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Preface

To some extent, it would be accurate to summarize the contents of this book as an
intolerably protracted description of what happens when either one raises a transi-
tion probability matrix P (i.e., all entries (P);; are non-negative and each row of P
sums to 1) to higher and higher powers or one exponentiates R(P — I), where R
is a diagonal matrix with non-negative entries. Indeed, when it comes right down
to it, that is all that is done in this book. However, I, and others of my ilk, would
take offense at such a dismissive characterization of the theory of Markov chains
and processes with values in a countable state space, and a primary goal of mine in
writing this book was to convince its readers that our offense would be warranted.

The reason why I, and others of my persuasion, refuse to consider the theory
here as no more than a subset of matrix theory is that to do so is to ignore the per-
vasive role that probability plays throughout. Namely, probability theory provides
a model which both motivates and provides a context for what we are doing with
these matrices. To wit, even the term “transition probability matrix” lends meaning
to an otherwise rather peculiar set of hypotheses to make about a matrix. Specif-
ically, it suggests that we think of the matrix entry (P);; as giving the probability
that, in one step, a system in state { will make a transition to state j. Moreover, if
we adopt this interpretation for (P);;, then we must interpret the entry (P");; of P"
as the probability of the same transition in n steps. Thus, as n — oo, P" is encod-
ing the long time behavior of a randomly evolving system for which P encodes the
one-step behavior, and, as we will see, this interpretation will guide us to an un-
derstanding of lim, o, (P");;. In addition, and perhaps even more important, is the
role that probability plays in bridging the chasm between mathematics and the rest
of the world. Indeed, it is the probabilistic metaphor which allows one to formulate
mathematical models of various phenomena observed in both the natural and social
sciences. Without the language of probability, it is hard to imagine how one would
go about connecting such phenomena to P”.

In spite of the propaganda at the end of the preceding paragraph, this book is
written from a mathematician’s perspective. Thus, for the most part, the probabilis-
tic metaphor will be used to elucidate mathematical concepts rather than to provide
mathematical explanations for non-mathematical phenomena. There are two reasons

vii



viii Preface

for my having chosen this perspective. First, and foremost, is my own background.
Although I have occasionally tried to help people who are engaged in various sorts
of applications, I have not accumulated a large store of examples which are easily
translated into terms which are appropriate for a book at this level. In fact, my expe-
rience has taught me that people engaged in applications are more than competent to
handle the routine problems that they encounter, and that they come to someone like
me only as a last resort. As a consequence, the questions which they ask me tend
to be quite difficult and the answers to those few which I can solve usually involve
material which is well beyond the scope of the present book. The second reason for
my writing this book in the way that I have is that I think the material itself is of
sufficient interest to stand on its own. In spite of what funding agencies would have
us believe, mathematics gua mathematics is a worthy intellectual endeavor, and I
think there is a place for a modern introduction to stochastic processes which is
unabashed about making mathematics its top priority.

I came to this opinion after several semesters during which I taught the introduc-
tion to stochastic processes course offered by the M.I.T. department of mathematics.
The clientele for that course has been an interesting mix of undergraduate and grad-
uate students, less than half of whom concentrate in mathematics. Nonetheless, most
of the students who stay with the course have considerable talent and appreciation
for mathematics, even though they lack the formal mathematical training which is
requisite for a modern course in stochastic processes, at least as such courses are
now taught in mathematics departments to their own graduate students. As a re-
sult, I found no ready-made choice of text for the course. On the one hand, the
most obvious choice is the classic text A First Course in Stochastic Processes, €i-
ther the original one by S. Karlin or the updated version [4] by S. Karlin and H.
Taylor. Their book gives a no nonsense introduction to stochastic processes, espe-
cially Markov processes, on a countable state space, and its consistently honest, if
not always easily assimilated, presentation of proofs is complemented by a daunting
number of examples and exercises. On the other hand, when I began, I feared that
adopting Karlin and Taylor for my course would be a mistake of the same sort as
adopting Feller’s book for an undergraduate introduction to probability, and this fear
prevailed the first two times I taught the course. However, after using, and finding
wanting, two derivatives of Karlin’s classic, I took the plunge and assigned Karlin
and Taylor’s book. The result was very much the one which I predicted: I was far
more enthusiastic about the text than were my students.

In an attempt to make Karlin and Taylor’s book more palatable for the students,
I started supplementing their text with notes in which I tried to couch the proofs
in terms which I hoped they would find more accessible, and my efforts were re-
warded with a quite positive response. In fact, as my notes became more and more
extensive and began to diminish the importance of the book, I decided to convert
them into what is now this book, although I realize that my decision to do so may
have been stupid. For one thing, the market is already close to glutted with books
that purport to cover this material. Moreover, some of these books are quite popular,
although my experience with them leads me to believe that their popularity is not al-
ways correlated with the quality of the mathematics they contain. Having made that
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pejorative comment, I will not make public which are the books that led me to this
conclusion. Instead, I will only mention the books on this topic, besides Karlin and
Taylor’s, which I very much like. J. Norris’s book [5] is an excellent introduction to
Markov processes which, at the same time, provides its readers with a good place to
exercise their measure-theoretic skills. Of course, Norris’s book is only appropriate
for students who have measure-theoretic skills to exercise. On the other hand, for
students who possess those skills, his book is a place where they can see measure
theory put to work in an attractive way. In addition, Norris has included many inter-
esting examples and exercises which illustrate how the subject can be applied. For
more advanced students, an excellent treatment of Markov chains on a general state
space can be found in the book [6] by D. Revuz.

The present book includes most of the mathematical material contained in [5],
but the proofs here demand much less measure theory than his do. In fact, although
I have systematically employed measure theoretic terminology (Lebesgue’s dom-
inated convergence theorem, the monotone convergence theorem, etc.), which is
explained in Chap. 7, I have done so only to familiarize my readers with the jargon
that they will encounter if they delve more deeply into the subject. In fact, because
the state spaces in this book are countable, the applications which I have made of
Lebesgue’s theory are, with one notable exception, entirely trivial. The one excep-
tion is that I need to know the existence of countably infinite families of mutually
independent random variables. In Sect. 7.2 I discuss how one goes about proving
their existence, but, as distinguished from the first edition of this text, I do not go
into details and instead refer to the treatment in [8]. Be that as it may, the reader who
is ready to accept that such families exist has little need to consult Chap. 7 except
for terminology and the derivation of a few essentially obvious facts about series.

The organization of this book should be more or less self-evident from the table
of contents. In Chap. 1, I give a bare hands treatment of the basic facts, with particu-
lar emphasis on recurrence and transience, about nearest neighbor random walks on
the square, d-dimensional lattice Z¢. Chapter 2 introduces the study of ergodic prop-
erties, and this becomes the central theme which ties together Chaps. 2 through 6.
In Chap. 2, the stochastic processes under consideration are Markov chains (i.e., the
time parameter is discrete), and the driving force behind the development there is an
idea which was introduced by Doeblin. Restricted as the applicability of Doeblin’s
idea may be, it has the enormous advantage over the material in Chaps. 4 and 5 that
it provides an estimate on the rate at which the chain is converging to its equilibrium
distribution. Chapter 3 begins with the classification of states in terms of recurrence
and transience and then introduces some computational techniques for computing
stationary probabilities. As an application, the final section of Chap. 3 gives a proof
that Wilson’s algorithm works and that it can be used to derive Kirchhoff’s matrix
tree theorem. The contents of this section are based on ideas that I learned from
S. Sternberg, who learned them from M. Kozdron, who in turn learned them from
G. Lawler. It was Kozdron who had the idea of using Wilson’s algorithm to derive
Kirchhoff’s theorem.

In Chap. 4, I study the ergodic properties of Markov chains that do not necessarily
satisfy Doeblin’s condition. The main result here is the one summarized in equation
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(4.1.15). Even though it is completely elementary, the derivation of (4.1.15), is,
without doubt, the most demanding piece of analysis in the entire book. So far as I
know, every proof of (4.1.15) requires work at some stage. In supposedly “simpler”
proofs, the work is hidden elsewhere (either measure theory, as in [5] and [6], or
in operator theory, as in [2]). The treatment given here, which is a re-working of
the one in [4] based on Feller’s renewal theorem, demands nothing more of the
reader than a thorough understanding of arguments involving limits superior, limits
inferior, and their role in proving that limits exist. In Chap. 5, Markov chains are
replaced by continuous-time Markov processes (still on a countable state space). I do
this first in the case when the rates are bounded and therefore problems of possible
explosion do not arise. Afterwards, I allow for unbounded rates and develop criteria,
besides boundedness, which guarantee non-explosion. The remainder of the chapter
is devoted to transferring the results obtained for Markov chains in Chaps. 2 and 4
to the continuous-time setting.

Aside from Chap. 7, which is more like an appendix than an integral part of the
book, the book ends with Chap. 6. The goal in Chap. 6 is to obtain quantitative
results, reminiscent of, if not as strong as, those in Chap. 2, when Doeblin’s theory
either fails entirely or yields rather poor estimates. The new ingredient in Chap. 6 is
the assumption that the chain or process is reversible (i.e., the transition probability
is self-adjoint in the L2-space of its stationary distribution), and the engine which
makes everything go is the associated Dirichlet form. In the final section, the power
of the Dirichlet form methodology is tested in an analysis of the Metropolis (a.k.a.
as simulated annealing) algorithm. Finally, as I said before, Chap. 7 is an appendix
in which the ideas and terminology of Lebesgue’s theory of measure and integration
are reviewed. Sect. 7.2.1.

I have finally reached the traditional place reserved for thanking those individu-
als who, either directly or indirectly, contributed to this book. The principal direct
contributors are the many students who suffered with various and spontaneously
changing versions of this book. I am particularly grateful to Adela Popescu whose
careful reading of the first edition brought to light many minor and a few major
errors that have been removed and, undoubtedly, replaced by new ones. In addi-
tion, I am grateful to Sternberg and Kozdron for introducing me to the ideas in
Sect. 3.3.

Thanking, or even identifying, the indirect contributors is trickier. Indeed, they
include all the individuals, both dead and alive, from whom I received my educa-
tion, and I am not about to bore you with even a partial list of who they were or
are. Nonetheless, there is one person who, over a period of more than ten years, pa-
tiently taught me to appreciate the sort of material treated here. Namely, Richard A.
Holley, to whom I have dedicated this book, is a true probabilist. To wit, for Dick,
intuitive understanding usually precedes his mathematically rigorous comprehen-
sion of a probabilistic phenomenon. This statement should lead no one to to doubt
Dick’s powers as a rigorous mathematician. On the contrary, his intuitive grasp of
probability theory not only enhances his own formidable mathematical powers, it
has saved me and others from blindly pursuing flawed lines of reasoning. As all
who have worked with him know, reconsider what you are saying if ever, during
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some diatribe into which you have launched, Dick quietly says “I don’t follow that.”
In addition to his mathematical prowess, every one of Dick’s many students will
attest to his wonderful generosity. I was not his student, but I was his colleague, and
I can assure you that his generosity is not limited to his students.

Cambridge, MA, USA Daniel W. Stroock
August 2013
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Chapter 1
Random Walks, a Good Place to Begin

The purpose of this chapter is to discuss some examples of Markov processes that
can be understood even before the term “Markov process” is. Indeed, anyone who
has been introduced to probability theory will recognize that these processes all
derive from consideration of elementary “coin tossing.”

1.1 Nearest Neighbor Random Walks on 7Z

Let p be a fixed number from the open interval (0,1), and suppose that!
{B,, :n € Z™} is a sequence of {—1, 1}-valued, identically distributed Bernoulli ran-
dom variables® which are 1 with probability p. That is, for any n € Z* and any
E=(e,...,ep) €e{—1,1},

P(Bi=¢€1,...,B,=¢,) = pN(E)q”_N(E) whereg=1—p and
S (E n (1.1.1)
N(E)=#{m:ep=1)= Lz() when S,(E) = Y én.
1
Next, set
n
Xo=0 and X,,:ZBm forneZ*. (1.1.2)
m=1

The above family of random variables {X, : n € N} is often called a nearest
neighbor random walk on Z. Nearest neighbor random walks are examples of

17 is used to denote the set of all integers, of which N and Z* are, respectively, the non-negative
and positive members.

2For historical reasons, mutually independent random variables which take only two values are
often said to be Bernoulli random variables. A mathematically rigorous proof that infinitely many
exist can be found in Sect. 2.2 of [8].

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 1
DOI 10.1007/978-3-642-40523-5_1, © Springer-Verlag Berlin Heidelberg 2014
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2 1 Random Walks, a Good Place to Begin

Markov processes, but the description that I have just given is the one which would
be given in elementary probability theory, as opposed to a course, like this one, de-
voted to stochastic processes. When studying stochastic processes the description
should emphasize the dynamic nature of the family. Thus, a stochastic process ori-
ented description might replace (1.1.2) by

P(Xo=0)=1 and

ife=1 (1.1.3)
P(X, —Xu—1=€|X0,..., Xn—1) = P .
qg ife=-1,

where P(X,, — X,,—1 = € | Xp, ..., X,—1) denotes the conditional probability (cf.
Sect. 7.4.1) that X,, — X,,_1 = € given o ({Xp, ..., Xp—1}). Certainly (1.1.3) is more
dynamic a description than the one in (1.1.2). Specifically, it says that the process
starts from O at time n = 0 and proceeds so that, at each time n € 771, it moves one
step forward with probability p or one step backward with probability ¢, indepen-
dent of where it has been before time n.

1.1.1 Distribution at Time n

In this subsection I will present two approaches to computing P(X,, = m). The first
computation is based on the description given in (1.1.2). From (1.1.2) it is clear that
P(] X, | <n) = 1. In addition, it is obvious that

nodd =— PX,isodd)=1 and neven — P(X, iseven)=1.

Finally, given m € {—n,...,n} with the same parity as n and a string E =
(e1,...,€y) € {—1,1}" with (cf. (1.1.1)) S, (E) =m, N(E) = "Em and so

n+m n—m

P(31=€17"'aBn=6n)=p 2 qT'

Hence, because, when (i) = % is the binomial coefficient “f choose k,” there

are (@) such strings E, we see that

n ntm n—m
]P’(Xn=m)=(m_+,,)p 2q 2

2 (1.1.4)

if m € Z, |m| <n, and m has the same parity as n and is 0 otherwise.

Our second computation of the same probability will be based on the more dy-
namic description given in (1.1.3). To do this, we introduce the notation (P"),, =
P(X, = m). Obviously, (Po)m = 80,m, Where 8 ¢ is the Kronecker symbol which is
1 when k = £ and 0 otherwise. Further, from (1.1.3), we see that P(X,, =m) equals

PX,_1=m—1&X,=m)+PX,,_1=m+1&X,, =m)
=pPXpn-1=m—1)+qP(Xp_1=m+1).
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That is,

(P°), =8om and (P") =p(P"") _ +q(P"") (1.1.5)

m—1 m+1°

Obviously, (1.1.5) provides a complete, albeit implicit, prescription for comput-
ing the numbers (P"),,, and one can easily check that the numbers given by
(1.1.4) satisfy this prescription. Alternatively, one can use (1.1.5) plus induc-
tion on n to see that (P™),, = 0 unless m = 2¢ — n for some 0 < £ < n and
that (C")o = (C™), =1 and (C")y = (C" Yy_1 + (C* 1), for 1 <€ < n where
(€M = p~tg"t(P™)2_,. In other words, the family {(C"),:n e N& 0 <l <n}
are given by Pascal’s triangle and are therefore the binomial coefficients.

1.1.2 Passage Times via the Reflection Principle

More challenging than the computation in Sect. 1.1.1 is that of finding the distribu-
tion of the first passage time to a point a € Z. That is, given a € Z \ {0}, set?

(M =infln>1:X,=4a} (=00 whenX, #aforanyn>1). (1.1.6)

Then ¢19} is the first passage time to a, and our goal here is to find its distribution.
Equivalently, we want an expression for P(¢1%} = ), and clearly, by the consider-
ations in Sect. 1.1.1, we need only worry about n’s which satisfy n > |a| and have
the same parity as a.

Again I will present two approaches to this problem, here based on (1.1.2) and
in Sect. 1.1.5 on (1.1.3). To carry out the one based on (1.1.2), assume that a € Z*,
suppose that n € Z* has the same parity as a, and observe first that

P =n)=P(X,=a &t >n—1)=pPc ' >n—1&X,-1 =a—1).

Hence, it suffices for us to compute P(¢, >n — 1 & X,,—1 = a — 1). For this
purpose, note that for any E € {—1, 1}"_1 with S,,_1(E) = a — 1, the event
{(Bi,..., By_y) = E} has probability p"* ~1¢"7*. Thus,

P =n) =N, a)p3q"" ()

where N(n,a) is the number of E e {—1,1}"! with the properties that
Sn(E) <a—1for 0<m<n—1 and S,_1(E) =a — 1. That is, every-
thing comes down to the computation of N (, a). Alternatively, since N'(n, a) =
(&il) — N'(n,a), where N’ (n,a) is the number of E € {—1,1}"~! such that
Snz_l(E) =a—1and S,,(E) > a for some 1 <m <n — 1, we need only compute
N(n, a). For this purpose we will use a beautiful argument known as the reflection

3 As the following indicates, I take the infimum over the empty set to be 4-00.
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principle. Namely, consider the set P(n, a) of paths (Sp, ..., S,—1) € Z" with the
properties that So =0, S, — S—1 € {—1, I} for ]l <m <n—1,and S, > a for some
1 <m <n—1.Clearly, N’ (n, a) is the number of paths in the set L(n, a) consisting
of those (So, ..., Sy—1) € P(n, a) for which S,,_1 =a — 1, and, as an application of
the reflection principle, we will show that the set L(n, a) has the same number of el-
ements as the set U (n, a) whose elements are those paths (S, ..., S,—1) € P(n, a)
for which S,_1 =a + 1. Since (So, ..., Sy—1) € U(n,a) if and only if Sy =0,
S — Spu_1€{—1,1} forall 1 <m <n—1, and S,,_; = a + 1, the condition
that S, > a is redundant. Thus, we already know how to count them: there are
(V,%al) of them. Hence, all that remains is to make the aforementioned application

of the reflection principle. To this end, for a given S = (Sp, ..., S,—1) € P(n, a),
let £(S) be the smallest 0 < k <n — 1 for which S; > a, and define the reflection
R(S) = (S0, ..., Sy_1) of S so that S, = S, if 0 <m < £(S) and Sy = 2a — Sy if
£(S) <m <n — 1. Clearly, R maps L(n,a) into U (n,a) and U (n, a) into L(n, a).
In addition, %R is its own inverse: its composition with itself is the identity map.
Therefore, as a map from L(n,a) to U(n,a), R it must be both one-to-one and
onto, and so L(n, a) and U (n, a) have the same numbers of elements.
We have now shown that N7 (n, a) = (r,l,%a]) and therefore that

o= (3 (5)
2 2

Finally, after plugging this into (x), we arrive at

n—1 n—1 nta n—a
P(ﬁ{“}=”)=[<m_1>_(m)}l’ g7,
2 2

which simplifies to the remarkably simple expression
af n nta n—a d
]P)(;_{a} = n) = <n+a>p *q = _IP)(X" = a)'
n > n

The computation when a < 0 can be carried out either by repeating the argument
just given or, after reversing the roles of p and ¢, applying the preceding result to
—a. However one arrives at it, the general result is that

n—a |a|

a£0 = P(g{“}zn)zm<nza)p"?qz:—P(xnza) (1.1.7)
n = n

for n > |a| with the same parity as a and is 0 otherwise.

1.1.3 Some Related Computations

Although the formula in (1.1.7) is elegant, it is not particularly transparent.
For example, it is not at all evident how one can use it to determine whether
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P(;!%} < 00) = 1. To carry out this computation, let « > 0 be given, and repre-
sent 5{“} as fy(B1,...,By,...), where f, is the function which maps {—1, 1}Z+
into Z* U {oo} so that, for each n € N,

m
fal€l, ... €py...)>n Zég <a forl<m<n.
(=1
Because the event {¢ {4 =m} depends only on (By, ..., B;,) and

é.{a} —m — é.{a+l} =m+§{l} o XM
where £ 0 Z™ = £i(Byits-- s Buins--.), (1.1.8)

(cl=m & cletlh < oo} = (¢l =myn{cV o 2™ < 00}, and {¢1?} = m} is inde-
pendent of {¢{!} o £™ < o0}. In particular, this leads to

P =m & fas1 < 00)

WK

P(C{‘H—l} < OO) =

3
LN

P(g{“} :m)[P’(g‘{l} o X" < OO)

M

1

3
Il

§{l}<oo Z}P’ g{”}—m (§{1}<oo)IP’(§{“}<oo),
m=1

since (By+1,---, Bm+n,...) and (By,..., By, ...) have the same distribution and
therefore so do ¢!} o X and ¢{!}. The same reasoning applies equally well when
a < 0, only now with —1 playing the role of 1. In other words, we have proved that

P(¢1 < 00) = P(¢ 2@ < 00)*! fora e 7\ {0}, (1.1.9)

where sgn(a), the signum of a, is 1 or —1 according to whether a > 0 or
a < 0. In particular, this shows that P <o0)=1 = P <o00)=1 and
Pt <o0)=1 = P(!" <o00)=1foralla e Z*.

In view of the preceding, we need only look at P(¢{!} < 00). Moreover, by the
monotone convergence theorem, Theorem 7.1.9,

P(:'" < 00) = lim E[s"]=1im > s> 'P(¢V =20 — 1).
N

Applying (1.1.7) with a = 1, we know that

1 2n —1
P =2n—1)= ( ! )p”q”-l.
2n —1 n
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Next, note that

I (2n—1\ _ Qa-D) 21
2n—1< n >_1Mn—D!_ IIQm_U

4n1"1

n1 4"
H(m—g)—( 1! (n)

where,?* for any o € R,

<a> 1 ifn=0
n n,]_[m _ola—m) ifneZzZt

is the generalized binomial coefficient which gives the coefficient of x” in the Tay-
lor’s expansion of (1 4+ x)* around x = 0. Hence, since 4pg < 1,

’

o0 o0 l _ . 2
Zszn—lp(c{l}zzn_l):_i <2>(—4pqs2)" 1—+/1—4pgs
=1

o 2gs n 2qs
and so
1—+/1—4pgs?
E[sw]:/z—ﬁ for Is| < 1. (1.1.10)
qs

Obviously, by symmetry, one can reverse the roles of p and g to obtain

E[S;{fl)] _ 1—y1-— 4pqs2

for |s| < 1. (1.1.11)
2ps

By letting s 7 1 in (1.1.10) and noting that 1 — 4pg = (p + ¢q)*> — 4pq =
(p — q)?%, we see that’

limE[s¢"] = L2 =4l _Pra

s 1 2q qg
and so
1 ifp>gq
PV <o00)=1], |
m if p<gq.

“4In the preceding, I have adopted the convention that Hﬁ’:k aj=1if € <k.

5T use a A b to denote the minimum min{a, b} of a,b € R.
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Of course, P(¢ !~ < o00) is given by the same formula, only with the roles of p and
q reversed. Thus, by (1.1.12),

1 ifaeZt*&p>qgor —acZ & p<gq

P(r @ —
(¢ <) (5)“ ifacZt&p<qor —acZ"&p>q.

(1.1.12)

1.1.4 Time of First Return

Having gone to so much trouble to arrive at (1.1.12), it is only reasonable to draw
from it a famous conclusion about the recurrence properties of nearest neighbor
random walks on Z. Namely, let

po=inf{n>1:X, =0} (=oc0if X,, #0foralln >1)

be the time of first return to 0. Then, by precisely the same sort of reasoning which
allowed us to arrive at (1.1.9), we see that P(X| = 1 & pg < 00) = pP(¢—1 < 00)
and P(X] = —1 & po < 00) = qP(¢ ! < 00), and so, by (1.1.12),

P(pg < 00) =2(p A Q). (1.1.13)

In other words, the random walk {X, : n > 0} will return to O with probability 1 if
and only if it is symmetric in the sense that p = %

By sharpening the preceding a little, one sees that P(X| =1 & pg = 2n) =
pPc M =21 — 1) and P(X| = —1 & pg = 2n) = gP(¢" =21 — 1), and so, by
(1.1.10) and (1.1.11),

E[s”]=1—/1—4pgs? for|s|<1. (1.1.14)

Hence,
4pqs2
V1 —4pgs?

and therefore, since® Elpgs”] 7 E[pg, po <oc]ass /1,

E[pospo] :sdi]E[spo] = for |s| < 1,
s

4dpq
lp—ql’

Elpo, po < 00] =

which, in conjunction with (1.1.13), means that”

2(qu): 1
lp —ql lp—ql

Elpo | po < o0] = (1.L.15)

SWhen X is a random variable and A is an event, we will often use E[X, A] to denote E[X14].

7a v b is used to denote the maximum max{a, b} of a,b € R.
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The conclusions drawn in the preceding provide significant insight into the be-
havior of nearest neighbor random walks on Z. In the first place, they say that when
the random walk is symmetric, it returns to O with probability 1 but the expected
amount of time it takes to do so is infinite. Secondly, when the random walk is not
symmetric, it will, with positive probability, fail to return. On the other hand, in the
non-symmetric case, the behavior of the trajectories is interesting. Namely, (1.1.13)
in combination with (1.1.15) say that either they fail to return at all or they return
relatively quickly.

1.1.5 Passage Times via Functional Equations

I close this discussion of passage times for nearest neighbor random walks with a
less computational derivation of (1.1.10). For this purpose, set u,(s) = ]E[sgm] for
acZ\{0)ands € (—1,1). Givena € Z™", we use the ideas in Sect. 1.1.3, especially
(1.1.8), to arrive at

WK

(0.¢]
tasr(s) = Y s"E[sEoF pl) =] = 3 51 = m)E[s o]
m=1

m=1

WK

S"P(Ca = m)ui(s) = uq (s)uy(s).

m=1

Similarly, if —a € Z*, then u,_(s) = u,(s)u_1(s). Hence
U (8) = Usgn(a) ()1 fora € Z\ {0} and |s| < 1. (1.1.16)
Continuing with the same line of reasoning, we also have
ui(s) = E[sgm, X = 1] —HE[s;m, X = —1]

1
2027 = ps + gsuz(s) = ps + qsuy (s)*.

=ps+ qu[s

Hence, by the quadratic formula,

1+./1—4pgs?

ui(s) = 245
Because IP’(C{” isodd) =1, u;(—s) = —u(s). At the same time,

1++/1—4pgs? - l+y1—4pg pvgq -

2gs 2q q

se€0,1) = 1.

Hence, since s € (0,1) = u;(s) < 1, we can eliminate the “+” solution and
thereby arrive at a second derivation of (1.1.10). In fact, after combining this with
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(1.1.16), we have shown that

(o 14pgs? ;;j"’q“Z)a ifaecz®
E[s%] = for |s| < 1. (1.1.17)
— — 2
(Ve —a p ezt

2ps

In theory one can recover (1.1.7) by differentiating (1.1.17) n times with respect to
s at 0, but the computation is tedious.

1.2 Recurrence Properties of Random Walks

In Sect. 1.1.4, we studied the time pg of first return of a nearest neighbor random
walk to 0. As we will see in Chaps. 2 and 4, times of first return are critical (cf.
Sect. 2.3.2) for an understanding of the long time behavior of random walks and
related processes. Indeed, when the random walk returns to 0, it starts all over again.
Thus, if it returns with probability 1, then the entire history of the walk will consist
of epochs, each epoch being a sojourn which begins and ends at 0. Because it marks
the time at which one epoch ends and a second, identically distributed, one begins, a
time of first return is often called a renewal time, and the walk is said to be recurrent
if P(po < oo) = 1. Walks which are not recurrent are said to be transient.

In this section, we will discuss the recurrence properties of nearest neighbor ran-
dom walks. Of course, we already know (cf. (1.1.13)) that a nearest neighbor ran-
dom on Z is recurrent if and only if it is symmetric. Thus, our interest here will be
in higher dimensional analogs. In particular, in the hope that it will be convincing
evidence that recurrence is subtle, we will show that the recurrence of the near-
est neighbor, symmetric random walk on Z persists when Z is replaced by Z? but
disappears in Z>.

1.2.1 Random Walks on 72

To describe the analog on Z? of a nearest neighbor random walk on Z, we begin by
thinking of Ny = {—1, 1} as the set of nearest neighbors in Z of 0. It should then
be clear why the set Ny of nearest neighbors of the origin in Z? consists of the 2d
points in Z? for which (d — 1) coordinates are 0 and the remaining coordinate is
in Nj. Next, we replace the Nj-valued Bernoulli random variables in Sect. 1.1 by
their d-dimensional analogs, that is: independent, identically distributed N-valued
random variables By, ..., B, ... 38 Finally, a nearest neighbor random walk on 74

8The existence of the B,’s can be seen as a consequence of Theorem 7.3.2. Namely, let {U, :
n € 7t} be a family of mutually independent random variables which are uniformly distributed
on [0, 1). Next, let (kq,...,Kys) be an ordering of the elements of Ny, set o =0 and §,, =
ZZL:I PB; =k¢) for 1 <m <2d, define F :[0,1) —> Ny so that F | [By—1, Bm) = Kk, and set
B, = F(Uy,).
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is a family {X;, : n > 0} of the form

n
Xo=0 and X,,=ZBm forn > 1.

m=1
The equivalent, stochastic process oriented description of {X,, : n > 0} is
PXo=0)=1 and, forn>1ande €Ny,
PX,; —Xu—1=¢€Xo, ..., Xy—1) = Pe,

(1.2.1)

where pe = P(B; = €). When B is uniformly distributed on Ny, the random walk
is said to be symmetric.

In keeping with the notation and terminology introduced above, we define the
time pg of first return to the origin to be n if n > 1, X,, =0, and X, # 0 for
1 <m < n, and we take pg = oo if no such n > 1 exists. Also, we will say that
the walk is recurrent or transient according to whether P(pg < 00) is 1 or strictly
less than 1.

1.2.2 An Elementary Recurrence Criterion

Given n > 1, let ,0(()") be the time of the nth return to 0. That is, ,o(()l) = po and, for

n>2,

,o(()"_l) <00 = p(()") =inf{m > p®~V:X,, =0}
and ,0(()”_1) =00 = pé”)
termined so that

= co. Equivalently, if g : (Ny)Z" —> Z* U {00} is de-

m
g(€r,...€¢,...)>n if and only if Zeg;é() forl <m <n,

=1
_ (n) _ (n+1) __ m
then pg = g(B1,...,B¢,...), and py " =m = p, =m + pp o 2™ where
poo X™isequal to g(B,+1, ..., Bute,...). In particular, this leads to

o0
]P’(,o(()"H) < oo) = Z P(p(()n) =m&pyo X" < oo)
m=1

=P(pg"” < 00)P(py < 00),

since { ,o(()") = m} depends only on (B, ...,B,,), and is therefore independent of
po o 2™, and the distribution of pg o X™ is the same as that of pg. Thus, we have
proved that

]P)(P(g") < 00) =P(pg <00)" forn=>1. (1.2.2)
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One dividend of (1.2.2) is that it supports the epochal picture described above
about the structure of recurrent walks. Namely, it says that if the walk returns once
to 0 with probability 1, then, with probability 1, it will do so infinitely often. This ob-
servation has many applications. For example, it shows that if the mean value of ith
coordinate of B is different from 0, then {X,, : n > 0} must be transient. To see this,
use Y, to denote the ith coordinate of B,,, and observe that {Y,, — Y,,_1 :n > 1} is
a sequence of mutually independent, identically distributed {—1, 0, 1}-valued ran-
dom variables with mean value © # 0. By the strong law of large numbers (cf.
Exercise 1.3.4 below), this means that % —> pu # 0 with probability 1, which is
possible only if |X,,| > |Y,,| —> oo with probability 1, and clearly this eliminates
the possibility that, even with positive probability, X,, = 0 infinitely often.

A second dividend of (1.2.2) is the following. Define

oo
To=) 1oXn)

n=0

to be the total time that {X, : n > 0} spends at the origin. Since Xy =0, Tp > 1.
Moreover, forn > 1, Ty > n < p(()") < 00. Hence, by (1.2.2),

ElTyl=Y P(Ty>n) =1+ P(p” <00) =1+ P(pg<00)",

n=0 n=1 n=1

and so

1 1
T 1=P(pg<00) P(pg=00)"

E[To] (1.2.3)

Before applying (1.2.3) to the problem of recurrence, it is interesting to note that
Ty is a random variable for which the following peculiar dichotomy holds:

P(Ty <o00)>0 =— E[Tp]l<o0 124
Elljl=c0 = P(Ty=o00)=1. (20

Indeed, if P(Tp < oo) > 0, then, with positive probability, X,, cannot be 0 infinitely
often, and so, by (1.2.2), P(pg < 00) < 1, which, by (1.2.3), means that E[Tp] < oc.
On the other hand, if E[7y] = oo, then (1.2.3) implies that P(pp < 00) = 1 and
therefore, by (1.2.2), that P(Ty > n) = P(p."” < 00) = 1 for all n > 1. Hence (cf.
(7.1.3)), P(Typ = 00) = 1.
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1.2.3 Recurrence of Symmetric Random Walk in 72

The most frequent way that (1.2.3) gets applied to determine recurrence is in con-
junction with the formula

E[Ty] = ZIP’(X,, =0). (1.2.5)
n=0

Although the proof of (1.2.5) is essentially trivial (cf. Theorem 7.1.15):

E[Tp] = E[Z 1) (Xn)} =Y E[lgX)] =) PX, =0),
n=0 n=0

n=0

in conjunction with (1.2.3) it becomes powerful. Namely, it says that

o0
{X;, : n > 0} is recurrent if and only if Z]P’(Xn =0)=o00, (1.2.6)
n=0

and, since P(X,, = 0) is more amenable to estimation than quantities which involve
knowing the trajectory at more than one time, this is valuable information.

In order to apply (1.2.6) to symmetric random walks, it is important to know that
when the walk is symmetric, then 0 is the most likely place for the walk to be at any
even time. To verify this, note that if k € 74 then

P(Xpn=k) = Y P(X, =C&Xp, — X, =k — )

Le74
=) PXy=0OP(Xz — X, =k —0)

Lezd
=) PXi=0OPX,=k—0)

Lezd

5 >
< (Z P(X, = e)z) (Z P(X, =k — eﬂ) =Y PX, =07
Lezd 0e74 Lezd

where, in the passage to the last line, we have applied Schwarz’s inequality (cf.
Exercise 1.3.1 below). Up to this point we have not used symmetry. However, if
the walk is symmetric, then P(X,, = £) = P(X,, = —£), and so the last line of the
preceding can be continued as

Z PX, = OPX, = —¢)
Lezd

= Z PX, =OPXoy — Xy = —€) =P(X2, =0).
Lezd
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Thus,

{X;, :n >0} symmetric — P(X,=0)= max P(Xy, =K). (1.2.7)
keZ

To develop a feeling for how these considerations get applied, we begin by using
them to give a second derivation of the recurrence of the nearest neighbor, symmet-
ric random walk on Z. For this purpose, note that, because P(|X,,| <n) =1, (1.2.7)
implies that

2n
1= Y P(Xon =0 < (@dn+ )P(X, =0),
=—2n

and therefore, since the harmonic series diverges, that ZZO:O P(X, =0) = oo.

The analysis for the symmetric, nearest neighbor random walk in Z? requires
an additional ingredient. Namely, the d-dimensional analog of the preceding line
of reasoning would lead to P(X5, =0) > (4n + 1)~4, which is inconclusive except
when d = 1. In order to do better, we need to use the fact that

{X, :n >0} symmetric = E[|X,*]=n. (1.2.8)

To prove (1.2.8), note that each coordinate of B, is a random variable with mean
value 0 and variance %. Hence, because the B,’s are mutually independent, the
second moment of each coordinate of X, is %.

Knowing (1.2.8), Markov’s inequality (7.1.12) says that

P(1Xon| > 24/n) < —E[1 X2, )] =

1 1
4n 2’

which allows us to sharpen the preceding argument to give’

<P(Xa| <2vn)= Y PXa,=4)
le|<2/n

N =

< @0+ 1IP(Xp, = 0) <297 (4n? + 1)P(X,, = 0).

That is, we have now shown that

1

P(Xpp =0) > 274 (407 +1)” (1.2.9)

for the symmetric, nearest neighbor random walk on Z¢. In particular, when d = 2,
this proves that the symmetric, nearest neighbor random walk on 77 is recurrent.

9For any a,b €[0,00) and p € [1, 00), (a + b)P < 2P=1(aP + bP). This can be seen as an appli-
cation of Jensen’s inequality (cf. Exercise 6.6.2), which, in this case, is simply the statement that
x € [0, 00) —> xP is convex.
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1.2.4 Transience in 73

Although (1.2.9) was sufficient to prove recurrence for the symmetric, nearest neigh-
bor random walk in Z2, it leaves open the possibility of transience in Z¢ for d > 3.
Thus, in order to nail down the question when d > 3, we will need to see how good
an estimate (1.2.9) really is. In particular, it would suffice to prove that there is an
upper bound of the same form.

To get an upper bound which complements the lower bound in (1.2.9), we first
do so in the case when d = 1. For this purpose, let 0 < £ < n be given, and observe
that

P(X2n =20 _ @ nm—1)--(n—L+1)
P(X2,=0) (+0n—0! (+On+L—1)---(n+1)

_H( n+e— k) <1_ni1>e'

X m
log(l—x)z—z% for x| < 1 (1.2.10)

m=1

Now recall that

and therefore that log(1 —x) > —= for 0 < x < 5. Hence, the preceding shows that
¢ ) 32
] Z e 2m+D)

aslongas 0 <¢ < % Because P(Xy, = —2¢) = P(X», = 2¢), we can now say
that

P(X2, =20)
P(X2, =0) —

> exp (6 log

P(Xa, = 0) < e3P(Xp, =2¢) for |£] < /.

But, because ) _,.;, P(X2, = 2¢) = 1, this means that (2/n — H)P(X2, =0) < e%,
and so

P(X2=0)<e?@yn—1)7", n>1, (1.2.11)

when {X,, : n > 0} is the symmetric, nearest neighbor random walk on Z.

If, as they most definitely are not, the coordinates of the symmetric, nearest
neighbor random walk were independent, then (1.2.11) would yield the sort of up-
per bound for which we are looking. Thus it is reasonable to examine to what extent
we can relate the symmetric, nearest neighbor random walk on Z¢ to d mutually
independent symmetric, nearest neighbor random walks {X; , :n >0}, 1 <i <d,
on Z. To this end, refer to (1.2.1) with p = ﬁ, and think of choosing X,, — X,
in two steps: first choose the coordinate which is to be non-zero and then choose
whether it is to be +1 or —1. With this in mind, let {/, : n > 0} be a sequence
of {1, ..., d}-valued, mutually independent, uniformly distributed random variables
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which are independent of {X; , : 1 <i <d &n >0}, set,for1 <i <d, N;p=0and
Nin= 22:1 1(;(1,) when n > 1, and consider the sequence {Y,, : n > 0} given by

Yo = (XN XdNg,)- (1.2.12)

Without too much effort, one can check that {Y,, : n > 0} satisfies the conditions in
(1.2.1) for the symmetric, nearest neighbor random walk on Z¢ and therefore has
the same distribution as {X,, : n > 0}. In particular, by (1.2.11),

P(X2, =0)= Y P(Xiom =08 Niy=2m; for 1 <i <d)

meNd

d
> (1_[ P(Xi,om; = 0)) P(Ni.on = 2m; for 1 <i <d)

meN/ i=1
myA--Amg=5

d
+ Y (HP(Xi,zm,.=0>)P<Ni,2n=2m,- for 1 <i <d)

meN¢ i=1
MA- A < 57

3d n ~ n
<e? (2\/;— 1) +IP’(Ni,2n =7 for some 1 <i < d)'

Thus, we will have proved that there is a constant A(d) < oo such that
P(Xp, =0) < Ad)n~%, n>1, (1.2.13)
once we show that there is a constant B(d) < oo such that
P(N;on < 5 forsome 1 <i <d) < B(d)n_%, n>1. (1.2.14)
In particular, this will complete the proof that
o
d>3 = > P(Xz=0)<o00
n=0
and therefore that the symmetric, nearest neighbor random walk in 74 is transient

when d > 3.
To prove (1.2.14), first note that

P(Ni,zn < g for some 1 <i < d) < dHD<N1,2n < %)

Next, set Z,, = 1{1y(1,), write Ny, = Z’f Zm, and observe that {Z,, : m > 1} is
a sequence of {0, 1}-valued Bernoulli random variables such that P(Z,, = 1) =
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p= %. In particular, for any A € R,

E[exp(kzzm)} = (pe* +4q)",
1
and so

]E|:exp<k (”P - sz>>j| =" where ¢ (1) =log(pe ™ + ge'?).
1

Since ¥ (0) = v/ (0) =0, and

T i Y Y B
(qe*? + pe™)2  (gx, +px;H2 T 4

1
where x; = 24Pt Taylor’s formula allows us to conclude that

E[exp(k(np—zzm)>:| ge%, reR. (1.2.15)
1

Starting from (1.2.15), there are many ways to arrive at (1.2.14). For example,
for any A > 0 and R > 0, Markov’s inequality (7.1.12) plus (1.2.15) say that

P(X’I: Zm <np — nR> = P(exp(,\ (np — ijzm» > e"m)

2
A
< o MR+%-

— ’

which, when A =4nR, gives

n
IP’(Z Zom 5np—nR> < R (1.2.16)

1

Returning to the notation used earlier and using the remark with which our discus-
sion of (1.2.14) began, one sees from (1.2.16) that

4n
IP’(NLZ” < g forsome 1 <i < d) <de &,

which is obviously far more than is required by (1.2.14).
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1.3 Exercises

Exercise 1.3.1 Schwarz’s inequality comes in many forms, the most elementary of
which is the statement that, for any {a, :n € Z} CR and {b,, : n € Z} C R,

Z|a,,b,,|§ /Za,zl /Zb,zz.
nez nez nez

Moreover, when the right hand side is finite, then

Zanbn = /Za,zl /Zb,%
nez nez

nez
if and only if there is an o € R for which either b, = «a,,n € Z, or a,, = ab,, n € Z.
Here is an outline of one proof of these statements.

(a) Given a real, quadratic polynomial P (x) = Ax? 4+ 2Bx + C, use the quadratic
formula to see that P > 0 everywhere if and only if C > 0 and B2 < AC. Simi-
larly, show that P > 0 everywhere if and only if C > 0 and B> < AC.

(b) Begin by noting that there is nothing to do unless Znez(af, —i—b,%) < 00, in which
case ),z lanby| < 0o as well. Assuming that Znez(a,% + b2) < 00, show that

P(x) = Z(anx +by)?=Ax>+2Bx+C

nez

whereA:Za,%, B:sz, andC:Za,,b,,,

nez nez nez
and apply (a).

Exercise 1.3.2 Let {Y,, : n > 1} be a sequence of mutually independent, identically
distributed random variables satisfying E[|Y;|] < oco. Set X, = Z;Zl Y,, forn>1.
The weak law of large numbers says that

X
IP’(‘—" — E[Y;] ze) —> 0 foralle > 0.
n

In fact,

X
lim IE[ 22 _EY]
n

} =0, (1.3.3)

n—00

from which the above follows as an application of Markov’s inequality. Here are
steps which lead to (1.3.3).

(a) First reduce to the case when E[Y]] = 0. Next, assume that E[le] < 00, and

show that
2
el |52{] <]

n

Xn

7 R[]
:[]- 220

n




18 1 Random Walks, a Good Place to Begin

Hence the result is proved when Y7 has a finite second moment.
(b) Given R > 0, set Y& = Y,1io. 5 (1Ya]) — E[Y,,|Ya] < R] and X® =
I Y,E,R). Note that, for any R > 0,

(R) _yW®)
(e ll== =
n

n
X(R) 2 R
= E[( Z )]+2E[|Y1|’|Y1|ER]5—1+2]E[IY1I,|Y1|ZR],

n2

Xn

n

and use this, together with the monotone convergence theorem, to complete the
proof of (1.3.3).

Exercise 1.3.4 Refer to Exercise 1.3.2. The strong law of large numbers says that
the statement in the weak law can be improved to the statement that % — E[Y]]
with probability 1. The proof of the strong law when one assumes only that
E[]Y1]] < oo is a bit tricky. However, if one is willing to assume that IE[Y;t ] < o0,
then a proof can be based on the same type argument that leads to the weak law.

Let {Y,}{° be a sequence of mutually independent random variables with
the properties that M = sup, E[|Y,|*] < oo, and prove that, with probabil-
ity 1, lim,_, % > _1(Ym — E[Yy]) = 0. Note that we have not assumed yet
that they are identically distributed, but when we add this assumption we get
limy— o0 £ 30 _ ¥,y = E[Y;] with probability 1.

Here is an outline.

(a) Begin by reducing to the case when E[Y,,] =0 foralln € Z*.
(b) After writing

{5 5

and noting that the only terms which do not vanish are those for which each
index is equal to at least one other index, conclude that

E[(iYk>4]=gE[Y,§‘]+6 > E[YZIE[x7].

1<k<t<n

Hence, since E[Y] — E[Y?]? = Var(Y}?) > 0,

E[(er: Yk)éj <3Mn>. (%)
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(c) Starting from (), show that

n
> ¢ <iE 21 Y
— ) T €t n

for all € > 0. This is the weak law of large numbers for independent random
variables with bounded fourth moments. Of course, the use of four moments
here is somewhat ridiculous since the argument using only two moments is eas-
ier.

(d) Starting again from (x) and using (7.1.4), show that

P(:gg ) Z IP’(ZYk >ne)

n=m+1

—0

4
P(‘& ]< 3M
n

~ €en?

2%

aM 1
56—42,72

n=m+1
aM

<———0 asm—ooforalle >0.
e*m

(e) Use the definition of convergence plus (7.1.4) to show that

A5 0= (UN U =5)
e(NUlEE=5])

Finally, apply the second line of (7.1.3) plus (d) above to justify

(I ) (5 -

m=1n>m
foreach N € Z™". Hence, with probability 1, % Z’l' Y — 0, which is the strong
law of large numbers for independent random variables with bounded fourth
moments.

Zl Yy

n

21 Y
n

Exercise 1.3.5 Readers who know DeMoivre’s proof of the central limit theorem
will have realized that the estimate in (1.2.11) is a poor man’s substitute for what
one can get as a consequence of Stirling’s formula

n
nl ~ «/2nn<’1> as 11 — 00, (1.3.6)
e
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whose meaning is that the ratio of the quantities on the two sides of “~” tends to 1.
Indeed, given (1.3.6), show that

2
P(Xz,,:O)'v,/%.

Next, give a proof of (1.3.6) based on the following line of reasoning.

(a) Let1q,..., 1, be a mutually independent, unit exponential random variables, !0
and show that for any 0 < R < \/n
e — JnR+n
1—%§P<—RSMSR)= 1 / Lot 4y
R Jn (n—=D!J_ iRy

(b) Make a change of variables followed by elementary manipulations to show that

JAR+n R
/ "o dt = Jne™" / (n + Vno)"" e V1 4o
-R

—J/nR+n
1 R o \"!
= n"*?e*"/ (1 + —) eV 4o
_R ﬁ

R 2
=3¢ | exp(-Z +E,(0))d
= P ) nl0O a,
“R

E,(0)=0n—1Dlog(14+ =)= vn o
n(0)=(n— )og( +ﬁ)_ no+—-.

where

(c) As an application of the Taylor’s series for log(1 + x) (cf. (1.2.10)), show that
E,(0) —> 0 uniformly for || < R when n — 00, and combine this with the
results in (a) and (b) to arrive at

1
i nn+§e—n R _ﬁ
lim —— e 2do<l1
n—00 n! _R

and

1
) nn-‘rze*n R o2 1
lim —— e 2do>1——

n—00 n! R R2

o2
Because f_oooo e~ 2 do = +/2m, it is clear that (1.3.6) follows after one lets
R / oo.

10A unit exponential random variable is a random variable t for which P(t > 1) =™’ Vo,
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Exercise 1.3.7 The argument in Sect. 1.2.3 is quite robust. Indeed, let {X,, : n > 0}
be any symmetric random walk on Z? whose jumps have finite second moment.
That is, Xg =0, {X,, — X;,—1 : n > 1} are mutually independent, identically dis-
tributed, symmetric (X has the same distribution as —X7), 72-valued random vari-
ables with finite second moment. Show that {X,, : n > 0} is recurrent in the sense
that P(En >1X, =0) = 1.

Exercise 1.3.8 Let {X,, : n > 0} be a random walk on Z%: Xg =0, {X,, — X,_1 :
n > 1} are mutually independent, identically distributed, 74 -valued random vari-
ables. Further, for each 1 <i <d, let (X,); be the ith coordinate of X;;, and assume
that

IIBiEdIE”((Xl),'#O)>O but P(3i #j (X1)i(X1)j #0) =0,

If, for some C < oo and (@, . .., ag) € [0, 00)? with Z‘f o > 1,
P((X,)i =0)<Cn™% foralln>1,

show that {X,, : n > 0} is transient in the sense that P(3In > 1X,, =0) < 1.

