Moreover, it is not difficult to argue
that the matrices in the statement of the theorem generate a group isomorphic to S4.
One possible approach is to examine the action of the group on the diagonals of the
cube Œ�1; 1�3.

We have now argued that the 3-tuple .2; 3; 4/ from Proposition 2.2 determines
the group SC

4 uniquely up to conjugacy. One can argue that the cardinality of T , the
order of H , and the 3-tuple .˛; ˇ; �/ (if applicable) always determine the group H
in the remaining cases as well. (There are eleven cases in all, including the one above
and the case of the trivial group.) We omit the details, but note that the triple .2; 2; n/
(for n D 2; 3; 4; 6) determines DC

n , and .2; 3; 3/ determines AC
4 , while the various
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cyclic groups of rotations from the statement of Proposition 2.2 are accounted for
by the groups CC

n , for n D 1; 2; 3; 4; 6.

2.3 Classification of Point Groups with Central Inversion

Suppose H � O.3/ is a point group, and H contains the central inversion .�1/
(i.e., the antipodal map). Let HC be the orientation-preserving subgroup of H . We
note that ŒH W HC� D 2, and H D hHC; .�1/i. The following observation has an
obvious proof:

Proposition 2.3. Let H1, H2 be point groups containing .�1/. The groups H1, H2

are conjugate in O.3/ if and only if HC
1 and HC

2 are conjugate in O.3/. ut
Theorem 2.2. Let H be a point group containing the central inversion .�1/. The
group H is conjugate to one of the eleven groups hHC; .�1/i, where HC is one of
the orientation-preserving point groups from Theorem 2.1.

Proof. This follows easily from Proposition 2.3 and Theorem 2.1.

2.4 Classification of the Remaining Point Groups
and Summary

Let H � O.3/ be a point group such that: (a) H 6� SO.3/, and (b) .�1/ 62 H .
Consider the group OH D hH; .�1/i. This group contains the central inversion .�1/,
so it is conjugate to one of the eleven from the previous section. (Note that L is
closed under additive inverses, so the group hH; .�1/i is still a point group.) We
note that Œ OH W H� D 2, so H E OH , and therefore it is the kernel of some surjective
homomorphism � W h OHC; .�1/i ! Z=2Z, where OHC denotes the orientation-
preserving subgroup of OH . Thus, to find all possibilities for H up to conjugacy, we
can examine the kernels of all such homomorphisms � as h OHC; .�1/i ranges over
all eleven possibilities. We need only consider homomorphisms � W h OHC; .�1/i !
Z=2Z such that: (a) �..�1// D 1, and (b) �. OHC/ 6� ker �.

Lemma 2.2. Let G be a group generated by the set S , and let .�1/ be a central
element of order two in G. Let � W G ! Z=2Z be a homomorphism satisfying
�..�1// D 1. The kernel of � is generated by

fs 2 S j �.s/ D 0g [ f.�1/s 2 S j �.s/ D 1g:

Proof. Let g be in the kernel of �. Since S is a generating set for G, we must have
g D s1 : : : sk , for appropriate si 2 S [ S�1. Let S0 D fs 2 S [ S�1 j �.s/ D 0g
and S1 D fs 2 S [ S�1 j �.s/ D 1g. Since g is in the kernel of �, it must be that
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Fig. 2.2 The remaining point groups

elements of S1 occur an even number of times in the string s1 : : : sk . We can replace
each such element si with .�1/si without changing the product of the string.

Theorem 2.3. Let H � O.3/ � SO.3/ be a point group such that .�1/ 62 H . The
group H is conjugate within O.3/ to one of the groups listed in Fig. 2.2.

Proof. Most of the proof is a straightforward application of Lemma 2.2. A few cases
are worth some additional remarks.

Consider the case in which ŒhDC
4 ; .�1/i W H� D 2. We use the equality

DC
4 D

D�
0 1 0
1 0 0
0 0 �1

�
;
�
1 0 0
0 �1 0
0 0 �1

�E
D hA;Bi;

where A and B (respectively) are the matrices in the term between the equal signs.
Note that A is the 180ı rotation about the line ` defined by the equations x D y and
z D 0, and B is the 180ı rotation about the x-axis. It is easy to see that these are
generators, as claimed. There are three homomorphisms �1, �2, �3 to consider (all
of which send .�1/ to 1): (i) �1.A/ D 1, �1.B/ D 1; (ii) �2.A/ D 1, �2.B/ D 0;
(iii) �3.A/ D 0, �3.B/ D 1. We note that the kernels of �2 and �3 are conjugate
in O.3/, since there is an element � 2 O.3/ conjugating A to B and B to A. The
first two homomorphisms have the kernelsD00

4 andD0
4, respectively, by Lemma 2.2.

We note that CC
4 � D00

4 and DC
2 � D0

4, and this distinguishes the groups up to
conjugacy withinO.3/. Thus, ifH is as in Theorem 2.3, and hH; .�1/i is conjugate
to hDC

4 ; .�1/i, then H is conjugate either to D0
4 or to D00

4 .
The case in which ŒhDC

6 ; .�1/i W H� D 2 is analogous to the previous one. We
use the generating elements

A D 1

3

�
1 �2 �2�2 �2 1�2 1 �2

�
; B D

�
0 �1 0�1 0 0
0 0 �1

�

and proceed as before.
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For the case in which ŒhSC
4 ; .�1/i W H� D 2 we use a generating set T for SC

4

different from the one appearing in Theorem 2.1; here

T D
n�

0 1 0
0 0 1
1 0 0

�
;
�
0 0 1
0 �1 0
1 0 0

�o
:

We note that the first matrix has order 3, and must therefore be sent to the identity
in any homomorphism � W hSC

4 ; .�1/i ! Z=2Z. It follows that there is just
one homomorphism such that �.�1/ D 1 and SC

4 6� ker�; the kernel of this
homomorphism is S 0

4 by Lemma 2.2.

Definition 2.3. We say that a point group H � O.3/ is standard if it is one of the
32 described in Theorems 2.1–2.3.

2.5 Descriptions of Selected Point Groups

In this section, we will attempt to give simple descriptions of the 32 standard point
groups. Our goal is to help the reader develop a working knowledge of these groups,
which will be essential in subsequent chapters. We will also introduce certain non-
standard point groups that will arise naturally later.

2.5.1 The Orientation-Preserving Standard Point Groups

There are 11 of these in all, as listed in Fig. 2.1.

• Five are cyclic: CC
i (i D 1; 2; 3; 4; 6). If i 2 f1; 2; 4g, then CC

i is generated by
a rotation of order i about the z-axis. If i 2 f3; 6g, then CC

i is generated by a
rotation of order i about the line x D y D z.

• The dihedral group DC
2 consists of all of the 180ı rotations about the coordinate

axes, and the identity. We can also describe DC
2 algebraically: it is the group of

3 � 3 diagonal matrices with an even number �1s down the diagonal, where all
other entries on the diagonal are 1.

• The dihedral groupDC
4 is generated by 180ı rotations about the lines `.y D z D

0/ and `.x D yI z D 0/. (Note that the group elements in question are not the
generators listed in Fig. 2.1.) The xy-plane is invariant, and DC

4 acts as the group
of symmetries of the square Œ�1; 1�2 in that plane. We can also describe DC

4

algebraically: DC
4 consists of all matrices having determinant 1 and the form

SP, where S is a sign matrix (i.e., a matrix whose off-diagonal entries are 0,
and whose diagonal entries are ˙1) and P is either the identity matrix or the
permutation matrix that interchanges the first two columns.

• The dihedral groupDC
3 is generated by 180ı rotations about the lines `.xCy D

0I z D 0/ and `.x D 0Iy C z D 0/. The plane P.x C y C z D 0/ is invariant;
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the elements of order 3 are rotations through 120ı about the axis `.x D y D z/.
Algebraically, DC

3 is the group of matrices having the form SP, where P is any
permutation matrix and S is either the identity matrix (if det.P / D 1) or the
antipodal map (if det.P / D �1).

• The dihedral groupDC
6 is generated by 180ı rotations about the lines `.xCyC

z D 0I 2xCy D 0/ and `.xCy D 0I z D 0/. It leaves the plane P.xCyCz D 0/
invariant. The additive group h.1;�1; 0/; .0;�1; 1/i is a lattice in P.xCyC z D
0/. The six lattice points of smallest norm describe a regular hexagon. The group
DC
6 acts as the group of symmetries of this hexagon.

• The group AC
4 consists of all matrices of the form SP, where P is a permutation

matrix that permutes the coordinate axes cyclically and S is a signed matrix with
an even number of �1s on the diagonal.

• The group SC
4 is the group of signed permutation matrices with determinant

equal to 1.

2.5.2 The Standard Point Groups with Inversion

The 11 standard point groups H that contain the inversion .�1/ all have the form
hHC; .�1/i, where HC is one of the 11 orientation-preserving standard point
groups. Thus, the groups H have descriptions similar to the ones that were given
in Sect. 2.5.1; we briefly give details for the H D hHC; .�1/i when HC is neither
cyclic nor DC

6 .

• If HC D DC
2 , then H is the group of sign matrices.

• IfHC D DC
4 , thenH is the set of all matrices expressible in the form SP, where

S is an arbitrary sign matrix and P is either the identity or the permutation matrix
which interchanges the first two coordinates.

• If HC D DC
3 , then H is the set of all matrices of the form SP, where S is either

the identity or .�1/, and P is an arbitrary permutation matrix.
• If HC D AC

4 , then H is the set of all matrices of the form SP, where S is an
arbitrary sign matrix, and P is a cyclic permutation matrix.

• If HC D SC
4 , then H is the full group of signed permutation matrices.

2.5.3 The Remaining Standard Point Groups

We now briefly describe the remaining point groups (as listed in Theorem 2.3).

• The group C 0
2 is generated by reflection across the xy-plane. The group C 0

4 is
generated by a rotation about the z-axis of 90ı, followed by reflection in the xy-
plane.
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The group C 0
6 is generated by a rotation through 120ı about the line x D y D

z, followed by reflection across the plane P.xC yC z D 0/ (the complementary
subspace to `.x D y D z/).

• The group D0
2 consists of the sign matrices having a 1 in the lower right corner.

• The group D0
3 is simply the group of permutation matrices.

• The group D0
4 (like DC

4 ) leaves the xy-plane invariant, and acts as the group
of symmetries of the square Œ�1; 1�2 in that plane. However, the elements that
behave like reflections in the coordinate axes of P.z D 0/ (when we consider the
restriction of the action to P.z D 0/) are actually rotations in the ambient R3. (In
other words, DC

2 � D0
4.) The elements that behave like reflections in the lines

`.x D yI z D 0/ and `.x D �yI z D 0/ are reflections in the planes P.x D y/

and P.x D �y/, respectively.
We can also give a simple algebraic description of D0

4: it is the group of all
matrices having the form SP, where S is a sign matrix with an even number of
negative (i.e., �1) entries, and P is either the identity matrix or the permutation
matrix that interchanges the first two coordinates.

We also note that C 0
4 � D0

4.
• The group D00

4 (like DC
4 and D0

4) leaves the xy-plane invariant, and acts as the
group of symmetries of the square Œ�1; 1�2. Each element of D00

4 that acts as a
reflection in the (restricted) action of D00

4 on the xy-plane is also a reflection of
the ambient R3 across a plane.

The algebraic description of D00
4 is also easy: it is the group of all signed

permutation matrices having a 1 in the lower right corner.
It is clear that D0

2 � D00
4 and CC

4 � D00
4 .

• The group D0
6 can be generated in the following way:

D0
6 Š D0

3 �
�
1

3

�
1 �2 �2�2 1 �2�2 �2 1

��
:

The latter matrix is reflection across the plane P.xCyC z D 0/. In fact, we can
factor R3 orthogonally as P.xCyCz D 0/�`.x D y D z/. With respect to this
factorization, D0

3 acts on the first factor (leaving it invariant), and acts trivially
on the second factor; the above reflection acts trivially on the first factor and as
inversion on the second factor. We note also that C 0

6 � D0
6.

• The group D00
6 is analogous to D00

4 . In the orthogonal factorization R
3 D P.x C

y C z D 0/ � `.x D y D z/, D00
6 acts as the full group of symmetries of a

regular hexagon in the first factor, and trivially in the second. We note also that
CC
6 � D00

6 .
• The group S 0

4 consists of all matrices of the form SP, where P is an arbitrary
permutation matrix and S is a sign matrix with an even number of negative
entries. In particular, we have the inclusion D0

4 � S 0
4.
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2.5.4 Some Non-standard Point Groups

The property of being a point group is (clearly) inherited under passage to
subgroups, but the property of being a standard point group is not. The arguments of
subsequent chapters will frequently involve passing to subgroups, which will mean
that we cannot always consider only the standard point groups. Here we describe a
few of the non-standard point groups that will arise in practice.

• First, let

OD0
4 D

D�
0 1 0
1 0 0
0 0 �1

�
;
��1 0 0

0 1 0
0 0 1

�E
:

This group is conjugate within O.3/ to the standard point group D0
4, and its

action on R
3 is similar to that of D0

4 in most respects: the group OD0
4 leaves the

xy-plane invariant, and acts as the group of symmetries of the square Œ�1; 1�2
in that plane. The elements that behave like reflections in the coordinate axes
of P.z D 0/ (when we consider the restriction of the action to P.z D 0/) are
also reflections in the ambient R3 (i.e., they are the reflections in the xz- and
yz-planes, respectively). The elements that behave like reflections in the lines
`.x D yI z D 0/ and `.x D �yI z D 0/ (the diagonals of the square) are actually
rotations through 180ı about those lines.

• The group

OD0
6 D

�
1

3

��1 2 2
2 2 �1
2 �1 2

�
;
�

0 �1 0�1 0 0
0 0 �1

��

is conjugate within O.3/ to D0
6. We can factor OD0

6 as follows:

OD0
6 Š DC

3 �
�
1

3

�
1 �2 �2�2 1 �2�2 �2 1

��
:

Each part of the factorization leaves the subspaces P.xC yC z D 0/ and `.x D
y D z/ invariant. (As noted in the description ofD0

6, the latter matrix is reflection
in the plane P.x C y C z D 0/, and so acts trivially on the first factor.) We note
that C 0

6 � OD0
6.

• Finally, we describe some non-standard variations of point groups that are
isomorphic to D2 or D4. Each standard point group of this type (with the
exception of DC

2 ) has a distinguished coordinate axis, namely the z-axis, which
is invariant under the action of the group. For instance, each of the standard point
groups DC

4 , D0
4, and D00

4 leaves the z-axis invariant. We will denote the non-
standard point group with a different distinguished axis by a subscript of 1 or 2,
where 1 indicates that the x-axis is distinguished, and 2 indicates that the y-axis
is distinguished. For instance, DC

41
denotes the group of all matrices having the

form SP, where det.SP/ D 1, S is a sign matrix, and P is either the identity or
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the permutation matrix that interchanges the y- and z-coordinates. The groupDC
42

has the same description, except that the matrix P may be either the identity or
the permutation matrix interchanging the x- and z-coordinates. The groups D0

4i
and D00

4i
for i D 1; 2 have analogous descriptions.

Similarly, for i D 1; 2, we let D0
2i

denote the group of sign matrices having a
1 in the i th position on the diagonal.



Chapter 3
Arithmetic Classification of Pairs .L; H /

Let L be a lattice in R
3, and let H � O.3/ be a point group such that H � L D

L. In this chapter, we classify pairs .L;H/ up to arithmetic equivalence (defined
below). The equivalence classes of pairs .L;H/ are in one-to-one correspondence
with isomorphism classes of split crystallographic groups (see Chap. 4).

3.1 Definition of Arithmetic Equivalence and a Lemma

Now we introduce one of the central tools in the classification of split three-
dimensional crystallographic groups. The definition below is due to Schwarzen-
berger [Sc80, p. 34].

Definition 3.1. Let H � O.3/ be a point group, and let L be a lattice in R
3

satisfying H � L D L. We say that two pairs .L0;H 0/, .L;H/ are arithmetically
equivalent, and write .L0;H 0/ 	 .L;H/, if there is an invertible linear transforma-
tion � 2 GL3.R/ such that:

1. �L0 D L, and
2. �H 0��1 D H .

The following lemma will be used heavily in our classification of pairs .L;H/
up to arithmetic equivalence.

Lemma 3.1. Let H be a point group acting on the lattice L.

1. If h 2 H \ SO.3/, h ¤ 1, and ` is the (unique) line fixed by h, then ` contains a
non-zero element of L.

2. If h 2 H \SO.3/, h ¤ 1, and ` is the unique line fixed by h, then P D fv 2 R
3 j

v ? `g contains a non-zero element of L.
3. If h 2 H is reflection in the plane P , then L \ P is free abelian of rank two.

© Springer International Publishing Switzerland 2014
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Proof. 1. Let v 2 L be such that v 6? ` and v … `. Thus, we can write v D v1 C v2,
where v1 ? `, v2 2 `, and neither v1 nor v2 is 0. Assume that jhj D n; we can
write

.1C hC h2 C : : :C hn�1/v D nv2 C .1C hC : : :C hn�1/v1;

since v2 is fixed by h. We note that nv2 and .1 C h C : : : C hn�1/v1 are
perpendicular, essentially by orthogonality of h, and that .1 C h C h2 C : : : C
hn�1/v1 is h-invariant. It follows that .1 C h C h2 C : : : C hn�1/v1 2 `, and
therefore can only be 0 (since it is perpendicular to v2 2 ` � f0g). Now clearly
.1ChCh2C : : :Chn�1/v D nv2 2 `�f0g and .1ChCh2C : : :Chn�1/v 2 L.

2. Let x 2 L � `. It follows that x � hx ¤ 0. Now we show that x � hx 2 P . Let
v 2 ` � f0g.

v � x D hv � hx D v � hx;

so v � .x � hx/ D 0, and x � hx 2 P .
3. Our assumptions imply that we can choose an ordered basis for R3 in such a way

that h is represented by the matrix

�
1 0 0
0 1 0
0 0 �1

�

over that basis. It is then clear that the transformation 1Ch has a one-dimensional
null space.

Let v1, v2, v3 be a linearly independent subset of L. It follows that the vectors
.1 C h/v1, .1 C h/v2, and .1 C h/v3 span a two-dimensional subspace of R3.
It follows, in particular, that the group G D h.1 C h/v1; .1 C h/v2; .1 C h/v3i
has rank 2. (The rank can be no larger, since G is a discrete subgroup of a real
subspace of dimension 2; the rank can be no smaller, since the generators span a
real vector subspace of dimension 2.) Since h fixes each element of the generating
set, G � P .

Finally, we note that G � P \ L, so the latter group must have rank at least
2. It cannot have rank more than 2 since it is a discrete additive subgroup of a
two-dimensional real vector space.

3.2 Full Sublattices in Pairs .L; H /, Where H Contains .�1/

In this section, we take our first steps toward classifying the pairs .L;H/ up
to arithmetic equivalence (i.e., classifying the split crystallographic groups—see
Theorem 4.1). Our strategy is to build the lattice L around the point group H . The
lattice L (for any choice of H ) will be made to contain one of two specific lattices
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in a certain way (related to the definition of “fullness” below). Our technical results
here will be important in the subsequent classification of pairs .L;H/.

Definition 3.2. We let

x D
�
1
0
0

�
; y D

�
0
1
0

�
; z D

�
0
0
1

�
; v1 D

�
1
1
1

�
; v2 D

�
1�1
0

�
; v3 D

�
0�1
1

�
:

The lattices hx; y; zi and hv1; v2; v3i are, respectively, the cubic lattice LC and the
prismatic lattice LP.

Definition 3.3. If L is any lattice, then a subgroup OL � L is full in L if OL is the
maximal subgroup of L that is contained in the span of OL as a vector space.

Proposition 3.1. Let H be a standard point group acting on the lattice L; suppose
.�1/ 2 H . We let HC denote the orientation-preserving subgroup of H .

1. If HC D CC
1 , then .L;H/ 	 .LC;H/.

2. If HC D CC
2 ; C

C
4 ; or DC

4 , then .L;H/ 	 .L0;H/, where LC � L0 and each of
the subgroups hx; yi, hzi is full in L0.

3. If HC D DC
2 ; A

C
4 ; or SC

4 , then .L;H/ 	 .L0;H/ where LC � L0 and each of
the subgroups hxi, hyi, hzi is full in L0.

4. If HC D CC
3 ; C

C
6 ; or DC

6 , then .L;H/ 	 .L0;H/, where LP � L0 and each of
the subgroups hv2; v3i, hv1i is full in L0.

5. IfHC D DC
3 , then .L;H/ 	 .L0;H/whereLP � L0 and each of the subgroups

hv1i, hv2i, hv3i is full in L0.

Proof. 1. This is easy. If HC D CC
1 D 1, then H D h.�1/i. There is � 2 GL3.R/

such that �L D LC. It is obvious that �.�1/��1 D .�1/, so .L;H/ 	
.�L; �H��1/ D .LC;H/.

2. Suppose HC D CC
2 . The group hCC

2 ; .�1/i contains the reflection across the
xy-plane, so L \ P.z D 0/ is free abelian of rank two, by Lemma 3.1(3). It
follows that there is some

� D
� � � 0� � 0
0 0 �

�
2 GL3.R/

such that �.L \ P.z D 0// D LC \ P.z D 0/ D hx; yi. Any such � commutes
with hCC

2 ; .�1/i. It follows that .L;H/ is arithmetically equivalent to a pair
. OL;H/ such that hx; yi is a full subgroup of OL. By Lemma 3.1(1), there is some
˛z 2 OL, where ˛ ¤ 0 and j˛j is minimal. We multiply OL by

�0 D
�
1 0 0
0 1 0
0 0 ˛�1

�
:

The matrix �0 commutes with H and �0 OL D L0 has the desired properties.
Suppose that HC D CC

4 . By Lemma 3.1(2), there is some non-zero v 2
L \ P.z D 0/, since the generator of CC

4 acts as a rotation about the z-axis. We
choose v to have the minimal norm of all non-zero vectors inL\P.z D 0/. After
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multiplying by a scalar matrix, we can assume that jjvjj D 1. After applying a
suitable rotation � (which, as in the case of CC

2 , is a block matrix with a 2 by
2 block in the upper left corner), we can assume v D x, i.e., x 2 �L D OL, x
is the non-zero vector of minimal norm in OL \ P.z D 0/, and �H��1 D H

(since any two rotations in the xy-plane commute). We conclude that y 2 OL since
HC contains a rotation through 90ı about the z-axis. It easily follows from the
minimality of the norm of x in OL \ P.z D 0/ that hx; yi is a full subgroup of OL.
We can then continue as before (that is, rescale along the z-axis while leaving the
xy-plane alone) to get a new lattice L0 having the additional property that hzi is a
full subgroup of L0, and .L;H/ 	 .L0;H/.

Suppose that HC D DC
4 . The group DC

4 contains 180ı rotations about the
axes `.y D z D 0/, `.x D z D 0/, `.z D 0 D x � y/, and `.z D 0 D x C y/.
We claim that a smallest non-zero vector in L \ P.z D 0/ lies on one of these
axes. (A non-zero vector in L \ P.z D 0/ exists by Lemma 3.1(2).) We can
assume first that x is the smallest non-zero vector in L \ `.y D z D 0/ (after
multiplying by a suitable scalar matrix if necessary). (Such a non-zero vector in
L \ `.y D z D 0/ exists, by Lemma 3.1(1).) It follows that y is likewise the
smallest non-zero vector in L \ `.x D z D 0/, since there is a rotation in DC

4

taking the x-axis to the y-axis. Now let v D ˛x C ˇy be the smallest non-zero
vector in L \ P.z D 0/. Apply the 180ı rotation about the x-axis:

�
1 0 0
0 �1 0
0 0 �1

� � ˛
ˇ
0

�
D
� ˛�ˇ

0

�
)
� ˛
ˇ
0

�
C
� ˛�ˇ

0

�
D
�
2˛
0
0

�
2 L:

It follows that 2˛ 2 Z, since hxi is a full subgroup of L. By similar reasoning
(applying the rotation about the y-axis), 2ˇ 2 Z. This means that either: (i) x is a
smallest non-zero vector in L\P.z D 0/, or (ii) 1

2
.xC y/ is a smallest non-zero

vector in L \ P.z D 0/. This proves the claim, since both of these lattice points
lie on axes of rotation in DC

4 .
Thus a smallest vector in L\ P.z D 0/ is either x or we can assume that this

smallest vector inL\P.z D 0/ is x after multiplying by a scalar and rotating 45ı
about the z-axis. (The latter rotation normalizes H .) It now follows directly that
.L;H/ 	 . OL;H/, where hx; yi is a full subgroup of OL. One then easily produces
L0 in which z is full as well (as in previous cases), and . OL;H/ 	 .L0;H/.

3. Suppose HC D DC
2 . Since DC

2 contains rotations about each of the coordinate
axes, Lemma 3.1(1) implies that there are vectors ˛x, ˇy, and �z (˛; ˇ; � ¤ 0)
such that each generates a full subgroup. We can scale each vector independently
to arrive at the desired L0, and the suggested matrix commutes with H , so
.L;H/ 	 .L0;H/.

If HC D AC
4 or SC

4 , then DC
2 � HC and there are again vectors ˛x, ˇy, and

�z (˛; ˇ; � > 0), each generating a full subgroup of L. This time ˛ D ˇ D �

since HC permutes the coordinate axes. After multiplying by ˛�1, we get the
desired L0.

4. Suppose HC D CC
3 or CC

6 . Let v be a smallest non-zero vector in L \ P.x C
y C z D 0/. Such a vector exists by Lemma 3.1(2), since P.x C y C z D 0/ is
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perpendicular to the axis of rotation `.x D y D z/. After applying an appropriate
rotation about `.x D y D z/ and multiplying in the plane P.x C y C z D 0/ by
an appropriate scalar, we can assume that v D x � y 2 L. (All of the suggested
matrices commute with H .) It follows easily that �yC z 2 L, as well, since H
contains a rotation through 120ı about the line `.x D y D z/. Since x � y has
the minimal possible norm of all non-zero vectors in L \ P.x C y C z D 0/,
hx�y;�yCzimust be full. (Here the lattice points hx�y;�yCzi describe a grid
in the planeP.xCyCz D 0/made up of equilateral triangles. If hx�y;�yCzi ¨
L\P.xCyC z D 0/, then we could choose a point v0 2 L\P.xCyC z D 0/
outside of the grid, and then the difference between v0 and the nearest member of
hx � y;�yC zi would violate the minimality of jjx � yjj.)

Since L \ `.x D y D z/ ¤ 0 by Lemma 3.1(1), there is ˛ ¤ 0 such
that h˛.x C y C z/i is a full subgroup of L0. We scale this vector to obtain the
desired conclusion. This scaling can be done while leaving the perpendicular
plane P.x C y C z D 0/ fixed.

Now we suppose thatHC D DC
6 . We claim that a non-zero vector of minimal

norm in L\P.xCyCz D 0/must lie on one of the axes ` � P.xCyCz D 0/
of rotation for DC

6 . (There are 6 in all, and each makes a 30ı angle with the axes
closest to it.) One of the axes is the line `.x C y D 0 D z/, and it follows from
Lemma 3.1(1) that we can assume that x�y 2 L after scaling (if necessary), and
that x � y generates a full subgroup of L. It then follows quickly that h�yC zi
is also a full subgroup of L, since there is an element of DC

6 that carries the
subspace hx � yi to h�yC zi.

Let v be a smallest non-zero vector in L \ P.x C y C z D 0/. Suppose
v D ˛x C ˇy C .�˛ � ˇ/z. We can assume that ˛; ˇ � 0. (Indeed, either
two or more of the numbers ˛, ˇ, �˛ � ˇ are nonnegative, or two or more
are nonpositive. If two or more are nonnegative, then we can apply a suitable
cyclic permutation matrix to arrange that the first two entries are nonnegative,
yielding the desired result. It two or more entries of v are nonpositive, then we
apply a suitable cyclic permutation matrix to arrange that the first two entries are
nonpositive, and then we apply the antipodal map. All of the matrices in question
lie in hDC

6 ; .�1/i.)
�

0 �1 0�1 0 0
0 0 �1

� � ˛
ˇ

�˛�ˇ
�
D
� �ˇ�˛
˛Cˇ

�
:

Adding the two column vectors in the above expression, we arrive at .˛�ˇ/.x�
y/, which is in L since each of the above column vectors is in L. It follows that
˛ � ˇ 2 Z, since hx � yi is a full subgroup of L.

��1 0 0
0 0 �1
0 �1 0

� � ˛
ˇ

�˛�ˇ
�
D
� �˛
˛Cˇ
�ˇ

�
:

Adding the two column vectors in the above expression, we arrive at .�˛ �
2ˇ/.�y C z/, which is in L since each of the above column vectors is in L. It
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follows that�˛�2ˇ 2 Z, since h�yCzi is a full subgroup ofL. This now implies
that 3˛; 3ˇ 2 Z. Let’s suppose that ˛ D m=3 and ˇ D n=3, where m and n are
non-negative integers. The minimality of the norm of v in L\P.xCyC z D 0/
implies that

m2 C mnC n2 � 9;

and m and n are congruent modulo 3 by the condition ˛ � ˇ 2 Z. It is routine to
check that either: (i)m and n are both divisible by three (and so ˛, ˇ are integers,
one 0 and the other 1), or (ii)m D n D 1. In the first case, it is clear that v lies on
one of the axes `.y C z D 0 D x/, or `.x C z D 0 D y/, and these are axes for
rotations in DC

6 . In the second case, we have v D ˛.xC y � 2z/. Since v makes
an angle of 30ı with the vector x�z (which lies on an axis of rotation), it follows
that v itself lies on an axis of rotation. This proves the claim.

We summarize. We can assume that a smallest non-zero vector in L\P.xC
y C z D 0/ is x � y after: (i) scaling in the plane P.x C y C z D 0/, if a
smallest vector in L \ P.x C y C z D 0/ lies on `.x C y D 0I z D 0/ (or on
one of its orbits under the action of DC

6 ), or (ii) rotating by 30ı about the axis
`.x D y D z/ otherwise.

The remainder of the argument is easy, and follows the lines of the cases
H D CC

3 and H D CC
6 .

5. By Lemma 3.1(1), there is some v 2 L \ `.x C y D 0 D z/, where v ¤ 0.
After multiplying by a suitable scalar matrix, we can assume that hx� yi is a full
subgroup of L. Since there are elements inDC

3 that move the subspace hx�yi to
the subspace h�yC zi, it follows that h�yC zi is also full in L. Thus, hvi i is full
in L, for i D 2; 3. We can rescale along the line `.x D y D z/ while holding the
plane P.x C y C z D 0/ fixed; the suggested transformation � commutes with
DC
3 for any scaling factor. There is some non-zero v 2 `.x D y D z/\L. If we

assume that v is chosen so that jjvjj is minimal, then scaling along `.x D y D z/
by a factor of 1=jjvjj yields the desired lattice L0.

3.3 Description of Possible Lattices L

In this section, we will show that each pair .L;H/ is equivalent to a pair .L0;H/,
where L0 is one of seven lattices.

Lemma 3.2. Suppose that H is a standard point group which stabilizes the lattice
L, suppose LC � L, and each of hxi, hyi, hzi is a full subgroup of L.

1. IfH contains the 180ı rotation through the x-, y-, or z-axis, then, for any v 2 L,
v D ˛xC ˇyC �z, we have that 2˛, 2ˇ, or 2� 2 Z (respectively).

2. If H contains the reflection across the plane P.z D 0/, hx; yi is a full subgroup
of L, and v D ˛xC ˇyC �z 2 L, then 2˛; 2ˇ; 2� 2 Z.
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Proof. 1. Let v 2 L have the form indicated in the lemma. We suppose that H
contains the rotation � through 180ı about the x-axis. We have

� � v D
�
1 0 0
0 �1 0
0 0 �1

� � ˛
ˇ
�

�
D
� ˛�ˇ��

�
2 L:

We conclude that 2˛x 2 L, so 2˛ 2 Z by the fullness of the subgroup hxi.
2. Let v 2 L once again have the form indicated in the lemma. We get

� � v D
�
1 0 0
0 1 0
0 0 �1

� � ˛
ˇ
�

�
D
� ˛
ˇ��
�
2 L:

It follows directly that both 2˛x C 2ˇy and 2�z are in L. But now it follows
that 2˛; 2ˇ 2 Z and 2� 2 Z, by the fullness of the subgroups hx; yi and hzi,
respectively.

Corollary 3.1. Suppose that the standard point group H contains the involution
.�1/, and suppose that the orientation-preserving subgroup HC of H is one of
CC
1 ; C

C
2 ;D

C
2 ; C

C
4 ;D

C
4 ; A

C
4 , or SC

4 . Suppose thatL is a lattice such thatH �L D L.
The pair .L;H/ is arithmetically equivalent to .L0;H/, where L0 is equal to one of
the following lattices (or the image of one of these under a permutation of coordinate
axes):

hx; y; zi I
�
x; y;

xC yC z
2

�
I
�
x; y;

xC z
2

�
I
�

xC y
2

;
xC z
2

;
yC z
2

�
:

Moreover, in case HC D CC
2 , CC

4 , or DC
4 , we can arrange that L0 contains hx; yi

as a full subgroup. In particular, for HC D CC
2 , CC

4 , or DC
4 , L0 is not the last of

these four lattices.

Proof. If HC D CC
1 , then .L;H/ 	 .LC;H/ by Proposition 3.1(1).

We now show that any pair .L;H/ with HC ¤ 1 is equivalent to .L0;H/,
where 2L0 � LC. If HC D CC

2 , CC
4 , or DC

4 , then, by Proposition 3.1(2),
.L;H/ 	 .L0;H/, where LC � L0 and hx; yi, hzi � L0 are full subgroups.
Since, in each case, H contains the reflection across the plane P.z D 0/, we get
the desired conclusion from Lemma 3.2(2). If HC is any of the remaining groups,
then .L;H/ 	 .L0;H/, where LC � L0 and each of hxi, hyi, and hzi are full
subgroups of L0, by Proposition 3.1(3). In these cases, H (indeed, HC) contains
the rotations through 180ı about each of the coordinate axes, and the first part of
Lemma 3.2 directly implies the desired conclusion.

