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Preface

“At last I said—Lincoln, you never can make a lawyer if you do not understand what
demonstrate means, and I left my situation in Springfield, went home to my fathers
house, and stayed there till I could give any proposition in the six books of Euclid at
sight. I then found out what demonstrate means, and went back to my law studies.”

—Abraham Lincoln, quoted by Henry Ketcham, in The Life of Abraham Lincoln.

For centuries, the study of Euclidean geometry has been considered an essential
part of a literate person’s education, both for the practical knowledge obtained
and, more importantly, as an example of a deductive system in which non-obvious
conclusions may be drawn from a collection of accepted statements. One of our
esteemed colleagues has remarked to us that in view of the influence that Euclidean
geometry has had on western civilization, “someone should do it right.” This book

is an attempt to do so.

Even though Hilbert’s development of Euclidean geometry Foundations of
Geometry (1899) [10] has been judged by some as only partially successful, it
has set a standard for subsequent treatments, including this one. Our axioms are
patterned largely after his, except that we base our treatment of congruence on
reflections, rather than on congruence axioms.

Indeed, this book might well be regarded as a completion, updating, and
expansion of the core of Hilbert’s book. It began in the 1970s as a set of lecture notes

for the teaching of an upper division undergraduate geometry course, and over the
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years has grown into a complete development of Euclidean geometry, emphasizing
plane geometry. It is our intention to be completely rigorous, take no shortcuts, and
“sweat the details.”

We have used independent axioms, even though doing so means that getting to
interesting theorems can be a daunting task. This is particularly evident in the last
part of Chapter 4 and in the early part of Chapter 5, where extensive arguments
are required to show that the behavior of lines, segments, rays, and their end points
conforms to what we intuitively expect.

We present a total of 13 axioms in sequence, at each stage proving as many
theorems as possible. The different geometric structures built up in this way are
called subgeometries, and eventually we attain a full set of axioms for Euclidean
geometry.

Chapter 1 introduces eight incidence axioms to form incidence geometry.
From here, the development consists of two threads. The shorter of these threads
(Chapters 2 and 3) is concerned with incidence-parallel or affine geometry. The
second thread (incidence-betweenness geometry) consists of Chapters 4—-10, with
minor contributions from Chapter 3. Chapters 11-20 invoke the parallel Axiom PS
and combine the two threads to produce Euclidean geometry.

Within the scheme just outlined, Chapter 5 (Pasch geometry) and Chapter 8
(neutral geometry) are pivotal. We want to develop as much theory as possible at
each stage, so in Chapter 9 we create a rudimentary arithmetic on the set of free
segments' using the machinery of neutral geometry alone. In this arithmetic, there
is a natural definition for addition and for ordering, and for subtraction of a “smaller”
free segment from a “larger” one. This arithmetic is eventually shown to coincide
with the ordinary arithmetic of “positive” points on a line, which has been identified
with the real numbers.

Indeed, a major goal is to identify the line with the real numbers, and to
“coordinatize” the plane. To do this, we first define (in Chapter 14) the addition
of points using translations and multiplication using dilations. (See the discussion
of mappings on the next page.) This is completed in Chapters 17 and 18, where
we construct isomorphisms between a subset of a line on the plane and the rational

numbers, and also between a line and the real numbers, using the LUB axiom.

'A free segment is a congruence class of closed segments; two segments belong to the same free
segment if they have the same “length.”
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Chapter 20 finishes the main development with two classical theorems, due to
Menelaus and Ceva. In Chapter 21, we show that our axioms are consistent by
showing that they are all true in ordinary coordinate space. It also shows (with two
exceptions) that each of the axioms on our list is independent of the ones introduced
earlier.

We give extensive study to bijections of a plane which preserve betweenness;
we call these belineations. They are introduced in Chapter 7, and are a type of
collineation. We list here the various types of belineation; their relationships are

summarized in the last section of Chapter 19.

Isometry (a type of belineation) is defined in Chapter 8; the following types of

belineations are isometries:

Reflection Chs 8, 10, 12, 13;
Translation Chs 3, 12, 14, 18;
Rotation Chs 10, 12, 13, 18;
Glide reflection Ch 12.

The following types of belineation are not isometries:
Dilation Chs 3, 13, 14, 15, 17, 18;

Similarity (non-identity) Ch 15.
The following type of belineation may or may not be an isometry:
Axial affinity Chs 3, 12, 16, 19.

Two online collections of supplementary materials may be accessed from the
home page of this book at www.springer.com. One of these contains solutions to
starred exercises. The other includes an expanded treatment of coordinatization
of the Euclidean plane; a development of complex numbers; an exploration of
properties of polygons in the Pasch plane leading to a proof of the Jordan Curve
Theorem; a development of arc length; a development of the circular functions (in a

treatment originated by the first author, Specht); and a treatment of angle measure.

If used as a textbook, a one-semester course might consist of Chapters 1
through 5, emphasizing the detailed and rigorous proofs of Chapters 4 and 5 at
the expense of omitting many standard results of geometry, which are contained in
Chapter 8, neutral geometry. A different kind of course might summarize the last
few theorems of Chapter 4 and the principal results of the early part of Chapter 5,
omitting the detailed arguments, and move on to Chapter 8. This course would not
be so rigorous as the first, but the student could see how to remedy the loss of rigor

by revisiting the omitted or summarized sections.
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Chs 18-20 REAL, RR, AA, RS LUB
Chs 11-17 EUC, ISM, DLN, OF, SIM, AX, QX PS
Ch 8-10 NEUT, FSEG, ROT REF
Ch7 COBE
Ch 3 Thms CAP Defs Chs 56 PSH, ORD  PSA
Ch 2 P PS Ch 4 1B BET
Ch1 I LO-L5

Fig. 1 Dependency chart for the main development

Notes on the dependency chart

(a) A rising arrow indicates that the upper depends on the lower.

(b) In each box, the first entry is a listing of chapters; the second lists acronyms
used in these chapters; the third, in italics, names any axioms added in these
chapters.

(c) The definitions in Chapter 3, as well as the first four theorems, might have been
included in Chapter 1, and do not depend on Chapter 2. This division is shown
by dividing the Chapter 3 box into a “Thms” section and “Defs” section; the
former depends on Chapter 2, the latter on Chapter 1.

(d) Chapters 7-20 depend on the “Defs” part of Chapter 3; Chapters 11-20 depend
on the “Thms” part; thus the placement of the arrows.

(e) Chapter 21 is not shown on the chart, as it is not part of the main development.
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Edward J. Specht, the chief author of this work, was known to his friends for
his devotion to mathematics and science. He received a B.S. degree from Walla
Walla College, an M.S. from the University of Colorado, and, in 1949, a Ph.D. from
the University of Minnesota. He chaired the Department of Mathematics at what
is now Andrews University from 1947 to 1972, and was Professor of Mathematics
at Indiana University South Bend from 1972 until his retirement in 1986. In 1984,
Andrews University conferred upon him the honorary degree of Doctor of Science
(D.Sc.). He began this project while at Indiana University and remained the force
behind it until his death in 2011 at the age of 96.

Harold T. Jones, Ed’s colleague for many years at Andrews University, assisted
in this project during its initial years. Harold received an A.B. from what is now
Washington Adventist University, an A.M. from Lehigh University, and in 1958 a
Ph.D. from Brown University. He taught at Andrews University from 1952 until his
retirement in 1991. His participation in this geometry project was, sadly, cut short
by his death in 1995. Harold was doubtless responsible for many of the clarifying
and sometimes lighthearted explanatory remarks in the early parts of the work.

Keith G. Calkins received his B.S., two M.S. degrees, and an M.A.T. degree from
Andrews University; he received an M.S., as well as a Ph.D. in Physics (in 2005)
from the University of Notre Dame. Keith was on the staff and faculty at Andrews
for 32 years in several teaching and management capacities. Since 2011, he has
taught a wide variety of courses in the Physical Sciences and Mathematics depart-
ments at Ferris State University. Keith keyboarded this entire work into LaTeX
from Ed’s hand-written manuscript, making corrections, establishing notational and
editorial conventions, and frequently consulting with Ed. As a matter of interest, he
took a geometry course at Andrews University in the 1980s in which an early draft
of this book was used as a text.

Donald H. Rhoads received his B.A. from Andrews University, his M.A. from
Rice University, and in 1968 a Ph.D. from the University of Michigan. Don taught
mathematics at Andrews University from 1962 to 1964, from 1967 to 1972, and
again from 1998 to 2006, during which time he served for six years as chair of the
Department of Mathematics. He was drafted by Ed Specht to complete a chapter of
this book, and subsequently has read the entire work, making corrections to proofs
and references, and extensively revising and reorganizing several chapters.

As can be seen from these biographical sketches, all of the authors have been
colleagues at one time or another at Andrews University—at least one of us (in
many years two or three of us) worked there every year from 1947 to 2011, a span

of 64 years.
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We pay heartfelt tribute to both Edward Specht and Harold Jones; they were
models of kindliness and dedication to their students, and were our beloved teachers

and mentors.

At the end of a project so extensive as this one, thanks are due to many who have
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We are especially indebted to Joel Weiner, Professor Emeritus of Mathematics,
the University of Hawaii at Manoa; he read the first eleven chapters of the book
with exceptional thoroughness, uncovering several major errors and generously
supplying corrections. We are grateful to Professor Arlen Brown, who, as we have
worked to finish this project, has been a constant source of encouragement.

We thank our wives, families, and friends for their patience with us at those times
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many ways to carry this project to completion.
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ments to the work.
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Chapter 1
Preliminaries and Incidence Geometry (I)

Acronym: /

Dependencies: none

New Axioms: incidence Axioms 1.0—1.5

New Terms Defined (Section 1.6 and following): universe, space, collinear,
noncollinear, coplanar, noncoplanar, concurrent; the terms point, line, and plane

are introduced, but not defined

Abstract: This chapter contains a brief summary of several types of mathematical
knowledge needed to read this book, including the elements of logic, set theory,
mapping theory, and algebraic structures such as number systems and vector
spaces. Definitions of basis, dimension, linear mappings, isomorphism, matrices and
determinants are given; there is also discussion of the roles of axioms, theorems, and
definitions in a mathematical theory. The main development of the book begins here
with the statement of eight incidence axioms and proof of a few theorems including
one from Desargues.

1.1 Introduction

Geometry began as a very practical subject. It was used, for example, to settle
disputes regarding the sizes and shapes of parcels of land and to deal with
other questions involving spatial relationships among concrete objects such as

architectural elements and mechanical devices.
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E.J. Specht et al., Euclidean Geometry and its Subgeometries,
DOI 10.1007/978-3-319-23775-6_1



2 1 Preliminaries and Incidence Geometry (I)

As the Greek mathematicians carried out the task of organizing geometrical
knowledge, they observed a structure in the interrelationships among the statements
in geometry. To study this structure in detail, the geometers pursued a course of
abstraction. For example, rectangular plots of land, rectangular pieces of wood, and
rectangular pieces of cloth were replaced by the abstract concept of a rectangle,
which was defined so as to embody those common characteristics of the concrete
objects which were essential to a geometrical discussion about them. Hence,
geometry became a collection of statements about relationships among such abstract
concepts as points, lines, planes, triangles, rectangles, circles, cylinders, spheres,
and polyhedra.

In a further step toward emphasizing structure, Euclid of Alexandria (active c.
300-265 BC), in his Elements, [6]' identified certain statements which seemed to
him to be “self-evident truths.” He then undertook to show how each statement in
geometry is a logical consequence of these “truths” together with other statements
already shown to follow from them. Euclid’s Elements set the tone for all subsequent
development of geometry up to the present day, and is generally acknowledged to
be one of the great triumphs of the human intellect.

Today, Euclid’s “self-evident truths” are usually called axioms, and our attitude
toward them has changed. Instead of regarding them as “self-evident truths,” we treat
them as mere starting points. We must start somewhere, and we agree that when we
speak of “Euclidean geometry,” we are starting with a set of statements similar to
these. This book is a step in the task of determining how the various theorems in
Euclidean geometry depend on these statements and on each other. We do not try to
decide whether or not the axioms are “true,” except in Chapter 21 where the whole
point is to determine whether various axioms are true or false on models.

We employ what is sometimes referred to as a synthetic method of development.
Our procedure is to begin with a few axioms which are in some sense more
fundamental than the rest, proving as many theorems as we can from these. Then we
add new axioms in sequence and at each stage see how many theorems we can prove.
We continue this process until we come to the full set of axioms. At each stage, we
call the structure we have developed up to that point a geometry or subgeometry.

99 G

Thus we speak of “incidence geometry,” “affine geometry,” “Pasch geometry,” and
“neutral geometry,” among others. The final result is, of course, Euclidean geometry.
As Euclid said, there is no “royal road” to take us there—the difficult journey is the

reward.

'Square bracketed numbers refer to entries in References, just before the Index.
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The axioms we use for Euclidean geometry are not exactly those used by Euclid.
As our understanding and standards of rigor have evolved over the centuries,
gaps have been found in Euclid’s structure. These have been remedied, and some
of his concepts have been sharpened to conform to modern usage. Several such
modernizations of Euclid’s axioms have become widely known. Probably the three
most significant are those set forth by David Hilbert (1862—1943) in his Foundations
of Geometry (1899) [10]; George David Birkhoff (1824-1944) in 1932 (included in
his Basic Geometry (1940))[3]; and Alfred Tarski (1901-1983) in 1959 [20].

The various sets of axioms have their associated advantages and disadvantages;
Birkhoff’s axioms are based on metric notions and angle measure; Tarski’s axioms
are encoded in the predicate calculus. We should also mention the modification of
Birkhoff’s axioms developed in the early 1960s by the School Mathematics Study
Group (SMSG), one of the most successful aspects of the curricular reform known
as the “New Math.” The SMSG axioms are typically used in high school geometry
textbooks, and are redundant, i.e. not independent, to facilitate rapidly proving
significant results; they thus avoid the careful but sometimes tortuous development
seen here.

Our incidence, betweenness, and plane separation axioms are close to those of
Hilbert, but are stated somewhat differently. We access congruence using reflection
mappings, yielding what we think is a more elegant and satisfying development than
do Hilbert’s axioms of congruence. As we stated in the Preface, this book could be

regarded as a completion, updating, and expansion of the core of Hilbert’s book.

The appeal of modern geometry, as we see it, lies in the fact that it reflects
both aspects of its historical development. On the one hand, a person studying
geometry gets ideas from drawing pictures, something not always possible when
studying other mathematical subjects. On the other hand, the intuitive ideas gained
from the pictures must then be subjected to the discipline of logic and proof. This
interplay between imagination and intellectual discipline is not only a model for
the way much of mathematical research proceeds, but also has long been a source
of pleasure and fascination for mathematical intellects, from beginners to mature

mathematicians.

Before we begin, we summarize a collection of facts about logic, sets, mappings

and functions, algebraic structures, and the basic building blocks of axiomatic
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theory. We provide this material for reference; much of it may be familiar to the
reader. At the end of this material we provide some discussion of the structure of

this particular book, including the role of figures and exercises.

1.2 Elementary logic

Statements, propositions: In this discussion, a statement is a declarative statement
(in the usual grammatical sense) which is either true or false—that is, it has truth

value. In many treatments of logic, these are called propositions.

Logical operations: not, and, or: If p is a statement, the symbol —p denotes
the negation of p, the exact contrary of p, which is false whenever p is true and true
whenever p is false.

If p and g are statements, the statement p and g (the conjunction of p and ¢g) is
true when both p and ¢ are true, and false otherwise.

The statement p or ¢ (the disjunction of p and g) is true when p is true, when ¢
is true, and when both p and ¢ are true; it is false when both p and ¢ are false. This
is the standard inclusive use of the word or.

To indicate the exclusive or (true in case one of p or ¢ is true, but false when
both or neither are true), we will often say either p or g. We never use the term xor.
We may at times indicate the exclusive or by appending the words but not both to

either. .. or or to or.

Logical operations: conditional, biconditional: The statement if p then g (the
conditional) is true when both p and ¢ are true, and is false when p is true and ¢
is false. The conditional is always (vacuously) true when p is false. The statement
p is called the antecedent or hypothesis of the conditional if p then ¢, and g is
its consequent or conclusion. The converse of the conditional if p then g is the
statement if g then p, its inverse is if —p then —¢q, and its contrapositive is if —g
then —p. A conditional statement has the same truth value as its contrapositive, but
there is no relation between the truth value of a conditional and either its converse or
inverse. The converse and inverse of a conditional have the same truth value, since
each is the contrapositive of the other.

The statement p if and only if ¢ (the biconditional) means (if p then q) and
(if q then p) and is often written p iff .
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Complex statements, logical equivalences: Many statements are constructed
from other statements using the connectives not, and, or, and if... then; such
statements are called complex statements. If p and g are complex statements
constructed from a common set of simpler statements, p and g are said to be
logically equivalent if they have the same truth value (either true or false) regardless
of the contents of the simple statements that comprise them. In proofs, logically
equivalent statements may be substituted freely for one another as needed to
complete the argument.

Many of the most important logical equivalences involve negation; some of these

are as follows:

—(—p) is logically equivalent to p.

—(p and q) is logically equivalent to (—p or —q);

—(p or q) is logically equivalent to (—p and —q);

(p exclusive or q) is logically equivalent to ((p or q) and —~(p and q)), that is, to
((p or q) and (—p or —q));

—(p exclusive or q) is logically equivalent to ((—p and —q) or (p and ¢)); (this
will be needed in Chapter 5);

—(if p then q) is logically equivalent to (p and —q);

Since the contrapositive of a conditional is equivalent to it, —=(if p then q) is
logically equivalent to — (if —g then —p) which in turn is equivalent to (—g and

—=p), or (—q and p).

Predicates, quantifiers: A predicate p(x) is a statement that contains a
variable, which can be thought of as a symbol for which various objects may
be substituted. In the predicate p(x) the symbol x denotes the variable, and
different values of the variable yield different statements. The reader will need some
acquaintance with what is called the “predicate calculus” involving the quantifiers,
that is, for all and for some (including the customary variant of the latter involving
the term there exists).

The negation of a quantified statement is obtained by interchanging the quanti-
fiers “for all” and “for some” and negating the statement. Thus, the negation of for

all x, p(x) is the statement for some x, —p(x).

Proofs: The reader will need to be familiar with the basic schemes for construc-
tion of proofs using rules of inference based on the above, such as direct proof and

indirect proof (proof by contraposition or proof by contradiction).
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Occasional use will be made of proof by mathematical induction in the
following form: a predicate p(n) defined on the natural numbers is true for all natural
numbers, if it is proved that: 1) p(1) is true, and 2) for every natural number m, if
p(m) is true then p(m + 1) is true. The method of proof is to 1) show that the
statement p(1) is true (the base case); then 2) assume that p(m) (the induction
hypothesis) is true for an arbitrary m and infer from this the truth of p(m + 1).

An equivalent form (sometimes called the “strong form”) of mathematical
induction is as follows: a predicate p(n) on the natural numbers is true for all natural
numbers if it is proved that: 1) p(1) is true, and 2) for every natural number m, if
p(k) is true for all k < m, then p(m) is true.

A common variant on the method of mathematical induction is to prove that a
statement p(m) is true for all m > ngy, where ny > 1, by simply beginning the process
at m = ny rather than at m = 1. This is easily shown to be valid by rewriting the
predicate as p'(m) = p(m + ny — 1) so that p’(1) = p(ny).

Mathematical induction may also be used for definitions: a predicate p(n) is
defined on all the natural numbers if 1) p(1) is defined, and 2) for every natural

number m if p(m) is defined then p(m + 1) is defined.

Notation: The statement that “if p then q is true” will sometimes be symbolized
by a double-lined arrow, as in p = ¢, and the statement that “p if and only if q is
true” by “p < ¢.” In definitions, “if” will have the definitional meaning of “if and
only if” unless otherwise indicated, and the symbol O will be used to designate the
end of a proof.

For more complete information about logic and its use in the construction of
proofs, the reader may wish to consult a text on discrete mathematics such as
Rosen, K., Discrete Mathematics and Its Applications (2003) [18].

1.3 Set theory

The Zermelo—Fraenkel set theory with the Axiom of Choice (ZFC) provides an

adequate foundation for this work.

Membership and inclusion: The symbol x € A says that the object x is a
member of or belongs to the set A. x ¢ A says that the object x does not belong to

set A (nonmembership), or, equivalently, —(x € A).
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If A and B are mathematical objects, A = B means they are the same object, or
are equal. A # B means that they are not equal or unequal. Two sets A and B are
equal iff they contain the same members, and are not equal otherwise.

A C B means that for all x, if x € A, then x € B. A is said to be a subset of 5.
If A is a subset of 13 and there exists an x € 3 such that x ¢ A, then A is a proper
subset of B. A = B means that A and BB contain exactly the same elements, that is,
A C B and B C A. The symbolism .4 C B indicates that it is possible for the two
sets to be the same.

The symbol @ denotes the null or empty set, the set containing no elements.
A singleton is a set having exactly one member; a doubleton is a set having exactly

two members.

Truth sets of predicates: If p(x) is a predicate, {x | p(x)} is the set of all x for
which the statement p(x) is true. This set is commonly called the truth set of the
predicate p(x) and this type of construction is often referred to as the set builder

notation.

Intersection, union, difference: AN Bistheset {x | x € A and x € B} and is
called the intersection of A and 5.

AU Bisthe set {x | x € Aorx € B} and is called the union of A and B.

A\ Bis the set {x | x € A and x ¢ B} and is called the difference of A and B;

informally, this operation is called set subtraction.

Listing elements and -tuples: When a set which has n elements is described
by listing its elements, as in A = {3,5,7,9}, the order of the elements listed is
irrelevant to the description; for example, {3,5,7,9} = {5,3,7,9} = {9,5,7,3}.
Frequently, however, we will need to list the elements of a set and at the same time
specify which element is the first element, which one is second, and so on. The set
whose elements are a;, ay, . . ., a, where foreach k = 1,2, ..., n, a; is specified as
the “k-th” element is known as an ordered n-tuple, and is denoted by the symbol
(a1, ay,...,a,). If order is understood, we may refer to an ordered n-tuple simply
as an n-tuple. Two (ordered) n-tuples (a;, az, .. .,a,) and (by, by, . .., b,) are equal
iffa; = by,a, = by, ...,and a, = b,.

An ordered 2-tuple is called an ordered pair and is written (a, b), where a is
the first element and b is the second element of the pair. Note that (a, b) # (b, a)
unless a = b. Occasionally we may speak of an “unordered pair” meaning simply a

set with two elements.
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An ordered 3-tuple is called an ordered triple and is written (a, b, ¢), where a is
the first element, b is the second element, and c the third element of the triple.

The set of all n-tuples (ay,as,...,a,), where for alli = 1,2,...,n,a; € A; is
called the Cartesian product® of the sets A;,As, ..., A,, and is denoted

A x Ay x ... x A,.

Distinct and disjoint: When we say A, A,, and A; are distinct sets, we
mean A; # Ay, A # Az, and Ay # A;. Expanding a bit on this theme, if
{Ay, Ay, Az, ..., A,} is any collection of mathematical objects (such as points,
lines, planes, or what have you), saying that they are distinct, or pairwise distinct
means thatif 1 <k # [ < n, Ay # A;. That is, no two objects in the collection are
the same.

Two sets A and B are disjoint if ANB =@. If AN B # @, that is, AN B
contains some element x, A and BB are said to intersect. A collection of sets
{A1, A;, A3} is said to be pairwise disjoint if 4| N A, = @, A, N A3 = 0, and
A, N A; = @, with obvious extensions to larger collections of sets. A collection of
pairwise disjoint nonempty sets will clearly be distinct, but a collection of distinct

sets is not necessarily pairwise disjoint.

1.4 Mappings, functions, cardinality, and relations

Mappings: A mapping (or map, for short) is a set of ordered pairs (x,f(x)) with
the property that each first element x appears in exactly one pair (x,f(x))—that is,
each x is “paired” with only one f(x).}

The words function and transformation are synonyms for mapping. Function
is commonly used in calculus where the emphasis is on mappings whose first and
second elements are members of a number system, such as the set of real or complex
numbers. Transformation is often used for mappings on vector spaces (to be defined
later). In this book we will generally use the term mapping; here in the introduction
we will use letters such as f, g, h to denote mappings even though they suggest the

word function.

2 After the French mathematician and philosopher René Descartes (1596—1650), inventor of the
Cartesian coordinate system, which we will explore in the later chapters of this work. He has been
called “the father of modern philosophy.”

3You might prefer to think of a mapping as a rule which associates a single second element f(x)
with each first element x. Our definition is a bit more formal, as it does not depend on the undefined
notion of a “rule.”
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Domain, range, and restriction: The set of all first elements of a mapping is
its domain, and the set of all second elements is its range. We may state that “f is a
mapping with domain A whose range is a subset of a set B” by writing the symbol
f: A — Bor by saying that f maps A to (or into) 5.

If £ C A, the restriction of f to £ is the mapping (denoted by f|£) consisting of

the set of all ordered pairs of f whose first elements are members of £; that is, the

set {(x,f(x)) | x € E}.

Argument, value, image, and pre-image: If f(x) = y, we may say that f maps
or carries x to y, or that y is the image of x under f, or that y is the value of f at
x; in this case, x is sometimes said to be an argument for y. There may be more
than one argument for a given value y. In some quarters it has become stylish, in
this situation, to refer to x as an input for the mapping f, and to y as the output
corresponding to x—a possible influence from the computer culture.

If f is a mapping with domain A, and £ C A, then the set {f(x) | x € £} is the
image of the set £ under f, and is denoted by f(&). If F C &, then f(F) < f(E).
The range of a mapping f is the image f(A) of its domain.

If G is any set, then {x | f(x) € G} is the pre-image of G under f, and is denoted
by £71(G). (There are some subtleties to be observed here—see the paragraph below
titled “Tricky notation.”)

Composition of mappings: If f : A — Band g : B — C the composition g o f
is the mapping which maps A to C whose value for each x € Ais g(f(x)). In the case
that A = B = C, itis not necessarily true that gof = fog (composition of mappings
is not commutative). As an example, let f and g be defined as follows for each real
number x: f(x) = x+2 and g(x) = x%; then for each x, (fog)(x) = f(g(x)) = x*+2,
whereas (gof)(x) = g(f(x)) = (x+2)> = x*>+4x+4 which is not the same as x> +2.

However, if f : A —> B, g : B — C,and h : C — D, it is always the case that
(hog)of = ho(gof) (composition of mappings is associative). For if x € A then

((hog)of)(x) = (ho @) (f(x)) = h(g(f(x)) = h((g o f)(x)) = ho(gof)(x).

The notion of composition may easily be extended to any finite collection of
mappings, provided that the domains and ranges match up properly. Thus, the
composition of mappings fi,f>,...,f; is the mapping whose value at each x is
HGEa( () .. ).

For definitions of the terms commutative and associative see the next section,

elementary algebraic structures.
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Onto, one-to-one, bijection: We say that a mapping f maps A onto, or is a
surjection onto a set B iff for every y € B there exists an x € A such that f(x) = y.
By definition, a mapping always maps its domain A onto its range f(.A), that is, onto
the image of .4 under f. A mapping f is said to be one-to-one (sometimes written
1-1), or an injection, in the case that for any two elements x and y belonging to its
domain A, if x # y then f(x) # f(y). If a mapping f with domain A4 is both one-
to-one and onto the set /3, we say it is a bijection of .4 onto B, or is a one-to-one
correspondence between A and B. If f is a bijection of A onto itself, we say f is a
bijection of A.

The composition of two mappings that are one-to-one is one-to-one, and the
composition of two mappings of a set .4 onto itself is also a mapping of .A onto
itself. Thus if f and g are bijections of A, f o g is also a bijection of A. To see this,
let x and y be any distinct members of .A. Since g is a bijection of A4, it is one-to-one
and g(x) # g(y). Similarly, since f is a bijection of A, (f o g)(x) = f(gx)) #
f(g(») = (f o 2)(y), so that f o g is one-to-one. If z € A, since f is onto, there is an
element y € A such that f(y) = z; similarly, there exists an element x € A such that
g(x) = ysothat f(g(x)) = zand f o g is onto .A. Therefore f o g is a bijection of A.

Inverses and the identity: If f is one-to-one, the set {(f(x),x) | (x,f(x)) € f}
is a mapping called its inverse . Its domain is the same as the range of f, and its
range is the same as the domain of f. The inverse of a bijection is a bijection.

If A is any set, the identity map is the mapping ¢ with the property that for every
x € A, 1(x) = x. The identity map is a bijection and is its own inverse. Note that if
f is a one-to-one mapping with domain A and range B, then f o f~! is the identity

mapping on B and f~! o f is the identity mapping on .A.

Tricky notation: In an earlier paragraph we defined the pre-image of a set G
under f as the set {x | f(x) € G}. But things get slightly tricky here: we use the
notation f~!(G) to designate this set, even if f~! does not exist as a mapping, that
is, when f is not one-to-one—the pre-image of a set with only one element might
contain many elements. Also, there is no necessity for G to be a subset of the range

of f, or even to intersect it. In the latter case, f~'(G) = 9.

Elementary mapping theory: There are some relations between set theory and
mappings that will be of particular importance to us in Chapter 8 where we deal

with reflections and isometries, both of which are bijections.
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Let f be a mapping and let .4 and B be subsets of the domain of f. Then it is
always true that f(A U B) = f(A) U f(5). But for intersection, all we can claim is
that f(A N B) C f(A) Nf(B). To illustrate this, let f be a mapping on the set of real
numbers and define f(1) = 1 and f(2) = 1, and let A = {1} and B = {2}. Then
JANDB) =f0) =0 # {1} =f(A) Nf(B).

The situation is quite different for bijections, which are one-to-one and onto.
Then it is always true that f(A N B) = f(A) N f(B). Thus, when we map a disjoint
union of sets using a bijection, the image will be a disjoint union of the images of
each of the individual sets in the union. We will sometimes also refer to these facts
by the words “‘elementary set theory.”

Finite and infinite sets: If there exists a one-to-one correspondence between
two sets A and B, then A and B are said to have the same cardinal number (the
two sets have the same number of elements). A set A is said to be finite if it
is empty (in which case it has zero elements), or if for some integer n > 0, there
exists a one-to-one correspondence between A and the set {1, 2, 3, ..., n} of natural
numbers. We will normally express this fact by saying that the set has n members.
Every subset of a finite set is finite. If A C B are finite sets, A has m members, and
B has n members, then A is a proper subset of B iff m < n. A set A is infinite if
and only if it is not finite. A set A is infinite if it has an infinite subset.

Relations and their properties: A relation on a set A’ is a set of ordered pairs
(x,y), where x and y are members of X. If R is a relation on X we write xRy to
indicate that the pair (x,y) € R. If a relation R satisfies the following three criteria,
it is called an equivalence relation: 1) for every x € X', x Rx (R is reflexive); 2) if
xR ythenyRx (Ris symmetric); and 3) if x Ry and y R z, then x R z (R is transitive).
If R is an equivalence relation on X and x € X, the equivalence class (denoted [x])
of x is {y | xRy}. The collection of all equivalence classes forms a partition of
the underlying set X—that is, every element of X belongs to exactly one of the

equivalence classes.

1.5 Elementary algebraic structures

In modern mathematics, both group and field theory play a prominent role. In this
work we will not be using these theories to any extent, but it will be convenient
to have the following definitions on hand. We will use them principally for

summarizing and organizing our knowledge.
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Operations: An operation, or a binary operation on a set £ is a mapping
which maps £ x € into £; the image of (x, y) is indicated by writing the symbols x

and y together, or with some symbol in between them, asinx -y, x + y, orx o y.

Groups and their operations: A group is a nonempty set G together with an
operation ““-” such that conditions (G1) through (G4) are satisfied:

(G1) for every two elements x and y of G, x - y € G (the group is closed under the
operation -);*

(G2) for any three elements x, y, and z of G, x - (v - z) = (x-y) - z (the operation -
is associative);

(G3) there exists an element e € G such that forevery x € G,e-x = x-e = x
(e is the identity element for the operation -); and

(G4) for any element x € G there exists another element x~! € G such that x -

x = x71

-x = e (x~! is the inverse of x under the operation -).
If, in addition, the following condition (G5) is satisfied, G is said to be a
commutative or abelian’ group.

(G5) for any two elements x and y in G x-y = y-x (the operation - is commutative).

A subset H of a group G is a subgroup of G if it forms a group under the
operation of G. To prove that a nonempty subset # is a subgroup of G, it is sufficient
to show that for every x and y in 7, both x~! and x - y are members of H.

A semigroup is a nonempty set G together with an operation “-” such that
conditions (G1) and (G2) are satisfied.

Bijections forming a group: The following fact will come in handy in later
chapters.

If F is any set of bijections on a set .4 such that a) the composition of any two
bijections in F is again in F or is the identity 7, and b) the inverse of any member
of Fisin F, then F U {1} is a group.

To see this, note that for any mapping f mapping A onto A, f o1 =1 0f = f.
Gl follows immediately from this and a); G2 follows from the associativity of
functions under composition; G3 is true because 1 € F U {1}; and G4 follows from

observation b) just above and the fact that the inverse of 7 is 1.

“4Technically, the condition (G1) is redundant here because the definition of an operation requires
that the result be a member of the same set.

5 After the Norwegian mathematician Niels Henrik Abel (1802—1829).
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In various contexts, different symbols are used in place of the - we have used
here; the real numbers form a group under the operation + and the set of nonzero
real numbers form a group under the operation of multiplication. Both of these are
abelian groups. In situations where the composition of functions is possible, we
use o for this operation, and later in this book we will come upon several examples
where sets of functions of particular types form groups under this operation. Very
often, too, where the operation is well understood, we will not use any symbol at

all, using juxtaposition instead; rather than writing x - y we will write simply xy.

Fields and their operations: A field is a nonempty set F together with two
operations, which for convenience we will designate as + (addition) and “.”

(multiplication), such that all the following conditions are satisfied:

(F1) F forms an abelian group under the operation + (it is customary here to call
JF an additive group, to use the symbol O for the additive identity, and for each
x € F use the symbol —x for its inverse);

(F2) F\ {0} forms an abelian group under the operation “-” (that is, F \ {0} is a
multiplicative group); we will generally use the symbol 1 for the multiplicative
identity; and

(F3) for any three elements x, y, and z of F, x- (y + 2) = (x-y) + (x - z) (the
distributive law of multiplication over addition holds).

If F is a field, then a subset £ of F is a subfield of F if it is itself a field under
the operations of F. To prove that £ is a subfield of F, it is sufficient to show that
both 0 and 1 are members of £, and for every x and y in £, —x, x + y, x~! (where

x # 0), and x - y are all members of £.

Number systems: The reader should be familiar with the set Z of integers and
its subset N = {1, 2, 3, ...}, the natural numbers. If m and » are any integers such
that m < n, the symbol [m; n] will denote the set of all integers greater than or equal
to m and less than or equal to n. Thus, for example, [3;7] = {3,4,5,6,7}.

The reader will also need to be familiar with the field R of real numbers and its
subfield QQ of rational numbers. Between any two real numbers in R there is both
a rational number and a nonrational (irrational) number. The numbers 7, e (the base

of natural logarithms), and /2 are examples of irrational numbers.
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Another subfield of the real numbers which will be important in the last chapter
of the book is the set of real algebraic numbers,® denoted by the symbol A.
This is the set of real numbers that are roots of polynomial equations having rational
coefficients. The real number 7 is not an algebraic number, as it is not the solution
of any polynomial equation with rational coefficients.

The sets N, Z, Q, A, and R are naturally ordered by defining a < b iff there
exists a number ¢ > 0 such that b = a + c. For these number systems, there is also
a natural concept of betweenness: b is said to be between the numbers a and c iff
eithera < b < c or ¢ < b < a. In symbols, this is written as either a—b—c or c—b—a.

Anticipating later developments, we point out that this order relation satisfies
the properties of ordering as in Definition ORD.1 (Chapter 6), and this notion
of betweenness satisfies Definition IB.1 (Chapter 4). Moreover, R has the LUB
property, meaning that every set of real numbers which is bounded above has a
least upper bound (the formal definition of which is given in Chapter 18). Every
irrational number x is the least upper bound of the set of all rational numbers » such
that r < x.

In these number systems the square of any (nonzero) number is positive. The
square root of a number a > 0is denoted by +/a and is the solution to the polynomial

equation x>

= a, and thus is an algebraic number if a is rational. Both the fields R
of real numbers and A of real algebraic numbers contain the square roots of their

non-negative members.

Vector spaces: A vector space (or linear space) over a field F consists of a
set V of elements called vectors together with the field F, whose members may
be called either numbers or scalars; an operation “+” which denotes addition of

TR

vectors; and an operation “-” which multiplies a scalar times a vector, all satisfying

the following conditions:

SMore generally, an algebraic number is a complex number that is a root of a polynomial
equation with rational coefficients. (A treatment of complex numbers is available in a supplement
accessible from the home page of this book at www.springer.com.) The set of all algebraic numbers
is a subfield of the complex numbers, as is the set of real numbers, and their intersection is the
subfield of real algebraic numbers described here. The field of algebraic numbers is algebraically
closed, meaning that any root of a polynomial with coefficients from the field is also a member of
the field. The field of real algebraic numbers is not algebraically closed, as is readily seen from the
fact that the polynomial equation x> = —1 has no real solution.
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(V1) YV forms an abelian group with respect to the operation +, with identity
element O; the inverse of any vector A is —A.

(V2) The scalar product “” obeys the following rules: for any scalars x and y
belonging to F and any vectors A and B of V, x(yA) = (xy)A, 1A = A,
X(A + B) = xA + xB, and (x + y)A = xA + yA.

It is customary to omit the dot symbol for scalar product, as we have done, and,
where no confusion arises, to refer to the vector space by the name of its set of
vectors.

If V is a vector space, then a subset I/ of V (equipped with the same field) is a
subspace of V if it is itself a vector space under the operations of V. A subset U/ is a
subspace of V iff for all A and B in U{ and every x € F,both A+ B € U/ and xA € U.
A subspace U is a proper subspace of V if there exists at least one point A € V such
that A € U. V is a subspace of itself, and {O} is the trivial subspace of V.

Linear independence and dimension: A set {A|,A;,...,A,} of vectors is
linearly dependent iff there exists a set {xi,xs,...,x,} of field elements, not
all zero, such that x;A; + x4, + ... + x,A4, = O. A set that is not linearly
dependent is linearly independent; that is, if x]A; + x4, + ... + x,A, = O then
x; = 0foralli € {1,2,...,n}. If for some numbers (field elements) x;, x, .. ., X,
X = x1A| + x4, + ... 4+ x,A,, X is said to be a linear combination of the vectors
Ay, Ay, ..., A, If every vector X € V is a linear combination of the vectors in
{A, Ay, ..., A}, we say that this set spans the space V. A set of nonzero vectors
which is both linearly independent and spans V is called a basis for V), and every

vector space has a basis.

Basis Theorem. If {By,B,,...,B,} is a set of vectors that spans V, and
{A1,Ay, ..., A,} is a set of linearly independent vectors inV, thenn < m; if n = m,
{A1,Ay,...,A,} spans V.

Proof. We outline the proof’ of this result, which will be of basic importance to our
development in Chapter 21.

Note first that for some numbers xi, x2, ..., X, A, = x1B1 + x2B> + ... + x,,Bn
and at least one of the x;s is nonzero. Dividing through by this x; we see that B; is a
linear combination of the other Bs together with A,,. It follows that if, in the spanning
set, this B; is replaced by A,,, the resulting set {By, B, ...,Bi—1,A,;,Bi+1+ ..., By}
spans V.

"The proof is essentially that found in Halmos, Finite Dimensional Vector Spaces [9], pp. 9—14.
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Then A, is a linear combination of this new spanning set, and the coefficient of
at least one of the Bs in the combination must be nonzero, for otherwise, the linear
independence of the As would be contradicted. This B can be replaced by A, in
the spanning set, and the resulting set will span V.

Repeat this process as many times as possible; if n > m, the Bs will be used
up before the As, resulting in a spanning set that contains no Bs, and a list Ay,
..., A; of As that have not yet been incorporated into the spanning set. In this
case, the “un-substituted” As are linear combinations of the spanning set, which
consists entirely of As; this contradicts our initial assumption that the As are linearly
independent.

Therefore n < m, and the replacement process will stop when all the As have
been used to replace Bs in the spanning set, leaving (possibly) some unreplaced
Bs. It follows that in any vector space, the number of linearly independent vectors
cannot exceed the number of vectors in a spanning set. Moreover, if n = m,
{A1,A,,...,A,} spans V, since all the Bs have been displaced by As. O

Dimension: By the Basis Theorem, any two bases for a space have the same
number of elements, because each basis is a linearly independent set and also spans

the space. The number of elements in a basis is called the dimension of the space.

Dimension Criterion: If{ is a subspace of V, then i/ = V iff the dimension of
U is equal to the dimension of V. Suppose the dimension of I/ is the same as that of
V; then a basis B for U is a linearly independent set in V, having the same number
of elements as a basis for V, which is a spanning set for V. By the Basis Theorem,
B spans V, so that every vector in V is a linear combination of the vectors of 13, and
hence is a member of /. Conversely, if ¢/ and V are the same space, they have the
same dimensions.

In this work we will be mainly concerned with vector spaces of dimension 1,
2, or 3.

Since the vector space axioms are a subset of the field axioms, F is a vector space
over itself, having dimension 1. If A # O is a point of a vector space V, {xA | x € F}
(that is, a “line” through the origin) is a vector subspace of V having dimension 1.
Thus, the word space in vector space may at times mean “line”; it may also mean
“plane,” although not all lines (or planes) in a vector space are vector spaces.

The word vector in the term vector space does not include the notion of a “bound”
vector as used in science, often visualized as an arrow whose tail can be located at

any desired point. Vector, to us, means a point in a vector space, nothing more,
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nothing less; if we visualize it as an arrow, the tail of the arrow is always at the
origin O and its head is at the point specified.

Linear mappings: A linear mapping (or linear transformation or linear
operator) oo on a vector space V is a mapping of V into V such that for all A
and B in V, and all field elements x and y, ¢(xA 4+ yB) = xa(A) + yx(B). The
mapping O is the mapping such that O(A) = O for every A € V. The “negative”
of the mapping « is the mapping —c«, which maps every A € V to —(«(A)). The
sum of two linear mappings « and  on V is the mapping « + § such that for every
A eV, (x+ B)A) = a(A) + B(A). The product or scalar product of a field
element x and a linear mapping « on V is the mapping xao such that for every A € V,
(xa)(A) = x(x(A)). Any sum of linear mappings, and any scalar multiple of a linear
mapping, is a linear mapping, as are the mapping O and the negative of any linear
mapping. The set of all linear mappings on a vector space with the definitions of

sum and scalar product as above is itself a vector space over the same field.

Vector spaces of n-tuples: Let F be a field and denote by F" the set of
all n-tuples (ay,ay,...,a,) of elements of F. Define the sum of two n-tuples
(a,az,...,a,) and (b1, by, ...,b,) in F" as

(ar,az,...,a,) + (b1,ba, ..., by) = (a1 + b1,a2 + by, ..., a, + by),
and for any ¢ € F define the scalar product
tay,az,...,a,) = (tay, tay, ..., ta,).

With these definitions, F" is a vector space, called coordinate space over the
field F.

If the additive identity of F is O and the multiplicative identity is 1, then
(0,0,...,0) is the origin, or zero element of F”, and will often be denoted O. The
set {{(1,0,0,...,0),(0,1,0,...,0),(0,0,1,...,0),...,(0,0,0,....,1)} forms a
basis for F", so that /" has dimension 7.

Coordinate spaces will be explored further in Chapter 21, where they are used to

show consistency and independence of our axioms.

More advanced vector space theory extends the notion of dimension to include
spaces of infinite dimension. For example, the set of all real-valued functions defined
on the unit interval [0,1] is a vector space having infinite dimension, where the sum
f + g of two functions f and g is defined by (f + g)(x) = f(x) + g(x) for all
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x € [0,1], and for any real number ¢, (#f)(x) = #f(x). This is only a hint at the
extent and applicability of vector space theory; in this work, we will only scratch

the surface.®

Isomorphisms: If G and G’ are groups, an isomorphism (more elaborately, a
group isomorphism) of G onto G’ is a bijection @ which preserves operations—
that is, for every xand y in G, @(x-y) = @(x) © @(y), where “-” is the operation of
G and © is the operation of G'. If 7 and F are fields, then an isomorphism (or field
isomorphism) of 7 onto F” is a bijection @ which preserves both field operations.
If V and U are vector spaces, then an isomorphism (or vector space isomorphism)
of V onto U is a bijection @ which preserves both addition and scalar multiplication.
We could also define isomorphisms between other types of algebraic systems.

If A and B are two isomorphic algebraic systems, we may say that B is
an isomorphic image or copy of A, and vice versa. Isomorphic systems are
indistinguishable as to their algebraic structures. In particular, two vector spaces
which are isomorphic have the same dimension.

It is well known that the isomorphic image of a group is a group, the isomorphic
image of a field is a field, and the isomorphic image of a vector space is a vector
space. Thus, if one can establish (as we do in later chapters) an isomorphism
between a field F and another set 7' which is equipped with two operations +
and “” , the set 7' is automatically a field, and likewise for a vector space. This
relieves us of the tedium of proving all the various field (or vector space) properties
on the second set. All that is necessary is to show that the mapping (isomorphism)

is a bijection onto the second set, and that the operations are preserved.

Matrices, determinants, and Cramer’s rule: (1) A matrix is a rectangular

apna .
array of numbers (members of IF') such as et ; it may also be denoted as
az1 ax
arpdi . « .
. This one would be called a “square 2 by 2 matrix.
az) a

ap arn, a3

The array | ay; ax, arz | 1s a “square 3 by 3 matrix.”

asy asp, dass

8There are a number of good books on vector space theory; Finite Dimensional Vector Spaces [9],
by Paul Halmos (1916-2006), remains a classic. Originally published by Van Nostrand in 1958, it
is still in print from Springer.
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ap an ar az

of a 2 X 2 matrix
daz) az az) az

(2) The determinant ) is defined to be

apdazy —apas).
a; by ¢ ay by ¢
The determinant |a, b, ¢,| of the 3 x 3 matrix | a, b, ¢, | is

as by c; as by c;
a1b2C3 — a1b3cz - b1a203 + b1a3c2 + C1(12b3 - C1a3b2.

Cramer’s rule: If a,, a», by, by, c1, and ¢, are members of the field F, and if
. a by . ) .
the determinant # 0, then the simultaneous solution s, 7 to the equations
an bz
a1s + byt = ¢y and axs + byt = ¢y is

c1 by a ¢

¢ by as ¢
s = and t =

ay b ay b

ay bz ay b2

There is a version of Cramer’s rule that solves three linear equations if the
determinant of coefficients is nonzero, but we will not have occasion to use it.

The reader should be familiar with the addition and multiplication of matrices
using the row by column rule, with scalar multiplication, as well as with the use of
matrices to describe the behavior of linear mappings. We may occasionally use the
method of calculating a determinant of a square matrix in which each ijth entry in
an arbitrary row (or column) is multiplied by (—1)"*/ times the determinant of the
matrix obtained by deleting the ith row and jth column, and summing over all the

entries in that row (or column).

1.6 The basic building blocks of axiomatic theory

It is impossible to assign meaning to every ferm’ in a theory. To assign meaning to a
term, we must use other terms, and the meanings of these in turn must be stated using
yet other terms. This leads either to an infinite regression of terms and definitions

or, more likely, to a circular “definition” (as in a dictionary).

° We use the words “term” and “word” interchangeably.



20 1 Preliminaries and Incidence Geometry (I)

To avoid this, it is customary in mathematics to begin with certain undefined
terms or primitive notions. By calling them “undefined” we mean that they
are initially undefined; they acquire meaning when axioms are invoked, so in a
sense, the axioms define them. Here, “point,” “line,” and “plane” are undefined
terms. These are the primary building blocks of our theory, which is constructed
using definitions, axioms, and theorems. Since it makes little sense to talk about
nonexistent entities, we shall assume that points, lines, and planes exist, even though

initially we do not know what they are.'?

A definition assigns meaning to a word or symbol using undefined or previously
defined words. Definitions do not add new content to our theory, but provide
names and symbols which serve as shortcuts in our discourse, sparing us the
trouble of writing out full descriptions which otherwise would quickly become very
cumbersome. Be warned that in definitions we will often write “if” to mean “iff,”
and that some definitions are unacceptable. (See “On ‘good’ and ‘bad’ definitions”

below.)

An axiom is a statement that gives meaning to undefined terms, states the
relationship of such terms to other terms, or declares the existence of defined objects.
Axioms are the starting points of our theory and are given without any justification
or logical argument. Indeed, the set of axioms could be said to contain the entire
theory.

The axioms must be consistent—meaning that the entire set of axioms does not
give rise to any contradictions. Consistency of a set of axioms may be demonstrated
by exhibiting an example (model) of a mathematical system in which all the axioms
are true.

In this work we aim to make our axioms independent—meaning that no one
of them can be derived from others that have been stated. Building a theory from

independent axioms requires a lot more work (some of it tedious) than building

10¢Yhen we set out to construct a given discipline, we distinguish, first of all, a certain small group
of expressions of this discipline that seem to us to be immediately understandable; the expressions
in this group we call PRIMITIVE TERMS or UNDEFINED TERMS, and we employ them without
explaining their meanings. At the same time we adopt the principle: not to employ any of the other
expression[s] of the discipline under consideration, unless its meaning has first been determined
with the help of primitive terms and of such expressions of the discipline whose meanings have
been explained previously...” Alfred Tarski, Introduction to Logic: and to the Methodology of
Deductive Sciences, 4th ed., page 118, Dover (1995) [21].



1.6 The basic building blocks of axiomatic theory 21

it from a carefully chosen set of axioms that are not independent. An extended
discussion of consistency and independence of axioms will be found in Chapter 21.

In an axiomatic system, a statement is said to be “true” if and only if it can
be deduced from the given axioms using the rules of logic. It is “false” if and
only if its negation is true. Axioms are logical consequences of themselves, so are
automatically considered true.

Within a given axiomatic system, it may be possible to construct a statement
whose truth value cannot be determined. That is to say, the system of axioms may

be incomplete.

A theorem is a statement about undefined or previously defined terms which
has been proved, meaning that it has been shown to be a logical consequence of
the axioms, set theory (which we have assumed), and previously proved theorems.
Many theorems having special importance to the development will have names or
descriptive labels.

A theorem that is a more or less immediate consequence of another theorem
is called a corollary of the main theorem. A theorem that is used mainly for the
proofs of other theorems is sometimes called a lemma. Items labeled remark are
less formal in character and may contain easily proved theorems (and their proofs),
which in turn may be cited in other proofs. An unproved statement that someone
thinks is true is a conjecture.

What is possible to prove as a theorem in our axiomatic theory is entirely
determined by the set of axioms we start with. This is why mathematicians fuss

so much over the choice of axioms.

On “good” and ‘“‘bad” definitions: Definitions must be succinct and concise.
But it is inevitable that they will sometimes contain or imply statements. Any such
statements must be frue in order for the definition to be acceptable. If a statement is
included that can’t be proved, the definition is “bad” and must be discarded.

Suppose, for example, a definition specifies a name for “the plane which satisfies
some property p.” Implicit in this definition is the statement that there is only one
such plane. If this can be proved to be true, the definition is “good.” Otherwise, the
definition is “bad.”
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1.7 Advice for the reader: labels, notation, figures,
and exercises

Item labels and reference numbers: Theorems and their corollaries, lemmas,
remarks, and definitions are usually (but not always) labeled with an acronym and a
number, as in “Theorem NEUT.15.” The acronym is intended to suggest the subject
for the chapter (in this case, neutral geometry). In some cases, different parts of
a chapter will have different acronyms. After the title of each chapter (except for
Chapter 21) the acronyms used therein are listed in parentheses.

Numbers are assigned consecutively; occasionally, especially where it has been
necessary to insert items late in the writing process, we have added decimal
extensions, as in “Remark PLGN.4.1” and “Definition PLGN.4.2.” Informal
explanatory notes are often not given an acronym or number.

Numbers in square brackets [n] at the end of citations refer to the corresponding

entry in “References.”

Notational conventions: Points will be denoted by slanted capital Roman
letters: A, B, C,...,X,Y,Z. Both lines and planes will be denoted by calligraphic
script capitals such as &£, £, M, N, P, or Q, etc. Space will be denoted by letters in
the form U or by calligraphic script, for instance S. These symbols may also be used
for other purposes—for instance, in later chapters R o4 routinely denotes a reflection
over the line M.

Figures: All four authors agree that the reader of a mathematical book should
draw his or her own figures as an aid to understanding. But they have adhered to
this ideal with varying degrees of rigor. There are some parts of the development in
which it might be easy to construct figures, but doing so could be misleading; for
instance, in Chapter 4 sides of a line are defined. At this point in the development, a
line might could more than two sides, but any graphical portrayal would inevitably
show a line having exactly two sides. This situation is not resolved until well
into Chapter 5 after the Plane Separation Theorem is proved and its consequences
explored. Thus there are no figures in Chapter 4 or the first part of Chapter 5.

In the final editing process we have removed some figures that now seem to us to
deprive the reader of the proper pleasure of constructing his or her own, and we have

inserted figures in other parts of the book where we think they might add clarity.

Exercises: Exercises in this book provide much more than routine practice of

techniques learned in preceding sections. Each requires careful thought and possibly
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some ingenuity. The starred ones (*) (for which we provide solutions online at the
home page for this book at www.springer.com) usually are an integral part of the
development of the theory in the book. You cannot routinely skip them without
missing much of what this book is about.

Even in those chapters (notably Chapters 5 on Pasch geometry, and Chapter 8 on
neutral geometry) where there are a great many exercises, you will find it worthwhile
to read each one, make a sketch and get in mind how to prove it, even if you don’t
actually put the details together. You can justify skipping an occasional exercise
only if you are quite sure you could construct the proof if you had to, and feel it is a
waste of your time to supply all the details. But beware that supplying all the details
may look deceptively simple when you give a theorem a cursory glance.

It is often possible by exercising a certain amount of ingenuity to cut through a
long and boring consideration of a list of cases. Indeed, much of what is beautiful
and satisfying in mathematics has been motivated by a desire to avoid boring
work. So, even if you can outline a “straightforward” proof of an exercise, and are
therefore tempted to skip it, once in a while you might sharpen your mathematical
insight by looking for a clever and more aesthetically satisfying proof. It is possible
that you may, by such means, create new proofs of theorems and solutions for
exercises that are more elegant than the ones we have given.

If that happens, please let us know. The authors are not geniuses, nor do we walk

on water.'!

1.8 Axioms for incidence geometry

Undefined terms: For our geometry, the words point, line, and plane are
undefined terms. For now, the reader should try to avoid thinking of a point as a dot,
a line as something long, straight, and thin, a plane as a flat expanse, or space as a
solid. The familiar characteristics of lines and planes will emerge from the axioms

to follow, and are entirely determined thereby.'?

Definition I.0. Space U is the set of all points. We may think of space as the

universe or the universe of discourse.

""Except for the third named author who, living in Michigan, routinely walks on (solidified) water.

12 The following has been attributed to David Hilbert, as a way of saying that in proving geometric
theorems we must use only the axioms, rather than any “real” interpretation of geometric objects:
“One must be able to say at all times—instead of points, straight lines, and planes—tables, beer
mugs, and chairs.”
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Axiom L.0. Lines and planes exist and are subsets of space U.

Thus, U is the set of “everything.” We may, as we have already done, employ
the usual terminology of set theory which was introduced in Section 1.3, including
the terms member, belongs to, subset, union, intersection, disjoint, and the like. It
is quite correct to say things like “point A is a member of line £’ or “point A is a
member of plane P” when we mean A € L or A € P. But this is geometry, so we
may also say “point A lies on line L (or plane P)” or sometimes “line £ (plane P)
goes through (contains) point A.” If £ C P, we will often say “L is contained in P”

or “P contains L.”

Definition 1.0.1. (A) “Points A, B, and C are collinear” means that there is a line
L such that A, B, and C all lie on line £. More generally, if £ is any set of
points, then & is collinear iff there exists a line £ such that £ C L. A set £ is
noncollinear iff there is no line containing all the points of £.

(B) “Points A, B, C, and D are coplanar” means that there is a plane P such that
A, B, C, and D all lie on P. More generally, if £ is any set of points, then & is
coplanar iff there exists a plane P such that £ € P. A set £ is noncoplanar
iff there is no plane containing all the points of £.

(C) If E is a set of two or more lines, the lines in [E are said to be concurrent at a
point O if and only if the intersection of all members of E is {O}.

(D) A space on which the incidence axioms 1.0 through 1.5 are true is an incidence
space, and a plane therein is an incidence plane. The geometry these axioms

generate is incidence geometry.
Axiom I.1. There exists exactly one line through two distinct points.
Axiom L.2. There exists exactly one plane through three noncollinear points.

Axiom L.3. If two distinct points lie in a plane, then any line through the points is

contained in the plane.

Axiom I.4. If two distinct planes have a nonempty intersection, then their intersec-

tion has at least two members.

Axiom L5. (A) There exist at least two distinct points on every line.
(B) There exists at least one noncollinear set of three points on every plane.

(C) There exists at least one noncoplanar set of four points in space.
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To visualize the meaning of these axioms you should feel free to draw pictures—
this is, after all, geometry. In Chapter 21 we will exhibit a model in which all 13
axioms in this book are true. Thus, an incidence space and incidence planes actually
exist, and incidence geometry is not vacuous.

What makes incidence geometry a new and interesting object is the fact that we
must now get along without many of the familiar ideas of Euclid. For example,
there is no concept of distance, so we must remember always to have the mental
reservation that, even though two points in our picture seem to be farther apart than
two other points, that has no meaning in the present context. Line segments do
not have length either. In this strange world, we cannot tell whether two lines are
perpendicular, whether two planes are perpendicular, whether a line is perpendicular
to a plane, or even whether or not a point on a line is between two other points on
the line. It may seem that there is very little we can do under such heavy restrictions,
but we will find and prove a number of theorems.

Before we start, we have some comments about the axioms. Axiom I.1 really
says two things: (1) if we have two points, there is a line containing both of them
(existence), and (2) no other line contains these two points (uniqueness). Similarly,
Axiom .2 postulates both the existence and uniqueness of such a plane.

You might wonder why Axiom 1.4 doesn’t say: “If two planes intersect, their
intersection is a line.” To tell the truth, initially we had it that way. Later we saw,
in light of Axiom I.1, it was enough to assume only the intersection contains two
points. One of the properties of a good set of axioms is leanness, so we removed the

unnecessary assumption, and will prove it as Theorem 1.4.

1.9 A finite model for incidence geometry

Before we state any theorems about incidence geometry, it might be appropriate to
give an example of a geometry which satisfies these axioms. It will help show just
how seriously we take every word in the above definitions and axioms. According
to Axiom 1.0, three essential ingredients of a geometry are space, lines, and planes.
It says space is a set of points. In this example, which is called a model, space is a
set of eight points. Lacking originality, we will call them A, B, C,D, E, F, G, and H.
Hence U ={A,B,C,D,E,F,G,H}.
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Now we will list which subsets of U are lines:

{A,B} {A,C} {A,D} {AE} {AF} {A G} {AH}
{B,C} {B,D} {B,E} {B,F} {B,G} {B,H}
{C,D} {C,E} {C,F} {C,G} {C,H}

{D,E} {D,F} {D,G} {D,H}

{E,F} {E,G} {E,H}

{F,G} {F,H} and

{G,H}.

That is to say, every line contains exactly two points and every set containing
exactly two points is a line in this geometry. Now we must specify which subsets of

U are planes. They are:

{A,B,C,D} {A,B,E,F} {A,B,G,H} {A,C,E,G}
{A,C,F,H {A,D,E,H} {E,F,G,H} {C,D,G,H}
{C,D,E,F} {B,D,F,H} {B,D.,E,G} {B,C,F,G}
{A,D,F,G} and {B,C,E,H}.

The sets which are planes do not lend themselves to as succinct a description
as do those which are lines. However, the diagram in Figure 1.1 is a device for
remembering which sets are lines and which sets are planes in this model.

If you think of this cube as a solid in Euclidean space—in other words, a cube
like the ones you studied in high school geometry—then a set of points is a line in
this new geometry iff the points lie on a line in Euclidean geometry. The planes you
expect from Euclidean geometry are the first 12 listed. However, Axiom 1.2 requires
the last two which are otherwise unexpected.

If you don’t find this memory device helpful or useful, forget it; nothing we say
here depends on it. In fact, it has some inherent dangers. For example, you must
avoid thinking there is anything on the line {A, B} other than the two points A and B.
The line segments joining A and B and other pairs of points in the picture are parts of
the memory device, but are not part of our geometry. Finally, we must avoid thinking
there are any other points on the plane {A, B, C, D} other than the points A, B, C,
and D, or that there is any concept here of congruence or perpendicularity—which
might be inferred if one takes the display of a cube too seriously.

It is an illuminating exercise to verify that the incidence axioms are satisfied by

this geometry. A quick check on Axiom I.1 might be to choose several pairs of
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Fig. 1.1 Illustrating an 8 G "
point model.

points, such as B and F, for example, and note that there is a line containing these
two points and only one such line. A check for Axiom 1.2 would be to choose sets
of three points (which are noncollinear because no line contains three points) and
verify that there is only one plane containing them. For instance, the only plane
containing B, D, and H is {B, D, F,H}.

Checking all such possibilities is a tedious process that might best be left as an
exercise; hopefully, we may find the memory device helpful in carrying it out. For
example, if we choose the two points A and B, then there are three planes which
contain these two points: {A, B, C, D}, {A, B, E, F}, and {A, B, G, H}. Of course, the
line containing A and B, {A, B}, is a subset of each of these as required by Axiom 1.3.
To address Axiom I.4, we look for two planes with a nonempty intersection;
{A,C,F,H} and {B,D, F, H} will do. Their intersection, {F, H}, contains at least
two points as required by Axiom [.4. For Axiom L5, it is not hard to check that
every line has at least two different points and that each plane has as least three
points which do not belong to the same line. Also, it is possible to find four points,
A, B, C, and F, for example, which are not in the same plane.

As we state and prove some theorems in incidence geometry, we may want to
look back at this model from time to time. It will often be an illuminating experience,

but sometimes we will find it disappointing because the model is so simple.

1.10 Theorems for incidence geometry

Remark 1.1 (Easy consequences of the axioms).

(A) Axiom L.5(C) says that space contains at least four points, therefore points
exist, and space is nonempty. Axiom I.0 says that lines and planes exist and
are subsets of space; Axiom [.5(A) and (B) says that each line contains at least
two distinct points, and each plane contains at least three noncollinear points,

so lines and planes are nonempty.



28 1 Preliminaries and Incidence Geometry (I)

(B) Given any distinct points A and B there exists a point C such that A, B, and C
are noncollinear. To see this, let £ be the line through A and B guaranteed by
Axiom I.1; if there were no point off £ then all points of space would belong
to £, and every set of three points would be collinear. By Axiom 1.0 planes
exist, and by Axiom 1.5(B) each one contains a set of three noncollinear points,
a contradiction.

(C) There is a plane through any two points A and B of space. For by part (B) above
there exists a point C not on the line £ containing A and B. By Axiom 1.2 there
exists a plane Q containing A, B and C.

(D) (Criterion for noncollinear sets) If Axiom I.1 holds, to show that a set £ is
noncollinear it is sufficient to show that there is a line £ containing two points
of £ which does not contain all the points of £. For if £ were collinear, there
would be a line M containing £; by Axiom 1.1, M = L, so that £ would
contain all of £, a contradiction.

(E) (Criterion for noncoplanar sets) If Axiom 1.2 holds, then to show that a set £
is noncoplanar, it is sufficient to show that there is a plane P containing three
noncollinear points A, B, and C of £ which does not contain all the points
of £. For if £ were coplanar, there would be a plane Q containing £, and by

Axiom 1.2 @ = P, so that P would contain all of £, a contradiction.

Several of the exercises at the end of this chapter are similar to the statements

just above and are about as easy to prove.

Definition L.2. (A) Let P and Q be distinct points. The line whose existence is
asserted in Axiom I.1 is denoted by }(’_Q>; this symbol is read “line PQ.”

(B) Let P, Q, and R be noncollinear points. The plane whose existence is asserted
in Axiom 1.2 is denoted by @?

Theorem 1.3. If £ and F are distinct planes both of which contain line L, then
ENF =L

Proof. Because both £ and F contain £, £ € £ N F. Suppose there were some
point A belonging to £ N F but not to £. By Axiom L.5, there exist points B and
C on L. Then A, B, and C would all lie on &, and they would all lie on F. Hence
by Axiom 1.2 £ would equal 1(457)‘ and F would equal 1(457)‘, from which it would
follow that £ would equal F. But this contradicts the fact that £ and F are distinct.
This shows that there is no such point A, and we must conclude that L = ENF. O
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Theorem L.4. [fthe intersection of two distinct planes is nonempty, then it is a line.

Proof. Let the two distinct planes be £ and F. By Axiom 1.4, there are two points,
A and B, such that {A, B} € £ N F. By Axiom 1.1, there is one and only one line,
fL\_B), containing A and B. By Axiom 1.3, 1(4_B> C & and 1(4_B> C F, so by Theorem 1.3,
£NF=AB. O

Theorem L.5. Given a plane £ and a point A belonging to £, there exists a line L
suchthat L C Eand A ¢ L.

Proof. By Axiom 1.5 there exist three noncollinear points P, Q, and R belonging
to £. By Axiom I.1 there are three lines, I(’_)Q, (Q_I>€, and }(’_)R; by Axiom 1.3, these lines
are all contained in &; and since P, Q, and R are noncollinear, the lines are distinct.
The proof now splits into two cases.

(Case 1: The given point A happens to be one of the three points P, Q, or R,
whose existence is assured by Axiom L.5.) In this case, the line determined by the
other two points can be taken to be £. This line does not contain A because if it did,
P, O, and R would be collinear.

(Case 2: The given point A does not coincide with any of the points P, Q, or R.)
Then A cannot lie on more than one of the lines fD_Q), Q<_I)€, and P<_I)? To see this,
suppose for example that A belonged to both f<’_Q) and Q(_I)Q Then these two lines
would have points A and Q in common, and hence by Axiom 1.1 they would be the
same line, contradicting the fact that they are distinct. Therefore £ can be taken to

be either of the two lines not containing A. O

Theorem 1.6 (Two intersecting lines determine a plane). Given lines £ and M
such that L # M and LN M # @, there exists one and only one plane £ such that
LCEand M CE.

Proof. There are two things to be proved: (1) there is such a plane £ (existence),
and (2) there is not more than one such plane (uniqueness).

We first prove that there is such a plane €. Since £ # M and L N M # @, by
Exercise I.1 below, £ N M is a singleton {A}. By Axiom L.5 there exists a point B on
L and distinct from A, and there exists a point C on M distinct from A. Since A, B,
and C are noncollinear (if they were collinear, £ and M would coincide, contrary
to our assumption), by Axiom L.2 there is a plane £ such that {A,B,C} C £. By
AxiomI3, L C Eand M C €.
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To prove that there is not more than one such plane, suppose on the contrary that
there were a second plane £ containing both £ and M. Then all of the points A, B,
and C defined above would belong to £’. Hence by Axiom 1.2, £ = &’. |

Theorem L.7. Let & be a plane. There exists a point P such that P ¢ £.

Proof. By Axiom L5 there exist points A, B, C, and D which are noncoplanar. If
{A, B, C,D} were a subset of £, then A, B, C, and D would be coplanar. Hence at
least one member of {A, B, C, D} does not belong to £, proving the theorem. O

Theorem I.8. Let S and T be distinct planes whose intersection is the line L, and
let P be a member of L, then there exist lines M and N such that M C S, N C T,
MALN #L and MNN = {P}. If M and N are any two lines satisfying
these conditions, then there is exactly one plane £ such that MUN C E. Moreover;
ENL={P}

Proof. Since S and T are distinct, there is at least one point S and at least one point
Tsuchthat S e S, T€7,S¢ T,and T ¢ S. By Axiom 1.1, there is one and only
one line M containing P and S, and one and only one line N containing P and 7. By
Axiom 1.3, M € Sand N C T. Since S # T, M # N. Therefore by Exercise 1.1
below, M NN contains one point. By the way M and A/ were defined, P € M and
P e N,so MNN = {P}. Moreover, since S ¢ T, and S € M, M # L; similarly,
N # L.

Now let M and N be any two lines satisfying the conditions in the first part of
the theorem. These lines are distinct because if M were equal to N, then M NN
would be equal to M, for example, and hence by Axiom 1.5 would contain at least
two points, which contradicts the fact that M NN = {P}.

By Theorem 1.6, there is one and only one plane £ such that M U N C £. Now
if § and £ were equal then N would be a subset of S as well as a subset of 7.
Therefore by Theorem 1.3, SNT would be V. But SN T is £ by definition, and we
have defined NV so that A # L. This contradiction shows that S and £ are distinct
planes. Therefore by Theorem 1.3, S N € = M because M € Sand M C £. By a
similar argument, 7 NE = N.Hence LNE = (SNT)NE = (SNEYN(TNE) =
MNN ={P}. O
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Theorem L.9. Let Py, P,, and P5 be distinct planes such that each of the sets
P1r NP, Pr N Ps, Py NP3 is nonempty. Then there exist lines L1, Lo, and L3
such that P, NPy = Ly, Py NP3 = Ly, and Py NPy = L5. Furthermore, one and

only one of the following statements is true:

) LiNL,=LiNLy=LNLy =0,
(2) L] = Lz = £3, and
(3) Ly N Ly N L3 is a singleton.

Fig. 1.2 For Theorem 1.9, showing alternative (1) at left, alternative (2) in the middle, and
alternative (3) on the right.

Proof. For a visualization, refer to Figure 1.2. By Theorem 1.4, P, NP5 is aline L,
P1N"Psisaline £, and P; NP5 is a line L3. By set theory,

73107%0733=(”P107)2)0(7?207?3)0(7?10733)=£10£20£3.

Moreover, if X is any member of £; N L,, then X € (P, N P;3) N (Py NP3)) =
PrNP,NP; C L3 Hence £1 N Ly C Ls.

Now there are two mutually exclusive possibilities: either

A) LiNLy=LNLy=LyN Ly =@ (sothat (1) is true), or
B) (LiNL)U(LNL) UL NLs) #0.

In the latter case, at least one of the intersections is nonempty, and we can choose
the notation so that £; N £, # @. Then either this set is a singleton or it is not. If it
is a singleton, then from what we have said above, £, N L, N L3 € L1 N Ly C L3,
and hence £; N £, N L3 is also a singleton, and (3) is true. If £, N £, is not a
singleton, then by Exercise 1.2, £; = L5, and since £, N £, € L3, by Exercise 1.3
L1 = L, = L3, and (2) is true. |
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Girard Desargues (1591-1661) lived in France and is especially known for his

work with projective geometry.

Theorem 1.10 (Proposition of Desargues, nonplanar version). Let A, B, C, A/,
B’, and C' be distinct points of the space U such that A, B, C are noncollinear, A’,
) s —— > <~ .
B, and C’ are noncollinear, ABC # A'B'C’, AB and A'B’ are concurrent at C| (i.e.,
<> <>
these two lines are distinct and have only the point Cy in common), AC and A'C' are

<~ <~
concurrent at By, and BC and B'C’ are concurrent at A|. Then:

(A) Ay, By, and C are distinct and collinear. Moreover, none of the points A, B, C,
A', B/, or C' is on the line containing A1, By, and C;.
«— < <« <« «—> < “— <> <
(B) Either AA’ N BB = AA’ N CC' = BB NCC =@ orAA’ NBB' N CC isa

singleton.

. . <> <> <> <—>
Proof. See Figure 1.3. (A) By Axiom 1.3, AB, AC, and BC are subsets of ABC;
> <—> <> <> .
and A’B’, A’C’, and B'C’ are subsets of A’B'C’. Hence {A;, By, C;} is a subset of
ABC N A’B'C’ (this follows from the properties of subsets and of the operation of
<~—>
intersection which one learns in elementary set theory). By Theorem 1.4, ABC N

<> <—>

A’B'C’is aline L. Thus A, By, and C; are collinear, and members of both ABC and
<>
A'B'C.

Claim 1: None of the points A, B, C, A’, B/, or C’ belong to £. We show first that
A ¢ L; similar arguments show the other assertions.
— «— ) s
IfA e £ C ABC,since C; € A’/B'C’, by Axiom 1.3 B € AC; C A'B'C'.
—
Arguing similarly with A and B, we get that C € A’B’'C’. Therefore the plane

Fig. 1.3 For Theorem I.10.

Ay
u B,
A X/~
=
¢ S
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<>
A’B'C’ contains the three noncollinear points A, B, and C, so by Axiom 1.2,
A'B'C’ = ABC, contradicting our hypothesis that ABC # A’B'C’. Therefore
AdL.

Claim 2: Ay, By, and C; are distinct. If A; = By, then;r)B = ;FC)' = ﬁ‘ = m
so that A, B, and C are collinear. This contradicts our hypothesis that they are
noncollinear. Similar arguments show that A; # C; and B; # C;.

(B) We continue to use the notation of part (A) and we use its results.
Claim 3: The lines AA’, BB, and CC’ are pairwise distinct. If AA" = BB, then A,
<>
B, A’, and B’ would be collinear, and hence AB = A'B , contrary to the (given)
<> <~ e T
fact that AB and A’B’ are concurrent (only) at C;. Hence AA’ # BB’. By similar
<> <> <> <—>
arguments, AA’ # CC’, and BB’ # CC', proving the claim.
<>
By Theorem 1.6 there exist unique planes S, 7, and U such that ;@) UA'B’ C
< < <«
S, ACUA'C' C T,and BCUB'C' C U.

Claim4: S, 7, and U are distinct. If S = T, then A, B, and C would lie in the
same plane as A’, B’, and C’, which would contradict the hypothesis that ABC #
<>
A’B'C’. Similar arguments show that S # U and T # U.

<> <> <—>
Claim5: SNT =AA,SNU =BB,and T NU = CC'. By Theorem 1.4 SN T
<>
is a line, and this line contains both A and A’. Therefore S N7 C AA’ and by
<>
Exercise .3 SNT = AA’. The other two assertions follow by similar arguments.
. <> <> <> <> <~ <>

Claim6: AB # L,BC # L,AC # L, A’'B' # L,A'C' # L, and B'C' # L. These
assertions follow immediately from the observation (see Claim 1) that none of
the points A, B, C, A’, B/, or C’ belong to L.

Claim7: SNL={C}, TNL={B},andU N L = {A;}. Again, we argue only
the first of these assertions, as the others follow similarly. Since S is the unique

DA
plane containing ABUA B’, by the last assertion of Theorem 1.8, SN £ = {C}.
<> <>
We can now complete the proof. By Claim 5, SNT = AA’, SNU = BB, and
<«
T NU = CC'. Thus we may apply Theorem 1.9. Conclusion (2) of this theorem
is ruled out by Claim 3, so that either
<> <—> <> <—> <—> <—>
AA'NBB =AA'NCC =BB'NCC' =0
or
P
AA’ N BB’ N CC' is a singleton. O
For a discussion of the significance of Desargues’ Theorem, see David Hilbert,
The Foundations of Geometry, Chapter V [10].
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1.11 Exercises for incidence geometry

The following set of exercises consists of further theorems which can be proved
from the incidence axioms alone. We strongly suggest that you review the item
“Exercises” in Section 1.7 above, which explains the role of exercises in this book,
which is different from their role in most textbooks. Answers to starred (*) exercises

may be accessed from the home page for this book at www.springer.com.

Exercise I.1*. If £ and M are distinct lines and if LN M # @, then LN M is a

singleton.

Exercise 1.2*. (A) If A and B are distinct points, and if C and D are distinct points
<> <> <>
on AB, then CD = AB.
(B) IfA, B, and C are noncollinear points, and if D, E, and F are noncollinear points
< «—
on ABC, then DEF = ABC.

Exercise 1.3*. If £ and M are lines and £ € M, then £ = M.

Exercise I.4*. Let A and B be two distinct points, and let D, E, and F be three
noncollinear points. If ;ﬁi’) contains only one of the points D, E, and F, then each of
the lines DE, EF, and DF intersects AB in at most one point.

Exercise L.5*. If £ is a plane, £ is a line such that ENL # @, and L is not contained
in £, then £ N L is a singleton.

Exercise 1.6. Let D and £ be distinct planes such that D N £ # @, so that (by
Theorem 1.4) D N £ is a line £; let P be a point on D but not on £; and let Q be a

point on £ but not on L. Then f(’_)Q and £ are not coplanar.

Exercise I.7*. Given a line £ and a point A not on L, there exists one and only one
plane £ such that A € £and £ C €.

Exercise 1.8*. Let A, B, C, and D be noncoplanar points. Then each of the triples
{A,B,C},{A,B,D}, {A, C, D}, and {B, C, D} is noncollinear.

Exercise 1.9. There exist four distinct planes such that no point is common to all of

them.

Exercise 1.10. Every plane £ contains at least three lines £, M, and N such that
LOMNON =40.

Exercise I.11. Every plane contains (at least) three distinct lines.

Exercise I.12. Space contains (at least) six distinct lines.
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Exercise 1.13*. If £ is a line contained in a plane &, then there exists a point A
belonging to £ but not belonging to L.

Exercise I.14. If P is a point in a plane &, then there is a line £ such that P € L
and L C &.

Exercise I.15. If a plane £ has (exactly) three points, then each line contained in £

has (exactly) two points.

Exercise 1.16. If a plane £ has exactly four points, and if all of the lines contained
in £ have the same number of points, then each line contained in £ has (exactly) two

points.
Exercise I.17. If each line in space has at least three points, then:

(1) Each point of a plane is a member of at least three lines of the plane;
(2) Each plane has at least seven points;

(3) Each plane contains at least seven lines.

Exercise I.18. In this exercise we will use the symbolism “P || Q” to indicate that
two planes P and Q do not intersect.

Consider what can happen if the restrictions of P; N P,, Py NP3, and P, N Ps
being nonempty are removed in Theorem 1.9. Sketch at least four possibilities (P ||
P, || P3 and Py, P,, and Pz are mutually disjoint, P; = P, || P3, P1 = P, = Ps,
PrNP, =0,but Py NP3 = L,and P, NP3 = L) and in each case determine
what (if anything) similar to Theorem 1.9 can be proved within incidence geometry.

Exercise I.19. Count the number of lines in the 8-point model. Compare this with
T, = w, triangular numbers, for n = 7. Compare it also with ,C, = r,(%r),, the
number of combinations of 7 items taken r at a time, where n = 8 and r = 2.

Exercise 1.20. Count the number of planes in the 8-point model. Compare this with
#Cr for n = 8 and r = 3. Note the reduction by a factor of four due to the fact that

each plane has four points. Can you form a similar argument with r = 4?

Exercise I.21. Consider a 4-point model with the four points configured like the
vertices of a tetrahedron. Label these points A, B, C, and D. Specify six lines
and four planes and verify that this model satisfies the axioms and theorem of
incidence geometry. Compare this with Exercises 1.7, .10, 1.12, and I.13. How does
Theorem 1.9 apply in this geometry?
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Affine Geometry: Incidence

with Parallelism (IP)

Acronym: /P
Dependencies: Chapter 1
New Axioms: Axiom PS (strong parallel)

New Terms Defined: parallel, pencil, focal point, affine

Abstract: This brief chapter introduces the notion of parallelism, discusses the two
forms of the parallel axiom, defines affine geometry, and proves five elementary

theorems relating to intersecting planes and parallel lines.

2.1 Parallelism and parallel axioms

The early part of the main development of this book (Chapters 4 through 10) does
not invoke a parallel axiom, but does need the terminology of parallelism. For this
reason (and to further our understanding of the history of geometry), we take this
opportunity to digress for two chapters to discuss the parallel axiom and prove what
can be proved at this stage.

There are two forms of the parallel axiom; one of them claims more than the
other. We state both forms here, and whenever we use one, we will specify which

one. Before we give these axioms, we need to define parallelism.

Definition IP.0. (A) Lines £ and M are parallel (notation: £ || M) iff there is a
plane that contains them both and £ N M = @.
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(B) A line £ and a plane P are parallel (notation: £ || P)iff LN P = 0.

(C) Two planes P and P’ are parallel (notation: P || P’) iff P NP’ = @.

(D) A set E of two or more distinct lines on a plane P is a pencil iff either (1) the
members of E are concurrent at some point O, or (2) every member of E is

parallel to every other member of E. In case (1), the point O is the focal point
of E.

Notice that, by (A) alone, if two lines £ and M are nonparallel (symbolically,
L |J M) and lie in the same plane, they are intersecting (this is Exercise 1.1), and
by (C), two planes are intersecting iff they are nonparallel. But beware that two
nonparallel lines do not necessarily intersect—there may not be a plane that contains
them both.

Axiom PS (Strong Form of the Parallel Axiom). Given a line £ and a point P
not belonging to £, there exists exactly one line M such that P € M and L | M.
(If such a line exists, it is denoted par(P, £).)

Axiom PW (Weak Form of the Parallel Axiom). Given a line £ and a point P
not belonging to £, there exists at most one line M such that P € M and L || M.

Note that Axiom PW does not guarantee that such a line exists.

Axioms PS and PW have an interesting history. Euclid had an axiom in his
Elements which is equivalent to PW, but it appears he wasn’t sure it was as fully
self-evident as his other “self-evident truths,” since he postponed using it in his
development as long as he could. His contemporaries and others who followed
apparently felt the same way and tried to dispense with it as an axiom entirely
by showing it to be a consequence of the other axioms. For the next 2,000 years,
a favorite pastime was to try to prove it from the other axioms. It can be said that
almost every great mathematician to live during those 20 centuries tried his hand
at this proof. All these “proofs” turned out to be fallacious. Our Axiom PW was
formulated in the fifth century by Proclus Lycaeus (412—485), but its equivalence
to Euclid’s original parallel postulate was most widely publicized by the Scotsman
John Playfair (1748-1819) in the eighteenth century, so it is generally known as
“Playfair’s Axiom.”

Saccheri (1667-1733) thought of dealing with the mystery by considering the
collection of all the other axioms and the negation of Axiom PW, hoping to get
a contradiction, which would prove PW to be a consequence of the other axioms.

This new collection of axioms led to some really repugnant conclusions, but not to
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a contradiction. It isn’t completely clear exactly how or when the truth of the matter
dawned on the mathematical world, but it apparently happened during the first
third of the nineteenth century, and it is quite clear that Gauss (1777-1855), Bolyai
(1802-1860), and Lobachevsky (1792-1856) were all involved. For a very readable
account of the whole matter, see The History of Mathematics: An Introduction by
David M. Burton, 7th ed, McGraw Hill (2010) [4].

These three mathematicians (Gauss, Bolyai, and Lobachevsky) were apparently
the first to recognize explicitly the idea upon which this development of geometry is
founded: everyone is free to choose whatever axiom system pleases him/her, as long
as the axioms in it are consistent (i.e., don’t contradict each other). You have already
seen an example of this in incidence geometry. The geometry we get by choosing a
particular system may seem weird to us, but that is not sufficient logical grounds for

rejecting it.

Recall again the language of Axiom PS: given a line £ and point P ¢ L, there
is a line through P parallel to £ and this is the only such line. A negation of
Axiom PS, then, would say either 1) there is no such line through P parallel to
L or 2) there is more than one such line. Either statement, separately, is a denial
of Axiom PS. Adjoining denial 1) to the rest of Euclid’s axioms yields elliptic
geometry; adjoining denial 2) yields hyperbolic (Lobachevskian) geometry; both
are non-Euclidean geometries.

This classification resulted from the way geometry developed in the nineteenth
century. In it, Euclidean geometry is parabolic. Historically, elliptic geometry
was also known as Riemannian, but modern usage tends to identify Riemannian
geometry as a branch of differential geometry.

In Chapter 8, neutral geometry, we will prove that parallel lines exist, so that
neutral geometry as we develop it there will be incompatible with elliptic geometry.

In hyperbolic geometry, there can be two coplanar intersecting lines M and A/
and a third line £ lying in the same plane which intersects neither M nor A/, so
that the intuitively appealing claim that any line must intersect one of two lines that
intersect each other is false.

In this chapter we adopt Axiom PS rather than Axiom PW to explore a geometry

involving only incidence and parallelism.
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Definition IP.1. A plane P is an affine plane iff it is a subset of space where the
incidence axioms' and Axiom PS hold. Affine geometry is the term used to describe

the geometry of such a plane.

2.2 Theorems of affine geometry

Theorems IP.2 and IP.3 do not use either Axiom PS or Axiom PW, and could have
been proved in incidence geometry. They do, however, use the terminology and

notation just introduced in Definition IP.0.

Theorem IP.2. Let £ be a plane, and let M and L be parallel lines; if L C £ and
M EZE, then M | E.

Proof. By the definition of parallel lines (Definition IP.0(A)), there exists a plane F
containing £ and M. Since £L C &£, L C F, and £ # F (because M & &), we have
L = &N F, by Theorem 1.3 and Exercise 1.3.

Now suppose there is a point P such that P € (M N E). Since P € M C F and
Pe&,Pe(ENF)=L,s0oP e (MnNL). This contradicts the fact that M | L.
This contradiction shows that there is no such point P, so M | £. 0

Theorem IP.3. Let L be a line in a plane F and suppose L is parallel to a plane €
that intersects F. Then € N F is a line M which is parallel to L.

Fig. 2.1 For Theorem IP.3.
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Proof. For a visualization, see Figure 2.1. That £ N F is a line M follows
immediately from Theorem 1.4. If £ and M were not parallel, then, since they both

INot all the incidence axioms apply to what goes on within a single plane; the ones that don’t are
Axiom 1.2, Axiom 1.4, and Axiom 1.5(C); if later on we say that the incidence axioms hold for a
plane we will mean that the relevant axioms hold.
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are contained in JF, they would intersect in some point A, say. This A would belong
to both £ and M and since M = £ N F, this would contradict the fact that £ || £.
Hence L || M. |

Note that the proof of the next theorem depends on a parallel axiom.

Theorem IP4. If F is a plane containing two lines L and M which intersect at a
point P, and if € is a plane which is parallel to both L and M, then & || F.

Proof. Suppose £ and F were intersecting. Then by Theorem 1.4 their intersection
would be a line N. If A were parallel to both £ and M, we would have two
lines through P which are both parallel to N, which contradicts Axiom PS (and
Axiom PW). Hence N is not parallel to both £ and M, and therefore must intersect
at least one of them, since all three lines lie in F. Suppose the notation is chosen so
that £ intersects N. By Exercise 1.1 their intersection is some point Q. Then Q € £
and Q € N C &, so that £L N € # @. This contradicts the hypothesis of the theorem
that £ || £. Hence our assumption that £ and F intersect is false, which means
E|F. ]

Theorem IP.5. Given a plane £ and a point P not on &, there exists exactly one
plane F such that P € F and £ || F.

Proof. There are two things to prove: (I, existence) that there is such a plane F, and

(I, uniqueness) that there is not more than one such plane.

(I: existence) By Axiom [.5(B) there exist noncollinear points Q, R, and S belonging
to £. By Axiom 1.1 there exist lines £ = <Q_)R and M = (Q_.)S, and by Exercise I.1
LN M = {Q}. By Axiom 1.3, £ and M are contained in £. By Exercise 1.7
there exist planes G and H such that P € G, L € G, P € H,and M C H. By
Theorem 1.3, G N E = Land H N E = M. By Axiom PS, there exists exactly
one line 7 such that P € 7 and J || £, and there exists exactly one line K such
that P € K and K || M. Now since J || £, J and £ must lie in the same plane
(Definition IP.0), and by Exercise 1.7, there is only one such plane, we have that
J € G. Similarly K € H.

Now J and K are distinct lines because if they were the same line, then £ and
M would be two different lines through Q, both parallel to this line, contradicting
Axiom PS. Moreover, P € J N K. Therefore by Theorem 1.6 there is a plane F
such that 7 € F and £ C F; by Theorem IP.2 £ || F and M || F, and by
Theorem IP4, F | £.
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(II: uniqueness) We now show that there is not more than one plane satisfying the
conditions in the theorem. To this end, suppose there were a plane F’ such that
PeF,E| F,and F' # F. Then F N F' # @, so by Theorem 1.4 F N F' is
a line. Call it M. By Exercise 1.13 there is a point Q on F such that Q ¢ M. By
Axiom 1.5(B) there exists a point R on £. By Axiom 1.2 there exists exactly one
plane G containing P, Q, and R. By Theorem 1.4, G N E, G N F,and G N F' are
lines we will call NV, 7, and J’, respectively. By Exercise IP.7 below, J || N
and J' || V. Because of the way Q was chosen, J # J'. Since both 7 and 7’
contain P, this is a contradiction of Axiom PS, so our assumption that the plane
F’ exists is false, and the only plane through P parallel to £ is F. O

Theorem IP.6 (Transitivity of Parallelism). If £, M, and N are distinct lines
such that L || M and M || N, then L | N.

Proof. If £, M, and N all lie in a plane, then this theorem is Exercise IP.2.

Suppose then that no plane contains all three lines. By Definition IP.0(A), there
exist planes F and G such that L € F, M € F, M € G, and N C G. By
hypothesis £ 7# N so there is a point P on A/ which does not belong to £; then by
Exercise 1.7 there is a plane H such that £ C H and P € H.

We now show that M is not contained in H. We know by hypothesis that M C G,
so if M C H, it follows that M C (G N H) which is a line by Theorem 1.4, and by
Exercise 1.3, G N ‘H = M. Hence P would belong to M, which would contradict
the fact that M || V. So M is not contained in H, and we can apply Theorem IP.2
to get M || H.

This permits us to apply Theorem IP.3 to get G NH is a line N and that N/ || M.
Since P € H by the way H was constructed, and P € N € G we have that
PeGNH =N By Axiom PS there can be only one line through P which is
parallel to M, so N = N’,and N C H.

Now we have that £ € H and ' € H. So by Definition IP.0 of parallel lines, if £
and N were not parallel, they would intersect in some point A. But then there would
be two different lines through A, both parallel to M, which contradicts Axiom PS.
So £ and N must be parallel. O
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2.3 Exercises for affine geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise IP.1*. If £ and M are parallel lines, then there is exactly one plane

containing both of them.
Exercise IP.2*. Let £, M, and N be distinct lines contained in a single plane.

(A) IfL || Mand M || N, then L || NV.
(B) If £ intersects M, then N must intersect £ or M, possibly both.

Exercise IP.3*. Let |E be a pencil of lines on the plane P. If £ and M are distinct
members of [E which intersect at the point O, then the members of E are concurrent
at O.

Exercise IP4*. Let £, M, and N be distinct lines in a plane £ such that £ || M.
Thenif LON #£ 0, M NN £ 0.

Exercise IP.5*. Let L, £,, M, and M, be lines on the plane P such that £; and
L, intersect at a point, £ | My, and £, | M, then M; and M, intersect at a
point.

Exercise IP.6*. Let £ and F be planes such that £ || F, and let £ be a line in £.
Then L || F.

Exercise IP.7*. Let £, F, and G be planes such that £ | F, £ NG # @, and
FNG#B. ThenENGisaline L, FNGisaline M, and L || M. See Figure 2.2.

Fig. 2.2 For Exercise IP.7.
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Exercise IP.8. If £, F, and G are distinct planes such that £ || F and F || G, then
elg.

Exercise IP.9. If £, F, and G are distinct planes such that £ || Fand E NG # 0,
then F N G # 0.

Exercise IP.10. If £ and M are noncoplanar lines, then there exist planes £ and F
suchthat £ || Fand £L C £, and M C F.

Exercise IP.11. Let £ and F be parallel planes, and let £ be a line which is parallel
to £ and which is not contained in F. Then £L N F = @.

Exercise IP.12. Let £ and F be parallel planes, and let £ be a line which is not
parallel to £ and which is not contained in £. Then £ N F # @.

Exercise IP.13. Given a plane £ and a line £ parallel to &, there exists a plane F

containing £ and parallel to £.

Exercise IP.14. Letn be a natural number greater than 1. If there exists a line which

has exactly n points, then:

(1) Every line has exactly n points.
(2) For any point P and any plane £ containing P, there are exactly n + 1 lines
through P and contained in £.
(3) For any line £ and any plane £ containing £, there exist exactly n — 1 lines
Ly,...,L,—1 suchthat £; || £ foreach kin [1;n — 1].
(4) Each plane contains n(n + 1) lines.
(5) Each plane contains n> points.
(6) Given any plane &, there exists exactly n — 1 planes &, ..., &,—; such that
& || € foreach kin [1;n — 1].
(7) There are n® points in space.
(8) There are n*>(n> + n + 1) lines in space.
(9) There are n*> + n + 1 lines through each point.
(10) There are n + 1 planes containing a given line.
(11) There are n*> + n + 1 planes through each point.
(12) There are n(n?> + n + 1) planes in space.



Chapter 3
Collineations of an Affine Plane (CAP)

Acronym: CAP

Dependencies: Chapters 1 and 2

New Axioms: none

New Terms Defined: collineation, fixed point, fixed line, translation, parallel

relation, dilation, axial affinity, stretch, shear

Abstract: Collineations are bijections of a plane onto itself which map lines to lines;
this chapter explores the elementary properties of collineations on an incidence
plane on which the parallel axiom holds. Several types of collineations are studied,

among them translations, dilations, and axial affinities.

This chapter consists of two parts which, in the dependency chart in the Preface, are
called “Defs” and “Thms”; these parts are not labeled as such in this chapter, but are
mixed together.

The part designated “Defs” includes Theorems CAP.1 through CAP.4, Def-
initions CAP.O (collineation), CAP.6 (translation), CAP.10 (parallel relation),
CAP.17 (dilation), and CAP.25 (axial affinity), together with Remark CAP.30, which
anticipates the later definition of two subclasses of axial affinity, the stretch and the
shear. These definitions and theorems are all valid on an incidence plane (that is,
one on which the incidence axioms hold),' and thus depend only on Chapter 1.

! Again we remind the reader that this means the incidence axioms that apply to planes.
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The part designated “Thms” includes all other theorems and remarks in the
chapter. The proofs of these theorems need a parallel axiom; thus, they are valid
on an affine plane, and depend on Chapter 2. This need for a parallel axiom is why
we included “affine plane” as part of the name of the chapter.

Later, Chapter 4 defines betweenness, and Chapter 7 introduces a type of
collineation that preserves betweenness, called a belineation. The various types
of mappings listed above, as well as isometries, are eventually shown to be
belineations. These developments are briefly outlined in the Preface; Chapter 19
Section 19.2 contains a summary of the properties of these mappings and a chart
comparing them.

We do not show the existence of collineations in this chapter. This will be done
in later chapters, perhaps most importantly in Chapter 8 (neutral geometry), where

the existence of isometries follows from Axiom REF.

In this chapter we are indebted to Fundamentals of Mathematics, Volume II,
Behnke, et al, eds., published by MIT Press, Chapter 3, Affine and Projective Planes,
by R. Lingenberg and A. Bauer [2].

3.1 Collineations of an incidence plane

In order to fully appreciate the following definition it might be well to review the
terminology for images of sets mapped by functions, given briefly in Chapter 1,
Section 1.4.

We use lowercase Greek letters, especially «, 8, y, 6, €, p, 7, ¢, and ¥ for
collineations. We have already used E for a set of lines and will also use G and

M similarly.

Definition CAP.0. Let P be any plane containing points and lines, and let o be any
mapping of P into itself.

(A) The mapping « is a collineation of P iff

(i) « is a bijection of P onto itself and

(ii) for every line £ on P, (L) is a line on P.
(B) Qs a fixed point of « iff «(Q) = Q.
(C) Lis afixed line of « iff «(L£) = L.
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Remark CAP.0.1. (A) The identity map 1 is a collineation.
(B) A fixed line does not necessarily contain any fixed points, nor does a fixed point

necessarily belong to some fixed line.

Theorem CAP.1. Let P be a plane containing points and lines and let «, B, and y

be collineations of P.

(A) If A and B are distinct points on P, then a(1(4_B>) = m.
B) If L and M are lines on P, and if Q is a point on P such that L N M = {0},
then a(L) N a(M) = {a(Q)}.
(C) B o« is a collineation of P. (The set of collineations is closed under the
operation o.)
(C) yo(Boa) = (yop)oa (The operation o is associative.)
(D) The identity 1 is a collineation, and is an identity for the operation o.
(D*) a~!is a collineation of P. (For each collineation a, there exists a collineation

which is its inverse.)

Proof. (A) Since « is one-to-one, ®(A) and «(B) are distinct points. Since « is a
collineation, ot(/(l_B)) is a line. Since ®(A) and «(B) belong to a(;ﬁ)) and to
“—> . <> “—
a(A)a(B), by Axiom 1.1, ¢ (AB) = a(A)a(B).

(B) By elementary mapping theory, since « is a bijection,
a(L) Na(M) = a(L N M) = a({Q}) = {«(Q)}-

(C) By elementary mapping theory, 8 o « is a bijection of P. If L is a line on P,
then so is «(L) because « is a collineation. Then since § is a collineation,
B(x (L)) is a line on P. By Definition CAP.O0 8 o « is a collineation of P.
(C’) Immediate from associativity of mappings (see Chapter 1, Section 1.4).
(D) Proof is trivial.
(D’) Let £ be any line on P. By Axiom L.5, there are two distinct points, A and

I is a one-to-one

B say, on L. By the elementary theory of mappings, o~
mapping of P onto itself because « is, so a~!(A) # a~!(B). By part (A)
above, a(a™ ' (A)a™'(B)) = a(a”'(A)a(a~"(B)) = AB. On the other hand,
a(a_l(Z_B))) = Z_B) Thus a(e~'(A)a~!(B)) = a(ot_l(A(_B))), so that (since o
is one-to-one) 05_1(1(4_3)) = a (L) = a7 '(A)a"!(B). We have shown that if
L is any line on P then o~ !(£) is a line on P. By Definition CAP.0, @~ ! is a

collineation on P. O




48 3 Collineations of an Affine Plane (CAP)

Corollary CAP.2. The set of collineations of a plane P onto itself forms a group

under composition of mappings.

Proof. This Corollary is an immediate consequence of Theorem CAP.1 and the

definition of a group (see Chapter 1, Section 1.5). O

Theorem CAP.3. Let P be a plane containing points and lines, and let o be a
collineation on P. If L and M are lines on P such that L | M, then (L) || a(M).

Proof. Since L N M = @, then by elementary mapping theory, «(£) N (M) =
a(LN M) = a(@) = 0 so that «(L) and a (M) are disjoint, «(L) || «(M). Here
we have used Definition IP.0. O

Theorem CAP.A4. Let P be a plane containing points and lines, and let o be a

collineation on P.

(A) If A and B are fixed points of o, then 1(4_B) is a fixed line of «.
(B) If L and M are fixed lines of a which intersect at Q, then Q is a fixed point of a.

Proof. (A) By Definition CAP.O, ®(A) = A and «(B) = B. By Theorem CAP.1(A),
a(AB) = a(A)x(B) = AB. Hence by Definition CAP.0 AB is a fixed line of «.
(B) By Theorem CAP.1(B) and Exercise .1,
{0(Q)) =a(f) NaM) =LA M = {0}

which completes the proof. O

Again, we emphasize that up to this point, we have not used a parallel axiom; the

above development is valid in any space containing points, lines, and planes.

3.2 Collineations: mostly on translations

Theorem CAP.5. Let o be a collineation on the affine plane P. If L is a fixed line
of a, and if Q is a fixed point of o such that Q ¢ L, then there exists a unique fixed
line M of « containing Q such that M || L.

Proof. By Axiom PS, there exists a line M on P such that Q € M and M || L. By
Theorem CAP.3, a(M) || «(£L) = L. Since ¢ (Q) = Q, 0 € x(M). By Axiom PS,
there is only one line through Q parallel to £, so « (M) = M. By Definition CAP.0,
M is a fixed line of «. |
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Definition CAP.6. Let P be a plane, and let o be a collineation of P. « is a
translation of P iff « has no fixed point, and for every line £ on P either a(L) || £
ora(L) = L.If Lis aline, « is a translation, and «(£) = L, then « is said to be a

translation along L. That is to say, « is a translation along any of its fixed lines.

Remark CAP.7. (1) If «(£) = L, then L is a fixed line of . A translation which
has a fixed line is a translation along that line.
(2) The identity 7 is not a translation, since it has fixed points.

(3) Definition CAP.6 is valid even in the absence of a parallel axiom.
Theorem CAP.8. Let P be an affine plane, and let o be a translation of P. Then:

(A) If L is a fixed line of a, then for every point Q on L, L = Qu(Q).
B) If Q is any point on P, then Qa(Q) is a fixed line of a.
(C) The set of all fixed lines of a is Hy, = {Xa(X) | X € P}, every member of H,

is parallel to all other members.

Proof. (A) Let Q be any member of L. Since, by Definition CAP.6, « has no fixed

points, Q is not a fixed point of «, and therefore «(Q) # Q. Since L is a fixed
<>
line of o, ®(Q) € L. By Exercise [.2(A), L = Qu(Q).

(B) By Definition CAP6, a(Qu(Q)) = Qa(Q) or a(Qu(Q)) [ Qu(Q). By
Theorem CAP.1, a¢(Qu(Q)) = a(Q)a(x(Q)). Hence Qa(Q) and o (Qa(Q))
are not parallel because they have the point «(Q) in common. Therefore
a(Qa(Q)) = Qu(Q).

(C) Every fixed line for « is a member of H, by part (A), and every member of H,y

is a fixed line for « by part (B). Let A be any member of P, and let B be a point
<>
off of Ax(A), so that Aw(A) # Ba(B). If Aw(A) and Ba(B) were to intersect
at a point Q, say, then by Theorem CAP.4(B), Q would be a fixed point of «,
. “—s <>
contrary to the fact that o has no fixed points. Hence Ax(A) || Ba(B). O

Theorem CAP.9. If A and B are distinct points on the affine plane P, there can

exist no more than one translation o such that «(A) = B.

Proof. Suppose that & and f are translations of P such that «(A) = B and B(A) =
B, and let X be any member of P \ {A}.
<> <> <> <> <>
(Case 1: X € P\ AB.) By Theorem CAP.8, X (X) || AB and XB(X) | AB. By
e d <> <>
Axiom PS, Xa(X) = XB(X). By Theorem CAP.1, (AX) = a¢(A)a(X) = Ba(X)
and B(AX) = B(A)B(X) = BB(X). By Definition IP0, a(X) ¢ AB and S(X) ¢ AB.
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> — . <>

If AX = Ba(X), then B = «a(A) (which is not equal to A) must belong to AX
and by Exercise .2 AX = AB; but this is impossible because X ¢ AB. Thus AX #
Ba(X) and similarly AX # BB (X), so by Definition CAP.6, AX || Ba(X) and AX ||
«——>
BB(X).

. e T e T e I P <

By Axiom PS, Ba(X) = BB(X). Since Xa(X) N Ba(X) = {a(X)}, XB(X) N
<«
BB(X) = {(X)}, Xae(X) = XB(X) and Ba(X) = BB(X), it follows from
Exercise 1.1 that a(X) = B(X).

(Case 2: X € AB \ {A}.) By Theorem CAP.3, AB is a fixed line of both @ and

<> <2 -

B so a(X) € AB and B(X) € AB. Since X # A and « and S are both one-to-one
(injective), «(X) # a(A) = B and B(X) # B(A) = B. By Exercise 1.2, AB =
<> <> <> )
Ba(X) = BB(X). Let Y be any member of P \ AB. Let Z = «(Y), which, by
Case 1, is equal to B(Y). By Theorem CAP.1, a(XY) = a(X)a(Y) = a(X)Z and

>
BXY) = pX)B(Y) = B(X)Z.

— < <

By essentially the argument used in Case 1, a(X)Z # XY # B(X)Z, so by
Definition CAP.6, XY || «¢(X)Z and XY | B(X)Z. By Axiom PS, a(X)Z = B(X)Z,
so a(X) = B(X). ]

Definition CAP.10. If £ and M are lines on a plane P, we will write £ PE M iff
L=Mor (L # Mand L | M). That is, L PE M if and only if £ and M are
parallel or equal to each other. We will call PE the parallel relation. Note that this
definition is valid even in the absence of a parallel axiom.

Remark CAP.11. Let P be an affine plane.

(A) The relation PE defined in Definition CAP.10 just above is an equivalence
relation on the set of all lines on P and the set My = {£ | £L € P and
L PE M} is the equivalence class of M. To see this, note that reflexivity and
symmetry of PE are quite obvious, and transitivity is Exercise CAP.1.

(B) If « is a collineation on P, « is a translation of P iff ¢ has no fixed point and
forevery £, «(£) PE L. This is just a re-statement of Definition CAP.6.

Theorem CAP.12. Let P be an affine plane.

(A) Under composition of mappings, the set of translations of P, together with
the identity mapping, is a group. (For definition of a group, see Chapter I,
Section 1.5)
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Let M be a line on P and let My = {L | L € P and L PE M}, then
Gr = {a | a is a translation whose set of fixed lines is Mg, or o = 1} is a
group under composition of mappings; that is to say, for any given line, the set

of all translations along that line, together with the identity 1, is a group.

Proof. In Chapter 1, Section 1.4 we showed that the composition of mappings is

associative, so that in particular, composition of translations is associative.

(A)

(B)

First we show that if « is a translation, so is a'. By Theorem CAP.1
a~! is a collineation on P, and hence by Definition CAP.O0 a~!'(L) is
a line. Furthermore, a(a@~'(£)) = L, and since « is a translation, by
Remark CAP.11(B), o~ (L) PE L. Since « has no fixed points, «~! has none,
so is a translation on P.

Now let £ be any line on P, and let & and S be translations on P; then (8 o
a)(L) = B(a(L)). By Remark CAP.11(B), (L) PE L and B(x (L)) PE a(L).
By Exercise CAP.1, B(x(£)) PE L.

Suppose that B o « has a fixed point X, and let ¥ = «(X). Then B(x(X)) =
B(Y) = X. We have just shown that @~! is a translation and we know that
a~1(Y) = X; by Theorem CAP.9 there can be only one translation mapping Y
to X; it follows that 8 = o~ ! and B o @ = 1. Therefore if B o # 1, B o a has
no fixed point, and thus is a translation by Remark CAP.11(B).

'—jandioa =

The proof of (A) is complete once we observe that 1~
o o1 = « for any translation «.
To show that G is a group, we need only show that if o and 8 are members
of G, then so are 8 o o and ™ !. By hypothesis, 1 € Gy, soif Boa = 1,
there is nothing to prove.

For every member £ of My, ™' (£) = o ' (a(L£)) = 1(£) = L and
B(x(L)) = B(L) = L. This shows that every line in Ml is fixed for these
mappings.

Now let y be any translation (either o™

or § o «) for which every line
in My is fixed. Suppose that £ is a fixed line that does not belong to M 4.
Then L is not parallel to M, and by Definition IP.0, there exists a point P
such that £ N M = {P}. By Theorem CAP4 P is a fixed point of y, and
by Definition CAP.6 this is impossible, since translations have no fixed points.
Thus £ cannot be a fixed line for y, the set of fixed lines for y is exactly M4,

and y € G . O
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Theorem CAP.13. Let P be an affine plane, M be a line on P, and let M4 =
{L| L CPand L PE M}. If o is a translation of P whose set of fixed lines is M s,
and B is a collineation on P, then B o a o B! is a translation whose set of fixed

lines is Mg ).

Proof. Let Q be any point on P. If Q were a fixed point of 8 o o o B7!, then
B(a(B~'(Q))) would be equal to Q and a(B~'(Q)) would be equal to 7' (Q) and
thus B~ (Q) would be a fixed point of . This would contradict the fact that o has
no fixed point. Hence 8 o & o B! has no fixed point.

Let £ be any line on P. Since « is a translation, a(8~'(£)) FE B~!(L) by
Remark CAP.11(B). By Theorem CAP.3, B(x(B~'(£))) PE B(B~' (L)) = L. By
Remark CAP.11, B o o o B~ ! is a translation of P. If £ is a fixed line of a, then
a(L) = L,and so (B oo 7 (B(L)) = Ba(B~'(B(L)))) = B(L). Thus B(L)
is a fixed line of B o a o B!, Conversely, if (L) is a fixed line of B oo 0 B7!, so
that (B o 0 B~1)B(L) = B(L), then B((L)) = Ba (B~ (B(L)))) = B(L). Thus
a(L) = L and L is a fixed line of «. Summarizing, £ is a fixed line of « iff (L) is
a fixed line of B o o B~!. Hence the set of fixed lines of Boa o B~ is Mgagy. O

Corollary CAP.14. Let P be an affine plane and let o and B be translations of P.
If L is a fixed line of a, then L is also a fixed line of Boao ™", and a and Booco ™!

have the same fixed lines.

Proof. By Theorem CAP.13, (L) is a fixed line of Boa o 87!. By Theorem CAP.8,
B(L) PE L, so that £ is a fixed line of 8 o o o !, By the same argument, if M is
a fixed line for B o o o B! it is also a fixed line fora = B~ o Boao B loB. O

Theorem CAP.15. (A) Let P be an affine plane and let o and B be translations of
‘P having different fixed lines. Then the fixed lines of B o o are different from
the fixed lines of both o and B.

(B) If there exist translations on an affine plane P with different (non-parallel)
fixed lines, then for any translations o and 8 of P, x o B = o a.

Proof. (A) Let X € P. By Theorem CAP.8(B), Xx(X) is a fixed line of «,
> —
a(X)B(x(X)) is a fixed line for B, and XB(x (X)) is a fixed line for § o «

—

which intersects both Xo(X) and «(X)B(x(X)). By assumption Xa(X) #
— «—>
a(X)B(x(X)) and they are not parallel, so that by Exercise 1.1 Xa(X) N
ey — s
aX)B(a(X)) = {a(X)}. Then B(e(X)) & Xa(X), so that XB(«(X)) is not
equal to either X (X) or a(X)B(« (X)) and is not parallel to either one.
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(B) The proof divides into two cases:

(Case 1: o and B have different fixed lines which are not parallel.) Let X be

any point of P. We show that (x(X)) = a(B(X)).

@

(i)

exi

By Theorem CAP.8(B), «(X))B(«(X)) and XB(X) are both fixed lines for
B. Hence these two lines are parallel or equal by Theorem CAP.8(C).
But they cannot be equal, for then X, a(X), and B(X) would be collinear,
contradicting our hypothesis that & and 8 have different fixed lines.

By Theorem CAP.1 a(XB(X)) = aX)a(B(X)) which is parallel to
XB(X) by Definition CAP6. Since both «(X)@(8(X)) and «(X)B(@(X))
are parallel to the same line, by Theorem IP.6 they are parallel or equal to

each other. They both contain the point & (X), so by Axiom PS they are the
same line, which we will call M. This is a fixed line for «.

By a similar argument both B(X)S(x (X)) and B(X)x(B(X)) are parallel
or equal to m , and by Theorem IP.6 they are parallel or equal to each

other. They both contain the point 8(X), so by Axiom PS they are the same
line, which we will call £. This is a fixed line for S.

The lines £ and M are distinct and not parallel, so by Exercise I.1 their
intersection is a single point. Both B(«(X)) and a(B8(X)) belong to both
L and to M, therefore B(x(X)) = a(B(X)), which is what we wanted to

prove.

(Case 2: o and B are translations with the same set Ml of fixed lines.) There

sts a translation y having a fixed line M that is not in M. Otherwise, all

translations would have the same fixed lines, contradicting our hypothesis that

there exist translations with different (nonparallel) fixed lines.

Now £ and M are distinct and nonparallel. By part (A) £ is not a fixed line

of either of the translations y o S or y,sobycase I, yo(foa) = (yoB)oa =
ao(yop) = (@oy)of = (yoa)of =yo(@op). Thus foa =aof. O

Theorem CAP.16. Let P be an affine plane and let o be a collineation of P. If o
has no fixed point and if its set E of fixed lines is the pencil of all lines parallel to

some given line M, then « is a translation of P.

Proof. Let L be any line on P which is not a member of E and therefore intersects

the lines of E. Since o has no fixed point, for every member X of £, a(X) # X.
Suppose there exists a point Q such that LN« (L) = {Q}. If 0 &€ M, by Axiom PS,
there exists a unique line NV parallel to M containing Q; if 0 € M let ' = M. By
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hypothesis, N € . Since N is a fixed line of «, 2 (Q) € N. Since LNa(L)NN =
{0}, and «(Q) is in both «(£) and NV, a(Q) = O.

This contradicts our hypothesis that o has no fixed point, so the supposition that
L and «(L) are not parallel is false and £ || «(L£). By Definition CAP.6, « is a
translation of P. o

3.3 Collineations: dilations

Definition CAP.17. Let P be a plane and let « be a collineation of P. « is a dilation
of P iff « # 1, « has a fixed point, and for every line £ on P, either «(L) || L, or
a(L)y=L,ie a(L) PE L.

Note (A) that this definition is valid even in the absence of a parallel axiom; and
(B) this definition is identical to that for a translation, except that a translation has

no fixed point.

Theorem CAP.18. Let P be an affine plane and let o be a dilation of ‘P such that
O is a fixed point of «; then

(A) every line through O is a fixed line of «,

(B) « has no fixed point different from O,

(C) for every fixed line L of a, O € L, and

(D) if A is any point of P \ {0}, then a(A) is collinear with O and A.

Fig. 3.1 Showing action of a
dilation; double-headed
arrows show fixed lines.

Proof. For a visualization, see Figure 3.1.

(A) Let £ be any line through O. Since « is a collineation of P, «(£) is a line on P.
Since O is a fixed point of @, O € «(L), so that by Definition IP.0, £ and «(£)
are not parallel to each other. By Definition CAP.17, «(£) = L.
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(B) Suppose that o has a fixed point P distinct from O and let X be any point distinct
from O and from P.
(Case 1: X & <O_f)’.) By part (A), & is a fixed line of . Again, using part (A)
but substituting P for O, P(_)>( is a fixed line of «. Thus by Theorem CAP.4(B),
X is a fixed point of «.
(Case 2: X € <0_)P.) By Exercise 1.13 there exists a point Q not on (()_)P By
Case 1, Q is a fixed point for «. Then X ¢ Q<_I)5’ and substituting Q for P in
Case 1, we have that X is a fixed point of «.
It follows that every X in P is a fixed point for «, and therefore « is the
identity mapping 1, contradicting our assumption that « # 1. Therefore « has
no fixed point P distinct from O.
(C) If L were a fixed line of « such that O ¢ L, then by part (A) for every point Q of
L, OHQ would be a fixed line of ¢ and {Q} = L N <O_Q) By Theorem CAP.4(B),
QO would be a fixed point of &, contradicting the fact that O is the only fixed
point of .
(D) Let A be any pointof P and A # O, and let £ = % Since O is a fixed point,
O e (L), sothat a(L) /| L; then, (A) € «(L)= L by Definition CAP.17. O

Theorem CAP.19. Let P be an affine plane and let o be a collineation of P such
that for every line L on P, a(L) PE L. Then either o = 1, « is a translation of P,

or o is a dilation of P.

Proof. If o # 1, and if & has no fixed point, it is a translation by Definition CAP.6.
If « has a fixed point, it is a dilation by Definition CAP.17. O

Theorem CAP.20. Let § be a dilation of an affine plane P with fixed point O.

(A) A line L is a fixed line for § iff O € L.
(B) A line L is a fixed line for § iff for some Q € P\ {0}, L = Q5(Q).

Proof. (A) This is Theorem CAP.18, parts (A) and (C), included for completeness.
(B) If £ is a fixed line, by part (A), O € L; forany Q € L, §(Q) € L
so that by Exercise 1.2 £ = (Q_S—(—Q_3 Conversely, let 0 € P \ {0}, and
suppose L = m is not a fixed line, so that §(Q8(Q)) # Q&(Q). By
Theorem CAP.1(A), §(Q5(Q)) = 5(Q)8(8(Q)), which is not parallel to (Q_S—(—Q_3
Therefore by Definition CAP.17, §(Q8(Q)) = Q8(Q), and Q5(Q) is a fixed line
for 8, contradicting our original assumption. O
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Theorem CAP.21. Let P be an affine plane. The set of dilations of P with fixed
point O, together with 1 form a group under the operation of composition of

mappings. (For the definition of a group, see Chapter 1, Section 1.5.)

Proof. In Chapter 1, Section 1.4 we showed that composition of mappings is
associative, so that in particular the composition of dilations is associative. Let o and
B be dilations of P with fixed point O and let £ be any line on P. O is a fixed point
of ™! and of Boa. Since £ = a(a™' (L)) by Definition CAP.17, ! (£) PE L. By
Definition CAP.17, «~! is a dilation of P. Since a(£) PE £ and B(a (L)) PE a(L),
by Theorem IP.6, 8(«(L£)) PE L. By Definition CAP.17, either « o 8 is a dilation of
P,oraof =1. |

Theorem CAP.22. Let P be an affine plane and let « be a collineation of P such
that o has one and only one fixed point O. If every line containing O is a fixed line

for a, then

(A) every fixed line M for o contains O, and
(B) « is a dilation of P.

Proof. (A) We prove the contrapositive: suppose M is a fixed line of « not
containing the point O. If Q is any point on M, then by hypothesis <0_)Q is a
fixed line of &, and by Theorem CAP.4(B), Q is a fixed point of «. But Q # O
so is not a fixed point, a contradiction. Hence our supposition is false and M is
not a fixed line of «.

(B) If J is any line on P such that O & 7, then by part (A), J is not a fixed line of
a, so is distinct from o (7). Since «(0O) = O and « is a bijection, O is the only
point X such that ®(X) = O. Therefore, since O € 7, O & a(J). By part (A)
a(J) is not a fixed line for a.

Assume J and «(J) are not parallel, so that they intersect at a point G. By
hypothesis <0_(§ is a fixed line of «, and so is distinct from either 7 or a(J).
Thus J, «(J) and (()_>G are distinct lines which are concurrent at the point G.
Since <0_G) is a fixed line, «(G) belongs to <0_G); it also belongs to «(7), so
by Exercise 1.1 ¢(G) = G, and G is a fixed point of «. This contradicts the
hypothesis that there are no fixed points other than O. Hence our assumption is
false, and 7 || «(7). By Definition CAP.17, « is a dilation of P. |

Theorem CAP.23. Let P be an affine plane, O be a point on P, and § a dilation of
‘P with fixed point O.
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(A) Let ¢ be a collineation of P such that ¢(O) = P (that is, ¢~'(P) = O), where
P is some point of P. Then ¢ o § o ¢~ is a dilation with fixed point P.

(B) If ¢ is a collineation of P with fixed point O, then ¢ o § o ¢~ is a dilation of P
with fixed point O.

(C) If P # O is a point of P and t is a translation such that T(P) = O, then
1= 0§ o t is a dilation with fixed point P.

Proof. (A) First we show that ¢~ !(P) is a fixed point of § iff P is a fixed point for
podogh.
If ¢~ !(P) is a fixed point of §, p 080~ (P) = p o~ !(P) = P, so that P is
a fixed point for po§o¢p™!. If P is a fixed point for po§op™!, poSop™ ' (P) = P
sothat § o o' (P) = ¢l opodop ' (P) = ¢ !(P) and ¢! (P) is a fixed
point for §.

Since ¢ is one-to-one, if ¢ 0 § 0 ¢!

were to have another fixed point, there
would be another fixed point for §, which is impossible since by assumption &
is a dilation (cf Theorem CAP.18(B)). Thus ¢ 0 § o (p_l has exactly one fixed
point P.

Let M be any line containing P, and define £ = ¢~ !(M). Since ¢ is a
collineation, so is ¢!, and L is therefore a line. Since P € M, O = ¢~ ' (P) €
¢~ 1(M) = L; by Theorem CAP.18(A), L is a fixed line for §.

Then ¢ 0§ 0 9~ (M) = ¢ 0 8(L) = ¢(L£) = M so that M is a fixed line
for p 0§ 0@ ~!. By Theorem CAP.22, ¢ 0§ 0! is a dilation with fixed point P.

(B) To prove (B), let P = O in part (A).
(C) Toprove (C),let¢ = r~!inpart (A). Thenp~! = r,and ¢~ (P) = 7(P) = O.
The translation 7 is a collineation, so that ¢ is also a collineation. The result

follows from part (A). a

Theorem CAP.24. Let P be an affine plane, O be a point on P, and let A and B
be distinct points distinct from and collinear with O. Then there exists at most one
dilation a of P with fixed point O such that «(A) = B.

Proof. If a and B are dilations of P each with fixed point O such that «(A) = B
and B(A) = B, then A is a fixed point of 87! o o. By Theorem CAP.21 B~ ! o isa
dilation; by Theorem CAP.18, if 87! o & # 1 it has no fixed point # O. Since it has
such a fixed point, it must be z, so that 8 = «. a
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3.4 Collineations: axial affinities

Definition CAP.25. Let P be a plane and let @ be a collineation of P. Then « is
an axial affinity of P iff o # 1 and there exists a line M (the axis of «) such that
every point on M is a fixed point of « (and therefore M is a fixed line).

Note that this definition is valid even in the absence of a parallel axiom. Later
(Remark CAP.30) we anticipate the definition in Chapter 16 of two subclasses of

axial affinities, stretches and shears.

Theorem CAP.26. Let P be an affine plane and let o be an axial affinity of P with
axis M.

(A) If N is a fixed line of o such that N and M are distinct and not parallel and if
L | N, then L is a fixed line of a.

(B) The set of fixed points of a is M.

(C) For every point Q on M, there exists at most one fixed line L # M of o such
that Q € L.

(D) If L and N are fixed lines of « such that M, L, and N are distinct, then L || N.

Proof. (A) By Theorem CAP.3, a(L£) || a(N). Since N is a fixed line of «,
aN) = N.Thus £ | N = aWN) || «(£), and by Exercise IP.2(A),
L PE a(L).

Again by Exercise IP.2(A), £ and M are not parallel; therefore there exists
a point A such that £ N M = {A}. By Definition CAP.25, ®(A) = A, and thus
A € a(L). By Axiom PS, a(£) = L.

(B) If « had a fixed point off of M, then by Exercise CAP.3, & would be the identity
mapping 1. This contradicts Definition CAP.25. Hence « has no fixed point off
of M.

(C) Suppose there exist two distinct fixed lines £ and N of « such that Q € £ and
Q € N and let X be any member of P \ M. By Axiom PS, there exist unique
lines G and H on P suchthat X € G, X € H, G || £, and H | N. By part
(A), each of the lines G or H is a fixed line of «. By Theorem CAP4, X is a
fixed point of «. Since X is any member of P \ M, and since every member of
M is a fixed point of &, @ = 1. This contradicts definition CAP.25. Hence our

supposition that distinct fixed lines £ and M exist is false.
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(D) By part (C), £ and A/ cannot intersect at a point on M. If £ and N were to
intersect at a point off of M, then by Theorem CAP4, that point would be a
fixed point of &, contrary to part (B). Hence £ || V. |

Theorem CAP.27. Let P be an affine plane and let o be an axial affinity of P with
axis M.

(A) If L is a fixed line of a distinct from M, then for every point Q € (L \ M),
£ = 0a(0).

(B) If there exists a fixed line L of a such that L and M are not parallel, then the
set of fixed lines of a is {J | J is aline on P and J PE L} U {M}.

(C) If there exists a fixed line L of a such that L || M, then the set of fixed lines of
ais{J | JisalineonP and J PE M}.

Proof. (A) Since L is a fixed line of &, ®(Q) € L. By Axiom .1, £ = Q(ot—)(Q).

(B) If J is a line on P such that J | L, then by Theorem CAP.26(A), J is
a fixed line of «. If J # L is a fixed line of « other than M, then by
Theorem CAP.26(D), J || L.

(©) If NV is a fixed line of o distinct from both £ and M, then by
Theorem CAP.26(D) AV || £, and by Theorem IP.6 A/ || M.

Conversely, if N || M and N is not a fixed line, a(N) # N so that for
some point Q € N, a(Q) ¢ N. If Q(oz—)(Q) were parallel to M, then both Q<oz—)(Q)
and A would be lines through Q parallel to M, contrary to Axiom PS.

Therefore Q(a—)(Q) and M are not parallel, and there exists a point X such that
X}y = Mn Q<a—>(Q). By Theorem CAP.1 «(Qu(Q)) = a(Q)x(x(Q)) so that
a(Q) € a(Q(a—)(Q)); also «(X) = X so that by Axiom L.1 «(Qa(Q)) = Qu(Q),

which therefore is a fixed line.

<—>
But Qa(Q) intersects M at the point X, contradicting the first part of part
(C) of this proof, which says that every fixed line is parallel to M. Therefore if
N || M, N is a fixed line. i

Theorem CAP.28. Let P be an affine plane and M be a line on P.

(A) Let A(M) be the set of axial affinities with axis M, then under composition
of mappings A(M) U {1} is a group. (For definition of a group, see Chapter 1,
Section 1.5.)
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(B) Let L be a line on P distinct from M and let A* (M, L) be the set of affinities
of P with axis M such that L is a fixed line of every member o of A*(M,L),
then A* (M, L) U {1} is a group under composition of mappings.

Proof. In Chapter 1, Section 1.4 we showed that the composition of mappings is

associative.

(A) Let o and B be axial affinities of P with axis M. The set of fixed points of o~
is M, so o~ ! is an affinity with axis M. (cf Definition CAP.25) Furthermore,
every member of M is a fixed point of B o«. If § o« has a fixed point Q which
is a member of P \ M, then by Exercise CAP.3, Boa = 1.

Otherwise if § o o has no fixed point which is a member of P \ M, then by
Definition CAP.25 f o « is an axial affinity of 7 with axis M. Hence A(M) is
a group under composition of mappings.

(B) Let @ and B be axial affinities of P, each with axis M and with fixed line L.
By part (A) the set of fixed points for both @' and B o « is M, and the set
A(M) is a group. Thus to show that A* (M, L) is a subgroup, all we need to
do is show that £ is a fixed line for both 8 o @ and ™.

L is a fixed line of « so that «(£) = £, hence o' (£) = a ' ((L)) = L,
and L is a fixed line for o ~!. Since £ is a fixed line of both @ and B, B(a (L)) =
B(L) = L so L is a fixed line of § o «, as required. |

Theorem CAP.29. Let P be an affine plane, M be a line on P, and A and B be
distinct members of P \ M, then there exists at most one axial affinity o of P with
axis M such that «(A) = B.

Proof. Let a and B be axial affinities of P with axis M such that «(A) = B
and B(A) = B. Since A(M) U {1} is a group (cf Theorem CAP.28), B! o is a
member of A(M) U {1}. Since B! (a(A)) = A, A is a fixed point of 87! o «, i.e.
(B~ ' oa)(A) = A. By Exercise CAP3, B~ oa =1, ie,a = B. |

Remark CAP.30. In Chapter 16 (Axial affinities of a Euclidean plane) we will
define two types of axial affinity with axis M: ¢ will be a stretch if there exists a
line £ which is a fixed line for ¢ but is not parallel to M, and the set of fixed lines
of p is M}y U{T | J PE L}; ¢ will be a shear if the set of fixed lines of ¢ is
{J | J PE M}. For a visualization see Figure 3.2.
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M

\Axes of fixed points

L

M

Fig. 3.2 Showing action of a stretch (left) and a shear (right); double-headed arrows show fixed
lines.

In Chapter 8 (neutral geometry) we will meet a type of collineation called a
reflection, which is a stretch. In Chapter 16 we will show the existence of stretches

other than reflections.

3.5 Exercises for collineations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise CAP.1*. Let P be an affine plane and let £, M, and AV be lines on P. If
L PE M and M PE N, then £ PE N.

Exercise CAP.2*. Let P be any plane where the incidence axioms hold, ¢ be a

collineation of P, and A, B, and C be points on P.

(A) If A, B, and C are collinear, then ¢(A), ¢(B), and ¢(C) are collinear.

(B) If A, B, and C are noncollinear, then ¢(A), ¢(B), and ¢(C) are noncollinear.
(C) A, B, and C are collinear iff ¢(A), ¢(B), and ¢(C) are collinear.

(D) A, B, and C are noncollinear iff ¢(A), ¢(B), and ¢(C) are noncollinear.

Exercise CAP.3*. Let ¢ be a collineation of an affine plane P, M a line on P
such that every point on M is a fixed point of ¢, and Q a fixed point of ¢ such that
Qe (P\M). Thengp =1.

Exercise CAP.4*. Let P be an affine plane, £, and £, be parallel lines on P, O; be
a member of L1, O, be amember of £,, and 7 be the translation (c¢f Theorem CAP.9)
of P such that t(01) = O, then (L) = L,.

Exercise CAP.5*. Let P be an affine plane, ¢ be a dilation of P with fixed point
O, and V¥ be a stretch of P with axis M through O, then ¢ o ¥ = ¥ o ¢. (We take
Remark CAP.30 as a definition of a stretch.)
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Chapter 4
Incidence and Betweenness (IB)

Acronym: /B

Dependencies: Chapter 1

New axiom: Axiom BET (betweenness)

New Terms Defined: between, segment, ray, open, closed, endpoint, triangle, edge,

opposite edge, convex, Q-side, halfplane, opposite side

Abstract: This chapter defines a betweenness relation and uses it to define seg-
ments, rays, and triangles. A few theorems are proved in the resulting IB geometry.
These are foundational for the rest of the development.

We now temporarily suspend the parallel Axioms PS and PW. This will launch us
on a new “thread” of inquiry separate from that of Chapters 2 and 3, which will take
us through Chapter 10, developing as much geometry as possible without invoking
any parallel axiom. In Chapter 11 we will re-invoke Axiom PS, and combine the
results of this new thread with that of Chapters 2 and 3 to get Euclidean geometry.

Meanwhile, in this chapter we will use only the axioms and results from
Chapter 1, Theorems CAP.1 through CAP4, the definitions from Chapter 3 that
do not depend on a parallel axiom, and concepts we introduce here.
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4.1 Definition and properties of betweenness

One of the major defects in Euclid’s treatment of geometry was his failure to deal
with betweenness. As a result, if we take his axioms literally, it is possible to prove,
for example, that all triangles are isosceles (having two edges of equal length).

To avoid such pitfalls, we construct a definition of betweenness to conform with
our intuitive notion of that term. We do this by specifying a set called a betweenness
relation. We do not describe this set by saying exactly what its members are; instead,
we state various properties that describe how its members interact with points and
lines, and with each other.

In this section, U is space as defined in Definition 1.0, in which Axioms 1.0
through 1.5 hold. In this context, collinearity has meaning—that is, U contains

subsets that are lines.

Definition IB.1. A betweenness relation on U (or one of its subsets) is a nonempty
set B of ordered triples (A, B, C) of points having the following Properties B.0
through B.3. To indicate that a triple (A, B, C) is a member of B we will write
A-B-C; this is read “B is between A and C.”

B.0 (distinctness and collinearity): For any points A, B, and C, if A—-B-C, then

A, B, and C are distinct collinear points.

B.1 (symmetric property): For any points A, B, and C, if A~-B-C, then C-B-A.

B.2 (trichotomy property): If A, B, and C are any distinct collinear points,
exactly one of the following statements is true:
A-B-C, B-A-C, A-C-B.

B.3 (extension property): If A and B are any two distinct points, there exists a
point C such that A-B-C.

You may wish to check the properties in this definition with a sketch or mental
picture to assure yourself that this is indeed the betweenness you have known all

your life.
Axiom BET. There exists a betweenness relation.

Definition IB.1.1. A space on which all the incidence axioms and Axiom BET are
true is called Incidence-Betweenness space or simply IB space. A plane in this
space will be called an IB plane, and the geometry of IB space IB geometry.
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IB geometry is sufficiently rich to allow us to introduce several concepts that will
be with us throughout the rest of the book, such as triangle, convex set, and opposite

sides of a line in a plane. But we can prove only a few new theorems.

(A) Sets and ordered triples: Be sure to read this part carefully if you are unsure
of your understanding of the term ordered triple. (cf Chapter 1 Section 1.3.)

There are six different ways to describe an (unordered) set containing
exactly three points A, B, and C; we list them here: {A,B,C} = {B,A,C} =
{A,C,B} ={C,B,A} = {C,A,B} = {B,C,A}.

An ordered triple is a set {A, B, C} of points together with a one-to-one cor-
respondence between this set and the set {1, 2, 3}. We denote such an ordered
triple by listing the elements in the order specified by this correspondence, and
enclosing the list in ordinary parentheses.

Thus the ordered triple (A, B, C) is the set {A, B, C} where A corresponds
to 1, B to 2, and C to 3; the ordered triple (C, A, B) is the same set where A
corresponds to 2, B to 3, and C to 1. Any set {A, B, C} can be “ordered” into
six distinct (different) ordered triples, namely (A, B, C), (B,A,C), (A, C,B),
(C,B,A), (C,A,B),and (B, C,A).

(B) Implications of Properties B.0-B.3: According to Definition IB.1, a between-
ness relation B on space U is a collection of ordered triples of members of U,
which satisfies conditions B.0 through B.3. But not every set {A, B, C} can be
“ordered” by the process described in part (B) into an ordered triple that is a
member of B. Property B.0 says that this can be done only for sets {A, B, C}
consisting of distinct collinear points. Thus, our definition of betweenness is
essentially a definition on lines.

In the coordinate plane it is not possible to get a member of B by ordering
the points (0, 0, 0), (1,0, 0), and (0, 1, 0) because these points are not collinear.
Also, it makes no sense to say that a point B is “between” A and A. One object
cannot be “between” another (single) object.

On the other hand, Property B.2 says that if a set {A, B, C} consists of distinct
collinear points, these can be ordered in such a way that the resulting ordered
triple (call it (D, E, F)) belongs to B. In this case, Property B.1 says that the
ordered triple (F, E, D) also belongs to B. Thus, if {A, B, C} can be ordered
into a triple in B, there are exactly two ways to do it.

(C) A betweenness relation is nonempty: We state in the first sentence of

Definition IB.1 that a betweenness relation is nonempty, but this require-
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ment is actually redundant. For by Axiom 1.0, space U contains lines; by
Axiom I.5(A) every line contains at least two points A and B; by property B.3
of Definition IB.1 there exists a point C € A(_B) such that A-B—C, so that the
ordered triple (A, B, C) belongs to B, which is therefore nonempty.

It is tempting to apply Property B.3 again to show that there exists another
point D € 1(4_)3 and eventually that there are infinitely many points in ﬁ But
the argument breaks down because it does not follow from A-B-C and A-C-D
that A-B-D, as we will shortly discuss in Remark 1B.4.2. Thus we may not
conclude at this stage that D € AB. That there are infinitely many points on a
line will be established later in Chapter 5 as Corollary PSH.22.2.

(D) Alterations to a betweenness relation: A certain amount of freedom is

possible in defining a betweenness relation. Given a betweenness relation B
containing (A, B, C) (and, by Property B.1, also containing (C, B, A)), we could
define a new set C to be the same as B except that it contains (B, A, C)
and (C,A, B) instead of (A,B,C) and (C,B,A). Then C would also be a
betweenness relation.

For example, the standard betweenness relation for the integers includes the
triples (2, 3,4) and (4, 3, 2). If we let C contain the same ordered triples, with
the exception that (3, 2, 4) is substituted for (2, 3, 4) and (4, 2, 3) for (4, 3, 2), it
is quite easy to verify that all the Properties B.0 through B.3 hold for C. Thus C
is also a betweenness relation on the integers, even though it does not agree with
our intuition. We will use this possibility in Chapter 21, Section 21.8, where,
on the basis of models constructed there, we justify a number of the assertions
made later in this chapter, particularly those in Remarks IB.3.1 and IB.4.2.

Definition IB.2. The symbol “A-B—C-D” means that A, B, C, and D are points

such that A-B—C, A-B—-D, A-C-D, and B—C-D.

Remark IB.2.1. By virtue of Property B.2, A-B—C-D is equivalent to the conjunc-

tion of =(B-A—C), =~(A—C-B), =(A—D-B), =(B-A-D), —~(A—-D-C), —~(C-A-D),

—(B-D-C), and =(C-B-D).

By Property B.0, if A-B—C-D, then the points in each of the triples {A, B, C},

{A,B,D}, {A, C, D}, and {B, C, D} are distinct and collinear. By Exercise 1.2, A, B,

C,

and D are collinear.

Definition IB.3. A set £ of points is a segment if there exist distinct points U and

V such that one of the following holds:
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= {X | U-X-V}, in which case & is called the open segment UV and is
symbolized by UV
E={X|X="UorX = Vor U-X-V}, in which case £ is called the closed
segment UV and is symbolized by %JﬁV
E={X|X= U or U—X—V} or £ = {X | X = Vor U-X-V}, in which cases
£ is denoted by UV or UV respectively. In these cases £ is said to be a half-
open segment (for the less optlmlstlc half-closed) There is no widely accepted
verbiage to distinguish between UV and UV

The points U and V in this definition are called endpoints of &.

Remark IB.3.1. Note that in this definition we did not say the endpoints—there’s
no guarantee here that a given segment does not have two different sets of
endpoints.! Note also that there is nothing in Definition IB.3 that guarantees that
an open segment is nonempty, or that there are any points between the endpoints of
a closed segment. The proof that there are such points must wait until Chapter 5,
Theorem PSH.22 (Denseness).

Definition IB.4. A set £ of points is called a ray iff there exist distinct points A
and B such that either £ = {X | X = A or A-X-B or X = B or A-B-X} or
€ = {X |A-X-B or X = B or A-B-X}. In the first case, £ is denoted by %, which
is read “the closed ray AB.” In the second case, £ is denoted by 24_1)9, which is read
“the open ray AB.” If £ is a ray, then a point U is an endpoint, or initial point, of
& iff there exists a point V such that V # U and either £ = UVor& =0v.

Remark IB.4.1. If we make use of elementary logic and set theory, we can get the
following simple relationships involving the above definitions:

(@) AB = AB\{A, B} = AB\{B} = 4B \{4}

(b) AB = AB\{B) = AB U{A}

(¢) AB = AB\{A} = ABU!{B}

(d) AB = ABU{A} = ABU{B} = ABU{A} U {B}

'In Chapter 21 we will construct Model DZIII for IB geometr&nd proye, in Theorem DZIIL.4(A)
that it is possible to have two segments AB and CD such that AB = CD and yet {A, B} # {C, D},
i.e., two segments which are equal but have different endpoints.
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() AB = ABU{A}
(¢) AB = ABU{X |A-B—X}= {A} U {B} UAB U{X |A—B-X)

!

(h) AB = ABU{X |A-B-X}= ABU{B} U {X |A-B-X}
(i) ABN{X |A-B-X}= 0
() AB N{X |[A—B-X}= @

There may be a few others like this that we’ve missed, but hopefully we’ve listed
more than enough of them to give the general idea. We’ll be using these as well as

the missing ones casually, without further reference, from now on.