Exercise 1.3.9 As in the preceding, let {X,, : n > 0} be arandom walk on 74 . Given
k€79, set

o0
Tx = Z 14g(X,) and ¢ =inf(n>0:X, =k}.
n=0
Show that
Pe®
ElTk] =P(¢™ < 00)E[Tp] = P <c0), (1.3.10)
P(pg = 00)

where pg = inf{n > 1 : X, = 0} is the time of first return to 0. In particular, if
{X,, : n > 0} is transient in the sense described in the preceding exercise, show that

o
]E|:Z 13(,)(xn)} <oo forallr € (0, 00),

m=0

where B(r) = {k : |k| < r}; and from this conclude that |X,,| — oo with proba-
bility 1. On the other hand, if {X,, : n > 0} is recurrent, show that X,, = 0 infinitely
often with probability 1. Hence, either {X,, : n > 0} is recurrent and X,, = 0 infinitely
often with probability 1 or it is transient and |X,,| —> oo with probability 1.

Exercise 1.3.11 Take d = 1 in the preceding, Xo =0, and {X,, — X,,—1 : n > 1}
to be mutually independent, identically distributed random variables for which
0 < E[|X1]] < o0 and E[X 1] = 0. By a slight variation on the argument given in
Sect. 1.2.1, we will show here that this random walk is not only recurrent but that

lim X, =00 and lim X, =—oco with probability I.
n—0o0 n—00
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(a) First show that it suffices to prove that sup, X, = oo and that inf, X,, = —ooc.
Next, use (1.3.3) to show that

. E[1Xn]]
im max =

n—00 1<m=<n n

0.

(b) Forn > 1, set T,"" = Y"" 4 14 (X,n), show that E[T"] < E[T,"] for all k €

m=0
Z., and use this to arrive at
n

(4p(n) + 1)E[T"] where u(n) = max_ E[|X,]].

0<m<n—
Finally, apply part (a) to see that E[7p] = oo and (1.3.10) to get P(pgp < o0) =1,
which means that {X,, : n > 0} is recurrent.

(c) To complete the program, proceed as in the derivation of (1.2.2) to pass from (b)
to

P(p(()m) <oo)=1 forallm=>1, (%)

where pém) is the time of the mth return to 0. Next, set n, = inf{n > 0: X,, > r}

for r € ZT, show that € = P(; > pg) < 1, and conclude that P(n; > p(gm)) <
€. Now, combine this with (x) to get P(; < co) = 1. Finally, argue that

P41 < 00) = P(n, < 00)P(11 < 00)

and therefore that P(n, < co) = 1 for all » > 1. Since this means that, with
probability 1, sup, X, > r for all r > 1, it follows that sup, X, = oo with
probability 1. To prove that inf, X,, = —oo with probability 1, simply replace
{X,;, :n>0} by {—X,, : n >0}

Exercise 1.3.12!' Here is an interesting application of one dimensional random
walks to elementary queuing theory. Queuing theory deals with the distribution of
the number of people waiting to be served (i.e., the length of the queue) when, dur-
ing each time interval, the number of people who arrive and the number of people
who are served are random. The queuing model which we will consider here is
among the simplest. Namely, we will assume that the queue is initially empty and
that during each time interval [n — 1, n) the number of people who arrive minus
the number who can be served is given by a Z-valued random variable B,,. Fur-
ther, we assume that the B,,’s are mutually independent and identically distributed
random variables satisfying O < E[|B;|] < oo. The associated queue is, apart from
the fact that there are never a negative number of people waiting, the random walk
{X, :n > 0} determined by the B,’s: Xo=0 and X, = ZZ:I B,,. To take into
account the prohibition against having a queue of negative length, the queuing model
{Qn : n > 0} is given by the prescription

0o=0 and Q,=(Q,_1+B,)*" forn>1.

1180 far as T know, this example was invented by Wm. Feller.
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(a) Show that
On=X,— min X, = max (X, — Xp),

0<m<n 0<m=<n
and conclude that, for each n > 0, the distribution of Q,, is the same as that of
M, = maxo<m<n Xm.
(b) Set My, =lim,_,oc M, € NU {00}, and, as a consequence of (a), arrive at

lim P(Q, = j) = P(Ms = j) forjeN.
n—>0oo

(c) Set u = E[B;]. The weak law of large numbers says that, for each € > 0,
P(|X, — nu| > ne) — 0 as n — oo. In particular, when p > 0, show that
P(Ms = 00) = 1. When p = 0, use Exercise 1.3.11 to reach the same conclu-
sion. Hence, when E[B1] > 0, P(Q, = j) —> 0 for all j € N. That is, when
the expected difference between the number arrivals and the number of people
served is non-negative, then P(Q,, > M) — 1 forevery M € Z.

(d) Now assume that u = E[B1] < 0. Then the strong law of large numbers (cf. Ex-
ercise 1.3.4 for the case when Bj has a finite fourth moment and Theorem 3.3.10
in [8] for the general case) says that % —> w with probability 1. In particu-
lar, conclude that Moo < 0o with probability 1 and therefore that 3~ ; v, =1
when v; =1lim, 00 P(Q, = j) =P(Mso = j).

(e) Specialize to the case when the B,,’s are {—1, 1}-valued Bernoulli random vari-
ables with p =P(B; =1) € (0, 1), and set ¢ = 1 — p. Use the calculations in
(1.1.12) to show that

lim P . 0 ifp>q

Aim PO, = j) = 2y ifp <.

(f) Generalize (e) to the case when B, € {—1,0,1}, p=P(B; = 1), and g =
PP(B1 = —1). The idea is that M, in this case has the same distribution as
sup,, ¥,,, where {Y,, : n > 0} is the random walk corresponding to {—1, 1}-valued
Bernoulli random variables which are 1 with probability p’fq.



Chapter 2
Doeblin’s Theory for Markov Chains

In this chapter we begin in earnest our study of Markov processes. Like the random
walks in Chap. 1, the processes with which we will be dealing here take only count-
ably many values and have a discrete (as opposed to continuous) time parameter.
In fact, in many ways, these processes are the simplest generalizations of random
walks. To be precise, random walks proceed in such a way that the distribution of
their increments are independent of everything that has happened before the incre-
ment takes place. The processes at which we will be looking now proceed in such a
way that the distribution of their new position depends on where they are at the time
when they move but not on where they were in the past. A process with this sort
of dependence property is said to have the Markov property and is called a Markov
chain.!

The set S in which a process takes its values is called its state space, and, as I
said, our processes will have state spaces which are either finite or countably infinite.
Thus, at least for theoretical purposes, there is no reason for us not to think of S as
the set {1,..., N} or Z+, depending on whether S is finite or countably infinite.
On the other hand, always taking S to be one of these has the disadvantage that it
may mask important properties. For example, it would have been a great mistake to
describe the nearest neighbor random walk on Z? after mapping Z? isomorphically
onto Z™.

2.1 Some Generalities

Before getting started, there are a few general facts that we will need to know about
Markov chains.

A Markov chain on a finite or countably infinite state space S is a family of
S-valued random variables {X,, : n > 0} with the property that, for all n > 0 and

I'The term “chain” is commonly applied to processes with a time discrete parameter.

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 25
DOI 10.1007/978-3-642-40523-5_2, © Springer-Verlag Berlin Heidelberg 2014
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(iO"'-’il’hj)ESnJrz’
]P’(X,H_l=j|X0=i0,...,Xn=i,,)=(P),~nj, 2.1.1)

where P is a matrix all of whose entries are non-negative and each of whose rows
sums to 1. Equivalently (cf. Sect. 7.4.1)

P(Xus1 = | X0, -, Xn) = Py, ;- (2.12)

It should be clear that (2.1.2) is a mathematically precise expression of the idea
that, when a Markov chain jumps, the distribution of where it lands depends only on
where it was at the time when it jumped and not on where it was in the past.

2.1.1 Existence of Markov Chains

For obvious reasons, a matrix whose entries are non-negative and each of whose
rows sum to 1 is called a transition probability matrix: it gives the probability that
the Markov chain will move to the state j at time n + 1 given that it is at state
i at time n, independent of where it was prior to time n. Further, it is clear that
only a transition probability matrix could appear on the right of (2.1.1). What may
not be so immediate is that one can go in the opposite direction. Namely, let u be a
probability vector” and P a transition probability matrix. Then there exists a Markov
chain {X, : n > 0} with initial distribution p and transition probability matrix P.
That is, P(Xg =i) = (u); and (2.1.1) holds.

To prove the preceding existence statement, one can proceed as follows. Begin
by assuming, without loss in generality, that S is either {1,..., N} or Z*. Next,
given i € S, set §(i,0) =0 and B(i, j) = Zizl(P)ik for j > 1, and define F : S x
[0,1) —> Ssothat F(i,u) = jif B(i, j—1) <u < B(i, j).In addition, set «(0) =0
and a(i) = Z;{:l(ﬂ)k for i > 1, and define f :[0,1) — S so that f(u) =i if
a(i —1) <u < «a(i). Finally, let {U, : n > 0} be a sequence of mutually independent
random variables (cf. Theorem 7.3.2) which are uniformly distributed on [0, 1), and
set

v | rao ifn=0

= 2.1.3
"N F(X,_1,Uy) ifn>1. 213

We will now show that the sequence {X,, : n > 0} in (2.1.3) is a Markov chain
with the required properties. For this purpose, suppose that (ig, . . ., iy) € S"*!, and

2 A probability vector is a row vector whose coordinates are non-negative and sum to 1.
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observe that
P(Xo=1i0,..., Xn=1n)
=P(Up € [a(io — 1), a(ip))
& Up € [Blim=1,im — 1), Blim—1,im)) for 1 <m <n)
=iy Pigi, - P)i,_yi, = P(Xo =0, ..., Xn—1 =in-DPi,_, ;.

2.1.2 Transition Probabilities & Probability Vectors

Notice that the use of matrix notation here is clever. To wit, if u is the row vector
with ith entry (@); = P(Xo =1i), then p is called the initial distribution of the chain
and

(uP”)j =P(X,=j), n>0andjeS, (2.1.4)

where we have adopted the convention that P is the identity matrix and P" = PP"~!
for n > 1.3 To check (2.1.4), letn > 1 be given, and note that, by (2.1.1) and induc-
tion,

P(Xo=io,...., Xn—1=in-1, Xn=7) = (WigP)igi, - - - Pi,_, -

Hence (2.1.4) results after one sums with respect to (igp,...,i,—1). Obviously,
(2.1.4) is the statement that the row vector uP" is the distribution of the Markov
chain at time n if p is its initial distribution (i.e., its distribution at time 0). Al-
ternatively, P" is the n-step transition probability matrix: (P");; is the conditional
probability that X,,+, = j given that X,, =1i.

For future reference, we will introduce here an appropriate way in which to mea-
sure the length of row vectors when they are being used to represent measures.
Namely, given a row vector p, we set

ol =" "|(0)i

ieS

) (2.1.5)

where the subscript “v” is used in recognition that this is the notion of length which
corresponds to the variation norm on the space of measures. The basic reason for
our making this choice of norm is that

loPllv < llpllv, (2.1.6)

since, by Theorem 7.1.15,

loPlly = Z Z(P)i(P)ij

jeStieS

< Z(Zy<p>,~|a>>,-,-> = ol

ieS “jeS

3The reader should check for itself that P" is again a transition probability matrix for all n € N: all
entries are non-negative and each row sums to 1.
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Notice that this is a quite different way of measuring the length from the way Euclid
would have: he would have used

ol = (Z(p)?)z.

ieS
When S is finite, these two norms are comparable. Namely,
lell2 < llpllv < V#S|lpll2, where #S denotes the cardinality of S.

The first inequality is easily seen by squaring both sides, and the second is an ap-
plication of Schwarz’s inequality (cf. Exercise 1.3.1). However, when S is infinite,
they are not comparable. Nonetheless, || - ||y is a good norm (i.e., measure of length)
in the sense that ||p|ly = 0 if and only if p = 0 and that it satisfies the triangle in-
equality: ||p + p’llv < llpllv + Il |lv. Furthermore, Cauchy’s convergence criterion

holds for || - [|v. That is, if {p,}7° is a sequence in RS, then there exists pE RS for
which [lp,, — plly —> 0'if and only {p,,}7° is Cauchy convergent in the sense that

mILmOO 535 0w = Pmllv =0.

As usual, the “only if”” direction is an easy application of the triangle inequality:

P00 = Pmllv = llop = pllv+ 110 = ppllv-

To go the other direction, suppose that {p,}7° is Cauchy convergent, and observe
that each coordinate of {p,,}7° must be Cauchy convergent as real numbers. Hence,
by Cauchy’s criterion for real numbers, there exists a p to which {p, }7° converges
in the sense that each coordinate of the p,,’s tends to the corresponding coordinate
of p. Thus, by Fatou’s lemma, Theorem 7.1.10, as m — oo,

o= pumllv=D_[(@i = (p,)i| < Lim > |(p,)i = (p,)i| — 0.
ieS "0 s

2.1.3 Transition Probabilities and Functions

As we saw in Sect. 2.1.2, the representation of the transition probability as a matrix
and the initial distributions as a row vector facilitates the representation of the distri-
bution at later times. In order to understand how to get the analogous benefit when
computing expectation values of functions, think of a function f on the state space
S as the column vector f whose jth coordinate is the value of the function f at j.
Clearly, if u is the row vector which represents the probability measure p on S and
f is the column vector which represents a function f which is either non-negative or
bounded, then uf = Zies F@)u{i}) is the expected value of f with respect to .
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Similarly, the column vector P"f represents that function whose value at i is the
conditional expectation value of f(X,) given that Xy =i. Indeed,

E[f(Xn) | Xo=i]=)_ F()HP(X,=j|Xo=1)

JjEeS

=D (P"),;(®; = (P"f),.

JjEeS

More generally, if f is either a non-negative or bounded function on S and f is the
column vector which it determines, then, for 0 <m <n,

E[f(Xn) | Xo=i0,.... X =im]|= (P”_mf)l.m, or, equivalently,

2.1.7)
E[f(Xn) | X0, .., Xm] = (P""”f)Xm
since
E[f(Xn) \ Xo=i0,..., Xm= im]
=Y FOPXy=jlXo=i0..... Xm =im)
jes
=2 FDE), ;= (@), .
jes
In particular, if u is the initial distribution of {X,, : n > 0}, then
E[f(Xn)] = wPf,
since E[f (X)] = >_; (W) ELf (X)| X0 =1].

Just as || - ||y was the appropriate way to measure the length of row vectors when
we were using them to represent measures, the appropriate way to measure the
length of column vectors which represent functions is with the uniform norm || - ||:

I£llu = sup|(£);]- (2.1.8)
j€es

The reason why || - ||, is the norm of choice here is that |uf] < ||p|lv|If]ly, since

] <> i || D] < 1l Y ()i

ieS ieS
In particular, we have the complement to (2.1.6):

Py < [If]lu. (2.1.9)
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2.1.4 The Markov Property

By definition, if p is the initial distribution of {X,, : n > 0}, then
P(Xo =io, ..., Xn =in) = Wiy Pigi, -~ P)i,_yi,- (2.1.10)
Hence, if m,n > 1 and F : S"*1 — R is either bounded or non-negative, then
E[FXm,--s Xmtn), Xo=1i0, -, Xm =im)]

= Y Flim jiees i) ig®igiy -+ iy Phiyjy -+ Py,
jls--wanS

=E[F(Xo, ..., Xn) | Xo=im|P(Xo =10, ..., Xn = im).
Equivalently, we have now proved the Markov property in the form

E[F(Xm. .- Xmin) | Xo =10 ... Xn = im]
=E[F(Xo..... Xn) | X0 =im]. (2.1.11)

2.2 Doeblin’s Theory

In this section I will introduce an elementary but basic technique, due to Doeblin,
which will allow us to study the long time distribution of a Markov chain, particu-
larly ones on a finite state space.

2.2.1 Doeblin’s Basic Theorem

For many purposes, what one wants to know about a Markov chain is its distribution
after a long time, and, at least when the state space is finite, it is reasonable to think
that the distribution of the chain will stabilize. To be more precise, if one is dealing
with a chain which can go in a single step from any state i to some state j with
positive probability, then that state j is going to visited again and again, and so,
after a while, the chain’s initial distribution is going to get “forgotten.” In other
words, we are predicting for such a chain that uP" will, for sufficiently large n, be
nearly independent of . In particular, this would mean that uP"* = (uP"~")P" is
very nearly equal to uP™ when m is large and therefore, by Cauchy’s convergence
criterion, that & = lim,,_, .o wP" exists. In addition, if this were the case, then we
would have that & = lim,_ /LP”“ = lim,,_, oo (WP*)P = P. That is, & would
have to be a left eigenvector for P with eigenvalue 1. A probability vector r is, for
obvious reasons, called a stationary probability for the transition probability matrix
Pif r =nP.
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Although a state j of the sort in the preceding discussion is most likely to exist
when the state space is finite, there are situations in which these musings apply even
to infinite state spaces. That is, if, no matter where the chain starts, it has a positive
probability of immediately visiting some fixed state, then, as the following theorem
shows, it will stabilize.

Theorem 2.2.1 (Doeblin’s Theorem) Let P be a transition probability matrix with
the property that, for some state jo €S and € > 0, (P);;, > € forall i € S. Then P
has a unique stationary probability vector &, (1) j, > €, and, for all initial distribu-
tions ju,

|wP" —x |, <A=&l —mlly <21 —e)", n=0.

Proof The key to the proof lies in the observations that if p € R® is a row vector
with ||p|ly < oo, then

Y 0P =) (p)i,

Jjes ieS
(2.2.2)
and Y (pi=0 = [pP"], <A=& llply forn=1.
ieS

The first of these is trivial, because, by Theorem 7.1.15,
> (oP); = Z(Z(p)f (P)U») = Z(Z(p» (P»-;) =Y (.
jes j€S tieS ieS “jeS ieS

As for the second, note that, by an easy induction argument, it suffices to check it
when n = 1. Next, suppose that ) ;(p); =0, and observe that

[P =D (0)i (P
ieS
=Y 0 (®)ij —€8.5,)| < D |0)i| (P)ij — €85y
ieS ieS

and therefore that

Py < Z<Z|(p)i|((l))ij - 65;4‘0))

JjES NieS
= Zl(mi}(Z((P»J- - eaj,,-o)) =1 -olpll.
ieS jeS

Now let p be a probability vector, and set u, = uP”. Then, because u, =
,'Ln—um and Zi((ﬂn—m)i - M’z) =1-1=0,

”I"’n - ILm”V = (l - 6)m””'n—m - IL”V =< 2(1 _e)m
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for 1 <m < n. Hence {p,}7° is Cauchy convergent, and therefore there exists
a w for which ||u, — m|ly —> 0. Since each u, is a probability vector, it is
clear that = must also be a probability vector. In addition, & = lim,,_, o uP"*! =
lim;,— o (uP")P = xP, and so & is stationary. In particular,

(M)jo =D _(1)i(P)jy =€ Y (m);i =e.

ieS ieS
Finally, if v is any probability vector, then
[vP" — x|, = | — P < (1= lp—mly <201 — )",

which, of course, proves both the stated convergence result and the uniqueness of
as the only stationary probability vector for P. g

The condition in Doeblin’s Theorem is called Doeblin’s condition, and it is in-
structive to understand what his theorem says in the language of spectral theory.
Namely, as an operator on the space of bounded functions (a.k.a. column vectors
with finite uniform norm), P has the function 1 as a right eigenfunction with eigen-
value 1: P1 = 1. Thus, at least if S is finite, general principles say that there must
exist a row vector which is a left eigenvector of P with eigenvalue 1. Moreover, be-
cause 1 and the entries of P are real, this left eigenvector can be taken to have real
components. Thus, from the spectral point of view, it is no surprise that there is a
non-zero row vector g € RS with the property that wP = g. On the other hand, stan-
dard spectral theory would not predict that u can be chosen to have non-negative
components, and this is the first place where Doeblin’s theorem gives information
which is not readily available from standard spectral theory, even when S is finite.
To interpret the estimate in Doeblin’s Theorem, let M (S; C) denote the space of
row vectors v € CS with || v||y = 1. Then,

lvPlly <1 forallv e M(S;C),

and so
sup{la|:a € C&Iv e M (S; C) vP=av} < 1.

Moreover, if vP = av for some o # 1, then vl = v(P1) = (vP)1 = av1, and there-
fore v1 = 0. Thus, the estimate in (2.2.2) says that all eigenvalues of P which are
different from 1 have absolute value dominated by 1 — €. That is, the entire spec-
trum of P lies in the complex unit disk, 1 is a simple eigenvalue, and all the other
eigenvalues lie in the disk of radius 1 — €. Finally, although general spectral theory
fails to predict Doeblin’s Theorem, it should be said that there is a spectral theory,
the one initiated by Frobenius and developed further by Kakutani, that does cover
Doeblin’s results. The interested reader should consult Chap. VIII in [2].
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2.2.2 A Couple of Extensions

An essentially trivial extension of Theorem 2.2.1 is provided by the observation that,
forany M > 1 and € > 0,

sup ir_lf(PM )ij > €
it (2.2.3)
= uP"—x|, <1 -0l g — x|, <201 —e)lis)

for all probability vectors p and a unique stationary probability vector x. To see
this, let w be the stationary probability vector for P¥, the one guaranteed by
Theorem 2.2.1, and note that, for any probability vector u, any m € N, and any
O<r<M,

[P — x|, = [|(wP" =P )P M < (A=) |n —mlly <2(1 — ).

Thus (2.2.3) has been proved, and from (2.2.3) the argument needed to show that
7t is the one and only stationary measure for P is the same as the one given in the
proof of Theorem 2.2.1.

The next extension is a little less trivial. In order to appreciate the point that it is
addressing, one should keep in mind the following example. Consider the transition

probability matrix
0 1
P_(1 O) on {1, 2}.

Obviously, this two state chain goes in a single step from one state to the other.
Thus, it certainly visits all its states. On the other hand, it does not satisfy the hy-
pothesis in (2.2.3): (P");; =0 if either i = j and n is odd or if i # j and n is even.
Thus, it should not be surprising that the conclusion in (2.2.3) fails to hold for this P.
Indeed, it is easy to check that although (%, %) is the one and only stationary prob-
ability vector for P, ||(1,0)P" — (4, D)|ly = 1 for all n > 0. As we will see later (cf.
Sect. 3.1.3), the problems encountered here stem from the fact that (P");; > 0 only
if n is even.

In spite of the problems raised by the preceding example, one should expect that
the chain corresponding to this P does equilibrate in some sense. To describe what
I have in mind, set

1 n—1
A, =— P". 224
== (2.24)

m=0

Although the matrix A, is again a transition probability matrix, it is not describing
transitions but instead it is giving the average amount of time that the chain will visit

“Here and elsewhere, we use |s| to denote the integer part of s of s € R. That is, |s] is the largest
integer dominated by s.
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states. To be precise, because

n—1 n—1
1
Ay = Y POt = 1 Xo=i) =E [ §j1{j}(xm)\xo=i},
m 0 m=0

(Ay);;j is the expected value of the average time spent at state j during the time
interval [0, n — 1] given that i was the state from which the chain started. Experience
teaches us that data becomes much more forgiving when it is averaged, and the
present situation is no exception. Indeed, continuing with the example given above,
observe that, for any probability vector u,

11
A, — (==
(33

What follows is a statement which shows that this sort of conclusion is quite general.

1
<— forn>1.
n

Theorem 2.2.5 Suppose that P is a transition probability matrix on S. If for some
MeZ', joeS, and € > 0, (Am)ij, = € for all i €S, then there is precisely one
stationary probability vector &t for P, () j, > €, and

M—1
ne

A, —mlly <
for any probability vector .

To get started, let = be the unique stationary probability that Theorem 2.2.3
guarantees for Ajs. Then, because any p which is stationary for P is certainly sta-
tionary for Ayy, it is clear that & is the only candidate for P-stationarity. More-
over, to see that & is P-stationary, observe that, because P commutes with Ay,
(rP)Ay = (mA )P = nP. Hence, nP is stationary for Ay, and therefore, by
uniqueness, must be equal to x. That is, & = P.

In order to prove the asserted convergence result, we will need an elementary
property of averaging procedures. Namely, for any probability vector u,

A AL — A,y <

forall m,n > 1. (2.2.6)

To check this, first note that, by the triangle inequality,

A, A, uAnuv—— ILA P* — pA,)

k=0 v

o
—Z|MAP — 1A |-
mn k=0
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Second, if k > n then ||pA,P* — pA,|ly <2 < 2, and if 0 < k < n then

1n—l n+k—1
RAPE — pAy == (WP — pPt) = ( > wP - ZMP‘)
n

=0

and so [|[uP*A, — uA, |y < 2’1—]‘ for all n > 1. Hence, after combining this with the
first observation, we are lead to

-1
g m—1

2
AvAp — nALy < — S k= ,
LA Ap ILn“v_ng

n

which is what we wanted.

To complete the proof of Theorem 2.2.5 from here, assume that (Ayy);j, > € for
all i, and, as above, let & be the unique stationary probability vector for P. Then, &
is also the unique stationary probability vector for Ay, and so, by the estimate in
the second line of (2.2.2) applied to Ay, |nAR Ay — ||y = |(RA,;, — T)A M|y <
(1 —e¢)|lrA, — ||y, which, in conjunction with (2.2.6), leads to

lnAn —wlly < Ay — _A AM v + AR AN — 7 ]lv

—1
=< + (A=) lnA, —m|y.

Finally, after elementary rearrangement, this gives the required result.

2.3 Elements of Ergodic Theory

In the preceding section we saw that, under suitable conditions, either uP" or uA,
converge and that the limit is the unique stationary probability vector & for P. In the
present section, we will provide a more probabilistically oriented interpretation of
these results. In particular, we will give a probabilistic interpretation of x. This will
be done again, by entirely different methods, in Chap. 4.

Before going further, it will be useful to have summarized our earlier results in
the form (cf. (2.2.3) and remember that |uf| < |gllv|l f o)

supinf(PY) > e = [P"f—xf], <201 )Lty (23.1)
J

and (cf. Theorem 2.2.5)

M —
supinf(Ay)ij >e = AL —=f|y < (2.3.2)
1

J

when f is a bounded column vector.

SHere, and elsewhere, I abuse notation by using a constant to stand for the associated constant
function.
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2.3.1 The Mean Ergodic Theorem

Let {X,, : n > 0} be a Markov chain with transition probability P. Obviously,

n—1
=) _ 1
T; 5521{,-}()(,”) (2.3.3)

m=0

is the average amount of time that the chain spends at j before time n. Thus, if p is
the initial distribution of the chain (i.e., (n); =P(Xo =1i)), then (nA,); = ]E[Tj(n)],
and so, when it applies, Theorem 2.2.5 implies that ]E[]_"j(”)] —> (m);j as n — 00.

Here we will be proving that the random variables T themselves, not just their
expected values, tend to (;r); as n — o0. Such results come under the heading of
ergodic theory. Ergodic theory is the mathematics of the principle, first enunciated
by the physicist J.W. Gibbs in connection with the kinetic theory of gases, which
asserts that the time-average over a particular trajectory of a dynamical system will
approximate the equilibrium state of that system. Unfortunately, in spite of results,
like those given here, confirming this principle, even now, nearly 150 years after
Gibbs, there are embarrassingly few physically realistic situations in which Gibbs’s
principle has been mathematically confirmed.

Theorem 2.3.4 (Mean Ergodic Theorem) Under the hypotheses in Theorem 2.2.5,

supE[(T;n) — (n)j)Z] < # foralln > 1.

j€eSs

(See (2.3.10) below for a more refined, less quantitative version.) More generally,
for any bounded function f on'S and alln > 1:

n—1 2
1 4M — D3
E[(; Zf(Xm) —nf) :| < Ts

m=0

where f denotes the column vector determined by f.

Proof Let f be the column vector determined by the function f = f — xf. Obvi-
ously,

1 n—1 1 n—1 ~
;%f(xw —nf= ;%f(xmx
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and so
1 n—1 2 1 n—1 2 n—1
- f(Xm}—nf> =—( f(Xm)> = f(Xk)f(XE)
. . =l
Y FXOFX) - =) Fxw)?
0<k<t<n n k=0
2
<5 > FXfXe).
n 0<k<tl<n
Hence,

M |

1n—1 2 2 n—1 n—k—1
E[(;%f@@—nf) ]sﬁ |:f(Xk) Z fXiqo)

k

Il
=)

2 n—1 n—k—1
== {f(xk) > (P9 }
" =0 £=0
2 n—1 _ _
=—) (- RE[f(X)An—iDx,].
k=0

But, by (2.3.2), [ An—kfllu < 57 75¢ Ifllu, and so, since [|fllu < 2fllu,

2(M — D|f||?
(n — DE[F (X0 (An_iDx,] < %

After plugging this into the preceding, we get the second result. To get the first,
simply take f = 1;;) and observe that, in this case, ||f]l, < 1. O

2.3.2 Return Times

As the contents of Sects. 1.1 and 1.2 already indicate, return times ought to play an
important role in the analysis of the long time behavior of Markov chains. In particu-
lar, if ,0( ) =0 and, for m > 1, the time of mth return to j is defined so that p](m) =0
(m— 1) (m) (m— 1)

1

if P; =o00 or X, # j for every n > ,0(’” D and p; = inf{n > P;

X, = j} otherwise, then we say that j is recurrent if IP’(p <oolXg=j)=1

and that it is transient if }P’(,oj < 00|Xp = j) < 1; and we can hope that when j
is recurrent, then the history of the chain breaks into epochs which are punctuated

by the successive returns to j. In this subsection we will provide evidence which
bolsters that hope.
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Notice that p; = ,05.1) >1and, forn > 1,

1n,001(0)) = Fn,j(Xo, ..., X)) where

1 ifi, #jforl <m<n, (2.3.5)

F, (g, ...,ip) = .
n.j(io n) 0 otherwise.

In particular, this shows that the event {p; > n} is a measurable function of

(Xo, ..., X;). More generally, because

n—1
1(n,00] (p;m+1)) =1n,00] (p;m)) + Z l{e}(pﬁm))Ez—z,j(Xe, s Xn),
=1

an easy inductive argument shows that, for each m e Nand n € N, {pﬁ.m)

measurable function of (X, ..., X,).

>n}isa

Theorem 2.3.6 Forallm € Zt and (i, j) € S?,
P(p](.m) <00|Xo=i)=P(p; < 00| Xo=i)P(pj < 00| Xog=j)" .

In particular, if j is recurrent, then P(p;m) < o00|Xg=j)=1forallm e N. In fact,

if j is recurrent, then, conditional on Xy = j, {p(.m) — ,o(.m_l) :m > 1} is a sequence

of mutually independent random variables each of which has the same distribution
as pj.

Proof To prove the first statement, we apply (2.1.11) and the monotone convergence
theorem, Theorem 7.1.9, to justify

P(p{™ < 00| Xo=1)

00
= Zp(p;m_l) =n& ,O;m) < oo | Xo= l)

= lim Y P(p\" "V =n&p"™ <N |Xo=i)

o
=" lim E[1—Fy j(Xn..... Xasn), 0" =n|Xo=1]

N—o00 i

o
=>" lim E[1 - Fy;j(Xo.....Xn) | Xo=j]P(p{" " =n|Xo =i)

N—o00 J

o
=" 1im P(p; <N |Xo=j)P(p" " =n|Xo=1i)

N—o0

=P(pj <oo|Xo= j)}P’(p](.m_l) <oo|Xo=1).
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Turning to the second statement, note that it suffices for us prove that

(¢)) (m) _

]P’( (m+1) W=ni.....p§ —nm)

p;" " > ntnm | Xo=j,p
=P(p; > n|Xo=j).
But, again by (2.1.11), the expression on the left is equal to
]E[anj(Xl‘lma cer Xnm+n) | XO = js 1051) znl» cee /Oj(m) =nm]

=E[F,,;j(Xo,.... Xn) | Xo=j]=P(pj > n|Xo = j). O

Reasoning as we did in Sect. 1.2.2, we can derive from the first part of Theo-
rem 2.3.6:

P(pj <oo|Xo=1)

E[Tj | Xo=i1=8;; + =,
! M P(pj = ool Xo = )

. . 2.3.7
E[Tj| Xo=jl=00 <<= P{Tj=00|Xo=))=1, 23.7)
E[Tj|Xo=jl<co <= P(j<oo|Xo=j)=1,

where T; =Y 1;;(X,,) is the total time the chain spends in the state j. Indeed,
because

[P <o x0=5)  ifi=
P(Tj>m|Xg=i)= i)
P(p" ) < ool Xo=i) ifi# ],

all three parts of (2.3.7) follow immediately from the first part of Theorem 2.3.6.
Of course, from (2.3.7) we know that

Jj isrecurrent if and only if E[T;]|Xo = j] = oc.

In particular, under the conditions in Theorem 2.2.5, this means that jg is recurrent
since (Ay) j,jo — () j, > 0 and therefore

oo
ElTjo | Xo = jol = Z(Pm)jojo = nlilgon(A")jojo = 0.
m=0

To facilitate the statement of the next result, we will say that j is accessible from
i and will write i— j if (P");; > 0 for some n > 0. Equivalently, i— j if and only if
i=jori#jandP(p; <oo|Xg=i)>0.

Theorem 2.3.8 Assume that infy(Ay)xi > € for some M >1,i €S, and € > 0.
Then j is recurrent if and only if i— j, in which case infy(Ayp)i; > 0 for some
M’ > 0. Moreover, if k is recurrent, then supl/eSE[,o,leo = j] < oo for all
p € (0, 00).
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Proof First suppose that i + j. Equivalently, P(p; = 00|Xo =i) = 1. At the same
time, because (Ay) j; > €, there exists an 1 <m < M such that (P™);; > 0, and so
(cf. (2.3.5))

P(pj=00|Xo=j)>P(Xp#jforn>m&X, =i|Xo=Jj)
> lim E[Fyj(Xm. ..., Xman), Xm =i Xo=j]
N—oo
= lim E[Fy,;(Xo,.... Xn) | Xo=i]P(Xn =i|X0o=})
N—o0
=P(p; = 0| Xo =i)(P’”)jl. > 0.

Therefore j cannot be recurrent.
‘We next show that

i—»j = irklf(AM/)kj >0 forsome M > 1. (%)

To this end, choose m € N so that (P"™);; > 0. Then, for all k €5,

1 M+m—1 1 M—-1

Apmij = M ; (Pe)kj z M ; (Pe)ki (Pm)ij

(=}

+
Me
m—+

M
= (Am)ki (Pm),-j > i

= (P’")l.j > 0.

In view of (x) and what we have already shown, it suffices to show that
E[pi‘" | Xo = j] < oo forall j €S. For this purpose, set
u(n,k)=P(p; >nM|Xo=k) forneZ' andkeS.
Then, by (2.1.11),
u(n+1,k)=> P(oi > (n+ )M & X = j| Xo = k)
Jjes
= Z]E[FM,i(XnM, s Xuanm)s pi >nM & Xy = j | Xo =k]
JjeSs
=D Plpi > M| Xo=)P(pi > nM & Xoyr = j| Xo = k)
Jjes
=Y u(l, HYP(p; > nM & X = j| Xo =k).
JjeSs

Hence, u(n +1,k) < Uu(n, k) where U = maxjes u(1, j). Finally, since u(1, j) =
1 —P(p; <M|Xo=j)and

P(p; <M |Xo=j) > oé')nai‘M(Pm)ﬁ > (Ay)ji > €,



2.3 Elements of Ergodic Theory 41

U <1 — €. In particular, this means that u(n + 1, k) < (1 — €)u(n, k), and therefore
that P(p; > nM|Xo =k) < (1 — €)", from which

9]
E[pf | Xo=k]=)_n"P(p; =n|Xo=k)

n=1
00 mM
<D mM)? 3 PB(p=n|Xo=k)
m=1 n=(m—1)M+1

o0
SMpZmP]P’(pi > (m — 1)M|X0:k)

m=1

0
<MP Zmp(l —o" <0

m=1

follows immediately. g

2.3.3 Identification of ©

Under the conditions in Theorem 2.2.5, we know that there is precisely one
P-stationary probability vector . In this section, we will give a probabilistic in-
terpretation of (i) ;. Namely, we will show that

sup supinf(Ay);; >0
M>1jeSieS

= (m);= (= 0if j is transient). (2.3.9)

Elp;[Xo = /]
The idea for the proof of (2.3.9) is that, on the one hand, (cf. (2.3.3))
E[T}" | Xo=j] = An)j; — (1)),
while, on the other hand,
m_y
Xo=j — TUU__L Z 1) (Xe) = ——

Y m) (m)”
i =0 Pj

Thus, since, at least when j is recurrent, Theorem 2.3.6 says that p(m) is the sum of
m mutually independent copies of p;, the preceding combined with the weak law
of large numbers should lead
_(p(,m)) 1
(m); = lim E[T,’ | Xo=j|l=0———.
1= T | Elpj|Xo = j]
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To carry out the program suggested above, we will actually prove a stronger
result. Namely, we will show that, for each j € S,°

. =) 1 ) .
P(lim 7" =— X():]):l. (2.3.10)
<’H°° ! Elpjl Xo=j]

In particular, because 0 < T(n) <1, Lebesgue’s dominated convergence theorem,
Theorem 7.1.11, says that

. . —(n) . 1

n);=lim (A,);;=lm E|T." | Xo=j|=————
(); naoo( n)ij n—00 [ J | 0 J] Elp; | Xo=j]
follows from (2.3.10). Thus, we need only prove (2.3.10). To this end, choose jj,
M, and € > 0 so that (Ay);j, > € for all i. If jo - j, then, by Theorem 2.3.8,
J is transient, and so, by (2.3.7), P(T; < oo | Xo = j) = 1. Hence, conditional on
Xo=/, T;n) < %Tj — (0 with probability 1. At the same time, because j is tran-
sient, P(p; = 00| X9 = j) > 0,and so E[p; | Xo = j] = co. Hence, we have proved
(2.3.10) in the case when jj - j.

Next assume that jo— j. Then, again by Theorem 2.3.8, ]E[p;‘|Xo = j] < ooand,

conditional on X = j, Theorem 2.3.6 says that the random variables ,oj(-m) - pﬁ-mil)

are mutually independent random variables and have the same distribution as p;. In
particular, by the strong law of large numbers (cf. Exercise 1.3.4)

(m)
p.
IP’( lim —— = ‘ Xo= j> =1 wherer; =E[p;|Xo=jl.

m—o00 m

On the other hand, for any m > 1,

_ 1 . _( (m)) _( (.m)) 1
T ——| < [T =T |+ T = —|,
rj ! / rj
and
- |T(n) B T(,O;.m))| (m) .
T TV < L i P e
J J = n n J
(m) (m)
i mr; 2m | P;
52‘1—’— 52‘ — L+ =Ly
n n n m

6Statements like the one which follows are called individual ergodic theorems because they, as
distinguished from the first part of Theorem 2.3.4, are about convergence with probability 1 as
opposed to convergence in square mean. See Exercise 4.2.10 below for more information.
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(m)
(i) m

while, since T, ¢~ = o5 <1,
! Pj
(m)
(m)
T(p'i )_i lp] o
Y ri ri| m J
J J
Hence,
(m)
— 1 mr; 2 1\|P;
T(.n)__SQ __-1_|_ _m+_ J —r;
J rj n n rj m
Finally, by taking m, = L%J we get
(my)
— 1 2r; 3|p;
T(/n)——i—]—f-— L —rj|—0 asn— oo.
' }"j n rj my N

Notice that (2.3.10) is precisely the sort of statement for which Gibbs was look-
ing. That is, it says that, with probability 1, when one observes an individual path,
the average time that it spends in each state tends, as one observes for a longer
and longer time, to the probability that the equilibrium (i.e., stationary) distribution
assigns to that state.

2.4 Exercises

Exercise 2.4.1 In this exercise we will give a probabilistic interpretation of the
adjoint of a transition probability matrix with respect to a stationary probability.
To be precise, suppose that the transition probability matrix P admits a stationary
distribution 7, assume (r); > O for each i € S, and determine the matrix PT by

®T)j = 5 ).

(a) Show that P is a transition probability matrix for which 7 is again a stationary
probability.

(b) Use P and PT to denote probabilities computed for the chains determined, re-
spectively, by P and PT with initial distribution 7, and show that these chains
are the reverse of one another in the sense that, for each n > 0 the distribution of
(X0, ..., X,) under PT is the same as the distribution of (X, ..., Xo) under P.
That is,

PT(Xo =i, ... Xn =in) =P(Xy =0, ..., X0 = in)
for all n > 0 and (io, ..., in) € "',
Exercise 2.4.2 The Doeblin theory applies particularly well to chains on a finite

state. For example, suppose that P is a transition probability matrix on an N element
state space S, and show that there exists an € > 0 such that (Ay);j, > € foralli € S
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if and only if i — jo for all i € S. In particular, if such a jg exists, conclude that, for
all probability vectors pu,
2(N —1)

leAn —mlly < ——, nz1,

where 7 is the unique stationary probability vector for P.

Exercise 2.4.3 Here is a version of Doeblin’s theorem that sometimes gives a
slightly better estimate. Namely, assume that (P);; > €; for all (i, j), and set
€ = Zj €;. If € > 0, show that the conclusion of Theorem 2.2.1 holds with this
€ and that (); > ¢; foreachi € S.

Exercise 2.4.4 Assume that P is a transition probability matrix on the finite state
space S, and show that

J €Sisrecurrent if and only if E[p;|Xo = j] < oo.

Of course, the “if” part is trivial and has nothing to do with the finiteness of the state
space.

Exercise 2.4.5 Again assume that P is a transition probability matrix on the finite
state space S. In addition, assume that P is doubly stochastic in the sense that each
of its columns as well as each of its rows sums to 1. Under the condition that every
state is accessible from every other state, show that E[p;|Xo = j] = #S for each
jES.

Exercise 2.4.6 In order to test how good Doeblin’s theorem is, consider the case
when S = {1, 2} and

l—« o
P_( 8 1_,3) for some (¢, B) € (0, 1).

Show that = = (« + 8) "' (B, ) is a stationary probability for P, that
|[vP—rm||y =1 —a — B]llm — x|y for all probability vectors u.

Hence, in this case, Doeblin’s theorem gives the optimal result.

Exercise 2.4.7 One of the earliest examples of Markov processes are the branch-
ing processes introduced, around the end of the nineteenth century, by Galton and
Watson to model demographics. In this model, S = N, the state i € N representing
the number of members in the population, and the process evolves so that, at each
stage, every individual, independently of all other members of the population, dies
and is replaced by a random number of offspring. Thus, O is an absorbing state,
and, given that there are i > 1 individuals alive at a given time n, the number of
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individuals alive at time n + 1 will be distributed like the sum of i mutually inde-
pendent, N-valued, identically distributed random variables. To be more precise, if
= (Ko, ..., MUk, -..) is the probability vector giving the number of offspring each
individual produces, define the m-fold convolution power u*™ so that (u*o)j =00,
and, form > 1,

J
(’L*m)j — Z(”’*(m_l))j_iﬂi'

i=0

Then the transition probability matrix P is given by (P);; = ([L*i )j-

The first interesting question which one should ask about this model is
what it predicts will be the probability of eventual extinction. That is, what is
lim,— - P(X,, = 0)? A naive guess is that eventual extinction should occur or
should not occur depending on whether the expected number y = Z,fio kg of
progeny is strictly less or strictly greater than 1, with the case when the expected
number is precisely 1 being more ambiguous. In order to verify this guess and re-
move trivial special cases, we make the assumptions that g > 0, uo + @1 < 1, and
Y=Y oo kik < o0.

(a) Set f(s) = Z,fio skuk for s € [0, 1], and define f°"(s) inductively so that
f°0%s)=sand f°" = fo f°= forn > 1. Show that y = f’(1) and that

oo
Fo ) =E[s* | Xo=i]=) s/ (P"),, forse[0,1]andi=>0.
j=0

Hint: Begin by showing that f(s)' = Y52 s/ (n*);.

(b) Observe that s € [0, I]—— f(s) — s is a continuous function which is positive
at s =0, zero at s = 1, and smooth and strictly convex (i.e., f” > 0) on (0, 1).
Conclude that either y <1 and f(s) > s forall s € [0, 1) or y > 1| and there is
exactly one « € (0, 1) at which f(x) =«.

(c) Referring to the preceding, show that

y<l = lim E[s*

n—oo

Xo=i]=1 forallse(0,1]

and that

y>1 = lim E[s*|Xo=i]=a' forallse(0,1).
n— oo
(d) Based on (c), conclude that y <1 — IE’(Xn =0|Xg =i) —> 1 and that
y>1 = lim,» P(X, =0|X¢=i) =« and
lim P(1 <X, <L|Xo=i)=0 forallL>1.
n—oo
The last conclusion has the ominous implication that, when the expected number

of progeny is larger than 1, then the population either becomes extinct or, what
may be worse, grows indefinitely.
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Exercise 2.4.8 Continue with the setting and notation in Exercise 2.4.7. We will to
show in this exercise that there are significant differences between the cases when
y<landy=1.

()

(b)

(©)

(d)

Show that E[X,, | Xo =i] =iy". Hence, when y < 1, the expected size of the
population goes to 0 at an exponential rate. On the other hand, when y =1,
the expected size remains constant, this in spite of the fact that as n — oo
P(X, =0|Xp =1i) — 1. Thus, when y = 1, we have a typical situation of the
sort which demonstrates why Lebesgue had to make the hypotheses he did in his
dominated convergence theorem, Theorem 7.1.11. In the present case, the ex-
planation is simple: as n — oo, with large probability X, = 0 but, nonetheless,
with positive probability X, is enormous.

Let pg be the time of first return to 0. Show that

P(po <nlXo =) =P(X, =01Xo=1) = (f°" "V (no)’,
and use this to get the estimate
P(po > n|Xo=i) <iy"~'(1 = o).

In particular, this shows that E[,o'(; |Xo=i] < oo forall ke ZT when y < 1.
Now assume that ¥ = 1. Under the additional condition that 8 = f/(1) =
Y ks klk — Dug < oo, start from P(pg <n|Xo=1) = F2=D (1), and show
that E[pg|Xo =i]= oo forall i > 1.

Hint: Begin by showing that

n—1

L= f°" (o) = (1_[ (1-8(1- f°‘(uo))))(1 — " (1))

l=m
for n > m. Next, use this to show that

]

00 >Elpg|Xo=11=1+Y (1= f°"(u0))
0

would lead to a contradiction.
Here we show that the conclusion in (c) will, in general, be false without the

finiteness condition on the second derivative. To see this, let 6 € (0, 1) be given,

1+6
and check that f(s) =s + “72{ => o0 s¥ k., for some probability vector

m = (o, ..., Uk, ...) with ug > 0 unless k = 1. Now use this choice of u to
see that, when the second derivative condition in (c) fails, [E[pg| X¢ = 1] can be
finite even though y = 1.

Hint: Set a,, =1 — f°" (o), note that @, — a,41 = /Loa,ll+9, and use this first

to see that a:’l—“ —> 1 and then that there exist 0 < ¢ < ¢2 < 00 such that

n‘f] — an’e < ¢ for all n > 1. Conclude that P(pg > n|Xo=1) tends to O

like n~ 7.

cr<a



2.4 Exercises 47

Exercise 2.4.9 The idea underlying this exercise was introduced by J.L.. Doob and
is called” Doob’s h-transformation. Let P is a transition probability matrix on the
state space S. Next, let @ = I" C S be given, set

pr=inf{ln >1:X, e},
and assume that

h(i)=P(pr =00 | Xo=i)>0 forallieS=S\T.

(2) Show that h(i) = Y, a(P);jh(j) for all i €S, and conclude that the matrix P
given by (13)i = ﬁ(P)i jh(j) for (i, j) € (S)2 is a transition probability matrix
on S. . .
(b) Forall n € N and (jo, ..., ju) € (S)**!, show that, for eachi € S,
P(Xo = jo, ... Xn = jul Xo=1)
:P(XOZjO»n-»Xn :jn |pFZOO&XO:i)’
where PP is used here to denote probabilities computed for the Markov chain on

S whose transition probability matrix is P. That is, the Markov chain determined
by P is the Markov chain determined by P conditioned to never hit I".

Exercise 2.4.10 Here is another example of an A-transform. Assume that jy € S is
transient but that i — jo for all i € S.% Set

h(jo)=1 and h()=P(p;, <oo|Xo=1i) fori# jo.
(a) After checking that k(i) > O for all i € S, define P so that

B);; = P)joj ifi=jo
Y hG) T @Gy i # o

Show that Pis again a transition probability matrix. R
(b) Using P to denote probabilities computed relative to the chain determined by P,
show that

- . 1 .

P(pj, >n|Xo=i)= m]P’(n < pj, <00l Xo=1i)
for all n € N and i # jp.

(¢) Starting from the result in (b), show that jo is recurrent for the chain determined

by P.

"The “h” comes from the connection with harmonic functions.

8By Exercise 2.4.2, this is possible only if S in infinite.



Chapter 3
Stationary Probabilities

It is important to understand when stationary probabilities exist and how to compute
them when they do. In this chapter I will develop some methods for addressing these
questions.