Note that L0\ Œ0; 1�3 generates L0 (since LC � L0). The first part of the corollary
(and fullness of the subgroups hxi, hyi, and hzi) implies L0 \ Œ0; 1�3 consists of the
corners of the cube Œ0; 1�3, and possibly some subcollection of seven other points:
the center of the cube 1

2
.xC yC z/, and the centers of the two-dimensional faces.

Now we run through the cases. Of course, if L0 \ Œ0; 1�3 consists only of the
set of the corners of Œ0; 1�3, then L0 D hx; y; zi. If L0 \ Œ0; 1�3 contains the center
of the cube, then no other points can be in L0 \ Œ0; 1�3 (other than the corners)
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without violating the fullness of one of the subgroups hxi, hyi, or hzi. This case
thus yields the second lattice mentioned in the conclusion. The only cases left to
consider are those in which any additional lattice points occur in the middle of two-
dimensional faces of Œ0; 1�3. It is obvious that these lattice points must appear in
pairs (on opposing pairs of faces), and it is an elementary exercise to show that it
is impossible for exactly 4 of these centers to be lattice points. It follows that either
2 opposing center points are in L0, or all 6 are in L0. These yield (respectively) the
last two lattices mentioned in the conclusion.

The final statement is a consequence of the fact that the L0 constructed in this
proof has hx; yi as a full subgroup in the specified cases.

We note finally that all of the lattices in the corollary are invariant under the
permutation of coordinate axes, with the exception of the second-to-last.

Lemma 3.3. Suppose that H is a standard point group which stabilizes the lattice
L, suppose LP � L, and each of hv1i, hv2i, hv3i is a full subgroup of L.

1. If H contains the 180ı rotation through the vector space spanned by v2, and
a rotation through 120ı about the line `.x D y D z/, then, for any v 2 L,
v D ˛v1 C ˇv2 C �v3, we have 3ˇ, 3� 2 Z and ˇ � � 2 Z.

2. If H contains a rotation through 120ı about the line `.x D y D z/ and hv2; v3i
is a full subgroup of L, then, for any v 2 L, v D ˛v1 C ˇv2 C �v3, we have 3ˇ,
3� 2 Z and ˇ � � 2 Z.

3. If H contains a rotation through 120ı about the line `.x D y D z/ then, for any
v 2 L, v D ˛v1 C ˇv2 C �v3, we have 3˛ 2 Z.

4. IfH contains both the reflection across the planeP.xCyCz D 0/ and a rotation
through 120ı about the line `.x D y D z/, and hv2; v3i is a full subgroup of L,
then L D hv1; v2; v3i.

Proof. 1. Let v be as in the statement of the lemma. We first apply the rotation R1
through 180ı about `.x C y D 0I z D 0/:

�
0 �1 0�1 0 0
0 0 �1

�� ˛Cˇ
˛�ˇ��
˛C�

�
D
��˛CˇC�

�˛�ˇ�˛��

�
2 L:

It follows that v C R1v D .2ˇ C �/v2 2 L. Since hv2i is a full subgroup of
L, it follows that 2ˇ C � 2 Z. Now apply the rotation R2 through 120ı about
`.x D y D z/:

�
0 1 0
0 0 1
1 0 0

�� ˛Cˇ
˛�ˇ��
˛C�

�
D
�
˛�ˇ��
˛C�
˛Cˇ

�
2 L:

It follows that

v �R2v D .2ˇ C �/ v2 C .� � ˇ/ v3 2 L:
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This means that .��ˇ/v3 2 L, since .2ˇC�/v2 2 L by the previous calculation.
Since hv3i is full in L, it must be that � �ˇ 2 Z. The desired conclusions follow
easily.

2. This is easier than the proof of (1). We need consider only the last displayed
equation, and the desired conclusions follow from the fullness of hv2; v3i in L.

3. We note that the rotation R2 (from (1)) simply permutes the coordinates of any
vector

v D ˛v1 C ˇv2 C �v3 D .˛ C ˇ/xC .˛ � ˇ � �/yC .˛ C �/z

cyclically. It is not difficult to see that

�
1CR2 CR22

	 � v D 3˛.xC yC z/ D 3˛v1:

Since hv1i is full in L, we have 3˛ 2 Z.
4. Let R3 denote the reflection in question. Let v D ˛v1 C ˇv2 C �v3 2 L be

arbitrary. It follows that

.1 �R3/v D .˛v1 C ˇv2 C �v3/ � .�˛v1 C ˇv2 C �v3/ D 2˛v1 2 L:

The fullness of hv1i in L implies that 2˛ 2 Z. Since 2˛ 2 Z and 3˛ 2 Z (by
(3)), ˛ 2 Z. It follows that ˇv2 C �v3 2 L. Fullness of hv2; v3i in L implies that
ˇ; � 2 Z.

Corollary 3.2. Suppose thatH contains the involution .�1/, and the subgroupHC
of H is one of CC

3 ;D
C
3 ; C

C
6 , or DC

6 . Let L be a lattice such that H � L D L. The
pair .L;H/ is equivalent to a pair .L0;H/ where L0 is one of the following:

hv1; v2; v3i ;
�
1

3
.v1 C v2 C v3/ ; v2; v3

�
;

�
v1;

1

3
.v2 C v3/ ; v3

�
:

Indeed, we can assume L0 is the first lattice if HC D CC
6 or DC

6 , or that it is one
of the first two lattices if HC D CC

3 .

Proof. Suppose first that HC D CC
6 or DC

6 . We can apply Proposition 3.1(4),
and conclude that .L;H/ 	 .L0;H/, where LP � L0 and each of the subgroups
hv2; v3i, hv1i is full in L0. Since H contains both the reflection across the plane
P.xCyCz D 0/ and the rotation through 120ı about `.x D y D z/, Lemma 3.3(4)
shows that L0 D hv1; v2; v3i.

Next suppose HC D CC
3 . We can again apply Proposition 3.1(4), and conclude

that .L;H/ 	 .L0;H/, where LP � L0 and each of the subgroups hv2; v3i, hv1i
is full in L0. One possibility is that L0 D hv1; v2; v3i; we suppose otherwise. Let
us consider a typical v D ˛v1 C ˇv2 C �v3 2 L0. By Lemma 3.3((2) and (3)) and
Proposition 3.1(4), we have that 3˛; 3ˇ; 3�; � � ˇ 2 Z. Since L0 ¤ hv1; v2; v3i,
we can find v so that not all of ˛; ˇ; � are integers. Indeed, fullness of hv1i and
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hv2; v3i in L0 (and the inclusions 3˛; 3ˇ; 3�; � � ˇ 2 Z) imply that none of ˛; ˇ; �
are integers if one is not. It is now routine to show that one of the vectors

1

3
.v1 � v2 � v3/ or

1

3
.v1 C v2 C v3/

is in L0. After applying the 180ı rotation about `.x D y D z/, we can assume that
1
3
.v1 C v2 C v3/ 2 L0, since the rotation in question preserves H .
We claim that L0 D h 1

3
.v1 C v2 C v3/ ; v2; v3i. Suppose v D ˛v1Cˇv2C�v3 2

L0. We can conclude, as before, that 3˛; 3ˇ; 3�; � � ˇ 2 Z.

v D ˛v1 C ˇv2 C �v3 D .˛ � ˇ/v1 C .3ˇ/1
3
.v1 C v2 C v3/C .� � ˇ/v3:

Since v and every other term of the right-most sum is in L0, so is .˛ � ˇ/v1. It
follows that ˛ � ˇ 2 Z. The equation above displays v as an integral combination
of elements in h 1

3
.v1 C v2 C v3/ ; v2; v3i. This completes the proof in the case of

HC D CC
3 .

Suppose that HC D DC
3 . We apply Proposition 3.1(5): .L;H/ 	 .L0;H/,

where LP � L0 and each of the subgroups hv1i, hv2i and hv3i is full in L0. The
lattice L0 could be hv1; v2; v3i or h 1

3
.v1 C v2 C v3/ ; v2; v3i. Indeed, an argument

essentially identical to the one for the case HC D CC
3 shows that these are the

only possibilities if hv2; v3i is full in L0. Suppose that hv2; v3i is not full in L0.
Let ˇv2 C �v3 2 L0, where, by Lemma 3.3(1), 3ˇ; 3�; � � ˇ 2 Z. We assume
that one of ˇ; � (equivalently, both of ˇ; � ) are not integers. It follows quickly that
1
3
.v2 C v3/ 2 L0.

We claim that L0 D hv1; 13 .v2C v3/; v3i. Let v D ˛v1C ˇv2C �v3 2 L0. By (1)
and (3) of Lemma 3.3, we have 3˛; 3ˇ; 3�; � � ˇ 2 Z.

v D ˛v1 C .3ˇ/
�
1

3
v2 C 1

3
v3

�
C .� � ˇ/ v3 2 L0:

It follows that ˛v1 2 L0, which implies that ˛ 2 Z, by fullness of hv1i in L0. This
completes the proof.

3.4 Classification of Pairs .L; H /, Where .�1/ 2 H

We now sort the pairs .L;H/ up to arithmetic equivalence, assuming that .�1/ 2
H . The following theorem lists 24 such pairs as distinct possibilities; the theorem
leaves open the possibility that some of these pairs will be equivalent. We will see
in Theorem 3.2 that indeed all of them are different.
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Theorem 3.1. Let L � R
3 be a lattice, and let H � O.3/ be a standard point

group acting on L, such that .�1/ 2 H . The pair .L;H/ is equivalent to one of the
24 on the following list.

1. If HC D AC
4 ; or SC

4 , then .L;H/ 	 .L0;H/, where

L0 D LC;
�
1

2
.xC yC z/ ; y; z

�
; or

�
1

2
.xC y/ ;

1

2
.xC z/ ;

1

2
.yC z/

�
:

(There are six possibilities in all.)
2. If HC D DC

2 , then .L;H/ 	 .L0;H/, where L0 is any of the lattices mentioned
in Corollary 3.1. (There are four possibilities.)

3. If HC D CC
2 , CC

4 , or DC
4 , then .L;H/ 	 .L0;H/, where

L0 D hx; y; zi or

�
x; y;

1

2
.xC yC z/

�
:

(There are six possibilities.)
4. If HC D CC

1 , then .L;H/ 	 .L0;H/, where L0 D LC. (There is only one
possibility.)

5. If HC D CC
6 , or DC

6 , then .L;H/ 	 .L0;H/, where L0 D LP. (There are two
possibilities.)

6. If HC D CC
3 , then .L;H/ 	 .L0;H/, where

L0 D LP or

�
1

3
.v1 C v2 C v3/ ; v2; v3

�
:

(There are two possibilities.)
7. If HC D DC

3 , then .L;H/ 	 .L0;H/, where L0 can be any of the lattices listed
in Corollary 3.2. (There are three possibilities.)

Proof. We note first that all of the pairs .L0;H/ mentioned as possibilities above
truly occur (i.e., H � L0 D L0).

1. Let HC D AC
4 or SC

4 . Corollary 3.1 gives us four possibilities. We rule out
the third possibility, hx; y; 1

2
.xC z/i (and its images under permutations of the

coordinate axes), since it fails to be invariant under the action of H .
2. Let HC D DC

2 . In this case, all four lattices from Corollary 3.1 are possible.
We note that H is normalized by any permutation of the coordinate axes, so the
lattices

hx; y; 1
2
.xC z/i; hx; 1

2
.xC y/ ; zi; and hx; y; 1

2
.yC z/i

all lead to arithmetically equivalent pairs.
3. Let HC D CC

4 or DC
4 . Corollary 3.1 gives us five possibilities. The third lattice

mentioned in Corollary 3.1 is really a collection of three distinct lattices. We can
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dispose with these three lattices, either because: (i) they are not invariant under
the action of H (and so cannot occur as part of the pair .L;H/), or (ii) they do
not contain hx; yi as a full subgroup (which we can arrange by Corollary 3.1). It
follows that the lattices in the statement of the theorem are the only possibilities
up to arithmetic equivalence.

Now suppose HC D CC
2 . We conclude, exactly as in the previous paragraph,

that there are five possibilities for L0, by Corollary 3.1. We can rule out

�
x; z;

xC y
2

�

since we can assume that hx; yi is full in L. Now we note that the lattices

�
x; y;

xC z
2

�
;

�
x; y;

yC z
2

�

are both equivalent to the second lattice from Corollary 3.1, by the matrices

�1 D
�

1 0 0�1 1 0
0 0 1

�
and �2 D

�
1 �1 0
0 1 0
0 0 1

�
;

respectively.
4. Is clear.
5. Follows immediately from Corollary 3.2, as do (6) and (7).

The following lemma uses only basic group theory and linear algebra. The proof is
left to the reader.

Lemma 3.4. Let � 2 GL3.R/ normalize the point group H .

1. If ` � R
3 is a pole such that the stabilizer group HC

` D fh 2 HC j hj` D id`g
has order n, then �` is also a pole of HC, and HC

��` has order n.
2. If two vectors v1; v2 2 LC [ L� are in the same orbit under the action of H ,

then jj�v1jj D jj�v2jj, and �v1, �v2 are in the same orbit under the action of H .
3. If V � R

3 is an H -invariant vector subspace, then �V is also an H -invariant
vector subspace. ut

Theorem 3.2. No two of the 24 arithmetic classes of pairs .L;H/ from Theo-
rem 3.1 are the same.

Proof. We first note that if two pairs .L1;H1/, .L2;H2/ are arithmetically equiv-
alent, then H1 and H2 are isomorphic groups (in fact, conjugate in GL3.R/). It
follows that if two pairs from the list in Theorem 3.1 are the same, then their
point groups must be the same (since different point groups of the given type have
different isomorphism types). Thus, we can assume that H1 D H2 in the following
arguments.
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1. Suppose HC D AC
4 or SC

4 . Let .L1;H/, .L2;H/ be distinct pairs, where L1
and L2 are as described in Theorem 3.1(1). Suppose .L1;H/ 	 .L2;H/. This
means that there is � such that �L1 D L2 and �H��1 D H . By Lemma 3.4(1),
�must permute the coordinate axes. Since hxi, hyi, hzi are full subgroups of both
L1 and L2, it must be that � is a signed permutation matrix. Such a matrix fixes
each of the lattices from Theorem 3.1(1), which is a contradiction.

2. Follows the exact pattern of (1).
3. Suppose HC D CC

2 , CC
4 , or DC

4 . Let .L1;H/, .L2;H/ be distinct pairs, where
L1 and L2 are chosen from the possibilities in Theorem 3.1(3). We can assume,
without loss of generality, that L1 D hx; y; zi and L2 D hx; y; 12 .x C y C z/i.
Suppose .L1;H/ 	 .L2;H/; let � 2 GL3.R/ satisfy �L1 D L2 and �H��1 D
H . We claim that � has the form

� D
� � � 0� � 0
0 0 �

�
:

Moreover, if we assume that � has the latter form, then � must have integral
entries by the fullness of hx; yi and hzi in both L1 and L2. It will then follow that
�L1 is a sublattice of LC, a contradiction.

We turn to a proof of the claim. First, assume that HC D CC
2 or CC

4 . Since
� normalizes H , it must be that � actually commutes with the generator of CC

2 ,
which is the unique element ofH having positive determinant and order 2. It now
follows from a straightforward calculation that � has the required block form. If
HC D DC

4 , then we appeal to parts (3) and (1) (respectively) of Lemma 3.4:
since the xy-plane is the unique two-dimensional H -invariant subspace, it must
be preserved by �; since the z-axis is the unique one-dimensional subspace to
be an axis of rotation for an element of order 4 in HC, it must be preserved. It
follows directly that � has the required form in this case as well. This proves the
claim.

4. Is trivial.
5. Is also trivial.
6. Suppose .LP; hCC

3 ; .�1/i/ 	 . 1
3
.v1 C v2 C v3/; v2; v3i; hCC

3 ; .�1/i/. Suppose
that � 2 GL3.R/ satisfies �LP D h 13 .v1 C v2 C v3/; v2; v3i and �H��1 D H .
We claim that � has the form

� � 0 0
0 � �
0 � �

�

as a matrix over the ordered basis .v1; v2; v3/. Indeed, if this is the case, then all
of the entries must be integers by the fullness of hv1i and hv2; v3i in both lattices.
It will then follow that �LP � LC, a contradiction.

We prove the claim. Note that `.x D y D z/ is the unique one-dimensional
H -invariant subspace, and so must be invariant under � by Lemma 3.4(3).
Similarly, the plane P.xCyCz D 0/ is the unique two-dimensionalH -invariant
subspace, so it is also invariant under �. The claim now follows directly, since
fv2; v3g spans P.x C y C z D 0/ and fv1g spans `.x D y D z/.
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7. Let H D hDC
3 ; .�1/i, L1 D LP, L2 D h 13 .v1 C v2 C v3/; v2; v3i, and L3 D

hv1; 13 .v2 C v3/; v3i. We can conclude that .L1;H/ 6	 .L2;H/ exactly as in (6).
If .L2;H/ 	 .L3;H/, where �L2 D L3 and �H��1 D H , then we conclude as
in (6) that � has the same block form (as a matrix over the same ordered basis),
although, in the current case, we can conclude only that the upper left entry is
˙1, by fullness of hv1i in both L2 and L3. This leads to a contradiction, since
�.1

3
.v1 C v2 C v3// 62 L3.

Finally, suppose .L1;H/ 	 .L3;H/. Let � 2 GL3.R/ satisfy �L1 D L3
and �H��1 D H . By Lemma 3.4(1), the vector subspaces hv2i, hv3i, and
hv2 � v3i must be permuted by �. Since H acts transitively on these lines, by
Lemma 3.4(2), jj�v2jj D jj�v3jj D ˛

p
2, say. By Lemma 3.4(1), the vector

subspace spanned by v1 must be �-invariant as well, since it is the unique one-
dimensional vector subspace that is the axis for an element of order 3 in HC. It
follows that � has the block form from (6) over the ordered basis .v1; v2; v3/. In
addition, we know that the upper left entry is an integer, by fullness of hv1i in L1
andL3. The final two column vectors of �must be linearly independent elements
of the set

f˙˛v2;˙˛v3;˙˛.v2 � v3/g:

It follows that at least one has the form˙˛vi (for i 2 f2; 3g). Since hv2i and hv3i
are full subgroups of both L1 and L3, it follows that ˛ must be an integer. Thus
� must have integral entries. It follows that �L1 � LC, a contradiction.

3.5 The Classification of the Remaining Pairs .L; H /

In this section, we conclude the classification of pairs .L;H/ up to arithmetic
equivalence. Our approach is to reduce the problem of classifying the remaining
pairs to the (previously solved) problem of classifying pairs in which the group H
contains the inversion.

Theorem 3.3. Let L � R
3 be a lattice, and let H � O.3/ be a standard point

group acting on L; suppose .�1/ 62 H . The pair .L;H/ is equivalent to exactly
one on the following list:

1. If H � SO.3/, then the classification of pairs .L;H/ is exactly the same as that
for the group hH; .�1/i, as described in Theorem 3.1. (This case accounts for 24
different possibilities.)

2. If H D C 0
2, C

0
4, C

0
6, D

0
3, D

00
4 , D00

6 , or S 0
4, then any pair .L;H/ is equivalent

to one of the .L0;H/, where L0 is one of the lattices listed in Theorem 3.1 for
hH; .�1/i. Moreover, any two of the resulting pairs are distinct. (There are a
total of 14 possibilities.)

3. Suppose H D D0
2, D

0
4, or D0

6.
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a. If H D D0
4, then .L;H/ 	 .L0;H 0/ where L0 D LC or hx; y; 1

2
.xC yC z/i

and H 0 D D0
4 or OD0

4.
b. If H D D0

6, then .L;H/ 	 .L0;H 0/ where L0 D LP and H 0 D D0
6 or OD0

6.
c. IfH D D0

2, then .L;H/ 	 .L0;H/, where L0 is any of the lattices mentioned
in Corollary 3.1, or .L;H/ 	 .L0;D0

22
/, where

L0 D
�
x; y;

xC z
2

�
:

(There are 11 possibilities.)

Proof. We note first that it is impossible for a pair .L;H/ to be counted twice in the
different cases (1), (2), and (3), since the point groups in question are distinguished
either by isomorphism type or by their orientation-preserving subgroups. (Note,
in particular, that the groups D0

n and D00
n (n D 4; 6) cannot be conjugate even in

GL3.R/ by the descriptions in Sect. 2.5.3.) It is therefore enough to consider each
of the cases (1), (2), and (3) individually.

1. Let H be an orientation-preserving standard point group, and let L be a lattice
satisfying H � L D L. There is some pair .L0; hH; .�1/i/ from the statement
of Theorem 3.1 such that .L; hH; .�1/i/ 	 .L0; hH; .�1/i/; that is, we can find
� 2 GL3.R/ such that �hH; .�1/i��1 D hH; .�1/i, and �L D L0. We note that
�H��1 D H since the latter groups are the orientation-preserving subgroups of
�hH; .�1/i��1 and hH; .�1/i, respectively. It follows that .L;H/ 	 .L0;H/.
Thus, any pair .L;H/ corresponds to one of the 24 listed in Theorem 3.1.

We now need to show that there are no repetitions on the given list of 24
pairs .L;H/. Suppose that .L1;H1/ 	 .L2;H2/, where each of H1, H2 is an
orientation-preserving standard point group, and L1, L2 are lattices chosen from
the statement of Theorem 3.1. We first note that H1 and H2 must be isomorphic
by the definition of arithmetic equivalence, and therefore equal since no two
groups from the list in Fig. 2.1 are isomorphic.

Thus, we assume that .L1;H/ 	 .L2;H/, where L1,L2, andH D H1 D H2

are all still as above. Let � 2 GL3.R/ be such that �L1 D L2 and �H��1 D H .
This � shows that .L1; hH; .�1/i/ 	 .L2; hH; .�1/i/. It follows that L1 D L2,
by Theorem 3.1, completing the proof.

2. Let H be one of the point groups from (2), and let L be a lattice satisfying
H �L D L. There is some pair .L0; hH; .�1/i/ from the statement of Theorem 3.1
such that .L; hH; .�1/i/ 	 .L0; hH; .�1/i/; that is, we can find � 2 GL3.R/
such that �hH; .�1/i��1 D hH; .�1/i, and �L D L0.

The group H is unique in the following sense. If K � hH; .�1/i satisfies: (i)
ŒhH; .�1/i W K� D 2; (ii) K does not contain the inversion; (iii) KC Š HC
(where HC and KC denote the orientation-preserving subgroups), and (iv)
K Š H , thenK D H . (This can be proved by enumerating the homomorphisms
� W hH; .�1/i ! Z=2Z such that �.�1/ D 1 and �.H/ D Z=2Z. The group
K must occur as the kernel of some such �, and the given conditions force
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K D H . Note that we have already seen this method of argument in the proof of
Theorem 2.3.)

Now note that �H��1 is a subgroup of hH; .�1/i satisfying (i)–(iv). It follows
that �H��1 D H . We have now shown that .L;H/ 	 .L0;H/, where L0 is one
of the lattices that is paired with hH; .�1/i in Theorem 3.1.

We should next show that there are no repetitions in our list, but the proof of
the latter fact follows the pattern from the final paragraph of the proof of (1).

3. Suppose that H D D0
4. We consider the pair .L;H/. Add the element .�1/

to the point group to get .L; hH; .�1/i/. By the arithmetic classification of
pairs with central inversion (Theorem 3.1(3)), we know that .L; hH; .�1/i/ 	
.L0; hH; .�1/i/, where

L0 D hx; y; zi or

�
x; y;

1

2
.xC yC z/

�
:

Let us suppose that �L D L0 and �hH; .�1/i��1 D hH; .�1/i. There are two
possibilities for �H��1: D0

4 and OD0
4. (One again sees this by enumerating the

homomorphisms from hDC
4 ; .�1/i to Z=2Z.) This leads to four possibilities for

.L0;H 0/, where �H��1 D H 0; we shall see that all are different.
Completely analogous reasoning shows that if H D D0

6 then there are two
possibilities: .LP;D0

6/ and .LP; OD0
6/.

Suppose H D D0
2. Consider the pair .L;H/. We add the element .�1/ to the

point group to get the pair .L; hH; .�1/i/. By Theorem 3.1(2), .L; hH; .�1/i/ 	
.L0; hH; .�1/i/, where L0 is any of the lattices listed in Corollary 3.1. Let � 2
GL3.R/ satisfy: (i) �L D L0, and (ii) �hH; .�1/i��1 D hH; .�1/i. It is not
difficult to check that �H��1 D H 0 is one of the following groups:

hRxy; Ryzi; hRxy; Rxzi; hRyz; Rxzi

where Rxy (for instance) is the reflection across the xy-plane. We note that
hRyz; Rxzi D D0

2. Thus, to summarize: we’ve shown that .L;D0
2/ 	 .L0;H 0/,

where L0 is one of the standard lattices from Corollary 3.1 and H 0 is one
of the groups above. All three of the latter groups are clearly conjugate to
D0
2, by an element O� 2 GL3.R/ that simply permutes the coordinate axes

(i.e., O�H 0 O��1 D D0
2). We conclude that .L;D0

2/ 	 . O�L0;D0
2/, where O� is a

permutation matrix and L0 is as above.
If L0 D hx; y; zi, hx; y; 1

2
.xC yC z/i, or h 1

2
.xC y/; 1

2
.xC z/; 1

2
.yC z/i, then

O�L0 D L0. It follows that these three possibilities give rise to three arithmetic
classes of the form .L0;D0

2/ (and all three are different, as we’ll see). If L0 D
hx; y; 1

2
.x C z/i, then L0 is not necessarily invariant under O� and there are two

essentially different pairs of the form . O�L0;D0
2/:

�
x; z;

1

2
.xC y/

�
and

�
x; y;

1

2
.xC z/

�
:
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(The case in which L0 D hx; y; 1
2
.y C z/i is identical with that in which L0 D

hx; y; 1
2
.xC z/i up to arithmetic equivalence, since the transposition that flips the

x- and y-coordinates normalizes D0
2.)

Now we need to show that all 11 of the above pairs are arithmetically distinct.
As always, it is enough to consider the subcases (a), (b), and (c) separately.

Consider first the case in which H D D0
2. There are five such pairs; the only

two that might be equal are .hx; z; 1
2
.xCy/i;D0

2/ and .hx; y; 1
2
.xCz/i;D0

2/. (Any
other choice of pairs is distinct by Theorem 3.1(2): here we consider the usual
reduction to point groups containing inversion.) If � normalizes D0

2 and sends
one lattice to the other, then Lemma 3.4(1) and fullness of the subgroups hxi,
hyi, hzi in both lattices imply that � factors as AB , where A is a diagonal matrix
with 1s and �1s on the diagonal, and B is a permutation matrix which leaves
the vector subspace hzi invariant. No such matrix can send the first lattice to the
second one. It follows that all five pairs with point group D0

2 are distinct. We
apply a transposition N� 2 GL3.R/ of the y- and z-coordinates to the first of these
pairs, .hx; z; 1

2
.xC y/i;D0

2/, to arrive at the pair .L0;D0
22
/ from the statement of

the theorem.
Now we consider the case in which H D D0

4. The possible arithmetic classes
are represented by four pairs .Li ;D0

4/, .Li ; OD0
4/, where Li .i 2 f1; 2g/ is one of

two lattices. We first note that two such pairs .L0;H 0/, .L00;H 0/ will represent
different classes if L0 ¤ L00 by Theorem 3.1(3).

Thus, suppose OL is one of the two possible lattices from (3). Suppose
. OL;D0

4/ 	 . OL; OD0
4/; suppose � 2 GL3.R/ satisfies � OL D OL and �D0

4�
�1 D OD0

4.
The condition �D0

4�
�1 D OD0

4 implies that � leaves the xy-plane invariant (here
we can apply Lemma 3.4(3) withH D hDC

4 ; .�1/i). Now �must send the poles
of D0

4 to those of OD0
4. It follows that � sends the groups hxi, hyi to hx C yi,

hx � yi (not necessarily in that order), and all groups in question are full in OL. It
follows that � restricts to a similarity on P.z D 0/. This leads to a contradiction,
in the following way. In the pair . OL;D0

4/, the smallest non-zero lattice point in
P.z D 0/ lies on a pole, but in the pair . OL; OD0

4/ the smallest non-zero lattice
point in P.z D 0/ does not (instead it lies on a plane of reflection for OD0

4, either
P.x D 0/ or P.y D 0/). The fact that � maps P.z D 0/ to itself by a similarity
implies that a smallest lattice point in OL\P.z D 0/must be sent to another such.
This is the contradiction.

The proof for the case H D D0
6 is similar.



Chapter 4
The Split Three-Dimensional Crystallographic
Groups

Definition 4.1. An n-dimensional crystallographic group � is a discrete, cocom-
pact subgroup of the group of isometries of Euclidean n-space. Each � 2 � can be
written in the form v� C A� , where v� 2 Rn is a translation and A� 2 O.n/. There
is a natural map � W � ! O.n/ sending v� CA� to A� , and this map is easily seen
to be a homomorphism. We get a short exact sequence as follows:

L � � � H;

where H D �.� / � O.n/ and L is the kernel. (By [Ra94, Theorem 7.4.2], L is a
lattice in R

n, and so necessarily isomorphic to Z
n.) We note that H acts naturally

on L, which makesH a point group in the sense of Definition 2.1. We say thatH is
the point group of � . The group � is a split n-dimensional crystallographic group
if the above sequence splits, i.e., if there is a homomorphism s W H ! � such that
�s D idH .

From now on, all of our crystallographic groups will be three-dimensional.

Definition 4.2. Suppose thatL is a lattice in R
3 andH � O.3/ satisfiesH �L D L.

We let � .L;H/ denote the group hL;H i.
Remark 4.1. It is straightforward to verify that every � .L;H/ is a split crystallo-
graphic group.

Theorem 4.1. Any split crystallographic group O� is isomorphic to � .L;H/, for
some lattice L � R

3 and H � O.3/ satisfying H � L D L. The groups � .L;H/
and � .L0;H 0/ are isomorphic if and only if the pairs .L;H/ and .L0;H 0/ are
arithmetically equivalent.

Proof. We prove the first statement. Let O� be a split crystallographic group, OL
denote the lattice of O� , and OH denote the point group of O� . Since O� is split, it
follows that there is a finite subgroup J of O� such that � W O� ! OH satisfies
�.J / D OH . It is routine to check that �jJ W J ! OH must also be injective. Since J

© Springer International Publishing Switzerland 2014
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42 4 The Split Three-Dimensional Crystallographic Groups

is a finite group of isometries of R3, it must be that the entire group J fixes a point
v 2 R

3. We consider the isometry Tv 2 Isom.R3/, which is simply translation by
the vector v. It follows that T �1

v JTv fixes the origin, so the map � W T �1
v JTv ! OH

is the identity. We can therefore write

1! OL! T �1
v
O� Tv ! OH ! 1;

where OH � T �1
v
O� Tv. It follows directly that O� Š T �1

v
O� Tv D h OL; OH i, proving the

first statement.
Now we prove the second statement. Assume that � .L;H/ and � .L0;H 0/ are

isomorphic. Ratcliffe [Ra94, Theorem 7.4.4] says that there is an affine bijection ˛
of R3 such that ˛� .L;H/˛�1 D � .L0;H 0/. We write ˛ D v˛CA˛ , where v˛ 2 R

3

and A˛ 2 GL3.R/. We note:

˛L˛�1 D A˛ � LI
˛H˛�1 D �

v˛ � A˛HA�1
˛ .v˛/

	C A˛HA�1
˛ :

Now ˛� .L;H/˛�1 and � .L0;H 0/ must have the same kernel and image under the
canonical projection � W Isom.R3/ ! O.3/, so A˛ � L D L0 and A˛HA�1

˛ D H 0.
(These last two equations are between kernels and images, respectively.) It follows
that .L;H/ and .L0;H 0/ are arithmetically equivalent.

If two pairs .L;H/ and .L0;H 0/ are arithmetically equivalent, then there is
� 2 GL3.R/ such that �L D L0 and �H��1 D H 0. It follows easily that
�� .L;H/��1 D � .L0;H 0/, so � .L;H/ and � .L0;H 0/ are isomorphic.

Theorem 4.2 (List of Split Three-Dimensional Crystallographic Groups). Let
x, y, and z denote the standard coordinate vectors, and let

v1 D
�
1
1
1

�
; v2 D

�
1�1
0

�
; v3 D

�
0�1
1

�
:

A complete list of the split three-dimensional crystallographic groups hL;H i (up to
isomorphism) appears in Table 4.1.

Proof. Table 4.1 lists all pairings of lattices and point groups from Theorems 3.1
and 3.3. We have already shown that no two of the pairs from Theorem 3.1 determine
the same arithmetic equivalence class (Theorem 3.2). Also, no two of the pairs from
Theorem 3.3 determine the same arithmetic class. If the pair .L1;H1/ is chosen
from the pairs listed in Theorem 3.1, and .L2;H2/ is chosen from the pairs listed
in Theorem 3.3, then .L1;H1/ 6	 .L2;H2/, since H1 contains the inversion .�1/
and H2 does not, and containing the inversion will be preserved by arithmetic
equivalence. Thus, all 73 pairs in Table 4.1 represent distinct equivalence classes.

It is clear from Theorems 3.1 and 3.3 that any pair .L;H/ is equivalent to one on
the list, since H must be conjugate to one of the standard point groups. It follows
that there are exactly 73 classes of such pairs.
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Table 4.1 The split three-dimensional crystallographic groups

L H

S
C

4 � .�1/ S
C

4 S 0

4 A
C

4 � .�1/ A
C

4 D00

4

hx; y; zi D
C

4 � .�1/ D
C

4 C 0

2 D
C

2 � .�1/ D
C

2 C 0

4

C
C

4 � .�1/ C
C

4 D0

2 C
C

2 � .�1/ C
C

2 D0

4

C
C

1 � .�1/ C
C

1
OD0

4

S
C

4 � .�1/ S
C

4 S 0

4 A
C

4 � .�1/ A
C

4 D00

4

h 1
2
.x C y C z/ ; y; zi D

C

4 � .�1/ D
C

4 C 0

2 D
C

2 � .�1/ D
C

2 C 0

4

C
C

4 � .�1/ C
C

4 D0

2 C
C

2 � .�1/ C
C

2 D0

4

OD0

4

S
C

4 � .�1/ S
C

4 S 0

4 A
C

4 � .�1/ A
C

4 D0

2

1
2
h.x C y/; .x C z/; .y C z/i D

C

2 � .�1/ D
C

2

h 1
2
.x C z/; y; zi D

C

2 � .�1/ D
C

2 D0

2 D0

22

D
C

6 � .�1/ D
C

6 C 0

6 C
C

6 � .�1/ D0

6 C
C

6

hv1; v2; v3i D
C

3 � .�1/ OD0

6 C
C

3 C
C

3 � .�1/ D0

3 D
C

3

D00

6

h 1
3
.v1 C v2 C v3/; v2; v3i D

C

3 � .�1/ D
C

3 D0

3 C
C

3 � .�1/ C
C

3

hv1; 13 .v2 C v3/; v3i D
C

3 � .�1/ D
C

3 D0

3

The theorem now follows from Theorem 4.1.