Remark IB.4.2. Beware, however, of some relationships among these ideas that
may seem just as appealing as those above but which are not consequences of the
properties of betweenness we have stated so far. For example, it may seem obvious
that a ray has a unique endpoint, and that if A-B-C, then BAUBC = 1<4_C>' and
1[475 U 1[5'75 = 1[478 But it is not possible to prove any of these statements from what
we have so far.”

These strange circumstances tell us that the properties of Definition IB.1 are
inadequate to define a betweenness relation which conforms to our intuitive ideas
of what betweenness means. One way to deal with this difficulty would be to add

another property (B.4) to Definition IB.1, as follows:
Property B.4 (Not invoked). Let A, B, C, and D be collinear points.

(A) If A~B—C and A—C-D, then B—-C-D.
(B) If A—B—C and B—C-D, then A—B-D.

Invoking this additional property as part of Definition IB.1 would provide a
shortcut to the result of Theorem PSH.8 in Chapter 5, which is now a consequence
of the Plane Separation Axiom (PSA). In our development, Theorem PSH.8 is
fundamental to solving all the difficulties mentioned above. However, invoking
Property B.4 would be only a partial measure that would not address the critical
issues having to do with the “sides” of a line; we will meet these shortly.
Moreover, Subsection 21.8.1 of Chapter 21 shows that Property B.4 would not imply
“Denseness” (cf Theorem PSH.22).

’In Chapter 21 we will construct Model DZII for IB geometry and prove, in Theorem DZII.4, that
all these statements are false.
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While some treatments of geometry do invoke Property B.4, we do not take this
path, preferring instead to invoke PSA, which, with some effort, will yield much
more than this property would yield. So we put Property B.4 aside, and for now,

content ourselves with proving a few theorems in IB geometry.

4.2 Theorems of Incidence-Betweenness geometry

In incidence geometry, lines are sets of points which interact with other sets in
certain prescribed ways, but there is no language in that geometry to describe their
internal structure. The introduction of betweenness gives them an internal structure,

of which the next theorem gives us a first glimpse.

Theorem IB.5. Let A and B be distinct points. Then
= {X |X-A-B} U {A} U {X |JA-X-B} U {B} U {X |A-B-X}
— (X |X-A-B} U AB U{X |A—B-X}
— (X |X-A-B} U AB
— (X [X-A-B} U {A} UAB

and the sets in the unions are disjoint.

Proof. A point X belongs to 1<4_B) iff A, B, and X are collinear. By Property B.2 of
Definition IB.1, X € ﬁ iff exactly one of X-A-Bor X = A or A-X-Bor X =
B or A-B-X holds. The first line in the formula given is an exact translation of
this statement into set language, and the second, third, and fourth lines come from
Definition IB.4.

The sets in the first line of the theorem are disjoint because A and B are distinct,
and they do not belong to any of the sets {X |X-A-B}, {X |A-X-B}, {X |A-B-X}
by reason of Property B.0 of Definition IB.1; these latter are disjoint because, by
Property B.2, no X can belong to more than one of them. It follows that the sets

listed in each of the subsequent lines are disjoint. O
Corollary IB.5.1. Let A, B, and C be distinct collinear points. Then

(A) A ¢ BC iff A~B—C and

(B) A ¢ BC iff A—B—C.

Proof. First of all, since ETC)' = {B} U %?' (see Remark IB.4.1 part(f)), A ¢ BHCZ is
equivalentto A # Band A ¢ BC. Since we are assuming to begin with that A # B,
this conjunction is equivalent to A ¢ BC. So we need only prove the first statement

in the corollary.
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Since A, B, and C are collinear, A € B(_C)' . In the third line of the statement of
Theorem IB.5 substitute A for X, B for A, and C for B. Since the sets in the theorem
are disjoint, a point A ¢ BC iff A~B—C. This is what we wished to prove. O

Corollary IB.5.2. Let A and B be distinct points. Then % and Eﬁ_é are both proper
subsets of 1<4_§, AB is a proper subset ofﬁ, and AB and AB are proper subsets ofﬁ.

Proof. Exercise IB.6. O
Theorem IB.6. For any two distinct points A and B, ABU BA = AB.

Proof. Applying Remark IB.4.1 (h), (b), (c), and (d) and line 2 of Theorem IB.5,
ABUBA = ABU{X |A-B—X}U BA U{X |B-A-X}
— ABU{A} U {B} U {X |A-B—X}U{X |B-A-X)

LJ

ABU{X |X-A-B)U{X |A—B-X)

! &

= AB. a

E <>
Corollary IB.6.1. For any two distinct points A and B, AB UBA = AB.

Proof. Exercise IB.7. O

With the concepts we have at our disposal at this time, we can define a triangle

and prove one theorem about triangles.

Definition IB.7. A set £ of points is a triangle iff there exist noncollinear points
A, B, and C such that £ = 1[473 U ETC]‘UET(,]’ This set is denoted by AABC, which is
read “triangle ABC.” A point U is a corner of & iff there exist points V and W such
that U, V, and W are noncollinear and £ = AUVW A segment J is an edge of E
iff there exist corners U and V of 5 such that 7 = U V A corner U and an edge VW
are opposite each other iff U ¢ VW.

Remark IB.7.1. Notice that a triangle is just the union of three segments; it does
not include any points “inside” (whatever that means). Also, two edges of a triangle
can intersect only at their common corner, for if these edges should intersect at some
additional point, the lines they define would be the same by Axiom I.1, contradicting
the noncollinearity of the corners. Here we are using the term edge in place of the
more traditional “side,” a term which we reserve for a “side” of a line, to be defined

shortly.
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Theorem IB.8. Let A, B, and C be noncollinear points. Then

<> E3
AB N AABC = AB.
Proof. If A, B, and C are any noncollinear points, then by Definition IB.7, AABC =
ABU 1[9761’ U IETC]' . Hence
AB N AABC = AB N (ABUBC UAC)
<> E3 <> = <> E—l
= (ABNAB)U (ABNBC)U (ABNAC). )
Since A, B, and C are noncollinear, we have by Exercise 1.1 that

<> > > <
AB N BC = {B} and AB N AC = {A}.
= <> L3 <>
From Theorem IB.5, BC € BC and AC C AC, so that
<> B3 <> 3
ABNBC = {B}and ABNAC = {A}.
Also, from Theorem IB.5, 1<4—B> N ﬁ = 1[471% Rewriting (*) we have
AB N AABC = ABU{B) U {A} = AB

It would be nice to be able to prove more about triangles, but at this point it is

L
m

m

a

impossible to prove much more. For example, it is impossible to prove the “obvious”
fact that if AABC = ADEF, then {A,B,C} = {D,E, F}. Indeed, in Chapter 21
Section 21.8 we will prove Theorem DZIII.4(B), which exhibits, in a model for 1B
geometry, two triangles which are equal to each other but have different corners.

In the face of such strange circumstances, it seems prudent to take evasive action
and postpone any further theorems about triangles until we have stronger axioms
to deal with them. We will discover this more congenial environment in Pasch

geometry, to be introduced in the next chapter.

At this point we are in a position to introduce the important concept of convexity,
but, as is the case with triangles, we can prove very little that is interesting about it.
Since it is appropriate to the geometry we are discussing here, we now define it, and
even though there are not many theorems or exercises about it, we leave you with

the warm assurance that you will encounter these later.

Definition IB.9. Let £ be a set of points. Then £ is convex iff either (1) £ is a
singleton, or (2) £ contains more than one point, and for every pair of points P and
0 belonging to &, PFQL Ccé.

Theorem IB.10. Every line is convex.

Proof Let £ be a line, and let A and B be any points o

n L. Then by Axiom 1.1,
J—E [ 3 <>
L= AB by Remark IB.4.1(d) and Theorem IB.5, AB € AB C

C AB. O
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The scenario for the next series of theorems—the last ones in IB geometry—is
one which is familiar to anyone who has studied plane geometry: a plane with a
line in it. The picture that comes to mind, of course, is a large (actually infinite) flat
expanse with a line that separates the expanse into two “pieces,” which we call the
sides of L; the segment joining two points lying on the same side does not intersect
the line, whereas the segment joining a point on one side and a point on the other
side does intersect the line. While the incidence and betweenness axioms impose
certain restrictions on the behavior of points and lines in our geometry, they are not
sufficient in themselves to force points and lines in a plane to behave according to
this picture.

We deal now with an interesting question: Which of the features of the above
“picture” are consequences of the axioms of IB geometry, and which features can
be proved only after additional axioms have been introduced? As always, we start

with the introduction of some terminology.

Definition IB.11. Let P be a plane, and let £ be a line contained in P. For any
point Q in P \ L, the Q-side of L is the set

(X|X=0or(XeP\{Q and XONL = B)}.
Note that this criterion is equivalent to
(X|X=Qor(XeP\{Q andX & £ and XQ NL = )}

because for X € £ and Q ¢£,SJ(_éﬁL’ =0 iﬁ%TQjﬂﬁ =0.

A subset € of P is a side of L iff there exists a point Q belonging to P \ L such
that £ is the QO-side of L. We say that £ is an edge of £ iff £ is a side of L. A subset
‘H of a plane P is a halfplane of P iff there exists a line £ in P such that £ is a side
of LandH =EUL.

If £ and F are sides of a line £, they are opposite sides iff there exist points
Pe&,Q € L,and R € F such that P-Q-R (that is to say, 1]‘?% NL = {0}).

If A, B, and Q are noncollinear points, then EUTQ) denotes the Q-side of 1<4_B>

Remark IB.11.1. Every line is disjoint from any of its sides; for if X is a member
of the Q-side of L, 5TQ] NL = @ so that in particular, X & L.

Be careful not to be misled by the terminology introduced in Definition IB.11,
which is heavily loaded toward the way things will eventually turn out. In Remark
IB.12.1 below, we will point out several conclusions one might be tempted to draw,
but which, at this point, are false.
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Theorem IB.12. Suppose P and Q are two distinct points not on L.

(A) P e Q-sideof Liff P=Q or (P # Qand;J’_QEﬂﬁ = 0) iff Q € P-side of L.

(B) P fails to be in the Q-side of L (and Q fails to be in the P-side of L) iff (P # Q
and IJ'TQ[ NL # 9).

(C) If P fails to be in the Q-side of L (and Q fails to be in the P-side of L), then the
Q-side of L and the P-side of L are opposite.

Proof. Part (A) is an immediate consequence of Definition IB.11 and elementary
logic, and part (B) is logically equivalent to (A).

(C) If P fails to be in the QO-side of £, then by (B) P # Q and PO NL # 0. Now
P € P-side of L and Q € Q-side of L, so by Definition IB.11 the Q-side and P-side
of L are opposite. O

Remark IB.12.1. (I) Theorem IB.12 does not include a converse of part (C)
because at this stage it can’t be proved. We cannot show that if the Q-side
of £ and the P-side of £ are opposite then P fails to be in the Q-side of L.
Indeed it may be that the Q-side of £ and the P-side of £ are opposite and at
the same time P € Q-side of £! That is, ?‘@E NL = @, but there exist points
A € P-side of £ and B € Q-side of £ with ABNL # @.

(II) As an illustration for this and subsequent assertions, we anticipate Chapter 21.
There, in Subsection 21.6.3, Definition DZI.1 defines Model DZI as the set Z>
of all ordered triples of integers, and Theorem DZI.5 proves this to be an IB
space. The set P of all triples (a, b,0) (which we denote here as pairs (a, b)),
where a and b are integers, is a plane in this model. We suggest making a
simple sketch of the following to help keep things straight. Let A = (—1,0),
B =1(0,0),C=(1,0);D=(-1,1),E=(0,1),F =(1,1); G = (—1,-1),
H=(0,-1),1 =(1,—1); then

the D-side of 1<4_§ contains D, E, F, and H but not G or [;
the E-side of fA_I)B contains D, E, F, G and I but not H;
the G-side of ﬁ contains G, H, I, and E but not D or F;
the H-side ofﬁ contains G, H, I, D and F but not E.
(IIT) Returning to the assertion of part (I): in the illustration above, the D-side is
opposite to the G-side because GHD 01(4_3) Z (; but both these sides contain the
point H. Thus the H-side is opposite the D-side since it contains G, and also

belongs to the D-side.
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This also shows that given two sides £ and F of £, we cannot simply pick
two arbitrary points, P € £ and Q € F, and determine whether or not £ and F
are opposite by checking whether or not }% NL # @. To be sure, if we should
find that PQ NL # @, that would show that £ and F are opposite; but finding
that PQ NL = @ would tell us nothing at all. Such a test must wait for the
invocation of the Plane Separation Axiom in the next chapter.

(IV) Tt is also tempting to conclude that if a point Q belongs to the P-side of £, then
the Q-side of L is the same as the P-side of £. But this is not so. Referring
again to our illustration of part (II), the point H belongs to the D-side, but
G, which also belongs to the H-side, does not belong to the D-side; hence,
the D-side and the H-side are not the same. Again, once we have the Plane
Separation Axiom at our disposal, this anomalous situation will be resolved.

(V) The term “opposite sides” might seem to imply that there are just two sides
of a line (or at least that they come in pairs); but we can’t prove that in IB
geometry—at this point there is no way of telling how many sides a line in a
plane has. In our illustration (II), ﬁ has at least four sides, since none of the
sides listed are the same.

Moreover, if £ is a line in plane P, and £ is a side of L, it is not correct to
conclude that P \ (£ U £) is a side of £. We can’t even prove in IB geometry
that opposite sides of a line are disjoint. Indeed, in our illustration from part
(II), the D-side and the G-side of AHB are opposite but not disjoint, as both
contain the points £ and H.

All the intuitively correct statements listed above, which we have shown to be
false, will be provable after we introduce the Plane Separation Axiom. For now it
is important not to assume they are true just because the terminology suggests that
they might be.

Now that we’ve dwelt on some things we can not prove about a line in a plane,
let’s get to some of the things we can prove. First, it should be noted that by

definition, a side of a line is nonempty.

Theorem IB.13. Let L be a line in a plane P. Then there is at least one side € of L,

and there is at least one side of L which is opposite to &.
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Proof. By Exercise 1.13, there is a point A in P which is not on L. Then the set £
defined by

E={X|X=Aor(XeP\{A}and XANL = @)}

is nonempty and is a side of L.

By Axiom I.5(A), there is a point B on £, and by Property B.3 of Definition IB.1,
there is a point C such that A-B—C. By Definition IB.11, the C-side of L is
opposite &. O

Theorem IB.14 and its corollaries, which we prove next, probably seem plausible
to anyone who has studied a little geometry and who takes the time to look at the
appropriate pictures; what may not seem plausible is why we chose these particular
things to prove.

There are two reasons for our choices: (1) these particular theorems will come in
very handy when we get around to proving the more “obvious” things (this becomes
clear in retrospect, but don’t be discouraged if you can’t see the connection now),
and (2) we tried to prove quite a few things, and these were the ones we succeeded
in proving.

The following theorem is a fundamental building-block in the structure of
theorems to follow. It will also make it possible to show later, as a consequence
of Corollary PSH.22.2, that each side of a line in a plane contains a lot of points—in

fact, an infinite number.

Theorem IB.14 (Side contains a ray). Let L be a line in plane P, and let P and
Q be points such that P € L and Q ¢ L. Then Ij’_Q) is a subset of the Q-side of L.

Proof. Since Q ¢ £, PON £ = {P} by Axiom L1. If R € PO, by Definition IB.4
and Property B.2 of Definition IB.1 exactly one of P-R-Q, R = Q, or P-Q-R is
true. If P~R—Q, P ¢ RQ by Definition IB.3 and Property B.2. If P-O—R, P ¢ RO for
the same reasons. Thus gTQj NL = @ and R belongs to the O-side of L. O

Corollary IB.14.1. Let P, L, P, and Q be as in Theorem IB.14. Then I%_Q) NnL =4a.
Proof. Exercise IB.10. O

Corollary IB.14.2. Let P, L, P, and Q be as in Theorem IB.14. Then ;JDﬁ and }'35
are subsets of the Q-side of L.

Proof. Exercise IB.11. O
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Corollary IB.14.3. For any triangle AABC, the edges ;ﬁng and 2&%’ are subsets of
I — 3L L T— 1L iy 1—
BCA, AB and BC are subsets of ACB, and AC and BC are subsets of ABC.

Proof. Exercise IB.12. O
The following corollary will be useful in the next chapter.

Corollary IB.14.4. Let P be an IB plane, L a line in P, P a point of P not on L,
and let X and Y be distinct points belonging to the P-side of L. Then there exists a
point Q € the P-side of L such that {X,Y, Q} is noncollinear.

Proof. 1f {X, Y, P} is noncollinear, let Q = P. If {X, Y, P} is collinear, we choose a
point Z € L as follows: iffﬁ)’ N L = @, let Z be any point of L; if )W intersects L,
then since )ﬁ # L by Exercise I.1, there exists one point W such that ﬁ NnNL=
{W}; choose Z to be any point of £ such that Z % W.

In either case, by Theorem IB.14 the ray ]Z?( C the P-side of £, and BZ?( ﬂ)(ﬁ =
{X}. Let Q be any point of 7X other than X. Then {X, Y, Q} is noncollinear, and
Q € the P-side of L. O

4.3 Exercises for Incidence-Betweenness geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise IB.1. If A and B are distinct points, then there exist points E and F such
that E-B—A and B-A-F.

Exercise IB.2*. Let A, B, C, and D be distinct collinear points, then A~B—C-D iff
D—-C-B-A.

[l - 1

Exercise IB.3. If A and B are any two distinct points, then 1[41% hf{ and AB = BA.
; 1L 33 3> <>
Exerc1se IB. 4* If A and B are any two distinct points, then AB C AB € AB C AB,

AB C AB C AB C AB, and AB C AB C AB.

. E=> E3 L3 <> <>
Exercise IB.5. If AB = CD or AB = CD, then AB = CD.
Exercise IB.6*. Prove Corollary IB.5.2. (See also Exercise IB.4.)

Exercise IB.7*. Prove Corollary IB.6.1.
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Exercise IB.8*. If A and B are any two distinct points, then

BA = 4B

ol

(A) ABN

s

1

(B) ABNBA = AB,
(C) ABNBA = AB, and
(D) ABNBA = AB.

Exercise IB.9*. Let £ be a line, and let A and B be distinct points such that £ #
AB.IfABNL = (R}, then AB N £ = {R}.

Exercise IB.10*. Prove Corollary IB.14.1.
Exercise IB.11*. Prove Corollary IB.14.2.
Exercise IB.12. Prove Corollary IB.14.3.
Exercise IB.13. Space is convex.
Exercise IB.14. Every plane is convex.

Exercise IB.15*. If G is any collection of convex sets, and if the intersection of the

members of G is nonempty, then the intersection is convex.

Exercise IB.16. Let £ be a line and let £ be a nonempty proper subset of £ such

that £ is not a singleton. Then:

(1) &€ is not a segment iff for every pair of distinct points A and B on L, there exists
a point U such that A~-U-B and U ¢ &, or there exists a point V such that
A-B-V and V € &, or there exists a point W such that B-A—-W and W € €£.

(2) & is not a ray iff for every pair of distinct points A and B on L, there exists a
point U such that A—-U-B and U ¢ &, or there exists a point V such that A-B-V
and V ¢ £ and there exists a point W such that B-A-W and W ¢ £.

Exercise IB.17*. Let P be an IB plane, £ and M be lines on P, and O be a point
such that £ N M = {0}, then there exist points P and Q on £ such that P and Q are
on opposite sides of M.

Exercise IB.18 (True or False?). Let P be an IB plane, and let 7, &, and £ be
distinct lines on P such that 7 N L # @ and K N L # @. Then if U is a point on J
but not on L, there is a point V on /C such that U and V are on opposite sides of L.



Chapter 5
Pasch Geometry (PSH)

Acronym: PSH

Dependencies: Chapters 1 and 4

New Axioms: Plane Separation Axiom PSA

New Terms Defined: Postulate of Pasch, Pasch plane, denseness, opposite rays,
angle; quadrilateral, corner, edge, opposite edge, diagonal, rotund; trapezoid;

inside, outside, enclosure, exclosure (of angle, triangle, and quadrilateral)

Abstract: The first part of this chapter uses the Plane Separation Axiom to show
that a line in a plane has two disjoint sides, and to prove the basic properties of
segments, rays, and lines that are needed for a coherent geometry. The remainder of
the chapter is a study of the basic interactions between lines, angles, triangles, and

quadrilaterals, comprising Pasch geometry.

So far, we have not seen much in this book that most people would recognize as
“real” geometry. To remedy this we need to surmount the difficulties we inherited
from the previous chapter (IB geometry) where we could not prove several things
that seem so natural to us—for instance, that a line has only two sides or that a
triangle has only one set of corners (cf Remarks 1B.4.2 and 1B.12.1, and the note
after Theorem IB.8). These anomalies arise in planes, and must be fixed in that
context; indeed, most of the rest of the book is about the geometry of planes that are

subsets of an IB space.
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We start by invoking the Plane Separation Axiom (PSA) on such planes; this will
open the way to develop basic properties of angles, triangles, quadrilaterals and the

like,! which most people think of as the “stuff” of geometry. But first a bit of history.

5.1 The Postulate of Pasch

In 1882 Moritz Pasch (1843-1930) published Vorlesungen Uber Neuere Geometrie,
(Lectures Over More Recent Geometry [17]) which embodied the beginnings of
the modern axiomatization of geometry. Pasch documented many assumptions that
were in Euclid and made clear many of the difficulties in his work that were due
to intuition rather than sound mathematical reasoning from the stated assumptions.
One of the cornerstones of his work is the following statement that has become
known to geometers as the “Postulate of Pasch,” or the “Pasch Postulate,” or, in our

proofs, simply as “Pasch.”

The Postulate of Pasch If A, B, and C are noncollinear points on an IB plane
P, and zfﬁ is a line on P such that £ # AB LNAB # 0, and C ¢ L, then either
LNAC #@orL nBC = O (but not both).

Alternate form of the Postulate of Pasch Suppose A, B, and C are noncollinear
points on plane P and £ is a line on P containing none of these points. f ACNL =
@ and BCNL = @, then ABNL = 0.

The alternate form as stated above is not quite equivalent to Pasch, but is implied
by it. To see this, let the overall hypothesis be A, B, and C are noncollinear points,
L is a line not equal to 1(4_B>, and C ¢ L. Then Pasch says

ifﬁﬂ?ﬁ% # 0, then(ﬁﬂ% #* @exclusiveorﬁﬂ% % 0).
The contraposmve says (cf Chapter 1, Section 1.2)
1f(£ﬂAC— @andﬁﬂBC— @)or(bothﬁﬂAC =+ ﬂandﬁﬂBC;é ?),
then £ N AB = @.

Thus, any time we have Pasch, this alternate form will also be true.

IThe process for doing this is somewhat complex and involves some subtleties. A reader desiring
an overview of Pasch geometry (cf Definition PSH.7) without indulging in the details of a strict
development may proceed as follows: first, peruse the statements below of the Postulate of Pasch
and the Plane Separation Axiom; then accept Theorem PSH.12 (the Plane Separation Theorem) as
an axiom, and go on from there. It must be noted, however, that Theorem PSH.8 is needed in the
development following Theorem PSH.12.
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The following proof has interest in its own right, and we will use it in the section
titled “Pasch geometry,” after the definition of the Pasch plane. We place it here
because it is needed to facilitate the proof of Theorem PSH.6. It shows, among
other things, that in a plane where the Pasch postulate holds, if two sides of a line

have nonempty intersection, then they are the same side.

Theorem PSH.1. Let L be a line in an IB plane P on which the Postulate of Pasch
holds. Then if S is a point not on L, and Q € the S-side of L, the O-side of £ = the
S-side of L.

Proof. Let X be any point of the S-side of L. By Definition IB.11 %(Tg' NL = @; since
0 € the S-side of £, OSNL = .

(Case 1: X, O, and S are noncollinear.) Then we may apply the alternate form of
Pasch to AXQS to get SJ(_é NL = @, and therefore X € the Q-side of L.

(Case 2: X, Q, and S are collinear) By Corollary IB.14.4, there exists a point
Y € the S-s1de of L such that Y ¢ QS = XS Apply the alternate form of Pasch to
AYSX. Since XS NL = @ and YS ne =0, XY NL = @. Again apply the alternate
form of Pasch to AYQS. Since QS NL=9,Y Q NL = @. Finally, apply the alternate
form of Pasch to AYQX, to get 37QE NL = @. Therefore X € the Q-side of L.

From these two cases, we see that the S-side of £ C the QO-side of L. By
Theorem IB.12(A) S € the O-side of L. Reversing the roles of S and Q, the same
proof shows that the Q-side of £ C the S-side of L, and hence the S-side of £ = the
Q-side of L. O

5.2 The Plane Separation Axiom (PSA)

We do not base our development directly on the Pasch Postulate, but rather on
an equivalent assumption called the “the Plane Separation Axiom” which appears
(to us, at least) to deal with more fundamental ideas. The resulting geometry
will be far richer than any we have seen so far. Many theorems that suggested
themselves earlier but could not be proved, as well as a host of new ones, will now
be within our reach. To celebrate this milestone in our development, we christen
the new geometry this creates as Pasch geometry; without further hesitation, we
add the Plane Separation Axiom (PSA) to the incidence (I.0-1.5) axioms and the
betweenness Axiom BET.
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Plane Separation Axiom (PSA). If £ is any line, and if Q and R are points in
opposite sides of £, then jQ_IL€ NL # 9.

The following statement is an almost trivial extension of Axiom PSA, and any

citation of Axiom PSA should be understood to include it:

If £ and F are opposite sides of £, Q € £, and R € F, then by Definition IB.3
there exists a point S € £ with OQ-S-R. By Exercise 1.1 and elementary set theory
<Q_I>? N L = {5}, so that S is the single point of intersection of Q<_I>€ and L. By
Theorem IB.14, ?S‘_Q) is a subset of £ and 537!% is a subset of F.

Notice that Axiom PSA asserts something quite subtle: it says that if £ and F
are opposite sides of L, that is, if there exist points Q' € £ and R’ € F such that
jQ’—RE’ NL # @, then the same must be true for all points Q € £ and R € F.

In particular, this axiom neatly solves the quandary we were in the last chapter
(cf Definition IB.11 and following discussion), where it was awkward to determine
if two sides £ and F of a line were opposite. Now, in the presence of Axiom PSA, all
we need to do is pick arbitrary points in £ and F and see if the segment connecting
them intersects the line.

Thus, a line “separates” the plane; this is consistent with Hilbert’s axiom
system, in which the Postulate of Pasch is grouped with other axioms dealing with

“betweenness.””

In Chapter 21 we will exhibit a model in which all our axioms are true (cf
Subsection 21.5.8); this will show, among other things, that Pasch planes actually
do exist, and Pasch geometry is not vacuous. Also, in Subsection 21.6.3 we will see
a model for an IB plane on which PSA is false, showing that PSA is independent
of the incidence and betweenness axioms. When axioms are chosen so they are
independent of each other, an intricate logical development is usually required to
reach key theorems. This is well illustrated by the rather complex path we must
undertake to show Theorem PSH.12, which is fundamental to the rest of the book.

%It could be interesting to construct a theory in which space is divided into two half-spaces by a
plane, in a manner analogous to the theory developed here which treats division of the plane into
two half-planes by a line. We have not pursued this, but it is said to have been carried out by B. L.
van der Waerden, in De logische grondslagen der Euklidische meetkunde (Dutch), Chr. Huygens
13, 65-84, 257-274 (1934) [22]. Axiomatizations of Pasch-like statements for hyperplanes (i.
e., statements that hyperplanes divide the space into two half-spaces) have been presented by
E. Sperner in Die Ordnungsfunktionen einer Geometrie, Math. Ann. 121, 107-130, (1949) [19].
For the significance of Sperner’s work in ordered geometries, see H. Karzel, Emanuel Sperner:
Begriinder einer neuen Ordnungstheorie, Mitt. Math. Ges. Hamburg 25, 33—44 (2006) [12].
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Theorem PSH.2 (Opposite sides of a line are disjoint). Let P be an IB plane
in which PSA holds, and let € and F be opposite sides of a line L in P. Then
ENF =0.

Proof. By Definition IB.11, since £ and F are opposite sides of £, there exists a
point P such that & = the P-side of L. Suppose £ N F # @, so that there exists a
point A € £ N F. By Definition IB.11,1[47§HE = @.SinceA € F,P € £ and F is
opposite to £, by PSA AP NL # @, a contradiction. O

Theorem PSH.3. Let P be an IB plane in which PSA holds. Let A, B, and C be
noncollinear points of P, and let D, E, and F be points of P such that A—-D-B,
B-E—C, and A—-F—C. Then D, E, and F are noncollinear.

Proof. By Property B.0 of Definition IB.1, {A, D, B}, {B,E,C}, and {A, F, C} are
collinear. We show that D, E, and F are distinct points. If two of D, E, and F were
the same, say D = E, then by Axiom I.1, ﬁ = 1(9_5 This line contains A, B, and C,
contradicting the hypothesis that these points are noncollinear.

Now assume that D, E, and F are collinear. Then by Property B.2 of Defini-
tion IB.1 one and only one of the following is true: D-E—F, or E-D-F, or D-F-E.
We show that each of these possibilities leads to a contradiction.

If D-E-F, since E € B(_C)', the D-side of BC is opposite the F-side. By
Theorem IB.14 and Definition IB.3, A € BD C (D-side of 1(5’_6)'), so A belongs
to a side of (B_C)' which is opposite the F-side. Now recall that A—F—C, so by
Definition IB.3 and Theorem IB.14, A € ]C_I>7 C (F-side of B<_C)‘). We have shown
that A belongs both to the F-side of (B_C)' and to a side opposite the F-side. This
contradicts Theorem PSH.2, so the assumption that D—E-F  is false.

In a similar way, we can show that both E-D—F and D-F-E lead to contradic-

tions, so the proof is complete. O

Theorem PSH.4. Let P be an IB plane in which PSA holds. Let A, B, and C be
noncollinear points of P and let L be a line in P such that for some distinct points
Dand E, LN AB = {D} and £L N AC = {E}. Then L N BC = 0.

Proof. If B € L, then both the points B and D would belong to both ABandto L, and
by Axiom I.1 ;HB) = L. This contradicts the assumption that £ N XBg is a singleton,
sothat B € L. Similarly C ¢ L. If X is any member of %, then by Theorem PSH.3,
X, D, and E are noncollinear, so that X ¢ £. This shows that £ N % = 0. O
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At the beginning of the next section we will define a Pasch plane, and in
Theorem PSH.11 we will prove that a line drawn in such a plane has only two
sides. We haven’t found a way to prove this in one easy step. The next theorem
comes close to saying that the points off a line in a Pasch plane are the union of a
pair of opposite sides of the line, but there is an interesting twist—a second line is

involved.

Theorem PSH.5. Let P be an IB plane in which PSA holds, L a line in P, and let
P, Q, and R be points on P such that Q € L, I<’—Q> # L, and P-Q-R. If X is any point
not on L and not on }(’_>Q then X belongs to either the P-side or the R-side of L.
That is

P\ (L U PQ) = [(P-side of £) U (R-side of £)] \ PO.
Moreover, (P-side of L) N (R-side of L) = .

Proof. The last statement in the theorem is an obvious consequence of Theo-
rem PSH.2 and is included for completeness.

Let X be any member of P \ (L U I(’_)Q). We wish to show that either X € (P-side
of £) or X € (R-side of £).

If XP NL = @, then since X # P, by Definition IB.11, X belongs to the P-side
of L.

Otherwise, if Sﬁ; NL # @, observe first that the line )<HD) is distinct from both £
and from ﬁ , since X belongs to neither of these lines. Then by Exercise 1.1, there
exists a point S such that )](TE NL = {S}, and, since the only p01nt of intersection of
XP and PR is P, S # Q. By hypothems we know that Q € PR so we may apply
Theorem PSH.4 to conclude that XR NL = @. By Definition IB.11, X belongs to
the R-side of L.

This shows that P \ (L U I()_Q>) C [(P-side of £) U (R-side of £)] \ fD_Q) The
reverse inclusion is immediate from Definition IB.11, which defines a side of L to

be disjoint from L. O

The next theorem shows that if we add the Postulate of Pasch to the list of axioms
(incidence and betweenness) for an IB plane, we get the same geometry as if we add

the Plane Separation Axiom.

Theorem PSH.6 (Pasch is equivalent to PSA). In the presence of Axioms 1.0-1.5
and Axiom BET, the Postulate of Pasch is equivalent to the Plane Separation
Axiom PSA.
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Proof. All points and lines in this proof will be in P, an IB plane on which Axiom
BET holds. In each case, the reader will find it helpful to sketch a figure.

(I. PSA = Pasch) Let A, B, and C be noncollinear points in P, and let £ be a line

(II:

such that £ # ﬁ L NAB #@,and C ¢ L.

If £ were to intersect AB in more than one point, then by Exercise 1.2, £
would be equal to 1(4_B> which is false by hypothesis. Hence £ NABisa singleton.
By Definition IB.11, A and B are on opposite sides of L. C belongs neither to £
nor to AB , s0 by Theorem PSH.5 C belongs either to the A-side or to the B-side
of L, but not to both.

If C belongs to the A-side of £ but not to the B-side, by Definition IB.11,

134%‘ NL = 0 and by PSA, % NL # @. If C belongs to the B-side of L but not
to the A-side, 33%' NL = @ and 2(6[' NL # @. This proves that the Pasch Postulate
holds on P.
Pasch = PSA) Let £ = the U-side of £ and F = the V-side of L be opposite
sides of a line £. By Definition IB.11, there exist points S in the U-side and T
in the V-side of £ such that ?S‘% NL # @. By Theorem PSH.1, S-side = U-side,
and T-side = V-side of L.

Let O be any member of £ = the U-side of £, and R any member of F = the
V-side of L. Again, by Theorem PSH.1, O-side = U-side = S-side, and R-side
= V-side= T-side of L.

We show, from ?ﬁ: NL # @, and repeated applications of the Proposition of
Pasch, that jQ_I% NL # 0.

Now Q and S are on the same side, and R and T are on the opposite side of L.
If the points Q, R, S, and T are not distinct, then either Q = S or R = T or both
(in which case there is nothing to prove). The case where Q = Sbut R # T is
covered in Cases 2 and 4 below. The case where Q # S but R = T is covered in
Cases 3 and 5 below.

(Case 1: No three of the points Q, R, S, and T are collinear.) In this case, all
points are distinct. Apply Pasch to AQST; since STnc # @ and ]Q__Lg‘ NnL =0,
OTNL # 0.

Now apply Pasch to ARQT; since ]QjTF‘ NL # @ and RT NL = @, then
jQ_I% NL # @, which is the desired result.

(Case 2: Q, R, and S are collinear but T is not collinear with these points.)
Apply Pasch to ASRT; since STL # @ and RTNL = @, SRNL # 0. If the
points are not all distinct, Q = §, which completes the proof.
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Otherwise, apply Pasch to AQST; since STL # @ and ]Q§'0£ =
jQ_TE‘ﬁ,C = (. Then apply Pasch to AQRT; since ]Q_Y[" NL # @ and RTNL = @,
jQ_I% NL # @, the desired result.

(Case 3: Q, R, and T are collinear but S is not collinear with these points.)
Interchange Q with R and interchange S with 7', and the proof of this case is
word-for-word as in Case 2.

(Case 4: Q, S, and T are collinear but R is not collinear with these points.)
Apply Pasch to ASRT; since $TNL # @ and RTNL = @, RSNL # (. If not
all the points are distinct, then Q = S, which completes the proof

Otherwise, apply Pasch to AQRS; since RSNL # @ and QS nL = 0,
bR NL # @, which is the desired result.

(Case 5: R, S, and T are collinear but Q is not collinear with these points.)
Interchange Q with R and interchange S with 7', and the proof of this case is
word-for-word as in Case 4.

(Case 6: Q, R, S and T are collinear and distinct.) By Corollary IB.14.4, there
exists a point X € the S-side of £ = £ such that X ¢ (S_T> = Q(_I>€

Apply the alternate form of Pasch to AQSX. Since 3’er NL = Pand SXNL =
0, 0X NL = 0.

Apply Pasch to ASTX: STL # @ and XL =0 imply TXNL # 0.

Apply Pasch to ARTX: TXNL # @ and I]ﬁ: NL = @ imply ;ﬁﬁﬁ # 0.

Flnally, apply Pasch to AQRX; since RXNL # @ and QX NnL # @,
QR NL # @, which is the desired result. O

5.3 Pasch geometry

Definition PSH.7. An IB plane P for which the incidence, betweenness, and Plane

Separation Axioms are true is called a Pasch plane. The geometry of such a plane

is called Pasch geometry.

Theorem PSH.6 showed that the Postulate of Pasch holds in a Pasch plane! From

now on all planes will be Pasch planes.

The following Theorem PSH.8 shows that the two statements labeled ‘“Prop-

erty B.4” in Chapter 4 (following Definition IB.1) are consequences of the other

axioms adopted so far. This theorem, with its several corollaries, comprises a
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fundamental result about the behavior of line segments. This will be needed to prove
the results leading to the Plane Separation Theorem (Theorem PSH.12), after which
we will return to Theorem PSH.8 and use it in a more extensive exploration of the

behavior of segments, rays, and lines.
Theorem PSH.8. Let A, B, C, and D be distinct points in a Pasch plane P.
(A) If A-B—C and A—C-D, then A, B, C, and D are collinear and both

(1) B-C-D and (2) A-B-D

are true; that is, if A—-B—C and A—C-D, then A—B—C-D.
(B) If A—B-C and B-C-D, then A, B, C, and D are collinear and both

(1) A-B-D and (2) A-C-D
are true; that is, if A—-B—C and B-C-D, then A-B-C-D.

Proof. If A-B—C, by Property B.0 of Definition IB.1, B € 1<4_)C ; similarly, if A—-C-D,
D e ;E)f so that A, B, C, and D are collinear. Thus if (A) is true, by Axiom 1.5 there
exists a point £ on P not belonging to ;@ By Theorem IB.14, a C (the A-side of
C<_>E). Since A-B-C, by Definition IB.4 B belongs to a and hence to the A-side of
(C_)E. Since A—C-D, the A-side and the D-side are opposite sides of <C_>E Therefore B
and D are on opposite sides of C(T)E By Axiom PSA, there exists a point Q such that
BDN C@E = {Q} and B-Q-D. But C € BD and C € <C_)E, so by Exercise .1 Q = C
and hence B—C-D. This proves (A)(1).

Before proving statement (A)(2) we turn to the proof of (B). The argument for
collinearity is similar to that for (A). The argument for (B)(1), if A~B—C and B-C-D
then A-B-D, is very much like but not exactly similar to the argument just above;
the main point to note is that BE is used in place of ((T_)E We leave the details of this
proof to the reader as Exercise PSH.1.

The conclusion A-B-D for (B)(1) is also part (A)(2), so part (A) is proved.
To prove part (B)(2) apply this result where A and D are interchanged, and B and C
are interchanged. The statement then becomes “if D-C—B and C—B-A then D-C-A,”
that is “if B—C-D and A—B—C then A—C-D.” This is the result for part (B)(2). O

3Part (B) is sometimes called “Pasch’s Theorem.”
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Corollary PSH.8.1. Let A, B, C, and D be distinct coplanar points. If A—~B-D and
B-C-D, then A-B—C and A-C-D. In other words, if A~-B-D and B—C-D, then
A-B-C-D.

Proof. From A—B-D and B—C-D it follows by Property B.1 of Definition IB.1
that D—-C-B and D-B-A. Hence from Theorem PSH.8(A)(1), C—B-A. Another
application of Property B.1 gives the first result. The proof of the second is similar,
using Theorem PSH.8(A)(2). O

Corollary PSH.8.2. Let A, B, C, and D be distinct coplanar points. If A-B—-C and

A-B-D, then exactly one of the following two statements is true:
(1) A-D-C and B-D-C; (2) A-C-D and B—C-D.
In other words, if A-B—C and A—B-D, then either A—~B-D—C or A-B—C-D.

Proof. By Property B.3 of Definition IB.1, either A-D-C, or A—C-D, or C-A-D.
But if C-A-D and A-B-D, then by Corollary 1 C-A-B, which by Property B.3
contradicts A—B—C. Hence the assumption C—A-D is untenable, and we have either
A-D-C or A—C-D, but not both, showing that alternatives (1) and (2) are mutually
exclusive. The proof now splits into two parts.

(1) Suppose A-D-C. Together with A—B—D, this implies B-D—-C by Theorem
PSH.8(A)(1).

(i) Suppose A-C-D. Together with A—B—C, this implies B-C-D by Theorem
PSH.8(A)(1). O

Corollary PSH.8.3. Let A, B, C, and D be distinct coplanar points. If A~-C-D and

B—C-D, then exactly one of the following two statements is true:
(1) A-B-C and A-B-D; (2) B-A-C and B-A-D.
In other words, if A-C-D and B—C-D, then either A~-B—C-D or B-A-C-D.
Proof. Exercise PSH.2(A). O

Corollary PSH.8.4. Let A, B, C, and D be distinct coplanar points. If A~B-D and

A—-C-D, then exactly one of the following two statements is true:
(1) A~-B-C and B-C-D; (2) A-C-B and C-B-D.
In other words, if A—~B-D and A—C-D, then either A~-B—C-D or A~-C-B-D.

Proof. Exercise PSH.2(B). O
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Corollary PSH.8.5. Let X, Y, and Z be distinct coplanar points. If X—Z-Y, then
. e o R [ R
(A)XZ CXY; (B)ZY C XY; (C) XZ C XY, and (D) ZY C XY.

Proof. (A) Let W € 3?2[, so that X—W-Z; by Theorem PSH.8(A) X—-W-Y and W ¢
XY.

(B) Follows immediately from (A) by interchanging the roles of X and Y.

O Ifwe XZeltherW € XZ CXY C XYorW Xor W = Z; both X and Z
belong to X7 so the result follows.

(D) The argument is similar to that for (C). ad

Theorem PSH.9. If L is a line in the plane P, then each side of L is convex.

Proof. Let P be a point on P off of £, and let X and Y be distinct members of the
P-side of £. By Theorem PSH.1 the X-side of £ = the P-side of £ = the Y-side of
£ Thus X € the Y-side of £. By Definition IB.11, £NXY = @. This proves that the

P-side of L is convex. |

The next theorem fills a large gap in our picture. It finally assures us that any
two opposite sides of a line in a Pasch plane constitute all of the points on the plane

which are not on the line.

Theorem PSH.10. If L is a line on plane P and if D and & are opposite sides of
L thenDNE =0, andDUE =P\ L.

Proof. The fact that D N € = @ is just a restatement of Theorem PSH.2 and is
included for completeness.

Since D and & are opposite sides of £, by Definition IB.11 there exist points P,
0, and R such that Q € L, P-Q-R, D is the P-side of £, and £ is the R-side of L. By
Theorem PSH.5, we know that any point not on £ and not on }<’_Q> belongs either to
D or to £. Hence we need only prove that every point not on £ and on 1<’_Q) belongs
either to D or to £.

Let S be any point on £ different from Q. There exists a point Y such that P-S-Y.
SinceY ¢ Land Y ¢ IS_)Q Y is a member of either D or £. By Definition IB.11, Y is
on a side opposite D and hence is in £, which is therefore the Y-side of L.

Applying Theorem PSH.5 again, every point not on £ and not on IS_)Y is a member
of either D or £. Every point on ﬁ other than P and Q fails to be on 1<3—>Y and
therefore belongs to either D or £. We know already that P € D, so every point of

<>
PR not on £ is a member of either D or £. O
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Corollary PSH.10.1. With the same hypotheses as in Theorem PSH.10, LU £ =
P\D,LUD=P\EE=P\N(LUD)andD =P\ (LUE).

This corollary (which is easily proved using elementary set theory) says that a

side of a line £ completely determines the side opposite to it.

Theorem PSH.11. There can be only one pair (H1, H,) of sides for a line L in a
Pasch plane.

Proof. Let H; be aside of L, and H,; a side opposite to ;. Suppose K; is a side of
L and /C, is an opposite side. Let A be a point of K;; by Theorem PSH.1 IC; = the
A-side of L. By Theorem PSH.10, since A ¢ L, either A € H; or A € H,. Choose
the notation so that A € #,. Then, again by Theorem PSH.1, K; = the A-side of
L = H,. By Theorem PSH.10, K, = P\ (H; U L) = H,. ]

We may now speak of the two sides of a line £ in a plane P. This legitimizes
the use of the word “same” in connection with sides of a line. If two sides have a
point in common, they are the same set (by Theorem PSH.1) and if two sides are
both opposite to the same side, they are the same set. Thus we may speak of “the”

opposite side of a side.

We might define a relation = on P \ L as follows: for any two points P and Q
inP\ L, P = Qiff P and Q belong to the same side of £. By Definition IB.11, =
is reflexive; by Theorem PSH.1, = is symmetric; and by the observation just above,
= is transitive. Therefore = is an equivalence relation. But it isn’t a very interesting

one, since it has only two equivalence classes, which are the two sides of L.

The next theorem summarizes the results we have obtained so far in completing
the picture we described at the beginning of this chapter. We mark it as a major
milestone here because it is sometimes called the Plane Separation Axiom and
used as an axiom by geometers who are not concerned—as we are here—with
the detailed logical relationships between its various provisions and the axioms of

incidence and betweenness.

Theorem PSH.12 (Plane Separation Theorem). If L is a line on a Pasch plane
‘P, then there exists a unique pair (Hi, Ha) of convex subsets of P such that

(I) PZHI UHzUﬁ,‘
(T) the sets Hy, H,, and L are pairwise disjoint;
(M) H, and H, are the opposite sides of L;
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(IV) If Py and P, are any points in P \ L, then
(A) I]‘ﬁ NL = @ iff Py and P, belong to the same side (either H| or H,) of
L; or equivalently
(B) I]‘ﬁ NL # @ iff one of the points Py, P, belongs to H and the other to
Hs.

Proof. By Axiom L5, there exists a point A belonging to P \ L. Let H; = the
A-side of L. Let B be any point of £. Then by Property B.3 of Definition IB.1
there exists a point C such that A~-B-C. Let H, = the C-side of L. Then by
Definition IB.11, H; and H, are opposite sides of £, showing (III). (I) and (II)
are true by Theorem PSH.10.

The uniqueness of the two sides is Theorem PSH.11, and this theorem also shows
that H, is the only side opposite H; (and, mutatis mutandis, H; is the only side
opposite H,). The convexity of the sides is Theorem PSH.9.

Finally, Definition IB.11 (combined with Theorem PSH.1) says that EPTPQJ NL =
@ iff P, and P, belong to the same side of L. Since these two points do not belong
to L, this is equivalent to saying that ETP; NL = @. This shows (IV)(A); IV)(B) is
the contrapositive of part (IV)(A). O

Remark PSH.12.1. We conclude this section by observing that if ;\_B) and C<'_D> are
parallel lines in a Pasch plane P, each of them is a subset of a single side of the other;
in particular, the points A and B are on the same side of C(‘_D>, and C and D are on the
same side of AB.

For if 1(4_B>, say, does not lie entirely in one side of C('_D>, by Theorem PSH.12(I)
it must contain a point of <C—)D, or a point on the other side, so that, by
Theorem PSH.12(IV)(B) it contains a point of C<‘_D> In either case the lines are
not parallel (cf Exercise PSH.14).

5.4 Segments, rays, lines, and their properties

We now enter into a detailed consideration of the behavior of segments, rays, and

lines. This development depends largely on Theorem PSH.8 and its corollaries.
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Theorem PSH.13. Let A, B, and C be points such that A—B—C. Then

(A) {X |JA-B-X} = BC

(B) AB = ABUBC = {A} U {B} UABUBC,
(C) ABNBC = 0, and
1>

(D) AB = {B} UABUBC = ABUBC.

Proof. By Corollary PSH.8.2, A-B-X, in the presence of A—B—C, implies one and
only one of the following statements is true: (1) B-X-C; (2) X = C; (3) B-C-X.
By Definition 1B.4, IJSTC)‘ = {X |B-X-C, or X = C, or B-C-X}, so we have shown
(X |[A-B-X} C BC.

To show the reverse inclusion we start with the overarching assumption A-B—C.
Let X € 133?' and use Definition IB.4 as stated above. If B-X-C by Corol-
lary PSH.8.1, A-B—-X. If X = C, then A-B-X. If B-C-X by Theorem 8(B) A-B-X.
This completes the proof of {X |[A-B-X} =

By part (A) and Remark 1B.4.1(g), ArB = Eé\iB U }JSTC)‘ by part (A) and
Remark IB 4. 1(1) AB N BC = {J; and by part (A) and Remark 1B.4.1(h)
AB AB U{B} U {X |A-B-X} = AB U{B} U BC O

Corollary PSH.13.1. Let A and B be distinct points and let C and D be points such
that A~B—C and A-B-D. Then BC = BD and BC = BD.

Proof. By Theorem PSH.13(B), AB = Eﬁ UBC = 545 BD. From Definition IB.3
and Property B.2 of Definition IB.1, AB N IJSTC)' ABNBD = @, so from elementary

B>

set theory BC = Bi)) By Remark IB.4.1(e) we get BC = ﬁ)) O

J

Theorem PSH.14. Let A, B, C, and D be distinct collinear points. Then exactly one

of the following twelve statements is true:

A-B-C-D A-D-B-C B-C-A-D
A-B-D-C A-D-C-B B-D-A-C
A-C-B-D B-A-C-D C-A-B-D
A-C-D-B B-A-D-C C-B-A-D.

Proof. By Definition IB.2 and Property B.2 of Definition IB.1, not more than one
of the above statements is true. By Property B.2 one and only one of the following

three statements is true:

A-B-C A-C-B B-A-C;
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and one and only one for the following statements is true:
A-B-D A-D-B B-A-D.
This gives rise to nine mutually exclusive and exhaustive possibilities:

(1) A-B—C and A-B-D. By Corollary PSH.8.2, either A—-B—C-D or A—-B-D-C.

(2) A-B-C and A-D-B. By Theorem PSH.8(A), A-D-B-C.

(3) A-B—C and B-A-D. By Property B.1 of Definition IB.1, D-A-B and A-B-C, so
by Theorem PSH.8(B), D-A-B-C and by Exercise IB.2, C-B-A-D.

(4) A-C-B and A-B-D. By Theorem PSH.8(A), A—~C—B-D.

(5) A-C-B and A-D-B. By Corollary PSH.8.4, either A-C—D-B or A-D-C-B.

(6) A—C-B and B-A-D. By Property B.1 of Definition IB.1, B-C-A and B-A-D, so
by Theorem PSH.8(A), B—-C-A-D.

(7) B-A—C and A-B-D. By Property B.1, D-B-A and B-A—C, so by Theorem PSH.8§
(B) D-B-A-C, and by Exercise IB.2, C-A-B-D.

(8) B-A-C and A-D-B. By Property B.1, B-D-A and B-A-C, so by Theo-
rem PSH.8(A), B-D-A-C.

(9) B-A—C and B-A-D. By Corollary PSH.8.2, either B-A—C-D or B—A-D-C.

A perusal of this list shows at least one of the twelve possibilities in the theorem
must occur. Putting this together with the statement at the beginning that at most

one can occur, we have the statement in the theorem. a

The proof of the preceding theorem involved a lot of tedious checking and can
hardly be called elegant. But the theorem is worth the work. One reason is that,
until now, our concept of line has had serious limitations because it has given us no
insight into the “internal structure” of a line. Lines have been special sets of points
that satisfied certain axioms which described how these sets relate to each other and
to other special kinds of sets, such as planes. It can be quite difficult to tell whether
or not a particular set of points is a line unless we have a complete list of all the sets
that are lines in the geometry, as in our model of incidence geometry. As we will see
in Theorem PSH.15 (a consequence of Theorem PSH.14) we can now identify a line
if we know something about its internal structure as described by the betweenness

relation.
Theorem PSH.15. IfA, B, and C are points such that A~-B—C, then

> > <>
(A) AB = BC = AC.
(B) ;l_B) is the union of the disjoint sets 1332, {B}, and IJBTC)‘
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© AC is the union of the disjoint sets {A, B C } AB and BC
(D) AC is the union of the disjoint sets {B}, AB and BC

Proof. (A) Follows from Property B.0 of Definition IB.1 and Exercise 1.2.

(B) By Theorem IB.5 line 4, AB = BC = {X [X-B—C} U {B} U BC, and the sets
in the union are disjoint. By Definition 1B.4, BA = {X |B-X-AorX = Aor
B-A-X}.

If X—-B-C and X # A, by Corollary PSH.8.3 either X-A-B or A-X-B, so
that {X |X-B-C} C BA.

Conversely, suppose X € BHA; we know that A—-B-C. If B-X-A, that is
A-X-B, by Theorem PSH.8(A)(1) X-B-C. If B-A-X, that is, X—-A-B, by
Theorem PSH.8(B)(2), X-B-C. If X = A, then X—-B-C. Therefore 1354) -
(X |X—B-C}, so that AB = BA U{B} U BC.

(C) First note that by Definition IB.3, X € ETC]' iff X = AorA-X-CorX = C.
If A-X—C (together with the assumption A—B—C), by Corollary PSH.8.4, either
A-X-B, B-X-C,or X = B; thenif X € 1[4763', exactly one of X = A, A-X-B,
X = B, B-X-C or X = C is true, so thatIETCl C{A,B,C} UEIBUBTC.

Conversely, if A-X-B, then by Theorem PSH.8(A)(2), A-X—C. If B-X-C by
Corollary PSH.8.1, A-X—C. Since {A,B, C} C %, it follows that {A, B, C} U
ABUBC c AC so that (C) is proved. The sets are disjoint by Property B.2 of
Definition IB.1.

(D) By Remark IB.4.1(d), AC = AC \{A, C}, so by part (C) AC is the union of the
disjoint sets {B}, EA—B, and BC. |

Theorem PSH.16. Letr A, B, and C be points such that C € ﬁ Then QXB = 1]4_C)
and zlz\_B = zﬁ’)

Proof. Since C € EXB, by Definition IB.4, either C = B, A—C-B, or A-B-C. If
B = C, then clearly?A_B = EA_C andAHB = ArC
Suppose that A-C-B. By Properties B.3 and B.1 of Definition IB.1 there is a point
P such that P-A-C. By Theorem PSH.8(B)(1), P-A-B. By the Corollary PSH.13.1,
P-A—C and P-A-B together imply QXB = EQ_C and AB = fTC, the desired conclusion.
If A—B-C, interchanging the roles of B and C in the above argument yields the
. I E— £ . . .
conclusion AC = QXB and AC = ﬁ, again the desired conclusion. O

Theorem PSH.17. Let A, B, C, and D be points on a Pasch plane P such that
A # Band C # D. Then
CD C AB iff ((C = A and D € AB) or (C € AB and A-C-D)).
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Proof. T: ﬁ)) - AB = ((C =Aand D € EA_L)?) or (C e AB and A—C—D)).
By Definition IB.4, C and D belong to ch - AB. Either C = A or C % A.
(I.1) If C = A, D # A so that by Remark IB.4.1(f) D € 24_1)? which is the first
half of the disjunction we wish to prove.
(1.2) Now suppose C # A. Then by Theorem IB.4.1(f) C € 134_& and by
Theorem PSH.16, 24_1)3 = 24_6)‘ anderé = ;TC)‘

Claim: D # A. For suppose D = A. Then since C # D, by Property B.3
of Definition IB.1 there exists a point X with C—D-X; by Definition 1B .4
X € a)) - A%)B which is equal to :47') as we have seen. Since D = A,
C-A-X.But X € ;TC)’ which by Definition 1B.4 means that either X = A
or X = C (both of which we know to be false by the definition of X) or
A-X-C or A—C-X, which are in contradiction to C-A-X by Property B.2
of Definition IB.1. This proves the claim.

From Theorem IB.4.1(f) it follows that D € Eﬂ_l)? so that by Theo-
rem PSH.16, AD = AB = AC, and AD = AB = AC.

Since C # A, C # D, and D # A, by Property B.2 of Definition IB.1
one and only one of A-C-D, C-A-D, or C-D-A is true.

C-A-D is not true because by Definition IB.4 and Property B.2 of
Definition IB.1, it implies C ¢ AD = A%)B contradicting our hypothesis
CD < AB.

C-D-A is not true either. To see this note first that by Property B.3 of
Definition IB.1 there is a point P such that D-A—P. Now on the one hand,
C-D-A and D-A-P imply by Theorem PSH.8(B)(1) C—D-P, which means
P e rCrD) - ;Té But on the other hand, D-A—P implies by Definition 1B .4
and Property B.2 P ¢ AD = AB. This contradiction shows C-D-A is false.
We are left with only the ﬁrst alternative which we wished to prove.

I. CD C AB « ((C=Aand D€ AB) or (C € AB and A—C—D))
(IL.1) If C Aand D € 34_1)9 then by Theorem PSH.16, CD AB and CD =
AB.
(IL2) If C € AB, then by Theorem PSH.16, AC = AB. By Theorem PSH.13, if
A—-C-D, then {X |A-C-X} = ]c_z’) andAHCZ = 1[4763' U [C—f) ) 5’) C AH>B O

The proof of Theorem PSH.19 becomes much easier once we know that rays are

convex sets. Therefore we will prove the following theorem at this point.
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Theorem PSH.18 (Convexity of segments and rays). Let A and B be distinct
points on a Pasch plane P. Then each of the following sets is convex: (1) A_B, 2)
AB, (3) AB, (4) AB, (5) AB, and (6) AB.

Proof. (1) Let U and V be distinct members of A_B By Definition IB.9 we must
show ]ﬂ; C AB To do this we let X be any member of jU_XL; and show X € A_B
The points A, B, U, and V are collinear, and by Property B.2 of Definition IB.1,
exactly one of A-U-V, U-A-V, or A- V—U is true

If U-A-V, by Theorem PSH 15(B) AB = AU U{A} U AV and these sets
are disjoint; therefore B e AU or B € 1347 but not both. If B € AU by
Theorem PSH.16 AU = AB so that V € AU and either A~-U-V or A-V-U,
in contradiction to our assumption. (A similar proof holds if B € 1]4_‘)/ J)

Therefore by Property B.2 of Definition IB.1 either A-U-V or A-V-U.
Choose the notation so that A-U-V. Since V € ?AB, by Theorem PSH. 16, 1347 =
AB. If X is any point of UV, by Definition IB.3, U-X—V. By Corollary PSH.8.1,
AU~V and U-X-V imply A-X-V. By Definition IB.4, X ¢ AV = AB. This
shows U VC AB and completes the proof of this part.

(2) Let U and V be distinct members of ;@ As above we must show UV - AB
If U and V both belong to AB, then, since AB is convex by part (1) above,
jﬂ; - A_B C ;ﬁ, and we are done.

If either U = A or V = A, choose the notation so U = A. Since U and V
are distinct, V € AB and by Theorem PSH.16 Ar‘)/ = A? By Remark IB.4.1(g),
IET\} - 1[4—\>/ Since U = A we have shown W - AE)B which is what we wished to
prove in this part.

(3) Let U and V be distinct members of AB We show %]ﬁ\; - A_B By Property B.2
of Definition IB.1 exactly one of A-U-V, U-A-V, or A-V-U is true.

We show that U-A-V is impossible. We know that both U and V are
members of ArB so that by Definition IB.3 A-U-B and A-V-B. If U-A-V
by Theorem PSH.8(B) B-U-V and also U-V-B, which are incompatible by
Property B.2 of Definition IB.1.

Therefore either A~-U-V or A-V-U is true. Choose the notation so A-U-V.
Let X be any member of ]U_\;, so U-X-V. By Corollary PSH.8.1 A-X-V.
Since V € A?% we have A-V-B. Putting this with A-X-V and using Theo-
rem PSH.8(A)(2), we get A—-X—B, which is to say X € AB We have shown
jU_\E/ - A}B, and since we already know that U € A}B and V € ArB the desired

result is proved.

The proof of parts (4-6) is left to the reader as Exercise PSH.48. O
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Theorem PSH.19. Let A, B, C, and D be points such that A # B and C # D. Then
E E—> E> E—> E E>
ABNCD is aray iff (AB € CD or CD C AB).

Proof. (I)IFA—BDEC'—Dis aray = (AHB c %—Dor%—D) QAHB).
: E> > B> E> >

We prove the equivalent statement: (AB € CD and CD € AB) = ABN CD
is not a ray (the contrapositive).

. B> > E—> B>
Since AB € CD and CD ¢ AB,
) ) E—> E=—>
there exists a point S € AB such that S ¢ CD (1)
and there exists a point T € C-D) such that T ¢ ﬁ 2)

By Property B.2 of Definition IB.1 either S—-C-T, C-S-T, or C-T-S. We
will show that the first is true by showing that the second and third are false.
If C-S-T, since C and T are members of CD S € CD by Theorem PSH 18
(convexity of rays), contradicting (1). Now suppose C-T-S; both C € CD
and T € CDso T € ]C_)D By Theorem PSH.16 E’) = CHY>" It follows from
Definition IB.4 that S € C—D), again contradicting (1), so that S—C-T.

Similarly, either S-A-T, A-S-T, or A-T-S. If A-T-S, since A and S are
members of ﬁ, T e AB by convexity of rays, contradicting (2). Now suppose

B> B> > E—>
A-S-T;bothA € ABand S € AB; so S € AB and by Theorem PSH.16 AB =
X)S . It follows from Definition IB.4 that T € A—B, again contradicting (2), so that
S—A-T; therefore both end points of the rays belong to ES‘if .

There is no point X of CrD) such that 7-S-X, for if there were, S € CrD)
because the ray is convex (cf Theorem PSH.18), and this contradicts (1).
Neither is there a point ¥ € AB such that S~7-Y by a similar argument.
Therefore there is no point Z € AEB N [C_D with T-S—Z or S-T-Z; neither S nor
T 1s 1n ABNCD,soif Z € ABN CD, S—Z-T. Therefore by Exercise PSH.4(A),
AB N CD 18 not a ray

) (AB C CD or CD C AB) :> ABN CD isa ray
B> £ 5D < ab

By set theory, if AB - CD, then AB N CD = AB, and if CD C AB, then
E> > L
ABNCD = CD. o

Theorem PSH 20 Let A, B, P, and Q be pomts on a Pasch plane such that A # B,
P # 0, andABﬂPQ isaray. IfR € QP thenABﬂ QR is not a ray.
Proof. Since ABN PQ is a ray, by Theorem PSH.19, AB € PO or PO C AB.

) IfArB - % andR € ]Q_J)D, thenAH)BﬂQH)Ris not a ray.
By Theorem PSH.17, ifﬁ - PrQ), then (A =P and B € IJ’_Q)) or (A e IJ’_Q) and
P—-A-B).
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I11) fA=P,Be Ij’_Q) and R € ]Q_I)’ thenAE)B N QHR is not a ray.
By Theorem PSH.16, if A = P and B € R_Q), then ArB = PQ, and if
R € JQ_R then QHR = QH>P By Exercise IB.8, %ﬂ @)’ = ?TQ Hence
ABN QR = PQ, which by Definition IB.4 is not a ray.

12) IfA e IJ’_Q P-A-B,and R € jQ_I)’ then% N QHR is not a ray.

. 1> S . 1>
By Theorem PSH.16, if A € PQ, then PA = PQ, and if R € QP, then
OR = QP. By Theorem PSH.13, if P-A—B, then AB C ?DZ - Ij’_Q By
B> B> . . E> [—> > >

set theory, AB c PQ 1mp11es ABN QR PQ NQOR = PQ N QP By
Exercise 1B.8 PQ N QP PQ Since AB N QR is a subset of PQ by the
Exercise PSH.4(B), it is not a ray.

v

AN}

(019) If}'rQ) - fE\—B andR € ]Q_B, thenAE)B N QH)R is not a ray.
=S == ES 3>
By Theorem PSH.17, if PQ € AB, then (P =A and Q € AB) or (P € AB and
A-P-Q).

(IL1) IfP = A, Q € AB, and R € OP, then AB N OR is not a ray.
The proof of this statement is similar to that of (I.1) above.

(IL2) If P € AB, A—P-Q, and R € QP, then AB N PR is not a ray.
By Theorem PSH.16, P € AB implies % = A? and R e ]Q? implies
QR = QP By Definition IB 4, A-P-Q 1mphes A€ QP and Q € AP
Hence by Theorem PSH.16 OA = OP and AQ = AP. By Exercise IB.8
AQ N QR = AQ. Thus summarizing the above statements, 1‘_4—§ N QR =
ArQ) N rQr)A = 1@ By Exercise PSH.4(B) ;ﬁ N ﬁ is not a ray. O

Corollary PSH.20.1. Let A B P, and Q be points on a Pasch plane P such that
A ;é B P # Q, and /ﬁ N PQ is a ray. If R is a point distinct from Q such that
AB N QR is a ray, then P-Q—-R.

We undertake a detailed proof of this corollary as an illustration of the way the

contrapositive may be used in proofs.

Proof. We rewrite both statements in such a way that each is the contrapositive of
the other.

Theorem PSH.20 says that ArB n % is a ray, so by Theorem PSH.19, ArB - ;DrQ
or ;'TQ - %; hence A, B, P, and Q are collinear. It also says R € jQ_I)) so that R is
collinear with A, B, P, and Q and R # Q. Thus it does not change the meaning of
Theorem PSH.20 to re-write it as follows:

Let A, B, P, Q, and R be collinear points on a Pasch plane such that A # B,
P#QR# QandAE)BﬂPH)Q isaray IfR € jQ_})’ then;\_)BﬂQH)R is not a ray.
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Now the corollary says (as does the Theorem) that AHB N PH>Q is a ray, so again A,
B, P, and Q are collinear. It also says A—B N @3 is a ray so R is collinear with A, B,
0, and P.

I I— -

For such an R, P-Q—R means that R & QP. For R € QP by Definition IB.4 means
that either R = P, Q—R-P, or Q—P-R. If P-Q-R, by Property B.2 of Definition IB.1
none of these can be true so R ¢ _Q7)3 Conversely, since R # Q by Property B.2
exactly one of Q—R-P, Q—P-R, or P-Q-R is true; if R ¢ jQ_B both Q—R-P and
O—P-R are false, so P-Q-R is true.

The corollary now reads Let A, B, P, Q and R be collinear points on a Pasch

E> > . =
plane P such that A # B, P # Q, R # Q, and ABNPQ is aray. FABN QR is a
ray, then R ¢ jQ_l')’

The first sentence in Theorem PSH.20 is identical to that in the corollary; the
second sentence of each is the contrapositive of the other, and thus the theorem and

its corollary are logically equivalent. O

Theorem PSH.21. (A) Let A, B, and C be points such that A-B—C. Then

(B) Let A and B be distinct points. If C € A_B, then A_B N A_C[' is an open segment.
(C) Let A, B, and C be points such that B-A—C, and let D be any member of B<_C)’ \
{A}. Then ADNBC is an open segment.

We remind the reader that according to Definition IB.3 an open segment is
always nonempty. Thus part (C) of the above theorem says that if one of two open
segments has an end point belonging to the other, then the intersection of the two

segments is nonempty, and is an open segment.

Proof. (A) This is Corollary PSH.8.5, and is included here for completeness.

(B) If B = C, then ATBHA% = ZTB which is an open segment. If B # C then
by Definition IB 4 e1ther A—B—C or A-C-B. If A-B-C, then by part (I), AB -
AC and hence AB N AC AB an open segment. If A—C-B, then by part (A),
AB ﬂAC = AC , again, an open segment.

(C) By Theorem PSH.15(D), elementary set theory, and the fact thatA_ﬁ N{A} = 0,

3L 3L 1L 1+ 1T i N i e N
ADNBC = ADNABUAC U{A}) = (ADNAB) U (ADNAC) (1)

By Theorem PSH.15(B), ABUAC = BC \ {A} and ABNAC = @. Since D €
Py . 1> 3>
BC\ {A}, either D € ABor D € AC.
3> 1> 1>
Suppose D € AB. By Theorem PSH.16, AD = AB and by Remark IB.4.1(h)
AD <€ AD = AB which is disjoint from AC and thus from AC. Hence
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I T 3L 3L T iy L.
ADNAC = 0, and (1) becomes ADNBC = AD NAB, which is an open

>
segment by part (B), since D € AB.

The case where D € 24_6)' can be treated similarly. O

Theorem PSH.22 (Denseness property). If A and B are distinct points, then
there exists a point C such that A—C-B. That is, A_é # 0.

Proof. By Axiom 1.5(B) there exists a point D not belonging to zﬁ By Property B.3
of Definition IB.1 there exists a point £ such that A-D-E and a point F such that
E—B—F. Note that F' cannot be on the line 1(4_)E because then A = B; the intersections
of the lines (D_I)T and <E_I)7 with A(_E) are not the same, and so they are distinct lines.
Hence by Axiom I.1 they have only one point (¥) in common.

Also, by Property B.2 it is false that E-F-B, since it is true that E-B—F. Therefore
by Definition IB.3 EB has no point in common with DF ,and F # Bsothat B & DF.

Now D<_I>7 N 1]47_;? = {D} # @ and it follows from the Postulate of Pasch (which
applies by Theorem PSH.6) that the line D(_l)F must intersect A}Bg at some point C, and
by Definition IB.3 A-C-B. O

Corollary PSH.22.1. Let AB be any open segment. For every natural number n,
there exists a subset B C AB containing 2" — 1 points, that is, there exists a bijection
f:{1,2,3,...,2" =1} - B.

Proof. We give a proof by induction. By Theorem PSH.21 there exists a point
belonging to A}é so the assertion is true for n = 1. Suppose now it is true for n = k,
ie. ﬁ contains a subset with 2F — 1 points. We call these points Py, Py, ..., Py,
where m = 2% — 1, and we will suppose their names have been chosen so that
A-P|—-P;—.. —P,—B. Now by Theorem PSH.21, there exist points Qy, ..., On+i
such that A-Q1-P1-0>—P>—03—. . —Q—P—Qm+1-B. That is to say, A}Bg contains
atleast2m+1 =22 —1)+1 = 21 —2 4+ 1 = 2k — 1 points. We have shown
that if the statement in the theorem is true for n = k, then it is true forn = k + 1,

which completes the induction. O

Corollary PSH.22.2. Every open segment /j\f} contains an infinite number of

points.

Proof. Suppose AB is a finite set having n elements; by two applications of
Theorem PSH.22 there exist points M and M’ of AB such that A—-M—M’—B. Thus
if there are n elements of Aré, n > 2. By Corollary PSH.22.1, there exists a subset 3
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offTBg having 2" — 1 elements; if B is a proper subset of/]#?, 2" -1 <nif B= fjl_é
then 2" — 1 = n; in either case, 2" — 1 < n which is false. Therefore AB is an

infinite set. O
Corollary PSH.22.3. Every convex set which is not a singleton is infinite.

Proof. This is immediate from Corollary PSH.22.2 above and Definition IB.9. O

5.5 Uniqueness of endpoints and edges

We said in IB geometry that it is possible to have a single ray with more than one
endpoint or a single segment with two different sets of endpoints. The next set of
theorems proves these situations can’t happen in Pasch geometry.

The thoughtful reader might ask why it is necessary to prove that the endpoint of
aray is unique, or the set of endpoints of a segment is unique. After all, these matters
seem “intuitively obvious,” being well specified in Definitions IB.3 and IB.4. The
answer lies in the fact that we may define rays and segments either geometrically,
as we do in their definitions, or as sets of points without reference to endpoints.

If in a proof, two segments are shown to have exactly the same points it may
become important to know that the endpoints of one are the same as the endpoints
of the other. The particular circumstances of a given proof may or may not make it
easy to show this; but it would be better to have settled the issue once and for all.

The method we use to do this is to first identify those points designated as end-
points in the definitions of rays and segments; then prove (in Theorem PSH.23) that
these endpoints have certain properties, and finally (Theorems PSH.24 and PSH.25)
prove that no points other than the original endpoints have those properties.

In an analogous manner, Theorem PSH.32 proves certain properties of corners
(of angles, triangles, or quadrilaterals) and Theorems PSH.33, PSH.34, and PSH.35
show that no other points have these properties.

Theorem PSH.23. Let P be a Pasch plane, let € be a ray or a segment on P, let

L be the line containing &, and let U be an endpoint of £. Then there exist points V
gy 3

and W such that W-U-V, UV C &, and WU C L\ €£.

Proof. 1f £ is a ray, let V be any point of the ray other than U. If £ is a segment,
let V be the other endpoint of £. Definitions IB.3, IB.4, and Theorem PSH.16 show
that exactly one of the followmg statements is true:

e = UV )¢ = UV B3¢ = UV @éE = UV 5¢E = UV 6)& = ov.



102 5 Pasch Geometry (PSH)

() By Remark 1B.4.1, jU—\E is a subset of each of the above six sets.

(II) By Properties B.1 and B.3 of Definition IB.1 there exists a point W such that
W-U-V. Let Y be any member of JW—ZEJ so that by Definition IB.3 W-Y-U.
By Theorem PSH.8(A), W-Y-U and W-U-V imply Y-U-V. By Property B.0
Y € L, but referring to Definitions IB.3 and IB.4, we see Y doesn’t belong
to any of the six sets enumerated above. Hence Y € (£ \ £). That is to say,
gl
WU C L\ €. |

Theorem PSH.24. Let A and B be distinct points on a Pasch plane P.

(A) A is the unique endpoint of A? and ofA%; and
(B) ifA, B, C, and D are points on P such that A # B, C # D, and AB = t'—D> then
A= CandB e CD.

Proof. (A)Let& = AB or &= AB. We note first that if U is an endpoint of £, then
U e A_B) For by Exercise PSH.47(A), if U ¢ A_B), then for every point V in P,
]U_\)/ is not a subset ofA_B>. By Theorem PSH.15, £ C A_)B so by Definition IB.4,
U is not an endpoint of £. Hence our task is to prove: if U is any member of
AB \ {A}, then U is not an endpoint of £.

By Properties B.1 and B.3 of Definition IB.1 there exists a point C such that
C-A-B. By Theorem PSH.15 A_I)Q ﬂA_C)‘ = . Assume that U is an endpoint for
Aﬁ or A?, and U # A; by Theorem PSH.15 either U € Aﬁ orU € A_C)‘

(Case 1: U € A_I)B.) By Theorem PSH.22 there exists a point P such that
A-P-U, and by Property B.3 there exists a point Q such that A-U-0. By
Theorem PSH.8(A) A-P-U-Q. By Deﬁmtron IB.4 both P € AU and Q € AU
so by Theorem PSH.18 (convexity) PQ c ﬁ Also by Theorem PSH.16
AU = AB.

Since U is an endpoint of &, then by Theorems PSH.23 and PSH.15, there
is a point W such that jW—U - A_é .

Since P-U-Q and W # U, we may apply Theorem PSH.21 to conclude that
]U—V[V N }]ﬁ is a (nonempty) open segment. And since IJJ_Q[ - A_é, ]U—VEV N }]’_é -
A%, which is disjoint from A_C)‘, and hence from EWI; so we have a contradiction,
showing that U is not an endpoint for &.

(Case 2: U € A_C)'.) Since U is an endpoint of £, by Theorem PSH.23 there
is a point V such that ]lﬁE/ c&C AB.

By Property B. 3 we may let X be a point such that X—U—A By Theo-
rem PSH.21 UV ﬂAX is a nonempty open segment. Since X € AC AX AC
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and hence by Remark 1B.4.1(h) A_)[( - A?( = A_C)' and jU—\[/ N A_)[( - A_C> which is
disjoint from A_B, hence from UV. This is a contradiction, so again, U is not an
endpoint for £.
Therefore no point other than A can be an endpoint for AB or AB.
(B) Asserting A = C is simply a restatement of part (A). Since B # A and A = C,
B # C. But then by Definition IB.4, B € CD. O

We may henceforth refer to the endpoint of a ray.

Theorem PSH.25. If A and B are distinct points on a Pasch plane P, then {A, B}
is the set of endpoints of each of the segments AB, AB, AB and AB This can also be
stated as follows: If A, B, C, and D are points on a Pasch plane P such that A # B,

C # D, and AB = CD, then {A, B} = {C, D).

Proof. By Exercise PSH.47(B), if a point U does not belong to the line A_B), then
it is not an endpoint of any of the segments in the theorem Therefore, yet another
way of stating the theorem is: If U is any member of AB \ {A, B}, then U is not an

r 33 B ]
e

endpoint of any of the segments AB, AB, AB or AB

Let £ = AB or £ = AB or £ = AB or £ = IETB;, and assume U is an
endpoint of £ different from A or B. By Property B.3 of Definition IB.1 there exist
points C and D such that C—A-B (or B—A—-C) and A-B-D. By Theorem PSH.15(B),
A<_B) = 1]374 U]Bﬁ U{B}, and the sets in this union are disjoint. Since B-A-C, by
Theorem PSH.13(D) and Exercise 1B.3, BA = {A} U ABUA_C)', and these sets
are disjoint by Theorem PSH.15(B). Putting this into the preceding equality gives

={A,B} U ACUABU BD and the sets in this union are disjoint.

Since U is an endpoint of £ and U ¢ {A, B}; there are three cases: U € A_B,
U e A_C)’, and U € B_D) We show that these are all impossible.

(Case I: U € A_B.) By Theorem PSH.23 there exists a point W such that ]VWL; c
A_B \ €& C ﬁ \ArB that is, %HAB = (. On the other hand, since A-U-B, and
W # U, we may apply Theorem PSH.21(C) to conclude that ]VW; OAB is an open
segment, and thus nonempty. This contradicts the previous sentence; therefore U
cannot be an endpoint for £.

(Case II: U € A_C)‘.) By Theorem PSH.16 A_C)‘ = A_l)] By Property B.3 of
Deﬁnit%gr)l IB.1 there exists a point P such that P-U-A; then P € A@ SO A? =
AU = AC.
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By Theorem PSH.23 there exists a point V # U such that v c€&C AB. By
Remark IB.4.1(d) and (h) AB C AB and by Theorem PSH.15(B) AB N AC = @
jU—\E and 24_6)' are disjoint.

On the other hand, since P-U-A, and V # U, we may apply Theorem PSH.21(C)
to conclude that jU—\E/ ﬂfjﬁg is an open segment, and thus nonempty. But by
Remark IB.4.1(h) ﬁ C EA_F)’ = BA_C)‘ so that ]U_\L; 0134_C> is nonempty. This contradicts
the fact that jlﬁE/ and 24_6)' are disjoint, and therefore U cannot be an endpoint for £.

(CaseIII: U € %3_D).) The proof in this case is just like that for Case II and can be

obtained from it by replacing every “A” by “B” and every “C” by “D.” O
We may henceforth refer to the endpoints of a segment.

The next theorem goes back to the scenario involving a line £ in a Pasch plane
& and the two sides of L. It confirms some concepts we ordinarily carry in our
intuitive picture of this situation. In particular it assures us we may refer to the edge

of a given halfplane.
Theorem PSH.26. If L is a line in plane P, and if H is a side of L, then:

(A) H contains at least three noncollinear points; and
(B) L is uniquely determined by H, i.e., there exists no line distinct from L which
is an edge of H.

Proof. (A) By Axiom L5 there exist distinct points P and Q on L. By Defini-
tion IB.11 there exists a point R belonging to . By Theorem IB.14 PR and jQ_I)Q
are each contained in H. By Theorem PSH.22 (denseness) there exist points S
and T such that P-S—R and Q-T-R. By Definition IB.4 § € I]’_I)Q and T € jQ_I>€
Hence S € H and T € H by Theorem IB.14.

By Theorem IB.5 S € ﬁ Now if R, S, and T were collinear we would have

T € ﬁ Since T € <Q_I>€ by definition we would then have T € % N Q(_I)Q But
by Exercise 1.1, PR N Q<_>R = {R}. This contradicts the definition of T so our
assumption that R, S, and T are collinear is false, hence they are noncollinear.

(B) Let H be a side of a line £, and suppose £’ # L is another edge of H.
Since £ # L[/, there is at least one point P on £’ which is not on £. By
Theorem PSH.12 £ has another side 74*. We have assumed that £’ is an edge
of H, so by Definition IB.11, P ¢ H. By Theorem PSH.12, P € H*. Also
by Theorem PSH.12 there exists a point Q in H such that for some point R,
;J’_QE NL = {R}, since P and Q are on different sides of L.
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By Theorem IB.14, }J’_Q> C the Q-side of £ and since R € }J’_Q[ - Ij’_Q) R
belongs to the Q-side of £ = H. Here we have used Theorem PSH.13(D).
Since Q € H (the Q-side of L), R € H by Theorem PSH.12. But since R € L,
and L is an edge of H, R & H, a contradiction.

Hence our assumption £ # £’ is false. |

5.6 Uniqueness of corners of angles, etc

Definition PSH.27. Let A, B, C, and D be points such that A # B and C # D. The
rays AB and CD are opposite iff A = C and B-A-D.

Theorem PSH.28. Let A, B, and C be distinct points such that;\? #* :TC) Then %
andArC) are opposite iff A, B, and C are collinear. This is equivalent to saying that
ﬁ and AC are nonopposite iff A, B, and C are noncollinear.

Proof. 1f AH>B and AH)C are opposite, then B-A—C by Definition PSH.27, and therefore
A, B, and C are collinear. Conversely, if A, B, and C are collinear and ;\ré #* ;TC), by
Theorem PSH.16 B ¢ AC and C ¢ AB. Therefore neither A—B—C norA—C—B so that
by the Trichotomy Property B.2 of Definition IB.1, B-A-C. O

Definition PSH.29. An angle is the union of two distinct nonopposite rays having
the same endpoint. The common endpoint of the rays is the corner of the angle.

By Theorem PSH.28, £ is an angle iff there exist noncollinear points A, B, and C
such that £ = ;\ré U ;4"—6)’ In this case, £ is denoted by ZBAC.

Notice how our definition excludes both what are sometimes called a “straight
angle” and a “zero angle” in high-school geometry. What is usually called a “reflex
angle” could be considered as a kind of “complement” to what we call an angle. The
inside of a reflex angle would correspond to the outside of the “complementary”

angle. Here we are using the terminology to be introduced in Definition PSH.36.

Theorem PSH.30. IfA, B, and C are noncollinear points and if D and E are points
such that D € 2@ and E € 24_6)', then /DAE = Z/BAC.

Proof. This theorem is an immediate consequence of Theorem PSH.16 and Defini-
tion PSH.29. o
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Definition PSH.31. A subset £ of a Pasch plane P is a quadrilateral iff there exist
points A, B, C, and D on P such that all three of the following are true:

(1) each of the triples {A, B, C}, {B,C,D}, {C,D,A}, and {D,A, B} is a set of
noncollinear points;

(2) ABNCD = BCN DA = 0

(3) £ =ABUBCUCDUDA.

If £ is a quadrilateral, then it is denoted by OABCD or (A, B, C, D). A point U is
a corner of & iff there exist points V, W, and X such that £ = OUVWX.

A segment J is an edge of & iff there exist corners U and V in & = OABCD
such that 7 = W C £.Edges J and K in a given representation of £ are opposite
iff 7N K =4a.

Corners U and W are opposite iff U]—WE NE = 0. A segment 7 is a diagonal of £
iff there exist corners U and W of £ such that U and W are opposite and J = %JTA}

£ is rotund iff for every line £ containing an edge of £, the corners of £ not on
L are on the same side of L.

A quadrilateral £ is a trapezoid iff there exist opposite edges &£ and &, of £ such
that if £, is the line containing £; and £ is the line containing &,, then L || £,.

Theorem PSH.32. Let £ be an angle, a triangle, or a quadrilateral in a Pasch
plane P, and let U be a corner of £. Then there exist points V and W such that U, V,
and W are noncollinear, and W U [UTV C &. Furthermore, there exist points V' and

— 13— I 13—
W’ such that V'-U-V, W -U-W, and UV’ U UW’' C P\ E. That is, (UV' U UW’') N
E=0.

Proof. (Case 1: £ is an angle and U is a corner of £.) By the remark following
Definition PSH.29 there exist points V and W such that U, V, and W are noncollinear
and £ = ZVUW = WU WV By Corollary 1B.5.2 [U\;U %]V[} - FUr\)/U WV =¢£,
which is half of what we wished to prove in this case.

By Property B.3 of Definition IB.1 there exist points V' and W’ such that V-U-V’
and W-U-W'. By Theorem PSH.15 and Remark [B.4.1(1) TV\TV = UV and
UW\ UW UW’ Hence

UV UUW = (OV U TW)\ GV uTW) = TVu W\ e c P\ &;
here we have used a number of facts about unions, relatlve complements and
subsets from elementary set theory, as well as the fact that UV N UW = {U}. By
Corollary 1B.5.2, UV’ U UW’ CP\E.
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(Case 2: £ is a triangle and U is a corner of £.) By Definition IB.7 there exist
points V and W such that U, V, and W are noncollinear and £ = W U [Uiﬂ} U %/T/I}
Hence [Uﬁl; U [UTI} C &, which is the first statement we wished to prove in this case.

By Property B.3 of Definition IB.1 there exist points V' and W’ such that V—U—V’
and W—U—W/ By Theorem PSH.15 and Remark 1B 4. l(f) UV \ U ﬁ = UV’ and
UW\ Uw = UW’ By Corollary IB.5.2 oV uow c UV U UW and UV’ U UW’
W U W Using an argument similar to Case 1 above we get W U W CP\E.

(Case 3: £ is a quadrilateral and U is a corner of £.) By Definition PSH.31 there
exist points U, V, W, and X such that U, V, and W are noncollinear; V, W, and X
are noncollinear; W, X, and U are noncollinear; W DW = [UTE n %/T/I} = (J; and
E = [Uﬁl; U W U %/Wg U % . Hence W U %7)2 C &, which completes the first part of
the proof in this case.

We now show that there exists a point V' such that V-U-V’ and ]U—Vg C(P\&).
First note by the noncollinearity conditions above and Exercise I.1 (Iﬁ)/ N (lﬁ)( = {U}
and UVNVW = {V}. By Property B.3 of Definition IB.1 there exists a point 7 such
that V-U-T. If W and X are on the same side of (lﬁ)/, then by Theorem PSH.12 [17)?
is a subset of a side of W, SO %’Wg ﬂ(U_I)/ = (. If we put these statements together
we get £ N (Iﬁ)/ = W By Theorem PSH.15(C) [Uﬁ\; N jU_T[ = . Hence if we take
V/ = T, we have UV’ C (P \ &),

If W and X are on opposue sides of UV then by Theorem PSH.12 there exists
a point S such that UV nWwx = {S}. Then by Property B.2 of Definition IB.1
S-U-V, or U-S-V, or U-V-S. But the second of these possibilities is ruled out by
the definition of a quadrilateral (PSH.31). The same definition tells us £ N iﬁ)/ =
rUﬁ\}U{S}. Now if U-V-S we take V' to be the point T defined above, so that by
Theorem PSH.8(B) V/-U-V-S and by virtue of what has just been said, W C
P\ &, and we are done. In case S—-U-V we know by Theorem PSH.22 (denseness)
there is a point V’ such that S~V’—U. Then by Theorem PSH.8(A) S-V'-U-V, and
by reasoning similar to that above, we again get JU—V[’ CP\E. O

Theorem PSH.33 (The corner of an angle is unique). Every angle has exactly

one corner.

Proof. By Definition PSH.29, an angle is the union of two distinct nonopposite rays
having the same endpoint. The corner of the angle is defined to be this point of
intersection.

Each of these rays defines a line; the two lines so defined are distinct because

the rays defining them are distinct and nonopposite; they must intersect because the
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rays intersect. A corner of the angle must be a point of intersection of the rays, and
therefore a point of intersection of the two lines. By Exercise 1.1 there is only one

such point. O

Theorem PSH.34. Let A, B, and C be noncollinear points on a Pasch plane P;
then the set of corners of AABC is {A, B, C}.

Proof. By Definition IB.7, a point U is a corner of a triangle AABC iff there exist
points V and W such that U, V, and W are noncollinear and AUVW = AABC. This
shows immediately that A, B, and C are corners of AABC.

If U is any corner of AABC, U, V, and W are noncollinear and AUVW =
AABC, then by definition the edge W is a subset of AABC. By two successive
applications of Theorem PSH.22 we see that W contains at least four points, so
that at least two of them belong to the same line A<_B) /(X_C)' , or B(_C>' . Therefore by
Exercise 1.2, W is a subset of one of these lines. Similarly, %JTA} is a subset of one
of these lines. Since U, V, and W are noncollinear, these segments are subsets of
different lines.

It follows that any corner of AABC belongs to two of the lines A(_)B . 1(4_C>' , Or B(_é .
The only points which satisfy this criterion are A, B, and C. Therefore these are the

only possible corners for the triangle. O

It is possible to construct a different proof of Theorem PSH.34 using
Theorem PSH.32. See Exercise PSH.58.

Theorem PSH.35. Let A, B, C, and D be points on a Pasch plane P such that A, B,
and C are noncollinear, B, C, D are noncollinear, C, D, and A are noncollinear, D,
A, B are noncollinear, and that 1[478; N ECiD] = 1[47D3 N %’? = (. Then the set of corners
of DABCD is {A, B, C, D}.

Proof. All the points A, B, C, and D are corners of JABCD by Definition PSH.31,
and every corner of DABCD is a point of DABCD. Therefore all that is needed to
prove the theorem is to show that no member of EA{B u IJSTC[‘ U E’J—D[ ) ]D_A[ is a corner of
OABCD.

Choose the notation so that U € ﬁ, that is, A—-U-B, and assume U is a corner of

OABCD. From this point on the proof is identical to that of Theorem PSH.34. O
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Definition PSH.36. Let A, B, and C be noncollinear points in a Pasch plane P =
<«
ABC.

(A) The inside of ZBAC (notation: ins Z/BAC) is ABC N ACB.
The outside of ZBAC (out ZBAC) is ABC \ (£BAC U ins ZBAC).
The enclosure of ZBAC (enc ZBAC) is ZBAC U ins ZBAC .
The exclosure of /BAC (exc ZBAC) is ZBAC U out ZBAC.

(B) The inside of AABC (ins AABC) is ABC N ACB N BCA.
The outside of AABC (out AABC) is ABC \ (AABC U ins AABC).
The enclosure of AABC (enc AABC) is AABC U ins AABC.
The exclosure of AABC (exc AABC) is AABC U out AABC.

A consequence of this definition, which we will state as part (B) of Theo-
rem PSH.41, is that ZBAC, ins ZBAC, and out ZBAC are disjoint sets whose union
is P. Similarly, the consequence that AABC, ins AABC, and out AABC are disjoint
sets whose union is P is part (B) of Theorem PSH.46. The next theorem shows that

a segment connecting a point on each ray of an angle must intersect its inside.

Theorem PSH.37. Let A, B, and C be noncollinear points, let P € 24_1)9, and Q €
AC. Then PO C ins Z/BAC.

Proof. By Theorem IB 14, Q € AC C the C-side of AB ABC and l1kew1se P e
?4% C the B-side of AC ACB By the same theorem PQ - ABC and QP - ACB
By Exermse IB.8, Definition PSH.36, and elementary set theory, f]’_Q[ IJJ_Q) N jQ_I)D -

ABC N ACB = ins ZBAC. See Figure 5.1.

O

Corollary IB.37.1. Let A, B, and C be noncollinear points. Then ins ZBAC # (.

Proof. Since P and Q are distinct points, by Theorem PSH.22 there is a point R such
that P-R—-Q and R € PQ C ins ZBAC. O

Fig. 5.1 For
Theorem PSH.37.

cinsZBAC
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Theorem PSH.38. Let A, B, and C be noncollinear points.

(A) ;E)f N AITC)‘ = A_é; that is, if P is on a side of a line, A_f’ is the intersection of
A_>P with that side.

(B) If P € ins ZBAC, then AP = AP N ins ZBAC = AP N ABC NACB.

(C) If P is on the C-side of ﬁ, and if B and C are on opposite sides of A_B, then
P € ins ZBAC.

Proof. (A) By Property B.2 of Deﬁmtron IB.1 there exists a point C" such that
J—
C-A-C'. By Theorem IB. 14, AC - ABC andAC’ c ABC’ By Definition IB.11
the C-side and the C’-side are opposite sides of AB and therefore by Theo-
rem PSH.12 these two sides are disjoint. Hence AC' NABC = . Also A € AB
. < T SEI
and again by PSH.12 AB N ABC = ) so A ¢ ABC. By Theorem PSH.15 and
the distributive laws for union and intersection,
<> 3 1> I— —
ACNABC = (AC U{A} UAC) N ABC
(AC ﬂABC) ({A} N ABC) U (AC’ ﬂABC)
AC U{ALN ABC) U (AC/ ﬂABC)
= AC ugug = AC.

(B) By Definition PSH.36 P € ins ZCAB = ABC NACB. By part (A), AP = AP N
ABC andA_f)’ = A_f)’ﬂACB so by elementary set theory, A_B = ﬁﬂABC NACB.
(C) Since B and C are on opposite sides of ;ﬁ)’ by Axiom PSA there exists a point
<> 1L > . <>
Q such that {Q} = AP N BC. By Theorem IB.14, BC € C-side of AB, so that
. <> 3—> <>  I—
0, C, and P are on the same side of AB. By part (A) AP = AP N ABC so that
(OX= IJA_B By Theorem PSH.37, BC C ins ZBAC, hence Q € ZBAC and by part
(B) P € ins ZBAC.
O

Theorem PSH.39 (Crossbar theorem). Let A, B, and C be noncollinear points. If
P is any member of ins ZBAC, A? N BC is nonempty and therefore a singleton {Q}.

Proof. For a visualization see Figure 5.2. By Property B.3 of Definition IB.1 there
exists a point B’ such that B-A-B’. By Axiom L1, A% = BB. o
Observe first that B, B, and C are noncollinear forif they Were collinear A€ BB
would be colhnear with B and C. Since P ¢ AB P ¢ BB’ and AP N BB/ = {A}.
Therefore AP intersects BB’ and by Theorem PSH.6, AP must 1ntersect either
CB or J@g By Corollary IB.14.2, both these sets lie on the C-side of BB/ Also P
lies on the same side, since P € ins ZBAC, and by Theorem IB.14, so does AP, the
intersection of A_f)’ with the C-side of ﬁ . Thus ]A? must intersect either CB or 3673;
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Fig. 5.2 For
Theorem PSH.39.

By Definition IB.11, B and B’ are on opposite sides of A_C)', and by Theo-
rem PSH.10 the B-side and B’-side are disjoint. By Corollary 1B.14.2, 3679[’ lies on
the the B’-side of 1(4_6)‘, whereas 15[5 lies on the B-side. Since P also lies on the B-side,
34_1)’ is also on that side and hence intersects 3C7§ at some point Q.

If there were a second such point @', both would belong to <A_1)5’ N B<_C)' and by

Exercise 1.1 ;ﬁ)’ = B(_C>' which is impossible since A, B, and C are not collinear. O

Corollary PSH.39.1. [f, in Theorem PSH.39, Q is the point such that AP N BC =
(0}, then AP N BC = {Q} and O € ins ZBAC.

Proof. By Corollary 1B.5.2, AP is a subset of AP and % is a subset of 1<3_C>’ so that

3> 3L <> <> . <> <> . <> $A
Q € APNBC <€ AP N BC. By Exercise 1.1 AP N BC = {Q}, since AP # BC.
Q € ins ZBAC by Theorem PSH.37. O

Corollary PSH.39.2. IfA, B, and C are noncollinear points and if P € ins ZBAC,
then B and C are on opposite sides of the line 1<4_1>’

Proof. By Theorem PSH.39, AP intersects BC at some point Q. By Definition IB.11,
B and C are on opposite sides of 1(4_1)’ O

Theorem PSH.40. Let A, B, and C be noncollinear points, let P € 2\% and Q € 2\_6)'
Then PO N ins /BAC = PO.

1 <>

Proof. By Theorem PSH.37 }J’_QE C ins ZBAC, and since PQ C PQ,
PO < PO Nins ZBAC.
Conversely, if X € f(’_)Q N ins ZBAC, by the Crossbar theorem PSH.39 there is
a single point Y such that {Y} = AXNPQO C AX N PQ. Since X € AX and X €
IS_)Q,Xeﬁ(ﬁI(J_Q)sothatbyExerciseI.l,X: Y € PQ. O

The following theorem says that insides and outsides of angles behave “as they
should.” It says (A) the lines containing the edges of an angle do not intersect its
inside (but they do intersect its outside); (B) an angle is disjoint from its inside and

outside, and the inside and outside are disjoint. (C) The inside of an angle is defined
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in PSH.36 as the intersection of two half-planes; here we show that its outside is
the union of the opposite halfplanes. Part (D) states that when we make an angle

“smaller,” the inside does indeed get “smaller” and the outside gets “bigger.”
Theorem PSH.41. Let A, B, and C be noncollinear points. Then

(A) (AB UAC) N ins ZBAC = 0;

(B) ins ZBAC U ZBAC U out ZBAC = P, and the sets in this union are pairwise
disjoint; that is to say, an angle, its inside and its outside are mutually disjoint;

(C) out LBAC = £ U F, where & is the side ofA<_B> opposite C and F is the side of
:\_)C opposite B; and

(D) if D € AB Uins /BAC and E € AC Uins ZBAC, then ins ZDAE < ins /BAC
and out ZBAC C out ZDAE.

Proof. (A) By Definition PSH.36, ins ZBAC = ABC N ACB. By Theorem PSH.12,
AB NABC = @ and AC N ACB = {). Hence a point on either of these lines
fails to belong to at least one of the sides listed, and thus fails to belong to their
intersection ins ZBAC.

(B) That the union of the sets equals P follows immediately from Defini-
tion PSH.36 (A). We examine each pair of sets to see that each pair is disjoint:

(1) ZBAC N ins ZBAC = 0 since ZBAC C AB U AC and by part (A), (AB U
AC) Nins ZBAC = 0

(2) by Definition PSH.36, out ZBAC N (£BAC Uins ZBAC) = @ and therefore
out ZBAC Nins ZBAC = @ and out ZBAC N ins ZBAC = .

(C) To prove this part we consider two cases:

(Case 1: X ¢ ABUAC .) Then X ¢ ZBAC and since by definition

out ZBAC = P \ (£LBAC U ins ZBAC),
X € out ZBAC < X ¢ ins ZBAC < X ¢ ABC NACB
SXefoXeFo&XelUF.
(Case 2: X € ﬁ u ;X_)C.) Then
X e out LBAC & X ¢ /BAC < X-A-B or X-A-C,
which follows from part (A) above and Definition PSH.29.
Now by Definition IB.11, X—A—B means that X is on the side of ;1_6)‘ opposite

B, that is, X € F. By a similar argument, X-A—-C means that X € &. Thus

XeoutZBAC & X e EUF.
(D) First we will show that ins ZDAE C ins ZBAC.
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C

E

A

P

D

. B

Case 2: If P € ins ZBAE Case 3: If P e insZDAFE

then P € ins ZBAC then P € ins ZBAC

Fig. 5.3 For Theorem PSH.41(D).

(Case 1: Both points D and E belong to ZBAC.) (Note that by hypothesis D
and E cannot belong to the same ray in ZBAC). In this case the proof is trivial.

(Case 2: Either D € 34_1)9 and E € ins ZBAC, or E € 34_6)' and D € ins ZBAC.)
Since the two alternatives are symmetric it should be sufficient entertainment
to prove only the first one. For a visualization see Figure 5.3.

E € ins ZBAC < ABC so by Theorem PSH.12 ABE = ABC. That is, the
E-side and the C-side of AB are the same.

Let P € ins ZBAE = ﬁ ﬂm = EXFC)' ﬂm. Then P belongs to the
B-side of AE .

P is also on the E = C-side of ﬁ If }J;Bg were to intersect fA_C)‘ , it would
necessarily intersect 2{_6)' because the intersection would lie on the C-side of
AB and Z_C)‘ N m = 1]4_5 by Theorem PSH.38. But134_C)‘ is on the side of AE
opposite B because C and B are on opposite sides of /(E?) by Corollary PSH.39.2.
Therefore PBNAC = 0.

It follows from Definition IB.11 that P and B are on the same side of 1(4_6)‘, SO
Pe 2@ and hence P € ins ZBAC.

(Case 3: Both D and E belong to ins ZBAC.) We may choose the notation so
that E € C-side ofﬁ. By Theorem PSH.12

both D and E belong to ?UTC)' so that ?4?6)‘ = f@ = ﬁ,
and
both D and E belong to Qfé so that ;ﬁ = ;J\—Cﬁ = ﬁ
Since E € IJAFD) and by our choice of notation E € Zﬁc), E € ins ZDAC.
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Also, by Corollary PSH.39.2, C and D are on opposite sides of 1(4_1)5, and
by assumption E € ins ZBAC so by the same corollary, C is on the side of ;ﬁ)f
opposite B. Therefore D is on the B-side of 1(4_)E ,(De ;ﬁ) and since D € /le—E>,
D € ins ZBAE.

Then if P € ins ZDAE, we apply Case 2 to ZDAC to get P € ins ZDAC. We
apply Case 2 again to ZCAB to get P € ins ZCAB, proving Case 3.

Finally, we show that out ZBAC C out ZDAE. We have already shown that
ins ZDAE C ins ZBAC. By definition of D and E, we know that ZDAE C
ZBAC U ins ZBAC. Taking unions, we have

/DAE U ins ZDAE C /BAC U ins ZBAC,
and taking complements, we have by Definition PSH.36
out ZBAC C out ZDAE,

which is the desired result. O
Corollary PSH.41.1. Every angle is nonconvex.

Proof. Let ZBAC be any angle, and let P € ﬁ, and QO € A_C)‘; then by
Theorem PSH.37 and Theorem PSH.22 there is a point R € IJJ_Q[ C ins ZBAC,
and by Theorem PSH.41(B) ins ZBAC and ZBAC are disjoint so that R ¢ ZBAC.
Then I]’é is not a subset of ZBAC and by Definition IB.9, ZBAC is not convex. O

Theorem PSH.42. Let P and Q be distinct points, and let H be a side of }<)_Q) Let
A and B be members of H U I<’_Q> such that A, B, and P are noncollinear. Then
ins ZAPB C H.

Proof. Exercise PSH.30. See Figure 5.4. O
Line ?6 Line éﬁ@
" “Q
P
Case 1: A and B in H Case 2: A€ H and B € PQ

Fig. 5.4 For Theorem PSH.42.
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The following theorem summarizes the possible ways that a line can intersect an

angle.

Theorem PSH.43. On a Pasch plane, let L be a line and ZBAC be an angle; if
L N £LBAC # @, then L N £BAC is exactly one of the following alternatives:

(1) the single point A where L N ins ZBAC = {; in this case, the sets ZBAC \
{A}?(é?ﬁ_c)' and ins ZBAC all are subsets of the B-side (= C-side) of L;

(2) a single point P where L N ins ZBAC # @, in this case, P may be any point of
ZBAC; let Q # P and Q € L Nins ZBAC;, then

(a) PO = £ Nins ZBAC,
(b) {X |X—P-Q} = L N out ZBAC, and
(©) £ = PO = {X |X-P-QJU{P} U P);

(3) exactly two points P and Q, in which case

(a) no ray of ZBAC contains both P and Q,

(b)y P£EAF#Q,

(¢c) PO = £ Nins ZBAC,

() {X [X—P—-Q} U {X |[P—-0-X} = £ N out ZBAC, and

() £ = PO = {X |X-P-0} U {P} UPQU{Q} U {X |P-0-X;

(4) more than two points, in which case
(a) L contains an entire ray of ZBAC, and

(b) £LNins ZBAC = 0.

Proof. Tt is clear that exactly one of the alternatives (1), (2), (3), or (4) holds. For a

visualization see Figure 5.5.

L
\ B B
3 L
A b
\ c Lo
Alt. (1) Alt. (2) Alt. (4)

Fig. 5.5 For Theorem PSH.43.
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Suppose the intersection is the single point A and £ N ins ZBAC = @. If there
are points P and Q € ZBAC that are on different rays of the angle and are on
opposite sides of £, then by Axiom PSA there exists a point R € }TQE NL. By
Theorem PSH.40 R € ins ZBAC which is impossible by hypothesis.

If there are points P and Q € ZBAC that are both on one ray of the angle,
and are on opposite sides of £, then by Theorem PSH.12(IV)(B) there is a point
R € L belonging to that ray, and R # A. But by hypothesis, there is only one
point of intersection between ZBAC and L, so this is impossible.

Therefore all the points of 2\% and /]\_C)‘ are on the same side of £, and by
Theorem PSH.42, ins ZBAC is on that same side.

Since Q € ins ZBAC, by Theorem PSH.41(A) Q ¢ ZBAC; Q is a member of
both ABC and ACB by Definition PSH.36, so by Theorem IB.13, PO C ABC
and }TQ) C 2@; thus }TQ) C ins ZBAC (Definition PSH.36) and }J’_Q) cLnN
ins ZBAC. Similarly, if X—P-Q, X belongs to at least one of the sides opposite
to ?{ZTCZ or ;ﬁ and hence (PSH.41(C)) to out ZBAC, so that {X |X-P-Q}
C L N out £ZBAC. Equality (c), and consequently (a) and (b) follow from
Theorem IB.5.

If £ N ZBAC contains exactly two points P and Q, not both of them can be
in the same ray because then £ would contain that ray by Axiom I.1 and their
intersection would contain more than two points. Hence neither P nor Q is
equal to A, establishing (a) and (b).

Assume for convenience that P € EA_B? and Q € EA_C)’ If X—P-Q, then X
is on the side of zﬁ opposite Q, that is, opposite C. Likewise, if P-Q-X,
then X is on the side of fA_)C opposite P, that is, opposite B. It follows that
{X | X-P-Q} U {X |P—Q—X} C L Nout £ZBAC, by Theorem PSH.41(C). Also,
by Theorem PSH.40, PQ L N ins ZBAC. The equalities (d) and (e) follow
immediately from Theorem IB.5.

If £ N ZBAC contains more than two points, at least two of them must lie on
the same ray and hence that ray is a subset of £. Then (b) follows immediately
from Theorem PSH.41(A). O

Theorem PSH.44. Let A, B, C, P, and Q be distinct points where A, B, and C are

noncollinear.

A)
(B)

If P € ins ZBAC and Q € out ZBAC, then }J’_é NZ4BAC is a singleton.
IfA ¢ PO, and if PONZBAC = {R) for some point R, then P € ins ZBAC if
and only if Q € out ZBAC.
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See Figure 5.6. Notice that there is nothing in Theorem PSH.44 that guarantees

that every line intersecting ins ZBAC must intersect ZBAC. This, however, is true

for a Pasch plane where Axiom PS holds, as will be proved in Theorem EUC.2.

Fig. 5.6 Showing four
possible locations for a
segment.

<>
Proof. (A) The line PQ contains a point of ins ZBAC which rules out alternatives

(B)

(1) and (4) of Theorem PSH.43.

If alternative (2) holds, F<’_>Q N £ZBAC = {R} for some point R; P € ins ZBAC
and Q € out ZBAC so by Theorem PSH.43(2)(b) O—-R-P so R € ;J’_QE, and there
is only one point of intersection of ZBAC with IJ'TLQr because there is only one
with PO.

If (3) holds, F<’_Q> contains exactly 2 points R and S of ZBAC, which must

belong to two different rays, say R € AH)B and § € AH)C Then by Theo-
rem PSH.43(3)(c) R—P-S, since P € ins ZBAC. By part (3)(d) either Q—R—-P-S
or R—P-5-Q, because Q € out ZBAC. In the first case, PQ N4ZBAC = {R} and
in the second case PQ NZBAC = {S} and in either case the intersection is a
singleton.
We look first at F<’_Q> Note first that A ¢ F<’_)Q, for otherwise I(J_)Q would contain
a ray of ZBAC and JE‘TQ] would then contain many elements of ZBAC, which
contradicts the hypothesis that %TQ] NZBAC = {R}. Therefore alternative (1) of
Theorem PSH.43 is ruled out. If I(J_)Q contains more than two points of ZBAC,
then it would contain one of the rays and hence A, so alternative (4) is also
ruled out; thus either alternative (2) or (3) holds.

If alternative (2) of Theorem PSH.43 holds, F<’_)Q N 4ZBAC = {R}. Now
O-R-P so by (2)(b), if P € ins ZBAC,Q € outZBAC. Conversely, if
QO € out ZBAC, then there exists some P’ € ins ZBAC such that 0—R—P’ (in
alternative (2), the line intersects the inside of the angle). By Corollary PSH.8.2
we have either Q—R-P-P’' or Q—R—P'—P. In either case, P € ;!7’)’ = I(@)’ N
ins ZBAC by Theorem PSH.43(a).
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If alternative (3) holds, there is a p01nt S # R such that PQ N ZBAC =
(R, S}. If P € ins ZBAC, by (c) P € RS, then R—P—S. We know that O-R—P 5o
O-R-P-S and Q—R-S and hence, by (3)(d), O € out ZBAC.

Conversely, suppose Q € outZBAC. By hypothesis, P # R and
P # S because 5TQ] NZBAC = {R} # {S}. Since Q is outside, by
Theorem PSH.43(3)(d) we have either Q—R-S or R—S—Q. The last is impossible
because O—R—P yields P-R—-S—Q which would force two intersections of %TQJ
and ZBAC.

Therefore Q—R-S and again using Q—R—P either Q—R—P—S or Q—R—S-P, by
Corollary PSH.8.2. Again, Q—R—S—P is impossible, because it would force two
intersections of %Té and ZBAC. Therefore we have O—R—P—-S which shows that
P € ins ZBAC, by Theorem PSH.43(3)(c). O

Theorem PSH.45. Let A, B, and C be noncollinear points; let D be a point such
that A—-C-D, thus extending the edge AC of AABC. Choose a point F € BC (so that
B-F-C) and let G be a point such that A—F—G. Then G € ins ZBCD.

Later, in Definition NEUT.79, ZBCD will be designated as an outside angle of
AABC.)

Fig. 5.7 Showing G on the

inside of an outside angle of B
AABC.
F G
A
C

D

Proof. By Definition IB.11 A and G are on opposite sides of B(_C)' and A and D are
on opposite sides of l<3_C)‘ By Theorem PSH.12 G and D are on the same side of
BC, i.e., G € BCD. By Definition IB4 B € CF and G € AF. By Theorem 1B.14
B e AD? so that the F-side and the B-side of fLX_D) are the same. By the same theorem,
G € ADF = ADB. By Definition PSH.36, G € ins ZBCD, proving the theorem. See
Figure 5.7. O
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5.8 Mostly about triangles

Theorem PSH.46 (Analogous to Theorem PSH.41 for angles). Let A, B, and C

be noncollinear points. Then

(A) (AB U BC U CA) Nins AABC = 0;
(B) ins AABC U AABC U out AABC = P and the sets in this union are pairwise
disjoint;
(C) ins AABC = ins ZBAC N'ins ZABC = ins ZBAC N BCA;
(D) out AABC = £ U F U G, where
E = the side of;ﬁ?) opposite C,
F = the side of (L?_C>' opposite A, and
G = the side of C(TA) opposite B.

Proof. (A) By Definition PSH.36 (B), ins AABC = ABC NBCANCAB. By
Theorem PSH.12, 1(4_1)3 N Zﬁf = @,FC)’ N fsﬂ) = @, and ‘c_/i N ]Cﬁ = 0.
Hence a point on any of these lines fails to belong to at least one of the sides
listed, and thus fails to belong to their intersection ins AABC.

(B) Exercise PSH.49.

(C) Exercise PSH.50.

(D) To prove this part we consider two classes of points in P:

IfX ¢ ABUBCU (C_A>, then X ¢ AABC and since by definition
out ZBAC = P \ (AABC U ins AABC),
it follows that
X e out AABC & X ¢ ins AABC
& X ¢ ABCNBCANCAB
SXefoXeForXe§
S XefUFUG.
If X € AB U BC U CA, then
X € out AABC & X ¢ AABC
& X ¢ ABUBCUCA
& one of the following holds:
X-A-B, A-B-X, X-B-C, B-C-X, X—C-A, or C-A-X. This fact follows from
Definition IB.7 and Theorem IB.5. By Definition IB.11,
X-B—C or C-A-X iff X belongs to the side of 1<4_§ opposite Cor X € &;
A-B-X or X—C-A iff X belongs to the side of 1(9_C>' opposite A or X € F; and
X—A-B or B-C-X iff X belongs to the side of AC opposite Bor X € G.
Thus X € out AABCifandonlyif X € EUF UQG. O
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The next three theorems embark on an analysis of the possible ways a line can
intersect a triangle. Theorem PSH.47 says that a line that intersects a triangle in
exactly two points also intersects its inside; when this happens, the intersection of
the line with the inside is the open segment connecting the two points of intersection.

The next two theorems provide a converse for PSH.47. Theorem PSH.48 shows
that if a line contains a corner of a triangle, and also intersects its inside, then it
intersects the triangle in exactly two points. PSH.49 shows that if a line does not
contain any corner of a triangle, the same result follows. Finally, Theorem PSH.50
combines all these results, adds detail, and summarizes the possibilities for the

intersection of a line and a triangle.

Theorem PSH.47 (Analogous to PSH.37, but for triangles). Let A, B, and C be
noncollinear points, and let P and Q belong to AABC. If no edge of AABC contains
both P and Q, then @ C ins AABC.

Proof. Exercise PSH.24. O

Corollary PSH.47.1. For any triangle AABC, ins AABC # @, and AABC is

nonconvex.

Proof. Using Theorem PSH.22 let P and Q be members (not endpoints) of two
different edges of AABC. By the same theorem there is a point R such that
P-R-Q and R € lj'@ C ins AABC. This shows that ins AABC # Q) By
Theorem PSH.46(B), ins AABC N AABC = @, so that R ¢ AABC and PQ is
not a subset of AABC. By Definition IB.9, AABC is not convex. a

Theorem PSH.48. Let A, B, and C be noncollinear points. If P is any member of
ins AABC, there exists a point Q € BC such that

(1) APNBC = {0},

(2) AP N AABC = (A, 0,
(3) AQ C ins AABC, and
(4) AQ\ AQ < out AABC.

Note: In the summary Theorem PSH.50 we will show that the intersection of 1@
and ins AABC is exactly 2@ which shows that P € i_Q[ and A-P-Q.
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Fig. 5.8 For
Theorem PSH.48.

Proof. See Figure 5.8. (1) By Theorem PSH. 46(C) P € ins LBAC s0 that by the
Crossbar theorem PSH.39, there exists Q € BC such that APN BC = {0}.

(2) If there were more than two points in the intersection, two of them would
lie on one edge of AABC and that edge would be a subset of AP and P
would belong to one of the lines containing an edge which is ruled out by
Theorem PSH.46(A).

(3)(4) Proofs are Exercise PSH.19. O

Theorem PSH.49. Let A, B, and C be noncollinear points and let L be a line such
that L Nins AABC # @ and LN{A,B,C} = @. If P € L Nins AABC and Q # P
is any point of L, then

D IJJ_Q) intersects exactly one of the segments AC, BC or AB in exactly one point,
2) L = PQ intersects exactly two of the segments AC, BC or AB and thus L
intersects AABC in exactly two points D and E, and

(3) DE C ins AABC.

In the summary Theorem PSH.50 we will show that the intersection of £ = F<’_Q)
and ins AABC is exactly ]D_[E , which shows that P € ]D_LE? and D-P-E.

Proof. To prove part (1), note that Q ¢ 1<4_F>’, for otherwise AP = LsothatA € L,
which is false by hypothesis. By similar arguments, Q is not a member of any of the
lines ﬁ, E)?, and a)’, and by Theorem PSH.12, Q is a member of one side or the
other of each of these lines. Thus, Q belongs to

either ;\PC or ;APB, and

either %ﬁ or jBTC)' , and
. F— =

either CPB or CPA.

There are eight possible intersections of a side from each pair listed, as follows:
APCNBPANCPB
APCNBPANCPA € APC N CPA = ins ZAPC
APCNBPCNCPB C BPCNCPB = ins ZBPC
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APCNBPCNCPA C APCNCPA = ins ZAPC
T 31— T—> 3> 1—> .
APBNBPANCPB C APBNBPA = ins ZAPB
APBNBPAN CPA gAPBﬂBPA = ins ZAPB
Ty 1 s 7 )
APBNBPCNCPB C BPCN PB=1nsLBPC
11— 3> I-—

APBNBPCN CPA

If we can show that Zﬁc) NBPAN jcﬂ?z and APBN IJS?C)‘ N ]Cﬂ) are empty, it will
follow that Q will be a member of exactly one of the sets ins ZAPC, ins ZBPC, and
ins ZAPB. Then by the Crossbar theorem PSH.39, ;J’_Q) intersects exactly one of the
segments AC , BCorABin exactly one point.

Let A, B/ and C’ be the points such that APNBC = {A'}, BPNAC = {B’ 1,
and CP ﬁAB = {C } as guaranteed by Theorem PSH.48(1). Since B’ € APC and
also B’ € BP APC NBPA = Aﬁ ﬂB’PA ins ZAPB'. Both A and B e CPA so
that by Theorem PSH.42, ins ZAPB' C CPA, which is disjoint from CPB. Therefore
mﬂ BPAN ]Cﬁ = . A similar argument shows that APB 01]376)’ N jcﬁx’ = 0.
This completes the proof of part (1).

The proof of (2) is Exercise PSH.25. By Theorem PSH.47, ]D_IL:: C ins AABC,
thus proving part (3). O

Theorem PSH.50. If the intersection of a line L with a triangle AABC is

nonempty, then

(A) L Nenc AABC is either a single point or a closed segment, and
(B) L N AABC is exactly one of the following alternatives:

(1) a single point S, in which case

(a) S €{A, B, C}, the set of corners of AABC,

(b) LNins AABC = @ and L N ins LZTSU = @ where T and U are the
corners of AABC other than S, and

(©) AABC\ {8}, $T, SU, ins AABC and ins ZTSU all are subsets of the
T-side (= U-side) of L;

(2) exactly two points P and Q, in which case

(a) no edge of AABC contains both P and Q, and at least one of P and Q
is not a corner,

(b) £LNins AABC = }J‘ﬁ
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(¢) LNout AABC = {X |X-P-Q} U {X |P-Q-X}, and
<> Ry
(d) £=PO={X|X-P-Q} U{P}UPQU{Q} U{X |P-0-X};
(3) more than two points, in which case

(a) L contains an edge £ of AABC, and
(b) LNins AABC = 0.

B B B
N

. LA
\ \
\

\\\

A ¢ c 4 —\¢ 4 c

\\ ~ /,
NCAL. (1) Al 2N/ Alt. (3)

Fig. 5.9 For Theorem PSH.50(B).

Proof. (A) Follows immediately from (B).
(B) Clearly exactly one of the alternatives (1), (2), or (3) holds. For a visualization,
see Figure 5.9.

(1) If the intersection 1s a smgle pomt S, suppose S ¢ {A, B, C}. Then Sisa
member of either AB IJS? or CA Suppose for the moment S € AB Then
C ¢ L since there is only one point of intersection, so Theorem PSH.6
applies and there is a second intersection, which is a contradiction. Similar
proofs will show that S is not a member of 1]3%‘ or E& Hence S = Aor B
or C.

Now T and U are defined to be the corners of AABC other than S; if
T and U are on different sides of £, by Axiom PSA, £ N ]T_IL} # (@, where
ﬁ is an edge of AABC and this contradicts the assumption that there is
only one point of intersection. Then by Theorem IB.13 both g’_l)" and g@ are
subsets of the T-side of £, and by Theorem PSH.42, ins ZTSU is a subset
of the T-side of £ which is disjoint from L.

Finally, ]ﬁ]E C ins ZTSU (by Theorem PSH.37) and ins AABC C
ins ZTSU (Definition PSH.36) and both these sets are disjoint from L.
From these observations all the conclusions of alternative (1) follow.
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If £ N AABC contains exactly two points P and Q, not both of them can
be in the same edge, and not both can be corners, for in either case by
Axiom I.1 I(J_Q) = L would contain an edge and there would be more than
two points of intersection. This proves (a). Result (d) follows immediately
from Theorem IB.5.

The points P and Q both belong to the (open) rays of at least one of
ZBAC, ZABC, or ZACB. We shall prove part (b) in the case where they
both belong to ZBAC (the proofs where they belong to other angles are
similar). This includes the following possibilities: where P and Q are in
ﬁ and EA_C[‘, where one of these points is B and the other is in EA_C[‘, and
where one of them is C and the other is in ;Tl%

The points P and Q are exactly the points of intersection of £ with
ZBAC, for if there were any additional points of intersection with ZBAC,
L would contain an entire edge of the triangle, which is ruled out by
hypothesis.

By Theorem PSH.46(C) ins AABC = ins ZBAC N m C ins ZBAC,
so that £ Nins AABC € £ Nins ZBAC = ;%[ (Theorem PSH.40). Then,
by Theorem PSH.47, PO C ins AABC, so that £ N ins ZBAC = PO =
L Nins AABC, proving part (b).

By Theorem PSH.46(B), P = ins AABCU AABC U out AABC and the
sets in this union are pairwise disjoint. Intersecting this with £, we get

L=LNP = (LNins AABC)U (LN AABC)U (LNout AABC) (*)
and all sets in parentheses are disjoint. We know that LN AABC = {P, Q};
using (b) and (d),

L = {X [X-P-Q} U {P} U PO U{Q} U {X |P-0-X)

= {X |X-P-Q} U (LN AABC) U (L Nins AABC) U {X |P-Q-X}.

From this equation and equation (¥), and the fact that all the sets
in parentheses (or braces) are disjoint, out AABC = {X |X-P-Q} U
{X |P-Q-X} proving part (c).

If £ N AABC contains more than two points, they are collinear and hence
must all belong to one edge of AABC so that edge is a subset of £, and by
Theorem PSH.46(A), L is disjoint from ins AABC. O

Lemma PSH.51. Let A, B, and C be noncollinear points and let P € ins AABC.
I
Let B and C' be points such that P-B'-B and P-C'-C. Then P € B'C'A.
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Fig. 5.10 For Lemma
PSH.51.

Proof. See Figure 5.10. Since P € ins AABC, P € ins ZBAC by Definition PSH.36,
so by the Crossbar theorem PSH.39, AP has a single point of intersection with BC ,
which we will call Q. By Theorem PSH.37, Q € BC C ins ZBPC and again by the
1 <~
Crossbar theorem, there exists a unique point P’ such that fJ’_Q) NB'C' = {P'}.
Now APUPQ = AQ C AQ has only a single intersection with B'C’ by
ExerciseI.1, and P’ is that single intersection. Sinceiﬁ]’ N Ij’_é = @ by Theorem IB.5,
<~ £3 T
there can be no intersection of B'C’ with AP. By Definition IB.11, P € B'C'A. O

For those who have studied general topology, the following result may be of
some interest. Together with the result of Exercise PSH.52(A), it is what is needed
to show that the set of all insides of triangles in a Pasch plane forms a base for some
topology on the plane, thus enabling continuity arguments. Actually it shows a bit
more —all that is really needed is that ins AABC C ins 7 NinsS.

Theorem PSH.52. Let T and S be triangles in a Pasch plane and let P be a point
such that P € T NS. Then there exists a triangle AABC such that P € enc AABC C
ins 7 NinsS.

Fig. 5.11 For
Theorem PSH.52.
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Proof. (I) For a visualization see Figure 5.11. Let £ be a line containing P. By
Theorem PSH.50 L intersects 7 in exactly two points W and W’ (because
PeinsT), and ins T Q LE = W Likewise, we can find points ¥ and Y’
such that insS N £ = YY’. For convenience we can label ¥ and Y’ so that ¥
and W are on the same side of P, that is, either P-Y-W or P-W-Y; in the first
case let Z = Y, in the second let Z = W. Likewise either P-Y'-W’ or P-W'-Y’;
in the ﬁrs} case letZ' = Y’,in the second let Z’ = W’. Then JZ_Z'7 W n ]YT/;
andP € ZZ' C (ins 7 Nins S). Let A and D be points on £ with Z-A-P-D-Z'.
Then P € DA C (ins T NinsS).

(II) Let M # L be a line containing D. We may now apply the reasoning of part
(I) to M (in place of £) and pomt D (in place of P) to obtain points B and C on
M such that B-D-C and D € BC Cins7 NinsS.

Then A, B, and C are all members of ins 7 N ins S. By two applications of
Exercise PSH.42, enc AABC C (ins 7 Nins S). O

5.9 Mostly about quadrilaterals

Theorem PSH.53. A quadrilateral is not rotund iff exactly one of its corners
belongs to the inside of the triangle whose corners are the other three corners of

the quadrilateral.

Proof. By Definition PSH.31 OABCD is not rotund iff at least one of the following

statements is true:

(1) A and B are on opposite sides of C<'_D>;
(2) C and D are on opposite sides of ;HB);
(3) A and D are on opposite sides of 1(3_6’;
(4) B and C are on opposite sides of I(LX_D)

Statements (1) and (2) cannot both be true. If they were we would have by
Axiom PSA 2175 ﬂﬁ) # @ and % ﬂfﬁ # @ and then, since, by Corollary IB.5.2,
Xé - 1(4_B> and j}C—[D - C(_)D, we have that 1(4_B> N C(‘_)D Z# . Since by Definition PSH.29
A, B, C, and D are noncollinear, Exercise 1.1 implies there is exactly one point P
such that I(A_)B N C(_)D = {P}. But P must belong to A}Bg because if it did not, the above
relationships would imply 1<4_B) intersected 8) in some other point besides P, so A, B,
C, and D would be collinear, a contradiction. In a similar way we can infer P € j}C—[D
Therefore ;J\_l% and % would intersect, contradicting Definition PSH.31(2).
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Similar reasoning shows (3) and (4) cannot both be true.

If (1) is true, by Axiom PSA there exists a point P such that ABNCD = {P}. By
Property B.2 of Definition IB.1, exactly one of C—-D-P, D-C-P, or C—P-D holds.
The last of these contradicts XBg N [CiD] = J, which we know to be true by Definition
PSH.31(2); so this is ruled out.

Suppose that C-D-P. Since A ¢ C(‘_)D = <CT;’, ZPAC = ZBAC is defined. By
Theorem PSH.40, since C € 24_6)‘ and P € ]A%, 1@% C ins ZBAC, and since D € 6“15,
D € ins ZBAC. By Theorem PSH.39, there exists a point Q such that EA_D) N IJB_C[‘ =
{0}, and thus by Definition IB.3, B-Q0—C. By Theorem IB5Q € AD. By Deﬁnition
1B.11 statement (4) is true. Moreover, since P € AB by Corollary IB.14.2 P € BCA
and D € BCA follows by the same corollary. Therefore by Theorem PSH.46(C)
D € ins AABC.

On the other hand if D—C-P, then by arguments similar to those just used, C €
ins ABAD and (3) is true.

Again, similar reasoning shows that if (2) is true, then either (3) is true and B €
ins AACD, or (4) is true and A € ins ABCD. Thus there are four mutually exclusive

possibilities:

(i) Statement (1) and (4) are true, (2) and (3) are false, and D € ins AABC.
(i) Statement (1) and (3) are true, (2) and (4) are false, and C € ins AABD.
(iii) Statement (2) and (3) are true, (1) and (4) are false, and B € ins AACD.
(iv) Statement (2) and (4) are true, (1) and (3) are false, and A € ins ABCD.

Fig. 5.12 For Theorem B
PSH.53 alternative (i).

Figure 5.12 illustrates alternative (i) above. The reader will find it quite easy to

construct figures for the other alternatives (ii) through (iv). O

Theorem PSH.53.1. If a quadrilateral is a trapezoid, then it is rotund.
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Proof. Let T be a trapezoid on a Pasch plane P. By Definition PSH.31 there exist

) > > >
points A, B, C, and D such that 7 = OABCD and AD || BC or AB || CD.

Suppose T were not rotund. By Theorem PSH.53, exactly one of its corners
belongs to the inside of the triangle whose corners are the other three corners of 7.
Without loss of generality assume that C € ins AABD. By Theorem PSH.46(C)
ins AABD C ins ZABD and ins AABD < ins ZADB. Then by the Crossbar

<> 3 R s <> 3L
theorem PSH.39, BC N AD # @, contradicting AD || BC, and CD N AB # 0,
contradicting AB I CD. Therefore T is rotund. O

Theorem PSH.54. (A) The diagonals of a quadrilateral intersect iff the quadri-
lateral is rotund.
(B) A quadrilateral is rotund iff every corner P is inside the “opposite” angle

LXYZ, where Y is the corner opposite P and X and Z are the corners adjacent
Y.

Proof. (A) LetA, B, C, and D be the corners of a quadrilateral.

(I: If OABCD is rotund then AC and BD intersect at a point.) By Defini-
tion PSH.31 C € ABD and Ce ADB. By Definition PSH.36 C € ins ZBAD.
By Theorem PSH.39 EA_C)’OIJBTIL) = {E} for some pomt E. By a s1m11ar
argument CANBD = {E'}. By Exercise IB.4 BD - BD C BD and
CAC CA - CA. Using thls and Exercise I.1 we get BDNCA = {E} = {E'},
Whence E = E’ and ACNBD = {E}.

II: If AC and BD intersect at a point, then OABCD is rotund) Suppose
ACNBD = {P} for some point P; by Theorem IB.5 AC - AC and
BD C <B_l)), so that by Exercise 1.1, 1<4_)C N <B_l)) = {P}. By Exercise IB.4 Pis a

I > I I
member of each of the open rays AC, CA, DB, and BD. By Corollary 1B.14.2
L = WL T BT = T 3 1L 1L
AC CABC,AC C ADC, CA € CBA, CA € CDA, BD C ﬁ, BD C BAD,
L 31— L = .. L kT =
DB C ADB, and DB € DCB. Since P € AC = CA and P € BD = DB we
get

(1) P and C both belong to ;ﬁ, and P and D both belong to ?@;
(2) P and C both belong to EA_D_C)’, and P and B both belong to ;ﬁ;
(3) P and B both belong to ]Cﬁ, and P and A both belong to bﬁ;
(4) P and A both belong to jbﬁ, and P and D both belong to %?C_D)

As was noted in the paragraph after the proof of Theorem PSH.11, if two
sides of a line intersect they are the same side. Both the C-side of 1(4—)3 and

the D-side of ﬁ contain the point P, so these are the same, and C and D are
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on the same side of 1<4_B); likewise, B and C are on the same side of ;ﬁ)), A and
B are on the same side of C<'_D>, and A and D are on the same side of B(_C)' . By
Definition PSH.31 OABCD is rotund.

(B) If a quadrilateral is rotund and P is one of its corners, let Y be the corner
opposite P, and let X and Z be the corners adjacent to Y. Then by rotundity,
X and P belong to the same side of ﬁ; also P and Z belong to the same side
of ﬁ; therefore P € ins ZXYZ.

Conversely, let 55)’ be any line containing an edge %ﬁ of a quadrilateral; let
P be the corner opposite X, and Q be the corner which is neither X, Y, nor P.
Neither P nor Q is on W . Then by hypothesis,
P € ins ZQXY = the Q-side ofﬁ N the Y-side of <Q_)>(;
hence P and Q are on the same side of fﬁ)’ . Since 56; can be chosen to be any
edge, this shows that DABCD is rotund, by Definition PSH.31. m|

Definition PSH.55. Let A, B, C, and D be points on a Pasch plane P such that
the sets {A, B, C}, {B,C,D}, {C,D,A}, {D, A, B} are noncollinear, and;ﬁ% n %73 =
ADNBC = 0.

If OABCD is rotund, then the inside of DABCD (ins DABCD) is

ABCNBCDNBCANDAB.

If DABCD is nonrotund, then using Theorem PSH.53 we choose the notation so
that C € ins AABD.

The inside of nonrotund DABCD (ins DABCD) is ins AABD \ enc ABCD.

The enclosure of DABCD (enc DABCD) is DABCD U ins DABCD.

The outside of DABCD (out DABCD) is P \ enc DABCD.

The exclosure of DABCD (exc DABCD) is P \ ins OABCD.

Theorem PSH.56 (Mapping Segments). Let A, B, C, and D be points such that
A # Band C # D. Then there exists a one-to-one mapping ® ofﬁ onto [CiD] having
the following properties:

I @A) = Cand ®(B) = D;
@) ifR, S, and T are members of AB then R—S-T iff ©(R)—D(S)-D(T);
(Il) if U and V are distinct members of AB then Q(W) = ED(U)TV; and
o(UV) = BU)B(V).

Proof. The proof we give will be something more than a sketch, leaving several sub-

arguments to the reader. We consider several different cases reflecting the various
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possible relationships among the points A, B, C, and D, being careful to ensure these
cases cover all the possibilities. First, either (1) C € A_B or(2) C ¢ A_B If (1) is
true then there are two possible subcases: either (1a): D ¢ AHB or (Ib): D € A<_)B
The subcase (1a) can be further subdivided into two “sub-subcases": subcase (1a;)
where A = C, or (1a;) where A # C. Case (2) breaks into two subcases: either (2¢),
D e BCor (2d), D ¢ BC.

(Subcase (1a;):A = Cand D ¢ A<_B) ) Using Properties B.3 and B.1 of Definition
IB.1 let Q be a point such that Q—D-B. A 51mple argument involving Theorem
PSH.37, which is left to the reader, shows AB C ins ZAQD. Hence we may use
Theorem PSH.39 (Crossbar) to construct a mapplng @ by letting q§(A) = A and
&(B) = D, and by letting @ (X) be the member of AD such that a n AD {D(X)}
for each X in AB This shows property (I) for @ in th1s subcase

It is possible to interchange the roles of AD and AB in the above argument and
then construct a mappmg lI/ by letting lI/(A) = A and ¥(D) = B, and by letting
¥ (Y) be the member of AB such that QJ7 ﬂAB = {¥(Y)} for each Y in AD

From these definitions of @ and ¥ it follows that v(P(X)) = X for every
X in AB and @(¥(Y)) = Y for every Y in AD To prove the first of these
statements let X be any member of ArB Then by the definition of @ above and
Theorem PSH.16 CD(X) € ]Q7 = ]QT()?S Therefore by the definition of ¥ above
QX NAB = ]Q?(}?; NAB = {W(D(X)}. We save this fact in our memory and notice
that smce X e AB by the definition of X, and X € ﬁ by Definition IB.4, we have
{X} C QX ﬂAB Elementary arguments left to the reader show A, B, and Q are
noncollinear and therefore Q? N AB is a singleton. Hence {X} = ? N AB

Putting this together with the statement we saved above gives {X} = {¥(D(X))},
or X = W¥(P(X)), which is what we wished to prove. A similar proof shows
d(W(Y)) = Y forevery Yin AD. From these facts it follows by elementary mapping
theory that @ is a one-to-one mapping of AB onto A_D[, that ¥ is a one-to-one
mapping of A_D onto AB, and that @ and ¥ are inverses of each other.

To prove property (II) for subcase (1a;), let R, S, and T be any members of 1[473
such that R—S—T and let Q be as above. Then arguing as above we get QR and QT
intersect AD in points @(R) and @(T), respectively. Since S € RT S € ins ZRQT
follows by Theorem PSH.37. But ZRQT = L@(R)QCD(T) by Theorem PSH.30 so
S € ins LO(R)QP(T) and by Theorem PSH.39 QS intersects W in a point
@(S). Hence @(R)-D(S)-2(T).

Suppose now that R, S, and T belong to IETB, that @(R)-D(S)-@(T), and Q is as

above. An argument similar to those above shows R—S-T, proving property (II).
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Property (III) is an immediate consequence of (II) and Definition IB.3. This
completes the argument for subcase (1ay).

(Subcase (1a): C € A<_B) and D ¢ ;ﬁ?) and A # C.) Let E be a member
of ins ZACD. By subcase (1a;) there exist one-to-one mappmgs 451, ®,, and D5
such that @DI(AB) = AE <1§1(A) = A, ®(B) = E, ¢2(AE) = CE P,(A) = C,
D,(E) = E, ¢3(CE) = CD @3(C) = C, and P3(E) = D. Furthermore, each of
the mappings @;, @,, and @3 can be constructed so that it has the properties (II)
and (IIT). Let & = @3 o @, o ;. Then from the definition of composition and from
its elementary properties it follows that @ is a one-to-one mapping of 1[47% onto [CiD]
such that ®(A) = C, @(B) = D, and & has properties (II) and (III).

(Subcase (1b): C € A<_B) and D € A(_B).) Let E be any point off of A(_B) By subcase
(lay) there exist one-to-one mappings @, ®,, and @3 such that @1(1[47&) = IETE],
®1(4) = A, /(B) = E. $,(AE) = CE. ,(A) = C, ®,(E) = E. @(CE) = CD,
@5;(C) = C, and @3(E) = D. The remainder of the proof of this case is similar to
that of the preceding case and the details are left to the reader.

(Subcase (2¢): C ¢ 1(4—3) and D € B<_C>‘.) By subcase (1a;) there exists a one-to-one
mapping &; such that ch([AT%) = %ﬁé, ®1(A) = C, and @;(B) = B, and by subcase
(1b) there exists a one-to-one mapping &, such that @2(1[9761’) = [CiD], ®,(C) = C,
and @,(B) = D. The remainder of the proof is similar to those above and the details
are left to the reader.

(Subcase (2d): C ¢ (A_B) and D ¢ l<?_6)’.) It is left to the reader to introduce
appropriate mappings @; and $, whose composition will provide the required

mapping as in the above cases.

Theorem PSH.57. Let L be a line on a Pasch plane P and let A, B, and C be
distinct collinear points on P, none of which is on L. If L and ﬁ intersect at
the point P, then either L N 24_6[' = {P}and LN IJB_C[‘ =@, or LN EA_C[' = @ and
LNBC = (P).

Proof. By Exercise 1.1 £ N AB = {P}. By Property B.2 of Definition IB.1 one

and only one of the following statements is true: A-B—C, B-A-C, A-C-B. By
) > >

Exercise 1.2, AB = AC = BC.

(A) If A—B—C, then by Theorem PSH.15 AB C AC and ABNBC = @. By
Theorem IB.5 1[476]' c 1<4_)C = 1(4_3) If we put these statements together with the
fact £ N AB = {P}, we get by elementary set theory £ N % = {P} and
LNBC=0.
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(B) If B-A-C, then an argument similar to (A) shows £ N B_C = {P} and
LNAC = 0.

© If A—C—B then by Theorem PSH.15 AC and BC are both subsets of AB and
AC ﬂBC = (). Hence by elementary set theory either £ = AC = {P} and
EﬂBC:@orﬁ:AC:@andﬁﬂBC:{P}. |

5.10 Exercises for Pasch geometry

Answers to starred (*) exercises may be accessed from the home page for this book
at www.springer.com.

In the following exercises, all points and lines are in a Pasch plane.

Exercise PSH.0*. (A) Let P be a Pasch plane, £ and M be lines, O be a point on
P such that £L N M = {O}. If H is a side of L, then M N H # @.

(B) Let P be a Pasch plane and let 7, K, and £ be distinct lines on P such that
JNLFAGand KN L F#P.If Uis a point on J but is not on L, then there is
a point V on K such that U and V are on opposite sides of L.