3.1 Classification of States

In this section we deal with a topic which was hinted at but not explicitly discussed
in Chap. 2. Namely, a transition probability P determines a relationship structure on
the state space. To be precise, given a pair (i, j) of states, recall that we write i — j
and say that j is accessible from i if, with positive probability, the chain can go
from state i to state j. That is, (P");; > 0 for some n € N. Notice that accessibility
is transitive in the sense that

i—j and j—>l — i—L. 3.1.1)

Indeed, if (P"");; > 0 and (P") ;¢ > 0, then

(Pm+n)ie = Z(Pm)ik(Pn)kZ z (Pm)ij (Pn)j(i > 0.

If i and j are accessible from one another in the sense that i — j and j—i, then
we write i< j and say that i communicates with j. It should be clear that “<” is
an equivalence relation. To wit, because (PY;; =1, i<>i, and it is trivial that Jj<i
if i<>j. Finally, if i<>j and j<>¢, then (3.1.1) makes it obvious that i<>£. Thus,
“«” leads to a partitioning of the state space into equivalence classes made up of
communicating states. That is, for each state i, the communicating equivalence class
[1] of i is the set of states j such that i< j; and, for every pair (i, j), either [i] =[]
or [i]N[j]=0. In the case when every state communicates with every other state,
we say that the chain is irreducible.

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 49
DOI 10.1007/978-3-642-40523-5_3, © Springer-Verlag Berlin Heidelberg 2014
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3.1.1 Classification, Recurrence, and Transience

In this subsection we will show that recurrence and transience are communicating
class properties. That is, either all members of a communicating equivalence class
are recurrent or all members are transient.

Recall (cf. Sect. 2.3.2) that p; is the time of first return to j, and observe that i — j
if and only if P(p; < co| Xg = 1) > 0. Also, remember that we say j is recurrent or
transient according to whether P(p; < 00|X¢ = j) is equal to or strictly less than 1.

Theorem 3.1.2 Assume that i is recurrent and that j #i. Then i— j if and only
if P(pj < pilXo =1) > 0. Moreover, if i— j, then P(px < 00| Xo =£) =1 for any
(k, ) € {i, j}*. In particular, i— j implies that i<> j and that j is recurrent.
Proof Given j #1i and n > 1, set (cf. (2.3.5))

Gulko, ... kn) = (Fu—1.iCko, ... kn—1) — FuiCko, ... kn)) Fu,j (Ko, . .., kn).
If {p{" : m > 0} are defined as in Sect. 2.3.2, then, by (2.1.11),

B(o""" < pj | Xo=1i)

P(o" =t & p{" " < pj| Xo=i)

r”18

~
I
=

IP’( (m)_ﬂ p<m+1) £+n<p/|X0—l)

M
Mg

~
Il
S
Il

E[Gn(Xes ..., Xewn)s 0™ =€ < pj | Xo=1i]

I
WK

S
=
Il
—_

E[Gu(Xo, ... Xa) | Xo=i|P(p" =€ < p; | Xo =)
1

I
Mg

L,n

P(pi =n < pj| Xo=DP(p\™ = < p;| Xo=1)

Mg

£,n=1
=P(pi < pj | Xo=DP(o{" < p;| Xo=1),
and so
j#i = P(p™ <p;|Xo=i)=P(oi <pj|Xo=i)". (3.1.3)
Now suppose that i — j but P(p; < p;|Xo=1) =0. Then, because

P(p; # pilXo=1i) = P(p; <oo|Xo=1i)=1,
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P(pi < pj|Xo=1i)= 1. By (3.1.3), this means that P(p\" < p;|Xo=1i) = 1 for all
m > 1, which, since p(’") > m, leads to P(p; = 00| X =1i) = 1 and therefore rules
out i — j. Hence, we have already shown that

i—j = P(pj <pilXo=1i)>0,

and the opposite implication needs no comment.
To prove that i — j = P(p; < 00| X = j) = 1, first observe that

P(oj < pi <o0| Xo=1)

o
:nlingOZP(pjzm<pi§m+n|X0=i)

m=1

o
=n1_i)n;OZIE[1 — Fui Xy ooy Xomgn)s pj =m < pi | Xo=1i]
m=1

o]
= lim > P(pj=m < p;|Xo=DE[l = Fui(Xo..... Xu) | Xo = ]

m=1
=P(pj < pi | Xo=1)P(p; <oo|Xo=)).
Thus, after combining this with P(p; < 0o|Xg =1i) = 1, we have
P(pj < pil Xo=1)=P(pj < pi | Xo=0P(p; <o00|Xo=j),
which, because P(p; < p;|Xo =1i) > 0, is possible only if P(p; < oo|Xo = j) = 1.
In particular, we have now proved that j—i and therefore that i< j.
Similarly,
P(pj <oo|Xo=1)
=P(p; <pi | Xo=1)+P(p; <pj <oo|Xg=1i)
=P(pj < pi| Xo=1)+P(pi < p; | Xo =)P(pj < 00| Xo=1),

and so, since P(p; = p; | Xo =1) <P(p; =00 | Xo=1i)=0,
P(pj <00l Xo=0DP(p; < pi | Xo=1) =P(p; < pi | Xo=1).

Thus, i— j = P(p; < oo|Xp=i)=1.
Finally,

P(pi < pj <00l Xo=j)=P(pj <oo|Xo=i)P(pi <pjlXo=J).
Hence, because we now know that

i—j = P(pi<oo|Xo=))=1=P(pj <o0|Xg=1i),
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we see that i — j implies
P(pj < ool Xo=j)
=P(pj < pi|Xo=j)+P(pi <pj <oo|Xo=))
=P(p; <pi| Xo=Jj) +P(p; <oo| Xo=0DP(pi <pj|Xo=j)=1,
since P(p; = pj|Xo = j) =P(p; = 00|Xo=j) =0. O
As an immediate consequence of Theorem 3.1.2 we have the following corollary.

Corollary 3.1.4 Ifi<>j, then j is recurrent (transient) if and only if i is. Moreover,
if i is recurrent, then P(p; < co|Xo =) is either 1 or 0 according whether or not
i communicates with j. In particular, if i is recurrent, then (P");; =0 for all n >0
and all j which do not communicate with i.

When a chain is irreducible, all or none of its states possess any particular com-
municating class property. Hence, when a chain is irreducible, we will say that it is
recurrent or transient if any one, and therefore all, of its states is.

These considerations allow us to prove the following property of stationary prob-
abilities.

Theorem 3.1.5 If & is a stationary probability for the transition probability P on S,
then (); = O for all transient i € S. Furthermore, if i is recurrent and (;); > 0,
then (m); > 0 for all j that communicate with i.

Proof First observe that, for any n > 1,

n—1
n(n)i:Z an Z(n’)] |:Z l{z}(Xm)}XO_]:|
m=0

JjEeS

< Z(n),-E[Z 1) (Xom) \ Xo =j] <E[T; | Xo =i,

jes m=0

where the final inequality comes from (2.3.7). Hence, if i is transient and therefore
E[T; | Xg =i] < oo, then (;r); =0.

Next suppose that i is recurrent and that (x); > 0. Then, for any j in the
communicating class [i] of i, P;’j > 0 for some n > 0, and therefore (w); =

ZkeS(n)kPZj > (m);iP}; > 0. O

3.1.2 Criteria for Recurrence and Transience

There are many tests which can help determine whether a state is recurrent, but no
one of them works in all circumstances. In this subsection, we will develop a few
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of the most common of these tests. Throughout, we will use u to denote the column
vector determined by a function u : S — R.

We begin with a criterion for transience.

Theorem 3.1.6 If u is a non-negative function on S with the property that (Pu); <
(u); for alli €S, then (Pu); < (u); for some j €S implies that j is transient.

Proof Set f=u — Pu, and note that, foralln > 1,

n—1
u(j) = w); — (P"w); = ((P"u), — (P"*'u) )
m=0
n—1 n—1
= Z(me)j > (D), Z(Pm)jj'
m=0 m=0

Thus E[7}|Xo = j1 = Y5_o(P™)jj < G < 0o, which, by (2.3.7), means that j is
transient. ' O

In order to prove our next criterion, we will need the following special case of a
general result known as Doob’s stopping time theorem.

Lemma 3.1.7 Assume that u : S —> R is bounded below and that I" is a non-
empty subset of S. If (Pu); < u(i) foralli ¢ I' and pr =inf{n > 1: X, € I'},
then

E[u(Xnrpr) | Xo=i] <u(i) foralln>=0andi eS\T.

Moreover, if the inequality in the hypothesis is replaced by equality, then the in-
equality in the conclusion can be replaced by equality.

Proof Set A, = {pr > n}. Then, A, is measurable with respect to (Xo, ..., X;),
and so, by (2.1.1), forany i ¢ I',

E[”(X(n+l)A/)r) | Xo = i]

= E[M(mep), ALl X0 = i] + Z]E[M(Xnﬂ), Apn N {X, =k} | Xo= i]
kel

=E[u(Xurpr) Anl| Xo =]+ Y E[(Pu)r, Ay N (X, =k} | Xo =]
k¢l

<E[u(Xnnpp), Anl1 X0 =i] +E[u(Xnnpr), An| Xo =]
=E[uXnnpr) | Xo=1i].

Clearly, the same argument works just as well in the case of equality. g
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Theorem 3.1.8 Assume that j is recurrent, and set C = [j]. Ifu: S — [0, 00) isa
bounded function and either u(i) = (Pw); or u(j) > u(i) > (Pu); foralli € C\ {j},
then u is constant on C. On the other hand, if j is transient, then the function u given
by

. 1 ifi=j
u(i) = N
!]P(Pj<00|X0=l) fi#j

is a non-negative, bounded, non-constant solution to u(i) = (Pu); foralli # j.

Proof In proving the first part, we will assume, without loss in generality, that
C = S. Now suppose that j is recurrent and that u(i) = (Pu); for i # j. By ap-
plying Lemma 3.1.7 with I" = {j}, we see that, fori # j,

u(i) =u()HP(pj <n|Xo=1i)+E[u(X,), pj >n|Xo=i].

Hence, since, by Theorem 3.1.2, P(p; < 00| X =i) =1 and u is bounded, we get
u(i) = u(j) after letting n — oo. Next assume that u(j) > u(i) > (Pu); for all
i # j. Then, again by Lemma 3.1.7, we have

u(j) = ul@) =u(HP(p; <n|Xo=1i)+E[u(Xy), pj >n|Xo=i],

which leads to the required conclusion when n — co.
To prove the second part, let u be given by the prescription described, and begin
by observing that, because j is transient,

1>P(pj <oo|Xo=j) =P+ Y Pju@)=Pj+ (1l —Pjj) infu(@).
i#]

Because j is transient, and therefore (P);; < 1, this proves that inf;+; u(i) < u(j)
and therefore that u is non-constant. At the same time, when i # j, by conditioning
on what happens at time 1, we know that

u(i)=P(pj <oo|Xo=i)=Pij+ Y PuP(p; < o0|Xo=k) = (Pu),.
kit

Lemma 3.1.9 If P is irreducible on S, then, for any finite subset F # S,
P(ps\r <o0|Xg=i)=1foralli€F.

Proof Set t = pg\r. By irreducibility, P(z < 0o|Xo = i) > 0 for each i € F.
Hence, because F is finite, there exists a 6§ € (0,1) and an N > 1 such that
P(t > N|Xo9 =i) <60 for all i € F. But this means that, for each i € F,
P(t > (£+1)N| Xo=1i) equals
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ZP(I>(£+1)N&X¢N=k|X0=i)

keF
=ZIP’(XneFforZN+1§n§(£+1)N, T >N, & Xen =k|Xo=1i)
keF
=Y Pt >N|Xo=kP(z > N & Xy =k| Xo=1)
keF

<O0P(t >IN |Xo=1i).
Thus, P(z > ¢N|Xo=1i) < 6%, and so P(t = 00|Xo=j)=O0foralli € F. U

Theorem 3.1.10 Assume that P is irreducible on S, and let u : S — [0, 00) be a
Sfunction with the property that {k : u(k) < L} is finite for each L € (0, c0). If, for
some j €S, (Pu); <u(i) foralli # j, the chain determined by P is recurrent on S.

Proof 1f S is finite, then (cf., for example, Exercise 2.4.2) at least one state is re-
current, and therefore, by irreducibility, all are. Hence, we will assume that S is
infinite.

Giveni # j, set F = {k:u(k) <u(i) +u(j)+ L} for L € N, and denote by py,
the first return time ps\ F;)u(j) to (S\ Fr) U {j}. By Lemma 3.1.6,

u@) = E[u(Xunp,) | Xo =] = (u(@) +u(j) + L)P(os\r, <n A pj|Xo=1i)

for all n > 1. Hence, after letting n — oo, we conclude that, for all L € N,

u(i) > (@) +u(j) + L)Posyr, < pj| Xo=1)
> (u(i) +u(j) + L)P(p; = 00| Xo = i),

since, by Lemma 3.1.8, we know that P(ps\ , < 00|X( =1) = 1. Thus, after letting
L — oo, we have now shown that P(p; < co|Xo =1i)=1foralli # j. Since

P(pj < 00| Xo=j) =)+ ) P(pj <oo| Xo=1)(P);i,
i#]
it follows that P(p; < 00| X = j) = 1, which means that j is recurrent. O

Remark The preceding criteria are examples, of which there are many others, that
relate recurrence of j € S to the existence or non-existence of certain types of func-
tions that satisfy either Pu=u or Pu <u on S\ {;j}. All these criteria can be under-
stood as mathematical implementations of the intuitive idea that

u(i)=(Pu); or (Pu) <u() fori#j,

implies that as long as X, # j, u(X,) will be “nearly constant” or “nearly non-
increasing” as n increases. The sense in which these “nearly’s” should be interpreted
is the subject of martingale theory, and our proofs of these criteria would have been

simplified had we been able to call on that theory.
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3.1.3 Periodicity

Periodicity is another important communicating class property. In order to describe
this property, we must recall Euclid’s concept of the greatest common divisor gcd(S)
of a non-empty subset S C Z. Namely, we say that d € Z™ is a common divisor of
S and write d|S if 5 € Z for every s € S. Clearly, if § = {0}, then d|S for every
d € ZT, and so we take ged({0}) = oo. On the other hand, if S # {0}, then no
common divisor of S can be larger than min{|s| : s € S \ {0}}, and so we know that
gcd(S) < oo.

Our interest in this concept comes from the role it plays in the ergodic theory
of Markov chains. Namely, as we will see in Chap. 4, it allows us to distinguish
between the chains for which powers of the transition probability matrix converge
and those for which it is necessary to take averages. More precisely, given a state i,
set

S@)={n=0:(P"),, >0} and d(i)=ged(S()). (3.1.11)

Then d(i) is called the period of the state i, and, i is said to be aperiodic if d(i) = 1.
In Chap. 4, we will see that averaging is required unless i is aperiodic. However, here
we will only take care of a few more mundane matters. In the first place, the period
is a communicating class property:

iej = d@i)=d(j). (3.1.12)

To see this, assume that (P");; > 0 and (P");; > 0, and let d be a common divisor
of S(i). Then for any k € S(j),

(Pm+k+n)ii = (Pm)ij (Pk)jj (Pn)ji >0,

andsom+k+n € S@i).Henced|{m+k+n:k € S(j)}. But,because m+n € S(i),
and therefore d|(m + n), this is possible only if d divides S(j), and so we now know
that d(i) < d(j). After reversing the roles of i and j, one sees that d(j) < d(i),
which means that d (i) must equal d(j).

We next need the following elementary fact from number theory.

Theorem 3.1.13 Given § # S C Z with S # {0},
ged(S) <min{|s|:s € S\ {0}}

and equality holds if and only if {gcd(S), —gcd(S)} N S # @. More generally,
there always exists an M € 7T, {am}llw C Z, and {sm}llw C § such that ged(S) =

levl amsm- Finally, if S C N and (s, s2) € S2 = 51 + 50 € S, then there exists an
M e 7% such that

{mgcd(S) im zM} = {s eS:s ZMgcd(S)}.
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Proof The first assertion needs no comment. To prove the second assertion, let S be
the smallest subset of Z which contains S and has the property that (s1, s2) € 2 —
s1Esy € S. Asis easy to check, S coincides with the subset of Z whose elements can
be expressed in the form Z{W ay s, for some M > 1, {am}M C Z, and {sm}1 cS.
In particular, thls means that gcd(S )|S and so gcd(S ) < gcd(S ). On the other hand,
because S C S, gcd(S)|S Hence, gcd(S) gcd(S) and so, by the first part, we will
be done once we show that gcd(S) € §. To this end, let m = mm{s eZt:se S} We
already know that gcd(S) < m. Thus, to prove that gcd(S) € S, we need only check
that m|S. But, by the Euclidean algorithm, for any s € S, we can write s = am + r
for some (@, r) € Z2 with0 <r < m. In particular, » =5 —am € S. Hence, if r #0,
then r would contradict the condition that m is the smallest positive element of S.

To prove the final assertion, first note that it suffices to prove that there is an
M e Z% such that {m gcd(S) :m > M} C S. To this end, begin by checking that,
under the stated hypothesis, S = {s2 — 51 :51,8 € SU{0}}. Thus gcd(S) = 52 — 57
for some s; € S U {0} and s, € S\ {0}. If 51 = 0, then m gcd(S) = ms, € S for all
m € 7T, and so we can take M = 1. If 51 # 0, choose a € Z™ so that s; = a gcd(S).
Then, for any (m, r) € N2 with0 <r <a,

(a2 + ma +r)gcd(S) =msi+rso+(@a@a—r)si=@m+a—r)sy+rsy €S.

Hence, after another application of the Euclidean algorithm, we see that we can take
M =a’. O

As an immediate consequence of Theorem 3.1.13, we see that
d(i)<oo = (P"®). >0 forallsufficiently largen € Z*.  (3.1.14)
In particular,!
i is aperiodic <= (P")l.l. >0 for all sufficiently large n € Z*.  (3.1.15)

We close this subsection with an application of these considerations to stationary
probabilities of transition probabilities on a finite state space.

Corollary 3.1.16 Suppose that P is an transition probability matrix on a finite
state space S. If there is an aperiodic state jy € S such that i— jg for every i €S,
then there exists an M € Z% and an € > 0 such that (PM),'j0 >eforalli €S. In
particular, if & is the unique stationary probability guaranteed by Theorem 2.2.1,
then

”;LP” - ||V <21 - E)L%J for all n € Z7 and initial distributions .

IThe “if” part of the following statement depends on the existence of infinitely many prime num-
bers.
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Proof Because jop is aperiodic, we know that there is an Mp € N such that
(P")jyjo > O for all n > My. Further, because i— jo, there exists an m(i) € VA
such that (P"®);; > 0. Hence, (P");j, > O for all n > m(i) + Mo. Finally, take
M = My + max;csm(i), € = minieS(PM)ijU, and apply (2.2.3). O

3.2 Computation of Stationary Probabilities

It is important to know how to compute stationary probabilities, and in this section
we will develop a procedure that works when the state space is finite.

3.2.1 Preliminary Results

Whether or not the state space is finite, a stationary probability for a transition prob-
ability P is a probability vector & that satisfies 7P = . Equivalently, (I —P) =0
and w1 = 1. If one ignores the necessity of finding a solution with non-negative
components, when the state space S is finite general principles of linear algebra
guarantee that one can always solve these equations. Indeed, (I — P)1 = 0 and there-
fore?

det(I—P) ") =det((I—P)) =0,

which means that there must exist a row vector v such that v(I—P) = 0 with vl = 1.
For us, a better way to see that solutions exist is the following. Clearly, the set of
probability vectors on S is a compact subset of RV, where N is the cardinality
of S. Thus, for any probability vector p, the sequence {Ay : M > 1} admits a
subsequence {ftAy, : k > 1} that converges to a probability vector . Moreover,

uPMe —
Hence & is a stationary probability for P.
The following result, which contains a partial converse of Theorem 2.2.5, ex-
ploits the preceding construction.

Theorem 3.2.1 Suppose that P is a transition probability on a finite state space
S. Then there is at least one recurrent i € S. In addition, if j is transient, then
Jj — i for some recurrent i. Finally, suppose that P admits precisely one stationary
probability . Then all recurrent states communicate with one another and there is

21f A is a matrix, then AT is its transpose. That is, A; =Aj;. Thus, if v is a row vector, then vlis

a column vector and VA = ATv .
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an M € Z7 and an € > 0 such that (Am)ji > € forall j €S and all recurrenti € S.

Thus, when S is finite, P admits precisely one stationary measure if and only if Ay
satisfies Doeblin’s condition for some M > 1.

Proof Begin by noting that, no matter where it starts, the chain can spend only
a finite amount of time in the set 7 of transient states. Indeed, if i € S and
Jj €T, then (cf. (2.3.7)) E[T;|Xo = i] < oo and therefore, since 7 is finite,
E[Z?,o:o 17(X,) | Xo =1i] < co. Hence, there must exist at least one recurrent state,
and the chain must visit one of them no matter where it starts. In particular, if j is
transient, then there is a recurrent i for which j — i.

Now assume that there is only one stationary probability = for P. We will
show first that all the recurrent states must communicate with one another. To see
this, suppose that i; and iy were recurrent states that do not communicate. Then
[i1] N [i2] = @ and the restrictions of P to [i1] and [i»] are transition probabilities.
Hence, by the preceding, we would be able to construct stationary probabilities
and m, for these restrictions. After extending 7y to S by taking it to be 0 off of [if],
we would then have two unequal stationary probabilities for P. Thus, i|<>i>.

We now know that if i is a recurrent state, then j—i for all j. In other words,
for each j € S and recurrent i, (P") j; > 0 for some 7. Thus, because S is finite, this
completes the proof that M and € exist. As for the concluding assertion, it follows
immediately from the result just proved combined with Theorem 2.2.5. 0

3.2.2 Computations via Linear Algebra

Our next goal is to find a formula for the stationary probability when there is only
one, and the procedure that we will give uses elementary linear algebra. Recall that
if A is a square matrix indexed by an N element set S, then its eigenvalues are the
roots of its characteristic polynomial A € C —— det(Al — A) € C. An eigenvalue
that is different from all the other is said to be a simple eigenvalue.

Given an N x N-matrix A, let cof(A) denote its cofactor matrix. That is, cof(A);;
is (—1)*/ times the determinant of the (N — 1) x (N — 1)-matrix obtained by
removing the ith column and the jth row from A. By Cramer’s formula, Acof(A) =
cof(A)A equals det(A) times the identity matrix. From this it is easy to see that
cof(A) j; is equal to the derivative of det(A) with respect to its (i, j)th entry (A);;.

Lemma 3.2.2 If each row of A sums to 0, then cof(A);j = cof(A);; for all
1<i,j<Nand

N
Z cof(A);; = Iy,
i=1

where ITa equals the product of the non-zero eigenvalues of A if 0 is a simple
eigenvalue of A and is equal to O otherwise.
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Proof Given ij # i> and j, let B be the matrix whose (j, i1)st entry is 1, whose
(j,i2)th entry is —1, and whose other entries are all 0. Then, for each ¢ € R, all the
rows of A + tB sum to 0 and therefore det(A + tB) = 0. Hence

d
COf(A)izj — COf(A)ilj = E det(A + rB) =0.
t=0

To prove the second assertion, consider the polynomial A~- det(A1+ A). Because
det(A) = 0, this polynomial vanishes at 0. Furthermore, using Cramer’s formula,
it is easy to check that Z,N= 1 cof(A);; is the coefficient of A. At the same time,
det(AI 4+ A) = 1—[]1(\/:1(A + Ar), where Aq, ..., Ay are the eigenvalues of A. Hence,
since 0 is one of these eigenvalues, we can take A1 = 0 and thereby see that

N N
_ det(\I+A)
]—[xk - hn%)T = § cof(A);i.

A—

k=2 i=1 0

Theorem 3.2.3 Assume that each row of A sums to 0 and that 0 is a simple eigen-
value of A. Determine the row vector by

COf(A),'l' ’ 1 < ; < N,
Iy

(m); =

where I1A is the product of the non-zero eigenvalues of A. Then  is the unique row
vector v e CN such that vA =0 and "N, (v); = 1.

Proof Since the null space of AT has the same dimension as that of A and the latter
has dimension 1, we know that there is at most one v. Furthermore, by Lemma 3.2.2,
we know that ZlNzl (m); = 1. Finally, by that same lemma and Cramer’s formula,

N N

Iy Z(n)ia,,- =Zcof(A)jiaij =det(A)=0 forl<j<N. -
i=1 i=1

In what follows, it will be useful to have introduced the following notation. Given

a matrix A indexed by some finite set S and A €S, when A # S let A2 be the matrix
indexed by S \ A obtained by eliminating the rows and columns with indices in A
and when A = S define A2 = 1. In this notation, for each i € S, det(A{i}) equals
cof(A);;, and therefore, if i ¢ A and det(A?) # 0, then Cramer’s formula says that

a1y det(A2vl)
((A) )ii_ det(AA) ’

More generally, if A C A’ and (ij,...,ig) is an ordering of the elements of
A\ A, set A(D) = A, A(k) = AU iy, ..., ix_1} for 2 <k < K, and assume that
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det(AA(k)) # 0 for all 1 <k < K. Then, by induction on K, one sees that

det(A?) & »
MZQ(W‘“‘)) i (3.2.4)

In conjunction with the next lemma, Theorem 3.2.3 will give us a formula for
computing stationary probabilities when there is only one.

Lemma 3.2.5 Let P be a transition probability on a finite state space S. Then
all the eigenvalues of P lie inside the closed unit disk D in C centered at 0. Also,
det((I — P){}y > 0 for all i € S. Finally, there is only one stationary probability T
for P if and only if O is a simple eigenvalue for I — P, in which case (x); > 0 if and
only if i is recurrent.

Proof Let N be the cardinality of S.

Suppose that A is an eigenvalue of P. Then there is a non-zero v € CV satisfying
IVllu =1 and Pv = Av. Hence 1 > |Pv||y > |A].

Knowing that the eigenvalues of P lie in D, we know that oI — P is invert-
ible for all & > 1. Furthermore, for any « > 1 and v, the series anozo a m-lpmy
converges in uniform norm to a limit v, which satisfies («I — P)v, = v. Hence,
V¢ = (eI — P)~lv. In particular, this means that

[e.¢]

(eXI-—P)7). Z “m=l(P™), >0 foralla >1landi€S.

In addition, because all the real eigenvalues of I — P are non-negative and the
ones with non-zero imaginary parts must come in conjugate pairs, we have that
det(oI — P) > 0, and therefore (3.2.4) now implies that

det((@I —P)!) = ((@I —P)!) det(@I —P) >0 foralla > I andi €.

Hence, after letting o N\ 1, we conclude that det((I — P)ihy > 0.

If 0 is a simple eigenvalue of I — P, then the null space of I — P and, therefore of
(I—P)T, is one dimensional. Hence, there can be only one stationary probability.

Now assume that there is only one stationary probability . If O were not a sim-
ple eigenvalue of I — P, then there would exist a non-zero column vector v € RS
and an 1 <n < N such that zv =0, (I — P)" 1y #0,and I - P)'v=0. If
n =1, then v= Ayv for all M > 1, and so, by Theorems 3.2.1 and 2.2.5, we
would get the contradiction v = vl = 0. Next suppose that n > 2. For o > 1,
construct v, as above. Then ||[vylly < (@ — 1)71||v||,. At the same time, if w =
22;10(—1)’”(0( — )™ — P)™v, then, because I —P)"v=0, («I — P)w =1v, and
therefore v, = w. But this means that
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n—1
PG VTS VI B SEa

m=0

@— D7 vl >

u

n—2
>@—D7"|A=P)" v =Y @-D Ja-p"y|,

m=0

for all @ > 1. Hence, after multiplying both sides by (o — 1)" and letting o \( 1, we
would get the contradiction that (I — P v =0.

Turning to the final assertion, Theorem 3.1.5 says that (xr); = 0 if i is transient.
Hence, all that remains is to check that (xr); > 0 if i is recurrent. But we know that
(); > 0 for some recurrent i, and, by Theorem 3.2.1, we know that all recurrent
states communicate with one another. Hence, the desired conclusion follows from
Theorem 3.1.5. O

Theorem 3.2.6 Let P be a transition probability on a finite state space S, and
assume that «t is the one and only stationary probability for P. Then 0 is a simple
eigenvalue of 1 — P and, if ITy_p is the product of the other eigenvalues of 1 — P,
then ITy_p > 0 and

det(I—P)1)  det(d—P))

T T sde@ - B

foralli€S. (3.2.7)

In particular, i is transient if and only if det((I — P)YY) = 0 and i is recurrent if and
only if det((I — P){}) > 0.

Proof To prove (3.2.7), take A =1 — P. Clearly the rows of A each sum to 0, and,
by Lemma 3.2.5, 0 is a simple eigenvalue of A. In addition, again by Lemma 3.2.5,
the i in (3.2.7) is a probability vector and, by Theorem 3.2.3, it is the one and only
stationary probability for P. 0

The following theorem can sometimes simplify calculations.

Corollary 3.2.8 Let P and n be as in Theorem 3.2.6, and denote by T the set of
transient states. Then (n); =0 fori € T and

det(@—P)7Y0)  det((1 — )7Vl
Iq_py7 ZjeS det((I — P)TYl})

(m); = forieS\T.

Proof First notice that P7 is a transition probability on S\ 7 and that T =aTpT
if 77 is the restriction of 7 to S \ 7. Conversely, observe that if [LT is a stationary
probability for P7 and I is the extention of uT that is O on 7, then g is a station-
ary probability for P. Hence, 77 is the unique stationary probability for P7 and
therefore, by (3.2.7) applied to P, the assertion is proved. g
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Another interesting application of the ideas here is contained in the following
theorem.

Theorem 3.2.9 Let P and S be as in Theorem 3.2.6. If i is recurrentandi € A C'S,
then (I — P)2 is invertible and

¢4-1

(a=py*)7™), = E[ D LX)
m=0

Xo= j} for j,keS\ A, (3.2.10)

where ¢4 =inf{n > 0: X,, € A} is the time of the first visit by {X,, :n >0} to A. In
particular,

¢4l _pyAUL})
det((1— P
E[Z 1{j}(xm)’Xo=j}=% forjeS\aA. (3211

m=0
(See Exercise 4.2.8 for an interesting application of (3.2.11).)
Proof First observe that

P(szjmforOfmfn&CA>n|Xo:j0)

=1,¢G0) [ [ 1acUm) @),

m=1

and therefore that

P(X,=k& ¢4 >n|Xo=j)=(P)], forjkeS\A.
From this it follows that
nALA—1 n—1
E[ 3 1K) ’ Xo = J} =3 (PY)", foralln>1. (%)
m=0 m=0

Hence, since E[p; | Xo = j1 > E[¢? | Xo = j] and, by Theorems 2.3.8 and 3.2.1, we
know that E[p; | X¢ = j] < 0o, we have that

2 i(PA)jk = ZE[;XE 1 (X) | Xo = j:| =E[¢4 | Xo=j] <0

keS m=0 keS m=0

for all j € S. In particular, if v e RS\4, then 3"°°_ (P*)"v converges to a w € RS,
and it is easy to see that (I — P)?w = v. This proves that (I — P)4 is invertible and,
after letting n — oo in (x), that (3.2.10) holds. Furthermore, (3.2.11) is just (3.2.10)
followed by an application of (3.2.4). g
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3.3 Wilson’s Algorithm and Kirchhoff’s Formula

A graph I is an ordered pair (V, £), where V is a finite set and £ is a collection
of unordered pairs of elements from V. An element of V is called a vertex and
an element of £ is called an edge. Without further notice, we will be considering
graphs in which no vertex has an edge connecting it to itself and no pair of vertices
has more than one edge connecting them. When an edge exists between vertices v
and w, we will write v ~ w.

A directed path is an ordered n-tuple (vy, ..., v,) € V" such that v,, ~ v,,—; for
each 2 <m <n, and a graph is said to be connected if every pair of distinct vertices
has a directed path connecting them. A directed path (v, ..., v,) is said to be a loop
if v1 = vy, and a graph is called a tree if it is connected and no directed path in it is
a loop. Equivalently, a graph is a tree if every pair of distinct vertices has precisely
one directed path running from one to the other.

Given a graph I' = (V, £), a subgraph is a graph I’ = (V’,£’), where V' C V
and &’ is a subset of {{v,w} € & : v, w € V’'}. Finally, given a connected graph,
a spanning tree is a subgraph that is a tree in which all the vertices of the graph
are present. A challenging combinatorial problem is that of determining how many
spanning trees a graph has. When a graph with N elements is complete, in the sense
that there is an edge between every pair of distinct vertices, G. Cayley showed that
there are NV=2 spanning trees, although the problem had been solved in the general
case somewhat earlier by G. Kirchhoff.

A related problem is that of finding an algorithm for constructing the uniform
measure on the set of all spanning trees. Such an algorithm based on Markov chains
was discovered by D. Wilson. In this section, I will present Wilson’s algorithm and
from it derive Cayley’s and Kirchhoff’s results.

3.3.1 Spanning Trees and Wilson Runs

In order to explain Wilson’s algorithm, I must first give a method for labeling the
spanning tree in terms of what I will call Wilson runs.
A Wilson run is an L-tuple (Py, ..., Pr) where:

(1) foreach 1 <€ <L, Pp = (wi,...,Wk,,¢) is loop free (i.e., wk ¢ # wy ¢ if
k # k') directed path of length K, > 2,

Q) V={wre:1<L=<L&1=<k=<Ky}

(3) if2<¢ <L, then

{wie: 1 <k<Ke}N{wgj:1<j<L&1<k<K;}={wg, e}

Each Wilson run determines a unique spanning tree. Namely, the spanning tree
whose edges are {{wg ¢, wit+1,¢}: 1 <€ <L &1 <k <Ky}

Although a Wilson run determines a unique spanning tree, there are many Wil-
son runs that determine the same spanning tree. For example, if I" is a com-
plete graph with three vertices vy, v2,v3 and T is the spanning tree with edges
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{{v1, v2}, {v2, v3}}, then both (vy, va, v3) and ((vy, v2), (v3,v2)) are Wilson runs
that determine 7. Nonetheless, one can make the correspondence one-to-one by
specifying an ordering (vy, ..., vy) of the vertices in V and insisting that the initial
segment in the Wilson run start at v and end at v, and that later segments always
start at the first v, that is not in any of the earlier segments. To be precise, given a
spanning tree T, take P; to be the directed path in 7 that begins at vy and ends at v;.
Because T is a tree, there is only one such path. If all the vertices in V appear in Py,
stop. Otherwise, take P to be the directed path in T that starts at the first v, not in
P; and ends when it first hits P;. Again, because T is a tree, P» is uniquely deter-
mined. More generally, if one has constructed (Py, ..., Py) and there is a vertex that
is not in’ Uﬁ:l Pj, take Pyy1 to be the unique directed path in T that connects the

first v, that is not in U4]§:1 Pj to Uﬁ-:l P;. After L < N — 1 steps, one will have
produced a Wilson run (Py, ..., Pr) that determines 7', and this Wilson run will be
the only one that respects the ordering (vy, ..., vy).

Finally, I must describe the procedure that will be used to erase loops from a
directed path. For this purpose, suppose that J > 2 and that (X, ..., Xy) is a di-
rected path in the graph with the property that X; ¢ {Xo, ..., X;_1}. We will say
that (wy, ..., wg) is the loop erasure of (X, ..., X ) if it is obtained by sequen-
tially erasing the loops from (Xi,..., X ). To be precise, w; = Xo, wg = X,
and, for 2 <k < K, wy = Xy_,41, where 1 < --- < £g_; are determined by
£y =max{j >0:X; =wi}and, for 2 <k < K, {; =max{j > {;_1 : X; = wi}.
Clearly, (w1, ..., wg) is a loop free directed path.

3.3.2 Wilson’s Algorithm

Let I' = (V,€&) be a connected graph with N > 2 vertices. For each v € V, the
degree of v is the number d, of w € V such that {v, w} € £. Because I" is con-
nected, d, > 1 for all v € V. Next, let A be the adjacency matrix. That is, Ay, = 1
if {v, w} € £ and A,,, = 0 otherwise. Because of the running assumptions that I
made about our graphs, the diagonal entries of A are 0 and ), ., Ay =dy =

> Auwy for each v € V. Further, because I” is connected, Z,I;,:O(A”)vw > 1 for all
(v, w) € V2.

Now let D be the diagonal matrix Dy, = 6y,wdy, and set P = D! A. Then P is
a transition probability, and the paths {X,, : n > 0} followed by a Markov process
with transition }])robability P will have the property that X, ~ X,,_; for all n > 1.
In addition, Zn:O(PH)vw > ¢ for all (v, w) € V2 and some € > 0. Hence, by The-
orem 2.2.5, there is precisely one stationary probability & for P, (i), > € for all v,
and therefore every v is recurrent.

Wilson’s algorithm is the following. Choose and fix an ordering (vy, ..., vy) of
the vertices, and start the Markov process {X,, : n > 0} with transition probability P

3 Although the Py’s are tuples and not sets, the following union is the set consisting of the entries
of the tuples over which it is taken.
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at v1. Set Aq(w) = {vz} and, assuming that (cf. Theorem 3.2.9) ;‘A' (w) < 00, and
take P;(w) to be the loop erasure of (Xo(w),..., X ¢4 (w)). If Pj(w) contains all

the vertices in V, the algorithm terminates at time ¢! (). Otherwise, take A (w) =
Pi(w), start the Markov chain at the first v,, that is not in A;(w), and, assum-
ing that £42(w) < 0o, take P»(w) to be the loop erasure of (Xo(w), ..., Xeay (w)).

More generally, assuming that 4t~ (w) < oo and that Ay (w) = U‘;;% Pij(w) #V,
one starts the chain at the first v, ¢ A;(w) and takes Py(w) to be the loop erasure
of (Xo(w), ..., X;_AZ (w)). Assuming that £4¢ < oo for all £, one continues in this
way until one generates a Wilson run (P (w), ..., Pr(w)) that respects the ordering
(v1,...,vN). Of course, one has to worry about the fact that one or more of the
¢4¢’s may be infinite. However, by Theorem 2.3.8, with probability 1, none of them
will be. Thus, with probability 1, Wilson’s algorithm will generate a Wilson run that
respects the ordering (v1, ..., vyN).

The problem now is to compute the probability P(7T") that Wilson’s algorithm
generates the Wilson run corresponding to a specific spanning tree 7. To solve this
problem, for a given # ## A C V and a loop free directed path P = (wy, ..., wg) €
(V\ )K= x A, let PA(P) be the probability that, when Markov chain is started
at wy, ;A < oo and the loop erasure of (Xo, ..., X;A) is P. If the Wilson run deter-
mining T is (P, ..., Pr), then

L
P(T) =] [P (P, (33.1)

=1

where A; = {vp} and Ay = Uf;ll Pj for 2 < £ < L. Thus, what we need to learn

is how to compute P4 (P), and for this purpose I will use a strategy that was intro-
duced by Greg Lawler.

Lemma 3.3.2 Let # # A C V and a loop free directed path

P=(wi,...,wg)e (V\ K1 xA

be given. Set A(1) = Aand A(k) = AU{wy,...,wi—1}for2 <k < K. Then
K-1 At)y—1 AUP
Ay (A=P)* )"y,  det((D — A7)
PAP) = L[l a = DA (3.3.3)

Proof Let B ={w: % (w) < 00 & P(w) = P}, and, for
m=(my,...,mg—_1) ENK_I,

let B™ be the set of w € B such that, for each 1 < k < K, precisely my loops are
erased at step k in the passage from (Xo(®), ..., X a(,)(w)) to P. Clearly

P(B|Xo=w)= Y P(B™|Xo=w).

meNK-1
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To compute P(B™ | X¢ = wy), let o1 (w) be the time of the (m| + 1)th visit to w
and {1 (w) the time of the first visit to A(1) by the path {X,,(w) : n > 0}. Proceeding
by induction, for 2 < k < K, take oy (w) = & (w) = 00 if op—1(w) > &r—1(w) and
otherwise let oy (w) be the time of the (my + 1)th visit to wi and ¢ (w) the time of
the first visit to A(k) by {X,,(®) : n > ox—1(®)}. Then
Bmz{;“A <00} N{ox <&k <00 & Xg 41 =wiy1 for 1 <k < K}.

We will now use an induction procedure to compute P(B™ | Xg = wy). For 1 <
k< K, set

B = {;A < oo} N{oj < <00& Xo; 11 =wjy for 1 < j <k}.
Obviously, B™ = B _,. By the Markov property,
BB | Xo=w)

o
ZZP(UI =n< {A(l) & Xp+1 =w2|X0=w1)

Z Plou =n <40 [ Xo=w) _ Plou” <4V [ Xo=wi)
dy, dy,

where, for any m e Nand v e V, p, m)(a)) is the time of the mth return to v by
{X,(®) :n > 0}. Similarly, for 2 <k < K,

P(B | Xo=wy)
=P(B{ N {ok < &k & Xop41 = w1} | Xo = wi)

P — r AR | X, =
_ ]P)(B,lcn_l) (pwk < {d | Xo=wg) )
wi

;-()1

Since p™ < A0 —s Yoo lw(Xy) >m,

Ak g
ZP (’”")<§A(k)|X()—wk |: Z 1 wk:|,

my=0 n=0

which, by Theorem 3.2.9, is equal to ((I — P)2®)~1),, .., and so

Y B 21—‘[ (A =Py 2 D) Do

w
meNK-1 k
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which is the first equality in (3.3.3). To prove the second one, note that, because
D-A=Dd-P),

_ p\Ak)—1
(((I P)d ) )wkwk :((('D—A)A(k))_l)
W

wirwy’
and apply (3.2.4). O

By combining this lemma with (3.3.1), we arrive at the following statement of
Wilson’s theorem.

Theorem 3.3.4 (Wilson) For any spanning tree T and any vertex v € V,

1

P(T) = &et(D = A

In particular, P(T) is the same for all spanning trees T .
Proof Choose an ordering (v, ..., vy) with vy = v, let (Py, ..., Pr) be the Wil-

son run determined by T that respects this ordering, define A, as in (3.3.1) for
1<¢<L,andset Apy+; = V. Then, by Lemma 3.3.2 and (3.3.1),

L
_ det((D — A)Ae+1) 3 1
P(T)_,E[l det((D — A)2¢) — det((D — A’ -

3.3.3 Kirchhoff’s Matrix Tree Theorem

Let everything be as in the preceding subsection.

Obviously each row and column of D — A sums to 0. In addition, because 0 is a
simple eigenvalue for I — P and therefore for D — A, Theorem 3.2.3 applies. Further,
because the columns of D — A sum to 0, N 11 is a left eigenvector, and therefore
Theorem 3.2.3 says that

Ilp_
det((D — AV = =24,
N
Hence, by Theorem 3.3.4,

1 N
P = = f ing tree T 33.5
) det(D — AW  Hp_4 or any spanning tree ( )

Since, with probability 1, Wilson’s algorithm produces a spanning tree, it follows
that, forallv e V,

IIp_a

praas (3.3.6)

the number of spanning trees = det((D — A)!"}) =
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which is one statement of Kirchhoff’s renowned matrix tree theorem.

To derive Cayley’s formula from (3.3.6), assume that the graph is complete, and
let (v1,...,vyN) be an ordering of its vertices. Then (D — A){”N} is equal to the
(N —1) x (N — 1)-matrix

N—-1 —1 -1 ... —1 —1
-1 N—-1 -1 ... -1 -1
-1 -1 —1 N—-1 —1
—1 —1 —1 —1 N -1

By subtracting the last column from each of the columns 2 through N — 2, one sees
that the determinant of (D — A){"¥} is the same as that of

N-1 0 0 0 -1
-1 N 0 0 -1
-1 0 0 N -1
-1 —-N -—N —-N N-1

and by adding the sum of the columns 1 through N — 2 times (N — 1)~! to the last
column, one sees that this has the same determinant as

N-1 0 0 .. 0 0
-1 N 0 0 0
-1 0 0 N 0

N
-1 —-N -N -N

Hence there are N"V=2 spanning trees in a complete graph with N vertices.

3.4 Exercises

Exercise 3.4.1 1In Sect. 1.2.4 we worked quite hard to prove that the nearest neigh-
bor, symmetric random walk on Z? is transient, and one might hope that the criteria
provided in Sect. 3.1.2 would allow us to avoid working so hard. However, even if
one knows which function u ought to be plugged into Theorem 3.1.6 or 3.1.8, the
computation to show that it works is rather delicate.

Let P be the transition probability for the simple, symmetric random walk in Z>.
That is,

Loif 33 i — @il =1

P =
(Pke 0 otherwise.
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Show that if o > 1 is sufficiently large and

1
2

3 _
u(k) = <a2 + Z(k)?) fork € Z3,
i=1

then (Pu)k < u(k) < u(0) when u is the column vector determined by the func-
tion u. By Theorem 3.1.8, this proves that 0 is transient.
What follows are some hints.

(a) Letk € Z3 be given, and set

3
Kk):
M=1+a>+) (k) and x,-=(M)’ for 1 <i <3.

i=1

Show that (Pu)kx < u(K) if and only if

(1 1)—7>1 3 (1 42x)2 + (1 —2x7)2
M) T 3= 2(1 — 4x2)? '

1

(b) Show that (1 — )72 > 1 + 5b- and that

1 Y 2
(1+§)2;‘(1 €)2§1_% for [£] < 1,

and conclude that (Pu)k < u(Kk) if

where |x| =,/ Z? xl.2 is the Euclidean length of x = (x1, x3, x3).
(c) Show that there is a constant C < oo such that, as long as o > 1,

3 2
1 1 2|x
) 7151+'—|+C|x|4,
35 a—4axd): 3

and put this together with the preceding to conclude that we can take any o > 1
with &% + 1 > 2C.

An analogous computation shows that, for each d > 3 and all sufficiently large

a > 0, the function (@2 + Z‘ll(k)l.z)’d%2 can be used to prove that the nearest
neighbor, symmetric random walk is transient in Z¢. The reason why one does
not get a contradiction when d = 2 and the walk is recurrent is that the non-
constant, non-negative functions which satisfies Pu < u when d = 2 are of the form
log(ot2 + (k)% + (k)%) and therefore do not achieve their maximum value at 0.
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Exercise 3.4.2 Let P = ((p; j))1<i,j<3 be a transition probability on {1, 2, 3}, and
set

D@, j. k) = pji(l = px) + Pjk Pii-
Show that
det(@-P'") = D(1,2,3), det(@I-P)?) =D(2,3,1),
and det((I-P)*)=D3,1,2),
and conclude that P has a unique stationary distribution r if and only if
n=D(,2,3)+D2,3,1)+ D@3,1,2) >0,
in which case,

D(1,2,3) _ D@23,

T =—, ()2

¢ D@3, 1,2)
an T = "
7 3

7 ’ I7

Exercise 3.4.3 Given a transition probability P on a finite state space S, show that,
foreach A CS,

0 < det((I—P)?) < det(I—P)*"1")) foralli €S\ A.
Conclude that if A € A’ CS, then
0 < det((I — P)4) < det((T — P)2).

Hint: Show that for each € > 0 there is a P¢ that satisfies Doeblin’s condition and
whose entries differ from those of P by less that €. In this way, reduce the problem
to transition probabilities that satisfies Doeblin’s condition.

Exercise 3.4.4 Let P the transition probability introduced in Sect. 3.2.2, and show
that the unique stationary probability & for P is given by (), = %“, where D =

ZweV dw'



Chapter 4
More About the Ergodic Properties of Markov
Chains

In Chap. 2 all of our considerations centered around one form or another of the
Doeblin condition which says that there is a state which can be reached from any
other state at a uniformly fast rate. Although there are lots of chains on an infinite
state space which satisfy his condition, most do not. In fact, many chains on an infi-
nite state space will not even admit a stationary probability distribution because the
availability of infinitely many states means that there is enough room for the chain
to “get lost and disappear.” There are two ways in which this can happen. Namely,
the chain can disappear because, like the a nearest neighbor, non-symmetric random
walk in Z (cf. (1.1.13)) or even the symmetric one in 73 (cf. Sect. 1.2.4), it may have
no recurrent states and, as a consequence, will spend a finite amount of time in any
given state. A more subtle way for the chain to disappear is for it to be recurrent
but not sufficiently recurrent for there to exist a stationary distribution. Such an ex-
ample is the symmetric, nearest neighbor random walk in Z which is recurrent, but
just barely so. In particular, although this random walk returns infinitely often to
the place where is begins, it does so at too sparse a set of times. More precisely,
by (1.2.7) and (1.2.13), if P is the transition probability matrix for the symmetric,
nearest neighbor random walk on Z, then

_1
(Pz")l.j < (P"),, =P(X2, =0) < A()n"2 —> 0,
and so, if u were a probability vector which was stationary for P, then, by
Lebesgue’s dominated convergence theorem, Theorem 7.1.11, we would have the
contradiction

w); :nli)rr;oZ(ﬂ)i(Pzn)ij =0 forall jeZ.
i€z

In this chapter we will see that ergodic properties can exist in the absence of
Doeblin’s condition. However, as we will see, what survives does so in a weaker
form. See part (c) of Exercise 4.2.5 for a comparison of the results here with the
earlier ones.