Remark 4.2. Let O� be a point group. For the sake of brevity, we will sometimes
let O�i denote the split crystallographic group hLi ; O� i, where Li denotes the i th
lattice (in the order that they are listed in Table 4.1). Thus, .DC

2 /1 denotes the split
crystallographic group generated by the point group DC

2 and the standard cubical
lattice.

We will let �i denote the i th maximal split crystallographic group; i.e., the
pairing of the i th lattice with the largest point group from Table 4.1. Thus, for
instance, �1 denotes the group hx; y; zi Ì .SC

4 � .�1//.



Chapter 5
A Splitting Formula for Lower Algebraic
K -Theory

Let � be a three-dimensional crystallographic group with lattice L and point group
H . (We do not assume that � is a split crystallographic group.) In this chapter, we
describe a simple construction of EVC.� / and derive a splitting formula for the
lower algebraic K-theory of any three-dimensional crystallographic group.

5.1 A Construction of EFIN.� / for Crystallographic Groups

We will need to have a specific model of EFIN .� / for our crystallographic
groups � .

Proposition 5.1. If � is a three-dimensional crystallographic group, then there is
an equivariant cell structure on R

3 making it a model for EFIN .� /.

Proof. For every crystallographic group � , there is a crystallographic group � 0 of
the same dimension, called the splitting group of � ([Ra94, pp. 312–313]), and an
embedding � W � ! � 0. The group � 0 is a split crystallographic group in our sense,
by Lemma 7 on page 313 of [Ra94]. It is therefore sufficient to prove the proposition
for every split three-dimensional crystallographic group. Table 4.1 shows that all of
the split crystallographic groups are subgroups of seven maximal ones (consider the
pairing of the maximal point group with each of the seven lattices). We will show
in Chap. 6 (without circularity) that each of these maximal groups has the required
model. The proposition now follows easily.

5.2 A Construction of EVC.� / for Crystallographic Groups

Let � be a three-dimensional crystallographic group. We begin with a copy
of EFIN .� /, which we can identify with a suitably cellulated copy of R

3 by
Proposition 5.1. For each ` 2 L such that ` generates a maximal cyclic subgroup of

© Springer International Publishing Switzerland 2014
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46 5 A Splitting Formula for Lower Algebraic K-Theory

L, we define

R
2
` D f Ò � R

3 j Ò is a line parallel to h`ig;

where h`i denotes the one-dimensional vector subspace spanned by `. Consider`
h`i R2`, where the disjoint union is over all maximal cyclic subgroups h`i of L. We

define a metric on
`

h`i R2` as follows. If `1; `2 2 `h`i R2`, we set d.`1; `2/ D 1
if `1 and `2 are not parallel, and d.`1; `2/ D K if `1 is parallel to `2 and K D
minfdR3 .x; y/ j x 2 `1; y 2 `2g. One readily checks that d is a metric on

`
h`i R2`,

and that each R
2
` is isometric to R

2. We will therefore freely refer to the R
2
` as

“planes” in what follows. Moreover, � acts by isometries on
`

h`i R2`.
Next we would like to introduce an equivariant cell structure on

`
h`i R2`. Choose

a plane R
2
`.

Definition 5.1. Let � W � ! H be the usual projection into the point group. We
let Hh`i D fh 2 H j h � h`i D h`ig and � .`/ D ��1.Hh`i/.

It is straightforward to check that � .`/ acts on R
2
`. Since h`i is a maximal cyclic

subgroup of L, we can choose a basis f`1; `2; `3g of L, with `3 D `. Each of the `i
can be written `i D ˛i`C Òi , where ˛i 2 R and Òi is perpendicular to `. Since `1,
`2, and `3 are linearly independent over R, the same must be true of Ò1 and Ò2. The
translation ` acts trivially on R

2
`, so the action of L on R

2
` is the same as the action

of h Ò1; Ò2i. In particular, the action of L has discrete orbits, from which it follows
readily that the action of � .`/ on R

2
` has discrete orbits. We can therefore find a

� .`/-equivariant cell structure on R
2
` making it a � .`/-CW complex.

Now we choose a (finite) left transversal T � H of � .`/ in � . For each t 2 T ,
we cellulate R

2
t �` using the equality R

2
` D t � R2` (that is, for each cell � � R

2
`, we

let t � � be a cell in the cellulation of R2t �`). The result is an equivariant cellulation of
all of � � R2`, which is a disjoint union of finitely many planes. We can continue in
the same way, choosing a new plane R

2
`0 and applying the same procedure, until we

have cellulated all of
`

h`i R2`. The space
`

h`i R2` is a � -CW complex with respect
to the resulting cellulation.

Proposition 5.2. Let Y D EFIN .� / and Z D `
h`i R2`. The space X D Y � Z is

a model for EVC.� /.

Proof. Since Y and Z are � -CW complexes, the join X inherits a natural � -CW
complex structure. For G � � and W 2 fX; Y;Zg, we let FixW .G/ D fw 2
W j g � w D w for all g 2 Gg. We note that FixW .G/ is a subcomplex of W , and
FixX.G/ D FixY .G/ � FixZ.G/, for all G � � .

Let G 2 VC.� /. There are two cases. Assume first that G is finite. In this case,
FixX.G/ D FixY .G/�FixZ.G/, where FixY .G/ is contractible by our assumptions.
It follows that FixX.G/ is contractible.

If G is infinite and virtually cyclic, then there is a cyclic subgroup hgi � L

having finite index in G such that hgi E G. This group hgi is contained in a
maximal cyclic subgroup h`i of L. The kernel of the action of G on R

2
` therefore
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contains hgi. It follows that the fixed set of the action of G on R
2
` is the same as the

fixed set of the action of G=hgi on R
2
`. The latter group is a finite group acting by

isometries, so the fixed set is contractible. In particular, FixX.G/\R2` is contractible.
Now we claim that FixX.G/ D FixX.G/ \ R

2
` (i.e., that FixX.G/ � R

2
`). Indeed, it

is enough to check that FixX.G/ \ R
2
`0 D ; for h`0i ¤ h`i and FixX.G/ \ Y D ;.

The latter equality follows directly from the definition of Y . If h`0i ¤ h`i, then
g acts as Og on R

2
`0 , where Og is the component of g perpendicular to `0. The claim

follows directly.
Now suppose that G … VC.� /. It follows that rk.G \ L/ � 2. One easily sees

that G \ L cannot have any global fixed point in any R
2
` and FixY .G \ L/ D ; by

definition. It follows that FixX.G/ D ;, as required.

5.3 A Splitting Formula for the Lower Algebraic K -Theory

In the next chapters, we will use the following theorem to compute the lower
algebraic K-theory of the integral group ring of all 73 split three-dimensional
crystallographic groups. Our goal in this section is to provide a proof.

Theorem 5.1. Let � be a three-dimensional crystallographic group. For n � 1, we
have a splitting

H�
n .EVC.� /IKZ

�1/

Š H�
n .EFIN .� /IKZ

�1/˚
M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/:

The indexing set T 00 consists of a selection of one vertex v 2 `h`i R2` from each
� -orbit of such non-negligible vertices.

We refer the reader to Definition 5.3 for a definition of negligible. We will eventually
see that T 00 is finite. Note that Theorem 5.1 used the following definition.

Definition 5.2. Let G be a group acting on a set X . If A � X , we let GA D fg 2
G j g � A D Ag.

For each maximal cyclic subgroup h`i � L, we set

VCh`i D VC \ fG � � .`/ j jG \ h`ij D 1 if jGj D 1g:

In words, VCh`i is the collection consisting of finite subgroups of � .`/ and the
infinite virtually cyclic subgroups of � .`/ that contain some non-zero multiple of
the translation `. It is easy to check thatVCh`i is a family of subgroups in � .`/.

The point group H acts on the set of maximal cyclic subgroups in L by the rule
h � h`i D hh.`/i. We choose a single maximal cyclic subgroup from each orbit and
call the resulting collection T .
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Proposition 5.3. Assume that � is given the discrete topology. We continue to write
Y D EFIN .� / and Z D`h`i R2` when convenient.

1.
`

h`i R2` is homeomorphic to
`

h`i2T � �� .`/ R2` by a homeomorphism that is
compatible with the � -action. (Here the action on the latter space is given by the
rule � � .� 0; `0/ D .�� 0; `0/.) Each R

2
` is a model for EVC

h`i
.� .`//.

2.
`

h`i Y �R2` is homeomorphic to
`

h`i2T � �� .`/ .Y �R2`/ by a homeomorphism
that is compatible with the � -action. Each Y � R

2
` is a model for EFIN.� .`//.

The space
`

h`i Y �R2` can be identified with Y �Z � f1=2g � Y �Z and
`

h`i R2`
can be identified with the bottom of the join Y �Z.

Proof. We prove (1), the proof of (2) being similar. Consider the � -space � �`
h`i2T R2`, where � acts by left multiplication on the first coordinate and trivially

on the second coordinate. We let
`

h`i2T � �� .`/R2` be the usual Borel construction
(so that � acts only on the first coordinate). We regard

`
h`i R2` as a � -space with

respect to its usual action.
Define maps �1 W � � `h`i2T R2` !

`
h`i2T � �� .`/ R2` and �2 W � �`

h`i2T R2` !
`

h`i R2` by the rules �1.�; x/ D .�; x/ and �2.�; x/ D � � x. Both of
these are quotient maps and commute with the � -action.

We claim that �1 is constant on point inverses of �2 and �2 is constant on
point inverses of �1. It will then follow from a well-known principle (see [Mu00,
Theorem 22.2]) that there is a � -homeomorphism f W `h`i2T � �� .`/ R2` !`

h`i R2` such that f ı �1 D �2.

Let � 2 � and x 2 R
2
` for some h`i 2 T . One easily checks that

��1
1 .�; x/ D f.� Q�; Q��1 � x/ j Q� 2 � .`/g:

It follows directly that �2.��1
1 .�; x// D f� � xg (a singleton), as required.

If x 2`h`i R2`, then

��1
2 .x/ D f. O�; Ox/ j O� � Ox D xg:

Now we suppose that .�1; x1/ and .�2; x2/ are in ��1
2 .x/. It follows that �1 � x1 D

�2 � x2, so ��1
2 �1 � x1 D x2. Since x1 and x2 are in the same � -orbit, it must be

that both are in R
2
`, for some h`i 2 T . It then follows that ��1

2 �1 2 � .`/. Now we
apply �1:
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�1.�1; x1/ D .�1; x1/
D .�2.��1

2 �1/; x1/

	 .�2; ��1
2 �1 � x1/

D .�2; x2/
D �1.�2; x2/

It follows that �1.��1
2 .x// is a singleton, as required.

We have now demonstrated the existence of f . The remaining statements are
straightforward to check.

Proposition 5.4. Let � be a three-dimensional crystallographic group. For all n 2
Z, we have a splitting

H�
n .EVC.� /IKZ

�1/

Š H�
n .EFIN .� /IKZ

�1/˚
M

h`i2T
H�.`/
n .EFIN .� .`//

! EVC
h`i
.� .`//IKZ

�1//;

where H�.`/
n .EFIN.� .`// ! EVC

h`i
.� .`//IKZ

�1/ denotes the cokernel of the
relative assembly map

H�.`/
n .EFIN .� .`//IKZ

�1/ �! H�.`/
n .EVC

h`i
.� .`//IKZ

�1/:

The proof of this proposition resembles others that have appeared in [J-PL06]
and [LO09].

Proof. Let us work with the explicit model X for EVC.� / constructed in Propo-
sitions 5.2 and 5.3. Since X is obtained as a join, there exists an obvious map
	 W X ! Œ0; 1�, which further has the property that every point pre-image is � -
invariant. In particular, corresponding to the splitting of Œ0; 1� into Œ0; 2=3/[.1=3; 1�,
we get a � -invariant splitting of X . If we let A D 	�1Œ0; 2=3/, B D 	�1.1=3; 1�,
then from the Mayer–Vietoris sequence in equivariant homology (and omitting
coefficients in order to simplify our notation), we have that:

: : :! H�
n .A \ B/! H�

n .A/˚H�
n .B/! H�

n .X/! : : :

Next, observe that we have obvious � -equivariant homotopy equivalences:

• A D 	�1Œ0; 2=3/ ' 	�1.0/ D EFIN .� /
• B D 	�1.1=3; 1� ' 	�1.1/ D`h`i2T � �� .`/ EVCh`i

.� .`//

• A \ B D 	�1.1=3; 2=3/ ' 	�1.1=2/ D`h`i2T � �� .`/ EFIN .� .`//
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Now, using the induction structure and the fact that our equivariant generalized
homology theory turns disjoint unions into direct sums, we can evaluate the terms
in the Mayer–Vietoris sequence as follows:

: : :!
M

h`i2T
H�.`/
n .EFIN .� .`///! H�

n .EFIN.� //˚
M

h`i2T
H�.`/
n .EVC

h`i
.� .`//

! H�
n .EVC.� //! : : :

Next, we study the relative assembly map

ˆh`i W H�.`/
n .EFIN .� .`///! H�.`/

n .EVC
h`i
.� .`//:

We claim ˆh`i is split injective. This can be seen as follows. Consider the following
commutative diagram:

where ˛ and ˇ are the relative assembly maps induced by the inclusions VCh`i 

VC and FIN 
 VC. Recall that Bartels [Bar03] has established that for any group
G, the relative assembly map:

HG
n .EFIN .G/IKZ

�1/! HG
n .EVC.G/IKZ

�1/

is split injective for all n. Using this result from Bartels, it follows that

ˇ W H�.`/
n .EFIN .� .`/// �! H�.`/

n .EVC.� .`//

is split injective. Therefore ˆh`i is also split injective.
Now, for each integer n, the above portion of the Mayer–Vietoris long exact

sequence breaks off as a short exact sequence (since the initial term injects). Since
the map from the H�

n .EFIN .� //! H�
n .EVC.� // is also split injective (from the

Bartels result), we obtain an identification of the cokernel of the latter map with the
cokernel of the map

M

h`i2T
H�.`/
n .EFIN .� .`/// �!

M

h`i2T
H�.`/
n .EVC

h`i
.� .`/// (5.1)
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Next, since the inclusion map

a

h`i2T
� �� .`/ EFIN .� .`// �!

a

h`i2T
� �� .`/ EVC

h`i
.� .`//

is the disjoint union of cellular � .`/-maps (for all h`i 2 T ), we see that the
maps given in (1) split as a direct sum (over h`i 2 T ) of the relative assembly
maps H�.`/

n .EFIN .� .`/// ! H
�.`/
n .EVC

h`i
.� .`///: This immediately yields a

corresponding splitting of the cokernel, completing the proof of the proposition.

The next step is to analyze the summands

H�.`/
n .EFIN .� .`//! EVC

h`i
.� .`//IKZ

�1/

from Proposition 5.4.
We fix a maximal cyclic subgroup h`i � L for the remainder of this chapter.

We note that the space R
3 �R2` is a model for EVC

h`i
.� .`//, where both factors are

given � .`/-equivariant cell structures and the action of � .`/ is the usual one.
Next we will need to describe the class of negligible groups.

Remark 5.1. If G 2 VC, then G has one of three possible forms:

1. G is finite, or
2. G is infinite virtually cyclic of type I; that is, G admits a surjective homomor-

phism onto Z with finite kernel. Such a group will necessarily have the form
G Š F Ì Z, where F is the kernel of the surjection onto Z, or

3. G is infinite virtually cyclic of type II; that is, G admits a surjective homomor-
phism onto D1 with finite kernel. In this case, G Š A �F B , where A, B , and
F are finite groups, and F has index two in both A and B .

Definition 5.3. A group G 2 VC is negligible if:

1. for each finite subgroup H � G, H is isomorphic to a subgroup of S4 (the
symmetric group on four symbols), and

2. if G 2 VC1, then the finite group F from Remark 5.1 has square-free order.

(Thus, a finite group G is negligible if it is isomorphic to a subgroup of S4. An
infinite virtually cyclic group of type I is negligible if F is of square-free order
and isomorphic to a subgroup of S4. An infinite virtually cyclic group of type II
is negligible if the factors A and B are isomorphic to subgroups of S4, and F has
square-free order.)

We will also say that a cell � is negligible if its stabilizer group is negligible.

Remark 5.2. This is the first of two different definitions of “negligible” that we will
use. We will need a different definition in Chaps. 8 and 9.

Definition 5.3 allows us to describe classes of cells that make no contribution to
K-theory (see Lemma 5.1 below), which will let us ignore them in our work.
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Lemma 5.1. LetG be a negligible group. The groups Whq.G/ are trivial for q � 1,
and the same is true for all subgroups of G.

Proof. We first note that subgroups of negligible groups are negligible.
If G is finite and negligible, then G is isomorphic to a subgroup of S4; i.e.,

G Š f1g, Z=2, Z=3, Z=4, D2, D3, D4, A4, or S4. The lemma then follows from
Table 7.1 and the accompanying discussion. (See also [LO09].)

Now we assume that G is negligible and infinite virtually cyclic of type I.
Therefore, G Š F Ì˛ Z, where F is a subgroup of S4 with square-free order.
By results of Farrell and Hsiang [FH68] and Farrell and Jones [FJ95],

Whq.F Ì˛ Z/ Š C ˚NKq.ZF; ˛/˚NKq.ZF; ˛
�1/;

where C is a suitable quotient of the group Whq�1.F /˚Whq.F / and q � 1. Since
F is finite and negligible, C is trivial. Therefore,

Whq.F Ì˛ Z/ Š 2NKq.ZF; ˛/;

since Farrell and Hsiang also show that NKq.ZF; ˛/ Š NKq.ZF; ˛
�1/. Since F

has square-free order, NKq.ZF; ˛/ is trivial for q � 1 by results of [Ha87] and
[J-PR09]. (The case in which ˛ D id was established by Harmon [Ha87], and
the general case is due to [J-PR09].) This proves the lemma in the case that G is
negligible and infinite virtually cyclic of type I.

Finally, we assume that G is negligible and infinite virtually cyclic of type II.
Therefore, we can write G Š G1 �F G2, where F has square-free order and index
two in both factors, and both G1 and G2 are isomorphic to subgroups of S4. By
results of [Wal78] (see also [CP02]),

Whq.G/ Š X ˚NKq.ZF IZŒG1 � F �;ZŒG2 � F �/;

for all q � 1, where X is a suitable quotient of Whq.G1/˚Whq.G2/. Since G1 and
G2 are negligible, both factors in the latter direct sum are trivial, so X is trivial. It
follows that

Whq.G/ Š NKq.ZF IZŒG1 � F �;ZŒG2 � F �/:

Let F Ì˛ Z be the canonical index two subgroup of G. Since NKq.ZF; ˛/ is trivial
for q � 1 by the previous case, it follows that NKq.ZF IZŒG1 � F �;ZŒG2 � F �/ is
also trivial for q � 1, by results of Lafont and Ortiz [LO08] (see also [DQR11] and
[DKR11]). It follows that Whq.G/ is trivial for q � 1 in this case as well.

Lemma 5.2. Let G � � .`/.
1. If there is a line Ò and a point p … Ò such that G fixes p and leaves Ò invariant,

then G is negligible.
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2. If G leaves a line Ò invariant and Ò \ c ¤ ; for some open 2-cell c � R
3, then

G is negligible.
3. If G fixes two points p1; p2 2 R

3 and the line �!p1p2 is not parallel to the line `,
then G is negligible.

4. If G leaves a strip Ò � Œ0;K� invariant and acts trivially on the second factor,
then G is negligible.

Proof. 1. Let Op be the point on Ò that is closest to p. We let v1 be the vector
originating at Op and terminating at p. Let v2 be a tangent vector to Ò at Op, and let
v3 be a vector that is perpendicular to v1 and v2. We note that the vectors v1, v2,
and v3 are pairwise orthogonal.

The point Op must be fixed by G, and so G must act by orthogonal matrices
with respect to the ordered basis Œv1; v2; v3�. By our assumptions, G fixes v1.
The inclusion G � v2 � fv2;�v2g holds, since Ò is G-invariant. It follows from
orthogonality that G � v3 � fv3;�v3g as well. We conclude that G is isomorphic
to a subgroup of .Z=2/2, and therefore negligible.

2. Suppose that G leaves Ò invariant, and Ò \ c ¤ ; for some open 2-cell c � R
3.

We consider the restriction homomorphism r W G ! Isom. Ò/. The kernel of this
map is a subgroup of the stabilizer group of c. It follows that j ker r j D 1 or 2.
Thus, G maps into Z or D1 with 1 or Z=2 as kernel, so G is negligible.

3. Let p1, p2 be fixed by G. We consider the line Ò through p2 that is parallel to `.
Since �!p1p2 is not parallel to `, p1 … Ò. Since G � � .`/, G leaves Ò invariant.
As a result, G is negligible by (1).

4. If G leaves a strip Ò� Œ0;K� invariant and acts trivially on the second coordinate,
then G acts on each line Ò � fkg � Ò � Œ0;K�. At least one of these lines must
meet an open 2-cell in R

3, so G is negligible by (2).

Corollary 5.1. Let Ò 2 R
2
` have a non-negligible stabilizer group. The point Ò 2

R
2
` must be a vertex, and the line Ò � R

3 occurs as a cellulated subcomplex in
EFIN .� .`//.

Proof. If Ò is not a vertex of R
2
`, then the stabilizer group of Ò leaves a strip

invariant in R
3 and acts trivially on the bounded factor, so the stabilizer group of

Ò is negligible by Lemma 5.2(4).
The second statement follows from the fact that Ò � .R3/1, by Lemma 5.2(2).

Definition 5.4. For each vertex Ò 2 R
2
` with non-negligible stabilizer, set

F. Ò/ D Ò � R
3:

Note that Ò is a cellulated line in R
3 by Corollary 5.1, so F. Ò/ is a subcomplex of

our model for EFIN .� .`//.
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Under the same assumptions on Ò, we also set

E. Ò/ D F. Ò/ � Ò:

We note that E. Ò/ is a subcomplex of EVC
h`i
.� .`// D R

3 � R2`.
Proposition 5.5. The subcomplexes

F D
a

Ò
F. Ò/; and E D

a

Ò
E. Ò/

ofEFIN .� .`// andEVC
h`i
.� .`// (respectively) are � .`/-equivariant. (The disjoint

unions are indexed over all lines Ò 2 R
2
` with non-negligible stabilizers.)

These subcomplexes also contain the only non-negligible cells in EFIN .� .`//
and EVC

h`i
.� .`// (respectively). In particular, the natural inclusions induce iso-

morphisms

H�.`/
n .F IKZ

�1/ Š H�.`/
n .EFIN .� .`//IKZ

�1/;

H� .`/
n .EIKZ

�1/ Š H�.`/
n .EVC

h`i
.� .`//IKZ

�1/:

Proof. The statement that the given subcomplexes are � .`/-equivariant follows
from the � .`/-equivariance of the indexing sets.

Now we would like to show that the given subcomplexes contain the only non-
negligible cells. It is good enough to do this for the subcomplex E D `

ÒE. Ò/,
since

F D
a

Ò
F. Ò/ D EFIN .� .`// \

a

Ò
E. Ò/:

We will consider cells in the top of the join R
3 � R2` (i.e., in R

3), then cells in R
2
`,

and finally the cells that can be described as joins of cells from R
3 and R

2
`.

We first describe the collection of all cells c � R
3 with non-negligible stabilizers.

It is clear that all such cells are 0- or 1-cells, since the stabilizer of a two-dimensional
cell � � R

3 has order at most 2, and the stabilizer of a three-dimensional cell is
necessarily trivial.

Suppose c is a 0-cell in R
3 and c has non-negligible stabilizer. We consider the

line Ò that is parallel to ` and passes through c. Thus Ò 2 R
2
` has a non-negligible

stabilizer (since the stabilizer of c is contained in the stabilizer of Ò), so it must be a
vertex. It now follows that c 2 E. Ò/.

Now suppose that c � R
3 is an open 1-cell with non-negligible stabilizer. We

choose two points p1; p2 2 c. The stabilizer group of c fixes both p1 and p2.
Since the latter group is non-negligible, it must be that  �!p1p2 D Ò is parallel to `
by Lemma 5.2(3), so Ò 2 R

2
`. The stabilizer group of Ò is non-negligible since it
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contains the stabilizer group of c. Thus, Ò is a vertex in R
2
`, and c � E. Ò/. This

concludes our analysis of cells in R
3; we have shown that all non-negligible cells in

R
3 are contained in E.
We next consider the cells of R2`. Corollary 5.1 shows that each open cell c � R

2
`

of dimension greater than 0 has negligible stabilizer. Thus, if c � R
2
` has non-

negligible stabilizer, then c is a vertex, so c 2 E.c/.
Finally, we consider the cells c D c1 � c2 having non-negligible stabilizer, where

c1 � R
3, c2 � R

2
` are open cells. Since Gc D Gc1 \ Gc2 , both c1 and c2 have

non-negligible stabilizer groups. It follows from Corollary 5.1 that c2 is a vertex
(in R

2
`/ and a line in R

3. Since Gc is non-negligible, we must have c1 � c2 by
Lemma 5.2(1). Thus, c � E.c2/. We have now shown that all of the non-negligible
cells are in E.

The final statement now follows from Lemma 5.1. Indeed, consider the inclusion
of F into EFIN .� .`//. The only cells to have non-zero K-groups are contained
in the image (by the above argument and Lemma 5.1), proving that the inclusion
induces an isomorphism. The other case is similar.

Proposition 5.6. We have a � .`/-homeomorphism

h W
a

Ò2T 0

� .`/ �� .`/
Ò
X. Ò/!

a

Ò
X. Ò/;

where X 2 fE;F g and T 0 is a selection of one vertex Ò from each � .`/-orbit of
non-negligible vertices in R

2
`. The domain is a � .`/-space relative to the action that

is trivial on the second coordinate, and left multiplication on the first.
Moreover, each F. Ò/ is a model for EFIN.� Ò/, and each E. Ò/ is a model for

EVC.� Ò/.

Proof. The argument is similar to the proof of Proposition 5.3. We will prove
the proposition in the case X D E, the other case being similar. Consider the
commutative diagram:

The space on top is a � .`/-space relative to the action � 0 � .�; x/ D .� 0�; x/. We set
�1.�; x/ D .�; x/ and �2.�; x/ D � � x. As in the proof of Proposition 5.3, we will
show that �1 is constant on point inverses of �2, and �2 is constant on point inverses
of �1. This will establish the existence of the desired � .`/-homeomorphism h, since
both �1 and �2 are quotient maps that commute with the � .`/-action.
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Choose .�; x/ 2` Ò2T 0
� .`/ �� .`/

Ò
E. Ò/. We have the equality

��1
1 .�; x/ D f.��1; ��1

1 x/ j �1 2 � .`/ Òg:

It follows directly that �2.��1
1 .�; x// D f� � xg, as required.

Now we choose an arbitrary x 2` ÒE. Ò/. We have

��1
2 .x/ D f.�; z/ j � � z D xg:

We choose two elements of the latter set, .�1; z1/ and .�2; z2/. It follows directly that
��1
2 �1 � z1 D z2, so z1 and z2 are in the same � .`/-orbit. Given the nature of the

indexing set T 0, it must be that both z1 and z2 are in E. Ò/, for some non-negligible
vertex Ò 2 R

2
`. It now follows that ��1

2 �1 2 � .`/ Ò. Thus,

�1.�1; z1/ D .�2��1
2 �1; z1/

	 .�2; ��1
2 �1z1/

D .�2; z2/
D �1.�2; z2/

It follows that �1 is constant on point inverses of �2, as required. The existence of
the homeomorphism h follows directly.

Finally, we note that � .`/ Ò D � Ò is an infinite virtually cyclic group. Since F. Ò/
is simply a cellulated line, and E. Ò/ is the join of F. Ò/ with a point, both are well-
known models for EFIN .� Ò/ and EVC.� Ò/, respectively.

Remark 5.3. We note that � Ò denotes the same subgroup of � no matter whether

we view Ò as a vertex in R
2
` or as a line in R

3.

Proof (Proof of Theorem 5.1). Combining Propositions 5.5, 5.6, and the fact that
our equivariant generalized homology theory turns disjoint unions into direct sums,
we obtain the following isomorphisms

H�.`/
n .EFIN .� .`//IKZ

�1/ Š
M

Ò2T 0

H
�

Ò

n .EFIN .� Ò/IKZ
�1/; and

H�.`/
n .EVC

h`i
.� .`//IKZ

�1/ Š
M

Ò2T 0

H
�

Ò

n .EVC.� Ò/IKZ
�1/:

We immediately get an identification of the cokernel of the relative assembly map
H
�.`/
n .EFIN .� .`//IKZ

�1/! H
�.`/
n .EVC

h`i
.� .`//IKZ

�1/ with the direct sum
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of the cokernels of the relative assembly maps

H
�

Ò

n .EFIN .� Ò/IKZ
�1/! H

�
Ò

n .EVC.� Ò/IKZ
�1/:

Since � Ò 2 VC, then EVC.� Ò/ D f�g, and the summands in Proposition 5.4 are

H�.`/
n .EFIN .� .`//! EVC

h`i
.� .`/// Š

M

Ò2T 0

H
�

Ò

n .EFIN .� Ò/! �/:

Finally, combining these observations with Proposition 5.4 completes the proof.



Chapter 6
Fundamental Domains for the Maximal Groups

The classification of split three-dimensional crystallographic groups from Theo-
rem 4.2 shows that seven of the groups contain all of the others as subgroups. For
i D 1; : : : ; 7, we let �i D hLi ;Hi i, where Li is the i th lattice (in the order that the
lattices are listed in Table 4.1) and Hi is the maximal point group to be paired with
Li . For instance,

�4 D
��
1

2
.xC z/; y; z

�
;DC

2 � .�1/
�
:

For the computations of K-groups in subsequent chapters, we will need to
find fundamental polyhedra for the groups �i . We review a case of Poincare’s
fundamental polyhedron theorem in Sect. 6.1, describe equivariant cell structures
and cell stabilizers in Sect. 6.2, and then describe the seven fundamental domains in
the remaining sections.

6.1 A Special Case of Poincare’s Fundamental Polyhedron
Theorem

In this section, we collect a number of results from [Ra94]. We state each result only
for Rn and only for convex compact polyhedra, although usually the corresponding
theorem (or definition) in [Ra94] is more general. All page citations in the current
section are from [Ra94], unless otherwise noted.

Definition 6.1. If P � R
n is the set of solutions to a system of finitely many linear

inequalities, and P is compact, then we say that P is a convex compact polyhedron.
Suppose that P is m-dimensional. We let @P denote the topological boundary of
P in the unique m-plane hP i containing P . The interior of P is P � @P . A side
of a convex compact polyhedron is a non-empty maximal convex subset of @P . If

© Springer International Publishing Switzerland 2014
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P has dimension m > 0, then each side of P is a convex compact polyhedron of
dimension m � 1. A ridge of P is a side of a side of P .

(Notes: our definition of convex compact polyhedra combines Ratcliffe’s defi-
nition of convex polyhedra (p. 205) with his characterization of convex compact
polyhedra (Theorem 6.3.7, p. 209). The definitions of @P , side, and ridge occur on
pages 199, 202, and 207, respectively.)

Definition 6.2. Let P be a convex compact n-dimensional polyhedron in R
n. A

side-pairing (cf. G-side-pairing, p. 694) for P is a set

˚ D f�S 2 Isom.Rn/ j S 2 Sg

indexed by the collection S of all sides of P such that, for each S 2 S:

1. There is a side S 0 of P such that �S.S 0/ D S .
2. If �S.S 0/ D S , then the isometries �S and �S 0 satisfy �S 0 D ��1

S .
3. The polyhedra P and �S.P / satisfy P \ �S.P / D S .

The pairing of side points by elements of˚ generates an equivalence relation on @P .
The equivalence classes are called cycles of ˚ (p. 694). We let Œx� denote the cycle
containing x. We say that the cycle Œx� is a ridge cycle (p. 694) if some (equivalently,
any) representative of Œx� lies in the interior of a ridge of P .

Let Œx� D fx1; : : : ; xmg be a finite ridge cycle of ˚ . Each xi is contained in
exactly two sides of P (Theorem 6.3.6, p. 207), so xi is paired to at most two other
points of Œx� for each i . Therefore, we can reindex the set fx1; : : : ; xmg such that

x1 ' x2 : : : ' xm;

where, for i D 1; : : : ; m � 1, xi ' xiC1 if and only if some element �.xi / D xiC1
for some � 2 ˚ . The ridge cycle Œx� is said to be dihedral (p. 695) if the sides S1 and
Sm of P are such that xi 2 Si and �Si is the reflection of Rn in hSi i for i D 1;m.
(Note that if �Si is a reflection in Si , then xi is paired with at most one other point
by the relation ', so such points xi can only appear at the beginning or end of the
sequence x1; : : : ; xm.) Otherwise, Œx� is said to be cyclic (p. 695).

If S1 and S2 are two sides of a convex polyhedron P , and the vectors N1 and N2
are the outward-pointing unit normal vectors, then the dihedral angle between S1
and S2 is


.S1; S2/ D � � arccos.N1 �N2/:

The dihedral angle sum (p. 695) of the ridge cycle Œx� is


Œx� D 
1 C : : :C 
m;

where 
i is the dihedral angle between the two sides containing xi .
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The side-pairing ˚ is subproper (p. 695) if and only if each cycle of ˚ is finite,
each dihedral ridge cycle of ˚ has dihedral angle sum an integral submultiple of � ,
and each cyclic ridge cycle of ˚ has dihedral angle sum an integral submultiple of
2� .

Definition 6.3. A subset R of R
n is a fundamental domain (p. 234) for a group

� � Isom.Rn/ if and only if

1. the set R is open in R
n;

2. the members of fgR j g 2 � g are pairwise disjoint;
3. R

n DSfgR j g 2 � g, and
4. R is connected.