Exercise PSH.1*. Complete the details of the proof of Theorem PSH.S8, part
B)(D).

Exercise PSH.2*. (A) Prove Corollary PSH.8.3.
(B) Prove Corollary PSH.8.4.

Exercise PSH.3*. Let A, B, C, and D be points such that A~B—C-D and let P and
Q be points such that P-A-B and C—D—Q. Then:

(A) ﬁ = A_C = A_D> = B(_C = B_D> = C_D); the points A, B, C, and D are collinear;
B) B_C is the union of the disjoint sets {B, C}, BBﬁ B%: and 55

© BC is the union of the disjoint sets {A, B, C, D}, AP AB BC CD and DQ

(D) AD is the union of the disjoint sets {A, B, C D} AB BC and CD

(E) AD is the union of the sets {X |X-A-D}, AD and {X |A-D-X}, which are all

disjoint.

Exercise PSH.4*. (A) Let A and B be distinct points on a Pasch plane P and let £
be a nonempty subset of ArB Then £ is not a ray.

(B) Let A and B be distinct points on a Pasch plane P and let £ be a nonempty
subset oszTB. Then £ is not a ray.
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Exercise PSH.5*. Let A, B, C, D, and E be points on plane P such that A, B, and
C are noncollinear, A—B—D, and A—C-E. Then D € ins ZBCE.

Exercise PSH.6. Let A, B, C, D, and E be as in Exercise PSH.5. Then AB N
(ins ZBCE) = BD and AB N (out ZBCE) = BA

Exercise PSH.7. Let A, B, C, D, and E be as in Exercise PSH.5. Then there exists
a point F' such that BEN ]C—lL) = {F}.

Exercise PSH.8*. Let O, A, B, A’, and B’ be points on P such that O, A, and B are

noncollinear, B-O-B’, and A—-O-A’. Let X be any member of ins ZAOB, and let X’
1—

be any point such that X—-O-X'. Then OX Nins ZA'OB' = OX..

Exercise PSH.9*. Let O, A, B, A’, and B’ be points on a Pasch plane P such that O,
A, and B are noncollinear, B'—~O-B, and A’-O-A, let X be any member of ins ZAOB
and X’ be any point such that X'-0-X.

(A) (0_))( n iﬁ’—Bi’ =]0—X)’ ﬂﬁ is a singleton, i.e., there exists a point Y such that O(_)>( N
AB = .

(B) Let X € AB if X € AB define £2(X) = Y, where Y is as in part (A); 1fX A
define Y = A’, and if X = B define Y = B’. Then the mapping £2 maps AB onto

-

=

A'B and is one-to-one, hence is a bijection.
Exercise PSH.10. If A and B are distinct points, then {A, B} is nonconvex.

Exercise PSH.11. Let P be a Pasch plane, £ be a line on P, and let 7 be a side of
L.IfPeLandQ € T, thenPQC J.

Exercise PSH.12*. Let A, B, and C be noncollinear points on a Pasch plane. If
D € ins ZBAC, by Corollary PSH.39.2 B and C are on opposite sides of @ Prove
that AB € ADB, AC C ADC, B € out ZCAD, and C € out ZBAD.

Exercise PSH.13*. Let A, B, and C be noncollinear points on a Pasch plane, and
let P and Q be members of ins ZBAC. Then if P € ins ZBAQ, Q € ins ZCAP.

Exercise PSH.14 (Key exercise)*.

(A) Let £ be a convex subset of plane P and let Lbe alineon P.IfEN L = @,
then £ is a subset of a side of L.
(B) If a line M, or a segment or a ray does not intersect L, then that line, segment,

or ray lies entirely on one side of L.
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Exercise PSH.15*. Let A, B, and C be noncollinear points on a Pasch plane P and
let Lbe aline on P.If {A, B, C} N L = @, then either LN AABC = @ or L intersects
two and only two edges of AABC. Moreover, £L N AABC is a doubleton.

Exercise PSH.16*. The inside of every angle is convex and the inside of every

triangle is convex.

Exercise PSH.17*. Let P be a Pasch plane and let A, B, and C be noncollinear

points on P.

(A) If D € ins ZBAC, then AD C ins ZBAC.
(B) ins ZBAC = |J AD
1
DeBC
Exercise PSH.18 (Angle analog for Exercise PSH.32)*. Let A, B, and C be
noncollinear points on a Pasch plane P and let D be a member of ins ZBAC. Then
ins ZBAC is the union of the disjoint sets A_l)), ins ZBAD and ins ZDAC.

Exercise PSH.19*. Prove parts (3) and (4) of Theorem PSH.48.

Exercise PSH.20*. The union of a line and one of its sides is convex (i.e., a

halfplane is convex).

Exercise PSH.21*. Let A be any subset of plane P having at least two members
and let B be the union of all segments PQ such that P € Aand Q € A. Is B

necessarily convex?

Exercise PSH.22*. If A, B, and C are noncollinear points, then both enc ZABC and

enc AABC are convex sets.

Exercise PSH.23*. Construct a proof of part (A) of Theorem PSH.44 without
referring to Theorem PSH.43; that is, using principally the definitions of inside,
outside, and Theorem PSH.41(C).

Exercise PSH.24*. Prove Theorem PSH.47.
Exercise PSH.25*. Prove part (2) of Theorem PSH.49.

Exercise PSH.26*. Let A, B, and C be noncollinear points, let £ be any member of
AC, and let F be any member of A}Bg Then BE and CF intersect in a point O which
belongs to ins AABC.
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Exercise PSH.27*. Let A, B, and C be noncollinear points on plane P, let Q be a
member of ins ZABC, and R a member of ins ZACB. Then IJSTQ) and jC_I)Q intersect at
a point O which belongs to ins ZABC.

Exercise PSH.28*. Let A, B, and C be noncollinear points and suppose P € AB
and Q € ins ZBAC. Then PQ C ins ZBAC.

Exercise PSH.29*. Let A, B, and C be noncollinear points and suppose P € AABC
and Q € ins AABC. Then PO C ins AABC.

Exercise PSH.30*. Prove Theorem PSH.42.

Exercise PSH.31*. Let P and Q be distinct points on plane P, let H be a side of
f(’_Q) in P, and let A and B be members of H such that A, B, and P are noncollinear.
Then either B € ins ZAPQ or A € ins ZBPQ.

Exercise PSH.32 (Side analog for Exercise PSH.18). Let P, O, and Q be points
such that P-O-(Q, and let R be a point off of O<_>P Then OPR is the union of the
disjoint sets ins ZPOR, ﬁ, and ins ZQOR.

Exercise PSH.33. LetA, B, and C be noncollinear points and let B’ and C’ be p01nts
such that B-A-B’ and C-A—C". Then out ZBAC is the union of the disjoint sets AB/
AC’ ins ZBAC', ins ZCAB', and ins ZB’'AC’.

Exercise PSH.34. Let A, B, and C be noncollinear points and let E be a member of
out ZBAC. Then fj\_E> is a subset of out ZBAC.

Exercise PSH.35. Let A, B, and C be noncollinear points and let P and Q be mem-
bers of (enc ZBAC \ {A}) such that P, Q, and A are noncollinear. Then ins ZPAQ C
ins ZBAC. Note: try solving this before reading the proof of Theorem PSH.41(D).

Exercise PSH.36*. Let £ be a line and let H be a side of L. If A, B, and C are
noncollinear members of H, then enc AABC C H.

Exercise PSH.37. Let A, B, C, R, and S be points such that A, B, and C are
Rl 1 <> = <> =]
noncollinear, R € AB, and S € AC. Then RS "BC = @# and BCNRS = 0.

Exercise PSH.38. Let 7 be a triangle, let P be a member of ins 7, and let Q be
a point distinct from P. Then there exists a point R such that 7 N PrQ> = {R},
) B> L B> B>, 3
ins7T NPQ = PR,and out 7 N PQ = PO\ PR.
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Exercise PSH.39. Let A, B, and C be noncollinear points on plane P, let P be a
member of AABC, let Q be a member of ins AABC, and let R be a point such that
O-P—R. Then R € out AABC, OP Nins AABC = OP, and OP Nout AABC =
0P\ PQ.

Exercise PSH.40. Let 7 be a triangle, let P be a member of ins7 and Q be a
member of out7. Then there exists a point R such that IS_)Q NT = {R}, PR =
5TQ]ﬂinsT, and;@ = %TQ]ﬁoutT.

Exercise PSH.41. Let 7 be a triangle and let P, Q, and R be noncollinear members
of enc 7. Then ins APQR C ins T .

Exercise PSH.42*. Let A, B, and C be noncollinear points and let P, Q, and R be
noncollinear members of ins AABC. Then enc APQR C ins AABC.

Exercise PSH.43. Let A, B, and C be noncollinear points on Pasch plane P, let O
be a member of ins AABC, let A’ be any point between O and A, let B’ be any point
between O and B, and let C’ be any point between O and C. Then O € ins AA'B'C,
and enc AA’B'C’' C ins AABC.

Exercise PSH.44. Let A, B, and C be noncollinear points. Then:

(a) There exist points P and Q such that A is between P and Q, ZBAC N %TQJ = {A},
and P and Q are both members of out ZBAC.

(b) If P and Q are any points satisfying the conditions in (a) above, then B and C
are on the same side of f<’_Q)

Exercise PSH.45*. Let £ be a nonempty convex subset of the plane P, and let A,
B, and C be noncollinear members of £. Then enc AABC C €£.

Exercise PSH.46. Let A, B, and C be noncollinear points and let O be a member of
ins AABC. Then:
ins AABC = OAUOBU OCUins AOAB U ins AOAC U ins AOBC.

Exercise PSH.47*. Let P be a Pasch plane and A, B, and U be noncollinear points.
Then for every point V in P,

3> . <>

(A) UV is not a subset of AB; and
3. <~

(B) UV is not a subset of AB.

Exercise PSH.48*. Prove parts 4-6 of Theorem PSH.18.
Exercise PSH.49*. Prove Theorem PSH.46(B).

Exercise PSH.50*. Prove Theorem PSH.46(C).
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Exercise PSH.51*. Let P be a Pasch plane, O, B, and R be noncollinear points on
P, C be a member of ins ZROB and B’ be a point on <0_)B such that B-O-B’, then
R € ins ZCOB'.

Exercise PSH.52*. (A) Let X be any point on a Pasch plane P, then there exists a
triangle 7 such that X € ins 7.

(B) Let P and Q be distinct points on plane P. Then there exist triangles 7 and U
such that P € ins T, Q € insif, encT C out!d, and enci/ C out7.

Exercise PSH.53*. Let P be a Pasch plane, £ and £’ be distinct lines on P, O be
amember of P\ (LU L), A, B, and C be points on £ such that A-B—C and A’, B/,
and C’ be points on £’ such that A-O-A’, B-O-B’, and C-O-C’, then A’-B'-C’.

Exercise PSH.54*. Let A, B, and C be points on a Pasch plane P such that A-B—C.
Then 2\% N ]C% = A_C[' .

Exercise PSH.55 (Sets bounded by two parallel lines). Let P be the plane con-
taining parallel lines £; and £,, let P; and P, be points on £; and L,, respectively,
and let Q; and Q; be points on (P]—P; such that Q1—P;—P, and P1—-P,-Q,, Q; be the
Q-side of Ly, let QF be the P,-side of L, let Q, be the Q,-side of L, let Q5 be
the Pi-sideof £5,andlet @ = Q7N Q5. Then Q1N =9, NQ=9,NA =0;
each of the sets Q;, QF, @, @5, and Qis convex; and Q;UQ,UQ = P\(L,ULy).

Fig. 5.13 For
Exercise PSH.56(1).

Exercise PSH.56*. See Figure 5.13; note also that the symbol “||” is defined in
Chapter 2, Definition IP.1.
Let O,A, B,A’, and B’ be distinct points on a Pasch plane P such that ABNA'B’ =
— <
{O} and AA’ || BB/, then

1) 0-A-Biff O-A'-B,
(II) O-B-A iff O-B'—-A’, and
(III) A—O-B iff A'—~O-B'.
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Exercise PSH.57*. Let £ and M be distinct lines in a Pasch plane, let A, B, and C
be points of £, and let D, E, and F be points of M such that AD I BE I CF. Then
A-B-C iff D-E-F.

Exercise PSH.58*. Prove Theorem PSH.34 using the result of Theorem PSH.32.
That is, show that if A, B, and C are noncollinear points on a Pasch plane P, then
the set of corners of AABC is {A, B, C}.

Exercise PSH.59*. Let A, B, C, and D be points on a Pasch plane P such that
ABU 5378' u [CTj U DA is a quadrilateral; then if AB I C('_[), this quadrilateral is rotund.

Exercise PSH.60. Consult a book on projective geometry and compare/contrast
those axioms of separation with those involving the open sets used to classify

topological spaces.



Chapter 6
Ordering a Line in a Pasch Plane (ORD)

Acronym: ORD

Dependencies: Chapters 1, 4, and 5

New Axioms: none

New Terms Defined: less than, greater than, less or equal, greater or equal,

bounded above, bounded below, bounded, unbounded, maximum, minimum

Abstract: This chapter defines order relations on lines and derives their properties,
including transitivity and trichotomy. The concepts of maximum, minimum, upper
bound, and lower bound of a subset of an ordered line are developed, as well as
the connections between order, segments, and rays. Ordering will assume great
importance in later chapters which develop the correspondence between a line and

the set of all rational (or real) numbers.

Up to this point, we have never spoken of one point on a line being to the right
or to the left of another point on the same line. It may seem silly to discuss this
because one can usually settle the question for any two points on any nonvertical
line (whatever that is) by just looking at a picture. But we want to continue to make
our treatment of geometry independent of particular pictures, and this chapter is an
attempt to deal with such questions in the same spirit of logical precision to which
we have adhered thus far.

We do this by introducing a relation among the points of a line which is similar
to the relation is less than (symbolized by “<”) among the rational numbers and the

real numbers. In fact, we will use the same symbol for this geometrical relation as
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the one for the numerical relation. Hence we will be writing such things as “A < B,”
where A and B are points on a line. When you read this symbol to yourself, you
can say “A is less than B,” or “A is to the left of B,” or “B is to the right of A,” or
whatever other expression is most comfortable for you. Of course, if you choose “A
is less than B,” you must be careful to remember that this does not necessarily mean
that the point A is less than the point B in some numerical sense. The reason that
the above three verbalizations of the relation are appealing is that the relation we
will define has two important properties that the relations is less than, is to the left
of, is to the right of also have, namely, transitivity and trichotomy. The fact that our
relation “<” has these two properties will be the subject of two early theorems in

this chapter. We start with some definitions.

Definition ORD.1. Let £ be a line, let £ be a convex subset of £ which is not a

singleton, and let O and P be distinct members of &£.

(A) For any two distinct points X and Y of &£, X is less than Y (notation: X < Y)
iveds OP is a ray. When two such points O and P have been chosen and the
relation “<” has been defined in this way, we describe this situation by saying
that the points of £ are ordered by the relation “<” so that O < P.

(B) Let the points of £ be ordered by the relation “<” so that O < P. Then for any
two distinct points X and Y of &, X is greater than Y (notation: X > Y) iff
Y < X; X is less than or equal to Y (notation: X < V)iff X < YorX =7,
and X is greater than or equal to Y (notation: X > Y)iff ¥ < X.

Remark ORD.2. The initial choice of two points (here O and P) on which to base
the definition of ordering is entirely arbitrary. There is nothing sacred about ordering
€ so that O < P. We could just as well reverse the roles of O and P in the above
definition and define P < O, and then for any two distinct points X and Y, define X
to be less than Y (notation: X < Y) iff ﬁ N FOTP% is a ray. Then we could infer all the
properties of “<” from the properties of “>" by the fact that X < Y iff Y > X.

Remark ORD.3. It should be noted that the meaning of the symbol “<” for a
particular geometry depends heavily on the particular betweenness relation in that
geometry because the definition of a ray depends on betweenness. Hence, if, on
a particular Pasch plane P, a new betweenness relation is introduced, this could
conceivably change which sets are rays and which are not, and that, in turn, could

change which points are less than others.
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6.1 Theorems for ordering

Theorem ORD.4 (Transitivity of the relation “<”). Let L be a line, £ be a
convex subset of L which is not a singleton, O and P be distinct members of £,
and suppose that the members of £ are ordered by “<” so that O < P. If X, Y, and
Z are any three distinct members of € such that X <Y andY < Z, then X < Z.

Proof Suppose X < Y and Y < Z, so that by Definition ORD.1, OPNXY and
LO—I)’ N YZ are rays. If OP NXY i is a ray, by the contrapositive of Theorem PSH.20
Z ¢ YX. Since Z € YX , by Theorem IB.5 and Property B.1 of Definition IB.1,
B> & B> E> B>
X-Y-Z, and therefore Z € XY. By Theorem PSH.16, XZ = XY. Hence OP N XZ =
0PNXY , and we already know that the latter intersection is a ray. Therefore by
Definition ORD.1, X < Z. a

Theorem ORD.5 (Trichotomy for ordering “<”). Let L be a line, £ be a convex
subset of L which is not a singleton, O and P be distinct members of €, and suppose
that the members of £ are ordered by “<” so that O < P. If X and Y are any two

members of E, then one and only one of the following statements is true:

X=7, X<Y, Y <X.

Proof. If X # Y, then either bjﬂgﬁ is a ray or it is not. If it is, then by
Definition ORD.1 X < Y. If it is not, we wish to show that Y < X, i.e., that OH)P N ﬁ
is a ray.

By the contrapositive of Theorem PSH. 19, XY g OP and OP Z XY This means
that there exist points S and T such that S € )71; S ¢ 0 ﬁ T e ﬁ and T ¢
XY. By Theorem PSH.16, XS = XY and OT = OP. Since S ¢ OP = OT and
T ¢ XY = 3?3’, but all of these points belong to £, we have by Theorem IB.5 that
S—O-T, T-X-S, and T-X-Y, whence T—O-S and Y-X-T. Then by Definition 1B.4
(0XS %, X e rTr;)S', and T e rﬁ Theorem PSH.16 then gives rTr0) = %, rﬁ = %, and
%)( = rYr>T, so that % = % We will use these assorted facts freely in what follows.

Since S—-O-T, by Theorem PSH.13, jT_O) = % u{o} u ]0_3’, and the sets in this
union are mutually disjoint, so we may use this as a basis for splitting the proof into
three cases at this point.

(Case 1: Y = 0.) If Y = O, then T-X-0, and by Theorem PSH.16, YX = OX =
r07 = r07 Hence rT)X N rOrf)’ = rOj, which is a ray, as we wished to prove.
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(Case 2: Y € jO_A)S'.) IfY e ]0_5' then by Theorem PSH.16, 0H>Y = 5)5' Since

T-0-S,by TheoremIB.5T ¢ 3)5' r) Y and therefore T-0O-Y.By Theorem PSH.13
= = B> B> =
OT C YT. Hence YXNOP = YT N OT = OT which is a ray, as we wished to

prove.

(Case 3:Y e TO)IfY € TO = OT, en by (1) followmg Deﬁn1t1on 1B.4,
Y € OT so by Theorem PSH.16, 0r) = OY Also from Y € OT it follows that
O-Y-T, whence by Theorem PSH.13, Y_) T C OY
B> B> B> B> B B>
From these we can say that YXNOP = YT NOT = YT NOY = YT, whichis a
ray, as we wished to prove. O

Theorem ORD.6. Let L be a line, £ be a convex subset of L which is not a
singleton, O and P be distinct members of £, and suppose that the members of €
are ordered by “<” so that O < P. Then for all points X, Y, and Z of £, X-Y-Z iff
X<Y<ZorZ<Y<X

Proof. (I If X-Y-Z, then X < Y < Zor Z < Y < X.) By Property B.0 of
Definition IB.1, X, Y, and Z are distinct. By Theorem ORD.5 either X < Y
or Y < X, so we may split the proof into two cases.

(Case I.LA: X < Y.) By definition SW N rOj is a ray. Since X-Y-Z, Sﬁ = Sﬁ
SO XZn brl)i’ isaray. Now Y € 123 so by Theorem PSH.20, 27) nZy is not a ray.
Thus Z is not less than Y. Hence by Trichotomy (ORD 5) Y<Z

(Case I.B: Y < X.) Suppose ¥ < X. Then YXOOP is a ray. By Theo-
rem PSH.19, either ﬁ - ﬁ or ﬁ C ﬁ Suppose ﬁ C ﬁ Then ﬁ - Z7
since X c Zv by Theorem PSH.13. Hence Theorem PSH.19 implies that
bﬁﬂrZﬁis aray,sothat Z < Y.

Now suppose rYT>X - r0'73; if ¥ = O, then by Theorem PSH.16 rYT)X = brﬁ and
by Theorem PSH.13 since Z-Y-X, [27 N rﬁ = rZr§ n FO? isaray, hence Z < Y.

If Y # O, by Theorem PSH.17 Y € rOL—I>’ and O-Y-X. By Property B.2 of
Definition IB.1 and Corollary PSH.8.3 the following three possibilities exist.

(a) If O = Z, then OP = OY = Z¥ so OPNZY = ZV.
(b) If Z-O—Y-X, then OP N ZY = OY N Z¥ = OY by Theorem PSH.17.
(©) If O-Z-Y—X, then OP N Z¥ = OY N Z¥ = Z¥ by Theorem PSH.17.

In each of (a) through (c), Z < Y.

(ILIfX <Y <ZorZ <Y < X, then X-Y-Z.) We deal with each of the possibilities

in the hypothesis as separate cases.
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(Case ILA: X < Y < Z)If X < Y < Z, then by Definition ORD.1, X and Y
are distinct, ¥ and Z are distinct, and }%7 N ﬁ and ?)Z N OH)P are both rays. By
Corollary PSH.20.1, X-Y-Z.

(Case IIB: Z <Y < X)If Z < Y < X, X and Y are distinct, Y and Z
are distinct, and ZY N OP and YX N OP are both rays. By Corollary PSH.20.1,
Z-Y-X, that is, X-Y-Z. O

Theorem ORD.7. Let O and P be distinct points on a Pasch plane P and suppose
the points of O(—)P are ordered so that O < P.

<>
(D If A and B are points on OP such that A < B, then there exist points C, D, and
E suchthatD <A< C<B<E.

<>
(Il) If A and B are points on OP such that A < B, then

AB={X|A <X <B) = {X|B> X > A},
AB={X|[A<X<B}={X|B>X>A},
3

AB={X|JA<X<B'={X|B>X> A},
AB = {X|A <X < B} ={X|B>X > A},
AB = {X|A < X} = (X|X > A},

AB = {X|A < X} = (XX = A};

while if A and B are points on 0‘79 such that B < A, then

AB={X|A>X>B) = (X|B <X <A},
AB={X|JA>X>B}={X|B<X <A,
AB={X|A>X>B}={X|B<X <A},
AB = {X|A > X = B} = {X|]B <X < A},
AB = {X|A > X} = (X|X < A},
AB = {X|A > X} = {X|X < A},

(II) Let C be any member of (0_})’

(A) If D = {X|X > C} and D is nonempty, then there exists a member D of
O<—>P such thatD > C and D = jC_D);

B) If€ = {X|X < C} and £ is nonempty, then there exists a member E of <0_)P
such that E < C and £ = jC_E)

Proof. (I) Since A and B are distinct, by Theorem PSH.22 (Denseness) there exists
a point C such that A—-C-B. By Theorem ORD.6, either A < C < B or
B < C < A. But the alternative B < C < A implies that B < A by
Theorem ORD.4, and by Theorem ORD.5 this contradicts our assumption that
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A < B, so we must conclude that A < C < B. By Properties B.3 and B.1 of
Definition IB.1, there exist points D and E such that D-A-C and C-B-E. If we
put these relationships together with the assumptions that A < C and C < B
and argue as above, we get D < A < C and C < B < E. This conjunction can
be written D <A < C < B < E.

(I) Exercise ORD.6.

(II) Let D and E be any members of D and &, respectively. Then by part (II) above,
D= jC—D) and £ = jC_E) O

Definition ORD.8. Let O and P be distinct points on a Pasch plane P, let the points
on (7’ be ordered so that O < P, and let £ be a nonempty subset of (O_l)’ Then:

(A) £ is bounded above iff there exists a member A of <0_)P such that X < A for all
X in £. Such a point A is an upper bound of €.

(B) £ is bounded below iff there exists a member A of <O_1)D such that A < X for all
X in £. Such a point A is an lower bound of £.

(C) € is bounded iff £ is bounded above and bounded below. £ is unbounded iff
it is not bounded.

(D) € has a maximum (largest element) iff there exists a member A of £ such that
X <Aforall X € £. If £ has a maximum, it is denoted by max £.

(E)) £ has a minimum (smallest element) iff there exists a member A of £ such that
X > Aforall X € £. If £ has a minimum, it is denoted by min €.

Remark ORD.9. Let M be a line in a Pasch plane which is ordered by the order
relation <. Let £ be a nonempty subset of M.

(A) If D is an upper bound of £, and E > D, then E is an upper bound of £.

(B) If F is a lower bound of £, and G < F, then G is a lower bound of £.

(C) Every segment in M is bounded.

(D) Every ray which is a subset of M is unbounded, and is either bounded above
or bounded below.

(E) Let A and B be distinct points on the line M. If A < B, then maxI[LTIg’ = B,
minﬁ =A, min;\ré = A.

(F) Using Theorem ORD.7(I), the reader may easily confirm that if A < B, each of
the sets ETBE, ﬁ, %:4), and 1[54) has no minimum, and each of the sets ﬁ, ;Té, ;\ré,

and ?4% has no maximum.
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Theorem ORD.10 (Finite sets are bounded). Letr £ be a line which is ordered
according to Definition ORD.I. Then every nonempty finite subset of L has a

maximum and a minimum.

Proof. Let £ be a nonempty finite subset of £. In elementary set theory (see
Chapter 1) a nonempty set S is defined to be finite iff there exists a natural number
p such that the number of elements in S is p. It is also shown that every subset of a
finite set is finite.

We propose to prove the following statement by mathematical induction. If £ is
any subset of £ having n members, where n is any natural number, then £ has a

maximum and a minimum.

(D If n = 1, so that there exists a point A such that £ = {A}, then by
Definition ORD.8, max £ = min£ = A. Hence the above statement is true
whenn = 1.

(I) If n = 2, then there exist distinct points A and B such that £ = {A, B}. Since
A # B, by Theorem ORD.5, either A < Bor A > B.If A < B, then by
Definition ORD.8, min€ = A and max& = B. Similarly, if B < A, then
min £ = B and max £ = A. Hence the above statement is true for n = 2.

(IIT) To complete the proof by induction, we must show that if the above statement
is true for any natural number k, say, then it must be true for k + 1. To do this,
we suppose that it is true for some k, i.e., we suppose that every subset £ of
L having k members has a maximum and a minimum, and we use this (the
induction assumption) to prove that every subset S of £ having k 4 1 members
has a maximum and a minimum. Let A be any member of S, which member
we keep fixed for the remainder of this argument. Then the set S\ {A} contains
k members, so the induction assumption says that S \ {A} has both a maximum
U and a minimum V.

From (II) above, {A, U} has a maximum M, and {A, V} has a minimum N.
We will have completed the induction argument when we have shown that M
is a maximum of S and N is a minimum of . To this end, let X be any member
of S. Since § = (S '\ {A}) U {4}, and the sets in this union are disjoint, either
X=AorX e (S\A).If X = A, then directly from the definition of M and N
X <M and N < X. On the other hand, if X € (S \ A), then by the definitions
of Uy, V,M,and N, X < U < Mand N <V < X, so by Theorem ORD 4,
X < M and N < X. We have shown that every member X of S satisfies the
requirements in Definition ORD.8, so M = max S and N = min S. O
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Theorem ORD.11. Let L be a line which is ordered according to Defini-
tion ORD. 1. Let € be a nonempty subset of L.

(I) If € is bounded above and U is the set of its upper bounds, and if £ has a
maximum, then U has a minimum and minl4 = max &.
() If € is bounded below and L is its set of lower bounds, and if £ has a minimum,
then L has a maximum and max £ = min €.
(1) If &€ is bounded above, and if the set of upper bounds of £ has a minimum M,
and M € &, then € has a maximum and max £ = M.
(V) If & is bounded below, and if the set of lower bounds of £ has a maximum N,
and N € &, then £ has a minimum and min £ = N.

Proof. The proof of item (I) is a direct application of Definition ORD.8. Suppose U
is the maximum of £; U is a member of U, since it is an upper bound. If there were
amember V € U with V < U, V would not be an upper bound of £ and hence not
a member of Y. Hence U is the minimum of the set I/ of upper bounds of £. Proofs

of (IN—(IV) are also easy consequences of Definition ORD.8. O

Theorem ORD.12. Let A and B be distinct points in a line L which is ordered
according to Definition ORD. 1. Then each of the following sets is infinite: ;ﬁ?) zjﬁ\_é
:Té, /jl_é ;Tl% ﬁ and ETB;

Proof. From elementary set theory we recall that a set is infinite if it is not finite, and
every set having an infinite subset is infinite. Since AB is a subset of all of the sets
listed above, we need only show that 247; is infinite. This has already been proved in
Corollary PSH.22.2. The altemative proof we give here uses ordering.

By Theorem PSH.22, AB i is nonempty. Order the pomts on £ sothat A < B.
Assume AB is finite. Then by Theorem ORD.10, AB has a minimum Q. By the
definition of a minimum, Q € AB. By Theorem ORD.7(II), A < QO < B. By
Theorem ORD.7(I), there exists a point R such that A < R < Q < B. Using
Theorem ORD.7(II) again shows that R € ﬁ Hence we have found an element
of AB which is smaller than Q, which is a minimum of AB. This is a contradiction

of Definition ORD.8, so our assumption that AB is finite is false. a
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6.2 Exercises for ordering

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise ORD.1*. Let A, B, C, and D be points such that A—~B—C-D. If the points
on zﬁ are ordered so that A < D, then A < B < C < D.

Exercise ORD.2. Let O and P be distinct points, and let £ be a nonempty finite
subset of OP which has n elements. Then there exists a mapping 6 of [1;n] onto £
such that for every member k of [1;n — 1], 8(k) < 6(k + 1), and every member of
{6()|j € [1; k]} is less than every member of £ \ {0(j)|j € [1; k]}.

Exercise ORD.3. Let D be the field of dyadic rational numbers,' let I’ be equal
to D N [0;1], and let A and B be distinct points on a Pasch plane P. Then there
exists a mapping 6 of IV into AB such that, for all members r and s of IV, r < s iff

0(r) < 6(s).

Exercise ORD.4*. Let £ be a convex subset of a line M. If £ is not a singleton,

then £ is infinite.

Exercise ORD.5. Let £ be an infinite convex subset of a line M. If A is a member
of £, Bis a member of M\ E, and C is a point such that A—-B—C, then 1'?6)' is a subset
of M\ E.

Exercise ORD.6*. Prove Theorem ORD.7 part (II).

Exercise ORD.7*. Let A and B be distinct points on a Pasch plane P and let C
and D be distinct members of IETE, then ]C_D[ C f]\_Bg and CD - AB.

Exercise ORD.8*. Let O, A, B, and C be collinear points on a Pasch plane P such
that O < A < Band O < A < C, then there exists a point D such that D >
max{B, C}.

Exercise ORD.9*. Let P be a Pasch plane, and let £ and £ be distinct lines on P,
O be a member of P \ (£ U L'). Suppose further that a line through O intersects £
iff it intersects £’, and that each of the intersections of every such line with £ or £’

is a singleton.

'Dyadic rationals are numbers that can be written in the form > where a is an integer and b is a

natural number greater than 0.
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Let A and B be distinct points on £, A’ be the point such that OAnc = {A"}
and B’ be the point such that OBNL = {B'}. Order the points on £ so that A < B,
and order the points on £’ so that A’ < B'.

For every X € L let ¢(X) be the point on £ such that OXNc = {eX)}.

(A) ¢ is a bijection of £ onto L.
Let X, Y, and Z be any distinct points on L.
(B) X-Y-Z iffrw(X)—so(]Y )-p(Z).
©) ¢(X7) = p(X)e(Y).
D) ¢XF) = p(X)p(Y).
<> <>
(EB) ¢(L) = ¢(XY) = p(X)p(Y) = L.
(F) IfX < Y, then 9(X) < ¢(Y).



Chapter 7
Collineations Preserving Betweenness (COBE)

Acronym: COBE
Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1— CAP4), 4, 5, and 6
New Axioms: none

New Terms Defined: belineation

Abstract: A belineation is a bijection of a plane that preserves betweenness. This
chapter shows that every belineation on a Pasch plane is a collineation, and explores
the interactions between belineations and segments, rays, lines, sides of a line,
angles, and triangles.

The principal result of this chapter is Theorem COBE.5, which establishes that
a belineation on a Pasch plane carries segments to segments, rays to rays, and
angles to angles, etc. In Chapter 8 we define reflections and isometries, which are
belineations, and restate Theorem COBE.5 in that context as Theorem NEUT.15;
this result is essential to the development of neutral geometry. Many citations of
Theorem COBE.S5 are interchangeable with citations of Theorem NEUT.15.

In later chapters we show that dilations, symmetries, and axial affinities are belin-
eations (cf Theorem DLN.8, Theorem SIM.2, and Theorem AX.4). Applications
are found in Chapter 14, where the properties of a line as an ordered field are
established (cf Theorem OF.10(C)), in Chapter 15 in the proof of Theorem SIM.9,
and in Chapter 17 (Theorem QX.2) where multiplication on a line is defined.

It has been conjectured that every collineation on a Pasch plane where Axiom
PS holds is a belineation; if this were true, it would be unnecessary to prove
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either Theorem DLN.8 (Chapter 13) or Theorem AX.4 (Chapter 16). We have not
succeeded either in proving this conjecture or in constructing a counterexample, that
is, a model of a Pasch plane with Axiom PS in which there is a collineation which
is not a belineation. The authors would be grateful to anyone who could provide

either.

Definition COBE.1. A bijection ¢ on a Pasch plane P is a belineation' if it
preserves betweenness; that is, for any points A, B, and C on P, if A-B-C, then

9(A)—(B)-¢(C).

Theorem COBE.2. Let P be a Pasch plane; then every belineation ¢ on P is a
collineation. More specifically, for any distinct points A and B on P, (p(f(é) =

p(A)p(B).

<> > <>
Proof. (It (AB) C ¢(A)p(B)) Let X € AB. By Theorem IB.5, exactly one of
X-A-B,X = A,A-X-B, X = B or A-B-X is true. Since ¢ preserves betweenness,
exactly one of ¢(X)—¢(A)-¢(B), 9(X) = ¢(A), p(A)-p(X)—¢(B), ¢(X) = ¢(B),
or (A)—¢(B)—¢(X) is true. Thus by Theorem IB.5, ¢(X) € ¢(A)@(B), so that
e
9(AB) C p(A)p(B).
Bt ¥ DEEG — <> . .
(II: p(A)@(B) € ¢(AB)) Suppose that ¢(A)@p(B) € ¢(AB); then there exists a point
B
D € ¢p(A)p(B) such that D ¢ (p(f4_§); since ¢ is a bijection, there exists a point
<> <—> . <—>
C € P such that ¢(C) = D € ¢(A)p(B), and C & AB (for if C € AB, then
p(C)=D¢€ (p(;ﬁ?)), which is false by assumption). By Exercise 1.2
P(A)¢(C) = ¢(A)p(B) = ¢(B)p(C).

By Part I,

<>
¢(f£) € ¢(A)p(C) = ¢(A)¢(B) and
9(BC) S ¢(B)p(C) = ¢(A)p(B).
. <> <> <> g
Now let X be any point of P \ (AB U AC U BC), and let Y € AB, so that
<> <>
o(Y) € ¢(4B) < p(A)¢(B).

Then XY intersects AB but does not contain any of the points A, B, or C. By
the Postulate of Pasch, )(H)/ must intersect either AC or I?CL‘; let Z be this point
of intersection. Since both ¢(AC) and ¢(BC) are subsets of ¢(A)¢(B), and Z
is a member of either AC or BC, ¢(Z) € ¢(A)p(B). Since X € YZ, by Part I

I We hope the reader is not offended by this rather odd name; believe it or not, we bandied about
some other names that were even stranger—such as betweeneation.
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<> <> <>
0(X) € p(YZ) € ¢(Y)@(Z) which by Exercise 1.2 is equal to ¢(A)¢(B), because
>
both ¢(Y) and ¢(Z) are members of ¢(A)¢(B).
<~ <~ <> B
We have shown that ¢(AC), ¢(BC), and ¢(AB) are all subsets of ¢(A)¢(B),
— s . )
and that ¢(X) € ¢(A)@(B). Therefore (P) C ¢(A)@(B). By assumption ¢ is a
s
bijection, so that P = ¢(P) C ¢(A)@(B). But Axiom 1.5(B) says that P contains
>
at least three noncollinear points. This is a contradiction; therefore, ¢(A)p(B) <
0(AB). O

Theorem COBE.3. If ¢ is a belineation on a Pasch plane P, so is ¢~ ".

Proof. Assume that ¢ is a belineation; by definition, it is a bijection, and by
elementary mapping theory, its inverse is also a bijection.

Let A, B, and C be any points on P; we show that if A-B-C, then
¢~ (A~ (B)-¢7'(O).

By Theorem COBE.2 ¢ is a collineation, and by Theorem CAP4(D’) ¢~ ! is a
collineation, so that ¢ ~!(A), ¢~ !(B), and ¢~ '(C) are collinear, and we may apply
the trichotomy Property B.2 of Definition IB.1.

If 9~ (A)-¢~ ' (C)—¢~'(B), then

e(e~ () (C)-¢(e™'(B)
that is, A—C-B. This is false by the trichotomy Property B.2 of Definition IB.1.
By a similar argument, ¢! (B)—¢ ™' (A)—¢~'(C) is false; hence by the trichotomy
property, ¢~ (4)—¢~" (B)-¢ ' (O). O

Remark COBE.4. Summarizing Theorem COBE.2 and Theorem COBE.3, ¢ is
a belineation iff its inverse is a belineation, in which case both it and its inverse
are collineations. We have already seen in Theorem CAP.1(D’) that a bijection is a

collineation iff its inverse is a collineation.

Theorem COBE.S. Let P be a Pasch plane, A, B, and C be noncollinear points on
‘P, and let ¢ be a belineation of P; then:

(1) w(‘f@) ¢(A)p(B).
(2) ¢(AB) = w(A)¢(33
3) ¢(,Té) — ¢(A)(B),
) co(AB) = ¢(A)¢(B),
&) so(AB) = sv(A)<p(B)
(6) w(AB) = w(A)w(B)
(7) ¢(AB) = sv(A)<p(B)
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(8) 9(LABC) = Lo(A)p(B)¢p(C),
<> «—

(9) @(the C-side of AB) = the ¢(C)-side of ¢(A)¢(B),
(10) ¢(AABC) = Ap(A)p(B)¢(C),
(11) ¢(ins ZBAC) = ins Zp(B)p(A)p(C),
(12) ¢(ins AABC) = ins Ap(A)p(B)p(C).
(13) If A, B, C, and D are points on P and OABCD is a quadrilateral, then

@(OABCD,) is a quadrilateral, and ¢(OABCD) = O¢p(A)¢(B)o(C)p(D).

Proof. (1) This is Theorem COBE.2. .

(2) We first prove that go(134_1§ \{B}) = ¢(A)¢(B) \{¢(B)}. Let Y be any mem-
ber of (p(ﬁ\{B}); then there exists a member X of 1]4%\{3} such that
Y = ¢(X). By Definition IB.4, either A—~X-B or A-B—-X. By Definition
COBE.1, ¢(A)—¢(X)—¢(B) or ¢(A)—-¢(B)—-¢(X). By Definition IB.4, ¥ <
3 :
¢(A)p(B) \{p(B)}. Thus )

¢(AB\(B}) < p(A)p(B) \{¢(B)}.
By this result since ¢! isa behneatlon
o (@A) (B) \(0(B)}) € <p o)™ (9B) \{p~ (¢(B))}
= AB\(B)
Applying ¢ to both sides, we have
I
(A)p(B) \lp(B)} C p(AB\{B)).
Combining these results, (p(ﬁ \{B}) = ¢(A)p(B) \{¢(B)}. Now ¢ is one-to-
one and AB \{B} and {B} are disjoint, so by elementary set theory,
#(AB) = (AB\{B} U {B}) = ¢(AB \{B}) U ¢({B})
B < T
= ¢(A)e(B) \{p(B)} U {p(B)} = p(A)¢(B).
(3) Using part (2) and elementary set theory,
#(4B) = ¢({4} UAB) = {p(4)} U p(4B)
=¢A) U w(A)w(B) o(A)(B).

(4) Let Y be any member of (p(AB) then there exists a member X of AB
such that ¥ = ¢(X). By Definition IB.3, A—-X-B. By Definition COBE.1,
@(A)-@p(X)—¢(B). By Definition IB.3, Y € ¢(A)@(B). Thus ¢(AB) <
T
¢(A)p(B). Since ¢~ is a belineation,

T C c
0" (@A)p(B) € ¢~ (p(A)p~ (p(B)) = AB.
and applying ¢ to both sides,
P £ —1] ¢
w(A)q)(B) P~ (p(A)p(B))) < 9(AB).
Therefore (p(AB) = (p(A)(p(B)
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(5) Since ¢(A) and ¢(B) both belong to ¢(IEXT?]~) and to (Ep(A)(p(Bi using part (5) we
get p(AB) = p(A)¢(B).

(6) By part (4) and elementary set theory,

¢(AB) = p(ABU{B}) = ¢(AB) U {p(B)}
¢ —— 3
= ¢(A)p(B) U{p(B)} = ¢(A)p(B).
(7) The argument is similar to that for part (6).
(8) By Definition PSH.29 and elementary set theory,
#(£BAC) = p(ABUAC) = p(4B) U p(AC)
= p(A)p(B)U éo(A)gcj = Zp(B)p(A)p(C).

(9) Let Y be any member of ¢(C-side of AB \ {C}); then there exists a member
X of (C-side of AB \ {C}) such that Y = ¢(X). By Definition IB.11,
ﬁﬂzﬁ = . By elementary set theory and part (5), § = ¢(CX ﬂﬁ) =
¢(C)p(X) Ng(A)p(B). By Definition IB.11, Y belongs to ¢(C)-side of
s
9(A)p(B) \ {¢(C);}. Thus

¢(Cside of AB \ {C}) C (¢(C)-side of p(A)p(B)) \ {¢(C)}.
1

Now ¢! is a belineation, so in the above we may substitute ¢! for ¢, p(A)
for A, ¢(B) for B, and ¢(C) for C. Then
2 . >
¢~ (¢(C)-side of p(A)p(B) \ {¢(C)})
C (¢! (w(Q)_)—side of o™ (@(A)e ™ (9(B)) \ {9~ (¢(C))}
= C-side of AB \ {C}.
Applying ¢ to both sides we have
f e < <>
¢(C)-side of (A)p(B) \ {¢(C)} S ¢(C-side of AB) \ {C}.
Therefore,
. <> . s
¢(C-side of AB) \ {C} = (¢(C)-side of p(A)p(B) \ {¢(C)}).
. <~ ) «———>
By elementary set theory, ¢(C-side of AB) = ¢(C)-side of ¢(A)@(B).
(10) By Definition IB.7, part (5) above, and elementary set theory,
@(AABC) = (ABUBC UAC)
= ¢(AB) U ¢(BC) U p(AC) ]
= ¢(A)p(B) Up(B)p(C) Up(A)p(C)
= Ap(A)p(B)p(C).
(11) By Definition PSH.36(A) and elementary set theory,
o(ins ZBAC) = ¢(the B-side of AC N the C-side of AB)
s . s
= the ¢(B)-side of p(A)p(C) N the ¢(C)-side of p(A)p(B)
= ins(Ap(B)p(A)p(C)).
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(12) By parts (9), (11), Theorem PSH.46(C) and elementary set theory,

o(ins AABC) = o((ins ZBAC) N (the A-side of BC))

ins Zo(B)p(A)p(C) N (the ¢(A)-side of ¢(B)¢(C)),

ins Ap(B)p(A)p(C).

(13) By Definition PSH.31, since OABCD is a quadrilateral, OABCD =
ABUBCUCDUDA, all the wiples {4,B,C}, {B,C,D}, {C,D,A}, and
{D,A, B} are noncollinear, and ABNCD = BCNDA = 0. By part (5)
above and elementary set theory,

0(DABCD) = ¢(15173u23“6u[c73u571§)
= w(AB) U w(BC) U <P(CD) U w(DA) i}
= pA)¢(B) Up(B)¢(C) U p(C)p(D) U p(D)p(A)
= 0p(A)e(B)p(C)p(D).
By Exercise CAP.2, all the triples {¢(A), 9(B), (C)}, {¢(B), ¢(C), (D)},
{0(0), 9(D), p(A)}, and {p(D),¢(A), p(B)} are noncollinear. Since ¢ is a
bl]eCtIOl’l

¢(A)p(B) N 9(C)p(D) = p(B)p(C) Np(D)p(A) = 0.
By Definition PSH.31, ¢(OABCD) is a quadrilateral. O

Theorem COBE.6. Let P be a Pasch plane, ¢ a belineation of P, and let A and
B be distinct points on P. Let the points on ;ﬁ?) be ordered so that A < B (cf
Definition ORD. 1), and let the points on m be ordered so that p(A) < ¢(B).
Then for any points X and Y of;@), X <YiffeX) < @)

Proof. If X < Y, by Definition ORD.1 (and the fact that A < B) XYNABisa ray.
B> B> B> >

By Theorem PSH.19 XY C AB or AB C XY.

By the elementary properties of mappings (p()[(—>Y ) C (p(AE>B) or (p(Z—é) - (p()%)’ ).
By Theorem COBE.5(3) go(X)so(Y) < p(A)p(B) or p(A)p(B) < ¢(X)p(¥).

By Theorem PSH.19 (X)(p(Y;) N (p(A)(p(B; is a ray. By Definition ORD.1 (and
the fact that ¢(A) < ¢(B)) (X) < ¢(Y).

Conversely, if ¢(X) < ¢(Y), applying ¢! to both sides, the argument above

yields X < Y. o

There are no exercises for this chapter.



Chapter 8
Neutral Geometry (NEUT)

Acronym: NEUT

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1-CAP4), 4, 5, and 6
New axiom: Axiom REF

New Terms Defined: mirror mapping over a line, reflection set (of mirror map-
pings), reflection over a line, angle reflection, fixed segment, line of symmetry,
isometry, congruent, midpoint, neutral plane, complementary mapping of a reflec-
tion, perpendicular, vertical angles, supplementary angles, bisecting ray, right
angle, perpendicular bisecting line, kite; smaller, larger, smaller or congruent,
larger or congruent (angle ordering); outside angle of a triangle; right, obtuse,
acute (angle); right, obtuse, acute (triangle); maximal angle, maximal edge (of a
triangle); hypotenuse, leg (of a triangle); altitude, base (of a triangle); foot (of a

line)

Abstract: This chapter deals with neutral geometry, which is central to the entire
book. It begins with definitions of mirror mappings and reflections over lines.
Every line is an axis for some reflection. A line of symmetry for a set is a line
whose reflection maps that set onto itself. Every angle has a line of symmetry, its
angle bisector. Compositions of reflections are isometries, and isometric sets are
congruent. These concepts provide access to the standard congruence theorems.
Reflections are used to define perpendicularity, the perpendicular bisector and
midpoint of a segment, and to prove the existence of a line (not necessarily unique)
through a given point parallel to a given line. Ordering of angles is defined, leading

to the notions of acute angle, obtuse angle, and maximal angle of a triangle.

© Springer International Publishing Switzerland 2015 155
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As can be seen by surveying either the abstract above or the list of new terms
defined, this is a wide-ranging chapter; it is the place where many of the most
familiar results of plane geometry are developed, and where we deal, finally, with
congruence.

The geometry in this chapter is called neutral geometry' since no commitment
is made regarding a parallel axiom. It builds on Pasch geometry, invoking Axioms
1.0 through 1.5 (the incidence axioms), Axiom BET (betweenness), and the Plane
Separation Axiom.

In contrast with Hilbert’s axioms in which congruence is an undefined term
given meaning by axioms, we use reflections to define congruence, taking a two-
step approach. First, in Definition NEUT.1 we define a mirror mapping as a type
of bijection on a Pasch plane P which is both an axial affinity and a belineation,
and is its own inverse. Its properties are based on our everyday observations about
reflection in a physical mirror (cf Remark NEUT.1.0).

Unfortunately, we cannot base neutral geometry on mirror mappings—one
reason being that, as shown in Exercise NEUT.0, there can be more than one mirror
mapping over a line in a coordinate plane.> Our notion of perpendicularity arises
from the behavior of reflections, and allowing multiple reflections over a line would
lead to the existence of many perpendiculars to a line at a point; this would not be
helpful. Nor do we have, for mirror mappings, any assurance about several other
kinds of behavior that are essential to our development, involving characteristics
not of just one mapping, but of the entire family of mirror mappings.

Therefore, in Definition NEUT.2 we specify a subset of the collection of all
possible mirror mappings, called a reflection set, which is defined by the six
Properties R.1 through R.6 of Definition NEUT.2. Members of the reflection set
are called reflections. We wish this list of properties could be shorter, but we
haven’t succeeded in proving any of them from the others. Finally, we state a single

reflection Axiom REF, which asserts simply that a reflection set exists.

Even though we take no stand in neutral geometry with regard to a parallel axiom,
in Theorem NEUT.48(B) we will prove Property PE:

"Historically, geometry developed without regard to a parallel axiom was referred to as absolute
geometry.

2 A coordinate plane is a Pasch plane, satisfying the incidence, betweenness, and Plane Separation
axioms; this will be shown in Chapter 21, Sections 21.5.1 through 21.5.4.
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Property PE (Parallel Existence). Given a neutral plane P and a line L on P,
for every point Q belonging to P \ L, there exists a line M through Q which is
parallel to L.

There is no claim of uniqueness—Property PE falls short of Axiom PS. However,
if PE is joined with PW, then we get PS; the reader may wish to compare this with
the discussion of Axioms PS and PW following Definition IP.0 in Chapter 2.

Since the incidence, betweenness, plane separation axioms, and the reflection
axiom to be introduced here imply Property PE, they are incompatible with elliptic
geometry, in which there are no parallel lines; to make them so, we would have
to weaken our definition of reflection. Once we have developed neutral geometry,
we may accept the Parallel Axiom by accepting either Axiom PW or PS, yielding
Euclidean geometry, as in Chapter 11. Or we may deny it by saying that given a
line £ and a point P not on that line, there may exist more than one line through P
parallel to L. This denies both Axioms PW and PS and yields hyperbolic geometry,

which we do not pursue.

This chapter is loosely based on the development in Fundamentals of Mathemat-
ics, Volume II, Behnke, et al, eds., published by MIT Press; particularly Chapter 4
by J. Diller and J. Boczeck, and Chapter 5 by F. Bachmann, W. Pejas, H. Wolff, and
A. Bauer [2].

8.1 Mirror mappings and their elementary properties

Definition NEUT.1. Let £ be any line contained in a Pasch plane P. A mirror
mapping over the line £ is a mapping ¢ of P into P which satisfies

(A) if X is any point on £, ¢(X) = X; that is, every point of L is a fixed point for ¢;
(B) for every member X of P \ £, X and ¢(X) are on opposite sides of L;

(C) for every member X of P\ L, ¢(¢(X)) = X; and

(D) for all points A, B, and C on P such that A~-B-C, ¢(A)—¢p(B)—¢(C); that is to

say, betweenness is preserved by ¢.

30ther authors introduce axioms on motions of an ordered plane to develop neutral geometry.
See Doneddu, A., Etude de géométries planes ordonnées, Rend. Circ. Mat. Palermo, II. Ser. 19,
27-68 (1970) [5], and Lumiste, U., Foundations of geometry, Estonian Mathematical Society,
Tartu, 2009 [13].
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The line L is the axis of the mirror mapping ¢.

Remark NEUT.1.0. We have based the properties of a mirror mapping on our
observations of reflections in a physical mirror. Property (A) of Definition NEUT. 1
says that the reflecting surface of a mirror appears stationary. Property (B) says
the objects seen in a mirror appear to be on the opposite side of the reflecting
surface from their actual positions. Property (C) hints that the original objects are
themselves reflections of their images (a slightly mind-twisting thought!). Property
(D) says that the images of objects lined up in order are in the same order as the

objects themselves.

Items NEUT.1.1 through NEUT.1.8 use the terminology and notation of Defini-
tion NEUT.1, and describe the elementary properties of mirror mappings. They are

stated and proved somewhat informally.

Remark NEUT.1.1. A mirror mapping has only one axis of fixed points. If ¢ is a
mirror mapping over £, by Property (A) of Definition NEUT.1, every point of £ is a
fixed point of . If A & L, by Property (B) A cannot be a fixed point for ¢. Therefore
L is the set of all fixed points for ¢. If there were a second axis N, at least one of
its points would not belong to £ and hence would not be a fixed point, contradicting

the assumption that V' is an axis.

Remark NEUT.1.2. The identity map 1 is not a mirror mapping. This follows from
Property (B) of Definition NEUT.1.

Remark NEUT.1.3. For any mirror mapping ¢, ¢ o ¢ = 1, and ¢ is a bijection
of P. Let A be any point of P. If A € L, by Property (A) of Definition NEUT.1,
0(p(A)) = ¢p(A) = A;if A € L, by Property (C) ¢(¢(A)) = A. This shows that
@ o ¢ =1, and also that ¢ maps P onto P.

Note that A € L iff 9(A) € L; forif A € L, by Property (A) p(A) = A € L; if
A & L, by Property (B), (A) & L. To show that ¢ is one-to-one, let p(A) = ¢(B). If
AeL,p(A) =¢(B) € Landhence B € L. Thus A = ¢(A) = ¢(B) =B.IfA & L,

by Property (C) A = ¢(¢(A)) = ¢(¢(B)). Then ¢(¢(B)) & L so that ¢(B) & L and
B ¢ L; by Property (C) ¢(¢(B)) = B so that A = B. Thus ¢ is a bijection of P.

Remark NEUT.1.4. A-B-C iff 9(A)—¢(B)—¢(C). Let A, B, and C be any points
of P; by Property (D), if A~B—C then ¢(A)—¢(B)-¢(C). If ¢(A)—¢(B)-¢(C), by
Property (D) ¢(¢(A))-¢(¢(B))—¢(¢(C)), and by Remark NEUT.1.3 above, this is
A-B-C.
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Remark NEUT.1.5. A mirror mapping ¢ is both a belineation and a collineation.
This follows immediately from Remark NEUT.1.4 above and Theorem COBE.2.

Remark NEUT.1.6. A mirror mapping is an axial affinity. This follows immedi-
ately from Definition CAP.25 using Remark NEUT.1.2, Remark NEUT.1.5, and
Property (A) of Definition NEUT.1.

Remark NEUT.1.7. It can be shown that if every point O of L is contained in some
>

line Ap(A) (A & L), where ¢ is a mapping obeying properties (B) through (D) of

Definition NEUT.1, then Property (A) holds. This is Exercise NEUT.83.

Theorem NEUT.1.8. A mirror mapping maps endpoints of segments and rays to

end points.

Proof. We show this for closed segments. Let A, B C and D be points of P where
A # Band C # D.If ¢ is a mirror mapping and (p(AB) CD then either p(A) =

and ¢(B) = Dor¢(A) = Dand ¢(B) = C.Forif p(A) € CD and is not an endpomt
C-¢(A)-D; by Property (D) of Definition NEUT.1, ¢(C)-¢(¢(A))-¢(D), and by
Remark NEUT.1.3, ¢(C)-A—¢(D). This i is 1mp0551ble since A is an endpoint of 1[43,
and both ¢(C) and ¢(D) are members of AB (again by Remark NEUT.1.3). |

8.2 Reflection sets and the reflection axiom

Definition NEUT.2. A set £ of mirror mappings on a Pasch plane is said to be a
reflection set if it satisfies Properties R.1 through R.6 listed below.

R.1 (Existence) For every line £ in the plane P, £ contains a mirror mapping R ¢
over L.

R.2 (Uniqueness) £ contains no more than one mirror mapping R over a line £
inP.

R.3 (Closure) If ¢ is a mirror mapping over a line £ and ¢ is the composition of
two or more mirror mappings in &£, then ¢ € £.

R.4 (Linear scaling) If A, B, and C are distinct points on the plane such that C € ﬁ
and for some composition « of mirror mappings in &, a(ﬁ) C]' then
B=_"C.

R.5 (“Angle reflection”) For every angle ZAOB in the plane P, there exists a mirror
mapping R € £ such that R .(£LAOB) = ZAOB.
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R.6 (“Existence of a midpoint”) For any closed segment AB € P there exists a
point M € AB and a composition @ of mirror mappings belonging to £ such
that «(AM) =

Since we have not yet officially defined either angle reflection or midpoint we put
“Angle reflection” and “Existence of a midpoint” in quotation marks to emphasize
that at this point they are only labels.

In Chapter 21 (Subsection 21.7.3) we will show the independence of various of
the Properties R.1 through R.6 by exhibiting sets of mirror mappings that are not

reflection sets.
Axiom REF. There exists a reflection set REF.

Definition NEUT.3. (A) A member of a reflection set REF will be called a line
reflection, or simply a reflection over £, and will be denoted by the symbol
Re.

A mapping o of a Pasch plane P into P is an isometry of P iff either « is the
identity mapping of P, or is the composition of a finite number (at least one)
of reflections over lines in P; that is, for some natural number n > 1 and every
k=1,2,...,n, R, is areflection over aline £y in P, ando = Ry, 0---0R,.

(B) Let S and 7 be nonempty subsets of a Pasch plane P. S is congruent to T
(notation: S = 7)) iff there exists an isometry o of P such that a(S)

(C) Let A and B be distinct points on the plane P. M is a midpoint of AB iff A-M-B
and AM = BM.

(D) A line £ in a Pasch plane P is a line of symmetry for a nonempty set S iff
R.(S) = S, where R, is a reflection over the line £. The reflection R,

may sometimes be referred to as the reflection implementing the symmetry.

L_I

It should be noted that since all the points of the line £ are fixed points, L is
trivially a line of symmetry for any of its subsets.

If S = ZAOB, we will say that R, is the angle reflection for ZAOB. An
angle reflection is also a line reflection; the terminology merely reminds us that
it is being apphed in a certain way.

A ray OD is a bisecting ray of ZAOB iff OD is a line of symmetry for
ZAOB and D € ins ZAOB.

Remark NEUT.4 (Partial restatement of Definition NEUT.2). Using Defini-
tion NEUT.3 we may state some of the properties of Definition NEUT.2 more
succinctly. Let P be a Pasch plane on which mirror mappings and reflections are
defined.
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R.4 (Linear scaling) may be restated as: If A, B, and C are distinct points on P such
that C € A_B andﬁ ~ 1[4763‘, then B = C.

R.5 (Angle reflection) may be restated as: For any angle ZAOB in the plane P,
there exists an angle reflection R, € REF for ZAOB.

R.6 (Existence of a midpoint) may be restated as For " any closed segment AB cP
there exists a point M € AB such that AM MB that is, M is a midpoint
of AB.

Remark NEUT.5. (A) Property R.3 (closure) may appear a bit puzzling at first;
if it were applied to a single mirror mapping, it would be vacuous. But it
specifies that if the mirror mapping in question is a composition of two or
more mirror mappings that belong to £, then it must belong to £. This imposes
a requirement.

(B) Property R.4 (linear scaling) may also appear a bit mysterious. However, it
is absolutely pivotal to the development, being as close as we can come to
declaring that isometry preserves distance, without actually having a notion of
distance.*

(C) Property R.6 of Definition NEUT.2 does not imply uniqueness of a midpoint of
a segment; for now we will assume that it can have more than one. The proof
that it can have only one midpoint is Theorem NEUT.50.

(D) Throughout the remainder of the book, any citation of one of Properties R.1
through R.6 of Definition NEUT.2 will be understood to include a reference to
Axiom REF, which establishes that the cited property is in force.

Remark NEUT.6 (On angle reflections).

(A) Property R.5 of Definition NEUT.2 by itself does not imply uniqueness of lines
of symmetry or angle reflections; for now we will assume that there could be
two reflections R~ and R ./ such that

R (LAOB) = LZAOB = R/ (LAOB).
In Theorem NEUT.26 we will show that there is only one angle reflection
for an angle, and hence, by Remark NEUT.1.1, there can be only one line of
symmetry.

(B) If O, A, and B are noncollinear points and R (br)A) = %, then by
Remark NEUT.1.3 R-(0B) = R.(R-(OA)) = OA. By Definition PSH.29

“In a conversation many years ago a theologian friend cracked “you mathematicians have humor
without humor.” Here we have “distance without distance.”
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ZAOB = 53 U OH)B Thus R, maps ZAOB onto itself, and therefore by
Definition NEUT.3(D) R is an angle reflection and £ a line of symmetry for
ZAOB. However at this stage there is no guarantee that R ~(0) = O (cf part
(C) below).

(C) Property R.5 of Definition NEUT.2 says only that R . (ZAOB) = ZAOB in the
sense of set equality; at this stage, there is no guarantee that R o (r0rA)) = %
or R, (OH)B) = ﬁ or, for that matter, that O € L. These things will be shown
in Theorem NEUT.20, and once they have been established, any citation of

Property R.5 will be understood to include these facts.

Remark NEUT.7. (A) Since the identity mapping ¢ of P is an isometry, every
nonempty set 7 of P is congruent to itself, thatis, 7 = 7.

(B) Even though we know by assumption that there is only one reflection over
a given line, the possibility will still exist that two sets S and 7 might be
congruent to each other by means of two different isometries. That is, we might
have «(S) = 7 and B(S) = T where « # B. Thus in some situations (for
instance in the congruence Theorems NEUT.62, NEUT.64, and NEUT.65), to
achieve complete clarity it will be necessary to specify the isometry by which

the congruence is achieved. See also Remark NEUT.61.

Definition NEUT.8. P is a neutral plane if it is a Pasch plane in which Axiom
REF holds. The geometry resulting from applying Axiom REF to a Pasch plane is

neutral geometry.

Remark NEUT.9. In Chapter 21 (Theorem LC.33) we will show that neutral
geometry is not vacuous, by showing that in a coordinate plane (which is a Pasch
plane) it is possible to construct a set of reflections that satisfies all the properties of
both Definitions NEUT.1 and NEUT.2.

Throughout the remainder of this chapter (except for Section 8.6, Constructed
mirror mappings) our universe of discourse is a neutral plane P; all lines, rays, and
segments will be subsets of this plane. It should be noted, however, that when we
invoke a neutral plane as the universe in a theorem, there is no presumption that all
the properties of Definition NEUT.2 will be used.

The only property of Definition NEUT.2 that we invoke immediately is Property
R.1, existence of a reflection over a given line; the first uses of Property R.2 (unique-

ness) and of Property R.3 (closure) occur in the proof of Theorem NEUT.30. The
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first use of Property R.4 (linear scaling) will be in the proof of Theorem NEUT.23; of
Property R.5 (angle reflection), in the proof of Theorem NEUT.35; and of Property
R.6 (existence of midpoint), in Theorem NEUT.50.

8.3 Congruence, isometries, and lines of symmetry

While we state the theorems of this section in terms of reflections, isometry, and
other notions defined in Definition NEUT.3, their proofs do not depend on Properties
R.2 through R.6 of Definition NEUT.2, and remain valid if “mirror mapping’ is

9

substituted for “reflection,” “composition of mirror mappings” is substituted for

“isometry,” and the definitions of congruence and midpoint are altered accordingly.

Theorem NEUT.10. Let £ be a nonempty subset of the neutral plane P, M a line
on P, and let R pq be a reflection over M. If either Ry(£) € € or £ C Rp(E),
then Rpq(E) = &, so that M is a line of symmetry for E.

Proof. By Remark NEUT.1.3, Rp(Rm(E)) = €.

If Rpm(E) € &, we may apply R a4 to both sides to get £ = R (R (E)) <
Rm(E), and € = R r(E). Likewise, if £ C R (E), Rm(E) € RM(RMm(E)) =
&, and again R y((€) = &. In either case, M is a line of symmetry for £. O

Theorem NEUT.11. Let a be an isometry of the neutral plane P; then o is a
bijection of P onto itself, and o~ is an isometry of P. Furthermore, any finite

composition of isometries of P is an isometry of P.

Proof. By Definition NEUT.3(A), if @ is an isometry other than the identity z, there
exists a natural number n > 1 such that for every k € [1;n], My is a line on P and
o =Rp, 0 -0R,. Then o~ ! exists and equals R aq, 0---0 Ry, . Hence o™ is
an isometry of P. By Remark NEUT.1.3, each of the mappings R x4 is a bijection,
and every composition of bijections is a bijection.

A finite composition of finite compositions of reflections is a finite composition

of reflections, so a finite composition of isometries is an isometry. O

Corollary NEUT.12. The set of isometries of a neutral plane is a group under

composition of mappings.
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Proof. This follows directly from Theorem NEUT.11 and the note Bijections
forming a group in Chapter 1, Section 1.5. O

Theorem NEUT.13. Let S and T be any nonempty subsets of the neutral plane P
such that S = T and let a be any isometry of P. Then a(S) = a(T).

Proof. By Definition NEUT.3(B) there exists an isometry B of P such that T =

B(S), so that a(T) = a(B(S)) = (@ o B)(S) = (@ o foa ) (a(S)). By
Theorem NEUT.11, @ o 8 o ™! is an isometry of P, so a(S) == a (7). O

Theorem NEUT.14 (Congruence is an equivalence relation). Let S, 7, and U
be nonempty subsets of the neutral plane P. Then

(1) S = S (congruence is reflexive);
2) If S =T, thenT =~ S (congruence is symmetric);
B) IfS=T andT = U, then S = U (congruence is transitive).

Proof. (1) Since the identity mapping 1 is an isometry and S = 1(S), S = S.

(2) If S = T, then by Definition NEUT.3(B) there exists an isometry « of P such
that «(S) = 7, but then S = = (7). Since by Theorem NEUT.11, o~ ! is an
isometry of P, T =~ S.

(3) If S = 7 and T = U, then by Definition NEUT.3(B) there exist isometries o
and B of P such that T = «(S) and U = B(T). But then U = B(x(S)) =
(Boa)(S). By Theorem NEUT.11 Boa is an isometry of P. Hence S = /. O

Since isometries play such a major role in neutral geometry, we now restate
Theorem COBE.5 (from Chapter 7) explicitly for them.

Theorem NEUT.15 (Properties of isometry). Let A, B, and C be noncollinear
points on the neutral plane P. If ¢ is an isometry, or, for that matter, a mirror
mapping, or any finite composition of mirror mappings of P, ¢ is a belineation, and

hence a collineation. Moreover, the following properties hold.

(1) ¢(AB) = p(A)p(B).
@ ¢(AB) = p(4)(B)
(3) ¢(4B) = ¢(A)p(B),
@ ¢(AB) = ¢(A)¢(B),
(5) ¢(AB) = p(A)¢(B),

13 e
6) ¢(AB) = p(A)p(B),
(7) 9(AB) = p(A)p(B),
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(8) ¢(£LABC) = Lp(A)p(B)¢(C),
<> «—>

(9) ¢(the C-side of AB) = the ¢(C)-side of ¢(A)¢(B),
(10) 9(AABC) = Ap(A)p(B)p(C),
(11) ¢(ins £LBAC) = ins Zo(B)p(A)p(C),
(12) ¢(ins AABC) = ins Ap(A)p(B)¢(C).
(13) If A, B, C, and D are points on P and OABCD is a quadrilateral, then

@(OABCD) is a quadrilateral, and ¢(OABCD) = Op(A)¢(B)p(C)e(D).

Proof. By Remarks NEUT.1.3 and NEUT.1.4, every mirror mapping is a belin-
eation, and hence, by Theorem COBE.2, a collineation. By a simple induction
argument, every composition of a finite number of belineations is a belineation.
Each of the above properties, then, follows directly from the corresponding property
listed in Theorem COBE.5. |

Remark NEUT.16. This extends Theorem NEUT.1.8 to isometries. Let A and B
be dlStlHCt pomts of P. If ¢ is an isometry of P, then by Theorem NEUT. 15(5)
(p(AB) = (W@(B) Thus the end points of the image of the closed segment AB
under the isometry ¢ are the images of the end points A and B. In other words, an
isometry maps end points of a closed segment to end points of the image segment.
Also, if X is a point interior to ;ﬁ%, an isometry ¢ maps X to a point interior to the
image segment. For if A—X-B then ¢(A)—¢(X)—¢(B), since by Theorem NEUT.15,

¢ is a belineation.

Remark NEUT.17. A closed segment 1[475 cannot be congruent to an open segment
jCﬁDr; neither an open or a closed segment can be congruent to a half-open-half-closed
segment such as %I[? or ﬁ“ . This follows easily from Theorem NEUT.15(4) through
(7). It can also be proved independently of these results, using only the fact that an

isometry preserves betweenness. This is Exercise NEUT.81.

Definition NEUT.18. A segment %?Qj is a fixed segment for a mapping o iff
a(l["in) = JE‘TQ]; in particular, by Theorem NEUT.15(4), if «(P) = Q and «(Q) = P
then PQ is a fixed segment for o.

Remark NEUT.19. Let P be a neutral plane, £ and M be lines on P, and ¢ be an
isometry of P, which by Theorem NEUT.15 is a collineation and a belineation.

(A) From Theorem CAP.1(B), if £ and M intersect at the point O, then ¢(L£) and
¢(M) intersect at ¢(O).
(B) From Theorem CAP3, if £ || M, then ¢(L) || ¢(M).
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(C) From Theorem CAP.4(A), if A and B are fixed points of ¢, fﬁ is a fixed line
of ¢.

(D) From Theorem CAP.4(B), if £ and M are fixed lines of ¢ which intersect at
the point Q, then Q is a fixed point of ¢.

8.4 Lines of symmetry and fixed lines

Theorems NEUT.20 and NEUT.22 establish important properties of angle reflec-
tions and line reflections, respectively; however, as in the previous section (Sec-
tion 8.3) none of the proofs in this section call upon Properties R.2 through R.6
of Definition NEUT.2. Thus these theorems and proofs remain valid if “mirror

G

mapping” is substituted for “reflection,” “composition of mirror mappings” is
substituted for “isometry,” and the definitions of congruence and midpoint are

altered accordingly.

Theorem NEUT.20 (Angle reflection properties). Let A, B, and C be non-
collinear points on the neutral plane P. Then M is a line of symmetry and R
an angle reflection for ZBAC iff Ryp(A) = A, Rpm(B) € EA_C)’ and R (C) € ﬁ
In this case the following are all true:

(A) Ae M, RM(/]Q’B) =?4_c’*andRM(?x_c’) AB,
<—> <>

B) Rm (AB) ARM (B) ACandRM (AC) AR M (C) = AB;
(C) R(AB) = AR (B) and R (AC) AR (C);
(D) R maps only points of AB to AC and only points of A
(E) there exists a point D € M such that

< <>
C to AB;

(1) Mn BRM (B) {D} so that B—D—RM (B),

2 R M (BD) R M (B)D so that BD R M (B)D that is, D is a midpoint
of BR M (B),
>

(3) AD C ins ZBAC, and

(4) R (LDAB) = £DAC, so that ZDAB =~ /DAC.

Proof. By Definition NEUT.3(D) M is a line of symmetry for ZBAC iff there exists
a line reflection R n over M such that R \(£BAC) = ZBAC. If this is true, by
Theorem NEUT.15(8)

ZBAC = Rpm(£LBAC) = LR pm(BYRMm(A)RMm(C),
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so that R o((A) and A are both the corner of this angle, which by Theorem PSH.33
is unique, and R r(A) = A. Since M is the set of all fixed points for R ¢, A € M.
Also by Theorem NEUT.15(2),

Rai(AB) = Rag(AYR i (B) = AR i (B), and

Rat(AC) = R Rm(C) = AR m(C).
By Exercise NEUT.4, neither ﬁ nor A_C is a line of symmetry for ZBAC, hence
each can intersect the line of symmetry M in only the one point A, so neither B nor
C belongs to M. By Definition NEUT.1(B), B and R »¢(B) are on opposite sides
of M.

If B and C were on the same side £ of M, then by Theorem IB.14 A_B and A_C

would be subsets of £, and their images under R o4 would be on the other side of M,

so that R o4 could not map ZBAC into itself, contradicting our hypothesis that R x4
is an angle reflection for ZBAC. Thus B and C are on opposite sides of M. Since B
and R r((B) are on opposite sides of M, by Theorem PSH.12 (plane separation), C
and R r((B) are on the same side.

Now R (B) 1s in LBAC but not 1n AB so Rm(B) € AC and by Theo-
rem PSH.16 R ¢ (AB) = AR M (B) — AC. By 51m11ar reasomng, interchanging
the roles of B and C, Ra(C) € AB, and R aq (AC) = AB. This proves half of the
main assertion of the theorem, and also proves part (A)

Conversely, suppose Ra(A) = A, R Mm(B) € AC and R M(C) € AB Then
by Theorem NEUT. 15(3) R m (ﬁ) RM (AR M (B) = AC and R (AC)
RM(A)RM c) = AB so that Ra((£LBAC) = ZBAC. Thus R4 is an angle
reflection for ZBAC.

Parts (B) and (C) follow directly from Theorem NEUT.15 and part (A).

If Y is any point of the plane, since R ¢ maps onto the plane, there exists a
point X such that Y = Rr(X). Thenif ¥ € A_B), Rm(Y) € A_C But Rp(Y) =
RMMRMmX) =XsoX e AC. Therefore the only points that map to AHB are those
of A_C ; a similar argument shows that the only points that map to A_)C are those of
AHB, proving assertion (D).

Since R a¢(B) and B are on opposite sides of M by Theorem PSH.12 (plane
separatlon) there ex1sts a point D such that BR M (B) NM = {D}. Since R p(D) =
D, Rpm (BD) = R MB)RMm (D) = R M (B)D This, together with Defini-
tion NEUT.3(C), shows parts (1) and (2) of (E).
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By Theorem PSH.37 m c 1ns LBA(RM(B)) = ins ZBAC so that
D € ins ABAC By Theorem PSH. 38(B) AD C ins ZBAC, showing (E)(3). Finally,
since R pq (AB) = AC and R g (AC) = AB, Rm(LDAB) = ZDAC, proving part
EXE). O

Remark NEUT.20.1. (A) In part (E) above, we were careful to speak of D as “a”
midpoint of m since we have not yet proved that midpoints are unique
(which we will do in Theorem NEUT.50), we cannot speak of the midpoint of
a segment. Also, we have not yet proved (we will do so in Theorem NEUT.26)
that lines of symmetry for angles and angle reflections are unique, so we have
taken care to speak of M as “a” line of symmetry and R as ‘an” angle
reflection for ZBAC.

(B) (Important convention!) From this point forward, the reader should assume that
whenever Property R.5 of Definition NEUT.2 is invoked, Theorem NEUT.20
is also invoked without reference. Thus, whenever we state that there exists a
line M of symmetry or angle reflection R for an angle ZBAC, it will be
understood that R y((A) = A, Rm(B) € AC and Rm(C) € AB.

(C) In the following, we will frequently use results (1) through (13) from The-
orem NEUT.15, and while these will often be referenced, there will be a
tendency to do so less and less as we assume the reader’s habits are established.
This will be especially true of the lower-numbered results involving lines, rays,

and segments. Be warned!

Theorem NEUT.21. Let A, B, and C be noncollinear points on the neutral plane
P and let M be a line of symmetry of ZBAC. Then M is a line of symmetry of
ins ZBAC.

Proof. By Theorem NEUT.20 R((B) € AC and R((C) € AB, so that ZBAC =
ZBAR M (B) and ZBAC = LRy (C)AC. Let X be any member of ins ZBAC; then
by Definition PSH.36(A), X € R (B)-side of A<_B) By Theorem NEUT.15(9), and
the fact that R ((A) =

Rt (X) € Rs(Raq(B))-side of Rong(A)Ras(B) = Bside of AC
Also X € R (C)-side of 1(4_6)‘ , and by the same theorem

Rt (X) € Rt (Ra(C))-side of Rag(A)R g (C) = C-side of AB.
Thus R((X) € ins ZBAC; by Theorem NEUT.10, M is a line of symmetry for
ins ZBAC. O
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Theorem NEUT.22 (Behavior of line reflections). Let M be a line on the neutral
plane and let R a4 be a reflection over M.

(A) IfA & M, AR (A) is a fixed line for Ry, ARM (A; is a fixed segment, and
s
A(Rm(A)) # M.
D ¢
(B) If L is a fixed line and L # M, then for some A & M, L = ARy (A).
(C) For any line L such that L # M, the following statements are equivalent; the
equivalence of (1) and (2) summarizes (A) and (B):

(1) L is a fixed line for R pq;
>
(2) forsome A & M, L = ARz (A);
(3) for some A € L such that A & M, R (A) € L;
PAERERN
(4) foreveryA € L suchthatA € M, L = AR (A).
(5) M is a line of symmetry for L.

(D) There is at most one fixed line L # M for R a4 through a point A.
s —
(E) Let AR pm(A) # M and BR pm(B) # M be distinct fixed lines for R pq. Then
ARM(A) || BR(B).
«— >
(F) Every fixed line L = AR p(A) for R intersects M at exactly one point D;
moreover, A—-D-R r(A), and D is a midpoint of the fixed segment AR M (Aj

Notice that there is no claim here that every line which is parallel to a fixed
line for R is a fixed line. This will be proved (on a Euclidean plane) as
Corollary EUC.3.1.

Proof. (A) By Theorem NEUT.15(1) and Definition NEUT.1(C),
RMAMRM(A)) = (Ram(A)(Ram(Ram(A))) = A(Rrm(A));
<>
by Definition CAP.O(C), A(Rarq(A)) is a fixed line for R . By Defini-
tion NEUT.18, AR M (Aj is a fixed segment for R r.
(B) Pick A € L such that A ¢ M. Since L is a fixed line, R r((A) € L. Since both
>
A and R o (A) belong to £, by Exercise 1.2, L = A(Ra(A)).
(C) Part (A) is “(2) implies (1)”; part (B) is “(1) implies (2).” (3) is equivalent to
>
(2):if A € L and Rr(A) € L, by Exercise 1.2, L = AR A(A); conversely, if
<>
L =ARm(A), then R (A) € L.
That (4) implies (2) is trivial; conversely, if (1) is true, L is a fixed line; then
forevery A € L, Rpm(A) € L.
(5) is equivalent to (1): since £ # M, by Definition CAP.0(C), L is a fixed
line for R o4 iff Ra((L£) = L; by Definition NEUT.4, this is true iff M is a
line of symmetry for L.
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Fig. 8.1 For the
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construction in
Theorem NEUT.22(D).
M
A B
(D) If ARMm(A) and BR o (B) are distinct fixed lines for R o4 which intersect at

B

F)

some point Q, then by Theorem CAP.4(B) Q is a fixed point for R ¢, so that
Qe M.

We may choose the notation so that A and B are on the same side of M.
(See Figure 8.1 for a visualization.) Let A’ = R (A) and B = R r((B); then
A’ and B’ are on the same side of M. Since A and A’ are on opposite sides
of M, and B and B’ are on opposite sides of M, by Theorem PSH.12 (PSA)
A-Q-A" and B-Q-B'.

B is on the opposite side of Aj)’ from B’, and ﬁ - 1]4’—§ which is a subset
of the B side of A? Likewise, B is on the opposite side of A(Z)' from B, and
B/A C AB’ which is a subset of the side of AA’ 0pp0s1te B.

Then by Theorem NEUT.15(4) R m (JBE7 ) = B’R Mm@A )) = B’A so that
Rt (BA/ ) and BA' are on opposite sides of AA’ Since B and A’ are on | opposite
sides of M, by Theorem PSH.12 there is a point C such that {C} = BA NnM.
Then R o¢(C) is on the opposite side of Aj)’ from C, a contradiction to the fact
that C € M is a fixed point of R 4.

If ARA(A) and BR Ao¢(B) are not parallel, then they intersect, and this is
impossible by part (D).

If L # M is a fixed line, by part (A)(3) there is a point A € M such that
L = ARar(A). By Definition NEUT.1(B) A and R (A) are on opposite
sides of M; hence by Theorem PSH.12 there exists a point D such that
AR pMm(A) NM = {D}. By Exermse L1, D is the only such pomt of i 1ntersect10n
By Theorem NEUT 15(5) R (AD) = ’RM (A)RM (D) = RM (A)D so that
R M (A)D AD therefore D is a midpoint of AR M (A) O
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E—3

In part (F) above, we were careful to speak of D as “a” midpoint of AR r((A);
since we have not yet proved that midpoints are unique (which we will do in
Theorem NEUT.50), we cannot speak of the midpoint of a segment.

8.5 Uniqueness of angle reflections

The proof of the next theorem is our first use of Property R.4 of Definition NEUT.2
(linear scaling). This theorem strengthens Theorem CAP.4; not only is A_B a fixed

line, but every point on it is a fixed point.

Theorem NEUT.23. Let ¢ be an isometry of the neutral plane P. If A and B are
distinct fixed points of ¢, then every point on ﬁ is a fixed point of ¢.

Proof. (D) Let X be any member of AB \{B}. Since (p(AB) WBS = A_B,
o(X) € AB Since (p(AX) = Ago(X) by Definition NEUT.3(B) AX ~ A@(X;
By Property R.4 of Definition NEUT.2, ¢(X) =
(II) By Property B.3 of Deﬁmtlon IB.1 there exists a point B’ such that B-A-B’. Let
X be any member of AB Reasoning as in (I) we get p(X) =

By (I) and (II) every point on AB is a fixed point of ¢. O

Theorem NEUT.24. Let ¢ be an isometry of the neutral plane P. If ¢ has three

noncollinear fixed points, then ¢ = 1.

Proof. Let A, B, and C be noncollinear fixed points of ¢. By Theorem NEUT.23
every member of ABU A_C>‘ U B_é is a fixed point of ¢.

Let X be any member of P \ (A_)B UACU B_C)‘) By Theorem PSH.22 (Denseness
property for betweenness) there exists a point D between A and B. By Theo-

) . < 13 < 13

rem PSH.6 (Pasch) there exists a point E such that XD N AC = {E} or XD N BC =
{E}. Since both D and F are fixed points of ¢, by Theorem NEUT.23 every point of
DE = XD is a fixed point of ¢, and X is a fixed point of P. |

Theorem NEUT.25. Let each of « or  be an isometry of the neutral plane P. If o

and B are equal at three noncollinear points of P, then o = B.

Proof. Since the set of isometries is a group (cf Corollary NEUT.12) under
composition of mappings and since o and S are isometries, @ ! o 8 is an isometry.
Since there exist three noncollinear points A, B, and C, such that «(A) = B(A),
a(B) = B(B), and a(C) = PB(C), each of A, B, and C is a fixed point of
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a~! o B. By Theorem NEUT.24 ! o B = 1 (the identity mapping). But then
ao(@'op)=(xoa)of=10B8=pBanda o1 = a. Hence a = . O

Corollary NEUT.25.1. Two distinct isometries which agree at two points A and B

<>
cannot agree at any point off AB.

In Theorem NEUT.15 we showed that every isometry is a collineation and a
belineation. In Chapter 19 (Theorems AA.10 and AA.11), Theorems NEUT.24
and NEUT.25 will be generalized to all belineations of a Euclidean/LUB plane.

Theorem NEUT.26 (Uniqueness of angle reflection and line of symmetry). For
any angle ZAOB in a neutral plane, there exists at most one angle reflection
mapping the angle onto itself, only one line of symmetry, and only one bisecting
ray. Thus it is proper to speak of THE reflection mapping ZAOB to ZAOB, THE
line of symmetry of ZAOB, and THE bisecting ray of ZAOB.

Proof. Suppose there exist two reflections R 2 and R o4 (the lines £ and M may or
may not be the same) such that R .(£LAOB) = ZAOB and R M (LAOB) = AAOB
By Theorem NEUT.20, R(0) = Rr(0) = O, R, (A) € OB and Ryq(A) € OB
Since a reflection is its own inverse (cf Definition NEUT.1(C)),

(Rm o Re)(Re(A)) = Rym(Re(Re(A) = Rm(A); i
thus, by Theorem NEUT.15(5) and Definition NEUT.3(B), O’RE (A) ~ ORMm (A)
by Property R.4 of Definition NEUT.2 (linear scaling), R~ (A) = R (A). It follows
that

Rm(Re(A) = Rm(Rm(A)) =A = Re(Re(A)),
so that R and R ¢ are isometries which agree at the three noncollinear points A,
R (A), and O; hence by Theorem NEUT.25 R, = R . From Remark NEUT.1.1,
L = M. There can be only one bisecting ray, since it is the intersection £ N
ins ZAOB. O

8.6 Constructed mirror mappings

The following two theorems do not need Axiom REF and are the exception to the

blanket invocation of the neutral plane in Remark NEUT.9.
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Theorem NEUT.27. Let M and L be lines on a Pasch plane, and let R xq and R
be mirror mappings over these lines. Then the mapping ¢ = RpoRpm o R isa
mirror mapping over the line R p(M).

Proof. We show that ¢ satisfies Properties (A) through (D) of Definition NEUT.1.

(A) Suppose Y € R (M). Then there exists a point X € M such that Y = R, (X).
Then

oY) = Re(RMm(Re(Y)) = Re(Rm(Re(Re(X))))
=Re(RmX)) =Re(X) =Y.

(B) Suppose Y ¢ R,(M); we show that ¢(Y) and Y are on opposite sides of
R (M). There exists a point X & M such that ¥ = R (X). By Property
(B), Ram(X) and X are on opposite sides of M, and by Theorem PSH.12 there

. . F————
exists a point D € M such that D € X(R r((X)). Then R, (D) € Rz (M) and

Re(D) € Re(KRum(X) = (Re ()R (Rpa(X)) ]
= (Re))(Re(Rm(Re(Re(X))))
= Y(Re(Rm(Re(Y)))
so that Y and R (R (R (Y))) are on opposite sides of R - (M).
O ReoRpmoRroRroRMmoR,r =RroRMmoRMmoR,=RroR, =1.
(D) Since each of the mappings R ¢ and R preserves betweenness, so does ¢ =
RroRmoRe. O

Corollary NEUT.27.1. Let M be a line on a Pasch plane, R g be a mirror
mapping over M, and suppose o is a composition of mirror mappings of the plane.

1

Then the mapping ¢ = a o Raq o™ ' is a mirror mapping over the line a(M).

Proof. By Definition NEUT.3(A), either « is (1) the identity 7, (2) a mirror mapping,
or (3) the composition R 4, 0---0R n4, of a finite number of mirror mappings R a4,
over lines M in the plane.
In case (1), ¢ = R which is already a mirror mapping; case (2) follows from
Theorem NEUT.27. For case (3), note first that ™! = R4, 0 -+ 0 Ry, ; then
p=aoRpoa!
=Rm, 00 (Ran o (RMn o Rm ORM,,) ORMFI) o0 0 Rpm,.

By Theorem NEUT.27, R aq, © Raq © Raq, 18 @ mirror mapping over R g, (M);

applying the same theorem again
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Rmtpes © (R, © Rat© R,) © R,

is a mirror mapping over R a,_, (R, (M)); successive repetitions of this process

produce the final result. O

8.7 Complementary mappings and perpendicularity

Remark NEUT.28. Up to this point we have not invoked Property R.2 of Defini-
tion NEUT.2, which states that there can be only one reflection over a line. We now
invoke this property in the following definition, when we speak of the reflection
R over M. We also invoke Property R.3 of Definition NEUT.2 (closure) for the
first time.

Definition NEUT.29. Let M be aline on a neutral plane, let £ # M be a fixed line
for the reflection R o4 over M, and let {O} = M N L. By Theorem NEUT.22(D) £
is the only fixed line (other than M) for R am that passes through O. Let A and B be
two points distinct from O, such that OA € Mand O % C L. By Theorem NEUT.26
there is exactly one line of symmetry S for ZAOB, and exactly one reflection Rs
over S such that Rs(A) € 0B.

The mapping CO(R 1) = RsoRa0Rs is called a complement or a comple-
mentary mapping of R », at the point O. By Property R.2 of Definition NEUT.2,
R am is uniquely determined by the choice of M; by Theorem NEUT.26, S and
Rs are uniquely determined by the choice of M, L, rOrA), and rOré Thus by
Theorem NEUT.27, CO(R pq) is completely determined by the choices of M, L,
rOrA), and rOr)_'l%

Theorem NEUT.30. Let M be a line on a neutral plane, let L # M be a fixed line
for the reflection R aq over M; and let {O} = M N L. Let A and B be points, not
O, such that, ﬁ C M and 0H>B C L, and let S be the line of symmetry of ZAOB.

(D) The complementary mapping CO(R ) = Rs o Raq © Rs is the reflection
over L having M as a fixed line. Hence CO(R ) = R

(II) CO(CO(RM)) = Rm. That is, CO(Rz) = R, the reflection over M
having L as a fixed line.
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Proof. (I) Let A’ and B’ be points such that A~-O-A’ and B-O-B'. By Exer—
cise NEUT. 10 S is a lin line of symmetry for AA’ OB’ so that RS(OA) = OB
Rs(OB) = OA, Rs(OA') = OB, and Rs(OB') = OA..

Since R is a reﬂectlon with ﬁxed line L, Property (B) of Deﬁm-
tion NEUTl says that RM(OB) = OB’ and RM(OB’) — OB.IfX ¢ OA
Rs(X) € OB s0 R (R (X)) € OB and

CORA)(K) = Rs(Ru(Rs(X))) € OA.
Similarly, if X € OA/,

CORM)(X) = Rs(Rau(Rs(X)) € OA,
This shows that CO(R n¢) maps M onto M, which is then a fixed line for
CO(R m).

By Theorem NEUT.27, CO(R A1) = Rs © Raq © Rs is a mirror mapping
over Rs(M) = L. By Property R.3 of Definition NEUT.2 (closure) CO(R 1)
is a reflection over £. By Property R.2 of Definition NEUT.2 there is only one
reflection R over L, so CO(Rr) = R, proving (I).

) CO(CORm)) = CORsoRmoRs) =RsoRsoRmoRsoRs = Rm
since Rs o Rs =1 by Remark NEUT.1.3. |

Definition NEUT.31. Two lines £ and M on the neutral plane P are perpendicu-
lar to each other (notation £ | M) iff £ and M are distinct and each of them is a

line of symmetry of the other.

Theorem NEUT.32. Let M and L be distinct lines on the neutral plane. Then the

following are equivalent:

(a) M is a line of symmetry for L;

(b) L is a line of symmetry for M;

(©) Rm(L) = L is a fixed line for R pq which is not M;
(d) Re(M) = M is a fixed line for R o which is not L;
(e) M and L are perpendicular.

Proof. By Definition NEUT.4 and Definition CAP.0(C), (a) < (c) and (b) < (d).
By Theorem NEUT.30(I), (¢) = (d); by part (I) of the same theorem, (d) = (c).
Now (a) < (b) so (a) < ((a) and (b)) <& L L M, by Definition NEUT.31. O
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Remark NEUT.32.1 (On temptations). (A) It is tempting to think that if O is a

(B)

point on M there should be a complementary mapping CO(R ) for R aq
which is a reflection over a line through O. However, at this point, we do not
know that there is a fixed line for R o through an arbitrary point O on M—this
will be proved in Theorem NEUT.47.
Let M and L be lines on the neutral plane, R x4 a reflection over M with fixed
line £, and CO(R p¢) a reflection over L, so that by Theorem NEUT.30, M is
a fixed line for CO(R r¢). It is tempting to speculate that CO(R r) maps fixed
—
lines of R o into fixed lines of R o¢. That is, for every fixed line AR o((A) of
«—

R, CORa)(A(RA(A))) is a fixed line for R oq. The following argument
shows that this is indeed the case if Axiom PS holds.

For notational convenience, we denote CO(Raq) as R.. By Theo-

<> D e .

rem NEUT.22, L || AR a(A), because both £ and AR 4(A) are fixed lines for
R a. Then by Theorem CAP.3 and Theorem NEUT.15(1),

L=TRel) | Re(ARM(A)) = Re(A)(R(Rm(A))).

The right side of this is a line containing the point R ~(A), and is the image of
AR (A) under mapping by R . Applying Raq to Rz (A)(Ra(R2(A))) and
using Theorem NEUT.15(1), we again get R (A)(Ra(Rz(A))) so this is a
fixed line for R ¢, hence is parallel to £ by Theorem NEUT.22(E).

Thus both R (A)(Rz(Ram(A))) and R (A)(Ra(R(A))) are parallel to
L and contain the point R (A), so by Axiom PS, they are the same line. Thus

the image under R~ of a fixed line for R o is a fixed line for R r4.

Theorem NEUT.33. (A) Let M be a line on the neutral plane P, and let O be a

(B)

point of P. Then there is at most one line L through O which is perpendicular
to M.

If L is a line in the neutral plane, and O € L, there is no more than one line
M # L containing O such that L is a fixed line for R p4.

Proof. (A) By Theorem NEUT.32, £ 1 M iff L is a fixed line for R nq and L #

(B)

M. By Theorem NEUT.22(D) there is at most one fixed line £ for R x4 through
a point O. Therefore there is at most one perpendicular to M through O.

If £ is a fixed line for R o4, then by Theorem NEUT.32 £ L M; thus if both
M and M’ contain O and L is a fixed line for both R x4 and R ¢, both M
and M’ are perpendicular to £ at O, contradicting part (A). O
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8.8 Properties of certain isometries; Pons Asinorum

The following lemma is used to prove Theorem NEUT.35; it will also be used for

Theorem NEUT.50, which proves uniqueness of midpoints of arbitrary segments.

Lemma NEUT.34 (Midpoints of fixed segments of reflections are unique). Ler
L be a line on a neutral plane and let A and B be distinct points such that
Re(A) =

(A) Let{D} = LN 1(4_I>3 and let D' be a point such that A~-D'-B andzTD; o~ ﬁ
ThenD = D'.

(B) If L' is any line such that R/(A) = B, then L' = L so that by Property R.2 of
Definition NEUT.2, Ry = R.

Proof. (A) By Definition NEUT.1(D), since A-D'-B, R;(A)-R;(D')-R.(B),
that is, B-R . (I/)-A. By Theorem NEUT.15(5) R (AD') = R ()R (D)) =
BRL BR (D) ) By Definition NEUT.3(B) AD’ ~ BR,(D'). By hypothesis, AD’ >~
BD 1 so that BD1 = BRE(D/) by Theorem NEUT.14 (congruence is an
equivalence relatlon)

AlsoR (D) € BD/ Since BRg BR (D) ) o~ BD R (D) = D' by Property R.4
of Definition NEUT.2. Therefore D’ is a fixed point for R, so that D' € L.
Since D' € AB and {D}=LnN 1<4_B>, it follows that D’ = D.

(B) If £’ is a line such that R,/ (A) = B, ﬁ is a fixed line for R/, as well
as for R.. By Theorem NEUT.33(B), £ = L, hence by Property R.2 of
Definition NEUT.2, R, = R. a

The proof of the following theorem contains our first use of Property R.5 of
Definition NEUT.2, which says that every angle has an angle reflection and a line of

symmetry.

Theorem NEUT.35 (Side-preserving isometry (A)). Suppose « is an isometry of
a neutral plane P, A and B are fixed points of a, and C & ﬁ If x(C) € ABC (that
is, (C) is on the C-side 0f1<4_B>), then o = 1.

Proof. By Theorem NEUT.23 every point on 1<4_B) is a fixed point for .

(Case 1: ¢(C) = C.) By Theorem NEUT.24, o« = l

(Case 2: a(C) # C and the hne m 1ntersects AB at some point X.) Then by
Theorem NEUT.15(5) a(XC) = ot(X)a(C) = Xa(C) By Definition NEUT.3(B)
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XC =~ ST(C), and by definition «(C) € XC. Then by Property R.4 of Defini-
tion NEUT.2 ¢(C) = C and by Theorem NEUT.24 o = 1.

(Case 3: @(C) # C and the line C<ot—)(C) does not intersect 1<4_B>.) Then m I
ﬁ. In particular, the line ;\_)C does not contain «(C). By Property R.5 of Defini-
tion NEUT.2, ZCAa(C) has a line £ of symmetry, and there exists a reflection R -
such that R («x(C)) € EA_C)’

If B € L, then AB = L and then C and «(C) would be on opposite sides of AB
which is false by hypothesis; therefore B & L.

By Definition NEUT.3(A) y = R, o « is an isometry of P. By Defini-
tlon NEUT l(A) y(A) = Rg(a(A)) Rc(A) = A. By Theorem NEUT 15(5)
y(AC) )/(A))/(C) Ay(C) By Definition NEUT.3(B) (congruence) AC
Ay(C). By Property R.4 of Definition NEUT.2, C = y(C), i.e., (R oa)(C) =
Thus R maps «(C) to C, so that C<a—>(C) is a fixed line for R ..

Now choose A’ # A to be any other point on ﬁ The same argument shows that
there is another line £’ such that R o maps «(C) to C, so that m is a fixed line
for R.

Thus we have two distinct lines £ and £’, such that both R, («(C)) = C and
Rz (x(C)) = C. By Lemma NEUT.34(B) £ = £/, so that the lines are not distinct,

but the same line, a contradiction. Thus case 3 is ruled out, and o = 1. a

Theorem NEUT.36 (Side-preserving isometry (B)). Let A, B, C, and D be points
on the neutral plane P such that C and D are on the same side of 1(4_B> and /BAC =~
ZBAD. Then AC = AD.

Proof. By Definition NEUT.3 there exists an isometry « of P such that «(£ZBAC) =
ZBAD. Statements (1) through (13) of Theorem NEUT.15 are true for o. We will
use these without further reference in this proof.

Then ZBAD = wa(4BAC) = Za(B)a(A)a(C), and by Theorem PSH.33
a(A) = A. By Definition PSH.29 there are exactly two possibilities: a(B) € AB or
«(B) € AD.

(Case 1: a(B) € AB ) In thlS case, a(C) € AD. Since « is an isometry, by
Definition NEUT.3, AB Aot(B) and by Property R.4 of Definition NEUT.2,
a(B) = B Thus A and B are fixed points for «. By hypothesis a(C) is on the
C side of AB so by Theorem NEUT.35 @ = 1 and C = «a(C) € AD. Therefore
AC = AD, again using Theorem PSH.16.
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(Case 2: «(B) € %.) In this case, a(C) € AH>B so that by Theorem PSH. 16,

a(AH>B) = Ex(A)a(B) = 1[405(3) — AD and
ot(AH()?) = Ex(A)a(Cj = EAa(Cj — AB
By Property R.5 of Definition NEUT.2 there exists an angle reﬂection R m
and hne M of symmetry for ZBAC, so that Ry((A) = A, R (AB) = AC and
Rm (AC) — AB. The mapping o o Ry is an isometry (by Definition NEUT.3)
which maps ZBAC onto ZBAD, such that

(xo RM)(;Té) = oz(;lré) — AB and
(@ 0 Rp)(AC) = a(AB) =

Thus (¢ o R M) (B) € zﬁ and we may apply Case 1 to conclude that o R pq =1
and C = oo Rp(C) € AD. Therefore AC = AD. O

Theorem NEUT.37 (An isometry with two fixed points is the identity or a
reflection). Let o be an isometry of the neutral plane such that A and B are distinct

fixed points of a; then either « =1 ora = Rf@)'

Proof. () If @ has a fixed point C not belonging to AB , then by Theorem NEUT.24
a=1.

. <~ <>

(II) If @ has no fixed point off of AB, let X be any member of P \ AB,

then by Theorem NEUT.15(8) a(£BAX) = Za(B)a(A)a(X) = LBAxa(X).

By Definition NEUT.3(B) ZBAX =~ /BAwa(X). By the contrapositive of

Theorem NEUT.35, X and «(X) are on opposite sides of 1<4_B) Let Rﬁ be a

reflection over AB and define y = Rﬁ o . Then y is an isometry of P with

distinct fixed points A and B, and X and y(X) are on the same side of ﬁ; by
Theorem NEUT.35 y = 1. By elementary mapping theory, @ = Rﬁ. O

Theorem NEUT.38 (Isometry construction for angles). Let A, B, C, D, E, and
F be points on the neutral plane P such that A, B, and C are noncollinear, D, E,
and F are noncollinear, and ZBAC =~ LEDF. Then there exists an isometry ¢ of P
such that (p(%) — DE and (p(;TC)) =

Proof. By Definition NEUT.3(B) there exists an isometry o of P such that
a(£LBAC) = ZEDF. By Theorem NEUT.15(8), «(£BAC) = Za(B)x(A)x(C)
so that Za(B)a(A)a(C) = ZEDF. By Theorem PSH.33 «(A) = D so
Za(B)Da(C) = ZEDF. By Definition PSH.29 there are two cases.
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(Case 1: x(B) € DE and a(C) € ]D_I)T.) Let ¢ = «. Then by Theorem PSH. 16,

0(AB) = a(AB) = a(A)a(B) = Da(B) =
and

9(AC) = a(AC) = a(A)a(C§ = Da(C) = DF.

(Case 2: a(B) € DF and x(C) € DE.) By Theorem PSH.16 we have Da(B) =
DF and Da(C) = DE. Then let M be the line of symmetry of ZEDF, and R a
. . E—> B> = >
its angle reflection, so that D € M, Ry(DE) = DF and Ry(DF) = DE. Let
¢ = R oa. Then

0(AB) = R(2(AB)) = R (a(A)a(B))
— R (Da(B) = R (DF) = DE,

and

P(AC) = R (@(A0)) = Ry (@(A)a(0)
— R(Da(C) = Roy(DE) = DEF. 0

Theorem NEUT.39 (Line of symmetry angle criterion). Let A, B, and C be
noncollinear points on the neutral plane P, and let D be a member of ins ZBAC.
Then 1<4_D> is the line of symmetry of ZBAC (so that % is the bisecting ray) iff
/BAD =~ /CAD.

Proof. (D) If AD = M is the line of symmetry of ZBAC, then by Theo-
rem NEUT.20(E) £ZBAD =~ ZCAD.
(II) Conversely, let ZBAD =~ /CAD. By Theorem NEUT.38 there exists an
isometry ¢ mapping ZBAD to ZCAD such that (p(;\rD)) AD and go(;\ré) =
A is a fixed pomt for ¢ and by Theorem NEUT. 15(3) AD = (%) =
(p(A)gp(D) A(p(D) so by Theorem PSH.24 gp(D) € AD Now go(AD) =
(p(A)(p(D) A(p(D) so by Definition NEUT.3 AD = Ago(D) By Property R.4
of Definition NEUT.2 ¢(D) = D so D is a fixed point for ¢.
Let M be the line of symmetry of ZBAC. By Definition NEUT.3,
Rm(AB) = AC and Ry (AC) = AB
Let y = R o @, which is an isometry by Definition NEUT.3. Note that
y(A) = A because A is a fixed point for both R4 and ¢. Now ¢(B) € 24_6)’
and RM (AC) c AB S0 y(B) Rm(p(B)) € AB. By Theorem NEUT 15(5)
(AB) = y(A)y(B) = Ay(B) so that by Definition NEUT.3(B) Ay(B) ~ AB
and by Property R.4 of Definition NEUT.2, y(B) =
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Recapitulating, we see that A and B are both fixed points for y, and y(C) =
Rm(p(C)) € R (A_B) - A_C so that y(C) and C are on the same side of
the line ﬁ Then by Theorem NEUT.35, y = 1, and by elementary mapping

theory, ¢ = R .
Since D is a fixed point for R o, by Remark NEUT.1.1 D € M so by
Exercise 1.2 AD = M. |

Theorem NEUT.40. (A) (Pons Asinorum or Isosceles Triangle theorem)5 If A,
B, and C are noncollinear points on the neutral plane P such that AB o~ AC,
then /ABC =~ /ACB.

(B) (Converse of Pons Asinorum) If A, B, and C are noncollinear points on the

neutral plane P such that ZABC =~ /ACB, then IETB ~ 1[4763’
Proof. In this proof we will apply Theorem NEUT.15 without reference.

(A) Let M be the hne of symmetry of LBAC so that A € M, R M (AB) = AC
and Ry (B) AC. Since R M(AB) — AR M (B)i AB = AR (B)). Since
AB zW(B)) and AB AC m = EAC By Property R.4 of
Definition NEUT.2 R o¢(B) = C so by Definition NEUT.1(C), R((C) = B.
Therefore R a(LABC) = Z(Ra(A))(Ra(B))(Ram(C)) = LACB, and by
Definition NEUT.3(B), ZABC ~ ZACB.

(B) By Theorem NEUT.38 there exists an isometry ¢ of P such that ¢(LABC) =
/ACB,

pBA)=CA (1) and @B =CB
Then ¢(LABC) = Zp(A)¢p(B)p(C) = LACB, so by Theorem PSH.32

¢(B) = C. 3)
- E = E E
Combining (1) and (3), CA = ¢(BA) = ¢(B)p(A) = C¢(A). By Theo-
rem PSH.24, ¢(A) € CA.
o . e > E E
Likewise, combining (2) and (3), CB @(BC) = (p(B)(p(C) = Co(C)
]

50 that by Theorem PSH.24 ¢(C) € CB Then (p(C ) 0(O)e(B) =
gp(C)C so that by Definition NEUT.3 CB = C<p(C) By Property R.4 of
Definition NEUT.2

$(C)=B. (4

SLiterally, bridge for donkeys in Latin. This term has come to mean any problem that severely
tests the ability of a person, such as Euclid’s 5th postulate. The name may have come from the
bridgelike appearance of Euclid’s figure, including the construction lines, used in his complicated
proof of this theorem.
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Now ZABC =~ /ACB =~ ¢(ZLACB) = Zp(A)p(C)p(B) = ZLp(A)BC, so
that by Theorem NEUT.14 (congruence is an equivalence relation) LABC ~
Zp(A)BC. A and ¢(A) are on the same side of BC because p(A) € CA. Then
by Theorem NEUT 36 BA = WA—; and by Theorem PSH.24 ¢(A) € BA.
Hence (p(A) € BAﬂ CA = {A}rand :p(A) A. Combining this with (3)

\_I

above, (p(AB) (A)(p(Bj = ¢(A)C = AC. By Definition NEUT.3(B),
AB ~ AC. O

8.9 Vertical and supplementary angles; more
perpendicularity

Definition NEUT.41. Let D and £ be angles on the neutral plane P.

(A) D and & are vertical to each other iff there exist points A, B, C, B', and C’
such that A, B, and C are noncollinear, B-A-B’, C-A-C', D = /BAC and
& = /LBAC.

(B) D and & are supplementary angles iff there exist points A, B, C, and D on P
such that B-A-C, D € (P \ A(_B>), D = /ZBAD and £ = ZCAD. We may also
say that the angles are supplemental or that each is a supplement of the other.

(C) An angle on the neutral plane P is right iff it is congruent to a supplement
of itself. That is to say, if A, O, and A’ are collinear points on the plane, and
C ¢ AA, then ZAOC (LA'OC) is a right angle iff ZAOC = /A'OC.

Theorem NEUT.42 (Vertical angles). Let D and £ be angles on the neutral
plane P. If D and & are vertical to each other, then D = £.

Proof. By Definition NEUT.41 there exist points A, B, C, B’, and C’ such
that A, B, and C are noncollinear, B-A-B’, C-A-C', D = /BAC and £ =
/B'AC'. By Theorem NEUT.26 ZB’AC has a unique line M of symmetry and
RM(;\C) AB’ By Exercise NEUT.10 M is the line of symmetry of Z/BAC’. Then
R M(AB) AC’

By Definition PSH.29 /BAC = ABUAC. Hence R p((ZBAC) = /B'AC' and
so ZBAC =~ /B'AC'. |

Remark NEUT.42.1. If E, F, and O are noncollinear points on the neutral plane
P and if £’ and F’ are points on P such that E'~O—F and F-O-F’, then each of
the angles ZEOF' or ZFOE' is a supplement of ZEOF. By Theorem NEUT.42,
ZEOF’ =~ /FOEF/, since they are vertical angles.



8.9 Vertical and supplementary angles; more perpendicularity 183

Theorem NEUT.43 (Supplements of congruent angles are congruent). Let C,
G, C', and G’ be angles on the neutral plane P such that C and C' are supplements
of each other and G and G’ are supplements of each other. If C =~ G, then C' = G'.

Proof. By Definition NEUT.41(B) there exist points A, B, B/, C, E, F, F' and G
on P such that B-C-B', A ¢ BC, F-G—F', E ¢ FG,C = /BCA, G = /FGE,
C' = /B'CA, and ¢ = /F'GE. Since /BCA =~ /FGE, by Theorem NEUT.38
there exists an isometry a of 73 such that «(£BCA) = ZFGE, a(rCré) = 277
ot(CA) GE and oe(CB) = GF By Theorem NEUT.15(1) and (3) oz(CB)
a(C)a(B) a(CA) = oz(C)oz(A) and a(CB) = a(C)a(B) N

By Theorem PSH.24 (x(C) G, a(B) € GF a(B) € GF’ and oc(A) e GE.
By Theorem PSH.15 GF is the union of the disjoint sets G J? {G}, and GF'. GF Since
B'—-C-B and the fact that «(C) = G, a(B)-G—«(B’). By Theorem PSH.16 m =
7 and m = GF/ Thus

e . & N
a(£LB'CA) = Aa(B’)oz(C)a(A) Za(B"Ga(A) = Ga(A) U Ga(B')
= GEUGF = /F'GE (cf Definition PSH.29.)

By Definition NEUT.3C' = /B'CA ~ /F'GE = G'. O

We now deal with perpendicularity from the point of view of angles. The next

theorem is an extension of Theorem NEUT.32 to include the concept of right angle.

Theorem NEUT.44. Suppose M and L are distinct lines on a neutral plane. Then

the following statements are equivalent.

(A) There exists a point O such that LNM = {0}, if Q € L\{O} and P € M\{0},
then ZPOQ is a right angle.

(B) There exists a point O such that LAM = {0}, if Q € L\{O} and P € M\{0},
and P-O-P' and Q-0-Q', then all the angles ZPOQ, Z/P'0Q, ZP'0Q’, and
/POQ’ are congruent, and are all right angles.

(C) M is a line of symmetry for L.

(D) L is a line of symmetry for M.

(E) L is a fixed line for R npq which is not M.

(F) M is a fixed line for R o which is not L.

G ML L

Proof. First, note that if (B) is true then (A) is true.
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By Theorem NEUT.32, statements (C) through (G) are equivalent. We will
show that (E) implies both (B) and (A), and conversely, that statement (A)
implies statement (D). First note that if any of (C) through (G) is true, then by
Theorem NEUT.22(F) L intersects M at some point O.

Let Q € £\ {0} and P € M \ {0}, and P-O-P’ and Q-0-Q'.

) Assummg (E) is true, R4 is a reflection which has £ as a fixed line. Then
RM(OQ) = OQ/ and R(£LPOQ) = ZPOQ' so that ZPOQ = /PO, its
supplement. Therefore by Definition NEUT.41(C) both ZPOQ and ZPOQ' are
right angles. By Theorem NEUT.42 ZP'OQ’ =~ /ZPOQ =~ /POQ’ = /P'0OQ
so all the angles are right; hence both (A) and (B) are true.

(Il) To prove the converse it suffices to prove that (A) implies (D). If (A) is
true, then ZPOQ =~ /P'OQ or /ZPOQ =~ /POQ'. If the latter is true,
by Definition NEUT.41(A), ZP'OQ is vertical to ZPOQ’' and hence by
Theorem NEUT.42 and the transitivity of congruence (cf Theorem NEUT.14),

/P'0Q =~ /POQ" = /POQ.
In either case, there exists an isometry o mapping P onto P such that
a(LPOQ) = La(P)a(0)a(Q) = LP'0Q.

Here we have used Theorem PSH 33 to show that «(0) =

Either ot(OQ) OQ or oe(OQ) OP’ If the latter holds, we may let A be
the line of symmetry (cf Property R.5 of Definition NEUT. 2) of LP' OQ, then
the mapping 8 = R o « is an isometry that satisfies ,B(OQ) OQ Thus
there is no loss of generallty to assume that a(OQ) ? and a(OP) OP’

Then OQ = a(OQ) a(O)a(Qj) Oa(Qj so by Theorem PSH.24
a(Q) € OQ Also, a(OQ) a(O)a(Q) Oa (Q) so that OQ Oa (Q)
and by Property R.4 of Definition NEUT.2, a(Q) =

Therefore both Q and O are fixed points of «. By Theorem NEUT.37, since
aFi,0=Re = R,; Since P, O, and P’ are members of M, £ # M, and

OQ
RL(OP) = ot(OP) OP’, Re(M) = M and L is a line of symmetry for M,
so that (D) holds. O

Corollary NEUT.44.1. Let L and M be lines on the neutral plane P and let o be
an isometry of P. Then L 1. M iff (L) L a(M).
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Proof. If L L M by Theorem NEUT.44, there exists a point O such that LN M =
{O};1let Q € L\ {0} and P € M \ {0}, and let 0-O-Q'; then ZPOQ =~ ZPOQ'.
By Theorem NEUT.13 «(£POQ) = a(£POQ’) and by Theorem NEUT.15(8)

a(£LPOQ) = La(P)a(0)a(Q) and a(LPOQ') = La(P)a(0)a(Q),
Therefore
Za(P)a(0)a(Q) = a(LPOQ) =~ a(LPOQ') =~ La(P)x(0)a(Q').

Now a(P) € a(M), a(Q) and a(Q’) € a(L), and {«¢(0)} = a(M) N a(L);
therefore by Theorem NEUT.44 «(£) L a(M). The converse is proved by a similar
proof, applying &' (an isometry by Theorem NEUT.11) to a(£) L a(M). |

Corollary NEUT.44.2. Let /BAC =~ ZEDF; then /BAC is right iff ZEDF is
right.

Proof. By Definition NEUT.3(B) ZBAC =~ ZEDF means that there exists an
isometry o such that «(£ZBAC) = ZEDF, and hence « maps the set {A_B)A(_C)'}
onto the set {DE, DF}. By Theorem NEUT.44 ZBAC is a right angle iff AB 1 AC,
which by Corollary NEUT.44.1 is true iff DE 1L (D_I)T which by Theorem NEUT.44
is true iff ZEDF is right. ad

Theorem NEUT.45 (Lines of symmetry of supplementary angles are perpen-
dicular.). Let P be a neutral plane, O, P, and Q noncollinear points on P, P’ a
point such that P'—O-P; let M be the line of symmetry of ZPOQ and L be the line
of symmetry of /P'OQ. Then L 1. M.

Fig. 8.2 For

Theorem NEUT.45; dashed
lines are the lines of
symmetry.

Proof. See Figure 8.2 for a visualization. Let Q' be a point such that Q'-0-Q.
By Exercise NEUT.10 M is the line of symmetry of ZP'OQ’ and L is the line
of symmetry of ZPOQ'. By Theorem NEUT.20 and Corollary PSH.39.2, P and
Q are on opposite sides of M and P’ and Q are on opposite s1des of L. By
Theorem PSH.12 (plane separation) there exist points R and S such that PQ nM =
(R}yand PONL = {S).
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By Theorem NEUT.20 and Definition NEUT.1(A), Ro(00) = OP and
— E—
R (OP") = OQ'. By the elementary theory of mappings, Theorem NEUT.15(8),
and the definition of an angle (cf Definition PSH.29),
E— E—
Rm(LP'0Q) = Rai(OF U0Q) = Ra((OF) U Rp((0Q)
E—
=00 UOP = /Q'OP.

Since L is the line of symmetry of ZP’OQ, by Theorem NEUT.39 ZP'OS =~ ZQOS.
Then

E>  E E
Rm(08) = (Rm(O)(Rm(S)) = O(Rm(S)).
By Definition PSH.29, Definition NEUT.1(A), and the elementary theory of map-
pings,
R (£00S) = R (00U 03) = Ryi(00) U R p(03)
= 0P UORM(S)) = LPO(R(S)). and
= = E=— —>
RmMm(LP'OS) = R (OP' U 0OS) = R (OP) URp(OS)
H[ E—r——> ’
= 0Q'UO(RMm(S)) = LO'O(Rm(S)).
Since ZQ0S =~ /P'0S, by Theorem NEUT.13 R(£Q0S) = Ry (LP OS).
Combining this with the last two equalities, ZPO(R(S)) = ZQ'O(RM(S)).
By Theorem NEUT.39, O(R((S)) is the line of symmetry of ZPOQ’, which we

know already to be L. Therefore Ra((£) = L, so by Theorem NEUT.44 (or
NEUT.32) L is a fixed line for R and £ 1 M. O

Theorem NEUT.46 (A line has a unique perpendicular through each of its
points). Let M be a line on the neutral plane P and let O be any point on M.

(A) There exists a line L containing O which is a line of symmetry for M, and
L L M(ie., L is a fixed line for R aq).

(B) M can have at most one line of symmetry L containing the point O.

Proof. (A) Let P € P\M.If R r((P) is collinear with O and P, then R o (P)-O-P,
and O € PR p((P). By Theorem NEUT.22 this is a fixed line for R 4. Hence
by Theorem NEUT.44 £ 1 M.

Otherwise, let @ = Raz(P), and let P* and Q' be points such
that P-O—P' and Q-O-Q'. M is the line of symmetry of ZPOQ since
Rm(P) = Q and Ry (brf)’) = er) by Theorem NEUT.15(3). By Property
R.5 of Definition NEUT.2 there exists a line of symmetry £ for ZPOQ'.
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By Theorem NEUT.45 since ZPOQ’ and ZPOQ are supplementary, £ L M.
By Theorem NEUT.44 each of £ and M is a line of symmetry of the other.°
(B) By Theorem NEUT.44 (or for that matter Theorem NEUT.32) a line £ (not
equal to M) is a line of symmetry for M iff it is a fixed line for R ¢, which
is true iff £ L M. By Theorem NEUT.22(D) there can be only one such line
through any point O € M. |

Corollary NEUT.46.1. If O, P, and Q are noncollinear points on the neutral plane
‘P, there exists a point R on the Q-side of (0_;’ such that ZROP is right.

Proof. By Theorem NEUT.46 there exists a unique line £ such that £ N 0<_1’)J = {0}
and £ L (O_)P By Exercise IB.17 there exists a point R on £ which is on the QO-side
of (O_})’ By Theorem NEUT.44, ZPOR is a right angle. O

Theorem NEUT.47. Let P be a neutral plane, and let L be a line on P.

(A) Iftwo distinct lines M and N are perpendicular to L, then they are parallel.
(B) Given a point A € P there can be only one line through A which is
perpendicular to L.

Proof. (A) By Theorem NEUT.44 (or Theorem NEUT.32) both M and A are fixed
lines for the reflection R . By Theorem NEUT.22, if these lines are distinct,
they are parallel.

(B) If there are two lines M and A containing A, both perpendicular to £, by part
(A) they are parallel and therefore cannot intersect, a contradiction. O

Theorem NEUT.48. Let M be a line on a neutral plane P, and let P be any

member of P.

(A) There exists a unique line L such that P € Land M L L. IfP ¢ M, L =
>
P(Rm(P)).

(B) (Property PE) For every point Q belonging to P \ M, there exists a line L
through Q which is parallel to M.

Proof. (A) If P € M, this is Theorem NEUT.46. If P ¢ M, by Theorem NEUT.22,
«— >
L = PRm(P) is a fixed line for R . Hence by Theorem NEUT.44,

R m——
STf Axiom PS were in force, we could replace this paragraph by the observation that PR x((P) is
a fixed line for R o4 that does not contain O; then by Theorem CAP.5, there exists a unique fixed
line of R o4 through O.
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L is perpendicular to M. The uniqueness follows immediately from Theo-
rem NEUT.47(B).

(B) By part (A) there exists a line A such that AV L M; then again by part (A)
there exists a line £ containing Q which is perpendicular to . Since Q ¢ M,
L # M. By Theorem NEUT.47 L || M. |

Remark NEUT.49. (A) From Theorem NEUT.48(B), it might be tempting to
think that £ is the only line through Q which is parallel to M. But this is not
the case; using the notation of the proof of part (B), the possibility exists that
there could be a different line £’ through Q which is also parallel to M. What
is ruled out is that £’ could be perpendicular to N'. We still have ambiguity as
to parallelism, because we have not invoked either Axiom PS or PW.

(B) Itis a big step forward to eliminate ambiguity about perpendicularity (which is
defined entirely by our notion of reflection), by proving that there can be only
one line perpendicular to another at a point. We will soon confront many of
the standard congruence theorems of geometry, and a well-defined notion of
perpendicularity will be essential.

From the basic properties of mirror mappings and the first five properties of
Definition NEUT.2, we have proved that reflections (and isometries) behave in
respectably decent ways.

In Theorem NEUT.24 we proved that an isometry having three noncollinear
fixed points is the identity; in Theorem NEUT.26 that angle reflections are
unique; Theorem NEUT.36 showed that if an isometry maps an angle ZAOB
to an angle ZAOC, where B and C are on the same side of %, then rOrB? = rOrC)

We have now added to this list a usable notion of perpendicularity, and

proceed forthwith to deal with midpoints.

8.10 Midpoints of segments

Before this point we have not invoked Property R.6 of Definition NEUT.2, stating
the existence of midpoints of segments. We now do so, and this property will remain
in force throughout the rest of the chapter.
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Theorem NEUT.50. IfA and B are distinct points on the neutral plane P, then 1[47%
has a unique midpoint. Thus it is legitimate to speak of THE midpoint of a segment.

Proof. Existence: by Property R.6 of Definition NEUT.2, there exists a midpoint
of IETB
Uniqueness: suppose. there are two midpoints M and N for AB. By Defini-

tion NEUT.3(C) MA MB Using Theorem NEUT 48 let £ be the line on P such
that M € L and £ L AB then {M} LN AB. By Theorem NEUT 15(5) and
Definition NEUT.1(A), RL (AM) = (RL AR, (M)) (’RL (A))M so that by
Definition NEUT.3(B), MA M Re (A)) By Definition NEUT.1(B), A and R - (A)
are on opp051te sides of L so that A—M—R £(A). By Theorem PSH.13, since A-M-B,
RK(A) € MB Srnce M (RE(A)) MA and ZElT/f ~ % by Theorem NEUT.14
M(T(A)) ~ MB By Property R.4 of Deﬁmtlon NEUT.2, R (A) =

We have already seen that {M} = L NAB. By assumption, N is also a mldpoint of
AB, s0 by Definition NEUT.3(C), AN = BN and A—N—B. By Lemma NEUT.34(A),
=M. O

2 D>r‘\

Definition NEUT.51. Let A and B be distinct points on the neutral plane P and let
M be the midpoint of AB. The perpendicular bisector of AB is the line M such
that M € M and M L AB.

Theorem NEUT.52. Let A and B be distinct points on the neutral plane P, and let
M be the midpoint ofﬁ. Then

(A) there exists a unique line M containing M which is perpendicular to zﬁ (the
perpendicular bisector of 1[47% );

B) Rm(A) =B and Rm(B) =

©) Rm (AB) BA so that M is a line of symmetry of IEAB nd

(D) M is the unique line of symmetry of AB

Proof. (A) follows immediately from Theorem NEUT.48. Then by Theorem
NEUT.44, AB isa ﬁxed line for R\, and M is a line of symmetry for ﬁ

Then R((A) € AB and R r((A) is on the opposrte side of M from A, that is,
A-M-R r(A), and smce A—M—B Rm(A) € MB Also by Theorem NEUT.15,

Rat(AM) = (RM A))Rm (M)) = R (A))M

so that by Definition NEUT.3(C) BM >~ AM (R M (A))M . By Property R.4 of
Definition NEUT.2 (linear scaling), Ra¢(A) = B, and by Definition NEUT.1(C)
R (B) = A. This proves part (B).
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By Theorem NEUT.15(5),
Ra(AB) = (R (A) (Rpi(B)) =

so that AB = BEfi, proving (C).

To prove (D), suppose that £ is a line of symmetry for 1[473; then 1[473 Z L, and
R.(AB) = AB. By Remark NEUT.16 R (A) = B, and by Definition NEUT.1(B)
A and B are on opposite sides of £; by Axiom PSA there exists a point D € ﬁ such
that D € £; then

B

NG

Rc(AD) = (Re(A)(Re(D)) = BD
so that 57Dj ~ 1[47D], and D is a midpoint of 1[475 By Theorem NEUT.50, there is only
one midpoint of 1[47%’, so that D = M. Since £ L fA_B) and M L 1<4_B) and both £
and M contain the point M, by Theorem NEUT.48, £ = M, which is therefore the
unique line of symmetry for 1[471%, proving part (D). O

Theorem NEUT.53. Let A and B be distinct points on the neutral plane P, and let
M be the perpendicular bisector of AB. Then for every C € M, AC =~ BC.

Proof. 1f C € M, C is a fixed point for R o¢; by Theorem NEUT.52(B), Raq(A) =
B; then by Theorem NEUT.15(5),

o RMAC) = (Rm(A)(Rm(C)) = BC;
thus AC = BC, proving the theorem. O

Theorem NEUT.54. Let M be a line on the neutral plane P and let Q be a member
of P\ M; then M is the perpendicular bisector on(RM (Q)j.

Proof. By Theorem NEUT.22(A), Q(R r(Q)) is a fixed line for R o4. By part (E)
of the same theorem, Q(R A¢(Q)) intersects M at exactly one point D, and D is the
midpoint of Q(R v((Q)). By Theorem NEUT.32 (or NEUT.44) O(Rm(Q)) L M,
so M is its perpendicular bisector. O

Theorem NEUT.55. Let A, B, and C be noncollinear points on the neutral plane P
such that AB = 1[47(/3’, and let M be the line of symmetry of ZBAC. Then M is the line
of symmetry of % Furthermore, there exists a point D such that {D} = M N %7(,]‘,
and D is the midpoint of%ﬁé.

Proof By Theorem NEUT20 A € M and Ry(AB) = AC, so Ru(B) €

AC. Since AB = AC, by Property R.4 of Definition NEUT.2, Rr((B) = C.
«— < .

By Theorem NEUT.22(A) A(Rp(B)) = BC is a fixed line for R, and by

Theorem NEUT.32 (or NEUT.44) 1(9_5' 1 M.
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I—0oF

By Theorem NEUT.20 there exists a point D such that BR p(B) NM = {D}
and (by part (E)(2)) BD = CD. Therefore, by Definition NEUT.51, M is the
perpendicular bisector and the line of symmetry of %‘ . O

Theorem NEUT.56. Let A, B, C, and D be points on the neutral plane ‘P such that
A # B, C # D, and ﬁ ~ CD. Then there exists an isometry o of P such that
a(AB) = CD, a(A) = C, and a(B) = D

Proof By Definition NEUT.3(B) there exists an isometry A of P such that )L(AB)

CD. By Remark NEUT.16, {1(A), A(B)} = {C, D}. Hence either A(A) = C and
A(B) = D or A(A) = D and A(B) = C. In the first case we take @« = A. In the
second case using Theorem NEUT.52 let £ be the line of symmetry of [CiD] and
take @ = R g o A. Since « is an isometry of P (cf Theorem NEUT.11) and since
a(A) = C and a(B) = D, the theorem is proved. O

Theorem NEUT.57. Let A, B, C, and D be points on the neutral plane ‘P such that
A#B, C#D,and AB = CD.

(A) IfE and F are points such that A~-E-B, F € ]C% and Eﬁ% ~ EC then C—F-D.
(B) If G and H are points such that A-B-G, H € jC_D) and AG = CH, then C-D-H.

Proof. Since 1[47% o~ [CiD], by Theorem NEUT.56 there exists an isometry o of P
such that «(AB) = CD, a(A) = C, and @(B) = D. By Definition NEUT.1(D),
a(A)-a(E)-a(B) and a(A)—oz(B)—a(G) S0 that C—oe(E)—D and C—D—a(G) By
Theorem NEUT.15(5) a(AE) = a(A)ot(E) = Cot(E) and ot(AG) = ot(A)a(G) =
Ca(G) By Definition IB.4 «(E) € CD and ¢(G) € CD By Property R.4 of
Definition NEUT.2, «(E) = F and «(G) = H. Thus C-F-D and C-D-H. O

Theorem NEUT.58. Let A, B, C, D, E, and F be points on the neutral plane P such
that A, B, and C are noncollinear, D, E, and F are noncollinear, and 1[47& ~ [DT§ Then
there exists an isometry a of P such that a(ﬁ) = [Df a(A) = D, a(B) = E, and
a(C) € DEF.

Proof By Theorem NEUT.56 there exists an isometry ¢ of P such that (p(AB)

DE ¢(A) = D, and ¢(B) = E. If (p(C) € ﬁ then we take @ = ¢. If ¢(C)
does not belong to the F-side of DE, then since ¢(C) does not belong to D<_I)5, it
belongs to (the side of DE opposite the F-side). In this case we take o = Rﬁ o Q.
By Theorem NEUT.11 « is an isometry of P and furthermore «(C) € DEF . O
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Definition NEUT.59. A Kkite is a quadrilateral with two distinct pairs of consecu-

tive edges that are congruent.

Theorem NEUT.60 (Kite). Let A, B, C, and D be points on the neutral plane P
such thatﬁ u [Bﬁé‘ u %7D] U DHA] is a quadrilateral (cf Definition PSH.31), 1[471% ~ 1[47Dj
and 53761’ =~ % Then;\_C) is the line of symmetry of ZBAD, ZBCD, %?D] and OABCD.
Furthermore, /BAC ~ /DAC, /BCA =~ /DCA, ZABC =~ ZADC, and AABC =
AADC.

Fig. 8.3 Showing a kite. B

A D

Proof. See Figure 8.3. Using Theorem NEUT.26 let £ be the line of symmetry
of ZBAD and let £ be the line of symmetry of ZBCD. By Theorem NEUT.55
each of these lines is the line of symmetry of [BT% so L = L = /(X_C)’ and
R (B) = D.Furthermore, R 0 (£BAC) = ZDAC, ’Rg(ﬁ) = z[ﬁ\iD], Rg(ﬁ) = [CiD],
and R, (£LABC) = ZADC. By Definition NEUT.3(B) ZBAC =~ ZDAC, ZBCA =
/DCA, and ZABC =~ ZADC. Moreover, R (0ABCD) = OADCB = OABCD. O

8.11 Congruence of triangles and angles

Remark NEUT.61. Let P be a neutral plane. According to Definition NEUT.3(B),
two triangles AABC and ADEF on P are congruent iff there exists an isometry ¢ of
P such that ¢(AABC) = ADEF. This means, referring back to Definition IB.7, that

E- == 3 = =2 =2
@(ABUBCUCA) = DEUEF UFD.
However, this equality simply means the set on the left side is equal to the set on

the right; it gives no information about which edge of AABC maps to which edge
of ADEF. We used this equality to prove Theorem NEUT.15(10).

Stating that there is an isometry ¢ mapping a triangle to another triangle implies
a pairing of the corners and of the edges of the respective triangles. That is to say,
the mapping ¢ maps each of the corners A, B, and C to one of the corners E, F, or

G. We express this by saying that if two triangles are congruent, then corresponding
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edges are congruent and the corresponding angles are congruent. Sometimes it is
necessary to specify which corners map to which corners.
If we choose the notation so that ¢(A) = D, ¢(B) = E, and ¢(C) = F, then

¢(/BAC) = /EDF, ¢(/ABC) = /DEF, and ¢(/ACB) = /DFE,

so that
/BAC = /EDF, /ABC =~ /DEF, and ZACB =~ /DFE
and
£ =3 B3 o o 3
¢(AB) = DE, ¢(BC) = EF, and ¢(CA) = FD.
Then

E3 E3JE3 3 [ R
AB =~ DE, BC = EF, and CA = FD.
In order to make the “congruence theorems” (NEUT.62, NEUT.64, and

NEUT.65) completely clear, we will express their conclusions not only in terms

of congruence but also in terms of specific corner pairings.

Theorem NEUT.62 (EEE congruence theorem for triangles). Let A, B, C, D,
E, and F be points on the neutral plane P such that A, B, and C are noncollinear
and D, E, and F are noncollinear, 1[47% ~ ﬁ, 1[47(,]’ ~ [DT"J and Ehé ~ [ET‘; Then
there exists an isometry a such that «(AABC) = ADEF, a(A) = D, «(B) = E,
and a(C) = F. Thus AABC =~ ADEF, and corresponding angles are congruent.
(Corresponding edges are congruent by hypothesis).

Proof By Theorem NEUT.58 there exists an isometry § of P such that 8 (1[475) =
DE /3(A) D, B(B) = E, and B(C) = F’, where F’ is a member of the side of DE
opposite DEF (cf Definition IB.11).

Then by Theorem NEUT 15(5) ,B(AC) ,B(A) B (C) DF DF' S0 by hypothesm and
Deﬁmtlon NEUT.3(B) DF ~ AC ~ DF’ Likewise ,B(BC) ,B(B)ﬂ(C) — EF SO
EF BC EF EF Then by Theorem NEUT.60 (Kite) DE is the line of symmetry of
FF', 50 that F = R (FY).

Leta = <—> o,B Then a(A) D a(B) E and «(C) = F. By hypothesis we
know that AB DE AC DF and BC EF By Theorem NEUT.15(8)

a(£LBAC) = La(B)a(A)a(C) = LEDF,
a(LABC) = Za(A)a(B)a(C) = £ZDEF, and
a(LACB) = Za(A)a(C)a(B) = £DFE, so that
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/BAC =~ LEDF, /ABC = /DEF, and ZACB =~ /DFE.
Finally, by Theorem NEUT.15(10),
a(AABC) = Aa(A)a(B)x(C) = ADEF, and AABC =~ ADEF. O

Theorem NEUT.63. Let P be a neutral plane, A and B be distinct points on P, M
be the midpoint of AB and Q be a member of P \1<4_1§ such thatz[47Q1 ~ LB@ Then A(l—)Q
is the line of symmetry of ZAQB and of AB.

Proof. Since M is the midpoint of AB, by Definition NEUT.3(C) AM =~ BM.
Moreover MO 2 MQ. Since AQ = BQ, by Theorem NEUT.62 (EEE) ZAMQ =
/BMQ and ZAQM =~ /BQM (cf Remark NEUT.61). By Theorem NEUT.39 A</I—Q)
is the line of symmetry of ZAQB.

By Property B.3 of Definition IB.1 let Q' be a point such that O-M-Q’; by
Theorem NEUT.42 (vertical angles), since ZAMQ =~ ZBMQ, LBMQ’ ~ LAMQ ~
/BMQ =~ /AMQ'. By Theorem NEUT.44 (parts (B) and (G)) MQ 1 AB By
Theorem NEUT.52 MQ is the line of symmetry of AB O

Theorem NEUT.64 (Isometry construction for angles). Let A, B, C, D, E, and F
be points on the neutral plane P such that A, B, and C are noncollinear, D, E, and F
are noncollinear, ETB; ~ iﬁ 1[4763' x~ [Dﬁ% and /BAC =~ ZEDF. Then there exists an
isometry o such that x(AABC) = ADEF, a(A) = D, «(B) = E, and «(C) = F.
Thus AABC =~ ADEF, and corresponding edges and angles are congruent.

Proof. By Theorem NEUT.58 there exists an isometry « of P such that
a(ﬁ) = %TL%, a(Ad) = D, a(B) = E, and «a(C) is a member of ]Dﬁ
By Theorem NEUT.15(8) «(£BAC) = Za(B)a(A)a(C) = ZLEDa(C). By
Definition NEUT.3(B) ZBAC =~ /ED«(C). By Theorem NEUT.14 (congruence
is an equivalence relation), ZEDF =~ /ED«a(C). By Theorem NEUT.36
DF = m By Theorem PSH 24 a(C) € DF. By Theorem NEUT.15(8)
®(A0) = a(A)a(C) = Da(C). By Definition NEUT.3(B) AC = [Doe(C) Since
congruence is an equivalence relation (Theorem NEUT.14) Da(C) = DF. By
Property R.4 of Definition NEUT.2 o(C) = F. Since «(A) = D, «(B) = E, and
a(C) = F, by Theorem NEUT.15(5) a(%f‘) — EF so that BC ~ ﬁ; the other

corresponding edges are congruent by hypothesis.

We may now apply Theorem NEUT.62 (EEE Congruence theorem), completing
the proof. O
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Theorem NEUT.65 (AEA congruence theorem for triangles). Ler A, B, C, D,
E, and F be points on the neutral plane ‘P such that A, B, and C are noncollinear, D,
E, and F are noncollinear, 5471% x>~ %)71:2, /BAC =~ ZEDF, and ZABC = /DEF. Then
there exists an isometry o such that «(AABC) = ADEF, a(A) = D, «(B) = E,
and o(C) = F. Thus AABC = ADEF, and corresponding edges and angles are

congruent.

Proof By Theorem NEUT.58 there ex1sts an isometry « of P such that oz(r lg)
DE, a(A) =D,a(B) =E,and ¢(C) € DEF.. By Theorem NEUT.15(8)

a(£BAC) = La(B)a(A)a(C) = LEDa(C)
and
a(ZABC) = Za(A)a(B)a(C) = LDEa(C).
By Definition NEUT.3(B) ZBAC =~ ZED«(C) and ZABC =~ /DEw(C).

Since congruence is an equivalence relation (Theorem NEUT.14) and since
/BAC =~ /EDF and /ABC =~ ZDEF ZEDa(C) ’5 /EDF and /DEF ==
/DEa(C). By Theorem NEUT.36 Da(C) D7 and Ea(C) ﬁ . By Theo-
rem PSH.24(B) a(C) € DF and a(C) € EF. By Theorem 1.5 DF is a subset of(D_})7
and IJE? is a subset of (E_I)T By Exercise 1.1 b—l)*" nEF = {F}. Therefore a(C)
Since ¢(A) = D, «(B) = E, and oz(C) F, by Theorem NEUT 15(5) oe(AC)
and a(%) — EF so that IELTC]’ DF and BC EF AB DE by hypothes1s
We may now apply Theorem NEUT.62 (EEE Congruence theorem), completing
the proof. O

Theorem NEUT.66. On a neutral plane P every angle congruent to a right angle

is a right angle.

Proof. Let A, B, C, D, E, and F be points on P such that A, B, and C are
noncollinear, D, E, and F are noncollinear, ZEDF is a right angle and ZBAC =
ZEDF. Using Property B.3 of Definition IB.1 let B’ and E’ be points such that
B-A-B' and E-D-E'. By Definition NEUT.41(C) ZEDF = /E'DF.

Since /BAC =~ /EDF, /E'DF =~ /B'AC by Theorem NEUT.43 (supplements
of congruent angles are congruent). Since congruence is an equivalence relation,
/B'AC ~ /F'DF ~ /EDF =~ /BAC, and by Definition NEUT.41(C) ZBAC is a
right angle. O
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Theorem NEUT.67 (segment construction). Let A, B, C, and D be points on the
neutral plane P such that A # B and C # D. Then there exists a unique point P
belonging to JC% such that CP =~ AB.