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 73
DOI 10.1007/978-3-642-40523-5_4, © Springer-Verlag Berlin Heidelberg 2014
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4.1 Ergodic Theory Without Doeblin

In this section we will see to what extent the results obtained in Chap. 2 for Markov
chains which satisfy Doeblin’s condition can be reproduced without Doeblin’s con-
dition. The progression which we will adopt here runs in the opposite direction to
that in Chap. 2. That is, here we will start with the most general but weakest form
of the result and afterwards will see what can be done to refine it.

4.1.1 Convergence of Matrices

Because we will be looking at power series involving matrices that may have in-
finitely many entries, it will be important for us to be precise about what is the class
of matrices with which we are dealing and in what sense our series are converging.
For our purposes, the most natural class will be of matrices M for which

M}y, = sup ) "|(M);] 4.1.1)
ieS jes

is finite, and the set of all such matrices will be denoted by M, v(S). An easy calcu-
lation shows that M, v(S) is a vector space over R and that || - ||y.v is @ good norm
on My y(S). That is,

IM[ly.y =0 ifandonlyif M=0,
loM|luy = |a|[[M]ly,y foraeR,

and

MM, < My + M

u,v —
Slightly less obvious is the fact that
MM’ exists and

(M,M) € Myv(S)*? = 4.1.2)
[, | < M [V

uv — u,v’

To see this, observe first that, since
0l |9), | = (I ) s, | <0
k k

the sum in

(MM/)ij = Z(M)ik (M/)kj

k



4.1 Ergodic Theory Without Doeblin 75

is absolutely convergent. In addition, for each i,

DIV =300 T [(M)

= Sl (S0, ) = (Sl ),

and so the inequality in (4.1.2) follows.
We will show next that the metric that || - ||,y determines on My (S) is complete.
In order to do this, it will be useful to know that if {M,,}5° € My v(S), then

(M);j = Tim (M,);j for each (i, /)

= ”M”u,vf h_m ”Mn”uv (4.1.3)

n—oo

By Fatou’s lemma, Theorem 7.1.10,

> M| < lim Y [(M,);;|  foreachi €S,
jes n—00 JjEeS
and so (4.1.3) is proved.

Knowing (4.1.3), the proof of completeness goes as follows. Assume that
M, }° S My y(S) is || - [lu,v-Cauchy convergent:

llm Sup ”Mn - Mm”u,V = 0'

m—00 y<;m

Obviously, for each (i, j) € S2, (M) }80 is Cauchy convergent as a sequence in
R. Hence, there is a matrix M such that, for each (i, j), M);; = lim,, 0o (M,);;.
Furthermore, by (4.1.3),

M —M;lluy < lim M, — My |lu,y < sup M, — My |luy.

n—o0 n>m

Hence, |[M — M, |lu.v — 0.

4.1.2 Abel Convergence

As I said in the introduction, we will begin with the weakest form of the conver-
gence results at which we are aiming. That is, rather than attempting to prove the
convergence of (P");; or even the Césaro means % Z:ln_:lo (P™);j as n — oo, we will
begin by studying the Abel sums (1 —s5) Y > 5" (P™);; ass 7 1.
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I will say that a bounded sequence {x,,}° C R is Abel convergent to x if

hm(l —S)ZS Xp = X.

n=1

It should be clear that Abel convergence is weaker than (i.e., is implied by) ordinary
c:onvelrgence.l Indeed, if x, —> x, then, since (1 — s) 280 s" =1, forany N:

x—( —S)ZS”)C,, =(1-y) Zs”(x —Xn)
n=0 n=0

o
<=5 s"Ix —xl
n=0

<N —s)sup|x —x,|+ sup |x — xp].
neN n>N

Hence,

hm < hm sup |[x —x,|=0

—Xn>N

x—(l—s)Zs Xn

1

if x, — x. On the other hand, although {(—1)"}{° fails to converge to anything,

(1—s)Z n(— 1)”_(1—5) - —0 ass /1.

n=0

That is, Abel convergence does not in general imply ordinary convergence.
With the preceding in mind, we set

R(s)=(1—5) ) s"P" forsel0,1). (4.1.4)
n=0

However, before accepting this definition, it is necessary to check that the above
series converges. To this end, first note that, because P” is a transition probability
matrix for each n > 0, ||P"||,,v = 1. Hence, for 0 <m < n,

n m
a —s)zs‘fp‘Z —Q —S)Zsfpf
=0 =0

and so, by the completeness proved above, the series in (4.1.4) converges with re-
spect to the || - ||y,y-norm.

<(1—s) Z YR, <™

uv l=m+1

n Exercise 4.2.1 below, it is shown that Abel convergence is also weaker than Césaro conver-
gence.
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Our goal here is to prove that

_ | ElpjlXo=jD7! ifi=j
)ij_ ]

= ) T 4.1.5)
P(pj <oo|Xo=1i)mj; ifi# ],

and the key to our doing so lies in the renewal equation

). =S ) (P"™).. forn>1,
( )t] mXZ:I J( )]] (416)

where f(m);j =P(p; =m|Xo=1),
which is an elementary application of (2.1.11):

n
(P"),; =D P(Xu=j&pj=m|Xo=1i)

m=1
n
=2 PXum =j1Xo=)P(pj =m|Xo=1).
m=1
Next, for s € [0, 1), set
o0
f(®)ij= Z s™ f(m)ij =E[s"7| Xo=1i],
m=1

and, starting from (4.1.6), conclude that

(R®),; =0 =5)8;+ (1 =)D s" (Z f(m)i; (P"'”)jj>

n=1 m=1

=1-5)5;+1~—5) Z s™ f(m);; (Z st (P”_’")jj)

m=1 n=m
= (1= )8 + f)i;(R©)) ;-
That is,
(R(s))ij =1 =98+ f() (R(s))jj for s € [0, 1). 4.1.7)
Given (4.1.7), (4.1.5) is easy. Namely,

1—=s
RO =,y
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Hence, if j is transient, and therefore f (D <1,

1
wji=1lm(R()).. =0= ——F—.
i1 = m(RG)) Elp;j|Xo = j]
On the other hand, if j is recurrent, then, since
1 _gm B m—1 .
1—s s /m,
£=0
the monotone convergence theorem says that
1= f(9)j; = 1—sm - ,
= Zl ) S Zlmf(m),-,- =Elp; | Xo= ]
m= m=

as s /' 1. At the same time, when i # j,

(R),; = [)ij(RE)) ;; /Ploj < 00| Xo=i)7;.

4.1.3 Structure of Stationary Distributions

We will say that a probability vector u is P-stationary and will write p € Stat(P) if
= puP. Obviously, if u is stationary, then u = uR(s) for each s € [0, 1). Hence,
by (4.1.5) and Lebesgue’s dominated convergence theorem,

pesa®) = (w;=) WiRE), — Y (Wi, ass /L.

If j is transient, then 7;; = O for all 7 and therefore (p); = 0. If j is recurrent, then
either i is transient, and, by Theorem 3.1.5, (x); = 0, or i is recurrent, in which
case, by Theorem 3.1.2, either 7;; =0 or i <> j and 7;; = 7;;. Hence, in either
case, we have that

u e Stat(P) = (M)jz(Z(M)i>nﬂ. (4.1.8)
i<
‘We show next that
7j;>0 and C=[jl={i:i<]}
(4.1.9)
= %eStatP) when (), =1c(i)m.

To do this, first note that 7r;; > 0 only if j is recurrent. Thus, all i € C are recurrent
and, foreachi € C and 5 € (0, 1), (R(s))jx > 0 <= k € C. In particular, %) =
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lim; 1 (R(s)) j; for all i, and therefore, by Fatou’s lemma,
Z(”C)i = li—mZ(R(s))ji =
i s/
Similarly, for any i,
=Y muP <lim ) (R(5)) ;P = (z),,
keC s/ rec
since

Z(R(S))jk(P)ki _ RO -A=9bji 7ji = (x€), ass /1.

Ky
keC

But if strict inequality were to hold for some i, then, by Fubini’s theorem, Theo-
rem 7.1.15, we would have the contradiction

()= S (S ) = (i) < (),

k k i i k i

Hence, we now know that 7€ = 7 €P. Finally, to prove that z€e Stat(P), we still
have to check that ) ; (®€); = 1. However, we have already checked that x€ =
zCP, and so we know that € = nCR(s). Therefore, since, as we already showed,
Y (m€); <1, Lebesgue’s dominated convergence theorem justifies

0=y = 2 ), (k) — (L), )

i i

which is possible only if 3, (x€); = 1.

Before summarizing the preceding as a theorem, we need to recall that a subset A
of a linear space is said to be a convex set if (1 —60)a+6a’ € Aforalla,a’ € A and
0 € [0, 1] and that b € A is an extreme point of the convex set A if b = (1 —0)a+0a’
for some 0 € (0, 1) and a,a’ € A implies that b = a = a’. In addition, we need
the notion of positive recurrence. Namely, we say that j € S is positive recurrent
if E[p;j|Xo = j] < 0o. Obviously, only recurrent states can be positive recurrent.
On the other hand, (1.1.13) together with (1.1.15) show that there can exist null
recurrent states, those which are recurrent but not positive recurrent.

Theorem 4.1.10 Stat(P) is a convex subset of RS. Moreover, Stat(P) # 0 if and
only if there is at least one positive recurrent state j € S. In fact, for any p € Stat(P),
(4.1.8) holds, and p is an extreme point in Stat(P) if and only if there is a com-
municating class C of positive recurrent states for which (cf. (4.1.9)) p = €. In
particular, (n) j = 0 for any transient state j and, for any recurrent state j, either
(w); is strictly positive or it is 0 simultaneously for all states i s which communicate
with j.
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Proof The only statements not already covered are the characterization of the
extreme points of Stat(P) and the final assertion in the case when j is recur-
rent.

In view of (4.1.8), the final assertion when j is recurrent comes down to showing
that if j is positive recurrent and i<>j, then i is positive recurrent. To this end,
suppose that j is positive recurrent, set C = [j], and let i € C be given. Then
xCP" = x€ for all n > 0, and therefore, by choosing n so that (P");; > 0, we
see that (m€); > (x€);(P");; > 0.

To handle the characterization of extreme points, first suppose that g # m©
for any communicating class C of positive recurrent states. Then, by (4.1.8),
there must exist non-communicating, positive recurrent states j and j’ for which
(n)j >0 < (u);. But, again by (4.1.8), this means that we can write p =
O + (1 — 0)v, where C = [j], 6 = Ziec(ﬂ)i € (0,1), and (v); equals O or
(1—6)"!(n); depending on whether i is or is not in C. Clearly v € Stat(P) and, be-
cause vjr > 0= (nc) sV F €. Hence, [ cannot be extreme. Equivalently, every
extreme u = ¢ for some communicating class C of positive recurrent states.

Conversely, given a communicating class C of positive recurrent states, suppose
that 1€ = (1 — O)p + Ov for some O € (0,1) and pair (g, v) € Stat(P)>. Then
(m); =0 for all i ¢ C, and so, by (4.1.8), we see first that p = 7€ and then, as
a consequence, that v = 7€ as well. O

4.1.4 A Digression About Moments of Return Times>

The last part of Theorem 4.1.10 shows that positive recurrence is a communicating
class property. In particular, if a chain is irreducible, we are justified in saying it is
positive recurrent if any one of its states is. See Exercise 4.2.3 below for a criterion
which guarantees positive recurrence.

I have often wondered whether the fact that positive recurrence is a commu-
nicating class property admits a direct proof, one that does not involve stationary
probabilities. More generally, I wanted to know whether finiteness of other mo-
ments of return times is also a communicating class property. Affirmative answers
to both these questions were given to me by Daniel Jerison, whose ideas provide the
foundation on which everything in this subsection rests. To simplify the notation,
I will use P; and E; here to denote conditional probability and expectation given
Xo=1.

Let i and j be a pair of distinct, recurrent, communicating states, and assume
that E;[p;] < oo for some p € (0, 00). In order to show that Ej[pf] < 00, set Ay =

{pl.(m) <pj < ,ol.(mH)} for m > 1. Then, by part (d) of Exercise 6.6.2 below,

2This section may be safely skipped since the material here is not used elsewhere.
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Ei[p!. An] <277V B [(p; — o))" An] + 207V E; [(0™) Am]

52(1771)*1[.3],[([)1, _ .(m))p’Am]

1
m p
-t {4 -1
£20 8, (560 ) ]
=1

<200, (o5~ "), An] + 40V By [ An)

+ (4(7"’1 _ 1))(1’—1%L Z E][(,Ol(e) _ pi(efl))]’, Am]

2<t<m

By the Markov property,

Ei[(0; = 0™)". Au] =P;(0; > 0" )E:[0] . pj < ] <P;(p; > £ )il
and
Ei[o]. An] =E;[p’, pj > pi |Pi(Am—1) <Pi(An—DE;[p]].
Similarly, for 2 < ¢ <m,
Ei[(0;” = p{"")" . An]
= Ej[(piw) - pi(z_l))p’ Pj = pi(Z)]Pi (Am—e)
=Pi(p0; > o VEilp! 0j > pi]Bj(Am—0) =Eilp!, pj > pi]Pj(Am-1)
=Pj(An-DEi[p]]-
Hence,
E;[of. An] <277V R; (0 > " )Eil o]+ 477 Pi(An-DE; [0 ]
+407D gn = PP (A DEi[p]].
After summing over m € Z*, we see that E j [pf , pj > pi] is dominated by

[e¢]

PR (0 > o) + 4PV — 1PVIR; (A1) Ei [ 0] ]

m=1
. 00
+ 4= ZPj(Am—l)Ej[pip]-
m=1

Obviously Y > | P j(Am—1) = 1. In the proof of Theorem 3.1.2 we showed that

m

a=P;(pj>p) €0, 1) and Pi(p; > p™) =Pi(p; > p)" ="

81

/]
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In addition, for m > 1.
—1 _
P;(p; > p™) =P;(p; > p)Pi(p; > p" V) <™.

Thus, since P;j(A;—1) < Pj(p; > pfmil)), we now know that there is a C < 00
such that

Eilej.pj> pi] = C(Eilp]+Ej[o]])
and therefore that
Ej[oj]= CEi[p]]+ 1+ OF,[p]]
Finally, observe that
Ei[p] = Ei[(pi — p)?, pj < pi ] =E;[p] |Pi(pj < pi),

and, as shown in the proof of Theorem 3.1.2, IP;(p; < p;) € (0, 1). Hence, we have
now shown the Ej[pf] < 0.
4.1.5 A Small Improvement

Returning to our program, the next step will be the replacement of Abel convergence
by Césaro convergence. That is, we will show that (4.1.5) can be replaced by

1 n—1
lim (A,);; =m;;, whereA,=— ZP’”. (4.1.11)
n—o00 n o

As is shown in Exercise 4.2.1, Césaro convergence does not, in general, follow from
Abel convergence. In fact, general results which say when Abel convergence implies
Césaro convergence can be quite delicate and, because the original one was proved
by a man named Tauber, they are known as Tauberian theorems. Fortunately, the
Tauberian theorem required here is quite straight-forward.

A key role in our proof will be played by the following easy estimate:

1nfl
0 =_
an}y C10,11& Ay = -3 ar
0 (4.1.12)

m
= |A,—A,_p|<— forO<m<n.
n

The proof is:

n—1 n—m—1
1 m
An=Aum =0 D ae= e “fi
L=n—m =0
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Lemma 4.1.13 For all (i, j), m,,_)oo(A,,),-j < emnjj. In addition, for any j and
any subsequence {ny : £ >0} C N,

lim (A,)jj=a = lim (A,,)ij =P(pj <oo|Xo=i)a foralli.
{— 00 {— 00

Proof To prove the first part, observe that

1 1\ " a !
(A,,>i,-s;<1_5> ;)(1_2) (¥ )ff5<1_2> <R(1_5>>u’

which, together with (1.2.10) and (4.1.5), shows that lim,,—, 5 (A,);j < em;; < emjj.
To handle the second part, use (4.1.6) to arrive at

n—1
(An)ij = Zl f(m)ij(l - %)(Anm)jj fori # j.
Hence,

n—1
|(Ap)ij —P(p; <n|Xo=i)a| < Z f(m)ij (% + | (An—m) jj —Ol|>

m=1

n—1

<2 ) 2 fm)y + |(An)

m=1

’

where, in the second inequality, I have used (4.1.12) plus anozl f@m);j < 1. Fi-
nally, by Lebesgue’s dominated convergence theorem, Zg_l 7 f(m);j tends to 0 as
n — oo, and therefore, by applying the above with n = n, and letting £ — oo, we
get the desired conclusion. g

We can now complete the proof of (4.1.11). If r;; = 0, then the first part of
Lemma 4.1.13 guarantees that lim,,_, oo (A;);j = 0 = m;; for all i. Thus, assume that
mj; > 0. In this case Theorem 4.1.10 says that j must be positive recurrent and
7C e Stat(P) when C = [j]. In particular, 7j; = Y ;.o ()i (A,);;. At the same
time, if @™ = limy,— o0 (Ay) jj and the subsequence {ng : £ > 0} is chosen so that
(An)jj — a7, then, by the second part of Lemma 4.1.13 and Corollary 3.1.4,

ieC = lim(A,)j=0a".
{—00
Hence, after putting these two remarks together, we arrive at

Tjj ZKIEQOZ(”CL(AW)U =06+Z(nc)i =at.

ieC ieC
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Similarly, if o= = lim,  _ (A;);;, we can show that = = 7;;, and so we now
know that ;; > 0 = lim, . (A;); = 7};, which, after another application of
the second part of Lemma 4.1.13, means that we have proved (4.1.11).

4.1.6 The Mean Ergodic Theorem Again

Just as we were able to use Theorem 2.2.5 in Sect. 2.3.1 to prove Theorem 2.3.4, so
here we can use (4.1.11) to prove the following version of the mean ergodic theorem.

Theorem 4.1.14 Let C a communicating class of positive recurrent states. If
P(XgeC)=1, then

2

. 1 n—1

nll)n;QE[(; Zol{j}(Xm) —JTjj) j| =0.
m=|

(See Exercises 4.2.10 and 4.2.12 below for a more refined statement.)

Proof Since P(X,, € C for all m € N) = 1, without loss in generality we may and

will assume that C is the whole state space. In keeping with this assumption, we

will set & = x€.

Next note that if u; = P(Xo=1), then

n—1 2
1
E[(;nglm(xm) - ﬂjj) ]

n—1 2
= Z“iEK% > 1 (Xm) = ﬂjj) ‘Xo = l},
m=0

ieS

and so it suffices to prove that

2
. 1 & . .
,,IHEOE|:<;ZIU}(X"7)_”/J') ‘X0=1:|=0 for eachi € S.

m=0

Further, because 7;; > 0 for all i € S and

2
1 n—1
]E[(; D1 Xm) — ﬂj/) ‘ Xo= l}
m=0

2
1 1n—l

<— El (=S 10X — 7 )X:,

_mizﬂkk [(nr; (71 (Xm) FT”> 0 k}
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itis enough to prove the result when mr is the initial distribution of the Markov chain.
Hence, from now on, we will be making this assumption along with C = S.

Now let f the column vector whose ith component is 1(;(i) — 7 ;. Then, just as
in the proof of Theorem 2.3.4,

n—1 2 _
2
[( Zl{,}(xm—n,,) ] —ZZ (n — OE[B)x, An—iDx, ]-
k=0

m=0
Since & € Stat(P),
E[(®)x, (An—iDx, | =7 (fAn_iD),

and therefore the preceding becomes

n—1 2
1 2
E[(; D 15X —njj) } = X_:mn(fAmf),

m=0

where (fApf); = ); (Anl);.
Finally, because 7;; = 7; foralli €S, (4.1.11) and Lebesgue’s dominated con-
vergence theorem say that, for each € > 0, there exists an N, € ZF such that

m(fAD] <> @) (An)ij —7j5| <€ foralln> Ne.
i

Hence, we find that

2
_ 1 n—1
¢ o)
m=

Ne
< lim 32m|n(fAmf)|+ hm — Z m<e.
n—>oon m=1 m=N¢+1 O

4.1.7 A Refinement in the Aperiodic Case

Our goal in this subsection is to prove that (cf. (4.1.5))

If j is transient or aperiodic, then lim (P")l.j =m;; forallieS. (4.1.15)
n—oo

Of course, the case when j is transient requires very little effort. Indeed, by (2.3.7),
we have that

oo
j transient = Z(Pn)” <E[Tj|Xo=jl<o0
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and therefore that lim,, , o (P");; = 0. At the same time, because
P(pj =00|Xo=j) >0 when j is transient,

mij < mj;j = 0. Thus, from now on, we will concentrate on the case when j is recur-
rent and aperiodic.
Our first step is the observation that (cf. Sect. 2.3.2)

if j is aperiodic, then there exists an N € 7" such that
4.1.16
max ]P’(p(.m)zn|X0=j)>0 foralln > N. ( )
1<m<n J
To check this, use (3.1.15) to produce an N € Z* such that (P");; > Oforalln > N.
Then, since
n
_ (m) _ .
(P")jj = ZIP’(pj =n |X0_]) forn > 1,
m=1
(4.1.16) is clear.
The second, and key, step is contained in the following lemma.
_th i
lim (P");; and a;L =lim,— oo (P") j;. Then there exist subsequences {n, :£ > 1}

Lemma 4.1.17 Assume that j is aperiodic and recurrent, and set o

—n—>00

and {”Z : € > 1} such that

otjt = lim (P"zt_’)jj forallr > 0.

{—00

Proof Choose a subsequence {ng : £ > 1} so that (P");; —> Ol;'_, and, using
(4.1.16), choose N > 1 so that maxj<m<n ]P)(pgm) =n|Xo=j)>O0foralln>N.

Givenr > N, choose 1 <m <r so that § = IP’(,o](.m) =r|Xo =j) > 0. Now for any
M € 77T, observe that, when n, > M +r, (P"¢);; is equal to

]P(XngZj&p;m)=r|X0=j)+P(XW zj&p](.lﬂ);ér|XO=j)
=8(P" ") A P(Xy, = j &ne— M= " #r| Xo= )
+P(Xp, =j&p;.m) >ng—M|Xo=j).
Furthermore,
IP’(X,”:j&ng—szigm)7ér|X0=j)
ng—M
= Y B(p" =k|Xo=j)(P"), = (1-8) sup (P") .,

k=1 nzM
k#r
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while
P(Xn, = j & p\"™ > ne — M| Xo = j) <P(p\" > ne — M| Xo = j).

(m)

Hence, since j is recurrent and therefore IP’(,o <o00o|Xg=j)=1, we get

at <8 lim (P ). +(1-5 P") ..
af <8 lim ( )+ ( )nssfl( )i

{— 00

after letting £ — oo. Since this is true for all M > 1, it leads to

+ ; - +
of <& lim (P"7") .+ (1 =&,

{— 00

. . . . — + . o — +
which implies lim, ,  (P*7");; > . But obviously limg_, oo (P*™");; < oy,
and so we have shown that lim; oo (P"¢7");; = o;j.' for all » > N. Now choose
L sothatn; > N, take nZ‘ =n¢4+r — N, and conclude that limg%oo(P”Z_’)jj = ozf
for all r > 0.

The construction of {n, : £ > 1} is essentially the same and is left as an exer-
cise. O

Lemma 4.1.18 If j is apertodlc and recurrent, then lim,_, o (P" )jj < mjj. Fur-
thermore, if the subsequences (nt ¢ - €= 1} are the ones described in Lemma 4.1.17,

then limy_, o (P" 3 )ij =aj for any i with i< j.
Proof To prove the second assertion, simply note that, by Lemma 4.1.17 and
Lebesgue’s dominated convergence theorem,

"

(P”z Z]P’(p]_r|X0—t)(P”£ ), — P, <oo|Xo_z)a
r=1

Turning to the first assertion, we again use the result in Lemma 4.1.17 to obtain

+ZP(pJ >r|Xo=j)= lim ZP(p, >r|Xo=j)(P" "),

r=1

Ji

for all N > 1. Thus, if we show that

N
Y Ploj=riXo=p)EP"), <1 forn=Nz1, (*)
r=1

then we will know that
o
aFElpj | Xo=jl=af Y Plpj=r|Xo=j) <1,
r=I1

which is equivalent to the first assertion.
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To prove (x), note that, for any n > 1,

(P");; =D _Ploj =rlXo= NP,

r=1

n
=Y PlpjzriXo=HP""),

r=I1

n
— Y B =411 Xo= NP,

r=1

=Y P(o;=r|Xo=H(P"")

Ji
r=1
n+1
— . — \(prtl-r
Y PBloj =r|Xo=HE")
r=2
and so, since P(p; > 1|Xo=j) =1,
n+1 n
. 1— . —
Y Ploj=riXo=D®"'), =D Ploj =rXo=HP");
r=1 r=1

foralln > 1.But ) '_, P(p; > r|Xo=j)(P"")j; =1 whenn = 1, and so we have
now proved that

N
Y Bloj=riXo=)P"),

r=1 r=1

n
<Y PljzriXo=HE""), =1

foralln > N > 1. O

Remark Here is a more conceptual way to prove that

n
Y PlpjzriXo=)P""), =1

r=1
Take pj.o) =0and, form > 1, pj.m) to be the time of the mth return to j. In addition,
set T;”‘” =Y""110(X¢). Then

Xo=] = {Tj(”_l):m—i—l}:{,o;m)<n§p§m+l)}.
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Hence,

Y Plpj=riXo=)P""),;

r=I1

n—1
=Y Plpjzn—r|Xo=)(P),
r=0

n—1 r
=Y "N P =n—r|Xo=HP(p{" =r|Xo=j)

r=0m=0

n—1

Y YR ke = X0 )

r=0m=0

<

n—1 n—1

= TR zn e = x0= )

m=0r=m

n—1
=D P} <n=p/""|Xo=])
m=0

n—1
=Y P(r" V=m+1)=P(1" " <n|Xo=j)=1.

m=0

We can now complete the proof of (4.1.15) when j is recurrent and aperiodic. By
the first part of Lemma 4.1.18, we know that lim,,_, o (P");; = 0 if w;; = 0. Thus,
if w;; =0, then, by Lebesgue’s dominated convergence theorem, for any i,

n
i (1), = lim > Ptos =rlXo =(F ) =0 =i
r=

In order to handle the case when j is positive recurrent, set C = [ ], and take 7€
accordingly. Then, € € Stat(P). In particular, by the last part of Lemma 4.1.18 and
Lebesgue’s dominated convergence theorem,

c £ + c +
7y =2 (@) (P —> e D (x ) =e7
ieC ieC
and so (P") j; —> m;;. Finally, if i # j, then, again by the Lebesgue’s theorem,
n
(P")ij = Z]P(,oj =rlXo=0)(P""), —> P(p; < 00|Xo=i)7; = mij.

JJ
r=1
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4.1.8 Periodic Structure

The preceding result allows us to give a finer analysis even in the case when the
period is not 1. Consider a Markov chain with transition probability matrix P which
is irreducible and recurrent on S, and assume that its period is d > 2. The basic result
in this subsection is that there exists a partition of S into subsets S,, 0 <r < d, with
the properties that

(1) P47y 4 >0 = r(k) —r(j) =r modd,

() rk) —r(j)=rmodd = (P"+") ;>0 < (P, for all sufficiently
large m > 1,

(3) for each 0 <r < d, the restriction of P? to S, is an aperiodic, recurrent, irre-
ducible transition probability matrix,

where I have used r () to denote the 0 < r < d for which j € S,.

To prove that this decomposition exists, we begin by noting that, for any
0<r<d,

Im=0 (P"),;>0 = =1 (P7), >0 (%)
Indeed, by irreducibility and the Euclidean algorithm, we know that there exists
an m’ > 0 and 0 < r’ < d such that (Pm/‘H"/)j,- > 0. Furthermore, by (3.1.14),
(PO Hmdtry s (prdry (P > 0 for all sufficiently large m”’s, and so
we may and will assume that m’ > 1. But then (PmAmHd+r+r)y. 5 0 and so
d|(r + r’), which, because 0 < r,r’ < d, means that r' =0 if » = 0 and that
r'=d—rifr>1.

Starting from (x) it is easy to see that, for each pair (i, j) € S?, there is a
unique 0 < r < d such that (P"4+7); ;> 0 for some m > 0. Namely, suppose that
Pty >0 < (P’”/d”/)ij for some m,m’ € N and 0 < r,r" < d. Then, by (%),
there exists an n > 1 such that (P"¢~") ;; > 0 and therefore (P Hmd+(=r)y S 0,
Since this means that d|(r’ — r), we have proved that r = r’.

Now, let ip be a fixed reference point in S, and, for each 0 < r < d, define S,
to be the set of j such that there exists an m > 0 for which (P"4+" )ipj > 0. By the
preceding, we know that the S, ’s are mutually disjoint. In addition, by irreducibility
and the Euclidean algorithm, S = Uf;é S;. Turning to the proof of property (1),
use (%) to choose n > 0 and n’ > 1 so that (P”d‘”(j)),-oj >0 < (P”ld_’(k))k,-o.
Then (P 7+7)d+(D+r=r(®)y. - 5 0, and so d|(r(j) + r — r(k)). Equivalently,
r(k) — r(j) =r mod d. Conversely, if »(k) — r(j) =r mod d, choose n > 0 and
n' > 1 so that (P+7 0y, > 0 and (P"4"()) ;> 0. Then (PUHm+1)d4r) 4 5 )
for any m > 1 satisfying (P"¢);,;, > 0. Since, by (3.1.14), (P"¢); ;, > 0 for all suf-
ficiently large m’s, this completes the left hand inequality in (2), and the right hand
inequality in (2) is proved in the same way. Finally, to check (3), note that, from (1),
the restriction of P to S, is a transition probability matrix, and by (2), it is both
irreducible and aperiodic.

The existence of such a partition has several interesting consequences. In the first
place, it says that the chain proceeds through the state space in a cyclic fashion: if
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it starts from i, then after n steps it is in S,;)4.,, where the addition in the subscript
should be interpreted modulo d. In fact, with this convention for addition, we have
that

P'ls =1 . (4.1.19)
To see this, simply observe that, on the one hand, P"1g, (i) = 0 unless i € S,,,
while, on the other hand, Zf _{) P'1s, =1. Hence, i ¢ S,1, — (P"1g,); =0,

whereasi € S,4, = 1= Zr _O(Pnlg )i =®P"1s, )i

Secondly, because, for each 0 < r < d, the restriction of P? to S, is an irre-
ducible, recurrent, and aperiodic transition probability matrix, we know that, for
each 0 <r < d and j € S,, there exists a JT € [0, 1] with the property that

Pndy;; — nj(.;) for all (i, j) € S2. More generally,

() . .
s f — = dd
lim (Pre+) =170 r(j) =r(i)=smo (4.1.20)
m—00 J 0 otherwise.
In particular, if (i, j) € (S,)?, then
n—1d-1 1 n—1 (V)
.. md+? _ md e
Ay =~ 3 S (P1%), = o S @), T
m 05s=0 m=0
Hence, since we already know that (A,);; —> 7j;, it follows that
7\ =dn;; for0<r<dandjeS,. (4.1.21)

In the case when P is positive recurrent on S, so is the restriction of P9 to each S,,

)

and therefore ) jes, i = = 1. Thus, in the positive recurrent case, (4.1.21) leads

to the interesting conclus10n that 5 assigns probability % to each S,. See Exer-
cises 4.2.6 and 6.6.5 below for other applications of these considerations.

4.2 Exercises

Exercise 4.2.1 Just as Césaro convergence is strictly weaker (i.e., it is implied by
but does not imply) than ordinary convergence, so, in this exercise, we will show
that Abel convergence is strictly weaker than Césaro convergence.

(a) Assume that the radius of convergence of {an}go C R is less than or equal
to 1. That is, limy— oo |an|% <1.Set R(s) =(1 — ) Zgo s"a, for s € [0, 1)
and A, = },ZS‘I ay for n > 1. Show that lim,_ o |A,| < 1 and that R(s) =
(1 —5)23°ns""'A, for s € [0, 1). Use this to conclude that

lim A,=a€eR =— limR(s)=a.
s/l

n—o0
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(b) Take a, = (—1)"+1n for n > 0, check that the radius of convergence of {an}go
is 1, and show that

1 n—1
DI
n

m=0

% if n is even s(1—s)

T

o0
and (1 —s s"a
_l4 L ifnisodd ( )Z; "
2 2n m=0

Hence, {a,};° is Abel convergent to 0 but is Césaro divergent.

Exercise 4.2.2 Recall the queuing model in Exercise 1.3.12. Show that {Q,, : n > 0}
is an N-valued Markov chain conditioned to start from 0, and write down the transi-
tion probability matrix for this chain. Further, for this chain: show that O is transient
if E[B1] > 0, 0 is null recurrent if E[B;] = 0, and that O is positive recurrent if
E[B1] < 0. In order to handle the case when [E[B;] = 0, you might want to refer to
Exercise 1.3.11.

Exercise 4.2.3 Here is a test for positive recurrence. Given a transition probability
matrix P and an element j of the state space S, set C = [j]. Assume that u is a
non-negative function on C with the properties that

(Pu)j <oo and u(@i) > Pu); +e foralli e C\{j}andsomee > 0.

(a) Begin by showing that
E[u(Xnt1ynp;) | Xo=J] SE[u(Xunp,) | Xo=j] — €Plpj >n| Xo=j).

and use this to conclude that j is positive recurrent.
(b) Suppose that S =7 and that |i| > Zj |jI(P);j + € foralli € Z\ {0}. Show that
0 is positive recurrent for the chain determined by P.

Exercise 4.2.4 Consider the nearest neighbor random walk on Z which moves for-
ward with probability p € (%, 1) and backward with probability ¢ = 1 — p. In other
words, we are looking at the Markov chain on Z whose transition probability ma-
trix P is given by (P);; = pif j=i+1, (P);j=qif j=i—1,and (P);; =0 if
|j —i| # 1. Obviously, this chain is irreducible, and the results in Sects. 1.2.2—-1.2.1
show that O is transient. Thus, the considerations in Exercise 2.4.10 apply.

(a) Construct P from P by the prescription in Exercise 2.4.10 when jy = 0, and,
using (1.1.12), show that

p ifi<0&j=i+lori>1&j=i—1
P)j=1q ifi<0&j=i—lori>1&j=i+1
0 otherwise.

(b) On the basis of Exercise 2.4.10, we know that 0 is recurrent for the chain de-
termined by P. Moreover, by part (b) of Exercise 4.2.3, one can check that it
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is positive recurrent. In fact, by combining part (b) of Exercise 2.4.10 with the
computations in Sect. 1.1.4, show that

. 2p

E[po|Xo=0]= ——,

P—q
where [ is used to indicate that the expectation value is taken relative to the
chain determined by P. A
(c) Since P is irreducible, so is P. Hence, since 0 is positive recurrent for the chain

determined by P, there is a unique stationary probability vector for P. Find this
vector and use it to show that

[fTPq if j €{0,1}
7 . 2pag’l p .
Eflpj|Xo=jl= 1 itk  ifi<-1
2pJ [P

Exercise 4.2.5 As I said at the beginning of this chapter, we would be content here
with statements about the convergence of either {(P");; : n > 0} or {(A;);; :n > 0}
for each (i, j) € S2. However, as we are about to see, there are circumstances in
which the pointwise results we have just obtained self-improve.

(a) Assume that j is positive recurrent, and set C = [j]. Given a probability vector
p with the property that ) ; ¢c (m); =0, show that, in general, (LA,); —> m;;
and, when j is aperiodic, (uP"); — m;; foreachi € C.

(b) Here is an interesting fact about convergence of series. Namely, for each m € N,
let {a,,,, : n > 0} be a sequence of real numbers which converges to a real
number b,, as n — oo. Further, assume that, for each n € N, the sequence
{am.n : m > 0} is absolutely summable. Finally, assume that

(e.¢] (e.¢]
Z|am,n|—> Zlbml <00 asn— o0o.

m=0 m=0

Show that

o0
Jlim >l — bl =0.
m=0
Hint: Using the triangle inequality, show that
@l = 1bm| = lamn — bl | < 21bm],

and apply Lebesgue’s dominated convergence theorem to conclude that

o o o
D amn —=bul <Y (lamnl = 1bul) [+ Y |lamnl = 1bm] = lamn = bul| — 0
m=0 m=0 m=0

asn — oQ.
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(c) Return to the setting in (a), and use (b) together with the result in (a) to show

Iy Iy

that, in general, || A, — —> 0, and ||uP" — & —> 0 when j is ape-
riodic. In particular, for each probability vector g with ", _~(p); = 1,

lim sup{|uP"f —xf|: || fllu < 1} =0,
n—00

where f is the column vector determined by a function f. Of course, this is
still far less than what we had under Doeblin’s condition since his condition
provided us with a rate of convergence which was independent of u. In general,
no such uniform rate of convergence will exist.

Exercise 4.2.6 When j is aperiodic for P, we know that lim,,_, oo (P");; exists for
all i € S and is O unless j is positive recurrent. When d(j) > 1 and j is positive
recurrent, show that lim,_, o (P");; will fail to exist. On the other hand, even if
d(j) > 1, show that lim, , o (P");; = O for any j € S which is not positive recurrent.

Exercise 4.2.7 Here is an important interpretation of #¢ when C is a positive
recurrent communicating class. Let i be a recurrent state and, for k € S, let ug be
the expected number of times the chain visits k& before returning to i given that the
chain started from i:

pi—1
uk:E[}:lwﬂmeXb:i}eULw}

m=0

Determine the row vector u € [0, oo]S by (W) = k-
(a) Show that, forall j €S,

oi
(1P); =E[Z 1, (Xm) ) Xo = i] =

m=1

Thus, without any further assumptions about i, u is P-stationary in the sense that
w=puP.

(b) Clearly u; =1 and ) jHj =00 unless i is positive recurrent. Nonetheless,

show that p; = 0 unless i <> j and that u; € (0, 00) if i <> .

Hint: Show that

]P’(P;m) <pi|Xo=i)=P(p; < pi | Xo= )" "P(p; < pi | Xo=1).

(c) If i is positive recurrent, show that

M c
=1 .
Dk Mk

i
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Equivalently, when i is positive recurrent,

i —1 )
(nC):E[ 0 1{/}(Xm)|XO:,].
! Elp; [ Xo =il

In words, (nc)j is the relative expected amount of time that the chains spends
at j before returning to i.

Exercise 4.2.8 Let P be a transition probability on a finite state space S, and assume
that & is the one and only stationary probability for P. Given a recurrent state i € S
and a j # i, show that (cf. Sect. 3.2.1)

det((I— P)h

]P) i [ X == ] —_ .
(IOJ <lol| 0 l) det((I—P){l‘]})
You might want to take the following steps.

(a) Since S is finite, we know that i is positive recurrent. Now use the uniqueness
of i, Exercises 4.2.7, and 3.2.7 to show that

det((T — P)U/h pi=1 |
W=E[§1m<xm>)xo=z .

(b) Use the Markov property to show that

pi—1 pi—1
]E|:Z 1jy(Xm) ‘ Xo =l} =P(pj < pi| Xo= i)E[Z Ljy(Xm) ‘ Xo =J]-

m=0 m=0

(c) Use (3.2.11) together with (b) to arrive at the desired conclusion.

Exercise 4.2.9 We continue with the program initiated in Exercise 4.2.7 but as-
sume now that the reference point i is null recurrent. In this case, Y i (n)j =00
when p € [0, oo)S is the P-stationary measure introduced in Exercise 4.2.7. In this
exercise we will show that, up to a multiplicative constant, u is the only P-stationary
v € [0, oo)S with the property that (v); = O unless i—j (and therefore i< j).
Equivalently, given such a v, v = (v); u.

(a) Assume that v € [0, 00)S satisfies v = vP. If (v); = 1, show that, for all JES
and n >0,

W)=Y PX, =] & pi >n|Xo=k)
ki

PG~ 1)
+E[ Yo 15X ‘ Xo= i]~

m=0
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Hint: Work by induction on n > 0. When n = 0 there is nothing to do. To carry out
the inductive step, use (2.1.1) and Fubini’s theorem to show that

Y OWP(X, = j & pi > n| Xo=Fk)
ki

=Y WPRP(X, =j & pi >n|Xo=k)
ki

= Z(")KP(XJH-I =j&pi>n+1|Xg=1).
4

(b) Assuming that v = vP and (v); = 0 unless i — j, show that v = (v); p.

Hint: First show that v = 0 if (v); = 0, and thereby reduce to the case when (v); = 1.
Starting from the result in (a), apply the monotone convergence theorem to see that
(v)j = (m); forall j € S. Now consider @ = v — p, and conclude that ® = 0.

Exercise 4.2.10 Let C be a communicating class of positive recurrent states. The
reason why Theorem 4.1.14 is called a “mean ergodic theorem” is that the asserted
convergence is taking place in the sense of mean square convergence. Of course,
mean square convergence implies convergence in probability, but, in general, it can-
not be used to get convergence with probability 1. Nonetheless, as you are to show
here, when P(Xge C)=1and j € C,

1S . N
Jim_ > 14j(Xp) =mj;  with probability 1. (4.2.11)

m=0

Observe that in Sect. 2.3.3 we proved the individual ergodic theorem (2.3.10) un-
der Doeblin’s condition, and (4.2.11) says that the same sort of individual ergodic
theorem holds even when Doeblin’s condition is not present. In fact, there is a very
general result, of which (4.2.11) is a very special case, which was proved originally
by G.D. Birkhoff. However, we will not follow Birkhoff and instead, as we did in
Sect. 2.3.3, we will base our proof on the strong saw of large numbers, although this
time we need the full statement which holds (cf. Theorem 3.3.10 in [8])) for aver-
ages of mutually independent, identically distributed, integrable random variables.

(a) Show that it suffices to prove the result when P(Xo =1i) = 1 for some i € C.
(b) Set ,ol.(o) =0, and use ,ol.(m) to denote the time of the mth return to i. If

p.(m)fl
-1
wm=p" —p"V and Y= Y (X,

[zp_(m—l)
show that, conditional on Xo = i, both {7,, : m > 1} and {Y,,, : m > 1} are
sequences of mutually independent, identically distributed, non-negative, inte-
grable random variables. In particular, as an application of the strong law of
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large numbers and (4.1.5) plus the result in Exercise 4.2.7, conclude that, con-
ditional on Xo =1,

(m)
(m) 1 pi 1

. o L 1 jj
lim T and  lim_ — Z 1(j1(Xm) = - (%)
| ™1
with probability 1. Hence, limy 00 <7 2_yLo  1(j}(Xm) = 7j; with proba-
Pi

bility 1.
In view of the results in (a) and (b), we will be done once we check that, condi-
tional on Xg =1,

(mn) -1

Zl{j}(Xe) Z 1 (Xo) | =

with probability 1, where m,, is the Z*-valued random variable determined so
that ,o(m" Den< pl.(’””). To this end, first show that

hm
— 00

(mn) 1

Z LjXo)| =

Next, from the first part of (), show that P(lim,_ o m, = co|Xg =1i) = 1.
Finally, check that, for any 0 <€ < 1,

Tm .
P(sup —26‘X0=z>
m>M M
o
L] .
< ) P(pi =me|Xo=i) < ~Elpi. pi = Me| Xo =1,
m=M €

and use this to complete the proof of (4.2.11).

Introduce the empirical measure L,, which is the random probability vector
measuring the average time spent at points. That is, (L,); = % Zg_l 15 (Xpm).
By combining the result proved here with the one in (b) of Exercise 4.2.5, con-
clude that lim,,_, o || L, — 7€ ||y = 0 with probability 1 when P(Xo € C) = 1.

Exercise 4.2.12 Although the statement in Exercise 4.2.10 applies only to positive
recurrent states, it turns out that there is a corresponding limit theorem for states
which are not positive recurrent. Namely, show that if j is not positive recurrent,
then, no matter what the initial distribution,

n—1
P(nli)Iglo—Zl{J}(Xm)_ ): .
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When j is transient, E[Zgo 1{j(Xn)] < oo and therefore the result is trivial. To
handle j that are null recurrent, begin by noting that it suffices to handle the case
when P(Xg = j) = 1. Next, note that, conditional on Xo = j, {pj.mH) — ,o;m) :
m > 0} is a sequence of independent, identically distributed, 7% -valued random
variables, and apply the strong law of large numbers to see that, for any R > 1,

"
IP’( lim ’—zH(R)\Xo=j>
m

m—0o0

(~m)AR
zIP’<1i_m ]—ZH(R)‘X():j)zl,

m— 00 m
where H(R) = lIE[,oj A R|Xo = j] /' o0 as R /' oco. Hence, given Xy = j,

(m)
% — oo with probability 1. Finally, check that, for any € > 0,

ln—l .
P(sup — Zl{j}(Xm) >e€ ‘ Xo =J)
0

n>N 1N
(Lne]) 1
§P<sup J 5—’X0:j>
n>N N €
P 1 ,
<P{ sup —S—‘X0=j ,
m>ne M €

and combine this with the preceding to reach the desired conclusion.



Chapter 5
Markov Processes in Continuous Time

Up until now we have been dealing with Markov processes for which time has a
discrete parameter n € N. In this chapter we will introduce Markov processes for
which time has a continuous parameter ¢ € [0, 0c0), even though our processes will
continue to take their values in a countable state space S.

5.1 Poisson Processes

Just as Markov chains with independent, identically distributed increments (a.k.a.
random walks) on Z? are the simplest discrete parameter Markov processes, so the
simplest continuous time Markov processes are those whose increments are mutu-
ally independent and homogeneous in the sense that the distribution of an increment
depends only on the length of the time interval over which the increment is taken.
More precisely, we will be dealing in this section with Z?-valued stochastic pro-
cesses {X (¢) : t > 0} with the property that P(X(0) =0) =1 and

P(X(t1) — X (t10) = ji, -, X (tn) — X (tn—1) = jn)

= l—[ IED(X(tm —Ip—1) = ]m)

m=1

foralln>1,0<ty<---<ty,and (ji,..., ju) € (ZH)".

5.1.1 The Simple Poisson Process

The simple Poisson process is the N-valued stochastic process {N(¢) : t > 0} that
starts from O, sits there for a unit exponential holding time E; (i.e., N(¢) = 0 for
t €0, Ey) and, fort > 0, P(E| > t) = e "), at time E1 moves to 1 where it remains

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 99
DOI 10.1007/978-3-642-40523-5_5, © Springer-Verlag Berlin Heidelberg 2014
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for an independent unit exponential holding time E;, moves to 2 at time E; + E»,
etc. More precisely, if {E, : n > 1} is a sequence of mutually independent, unit
exponential random variables and

7 0 whenn =0
" Y1 Em whenn>1,

then the stochastic process {N (¢) : ¢ > 0} given by
N@)=max{n >0:J, <t} 5.1.1)

is a simple Poisson process. When thinking about the meaning of (5.1.1), keep in
mind that, because,

o0
with probability 1, E, >0 forallm>1 and Z E,, =o0,

m=1

with probability 1 the path ¢ € [0, 00) —> N (¢) is piecewise constant, right con-
tinuous, and, when it jumps, it jumps by +1: N(¢t) — N(t—) € {0, 1} for all r > 0,
where N (1—) = limg » N(s) is the left limit of N(-) at .

We now show that {N(¢) : + > 0} moves along in independent, homogeneous
increments.! That is, for each s, € [0, 00), we will prove that the increment
N(s +1t) — N(s) is independent of (cf. Sect. 7.1.3) s ({N(7) : T € [0, s]}) and has
the same distribution as N (¢):

P(N(s4+1)—N(s)=n|N(t),t €[0,s])=P(N()=n), neN. (512

Equivalently, what we have to check is that when (s, ¢) € [0, o0)?and A € o {N(7):
t€[0,5]}),PUN(s+1t)—N(s) >n}NA)=P(N () >n)P(A) for all n € N. Since
this is trivial when n = 0, we will assume that n € ZT. In addition, since we can
always write A as the disjoint union of the sets A N {N(s) = m}, m € N, and each
of these is again in o ({N(7) : T € [0, s]}), we may and will assume that, for some
m, N(s) =m on A. But in that case we can write A = {J,,11 > s} N B where
Beo({E,...,Ey}) and J,, <s on B. Hence, since N(s +¢t) >m +n <
Jntn <s+t,and c({Jp — Jy : £ > m}) is independent of o ({Ey : k < m}), an
application of (7.4.2) shows that

P({N(s+1)— N(s) =n}NA)
=P({Jmtn <5+ 1} N {Jt1 > s} N B)
=P({Jnin — Im <5+t — I} NV {Jni1 — I > 5 — Ju} N B)
=E[v(Jn), B],

1T have chosen the following proof in order to develop a line of reasoning which will serve us well
later on. A more straight-forward, but less revealing, proof that the simple Poisson process has
independent, homogeneous increments is given in Exercise 5.5.1 below.
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where, for £ € [0, s],

VE) =P({Jngn — I <5 +1—EYN {Ig1 — I > 5 — £})
=P({Jn <s+1—E}N{E > 5 —E}) =P({Jy <5+ —E}N{E, > s —£})

=P({Jn1+En<s+1—EYN{E, >5 —&}) =E[w(&, Ep), E, > 5 — &]

when w(&, n) =P(J,—1 <s+t—&—n)forée€[0,s]landnel[s—& s+1—£&].