We say that R is locally finite (p. 237) if the collection fgR j g 2 � g is locally
finite, i.e., if, for every x 2 R

n, there is an open ball around x meeting only finitely
many members of fgR j g 2 � g.

A convex compact fundamental polyhedron (p. 247) for a discrete group � �
Isom.Rn/ is a convex compact polyhedron P such that the interior of P is a locally
finite fundamental domain for � . We say that such a P is exact (p. 250) if and only
if for each side S of P there is an element g 2 � such that S D P \ gP . (If P is
exact, then the element g is unique (Theorem 6.6.3, p. 251).)

We can now state the relevant special case of Poincaré’s fundamental polyhedron
theorem.

Theorem 6.1 ([Ra94, p. 711]). If ˚ is a subproper side-pairing of a convex
compact polyhedron P � R

n, then the group � generated by ˚ is discrete, and
P is an exact convex compact fundamental polyhedron for � .

Proof. The general statement in [Ra94] has an additional condition in the
hypothesis—namely, that the .Rn; Isom.Rn//-orbifold M obtained from P by
gluing together the sides of P by ˚ is complete. For convex compact Euclidean
polyhedra P , this condition is automatically satisfied under the given hypothesis
(Theorem 13.4.2, p. 704).

Corollary 6.1. If P is a convex compact n-dimensional polyhedron in R
n, and the

dihedral angle between any pair of adjacent sides of P is a submultiple of � , then
the group � generated by the reflections in all of the sides of P is discrete, and P
is an exact convex compact fundamental polyhedron for � .

Proof. One easily checks that the collection of reflections ˚ is a side-pairing. Each
cycle in this side-pairing consists of a single point x 2 P , so the dihedral angle sum
of any ridge cycle is a submultiple of � by the assumption about P . It follows that
˚ is a subproper side-pairing, and one can apply Theorem 6.1.
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6.2 Cell Structures and Stabilizers

6.2.1 Standard Cellulations and Equivariant Cell Structures

Definition 6.4. An open cell of dimension n is a space homeomorphic to .0; 1/n,
or, if n D 0, to a singleton set. If X is a Hausdorff space, then a CW structure on X
[H, Proposition A.2] is a collection C of open cells in X such that

1. the elements of C are pairwise disjoint, and their union is X ;
2. the boundary @.e/ D Ne � e of an element e 2 C is contained in the union of

elements from C of lower dimension, and
3. a subset U of X is closed if and only if U \ e is closed as a subset of e, for all
e 2 C.

Definition 6.5. Let P be a convex compact three-dimensional polyhedron in R
3,

and let ˚ be a subproper side-pairing of P . If all cycles Œx� of ˚ meet the interiors
of ridges and sides of P in at most one point, then the standard cellulation of P is
the set whose members are vertices of P , interiors of ridges of P , interiors of sides
of P , and the interior of P itself.

If a cycle Œx� meets the interior of a ridge or a side in two points, then we call
this ridge or side bad. (Note that, under the current hypotheses, it is impossible for a
cycle Œx� to meet the interior of a ridge or side in more than two points.) If P has bad
ridges or bad sides, then we divide each bad ridge or side exactly in half to arrive
at the standard cellulation of P . The operation of subdivision is self-explanatory in
the case of bad ridges. If a side S is bad, then we choose two points x; y 2 S such
that both are in the same cycle, and both lie in the interior of S . We let ` denote the
perpendicular bisector of Œx; y� in hSi. The isometry �S 2 Isom.R3/ maps the side
S to itself, and interchanges x and y. It follows that �S.`/ D `. Now either �S fixes
` pointwise or �S reverses the orientation of `. In the former case, we can simply
subdivide the side S along `. In the latter case, we must subdivide S along ` and
also introduce a vertex at the midpoint of ` \ S .

Theorem 6.2 (Equivariant Cell Structures). If ˚ is a subproper side-pairing of
a convex compact three-dimensional polyhedron P � R

3, and � D h˚i, then the
standard cellulation C of P extends to a � -equivariant CW structure OC on all of
R
3.
If g 2 � leaves a cell e 2 OC invariant, then g fixes e pointwise.

Proof. Theorem 6.1 shows that P is an exact convex compact fundamental
polyhedron for the action of � on R

n, and that � is discrete. Ratcliffe [Ra94,
Theorem 6.7.1] implies that

P D fgP j g 2 � g

is an exact tessellation of R
n. This means [Ra94, p. 251] that P satisfies the

following conditions:
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1. if g1; g2 2 � , and g1 ¤ g2, then the interiors of g1P and g2P are disjoint;
2. the union of the polyhedra in P is Rn;
3. the collection P is locally finite, and
4. each side of a polyhedron in P is a side of exactly two polyhedra P and Q in P.

(This last condition is the definition of exactness.)

It is not difficult to see that � � C will be an equivariant CW complex structure
on all of Rn if and only if the elements of � � C are pairwise disjoint. We therefore
suppose that two cells g1 �e1, g2 �e2 have a point in common, for some e1; e2 2 C. We
wish to show that g1 �e1 D g2 �e2. We can clearly assume, without loss of generality,
that g2 D 1 and that dim e1 � dim e2.

If e2 is a three-dimensional open cell (i.e., the interior of P ), then g1 � e1 is
contained in the closure of g1 � e2. It follows that g1 � e2 and e2 must have a point in
common, so g1 D 1 by property (1) of tessellations. This implies that e1 and e2 have
a point in common, which can only mean that e1 D e2, since C is a CW structure.

If e2 is a two-dimensional open cell or a one-dimensional open cell contained
in the interior of a bad side, then there is a unique side S of P containing e2. We
have e2 � int .P [ �S.P //. Since distinct translates of P can meet only in their
boundaries, and .g1P /\ int.S/ ¤ ; by our assumption, we must have g1 D �S or
g1 D 1, and we can assume that g1 D �S . The isometry �S restricts to a bijection
from S 0 to S , where S 0 is a side of P , and we allow the possibility that S 0 D S .
Since, by the construction of C, the map �S W S 0 ! S is a bijection mapping cells
of C to cells of C, the only possibility is that e1 D ��1

S .e2/, so g1 � e1 D e2.
Now suppose e2 is a one-dimensional open cell contained in a unique ridge R of

P . Ratcliffe [Ra94, Theorem 6.7.6] proves that if R is a ridge of a polyhedron P in
an exact tessellation P of R3, then the set of all polyhedra in P containing R forms
a cycle whose intersection is R. We avoid reproducing the definition of a cycle of
polyhedra here (see [Ra94, p. 256]), but this theorem implies that R is a ridge of
each of the polyhedra in the cycle, and that the interior of R lies in the interior of
the union of the polyhedra in the cycle. It follows that there is some ridge R1 of P
such that e1 � R1 and g1 �R1 D R.

We can conclude that g1 � e1 D e2 provided that R1 is a bad ridge if and only if R
is bad as well. Suppose that R1 is a bad ridge. This means that there is x 2 R1 such
that Œx� meets the interior of R1 in two points, say x and x0. It follows that g1 � Œx�
meets the interior of R in two points, g1 � x and g1 � x0. Theorem 6.7.5 from [Ra94]
says that Œx� D P \� x, so g1 �x; g1 �x0 2 Œx�. It follows thatR is bad. The converse
is proved in the same way. It follows that g1 � e1 D e2.

Finally, there is nothing to prove if e2 is zero-dimensional.
The final statement is an easy consequence of the fact that each cycle Œx� meets

a given cell of C in at most one point, and the fact that Œx� D P \ � � x.
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6.2.2 Computation of Cell Stabilizers and Negligible Groups

We will soon want to compute the stabilizer groups �v, where � is a split
crystallographic group and v 2 R

3. The following lemma affords an effective
procedure for computing such groups. The proof is elementary and will be omitted.

Lemma 6.1. Assume that � is a split crystallographic group: � D hL;H i. Let
� W � ! H be the natural projection into the point group H .

1. �.�v/ D fh 2 H j v � hv 2 Lg, and
2. the map � W �v ! H is injective. Thus, we can uniquely recover �v from �.�v/.

ut
Let � � R

3 be a cell. If the stabilizer group �� and all of its subgroupsK satisfy
Whq.K/ D 0 for q � 1, then � makes no contribution in the calculation of Whq.� /
(q � 1). The following definition will give us a systematic way to ignore such cells,
based on the isomorphism types of their stabilizer groups.

Definition 6.6. A group is negligible if it is isomorphic to a subgroup of S4. We
will also say that a cell is negligible if its stabilizer group is negligible in the above
sense.

Remark 6.1. We note that Definition 6.6 is equivalent to Definition 5.3 for finite
groups G.

Proposition 6.1. If � D hL;H i, where H � SC
4 � .�1/, and v 2 R

3 satisfies
2v 62 L, then the stabilizer group �v is negligible.

Proof. Note that v � .�1/v D 2v … L, so .�1/ … �.�v/ by Lemma 6.1(1). The
homomorphism � W �v ! H is injective, so �v is isomorphic to a subgroup of
SC
4 � .�1/ that does not contain .�1/. All such groups are isomorphic to subgroups

of S4, so �v is negligible.

6.3 A Fundamental Polyhedron for �1

Recall that �1 D hx; y; zi Ì .SC
4 � .�1//. We consider the convex compact

polyhedron

P D


.x; y; z/ 2 R

3 j 0 � z � y � x � 1

2

�
:

The set P is the tetrahedron pictured in Fig. 6.1. (Note that the shape of the given
tetrahedron is not intended to be accurate.)

The sides fS1; S2; S3; S4; g are contained in the planes y D z, z D 0, x D y,
and x D 1=2, respectively. The outward unit normal vectors N1;N2;N3;N4 are,



6.3 A Fundamental Polyhedron for �1 65

0

1
2 (x y)

1
2 (x y z)

1
2 x

S 1
(Bottom)

S 2

S 3

(Back)

S 4


S 2

4

S 1 S 3 S 4

4

Fig. 6.1 The tetrahedron on the left is a fundamental domain for the action of �1 on R
3. (The

precise shape of the tetrahedron is not intended to be accurate.) The group �1 is a Coxeter group.
Its Coxeter diagram appears on the right

respectively,

1p
2
.�yC z/ ; �z;

1p
2
.�xC y/ ; x:

The dihedral angles are easy to compute:


.S1; S2/ D �=4; 
.S1; S3/ D �=3;

.S1; S4/ D �=2; 
.S2; S3/ D �=2;

.S2; S4/ D �=2; 
.S3; S4/ D �=4:

Since all of these are submultiples of � , it follows from Corollary 6.1 that the group
�P generated by reflections in the sides of P is discrete, and that P is an exact,
convex compact fundamental polyhedron for �P . Furthermore,

�P D
D�

1 0 0
0 0 1
0 1 0

�
;
�
1 0 0
0 1 0
0 0 �1

�
;
�
0 1 0
1 0 0
0 0 1

�
;
�
1
0
0

�
C
��1 0 0

0 1 0
0 0 1

�E
;

where the isometries listed between the brackets are the reflections in S1, S2, S3,
and S4, respectively.

It is fairly easy to check that �P D �1, so P is an exact convex compact
fundamental polyhedron for the action of �1 on R

3.

Theorem 6.3. Let OC denote the �1-equivariant cell structure on R
3 determined by

the standard cellulation C of P . The quotient �1nR3 is P itself (see Fig. 6.1),
endowed with the standard cellulation C. The vertex stabilizer groups are
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determined by the following equalities (we write � in place of �1):

�.�.0;0;0// D SC
4 � .�1/:

�.�.1=2;0;0// D DC
41
� .�1/:

�.�.1=2;1=2;0// D DC
4 � .�1/:

�.�.1=2;1=2;1=2// D SC
4 � .�1/:

The stabilizer groups of all other cells are negligible.

Proof. The first statement follows from the fact that each cycle Œx� is a singleton,
and Œx� D P \ .� � x/.

We now describe the vertex stabilizer groups. The first equality is clear. By
Lemma 6.1(1), an element h 2 SC

4 � .�1/ is in �.�.1=2;0;0// if and only if
.1=2; 0; 0/ � h � .1=2; 0; 0/ 2 L. It is clear that the latter condition is satisfied
exactly when the upper left corner of the matrix h is ˙1. This proves the second
equality. One proves the third equality in a similar way: Lemma 6.1(1) implies that
h 2 SC

4 � .�1/ is in �.�.1=2;1=2;0// if and only if the bottom right entry in h is ˙1.
The fourth equality is straightforward: if h 2 SC

4 � .�1/, then h � .1=2; 1=2; 1=2/ D
.˙1=2;˙1=2;˙1=2/, where the signs may be chosen independently. It is clear then
that .1=2; 1=2; 1=2/�h�.1=2; 1=2; 1=2/ has integral entries, regardless of the choice
of h.

Proposition 6.1 shows that each edge stabilizer is negligible. Indeed, the stabilizer
of an edge is the same as the stabilizer of its midpoint, and each of these midpoints
has at least one entry which is 1=4. Since the edge stabilizers are negligible, the
stabilizers of all higher-dimensional cells are negligible as well.

6.4 A Fundamental Polyhedron for �2

We recall that

�2 D
�
1

2
.xC yC z/; y; z

�
Ì .SC

4 � .�1//:

Throughout this section, we will write � in place of �2. Consider the convex
compact polyhedron

P D ˚.x; y; z/ 2 R
3 j 0 � z � y � x � 1=2I x C y C z � 3=4� :

It is possible to check that P is the five-sided polyhedron depicted in Fig. 6.2. The
sides S1, S2, S3, S4, and S5 are contained in the planes y D z, z D 0, x D y,
x D 1=2, and xCyCz D 3=4, respectively. (Indeed, the sides Si , for i 2 f1; 2; 3; 4g,
are contained in the same planes as the corresponding sides from Sect. 6.3.)
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Fig. 6.2 This polyhedron (viewed from the positive z-direction) is a fundamental domain for �2.
The dashed segment represents an axis of rotation, not a division between faces. The sides S3 and
S4 are triangular and perpendicular to the xy-plane

The outward unit normal vectors N1, N2, N3, N4, and N5 are (respectively),

1p
2
.�yC z/ ; �z;

1p
2
.�xC y/ ; x; and

1p
3
.xC yC z/ :

The dihedral angles are as follows:


.S1; S2/ D �=4; 
.S1; S3/ D �=3;

.S1; S4/ D �=2; 
.S2; S3/ D �=2;

.S2; S4/ D �=2; 
.S3; S4/ D �=4;

.S1; S5/ D �=2; 
.S3; S5/ D �=2;


.S2; S5/ D arccos
�
1=
p
3
�
;


.S4; S5/ D arccos
�
�1=p3

�

We consider the collection ˚ D f�S1; �S2 ; �S3 ; �S4 ; �S5g, where �Si is the reflection
in the side Si , for i 2 f1; 2; 3; 4g, and �S5 is the rotation 180ı about the line through
.1=4; 1=4; 1=4/ and .1=2; 1=4; 0/ (which is dashed in Fig. 6.2). It is rather clear that
˚ is a side-pairing. We must show that ˚ is a subproper side-pairing.
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If x is a point in the interior of some ridge that is not a face of S5, then it is easy
to check that the dihedral angle sum of Œx� is a submultiple of � . There are two more
kinds of ridge cycles to consider. Each has the form fx; �S5.x/g, where �S5 2 ˚ is
the rotation about the dashed line in Fig. 6.2, and x is either on the ridge between
the sides S1 and S5, or on the ridge between S4 and S5. The dihedral angle sum of
Œx� is either


.S1; S5/C 
.S3; S5/ or 
.S4; S5/C 
.S2; S5/;

both of which are equal to � . It follows that ˚ is a subproper side-pairing, so
Theorem 6.1 applies. The polyhedron P is therefore an exact convex compact
fundamental polyhedron for the action of h˚i on R

3.
We need to show that � D h˚i. We note that f�S1; �S2 ; �S3 ; �S4g is a set that

generates �1 by the argument of Sect. 6.3. Furthermore, we have

�S5 D
�
1=2
1=2
1=2

�
C
�

0 0 �1
0 �1 0�1 0 0

�
:

It easily follows that h˚i D � , so P is an exact convex compact fundamental
polyhedron for the action of � on R

3.

Theorem 6.4. Let OC denote the � -equivariant cell structure on R
3 determined

by the standard cellulation C of P . The quotient � nR3 is obtained from P by
identifying the two halves of the side S5 from Fig. 6.2. The set consisting of the
vertices .0; 0; 0/, .1=2; 0; 0/, and .1=4; 1=4; 1=4/ maps injectively into the quotient.
The stabilizers of these vertices are determined by the following equalities:

�.�.0;0;0// D SC
4 � .�1/:

�.�.1=2;0;0// D DC
41
� .�1/:

�.�.1=4;1=4;1=4// D DC
3 � .�1/:

All of the other stabilizers of cells in the quotient are negligible.

Proof. The first statement follows easily from a description of the cycles Œx�, and
from the fact that Œx� D P \ .� � x/. The second statement, that the given vertices
map injectively into the quotient, follows from the fact that the cycle generated by
each vertex is a singleton.

We turn now to a consideration of the cell stabilizers. First, note that each of the
vertices

.3=8; 3=8; 0/; .1=2; 1=4; 0/; .1=2; 1=8; 1=8/

has a negligible stabilizer group, by Proposition 6.1. This directly implies that
all of the edges and faces incident with these vertices must also have negligible
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stabilizer groups. This leaves three vertices and two edges to consider. It is clear
that the first equality in the theorem holds. The second equality holds for reasons
similar to those used in establishing the second equality in Theorem 6.3. The third
equality follows from Lemma 6.1(1) and the fact that h 2 SC

4 � .�1/ satisfies the
condition .1=4; 1=4; 1=4/ � h � .1=4; 1=4; 1=4/ if and only if h � .1=4; 1=4; 1=4/ D
˙.1=4; 1=4; 1=4/.

Finally, we note that the remaining edges are negligible by Proposition 6.1.

6.5 A Fundamental Polyhedron for �3

Note that

�3 D
�
1

2
.xC y/;

1

2
.yC z/;

1

2
.xC z/

�
Ì .SC

4 � .�1//:

We set � D �3 in this section. Consider the convex compact polyhedron

P D ˚.x; y; z/ 2 R
3 j 0 � z � y � x; x C y � 1=2� :

A straightforward check shows that P is the tetrahedron depicted in Fig. 6.3. The
sides S1, S2, S3, and S4 are contained in the planes y D z, z D 0, x D y, and
x C y D 1=2, respectively. (The sides Si for i 2 f1; 2; 3g are contained in the same
planes as the corresponding sides from Sect. 6.3.)

The outward unit normal vectors N1, N2, N3, and N4 are (respectively)

1p
2
.�yC z/ ; �z;

1p
2
.�xC y/ ; and

1p
2
.xC y/ :

0

1
4 (x y z)

1
4 (x y)

1
2 x

S 2
(Bottom)

S 1

S 3

(Back)

S 4


S 2 4 S 3

S 1

S 4

Fig. 6.3 On the left, we have a fundamental domain for the action of �3 on R
3. The group �3 is a

Coxeter group, and its Coxeter diagram appears on the right
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A routine check shows that the dihedral angles are


.S1; S2/ D �=4; 
.S1; S3/ D �=3;

.S1; S4/ D �=3; 
.S2; S3/ D �=2;

.S2; S4/ D �=2; 
.S3; S4/ D �=2:

It follows from Corollary 6.1 that �P , the group generated by the reflections in the
sides of the tetrahedron from Fig. 6.3, is a discrete group, and that P is an exact
convex compact fundamental polyhedron for the action of �P on R

3. We have

�P D
��

1 0 0
0 0 1
0 1 0

�
;
�
1 0 0
0 1 0
0 0 �1

�
;
�
0 1 0
1 0 0
0 0 1

�
;

� 1
2
1
2
0

�
C
�

0 �1 0�1 0 0
0 0 1

��
;

where the generators are reflections in the sides S1, S2, S3, and S4, respectively. It
is easy to check that �P D � .

It follows that P is an exact convex compact fundamental polyhedron for the
action of � on R

3.

Theorem 6.5. Let OC denote the � -equivariant cell structure on R
3 determined by

the standard cellulation C of P . The quotient � nR3 is P itself, endowed with the
standard cellulation C. The only non-negligible cell stabilizer groups are as follows:

�.�.0;0;0// D �.�.1=2;0;0// D SC
4 � .�1/; �.�.1=4;1=4;0// Š D2 � Z=2:

Proof. The statement about the quotient follows directly from the fact that each
cycle Œx� is a singleton.

The vertex .1=4; 1=4; 1=4/ has a negligible stabilizer group by Proposition 6.1.
To find the vertex stabilizer of .1=4; 1=4; 0/ note that the group SC

4 �.�1/ translates
.1=4; 1=4; 0/ to a total of 12 different points in R

3. (It is easy to describe these points
explicitly using the fact that SC

4 � .�1/ is the group of 3 � 3 signed permutation
matrices.) By Lemma 6.1(1), h 2 SC

4 � .�1/ is an element of �.�.1=4;1=4;0// if and
only if h � .1=4; 1=4; 0/ D ˙.1=4; 1=4; 0/. It follows from this that �.�.1=4;1=4;0//
has index 6 in SC

4 � .�1/, i.e., �.�.1=4;1=4;0// has order 8. It is easy to check that the
following set is contained in �.�.1=4;1=4;0//, and generates a group of order 8:

n�
0 1 0
1 0 0
0 0 1

�
;
� �1 0 0

0 �1 0
0 0 1

�
;
��1 0 0

0 �1 0
0 0 �1

�o
:

Therefore, �.�.1=4;1=4;0// is generated by the above matrices. One can easily show
from this that �.�.1=4;1=4;0// Š D2 � Z=2.

A routine check using Lemma 6.1(1) shows that �.�.0;0;0// D �.�.1=2;0;0// D
SC
4 � .�1/. One proves that the edge stabilizer groups are negligible by applying

Proposition 6.1 to the midpoints of the edges.
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6.6 A Fundamental Polyhedron for �4

Note that

�4 D
�
1

2
.xC z/; y; z

�
Ì .DC

2 � .�1//:

We consider the convex compact polyhedron P given in Fig. 6.4. It is easy to see
that

P D f.x; y; z/ 2 R
3 j 0 � x; y; z � 1=2; x C z � 1=2g:

The sides fS1; S2; S3; S4; S5g are contained in the planes y D 0, x C z D 1=2,
y D 1=2, x D 0, and z D 0 respectively. The outward unit normal vectors
N1;N2;N3;N4 N5 are, respectively,

�y;
1p
2
.xC z/ ; y; �x; �z:

The dihedral angles are as follows:


.S1; S2/ D �=2; 
.S1; S4/ D �=2; 
.S1; S5/ D �=2;

.S2; S3/ D �=2; 
.S2; S4/ D �=4; 
.S2; S5/ D �=4;

.S3; S4/ D �=2; 
.S3; S5/ D �=2; 
.S4; S5/ D �=2:

We consider the collection ˚ D f�S1; �S2 ; �S3 ; �S4 ; �S5g, where �Si is the
reflection in the side Si , for i 2 f1; 3; 4; 5g, and �S2 is the rotation 180ı about the
line through .1=4; 0; 1=4/ and .1=4; 1=2; 1=4/ (which is the line dashed in Fig. 6.4).

Fig. 6.4 This is a fundamental domain for the action of �4 on R
3. The dashed line indicates an

axis of rotation
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It is rather clear that ˚ is a side-pairing. We must show that ˚ is a subproper side-
pairing.

If x is a point in the interior of some ridge that is not a face of S2, then it is easy
to check that the dihedral angle sum of Œx� is a submultiple of � . If x lies on the axis
of rotation, then Œx� is again a singleton, and it follows easily that the dihedral angle
sum is a submultiple of 2� . There are three more kinds of ridge cycles to consider.
Each has the form fx; �S2.x/g, where �S2 2 ˚ is the rotation about the dashed line
in Fig. 6.4, and x is either on the ridge between the sides S1 and S2, S3 and S2, or
S4 and S2. The dihedral angle sum of Œx� is

2
.S1; S2/; 2
.S3; S2/; or 
.S4; S2/C 
.S5; S2/;

respectively. All of the latter sums are � or �=2. It follows that ˚ is a subproper
side-pairing, so Theorem 6.1 applies. The polyhedronP is therefore an exact convex
compact fundamental polyhedron for the action of h˚i on R

3. Furthermore, we have

�P D
��

1 0 0
0 �1 0
0 0 1

�
;

�
1=2
0
1=2

�
C
��1 0 0

0 1 0
0 0 �1

�
;
�
0
1
0

�
C
�
1 0 0
0 �1 0
0 0 1

�
;
��1 0 0

0 1 0
0 0 1

�
;
�
1 0 0
0 1 0
0 0 �1

��
;

where the isometries in question are �Si , for i D 1; : : : ; 5, respectively. It is
straightforward to verify that �P D � .

Theorem 6.6. Let OC denote the � -equivariant cell structure on R
3 determined

by the standard cellulation C of P . The quotient � nR3 is obtained from P by
identifying the two halves of the side S2 from Fig. 6.4. The set consisting of the
vertices .0; 0; 0/, .0; 0; 1=2/, .0; 1=2; 1=2/ and .0; 1=2; 0/ maps injectively into the
quotient. The stabilizers of these vertices are determined by the following equalities:

�.�.0;0;0// D �.�.0;1=2;0// D �.�.0;0;1=2// D �.�.0;1=2;1=2// D DC
2 � .�1/:

All of the other stabilizers of cells in the quotient are negligible.

Proof. First, we note that there are eight vertices in the cellulation C: the four listed
in the statement of the theorem, and

.1=2; 0; 0/; .1=2; 1=2; 0/; .1=4; 0; 1=4/; and .1=4; 1=2; 1=4/:

We note that the first two of these last vertices occupy the same orbits as
vertices in the statement of the theorem. The final two vertices v are negligible by
Lemma 6.1(1) since v � �S4.v/ … L, and so j�vj � 4.

It is easy to check the equalities in the theorem using Lemma 6.1(1). The
edges (and, therefore all higher-dimensional cells) have negligible stabilizers, either
because they are incident with vertices having negligible stabilizers, or because of
Proposition 6.1 (applied to the midpoints of the edges).

To verify the description of the quotient is straightforward.
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6.7 A Fundamental Polyhedron for �5

Recall that �5 D hv1; v2; v3i Ì .DC
6 � .�1//. We write � in place of �5. Consider

the convex polyhedron P depicted in Fig. 6.5. One checks that

P D f.x; y; z/ 2 R
3 j 0 � x C y C z � 3=2;�2x C y C z � 0; x � z � y C 1g:

The sides S1, S2, S3, S4, and S5 are convex subsets of the planes x C y C z D 3=2,
z D yC 1, xC yC z D 0, �2xC yC z D 0, and x D z, respectively. The outward
unit normal vectors N1, N2, N3, N4, and N5 are

1p
3

v1;
1p
2

v3;
�1p
3

v1;
1p
6
.�2v2 C v3/ ; and

1p
2
.v2 � v3/ ;

respectively.
It is straightforward to check that


.S1; S2/ D �=2; 
.S1; S4/ D �=2;

.S1; S5/ D �=2; 
.S2; S3/ D �=2;

.S2; S4/ D �=2; 
.S2; S5/ D �=3;

.S3; S4/ D �=2; 
.S3; S5/ D �=2;

.S4; S5/ D �=6:

Since all of these dihedral angles are submultiples of � , by Corollary 6.1 the group
�P generated by reflections in the sides of P is discrete, and P is an exact convex
compact fundamental polyhedron for the action of �P on R

3. We have �P D
��

1
1
1

�
C 1

3

�
1 �2 �2�2 1 �2�2 �2 1

�
;
�

0�1
1

�
C
�
1 0 0
0 0 1
0 1 0

�
;
1

3

�
1 �2 �2�2 1 �2�2 �2 1

�
;
1

3

��1 2 2
2 2 �1
2 �1 2

�
;
�
0 0 1
0 1 0
1 0 0

��
:

Fig. 6.5 On the left is a fundamental domain for the action of �5 on R
3. The unlabelled vertex at

the intersection of three dotted lines is the origin. On the right is the Coxeter diagram for �5
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It is not difficult to check that �P D � , so P is an exact convex compact
fundamental polyhedron for the action of � on R

3.

Theorem 6.7. Let OC denote the � -equivariant cell structure on R
3 determined by

the standard cellulation C of P . The quotient � nR3 is P itself, endowed with the
standard cellulation C. The non-negligible stabilizer groups are determined by the
following equalities:

�.�.0;0;0// D �.�.1=2;1=2;1=2// D DC
6 � .�1/I

�.�.1=2;0;1// D �.�.0;�1=2;1=2// Š D2 � Z=2I
�.�.1=3;�2=3;1=3// D �.�.5=6;�1=6;5=6// D D0

6I
�.�.1=4;1=4;1=4// D D00

6 :

(Note that �.1=4;1=4;1=4/ is the stabilizer group of the edge connecting .0; 0; 0/ to
.1=2; 1=2; 1=2/.) The stabilizer groups of all other cells are negligible.

Proof. The statement about the quotient follows because each cycle Œx� is a
singleton.

We now consider vertex stabilizers. The equality �.�.0;0;0// D DC
6 � .�1/ is

trivial. The equality �.�.1=2;1=2;1=2// D DC
6 � .�1/ follows from Lemma 6.1(1)

and the fact that h � .1=2; 1=2; 1=2/ D ˙.1=2; 1=2; 1=2/, for any h 2 DC
6 � .�1/.

Since 2v 62 hv1; v2; v3i, for v 2 f.1=3;�2=3; 1=3/; .5=6;�1=6; 5=6/g, it follows
from Lemma 6.1(1) that .�1/ (the antipodal map) is in neither �.�.1=3;�2=3;1=3//
nor �.�.5=6;�1=6;5=6//. This means that each of these groups has order at most 12.
It is routine to check, using Lemma 6.1(1), that D0

6 is a subgroup of each of
these two groups. This shows that �.�.1=3;�2=3;1=3// D �.�.5=6;�1=6;5=6// D D0

6.
Finally, we consider .1=2; 0; 1/ and .0;�1=2; 1=2/. Using the theory of Coxeter
groups, we note that these vertices are stabilized by the groups h�S1; �S2 ; �S4i, and
h�S2; �S3 ; �S4i, both of which are isomorphic to D2 � Z=2.

Next, consider the stabilizer of the edge connecting .0; 0; 0/ to .1=2; 1=2; 1=2/,
which is the same as �.1=4;1=4;1=4/. We note that, by Lemma 6.1(1), .�1/ is not
in �.�.1=4;1=4;1=4//, since .1=2; 1=2; 1=2/ 62 hv1; v2; v3i. It is not difficult to see
that D00

6 � �.�.1=4;1=4;1=4//, and this inclusion must be an equality by order
considerations.

We need to show that the remaining edges have negligible stabilizers. Once
again we use the theory of Coxeter groups to simplify our work. We consider the
subdiagrams of the Coxeter diagram that are determined by pairs of distinct vertices
other than fS1; S3g (which does not determine an edge) and fS4; S5g (which is
accounted for above). These subdiagrams determine subgroups that are isomorphic
to D2 or D3, so all are negligible.

It follows easily that all remaining cells have negligible stabilizer groups.
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6.8 A Fundamental Polyhedron for �6

We note that

�6 D
�
1

3
.v1 C v2 C v3/; v2; v3

�
Ì .DC

3 � .�1//:

We will write � in place of �6 throughout this section.
Let P denote the polyhedron in Fig. 6.6. The sides S1, S2, S3, S4, and S5 are

contained in the planes x D z, 5x C 2y C 5z D 3, x � y D 1, y D z, and
xC yC z D 0, respectively. The outward-pointing unit normal vectors N1, N2, N3,
N4, and N5 are, respectively,

1p
2
.�xC z/ ;

1

3
p
6
.5xC 2yC 5z/ ;

1p
2
.x � y/ ;

1p
2
.y � z/ ;

�1p
3
.xC yC z/ :

The dihedral angles between faces are:


.S1; S2/ D �=2; 
.S1; S3/ D �=3;

.S1; S4/ D �=3; 
.S1; S5/ D �=2;


.S2; S3/ D arccos.
�1p
12
/;


.S2; S4/ D arccos.
1p
12
/;

Fig. 6.6 The polyhedron pictured here is an exact convex compact fundamental polyhedron for
the action of �6 on R

3. The dashed lines represent axes of rotation (through 180ı) for certain
elements of �6. Note that the base of the figure is an equilateral triangle, but the top is isosceles
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.S3; S4/ D �=3; 
.S3; S5/ D �=2;

.S4; S5/ D �=2:

We define ˚ D f�S1; �S2 ; �S3 ; �S4 ; �S5g as follows. Each of �S1 , �S3 , and �S4 is
reflection in the corresponding face of P . In particular, we note that the isometries

�
0 0 1
0 1 0
1 0 0

�
;
�

1�1
0

�
C
�
0 1 0
1 0 0
0 0 1

�
;
�
1 0 0
0 0 1
0 1 0

�
;

are �S1 , �S3 , and �S4 , respectively. The isometries �S2 and �S5 are rotations about
the dashed lines in the faces S2 and S5 (respectively). The isometries

�
2=3

�1=3
2=3

�
C
�

0 0 �1
0 �1 0�1 0 0

�
;
�

0 �1 0�1 0 0
0 0 �1

�

are �S2 and �S5 (respectively).
The set ˚ is a subproper side-pairing of P . We leave the checking to the reader,

but note that no ridge cycle has more than two elements and the dihedral angle sum
of a ridge cycle is always a submultiple of � . It follows from Theorem 6.1 that P is
an exact convex compact fundamental polyhedron for the action of h˚i on R

3.
Finally, we briefly argue that � D h˚i. We notice that h�S1; �S4 ; �S5i D

DC
3 � .�1/. From this, it follows easily that h�S1; �S3 ; �S4 ; �S5i contains all of
hv2; v3i, as well. It is easy to see that the group h˚i must contain the translation
.2=3;�1=3; 2=3/ (since DC

3 � .�1/ � h˚i, and �S2 2 h˚i), so � � h˚i. The
reverse inclusion is clear.

It follows that P is an exact convex compact fundamental polyhedron for the
action of � on R3.