Proof. (I: Existence) There are four cases:

(Case 1: A= CandB € ]C%.) Then P = B.

(Case 2: A = C and B-C-D.) Let Q be a member of P \ 1<4_B> Using
Theorem NEUT.26 let M be the line of symmetry of ZBCQ and let N be
the line of symmetry of ZDCQ. Let« = Ry o R M- By Theorem NEUT.20,
Theorem NEUT 15(3), and Deﬁmtlon NEUT l(A) oz(CB) Ra (R (rCrB)) =
RN(CQ) = CD and ot(CB) = oz(C)oz(B) = Ca(B) By Deﬁnltlon NEUT 3(B)
Ca (B) CB Letting P = a(B) we have P € CD and CP CB AB

(Case3: A =Cand D € (P \ AB).) Using Theorem NEUT.26 let £ be the
line of symmetry of ZBAD. By Theorem NEUT.20 C € £ and R(CB) = CD
By Theorem NEUT.15(5) and Definition NEUT.1(A),

Rc(CB) = Re(C)R.(B) = CR.(B).

Ee—— E> I—>
By Theorem NEUT.20 CR.(B) = CD so by Theorem PSH.24 R (B) € CD.
By Theorem NEUT.15(5) and Definition NEUT.1(A),

| —| = = E ]
Rc(CB) = Re(C)Re(B) = CR.(B).

By Deﬁnltlon NEUT 3(B) CW = CB Let P = R,(B), then P € CD and
CP CB AB
(Case 4: A # C.) Using Theorem NEUT.52 let J be the line of symmetry
of AC, then R7(4) = C and R7(C) = A. Let R7(B) = B’ By Theo-
rem NEUT.15(5) R 7 (AB) = R/ (AR, (B) = CB . By Definition NEUT.3(B)
AB ~ CB’ By whlchever applles case 1, case 2, or case 3, there exists a point
P such that P € CD and CB’ > CP. By Theorem NEUT.14 (congruence is an
equivalence relation) IETB o [Cif]’
(Il: Uniqueness) Let P and P’ be points such that P € jC—D) P e ]C_D, [CT% ~ 1[473;
and CP ~ AB. By Theorem NEUT.14 CP =~ CP. By Property R4 of
Definition NEUT.2, P’ = P. O

Theorem NEUT.68 (Angle construction). Let A, B, and C be noncollinear points
on the neutral plane P, P and Q be distinct points on P, H be a side of I(J_Q) Then
there exists a point R belonging to ‘H such that ZQPR =~ /BAC. Furthermore, if S
is a member of H such that ZQPS = /BAC, then ﬁ ~ ?S’ and ZQPR = ZQPS.



8.11 Congruence of triangles and angles 197

Proof. (I: Existence) Let H' be the side of f<’_)Q opposite H. There are six cases.

(Case 1: PO = AB and C € H.) Take R = C.

(Case 2: % = AE>B and C € H') Take R = Rﬁ(C); then by Theo-
rem NEUT. 14, Definition NEUT.1(A) and Definition PSH.29,

'Rxﬁ(LBAC) = LRH(B)R;E;(A)R%(C)
— /BAR = ABUAR = POUPR = ZQPR.

By Definition NEUT.3(B) ZBAC =~ ZQPR. Furthermore, by Defi-
nition NEUT.1(B), R and C are on opposite sides of AB = f<’_)Q By
Theorem PSH.12 (plane separation) R € H.

(Case 3: P = A, O—P-B, and C € H'.) Then AE>B and PH>Q are opposite
rays. Using Theorem NEUT.26 let M be the line of symmetry of ZQPC. Let
C’ be a point such that C-P-C’. Then ZQPC and ZBPC’ are vertical angles
and by Exercise NEUT.10 M is the line of symmetry for ZBPC’. Then by
Theorem NEUT.20 R 4 (%) = }’?C)’ and R pq (%) = }Té

Let R = R (B); then PR = PC’, and by Theorem PSH.24 R € PC'. By
Definition IB.11 C and C’ are on opposite sides of f(’_)Q Since C € H', C' € H.
By Theorem PSH.38 PC = <C—C)’ N H' and ;TC)’ = <C—C)’ N H. Therefore R =
Rm(B) € H.

By Definition PSH.29, Definition NEUT.1(A), and Theorem NEUT.15(3),

R(£BPC) = Ry (PCUPB) = Ry (PC) U R (PB)
= Rau(PO) U Rm(PYRm(B) = Rau(PC) U PR
— POUPR = ZOPR,
so that ZBAC = /BPC =~ ZQPR.

(Case 4: P = A, Q-P-B, and C € H.) By Case 3 there exists a point
R’ belonging to H’ such that /BAC =~ ZQPR'.LetR = R<P—Q> (R'). Then by
Theorem NEUT.15(8) and Definition NEUT.1(A),

'R%(ZQPR/) = ZR%(Q)R;)—Q)(P)R%(R/) = ZQPR.

By Definition NEUT.3(B) ZQPR' =~ ZQPR. Since ZBAC =~ ZQPR', by

Theorem NEUT.14 (congruence is an equivalence relation), Z/BAC =~ ZQPR.

By Definition NEUT.1(B), R and R’ are on opposite sides of f(’_Q) Since R' € H’
by Theorem PSH.12 (plane separation), R € H.
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(Case 5: P = Aand Q € (P \ ﬁ).) Using Theorem NEUT.26 let £
be the line of symmetry of ZBAQ. By Theorem NEUT.20 A = P € L,
and R-(PB) = PQO. By Theorem NEUT.15(5) and Definition NEUT.1(A),

£a1  E 3 3
Re(PB) = Re(P)YRe(B) = PR.(B).

e [ 1>
By Theorem NEUT.20 PR - (B) = PQ, by Theorem PSH.24(B), R (B) € AQ.
By Definition PSH.29, Theorem NEUT.15(3), and Definition NEUT.1(A),

Re(LBPC) = R (PBUPC) = R (PB) U R, (PC)
— POURL(PRL(C) = POUPRL(C) = ZOPR.(C).

By Definition NEUT.3(B) ZBPC = ZQPR(C). If R-(C) € H, then by
case 1 wetake R = R, (C). If R-(C) € H’, then by case 2 there exists a point R
belonging to ‘H such that ZQPR =~ ZQPR(C). Since ZQPR(C) = /BPC,
by Theorem NEUT.14 ZQPR = /BPC = /BAC.

(Case 6: P # A.) Using Theorem NEUT.51 let N be the line of symmetry
of PA. By Theorem NEUT.15(8) Rar(£BAC) = LRn(B)Ra(A)RN(C) =
LR (B)PRA(C). By Definition NEUT.3(B) ZBAC =~ /R (B)PRAx(C). By
whichever of the cases 1, 2, 3, 4, or 5 applies, there exists a point R belonging to
‘H such that ZOPR = R (B)PR A (C). Since LR (B)PR A (C) = £BAC, by
Theorem NEUT.14 ZQPR =~ /BAC.

(II: Uniqueness) If R and S are points belonging to H such that Z/BAC =~ ZQPR
and ZBAC = /QPS, then ZQPR =~ /QPS. By Theorem NEUT.36 PR = P3,
so ZQPR = ZQPS. O

We are finally ready to prove Euclid’s Fourth Postulate.

Theorem NEUT.69. On a neutral plane ‘P any two right angles are congruent.

Proof. Let A, B, C, D, E, and F be points on the neutral plane such that A, B, and
C are noncollinear, D, E, and F' are noncollinear, ZBAC is right and ZEDF is right.
By Theorem NEUT.68 there exists a point P belonging to the C-side of ﬁ such
that LEDF LBAP By Theorem NEUT.66 ZBAP is right By Theorem NEUT.44
AB L AP and AB L AC By Theorem NEUT.47(B), AC = AP Since C and P
belong to the same side of AB by Theorem PSH.38(A), A AP so ZBAC =
/BAP. Since /BAP =~ /EDF, /BAC =~ ZEDF. O

l
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8.12 Ordering segments and angles

Definition NEUT.70. (A) Let A, B, C, and D be points on the neutral plane P
such that A # B and C # D. Then AB < CD iff there exists a point P such that
C-P-D and AB =~ CP. AB > CD iff CD < AB.

(B) Let A, B, C, D, E, and F be points on the neutral plane P such that A, B, and
C are noncollinear, and D, E, and F are noncollinear. Then ZBAC < ZEDF
iff there exists a point P belonging to ins ZEDF such that Z/BAC =~ ZEDP.
/BAC > ZEDF iff ZEDF < /BAC.

(C) The symbol < is read “is smaller than.”

(D) The symbol > is read “is larger than.”

(E) LetA, B, C, and D be points on the neutral plane P such that A £ Band C # D.
Then

V"\
LJ

T
(]

mu
Il
@
S
g
o

or AB

o
mu

(D AB < CDiff
(2)AB > CD iff CD < AB.
(F) LetA, B, C, D, E, and F be points on the neutral plane P such that A, B, and C
are noncollinear and D, E, and F are noncollinear.
(1) ZBAC < ZEDF iff /BAC < ZEDF or /BAC =~ /EDF.
(2) £LBAC > ZEDF iff ZEDF < /BAC.

(G) The symbol < is read “is smaller than or congruent to.”

<

L@

(H) The symbol > is read “is larger than or congruent to.”

Theorem NEUT.71. LetA B C and D be points on the neutral plane P such that
A # Band C # D. Then AB > CD iff there exists a point V such that C-D-V and

] ]
B3 =

AB =~ CV.

Proof. () If IEAT% > %73 then by Deﬁnition NEUT 70 [CiD] < ;ﬁ% and there exists
a point U such that A—-U-B and CD o AU By Theorem NEUT 67 (segment
construction) there exists a point V belonging to 55 such that AB =~ CV By
Theorem NEUT.57 C-D-V.

(II) Suppose that there exists a point V such that C—-D-V. and AB = Ccv. By
Theorem NEUT 67 (segment construction) there exists a point U such that U €
134% and AU =~ GC ijheorem NEUT.57 A-U-B. By Definition NEUT.70

CD<AB,1e,AJ> ad

QI"\
St
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Theorem NEUT.72 (Trichotomy for segments). Let A, B, C, and D be points on
the neutral plane P such that A # B and C # D. Then one and only one of the

following statements holds:

()AB~ CD, (2)AB<CD, (3)AB> CD

Proof. Using Theorem NEUT.67 (segment construction) let P be the point on ]C_D)
such that AB =~ CP. By Definition IB.4 one and only one of the following statements
(A), (B), or (C) holds:

(18]

-
=

(A: P =D) Then;TB; ~ [6'73’ = [CT% i.e.,ﬁ CD.
(B: C—P-D) Then by Definition NEUT.70 AB < CD.
(C: C—-D-P) Then by Definition NEUT.70 AB > CD. O

LI

U
(18]

’_
(1

Theorem NEUT.73 (Transitivity for segments). Let A, B, C, D, E, and F be
points on the neutral plane P such that A # B, C # D, and E # F.

(D) Iﬁaé > CD and AB EF then EF > CD.
(E) IfAé > CD and CD EF then AB > EF.
(F) IfAB > CD and CD > EF., then AB > EF.

Proof. (A) If 1[47% < [CiD], then by Definition NEUT.70 there exists a point J such
that C—J-D andﬁ x~ [CiJ] Sinceﬁ x~ [6} andﬁ x>~ ﬁ, IEE% x>~ [Cijj B
Definition NEUT.70 EF < CD.

(B) By Theorem NEUT.72 (trichotomy for segments) one and only one of the

following statements is true:

(1)AB ~ EF,  (2)AB < EF,  (3)AB > EF.

F'I

If 1[4713 ~ ﬁ were true, then since E‘ ~ EF we would have 5471% ~ [CTi
contrary to the fact that IE\T% < [CiD] It 1[43 > EF were true, then by part (A)
[CiD] < 1[47% would be true, contrary to the fact that;\TE% < [6‘73 Sinceﬁ o~ ﬁ is
false and 1[471% > [ET’% is false, by Theorem NEUT.72 (trichotomy for segments),
AB < EF.

(C) Since IE\T% < [CiDj and [CiDj < [E71 , by Definition NEUT.70 there exists a
point P such that C—P—D and AB = [CT% and there exists a point Q such
that E-Q—F and CD x~ EQ By Theorem NEUT.56 there exists an isometry
o of P such that a(CD) = EQ a(C) = E, and (D) = Q. Since
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C—P-D by Definition NEUT.1(D) E-«(P)-Q. Since E-«(P)-Q and E-Q-F, by
Theorem PSH 12 E—oz (P) Q—F so that E-a(P)-F. By Theorem NEUT 15(5)
a(CP) = a(C)a(P) Eot(P) By Deﬁmtlon NEUT.3(B) CP ~ Eoz(P) Smce
AB CP and CP Eot(P) AB Ea (P) By Definition NEUT.70 AB < EF.
This completes the proof of (C).
In the next three parts, we use the fact, from Definition NEUT.70(A), that for any
A#Band C # D,AB > CDiff CD < AB.

(D) Interchange ;ﬁ% and [CiD] in part (B) and we have (D).
(E) Interchange AB and CD in part (A) and we have (E).
(F) Interchange AB and EF in part (C) and we have (F). O
Theorem NEUT.74. Let A and B be distinct points on a neutral plane P, and let O
and Q be distinct points on P such that OQ = AB; then for any X € OrQ),

(1) O-X-Q iff OX < 00 = AB and (2) 0-0—X iff OX > 00 = AB.

Proof. (1) If O-X-Q, then by Deﬁmtlon NEUT 70 OX < EOQ] (Theorem NEUT.73
(transitivity for segments) says that OX < AB )
Conversely, if OX < OQ =t 1[4 B (cf Definition NEUT.70), there exists a
point U such that O-U-Q and [ ] X =~ [OI} by Property 4 of Definition NEUT.2,
X = U, so O-X-0.
(2) If 0-Q-X, then by Theorem NEUT.71 0X > 00 = AB. (By transitivity for
segments OX > AB.)
Conversely, if EOX >
such that O-Q-V and [0)2 (TV ; by Property 4 of Definition NEUT.2, X =V,

so O-0-X. O

LJ

U

L Q

Q] = E\B by Theorem NEUT.71 there exists a point V
=|

Theorem NEUT.75 (Trichotomy for angles). Let A, B, C, D, E, and F be points
on the neutral plane P such that A, B, and C are noncollinear and D, E, and F are

noncollinear. Then one and only one of the following statements is true:
(1) £LBAC = ZEDF, (2) £LBAC < LEDF, (3) £LBAC > LEDF.

Proof. Using Theorem NEUT.68 (angle construction) let P be a point such that EP
is a subset of the F-side of DE and ZBAC =~ ZEDP. By Exercise PSH.32 one and

only one of the following statements is true:

(AYP e DE, (B)Peins ZEDF, (C)F € ins ZEDP.
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It P e DF , then by Theorem PSH.30 ZEDP = /EDF and by
Remark NEUT.7(A) LZEDP =~ /EDF. By Theorem NEUT.14, since ZBAC =
/EDP, /BAC = /EDF.

If P € ins LZEDF, then since ZBAC =~ ZEDP, by Definition NEUT.70, ZBAC <
/EDF.

If F € ins ZEDP, then since ZBAC = ZEDP, by Definition NEUT.70, ZEDF <
/BAC, i.e. /BAC > ZEDF. O

Theorem NEUT.76 (Transitivity for angles). Ler A, B, C, D, E, P, Q, and R be
points on the neutral plane P such that A, B, and C are noncollinear, D, E, and F

are noncollinear, and P, Q, and R are noncollinear.

(A) If ZBAC < ZEDF and /BAC =~ /QPR, then ZQPR < /EDF.
(B) If ZBAC < LEDF and ZEDF =~ /QPR, then /BAC < ZQPR.
(C) If ZBAC < /EDF and ZEDF < ZQPR, then ZBAC < ZQPR.
(D) If ZBAC > /EDF and /BAC =~ /QPR, then ZQPR > /EDF.
(B) If ZBAC > ZEDF and /EDF =~ /QPR, then ZBAC > ZQPR.
(F) If ZBAC > /EDF and Z/EDF > /QPR, then ZBAC > ZQPR.

Proof. (A) If ZBAC < ZEDF, then by Definition NEUT.70 there exists a point
S such that § € ins ZEDF and /BAC =~ /EDS. Since /BAC =~ /QPR,
ZQPR = ZEDS. Hence by Definition NEUT.70 ZQPR < ZEDF.

(B) If LBAC < ZEDF, then there exists a point 7 such that T € ins ZEDF
and ZBAC =~ ZEDT. Since ZEDF =~ ZQPR, by Theorem NEUT.38 there
exists an isometry ¢ such that (p(rDrl??) = % and <p(ﬁ“) — PR. Then by
Theorem NEUT.15(11) ¢(ins ZEDF) = ins Zo(E)p(D)@(F) = ins ZQPR.
Let U = ¢(T). Then since T € ins ZEDF, U € ins ZQPR, and ¢(LEDT) =
ZQPU so that ZEDT =~ ZQPU by Definition NEUT.3(B). Since congruence
is an equivalence relation (Theorem NEUT.14), ZBAC =~ ZQPU, thus
ZBAC < ZQPR.

(C) Since ZBAC < ZEDF, by Definition NEUT.70, there exists a point V such
that V € ins ZEDF and /BAC =~ /EDV. Since ZEDF < ZQPR, by
Definition NEUT.70 there exists a point W such that W € ins ZQPR and
ZEDF =~ ZQPW.

By Theorem NEUT.38 there exists an isometry ¢ such that <p(DH)E) = %,
o(DF) = PW. By Theorem NEUT.15(11)
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@(ins ZEDF) = ins Zp(E)p(D)¢p(F) = ins ZOPW.

Let X = ¢@(V). Then since V € ins ZEDF, X € ins ZQPW which is a
subset of ins ZQPR by Theorem PSH.41(D) (or Exercise PSH.18), so that
X € ins ZQOPR.

Now by Definition PSH.29 and Theorem NEUT.15(3)

o(LEDV) = (DEUDV) = ¢(DE) U ¢(DV) = POUPX = ZQPX.

Therefore by Definition NEUT.3(B) ZEDV =~ ZQPX, and since ZBAC
ZEDV, by Theorem NEUT.14 /BAC = ZQPX.

We have seen that X € ins ZQPR so that by Definition NEUT.70 ZBAC <
ZQPR; this completes the proof of (C).

Il

In the next three parts we will use the fact, from Definition NEUT.70(B), that
for any noncollinear points A, B, and C, and any noncollinear points D, E, and F,
/BAC > /EDF iff /EDF < /BAC.

(D) Interchange ZBAC and ZEDF in part (B) and we have (D).
(E) Interchange ZBAC and ZEDF in part (A) and we have (E).
(F) Interchange ZBAC and ZQPR in part (C) and we have (F). O

Theorem NEUT.77. Let A, B, C, A’, B, and C' be points on the neutral plane P
such that A, B, and C are noncollinear and A’, B', and C' are noncollinear. Then
/B'A'C' > /BAC iff there exists a point D such that B € ins ZCAD and ZCAD =
/C'A'B.

Proof. () If ZC'A’B’ > ZCAB, then by Definition NEUT.70 ZCAB < ZC'A’'B’
and there exists a point E belonging to ins ZC’A’B’ such that ZCAB =~ /C'A’E.
By Theorem NEUT.68 (angle construction) there exists a point D belonging to
the B-side of AC' such that ZCAD = /C'A'B'. By Exercise NEUT.14 B €
ins ZCAD.

(II) Conversely, if such a point D exists, then by Theorem NEUT.38 there exists
an isometry ¢ such that ¢(LCAD) = ZC'A'B, (p(;TC)) = W and (p(z%) =
W. B € ins ZCAD so by Theorem NEUT.15(11) ¢(B) € ins ZC'A’B’, and
@(LCAB) = ZC'A’¢(B) so that ZCAB =~ Z/C'A’¢(B). By Definition NEUT.70
/CAB < /C'A’'B',i.e., ZC'AB > Z/CABor /B'A'C' > /BAC. O

Theorem NEUT.78. Let A, B, C, and D be points on the neutral plane ‘P such that
A, B, and C are noncollinear, D € ABC and /BAD < /BAC. Then D € ins ZBAC.
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Proof. By Definition NEUT.70 there exists a point D’ belonging to ins ZBAC
such that ZBAD' =~ /BAD. By Deﬁn1t10n PSH.36 D and D’ both belong to
ABC. By Theorem NEUT 36 AD = AD. By Theorem PSH.24 D € AD. By
Exercise PSH.17(A) AD = AD’ C ins ZBAC. Thus D € ins ZBAC. O

Definition NEUT.79. Let 7 = AABC be a triangle on the neutral plane P; let B’
and C’ be points such that B-A-B’ and C-A-C’. Then each of the angles ZCAB’ or
/BAC is said to be an outside angle with corner A of 7.

Remark NEUT.79.1. By Theorem NEUT.41 (vertical angles), the pair of outside
angles of 7 with corner A are congruent to each other. By Definition NEUT.79, if
D is an angle of triangle 7 and £ is an outside angle of 7 with the same corner as
D, then D and & are supplementary angles (cf Definition NEUT.41(B)).

Theorem NEUT.80 (Outside angles). Let P be a neutral plane and let T be a
triangle on P. Any angle £ of T is smaller than an outside angle whose corner is

not the corner of €.

Fig. 8.4 For Theorem
NEUT.S80.

Proof. For a visualization, see Figure 8.4. Let F be an outside angle of 7 whose
corner is not the corner of £. By Remark NEUT.79.1 it will suffice to show that
either F or its vertical angle is greater than £. We choose notation so that 7 =
AABC, £ = ZABC, and F has A as its corner.

In the following we will use Definition IB.4 and associated facts without further
reference. By Theorem NEUT.50 let M be the midpoint of 1[471%; by Property B.3 of
Definition IB.1 let D’ be a point on CM such that C-M-D' , and let Q be a point such
that C—A—Q, so that Q € CA.

By Theorem NEUT.67 (segment construction) there exists a point D € W such
that MD MC Again by Property B.3 let R be a p01nt such that M—D-R. Then D,
M, and R are members of CM ]} and D € MD’ ?ﬁ
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By Theorem PSH.45 R € ins ZQAB; by Definition PSH.36 R € CAB = QAB
and by Theorem PSH.38 ]C_I)? - ]@)3 Also, R € m so by the same theorem
Z\We - fle_Q> Since A]ﬁ? C ]C_ﬁ then A]ﬁ? C 1@ and hence by Definition PSH.36
}We C ins ZBAQ. Therefore D € ins ZBAQ.

By Definition NEUT.3(C) MB 2 MA. By Theorem NEUT.42 (vertical angles),
/CMB =~ /DMA. By Theorem NEUT.64 (EAE) ABMC =~ AAMD, so that
corresponding angles are congruent; since C corresponds to D and A to B,
/ABC = /ZMBC =~ /MAD. Since D € ins ZBAQ, ZABC < /MAQ (ct
Definition NEUT.70). O

8.13 Acute and obtuse angles

Definition NEUT.81. On a neutral plane an angle is acute iff it is smaller than a

right angle, an angle is obtuse iff it is larger than a right angle.

By Theorem NEUT.75 (trichotomy for angles) an angle is one and only one of
the following: (1) right, (2) acute, (3) obtuse.

Theorem NEUT.82. Let P be a neutral plane.

(A) If an angle on P is acute, then its supplement is obtuse.

(B) Ifan angle on P is obtuse, then its supplement is acute.

Proof. Let A, B, and C be noncollinear points on the neutral plane P and let B’ be
a point such that B—A-B’. By Corollary NEUT.46.1 there exists a point R on the
C-side of l(ﬁ)’ such that ZBAR is right. By Definition NEUT.41(C) ZBAR =~ /B'AR
and /B'AR is right.

(A) If ZBAC is acute, then by Definition NEUT.81 ZBAC < ZBAR, and by
Theorem NEUT.78 C € ins ZBAR. By Exercise PSH.51 R € ins ZB'AC. By
Definition NEUT.70 ZB’AR < ZB’AC. By Definition NEUT.81, since ZB’AR
is right, ZB’AC is obtuse.

(B) If ZBAC is obtuse, then by Definition NEUT.81 ZBAC > ZBAR, and by
Theorem NEUT.78 R € ins ZBAC. By Exercise PSH.51 C € ins ZB’AR. By
Definition NEUT.70 ZB'AC < ZB'AR. By Definition NEUT.81, since ZB’AR
is right, ZB'AC is acute. O
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Theorem NEUT.83. Let P be a neutral plane.

(A) Every angle on P congruent to an acute angle is acute.
(B) Every angle on P congruent to an obtuse angle is obtuse.
(C) Every angle on P smaller than an acute angle is acute.

(D) Every acute angle on P is smaller than every obtuse angle on P.

Proof. To prove (A), let D be an acute angle on P, £ an angle on P congruent to
D and let G be a right angle on P. By Definition NEUT.81 D < G. Since D < G
and D =~ &, by Theorem NEUT.76 (transitivity for angles) £ < G. By Definition
NEUT.81, & is acute.

The proof of assertions (B), (C), and (D) is Exercise NEUT.81. O

Theorem NEUT.84. Let T be a triangle on the neutral plane P. If an angle of T

is right or is obtuse, then the other angles of T are acute.

Proof. Let £ be an angle of T. If £ is right, then by Definition NEUT.41(C) and
Remark NEUT.79.1, an outside angle of 7 with the same corner as £ is also right.
By Theorem NEUT.80 (outside angles) the other angles are smaller than a right
angle and are therefore acute by Definition NEUT.81. If £ is obtuse, then the outside
angle with the same corner is acute (cf Theorem NEUT.82). By Theorem NEUT.80

(outside angles) each of the other angles of T is acute. O

Definition NEUT.85. Let 7 be a triangle on the neutral plane P.

(A) Triangle 7 is right iff an angle of 7 is right.

(B) Triangle 7 is obtuse iff an angle of T is obtuse.

(C) Triangle T is acute iff each angle of T is acute.

(D) An edge of T is maximal iff each of the other edges is smaller than or
congruent to it.

(E) An angle of 7 is maximal iff each of the other two angles is congruent to or

smaller than it.

Theorem NEUT.86. Ler A, B, and C be noncollinear points on the neutral plane
P. If LZACB is a maximal angle of AABC, then each of ZABC or ZCAB is acute.

Proof. If ZABC or LCAB were right or obtuse, then ZACB would be acute by
Theorem NEUT.84 and thus by Definition NEUT.81 and Theorem NEUT.83 would
not be a maximal angle of AABC. O
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Theorem NEUT.87 (Alternate interior angles). Let P be a neutral plane, P and
Q be distinct points on P, and T and R be distinct points on P which are on opposite
sides of I(J_Q) such that ZRQP =~ LTPQ. Then P(_Y)" I Q(_)R

Fig. 8.5 Alternate interior R
angles.

T

Proof. For a visualization, see Figure 8.5. If F<’_7)‘ and <Q_I)i’ were to intersect at a
point U which is on the R-side of I<’_Q> then by Theorem NEUT.80 (outside angles)
ZRQP would be smaller than ZTPQ contrary to the fact that these two angles are
congruent. If PT and <Q_)R were to intersect at a point U which is on the T-side of I<’_Q>
then by Theorem NEUT.80 (outside angles) ZTPQ would be smaller than ZRQP,
contrary to the fact that ZRQP =~ ZTPQ. Hence P I Q<_)R |

Remark NEUT.88. Theorem NEUT.87 is a generalization of Theorem NEUT.47(A).
We next use Theorem NEUT.87 to give a second proof for Theorem NEUT.48(B)
(Property PE), which is Theorem NEUT.89. See also Remark NEUT.49.

Theorem NEUT.89. Let P be a neutral plane, L be a line on P, and let Q be a
member of P\ L. Then there exists a line M such that Q € M and M | L.

Proof. Let P and T be distinct points on £ and let H be the side of 1<3_)Q opposite 7.
By Theorem NEUT.68 (angle construction) there exists a point R belonging to H
such that ZPQOR =~ ZQPT.Let M = Q<_I)? By Theorem NEUT.87 M || L. |

Theorem NEUT.90. Let A, B, and C be noncollinear points on the neutral plane
P such that BC < AC; then ZCAB < ZCBA.

Proof. Using Theorem NEUT.67 (segment construction), let B’ be the point on
j@ such that ETC]’ ~ 1[4763’, so that %ﬁcﬂ’ < 1[476]’ o~ % and by Theorem NEUT.73
(transitivity for segments), BHC]' < ;3’763' ; by Definition NEUT.70(A) C-B-B/, so that
by Theorem PSH.37 B € ins ZCAB', and by Definition NEUT.70(B), ZCAB <
ZCAB'.

By Theorem NEUT.40(A) (Pons Asinorum) /CAB' =~ /CB'A. By Defini-

tion NEUT.79 ZABC is an outside angle at corner B for AABB'. By Theo-
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rem NEUT.80 (outside angles) ZCB'A = /BB'A < /ABC. Then ZCAB <
/CAB =~ /CB'A < /ABC so that by Theorem NEUT.76 (transitivity for angles)
/CAB < ZABC. a

Theorem NEUT.91. If A, B, and C are noncolllnear points on a neutral plane P
such that ZCAB < ZCBA, then BC < AC

Proof. By Theorem NEUT.72 (trlchotomy for segments) one and only one of the
followmg statements holds: (1) BC AC 2) BC < AC 3) BC > AC If BC
and AC were congruent, then by Theorem NEUT.40A (Pons Asinorum), ZCAB and
/CBA would be congruent contrary to the fact that ZCAB is smaller than ZCBA (cf
Theorem NEUT.75 (trichotomy for angles)). If BHC' were larger than ETC]’ then 1[476]'
would be smaller than BmC and by Theorem NEUT.90 ZCBA would be smaller than
ZCAB contrary to the fact that ZCAB is smaller than ZCBA. Hence 1[9761' < EA?' . O

Theorem NEUT.92. Let P be a neutral plane and let A, B, and C be noncollinear
points on P. Then ETB; is a maximal edge of AABC iff ZACB is a maximal angle of
AABC.

Proof. (I: If AB is a maximal edge of AABC, then ZACB is a Inaxunal angle of
AABC.) If AB > BC by Theorem NEUT.90 ZACB > /BAC; if AB ~ BC‘ by
Theorem NEUT.40(A) (Pons Asinorum) ZACB = /ZBAC. Therefore if AB >
BC, then ZACB > /BAC. A similar argument shows that if ATB > % then
ZACB > ZABC. Therefore by Definition NEUT.85 if ;ﬁg is maximal, ZACB is
maximal.

(II: If ZACB is a maximal angle of AABC, then ;ﬁ% is a maximal edge of AABC.) If
ELTB is a not a maximal edge of AABC, thenIETB < 1[47(?‘ orIEATSJ' < ;?Cl IfIETB < IE\C,
then by Theorem NEUT.90 ZACB < ZABC so that ZACB is not a maximal
angle of AABC. Similarly, if AB < BC, ZACB < /BAC so that ZACB is not
maximal. By the contrapositive, if ZACB is a maximal angle, Eﬁ% is a maximal

edge. O

Theorem NEUT.93. Let P be a neutral plane and let A, B, and C be noncollinear
points on P. If ZACB is right or is obtuse, then AB > AC and AB > BC.

Proof. Exercise NEUT.17. O
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Definition NEUT.94. Let P be a neutral plane and let 7 be a right triangle on P.
The hypotenuse of 7 is the maximal edge of 7. The other two edges of T are its
legs.

Theorem NEUT.95. Let A, B, and C be noncollinear points on a neutral plane P
such that AC < AB. If P is a member of BC, then AP < AB.

Proof. By Theorem NEUT.90 ZABP = ZABC < ZACB. By Theorem NEUT.80
(outside angles) ZAPB > ZACB = ZACP. Then ZAPB > ZACB > ZABP and by
Theorem NEUT.76 (transitivity for angles) ZABP < ZAPB. By Theorem NEUT.91,
AP < AB. o

Theorem NEUT.96 (Hypotenuse-leg). Let A, B, C, D, E, and F be points on
a neutral plane P such that A, B, and C are noncollinear, D, E, and F are
noncollinear, ZACB is right, ZDFE is right, ;ﬁg x~ %TE] and;TC]‘ ~ %TE Then there
exists an isometry o of P such that «(A) = D, «(B) = E, and a(C) = F so that
a(AABC) = ADEF, i.e. AABC =~ ADEF.

Proof. By Theorem NEUT.58 there exists an isometry o of PP such that a(ﬁTCj) =
DF, a(A) = D, a(C) = F, and «(B) € DFE. By Theorem NEUT.15(8)
a(LACB) = Loc(A)a(C)a(B) = /DFa(B). By Definition NEUT.3(B) ZACB =~
ZDFo(B) and AB =~ Da(B) By Theorem NEUT.69 ZACB =~ /DFE. By
Theorem NEUT.14 (congruence is an equivalence relation) ZDFua(B) =~ ZDFE.
By Theorem NEUT 36 ﬁ m so that a(B) € jFE By Theorem NEUT.15(3)
a(AB) = oz(A)oc (B) Da(B) so that by Definition NEUT.3, AB DT(&

By Definition IB.4 there exist three and only three possibilities: F—«(B)-E,
F-E-a(B),or «(B) =

(A) Suppose F —a (B)—E By Exer01se NEUT 17 DF < DE By Theorem NEUT.95
DT(BU < DE AB SO Dot(B) < AB by Theorem NEUT.73. This contradicts
AB Da(B) Thus F-a(B)-E is false.

(B) If F —E—a(B), then By Exercise NEUT.17 DF < Da (B) By Theorem N EUT 95
DE < IW ~ AB This contradicts our hypothesis that DE o~ AB Thus
F-E—a(B) is false.

Since F-o(B)-E and F-E-«(B) are both false, «(B) = E. It follows that
£33 E——— 3 [3J R | .
a(BC) = (a(B))(x(C)) = EF and «(AB) = DE so by Definition IB.7 ¢ (AABC) =
ADEF, and AABC =~ ADEF. a
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Theorem NEUT.97 (EAA). Let A, B, C, D, E, and F be points on the neutral
plane P such that A, B, and C are noncollinear, D, E, and F are noncollinear,
EAT% x>~ [Dil% /ABC = /DEF, and ZACB =~ /DFE. Then there exists an isometry o
of P such that «(A) = D, «(B) = E, and a(C) = F so that AABC =~ ADEF.

Proof. By Theorem NEUT 67 (segment constructlon) there exists a point F/ on JJE?
such that EF’ ~ BC Then AB DE BC ~ EF’ and ZABC =~ /DEF’, so
by Theorem NEUT.64 (EAE), there exists an isometry « such that «(AABC) =
ADEF', a(A) = D, «(B) = E and «(C) = F'. Then AABC =~ ADEF’', hence
/ACB =~ /DF'E. By hypothesis ZACB =~ /DFE, so by Theorem NEUT.14
/DFE =~ /DF'E.

By Definition IB.4 and Property B.2 of Definition IB.1, one and only one of the
following possibilities holds: (1) E-F'—-F, (2) E-F-F',or 3) F' = F

If E-F'—F, then ZDF’'E would be an outside angle of ADF'F with corner F’.
By Theorem NEUT.80 (outside angles) /DFE < /DF'E, contradicting /DFE =
/DF'E.

If E-F-F', then Z/DFE would be an outside angle of ADFF’ with corner F.
By Theorem NEUT.80 (outside angles) ZDFE > /DF'E, contradicting /DFE =~
/DF'E.

Hence neither E-F'—F nor E-F-F’,sothat F = F’, i.e. «(C) = F and AABC =
ADEF. O

Theorem NEUT.98 (Hinge). Let P be a neutral plane, A, B, C, D, E, and F be
points on P such that A, B, and C are noncollinear, D, E, and F are noncollinear,
AB =~ DE, and AC = DF. Then EF < BC iff ZEDF < /BAC.

Proof. In this proof we will freely use Theorem NEUT.14 (congruence is an
equivalence relation), Theorem NEUT.73 (transitivity for segments), and Theo-
rem NEUT.76 (transitivity for angles) without further reference. For visualizations

see Figures 8.6 and 8.7.

(I. It ZEDF < /BAC, then EF < BC.) Using Theorem NEUT.68 (angle
construction), let V be a member of DFE such that ZFDV =~ /CAB. Using
Theorem NEUT.67 (segment construction), let G be the point on ]lﬁ)/ such that
[DiGj = AB. Let U be a point on DV such that D-G-U; then LFDU =~ /FDV =~
ZCAB. Since 1[47% =~ %TE] it follows that EDiG] = EDil% and by Theorem NEUT.40
(Pons Asinorum) /DGE =~ /DEG. We will use this fact in both Case A and
Case C below.
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Since ZBAC =~ /GDF, AC =~ DF, and AB =~ DG, by Theorem NEUT.64
(EAE) there exists an isomorphism « of P such that «(AABC) = ADGF,
a(A) = D, a(B) = G, and a(C) = F, and corresponding angles and edges
are congruent.

By hypothesis, ZEDF < /BAC =~ /ZGDF, so ZEDF < ZGDF. By
Theorem NEUT.78 E € ins ZGDF'. By Theorem PSH.39 (Crossbar) EJD—E) and ]F_(LE
intersect at a point H. By Theorem PSH.37 I]'“—C[; Cins ZGEF, so H € ins ZGEF.
By Definition IB.4 there are three possibilities: (A) D-H-E, (B) H = E, (C)
D-E-H.

Fig. 8.6 For Theorem U
NEUT.98 (I) Case A. B G,

A c

(Case A: D-H-E.) By Theorem PSH.37 H € ]D_[E C ins ZDGE, and by
Definition NEUT.70 DH < DE and ZHGE = /FGE < /DGE.

Again by Theorem PSH.37 H € ]G_F: C ins ZFEG, so by Exercise PSH.17,
?E?ﬁ C ins ZFEG, so D € ins ZFEG and by Definition NEUT.70 ZDEG <
ZFEG.

Putting this together, we have ZFGE < /DGE =~ /DEG < ZFEG so that
/FGE < /FEG. Then by Theorem NEUT.91 FE < FG = BC.

-7 i —
— =

(Case B: H = E.) Then G-E—F and by Definition NEUT.70 EF < GF = BC.

A ! C

Fig. 8.7 For Theorem NEUT.98 (I) Case C.

(Case C: D-E-H.) By Theorem PSH.37 H € ]G—}F“ C ins ZGEF, so by
Definition NEUT.70 ZGEH < ZGEF.
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Since D—-E-H and D-G-U, H € j}G—E_U) Also, by Theorem PSH.38(A)
H € ]D—I):" - ]G_U—E) and hence H € insZEGU = JG—E—I)JDJG_U—E) and by
Definition NEUT.70 ZEGF = ZEGH < ZEGU.

Also, by Theorem NEUT.43 (congruence of supplements of congruent
angles), since ZDGE =~ /DEG it follows that ZEGU =~ /GEH.

Putting this together we have ZEGF < ZEGU = ZGEH < ZGEF so that
by Theorem NEUT.91 EF < GF = BC.

(I: If EF' < BC, then ZEDF < /BAC.) By Theorem NEUT.75 (trichotomy for
angles), one and only one of the following statements holds: (1) ZEDF =~ ZBAC,
(2) LEDF > /BAC, or (3) ZEDF < /BAC. If ZEDF and ZBAC were
congruent, then by Theorem NEUT.64 (EAE) [ET% and BH(/l would be congruent
contrary to the fact that EF < ETCJ‘ (cf Theorem NEUT.72 (trichotomy for
segments)). If ZEDF were larger than ZBAC, then by part (I) BEC would be
smaller than ﬁ contrary to the fact that ﬁ < % Hence ZEDF < /BAC. O

Definition NEUT.99. Let P be a neutral plane, A be a point on P, and M be a line
on P. Then

(A) pr(A, M) denotes the line £ such that A € £ and £ 1 M, and

(B) ftpr(A, M) denotes the point of intersection of pr(A, M) and M. This point is
called the foot of the line L.

(C) If A, B, and C are noncollinear points, the altitude of AABC from corner A
is ;TD] where D = ftpr(A,B(_C)‘). Its base (belonging to that altitude) is the
edge ?&

Theorem NEUT.100. If P is a neutral plane and T is any triangle on P, then the

bisecting rays of the angles of T intersect at a point inside the triangle.

Proof. Let T = AABC. Let S and T be points such that S # A, ;\rr)S' is the bisecting
ray of ZBAC, T # B, and BT is the bisecting ray of ZABC. Then AE.)S’ C ins ZCAB
and )r!?r?)" C ins ZABC.

By Theorem PSH.39 (Crossbar) AS and BC intersect at a point D. By the
same theorem BT mtersects AD at a point O. By Theorem PSH.38 and Theo-
rem PSH.46(C) {0} = BT NAS C ins ZABC Nins ZCAB = ins AABC.

Let P = ftpr(O,B<_C)‘), 0= ftpr(0,1<4_6)’), and R = ftpr(0O, /ﬁ). Then EOTE% ~ OB
by Remark NEUT.7(A); by Theorem NEUT.69 ZORB =~ ZOPB; since BT is the
bisecting ray of ZABC, by Theorem NEUT.39 ZOBR =~ ZOBP. Thus AORB and
AOPB are right triangles which share a hypotenuse, and have a congruent angle.
By Theorem NEUT.97(EAA), AORB 2 AOPB and hence OR = OP.

r‘l
LJ
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By similar reasoning, [07% =~ [06 SO [06 = [07; by Theorem NEUT.14.

By Theorem NEUT 69 LOQC =~ LOPC since they are both right angles. ETC]‘ ~
OC and OQ OP so by Theorem NEUT.96 (hypotenuse leg) AOQC = AOPC.
Thus Z0CQ = ZOCD so by Theorem NEUT.39 CO is the bisecting ray for ZACB.
Therefore all the bisecting rays intersect at the point O. O

In conclusion, we should mention that in the presence of Axiom PW it is possible
to prove, independently of Property R.6 of Definition NEUT.2, that every segment
AB has a midpoint. This proof is part of the online Supplement which may be
accessed from the home page for this book at www.springer.com.

We would be most grateful if a reader with more perspicacity than we should
come up with such a proof without invoking parallelism, thus making it possible to
dispense with Property R.6 of Definition NEUT.2. Alternatively, creation of a model
(in which parallelism does not hold) showing that Property R.6 is independent of the
other properties would confirm that Property R.6 is essential. This is discussed more

in Chapter 21, Section 21.7.3 (Independence of reflection properties) Remark RSI.4.

8.14 Exercises for neutral geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise NEUT.0*. There can be more than one mirror mapping over a line in the
(real) coordinate plane R?. More specifically, if for each pair (i, u,) of real numbers
on the plane, we define @ (u;, uy) = (uy, —uz) and ¥ (uy, uy) = (1 — uy, —u), both

@ and ¥ are mirror mappings over the x-axis.

Exercise NEUT.1*. Let P be a neutral plane and let £ and M be parallel lines

on P, then R (M) is a line which is contained in the side of £ opposite the side
containing M and M || Rz (M).

Exercise NEUT.2*. Let M be any line on the neutral plane P. If X is any point on
P such that R o((X) = X, then X € M.

Exercise NEUT.3*. Let P be a neutral plane and let £ and M be lines on P.
If R = R, then L = M. This may be restated in its contrapositive form as
follows: If £ # M, then Rz # R m.


www.springer.com
www.springer.com
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Exercise NEUT.4*. LetA, B, and C be noncollinear points on the neutral plane P,
then neither 1<4—B) nor ;E)f is a line of symmetry of ZBAC.

Exercise NEUT.5*. Let S be a nonempty subset of 7 which has a line M of
symmetry, H, and H, be the sides of M, S| = SN H; and S, = S N H,, then
Rm(S) = Si.

Exercise NEUT.6*. (A) Let o be an isometry of the neutral plane P and let £ be
a line on P such that every point on L is a fixed point of & and no point off of
L is a fixed point of o, then @ = R .

(B) Let « be an isometry of the neutral plane P which is also an axial affinity with
axis L. Thena = R .

Exercise NEUT.7*. Let £ and M be distinct lines on the neutral plane P, then
R o R # 1 (the identity mapping of P onto itself).

Exercise NEUT.8*. If £ and M are distinct lines on the neutral plane P, then there
exists a unique line 7 such that R, o Ry o Rz = R 7. Moreover, 7 = R (M).

Exercise NEUT.9*. Let O, A, and B be noncollinear points on the neutral plane
P and let £ be a line such that RL(rOrA)) = % By Remark NEUT.6(B), £
is a line of symmetry of ZAOB, R, is an angle reflection for ZAOB, and by
Theorem NEUT.20, R-(0) = O. Construct a proof that R.(0) = O, using
Theorem NEUT.15, but not Theorem NEUT.20 or Theorem PSH.33 (uniqueness

of corners).

Exercise NEUT.10*. Let A, B, and C be noncollinear points on the neutral plane
‘P, B’ and C’ be points such that B-A—B’, C-A—C’, and M be a line of symmetry of
ZBAC, then M is a line of symmetry of ZB’AC’.

Exercise NEUT 11*. Let O, P, and Q be noncollinear points on the neutral plane
‘P such that OP is a line of symmetry of OQ and let Q' be a pomt such that Q'-0-Q.
If welet L = OP then RL(OQ) OQ and R.-(Q) € OQ’

Exercise NEUT.12*. Let P be a neutral plane and let O, A, A’, B, and B’ be points
such that: (1) A—O-A’, (2) B and B’ are on opposite sides of ﬁ (so that {A, O, B}
and {A’, O, B'} are noncollinear), and (3) ZAOB =~ /A’OB’. Then B-O-B'.
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Exercise NEUT.13*. Let A, B, C, D, A’, B/, C’, and D’ be points on the neutral

plane P such that A, B, and C are noncollinear, A’, B’, and C’ are noncollinear,
> N

D € ins ZBAC, D' € B'A'C’, ZBAC /ZB'A'C', and ZBAD =~ /B'A’D’; then

—

A'D' Cins ZB'A'C'.

12

Exercise NEUT.14*. Let A, B, C, D, A’, B/, C’, and D’ be points on the neutral
plane P such that A, B, and C are noncollinear, A’, B’, and C’ are noncollinear,
B € ins ZCAD (so that by Corollary PSH.39.2 C and D are on opposite sides of 1<4_B)),
B € m, /CAB ~ /C'A’'B’, and ZCAD =~ /C'A’D’, then B’ € ins ZC'A’D’

<>
(so that C’ and D’ are on opposite sides of A’B’.

Exercise NEUT.15%. Let A and B be distinct points on the neutral plane P, M be
the midpoint of AB, C and D be points on the same side of fA_B) such that fA_C)‘ 1 ;ﬁi)

<> <> . ) £3 <~ <>
and BD 1 AB and M be the perpendicular bisector of AB, then R p((AC) = BD
and R (ﬁ))) = 1<4_C)’

Exercise NEUT.16*. Let O, P, Q, and R be points on the neutral plane P such that
ZPOQ is right, ZROQ is right, and P and R are on opposite sides of (()_Q>, then P, O,

and R are collinear.

Exercise NEUT.17*. Prove Theorem NEUT.93: let A, B, and C be noncollinear
points on the neutral plane P. If ZACB is right or is obtuse, then AC < AB and
BC < AB.

Exercise NEUT.18*. Let O, P, and S be noncollinear points on the neutral plane P
such that ZPOS is acute, U be a member of J()_ﬁ, and V = ftpr(U, (0_.)5'), thenV € ]0_3’

Exercise NEUT.19*. Let A, B, and C be noncollinear points on the neutral plane
P; by Definition NEUT.2 (Property R.5) there exists an angle reflection R o4 for
ZBAC, and by Theorem NEUT.20(E) a point P € M such that AP C ins ZBAC. By
Definition NEUT.3(D) APisa bisecting ray for ZBAC. Show that ZBAP is acute.

Exercise NEUT.20*. Let A, B, and C be noncollinear points on the neutral plane
P.1If ZBAC and ZABC are both acute, and if D = ftpr(C, 1<4_B>), then D € 24_15%

Exercise NEUT.21*. Let A, B, and C be noncollinear points on the neutral plane
P, ifﬁ is the maximal edge of AABC and if D = ftpr(C, A(_)B) then D € AB.
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Exercise NEUT.22*. Let £ be a line on the neutral plane P and let P be a point
such that P ¢ L.

(D Let Q = ftpr(P, £); if X is any point on £ distinct from Q, then %TQ] < %’72
(I) If Q is a point on £ with the property that for every point X on £ which is
distinct from Q, PQ < PX, then Q = ftpr(P, L).

Exercise NEUT.23*. Let P be a neutral plane, A, B, and C be noncollinear points
on P, P be a member of ins ZBAC, Q = ftpr(P, zﬁ), and R = ftpr(P, 1(4_6‘).

€))] Ifﬁ is the bisecting ray of ZBAC, then %TQJ ~ ﬁ%
2) IfQ e 24_1)9, R e EA_C)’, and PQ = PR, then AP is the bisecting ray of ZBAC.

Exercise NEUT.24*. Let P be a neutral plane and let A, B, C, and D be points on
P such that ABU BC U CD U DA is a quadrilateral, and suppose that AB L AD and
Zl_é L B(_C)‘ Then

(1) ODABCD is rotund,
(2) BC ~ ADiff ZADC =~ /BCD:; and
(3) BC < AD iff /ADC < /BCD.

Exercise NEUT.25*. Let A, B, C, A/, B, and C’ be points on the neutral plane P
such that A, B, and C are noncolhnear A’ B’ and C’ are noncollinear, both AACB
and /A’C'B’ are right, BC ~ B’C’ and AC < A C’ then ZABC < /A'B'C, AB <

5
e

A’ " and Z/B'A'C’' < Z/BAC.

Exercise NEUT.26*. Let A, B, C, A’, B/, and C’ be points on the neutral plane P
such that A, B, and C are noncollinear, A’, B’, and C’ are noncollinear, ZACB and
/A’C'B’ are both right, %Té < IEB’HC’ and% > ﬁ, then ZABC > ZA’B’'C’ and
/BAC < /ZB'A'C'.

Exercise NEUT.27*. Let A, B, C, A’, B, and C’ be points on the neutral plane P

such that A, B, and C are noncollinear, A’, B’, and C’ are noncollinear, both ZACB
3 =3 i | i =3

and ZA'C'B are right, BC < B'C’,and AC < A’C’, then AB < A'B’.

Exercise NEUT.28*. Let A, B, C, A’, B/, and C’ be points on the neutral plane P

such that A, B, and C are noncolhnear A’ B’ and C’ are noncolhnear both /ACB

and ZA'C'B’ are right, BC < B'C and AB =~ A'B, then A'C’ < AC, /BAC <
/B'A'C" and ZABC > ZA'B'C'.
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Exercise NEUT.29*. Let A, B, C, A, B/, and C/ be pomts on the neutral plane P
such that both LACB and ZA'C'B’ are right, AB =~ A'B and ZABC < ZABC,
then A'C’ < AC, BC < B'C’ and ZBAC < ZBA'C’.

Exercise NEUT.30*. Let A, B, C, A’, B’, and C’ be points on the neutral plane P
such that A, B, and C are noncollinear, A, B, and C’ are noncollmear both /ACB
and AA’C’B’ are right, BC =~ B’C’ and ZABC < /A'B'C/, then AC < ITC’
AB < A B/, and /B'A'C’' < /BAC.

Exercise NEUT.31*. Let P, O, and T be noncollinear points on the neutral plane
P, let S be a member of ins ZPOT such that ZPOS < ZTOS, and let M be a member
of ins ZPOT such that OM is the bisecting ray of ZPOT, then M € ins LTOS.

Exercise NEUT.32*. Let P, O, and T be noncollinear points on the neutral plane
P, S and V be members of ins ZPOT such that ZPOS < ZTOS and ZPOV =~
/ZTOS, and M be a member of ins ZPOT such that [0—1\)/1 is the bisecting ray of
ZPOT. Then

(1) S €ins ZPOV and V € ins ZTOS,
2) rOrll)/l is the bisecting ray of ZSOV,
(3) LTOV =~ ZPOS, and

4) M €ins ZTOS N ins ZPOV.

Exercise NEUT.33*. Let P be a neutral plane and let Ay, By, M|, Az, Bz, and M,
be points on P such thatA1 ;é B, and Az 7é Bz, M, 1s the mldpomt ofA1B1 and M,
is the midpoint ofAsz, then A131 o~ A232 1ffA1M1 A2M2

Exercise NEUT.34*. Let P be a neutral plane, O and P be distinct points on P, let
the points on 0(_13 be ordered so that O < P, and let A and B be distinct points on 30_13
Let M be the midpoint of OA and N be the midpoint of OB, then A < B iff M < N.

Exercise NEUT.35*. Let P be a neutral plane, O and P be distinct points on P, A
and B be distinct members of 07’, M be the midpoint of LOTLT, and N be the midpoint
of OB, then O-A—B iff O—M-N.

Exercise NEUT.36*. Let P be a neutral plane and let A, By, M|, Az, Bz, and M,
be points on P such thatA1 75 Bl, Az ;é B, M1 be the mldpomt 0fA131 and M, be
the m1dp01nt OfAsz, then A]B] < Asz lffA]M] < A2M2




218 8 Neutral Geometry (NEUT)

Exercise NEUT.37*. LetA;, Bl, A2, and 32 be points on the neutral plane P such
that A; # By, A2 75 B, and A181 -~ A232 and let C; and C, be points such that
A1-C1-B;, C, € A232 and A1C1 = A2C2, then A,—C»,—B;.

Exercise NEUT.38*. Let A;, By, Az, B, C 1, and Cy be pomts on the neutral plane
P such that A; # By, Ay # By, Cy € A]B], and C, € A2B2

LJ

(A) IfA1C1 = A2C2 and ClBl = Csz, thenA1131 = A2 2.
B) IfAlCl = A2C2 andAlBl = Asz, then ClBl = C2B2

L8]

Exercise NEUT.39*. Let P be a neutral plane and let A, B, C, D, A’, B', C’, and
D' be points on P such that: (1) A, B, and C are noncolhnear (2)A’, B, and C' are
noncollinear, (3) AD is the bisecting ray of ZBAC, (4) A D’ is the bisecting ray of
/B'A’C'. Then /BAC =~ /B'A'C" iff /ZBAD ~ /B'A'D'.

Exercise NEUT.40*. Let P be a neutral plane and let A, B, C, D, A’, B', C’, and
D' be points on P such that: (1) A, B, and C are noncollinear, (2) A’, B, and C’ are
noncollinear, (3) D € ins ZBAC and D’ € ins ZB'A'C’.

(A) If LBAD =~ /B'A'D' and LCAD =~ ZC'A'D', then /BAC =~ /B'A'C'.
(B) If ZBAD =~ /B'A’D’ and /BAC =~ /B'A’C’, then ZCAD =~ LC'A'D'.

Exercise NEUT.41*. Let P be a neutral plane and let Ay, By, Cy, Dy, A;, By, C3,
and D, be points on P such that: (1) Ay, By, and C; are noncollinear, (2) D; €
ins ZB1ACy, (3) A,, By, and C, are noncollinear, (4) D, € ins ZB,A,C>, and (5)
/B1A1D| = ZB,A;D;. Then ZB1A|C| < £ByA,C, iff ZD1A|Cy < £D,A,C>.

Exercise NEUT.42*. Let P be a neutral plane and let Ay, By, Cy, Dy, A;, By, C3,
and D, be points on P such that: (1) A;, By, and C; are noncollinear, (2) D; €
ins ZB1ACy, (3) Ay, B,, and C, are noncollinear, and (4) D, € ins ZB,A,C,. Then
/B1A1Cy < £ByA,C, if /B1A1Dy < ZB>A>D; and /DA Cy < £ZD,A,C,.

Exercise NEUT.43*. Let P be a neutral plane and let Ay, By, Cy, Dy, A;, By, C3,
and D, be points on P such that: (1) Ay, B;, and C, are noncollinear, (2) ;TET is the
bisecting ray of ZB1A;C}, (3) A,, B,, and C, are noncollinear, and (4) m is the
bisecting ray of ZB,A,C,. Then £ZB1A|Cy < £ByA;C, iff /B1A| D) < £BA;D;.

Exercise NEUT.44*. Let P be a neutral plane and let A, B, C, P, and Q be points
on P such that: (1) A, B, and C are noncollinear, (2) P € ins ZBAC, and (3) Q €
ins ZBAP. Then ZQAP < /BAC.
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The reader will note that the next exercise is identical to Exercise NEUT.42, and
at one point we thought to eliminate it. We decided to leave it in, since the method
of proof is different from that for Exercise NEUT.42.

Exercise NEUT.45*. Use Exercise NEUT.44 to prove the following: Let P be a
neutral plane and let A, B, C, D, A’, B, C’, and D’ be points on P such that: (1) A,
B, and C are noncollinear, (2) A’, B, and C’ are noncollinear, (3) D € ins ZBAC
and (4) D' € ins/B'A'C'. If /BAD < /B'A’D’ and ZCAD < /C'A'D/, then
/BAC < /B'A'C".

Exercise NEUT.46*. Let A and B be distinct points on the neutral plane P, £ be
the perpendicular bisector of IETB]» and o be an isometry of P such that a(IETB;) = IETB].
then one and only one of the following statements is true: (A) « is the identity

mapping 1 of P onto itself, (B) « = Rﬁ, QO a=Re,or(D)a=R,o Rﬁ.

Exercise NEUT.47*. Let A, B, and C be distinct points on the neutral plane P and
let o be an isometry of P such that A is a fixed point of o and B is not a fixed point
of «. Then A is the midpoint of BC iff B-A—C and «(B) = C.

Exercise NEUT.48*. Let P be a neutral plane, let £ and M be distinct lines on
‘P through the point O, and let £; and M, be lines on P such that £; 1 £ and
M L M, then £; and M, are distinct.

Exercise NEUT.49*. Let P, O, and T be noncollinear points on the neutral plane P
and let S and V be members of ins ZPOT such that ZPOS < ZTOS and ZPOV =
ZTOS. Furthermore, let X be any member of ins ZTOV and let W be a point such
that ZPOW < ZPOX and ZXOW = ZPOS, then W € ins ZPOV.

Exercise NEUT.50*. Let P be a neutral plane, £ and M be lines on P such that
L 1 M, and € be a side of L. Then M is a line of symmetry of £.

Exercise NEUT.51*. Let P be a neutral plane and let A, B, and C be noncollinear
points on P such that ZACB is a maximal angle of AABC.

(A) If D is any member of ]BTC[' , then ETDJ < 1[47%
(B) If LACB is acute, then there exists a point D € BC such that AC > AD.

]
=

(C) If LACB is right or obtuse, then for every D € ]BTC[' , ETC]' < E&D.

Exercise NEUT.52*. Let P be a neutral plane, A, B, and C be points on P such
that B-A—C, and D be a member of P \ 1(4_3) such that ZBAD < ZCAD, then ZBAD
is acute and ZCAD is obtuse.
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Exercise NEUT.53*. Let P be a neutral plane, A, B, and C be noncollinear points
on P such that 1[478" < EAiB and D be the point of intersection of the bisecting ray of
/BAC and Bﬁé (so ZBAD =~ ZCAD), then ZADC is acute, ZADB is obtuse, and
DC < DB.

Exercise NEUT.54*. Let P be a neutral plane and let A, B, and M be distinct
collinear points on P such that AM = BM , then M is the midpoint of AB.

Exercise NEUT.55*. Let P be a neutral plane, A and B be distinct points on P, M
be the midpoint of A7% and C be a member of A_B Then C € AT/I iff 5\78' < BC.

Exercise NEUT.56*. Let P be a neutral plane, A, B, and C be noncollinear points
on P, P be a member of ins ZBAC such that f% is the bisecting ray of ZBAC, and
let Q also be a member of ins ZBAC. Then Q € ins ZBAP iff ZBAQ < ZCAQ.

Exercise NEUT.57*. Let P be a neutral plane, A, B, and C be noncollinear points
on P such that AC < AB, and D be the midpoint of BC.

(A) ZADC is acute and ZADB is obtuse.
(B) If E is the point of intersection of the bisecting ray of ZBAC and segment B_C[‘ ,
then C—E-D-B and ZBAD < ZCAD.

Exercise NEUT.58*. Let P be aneutral plane and let A, B, C, D, E, and F be points
on P such that: (1) A, B, and C are noncollinear, (2) D E and F are noncol]inear
(3) LBAC /EDF and ZCBA =~ /FED, and (4) AB < DE Then AC < DF and
BC < EF

Exercise NEUT.59*. Let P be a neutral plane, A, B, and C be noncollinear points
on P, F be the midpoint of E\iB, E be the midpoint of 1[47(%, and O be the point of
intersection ofB}L% and jC_IET Ifﬁ ~ 5&76]' then 1[97% = FCT% /CBE =~ /BCF, /ABE =~
ZACF, A_)O is the perpendicular bisector of % andzETO] is the bisecting ray of ZBAC.

Exercise NEUT.60*. Let P be a neutral plane and let A, B, and C be noncollinear
points on P, E be the midpoint of A?, and F be the midpoint of AB.If AC < AT?,
then ZABE < ZACF.

Exercise NEUT.61*. Let P be a neutral plane and let A, B, C, E, and F be points on
‘P such that: (1) A, B, and C are noncollinear, (2) E is the point where the bisecting
ray of AABC and A% 1ntersect 3) F is the pomt where the bisecting ray of ZACB
and AB intersect. If AB < AC, then BE < CF .
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Exercise NEUT.62 (Steiner-Lehmus)*. Let P be a neutral plane and let A, B, C,
E, and F be points on P such that:

(1) A, B, and C are noncollinear,
(2) E is the point of intersection of the bisecting ray of ZABC, and 24%' , and
(3) F is the point of intersection of the bisecting ray of ZACB and AB.

If[Bf x>~ [CT; thenﬁ g%

Exercise NEUT.63*. (A) Let P be a neutral plane and let A, B, C, and D be points
on P such that:
(1) A, B, and C are noncollinear,
(2) £BAC is acute,
(3) B and D are on opposite sides of 1(4_6)’,
(4) LCAD = ZCAB.
Then D is on the C-side of 1(4_B>
(B) Let P be a neutral plane and let A, B, C, and D be points on P such that:
(1) A, B, and C are noncollinear,
(2) £BAC is acute,
(3) B and D are on opposite sides of 1(4_6)’,
(4) ZCAD is acute or right.
Then D is on the C-side of 1(4_B>

Exercise NEUT.64*. Let P be a neutral plane and let Ay, By, Cy, Dy, A;, By, C3,
and D, be points on P such that:

(1) Ay, By, and Cy are noncollinear,
(2) A,, B>, and C; are noncollinear,
L <«
(3) B; and D, are on opposite sides of A|C},
(4) B, and D, are on opposite sides of A,C»,
(5) £ZDACy = £B1ACy,
(6) LD2A2C2 = LBZAZCZ,
(7) £B1A1Cy < £BA,C,, and £B>A,C; is acute.

Then ZBlAlDl < ZBzAzDz.

Exercise NEUT.65*. Let P be a neutral plane and let A, B, and C be noncollinear
points on P such that each angle of AABC is acute, D = ftpr(B,/(l_C)') and £ =
ftpr(C, fA_B)), then BD and CE intersect at a point O which belongs to ins AABC.
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Exercise NEUT.66*. Let P be a neutral plane and let A, B, C, D, E, and F be
points on P such that: (1) A, B, and C are noncollinear, ZABC and ZACB are both
acute, and% < 1[47@, (2) D is the midpoint of ETC:, E is the point of intersection of the
bisecting ray of ZBAC and 139_6[’ and F' = ftpr(A, B(_é) If the points on 1(9_6‘ are ordered

[

sothat B< C,thenB<D < E < F < C. MoreoverAF<AE<AD<AB

Exercise NEUT.67*. Let P be a neutral plane and let A, B, C, D, E, and F be
points on P such that: (1) A, B, and C are noncollinear, (2) D is the midpoint of
BC (B)Eis the pomt of intersection of the bisecting ray of ZBAC and BC and (4)

E— ==

= ftpr(A, BC) IfAB ~ AC,thenD =FE =F.

The following exercise will strike the reader as decidedly odd, because we can
hardly imagine a triangle such that the perpendicular bisectors of the sides do not
intersect. But this is all we can prove at this stage of our development. The issue
will be resolved in Chapter 11, Theorem EUC.9.

Exercise NEUT.68*. Let P be a neutral plane, A, B, and C be noncollinear
points on P. Let £, M, and N be the perpendicular bisectors of 1[473; IETC]' and BC
respectively. Then either (1) £, M, and N are concurrent at a point O or (2) L || M,
L|N,and M | N.

Exercise NEUT.69*. Let £ be a line on a neutral plane P; let A, B, and C be points
on £ such that B-A—C, and let M be the line such that A € M and M L L. We
order the points on £ such that A < B. Let X and Y be points on £. Then X < Y iff
RmY) < Rpm(X).

Exercise NEUT.70*. Let P be a neutral plane, £ and M be lines on P which
intersect at the point O, A be a point on £ distinct from O, and X and Y be points on
M distinct from O such that X and Y are on the same side of L. Let the points on
M be ordered so that O < X. Then O < X < Y iff ZOAX < ZOAY.

Exercise NEUT.71*. Let P be a neutral plane, A, B, and C be noncollinear points
on P, and D be a member of B<_C)‘ \ {B, C}. Then B-D-C iff ZACB < ZADB and
/ABC < ZADC.

Exercise NEUT.72*. LetA, B, C, and M be points on the neutral plane P such that
A % B,A # C, M is the midpoint of AB and M is the midpoint of AC. Then B = C.

Exercise NEUT.73*. Let A and M be distinct points on the neutral plane P. Then
there exists a unique point B such that M is the midpoint of AB.
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Exercise NEUT.74*. Let P be a neutral plane, £ be a line on P, and 6 be the
mapping of P into P such that: (1) For every member X of £, (X) = X. (2) For
every member X of P \ L, 0(X) is the point such that ftpr(X, £) is the midpoint of
XO(X). Then 6 = R.

Exercise NEUT.75*. Let P be a neutral plane and let 8 be an isometry of P.
Then:

(A) If A and B are dlstlnct pomts of P and if M is the midpoint of 1[41%, then 6(M) is
the midpoint of 9(A)9(B)

(B) Let A, B, and C be noncollinear points on P. If H is a member of ins ZBAC
such that AH is the bisecting ray of ZBAC, then G(A)Q(B) 1s the blsectmg ray
of ZO(B)8(A)O(C) and if D is the p01nt of 1ntersect10n of AH and IJSTi then
6 (D) is the point of intersection of 8(A)0(H ) and O(B)G(C)

(C) If Lis line on P, Q is a member of P\ L, M = pr(Q, £), and F = ftpr(Q, L),
then (M) = pr(6(Q), 0(L)) and 6(F) = ftpr(6(Q), 6(L)).

Exercise NEUT.76*. Let P be a neutral plane and let A, By, Cy, Dy, Ey, Fy, Ay,
B, Cy, D, E», and F, be points on P such that:

(1) Ay, By, and C; are noncollinear; A,, B, and C, are noncollinear; and
AA B, Ci = AAB,C,.

(2) 6 is an isometry of P such that 0(AA|B1Cy) = AAB,Cy, 0(A)) = Ay,
08(B1) = B, and 68(Cy) = C,.

(3) D; is the midpoint of IETC? and D, is the midpoint of IE?C‘;

(4) E; is the point of intersection of the bisecting ray of ZB1A;C; and 133?% ; and
E; is the point of intersection of the bisecting ray of ZB,A,C, and m

5 F, = ftpr(Al,ﬁ) and F, = ftpr(Az,(Ez_(z).

Then Q(Dl) = D2, Q(El) = Ez, and Q(Fl) = Fz.
Exercise NEUT.77*. Let A, B, C, D, and E be points on the neutral plane P such
that A~B—C, A~B-D, A~D—E, and BC = DE, then A—C—E.

Exercise NEUT.78*. Let P be a neutral plane and let 7, G, and H be distinct
lines on P concurrent at the point O such that no two of them are perpendicular
to each other, Q be a member of F \ {0}, R = ftpr(Q, G), S = ftpr(R, H) and
T = ftpr(Q, H). Then S # T.
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Exercise NEUT.79*. Let A, B, and C be noncollinear points on the neutral plane
P and Q be a member of ins ZBAC. Then 1[4—Q> is the bisecting ray of ZBAC iff for
every member T of /]\_Q>, TD =~ TE, where D = ftpr (7, A(_B)) and E = ftpr(7, ;\_é).

Exercise NEUT.80*. Prove parts (B), (C), and (D) in Theorem NEUT.83.

Exercise NEUT.81*. Without invoking Theorem NEUT.15 parts (4) through (7),
prove that if A # B are points in a neutral plane,

[l
=

(A) AB % AB and AB % AB:;

B) 1[475 % ;J\_lg; and

(C) AB 2% AB and AB % AB.

Exercise NEUT.82*. Let A, B, and C be points on the neutral plane such that
A # B, C € 34_1)9, and AB ~ 1[4761 Let ¢ be the isometry such that (p(ﬁ) = IETC1
(A) Using only NEUT.1 through NEUT.20, show that if ¢ is its own inverse, then
B = C. (B) Discuss why this type of proof will not work in the general case,
where @ is not necessarily its own inverse. If it did, we could prove Property R.4 of
Definition NEUT.2 as a theorem.

Exercise NEUT.83*. Let £ be a line on a neutral plane P. Let ¢ be a mapping
obeying Properties (B) through (D) of Definition NEUT.1. Then if every point O of
L is contained in some line m ,where A & L, Property (A) of Definition NEUT.1
holds for ¢.

The following scrap came from some attempts to show that there is a Pasch plane
in which there is a line over which there exists no reflection. It seemed, somehow,

worth saving, as it gives some insight into the structure of fixed lines.

Exercise NEUT.84*. Let £ be aline in a neutral plane P, and let A and B be distinct
D

points on the same side of £. Then if ¢ is a reflection over L, the lines ¢(A)B and

<

Ag@(B) intersect at a point P € L.



Chapter 9
Free Segments of a Neutral Plane (FSEG)

Acronym: FSEG

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1-CAP.4), 4, 5, 6, 7,
and 8

New Axioms: none

New Terms Defined: free segment, sum, subtraction, ordering (of free segments)

Abstract: Free segments are defined as congruence classes of segments; these are
ordered in a natural way, and this ordering is shown to be transitive and to have
the trichotomy property. Addition of free segments is defined, and its elementary
properties and interactions with ordering are studied. These developments are
sufficient to prove the triangle inequality, and provide a first step toward defining

distance on a neutral plane.

Whether or not two segments on a neutral plane are congruent has nothing to
do with their position on the plane or their orientation. In the previous chapter,
Theorem NEUT.67 (segment construction) showed that given a segment on the
neutral plane, another segment congruent to it can be constructed anywhere on the
plane. Congruence, therefore, ignores position and orientation, and preserves what
we would like to call “length,” or “distance.”

By Theorem NEUT.14, congruence is an equivalence relation. Thus, given a
closed segment 1[47@, the collection of all segments which are congruent to ;ﬁ% is an
equivalence class. (The behavior of equivalence classes is briefly outlined at the end

of Section 1.4 of Chapter 1.) Thus each segment of the plane belongs to exactly one
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of these equivalence classes, which can be called congruence classes, and each of
them can be named by any of its members.

We give such an equivalence class the slightly fanciful name of “free segment,”
suggesting that we think of all the segments in the class as the same segment,
moved around to different locations and orientations. Literally, a free segment is
not a segment at all, but a collection of them, and we could just as well call it a
congruence class. But we got started with “free segment” and free segment it shall
remain.

With appropriate definitions, free segments can be treated as algebraic objects.
We can compare them using “<” and “>,” we can add them, and we can subtract
them, but only in the case where a smaller free segment is subtracted from a larger
one. Thus, the algebra of free segments is very rudimentary; there is no additive
identity (no zero segments), there is no additive inverse (no negative segments); and
we do not yet have a definition of multiplication—that will come in Chapter 15
(SIM).

One might think that free segments aren’t good for much, but they are actually
quite useful as temporary surrogates for the concepts of “length” and “distance.”
This will be made clearer in Chapter 14, where we show that every line in a
Euclidean plane is an ordered field, complete with positive and negative elements.
Moreover we will show that the positive elements of such a field can be identified
with free segments using a mapping ¢ which we will define shortly in Defini-
tion FSEG.14. This mapping begins a process that will eventuate, in Chapter 14,
Remark OF.14 and Definition OF.16, in a definition of “length” and “distance” for

which our Cartesian selves yearn most earnestly.

9.1 Theorems for free segments

Theorem FSEG.1. Let A, B, C, and D be points on the neutral plane P such that
A # Band C # D. Then there exist points E, F, and G on P such that E-F-G,
1[47% = ﬁ and ECiD] = ﬁ

Proof. Let E and H be points on P such that H # E. Then there exists a unique point
(cf Theorem NEUT.67 (Segment Construction)) F on jﬁ)-l such that ﬁ ~ 1[471% Let/
be a point such that E—F-I (cf Property B. 3 of Definition IB.1). By Theorem PSH 13
{X| E-F-X} = 7. By Theorem PSH 15 EF i is the unlon of the disjoint sets EF and
%7. Let G be the unique point on 7l such that FG G ~ CD, then the proof is complete.
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In the particular case where B = C and A—B-D, we will satisfy the conclusion of
this theorem by letting E = A, F = B, and G = D. O

Definition FSEG.2. Let P be a neutral plane, and let A and B be distinct points
on P. The set {ﬁ | XY ~ ?Té} is denoted [15\731 ] and called the free segment of
AB [7\? ] is the congruence class of 7\7?, that is, its equivalence class under the

equivalence relation 2 (cf Theorem NEUT.14).

Definition FSEG.3. Let P be a neutral plane, A, B, C, and D be points on P such
that A # B and C # D.

(A) By Theorem FSEG.1, let E, F, and G be the points on P such that E-F-G,
EF ~ 1[47%, and FG =~ CD. Then [ETG]] is the sum of [1[4733] and [[CiD]], and is
denoted by [ﬁ ] EB [[CiD]]

(B) [AB] < [CD] iff AB < CD (cf. Definition NEUT.70) and [AB] > [CD] iff
[CD]< MB][AB] [CD) iff AB < CD or AB =~ CD. [AB] > [CD] iff
[CD] < [AB].

Remark FSEG.3.1. (A) Given an equivalence relation on a set &, it is traditional
to write the equivalence class of an element x € £ as [x]; the notation [;TB] ]is
an amalgamation of this notation with the notation AB for closed segment.

(B) A free segment has many names—one for each segment belonging to it. Thus,
AB =~ CDiff [AB] = [CD].

(C) We need to be able to give free segments names which do not refer to specific
segments. We employ small capital script letters, such as s, 7, v, and v for this
purpose.

(D) This chapter will deal exclusively with closed segments of the form 1[413’ and not
with open or semi-open segments such as AB :413 or AB

(E) Notice carefully that Definition FSEG.3(A) does not define sums of segments.
In this book we define sums of points, sums of free segments, but never sums
of segments. Also, observe that Definition FSEG.3(B) defines the ordering of

free segments, based on the ordering of segments already defined in Chapter 8.

Theorem FSEG.4. Let s, T, u, and v be free segments of the neutral plane P such
that s = T andu = v, then

(A) sGuU=T®& V.
B) s<uifft<wv.

In other words, addition and ordering of free segments are well defined.
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Proof. (A) By Definition FSEG.3 and Theorem FSEG.1 there exist points A, B,
C, D, E, and F on P such that A-B-C, D-E-F, s = [1[479]] u = [1[976']], T =
[%TE]], V= [E?F]], SPu = [AiC]], and 7@ v = [DiF]]. By Exercise FSEG.1
IETB ~ [Df and rBhC‘ ~ [E71 By Exercise NEUT.38(A) IETC]’ ~ [D7; and using
Exercise FSEG.1 again, [EiiC]] = [DiF]], sothat sBu =7 v.

(B) By Deﬁnition FSEG. 3 there exist points A, B C D,E,F, G, and H on P such
that s = [AB] u = [CD] T = [EF] V= [GH] By Definition FSEG.2, since
S =T, EAB ~ EF since U = V, CD GH If S < u by Definition FSEG.3

IETB CD and by Theorem NEUT.73 EF < GH so that by Definition FSEG.3

again, 7 < v. Interchanging s with 7 and v with v proves the converse. O

Theorem FSEG.5 (Trichotomy property for free segments). Let s and T be free
segments of the neutral plane P. Then one and only one of the following statements
is true:

(Hhs=T1 2)ys<T B)s>T.

Proof. Taking into account Definition FSEG.2 and Exercise FSEG.1 we need to
show that if s # T, then either s < T, ors>T. There exist points A, B, C, and D
on PsuchthatA # B,C # D, s = [AB] and T = [CD] By Theorem NEUT 72
(trichotomy for segments) either AB < CD or AB > CD Since AB < CD iff
[AB] < [CD] and AB > CD iff [AB] > [CD], the proof is complete. |

Remark FSEG.6. At this point it would be possible to develop the idea of rational
multiples of free segments, and we do so partially in Exercise FSEG.3. In the interest
of a more complete development which also would encompass rational multiples
of points on a line, we have elected to defer the main part of this discussion to

Chapter 17, Rational Points on a Line.

Theorem FSEG.7 (Transitivity property for free segments). Let s, 7, and u be

free segments of the neutral plane P. If s < T and T < U, then S < u.

Proof. There exist points A B, C,D, E, and F on P (cf Definition FSEG.2) such
that s = [AB] T = [CD] and v = [EF]. Furthermore, s < 7 iff AB < CD
and 7 < u iff CD < EF Since Theorem NEUT.73 gives transitivity for segments,
s <u. o

Theorem FSEG.8. Let s, T, and u be free segments of the neutral plane P, then

D s®T=7®DSsand
D) BT BuU=5(TDu).
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That is to say, the operation @ for free segments of the neutral plane P is

commutative and associative.

Proof. By Theorem FSEG.1 there exist points A, B, and C and points E, F, and
G such that A-B-C, E-F-G, s = [AB], T = [BC] = [EF], and u = [FG).
Thus BC = EF. By Theorem NEUT.56 there exists an isometry o« such that «(E) =
B, a(F) = C.Let (G) = D; since « preserves betweenness and is a colhneatlon
a(E)-a(F)—a(G), that is B—C—D Then FG CD sou = [FG] [CD]

Then A—B—C—D s = [AB] T = [BC] and u = [CD] By Deﬁnltlon FSEG.3
SOT = [AB] @ [BC] [AC] and 7 s = [CB] &) [BA] = [CA] [AC] so that
S® 7 =7 & Ss. Moreover

(s ®7) ®u = (|AB] @ [BC)) & [CD] = [AC) & [CD] = [AD]

and

[ ]
= =

s® (T ®u) = [AB] @ ((BC] & [CD)) = [AB] @ [BD] = [AD],
SO(SPHT)DPU=5B (T Du). |

‘I

Theorem FSEG.9. Let s, T, u, and v be free segments of the neutral plane P.

D Ifs<T,thens®u<T1dU.
) Ifs<Tandu <v,thens ®u < T D V.

Proof. (I) By Definition FSEG.3 there exist points A B C, D and Eon P such
that A-B-C, A-B-D, A—D—E s = [AB] u = [BC ] = [DE ], and 7 = [AD]
Furthermore, s & u = [AC Jand T u = [AE] Usmg Exercises FSEG 1
and NEUT.78 we have A—C-E. Thus AC < AE and so [AC] < [AE]
(cf Definition FSEG.3) (i.e., s® u < 7 @ u).

(II) By Theorem FSEG.7 and part (I) s®u < T®uUand TOU =uPT7 < VvBT =
7 @ v. By Theorem FSEG.7 (transitivity) s Bu < 7 D v. O

Theorem FSEG.10. Let s and T be free segments of the neutral plane P. If s < T,

then there exists a unique free segment u of P such that T = s @ u.

Proof. (I: Uniqueness.) If ¢, and u, are free segments such that 7 = s @ u; =
S @ Uy, then if u; < up, by Theorem FSEG.9(I) s & u; < s ® Uy, a
contradiction. Similarly, if ©; > u, s ® u; > S D Uy, also a contradiction.
By Theorem FSEG.5 (trichotomy), u/; = 5.

(II: Existence.) By Definition FSEG.2 there exist points A, B, C, and D on P
such that A # B, C # D, s = [z[ﬁ\iB]], T = [[CiD]], and AB < CD. By
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Deﬁnltlon NEUT 70 there exists a point E such that C-E-D and AB [CL%
Letu = [ED], then by Definition FSEG.3 7 = s ® u. ]

Definition FSEG.11. The free segment v/ of Theorem FSEG.10 is denoted by 76 s

and is “the subtraction of s from 7.” Less formally, 7 © s is 7 minus s.

Theorem FSEG.12. Let u be any free segment of the neutral plane P. Then there
exist free segments s and T of P such that T < Sandu = s © T.

Proof. Suppose that 1 = [%THJ]; by Property B.3 of Definition IB.1 there exists

a point I such that G-H-I. By Definition FSEG.3 [b?j] &) [I[LTIj ] = [GI ]. By
Definition FSEG.11 [GH] = [GI] © [HI]. Let s = [GI] and T = [HI], then
by Definition FSEG3 7 < sandu =s & 7. O

Theorem FSEG.13. Let O and Q be distinct points on the neutral plane P, L =
<O_)Q, and let T be the set of all free segments of P. Then for each free segment s € F,
there exists a unique point X € @ such that OX € s.

Proof. Let [E7; be a segment belonging to s. By Theorem NEUT.67 (segment
constructlon) for each free segment s = [EF] € T there exists a unique point
Xe OQ such that EF = OX. |

Definition FSEG.14. Let O and Q be distinct points on the neutral plane P, £ =
OHQ, and let IF be the set of all free segments of P. For any points E and F in P define
®@[EF ] to be the point X € jO_Q) (whose existence and uniqueness is guaranteed by
Theorem FSEG.13) such that EF ~ [072 that is, EF ~ 0(45[%?717]])

As a consequence of Deﬁmtlon FSEG.14, we have the rather odd-looking
equality [EF ] = [0(®[EF ])] If we let [EF ] be denoted by s, this becomes
s =[0(2(s))]-

Theorem FSEG.15. Let O and Q be distinct points on the neutral plane P, L =
O(—)Q, and let F be the set of all free segments of P.

(A) The mapping @ defined in Definition FSEG. 14 is a bijection of F onto ]O—Q)
(B) If the points on 0(—)Q are ordered so that O < Q, then s < T iff O—-®(5)-P(T)
iff P(s) < &(7).

Proof. (A) By Theorem FSEG.13 @ is well defined. If s and 7 are free segments
in F, and &(s) = @®(7), then there exist segments in each of s and 7
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both of which are congruent to the same [07)8 and hence are congruent by
Theorem NEUT. 14, so that s = 7 thus, @ is one-to-one. Since every segment
0X ¢ [%)71] eF, @iSOHtOJO—é

(B) By Definition FSEG.14, s < Tlff [O@(s)] < [0<1§(7')] By Definition FSEG.3
this is the same as saying that O(D(s) < O(D(T ) By Theorem NEUT.74 this is
O0-D(5)-D(7). By Theorem ORD.6 this is true iff either O < ®@(s) < @(7)
or @(7) < @(s) < 0. Since O < P(5), 0 < P(s) < D(T). |

Remark FSEG.16. The mapping @ in Definition FSEG.14 is very significant to
the overall development. It allows us to associate any segment on the plane with a
point on a given ray; eventually, in Chapter 14, this will enable us to associate each

segment with a number, which will be its length (cf Definition OF.16).

Theorem FSEG.17 (Triangle inequality). Let A, B, and C be noncollinear points
on the neutral plane P. Then [AC] < [AB] & [BC]. That is to say, any edge of a

triangle is smaller than the sum of the other two edges.

Proof. By Theorem NEUT.67 (segment construction) there exists a point D such
that A—B-D and BD = BC. By Theorem PSH.37 B € ins ZACD. By Defi-
nition NEUT.70 ZBCD < ZACD. By Theorem NEUT.40(A) (Pons Asinorum)
/ZBCD =~ /BDC = /ADC. By Theorem NEUT.76 (Transitivity for Angles)
ZADC < ZACD. By Theorem NEUTOI AC < AD. By Definition FSEG.3
[AC] < [AD] = [AB] & [BD). By Exercise FSEG.1 [BD] = [BC]. Thus
[AC] < [AB]@[BC] O

Theorem FSEG.18. Let A, B, and C be distinct points on the neutral plane P. Then
[AC] < [AB] & [BC].

Proof. If A, B, and C are noncollinear, then by Theorem FSEG.17, [AiCj ] <
[1[473; 1@ [1[976‘] ]. If A, B, and C are collinear, then by Property B.2 of Definition IB.1
one and only one of the following statements holds A—B—C A-C-B, or B-A-C.
If A-B-C, then by Deﬁn1t10n FSEG 3 [AC] [AB] <) [BC . If A C—B then by
Exermse FSEG2 [AC] < [AB] < [AB] &) [BC] If B-A-C, then [AC] < [BC] <
[AB] @ [BC 1. |

Theorem FSEG.19. Let A, B, and C be noncollinear points on the neutral plane
P such that BC < AC. Then [AC] & [BC] < [AB).
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0
-

Proof. By Theorem FSEG.17 [AC] < [AB] & [BC). By Exercise FSEG.6

[AC] © [BC] < ([AB] @ [BC)) © [BC).

By Exercise FSEG.4 ([1[4733] ® [BCJ]) e [[BC]] = [IEATB]], ) [1[47C]] e [%CJ] < [1[478;] |

Theorem FSEG.20. Let A, B, and C be distinct points on the neutral plane 'P. Then
[AC] ® [CB] = [AB] iff A~C—B.

‘I

-
=

Proof. (I. If A-C-B, then [AC] ® [CB] = [AB]) If A—C-B, then by
Definition FSEG.3 [AC] ® [CB] = [AB].

I It [1[47(,’] | & [[CT?]] = [EATBJ], then A—-C-B.) To prove this half we prove the
equivalent statement (contrapositive): If —=(A-C-B), then [1[47C] ] ® [[CT;] #
[1[478; ]. By Property B.2 of Definition IB.1, either B—~A-C, or A-B-C. Using
Theorem FSEG.5 (trichotomy for free segments) we need only show that if
either B-A—C or A-B-C, then [AC] @ [BC 1> [AB] However, this is done in
the proof of Theorem FSEG.18. O

9.2 Exercises for free segments

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise FSEG.1*. Let A, B, C, and D be points on the neutral plane P such that
A # Band C # D. Then [AB] = [CD iff AB = CD.

Exercise FSEG.2*. Let A, B, C, and D be points on the neutral plane P such that
A # Band C # D. Then [AB] < [AB] ® [CD).

Exercise FSEG.3*. Let A and B be distinct points on the neutral plane P and let
m and n be natural numbers. For the purposes of this exercise, we use mathematical

induction to make the following definitions:

(1): Define 1[1[475; ] = [E@j ], and for any n, if a point C has been determined so that
n[AB] = [AC), define (n + 1)[AB] = [AC] & [AB].

(2): Usmg Theorem NEUT.50, let M be the midpoint of AB. Then define ! [AB 1=
[AM ], and if for any m, C has been determined so that 5 [AB] = [AC] let D

. . E— 1 E—I E—
be the midpoint of AC and define 5 [AB] = [AD].

2”7
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) = B
(3): For any n and m, define 2-[AB] = 5 (n[AB]).

Let A, B, C, and D be points on the neutral plane such that A # B and C # D; using

the definitions above show the following:
@O If [;TB] ] < [[CiD]], then for any natural numbers » and m,
B E—
(A) n[AB] < n[CD],
(B) %[AB] < 5[CD], and

(C) £[AB] < £[CD].

B E— E—J t—
D) 5= ([AB] & [CD]) = 5z[AB] @ 7z [CD].
Exercise FSEG.4*. If s and 7 are any free segments of the neutral plane P such
thats < 7,then (T® s)©s=7and (TOS)Ds=T.

Exercise FSEG.5*. Let s, 7, and u be free segments of the neutral plane P.

A) fu<sandu <7,then(s®@T)uUu=60UDT=(TOU)Ds.
B)IfThu<s,thensoS (TOU)=(sOST)OU=(SOU)ET.

Exercise FSEG.6*. Let s, 7, and u be free segments of the neutral plane P such
thaty < sandu < 7. If s < 7,thens B u < 78 u.

Exercise FSEG.7*. Let s, 7, and u be free segments of the neutral plane P such
thatsdu < THu,thens < 7.

Exercise FSEG.8". Let s, T, u, and v be free segments of the neutral plane P such
that T < sand v <u,then (s T)D UOSV)=(5BU) S (T V).

Exercise FSEG.9*. Let s, 7, u, and v be free segments of the neutral plane P
suchthat T < sandv <u,thens©T7T=uVviff s®v=7d u.

Exercise FSEG.10*. If s and 7 are free segments of the neutral plane P such that
T<S,thense&T<sandso(s67)="7.

Exercise FSEG.11. If s, 7, and « are any free segments of the neutral plane P,
then (s ®7) Du = s ® (T P 5) (the operation & is associative on the set F of free

segments.

Exercise FSEG.12. Construct a theory FANG of free angles analogous to that
developed in this chapter for free segments, based on the following definition: the
free angle FA(ZBAC) = {/XYZ | /XYZ =~ /BAC}.



Chapter 10
Rotations About a Point of a Neutral Plane
(ROT)

Acronym: ROT

Dependencies: Chapters 1, 3 (definitions and Theorems CAP.1-CAP4), 4, 5, 6, 7, 8,
and 9

New Axioms: none

New Terms Defined: (point) rotation, point reflection, inverse of a rotation

Abstract: This chapter defines point rotations and point reflections (about a point
0) on a neutral plane, and derives their elementary properties to the extent possible
without a parallel axiom. It ends with a classification of isometries of a neutral plane,

and proof of the existence of a “square root” of a rotation.

A rotation of a neutral plane about a point O is the composition of two reflections
over lines intersecting at O; thus every rotation is a collineation. Rotations were not
discussed in Chapter 3 because reflections had not yet been defined there.

In this chapter we develop those properties of rotations which are not dependent
on a parallel axiom. In Chapter 13, after the parallel axiom is invoked, rotations will
be used to define half-rotations which are collineations but not isometries. These in
turn will be used to prove the existence of dilations (cf Definition CAP.17) in the
Euclidean plane, and in Chapter 14 these will be used to define multiplication of

points on a line.
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10.1 Definitions and theorems for rotations

Definition ROT.1. (A) A mapping « from the neutral plane P onto itself is a
rotation about the point O iff there exist distinct lines £ and M which intersect
at O, such that @ = R o R.. A rotation may sometimes be referred to as a
point rotation. See Figure 10.1.

(B) If, in part (A), L L M, then the rotation « is a point reflection about O.
A point reflection about O is denoted by R . See Figure 10.2.

Fig. 10.1 Showing action of
arotationa = Ry o R,
M is the line of symmetry of
LAOa(A).

Fig. 10.2 Showing action of
the point reflection

Ro = Rm © R, where M
and £ are perpendicular.

The rotation (or point reflection) « defined above is a composition of reflections
and thus is a bijection and an isometry (cf Definition NEUT.3(A)). Since there
is exactly one reflection over any line (cf Property R.2 of Definition NEUT.2) a

rotation p = R, o Ry is completely determined by the two lines determining



10.1 Definitions and theorems for rotations 237

the reflections. It will follow from Theorem ROT.20(A) that the action of p(X) at a

single point X # O determines its action at every point of the plane.

A rotation does not have a “sense”; it does not rotate a point either in the positive
or negative (counterclockwise or clockwise) “direction.” It is determined entirely by
the final position of the points it rotates. Reverting back to the traditional measure
of angle by “degrees”: a 270 degree rotation counterclockwise is the same as a 90

degree rotation clockwise.

Theorem ROT.2. [f « is a rotation of the neutral plane P about the point O, then
O is a fixed point of « and o has no other fixed points.

Proof. By Definition ROT.1 there exist distinct lines £ and M on P such that
LNAM = {0} and Rp = Ra © Rz. O is a fixed point of « since by
Definition NEUT.1(A) ¢(0) = Ra(Rz(0)) = R(0) =

Suppose X # O is a fixed point for &. Then o(X) = Rm (R (X)) = X. If
X € L, then Rz (X) = X and thus Rp(X) = X, sothat X € Mand X = O, a
contradiction; therefore, X & L.

Then the fixed line XR »(X) for £ and the fixed line

ReKORM(RL(X)) = ReX)a(X) = Re(X)X

of M are the same. By Theorem NEUT.44 both M and L are perpendicular to
this line, and since they both contain O, by Theorem NEUT.48(A) M = L,
contradicting our assumption that M and £ are distinct. O

Theorem ROT.3. Let Rp be a point reflection about the point O on a neutral
plane P.

(A) IfX € P\{O}, then X—-O-Ro(X); also [07? =~ EORO (Xi so that O is the midpoint
of XRo(X).
(B) Every line L containing O is a fixed line for Ro.

Proof. (A) By Definition ROT.I there exist lines £ and M such that L N M =
{0}, L L M, and Rp = R o R.. By Definition NEUT.3(A) Ry is
an isometry, and by Theorem ROT2 Ois a ﬁxed point for o hence by
Theorem NEUT.15(5), RO(EOTE) RO(O)RO(X) = ORO(X) so that OX ~
ORO (X) Thus, to show that O is the midpoint of XRO (X) all we need to show
is that X—O-R o (X) (cf Definition NEUT.3(C)).

(Case 1: X € (P \ LU M).) By Theorem NEUT.54 L is the perpendicular
bisecting line of S(T\’,[;(Xi so that £ | XR,(X). By Theorem NEUT.47(A)
M || XR(X). By Exercise PSH.14 XR £ (X) € (X-side of M) so that X and
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R - (X) belong to the same side of M. By Definition NEUT.1(B) X and R~ (X)
are on opposite sides of £; also R, (X) and Ro(X) = Ry (R (X)) are on
opposite sides of M. They are also on the same side of £, which is opposite
X. By Theorem PSH.12 (plane separation) X and R r¢(R (X)) are on opposite
sides of M and on opposite sides of L.

By Definition IB.11, there exists a point Q such that S(R c (X; NL = {Q}. By
Definition NEUT.1(B) Q and Ra¢(Q) = Ro(Q) are on opposite sides of M;
thus, by Axiom PSA Q-O-«(Q). By Theorem NEUT.15(8) and the fact that
Ro(0) = 0, Ro(£LX0Q) = LRo(X)ORo(Q), so by Definition NEUT.3(B)
(congruence) ZX0Q =~ LRo(X)ORo(Q). Applying Exercise NEUT.12 we
get X—-O-Ro(X).

(Case 2: X € L.) Note that Rop(X) = Rm(R(X)) = Ra(X); since L is
a fixed line for M, Ro(X) € L, and by Definition NEUT.1(B) X and R x4 (X)
are on opposite sides of M. Then by Axiom PSA X—0-R(X).

(Case 3: X € M.) The proof is the same as Case 2, with the roles of M and
L interchanged.

(B) Let £ be any line containing O, and let X € L. Then by part (A), X—-O-R (X)),
and by Definition IB.1, £ = )<(_)O = XRo(X), so Ro(X) € L. Therefore L is a
fixed line for Ro. ad

The following theorem says that a point reflection about O is the composition of
two line reflections over any two perpendicular lines containing O. That is, the point
reflection does not depend on the choice of the perpendicular lines, and therefore

there is only one point reflection about a given point.

Theorem ROT.4. Let P be a neutral plane and let J, K, L, and M be lines on P
concurrent at O such that 7 L K and L 1. M. Then Ric o R7 = Rpa 0 R

Proof. Letoo = R oRy and Let B = R 0 Re, then «(0) = O = B(0).
Furthermore if Q is any member of 73 \ {0}, then by Theorem ROT 3 Q—O—oc (),
0-0-5(0), OQ Ooe(Q) O,B(Q) By Theorem PSH.13 B(Q) € Oa(Q) so that
by Property R.3 of Definition NEUT.2 8(Q) = «(Q). Since Q is any member of
PN\{O}, B = «. O

Corollary ROT.5. [flines L and M on neutral plane ‘P are concurrent at O and if
LLM,thenRayoRy =RroRm.

Proof. In Theorem ROT .4 take £ = £ and J = M. O
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Corollary ROT.6. If P is a neutral plane and if O is any point on P, then R¢ o
Ro =1 (the identity mapping of P onto itself).

Proof. Let L and M be any lines on P concurrent at O, then Rgp o Rp = (R ©
Rm)o(ReoRm) =(ReoRm) o (RmoRe) =(Reo(RmoRMm)oRe =
'Rg 9] RL =1. a

Corollary ROT.7. Let O be a point on the neutral plane P, and let L and M be
perpendicular lines intersecting at O. Then for any X € L, Ro(X) = R (X). That
is, the restriction of Ro to L is equal to the restriction of Ry to L.

Proof. By Theorem ROT.4, Rp = Raq 0 Re. If X is any point of £, Ro(X) =
RM(R(X)) = Rm(X). O

Theorem ROT.8. Let P be a neutral plane, O be a point on P, and o be a mapping
ofP such that a(0) = O. If for every member of X of P \ {0}, O is the midpoint of
Xoc(X) then o« = Ro.

Proof. Let Y be any member of P \ m L = <0_I> and /\/l pr(0, £). Let
B = R Mo Re. By Theorem ROT.4 O is the m1dp01nt of X B (X) o) that X—O—ﬂ (X)
and OX ~ Oﬁ(X) Since O is the midpoint ofXa(X) X-O-u(X) and OX o~ Oa(X)
Slnce congruence is an equivalence relation for segments (Theorem NEUT.14),
O(x(X) O,B(X). By Theorem PSH.13 B(X) € m and so by Property R.3
of Definition NEUT.2 8(X) = a(X). Thus @ = Ro. O

Theorem ROT.9. Let P be a neutral plane.

(A) If L and M are lines on P such that O € LN M and Ryq o Ry = 1, then
L=M.

(B) Let O and X be any points of P such that X # O; there is no rotation a about
O such that a(br))() = bX

Proof. (A) If £ and M were distinct, then by Theorem ROT.2 the only fixed point
of Rt © Raq would be O. Hence £ = M.

(B) If there were such a rotation «, then by Theorem NEUT.15(5) a([OT%) = EOT(Xi
so that [07)? ~ [00573. Since a(X) € ]0_))(, by Property R.4 of Definition NEUT.2
a(X) = X, so that X is a fixed point for «, contradicting Theorem ROT.2. 0O

Theorem ROT.10 (A rotation cannot be a line reflection). Let P be a neutral
plane, a be a rotation of ‘P about O, and L be any line on P through O. Then
(04 75 Re.
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Proof. Since by Theorem ROT.2 O is the only fixed point of &, and whereas every
point on £ is a fixed point of Rz, o # R. O

Theorem ROT.11. Let P be a neutral plane, L, M, and N be distinct lines on P
concurrent at O. Then there exists a unique line J such that RxyyoRpoRe =Ry

Proof. We shall prove that the mapping ¢« = R o Raq © R is a mirror
mapping R 7. Once this is done, by Property R.3 (closure) of Definition NEUT.2
R is a reflection. By Remark NEUT.1.1, J is the only possible axis for this
mapping, proving uniqueness.

Let Q be any point on £ distinct from O. By Definition NEUT.1(A) «(0O) = O
and R-(Q) = Q. Since Q € L, a(Q) = Ry (Ram(Q)); since Ry o R is a
rotation, @(Q) # Q by Theorem ROT.2. Let 7 be the line of symmetry of [QaT;
(i.e., the perpendicular bisecting line of rQT(Qi (cf Theorem NEUT.52(A)). Then
Q is a fixed point of R 7 o c.

By Theorem NEUT.15(5) and the fact that «(0) = O, @(00) = Ow(Q). By
Definition NEUT.3(B) O0 =~ Oa(Q). By Theorem NEUT.63 J is the line of
symmetry of ZQO«/(Q) and in particular, O € J. Since O and Q are fixed points of
R oo, by Theorem NEUT.37 either Ry oo =1 0orRyoa = R<O—Q> =TR..

If R7yoa wereequal to Re,then Ry = Ryoa = RygoRyoRmoRe,
and Ry o Rar 0o Ry =1, thatis Rayr 0o Raq = R 7. Thus the rotation R 0 R
is equal to the reflection R 7, which is impossible by Theorem ROT.10. Therefore
Rgoa =1,thatis,a =Ry O

Theorem ROT.12. If L, M, and N are distinct lines on the neutral plane P
concurrent at O, then Ry o Ryyo Ry =R o Ry o R

Proof. By Theorem ROT.11 there exists a unique line J such that RyjoRy0oR . =
R 7. By Remark NEUT.1.3 R}l = R 7. By elementary algebra

R}l :RZ] ORX/I oR/_\/l[ =TRroRnoRM.
Thus Rpmfo Ry oRe =ReoRa o R a

The following theorem allows any rotation about a point to be written as the
composition of two reflections over lines containing this point, where one of these

lines has been chosen arbitrarily.
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Theorem ROT.13. Let P be a neutral plane, L, M, N be lines on P concurrent
at O such that M # N. Then

(A) There exists a unique line J through O such that Ry o Ry = Rax o Rm.
(B) There exists a unique line K through O such that R o Ry = R 0 R

Proof. (A) (Case 1: L = N) Ry oRs = Ry oRm iff Ry = Rum. By
Remark NEUT.1.1 Ry = Rz iff J = M.
(Case2: L=M)RMmoRs =Ry oRMmIf Ry = Ry 0o Ry o R
Hence 7 is the line of Exercise NEUT.8, i.e. J = R (N).
(Case 3: £, M, and N are distinct.) R o Ry = Ry o Ry iff Ry =
Rr o Ra o Ra Hence J is the line given by Theorem ROT.11.
(B) By part (A), there exists a unique line K through O such that R o R =
R © Rar- Then taking inverses, we have R o Ry = R 0 R - O

Remark ROT.14. Parts (A) and (B) of the next theorem provide a standard way
to construct a rotation R g o R that carries one ray of an angle into the other.
Thus, specifying these two rays is all we need to determine the action of the rotation

everywhere on the plane.

Theorem ROT.15. Let O, A, and B be noncollinear points on the neutral plane P,
and let L be the line of symmetry of ZAOB.

(A) There exists a unique rotation p about O such that p(br)A) = bré; and p =

Rg ] R(—) = R(—) ] Rg

(B) IfB' is the point on OH)B such that OB' ~ OA L is the line of symmetry (i.e., the
perpendicular bisecting line) of ABj.

(C) Let P be a point such that P ¢ ZAOB, where both ZAOP and /POB are
defined, with lines of symmetry M and N, respectively. Then p = Ry o Ry

= B>
is the rotation that carries OA to OB.

Proof. (A) (I: Existence.) By Theorem NEUT.20 R (br)A) = rOrB? Hence if we let
p=Rro R‘cﬁ by Definition NEUT.1(A), we get

p(OA) = R (Ry5; (0A)) = R (0A) =
(II: Uniqueness.) Suppose p is a rotation of P about O such that p(OA) 7
By Theorem ROT.13 there exists a line S through O such that Rs o RE{ =

p. By Definition NEUT.1(A)
p(OA) = (Rs o Ry () = Rs(Rg; (OA)) = Rs(OA) = OB.
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By Exercise NEUT.9 S is a line of symmetry for ZAOB and by Theorem
NEUT.26, there is only one such line; therefore, S = Lsop = R o R«O—A>.

Now R% oRp (54)) = ﬁ, so that by the uniqueness argument just above,

Rb—B)ORL:P-

(B) Follows immediately from Theorem NEUT.63.
(C) Note that the hypotheses of this part are satisfied if P € ins ZAOB. By
B> = E =
Theorem NEUT.20 R o((OA) = OP, and RN(ﬁ) = OB.Letp = Ry oRu;
then p(a) = 5)3 M # N, for otherwise, A, B, and O would be collinear;
thus p is a rotation. O

Theorem ROT.16. Let a be an isometry of the neutral plane ‘P which has one and
only one fixed point O. Then there exist distinct lines L and M on P such that
LNM ={0}and o = R, o R so that o is a rotation of P about O.

Proof. Let X be any member of P\ {O}. Since « has only one fixed point, & (X) # X.
By Property R.5 of Definition NEUT.2 (existence of angle reflection), we may let
L be the line of symmetry for the angle ZXO(«(X)); then O € L. Then R is the
reflection such that R . (r07) = m, and let Y = R, («(X)), which is a member
of r0'7? Let 8 = R, o . Then B(X) = Y and since X and Y are on the same ray,
and f is an isometry, by Property R.4 of Definition NEUT.2 (linear scaling), ¥ = X;
therefore X is a fixed point for 8. Since O is a fixed point for both R~ and «, it also
is a fixed point for .

By Theorem NEUT.37 either § is the identity mapping ¢ of P onto itself, or
B = Rep- If B were equal to 1, then o would be equal to R, contradicting
Theorem ROT.10 (a rotation cannot be a reflection). Hence 8 = R<0—X> and since
we already know 8 = R, o«, R& = R oa; applying R, to both sides, we have
a:RgoRb—X»,ora:RgoRM,whereM=<0_))(. O

Theorem ROT.17. Let P be a neutral plane, O be a point on P, and oy and o, be
rotations of P about O. Then either o o oy is the identity mapping 1 of P onto itself

(in which case a) oy = o o] = 1) or o o & is a rotation of P about O.

Proof. By Definition ROT.1 there exist distinct lines £, and M as well as distinct
lines £, and M, such that £; N M N L, N My = {0}, o1 = Ram, 0 Re, and
ay = Rpm, ©Rpy,sothat oy oy = (Raq, © Rey) © (Raq, © Rey)) = Ry, ©
(Re, 0o (R, ©Re,)). By Theorem ROT.11 there exists a unique line 7 on P such
that Rz, o Ra, 0o R, = R, thus @y ooy = Raq, 0o Ry If J = M,, then by
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Remark NEUT.1.3 a; o a1 = 1. If J % M, then by Definition ROT.1 o; o ¢ is a
rotation of P about O. O

Theorem ROT.18. Let O be a point on a neutral plane P, and o a rotation of P
about O. Then there exists a unique rotation B of P about O such that f o = 1.
Thatis, B = o~ the inverse of a. Moreover, if o = RoRz, then B =RsoRm-

Proof. (I: Existence.) By Definition ROT.1 there exist distinct lines £ and M on P
suchthat LN M = {O}anda = RyoR.Let B = RpoRaq- Then foa =
(ReoRm)o(RamoRe) =Reo((Rm)oRm)oRe =ReoltoRe) =
ReoRe =1.

(IT: Uniqueness.) This follows immediately from Theorem ROT.15(A), but here is
a purely algebraic proof. If 8 and B’ are rotations such that @ o § = 1 and
aof =1,thenaof = «a o f'. By part I there exists a rotation ' such that
a'oa =1.Hencea’o(aofB) = a’o(aop’), thatis (@’ ca)o = (¢’ o) o f,
sothat 8 = B’. |

Theorem ROT.19. Let « be a rotation about a point O of a neutral plane P.

(A) If a has a fixed line, then o is a point reflection about O.
(B) If « is not a point reflection, then for every X # O, a(ﬁ) #* OX.

Proof. (A) We prove the contrapositive; that is, if « is not a point reflection, then «
has no fixed line. Let £ be any line on P.

(Case 1: O € L.) Let X be any point on £ distinct from O. Since « is not a
point reflection about O, by Exercise ROT.2 a(X) ¢ <0_))( Since a(0) = O by
Theorem NEUT.15(1) a(£) = a(OX) = Oc(X). Thus «(£) # L.

(Case 2: O ¢ L) Let M = pr(0,L) and let U = ftpr(0, L). (cf
Theorem NEUT.48(A) and Definition NEUT.99), by case 1, «(M) # M. By
Corollary NEUT.44.1 (M) L a(L). By Exercise NEUT.48 a (L) # L.

(B) By the contrapositive of part (A), since « is not a point reflection, 0(_)>( # O(a—)(X)
and br))( #* m. O

Theorem ROT.20. Let P be a neutral plane.

(A) If O, X, and Y are noncollinear points on P such that ﬁ =~ EOT% then there
exists a unique rotation o of P about O such that «(X) =Y.

(B) If X and Y are distinct points on P and if O is the midpoint of Eﬁ; , then there
exists a unique point reflection B of P about O such that B(X) =Y.
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Proof. (A) By Theorem ROT.15 (A) there exists a unique rotation o such that
04(5)() = OH)Y Since « is an isometry, rOﬁI} o [07)? o EOa(X§ and since
a(X) € 30_1)/, by Property R.4 of Definition NEUT.2, «(X) =Y.

If & and B are rotations of P about O such that «(X) = Y and f(X) = Y,
then X is a fixed point of 87! o ar. By Theorem ROT.2 87! o« is not a rotation;

by Theorem ROT.17 B~ o« =1 so @ = B, thus showing uniqueness.

(B) If J and K are any lines through O which are perpendicular to each other and
if B = Ry o R, then by Theorem ROT.3 X—O—B(X) and OX = OB(X). By
the definition of midpoint, E07}? ~ [071} and X—O-Y so by Theorem PSH.15,
BX) € j(ﬁ/) By Theorem NEUT.14, EO,BTi =~ rOﬁlg; by Property R.4 of
Definition NEUT.2 8(X) = Y. Then f is unique because by Theorem ROT.4

there is only one point reflection about any point O. O

Theorem ROT.21. Let P be a neutral plane, O be a point on P, and o and B be
rotations of P about O. Then B oo = o o .

Proof. Let M be any line on P through O, then by Theorem ROT.13 there exist
unique lines £ and N on P through O such thata = Ry0oRz and B = Raro R4,
sothat Boa = (Ry o Rum) o (RaroRe) = Rar o Re. Using Theorem ROT. 12
and Remark NEUT.1.3 we get
aofB=RmoRr)o(RNyoRM)=Rmo(ReoRxoRM)
Rmo(RmoRnoRL) = (RamoRm)o(RyoRe)
10(RyoRe) =RnoRe=poa. 0

The following theorem shows that a rotation is what we think of as a “rigid

motion.”

Theorem ROT.22. Let O, A, and B be points in the neutral plane P, where A # O
and B # O, and let « be a rotation about O. Then ZAOa(A) =~ /BO«a(B).

Proof By Theorem ROT.15 there exists a rotation B such that OB B ([0-)A) =
0,3 (A). Then by Theorem NEUT.15(8) and Theorem ROT.21,
P(£AO(a(A))) = £B(A)OB(a(A) = £B(A)Oa(B(A))
= 0B@A)U 006(19(14)) = 0B(A) Ua(0B(A))
— 0B U«(0B) = OBU Oa(B) = /BO«(B). o

Theorem ROT.23. Under composition of mappings the set of rotations of a neutral
plane ‘P about the point O on ‘P, together with the identity mapping 1 is an abelian

group.
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Proof. By Theorem ROT.17 the set of rotations is closed under composition; by
Theorem ROT.18 inverses exist and are rotations; therefore by Bijections forming a
group in Section 1.5, the rotations form a group. By Theorem ROT.21, the group is

abelian. ad

Theorem ROT.24. Let P be a neutral plane, L be a line on P, A and B be distinct
points on L, M = pr(A, L), and N = pr(B, L), then Ryr o Rpm = Rp o Ra.

Proof. By Definition ROT.1, Corollary ROT.5, and Remark NEUT.1.3,
RpoRa= (RyoRe)o(ReoRm)
=(Rxo(ReoRs)oRMm) =Ry oRum. O

Theorem ROT.25. On the neutral plane P, let a be an isometry which has no
fixed points. Then either there exist three distinct lines £, M, N on P such that
o = Rz o Ry o Ry or there exist distinct lines £ and M’ on P such that a =
Rz oRa.

Proof. Let Q be any point on P. Then a(Q) ;é Q. Let L be the line of symmetry
(i.e., the perpendicular bisecting line of Qa(Q) (cf Theorem NEUT.52(A)). Since
Re(a(Q)) = Q, Qs a fixed point of R o . If R o @ has no fixed point different
from Q, then by Theorem ROT.16 R~ o « is a rotation of P about Q and there exist
distinct lines M and A which are concurrent at Q such that R o = Raq 0 R
Thus in this case « = R, 0o Ry o Ry . If R o« has a fixed point G distinct from
Q but has no fixed point off of (Q_G), then by Theorem NEUT.37 R o = R<Q—>G SO

if M’ = OG, then & = Ry o Ry, If Ry o @ had a fixed point off of OG, then by
Theorem NEUT.24, R o @ would be the identity mapping : and o would be equal
to R~ and this would contradict the fact that o has no fixed points. O

Theorem ROT.26 (Classification of isometries). Let 6 be an isometry of the

neutral plane P, then one and only one of the following statements is true:

(1) 6 is the identity mapping 1 of P onto itself.
(2) There exists a line H of P such that 0 = R.
(3) There exist distinct lines J and IKC on P such that § = Ry o R 7.
(4) There exist distinct lines £, M, and N on P such that
0 =RyoRmoR,.

Proof. 1f 6 has three noncollinear fixed points, then by Theorem NEUT.24 6 = 1.
If 6 has two distinct fixed points A and B but no fixed points off of fA_B), then by
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Theorem NEUT.37 o = Rﬁ. If 6 has one and only one fixed point O on P, then
by Theorem ROT.16 there exist distinct lines 7 and C such that 7 o K = {O} and
0 = Rx o R 7. If 6 has no fixed point then by Theorem ROT.25, either there exist
distinct lines £, M, such that 8 = R ¢ o R, or there exist three distinct lines L,
M, and N on P such that § = R o Ry o R.. The proof of Theorem ROT.25

makes clear the fact that these cases are mutually exclusive. O

Theorem ROT.27. Let P be a neutral plane, O be a point on P, and A, B, and C
be points on P such that either (1) A-O-B and <0_)C 1 <O_A>, or(2) A, O, and B are
noncollinear and C € ins ZAOB and ZAOC =~ Z/COB; let « and B be rotations of
‘P about O such that a(br)A) = FOrC> and ﬂ(brC')) = %,’ then o = B.

Proof. Since « is an isometry, «(ZAOC) = ZLa(A)a(0O)a(C) = La(A)Ou(C) =
ZCOw/(C). By definition of congruence ZAOC = ZCO«(C); congruence is an
equivalence relation (Theorem NEUT.14) so ZCOa(C) = ZCOB.

If A—O-B, by Definition IB.11 A and B are on opposite sides of <O—C)‘; if C €
ins ZAOB, this is true by Corollary PSH.39.2. By Theorem ROT.15, o = R(o_c) 03715
where L is the line of symmetry of ZAOC. Then R.(C) is a point on OA,
which by Theorem IB.14 lies entirely on the A-side of 0(_>C; by Property (B) of
Definition NEUT.1, a(C) = R<O—C>(R[; (0)) is on the side of <O—C)‘ opposite to A,
that is, the B-side.

Then by Theorem NEUT.36 0B = bT(a = a(brc)‘). By hypothesis 0B =
,B(brC)) By the uniqueness part of Theorem ROT.15(A), « = B. O

Theorem ROT.28 (Existence of square root). Let P be a neutral plane, O be a
point on P, and let a be a rotation of P about O. There exists a rotation 8 of P
about O such that

(A) BoB =« and
(B) when « is not a point reflection, for every X € P\ {0}, ﬂ(ﬁ)() is the bisecting
ray of ZXOw(X).

Proof. (A) In this proof, all rotations will be rotations about the point O. Let A be
a point on P distinct from O and let B = «(A). There are two possibilities
(see Exercise ROT.2). Either « is the point reflection R, or A, ®(A), and O are
noncollinear. If « = Ry, let C be a point such that ZAOC is right and ZCOB
isright. If @ # Ry, let C be a point such that bT’ is the bisecting ray of ZAOB.
By Theorem ROT.15 let 8 be the rotation such that ﬁ(bﬁA) = brC'); let § be the
rotation such that & ([078) = % Then (§ o ﬂ)(br)A) = %; by Theorem ROT.27
8§ =pB.Hence foff =a.



10.2 Exercises for rotations 247

(B) Since I:O—)C is the bisecting ray of ZAOB, by Theorem NEUT.39 ZAOC =
ZCOB. Again using Theorem ROT.15, let y be the rotation such that y(brA)) =
OX. Without loss of generality we may assume that y(A) = X and C = S(A).
Then

y(B) = y(@(A4)) = a(y(A)) = «(X) and

y(€) = y(B(A)) = B(y(4)) = B(X).
Therefore by Theorem NEUT.13 y(ZLAOC) = y(£COB). By Theo-
rem NEUT.15(8)

ZXOB(X) = Ly(A)0y(C) = y(£LAOC)

>~ y(LCOB) = Ly(C)Oy(B) = £LB(X)O0a(X).
Since C € ins ZAOB, by Theorem NEUT.15(11)
B(X) = y(C) € ins Ly(A)Oy(B) = ins £LXOa(X)

and by Theorem NEUT.39, W is the angle bisector of ZXO« (X). |

10.2 Exercises for rotations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise ROT.1*. Let P be a neutral plane.

(A) If O is a point on P, and R is the point reflection about O, then Ry (0) = O
and RpoRp = 1.

(B) If £ and M are distinct lines on P and if « = Raq0R ., thena™ = R oR .

(C) If G and H are points on P and if § = Ry o Rg, then 07! = R o Ry.

Exercise ROT.2*. Let P be a neutral plane, O be a point on P, and « be a rotation
of P about O which is not a point reflection. If X is any member of P \ {0}, then X,

a(X), and O are noncollinear.

Exercise ROT.3*. Let P be a neutral plane, O be a point on P, and « and § be
rotations of P about O. If X is any member of P \ {O}, then Ou (Xj ~ bﬁ (Xj.

The following exercise shows that rotations (and half rotations, which we will
meet in Chapter 13) behave as we expect them to—all points “rotate in the same

direction.”
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Exercise ROT.4*. Let O, X, and Y be noncollinear points on the neutral plane P
and let o be a rotation of P about O which is not a point reflection; we note that o

cannot be the identity, as was proved in Theorem ROT.2.

(A1) « rotates X and Y through congruent angles; that is, ZXOx(X) =~ ZYOu(Y).
(A2) Let o and B be rotations of PP about O which are not point reflections. Let X
be a point of P \ {O} such that
a(X) € ins ZXO(B o a(X)).
Then for any point U € P \ {0},
ZUOa(U) = £XO0a(X);
Za(U)O(B o a)(U) = La(X)O(p o a)(X);
ZUO(B o a)(U) = £XO(B o a)(U); and
a(U) € ins ZUO(B o a)(U).

(B) It cannot be true that both «(X) € Y-side O<_)>( and «(Y) € X-side (0_)>’

(C) It cannot be true that both «(X) is on the side of OX opposite Y and a(Y) is
on the side of 0<_I)/ opposite X.

(D) a(X) € Y-side of OX ift a(Y) is on the side of 1% opposite X; equivalently,
a(Y) € X-side of 1% iff «(X) is on the side of 0X opposite Y.

(E) Let W = «(X), and Z = «(Y); let E be a point on the bisecting ray of
ZXOW and F apoint on the bisecting ray of ZYOZ. Then ZEOX =~ /EOW =
LFOY = /FOZ.

(F) E € Y-side of 0<_))( iff F is on the side of 0(_1)/ opposite X; equivalently,
F € X-side of O iff E is on the side of (0_))( opposite Y.

Exercise ROT.5*. Let P be a neutral plane, O be a point on P, £ and M be lines
on P through O which are not perpendicular to each other, Q and R be points on £
such that O—O-R, S and T be points on M such that S—O-T and p be the rotation
R o R about O. If we choose the notation (using Theorem NEUT.82) so that
ZQO0S is acute, then p(Q) is the member of i ins LROS such that Q and p(Q) are on
opposite sides of M, ZSOp(Q) = ZQOS and Op(Q)

Exercise ROT.6*. Let A, B, and C be noncollinear points on the neutral plane P
and let £ = ;ﬁ?), M = ;\_C)‘, and N = l(?_C)’ Then there exists a unique point G and a
unique line J suchthat C € J and Ryy o Ry o R = Ry o Re.

Exercise ROT.7*. Let A and B be distinct points on the neutral plane P. If M is the
midpoint of 1[47153’ then Ry (A) =
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Exercise ROT.8*. Let P be a neutral plane, o be an isometry of P such that « has
one and only one fixed point O, and for every member X of P \ {0}, X-O-a(X),
and OX ~ Oa (X) Then « is the point reflection R .

Exercise ROT.9*. Let P be a neutral plane, O be a point on P, p be the reflection
of P about O, £ be a line on P through O which is ordered according to

Definition ORD.1, and let X and Y be points on £. Then X < Y iff p(¥) < p(X).

Exercise ROT.10*. Let P be a neutral plane, A, B, and O noncollinear points on P.
Then there exists a unique rotation « of PP about O such that ZAOx(A) = ZAOB.
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Abstract: This chapter combines the axioms of neutral geometry (incidence,
betweenness, plane separation, and reflection) with the strong form of the Parallel
Axiom to arrive at Euclidean geometry. It explores many well-known elementary
results from plane geometry involving parallel lines, perpendicularity, adjacent and

complementary angles, parallelograms and rectangles.

We have completed the development possible without a parallel axiom, either
Axiom PS or PW, and now invoke Axiom PS to arrive at Euclidean geometry. Since
Euclidean geometry includes Pasch and neutral geometry, we may now use any
result from any previous chapter of the book.

The key theorems in this chapter are Theorems EUC.11, EUC.17, and EUC.22.
Several theorems in this chapter are marked with double asterisks (for instance,
Theorem EUC.3**). We encourage the reader to try to construct proofs for these

before reading the proofs we give.
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It should be noted that in the presence of Property PE (which was proved as
Theorem NEUT.48(B)), Axiom PW is equivalent to Axiom PS. For the reader’s

convenience we repeat Axiom PS, which was originally stated in Chapter 2.

Axiom PS (Strong Form of the Parallel Axiom). Given aline £ and a point P not
belonging to L, there exists exactly one line M such that P € M and L || M. This
line is denoted par(P, £).

Theorem EUC.2 and Theorem EUC.3 below use Exercises IP.2 and IP.4 which
we re-state here.

Exercise IP.2. Let £, M, and N be distinct lines contained in a single plane.
Then (A) if £ || M and M || N, then £ || NV, and (B) if £ intersects M, then N/
must intersect either £ or M.

Exercise IP4. Let £, M, and N be distinct lines in a plane £ such that £ || M.
Thenif LNN # @G, MNN # @.

11.1 Definitions and theorems for Euclidean geometry

Definition EUC.1. Euclidean space is IB space in which Axiom PS holds and in
which every plane is a neutral plane. Every such plane is a Euclidean plane, and
the resulting geometry is Euclidean geometry.

Theorem EUC.2. Let A, B, and C be noncollinear points in a Euclidean plane E,
and let P € ins ZBAC. Then every line L containing P must intersect ZBAC (cf
Theorem PSH.44).

Proof. By Exercise IP.2(B) L intersects one or the other of the lines 1<4_B> or 1(4_)C If for
some point Q, {Q} = LN /ﬁ, either Q € AB or Q—-A-B (from Theorem PSH.15). If
0O < AB, then Q € /BAC. If 0—A-B, then by Theorem IB.14 QP is a subset of the
C-side of fA_B), because P, being in ins ZBAC, is on that side of fA_B) Q and P are on
opposite sides of 1(4_>C because P € ins ZBAC and therefore is on the B-side of 1(4_C>' .
By Theorem PSH.12 there exists a point Q' such that {Q'} = Acn jQ_I)J and Q' is on
the C-side of 1<4_B) Hence Q' € 24_6", so L intersects ZBAC. Similar reasoning holds
if £ intersects 1<4_>C . o

Theorem EUC.3**. If L, M, and N are lines on the Euclidean plane P such that
L|Mand L LN, then M L N.
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Proof. By Definition NEUT.29 and Theorem NEUT.44, £ and N intersect at a
point B. By Exercise IP.4 there exists a point A such that M N A/ = {A}. By
Theorem NEUT.46(A) there exists a unique line M’ such that A € M’ and
M’ L N.By Theorem NEUT.47(A), M’ | L. By Axiom PS, M’ = M, so that
MLN. O

Corollary EUC.3.1. Let R be the line reflection over M, and let L be a fixed
line for Raq. Then N || L iff N is a fixed line for R aq.

Proof. The proof is Exercise EUC.7. O

Corollary EUCA4. Let £, M, and N be distinct lines on the Euclidean plane P
such that M and N intersect at a point O, M and N are not perpendicular to each
other, and L 1 N, then L and M intersect at a point Q. That is to say, if two lines
intersect but are not perpendicular, then a line perpendicular to one of them must

intersect the other.

Proof. The proof is Exercise EUC.1. O

Definition EUC.5. (A) Two segments D and & on the Euclidean plane P are
parallel iff there exist lines £ and M on P which are parallel, and D C L
and £ C M.

(B) A quadrilateral is a parallelogram iff its opposite edges are parallel.
Theorem EUC.6. A parallelogram is a rotund quadrilateral.

Proof. This follows immediately from Theorem PSH.53.1; see also Exer-
cise EUC.2. O

Theorem EUC.7**. Let 7, K, L, and M be distinct lines on the Euclidean plane
P suchthat J | K, L L J, and M L K, then L || M.

Proof. By Corollary EUC.4, £ L K; by Theorem NEUT.47(A), L || M. |

Corollary EUC.8. Let J, KC, L, and M be distinct lines on the Euclidean plane P
such that L and M intersect at the point O, L 1. J, and M L K, then J and K

intersect at a point Q.

Proof. The proof is Exercise EUC.3. O
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Theorem EUC.9**. Let A, B, and C be noncollinear points on the Euclidean plane
P and let L, M, and N be the lines of symmetry (i.e., the perpendicular bisecting

lines) of ?TE, E, and ﬁ, respectively. Then L, M, and N are concurrent at a
point O.

<> <~ <~ <~
Proof. L 1. AB and M L AC and AB intersects AC; by Corollary EUC.8, £ and
M intersect at a point O. The conclusion follows from Exercise NEUT.68. O

Definition EUC.10. The point O of Theorem EUC.9 is the circumcenter of
AABC.

Fig. 11.1 For
Theorem EUC.11. G

Theorem EUC.11 (Congruence of alternate angles of parallel lines). Ler £ and
M be distinct lines on the Euclidean plane P, and let A, B, C, D, E, F, G, and H be

points on the plane such that

(A) D, E, and F are on M and E-D-F;

(B) A, B, and C are on L and B-A-C;

(C) G and H are on zﬁ and G-A-D-H; and
(D) E and B are on the same side offrl)).

Then the following statements are equivalent:

() LM,

(2) /DAB =~ /ADF,

(3) ZDAC =~ /ADE,

(4) LGAC =~ /ADF,

(5) ZGAB =~ ZHDF, and
(6) LGAB =~ /ADE.
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Proof. See Figure 11.1. We will proceed by proving statements (1) and (2)
equivalent and then showing in turn that statements (3), (4), (5), and (6) are

equivalent to (2).

(A) ((2) = (1)) cf Theorem NEUT.87.

(B) ((1) = (2)) By Theorem NEUT.68 (Angle Construction) there exists a point
B’ on the E-side of AB such that ZDAB' =~ /ADF. By part (A) ﬁ | M.
By Axiom PS, ;@ = L.

(©) () < (3)) Since £LDAB and ZDAC are supplementary and ZADE and
ZADF are supplementary, (2) <= (3) is a consequence of Theorem NEUT.43.

D) ((2) < 4)) Since £LDAB and ZGAC are vertical angles, this is a conse-
quence of Theorem NEUT.42.

(E) ((2) <= (5)) Since ZDAB and ZGAB are supplements, and ZADF and
ZHDF are supplements, this is a consequence of Theorem NEUT.43.

(F) ((2) < (6)) Since ZGAB and ZDAB are supplements, ZADE and ZADF are
supplements, this is a consequence of Theorem NEUT.43. O

Theorem EUC.12**. (A) If a quadrilateral DABCD is a parallelogram, then its
opposite edges are congruent and its opposite angles are congruent.

(B) If a quadrilateral DABCD has a pair of opposite edges which are parallel (that
is, the lines containing those edges are parallel) and congruent, then it is a

parallelogram.

Proof. (A) OABCD 1is a trapezoid, and by Theorem PSH.53.1, is rotund;
by Theorem PSH.54(A), its diagonals AC and BD intersect at some point O; by
Theorem PSH.12 B and D are on opposite sides of AC. Since AB I C(’_)D, by
Theorem EUC.11 ZBAC = ZACD. Since AD || BC, by Theorem EUC.11
/ACB = /CAD. By Theorem NEUT.65 (AEA) AB =~ CD, AD =~ BC, and
ZADC = ZABC. A similar proof (using the diagonal BD instead of ETC]‘) shows
that ZBAD =~ /BCD.

(B) OABCD is a trapezoid; if we assume that AB I (C_l)), we can apply the first
part of the proof for part (A) to get ZBAC =~ ZACD. Assuming also that
AB = [CiDj, we may apply Theorem NEUT.64 (EAE) to get ZCAD = ZACB.
By Theorem EUC.11 AD I BC. By Definition EUC.5(B) OABCD is a
parallelogram. If AD I BC , a similar proof will apply. ]

Theorem EUC.13. A quadrilateral is a parallelogram iff there exists a point O
which is the midpoint of both its diagonals.
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Proof. (A) Let OABCD be a parallelogram. It follows from Theorem EUC.6 that
OABCD is rotund. By Theorem PSH.54(A) there exists a point O such that
21“60?3?5 {0}. By Theorem EUC.12 AB = CD. By Theorem NEUT.65
(AEA) AO CO and BO DO By Definition NEUT.3(C) O is the midpoint
of AC and of BD

(B) Let DABCD be a quadrilateral for which there exists a point O such that O is the
midpoint of IELTC]’ and of % By Theorem PSH.54(A) OABCD is rotund. By Def-
inition NEUT.3(C) OA = OC and OB 2 OD. By Theorem NEUT.42 (Vertical
Angles) ZAOB = ZDOC and ZAOD = ZBOC. By Theorem NEUT.64 (EAE)
AB = CD and AD = BC. Also by Theorem NEUT.64 (EAE) ZOAB =~ Z/OCD
and ZOBA = /ODC. By Theorem EUC.11 AB | DC and AD | BC.
By Definition EUC.5(B) OABCD is a parallelogram. O

Definition EUC.14. (A) The center of a parallelogram is the point of intersection
of its diagonals.

(B) The angles of a quadrilateral DABCD are ZDAB, ZABC, ZBCD, and ZCDA.
Two angles of a quadrilateral are adjacent iff their corners are endpoints of an
edge of the quadrilateral.

(C) A quadrilateral ABCD is a rectangle iff of each the angles Z/BAD, ZADC,
/ZDCB, and ZCBA is right.

Remark EUC.15. (A) If OABCD is a rectangle, it follows from Theo-
rem NEUT.47(A) that AD I BC and AB I D so by Definition EUC.5(B)
OABCD is a parallelogram.

(B) For any rectangle DJABCD, by Theorem EUC. 12AB ~ [CD] and AD >~ %71 , that
is to say, opposite edges are congruent.

(C) Any rectangle is completely determined by three of its corners. That is, if
OABCD and OABCD' are rectangles, then D = D’. For both A(_)B 1 ﬁ) and
1(4—3) 1 1<4—D)’ so that by Theorem NEUT.47(B) zﬁ = 1<4—D)’ ; similarly, C<’_>D = &3’;
by Exercise 1.1, D = D'.

Theorem EUC.16**. Let o be a belineation of the Euclidean plane P and let
OABCD be a parallelogram on P. Then

(1) «(OABCD) is a parallelogram on P, and
(2) «(0ABCD) = Oa(A)a(B)a(C)a(D), where a(A)a(B) || a(C)a(D) and
a(@)a(D) || a(B)a(C).
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Proof. In Chapter 7 Theorem COBE.5(13) we showed that if « is a belineation,

a(OABCD) is a quadrilateral. Since OABCD is a parallelogram 1(4_B> I C(_)D
<> <> <> <> <> <«

and AD || BC. By Theorem CAP.3 «(AB) | «(CD) and a(AD) || a(BC).
«—>

By Theorem COBE.5(13) «(OABCD) = Oa(A)a(B)a(C)a(D). So a(A)x(B) ||

a(C)a(D) and a(A)x(D) || a(B)x(C). a

We are now ready to prove an important theorem in Euclidean geometry
involving every collineation of the plane P. Recall that par(C, M) denotes the line

through a point C which is parallel to the line M.

Theorem EUC.17 (Collineations preserve midpoints). Let A and C be distinct
pomts on the Euclidean plane P, ¢ be a collmeanon of P, and M be the midpoint
ofAC then ¢ (M) is the midpoint ong(A)go(C)

Proof. Let B be any point off of AC, L = par(C, /(HB)), and M = par(A,(B_C)‘).
By Exercise IP4, £ and M intersect at a point D. Since AB | CD and
BC I /(E)), ABNCD = @ and BCNAD = @, so that by Definition PSH.31,
OABCD = fﬁ U% U [CiD] U rDﬁf; is a quadrilateral. By Definition EUC.5(B) it is
a parallelogram, hence by Theorem EUC.6, it is rotund. By Theorem EUC.13, the
diagonals EFC[’ and %?5 intersect at the midpoint of both diagonals, that is, at the
point M.
Using Theorem CAP.1, we get

<> «—> <—> <>
©(AB) = ¢(A)p(B), (DC) = ¢p(D)¢p(C),
<> <>
90(;7?) = ¢(A)p(C), and w(B<—I5) = ¢(B)p(D).

By Theorem CAP.3,

p(A)p(B) || ¢(D)¢(C) and
p(A)p(D) || p(B)p(C),

hence these pairs of lines do not intersect. Then

o(A)p(B) U p(B)p(C) U p(C)p(D) U p(D)p(A)

is a parallelogram by Definition EUC.5(B), and by Theorem EUC.6, it is rotund.
Notice that here all we are claiming is that the closed segments whose endpoints

are 9(A), ¢(B), ¢(C), and ¢(D) form a parallelogram; but this parallelogram is not

necessarily the same as ¢(JABCD), and we are not invoking Theorem EUC.16.
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Therefore by Theorem PSH.54(A), 9(4)¢(C) N @(B)p(D) = (N} which by
Theorem EUC.13 is the midpoint of ¢(A)¢(C). By Theorem CAP.1

9(A)e(B) N ¢(B)p(D) = {p(M)}
so that N = ¢(M), by Exercise I.1. Thus ¢(M) is the midpoint of Eo(A)go(Ci. O

Corollary EUC 17 1 Let A, B, and C be points on the Euclldean plane P such that
A-B—C and AB = BC and let @ be a collineation of P; then (p(A)go(B) (B)(/)(C)

Proof. Since B is the midpoint of R (cf Definition NEUT.3(C)), by Theorem
EUC.17, ¢(B) is the midpoint of ¢(A)¢(C). Hence ¢(A)¢(B) = ¢(B)¢(C). O

Corollary EUC.17.2. Let A, B, and M be points on the Euclidean plane P, M the
midpoint of AB, and let ¢ be a collineation of P. Then if A and B are fixed points of
@, M is a fixed point of ¢.

Proof. By Deﬁmtlon NEUT 3(0C), A—M—B and AM ~ % Then by Corol-
lary EUC.17.1, A(p(M) ga(A)(p(M) (p(M)(p(B) = (p(M)B and A—p(M)-B.
Again by Definition NEUT.3(C), ¢(M) is the midpoint of AB and by uniqueness of
midpoints (cf Theorem NEUT.50) (M) = M. O

Corollary EUC.17.3. Let A, B, and M be points on the Euclidean plane P, M the
midpoint ofﬁ, and let ¢ be a belineation of P. Then if A and M are fixed points of
@, B is a fixed point of ¢.

Proof. By Definition NEUT3(C), AM = MB; by Corollary EUC.17.1, AM =
(p(A)(p(M) ~ (p(M)(p(B) = Mgp(B) Then by Definition NEUT.3(C), M is the
midpoint of A(p(B) and M(p(B) ~ AM MB. Since A—M—B (p(A)—(p(M)—(p(B)
and thus A—-M—¢(B) (because ¢ is a belineation) and ¢(B) € MB By Property R.4
of Definition NEUT.2, ¢(B) = B. O

Theorem EUC.18** (Criteria for a rectangle (A)). Let DABCD be a quadrilat-
eral such that Iﬁ L AT) and <A_§ 1 B<_C)' If any of the conditions (A) through (D)
hold, then OABCD is a rectangle.

> <>
(A) AB || CD;

< <>
(B) AD L CD (that is, the quadrilateral has three right angles);
(C) AD =~ BC; or
(D) AB =~ CD.
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> <>
Proof. By Theorem NEUT.47(A) AD || BC.

(A) By Definition EUC.5(B) OABCD is a parallelogram. By Theorem EUC.12(A)
its opposite angles are congruent. By hypothesis, ZABC and ZBAD are right
angles, hence by Corollary NEUT.44.2 all the angles of OABCD are right
angles. By Definition EUC.14(C) OABCD is a rectangle.

(B) By Theorem NEUT.47(A) AB || DC. By part (A), DABCD is a rectangle.

(C) By Theorem EUC.12(B) OABCD is a parallelogram and hence by Theo-
rem EUC.12(A) its opposite angles are congruent. The rest of the proof is the
same as in part (A).

(D) Let C’ be a point on BC such that D<_C)’ I ABand C' # C. By part (A) DABC’D
is a rectangle and ZDC'B is a rrght angle that is, DC 1 BC = BC. By
Theorem EUC.12(A), DC AB ~ DC’ By Theorem NEUT. 40(A) (Pons
Asinorum) Z/DCC' =~ /DC'C; that is, both DC 1 BC and DC/ 1 BC. But
this contradicts Theorem NEUT.48(A). Therefore C' = C, be I zﬁ, and by
part (A) OABCD is a rectangle. O

Theorem EUC.19** (Criteria for a rectangle (B)). If one of the angles of a
parallelogram OABCD is right, then DABCD is a rectangle.

Proof. Without loss of generality, we can select any angle to be a right angle. Let
ZDAB be a right angle; by Theorem NEUT.66 and Theorem EUC.12(A) ZBCD is
. R <> <> <> <>

right. Since AD L AB and AD || BC by Theorem EUC.3 AB L BC so that ZABC

is right. By Theorem EUC.18(B), DABCD is a rectangle. O

Recall from Definition NEUT.99(C) that the altitude of AABC through the point
Aispr(A, B_C)

Theorem EUC.20** (Concurrence of altitudes of a triangle). Ler AABC be a
triangle on the Euclidean plane P. Then pr (A, B(_C) pr (B, ;\_C)') and pr (C, ﬁ) are

concurrent at a point O, i.e., the altitudes of a triangle are concurrent at a point O.