Up to this point we have not used any property of exponential random variables
other than that they are positive. However, in our next step we will use their char-
acteristic property, namely, the fact that an exponential random variable E “has no
memory.” That is, P(E > a 4+ b|E > a) = P(E > b), from which it is an easy step
to

E[f(E).E>a]=e¢“E[f(a+ E)] (5.1.3)

for any non-negative, Bjo,«0)-measurable function f. In particular, this means that
v(E) =E[w( Ey), En>s—§|=e COE[wE, E,+5—£)]
= OIP(Jyy <t —E) = CTIPU, <) = e CTOP(N (1) 2 n).
That is, we have shown that
P({N(s+1) — N(s) =n} N A) =E[e” ") B]P(N(1) > n).
Finally, since
P(A) =P({Jn+1 > s} N B) =P({Eps1 > 5 — Ju} N B) =E[e ) B],

the proof of (5.1.2) is complete. Hence, we now know that the simple Poisson pro-
cess {N(t) :t > 0} has homogeneous and mutually independent increments.

Before moving on, we must still find out what is the distribution of N(z). But,
the sum of » mutually independent, unit exponential random variables has a I"(n)-
distribution, and so

P(N(t) =n) =P(p <t < Jut1) =Py <1) =P(Jp41 <1)

1 nlfr - 1"
= dt — — etdr=".
(n—l)!/ / n!

In other words, N(¢) is a Poisson random variable with mean t. More generally,
when we combine this with (5.1.2), we get that, for all 5,7 € [0, 00) and n € N,

n

P(N(s +1) — N(s) =n|N(z), 7 €[0,s]) =e*ft—|. (5.1.4)
n
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Alternatively, again starting from (5.1.2), we can now give the following Markovian
description of {N(¢) : t > 0}:

tn—N(s)

mllom(N(S)). (5.15)

P(N(s+1)=n|N(t), T €[0,s])=e""

5.1.2 Compound Poisson Processes on 7¢

Having constructed the simplest Poisson process, we can easily construct a rich
class of processes which are the continuous time analogs of random walks on Z.
Suppose that g is a probability vector on Z¢ which gives 0 mass to the origin 0.
Then the compound Poisson process with jump distribution p and rate R € (0, 00)
is the stochastic process {X(¢) : t > 0} which starts at 0, sits there for an exponential
holding time having mean value R~!, at which time it jumps by the amount k € Z¢
with probability (@), sits where it lands for another, independent holding time with
mean R~!, jumps again a random amount with distribution g, etc. Thus, the simple
Poisson process is the case whend = 1, ()1 = 1, and R = 1. Of course, the amount
by which the simple Poisson process jumps is deterministic whereas the amount by
which a compound Poisson process jumps will, in general, be random.

To construct a compound Poisson process, let {B, : n > 1} be a sequence of
mutually independent Z?-valued random variables with distribution g, introduce
the random walk Xo =0 and X,, =Y, _, B,, for n > 1, and define {X(¢) : r > 0}
so that X(#) = Xy (rs), where {N(¢) : ¢ > 0} is a simple Poisson process that is
independent of the B,,’s. The existence of all these random variables is guaran-
teed (cf. the footnote 8 in Sect. 1.2.1) by Theorem 7.3.2. Obviously, X(0) =0
and ¢ € [0, c0) —> X(r) € Z¢ is a piecewise constant, right continuous Z?-valued
path. In addition, because ()g = 0, it is clear’ that the number of jumps that
t~X(t) makes during a time interval (s,¢] is precisely N(Rt) — N(Rs) and
that X,, — X,,— is the amount by which #~~X(¢) jumps on its nth jump. Thus,
if Jo=0 and, for n > 1, J, is the time of the nth jump of r~~X(¢), then
N(Rt) =n < J, < Rt < Jy+1, and X(J,) — X(Jy—1) = X, — X;,—1. Equiva-
lently, if {E, : n > 1} denotes the sequence of unit exponential random variables
out of which {N(¢) :¢t > 0} is built, then J, — J,,_1 = %, X(t) — X(t—) = 0 for
t € (Ju—1,Jn), and X(J,) — X(J,—1) = B,,. Therefore {X(¢) : t > 0} is indeed a
compound Poisson process with jump distribution g and rate R.

2This is the reason for my having assumed that (u)g = 0. However, one should realize that this
assumption causes no loss in generality. Namely, if (#)¢ = 1, then the resulting compound process
would be trivial: it would never move. On the other hand, if (©)g € (0, 1), then we could replace
by jt, where (j)g =0 and (&)x = (1 — (1))~ (w)x whenk # 0, and R by R = (1 — (u)o)R. The
compound Poisson process corresponding to & and R would have exactly the same distribution of
the one corresponding to u and R.
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We show next that a compound process moves along in homogeneous, mutually
independent increments:

P(X(s + 1) — X(s) =k|X(2), 7 € [0,s]) = P(X(t) =k), keZ’  (5.1.6)

For this purpose, we use the representation X(¢) = Xy (g) introduced above. Given
A eo({X(r): 7t €]0,s]}), we need to show that

P({X(s +1) — X(s) =k} N A) =P({X(s + 1) — X(s) =k})P(A),

and, just as in the derivation of (5.1.2), we will, without loss in generality, as-
sume that, for some m € N, N(Rs) = m on A. But then A is independent of
o({Xn4n — X :n =0} U{N(R(s +1)) — N(Rs)}), and so

P({X(s 4+ 1) — X(s) =k} N A)

=Y P({X(s +1) = X(s) =k & N(R(s +1)) = N(Rs) =n} N A)
n=0

M

P({Xm4n — X =k & N(R(s +1)) — N(Rs) =n} N A)

3
Il
=}

M

P(X, =K)P(N(Rt) =n)P(A)

3
Il
o

K

P(X, =k & N(Rt) = n)P(A) = P(X(r) =k)P(A).

Il
=}

n

Hence, (5.1.6) is proved.

Finally, to compute the distribution of X(¢), begin by recalling that the dis-
tribution of the sum of n independent, identically distributed random variables
is the n-fold convolution of their distribution. Thus, P(X,, = k) = (u*")g, where
(w*)k = 8¢ x is the point mass at 0 and

(”v*n)k — Z (ﬂ*(n_l))k,j(ﬂ)j forn > 1.
jezd

Hence,
o o

P(X(s +1)=k) = Z]P’(X,, =k&N(Rt)=n)=e R Z
n=0 n=0

(Rt)i'l
n!

(’l’*n)k'
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Putting this together with (5.1.6), we have that for A e c ({N(7) : T € [0, s1}),
P({X(s +1) =k} N A)

=Y P({X(s +1) =k} N AN{X(s) =j})

jezd
=Y P({X(s +1) = X(s) =k — j} N AN {X(s) =j})
jezd
=2 (P() P(A N {X(s) =3}) = E[(P(1)) (5> A
jezd
where
R (RO™
(P(I))ke =e Rtmzz()T(’L )e—k' (5.1.7)

Equivalently, we have proved that {X(¢) : ¢ > 0} is a continuous time Markov pro-
cess with transition probability function t~~P(t) in the sense that

P(X(s 4+ 1) =k|X(1), T €[0,5]) = (P(t))X(S)k. (5.1.8)

Observe that, as a consequence of (5.1.8), we find that {P(¢) : r > 0} is a semigroup.
That is, P(0) =1, P(¢) is a transition probability for each # > 0, and t~~P(¢) satisfies
the Chapman—Kolmogorov equation

P(s +1)=P(s)P(¢), s,t€]0,00). (5.1.9)

Indeed, it is obvious that P(0) = I and that P(¢) is a transition probability for each
t > 0. In addition,

(PG +D)g = > P(X(s +1) =k &X(s) = )
jezd

_ Z P(t) P(s) = (P()P()) gye»

jezd

from which the asserted matrix equality follows immediately when one remembers
that (P(7))ke = (P(7))oe—k)-

5.2 Markov Processes with Bounded Rates

There are two directions in which one can generalize the preceding without destroy-
ing the Markov property. For one thing, one can make the distribution of jumps
depend on where the process is at the time it makes the jump. This change comes
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down to replacing the random walk in the compound Poisson process by a more
general Markov chain. The second way is to increase the randomness by making the
rate of jumping depend on the place where the process is waiting before it jumps.
That is, instead of the holding times all having the same mean value, the holding
time at a particular state may depend on that state.

5.2.1 Basic Construction

Let S be a finite or countable state space and P a transition probability matrix on S.
In addition, let R = {R; : i € S} be a bounded set of non-negative numbers. We will
show in this subsection that for each probability vector u there exists a stochastic
process {X (¢) : t > 0} with the properties that

(a) t~»X(t) is right continuous and piecewise constant,
(b) P(X(0)=i)=(p); foralli €S and

1

lim sup —|P(X(t+h)=j|X(1),7€l0,1]

Jim sup - [B( J )
te[0,00)

— (- hRX(t))(SX(t),j + hRX(t)PX(t)j| =0. 521

Furthermore, we will show that {X (¢) : + > 0} is a Markov process and that its dis-
tribution is uniquely determined by (a) and (b).

Set Q = R(P —I), where R is the diagonal matrix with (R);; = R;, and define
t~P(t) by

P(t) = Z %Q”. (5.2.2)
n=0

Since [|Q|lu,v < 2R, where R = sup;.g R;, it is easy to check that the series in its
definition is converging in || - ||y,y-norm to P(#) uniformly for ¢’s in bounded inter-
vals. Also, it is easy to see that 1~~P(¢) satisfies the Chapman—Kolmogorov (5.1.9)
equation. Less obvious is the fact that P(¢) is a transition probability for each ¢ > 0.
To verify this, first note that there is nothing to do unless R > 0, since P(¢) = I when
R =0. Thus, assume that R > 0 and define

N 1-&aq—m@y ifj=i
®ij =1 5 _ (5.2.3)
7 P);j if j #1.

2tR

31t is important to observe that [|P(¢)|ly.y can be as large as e*® when 7 < 0 and therefore will not

be a transition probability matrix when R > 0 and ¢t < 0.
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Clearly P is a transition probability matrix and Q = R(P — I). Hence, another ex-
pression for P(7) is

aRy o2 3 GRS 5 IRV
Z Z( )(_1) e Z (n—m)!

m=0

—tR Z (tR)m

from which it is clear that P(¢) is a transition probability matrix and therefore that
t~>P(¢) is a transition probability function.

We begin by showing that if {X (¢) : # > 0} satisfies (5.2.1) and has initial distri-
bution u, then, forany K >0,0=1 <1t <--- <tg, and (jo,..., jk) € SK+1

P(X (1) = ji for0<k <K)=pj, [] (Ptx —tce D) (5.2.4)
1<k<K

where the product over the empty set is taken to be 1. To prove this, we will work by
induction on K. When K = 0 there is nothing to do. Thus, suppose that K > 1 and
that (5.2.4) holds for K — 1. Set A = {X () = jx,0 <k < K} and define u(z, j) =
PX(tx_1+t)=j}NA)fort>0and j €S. By (5.2.1),

1

li —\u(t+h,j)—u(,j)—h(u(t | =

fim, sup lut+h, ) —ut, ) = h(u®OQ),]
te[0,00)

where u(z) is the row vector determined by u(¢, -). Therefore t~~u(t, j) is con-
tinuously differentiable and its derivative w(t, j) is equal to (Qu(z));. In addi-
tion, u(0, j) = 4; j,_,IP(A). In other words, we now know that (¢, j)~u(z, j) is
a bounded solution to

i, j)=(Qu(®); withu(0, j)=38; j ,P(A). (%)

This information together with the following lemma will allow us to complete the
inductive step.

Lemma 5.2.5 A bounded function w : [0, 00) X S —> R that is continuously dif-
ferentiable with respect to t > 0 satisfies

W, ) = (Qw(),,

where w(t) is the row vector determined by w(t, -), if and only if w(t,j) =
(wW(O)P(1)); for (¢, j) € [0,00) x S.

Proof Let w be a row vector with ||w||y < 0o, and define w(z, j) = (WP(z)); for
(t,j) €10,00) x S. Then |w(t, j)| < [[W]lu and

w(t +h, j) —w(, j)=(P() —Tw®),.
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where w(t) is the row vector determined by w(¢, -). Next note that

P(h) -1
— -

lim
N\0

=0,

u,v

and from this conclude that r~»w(¢, j) is continuously differentiable and that
w(t, j) = (wQ) ;. Thus the “if”” assertion is proved.

To prove the “only if” assertion, let # > 0 and consider the function f(s, j) =
(w(t — s)P(s)); for s € [0, ¢]. Clearly f(-, j) is continuously differentiable and

£, ) ==(w(t = $)QP(s)) , + (W(t — $)QP(s)) , =0
for s € (0,1). Hence, w(t, j) = f(0, j) = f(t, j) = (W(O)P());. O
Combining («) with Lemma 5.2.5, we see that

u(ty —tg—1, jx) = (Plix —1x-1)) P(A),

JK—1JK
and therefore, by the induction hypothesis, that (5.2.4) holds for K.
We next show that if (5.2.4) holds, then {X (¢) : ¢ > 0} is a Markov process with

transition probability function t~»P(z). That is, we will show that if s > 0, then for
t>sand j€S,

P{X(®) = j}[ X (D). 7 €[0,5]) = (P(t —5)) y ;- (5.2.6)
Equivalently, we have to show that if A € o ({X(7) : T € [0, 5]}), then
P({Xx(@®) =j}nA)=E[(P(t - S))X(s)j’ Al

and we have to do so only when A = {X () = jx,0 <k < K} for some K > 1,
0=t <---<tg—1=s,and (jo,..., jk—1) € SX. But in that case, the required
equation is just (5.2.4) with rx =t and jg = j.

In order to prove that there exists a stochastic process satisfying conditions (a)
and (b), it will be useful to know that (5.2.4) implies (5.2.1). To see this, note that,
(5.2.4) implies (5.2.6) and (5.2.6) implies

P(X(t+h)=j|X(x),7€l0,1])
= (P(h))X(z)j

R"=2Q") x (1))

o0
=8x(.j +hQxa;+h* ) b

n=2

Therefore, since

Sxi)j +h(Qxnj =10 —=hRx)dxw),; +hRxiyP)x)
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and
o hn—ZQn

<R forhel0,1],
n!

n=2

(5.2.1) follows from (5.2.4).

We can now prove the existence of a stochastic process that satisfies (a) and
(b). To this end, recall the transition function P in (5.2.3), and let {X,, : n > 0} be
a Markov chain with transition probability P and initial distribution . Next, let
{N(¢) : t > 0} be a simple Poisson process that is independent of {X,, : n > 0}, and
set X (t) = Xn(rs). Clearly £~ X (¢) is right continuous and piecewise constant. In
addition, if K >0,0=1y < --- < tx, and (jo, ..., jk) € Sk, then

u,v

P(X () = jx.0 <k < K)
= Z P(Xm, = jx & N(t) =my for 0 <k < K)
O=mo=<---<mg

= Y Py =j0<k< K)P(N@H) =m0 <k <K)

O=mo<---<mg

K
—wi Y [IE),

O0=mo<---<mg k=1
e~ DR (Rt — 1))k —Mk=1
(my —mg—1)!

X

K

=W [ [Pa— 1), -

k=1

Hence, {X (¢) : t+ > 0} has initial distribution g and satisfies (5.2.4) and therefore
5.2.D).
The following theorem summarizes our progress thus far.

Theorem 5.2.7 Let a bounded set R = {R; :i € S} C [0, o0) and a transition prob-
ability matrix P be given. Then, for each probability vector ., there is a stochas-
tic process {X(t) : t > 0} satisfying the conditions (a) and (b). Furthermore, if
Q=R(P-1I),where (R);j; =6; jR;, and P(t) is given by (5.2.2), then {X (t) : t > 0}
is a Markov process with transition probability function t~~P(t) in the sense that
it satisfies (5.2.6). In particular, the distribution of {X (¢t) : t > 0} is uniquely deter-
mined by (5.2.4).

5.2.2 An Alternative Construction

In this subsection we will give an alternative construction of processes that satisfy
conditions (a) and (b), one that reveals other properties.



5.2 Markov Processes with Bounded Rates 109
Given a bounded set R = {R; : i € S} C [0, 0c0), define
R [0, 00) x (0, oo)Z+ <xSN 8

by the prescription

®m(t;(ela"'ae}’l’"')7(j05"‘9jl1""))=jl’l forén §t<$n+]
n (5.2.8)
where & =0 and &, = Z Rj_m{Iem whenn > 1,
m=1
with §, =00 if R, _, =0 for some 1 <m <n. Next, let {E"n :n > 1} be a sequence

of mutually independent random, unit exponential random variables, and without
loss in generality, assume that, for each w, E, (w) > 0 for all n. Because,

o0 B 00 N
E[exp(—ZEn>:|=Nli_r)noo</O e‘”dr) =0,
n=1

we may and will also assume that Z;’;l E,(w) = oo for all w. Now let {X,, : n > 0}
be a Markov chain with transition probability P and initial distribution g, assume
that o ({X,, : n > 0}) and 0 ({E}, : n > 1}) are independent, and set

n
f0=0 and J~n = Z R;{lillg"m forn>1,
m=1

again with the understanding that fn =o0 if R % = 0 for some 1 <m < n. Be-

cause the R;’s are bounded and ano:] Em = 00, fn 1 0o as n — oo. Hence, we
can define a right continuous, piecewise constant process {X (¢) : > 0} by

Xt) =M (t; (Er, ...y Eny o), (Xoy ooy Xy o). (5.2.9)

Theorem 5.2.10 Refer to the preceding. The process (X(@t):t>0} given by (5.2.9)
satisfies conditions (a) and (b) at the beginning of Sect. 3.2.1.

Pfoof Since it is obvious that (a) is satisfied, what remains to be shown is that
{X(¢) : t = 0} satisfies (5.2.1). We begin by observing that

SN+ h; (e, s en o), (Joseees s o)

= O (s (ems1 — Rjp(t — Em)sema2 s Cmins -+ )

X Gms + s s ) O Em <1 < Eme1. (5.2.11)
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I\~Iow, leit A € a({)~((r)~: 7 € [0, ¢]}) be given, and assume that f((t) =1i on A. Set
Apn=ANn{Jy <s < Jyu41} form > 0. Then

A~m = {Em—i-l > Ri(t — jm)} N gma
where {J,, <5} 2 B € ({E1, ..., Ex}U{Xo, ..., Xm)). In addition,
P{X(t+j)=j}nA) =Y P({X@t+h) =j}NA)

m=0

o0
=Y P({X(t+h)=j& Ent1 > Ri(t — Ju)} N By).
m=0
and, by (5.2.9) and (5.2.11),
P({f{([ +h) zj&Em+l > Ri(t — jm)} N Bm)
=P({@7 (s (Ems1 = Rit = Jn)s Ems2, s Emens - -),

G Xt ooy Xmams o)) = j Y OV {Emg1 > Ri(t — J)} 0 By).

Since E,,1 is independent of all the other quantities in the last expression, we can
apply (5.1.3) to see that it is equal to

P(X(h) = j| Xo=i)E[e R0~ B, 1=P(X(h)=j| Xo=i)P(Ay).
Hence, we will be done once we show that

. | B . .
lim sup —|P(X(h) = j|Xo=i) — (1 —hR)& j —hR;(P);;|=0. (¥
h\()l-’jegh

Note that P(X (h) = j | Xo = i) equals
P(Xo=j& i <h|Xo=i)+P(X1=j& i <h< ]| Xo=1i)
+P(X(h)=j & <h|Xo=i).
Obviously
P(Xo=j & Jy <h|Xo=i)=e"Ri5; ;

and

P(Xy=j& i <h<h|Xo=i)=P(R'Er <h <R "E1 + R; ' E)(P);

= (1—e ™) ®);; —P(R;'E1 + R} E2 < h)(P);;.

Hence

[P(X(h) = j | Xo=i) —e7is; j — (1 — ") ()| <2P(E) + E2 < RD),
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where R = sup;.g R;. Finally,

Rh
P(E; + E» < Rh) =/ e " dt < (Rh)?,
0

and so (x) follows and the proof of theorem is complete. O

5.2.3 Distribution of Jumps and Jump Times

As a consequence of Theorem 5.2.7, we see that the distribution of {X (¢) : # > 0} is
determined by its initial distribution g and the matrix Q = R(P —I). For this reason,
we say that a stochastic process satisfying conditions (a) and (b) is a Markov process
generated Q with initial distribution .

The distinguishing characteristics of Q are that its off-diagonal entries are non-
negative and each of its rows sums to 0. For no better reason than that Q follows P in
the alphabet, probabilists call such a matrix a Q-matrix. Given a Q-matrix Q, there
are many diagonal matrices R with non-negative entries and transition matrices P
for which Q = R(P —I). Indeed, we already took advantage of this fact when we
wrote R(P —I) as (cf. (5.2.3)) R(f’ — I) with R = sup;.g R;. Nonetheless, it is
possible to remove this ambiguity and make a canonical choice of R and P. For
reasons that will become clear shortly, we will make this canonical choice by taking
(R)ij = 6;,j R; and P where

R =—(Q), P)ii =1{0)(R;), and,

., 0 if R, =0 (5.2.12)
for j #1i, (P)u={R_1(Q),, SR -0
i 1 l .

When R = {R; :i € S} and P are those given by (5.2.12), we will call R the rates
determined by Q and P the transition probability matrix determined by Q.

Our goal in this subsection is to prove the following theorem that describes how
{X () : t = 0} jumps when it jumps.

Theorem 5.2.13 Let {X (¢) : t > 0} be a Markov process generated by Q and let R
and P be given by (5.2.12). Set Jo =0,

Jp=inflt > J_1: X (1) # X (Ju—1)} forn=1,

an .
Xn—1 ifn>1andJ, =00,

{X(J,,) if Jp < 00

E. — Rx, (Ju —Jn-1) ¥ifJp <00
n 0 lf-]n =00,
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and ¢ =inf{n > 0: Rx, = 0}. Then {X,, : n > 0} is a Markov chain with transition
matrix P and, forany K > 1 and {t, : 1 <k < K} C (0, 00),

P({Ek >, 1 <k<K}N A) = e‘Z/f:Mk]p(A)
forany A € o ({X,, :n > 0}) contained in {¢ > K}.

Proof Refer to Sect. 5.2.2 and let {X(1) : 1 >0} be the process in Theorem 5.2.10
when p is the distribution of X (0). Because it has the same distribution as {X (¢) :
t > 0}, it suffices to prove that {}N( (#) : t = 0} has the asserted properties.

Obviously, {J, :n >0} and {X, : n > 0} are is related to {X(¢) : ¢ > 0} in the
same way as {J, :n > 0} and {X,, : n > 0} are related to { X (¢) : t > 0}. Furthermore,
if z =inf{n >0: R;(}H = 0}, then ¢ is related to {X(r) : r > 0} the same way
that ¢ is related to {X () : ¢ > 0}. Finally, E; = Ry, (Jx — Jr—1) if £ > k. Now

suppose that Ae o(~{)~(n :n > 0}) is contained in {¢ > K}. Then, because the E’s
are independent of A,

P({Ex > e, 1 <k < K}NA) =P(Ex > t, | <k < K)P(A)

= o~ Zis1 Uk P(A). O

Remark 1t is important to appreciate what Theorem 5.2.13 is saying. Namely, if SR
and P are the canonical rates and transition probability matrix determined by the
Q-matrix Q and if {X(#) : + > 0} is a Markov process generated by Q, then the
distribution of {X (J, A &) : n > 0}, where the J,,’s are the successive jump times
of the process, has the same distribution as that of a Markov chain with transition
matrix P stopped at time ¢. Furthermore, conditional on {X(J, A ¢) : n > 0}, the
holding times {J, — J,—1 : n > 1} are mutually independent exponential randoms,
Jn — Ju—1 being infinite if Rx(y,_,) =0, and J,, — J,,_1 being a exponential random
variable with mean value R)_((lln_l) if Rxj,_;) > 0.

5.2.4 Kolmogorov’s Forward and Backward Equations

As we saw at the end of the Sect. 3.2.1, apart from its initial distribution, the distri-
bution of a Markov process is completely determined by the transition probability
function #~~P(¢) in (5.2.2). Although the expression in (5.2.2) is useful from a the-
oretical perspective, for many applications it is not practical. For this reason it is
desirable to have other ways of doing computations involving P(¢), and we will
develop some in this subsection.

It should be clear both from (5.1.9) and (5.2.2) that P(¢) is some sort of expo-
nential function. Indeed, (5.2.2) makes it reasonable to think that P(¢) ought to be
written as ¢/Q, and that is how a functional analyst would write it. Taking a hint



5.2 Markov Processes with Bounded Rates 113

from the usual exponential function for real numbers, one should guess that another
way to describe P(7) is as the solution to the equation

P(t) = C%P(t) =P(#)Q with P(0) =L (5.2.14)

In fact, we made implicit use of (5.2.14), which is called Kolmogorov’s forward
equation, in Lemma 5.2.5. The term “forward” can be understood by writing
(5.2.14) in coordinates:

(P®),; =Y (PM), Q-

keS

Thinking in terms of someone traveling along the paths of the process, in this ex-
pression i is the backward variable since it is the variable that specifies where the
traveler was at time O and is therefore the one the traveler sees when he looks back-
ward in time. Similarly, j is the forward variable because it is the one that says
where he will be at time ¢. Thus (5.2.14) is an equation that gives the evolution of
t~>P(t) in terms of its forward variable when the backward variable is fixed. Of
course, it is equally reasonable to expect that

P(t)=QP(t) withP(0)=1, (5.2.15)

which is known as Kolmogorov’s backward equation since its coordinate version
expresses the evolution of 7~~P(¢) as a function of its backward variable.
The proof that t~~P(¢) solves (5.2.14) and (5.2.15) is easy. By (5.1.9),

P(r +h) —P(1) =P(1)(P(h) — 1) = (P(h) —I)P(),

and so, for i € (0, 1],

H P(: +h;), -P@®) rnol v lopw) - P(s +h2l —P()
X n—1yn
=< Z mQ <he®,
n=2 n! u,v

where R = sup;.5(Q);;. In addition, one can show that ~~P(¢) is uniquely deter-
mined by either (5.2.14) or (5.2.15). In fact, suppose that ¢ € [0, 00) —> M(¢) €
M, (S) is a continuously differentiable and

M(t) =M()Q or M(r) = QM(r).

Then M(z) = 0 for ¢t > 0 if M(0) = 0. To see this, note that in either case,

t
IM®],., < 1Qluv fo M@, forallz>0
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and apply Gronwall’s inequality (cf. Exercise 5.5.5). Applying this to the difference
of two solutions of either (5.2.14) or of (5.2.15) one sees that the difference vanishes.

In applications, one often uses these ideas to compute 7~ uP(z) or t~~P(t)f for
probability vectors g or bounded column vectors f. That is, (5.2.14) and (5.2.15)
say that

d
E/LP(t) =uPH)Q with uP(0) =p
(5.2.16)

%P(t)f —QP(Of with P(O)f =T,

and, just as in the preceding, one can use Gronwall’s inequality to check that
t~>uP(t) and t~~P(¢)f are uniquely determined by these equations.

5.3 Unbounded Rates

Thus far we have been assuming that the rates R = {R; : i € S} are bounded. This
assumption simplified our considerations in several ways. For one thing, it allowed
us to use (5.2.2) to define and derive properties of #~~P(¢). Secondly, and more im-
portant, it allowed us to show that there exists a process that satisfies the conditions
(a) and (b) at the beginning of Sect. 5.2.1. The easiest way to understand what might
prevent one from constructing such a process is to look at the construction given in
Sect. 5.2.2. No matter what the rates are, the process (5.2.9) can be used to define

X (t) as long as t < Z;’le R;{l E,,. When the R;’s are bounded, and therefore
m—1

Yooy R;(l E,, = 00, X(7) is defined for all ¢ € [0, c0). However, when the R;’s
m—1
are unbounded, > >, R; E,, may be finite with positive probability, with the
m—1

result that X (t) will not be defined for all . In this section I will give conditions,
other than boundedness, that enable one to overcome this problem.

5.3.1 Explosion

The setting here is the same as the one in Sect. 5.2.2, only now we are no longer
assuming that the rates are bounded. Even so, as I just said, X (¢) is well-defined by

the prescription in (5.2.9) aslong as 0 <t < Jo = anozl R}T(l E,.
m—1

Our first step is to show that, with probability 1, Joo coincides with the time when
the process explodes out of the state space. To be precise, choose an exhaustion
{Fn : N > 1} of S by non-empty, finite subsets. That is, for each N, Fy is a non-
empty, finite subset of S, Fy € Fy41, and S = UN Fu. Next, take R to be the
set of rates given by

R, ifieFy

Rt
0 1fl¢FN.
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Then, for each N > 1, (5.2.9) with RN replacing R determines a Markov process
(XM (1) 1t > 0}. Moreover, if {y = inf{r > 0: XM (1) ¢ Fy}, then

IALN <Js and Xt ACN)=XNM(@tAZy) foralls> 0. (5.3.1)
To see this, choose n > 0 so that

JM

JN <t niy <0,

where féN) =0and

Becausef(m_leFNforl§m§n+1,fe< )=J~4<J~oofora1105£§n+1,and
SOt A g:N < Joo and fn <tA EN < fn+1. At the same time, it also means that

XAt =@t AN (B, Eny o), (Xosee s Xy o2))
=™ (AN (Ery o By ) (Ko Xy ) = XN A LY.

As a consequence of (5. 3 1), we know that X(N+1)(t A {N) XM A CN) for
all + > 0 and therefore that §N < §N+1 Hence the explosion time ¢ = limy_, o ;N
exists (in [0, 0o]).

Lemma 5.3.2 P = Joo) = | and so, with probability 1, X (1) is well-defined for
1 €[0,7).

Proof Because {§ # Jx} can be written as the union of the sets
£>T>Ju}UlJoo>T >¢)

as T runs over the positive rational numbers, in order to prove that § = J,, with
probability 1, (7.1.5) says that it suffices for us to show that

PE>T>Jx)=0=P(Joo>T >% foreach7 > 0.

To this end, ﬁrs~t suppose tpat PE>T > foo) > ( for some T'. Then there exists an
N such that P(¢y > T > Jo) > 0. On the other hand,

1 o
where R™Y) = sup; ¢ R;N ), and therefore we are led to the contradiction

oo
0<P@y>T=Jx) < IP’(Z Ep < R“V)T) =0.

m=1
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Ne)ft suppose that ]P’(jc,<> > T > ¢) > 0. Then there exists an n > 1 such that
P(J, > T > %) > 0. On the other hand, as N — oo,

P(J,>T>%) <P(J,>T >1y)

<P@E0<m <nX,, ¢ Fy) — 0.
That is, we know that P(J, > T > ¢) = 0. O
Lemma 5.3.3 IfPGE=00|X(0)=i)=1foralli €S and
(PM),; =P(X() = jIX(©0) =i),
then, for each initial distribution p and T > 0,

lim sup |uP™) (1) — puP@)| =0, (5.3.4)
N—001e(0,7]

where t~PW) (1) is the transition probability function in (5.2.2) when the Q-matrix
there is given by (Q(N))ij =1, ()R; (P — 1);;. Moreover, t~P(t) satisfies (5.1.9)
and {X (1) : t > 0} is a Markov process for which it is the transition probability
function. Finally, t~~P(t) satisfies Kolmogorov’s backward equation in the sense
that, for each (i, j) € S?,

(P, =51 + fo (QP(0), dr. (5.35)
where Q =R(P —1I) with (R);; = R;3; ;.
Proof First note that
P(e=00) =Y (m)iP(e=00|X(0)=i)=1,
ieS

and therefore that limy_ o P({y < T) =0 for each T € [0, 0c0). At the same time,
by Theorem 5.3.2,

|(kPN0); — (nPO)) ;| <P(X() =) &¢n < T)
forall0 <t <T and j € S. Thus,

sup |wP™M (1) — uP(1)|, <Py <T) — 0 as N — oo.
te(0,T]

Given (5.3.4), we have that

(P(s—i—t))ij = Nlim (P(N)(s+t))l.j = Nlim (P(N)(S)P(N)(t))l.j
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for each (i, j) € S2. In addition, by applying (5.3.4) with p = (P(s));., we know
that

(PGP()),, = ]vliillw(P(s)P(N)(t))ij

for each (i, j) € S2. Finally, again by (5.3.4), for each M > 1

Z (P(s))ik = ngnoo Z (PUV)(S))ik’

kEFM kEFM

and therefore, since

D (PE), =1- > (PG,

k¢ Fy keFy

we know that

> Py = lim 57 (PMs),.

k¢ Fy k¢Fy

Now let € > 0 be given, and use the preceding to choose an M such that

Z (P(N)(s))l.k <e forall N> M.
k¢ Fy

Then, for N > M,

|(POPO),; = POPYV @), | = 3 |(PO));, = (P 9), [ +e

keFy

Since, by (5.3.4), the first term on the right tends to 0 as N — oo, we have now
shown that P(r + s) =P(s)P(¢r). ~
To prove the Markov property, let A € o ({X(7) : T € [0, s]}) be given, and as-
sume that X (s) =i on A. Then, since, by (5.3.1),
AN{iy >syea({XM () 7 €[0,51}),

the Markov property for (XM (1) :1 >0} plus (5.3.1) and the result in Lemma 5.3.2
justify

P({Xs+n=j}na)= lim P{XV(s+0=j}nAn{ly >s))
= ngnoo(PW)(t))UP(A N{en > 5)) = (P®),;,P(A).

Finally, to check (5.3.5), note that, by (5.2.15) applied to {PY)(¢) : t > 0},

t
PN M), =8, +/0 (QPM(0)), dx
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as soon as N is large enough that i € Fy. Hence, since
1= (P(N)(T))kj - (P(T))kj

while Zk [(Q)ik| = 2R; < 00, (5.3.5) follows by Lebesgue’s dominated conver-
gence theorem. g

Theorem 5.3.6 Let Q be a Q-matrix and, for N > 1, determine the Q-matrix Q(N )
by (Q(N))ij =1£, (i)(Q)ij. Given a point AnotinS andani € S, there isa SU{A}-
valued, right continuous, piecewise constant stochastic process {X (t) : t > 0} with
the properties that

) PXO)=i)=1,

(2) for each N > 1 with i € Fy, {X(t A V) it > 0}, where ¢FN = inf{t > 0 :
X (1) ¢ Fy}, is a Markov process generated by Q)

B) ife=limy_ oo ¢V, then P(X (1) = A for t € [e, 00)) = 1.

Moreover, the distribution of {X (t) : t > 0} is uniquely determined by these prop-
erties. Finally, if P(¢ = 00) = 1, then {X (¢t) : t > 0} is a Markov process with the
transition probability function t~~P(t) described in Lemma 5.3.3.

Proof Let R and P be the canonical rates and transition probability determined
by Q, and define {}?(t) 1t €0, foo)} accordingly for ‘R and P with f((O) =i. Next,
set X(1) =X (1) if 1 € [0, Joo A %) and X (1) = A if t € [Joo A &, 50). Obviously,
P(X(0)=i)=1, v =y for all N > 1, and, by Lemma 5.3.2, P(e = ¢) = 1.
Hence, for each N > 1, X(r A V) = XM (1) for all 7 > 0, and so, if i € Fy,
then {X (t A ¢FN) : ¢t > 0} is a Markov process generated by QY ) starting at i, and
P(X(t)=A,t €[e,00)) =1.

To see that the distribution of {X(z) : t > 0} is uniquely determined, let
O0=tg< --- <tg and (o, ..., jx) € (SU{ADEK+! be given, and set A = {X (t;) = ji,
0<k <K} .If jo#i, then P(A) = 0. Thus, assume that jy =i, in which case,

K
P(A) =Y P(AN{tr-1 <e<t}) +P(AN{e > tk}).
=1

Foreach 1 <¢ <K+ 1,set Ay = {X(tx) = jx,0<k < £}. Then Ag,| = A and

0 if jy=Aforsome0<k </?
P(Aﬂ{t@,1<e§tg})= or jy # Aforsomel <k <K
P(AyN{e>1ty_1}) otherwise.
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Assuming that ji # A for 0 <k < { and that j, = A for ¢ <k <K,
. N
]P’(Agﬂ{e>tg_1})ZNII_I)HOOP(AEH{{( )>tg_1})
= lim P(X(x ACT¥) = ji.0<k <2
Jim POX( A €)= 0 <k <)
= lim P(X™ (1) = jx,0<k < ).
N—o00

Hence, in all cases P(A) is uniquely determined by (1), (2), and (3).
Finally, when P(¢ = 0o) = 1, then the last assertion is covered by Lemma 5.3.3. [J

As Theorem 5.3.6 makes clear, aside from the choice of A and the initial state i,
the distribution of the process {X (¢) : t > 0} and the random variable ¢ are com-
pletely determined by Q. For this reason, when P(¢ = co0) = 1, we say that the pro-
cess does not explode and will call any right continuous, piecewise constant process
with this distribution a Markov process generated by Q starting from i.

Corollary 5.3.7 Assume that explosion does not occur for any i € S. Then, for
each probability vector p on S there exists a right continuous, piecewise constant
Markov process {X (t) : t > 0} with initial distribution p such that, for each i € S
with p; > 0, the conditional distribution of {X (t) : t > 0} given that X(0) =i is
a Markov process generated by Q starting from i. In particular, the distribution
of such a process is uniquely determined by Q and p, and the function t~~P(t) in
Lemma 5.3.3 is the transition probability function for {X (t) : t > 0}.

Proof Foreachi € Slet {X;(t) : t > 0} be a Markov process generated by Q starting
from i, let X be a random variable with distribution g which is independent of
o({X;(t) :i e S&t >0}), and set X (t) = Xx,(¢). Then it is easy to check that
{X () : t = 0} has all the required properties. Furthermore, since the distribution of
X (0) is p and the conditional distribution of {X (¢) : # > 0} given that X (0) =i is
uniquely determined by i and Q when u; > 0, the distribution of {X (¢) : t > 0} is
uniquely determined by Q and u. g

We will call a right continuous, piecewise constant process whose distribution is
the one described in Corollary 5.3.7 a Markov process generated by Q with initial
distribution .

Remark Unfortunately, the relationship between Q and the process in Corol-
lary 5.3.7 is a quite unsatisfactory because it fails to give a direct connection. What
one would like is a description like that given in the conditions (a) and (b) at the
beginning of Sect. 5.2.1. Indeed, we know that our process is right continuous and
piecewise constant and has the specified initial distribution. Furthermore, we know
that it satisfies a weak form of (5.2.1). To be precise, because

P(X(t+h)=j1X(@), 7 el0,1]) = (P)) y
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and, by (5.3.5),
(P(),; =8ij + hQ+o(h) = (1 = hR)Sij + h(P(h)),; + 0i; (h),

where 0;;(h) is a function that, as & (0, tends to O faster than &, we have that, for
each (i, j) € S,

P(X(t+h)=j|X(0), 7 €[0,1]) = (1 = hR)Sij + h(P(h)),; + 0ij(h). (53.8)

What makes (5.3.8) significantly weaker than (5.2.1) is that the function o;;(h) de-
pends on i and j and, when fR is are unbounded, the rate at which it tends to O
will depend on them also. Using more sophisticated techniques, one can show that,
under the condition in Corollary 5.3.7, (a) together with the initial distribution and
(5.3.8) uniquely determine the distribution of {X (¢) : # > 0}, but these techniques
require material that we have not covered.

5.3.2 Criteria for Non-explosion or Explosion

In this subsection we will first develop two criteria that guarantee non-explosion:
¢ = oo with probability 1. We will also derive a condition that guarantees that ex-
plosion occurs with probability 1.

Theorem 5.3.9 If P is a transition probability matrix and if i € S is P-recurrent,
then for every choice of rates R, P(e = o0) = 1 for the process in Theorem 5.3.6
corresponding to the Q-matrix determined by R and P starting at i.

Proof By Lemma 5.3.2, what we must show is that P(Js, = 00) = 1. Equivalently,
if {X,, : n > 0} is a Markov chain with transition probability P with Xo =i and if
(En:n>1})isa sequence to mutually independent independent unit exponential
random variables that are independent of a({f( n - n > 0}), then we must show that
Z;’lO:O(R % y~"1E, = 0o with probability 1. To this end, let ,51.("’) be the time of the

mth return of {)~(,, :n >0} to i. Then the set A on which ﬁl.(m) < oo forallm>0is

a o ({X, : n > 0})-measurable set having probability 1, and
o %)
> Ry, )7 Enz= R Y Em,, onA.
n=0 m=1

Since, given a({f(n :n > 0}), {Eﬁgmﬂ :m > 1} is a sequence of mutually inde-

pendent, unit exponential random variables and therefore the subset of A for which
Yo Eﬁ_(m) 4 <00 has probability 0, the proof is complete. O

I will group our second non-explosion criterion together with our criterion for
explosion as two parts of the same theorem. In this theorem, the process is the one
in Theorem 5.3.6 determined by the rates ‘R and transition probability P.



5.3 Unbounded Rates 121

Theorem 5.3.10 If there exists a non-negative function u on S with the properties
that Uy =infj¢p, u(j) — 00 as N — oo and, for some a € [0, 00),

Z(P)iju(j) < (1 + %)u(i) whenever i € S and R; > 0,
jes !

then P(e = 00| X (0) =i) =1 for all i € S. On the other hand, if, for some i € S,
R; > 0 whenever i— j and there exists a non-negative function u on S with the
property that, for some € > 0,

3 @) k) <ul) - Ri whenever i— J,
{k:i—k} J
then P(e = 00| X (0) =i) =0.
Proof To prove the first part, for each N > 1, set u¥)(j) = u(j) when j € Fy
and uM)(j) = Uy when j ¢ Fy. It is an easy matter to check that if QWV) =
RM (P — 1), where (RM); = Rl.(N)(S,-, j»and u™ is the column vector determined
by @™); = u™(j), then, for all i € S, (QWu™); < au™ (i). Hence, by Kol-

mogorov’s forward equation (5.2.14) applied to the transition probability function
t~-PWM (1) corresponding to QV),

dit M (™) <PV Hu?)

i’
and so, by Gronwall’s inequality, (PN (T)u™); < 2Ty ™) (i). But, since
uM(XNT)) =u™M (XN @y) = Uy ifen <T,

this means that

Py <T|X(0)=i) < UL]E[MN)(X(N)(T)) | X(0)=1i]
N

CO@uM); e Tu™) e Tul)

= ifiEFN,
Un Uy Uy

and so, by the monotone convergence theorem, we have now proved that
P(e <T|X(0)=1i) <limy-ocP(¢y <T[X(0)=i) =0.

In proving the second assertion, we may and will assume that i — j for all j € S.
Now take u™) (j) = u(j) if j € Fy and u™)(j) =01if j ¢ Fy, and use u™) to de-
note the associated column vector. Clearly QM) j s either less than or equal
to —e or equal to 0 according to whether j € Fy or j ¢ Fy. Hence, again by Kol-
mogorov’s forward equation,

d
Z(EM0u™); < —elp, () 3 PV 0) .
keFy
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and so
E[u™ (XM (1)) | XM (0) =i] — u™ (i)

T
< —e]E[/ 15, (XM (@) dt ‘ XM ) = ,} =—€E[T Atn | XM 0) =i].
0

Since u™ > 0, this means that E[¢y|XN(0) = i] < %’) for all N, and so
E[e|X (0) = i] < “© < 0. O

5.3.3 What to Do when Explosion Occurs

Although I do not intend to repent, I feel compelled to admit that I have ignored
what, from the mathematical standpoint, is the most interesting aspect of the theory
under consideration. Namely, so far I have said nothing about the myriad options
one has when explosion occurs with positive probability, and in this subsection I
will discuss only the most banal of the many choices available.

In Theorem 5.3.6, when explosion occurred I banished the process to a state A
outside of S. This is the least imaginative option and, for reasons that I will not
attempt to explain, is called the minimal extension. It always works, but it has the
disadvantage that it completely ignores the manner in which the explosion took
place. For example, when S = Z, explosion can occur because, given that ¢ < oo,
lim; . X () = +o0 with probability 1 or because, although lim; ~. | X (t)| = oo with
probability 1, both lim; ». X () = 400 and lim; ». X (t) = —o0 occur with positive
probability. In the latter case, one might want to record which of the two possibilities
occurred, and this could be done by introducing two new absorbing states, A for
those paths that escape via +00 and A_ for those that escape via —oo.

Alternatively, rather than thinking of the explosion time as a time to banish the
process from S, one can turn it into a time of reincarnation by redistributing the
process over S at time ¢ and running it again until it explodes, etc. Obviously, there
is an infinity of possibilities. Suffice it to say that the preceding discussion barely
scratches the surface.

5.4 Ergodic Properties

In this section we will examine the ergodic behavior of the Markov processes which
we have been discussing in this chapter. Our running assumption will be that the
process with which we are dealing is a continuous time Markov process of the sort
described in Sect. 5.2 under the condition that there is no explosion.
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5.4.1 Classification of States

We begin by classifying the states of S.

Given a Q-matrix Q, let (cf. (5.2.12)) R and P be the canonical rates and transi-
tion probability that it determines. Then from Theorems 5.2.10 and 5.3.6, it is clear
that the states visited by a Markov process generated by Q starting from a state i are
exactly the same as those visited by the Markov chain with transition probability P
starting from i. Hence, we will say that i is Q-recurrent or Q-transient if and only
if it is recurrent or transient for the Markov chain with transition probability P. In
particular, i is Q-recurrent if R; = 0. Similarly, we will say that j is Q-accessible

from i and will write i g j if and only if P;'j > 0 for some n > 0, and we will say

that i Q-communicates with j and will write i <—Q> j if and only if i —Q> jand j g i.

From the results in Sect. 3.1, we know that Q-accessibility is a transitive relation
and that Q-communication is an equivalence relation. In addition, Q-recurrence and
Q-transitivity are Q-communicating class properties. Thus, if the state space S is Q-
irreducible in the sense that all states Q-communicate with one another, then either
all its states are Q-recurrent or all are Q-transient.

I next want to describe these results in terms of the paths of the associate Markov
process. Thus, let {X(¢) : t > 0} be a Markov process generated by Q. In order to
describe the analog of the first return time to a state i, let J,, be the time when the
process makes its nth jump. That is,

I = inf{t > 0: X(t) #X(t—)} ifn=1
" |inf{t > Juo1 X £ X@—)) ifn>1,

where X (f—) =limg », X (s). Then the first return time to i is

oi =inf{t > J; : X (1) = i}.

More generally, define ai(()) =0, oi(l) =o0j,and, form > 1,
(m) inf{t > Joyy: X () =i} if al.(m_l) =Jy<o0
g = e _(m=1) _
o0 if o = 00.

We will call al.(m) the mth return time to i.

Clearly, i is Q-recurrent if and only if P(0; < co| X (0) =i) = 1. Furthermore, if
i is Q-recurrent, then, with probability 1, a process started at i returns to i infinitely
often. To see this, let {X, : n > 0} be a Markov chain with transition probability
P, and observe that, by Theorems 5.2.10 and 5.3.6, P(ai(m) <o) = ]P’(,oi(m) < 00),

where p™ is the mth return time of {X,, : n > 0} to i. Thus, by Theorem 2.3.6, for

1
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any (i, j) €S> and m > 1

P(o™ < 00| X(0) =i)

-1

=P(0; <00 | X(0) =i)P(c{™ < 00| X(0) = j)" (5.4.1)

Just as in the case of chains, these considerations are intimately related to the
amount of time that the process spends in a state. Indeed,

E[/O l{j}(X(t))dt‘X(0)=i:|
o_(erl)

- ZE[/ LX) d o™ < oo ) X(0) =o}.
m=0

(m)
%j

Furthermore, using the notation in Theorem 5.2.10 and letting &;m) denote the mth
return time of {f((t) :t >0} to j, we have that

o_(.m+1)

|/,

(m)
J

1(X () dt, a}'”) <0 ‘ X(0) = 0}

o0
=Y E[eri = Jeo" = st < 00| X(0) =i]

L Y P(E" = Jisr < 00| X(0) =i)

P(&;’”) <00|X(0)=i) Po" <00|X(0)=1)
a R; a R;

0 ifP(o; <oo|X(0)=i)=0
oo ifRj=0andP(o; <oco|X(0)=i)>0

P(oj <00 | X (0)=i)P(0j <00 | X (0)=j)™m—D"

7 otherwise.
J

Hence, by exactly the argument with which we passed from Theorem 2.3.6
to (2.3.7), we now know that
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00 _ 1 P(o; < 00| X (0) =i)>
E I (XO)dt | XO0)=i|=—|6 ; :
UO b (X@)dt | X(0) ’} Rj( 7 Blo; =0l X(0) = ))

]EUOO 1(X (1)) dt ‘ X(0) = i] — 0
0

— P(/OO 1) (X (1)) dt = 00 ( X(0) :i) —1 (5.4.2)
0
E[/ool{i}(X(t))dt ‘ X (0) :i] <00
0

— P(/OO 1(X (1)) dt < o0 ‘ X(0) =i) —1,
0

where, in the first line when R; = 0, the right hand side is oo if either i = j or
P(o;| X(0) =i) >0andis 0if i # j and P(o; | X (0) =i) = 0. In particular, when i
is Q-transient, the expected amount of time that the process spends at j is uniformly
bounded independent of its initial distribution.

Our final goal in this subsection is to prove the following statement.
Theorem 5.4.3 For any given state i € S, the following are equivalent:

(1) i is Q-recurrent.