Theorem 6.8. Let OC denote the � -equivariant cell structure on R
3 determined

by the standard cellulation C of P . The quotient � nR3 is obtained from P by
identifying the two halves of each of the sides S2 and S5 from Fig. 6.6. The set
consisting of the vertices .0; 0; 0/ and .5=6;�1=6;�1=6/ maps injectively into the
quotient. The stabilizers of these vertices are determined by the following equalities:

�.�.0;0;0// D �.�.5=6;�1=6;�1=6// D DC
3 � .�1/:

All of the other stabilizers of cells in the quotient are negligible.

Proof. The statement about the quotient follows easily from a straightforward
description of the cycles Œx�, and from the fact that Œx� D P \ .� � x/.

We turn to a description of the vertex stabilizers. Note that there are a total of
8 vertices to consider. We must describe the stabilizers of .1=3;�1=6; 1=3/ and
.1=2;�1=2; 0/ since these points are endpoints of dashed lines from Fig. 6.6, and
will therefore be vertices in the standard cellulation of P .

First, we note the stabilizers of the vertices .1=4; 1=4; 1=4/, .5=12;�7=12; 5=12/,
.1=3;�2=3; 1=3/, and .2=3;�1=3;�1=3/ are all negligible by Proposition 6.1.
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Second, we note that �.�.1=3;�1=6;1=3// and �.�.1=2;�1=2;0// do not contain the matrix

�
0 1 0
0 0 1
1 0 0

�
;

by Lemma 6.1(1). It follows that both of these groups have order 1, 2, or 4; this
forces both of these groups to be negligible. Third, we leave the easy verification of
the equalities from the statement of the theorem to the reader.

It follows easily that all of the remaining cells must have negligible stabilizers,
since each such stabilizer is a subgroup of a negligible group.

6.9 A Fundamental Polyhedron for �7

We note that

�7 D
�
v1;

1

3
.v2 C v3/ ; v3

�
Ì .DC

3 � .�1//:

We write � in place of �7. Let P denote the polyhedron in Fig. 6.7. The sides
S1, S2, S3, S4, and S5 are contained in the planes x�2yC z D 1, xCyC z D 3=2,
x D z,�2xCyCz D 0, and xCyCz D �3=2, respectively. The outward-pointing

Fig. 6.7 This is a fundamental domain for the action of �7 on R
3. The dashed line indicate axes

of rotation. Note that the top and bottom of P are triangles having angles measuring �=3; �=2, and
�=6, where the right angles are in the foreground
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unit normal vectors N1, N2, N3, N4, and N5 are

1p
6
.x � 2yC z/ ;

1p
3
.xC yC z/ ;

1p
2
.x � z/ ;

1p
6
.�2xC yC z/ ;

�1p
3
.xC yC z/ ;

respectively.
The dihedral angles between vertical sides are


.S1; S4/ D �=3; 
.S3; S4/ D �=6; 
.S1; S3/ D �=2;

and all other angles between sides have measure �=2.
We consider the set ˚ D f�S1; �S2 ; �S3 ; �S4 ; �S5g, defined respectively as

follows:
�

1=3
�2=3
1=3

�
C
�

0 0 �1
0 �1 0�1 0 0

�
;
�
1
1
1

�
;
�
0 0 1
0 1 0
1 0 0

�
;
��1 0 0

0 0 �1
0 �1 0

�
;
��1�1�1

�
:

It is not difficult to check that ˚ is a subproper side-pairing. We leave the checking
to the reader. Note that every ridge cycle has one or two elements. All of the dihedral
angle sums of the ridge cycles will be submultiplies of � , with the exception of a
cycle Œx�, where x is a point (other than the midpoint) on the ridge between S1 and
S4. For such a cycle, the dihedral angle sum will be 2�=3. This causes no problem,
since the cycle Œx� is cyclic.

It follows from Theorem 6.1 that P is an exact convex compact fundamental
polyhedron for the action of h˚i on R

3. We claim that � � h˚i, the reverse
inclusion being clear. We sketch the proof. First,DC

3 �.�1/ D h�S3; �S4i. The group
h�S1; �S3 ; �S4i is the group generated byDC

3 �.�1/ and 1
3
.v2Cv3/ D 1

3
.x�2yCz/.

It is an exercise to show that the latter group contains v3 D �y C z as well. The
equality � D h˚i is now clear (since �S2 D v1), so that P is an exact convex
compact fundamental polyhedron for the action of � on R

3.

Theorem 6.9. Let OC denote the � -equivariant cell structure on R
3 determined

by the standard cellulation C of P . The quotient � nR3 is obtained from P by
identifying the two halves of each of the sides S1 and S4, and by identifying S2 with
S5 in the obvious way (see Fig. 6.7). The set consisting of the vertices .0; 0; 0/ and
.1=2; 1=2; 1=2/ maps injectively into the quotient. The stabilizers of these vertices
are determined by the following equalities:

�.�.0;0;0// D DC
3 � .�1/:

�.�.1=2;1=2;1=2// D DC
3 � .�1/:

All of the other stabilizers of cells in the quotient are negligible.
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Proof. The description of the quotient follows from the same argument that we have
used in the other sections.

We note that there are nine vertices in the standard cellulation of P , including
the endpoints of the dashed lines from Fig. 6.7. These endpoints are:

.0; 0; 0/; .0;�1=3; 1=3/; .1=6;�1=3; 1=6/:

In the quotient, there are only six vertices, however, and we may restrict our attention
to the vertices from the top half of Fig. 6.7.

We note that the stabilizers of the vertices .1=2; 1=6; 5=6/ and .0;�1=3; 1=3/ are
negligible by Proposition 6.1. The matrix

�
0 1 0
0 0 1
1 0 0

�

is in neither �.�.2=3;1=6;2=3// nor �.�.1=6;�1=3;1=6//. As a result, the latter groups
have index 3 (at least) in DC

3 � .�1/, so they must be negligible. It is clear that
�.�.0;0;0// D DC

3 � .�1/, and the equality �.�.1=2;1=2;1=2// D DC
3 � .�1/ follows

easily from Lemma 6.1(1) and the fact that h � .1=2; 1=2; 1=2/ D ˙.1=2; 1=2; 1=2/,
for all h 2 DC

3 � .�1/. (Note that the vertex .�1=2;�1=2;�1=2/ will be identified
with .1=2; 1=2; 1=2/ in the quotient.)

Now we go on to consider edge stabilizers. Only two of these might fail to
be negligible: the stabilizers of edges connecting .0; 0; 0/ to .1=2; 1=2; 1=2/ and
.�1=2;�1=2;�1=2/, respectively. Both of the latter edges are identified in the quo-
tient, so we need only consider the edge between .0; 0; 0/ and .1=2; 1=2; 1=2/. The
stabilizer of this edge is negligible, since the stabilizer of the point .1=4; 1=4; 1=4/
is negligible by Proposition 6.1.



Chapter 7
The Homology Groups H �

n .EFIN.� /IKZ
�1/

In this chapter, we compute the homology groups H�
n .EFIN .� /IKZ

�1/, for all
73 split three-dimensional crystallographic groups. In order to do this, we recall that
Quinn [Qu82] established the existence of a spectral sequence that converges to this
homology group, with E2-terms given by:

E2
p;q D Hp.� nEFIN .� / I fWhq.��/g/ H) H�

pCq.EFIN .� /IKZ
�1/:

The chain complex that gives the homology of � nEFIN .� / with local coefficients
fWhq.��/g has the form

0!
M

�3

Whq.��3/!
M

�2

Whq.��2/!
M

�1

Whq.��1/!
M

�0

Whq.��0/! 0;

where �i denotes the cells in dimension i , and the sum is over all i -dimensional
cells in � nEFIN .� /. The pth homology group of this complex will give us the
entries for the E2

p;q-term of the spectral sequence. Let us recall that

Whq.F / D

8
ˆ̂<

ˆ̂:

Wh.F /; q D 1
QK0.ZF /; q D 0
Kq.ZF /; q � �1:

Observe that for the groups we are interested in it is particularly easy to obtain
a model for EFIN .� /: indeed, it is well known that, for a lattice in Isom.Rn/,
the � -space R

n is a model for EFIN . In our specific situation, we obtain models
for EFIN .� / having very explicit fundamental domains, namely the fundamental
polyhedra given in Chap. 6.
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82 7 The Homology Groups H�
n .EFIN .� /IKZ

�1/

Remark 7.1. In our models for EFIN .� /, the three-dimensional cells will have
trivial stabilizers, and there will be a number of orbits of two-dimensional cells, each
of which will have stabilizer 1 or Z=2. Note that since Whq.1/ and Whq.Z=2/ vanish
for all q � 1, this in particular implies that there will never be any contribution to
theE2-terms from the three-dimensional and two-dimensional cells. In other words,
E2
p;q D 0 except possibly for p D 0; 1.

7.1 The Algebraic K -Theory of Cell Stabilizers in EFIN.� /

In this section, we want to find the algebraic K-theory of the finite subgroups
that occur as cell stabilizers for the � -action on R

3, where � ranges over all 73
split crystallographic groups. Recall from the discussion in Chap. 2 that these cell
stabilizers are (up to conjugacy) precisely the point groups listed in Figs. 2.1 and 2.2,
and in Theorem 2.2. Up to isomorphism these groups are: 1, Z=n, Dn, Z=n � Z=2,
Dn � Z=2, A4, S4, A4 � Z=2, and S4 � Z=2, where n D 2; 3; 4; 6.

In the spectral sequence computing the homology H�
n .EFIN .� /IKZ

�1/, the
E2-term is computed from the algebraic K-groups of the various cell stabilizers,
so we need the algebraic K-groups for all of the finite groups appearing in the list
above. For the convenience of the reader, we provide in Table 7.1 the results of
the computations of these groups. Table 7.1 provides a list of all the non-trivial
K-groups that occur amongst the finite groups we are considering.

We will now justify the results summarized in Table 7.1. It is well known that
if G is a finite group, then Kq.ZG/ is trivial for all q � �2 (see [C80a]), so we
will focus only on the K-groups K�1, QK0, and Wh. For all but three of the finite
groups in our list, the lower algebraicK-theory is well known; the reference [LO09]
collects references for most of the known results. Bass [Bas68, p. 695] computed
K�1.ZŒZ=6�/, Reiner and Ullom [RU74, Theorem 2.2] computed QK0.ZŒZ=6�/, and
Cohen [Co73] computed Wh.Z=6/.

For the remaining groups in our list: Z=4 � Z=2, Z=6 � Z=2, and A4 � Z=2, we
detail the computations in the next few subsections.

Table 7.1 Lower algebraic
K-theory of cell stabilizers in
EFIN

F 2 FIN Whq ¤ 0; q � �1 QK0 ¤ 0 Wh ¤ 0

Z=6 K�1 Š Z

Z=4� Z=2 Z=2

Z=6� Z=2 K�1 Š Z
3 .Z=2/2

D2 � Z=2 Z=2

D6 K�1 Š Z

D4 � Z=2 Z=4

D6 � Z=2 K�1 Š Z
3 .Z=2/2

A4 � Z=2 K�1 Š Z Z=2

S4 � Z=2 K�1 Š Z Z=4
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7.1.1 The Lower Algebraic K -Theory of Z=4 � Z=2

Bass [Bas68, Theorem 10.6, p. 695] proves that K�1.ZG/ vanishes if G is a finite
abelian group of prime power order, so K�1.ZŒZ=4 � Z=2�/ D 0, and Alves and
Ontaneda [AO06, Sect. 5.1] show that Wh.Z=4�Z=2/ D 0: To compute QK0.ZŒZ=4�
Z=2�/, consider the following Cartesian square

where 'i is reduction mod 2 for i D 1; 2. We let u. / denote the group of units, and
set

u�.ZŒZ=4�/ D 'ifu.ZŒZ=4�/g 
 u.F2ŒZ=4�/; i D 1; 2:

Let G D Z=4 � Z=2. Since QG Š QŒZ=4� ˝Q QŒZ=2�, and each simple
component of QŒZ=4�, and of QŒZ=2�, is a full matrix algebra over Q, then the same
is true for QG, and consequently QG satisfies the Eichler condition (i.e., no simple
component of QG is a totally definite quaternion algebra). By [RU74, Theorem 1.9],
there is an exact sequence

1! u�.ZŒZ=4�/! u.F2ŒZ=4�/! QK0.ZŒZ=2�ŒZ=4�/! 2 QK0.ZŒZ=4�/! 0:

Since QK0.ZŒZ=4�/ D 0 ([RU74, Theorem 2.8]),

1! u�.ZŒZ=4�/! u.F2ŒZ=4�/! QK0.ZŒZ=2�ŒZ=4�/! 0:

Consequently,

QK0.ZŒZ=2�ŒZ=4�/ Š u.F2ŒZ=4�/=u�.ZŒZ=4�/:

Next, let Z=4 D h�i. A direct calculation shows that u.F2ŒZ=4�/ D h�i � h� C
�2 C �3i Š Z=4 � Z=2. The equality u�.ZŒZ=4�/ D h�i follows from the fact that
ZŒZ=4� has only trivial units (since Wh.Z=4/ D 0). Therefore, QK0.ZŒZ=4�Z=2�/ DQK0.ZŒZ=2�ŒZ=4�/ D h� C �2 C �3i Š Z=2.
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7.1.2 The Lower Algebraic K -Theory of Z=6 � Z=2

Alves and Ontaneda [AO06, Sect. 5.1] show that Wh.Z=6 � Z=2/ D 0: To compute
QK0.ZŒZ=6 � Z=2�/, consider as before the following Cartesian square:

where 'i is reduction mod 2 for i D 1; 2. Denote by u. / the group of units and set

u�.ZŒZ=6�/ D 'ifu.ZŒZ=6�/g 
 u.F2ŒZ=6�/; i D 1; 2:

LetG D Z=6�Z=2. Since the algebra QG is commutative, no simple component
of QG is a totally definite quaternion algebra, and therefore QG satisfies the Eichler
condition (see Sect. 7.1.1) and, as before, by [RU74, Theorem 1.9], there is an exact
sequence

1! u�.ZŒZ=6�/! u.F2ŒZ=6�/! QK0.ZŒZ=2�ŒZ=6�/! 2 QK0.ZŒZ=6�/! 0:

Reiner and Ullom [RU74, Theorem 2.2] prove that QK0.ZŒZ=6�/ D 0. Therefore the
exact sequence above yields the exact sequence

1! u�.ZŒZ=6�/! u.F2ŒZ=6�/! QK0.ZŒZ=2�ŒZ=6�/! 0:

Consequently,

QK0.ZŒZ=2�ŒZ=6�/ Š u.F2ŒZ=6�/=u�.ZŒZ=6�/:

To compute u.F2ŒZ=6�/, let R D F2ŒZ=6�. Since R is a finite ring, the canonical
group homomorphism u.R/ D GL1.R/ ! K1.R/ is surjective (see [Bas64,
Theorem 4.2(b)]) with kernel V.R/ generated by the set of all V.x; y/ D .1 C
xy/.1C yx/�1, with x; y 2 R and 1C xy invertible (see [Va70, Theorem 3.6(b)]).
Since R is a finite commutative ring, V.R/ D f1g, and so K1.R/ Š u.R/. Now
using [Ma06, Theorem 4], we have that K1.R/ D K1.F2ŒZ=6�/ Š K1.F2ŒZ=2 �
Z=3�/ Š .Z=2/c�K1.F2ŒZ=3�/, where c is the number of conjugacy classes in Z=3.
A direct calculation shows that K1.F2ŒZ=3�/ Š Z=3 and c D 3; then it follows
K1.F2ŒZ=6�/ Š .Z=2/3 � Z=3. (One can also show by a direct calculation that
u.F2ŒZ=6�/ D h�3; 1 C � C �4; �2 C �3 C �5i � h�2i Š .Z=2/3 � Z=3, where
j� j D 6.)

Next, to compute u.ZŒZ=6�/, let R D ZŒZ=6�. Since R is a commutative ring,
K1.R/ Š u.R/˚ SK1.R/ (see [Mi71, p. 27]). Bass et al. in [BMS67, Proposition
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4.14] show that SK1.ZH/ D 1 if H is cyclic, so it follows that K1.R/ Š u.R/.
For H D Z=6, it is known that K1.ZH/ Š Z=2 �Hab Š Z=2 � Z=6 (see [O89]),
therefore u.ZŒZ=6�/ Š Z=2�Z=6. This implies that u.ZŒZ=6�/ consists of only the
trivial units. Therefore u�.ZŒZ=6�/ Š Z=6: Consequently

QK0.ZŒZ=2�ŒZ=6�/ Š u.F2ŒZ=6�/=u�.ZŒZ=6�/ Š .Z=2/2:

Next, we show K�1.ZŒZ=2�ŒZ=6�/ Š Z
3. Carter [C80a] proved

K�1.ZG/ Š Z
r ˚ .Z=2/s

where

r D 1 � rQ C
X

p j jGj
.rQp � rFp / (7.1)

where p is prime and s is the number of simple components A of QG with even
Schur index but with AP of odd Schur index for each prime ideal P of the center of
A that divides jGj (see [LMO10]).

We first recall that the group algebra QŒZ=6� decomposes into simple compo-
nents as follows:

QŒZ=6� Š Q
2 ˚Q.�6/

2:

Since QŒZ=6�Z=2� Š QŒZ=6�˚QŒZ=6�, we see that the Schur indices of all the
simple components in the Wedderburn decomposition of QŒZ=6 � Z=2� are equal
to 1, so s D 0. Carter’s formula (above) now tells us that K�1.ZŒZ=6 � Z=2�/ is
torsion-free, and, from Eq. (7.1), the rank is given by

r D 1 � rQ C .rQ2 � rF2 /C .rQ3 � rF3 /: (7.2)

We now proceed to compute the various terms appearing in the above expression.
Recall that for F a field of characteristic 0, rF just counts the number of simple

components in the Wedderburn decomposition of the group algebra F ŒZ=6 � Z=2�.
From the discussion in the previous paragraph, we have that

QŒZ=6 � Z=2� Š Q
4 ˚Q.�6/

4:

yielding rQ D 8. Now by tensoring the above splitting with Qp with p D 2 and 3,
we obtain:

QpŒZ=6 � Z=2� Š Q
4
p ˚ .Qp ˝Q Q/.�6/

4 Š Q
4
p ˚Qp.�6/

4;

consequently for each of the primes p D 2; 3, we obtain that rQ2 D rQ3 D 8.
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Next, we consider the situation over the finite fields F2;F3. We first recall that the
integer rFp counts the number of Fp-conjugacy classes of p-regular elements in G
(an element x 2 G is called p-regular if p does not divide the order of x). The Fp-
conjugacy class of an element x 2 G is the union of ordinary conjugacy classes of
certain specific powers of x, where the powers (of x) are calculated from the Galois
extension Fp.�m/ where m is the least common multiple of the orders of p-regular
elements. Note that since the fields Fp , Fp.�m/ are finite, and Aut.Fp.�m/=Fp/ is
cyclic, generated by the p-power map (since jFpj D p), then Gal.Fp.�m/=Fp/ D
Tm D h Npi � .Z=m/� (viewed as elements of .Z=m/�). We refer the reader to
[LMO10, Sect. 3.1] for a more complete discussion of these points.

For p D 2, we note that an element in Z=6 � Z=2 Š hti � h�i is 2-regular
precisely if it has order 1 or 3. There is a single conjugacy class of elements of
order one (consisting of the identity element), and the elements of order 3 form two
conjugacy classes inside Z=6�Z=2; representatives for these two conjugacy classes
are given by x D .t2; 1/, and by x2 D .t4; 1/. Note that there will be either one or
two F2-conjugacy classes of elements of order 3. To determine the specific powers
of x, recall that the powers of x are given by considering the Galois group of the
extension F2.�3/, viewed as elements of .Z=3/�. Since the Galois group is generated
by the 2-power map (i.e., by squaring), we see that the Galois group is cyclic of
order 2, given by the residue classes fN1; N2g 
 .Z=3/�. In particular, since N2 lies in
the Galois group, we see that x and x2 lie in the same F2-conjugacy class, implying
that there is a unique F2-conjugacy class of elements of order 3. We conclude that
there are two F2-conjugacy classes of 2-regular elements, giving rF2 D 2.

For p D 3, the 3-regular elements in Z=6 � Z=2 have order either 1 or 2. The
elements of order 2 form three conjugacy classes inside Z=6�Z=2; representatives
for these three conjugacy classes are given by .t3; 1/, .t3; �/ and by .1; �/. To
determined the specific powers of these elements, recall that the powers are given by
considering the Galois group of the extension Gal

�
F3.�2/=F3

	
, viewed as elements

of .Z=2/�. Since the Galois group is generated by the 3-power map, we see that
Gal

�
F3.�2/=F3

	 D T2 D hN3i D fN1g 
 .Z=2/�. We conclude that for 3-regular
elements of order 2, we clearly have three distinct (ordinary) conjugacy classes
of elements of order 2; each of these ordinary conjugacy classes is also an F3-
conjugacy class. Also we clearly have a unique F3-conjugacy class of elements of
order one. We conclude that overall there are four F3-conjugacy classes of 3-regular
elements, giving rF3 D 4.

We end by substituting our calculations into the expression given in Eq. (7.2) for
the rank of K�1.ZŒZ=6 � Z=2�/, obtaining:

r D 1 � 8C .8 � 2/C .8 � 4/ D 3:

Therefore K�1.ZŒZ=6 � Z=2�/ Š Z
3 as claimed.
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7.1.3 The Lower Algebraic K -Theory of A4 � Z=2

Alves and Ontaneda in [AO06, Lemma 5.4] show that Wh.A4 � Z=2/ D 0:
First, we show QK0.ZŒA4 � Z=2�/ Š Z=2. To see this, let H be a subgroup of

a group G. For any locally free ZG-module M its restriction to H (denoted by
MH ) is a locally free ZH -module. The mapping defined by ŒM � ! ŒMH � gives a
homomorphism of QK0.ZG/! QK0.ZH/.

A group H is hyper-elementary if H is a semidirect product N Ì P of a cyclic
normal subgroupN and a subgroup P of prime power order, where .jN j; jP j/ D 1.
Let H.G/ consist of one representative from each conjugacy class of hyper-
elementary subgroups of G. We shall need the following result presented by Reiner
and Ullom in [RU74, Thm. 3.1]: for every finite group G, the map

QK0.ZG/ �!
Y

H2H.G/
QK0.ZH/ (7.3)

is a monomorphism. Observe that all the proper subgroups of the alternating group
A4 are hyper-elementary, therefore H.A4/ D fZ=2;Z=3;D2 g. Also, note that the
hyper-elementary subgroups of G � Z=2 are of the form H or H � Z=2 for H 2
H.G/. In particular, the hyper-elementary subgroups ofA4�Z=2 are all isomorphic
to one of: Z=2, Z=3,D2, Z=3�Z=2 andD2�Z=2. By the results given in Table 7.1
we have QK0.ZH/ D 0, for allH 2 H.A4�Z=2/ except forH D D2�Z=2, where
QK0.ZH/ Š Z=2. This implies that the target of the map given in (3) is isomorphic to
Z=2, and injectivity of the map now gives us an injection QK0.ZŒA4�Z=2�/ ,! Z=2.
Since it is known that QK0.ZŒA4 �Z=2�/ is non trivial (see [EH79, Thm., p. 161]), it
follows that QK0.ZŒA4 � Z=2�/ Š Z=2, as claimed.

Next, we show that K�1.ZŒA4 � Z=2�/ Š Z: Here once again, we use Carter’s
formula, given in Eq. (7.1). We start by first recalling (see [Se77, p. 93]) that the
group algebra QA4 decomposes into simple components as follows:

QA4 Š Q˚Q.�3/˚M3.Q/:

Since QŒA4 � Z=2� Š QA4 ˚ QA4, we see that the Schur indices of all the
simple components in the Wedderburn decomposition of QŒA4 � Z=2� are equal to
1. Carter’s result [C80a] now tells us that K�1.ZŒA4 � Z=2�/ is torsion-free, and
from Eq. (7.1), the rank is given by

r D 1 � rQ C .rQ2 � rF2 /C .rQ3 � rF3 /:

We now proceed to compute the various terms appearing in the above expression.
For F a field of characteristic 0, rF just counts the number of simple components

in the Wedderburn decomposition of the group algebra F ŒA4 � Z=2�. From the
discussion in the above paragraph, we have that

QŒA4 � Z=2� Š Q
2 ˚Q.�3/

2 ˚M3

�
Q/2:
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yielding rQ D 6. Now by tensoring the above splitting with Qp , p D 2 or 3, we
obtain:

QpŒA4 � Z=2� Š Q
2
p ˚Qp.�3/˚M3

�
Qp/

2:

Therefore for each of the primes p D 2; 3, we obtain that rQ2 D rQ3 D 6.
Next let us consider the situation over the finite fields F2;F3.
For p D 2, we note that elements inA4�Z=2 are 2-regular precisely if they have

order 1 or 3. There is a single conjugacy class of elements of order one (the identity
element). The elements of order 3 form a single conjugacy class inside A4 � Z=2.
We conclude that there are two F2-conjugacy classes of 2-regular elements, giving
rF2 D 2.

For p D 3, the elements in A4�Z=2 which are 3-regular have order 1 or 2. Here
we look at the Galois group associated to the field extension F3.�2/. Elements in
the Galois group are generated by the third power, giving us that Gal.F3.�2/=F3/ D
fN1g 
 .Z=2�/. Now we clearly have a unique F3-conjugacy class of elements of
order one. For elements of order 2, there are three distinct (ordinary) conjugacy
classes of elements of order two; each of these ordinary conjugacy classes is also an
F3-conjugacy class. We conclude that overall there are four F3-conjugacy classes of
3-regular elements, giving rF3 D 4.

To conclude, we substitute our calculations into the expression in Eq. (7.2) for
the rank of K�1.ZŒA4 � Z=2�/, giving us:

r D 1 � 6C .6 � 2/C .6 � 4/ D 1:
Therefore K�1.ZŒA4 � Z=2�/ Š Z as claimed.

7.2 The Homology of EFIN.� /

In the remainder of this chapter, we will compute the generalized homology groups
H�� .EFIN.� /IKZ

�1/ for the 73 split crystallographic groups � .

Lemma 7.1. Let � be a split three-dimensional crystallographic group. Let V�

consist of a selection of one non-negligible vertex from each � -orbit of non-
negligible vertices in EFIN .� /. We have the isomorphisms:

H��1.EFIN .� /IKZ
�1/ Š E2

0;�1;

H�
0 .EFIN .� /IKZ

�1/ Š
M

�02V�
QK0.ZF�0/˚E2

1;�1;

H�
1 .EFIN .� /IKZ

�1/ Š 0:
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Moreover, if all of the edges in EFIN .� / have negligible stabilizer groups, then
E2
1;�1 D 0 and

E2
0;�1 Š

M

�02V�
K�1.ZF�0/:

Proof. The lemma follows easily from the remarks about the Quinn spectral
sequence that were given in the introduction of this chapter.

We note that the possible contributions to H�
1 .EFIN .� /IKZ

�1/ must come
from the E2

0;1 and E2
1;0 terms. It follows from Table 7.1 that E2

0;1 Š 0 for all split

crystallographic groups � . The E2
1;0 terms come from QK0.ZŒF� �/, where the �s

are edges. The latter K-groups are always trivial, so E2
1;0 Š 0. This proves that

H�
1 .EFIN.� /IKZ

�1/ Š 0.
The isomorphism

H�
0 .EFIN .� /IKZ

�1/ Š
M

�02V�
QK0.ZF�0/˚E2

1;�1

follows from the fact that one or the other of the factors

E2
0;0 Š

M

�02V�
QK0.ZF�0/ and E2

1;�1

is always zero. Indeed, all edges have negligible stabilizers (so in particularE2
1;�1 Š

0), except in the five cases that are treated in Examples 7.4–7.8. We have non-
vanishing E2

1;�1 in only two of those cases, namely Examples 7.6 and 7.8; in both
of these cases, the E2

0;0 term vanishes.

Remark 7.2. Lemma 7.1 makes the computation of H�i� .EFIN .�i /IKZ
�1/ rela-

tively straightforward, for i ¤ 5. Indeed, Theorems 6.3, 6.4, 6.5, 6.6, 6.8, and 6.9,
imply that all of the edges in EFIN .�i / (i ¤ 5) are negligible. We can let V�i

be the set of vertices listed in the appropriate theorem (above), and then determine
the isomorphism type of the group H�i� .EFIN .� /IKZ

�1/ from Lemma 7.1 and
Table 7.1. We will sketch this procedure in Examples 7.1–7.3.

Procedure 7.1. Let � and � 0 be split crystallographic groups, where � 0 has
finite index in � . We describe a procedure for computingH� 0

� .EFIN.�
0/IKZ

�1/,
assuming that the calculation of H�� .EFIN .� /IKZ

�1/ has been done.

1. Select one cell from each � -orbit of non-negligible (relative to � ) cells in
EFIN .� /; call the resulting set C� .

2. Let � 0 act onEFIN .� / (which is clearly a model forEFIN .� 0/). Since the class
of negligible groups is closed under passage to subgroups (see Definition 6.6),
the only cells � � EFIN .� / such that � 0

� is non-negligible must be in the set
� � C� . We can write � D � 0T , where T is a right transversal for � 0 in � .
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Thus, � �C� D � 0 � .T �C� /. (Note that T �C� is finite when C� is.) We choose
a single cell from each � 0-orbit that meets T �C� . Call the resulting set OC� 0 . We
note that if a cell � � EFIN .� / has the property that � 0

� is non-negligible, then
� is in � 0 � OC� 0 .

3. It is still possible that OC� 0 contains cells � such that � 0
� is negligible. We therefore

recompute the cell stabilizer � 0
� for each � 2 OC� 0 , removing � from our list if � 0

�

is negligible. The result is the desired list of cells C� 0 (which contains a single
cell from each � 0-orbit of cells � such that � 0

� is non-negligible, and no cells
from any other orbits).

4. If C� 0 consists entirely of vertices (i.e., if all of the edge stabilizers in EFIN .� 0/
are negligible), then we can determineH� 0

� .EFIN .�
0/IKZ

�1/ from Lemma 7.1
and Table 7.1. If there are non-negligible edge stabilizers, then we apply the
quotient map p W EFIN .� / ! � 0nEFIN .� / to the cells in C� 0 . We note that
all of the cells in C� 0 are either 0- or one-dimensional, so the image is a graph.
We can then use the graph p.C� 0/ to compute the E2

0;�1 and E2
1;�1 terms. (The

remainder of the calculation is straightforward.)

In Sect. 7.3, we will give examples to illustrate Procedure 7.1, and provide tables
listing cell stabilizer information for all of the split crystallographic groups with
non-negligible point groups. Table 7.8 summarizes all of the non-zero isomorphism
types of the groups H�� .EFIN .� /IKZ

�1/.

7.3 Calculations of H �
n .EFIN.� /IKZ

�1/

Let us compute some of the groups H�� .EFIN .� /IKZ
�1/, using Procedure 7.1.

Example 7.1. Consider first the group �1, which is generated by the standard
cubical lattice L and the point group SC

4 � .�1/. Theorem 6.3 showed that all of the
edges in EFIN .�1/ are negligible relative to the action of �1. The non-negligible
vertex stabilizers are described in Table 7.2. Note that the columns of Table 7.2 are
labelled by point groups, and the rows are labelled by split crystallographic groups
(see Remark 4.2 for a guide to our labelling convention). If a 3-tuple .a; b; c/ 2 R

3

appears in a box in the table, then the corresponding column heading is �.�.a;b;c//,
where � is the crystallographic group labelling the row, and � W � ! H is the usual
projection. Thus, for instance, the first entry in Table 7.2 tells us that �.�.0;0;0// and
�.�.1=2;1=2;1=2// are both SC

4 � .�1/, where we have written � in place of �1 (the
label of that row).

We easily see from Table 7.2 that there are four vertices in C�1 . Two of the
vertices have stabilizer groups isomorphic to S4 � Z=2, and two have stabilizer
groups isomorphic to D4 � Z=2. By Lemma 7.1 and Table 7.1, we get

H
�1�1.EFIN.�1/IKZ

�1/ Š Z
2I

H
�1
0 .EFIN.�1/IKZ

�1/ Š .Z=4/4I
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Table 7.2 Cell stabilizers in EFIN .�1/

S
C

4 � .�1/ DC

41
� .�1/ AC

4 � .�1/ DC

4 � .�1/ DC

2 � .�1/ CC

4 � .�1/
�1 .0; 0; 0/ . 1

2
; 0; 0/ . 1

2
; 1
2
; 0/

. 1
2
; 1
2
; 1
2
/

.A
C

4 � .�1//1 . 1
2
; 1
2
; 1
2
/ . 1

2
; 0; 0/

.0; 0; 0/ . 1
2
; 1
2
; 0/

.D
C

4 � .�1//1 .0; 0; 0/ . 1
2
; 0; 0/

. 1
2
; 1
2
; 1
2
/ .0; 1

2
; 1
2
/

.0; 0; 1
2
/

. 1
2
; 1
2
; 0/

.D
C

2 � .�1//1 .8/

.C
C

4 � .�1//1 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

.0; 0; 1
2
/

. 1
2
; 1
2
; 0/

The “.8/” is an abbreviation for the collection of all 3-tuples .a; b; c/ such that a, b, c 2 f0; 1=2g

(We note that, here and in all of the other cases, H�
1 .EFIN .� /IKZ

�1/ Š 0.)
These calculations are recorded in the first row of Table 7.8.

Example 7.2. Next, we follow Procedure 7.1 with � 0 D .AC
4 � .�1//1, and � D

�1. A right transversal T for � 0 in � is as follows:
n�

1 0 0
0 1 0
0 0 1

�
;
�
0 1 0
1 0 0
0 0 1

�o
:

We can let C� be the collection of vertices from the first row of Table 7.2. We
note that T � C� contains five vertices: the four vertices from C� , and .0; 1=2; 0/.
We now choose a cell from each � 0-orbit meeting T � C� ; we can simply choose
OC� 0 D C� , since the new vertex .0; 1=2; 0/ is in the � 0-orbit of .1=2; 0; 0/ 2 C� .