Proof. Let L = par (A, B_C), M = par (B,1(4_C), and NV = par(C, 1(4_)3). By
Theorem IP.5 points A’, B’, and C’ exist such that M NN = {A'}, LON = {B'},
and L N M = {C’}. By Definition EUC.5(B) both quadrilaterals DAB’ CB and
OAC'BC are parallelograms, so that by Theorem EUC 12(A) AB' ~ BC ~ AC7
Then by Definition NEUT.3(C) A is the midpoint of B’C’ Similar arguments show
that B is the midpoint of A'C and Cis the midpoint of A'B. Thus pr(A, BC) is the
perpendicular bisecting line of B’(_C)’ , pr (B, ;\_C) is the perpendicular bisecting line of
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A’C’, and pr (C, AB) is the perpendicular bisecting line of A’B’. By Theorem EUC.9
L, M, and N are concurrent at a point O. O

Definition EUC.21. The point O of Theorem EUC.20 is the orthocenter of
AABC.

Fig. 11.2 For
Theorem EUC.22.

Theorem EUC.22 (Parallel projection preserves midpoints). Let A, B, and C be
noncollinear points on the Euclidean plane P. Let M be the midpoint ofﬁ and
L = par(M, l<?_6)‘) Then L and ;\_C)’ intersect at a point N which is the midpoint
of 1[47(%

Proof. See Figure 11.2. By Theorem PSH.6 we may invoke the Postulate of Pasch.
Therefore, since L intersects AB it must intersect exactly one of AC BC or {C }.
The last two possibilities are ruled out because L || BC Hence L intersects AC at
some point N.

Using Axiom PS let M = par (N, ﬁ); then by the same kind of reasoning as for
the point N, M intersects I(E_C)' at a point Q between B and C. By Definition EUC.5(B)
OBMNQ is a parallelogram. We leave it to the reader (as Exercise EUC.4) to prove
that ANQC 2 AAMN, so that AN 2 CN, proving (cf Definition NEUT.3(C)) that
N is the midpoint of 1[4761‘ O

Corollary EUC.23. Let P be a Euclidean plane and A, B, and C be noncollinear

3 £ > <>
points on P. If M is the midpoint of AB and N is the midpoint of AC, then MN || BC.
Moreover, if L is the midpoint ofl[f‘, then BL =~ W

Proof. The proof is Exercise EUC.S5. O

Corollary EUC.24**. Let OABCD be a parallelogram on the Euclidean plane P.
If M is the midpoint of AB and O is the center of the parallelogram, then 1\<4—0> and
ﬁ‘ intersect at the midpoint N of <D_C)‘
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Proof. Since M is the midpoint of AB and O is the midpoint of ;TC]' (cf Theo-
rem EUC.13), by Corollary EUC.23 OM | BC. By Theorem EUC.22 N is the
midpoint of DC. O

Corollary EUC.25. LetA B, and C be noncollinear points on the Euclidean plane
P, F be the midpomt ofAB G the midpoint ofAC H the midpoint of BC and M the
midpoint of F G Then M is the midpoint of AH

Proof. By Corollary EUC.23 A I HG and FH I AG. By Deﬁnmon EUC.5(B)
OAGHF is a parallelogram. By Theorem EUC.13 FG and AH intersect at their

common midpoint. O

Definition EUC.26. The median of triangle ABC through A is the line AM , where
M is the midpoint of BC.

Theorem EUC.27 (Concurrence of medians of a triangle). Ler A, B, and C be
noncollinear points on the Euclidean plane P, F the midpoint of 1[473 G the midpoint
of AC H the mldpomt of BC O the poznt of intersection of BG and CF I the
midpoint of BO and J the midpoint of CO Then OIFGJ is a parallelogram and
A, O, and H are collinear. That is to say, the medians of a triangle on a Euclidean

plane intersect at a point inside the triangle.

Proof. Applying Corollary EUC.23 to AABC and also to AOBC we find that I%
and (ﬁ are both parallel to I(Q_C . Applying Corollary EUC.23 to AAOC and to AAOB
we have GJ and FI are both parallel to ;\_0) Therefore by Theorem IP.6 the opposite
edges of OGF1J are parallel and by Definition EUC.5(B), OGF1J is a parallelogram.
Let M be the midpoint of % and N be the midpoint of %73 . Note that O is the center
of OGF1J, so that by Corollary EUC.24, M, O, and N are collinear.

Applying Corollary EUC.25 to both AABC and AOBC, we find that A, M,
N, and H are collinear. 1<4—I‘)I is the median of AABC through A. Since Iji’_([? and
]C_Ig are subsets of the inside of AABC, O belongs to ins AABC. This completes
the proof. O

Definition EUC.28. The point of intersection of the medians of a triangle is the

centroid of the triangle.
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Theorem EUC.29** (Fixed points of a belineation). Let ¢ be a belineation of the
Euclidean plane P, A and B be distinct fixed points of 2 M be the mldpomt ofAB

and C and D be the points such that C-A-B-D and CA ~ BD ~ AB, then M, C,
and D are fixed points of ¢.

Proof. By Corollary EUC.17.2, M is a fixed point for ¢. Since B is the midpoint of
1[47D], and A is the midpoint of % by Corollary EUC.17.3 both C and D are fixed
points for ¢. O

See also Chapter 20 “Belineations of a Euclidean/LUB plan” for additional
results related to Theorem EUC.29.

Definition EUC.30. Let ZBAC and ZDEF be acute angles on a Euclidean plane
P. Each of these angles is a complement of the other (and they are said to be
complementary angles) iff there exist noncollinear points G, H, I, and J such that
I € ins /GHJ, /BAC =~ /GHI, /DEF =~ /JHI, and ZGHJ is right.

Theorem EUC.31. Let A, B, and C be noncollinear points on the Euclidean plane
‘P such that ZACB is right, then ZABC and ZBAC are complements of each other.

Proof. Let L = pr(B, l<?_C)‘) and M = pr(A,;l_C)‘). By Theorem NEUT.44, B<_C)‘ 1 A<_C)‘,
and by Theorem NEUT.47(A), M || BCand £ I AC. By Theorem NEUT.44 there
exists a point D such that £ N M = {D} and by Theorem EUC.3 £ L M, so that
ZDBC is aright angle.

By Theorem EUC.11, ZDBA =~ ZCAB. Since opposite sides of the quadrilateral
OACBD are parallel, it is rotund, and by Theorem PSH.54(B), A € ins ZDBC. Then
by Definition EUC.30, ZABC and ZBAC are complementary. O

Theorem EUC.32. Complements of acute congruent angles are congruent.

Proof. The proof is left to the reader as Exercise EUC.6. O
Definition EUC.33. A triple of angles {£/BAC, ZDEF, ZGHI} on the Euclidean
plane P is complete iff there exists a line £ on P, points Q, O, and R on £ with

Q-O-R, and distinct points S and 7 on a side of £ such that ZQ0OS =~ Z/BAC,
/SOT =~ /DEF, and /GHI ~ /ROT.

Theorem EUC.34. Let A, B, and C be noncollinear points on the Euclidean plane
‘P, then the triple of angles of AABC is complete.
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Fig. 11.3 For
Theorem EUC.34.
Q A R
B 1 C
L

Proof. See Figure 11.3. Let £ = pr(A,B<_C)’) and let Q and R be points on £ such
that Q is on the side of AB opposite the C-side, and R is on the C-side of A(_)B By
Axiom PSA Q-A-R. By Theorem EUC.11 ZABC =~ /BAQ, and ZACB = ZCAR.
By Definition EUC.33 {£BAC, ZABC, ZACB} is complete. O

Suppose a triangle 7 has two angles that are congruent to two angles of another
triangle S. Theorem EUC.34 suggests that the third angle of each of these triangles

must also be congruent to each other. The next theorem proves this.

Theorem EUC.35. On a Euclidean plane, let A, B, and C be noncollinear points
and A’, B, and C' be noncollinear points. If ZABC =~ /A'B'C' and /BAC =
/B'A'C, then /ACB = /A'C'B'.

Proof. By Theorem NEUT.67 (segment construction) there exist points A” € BA
and C”’ € %TC)’ such that W o~ ﬁ and E’ﬁ =~ SB’HC’ Since ZABC =~ /A’B'C’,
by Theorem NEUT.64 (EAE) AA’B'C’ =~ AA”BC” and corresponding angles are
congruent. That is, ZBA"C" ~ /B'A’C’ and ZA"C"B =~ /A'C'B'.

Then /BAC =~ /B'A'C’ =~ /BA”C”. Using the equivalence of (1) and (4) in
Theorem EUC.11, we have ZTC/)’ I AC. Again by Theorem EUC.11, ZACB =~
/A"C"B =~ LA'C'B. O

11.2 Exercises for Euclidean geometry

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise EUC.1*. Prove Corollary EUC.4, using Theorem EUC.3.


www.springer.com
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Exercise EUC.2*. Using Definition PSH.31 and Theorem PSH.12, prove Theo-

rem EUC.6: A parallelogram is a rotund quadrilateral.
Exercise EUC.3*. Prove Corollary EUC.8.

Exercise EUC.4*. Refer to the statement and proof of Theorem EUC.22; show that
ANQC = AAMN and AN = CN, so that N is the midpoint of AC, thus completing
that proof.

Exercise EUC.5*. Prove Corollary EUC.23.

Exercise EUC.6*. Prove Theorem EUC.32: Complements of acute congruent

angles are congruent.

Exercise EUC.7*. Prove Corollary EUC.3.1: let R o be the line reflection over
M, and let £ be a fixed line for R p(. Then N || £ iff N is a fixed line for R o4.



Chapter 12
Isometries of a Euclidean Plane (ISM)

Acronym: ISM
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New Terms Defined: glide reflection

Abstract: This chapter gives a complete classification of isometries on a Euclidean
plane, proves a technical theorem to be used later to develop the properties of

dilations, and describes a method for constructing a translation with a given action.

Until now, we have studied isometries mainly in the context of neutral geometry,
where they were defined. In Euclidean geometry, we can give a complete clas-
sification of isometries; we do this in Theorem ISM.17. Theorem ISM.19 is the
technical theorem referred to in the abstract, which will be used in the proof of
the properties of half-rotations, which, in turn, are used in Chapter 13 to prove
properties of dilations (cf Theorems DLN.4 and DLN.7).

In this chapter we will loosely follow J. Diller and J. Boczeck, in Euclidean
Planes, Chapter 4 in Fundamentals of Mathematics, Volume 2, H. Behnke,
F. Bachmann, K. Fladt, and H. Kunle, eds, translated by S. Gould, MIT Press,
1974 [2]. See also F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff,
2nd ed., Grundlehren der mathematischen Wissenschaften, Springer (1973) [1].
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12.1 Properties and classification of isometries

Remark ISM.1. In this chapter a plane is a Euclidean plane, that is, a neutral
plane for which Axiom PS holds. We will occasionally use the notation (from
Definition CAP.10) £ PE M to mean that either £ || M or £L = M.

Remark ISM.2. If « is an isometry of the Euclidean plane, and has three non-
collinear fixed points, then by Theorem NEUT.24 o = 1, the identity mapping of P
onto P.

If o has distinct fixed points A and B, but no fixed point off of ;ﬁ?), then by
Exercise NEUT.6, @ = Rﬁ. Moreover, if « has one and only one fixed point O,
then by Theorem ROT.16, « is a rotation of P about O.

The parallel Axiom PS is required for an adequate treatment of the case where o
has no fixed point, and it is this case we particularly address in this chapter. First we

do some preliminary explorations.

Theorem ISM.3. Let O be a point on the Euclidean plane P, and let R be a point

reflection about O.

(A) O is a fixed point of Ro, which has no other fixed point.

(B) Every line through O is a fixed line of Ro.

(C) IfLisalineand O ¢ L, then Ro(L) || L, so that by Definition CAP.17, Ro is
a dilation of P.

Proof. (A) The proof is Theorem ROT.2.

(B) The proof is Theorem ROT.3.

(C) Let L be any line on P such that O ¢ £ and let X and Y be distinct points on L.
By Theorem ROT.3 X—0-R¢(X), Y-O-Ro(Y), OX = ORo(X), and OF =
EORTY;. By Theorem NEUT.42 (vertical angles) and Theorem NEUT.64
(EAE) ZXYO =~ /Ro(X)Ro(Y)O. By Theorem EUC.11 L || Ro(L). By
Definition CAP.17 R is a dilation of P. O

Theorem ISM.4. (A) Let P be a Euclidean plane and let A and B be distinct points
on P, then R o Ry is a translation of P.

(B) Let P be a Euclidean plane and let L and M be parallel lines on P. Then
o = R o R is a translation of P. Moreover, the set of fixed lines of « is the
set of lines each of which is perpendicular to L (and M).
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(C) If P is a Euclidean plane and if A and B are points on ‘P such that R4y = Rp,
then A = B.

Proof. (A) Let L be any line on P. By Theorem ISM.3 R4 and Rp are dila-
tions of P. By Definition CAP.17 Rs(L) PE £ and (Rp o Ra)(L) =
Rp(Ra(L)) PE R4(L). Therefore by Theorem IP.6 (Rg o R4)(L) PE L.

Let M = pr(A, AB) (cf Definition NEUT.99) and N’ = pr(B, AB). Using
Definition ROT.1, by Theorem ROT.4 R4 = R<—> oRpmand Ry = Ry oRAB,
so that

RBORAIRNORﬁORﬁORMIRNoRM,

By Theorem NEUT.47(A) M || N.

If Ry 0o RmX) =X, Ryv(X) = Ram(X). By Theorem NEUT.48(A) and
Theorem EUC.3, XRx(X) and XR((X) are both perpendicular to both A/
and M. Hence by Theorem NEUT.48(A) these are the same line, which we
will call 7.

Let {C} = J NN and let {D} = J N M. If X is either C or D, X would be
a fixed point for R or R o4 but not both, so that RN(X) #* RM (X). IfX #C
and X # D, then since Ry (X) = Rum(X), XRN(X) = XRM(X) Since
Rr(C) = Cby Theorem NEUT.15(5) we have R M(CX) = m
C’R N(X) so that CX CR N(X) and Ci is therefore the midpoint of XRN(X)
Similarly, D is the midpoint of XR M (X) XR N (X) By Theorem NEUT.50,
C =D;but C € Nand D € M so that N and M are not parallel, a
contradiction. Therefore R oroR a4 has no fixed point, and by Definition CAP.6

is a translation.

(B) Let A be any point on £, let B € M be a point such that ' = AB is
perpendicular to both £ and M. (Here we have used Theorem NEUT.48(A)
and Theorem EUC.3.) By Theorem ROT.24, R o1 0o Rz = Rp o R4, which by
part (A) above, is a translation.

Let J be any line perpendicular to £ (and hence by Theorem EUC.3 to M).
By Theorem NEUT.44 7 is a fixed line of R and R »¢. Hence J is a fixed
line of Ry o Ry.

Note that (Raq 0 Re)(A) = RM(’Rg(A)) = Rm(A) = C, where C is
the point on N such that A-B—C and BC ~ AB. By Theorem CAP.8(B) AC
is a fixed line of Raq o R.. Let J be any fixed line of R aq o R.. By Theo-
rem CAP.8(A) there exists a point Q on P such that 7 = Q(R ¢ o R.(Q)). By
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Theorem CAP.8(C) J || 1<4_C>' . Therefore the set of fixed lines of « = R0 Rp
is{J | Jisaline on P and J HE1(4_C)’} ={J | JisalineonP and 7 L L}.
(C) If R4 = Rp, then B would be a fixed point of R4; by Theorem ISM.3, R4 has

no fixed point other than A; therefore A = B. a
Fig. 12.1 For
Theorem ISM.5.
A M B
L M

Theorem ISML.5. Let P be a Euclidean plane and let A and B be distinct points
on P. Then there exists a unique translation t of P such that t(A) = B. Moreover,

there exist parallel lines L and M on P such that Tt = R0 Re.

Proof. (A: Uniqueness.) This is Theorem CAP.9. See Figure 12.1.

(B: Existence.) Let M be the midpoint of ﬁ (by Theorem NEUT.50), C be the
midpoint of Eﬁi and D be the midpoint of MB. Let L = pr(C, 1(4_B>) and
M = pr(D, AB). By Theorem NEUT47(A) £ | M. Let t = R o Re.
By Theorem NEUT.52 R (A) = M and R (M) = B so that t(A) = B. By
Theorem ISM.4 7 is a translation of P. O

Theorem ISM.6. Let P be a Euclidean plane and let T be a translation of P. Then

T is an isometry of P.

Proof. For any translation t, and any point A in the plane, t(A) is a point on the
plane; once this is specified, Theorem ISM.5 constructs 7 as the composition of two
reflections. Hence 7 is an isometry by Definition NEUT.3(A). O

Theorem ISM.7. Let P be a Euclidean plane.

(A) For every line L on P there exists a translation T of P whose set of fixed lines is
{(J|J <P and J PE L}

(B) If t and o are translations of P, theno ot = t o 0.
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Proof. (A) LetA and B be distinct points on £, M = pr (4, £),and N = pr (B, £).
By Theorem ISM.4 t = R nroR o4 is a translation of P whose set of fixed lines
is{J | JisalineonP and J PE L}.

(B) By part (A) and Theorem CAP.15(B),c ot =1 00. O

Theorem ISM.8. Let P be a Euclidean plane.

(A) The set of translations of ‘P, together with 1 is an abelian group with respect to
composition of mappings.

(B) Let M be a line on P and let [1py = {J | J is a lineon P and J PE M}.
Then I'ny = {t | t is a translation of P whose set of fixed lines is I1rq or

T =1} is an abelian group with respect to composition of mappings.
Proof. Follows from Theorem CAP.12 and Theorem ISM.7. O

Theorem ISM.9. Let P be a Euclldean plane T be a translation of P, and A and
B be distinct points on P. Then A‘L’(A) Br(B)

Proof. By Theorem ISM.5 there exists a translation o of P such that 0(A) = B.
Thus

] =
=l =

Br(B) = 0(A)z(0(A)) = 0(A)o(z(A)) = o(AT(A)).

Here we have used Theorems COBE.5(5) and ISM.8. By Definition NEUT.3(B)
Bt(B) = 1[4T(Ai. |

Theorem ISM.10. Let P be a Euclidean plane and let A, B, and C be distinct

points on P. Then there exists a unique point D on P such that RcoRpgoRs = Rp.
s

Moreover, D € A(R¢ o Rp(A)).

Proof. (A: Uniqueness.) If D and D’ are points on P such that RcoRgoR4 = Rp
and RcoRpoR, = Rpr, then Rp = Rpr and by Theorem ISM.4(C) D = D'.

(B: Existence.) Since RcoRp is a translation of P (cf Theorem ISM.4(A)) and since
a translation has no fixed points (Definition CAP.6), by Exercise ROT.1(A)
(RcoRpoRa)(A) = (RcoRp)(A) # A. By Theorem NEUT.50 there exists
a unique midpoint D of A(R¢(Ry(A))). By Exercise ROT.7 Rp(A) = R,
(Rp(A)), so that Rp(Ra(A)) = Rc(Rp(A)). By Theorem ISM.4(A) Rp o Ra
and R¢ o Rp are translations of P. By Theorem ISM.5 Rp o R4 = R¢ o Rp.
Multiplying on the right by R4 and using Exercise ROT.1(A) again, Rp =
RcoRpoRa. O
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Fig. 12.2 For

Theorem ISM.11.
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Theorem ISM.11. Let P be a Euclidean plane and let L, M, and N be lines on
P such that L || M || N. Then there exists a unique line [J such that J || L and
RNORM ORL = RJ.

Proof. See Figure 12.2.

(I: Existence.) Let A be a point on £ and let K = pr (A, £). By Corollary EUC.4
K L Mand K L N.Let B = fipr(A, M) and C = ftpr (A, N). By
Definition ROT.1, Remark NEUT.1.3, and Theorem ROT 4,

RNOoRMoR,=RyoRxoRioRpmoRsoRkoRk
ZRCORBORAORK.

By Theorem ISM.10 there exists a point Q on K such that R¢ o Rp o
Ra = Rg. Thus Ryy o Ry o Re = Ro o Re. Let J = pr(Q,K). By
Theorem NEUT.47(A) J || £. Thus Rg o Rk = Ry 0 Ric o Rk = Ry so
RyoRmoRe =Ry.

(IL: Uniqueness.) If 7 and 7" are lines on P such that Ryr o Ry o R, = R and
RayoRmoR, = Ry, then Rs = Ry7; by Remark NEUT.1.1 7 = J'. O

Definition ISM.12. Let P be a Euclidean plane, & a mapping of P into P, and £
a line on P. « is a glide reflection of P over L iff there exists a translation t of P

such that £ is a fixed line of r and @ = R, o 1.
A glide reflection is an isometry because it is the composition of two isometries.

Theorem ISM.13. Let P be a Euclidean plane, and let « = R, o T be a
glide reflection of P, where t is a translation and L is a fixed line for t. Then

o =Rgot =r10Rg, ahas no fixed point, and L is the only fixed line of «.
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Proof. (A) Let X be any point on P. (Case 1: X € L.) Since every point on L is a

(B)

fixed point of R, (R (X)) = t(X). Since L is a fixed line of 7, t(X) € L,
so that R, (z(X)) = t(X) = ©(R(X)). This also shows that no point on £
can be a fixed point of R~ o t, because t has no fixed point.

(Case 2: X € (P \ £).) By Theorem CAP.8 X7(X) and R.(X)t(Rz(X))
are fixed lines of 7 and since £ is a fixed line of 7, each is parallel to
L. By Theorem IP.6 Xt(X) || R.(X)t(R.(X)). By Theorem NEUT.15(1)
T(XR.(X)) = 1(X)1(R.(X)). By Theorem CAP.8(C) and Definition CAP.6
XR:.X) | t(X)t(Rz(X)). Thus OXt(X)T (R (X))R - (X) is a parallelogram,
by Definition EUC.5(B).

By Theorem NEUT48(A) L L XR,(X) and L L t(X)Ro(z(X)).
By Theorem NEUT.47(A) XR-(X) | t(X)R.(z(X)). Since Xt(X) || L,
by Exercise NEUT.1 Xt(X) || Rz(X)R.(r(X)). By Definition EUC.5(B),
OXt(X)Re(t(X))R(X) is a parallelogram.

Since £ L XRz(X) and £ || Xz(X), by Theorem EUC3 XRz(X) L
Xt(X), and by Theorem NEUT44 /R, (X)Xt(X) is right. By Theo-
rem EUC.19 both OX7(X)T(R2(X))R(X) and OXt(X)R - (t(X))R(X) are
rectangles. By Remark EUC.15(C), Rz (t (X)) = (R (X)). This construction
also shows that no point of P \ £ can be a fixed point of R, o 7, because
R (t(X)) is on the side of L opposite X.

Since L is a fixed line of both t and R, it is a fixed line of R, o 7. If M
is a line parallel to £, then by Theorem CAP.8 M is a fixed line of t. Since
R (M) is a line which is a subset of the side of £ which is opposite the side

containing M, M is not a fixed line of R s ot. Let J be any line on P such that
J and L intersect at the point Q. Since 7(Q) # Q and R (z(Q)) = 7(Q) € L,
Re(t(J)) # J. Thus J is not a fixed line of R o 7. O

Corollary ISM.13.1. A mapping o on a Euclidean plane P is a glide reflection iff

there exists a translation v of P such that L is a fixed line of t and o« = t o R.

Theorem ISM.14. Let P be a Euclidean plane and let L, M, and N be distinct

lines on ‘P which are nonconcurrent and nonparallel (i.e., any two of the three lines

intersect at a point and that point is not on the third line), then there exists a line
J and a point Q on P such that Ry o Ry © Re = Rg o Ry. Furthermore,
Rar o Ra o Ry is a glide reflection of P.
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Proof. Any two of the three lines intersect at a point and that point is not on the
third line. Thus we have three cases:

(Case 1: M and L intersect at the point G and G ¢ N.) We will refer to N as
the “odd” line that does not contain G. Let K = pr(G,N) and Q = ftpr (G, N).
By Theorem ROT.13 there exists a unique line 7 such that G € J and Rx o R 7 =
R © Ri. By Definition ROT.1 Ry o R = Rg. Hence Ry o Ryyo Ry =
RnyoRikoRgs=RpoRy.

To show that this mapping is a glide reflection, let S = par(Q,J) and
T = pr(Q,J). By Theorem EUC.3 S L 7. By Definition ROT.1 and Theo-
rem ROT4 Rp = R7 0o Rs = Ry © Rx. Thus

RnoRmoR,=RpoRyg
:RTORSORJ:RTO(RSORJ):RTOT

where 1 = Rs o R 7 is a translation, since S || J. Moreover, 7 is perpendicular to
both § and 7, so is a fixed line for t. Therefore R s o R a0 R is a glide reflection
by Definition ISM.12.

If we interchange M and L throughout, the proof also shows that R xro R 2 0 R aq
is a glide reflection; we will refer to this result as the “alternate” result of Case 1.

(Case 2: NV and L intersect at the point G and G ¢ M.) By Exercise 1P.2, M
intersects either A/ or £, possibly both. If M intersects £ at some point H, we have
Case 1 again, with H substituted for G. If M intersects A/ at some point H, then £
is the “odd” line and substituting H for G, and interchanging A and £ in Case 1,
we see that R, o R o R is a glide reflection. That is, there exists a line 7 and
a translation t, where 7 is a fixed line for 7, suchthat R, o Ry 0o Ry = Ry o .
The inverse of this mapping is

RyoRmoR, =Ry oRyoR: =1t'oRF =17 o Ry,

By Theorem CAP.12(A), t~! is a translation o, and the fixed lines of 7 and o are
the same, so by Corollary ISM.13.1, this mapping is R o o, a glide reflection.

(Case 3: M and N intersect at the point G and G ¢ L.) By Exercise 1P.2, £
intersects either M or N, possibly both. If £ intersects M at some point H, we
have Case 1 again, with H substituted for G. If £ intersects A" at some point H, then
M is the “odd” line and substituting H for G, £ for N', N/ for M, and M for L,
and using the alternate conclusion for Case 1, we have R o R o Ras is a glide
reflection; reasoning as at the end of Case 2, Rar o Raq o R is a glide reflection.

O
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Theorem ISM.15. Let P be a Euclidean plane and let a be an isometry of P which

has no fixed point. Then « is either a translation of P, or « is a glide reflection of P.

Proof. By Theorem ROT.25 either there exist two distinct lines £ and M on P such
that @ = R © R, or there exist three distinct lines H, J, and I on P such that
a=RioR7oRy.

(Case 1: @« = Rpq 0 Re.) If M and N were concurrent at O on P, then by
Definition NEUT.1(A) and Definition CAP.0, O would be a fixed point of &, contrary
to the given fact that o has no fixed point. Hence £ || M and by Theorem ISM.4(B)
« is a translation of P.

(Case2: ¢ = R oRyoRy.)If H, T, and K were concurrent at the point O,
then O would be a fixed point for & contrary to our assumption that it has no fixed
point. If IC || J || H, then by Theorem ISM.11 there would exist a line 7 such that
R1 = Ri o Ry o Ry and every point on 7 would be a fixed point of «, contrary
to the given fact that « has no fixed point. Thus two of the three lines intersect at
a point and that point is not on the third line and by Theorem ISM. 14, « is a glide
reflection of P. O

Theorem ISM.16. Let P be a Euclidean plane and let L, M, and N be distinct
lines on P. {L, M, N} is a pencil by Definition IP.1(D) iff there exists a line J on
P such that Ryr o RpmoRe = Ry.

Proof. (I If {£, M, N} is a pencil, then there exists a line 7 on P such that R o
RaioRs = Ry.) If there exists a point O on P such that LN M NN = {0},
then by Theorem ROT.4 7 exists. If £ || M || N, then by Theorem ISM.11,
J exists.

(II: If there exists a line 7 on P such that Ryro Ry 0o Ry = R, then {£, M, N}
is a pencil.) We will proceed by proving the contrapositive: If {£, M, N} is not
a pencil, then two of the three lines intersect at a point and that point is not on
the third line. By Theorem ISM.14 o = R o Raq © R is a glide reflection.
By Theorem ISM.13 « has no fixed point and thus is not a reflection. O

Theorem ISM.17. Let P be a Euclidean plane and let o be an isometry of P. Then

o is one and only one of the following:

(1) the identity,

(2) a line reflection,

(3) a rotation of ‘P about a point,
(4) a translation of P,

(5) a glide reflection of 'P.
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Proof. If « has three noncollinear fixed points, then by Theorem NEUT.24 « = 1.
If o has distinct fixed points A and B, but no fixed points off of jﬁ, then by
Exercise NEUT.6(A) « is the line reflection Rﬁ. If o has one and only one fixed
point O, then by Theorem ROT.16 « is a rotation of P about O. If @ has no fixed
point, then by Theorem ISM.15 « is either a translation of P, or « is a glide

reflection of P. O
Fig. 12.3 For
Theorem ISM.18.
S G
T H
M L N

Theorem ISM.18. Let P be a Euclidean plane, L be a line on P, and G and H
be distinct points on ‘P neither of which is on L. Furthermore, let S = pr (G, L)
and T = pr (H, L). Then there exists a line F such that Ry o Rz o R = RF iff
S=T.

Proof. See Figure 12.3. By Theorem NEUT.47(A) and Definition CAP.10 S PE 7.
Let M = par (G, £) and N' = par (H, £). By Theorem EUC3N L S, N L T,
M L 8, and M L T. By Theorem IP.6 M || N. By Theorem ISM.11 there exists
aline J such that J || £ and Ry = Ra © Rz o Raq. By Definition ROT.1 and
Theorem ROT.4, Ry = Ry o Ry and Rg = R © Rs. Therefore
RuoRroRg=RroRnyoRroRMmoRs =RroR70oRs.
But since 7 L 7, by Corollary ROT.5 Ry o R 7 = Ry o Ry, and
RuoRrpoRg=RygoRroRs.

If 7 # S, then 7 and S are parallel and so by Theorem ISM.4 Ry o R is
a translation of P. Since 7 L 7, J is a fixed line for this translation, and by
Definition ISM.12 R s o Ry o Rs is a glide reflection, which has no fixed points
(cf Theorem ISM.13) and hence is not a reflection.

If 7 = &, then by Property R.2 of Definition NEUT.2 and Defini-
tion NEUT.1(C), Rr o Rs =R7oR7r =1s0RgoRsoRs =Ry. O
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The following theorem is essential to the proof of Theorem DLN.4, in
Chapter 13, which is important in the development of half-rotations and dilations.

The reader may wish to get a feeling for what it says by choosing an arbitrary
point on the figure, then reflecting it successively in M, £, and N, and observing
that the result is the same as reflecting it in 7. We have printed the figure a bit larger

than usual to facilitate such an exercise.

pr(G,L) =pr(H, L)

Fig. 12.4 For Theorem ISM.19.

Theorem ISM.19. Let P be a Euclidean plane and let L, M, and N be distinct
lines on P which are concurrent at O. Moreover, let G be a point on M distinct from
O and H be a point on N distinct from O such that pr (G, L) = pr (H, L). Finally,
let M' = pr (G, M), N’ = pr(H,N), and let J be the line (cf Theorem ROT.11)
suchthat R 7 = RaroRzoR . Then M, T, and N are concurrent at a point Q.

Proof. See Figure 12.4. By Theorem ISM.18 there exists a line F such that Ry o
R oRe = Rx. By Definition ROT.1 and Theorem ROT.4 RyoRoRg =R o
RaxoRroRpmoR M. Thus Rr = RgoRroRg =RaroR70R. M, T,
and " were not concurrent at a point Q, then by Theorem ISM.14 Rz o R 70 R aqr
would be a glide reflection and would not be equal to R x, a contradiction. Therefore
M’ J,and N are concurrent at Q. O
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Theorem ISM.20. Let P be a Euclidean plane and let § be a dilation of P with
fixed point O, and also an isometry of P. Then § is a point reflection of P over O.

Proof. Let X be any member of P \ {0}, then by Property B.3 of Defini-
tion IB.1 (extension property) there exists a point X’ such that X-O-X'. By
Theorem PSH.15 OX is the union of the disjoint sets ]0_))(,{0}, and ]O}>’
By Theorem NEUT.15(2) §(OX) = 8(0)8(X) = 08(X). By Definition NEUT.3(B)
OX =~ W By Theorem CAP.18 OX is a fixed line of &. If 8(X) were to belong
to ]07 then by Property R.4 of Definition NEUT.2, §(X) would be equal to X,
contrary to the fact that §(X) # X (Theorem CAP.18). Therefore §(X) € OX’ By

Exercise ROT.8 § is a point reflection of P over O. |

Theorem ISM.21. Let P be a Euclidean plane and let L be a line on P. If 0 is an
isometry and also an axial affinity of P with axis L, then the set of fixed lines of 0
is CU{M | MisalineonP and M 1 L}.

Proof. Let N be a line on P such that AV L £, Q be the point such that L NN =
{0}, S be a point on £ distinct from Q, and T be a point on N distinct from Q. By
Definition CAP.25 both Q and S are fixed points of 6. By Theorem NEUT.15(1)

<—>
0(QT) = 0(Q)6(T) = QO(T) and
0(4LSQT) = £6(S)0(Q)O(T) = £LSQO(T).
By Definition NEUT.3(B) OT = QO(T) and ZSQT = /SQO(T). By Theorem
NEUT.44, ZSQT is right. By Theorem NEUT.66 ZSQ6(T) is right. By Theorem
<—> <—> <—>
NEUT.44 Q6(T) L L. By Theorem NEUT.48(A) Q0(T) = QT. By Defini-
tion CAP.O A is a fixed line of 6. By Theorem CAP.27(B), the set of fixed lines
of 0is {L} U{M | Misalineon P and M L L}. ]

Theorem ISM.22. Let P be a Euclidean plane and let L be a line on P.

(A) R is an axial affinity of P with axis L.
(B) If 0 is an axial affinity of P with axis L such that 6 is also an isometry of P,
then 0 = R ..

That is, the set of all reflections is identical to the set of all isometries which are

axial affinities.

Proof. (A) By Remark NEUT.1.3 R, is a bijection of P onto itself. By Def-
inition NEUT.1(D) and Remark NEUT.1.5 R, is a collineation of P. By
Definition NEUT.1(A), every point on L is a fixed point of R . By Defini-
tion CAP.25 R . is an axial affinity of P with axis L.
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(B) If X is any member of L, then by Definition CAP.25 and Definition NEUT.1(A)
O(X) = Re(X) =
If X is any member of P \ £, let M = pr(X, L) and let U = ftpr (X, £).
By Theorem ISM.21 M is a fixed line of 0, so 6(X) € M. If 6(X) were on
the X-side of L, then by Theorem PSH.38(A) 6(X) would belong to ﬁ By
Theorem NEUT 15(5) and Definition NEUT.1(A) we would have G(UX) =
9(U)9(X) U9(X) and by Definition NEUT.3(B) we would have UX ~
U U (X) (X) and by Property R.4 of Definition NEUT.2, 6(X) would equal X. This
would contradict the fact from Theorem CAP.26 that X is not a fixed point of
6. By Theorem PSH.12 (Plane Separation), 6(X) and X are on opposite sides
of L. Using Property B.3 of Definition IB.1 let X/ be a point such that X-U-X'.
By Theorems PSH. 15 and PSH 38(A) (X) € UX’ By Definition NEUT.3(C)
U is the midpoint of XO(X). By Exercise NEUT.74 0 = R . |

Theorem ISM.23 (Construction of a translation). Let P be a Euclidean plane, O
a member of P, A a member of P\ {0}, ta the translation of P such that t4(0) = A
and let X be any member of P \ {O}. Then t4(X) is constructed as follows:

(Case 1: X € P\ 84).) ta(X) is the point of intersection of par (X, 84)) and
par (A, 5)() Furthermore A and t4(X) are on the same side of OX.

(Case 2: X € OA \{0}.) Let Y be any member of (P \ ﬁ) and using case 1
find tA(Y). Then t4(X) is the point of intersection of a and par (‘L’A(Y),)((_Y)).
Moreover, if the points on a are ordered so that O < A (see Remark ORD.2),
then for every X belonging to a X < 14(X).

Proof. (Case 1: X € (P \ (O_A)).) We will freely use Theorem CAP.8(B) and (C)

without further reference. Since OA = Ot4(0), it is a fixed line for 4, as is X4 (X),

and these lines are parallel. By definition, OA | par (X, <O_A)); both par (X, (0_A>)

and Xt,(X) contain X, so by Axiom PS, par (X, OA) = Xt4(X) and this is a

fixed line. The lines <0_)>( and ﬁ are not parallel because they intersect at O, so

<0_})( is not a fixed line for t4 and by Definition CAP.6 and Theorem CAP.1 (or

<> s > < <> .
Theorem NEUT.15(1)), 74(0X) = Ata(X) || OX. Then A4 (X) = par (A, OX); this
s

line intersects par (X, &) = X14(X) at 74(X). By Exercise PSH.14 A and t4(X) are
on the same side of <0_)>(

< s —

(Case 2: X € (OA \ {0}.) By Theorem CAP.8(B) Yt4(Y) and OA = Ot4(0)

are both fixed lines of 74, and by Theorem CAP.8(C) they are parallel. Since X €

OA, 174(X) € OA. XY is not a fixed line of t4 so by Definition CAP.6, 74(XY) =



278 12 Isometries of a Euclidean Plane (ISM)

TA(X) T4 (Y) is parallel to )W so is the same line as par (t4(Y), )W) Therefore 74 (X)
is the point of intersection of par (z4(Y), Xy ) and (O_A), as required.

We now show that X < 74(X) in case 2 above. The following may seem like a lot
of fuss to prove something so intuitively obvious, but it seems to be what is required.
There are four subcases: since X # O either O-A-X, X = A, O-X-A, or X-O-A.

(Case 2A: 0-A-X.) By Exercise PSH.14 (which in the following we will use
many times without further reference), Y € O-side of m , which is opposite the
X-side by Definition IB.11. Therefore 389 ﬂm = (. Hence by Definition IB.11
7A(Y) is on the side of XY opposite to O and A. Let {W} = par (O,)(ﬁ) N m,
and let {Q} = par (W, 0<_1)’) N (0_A> Because W is on the O-side of )(5;, W-Y-t4(Y);
and since Q is on the W-side of (0_)Y 0-0-A-X. 74(X) is on the t4(Y)-side of
XY so A-X-14(X), and hence Q-O-A-X-14(X). Since O < A it follows from
Theorem ORD.6 that A < X and hence that X < 74(X).

(Case 2B: X = A.) OOY14(Y)X is a parallelogram by Definition EUC.5(B) and
is rotund by Theorem EUC.6. By Theorem PSH.54(A) its diagonals intersect, so
that O and 74(Y) are on opposite sides of Xy , by Definition IB.11. Let {W} =
par (O, ﬁ) N m; then W € O-side of )(X/ by Exercise PSH.14, so that
W-Y-14(Y) and hence by Exercise PSH.57 O-X-t4(X). Then since O < A = X by
Theorem ORD.6 X < 74(X).

(Case 2C: O-X-A.) Since O < A, O < X by Theorem ORD.6. Let {W} =
par (O, ﬁ) N m, and let {Z} = par (X, b_;) n m. O0YZX is a par-
allelogram and reasoning as in case 2B, O and Z are on opposite sides of Xy .
Since W and O are on the same side of )ﬁ , W is on the side opposite Z of )<5/> s
and by Definition IB.11 W-Y-Z. Since O-X-A, by Exercise PSH.57 Y-Z-t4(Y).
Therefore W-Y-Z-74(Y). Again by Exercise PSH.57, O-X-14(X), and X < 74(X)
by Theorem ORD.6.

(Case 2D: X-0-A.) Since O < A by Theorem ORD.6, X < O. Let {W} =
par (X, <0_)Y) N m, and let {Q} = par(W,fa)/) N OA. Then DOYWX is a
parallelogram and reasoning as in case 2B, O and W are on opposite sides of XV,
Since W and Q are on the same side of Xy , O and O are on opposite sides of Xy ,
and by Definition IB.11 0-X-O. Since X < O, Q < X by Theorem ORD.6.

Since X-0-A, by Exercise PSH.57W-Y-t4(Y); again by Exercise PSH.57,
O-X-714(X). Since Q < X, X < 74(X) by Theorem ORD.6. O
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12.2 Exercises for isometries

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.
Exercise ISM.1*. Let P be a Euclidean plane.

(A) There is no translation 7 of P such that t o 7 = 1.

(B) For any translation t of P, 7 o 7 is a translation, having no fixed point.

Exercise ISM.2*. Let P be a Euclidean plane, o and t be translations of P such
that £ is a fixed line of o, M is a fixed line of t, £ and M are not parallel, and let

Q be any point on P. Then OQ(a(Q))(t(c(Q)))(z(Q)) is a parallelogram.

Exercise ISM.3*. Let P be a Euclidean plane, A and B be distinct points on P, and
E— E—3
T be a translation of P such that 1(4_B> is not a fixed line of t. Then At(A) and Bt (B)

are opposite edges of a parallelogram.

Exercise ISM.4*. Let P be a Euclidean plane, £; and £, be parallel lines on P,
A be a point on L, A; be the point of intersection of pr (A;, £;) and £,, and 7 be
the translation of P such that 7(A;) = A, (cf Theorem ISM.5). Then t(L£) = L,.

Exercise ISML.5*. Let M be aline on a Euclidean plane P and let ¢ be a translation
along M; that is, M is a fixed line for 0. Let R be the reflection with axis M.
Then Ry 00 =0 o R .

Exercise ISM.6. Prove, disprove, or improve: let P be a Euclidean plane, 7 a

translation, and £ a line on P. Then Ry(g) ot =10 R.

Exercise ISM.7. In Theorem ISM.23 Case 2, create a simpler proof of the fact that
X<ty (X)

Exercise ISM.8*. Let P be a Euclidean plane, and let @ = R, o T be a glide
reflection, where t is a translation and £ is the single fixed line for « according to
Theorem ISM.13.

(A) IfN || L, then a(N) || L.
(B) If N L £, thena(N) L £ and a(N) || V.
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Chapter 13
Dilations of a Euclidean Plane (DLN)

Acronym: DLN

Dependencies: all prior Chapters I through 12

New Axioms: none

New Terms Defined: half-rotation, associated rotation, group generated by a union

of three sets

Abstract: This chapter establishes a rich array of properties for dilations, which
were defined in Chapter 3. These play a key role in the development of Euclidean
geometry, both in the definition of multiplication and in the development of
similarity. Half-rotations are defined and their properties developed in an intricate
process; these, in turn, are used to define dilations, which are shown to be
belineations. A method is provided for point-wise construction of a dilation having
a given action. A classical proposition attributed to Pappus of Alexandria is proved.

Intuitively, a dilation is a uniform expansion (or contraction) of the plane in all
directions from (or toward) a fixed point O. Dilations are not isometries, as are most
of the mappings we’ve worked with so far.'

It is fairly simple to construct a dilation that contracts the plane; this is done
(and illustrated) in Theorem DLN.5, using half-rotations which, like dilations,

are not isometries, although they are derived from rotations. For the general case

Dilations would be easy to construct if we had a notion of distance, but we don’t; indeed, we need
dilations in order to construct a definition of distance, which we do in Chapter 14, Definition OF.16.
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(both expansion and contraction) we must deal both with half-rotations and with
their inverses. Theorem DLN.7 gives the details for this process, and includes a
figure which, hopefully, will be helpful in clarifying the proof. The most difficult
part of the whole process of defining and developing the properties of dilations is
proving the properties of half-rotations; this is done mainly in Theorems DLN.2 and
Theorem DLN.4.

In this chapter we will generally follow J. Diller and J. Boczeck, in Euclidean
Planes, Chapter 4 in Fundamentals of Mathematics, Volume 2, H. Behnke,
F. Bachmann, K. Fladt, and H. Kunle, eds, translated by S. Gould, MIT Press,
1974 [2].

13.1 Half-rotations and dilations

Recall from Definition CAP.17 that a collineation « # 1 is a dilation iff it has a
fixed point, and for every line £ on P, either a(£) || £, or « (L) = L. Alternatively,
by Theorem CAP.22, a collineation is a dilation if O is its only fixed point, and
every line containing O is a fixed line. Recall also from Theorem CAP.21 that the
set of dilations with fixed point O (together with the identity) form a group under
composition. In particular, the inverse of a dilation with fixed point O is a dilation
with fixed point O.

Definition DLN.1. Let P be a Euclidean plane, O a point on P, and p a rotation
about O which is not a point reflection. Define &(O) = O and for every X € P\ {0}
define (X) to be the midpoint of STX; Then « is called the half-rotation of P
about O associated with the rotation p, and p is the rotation associated with «.

We will sometimes denote the associated rotation by py.

Theorem ROT.9(B) shows that there can be no half-rotation about O that maps a

ray OA to itself, because no rotation maps OA to itself.

Theorem DLN.2. Let O be a point on the Euclidean plane P, p a rotation of P
about O, and « the half-rotation about O associated with P. For any member A of
P\ {0}, by Property R.5 of Definition NEUT.2, and Theorem NEUT.26 there exists
a unique line of symmetry G4 for ZAOp(A). Then

(A) p=TRg, 0 R<O—A>, and G, is the only line with this property.
<>
(B) Ga L OA;
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and “multiplying” on the left by R«—— we have

Oa(X)
Rey = Rm o Rm oRez. (k%)

Moreover, if there were a second line K such that
p=R

RK=RmOR<—>

<«~——> O
Oa(X) OX

then multiplying on the left by R;T(X) yields Rx = R<O—X>, so that OX is the
only line such that (*) above is true.
We now re-label the points and lines in this proof to correspond with points

and lines in Theorem ISM. 19, as in the table below:

DLN4 | 1sM.19 | | DLN4 | 1sM.19
z H T =0X GO =M
<—>
P G O (P) c
<—> <—> <—>
X 0 07 =0aX) || OH = N
<> <—> <> <—>
OX 00 =7 Xz OH = N"
<> <—> <> <—> <—>
op 0C = M P7 = Pa(P) | GH

Using these new labels, equality (**) above becomes Ry = Ry o R o
R, as in Theorem ISM. 19.
At this stage in the proof, we know from (B) that the lines O« (X) and P (P)
intersect at some point Z; however, we don’t know whether this point is o (X).
The following argument will prove that it is.

. <>

By Theorem NEUT.48(A) let N’ be the perpendicular to Ox(X) = N at

the point Z. We summarize the perpendicularity relations between the various

lines in the following table:

DLN.4 H ISM.19
OP LT M LM
<«—> <> <—>
Ow(P) L PZ £1GH

0Z=0a(X)LXZ | N LN

From Theorem ISM.19, the three lines A/, M, and J intersect at a single
point. Since M’ = T and J = 8( intersect at Q = X, this point is X.
So now we have two lines, Xa(X) and XZ, both of which contain X and
<>
both of which are perpendicular to A/ = Ow/(X). One of them intersects A at
a(X) and the other at Z. By Theorem NEUT.48(A) there can only be one such
<>
line; hence Z = «(X) and thus «(X) € Po(P).
. <«
This completes the proof that «(7) € Pa(P).
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(By) m C (7). Here, P, a(P), L, M, and T = M’ are defined as before.
Again we use Theorem ISM.19.

Suppose Z is any point of P<a—)(P) other than P or «(P). Then define N' =
0(_>Z, and let N/ = pr(Z, V), sothat Z € N" and N/ L /. By Lemma DLN.3,
there exists a point ¥ € A/’ such that A is the line of symmetry of ZYOp(Y).
Define J = <O_)Y Then J NN’ = {Y}.

By Theorem DLN.2(A), Ry o Ry = p = Rz © R aq. Multiplying on the
left by R we have Ry = R o Rz 0o Raq. Since T = M/, M’ 1. M; by
Theorem ISM.19, M’, N/, and J intersect at a point Q. But 7 NN’ = {Y},
soQ =Y.Y e T and a(Y) = Z, showing that Z is a member of «(7). Thus

«—>
Pa(P) = o(T).
(C) follows immediately from the construction used in part (B). O

Theorem DLN.5 (Dilation contracting the plane). Ler P be a Euclidean plane,
O a point on P, and let o be a half-rotation of P about O with associated rotation
p. Using Theorem ROT.28 let 0 be the rotation of P about O such that 0 o 6 = p.
Then 0" o § is a dilation of P with fixed point O. Moreover, for every X # O,

0(0X) = «(0X).

Fig. 13.3 For ///line of symmetry
Theorem DLN.5 showing a

dilation contracting the plane.

Proof. See Figure 13.3. Let £ be any line such that O € L, and let X € L
and X # O. By Theorem DLN.2(D) «(£) is the line of symmetry of ZXOp(X).
By Exercise ROT.4(A), ZX00(X) =~ £0(X)00(0(X)) = £O(X)Op(X) so that
by Theorem NEUT.39, 6(L) is the line of symmetry of ZXOp(X). Therefore
0(L) = a(L) and (87! o @)(L) = L. Therefore every line through O is a fixed

line for 67! o .
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LetY = 6~ 'oa(X). Then Y # X, because [OT; ~ [OG(Yi = [Oa(Xi and [0a(X§ <
[07)? by Theorem NEUT.93 (a leg of a right triangle is smaller than the hypotenuse).
Hence X is not a fixed point of 8! o &z, which mapping is not the identity.

Since 8! o is the composition of two collineations, by Theorem CAP.1(C) it is
a collineation with no fixed point other than O; since every line through O is a fixed
line, we may apply Theorem CAP.22, showing that 0! o « is a dilation of P with
fixed point O.

This last might also be proved as follows: if 7 is a line not containing O and L is
a line through O such that £ 1 T, then by Theorem DLN.4(C), «(7) L «(L). Now
6~ is an isometry, so ' (@(7)) L 07 (a(L)) = L so both T and 0~ (a(T)) are
perpendicular to £; hence by Theorem NEUT.47(A), if these lines are distinct, they
are parallel. By Definition CAP.17 ! o « is a dilation. O

Theorem DLN.6. Let P be a Euclidean plane and O be a point on P.

(A) If a and B are half-rotations of P about O, then foa = o o 5.

(B) If o is a half-rotation and 7 a rotation of P about O, then m o = @ o 7.

(C) If a and B are bijections of P (in particular, rotations or half-rotations) and
Boa=aopB, thenBoa™ =a lop.

(D) Here we anticipate the proof of Theorem DLN.7 below. If «, B, and y are half-
rotations of P about O, and 7 is a rotation of P about O, then o )/_1 ofoa =

y_loﬂoogorr,

Proof. (A) (Two half-rotations commute.) Let X be any member of P \ {O} and
let I = 0<_)>( If p, is the rotation of P about O associated with « and if pg is
the rotation of P about O associated with 8, then by Theorem DLN.2(A) and
(D), po = Ra(x) © Ric and pg = Rp(x) © Rx. These are true for any line K
containing the point O, so in particular they are true for the lines §(K), a(K),
etc. Therefore, Reyc) o R = po = Ru(six)) ©Rprc) and Ry o Ric = pg =
Rp @) © Rax)- Thus Re(pky) = Rax) © Ric © Rpx) and

Ry = R © R © Ragey- (%)
By Theorem ROT.12 Ry (k) = Rp(x))- By Remark NEUT.1.1 a(B(K)) =
B(a(K)).

It remains to prove that (8 o @)(X) = (« o B)(X). To accomplish this, first
rewrite equation (*) above by multiplying on the left by Rgx) and on the right
by Ra(x) to get

R © Ry © Rarx) = R



290

(B)

©)

D)

13 Dilations of a Euclidean Plane (DLN)

In Theorem ISM.19, let M = «(K) so that «(X) € M, and V' = B(K) so that

B(X) € N;and let £ = B(a(K)) = a(B(K)). By Definition DLN.1, the line

s ——

a(X)B(x(X)) L L at the point B(x(X)). By Corollary EUC.4, a(X)B(x (X))

intersects A at some point P. Let A/’ be the line perpendicular to N at the
>

point P. Let M’ = Xa/(X); this is perpendicular to M at the point «(X).

By Theorem ISM.19, A/, M’, and K intersect at a point Q; since the point

of intersection of M’ and K is the point X, O = X. Since N is perpendicular to
<> <—>
N, asis XB(X), and both N’ and XB(X) contain X, by Theorem NEUT.48(A),
<>
N =XB(X) and P = B(X).
—_—

We know that a(8(X)) lies on £, and since «(X) S(« (X)) is perpendicular to
L, a(B(X)) is the point of intersection of these two lines; but we already know
this is B(a(X)). Therefore «(B(X)) = B(x(X)), and since X is any member of
P\ {0}, Boa =« o f, completing the proof of part (A).

(Half-rotations commute with rotations.) Let « be any half-rotation about O
with associated rotation p and let X € P \ {O}. By Theorem ROT.15(A) (or
Theorem DLN.5) let 8 be the rotation about O such that 8(X) € O«(X). Since
for any X € P\ {0}, both @(X) and 6(X) lie in the angle bisector of ZXOp(X),
1T =
Ou(X) = 06(X).
Let 7 be a rotation of the plane about O. Then by Theorem ROT.21, for any
X € P\ {0}, n(6(X)) = 8( (X)) and by Theorem NEUT.15(2)
m(@(X)) € 7(0(0(X))) = O(x(0(X))) = 0(B(x(X))) = O(a((X))).
3 3 I
Therefore O(w (¢ (X))) = O(x((X))) and a(7(X)) € O(w(x(X))).

Consider now triangle 7(AXOa (X)) = An(X)On(x(X)). By Defini-
tion NEUT.3(B) AXOua(X) =~ An(X)Ora(X).

Since « is a half-rotation, we know that ZOwa(X)X is a right angle; hence
by Corollary NEUT.44.1, ZOn(x(X))x(X) is also right. Since (7 (X)) is
a member of On(x(X)), a(w(X)) = ftpr (w(X), O (x(X))), and (by Theo-
rem NEUT.47(B)) there can be only one perpendicular from a point to a line,
it follows that (77 (X)) = 7 («(X)). Again, since X is any member of P \ {O},
o o = m o, completing the proof of part (B).

If,Boa=a0,6,thensinceot_loa=l,

Boa'=aloaofoal =aloBoaca =alop.

Let &, B, and y be half-rotations about O and let & be a rotation about O. By
part (B), m oy = y o, and by part (C) w o y~! = y~! o 7. Then, applying
this, and part (B) twice, we have

1

noy_loﬂoa:y_ onoﬁoa:y_loﬂonoazy_loﬁoaon, O
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Theorem DLN.7 (Structure of dilations). Let O, A, and B be distinct collinear

points on a Euclidean plane P.

(A) There exist half-rotations «, B, and y about O such that the mapping § =
vy~ o Boaisa collineation and maps A to B.

(B) For any point A’ # O in P, the mapping § defined in part (A) maps (0?3 to
itself, so that every line through O is a fixed line for 6.

(C) There exists exactly one dilation § with fixed point O such that §(A) = B, and
it is the mapping defined in part (A).

(D) Every dilation § of P with fixed point O can be written as in part (A).

(E) If 6 is a dilation of P with fixed point O, and 7 is a rotation about O, then
mod=4om.

Proof. (A) Note that there may be many possible choices for «, 8, and y such

that the mapping y !

o B o« carries A to B. This will become obvious in the
following construction. We now undertake the basic construction for the proof.
All rotations and half-rotations have fixed point O. See Figure 13.4.

Let Q be a member of P \ (O_A) =P\J, K = 0(_>Q C = ftpr(4,K),
o be the half-rotation associated with the rotation p, = Ri o R. Then by
Theorem DLN.2(D) «(A) = C.

Let M = B<_C)’, N = pr (0, M), D = ftpr (O, M), and B be the half-rotation
associated with the rotation pg = R o Rx. Then by Theorem DLN.2(D)
B(C) =D.

Let y be the half-rotation associated with the rotation p, = Ry oR . Then
by Theorem DLN.2(D) y(B) = D. By Theorem DLN.2(D) y(J) = N. Thus
y_l(D) = B, and y_l(/\/) = J. Therefore, if we let § = y_l o B o «, then
3(A) = B.

Fig. 13.4 For the construction of Theorem DLN.7. The left-hand figure is for the case O-A-B;
the right-hand figure is for the case B—O-A. It might be instructive to construct a figure for the case
where O—B-A, as in Theorem DLN.5.
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By Theorem DLN.4, each of «t, 8, and y is a bijection and a collineation, and
by Theorem CAP.1(D’) y~! is a collineation. By elementary mapping theory
8 = y~! o B o« is a bijection and collineation.

<>
We now show that for every point A’ # O, §(A") € OA’. Let C' = a(A),
D' = B(C'),and let B' = y~1(D).

(Case 1: A" € (O_A).) By Theorem DLN.2, both C = «(A) and C' = «(A")
are members of the line of symmetry for the rotation p associated with «. Thus
C' = a(A) € OC. Similarly, D’ = (C’) € OD and D’ = y(B’) € OD. Since

<> <> <> <

y maps OA onto OD, y~! maps OD onto OA. Therefore § = y~' o 8 o o maps
A’ to a point of <O_A) which is therefore a fixed line.

(Case 2 A d OA ) By Theorem ROT.15 there exists a rotation st such that

=
n(OA) OA’ so that w(A) € OA’. Without loss of generality we may choose
A so that w(A) = A’. Then by Theorem DLN.6(B), C' = a(A") = a(n(A)) =
7(x(A)) = 7 (C). Similarly, D' = B(C") = B(x(C)) = 7(B(C)) = n(D).
Since y o w = 7 o y, by Theorem DLN.6(B) and (C), r o y~! = y~' o m, s0
that we have also B’ = y~ (D) = y~'(7(D)) = n(y~'(D)) = n(B). Since
< < — <
B € OA, n(B) € 7(0A) = On(A) = OA’, so that B = §(A’) € OA’. Therefore
<>
& maps every point A’ on the plane into OA’, which is a fixed line for §.
To show that § = y~! o B o « is a dilation, we need only show that it has no
fixed point other than O. Suppose that for some X € P\{0}, §(X) = X. Then X
is both the argument for § (shown in the figure for part (A) as A) and the image
«—> = .

8(X) (shown as B), and Xo(X) and Xy (X) are the same line, because they both
contain «(X). By Theorem NEUT.47(B) there is only one line containing O
which is perpendicular to Xe(X) = Xy(X); moreover, both &(X) and y(X)
belong to this line, so that &(X) = y(X). Since (Boa)(X) = y(X) and a(X) =
y(X), B must map O« (X) to itself.

But this is impossible; by Theorem ROT.19(B), Definition DLN.1, and
Theorem DLN.2, a half-rotation must map a ray OP to the angle bisector of
ZPOp(P) (where p is its associated rotation) which is not equal to OP. Thus,
B cannot map O« /(X) to itself, and § has no fixed point other than O.

By Theorem CAP.22, § is a dilation, and by Theorem CAP.24 it is the only
dilation mapping A to B.

If 1 is a dilation with fixed point O, let A be any point of P \ {O}. Since O is
the only fixed point, B = (A) # A. By Theorem CAP.18(D), B, A, and O are
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collinear. By parts (A) and (C) there exists a dilation § = y~!

B, and y are half-rotations about O, and §(A) = B, and this is the only dilation

o B o« where «,

mapping A to B, s0 § = [.
(E) Follows directly from part (D) above and Theorem DLN.6(D). O

Remark DLN.7.1. The preceding two results (Theorems DLN.6 and DLN.7) show
that half-rotations, their inverses, as well as dilations commute with rotations. Thus,
speaking intuitively, if we define one of these mappings by its action on a specific
line, rotating that line to a new position rotates the entire “picture” and replicates it
in the new position. This assures us that such a construction is a global one, even if
we specify it on a specific line.

This last result, Theorem DLN.7(E) shows that a dilation § expands or shrinks
the plane equally in all directions. (It may also “mirror” it about the point O, in the
case where X—0-4(X).) Applying a dilation to a point X moves it along the line (0_))(
to some point; rotating X to another line through O, then applying the dilation, then

rotating back to the original line, accomplishes exactly the same thing.

Theorem DLN.8. Every dilation § of a Euclidean plane P

(A) is a collineation, and
(B) is a belineation; that is, if A, B, and C are any points of P, and A—B—C, then
8(A)-86(B)-4(C).

Proof. From Theorem DLN.7, § = y~! o B o & where each of y, 8, and « is half-

rotations about O.

(A) By Theorem DLN.4, half-rotations are collineations. By Theorem CAP.1(D’),
y‘l is a collineation. Since a composition of collineations is a collineation, §
is a collineation.

(B) Assume that O is a fixed point for 8, and let A, B, and C be any points on P
such that A-B—C.

(Case 1: A, B, C, and O are collinear.) Since « is a collineation, and has fixed
point O, «(A), a(B), (C), and O are collinear, and all these points are members
of Oa(A). By Theorem NEUT.47(A), the lines Aa(A), Bar(B), and Ca(C) are
all parallel, since they are perpendicular to 0(04—)(A) by Theorem DLN.2(D).
(See Figure 13.4, for Theorem DLN.7.) By Exercises PSH.57 and PSH.58,

a(A)—a(B)-a(C). Thus « is a belineation. Similar proofs show that g and y
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preserve betweenness and are belineations. By Theorem COBE.3, y~! is a

belineation. Thus

y T B@@))-y~ (B@®))-y (B@(0)).

That is, §(A)-6(B)-6(C), showing that § is a belineation.

(Case 2: A, B, and C are not collinear with O.) By Theorem CAP.18(D),
§(A) € OA, 8(B) € OB, and §(C) € OC.

Since A-B~C and O ¢ AC, by Theorem IB.14 B € AC and B € the C-side
of OA). Similarly, B € the A-side of OC, so that by Definition PSH.36 B €
ins ZAOC, and by Theorem PSH.38(B) ]0_1)3 C ins ZAOC.

There are two subcases. In subcase (a), §(A) € jOX; by Exercise DLN.5(II)
3(B) € j0_1)9 and §(C) € ]O_C)‘ In subcase (b), by the same exercise, each of §(A),
3(B), and §(C) belongs to the opposing ray.

If subcase (a) holds, §(A) € OA and §(C) € OC so that Z3(A)05(C) =
ZAOC, and §(B) € OJ% € ins AAOC By Corollary PSH.39.2 S(A) and 6(C)
are on opposite sides of the line OB and by Definition IB.11 OB intersects
ES(A)S(C% C §(A)3(C) at some point P. By part (A) dilations are collineations,
so that §(B) € 6(A)6(C), and OS(B) = O(_>B intersects 6(A)3(C) at the point
5(B). By Exercise L1, §(B) = P € 8(4)8(C), or §(A)-8(B)—8(C).

If subcase (2b) holds, then Z§(A)OS8(C) is vertical to ZAOC, and §(B) €
0B < ins Z8(A)OS8(C). An argument similar to that for subcase (2a) above

shows the same result. ad

Theorem DLN.9 (Point-wise construction of the dilation of Theorem DLN.7.).
Let P be a Euclidean plane, O, A, and B be distinct collinear points on P and § be
the dilation of P such that §(A) = B

(A) If X is any member of P\ <0_A), then §(X) is the point such that par (B, 1<4_})() N

X = {5(X)}.

(B) Let X be any member 0f<O_A) \ {0, A}. Let Q be a member of P\ a, so that

5(Q) € O<—)Q Then §(X) is the point such that par (6(Q), (Q_)>() NOA = {8(X)}.

Proof. (A) By Theorem CAP.18 & is a fixed line of § but ;ﬁ)( is not. By

Theorem CAP.1(A) §(AX) = §(4)5(X) = B3(X). By Remark CAP.11 BS(X) |
<>

;B)( so that B§(X) = par (B, 1<4_))(). (cf Axiom PS.) By Exercises IP.4 and 1.1,

8(X) is the point such that OX N par (B,I(E() = {6(X)}.
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(B) By part (A) we may locate §(Q) on <O_Q) Then since neither A or X is in
(()_Q> we may apply part (A) again to locate §(X) as the point of intersection
of par (§(Q), Q<_)>() and OA. Since we know already that § is a well-defined
mapping, this completes the proof. O

Remark DLN.10. If we were using the construction in the proof of part (B) of
Theorem DLN.9 as a definition of the mapping 8, it would be necessary, in order for
the mapping to be well-defined, to prove that two different choices for Q would yield
the same value for §(X). However, Theorem DLN.9 assumes that § is a well-defined
mapping and is a dilation. Parts (A) and (B) of the proof merely use the properties
of the dilation to show that for a given X, these constructions give the correct value
of §(X). This is true for the proof of part (B), even though Q is chosen arbitrarily.
It follows that the end result of the construction of part (B) is independent of the
choice of Q (and of the line O(_)Q).

The following theorem is credited to Pappus of Alexandria (c. 290-350).

Theorem DLN.11 (The Proposition of Pappus). Let P be a Euclidean plane, O
a point on P, and let L and L' be lines on P such that LN L = {O}. Let Q, R, and
S be points on L and let Q', R, and S’ be points on L' such that:

(1) the points O, Q, R, S, Q', R, and S’ are distinct;
< < <« >
(2) there exist points T and V such that QR' N RS’ = {T} and RQ' N SR’ = {V};
and

<> <> <> <>
(3) OR' | RQ' and RS’ || SR

—
Then QS’ || SQ'.

Fig. 13.5 For
Theorem DLN.11.
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Proof. See Figure 13.5. Using Theorem DLN.7 let § be the dilation of P with fixed
point O such that §(Q) = R and let € be the dilation of P with fixed point O
such that €(R) = S. Then § = (€ o §)(Q). Since §(Q) = R and &)’ | I@,
by Definition CAP.17, 8(&) = @ Thus 6(R’) = Q’. Likewise since €(R) = S,
€(8") = R’; combining these results, (50€)(S’) = Q'. By Exercise DLN.3 €0§ = §oe
and thus (e 0 §)(S") = (§ 0 €)(S') = Q'. By this equality and Theorem CAP.1

<> <>
(€08)(QS) = (€0 8)(Q)(e 0 )(S) = SQ".

Definition CAP.17 says that a dilation maps a line to a line parallel to it, so the

composition of two dilations does the same. Therefore QS’ || SQ’. O

13.2 Properties of dilations

Theorem DLN.12. Let P be a Euclidean plane and let § be a dilation of P with
fixed point O. If L is a line on P through O, then § o R = R o 6.

Proof. L is a fixed line of § and is pointwise fixed for R,. Thus if X €
L Re(6X) = 86X) = 8(Re(X)). Let X be any - member of P\ L.
By Theorem NEUT. 15(3) and Definition NEUT.1(A) RL(OX) = m By
Theorem CAP.18 both OX and OR £ (X) are fixed lines of §.

By Theorem ROT.15 there exists a unique rotation 7 about O such that Jr(br)?) =
m For any point Y € ]07 n(Y) € ]073—[;()?3 and since 7 is an isometry,
]T(OY) = Ozr(Y) so that OY ~ On(Y) Also, OY ~ O’R,C(Y) so that 07T(Y)
ORg(Y) and by Property R.4 of Axiom NEUT.2,

7(Y) =Re(¥) (%)

By Theorem DLN.7(D) § o w1 = 7 0 §. Then §(R.(X)) = §(7x(X)) = 7 (§(X)) =
R (8(X)). Here we have used (*) where Y = X for the first equality, and have used
(*) where Y = §(X) in the last equality. This completes the proof that 6 o R, =
R, od. O

Theorem DLN.13. Let P be a Euclidean plane, O, A, B, and C points on P, and
let § be a dilation of ‘P with fixed point O.

(A) 5(@) = ;3(A)5 (B) and 8(1[4731) = %(A)(?(Bi (corresponding statements are true

for open rays and open and half-open intervals)
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(B) IfA, B, and C are noncollinear, §(£BAC) = Z8(B)§(A)5(C).
(C) IfA, B, and C are noncollinear, §(ins ZBAC) = ins Z§(B)8(A)S(C).

Proof. By Theorem DLN.8, § is a belineation; the results follow immediately from
Theorem COBE.5, parts (2) through (10), and part (11). O

Theorem DLN.14. Let P be a Euclidean plane, O, A, B, and C be points on P
such that A, B, and C are noncollinear, § be a dilation of P with fixed point O. Then
8(£BAC) = /BAC.

1= ) 1>

Proof. (Case 1: A = 0, §(B) € OB.) By Exercise DLN.5(II)(A) 6(C) € OC. By
Ee—> B> E——> £ .

Theorem PSH.16 O8(B) = OB and O§(C) = OC. Hence by Definition PSH.29

ZBOC = Z§(B)0O§(C). By Theorem DLN.13(B), §(£LBOC) = £5(B)§(0)$(C) =

Z8(B)OS(C). Since angles that are equal are congruent, ZBOC = § (LBOC)

(Case 2: A = O, B’ is a point such that B—O-B and §(B) € OB/ ) Let
C’ be a point such that C'-O-C. By Exercise DLN.5(II1)(B) §(C) € OC’ By
Theorem DLN.13(B), §(£BOC) = Z3§(B)O§(C). By the reasoning in Case 1,
Z8(B)O§(C) = £B'OC'. By Theorem NEUT.42 (vertical angles) ZB'OC’
ZBOC. By Theorem NEUT.14 (congruence is an equivalence relation) ZBOC
8(£BOC).

(Case 3: A # O; O A, and B are collinear; and O, A, and C are noncollinear)
By Theorem CAP 18 OA is a fixed line of 8. By Theorem DLN.13(A) S(AB)

N e
5(A)8(B) < OA. By Theorem CAP.1(A) §(AC) = 3(A)5(C). By Definition CAP.17
and Theorem CAP.18 S(AC) I AC, so that §(A)S(C) || AC. By Property B.2
of Definition IB.1 one and only one of the following statements is true: O-A-B,
O-B-A, or A-O-B.

I

I

(I) If O-A-B, then by Theorem DLN.8 and the fact that O is a fixed point of §,
0-5(A)-46(B).

(A) If 6(A) € ]O_A>, then by Exercise DLN.5(IIT)(A), 6(C) belongs to the
C-side of AB. By Theorem CAP.18 f(l_C)' is not a fixed line of §. By
Theorem EUC.11 ZBAC = /§(B)3(A)6(C). By Theorem DLN.13(B)
Z8(B)8(A)8(C) = 6(LBAC), so that by Theorem NEUT.14 /BAC =~
8(4LBAC). .

(B) If A’ is a point such that A’~O-A and if §(A) € JOZ)’, then by Exer-
cise DLN.5(II)(B) §(C) € the side of AB opposite the C-side. As in part
(A), 6(4)8(C) | 1(4_C>‘ Z8(B)S(A)S(C) = £BAC and Z3§(B)4(A)S(C) =
8(4LBAC).
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(II) If O-B-A, then as in part (I) O-6(B)-8(A), 6(C) € C-side of AB and ZBAC =~
Z8(B)3(A)8(C) = §(4LBAC).

(1) If A~O-B, then §(A)-O-§(B).

(A) If8(A) € 303, then by Exercise DLN.5(IIT)(A) §(C) belongs to the C-side
of;@) and as in parts (I) and (I), ZBAC = §(£BAC).

(B) If §(A)-0-A, then §(C) belongs to the side of OA = AB opposite the
C-side. Again as in parts (I) and (IT), ZBAC = §(£BAC).

(Case 4: O, A, and B are noncollinear and O, A, and C are collinear.) Interchange
“B” and “C” in Case 3.

(Case 5: O, A, and B are noncollinear, O, A, and C are noncollinear, and B and
C are on the same side of m.) Let A’ be a point such that A’~O-A. We choose the
notation so that B € ins ZA’AC. By cases 3 and 4 and Theorem DLN.13(B)

LA'AB =~ §(LA'AB) = Z8(A")8(A)8(B), and
LAAC =~ §(LA'AC) = L8(A)8(A)8(C).

By Theorem DLN.13(C) §(B) is a member of ins Z§(A")§(A)8(C). By Exer-
cise NEUT.40(B)

/ZBAC = Z3(B)3(A)S(C) = 8(LBAC).

(Case 6: O, A, and B are noncollinear, O, A, and C are noncollinear, and

B and C are on opposite sides of (O_A).) By Theorem PSH.12 (Plane Separa-
tion) there exists a point Q such that %D(O_X = {Q}. By Theorem PSH.37
Q € ins ZBAC. By cases 3 and 4 ZQAB =~ §(Q)8(A)3(B) and LQAC =
3(0Q)8(A)6(C). By Exercise NEUT.40(A) and Theorem DLN.13(B),

ZBAC = Z§(B)§(A)§(C) = §(LBAC). O

The next theorem is a generalization of Theorem DLN.12.

Theorem DLN.15. Let P be a Euclidean plane, O a point on P, L any line on P,
and let § be a dilation of P with fixed point O. Then § c R = Rsc) o 6.

Proof. If O € L, then by Theorem CAP.18, L is a fixed line for § so this is
Theorem DLN.12.
IfOo ¢ L,let M =pr(0, L), Q = ftpr (O, £), and let X be any point on P.
(Case I: X = Q) (§ 0 R)(Q) = 8(R(Q)) = 6(Q) and Ry (8(Q)) = §(Q).
Here we have used Definition NEUT.1(A).
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(Case 2: X € (M\{Q}).) By Theorem NEUT 54 L is the perpendicular bisecting
line of XRL (X) so that Q is the midpoint of XRﬁ (X) By Theorem DLN 4(B) and
Theorem EUC.17 §(Q) is the midpoint of S(XRL (X)) = S(X)S(RE (X)) (here we
have used Theorem DLN.13(A)).

Now 4(L£) is the perpendicular bisecting line of W (by
Theorem NEUT.54), and the intersection is the midpoint of the segment.
By Theorem CAP.18 L is not a fixed line of §, and by Definition CAP.17
8(L) || L, so by Theorem EUC.3 §(£) L M. Then 4(X) is a member
of both M and (WL)(S(X)) both of which are perpendicular to §(L).
By Theorem NEUT.47(B), (W[;)(&(X)) C M. Hence §(Q) is the point of
intersection of §(L£) with both %(X)S Rc (Xi) and %(X)Rg(ﬁ) (6 (X)i and hence is the
midpoint of both. By Exercise NEUT.72 §(R (X)) = Rsz)(8(X)).

(Case 3: X € (£\ {Q}).) By Definition NEUT.1(A) (o Rz)(X) = §(R.(X)) =
3(X) and (Rs(z) 0 8)(X) = Rsr)(8(X)) = §(X). Therefore (§ 0o Rr)(X) = (Rs(e) ©
8§)(X).

(Case 4: X € (P \ (L UM)).) Let Y be the midpoint of XRL(X) By
Theorem NEUT.54 L is the perpendicular bisecting line of XR,C (X) and Yi is the
point of 1ntersﬁectlon. By Theorem EUC.17 §(Y) is the midpoint of § (XRL (X)) =

As in Case 2, §(L) is the perpendicular bisecting line of §(X)Rsc)(8(X))
(by Theorem NEUT.54), and the intersection 1s the rmdpomt of the segment. By
an argument similar to that in Case 2, both XRL(X) and S(X)Rg(g)(S(X)) are
perpendicular to 6(£) and since both contain §(X), thelr 11nes are the same, SO that
8(Y) is the point of intersection of §(£) with both § (XR C (X)) and 8 X)Rsc)(8(X ))
and hence is the midpoint of both. By Exercise NEUT.72 6(R (X)) = Rs(z)(8(X)).

a

Theorem DLN.16. Let P be a Euclidean plane, O be a point on P, § be a dilation
of P with fixed point O, and 0 be an isometry of P. Then there exist isometries w
and W of P suchthat§ 00 = wodand B o = §o .

Proof. First we show that there exists an isometry w such that § 0 6 = w o §.
By Theorem ROT.26 there are four cases.
(Case 1: 6 =1, the identity mapping.) If 0 = 1, take w = 1. Then§ o 6 = § =

w 0 4.
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(Case 2: There exists a line H on P such that § = R4,.) Using Theorem DLN.15
let w = Rsz). Then § o Ry = Rz 0 8.

(Case 3: There exist distinct lines 7 and X on P such that § = Rx oR 7.) Using
Theorem DLN.15

§o(ReoRyg)=BoRk)oRs = (Rsx)o8) oRg =Rsucy)© (§0R7)
= Rsk) © (Rsr) ©8) = (Rsxc) © Rs)) © 6.
Hence we may take = Rs(x) 0 Rs(7)-
(Case 4: There exist three distinct lines £, M, and A such that § = RroR a0
‘R .) The proof of this case is Exercise DLN.8.

The proof that there exists an isometry ¥ such that 6 o 6 = § o ¥ is
Exercise DLN.9. a

Theorem DLN.17. Let P be a Euclidean plane, D and £ be nonempty subsets of
P such that D = &, and § be a dilation of P with fixed point O. Then §(D) = §(E).

Proof. By Definition NEUT.3(B) there exists an isometry 6 of P such that £ =
0(D). Hence §(€) = (6§ o 8)(D). By Theorem DLN.16 there exists an isometry @
of P such that § 0 6 = w o § so that §(§) = w(§(D)). By Definition NEUT.3(B)
8(&) = §(D). 0

Corollary DLN.18. Let P be a Euclidean plane, § be a dilation of P with fixed
point O, and let O, A, and B be distinct points on P such that OA = OB. Then

(A) 8(0A) = 5(OB) and O5(A) = O53(B).
(B) AS(A) = B3(B).

Proof. (A) By Theorem DLN 17 since %)j OB S(O/f) ~ (%)é) By Theo-
rem COBE.5(5) 5(04) = 8(0)8(A) = 03(4) and 8(0B) = 8(0)5(B) =
05 (Bi. Hence by Theorem NEUT. 14 05 (A) 08 (B)
(B) If 0-A-5(A). then by Exercise DLN.S(I(A). O-B-8(B). By Exer-
cise NEUT.38(B) AS(A) = AS(A).
If O-6(A)-A, then by Exermse DLN.5(I)(B), O-6(B)-B. By Exer-
cise NEUT.38(B) AS(A) = AS(A).
If A-0-4(A), then by Exermse DLN.5I)(C), B-0-§(B). By Exer-
cise NEUT.38(A) A8(A) = AS(A). O

Theorem DLN.19. Let P be a Euclidean plane, O be a point on P, p be a rotation
of P about O that is not the identity 1, and let § be a dilation of P with fixed point
O. Then § o p is a collineation of P whose sole fixed point is O.
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Proof. Let X be any member of P \ O. By Exercise ROT.2 O, X, and p(X)
are noncollinear. By Theorem CAP.18 m is a fixed line of § and thus
8(p(X)) € (O_p(—)a Since § o p is a one-to-one mapping, 6(p(X)) # O and so O,
X, and §(p(X)) are noncollinear. Thus 6(p(X)) # X. Since O is a fixed point of
8 o p, it is the sole fixed point of § o p. |

Theorem DLN.20. Let P be a Euclidean plane, O a point on P, R* the set of
rotations of P about O and let D* be the set of dilations of P with fixed point O.
Then

(A) G={pod|pe (R*U{i}) and § € (D* U {1})} is an abelian group under
composition of mappings;

B) R*UD*U {1} € G; and

(C) if H is any group such that R* U D* U {1} C H, then G C H. That is, G is the
minimal group that contains R* U D* U {1}.

Proof. (A) By Theorem ROT.23 R* U {1} is an abelian group under composition
of mappings so if p € R* then p~' € R*. By Theorem ROT.2 O is the sole
fixed point of every member of R*.

By Theorem CAP21 D* U {1} is a group under composition and by
Exercise DLN.3 it is abelian (cf Exercise DLN.4). Therefore if § € D*,
87! € D*. By Theorem CAP.18 O is the sole fixed point of every member
of D*.

If p e R*U{1} and § € D* U {1}, then by Theorem DLN.7(E), pod = §op
so that G is the set of all § o p as well as the set of all po§, where p € (R*U{1})
and § € (D* U {1}).

If p; and p, are any members of R* U {1} and if §; and 8, are any members
of D* U {1}, then (p; 0 8;) o (02 ©82) = (p1 0 p2) © (81 © §,) € G since
(p1 0 p2) € R*U{1}) and (6; o 8,) € D* U {1}. Also by Theorem DLN.7(E),

(p1o81)0(p2082) =p1o(diop)odr=pio(p2061)0d
= (p10p2) o (81 08) = (p20p1)o(82061)
=p2o(p1068) o =pro(20p1)0d
= (p2082) 0 (p1081)
so that any two elements of G commute.
If p € (R*U{1})and § € (D* U {1}), then (p~! 0 §') € G because
p~ e (R*U{1}) and §~! € (D* U {1}). Then by Theorem DLN.7(E)
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(08 o(pod)=("op o(pod)=58"o(p " op)os
=8"o108=58"108=1

so that p~! 0 87! = (p o §)~'; hence any member of G has an inverse in G.
It follows that G is an abelian group under composition of mappings.

B) Ifpe R*U{i}and§ € D* U {i},thenp = po1 € G,§ = §o1 € G, and
1 =101 € G, proving (B).

(C) If H is any group containing R* U D* U {1}, then H must contain all
the compositions of elements of R* U {1} and D* U {1}, and all possible
compositions and inverses of those elements, that is, all elements comprising
@G, so that G C HL. O

Definition DLN.21. The group G defined in the statement of Theorem DLN.20 is
called the group generated by the set (R* U D* U {1}).

Theorem DLN.22. Let P be a Euclidean plane, O be a point on P, and let R*,
D*, and G be the sets defined in Theorem DLN.20. For any distinct members A and
B of P\ {0}, there is a unique member o of G such that a(A) =

Proof. (I: Existence.)

(Case 1: O, A, and B are noncollinear and [07% =~ [071_'%) Then by Theo-
rem ROT.15(A) there exists a rotatlon o of P about O such that a(OA) = OB
Since a rotation is an 1sometry OA >~ T(A), and since congruence is an
equivalence relation OB e OT(A). By Property R.4 of Definition NEUT.2
a(A) = B,and since R* C G, a € G.

(Case 2: O, A, and B are collinear.) Then by Theorem DLN.7 there exists a
dilation o of P with fixed point O such that «(A) = B. Since D* C G, @ € G.

Note here that in the case where A—-O-B and [073 ~ EOTi the point reflection
R maps A to B; by Theorem ISM.3, R is a dilation, hence is the unique dilation
guaranteed by Theorem DLN.7 which maps A to B.

(Case 3: O, A, and B are noncollinear and [07% % [071_'%) Then by Theo-
rem ROT 15(A) there exists a rotation p of P about O such that p(OA) = OB
Since OA % OB p(A) # B. By Theorem DLN.7 there exists a dilation § of
‘P such that §(p(A)) = B. If we let @ = 6 o p, then ¢(A) = B, and since
a=8op=pob,aeiG.

(I: Uniqueness.) Let o and § be members of G (cf Theorem DLN.20), such that
a(A) = B and B(A) = B. Then a(A) = B(A) and (@ o B7!)(A) = A. By
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Theorem DLN.20 o o 87! is a member of G, so 0 87! = § o p where § is either
a dilation or 7, and p is either a rotation or 7.

Now p is an isometry so by Definition NEUT.3(B) W = %)73

Also, §(p(A)) = A. Since every line through O is a fixed line for §, O, p(A),
and A must be collinear. Then either b?A_)) = br)A or b?A_)) = b7>’ where
A-O-A'.

In the first case, by Property R.4 of Definition NEUT.2, p(A) = A and hence
8(A) = A, and A is a fixed point for 8, a contradiction to Theorem CAP.18. In the
second case, p(A) is the point such that (i) [OpT; >~ [Oi/f and (ii) A-O—p(A).

By Theorem ROT.3 the point reflection R has properties (i) and (ii) just
above, and since by Theorem ROT.15(A) there is a unique rotation mapping A to
m (that is, property (ii)), p = Ro.

By Corollary ROT.6 po p = Rp o Rp = 1, so that p(p(A)) = A. By
Theorem ISM.3, p = Ry is a dilation, and by Theorem DLN.7 there is a
unique dilation § such that §(Rp(A)) = 8(p(A)) = A. Therefore § = Ry,
andao B! =pop=RpoRp =1,s0thata = . O

13.3 Exercises for dilations

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise DLN.1*. Let O be a point on a Euclidean plane P, and let « be a half-
rotation of P about O. If X and Y are members of P \ {O} such that O, X, and Y are
noncollinear, then ZXO«(X) =~ £LYOux(Y).

Exercise DLN.2*. Let O be a point on a Euclidean plane P, and let & and 8 be half-
rotations of P about O; let R, S, and T be members of P \ {O} such that «(R) = S,
B(S) =T, and S € ins ZROT. Then for every member U of P \ {O} LUO«(U)
ZROS, La(U)O(B o a)(U) = £LSOT LUO(B o a)(U) = ZROT, and a(U) €
ins ZUO(B o a)(U).

I

Exercise DLN.3*. Let O be a point on a Euclidean plane P, and let §; and §, be
dilations of P with fixed point O. Then §; 0§, = §, 061, i.e. composition of dilations

with a common fixed point is commutative.
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Exercise DLN.4*. Let O be a point on a Euclidean plane P, and let D = {& | o be
a dilation of P with fixed point O, or @ = 1}. Then under composition of mappings

D is an abelian group.

Exercise DLN.5*. Let O be a point on a Euclidean plane P, and let § be a dilation
of P with fixed point O.

(I) If X and Y are members of P \ {O} such that O, X, and Y are noncollinear,
then §(X) and §(Y) are on the same side of Xy
(II) Let A be any member of P \ {O} and let X be any member of P \ {0, A}.

(A) If O-A-5§(A), then O-X-§(X).
(B) If O-8(A)-A, then O-8(X)—X.
(C) If §(A)-O-A, then §(X)-O-X.

(III) Let A be any member of P \ {O} and let X be any member of P \ {0, A}.

(A) If §(A) € OA, then §(X) € OX.
(B) If A’ is a point such that A’~O-A, X’ is a point such that X'~O-X, and if
— 1—
8(A) € OA’, then §(X) € OX'.

(IV) Let A be any member of P \ {O} and let C be any member of P \ OA.

(A) Ifé§(A) € ]074>, then §(C) is on the C-side of OA.
(B) If 6(A)-O-A, then §(C) is on the side of OA opposite the C-side.

Exercise DLN.6*. Let O be a point on a Euclidean plane P; let § be a dilation of
P with fixed point O and let p be a rotation of P about O. Then p~! 0§ 0 p = § and
§lopod =np.

Exercise DLN.7*. Let O be a point on a Euclidean plane P; let § be a dilation on
P with fixed point O, and let £ be any line on P. Then
RE 0§ =26 ORS—I(L).

Exercise DLN.8*. Let O be a point on a Euclidean plane P, and let § be a dilation
of P with fixed point O. Let £, M, and N be distinct lines on P. Then § o (Rxr o
RmoRe) = (Rsw) © Ry © Rie)) © 8.

Exercise DLN.9*. Let O be a point on a Euclidean plane P; let § be a dilation of
‘P with fixed point O, and let 6 be an isometry of P. Then there exists an isometry
Y of Psuchthat 6 0§ = § o .

Exercise DLN.10. Using the construction of Theorem DLN.4, prove that for any
half-rotation «, if A~B—C, then «(A)—«(B)—«(C).



Chapter 14

Every Line in a Euclidean Plane Is an Ordered
Field (OF)

Acronym: OF

Dependencies: all prior Chapters I through 13

New Axioms: none

New Terms Defined: origin, zero, unit; sum, product (of points on a line), inverse
(additive, multiplicative), subtraction, division; positive, negative points (on the

line); the positive half (of the line), absolute value, distance, length

Abstract: This chapter is concerned with an arbitrary line in a Euclidean plane.
It uses translations to define an operation of addition, and dilations to define
multiplication on such a line; when equipped with these operations, the line becomes
a field (defined in Chapter 1 Section 1.5). An ordering of the line is defined, so
that the line becomes an ordered field. These concepts are used to define distance
between points, and the length of a segment.

When we try to think about how to make an arbitrary line into an ordered field, we
naturally think of the real numbers—the archetypical ordered field. When adding the
numbers 2 and —3, we might first “do” the translation that takes O to 2, then follow
that with another translation that takes 0 to —3, so that the composite translation
takes O to —1. Thinking about multiplication in this way is harder, since it involves
stretching the real numbers outward from the origin, rather than translating them.
Such intuitions suggest a way for defining addition and multiplication on a line in
the Euclidean Plane. To accomplish addition, we invoke translation; to accomplish
multiplication, we invoke dilation.
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Some formal difficulties arise from the fact that according to the definitions for
translations and dilations (CAP.6 and CAP.17, respectively), the identity 1 is neither
a translation nor a dilation, and the “zero” mapping, which takes the whole line to
the origin, is not a dilation because dilations are collineations and this mapping takes
everything to a single point. But we need both these mappings in order to make the
arithmetic work correctly.

One way around the problem would have been to anoint both the identity and
the “zero” mapping as “honorary” translations or dilations, as the case might be, but
that would have brought another set of problems. In the following definition we will
solve our current problem by simply making special definitions for the identity and

the “zero” mapping.

In this chapter we follow Geometry: An Introduction, Chapter 3, by Giinter
Ewald, Ishi Press, Wadsworth, 2013 [7].

14.1 Building a line into an ordered field

Definition OF.1. Let P be a Euclidean Plane, IL a line on P, and let O be a point
on L.

(A) Foreach A € L\ {O} define 74 to be the translation of P such that 74(0) = A.
Theorem ISM.5 (Chapter 12) says that such a translation exists and is unique.
Define 74 to be the identity mapping .

(B) Let U be a member of L \ {O}; for each A € L \ {O, U}, define §4 to be the
dilation with fixed point O such that §4(U) = A. Theorem DLN.7 says that
such a dilation exists and is unique. Define §y = 1, and define §¢ to be the
mapping such that for every X € L, §o(X) = O.

(C) If A and B are members of L, define

A® B = (15 074)(0) = 15(14(0)) = 15(A);
The operation @ is called addition and A & B is the sum of A and B.
(D) If A and B are any members of I, define
AO®B = (8g084)(U) = 8p(84(U)) = 6p(A). The operation © is called
multiplication and A © B is the product of A and B. The point U is called the

unit, and O is called the zero or origin of L.
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In Theorem OF.2(A) and (B) it will be seen that we could just as well have
defined A & B = (14 o 13)(0) = t4(B), since the composition of translations is
commutative, and A ©@ B = (§4 085)(U) = 64(B), since the composition of dilations

1S commutative.

Throughout this chapter, IL is a line on the Euclidean plane P; O, U, t4, 84, ® and
© are as defined in Definition OF.1. In this and in the rest of the main development
of this book (Chapters 15, 17, 18, the first section of Chapter 19, and Chapter 20)
we acknowledge the newly exalted status of a line by changing its notation to L,

rather than £, as previously.

Theorem OF.2. (A) L is an abelian group under the operation ®. (See the
definition of group in Chapter 1, Section 1.5.)
(B) L\ {0} is an abelian group under the operation Q.

Proof. In Theorem CAP.12(A) we showed that the set of all translations, together
with the identity , is an abelian group under composition. By Theorem CAP.21 and
Exercise DLN.3, the set of all dilations with fixed point O, together with the identity
1, is also an abelian group under composition. Associativity of @& and © follows
immediately from the associativity of composition of mappings (cf Chapter 1,
Sections 1.4 and 1.5.).

(A) Let A and B be points in L. Then by Definition OF.1, A & B = t3(A) € L.
For any A € L; the translation t4 has an inverse, which is also a translation
7c, for some C € L; then A & C = (t¢ o 174)(0O) = 1(0O) = O. Finally,
A®B = (130714)(0) = (14 015)(0O) = BP A. This shows that IL is an abelian
group under &.

(B) Let A and B be points in IL \ {O}. Then by Definition OF.1,

A QB = (8p0384)(U) = 8p(34(V)) = 8p(A) € L.
Now 8g(64(0)) = O; both g and &4 are one-to-one mappings, so their
composition is one-to-one, so that §(64(U)) # O. Therefore A® B € L\ {O}.
For any A € IL\ {O} the dilation §4 has an inverse ¢, for some C € L\ {O}.
Then A © C = (8¢ 0 84)(U) = 1(U) = U. Finally,
AQOB=(8g0684)(U) = (8406p)(U)=BOA.
This shows that I \ {O} is an abelian group under ©. |
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Theorem OF.3. ForeveryA € L,

ADO=00A=A060=0,
UGOA=A0U=A, and
APO=00A=000=0.

Proof. By Definitions OF.1(A) and (C), for every A € L,
ADO=(101)(0) =1(ra(0)) =1(A) = 4
O®A=(ta01)(0) =14((0) = 1(0) =A;and
0P 0= (1o01)0)=0.

By Definitions OF.1(B) and (D), for every A € L,
UOA=(Bp01)(U)=564(U)=AandAO U = (1 064)(U) =1(A) = A;
A® O = (8008)(U) = 30(8a(U)) = 80(A) = O

since 8o maps L to O; likewise
OOA=(64060)(U)=254(60(U)) =64(0)=0and 0O 0 = 0. O

Definition OF.4. (A) For every member A of L, define ®A to be the unique
member of I, which is guaranteed by Theorem OF.2(A) above, such that
A®CA =°4A@A = 0. °A is the additive inverse of A. Note that 0 = O

and ©(°0) = 0.

(B) For every member A of L\ {0}, define A~! to be the unique member of L.\ {0},
guaranteed by Theorem OF.2(B) above, such that A©@ A™' = A™' 0 A =
U. A7! is the multiplicative inverse of A. Again, note that U~! = U and
wH"=u.

Theorem OF.5. Let ¢ be a collineation of P with fixed line 1L such that ¢(O) = O.
(For example, ¢ may be a dilation of P with fixed point O.) Then for all points S
andTonL (S +T) = ¢(S) + (7).

Proof. (Case 1: S = 0.) By Definition OF.1 each side of the given equality is ¢(7T).
(Case 2: S # 0.) By Theorem CAP.13, ¢ o 75 0 ¢! is a translation of P. Since

(¢ ot50971)(0) = (ts(97'(0)) = ¢(15(0)) = ¢(S),
@ ot50 9" = 1,5, and multiplying on the right by ¢, we have ¢ o T3 = 7,5 © ¢,

so that ¢ (zs(T)) = 1y(s5)(¢(T)). But 7(T) = S+ T and 7,5 (¢(T)) = @(S) + (7).
This, together with the last equality yields o(S+7) = ¢(zs(T)) = @(S)+¢(T). O

Theorem OF.6 (Distributive property). For all points A, B, and C of L, A® (B&®
OO=A0B®AOC)and(AdB)OC=(A0C) & (BOC).
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Proof. (Case 1: A = 0.) Each side of the given equality is O.

(Case 2: A # 0.) By Theorem OF2(B), A ® (B ® C) = §,(B & O).
By Theorem OF.5 §4(B @ C) = 64(B) @ 84(C). By Definition OF.1 §4(B) @ 64
()= A0BBAOC)ThusAOBBC) = (AOB) + (AO C). That
AD®B)OC)=(A0C) & (BOC) follows directly from commutativity of the
operations @ and ©, which was proved in Theorem OF.2. O

Theorem OF.7. L is a field under the operations ® and ©.

Proof. The proof is simply a synthesis of Theorems OF.2 and OF.6. For the
definition of field, see Chapter 1 Section 1.5. |

Definition OF.8. (A) For all members A and Bof L, A © B = A @ ©B. The
operation © is called subtraction and “A © B” is read “A less B” or “A
minus B.”

(B) For every member A of L. and for every member B of L\ {O},A®@B = A®B ..
The operation @ is called division, and “A © B” is read “A divided by B.”

(C) For every member A of L, A is positive iff A € ]O—I)J and A is negative iff
A-O-U.

(D) The points on L are ordered (cf Definition ORD.1) so that O < U.

Theorem OF.9. Let A be any member of L\ {O}. Then A is positive iff A > O and
A is negative iff A < O.

Proof. By Definition OF.8 U > O and A is positive iff A € brl)l, which, by
Theorem ORD.7, equals {X | X > O}; thus A is positive iff A > O. Again by
Definition OE.8, A is negative iff A—O-U; by Theorem ORD.6 A-O-U iff either
A<O<UorA > O > U;but O < U so the latter case is ruled out. Therefore, A
is negative iff A < O. O

Theorem OF.10. Let A and B be any members of L \ {O}.

(A) () P4 = Ro(4); (2) A-0-(°A4); (3) °(°4) = Ro(Ro(4)) = A; and (4)
0(PA) = OA.

(B) IfA is positive, then A is negative and if A is negative, then A is positive.

(C) IfA and B are positive, then A @ B is positive and A O B is positive.

D) (HCU)OA=PA;2)°A60B) =(PAOB=A0(°B);and 3)AOB =
(®A) © (®B).

(E) (1) If one of A or B is positive and the other negative, then A O B is negative;

and (2) A and A™" are both positive or both negative.
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(F) (°A)® (°B) = (A @ B).

G A'oB'=UoB)L

(H) Let A and B be any members of L; then A © B = O iff A = O or B = O.
(D) If A and B are negative, then A ® B is negative and A ® B is positive.

Proof. (A) First note that O = A @ (PA) = (14 o 16,)(0) = 74(PA), and
74(0) = A. By Theorem ISM.6, every translatlon 1s an 1sometry, so by
Theorem COBE 5(5) (or Theorem NEUT.15(5)), O(GA)

If ®A € OA, then by Property R.4 of Definition NEUT.Z, A = ©A, so that
0 =ADA = t4(14(0)) and O is a fixed point of 74 o 74 which is impossible by
Exer01se ISM.1(B). Then ®A ¢ OA and hence A—O-©A and O is the m1dp01nt
of A(eA) By Theorem ROT 3 A—O—RO (A) and O is the midpoint of ARO (A)
By Exercise NEUT 33 ARO(A) ~ A(®A), and since both ©A and Ro(A) are
members of AO, by Property R.4 of Definition NEUT.2, ®A = R (A). Then
©(®PA) = Ro(Ro(A)) = A by Corollary ROT.6.

(B) By Theorem OF.9, if A is positive, then A > O and by Theorem ORD.6, since
(PA)-0-A, PA < O < A, and thus PA is negative. Similarly, if A is negative,
then A < O and ®A > O so that ®A is positive.

(C) If A and B are positive, by Theorem ISM.23, 74(B) > B > O; by
Theorem OF2, A @ B = w4(B), so that A & B > O is positive. To prove
the second assertion, note that A ©® B = §4(B). By Theorem DLN.8 4 is a
belineation so by Theorem COBE.5(2), 84(0U) = 81(0)8s(U) = OA. By
Theorem PSH. 16, br)A = rOrI)J = rOrB?; since B € ]@,A OB =64(B) € ]O—L)/ and
AOB>O0.

(D) By Theorem OF.3 and Theorem OF.6,

(CU)OA) BA = ((CU)0A)® (U O A)
=CUsU)0A=00A=0,
so that (PU) © A = °PA.
Since ((PA) ©B) ® (AO B) = ((PA) ®A) © B = 0 © B = 0, it follows
that ©(A ©® B) = (®A) © B. Applying Theorem OF.2(B) (commutativity), we

have

SAOB) =°B0OA) =CB oA=A0(®B).
The next equality follows from Theorem OF.2(B), part (A) of this theorem,
and two applications of what we just proved:
PA OB =°A0CB)=°°FA0OB)=A0B.
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(E) Choose the notation so that A is negative and B is positive. Then by part (D)
(PA) © B = ©(A © B). By part (B) ©®(A © B) is positive so again by part (B)
its additive inverse A O B is negative. If one of A or A~! were positive and the
other negative, A ® A™' = U would be negative, which is impossible since
U e ]O—I)J and hence is positive.

(F) (CAHeCB)eA®B) =B (P oA OB

=CBO®O0O®B=°PB+B=0.
Hence (®A) @ (®B) is the additive inverse of A @ B so
(PA) @ (°B) = °(A® B).

G A'eBHoMAeB =A"T0BHOBOA)
=A""'0B'OB OA
=ATTOUOA=ATOA=U.

Hence A~! ® B™! is the multiplicative inverse of A ® B and
A'oB'=UAd0oB) L.

(H) If B = O, by Definition OF.1(D), A © O = §p(A) = O.If A = O, then
OOB=BOO=0.GivenAOB = 0,ifA# OthenO=A""O0(AOB) =
(A" ®A) ©B = U ® B = B. Similarly if B # O, then A = O.

(I) From part (F), A® B = ©(PA) @ ©(®B) = ©((°A) & (®B)). Since A and
©B are positive, by part (C), (°A) @ (®B) is positive. So by part (B) ©((PA) ®
(®B)) = A @ B is negative.

Since A is negative, ©A is positive by part (B). So A © B is negative by
part (E). Then by part (B), ©((°A) ® B) is positive. By parts (D) and (A),
°((PA)eB) = (PU)O((PA)©B) = (CU)©(PA) ©B = (°(°A)) OB =
AOB. O

Theorem OF.11. Let P be a Euclidean plane, 1L be a line on P, O be a point on L,
and A, B, and C be members of L. Then

(A) A<BifBOA > Oiff(®°B) < (PA).

B) A<BiffA®C<B®C;alsoO <BiffC<B®CandA < Oiff A®C < C.
©C) IfA<BandC> O,then A C <BQ®C.

(D) IfA<BandC < O,thenBO C <A QO C.

Proof. In this proof we will write A @ (®B) as A © B, as permitted by Defini-
tion OF.8(A).
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IfA < Band B&A # O, by trichotomy for <, either BE6&A = OorBSA < O.
If B6& A = O, then B = A which contradicts A < B.If B& A < O, then by
Theorem OF.10(F) and (A),

®BoA) =(°B)®(°(°A) = (°B)@A=AOSB
which is greater than O by Theorem OF.10(B). Then tao5(B) = (A6B)®B =
A®(PBE®B) = AGO = A; by the last statement of Case 2 of Theorem ISM.23,

B < A, which contradicts A < B. Therefore if A < B,B& A > O.
Conversely, if BO© A > O, then

Tpoa(A) = (BOA) A= (Bd (PA) @A
=B®(PA)®A) =B®0O0=8B
so that again by Theorem ISM.23 A < B.
The proof that B & A > O iff (°B) < (®A) is Exercise OF.9.
Using Theorem OF.10(F),

BeC)oA®C)=BOC)DPABO)
=B®O) & ((PA) @ (°0)
=BdCa® (PA) & (°0)
= (B® (°A)) & (Ca (°0))
= B® (PA) ® 0=BOA.

By part (A) this is greater than O iff B > A, so that
BeO)oA®C) > O0iff B> A.
That O < B iff C < B @ C follows by substituting O for A in the above; that
A < Oiff A @ C < C follows by substituting O for B.
If A < B, then by part (A) B& A > O. Since C > O, by Theorem OF.10(C)
C ® (B8 A) > 0. Then by Theorem OF.10(D) and Theorem OF.6,
COBBA)=COB®OA) =(COB)®(CO°A)
=(COBOS(COA)>O0
Therefore by part (A) COA < C O B.
The proof of part (D) is Exercise OF.7. O

Theorem OF.12. Let P be a Euclidean plane, 1L be a line on P, O be a point on L,
and U be a member of I\ {O}. If the operations @ and © are established on L in
accordance with Definition OF.1 and if the relation < is established on 1L with the

properties listed in Theorem OF.11, then L is an ordered field.

Proof. This is simply a synthesis of Theorems OF.7 and OF.11. O
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Definition OF.13. (A) The ray OU is the positive half of L \ {O}.
(B) For any member X of L, the absolute value of X is
XifX>0

X:{ .
XI=1exitx <0

Remark OF.14 (Identification of F and ]O_I)]). Early in Chapter 9 (Defini-
tion FSEG.3) we defined addition and ordering of free segments. Doubtless the
reader has noted that the arithmetic of free segments is very limited, since there is
no “zero” segment and no “negative” segments, or any definition of multiplication.
(This kind of algebraic system is known as a semigroup.)

So far in this chapter we have shown how a line L in the Euclidean plane can be
“built” into a field, complete with addition @ and multiplication ©, so that it has
a complete system of arithmetic. Also in Definition OF.8(D) we have specified an
ordering for this field.

In Theorem FSEG.15, we showed that the mapping @ (from Definition FSEG.14)
is a bijection of the set ' of all free segments onto ]O_)U, and this mapping also
preserves order. (Here O and U are distinct points of the line, O being the origin,
and the unit U replaces Q in Theorem FSEG.15.) Thus it makes sense to define
length and distance as positive members of IL; we will do this in Definition OF.16.

In Theorem OF.17, we will show that @ preserves addition, and later on in
Theorem SIM.8 (after products of free segments have been defined), it will be shown
that @ also preserves products. Thus @ allows us to identify F with ]O—I)] meaning
that these two sets are algebraically indistinguishable.

Note carefully that we use the symbol @ both for addition of free segments and
for addition of points on the line L; its meaning in these two situations is quite
different, the first being derived from pasting two free segments together end-to-

end, the second from translations.

Theorem OF.15. Let A, B, C, and D be distinct points on the line 1. on the
Euclidean plane P (where L is equipped with origin O and unit U as in Defini-
tion OF1).

(A) AB=~ 0B 6 A) ~ O[BS A].

(B) [BOA| = |D 6 C| iffAB = CD.

(C) Let @ be the mapping defined in Definition FSEG.14, where U takes the place
of Q in that definition. Then 05[1[4713]] =|BOA|.
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Proof. (A) (I) For the moment, choose the notation so that A < B; by Theorem
OF.11 (A), B A > 0.

Then te4(A) = A©A = O and 16,(B) = B 6 A; since To,
1s an 1sometry, we may use Theorem NEUT.15(5) to get 1o A(AB) =
O(B © A) and AB O(B © A)

(IT) On the other hand, 1f A > B, by Theorem OF11(A) A B > O,
and by (I) above, BA ~ EO(A GB) By Theorem NEUT.15(5) and
Theorem OF 10(A)

RO(O(A o B)) = O(RO(A o B)) = 0(e A o B)) = O(B o A)
S0 that O(A ) B) O(B eA) Agaln usmg D, BA m

-
||

O(B 8] A) and since by Definition IB.3 AB BA, B=0 m
(IIT) By the result Just above and Deﬁnltlon IB 3,
OBOA) ~AB=BA~0AGB) ~ 09(3 eA)
and |B © A| is either B©S A or A © B. Hence AB ~ | O(B eAi |. This
completes the proof of part (A)
B) If BeA|=|Do (|, then O|B 9A| O|D S C| by part (A) above,
AB~O|BoA|=0D6 (|~

and IETB [CiD]
Conversely, if AB CD then applylng part (A) twice, we have
OBoA|=AB=CD=~0DoC|.
Since both |B © A| and |D © C| are members of O 7, by Property R.4 of
Definition NEUT 2,|BeAl=|DeCC|.
(C) Since X = <D [AB] 1s defined to be the point of OU such that [OX 1= [AB] ], we
know that OX ~ AB. By part (B), and using the fact that X > O,
IBOA|=|X©0| = |X| = X = PAB]. O
Definition OF.16. Define the distance between two points A and B, or the length
of AB to be |B S A| = ®[AB].

Theorem OF.17. Let P be a Euclidean plane, 1L be the ordered field of Theo-
rem OF.12, O be the origin of L, and let S, T, and V be positive members of L
(i.e., members ofm). Let @ be as in Definition FSEG.14. Then

L

=

(A) [ T] [S(S &) T)j], that is, OT ~ .[S'(S &) Ti; this is true for any S and T in L;
®) (0S]® [SS®T)] = [0S & [0T] = [0S & D) ;
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(©) &([0S] & [0T)) = S[0S] & P[0T ); and

(D) [0S]® [OT] = [OV]iff S&T = V.

Proof (A) By Deﬁmtlon OFl and using Theorem COBE.5(5), rS(OT) =
‘ES(O)’Es(T) S(S ® T) Since tg is an isometry, by Definition NEUT.3(B)
OT =~ S(S @ T) (cf Definition FSEG.2); this proves part (A) for any 7 and
Sin L.

(B) By Theorem OF 1 l(B) S EB T>S so that O—S—(S &) T) By Deﬁmtlon FSEG.3
and part (A), [OS] ® [OT] [OS] ® [S(S @ T)] = [O(S @ T)] This proves
part (B).

(C) In this part, [OHS]] @ [[07Tj] means addition of free segments, while @[ﬁ] &)
cD[[OiT]] means addition of points on the line ]L Since S, T and V are positive,
$O 1s S @ T. Then by part (B) @([OS] ® [OT]) = 45([0(5 @ T)]) =SPT,
QD[OS] = §, and <D[OT] = T. Here we have used Definition FSEG.14 three

times.

_l

r‘l

=

(D) The proof that if S® T =V then [OS ] S [ ] [0 ] follows immediately
from part_ (B). Conversely, if [OS ] ® [OT] [OV] by part (B) [OV] =
[O(S @ T)] so that by Definition FSEG.2 oV =~ O(S &) T) since Vand S T
are positive, V € jO(S—@T) and by Definition NEUT.2 Property R.4 (linear
scaling), V=S®T. O

Corollary OF.18. Assume the hypotheses of Theorem OF.17. In addition, assume
that there is a second line M which has been made into an ordered field with unit
U’, and which intersects 1. at their common pomt 0 of orzgln Let Y and T be
posmve members of M (i.e., members of OU’ ). If 0S8 =~ OS/ and OT = OT’ then
O(S @ T) O(S’ @ T’)

= E—J E—3 E=— i~ = — —
Proof OS = OS and OT = OT iff [0S] = [0S'] and [OT] = [OT'];
by Theorem OF.17(B), if this is true then [O(S &) T)] = [0S & T)], that is,
0SeT) =08 & T). 0

Remark OF.19. Note that by Theorem OF.17 we _may add two positive points A
and B on L by first constructlng the two segments OA and OB then constructing a
point C such that O-A-C and AC OB Then A @ B = C. This observation will
be pivotal in our development in Chapter 17 (QX) of rational multiples of points

on a line.
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14.2 Exercises for ordered fields

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise OF.1*. Let P be a Euclidean plane; let I be an ordered field on P with
origin O, and 74 be the translation of P such that 74(O) = A, where A is any member
of L \ {O}. Then for every member X of L, 74 (X) = X & A.

Exercise OF.2*. Let P be a Euclidean plane; let I be an ordered field on P with
origin O and unit U (where U € (L'\ {O})) and let §4 be the dilation of P with fixed
point O such that §4(U) = A. Then for every member X of L\ {0}, §4(X) = X O A.

Exercise OF.3*. (A) If A, B, and C are members of the ordered field L (cf.
Definition OF.1) such that A @ C = B & C, then A = B.

(B) If A and B are members of IL and if C is a member of L\ {O} such that A® C =
B®C,thenA = B.

Exercise OF.4*. (A) If A, B, and C are members of the field I such that A & B =
A® C,then B = C.

(B) If A is a member of L \ {O}, and if B and C are members of L such that
AOB=AQ®C, thenB = C.

Exercise OF.5*. Let A, B, and C be members of the field IL; then (BO A) © C =
BOC)BSMAOGO.

Exercise OF.6*. Let § be a dilation of the Euclidean plane P with fixed point O,
and let L be an ordered field with origin O and unit U. If K and T are any members
of L,then §(K © T) = K © §(T).

Exercise OF.7*. Let A and B be members of .. Complete the proof of Theo-
rem OF.11(A), by showing that B © A iff (°B) < (PA).

Exercise OF.8*. Prove part D of Theorem OF.11: f A < B and C < O, then
BOC<AQGOC.

Exercise OF.9*. Let A and B be negative members of IL. Then A < B iff |B| < |A|.

Exercise OF.10*. (A) Let T = {t4 | A € L}; then the mapping :A — 7,4 is a
bijection of I onto T.
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(B) Let M = {64 | A € L}; then the mapping p:A — 8, is a bijection of IL onto
M; furthermore u maps L \ {O} onto M \ {O}.

Exercise OF.11*. (This result is analogous to Theorem CAP.23.) Let P be a
Euclidean plane, and let IL; and I, be parallel lines on P, where IL; has been built
into an ordered field with origin O; and unit U;. Let O, be a point of L,, and let
o be the translation of P such that 0(0;) = O;. (The existence and uniqueness
of this translation is guaranteed by Theorem ISM.5.) Let A € L, \ {O;, U,}. Then

1

0 084 00~ !is a dilation of P with fixed point O,. In fact, 6 0 84 06~} = 8o(a) SO

that 0 0 64 = 854 0 0.

Exercise OF.12*. Let P be a Euclidean plane; let IL be an ordered field on P with
origin O and unit U, A be a member of L. \ {O, U}, and let 74 and §4 be as in
Definition OF.1. Then 84 o 74 = T5,(4) © 4.



Chapter 15
Similarity on a Euclidean Plane (SIM)

Acronym: SIM

Dependencies: all prior Chapters I through 14

New Axioms: none

New Terms Defined: similar, similarity, similarity mapping, unit free segment;

product, ratio (of free segments)

Abstract: This chapter defines a similarity mapping on a Euclidean plane as a
dilation, an isometry, or a composition of a dilation and an isometry. Such mappings
are used to define the similarity of two sets. Similarity is shown to be an equivalence
relation, and criteria are developed for similarity of triangles. The chapter concludes
with a proof of the Pythagorean Theorem, and a proof that the product of the base
and altitude of a triangle is constant.

15.1 Theorems on similarity

Definition SIM.1. (A) Let P be a Euclidean plane; if § is either a dilation, or the
identity 1, and ¢ is an isometry of P, then § o ¢ is a similarity mapping (or
simply a similarity).

(B) If D and £ are any nonempty subsets of P, they are said to be similar (notation:
D ~ &) iff there exists a similarity mapping § o ¢ such that (§ o ¢)(D) =
$(e(D)) = €.
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Theorem SIM.2. (A) Every dilation and every isometry (including the identity 1)
is a similarity mapping.
(B) For any similarity mapping § o ¢, where § is a dilation and ¢ is an isometry,

there exists an isometry Y such that ¥ o § = § o ¢.

Therefore a mapping is a similarity mapping iff it is either of the form ¢ o or § o ¢,

where § is either a dilation or the identity, and ¢ is an isometry.

(C) The inverse of a similarity mapping is a similarity mapping.
(D) The composition of two similarity mappings is a similarity mapping.

(E) Every similarity mapping is a belineation.

Proof. (A) Since the identity : is an isometry, by Definition SIM.1,71 01 = 11isa
similarity mapping; if ¢ is any isometry, then by the same definition, 1 o ¢ is a
similarity mapping. If § is any dilation, then § = § o1 is a similarity mapping.

(B) This follows immediately from Theorem DLN.16.

(©) (p 08! = 8o ¢ by Theorem CAP21, §~! is a dilation, and by
Theorem NEUT.11 ¢~! is an isometry; by part (B) above, §! o 97! is a
similarity mapping.

(D) Let § o ¢ and §’ o ¢’ be similarity mappings, where ¢ and ¢’ are isometries, §
is either a dilation with fixed point O or the identity ¢, and 4’ is either a dilation

with fixed point O’ or 1. We show that ® = § o ¢ 0§’ o ¢’ is a similarity
mapping.

(I) If § =1, then w = ¢ 0 §’ o ¢’. By part (B) above, there exists an isometry
¥ such that ¥ 0§’ = §' o ¢/, so that w = (¢ o ¥) o §'; since ¢ o ¥ is an
isometry, by part (B)  is a similarity mapping.

If§ =1,w =80 (po¢’)andsince ¢ o ¢’ is an isometry, by part (B)
w is a similarity mapping.
(Il) Now suppose that both § and §’ are dilations, with, as noted above, fixed
points O and ', respectively. By Theorem ISM.5, there exists a translation
7 such that 7(0’) = O. By Theorem CAP23(C), ¢ = 7' 0§ orisa
dilation with fixed point O. Thus

w=80¢poop =8opoto(t!of or)orog’

=So(por)oco(r oy

1

where ¢ o T and 77! o ¢ are both isometries. By Theorem DLN.16 there

exists an isometry ¢” such that ¢ o 7 0 € = € 0 ¢”, so that
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w=_8o0¢eo(p'ot oy
and ¢” o 77! 0 ¢’ is an isometry. By Theorem CAP21, § o € is either the
identity or a dilation with fixed point O, so that by Definition SIM.1, w is

a similarity mapping.

(E) This is an immediate consequence of Theorem DLN.8 and the fact that every

isometry is a belineation. O

Theorem SIM.3. Similarity is an equivalence relation on the set O of nonempty

subsets of the Euclidean plane P.

Proof. Let D, £, and F be members of Q.

I: D ~ D.)1(D) = D, and by Theorem SIM.2(A), the identity is a similarity
mapping, so D ~ D.

(AL D ~ &, then £ ~ D.) If D ~ &, there exists a similarity mapping @ such that
o(D) = &; then o~ '(£) = D and by Theorem SIM.2(C), w~! is a similarity
mapping.

(IL: If D ~ & and € ~ F, then D ~ F.) By Definition SIM. 1, there exist similarity
mappings o and o such that 6 (D) = £ and w(€) = F; By Theorem SIM.2(D),
w o ¢ is a similarity mapping, and w o 0(D) = w(0(D)) = w(€) = F so that
D~ F. O

Remark SIM.4. (A) Definition SIM.1(B) can be stated as follows: if D and £ are
any nonempty sets, then D ~ & iff there exists a nonempty set G and a dilation
8 such that G =~ D and §(G) = £. By Theorem SIM.2(B), this is the same as
saying that there exist a nonempty set G and a dilation § such that §(D) = G
and G = €£.

(B) Notice that our definition of similarity provides a generalization of congruence;
if two sets are congruent, they are similar; that is, an isometry is a similarity

mapping. But the converse is not true.
Theorem SIM.5. Let P be a Euclidean plane.

(A) Let A, B, and C be noncollinear points on P and let w be a similarity mapping
of P. Then /BAC =~ Zw(B)w(A)w(C), LCBA = Zw(C)w(B)w(A), and
ZLACB =~ Lw(A)w(C)w(B).

(B) If Ay, By, Cy, Ay, By, and C, are points on P such that Ay, By, and C;
are noncollinear, Ay, B, and C, are noncollinear, /B1A1C, = ZByA;C,,
LC1B1A| = LCyByA,, and LA C By =~ LA,CyB», then

AAB|C; ~ AAB,Co.
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Proof. (A) By Theorem SIM.2(A) and (B) either w is an isometry of P, or there
exist an isometry ¢ and a dilation § such that ® = ¢ o §. If w is an isometry,
then by Theorem NEUT.15(8), the congruences stated are true. If ® = ¢ o
8, where ¢ is an isometry and § is a dilation, then by Theorem DLN.14 and
Theorem NEUT.15(8) the congruences stated are true.

(B) By Theorem NEUT 67 (Segment constructlon) there ex1st pomts Bg and (04
such that B, € Asz, C, € m, A1B1 A Bz, and A1C1 = A C By
Theorem NEUT.64 (EAE), AA131C1 o AA B,C), ZA,B,C, = /AB,C\,
ZA,CiB, =~ /A,CB, and B/ C/ = BIC1 Since ZA1B1C, = ZLA;B,C;
by Theorem NEUT.14 (congruence is an equivalence relation), ZA,B,C’, =
LAB,C. o

If B, = B, then by Theorem NEUT65 (AEA) A,C;, = A,C,. By
Property R.4 of Definition NEUT.2, C, = C, so that AA,B,C, = AA>B,C»
and thus AA{B1C; ~ AA,B,C5.

If B’ # B,, then using Theorem DLN.7 let § be the dilation of P with fixed
point A, such that §(B}) = B,. By Theorem CAP.1(A)

8(B,C3) = 6(B,)8(C5) = B,8(C)).
>
By Definition CAP.17 B,5(C,) || B’ C,. Since
ZLA>Br8(C3) = £8(A2)8(B3)8(C)) = 8(£LA2B>C)
~ /AB,Cy =~ AAZB;C;,

by Theorem EUC.11, <BZ_C; I ITC/; By Axiom PS <BZ—C; = B,48(C}) so that
S(Cé) =G

Summarizing, we have §(B}) = B, and §(C) = C; so that §(AA,B,C)) =
AALB,Cs. Also AAB\Cy = AA,B,C), so that AA|B|Cy ~ AA,B,C, by
Definition SIM.1. O

Theorem SIM.6. Let P be a Euclidean plane and let A), By, Ci, A;, By, and
C, be points on P such that Ay, By, and Cy are noncollinear, A, By, and C; are
noncollinear, /B1ACy =~ /ByA>C, and ZA\B,Cy =~ LA,B,C», then AA1B,C| ~
AA;B,C.

Proof. An immediate consequence of Theorem SIM.5 and Theorem EUC.35. O

In the following, we will use smaller typeface script letters to denote free
segments of P, as in Chapter 9 (FSEG). We will use the symbol < and its natural
variants for the order relation on free segments that we defined in that chapter.
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Definition SIM.7. Let P be a Euclidean plane, O a point on P, and U a member
of P\ {O}. Let 4 and B be any free segments of P, and let A and B be points on oU
such that [OA] = A and [OB] = 5.

(A) Define the unit free segment to be v/ = [[07U]]. It will remain fixed throughout
our development.

(B) Define the product 4 © B = [[0714]] O] [[0781] of 4 and B as the free segment
[O(A O B) ], where (as in Definition OF.1) A © B = 8(84(U)) = 85(A).

Theorem SIM.8. Let P be a Euclidean plane.

(A) Under the operation ©, the set of free segments of P is an abelian group with
identity element u.

(B) If A, B, and c are free segments of P, then AQ (B®¢c) = (A0 B) D (40O c)

(C) The mapping ® which is an order and sum-preserving bijection of F onto OU
(cf Definition FSEG.14 and Theorem OF.17) also preserves products. That is,
for any free segments A and B, ®(A © B) = ®(A) © D(B).

Proof. (A) Let A, B, and C be members of OU such that [[07A]] = A, [bf] =
5, and [OC] = c. In the following reasoning we use Definition SIM.7 and
Theorem OF.7.

(I) (Existence of identity) A O u = [[O(A SD U)J] = [[07A]] = A.
(II) (Existence of inverses) Let o = [OA™!]. Then

AOD=[0A]O[0A ] = [0(AOA)] = [0U] = u.

Hence p = A~!.

() (Commutativity)
E—3 £ E =) E 3
AOB=[0A]©[OB]=[0AOB)] =[0(BOA)]=B0 A

(IV) (Associativity)
(40B)Oc=[0((AOBOC)] =[0AG BOC)] =40 5O C).

(B) (Distributivity) In addition to Definition SIM.7 and Theorem OF.7, in this part

we use Theorem OF.17.

A0 @E®) =040 B&C)]|=[0(A0E) & A6 )]
[O(AC)B)] ® [O(A(DC)] = (AOB) ® (A@c)
(C) Let A and B be members of OU such that A = [OA] and B = [OB ]. By
Definition SIM.7, A® B = [O(ATB)] S0 P(AOB) =A0OB = P(4) ©P(B).
O
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Remark SIM.8.1. (A) Theorem SIM.8, in combination with Theorem FSEG.15,
Theorem OF.17, and Theorem OFE.7 fulfills the promise we made in
Remark OF.14. It shows that the product defined on the set of free segments
does turn that set into a group under the operation ©®, and that the mapping
@ is a group isomorphism with respect to that operation. Thus the set of free
segments may be identified with j(ﬁ)] as to sums, products, and order.

(B) We should make clear exactly what the objects being defined here are. The
product of two free segments is again a free segment; later on, in Defini-
tion SIM.12, we will define the ratio of two free segments, which again will
be a free segment. Intuitively we are used to thinking of ratios as numbers. It
is possible to do that here, too, since we have mapped the set of free segments
onto j(ﬁ)] using the mapping @ defined in Definition FSEG.14.

Theorem SIM.9. Let A, 5B, and c be free segments of P.

@D IfB<c, then AOB< AQC.
(D) IfB>c, then AOB> AQC.

Proof (I) Let A, B, and C be points on OU such that [OA] = A4, [OB] = B, and
[OC ] = ¢; and let §, €, and O be dilations of P with fixed point O such that
8(U) =A,e(U) =B,and (V) =

By Definitions SIM.7 and OF.1, A0 B = [W] and Aoc =
[W] By Exercise DLN3 Ao0B =BoA = [W] =
[05(B)] and Aoc = co A [0((50 0)(U))] = [06(C)]. If 5 < «,
then by Definition FSEG.3, EOB < OC By Theorem NEUT.74 O-B-C. By
Theorem SIM.2(E) (every similarity is a belineation), and the fact that 0 is a
fixed point of 4, O—S(B)—S(C) By Deﬁmtlon NEUT.70 OS(B) < OS(C) By
Definition FSEG.3 [08(3)] < [05(C) ] Thusa®OB< AOC.

(II) If B > c, then by Definition FSEG.3,¢c < 5. By part (I) (4 ©® B) > A ®c. O

Definition SIM.10. Let P be a Euclidean plane and let 7 be a free segment of P,
then 72 =70 T.

The reader may find the following theorem easier to visualize in its re-statement

as Theorem SIM.13, which deals with ratios of “lengths” of segments.

Theorem SIM.11. Let P be a Euclidean plane and let O, A, and B be noncollinear
points on P; let C and D be points such that C € (<O_A) \{A}) and D € (O<_)B \ {B}),
A =[0A], 8 = [0B), ¢ = [0C], and D = [OD).
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<> <>
(A) IfAB || CD, then A®@ D =B0cC.
<—> <>
B) IfA®D=8B0Oc, then AB || CD.

Proof. Using Theorem NEUT.67 and Exercise FSEG.1, define U as the unit for &
and U’ as the unit for <0_>B; that is, U and U’ are those points on their respective
lines such that [[07]] = [507(]]] = u, where v is the unit free segment as in
Definition SIM.7(A).

Using Theorem DLN.7 let «, 8, v, and § be the dilations of P with fixed point O
such that «(U) = A, B(U’) = B, y(U) = C, and §(U’) = D. By Definitions SIM.7
and OF.1

40D =[0@ o) (U)] = [05(a(U))] and
BOc=[0(y o B)(U)] = [0y(BU)].
Since A = a(U), U = a~'(A) and so C = y(U) = (yoa~')(A). Since B = B(U’),

U = B~ '(B)and so D = §(U’) = (§ o B~')(B). By Theorem CAP21 y o o' is
1

either 1 (the identity mapping), or it is a dilation of P. If y o @™ were equal to 1,
then y = «, contrary to the fact that «(U) = A # C = y(U). Hence y o™ ! is a

dilation of P. The same kind of reasoning shows that § o 8! is a dilation of P.

(A) (Ifﬁ I C(’_)D, then 4 © » = ¢ ® B.) First note that (y o «~')(A) = C and by
Definition CAP.17, (y o oz_')(f4_B)) I AB. By Axiom PS there is only one line
through C parallel to 1(4_1)9, so that (y o ()é_l)(1<4—B)) = C(_)D and (y oo™ )(B) =D
Since (§ o B71)(B) = D, by Theorem CAP.24 y oa™! = § o ~!. Multiplying
both sides on the right by e o 8 = Boa wehave oy =y o8 = § oa. Here
we have used Exercise DLN.3. By Definitions SIM.7 and OF.1, A®D = cO B.

B) If A©D = c © 5, thn AB || CD.) By Definition SIM7 4 © p =
[O(SOa)(U)] and BOC = [O(y o,B)(U’)] If AOQD = OB, we have
9(5 ) (x)(U)j O(y o ﬂ)(U’) and since OU OU’ , by Corollary DLN.18(A)
0(y o B)(U) = O(y o B)(U), so that 0@ o a)(U) = O(y o B)(U). Since
8(a(U)) and y(B(U)) both belong to ]O_l)], we may apply Property R.4 of
Definition NEUT.2 to get (§ o «)(U) = (y o B)(U). By Theorem CAP.24,
8 oa = y o B. Multiplying on the right by «=! o B~! = =1 o ™!, we have
yoa™! = 8o B! Define 4 to be this dilation, which has fixed point O.

Then 8(A) = (y ca™')(A) = Cand 6(B) = (§ o B~1)(B) = D; by
Theorem CAP.1(A) and Definition CAP.17 §(AB) = 0(A)9(B) = CD, and
O(AB) || AB. Thus AB || CD. O




326 15 Similarity on a Euclidean Plane (SIM)

Definition SIM.12. Let P be a Euclidean plane and let 4 and 8 be free segments
of P.Then A8 =40 5" =571 © 4. A@5is the ratio of 4 to B.

Theorem SIM.13 (Restatement of Theorem SIM.11.). Let P be a Euclidean
plane, O, A, and B be noncollinear points on P, C and D be points such that
C e (OA\{A) and D € (OB\ {B}), A = [0A], 5 = [OB], ¢ = [OC), and
D = [OD]. Then A®5 = c oD iff AB || CD.

<> <>
(A) IfAB | CD, then A®B = c®D.
<> <>
B) If A@B =c@D, then AB | CD.

Theorem SIM.14. Let P be a Euclidean plane; O and A be distinct points on 73
B e (OA \{A}) uy and u, be free segments of P; Uy and U, be the points on OA
such that [0U1] = u; and [0U2] = Uy; and 8y, 8,, €1, and €, be the dilations
of P such that §;(Uy) = A, §,(Uy) = A, €1(Uy) = B, and €;(U) = B. Then
€08 =€,085 (i.e. €, @8 = 208).

Proof. Since §,(U;) = A, Uy = §7'(A). Thus B = €(U)) = €(57'(4) =
(€,9871)(A). In the same manner B = (€,08,')(A). By Theorem CAP24 €,08;! =
62082_1 (e, €1 ©8 = €®08,). O

Remark SIM.15. Theorem SIM.14 means that the ratio of two free segments is
independent of the unit free segment that has been chosen. To see this most clearly
(using Theorem SIM.13 and its notation), let 4 = [[07Aj] and B = [[Oﬁé] Then by
Theorem SIM.14 4@ 5 = [O(e, 0 §57)(U1)] = [O(€, 0 8;")(U,) ]. Thus the ratio
A @ B is the same for either U, or U,.

Theorem SIM.16. Let P be a Euclidean plane and let Ay, By, Ci, Ay, By, and
C, be points on P such that Ay, B, and C1 are noncollinear and As, Bz, and
C, are noncollinear. Furthermore, let A = [B1C1] B = [A1C1] cp = [A1B1]
43 = [B2Cal, By = [AsCs ), and ¢s = [A2By). Then ZBiAIC) = /B>A>C and
ZA1B\C = LAyBr, G iff A1 @Ay = B1 @By = €1 ©Ca.

Proof. (I. If /B1A1C; = Z/ByA,C, and ZA|B,Cy =~ ZA;B,C;, then A1 @Ay =
B1 ®By = ¢| ©C,.) By Theorem EUC.35
LA|C1B) = LA, CyB,.
(Case 1: B, = A,B,.) By Theorem NEUT.65 (AEA) A,C; = A,C> and
IETC? ~ E?Cz] By Exercise FSEG.1 4; = Ay, B = B, and ¢; = ¢,. Hence
Al©QA =B @B =C1©C = U.
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(Case 2: A131 £ A232 ) Using Theorem NEUT. 67 (segment constructlon)
let B’ and C be the points such that B| € A1B1, C e A1C1, A A2B2 and
AlC' o~ A2C2 By Theorem NEUT.64 (EAE), ZA,B|C| = ZAZBZCZ. Since
/A1B1C) = LA;B,C,, by Theorem NEUT.14 (congruence is an equivalence
relation), ZA,B|C| = /A;B,C;. By Theorem EUC.11 E’I—CT’: I §1—a By
Theorem SIM.13 By ®B; = c;®c,. Using Theorem NEUT 67 (segment
constructlon) let A’ and C” be the points such that A} € BIAI, C! € B
BIA o~ B2A2 and BLC” ~ BQCZ By Theorem NEUT.64 (EAE), Z/B,A C’l’ ~
£ByA;C5. Since £B1A|Ci = £B»A;C5, by Theorem NEUT.14, ZB,A|C| =
ZB1ACy. By Theorem EUC.11 m I m By Theorem SIM.11 4; © Ay =
C1®cy.Hence A1 @A, = B ©By =1 ©Cs.

(IL:If A1 ©4, = BI®By = ¢ ©Cy, then LB1AC; =~ /ByA>C, and LA B;C; =
/LA,B,C,.) Using Theorem NEUT 67 (segment construction) let B} be the p01nt
on JC}_BT such that CIB C282 € A2 By Exercise FSEG.1 4, = [ClB’]
Using Axiom PS, let J = par (B|,A;B 1). By Exercise IP4 J andfﬁ\l_d intersect
at a point A|. By Theorem EUC.11 ZC,BjA| =~ ZC\B\A; and ZC,A|B]| =
ZC1AB;. By part (I)

A4 e[CBl=8e[CA]l=celAB]]
By assumption
A1 @A = B1 ©B = C1 ©C,

E=——2
and we have already seen that [C;B| ] = 4,. Therefore

[ ——] E =
B1@[CIA|] =410 [CiB|] = 4104, =585

so that B; © B, = B O [[CTA’]] and hence [[CTV]] = B;. A similar calculation
shows that ¢; © [A’B’ = L @cz and [A B’ ] = Ca.

By Exercise FSEG.1 C A C2A2 andA/ Bf ~ Asz By Theorem NEUT.62
(EEE), AA'B|C, = AAB,Cy, LBA\C, = LByA,Cy, and LA'B|C, =
ZA3B,C,. By Theorem EUC.11 ZA|B|C, = /A\B|C; and ZB/A\C, =
/B1A|Cy. By Theorem NEUT.14 (congruence is an equivalence relation),
/B1A|Cy = £ByA,C; and LA B Cy = LA;B,C). O

Theorem SIM.17. Let P be a Euclidean plane, let A}, By, Cy, Ay, By, and C, be
points on P such that Ay, By, and C; are noncollinear, and A,, B,, and C, are
noncollinear. Furthermore, let By = [1[417C13], By = [1[42723], c = [1[417313]’ and
Cr = [;TB;]. If LB1A|Cy = £ByA,C,, By # By, and B ©By; = C| ©Ca, then
/A\B,Cy = LAyB,Cy and LA,C1By =~ LA,C,B,.
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Proof. Using Theorem NEUT 67 (segment constructlon) let B/ and C’ be the
points such that B’L € A]B], C) € A C ,A B1 ~ A232 andA C’ o A2C2. By
Exercise FSEG.1 [A B’] = ¢, and [A C ] = B,. Since B] # B and B ©B; =

c1 ©cy, €1 # C¢p. Multiplying both sides of B @B, = ¢; @c, by B, © ¢~ (or by

Exercise SIM.4) we have B ©c| = B, @¢C».

We may now apply Theorem SIM.13, by substituting, in the statement of that
theorem, A; for O, C, for A, B; forB C/ for C, and B) forD Then in the statement
of Theorem SIM 13, 4 becomes [A]Cl 1= B, B becomes [A]B] ] = c1, ¢ becomes
[A1C’] = [A2C2] = B,, and D becomes [AlB ] = [AIBZ] = ¢p. Then A©B =
¢ @D in Theorem SIM.13 becomes B @c; = B, ©c,, which we have seen earlier
to be true.

Thus, by Theorem SIM.13, AB || €D, thatis, B,C, || B,C). By Theorem EUC.11
ZA|B\C| = ZA\B,C, and ZA,C|B| = ZA,C,B;. By Theorem NEUT.64 (EAE)
ZAB|C, = [A;B,C, and /A|C|B| = /A,C;B,. By Theorem NEUT.14
(congruence is an equivalence relation) ZAB|C, =~ ZA;B,C; and ZA|C|B; =
LAy CyB;. O

Theorem SIM.18. Let P be a Euclidean plane and let T and T, be triangles on P.

Then all the following statements are equivalent:

O Ti~T
(A1) There exists a matching of the angles of T| with the angles of T, such that pairs
of matched angles are congruent to each other.
(III) There exists a matching of the edges of T\ with the edges of T, such that the
ratios of matched edges are equal.
(IV) There exists a matching of the corners Ay, By, Ci of Ti with the corners A,,
By, C of T such that /B 1A, Cy = £ByA,C; and

[AB/]©[A:B,] = [AC1 ] ©[AC ).

(V) There exists a matching of the corners Ay, By, Cy of Ti with the corners A,,
B, C, 0f7§ such that /B1A,Cy = £/B,A,C, and ZAB,C) = LA;B,C>.

Proof. By Theorem SIM.5 part (A) and Theorem SIM.6 statements (I) and (II) are
equivalent.

By Theorem SIM.16 statements (II) and (III) are equivalent. By Theo-
rems SIM.17 and SIM.16 statements (II) and (IV) are equivalent. Therefore
statements (1), (II), (II), and (IV) are equivalent. By Theorem EUC.35, statement
(V) implies statement (II), which implies statement (V). ad
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Theorem SIM.19. Let P be a Euclidean plane and let O, A, B, C, and D be points
on P such that O-A-C, 1(9_D> and 1(4—>C are concurrent at O, and ;\_B) I C(—)D Then
[0A]@ [0B] = [0C) @ [0D] and [0A] © [0B)] = [AC] ® [BD]|

Proof. (Case 1: O-A—C.) See Figure 15.1. Let 4 = [OA), 8 = [0B], ¢ = [OC), and
D= [[07D]] By Exercise PSH.56 O—B—D By Definition FSEG 2A<cand B < D.
By Definition FSEG. 11 c e A= [AC] and D e B = [BD] By Theorem SIM.13
A®B = c®D so that [OA]@ [OB] = [OC] @ [OD] By Exercise SIM.5 495 =
(c & A) &(p © B), so that [OA] @[OB] [AC] @[BD]

Fig. 15.1 For
Theorem SIM.19 Case 1.

(Case 2: A-O-C.) By Exercise PSH.56 B-O-D. By Theorem SIM.13
(04]@[0B] = [0C] @ [0D).

Let L = par (D, (OC)) and let B’ be the point such that {B’} = L N AB Then
OACDRB' is a parallelogram, and therefore by Theorem EUC.12(A) AC B’ D By
Theorem SIM.18(II), ABDB' ~ ADOC, because /BDB' =~ /DOC, /DB'B
Z0CD, and /DBB' =~ /ODC, all of these bemg true from Theorem EUC.11.
Again, by Theorem SIM.1S(lI), [B’D]@[OC] [BD] & [0D], so that by Exer-
cise SIM.4 [B’ D] ) [BD] [OC le [OD] since we already know that AC =~ B’D

-
5

[AC) ©[BD] = [FD)[BD] = [0C]@[0OD].

By an argument similar to that above, AOAB AOCD and by Theo-
rem SIM.18(III) and Exercise SIM.4, [OC] @ [0D] = [0A)] ©[0B] so that

7 ¢

o I E—3  E—3
[AC) e [BD] = [0C]©[0D] = [0A] ©[0B].
which was to be proved. O

Corollary SIM.20. With the assumptions and notation of Theorem SIM.19
e [
(4] _ [0B] ,,,, [0A] _ [0B)
[OC ] [OD] [AC] [BD ]

— 3
e

where [rO Aﬂ] is equal to [ ]@ [OC | and [OBj] is equal to [OB] ) [OD]
[OC] [OD]

Proof. Follows immediately from Exercise SIM.4. O

E—
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Corollary SIM.21. With the assumptions and notation of Theorem SIM.19, if A is
the midpoint of [076]‘, then B is the midpoint of ETD]

Proof. If A is the midpoint of OC, then by Definition NEUT3(C), OA =~ AC and

O-A-C. Then if v is the unit free segment, [OA] =Uu= [?il so that [07% ~ %;
[AC] L [BD]
by Exercise PSH.56, O—B-D, so B is the midpoint of OD O

Theorem SIM.22. Let P be a Euclidean plane and let T| and T, be right triangles
on P. If an acute angle of Ty and an acute angle of T, are congruent to each other,

then T{ ~ Ts.