(2) Thereisat € (0, 00) such that i is recurrent relative to the transition probability
P(1).

(3) i is recurrent relative to P(t) for all t € (0, 00).

Proof We will prove this equivalence by checking that the same equivalence holds
when “recurrent” is replaced throughout by “transient.” To this end, first observe
that

EUOO 1y (X ) dr | X(0) =i:| = /OO(P(t))l.l.dt,
0 0

and therefore, from the first line of (5.4.2), that
oo
i is Q-transient <= / (P(1)),; dt < oo. (5.4.4)
0

Next, notice that for 0 <'s <1,
(P(t))ii > (P(r - S))ii (P(S))ii ze (IR (P(S))ii (5.4.5)
since (P(h));; = P(J; > h|X(0) =i) = e "Ri Hence, forany r >0 and n € N,
(PO)"h),, = (P((n+ Dr)),, = e "Ri(P(r)),, forallt €[nt, (n+ ]
and

P, = (P0), < ()

i ii ii

forall T e [nt, (n+ l)t].
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Since this means that
0 00 0
te” RN (P@)"), 5/0 (P()),; dt <te'™ > " (P(0)"*"),..
n=0 n=0

the asserted implications are now immediate from (5.4.4). O

5.4.2 Stationary Measures and Limit Theorems

In this subsection I will prove the analogs of the results in Sects. 4.1.6 and 4.1.7,
and, because periodicity plays no role here, the statements are simpler.

Theorem 5.4.6 Foreach j €S
#j; = lim (P(1)) ;  exists
and

,l_iglo(l)(t))ij Zﬁ'ij EP(J/ < 00| X(0)= i)ﬁjj fori # j.

Moreover, if jj > 0, then wj; > O foralli e C ={i :i <9> j}, and when the row vec-

tor #€ is determined by #)i =1c() A, 7€ is, for each s > 0, the unique prob-
ability vector p € Stat(P(s)) for which (n)r =0 if k ¢ C. In fact, if u € Stat(P(s))
for some s > 0, then, for each j € C,

(n);= (Z(ﬂ)i)ﬁjj-
i<j

Proof We begin with the following continuous-time version of the renewal equation
(cf. (4.1.6)):

(P(t))ij — e IR 8ij + ]E[(P(t - (’j))jj’ oj <t|X(0)= i]. 547
The proof of (5.4.7) runs as follows. First, write (P(¢));; as
IF’(X(t) =j&J;>1t|X(0) =i) —HP’(X(t):j&Jl §t|X(O)=i).

Clearly, the first term is O unless i = j, in which case it is equal e’ Ri To handle
the second term, write it as

ZIP’(X([):j&oszm§t|X(0)=i),

m=1
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and observe that (cf. (5.2.9) and (5.2.11))

P(X()=j&oj=Jn<t|X(0)=i)

:]P)(gb%(t_ jmv (Em+lv --~7Em+n7 ---)»(j»Xm+lv~--7Xm+ns )) :J
&&;=Jn <t| Xo=1i)
=E[(P(t = Jm)) ;.05 = Jm <1| X (0) = ].

Hence, after summing this over m > 1 and combining this result with the preceding,
one arrives at (5.4.7).

Knowing (5.4.7), we see that the first part of the theorem will be proved once
we treat the case when i = j. To this end, we begin by observing that, because, by
(5.4.5), (P(s));; = e *Ri >0 forall s >0 and i €S, each i is aperiodic relative
to P(s), and so, by (4.1.15), we know that 7 (s);; = lim,,_, o (P(s)");; exists for all
s >0 and i € S. We need to show that 7 (1);; = lim;—, oo (P(¢));; for all ¢ > 0, and
when 7 (1);; =0, this is easy. Indeed, by (5.4.5),

l@o(P(t))ii <elt z@(l’(m +1)), = efim (i,

where [7] denotes the integer part of 7.

In view of the preceding, what remains to be proved in the first assertion is that
lim;_, o (P(2))i; = 7w (1);; when 7 (1);; > 0, and the key step in our proof will be
the demonstration that 7 (s);; = 7 (1);; for all s > 0, a fact which we already know
when 7 (1);; = 0. Thus, assume that 7 (1);; > 0, and let C be the communicating
class of i relative to P(1). By Theorem 5.4.3, C is also the communicating class
of i relative to P(s) for every s > 0. In addition, because 7w (1);; > 0, i is recurrent,
in fact positive recurrent, relative to P(1), and therefore, by Theorem 5.4.3, it is
also recurrent relative to P(s) for all s > 0. Now determine the row vector n(l)c
so that (n(l)c)j =1¢(j)m(1);;. Then, because 7 (1);; > 0, we know, by Theo-
rem 4.1.10, that Jt(l)c is the one and only p € Stat(P(1)) which vanishes off of C.
Next, given s > 0, consider u = n(l)CP(s). Then p is a probability vector and,
because (P(1)) jx =0 when j € C and k ¢ C, p vanishes off of C. Also, because

uP(1) =z ()PP =2 (1) P(s + 1)
=z (HPP(s) = w(HP(s) =,
[ is stationary for P(1). Hence, by uniqueness, we conclude that T (DEP(s)
= (1)€, and therefore that  (1)€ is a stationary probability for P(s) which van-

ishes off of C. But, by (4.1.8) and the fact that C is the communicating class of i
relative to P(s), this means that

x(ii = (= (D), = (Z(n(l)c)j)n(s)i,- = 7(s)ii-

jeC
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To complete the proof of the first part from here, note that, by (5.4.5),
e Fi(P(ns)) ; < (P®);; <™ (P((n +1)s)) ,;  whenns <t < (n+ Ds,
and so, since 7 (s) j; = (1) j; and P(nt) =P(1)",

—sR; T [Fee sR; N
e i (1) 511_1)_r20(P(t))jj gtgrgo(P(z))jj <eNin(1)j;.

Now let s N\ 0, and simply define 77;; = (1) ;.
Given the first part, the proof of the second part is easy. Namely, if 77;; > 0 and

C={i:i g Jj1, then, for each s > 0, we know that C is the communicating class
of j relative to P(s) and that 7t = 7 (s)C e Stat(P(s)). Conversely, by (4.1.8), we
know that if u € Stat(P(s)) for some s > 0, then

(u),:( > <u>i>n<s>j./=< > (;L)i)ﬁj,.
Q

{i:ic>j} {i:ij}

O

With the preceding result in mind, we will say that i is Q-positive recurrent if
7;; > 0 and will say that i is Q-null recurrent if i is Q-recurrent but not Q-positive
recurrent. From the preceding and Theorem 4.1.10, we already know that Q-positive
recurrence is a Q-communicating class property.

The following corollary comes at very little additional cost.

Corollary 5.4.8 (Mean Ergodic Theorem) Assume that j is Q-positive recurrent
and that P(X (0) & j) = 1. Then,

I 2
TlewE[<7/() l{j}(X(t))dt—JTjj> i|=0.
See Exercise 5.5.11 for the more refined version.

Proof The proof is really just an obvious transcription to the continuous setting
of the argument used to prove Theorem 4.1.14. By precisely the argument given
there, it suffices to handle the case when #€ is the initial distribution, where

C={i :j<(—2>i}. Thus, if f =1;;} — &;;, what we need to show is that

T 2
TlimmE[(%[) f(X(t))dt) ]:0,

when 7€ is the distribution of X (0). But, because 7€ is P(¢)-stationary,
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E[(% /OT f(X(t))dt)z] _ %/OT</OIIE[f(X(s))f(X(t))]ds) dar
= % OT</Otoz(t —s)ds)dt
= %/()T(l - %)a(t)dt,

where a(t) = 7€ (fP()f), f being the column vector corresponding to the function
f and fP(#)f being the column vector determined by (fP(¢)f); = f@)P@)D);.
Finally, since, for each i € C, lim,, o (P(¢)f); = 0, lim,, o a(t) = 0, and there-

fore
Z/T 1 ! (H)dt
7 Jo T )"

5.4.3 Interpreting and Computing w;;

2 T
5?/ la(t)|dt — 0 as T — oo. O
0

Although we have shown that the limit 7; = lim; o (P(7));; exists, we have yet
to give an expression, analogous to the one in (4.1.5), for 77;;. However, as we are
about to see, such an expression is readily available from (5.4.7). Namely, for each
o > 0, set

L(a)ij Z(IE[/ooe_ml{j}(X(Z)) dt ’ X(0) Zii| Z(x/ooe_m(P(t))U dt.
0 0 ’

Because 71;; = lim;_, o (P(2));i, the second of these representations makes it is easy
to identify 77;; as limg~ o L(e);;. At the same time, from (5.4.7), we see that

+ E[e_‘m"

o
L(e)ii = " X(0) =i]L(@)i;.

+ Ri
Hence, since

1 —E[e™®% | Xo=i] E[l—e | Xo=i]
[07 - o

— Elo; | Xo =ri]

if R > 0and P(o; =00 | X9 =1i) =1 if R; =0, we have now shown that

1 if R =0
if R; >0,

A

Tii = |
RiElo; [ X (0)=i]
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which, in conjunction with the second equality in Theorem 5.4.6, proves that

) 8i,j+ =6 j)H)P(oj <oolX(0)=i) ifR; =0 (5.49)
Tij = Y P(o;<oo| X (0)=i) . A
ijE[aj|X(0):j] if Rj > 0.

Of course, as an immediate corollary of (5.4.9), we now know that i is positive
recurrent if and only if either R; =0 or E[o;| X (0) =i] < o0.

Finally, we will apply the results in Sect. 3.2 to the setting here. To this end, first
observe that as an immediate consequence of (5.2.2), for any probability vector u,

Q=0 << uP@) forallzr > 0 when R is bounded. (5.4.10)

Theorem 5.4.11 Assume that S is finite and that there is only one stationary prob-
ability &t for t~~P(t). Then 0 is a simple eigenvalue of Q and
L det(O)') det((=Q)")
()i = = 0
-9 > jes det((—Q)Vh)

forallieS.

Proof The argument is essentially the same as the one for chains. To see that 0 is a
simple eigenvalue, suppose not. Then there exists a column vector v # 0 such that
Qv =0 and zv = 0. By (5.4.10), v=P(¢)v for all 7 > 0, and so Theorem 5.4.6
leads to the contradiction

v= lim P(t)v=(v,T)cs1=0.
—>00

Knowing that 0 is a simple eigenvalue and that Q1 = 0, the proof of the sec-
ond assertion is precisely the same as the proof of the analogous result in Theo-
rem 3.2.6. O

The reason why I wrote the equation for 7 in terms of —Q instead of Q is that,
by arguments like those in the chain case, (—Q)!} is non-negative for all i and is
strictly positive for Q-recurrent i’s.

5.5 Exercises

Exercise 5.5.1 The purpose of this exercise is to give another derivation of (5.1.5).
Let {E, : n > 1} be a sequence of mutually independent, unit exponential random
variables, and define {J,, : n > 0} and {N(¢) : t > 0} accordingly, as in Sect. 5.1.1.
Given0=1ty <--- <ty and 0 =ng < --- < ng, use the change of variables formula
for multi-dimensional integrals to justify:
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P(N(t1))=niy,...,N(tL) =np)
:P(Jnl =n< Jn1+l» cee JnL << JnL+l)

np+1

:/.../exp<— > éz) dgy---d&y 41
A (=1
:/---/e_”’1L+1 dnl"'dnnLJl‘l

B

L L

tr —tr_ ng—ng—1

:e*[LHvol(Ae):He*(t[*te—l)(z(n Z_;) T
=1 =1 £ Re-1r

where

ne+1

ne
A={(sl,...,smme(o,oow“ Y Ei<t< ) gforl<e<Ly,
1 1

B={(,.... 1 +1) € (0, 00)"- T :
ni <nit1forl <i <np &np, <te < Nuypt1 forlgESL},
Ap = {(ul,...,un[,n,}l) eRU 1y 1<y <---< Ung—ng_, fl‘(}.

When ny =ny_1 for some £’s, begin by choosing 0 =£¢g < --- < £g = L so that
ng =-+-=ng,,—1 <ng,, for0 =<k < L. Show that

P(N(te)=t,, 1 <t <L)
=P(n,, <te & Jny_ 41 <ty—1, 1 =k < Kand Jy, 11 > 11),
and, proceeding as above, conclude that
P(N(te) =1, 1 <€ <L)
L

K - _
L 1—[ (ty, —tg,—1)" k" ) l—[ (te — 1"t 7"

(ng, —ng—1)! (ng —ng—1)!

k=1 =1

Exercise 5.5.2 Let M and M be commuting elements of M, ,(S). After checking
that

m
m _
(M; +My)" =) (E>M‘fM§” ‘
=0
for all m € N, verify (5.1.9).

Exercise 5.5.3 Given a Q-recurrent state i, set C = {j : i <9> j}, and show that
R; >0 = R;>O0forall j €C.
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Exercise 5.5.4 Gronwall’s is an inequality which has many forms, the most ele-
mentary of which states that if u : [0, T] — [0, 0c0) is a continuous function that
satisfies

t
u(t)§A+B/ u(r)dr fortel0,T],
0

then u(r) < Ae®’ for t € [0, T]. Prove this form of Gronwall’s inequality.

Hint: Assume that B # 0, set U(¢) = [y u(t)dz, show that U(t) < A+ BU (1), and
conclude that U (¢) < 4 (eB' — 1).

Exercise 5.5.5 In this exercise we will give the continuous-time version of the
ideas in Exercise 2.4.1. For this purpose, assume that S is irreducible and positive
recurrent with respect to Q, and use 7 to denote the unique probability vector which
is stationary for each P(¢), t > 0. Next, determine the adjoint semigroup {P(t)—r :
t > 0} so that

() (P()) ji
PO, =—L—L
J ()i
(a) Show that P(¢) 7 is a transition probability matrix and that #P@@)" = 7 for each
¢ > 0. In addition, check that {P(t) T : 7 > 0} is the semigroup determined by the
Q-matrix QT , where

Q). = ();(Q)ji
g ®)i
(b) Let P and PT denote the probabilities computed for the Markov processes cor-
responding, respectively, to Q and QT with initial distribution 7. Show that PT

is the reverse of P in the sense that, foreachn e N,0 =1t <t <--- <t,, and
Gos -y ju) € S"HL

]P’T(X(tm) = jy for0 <m < n) =P(X(tn —ty) = jmfor0<m §n).
(c) Assume that R; = —(Q);; > 0 forall i € S, and define PT by

() (Q) i

P'). . =(1-68)—.

e e

Show that P is again a transition probability matrix, and check that QT =
R(PT — 1) where (R);; =8; ; R;.

Exercise 5.5.6 Take S = N and (P);; equal to 1 or 0 according to whether j =i +1
or not. Given a set of strictly positive rates R, show that, no matter what its initial
distribution, the Markov process determined by R and P explodes with probability
1if 3, B! < oo and does not explode if 3, .y R, = 0.
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Exercise 5.5.7 Here is a more interesting example of explosion. Take S = Z3, and
let (cf. Exercise 3.4.1) P be the transition probability matrix for the symmetric, near-
est neighbor random walk on Z3. Given a set of positive rates 9 with the property
that )\ .73 R ' < 00, show that, starting at every k € Z3, explosion occurs with
probability 1 when (Q)x¢ = Rk ((P)ke — Sk ¢)-

Hint: Apply the criterion in the second half of Theorem 5.3.10 to a function of the
form

3 >

> ( Z(k»—(e) ) :
Le73 Re i=1

and use the computation in Exercise 3.4.1.

Exercise 5.5.8 Even when S is finite, writing down a reasonably explicit expres-
sion for the solution to (5.2.15) is seldom easy and often impossible. Nonetheless, a
little linear algebra often does quite a lot of good. Throughout this exercise, Q is a
Q-matrix on the state space S, and it is assumed that the associated Markov process
exists (i.e., does not explode) starting from any point.

(a) Ifue CSisa bounded, non-zero, right eigenvector for Q with eigenvalue « € C,
show that the real part of @ must be less than or equal to O.

(b) Assume that N = #S < 0o and that Q admits a complete set of linearly in-
dependent, right eigenvectors uy,...,uy € C5 with associated eigenvalues
o1,...,ay. Let U be the matrix whose mth column is u,,, and show that

A o\ (H)U™!, where A(t) is the diagonal matrix whose m diagonal entry is
elom,

Exercise 5.5.9 Here is the continuous analog of the result in Exercise 4.2.7. As-
sume that i is Q-recurrent and R; = —(Q);; > 0, set

i =1EUm l{j}(X(t))dt‘X(O)zi] €[0,00] forjeS,
0

and let ft be the row vector given by (jt); = ft; for each j € S.

(a) Show that f1; = RL,-’ fi; <ooforall j €S, and that i; > 0if and only if i <9> j.
(b) Show that ji = iP(¢) for all 7 > 0.

Hint: Check that

s+o;
(ﬁP(s)),:]EU 1{1}(X(f))df‘x(0)=i]

and that

s+0; s
]EU l{j}(X(t))dt‘X(O)zi]zE[/o l{j}(X(t))dt‘X(O)zi].
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(c) In particular, if i is Q-positive recurrent and C = {j : i g Jj}, show that jt =
Qi j)ftc. Equivalently,

(#6) = B Iy X©)di X0 =]
g Elo; | X (0) =]

Exercise 5.5.10 Having given the continuous-time analog of Exercise 4.2.7, we
will now give the continuous-time analog of Exercise 4.2.9. For this purpose, again
let i be a Q-recurrent element of S with R; = —(Q);; > 0, and define the measure
ft accordingly, as in Exercise 5.5.9. Next, assume that b € [0, oo)S satisfies the con-
ditions that:

»); >0, (#;=0 ifP(oj <oo|X(0)=i)<1, and Q=0

in the sense that R;(V); = Zk# () Qy; forall j € S.# The goal is to show that
b = R;(9); it. Equivalently,

), = Ri(ﬁ)iE[/Oi 1, (X)) drt ‘ X(0) = i] forall j €.
0

In particular, by Exercise 5.5.9, this will mean that ¥ = pP(¢) for all 7 > 0.
In the following, P and R are the canonical transition probability and rates de-

termined by Q.
(a) Define the row vector v so that (v); = I;’: E:;’ , and show that v = vP.
(b) By combining (a) with Exercise 4.2.7, show that

pi—1
), =E[Z 1) (Xn) ‘Xo=l},

m=0

where {X,, : n > 0} is the Markov chain with transition probability matrix P.
(c) Show that

o pi—1
RJE[/ L) (X(®)dt ‘ X(0)= i} = E[Z 1 (Xm) ) Xo = i],
0 m=0
and, after combining this with (b), arrive at the desired conclusion.
Exercise 5.5.11 Following the strategy used in Exercise 5.5.10, show that, under
the hypotheses in Corollary 5.4.8, one has the following continuous version of the

individual ergodic theorem:

p( tim |Lr —2€[,=0) =1,

4The reason why the condition $Q = 0 needs amplification is that, because Q has negative diagonal
entries, possible infinities could cause ambiguities.
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where C ={i : j 2) i} and L7 is the empirical measure determined by

1 T
(LT)iZT/ 15 (X (1) dt.
0

In addition, again following the strategy in Exercise 5.5.10, show that, for any
initial distribution,

T—o0

1 T
IP’< lim —/ l{j}(X(t))dt =0> =1
T Jo
when j is not Q-positive recurrent.

Exercise 5.5.12 Given a Markov process {X (¢) : + > 0} with Q-matrix Q and an
R > 0, one can produce a Markov process with Q-matrix RQ by speeding up the
clock of t~~ X (t) by a factor of R. Thatis, {X (R¢) : t > 0} is a Markov process with
Q-matrix RQ. The purpose of this exercise is to carry out the analogous procedure,
known in the literature as random time change, for variable rates. To be precise, let
P be a transition probability matrix on S with (P);; = 0 for all i. Choose and fix
ani €S, let {X, : n > 0} be a Markov chain starting from i with transition prob-
ability matrix P and {N(¢) : t > 0} a simple Poisson process which is independent
of c({X, :n > 0}), and set X°(¢) = X?V(z) for t > 0. That is, {X°(¢):¢ >0} is a
Markov process with Q-matrix (P — I) starting from i. Finally, let R be a set of
positive rates, and take Q = R(P — I) accordingly.

(a) Define

t
1
A(t):/ dt fort € [0, 00),
0 fXx%)

observe that 1~ A(t) is strictly increasing, set A(oo) = lim; »0 A(t) € (0, 0],
and use s € [0, A(c0)) —> A~l(s) € [0, 00) to denote the inverse of 1~~A(7).
Show that

N
A—l(s)=/0 Ryoa-1(gydo, s €[0,A(c0)).

(b) Set X(s) = X°(A~!(5)) for s € [0, A(c0)). Define J§ =0 = Jo and, for n > 1,
J,? and J,, to be the times of the nth jump of £~»X%(r) and s~ X (s), respectively.
After noting that J,, = A(J,?), conclude that, foreachn > 1,5 >0, and j €S,

P(Jy = Juo1 > s & X () = j | X(0),0 €0, J,))

= e_lRX(J'l*”(P)X(Jn_])j on {J,_| <oo}.

(c) Show that the explosion time for the Markov process starting from i with
Q-matrix Q has the same distribution as A(co). In particular, if A(co) = oo
with probability 1, use (b) to conclude that {X (s) : s > 0} is a Markov process
starting from i with Q-matrix Q.
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(d) As aconsequence of these considerations, show that if the Markov process cor-
responding to Q does not explode, then neither does the one corresponding to Q’,
where Q' is related to Q by (Q');; = «;(Q);; and the {e; : i € S} is a bounded
subset of (0, 00).



Chapter 6
Reversible Markov Processes

This chapter is devoted to the study of a class of Markov processes that admit an ini-
tial distribution with respect to which they are reversible in the sense that, on every
time interval, the distribution of the process is the same when it is run backwards
as when it is run forwards. That is, for any n > 1 and (ig, ..., i,) € E"! in the
discrete time setting,

P(X,, =iy forO<m<n)=P(X,,_, =i, for0<m <n) 6.0.1)
and in the continuous time setting,
P(X (tm) = im for 0 <m < n) =P(X (ty — tm) = im for 0 <m < n) (6.0.2)

whenever 0 = #p < --- < t,,. Notice that the initial distribution of such a process is
necessarily stationary. Indeed, depending on whether the setting is that of discrete
or continuous time, we have

PXo=i&X,=j)=P(X,=i&Xo=j) or
P(X(O0)=i&X(1)=j)=P(X(1)=i & X(0) =),

from which stationarity follows after one sums over j. In fact, what the preced-
ing argument reveals is that reversibility says that the joint distribution of, depend-
ing on the setting, (Xo, X,) or (X(0), X(¢)) is the same as that of (X,, Xo) or
(X (1), X (0)). This should be contrasted with the stationarity which gives equality
only for the marginal distribution of the first components of these.

In view of the preceding, one should suspect that reversible Markov processes
have ergodic properties that are better than those of general stationary processes,
and in this chapter we will show that this suspicion is justified.

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 137
DOI 10.1007/978-3-642-40523-5_6, © Springer-Verlag Berlin Heidelberg 2014
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6.1 Reversible Markov Chains

In this section we will discuss irreducible, reversible Markov chains. Because the
initial distribution of such a chain is stationary, we know (cf. Theorem 4.1.10) that
the chain must be positive recurrent and that the initial distribution must be the
probability vector (cf. (4.1.5) and (4.1.9)) & = 7S whose ith component is (x); =
E[p;|Xo =i]""'. Thus, if P is the transition probability matrix, then, by taking n = 1
in (6.0.1), we see that

(m)iP)j =PXo=i& X1 =j)=PXo=j & X1 =i)=(x);(P);.
That is, P satisfies!
(m)i(P);jj = () j(P)j;i, the detailed balance condition. 6.1.1)

Conversely, (6.1.1) implies reversibility. To see this, one works by induction on
n > 1 to check that

i Pigiy = Piy_riy =i, Piiin_y = Pijigs

which is equivalent to (6.0.1).

6.1.1 Reversibility from Invariance

As we have already seen, reversibility implies invariance, and it should be clear that
the converse is false. On the other hand, there are two canonical ways in which one
can pass from an irreducible transition probability P with stationary distribution
to a transition probability for which m is reversible. Namely, for such a P, (x); > 0
for all i € S, and so we can define the adjoint PT of P so that

(@i

.
(P, = o 6.1.2)

Obviously, x is reversible for P if and only if P = PT. Moreover, because 7P = 7,
P is again a transition probability. In addition, one can easily verify that both

P+PT
2

and P'P (6.1.3)

are transition probabilities that are reversible with respect to . As is explained in
Exercise 6.6.7 below, each of these constructions has its own virtue.

I The reader who did Exercise 2.4.1 should recognize that the condition below is precisely the same
as the statement that P=P". In particular, if one knows the conclusion of that exercise, then one
has no need for the discussion which follows.
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6.1.2 Measurements in Quadratic Mean

For reasons which will become increasingly clear, it turns out that we will want here
to measure the size of functions using a Euclidean norm rather than the uniform
norm || f||y. Namely, we will use the norm

1fll2e = J(IF12),  where (g)z = g(D)(m); (6.1.4)

is the expected value of g with respect to . Because (x); > O for each i €S, it
is clear that || fll2, =0 <= f = 0. In addition, if we define the inner product
(f, &) tobe (fg)x, then, for any ¢ > 0,

_ 2 _
0<|tf £ 7|5 =221 F15 5 £2(f, &)x + 172l 1

and so |(f, g)x| < tZIIfII%J + t_zllgllg,n for all + > 0. To get the best estimate, we
minimize the right hand side with respect to # > 0. When either f or g is identically
0, then we see that (f, g) = 0 by letting t — oo or t — 0. If neither f nor g

. . . . 1 .
vanishes identically, we can do best by taking t = ( ‘ll‘fll‘llzz’” )4. Hence, in any case, we

arrive at Schwarz’s inequality

[(f.&)x| <1 fll2zlgll2 - (6.1.5)

Given Schwarz’s inequality, we know

2
If+8l5, =1f15,+20(f &) + 185, < (1fll2z + lIgl2r)™-

That is, we have the triangle inequality:

If +gllzz = I1fll2.n +lIgll2z- (6.1.6)

Thus, if L2(x) denotes the space of f for which || f|l2.x < oo, then L%(w) is a
linear space for which (f, g)~=|f — gll2.x is a metric. In fact, this metric space
is complete since, if lim;;— o0 SUP,, | fn — fmll2,z =0, then {f,(@) : n > 0} is
Cauchy convergent in R for each i € S, and therefore there exists a limit function f
such that f,,(i) —> f (i) for each i € S. Moreover, by Fatou’s lemma,

If = funlzm = lim | fu = fiulloe — 0 asm — oo.
n—00

In this chapter, we will use the notation
Pf(i) = f()(P); = (P,
JjeSs

where f is the column vector determined by f. When f is bounded, it is clear that
P f(i) is well-defined and that [P f[ly < || f|lu, where [g[lu = sup;cs [g()] = lIgllu
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when g is the column vector determined by g. We next show that, even when f €
L%(r), Pf(i) is well-defined for each i € S and that P is a contraction in L*(rr):
IPfll2.x <l fll2.x- Tocheck that P f (i) is well-defined, we will show that the series
> jes f(j)(P);; is absolutely convergent. But, by the form of Schwarz’s inequality
in Exercise 1.3.1,

1

i P\ 2
DD ®@ =Y |V e @ )’ =< I/l ,,(Z )

JjEeS JjEeS ( )]

and, by (6.1.1),

®; 1 (P?);;
%H <_2;; DB = Gy =

As for the estimate ||Pf|2.x < |[fll2,=, we use Exercise 6.6.2 below together with

Y jes(P)ij =1 to see that (Pf(i))*> < Pf2(i) for each i. Thus, since  is P-
stationary,

IPfll2m < 1fll2- (6.1.7)

An important consequence of (6.1.7) is the fact that, in general (cf. (2.2.4)),

nli)ngO”Anf —(f)x ||27n =0 forall feL?(x) (6.1.8)

and
Pisaperiodic =  lim ||P"f —(f)z|,, =0 forall fe L*(m). (6.1.9)
n—o00 ’

To see these, first observe that, by (4.1.11), (4.1.15), and Lebesgue’s dominated
convergence theorem, there is nothing to do when f vanishes off of a finite set.
Thus, if {Fy : N > 1} is an exhaustion of S by finite sets and if, for f € L*(x),
fn =1p, f, then, foreach N € Z*,

|Anf = (Frllsy < [An(F = F) |50 + [An st = (x| + {13 = 1)
<2l f = fulox + |Anfn — (fn)n ||2,,,,

where, in the passage to the second line, we have used ||A,g 2. < llgll2.n, Which
follows immediately from (6.1.7). Therefore, for each N,

Tim [Anf = (N lpp <210 = il

which gives (6.1.8) when N — oo. The argument for (6.1.9) is essentially the same,
and, as is shown in Exercise 6.6.4 below, all these results hold even in the non-
reversible setting.
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Finally, (6.1.1) leads to

(@ Pf)r = @ig@ @ ()= (1) F()(P);ig() = (Pg, fa.
@) @)

In other words, P is symmetric on L?(xr) in the sense that

(&, Pf)x=(Pg, flx for(f g e(L?m). (6.1.10)

6.1.3 The Spectral Gap

Equation (6.1.7) combined with (6.1.10) say that P is a self-adjoint contraction on
the Hilbert space’> L?(ir). For the reader who is unfamiliar with these concepts at
this level of abstraction, think about the case when S = {1, ..., N}. Then the space
of functions f : S — R can be identified with RY . (Indeed, we already made this
identification when we gave, in Sect. 2.1.3, the relation between functions and col-
umn vectors.) After making this identification, the inner product on L2(r) becomes
the inner product Ziv (1); (v); (w); for column vectors v and w in R . Hence (6.1.7)
says that the matrix P acts as a symmetric, contraction on RY with respect to this in-

ner product. Alternatively, if P=m:rPH _%: where IT is the diagonal matrix whose
ith diagonal entry is (ir);, then, by (6.1.1), P is symmetric with respect to the stan-
dard inner product (v, W)pny = Z{V (v); (w); on R Moreover, because, by (6.1.7),

= =L _1.\2
IPEI%y = (PE. PHRy = > ()i (PI2f); = |Pgl3, < llgll3., = IIflFv-

]

where g is the function determined by the column vector IT _%f, we see that, as
an operator on R", P is length contracting. Now, by the standard theory of sym-
metric matrices on RY, we know that P admits eigenvalues 1 > A1 > --- > Ay
> —1 with associated eigenvectors (ey, ..., ey) that are orthonormal for (-, - )pn:
(ex, e/)gy = Ok ¢. Moreover, because /(); = jy:1(1~))ij«/(ﬂ)j, we know that
A1 =1 and can take (e;); = +/();. Finally, by setting g, = (H)_%eg and let-
ting gy be the associated function on S, we see that Pg, = A,g¢, g1 = 1, and
(gk» g¢)w = Ok.¢. To summarize, when S has N elements, we have shown that P
on L?(m) has eigenvalues 1 = A; > --- > Ay > —1 with corresponding eigenfunc-
tions g1, ..., gy which are orthonormal with respect to (-, - ). Of course, since
L?(m) has dimension N and, by ortho-normality, the g;’s are linearly independent,

2 A Hilbert space is a vector space equipped with an inner product which determines a norm for
which the associated metric is complete.
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(g1, .-, gn) is an orthonormal basis in L2(n). In particular,

N
P'f—{(flx= ZAZ(]‘, gi)nge forallm>0and f € Lz(n), (6.1.11)

=2

and so

2 al 2
[P f = (Frxls, =D 2" (8005 <A =B [ f = (Fxllsp
=2

where f = (1 —A) A(14+Ay) is the spectral gap between {—1, 1} and {A2, ..., An}.
In other words,

IP"f = Pxllye = A=B|F = Pxll o)
for all n anndfeLz(n). (6.1.12)

When S is not finite, it will not be true in general that one can find an orthonormal
basis of eigenfunctions for P. Instead, the closest approximation to the preceding
development requires a famous result, known as the Spectral Theorem (cf. Sect. 107
in [7]), about bounded, symmetric operators on a Hilbert space. Nonetheless, seeing
as it is the estimate (6.1.12) in which we are most interested, we can get away
without having to invoke the Spectral Theorem. To be more precise, observe that
(6.1.12) holds when

B=1—sup{|Pf— (f),,”h : f € L*(m) with || fllo, = 1} (6.1.13)

To see this, first note that, when g is given by (6.1.13),

(i)~
1fl2x ) \Ifllor [

<(1=B)lfllx when feL*(m)\ {0},

and that |[Pf — (fizll2o.x < (1 — Bl fll2.x trivially when f = 0. Next, because
(P"f)x = (f)x foralln >0,

“Pn+1f - (f)n”z,n = ”P(P"f - (Pnf)n)”lﬂ
<U=pR S =) [, = =PI = Px]s e

By induction on n, we get [|P" f — (f)xll2x < (1 — B)"|| fll2.x for all n > 0 and

f € L>(m). Hence, if f € L>(w) and f = f — (f)y, then

1P F = (P lln = [P F oy < A= BY 1 fll2e = (L= BY'| £ = (x| -

That is, (6.1.12) holds with the 8 in (6.1.13). Observe that when S is finite the 8 in
(6.1.13) coincides with the one in the preceding paragraph. Hence, we have made a

1Pf = (Fxllyp=1fl2n

2.
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first step toward generalizing the contents of that paragraph to situations in which
the analog of (6.1.11) does not exist.

6.1.4 Reversibility and Periodicity

Clearly, the constant 8 in (6.1.13) can be as small as 0, in which case (6.1.12)
tells us nothing. There are three ways in which this might happen. One way
is that there exist an f € Lz(n) with the property that || fllo.r =1, (f)x =0,
and Pf = f. However, irreducibility rules out the existence of such an f. In-
deed, because of irreducibility, we would have (cf. (6.1.8)) the contradiction that
0= (f)r =lim,— o (A,f); = f(i) forall i €S and that f(i) # 0 for some i € S.
Thus, we can ignore this possibility because it never occurs. A second possibility
is that there exists an f € L?(m) with | fll2,z =1 such that Pf = — f. In fact, if
f is such a function, then (f)y = (Pf)r = —(f)x, and so (f)r = 0. Hence, we
would have that |Pf — (f)x ||2.,- = 1 and therefore that 8 = 0. The third possibility
is that there is no non-zero solution to P f = — f but that, nonetheless, there exists
a sequence {fn}?o < Lz(n) with || full2,z =1 and (f,)x = 0 such that |Pf; |2~
tends to 1.

Because the analysis of this last possibility requires the Spectral Theorem, we
will not deal with it. However, as the next theorem shows, the second possibility has
a pleasing and simple probabilistic interpretation. See Exercise 6.6.5 below for an
extension of these considerations to non-reversible P’s.

Theorem 6.1.14 [f P is an irreducible transition probability for which there is a
reversible initial distribution, which is necessarily w, then the period of P is either
1 or 2. Moreover, the period is 2 if and only if there exists an f € L*>(x) \ {0} for
which f = —Pf.

Proof We begin by showing that the period d must be less than or equal to 2. To
this end, remember that, because of irreducibility, (;r); > O for all i’s. Hence, the de-
tailed balance condition, (6.1.1), implies that (P);; > 0 <= (P);; > 0. In particu-
lar, since, for each i, (P);; > 0 for some j and therefore (P?);; = > j(P)I- i(P)ji >0,
we see that the period must divide 2.

To complete the proof at this point, first suppose that d = 1. If f € L?(xr) sat-
isfies f = —Pf, then, as noted before, ( f), = 0, and yet, because of aperiodicity
and (6.1.9), lim,_ oo P" f(i) = (f)x = 0 for each i € S. Since f = P?" f for all
n > 0, this means that f = 0. Conversely, if d = 2, take Sp and S; accordingly, as in
Sect. 4.1.7, and consider f =1g, — 1s,. Because of (4.1.19), P f = — f, and clearly
1l = 1. 0

As an immediate corollary of the preceding, we can give the following graph
theoretic picture of aperiodicity for irreducible, reversible Markov chains. Namely,
if we use P to define a graph structure in which the elements of S are the “vertices”
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and an “edge” between i and j exists if and only if (P);; > 0, then the first part of
Theorem 6.1.14, in combination with the considerations in Sect. 4.1.7, says that the
resulting graph is bipartite (i.e., splits into two parts in such a way that all edges
run from one part to the other) if and only if the chain fails to be aperiodic, and the
second part says that this is possible if and only if there exists an f € L>(x) \ {0}
satisfying Pf = —f.

6.1.5 Relation to Convergence in Variation

Before discussing methods for finding or estimating the 8 in (6.1.13), it might be
helpful to compare the sort of convergence result contained in (6.1.12) to the sort of
results we have been getting heretofore. To this end, first observe that

1P"f = Frrllyp < [P"F = (Hx], < sup|8:P" — | 1 fllu-

In particular, if one knows, as one does when Theorem 2.2.1 applies, that

sqp“SiP" - Jl’”v <C(l—-¢e) (%)

for some C < oo and € € (0, 1], then one has that

[P"f = (Frly e <CA="Iflu,

which looks a lot like (6.1.12). Indeed, the only difference is that on the right hand
side of (6.1.12), C =1 and the norm is || f||2,r instead of || f||y. Thus, one should
suspect that () implies that the 8 in (6.1.12) is at least as large as the € in (x). If, as
will always be the case when S is finite, there exists a g € L? (i) with the properties
that ||gll2.z = 1, (g)x =0, and either Pg = (1 — B)g or Pg = —(1 — B)g, this
suspicion is easy to verify. Namely, set f = gl|_g g(g) where R > 0 is chosen so
thata = (f, g)p > %, andset f = f — (f)x. Then, after writing f = ag + (f —ag)
and noting that (g, f —ag)r =0, we see that, for any n > 0,

[P 7[5, =a*(1 = )" £2a(1 - p)"(g. P"(f —ag)), + |[P"(f —ag)|3,
1 2n
> =P,
since
+g. P"(f —ag)), =(P"g. f —ag), =1 —p)"(g. f —ag)x =0.

On the other hand, [[P"f[3, < C*(1 — &)*[|fll§ < (CR)*(1 — €)*". Thus,
11— p)* < (CR)*(1 — €)* for all n > 0, which is possible only if B > €. When
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no such g exists, the same conclusion holds, only one has to invoke the Spectral
Theorem in order to arrive at it.

As the preceding shows, uniform estimates on the variation distance between
1P and  imply estimates like the one in (6.1.12). However, going in the opposite
direction is not always possible. To examine what can be done, let a probability
vector . be given, and define f so that f(i) = (“)’ . Then, since (f) =1 and

(8)2 < () forall g € L*(m),

[P — x|, =Z!(MP") <n>,|—Z!fP"1{J} — ()|

—Z |(P"f —1,1) |—Z|P" (Fas 1ijy)y |

1

=Y @[PfG) = (Flx| < (Z(n)j]P"f(j) - <f>n\2> 2
J

J

= [P"f = (Dxlly e
where, in the second to last line, I used Exercise 6.6.2. Hence, (6.1.12) implies that
W\’
|uP" — x|, < <Z (”) ) (1-p)". (6.1.15)

In the case when S is finite, and therefore there exists an A € (0, 1) for which
()i = A, (6.1.15) yields the Doeblin type estimate

1
1—X1\2
[P x|, < (T)z(] -B)".

However, when S is infinite, (6.1.15), as distinguished from Doeblin, does not give

a rate of convergence which is independent of u. In fact, unless Z (M)’ < 00, it

gives no information at all. Thus one might ask why we are con31der1ng estimates
like (6.1.15) when Doeblin does as well and sometimes does better. The answer
is that, although Doeblin may do well when it works, it seldom works when § is
infinite and, even when S is finite, it usually gives a far less than optimal rate of con-
vergence. See, for example, Exercise 6.6.15 below where an example is given of a
situation to which Doeblin’s condition does not apply but the considerations here do.

6.2 Dirichlet Forms and Estimation of

Our purpose in this section will be to find methods for estimating the optimal (i.e.,
largest) value of 8 for which (6.1.12) holds. Again, we will assume that the chain is
reversible and irreducible. Later, we will add the assumption that it is aperiodic.
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6.2.1 The Dirichlet Form and Poincaré’s Inequality

Our first step requires us to find other expressions the right hand side of (6.1.13). To
this end, begin with the observation that

1— B =sup{|Pfllox: f€Li(m) with || fllo.r =1}

6.2.1)
where Lj(m) = {f € L*(m) : (f)x =0}.

It is obvious that the supremum on the right hand side of (6.1.13) dominates the
supremum on the right above. On the other hand, if f € Lz(n) with || fll2.x = 1,
then either || f — (f)x|l2.x = O and therefore |Pf — (f)zlloxr =0,0r 1 > | f —
(f)xll2.x > 0, in which case

||Pf—<f>,,||2,,,sHP( S = ) )

If = (Fzll2x

is also dominated by the right hand side of (6.2.1).
To go further, we need to borrow the following simple result from the theory of
symmetric operators on a Hilbert space. Namely,

sup{I[Pfll2.x : f € L§(m) & || fll2.x =1}
=sup{|[(£,Pf)x|: f e L) &I fllox = 1}.

That the right hand side of (6.2.2) is dominated by the left is Schwarz’s inequality:
K, Pzl < | fll2.zlIPfll2,z. To prove the opposite inequality, let f € L(z)(n) with

| fll.x =1 be given, assume that |Pf|> > 0, and set g = %. Then g €

2.

6.2.2)

L%(n) and ||gll2,x = 1. Hence, if y denotes the supremum on the right hand side of
(6.2.2), then, from the symmetry of P,

AP flom =48 Pflx=((f +8).P(f +8), —((f —9).P(f —9)),
<y(Ilf+gl3.+1f—2gl3.)=2v(IfI15, +gl3) =4y

The advantage won for us by (6.2.2) is that, in conjunction with (6.2.1), it shows
that

B=B+NPB-
where B+ =inf{(f, AFP)f) : f € Li(m) & || fllox =1} (6.2.3)
Notice that, because I —P)f = A —=P)(f — (f)z),
By =inf{(f.A=P)f) : feL*m) & Varg(f)=|f—(f)x ||i =1}. (6.2.4)
At the same time, because

((f +0). A+P)(f +0)), =(f, A+P)f)_+c* for f e L}(w)and c €R,
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it is clear that the infimum in the definition of B_ is the same whether we consider
all f e L?() or just those in L%(n). Hence, another expression for B_ is

B =inf{(f,A+P)f) : fe Li(m) & | fllom =1} (6.2.5)

Two comments are in order here. First, when P is non-negative definite, abbrevi-
ated by P > 0, in the sense that (f,Pf), >0 forall f € Lz(n'), then B4 <1 <p8_,
and so § = B+. Hence,

P>0 = p=inf{(f,A-P)f) :feLl’(n)&Varz(f)=1}. (6.2.6)

Second, by Theorem 6.1.14, we know that, in general, B_ = 0 unless the chain is
aperiodic, and (cf. (6.1.11) and the discussion at the beginning of Sect. 6.1.4), when
S is finite, that 8 > O if and only if S is aperiodic.

The expressions for 4 and B_ in (6.2.4) and (6.2.5) lead to important calcula-
tional tools. Observe that, by (6.1.1),

(£ @=P)f), =" FOEi®); (£G) = f())
()

=Y F)@@);®i(fG) — f()))
(.J)

=Y FD@i®)ii (f()) = F©).
()]

Hence, when we add the second expression to the last, we find that
1
(£ A=P)f), =E(f. =5 0iPy;(£() — F@)*. (6.2.7)
i#]j

Because the quadratic form E(f, f) is a discrete analog of the famous quadratic
form % JIVf |>(x) dx introduced by Dirichlet, it is called a Dirichlet form. Extend-
ing this metaphor, one interprets S as the Poincaré constant

By =inf{E(f, f): f € L*(w) & Varg (f) = 1} (6.2.8)
in the Poincaré inequality
BiVarg (f) <E(f. f). feL*(m). (6.2.9)

To make an analogous application of (6.2.5), observe that

SO+ FO) i@ = (Pr2), + 20 Pfhn + 1 13
@)

=2|fI3.5 +2(f. Pf)x.
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and therefore

- 1
(£ 4P ), =€ ) =5 3 @@ (F() + F D) (6.2.10)
@)

Hence

B =inf{E(f, )1 f € L) & || flon =1} (62.11)

In order to give an immediate application of (6.2.9) and (6.2.11), suppose (cf.
Exercise 2.4.3) that (P);; > ¢; for all (i, j), set € = Zj €, assume that € > 0, and
define the probability vector u so that (p); = i—’ Then, by Schwarz’s inequality for
expectations with respect to g and the variational characterization of Var, (f) as the
minimum value of a~{((f — a)?)x.,

26(f, /)= @i ®)i; (f() — fD)
@J)

>e Y (F() = F@) i), = Z — F@)* ()i = eVarz (),
@)

and, similarly, Z’f(f, f) = §Varg (f). Hence, by (6.2.9), (6.2.11), and (6.2.3), B > 5.
Of course, this result is a significantly weaker than the one we get by combining
Exercise 2.4.3 with the reasoning in Sect. 6.1.5. Namely, by that exercise we know
that ||§;P" — ||y <2(1 —€)", and so the reasoning in Sect. 6.1.5 tells us that 8 > e,
which is twice as good as the estimate we are getting here.

6.2.2 Estimating B+

The origin of many applications of (6.2.9) and (6.2.11) to the estimation of 8 and
B is the simple observation that

Varg (f) = 5 Z(f(z) — F()) @i ()5, (6.2.12)

ij

which is easily checked by expanding (f (i) — f(j )2 and seeing that the sum on
the right equals 2(f2), — 2(f)2.

The importance of (6.2.12) is that it expresses Vary (f) in terms of difference
between the values of f at different points in S, and clearly £(f, f) is also given
in terms of such differences. However, the differences that appear in E(f, f) are
only between the values of f at pairs of points (i, j) for which (P);; > 0, whereas
the right hand of side of (6.2.12) entails sampling all pairs (i, j). Thus, in order to

estimate Vary (f) in terms of E(f, f), it is necessary to choose, for each (i, j) with
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i # j, adirected path p(i, j) = (ko, ..., k,) € S*t! with ko =i and k, = j, which
is allowable in the sense (P); > 0 for each 1 <m <n, and to write

m—1Km

(f(i)—f(j))2=( 3 Aef)

eep(i,j)

2
)

where the summation in e is taken over the oriented segments (k;,—1, ky;) in the path
p(, j),and, fore = (k, £), A, f = f(£) — f (k). At this point there are various ways
in which one can proceed. For example, given any {a(e) : e € p(i, j)} € (0, 00),
Schwarz’s inequality (cf. Exercise 1.3.1) shows that the quantity on the right hand
side of (6.2.12) is dominated by % times

a(e) p(e) 2>
—~ —(A,
( Z p(e))<ee§j)a(e)( 7

eep(i,j)
1 ( oz(e)) 2
< max ——( 3 ——) D (Af)oce),
er@D @@\ ST 5 PO/ i

where p(e) = (m)x(P)re when e = (k, £). Thus, for any selection of paths P =
{pGi, j): (i, j) e S?\ D} (D here denotes the diagonal {(i, j) € S*: i = j}) and
coefficients A = {a(e, p) : e € p € P} C (0, 00),

1
Vare (f) <5 3 wa(p) Y (Aef)p(e)

peP eep

= %;(Aef)zp(e) (,,Z wA(p>) < WP, DE(L. 1),
where
wA(p) = ()i (), (513[3( a(:’ p)) Z}; “;e(’e i’) if p= pei. ),
and

W (P, A)=sup > wa(p).

€ pae

Hence, we have now shown that

1

B+ = WPA (6.2.13)

for every choice of allowable paths P and coefficients .A.
The most effective applications of (6.2.13) depend on making a choice of P and
A takes advantage of the particular situation under consideration. Given a selection
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‘P of paths, one of the most frequently made choices of A is to take a(e, p) = 1. In
this case, (6.2.13) gives

B+ =

where W(P) = supZ Z M, (6.2.14)

W(P) p(e’)

p3ec’ep

where (z (p))- = (x); and (z (p))+ = (r); when p begins at i and ends at j.

Finally, it should be recognized that, in general, (6.2.13) gives no information.
Indeed, although irreducibility guarantees that there always is at least one path con-
necting every pair of points, when § is infinite there is no guarantee that P and A
can be chosen so that W (P, A) < 0o. Moreover, even when S is finite, and therefore
W (P, A) < oo for every choice, only a judicious choice will make (6.2.13) yield a
good estimate.