The next step is to compute the stabilizer groups � 0
v of the vertices v 2 OC� 0 . This is

straightforward, and amounts to computing the intersections of

SC
4 � .�1/; SC

4 � .�1/; DC
41
� .�1/; and DC

4 � .�1/

with AC
4 � .�1/ (respectively). As a result, we see two vertices v (namely .0; 0; 0/

and .1=2; 1=2; 1=2/) such that �.� 0
v / D AC

4 � .�1/, and two vertices such that
�.� 0

v / D DC
2 � .�1/. All of these vertices are non-negligible, so C� 0 D OC� 0 . The

four vertices are recorded in the second row of Table 7.2, in the appropriate columns.
It now follows from Lemma 7.1 and Table 7.1 that

H� 0

�1.EFIN .� 0/IKZ
�1/ Š Z

2I
H� 0

0 .EFIN .�
0/IKZ

�1/ Š .Z=2/4:
These calculations are recorded in Table 7.8.
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Example 7.3. Now we follow the same procedure with � D .AC
4 � .�1//1 and

� 0 D .DC
2 � .�1//1. We can let T D CC

3 . (Recall that CC
3 is the group of matrices

that cyclically permute the coordinates—see Fig. 2.1.) We can let C� be the same
collection of four vertices from the second row of Table 7.2. Applying T , we find

T � C� D f.a; b; c/ 2 R
3 j a; b; c 2 f0; 1=2gg:

Next, we must choose one cell from each � 0-orbit that meets T � C� . In fact, all of
the elements of T � C� are easily seen to be in distinct � 0-orbits. We can therefore
set OC� 0 D T � C� . The next step is to compute the groups �.� 0

v / for the vertices
in OC� 0 . The best approach here may be to use Lemma 6.1(1). We note that, for
h 2 DC

2 � .�1/, .a; b; c/ � h � .a; b; c/ D .a0; b0; c0/, where x0 is either 0 or 2x,
for x 2 fa; b; cg. It follows from Lemma 6.1(1) that �.� 0

v / D DC
2 � .�1/ for each

v 2 OC� 0 . This implies that each member of the latter set is non-negligible, so we can
let C� 0 D OC� 0 . It now follows from Lemma 7.1 and Table 7.1 that

H� 0

�1.EFIN .� 0/IKZ
�1/ Š 0I

H� 0

0 .EFIN .�
0/IKZ

�1/ Š .Z=2/8;

as recorded in Table 7.8.

Examples 7.1–7.3 illustrate the general pattern in “easy” cases—those in which
the edge stabilizers are negligible. Note that, given � and � 0, a choice of a
right transversal for � 0 in � is made during the application of Procedure 7.1.
Of course, in a given case, several choices of transversal are possible, and these
could easily give us vertices (or edges) that are different from the ones recorded
in Tables 7.2, 7.3, 7.4, 7.5, 7.6, and 7.7. (In fact, we choose orbit representatives,

Table 7.3 Cell stabilizers in EFIN .�2/

D
C

4 � .�1/ D
C

3 � .�1/ D
C

2 � .�1/ C
C

4 � .�1/ C
C

3 � .�1/
�2 . 1

2
; 0; 0/� . 1

4
; 1
4
; 1
4
/

.A
C

4 � .�1//2 . 1
2
; 0; 0/ . 1

4
; 1
4
; 1
4
/

.D
C

4 � .�1//2 .0; 0; 0/ . 1
2
; 0; 0/

.0; 0; 1
2
/

.D
C

2 � .�1//2 .0; 0; 0/

. 1
2
; 0; 0/

.0; 1
2
; 0/

.0; 0; 1
2
/

.C
C

4 � .�1//2 .0; 0; 0/

.0; 0; 1
2
/

Note that the dagger (�) indicates a vertex with the stabilizer group D41 � .�1/. We have also
omitted two entries for formatting reasons. The first row should have the origin .0; 0; 0/ listed with
stabilizer group SC

4 � .�1/, and the second row should list the origin with the stabilizer group
A

C

4 � .�1/
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Table 7.4 Cell stabilizers in EFIN .�3/ and EFIN .�4/

S
C

4 � .�1/ A
C

4 � .�1/ D
C

2 � .�1/ D2 � .�1/
�3 .0; 0; 0/ . 1

4
; 1
4
; 0/

. 1
2
; 0; 0/

.A
C

4 � .�1//3 .0; 0; 0/

. 1
2
; 0; 0/

.D
C

2 � .�1//3 .0; 0; 0/

. 1
2
; 0; 0/

�4 .0; 0; 0/

.0; 1
2
; 1
2
/

.0; 0; 1
2
/

.0; 1
2
; 0/

Table 7.5 Cell stabilizers in
EFIN .�6/, and EFIN .�7/

D
C

3 � .�1/ C
C

3 � .�1/
�6 .0; 0; 0/

. 5
6
; �1
6
; �1
6
/

.C
C

3 � .�1//6 .0; 0; 0/

. 5
6
; �1
6
; �1
6
/

�7 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

Table 7.6 Cell stabilizers in EFIN .�5/ (part I)

D0

6 D00

6
OD0

6 C
C

6 � .�1/
.D0

6/5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

. 1
3
;� 2

3
; 1
3
/

. 5
6
;� 1

6
; 5
6
/

.� 1
3
; 2
3
;� 1

3
/

.� 5
6
; 1
6
;� 5

6
/

.D00

6 /5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

. 1
4
; 1
4
; 1
4
/�

.� 1
4
;� 1

4
;� 1

4
/�

. OD0

6/5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

.C
C

6 � .�1//5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

An asterisk denotes the stabilizer of an edge, where the coordinates indicate the edge’s midpoint.
For the cell stabilizers in �5 itself, we refer the reader to Theorem 6.7. Note that this table and
Table 7.7 should be considered two halves of the same table (which was split in two purely for the
sake of better formatting)
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Table 7.7 Cell stabilizers in EFIN .�5/ (part II)

D
C

6 D
C

3 � .�1/ C
C

6 C 0

6 C
C

3 � .�1/
. OD0

6/5 . 1
3
;� 2

3
; 1
3
/

. 5
6
; �1
6
; 5
6
/

.C
C

6 � .�1//5 . 1
4
; 1
4
; 1
4
/� . 1

3
; �2
3
; 1
3
/

. 5
6
; �1
6
; 5
6
/

.D
C

6 /5 .0; 0; 0/ . 1
4
; 1
4
; 1
4
/�

. 1
2
; 1
2
; 1
2
/

.D
C

3 � .�1//5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

.C
C

6 /5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

. 1
4
; 1
4
; 1
4
/�

.�1
4
; �1
4
; �1
4
/�

.C 0

6/5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

. 1
3
; �2
3
; 1
3
/

. 5
6
; �1
6
; 5
6
/

.�1
3
; 2
3
; �1
3
/

.�5
6
; 1
6
; �5
6
/

.C
C

3 � .�1//5 .0; 0; 0/

. 1
2
; 1
2
; 1
2
/

An asterisk indicates an edge stabilizer, where the coordinates are for the midpoint of the edge

too, and this could also give us different cells.) The calculation of homology is
unaffected, however, since the resulting cells are necessarily in the same � 0-orbits
no matter which transversal is selected. In practice, we have always chosen the
groups � and � 0 in such a way that Œ� W � 0� � 3. We also favored certain
transversals, such as groups of permutation matrices (as in the above examples),
or the group generated by the antipodal map (when applicable).

Note also that most of the split crystallographic groups in Table 4.1 have
negligible point groups, which directly implies that the homology groups in question
are 0. This observation reduces the number of split crystallographic groups that must
be considered.

There are only five “hard” cases. We consider these next.

Example 7.4 (The Case of �5). We would like to compute the generalized homol-
ogy groupsH�5� .EFIN .�5/IKZ

�1/. We work with the vertices and edges from the
statement of Theorem 6.7. There is only one non-negligible edge, which connects
.0; 0; 0/ to .1=2; 1=2; 1=2/. The only part of the calculation that is not completely
straightforward is the calculation of the E2

0;�1 and E2
1;�1 terms; we compute these

from the complex described in Fig. 7.1.
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Fig. 7.1 The non-negligible edge in �5nEFIN .�5/. In addition to the cells pictured, there are 2
isolated vertices with stabilizer subgroup D2 � Z=2 and 2 other isolated vertices with stabilizer
subgroup D6

We compute the homology of the chain complex:

0!
M

�12C�5
K�1.Z��1/!

M

�02C�5
K�1.Z��0/! 0;

By Fig. 7.1 and Table 7.1, the latter chain complex becomes:

0! K�1.ZD6/
	�! .K�1.ZŒD6�Z=2�/˚K�1.ZŒD6�Z=2�//˚2K�1.ZD6/! 0:

The morphism 	 is determined by the map K�1.ZD6/ ! K�1.ZŒD6 � Z=2�/:

We get K�1.ZD6/ Š Z and K�1.ZŒD6 � Z=2�/ Š Z
3 by Table 7.1. We claim that

the map induced by the natural inclusion D6 ,! D6 � Z=2 is injective, and the
quotient group is isomorphic to Z

2. In order to see this, we merely note that there
is a retraction from D6 � Z=2 to the subgroup D6, and hence we must have that
K�1.ZD6/ Š Z is a summand inside K�1.ZŒD6 � Z=2�/ Š Z

3. This immediately
gives the following isomorphisms:

E2
1;�1 Š 0I

E2
0;�1 Š Z

7:

Combining these isomorphisms with Lemma 7.1, Table 7.1, and the list of cells
from Fig. 7.1, we arrive at the calculation of H�5� .EFIN .�5/IKZ

�1/ recorded in
Table 7.8.

Example 7.5 (The Case of .CC
6 � .�1//5). We now consider the group � D .CC

6 �
.�1//5. We will assume that Procedure 7.1 has been followed up to (4). There are
a total of 5 cells in C� , as recorded in Tables 7.6 and 7.7. If we apply the quotient
map p to the cells C� , we get the complex described in Fig. 7.2.

As before, we want to compute the E2
0;�1 and E2

1;�1 terms. The chain complex

0!
M

�12C�
K�1.Z��1/!

M

�02C�
K�1.Z��0/! 0

becomes

0! K�1.ZŒZ=6�/
	�! 2K�1.ZŒZ=6 � Z=2�/˚ 2K�1.ZŒZ=6�/! 0:
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�1/

Fig. 7.2 The graph p.C� /, for � D .C
C

6 �.�1//5. There are two isolated vertices (not pictured),
both of which have stabilizer groups isomorphic to Z=6

Fig. 7.3 The graph p.C� /, for � D .C
C

6 /5. In this case, there are no isolated vertices

The argument follows the pattern from Example 7.4. Note that the morphism
	 is determined by the map K�1.ZŒZ=6�/ ! K�1.ZŒZ=6 � Z=2�/: We get
K�1.ZŒZ=6�/ Š Z and K�1.ZŒZ=6 � Z=2�/ Š Z

3 by Table 7.1. We claim that
the map induced by the natural inclusion Z=6 ,! Z=6 � Z=2 is injective, and
the quotient group is isomorphic to Z

2. There is a retraction from Z=6 � Z=2 to
the subgroup Z=6, and so K�1.ZŒZ=6�/ Š Z is a summand inside K�1.ZŒZ=6 �
Z=2�/ Š Z

3. It follows easily that

E2
1;�1 Š 0I

E2
0;�1 Š Z

7:

This (with Lemma 7.1) directly leads to the calculation that is recorded in Table 7.8.

Example 7.6 (The Case of .CC
6 /5). We set � D .CC

6 /5. The quotient p.C� /
appears in Fig. 7.3.

The chain complex for computing E2
0;�1 and E2

1;�1 is as follows:

0! K�1.ZŒZ=6�/˚K�1.ZŒZ=6�/
	�! K�1.ZŒZ=6�/˚K�1.ZŒZ=6�/! 0:

Since K�1.ZŒZ=6�/ Š Z, the latter complex amounts to the following:

0! Z˚ Z
	�! Z˚ Z! 0;

where the map 	 sends .0; 1/ 7! .1;�1/ and .1; 0/ 7! .�1; 1/. It follows that
ker.	/ D h.1; 1/i Š Z and im.	/ D h.1;�1/i. Therefore

E2
0;�1 Š Z; and E2

1;�1 Š Z:

Since QK0.ZŒZ=6�/ D 0, this and Lemma 7.1 directly gives us the calculation that is
recorded in Table 7.8.
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Fig. 7.4 The graph p.C� / for � D .D
C

6 /5. There are no isolated vertices

Fig. 7.5 The graph p.C� /, for � D .D00

6 /5. There are no isolated vertices

Example 7.7 (The Case of .DC
6 /5). In this case, the graph p.C� / is simply an

edge—see Fig. 7.4.
The chain complex for computing E2

p;�1 is as follows:

0! K�1.ZŒZ=6�/
	�! K�1.ZD6/˚K�1.ZD6/! 0:

Since K�1.ZŒZ=6�/ Š K�1.ZŒD6�/ Š Z, the complex can be written

0! Z
	�! Z˚ Z! 0;

where the map 	 sends 1 7! .1;�1/. It follows that ker.	/ is trivial, and im.	/ D
h.1;�1/i Š Z. Therefore

E2
0;�1 Š Z; and E2

1;�1 Š 0:

Since QK0.ZF / D 0 for F 2 fZ=6;D6g (see Table 7.1), we immediately get the
calculation that is recorded in Table 7.8.

Example 7.8 (The Case of .D00
6 /5). This case follows the exact pattern of Exam-

ple 7.6. The quotient p.C� / is pictured in Fig. 7.5.
The complex for computing E2

p;�1 is:

0! K�1.ZŒD6�/˚K�1.ZŒD6�/
	�! K�1.ZŒD6�/˚K�1.ZŒD6�/! 0:

Since K�1.ZD6/ Š Z, we get

0! Z˚ Z
	�! Z˚ Z! 0;
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Table 7.8 The homology
groups
H�

�
.EFIN .� /IKZ

�1/

� K�1 ¤ 0 QK0 ¤ 0

�1 Z
2 .Z=4/4

.A
C

4 � .�1//1 Z
2 .Z=2/4

.D
C

4 � .�1//1 .Z=2/2 ˚ .Z=4/4

.D
C

2 � .�1//1 .Z=2/8

.C
C

4 � .�1//1 .Z=2/4

�2 Z
2 .Z=4/2

.A
C

4 � .�1//2 Z
2 .Z=2/2

.D
C

4 � .�1//2 Z=2˚ .Z=4/2

D
C

2 � .�1//2 .Z=2/4

.C
C

4 � .�1//2 .Z=2/2

�3 Z
2

Z=2˚ .Z=4/2

.A
C

4 � .�1//3 Z
2 .Z=2/2

.D
C

2 � .�1//3 .Z=2/2

�4 .Z=2/4

�5 Z
7 .Z=2/6

.D
C

6 /5 Z

.C 0

6/5 Z
6

.C
C

6 � .�1//5 Z
7 .Z=2/4

� K�1 ¤ 0 QK0 ¤ 0

.D0

6/5 Z
6

.C
C

6 /5 Z Z

.D
C

3 � .�1//5 Z
2

. OD0

6/5 Z
4

.C
C

3 � .�1//5 Z
2

.D00

6 /5 Z Z

�6 Z
2

.C
C

3 � .�1//6 Z
2

�7 Z
2

where the map 	 sends .0; 1/ 7! .1;�1/ and .1; 0/ 7! .�1; 1/. It follows that
ker.	/ D h.1; 1/i Š Z and im.	/ D h.1;�1/i Š Z. Therefore

E2
0;�1 Š Z; and E2

1;�1 Š Z:

Since QK0.ZD6/ D 0, these terms represent the only contributions to K-theory. See
Table 7.8.



Chapter 8
Fundamental Domains for Actions on Spaces
of Planes

Theorem 5.1 showed that the lower algebraic K-theory of any crystallographic
group can be computed in two pieces. In Chap. 7, we completed the first half of the
computation for the 73 split three-dimensional crystallographic groups. The results
obtained are summarized in Table 7.8.

Next, according to Theorem 5.1, we must calculate the equivariant homology

groups H
�

Ò

n .EFIN .� Ò/ ! �I KZ
�1/, where Ò 2 T 00. In the current chapter, we

will determine which groupsH
�

Ò

n .EFIN .� Ò/! �I KZ
�1/ contribute to the lower

algebraicK-theory of the seven maximal crystallographic groups �i , (i D 1; : : : ; 7).
We will describe fundamental domains for the actions of the groups �i on their
associated spaces of lines

`
h`i R2`. Our arguments here are generally analogous to

the ones from Chap. 6, and the organization of this chapter is similar.

8.1 Negligible Line Stabilizer Groups

As in Chap. 6, the notion of a negligible stabilizer group will be very useful. We will
want to adapt the old definition (Definitions 5.3 and 6.6) to our needs in the current
chapter.

The main result of this section is Proposition 8.3, which greatly simplifies
the remainder of the computation of the lower algebraic K-groups of the split
crystallographic groups.

Definition 8.1. Let � be a split crystallographic group. Let ` � R
3 be a line. We

let � ` D f� 2 � j �j` D id`g. We will sometimes call this group the strict stabilizer
group of `, to distinguish it from the stabilizer group �` D f� 2 � j � � ` D `g.

If G is an infinite virtually cyclic subgroup of � , then G D �` for some line
` � R

3. We then let G denote � `.

© Springer International Publishing Switzerland 2014
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Definition 8.2. An infinite virtually cyclic subgroup G � � is called negligible if
the finite subgroup F from Remark 5.1 has square-free order. We will also say that
G is negligible, and that � is negligible, if G is the stabilizer of � .

Proposition 8.1. IfG is infinite virtually cyclic andG Š F Ì˛Z orG Š G1�F G2,
where F has square-free order, then NKq.ZF; ˛/ or NKq.ZF IZŒG1�F �;ZŒG2�
F �/ (respectively) is trivial for all q � 1.

Proof. If G has the first form, then results of [Ha87] and [J-PR09] show that
NKq.ZF; ˛/ is trivial for q � 1. If G has the second form, then the canonical index
two subgroup of G has the form F Ì˛ Z, so the corresponding group NKq.ZF; ˛/

is trivial for q � 1, as above. Results of Lafont and Ortiz [LO08] show that when
NKq.ZF; ˛/ is trivial, so is NKq.ZF IZŒG1 � F �;ZŒG2 � F �/.
Remark 8.1. If an infinite virtually cyclic group G is negligible in the sense of
Definition 5.3, then it is also negligible in the sense of Definition 8.2. Note that
the two notions are not the same, however. For instance, Z=6 �D1 is negligible in
the sense of Definition 8.2, but non-negligible in the sense of Definition 5.3. In fact,
when we express Z=6�D1 as an infinite virtually cyclic group of type II, we have

Z=6 �D1 Š .Z=6 � Z=2/ �Z=6 .Z=6 � Z=2/;

so Z=6 � D1 is negligible in the sense of Definition 8.2 (since 6 is square-free).
But, since Z=6 � Z=2 is not isomorphic to a subgroup of S4, then it follows that
Z=6 �D1 is not negligible in the sense of Definition 5.3.

Remark 8.2. Remark 8.1 showed that the class of negligible groups in the sense
of Definition 8.2 is strictly wider than the class of negligible groups in the sense of
Definition 5.3. Thus, the class of non-negligible groups in the sense of Definition 5.3
is strictly wider than the class of non-negligible groups in the sense of Definition 8.2.

Recall that, in Theorem 5.1, we considered an indexing set T 00, where T 00
consisted of a choice of vertex v from each orbit of non-negligible (in the sense
of Definition 5.3) vertices in

`
h`i R2`. In practice, it will be easier to consider the

smaller indexing set OT 00, where OT 00 consists of a choice of vertex v from each orbit
of non-negligible (in the sense of Definition 8.2) vertices in

`
h`i R2`. Note that

the indexing set OT 00 leaves out only vertices v 2 `h`i R2` with stabilizers such as
Z=6 �D1, which make no contribution to Nils by Proposition 8.1. It follows that
we can use the smaller indexing set OT 00 in Theorem 5.1.

In practice, we will use the indexing set OT 00, but write T 00. This means that, from
now on, we will simply read Theorem 5.1 with the current definition (Definition 8.2)
of negligible in mind.

Proposition 8.2. Let � D hH;Li be a split crystallographic group. Let ` � R
3

be a line; let r.˛/ D t C ˛v (t; v 2 R
3; ˛ 2 R

3) be a parametrization of `. If
Hv D fh 2 H j h � v D vg has square-free order, then �` D f� 2 � j � � ` D `g is
negligible.
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Proof. Let � 2 � `; we write � D v0Ch, where h is the linear part of the isometry �
(i.e., h D �.�/) and v0 2 L. Now if � � r.˛/ D r.˛/ for all ˛ 2 R, we clearly must
have h � v D v. Thus, �.�/ 2 Hv. Since � W � ` ! H is injective by Lemma 6.1(2)
and �.� `/ � Hv, it follows that � ` has square-free order, making �` negligible.

Definition 8.3. If H is a point group, then a vector v 2 R
3 is a pole vector if there

is some orientation-preserving h 2 H � f1g such that h � v D v.

Corollary 8.1. If the line ` � R
3 can be parametrized as r.˛/ D t C ˛v where v

is not a pole vector of H , then the stabilizer group �` is negligible.

Proof. We note that if v is not a pole vector of H , then the only orientation-
preserving h 2 Hv is h D 1H . The orientation-preserving subgroup ofHv has index
at most two inHv, so jHvj � 2. Thus,Hv has square-free order, and Proposition 8.2
applies.

Proposition 8.3. Let � be one of the groups �i , (i D 1; : : : ; 7). We let H denote
the point group of � .

1. If H D SC
4 � .�1/, then the vertex Ò 2 `h`i R2` is negligible unless Ò admits a

parametrization of the form r.˛/ D tC˛v (t; v 2 R
3, ˛ 2 R), where v D .1; 0; 0/

or .1; 1; 0/ (or some image of the latter vectors under the action of H ).
2. If H D DC

2 � .�1/, then the vertex Ò 2 `h`i R2` is negligible unless Ò admits
a parametrization of the form r.˛/ D t C ˛v (t; v 2 R

3, ˛ 2 R), where v D
.1; 0; 0/, .0; 1; 0/, or .0; 0; 1/.

3. If H D DC
6 � .�1/, then the vertex Ò 2 `h`i R2` is negligible unless Ò admits

a parametrization of the form r.˛/ D t C ˛v (t; v 2 R
3, ˛ 2 R), where v D

.1; 1; 1/, .1;�1; 0/, or .1;�2; 1/ (or some image of the latter vectors under the
action of H ).

4. If H D DC
3 � .�1/, then all of the vertices Ò 2 `

h`i R2` are negligible. In
particular, the complete lower algebraic K-groups of �i for i D 6; 7 appear in
Table 7.8.

Proof. The proofs of all four parts are similar. Proposition 2.2 showed that there are
only two or three orbits of (unit) pole vectors for any point groupH . Proposition 2.2
also shows that there are exactly three orbits of unit pole vectors for all four of the
groups in the statement of our proposition. For each of the four groups above, we
can find the three distinct orbits of unit pole vectors by inspection. For instance, if
H D DC

6 � .�1/, we note that the vectors .1; 1; 1/, .1;�1; 0/, and .1;�2; 1/ are all
pole vectors of H since the orientation-preserving isometries

�
0 1 0
0 0 1
1 0 0

�
;

�
0 �1 0�1 0 0
0 0 �1

�
;

1

3

��2 �2 1�2 1 �2
1 �2 �2

�

from H fix the given vectors (respectively). Next, it is straightforward to check
that the given three vectors are in separate orbits with respect to H (even after
normalization), so the normalized vectors represent the three orbits of unit pole
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vectors for H . The rest of (3) now follows easily from Corollary 8.1. Case (2) is
easier.

The proof of (1) begins in the same way. It is straightforward to check that
the vectors .1; 0; 0/, .1; 1; 0/, and .1; 1; 1/ are pole vectors, and that they represent
distinct H -orbits (even after normalization). It follows directly from Corollary 8.1
that the vertex Ò 2 `h`i R2` is negligible unless it admits a parametrization r.˛/ D
t C˛v with one of the latter vectors playing the role of v. We can furthermore argue
that Ò is negligible when v D .1; 1; 1/. One checks that the orbit of .1; 1; 1/ contains
eight vectors, which implies that jHvj D 6. Thus, � Ò is negligible by Proposition 8.2.
Statement (1) follows.

IfH D DC
3 �.�1/, then the vectors .1; 1; 1/, .1;�1; 0/, and .0;�1; 1/ determine

the three distinct orbits of unit pole vectors. In this case, one checks that the
stabilizer groupsHv have orders 6, 2, and 2 (respectively), so the desired conclusion
follows from Proposition 8.2.

8.2 The Finiteness of the Indexing Set T 00

In this section, we will explicitly identify the indexing set T 00 from Theorem 5.1 for
the crystallographic groups �i (i D 1; : : : ; 5). (Proposition 8.3 has already shown
that we can take T 00 D ; when i D 6 or 7.) It will follow easily that T 00 is always
finite for any three-dimensional crystallographic group. We also record here the
strict line stabilizers for the groups �i (i D 1; : : : ; 5). We will need a lemma.

Lemma 8.1. Let � D �i (i D 1; : : : ; 5), and let ` � R
3 be a line. The group � .`/

acts isometrically on the space of lines R2`. We let  W � .`/! Isom.R2`/ denote the
associated homomorphism, and let G denote the image of  .

1. If `0 2 R
2
`, then  j� `0 W � `0 ! G`0 is injective. In particular, j� `0 j divides jG`0 j.

2. Let g 2 G`0 , and let � 2  �1.g/. We have g 2  .� `0/ if and only if there is an
element k 2 ker  such that �j`0 D kj`0 .

Proof. The statement that � .`/ acts isometrically on R
2
` is straightforward.

1. We claim that  j� `0 W � `0 ! Isom.R2`/ is injective. Suppose that � 2 ker. j� `0 /.
Since � 2 � `0 , � acts trivially on the line `0 � R

3, and, since � 2 ker. /,
� leaves every line parallel to `0 invariant as a set. Let `00 be parallel to `0, and
choose distinct points x1; x2 2 `0. There are points y1; y2 2 `00 that are the
unique closest points to x1 and x2 (respectively) among all points on `00. Since `00
is invariant under � , and x1 and x2 are fixed, it must be that y1 and y2 are fixed
as well. Thus, all of `00 is fixed. This shows that every line parallel to `0 is fixed
by � , so � D 1. This proves the claim.

We can therefore identify � `0 with a subgroup of G`0 and apply Lagrange’s
Theorem.
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2. We assume g 2  .� `0/ and .�/ D g. Choose O� 2 � `0 such that . O�/ D g. We
can set k D O��1� , which has the required properties. Conversely, if �j`0 D kj`0 ,
then k�1� 2 � `0 , and  .k�1�/ D g, as required.

Theorem 8.1. For the group � D �1, we can choose

T 00 D
n�

0
0
˛

�
;
�
1=2
1=2
˛

�
;
�
1=2
0
˛

�
;
�
˛
˛
0

�
;
� ˛

˛
1=2

�o
;

where we have expressed the vertices (i.e., lines) in
`

h`i R2` in parametric form.

For the vertices v 2 T 00, the strict stabilizer groups � v satisfy

�.� v/ D D00
4 ; D00

4 ; D0
2; hA;Bi; and hA;Bi;

respectively, where

A D
�
0 1 0
1 0 0
0 0 1

�
and B D

�
1 0 0
0 1 0
0 0 �1

�
:

Note that hA;Bi Š D2.

Proof. The point group H of �1 is SC
4 � .�1/, so Proposition 8.3(1) implies that

the only non-negligible point stabilizers from
`

h`i R2` have parametrizations of the
form r.˛/ D t C ˛v, where v D .1; 0; 0/ or .1; 1; 0/ (or the image of one of these
vectors under the action of H ).

We consider the first case. Let r.˛/ D t C ˛v, where v D .1; 0; 0/ (or one of its
images under the action ofH ). It is clear that any such parametrized line r.˛/ can be
moved to the plane R

2
.0;0;˛/ by an element of � . Thus, we can find a complete set of

� -orbit representatives with the given type (i.e., with tangent vector v D .0; 0; 1/)
inside R

2
.0;0;˛/. We consider the action of the group

� .0; 0; ˛/ D f� 2 � j �.0; 0; ˛/ is parallel to .0; 0; ˛/g

on the plane R
2
.0;0;˛/. (In words, � .0; 0; ˛/ takes lines parallel to the z-axis to other

lines parallel to the z-axis, possibly reversing the directions of the lines.) It is
straightforward to check that � .0; 0; ˛/ D .DC

4 � .�1//1. We can identify R
2
.0;0;˛/

with the xy-plane P.z D 0/ in R
3. With respect to this identification, the point

group DC
4 � .�1/ acts by restricting its usual action on R

3 to P.z D 0/, and the
cubical lattice acts on P.z D 0/ by ignoring the third coordinate (so the translation
.1; 0; 0/ 2 L acts as .1; 0/ on P.z D 0/, and .0; 0; 1/ acts trivially). This action
yields a homomorphism  W � .0; 0; ˛/! Isom.R2/. The kernel of  is

D�
0
0
1

�
;
�
1 0 0
0 1 0
0 0 �1

�E
:

The image  .� .0; 0; ˛// D G is described in Fig. 8.1. The translations T1 and
T2 (pictured) generate the whole group of translations in the image. Double-tailed
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Fig. 8.1 The image of � .0; 0; ˛/ under the homomorphism  W � .0; 0; ˛/ ! R
2
.0;0;˛/. A

fundamental domain for the image of  is shaded. Here � D �1

arrows in the figure denote reflections, both in R
2 and in R

3. Using Theorem 6.1, it
is straightforward to verify that the shaded triangle P is an exact convex compact
fundamental polyhedron for the image of  . The side-pairings are all reflections (in
fact, the image of  is a Coxeter group), so in particular all of the vertices in the
triangle are in separate orbits.

Now we compute the strict stabilizers of the vertices. (Corollary 5.1 has already
shown that the edges and 2-cells have negligible stabilizers.) The stabilizers G.0;0;˛/
and G.1=2;1=2;˛/ are easily seen to have order 8, and the stabilizer G.1=2;0;˛/ has order
4. It follows from Lemma 8.1(1) that the orders of the strict stabilizers � Ò divide

8, 8, and 4 (respectively), where Ò ranges over the given lines. Consider the line
.0; 0; ˛/. It is easy to see that the isometries

�
0 1 0
1 0 0
0 0 1

�
;

�
1 0 0
0 �1 0
0 0 1

�

(pictured in Fig. 8.1) are in the strict stabilizer � .0;0;˛/, and they clearly generate the
group D00

4 . It follows that � .0;0;˛/ D D00
4 . The other two strict stabilizers associated

to this plane can similarly be computed by inspection of Fig. 8.1.
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Fig. 8.2 A picture of the plane R
2
.˛;˛;0/. The action of � .˛; ˛; 0/ is indicated, and a fundamental

domain is shaded. Here � D �1

Next we must consider the plane R
2
.˛;˛;0/, which contains orbit representatives of

all of the other relevant vertices, by Proposition 8.3. Note that in Fig. 8.2 we have
identified the plane R2.˛;˛;0/ with the plane in R

3 through the origin and perpendicular
to the vector .1; 1; 0/, namely P.x C y D 0/. The group � .˛; ˛; 0/ is generated by
the lattice Z

3 � R
3 and the point group that is generated by the reflections from

Fig. 8.2 and the antipodal map. The action of � .˛; ˛; 0/ is determined as before:
translations act like their projections into the plane P.x C y D 0/, and the point
group acts by restriction. We have labelled the axes with a convenient orthogonal
basis for P.x C y D 0/. The shaded rectangle is a fundamental domain; the image
group G is generated by reflections in the sides of this rectangle.

We compute the strict stabilizers of the lines that form the corners of the
rectangle. It is clear from Lemma 8.1(1) that the orders of these strict stabilizer
groups divide 4. One checks directly that the reflections labelling the double-tailed
arrows from Fig. 8.2 are both in the strict stabilizer of .˛; ˛; 0/, and they clearly
generate a group of order 4. It follows that � .˛;˛;0/ D hA;Bi. One can also check
that �.� .˛;˛;1=2// D hA;Bi in roughly the same way: the isometryA is in � .˛;˛;1=2/,
and the isometry T1 C B is also in � .˛;˛;1=2/, and these two isometries generate a
group of order 4, which must therefore be all of � .˛;˛;1=2/.
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Now we will show that the top corners of the rectangle are negligible. Consider
the vertex .˛ C 1=4; ˛ � 1=4; 0/. We claim that the reflection g across the top edge
of the rectangle is not in the image of  j W � .˛C1=4;˛�1=4;0/ ! Isom.R2/. The proof
uses Lemma 8.1(2). We note that � D T2 C A is an isometry in � .˛; ˛; 0/ that
leaves the given line .˛ C 1=4; ˛ � 1=4; 0/ invariant. Indeed, if we write the line in
the form r.˛/, then � � r.˛/ D r.˛C 1=2/. Note that g D  .�/. By Lemma 8.1(2),
g 2  .� .˛C1=4;˛�1=4;0// if and only if there is some k 2 ker  such that k and �
agree on r.˛/. However, we can explicitly identify the kernel of  W � .˛; ˛; 0/ !
Isom.R2/ as follows:

ker  D
D�

0 �1 0�1 0 0
0 0 1

�
;
�
1
1
0

�E
:

Note that the first generator �1 acts by �1 � r.˛/ D r.�˛/, and the second generator
�2 acts by �2 � r.˛/ D r.˛ C 1/. It follows that there is no k in the kernel such that
k � r.˛/ D r.˛ C 1=2/. This proves the claim. It follows that  .� .˛C1=4;˛�1=4;0//
is proper subgroup of G.˛C1=4;˛�1=4;0/, which has order 4. It now follows that the
group � .˛C1=4;˛�1=4;0/ has order at most 2, and is therefore negligible. The proof
that � .˛C1=4;˛�1=4;1=2/ is negligible follows a similar pattern.

Remark 8.3. Theorem 8.1 establishes the general pattern of all five basic cases:

• It suffices to consider two or three planes R2` (depending on the point group, as
from Proposition 8.3); all of the required � -orbit representatives occur as vertices
in these planes.

• Given a split crystallographic group � D �i (i D 1; : : : ; 5) and one of the
above planes R2`, there is a natural homomorphism  W � .`/! Isom.R2`/ and a
natural identification of R2` with a two-dimensional subspace of R3. Specifically,
choosing ` to be a one-dimensional subspace of R3 (as we may), we can identify
R
2
` with the perpendicular two-dimensional subspace S . The group � .`/, which

is necessarily a split crystallographic group, acts on S . An element of the point
group of � .`/ acts by restriction to S , and an element of the lattice acts by its
projection into S .