Proof. By Theorem NEUT.69 the right angle of 7; and the right angle of
T, are congruent to each other. Hence 7; ~ 7, by Theorem SIM.16 and
Theorem SIM.18. a

Pythagoras of Samos (c. 570—495 BC), for whom the following theorem is named
(although it is disputed whether he had anything at all to do with it), was an Ionian
Greek philosopher and mathematician. He also was the founder of a religious sect
called Pythagoreanism. In 1955 the town of Tigani, located on the south side of the
island of Samos, was renamed Pithagoreio in his honor. On the jetty extending into

its harbor there is a statue of Pythagoras “illustrating” this theorem.

Theorem SIM.23 (Pythagorean Theorem). Let A, B, and C be noncollinear
points on the Euclidean plane P, A = [1[97Cj] B = [ETC]] and ¢ = [1[475] Then
ZACB is right iff A> ® B*> = ¢

Proof. (I: If ZACB is right, then 4> @ B> = ¢%.) Let L. = pr(C, 1<4_B)) and let D =
ftpr (C, ﬁ) By Exercise NEUT.20 D € AB. Let T = [z[ﬁ\ﬁ] and s = [1[9?]
Then by Definition FSEG.3 s @ 7 = ¢. By Theorem SIM.22, since AABC and
AACD have ZBAC in common, they are similar, and since AABC and ACBD
have ZABC in common, they are similar. By Theorem SIM.16 A@c = s©4
and Be&c = T@B. Hence 4> = ¢ ® s and 8> = ¢ © 7. By Theorem SIM.8
AP =c0sBcOT=cOBT) =

(II: If A2 @ B*> = ¢?, then ZACB is right.) Let D, E, and F be points on P such that
DF ~ AC and EF ~ BC and ZDFE is a right angle. Let p = [1[577]], £ = [ETFJ],
and F = [ﬁ]. By part (), p* @ & = 72.

By assumption, 4% @ B> = ¢ then 7> = D> @ 2 = A2 @ B
By Exercise SIM.2 ¢ = F, so that by Exercise FSEG.1 AB ~
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Theorem NEUT.62 (EEE) AABC =~ ADEF, and therefore ZACB =~ /DFE.
Since ZDFE is right, by Theorem NEUT.66 ZACB is right. O

Theorem SIM.23.1 (Second form of the Pythagorean Theorem) Let A, B, and
C be noncollmear points on the Euclidean plane 73 LetA (D [BC] B= @[AC]
and C = <DLAB] be the points ofJ? such that [BC] = [OA] [AC] = [OB] and
E—

[A ] [OC] Then Z/ACB is right iff A2 & B* = C.

Proof. By Theorem SIM.23 ZACB is r1g|ht iff r[OA] &) [OB] [LOCJ]2

Definition SIM.7 this is [O(Az)] ® [O(Bz)] = [O(CZ)] By Theorem OF.17 th1s
is [O(A2 @ Bz)] = [O(CZ)] By Property R.4 of Definition NEUT.2, since A, B, and
¢ are all in OU, this is true iff A2 @ B? = C2. O

Fig. 15.2 For

Theorem SIM.24: the product
of any altitude and its base is
constant.

Theorem SIM.24 (Product of base and altitude). Let P be a Euclidean plane, A,
B, and C be noncollinear points on P, and 1[47D] [BTE; and [CT‘] be the altitudes (see
Definition NEUT.99) of AABC, respectively, from A, B, and C. Then [AT)] 10 [[BiCj =
[BE] © [AC].

Proof. See Figure 15.2.

(Case 1: LACB is r1ght) By Theorem NEUT 44 AC J_ BC Thus D=FE=C.
Therefore [AD] © [BC] [AC] O [BC] and [BE] © [AC] [AC] © [BC] and so
[AD] © [BC)] = [BE] © [AC].

(Case 2: ZACB is acute and ZABC is right.) By Exercise NEUT.20 and Defini-
tion IB.3 A~E—C and by Theorem NEUT.48(A) B = D. Then ZABC =~ /BEC are
both right angles, and ZACB is an angle of both ABEC and AADC = AABC. By
Theorem SIM.16

[BE]@ [AB] = [BE] e [AD] = [BC] @ [AC],

so that [BC] © [AD] = [BE] © [AC].
(Case 3: ZACB is right and ZABC is acute.) The proof is the same as Case 2,
with the roles of A and B interchanged.
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(Case 4: Each angle of AABC is acute.) By Exercise NEUT.20 and Defi-
nition IB.3 B-D-C and A-E-C. Since ABEC and AADC are right and since
/BCE = /ACD, by Theorem SIM.16 [BE]®[AD] = [BC]®[AC], so that
[BC) © [AD] = [BE] © [AC].

(Case 5: ZACB is acute, ZBAC is obtuse, and ZABC is acute.) By Exer-
cise NEUT.20 B-D-C. Let C’ be a point of AC such that C'~A—C. Since ZBAC
is obtuse, ZBAC' is acute, by Theorem NEUT.82. Now E = ftpr (B,1<4_C>’) and by
Exercise NEUT.15, since B € 24_1)9, E € IJAE)’ and hence C-A-E.

Since ABEC and AADC are right and since ZACB is comr[non to them, they

are similar to each other. By Theorem SIM.16 [[Bicj le [1[47Cj ] = [BE] le [EAiDj ]. Thus

[l [l [l
e — = =

[AD] © [BC)] = [BE] © [AC).

(Case 6: ZACB is acute, ZABC is obtuse, and ZBAC is acute.) The proof is the
same as Case 5 with the roles of A and B interchanged.

(Case 7: ZACB is obtuse.) By Theorem NEUT.84, both ZBAC and ZABC are
acute.) By the same reasoning as in Case 5, both B—C-D and A—C-E. ZADC and
ZCEB are both right, hence congruent by Theorem NEUT.69. ZACD =~ /BCE
by Theorem NEUT.42 (vertical angles). By Theorem SIM.16 [)EETCJ le [[AiC] ] =

 —

[BE] @ [AD]. Thus [AD)] © [BC) = [BE] © [AC]. o

Remark SIM.25. The standard definition of area of a triangle is “1/2 the product
of the altitude and the base,” where the base is the length of the edge which is a
subset of the line perpendicular to the altitude. Theorem SIM.24 shows that such a
definition is a “good” definition. Our only problem is the “1/2”—to which we so far
have not given meaning. We will develop the topic of rational multiples of segments
and of points on the line in Chapter 17, and then will state the definition for area of

a triangle.

15.2 Exercises for similarity

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise SIM.1*. Let P be a Euclidean plane and let .4 and 5 be free segments
of P.

(D) If 4 < B, then A% < B%.
(M) If 4 > B, then A2 > B2
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15.2  Exercises for similarity 333

Exercise SIM.2*. Let P be a Euclidean plane and let 4 and 5 be free segments of
P.If 42 = 52, then 4 = B.

Exercise SIM.3*. Let P be a Euclidean plane and let 4, 5B, and ¢ be free segments
of P suchthatc < B.Then A ® (BS¢c) = (40 B) S (AOQC).

Exercise SIM.4*., Let P be a Euclidean plane and let 4, B, ¢, and D be free

segments on P. Then the following statements are equivalent to each other.

() AOD=8B0Oc.
2) A@B=cCcOD.
3) Aec=8B6ED.
4) BA=DOC.
5) (u®dB)EB=(cdD)OD.

Exercise SIM.5*. Let P be a Euclidean plane and let 4, B, ¢, and D be free
segments on P such that A < ¢, B < D, and A®@B = c®D. Then 4B =
(coA)e(on).

Exercise SIM.6*. Let P be a Euclidean plane and let A, By, C;, A,, By, and

C, be points on P such that A}, By, and C1 are noncollinear and A,, B,, and C,

are noncolhnear Furthermore let 47 = [BIC1] B = [E 1Clj] cy = [1[41313],
Ay = [BzCz] By = [A2C2] and Cr = [A2B2] Then: ABIAICI = LBQA2C2
and ZC1BjA| == ZGCyByA; iff A1 @B = A,0B, A1©C; = Ay ©Cy, and

B ©C1 = B2 ©Ca.

Exercise SIM.7*. Let P be a Euclidean plane, O be a point on P, § be a dilation

of P with fixed point O, and X and Y be distinct members of P \ {O} such that O,
E3  E——13 S .

X, and Y are collinear. Then [OX]] el0éX)] = [EOYJ] el0é(Y)].



Chapter 16
Axial Affinities of a Euclidean Plane (AX)

Acronym: AX
Dependencies: all prior Chapters I through 15
New Axioms: none

New Terms Defined: projection map, stretch, shear

Abstract: The main results of this short chapter are Theorems AX.3 and AX.4.
The first of these shows that every axial affinity (defined in Chapter 3, Definition
CAP.25) on a Euclidean plane is either a stretch or a shear; the second proves that

every axial affinity is a belineation.

16.1 Theorems for axial affinities

We begin by defining stretches and shears, temporarily reverting back to the use of

script letters £ and M for lines.

Definition AX.0. (A) A stretch ¢ of a plane P is an axial affinity of P with axis
M such that there exists a line . on P which is a fixed line for ¢, is not parallel
to M, and the set of fixed lines of ¢ is {M} U {T | J PE L}.
It is easy to see that a reflection is a stretch. In Theorem AX.1 we will prove
the existence of stretches other than reflections.
(B) A shear v of the affine plane P is an axial affinity of P with axis M such that
the set of fixed lines of ¥ is {7 | J PE M}.

© Springer International Publishing Switzerland 2015 335
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
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Theorem AX.1. Let P be a Euclidean plane, M be a line on P, and A and B be
distinct members of P\ M such that ABN M # B. Then there exists a unique axial
affinity ¢ of P with axis M, such that ¢(A) = B, this axial affinity is also a stretch.

Fig. 16.1 For —_—
Theorem AX.1: showing
action of a stretch ¢, where
A-O-¢(A).

Mis(x(x))

Mx

Proof. For a visualization see Figure 16.1. The reader should not be put off by the
length of this proof; the bulk of the proof is in parts (VII) through (VII(c)), showing
that the mapping ¢ is a collineation.

We first construct an axial affinity ¢ of P with axis M such that ¢(A) = B.

(I: There can be no more than one such axial affinity.) This is Theorem CAP.29.

(II: Notation.) We first adopt some notation which is specific to the following
construction. Let £ = AB and let O be the point such that {O} = £ N M.
For every X € P, define Ly = par(X, L) (incase X € L, let Ly = L), and
define My = par (X, M) (in case X € M, let My = M). Then for every
X e P, {X} = Lx N My.

Define the projection map 5 so that for each X € P, {7 (X)} = Mx N L.
Then for any X’ € My, n(X') = n(My) = w(X). That is, 7 has the same
value everywhere on each line parallel to M.

(IIT: The construction.) Let § be the unique dilation on P with fixed point O,
such that §(A) = B. The existence and uniqueness of § are guaranteed by
Theorem DLN.7. For every X € P, define ¢(X) to be the point of intersection
of Msxxy and Ly; that is, {¢(X)} = M) N Lx. Then in particular, if
X € M, {p(X)} = Msmay N Lx = M N Ly = {X}:and if X € AB = L,
then {p(X)} = Msx) N L = {§(X)}, that is, ¢(X) = §(X). In particular,
©(A) =8(A) = B.



16.1 Theorems for axial affinities 337

(IV: ¢(Myx) = Ms(z(x)).) From the construction, if X’ € My, then 7(X’) = 7 (X)
and §(mr (X)) = 8(m (X)), so that Msr(x)) = Msx)) and ¢(X') € Mirxy)-
Therefore p(My) € Mitro)-

Now let ¥ be any point of M (x)). Then 7 (Y) = §(;r(X)) and

§71(m(Y)) = 571 (8(n(X))) = n(X).
Let {X'} = Myx) N Ly so that 7(X') = w(X). Then
{o(X")} = Msxy) N Ly ={Y},
and Mz x)) € @(Myx).

Since we can choose X arbitrarily, this also shows that for every line A/
which is parallel to M, ¢(N) is a line parallel to M. It also shows that ¢ is
onto P, since Y can be chosen arbitrarily.
(V: Lx = ¢(Lx).) By the construction, both X and ¢(X) are members of Lx so
that ¢(Lx) € Lx. The argument in part (IV) shows that if Y € P, there exists
a point X' € Ly such that ¢(X’) = Y. Therefore, Lx C ¢(Lx) and hence
Lx = ¢(Lx). Thus every line Ly is a fixed line for ¢.
(VI ¢ is one-to-one, hence a bijection.) If X and X’ are points of P, and ¢(X) =
@(X"), thenboth X € Ly and X’ € Ly, since Ly is a fixed line. Also, §(7(X)) =
§(m(X")), since (X) = ¢(X’) belongs both to M (x)) and M (x)). Since §
is one-to-one, w(X) = 7 (X’), and hence both X and X’ are in the intersection
My N Ly, which is a single point. Hence X = X’, and ¢ is shown to be one-to-
one.
(VIL: ¢ is a collineation.) We already know that the lines My map into other lines
parallel to themselves, and that the lines £x map into themselves.
Now let J be any line on P which is neither parallel to AB nor to M and
let Q and R be the points such that 7 N M = {Q} and J N AB = {R}. Since
©(Q) = 0, Q € ¢(J). In this part we prove that p(J) C M
Let X be any member of 7 \ {Q, R}. In part (V) we showed Ly is a fixed
line of ¢, so that ¢(X) € Lyx. Let S be the point such that Ly N M = {S} and
let Y be the point such that <Q_<p(—13 N Ly ={Y}.
(VII(a): ¢(X) and Y are on the same side of M.) Since ¢(R) = 4(R), we may apply
Exercise DLN.5(II) as follows:
if R—-O—¢(R), then 7(X)-0-8(7(X)), hence X—-S—¢(X)

by Exercise PSH.56 and the fact that 7 (S) = O. By similar reasoning,
if O-R—¢(R), then O—-m(X)-8(7 (X)) hence S—-X—¢(X); and
if R—p(R)-0, then 7 (X)-6(7r(X))—O hence X—¢(X)-S.
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Fig. 16.2 For the proof of
Theorem AX.1, part (VII(a))
Case 1, where R and ¢(R) are
on opposite sides of M.

Using Definition IB.11 we see that if R and ¢(R) are on opposite sides of
M, then X and ¢(X) are on opposite sides of M. Using Definition IB.4 and
Theorem IB.14 we see that if R and ¢(R) are on the same side of M, then X
and ¢(X) are on the same side of M. Since O, Q, and § are distinct points on
M, by Property B.2 of Definition IB.1 there are three cases.

(Case 1: O-Q-S.) For a visualization of this case see Figure 16.2. By
Exercise PSH.56 R—-0-X and ¢(R)-Q-Y. By Definition IB.11 R and X are on
opposite sides of M and ¢(R) and Y are on opposite sides of M. Thus by
Theorem PSH.12 (plane separation), if R and ¢(R) are on the same side of M,
then X and Y are on the same side of M, and from the argument above, X and
@(X) are on the same side, so that Y and ¢(X) are on the same side of M.

On the other hand, if R and ¢(R) are on opposite sides of M, then X and
Y are on opposite sides of M; from the argument above, X and ¢(X) are on
opposite sides of M, so that again ¢(X) and Y are on the same side of M. By
Theorem PSH.38(A) ¢(X) € SY.

(Case 2: O-S-Q.) By Exercise PSH.56 R—X—-Q and ¢(R)-Y—-Q. By Defini-
tion IB.4 and Theorem IB.14 R and X are on the same side of M and Y and
@(R) are on the same side of M. Using Theorem PSH.12 (plane separation),
we see that if R and ¢(R) are on the same side of M, then X and Y are on the
same side of M, whereas if R and ¢(R) are on opposite sides of M, then X and
Y are on opposite sides of M. Reasoning as in Case 2, either way ¥ and ¢(X)
are on the same side of M and by Theorem PSH.38(A) ¢(X) € ?S’_I)’ .
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(Case 3: S—0-Q.) By Exercise PSH.56 X—R-Q and Y—¢(R)-Q. By Defini-
tion IB.4 and Theorem IB.14 R and X are on the same side of M and ¢(R) and
Y are on the same side of M. Using Theorem PSH.12 (plane separation) we
see that if R and ¢(R) are on the same side of M, then X and Y are on the same
side of M, whereas if R and ¢(R) are on opposite sides of M, then X and Y
are on opposite sides of M. Either way Y and ¢(X) are on the same side of M
and by Theorem PSH.38(A) ¢(X) € 37.

(VII(b): ¢(X) = Y.) In all of Cases 1 through 3 in part (VII(a)) above, by
Theorem EUC.11 ZQXS =~ ZQRO and ZQYS = ZQ¢(R)0. Since ZRQO =
/XQS and Zp(R)QO = /YQS, by Theorem SIM.6 AXQS ~ ARQO and
AYQS ~ Ap(R)QO. By Theorem SIM.16

5] @[0F) = [05] ©[00] and [sY] ©[0¢(R)] = [0S] @[O0
We may restate these equalities as
[ﬁ%?jﬂ] = [:ZS]J and r[:gﬁyj]j = [[Qﬁ‘;].
[OR] [Q0]  [0¢p(®)] [QO]
From these, by Exercise SIM.4 we have
[00] _ [0R) ,,q100) _ [0e®)]
[0S]  [SX] [0S] [SY]

Therefore
E— E e
[0R] _ [0p(®)]
[SX] [SY]
that is,
[5Y] _ [Op(B)]
B E
[SX] [OR]
Since ¢(R) = §(R) and m(X) is collinear with O and R, by Exercise SIM.7
[08=(X))] _ [0p(R)]
[On(X)] [OR]

The quadrilaterals 0OSX 7 (X) and 0O0S¢(X)d(w (X)) are parallelograms, so by
Theorem EUC.12(A)

07(X) == SX and 08(x (X)) = Se(X).



340 16 Axial Affinities of a Euclidean Plane (AX)

Thus

500 _ [05G00)] _ [0p®)] _ [57]
5X]  [ox)] (oK) (5]

and multiplying both sides by [ES‘iX] ] we have [.LSYp(X)J] = [ES'T; ], that is,
S(p(Xi = .[S’TE . In all three cases above, ¢(X) € 53?) , so by Property R.4 of
Definition NEUT.2, ¢(X) = Y.
<~
This completes the proof that ¢(J) € Q¢(R).
<~ <>
(VII(c): ¢(J) = Q@(R).) Let Z be any member of Qp(R) \ {Q, ¢(R)}, and let W be
the point such that {W} = 7 N L. Since by part (VII) (W) € Q¢(R) and also
<>
o(W) € Lz, by Exercise I.1 ¢(W) = Z. Therefore Qp(R) € ¢(J) and hence
>
¢(J) = Q¢(R).

Summarizing, parts (VII) through (VII(c)) show that ¢ is a collineation; by the
construction in part (III), all points of M are fixed points for ¢ and ¢(A) = B; thus
@ # 1, since A # B. This proves that ¢ is an axial affinity, as defined in Definition
CAP.25.

It remains only to show that ¢ is a stretch. By part (V) all the lines Lx, where
X € P are fixed lines for ¢. If X ¢ M then My is not a fixed line, because § has
only O as a fixed point. If 7 = <Q_I)Q is any line not parallel to either £ or M (here we
are using the notation of part (II) and the construction of part (VII)), ¢(J) contains
the point ¢ (R) which is not in 7, so J is not a fixed line. Hence the set of fixed lines
for ¢ is {Lx | X € P} U {M}, as required by Definition AX.0, and ¢ is a stretch. O

Theorem AX.2. Let P be a Euclidean plane, M be a line on P, and A and B be
distinct points such that AB | M. Then there exists a shear W of P with axis M
such that ¥ (A) = B, and the set of fixed lines for ¥ is {Lx | X € P} U {M}, where
Lyx is the line through X parallel to M.

Proof. For a visualization see Figure 16.3.

Fig. 16.3 For
Theorem AX.2: showing B M
action of a shear. /
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Construction of 1.) For every X belonging to M let ¥ (X) = X. Let C =
ftpr (A, M). For every member X of P \ (M Uf(l_C)'), let T = ftpr (X, M),
and define ¥ (X) as the point such that par (X, M) N par (7, 1(9_5) ={yX)}. If
X e 1(4_C>\{C}, then let ¥ (X) be the point such that par (X, M) NBC = {v(X)}.

(II: Lines parallel to M are fixed lines of ¥.) Let £ be any line which is parallel to

M and let X be any member of L. By the construction, ¥ (X) € par (X, M) =
Lsoy(L) C L.

Let Y be any member of L, S be the point such that par (Y, t<?_C)') NM = {5},
and let X be the point such that pr (S, M) N £ = {X}. By the construction of
part (I) ¥ (X) = Y so that £ € (L). Therefore ¥ (£) = £ and L is a fixed
line of .

(III: ¥ is a bijection.) Since Y can be chosen arbitrarily, the second argument of

part (I) also shows that v is onto P.

Now suppose X and X’ are points of P \/(X_C)' such that ¥ (X) = ¥ (X'); let
T = ftpr (X, M) and T" = ftpr (X', M). Then par (X, M) N par (T, 1(5'_6)') =
{v(X)} = par (X', M) N par (T’,I(B_C>') so both par (7, 1(9_5) and par (T’,B<_C)')
contain the point ¥ (X) and by Axiom PS must be the same line. Hence T = T’
and again by Axiom PS, X = X'. (If X € AC modify the proof by substituting
Cfor T and 1(9_6)' for par (7, B(_C)') to show the same result.) Thus v is one-to-one,

and a bijection.

(IV: ¢ is a collineation.) Let 7 be any line on P such that 7 and M are not

parallel, Q be the point such that M N J = {Q}, and R be any member of

J\{Q}. Let U = ftpr (R, M), so that S = v (R) is the point of intersection of
<>

par (R, M) and par (U, BC).

First we prove that ¥ (J) C (Q_§ Let X # R be any member of 7 \ {Q, R}.
Let T = ftpr (X, M), and let Y be the point such that & N par (T, B(_C)') = {Y}.
(Incase X € 1<4_C)‘ so that T = C, let Y be the point such that EI)S’ N B<_C)' ={r}.)

. <>
By the construction we know that {(X)} = par (X, M) N par (T, BC).
(Case 1: R and X are on the same side of M.) We will use the following

facts:

. = <> <>
(i) TY || US since they are both parallel to BC.
(ii) RS || Xy (X) since they are both parallel to M.
(iii) ZLURS, LTX Y (X), ZQUR, and LQTX are right angles, hence are congru-
ent by Theorem NEUT.69.



342

16 Axial Affinities of a Euclidean Plane (AX)

By Theorem SIM.6, AQSU ~ AQYT, since ZUQS is shared by both
triangles and by Theorem EUC.11 ZQUS =~ ZQTY. By the same theorem,
ATQOX ~ AUQR, since ZQUR =~ ZQTX and ZUQR is shared by both
triangles. And finally, ARSU ~ AXy(X)T since ZURS = ZTXy(X) and
by Theorem EUC.11 ZSUR =~ Zy(X)TX.

Using Theorem SIM.16, we have from the first of these similarities that

[1v] _ [10]
. BsUl [Ug)
from the second similarity, werhave

79] _ [XT]
[UQ]  [RU]

and from the third,
£
XT] _ [Tl/f (X) 1

RU]  [SU]
Combining these three equalities we have

Y] _ [Ty (0]

sU1 - sU]
and multlplylng both sides by [SU ] we have [TY] = [TW(X)] that is TY ~
TI// (X) ¥ (X) and Y are on the same side of T, for by Exercise PSH.14, R and
S are on the same side of M, and X and ¥ (X) are on the same side of M. By
Theorem PSH.38(A), Y € W and by Property R.4 of Definition NEUT.2,
y(x) = € 30.

(Case 2: R and X are on opposite sides of M.) Then (i), (ii), and (iii)

hold as in Case 1. By Theorem NEUT.42, LZUQS =~ ZTQY and ZUQR ==
/TQX, because they are vertical angles Then the triangles listed in Case 1 are

congruent, and we conclude that [TY] [Tw (X) ], just as before.

Now by assumption X—Q-R, so by Exercise PSH.56 T-Q-U and Y-Q-S; by
Exercise PSH.14, S and R are on the same side of M and X and v (X) are on
the same side of M. Then S and R are on the opposite side from X and ¥ (X),
and on the opposite side from Y, so that ¥ (X) and Y are on the same side of M.
By Theorem PSH.38(A), Y € W By Property R.4 of Definition NEUT.2,
YvX)=Ye€ fS_Q) This completes the proof that ¥ (J) C (Q_§

Now let Z be any member of (Q_g‘ \ {0, S}, let £ = par (Z, (R_S>), and let W
be the point such that L N J = {W}. Since (W) € @, by Exercise 1.1
¥(W) = Z. Therefore 08 € ¥(.7), and y/(J) = 03

(V: ¢ is a shear of P.) By part (II) of this proof, Theorem CAP.27, and

Definition AX.0, ¥ is a shear of P. O
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Theorem AX.3. Let M be a line on a Euclidean plane P.

(A) Every axial affinity ¢ on P with axis M is either a stretch or a shear, but not
both.

(B) If A and B are any two points of P \ M, there exists a unique axial affinity ¢
on P with axis M such that ¢(A) = B.

Proof. (A) If an axial affinity has a fixed line £ # M that intersects M, by
Theorem CAP.27 all its fixed lines (other than M) are parallel to £, and all
intersect M. By the same theorem, if it has a fixed line parallel to M all its
fixed lines are parallel (or equal) to M, hence none except M can intersect M.
By Definition AX.0, in the first case ¢ is a stretch and not a shear; in the second
it is a shear and not a stretch. This proves part (A).

(B) Note first that if A € P \ M, and ¢ is an axial affinity on P, B = ¢(A) ¢ M,
since @ is a one-to-one mapping.

If AB is not parallel to M, by Theorem AX.1 there exists an axial affinity ¢
of P such that ¢(A) = B and AB is a fixed line of @, so that ¢ is a stretch.

It AB is parallel to M, then by Theorem AX.2 there exists an axial affinity
¢ of P such that ¢(A) = B, AB is a fixed line of ¢, which is a shear.

In either case, by Theorem CAP.29 there is only one axial affinity ¢ such
that ¢(A) = B. O

Theorem AX.4. Let ¢ be an axial affinity with axis M on a Euclidean plane P;
then for any A, B, and C in P, if A~B—C, then ¢(A)—@p(B)—¢(C). Thus ¢ preserves

betweenness and is a belineation.

Proof. By Theorem AX.3, ¢ is either a stretch or a shear. By Theorem CAP.27, if it
is a stretch, there is a fixed line £ that intersects M, and the fixed lines of ¢ (other
than M) are the lines parallel to £, all of which intersect M. If it is a shear, its fixed
lines (other than M) are the lines parallel to M. Now assume that A~-B—C.

(A) If 1(4_6’ = M, the theorem is trivially true since all members of M are fixed
points.

(B) Suppose now that 1(4_6' is not a fixed line for ¢.

(Case 1: ¢ is a stretch.) Then there exists a fixed line £ which intersects

M, and all fixed lines other than M are parallel to £. Thus 1(4_6’ lV L (else it
would be a fixed line) so intersects all fixed lines other than M, and possibly
M as well. By Axiom PS there are lines L4, Lp, and L¢ containing A, B, and
C, respectively, which are parallel to £ and therefore are fixed lines.
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(Case 2: ¢ is a shear.) Then AC is not parallel to M or to any fixed line,
and so intersects all of them. By Axiom PS there are lines L4, Lp, and L¢
containing A, B, and C, respectively, which are parallel to M and therefore are
fixed lines.

In either case p(A) € L4, ¢(B) € Lp, and ¢(C) € L, and since ¢ is a
collineation, all these points belong to the line (p(;\_C)‘) which by Theorem CAP.1
is (A)@(C). If one of the points A, B, or C is a member of M, it is the common
point of AC and ©(A)p(C), so by Exercise PSH.56, ¢(A)—¢(B)—¢(C); if none
of A, B, or C is a member of M, the same result follows from Exercise PSH.57.
Suppose AC is a fixed line for 0] but AC # M. Define £ = AC. Then £ #* M,
and all the points A, B, C, ¢(A), ¢(B), and ¢(C) are members of L. Let A’
be a point off of £ and define Ny = A? ; by Axiom PS let Mz and N¢ be
lines parallel to N, containing B and C, respectively. Let O be a point of £
such that O-A-B—C and O ¢ M, and let K = <O—A>’ Since K intersects Ny, by
Exercise IP.4 it must intersect N3 at a point B’ and N at a point C’, so that
N = ﬁ and N¢ = <C—C)’ By Exercise PSH.57 A'-B'-C".

Since K intersects £, /C is not parallel to £, nor to any fixed line parallel
to £, and K # M because K contains the point O which is not in M. Thus
K= ﬁ is not a fixed line; moreover, not all of A’, B, and C’ are in M, for if
they were, IC would be equal to M. Thus we may apply part (B) to the points
A’, B', and C’ giving us ¢(A")—p(B)-¢(C’).

Since A(I)’ I (B—B)’ I <C—C)’ it follows from Theorem CAP.1(A) and The-
orem CAP3 that p(A)p(A") || ¢B)e(B) | ¢(C)p(C’) so that by Exer-
cise PSH.57, ¢ (A)-¢(B)—¢(C). O

Remark AX.5. In a Euclidean/LUB plane, Theorem AA.§ in Chapter 20 is a
converse for Theorem AX.4. This is stated formally as Theorem AA.11.

16.2 Exercises for axial affinities

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise AX.1*. Let M be a line on a Euclidean plane P; let A and B be distinct
points such that AB | M. By Theorem AX.2 there exists a shear ¥ with axis M
such ¥(A) = B. Let L be a line parallel to M; either £ = ABor L I AB. Let
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C = ftpr(A, M), let D be the point of intersection of 1<4_)C and £, and let E be
the point of intersection of B<_C)’ and L. Then by Theorem AX.2 ¥ (D) = E. Using
Theorem ISM.5 let t be the translation of P such that 7(D) = E. Show that for
every X € L, ¥(X) = t(X). This shows that the action of a shear on a line parallel

to its axis is the same as that of a translation.

Exercise AX.2*. Let P be a Euclidean plane, and let ¢ be an axial affinity with

axis M on P, and let £ be a line distinct from M. Then L is a fixed line for ¢ iff
<>

for some Q &€ M, L = Qp(Q).



Chapter 17
Rational Points on a Line (QX)

Acronym: OX
Dependencies: all prior Chapters 1 through 16
New Axioms: none

New Terms Defined: dilation §,, rational point, polygonal domain

Abstract: This chapter is concerned with an arbitrary line in a Euclidean plane,
where this line has been built into an ordered field. It defines the meaning of a
rational multiple of a point on this line, develops the arithmetical properties of such
multiples, and uses these to show the existence of an order-preserving isomorphism

between the set of all rational numbers and a subset of the line.

At this point we begin in earnest the process of identifying a line in a Euclidean
plane with a number system. In Chapter 18, we will complete this process by
defining real multiples of points on a line, and establishing an order-preserving iso-
morphism between the set of real numbers and any line in the plane. (Isomorphism
is defined in Chapter 1, Section 1.5.)

In Chapter 14 we proved that a line in a Euclidean plane could be built into an
ordered field, but this did not provide a way to relate points on the line to integers
or to rational numbers. Thus, at that stage of the development, we could not create
a correspondence between the set of rational numbers and some subset of the line.

To construct such a correspondence, we define integral multiples, then rational
multiples of an arbitrary point A # O of the ordered field. The greater part of the
chapter is given to showing that the algebraic properties of the rational multiples
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of A mimic those of rational numbers. Then, in Theorem QX.16, we show that the
natural correspondence between a rational number r and rU is an order preserving

isomorphism of the rational numbers and the set of all rational multiples of U.

17.1 Integral multiples of a point

In this entire chapter, P will be a Euclidean plane, and I will be a line in P
which has been made into an ordered field as described in Definition OF.1 and
Theorem OF.2, with origin O and unit U.

Definition QX.1. Let P be a Euclidean plane, L a line in P which has been
developed as an ordered field according to Chapter 14, with origin O and unit U,
and let A € L. Define multiples of A as follows:

(A) 0A = 0.

(B) For every rational number r, rO = O.

(C) Let n be a natural number and let A € L \ {O}. Define 14 = A. Assuming nA
has been defined, define (n 4+ 1)A = nA & A.

(D) Let n be a negative integer (n < 0) so that —n is a natural number, and let
A € L\ {0}. Define nA = ©((—n)A).

Definition QX.1(C) inductively defines the product of a natural number »n and a

member A, and part (D) extends that definition to any integer n.
Theorem QX.2. Let A and B be distinct points of L \ {O}.

(A) If n is a natural number, and § is the unique dilation with fixed point O such
that §(A) = nA; then for any other B € L\ {0}, §(B) = nB.

(B) If n is a nonzero integer, and § is the unique dilation with fixed point O such
that §(A) = nA, then for any other B € L.\ {0}, §(B) = nB.

Proof. (A) Note first that the existence of the dilation § is guaranteed by Theo-
rem DLN.7. By Theorem CAP.24 § is unique. For each natural number 1, define
A, = nA and B, = nB; then A} = A and B; = B. By Definition QX.1(C),
for every natural number n, A, = A,—; D A1, and B =B, D 81 By Theo-
rem OF 17(A) for every natural numbern OAl o~ n—l(An—l &) Al) = n—lA
and 031 ~ B,, 1(B— 16]931) = Bn lB If Ay > 0, by Theorem OF.11(B)
A, > A, >0;ifA; <0,4, <A,—; <0 (and likewise for By and B,). Thus
by Theorem ORD.6, O-A,_,-A, and O-B,_-B,,.
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Let o be the dilation with fixed point O such that «¢(4;) = B;. By
Theorem DLN.8 every dilation is a belineation, and by Theorem COBE.5(5)
and Theorem DLN.19,

OB; = Oa(A)) = a(0A) = a(A,14,) = a(A, a(A,). ()

By Exercise DLN.3 § o = « o §, so that «(A,) = a(nA;) = a(8(4;)) =
8(a(A1)) = 8(By). Therefore by (*), EOTf ~ m.

By definition, «(A;) = Bj; assume that we have proved that a(A,—) =
B,_1; then the above becomes [0731] ~ B m We have already seen, by
construction, that OBl ~ Bn 1Bn, so that B,, 18(B1) ~ B, 1B,1

We know that O-A,_;-A,,. By Theorem DLN.19, O-a(A,—)-®(A,). Since
a(A,—1) = B,—; and A, = §(Ay), this is O-B,—1—(6(A;)). By Exer-
cise DLN.3, O-B,—1-8(x(A;)) that is, O-B,,—1—6(B)).

Since O-B,,_ 1—B,,, B, = nB; and 8(By) are on the same side of B,_;.
Thus §(B;) € B,, 1B, and because Bn 18(31) n_an, by Property R.4
of Definition R.2 (linear scaling), §(B) = nB; as required.

If n > 0, this is Part (A). If n < 0, let § be the dilation such that §(A) = nA
which is equal to ©((—n)A) by Definition QX.1(D). Let §’ be the dilation such
that §'(A) = (—n)A. Then §(A) = ©(§'(4)) = Ro o §'(A), where Ry is the
point reflection about O, and by Theorem ISM.3, R is a dilation, so that by
Theorem CAP.21 Ry o § is a dilation, and by uniqueness (Theorem CAP.24)
8(X) = ©(8(X)) for every X € L. \ {O}. By part (A) above, §'(B) = (—n)B,
and §(B) = ©8'(B) = ©((—n)B) = nB, by Definition QX.1(D). i

Definition QX.3. For any integer n # 0, §, is the dilation with fixed point O such
that §,(U) = nU (and hence, for every A # O, §,(A) = nA).

Theorem QX.4. Let n # 0 and m # 0 be integers, and let A and B be points of
L\ {0}.

(A) fA©GB) =nAOB=AQOnB.

B) nA=UOGnA=A060nU =nU QOA.

(C) Ifnis any integer, then (—n)A = ©(nA).

D)

(—1)A = ©A.

Proof. (A) By Theorem QX.2(B), Definition QX.3, the commutativity of dilations

(Exercise DLN.3), and Definition OF.1(D),
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n(A © B) = 6,(A © B) = §,(84(B)) = 84(8,(B)) = A © nB.
By this result, and the commutativity of ® on I (Theorem OF.2(B)),
nA®B)=n(BOA)=BOnA =nAQB.

(B) The first and last equalities of (B) follow immediately from Theorem OF.3. For
the second equality, let B = U in part (A).

(C) If n > 0, by Definition QX.1(D), (—n)A = ©((—(-n))A) = ©(nA).Ifn < 0,
by the same definition, nA = ©((—n)A); taking the negative of both sides,
we have ©(nA) = ©(®((—n)A)); by Theorem OF.10(A), this is the same as
(—n)A.

(D) Inpart (C)letn = 1. O

Theorem QX.5 (Associativity for integer multiplication). Letn # 0 and m # 0
be integers, and let A € L\ {O}.

(A) (nm)A = (mn)A = n(mA) = m(nA).
(B) Sn = 8 © Gy

Proof. (A) (Case 1: m > 0 and n > 0.) By Definition QX.1(C),
(mmMA=ABAD... A
where there are mn = nm terms. The corresponding sum for nA has n terms,
and for m(nA) the sum has mn = m(n) terms, so that (mn)A = m(nA).
Reversing m and n yields (nm)A = n(mA).
(Case2: m < 0and n > 0.) Since mn < 0,
(mm)A = ©(—(mn)A) by Definition QX.1(D)
= O(((—m)n)A) by arithmetic
= ©((-m)(nA)) by Case 1, since both —m > 0 and n > 0
= m(nA) by Definition QX.1(D) applied to m and nA.
On the other hand,
(nm)A = ©(—(nm)A) by Definition QX.1(D)
= O((n(—m))A) by arithmetic
S (n((—m)A)) by Case 1, since both —m > 0 and n > 0
= (—n)((—m)A) by Theorem QX.4(C) applied to n and (—m)A
= n(=1)((—m)A) by arithmetic
= n(®((—=m)A) by Theorem QX.4(D)
= n(mA) by Definition QX.1(D) applied to m and A.
(Case 3: m > 0 and n < 0.) This is just Case 2 with m and n reversed.
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(Case4:m < 0andn < 0.)
(mn)A = ((—m)(—n))A) by arithmetic
= (—m)((—n)A) by Case 1
(m)(—1)((—n)A) by arithmetic
m(®((=n)A)) by Theorem QX.4(D)
= m(nA) by Definition QX.1(D).
Likewise, (mn)A = (nm)A = n(mA).

(B) By part (A) and Definition QX.3, §,,,(A) = (mn)A = m(nA) = m(8,(A)) =
6m(8,(A)); hence 6, = 8, © 8, by Theorem DLN.7(C). |

Theorem QX.6 (Distributive property for integer multiplication). Ler n # 0
and m # 0 be integers, and let A be a point of L\ {O}. Then (n + m)A = nA @ mA.

Proof. (Case 1: m > 0 and n > 0.) By Definition QX.1(C),

mA=APAD...0A
where there are m terms. The corresponding sum for nA has n terms and for (m+n)A
has m + n terms, so that (m + n)A = mA & nA.

(Case 2: m < 0 and n > 0, where n + m > 0.) Since —m > 0, by Case 1,
(m+nA® (—m)A = (m+ n+ (—m))A = nA, so that

(m+n)A = S((-m)A) ® nA = mA & nA. This uses Definition QX.1(D)
applied to m and A.

(Case 3: m < 0 and n > 0, where n + m < 0.) First, note that —(n + m) =

—n—m > 0, and —n < 0 and —m > 0. We then have by Case 2
(—n —m)A = (—n)A & (—m)A, so that
PUO (-n—mA = (°U O (-mA) & (°U O (-m)A)

by Theorem OF.10(D) and distributivity for I. (Theorem OF.6). Applying Theo-
rem QX.4(C) three times we have

UG (P(n+m)A) = (PU © (°nd)) & (PU © (°mA))
which, by Theorem OF.10(D), yields

©(©(n + m)A) = S(CnA) & ©(OmA).

By Theorem OF.10(A) (n + m)A = nA @ mA.
(Case4:m < 0andn < 0.) By Case 1, (—m — n)A = (—m)A & (—n)A. Then

SUO (—m—n)A = (PU O (-m)A) & (PU © (—n)A)
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by Theorem OF.10(D) and distributivity for L. (Theorem OF.6). Applying Theo-
rem QX.4(C) three times we have

U (°(m+mA) = (°U O (°mA)) & (U © (®nA))
which, by Theorem OF.10(D), yields

©(®(m+n)A) = (°(°mA)) & (°(®nA)).
By Theorem OF.10(A) (m + n)A = mA @ nA. O

17.2 Rational multiples of a point

Recall from Definition QX.1(B) that for every rational number r € Q, r # 0,
rO = O.

Definition QX.7. Let n be a natural number, m # 0 an integer, and A € L \
{O0}. In this definition we shall refer to the dilation §,, the dilation defined by
Definition QX.3 such that for every A € P \ {0}, §,(A) = nA. The existence of
8, is guaranteed by Theorem QX.2 and its uniqueness by Theorem CAP.24.

(A) Define §1 = §;'; this mapping exists and is a dilation by Theorem CAP.21.
(B) Define 1A = 5. (A).

(C) Define §s = §, 081 = §1 ©8,,. This is a dilation by Theorem CAP21.

(D) Define A = §u(4).

Theorem QX.8. Let n be a natural number, m # 0 an integer, and A € 1L\ {O}.

(A) n(14) =A = 1@nA).
(B) m(1A) = 2A = L(mA).

Proof (A) n(A) = §,(81(A)) = 8,(57'(4)) = A and £(n4) = §1(8,(4) =
571G =4 "
(B) By Exercise DLN.3,
m(;A) = 8u(81(A)) = 82(4)) = 61(8,(A)) = 5 (mA). O

Theorem QX.9. Let n be a natural number, m # 0 be an integer and let A and B
be members of L \ {O}.

(A) YAoB) =(EA)oB=40(B).

(B) 1A=U0 (34) = LU) O A
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(©) 2A=U0O("A) = ("U) O A.

(D) If n and q are any natural numbers, §1 = §1 0 §1.
ngq n q

Proof. (A) By Theorem QX.4(A) and Theorem QX.8(A), n((%A) ® B) =
(n(%A)) ® B = A © B. Multiplying both sides by %, then %(n((}lA) ®B)) =
(1A) ® B = 1(A © B). By this result and commutativity of ©,

lAoB) =iBoA) =(EBoA=40(0B).

(B) The first equality is immediate from Theorem OF.3 and the second from part
(A) and commutativity by setting B = U.

(C) The first equality follows immediately from Theorem OF.3. By Defini-
tion QX.7(D), Theorem QX.4(B), and part (A) of this theorem,

nA = 1(mA) = 1 ((mU) ©4) = (;(mU)) ©0A = (3U) O A,
which proves the second equality.

(D) Forevery A # O,
ng(§1(61(A))) = nq(61(81(A))) by Exercise DLN.3

n q q n

= 8n4(0 L 6] 1 (A))) by Definition QX.3

= 8n(8q(8$ (8% (A)))) by Theorem QX.5(B)

=8,((8400 L )(6 1 (A4))) by associativity of functions

=6,(8 1 A)=A by inverses.
Multiplying both sides by é, 85(8%(A)) = %{(A) = Sé(A), and 85 081 = sé,
by Definition QX.7(A). O

2 and
n

Theorem QX.10 (Associative properties for rational multiples). Ler r =
s = § be nonzero rational numbers, where n and q are natural numbers, m and p

are integers. Let A and B be members of L\ {O}.
(A) "(AO®B) = (rA) © B=A © (rB).

(B) (rs)A = r(sA).!

(C) rA® sB = (rs)(A ® B).?

I'This may appear to be obvious, but there is no a priori assurance that multiplication of a point
on the plane by two rational numbers successively is the same as a single multiplication by their
product. The proof will use the fact that successive multiplication of a point by two natural numbers
is the same as multiplication by their product.

2Strictly speaking, this is not an associative property, but it seems to fit here.
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Proof. (A) By Theorem QX.9(C) and the associative property for points of L (see
Theorem OF.2), "(A ©B) = (f{U)© (AOGB) = (rfUOA) ®©B = (rA) © B.
Using this result and commutativity, (A © B) = (rB) © A = A © (rB).

(B) (rs)A = (%%’)A = %A by arithmetic

= n—lq(mpA) by Theorem QX.8(B)

=1 é(m(pA))) by arithmetic and Theorem QX.5(A)
= 8% (81(6m(8,(A)))) by Theorem QX.5(B) and part (A)
=94 1 ((g 1 08,)8,(A)) by associativity of mappings

= 8% ((8,:11 081)8,(A)) by Exercise DLN.3

= 8% (8n(S1 (gp (A)))) Dby associativity of mappings

= (6 1 (6m (Sq 2 (A)) by Theorem QX.8(B)

= §u(82(A)) by Theorem QX.8(B)

= %(g (jé\)) = r(sA) renaming numbers.

(C) By two applications of part (A), one application of part (B), and commutativity
of ® in L (Theorem OF.2(B)), we have

rAOQsB=r(A®sB) =r(sBOA) =r(s(BOA)) =
(rs)(BOA) = (rs)(A © B). O

Theorem QX.11 (Distributive properties for rational multiples). Letr = *' and
s = § be nonzero rational numbers, where n and q are natural numbers, m and p
are integers. Let A and B be members of L \ {O}.

(A) (r+s)A =rA @ sA.
(B) rA®B)=rA&@ rB.

Proof. (A) ng(%A & gA) = nq(%A) & nq(’a’A) by Theorem QX.6

= (ng™)A & (nq%)A by Theorem QX.10
= (gm)A ® (np)A by arithmetic
= (gm + np)A by Theorem QX.6.

Then by Theorem QX.8(A), Theorem QX.10 and arithmetic,
(BA® 2A) = .- ((gm + np)A) = (5 (gm + np))A
= (E)A = (2 + DA
so (r + s)A = rA @ sA.
B)r(A®B)=rUO (A®B) by Theorem QX.9(C)
=(rUOA)® (rU ® B) by Theorem OF.6
=rA®rB by Theorem QX.9(C). ]
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Corollary QX.12. For every A and B belonging to 1L \ {O} and every rational

number r,

(A) (—1)A = ©A.

(B) (—r)A = °(rA).

(©) (=) (PA) = rA.

(D) rA = ©(r(PA)), that is, © (rA) = r(PA).
(E) (A& B) =rASrB.

Proof. (A) O = (1—1)A =A@ (—1)A, hence PA = (—1)A.
(B) By Theorem QX.10(B) and part (A),
(=nA = ((=)nNA = (=1)(rA) = ©(rA).
(C) By part (A), Theorem QX.10(B), and Theorem OF.10(A),
(=) (P4) = ((N(=1)(PA) = (N((-1)(®A)) = r(®(°A4)) = rA.
(D) By part (A), part (C) and Theorem QX.10(B),
rA = (=1)(°A) = (=Dr)(P4) = (=1)(r(®A)) = ©(r(®A)).
(E) Using, in succession, Definition OF.8(A), Theorem OF.6, part (D) above, and
again, Definition OF.8(A), we have r(B © A) = r(B® °A) = rB® r(®A) =
rB @ °rA. a

Theorem QX.13. Letr = % be a nonzero rational number, where m is an integer

and n is a natural number. Let A € L \ {O}.

(A) Ifris positive and A is positive, then rA is positive.
(B) Ifris negative and A is positive, then rA is negative.
(C) Ifris positive and A is negative, then rA is negative.
(D) Ifris negative and A is negative, then rA is positive.
Proof. Since n is a natural number, by Definition QX.1(C)
ntA)=1lAolae.. . ala=A
(where there are n terms in the sum). By Theorem OF.10(C) if ;llA > OthenA > O,
and if %A < O, by Theorem OF.10(I) A < O. Hence %A > 0(< 0O)iffA > 0O
(< 0).
By a similar argument, if r = % > 0, since n > 0, m > 0 (a natural number),

and mU > Obecause U > O. If r = % <0,m<0,—m >0, (—m)U > O, so that
by Definition QX.1(D), mU = ©(—m)U which is < O by Theorem OF.10(B).
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By Theorem QX.8(B) and Theorem QX.4(B)
rA =2A =m(1A) = mU © (14).
If r>0and A > O, mU > O, by Theorem OF.10(C) rA = mU © (%A) > 0.
If r <0and A < O, mU < O, by Theorem OF.10(I), rA = mU © (14) > 0.

Ifr>0and A < O,then mU > O;if r < 0and A > O, then mU < O; in either
case, by Theorem OF.10(E), rA = mU © (1A) < O. O

Corollary QX.14. Let r be a nonzero rational number and A < B be points other
than O on L. Then r > 0 iff rA < rB, and r < 0 iff rA > rB.

Proof. By Theorem OF.11(A) since A < B, B& A > O. By Theorem QX.13,r > 0
iff O < r(B© A) = rB © rA, which is true iff B > rA. Again by Theorem QX.13,
r<0iff r(B© A) = rB © rA < O which is true iff B < rA. |

Definition QX.15. Let U be the unit in the line L. Define the setLy = {rU | r € Q}
be the set of rational points of L.

Theorem QX.16. (A) Ly is an ordered field under the operations ® and © and
the order relation <, and is a subfield of L.
(B) There exists an order-preserving field isomorphism W mapping Q, the field of

rational numbers, onto L.

Proof. (A) Let r and s be rational numbers. By Theorem QX.11, rU®sU = (r+s)U
and by Theorem QX.10(C), (rU) ® (sU) = rs(U © U) = rsU. This shows that
Ly is closed under both @ and ©.

(—r)U is the additive inverse of rU, since (—r)U & rU = (—r + r)U =
0U = O (cf Definition QX.1(A)). If r # 0, then by Theorem QX.9(A), the
commutativity of ©, and Theorem QX.10(B) we have

Gnory=worm=cvoU)=rUOU)=1-U=U,
so that %U is the multiplicative inverse of rU.

Both & and ® are commutative and associative in I and therefore have these
same properties in L. The distributive property holds in L.y since it holds in
LL; thus, if r, s,and ¢ are rational numbers,

rUO (UG tU) = (U OsU)® (rU ©tU) = rsU & rtU = (rs + rt)U.

Therefore L is a group under @ and Ly \ {O} is a group under ©; since the
distributive law holds, Ly is a field, a subfield of L. Since L is ordered by the

ordering “<", so is its subset L.
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(B) Define the mapping ¥ as follows: for each rational number r, let ¥ (r) = rU.

It is obvious that ¥ maps onto L.

Let r be a rational number. Then by Definition QX.1, if » = 0 then rU = O.
If r # 0 then either r > 0 or r < 0 so by Theorem QX.13(A) or (B), rU > O or
rU < 0, and rU # O. By the contrapositive, if rU = O, then r = 0; therefore
rU = O iff r = 0. It follows that if rU = sU,

(r=s)U=(r+ (—=s)U=rU (—s)U
=rU® G U)=rU® °(rU) =0

so that r —s = 0 and r = 5. Hence ¥ is one-to-one, and is a bijection.

By Theorem QX.11(A), ¥ (r +s) = (r + s)U = rU + sU = ¥(r) & ¥(s).
If r and s are both nonzero, ¥(rs) = (rs)U = rU © sU = W(r) © ¥(s) by
Theorem QX.10(C). Furthermore ¥(0) = OU = O and ¥(1) = 1U = U.
Thus ¥ fulfills all the requirements to be an isomorphism of Q onto L.

Finally, by Exercise QX.2, r < siff rU < sU, so ¥ is order-preserving. 0O

Corollary QX.16.1. Let H be any member of L such that H > O, and let Ly =
{rH | r € Q}. Then

(A) Ly is an ordered field under the operations @ and © and the order relation <,
and is a subfield of 1.
(B) There exists an order-preserving field isomorphism ¥ mapping Q, the field of

rational numbers, onto LLy.

Proof. The proof is exactly the proof of Theorem QX.16, where H has been
substituted for U. That is, the unit U can be chosen arbitrarily to be any point greater
than O. O

Remark QX.17. The existence of an isomorphism between Q and Ly means that

these cannot be distinguished as algebraic objects.

17.3 Applications of rational multiples

Theorem QX.18 (Midpoint of a segment). Let A and B be distinct members of
the ordered field L, then %(A @ B) = # is the midpoint of AB.

Proof. Choose the notation so that A < B; by Corollary QX.14 % < g. Using
Theorem OF.11(B) and Theorem QX.11(B),

A=tot<tol=12 iol-p
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so that by Theorem ORD.6, AGBB is between A and B. Since AEBB > Aand B > AEBB

ADB Bos _ I _ BoA
1=~ ©A| = =3B6A) =~

and

Bo A?B =1(BoA) =4
Therefore by Theorem OF.15(B) AA GT] ; BA?Bj. Since ‘% € AB, by Defini-
tion NEUT.3(C) # is the midpoint of AB. O

Remark QX.19 (On free segments). In Chapter 15 (Definition SIM.7) we gave
meaning to the product of two free segments A = [[07A]] and 8 = [EOHB] by defining
A®B = [O(A®B)]. We can also define a (positive) rational multiple of a free

segment, as follows.

-
=

Definition QX.20 (Rational multiple of a free segment) If A = [OA]is any free

L

-
—

segment and r > 0 is any rational number, define r.4 = [O(rA)]

Remark QX.21 (On the product of altitude and base of a triangle). Recall
from Definition NEUT.99(C) the deﬁmtlons of altitude and base of a trlangle
Theorem SIM.24 shows that if AD and BE are two a1t1tudes and lf and AC are
the respective bases for those altltudes [AD] O] [BC ] [BE ] o [AC]

Let X, X’ Y, and Y’ be points of OU such that [AD] [OX 1, [BC] [()T/] 1,
[ ] [OX'] and [AC 1= [OY oY’ ]. By Theorem OF.15 and Definition OF.16, the
lengths of these free segments are, respectively, X, ¥, X’, and Y.

We can re-state the result of Theorem SIM.24 as: If X is the length of an altitude
of a triangle, and Y is the length of its base, and X’ is the 1ength of another altitude
of the same triangle, and Y’ is the length of its base then [OX 10 [OY ] = [ X’J ] ©
[OY’] By Definition SIM.7 this is [O(X ©) Y)] = [O(X’ ©) Y’)] or O(X ©) Y)
O(X/ © Y/), which by Property R.4 of Definition NEUT2isXOQY =X O Y.

Thus for any triangle, the product of the lengths of an altitude and its base is

independent of the choice of altitude, so that the following definition is a “good”

one.

Definition QX.22. The area of a triangle is half the product of the length of an
altitude and its base. More formally, if 1[47D] is an altitude of a triangle, and if ?C' is
the base of that altitude, and if [AD] = [0X] and [BC] = [OY ], then the area of the

triangle is %(X ®Y). For a visualization see Figure 17.1.
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Fig. 17.1 For A
Definition QX.22.

Remark QX.23 (Area of a polygonal domain). In Definition QX.20 we defined
the area of a triangle. This provides a basis for defining the area of a polygonal

domain, a union | J encH, where T is a finite set of triangles on the Euclidean
HET
plane, and the intersection of any two sets enc S and enc 7 is empty, or is a common

corner or common edge of S and 7.

Chapter 10 of Geometry, A Metric Approach with Models (R. S. Millman and
G. D. Parker, Springer-Verlag, 1981 [15]) develops this approach, using the positive
real numbers; thus Axiom LUB is required. However, their development carries over
verbatim to our situation if free segments and their lengths (defined in Chapter 14,
Definition OF.16) are used in lieu of the positive real numbers. Thus the concept of

area for polygonal domains does not depend on Axiom LUB.

17.4 Exercises for rational points on a line

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.
Exercise QX.1*. Let r be a nonzero rational number, and let A € L. \ {O}.

(A) If A is positive, then rA is positive iff r is positive.

(B) If A is negative, then rA is negative iff r is positive.

Exercise QX.2*. Let A be a positive member of I and r and s be rational numbers.
Then rA < sA iff r < s.

Exercise QX.3*. Let A be a negative member of IL and r and s be rational numbers.
Then rA > sA iff r < s.

Exercise QX.4*. Let P be a Euclidean plane, IL be an ordered field on P, T be a
member of L and r be a rational number. Then (—r)T = °(+T).

Exercise QX.5*. Let IL be an ordered field with origin O on a Euclidean plane P,
and let X and Y be positive members of LL. Then there exist noncollinear points A,
B, and C on P such that %X ® Y is the area of AABC.
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Dependencies: all prior Chapters I through 17
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plete (ordered field); rational, irrational members of a complete ordered field;
Archimedean property; sequence, limit; sum of two subsets of an ordered field;
addition of points on a plane; scalar multiple of a point on a plane; coordinatization,
coordinatization map, axes, origin, first and second coordinates on a plane, right-

handed system

Abstract: This chapter derives basic properties of least upper bounds and explores
their relationship with the Archimedean property. On an arbitrary line in a
Euclidean/LUB plane (which has been built into an ordered field) real multiples
of points are defined and their algebraic properties derived. These properties are
used to show the existence of an order-preserving isomorphism between the set of
all real numbers and the whole line. The chapter ends with coordinatization of a
Euclidean/LUB plane.

We continue the project of embedding number systems in lines on a plane. In
order to carry this out, it is necessary for the plane to have the LUB property, a
property of the set of real numbers. We show that every line L in such a plane
is order-isomorphic to the set R of real numbers, and finally, in a process called
coordinatization, that the plane itself is a copy of the coordinate plane R>.
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Lines are built into ordered fields in Chapter 14, ordering is defined in Chapter 6,
and in Definition ORD.8 of that chapter, upper and lower bounds are defined.

Isomorphism is defined in Chapter 1 Section 1.5.

18.1 The basics of least upper bounds

Definition REAL.1. Let IL be a line in a Euclidean plane P. Suppose that IL. has

been built into an ordered field, and that £ is a nonempty subset of L.

(A) If & is bounded above, and if the set of all upper bounds of £ has a minimum,
then this minimum is called the least upper bound of £, and is denoted lub £.

(B) If & is bounded below, and if the set of all lower bounds of £ has a maximum,
then this maximum is called the greatest lower bound of £, and is denoted
glb £.

Axiom LUB. Let L be a line which is equipped with an order relation as defined
in Definition ORD.1. Every nonempty subset £ of . which is bounded above has a
least upper bound lub £.

Strictly speaking, Axiom LUB applies to lines, or ordered fields; however, we
will freely speak of this axiom as being true “on space" or “on a plane," meaning

that the Axiom is true for all lines in that space (or plane).

Definition REAL.2. (A) A Euclidean space or plane on which Axiom LUB is true
is called a Euclidean/LUB space (or plane); Euclidean/LUB geometry is the
resulting geometry on such a plane or line.

(B) An ordered field for which Axiom LUB holds is a complete ordered field.

(C) For notational convenience, for any set £ C IL, where L is an ordered field, we
define ©& = {®X | X € &}.

Remark REAL.3. (A) The least upper bound of a set £ may or may not be a
member of &; if it is a member of &£, then it is the maximum element of £ (cf
Definition ORD.8).

(B) It is well known that the set R of real numbers is an ordered field for which
Axiom LUB holds.
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Theorem REAL.4 (GLB). Let £ be a subset of an ordered field 1L (which is a
subset of a Euclidean/LUB plane) with origin O and unit U. If £ is nonempty and is
bounded below, then

(A) & has a greatest lower bound—that is, glb & exists, and
(B) glb& =° 1ub(®¢E).
(C) glb(P&) =° lubé&.

Proof. If Bis alower bound of &, then ©B is an upper bound of ©£. By Axiom LUB
the set of upper bounds of ©£ has a minimum lub(®&). We show that © lub(°&)
is the maximum of the lower bounds of £. If D is any lower bound of &, then for
every member X of £, D < X and so ©D > ©X. Since ©D is an upper bound of ©&,
lub(®&) < ©D, but this means that D <© lub(PE). So © lub(°E) is the maximum
of the lower bounds of &, that is, glb £. This proves both parts (A) and (B).

The proof of (C) follows from (B) by substituting ©& for £. O

Theorem REALL.S. Let P be a Euclidean/LUB plane and let L be an ordered field
on P with origin O and unit U, and let £ C L.

(A) Iflub & exists, it is unique.
(B) Ifglb & exists, it is unique.

Proof. (A) Suppose A and B both are least upper bounds for £. Since A is an upper
bound, then A > B; since B is an upper bound, B > A. By Theorem ORD.5, if
A # B then either A > B or B > A both of which are impossible.

(B) The proof is similar to part (A) and is left to the reader. ad

Definition REAL.6. Let P be a Euclidean/LUB plane, and let IL. be an ordered field
on P with origin O and unit U.

(A) A function whose domain is the set N of all natural numbers and whose values
are members of L is a sequence. The customary notation for a sequence whose
value at each natural number n is S, is {S,}.

(B) A sequence {S,} is said to have a limit L iff for every ¢ > O which is a member
of L, there exists a natural number m such that for every n > m, ©¢ < S, 8L <

€. If there exists a limit L for {S,,}, we write L = lim S,,.
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Theorem REALL.7. Let P be a Euclidean/LUB plane, L an ordered field on P, and
{S,} a sequence with values in 1L such that for every natural number n, S,11 > S,.
If {S, | n is a natural number} is bounded above, and if B = 1ub{S,, | n is a natural

number}, then lim S exists and equals B.

Proof. Let € be any positive member of I such that B © € is positive. By Axiom
LUB there exists a natural number m such that S,, > B& €. Then©e < S, 6B < O
(since B is an upper bound for {S,,}). If n > m, then §,, > §,, s0 B&S, < BSS,, < ¢
and ©¢ < S, © B < O. But this means that lim S, exists and equals B. ad

18.2 Archimedes, Eudoxus, and least upper bounds

Remark REALL.8. Archimedes of Syracuse (c. 287-212 BC) is commonly listed
with Newton and Gauss as one of the three greatest mathematicians of all time,
having all but invented calculus to solve various problems. This next property still
bears his name, although some say that Archimedes attributed it to Eudoxus of
Cnidus, whom we will encounter shortly.

The Archimedean property has meaning (is either true or false) for any ordered
field L that is equipped with an origin O and a unit U, where for any A € L and
any natural number n, nA is defined tobe A @ A @ ... & A (with n terms in the

summation), as in Definition QX.1(C).

Archimedean property For any H > O and any K > O there exists a natural
number n such that nH > K. Alternatively, the set D = {nH | n is a natural number}

is unbounded above.

We will sometimes say “the plane P is Archimedean” to mean that the

Archimedean property holds on every ordered field in the plane P.

Theorem REAL.9 (Every Euclidean/LUB plane is Archimedean). Let P be a
Euclidean/ LUB plane, L an ordered field on ‘P, and suppose that for every A € L,
nA has been defined as in Definition QX.1. Then if H is a positive member of L, and

D = {nH | n is a natural number}, D is unbounded above.

Proof. Assume D is bounded above. By Axiom LUB the set of upper bounds of D
has a minimum B = lub D. By Theorem PSH.22 there exists a member V of L such
that O-V—-H and by Theorem ORD.6, O <V < H.
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If all members of D were less than or equal to B & V, this would be an upper
bound for D, and since B&V < B, B would not be the least upper bound. Thus there
exists a member of D which is greater than B & V, that is, for some natural number
m,mH>Bo&V.Hence(m+ 1)H=mH®H >BOVeO&H=BdHSV)>B,
because H © V > O. But (m + 1)H € D so that (m + 1)H < B, a contradiction.

Therefore D is unbounded above. ad

Corollary REAL.9.1. Assuming that the hypotheses of Theorem REAL.9 are true,

the set {rH | r is a rational number} is unbounded above.

Proof. D C {rH | r is a rational number}. O

Remark REAL.10 (LUB and the Archimedean property). As we saw in The-
orem REAL.9, the LUB property of an ordered field implies the Archimedean
property. But in general, the Archimedean property does not imply the LUB
property, as will be established in the next two theorems.

Theorem REAL.11 (Q is Archimedean). The Archimedean property holds on the

set QQ of rational numbers.

Proof. Letr = § and b = 7, where r and b are positive rational numbers and p, g,
s, and ¢ are natural numbers. We show that there exists a natural number n such that
nr > b. Note first that g > 2 and s > 3. Letn = sq + 1 > sq; thenn > sq > ‘”

Multiplying both sides by r = =, nr = nq > =b. IZ]

Theorem REAL.12 (Axiom LUB does not hold on Q). The set £ = {r | risa

rational number and r* < 2} has no least upper bound in Q.

Proof. Suppose the contrary, that § is the least upper bound for £, where p and g are
natural numbers. By trichotomy for numbers, there are three cases; we show that all
these cases lead to contradictions.

(Case 1: & < 2.) Then 2¢*> > p? and 24> —p* > 0. By the Archimedean property,

4 2
there exists a natural number 7’ such that n’ > 5 ui 5. 50 1, < q4p v’ Also there

. 24>
exists a natural number n” such that n” > ‘1 L <L
2%~ (n” ) n

n = max{n’,n"}. Then
P2 1< 2oy 2=ty 4 24
(q+n)_2+ + q2+q(4pq)+ 242
24%— 2 4q?
= 2 + q p + p Iz =2

Therefore § + % isa rnember of g, and is greater than Z ,and % is not an upper bound

for £, contradicting our hypothesis.
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2
(Case 2: 2’—2 > 2.) Then 2¢*> < p? and p> — 24> > 0. Let #’ be a natural number
2 2
such thatn’ > £, sothat0 < & < 2,2 — 1 >0 and (£ — 1)” < Z. Also let n” be
p W q g , g q
2gp 1 P =2q
P2 0w < Tagp
2 _2 é_Zl(PZ—Zqz)_Iﬁ_ﬂ_ﬁ_z
9 an ¢ a\ 2p q q ?

2
so that (5 — %) = ’;—2—% + nLZ > 2+ niz > 2. Therefore, for every r € &,

a natural number such that n” > . Let n = max{n’, n"’}. Then

2 . .
(-1 >2>/r"and 2 -1 > r hence 2 — ! is an upper bound for &. Since
g n q n q n

i—; 1< [?;’ ’5’ is not the least upper bound for £, contradicting our hypothesis.

(Case 3: Z—z = 2.) The following proof is well known: reduce g to lowest terms,
so that p and ¢ have no common factor. Then p?> = 24 so that 2 is a factor of p?,
hence is a factor of p, and there exists a natural number a such that p = 2a. Then
4a> = 2¢* and 2a> = ¢?, so 2 is a factor of ¢?, and therefore a factor of ¢. This
shows that 2 is a common factor of both p and g, in contradiction to our original

. 2 . .
assumption that Z—z is in lowest terms. O

The geometries we develop from here on are Archimedean geometries. The study

of non-Archimedean geometries has been an active field of research.

Theorem REAL.13. Let P be a Euclidean/LUB plane, A, B, C, and D be points
on P such that A # B and C # D. Then there exists a natural number m such that
m[AB] > [CD), where m[AB] is defined as in Definition QX.20.

Proof. In the following, let @ be as in Definition FSEG.14. If [ITB] ] > [[CiDj], then
m = 1 satisfies the inequality. If [1[479] ] < [[CiD]], then by Theorem FSEG.13 there
exists a unique point H = 45[1[4? ] on an ordered field I with origin O such that
H > O and [[07H]] = [ﬁ]. Let V > O be the point on LL such that V = <D[[C7D]]
and [EOT/]] = [[CT)]]. By Theorem REAL.11 there exists a natural number m such
that mH > V. Since by Theorem FSEG.15(B) @ preserves order, mH > V iff
mlAB] > [CD). O

Remark REAL.14. Eudoxus of Cnidus (c. 408-355 BC) lived between the times
of Pythagoras and Euclid and was contemporary with Plato. Part of Eudoxus’
work amounted to a rigorous definition of real numbers and Richard Dedekind
(1831-1916) was inspired by his ideas. (This is the Dedekind who originated the
now-standard method of “Dedekind cuts” for completing the set of real numbers to

include irrational numbers.) The following theorem bears Eudoxus’ name.
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Theorem REAL.15 (Eudoxus). Let H be a positive member of L, and let A and B
be members of L such that B < A. Then there exists a rational number r such that
B <rH < A.

Proof. (Case 1: A > B > 0.) By the Archimedean property (Theorem REAL.5)
choose a natural number ¢ such that g(A & B) > H. Then multiplying both sides by
%1’ we have éH < A © B. Adding B and subtracting éH yields B <A © éH.

By the Archimedean property choose a natural number p so that ’—;H > B, and let
p be the smallest such number.

Then §H < A, for otherwise, ’éH > A and ’%IH = §H e éH >AQ éH > B,
so that % is not the smallest integer such that %H > B, contradicting the definition
of p. Therefore B < §H < A.

(Case2: A > 0O > B.)Letr =0.

(Case 3: O > A > B.) By Theorem OF.10(B) and Exercise OF.9, ©B and ©A are
both positive and O < A < ©B. By Case 1, let r be such that ®°A < rH < ©B.
Then B < ©(rH) = (—r)H < A. Here we have used Corollary QX.12(B). O

18.3 Real multiples of members of LL

Remark REAL.16. (A) Unless explicitly stated otherwise, in the remainder of
this chapter P will denote a Euclidean/LUB plane, I will be an ordered field
on P with origin O and unit U, in which rational multiples of points have been
defined as in Chapter 17.

(B) Unless explicitly stated otherwise, the letters r, s, and ¢ will denote rational

numbers. So we will routinely (but not always) omit the reminder that “r € Q”.

Remark REAL.17. Let x be any real number, and H > O a member of L; let
Ly = {rH | r € Q} (as in Corollary QX.16.1).

(A) Let £ and F be subsets of Lg. If £ and F are bounded above (below) and
have the same set of upper (lower) bounds in Ly, then lub& = lub F (glb & =
glb F). This is obviously true by the plain meaning of the words upper and
lower bound, least and greatest, etc.

(B) Leta, d, b, and b’ be rational numbers such thata < x < bandad’ <x < b'.

() {rH |a<r<x},{rH | d <r <x},and {rH | r < x} are bounded above,

have a common set of upper bounds, and a common least upper bound.
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2) {rH | x<r <b},{rH | x <r < D'}, and {rH | x < r} are bounded below,
have a common set of lower bounds, and a common greatest lower bound.

B) {rCH) |a < r < x, {r®CH) | d < r < x}, and {r(®°H) | r < x}
are bounded below, have a common set of lower bounds and a common
greatest lower bound.

@) {rCH) | x <r < bl {r(PH) | x < r < b'},and {r(°H) | x < r} are
bounded above, have a common set of upper bounds and a common least

upper bound.

To see part (B)(1), note that there exists a rational number s such that a <
r < x < s. By Exercise QX.2,if H > O, rH < xH < sH so sH is an upper
bound for {rH | a < r < x} and the other sets in the list, which obviously have
the same set of upper bounds; part (A) says that their least upper bounds are the
same. The proofs of the other parts of (B) are similar, and are left to the reader.
(C) Part (B) above shows that in most cases involving least upper bounds or greatest
lower bounds, it is legitimate to write {rH | r < x} instead of {rH | a < r < x},

or {rH | x < r}instead of {rH | x < r < b}.
(D) Theorem REAL.18, which follows, provides the basis for general application
of Definition REAL.19, which will define xH where x is an irrational number
and H is any point of L. It also facilitates the proofs of future theorems. The

proof is long, but the reader should not be daunted by it.

Theorem REAL.18. Let H > O be a member of L; let Ly = {rH | r € Q} (as in
Corollary 0X.16.1).

(A) If x is rational, then xH = lub{rH | r < x} = glb{rH | x < r}.

(B) If x is any real number, lub{rH | r < x} = glb{rH | x < r}.

(C) Ifx is any real number, lub{r(°H) | x < r} = glb{r(°H) | r < x}.
(D) Ifxis rational, x(°H) = lub{r(°H) | x < r} = glb{r(°H) | r < x}.

Proof. Let x be any real number; if  and s are rational numbers such that » < x < s,
by Exercise QX.2 rH < sH,so{rH | r < x} < {sH | x < s}and {rH | r <
x} N {sH | x < s} = @. Then every member of {rH | r < x} is a lower bound for
{sH | x < s}, and every member of {sH | x < s} is an upper bound for {rH | r < x}.

Moreover, for any real x, {sH | x < s} has no least (minimum) element and
{rH | r < x} has no greatest (maximum) element, because {s | x < s} has no least
element and {r | r < x} has no greatest element. These facts will be used several

times in the rest of this proof.
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There can be at most one rational number ¢ such that » < ¢ < s for all » < x and
all s > x; if there is such a #, then t = x, so that in this case x is rational. Therefore,
if x is rational,

{rH | r<x}U{sH | x <s}U{xH} =Ly (*)
and the sets in this union are disjoint. If x is irrational, then every rational number is
either greater or less than x, so that
{rH | r<x}U{sH | x < s} = Ly.
Again, all r, s, and ¢ are rational numbers, but for brevity we omit the reminders

reQ, etc.

Claim 1. For any real number x, neither lub{rH | r < x} nor glb{sH | x < s} can
be a member of either {rH | r < x} or {sH | x < s}. Also,

{rH | r<x} <lub{rH | r <x} <{rH | x < r}
and

{rH | r<x}<glb{rH | x <r} <{rH | x < r}.

Proof of Claim 1. Tub{rH | r < x} is an upper bound for {rH | r < x},so {rH | r <
x} <lub{rH | r < x}. If lub{rH | r < x} € {rH | r < x}, it would be an upper
bound for that set and hence this set would contain a maximum element, which does
not exist; therefore lub{rH | r < x} € {rH | r < x}, and {rH | r < x} < lub{rH |
r<xj.

All the members of {rH | x < r} are upper bounds for {rH | r < x}, so lub{rH |
r<x}<{rH|x<r} . Iflub{rH | r < x} € {rH | x < r}, it would be less than or
equal to all members of {rH | x < r} and thus its least element, which does not exist;
therefore lub{rH | r <x} € {rH | x < r},and lub{rH | r < x} < {rH | x < r}.

glb{rH | x < r} is a lower bound for {rH | x < r}, so glb{rH | x < r} < {rH |
x <rpIfglb{rH | x < r} € {rH | x < r}, it would be a lower bound for that set
and hence its minimum element, which does not exist; so glb{rH | x < r} & {rH |
x<r},and glb{rH | x < r} < {rH | x < r}.

All the members of {rH | r < x} are lower bounds for {rH | x < r}, so glb{rH |
x<r}>{rH | r <x} . Ifglb{rH | x < r} € {rH | r < x}, it would be greater
than or equal to all members of {rH | r < x} and thus would be its greatest element,
which does not exist; so glb{rH | x < r} € {rH | r < x},and {rH | r < x} <
glb{rH | x < r}. This completes the proof of Claim 1.

Claim 2. For any real number x, lub{rH | r < x} < glb{rH | x < r}.
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Proof of Claim 2. As we have already noted, all points of {rH | x < r} are upper

bounds for {rH | r < x}; therefore they are all greater or equal to the least upper
bound of {rH | x < r}; thatis, {rH | x < r} > lub{rH | r < x}. Then lub{rH |
r < x} is a lower bound for {rH | x < r} hence is less or equal to glb{rH | x < r}.
Therefore lub{rH | r < x} < glb{rH | x < r}.

Note that up until this point we have assumed that x is an arbitrary real number.

Now the proof splits.

(A)

(B)

©)

D)

Assume that x is a rational number. If lub{rH | r < x} # glb{rH | x < r},
then by Claim 2 lub{rH | r < x} < glb{rH | x < r}. By Theorem REAL.15
(Eudoxus) there exists a rational number s such that lub{rH | r < x} < sH <
glb{rH | x < r}; then neither sH nor xH is a member of either {rH | r < x}
or glb{rH | x < r}; therefore by (*), sH = xH, or s = x, showing that
lub{rH | r < x} <xH < glb{rH | x < r}.

Again by Theorem REAL.15 there exists a rational number ¢ such that
lub{rH | r < x} < tH < xH. Thent < xsotH € {rH | r < x} and
tH < lub{rH | r < x} < tH, a contradiction. Therefore lub{rH | r < x} =
glb{rH | x < r} and by Claim 2, lub{rH | r < x} = xH = glb{rH | x < r}.

If x is irrational, again from Claim 2 we know that lub{rH | r < x} < glb{rH |
x < ry. Iflub{rH | r < x} < glb{rH | x < r}, by Theorem REAL.15 there
exists a rational number s such that lub{rH | r < x} < sH < glb{rH | x < r}.
Since x is irrational either s < x or x < s; hence sH is either a member of
{rH | r < x} or of {rH | x < r}, both of which are impossible by the definition
of sH. Therefore lub{rH | r < x} = glb{rH | x < r} where x is an irrational
number. From part (A) this is true for all real numbers x, proving part (B).
Applying, in order, Theorem QX.12(D), Theorem REAL.4(B), Part (B) above,
Theorem REAL.4(C), and Theorem QX.12(D), we have
lub{r(®H) | x < r} = lub{®(rH) | x < r}

= Oglb{rH | x < r}

= Olub{rH | r < x}

=glb ©®{rH | r < x}

= glb{r(®°H) | r < x}.
If x is rational, by part (A) xH = glb{rH | x < r} = lub{rH | r < x}. From
Corollary QX.12(D)

x(®H) = ©®(xH) = ®glb{rH | x <r} = Club{rH | r < x}.
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Thus x(®H) is equal to the second and third lines in the calculation above for
part (C), so that
x(®PH) = glb{r(®) | r < x} = lub{r(®H) | x < r}. O

Definition REAL.19. (A) Let x be a real number and let H be a member of L.

(1) Ifx=0o0r H= O, thenxH = O.

(2) If r is a nonzero rational number and if H # O, then rH is given by
Definition QX.1.

(3) If x is any irrational number and H is a positive member of L, then xH =
lub{rH | r € Q and b < r < x}, where b is any number such that b < x.

(4) If x is any irrational number and J is a negative member of L, then xJ =
©x(®)).

(B) H is a rational member of L. iff there exists a rational number r such that
H=rU.

(C) H is anirrational member of L iff there exists an irrational number a such that
H =aU.

Theorem REAL.20 (Summary of Theorem REAL.18 and Definition REAL.19).

Let x be any real number, and let H be any positive member of L.

(A) xH =1ub{rH | r < x} = glb{rH | x < r}.
(B) x(°H) = ©(xH) = lub{r(®H) | x < r} = glb{r(®°H) | r < x}.

Proof. (A) If x is rational, this is Theorem REAL.18(A). For irrational numbers the
proof follows from Definition REAL.19(A)(3) and Theorem REAL.18(B).

(B) If x is rational, this follows from Theorem REAL.18(D) and Corollary
QX.12(D). If x is irrational, by Definition REAL.19(A)(4) x(°H) = ©(xH));
by Definition REAL.19(A)(3) this is

Olub{rH | r < x} = glb®{rH | r < x}
= glb{®(H) | r < x}
= glb{r(®°H) | r < x}
= lub{r(®H) | x < r}.
The first equality is by Theorem REAL.4(C), the third by Theorem QX.12(D),
the last by Theorem REAL.18(C). O

Theorem REAL.21. Let P be a Euclidean/LUB plane and let L be an ordered
field on P with origin O and unit U, in which rational multiples of points have been

defined as in Chapter 17. Let x be any real number and S any member of L.
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(A) (=x)S = ©(xS) (so (=1)S = ©8, as in Theorem QX.4(D)).
(B) (—x)(°S) = x8.
(C) xS = °(x(°9)), that is, ©(xS) = x(°S).

Proof. If x is rational, this is Corollary QX.12, parts (B), (C), and (D). If S = O,
they are all true by Definition REAL.19(A)(1).

(A) (Case 1: x is an irrational number and § > O.) Applying, in sequence,
Definition REAL.19(A)(3), re-naming variable, Theorem QX.12(B), Defini-
tion REAL.2(C), Theorem REAL.4(C), and Theorem REAL.20(A), we have

(—x)S = lub{rS | r < —x} = lub{(—r)S | —r < —x}

lub{®(rS) | x < r} =1lub O{rS | x < r}

Oalb{rS | x < r}.

= OS).

(A) (Case 2: x is an irrational number and S < O.) Applying, in sequence,
Theorem REAL.20(B), re-naming variable, Theorem QX.12(B), Defini-
tion REAL.2(C), Theorem REAL.4(C), and Theorem REAL.20(B), we have

(—x)S =1ub{rS | —x < r} = lub{(—=r)S | —x < —r}

1ub{®(rS) | r < x} = lub S{(rS) | r < x}

= Ogb{rS | r <x} = °(xS).

(B) (Case 1: x is an irrational number and S > 0O.) Applying, in sequence,
Theorem REAL.20(B), re-naming variable, Theorem QX.12(C), and Defini-
tion REAL.19(A)(3), we have

(=x)(CS) = lub{r(®S) | —x < r} = lub{(—r)(®S) | —x < —r}
= lub{rS | r < x} = xS.

(B) (Case 2: x is any irrational number and S < O.) Applying, in sequence,
Definition REAL.19(A)(3), re-naming variable, Theorem QX.12(C), and The-
orem REAL.20(B), we have

(—x)(®S) = lub{r(®S) | r < —x} = lub{(=r)(°S) | —r < —x}
= lub{rS | x < r} = xS.

(C) We have now proved that (A) and (B) are true for all irrational x and all points

S € L. Applying part (A) first, and then part (B) we have, for any S € L,

OxS) = ()8 = (—(=x))(°S) = x(°9). O
Corollary REAL.21.1. Let x be any nonzero real number, and let A € ](ﬁ)] Then
O(xU) =~ OA iff |[x|U = A. That is to say, ®[0A] = A = |x|U, where ® is as in
Definition FSEG. 14.
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Proof. Assume W OA If x > 0, then xU € OU and by Property R4 of
Definition NEUT.2, |x|U = xU = A. If x < 0, then (—x)U € OU and |x|U =
(—x)U = A. Conversely, if |x|U = A either x > 0 in which case O(xU) = OA or
x < 0 in which case —x > O and A = (—x)U = e(xU) by Theorem REAL.21(A).
Then ®A = xU and by Theorem OF.10(A), O(xU) O(GA) O

Lemma REAL.22. Suppose x > 0 andy > 0 are real numbers; then r is a rational
number such that 0 < r < xy iff there exist rational numbers s and t such that

O<s<x,0O<t<yandst=r.

Proof. This proof uses the property that between every two distinct real numbers,
there exists a rational number. Since 0 < r < xy, f < x so we may choose a rational
number s such that £ < s < x. Thenr = y- < ys < xysothat £ < y.Lett = *
y y N K
Then 0 < ¢ < y and st = s¢ = r. Conversely, if 0 < s < xand 0 < 7 <y, then
0 < st < xy. a

We call Theorems REAL.23 and REAL.25 “Associative” properties, even though
that stretches the language somewhat.

Theorem REAL.23 (Associative property I for scalar product). Ifx is any real
number, and S is any member of L, then x(yS) = (xy)S = y(xS).

Proof. Again in this proof we will denote rational numbers by the letters 7, s, or £; x
and y may be any real numbers, rational or irrational.
(Case 1: Eitherx = 0,y = 0, or S = O.) The proof follows immediately from
Definition REAL.19(A)(1).
(Case 2: x > 0,y > 0, and S > 0O.) By Lemma REAL.22, and Theo-
rem QX.10(A), B is an upper bound for {rS | 0 < r < xy} iff
B>{rS|0<r<xy}={(s0)S|0<s<xand 0 <t <y}
={s(tS) |0<s<xand 0 <t <y}
Thus, for every s such that 0 < s < x, B > {s(tS) | 0 < ¢ < y}, and the following

statements are equivalent:

(@ B={s(tS) [0 <t<y}=s({(S)|0<r<y});

(b) 2={S|0<t<y};

(c) 2 =1ub{sS | 0 < r < y} = yS (by Definition REAL.19(A)(3));
(d) B= s% > s(yS).

YIS

Therefore B is an upper bound for {rS | 0 < r < xy} iff it is an upper bound for
{s(yS) | 0 < s < x}. By Remark REAL.17(A), the least upper bounds for these sets
are the same. Thus, using Definition REAL.19(A)(3),
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(xy)S =Tub{rS | 0 < r < xy} = lub{s(¥S) | 0 < 5 < x} = x(¥S).

(Case 3: x > 0,y < 0, and § > 0.) Using, successively, arithmetic,
Theorem REAL.21(A), Theorem REAL.21(C), Case 2 above, arithmetic, and
Theorem REAL.21(A), we have

2(5S) = x(=(=)S = x(C(—)$)) = (x((—)S))
= (=) = C((=()S) = ()S.

(Case4:x <0,y > 0,and S > O.) The proof is Exercise REAL.6.

(Case 5: x < O and y < O are any real numbers and S > 0.) Using, in
succession, arithmetic, Theorem REAL.21(A), Case 3 above, arithmetic, Theo-
rem REAL.21(A), and Theorem OF.10(A), we have

x(8) = (—=(=0)S) = C((=0)19)) = C((=x)y)9)
= ()9 = C(C((x)3)) = (xy)S.
Cases 2 through 5 show that (xy)S = x(yS) for all real numbers x and y where
S> 0.

(Case 6: x and y are any real numbers and S < O.) Using, in succession,
two applications of Theorem REAL.21(C), Cases 2 through 5 above, and Theo-
rem REAL.21(C), we have

x(r8) = x(°((°9))) = C(x((®9))) = C((xy)(°S)) = (x)S.

This shows that x(yS) = (xy)S for all real numbers x and y and all members S of

L. By commutativity, x(yS) = (xy)S = (yx)S = y(xS). O

Lemma REAL.24. If £ is a subset of L which is bounded above, and T > O is a
member of L, then (Ilub&) © T = Iub(€ O T).

Proof. The proof is Exercise REAL.4. O

Theorem REAL.25 (Associative property II for scalar product). Let S and T be
members of L, and let x be any real number. Then (xS) O T = x(SOT) = SO (x7T).
In particular, (xU) © T = xT = U O (xT), where U is the unit for L.

Proof. In this proof we will use Theorem OF.10(A) (®(PA) = A) without reference.
We will first show that (xS) © T =x(S O T).

(Case 0: x is rational.) This is Theorem QX.10(A).

(Case 1: x is any irrational number, S > O, and T > O.) Applying, in
succession, Definition REAL.19(A)(3), Lemma REAL.24, Theorem QX.10(A), and
Definition REAL.19(A)(3), we have

XSOT=1ub{rS | r<x}OT =1ub{(rS) O T | r < x}
=lub{r(SOT) | r<x}=x(SOT).
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(Case 2: x is any irrational number, S < O and T < O.) Applying, in succession,
Theorem REAL.21(C), Theorem OF.10(D), Case 1 above, and Theorem OF.10(D),
we have

(S) O T = ©x(®S) O T = (x(°5)) © (°T)
= (((®H 0 (°T) =x(SO ).

(Case 3: x is any irrational number, S < O and T > O.) The proof is
Exercise REAL.7.

(Case 4: x is any irrational number, S > O and T < O.) Applying, in succession,
Theorem OF.10(A), Theorem OF.10(D), Case 1 above, Theorem OF.10(D), and
Theorem REAL.21(C).

(S) O T = (x8) © °(°T) = ©((xS) © (°T))
= %SO (°1)) = (SO 1)
=x(SOT).

Cases 1 through 4 show that for all real numbers x and all members S and 7 of L,
xS) © T = x(S © T). Using this result, by commutativity, x(S© T) = x(T © S) =
(xT) © S = S © (xT), completing the proof. O

Theorem REAL.26. If x and y are real numbers, and U is the unit for L, then
(@xU) © (V) = (xy)U = x(yU) = y(xU).
Proof. Applying Theorem REAL.25 twice, then Theorem REAL.23, we have

@U) © GU) =x(U O (U)) = x(y(U © U)) = x(yU) = (xy)U = y(xV). O

Definition REAL.27 (Notation for addition of sets).

(A) If both S and T are subsets of L, we will denote the set {X & Y | X € S and
YeT}ibySaT.

(B) If S is a subset of, and H is a point of I we denote the set {X & H | X € S} by
SOH.

Note that if either of the sets S or 7 is empty, then S & 7 = @. Likewise, if
S=0,S®H=20.

Theorem REAL.28. (A) IfS and T are nonempty subsets of L which are bounded
above, S & T is bounded above and lub(S & T) = lubS & lub 7.

(B) if S and T are nonempty subsets of 1. which are bounded below, S ® T is
bounded below and glb(S & T) = glbS @ glb T.
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Proof. (A) (I) Let B be an upper bound of S and let D be an upper bound of

(B)

ey

T.Forall X and Y, if X € Sand Y € 7T, then by two applications of
Theorem OF.11(B), X @Y < B@® D, so S & 7 is bounded above. By
Axiom LUB, lub(S & 7)) exists. Moreover, since for all members X of S
and allmembers Yof 7, X <lubSandY <lub7.X®Y <lubSPlub T,
and lubS @ lub 7 is an upper bound for S @ 7. Thus the least such upper
bound lub(S & T) <lubS S 1lubT.

Suppose now that lub(S @ 7) < lubS @ lub T there exists € > O such
that lTub(S & 7) < lubS @ lubT & €. By Exercise REAL.S, there is a
member X of S such that X > (lubS) © 5 and a member Y of 7 such that
Y>(ub7)© 5.SinceX®YeSDT,

lub(SST) = XY > (lubS)©5)®((lubT)S5) =lubSDlub T Se,
a contradiction. Thus lub(S & 7) > lub S & lub 7. Together with part (I),
this shows that lub(S & 7) = lubS & lub 7.

Let B be a lower bound of S and let D be a lower bound of 7. For all X and Y,
if X e Sand Y € T, then by Theorem OF11(B) X ® Y > B&® D, S T is
bounded below, and by Theorem REAL.4(A) glb(S & T) exists. Then

Cub(C(S @ T)) = ©lub((°S) ® (°7))
= S(lub(®S) ® lub(®T)) = (Plub(®S)) & (Club(®T))
=glbS® gb T,

glb(SeT)

where the first equality in this string is by Theorem REAL.4(B), the second by
Theorem OF.10(F), the third by part (A), the fourth by Theorem OF.10(F), and
the last is by Theorem REAL.4(B). O

Remark REAL.29. The proof of Theorem REAL.31 consists of several cases; we
initially thought we might state it as a series of theorems, but finally decided on

the structure given here. To complete this proof, we need the following numerical

result, which is quite intuitive but oddly complex to prove.

Lemma REAL.30. Let x and y be irrational numbers such that x > 0 and y > 0.

Then r is a rational number such that 0 < r < x + y iff there exist rational numbers

sandtsuchthat0 <s<x,0<t<yandr=s+t

Proof. Suppose r is a rational number such that0 < » < x+y;then—y <r—y <x

sor—y <ux;sincey > 0, r —y < r. Therefore min{r,x} > r —y.
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Also, both r > 0 and x > 0, so min{r, x} > 0 and min{r,x} > max{r — y, 0}.
Choose s to be a rational number such that min{r,x} > s > max{r — y,0}, and
define t = r —s.

By definition, s > O and s < x. Since s < r, —s > —rsothatt = r—s > r—r = 0.
Also s > r —y implies that —s <y —r,sothatt = r—s <r+y—r =y, that is,
t < y. Therefore, r = s+t where 0 < s <xand 0 < < y.

Conversely, suppose there exist rational numbers s and ¢ such that 0 < s < x,

O<t<y,andr=s+t;then0<r <x+y. O

Theorem REAL.31 (Distributive property I). Let x and y be any real numbers,
and let H be any member of L. Then (x + y)H = xH & yH.

Proof. (Case 0: x = 0ory =0orH = 0.)If x = 0, then (x + y)H = yH =
0H & yH = xH @ yH. Similarly fory = 0. If H = O, then (x + y)H = (x + y)O =
O @ O = xH & yH. Here we have used Definition REAL.19(A)(1).

In the remainder of the proof we assume that x and y are nonzero, and H # O.
(Case 1: x and y are both rational numbers.) This is Theorem QX.11(A).

(Case 2: One of x or y is a rational number and the other is irrational, and
H > 0.) Without loss of generality we choose x to be the rational number s,
and y to be irrational. As usual we denote rational numbers by r, s, and ¢. By
Definition REAL.19(A)(3),

(s+y)H=1ub{rH|reQ and 0 <r < s+ y}
=lub{(s +HH |0 <t < y}.
We now apply Theorem QX.11(A), Theorem REAL.28(A), and Defini-
tion REAL.19(A)(3) to get
=lub{sH®tH |0 <t <y}
=sH®lub{rH |0 <r <y} =sH & yH.

(Case 3: x > 0 and y > O are irrational numbers, and H > O.) By
Definition REAL.19(A).3, (x + y)H = Iub{rH | 0 < r < x + y}. By
Lemma REAL.30,

{rH|0<r<x+y}={6+1)H|0<s<xand 0 <t <y},
and by Theorem QX.11(A) this is
{sSH®tH|0<s<xand 0 <t <y}
By Definition REAL.27(A), this is
{SH|O0<s<x}®{tH|0<t<y}.
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Thus by Theorem REAL.28(A),
(x+y)H=Wb{rH |0 <r <x+y}
=lub({sH |O<s<x}®{tH|0<t<y})
=lub({sH |0<s<x}D{tH |0 <t <y})
=xH ® yH.

(Case 4: x > 0 and y > O are irrational numbers, and H < O.) Applying Theo-
rem REAL.21(C), Case 3 above, Theorem REAL.21(C), and Theorem OF.10(F), in
that order, we have

®((x + »)H) = (x +y)(°H) = x(°H) & y(°H)
= O(H) ® ®OH) = °(H & yH).
By Theorem OF.10(A), (x + y)H = xH & yH.

Cases 3 and 4 combined say that for irrational numbers x > 0 and y > 0,
(x+y)H = xH @ yH for any H € L.

(Case 5: x < 0 and y < O are irrational numbers, and H is any member of L.)
The proof is Exercise REAL.8.

(Case 6: x and y are irrational numbers, one of which is greater than 0 and the

other less than 0, and H is any member of I.) Without loss of generality, we assume
thatx > Oand y < 0.

(Subcase 6A: x + y > 0.) Then —y > 0 so we may apply Cases 3 and 4 and
Theorem REAL.21(A) to get

xH=x+y—y)H=x+yH®(—y)H = (x+y)H® °(OH).

Adding yH to both sides we have, by Definition OF.4, xH & yH = (x + y)H.

(Subcase 6B: x + y < 0.) Then —x < 0 so we may apply Case 5 and
Theorem REAL.21(A) to get

yH = (—x+x+y)H = (—x)H® (x + y)H = ®(xH) ® (x + y)H.

Adding xH to both sides we have xH & yH = (x + y)H. |

Theorem REAL.32 (Distributive property II). Let x be any real number, and let
S and T be members of L. Then x(S ® T) = xS & xT.

Proof. By Theorem OF3, S @ T = U © (S & T); then applying this, Theo-
rem REAL.25, Theorem OF.6, Theorem REAL.25 again, and Theorem OF.3, we
have
xSOT) =x(UOSeT)=xU)0EaT))
=@UoOSeUoT)=xUoS)aex(UoT)
= xS P xT. O
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The above theorem may also be proved directly from Definition REAL.19; the
proof is Exercise REAL.9.

Theorem REAL.33. Let H > O be a member of 1., and let x and y be real

numbers.

(A) x <vyiffxH < yH iffy(°H) < x(°H).
B) x> 0iffxH > 0 iff x(°H) < O.
(C) x < 0iffxH < O iffx(°H) > O.

Proof. (B) Let s be a rational number such that 0 < s < x; by Theorem QX.13(A)
sH > O. Then sH € {rH | r < x} so that O < sH < lub{rH | r < x}; by
Definition REAL.19(A)(3) this is xH. If xH = lub{rH | r < x} > O, there must
be some member sH € {rH | r < x} such that sH > O; by Theorem QX.13
s > 0, and therefore x > s > 0. By Theorem REAL.21(C) x(°H) = ©(xH)
which is negative iff xH > O, by Theorem OF.10(B).

(A) x < yiff y —x > 0 and by part (B) above, this is true iff (y — x)H > O iff
(y — x)(®H) > O. By Theorem REAL.31 and Theorem REAL.21(A), (y — x)
H > O is equivalent to
0 < (y—x)H = (yH) & (—0)H) = (G’H) & (°(xH)) = (H) © (xH).

By Theorem OF.11(A), this is true iff (xH) < (yH). By the same theorem, it is
also true iff ©(yH) < ©(xH), and by Theorem REAL.21(C) this is y(°H) <
x(®H).

(C) x < 0iff —x > 0 which by part (B) is true iff (—x)H > O iff (—x)(®°H) < O.
By Theorem REAL.21(A) ©(xH) = (—x)H > O which by Theorem OF.10(B)
is true iff xH < O. By Theorem REAL.21(C) and Theorem OF.10(B) x(°H) =
S(xH) > 0. O

Corollary REAL.34. Let H be any member of 1L other than O, and let x and y be

real numbers.

(A) x # 0iffxH # O.
B) x=0iffxH = 0.
(C) x=yiffxH = yH.
Proof. (A) x # 0 iff either x > 0 (in which case, by Theorem REAL.33(B), xH >

0 and x(®H) < 0), or x < 0 (in which case xH < O and x(°H) > 0). In
either case, xH # O and x(°H) # O.
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Conversely, if xH # O or x(°H) # O, then x # 0 by Defini-
tion REAL.19(A)(1).
(B) If x = 0 by Definition REAL.19(A)(1) xH = O and x(®H) = O.If x # 0 by
part (A) xH # O.
©) x=yiffx—y = 0iff (x—y)H = xH © yH = O, by part (B). Since by
Theorem OF.2(A) L is a group under “®”, xH € yH = O iff xH = (xH &
yH) & yH = yH. |

Theorem REAL.35. Let P be a Euclidean/LUB plane, and let I. € P be an
ordered field with origin O and unit U. Define a mapping © from the set R of all
real numbers to 1L, as follows: for each real number x define ®(x) = xU. Then © is

an order-preserving isomorphism of R onto L. That is,

(A) For every A € L there exists a unique real number x such that xU = A; and ©
is a bijection of R onto L;

(B) foreveryxandyinR, x < yiff O(x) < O(y);

(C) foreveryxandyinR, O(x +y) = O(x) ® O(y), and

(D) foreveryxandyinR, O(x-y) = O(x) © O().

Proof. (B) is Theorem REAL.33(A). (C) is Theorem REAL.31. (D) is Theorem
REAL.26.

What remains to be proved is part (A). That @ is one-to-one (and hence x is
unique) is easy to see from part (B); for if x 7 y then either x < y or y < x so that
either @ (x) < B(y) or O(y) < O(x), hence O(y) # O(x).

To prove that ® is onto . we must show that for every A € L there exists a real
number x such that xU = A.

(Case 1: A > 0.)Define D = {r | r € Q and rU < A}; by Exercise REAL.3, D
is bounded above. Let x = lub D. We will prove that xU = A.

(D If xU < A, by Eudoxus’ theorem there exists a rational number » such that
xU < rU < A. By Theorem REAL.33(A) x < r, and by rU < A, x is not an
upper bound for D = {r | r € Q and rU < A}, contradicting the definition
of x.

(ID) If xU > A, by Eudoxus’ theorem there exists a rational number r such that
A < rU < xU.If s € Dthen sU < A < rU and hence s < r by
Theorem REAL.33(A). Thus r is an upper bound for D, which is smaller than

x, and x is not the least upper bound for D. Hence A = xU.
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(Case 2: A < 0.) By Case 1, there exists a real number x such that ®A = xU. By
Theorem REAL.21(A), (—x)U = ©(xU) = °©(PA) = A. 0

Corollary REAL.35.1. For any two points A and B of IL. which are distinct from O,

there exists a unique real number t such that tA = B.

Proof. By Theorem REAL.35(A) for all A and B in L\ {O}, there exist real numbers
r and s such that ¥tU = A and sU = B. By Theorem REAL23 U = (15U =
%(SU) = %B, SO

Lett = . ThentA = B.
To show uniqueness, suppose that u is any real number such that uA = B. Then
by Theorem REAL.21 (—u)A = ©(uA) = ©B. By Theorem REAL.31
(t—uwA =+ (—u)A=tA® (—u)A =B® ®°B = 0;
by Corollary REAL.34, t —u = 0 so that u = ¢. O

Remark REAL.36. (A) Eudoxus’ theorem (Theorem REAL.15) moves a well-
known property of the real numbers (that between any two real numbers, there
is a rational number) over to the line L. If Theorem REAL.35 had been proved
before Theorem REAL.15, the latter would have become a consequence of
Theorem REAL.33(A) and the fact that Eudoxus’ theorem holds in the real
numbers.

As it is, Theorem REAL.15 is needed to prove Theorem REAL.35, by
showing that the mapping ® is onto L.

(B) Theorem REAL.35 shows that IL. is isomorphic to the set R of real numbers, so
that these two sets cannot be distinguished algebraically, and can be identified.
Thus our axioms, even though they seem to have nothing to do with real
numbers, provide a plane in which the set of all real numbers can be embedded.

Because of this isomorphism it would be possible, when discussing points
on a line L, to use lowercase italic letters a, b, c, ... both for real numbers
and for points on the line, treating them all as real numbers. In the interest
of conceptual clarity in some circumstances, we will not do this, instead
maintaining for the time being the notational distinction between real numbers
and points, using lowercase letters for the former and capital letters for the
latter. We do, however, at this point abandon the symbols &, &, and © in favor

of the ordinary +, —, and “-” or juxtaposition, using the same symbols for
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operations on both points and real numbers. We will revert to the use of @,
O, or O only in cases where we need two symbols to distinguish between two

different operations.

The product of two points on a line is defined using dilations; the product of
a real number and a point on a line is defined differently. The following theorem
shows that the product of a real number and a point can also be expressed using a

dilation.

Theorem REAL.37. If U is the unit in L, T is any point of L, x is any real number,
and &, is a dilation of the plane P with fixed point O, then §,(U) = xU iff 5,(T) =
xT. That is, there is a single dilation 8, such that §,(T) = xT for every T € L.

Proof. Let §, and &7 be dilations with fixed point O such that §,(U) = xU and
dr(U) = T. Then by Exercise DLN.3 (commutativity of dilations)

§:(T) = 8:(87(V)) = 8r(5:(V)) = 6r(xU) =T OxU =xU O T,
and by Theorem REAL.25 this is xT.

Conversely, if §,(T) = xT, and 8;—1 is the dilation with fixed point O such that

§r—1(U) =T71,

8:(U) = 8:(87-1(T)) = 871 (8:(T))

=87 =T'0xT=xTO T},

which by Theorem REAL.25 is xU. O

Definition REAL.38. Let x be any real number. Define §, as the dilation on P with
fixed point O such that for all T € L, §,(T) = xT.

Remark REAL.39. In Theorem REAL.37 we established that for points A and
B on a given line through O, if x is a real number, there is a single dilation
8y (with fixed point O) such that both xA = §,(A) and xB = §,(B). This
establishes that the dilation 6, given by Definition REAL.38 is a “good” definition.
In Theorems REAL.40, REAL.41, and REAL.42 we extend this result to the entire
plane, showing that even if A and B are on different lines L, and L, through O,
XA = 6,(A) and xB = §,(B).

Theorem REAL.40. Let P be a Euclidean/LUB plane, and let O be a point (the
origin) on 'P. Suppose that 1Ly and 1L, are distinct lines which intersect at the point
O, their common origin, and that each has been built into an ordered field, with

units Uy and U,, respectively. Let p be the rotation with fixed point O such that
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p(Uy) € OU,, and let A € OU;y and B € bUz be two points such that p(A) = B.
Then for any rational number r = 2 > 0, p(rA) = rB and Or/f OrB

Proof. (I) We prove that for any natural number n, p(nA) = nB = np(A), so that
[0743 ~ bﬁ? This is trivially true for n = 1 because p(A) = B. Suppose we
have proved it for n. By Deﬁmtlon QX. l(C) (n+ DA = nA +A and (n+ 1)B =
nB + B. Then O(n + 1)A = O(nA +A) and O(n + 1)B = O(nB + B) By
Corollary OF.18, O(nA + A) O(nB + B) smce OnA OnB and OA ~ OB.
Then [O(nB + Bi >~ EO(nA + A) ~ Op(nA + A), and since both p(nA + A)
and nB + B are members of jO—UZ, p(nA + A) = nB + B by Property R.4 of
Definition NEUT.2. This proves (I) by induction.

(II) Next we show from p(A) = B, that p(%A) = %B. For if p(rllA) #+ %B, by
Theorem ORD.5 (Trichotomy) either p( %A) < %B or p(%A) > %B.
Assume that p(rllA) < %B. Claim: for every natural number m, p(+A) <

“'B. This is true by assumption for m = 1. Assume we have proved it for
m. Applying (I) to %A and using Theorem OF.11(C) and our assumption that
p(3A) < 1B,

p(ZELA) = p((m + 1)14) = (m + Dp(LA) < (m + 1)1B = 2tip.
This proves the claim. The claim holds, in particular for m = n, so that p(A) =
p(3A) < =B = B, contradicting our original assumption that p(A) =

By similar methods, a contradlctlon follows also from the other alternative.
Therefore p(nA) 1B and Op( ~A) ~ 0'B

(D) It follows from (I) and (IT) above, that if p(A) = B, for any rational number

r=%>0,p(rA)=rBand[07r/f§[07rB;. O

Theorem REAL.41. Assume the hypotheses of Theorem REAL.20. As in that
theorem let p be the rotatlon with fixed point O such that p(Uy) € Wz, and let
A € OU1 and B € OUz be such that p(A) B. Then for any real number x,
p(xA) = xB, so that OxA Op(xAi 0xB

Proof. (Case 1: x > 0.) We consider only irrational x, since for rational x the result
is already proved by Theorem REAL.40. Let
E={rA|reQand 0 <r <x}, and
E={rB|lreQand 0 <r <ux}.
By Definition REAL.19(A)(3), xA = 1ub& and xB = Iubé&,. By Theo-
rem REAL.40, for every rational » > 0, p(rA) = rB, and therefore p(&;) = &,.
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Suppose Y is any upper bound for p(€;) = &, that is, for every rational r
with 0 < r < x, Y > p(rA) > O. Now p and p~! are isometries, so by
Theorem NEUT.15, each is a belineation; hence by Theorem ORD.6, p~!(Y) >
0 ' (p(rA)) = rA > O. It follows that p~' (Y) is an upper bound for & and therefore
p~'(Y) > lub &;. By definition of least upper bound, p~'(lub &,) > lub &,.

By a similar argument, if X is an upper bound for &;, p(X) is an upper bound for
&, and thus p(X) > lub &, hence p(lub &) > lub &;.

It follows that p(lub £;) = lub &, that is, p(xA) = xB.

(Case 2: x < 0.) Then —x > 0 and by Case 1, p((—x)A) = (—x)B. By
Theorem REAL.21(A) this is p(—xA) = —xB. By Theorem OF.10(A), —(xA) =
Ro(xA) and —(xB) = R (xB). Because rotations commute, we have Ro(p(xA)) =
P(Ro(xA)) = p(—(xA)) = —xB = Ro(xB), and applying R to both sides, we
have p(xA) = xB. Since p is an isometry, %)(xA§ ~ EO(xBi. O

Theorem REAL.42. Let P be a Euclidean/LUB plane, and let O be a point (the
origin) on 'P. Let A and B be points of P such that A, B, and O are noncollinear, and
suppose that a =1L, and (O_)B = 1L, have been built into ordered fields with units
U, and U,, respectively. Suppose further that 6, is the dilation of Definition REAL.38
such that for all T € Ly, 6,(T) = xT. Then 6,(A) = xA iff §,(B) = xB.

Proof. By Theorem REAL.37, if §,(A) = xA then §,(U;) = xU,. Let p be
the rotation about O such that p(U;) € %;, and let C = p(U;). Then by
Theorem REAL.41 and the commutativity of dilations and rotations (Theorem
DLN.7(E)),
xC = p(xUy) = p(8.(U)) = 8:(p(U1)) = 8.(C)

and again by Theorem REAL.37, for every B € L, §,(B) = xB. Thus if §,(A) = xA
then §,(B) = xB. The converse follows from reversing the roles of A and B. This
establishes that multiplication by a real number x on the plane is implemented by a

single dilation §, for all points on the plane. O

Remark REAL.43. Finally, we make an important connection between free seg-
ments and real numbers. Let P be a Euclidean/LUB plane, and let L be a line in
P which has been built into an ordered field and identified with R, the set of real
numbers. If O is the origin and U the unit of L, and if A = aU and B = bU are
points of I such that @ and b are both positive, then the following are true.

(A) [0@@U)] + [0(U)] = [0(aU + bU)] = [0((a + b)U)] by Theorem OF.17
and Theorem REAL.31.
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B) [0(al)]- [0(GU)] = [0(aU)(bU))] = [0((ab)U)] by Definition SIM.7 and
Theorems REAL.23 andrREALﬂ.ZS. . 3 . ﬂ

() By part (B) [0(al)] - [0(1U)] = [0(a})U] = [0U] so that [0(11)] =
[0aU) ] Then by Definition SIM.12,

0@ _ (6ay)- (00 0)) = [0(@h )] = (0D,
0GU)]

18.4 Coordinatizing the plane

So far in this chapter we have shown how to assign a real number to each point on
a line in a Euclidean/LUB plane; this could be called coordinatizing the line. Now
we go one step farther: we coordinatize the Euclidean plane, assigning to each point
on it a pair (a, b) of numbers. It would be possible to coordinatize Euclidean space,
assigning to each point a triple (a, b, ¢) of real numbers, but we do not pursue this.
Our treatment is necessarily somewhat sketchy, and we rely on the reader’s prior
familiarity with vector spaces, in particular with the vector space consisting of
ordered pairs (a, b) of real numbers—that is, the coordinate plane. A summary of
these matters is found in Chapter 1, Section 1.5; the reader who desires more detail
may wish to consult the supplementary material online which may be accessed from

the home page for this book at www.springer.com.

Here we shall use the acronym “RR” to suggest the coordinate plane, consisting
of the Cartesian product of the real line with itself. We also remind the reader that
we have abandoned the symbols &, ©, and © in favor of the ordinary 4, —, and “-”
or juxtaposition, and will use the same symbols for operations on both points and

real numbers.

Definition RR.1. (A) For each A € P \ {0}, define 74 to be the translation of P
such that 74(O) = A. Theorem ISM.5 says that such a translation exists and is
unique.

(B) Define tp = 1, the identity.

(C) For any A and B in P, define

A+ B = (w5 0 14)(0) = t3(14(0)) = 15(A).
The operation + is called addition and A + B is the sum of A and B.
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Remark RR.2. (A) The operation 4 from Definition RR.1 applied to points on a
line LL through O is identical to the operation & from Definition OF.1(A) and
(C). It is quite easy to see (from Theorem ISM.8(A)) that the Euclidean/LUB
plane P is an abelian group under the operation 4.

(B) Itis also easy to see, from Exercise ISM.2, that if O, A, and B are noncollinear
points, then A + B is the fourth corner of the parallelogram whose other corners
are O, A, and B.

(C) The translation 74 not only maps O to A but also maps B to A + B, and
74—p(B) = (A—B) + B = A s0 t4_g maps B to A.

(D) If A and B are any two points, then t_g(B) = O and r_B(A) =A- B By
Theorem NEUT.15(5) (since 7_p is an isometry) r_B(AB) (A B)O and
henceﬁ ~ EO(T—Bi

(E) Since the line L = OA is built into an ordered field using the machinery of
Chapter 14, by Theorem OF. lO(A) for eachA eP,—-A= RO(A) Hence for
any 4, RO(OA) ORo(A) = O(=A). Tt follows that AB =~ O(A — B) =
O(B — A).

Definition RR.3. For every point A € P, and every real number x, define xA as in
Definition REAL.19, where the line (O_A> has been built into an ordered field. xA is

called the scalar product of x and A, and the number x is called a scalar.

Theorem RR.4. (A) For every A € P\ {0}, OA = {xA € P | x € R}. That is,
every line through the origin is the set of all scalar multiples of any point in
that line which is distinct from O.

Moreover, if A and B are any points in P and x and y are any real numbers,

B) x(yA) = (xy)A (scalar multiplication is associative)

(C) x(A + B) = xA + xB (scalar multiplication is distributive with respect to
addition of points)

(D) (x+y)A = xA+yA (scalar multiplication is distributive with respect to addition
of scalars)

(E) 1A = A, and

F) xA=0iffx=00rA = 0.

Proof. The proof is Exercise RR.2. O
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Remark RR.5. The above result, together with our previous observation that P

2

forms an abelian group under “+”, shows that P forms a vector space over the
field R of real numbers, when equipped with the addition and scalar multiplication

operations specified in Definitions RR.1 and RR.3.

Theorem RR.6. Let P be a Euclidean/LUB plane, and let O be its origin. Let 1,
and 1L, be lines in P such that Ly N 1L, = {O} and Ly L L,. Let Uy € L and
U, € L, be points (distinct from O) chosen so that p(U) = U,, where ¢ is the
angle reflection for ZU,0U,.!

Using the machinery of Chapter 14 (OF) and the earlier part of this chapter
(REAL), build each of the lines 1Ly and 1L, into an ordered field which is isomorphic
to R, the set of all real numbers, with Uy and U,, respectively, as their units, so that

U, and U, correspond to the real number 1 under their respective isomorphisms.

(A) For every A € P, there exist unique real numbers a and b such that A =
aU, + bU,.

B) aUy +bU, =0 iffa=b=0.

©) IfA € Ly UL, so that both a # 0 and b # O, EO(aUli ~ %bUz)Aj and
0(bUs) = (al))A.

Proof. First, note that the requirement that ¢(U;) = U, is not needed for the
algebraic proof (nor, for that matter, is the requirement that I; L L,). But this
is geometry, and it seems only reasonable that a reflection carrying L, to L, should
carry a point one unit from the origin into another such point, thus establishing the
same scale on both lines. Moreover, ¢(U;) = U, implies that [071] ~ 5072, as
required for the development of complex numbers. For more detail, the reader may
wish to consult the Supplemental materials which may be accessed from the home
page for this book at www.springer.com.

If A is any point on P, by Axiom PS there exists a unique line M, containing the
point A such that either M; = IL; (in case A € IL;) or M || L;; and there exists a
unique line M, such that either M, = I, (in case A € IL;) or M}, || L,.

By Exercise 1.1, M intersects LL, in exactly one point, which we shall call A,,
and M, intersects IL; in exactly one point which we call A;. By Theorem REAL.35,
there exists a unique real number a such that Ay = aU; and a unique real number
b such that A, = bU,. Since A uniquely determines M; and M, and these lines

'The existence of ¢ is guaranteed by Property R.5 of Definition NEUT.2 and Axiom REF.
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uniquely determine the points A and A,, which in turn uniquely determine a and b,
a and b are uniquely determined by A.
Moreover, A € L, iff A, = O iff b = 0, in which case
A=A +0=A+A;, =al) + bUy;
A el,iff Ay = Oiff a = 0, in which case
A=0+A,=A+A;, =al; + bUy;
andA = OiffA e L) NL, iffa = b = 0, and again in this case
A=0+4 0 =alU, + bU,.
If A € P\ (L; UL,), by Theorem RR.4, aU; + bU, is the fourth corner of
the parallelogram of which O, aU,, bU, are the other three corners. Since M

contains the point A, and M, contains the point A; and are parallel to L; and

IL,, respectively, they are the same, respectively, as the sides (aU,)(aU; + bU,)
and (aUy)(aU; + bU,) of this parallelogram. Since both M; and M, contain A,
A = aU; + bU,. This completes the proof of parts (A) and (B).

(C) The quadrilateral 0O(aU;)A(bU,) is a parallelogram because M | L; and
M, || L,. The result follows from Theorem EUC.12(A). O

Definition RR.7. (A) In Theorem RR.6, the two units U; and U,, together with
their lines IL; and IL, will be referred to as a coordinatization of P. IL; and L,
are the axes of this coordinatization, and O is its origin.

(B) For every A € P, by Theorem RR.6(A) there exist unique real numbers a and
b such that A = aU; + bU,. For each such A € P, define A(A) = A(aU; +
bU,) = (a, b). This mapping is called the coordinatization map belonging to
the coordinatization (U;, U;) (cf part (A)).

Remark RR.8. It is a fairly routine matter to verify that the mapping A defined just
above is a (vector space) isomorphism of P onto

R xR = {(a, b) | a and b are both members of R},
that is, onto R?, the Cartesian product of R and R (cf Chapter 1 Section 1.3).

Definition RR.9. For any point (a,b) € R2, we will refer to a as the first
coordinate of (a,b), and to b as its second coordinate. The point (0, 0) is the

origin.

Remark RR.10. It is customary, when visualizing points of the plane, to show the
first coordinate on the horizontal axis (commonly called the x-axis), with positive
numbers to the right of the origin; and the second coordinate on the vertical

axis (commonly called the y-axis), with positive numbers above the origin. This
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visualization yields what is termed a right-handed system. Then the rotation p of
‘P such that p(OU,) = OUs, is counterclockwise.

At this point, we have established the identity of the Euclidean/LUB plane with
the well-known coordinate plane, and we are free to invoke notions such as slope
of a line and generally to indulge in what is called “analytic” geometry. Linear
transformations (as well as affine mappings) on the plane may be characterized
using matrices, and determinants may be used to study their properties. Several
interesting results relating affine mappings, collineations, and isometries are set
forth in the Supplementary materials, which may be accessed from the home page

for this book at www.springer.com.

18.5 Exercises for real numbers and the coordinate plane

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise REAL.1*. Let A, B, C, and D be points on the Euclidean plane P such

that A # B and C # D. Then there exists a natural number n such that [Az# cD].

Note: in the following exercises REAL.2 through REAL.9, P will denote a
Euclidean/LUB plane and L will be a line in P having origin O and unit U.

Exercise REAL.2*. If T and V are positive members of L, there exists a natural

number z such that %T < V.

Exercise REAL.3*. If T is a positive member of L, {s | s € Q and sU < T} is

bounded above.

Exercise REAL.4*. Prove Lemma REAL.24: if £ is a subset of L. which is
bounded above, and T > O is a member of L, then (lub&) © T = lub(€ © 7).

Exercise REAL.5*. Prove Lemma REAL.24: let S be a subset of L. which is
bounded above, and suppose A is an upper bound for S. Then A = lub S iff the
following property holds: for every € > O in L, there exists x € L such that
x>ABe.

Exercise REAL.6*. Complete the proof of Case 4 of Theorem REAL.23: let S >

O be amember of IL. Then if x < 0 and y > 0 are irrational numbers, x(yS) = (xy)S.
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Exercise REAL.7*. Complete the proof of Theorem REAL.25, Case 3:let S < O
and 7 > O be members of LL. If x is an irrational number, then (xS) © T = x(SOT).

Exercise REAL.8*. Complete the proof of Case 5 of Theorem REAL.31: letx < 0
and y < 0 be irrational numbers, and let H be any member of L; then (x + y)H =
xH @ yH.

Exercise REAL.9 (Alternative proof of Theorem REAL.32)*. Let x be any real
number, and let S and 7 be members of IL. Prove, using Definition REAL.19 and
other theorems from this chapter and previous ones, including Theorem REAL.21,
that x(S® T) = xS @ xT.

Exercise RR.1*. Complete the computations necessary to prove Remark RR.2(A)
from Theorem ISM.8(A), that is, show that P is an abelian group under the

operation +.

Exercise RR.2*. Prove Theorem RR.4: (A) For every A € P \ {0}, OA = {xA €
P | x € R}. That is, every line through the origin is the set of all scalar multiples of
any point in that line which is distinct from O.

Moreover, if A and B are any points in P and x and y are any real numbers, (B)
x(YA) = (xy)A, (C) x(A+B) = xA+xB, (D) (x+y)A =xA +yA, (E) 1A = A, (F)
xA = O iff x = 0 or A = O (or both).



Chapter 19
Belineations on a Euclidean/LUB Plane (AA)

Acronym: AA
Dependencies: all prior Chapters I through 18
New Axioms: none

New Terms Defined: set of midpoints generated by a segment

Abstract: This brief chapter shows that on a Euclidean/LLUB plane, any non-identity
belineation which has more than one fixed point and is not the identity, is an axial
affinity; it concludes with a classification of belineations. To prove the main result
of this chapter we need Axiom LUB; this explains its placement after the chapter on

real numbers.

19.1 Belineations with two fixed points are axial affinities

Theorem AA.1. Let P be a Euclidean/LUB plane, L be an ordered field on P with

origin O and unit U. If A and B are members of I such that A < B, for every

integer nlet A, = A + n(B—A), sothat Ay = A, A = B, A_; — (B—A),
Ay =A+2(B—A), A = A—2(B—A), etc.

Let ] ={A, | nisaninteger} = {...,A_»,A_1,Ap,A1,As,...}.

(1) If m and n are distinct integers, m < n iff A,, < Ap.

(2) Ifnis any integer, thenX e m zﬁ”An 1 <X <A,
(3) For every integer n, An lA NAA A,,_H {A }

(4) For all integers m and n, A Am+1 AnA,H_]
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(5) For all integers m and n such that m + 1 < n, 1[4mAm+3 ﬂ;lnA,H_i = 0.
(6) Every member of J is the midpoint of a segment whose endpoints belong to J.
In particular, A, is the midpoint of the segment E\n_lA,H_f.

(7) For every natural number n,

n E

U%k—lAk A()A and UA k-HA—Iz 1[4014_,,].
k=1

Proof. (1) A, <A, iffA+m(B—A) <A+nB—-A)iff m <n.
(2) Follows immediately from Theorem ORD.7.
(3) Follows immediately from the observation that A, is a member of both
segments, and if X € m and Y € m then X <A, <Y.
(4) For all integers n,
Apy1 —A,=A+(n+1)(B—A)—(A+n(B—A))
=A+(n+1)B-A) - A—n(B A) = B-A4,
so that by Theorem OF.15(B), A AL = AB~AA, L.
O Ifxe AmAm+1 and Y € AnAn-i-la then X < A,,4+1 <A, <Y, showing that these
two segments are disjoint.
(6) By Theorem QX.18,
YA +Angn) = 5+ (1= DB =A) + A+ (1 + DB~ A)
=3QA+ ((n—1) + (n+ 1) (B—-A4))
= 1(2A + 2n(B — A))
=1Q2A+nB-A)=A+nB—-A)=A
is the midpoint of the segment m .
(7) We use induction on n. Both equalities are trivially true for n = 1. Assume that

the equalities are true for any natural number n. Then
n+1 3 noc

U ArmiAr = U Ay lAk UAnAn+1

3

k=
A¢A, UA An+l AoAny1,

and
ntle E| L=
UA = U A-@-nA- FUA A (n-H)
k=1 k=1
= ;4014—; UA—nA—(n-H; = AOA—(n-H;-
Hence statement (7) holds for every natural number 7. O

Theorem AA.2. Let L be an ordered field on a Euclidean/LUB plane P with origin
O and unit U, and suppose A and B are members of L such that A < B. Let

= {A + 5 (B —A) | mis an integer and n is a natural numbery.
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As in Theorem AA.1, for every integer nlet A, = A+ n(B—A), andlet ] = {A, | n
is an integer}. Then E has the following properties:

1 JCE

(2) Every member of E is the midpoint of a segment whose endpoints belong to E.

) If Ty and T, are members of E such that Ty < T, then the midpoint of T1 T2
belongs to E.

(4) A is the midpoint of (A + 5 (B—A))A— 5 (B— A)i and thus E is symmetric
with respect to A. Moreover, Ra(A + i(B —A)) = A— 5 (B—A), where R4

is the point reflection about A.

Proof. (1) For every integern, A, = A + 55(B —A)

(2) Let m be any integer and let n be any natural number. Since

A+2B-A4)=31A+2ZB-A)+A+ 2L (B-2)),
by Theorem QX 18 A+ ﬂ(B —A) is the midpoint of

m+1 N
5 (B—A)).

(3) There exist integers m; and m, and there exist natural numbers n; and n; such
that 7} = A + 5 (B—A) and T, = A + 55 (B — A). By Theorem QX.18 the
midpoint of 7"1 TS is

= A+ 5-(B—A) +A+ 52 (B—A) = A+ MTERE (B A).
Since m;2™ +m,2™ is an integer and n| +-n, is a natural number, H is a member
of E.

(4) By Theorem QX.18 the midpoint of
Atz 5 (B—A)A+ FH(B— )
is 1A+ 2Z(B—-A) +A—2(B—-A) =A Let AT = A+ Z(B—A) and
A~ = A — Z.(B — A). Then by Definition NEUT.3(C)
B2 43
AAT >~ AA” and (A7)-A-AT.

o

By Theorem ROT3 the point reflection Ry maps A% to a point Y such

that AA+ ~ AY and (AT)-A-Y. Thus Y € AA” and by Property R.4 of
Definition NEUT.2, Y = A~. Therefore Ro(A™T) = A~ as required. O

Definition AA.3. The set E of Theorem AA.2 is the set of midpoints generated
by AB.

Theorem AA.4. Let L be an ordered field on a Euclidean/LUB plane P with origin
O and unit U, and suppose A and B are members of 1L such that A < B. As in
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Theorem AA.1, for every integer nlet A, = A+ n(B—A), andlet ] = {A, | nis
an integer}. If ¢ is a belineation of P such that A and B are fixed points of ¢, then
every member of J is a fixed point of ¢.

Proof. We use mathematical induction. Let Ty = {A_;, A, A}, and for every
natural number n > 11let T, = {A_,,A,} U T,_;. Since Ay = Aand Ay = B
are fixed points of ¢, and since by Theorem AA.1(6), Ag is the midpoint of 1[4_71] ,
by Corollary EUC.17.3, A_, is a fixed point, hence every member of T is a fixed
point of ¢.

Assume that we have shown that every member of T,_; is a fixed point of ¢.
Then again by Theorem AA.1(6), A_(,—1) is the midpoint of m and A,— is
the midpoint of AnAn_z, so that by Corollary EUC.17.3, A_, and A,, are both fixed
points, and every member of T, is a fixed point of ¢. Since J is the union of all the

sets T,, every member of J is a fixed point of ¢. O

Theorem AA.5. Let L be an ordered field on a Euclidean/LUB plane P with origin
O and unit U. Let A < B be fixed points of a belineation ¢ of P. As in Theorem AA.2
let E = {A + 5 (B — A) | m is an integer and n is a natural number}. Then every

member of E is aﬁxed point of ¢.

Proof. For every natural number n let
]Fn = {A + 2n n—T

By Theorem AA.4 every member of [ is a fixed point of ¢. Assume now that we

(B—A) | mis an integer}.

have proved that every member of [, is a fixed point of ¢. By Corollary EUC.17.2,
the midpoint of

EA + 52 (B—A)(A + ZH (B —A);

is a fixed point of ¢. By Theorem QX.18 that midpoint is A + 2”;‘ (B—A), soall

points of this form are fixed points.

Now F,+1 = {A+ 2% (B—A) | k € Z}, (Zis the set of all integers) where k is either
even or odd, that is, for some integer m, k = 2m or k = 2m + 1. If k = 2m, then
A+31(B—A) = A+ 52 (B—A) € F,. Thus F, 4| = 2L (B—A) | m € Z}.

We know already that every member of F, is a ﬁxed point, so every member of

F,+1 is a fixed point of ¢. By mathematical induction, this shows that for all natural

numbers n, every member of IF,, is a fixed point. Since E = | J F,, every member
n€N
of [E is a fixed point of ¢. O
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Theorem AA.6. Let 1L be an ordered field on a Euclidean/LUB plane P with origin
O and unit U, and suppose A and B are members of L such that A < B. As in
Theorem AA.1, for every integer n let A, = A + n(B—A). Then | An 1A, = ﬁ

n€Z

<> . E
Proof. LetT € AB. By Theorem IB.5 either T € AB or T-A-B.

D IfT e A%)B either T = A or by Theorem ORD.7, T > A. In this latter case, both
T—A > Oand B—A > O so by the Archimedean property Theorem REAL.9,
there exists a natural number n such that n(B — A) > T — A. Thus Ao =A<

T <A+ nB—-A) =A,, and by Theorem AA.1(7) T € 1[40An = U Ak 1Ak
=1

Therefore, for some integer k, T’ € m .

(II) If T-A-B by Theorem ORD.6 T < A. Then bothA — 7 > O and B— A >
O so by the Archimedean property, there exists a natural number n such that
n(B—A)>A—T,or—n(B—A) <T—A. Then

A)=A>T>A—nB—A) =A_,,
and by Theorem AA.1(7)
T edoAs, = ) A s Ay,
k=

Then for some natural number k, T € Z_k_HA_Z, andif welet/ = —k + 1, we
have T € 1[41A1_1] = 1[41_1A]l, where [ is an integer. Therefore
E 3 <>
J A,—1A, = AB. O
nez

Theorem AA.7. Let P be a Euclidean/LUB plane, 1L be an ordered field on P with
origin O and unit U. As in Theorem AA.1, for every integer k let A, = A+ k(B—A),
and as in Theorem AA.2 let E = {A + 53 (B—A) | m is an integer and n is a natural
number}. Let Ty < T, be members of L. Then there exist members Vi, V,, and V5 of
the set E such that Vi < T) <V, < T, < Vi.

Proof. (1) Existence of V| and V3. By Theorem AA.6, for some integers k and /
withk <1, T, € A, 1A and T> € A_1Ay. Let V; = Az and V3 = Ap1. Then
Vi =Ax—2 < Ty < T, <Aj4; = V3 and both V| and V3 belong to E.

(IT) Existence of V.

(Case 1: there is no integer k such that both T, and Tz belong to Ak 1Ak )

Then for some integers k and [, T € Ak 1Ak, T2 e Al lAl, and k < [ If
k + 1 = [, neither T} nor T, can belong to Ak_lAk ﬂA,_lAl because then both
would belong to the same segment, eitherm or m Let V, = V;. Then
T, <V, <T,,and V, € E.
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(Case 2: there exists an integer k such that both 7' and 75 belong to m )
Then T, — T} < Ay — Aj—1 = B — A. By Theorem REAL.9 (Archimedean
property) choose n so that 2"(T, — Ty) > n(T, — T1) > B — A, so that

0<5B—A) <T,—T) <Ay—A—1 =B—A.

Then Aj—1 + 5 (B—A) < Arand 5. (B—A) < T, — T.

(Subcase A: T, = Ay—1.) Then

T\ <Ti+5B-A) <Ti+(T=T) =T

Choose V, = Ay—1 + 2—1n(B —A).ThenV, e Eand T < V, < T».

(Subcase B: T, = A;.) Choose V, = Ay — zi”(B —A), so that V, < A;. Then

T,—Vo=T,—(Th— 5 (B—A) = 5B—-A) <T,— T,

so—V, < =Ty, thatis Vo, > T;. Then V, e Eand Ty < V, < T>.

(Subcase C: T} > Ay—; and T, < Ay.) Then since

A1 + i—Z(B—A) =A-1+(B—A) =A> T,

there exists a smallest natural number m such that Ay—; + 5 (B —A) > T;.
Choose Vy = Aj—1 + 5: (B — A), so that V, > T.

Claim: V, < T5. Otherwise, V, > T5, and

At + "5H (B~ A) = (Amr + 5:(B—A)) — 5:(B—A)
=V,— 5%(B—A)
>T,—5B-A)>T,—(I,—T) =T
(since %(B — A) < T, — Ty). Thus m is not the smallest integer such that
Ag—1 + 5 (B —A) > Ty, acontradiction. Thus V, e Eand Ty < Vo < Tp. O
Theorem AA.8. Let P be a Euclidean/LUB plane and let ¢ be a belineation of P
such that ¢ has distinct fixed points A and B and ¢ is not the identity of P. Then ¢

<>
is an axial affinity of P with axis AB.

Proof. Using Chapters 14 (ordered fields) and 18 (real numbers), build ;ﬁ?) =1L
into an ordered field where A < B. Assume there exists a point X on L. which
is not a fixed point of ¢. Then X # ¢(X), and either X < ¢(X) or p(X) < X.
In the first case, use Theorem AA.7 to choose V| and V,, both fixed points for
@, so that Vi < X < V, < ¢(X); in the second case, choose V; and V, so that
¢(X) < V5, < X < V;. By Theorem ORD.6, in either case we have V|-X-V,—¢(X).
Since ¢ is a belineation (it preserves betweenness), ¢(V)-¢(X)—¢(V>); since
Vi and V, are fixed points for ¢, this becomes V,—¢(X)-V,. By the trichotomy
property for betweenness (Definition IB.1 Property B.2), this is a contradiction to
Vi-X-V—p(X).
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Therefore every point of L is a fixed point for ¢, and by Definition CAP.25 ¢ is

an axial affinity with axis L. O

Theorem AA.9. Let P be a Euclidean/LUB plane and let ¢ be a belineation of P
which has three noncollinear fixed points. Then ¢ = 1 (the identity mapping of P).

Proof. Let A, B, and C be noncollinear fixed points of ¢. By Theorem AA.8 every
point on AB is a fixed point of ¢. Since by Theorem COBE.2 every belineation is a
collineation, we may apply Exercise CAP.3 to get ¢ = 1. O

Theorem AA.10. Let P be a Euclidean/LUB plane. If @ and B are belineations
of P and if A, B, and C are noncollinear points on P such that a(A) = B(A),
a(B) = B(B), and «(C) = B(C), then ¢ = B.

Proof. By Theorem COBE.3 B~! is a belineation; therefore @ o 7! is a belineation.
Moreover (o o B71)(A) = A, (@ o B~1)(B) = B, and (¢ o B~1)(C) = C. By
Theorem AA.9 o o B! =1, but that means o = . |

Theorems AA.9 and AA.10 are generalizations (to all belineations) of Theo-
rems NEUT.24 and NEUT.25 (Chapter 8), which are valid for isometries in a neutral

plane.

Theorem AA.11. Let P be a Euclidean/LUB plane and let ¢ be a nonidentity
collineation of P which has distinct fixed points A and B. Then ¢ is an axial affinity

iff ¢ is a belineation.

Proof. If ¢ is an axial affinity, by Theorem AX.4 ¢ is a belineation. It is interesting
to note (but not needed for the proof) that by Theorem CAP.26, both A and B are
members of the axis of ¢. Conversely, if ¢ is a belineation, by Theorem AA.8, ¢ is

an axial affinity having M = AB as its axis. O

19.2 Summaries for belineations

Remark AA.12. We have shown a number of relationships between the princi-
pal types of belineations, namely isometries, axial affinities, dilations, and their
subcategories, and have explored their characteristics. These results are scattered
throughout the book, mainly in Chapters 3 (CAP), 8§ (NEUT), 10 (ROT), 12 (ISM),

and 16 (AX). To make more of this information conveniently available in one place,
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we display it here in a way that we hope is helpful. The following theorems are

needed to justify the diagram below.

Theorem AA.13. A nonidentity belineation a on a Euclidean/LUB plane P is a

line reflection iff it is a stretch and an isometry.

Proof. Suppose « is a line reflection with axis M; by Remark NEUT.1.5 it is a
belineation; if O ¢ M, by Theorem NEUT.22 m is a fixed line intersecting
M, so by Definition AX.0, « is a stretch. By Definition NEUT.3 it is an isometry.
Conversely, suppose « is a stretch and an isometry; since it is not the identity,
by Theorem ISM.17 it must be either a rotation, translation, glide reflection, or a
line reflection. The first three of these have either one or no fixed point; since « is a
stretch, it has a whole line of fixed points, so these options are ruled out. The only

choice left is a line reflection. O

Theorem AA.14. A nonidentity belineation a on a Euclidean/LUB plane P is a
point reflection about a point O iff it is a rotation about O and a dilation with fixed

point O.

Proof. Let o be a point reflection about O. By Definition ROT.1, « is a rotation
about O. By Theorem ISM.3(C) « is a dilation with fixed point O.

Conversely, suppose « is a dilation and a rotation (both with fixed point O).
Since « is a dilation, by Theorem CAP.18 every line containing O is a fixed line. By
Theorem ROT.19, a rotation with a fixed line is a point reflection. Therefore « is a

point reflection. O

Remark AA.15 (Justification for Figure 19.1). Throughout we assume that all

mappings are nonidentity belineations of a Euclidean/LUB plane.
(A) By Theorem ISM.17, an isometry is one of the following types:

(1) a line reflection: by Definition NEUT.1 this is an axial affinity, having a
line M of fixed points.

(2) arotation: by Theorem ROT.2 this has exactly one fixed point.

(3) a translation or a glide reflection: these have no fixed point, by Defini-
tion CAP.6 and Theorem ISM.13.

(B) By Definition CAP.17 and Theorem CAP.18, a dilation has exactly one fixed

point.
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(C) By Definition CAP.25, an axial affinity has a line M (its axis) of fixed points;
by Theorem AX.3 this is either a stretch or a shear.

(D) By Theorem AA.13 the set of all line reflections is the intersection of the set
of all stretches and the set of all isometries.

(E) By Theorem AA.14 the set of all point reflections about a point O is the
intersection of the set of rotations about O and the set of dilations with fixed

point O.

Figure 19.1 illustrates these relationships with a Venn diagram; the bold boxes
represent the sets of isometries, axial affinities, and dilations. Definitions NEUT.1
and NEUT.3, Theorem AX.4, and Theorem DLN.8 show that all these mappings are

belineations.

Nonidentity belineations

no fixed points one fixed point line of fixed points

! !
| |
| |

e g
| |

I I
| |
I e
| |
I I
| |
! ! stretches shears
. rotations
translations .
line
and fecti
. . i reflections
glide reflections point
reflections
isometries
axial affinities
dilations

Fig. 19.1 Showing relationships between different types of nonidentity belineation.