6.2.3 Estimating f_

The estimation of B_ starting from (6.2.11) is a bit more contrived than the one
of B4 starting from (6.2.9). For one thing, we already know (cf. Theorem 6.1.14)
that B_ = 0 unless the chain is aperiodic. Thus, we will now require that the chain
be aperiodic. As a consequence of aperiodicity and irreducibility, we know (cf.
(3.1.14)) that, for each i € S, there always is a path p(i) = (ko, ..., koy+1) which is
allowable (i.e. (P)k,_,k, > 0 foreach 1 <m <2n + 1), is closed (i.e., ko = k2, 11),
and starts at i (i.e., kg = i). Note our insistence that this path have an odd number
of steps. The reason for our doing so is that when the number of steps is odd, an
elementary exercise in telescoping sums shows that

2n
2£@) =Y (=" (fkn) + fkmy1)).-

m=0

Thus, if P be a selection of such paths, one path p(i) for each i € S, and we make
an associated choice of coefficients 4 = {a(e, p) : e € p € P} C (0, 00), then, just
as in the preceding section,

2
4 f113,, = Z( > (—1)"“@54) (m);

i Ceep(i)

<) =(p (Z a;{;) (Z(A}f)2 ple) )
peP

pmt prepd ale, p)



6.3 Reversible Markov Processes in Continuous Time 151

where, when p = (ko, ..., k2ut1), T(p) = (T)y,, and, for 0 <m < 2n, m(e) =m
and A, f = f(km) + f(knt1) if e = (ki knpy1). Hence, if

~ ) 1 a(e, p)
w(p)_n(p)<1?ea;(a(e’p))§ ple)

then

20f13,, < WP, AES, f) where W(P, A)=sup ) _i(p),

¢ pse

and, by (6.2.11), this proves that
2
— Z - =
WP, A

for any choice of allowable paths P and coefficients A satisfying the stated require-
ments. When we take (e, p) = 1, this specializes to

2 = 7 (p)
_ — here W1 (P) = —_— 6.2.15
bz s where Wi(P) S‘ip;gme@ (6.2.15)

It should be emphasized that the preceding method for getting estimates on S_
is inherently flawed in that it appears incapable of recognizing spectral properties of
P like non-negative definiteness. In particular, when P is non-negative definite, then
B— > 1, but it seems unlikely that one could get that conclusion out of the arguments
being used here. Thus, (6.2.15) should used only as a last resort, when nothing else
seems to work.

6.3 Reversible Markov Processes in Continuous Time

Here we will see what the preceding theory looks like in the continuous time context
and will learn that it is both easier and more @sthetically pleasing there.

We will be working with the notation and theory developed in Chap. 5. In par-
ticular, Q will be a Q-matrix, and we will assume that S is irreducible with respect

to Q.

6.3.1 Criterion for Reversibility

Let Q be given, assume that the associated Markov process never explodes (cf.
Sect. 5.3.1), and use #~~P(#) to denote the transition probability function determined
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by Q (cf. Theorem 5.3.6). Our purpose in this subsection is to show that if fi is a
probability vector for which the detailed balance condition

()i (Q)ij = ();(Q)ji  forall (i, j) € S?, (6.3.1)
holds relative to Q, then the detailed balance condition
(ﬁ)i(P(t))ij =(); (P(t))jl. forallt > 0and (i, j) € S? (6.3.2)

also holds.

The proof that (6.3.1) implies (6.3.2) is trivial in the case when the canonical
rates for Q are bounded. Indeed, all that we need to do in that case is first use a
simple inductive argument to check that (6.3.1) implies (1); (Q");; = () ;(Q")
for all n > 0 and then use the expression for P(¢) given in (5.1.9). When the rates
are unbounded, we will use the approximation procedure introduced in Sect. 5.3.1.
Namely, refer to Sect. 5.3.1, and take Q¥Y) corresponding to the choice rates SRV
described there. Equivalently, take (QWM))y; j to be (Q);; if i € Fy and 0 when
i ¢ Fy. Using induction, one finds first that ((Q<N))”)ij =O0foralln > 1andi ¢ Fy
and second that

()i ((Q(N))”)ij = (v); ((Q(N))")ji forall n >0 and (i, j) € F3.

Hence, if {PY)(¢) : ¢ > 0} is the semigroup determined by Q™ then, since the
rates for QY) are bounded, (5.1.9) shows that

(P(N)(t))l.j =7 ifi ¢ Fy

6.3.3
@i (PM®),; = @;PM®),; if G, )) € Fy. (3
Therefore, because, by (5.3.4), PN (#))ij — (P(1));j, we are done.

As a consequence of the preceding, we now know that (6.3.1) implies that fi is
stationary for P(¢). Hence, because we are assuming that Q is irreducible, the results
in Sect. 5.4.2 and Sect. 5.4.3 allow us to identify fi as the probability vector 7 = #s
introduced in Theorem 5.4.6 and discussed in Sect. 5.4.3. To summarize, if ji is a
probability vector for which (6.3.1) holds, then ji = 7.

6.3.2 Convergence in L3(%) Jor Bounded Rates

In view of the results just obtained, from now on we will be assuming that 7 is a
probability vector for which (6.3.1) holds when ft = . In particular, this means that

#)i (P(1),; = #);(P@) ;; foralls >0and (i, j) € S (6.3.4)
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Knowing (6.3.4), one is tempted to use the ideas in Sect. 6.2 to get an estimate
on the rate, as measured by convergence in L%(#), at which P(z) f tends to (f) -
To be precise, first note that, for each 7 > 0,

2
ZO’

2,7

h
(£ PG ) = HP<§>f
and therefore (cf. (6.1.13), (6.2.6), and (6.2.7)) that

B(h)y=1—sup{|(f,P()f),|: f € L§(®) with || f]l2,7 = 1}
=inf{(f, 1= P(h) f), : Varz (f) = 1} = inf{&,(f. f) : Varz (f) =1},

where
1
AES ;ﬁ),-(P(h))i (FD = ro)
i#]
is the Dirichlet form for P(h) on L%(#). Hence (cf. (6.1.12)), for any ¢ > 0 and
neZt,
t n
P07 = ey = (1= (%)) 1 = Dl

To take the next step, we add the assumption that the canonical rates are bounded.
Then, because, by (5.2.14),

t t

P(z)=I+/ QP(t)dt:I—i—tQ—i—/ (t — )Q*P(1) dr,
0

||Q||2 t?

llV_

[P@) —1—1Q)

From this it follows that, uniformly in f satisfying Var; (f) =1,

. 5h(f f) Q
lim === =97 1)
where
I . o
£ ) =5 ;n),»(Q)ij (f() = F®)* (6.3.5)
i#]

and from this it follows that the limit limj\ o K1 B(h) exists and is equal to
Azinf{EQ(f, f):feLz(n)&Var,;(f)zl}. (6.3.6)
Thus, at least when the rates are bounded, we know that

PO f — (f)a

i <€ =(illag (6.3.7)
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6.3.3 L? (m)-Convergence Rate in General

When the rates are unbounded, the preceding line of reasoning is too naive. In order
to treat the unbounded case, one needs to make some additional observations, all of
which have their origins in the following lemma.?

Lemma 6.3.8 Given f € L*(#), the function t € [0, 00) —> [[P(t) f|3 - is con-
tinuous, non-increasing, non-negative, and convex. In particular, t € (0, 00) —>

M is non-increasing, and therefore

112 . — PR £ .
Plli{% 2,z A 2T oxists in [0, o0].

Moreover (cf. (6.3.5)),

I3, = P FIS 4
lim : :
AN) h

>28Q(f, f).

Proof Let f € L*>(%) be given, and (cf. the notation in Sect. 5.3.1) define fy =
1F, f. Then, by Lebesgue’s dominated convergence theorem,

If = fll2,z — 0 as N — oo.

Because [|P(1)gll2.z < llgllp,» forallt >0and g € L?(#), we know that

PO f], = PO fv], 2| < [POG = )],z < I = fallaz — 0

uniformly in ¢ € (0, 00) as N — o0o. Hence, by part (a) of Exercise 6.6.1 below,
in order to prove the initial statement, it suffices to do so when f vanishes off
of Fjs for some M. Now let f be a function which vanishes off of F;, and set
V() = ||P(t)f||§ﬁ. At the same time, set ¥y (1) = ||P(N)(t)f||§ﬁ for N > M.
Then, because by (5.3.4), ¥y —> ¥ uniformly on finite intervals, another appli-
cation of part (a) in Exercise 6.6.1 allows us to restrict our attention to the ¥/x’s.
That is, we will have proved that v is a continuous, non-increasing, non-negative,
convex function as soon as we show that each vy is. The non-negativity requires
no comment. To prove the other properties, we apply (5.2.14) to see that

P (@) = QPN () £, PNV @) f). + PNV (1) ,QYVPNM (1) f)..

Next, by the first line of (6.3.3), we know that, because N > M, PWM (1) f vanishes
off of Fy, and so, because (ft)iQx.V) = (ft)jQE.]ly) for (i, j) € FZ, the preceding
becomes

P (@) =2PN ) £, QPN @) ). .

3If one knows spectral theory, especially Stone’s theorem, the rather cumbersome argument that
follows can be avoided.
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Similarly, we see that
Un (0 =20QN PN ) £, QPN (1) f),
+2PM @) £, (QM) PN (1) £,
=4{QMPM (1) £, QPN (1) ), =4| QPN () f |3 . =0

Clearly, the second of these proves the convexity of ¥y. In order to see that the first
implies that v is non-increasing, we will show that

(s.—Q™g); = Z @i Qi (g() —g@)* + Y @i V™ (i)g ()
(l NeFy ieFy
i#]
ifg=00ff iy and VM= Y 0y forie Fy. (*)
JEFN

To check (), first observe that

(. —QMg). == > @)i(Qjgli)g())

(.j)eFy

Y ®iQijed)(g() — @)+ Y @i VMg ).
G.))eF} el

i#]

Next, use (7); (Q);; = () ;(Q); for (i, j) € F}% to see that

- E ()i (Q)ijg()(g(j) — g)) = E )i (Q)ijg () (g() — &),
(i, ];AGFN (i, ];éeFN
1#] 7]

and thereby arrive at (x). Finally, apply () with g = PY)(¢) f to conclude that
Yy <0.

Turning to the second and third assertions, let f be any element of L%(#).
Now that we know that the corresponding i is a continuous, non-increasing, non-
negative, convex function, it is easy (cf. part (d) in Exercise 6.6.1) to check that
t~s M is non-increasing and therefore that lim,\ o M exists in [0, co].
Next, remember (6.2.7), apply it when P = P(2h), and conclude that

V() =y () =(f, (I-P2h)f);, = Z(ﬂ) (P2h)),; (f) = 1)’

(l j)
i#]j
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Hence, since, by (5.3.5),

iim PED)ij
m ——-—-
h

Jim =2(Q)ij fori#j,

the required inequality follows after an application of Fatou’s lemma. g

Lemma 6.3.9 If0 <s <t, then for any f € L*(t)

2 P 2 P 2.
s, WOz = WOz 5e0(pg) £ pery ).

N t—s

Proof Set ¥ (t) = ||P() f I|§ +- We know that ¢ is a continuous, non-increasing,
non-negative, convex function. Hence, by part (a) of Exercise 5.5.2,

vO _vO-y6 _ v -v@® _ v@O-yE+h

K s t—s - h

for any i > 0. Moreover, because,

YO =y +h)  IPOLI5, — IPOPOLIS ,
h B h

the last part of Lemma 6.3.8 applied with P(¢) f replacing f yields the second as-
serted estimate. O

With the preceding at hand, we can now complete our program. Namely, by writ-

ing
n—1 2 )
1
18- IPos = (Jr(2)] - (")),
’ m=0 n 2,7 n 27

we can use the result in Lemma 6.3.9 to obtain the estimate
n
2 2 2t Q mt mt
1135 = [POF 55 =~ le P~ )rp(=)r).
m=

Hence, if A is defined as in (6.3.6), then, for any f € L(z)(ﬁ’),

(3)

n

2Mt
17155 = IPOS]3 52 == 3

m=1

2

K
2,

which, when n — oo, leads to

t
I£13: = [P F5 ;=22 /O [P £]5.5 dv.
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Finally, by Gronwall’s inequality (cf. Exercise 4.2.2), the preceding yields the esti-
mate |P(7) f||2 + <e M| f||2 .. After replacing a general f € L2() by f — ().
we have now proved that (6.3. 7) holds even when the canonical rates are unbounded.

6.3.4 Estimating A

Proceeding in the exactly the same way that we did in Sect. 6.2.2, we can estimate
the A in (6.3.6) in the same way as we estimated B4 there. Namely, we make a
selection P consisting of paths p(i, j), one for each from pair (i, j) € S\ D, with the
properties that if p(i, j) = (ko, ..., kn),thenko =i, k, = j, and p(i, j) is allowable
in the sense that (Q),,_, k,, > 0 for each 1 <m < n. Then, just as in Sect. 6.2.2, we
can say that

m

where W(P) = sup Z Z W, (6.3.10)

A > !
= W)

p>3eeep

where the supremum is over oriented edges e = (k, £) with (Q)x¢ > 0, the first sum
is over p € P in which the edge e appears, the second sum is over edges ¢’ which
appear in the path p, (@ (p))— = (w); if the path p starts at i, (T (p))4 = (),
if the path p ends at j, and p(e’) = () (Q)x¢ if ¢’ = (k, £). See [1] for further
applications of these results.

6.4 Gibbs States and Glauber Dynamics

Loosely speaking, the physical principle underlying statistical mechanics can be
summarized in the statement that, when a system is in equilibrium, states with lower
energy are more likely than those with higher energy. In fact, J.W. Gibbs sharpened
this statement by saying that the probability of a state i will be proportional to

e Y , where k is the Boltzmann constant, T is temperature, and H (i) is the energy
of the system when it is in state i. For this reason, a distribution which assigns
probabilities in this Gibbsian manner is called a Gibbs state.

Since a Gibbs state is to be a model of equilibrium, it is only reasonable to
ask what is the dynamics for which it is the equilibrium. From our point of view,
this means that we should seek a Markov process for which the Gibbs state is the
stationary distribution. Further, because dynamics in physics should be reversible,
we should be looking for Markov processes which are reversible with respect to
the Gibbs state, and, because such processes were introduced in this context by
R. Glauber, we will call a Markov process which is reversible with respect to a
Gibbs state a Glauber dynamics for that Gibbs state.

In this section, we will give a rather simplistic treatment of Gibbs states and their
associated Glauber dynamics.



158 6 Reversible Markov Processes

6.4.1 Formulation

Throughout this section, we will be working in the following setting. As usual, S
is either a finite or countably infinite space. On S there is given some “natural”
background assignment v € (0, 00)° of (not necessarily summable) weights, which
should be thought of as a row vector. In many applications, v is uniform: it assigns
each i weight 1, but in other situations it is convenient to not have to assume that it
is uniform. Next, there is a function H : S — [0, co) (alias, the energy function)
with the property that

ZB)=) e PO (w); <oo foreach p € (0,00). (6.4.1)
ieS

In the physics metaphor, 8 = % is, apart from Boltzmann’s constant k, the recipro-
cal temperature, and physicists would call S~~Z(B) the partition function. Finally,
for each B € (0, 00), the Gibbs state y (B) is the probability vector given by

(), = %ﬁ)e*ﬂ”“)(‘:)i fori €. (6.4.2)

From a physical standpoint, everything of interest is encoded in the partition
function. For example, it is elementary to compute both the average and variance of
the energy by taking logarithmic derivatives:

d d?
(H)yp) = —% logZ(B) and Vary,g)(H)= d—,82 log Z(B). (6.4.3)

The final ingredient is the description of the Glauber dynamics. For this purpose,
we start with a matrix A all of whose entries are non-negative and whose diagonal
entries are 0. Further, we assume that A is irreducible in the sense that

sup(A"),; >0 forall (i, j) € s? (6.4.4)

n>0
and that it is reversible in the sense that
)i (A)ij=)jA)j; forall (i, j)e S2. (6.4.5)
Finally, we insist that

Ze*ﬁH(j)(A)ij <oo foreachi eSand g > 0. (6.4.6)
JjEeS

At this point there are many ways in which to construct a Glauber dynamics.
However, for our purposes, the one which will serve us best is the one whose
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Q-matrix is given by
(Q(B));; = e PHDHOT (A, when j #i

Q) =—_(Q®),;,
Jj#i

(6.4.7)

where at = a Vv 0 is the non-negative part of the number a € R. Because,
(r®);Q®),; = 2B e PHOVHD ), (A)y; fori # J, (6.4.8)

y (B) clearly is reversible for Q(8). There are many other possibilities, and the opti-
mal choice is often dictated by special features of the situation under consideration.
However, whatever choice is made, it should be made in such a way that, for each
B > 0, Q(B) determines a Markov process which never explodes.

6.4.2 The Dirichlet Form

In this subsection we will modify the ideas developed in Sect. 6.2.3 to get a lower
bound on

A =inf{Eg(f, f): Varg(f) =1}

l ST
where Eg(f, f) = 5 Z(Y('B))i(Q(ﬂ))ij (f() - f(i))2 (6.4.9)

JF#

and Varg(f) is shorthand for Varyg)(f), the variance of f with respect to y(8).
For this purpose, we introduce the notation

Elev(p) = Omax H(i,,) and e(p)=Elev(p)— H(ip) — H(in)

for an allowable path p = (ip, ..., i,). Assuming that Q(8) is given by (6.4.7), one
sees that, when p = (ig, ..., i)

n

_ @ B)i, ¥ (B, ~1_Be(p)
== Z 9
wp(p) Z(y(ﬁ))im,l<0<ﬁ)>,-m,lim5 By wip)

n

where w(p) = Z

m=1

m=1

iy ()i,
COTIY. VT
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Hence, for any choice of paths P, we know that (cf. (6.3.10))

Wp(P) =sup » " wg(p) < Z(B) ' EP W (P),

e

poe
where W (P) = sup Z w(p) and E(P) = sup e(p),
¢ pae peP
and therefore that
a2 (Bre PEP) (6.4.10)

- WP

On the one hand, it is clear that (6.4.10) gives information only when W (P) < oc.
At the same time, it shows that, at least if ones interest is in large 8’s, then it is impor-
tant to choose P so that E(P) is as small as possible. When § is finite, reconciling
these two creates no problem. Indeed, the finiteness of S guarantees that W (P) will
be finite for every choice of allowable paths. In addition, finiteness allows one to find
for each (i, j) a path p(i, j) which minimizes Elev(p) among allowable paths from
i to j, and clearly any P consisting of such paths will minimize E (P). Of course, it
is sensible to choose such a P so as to minimize W (P) as well. In any case, when-
ever S is finite and P consists of paths p(i, j) which minimize Elev(p) among paths
p between i and j, E(P) has a nice interpretation. Namely, think of S as being sites
on a map and of H as giving the altitude of the sites. That is, in this metaphor, H (i)
is the distance of i “above sea level.” Without loss in generality, we will assume that
at least one site kg is at sea level: H (kg) = 0.* When such an ky exists, the metaphor-
ical interpretation of E(P) is as the least upper bound on the altitude a hiker must
gain, no matter where he starts or what allowable path he chooses to follow, in order
to reach sea level. To see this, first observe that if p and p’ are a pair of allowable
paths and if the end point of p is the initial point of p’, then the path ¢ is allowable
and Elev(g) = Elev(p) Vv Elev(p’) when g is obtained by concatenating p and p’:
if p = (io,...,iy) and p’ = (i), ..., 1), then ¢ = (io, ..., in, i}, ...,i,,). Hence,
for any (i, j), e(p(i, j)) < e(p(i, ko)) V e(p(j, ko)), from which it should be clear
that E(P) = max; e(p(i, ko)). Finally, since, for each i, e(p(i, kg)) = H(£) — H (i),
where £ is a highest point along the path p(i, ko), the explanation is complete. When
S is infinite, the same interpretation is valid in various circumstances. For example,
it applies when H “tends to infinity at infinity” in the sense that {i : H(i) < M} is
finite for each M < oo.

When S is finite, we can show that, at least for large 8, (6.4.10) is quite good. To
be precise, we have the following result.

Theorem 6.4.11 Assume that S is finite and that Q(B) is given by (6.4.7). Set
m =min;cs H() and Sy = {i : H(i) = m}, and let ¢ be the minimum value E(P)

4If that is not already so, we can make it so by choosing ko to be a point at which H takes its
minimum value and replacing H by H — H (ko). Such a replacement leaves both y (8) and Q(8)
as well as the quantity on the right hand side of (6.4.10) unchanged.
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takes as ‘P runs over all selections of allowable paths. Then ¢ > —m, and ¢ = —m
if and only if for each (i, j) € S x Sg there is an allowable path p from i to j with
Elev(p) = H(i). (See also Exercise 6.6.13 below.) More generally, whatever the
value of ¢, there exist constants 0 < c— < ¢+ < 00, which are independent of H,
such that

C_e*ﬂ(e‘l’m) < )\'/3 < C+eiﬁ(e+m) fOV all ,3 > 0.

Proof Because neither y(8) nor Q(B) is changed if H is replaced by H — m
whereas ¢ changes to ¢ + m, we may and will assume that m = 0.

Choose a collection P = {p(i, j) : (i, j) € S*} of allowable paths so that, for each
@, j), e(p(i, j)) minimizes e(p) over allowable paths from i to j. Next choose and
fix a kg € Sg. By the reasoning given above,

e:rlnEane(p(i,ko)). (%)

In particular, since e(p(i, ko)) = Elev(p(i, ko)) — H (i) > 0 for all i € S, this proves
that ¢ > 0 and makes it clear that ¢ = 0 if and only if H (i) = Elev(p(i, ko)) for all
i€S.

Turning to the lower bound for Ag, observe that, because m =0, Z(8) > (v), >0

and therefore, by (6.4.10), that we can take c_ = 0 )k"

Finally, to prove the upper bound, choose ¢y € S \ {ko} so that e(pg) = ¢ when
po = p(€o, ko), let I" be the set of i € S with the property that either i = kg
or Elev(p(i)) < Elev(pg) for the path p(i) = p(i, kg) € P from i to kg, and set
f =1p. Then, because kg € I" and £¢ ¢ I, (cf. (6.2.12)),

Varg () = (Z(y(ﬂ))i) (Z(ﬂﬁ))j)

iel jer

(V)ko (V)Eo o—BH0)

= (), (¥B),, = Z(8)?

At the same time

EULH= Y (®),Q®B),=

G, j)erxrC

D, (A e POV,

G,j)erxrGC

Z(B)

If i e I'\ {tko}, j ¢ I', and (A);; > 0, then H(j) > Elev(pg). To see this, con-
sider the path g obtained by going in one step from j to i and then following
p(i) from i to kg. Clearly, ¢ is an allowable path from j to kg, and therefore
Elev(q) > Elev(p(j)) > Elev(po). But this means that

Elev(po) < Elev(p())) < Elev(q) = Elev(p(i)) v H()).

which, together with Elev(p(i)) < Elev(py), forces the conclusion that H(j) >
Elev(pp). Even easier is the observation that H(j) > Elev(pg) if j ¢ I’ and
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(A, > 0, since in that case the path (j, ko) is allowable and
H(j)= Elev((j, ko)) > Elev(p(j)) > Elev(po).
Hence, after plugging this into the preceding expression for £g(f, f), we get
—pElev(po)
e
5 A < . A PP
s D=7 > i)

(i,j)el'xIrC

which, because ¢ = Elev(pg) — H ({(), means that

A i A ij .
P Nars(H) = e <,» j);xrc(v)( )ij Je

Finally, since Z(8) < ||v|ly, the upper bound follows. O

6.5 Simulated Annealing

This concluding section deals with an application of the ideas in the preceding sec-
tion. Namely, given a function H : S — [0, 00), we want to describe a procedure,
variously known as the simulated annealing or the Metropolis algorithm, for locat-
ing a place where H achieves its minimum value.

In order to understand the intuition that underlies this procedure, let A be a matrix
of the sort discussed in Sect. 6.4, assume that 0 is the minimum value of H, set Sg =
{i - H(i) = 0}, and think about dynamic procedures which would lead you from any
initial point to Sg via paths which are allowable according to A (i.e., Age > 0 if &
and ¢ are successive points along the path). One procedure is based on the steepest
decent strategy. That is, if one is at k, one moves to any one of the points ¢ for
which Ay, > 0 and H (¢) is minimal if H(¢) < H (k) for at least one such point,
and one stays put if H(£) > H (k) for every £ with (A)x¢ > 0. This procedure works
beautifully as long as you avoid, in the topographic metaphor suggested earlier,
getting trapped in some “mountain valley.” The point is that the steepest decent
procedure is the most efficient strategy for getting to some local minimum of H.
However, if that minimum is not global, then, in general, you will get stuck! Thus, if
you are going to avoid this fate, occasionally you will have to go “up hill” even when
you may have the option to go “down hill.” However, unless you have a detailed a
priori knowledge of the whole terrain, there is no way to know when you should
decide to do so. For this reason, it may be best to abandon rationality and let the
decision be made randomly. Of course, after a while, you should hope that you will
have worked your way out of the mountain valleys and that a steepest decent strategy
should become increasingly reasonable.
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6.5.1 The Algorithm

In order to eliminate as many technicalities as possible, we will assume throughout
that S is finite and has at least 2 elements. Next, let H : S — [0, 00) be the function
for which we want to locate a place where it achieves its minimum, and, without loss
in generality, we will assume that O is its minimum. Now take v so that (v); = 1 for
all i €S, and choose a matrix A so that (A);; =0 foralli €S, (A);; =(A);; > 0if
Jj #i,and A is irreducible (cf. (6.4.4)) on S. In practice, the selection of A should be
made so that the evaluation of H(j) — H (i) when (A);; > O 1is as “easy as possible.”
For example, if S has some sort of natural neighborhood structure with respect to
which S is connected and the computation of H(j) — H (i) when j is a neighbor
of i requires very little time, then it is reasonable to take A so that (A);; = 0 unless
J # 1 is a neighbor of i.

Now define y(8) as in (6.4.2) and Q(fB) as in (6.4.7). Clearly, y (0) is just the
normalized, uniform distribution on S: (y(0)); = L~! where L = #S > 2 is the
number of elements in S. On the one hand, as 8 gets larger, y(8) becomes more
concentrated on Sy. More precisely, since Z(8) > #Sg > 1

(1s,0)y(p) < Le ™, where § =min{H (j): j ¢ So}. (6.5.1)

On the other hand, as 8 gets larger, Theorem 6.4.11 says that, at least when ¢ > 0,
A(B) will be getting smaller. Thus, we are confronted by a conflict.

In view of the introductory discussion, this conflict between the virtues of taking
B large, which is tantamount to adopting an approximately steepest decent strategy,
versus those of taking B small, which is tantamount to keeping things fluid and
thereby diminishing the danger of getting trapped, should be expected. Moreover, a
resolution is suggested at the end of that discussion. Namely, in order to maximize
the advantages of each, one should start with 8 = 0 and allow B to increase with
time.> That is, we will make A an increasing, continuous function r~-g8(r) with
B(0) = 0. In the interest of unencumbering our formulae, we will adopt the notation

Z(t) = Z(B®)), Y. =v(B®), (=), - ll2e =11 N2y,
Var; = Vary,, Q) =Q(B0)), E=Epwy, and A =Arpq.

Because, in the physical model, B is proportional to the reciprocal of temperature
and B increases with time, #~~8(t) is called the cooling schedule.

3 Actually, there is good reason to doubt that monotonically increasing 8 may not be the best
strategy. Indeed, the name “simulated annealing” derives from the idea that what one wants to do
is simulate the annealing process familiar to chemists, material scientists, skilled carpenters, and
followers of Metropolis. Namely, what these people do is alternately heat and cool to achieve their
goal, and there is reason to believe we should be following their example. However, I have chosen
not to follow them on the unforgivable, but understandable, grounds that my analysis is capable of
handling only the monotone case.
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6.5.2 Construction of the Transition Probabilities

The Q-matrix here being time dependent means that the associated transition prob-
abilities will be time-inhomogeneous. Thus, instead of 1~~Q(¢) determining a one
parameter family of transition probability matrices, for each s € [0, co) it will de-
termine a map 7~>P(s, ) from [s, c0) into transition probability matrices by the
time-inhomogeneous Kolmogorov forward equation

%P(s, t) =P(s,1)Q(t) on (s,00) with P(s,s) =L (6.5.2)

Although (6.5.2) is not exactly covered by our earlier analysis of Kolmogorov equa-
tions, it nearly is. To see this, we solve (6.5.2) via an approximation procedure in
which Q(#) is replaced on the right hand side by

Q(N)(z) EQ(LtJN) where [t |y = % fort e [%, (m; 1)>.

The solution £~~P™) (s, 1) to the resulting equation is then given by the prescription
PWM(s,s) =Iand

o0

PM (s, 1) =PW) (s, sV LtJN) Z (I_S\’;#Q(s \Y, LtJN)m fort > s.
m=0 ’

As this construction makes obvious, PV (s, t) is a transition probability matrix for
each N>1andr >s,and (s, t)wP(M(s, t) is continuous. Moreover,

[P (5.0 =P (s,
1
= [ 1e(tziv) = Qe [PV 5. 0],
t
+ [ 10 [y [P 5. 1) = P05, 0],

But

)

Q)] <Ay and [Q(z) = QD] , < IAlluvIHllu|B(z)) - A()

and so
t
[PX) (5, 1) = P (s, 1), < IATuv I H / 1B(L)w) — B(Lzlu)|dz

t
+ [ Alluy / [PM () —PM (D), dr.
S
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Hence, after an application of Gronwall’s inequality, we find that

sup [PM (s 1) — PO s, ), |

0<s<t<T
T
< Ay, | H [[yeAlerT fo 1B(Lrln) = B(LT)m)|dT.

Because 7~»f(7) is continuous, this proves that the sequence (PN (s,1): N > 1}
is Cauchy convergent in the sense that, for each T > 0,

lim sup sup ||P(N)(SJ)—P(M)(s’t)“uvzo'
M—00 N>MO<s<t<T '

As a consequence, we know that there exists a continuous (s, #)~P(s, f) to which
the PV) (s, 1)’s converge with respect to || - |lu,v uniformly on finite intervals. In par-
ticular, for each ¢ > s, P(s, t) is a transition probability matrix and ¢ € [s, 00) >
P(s, t) is a continuous solution to

t
P(s, 1) =1 +/ P(s, 7)Q(t)dt, te€ls,00),

which is the equivalent integrated form of (6.5.2). Furthermore, if ¢ € [s, 00) +—>
I, € M| (S) is continuously differentiable, then

d

Eu, =pn,Q(t) forte[s,00) < pu,=pP(s,t) fortels,o0).
(6.5.3)

Since the “if” assertion is trivial, we turn to the “only if” statement. Thus, suppose

that r € [s, 00) —> p; € M (S) satisfying fi, = p,Q(#) is given, and set w; =, —

1 P(s, t). Then

=

t
W =/ w:Q(7)dr,

and so,

t
1ol < 1Al / e v d.
s

Hence, after another application of Gronwall’s inequality, we see that @; = 0 for all
r=s.

Of course, by applying this uniqueness result when u, = §;P(s, t) foreachi €S,
we learn that (s, #)~~P(s, t) is the one and only solution to (6.5.2). In addition, it
leads to the following time-inhomogeneous version of the Chapman—Kolmogorov
equation:

P(r,t) =P(r,s)P(s,t) forO<r<s<t. (6.5.4)

Indeed, set p; = §;P(r,t) for t > s, note that r~>pu, satisfies (6.5.3) with p, =
3;P(r, s), and conclude that p, = §;P(r, s)P(s, 1).
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6.5.3 Description of the Markov Process

Given a probability vector u, we now want to construct a Markov process {X (¢) :
t > 0} that has p as its initial distribution and (s, t)~~P(s, t) as its transition mech-
anism, in the sense that

P(X(0)=i)=(n); &P(X(1)=j|X(0), o €[0,5]) =P(s, )x(5)j- (6.5.5)

The idea which we will use is basically the same as the one which we used in
Sects. 5.2.1 & 2.1.1. However, life here is made more complicated by the fact
that the time inhomogeneity forces us to have an uncountable number of random
variables at hand: a pair for each (¢,i) € [0,00) x S. To handle this situation,
take, without loss in generality, S = {1, ..., L} and, for (¢, 1, j) € [0, 00) X S?, set
S(ti, H)=Y1_, e BOWHO-HOT (A),, take S(t,i,0) = 0, and define

- e S =1 S(t,i,7)
Wt iu) = J %f StiD) =" <3uil)
i ifu>1.

Also, determine 7 : [0, c0) x S x [0, o0) —> [0, 00) by

s+T (s,i,&)
/ S(t,i,L)dr =&.
S

Next, take Xo to be an S-valued random variable with distribution p, let
{E, : n > 1} be a sequence of unit exponential random variables that are independent
of each other and of Xy, and let {U, : n > 1} be a sequence of mutually indepen-
dent random variables that are uniformly distributed on [0, 1) and are independent
of o ({Xo} U{E, : n > 1}). Finally, set Jo = 0 and X (0) = Xy, and, when n > 1, use
induction to define

Jn = Jn—1 ZT(Jn—la X (Jn-1), En), X(Jn)zw(-]n, X (Jn-1)s U}’L)7 and
X(t)=X(Jp—1) forJ,_1 <t<J,.

Without substantial change, the reasoning given in Sect. 2.1.1 combined with that
in Sect. 5.2.2 and Exercise 5.5.12 allow one to show that (6.5.5) holds.

6.5.4 Choosing a Cooling Schedule

In this section, we will give a rational basis on which to choose the cooling sched-
ule 7~~»fB(t). For this purpose, it is essential to keep in mind what it is that we are
attempting to do. Namely, we are trying to have the Markov process {X(¢) : ¢t > 0}
seek out the set So = {j : H(j) = 0} in the sense that, as t — oo, P(X(¢) ¢ Sp)
should tend to O as fast as possible, and the way we hope to accomplish this is by
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making the distribution of X (¢) look as much like y, as possible. Thus, on the one
hand, we need to give {X (¢) : t > 0} enough time to equilibrate, so that the distribu-
tion of X (¢) will look a lot like p,. On the other hand, in spite of the fact that it may
inhibit equilibration, unless we make S (¢) increase to infinity, there is no reason for
our wanting to make the distribution of X (¢) look like y,.

In order to understand how to deal with the concerns raised above, let i be a fixed
initial distribution, and let i, be the distribution at time ¢# > 0 of the Markov process
{X(¢) : t > 0} described in the Sect. 6.5.3 with initial distribution . Equivalently,
;= PO, 1), where {P(s,7) : 0 <s <t < oo} is the family of transition probability
matrices constructed in Sect. 6.5.2. Next, define f; : S —> [0, c0) so that

(1)
)i

It should be obvious that the size of f; provides a good measure of the extent to
which u, resembles y;. For example, by Schwarz’s inequality and (6.5.1),

fort >0andi €8S.

fi(i) =

P(X (1) ¢ So) = (Lg,0) = (filg,0)e
i _pws (6.5.6)
< il /Ug,0he < L2 fillase™ 2,

and so we will have made progress if we can keep || f;||2,; under control.

With the preceding in mind, assume that #~+f(¢) is continuously differentiable,
note that this assumption makes #~~|| f; ||% , also continuously differentiable, and, in
fact, that ’

d d( 1 o i
E”ft”%,z:E(% gg:(fz(l)) e ﬁ(’)H“)

=2(fi, fo)e — BWO(H — (H)1, f7),.

since, by (6.4.3), Z(t) = —B(t)Z(t)(H)t. On the other hand, we can compute this
same derivative another way. Namely, because (P(0,7)g)p = (g)u, = ([, g): for
any function g,

1130 = (fi)u, = (PO.0) fi)

and so we can use (6.5.2) to see that

d . .
Ellleli, ={PO,0Q) fi), + (PO, 1) fi), = —E(fr. f) + (i fohr-

Thus, after combining these to eliminate the term containing f,, we arrive at

d .
TN, = =26 f) + BWO(H = (H)1. ),

< =2k — I HIBO)I I3, + 2,



168 6 Reversible Markov Processes

where, in passing to the second line, we have used the fact that ( f;); = 1 and there-
fore that Var;(f) = || f; ||% , — 1. Putting all this together, we now know that

. d
IHBG) <h = Enf,n%,,s—x,||ﬁ||§,,+2x,.

The preceding differential inequality for || f ||%, , is easy to integrate. Namely, it
says that

d t
(AN, £ 200" where Ar) = /0 Aed.

Hence,
115, <e @l fol3g+2(1—e ) <l fol3o V2.

Moreover, since (yg); = L™!, where L = #S > 2, ||fo||§,0 <l follu{f)o <L, and
SO

. 1
IHIuB(®) =& = | filla; <L2. (6.5.7)

The final step is to figure out how to choose #~~f(t) so that it satisfies the con-
dition in (6.5.7); and, of course, we are only interested in the case when Sy # S
or, equivalently, ||H |, > 0. From Theorem 6.4.11 we know that A; > c_e B¢
Hence, we can take

1 c_et

~log(l1+ 75—) whene>0
e 1Hu
B) = { ot (6.5.8)
T when ¢ =0.

After putting this together with (6.5.7) and (6.5.6), we have now proved that when
B(t) is given by (6.5.8), then

c_et \— . _$
P(X(t)¢SO)<L (1+m) *  witha = 5. whene >0 659
— Sc_t .
e 2MHlu when ¢ = 0.

Remark The result in (6.5.9) when ¢ = 0 deserves some further comment. In par-
ticular, it should be observed that e = 0 does not guarantee success for a steepest
decent strategy. Indeed, ¢ = 0 only means that each i can be connected to Sy by an
allowable path along which H is non-increasing (cf. Exercise 6.6.13), it does not
rule out the possibility that, when using steepest decent, one will choose a bad path
and get stuck. Thus, even in this situation, one needs enough randomness to hunt
around until one finds a good path.
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6.5.5 Small Improvements

An observation, which is really only of interest when ¢ > 0, is that one carry out the

1
same sort of analysis to control the || f;|l4,, = ({| f;|9);)9 for each g € [2, 00). The
reason for wanting to do so is that it allows one to improve the rate of convergence
in (6.5.6) and therefore in (6.5.9). Namely, by (6.6.3),

B1)3S

1
q 1 —b@s
<Li|lfillgre <

(1 ) a 9y
(sChu, = <1SOC>1M <(lg, ),(Lf’t

(lsoc)t (ISO[})t

where ¢’ = qu] is the Holder conjugate of g. Hence, if 6 € [%, 1)andg = ﬁ, then

one can choose a cooling schedule which makes P(X (1) ¢ Sp) go to 0 at least as fast
ast— @ .
To carry this out, one begins by computing j—t Il.fy ||Z’ ; twice, once for each of the

following expressions:
-1
1fillge = (), and 1filg,=PO.0fF ),
One then eliminates ﬁ from the resulting equations and thereby arrives at

B(t)
q -1

d _
TG = —ai(fr £17) (f4,H —(H),).

where ¢’ = qul and

1
e, ¥) = 3 Z(yt)i(Q(t))ij (e() — ) (V) — v () =—(o, Q(t)lﬁ),~
i#]

At this point one has to show that

1 Ag—1 g
&(fin £ ‘)z%aw,f;),

and a little thought makes it clear that this inequality comes down to checking that,
for any pair (a, b) € [0, 00)2,

2

(b? —a¥)? < h(b —a)(bT —at Y,

which, when looked at correctly, follows from the fundamental theorem of calculus
plus Schwarz’s inequality. Hence, in conjunction with the preceding and (6.3.6), we
find that

d 1 ; dhr ) 402
S fillg = —?(m, —gBOIHI)IFIE, + 7<ff )i
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In order to proceed further, we must learn how to control { ft 2 in terms of || f; |4 gt

In the case when g = 2, f, ) caused no problem because we knew it was equal
to 1. When q > 2, We no longer have so much control over it. Nonetheless, by first

writing ( ft ) = ( ft ) A and then using part (c) of Exercise 6.6.2 to see that

1-12 —1,4=2 =
AR, = (i = ()i
q 2
we arrive at {f;’ ) ( ft ) . Armed with this estimate, we obtain the differential

inequality
‘17

d 1 . 4 1—
T fillg. = —?(%, —qHIBO)Ifill]  + q—,‘(nﬁn;’,,)

Finally, by taking 8(¢) = % log(1+ q3|\CHTII ), the preceding inequality can be replaced
by

d A 4 -4
I fillg = —q—inftn;’,t + q—,’(nﬁnz,» 7,

which, after integration, can be made to yield

il
I fillg.e =2 VIl follg.0

at which point the rest of the argument is the same as the one when g = 2.

Remark Actually, it is possible to do even better if one is prepared to combine the
preceding line of reasoning, which is basically a consequence of Poincaré’s inequal-
ity, with analytic ideas which come under the general heading of Sobolev inequali-
ties. The interested reader might want to consult [3], which is the source from which
the contents of this whole section are derived.

6.6 Exercises

Exercise 6.6.1 A function v : [0, c0) —> R is said to be convex if the graph of
lies below the secant connecting any pair of points on its graph. That is, if it satisfies

1/1((1 —0)s +9t) <A =0)yY(s)+0y(@) forall0<s<tandB e[0,1]. (%)
This exercise deals with various properties of convex functions, all of which turn on
the property that the slope of a convex function is non-decreasing.

(@) If {1, }3° U{y} are functions on [0, c0) and v, (t) —> ¥ (¢) foreach ¢ € [0, 00),
show that ¢ is non-increasing if each of the v,,’s is and that y is convex if each
of the ¥, s is.
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(b) If ¢ : [0,00) —> R is continuous and twice continuously differentiable on
(0, 00), show that ¥ is convex on [0, co) if and only if ¥ > 0 on (0, c0).

Hint: The “only if” part is an easy consequence of

Y@a+h)+y@—h)—2¢@)
h2

V() = lim for t € (0, 00).
N0

To prove the “if” statement, let 0 < s < ¢ be given, and for € > 0 set

Ye(9) = W((l —0)s + Qt) —(1=60)Y(s) —0y(s) —ebB(1 —6), 6€<l0,1].

Note that ¢, (0) = 0 = ¢¢ (1) and that ¢, > 0 on (0, 1). Hence, by the second deriva-
tive test, g cannot achieve a maximum value in (0, 1). Now let € N\ 0.

(c) If ¥ is convex on [0, 00), show that, for each s € [0, 00),

Y(s)—y@) . . )
te(s,00) —> — 1s non-increasing.
— S

(d) If ¥ is convex on [0, 00) and 0 < s <t <u < w, show that

V) —yv@ Y@ -y

t—s w—u

Hint: Reduce to the case when u =1.

Exercise 6.6.2 Given a probability vector g € [0, 115, there are many ways to prove
that (f ),ZL < (f% p forany f e L?(p). For example, one can get this inequality as
an application of Schwarz’s inequality |(f, g)ul <l fll2,ullgll2,, by taking g =1.
Alternatively, one can use 0 < Var, (f) = (f 2y w—{f ),ZL. However, neither of these
approaches reveals the essential role that convexity plays here. Namely, the purpose
of this exercise is to show that for any non-decreasing, continuous, convex function
Y :[0,00) —> [0, 00) and any f : S — [0, 00),

Y((u) (W o fa, (6.6.3)

where the meaning of the left hand side when ( f),, = o0 is given by taking ¥ (o0) =
lim; ~o ¥ (t). The inequality (6.6.3) is an example of more general statement known
as Jensen’s inequality (cf. Theorem 2.4.15 in [8]).

(a) Use induction on n > 2 to show that
n n
v (Z ekxk) <> 0y
k=1 k=1

n
forall (0y.....6,) € [0, 11" with Y 6 =1and (x1.....x,) € [0, 00)".

m=1
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(b) Let {Fy}{° be a non-decreasing exhaustion of S by finite sets satisfying
W(FN) = ZieFN (m); > 0, apply part (a) to see that

" (ZieFN f(i)(ﬂ)i> e VEOI Wi _ o fy
u(Fy) - w(FN) — u(Fy)

for each N, and get the asserted result after letting N — oo.
(c) Asan application of (6.6.3), show that, forany 0 < p<g <ocoand f:S —
1

10,00), (f7)1 < (F)
(d) Let p € (0, oo) and {ag:1 <€ <m} C[0, c0). Show that

m p m
Nt
(5 sm gt
=1 =1

Hint: When p > 1, use part (c) with p =1 and g = p for the measure that assigns
mass -- to the points 1,...,m and the function f(¢) =a,. When p € (0, 1), first
reduce to the case when n = 2, and in that case show that it suffices to show that
1+x)? <1+4+xPforx>0.

Exercise 6.6.4 This exercise deals with the material in Sect. 6.1.2 and demonstrates
that, with the exception of (6.1.10), more or less everything in that section extends to
general irreducible, positive recurrent P’s, whether or not they are reversible. Again
let m = 7S be the unique P-stationary probability vector. In addition, for the exercise
which follows, it will be important to consider the space L?(m; C) consisting of
those f : S — C for which | f| € L%(x).

2

P
(a) Define PT as in (6.1.2), show that 1 = (PPT); = (1); ¥ e En)) . and conclude

that the series in the definition Pf (i) = ) _ jes f(J)(P);; is absolutely conver-
gent foreachi e Sand f € L%(r; C).

(b) Show that |[Pfll2.z < ||fll2,z forall f € L?(m; C), and conclude that (6.1.8)
and (6.1.9) extend to the present setting for all f € L*(x; C).

Exercise 6.6.5 Continuing with the program initiated in Exercise 6.6.4, we will
now see that reversibility plays only a minor role in Sect. 6.1.4. Thus, let P be any
irreducible transition probability on S which is positive recurrent, let d be its period,
and set fy = eV —127d7"

(a) Show that for each 0 < m < d there is a function f,, : S —> C with the proper-
ties that | fi,| =1 and P f;, = 07 f.

Hint: Choose a cyclic decomposition (Sp,...,Sg—1) as in Sect. 4.1.8, and use
(4.1.19).

(b) Given @ € R\ {0}, set 6, = e*/’_]zm‘fl, and show that there exists an f €
L%(m; C)\ {0} satisfying P f = 6, f if and only if d = ma for some m € Z\ {0}.
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Hint: By part (a), it suffices to show that no f exists unless d = ma for some non-
zero m € 7. Thus, suppose that f exists for some « which is not a rational number
of the form %, choose i € S so that f (i) # 0, and get a contradiction with the fact
that lim,,_, oo P f (i) exists.

(c) Suppose that f € L%(S; C) is a non-trivial, bounded solution to P f = o7 f for
some m € Z, and let (So, ..., Sz—1) be a cyclic decomposition of S. Show that,
foreach 0 <r <d, f [ S, =0, co, where co € C\ {0}. In particular, up to
a multiplicative constant, for each integer 0 < m < d there is exactly one non-
trivial, bounded f € L%(S; C) satisfying P f = 05 f.

(d) Let H denote the linear subspace of f € L?(x; C) satisfying P f = 6 f for some
6 € C with || = 1. By combining parts (b) and (c), show that d is the dimension
of H as a vector space over C.

(e) Assume that (P);; >0 = (P);; >0 forall (i, j) € S?. Show that d < 2 and
that d = 2 if and only if there is a non-trivial, bounded f :S — R satisfying
Pf = —f. Thus, this is the only property of reversible transition probability
matrices of which we made essential use in Theorem 6.1.14.

Exercise 6.6.6 This exercise provides another way to think about the relationship
between non-negative definiteness and aperiodicity. Namely, let P be a not neces-
sarily irreducible transition probability on S, and assume that g is a probability
vector for which the detailed balance condition (u); (P);; = (n);(P) i, @, j) € S?
holds. Further, assume that P is non-negative definite in L>(u): (f, Pf) u = 0 for
all bounded f : S —> R. Show that (#); > 0 = (P);; > 0 and therefore that i is
aperiodic if (x); > 0. What follows are steps which lead to this conclusion.

(a) Define the matrix A so that (A);; = (1, P1yj)),, and show that A is
symmetric (i.e., (A);; = (A)};) and non-negative definite in the sense that
D j (A);j(x);(x); = 0 for any x € RS with only a finite number of non-
vanishing entries.

(b) Given i # j, consider the plane {aly;) + 81y} : o, B € R} in L?(mr), and, using
the argument with which we derived (6.1.5), show that (A)l.zj <(A);iA)jj.In
particular, if (A);; =0, then (A);; =0forall j €S.

(c) Complete the proof by noting that i esA)ij = ();.

(d) After examining the argument, show that we did not need P to be non-negative
definite but only that, for a given i € S, each of the 2 x 2 submatrices

(<1{i}vP1{i}>/L <1{i}’P1{j}>IL>
Xy Pl (g, Ply)u

be.

Exercise 6.6.7 Let P be an irreducible, positive recurrent transition probability
with stationary probability . Refer to (6.1.2), and show that the first construction
in (6.1.3) is again irreducible whereas the second one need not be. Also, show that
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the period of the first construction is never greater than that of P and that the sec-
ond construction is always non-negative definite. Thus, if PTP is irreducible, it is
necessarily aperiodic.

Exercise 6.6.8 Assume that P is irreducible and reversible with respect to . Be-
cause the estimate in (6.2.5) is so weak, it is better to avoid it whenever possible.
One way to avoid it is to note that P? is necessarily non-negative definite and there-
fore that the associated B equals 8.

(a) Show P? is irreducible if and only if P is aperiodic.
(b) Assume that P is aperiodic, define

1
EOU D=5 20 @i(P),;(F() = F().

i,jES
and set

B =inf{E(f, f): f € Li(m) and || fll2.x = 1}.

Show that
[P f — (D], < (1 - BP) 2L

Exercise 6.6.9 Asin Sect.3.3,let I" = (V, £) be a connected, finite graph in which
no vertex has an edge to itself and there are no double edges, and take P, = d—lv,
where d, is the degree of v if {v, w} € £ and P, ,, =0 if {v, w} ¢ £. As was ob-
served earlier, the associated Markov chain is irreducible.