• In every case, we will specify generators for the image G D  .� .`// in
accompanying figures, and label the coordinate axes with convenient unit vectors.
The group G is often, but not always, a Coxeter group. Double-tailed arrows
in the figures will always denote reflections in the plane S that preserve the
normal direction (as isometries of R3). The action of G on S will always have an
exact convex compact fundamental polyhedron P . It is generally straightforward
to check that the shaded region in the figures is an exact convex compact
fundamental polyhedron. The proof will be omitted. Having P lets us determine
orbit information: every point (line) in the given plane is in some translate of P ,
and the intersections of � .`/-orbits with P have the form P \ Œx�, where x 2 P
and Œx� denotes the cycle of x (see Sect. 6.1). By Corollary 5.1, only vertices in
the cellulation determined by P (see Theorem 6.2) can be non-negligible.

• We compute the strict stabilizer groups using the two parts of Lemma 8.1.
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This general outline will be assumed in what follows.

Theorem 8.2. For the group � D �2, we can choose

T 00 D
n�

0
0
˛

�
;
�
1=2
0
˛

�
;
�
˛
˛
0

�o
;

where we have expressed the vertices (i.e., lines) in
`

h`i R2` in parametric form.

For the vertices v 2 T 00, the strict stabilizer groups � v satisfy

�.� v/ D D00
4 ; D0

2; and hA;Bi;

respectively, where

A D
�
0 1 0
1 0 0
0 0 1

�
and B D

�
1 0 0
0 1 0
0 0 �1

�
:

Proof. We will consider the same planes R2` as in the proof of Theorem 8.1, although
they will have different actions. First, we consider the plane R

2
.0;0;˛/, pictured in

Fig. 8.3.

Fig. 8.3 This picture describes the action of � .0; 0; ˛/ on R
2
.0;0;˛/, where � D �2. The point

group of � .0; 0; ˛/ is DC

4 � .�1/
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It is not difficult to check that the shaded triangle is an exact convex compact
fundamental polyhedron for the action of G, which is generated by reflections in
the sides of the triangle. It is straightforward to check that the stabilizers G.0;0;˛/,
G.1=2;0;˛/, and G.1=4;1=4;˛/ have orders 8, 8, and 4, respectively. (This is because
the images of the fundamental polyhedron cannot overlap in their interiors—see
Definition 6.3.) By Lemma 8.1(1), the map  j W � `0 ! G`0 is injective for each
of the lines in question. It is straightforward to check, exactly as in the proof of
Theorem 8.1, that  j W � .0;0;˛/ ! G.0;0;˛/ is in fact an isomorphism, and that
� .0;0;˛/ D D00

4 .
Now we consider the strict stabilizer group � .1=2;0;˛/. It is straightforward to

check that
�
1 0 0
0 �1 0
0 0 1

�
;

�
1
0
0

�
C
��1 0 0

0 1 0
0 0 1

�
;

are both in � .1=2;0;˛/. It follows directly that D0
2 � �.� .1=2;0;˛//. We claim that

 .� .1=2;0;˛// is a proper subgroup of G.1=2;0;˛/, so that D0
2 D �.� .1=2;0;˛//. We

prove the claim. Consider the isometry

� D
�
1=2
1=2
1=2

�
C
�

0 �1 0�1 0 0
0 0 1

�
:

(Note that the linear part is reflection in the line y D �x in the plane from Fig. 8.3.)
It is easy to check that g D  .�/ 2 G.1=2;0;˛/. By Lemma 8.1(2), g 2  .� .1=2;0;˛//

if and only if the action of � on .1=2; 0; ˛/ agrees with the action of some k from
the kernel of  W � .0; 0; ˛/! Isom.R2/. The latter kernel is

D�
1 0 0
0 1 0
0 0 �1

�
;
�
0
0
1

�E
:

We have � � r.˛/ D r.˛ C 1=2/ (where r.˛/ D .1=2; 0; ˛/), however, and there is
no k 2 ker  that acts this way on r.˛/. This proves the claim.

One can show that  .� .1=4;1=4;˛// is a proper subgroup of G.1=4;1=4;˛/ in an
analogous way, using the same � as above. One then concludes that j� .1=4;1=4;˛/j �
2, so � .1=4;1=4;˛/ is negligible.

Next, we consider the action of � .˛; ˛; 0/ on R
2
.˛;˛;0/, as described in Fig. 8.4.

The image group G acts by reflections on the sides of the shaded rectangle, which
is an exact convex compact fundamental polyhedron. (In fact, G is again a Coxeter
group.) It is easy to see that the four vertices forming the corners of the rectangle
have stabilizers of order 4 relative to G.

The reflections in Fig. 8.4 are both easily seen to be elements of the group
� .˛;˛;0/. Since these reflections generate a group of order 4, it follows from
Lemma 8.1(1) that this is the entire strict stabilizer of .˛; ˛; 0/ (as stated in the
theorem).
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Fig. 8.4 This picture describes the action of � .˛; ˛; 0/ on R
2
.˛;˛;0/, where � D �2. The point

group is generated by the given reflections and the antipodal map

All of the other corners have negligible stabilizers. We will prove this for the
corner .˛; ˛; 1=4/, the other cases being similar. Consider the isometry � D T1CRz,
where T1 is pictured in Fig. 8.4 and Rz is multiplication by �1 in the z-coordinate;
i.e., Rz labels the horizontal double-tailed arrow from Fig. 8.4. Setting r.˛/ D
.˛; ˛; 1=4/, one easily checks that � � r.˛/ D r.˛ C 1=2/. By Lemma 8.1(2),
g D  .�/ 2  .� .˛;˛;1=4// if and only if there is some k in the kernel

D�
1
1
0

�
;
�

0 �1 0�1 0 0
0 0 1

�E

such that k � r.˛/ D r.˛C 1=2/. The generators of the kernel send r.˛/ to r.˛C 1/
and r.�˛/ (respectively). It follows that the required k does not exist. Thus g is
in G.˛;˛;1=4/ but not in  .� .˛;˛;1=4//, so the latter group is a proper subgroup of the
former. It follows that j� .˛;˛;1=4/j � 2, proving that � .˛;˛;1=4/ is negligible.

Theorem 8.3. For the group � D �3, we can choose

T 00 D
n�

0
0
˛

�
;
�
1=4
1=4
˛

�
;
�
˛
˛
0

�
;
� ˛

˛
1=2

�o
;

where we have expressed the vertices (i.e., lines) in
`

h`i R2` in parametric form.
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Fig. 8.5 This picture describes the action of � .0; 0; ˛/ on the plane R
2
.0;0;˛/, where � D �3

For the vertices v 2 T 00, the strict stabilizer groups � v satisfy

�.� v/ D D00
4 ; hA;C i; hA;Bi; and hA;Bi;

respectively, where

A D
�
0 1 0
1 0 0
0 0 1

�
; B D

�
1 0 0
0 1 0
0 0 �1

�
; and C D

��1 0 0
0 �1 0
0 0 1

�
:

Proof. We first consider the action on R
2
.0;0;˛/. The image group G is a Coxeter

group, generated by reflections in the sides of the triangle pictured in Fig. 8.5. We
note first that it is straightforward to verify that � .0;0;˛/ D D00

4 . The argument
follows the same lines as in the proofs of the previous theorems.

We concentrate on the remaining two corners of the triangle. First consider the
line .1=4; 0; ˛/. It is clear that G.1=4;0;˛/ has order 4. We claim that � .1=4;0;˛/ is
negligible. This will follow from Lemma 8.1(1) and Proposition 8.1 once we show
that  .� .1=4;0;˛// is a proper subgroup of G.1=4;0;˛/. Consider the element

� D T1 C
��1 0 0

0 1 0
0 0 1

�
:
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It is easy to check that  .�/ 2 G.1=4;0;˛/. By Lemma 8.1(2), g D  .�/ is in
 .� .1=4;0;˛// if and only if there is some element k of the kernel of W � .0; 0; ˛/!
Isom.R2/ that agrees with � on .1=4; 0; ˛/. We note that the kernel is

D�
0
0
1

�
;
�
1 0 0
0 1 0
0 0 �1

�E
:

The above generators act on r.˛/ D .1=4; 0; ˛/ by sending r.˛/ to r.˛ C 1/ and
r.�˛/, respectively. On the other hand, � � r.˛/ D r.˛ C 1=2/. It follows that
g D  .�/ …  .� .1=4;0;˛//. This proves the claim.

Next, we consider the line .1=4; 1=4; ˛/. Essentially the same reasoning as
above, using the same � , shows that  .� .1=4;1=4;˛// is a proper subgroup of
G.1=4;1=4;˛/. We note that G.1=4;1=4;˛/ has order 8, so that � .1=4;1=4;˛/ has order at
most 4. It is straightforward to check that

��
0 1 0
1 0 0
0 0 1

�
;

�
1=2
1=2
0

�
C
��1 0 0

0 �1 0
0 0 1

��

is a group of order 4 that is a subgroup of � .1=4;1=4;˛/, so equality must hold. It easily
follows that �.� .1=4;1=4;˛// D hA;C i, as in the statement of the theorem.

Next we must consider the plane R
2
.˛;˛;0/. The action is described in Fig. 8.6. We

note that the image group G does not act as a Coxeter group in this case: the side-
pairing of the slanted side of the triangle P with itself is a rotation of 180ı about
the midpoint of that side. It follows that the top vertex and the right-hand vertex are
in the same orbit under the action of �.˛;˛;0/. As a result, we only need to consider
the vertices .˛; ˛; 0/ and .˛; ˛; 1=2/. It is easy to check that � .˛;˛;0/ D hA;Bi, so
we will concentrate on the vertex .˛; ˛; 1=2/.

We claim that jG.˛;˛;1=2/j < 8. To prove the claim, we note that jG.˛;˛;1=2/j must
be less than or equal to the number of translates of the fundamental domain that
touch .˛; ˛; 1=2/. There are 8 such translates, which proves that jG.˛;˛;1=2/j � 8.
Next, we consider the side-pairing � of the slanted side of P with itself, which is
rotation by 180ı about the midpoint. Note that �.P / touches .˛; ˛; 1=2/, although
� … G.˛;˛;1=2/. There cannot be g 2 G.˛;˛;1=2/ such that g.P / D �.P /, for, by
Definition 6.3, this would imply that g D �, a contradiction. Thus, the elements of
G.˛;˛;1=2/ must move P to some subset of the remaining seven translates of P that
touch .˛; ˛; 1=2/. Since different elements of G.˛;˛;1=2/ must move P to different
elements of the tessellation fgP j g 2 Gg (again by Definition 6.3), the claim
follows.

Next, we directly check that
D�

0 1 0
1 0 0
0 0 1

�
;
�
0
0
1

�
C
�
1 0 0
0 1 0
0 0 �1

�E
� � .˛;˛;1=2/:

It is easy to see that the above isometries generate a group of order 4. In view of
the inequality jG.˛;˛;1=2/j < 8 and Lemma 8.1(1), the above containment must be an
equality.
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Fig. 8.6 This picture describes the action of � .˛; ˛; 0/ on R
2
.˛;˛;0/, where � D �3

(Technically, Theorem 6.2 tells us that the midpoint of the slanted side in Fig. 8.6
should be a vertex v in the cellulation of the plane, so we should consider its strict
stabilizer as well. However, it is clear that jGvj D 2, so the strict stabilizer is
necessarily negligible, by Lemma 8.1(1).)

Theorem 8.4. For the group � D �4, we can choose

T 00 D
n�

0
0
˛

�
;
�

0
1=2
˛

�
;
�
˛
0
0

�
;
� ˛
1=2
0

�
;
�
0
˛
0

�
;
�

0
˛
1=2

�o
;

where we have expressed the vertices (i.e., lines) in
`

h`i R2` in parametric form
(Figs. 8.7 and 8.8).

For the vertices v 2 T 00, the strict stabilizer groups � v are

�.� v/ D D0
2; D0

2; D0
21
; D0

21
; D0

22
; and D0

22
:

Proof. We must consider the planes R2.0;0;˛/, R
2
.˛;0;0/, and R

2
.0;˛;0/. These three cases

pose no problems that we haven’t encountered before, so we will give an explicit
argument for the plane R

2
.0;0;˛/, and leave the remaining cases to the reader.



8.2 The Finiteness of the Indexing Set T 00 113

Fig. 8.7 This picture describes the action of � .0; 0; ˛/ on the plane R
2
.0;0;˛/, where � D �4

We note that the image group G is generated by reflections in the sides of the
shaded rectangle, and is in particular a Coxeter group. It follows that the four
vertices are all in separate orbits modulo the action of � .0; 0; ˛/. It is also easy
to see that jG`j D 4 for the lines ` in question. It is completely straightforward to
verify that D0

2 � � .0;0;˛/, so equality must hold by Lemma 8.1(1).
Next we consider the line .0; 1=2; ˛/. We easily check that

D��1 0 0
0 1 0
0 0 1

�
;
�
0
1
0

�
C
�
1 0 0
0 �1 0
0 0 1

�E
� � .0;1=2;˛/:

Since the isometries above will generate a group of order 4, and j� .0;1=2;˛/j �
jG.0;1=2;˛/j D 4 by Lemma 8.1(1), equality is forced. The equality �.� .0;1=2;˛// D
D0
2 follows directly.
We claim that the remaining two vertices in this plane are negligible. We prove

this fact for the vertex (line) .1=4; 0; ˛/, the other case being similar. Consider the
isometry

� D
�
1=2
0
1=2

�
C
��1 0 0

0 1 0
0 0 1

�
:
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Fig. 8.8 The planes R
2
.˛;0;0/ and R

2
.0;˛;0/ appear on the top and bottom (respectively). The acting

group is � .`/ (for appropriate `) and � D �4
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Clearly g D  .�/ 2 G.1=4;0;˛/. It is sufficient to show that g …  .� .1=4;0;˛//; we
will establish this by proving that there is no k 2 ker  such that kj.1=4;0;˛/ D
�j.1=4;0;˛/. The kernel is equal to

D�
0
0
1

�
;
�
1 0 0
0 1 0
0 0 �1

�E
:

These generators act on r.˛/ D .1=4; 0; ˛/ by sending r.˛/ to r.˛C 1/ and r.�˛/
(respectively). The element � acts by the rule � � r.˛/ D r.˛C 1=2/. It follows that
the required k does not exist, so � .1=4;0;˛/ is negligible.

Theorem 8.5. For the group � D �5, we can choose

T 00 D

�

˛
˛
˛

�
;
�
˛C1=2
˛�1=2
˛

�
;
�

˛�˛
0

�
;

�
˛C1=2

�˛C1=2
1=2

�
;
�

˛�2˛
˛

�
;

�
˛C1=2

�2˛C1=2
˛C1=2

��
;

where we have expressed the vertices (i.e., lines) in
`

h`i R2` in parametric form.

For the vertices v 2 T 00, the strict stabilizer groups � v satisfy

�.� v/ D D00
6 ; hA;Di; hD;Ei; hD;Ei; hE;F i; and hE;F i;

respectively, where

A D
�
0 1 0
1 0 0
0 0 1

�
; D D 1

3

�
2 �1 2�1 2 2
2 2 �1

�
; E D 1

3

�
1 �2 �2�2 1 �2�2 �2 1

�
; and F D

�
0 0 1
0 1 0
1 0 0

�
:

The groups hA;Di, hD;Ei, and hE;F i are isomorphic to D2.

Proof. We will consider only the planes R
2
.˛;˛;˛/ and R

2
.˛;�˛;0/, leaving the plane

R
2
.˛;�2˛;˛/ (Fig. 8.10) to the reader.

We note that R2.˛;˛;˛/ is pictured at the top of Fig. 8.9 with its associated action by
� .˛; ˛; ˛/. The image groupG is generated by reflections in the sides of the shaded
triangle (whose interior angles are �=6, �=3, and �=2, reading clockwise from the
origin). In particular, G is a Coxeter group, and all three vertices are distinct in the
quotient. It also follows that the stabilizers G` of the vertices have orders 12, 6, and
4 (respectively, reading clockwise from the origin). It follows from Lemma 8.1(1)
that the top corner of the fundamental domain has a negligible strict stabilizer
(since the order divides six). It is also straightforward to check that D00

6 � � .˛;˛;˛/,
and an application of Lemma 8.1(1) forces this inclusion to be an equality by
counting. Next, we consider the vertex .˛ C 1=2; ˛ � 1=2; ˛/. It is straightforward
to check that D and T1 C A are both in � .˛C1=2;˛�1=2;˛/, and that these isometries
generate a group of order 4. It follows that � .˛C1=2;˛�1=2;˛/ D hD;T1 C Ai, so that
�.� .˛C1=2;˛�1=2;˛// D hD;Ai, as claimed (Fig. 8.9).

Finally, we consider the plane R
2
.˛;�˛;0/, which is pictured at the bottom of

Fig. 8.9. We note that the image groupG is a Coxeter group, generated by reflections
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Fig. 8.9 These are the planes R2.˛;˛;˛/ and R
2
.˛;�˛;0/ (respectively, from the top), with the associated

actions from � .`/, where � D �5
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Fig. 8.10 This is the plane R
2
.˛;�2˛;˛/ with its associated action by � .˛;�2˛; ˛/, where � D �5

in the sides of the shaded rectangle. It follows that all four corners are distinct in the
quotient, and that the stabilizers G` have order 4, for each corner ` of the rectangle.

We first consider the two vertices along the vertical axis. Note first that hD;Ei �
� .˛;�˛;0/, and equality is forced by Lemma 8.1(1) since the former group has order
4. Similarly, one can show that hD;T2 C Ei � � .˛C1=2;�˛C1=2;1=2/, and equality is
again forced by the same argument.

We consider the vertex r.˛/ D .˛C1=4;�˛C1=4;�1=2/. We set � D T1CD,
and note that � � r.˛/ D r.˛�1=2/. We have g D  .�/ …  .� .˛C1=4;�˛C1=4;�1=2//
if there is no element of the kernel that acts on r.˛/ in the same way. The kernel is
the group

D�
0 1 0
1 0 0
0 0 1

�
;
�

1�1
0

�E
I

these generators send r.˛/ to r.�˛/ and r.˛ C 1/ (respectively). Therefore,

� .˛C1=4;�˛C1=4;�1=2/

is negligible. One argues that the remaining vertex is negligible in the same way.



Chapter 9
Cokernels of the Relative Assembly Maps
forVC1

In this chapter, we will compute the contribution of the infinite virtually cyclic
groups to the lower algebraic K-theory of the split three-dimensional crystallo-
graphic groups. There are three steps. First, in Sect. 9.1, we must determine the
(non-negligible) strict stabilizers of lines ` relative to all 73 split three-dimensional
crystallographic groups. This amounts to finding the indexing set T 00 from the
statement of Theorem 5.1. In Chap. 8, we determined the indexing sets T 00 for the
groups �i (i D 1; : : : ; 5). We will give a procedure (Procedure 9.1) that describes,
for given split crystallographic groups � , � 0 such that Œ� W � 0� < 1, a suitable
choice of T 00 for the group � 0, assuming that a choice of T 00 for � is known to
us. The procedure is analogous to the one that we have already used in Chap. 7 (see
Procedure 7.1), when we were determining vertex stabilizers in EFIN .� /. We will
also identify the strict stabilizer groups for all of the lines in question.

The next step is to rebuild the line stabilizer groups from their strict stabilizers.
This is done in Sect. 9.2 using Procedure 9.2. The final step is to determine the
remaining factor from Theorem 5.1:

M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/:

This will be done in Sect. 9.3. The nontrivial cokernels are summarized in
Table 9.11.

9.1 Passing to Subgroups

In this section, we will list, for each split crystallographic group � , a complete set
T 00 of orbit representatives of lines ` with non-negligible strict stabilizer groups.
We will also describe the isomorphism types of the latter groups. In Sect. 8.2, we
saw such lists for the groups �i (i D 1; : : : ; 5). Our method of computing the strict

© Springer International Publishing Switzerland 2014
D.S. Farley, I.J. Ortiz, Algebraic K-theory of Crystallographic Groups, Lecture Notes
in Mathematics 2113, DOI 10.1007/978-3-319-08153-3__9
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stabilizer groups of lines for the remaining groups (Procedure 9.1 below) involves
passing to finite index subgroups and generally follows the pattern of Procedure 7.1.
In Sect. 9.2, we will describe how to compute the stabilizer group of a line from its
strict stabilizer.

Procedure 9.1. Let � D hL;H i and � 0 D hL0;H 0i be split crystallographic
groups, where � 0 has finite index in � . Let L.� / denote a set of lines ` � R

3

that contains exactly one line ` from each � -orbit of lines Ò with non-negligible
strict stabilizer � Ò. We describe a procedure that computes an analogous set L.� 0/
for � 0.

1. Let T be a finite right transversal for � 0 in � . First choose one line from each
� 0-orbit of (unparametrized) lines in T �L.� /. Denote the resulting set L0.� 0/.

2. For each ` 2 L0.� 0/, compute the strict stabilizer �
0
`, which can be done as

follows. Assume that ` admits the parametrization r.˛/ D t C ˛v. We have the
equality �.�

0
`/ D fh0 2 H 0

v j t � h0.t/ 2 L0g, where � W � 0 ! H 0 is the usual

projection to the point group. We recall that � W � 0
` ! �.�

0
`/ is an isomorphism.

3. We eliminate a line ` from the list L0.� 0/ if its strict stabilizer is negligible. The
resulting list is L.� 0/.

Next, we illustrate this procedure in a few representative examples, and summa-
rize the results in Tables 9.1, 9.2, 9.3, 9.4, and 9.5. We note that the matrices A, B ,
and C from those tables are the same as the ones from Theorem 8.2, and D, E, and
F are the same as the ones from Theorem 8.5.

Example 9.1. We first let � D �1 and � 0 D hL;DC
4 � .�1/i, where L is the

standard cubical lattice. It is not difficult to see that T D CC
3 is a right transversal

for � 0 in � . Recall that a setL.� /was computed in Theorem 8.1; the results of that
computation are summarized in the top row of Table 9.1. Following Procedure 9.1,
we apply T to the five parametrized lines in the top row of Table 9.1. This results in a
list of 15 lines (which are obtained by cyclically permuting the entries of the original
five, by the description of CC

3 in Theorem 2.1). Since the permutation matrix which
swaps the first two coordinates is in DC

4 � .�1/, it is easy to check that we can
eliminate four lines from our list, since these four are in the same � 0-orbits as some
of the other 11. One possible choice of the remaining 11 lines is as follows:

� ��̨
�
;
�
˛��
�
;
�
˛
˛�
�
;
� �̨
˛

�
;
� ˛
1=2
0

�
;
�
1=2
0
˛

�
;
�

0
˛
1=2

�
;

where � 2 f0; 1=2g (and must be one or the other, not both within one vector). It is
now straightforward to check that no two of the above lines are in the same � 0-orbit.
We may therefore let the above collection be L0.� 0/.

Next, we compute the strict stabilizers of each of the new lines. Set H D DC
4 �

.�1/. For the vectors v D x; y; z; xC y; yC z, we have

Hv D D0
21
; D0

22
; D00

4 ; hA;Bi;
D��1 0 0

0 1 0
0 0 1

�E
;



9.1 Passing to Subgroups 121

Table 9.1 The entries in the table are parametrized lines; if a line ` appears in the row and column
labelled (respectively) H1 and H2, then �.� `/ D H2, where � D hL;H1i and L is the standard
cubical lattice

H D
00

4 D
0

2 D
0

21
D

0

22
C

C

4 hA;Bi hA;C i
S

C

4 � .�1/ .0; 0; ˛/ . 1
2
; 0; ˛/ .˛; ˛; 0/

. 1
2
; 1
2
; ˛/ .˛; ˛; 1

2
/

S
C

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

S 0

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

A
C

4 � .�1/ .0; 0; ˛/

. 1
2
; 0; ˛/

.0; 1
2
; ˛/

. 1
2
; 1
2
; ˛/

D
C

4 � .�1/ .0; 0; ˛/ . 1
2
; 0; ˛/ .˛; 0; 0/ .0; ˛; 1

2
/ .˛; ˛; 0/

. 1
2
; 1
2
; ˛/ .˛; 1

2
; 0/ .˛; ˛; 1

2
/

.˛; 1
2
; 1
2
/

D
C

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

C
C

4 � .�1/ .0; 0; ˛/

. 1
2
; 1
2
; ˛/

C
C

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

D
C

2 � .�1/ .0; 0; ˛/ .˛; 0; 0/ .0; ˛; 0/

.0; 1
2
; ˛/ .˛; 1

2
; 0/ .0; ˛; 1

2
/

. 1
2
; 1
2
; ˛/ .˛; 0; 1

2
/ . 1

2
; ˛; 0/

. 1
2
; 0; ˛/ .˛; 1

2
; 1
2
/ . 1

2
; ˛; 1

2
/

D0

2 .0; 0; ˛/

. 1
2
; 0; ˛/

.0; 1
2
; ˛/

. 1
2
; 1
2
; ˛/

D0

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

OD0

4 .0; 0; ˛/

. 1
2
; 1
2
; ˛/

. 1
2
; 0; ˛/

D00

4 .0; 0; ˛/ . 1
2
; 0; ˛/

. 1
2
; 1
2
; ˛/
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Table 9.2 The entries in the table are parametrized lines; if a line ` appears in the row and column
labelled (respectively) H1 and H2, then �.� `/ D H2, where � D hL;H1i and L is the lattice
h 1
2
.x C y C z/; y; zi

H D
00

4 D
0

2 D
0

21
D

0

22
C

C

4 hA;Bi hA;C i
S

C

4 � .�1/ .0; 0; ˛/ . 1
2
; 0; ˛/ .˛; ˛; 0/

S 0

4 .0; 0; ˛/

A
C

4 � .�1/ .0; 0; ˛/

. 1
2
; 0; ˛/

D00

4 .0; 0; ˛/ . 1
2
; 0; ˛/

S
C

4 .0; 0; ˛/

D
C

4 � .�1/ .0; 0; ˛/ . 1
2
; 0; ˛/ .0; ˛; 1

2
/ .˛; ˛; 0/

.0; ˛; 0/

D
C

4 .0; 0; ˛/

C
C

4 � .�1/ .0; 0; ˛/

C
C

4 .0; 0; ˛/

D
C

2 � .�1/ .0; 0; ˛/ .˛; 0; 0/ .0; ˛; 0/

. 1
2
; 0; ˛/ .˛; 1

2
; 0/ .0; ˛; 1

2
/

D0

4 .0; 0; ˛/

OD0

4 .0; 0; ˛/

. 1
2
; 0; ˛/

D0

2 .0; 0; ˛/

. 1
2
; 0; ˛/

Table 9.3 The entries in the table are parametrized lines; if a line ` appears in the row and column
labelled (respectively) H1 and H2, then �.� `/ D H2, where � D hL;H1i and L is the lattice
h 1
2
.x C y/; 1

2
.x C z/; 1

2
.y C z/i

H D
00

4 D
0

2 D
0

21
D

0

22
C

C

4 hA;Bi hA;C i
S

C

4 � .�1/ .0; 0; ˛/ .˛; ˛; 0/ . 1
4
; 1
4
; ˛/

.˛; ˛; 1
2
/

S
C

4 .0; 0; ˛/

S 0

4 .0; 0; ˛/

. 1
4
; 1
4
; ˛/

A
C

4 � .�1/ .0; 0; ˛/

D0

2 .0; 0; ˛/

D
C

2 � .�1/ .0; 0; ˛/ .˛; 0; 0/ .0; ˛; 0/

respectively. The last group has order 2, and it follows that each line of the form
.�; ˛; ˛/ is negligible. We note that the strict stabilizer �

0
.1=2;0;˛/ has order at most

4, since j� 0
.1=2;0;˛/j divides jHvj D 8, and A 62 �.� 0

.1=2;0;˛//. One can check that

D0
2 � �.�

0
.1=2;0;˛//, so equality must hold. It is straightforward to check that each

of the remaining parametrized lines r.˛/ D t C ˛v satisfies �.�
0
`/ D Hv.
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Table 9.4 The entries in the
table are parametrized lines;
if a line ` appears in the row
and column labelled
(respectively) H1 and H2,
then �.� `/ D H2, where
� D hL;H1i and L is the
lattice h 1

2
.x C z/; y; zi

H D
0

2 D
0

21
D

0

22

D
C

2 � .�1/ .0; 0; ˛/ .˛; 0; 0/ .0; ˛; 0/

.0; 1
2
; ˛/ .˛; 1

2
; 0/ .0; ˛; 1

2
/

D0

2 .0; 0; ˛/

.0; 1
2
; ˛/

D0

22
.0; ˛; 0/

.0; ˛; 1
2
/

Table 9.5 The entries in the table are parametrized lines; if a line ` appears in the row and column
labelled (respectively) H1 and H2, then �.� `/ D H2, where � D hL;H1i and L is the lattice
hv1; v2; v3i
H D

00

6 hA;Di hD;Ei hE;F i
D

C

6 � .�1/ .˛; ˛; ˛/ .˛ C 1
2
; ˛ � 1

2
; ˛/ .˛;�˛; 0/ .˛;�2˛; ˛/

.˛ C 1
2
;�˛ C 1

2
; 1
2
/ .˛ C 1

2
;�2˛ C 1

2
; ˛ C 1

2
/

D
00

6 .˛; ˛; ˛/ .˛ C 1
2
; ˛ � 1

2
; ˛/

D
0

6 .˛;�2˛; ˛/
.˛ C 1

2
;�2˛ C 1

2
; ˛ C 1

2
/

OD0

6 .˛;�˛; 0/
.˛ C 1

2
;�˛ C 1

2
; 1
2
/

It now follows that the remaining nine lines form L.� 0/. The strict stabilizer
groups of these lines (as computed above) are described in the relevant line of
Table 9.1.

Example 9.2. Now we let � D hL;DC
4 � .�1/i and � 0 D hL;D0

4i, where L is
still the standard cubical lattice. We can take the group generated by the antipodal
map as T . Applying the antipodal map to the nine lines of L.� / from Example 9.1,
we get six new ones (three of the lines are invariant under the antipodal map). It is
straightforward to check that these six new lines are all in � 0-orbits of the original
nine. For instance, .�˛;�1=2; 0/ (one of the new lines) is clearly in the � 0-orbit
of .�˛; 1=2; 0/ D .˛; 1=2; 0/ 2 L.� /. The five remaining lines are redundant by
similar (easy) calculations. It follows that we can take L0.� 0/ D L.� /.

Next, we compute the strict stabilizer �
0
` of each ` 2 L0.� 0/. Recall that each

element M 2 D0
4 can be factored as M D SP , where P is a permutation matrix

that fixes the last coordinate and S is a diagonal matrix with an even number of �1s
on the diagonal, the remaining diagonal entries being 1. We let H D D0

4. We need
to find the stabilizer groups Hv for v D x; y; z; x C y; by the above description of
D0
4, these groups are

D�
1 0 0
0 �1 0
0 0 �1

�E
;

D��1 0 0
0 1 0
0 0 �1

�E
;

D�
0 1 0
1 0 0
0 0 1

�
;
� �1 0 0

0 �1 0
0 0 1

�E
;

D�
0 1 0
1 0 0
0 0 1

�E
;

respectively. It follows directly that all of the lines except possibly

.0; 0; ˛/; .1=2; 1=2; ˛/; .1=2; 0; ˛/
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are negligible. It is straightforward to check that the first two lines ` satisfy
�.�

0
`/ D Hz. For the final line `, we have j�.� 0

`/j D 2, so the strict stabilizer
of ` is negligible.

This implies that L.� 0/ D f.0; 0; ˛/; .1=2; 1=2; ˛/g. The strict stabilizer groups
of the latter lines are recorded in Table 9.1.

Example 9.3. Now we let � D hL;DC
4 � .�1/i and � 0 D hL; OD0

4i, where L is the
standard cubical lattice. We can again choose the group generated by the antipodal
map as T . Exactly the same calculation as in Example 9.2 shows that we arrive at
the same set of nine lines L0.� 0/.

Set H D OD0
4. Recall that

OD0
4 D

D�
0 1 0
1 0 0
0 0 �1

�
;
�
1 0 0
0 �1 0
0 0 1

�E
:

One can check (by listing all of the matrices in OD0
4), that D0

2 � OD0
4, and that the

remaining matrices can all be expressed in the form M D SP , where P is the
permutation matrix that interchanges the first two coordinates, and S is a diagonal
matrix with 1s and �1s down the diagonal, but with a �1 in the bottom corner. With
this description, it is easy to check that the stabilizer groupsHv for v D x; y; z; xCy
satisfy

Hv D
D�

1 0 0
0 �1 0
0 0 1

�E
;

D��1 0 0
0 1 0
0 0 1

�E
; D0

2;
D�

0 1 0
1 0 0
0 0 �1

�E
;

respectively. It follows directly that a line ` 2 L0.� 0/ has a negligible strict stabilizer
group unless it has z as a tangent vector. Thus,

L.� 0/ D f.0; 0; ˛/; .1=2; 1=2; ˛/; .1=2; 0; ˛/g:

Finally, an easy check shows that �.�
0
`/ D D0

2 for each of the latter three lines,
confirming the entries in the relevant row of Table 9.1.

9.2 Reconstructing �` from � `

Let � D hL;H i. Assume that ` is one of the parametrized lines from
Tables 9.1, 9.2, 9.3, 9.4, or 9.5. We now describe a procedure for computing
the stabilizer group �` of ` from its strict stabilizer � ` (which we computed in
Sect. 9.1).

Procedure 9.2. We may assume that ` has a parametrization of the form r.˛/ D
1
2
t C ˛v, where t; v 2 L, t ? v, and ˇv … L for ˇ 2 .0; 1/, since all of the

parametrized lines in our tables have this form.
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1. Find the smallest positive constant C such that there is �T 2 � with the property
that �T � r.˛/ D r.˛CC/. (The isometry �T is the translation that acts on ` with
minimal translation length.) A smallest C always exists, and we can find both C
and �T as follows:

a. Compute the set

Av;L D
nv1 � v

v � v j v1 2 L
o
:

This set is a finitely generated subgroup of the rational numbers, and therefore
cyclic. Let q > 0 be a generator. Note that 1 2 Av;L, so q is the reciprocal of
a positive integer.

b. Determine the smallest number C in the sequence q, 2q, 3q, : : : ; such that
there is h 2 H satisfying: h.v/ D v and 1

2
.t � h.t//C C v 2 L.

c. We set

�T D 1

2
.t � h.t//C C vC h:

We note that this entire step becomes trivial to perform if t D 0 or if Av;L is
the set of integers, for then C D 1 is forced and we can take �T D v (i.e., the
translation by v). In either of these cases, we will call this step easy.