Remark AA.16 (Summaries of actions of belineations). In this remark, £, N,
and M will denote lines, and o a nonidentity belineation on a Euclidean/LLUB
plane P.
If « is a translation:
L is fixed iff £ is parallel to a fixed line (Theorem CAP.8);
L is fixed iff for some Q € P, L = Q(oz—)(Q) (Theorem CAP.8); and
if £ is not fixed, then «(L) || £ (Definition CAP.6).
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If « is a glide reflection:
o = R, o T where 7 is a translation and L is a fixed line for 7
(Definition ISM.12);
L is the only fixed line (Theorem ISM.13);
if M || £, then a(M) || £ (Exercise ISM.8(A)); and
if M L L, then (M) L L (Exercise ISM.8(B)).
If « is a rotation, not a point reflection:
there is exactly one fixed point O (Theorem ROT.2);
thus if O € L then O € a(L); and
there are no fixed lines (contrapositive of Theorem ROT.19(A)).
If « is a dilation:
there is exactly one fixed point O (Theorem CAP.18(B));
if O € L, then « (L) || £ (Definition CAP.17); and
O € L iff L is a fixed line (Theorem CAP.20(A));
L is fixed iff for some Q € P\ {0}, L = Q<a—>(Q) (Theorem CAP.20(B)).
If « is a point reflection, (so is a rotation and a dilation):
its action is the same as for dilations, just above.
If « is a stretch (an axial affinity):
there is a line M consisting of fixed points (Definition CAP.25);
there is a fixed line £ which intersects M (Definition AX.0);
aline NV # M is fixed iff N || Lor N = L
(Theorem CAP.26(A) and (D));
aline N' # M is fixed iff for some Q ¢ M, N = m
(Exercise AX.2); and
if £ || M then (L) || «(M) = M (Theorem CAP.3);
If « is a line reflection (so is an isometry, an axial affinity, and a stretch):
its action is the same as for stretches, just above; and
aline N # M is a fixed line iff N' L. M (Theorem NEUT.44).
If « is a shear (an axial affinity):
there is a line M consisting of fixed points (Definition CAP.25);
a line is a fixed line iff it is parallel (or equal) to M (Definition AX.0);

and
aline N' # M is fixed iff for some Q ¢ M, N = Qa(Q)
(Exercise AX.2).

There are no exercises for this chapter.



Chapter 20
Ratios of Sensed Segments (RS)

Acronym: RS

Dependencies: all prior Chapters I through 19

New Axioms: none

New Terms Defined: sensed segment, initial, final point, sensed length (of a sensed

segment); ratio in which X separates the points A and B

Abstract: This chapter proves two classical theorems of geometry, due to Menelaus
of Alexandria (c. 70-140) and to Giovanni Ceva (1647—-1734). The proofs use the

machinery of ratios of sensed segments.

20.1 Basic theorems on sensed segments

The development in this chapter is based on that of Martin, Transformation

Geometry: An Introduction to Symmetry, Chapter 14 (Springer, 1982) [14].

Up through Remark RS.7, we assume that IL is a line in a Euclidean/LUB plane
‘P, which has been built into a complete ordered field with origin O and unit U. A,
B, C, and D are points of IL; by Corollary REAL.35.1 there exist real numbers a, b,
¢, and d such that A = aU, B = bU,C = cU, and D = dU.

For Theorems RS.1 through RS.3 we add the further assumptions (together
comprising the “blanket hypotheses” for them) that IL has also been equipped with
another origin O’ and another unit U’; then by Corollary REAL.35.1 there exist real
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numbers % and u such that O’ = hU and U’ = uU, and real numbers @', b’, ¢/, and d’
suchthat A = aU = d U, B=bU =b'U',C=cU =U',and D =dU = d'U’.

Theorem RS.1. Under the blanket hypotheses, for any distinct points A = aU =
dU and B=bU =b'U" inl, b' —d = u(b — a).

Proof. B—A =bU —aU = (b—a)U. Also
B—A=bU—-dU =@ —-d)U =¥ —d)ulU
sothat (b —a)U = (V' — a')uU and
O=b-a)U— 0 —dwU=((b—a)— ¥ —d)u)U
=((b—a)— ¥ —d)u)U.
By Corollary REAL.34(C), (b —a) — (b' —d)u=0and (b—a) =u(¥ —d'). O

g E—3
Theorem RS.2. Under the blanket hypotheses, OU =~ O'U’ iff u — h = 1 or

u—h=-—1.

Proof. U = O + (U —0') = 1o/(U' — O'). Applying 17— to both sides, we have
—o(U) = 1-0(0' + (U = 0) = 1—0/(70 (U = 0"))
=U -0 =uU—-hU =wu—-—h)U =65,_,(U)
where 8, is as in Definition REAL.38. Since 7_¢ is an isometry, by Theo-
rem NEUT.15(5)

T—o’(O/U/) = (T—O’(O/))(T 0/(U/)) = O(r o (U )) =
= O(U’ 0’) = 0(uU hU) 0(8u_h(U)j.

Thus 0’ U/ o~ O(Su_;,(U)) since T_ is an 1sometry

(Case 1: 6,—,(U) € OU)If O’Uj ~ OU then O(SM h(U)) ~ OU and by Property
R.4 of Definition NEUT.2, U = §,,— h(U) (u—h)U so that u —h = 1. Conversely,
ifu—h=1then§,_,(U) = UandO/U”‘“OU

(Case 2: 8, (U) € ORp(U).) We know that ORO( 3 ~ %)l} because R is an
isometry with O as a ﬁxed pomt If O’ U =~ o OU then

ORo(U) = 0U = OR(U) = O(<U),

and by Property R.4 of Definition NEUT.2, —U = (u — h)U so that u — h = —1.
Conversely, if u — h = —1 then §,_,(U) = —U = Ro(U) and hence, by our first

calculation,

-
=

O'U = 0Bun(U)) = ORo(U) = OU.
Here we have used Corollary REAL.34(C) several times. O
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/ /
Theorem RS.3. Under the blanket hypotheses, if A # B and C # D, fl’ :Z, =
b—a

i—c Therefore the ratio Z:CCI is independent of the origin and the unit chosen

for L.

Proof By Theorem RS.1, Zﬁ:‘éﬁ - ZE’;:Z; =b=a o

Definition RS.4. (A) A sensed segment is an ordered pair (ELTI%,A) where the first
element of the pair is a closed segment AB and the second element is one of its
endpoints, called the initial point of the segment. The other endpoint is called
the final point of the segment.

(B) We will denote the sensed segment (ﬁ, A) by the symbol [AB).

(C) If an origin O and a unit U has been chosen for the line L = A<_B>, and if
A = aU and B = bU for some real numbers a and b, then the sensed length
of [AB) = [(aU)(bU)) will be the real number b — a.

Remark RS.5. Suppose A # B, C # D are collinear points on the plane, an origin
O and a unit U have been chosen for the line L. = j@), and A = aU, B = bU,
C = cU, and D = dU for some real numbers a, b, ¢, and d. Then by Theorem RS.3
the ratio of the sensed lengths %:—CCZ is independent of the origin and the unit chosen

for L. Therefore it is legitimate to speak of the ratio Z — ? , 80 long as it is understood

that some origin and some unit have been chosen for L.
Moreover, it is quite legitimate, since their numerators and denominators are real
numbers, to multiply two such ratios and shuffle the numerators and denominators

about as we would in any other fractions; for instance,

b—a b —d b—a b —-d
d—c d—¢ d—7J d—=c

and so forth.

Definition RS.6. If X = xU is any point on L other than A or B, H is called the

ratio in which X separates the points A and B.

Remark RS.7. (A) We will indulge now in a bit of what the French call “abuse of
notation.” There will be times when we don’t want to bother saying, before an
argument involving sensed segments, that an origin O and a unit U has been
chosen for the lineand A = aU, B = bU, C = cU, and D = dU for some real

numbers a, b, ¢, and d. In such cases we may, as a notational convention, write

AB
[AB) when we mean b — a, and [[CD)) in place of %:—‘g. Doing so is legitimate
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because this ratio is independent of our choice of origin and unit. The ratio in
AX
which X separates the points A and B may then be written as % If there

is virtue in this convention, it is that it keeps the geometric character of the
argument more clearly in view. We will use it at various places in the rest of
this chapter.

AB
(B) Since AB) means %:—‘Cl, several facts become apparent:

[CD)
() Sincez:‘;:g:fl: lc’ g =- Z:lc’,wehave
[AB)  [BA)  [AB)  [BA)

[CD) ~ [DC) ~  [DC)  [CD)
(2) For any X = xU, if A-X-B then a—x-b, so that either a < x < b or
[AX) x—a
b<x<aand — = > 0.
[XB) b—x
(3) If X-A-B or A-B-X, then x—a—b or a-b—x, thatis,x < a < b,a < b < x,

X >a > b,ora > b > x.In any of these cases

[AX) x-—a 0
[XB)  b—x <o
[AB) [AB) [CD) _ [AB)
@) B = 1B, [y = L and ony TRy = ER)

The following theorem clarifies the relationship between ratios of free

segments and ratios of sensed segments.

Theorem RS.8. Ler L and M be intersecting lines in a Euclidean/LUB plane P,
which have been built into complete ordered fields, where 1L has unit U and M has
unit U'. Let A, B, C, and D be points of I, and A’, B/, C', and D' be points of M, and
suppose that for some real numbers a, b, ¢, d, a', b/, ¢/, and d’, A = aU, B = bU,
C=cU,andD =dU,andA' =dU,B =bU,C =U,and D' =d'U'.

(A) If[AB) = [CD) or [AB) = [DC), then [AB] = [CD).

[AB 1 _ A'B] [AB) _ [A'B)) [AB) [A'B)
=, then = or = ———.

Proof. (A) In the first instance, AB = CD so [1[47B] ] = [CD] in the second AB =
%)ﬁé ~ [6‘73 so that in either case [;TB] = [[CT)]].

(B) Since both the hypotheses and conclusion of this part are expressed in terms
of ratios of sensed segments, it follows from Theorem RS.3 that the choice of
origin and unit is irrelevant. Thus we may, for convenience in the proof, assume
that the point of intersection of both lines is their common origin O, and that

E— —

OU = OU'. That is, if K is the line of symmetry of ZUOU’, then since R
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is an isometry, Rx (%7}) = W; thus [OiU; ~ [07} ~ W and by
Property R.4 of Definition NEUT.2, Ry (U) = U’. By Theorem OF.15
[AB] = [0B—A)] = [0b — @)U = [0b—alU],
[CD] = [0(D — )] = [0 — U] = [0ld — c[U).
WB'| = [0(B —A)] = [0() —d)U'] = [[Olb/ Z|U"], and
[C'D] = (0D~ €] = [0 — )U'] = [0|d’ U,
By Definition SIM.7, [CD]~! = [0(D — C)~1] = [0 " Ul = [0| .
that by Remark REAL.43, Theorem REAL.23, and Theorem REAL.25

U],so

AB T —all A'B [7/_
B51_[oft=efu] s 21 - [ofir=ev )
[CD] [C'D']
Putting this with our hypothesis,
. | [7
/
[ola=¢lv]=[olF=tlv] o

By Definition REAL.38 and Theorem REAL.42, define § be the dilation
with fixed point O such that for all A
5(A) = ‘Z:‘;’A.
Since K contains the point O, §(K) also contains O, so that Theorem DLN.17
says that § commutes with R, which is an isometry. Then

R (|5 = Re(3(V)) = §(Ric(V))
— S(U/) — ‘ d — a
By Theorem DLN 8 Jisa behneatlon S0 Theorem COBE 5(5) apphes and

[of5=¢]e"] = [oft=¢[0]
3!

ol ~ b=t

Combining this with (*) we have
[o=lv]= [0

By Property R.4 of Definition NEUT.2

b’—a
d/

/ !
—a

‘b ’U/ — . U/
—c
and by Corollary REAL 34(C)
/ / / /
‘b_ ‘— Z, sothatZ c Z/_a, OrZ:CClZ_Z’:(Cl”
AB A’'B AB A'B’
which is to say [ )=[ )or[ )=—[ ). O

[CD) [C'D)  [CD) (D)
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Theorem RS.9. Let 1| and 1L, be distinct lines on a Euclidean/LUB plane which
are built into complete ordered fields which have a common origin O and respective
units Uy and U,.

Let Ay = a1U,, By = biUj, and C, = c,U; be distinct points on L, and
Ay = ayUs, By = byU,, and Cy = U, be distinct points on 1L, such that A1A; ||
>
BB, || CCy; then

[0A)) [0By) [0Cy) a1 by ¢

O = = ’ — = =
© [0As)  [0By)  [0Cy) o a b o

0 [AiBi) _ [A:By) bi—ai _by—a
[AiC1)  [AG) T ci—ar a—a)
[B1A1)  [BrAs) ar—by  a)—b

2 s = ,and

@ [BiC1) — [B.C2) Te=bh  a-b "

3) [C1B1) _ [CaBs) by —ci _ by —c
[CiA1)  [CAY)) 7~ ai—ci ar—c

Proof. Let M = par(O,;\l_AZ). Without loss of generality we may assume that U
and U, have been chosen so that both are on the same side of M, and so that [07Ui ~
[07U§. By Exercise PSH.14 both members of each of the pairs {41, A,}, {B1, B}, and
{Cy, C,} belong to the same side of M.
[0A;] _ [0B;] _ [0C1] _ [0a1 U/ ]
[0A;] [0323] [0C]  [0a:Us]

Let §,, be the dilation with fixed point O such that for all points A € P, §,,(A) =
aA. Again, as in the proof of Theorem RS.8 above, §,, is a belineation. Let Rx be

By Theorem SIM. 19,

the reflection over K, the line of symmetry of ZU;OU,; then since [OiUi ~ [OiU;
R (Uy) = U;. From Theorem DLN.17
Ric(@2U2) = Ri(84,(U2) = 84, (Ric(U2)) = 84, (U1) = a2Uy
and hence i . i .
0(axU5) = 60,(0U2) = 8,,(0U) = O(axU)
so that

[0A[] _ [Oa Uy ]
E—3, ~ E——3
[0A2]  [Oax Uy ]
by Remark REAL.43. Here we have implicitly used Theorem REAL.42 by assum-

ing that the same dilation accomplishes multiplication by a, on both lines. By

= [0(2U)]

similar reasoning,
E—3
(0B ] [Obl U, ]
E 3 E—
(0B, ] [Obz Up]

— [0(2U)))
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and E—— E——FH
oGl e oy
[0C2] [OCzUl]
so that S
[O(Z—;UO] [0( Ul)]—[O(C] U1)]
and

O(ZU) = 0(LUy) = O(2U)).

We have already noted that both members of each of the pairs {A, A,}, {B1, B2},
{Cy, C3}, and {U;, U,} belong to the same side of M therefore both real numbers
of each of the pairs {a;,as}, {b1, b2}, and {cy, c2} have the same sign, hence all
their ratios are positive, and all the points £ o LU 3 b UL, and < U, are points of

OU 1- By Property R.4 of Definition NEUT.2, “; U, = lb’; U, = Z; U,. Therefore
b
by Theorem REAL.34(C), ad Rt C—, proving conclusion (0).
as b2 (6
By arithmetic,

by b by by bi—ar b—a
— = —,hence — — 1= ——1and = ;
a a a ap ay a
(5] (&) Cl (&) Cl—a C—ay
— = —,hence — —1=——1and = ;
ay ar ap ar ag a
0 C &) ci—b  c—b
— = —,hence — —1=-—=—1and = ; and
by b by by by by
by b b by bi—c1  b—o
— = —,hence — — 1= ——1and = .
Ccq C) Ccl Cr Cl 2
b1 —a a by —a a b —a by —a .
(1) . = . , and = proving
a 1 —a ap C—ay Cl —a C—ay
conclusion (1).
by —ay by by —ay by . b by by —a by —ay
) . = . ,slnce — = —, = >
ai c1 — by a ¢y — by a a, ci—b ¢y — by
proving conclusion (2).
by —c a by — ¢ as . a a, by —c by — ¢
3) . = . ,since — = —, = >
Cl 1 —a (&) C—ay Cl C €1 —a C—ay
proving conclusion (3). o

20.2 Theorems of Menelaus and Ceva

Menelaus of Alexandria (c. 70-140) developed spherical geometry in his only extant
work, Sphaerica. This work survived in an Arabic translation, and contains the
following theorem. The lunar crater Menelaus is named after him in recognition

of his contributions to astronomy.
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Theorem RS.10 (Menelaus). Let P be a Euclidean/LUB plane, A, B, and C be
noncollinear points on P, D, E, and F be points such that D € (B(—C>‘ \ {B,C}),

E € (;\_C)‘ \ {A,C}), and F € (;ﬁ?) \ {A,B}), then D, E, and F are collinear iff
[AF) . [BD) _ [CE)
[FB) [DC) [EA)

Fig. 20.1 For Menelaus’ G
Theorem RS.10.

>

W

C E A

. . <> <> <>
Proof. See Figure 20.1. We assume that the lines BC, CA, and AB have been
built into ordered fields, each having an origin and a unit, so that the previous

considerations of this chapter apply to them.

() If D, E, and F belong to the line L, then let M = par (4, L). By Exercises 1.1
and IP.4 M and 1<9_C>' intersect at a point G. Applying Theorem RS.9 to the lines

B<_C)’ and C<TA) and to the points D, G, and C on the first of these lines, and to
[CE)  [CD) Apolvine th
= —. ing the same
[EA) [DG) pplymg
. <~ <> .

theorem to the lines BC and AB and to the points D, G, and B on the first of
BF BD

these lines, and to the points A, F, B on the second line, u = u, that is
[FA) [DG)

[AF) [GD)

—— = ——. By Remark RS.7 and arithmetic,
[FB) [DB)

[AF) [BD) |[CE) . [GD) [BD) [CD)
[FB) [DC) [EA) — [DB) [DC) [DG)
= (~1)(=1)(=1) = —1.

= —1, then EF and BC intersect at a point D’. For, if EF

[AF) [AE)

[FB) ~ [EC)

the points E, A, and B on the second line,

[GD) [BD) [CD)
[DG) [DB) [DC)

[AF) [BD) [CE)

(n 1t [FB) [DC) [EA)

and I(B_C)' were parallel, then by Theorem RS.9 we would have
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[EA) [AF) [CE)

@, thus ﬁ . ﬁ would be equal to 1 and by our initial assumption,
[BD) . : :
@ would be equal to —1. This would contradict Exercise RS.1. By part (I)

[AF) [BD') [CE) __[AF) [BD) [CE)
[FB) [D'C) [EA)  [FB) [DC) [EA)
Thus % = & and by Exercise RS.2 D' = D, so that D, E, and F are
[D'C)  [DC)
collinear. O

Remark RS.11. Giovanni Ceva (1647-1734) was an Italian mathematician who
studied geometry for most of his life. He first published Theorem RS.13 in 1678,
in his work De lineis rectis. According to Audun Holme (Geometry, Our Cultural
Heritage, 2nd ed, Springer, Heidelberg, pp. 193—-194 (2010) [11]) the theorem was
proved much earlier by Yusuf Al-Mu’taman ibn Hud, an eleventh-century king of

Zaragoza. Ceva also rediscovered and published Menelaus’ Theorem.

Definition RS.12. If A is a corner of a triangle and B and C are its other two corners
and D € l<3_C)' \ {B, C}, then the line 1<4_[>) is called a Cevian in Ceva’s honor. We shall
call the Cevian 1(4_D> an interior Cevian if D € %, that is B—-D-C, and an exterior
Cevian if D & [Bﬁé' , that is D—B—C or B—C-D.

Theorem RS.13 (Ceva). Let P be a Euclidean/LUB plane, A, B, and C be
noncollinear points on P, and D, E, and F be points such that D € (1<5’_C)' \ {B,C}),
E € (:\_C)' \ {A,C}), and F € (ﬁ \ {A, B}). Then these two statements are
equivalent:

<> <> <>
(1) AD, BE, and CF are either concurrent or are parallel
@ [AF) [BD) [CE) !

[FB) [DC) [EA)

Fig. 20.2 For Ceva’s
Theorem RS.13.
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Proof. See Figure 20.2.

@

ax

(110

It 1(4_D>, 1<9_)E and C('_l’>7 are concurrent at O, then we apply Theorem RS.10

(Menelaus) to AABD and points F, O, C and to AACD and points E, O, and

5 o AO) [BF) IDC) _ ' [A0) [CE) [DB) _

' [OD) [FA) [CB) [OD) [EA) [BC)

A0) [CB) DB}y, (140) BF) DOy _ 1 _,
[OD) [EA) [BC)/'\[OD) [FA) [CB) -1 '

Rewriting this as a product, we have by Remark RS.7

__[A0) [OD) [CE) [FA) [DB) [CB)

~ [oD) [A0) [EA) [BF) [BC) [DC)

__[CE) [FA) [BD) [CB) [CE) [FA) [BD)

~ [EA) [BF) [CB) [DC)  [EA) [BF) [DC)’

[AF) [BD) |[CE)

[FB) [DC)  [EA)

<> <> e > > .
Assume AD, BE, and CF are parallel. CF || BE, so applying Theorem RS.9 to

so that (

and therefore =1.

<> <> [AF) [AC)
AB and AC, we have —— = ——.
[FB)  [CE)
Likewise since AD || BE, we may apply Theorem RS.9 to BC and AC to
CA CD BD AE
et u = u, that is (cf Remark RS.7) u = u Hence
[AE)  [DB) [DC)  [CA)

[AF) [BD) [CE) [AC) [AE) [CE) [AC) [AE) [CE)

[FB) [DC) [EA)  [CE) [CA) [EA) [CA) [EA) [CE)
=(=DHEDA) =1

[AF) [BD) |[CE)

[FB) [DC) [EA)

is true, either all the Cevians are parallel or they are concurrent. If they are not

= 1. We want to show that if this

Conversely, assume that

all parallel, then two of them must intersect; thus it will suffice to show that
if two of them intersect at a point O, then the third one must also contain this
point. We choose our notation so that BENCE = {0}.

Suppose the lines 1<4_0) and B<_C)’ fail to intersect, so are parallel. There are two
cases: either O € B-side of 1(4_)C , or in the opposite side. We shall give a proof
only in the second case; the proof of the first case is similar, where the roles of
B and C, and the roles of E and F' are interchanged.

The quadrangle OOABC has a pair of opposite sides which are parallel,
hence is a trapezoid, which by Theorem PSH.53.1 is rotund; by Theo-
rem PSH.54 its diagonals }4%‘ and E?OE intersect at a point which is E, so that

BE is an interior Cevian.
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IfF e 1[475, the point of intersection O of CF with 1(3_)E would belong to

<> <> E3 <> .
enc AABC and AO could not be parallel to BC. Thus F € AB, so that CF is an
AE AF
exterior Cevian. By Remark RS.7(B)(2) and (3), u > 0 and u < 0.
[EC) [FB)
Since O is outside the triangle, we have B—-E-0O, as well as A—-E—C. We have
already shown F-A-B so that F is on the opposite side of A_>0 from B and C,

and hence F—O-C.

(FA] _ [FB] [FA] _ [FO]
By Theorem SIM.19, —= = —= so that — = —.
[FO] [FC] [FB] [FC]
Theorem SIM.18(IV) ACBF ~ AQOAF, since ZOFA is common to both.
EA EO
Then by Theorem SIM.19, % = % Since ZCEB =~ /AEOQ, then by
[EC] [EB]
[CE ] [CB ]
Theorem SIM.18(IV) ACEB ~ AAEQO and hence —
[EA] [OA]
LCFB ~ LOFA then by Theorem SIM 18(IV) ACFB ~ AOFA and hence
[CB] [BF] [Lch] [CB] [BF]
[OA ] [AF ] [EA ] [OA ] [AF ]
CE BF CE BF
By Theorem RS.8(B), either LCE) = [BF) or [CE) = —[ ). As noted
[EA) [AF) [EA) [AF)
AE F FB BF
above,[> Odu<0 [) [> OdE>O.
[EC) [FB) [FA) [AF ) [EA)
CE BF
Therefore [CE) = u, so that
[EA) [AF)
[AF) [CE) [AF) [FB) _
[FB) [EA)  [FB) [FA)
[BD)
By Exercise RS.1, @ # —1, so that it is impossible for

[AF) [BD) [CE) _
[FB) [DC) [EA) —

<« <~ .
Therefore AO intersects BC at some point D'.
(IV) From part (1),

[AF) [BD') |[CE) _

[FB) [D'C) [EA) —
Since

[AF) [BD) |[CE) _

[FB) [DC) [EA) —
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by assumption we have
[AF) . [BD') . [CE) . [FB) . [DC) [EA)  [BD') . [DC)

[FB) [D'C) [EA) [AF) [BD) [CE) [D'C) [BD)
(d—-b) (c—d)
(c—d) (d—b)
(d —b)(c—d) =(d—Db)(c—d),
dc—dd—bc+ bd =dc—dd — bc+ bd,

dc—dd+ bd =dc—dd + bd,

d'(c—d) + bd = dc — d'(d — b),

d'(c—d)+d'(d—b) = dc—bd = d(c — b),

d'(c—b) = d(c—b)and d' = d.

Thus D = dU = d'U = D' and the Cevian AD passes through O, proving the

theorem. ad

that is

= 1. By arithmetic this becomes

20.3 Exercises for ratios of sensed segments

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise RS.1*. If a # b are real numbers, then for any real number x,

xX—a
—1.
b—x 7

Exercise RS.2*. If a # b are real numbers, and x and y are any real numbers,
xX—a —
if =27 thenx =y.
b—x b-—y

Exercise RS.3*. Let A, B, and X be points on a line L in the Euclidean/LUB plane

AX
‘P, where A # B. Make a graph of the function f(X) = %

AF) [BD
Exercise RS.4*. If statement (2) of Ceva’s theorem is true, that is if [AF) . u .

[FB) [DC)
[CE) . . .
ﬁ = 1, then the number of exterior Cevians is either zero or two, the other
Cevians being interior.
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Chapter 21
Consistency and Independence of Axioms;
Other Matters Involving Models

Acronyms: LA, LB, LC, FM, DZI, MLT, PSM, LE, BI, MMI, RSI, DZII, DZIII
Dependencies: Sections 1.1 through 1.6 of Chapter 1, and other parts of the book
as axioms are shown to hold in a given model

New Axioms: none

New Terms Defined: model, consistent, independent, strongly independent, sequen-
tially independent, coordinate space; the following terms for coordinate space:
line, plane, segment, ray; dot product, orthogonal, c-perpendicular, length, norm,
normalize, distance; c-midpoint; between, quadratic distance, transfer mapping,

induced mirror mapping

Abstract: The first part of this lengthy chapter shows that Cartesian (coordinate)
space satisfies all thirteen of the axioms of the main development of this book.
This means that the axioms are consistent since there is a model, that is, an actual
mathematical system, in which all are valid. The second part constructs, for each
axiom, a model in which all previously listed axioms are true, but the new one is
false. This shows that the newly added axiom is independent of those previously
invoked. In the third part, models are exhibited showing the mutual independence
of various properties of the definitions of betweenness, mirror mappings, and
reflections. The fourth part consists of models showing the insufficiency of the

incidence and betweenness axioms for creation of a satisfactory geometry.

© Springer International Publishing Switzerland 2015 413
E.J. Specht et al., Euclidean Geometry and its Subgeometries,
DOI 10.1007/978-3-319-23775-6_21
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21.1 Euclid meets Descartes: synthetic vs. coordinate
geometry

We have now traversed most of our intended theory; it has been a long and
rather arduous journey. We have followed a synthetic approach to geometry,
starting with undefined terms point, line, and plane. We then introduced, in order,
axioms 1.0, I.1, 1.2, 1.3, 1.4, .5, BET, PSA, REF, PS, and LUB.

Unlike Euclid, we have not tried to decide whether these axioms are universally
“true” or “self-evident.” In accordance with modern axiomatics, we only explored
the ways that the various theorems in Euclidean geometry depend on these
statements and on each other.

Euclid did not have number systems available to him, and he never made the
connection, so clear to us moderns, between geometry and algebra. It would be
some 1900 years before the French mathematician and philosopher René Descartes
(1596-1650) made this connection by his invention of coordinate (or analytic)
geometry, which laid the foundation for much modern mathematics, including
calculus.

In Descartes’ geometry, space R3 consists of points which are ordered triples
(x1,x2,x3) of numbers; these numbers are called the Cartesian coordinates of the
point, and can be interpreted as displacements from the three base planes passing
through an origin. The plane R? is made of ordered pairs of numbers describing
displacements from two main axes. To us this approach seems perfectly natural; we
can visualize it easily and it seems “real” to us.

At the end of Chapter 18, we saw that Euclid’s synthetic approach leads to the
conclusion that every plane is essentially a Cartesian coordinate plane. Euclid thus

meets Descartes, and we are the beneficiaries.

21.2 Our models and their implications

In this chapter we will be concerned with creating models, by which we mean actual
“concrete” mathematical systems having certain useful characteristics. In the next
two sections, 21.3 and 21.4, we will develop properties of coordinate space and the
coordinate plane, in preparation for the following sections in which we develop the
models themselves. These models fall into four categories, and each category will

be developed in its own section, as listed below.
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1. Consistency model, Section 21.5:  This model will be based on 3-dimensional

Cartesian space, together with its 2-dimensional subspaces, or planes, which
together satisfy all our axioms. The existence of such a model rules out
two embarrassing possibilities: one is that the whole development we have
undertaken is vacuous, in the sense that there is no mathematical system to
which it could apply. Not that our lack of knowledge of such a system would
prove that the theory is vacuous—it might mean merely that our understanding
is inadequate. But happily, that possibility is ruled out by this model.
It also rules out the possibility that our axioms are not consistent—that there
might be contradictions among them. If such contradictions existed, there could
be no mathematical system in which they are all true. The fact that the axioms
lead to useful results does not ensure that they are consistent, because the
possibility exists that there might be contradictions among them that did not
interfere with our development.

2. Axiom independence models, Section 21.6:  We use several quite different
models to show independence of the axioms; these are based on sets of numbers
or sets of pairs or triples of numbers such as the natural numbers N, the integers
Z., the rational numbers Q, the real algebraic numbers A, or the real numbers R.

3. Property independence models, Section 21.7: We use linear models based
on Cartesian space or Cartesian planes to show the independence of various
properties of definitions, thus assuring that these definitions are stated with
reasonable economy.

4. Insufficiency models, Section 21.8: Here we will show that the incidence and
betweenness axioms by themselves (as set forth in Chapters 1 and 4) are insuf-
ficient to create a satisfactory geometry—that is, that Axiom PSA is necessary.
More specifically, we show that in a geometry where only the incidence and
betweenness axioms are invoked, there can be several circumstances which are
highly offensive to our intuition; for instance there can be a segment having two
different sets of endpoints.

The models used in this section are based on Model DZI (initially developed
in Subsection 21.6.3), consisting of the set 73 of all ordered triples (x1, X2, x3)
where x;, x,, and x3 are integers; that is, the set of all points of Cartesian space

having integer coordinates, sometimes called (lattice points).
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21.2.1 List of axioms for reference

For the convenience of the reader, we again list our set of axioms. For a listing of

relevant definitions, see the chapters referenced.

Incidence axioms (Chapter 1).
Axiom L0. Lines and planes exist and are subsets of space S.
Axiom L.1. There exists exactly one line through two distinct points.
Axiom L.2. There exists exactly one plane through three noncollinear points.
Axiom L.3. If two distinct points lie in a plane, then any line through the points
is contained in the plane.
Axiom I.4. If two distinct planes have a nonempty intersection, then their
intersection has at least two members.
Axiom L5. (A) There exist at least two distinct points on every line.
(B) There exists at least one noncollinear set of three points on
every plane.

(C) There exists at least one noncoplanar set of four points in space.

Betweenness Axiom BET (Chapter 4). There exists a betweenness relation on
space S, satisfying Properties B.0 through B.3 of Definition IB.1.

Plane Separation Axiom PSA (Chapter 5). Let £ be a line and £ and F be
opposite sides of L; if O € £ and R € F, then ]Q_I% NL # @.

Reflection Axiom REF (Chapter 8). On the Pasch plane P, there exists a set REF
of reflections satisfying Properties R.1 through R.6 of Definition NEUT.2.

Parallel Axiom PS (Chapters 2 and 11). Given a line £ and a point P not
belonging to L, there exists exactly one line M such that P € M and L || M.

Least Upper Bound Axiom LUB (Chapter 18). Let L be an ordered field with
origin O and unit U. Every nonempty subset £ of L. which is bounded above has a

least upper bound lub £.

21.3 Coordinate space: linear Model LM3

In this chapter, the reader should temporarily put aside essentially everything from
the main development, from Chapter 1 Section 1.8 through Chapter 20. Here we
will use, as a starting point, the basics of coordinate geometry, as briefly outlined
below.
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Nomenclature and notation: In this and following sections, when we speak
of an ordered field F we will mean one of the fields Q, A, or R which has been
equipped with the natural ordering, all as described in Chapter 1, Section 1.5 under
the title “Number systems.”

If F should be specifically one of the fields Q, A, or R, we will attach the
appropriate letter suffix: that is, the 3-dimensional Model LM3 over the real
algebraic numbers A would be called “Model LM3A”; the 2-dimensional Model
LM2 over Q, the rational numbers, would be “Model LM2Q.”

We habitually write ordered pairs and triples horizontally, as (xi,x;) or

(x1, x2, x3); however, there will be occasions where we wish to write them vertically,

X2
space on the page. But when the entries of a pair or triple are long or elaborate, it

X1 . . .. . .
as ( ) The disadvantage of the vertical notation is obvious—it takes up a lot of

sometimes makes things clearer to display them vertically.

We begin by summarizing for n = 3 the definition from Chapter 1, Section 1.5,

under the title “Vector spaces of n-tuples.”

3-dimensional coordinate space: The set F> of ordered triples (3-tuples)
(a1, az, az) of elements of I is a vector space called 3-dimensional coordinate space,
where we have defined (ay, az, az) + (b1, by, b3) = (a; + by, az + by, a3 + b3), and
t(ay, az, a3) = (tay, tay, taz) for t € F. The triple O = (0, 0, 0) is the origin, or zero
element, of F3.

Let £, = (1,0,0), E; = (0,1,0), and E5 = (0,0,1). The set £ =
{(1,0,0),(0,1,0),(0,0,1)} = {E,, E,, E3} is linearly independent and spans F>,

so the dimension of F? is 3.

In our main development (Chapters 1 Section 1.8 through Chapter 20) “line” and
“plane” were undefined terms. Here, in our Models LM3 and LM2, they start out
as defined objects. In the first definition we will give the meanings of space, lines,
planes, segments, and rays in our linear Model LM3; these are easily reducible to
Model LM2. Eventually it will be shown that these meanings coincide with those

given in our main development.

Definition LA.1. Space for Model LM3 is the vector space IF3, the set of ordered
triples A = (a1, az, az) of members of an ordered field IF. The model also includes

lines, planes, segments, and rays as follows:
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(1) A subset £ is a line in F? iff there exist distinct points A and B of F3 such that
L =1{A+1B—A) |1 eTF); this line is denoted by AB.

(2) A subset P is a plane in IF3 iff there exist noncollinear points A, B, and C of F3
such that P = {A + s(B—A) + t(C — A) | (s, 1) € F?}; this plane is denoted by
ABC.

(3) Let A = (ay,a2,a3), B = (b1,by,b3), and X = (x1,x,,x3) be points of IF3,
where A # B; and let ¢ denote a real number.

(3A) The open segment from A to B is
AB={A+1B—A)|0<1<1)

(3B) The closed segment from A to B is
AB={A+1B—A)|0<t<1)

(3C) The half-open segment from A to B is either
AB=1{A+1B—A)|0<t<1}or
AB={A+tB—-A)|0<t<1).

(3D) The closed ray with initial point A is AB = {A4+t(B—A)|t=>0}
(3E) The open ray with initial point A is E{_I)S’ ={A+t(B—A)|t>0}.

In the following, many of the proofs will be relegated to exercises, the solutions
of which are accessible online from the home page of this book at www.springer.
com.

Remark LA2. (1) AB = {A +1(B—A) |t € F}
—(B+(1—1)(A—B) |teF) = BA.
2) ?E’c is the same plane for any permutation of the points A, B, and C; that is,
ABC = ACB = BAC = CAB = BCA = CBA
We will provide a proof for the first two equalities only:
(A) ABC = {A +s(B—A) + 1(C — A) | (5.1) € F?}
— A+ 1(C—A) +s(B—A)| (1,5) € 2} = ACB.
(B) ABC = {A + s(B—A) + t(C— A) | (s.1) € F2}
={B+(1—-s—t(A—-B)+t(C—B)| (s,t) € F?}
— (B4 u(A—B) + t(C—B) | (u,1) € F2} = BAC.

The other proofs are similar and are left to the reader as Exercise LM.1.

Theorem LA.3. Distinct points A, B, and C in F? are collinear iff B— A and C — A

are linearly dependent.

Proof. The proof is Exercise LM.2. O


www.springer.com
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Theorem LA.4. Distinct points A, B, C, and D in F? are coplanar iff B— A, C — A,
and D — A are linearly dependent.

Proof. The proof is Exercise LM.3. O

Theorem LA.5. Let A and B be distinct points in F>. For each t € T define ¢(t) =
A+ t(B—A), so that ¢ maps T into 1@ Then ¢ is a bijection (one-to-one mapping)
of F onto ﬁ

Proof. The proof is Exercise LM.4. O

Theorem LA.6. IfA, B, and C are noncollinear points of F* and if s and t are any
numbers in I, then the equality

o, ) =X=A+s(B—A)+1(C—-A)
defines a bijection of F* onto ZR

Proof. By Definition LA.1(2), for every (s, 1) € F2, ¢(s,f) = A+s(B—A)+t(C—A)
is a member of ?ﬁc), and every point of this plane is such a point; thus ¢ maps F?
onto ABC.
Suppose that for some (s, ¢) and (u, v) in F2, ¢(s, ) = @(u, v). Then
A+sB—A)+t(C—A) =A+uB—-A)+v(C-A),

so that (s—u)(B—A) 4 (t—v)(C—A) = O. By the contrapositive of Theorem LA.3,
B — A and C — A are linearly independent, so that s = u and ¢ = v, proving that ¢
is 1-1. O

Remark LA.7 (On notation). We use the notation £+ X tomean {A+X | A € £},
where & is a subset of F* and X is any member of F>.

For any two subsets Eand Gof F3, E + X C G+ X iff E C G. Forif E + X C
G + X, then for every A € & there exists a B € G such that A + X = B + X, and
A=A+X—-X =B+ X—X = B, proving that £ C G. Showing the converse is
trivial. It follows easily from the fact that two sets are equal iff each is a subset of
the other,that E + X =G + X iff £ = G.

SinceY e £iff Y + X e £+ X, itisalsotruethat Y € £iff Y + X & £ + X thus
& + X is a proper subset of F? iff £ is a proper subset.

In the following Remarks LA.8 and LA.9 we will write each assertion in italics

and follow it with its justification.



420 21 Consistency and Independence of Axioms; Other Matters Involving Models

Remark LA.8 (Of lines).

(A) IfA = O, theline L = {A+t(B—A) | t € F} contains the point O. To see this,
letr = 0.
(B) A line L in F3 containing the origin O is {sC | s € F} for some C € F>.

Aline L = {A + t(B—A) | t € F} contains the origin O iff there exists
a number £ such that A + #o(B — A) = O. In this case define s = t — 1y, and
C=B—A. ThenA+t(B—A)=A+(s+1)C=(A+1C)+sC=0+sC.

(C) A line L in F3 containing the origin O is a subspace of F3, having dimension
1; a subspace of F3 of dimension 1 is a line containing O.

If X € Land Y € L, then from part (B), there exist numbers s and ¢ such
that X = sCand Y = ¢tC;then X + Y = sC + tC = (s + 1)C € L. For any
number u, uX = usC € L. Since every member of L is a scalar multiple of
C, its dimension is 1. Conversely, if £ is a subspace of 3 having dimension
1, there is a vector C # O such that for every point X € £, X = sC for some
number s; thus by Definition LA.1(1), £ is a line containing O.

(D) If L is aline and Y a member of B3, then L + Y is a line. Here we are using the
notation of Remark LA.7.

Let L ={A + t(B—A) | t € F} according to Definition LA.1(1). Then

L+Y={A+t(B—-A)|teF}+Y
={A+Y)+t(B+Y)—(A+7Y)) |teF}
which is a line by Definition LA.1(1).
(E) If Y € L, then by part (D) L — Y is a line; it contains the origin O because
Y — Y = Oy and by part (C), it is a 1-dimensional subspace of F>.

Remark LA.9 (Of planes).

(A) IfA = O, the plane P = {A + s(B—A) + t(C — A) | (s,1) € F?} contains the
point O. To see this, lets =t = 0.

(B) A plane P in F? containing the origin O is {uE + vF | (u,v) € F?} for some
linearly independent vectors D and E.

To see this, note that a plane P = {A + s(B — A) + t(C — A) | (s.1) € F?}
contains O iff for some numbers sy and #y, A + so(B—A) + 1o(C —A) = O. Let
u=s+sp,v=t+ty, E=B—A,and F = C —A. Then

A4+s(B—A)+1(C—A) =A+ (u—s9)D+ (v—1tp)E

= (A —soD —tyE) + uD + vE = O + uD + vE,
so that P = {uE + vF | (u,v) € F?}. The vectors D = B—AandE = C — A
are linearly independent by Theorem LA.3.
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(C) A plane P inF? containing the origin O is a subspace of F* having dimension
2; a subspace of F3 of dimension 2 is a plane containing O.

If X € Pand Y € P, then using part (B), there exist linearly independent
vectors E and E and numbers s and ¢ such that X = sD +tE and Y = uD + vE.
Then X + Y = sD 4+ tE + uD + vE = (s + u)D + (¢ + v)E € P, and for any
number w, wX = wsD + wtE € P, showing that P is a subspace. Moreover,
the dimension of P is 2, since its members are all the linear combinations of
D and E, which are linearly independent. Conversely, if P is a subspace of
IF? having dimension 2, there exist linearly independent vectors D and E such
that for every point X € P, X = sD + tE for some numbers s and #; thus by
Definition LA.1(2), P is a plane containing O.

(D) If P is a plane as defined in Definition LA.1(2), then for any Y € F3, P + Y is
a plane in F3.

IfP ={A+s(B—A)+t(C—A) | (s.t) € F?} is a plane (as defined in
Definition LA.1(2)), then for any ¥ € I3,

P+Y={A+s(B—A)+1t(C—A)+ Y| (s,1) € F?}

={(A+Y)+s((B+Y)—(A+Y))+t((C+Y)—(A+Y)) | (s,1) € F*}
which by definition is a plane containing the pointsA + Y, B+ Y,and C + Y.
(B) IfPisaplane inF3 andY € P, then by part (D) P—Y is a plane; it contains the
origin O because Y — Y = O; and by part (C), it is a 2-dimensional subspace
of 3,

Definition LA.1(1) says that a set is a line iff its points are all the points X =
A + t(B — A) for some distinct A and B belonging to the set; this begs the question
of whether these two points completely determine the line. Likewise, a set is a plane
iff its points are all the points X = A + s(B — A) + #(C — A) for some noncollinear
points A, B, and C of the set. Again, it is not immediately clear that these three points
completely determine the plane. These questions are answered in the affirmative by

the following theorem.

Theorem LA.10. (A) Let A and B be any two points of F; there is exactly one
<>
line AB containing these two points.
(B) Let A, B, and C be three noncollinear points of F>; there is exactly one plane

M . . .
ABC containing these three points.

Proof. (A) Let C and D be distinct points of F? such that C('_)D is a line containing
both A and B. By Definition LA.1(1) there exist distinct numbers #; and 2,
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(B)
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suchthat A = C 4+ #;(D — C) and B = C + t,(D — C). Then for every X =
A+ u(B—A) € AB,
X=A4+uB-A)
=C+1HD—-C)+u((C+t(D—-C))—(C+t;(D—-C)))
— C+ (1) + u(ty — 1))(D — C) € CD.

If Y is any point of Z_B), it is also a point of (C_l)), and by Remark LA.8(D),
both ﬁ— Y and C(‘_)D— Y are subspaces of F3; by Remark LA.8(C) the dimension
of both subspaces is 1. Since Z_B) —-YC @ —Y, it follows from the Dimension
Criterion (Chapter 1 Section 1.5) that fA_B) —-Y = C<‘_)D — Y; by Remark LA.7,
AB = CD.

Let D, E, and F be noncollinear points in IF3 such that A, B, and C are members
of Zﬁ’ ; then by Definition LA.1(2) there exist pairwise distinct ordered pairs
(u1,v1), (uz, v2), and (usz, v3) such that

A =D+ u(E—D)+ v (F—D), (*)

B=D+ uw(E—D)+ v,(F—D),  (*%

C =D+ uz(E — D) + v3(F — D). (k)
By Definition LA.1(2), if X € m, there exist numbers u and v such that
X = A4 u(B—A)+ v(C—A). This becomes, on substitution by equations (*)
through (**%*)

X =D + u(E—D) + v|(F — D)

+u((D+uz(E—D)+v2(F—D)) —u<D+u1(E—D)+v1(F—D))

+v(D~|—u3(E—D)+v3(F—D)> —v(D—i—u] (E—D)+v; (F—D))
=D+ u(E—D)+ vi(F—D)
4uuy(E — D) 4+ uvy(F — D) — uuy (E — D) — uv, (F — D)
+vuz(E — D) + vv3(F — D) — vuy (E — D) —vv(F — D)
=D + (u; + uup — uuy + vuz — vuy)(E — D)
<«
+ (v + uvy — uvy + vvz — vvy)(F — D) € DEF.
<> <—>
Hence ABC C DEF.

If Y is any point of ABC, it is also a point of DEF, and by Remark LA.9(D),
both ABC — Y and DEF — Y are subspaces of F>; by Remark LA.9(C) the
dimension of both subspaces is 2. Since ABC — Y € DEF — Y, it follows from
the Dimension Criterion (Chapter 1 Section 1.5) that ABC —Y = DEF —Y; by
Remark LA.7, ABC = DEF. This completes the proof. O

Corollary LA.10.1. (A) For any line L C F3, and any distinct points A and B of

L L={A+1tB-A)|tech).
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(B)

For any plane P C T3, and any noncollinear points A, B, and C of P, P =
{A+5s(B—A)+t(C—A)| (s,1) € F?}.

Remark LA.11. (A) Every line £ is a proper subset of any plane containing it; for

(B)

if a line contains all the points of a plane, that line would, by definition, contain
noncollinear points, a contradiction.

Every plane P is a proper subset of F>. Again by Remark LA.9(C), the
dimension of P — Y is 2, and by the Dimension Criterion of Chapter 1
Section 1.5, P — Y is a proper subset of F3. Pick X € F3 such that X ¢ P — Y;
thenX + Y & P.

This can also be seen as follows: let A = (0,0,0), B = (1,0,0), C =
(0,1,0), and D = (0,0, 1). If some plane should contain the entire space, it
would contain all these points, including A, B, and C, which are noncollinear.
By Definition LA.1(2) a point X belongs to this plane iff for some s and ¢,
X=A+5s(B—A)+t(C—A),andsince A = O, this is just X = sB + tC. The
point D does not belong to this plane, because there are no scalars s and ¢ such
that s(1,0,0) +1(0,1,0) = (0,0, 1). By Theorem LA.10, this is the only plane

containing A, B, and C; hence no plane contains F3.

Definition/Remark LA.12. (1) If F is one of the fields Q, A, or R the dot

@)

€)

product' A ¢ B of A = (a;,as,a3) and B = (b1, by, b3) in F? is the scalar
aiby + axby + azbs. It is a straightforward computation to show that for any
vectors A, B, and C of F? and any scalar s, (A + B)eC = AeC + Be_C,
Ae(B+C)=AeB+Ae(C,ands(AeB) =sAeB =AesB.

Two vectors A and B in " are said to be orthogonal iff A ¢ B = 0. We denote
thisby A L B.

If £ and M are two lines in a plane, then £ is c-perpendicular to M iff
for some distinct points Q and P in £ and some distinct points R and §
in M, (Q—P)e(R—S) = 0. In this case we write L L M, just as
we write (Q — P) L (R — S) to indicate that these vectors are orthogonal.
The “c-” added to “perpendicularity” is to remind the reader that this defini-
tion is only for coordinate space, and is different from Definition NEUT.31
(cf Theorem LC.46).

'Sometimes called the inner product. In vector space theory, the inner product of two vectors A
and B is sometimes denoted (A, B), but we will adhere to the notation A e B.
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Definition/Remark LA.13. (1) If F is one of the fields A or R, so that non-
negative numbers have square roots, define the length or norm of a vector
A = (a,a2,a3) as |Al| = VAeA = \/a® + d} + d}. Clearly |A|| = 0 iff
A =0 = (0,0,0). For any vector A = (a, a2, a3), ||”2—”|| = 1, since

Il = D+ B+ (E? = 1o + 1 + 7
flagtt = \/ llAl Al Y A Y R VA Y

2L 242
atatea o [lAI2 _
llafl? ]2 )

We say that the vector A is normalized when it is divided by its norm, thus
acquiring length 1.

(2) If F is one of the fields A or R, and A = (ay,a,a3) and B = (by, by, b3) are
two points of 3, the distance dis(4, B) between A and B is the length of the
difference vector, that is,
|A—B| = /(A—B) e (A—B) = /(a1 — b1)?> + (a2 — b2)*> + (a3 — b3)™.

(3) Let F be any ordered field; if A = (ay,a,a3) and B = (by, by, b3) are two
points (members) of I3, the c-midpoint of AB is the point

AP (adh aih eth) gy Bod o gy dct
The “c-” added to “midpoint” is intended to remind the reader that this
definition is different from that of Definition NEUT.3(C) (cf Theorem LC.47).
If IF is one of the fields A or R, and M = /# is the c-midpoint of the line
segment connecting A and B,
dis(A,M) = |[A— M|

= V(@ = (P + (@ = ()2 + (a3 — (432))?
— \/(ulgbl)Z+(u2;b2)2+(a3;b3)2 — \/(bl;al)z+(bzgaz)2+(b3;“3)2

= (b = (9529 + (b2 — (252)) + (b2 — (252
= ||B — M| = dis(B, M).

We now derive two well-known properties for norms.

Theorem LA.13.1. Let F be one of the fields A or R. If A = (ay,a,a3) and
B = (b1, by, b3) are members Of]F3 and x € I, then

(A) ||A + B|| < ||A|l + |B|| (triangle inequality);
B) XAl = |x[l|All; and
(©) A=0if|A] = 0.

This is also true for points of F>.
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Proof. We give a proof for 3, which is easily reducible to F2. The proof of (A)
depends on the Cauchy-Schwarz-Bunyakovski inequality® which we derive first.
For any numbers ay, ay, as, by, by, and b3, the following expression is greater or
equal to 0 because it is the sum of squares:
(a1by — a1by)* + (arby — azby)* + (a1bs — azb)?
(azby — a1by)* + (arby — arby)* + (azh3 — azby)?
(asby — a1b3)* + (asby — azb3)* + (asbs — azbs)?
= (a}b} —2a3b} + @2 b?) + (a3b3 —2aiazb1 by + a3b?) + (a3b3 —2arazbi by + a3b?)
+(a§b% —2aja2b1by + a%b%) + (a%b% —2a%b§ + a%b%) + (a%b% —2arasbybz + a%bg)
—i—(a%b% —2aya3b1bz + a%b_%) + (a%bg —2aya3bybs —i—a%b%) + (agbg —2a§b§ + a%b%)
> 0.
In each of the nine groupings above, the first and last term occurs again as a first
or last term in some grouping; in the next equality we combine these into a single
grouping. Likewise, each of the middle terms of these nine groupings that does not
include squared numbers is repeated; in the next equality we combine these in a

second grouping, so that

2(albt + atb3 + aib3 + adb} + @b} + a3b3 + a3bt + a3bs + a3b3)

—2(a}b} + a3b5 + a3b; + 2a1azbiby + 2ajazbiby + 2azazbybsz) > 0.
Dividing by 2 this becomes
(@} + a3 + a3) (b7 + b3 + b3) — (a1by + asbs + asb3)* > 0
as can be seen by multiplying out the last expression. This is
IAIPIB]* — (A  B)*> = 0, or |A[I*[|B|* = (A e B).

Therefore ||A||||B]| > A e B, the Cauchy-Schwarz-Bunyakovski inequality.

(A) Using this inequality,
|A+B|*>=(A+B)e(A+B)=|A|*+ 24 eB + ||B|
< AI? + 20A1IBI + IBII* = (Al + IB]))?
so that |A + B|| < (J|A|| + ||B|, as required.
(B) If x is any number, then
XA = \/)cza2 +x2a3 + x*a3 = |[xX(a3 + a3 + dd)

= xly/at + a3 + a5 = x]]All

©) |All = /al+a + a3 =0iffa; =a, = a3 = 0. |

2Some sources indicate that Bunyakovski’s contribution was to the integral or infinite-dimensional
form of this inequality. We include his name here out of deference to our late beloved co-author
Harold T. Jones, whom we remember as being quite insistent on its inclusion.
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Theorem LA.14 (Orthogonality and linear independence). IfA, As, ..., A, are
non-zero members of B> and are pairwise orthogonal (each is orthogonal to the

others), they are linearly independent.
Proof. Suppose that for some numbers x;, xa, ..., Xy, X]A1 + X242 +. .. +x,4, = O.
For each i € [1;n]
0=A;00=A;0(x1A] + 247 + ... + x,A))
=A;jexiA| +A oA+ ...+ A ex,Ay)
=x1(A;0A]) +x2(A; 0 A)) + ...+ x,(A; 0 A,).

Since A; Ay = 0 whenever j # k, this becomes 0 + 0 + A; @ x;A; = x;]|A;]|%. Since
A; # O, ||A;]| # 0 so that x; = 0. Therefore x; = x, = ... = x, = 0, showing that
the vectors Aj, A,, ..., A, are linearly independent. a

The following theorem is a standard result from elementary linear algebra.

Theorem LA.15.
(A) LetA = (ay,a2) and B = (by, by) be members of F2. Then A and B are linearly
b
dependent iff aon_ 0.
an bz
(B) LetA = (a1,a2,a3), B = (b1, b3, b3), and C = (cy, ¢z, ¢3) be members of F>.

ap bl C1
Then A, B, and C are linearly dependent iff \a, b, c,| = 0.
as b3 C3

Proof. The proof is Exercise LM.5. O

Remark LA.16. In coordinate geometry a plane is usually defined as a set

E = {(x1.x2,x3) | ax; + bx; + cx3 +d = 0} (¥)
where a, b, ¢, and d are numbers in IF, and at least one of a, b, or ¢ is nonzero. The
equation ax; + bx; + cx3 + d = 0 is an equation of the plane.

Note that if it were true that a = b = ¢ = 0, then d = 0 and every point in F3
would satisfy ax; + bx; + cx3 + d = 0. We rule out this case by requiring one of q,
b, or ¢ to be nonzero.

Most readers, being familiar with coordinate geometry, will not find it difficult
to accept equation (*) as describing a plane; but our Definition LA.1(2) (defining
a plane) is not the same as this, and a somewhat cumbersome proof is required
to show these are equivalent. In the next three Theorems LA.17 through LA.19
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we lay out the argument that this is so: a set £ satisfies equation (*) iff it satisfies
Definition LA.1(2). For those who wish to see the details worked out, the proofs of

these theorems are provided (on line) as solutions to Exercises LM.6 through LM.8.

Theorem LA.17. Let a, b, ¢, and d be members of F, where at least one of a, b, c is
nonzero; let € be the set of all points (x1, x2, x3) € F3 such that ax; +bx,+cx3+d =
0, as defined in Remark LA.16.

(A) & is a proper subset of F>.

B) If X = (x1,x2,x3) € &, there exist two other points Y = (y1,y2,y3) and Z =
(z1,22,23) in € such that X, Y, and Z are noncollinear, which is to say (by
Theorem LA.3) that the vectors Y — X and Z — X are linearly independent.

Proof. The proof is Exercise LM.6. O

Theorem LA.18. Let X = (x1,x,x3), Y = (y1,¥2,¥3), and Z = (z1,22,23) be

noncollinear points in F3, so that )((—)YZ is a plane as in Definition LA.1(2). Then

there exist numbers a, b, ¢, and d in ¥, where not all of a, b, or c are zero, such that
XYz = {(wi,wa,w3) | awy + bws + cwz +d = 0}

Proof. The proof is Exercise LM.7. O

Theorem LA.19. Let a, b, ¢, and d be numbers in F, where not all of a, b, or c are
zero. Then the set

E ={(w1,w2,w3) | aw; + bwy + cw3 +d = 0}
is a plane in F3 as defined by Definition LA.1(2). It follows immediately from
Theorem LA.18 that our two definitions of a plane are equivalent.

Proof. The proof is Exercise LM.8. O

We now turn to a series of theorems which yield, in Theorem LLA.22, a criterion
for two lines in F? to be parallel. In the next theorem we use the notation for

determinants and matrices set forth in Chapter 1 Section 1.5.
ag b1 C1
Theorem LA.20. Let the entries in the matrix | a, by c, | be numbers (in IF) such

az bz c3
that
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ay by ¢
ay by | =0. (%)
az by c3
If there exist no ordered pairs (s,t) belonging to F? such that all the equations
ais + byt = ¢y,
ars + bat = ¢, (**)
azs + byt = ¢3

ay b ay by as by

are true, then =0, and =0.

£l

as by az b3 az bz

Proof. By Theorem LA.15(B), equation (*) says the vectors A = (a1, az,a3), B =
(b1, b3, b3), and C = (cy, ¢, ¢3) are linearly dependent, so there exist numbers s, ,
and u, not all zero, such that sA + tB + uC = 0.

If u # 0, then 2A + LB + C = 0, that is to say, —>A — LB = C so all of
the equations (**) are true, contradicting our hypothesis. Therefore # = 0 so that
SA + tB = O. All the pairs of vectors (in F?) (ai,az) and (b1, b,), (a1, as) and
(b1, b3), (az,a3) and (by, b3) are linearly dependent; thus by Theorem LA.15(A),
a by

ay b ap b

=0, =0, and =0. ad

as by az bs az bs

Theorem LA.21. IfA = (a1, a2,a3) and B = (b1, by, b3) are members of F* such

that A # O, a1b, — apby = 0, a1bs — azby = 0, and a,b3 — azb, = 0, then there
exists a member k of F such that B = kA.

Proof. Since A # O, at least one of ay, ap, and a; must be nonzero.

If a; # 0, then b3 = Z—ia3, b, = Z—laz, and b; = Z—:al, so in this case k = 2

ap”
— b — Db — b in thi — b
If ay # 0, then b3 = a2a3,b2 = oa, and b = & 1,80 1n this case k = o
b b b S b
If a; # 0, then b3 = £a3, b, = éaz, and b; = ﬁal, so in this case k = ﬁ |

Theorem LA.22. Let A = (ay,az,a3), B = (b1, b,b3), and C = (cy, ¢z, ¢3) be
noncollinear points of B and let D = (dy,d,, d3) be a point distinct from C; then
ch I AB iff there exists a number k different from 0 such that D — C = k(B — A).

Proof. (I) Assume there exists a number k # 0 such that D — C = k(B — A); then
D=C+D-C)=C+k(B—A)=A+k(B—A)+ (C—A),
so that by Definition LA.1(2) D € m, and A, B, C, and D are coplanar.
By Definition LA.1(1), a point X € C('_f) iff for some #, X = C+1#(D—C). By
our assumption that D — C = k(B —A), this becomes X = C + tk(B—A). Also,
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X e 37 iff for some number s, X = A + s(B — A). If the two lines @ and (BT4>
have a point in common, there exist s and ¢ such that both these are true, so that
CH+thk(B—A)—(A+s(B—A) =(tk—s)(B—A)+(C—-A) =0, (¥
By Theorem LA.3, C — A and B — A are linearly independent, so if this is true,
both the coefficient of B — A and the coefficient of C — A must be zero, which
is impossible, since the coefficient of C — A is 1. Therefore, for every choice
of sandt, C + (D — C) — (A + s(B — A)) # O, and the lines CD and AB are
parallel.
Note that in the case where s = ¢t = 0, the left-hand side of (*) reduces to
C — A which is not equal to O because C and A are distinct.
ao If AHB I @, then (cf Chapter 2 Definition IP.0) A, B, C, D are coplanar.
By Theorem LA.4, B — A, C — A, and D — A are linearly dependent. By
Theorem LA.15(B)
by—ajcy—a d —a
by—aycy—ardy—ay| =0.
by—ayc3—az ds — a3
Since zﬁ N ﬁ) = @, there exist no members (s, #) of F2 such that
A+sB—A)—(C+tD—-C)) =0,0r
s(B—A)—t(D—-C)—(C—A) =0.
In other words, there is no member (s, f) of F? such that these three equations
hold:
s(by —a)) —t(dy —c1) — (c1 —a1) =0,
s(by —ay) —t(dy — ¢3) — (¢ —an) =0,
s(by —az) —t(dy — c3) — (c3 —a3) = 0.
By Theorem LA.20,

by —ay dy — by —ay dy —
1 —ap d Clz 1 —ap a Cl:O,and

’

by—ayd, —c; by —az d; —c3

by—ay d, — ¢,

by —az d3 — c3
Hence by Theorem LA.21 there exists a number k different from O such that
D—C =k(B—A). a

Theorem LA.23. Let £ and M be lines in a plane P  F>; then if £ and M are

c-perpendicular, they intersect.
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Proof. Let A and B be distinct points of £, and let C and D be distinct points of M,
and suppose these two lines are c-perpendicular. By Definition/Remark LA.12(3),
(B—A) e (D— C) = 0; if these lines do not intersect, they are parallel, since
both lie in plane P. By Theorem LA.22 there exists a number k # 0 such that
D — C = k(B—A) = 0; then
0=B—-A)e(D—-C)=B—-A)ek(B—A)
=k(B—A)e (B—A) =k|B—A|>
Since B— A # O, by Theorem LA.13.1(C) |B — A| # 0, so that k = 0, a

contradiction. O

214 Coordinate plane: linear Model LM2

Reflections must be done on planes, so we now explore some of the basic structure
on the plane [F? that will be needed to define them.

Throughout this section [ is one of the ordered fields Q, A, or R; we will
routinely refer to a member of I as a number, and to the additive and multiplicative
identities as 0 and 1, respectively. The dot product and norm are defined for any

vector space over one of these fields.

Definition LB.1. Model LM2 is the vector space [F2, the set of ordered pairs A =
(a1,a0) € [F2. The model also includes lines, segments, and rays as defined above in
Definition LA.1, with the substitution of F? for F>, and the substitution of ordered

pairs for ordered triples.

Remark LB.2. (A) The plane F? can be regarded as a subset of F* by identifying
each point A = (a;,a;) € F? with the point A = (a;,a,,0) € F?. We will
sometimes call this plane a “base plane” of F3. Lines, segments, and rays in
the plane F? are defined as in parts (1) and (3) of Definition LA.1, where it
is understood that points A, B, X, etc. are ordered pairs rather than ordered
triples.

(B) Let E; = (1,0) and E; = (0,1). The set £ = {(1,0),(0,1)} = {Ei, E>}
is linearly independent; every vector A = (aj,a) = a1(1,0) 4+ a»(0,1) is a
linear combination of the vectors E; and E,, which therefore constitute a basis

for F2. Hence the dimension of F? is 2.
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(C) According to Definition LA.1(1) £ is a line in F? iff there exist distinct points
A = (a1,ap) and B = (by,b;) such that L = {A + t(B—A) | t € F}. An
equivalent formulation which is sometimes useful is this: £ is a line in F? iff
there exist points A = (a;,a;) and C = (c1,c2) # (0,0) such that £ =
{A+1tC) |t e}

Remark LB.3. In coordinate geometry a line on a plane is usually defined as a set
L ={(x1,x) | ax; + bx, + ¢ = 0}

where a, b, and ¢ are numbers in [F, and at least one of a or b is nonzero; equation

ax) + bx, 4+ ¢ = 0 is called an equation of the line.

Note that if it were true that @ = b = 0, then ¢ = 0 and every point in F? would
satisfy ax; + bx, + ¢ = 0. We rule out this case by requiring one of a or b to be
nonzero.

Again, (cf Remark LA.16) most readers will readily accept the equation ax; +
bx, + ¢ = 0 as describing a line, and as in the previous section, a somewhat
cumbersome proof is required to show that this equation and our Definition LA.1(1)
are equivalent. In the next three Theorems LB.4 through LB.6 we give the argument
that this is so. For those who wish to see the details worked out, the proofs of these
theorems are provided (online at the home page for this book at www.springer.com)
as solutions to Exercises LM.9 through LM.11.

Theorem LB.4. Leta, b, ¢, d', b', and ¢ be numbers in IF, and suppose at least one

of a or b, and at least one of a’ or b’ is nonzero. Then

(A) L ={(x1,x2) | ax; + bx, + ¢ = 0} # F*

(B) there exist at least two distinct points in L; and

(C) both axy + bx, + ¢ = 0and d'x; + b'x; + ¢’ = 0 are equations for L iff there
exists a number k # 0 such that a’ = ka, b’ = kb, and ¢’ = kc.

Proof. The proof is Exercise LM.9. O

Theorem LB.5. Let X = (x1,x2) and Y = (y1,y») be distinct points in F2, and
let )(5)/ be the line containing both X and Y according to Definition LA.1(1). Then
XY = {wi,wp) | awy + bwy + ¢ = 0}, where a = y, —xp, b = x; — y1, and

Cc = X2(_)71 —xl) —xl(yz —X2).
Proof. The proof is Exercise LM.10. O

Theorem LB.6. Let a, b, and ¢ be numbers in F, where at least one of a or b is

nonzero. Then the set


www.springer.com
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L = {(w1,wr) | aw; + bwy + ¢ = 0}
is a line in F? as defined by Definition LA.1(1). It follows immediately from

Theorem LB.5 that our two definitions of a line (in a plane) are equivalent.
Proof. The proof is Exercise LM.11. O

Remark LB.7. In the following we will frequently refer to two lines £ and
M as being c-perpendicular. The reader may wish to refer again to Defini-
tion/Remark LA.12(3) where this notion is defined. Again we emphasize that this is
not (yet) the same notion of perpendicularity as was developed in neutral geometry
(cf Definition NEUT.31). In Theorem LC.46, after we have defined the “correct”
reflections over lines on F? we shall see that the two notions coincide. We may,
however, use the same symbol £ L M to indicate c-perpendicularity of the lines
L and M as we do to indicate that they are perpendicular in the sense of neutral

geometry.

Theorem LB.8. Let )ﬁ/ and Z<7V be two lines on F? according to Defini-
tion LA.1(1), where X = (x1,x3) # Y = (y1,y2) and W = (w1, w2) # Z = (21, 22)-
Then according to Theorem LB.5
>
XY ={(ti. ) |ty + bitr + ¢ = 0}
where ay = y, — Xz, by = x1 — y1, and ¢; = xp(y1 — x1) — x1(y2 — x2); also
<>
ZW = {(, 1) | axty + bata + ¢ = 0},
where ay = wy — 2o, by =21 —wy, and ¢; = (W) —21) — 21 (W2 — 22).
—
Then XY is c-perpendicular to Z<7V iff X —Y) e (Z—W) =0, which is true iff
ayay + bib, = 0.

Proof. By Theorem LB.5
X—=Y)e(Z—-W) = (x1 —y)(z —wi) + (x2 = y2)(z2 — w2)
=bib, + (-m)((_-)élz) (i)blbz +aias.
By Definition/Remark LA.12(3), XY 1L ZW iff (X — Y) e (Z — W) = 0 which, by
the calculation, is true iff b1by + aja; = 0.
Note that if the coefficients a; and b; are both multiplied by the same nonzero
number, or if a, and b, are multiplied by the same nonzero number, the condition

will remain true. d

Remark LB.9. In the equation ax; + bx; + ¢ = 0, when a = 0, x, = —c¢/b. Then
all the second coordinates of points on the line £ defined by the equation are the

same. This situation is usually described by saying that the line £ is “horizontal.”
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Likewise if b = 0 the line is “vertical.” In the proof of Theorem LB.8, those cases
where a; = 0 are exactly those where b, = 0, and those cases where a, = 0 are
exactly those where b; = 0. That is, one of the lines is horizontal and the other

(being c-perpendicular to it) is vertical.

Theorem LB.10. Let
L = {(x1,x2) | a1x1 + b1x2 + ¢; = 0} and
M = {(x1,x2) | axx1 + byxs + ¢ = 0}

be two lines in the plane F?. If they are c-perpendicular, they must intersect.

Proof. This follows directly from Theorem LA.23. A direct proof is possible using

the equations for lines as given here; the proof is Exercise LM.12. O

Theorem LB.11. Let F be either A or R; let A and B be distinct members of F2,
and let r > 0 be any number. Then there exists a unique point C on AB such that
dis(A,C) = r.

Proof. In this proof we use the fact that if F is A or R, norms exist in F2. By
Definition LA.1(3D) every point C of the ray AB is of the form C = A + (B — A)

for some number ¢ > 0. Let ¢t = m, which is > 0; then
dis(4, C) = € = Al = |4 + 127 (B = 4) = Al = | 27 (B — Al
By Theorem LA.13.1(B) this is |M|||(B —A)|=r O

Theorem LB.12. Let L be any line on F?; by Theorem LB.5 there exist numbers a,
b, and ¢ in F such that (a, b) # (0,0) and
L = {(x1,x2) | (x1,x2) € F? and ax, + bx, + ¢ = 0}
Let (1, u2) be a point on F2. Then there is one and only one line M through (uy, u»)
which is c-perpendicular to L, namely
M = {(x1,x2) | (x1,x2) € F? and bx, — ax, — bu; + au, = 0.

Proof. By Theorem LB.8, for every number d,
M = {(x1,x2) | (x1,x2) € F? and bx| — ax, + d = 0}
is a line which is c-perpendicular to £, since a(b) + b(—a) = 0. M is the line
through (u, ) which is c-perpendicular to £ iff bu; — aup + d = 0, which is true
iff d = —buy + au,. Hence
M = {(x1,x2) | (x1,x2) € F? and bx, — ax, — bu; + au, = 0}. O

Theorem LB.13. (A) Let a, b, ¢1, and ¢, be numbers in the ordered field F such
that (a, b) # (0,0), and let
L = {(x1,x2) | (x1,x2) € F? and ax; + bx, + ¢; = 0},



434 21 Consistency and Independence of Axioms; Other Matters Involving Models

and
M = {(x1,x2) | (x1,x2) € F? and ax; + bx, + ¢ = 0}
Then L and M are parallel iff ¢c; # c».
(B) Let £, M, and N be distinct lines on F% such that £ and M are c-
perpendicular and L and N are c-perpendicular. Then M and N are parallel.

Proof. (A) L |/ M iff there exists a member (x1, x) of F2 such that ax, +bx,+c, =
ax; + bx, + c,, which is true iff ¢; = ¢,.
(B) Let £ = {(x1,x2) | (x1,x2) € F?, and ax; + bx, + ¢ = 0}. By Theorem LB.12
there exist numbers d and e such that
M = {(x1,x2) | (x1,x2) € F? and bx; — ax; + d = 0}
and
N = {(x1.x2) | (x1,x2) € F? and bx; — ax, + e = 0}.
Now M = N iff d = e; since these are distinct lines, d # e. If M and N
are not parallel, there exists a member (x, x;) of F2 such that bx; —ax, +d =
bx; — ax, + e so that d = e, a contradiction. Thus M || A/, completing the
proof. O

Theorem LB.14. Let
L = {(x1,x2) | (x1,x2) € F? and ax; + bx; + ¢ = 0O}.
Let (uy, u) be a point on F? and
M = {(x1,x2) | (x1,x2) € F? and bx; — ax, — bu; + au = 0}.
be the line through (ui,u;) which is c-perpendicular to L, according to
Theorem LB.12. Then

_ _ bPuy—abur—ac  —abuy+a*ur—bc
‘C N M - (yl»YZ) - ( 1a2+b% ’ 6112+b22 )

ay1 + by, = —c
Proof. By Cramer’s rule the solution to . V2 is

—by\ + ay, = —bu; + aup

—c b
_ —buy + auy a _ —ac+b(buy—awz) __ b*uj—abur—ac
Y1 = 242 = 24b2
ab
—ba
and
a —C
_ —b —buy + au, __ a(=buiFauy)—bc __ —abuy+a’ur—bc
Y2 = = o) = PO .
ab

—ba
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It is a straightforward calculation to verify that the point (y;,y;) found above
belongs to both the lines £ and M. |

Remark LB.15. We may become more comfortable with the slightly complicated
result of Theorem LB.14 by noting the following:

(A) If a = 0 (L is a “horizontal” line), then y; = Pu up,and y, = =% = =€,

b? b2 b
Thus the line through (uy, uy) and (y;, y,) is “vertical.”
B) If b = 0 (L is a “vertical” line), then y; = _a—‘;c = —,and y, = “Z?z = uy,

Thus the line through (1, u,) and (y;, y,) is “horizontal.”

(C) In the case that (uj,up) € L,ifa = 0, up = _7" = y, and if b = 0,

up = =y
(D) Ifa#0and b # 0,and (u1,up) € £, up = =3 — 7 and

_ bruj—abus—ac __ b*uy—a(—auj—c)—ac __ 2+b? _
= 2+b2 = W) = a2yt = U
Also, if (uy, up) € L, u; = =22 — € 50 that
a a
_ —b(—buz—c)—i-azuz—bc _ bluptcb+atur—be _ a?+b? _
Y2 = PEEwA) = 2407 = Ay U = U

These calculations assure us that the formulas for the intersection point (yy, y»)

are valid, as they should be, when (uy,uy) € L.

Definition LB.16 (Mirror mapping over a line).

(A) (Coordinate-free form) Let £ be a line on F? and let U be any point of F2. Let
M be the line (whose existence is guaranteed by Theorem LB.12) such that
U € M and M is c-perpendicular to £. By Theorem LB.10, £ and M must
intersect at some point Y. Define ®(U) = Y 4+ (Y — U) = 2Y — U. For a
visualization see Figure 21.1 below.
(B) (Coordinate form) Let a, b, and ¢ be numbers in [ such that
L= {(x1,x) | (x1,x2) € F? and ax, + bx, + ¢ = 0}.
By Theorem LB.12, the unique line M which is c-perpendicular to £ and
contains U = (uy, up) is
M = {(x1,x2) | (x1,x2) € F? and bx, — ax, — bu; + au, = 0}.
By Theorem LB.14, the point of intersection between £ and M is

b*uy —abur—ac
212
Y=01,y) = atb .

—abuy +a*uy—bc
a?+b?
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Fig. 21.1 Showing action of
the mapping @ (to be named
R ¢ in Definition LC.24).

Define
OU) = P(uju)) =Y+ Y -U)=2Y-U

b2uy—abur—ac (b2 —a?)uy —2abur—2ac
-9 24D I e e
—abuy +a*ur—bc —2abuy +(a*—b¥)uy—2bc |
a2+b? uz 212

It is clear that for each line £ in F2, the mapping @ in Definition LB.16 is defined

on all points X € F2.
Theorem LB.17. In this theorem we use the notation of Definition LB.16.

(A) Every point of L is a fixed point for ®.
s
(B) For every U € F?\ L, the line M = U®(U); this line is c-perpendicular to L.
(C) The point Y of intersection of L and M is the c-midpoint of the segment
Uo().
s
(D) The line M = U®(U) named in Definition LB.16 is a fixed line for .
(B) A line N is c-perpendicular to L iff it is a fixed line for ®.

Proof. (A) U =Y, ®(U) =Y + (Y —U) = U, so points of L are fixed points
for @. This may also be calculated numerically: if U = (u,uy) € L, by
Theorem LB.14 ¢ = —au; — bu,; substituting this value into the coordinate
expression for @(U) shows that @ (uy, uy) = (uy, uz).

(B) Since @(U) = Y 4+ (Y — U), then ®(U) = Y + (—1)(U — Y) so that by
Definition LA.1(1) @(U) belongs to the line M = UY. Then both M and
s P
U®(U) contain both U and @(U); by Theorem LA.10(A) U®(U) = M, this

line was defined to be c-perpendicular to L.
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(C) The point Y of intersection of £ and M is the c-midpoint of the segment
S =]

U®d(U), since

U+oU) _ U+Y+(r=U) _ v+Y _ y
2 2 =2 — 5

(D) Let X € M but X ¢ L; by Definition LB.16, &(X) is on a line M’ which
also contains X and is c-perpendicular to £. By Theorem LB.12 there is only
one line through X which is c-perpendicular to £, so that M’ = M, so that
@ (X) € M. Therefore M is a fixed line for @.

(B) If NV is c-perpendicular to £, choose U € N so that U ¢ L; then
Definition LB.16 defines @(U) to be a point on N, and by part (D), A is a
fixed line. Conversely, if N is a fixed lineand U € M\ L, ®(U) e N = m
which by part (B) is c-perpendicular to L. O

21.5 Axiom consistency: a linear model

In this section we show that the incidence, betweenness, parallel, and Plane
Separation axioms hold in Model LM3, that every mapping & (defined by Defi-
nition LB.16) over a line £ in F? is a mirror mapping, and that the collection of
all such mappings is a reflection set. Using this result we will show that there is
a reflection set on every plane P in F3. A proof that Axiom LUB holds on Model
LM3R completes the demonstration that our axioms are consistent.

21.5.1 Incidence Axioms 1.0-1.5 are valid in a linear model

Remark LC.1. The acronym LC is meant to suggest “consistency using linear
models.”

In this subsection, we will show that the Axioms 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 are
all true for Model LM3R, and thus consistent; this proof is essential for showing the
consistency of our complete axiom set.> Most of our theorems do not require that

the underlying field F contain square roots of its non-negative members (as do A

3The proof that the incidence axioms are consistent is actually redundant, since we have already
exhibited a discrete model in Chapter 1, Section 1.9 for which all they are all true.
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and R), so will be stated for the more general context of Model LM3 or Model LM2
and a generic ordered field IF, which may be any of Q, A, or R.

Theorem LC.2. For Model LM3, Axiom 1.0 and Axiom 1.1 are both true.

Proof. Axiom 1.0 is true because lines and planes are subsets of space. To see that
Axiom I.1 is true, let A and B be any two points of F>; by Definition LA.1(1) there
exists at least one line containing both, i.e. AB. That there is only one such line is
immediate from Theorem LA.10(A). O

Theorem LC.3. Axiom 1.2 is true for Model LM3.

Proof. If A, B, and C are any noncollinear points of F3, by Definition LA.1(2) there
exists at least one plane containing all three points, i.e. ABC. That there is only one
such plane is immediate from Theorem LA.10(B). O

Theorem LC.4. Axiom 1.3 is true for Model LM3.

Proof. We show that if two points are on a plane, then a line through those points
is a subset of the plane. Let A, B, and C be any noncollinear points in F3 and let
D and E be any distinct points on the plane 1(4?{)‘ . By Definition LA.1(1) ;)_E> =
{D 4+ t(E — D) | t € F}. By Definition LA.1(2) there exist numbers u, u;, v, and
v, such that
D=A4+u(B—A)+ u(C—A)and
E=A+ v (B—A)+ v2(C—A).
If X is any point of (D_l)f, there exists a number ¢ such that X = D + t(E — D). Then
X=D+HE-D)
=A+u(B—A) +u(C—A)
1 t(vl(B —A)+ vs(C—A) —uy (B—A) — uz(C—A))
=A+ (u +1(vi —u1))(B—A) + (u2 + 1(v2 — u2))(C — A)).
Lets; = uy + t(v; —uy) and s, = up + t(vy — uy); then
X=A4+s51(B—A)+ 5(C—A)
which is a member of Zﬁ): . Therefore I()_E> - 1(4?{)‘ . a

We next prove that Axiom 1.5 is true, because it is needed to prove that Axiom 1.4

is true.
Theorem LC.5. Axiom L5 is true for Model LM3.

Proof. (A) By Definition LA.1(1), a line £ contains two distinct points A and B.
This shows that Axiom I.5(A) is satisfied.
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(B) By Definition LA.1(2), a plane P contains three noncollinear points A, B, and
C. This shows that Axiom [.5(B) is satisfied.

(C) By Remark LA.11(B), no plane contains all of F3; in particular, the four points
(0,0,0), (1,0,0), (0, 1,0), and (0, 0, 1) are noncoplanar. Therefore 3 contains

four noncoplanar points and Axiom 1.5(C) is satisfied. O

In the next series of results we will habitually refer to “points” (A, B, Gy, G») of
a plane P which is a subset of space F3. In the same discussion we will speak of the
differences between such “points” (B — A, G| — A, etc.) as “vectors” because this

seems more natural when emphasizing orthogonality and direction.

Lemma LC.6. Let P be aplane inF3, and let A = (a1, az, a3) and B = (b, b», b3)
be distinct points of P.

(A) There exists a point C = (cy, 2, c3) € of P, distinct from both A and B, such
that (B—A) L (C—A).
(B) There exists a point C = (cy, ¢2, c3) € P such that (B — A) L (C — A).

Proof. (A) If all points X € P were collinear with A and B, then by Defini-
tion LA.1(2) P would not be a plane; hence there exists a member X of P
which is not collinear with A and B.

(B) By Remark LA.11 P is a proper subset of F>, so there exists a point X ¢ P,
and A, B, and X are noncollinear because ﬁ C P does not contain X.

The following calculation is the same for both (A) and (B). If (X —A) L (B—A)
let C = X, and we are done. If (X —A) £ (B — A), then let C = (cy, ¢z, ¢3) be the

point C = A 4+ s(X — A) + t(B — A) where
1 1

T B-A)eB-A)

t

= — d
B-—A)e(X—A) "
Note that both s and ¢ are nonzero. Then
(B—A)e(C—A)=(B—-A)e(s(X—A)+t(B—A))

1
Z_Q_M.a_mw—m.a—m

1
B—A)e(B—A)=0
*w—m-w—m( )e( )
so that (B —A) L (C — A). Again, we consider the two parts separately.

(A) We have seen that C = A 4 s(X — A) + (B — A); by Definition LA.1(2), since
A, B, and X belong to P, so does C. If C = A, s(X —A) + t(B—A) = O and
X — A and B — A would be linearly dependent; by Theorem LA.3, X, A, and B
would be collinear; this was ruled out at the beginning of the proof. Therefore

C is a member of P that is distinct from A.
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(B) Again,C = A+ s(X—A) +t(B—A), wheres # 0andz # 0.If C € P, we
see that C — A = s(X — A) + #(B — A) and
X=A+YCc-4)-LB-A).
By Definition LA.1(2) X € P, contradicting our original choice for X. This
shows that C & P. |

Theorem LC.6.1. Let P be a plane in T3, and let A = (ay,a,a3) and B =
(b1, by, b3) be distinct points of P. Then there exist three points G, G,, and G3,
of T3, all distinct from A, such that

(A) Gy and G, belong to P, and for every point X € P, there exist scalars s and t
inF such that X — A = s(G; — A) + t(G, — A);

(B) the vectors G; — A, G, — A, and G3 — A are pairwise orthogonal;,

(C) for every point X € F3, there exist scalars x1, X, and x3 in IF such that X — A =
x1(Gy — A) + x2(Gy — A) + x3(G3 — A); and

(D) for every point X € F3 such that (X —A) L (G3 —A), X € P.

Proof. In this proof we shall frequently use the various statements of Remark LA.7
without further reference.

Let G; = B. From Lemma LC.6(A) there exists a point G, € P such that (G —
A) 1L (G, —A) and G, # A. By Remark LA.9(E) P — A is a subspace of F* having
dimension 2, and the vectors G| —A and G, —A are linearly independent members of
this subspace (because they are orthogonal), thus forming a basis for it. Then X € P
iff X — A € P — A iff for some scalars s and 7, X — A = s(G| — A) + 1(G, — A), that
is, X =A + s(G; —A) + (G, — A).

Moreover, by the Dimension Criterion of Chapter 1 Section 1.5, P — A and P
are proper subsets of F3. By Lemma LC.6(B) there exists a point D € [ such that
DEdP,D—AZP—A and (D—A) L (G| —A).

Since D ¢ P, and both G, and A belong to P, D, A, and G, are noncollinear; let

Q= Im By Lemma LC.6(A) there exists a point G3 € Q such that (G3 —A) L
(G, —A). Since G3 — A = 5(G, —A) +t(D —A),
(G3—A)e (G —A)=5(G,—A) e (G| —A)+t(D—A)e (G —A)=0+0=0,
so that G3 —A is orthogonal to both G, —A and G| —A. Since (G} —A) L (G, —A),
G1—A, G, —A, and G3 —A are pairwise orthogonal and thus by Theorem LA.14 are
linearly independent; thus they span [F?. This completes the proof of (C) and (B);
the first paragraph proves assertion (A).
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(D) Suppose (X —A) L (G; — A); by part (C) there exist numbers x;, xp, and x3
such that X — A = x1(G; — A) + x2(G, — A) + x3(G3 — A). Then
0=(X—-A)e(Gs—A) = (xi(GI —A) + x2(G2 — A) + x3(G3 — A)) ® (G5 — A)
=x1(G1 —A) ¢ (G3 —A) + x2(G2 — A) o (G5 —A) + x3(G3 —A) o (G3 — A)
=x1-0+x-0+x3(G3 —A) o (G3 — A) = x3]|G3 — A|>.
Since ||G3 —A| # 0,x3 = 0,sothat X — A = x1(G; — A) + x2(G, — A). By
Definition LA.1(2), X € P. a

Theorem LC.7. Axiom 1.4 is true for Model LM3.

Proof. We show that if two planes intersect, their intersection must contain at least
two points. Let P and Q be any two planes in F*, and suppose that they intersect
at some point A. By Theorem LC.6.1, there exist points Py, P, and Pj3 in F3, all
distinct from A, such that both P; and P, are members of P and the vectors P; — A,
P, — A, and P3; — A are pairwise orthogonal.

Similarly, there exist points Q;, O, and Q3 in IF3, all distinct from A, such that
both Q; and Q, are members of Q, and the vectors Q1 — A, Q> — A, and Q5 — A are
pairwise orthogonal.

Now if P; — A and Q3 — A are linearly dependent, one is a scalar multiple of
the other and the two planes P and Q are the same, because for every point X € Q,
(X—A)e(P3—A) = 0 and hence by Theorem LC.6.1(D), X € P; likewise every point
of P belongs to Q. In this case, there are infinitely many points in the intersection
and the theorem is proved.

If, on the other hand, P; — A and Q3 — A are linearly independent, by
Theorem LA.3, A, P53 and Q3 are noncollinear and by Definition LA.1(2) there exists
a plane m containing the points A, P3, and Q3.

Applying Theorem LC.6.1(B) to this plane, there exists a point ¥ € F? such that
Y — A # O and is orthogonal to both P; — A and Q3 — A. By two applications of
Theorem LC.6.1(D), Y € P and Y € Q so that Y is a point in P N Q distinct from
A. By Theorem LC.4 (Axiom 1.3) the line containing A and Y is a subset of both P
and Q, proving the theorem. O

21.5.2 Betweenness Axiom BET is valid on a linear model

Definition LC.8 (A betweenness relation on F?). Let X, Y, and Z be collinear

points in F3, and let A and B be distinct points collinear with these points. Then
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(X,Y,Z) belongs to the betweenness relation, that is to say Y is between X and Z

(notation: X—Y-Z) iff there exist distinct numbers 1, t,, and 3 such that
X=A4+1HB-A),Y=A+n(B—-A),andZ=A+1(B—A)

and t1—f,—13; that is, either t; < th, <tz 0rt; > t, > t3.

Remark LC.9. By Theorem LA.5, X, Y, and Z are distinct since #;, f,, and 3 are

distinct.

Theorem LC.10 (Betweenness is well defined). Betweenness does not depend on
the choice of A and B in Definition LC.8. That is, if A # B, and C # D are points
collinear with X, Y, and Z, then statement (A) below is true iff statement (B) is

true:

(A) there exist distinct numbers ty, t,, and t3 such that
X=A4+4HB—-A),Y=A+1B—-A),andZ=A+t:(B—A)
and ti—tr—t3;
(B) there exist distinct numbers s, s>, and s3 such that
X=C+si(D-0C),Y=C+s5(D—-C),andZ = C+ s3(D—C)

and s1—sy—S3.

Proof. By Definition LA.1(2) there exist numbers 71, t,, t3, 51, $2, and s3 such that
X=A+1H(B—-A) =C+ s1(D—-0), (1)
Y=A4+6B—-A)=C+sD-0), 2)

and Z=A+15(B—A)=C+s35(D-C). 3)

Suppose X-Y-Z according to Definition LC.8, using the points A and B; then

t—t,—t3, that is to say, either t; < , < 3 or t; > t, > t3. Subtracting (2) from

(1) we have

(h —1n)(B—A)=(s1 —52)(D-C) 4)
and subtracting (3) from (2) we have

(h—13)(B—A) = (52— 53)(D = O). (5)
Since the coefficients #t; — #, and t, — t; are nonzero, there exists a number a such
that a(t; — 1) = (¢, — t3); multiplying through equation (4) by a we get

a(ty —)(B—A) = a(s; — s2)(D — C).
The left-hand side is (r, — 13)(B — A), so by (5) we get

a(sy —$2)(D—C) = (s2 — 53)(D — O).
Now t; —t, and #, —t3 have the same sign because either t| < #, < t30rt; > t, > 13,
so a > 0 and hence s —s; and s, — s3 have the same sign, that is, either s; < s, < 53

or s; > s, > s3. Thus X—Y-Z is true using C and D in Definition LC.8. O
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Theorem LC.11 (First alternative definition of betweenness). Let X, Y, and Z
be distinct points in F3. Then X-Y-Z iff there exist distinct points A and B in F>
and numbers t), ty, and t3 with t) < t, < t3, suchthat X = A+ tH(B—A), Y =
A+ t(B—A),andZ = A + t3(B— A) are all true.

Proof. If the alternative condition is true, then #; < f, < t3; this implies that X-Y-Z
according to Definition LC.8.

If tj—t,—t3 according to Definition LC.8, either t| < t, < t3 or ] > t, > t3;
if t{ < t < t3, the alternative holds. If t; > #, > 3, X = B+ (1 — #;)(A — B),
Y=B+(1—-t)(A—B),andZ =B+ (1—t3)(A—B),and 1 —t; < 1—1, < 1 —t3 50
that X—Y-Z according to the alternative. So in either case, the alternative definition
holds. O

Theorem LC.12 (Second alternative definition of betweenness). Let X, Y, and
Z be distinct points in T3, Then X-Y-Z iff for some number s with 0—s—1 (that is,
O0<s<1),Y=X+s(Z-X).

Proof. In Definition LC.8 we may choose A and B to be any points collinear with
X,Y,andZ. LetX =AandZ =B;thenX =X+ 0(Z—X)and Z = X + 1(Z—X).
By that definition, X—Y-Z iff there exists a number s such that Y = X + s(Z — X)
and for some number s, Y = X + s(Z — X) and 0—s—1 which is the criterion of this

theorem. o

Theorem LC.13 (Segments and rays). The definitions of segments and rays given
in Definition LA.1(3) are equivalent to those given in Definitions IB.3 and IB.4 of
Chapter 4. Specifically, if we let A and B be distinct points in F* and give ;ﬁg, ;ﬁ,
etc., their meanings in Definitions IB.3 and IB.4, and if s and t denote numbers in

F, the following statements are true:

() AB={A+1(B—A)|0<t<1}
—B+(1-0A—B)|0<1<1}
—{(B+s(A—B)|0<s<1}=BA.

) AB={A+tB-A)|0<r<1)
={B+(1-nA-B)|0=t=1}
—(B+s(A—B)|0<s<1}=BA.

() AB={A+1(B—A)|0<t<1}
—B+(1-0A—B)|0<1<1}
—{(B+s(A—B)|0<s<1}=BA.
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@) AB={A+1(B—A)|0<t<1
={B+(1-0NA-B)|0<t=1}
—(B+s(A—B)|0<s<1} = BA.

(5) AB={A+1(B—A)|1> 0

6) AB={A+t(B—A)|1> 0

Proof. (1) Definition IB.3 states that X € ii—é iff A—-X—B; by the second alternative
definition of betweenness (Theorem LC.12) this means that for some ¢ with
O<t<1,X=A+1tB-A).

The proofs of (2), (3), and (4) are obvious from (1) and simple set theory

observations about the inclusion of the end points A and B.

(5) Definition IB.4 states that X € 134—3% iff A-X-B or A-B-X or X = B. By
Theorem LC.12, A—X—B means that for some r with0 < ¢ < 1, X = A+1(B—A).

Also, A—-B-X means that for some s with 0 < s < I, B = A + s(X — A),
thatis, B—A—sX+sA=B—A+5sA—sX=0,orsX =B—A + sA. Since
0<s<1, wemayletr = %, sothatt > 1,and X = A + #(B — A). Therefore
X e 2\_8% iff for some t with X = A + #(B — A), where either 0 <t < 1,¢ > 1, or
t = 1, that is, where ¢t > 0.

(6) X € ABiffX € AB or X =A, that is, for some f with 7 > 0, X = A+ 1(B—A). O

Theorem LC.14. The betweenness relation of Definition LC.S8 satisfies Properties
B.0, B.1, B.2, and B.3 of Definition IB.1. This shows that Axiom BET is valid for T3
(and hence for any plane of F3).

Proof. The properties of the betweenness relation follow immediately from Defini-
tion LC.8 and the corresponding properties of betweenness for members of the field

I, as listed in Chapter 1 Section 1.5 under the title “Number systems.” O

Remark L.C.15. Theorems LC.2 through LC.14 show that the incidence
Axioms 1.0, 1.1,1.2,1.3, 1.4, and 1.5, and the betweenness Axiom BET are consistent,

since they are all true for Model LM3.

21.5.3 Parallel Axiom PS is valid on a linear model

Theorem L.C.16. The parallel axiom PS is true for Model LM3, and therefore for
Model LM?2.
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Proof. Let L be any line in F3 and let A and B be distinct points on L. Let C be any
member of F? \ ;HB), let ¢ be any nonzero number, and let D = C + (B — A). Then
by Theorem LA.22 C<'_D> and AB are parallel to each other.

If E is a point of F? distinct from C such that CE and ;GS’) are parallel to each other,
then by Theorem LLA.22 there exists a nonzero number s such that E—C = s(B—A).
Since B— A = %(D — (), E = C + (D — C). By Definition LA.1(1) E € CD.

Hence there is a unique line through C which is parallel to fA_])B . O

Remark LC.17. We have inserted the above theorem out of the order of presen-
tation in the development, since we need Axiom PS to prove the next theorem,
Theorem LC.18.

21.5.4 Plane Separation Axiom PSA is valid on a linear model

The following three theorems show that Axiom PSA holds for every plane in F3.

Theorem LC.18. Let A, B, and C be noncollinear points in P, a plane in 3. The
C-side of zﬁ is equal to
E={A+s(B—A)+1t(C—A)| (s,1) € F? and t > O}.

Proof. (I) (£ C C-side of zﬁ.) Let X be any member of &; then there exists a
number s and a positive number 7 such that X = A + s(B — A) + #(C — A). By
Definition LA.1(1), A 4+ s(B — A) is a point on 1(4_)3 By Theorem LC.13(5), X
is a member of EA + s(B—A))C. Since we know that the incidence axioms
hold, and there exists a betweenness relation on this model, we can apply
Theorem IB.14 to conclude that X = A + s(B — A) + #(C — A) is a member of
the C-side of AB.

(II) (C-side of ;HB) C €&.) Let X be any member of the C-side of A(_)B By
Theorem LC.16 we may use Axiom PS, the strong form of the Parallel Axiom.
Let £ be the line through X which is parallel to <B_C)' . By Exercise IP.4, £ and
AB intersect at a point V. By Definition LA.1(1) there exists a number s such
that V. = A 4+ s(B — A). Using Axiom PS and Exercise IP.4, let M be the line
through C which is parallel to AB and let W be the point of intersection of (V_)X
and M. Again using Definition LA.1(1) and Theorem LC.13(5) there exists a
(unique) positive number ¢ such that V + #(W — V) = X. That is,

X=A4+s(B-A)+t(W-=V). (¥
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Since CW I A(_B), by Theorem L.A.22 there exists a number k # 0 such
that W — C = k(B — A), so that W = C + k(B — A). Also, since V € ﬁ,
by Definition LA.1(1) there exists a number v such that V = A + v(B — A).
Substituting into equation (*), we have

X=A+s(B—A)+tW-V)
=A+sB—A) +t(C+k(B—A)—(A+v(B—A)))
=A+ (s+ttk—v)(B—A)+1(C—A)
so that X € £. Thus the C-side of AB is a subset of &. O

Theorem LC.19. Let A, B, and C be noncollinear points in P, a plane in 3. Let
C’ be a point such that C'-B—C, then the C'-side of AB (which we denote by £') is
equal to {A + s(B—A) + t(C —A) | (s,1) € F? and t < O}.

Proof. This is word-for-word the proof of LC.18 except that C is replaced by C’ and
the inequality > is replaced by <. O

Theorem LC.20. Axiom PSA (The Plane Separation Axiom) is true for Model LM3
and Model LM?2.

Proof. Let A, B, and C be noncollinear points in F3.letDbea point on A<_>B and let
E be a point such that C—D-E. By Definition LA.1(2) the points A, B, and C define
the plane m‘ C 8.

Then the C-side of AB and the E-side of AB are opposite sides of AB in the
plane Zﬁ)c (cf Definition IB.11). If X is any member of the C-side of AB and Y is
any member of the E-side of zﬁ, then we show that ;\_B) N SJ(T; is a singleton (cf the
note following Axiom PSA).

By Theorems LC.18 and LC.19 there exist numbers s, 55, 7; > 0, and , < 0
such that

X=A+si(B—A) +1(C—A)andY = A + 5,(B— A) + 1,(C — A).
By Remark LC.13, X¥ = {X + u(Y —X) | u € Fand 0 < u < 1}. By
Definition LA.1(1), a point Z € ﬁ iff there exists a number v such that Z =
A 4+ v(B—A). We want to find a point U that is in both )](T? and in A<_B> that is to say,
we seek numbers ©# and v such that 0 < u < 1 and
U=X+uY —X)
=A+5(B—A) +1,(C—A)
+u(A + 5:(B—A) + ,(C—A) — (A + 51(B— A) + 1,(C — A)))
=A+s51(B—A) +uls2—s1)(B—A) +u(, —11)(C—A) + 1(C—A)
=A+ v(B—A).
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This is true iff
(S] + M(Sz — S]) — U)(B —A) + (l] + I/l(lz — tl))(C —A) =0. (*

Since A, B, and C are noncollinear, by Theorem LA.3 B — A and C — A are linearly
independent. Therefore equation (*) is true iff s; + u(s; —s;) —v = O and £, +
u(ty — 1) = 0, thatis, iff u = - and v = s; + 20225 Then

U=X+uY—X) =X+ (Y —X) e XY
and also

11 (s2—s1) <%

U=A+vB-A)=A+ (i + 550)(B-A) € AB.

Since t; > 0 and 1, < 0, it follows that 0 < u = tltTllz < 1; by Remark LC.13,
1= I . <>

X + u(Y — X) € XY, and X-~U-Y. Therefore, the segment XY intersects AB at the
point U; by Exercise 1.1, since ﬁ and ;HS’) are distinct, the point of intersection is a
singleton.

This shows that Axiom PSA holds for F3. O

Remark LC.21. Theorems LC.2 through LC.20 show that the incidence
Axioms 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5, the betweenness Axiom BET, Axiom PS,

and Axiom PSA are consistent, since they are all true for Model LM3.

21.5.5 Reflection Axiom REF is valid on Model LM2A
and Model LM2R

Remark LC.22. We return to the development of the last section, culminating in
Definition LB.16, which defined a single mapping @ over every line £ as follows:
forany U € F?, @(U) = Y + (Y — U), where Y is the point of intersection of £ and
M, and M is the line containing U that is c-perpendicular to L.

It will sometimes be useful to have the coordinate-wise definition available:
suppose the equation for L is ax; 4+ bx, + ¢ = 0, where not both a and b are

zero, and U = (uy, u); then

(P =aDuy—2abuy—2ac  —2abuj+(a*—b?)uy—2bc
czj(Mlv MZ) - ( a2+b? s 2+b2 )

and the point of intersection

_ _ (bPuy—abup—ac —abuj +a*ur—bc
Y= (1,y) = ( 242 2D2 )

Theorem L.C.23. Definition LB.16 defines a single mirror mapping over a given
line L in F2.
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Proof. Clearly Definition LB.16 defines only one mapping over the line £. We show
that the mapping @ of Definition LB.16 satisfies Properties (A), (B), (C), and (D) of
Definition NEUT.1, and therefore is a mirror mapping over £. We use the notation
from Definition LB.16, which is cited in Remark LC.22 above.

(A: Every point of £ is a fixed point for @.) This is Theorem LB.17(A). See
Exercise LM.14 for a coordinate-wise proof.

B: If U g L, then @(U) is on the opposite side of £ from U.) Since ¥ € L and
Ye U(D(U) andY # Uand Y # @ (U), then Y € jm Hence U and @(U)
are on opposite sides of L, by Definition IB.11.

(C: For every U € F?, ®(®(U)) = U.) By Theorem LB.17(D) M = m isa
fixed line for @, so that @(P(U)) € M, Y is the point of intersection of [UT(Ug
with £; substituting @(U) for U in the definition of @, we have

P@U)) =Y+ -oU) =Y+ Y-+ (Y-V)))
=Y-(¥Y-U)=U
so that @ o @ =, the identity map.

(D: @ preserves betweenness.) For this case, we use the coordinate form
of Definition LB.16 and by direct calculation show that for every triple
(u1,u2), (x1,x2), (vi,vy) of points on F?, if (uy,us)—(x1,x2)—(vy, v2), then
D (uy, ur)~D(x1, X2)-P(v1, v2).

If (x1,xp) is between (u,u;) and (v, vy), then by the second alternative

definition of betweenness (Theorem LC.12) there exists a number ¢ such that
t J—
0<t<land AL I +1 ) . Then
X2 uy + t(vy — up)
X + t(v; —
O(x1, 1)) = @ 1 —® ui ( 1 Ml)
x) uy + 1(va — u2)
2_ 2 a ac
_ (jw(ul + (v — ) — ﬁ(uz + 10y — 1)) — %)
o) (ur + (v —uy) + & 2+ (u2 + (v —up)) — 22_?_22

bz—azu _ _2ab U — 2ac
— | @+ T 2422 T 22

—2ab a2 —b? 2bc
art ot — iy

B’ —d? v 2ab v 2ac [ b*=d? U — 2ab w, — 2ac
4y 252Vl T 2+b2 27 22 212l 2+b2 27 22

—2ab 2bc 2ab 2bc

vt g 42+b2 Tv2 — 2+ (a ity az+b2 22— 2+b2>

= Q(ur, u2) + 1(P(v1, v2) — P(u1, u2)).
By Theorem LC.12, ®@(x,x;) is between @ (uy, uy) and @ (vy, v3). O
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Definition LC.24. From now on we denote the mirror mapping @ (defined over a
line £ by Definition LB.16) by R, the symbol we used in our main development
for a mirror mapping or reflection. We will sometimes refer to the mapping R as
the LB.16 mapping over the line L.

This notation anticipates the proof in the following sequence of theorems that the
set of all such mappings R is indeed a reflection set (as in Definition NEUT.2) on

A? or R?. However, most of these theorems are valid for an arbitrary ordered field F.

Theorem LC.25 (Existence and uniqueness: Properties R.1 and R.2). The set
of all mappings R on F? satisfies Properties R.1 and R.2 of Definition NEUT.2.

Proof. The proof is obvious from the fact that Definition LB.16 defines exactly one
mapping @ = R, over each line L. O

The following definition provides a way around the lack of a notion of distance
in the case that F = Q, and makes it possible to show that the set of all mappings
R on Q? satisfies Properties R.3 and R.4 of Definition NEUT.2.

Definition LC.26. Let IF be any ordered field, and let X and Y be any points of [F>.
Define qdi(X,Y) = (X — Y) ¢ (X — Y) to be the quadratic distance between X
and Y.

Remark LC.26.1. (A) If X = (x;,x;) and Y = (y;,y,) are in [F2, the quadratic
distance between X and Y is qdi(X, Y) = (x; — y1)? + (x2 — y2)>.

B) If F = AorF = R, so that IF contains square roots of its non-negative
members, dis>(X,Y) = qdi(X,Y); that is, dis(X,Y) = \/qdl(TY) =
JX=Y)e(X—Y) = |X — Y|. (Also, |X| = +/dis(X,0).) In this

environment a mapping ¢ preserves quadratic distance iff it preserves distance.

Theorem LC.27 (R preserves qdi and dis). Let F be an ordered field and let L
be any line in F? where

L ={(x1,x) | (x1,x2) € F? and ax, + bx, + ¢ = 0}
and (a,b) # (0,0). Let X = (x,x2) and Y = (y1,y>) be any points of F?, and let
R be the mapping @ over L as in Definition LB.16.

(A) Then qdi(R.(X),R.(Y)) = qdi(X,Y), that is, R, preserves quadratic
distance.
B) IfF = A orF = R (F contains square roots of its non-negative members), then
dis(Re(X). Re(Y) = [Re(X) =R (M) = |1X — Y|l = dis(X, Y),

that is, R ;0 preserves distance.
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Proof. Let Il and I, be the mappings such that for every member (x;, x,) of F?

Ii(x,x0) = 5?};)61 — Py —
Dy(x1,x) = 2% x) — Z;J_rl;,ixz - 5.
Then, by Definition LB.16 R, (x1,x2) = (I1(x1,x2), [3(x1,x2)). f X = (x1,x2)
and Y = (y1,y,) are any two points of F2, by Exercise LM.16,
qdi(R(X), Re(Y)) = qdi(Re(x1, x2), Re (1. y2))
= (N (x1,x2) = N(1.y2)* + (D, x) — L0 y2))?
= (1 —y1)? + (2 —y2)? = qdi((x1, x2), (1, y2)) = qdi(X, Y).
This proves part (A). Part (B) follows immediately by taking square roots of both

sides. O

> and

Corollary LC.27.1. Let [ be an ordered field and let L be any line in F2.

(A) Every composition of mirror mappings R a4 (as in Definition LB.16) over lines
M in F? preserves quadratic distance.

B) If F = A or F = R (F contains square roots of its non-negative members),
every composition of mirror mappings R a (as in Definition LB.16) over lines

M in F? preserves distance.

Exercise NEUT.0 shows that on a coordinate plane there can be a mirror mapping
¥ # R,. The following theorem shows that no such mapping can preserve

quadratic distance.

Theorem L.C.28. For any ordered field F, if A = (ay, az,a3), B = (by, by, b3), and
C = (c1.¢3, ¢3) are points in F* such that C € AB and qdi(A, B) = qdi(A, C), then
C =B

Proof. By Definition LA.1(3E), since C € 1]4% there exists a number ¢ > 0 such
that C = A + t(B — A), thatis, c; = a; + t(by — ay), ¢ = ap + t(by — a3), and
c3 = az + t(by — a3). If qdi(A, B) = qdi(A, C), then
(a1 —b1)* + (a2 — b2)* + (a3 — b3)* = (a1 — ¢1)* + (a2 — ©2)* + (a3 — c3)°
= (a1 — a1 — t(by — a1))* + (a2 — ay — 1(by — a2))?
+(az — a3 — t(bs — a3))*

= 2(by —a1)* + 2 (b — ap)* + (b3 — a3)?

= *((a1 — b1)*> + (a2 — b2)*) + (a3 — b3)?).
Hence? =1,sot=1and C=A + (B—A) = B. O
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Theorem LC.29 (Only R, preserves qdi or dis). Let IF be an ordered field and
let L be any line in F?; let W be a mirror mapping over L such that W # R, the
mirror mapping of Definition LB.16. Then

(A) W does not preserve quadratic distance, and
(B) if F contains square roots of its non-negative members (is either A or R), ¥

does not preserve distance.

Fig. 21.2 For
Theorem LC.29

Proof. Let A = (a;,a,) be a point not on £ such that ¥(A) # R.(A). Let C =
«—
(c1,¢2) = Re(A) and E = (e, e3) = W(A). The line AR (A) is a fixed line for
R, is perpendicular to £, and intersects £ at some point B which is a fixed point
for R, (and ¥). Choose a coordinate system so that B = (0, 0). For a visualization,
see Figure 21.2.
. % . . . .

The line A¥(A) is a fixed line for ¥, intersects £ at some point D = (di, d),
which is a fixed point for ¥ (and R ). All points of £ are fixed points for both R
and V.

We know that the mapping R preserves quadratic distance, so that
a2 + a3 = qdi(A, B) = qdi(R.(A),B) = ¢ + 3.
Assume that ¥ also preserves quadratic distance. Then
(a1 —d1)* + (a2 — d»)* = qdi(A, D) = qdi(E, D)
= (e1 —d1)* + (e2 — da). (*)

By Definition LA.1(1), since A, D, and E are collinear, there exists a number ¢
suchthat E = A + Z(D—A), thatis, ey = a1 + t(dl — al) ande; = ap + t(dz — 612).
Substituting into the right-hand side of equation (¥),

(a1 —d1)? + (aa — dr)* = (e1 — d1)* + (e2 — d)?
= (a1 + t(dy —a1) = d)* + (a2 + 1(dy — a2) — d»)?
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= (1 =ta; — (1 =1d)*> + (1 = Hay — (1 — 1)d,)?
= (1—-0*((a1 —d1)* + (a2 — d»)?)
so that (1 — £)2 = 1, which is true iff t = O or t = 2. If 1 = 0, then A = E which
is impossible because A and E are on opposite sides of £. Thus E = A 4+ 2(D — A),
thatis, e; = a; + 2(d; —ay) and ey = a; + 2(ds — ap).
Now ¥ maps A to E, and B = (0, 0) is a fixed point for both R~ and ¥, and ¥
preserves quadratic distance qdi. Therefore
a + a3 = qdi(A, B) = qdi(E, B) = &% + €3
= (a1 + 2(dy — a1))* + (a2 + 2(dr, — a2))?
= (2d) —a1)* + 2dy — ay)?
= 4d% —4dya; + a% + 4d§ —4dray + a%
= 4d? — 4dyay + 4d; — ddray + (a} + d)
so that, canceling a2 + a3 from both sides, we have
di —dyay + d5 — dray = di(dy — ay) + do(dr — a2) = 0.
Therefore the vectors D and D — A are orthogonal and the lines 1<9_D) = L and
AD = m are c-perpendicular. Since £ and AR (A) are c-perpendicular, and

there is only one c-perpendicular to a line at a point, AR-(A) = A¥(A); and A,
B, R, (A), and ¥(A) are collinear. Both R and ¥ preserve quadratic distance, so
qdi(B,R-(A)) = qdi(B,A) = qd1(B Y(A)); Re(A) and W(A) are on the same
side of £ and hence ¥(A) € BRL(Ai By Theorem LC.28, R-(A) = W(A),
contradicting the assumption that R~ (A4) # ¥(A).

Thus, ¥ does not preserve quadratic distance, and in the case where [ contains
square roots of its non-negative members (is either A or R), does not preserve
distance. O

Corollary LA.29.1 (Closure Property R.3). Let F be an ordered field and let L
be any line in F2. If ¥ is any mirror mapping over L which is a finite composition

of mirror mappings R aq, as in Definition LB.16, then ¥ = R .

Proof. If W # R, by Theorem LC.29(A) ¥ does not preserve quadratic distance;
by Corollary LC.27.1(A), ¥ does preserve quadratic distance, a contradiction. O

Theorem LC.30 (Linear scaling Property R.4). Let IF be an ordered field and let
L be any line in F2. If a is any finite composition of mirror mappings R m, over lines
M. as in Definition LB.16, and ifoz(ﬁ) = Eﬁ, where A, B, and C are collinear
points such that B € EA_C)' then B = C.
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Proof. By Theorem LC.27(A), each of the mappings R a4, preserves quadratic dis-
tance; therefore (by Corollary LC.27.1) the mapping « preserves quadratic distance;
that is, qdi(A, B) = qdi(A, C). Since B € 24_6)‘ it follows from Theorem LC.28 that
B=_"C. O

Theorem LC.31 (Angle reflection Property R.5). Let F = A or F = R so that
square roots of non-negative numbers exist and distance in F? is defined. Then there
exists a line M such that the mirror mapping R a4 (as defined by Definition LC.24)
over M maps ﬁ to CH)B, and R p (M) = M; Ry is an angle reflection for ZACB,
and dis(A, C) = dis(Ram(A), €).

Proof. Let A = (a1,a2), B = (b1,by), and C = (cy, c2) be noncollinear points
on F? so that ZACB is defined. Since in this environment the distance between two
points is defined (as in Definition/Remark L.A.13(2)) we may divide A—C and B—C
by their lengths ||[A — C|| and ||B — C|| respectively to locate points on the two rays
of the angle which are a distance 1 from C. Thus, without loss of generality, we may
assume that dis(C,A) = 1 and dis(C, B) = 1.
Let £ = 1(4_3) and let M = (@ @) be the c-midpoint of ﬁ By

Exercise LM.13 AB = L is the set of all pairs (x;,x,) € F? such that

(by — ax)x; — (by — ap)xy — a1 (b — az) + ax(by — a;) = 0.
Let M be the set of all pairs (x;, x2) € F? such that

(b1 — ar)x1 + (by — a2)xy + (ay — by)cy + (a2 — br)cy = 0.

Claim: M is c-perpendicular to £ and contains both C and M.

First, note that (by — a;)(by — az) + (—(by — a)(by — ay)) = 0, so that by the
criterion of Theorem LB.8, M L L.
To show that C is a point of M, we substitute its coordinates (cy, ¢;) into the
formula for M to get
(b1 —ap)ey + (b — ax)cz + (a1 — by)ey + (a2 — by)cr = 0.
Finally, we verify by direct calculation that M = (# @) € M. From
dis(C,A) = 1 and dis(C, B) = 1, it follows that
(a1 —c1)* + (a2 —c2)* = land (by — c1)* + (b, — )* = 1,
so that
2a1¢1 + 2acy = a% + C% + a% + c% -1
and
2bic) +2byey = b+ b3+ A+ — 1. (%)
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Substituting # and @ for x| and x,, respectively, into the formula for M, we

have

(b1 — ar) (BF2) + (b — a2) (2E2) + (a1 — bi)er + (a2 — ba)ea
= %(b% — a% + b% — a% + 2ajc; — 2bicy + 2ac5 — 2bycy),
and by (*) and (**) this last expression becomes
IW-—ad+-d+d+d+a+3—1-b—-bB—3—3+1)=0,
so that M = (@ @) € M. This proves the Claim.

Define Ryy = @ to be the mirror mapping over the line M as in Defini-
tion LB.16. We have already defined M = ‘# to be the c-midpoi(gt) of 1[47%, and
we have defined M so that M is the point of intersection of M and AB and is thus
a fixed point for R 4. By Theorem LB.17(C) M is the c-midpoint of m , that
is, M = w = /#. A simple computation shows that R r((A) = B.

Since Ro((C) = C, by Theorem NEUT.15(3) Rr«(CA) = CB. (Here we are
entitled to use Theorem NEUT.15 because we have already shown that R4 is
a mirror mapping.) Since LB.16 mirror mappings preserve distance, dis(A, C) =
dis(R a1 (A), O). |

Remark LC.31.1. In Subsection 21.7.3, Theorem RSI.3 will prove that the set of
LB.16 reflections on Model LM2Q (Q?) fails to satisfy Property R.5; the current set
of remarks shows that this set satisfies all the other reflection properties. We will

discuss the significance of this at the beginning of Subsection 21.6.4.

Theorem LC.32 (Midpoint existence Property R.6). Let F be an ordered field,
ﬂd let A and B be any distinct points of F. Let M = /# be the c-mﬂmint of
AB. Then there exists a line M containing M which is c-perpendicular to AB, and a
mirror mapping R over M such that Ryi(A) = B, Rp(M) = M, Ry(AM) =
BM, and M is a midpoint of AB.

Proof. By Theorem LB.12, the line M exists and is c-perpendicular to 1(4_B> Let
R be the mirror mapping @ of Definition LB.16 over M; by Theorem LB.17(D)
>
AR (A) is a fixed line for R o, and by definition is c-perpendicular to M, as is
AB. By Theorem LB.12 AR »((A) = AB since they both contain the point A. By
D v g sa s A RM(A)
definition AR r((A) intersects M at the c-midpoint —=*-= and we already know
that ;H?) intersects M at the c-midpoint ’#. Since these lines are the same, their

A+RmA) _ A
— =

intersections with M are the same point M, and % = M, by a simple

computation, R r(A) = B.
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Since M € M, Ryp(M) = M; by Theorem NEUT.15 (which we can use
because we have shown R to be a mirror mapping), R (ﬂ/}) — BM. Thus
by Definition NEUT.3(C), M is a midpoint of AB. O

Theorem LC.33 (Summary: Axiom REF is valid for Model LM2A and Model
LM2R). Suppose F is either A or R. Then {R | L is a line in F?} is a reflection set
on F2, where each mapping R is as in Definition LC.24. Thus Axiom REF holds
on Models LM2A and LM2R, and every mirror mapping R may legitimately be

called a reflection.

Proof. By Theorem LC.25, Properties R.1 and R.2 of Definition NEUT.2 (existence
and uniqueness) hold. By Corollary LA.29.1 Property R.3 (closure) is true. By
Theorem LC.30 Property R.4 (linear scaling) is true. By Theorem LC.31, Property
R.5 (angle reflection) is true provided F is either A or R. Finally, Theorem LC.32

shows that Property R.6 (existence of midpoint) is true. O

21.5.6 On an arbitrary plane in F*

Remark LC.34. In this subsection, [F is either the field A of real algebraic numbers
or the field R of real numbers, so that norms of vectors exist. This opens the
possibility of adding to part (B) of Theorem LC.6.1 the provision that the norms
of the vectors G; — A, G, — A, and G;3 — A are all equal to 1. For if we let
H =A+ "g’_ﬁ” ,so that ||H; — A| = || ”G'_A” || = 1, H; — A is a scalar multiple of
G; — A and orthogonality is not disturbed. For reference we repeat the statement of

Theorem LC.6.1 with this modification:

Modified Theorem LC 6.1. Let P be a plane in F3, where F is either A or R; let
= (a1, ap,a3) and B = (by, by, b3) be distinct points of P. Then there exist three
points Gy, Gy, and Gs, of F>, all distinct from A, such that

(A) Gy and G, belong to P, and for every point X € P, there exist scalars s and t
inF such that X — A = s(G) — A) + t(G, — A);

(B) thevectors G1—A, G,—A, and G3—A are pairwise orthogonal and |G —A|| =
G2 — Al = 1G5 —All = 1;

(C) for every point X € 3, there exist scalars xy, xo, and x3 in F such that X — A =
x1(G1 —A) + x2(G2 — A) + x3(G3 — A); and

(D) for every point X € F3 such that (X —A) L (G3 —A), X € P.
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Definition L.C.35. Let P be a plane in F3, where F is either A or R. Let A be
a point of P, and let G; and G, be the points of F* as defined in the Modified
Theorem LC.6.1. That is, G; — A and G, — A are orthogonal with norm 1, and for
every X € P there exist scalars s and 7 such that X — A = s(G, — A) + #(G, — A).
(By Theorem LA.3, A, Gy, and G, are noncollinear.)

For each point X = (s, f) of F? define ¢(s,1) = A + s(G, — A) + t(G, — A). We
shall refer to this mapping as a transfer mapping from [F? to P.

Remark LC.35.1. (A) By Theorem LA.6, ¢ is a bijection of F? onto P. Here G,
takes the place of B in that theorem, G, takes the place of C, and P takes the
place of A?é

(B) The main application of transfer mappings will be to facilitate the definition
of reflections on an arbitrary plane, using the reflections already defined on
[F?, determine the properties of these reflections, and show that they satisfy the
properties of Definition NEUT.2, thus confirming that Axiom REF holds on
every plane.

(C) Notice that we speak of a transfer mapping, since each choice of P, and of
points A, G, and G, on P, defines a different transfer mapping. This will not
cause difficulty, because most of our applications of transfer mappings will
be in a given environment with the plane and the points of the plane already
specified.

(D) For the record, we make no use in the following of G3, which just “goes along
for the ride.”

Theorem LC.36 (¢ and ¢~ ! preserve lines). Let F be either A or R, and
let @ be the transfer mapping which maps F? onto a plane P, as defined in
Definition LC.35.

(A) If L is a line in F2, then (L) is a line in P.
(B) If M is a line in P, then ¢~ (M) is a line in F?.
(C) Let C and D be distinct points on F2; for any point X € F>, X = C + t(D — C)
iff
p(X) = ¢(C+1(D—-C)) = ¢(C) + t(p(D) — ¢(C)).

Proof. We use the meanings of A, G, and G, as given in Definition LC.35.
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(A) Let £ be aline in F2, and let C = (cy, c;) and D = (d,, d,) be distinct points
of L. By Definition LA.1(1) and Corollary LA.10.1, X € L iff for some ¢,
X=C+tD-0).

Observe first that ¢(C) = A + ¢1(G; — A) + (G, — A) and (D) =
A+ di (G —A)+ dy(G, —A). Then forevery X € L,
p(X) = (C+1(D—C)) = ¢((c1,c2) + 1((d1, da) — (c1,¢2)))
= @(c1 +1(d1 —c1), 2 + t(dy — ¢2))
=A+ (c1 +1(dr —c))(G1 —A) + (2 + 1(dr — 2)) (G2 — A)
= (A + c1(G] —A) + c2(G, — A))
+ 1((dy — c1)(G1 — A) + (dr — 2)(G, — A))
= (A + c1(G] —A) + c2(G, — A))
+1((A+di(G1 —A) + d2(G2—A)) — (A+¢1 (G —A) + ¢2(G, —A)))
= ¢(C) + t(p(D) — ¢(C)).
Thus ¢ maps the line D into the line @(C)p(D); ¢ also maps onto this line
because every point in it is a point ¢(C) + #(¢(D) — ¢(C)) for some ¢, and so
is the image under ¢ of C 4 #(D — C).

(B) With appropriate adjustments for the fact that ¢ maps F2? onto P rather than
onto [F2, this is the proof of Theorem CAP.1(D’) from Chapter 3.

(C) By the calculation in part (A), if X = C + #(D — C), then p(X) = ¢(C +
t(D—C)) = ¢(C) +t(p(D) — ¢(C)). Conversely, suppose that ¢(X) = ¢(C) +
t(@p(D) — ¢(C)); this is ¢(C + t(D — C)), and since ¢ is one-to-one, X =
C+tD-0). |

Theorem L.C.37. Let F be either A or R, and let ¢ be the transfer mapping which
maps F? onto a plane P, as defined in Definition LC.35.

(A: ¢ and ¢! preserve intersections of lines.) Two lines L and M in F? intersect
at a point X iff the lines ¢ (L) and ¢ (M) intersect at ¢(X).

(B: ¢ and ¢! preserve betweenness.) For every X, Y, and Z in F?, X-Y-Z iff
P(X)-p(Y)-p(2).

(C: ¢ and ¢! preserve segments and rays.)

(1) For any two points X and Z in F?, go(}(_Z[) = pX)p(2), go(%(iZ]) = L(p(X)gp(Zj,
Ef . Bt 13 33
9(XZ) = 9(X)9(2), and 9(XZ) = ¢(X)¢(Z).
I =
(2) For any two points X and Z in F?, go()](%) = o(X)¢(Z) and p(XZ) =

0(X)¢(2).
1

(3) Similar results hold where ¢ is replaced by ¢ ™.
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(D: ¢ and ¢! preserve c-midpoints.) M is the c-midpoint of X7 c 12 iff (M) is
the c-midpoint of 9(XZ) = p(X)¢(2).

Proof. (A) ApointP € LNMiff P € L and P € M, which by Theorem LC.36 is
true iff (P) € ¢ (L) and ¢(P) € (M), which is true iff o(P) € ¢(L) Np(M).

(B) Using Theorem LC.12 (the second alternate definition of betweenness), X—Y-Z
iff for some number s such that 0 < s < 1, Y = X 4+ s(Z — X). By
Theorem LC.36(C) ¥ = X 4 s(Z — X) iff p(Y) = o(X) + s(¢(Z) — ¢(X));
again using Theorem LC.12, this is true iff ¢(X)—¢(Y)-¢(2).

(C) By Theorem LC.13, the definitions of Definition LA.1 for segments and rays
are equivalent to those of Definitions IB.3 and IB.4 given in Chapter 4, which

use betweenness to define segments and rays.

(1) By Definition IB.3, for any two points X and Z in F?, ¥ € STZE iff X-Y-Z,
which by part (B) is true iff ¢(X)-¢(Y)—¢(Z), which is true iff ¢(Y) €
W . The proofs for closed and half-closed segments follow from the
observation that in those case, endpoints are included.

(2) By Definition IB.4, for any two points X and Z in F2, Y € }](_Z) iff X-Y-Z or
X-Z-Y or Y = Z. Since ¢ is a bijection that preserves betweenness, this is
true iff p(X)—-@(Y)-¢p(Z) or o(X)—¢(Z)—p(Y) or p(Y) = ¢(Z), that is, iff
oY) e ?AX—)g)(Z For a closed ray the proof follows from the fact that the
endpoint is included.

1

(3) The arguments for ¢~ are similar to those just above.

(D) According to Definition/Remark LA.13(3) the c-midpoint of 5723 is the point
M = X + $(Z — X); also by Theorem LC.36(C), M = X + 3(Z — X) iff
r(p(M) = :p(X) + %((p(Z) — ¢(X)), which is true iff ¢ (M) is the c-midpoint of
0 (X)¢(Z). O

Theorem LC.38. Let IF be either A or R, and let ¢ be the transfer mapping which
maps F? onto a plane P, as defined in Definition LC.35.

(A: ¢ and dot products.) For every X = (x1,x2), Y = (y1,¥2), and Z = (21, 22) in
2, (X =2) o (Y = 2) = (¢(X) — ¢(2)) ® (9(Y) — ¢(2)).

(B: ¢ and ¢! preserve c-perpendicularity of lines.) Two lines £ and M in F?
are c-perpendicular iff (L) and (M) are c-perpendicular.

(C: ¢ and norms.) For every X € F2, | X|| = [l¢(X) — A].

(D: ¢ and ¢! preserve distance.) For every X and Z in F?, dis(X, Z) = |X—Z|| =
le(X) — @) = (dis(p(X). ¢(2))).
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Proof. (A) LetX = (x1,x2), Y = (y1,y2), and Z = (21, z2) be pairwise distinct

(B)

points of F2. Then

X—-2)e(Y—2Z)=(xi —z21,%20—22) ® (Y1 —21,Y2 — 22)
= (x1 —z20) 01 —21) + (x2 —22) (2 — 22). (%)

On the other hand,

p(X) = A+ x1(G1 —A) + x2(G2 — A),
oY) =A+y1(G; —A) + y2:(G, — A), and
p(Z) = A+ 21(G1 — A) + 22(G2 — A),
so that
P(X) —9(Z2) = (x1 —21)(G1 — A) + (x2 — 22)(G2 — A) and
e(Y) —9(2) = (1 —2)(G1 —A) + (2 — 22)(G2 — A).

Then

(p(X) —9(2)) o (0(Y) — ¢(2))
= (1 —2)(G1 —A) + (2 — 22)(G2 — 4))
(i —2)(G1 —A) + (2 — 22)(G2 — A)
= (x1 —z21)(G1 —A) e (y1 —21)(G1 — A)
+01 —21)(G1 —A) o (2 — 22)(G2 — A)
+(0 —22)(G2 —A) o (y1 —21)(G1 — A)
+(00 —2)(Gy —A) o (2 —22) (G, — A).

The second and third terms of this sum are 0, since G; — A and G, — A are

orthogonal; since

(G1—A)e (G —A)=1= (G —A) e (G2 —A),
this reduces to

1=z —21) + 04+ 0+ (2 —22) (2 — 22)

which by equation (*) is (X —Z) e (Y — Z).
Suppose £ and M are lines in F?; by Theorem LA.23 (or LB.10) they
intersect at a point Z. By Theorem LC.37(A) ¢(£) and ¢(M) intersect at
the point ¢(Z). Choose X € L and ¥ € M to be distinct from Z; then
by Definition/Remark LA.12(3) these lines are c-perpendicular iff (X — Z)
(Y —Z)=0. By part (A), this is true iff (¢(X) — ¢(Z)) e (p(Y) — ¢(Z)) = O,
which is true iff ¢(£) and ¢ (M) are c-perpendicular.

By Theorem LC.36 every line in P is the image under ¢ of a line in F?;
thus any two lines in P are images under ¢ of two intersecting lines in F2.
If ¢(£) and ¢(M) are c-perpendicular lines in P by Theorem LA.23 they
intersect at some point ¢(Z); and by Theorem LC.37(A) £ and M intersect
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at the point Z. Then by the equivalence shown in the preceding paragraph, they
are c-perpendicular, showing that ¢! preserves c-perpendicularity.

(C) We continue to use the notation of Definition LC.35. Let Z = O so that ¢(Z) =
A, and let X = Y. Then by part (A) X ¢ X = (¢(X) — A)) e (p(X) —A), and
taking square roots, | X| = [l¢(X) —A|l.

(D) In part (A) let X and Z be any points of F2, and let ¥ = X. Then for every X
and Z in F2,

dis(X,2))’ = X -Z|’ = X =2) ¢ (X - 2)
= (@(X) —¢(2)) ® (9(X) — ¢(2))
= lleX) = p@)|* = (dis(p(X). p(2)))*;
taking square roots completes the proof. o

Definition L.C.39. Let [F be an ordered field A or R, let P be any plane in [F3, and
let £ be any line on P. Define Sp = ¢ o Ry—i(y) © ¢~!. We shall refer to this
mapping as the induced mirror mapping for the line £ on P. That is, it is induced
by a mirror mapping on F? and the mapping ¢.

We may at times wish to describe an induced mapping in terms of a line on F?
instead of on the plane P; in such a case we may let N' = ¢~ !(£) or £ = p(N);

then

SpA) =9 O Ryicy 0@ ' =9poReop"

Theorem LC.40. Let F be either A or R, and let L be a line on the plane P. Then

the induced mirror mapping Sy is a mirror mapping over L on the plane P.

Proof. From Theorem LC.23 we know that the mapping R,—1() is a mirror
mapping over the line ¢~!(£) € F?, as it satisfies Properties (A), (B), (C), and
(D) of Definition NEUT.1.

(A: All points of £ are fixed under S.) Let X be any point of £. Then ¢~ (X) is a
point of ¢! (L), which consists of fixed points of Ry-1(c)> and
Sc(X) = ¢(Ry=1(0)(97' (X)) = p(¢p™' (X)) = X.
B: If X € L, Sc(X) is on the opposite side of £ from X.) Since ¢ is a bijection,
o '(X) & ¢~ 1(L). Since R,—1(c) is a mirror mapping, Rw—l(c)((p_l(X)) is on
the opposite side of ¢! (£) from ¢~ !(X) and the segment

@ X)) (Ryr0 (@ (X))
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intersects ¢! (£) at some point P. By Theorem LC.37(C)(1),
(7 O (Ry=1(2) (971 (X))
A Sl _ Yo s
=07 (X)NP(Ry-15)(97 (X)) = XS(X).
Then ¢(P), a member of L, belongs to this segment, so X and S (X) are on

opposite sides of L.
(C: 8¢ is its own inverse.) By the definition of S., and the fact that R,—1(,) is its
own inverse, being a mirror mapping,
ScoSc=¢0Ry1)0 (@™ 0p)oRy-i(r) 09~ =1.
(D: S¢ preserves betweenness.) Sy is the composition of three mappings, one

1

of which (R,-1(£)) is known to preserve betweenness because it is a mirror

1

mapping; the other two mappings are ¢ and ¢~ which preserve betweenness

by Theorem LC.37(B). Therefore S, preserves betweenness. O

Theorem LC.41. Let | be either A or R; then every induced mirror mapping Sy

on a plane P preserves distance.

Proof. By Theorem LC.38(D) both ¢ and ¢! preserve distance. By Theo-
rem LC.27(B), R,—1(,, preserves distance. Therefore Sp = ¢ 0 Ry—1(p) 0 ¢!, the

composition of these three mappings, preserves distance. O

Theorem L.C.42. IfF = A or F = R, the set of all induced mirror mappings Sy
on P is a reflection set as in Definition NEUT.2.

Proof. We show that the set of all induced mirror mappings Sy on P satisfy
Properties R.1 through R.6 of Definition NEUT.2.

R.1 and R.2 (Existence and uniqueness) For every line £ in the plane P,
Definition LC.39 defines S, to be a single mapping over L£; this is shown to
be a mirror mapping by Theorem LC.40.

R.3 (Closure) Every induced mirror mapping S, over a line £ belongs to the set of
all such mappings, whether or not it is a composition of other mappings.

R.4 (Linear scaling) By Theorem LC.41 every induced mirror mapping S, and
thus every composition of such mappings, preserves distance. By the same
argument as in Theorem LC.30, the linear scaling property holds.

R.5 (Angle reflection) Let ZACB be any angle in the plane P. By Theorem
LC.37(C)(2) ¢~ ! is a bijection of P onto F? which preserves rays, so

¢\ (LACB) = Z(p™ " (4)(¢™"(0)) (9™ (B)
is an angle in F2.
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By Theorem LC.31, there exists a line M in F? such that the mirror mapping
R p is an angle reflection for Z(¢~"(4))(¢~'(C))(¢~"(B)). Then
Ram(p~ 1 (A)) € ™1 (C)p~ ! (B). By Theorem LC.37(C)(2),
Spon(A) = p(Rm(p”' (4)))
€ p(¢ (9~ (B) = ply~ (C)y(¢™ (B)) = CB.
Therefore Sy is an angle reﬂectlon for LACB.

R.6 (Existence of a mldpomt) Let AB be any_ closed segment in P. Then by
Theorem LC.37(C), ¢! (AB) = (p_l (A)(p_l (B) By Theorem LC.32 there exists
a midpoint, that is, a point M € ¢~'(A)p~'(B) and a line M containing
M such that the mirror mapping R a4 satisfies Ra(¢ ' (A)) = ¢~ '(B) and
R(M) = M. We show that ¢(M) is a midpoint for AB.

Since Sy = @ 0 Ry—1(p(mm)) © el =gpoRpop™!,
Spm(A) = p(Ra(p™'(A))) = ¢(¢™'(B) = B
Also,
Semy (M) = p(Rm(9p™ (9(M)))) = p(Rp(M)) = o(M).
By Theorem NEUT 15 (Wthh we may use because S¢( M) isa mlrror mapping),
w(M)(‘P(M)A) w(M)(‘P(M))Sw(M)(A) — ¢(M)B
showing that ¢(M) is a midpoint of AB. O

21.5.7 Least upper bound Axiom LUB is valid on a linear
model

The following theorem is the only one in this part that requires the field [ to be
the real numbers R, not merely one that contains square roots of its non-negative

members.

Theorem L.C.43 (Axiom LUB in Model LM3R). Axiom LUB holds for any plane
in Model LM3R (based on R3). In other words, for any line L C R3 which has been
built into an ordered field, with origin O and unit U, every nonempty subset £ of L
which is bounded above has a least upper bound lub &.

Proof. By Definition LA.1(1), £ is a line in R? iff there exist distinct points A and B
of R? such that £ = {A+s(B—A) | s € R}. If welets = 0, X = A+0(B—A) = A;if
welets = 1,X = A+1(B—A) = B. For any real numbers s and ¢, if X = A+s(B—A)
andY = A+t(B—A)define X+Y =A+(s+1)(B—A)and X-Y = A+ (st)(B—A).
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With these definitions, £ is a field, where A is the origin, and B is the unit. Moreover,
the mapping ¢(s) = A + s(B—A) is an isomorphism from the set R of real numbers
onto L. Define X < Y iff s < 7. Then L is an ordered field, and the mapping ¢ is
order-preserving.

Let £ be a nonempty subset of £ which is bounded above. That is to say, £
has an upper bound Y € L. Equivalently, for some real number ¢, and every X =
A+s(B—A)e&,X=A+s(B—A) <Y =A+t(B—A), whichis true iff s < 1.
Define

E={s|seRand A+ s(B—A) e &}.

Then for every s € £, s < t, so that £ is bounded above; we know that the LUB
property holds for real numbers, so there exists a real number 7, which is the least
upper bound of £’.

Claim. A + t9(B — A) is the least upper bound of £.

(I) to is an upper bound for £ means that forevery s € £, s < 1y, s0 A+s(B—A) <
A + ty(B — A). Therefore A + to(B — A) is an upper bound for £.

(I) If A+ u(B—A) is any upper bound for &, then forevery s € £/, A+ s(B—A) <
A + u(B — A) so that s < u. Now 1 is the least upper bound of &’, so that
to < u,thatisA+ fo(B—A) <A+ u(B—A). Thus A + to(B — A) is less than or
equal to every upper bound for £, so that A 4 #,(B — A) is the least upper bound
of .

21.5.8 Axioms I.0-1.5, BET, PSA, REF, PS, and LUB
are consistent

Theorem L.C.44 (Summary showing consistency).

(A) Axioms 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, BET, PSA, REF, PS, and LUB are all true for
Model LM3R, where space is R?; hence these axioms are consistent.
(B) Model LM3R is a Euclidean/LUB space.

Proof. Theorems LC.2 through LC.7 show that the incidence Axioms 1.0, .1, 1.2,
1.3, 1.4, and 1.5 are all true on Model LM3R.
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Theorem LC.14 shows that there exists a betweenness relation on F° satisfying
Properties B.0, B.1, B.2, and B.3 of Definition IB.1, so that Axiom BET is valid for
Model LM3.

Theorem LC.20 shows that the Plane Separation Axiom PSA is true for Model
LM3.

Theorem LC.33 shows that Axiom REF is true on the plane of Model LM2A and
Model LM2R.

Theorem LC.42 shows that Axiom REF is true on any plane in A® or in R?, and
hence for Model LM3A and for Model LM3R.

Theorem LC.16 shows that the parallel Axiom PS is true for Model LM3.

Theorem LC.43 shows that Axiom LUB holds for any line £ in R* which has
been built into an ordered field; thus Axiom LUB holds for Model LM3R.

Therefore, all the axioms are true in Model LM3R; they are consistent and Model
LM3R is a Euclidean/LUB space. O

Remark LC.45. (A) In our main development (Chapters 1-20), planes and lines
were initially undefined objects, whose properties were specified entirely by the
axioms they obey. Since all our axioms hold for Model LM3R, every line and
plane defined by Definition LA.1 is a line or plane as specified in the original
development.

(B) Theorem LC.44 shows that all the axioms of our main development are true
for Model LM3R (based on R?). Thus we can invoke any of the theorems from
Chapters 1 through 20 for our space R* and plane R>.

(C) In Theorem LC.13, we showed that the definitions of segments and rays
given in Definition LA.1(3) are equivalent to their definitions as given in
Definitions IB.3 and IB.4 of Chapter 4. The next theorems will show that the
definitions of c-perpendicular and c-midpoint are equivalent, respectively, to

those of perpendicular and midpoint from the main development.

Theorem L.C.46 (C-perpendicular = perpendicular). Suppose F = A orF =R,
and let P be any plane in F3. Then two lines in P are c-perpendicular iff they are

perpendicular.