(a) Show that the chain is aperiodic if and only if the graph is not bipartite. That is,
if and only if there is no non-empty V' C V with the property that every edge
connects a point in V' to one in V \ V',

(b) Determine the probability vector & by (&), = 2%:’ and show that & is a re-
versible probability vector for P.

(c) Choose a set P = {p(v, w) : v # w} of allowable paths, as in Sect. 6.2.2, and
show that

2#E

B+ = DILP)BP)’ (6.6.10)

where D = maxyey dy, L(P) is the maximal length (i.e., the maximal number
of edges in) of the paths in P, and B(P), the bottleneck coefficient, is the max-
imal number of paths p € P which cross over an edge e € E. Obviously, if one
chooses P to consist of geodesics (i.e., paths of minimal length connecting their
end points), then L(/P) is just the diameter of I", and, as such, is as small as pos-
sible. On the other hand, because it may force there to be bad bottlenecks (i.e.,
many paths traversing a given edge), choosing geodesics may not be optimal.
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(d) Assuming that the graph is not bipartite, choose P = {p(v) : v € V} to be a set
of allowable closed paths of odd length, and show that

B- (6.6.11)

> .
~ DL(P)B(P)

Exercise 6.6.12 Here is an example to which the considerations in Exercises 6.6.9
and 6.6.8 apply and give pretty good results. Let N > 2, take V to be the subset of

the complex plane C consisting of the Nth roots of unity, and let £ be the collection
V=127 (m—1) =127m
N ,e N L

of pairs of adjacent roots of unity. That is, pairs of the form {e
Finally, take P and  accordingly, as in Exercise 6.6.9.

(a) Show that P is always irreducible but that it is aperiodic if and only if N is odd.

(b) Assuming that N is odd, use (c) in the Exercise 6.6.9 to show that S > % and
B> .

(c) Again assume that N is odd, and use Exercise 6.6.8 to show that

4

L5
[P"f = Fhxllym = (1 B N) 7=l

When N is large, this is a far better estimate than the one that comes from (b).

Exercise 6.6.13 Define ¢ and m as in Theorem 6.4.11, and show that ¢ = —m if
and only if for each (i, j) € S x Sy there is an allowable path (ip, ..., i,) starting at
i and ending at j along which H is non-increasing. That is, io =i, i, = j, and, for
eachl <m <n,A; i, >0and H(@y,) < H(@n-1).

Exercise 6.6.14 In this exercise I will give a very cursory introduction to a class
of reversible Markov processes which provide somewhat naive mathematical mod-
els of certain physical systems. In the literature, these are often called, for rea-
sons which will be clear shortly, spin-flip systems, and they are among the ear-
liest examples of Glauber dynamics. Here the state space S = {—1, 1}V is to be
thought of as the configuration space for a system of N particles, each of which

has “spin” 41 or —1. Because it is more conventional, I will use w = (w1, ..., wy)
orn =(ny,...,nnN) to denote generic elements of S. Given w € Sand 1 <k <N,
" will be the configuration obtained from w by “flipping” its kth spin. That is, the
of = (w1, ..., Wk—1, —Ok, Ok+1, - - ., N). Next, given R-valued functions f and g
on S, define
N
rif.9)@ => (f(&") - f@)(s(6") - g@).
k=1

which is a discrete analog of the dot product of the gradient of f with the gradient
of g. Finally, given a probability vector p with (), > 0 for all ® € S, define
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(Mo + (1)

1
et =3lfel), A == == and
p,f (w) if p= oF
(Q")py =10 ity ¢ oo, ... o)

Yl st @) ifn=.

(a) Check that Q" is an irreducible Q-matrix on S and that the detailed balance
condition (1) Qly = (1) Qye holds. In addition, show that

_<gv Qﬂf>ﬂ =g'u(f’ g).

(b) Let A be the uniform probability vector on S. That is, (A), = 2~ for each
® € S. Show that

Var, (f) < MyVar\(f), where M, = 2N max L,

weS

and
El(f,f)iig"(f,f) wheremM:2Nminle.
my weS

(c) Foreach S C{l,..., N}, define x5 :S — {—1, 1} so that xs(®) = [ [rcg k-
In particular, xg = 1. Show that {5 : S C {1,..., N}} is an orthonormal basis
in L2(X) and that Q)"XS = —2(#S) xs, and conclude from these that Var (f) <
1 e
&S ).

2

(d) By combining (b) with (c), show that 8, Var, < E*(f, f) where B, = 2;/1"—:

In particular, if ~~P! is the transition probability function determined by Q*,
conclude that

[P f = Nl = e 0 = (Puls e

Exercise 6.6.15 Refer to parts (b) and (c) in Exercise 6.6.14. It is somewhat sur-
prising that the spectral gap for the uniform probability A is 2, independent of N.
In particular, this means that if {P®Y)(¢) : > 0} is the semigroup determined by the
Q-matrix

1 ifg=&F
QM) =1-N ifn=0
0 otherwise

on {—1, 1}, then [PM (@) f — (f)ymllm < e 2| fll, 0 for £ >0 and
fe LZ(X(N )), where A") is the uniform probability measure on {—1, 1. In fact,
the situation here provides convincing evidence of that the theory developed in
this chapter works in situations where Doeblin’s theory is doomed to failure. In-
deed, the purpose of this exercise is to prove that, for any t > 0 and @ € {—1, 1}N s
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limy o0 [|£™) (1, @) = AN [y =2 when (™ (2, )y = PN (1))0y. That is, al-
though the L2-estimate is independent of N, the variation estimate deteriorates as
N gets larger.

(a)
(b)

(©)

()

Begin by showing that |0 (r, @) — L™ ||, is independent of w.

Show that for any two probability vectors v and v’ on a countable space S,
2> |lv—v'|ly > 2[v(A) — v/(A)| forall A CS.

For 1 <k < N, define the random variable X on {—1, l}N so that X (n) = nx
if = (11, ..., ny). Show that, under AN the X x’s are mutually independent,
{—1, 1}-valued Bernoulli random variables with expectation 0. Next, let t > 0
be given, and set M(N) = [L(N) (t, w), where w is the element of {—1, 1} whose
coordinates are all —1. Show that, under u), the X;’s are mutually indepen-
dent, {—1, 1}-valued Bernoulli random variables with expectation value —e™ 2,
Continuing in the setting of (c), let AN) be the set of 5 for which
% Z{V Xi(p) < —%e’zﬂ and show that

(N)(AN)Y _ A N) (4 (N) _88_4[
OV (AN) A (AW) 21— 2

In fact, by using the sort of estimate developed at the end of Sect. 1.2.4, espe-
cially (1.2.16), one can sharpen this and get

) (A _ ) (AN = 1 _ _Ne¥
n (A ) A (A )zl 2exp A .

Hint: Use the usual Chebyshev estimate with which the weak law is proved.

(e)

By combining the preceding, conclude that ||[L(N) (t,w) — AN v =>2(1— 8974’)
forallt >0, N e Zt,and w € {—1, 1}V.



Chapter 7
A Minimal Introduction to Measure Theory

On Easter 1933, A.N. Kolmogorov published Foundations of Probability, a book
which laid the foundations on which most of probability theory has rested ever since.
Because Kolmogorov’s model is given in terms of Lebesgue’s theory of measures
and integration, its full appreciation requires a thorough understanding of that the-
ory. Thus, although it is far too sketchy to provide anything approaching a thorough
understanding, this chapter is an attempt to provide an introduction to Lebesgue’s
ideas and Kolmogorov’s application of them in his model of probability theory.

7.1 A Description of Lebesgue’s Measure Theory

In this section I will introduce the terminology used in Lebesgue’s theory. However,
I will systematically avoid giving rigorous proofs of any hard results. There are
many places in which these proofs can be found, one of them being [8].

7.1.1 Measure Spaces

The essential components in measure theory are a set £2, the space, a collection F
of subsets of £2, the collection of measurable, subsets, and a function u from F into
[0, oo], called the measure. Being a space on which a measure might exist, the pair
(£2, F) is called a measurable space, and when a measurable space (£2, F) comes
equipped with a measure u, the triple (§2, F, ) is called a measure space.

In order to avoid stupid trivialities, we will always assume that the space £2 is
non-empty. Also, we will assume that the collection F of measurable sets forms a
o-algebra over §2:

QeF, AeF = Al=92\AeF, and
o0
AP cr = (JaeF
1

D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230, 179
DOI 10.1007/978-3-642-40523-5_7, © Springer-Verlag Berlin Heidelberg 2014
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It is important to emphasize that, as distinguished from point-set topology, only
finite or countable set theoretic operations are permitted in measure theory.
Using elementary set theoretic manipulations, it is easy to check that

A, BeF — ANBeF and B\AeF

00
{An}cfo cF — mA” cF.
1

Finally, the measure y is a function which assigns' 0 to ¢ and is countably additive
in the sense that

{A)°CF and A, NA,=0 whenm#n

= u(UAn> =Y u(Ay). (7.1.1)
1

1
In particular, for A, B € F,
ACB = wB)=u(A)+u(B\A)=uA)
uw(ANB)<oo = w(AUB)=u(A)+ u(B)—un(ANB).

(7.1.2)

The first line comes from writing B as the union of the disjoint sets A and B \ A,
and the second line comes from writing A U B as the union of the disjoint sets A
and B \ (A N B) and then applying the first line to B and A N B. The finiteness
condition is needed when one moves the term (A N B) to the left hand side in
w(B)=u(ANB)+ u(B\ (AN B)). That is, one wants to avoid having to subtract
oo from oo.

When the set £2 is finite or countable, one has no problem constructing measure
spaces. In this case one can take F = {A : A C §2}, the set of all subsets of £2, make
any assignment of w € 2 — u({w}) € [0, oc], at which point countable additivity
demands that we take

nA) =Y n(lw}) fordce,

weA

where summation over the empty set is taken to be 0. However, when £2 is un-
countable, it is far from obvious that interesting measures can be constructed on
a non-trivial collection of measurable sets. Indeed, it is reasonable to think that
Lebesgue’s most significant achievement was his construction of a measure space
in which £2 =R, F is a o-algebra of which every interval (open, closed, or semi-
closed) is an element, and p assigns each interval its length (i.e., u(/) =b —aif I
is an interval whose right and left end points are b and a).

'In view of additivity, it is clear that either () = 0 or (A) = oo for all A € F. Indeed, by
additivity, u(¥) = n(@U W) =21 (¥), and therefore 1 () is either 0 or co. Moreover, if () = oo,
then w(A) = u(AUP) = u(A) + u@ =ooforall A € F.
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Although the terminology is misleading, a measure space (£2, F, u) is said to be
finite if 1 (§2) < oo. That is, the “finiteness” here is not determined by the size of £2
but instead by how large £2 looks to u. Even if a measure space is not finite, it may
be decomposable into a countable number of finite pieces, in which case it is said
to be o-finite. Equivalently, (§2, F, u) is o-finite if there exists {£2,}{° € F such
that® £2, 7 £2 and 11(£2,) < oo for each n > 1. Thus, for example, both Lebesgue’s
measure on R and counting measure on Z are o -finite but not finite.

7.1.2 Some Consequences of Countable Additivity

Countable additivity is the sine qua non in this subject. In particular, it leads to the
following continuity properties of measures:

{AJI°CF and A, /A = (A /()
{An)7° € F, n(Ap) <oo, and Ay, N\A = u(An) \ u(A).

Although I do not intend to prove many of the results discussed in this chapter, the
proofs of those in (7.1.3) are too basic and easy to omit. To prove the first line,
simply take By = Ay and B, 1 = A,+1 \ A,. Then B, N B, = § when m # n,
U Bn=A, foralln > 1, and | J{° B, = A. Hence, by (7.1.1),

WA =Y u(Bw) /> (Bn) = u(U Bm) = 1(A).
1 1 1

To prove the second line, begin by noting that (A1) = u(A,) + w(A1 \ A,) and
w(A1) = n(A)+ u(Ar \ A). Hence, since A1\ A, /" A1\ A and (A1) < oo, we
have w(A1) — nw(A,) /" w(A1) — u(A) and therefore that w(A,) \  n(A). Just as
in the proof of second line in (7.1.2), we need the finiteness condition here to avoid
being forced to subtract co from co.

Another important consequence of countable additivity is countable subadditiv-

ity:

AP cF = “(U An) <> u(An). (7.1.4)
1

1

Like the preceding, this is easy. Set By = Ay and B,4+1 = Ap+1 \ U? A,,. Then
u(By) < u(Ayp) and

u(U An) - u(U Bn> =D m(B) =) u(An).
1 1 1 1

2[ write A, /"Awhen A, C A,y foralln>1and A= U?c A,,. Similarly, A, \{ A means that
Ap DAy foralln>1and A= ﬂ?o A,. Obviously, A, /' A if and only if A,C L AC.



182 7 A Minimal Introduction to Measure Theory

A particularly important consequence of (7.1.4) is the fact that
o
M(Um) =0 if u(A,)=0foreachn > 1. (7.1.5)
1

That is, the countable union of sets each of which has measure 0 is again a set having
measure 0. Here one begins to see the reason for restricting oneself to countable
operations in measure theory. Namely, it is certainly not true that the uncountable
union of sets having measure 0 will necessarily have measure 0. For example, in the
case of Lebesgue’s measure on R, the second line of (7.1.3) implies

n(fx}) = gi\l‘l(l)/t((x —8,x+8)= ;{%25 =0

for each point x € R, and yet (0, 1) = Uxe(o’l){x} has measure 1.

7.1.3 Generating o-Algebras

Very often one wants to make sure that a certain collection of subsets will be among
the measurable subsets, and for this reason it is important to know the following con-
structions. First, suppose that C is a collection of subsets of £2. Then there is a small-
est o-algebra o (C), called the o -algebra generated by C, over §2 which contains C.
To see that o (C) always exists, consider the collection of all the o -algebras over §2
which contain C. This collection is non-empty because {A : A C £2} is an element.
In addition, as is easily verified, the intersection of any collection of o -algebras is
again a o -algebra. Hence, o (C) is the intersection of all the o-algebras which con-
tain C. When £2 is a topological space and C is the collection of all open subsets
of §2, then o (C) is called the Borel o-algebra and is denoted by By;.

One of the most important reasons for knowing how a o-algebra is generated is
that one can often check properties of measures on o (C) by making sure that the
property holds on C. A particularly useful example of such a result is the one in the
following uniqueness theorem.

Theorem 7.1.6 Suppose that ($2, F) is a measurable space and that C C F in-
cludes §2 and is closed under intersection (i.e., AN B € C whenever A, B €C). If 1
and v are a pair of finite measures on ($2, F) and if u(A) = v(A) for each A € C,
then w(A) =v(A) forall A € o (C).

Proof We will say that S C F is good if

() A, BeSand ACB = B\ A€S.
(i) A, BeSand ANB=¢% —> AUBE€S.
(iii) {A,)°CSandA, /A = A€S.
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Notice that if S is good, 2 €S, and A,BeS = ANBe€S, then Sisa
o-algebra. Indeed, because of (i) and (iii), all that one has to do is check that
AU B € S whenever A, B € S. But, because AU B = (A \ (AN B)) U B, this
is clear from (i), (ii), and the fact that S is closed under intersections. In addition,
observe that if S is good, then, for any D C F,

S'={AeS:ANBeSforall BeD}

is again good.

Now set B={A € F: u(A) = v(A)}. From the properties of finite measures,
in particular, (7.1.2) and (7.1.3), it is easy to check that B is good. Moreover, by
assumption, C € B. Thus, if

B ={AeB:ANC e Bforall C e(C},

then, by the preceding observation, B’ is again good. In addition, because C is closed
under intersection, C C B’. Similarly,

B”E{AeB’:AﬂBeB’forallBeB’}

is also good, and, by the definition of B’, C € B”. Finally, if A, A’ € B” and B € B,
then (ANAYNB=AN(A'NB) € B',andso ANA" € B”. Hence, B” is a o -algebra
which contains C, B” C B, and therefore u equals v on o (C). O

7.1.4 Measurable Functions

Given a pair (£21, F1) and (§22, F») of measurable spaces, we will say that the map
F : 21 — $§2, is measurable if the inverse image of sets in F, are elements of
Fi: F’l(F) € Fy forevery I' € F».3 Notice that if F» = o (C), F is measurable if
F~1(C) e Fi for each C € C. In particular, if £2| and §2, are topological spaces and
Fi = Bg,, then every continuous map from £2 to £2, is measurable.

It is important to know that when £2, = R and F, = Br, measurability is pre-
served under sequential limit operations. To be precise, if { f,}{° is a sequence of
R-valued measurable functions from (£2, F) to (R, Br), then

w~sup f(w), w~inf f, (w),
n n

o are measurable. (7.1.7)
o~ lim fy(w), and o~ lim f,(w)
n— oo n— 00

For example, the first of these can be proved by the following line of reasoning.
Begin with the observation that Br = ¢ (C) when C = {(a, 00) : a € R}. Hence

3The reader should notice the striking similarity between this definition and the one for continuity
in terms of inverse images of open sets.
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f : 2 —> R will be measurable if and only if* {f > a} for each a € R, and so
the first function in (7.1.7) is measurable because

[Supfn >a} :U{f" >a} foreveryaeR.
n n

As a consequence of the second line in (7.1.7), we know that the set A of points
w at which the limit lim,,_, o, f;; (w) exists is measurable, and w~~lim,_  fr(®) is
measurable if A = £2.

Measurable functions give rise to important instances of the construction in the
preceding subsection. Suppose that the space £2 and the measurable space (§2,, F7)
are given, and let § be some collection of maps from £2; into £2,. Then the o-
algebra o (§) over §2 generated by ¥ is the smallest o -algebra over §2; with respect
to which every element of § is measurable. Equivalently, o (§) is equal to the set
(F-Y(I'): F € § & I' € F>)}. Finally, suppose that F» = o (C,), where C» C F»
contains £2> and is closed under intersection (i.e., AN B € C, if A, B € (), and
let C; be the collection of sets of the form F]_I(Al) n---N Fn_l(A,,) forneZ",
{Fi,...,F,} CF,and {A,...,A,} CCr. Then o (§) =0 (C1), £21 € Cy1, and C; is
closed under intersection. In particular, by Theorem 7.1.6, if u and v are a pair of
finite measures on (£21, F1) and

w({wr: Fi(@n) € Ar,..., Fy(w)) € Ay})
=v({wi: Fi(w) € Ay, ..., Fy(w)) € Ay})

foralln e Z*,{Fy,...,F,} €&, and {A1, ..., A} CCa, then u equals v on o (F).

7.1.5 Lebesgue Integration

Given a measure space (£2, F, ), Lebesgue’s theory of integration begins by giving
a prescription for defining the integral with respect to u of all non-negative, measur-
able functions (i.e., all measurable maps f from (£2, F) into® ([0, oo]; Bio,00])- His
theory says that when 14 is the indicator function of a set A € F and a € [0, 00),
then the integral of the function® a1y should be equal to au(A). He then insists
that the integral should be additive in the sense that the integral of f; 4+ f> should
be sum of the integrals of f; and f. In particular, this means that if f is a non-
negative, measurable function which is simple, in the sense that it takes on only a

4When it causes no ambiguity, I use {F € I'} to stand for {w : F(w) € I'’}.

5In this context, we are thinking of [0, co] as the compact metric space obtained by mapping [0, 1]
onto [0, co] viathe map ¢ € [0, 1] — tan(%t).

%Tn measure theory, the convention which works best is to take 0 co = 0.
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finite number of values, then the integral | f du of f must be

> xu(f (),

x€[0,00)

where, because f~!({x}) = ¢ for all but a finite number of x, the sum involves only
a finite number of non-zero terms. Of course, before one can insist on this additivity
of the integral, one is obliged to check that additivity is consistent. Specifically, it
is necessary to show that Y | auu(A,) = Z?l a u(Al ) when Y Y anla, = f=
Z’f/ a,’n 1, - However, once this consistency has been established, one knows how
to define the integral of any non-negative, measurable, simple function in such a way
that the integral is additive and gives the obvious answer for indicator functions. In
particular, additivity implies monotonicity: [ fdv < [ gdp when f < g.

To complete Lebesgue’s program for non-negative functions, one has to first ob-
serve that if f: E — [0, oo] is measurable, then there exists a sequence {(,an}cl><> of
non-negative, measurable, simple functions with the property that ¢, (@) / f(w)
for each w € £2. For example, one can take

4/1
m _ _
w"ZZZ_nlAm,n WhereAm,,,z{w:mZ "< flw) < (m+1)2 ”}.

m=1

Given {,}7°, what Lebesgue says is that [ f du = lim,— o [ s dp. Indeed, by
monotonicity, [ ¢, du is non-decreasing in n, and therefore the indicated limit nec-
essarily exists. On the other hand, just as there was earlier, there is a consistency
problem which one must resolve before adopting Lebesgue’s definition. This time
the problem comes from the fact that there are myriad ways in which to construct
the approximating simple functions ¢,, and one must make sure that the limit does
not depend on which approximation scheme one chooses. That is, it is necessary to
check that if {¢,}{° and {1, }{° are two non-decreasing sequences of non-negative,
simple, measurable functions such that lim,_, o ¢, (@) = lim,_ » ¥, (w) for each
w € £2, then lim, 00 [ @ndp =1lim,_, o0 [ Y, dpi; and it is at this step that the full
power of countable additivity must be brought to bear.

Having defined f fdp for all non-negative, measurable f’s, one must check
that the resulting integral is homogeneous and additive: [afdu =a [ fdp for
a€l0,00]land [(fi+ f2)du= [ fidu+ [ f>du. However, both these properties
are easily seen to be inherited from the case of simple f’s. Thus, the only remaining
challenge in Lebesgue’s construction is to get away from the restriction to non-
negative functions and extend the integral to measurable functions which can take
both signs. On the other hand, if one wants the resulting theory to be linear, then
there is no doubt about how this extension must be made. Namely, given a mea-
surable function f : E —> [—00, 00], it is not hard to show that f* = f v 0 and
f~=—(f A0) = (—f)T are non-negative measurable functions. Hence, because
f=f*— f7,linearity demands that [ fdu= [ f*du— [ f~ du; and this time
there are two problems which have to be confronted. In the first place, at the very
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least, it is necessary to restrict ones attention to functions f for which at most one
of the numbers [ fTdu or [ f~dpu is infinite, otherwise one ends up having to
deal with co — oco. Secondly, one must, once again, check consistency. That is, if
f = fi — f», where f; and f, are non-negative and measurable, then one has to
show that [ fidu — [ fodu= [ frdu— [ f~du.

In most applications, the measurable functions which one integrates are either
non-negative or have the property that [ | f|du < oo, in which case f is said to
be an integrable function. Because |aj f1 + a2 f2| < |aill fil + laz|| f2], the set of
integrable functions forms a vector space over R on which integration with respect
to w acts as a linear function. Finally, if f is a measurable function which is either
non-negative or integrable and A € F, then the product 14 f is again a measurable
function which is either non-negative or integrable and so

fAfduE/IAfdu (7.1.8)

is well defined.

7.1.6 Stability Properties of Lebesgue Integration

The power of Lebesgue’s theory derives from the stability of the integral it de-
fines, and its stability is made manifest in the following three famous theorems.
Throughout, (£2, F, i) is a measure space to which all references about measura-
bility and integration refer. Also, the functions here are assumed to take their values
in (—o0, 00].

Theorem 7.1.9 (Monotone Convergence) Suppose that { f,}7° is a non-decreasing
sequence of measurable functions, and, for each w € §2, set f(w) =lim,_ 00 frn(W).
If there exists a fixed integrable function g which is dominated by each f,, then
[ fadw /[ fdup. If; instead, { f, }7° is non-increasing and if there exists a fixed
integrable function g which dominates each f,, then [ f,du ™\ [ fdpu.

Theorem 7.1.10 (Fatou’s Lemmas) Given any sequence {f,}{° of measurable
functions, all of which dominate some fixed integrable function g,

lim fnduz/ lim f, dp.

n—o0 n—0o0

If, instead, there is some fixed integrable function g which dominates all of the f},’s,
then

fim fnd/LS/ fm f, du.
n—oo n—oo
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Theorem 7.1.11 (Lebesgue’s Dominated Convergence) Suppose that { f,}{° is a
sequence of measurable functions, and assume that there is a fixed integrable func-
tion g with the property that p({w : | fu(w)| > g(w)}) =0 for each n > 1. Further,
assume that there exists a measurable function f to which { f,}{° converges in either
one of the following two senses:

@ u(fo:f@# lim fi@])=0
or

(b) nl_i)rrgou({w:|fn(w)—f(w)|Ze}):O forall e > 0.

‘/fndu—/fdu

Before proceeding, a word should be said about the conditions in Lebesgue’s
Dominated Convergence Theorem. Because integrals cannot “see” what is happen-
ing on a set of measure 0 (i.e., an A € F for which u(A) = 0) it is natural that con-
ditions which guarantee certain behavior of integrals should be conditions which
need only hold on the complement of a set of measure 0. Thus, condition (a) says
that f,(w) — f(w) for all w outside of a set of measure 0. In the standard jargon,
conditions that hold off of a set of measure 0 are said to hold almost everywhere. In
this terminology, the first hypothesis is that | f;,| < g almost everywhere and (a) is
saying that { f;,}7° converges to f almost everywhere, and these statements would be
abbreviated in the literature by something like | f,| < g a.e. and f,, — f a.e.. The
condition in (b) is related to, but significantly different from, the one in (a). In par-
ticular, it does not guarantee that { f,, ()}7° converges for any w € §2. For example,
take p to be the measure of Lebesgue on R described above, and take f, 42 () =
19 2-n(w—m27") forn > 0and 0 <m < 2". Then u({w : fion (@) #0}) =27",
and so limy,— oo ({w : | fn(w)| > €}) =0 for all € > 0. On the other hand, for each
w € [0, 1), limy— o0 fu(®) =1 but lim,_, . fu(w) = 0. Thus, (b) most definitely
does not imply (a). Conversely, although (a) implies (b) when ©(£2) < oo, (a) does
not imply (b) when ©(£2) = oco. To wit, again take p to be Lebesgue’s measure, and
consider f, = 1r\[—n,n]-

In connection with the preceding discussion, there is a basic estimate, known
as Markov’s inequality, that plays a central role in all measure theoretic analysis.
Namely, because, for any A > 0, A1y 0010 f < fljx,0010 f Z 1S,

w(lo: f@ =a)) < %/

{w:f (@)=2}

Then

s/|fn—f|du—>o a5 n— o0,

1
rans [1r1an. (7.1.12)
In particular, this leads to the conclusion that

Jim 1.~ flau=0 = u(lo:|f@ - f@)] ze) =0
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for all € > 0. In particular, the condition (b) is necessary for the conclusion in
Lebesgue’s theorem. In addition, (7.1.12) proves that

/|f|dy,=0 = u({w:|f@|=€})=0 foralle>0,

and therefore, by (7.1.3),

/|f|dM:O = u({e: f@ #£0})=0. (7.1.13)

Finally, the role of the Lebesgue dominant g is made clear by considering { f,}°
when either f, = nl[O’ ) OF fn = 1;,-1,) and u is Lebesgue’s measure.

1
n

7.1.7 Lebesgue Integration on Countable Spaces

In this subsection we will see what Lebesgue’s theory looks like in the relatively
trivial case when £2 is countable, F is the collection of all subsets of §2, and the
measure p is o-finite. As we pointed out in Sect. 7.1.1, specifying a measure on
(£2, F) is tantamount to assigning a non-negative number to each element of 2,
and, because we want our measures to be o -finite, no element is to be assigned oo.
Because the elements of §2 can be counted, there is no reason to not count them.
Thus, in the case when §2 is finite, there is no loss in generality if we write 2 =
{1,..., N}, where N = #52 is the number of elements in §2, and, similarly, when
§2 is countably infinite, we might as well, at least for abstract purposes, think of its
being the set ZT of positive integers. In fact, in order to avoid having to worry about
the finite and countably infinite cases separately, we will embed the finite case into
the infinite one by simply noting that the theory for {1, ..., N} is exactly the same
as the theory for Z* restricted to measures u for which p({w}) =0 when » > N.
Finally, in order to make the notation here conform with the notation in the rest of
the book, I will use S in place of £2, i, j, or k to denote generic elements of S, and
will identify a measure p with the row vector u € [0, 00)S given by (n); = n({i}).
The first thing to observe is that

/fdu =Y FO) (7.1.14)
ieS
whenever either [ f*du or [ f~dp < oo is finite. Indeed, if ¢ > 0 is simple,
ai, ..., ay are the distinct values taken by f, and A, = {i : ¢(i) = ay}, then
L L
/wdu =Y @A) =Y ar Yy _ ()
=1 =1 ieA,

L
=D D e =) e (w:.

l=1ieAy ieS
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Second, given any f >0on S, set ¢, (i) = f(i)if 1 <i <n and ¢,({) =0if i > n.
Then,

/fdu=nli§go/<pndu=nlggo D fOwi=)] fO (i
1<i<n ieS

Finally, if either [ f™dw or [ f~ du is finite, then it is clear that

[ rau=[ rran- [ r-au

= Y fOWi— Y fOwi=Y [
{i: f()=0} {i: f(i)=<0} ieS

We next want to see what the “big three” look like in this context.

The Monotone Convergence Theorem First observe that it suffices to treat the
case when 0 < f;, / f.Indeed, one can reduce each of these statements to that case
by replacing f, with f, —gor g — f,. When 0 < f;, / f, it is obvious that

0= Y Wi <Y fur1 (D@ <Y FO W)

ieS ieS ieS
Thus, all that remains is to note that
L L
Jim. ZS FOi = lim ; Ful) ()i = ; GBI

for each L € Z™, and therefore that the desired result follows after one lets L 7 co.

Fatou’s Lemma Again one can reduce to the case when f;, > 0 and the limit being
taken is the limit inferior. But in this case,

lim Y fu@) ()i = lim inf £l ()i
"7 es T ieS

> lim 3 inf fu()(w)i =) lim £,

‘ > T 1—>00
ieS ieS

where the last equality follows from the monotone convergence theorem applied to
O = infan fn /f h_mn%oo fl’l

Lebesgue’s Dominated Convergence Theorem First note that, if we eliminate
those i € S for which (u); = 0, none of the conclusions change. Thus, we will
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assume that (u); > 0 for all i € S from now on. Next observe that, under this
assumption, the hypotheses become sup,, | f,(i)| < g(i) and f,,(i) — f (i) for each
i €S. In particular, | f| < g. Further, by considering f,, — f instead of {f,}7° and
replacing g by 2g, we may and will assume that f = 0. Now let € > 0 be given, and
choose L so that )", ; g(i)(pr); < €. Then

L
= Z|fn(i)|(l‘v)i =< Z|fn(i)|(ﬂ)i +e—>€ asn— oo.

ieS i=1

> fl) (i

ieS

7.1.8 Fubini’s Theorem

Fubini’s theorem deals with products of measure spaces. Given measurable spaces
(821, F1) and (£22, F2), the product of F; and F; is the o-algebra F; x F» over
£21 x §£2, which is generated by the set {A] x Ay : A1 € F| & Ay € F>} of mea-
surable rectangles. An important technical fact about this construction is that, if
f is a measurable function on (£2] x £2,, F; x JF»), then, for each w| € §£2; and
w2 € §22, wr~ f (w1, w2) and w1~ f (w1, wy) are measurable functions on, respec-
tively, (£22, F2) and (£21, F1).

In the following statement, it is important to emphasize exactly which vari-
able is being integrated. For this reason, I will use the more detailed notation
[o f (@) p(dw) instead of the more abbreviated [ f d .

Theorem 7.1.15 (Fubini)7 Let (21, F1, 1) and (§22, F2, u2) be a pair of o-
finite measure spaces, and set §2 = 21 x §22 and F = F| X F>. Then there is a
unique measure L = 1 X o on (§2,F) with the property that (A1 x Az) =
w1(A1ua(Ay) forall Ay € F1 and Ay € F>. Moreover, if f is a non-negative, mea-
surable function on (§2, F), then both

le/ fw1, w2) pa(dwr) and sz/ f(w1, w2) pi(dwy)
2y 2

are measurable functions, and

/( f(wl,wz)uz(dwz))m(dwﬂ
1 2o

=/ fdu=/ ( f(wl,wz)m(dwl))m(dwz).
2 2 \Je,

7 Although this theorem is usually attributed Fubini, it seems that Tonelli deserves, but seldom
receives, a good deal of credit for it.
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Finally, for any integrable function f on (82, F, i),
Al = {wl :f | f (@1, )| pa(dan) < oo} € Fi,
2,
Ay = {wz 1/ | f (@1, @2)| p1(dey) < OO} € Fa,
2

w1 ~ fi(wr) =14, (601)/Q f w1, w2) pa(dwr)

and
Wy~ fr(wr) = lAz(wz)/S2 fw1, w2) p1(dwy)
1

are integrable, and
[ fl(wl)m(dwl)Z/ f(a)),u(da)):/ f2(w2) pa(dwy).
2 2 §2;

In the case when £27 and £2, are countable, all this becomes very easy. Namely,
in the notation that we used in Sect. 7.1.6, the measure jt1 X o corresponds to row

vector pty X py € [0,00)5152 given by (1 X H2)(iy.ip) = (W)i; ()i, and so, by
(7.1.14), Fubini’s Theorem reduces to the statement that

S(Taw)= X an= (T
i1€S] €Sy (i1,i2)€S1 xSy €Sy i €S

when {a;;, : (i1,i2) € S1 X S2} C (—00, o] satisfies either a;,;, > 0 for all (i1, i2)
or Z(il i) |aj,i,| < oo. In proving this, we may and will assume that S; = 7T =9,
throughout and will start with the case when a;,;, > 0. Given any pair (n1,n2) €
(Z)?,

ny ni
2. @z ) =), (Zam’z)
(i1,i2) €S| xSy (i1,i2)€S1 xSy ir=1 \ij=1
i1<n; &ix<np
Hence, by first letting n1 — oo and then letting n, — oo, we arrive at

Z Qjjiy = Z (Z ai1i2)~

(i1,i2) €S xSy in€Sy ‘i1€S)
Similarly, for any n € Z™*,

(i1,i2)S1 xSy ir=1 \ij=1 eS| “iEeS;
i1Vio<n
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and so, after letting n — oo, we get the opposite inequality. Next, when
Z:(il,iz) |iyiz| < 00,

Z laj,i,| <oo forallis €S,

i1€S)

and so

R + =
Z dirip = Z Qiiy Z iy

(i1,i2)€S1 xSy (i1,i2)€S1 xSy (i1,i2)€S1 xSy
— + _ -
- Y(Zan)- T (T a)
€Sy Ni1€S) €Sy “ij€S
=Jin Y (San)= X (e ).
ir€Sy “i1€S) ireSy “i1€S
ir<n

Finally, after reversing the roles 1 and 2, we get the relation with the order of sum-
mation reversed.

7.2 Modeling Probability

To understand how these considerations relate to probability theory, think about the
problem of modeling the tosses of a fair coin. When the game ends after the nth toss,
a Kolmogorov model is provided by taking £2 = {0, 1}"*, F the set of all subsets of
£2, and setting pu({w}) = 27" for each w € §2. More generally, any measure space
in which £2 has total measure 1 can be thought of as a model of probability, for
which reason such a measure space is called a probability space, the measure p is
called a probability measure and it is often denoted by PP. In this connection, when
dealing with probability spaces, ones intuition is aided by extending the metaphor
to other objects. For example, one calls §2 the sample space, its elements are called
sample points, the elements of F are called events, and the number that P assigns an
event is called the probability of that event. In addition, a measurable map is called a
random variable, it tends to be denoted by X instead of F', and, when it is R-valued,
its integral is called its expected value. Moreover, the latter convention is reflected
in the use of E[X], or, when more precision is required, EP[X] to denote f X dP.
Also, E[X, A] or EP[X, A] is used to denote fA X dP, the expected value of X on
the event A. Finally, the distribution of a random variable whose values lie in the
measurable space (E, B) is the probability measure u = X, P on (E, B) given by
w(B) =P(X € B). In particular, when X is R-valued, its distribution function Fx
is defined so that

Fx(x) = (X4P)((—00, x]) = P(X <x).
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Obviously, Fx is non-increasing. Moreover, as an application of (7.1.3), one can
show that F is continuous from the right, in the sense that Fx (x) = limy\ » Fx(y)
for each x € R, limy\ oo Fx(x) =0, and limy »o Fx(x) = 1. At the same time,
one sees that P(X < x) = Fx(x—) =limy », Fx(y), and, as a consequence, that
P(X =x) = Fx(x) — Fx(x—) is the jump in Fyx at x.

7.2.1 Modeling Infinitely Many Tosses of a Fair Coin

Just as in the general theory of measure spaces, the construction of probability
spaces presents no analytic (as opposed to combinatorial) problems as long as the
sample space is finite or countable. The only change from the general theory is that
the assignment of probabilities to the sample points must satisfy the condition that
Y weo P({w}) = 1. The technical analytic problems arise when §2 is uncountable.
For example, suppose that, instead of stopping the game after n tosses, one thinks
about a coin tossing game of indefinite duration. Clearly, the sample space will now
be 2 = {0, 1}Z+. In addition, when A C §2 depends only on tosses 1 through n,
then A should be a measurable event and the probability assigned to A should be
the same as the probability that would have been assigned had the game stopped
after the nth toss. That is, if " € {0, 1}* and® A = {w € 2 : (w(1), ..., w(n)) € I'},
then P(A) should equal 27"#1".

Continuing with the example of an infinite coin tossing game, one sees (cf.
(7.1.3)) that, for any fixed n € £2, P({n}) is equal to

Jim P(fo: (D), ....0m) = (n(1),....n(m)}) = lim 27" =0.

Hence, in this case, nothing is learned from the way in which probability is assigned
to points: every sample points has probability 0. In fact, it is far from obvious that
there exists a probability measure on £2 with the all these properties. Nonetheless,
as is proved in Sect. 2.2 of [8], one does. To be precise, what is proved there is the
following theorem.

Theorem 7.2.1 Let 2 = {0, 1}Z+ and let A be the set of all subsets A of §2 of the
form
A={weQ:w(m)=¢eyfor1 <m <n}, (7.2.2)

where n > 1 and (e€y, ..., €,) € {0, 1}*. If B =0 (A), then there is a unique proba-
bility measure P on (2, B) such that P(A) = 27" if A € A is the one in (7.2.2).

81t is convenient here to identify £2 with the set a mappings w from Z7 into {0, 1}. Thus, we will
use w(n) to denote the “nth coordinate” of w.
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7.3 Independent Random Variables

In Kolmogorov’s model, independence is best described in terms of o -algebras.
If (£2, F,P) is a probability space and ] and F; are o-subalgebras (i.e., are o -
algebras which are subsets) of F, then we say that | and JF; are independent if
P(I1NI3) =P7)P([3) forall I7 € Fj and I3 € F3. It should be comforting to rec-
ognize that, when Ay, A» € F and, fori € {1,2}, F; = o ({A;}) = {0, A;, A;C, 2},
then, as is easily checked, F; is independent of / precisely when, in the termi-
nology of elementary probability theory, “A; is independent of A>”: P(A1 N Ap) =
P(ADP(A2).

The notion of independence gets inherited by random variables. Namely, the
members of a collection {X, : o € Z} of random variables on (§2, F,P) are said
to be mutually independent if, for each pair of disjoint subsets 71 and 7, of Z, the
o-algebras o ({Xy : @ € J1}) and 0 ({Xy : @ € Jo}) are independent. One can use
Theorem 7.1.6 to show that this definition is equivalent to saying that if X, takes
its values in the measurable space (Eq, By), then, for every finite subset {c, }] of
distinct elements of 7 and choice of By, € By,,, 1 <m <n,

n
P(Xy, € By, for 1 <m <n) =] [P(Xa, € Ba,)-
1

As a dividend of this definition, it is essentially obvious that if {X, : « € T} are
mutually independent and if, for each o € Z, F,, is a measurable map on the range
of Xy, then {Fy(Xy) : @ € Z} are again mutually independent. Finally, by starting
with simple functions, one can show that if {X,,}| are mutually independent and,
foreach 1 <m <n, f,, is a measurable R-valued function on the range of X,,, then

E[AXD - fuX)] = [ [ELfn (Xm)]
1

whenever the f;,’s are all bounded or are all non-negative.

7.3.1 Existence of Lots of Independent Random Variables

As a consequence of Theorem 7.2.1, we know that there exist an infinite family
of mutually independent random variables. Namely, if (£2, 3, P) is the probability
space discussed in that theorem and X,,(w) = w(m) is the mth coordinate of w,
then, for any choice of n > 1 and (€, ..., €,) € {0, 1}",

n
P(Xy =€m, 1 <m <n) =2""= HP(X’” =€n).
1
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Thus, the random variables {X,,}7° are mutually independent. Mutually independent
random variables, like these, which take on only two values are called Bernoulli
random variables.

As we are about to see, Bernoulli random variables can be used as building blocks
to construct many other families of mutually independent random variables. The key
to such constructions is contained in the following lemma.

Lemma 7.3.1 Given any family {B,,}{° of mutually independent, {0, 1}-valued
Bernoulli random variables satisfying P(B,, = 0) = % =PB,=1)forallmeZ",
set U = ZTO 27" By,. Then U is uniformly distributed on [0, 1). That is, P(U < u)
isO0ifu<0,uifuel0,1),and 1 ifu=>1.

Proof Given N > 1and0 <n < 2N we want to show that
P2 <U<m+D27V)=27". (%)

To this end, note that n2~" < U < (n + 1)27" if and only if lev 27MmB, =
(n+ 127N and B, =0 for all m > N, or lev 27mB., =n2~N and B, = 1
for some m > N. Hence, since P(B,, = 0 forall m > N) = 0, the left hand side
of (x) is equal to the probability that lev 27" B,, = n2~N. However, elemen-
tary considerations show that, for any 0 < n < 2V there is exactly one choice of
(€1, ..., en) € {0, 1}V for which Y-Y 27"¢,, = n2~N. Hence,

N
P(Z 27"MB,, = nZN) =P(By =€mforl <m<N)=2"",
1

Having proved (), the rest is easy. Since
P(U=0)=P(B,=0forallm>1)=0,
() tells us that, for any 1 <k < 2N

k—1
P(U<k2V)=>"Pm2™" <U <(m+1)27")=k27".

m=0

Hence, because, by (7.1.3), u~~P(U < u) is continuous from the right, it is now
clear that Fy(u) = u for all u € [0, 1). Finally, since P(U € [0, 1]) = 1, this com-
pletes the proof. U

Now let Z a non-empty, finite or countably infinite set. Then Z x Z™ is countable,
and so we can construct a 1-to-1 map (a, n)~N (a, n) from Z x Z* onto Z*. Next,
for each a € Z, define w € 2 = {0, 1}Z+ > Xy (w) € £2 so that the nth coordi-
nate of Xy (@) is (N (a, n)). Then, as random variables on the probability space
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(82, B,P) in Theorem 7.2.1, {X, : « € Z} are mutually independent and each has
distribution P. Hence, if @ : £2 — [0, 1] is the continuous map given by

P(n) = Z 27"n(m) forne 2

m=1

and if Uy = @ (Xy), then the random variables {U, : o € Z} are mutually indepen-
dent and, by Lemma 7.3.1, each is uniformly distributed on [0, 1].

The final step in this program is to combine the preceding construction with the
well-known fact that any R-valued random variable can be represented in terms
of a uniform random variable. More precisely, a map F : R — [0, 1] is called a
distribution function if F is non-decreasing, continuous from the right, and tends to
0 at —oo and 1 at +o00. Given such an F, define

F7'u) =inf{x eR: F(x) > u} forue[0,1].

Notice that, by right continuity, F(x) > u <— F-! (u) < x. Hence, if U is uni-
formly distributed on [0, 1], then F ~1(U) is a random variable whose distribution
function is F.

Theorem 7.3.2 Let ($2, B,P) be the probability space in Theorem 7.2.1. Given
any finite or countably infinite index set L and a collection {F, : o € T} of distribu-
tion functions, there exist mutually independent random variables {X, : @ € I} on
(82, B, P) with the property that, for each o € L, Fy is the distribution of X.

7.4 Conditional Probabilities and Expectations

Just as they are to independence, o -algebras are central to Kolmogorov’s definition
of conditioning. To be precise, given a probability space (§2, F, P), a sub-o -algebra
X, and a random variable X which is non-negative or integrable, Kolmogorov says
that the random variable X x is a conditional expectation of X given ¥ if Xy isa
non-negative or integrable random variable which is measurable with respect to X~
(i.e., 0 ({Xy}) C X)) and satisfies

EXx, I'N=E[X,I'] forall"e X. (7.4.1)

When X is the indicator function of a set B € F, then the term conditional expecta-
tion is replaced to conditional probability.

To understand that this definition is an extension of the one given in elemen-
tary probability courses, begin by considering the case when X is the trivial
o-algebra {@J, §2}. Because only constant random variables are measurable with re-
spect to {fJ, £2}, it is clear that the one and only conditional expectation of X will
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be E[X]. Next, suppose that ¥ = o ({A}) = {#, A, AC, 22} for some A € F with
P(A) € (0, 1). In this situation, it is an easy matter to check that, for any B € F,

W]P’(B NA) Li(@) + P(B N AC)

P(A) P(AC) A@

is a conditional probability of B given X'. That is, the quantity P(B|A) = P%ﬁgf) ,

which in elementary probability theory would be called “the conditional probability
of B given A,” appears here as the value that Kolmogorov’s conditional expectation
value of 1p given o ({A}) takes on A. More generally, if X is generated by a finite
or countable partition P C F of §2, then, for any non-negative or integrable random
variable X,

E[X, A]
W~~~ Z P(A) 14(w)
{AeP:P(A)>0}

will be a conditional expectation of X given X'.

Of course, Kolmogorov’s definition brings up two essential questions: existence
and uniqueness. A proof of existence in general can be done in any one of many
ways. For instance, when E[X 2] < 00, one can easily see that, just as E[X]1 is the
X’ at which E[(X — X’ )2] achieves its minimum among constant random variables
X', so Xy is the ¥ -measurable X’ at which E[(X — X’)2] achieves its minimum
value. In this way, the problem of existence can be related to a problem of orthogonal
projection in the space of all square-integrable random variables, and, although they
are outside the scope of this book, such projection results are familiar to anyone who
has studied the theory of Hilbert spaces.

Uniqueness, on the other hand, is both easier and more subtle than existence.
Specifically, there is no naive uniqueness statement here, because, in general, there
will be uncountably many ways to take X 5. On the other hand, every choice differs
from any other choice on a set of measure at most 0. To see this, suppose that
X/E is a second non-negative random variable which satisfies (7.4.1). Then A =
{Xs, > X5} € ¥, and so the only way that (7.4.1) can hold is if P(A) = 0. Similarly,
P(Xy > X'5)=0,and so P(X 5 # X)) =0.

In spite of the ambiguity caused by the sort of uniqueness problems just dis-
cussed, it is common to ignore, in so far as possible, this ambiguity and proceed as
if a random variable possesses only one conditional expectation with respect to a
given o -algebra. In this connection, the standard notation for a conditional expecta-
tion of X given X' is E[X|X] or, when X =15, P(B|X'), which is the notation that
I adopted in the earlier chapters of this book.

9This non-uniqueness is the reason for my use of the article “a” instead of “the” in front of “con-
ditional expectation.”
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7.4.1 Conditioning with Respect to Random Variables

In this book, essentially all conditioning is done when X' = o (§) (cf. Sect. 7.1.4)
for some family § of measurable functions on (£2, F,P). When X has this form,
the conditional expectation of a random variable X will be a measurable functions
of the functions in §. For example, if § = {F1, ..., F,;} and the functions F,, all take
their values in a countable space S, a conditional expectation value E[X | o (§)] of
X given o (§) has the form @ (Fy, ..., Fy,;), where @ (i1, ..., i,) is equal to

E[XaFlzilv"'an:in]
P(Fy=i1,..., Fy=iy)

or 0

according to whether P(F| =iy, ..., F, =1i,) is positive or 0. In order to emphasize
that conditioning with respect to o () results in a function of §, I use the notation
E[X|§] or P(B|§) instead of E[X|o (F)] or P(B|o (F)).

To give more concrete examples of what we are talking about, first suppose that
X and Y are independent random variables with values in some countable space S,
and set Z = F(X,Y), where F : S? — R is bounded. Then

E[Z|X]=v(X) wherev(i)= ]E[F(i, Y)] fori €S. (7.4.2)

A less trivial example is provided by our discussion of Markov chains. In Chap. 2
we encoded the Markov property in equations like

P(Xnt1=jl1Xo,...Xn) = P)x,,

which displays this conditioning as a function, namely (io, ..., iy)~(P);, ;, of the
random variables in terms of which the condition is made. (Of course, the distin-
guishing feature of the Markov property is that the function depends only on i, and
not (ig, ..., iy—1).) Similarly, when we discussed Markov processes with a continu-
ous time parameter, we wrote

P(X(1)=j1X(0),0 €[0,51) = (Pt —9) ) ;-
which again makes it explicit that the conditioned quantity is a function of the ran-
dom variables on which the condition is imposed.
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