2. Determine whether some isometry �R 2 � acts as a reflection on the
parametrized line r.˛/; that is, determine whether there is some isometry
�R 2 � and D 2 R such that �R � r.˛/ D r.D � ˛/. This amounts to
doing the following. Fix a basis b1; b2; b3 for L as a free abelian group. For each
h 2 H such that h.v/ D �v, determine whether the equation

c1b1 C c2b2 C c3b3 D 1

2
.t � h.t//CDv

has a solution for integers ci (i D 1; 2; 3) and D 2 R. If the solution exists for
some h 2 H , then we set

�R D
�
1

2
.t � h.t//CDv

�
C h:

We note that this step becomes trivial to perform if there is no h 2 H such
that h.v/ D �v (in which case there can exist no �R), or if there is h 2 H such
that h.v/ D �v and h.t/ D ˙t (in which case we can set D D 0 and let �R D h
or t C h, respectively). Note, in particular, that the latter conditions are always
satisfied if .�1/ 2 H . We call all of these cases easy.

3. There are two possible outcomes:

a. If there is no reflection �R as above, then �` D h� `; �T i, and we have the
isomorphism

�` Š �.� `/ Ì� Z;



126 9 Cokernels of the Relative Assembly Maps forVC1

where the action is conjugation by �.�T / and � is the usual projection into
the point group H .

b. If there is a reflection �R, then we get a free product with amalgamation:

�` D h� `; �Ri �� ` h� `; �T �Ri:

We can determine the abstract isomorphism type of �` by applying the projection
� to the factors and the amalgamated subgroup.

Lemma 9.1. Procedure 9.2 is valid, and its steps can be performed algorithmically.

Proof. We assume that � D hL;H i, ` � R
3, and that ` admits a parametrization

r.˛/ D 1
2
t C ˛v, where t; v 2 L, t ? v, and ˇv … L for ˇ 2 .0; 1/.

Consider step (1) from Procedure 9.2. The set Av;L is an additive subgroup of
R because of the bilinearity of the dot product. It is a set of rational numbers since
each possible lattice L is contained in Q

3, and so each member of Av;L is a quotient
of two rational numbers. It also follows from bilinearity that Av;L is generated by

b1 � v
v � v ;

b2 � v
v � v ;

b3 � v
v � v ;

if fb1; b2; b3g generates L as an abelian group. It follows that Av;L is a finitely
generated additive subgroup of Q, and therefore cyclic. It is clear that 1 2 Av;L,
so the generator is the reciprocal of some positive integer, as claimed. We note
that it is straightforward to find the generator q algorithmically, given the above
generating set.

It is already clear that Step 1(b) can be performed algorithmically; the procedure
is guaranteed to stop since 1 2 Av;L and the given equations can always be satisfied
with h D 1 and C D 1. Step 1(c) poses no problems.

We need to show that if � 2 � acts on ` by the rule � � r.˛/ D r.˛ C C 0/,
then C 0 2 Av;L. (It is easy to show that �T , as defined in Procedure 9.2, satisfies
�T � r.˛/ D r.˛CC/.) Assume that � � r.˛/ D r.˛CC 0/; we let � D Ot Ch, where
Ot 2 L and h 2 H . Note that we must have h.v/ D v if the line ` is to be acted on by
a translation.

� � r.˛/ D .Ot C h/.1
2
t C ˛v/

D Ot C 1

2
h.t/C ˛v:

Setting the latter expression equal to r.˛ C C 0/, we get

Ot C 1

2
h.t/C ˛v D 1

2
t C C 0vC ˛v ) Ot D 1

2
.t � h.t//C C 0v:
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Taking the dot product with v on both sides gives the equality Ot � v D C 0.v � v/,
since both t and h.t/ are perpendicular to v. It follows that C 0 2 Av;L, as claimed.
Therefore, Step 1 is valid, and can be performed algorithmically.

Next we consider Step 2. It is straightforward to check that the isometry �R (as
defined in Procedure 9.2) acts on ` by the rule �R � r.˛/ D r.D � ˛/, and that
�R 2 � if 1

2
.t � h.t//CDv 2 L. It is now enough to solve the equation

c1b1 C c2b2 C c3b3 D 1

2
.t � h.t//CDv;

where the ci (i D 1; 2; 3) are integers and D 2 R, by an algorithm (or to show,
by the same algorithm, that no solution exists). This is also straightforward: we
represent the right side of the equation as an R-linear combination of the basis
elements b1, b2, b3, treating D as an independent variable. That is,

1

2
.t � h.t//CDv D C1.D/b1 C C2.D/b2 C C3.D/b3;

where Ci.D/ is a linear function of D, for i D 1; 2; 3. The problem of solving
the original equation amounts to the problem of solving the system of congruences
Ci.D/ D 0mod Z, which can clearly be done algorithmically. This shows that Step
2 is valid, and can be done algorithmically.

Finally, we note that the validity of Step 3 follows from the Bass–Serre theory of
groups acting on trees [Se80].

We will now show how to apply Procedure 9.2 in a few representative cases. The
results of all of the calculations are summarized in Tables 9.6, 9.7, 9.8, 9.9, and 9.10.

Example 9.4. Let us first suppose that L is the standard integral lattice, and H �
SC
4 � .�1/. Thus, � D hL;H i is one of the subgroups � � �1, whose strict line

stabilizers are recorded in Table 9.1. Note that almost all of the parametrized lines in

Table 9.6 The structure of
VC1 subgroups of
hhx; y; zi;H i

H VC1

S
C

4 � .�1/ D4 �D1 .twice/; D2 �D1 .three times/

S
C

4 D4 �C4 D4 .twice/

S 0

4 D4 �D2 D4 .twice/

A
C

4 � .�1/ D2 �D1.four times/

D00

4 D4 � Z .twice/; D2 � Z

D
C

4 � .�1/ D4 �D1 .twice/;D2 �D1 .seven times/

D
C

4 D4 �C4 D4 .twice/

D
C

2 � .�1/ D2 �D1 .twelve times/

C
C

4 � .�1/ C4 �D1 .twice/

D0

2 D2 � Z .four times/

D0

4 D4 �D2 D4 .twice/
OD0

4 D4 �D2 D4 .twice/; D2 � Z
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Table 9.7 The structure ofVC1 subgroups of
˝h 1
2
.x C y C z/; y; zi;H ˛

H VC1

S
C

4 � .�1/ D4 �D1; D2 �D1; .D2 � Z=2/ �D2 D4

S
C

4 D4 �C4 D4

S
0

4 D2 �D1

A
C

4 � .�1/ D2 �D1.twice/

D00

4 D4 � Z .twice/; D2 � Z

D
C

4 � .�1/ D4 �D1; D2 �D1 .three times/; .D2 � Z=2/ �D2 D4

D
C

4 D4 � Z; D2 Ì˛ Z .with ˛2 D 1/

D
C

2 � .�1/ D2 �D1 .six times/

C
C

4 � .�1/ C4 �D1

C
C

4 C4 � Z

D0

2 D2 � Z .twice/

D0

4 D4 �D2 D4

OD0

4 D4 �D2 D4 .twice/

Table 9.8 The structure ofVC1 subgroups of
˝h 1
2
.x C y/; 1

2
.x C z/; 1

2
.y C z/i;H ˛

H VC1

S
C

4 � .�1/ D4 �D1; D2 �D1.two times/; .D2 � Z=2/ �D2 D4

S
C

4 D4 �C4 D4

S
0

4 D4 �D2 D4 .twice/

A
C

4 � .�1/ D2 �D1

D0

2 D2 � Z

D
C

2 � .�1/ D2 �D1 .three times/

Table 9.9 The structure of
VC1 subgroups of˝h 1
2
.x C z/; y; zi;H ˛

H VC1

D
C

2 � .�1/ D2 �D1 .six times/

D0

2 D2 � Z .twice/

D0

22
D2 � Z .twice/

Table 9.10 The structure of
VC1 subgroups of
hhv1; v2; v3i;H i

H VC1

D
C

6 � .�1/ D2 �D1 .five times/; D6 �D1

D0

6 D2 � Z .twice/
OD0

6 D2 � Z .twice/

D
00

6 D2 � Z; D6 � Z

Table 9.1 have the property that v � v D 1. (The four exceptions occur in the column
headed hA;Bi.) In all such cases, Av;L must be Z, since the dot product v1 � v is an
integer when v1; v 2 Z

3 D L. It follows that Step 1 of Procedure 9.2 is easy in all
of these cases, and we can take �T D v.

This leaves four more cases to be considered. The remaining lines have the form
.˛; ˛; 0/ or .˛; ˛; 1=2/. We note that Step 1 is still easy for the line .˛; ˛; 0/ (with
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respect to both crystallographic groups, since t D 0), so we can again take �T D
v D .1; 1; 0/.

We consider the remaining lines. Suppose first thatH D SC
4 �.�1/ and ` has the

parametrization r.˛/ D .˛; ˛; 1=2/. It follows that t D .0; 0; 1/ and v D .1; 1; 0/.
An easy check shows that Av;L D 1

2
Z, so that q D 1=2 is a generator. We must

determine whether there is h 2 H such that h.v/ D v and 1
2
.t � h.t// C 1

2
v 2 L.

There are four signed permutation matrices h 2 H such that h.v/ D v:

�
1 0 0
0 1 0
0 0 1

�
;

�
0 1 0
1 0 0
0 0 1

�
;

�
1 0 0
0 1 0
0 0 �1

�
;

�
0 1 0
1 0 0
0 0 �1

�
:

All of these matrices h have the property that 1
2
.t � h.t// 2 L. In particular, we can

have 1
2
.t � h.t//C 1

2
v 2 L if and only if 1

2
v 2 L. Since the latter inclusion is false,

there is no h with the required properties.
Now we must consider the next largest element of Av;L, namely 1. We ask for an

h 2 H that satisfies the conditions h.v/ D v and 1
2
.t �h.t//C v 2 L. It is clear that

we can set h D 1, and we then set �T D v. This is the minimal translation to act on
the line .˛; ˛; 1=2/.

The case in which H D DC
4 � .�1/ and r.˛/ D .˛; ˛; 1=2/ is similar, and we

again have �T D v. It follows that the minimal translation to act on ` is always
�T D v, for all of the lines in Table 9.1.

Next we consider Step 2. Recall that this step is always easy if .�1/ 2 H (see
Procedure 9.2), and we can set �R D .�1/ or t C .�1/. For instance, suppose that
H D SC

4 � .�1/. Using the fact that �.�T / D 1 and �.�R/ D .�1/ for each of
the five parametrized lines r.˛/ in the corresponding row of Table 9.1, Step 3 of
Procedure 9.2 shows that the line stabilizers are

.D4 � Z=2/ �D4 .D4 � Z=2/ and .D2 � Z=2/ �D2 .D2 � Z=2/;

where the first group appears twice, and the second appears three times. (Here we
record only the isomorphism types of the stabilizer groups.) The latter groups are
isomorphic toD4 �D1 andD2 �D1, respectively. This calculation is recorded in
the first line of Table 9.6.

In fact, Step 2 is often quite easy in practice when L D Z
3, even if .�1/ … H .

For instance, assume that H D SC
4 . We note that for

h D
�
1 0 0
0 �1 0
0 0 �1

�
;

the isometries �1 D h and �2 D .0; 1; 0/ C h act on the lines .0; 0; ˛/ and
.1=2; 1=2; ˛/ (respectively) as reflections �R with D D 0. By our results from Step
1, we therefore have �.�T / D 1 and �.�R/ D h for both of these lines. It follows
from Step 3 and Table 9.1 that both line stabilizers have the form

hCC
4 ; hi �CC

4
hCC

4 ; hi:
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Since hCC
4 ; hi D DC

4 , the above amalgam reduces to the one listed in the second
row of Table 9.6. (Note that this case is not “easy” in the sense described in
Procedure 9.2.)

In a few cases, Step 2 is “easy” because there is no h 2 H that reverses the
direction of v. This is the case for H D D0

2 and H D D00
4 in Table 9.1, for example.

Example 9.5. We will now run Procedure 9.2 with the group �2 and the line
.1=2; 0; ˛/ as input (see Table 9.2). (Thus, t D .1; 0; 0/ and v D .0; 0; 1/.)

An easy calculation establishes that Av;L D 1
2
Z. We must determine whether

there is h 2 H such that h.v/ D v and 1
2
.t � h.t//C 1

2
v 2 L. One can check that

these conditions are satisfied by

h D
�
0 1 0
1 0 0
0 0 1

�
:

It follows that a minimal translation �T satisfies �T � r.˛/ D r.˛ C 1=2/, and that
�T can be chosen so that �.�T / D h.

We turn to Step 2. This step is easy because .�1/ 2 H . We can take �R D
t C .�1/ (and D D 0).

It follows that the stabilizer is isomorphic to

˝
D0
2; .�1/

˛ �D0

2

˝
D0
2;�h

˛ Š .D2 � Z=2/ �D2 D4:

This stabilizer is recorded in the first line of Table 9.7.

Example 9.6. Consider �3 and the parametrized line .1=4; 1=4; ˛/ (see Table 9.3).
Thus t D .1=2; 1=2; 0/ and v D .0; 0; 1/.

It is straightforward to check that Av;L D 1
2
Z. We therefore begin by checking

for h 2 H that satisfy h.v/ D v and 1
2
.t � h.t// C 1

2
v 2 L. Note that D00

4 is the
stabilizer group Hv. Setting

h D
�
1 0 0
0 �1 0
0 0 1

�
;

we get a solution. It follows that there is a minimal translation �T such that
�.�T / D h.

Step 2 is easy—we simply set �R D t C .�1/ (and D D 0).
It follows that the stabilizer group has the form

hA;C; .�1/i �hA;C i hA;C;�hi Š .D2 � Z=2/ �D2 D4:

This calculation contributes the asymmetric amalgam in the first line of Table 9.8.
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9.3 Cokernels of Relative Assembly Maps

In view of Theorem 5.1, we will need for our computations the cokernels of the
relative assembly maps for the various maximal infinite virtually cyclic subgroups
that were listed in Sect. 9.2.

Proposition 9.1 (Maximal infinite virtually cyclic subgroups). The following list
contains all of the non-negligible maximal infinite virtually cyclic groups that
appear as subgroups of the 73 split three-dimensional crystallographic groups:
C4 � Z, C4 Ì Z, D2 � Z, D2 Ì˛ Z (with j˛j D 2), D4 � Z, D6 � Z, D4 �C4 D4,
D4 �D2 D4, .D2 � Z=2/ �D2 D4, C4 �D1, and Dn �D1 for n D 2; 4, and 6:

We first note that for the groups D2 � Z, .D2 � Z=2/ �D2 D4, D4 �D2 D4, and
Dn � D1 for n D 2; 4, the cokernels have already been computed by Lafont and
the second author in [LO07, Sect. 4] and [LO09, Sects. 6.2, 6.3, 6.4]. The remaining
groups in our list will be discussed in the following subsections.

Observe that by a result of Farrell and Jones [FJ95], the cokernels of the relative

assembly maps H
�

Ò

n .EFIN .� Ò/ ! �/ are automatically trivial for n < �1 (in
fact, both the source and target groups vanish in this case). In the same paper, they
establish that, for the case n D �1, these cokernels are finitely generated, which, by
results of Farrell [F77], Ramos [Ra], and Grunewald [G07], implies that the cokernel
is actually trivial. In particular, we only need to focus on the cases n D 0 and n D 1.
These cokernels are precisely the elusive Bass, Farrell, and Waldhausen Nil-groups.

It follows from additional results of Farrell and Jones [FJ95] that the groups
K�1.Z� Ò/ are generated by the images of the groups K�1.ZF /, where F runs over
finite subgroups of � Ò, and the maps in question are induced by inclusion.

We are able to identify all of these cokernels explicitly, with the exceptions of
NK1.ZŒD4�/ and NK1.ZŒD6�/ (see Sects. 9.3.1 and 9.3.5). The first group is known
to be an infinite torsion group of exponent 2 or 4 [We09]. We summarize the known
non-trivial cokernels in Table 9.11.

9.3.1 The Lower Algebraic K -Theory of C4 � Z, D4 � Z, and
D6 � Z

The Bass–Heller–Swan decomposition yields the following isomorphism for any
group F and q � 1:

Whq.F � Z/ Š Whq�1.F /˚Whq.F /˚ NKq.ZF /˚ NKq.ZF /:

Also, as mentioned earlier, Kq.ZV / is zero for q < �1 (see [FJ95]).
Let us consider first the cases of Whq.V / for V D C4 � Z and D4 � Z. Since

Whq.C4/ Š 0 for q � 1 (Chap. 7, Table 7.1) and NKq.ZC4/ Š L
1 Z=2 for
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Table 9.11 Cokernels of relative assembly maps for maximal infinite V 2 VC1

V 2 VC1 HV
0 .EFIN .V / ! �/ ¤ 0 HV

1 .EFIN .V / ! �/ ¤ 0

C4 � Z
L

1
Z=2

L
1

Z=2

D2 � Z
L

1
Z=2

L
1

Z=2

D2 Ì˛ Z
L

1
Z=2

L
1

Z=2

D4 � Z
L

1
Z=2˚L

1
Z=4 2NK1.ZD4/

D6 � Z
L

1
Z=2 2NK1.ZD6/

C4 �D1

L
1

Z=2
L

1
Z=2

D2 �D1

L
1

Z=2
L

1
Z=2

D4 �D2 D4

L
1

Z=2
L

1
Z=2

D4 �C4 D4

L
1

Z=2
L

1
Z=2

.D2 � Z=2/ �D2 D4

L
1

Z=2
L

1
Z=2

D4 �D1

L
1

Z=2˚L
1

Z=4 NK1.ZD4/

D6 �D1

L
1

Z=2 NK1.ZD6/

q D 0; 1 (see [We09]), it follows that

Whq.C4 � Z/ Š

8
ˆ̂<

ˆ̂:

L
1 Z=2 q D 1

L
1 Z=2 q D 0

0 q � �1;

and the cokernels of the relative assembly maps are both isomorphic to
L

1 Z=2:

Since Whq.D4/ Š 0 for q � 1, it follows that

Whq.D4 � Z/ Š

8
ˆ̂<

ˆ̂:

2NK1.ZD4/ q D 1
L

1 Z=2˚L1 Z=4 q D 0
0 q � �1;

since the Bass Nil-group NK0.ZD4/ Š L
1 Z=2 ˚L1 Z=4 was computed by

Weibel in [We09]. He also showed that NK1.ZD4/ is a countably infinite torsion
group of exponent 2 or 4.

Since K�1.ZD6/ Š Z and Whq.D6/ Š 0 for q D 0; 1, it follows that

Whq.D6 � Z/ Š

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2NK1.ZD6/ q D 1
2NK0.ZD6/ q D 0
Z q D �1
0 q < �1:

Proposition 9.2. NK0.ZD6/ ŠL1 Z=2.
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Proof. We first show that NK0.ZŒD6�/ Š NK1.F2ŒD3�/. Write ZŒD6� D ZŒD3 �
Z=2� as ZŒD3�ŒZ=2�, and let Z=2 D hti. Consider the following Cartesian square:

Applying the NK-functor to this Cartesian square yields the Mayer–Vietoris
sequence (see [Mi71, Theorem 6.4])

NK2.F2ŒD3�/! NK1.ZŒD6�/! NK1.ZŒD3�/˚ NK1.ZŒD3�/! NK1.F2ŒD3�/

! NK0.ZŒD6�/! NK0.ZŒD3�/˚ NK0.ZŒD3�/! � � � :

Since NKi .ZŒD3�/ D 0, for i � 1 (see [Ha87]), we obtain the desired isomorphism
NK0.ZŒD6�/ Š NK1.F2ŒD3�/, as claimed.

Next, we claim NK1.F2ŒD3�/ Š L
1 Z=2. Note that the ring F2ŒD3� Š

M2.F2/�F2ŒC2� (see [Ma07, Example 2]). Consider the following cartesian square

Applying the NK-functor to this Cartesian square yields the following isomorphism

0! NK1.F2ŒD3�/! NK1.M2.F2//˚ NK1.F2ŒC2�/! 0:

SinceM2.F2/ is a regular ring (see [We09, Proposition 2.3]), NKi .M2.F2// Š 0 for
all i 2 Z. It follows that NK1.F2ŒD3�/ Š NK1.F2ŒC2�/ Š L

1 Z=2. For the latter
isomorphism we refer the reader to [LO09].

This shows that NK0.ZD6/ Š NK1.F2ŒD3�/ ŠL1 Z=2.

We summarize our calculations as follows:

Whq.D6 � Z/ Š

8
ˆ̂̂
<̂

ˆ̂̂
:̂

2NK1.ZD6/ q D 1
L

1 Z=2 q D 0
Z q D �1
0 q < �1:

Remark 9.1. Consider the first Cartesian square from the above proof. The head
of the associated Mayer–Vietoris sequence gives the following epimorphism, since
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NK1.ZD3/ vanishes:

NK2.F2ŒD3�/! NK1.ZD6/! 0:

The second Cartesian square gives us an epimorphism

NK2.F2ŒD3�/! NK2.F2ŒC2�/˚ NK2.M2.F2//! 0:

As mentioned earlier, NK2.M2.F2// is trivial. It follows that we have an epimor-
phism

NK2.F2ŒD3�/! NK2.F2ŒC2�/! 0:

This implies that NK2.F2ŒD3�/ is non-trivial, and therefore must be an infinitely
generated torsion group (see [F77]). It remains to study the first epimorphism above.
We would like to show that this map is an isomorphism, but we have no proof.

9.3.2 The Lower Algebraic K -Theory of D2 Ì˛ Z

Let V D D2 Ì˛ Z, where a generator of Z acts by an automorphism ˛ of order 2.
Since K�1.ZF / Š 0 for all F � D2 (Chap. 7, Table 7.1), we have K�1.ZV / Š 0.

Farrell and Hsiang in [FH68] show that the group Whq.F Ì˛ Z/ (for arbitrary ˛)
can be expressed in the following form:

Whq.F Ì˛ Z/ Š C ˚ NKq.ZF; ˛/˚ NKq.ZF; ˛
�1/;

where C is a suitable quotient (determined by the automorphism ˛) of theK-groups
Whq�1.F / ˚ Whq.F /. Since Whq.D2/ Š 0 for q � 1, it follows that Whq.D2 Ì˛
Z/ Š NKq.ZD2; ˛/˚ NKq.ZD2; ˛

�1/ for q D 0; 1. Farrell and Hsiang also show
that NKq.ZF; ˛/ Š NKq.ZF; ˛

�1/, therefore Whq.D2 Ì˛ Z/ Š 2NKq.ZD2; ˛/:

The group D2 Ì˛ Z is the canonical index two subgroup of the group .D2 �
Z=2/ �D2 D4, so by [DKR11] (see also [DQR11]), we know that the Waldhausen
Nil-groups NKq.ZD2IZŒ.D2 � Z=2/ � D2�;ZŒD4 � D2�/ are isomorphic to the
corresponding Farrell Nil-groups for the canonical index two subgroup D2 Ì˛ Z E
.D2�Z=2/�D2 D4: In [LO09, Sect. 6.2], Lafont and the second author showed that
NKq.ZD2IZŒ.D2 � Z=2/ �D2�;ZŒD4 �D2�/ ŠL1 Z=2; it follows that

NKq.ZD2; ˛/ Š
M

1
Z=2; q D 0; 1:

Therefore, we have that
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Whq.D2 Ì˛ Z/ Š

8
ˆ̂<

ˆ̂:

L
1 Z=2 q D 1

L
1 Z=2 q D 0

0 q � �1;

and the cokernels of the relative assembly maps are both isomorphic to
L

1 Z=2:

9.3.3 The Lower Algebraic K -Theory of D4 �C4
D4

Since K�1.ZF / Š 0 for all F � D4 (Chap. 7, Table 7.1), we see that, for V D
D4 �C4 D4, we have that K�1.ZV / Š 0.

For the remainingK-groups, using [CP02, Lemma 3.8], we have that QK0.ZV / Š
NK0.ZC4IA1;A2/, where Ai D ZŒ.D4 � C4� is the ZC4-bimodule generated by
D4 � C4, for i D 1; 2. Similarly, we have that Wh.V / Š NK1.ZC4IA1;A2/, where
A1, A2 are the bi-modules defined above.

Now by [DKR11] (see also [DQR11]), we know that the Waldhausen Nil-groups
NKq.ZC4IA1;A2/ are isomorphic to the corresponding Farrell Nil-group for the
canonical index two subgroup C4 � Z E D4 �C4 D4. Note that, in this case, the
Farrell Nil-group is untwisted, and hence is just the Bass Nil-group NKq.ZC4/ ŠL

1 Z=2 (q D 0; 1), so the lower algebraic K-theory of D4 �C4 D4 is given by:

Whq.D4 �C4 D4/ Š

8
ˆ̂<

ˆ̂:

L
1 Z=2 q D 1

L
1 Z=2 q D 0

0 q � �1:

The cokernels of the relative assembly maps are both isomorphic to
L

1 Z=2.

9.3.4 The Lower Algebraic K -Theory of C4 � D1

First, note that C4�D1 Š .C4�Z=2/�C4 .C4�Z=2/. SinceK�1.ZF / Š 0 for all
F � C4�Z=2 (Chap. 7, Table 7.1), we see that for V D .C4�Z=2/�C4 .C4�Z=2/,
we have K�1.ZV / Š 0.

For the remaining K-groups, we use [CP02, Lemma 3.8]. Since QK0.ZC4/ Š
0 and QK0.ZŒC4 � Z=2�/ Š Z=2 (Chap. 7, Table 7.1), it follows that QK0.ZV / Š
.Z=2/2˚NK0.ZC4IB1;B2/, where Bi D ZŒ.C4�Z=2/�C4� is the ZC4-bimodule
generated by .C4 � Z=2/ � C4 for i D 1; 2. Since Wh.C4/ Š Wh.C4 � Z=2/ Š 0

(see Chap. 7, Table 7.1), it follows that Wh.V / Š NK1.ZC4IB1;B2/, with B1 and
B2 as before. The Nil-groups appearing in these computations are the Waldhausen
Nil-groups.
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Now by [DKR11] (see also [DQR11]), we know that the Waldhausen Nil-groups
NKq.ZC4IB1;B2/ are isomorphic to the corresponding Farrell Nil-group for the
canonical index two subgroup C4�Z E C4�D1. Note that, in this case, the Farrell
Nil-group is untwisted, and hence is just the Bass Nil-group NKq.ZC4/ ŠL1 Z=2

(q D 0; 1). We summarize our computations as follows:

Whq.C4 �D1/ Š

8
ˆ̂<

ˆ̂:

L
1 Z=2 q D 1

.Z=2/2 ˚L1 Z=2 q D 0
0 q � �1:

The cokernels of the relative assembly maps are both isomorphic to
L

1 Z=2.

9.3.5 The Lower Algebraic K -Theory of D6 � D1

First, note thatD6�D1 Š .D6�Z=2/�D6 .D6�Z=2/. SinceK�1.ZD6/ Š Z, and
K�1.ZD6 � Z=2/ Š Z

3 (Chap. 7, Table 7.1), we see that for V D .D6 � Z=2/ �D6
.D6 � Z=2/, we have K�1.ZV / Š Z

5 (see also Example 7.4).
For the remaining K-groups, we use [CP02, Lemma 3.8]. Since QK0.ZD6/ Š

0 and QK0.ZŒD6 � Z=2�/ Š .Z=2/2, we have that QK0.ZV / Š .Z=2/4 ˚
NK0.ZD6IC1; C2/, whereCi D ZŒ.D6�Z=2/�D6� is the ZD6-bimodule generated
by .D6�Z=2/�D6 for i D 1; 2. Since Wh.D6/ and Wh.D6�Z=2/ are both trivial,
it follows that Wh.V / Š NK1.ZD6IC1; C2/, with C1 and C2 as before. The Nil-
groups appearing in these computations are the Waldhausen Nil-groups.

Now by [DKR11] (see also [DQR11]), we know that the Waldhausen Nil-groups
NKq.ZD6IC1; C2/ are isomorphic to the corresponding Farrell Nil-group for the
canonical index two subgroup D6 � Z E D6 � D1. Note that, in this case, the
Farrell Nil-group is untwisted, and hence is just the Bass Nil-group NKq.ZD6/. We
summarize our computations as follows:

Whq.D6 �D1/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

NK1.ZD6/ q D 1
.Z=2/4 ˚L1 Z=2 q D 0
Z
5 q D �1
0 q � �2:

Here the cokernels are simply the direct sums of two copies of the Bass Nil-groups
of D6. We do not know the isomorphism types of these groups.



Chapter 10
Summary

We can now compute the lower algebraic K-theory of the 73 split crystallographic
groups. Recall that Theorem 5.1 tells us that, for all such groups � , we have an
isomorphism

Kn.Z� / Š H�� .EFIN .� /IKZ
�1/˚

M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/:

For all 73 of our groups, we have:

• Explicitly computed in Chap. 7 the homology groups

H�� .EFIN .� /IKZ
�1/;

and summarized the results in Table 7.8.
• Described in Sect. 9.1 a suitable indexing set T 00 (as summarized in

Tables 9.1, 9.2, 9.3, 9.4, and 9.5).
• Explicitly computed in Sect. 9.2 the isomorphism types of the groups associated

to the indexing set T 00 (as summarized in Tables 9.6, 9.7, 9.8, 9.9, and 9.10).
• Explicitly computed in Sect. 9.3 (see Table 9.11) the cokernels

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/

for all of the infinite virtually cyclic subgroups that occur as stabilizers of lines
Ò from T 00, except for the groups NK1.ZDn/ (n D 4; 6). (We note that Weibel
[We09] proved that NK1.ZD4/ is a countably infinite torsion group of exponent
2 or 4.)

This information makes it straightforward to apply Theorem 5.1 to a given
split three-dimensional crystallographic group � , yielding an explicit calculation
of K�1.Z� /, QK0.Z� /, and Wh.� /. We have summarized these calculations in
Table 10.1. We have entered only the non-zero terms in the table; all of the blank

© Springer International Publishing Switzerland 2014
D.S. Farley, I.J. Ortiz, Algebraic K-theory of Crystallographic Groups, Lecture Notes
in Mathematics 2113, DOI 10.1007/978-3-319-08153-3__10
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squares represent entries where the corresponding group vanishes, and if � does not
appear in the table, then Whn.Z� / D 0 for all n � 1.

We conclude with a pair of examples that illustrate how the pieces of the
calculation fit together.

Example 10.1. We compute the lower algebraic K-theory of .AC
4 � .�1//1 D

hL;AC
4 � .�1/i, where L is the standard cubical lattice. We will write � in place

of .AC
4 � .�1//1 and H in place of AC

4 � .�1/. Note that

H��1.EFIN .� /IKZ
�1/ Š Z

2I
H�
0 .EFIN .� /IKZ

�1/ Š .Z=2/4I
H�
1 .EFIN .� /IKZ

�1/ Š 0;

by Table 7.8. (We recall that the group Wh.G/ is always trivial if G is a finite
subgroup of a three-dimensional crystallographic group—see Table 7.1.) The next
step is to compute the second summand from the formula in Theorem 5.1 (as
reproduced at the beginning of this chapter). We found in Sect. 9.1 (see Table 9.1)
that the parametrized lines

�
0
0
˛

�
;
�
1=2
0
˛

�
;
�

0
1=2
˛

�
;
�
1=2
1=2
˛

�

represent a choice of indexing set T 00 for the latter summand. The strict stabilizers
� Ò of these lines Ò (i.e., the subgroups that fix the lines pointwise) satisfy �.� Ò/ D
D0
2, where � W � ! H is the canonical projection into the point group. We

can apply Procedure 9.2 to conclude that the stabilizers � Ò of these lines are all
isomorphic to D2 �D1 (see Table 9.6). It follows that

M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/ Š

 
M

1
Z=2

!4
Š
M

1
Z=2

for n D 0 and 1. (We recall that [FJ95] prove that the term in question is always
trivial when n D �1.) See Table 9.11. It now follows directly from Theorem 5.1
that the lower algebraic K-groups of � are as described in Table 10.1.

Example 10.2. We compute the lower algebraicK-theory of �5 D hL;DC
6 �.�1/i,

where L is the lattice hv1; v2; v3i. We will write � in place of �5 and H in place of
DC
6 � .�1/. Note that

H��1.EFIN .� /IKZ
�1/ Š Z

7I
H�
0 .EFIN .� /IKZ

�1/ Š .Z=2/6I
H�
1 .EFIN .� /IKZ

�1/ Š 0;
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by Table 7.8. Now we compute the second summand from the formula in Theo-
rem 5.1. Theorem 8.5 showed that the parametrized lines

�
˛
˛
˛

�
;
�
˛C1=2
˛�1=2
˛

�
;
�

˛�˛
0

�
;

�
˛C1=2

�˛C1=2
1=2

�
;
�

˛�2˛
˛

�
;

�
˛C1=2

�2˛C1=2
˛C1=2

�

represent a choice of indexing set T 00 for the latter summand (the same fact is
recorded in Table 9.5). The strict stabilizers � Ò of these lines Ò satisfy

�.� Ò/ D D00
6 ; hA;Di; hD;Ei; hD;Ei; hE;F i; hE;F i;

respectively, where � W � ! H is the canonical projection into the point group,
and the matrices A, D, E, and F are identified in Theorem 8.5. We can apply
Procedure 9.2 to conclude that the stabilizers � Ò of these lines are either D6 �D1
orD2�D1, where the first group occurs once and the latter group occurs five times
(see Table 9.10). It follows that

M

Ò2T 00

H
�

Ò

n .EFIN .� Ò/! �I KZ
�1/ Š NKn.ZD6/˚

 
M

1
Z=2

!5

Š NKn.ZD6/˚
M

1
Z=2

for n D 0 and 1. (The given term is trivial when n D �1.) See Table 9.11. It now
follows directly from Theorem 5.1 that the lower algebraic K-groups of � are as
described in Table 10.1.
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