Proof. By Remark LC.45 just above, we can use any results from the main
development, including the results of Chapter 8 (NEUT). By Theorem LA.23
(or Theorem LB.10), if two lines £ and M in the plane F? are c-perpendicular
they must intersect.
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A)

(B)

By Theorem LB.17(E), a line M in F? is c-perpendicular to £ iff M is a fixed
line for R . By Theorem NEUT.32 this is true iff M is perpendicular to L.
The general case: by Theorem LC.38(B) two lines £ and M in a plane P are
c-perpendicular iff ¢! (M) is c-perpendicular to ¢~!(L). By part (A) this is
true iff ¢~ (M) is a fixed line for R,—1(,), that is,
Ry (@™ (M) € 7' (M).

This is true iff

ScM) = @(Ry=1(2) (9~ (M) S (9~ (M) = M,
that is, M is a fixed line for S;. By Theorem NEUT.32 this is equivalent
to saying that M is perpendicular to £. We can use this theorem since
Theorems LC.40 and LC.42 show that S/ is a reflection. O

Theorem LC.47 (C-midpoint = midpoint of a segment in F?). Suppose F = A

or F = R, and let P be any plane in F>. If X and Y are distinct points in F>, then a
point M is the c-midpoint of XY iff M is the midpoint of this segment.

Proof. Again we can use the results of Chapter 8 (NEUT). Also, we know that the
set of all mirror mappings R over lines £ in F? is a reflection set, as is the set of

all induced mappings S, over lines £ in a plane P.

(A)

(B)

We first prove the theorem for two points of F2. If X and Y are distinct points
on F2, then M = )% is the c-midpoint of 56; , 80 by Theorem LC.32 M is a
midpoint for this segment.

Conversely, if M is a midpoint of Xy , by Theorem NEUT.52 there exists a
line M containing M such that R »((X) = Y and R (M) = M. Since all our
reflections are defined by Definition LB.16, M is c-perpendicular to Xy , and
by the same definition, M is the c-midpoint of 56% .

In the general case, let X and Y be two points in F?, £ a line containing these
points, and let P be a plane containing £. Let ¢ be a transfer mapping from F?
onto P defined by Definition LC.35.

We first show that if M is the c-midpoint of Xy , it is a midpoint. By
Theorem LC.37(D), M is the c-midpoint of XY iff @~ (M) is the c-midpoint
of ;o_l(X)<p_lj(Y5. By part (A) above, this is so iff ¢! (M) is a midpoint of
¢~ (X)¢~!(Y). By Definition NEUT.3(C) and Theorem NEUT.52 this is true
iff there exists a reflection mapping R such that R (¢~ (M)) = ¢~ (M)
and R (¢~ (X)) = ¢~ ' (Y). This is true iff

S (M) = p(Ru (¢~ (M) = (¢~ (M) =M
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and
SennX) = (Rn (97! (X)) = 99~ ' (¥)) =,
so that by Theorem NEUT.15,
3. E SR
Sw(N)()fA/{) = Spn) (X) Sy (M) = YM,
and M is a midpoint of XY.
Conversely, suppose M is a midpoint of XY; by Theorem LC.42 the set

of all induced mappings S, on lines £ of P is a reflection set, so by
Theorem NEUT.52, there exists S, one of these reflections, such that S (X) =
Y and S (M) = M. By Definition LC.39,
Sc=¢o Ry o,
where R,—1(z) is a reflection over the line ¢~'(£) in F2. Then R -1z =
¢ ' oS, 0. Since Sp(X) =7,
Ry-10) (97 (X)) = o7 (Sclple™ (X)) = o7 (S (X)) = ¢~ (V).

Also from S;(M) = M,
Ry=110) (9™ (M) = 97 (Sclple™ (M) = ¢7H(Sc(M)) = ¢~ (M);
so that ¢ ~! (M) is a midpoint of ¢! (X)p~!(Y).

By part (A), ¢! (M) is the c-midpoint of this interval, and by Theorem
LC.37(D) M is the c-midpoint of XY. 0

21.6 Independence of Axioms

In contrast to some other treatments of geometry, this one has taken the hard road of
axiom independence. Much of the detailed and tedious work in our earlier chapters
came about because of our pursuit of this goal.

We say that Axiom A is independent of a set B of axioms iff Axiom A cannot be
logically deduced from any of the axioms in B, or from any combination of them.

If Axiom A were a logical consequence of the set 3, it would be impossible
to exhibit a model in which Axiom A is false, but all the axioms in B are true.
Therefore, exhibiting such a model shows that Axiom A cannot be proved from the
axioms in B, that is, Axiom A is independent of the axioms in B.

Ideally, we would like each axiom in our system to be independent of all the
other axioms in the system. We might call this strong independence. But strong
independence is too ambitious a goal.

It is probably not possible to construct a set of axioms equivalent to those on

our list in which no axiom can be proved from any combination of the others.
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This should not surprise us, for axioms that are added to the list often depend on
previously given axioms and may contain language from which a previous axiom
can be inferred. For example, we can’t even state the Plane Separation Axiom (PSA)
without the existence of a betweenness relation, because the definition of PSA uses
segments and their definition depends on betweenness. The same goes for Axiom
REF.

We settle, instead, for something less, called sequential independence, meaning
that each axiom in a list is independent of all those preceding it on the list.
To show this for any particular axiom, we need to find a model in which that
axiom is false, but all its predecessors on the list are true.* In our case, we
show that each of the Axioms 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, BET, PSA, and LUB
is independent of those preceding it on the list. Axiom REF is independent of
Axioms 1.0, I.1, I.5(A), BET, PSA, and LUB. Axiom PS is independent of all
other axioms except possibly for Axiom REF; the resolution of that issue appears to

belong to hyperbolic geometry, which is beyond the scope of this book.

Table of independence models
for Axioms 1.0-1.5(C), BET, PSA, REF, PS, and LUB.

Subsection | Theorem(s) | Model True False
21.6.1 FM.2-.8 Various Each of 1.0-1.5(C) is independent
discrete of the others

21.6.2 FM.10 FM.1 1.O-L5 BET
21.6.3 DZ1.5-.8 DZI (Z*) |L0-L5BET PSA
21.6.4 MLT.3-9 |MLT 1.0,.1,.5(A)(B),BET,PSA,PS,LUB | REF
21.6.5 PSM.3-5 PSM 1.0-.5,BET,PSA PS
21.6.7 LE.1 LM3A 1.0-.5,BET,PSA,REF,PS LUB

In a later section of the chapter, we give attention to the independence of
the various properties within the definitions for betweenness, mirror mappings,
and reflections. These results are perhaps less important than those showing the

independence of the axioms.

4Sometimes a model constructed for such a purpose may strike the reader as quite strange,
even bizarre; this should not be too surprising, given that we are asking it to have non-standard
properties.
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21.6.1 Incidence Axioms 1.0- 1.5 are independent (Model FM)

This subsection deals with axiom independence using finite models. We also
include, as a by-product, an “extra” proof of the consistency of the incidence
axioms, which has already been shown using linear models in Theorems LC.2
through LC.7. The models and theorems in this subsection will be named FM.n

(suggesting “finite model”).
Theorem FM.1. The incidence axioms are consistent.

Proof. For Model FM.1, let space S be the set of points {1, 2, 3, 4}; let the lines be
the six doubletons, namely {1,2}, {1, 3}, {1,4}, {2, 3}, {2, 4}, {3, 4}, all of which
are subsets of S; and let the planes be the four triples, {1,2, 3}, {1,2,4}, {1, 3, 4},
{2, 3, 4}, which are subsets of S. Clearly Axiom .0 is true.

Simple checking verifies that Axioms I.1, 1.2, .3, and 1.5 are true. Since
{1,2,3}Nn{1,2,4} = {1,2},{1,2,3} N {1,3,4} = {1, 3},
{1,2,3}N{2,3,4} = {2,3},{1,2,4} N {1,3,4} = {1, 4},

{1,2,4} N {2,3,4} = {2,4},and {1,3,4} N {2,3,4} = {3, 4},
then 1.4 is true. O

Theorem FM.2. Axiom 1.0 is independent of the other incidence axioms.

Proof. For Model FM.2, let space S consist of the set of points {1,2,3,4};
then space does not contain 0; Definition 1.0 says that space is the set of all
points, so that 0 is not a point. Let the lines be {0, 1,2}, {1, 3}, {1, 4},{2, 3},
{2, 4}, and {3, 4}, and let the planes be {0, 1,2, 3}, {0, 1,2,4}, {1, 3,4}, and {2, 3, 4}.
The first assertion of Axiom 1.0 is false because there is a line {0, 1, 2} which is not
a subset of space. The second assertion of Axiom 1.0 is false because there is a plane
{0, 1,2, 3} that is not a subset of space.
It is easy to check that Axioms 1.1, 1.2, 1.3, and L.5 are true. Since
{0,1,2,3} N {0,1,2,4} = {0,1,2},{0,1,2,3} N {1,3,4} = {1,3},
{0,1,2,3} N {2,3,4} ={2,3},{0,1,2,4} N {1,3,4} = {1, 4},
{0,1,2,4} N {2,3,4} = {2,4},and {1,3,4} N {2,3,4} = {3.4},
L4 is true. O

Without Axiom 1.0, there is nothing in Axioms I.1 through 1.5 requiring that all
the members of a line or a plane must be points. The proof just above puts a “non-
point,” namely O, into a line and a plane but not into S. Axioms 1.1 through 1.5
then apply to the points that are in the lines and planes of the model, but not to any

non-points.
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Theorem FM.3. Axiom 1.1 is independent of the other incidence axioms.

Proof. (A) The following Model FM.3(A) shows that the uniqueness part of

(B)

Axiom I.1 is independent of the other axioms and of the existence part of
Axiom I.1. Let space S be the set of points {1,2,3,4,5,6}; let the lines be
{1,2,3}, {1,2,4}, {1, 3,4}, {2, 3,4}, {1,5}, {1, 6}, {2, 5}, {2, 6}, {3, 5}, {3, 6},
{4,5}, {4,6}, and {5,6}; and let the planes be {1,2,3,4,5}, {1,2,3,4,6},
{1,5,6},{2,5,6}, {3,5,6}, and {4, 5, 6}. Then 1.0 is clearly true.

Since {1,2,3}N{1,2,4} = {1, 2}, the points 1 and 2 belong to two different
lines, so the uniqueness of 1.1 fails; however, every pair of points is contained
in a line, so the existence is true.

The triples of noncollinear points are: {1, 2,5}, {1,2, 6}, {1, 3,5}, {1, 3, 6},
{1,4,5}, {1,4,6}, {1,5,6}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {2,5,6},
{3,4,5},{3,4,6},{3,5,6},and {4, 5, 6}. Since each of these triples is a subset
of one and only one plane, Axiom 1.2 is true.

Each of the four lines {1, 2, 3}, {1, 2,4}, {1, 3,4}, and {2, 3, 4} having three
members has the following property: for each pair of points contained in the
line, if the pair is contained in a plane, then the line is contained in that plane.
Hence Axiom 1.3 is true.

Since {1,2,3,4,5} N {1,2,3,4,6} = {1,2,3,4},

{1,2,3,4,5} N {1,5,6} = {1,5},{1,2,3,4,5} N {2,5,6} = {2,5},
{1,2,3,4,5} N {3,5,6} = {3,5},{1,2,3,4,5} N {4,5,6} = {4,5},
{1,2,3,4,6} N {1,5,6} = {1,6},{1,2,3,4,6} N{2,5,6} = {2,6},
{1,2,3,4,6} N {3,5,6} = {3,6},{1,2,3,4,6} N{4,5,6} = {4,6},
{1,5,6} N{2,5,6} = {5,6}, {1,5,6} N {3,5,6} = {5, 6},
{1,5,6} N {4,5,6} = {5,6},{2,5,6} N {3,5,6} = {5, 6},
{2,5,6}N{4,5,6} = {5,6},and {3,5,6} N {4,5,6} = {5,6},
1.4 is true. Finally, 1.5 is clearly true.
The following Model FM.3(B) shows that the existence part of Axiom IL.1 is
independent of the other axioms. Let space S be the set of points {1,2, 3, 4};
let the lines be {1, 2} and {2, 3}; let the planes be the triples {1,2, 3}, {1, 2, 4},
{1,3,4}, and {2, 3, 4}. Then 1.0 is clearly true.

The existence part of Axiom I.1 is false, since there is no line containing

both the points 1 and 3.



470

21 Consistency and Independence of Axioms; Other Matters Involving Models

Every set of three noncollinear points is a plane, so Axiom 1.2 is true.

Axiom 1.3 is true because each line is a doubleton. In other words, the only
pairs of points that belong to lines are {1, 2} and {2, 3}; each of these pairs is
the line to which it belongs; so if it is a subset of a plane, the line containing it
is a subset of that plane.

Since there are only four points in space, and every plane contains three
points, the intersection of any two planes must contain at least two points, so
that Axiom [.4 is true. Alternatively, we can verify that the intersection of any
two planes contains at least two points. Simple checks verify that Axiom 1.5 is

true. O

Theorem FM.4. Axiom 1.2 is independent of the other incidence axioms.

Proof. (A) The following Model FM.4(A) shows that the uniqueness part of

(B)

Axiom 1.2 is independent of the other axioms and of the existence part of
Axiom 1.2. Let space S consist of the set of points {1,2,3,4,5}; let the
lines be {1, 2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5}, {3,4}, {3,5}, {4,5};
and let the planes be {1,2, 3,4}, {1,2,3,5}, {1,4,5}, {2,4,5}, and {3, 4, 5}.
Then Axiom 1.0 is true because every point is in S. Axiom 1.1, Axiom 1.3,
and Axiom L.5(A) are true because each line is a doubleton. Uniqueness of
Axiom 1.2 is false since {1,2, 3,4} N {1,2,3,5} = {1,2,3}, but existence is
true because every triple is contained in some plane.
Since
{1,2,3,4} N {1,2,3,5} = {1,2,3},{1,2,3,4} N {1,4,5} = {1,4},
{1,2,3,4} N {2,4,5} = {2,4},{1,2,3,4} N {3,4,5} = {3,4},
{1,2,3,5} N {1,4,5} = {1,5},{1,2,3,5} N {2,4,5} = {2, 5}
{1,2,3,5} N {3,4,5} = {3,5}, {1,4,5} N {2,4,5} = {4,5},
{1,4,5} N {3,4,5} = {4,5},and {2,4,5} N {3,4,5} = {4,5},
1.4 is true. Since every line has two points, [.5(A) is true; since every plane
contains at least three points, [.5(B) is true; the points 1, 2, 4, and 5 are
noncoplanar, so I.5(C) is true.
The following Model FM.4(B) shows that the existence part of Axiom [.2
is independent of the other axioms. Let space S consist of the set of points
{1,2,3, 4}; let the lines be {1, 2}, {1, 3}, {1,4}, {2,3}, {2,4}, and {3, 4}; and
let the planes be {1,2, 3}, {1, 2,4}, and {1, 3, 4}.
Then {2, 3, 4} is a noncollinear set of three points which is not contained in

a plane, so the existence part of Axiom 1.2 is false.
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Axiom 1.0 is true because every point is in S. Axioms 1.1 and 1.3 are
true because each line is a doubleton. Axiom 1.4 is true by verifying that the
intersection of any two planes contains at least two points. Simple checks verify
that Axiom L.5 is true. O

Theorem FM.S. Axiom 1.3 is independent of the other incidence axioms.

Proof. For Model FM.5, let space S consist of the set of points {1,2, 3,4, 5}; let
the lines be {1, 2, 3}, {1, 4}, {1, 5}, {2, 4,5}, {3, 4}, and {3, 5}; and let the planes be
{1,2,4,5},{1,3,4},{1,3,5}, and {2, 3,4, 5}. Then Axiom L0 is trivially true.

The pairs in S are {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2,4}, {2, 5}, {3, 4}, {3, 5},
and {4, 5}. Since each of these pairs is a subset of one and only one line, Axiom 1.1
is true.

The noncollinear triples in S are {1, 2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5},
{2,3,4}, {2,3,5}, and {3,4,5}. Since each of these triples is a subset of one
and only one plane, Axiom 1.2 is true, and every plane contains one of them, so
Axiom I.5(B) is true.

Axiom 1.3 is false since {1,2} € {1,2,4,5}, but {1,2,3} £ {1,2,4,5}. Since
{1,2,4,5} N {1,3,4} = {1,4},{1,2,4,5} N {1,3,5} = {1,5},
{1,2,4,5}N{2,3,4,5} = {2,4,5}, {1,3,4} N {1,3,5} = {1, 3},

{1,3,4} N {2,3,4,5} = {3,4},and {1,3,5} N {2,3,4,5} = {3, 5},
Axiom 1.4 is true.

Axiom L.5(A) is true since all lines have at least two points; direct verifica-
tion shows that every plane has at least three points that are not collinear, so
Axiom L.5(B) is true; Axiom L.5(C) is true since {1, 3,4, 5} is not a subset of any
plane. O

Theorem FM.6. Axiom 1.4 is independent of the other incidence axioms.

Proof. For Model FM.6 let space S consist of the set of points {1,2,3,4,5};
let the lines contained in S be {1,2}, {1,3}, {1,4}, {1,5}, {2,3}, {2,4}, {2,5},
{3,4}, {3,5}, and {4, 5}, i.e. the doubletons in S; and let the planes contained in
Sbe {1,2,3}, {1,2,4}, {1,2,5}, {1, 3,4}, {1,3,5}, {1,4,5}, and {2, 3,4, 5}. Then
Axiom 1.0 is trivially true. Axioms I.1 and 1.3 are both true since each line is a pair
of points.

The noncollinear triples in S are {1, 2,3}, {1, 2,4}, {1,2,5}, {1,3,4}, {1,3,5},
{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, and {3, 4, 5}. Since each of these triples is a
subset of one and only one plane, Axiom 1.2 is true.

Axiom 1.4 is false, however, since {1,2,5} N {1, 3,4} = {1}.
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Axiom L.5(A) is true because every line has two points; Axiom [.5(B) is
true because every plane has at least three points which are thus noncollinear;

Axiom 1.5(C) is true since {1, 2, 3, 4} is not a subset of any plane. O

Theorem FM.7. Each of the Axioms 1.5(A), 1.5(B), and 1.5(C) is independent of the

other incidence axioms.

Proof. (A) For Model FM.7(A), let space S be the set of points {1, 2, 3, 4}; let the
lines be the sets {1}, {1,2}, {1, 3}, {1, 4}, {2,3}, {2,4}, and {3, 4}; and let the
planes be the four triples {1, 2,3}, {1,2,4}, {1,3,4}, and {2, 3, 4}.

A simple check shows that Axioms 1.0, 1.1, 1.2, 1.3, and 1.4 are true.
Axiom L.5(A) is false because the line {1} contains only one point;
Axiom [.5(B) is true because the only sets of three noncollinear points are
planes; Axiom [.5(C) is true because there is no plane containing all points of
{1,2, 3,4}, so this set is noncoplanar.

(B) For Model FM.7(B), let space S be the set of points {1, 2, 3, 4}; let the lines be
the sets {1, 2}, {1, 3}, {1, 4}, and {2, 3, 4}; and let the planes be the four triples
{1,2,3},{1,2,4},{1,3,4}, and {2, 3,4}.

A simple check shows that Axioms 1.0, 1.1, and 1.2 are true. If a pair of
points is one of {1, 2}, {1, 3}, or {1, 4}, the line containing the pair is the same
set and hence is a subset of any plane containing the pair. If a pair of points is
one of {2, 3}, {2,4}, or {3, 4}, the only line containing it is {2, 3, 4}, and the
only plane containing it is {2, 3, 4}. Therefore Axiom 1.3 is true.

Axiom [.4 is true since the intersection of any two planes contains two
points. Axiom [.5(A) is true since every line is a pair or a triple; Axiom [.5(B)
is false, since the plane {2, 3, 4} is also a line, hence all its points are collinear;
and Axiom 1.5(C) is true since every plane is a triple, so that the points in S are
noncoplanar.

(C) For Model FM.7(C), let space S consist of the set of points {1,2, 3}, let lines
be {1,2}, {1, 3}, and {2, 3}, and let the one and only one plane be {1, 2,3} or
all space; then Axioms 1.0, 1.1, .2, and 1.3 are easily seen to be true.

Axiom 1.4 is vacuously true. Axiom 1.5(A) is true; Axiom [.5(B) is true since
there is only one plane and it consists of a noncollinear set of three points.

Axiom 1.5(C) is false because S is a plane. O

Remark FM.8. If we let space S consist of a single point 1, and let lines and planes
be the same as S (so there is a single line and a single plane), then Axiom 1.0
is obviously true, I.1, 1.2, 1.3, and 1.4 are vacuously true, and all the assertions of

Axiom 1.5 are false.
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Remark FM.9. Theorems FM.2 through FM.7 show that the incidence axioms are

strongly independent, hence sequentially independent.

21.6.2 Betweenness Axiom BET is independent
of Axioms 1.0-1.5 (Model FM)

Theorem FM.10. Axiom BET is independent of the incidence axioms, so that
by Remark FM.9(B), Axioms 1.0, L1, 1.2, 1.3, 1.4, 1.5, and BET are sequentially
independent.

Proof. Here we use Model FM.1, where S = {1,2, 3,4} (as in Theorem FM.1),
with the same definitions of lines and planes. That is, the lines are the sets {1, 2},
{1,3},{1,4},{2, 3}, {2, 4}, and {3, 4}, planes are the sets {1, 2, 3}, {1, 2, 4}, {1, 3, 4},
and {2, 3, 4}. By Theorem FM. 1, Axioms L.0 through 1.5 are true. We show that there
cannot exist a betweenness relation (which has Properties B.0 through B.3) on this
model.

Let us designate the members of S by letters, so that S = {A,B,C,D} =
{1,2,3,4}. Assume there is a betweenness relation on S which contains at least
one triple (A, B, C), that is A~-B—C. By Axiom B.0, A, B, and C are collinear and
distinct. By definition of the model, the lines are sets having two points, that is,
doubletons, so that {A, B, C} cannot be collinear; this contradicts the existence of a

betweenness relation. ad

21.6.3 Plane Separation Axiom PSA is independent
of Axioms 1.0-1.5 and BET (Model DZI)

To establish the independence of the Plane Separation Axiom (PSA) from each of
the incidence, parallel, and betweenness axioms, we develop a discrete Model DZI.
We shall use the acronym DZI in this subsection, as well as for the single theorem
to be proved later in Subsection 21.8.1.

Whenever we refer to Model LM3Q in this subsection, it will be understood that

space is Q*, where Q is the field of rational numbers.
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Definition DZI.1. (1) Space S for Model DZI is Z3, the set of ordered triples of
integers.> We denote members of Z* by capital letters, and their coordinates by
subscripted lowercase letters. For example, X = (x1,x2, x3), where xi, x, and
X3 are integers.

(2) A nonempty subset P of Z is a plane for Model DZI iff for some plane V in
Q3% P = VN Z3. (Here V is as in Definition LA.1(2).) Since the definition
requires that P be nonempty, there must exist at least one point A € V such that
all the coordinates ay, a,, and a3 are integers.

(3) A nonempty subset £ of Z* is a line for Model DZI iff for some line M in
Q3 £ = M N Z3 (Here M is as in Definition LA.1(1).) Since the definition
requires that £ be nonempty, there must exist at least one point A € M such

that all the coordinates a1, a;, and a; are integers, so that A € L.

Theorem DZI.2. Let A be a member of 7, and let B be any member of Q3, and let
M = ﬁ, a line in Q3. Then

(A) at least one member C of M \ {A} belongs to 7.°, and hence to L = M N Z3;
(B) infinitely many members of M belong to L = M N Z>.

Proof. By Definition LA.1(1),
MN{A}={A+t(B—A)|teQ and t # 0}.

Since B—A is a member of Q3\ {(0, 0, 0)}, each of its coordinates b, —ay, by —a, and
b3 — a3 is a rational number which can be expressed as the quotient of two integers
whose greatest common divisor is 1. If we let ¢ be the least common multiple of the
denominators of the coordinates of B— A, then each of the coordinates of #(B—A) is
an integer and #(B — A) € Z>. Then since A € Z>, the point C = A+ t(B—A) € Z°,
and since t # 0, C # A, proving part (A). Part (B) follows immediately from the
observation that for any integer k, the point A + kt(B — A) € Z3. O

Thus, if M is any line in Q3, M N Q7 is a line in Z3 iff it contains at least one

point of Z3.

Definition DZI.3. Let A, B, and C be distinct members of Z3. Then B is between
A and C (that is, A-B-C) iff there exist distinct members P and Q of Z and integers
a,b,and c suchthat A =P+ a(Q—P),B=P+b(Q—P),C =P+ c(Q—-P),

and eithera < b <c,orc < b < a.

5«77 is the first letter of the German word “Zahl” for number.
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Theorem DZ1.4. Let A be a member of 77, and let B and C be any members of
Q? such that A, B, and C are noncollinear, so that V = m is a plane in Q. Let
P =V N Z> Then for any point X € V there exists some integer u # 0 such that
A+ u(X —A) € P\ {A}; moreover, for every integer k, A + ku(X — A) € P.

Proof. Since X € V, by Definition LA.1(2), there exist rational numbers s and ¢
such that X = A 4 s(B — A) + t(C — A); then by the proof of Theorem DZI.2, there
exists an integer u # 0 such that A + u(X — A) # A has integer coordinates, and for
any integer k, A + ku(X — A) has integer coordinates and is a member of Z>. Then
A+ kuX—A) =A+ku(A+s(B—A)+1(C—-A)—A)
= A+ kus(B—A) + kut(C —A) € P,
since by Definition LA.1(2), A 4+ ku(X — A) € V. |

Theorem DZI1.5. Each of the Axioms 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and BET is true for
Model DZI.

Proof. (1) Since lines and planes for Model DZI are subsets of Z3, Axiom L0 is
true for DZI.

(2) If A and B are distinct members of Z°, by Theorem LC.2 (or Theo-
rem LA.10(A)) there is exactly one line A(_)B in Q3 containing both A and
B. Since every line in Z3 is the intersection of a line in Q* with Z3, there is
exactly one line in Z3 containing both A and B. So Axiom I.1 is true for Model
DZI.

(3) Let A, B, and C be noncollinear members of Z3; by Theorem LC.3 (or
Theorem LA.10(B)) there exists a unique planem in Q3 through these points.
Since every plane in Z3 is the intersection of a plane in Q* with Z>, there is
exactly one plane in Z3 containing A, B, and C. So Axiom 1.2 is true for Model
DZI.

(4) Let A and B be any points of Z>; let P be any plane for Model DZI containing
A and B. Then by Definition DZI.1(2) there exists a plane V in Q*® such that
both A and B are members of P = V N Z3. By Theorem LC.3, AB C V, so that
1<4_B> N7Z>cynzi. By Definition DZI.1(3), 1(4_3) N Z3 is the unique line in 73
containing both A and B, and this is a subset of P. Thus Axiom 1.3 is true for
Model DZI.

(5) LetP; and P, be planes for Model DZI, which have the point A in common. Let
V) and V), be the planes for Model LM3Q such that Z*NV, = P and Z* NV, =
P,. By Theorem LC.7, Axiom 1.4 holds for Model LM3Q, so there exists a
member B of V; NV, such that B # A. Then by part (4) above, 1<4_B) CVY N,



476

6

)

21 Consistency and Independence of Axioms; Other Matters Involving Models

By Theorem DZI.2 there exists a member C of AB such that C € 77 \ {A};
therefore
CeWinW)NZP=WNZHNWV,NZ) =P NPy,

and C # A. Therefore Axiom 1.4 is true for Model DZI.
By Definition DZI.1(3) £ is a line in Z? iff for some line M in Q3, £ = MNZ?;
L is nonempty so it must contain at least one point A; by Theorem DZI.2, there
is at least one other point in £, so that Axiom [.5(A) is true.

By Definition DZI.1(2) P is a plane in Z? iff for some plane V in Q°,
P = V N Z% P is nonempty so it must contain at least one point A; by
Definition LA.1(2) there exist two points B and C in V such that A, B, and
C are noncollinear. By Theorem DZI.4 there exist integers u % 0 and v # 0
such that D = A 4+ u(B— A) and E = A 4+ v(C — A) are members of P, and
D # Aand E # A.

Claim: A, D, and E are noncollinear. If £ € ;\_D), then for some integer ¢,

E=A4+tD—-A)=A+tA+uB—A)—A) =A+muB—-A)

so that E € ﬁ; but then E = A + v(C — A) = A + tu(B — A) and hence
v(C — A) = tu(B — A) which is true only if v = ftu = 0, since B — A and
C — A are linearly independent by Theorem LA.3. This implies that E = A
which contradicts Theorem DZI.4 which says that E # A. Thus A, D, and E are
noncollinear and Axiom I.5(B) is true.

Finally, the points (0, 0, 0), (1,0,0), (0, 1,0), and (0,0, 1) are noncoplanar
showing that Axiom 1.5(C) is true.
The proof of Theorem LC.14 holds for Model DZI, where the properties of
betweenness for integers as listed in Chapter 1 Section 1.5 under the title

“Number systems” are substituted for the same properties for the field F. O

Theorem DZI1.6. The parallel axiom PS is true for Model DZI.

Proof Let L be a line in Z* for Model DZI and let H be a member of Z3 \ L.
By Definition DZI.1(3) there exists a line M for Model LM3Q in @’ such that
L = M N Z3. Since Axiom PS holds for Model LM3Q, there exists a unique line
N C Q? through H which is parallel to M. Let J = Z*NN. By Definition IP.0(B),
NN M = @and N and M are coplanar. By elementary set theory

LNT=MNZHYNWNNZ) =0

and £ and J are coplanar. So £ || J. Since A is unique, J is unique. |
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Definition DZL.7. Let P be a plane in 73, that is, for Model DZI, and let £ be a
line in P, and let M be the line for Model LM3Q such that £ = M N Z3. Then

(A) aset & is a side of £ (contained in Z?) iff £ = F N Z? and F is a side of M
(in Q%);

(B) two sets £ and &, are opposite sides of L iff F; and JF, are opposite sides of
M (@(nQ*), & = FiNZ and & = F>, N 7.

Theorem DZI1.8. The Plane Separation Axiom PSA is false for Model DZI.

Proof. Let L be the line for Model DZI through (0, 0,0) and (1,0, 0). The points
(0,1,0) and (0, —1, 0) are on opposite sides of L since
(0.1,0)0.~1,0) N = {(0.0,0)}.
The point (1, —1, 0) is on the (0, —1, 0)-side of L since
(1,—1,0)(0,—1,0) L = @.
Therefore (0, 1,0) and (1, —1, 0) are on opposite sides of L. Let M be the line for
Model LM3Q such that £ = M N Z3;let N = (0,1,0)(1, —1,0), a line in Model
LM3Q,andlet 7 = N NZ3>. Then MNN = {(2,0 0)} ¢ Z3,sothat LN T = 0.
Thus the segment (in Model DZI) m is empty, and does not intersect
L; therefore Axiom PSA is false for Model DZI. m|

Remark DZ1.9. (A) Theorems DZI.5, DZI.6, and DZI.8 show that Axiom PSA is
independent of each of the following axioms: 1.0, I.1, 1.2, 1.3, 1.4, .5, BET,
and PS. This is a stronger result than is needed to show that Axiom PSA is
independent of all preceding axioms.

(B) One additional result based on Model DZI, Theorem DZI.10, is included
later in Subsection 21.8.1; we put it there because it is relevant to the larger
discussion in that section showing that the incidence and betweenness axioms

are not adequate for developing a satisfactory geometry.

21.6.4 Axiom REF is independent of Axioms 1.0, 1.1, 1.5(A),
BET, PSA, PS, and LUB (Model MLT)

In Theorem RSI.3 of Subsection 21.7.3, we will prove that the set of LB.16
reflections on Model LM2Q (Q?) fails to satisfy Property R.5; that this set
satisfies all the other reflection properties was established in Subsection 21.5.5
Theorems LC.25 through LC.33. One might be tempted to think that this establishes
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the independence of Axiom REEF, but that is not so; it does not rule out the possibility
that there could exist another set of mirror mappings on Q? which would satisfy all
of Properties R.1 through R.6, in which case Axiom REF would hold.

The result we offer with respect to the independence of Axiom REF is the fol-
lowing, in which we display the Moulton plane, invented in 1902 by the American
astronomer Forest Ray Moulton.® Points in the Moulton plane are the points in the
coordinate plane R?, and lines are ordinary lines of this plane, with the exception
that lines with a negative slope “break” where they pass from the left side to the
right side of the y-axis, their slope on the right side being double that on the left.

We will show that in such a plane, Axioms 1.1, 1.5(A), 1.5(B), BET, PSA, PS,
and LUB are all true, but Axiom REF is false, thus proving that Axiom REF is
independent of this set of axioms. Axioms 1.0, 1.2, 1.3, 1.4, and 1.5(C) deal with
space; since we are dealing with a model for a plane we do not consider them. It
could be an interesting challenge to construct a space S in which the Moulton plane
could be embedded, and in which all axioms other than Axiom REF hold. We have
not pursued this possibility.

Definition MLT.1. For Model MLT (the Moulton plane), the plane is the
Euclidean plane R?, that is, the vector space consisting of all ordered pairs (x, y) of

real numbers.

(A) A line for Model MLT is a set of one of the following types:
Type V (vertical line): {(c,y) | y € R}, where ¢ is some real number;
Type H (horizontal line): {(x, d) | x € R} where d is some real number;
Type P (positive slope line): {(x,y) | y = ax + b and x € R}, where a > 0
and b are real numbers; or
Type N (negative slope broken’ line):
{(x,y) |[y=ax+bandx <0} U {(x,y) | y=2ax+ b and x > 0};

where a and b are real numbers and a < 0.

SMoulton, Forest Ray (1902), A Simple Non-Desarguesian Plane Geometry [16], Transactions
of the American Mathematical Society (Providence, R.I.: American Mathematical Society) 3 (2):
192-0195, ISSN 0002-9947, JSTOR 1986419. The “non-Desarguesian” property is related to,
but different from the nonplanar “Proposition of Desargues” which we proved in Chapter 1 as
Theorem I.10.

"Here we take “broken” to mean that the line is continuous but its slope is discontinuous at the
point where it crosses the y-axis
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(B)

©)

D)

B

F)

We will need, on occasion, to distinguish lines and segments in the the
coordinate plane Model LM2R from those in Model MLT, and we will do this
by the following notational conventions lines and segments in Model LM2R
will be designated as L., ABC, ABC, ABC, and ABC, etc. L1nes and segments in
Model MLT will be designated L,,, ABm, AB,,,, ABm, and ABm, etc.

If £ is a line in either model which intersects the y-axis, then {(x,y) € L |
x < 0} will be called its left-hand ray or simply the left ray (in symbols,
Ir(£)), and {(x,y) € L | x > 0} its right-hand ray or simply the right ray
(in symbols, rr(L)). Note that both rays include the point of intersection with
the y-axis. For a type N line, which is the union of two LM2R rays, the slope
of the left (right) ray will mean the slope of the Model LM2R line containing
that ray. The slope of a line £ or ray XY will be denoted by the symbol s/(L) or
sl(xY).

The terminology of right and left ray will often be used for lines of type N,
but will also apply to lines of type P and type H, where the two rays have the
same slope. It should also be observed that for any line £ with slope, that is,
of type P, H, or N, si(Ir(L)) > si(rr(L))—equality occurs if L is of type P or
type H.

If a line £ in R? is not vertical, for every point C = (c;,c;) € R? there exists
apoint A = (aj,ay) € L with a; = cy;if a; < ¢, we say that C lies above £
(and above A); if a, > c,, C lies below £ (and below A).

If a line £ in R? is vertical, then for every point C = (cy,¢3) € R2 there
exists a point A = (a1, ay) € L with a, = ¢; if ¢; > a; we say that C lies to
the right of £ (to the right of A); if ¢; < a;, C lies to the left of L (to the left
of A). In either case, the line ;1_6)‘6 is a horizontal line.

We shall refer to {(0,y) | y € R} as the y-axis of the plane, and to {(x,0) | x €
R} as the x-axis of the plane.

We define an order relation on any line in Model MLT as follows:

(1) If Lis a vertical line, and P = (a, b) and Q = (a, c¢) are pointson L, P < Q
iff b < c.

(2) If L is of type H or type P, it is a line in Model LM2R; it intersects the
y-axis at some point O, which we take as the origin. Let U be the point a
distance 1 (along the line) to the right of O; this will be the unit. For each
real number r define a(r) = rU. For any two points P and Q on L, define
P < Qiffa"(P) < a~!(Q). This definition yields an ordering “<” on £
according to Definition ORD.1.
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(3) If £,, is a line of type N in Model MLT, let M, be the line (in Model
LM2R) containing the left-hand ray of £,, and M’.. the Model LM2R line
containing the right-hand ray. Then M. N M’. = {O} where O is a point
on the y-axis. Let O be the origin for both M, and M’., and let U be the
unit for M., U’ the unit for M’., and V = —U. The left ray of L,, is W,
and the right ray of £,, is 57'

Let « be the mapping (as defined in (2)) from R onto M, and o’ the
corresponding mapping from R onto M’,.. Define § as follows: for any
real number r, if » < 0 define 8(r) = a(r); if r > 0 define B(r) = o/(r);
and define B(0) = O. Define P < Q iff B~'(P) < B~(Q). Then “<”
orders the line M according to Definition ORD.1. (The proof of this is
Exercise MLT.6.)

Note that if P is on the left ray and Q is on the right, then P < Q.

Remark MLT.1.1. (A) By Exercise MLT.4, every line in coordinate space Model
LM2R or in Model MLT that is not vertical intersects every vertical line.

(B) From Subsections 21.5.1, 21.5.2, 21.5.3, and 21.5.4 we know that in the
coordinate plane the incidence, betweenness, parallel, plane separation, and
LUB axioms hold. We now show that all these axioms (which can be stated for

a plane) hold in the Moulton plane.

Theorem MLT.2. In the Moulton plane, let L and M be distinct lines having
negative slope. Then the left ray of L has the same slope as the left ray of M iff
both right rays have the same slope iff L || M.

Proof. The first equivalence is obvious, since the slope of the right ray is twice that
of the left ray.

Suppose now the left rays have the same slope and the right rays have the same
slope. Distinct lines on the coordinate plane are parallel iff they have the same slope,
so that neither the left rays nor the right rays of £ and M can intersect, and hence
L M.

To prove the converses, assume that £ || M; let (0,b) and (0, ¢) be the center
points (that is, the points of intersection of the line with the y-axis) of £ and M,
respectively, and choose the notation so that b > c.

If the slope of the left ray of L is less negative than the slope of the left ray of M,
these rays will intersect, contradicting our assumption that the lines are parallel. If

the slope of the left ray of £ is more negative than the slope of the left ray of M, the
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rays do not intersect; however, their right rays will intersect, and this contradicts the
parallelism of the two lines. Thus the left rays must have the same slope. A similar

argument shows that the right rays must have the same slope. O

Theorem MLT.3 (Incidence axioms). The incidence Axioms 1.1, L15(A),
and 1.5(B) are true on Model MLT.

Proof. Axiom L.5 (A) is obviously true since every line in the model has more than
one point. Axiom [.5(B) is true because given a line, there exist points not on that
line. (Again, we do not deal with Axioms 1.0, 1.2, 1.3, 1.4, or [.5(C), because these
involve space.)

We show that Axiom I.1 holds: there exists exactly one line A(_)Bm through two
distinct points A and B. We know that in the coordinate plane, there is a line ﬁc
through two such points. If 1(4_B>C is vertical or horizontal or has positive slope, let
AB,, = AB..

If the slope of ZX_B)C is negative, it is not a line in Model MLT. In this case, if A and
B are on the same side of (or possibly on) the y-axis, let P be the point of intersection
of 1(4_B>C and the y-axis.

If A and B are on the left side of (or possibly on) the y-axis, define ﬁm to be
the union of PA and PH>C where C is on the right side and the slope of PH)C is twice
the slope of ;TA) Then ﬁm is the unique Model MLT line through both A and B. A
similar argument will produce the same result if A and B are on the right side of (or
possibly on) the y-axis.

Now suppose A = (ay, az) is on the left side of the y-axis, and B = (b, b,) is on
the right side, still assuming that the coordinate line connecting them has negative
slope. Then a; < 0 and b; > 0.

—a1by + 2bjar . . .

Letc = W; then the point P = (0, ¢) lies on the Model MLT line
through both A and B. For the slope of the left-hand ray PA is — cza_ h-a

aq - 2b1 — a) ’
f by — by —
and the slope of the right-hand ray ITé is 2b - 22[: e , which is twice the
1 1 —ai

left-hand slope.
The proof of uniqueness, that any Model MLT line passing through A and B must
also contain the point P = (0, ¢), is Exercise MLT.1. O

Theorem MLT.4 (Axiom BET). Axiom BET is true on Model MLT; that is, there

exists a betweenness relation on Model MLT.
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Proof. Let A, B, and C be any three collinear points on Model MLT. If these three
points lie on a line of type V, H, or P, or if they all lie on either the left or right
ray of a line of type N, define A-B—C iff A—-B—C as points in Model LM2R. Since
our definition of ray includes the endpoint with first coordinate 0, this includes the
possibility that one of these points lies on the y-axis.

If A, B, and C lie on a line £ of type N, and two of them, say A and B, lie on one
of its rays, whilst C lies in the other ray, there are two cases:

(Case 1: one of A or B is on the y-axis.)

(Subcase 1A: B is on the y-axis.) Define A-B-C (equivalently, C—B-A);

(Subcase 1B: A lies on the y-axis.) Define B—A-C (C-A-B).

These subcases are mutually exclusive because A and B are distinct points, and
cannot both belong to the y-axis.

(Case 2: neither A nor B lies on the y-axis.) Let W be the point of intersection of
the ray containing A and B with the y-axis;

(Subcase 2A A—B-W as points in Model LM2R.) Define A—-B-C (C-B-A);

(Subcase 2B) B-A-W as points in Model LM2R.) Define B-A-C, (C-A-B).
These subcases are mutually exclusive because by trichotomy for Model LM2R, we
cannot have both A—-B—W and B-A—W. Therefore, in either case, A—B—C and B-A-C
are mutually exclusive.

By definition, the betweenness relation described just above satisfies Property
B.0 and Property B.1 of Definition IB.1. To show Property B.2, trichotomy, we
need only consider sets {A, B, C} of points which are not all on a Model LM2R line,
and are not all on one or the other of the rays of a line of type N—for in these cases,
trichotomy already holds from Model LM2R.

That is, we consider only sets {A, B, C} where two points are on one ray (possibly
on the y-axis) and the remaining point is on the other ray of a line of type N (but not

on the y-axis). The possibilities are:

1) A and B are on one ray (possibly on the y-axis) and C is on the other. In this
case, the possibilities are A-B—C and B-A-C.

2) B and C are on one ray (possibly on the y-axis) and A is on the other. In this
case, the possibilities are B-C-A and C—-B-A.

3) A and C are on one ray (possibly on the y-axis) and B is on the other. In this
case, the possibilities are A-C-B and C-A-B.
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As pointed out above, in each possibility the two alternatives are mutually
exclusive. Thus, if A—-B—C, B-A—C is ruled out by 1) and A-C-B is ruled out by
2); if B-A—C, A—B—C is ruled out by 1) and A—C-B is ruled out by 3); if A-C-B,
C-A-B is ruled out by 3) and C—B-A is ruled out by 2). It follows that for any
collinear points A, B, and C exactly one of A—-B-C, B—A—C, and A—C-B can be true;
this establishes trichotomy, Property B.2.

Finally, we show that Property B.3, extension, holds. If A and B are distinct
points and the slope of the line ﬁ is positive, or zero, or if Iﬁ is vertical, then by
the extension property for the coordinate plane Model LM2R there exists a point C
such that A-B—C in Model MLT. If A and B are distinct points on a line £,, of type
N, there are three cases:

(Case 1: both A and B lie on the same side of the y-axis, but neither lies on the
y-axis.) Let X be the point of intersection of £, with the y-axis. Then either A—-B-X
or B—A-X; in the first instance, choose C = X; then A—-B—C in Model MLT. In the
second instance, by the extension property for betweenness in Model LM2R choose
C such that A—-B—C in Model LM2R; then C € % so A—B—C in Model MLT.

(Case 2: both A and B lie on the same side of the y-axis, and one of them lies
on the y-axis.) If A is on the y-axis, by extension for betweenness in Model LM2R
choose C such that A-B—C in Model LM2R; then C e ;Té so A—B—C in Model MLT.

If B is on the y-axis, since A and B lie on the same side, 1[9—>A is a ray (either left or
right) of £,,. Let C be any point (other than B) of the other ray of £,,. Then A-B—C.

(Case 3: A and B lie on opposite sides of the y-axis.) Let X be the point of
intersection of £, and the y-axis. By extension for betweenness in Model LM2R
choose C such that X—B—C in Model LM2R. Then A-B—C in Model MLT.

It follows that the betweenness relation defined above satisfies all of Properties
B.0 through B.3 of Definition IB.1. O

Theorem MLT.5 (Axiom PSA). The Plane Separation Axiom is true in Model
MLT. That is, if we let L,, be a line in Model MLT, and let £ and F be opposite
sides of L, then if P € €, and Q € F, PO,, N L,, # 0.

The proof is by a series of claims. The first of these is intuitively quite evident,
and pertains to Model LM2R. We will summarize the results and finish the proof in
the Summary for PSA.

Claim 1. Let £, be a line in Model LM2R (R?).
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(A) If L. is nonvertical, and if £ is the set of all points above L., and F is the set
of all points below the line, conclusions (1)—(3) follow.

(B) If L. is vertical, and if € is the set of all points to the right of L., and F is the
set of all points to the left of the line, conclusions (1)—(3) follow.

(1) If A and B are any distinct points of &, or any distinct points of F,
ABNL = 0.

(2) Forany A € £ and B € F, iﬁgﬂﬁ # 0.

(3) & and F are the sides of the line L, are opposite, and £ U F U L, = R?.

The proof of Claim 1 depends on Theorem LC.18 and is Exercise MLT.2.

Claim 2. Let L,, be a nonvertical line in Model MLT, and let O be the point of
intersection of L,, with the y-axis. Let X = (x1,x3) and Y = (y1,y2) be distinct
points. If both X and Y are above, or both are below L, then Sﬁ m N Ly =

Proof. By Axiom I.1 (which is true in Model MLT) there exists a line )(5/) m
containing both X and Y, which intersects the y-axis at some point P.

(Case 1: Both x; < 0 and y; < 0, or both x; > 0 and y; > 0.) That is, both
X and Y lie in the same ray (left or right) of Xy m» that is, lying either above (or
below) Ir(L,,) or rr(L,,) as the case may be. Then X and Y both lie above (or below)
the Model LM2R line containing that ray, Then ﬁ 5( 7 , so that by Claim 1,
XV, 0\ Ly =XV N L,y = 0.

(Case 2: Both X and Y lie above £,;, x; < 0, y; > 0, and P lies above O.) Then
P, X, and Y all lie above L,,. By Case 1, %ﬁ%m NL, =0= ﬁm N L,,, so that
EE} m N Ly, =0.IfX,Y, and P all lie below 56/’ m a similar argument gives the same
result.

(Case 3: Both X and Y lie above L,;, x; < 0, y; > 0, either P = O or P lies
below O, and the slope sl(?() < sl(Ir(L,,).) Thus if £,, is of type N, so is )(5)/

It Cm is of type H or type P sl(ﬁ) < sl(ﬁ) < sl(Ir(L)). If L, is of type N,
then XY is of type N and sl(PY) = ZSI(PX) < 2sl(Ir(L)) = sl(rr(L,,). In either
case, since P lies below O, all points of P7 lie below L,,, which is impossible, since
Y is above that line.

(Case 4: Both X and Y lie below L,,, x; < 0, and y; > 0, and either P = O or P
lies above O.) This too leads to a contradiction. The proof is Exercise MLT.3.

Thus both cases 3 and 4 are ruled out. O

Claim 3. If L is a vertical line in Model MLT, and if X and Y both lie to the right,
or both lie to the left of L, then XY,, N L = 0.
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Proof. L is aline in Model LM2R as well as in Model MLT.

(Case 1: X and Y have the same first coordinate.) In this case, )((_)Y m 18 a vertical
line which does not intersect L.

(Case 2: L is the y-axis.) If both X and Y lie on the same side of the y-axis,
and the slope of 55/) ¢ 1S non-negative, W m = EE;C; this is also true if the slope is
negative, since the change in slope for a type N line in Model MLT occurs at the
y-axis. By Claim 1, both X and Y belong to the same Model LM2R side of L, so
that X7, N £ = XV, N L = 0.

(Case 3: L is not the y-axis, and both X and Y lie on the same side of L£.) Let P
be the point of intersection of )(5/) m and the y-axis.

(Subcase 3a: Both X and Y lie on the same side of the y-axis, or one of them lies
on the y-axis.) Then %6; m = Sﬁ « Which by Claim 1 is disjoint from L.

(Subcase 3b: X and Y lie on opposite sides of the y-axis.) Then both % = Eﬁ]’

-
=

and %’7); = P both of which are disjoint from £ by Subcase 3a above;
hence XY =XP, U PY is disjoint from L. |

m
L

Claim 4. If L,, is a nonvertical line in Model MLT, and one of X or Y lies above
L,, and the other lies below, then XY, N Ly, # 0.

Proof. Let O be the point of intersection of £,, and the y-axis.

(Case 1: X and Y have the same first coordinate.) It is a simple matter to calculate
the point between X and Y which belongs to £. In the remaining cases we assume
that 55)/ is nonvertical.

(Case 2 X and Y both lie on the same side of the y-axis, or on the Y- ax1s ) Then
XY,,, = XY Since Axiom PSA holds for Model LM2R, by Claim 1 XY N Ly
XYC N L, #90.

(Case 3: X lies to the left of the y axis and above £,, and Y lies to the right of the
y-axis and below L,,.) Suppose X Y 1ntersects the y-axis at the pomt P.

If P is above O, thenbyCase2 PYm NL,#0.IfP =0, XY N Ly 75 @.1f
P is below O, then by Case 2, XPm N L # @. It follows that since XP,,, and PY m are
subsets ofﬁm, gﬁm NL, #0.

The proof for the case where X lies to the left of the y-axis and below £,,, and Y
lies to the right of the y-axis and above L,,, is similar to Case 3. O

Claim 5. If L is a vertical line in Model MLT, and let X = (x1,x;) and Y = (y1,y2)
be distinct points; if X lies to the left of L and Y lies to the right, then XY,y N\ L,, # .
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Proof. The proof is Exercise MLT.4, which also proves the observation in

Remark MLT.1.1 that every nonvertical line intersects every vertical line. O

Summary for Theorem MLT.5 (PSA) Let £,, be any nonvertical line in Model
MLT; every point P not on L,, is either above or below this line. Let P be any point
above, and Q be any point below L,,. By Claim 2 of Theorem MLT.5, every point
above the line is in the P-side of £, and every point below the line is in the Q-side
of L,,. These two sides cannot intersect. Therefore they are the only possible sides
for L,,.

By similar reasoning, if £, is a vertical line in Model MLT, P is a point to the
right of, and Q is a point to the left of £,,, by Claim 3 of Theorem MLT.5, the P-side
of £,, and the Q-side of L,, are the only possible sides for L,,.

In either case, R? is the union of these two sides and £,,. Then by Claims 4 and
5 of Theorem MLT.5, for every X € the P-side of £,, and every Y € the Q-side of
Lo, Xy NL, # @, showing that these two sides are opposite, and also that Axiom
PSA holds.

Theorem MLT.6 (Axiom PS). The Strong Parallel Axiom PS holds in Model MLT.
That is, given a line L and a point P not belonging to L, there exists exactly one line
M such that P € M and L || M.

Proof. For any line £ other than a type N line, there exists exactly one line not of
type N through P, since Axiom PS holds for lines in the coordinate plane. Moreover,
the only lines parallel to a line of type N are those of type N, so there can be no line
of type N parallel to L. If L is of type N, consider three cases:

(Case 1: P is on the y-axis.) Using Axiom PS on the coordinate plane, choose £;
to be the unique line containing P parallel to the left ray of £, and £, as the unique
line containing P parallel to the right ray of £; let M be the union of the left ray of
L and the right ray of £,; both these rays contain P, so that M is the unique line
of type N which contains P and is parallel to L.

(Case 2: P lies on the negative (left) side of the y-axis.) Using Axiom PS on the
coordinate plane, let £; be the unique line containing P parallel to the left ray of £;
this line intersects the y-axis at some point Q; let £, be the (unique) line containing
Q with slope twice that of £;. Let M be the union of the left ray of £, and the right
ray of £,; both these rays contain Q, so that M is the unique line of type N which
contains P and is parallel to L.
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(Case 3: P lies on the positive (right) side of the y-axis.) The proof is similar to
that of Case 2. a

Theorem MLT.7 (Axiom LUB). Axiom LUB is true in Model MLT. Let L be a
line which is equipped with the order relation of Definition MLT.1(F). Then every
nonempty subset £ of L which is bounded above has a least upper bound lub &.

Proof. Let £ be a line of type V, type H, or type P. The ordering of Defini-
tion MLT.1(F) on any lines of these types is just the standard ordering of lines in
Model LM2R, and since Axiom LUB is true on this model, it is true for these lines.

Let £,, be a line of type N in Model MLT. As in Definition MLT.1(F), O is the
origin and U’ the unit; M, is the Model LM2R line containing the left ray of L,
and M’, is the Model LM2R line containing the right ray. Let £ be a nonempty
subset of L,,, which is bounded above. If £ N W # (@, the upper bound for & is
an upper bound for this 1ntersect10n and since Ax1om LUB holds on M’ there is
a least upper bound for £ N OU’ which belongs to OU’ C M’,. This is the least
upper bound for £.

IfEN W = @, then £ C OV which is a subset of M,; then £ is bounded above
by O, and since LUB holds for M, £ has a least upper bound in M., and this upper
bound belongs to W C L.

It follows that every bounded nonempty subset of a line in Model MLT has a
least upper bound, so that Axiom LUB holds. O

Theorem MLT.8. Suppose Axiom REF holds on Model MLT, and let k and b > 0
be real numbers; suppose further that there exists a reflection ¢ over the horizontal

line K = {(x, k) | x is any real number }.

(A) All the fixed lines for ¢ are vertical.
b
——), so that the liney = k—b

V2

(B) @ maps every point (x, k—b) to the point (x, k +

b
maps to the liney = k + E
Proof. Preamble: since Axiom REF holds, we may apply all the theorems of neutral
geometry. Let £ = {(x, k — b) | x is any real number} be the horizontal line b units
below and parallel to K. By Exercise NEUT.1, M = ¢(L£) is a line parallel to C;
by Definition NEUT.1(B) this line is on the opposite side of I from L. Therefore
for some real number ¢ > 0,

M = {(x,k + ¢) | xis any real number}.
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By Theorem NEUT.22(E), all fixed lines for a reflection are parallel. Therefore
(given the numbers b and ¢ as above) there exists a real number d such that for any
real number a,

¢la,k—b) = (a+d, k+c). (D
Soif P = (a, k— b) is an arbitrary point of £, the number d measures the horizontal
offset of ¢(P) from P; if d > 0, ¢(P) lies to the right of the vertical line through P;
if d < 0, it lies to the left.

We complete our preamble by defining O = (0, k), the intersection of X with the

y-axis.

Fig. 21.3 For part (A) of
Theorem MLT.S. P(Qa) : ((ma—d+dc)/e,k+c) o(P,) : (a+d, I;\/J‘r c)
(0, k) K
L
Qa:((—a—d)/c,k—1) P, (ak—1)
y-axis

(A) We now prove that d = 0, showing that the fixed lines of ¢ are vertical. For
this part, let b = 1, so that £ is the horizontal line 1 unit below IC. ¢(£) is a
horizontal line ¢ units above /C, but we don’t yet know the value of c—we just
know it is a fixed number determined by b = 1. Again, d is the offset defined

in the preamble, and it is determined by b = 1 and c.

Choose apy > 0 so that for any a > ag, a + d > 0; for any such a, define
P, = (a,k— 1); then p(P,) = ¢(a,k — 1) = (a + d, k + ¢) lies to the right of the
y-axis.

. é—_—é . .o, . . . . . .

The slope of the line O¢(P,) is positive, so this line (in Model MLT) is a line

<>
in the coordinate plane. Let O, = (x, k — 1) be the point of intersection of Op(P,)

with £. To determine x we calculate the slope of this line in two different ways: first,

using O and ¢(P,), the slope is —IC— p
a

1
> 0. Using O and Q, the slope is —, so that
—X

c 1 dh —a—d thus O (—a—d
= — and hence x = ; thus =
a+d —X “

k—1).
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By Theorem NEUT.15(1), ¢(Q.¢(P,)) = (p(Qa)Pa, and this line has negative
slope, so it “breaks” at the y-axis. The slope of the ray OP (as a line in coordinate

B> 1
space) is —1/a so the slope of the ray Op(Q,) must be ~3
a
Since all fixed lines are parallel (that is, by equation (1) above), the first

—d —a—d
+ d; since ¢(Q,) eM,Q:( +d,k+c).

Then the slope of the ray r0(,0(Qa; is
—C —c? 1

m—d_a+d—dc:_z

c

coordinate of ¢(Q,) is —

bl

so that for all a > ay,
a+d—dec=2ac?ora2c® —1) =d(1 —¢). )
If ¢ = 1, equation (2) becomes a(2 — 1) = a = 0; but a > 0 by hypothesis, so
we have a contradiction. Therefore ¢ # 1.

d(l —
1262~ 1 0, thena = 24 =)
2¢2

of ¢ and d, which are fixed numbers for this argument; thus there can be only one

, and a is completely determined by the values

number a for which this can be true, contradicting the fact that equation (2) is true
for all @ > ag. Therefore 2c2 — 1 = 0, so that d(1 —¢) = 0;since | —c¢ # 0,d = 0.
Thus all fixed lines are vertical.

Fig. 21.4 For part (B) of
Theorem MLT.5. Q) : (=b/e.k+0) P(P): (Lk +¢)
: (0, k) K
L
Q:(=b/c,;k—D) P:(1,k—b)
y-axis

(B) Referring again to the preamble, let b > 0 be any real number, so that £ is the
horizontal line b units below K. Let a = 1 > 0 (for this argument, a can be
fixed) and let P = (1, k — b). As in the preamble, there exists a number ¢ > 0
such that ¢(P) lies on

M = {(x,k + c) | xis any real number}.
By part (A), ¢(P) = (1,k + ¢).
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As before, let O = (0, k) be the point of intersection of the y-axis and /C;
then m intersects £ at some point Q. The slope from O to ¢(P) is c; the
first coordinate of Q is easily calculated to be —b/c so that Q = (—b/c, k — b).
Thus ¢(Q) = (=b/c, k + ¢).

Now the slope of the (right-hand) ray br_—l)3 is —b < 0 and the slope of the

left-hand ray will be —b/2. The latter is also — — C ot & ="
cit-hand ray wi c — . e latter1s alsO ——— = —— Sothat — = —, or
Y bjc b b2
b
2¢? = b?, that is, c = —=. This completes the proof. O

V2
Theorem MLT.9. Axiom REF does not hold on Model MLT; that is, there is no

reflection set on this model.

Proof. Ttis possible to show this by invoking properties of non-Desarguesian planes,
but we will give a proof using Theorem MLT.8 above, showing that if Axiom REF
holds on Model MLT, we get a contradiction.

Let A = (-2,0), B = (0,—1), and C = (1,-2). By our definition of
betweenness (cf Theorem MLT.4) A—B—C, as the coordinate line l(Z_C)’ has slope —1
and the coordinate line AB has slope —1/2.

Let ¢ be the reflection over the x-axis. Since A lies on the x-axis, it is a fixed point
for ¢, and hence ¢(A) = A = (=2, 0). By Theorem MLT.8, ¢(B) = (0, 1/+/2), and
@(C) = (1,2/+/2). The slopes of ¢(B)¢(C) and ¢(A)@(B) are positive, so that the
ordinary coordinate plane definition of betweenness holds. But ¢(B) = (0, 1/+/2)

does not belong to the line ¢ (A)@(C), so that these points are not collinear, and ¢(B)
cannot lie between ¢(A) and ¢(C).

Hence ¢ does not preserve betweenness, contradicting Property (D) of Defini-
tion NEUT.1, and ¢ cannot be a mirror mapping or a reflection.

Therefore there does not exist a reflection mapping over the x-axis, and Axiom
REF does not hold in Model MLT. O

Remark MLT.10. By Theorems MLT.3 through MLT.7, Axioms 1.0, I.1, I.5(A),
BET, PSA, PS, and LUB are all true for Model MLT. By Theorem MLT.9, there can
be no reflection set on Model MLT. This shows that Axiom REF is independent of

this set of axioms.
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21.6.5 Parallel Axiom PS is independent
of Axioms 1.0-1.5, BET, PSA (Model PSM)

We now construct a model which establishes the independence of the parallel axiom
PS from the incidence and betweenness axioms and the Plane Separation Axiom
PSA. This model we designate Model PSM.

Definition PSM.1. For Model PSM, space S is an “open” unit cube—that is, the
unit cube which does not include any of its “surface” points. More precisely,

S={X=0G,xx)|XeFP 0<x <1,0<x <1, and 0 <x3 <1},
where F is an ordered field.

We define £ to be a line for Model PSM iff for some distinct points X and Y
of §, L = XY n S # 0, where XY is the line through these two points as in
Definition LA.1(1).

‘P is a plane for Model PSM iff for some noncollinear members X, Y, and Z
of S, P = Xvzns # 0, where XYZ is the plane through these points as in
Definition LA.1(2).

If X, Y, and Z are points of S, then Y is between X and Z iff Y is between X and
Z in Model LM3.

Let P = QN S be a plane for Model PSM, where Q is a plane in F3; let
L = M NS be aline in P, where M is a line in F>. Then for any point A € P\ L,
a set £ is the A-side of £ for Model PSM iff £ = F N S, where F is the A-side for
the line M in F3, according to Definition IB.11.

Theorem PSM.2. Let X = (x1,x2,x3) be any point of S, and let Y = (y1,y2,Y3)
be any other point of F3. Then

(A) there exists a number t > 0 such that Z = X + t(Y — X) € S (so that Z # X);
(B) ifY € S, there exists a numbert > 1 suchthatZ =X + (Y —X) € S.

Proof. (A) Since X € S, foreachi € {1,2,3},0 < x; < 1. For each such i there are
three possible cases:
(Case l:y; —x; = 0.) Lett; =2. Then 0 < x; + t;(y; — x;)) = x; < 1.
(Case 2: y; —x; > 0.) Then xl,_chl, > 0 since x; < 1. Choose t; > 0 so that
0<t < ﬁ Then
(i —x;) < ﬁ(yi —x)=1-x
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so that x;+f;(y;i—x;) < 1; since y;—x; > 0, > Oand x; > 0,0 < x;+
Li(yi—x;) < 1.
(Case 3: y; — x; < 0.) Then 0 < ——2—; choose ; so that 0 < f; < —

yi—x;’
Then

Xi
yi—xi "

(i = x;) > =32 (i — X)) = —x;

so that x; + #;(y; — x;) > 0; since f;(y; — x;) < 0 and x; < 1 it follows that
0<x+t(yi—x) < 1.

Let t = min{ty, 1, #3}. Then for every i € {1,2,3}t; > 0 so thatr > 0, and
0 <x;+t(y; —x;) < 1,sothat X 4+ t(Y — X) € S. This completes the proof of
part (A).
Now we assume that Y € S, so that for all i € {1,2,3},0 < y; < 1. Again we
have three cases:

(Case l:y; —x; =0.) Lett; =2. Then 0 < x; + t;(y; — x;)) = x; < 1.

(Case 2: y; — x; > 0.) Then J_ch' > 1 because 1 —x; > y; —x; > 0, and we

may choose #; sothat) < 1 < ¢ < =% - a5 in part (A), 0 < x; +t;(y;i —x;) < 1.

(Case 3: y; —x; < 0.) Then —Wﬁ: ; xl_’ﬁw > 1because x; > x; —y; > 0. We
may choose f; sothat 0 < 1 < f; < _yi)ﬁx;'
Case 3 of part (A), 0 < x; + t;(y; — x;) < 1.

Let t = min{t;, 5, 13}; t > 1 since for every i, t; > 1. Then for every
ie€{l,2,3},0 <x;+t(y;—x;) < 1,sothat X + #(Y — X) € S. This completes

the proof of part (B). O

Then by the same reasoning as in

Theorem PSM.3. S is convex; each of Axioms 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, and BET is
true for Model PSM.

Proof. (A) Convexity: we show that if X = (x1,x,x1) and Y = (y1, y,, y3) are any

(B)

two points of S, for any number 7 such that 0 <7 < 1, X+ #Y —X) € S. Since
X and Y belong to S, forevery i € {1,2,3},0 <x; < 1 and 0 < y; < 1; then
xi+tyi—x)=00—-tx;+ty;>0,sincel —t>0,x; >0,¢>0and y; > 0.
Also, sincex; < landy; < 1, (1 —f)x; + ty; < (1 — 1) + ¢ = 1. Therefore
X + t(Y — X) € S proving its convexity.

It is trivial to show that Axiom 1.0 holds, since all planes and lines are subsets
of S. Two points in S are also points in F* and since Axiom I.1 holds for
Model LM3, there is exactly one line in LM3 containing these points, and
the intersection of this line with S is the unique line containing both points.
Therefore Axiom I.1 holds for Model PSM. Similar reasoning shows that
Axiom 1.2 holds.
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©)

D)

(E)

(F)

(©)

(H)

If two points X and Y lie in a plane P = Q@ N S, where Q is a plane in 3, then
the line X¥ C Q since Axiom .3 holds for Model LM3. Then £ = X¥ NS €
QNS = P so Axiom 1.3 holds for Model PSM.
Let P, = QNS and P, = 9, NS be two planes in S, where Q1 and O,
are planes of F>. Suppose X = (x1,x2,x3) € (P; N P,). Then X € (Q; N Q»)
and since Axiom [.4 holds for Model LM3, there exists at least one other point
Y € (Q1 N Q). Since Axiom 1.3 holds for Model LM3, )W C (Q1 N Q). By
Theorem PSM.2(A) there exists a point Z = X 4+ (Y — X) € (55/’ N S) where
Z # X.Hence Z € (P; N P,). This shows that Axiom 1.4 holds for Model
PSM.
To show that Axiom 1.5(A) holds for Model PSM, let £ be any line in ¢/. Then
for some line M in F3, £ = M N S, and by definition there exists a point
X € L. By Theorem LC.5, Axiom 1.5(A) holds for Model LM3, so there exists
apoint Y # X such that Y € M. By Theorem PSM.2(A), there exists a point
Z=X+1(Y—-X) eSsuchthat Z € £ = XY NS, and Z # X. Thus
Axiom I.5(A) holds for Model PSM.
To show that Axiom [.5(B) holds for Model PSM, let P be any plane in /.
Then for some plane Q in F3,P=0nNS. By definition there exists a point
X € L; by Theorem LC.5, Axiom 1.5(B) holds for Model LM3, so there exist
points Y # X and Z # X such that both Y and Z are members of Q, and X, Y,
and Z are noncollinear. By Theorem LC.4, Axiom 1.3 holds for Model LM3,
so both )<(_>Y and XZ are subsets of Q. By Theorem PSM.2(A) there exist points
Y’ and Z’ and nonzero numbers s and 7 such that Y/ = X + s(Y — X) € S and
Z =X+1(Z-X)e S8.IfZ € )(5)’, that is, X, Y/, and Z’ are collinear, then for
some number u # 0, Z’ = X + u(Y’' — X), so that
X+sZ-X)—X)—uX+s(Y—-X)—X)
=tZ-X)—us(Y —X) =0.
By Theorem LA.3, Y — X and Z — X are linearly independent, hence both ¢ and
us are 0; but by construction, ¢ 7% 0 so we have a contradiction. Therefore X,
Y’, and Z' are noncollinear members of P, and Axiom 1.5(B) holds.
Axiom 1.5(C) holds, since the points (%, %, %), (%, %, %), (%, %, %), and (%, %, %)
are noncoplanar points in S.
Axiom BET holds for Model PSM. It is easy to see that Properties B.0, B.1,
and B.2 of Definition IB.1 hold in Model PSM, since they hold in Model LM3.
To see that Property B.3 holds, let X = (x;,x,,x;) and Y = (y1, y2, ) be any

two points of S.
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By Theorem PSM.2(B), there exists a point Z = (z1,22,23) € S and a
number z > 1 suchthatZ = X+#(Y—X), so that X, Y, and Z are collinear points.
Then by Definition LC.8, X-Y-Z since X = X+ 0(Y —X), Y = X + 1(Y — X),
and Z = X + t(Y — X) and 0-1-¢. Thus Property B.3 of Definition IB.1 holds
in Model PSM. O

Theorem PSM.4. The Plane Separation Axiom PSA is true for Model PSM.

Proof. Since S is convex, the proof of Theorem LC.20 is valid for Model PSM, so
the Plane Separation Axiom PSA is true for Model PSM. O

Theorem PSM.5. Neither the strong nor the weak form of the parallel axiom (PS
or PW) is true for Model PSM.

Proof. Let M = (3.0, 3)(5.1, 3), and let the point P = (3, 5. 7). Then P & M.
Let Mo = (3. 4. )4 L) andlet My = (3. 5. 3)(3. 1. D).

LetL; = MiNS, L, =M;NS,and L3 = M3NS. Then £, N L3 = {P} and
both £, and L3 are parallel to £; (because the parts of the lines M, and M3 which
lie within S do not intersect M). This shows that there are distinct lines through
the point P which are parallel to the line £, and the weak form of the parallel axiom

does not hold. O

Remark PSM.6. Since the weak form of the parallel axiom is false for Model
PSM, the parallel axioms are independent of each of the incidence axioms,

betweenness axioms, and the Plane Separation Axiom PSA.

21.6.6 Independence of parallel Axiom PS
Jrom Axioms 1.0-1.5, BET, PSA, and REF

In Chapter 2 of this book we discussed the parallel axioms and the classification
of geometries into elliptic geometries (no parallel lines), Euclidean geometry, and
hyperbolic geometries. Since parallel lines exist in neutral geometry (Property PE,
Theorem NEUT.48(B)), neutral geometry is incompatible with elliptic geometry.
However, hyperbolic geometry is neutral geometry combined with a denial of
Axiom PW. That is, given a line £, and a point P not on £, there may be multiple

lines through P parallel to L.
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Thus, to show that Axiom PS is independent of Axioms [.0-1.5, BET, and PSA
as well as Axiom REF, it would be sufficient to exhibit a model for a hyperbolic
plane, where Axiom PW is false, in which a reflection set exists over every line.
Hyperbolic geometry is beyond the purview of this book, so we leave this issue to
others.

For a readable account of the history of the parallel axiom and non-Euclidean
geometries, including hyperbolic geometry, we suggest Marvin J. Greenberg’s
Euclidean and non-Euclidean geometries, development and history, 4th ed., W.
H. Freeman, 2008 [8]. Chapter 7 of this volume is devoted to the issue of the

independence of the parallel axiom.

21.6.7 Axiom LUB is independent
of Axioms 1.0-1.5, BET, PSA, REF, and PS
(Model LM3A)

Our goal in this subsection is to prove that the LUB axiom is independent of all
the other axioms we have introduced. To do this we build Model LM3A (meaning
Model LM3 built on the field A of real algebraic numbers) for which Axiom LUB

is false but each of the other axioms is true. Here we use the acronym LE.
Theorem LE.1. Axiom LUB is independent of all previous axioms.

Proof. Let space for Model LM3A be A3, where A is the field of real algebraic
numbers, those real numbers that can be generated by adding, subtracting, multiply-
ing, and dividing rational numbers, and finding roots of polynomial equations with
rational coefficients. As we have pointed out previously, A contains the square roots
of any of its non-negative numbers, so that norms and distances are defined in A3,
In Model LM3A we assume that reflections have been defined on each plane
according to Definition LB.16 and Definition LC.24. Indeed, the entire development
of Model LM3, up through Theorem LC.42, holds for A*. In particular, by
Remark LC.21, Axioms .0-L.5, BET, PS, and PSA hold; by Theorem LC.33 Axiom
REF holds on A?; by Theorem LC.42, it holds on any plane in A3, and hence in A3,
Since 7 is a transcendental real number (i.e., is nonalgebraic), it is not a member
of the field A. Let X € A?andlet £ = {{X | t € A and t < w};thenlub& = nX.
Hence £ is a nonempty subset of A which is bounded above but lub £ does not
belong to A, and Axiom LUB is false for Model LM3A. Since all axioms prior to

this one are true for this model, Axiom LUB is independent. m|
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Remark LE.2 (Summary of axiom independence). In earlier parts of this section
we proved that each of the Axioms I1.0-1.5, BET, PSA, and PS is independent of its
predecessors on this list; now, in Theorem LE.1, we have shown that Axiom LUB is
independent of all other axioms. In Subsection 21.6.4 we showed that Axiom REF
is independent of Axioms 1.0, I.1, I.5(A), BET, PSA, PS, and LUB.

As we stated above in Subsection 21.6.6, proof of the independence of Axiom
PS from Axiom REF depends on considerations from hyperbolic geometry, which

are beyond the scope of this book.

21.7 Independence of definition properties

In this section we show independence, not of axioms, but of various properties of
definitions. This is done for the definitions of betweenness, mirror mapping, and
reflection by constructing models and equipping them, respectively, with “pseudo”

relations, mappings, or sets of mappings that satisfy some but not all of the required

properties.
Table of independence models
for definition properties.
Subsection | Theorem | Model Relations/maps/sets True False
21.7.1 BI.O LM3 various B.1-3 B.O
BL.1,1.1 | LM3 pseudo- B.0 B.1-3
BI.2,2.1 | LM3 betweenness B.O,.1 B.2,.3
BL3 LM3\x+ relations B.1-3 B.0
21.7.2 MMI.1 LM2 various (A),(O),(D) | (B)
MMI.2 LM2 pseudo- (A),(B) ©)
MMI.3 LM2 mirror mappings | (A),(B),(C) | (D)
21.7.3 RSI.1 LM2R various R.1,.3,.5,6 R2,4
RSI.2 LM2R pseudo- R.1,.2,.6 R.3-5
RSI.3 LM2Q reflection sets R.1-4,.6 R.S

21.7.1 Independence of betweenness properties

This subsection deals with independence of the various properties of Definition IB.1,

which defines a betweenness relation. We name our theorems Bl.n, suggesting
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“betweenness independence.” We will use Model LM3, based on F3 as our model,

except in the last case, where we use a variant thereof.

Theorem BL.0. Property B.0 is independent of the other betweenness properties of
Definition IB.1.

>
Proof. (A) Let r, s, and t be numbers, and let £ = (0,0, 0)(1,0,0). We define a

(B)

©

D)

(E)

“pseudo-betweenness” relation PB on IF3 as follows: first, we include in PB all
the triples of the betweenness relation defined in Definition LC.8. In the proof
below, we will freely use the fact that Properties B.1, B.2, and B.3 hold for this
definition, as shown in Theorem LC.14. We also include in the relation PB the
two triples
((1,0,0),(1,0,0), (2,0,0)) and ((2,0,0), (1,0,0), (1,0,0)).

Then, according to PB,

(1) point (1,0, 0) is between (1,0, 0) and (2,0, 0),

(2) point (1, 0, 0) is between (2,0, 0) and (1, 0, 0), but

(3) point (2, 0, 0) is not between (1,0, 0) and (2, 0, 0).
Property B.O is false for relation PB since the entries in the ordered triple
((1,0,0),(1,0,0),(2,0,0)) are not distinct.
Property B.1 (symmetry) is true for relation PB, because it holds for all triples
in the relation of Definition LC.8, as well as for the triples

(1,0,0)—(1,0,0)—(2,0,0) and (2,0, 0)—(1,0,0)—(1,0,0).
Property B.2 (trichotomy) is true for Model BI.0. It holds for all collinear triples
of distinct points, and holds vacuously for any triple comprised only of the
points (1,0, 0) and (2, 0, 0)), since these points are not distinct.
Property B.3 is true for relation PB. If A = (1,0,0) and B = (2,0,0), we
may let C = (3,0,0); similarly, if A = (2,0,0) and B = (1,0, 0), we may let
C = (0,0, 0); in either case, by the definition of betweenness, A—B—C.

Now suppose no more than one of A or B belongs to {(1,0,0), (2,0,0)}.

Then since B.3 is true for the betweenness relation of Definition LC.8, there
exists a C such that A-B-C. O

Theorem BI.1. Property B.1 is independent of Property B.0.

Proof. (A) On Model LM3 let A = (0,0,0) and B = (1,0, 0) and suppose that the
5

points Yy, Y;, and Y3 belong to £ = AB = (0,0,0)(1,0,0). Define a pseudo-
betweenness relation PC as follows: let
Yi=A+ tl(B—A), Y,=A+ lz(B—A), and Y; = A + t3(B —A)
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(B)
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Then define Y,-Y,-Y; iff 1 < £, < t3.

If no more than one of the points Y;, Y5, and Y3 belongs to 1(4_)3 , then define
Y,-Y,-Y3 as in Definition LC.8. Relation PC is then well-defined.
If Y,-Y,-Y3 and the points Y, Y,, and Y3 belong to £, then #; < t, < t3 and
Y1, Y», and Y3 are distinct and collinear. If no more than one point of Yi, >,
or Y3 belong to £, then by Definition LC.8 and Remark LC.9 these points are
distinct and collinear. Therefore Property B.0 holds for relation PC.
LetY), =A+0B—-A),Y,=A+1(B—A),and Y3 = A+ 2(B—A). Since
0 <1 < 2, Y-Y,-Y;. But it is not the case that 2 < 1 < 0 so it is false that
Y;-Y,-Y;. Therefore Property B.1 is false for relation PC. O

Remark BI.1.1. It may be of some slight interest that for relation PC, Properties
B.2 and B.3 are false.

(A)

(B)

Property B.2 says that for any collinear points Y;, Y, and Y3, exactly one of
Y|-Y,-Y3, Y,-Y|-Y; or Y|-Y3-Y, is true. Let
YI=A+2(B—A),Y,=A+1(B—A),and Y3 = A+ 0(B—A).

Then neither2 <1 < 0,1 <2 < 0, nor 2 < 0 < 1 is true, so that none of the
conditions in the trichotomy property is true, and Property B.2 does not hold.
Property B.3 says that for any two points Y; and Y», there exists a third point
Y3 such that Y;-Y,-Y3. If we let Y} and Y, be as defined just above, we see that
since 2 < 1 is false, there can be no number ¢ such that 2 < 1 < ¢, and there

can be no point Y3 satisfying Y1-Y,-Y3.

Theorem BL.2. Property B.2 is independent of Properties B.0 and B.1 of Defini-
tion IB.1.

Proof. (A) On Model LM3, let A = (0,0,0) and B = (1,0, 0). Define a pseudo-

(B)

betweenness relation PD as follows: if Y;, Y, and Y3 belong to £ = 1(4_1)3 =
(0,0,0)(1,0,0), let

YI=A+1(B—A),Y,=A+n(B—A),and V3 = A + 1;(B — A),
and define Y|-Y,-Y3 iff |#;| < || < |t3] or |t3] < |t2] < |11]-

If no more than one of Y7, ¥, or Y3 belongs to ﬁ, then define Y;-Y,-Y3 as
in Definition LC.8. Then relation PD is well-defined.
Property B.2 is false. Let

YI=A+(-2)(B—A),Y, =A+4+2(B—A),and Y3 = A 4 3(B—A).
Then Y, Y,, and Y; are distinct points on £, but | — 2| = |2|. Then
| —2| <|2| <|3]and |3] < | —=2| < |2]
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are false, so that Y,-Y,—Y5 is false;
12 <=2 < [3[and [3] < | -2| < [2],
are false, so that Y,—Y|—Y5 is false; and
| —2| <3| < |2] and |2] < |3] < | = 2|
are false, so that Y|-Y3-Y, is false. Thus trichotomy does not hold for this
particular choice of Y7, Y, and V3.

(C) Property B.O is true for relation PD. If Y}, Y,, and Y3 are members of £ and
Y|-Y,-Y3, either |t;| < |fz| < |t3] or |t3] < |f2| < |t1]. Then the numbers ¢4, t,,
and 3 are distinct and so Y|, Y>, and Y3 are distinct. If not all of Y, Y>, and Y3
belong to £ and Y,-Y,-Y3, the points are distinct because Property B.0 is true
for the betweenness relation of Definition LC.8.

(D) Property B.1 is true for relation PD. If Y}, Y>, and Y3 are members of £ and
Y|-Y,-Y3, either |t;| < || < |t3] or |t3] < |t2] < |#1], and therefore Y3-Y,-Y;.
If not all of Yy, Y5, and Y3 belong to £ and Y,-Y,-Y3, then Y3-Y,-Y; because
Property B.1 holds for the betweenness relation of Definition LC.8. O

Remark BI.2.1. Property B.3 is false for relation PD. To see this, let

Yi=A+ (=2)(B—A)and Y, = A + 2(B — A).
Since | — 2| = |2|, there is no point Y3 = A + #(B — A) such that | — 2| < |2| < |¢|
or |2| < | — 2] < |t|, hence no point Y3 such that Y1-Y,—Y3.

Theorem BL.3 (Model BI). Property B.3 is independent of the other betweenness
properties of Definition IB. 1.

Proof. For Model BI, space is S = F3 \ EO, 0,0)(1,0,0). L is a line in S iff there
exists a line M in F? (as in Definition LA.1(1)) such that £ = M N S. £ is a plane
in S iff there exists a plane P in IF? (as in Definition LA.1(2)) such that & = PN S.
Betweenness is defined as in Definition LC.8.

Properties B.0, B.1, and B.2 were proved in Theorem LC.14 to be true for
betweenness as in Definition LC.8. These proofs also hold for space S. The only
property that does not carry over to S is the extensibility Property B.3; this property
does not hold since there is no point W such that (0,0, 0) is between (—1,0,0)
and W. O

Theorem BL.4 (Summary). (A) Each of the betweenness Properties B.1, B.2, and
B.3 is independent of those preceding it on the list.
(B) Property B.0 is independent of Properties B.1, B.2, and B.3.
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Proof. (A) follows immediately from Theorems BI.1, BI.2, and BI.3, and (B) from
Theorem BI.O. O

21.7.2 Independence of mirror mapping properties

This subsection deals with independence of the various properties of Defini-
tion NEUT.1, which defines mirror mapping. We name our theorems MMl.xn,
suggesting “mirror mapping independence.” We will use Model LM2, based on F?,

as our model.

Theorem MMI.1. Property (B) of Definition NEUT. 1 is independent of Properties
(A), (C), and (D).

Proof. We show that there exists a mapping ¢ on [F?> which satisfies Properties (A),
(C), and (D) of Definition NEUT.1, but not Property (B). Let £ be any line in F?,
and define ¢, = 1, the identity mapping. Then all points of L are fixed points for
1, so that Property (A) is true; 1 o1 = 1 so Property (C) is true; and since A—B-C is
the same as 1 (A)—1(B)—1(C), Property (D) is true. Finally, since all points are fixed
points for 1, Property (B) is false. O

Theorem MMIL.2. Property (C) of Definition NEUT. 1 is independent of Properties
(A) and (B).

Proof. We show that there exists a mapping ¢, on F? satisfying Properties (A) and
(B) of Definition NEUT.1, but not Property (C). Let £ = {(x1,x2) | x = 0.

For all (x;,x;) such that x, > 0, define ¢, (x;,x;) to be @(x;,x;) as in
Definition LB.16; for all (x;, x;) such that x, < 0, define ¢ (x1, x;) to be ¥(x;,x2)
as defined in Exercise NEUT.0.

If (x1,x2) € L, ¢r(x1,x2) = D(x1,x2) = (x1,x2) so that Property (A) holds. If
Xy > 0, then ¢z (x1,x2) = @(x1,x2) = (x1, —x2) which is on the side of £ opposite
to (x1,x2); if x; < 0, then @, (x1,x2) = ¥(x1,x2) = (x1 — X2, —x2) is on the side of
L opposite to (x1, x2). Therefore Property (B) holds.

Finally,

9c(pc(0.1)) = ¥(2(0,1)) = ¥(0,-1)
=0—- (D, —=(=1D)) =(1.1) #(0.1)

so that Property (C) does not hold. O
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Theorem MMI.3. Property (D) of Definition NEUT. 1 is independent of Properties
(A), (B), and (C).

Proof We show that there exists a mapping ¢, on F? which satisfies Properties
(A), (B), and (C) of Definition NEUT.1, but does not satisfy Property (D).
Let £L = {(x1,x2) | x» = 0} For all (x;,x) € Q> \ &, where £ =
{(1,1),(2,1),(1,—-1),(2,—1)}, define ¢, to be @ as in Definition LB.16; define
(L) =(2,-1), 02, 1) = (1, =1, o(1,=1) = (2. 1), 9£ (2, —1) = (1, 1).
If (x;,x2) € L, oc(x1,x2) = (x1,x2) s0 ¢ satisfies Property (A) of Defi-
nition NEUT.1. If (x1,x) & &, (x1,x2) and ¢, (x1,x2) are on opposite sides of
L by Theorem LC.23; a brief inspection shows that points (x;,x;) € &£ map
to the opposite side of L; therefore Property (B) is satisfied. If (x;,x;) & €&,
©c(@e(x1,x2)) = (x1,x2) by Theorem LC.23; if (x1,x;) € &, this follows immedi-
ately from the definition of ¢, for points of £. Thus ¢, satisfies Property (C).
However, Property (D) is not satisfied. For (0,1)—(1,1)—(2,1), and also
0c(0,1) = (0,—1), pc(1,1) = (2,—1) and ¢,(2,1) = (1,—1); it follows,
then, that (0, —1)—(2, —1)—(1, —1) is false. O

21.7.3 Independence of reflection properties

This subsection deals with independence of the various properties of Defini-
tion NEUT.2, which defines reflection set. We name our theorems RSI.n, suggesting
“reflection set independence.” In the statements of the theorems “Property R.n” will
refer to a property of Definition NEUT.2. We will use Model LM2R, based on R?

as our model, except in the last case, where we use Model LM2Q, based on Q2.

For the convenience of the reader, we repeat the statement of Exercise NEUT.0,
which will be used in this subsection: If for each pair (u;, uy) of real numbers on
the plane R?, we define @ (u,, uy) = (uy, —up) and ¥ (uy, uy) = (uy —up, —uy), then

both @ and ¥ are mirror mappings over the x-axis.

Theorem RSI.1. Properties R.2 and R.4 are independent of Properties R.1, R.3,
R.5, and R.6. That is, there is a set € of mirror mappings for which R.2 and R.4 are
false, but R.1, R.3, R.5 and R.6 are true.

Proof. Let € be that set of mirror mappings on R? consisting of (A) all LB.16 mirror

mappings over lines in R?, (B) the mapping ¥ defined as follows: for any point
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(ur,u2), W(uy,uy) = (uy — up, —uy) (by Exercise NEUT.O this is a mirror mapping
over the line £ = (0, 0)(1, 0) and is different from the LB.16 mapping R~ over the
same line), together with (C) all mirror mappings formed by composition of these
mappings.

Then Property R.1 is true and Property R.2 is false, since we have more than
one mirror mapping over L. Property R.3 is true because by definition all mirror
mappings formed by composition from the members of £ are included in it. Since
& contains all mappings R defined in Definition LC.24, Property R.5 is true by
Theorem LC.31. Property R.6 is true by Theorem LC.32.

Property R.4 is false. To see this, let R and ¥ be as defined above. By Property
R.5 let R o be the angle reflection for the angle £(0, 1)(0,0)(1, 1); this is an LB.16
mapping so it preserves distance.

Then Ra(W(R(0,1))) = (0,+/2) and Rp(¥(R.(0,0))) = (0,0); The
mapping Ry o ¥ o R, is an isometry which carries (0, 0) to (0,0) and (0, 1) to
(0, +/2), and both the latter belong to the same ray from (0, 0). Therefore Property
R.4 does not hold, since 1 # V2. O

Theorem RSI.2. Properties R.3, R4, and R.5 are independent of Properties R.1,
R.2, and R.6.

>
Proof. Let £L = (0,0)(1,0). Let the set £ of mirror mappings over lines in R?

. . . . eﬁ
consist of all LB.16 mirror mappings R ¢ over lines M other than £ = (0, 0)(1, 0),
together with the map ¥ defined in Exercise NEUT.0, which is a mirror map over
L. Then for each point (uy,u;) € R?, W(uy,us) = (u; — up, —uy)). In particular,
v(l,—-1)=(2,1).

I. Property R.1 and Property R.2 are true since exactly one mapping is defined
for each line on the plane.
<> . .

II. Property R.3 is false. Let £ = (0,0)(1, 1); then I is the line of symmetry
for Z(1,0)(0,0)(0, 1) since the LB.16 mapping R takes (1,0) to (0, 1) and
(0, 0) toitself. By Theorem NEUT.27, ¢ = R o ¥ o Ry is a mirror mapping

<>
over M = Rx(L£) = (0,0)(0, 1).
Then Rx(1,—1) = (-1, 1) so that
(1, —1) = Ric(¥(Ric(1,—1))) = Ree(¥(~1,1))
But Rp(1,—1) = (—1,—1) # ¢(1,—1), so that ¢ # R 4. This shows that
Property R.3 is false.
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Fig. 21.5 Showing action of «, where Property R.4 fails.

IIL.

IV.

Property R.4 is false. See figure 21.5. Let O = (0,0), A = (2,1), B =
(1,—1) = W(A), let C = (—+/2,0), and let A’ = (2ﬁ ﬁ) so that
dis(0,B) = dlS(O C) = dis(0,4") = \/_ )

Let D be the c- mldpomt of BC and E be the c- midpoint of CAf and let
M = OD and N = OE. By an argument similar to that in Theorem LC.31,
M is a line of symmetry and R 4 is an angle reflection for ZBOC and N/
is a line of symmetry and R s is an angle reflection for ZCOA = ZCOA'.
Moreover, Ra(B) = C and R (C) =

Now Ra(Ra(B)) is a point on ]OX Both Raq and R preserve
distance, so dis(Ra(Ra(B)),0) = dis(B,O) = +/2, and therefore
Rn(Rm(B) = A. Let « = Ry o Ry o W. Then a(Ad) =
RN(RM P)) = Ryv(Rm(B) = RN(C) A’ which is a member
of OA. By Theorem NEUT.15(5), «(OA) = 0A’. But dis(0,A") = /2 and
dis(0,A) = +/5, contradicting Property R.4.

Property R.5 is false. Let X = (1,—1) and Y = (1, 1), and O = (0,0); we
show that ZXOY has no line of symmetry.

If ZXOY has a line of symmetry, it must be either the line £ = (0, 0)(1,0)
or some other line. If £ is a line of symmetry for ZXOY, since ¥ is the
mirror mapping over £, ¥ is an angle reflection for this angle. Then ¥ (X) =
¥(1,—1) = (2,1) which is not on ]O_)>(, so ¥ is not an angle reflection for
Z/AOB contradicting our assumption that £ is a line of symmetry for ZXOY.

If some line M # L is a line of symmetry for ZXOY, then R o4 is an angle
reflection for this angle, and since R o is an LB.16 mapping, and dis(X, O) =
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dis(Y, 0), Rypm(X) = Y. Then M intersects XY atits midpoint, which is the
point (1, 0) and hence M = L, a contradiction.

Either way we get a contradiction, so ZXOY has no line of symmetry or
angle reflection and Property R.5 is false.
Property R.6 is true. Let AB be any closed segment in the plane, and let O
be its c-midpoint, so that dis(O,A) = dis(O, B). Let S be the line through O
which is perpendicular to 1<4_B) and pick a point S on S such that dis(0, S) =
dis(0,A) = dis(O, B). Let C be the c-midpoint of the segment 1[473]’ and let D
be the c-midpoint of ﬁ .

In the arguments to follow, we must ensure that all our reflections are LB.16
mappings, so we can use preservation of distance. The cases below are needed

to eliminate the possibility that £ might appear as a line of symmetry.

Fig. 21.6 For part V ‘M
showing existence of /)
midpoint O, Case 1A. / L

(Case 1A: O € L and C € L.) Let M be the line of symmetry for ZAOC
and let P be the point of intersection of 21%‘ with M, which intersection is
guaranteed by Theorem PSH.39 (crossbar).

Next let N be the line of symmetry for ZCOB. Since neither N nor M
is £, the mappings R and R are LB.16 mirror mappings and hence by
Theorem LC.27 both of them, and hence their composition, preserve distance.
Hence dis(4, 0) = dis(Rar(Ra(A)), O).

R maps A to a pomt Rm(A) on OC C L; Ry maps Raq(A) to
a point R (Ra(A)) on OB Therefore Rar(R M(A))r = B, and since

-

Rar(Ra(0)) = O, by Theorem NEUT.15(5) R (R (OA)) = OB Thus
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O is a midpoint of AB and Property R.6 of Definition NEUT.2 is satisfied. See
figure 21.6 below.

(Case 1B: O € L and D € L.) Let M be the line of symmetry for ZBOD,
and let P be the point of intersection of %TILS with M.

Then let NV be the line of symmetry for ZCOB. Since neither A/ nor M
is £, the mappings R and R ¢ are LB.16 mirror mappings and hence by
Theorem LC.27 both of them, and hence their composition, preserve distance.
Hence dis(B, O) = dis(R (R (B)), O).

R maps B to a point R (B) on jO_D> C L; Ry maps Ra(B) to
a point R (Raq(B)) on ]O_A) Therefore Rar(Raq(B)) = A, and since
Rar(Rai(0)) = O, by Theorem NEUT.15(5) R-(Rac(OB)) = OA. Thus
O is a midpoint of AB and Property R.6 of Definition NEUT.2 is satisfied.

(Case 1C: O € L and neither the c-midpoint C of E?g' or the c-midpoint D
of ﬁ lies on L.) The proof in this case is similar to that of Case 2 below.

Fig. 21.7 For part V M
showing existence of 4
midpoint O, Case 2. A

S =Rm(4)

B =Rx(Rm(A)) N

(Case 2: O ¢ L.) In this case, no line containing O can be L. See figure 21.7
below.

Let M = OC and ' = 0<_>D; then M is the line of symmetry for ZAOS
and M is the line of symmetry for ZSOB. Since both R o4 and R » are LB.16
mirror mappings, by Theorem LC.27 both of these mappings, and hence their
composition, preserve distance. Hence dis(4,0) = dis(Ry(Ra(A)),O)
so that Ry (Ram(A)) = B, and since Ry (Ra(0)) = O, by Theo-
rem NEUT.15(5) Ra(Rm (EOT4])) = [07§ Thus O is a midpoint of AB and
Property R.6 of Definition NEUT.2 is satisfied. O
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Theorem RSL3. Property R.5 is independent of all other properties of Defini-
tion NEUT.2.

Proof Model LM2Q is the 2-dimensional linear model based on Q?, where Q is the
ordered field of rational numbers. Let £ = {R . | £ is a line in Q?}, that is, the set
of all LB.16 mirror mappings over lines in Q2. The development of the linear model
through Theorem LC.32 is valid, with the single exception of Theorem LC.31,
which deals with Property R.5. Thus all the properties of Definition NEUT.2 hold
for this model, except for Property R.5.

We now show that Property R.5 is false, by showing that there is at least one

angle in the plane which has no angle reflection. See Figure 21.8.

Fig. 21.8 For
Theorem RSI.3.
(0,1) 1,1)

(0,0) ' (1,0) (a,0)

Leta = Z(1,1)(0,0)(1,0) in Q. Suppose there exists a lme of symmetry M
and an angle reflection R ¢ for «. Then RM((O 0)(1,1)) = (0 0)(1,0), and for
some rational number a > 0, R (1, 1) = (a, 0). Note that Exercise LM.16 does not

require that [F' contain square roots of its non-negative numbers, so is valid for the
mirror mappings specified on Q2. Applying it to R o, we have

(1 =02+ (1-0)>=(a—0)>+ (0-0)2,
so that 2 = . But Q contains no such number q, so this is impossible. Hence there

is no line of symmetry and there is no angle reflection for «. O

Remark RSI.4. (A) It might be tempting to think that the result of Theorem RSI.3
above, together with the proofs in Subsection 21.5.5 that the set of LB.16 mirror
mappings on Model LM2Q (Q?) satisfies all the other reflection properties,
shows the independence of Axiom REF. But that is not so; it does not rule
out the possibility that there could exist another set of mirror mappings on Q?
which would satisfy all Properties R.1 through R.6, in which case Axiom REF
would hold (cf Subsection 21.6.4).
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(B) We leave the reader with a challenge to find other independence relationships
among the properties of Definition NEUT.2; the ones listed above in Theo-
rems RSI.1-RSI.3 are the ones we have found convenient to prove.

In particular, we would be delighted if it could be shown that Property R.6
is independent of Properties R.1-R.5. We would be even more delighted if
the contrary were shown—that is, if it were proved that in the presence of a
reflection set having Properties R.1-R.5, every segment on a neutral plane has
a midpoint. Our attempts to prove this have not been successful. One of these
attempts eventuated in the result showing that midpoints exist for segments in
the neutral plane, provided Axiom PW also holds. This result is part of the
Supplementary materials, which may be accessed from the home page for this

book at www.springer.com.

21.8 Insufficiency of Incidence and Betweenness axioms

As we stated earlier, in the introduction to Section 21.2, this section will show that
the incidence and betweenness axioms by themselves (as set forth in Chapter 4) are
insufficient to create a satisfactory geometry. To put it more bluntly, IB geometry is
not very useful. Most of this section will use two models (DZII and DZIII) based on
Model DZI, which was developed in Subsection 21.6.3 above.

Much of our work will have to do with the line £ in Model DZI which contains
(0,0,0) and (1,0,0). We define betweenness on L by letting P = (0,0,0) and
0 = (1,0,0) in Definition DZI.3. Then for points A = (a,0,0), B = (b,0,0),
and C = (c,0,0) on L (where a, b, and ¢ are integers), A-B-C iff a < b < c or
¢ < b < a. If we assign an ordering to £ by specifying that A < B iff a < b in
the normal ordering of integers, it becomes apparent that A-B—-C iff a < b < c or
c<b<aiffa-b—ciffA<B<CorC<B<A.

21.8.1 “Property B.4” does not replace Axiom PSA (DZI)

In this subsection we show that in Model DZI, “Property B.4” is true; but denseness
does not hold for this model since there are no points of the model between (0, 0, 0)
and (1,0,0).
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This helps complete the argument that even if “Property B.4” had been included
in Definition IB.1, the incidence and betweenness axioms would still be inadequate
for developing a satisfactory geometry, and its presence would not remove the need
for the Plane Separation Axiom (PSA). (cf Remark I1B.4.2)

We number this theorem as we do to place it in sequence with items DZI.1
through DZI.9 from Subsection 21.6.3.

Theorem DZI.10. The incidence and betweenness axioms hold for Model DZI, as
does “Property B.4,” which was proposed but not adopted for Definition IB. 1.

Proof. Theorem DZI.5 (Subsection 21.6.3) shows that the incidence and between-
ness axioms hold for Model DZI. Let A = (a,0,0), B = (b,0,0) and C = (c, 0, 0);
then A—B—C iff a—b—c, etc.

Assume that A—-B—C and A—C-D; by the introduction to this section this is true
iff (a<b<corc<b<a)and (a < ¢c < dord < ¢ < a). This statement is
equivalent to

(a<b<canda<c<d)or(c<b<aandd <c <a),
thatistosay, (a < b < ¢ < dord < ¢ < b < a); thus B-C-D, showing that B.4(a)
is true.

A similar proof shows that if A~-B—C and B—C-D, then A-B-D;, so B.4(b) is true.

O

21.8.2 Strange results without Axiom PSA (DZII)

The next model DZII is identical to Model DZI except that the definition of
betweenness is altered. We shall refer to the point (2, 0, 0) simply as 2, the point
(3,0,0) as 3, etc.

Definition DZII.1. Let B, denote the betweenness relation defined for Model DZI
in Definition DZI.3. Define the betweenness relation for Model DZII as

By = (B1 \{(2.3.4).(4.3.2)) U{(3.2.4). (4.2, 3)}.

That is, substitute the triples (3,2,4) and (4,2,3) for the triples (2, 3,4) and
(4,3,2). In yet other words, 3—2—4 and 4-2-3 are true but the other possibilities
forbidden by trichotomy are false.

Theorem DZIL.2. The incidence and betweenness axioms hold for Model DZII.
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Proof. The incidence axioms are valid for Model DZII because they are valid
for Model DZI. By Theorem DZI.5 (Subsection 21.6.3) the relation B; satisfies
Properties B.0, B.1, B.2, and B.3 of Definition IB.1. We must show that B, satisfies

these properties.

(B.0)

(B.1)

(B.2)

(B.3)

If {A, B, C} is any set of points other than {2, 3, 4}, and one of the ordered
triples (A, B, C), (B, A, C), or (A, C, B) belongs to B,, then that triple belongs
to B; so that the points A, B, and C are distinct and collinear. The points 2,
3, and 4 are distinct and collinear, so that any ordered triple belonging to B,
consists of distinct and collinear points.

For every set {A, B, C} of collinear points other than {2, 3,4}, A-B-C iff
C-B-A, since this is true for Model DZI. If {A, B, C} = {2, 3, 4}, and A-B-C,
then eitherA =3,B=2and C = 4,0orA = 4, B = 2 and C = 3; whichever
it is, the other is true by Definition DZII.1.

For every set {A, B, C} of collinear points other than {2, 3, 4}, exactly one of
A-B-C, B-A—C and A—C-B is true, because this is the case for Model DZI.
For the set {2, 3, 4}, the statement 3—2—4 is true, while 2-3-4 and 3-4-2 are
false; also 4-2-3 is true, while 2—4-3 and 4-3-2 are false. Thus, trichotomy
holds for the set {2, 3, 4}, also.

For every set {A, B} of distinct points such that not both belong to the line £,
Property B.3 holds since it holds for Model DZI. Now suppose both A and
B belong to L; if A < B, let C be a point on £ such that C > max(B, 6).
The set {A, B, C} contains the point C which is not in {2, 3, 4} so the points
A, B, and C are ordered numerically, that is, A < B < C; therefore A—-B—C.
Similarly, if A > B, let C be a point on £ such that C < min(B, 1); again
the set {A, B, C} contains the point C which is not in {2, 3, 4} so the points
A, B, and C are ordered numerically, that is, A > B > C; therefore A—B—C.
Therefore Property B.3 holds for Model DZII. O

The following theorem shows that “Property B.4” is not a consequence of the

other properties of Definition IB.1.

Theorem DZIL.3. Both Property B.4(a) and Property B.4(b) of Definition IB.1 are
false for Model DZII.

Proof. In Model DZII, 1-2-3 and 1-3—4 are both true; if Property B.4(a) were true,
then 2-3—4; by Definition DZII.1 this is false.
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We know from the definition of Model DZII that 4-2-3; since {2, 3, 5} contains
one point not in {2, 3, 4}, this triple is ordered numerically, and 2-3-5 is true. If
Property B.4(b) were true, 4-2-5, which is false by trichotomy. Therefore Property
B.4(b) is false. O

Next we show decisively that things don’t “work right” without Axiom PSA.

Theorem DZIL4. Let L be the line in Model DZII which contains both (0,0, 0)
and (1,0,0).

E ) ( )

(A) There exist points A, B, and C on L such that A~-B—C and 1[9_)A UBC # AC. That

is, the union of “opposing” rays is not the whole line.

]

(B) There exist points A, B, and C on L such that A~B—C and AE U 1[98 #* 1[48
(C) There exist points A, B, C, and D on L such that A # B and AC = Brl))

> >

(D) There exist points A, B, and C on L such thatA # B, C € 34_1)9 but AC # AB.

Proof. (A) By Definition IB.4
24 = 2,4 U {x | x € Z and (2—x—4 or 2-4—x)}
={2}U{x|x€Z and x > 4}.
Here we have used the fact that there is no point x such that 2—x—4 (2-3-4 is
false by the definition of Model DZII). On the other hand,
2 = {1,2} U {x | x € Z and (1-x-2 or 2-1-x)};
={1,2}U{x|x€Z and x < 1}.
Again, we have used the fact that there is no point x such that 1-x—2. It follows

that 57 U 2% = Z \ {3}, and the union of these two “opposing” rays is not the

whole line.

[t
i

(B) By Definition IB.3, 24 = {2, 4}, since in Model DZII, 2-3—4 is false. Also,
45 = {4, 5}, because there is no point between 4 and 5. Therefore

=3 E3
24045 = {2,4,5}.
But 2-3-5 and 2—4-5, so that Eﬁg = {2, 3,4, 5}, and therefore
= B =]
24U 45 #£ 25.
Thus if A-B—C, we cannot conclude that AC]‘ = 1[45 U l[gﬁé’
(C) By Definition IB.4,
34 = {3,4) U {x | x € Z and (3—x—4 or 3—4—x)};
={2,3,4U{x|xe€Z and x> 4} ={x|xe€Z and x > 2}.
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Here we have used the fact that by definition of Model DZII, 3-2—4. On the
other hand,

285 = {2,5)U {x | x € Z and (2=x=5 or 2-5-x)}.
By definition of Model DZII, both 2-3-5 and 2-4-5, so this is
={2,3,4,5}U{x|x€Zand2-5-x} = {x | x € Z and x > 2}.
Therefore 352 = 2E§ and this ray has two different initial points, 2 and 3.
(D) By Definition IB .4,
52 ={2,4} U {x | x € Z and 2—x—4 or 2-4—x)};
={2,4}U{x|xeZand2-4—x} = {2} U{x |x €Z and x > 4}.
On the other hand,
25 =1{2,5)U {x | x € Z and (2=x=5 or 2-5-x)}.
By definition of Model DZII, both 2—3-5 and 2—4-5, so this is
={2,5} U {3,4} U {x | x € Z and 2-5-x}
={2,3,4,5}U{x|x€Z and x> 5} ={x|x € Z and x > 2}.
Since 3 & [2_4>l, 2% #* 2E§, even though 4 € E_g and 5 € ZEA)f O

21.8.3 Segment and triangle strangeness without Axiom PSA
(DZIII)

The next Model DZIII is identical to Model DZI except that the definition of
betweenness is altered. As before, we let B denote the betweenness relation defined
for Model DZI, as in Definition DZI.3. We shall refer to the point (2, 0, 0) simply
as 2, (3,0,0) as 3, etc.

Definition DZIIL.1. Define the betweenness relation for Model DZIII as
B; = (B1 \{(2.3.4),(4,3,2),(3,4.5).(5.4.3)})
U{@3,2,4),(4,2,3),(3,5,4),(4,5,3)}.
That is, substitute the triples (3,2,4) and (4,2,3) for the triples (2, 3,4) and
(4,3,2), and substitute the triples (3, 5, 4) and (4, 5, 3) for the triples (3,4, 5) and
(5,4, 3). In yet other words, 3-2—4, 4-2-3, 3-5-4, and 4-5-3 are true, and the other
possibilities forbidden by trichotomy are false.
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Theorem DZIIL.2. The incidence and betweenness axioms hold for Model DZIII.

Proof. The incidence axioms are valid for Model DZIII because they are valid
for Model DZI. By Theorem DZI.5 (Subsection 21.6.3) the relation B; satisfies
Properties B.0, B.1, B.2, and B.3 of Definition IB.1. We must show that B; satisfies

these properties.

(B.0) If {A, B, C} is any set of points other than {2, 3,4} or {3, 4,5}, and one of
the ordered triples (A, B, C), (B, A, C), or (A, C, B) belongs to B3, then that
triple belongs to B; so that the points A, B, and C are distinct and collinear.
The points 2, 3, and 4 are distinct and collinear, and the points 3, 4, and 5 are
distinct and collinear, so that any ordered triple belonging to B3 consists of
distinct and collinear points.

(B.1) For every set {A, B, C} of collinear points other than {2,3,4} or {3,4,5},
A-B—C iff C-B-A, since this is true for Model DZI. The same argument as
given for Property B.1 in Theorem DZII.2 shows that 3—-2—4 iff 4-2-3, and a
similar argument shows that 3—5-4 iff 4-5-3.

(B.2) For every set {A, B, C} of collinear points other than (2,3,4) or (3,4,5),
exactly one of A—-B-C, B-A—C and A-C-B is true, because this is the case
for Model DZI. For the set {2, 3, 4}, the statement 3-2—4 is true, while 2-3-4
and 2—4-3 are false; also 4-2-3 is true, while 4-3-2 and 3—-4-2 are false. For
the set {3, 4, 5}, the statement 3—5—4 is true, while 5-3—4 and 3—4-5 are false;
also 4-5-3 is true, while 5-4-3 and 4-3-5 are false. Thus, trichotomy holds
for these triples, also.

(B.3) For every set {A, B} of distinct points such that not both belong to the line £,
Property B.3 holds since it holds for Model DZI. Now suppose both A and
B belong to L; if A < B, let C be a point on £ such that C > max(B, 6).
Since C ¢ {2, 3,4, 5}, the points A, B, and C are ordered numerically, that
is, A < B < C; thus A-B—C. Similarly, if A > B, let C be a point on £ such
that C < min(B, 1). Again, since 1 ¢ {2, 3,4, 5}, the points A, B, and C are
ordered numerically, that is, A > B > C; thus A—B-C. Therefore Property
B.3 holds for Model DZIII. O

Remark DZIIL.3. In the next theorem we show that in Model DZIII there is a
segment with two different sets of end points. Note that if this is true, the two sets
of end points must be pairwise disjoint. For suppose the contrary, that A, B, and
C are distinct collinear points and 1[476]' = ZTC]” . Then since B € 1[4763' , A-B—C; also,
since A € 1[5’761', B-A-C. This is a contradiction to the trichotomy Property B.2 of
Definition IB.1.
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Theorem DZIIL4. Let L be the line in Model DZIII which contains both (0,0, 0)
and (1,0,0).

LJ
I"\
L_l

(A) There exist distinct points A, B, C, and D on L such that AB CD. That is,
there exists a segment having two different sets of end points.

(B) There exist points A, B, C, U, V, and W such that {A, B, C} and {U,V, W} are
noncollinear sets and {A, B, C} # {U,V,W}, such that AABC = AUVW.

That is, there exists a triangle that has two different sets of corners.

Proof. (A) ﬁ = {2,3,4,5} because by definition of Model DZIII, 3-2—-4 and
3-5-4.

In this model, 2-3-5 and 2-4-5 are as in Model DZI. Therefore % =
{2,3,4,5} = 34. Hence both the sets {2,5} and {3, 4} are endpoints for the
same segment: a segment does not completely determine its endpoints.

(B) Note first that the point A = (2,1,0) is in the plane containing £, and that
there is no point of Model DZIII between A and any of the points of the
segment defined in part (A) above—that is, between A and any of the points

= (2,0,0), C 3,0, 0) D = (4,0, O) or E = (5,0,0). Therefore
Exﬁ {A,B}, AC = A, C} AD = {A,D}, AE = {A,E}. Also, from part
(A), BE = {B,C,D,E} =
It follows that
AABE = ABUBE UEA = {A,B,C,D,E}
= ACUCDUDA = AABE.

Thus by Definition IB.7, both the sets {A,B,E} and {A, C,D} are sets of
corners for this triangle. Thus, in Model DZIII, specifying a triangle does not

L_l

completely determine its corners. O

21.9 Exercises for models

Answers to starred (*) exercises may be accessed from the home page for this book

at www.springer.com.

Exercise LM.1. Using Definition LA.1(2) complete the proof of Remark LA.2;
. <—> <—> <—> <—>
that is, prove that ABC = CAB = BCA = CBA.


www.springer.com
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Exercise LM.2*. Prove Theorem LA.3: distinct points A, B, and C are collinear iff
B — A and C — A are linearly dependent.

Exercise LM.3*. Prove Theorem LA .4: distinct points A, B, C, and D in F? are
coplanar iff B— A, C — A, and D — A are linearly dependent.

Exercise LM.4*. Prove Theorem LA.5: if A and B are distinct points in IF3, define,
for each real number 7, ¢(f) = A 4 t(B — A). Then ¢ is a one-to-one mapping of F
onto AB.

Exercise LM.5.

(A) Prove Theorem LA.15: (A) Two points A = (a;, ay) and B = (b1, by) of F? are

ay by

linearly dependent iff ) = 0. A solution is provided for this part.
az by
(B) Three points A = (ai,a2,a3), B = (b1, b», b3), and C = (cy, ¢2, c3) of F3 are
a bl C1

linearly dependent iff |a, b, ¢,| = 0.

az bs c3

Exercise LM.6*. Prove Theorem LA.17: Let a, b, ¢ and d be members of F, where
at least one of a, b, c is nonzero; let £ be the set of all points (x1,x;,x3) € F 3 such
that ax; + bx, + cx3 + d = 0, as defined in Remark LA.16.

(A) & is a proper subset of F>.

B) If X = (x1,x2,x3) € &, there exist two other points Y = (y;,y,,y3) and Z =
(z1,22,z3) in € such that X, Y, and Z are noncollinear, which is to say (by
Theorem LA.3) that the vectors Y — X and Z — X are linearly independent.

Exercise LM.7*. Prove Theorem LA.18: Let X = (x1,x2,x3), ¥ = (y1,Y2,3),
and Z = (z1,72,23) be noncollinear points in F3, so that )((—YZ> is a plane as in
Definition LA.1(2). Then there exist numbers a, b, ¢, and d in F, where not all
of a, b, or ¢ are zero, such that

<«

XYZ = {(w1, w2, w3) | awy + bwy + cw3 +d = 0};

Exercise LM.8*. Prove Theorem LA.19: Let a, b, ¢, and d be numbers in IF, where
not all of a, b, or ¢ are zero. Then the set

E ={(wi,wa,w3) | aw; + bwy + cw3 +d = 0}
is a plane in F3 as defined by Definition LA.1(2).
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Exercise LM.9*. Prove Theorem LB.4: For any numbers a, b, ¢, d’, b, and ¢ in T,

where at least one of a or b, and at least one of a’ or &’ is nonzero, then

(A) L ={(x1,x2) | ax; + bx, + ¢ = 0} # F%

(B) there exist at least two distinct points in £; and

(C) both ax; + bx, + ¢ = 0and a’x; + b'x, + ¢’ = 0 are equations for £ iff there
exists a number k # 0 such that ' = ka, b’ = kb, and ¢’ = kc.

Exercise LM.10*. Prove Theorem LB.5: Let X = (x1,x;) and Y = (y1,y;) be

distinct points in F2, and let XY be the line containing both X and Y according to
<>

Definition LA.1(1). Then XY = {(wy, ws) | aw; +bw,+c¢ = 0}, where a = y, —x»,

b=x;—y,and c = x(y1 —x1) —x1(y2 — x2).

Exercise LM.11. Prove Theorem LB.6: Let a, b, and ¢ be numbers in IF, where at
least one of a or b is nonzero. Then the set

L= {(wi,w2) | aws + bwp + ¢ = 0}
is a line in [F? as defined by Definition LA.1(1).

Exercise LM.12. Let
L = {(x1,x2) | a1x1 + b1xy + ¢; = 0} and
M = {(x1,x2) | apx1 + boxy + ¢, = 0}
be two lines in IF2. Using the equations above, show that if they are c-perpendicular,

they must intersect.

Exercise LM.13*. Show that the line £ on R? through the distinct points (u;, u5)
and (v, vp) is
{(x1.x2) | (x1,%2) € R? and (v — up) (x1 — 1) — (v1 — 1) (x, — 1) = O}
Exercise LM.14*. Show that for every member (x;, x;) on the line
L= (x1,%) | (x1,x2) € R? and ax, +bx, +c =0,
the formula for @(x,x;) given in Definition LB.16 yields @(x, x2) = (x1,xz). For

a coordinate-free proof, see Theorem LC.23(A).

Exercise LM.15*. In the plane I, if a line £ is c-perpendicular to a line M and if
line M and line N are parallel, then L is c-perpendicular to line AV.

Exercise LM.16*. Let F be an ordered field, and let R, = & be the mapping
defined by Definition LB.16 and Definition LC.24 over the line

L ={(x1,x) | (x1,x2) € F? and ax, + bx, + ¢ = 0}.
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where (a, b) # (0,0). Define I'} and I, to be the mappings such that R . (x,x2) =
(I (x1,x2), Do (x1, x2)). Then if X = (x1,x,) and ¥ = (y1, y») are any points of F?,
(NG1x) = N y2))? + (D x) — DO, y2))?
= (1 —=y1)* + (2 —y2)*
In case I contains square roots of its non-negative numbers, so that distance is
defined, this says that dis*>(R . (X), Rz (Y)) = dis>(X, Y).

Exercise MLT.1*. Prove the uniqueness of the line found in Theorem MLT.3,
which passes through both points A and B.

Exercise MLT.2*. Prove Claim 1 of the proof of Theorem MLT.5.

Exercise MLT.3*. Prove that Case 4 of Claim 2 of the proof of Theorem MLT.5

leads to a contradiction.

Exercise MLT.4*. Let X = (x,x2) and Y = (y;, y2) be two points in Model MLT,
where x; < yi, and let d be any real number such that x; < d < y;. Then there
exists a real number e such that the point Z = (d, ¢) is the point of intersection of
L and ﬁ ms also Z € Eﬁm. This proves that every nonvertical line intersects every

vertical line.

Exercise MLT.5*. Prove that in Model MLT, every line parallel to a line of type N
is a line of type N.

Exercise MLT.6. Prove that the relation “<” defined (for lines of type N) in part
(3) of Definition MLT.1(F) is an order relation according to Definition ORD.1. Note
that this proof will involve Model MLT rays, which may lie partly in one side and
partly on the other side of the y-axis (and hence don’t look like the Model LM2R

rays we considered in the text).
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Index

ZBAC, angle, 105
OABCD, quadrilateral, 105
8, dilation, 382
R ., reflection in linear model, 449
R, reflection over line £, 159
(a, b), ordered pair, 7
(a, b, ¢), ordered triple, 7
(a1, as, . ..,ay), ordered n-tuple, 7
<, 5>, 2,
for free segments, 227-229
on a line of a Pasch plane, 140
points in ordered field, 309-313
segments and angles, 208, 199-208
=, #, equal, unequal, 6
[AB), sensed segment, 403
PE , parallel or equal relation, 50
N, intersection, 7
==, congruence (of sets), 160
3LLEunion, 7
UV, open segment, 66—67
@, empty set, 7

P%Qt, %i&e through P and Q, 28
UV, UV, half-open (closed) segment, 66—67

13] ], free segment, 227

UV, closed segment, 6667

1, identity mapping, 10

€, ¢, is, is not a member of, 6

<>, equivalence, 6

A, field of real algebraic numbers, 13
N, set of natural numbers, 13

Q, field of rational numbers, 13

R, field of real numbers, 13

Z, set of integers, 13

dis(A, B), distance on a coordinate plane, 424

!

N

-

qdi(X, Y), quadratic distance on a coordinate
plane, 449

ftpr(A, M), foot of pr(A, M), 212

par(A, M)), line through A parallel to M, 38,
252

pr(A, M), perpendicular from A to M, 212

®, division of points on a line, 309

—, negation, not, 4-5

©®, product of points on a line, 306

©, subtraction of points on a line, 308

@, sum of points on a line, 306

I, I, parallel, nonparallel, 38

1, perpendicular, 175

T—> . <>

zsﬂf)Q, Q-side of AB, 72

UV, open ray, 67

=, implies, 6

U—‘>/, closed ray, 67

\, set subtraction, 7

~, similarity, 319

C, subset, 7

AABC, triangle, 70

|X|, absolute value, 313

[|A||, norm of a vector A, 423

{x | p(x)}, truth set of p(x), 7

© A, additive inverse of A on a line, 308

A e B, dot (inner) product of vectors A and B,
423

AL multiplicative inverse of A on a line, 308

f(&), image of £ by the mapping f, 9

f: A— B,fmaps Ato 5,9

f o g, composition of f and g, 9

f71, inverse of £, 10

f7X(G), pre-image of G by mapping f, 9

fE, f restricted to £, 9
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Q-side (of a line), 72 addition

A X B, Cartesian product, 8 of free segments, 227
of points on a line, 306, 375-379
of points on a plane, 385, 386

A of sets of points, 375-379
absolute value additive inverse, 308
in an ordered field, 313 AEA congruence theorem for triangles, 194
acronym affine plane, geometry, 39
AA, axial affinity, 391-397 algebraic numbers, 13
AX, axial affinity, Euclidean plane, 335-344  alternate angles
BI, independence of betweenness congruence, 206, 254
properties, 497-500 altitude (of a triangle), 212
CAP, collineations, affine plane, 45-61 concurrence of altitudes, 259
COBE, belineations, 149-154 and (logical connective), 4
DLN, dilations, 282-303 angle, 105
DZIII, segment and triangle behavior, acute and obtuse, 205-206
511-513 adjacent, in a quadrilateral, 256
DZII, nonstandard behaviors, 508-511 alternate, 206, 254
DZI complement of, 262
and Property B.4, 507-508 complete triple of angles, 262
independence of Axiom PSA, 473477 construction of, 196
EUC, Euclidean geometry, 252-263 maximal angle of a triangle, 206
FM, independence with finite models, outside angle of a triangle, 204-205
468-473 right, 182
FSEG, free segments, 226-232 supplemental, 182
IB, incidence-betweenness, 63-76 trichotomy for, 201, 202
1P, incidence-parallel, 37-42 vertical, 182
ISM, isometries on a Euclidean plane, angle reflection, 160
266-278 properties, 166
I, incidence, 23-33 uniqueness of, 172
LA, linear Model LM3, 417430 Archimedean property, 364-366
LB, linear Model LM2, 430-437 Archimedes of Syracuse, 364
LC, consistency from a linear model, area
437-464 of a triangle, 358-359
LE, independence of Axiom LUB, 495-496  argument (of a mapping), 9
MLT, independence of Axiom REF, arithmetic
477-490 on a line, 306-309, 367-379
MMI, independence of mirror mapping on a plane, 385, 387
properties, 500-501 axial affinity, 58, 335-344
NEUT, neutral geometry, 157-213 is a belineation, 343
OF, ordered field, 306-315 on Euclidean/LUB plane, 391-397
ORD, ordering of line, 139-146 related to other belineations, 397—400
PSH, Pasch, plane separation, 80 Axiom
PSM, independence of Axiom PS, 491 BET, betweenness, 64
QX, rational numbers, 348-359 1.0-1.5, incidence, 24
REAL, real numbers, 362—-385 LUB, least upper bound, 362
ROT, rotation, 236247 PS, strong parallel, 38, 252
RR, coordinate plane, 385-389 PSA, Plane Separation, 81
RSI, independence of reflection set PW, weak parallel, 38
properties, 501-507 REEF, reflection, 160
RS, Menelaus’ and Ceva’s theorems, axiom, 20
401412 consistency, 414

SIM, similarity, 319-332 from a linear model, 437-464
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independence, 415, 466-496
sequential vs. strong, 466
validity on a linear model
Axiom REEF, 447
betweenness Axiom BET, 444, 441444
incidence Axioms 1.0-1.5, 437-441
least upper bound Axiom LUB,
462-463
parallel Axiom PS, 444
Plane Separation Axiom PSA, 445-447
systems discussed, 2
axis
of a mirror mapping or reflection, 157
of an axial affinity, 58

B
base (of a triangle), 212
belineation, 149-154
fixed point of, 261
is a bijection preserving betweenness, 150
types of, 397-400
is a collineation, 150
betweenness
Axiom BET, 64
for numbers, 14
insufficiency of, 507-513
properties, independence of, 496-500
biconditional, 4
bijection, mapping or function, 10
Birkhoff, George, 3
bisecting ray, 160
of angles of a triangle, 212
Bolyai, Janos, 39
bound
greatest lower, 362-363
least upper, 362-363
lower, 144
upper, 144
bounded set, 144—-146

C
c-midpoint
of a segment in coordinate space, 424
same as midpoint, 465
c-perpendicular
lines in coordinate space, 423
same as perpendicular, 464
cardinal number, 11
Cartesian product, 8
Cartesian space or plane, 414
Cauchy-Schwarz-Bunyakovski inequality, 424
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center
of a parallelogram, 256
centroid
of a triangle, 261
Ceva’s Theorem, 409
Ceva, Giovanni, 409
Cevian, interior and exterior (lines), 409
circumcenter of a triangle, 254
collinear, 24
collineation (mapping)
fixed line of, 46
fixed point of, 46
preserves midpoints, 257
that is a belineation, 149-154
types of, 45-46, 397-400
complement
of a reflection, 174
of an acute angle, 262
complete ordered field, 362
composition (of mappings), 9
concurrence
of altitudes of a triangle, 259
of lines, 24
of medians of a triangle, 261
conditional, if...then, 4
congruence
is an equivalence relation, 164
of alternate angles, 206, 254
of right angles, 195, 198
of sets, 160
of triangles and angles, 192-205
theorem AEA for triangles, 194
theorem EAA for triangles, 209
theorem EAE for triangles, 194
theorem EEE for triangles, 193
theorem hypotenuse-leg for triangles, 209
consistency of axioms, 20, 414
from a linear model, 437-464
contrapositive, 4
converse, 4
convex (set), 71
coordinate space
preliminaries, 417
coordinate, first and second, 388
coordinatization
map, an isomorphism, 388
of a Euclidean/LUB plane, 387
coplanar, 24
corner
of a quadrilateral, 106
of a triangle, 70
of an angle, 105
corollary, 21
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Cramer’s rule, 19
Crossbar theorem, 110

D
definition, 20
good and bad, 21
denseness
not a consequence of Property B.4,
507-508
denseness property, 100
Desargues, Girard, 32
Proposition of, 32
Descartes, René, 8, 414
determinant (of a matrix), 18—-19
diagonal (of a quadrilateral), 106
dilation, 54, 282-303, 306
action on different lines of a plane, 384
and integral multiples, 348-352
and rational multiples, 352-357
and rotation group, 302
and similarity, 319
existence, 291-295
is a belineation, 293
point-wise construction of, 294
properties of, 296-303
related to other belineations, 397-400
disjoint sets, 8
distance
in an ordered field, 314
in coordinate space, 424
quadratic, on a coordinate plane, 449
distinct, 8
division
of points on a line, 309
domain (of a mapping), 8
dot (inner) product of two vectors, 423
doubleton, 7

E
EAA congruence theorem for triangles, 209
EAE congruence theorem for triangles, 194
edge

maximal edge of a triangle, 206

of a quadrilateral, 106

of a triangle, 70
EEE congruence theorem for triangles, 193
empty set, 7
enc, enclosure

of a quadrilateral, 129

of an angle or triangle, 109
endpoint

of aray, 67

Index

of a segment, 66-67
of a sensed segment, 403

equivalence

class, 11
of free segments, 225-232
relation, 11
congruence, 164
similarity, 321

Euclid of Alexandria, 2, 414

Fourth Postulate, 198

Euclidean plane, 252

axial affinity on, 335-344

is either a stretch or a shear, 343
dilation of, 282-303
isometries of, 266, 278
isometry classification on, 273
rational points on, 348-359
similarity on, 319-332

Euclidean space, 252
Euclidean/LUB plane, 362—412
Eudoxus of Cnidus, 366
Eudoxus’ theorem, 366

exc, exclosure

of a quadrilateral, 129
of an angle or triangle, 109

extension property (for betweenness), 64

F

field, 13

line as ordered field, 306-315

finite set, 11

is bounded, 145

fixed line

of a mapping, 46
of reflection or mirror mapping, 168
perpendicularity, 183

fixed point

of a mapping, 46
of belineation, 261
of isometry, 171-172

fixed segment of a mapping, 165
free segment, 227-232

identification as point on a ray, 226

identification with point on a ray, 230-231,
313-315, 323-324

product, 323

ratio of, 325

rational multiple of, 358

square of, 324

unit, 323

function, see mapping
function, mapping, 8
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G
Gauss, Johann Carl Friedrich, 39
geometry, 2
Euclidean, 252-412
incidence, 23-33
incidence-betweenness, 76
incidence-parallel, 37-61
neutral, 156-247
Pasch, 80-146
Euclidean/LUB, 412
types of, 2
GLB, greatest lower bound, 362-363
glide reflection, 270
greater than, 140
greatest lower bound, 362-363
group, 12
abelian, 12
Euclidean/LUB plane under +, 385
of axial affinities, 59
of collineations, 47
of dilations, 55
of dilations and rotations, 302
of free segments under ©, 323
of isometries, 163
of line elements under @ or ®, 307
of rotations, 244
of translations, 50, 269
of bijections, 12

H

half-rotation, 282
is a collineation, 284-288
structure of, 282-288

halfplane, 72

Halmos, Paul Richard, 18

Hilbert, David, v, 3

hinge theorem, 210

hypotenuse (of a right triangle), 208

hypotenuse-leg theorem, 209

I
identity map, 10
if...then, conditional, 4
iff, if and only if, 4
image (under a mapping), 9
incidence Axioms 1.0-1.5
valid on a linear model, 437, 441
incidence axioms 1.0-1.5, 23-24

independence of axioms, 20, 415, 466—496

Axiom LUB, 495-496

523

Axiom PS, 491-494
Axiom REF, 477-490
betweenness Axiom BET, 473, 477
incidence Axioms I.1-1.5, 468-473
Plane Separation Axiom PSA, 473
sequential vs. strong, 466
table of models, 467
using finite models, 468—473
independence of definition properties, 415,
496-507
betweenness, 496-500
mirror mapping, 500-501
reflection, 501-507
table for, 496
induction, mathematical, 5
infinite set, 11
initial point
of a ray, 67
injection, mapping or function, 9
ins, inside
of a quadrilateral, 129
of an angle or triangle, 109
insufficiency
of incidence and betweenness axioms,
507-513
insufficiency of incidence and betweenness
axioms, 415
integral multiple of a point, 348-352
intersection, 7
inverse
additive, 308
multiplicative, 308
irrational point on a line, 371
isoceles triangle theorem, Pons Asinorum,
181
isometry, 160
classification, 245, 273
construction for angles, 179
construction for segments, 191
fixed points of, 171-172
on a Euclidean plane, 266-278
preserving sides, 177-179
properties of, 164—166
related to other belineations, 397—400
with two fixed points, 179
isomorphism, 18
coordinatization map, 388
of real numbers and a line, 379
vector space, 388

K
kite theorem, 192
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L
least upper bound, 362-363
and Archimedean property, 365
Axiom LUB, 362
valid on a linear model, 462—463
lemma, 21
length
of a segment, 314
less than, 140
limit of sequence, 363
line, 23-25
as a field, 309
as an ordered field, 306-315
has exactly two sides, 89-91
has perpendicular at each point, 186
in linear model, 417
side of, 72
contains a ray, 75
in Model DZI, 477
in Model MLT, 483
is convex, 89
types of
in Model MLT, 478
line of symmetry, 160
angle criterion, 180
for a line, 168
for an angle, 166
uniqueness for angle, 172
linear
mapping (transformation, operator), 17
transformation (mapping, operator), 17
linear model
consistency of axioms on, 437-464
three dimensional (coordinate space),
417-430
two dimensional (coordinate plane),
430-437
linearly independent (vectors)
and orthogonality, 426
lines of symmetry of supplements are
perpendicular, 185
Lobachevsky, Nikolai Ivanovich, 39
logic, 4-6
logical equivalent, equivalence, 5
lower bound (of a set), 144
LUB, least upper bound, 362-363
and Archimedean property, 365

M

mapping
composition, 9
transfer, 456

Index

mapping segments in a Pasch plane, 129
mapping, function
bijection, 10
injection, 9
inverse, 10
one-to-one, 9
onto, 9
elementary theory, 10
mathematical induction, 5
matrix, 18-19
determinant of, 18—-19
maximum element (of a set), 144
median (of a triangle, 261
Menelaus of Alexandria, 407
Menelaus’ Theorem, 407
midpoint, 160, 424
and reflections, 168
as @, 357
exists on a linear model, 454
preserved by collineation, 257
same as c-midpoint, 465
uniqueness, 189
minimum element (of a set), 144
mirror mapping, 157-159
axis, 157
exists on a linear model, 447-449
fixed line properties, 168
induced on an arbitrary plane, 460-462
properties of, independence, 500-501
is a belineation, 158
is an axial affinity, 159
mirror mappings
reflection set of, 159
model, 414, see also acronym
for axiom consistency, 417464
for incidence geometry, 25-27
for independence of
Axiom LUB, 495-496
Axiom REF, 477-490
betweenness Axiom BET, 473, 473
betweenness properties (BI), 496-500
incidence axioms, 468—473
mirror mapping properties (MMI),
500-501
parallel Axiom PS, 491-494
Plane Separation Axiom PSA, 473-477
reflection properties (RSI), 501-507
showing insufficiency of incidence
and betweenness axioms (DZI),
507-508
showing strange results without Axiom
PSA (DZII, DZII), 508-513
Moulton, Forest Ray, 477
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multiple (of a point)

integral, 348-352

rational, 348

real, 367-389

scalar, 367-386
multiplication

of points on a line, 306, 375
multiplicative inverse, 308

N
n-tuple, 7
negation, 4

of quantified statement, 5
negative point on a line, 309
neutral plane, 162
noncollinear, 24, 28
noncoplanar, 24, 28
norm (length) of a vector

in coordinate space, 423426
not (logical operator), 4
number systems, 13

(0]
one-to-one correspondence, 10
one-to-one mapping or function, 9
operation (binary), 11
opposite
corners of a quadrilateral, 106
edges of a quadrilateral, 106
rays, 105
sides of a line, 72
or (logical connective), 4
exclusive, 4
ordered field, 306-315
complete, 362
of rational points, 356
ordered pair, triple, 7
vector space of ordered pairs, 388
vertical and horizontal notation, 417
ordering
a field, 309-313
a line, 140-144
for numbers, 14
free segments, 227-229
segments and angles, 199-208
origin, zero, on a line, 306
orthocenter, 259
orthogonal vectors, 423
are linearly independent in coordinate
space, 426

out, outside
of a quadrilateral, 129
of an angle or triangle, 109

P
pair, ordered, 7
pairwise
disjoint, 8
distinct, 8
Pappus of Alexandria, proposition of, 295
parallel, 37
Axiom PS, 252
Axiom PS, PW, 38
valid on a linear model, 444
fixed lines of mirror mapping, 168
projection preserves midpoints, 260
Property PE, parallels exist, 157
relation (parallel or equal), 50
segments, 253
transitivity of, 42
parallelogram, 253
center of, 256
partition, equivalence relation, 11
Pasch plane, 86
Pasch, Moritz, 80
Pasch, Postulate of, 80
pencil (of lines), 38
perpendicular, 175
and lines of symmetry, 175
bisector, 189
exists for each point of a line, 186
foot of a, 212
lines of symmetry of supplements, 185
right angle, line of symmetry, 183
same as c-perpendicular, 464
to a line from a point, 212
unique at a point, 176, 187
perpendicular (lines), 423
plane, 23-25
in linear model, 418
Plane Separation Axiom PSA, 81
valid on a linear model, 445-447
Plane Separation Theorem, 90
Playfair, John, 38
point, 23-25
polygonal domains, regions, 359

Pons Asinorum, isoceles triangle theorem, 181
positive half (of a line in an ordered field), 313

positive point on a line, 309
Postulate of Pasch, 80
predicate, 5



526

Proclus Lycaeus, 38
product

of points on a line, 306, 375
product (scalar)

of number with point, 367-385
projection map, 335
proof, 5

by contradiction, 5

by contraposition, 5

direct, 5

indirect, 5

inductive, 5
Property PE, parallels exist, 187
proposition, 4
Pythagoras of Samos, 330
Pythagorean Theorem, 330-331

Q

quadratic distance, 449

quadrilateral, 105
parallelogram, 253
rectangle, 256

quantifier, 5

R
range (of a mapping), 9
rational
multiple of a free segment, 358
multiples of a point on a line, 348-357
point on a line, 356, 371
ray
in linear model, 418
closed, 67
open, 67
rectangle, 256
criteria for, 258-259
reflection, see also mirror mapping
Axiom REEF valid on a linear model, 447
axis, 157
complement of, 174
fixed line properties, 168
glide, 270
midpoint of fixed segment, 177
on a coordinate plane, 435
point, 236
reflection set, 159
reflection set
exists on a linear model, 455
properties, independence of, 501-507
relation, 11
equivalence, 11
parallel or equal, 50

Index

remark, 21
restriction (of a mapping), 9
right angle, 182
perpendicular, line of symmetry, 183
rotation, 236247
associated, 282
half, 282
structure of, 282-288
point, 236
point reflection, 236
square root of, 246
rotund (quadrilateral), 106

S
Saccheri, Giovanni Girolamo, 38
scalar
multiple of a point on a plane, 386
scalar product
see also multiple (rational or real), 367
segment
construction, 195
in linear model, 418
parallelism, 253
sensed, 403
transitivity for, 200
trichotomy for, 199
with multiple sets of endpoints, 512
closed, 66-67
half-closed, half-open, 6667
open, 6667
sensed segment, 403
initial and final points of, 403
ratio separating points, 403
sensed length of, 403
sequence, and limit, 363
set, 6
convex, 71
finite, 11
infinite, 11
subset, 7
shear (collineation), 60, 335
existence of, 340
side, of a line, 72
similarity
is an equivalence relation, 321
mapping, 319-322
of triangles, criteria for, 328
singleton, 7
SMSG, School Mathematics Study Group, 3
space, 23-25
in linear model, 417
square root (of a rotation), 246
statement, 4
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stretch (collineation), 60, 335
existence of, 335
subgeometry, 2
subtraction
of free segments, 230
of points on a line, 309
sum
of free segments, 227
of points on a line, 306, 375-379
of points on a plane, 385, 386
supplemental angles, 182
of congruent angles, 183

T
Tarski, Alfred, 3
quotation from, 19
theorem, 21
topology, base for, 125
transfer mapping, 456
translation, 49, 306
construction of, 277
trapezoid, 106
triangle, 70
acute and obtuse, 206
altitude of, 212
altitudes are concurrent, 259
base of, 212
centroid of, 261
circumcenter of, 254
hypotenuse of, 208
maximal edge or angle, 206
median of, 261

medians are concurrent at centroid,

261

orthocenter of, 259

with non-unique corners, 512
triangle inequality, 231

for coordinate space, 424
trichotomy

for angles, 201

for betweenness, 64

for free segments, 228

for ordering, 141
for segments, 199
triple, ordered, 7
truth set, 7
truth value, 4

U
undefined terms, 20
union, 7
uniqueness
of angle reflection, 172
of corner of an angle, 107
of endpoints and edges, 101-103

of fixed line of a mirror mapping, 168

of line of symmetry of angle, 172
of midpoints, 189

of perpendicular at a point, 176, 187

unit, multiplicative identity
for free segments, 323
on a line, 306

universe, 23

upper bound (of a set), 144

\'%
value (of a mapping), 9
vector space
basis, 15
coordinate space over a field, 17
n-tuple space, 17
dimension, 15
isomorphism, 388
over a field, 14-18
over real numbers, 389
vertical angles, 182
are congruent, 182

Z
zero, additive identity
in a line, 306
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